Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 03/21/2005
I p p p I' Anal Ap oved R9po►z ate FINAL DRAINAGE AND EROSION CONTROL REPORT FOR SETTLER'S CREEK J•R ENGINEERING A Subsidiary of Westrian p I 1 F FINAL ' DRAINAGE AND EROSION CONTROL REPORT FOR SETTLER'S CREEK 1 1 Prepared by ' JR ENGINEERING 2620 E. Prospect Rd., Suite 190 Fort Collins, Colorado 80525 ' (970)491-9888 tPrepared for FAR Hills Developers, LLC t 225 Route 202 Basking Ridge, NJ 07920 1 March 4, 2005 ' Job Number 39402.00 _' I ' March 4 2005 ]•R ENGINEERING A Westrian Company Mr. Basil Hamdan City of Fort Collins ' Stormwater Utility 700 Wood Street Fort Collins, CO 80521 RE: Final Drainage and Erosion Control Report for Settler's Creek tDear Basil, We are pleased to submit to you for your approval, this Final Drainage and Erosion Control Report for Settler's Creek. All comments from the February 16, 2005 Staff Project Review Report have been addressed. All computations within this report have been completed in ' compliance with the City of Fort Collins Storm Drainage Design Criteria dated May 1984, revised April 1997. tWe greatly appreciate your time and consideration in reviewing this final submittal. Please call if you have any questions. ' Sincerely, ' JR Engineering Prepareg by, Reviewed by, �g4 S---rt Erika Schneider W. Lee Watkins, P.E. Design Engineer II Project Manager Iattachments I t2620 East Prospect Road, Suite 190, Fort Collins, CO 80525 970-491-9888 • Fax: 970-491-9984 • www.jrengineering.00m CERTIFICATION I hereby certify that this report for the final drainage design of Settler's Creek was prepared under my direct supervision in accordance with the provisions of the City of Fort Collins Stormwater Utility STORM DRAINAGE DESIGN CRITERIA AND CONSTRUCTION STANDARDS for the owners thereof. Respectfully Submitted, W. Lee Watkins Colorado Professional Engineer No. 38325 For and On Behalf of JR Engineering 38326 4, �SS/pNALENG\� 0 I [1 1 1 I TABLE OF CONTENTS TABLE OF CONTENTS............ PAGE ....................................................... i 1. INTRODUCTION..................................................................................... 1.1 Project Description.......................................................................... 1.2 Master Drainage Basin & Other Drainage Reports ......................... 1.3 Purpose and Scope of Report ........................................................... 1.4 Design Criteria & Methods.............................................................. 1.5 Vertical Datum................................................................................. 2. HISTORIC DRAINAGE.. ................................................. 3 3. LOCAL HYDRAULIC ANALYSIS FOR DEVELOPED CONDITIONS ..........................3 3.1 General Flow Routing.................................................................................................3 3.2 Proposed Sub -basin Descriptions...............................................................................3 3.3 Hydrologic Analysis of the Proposed Drainage Conditions.......................................5 4. STORM WATER FACILITY DESIGN...............................................................................7 4.1 Allowable Street Capacity..........................................................................................7 4.2 Inlet Sizing..................................................................................................................7 4.3 Storm Sewer System...................................................................................................7 4.4 Water quality .................................................. ;............................................................ 8 4.5 Pond Description........................................................................................................8 5. MODSWMM AND EXTRAN.................................................................................................9 6. EROSION CONTROL.......................................................................................................10 6.1 Erosion and Sediment Control Measures.................................................................10 6.2 Dust Abatement........................................................................................................11 6.3 Tracking Mud on City Streets...................................................................................11 6.4 Maintenance..............................................................................................................11 6.5 Permanent Stabilization............................................................................................11 7. REFERENCES...................................................................................................................13 APPENDIX A MAPS AND FIGURES APPENDIX B HYDROLOGIC CALCULATIONS APPENDIX C STREET CROSS SECTIONS APPENDIX D INLET CALCULATIONS APPENDIX E STORM PIPE AND SWALE CALCULATIONS APPENDIX F WATER QUALITY AND DETENTION POND CALCULATIONS APPENDIX G RIPRAP AND EROSION CONTROL CALCULATIONS APPENDIX H EXCERPTS FROM OTHER REPORTS Final Drainage and Erosion Control Report Page i Settler's Creek March 2005 I ' 1. INTRODUCTION 1.1 Project Description Settler's Creek is a 13.6-acre proposed mixed -use development located in a portion of the ' southwest quarter of Section 36, Township 7 North, Range 69 West of the Sixth Principal Meridian, in the City of Ft. Collins, Latimer County, Colorado. The site is bounded by Somerset Subdivision to the north, JFK Parkway to the west, Pier Condominiums to the ' east and Harmony Center to the south. Landings Park is also located to the north and east of the site. A vicinity map is included in Appendix A. ' 1.2 Master Drainage Basin & Other Drainage Reports ' The Master Drainage Basin for Settler's Creek is the McClellands Creek Master Drainage Basin. The "Hydrologic Update to the McClellands Master Drainage Plan and Harmony ' Centre Master Drainage Plan" by Lidstone & Anderson, Inc. dated October 1997, the "McClellands Creek Master Drainage Plan Update Final Report and Technical Appendix" by ICON Engineering, Inc. dated November, 2000 (revised March 2003) and ' the "Final Drainage Report for Harmony Centre" by Drexel Barrell & Co. dated December 19, 1997 were all consulted during preparation of this report. ' 1.3 Purpose and Scope of Report tThis report describes the proposed drainage facilities for Settler's Creek and includes consideration of all on -site and tributary off -site runoff. Design calculations are included for all drainage structures including detention facilities required for this project. ' 1.4 Design Criteria & Methods This report and associated calculations were prepared to meet requirements established in ' the "City of Fort Collins Storm Drainage Design Criteria and Construction Standards" (SDDCCS), dated May 1984 and updated April 1997. The new rainfall criteria as amended by Ordinance 42.199 were used for the 10 and 100 year design storms. Where applicable, the criteria established in the "Urban Storm Drainage Criteria Manual" (UDFCD), developed by the Denver Regional Council of Governments, were also used. ' Local drainage facilities, including storm pipes and inlets, were designed to carry peak ' minor storm event flows from the 10-year storm event. Flows from the major storm event, the 100-year stone, are conveyed through the storm sewer system with overflows t Final Drainage and Erosion Control Report Page 1 Settler's Creek March 2005 cascading downward towards the regional detention facility. The cascading runoff shall ' not cause any point in the parking area to be inundated more than 18 inches. The regional detention facility was preliminarily evaluated under the 100-year storm event using the 11 1 Rational Volumetric Method. The regional detention facility was reevaluated using ModSWMM and EXTRAN during final compliance. With the development of this project, we are improving the area storm water runoff water quality. In the existing condition, the existing pond does not provide for any water quality detention. This project is only required to provide water quality detention for the proposed development. However, we are upgrading the existing pond to include water quality for both the proposed development and the existing developments currently discharging to said pond. Though this upgrade benefits downstream properties and helps the City with their water quality goals, it imposes a substantial impact on the required pond volume. In an effort to mitigate the effects of the additional water quality storage volume, it is necessary to maintain the pond's side slopes to 3:1. Therefore, we hereby request a variance to the City of Fort Collins standard of 4:1 minimum slope to allow 3:1 side slopes in the areas of the detention pond. It is our contention that the increased slope is stable and will not pose any public safety hazards. We also believe that the benefit from improving the existing storm water discharge condition far outweighs any negative impacts from increasing the pond's side slope. 1.5 Vertical Datum Two benchmarks were used as a basis for all elevations, these benchmarks being the City of Fort Collins vertical control benchmark 46-94 and benchmark #48-01. Benchmark #6- 94 is located at the on south side of Harmony Road at the northwest comer of 625 East Harmony Road (Front Range Baptist Church), on the east end of the north wall of a concrete irrigation drop structure. This benchmark elevation is 5013.98. Benchmark #48-01 is located approximately 1/2 mile south of Horsetooth Road, west of College Avenue at the entrance to Barnes and Nobel Bookstore, in the northeast corner of their parking lot, on a concrete curb. This benchmark elevation is 5033.57. 1 Final Drainage and Erosion Control Report Settler's Creek Page 2 March 2005 ' 2. HISTORIC DRAINAGE The Settler's Creek project site includes approximately 13.6 acres of land. The majority ' of the site is currently covered in native grasses. Generally, the site drains in a southeasterly direction with slopes from 1 to 3%. 1 1 Soils on site are predominately Fort Collins loams (Soil number 35). These soils are characteristically known to have slow runoff and slight to moderate wind and water erosion. These soils belong to the Hydrologic group B. A small portion of the site's soils are Soil number 74; however, because this portion is so small, only Soil number 35 will be considered in this analysis. Please refer to Appendix A for further information regarding the soils in this site. 3. LOCAL HYDRAULIC ANALYSIS FOR DEVELOPED CONDITIONS 3.1 General Flow Routing This report defines the proposed drainage and erosion control plan for the Settler's Creek property. The plan includes consideration of all on -site and off -site runoff. The plan addresses the hydrologic ramifications associated with the development of the Settler's Creek property and identifies the proposed storm facilities that will allow this project to develop without adversely impacting downstream properties. This report routed flows to the regional detention pond in the southeast portion of the site for detention and water quality. 3.2 Proposed Sub -basin Descriptions A summary of the drainage patterns within each sub -basin and at each design point is provided in the following discussion. Details of the drainage facility design are included in Section 4. Sub -basin 100 is located in the northwestern portion of the site just to the east of JFK Parkway. The runoff generated from this area sheet flows to the private drive and then flows to the on -grade inlet located at design point 1G. These flows are then piped to the stone system located in the southern portion of the property and eventually discharges into Regional Detention Pond 488. Final Drainage and Erosion Control Report Settler's Creek Page 3 March 2005 Sub -basin 101 is located in the western portion of the site just to the east of JFK ' Parkway. The runoff generated from this area either sheet flows to area inlets (design points IA -IF) or is conveyed via PVC pipe from the roof drains to the ' storm system located in the southern portion of the property. This flow eventually discharges into Regional Detention Pond 488. Sub -basin 102 is located just to the east of sub -basin 101. Runoff from this basin ' sheet flows to the private drive and then gutter flows to the on -grade inlet located at design point 2. These flows are then piped to the storm system located in the southern portion of the property and eventually discharges into Regional ' Detention Pond 488. Runoff from sub -basins 103 and 104, located in the southern portion of the site, is conveyed via sheet and gutter flow to design point 3. The flows are then joined ' with sub -basin 108 and flow to design point 8 where a sump inlet is located. These flows are then piped to the regional detention pond via the southern storm ' system. Sub -basin 105A includes the center portion of the site. The runoff from this area ' is conveyed to three area inlets (design points 5A-1, 5A-2 and 5A-3) via sheet flow. The runoff is then routed to the regional detention pond via the northern ' storm system. ' Sub -basin 105B also includes the center portion of the site. The runoff generated from this area either sheet flows to area inlets (design points 5B-5E) or is conveyed via PVC pipe from the roof drains to the storm system located in the eastern portion of the property. This flow eventually discharges into Regional Detention Pond 488. k Runoff from Sub -basin 106, located in the northern portion of the site, is conveyed to an on -grade inlet located at design point 6 via sheet flow and gutter flow. The northern storm system will then pipe it to the regional detention pond. Sub -basins 107 and 108 include the eastern portion of the site. Sub -basin 107's runoff is conveyed via overland flow and gutter flow to design point 7 where it is collected by a sump inlet and then piped into the regional detention pond via the Final Drainage and Erosion Control Report Settler's Creek Page 4 March 2005 I 1 1 I i northern storm system. This inlet also captures major storm inlet overflow from the on -grade inlet located at design point 6. Sub -basin 108's runoff, along with sub -basin 103 and 104, is captured in the sump inlet at design point 8 and also piped into the regional detention pond via the southern storm system. This inlet also captures major storm inlet overflow from the on -grade inlet located at design point 2. Any over flow of this inlet during the major storm event will flow to the 5' curb cut located near design point 8 and then to Regional Detention Pond 488. The area in Sub -basin 109 includes the Regional Detention Pond 488. Please refer to Section 4.5 for a description of Pond 488. 3.3 Hydrologic Analysis of the Proposed Drainage Conditions The Rational Method was used to determine the 2-year, 10-year and 100-year peak runoff values for each sub -basin. Runoff coefficients were assigned using Table 3-2 of the SDDCCS Manual. The Rational Method is given by: Q = CtCIA (1) where Q is the maximum rate of runoff in cfs, A is the total area of the basin in acres, Cf is the storm frequency adjustment factor, C is the runoff coefficient, and I is the rainfall intensity in inches per hour for a storm duration equal to the time of concentration. The frequency adjustment factor, Cr, is 1.0 for the initial 2-year and 10-year storm and 1.25 for the major 100-year storm. The runoff coefficient is dependent on land use or surface characteristics. The rainfall intensity is selected from Rainfall Intensity Duration Curves for the City of Fort Collins (Figure 3.1 of SDDCCS). In order to utilize the Rainfall Intensity Duration Curves, the time of concentration is required. The following equation is used to determine the time of concentration tt = ti + tt (2) where t, is the time of concentration in minutes, ti is the initial or overland flow time in minutes, and tr is the conveyance travel time in minutes. The initial or overland flow time is calculated with the SDDCCS Manual equation: Final Drainage and Erosion Control Report Settler's Creek Page 5 March 2005 I 1 C- 1 I 1 t ti=[1.87(l.l-CCf)Lo.51/(s)0.33 (3) where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the average slope of the basin in percent, and C and Q are as defined previously. In order to compute the peak Q at a junction where a confluence occurs, let QA, TA, IA correspond to the tributary area with the longer time of concentration, and QB, TB, IB correspond to the tributary area with the shorter time of concentration and Qp, Tp, Ip correspond to the peak Q and time of concentration. If the tributary areas have the same time of concentration, the tributary Q's are added directly to obtain the combined peak Q. QP=QA+QB TP=TA=TB If the tributary areas have different times of concentration, the smaller of the tributary Q's must be corrected as follows: (1) The usual case is where the tributary area with the longer time of concentration has the larger Q. In this case, the smaller Q is corrected by a ratio of the intensities and added to the larger Q to obtain the combined peak Q. The tabling is then continued downstream using the longer time of concentration. QP = QA + QB * IA/IB Tp = TA (2) In some cases, the tributary area with the shorter time of concentration has the larger Q. In this case, the smaller Q is corrected by a ratio of the times of concentration and added to the larger Q to obtain the combined peak Q. The tabling is then continued downstream using the shorter time of concentration. QP = QB + QA * TB/TA Tp = TB All hydrologic calculations associated with the sub -basins shown on the attached drainage plan are included in Appendix B of this report. Final Drainage and Erosion Control Report Settler's Creek Page 6 March 2005 ' 4. STORM WATER FACILITY DESIGN 4.1 Allowable Street Capacity ' Street and gutter depth was calculated using the computer program FlowMaster developed by Haestad Methods, Inc. The 10-year storm was used as the minor (initial) storm event and the 100-year storm was used as the major storm event for street capacity calculations. During the initial storm, runoff was not allowed to overtop the top back of curb for the private streets. During the major storm, the depth of water was restricted to the minimum of either 18" or the depth at the flow line of the garages. See the street capacity cross sections in Appendix C for more detailed information. ' 4.2 Inlet Sizing Most inlets were sized using the computer program UDINLET that was developed by ' James C. Y. Guo of the University of Colorado at Denver. However, UDINLET is used for inlets in streets. There are several area inlets designed for this development that are not located in paved sections. These inlets were sized assuming the inlets act as an ' orifice. The open area of the Type C Area grated inlet was calculated and a maximum head on the grate was found in order to determine the flows through the inlet. Computer ' output files for the inlet sizing are provided in Appendix D of this report. All inlets were designed to intercept the 100-year peak flows with overflows cascading downward ' towards the regional detention facility. The cascading runoff shall not cause any point in the parking area to be inundated more than 18 inches. All inlet locations are shown on ' the utility plans for the construction of this project. Inlet sizing calculations are located in Appendix D. ' 4.3 Storm Sewer System 1 For the storm pipe design, the computer program StormCAD, developed by Haestad Methods, Inc. was used. The software uses the rational method to route flows through the pipe such that we do not assume that all inlets are peaking at the same time. The user inputs the area of the tributary basin and its respective coefficient of runoff as well as the time of concentration for the basin. The software is then given an IDF table to calculate flows and route the flows through the pipe network. StormCAD considers whether a storm pipe is under inlet or outlet control and if the flow is uniform, varied, or pressurized and applies the appropriate equations (Manning's, 11 Final Drainage and Erosion Control Report Settler's Creek Page 7 March 2005 I [] t 1 Kutter's, Hazen -Williams, etc). StormCAD also takes into account tailwater effects and hydraulic losses that are encountered in the storm structures. StormCAD calculates the losses through an inlet or manhole by allowing the user to assign a coefficient for the equation, hL= K*(VZ/2g) Where hL = headloss K = headloss coefficient V = average velocity (ft/s) g = gravitational constant (32.2 ft/s2) The storm pipe design was performed for the complete construction of the Settler's Creek development and all calculations are provided in Appendix E of this report. A flared end section and riprap is required at all storm system outfalls. During final compliance, riprap has been sized according to the pipe size and the flow conditions at the outlet. Guidelines from the "Urban Storm Drainage Criteria Manual" (UDFCD) will be used to design the riprap outfalls. 4.4 Water Quality Water quality improvements with extended detention water quality pond will be provided for the proposed development. Even though it is not required, water quality capture volume will be provided for the entire Harmony Centre site and was calculated using methods outlined in the Urban Storm Drainage Criteria Manual. A drain time of the brim -full capture volume of 40 hours was used. The 100-yr flood will be detained above the water quality capture volume (WQCV) in the detention pond. Calculations for the water quality capture volume are included in Appendix F. 4.5 Pond Description All pond design was completed utilizing ModSwmm and EXTRAN for final compliance. Currently, this Pond 488 (Harmony Centre Pond) is designed for detention only. For this development, this pond is proposed to have water quality storage of 1.85 ac-ft at a water surface elevation of about 5003.46 feet via a water quality outlet structure. It was determined that Pond 488 requires a detention volume of about 11.24 ac-ft at a 100-yr water surface elevation of about 5006.68 feet and a discharge rate of about 14.7cfs. Final Drainage and Erosion Control Report Settler's Creek Page 8 March 2005 According to the current Harmony Centre and Pier Ponds EXTRAN model, the current ' release rate for Pond 488 is 14.7 cfs with a 100-yr water surface elevation of 5006.68 feet; therefore, the release rate would remain unchanged and is therefore acceptable. Please ' refer to the models included in Appendices F and H. ' 5. ModSWMM AND EXTRAN ' A detailed hydraulic analysis of the Pier and Harmony Centre Detention Pond system was performed for the McClellands Master Drainage Plan using the Extended Transport Block ' of the EPA's Storm Water Management Model (EXTRAN). The modeling used a three - step process by first using ModSwmm to generate the hydrographs for input into EXTRAN, secondly by using EXTRAN to model the two detention ponds of the Pier and Harmony Centre Detention Pond system and thirdly by using ModSwmm with the EXTRAN generated stage discharge relationships for the ponds. The McClellands Master Drainage Plan EXTRAN analysis of the Harmony Centre Pond was performed for two scenarios: (1) the currently proposed (interim) development condition, which assumes the Settler's Creek and Goodwill properties as undeveloped (also called the Marin West Property); and (2) a conceptual analysis of the fully -developed condition, assuming commercial development of the Settler's Creek and Goodwill properties. The ' fully developed EXTRAN results showed that Pond 488 would not have sufficient volume for the fully developed condition and that the most efficient use of the detention 1 r for the fully developed condition would be to expand the storage capacity of Pond 488. We have updated the ModSwmm percent imperviousness of basins 488 (Settler's Creek Property) and 489 (Goodwill Property) to generate new hydrographs for input into EXTRAN. We have also re -graded Pond 488 to expand the storage capacity and have updated the area -depth data in the fully developed EXTRAN model. Finally, we have updated the McClellands Master Drainage ModSwmm model with the new stage discharge relationships generated by EXTRAN. According to the updated EXTRAN results, Pond 488 would have a maximum 100-year water surface elevation of 5006.68, corresponding to a detention volume of 11.24 ac-ft and discharge of 14.7cfs. Currently, the allowable pending elevation in the Pier Pond is 5003.7' with a corresponding peak discharge of approximately 41 cfs, with 19.59cfs through the 2 1 " RCP and 21.63cfs overflowing to Boardwalk for a total of 41cfs. As part of the proposed Final Drainage and Erosion Control Report Settler's Creek Page 9 March 2005 design, the maximum water surface elevation in the Pier Pond would be 5003.7', which ' remains unchanged from existing conditions. The discharge through the existing 21-inch RCP would be 19.31 cfs, while overflow onto Boardwalk would be 25.39 cfs for a total 11 r of 44.8 cfs. Currently, the overflow at Boardwalk is at an elevation of 5003.62, which is less than the maximum overtopping elevation of 5003.69. With the development of Settler's Creek, the overflow elevation of Boardwalk would increase only 0.04' to 5003.66', which is less than the maximum overtopping elevation of 5003.69' and does not exceed the maximum increase of 0.04' required by the City of Fort Collins. Please refer to Appendix H for the existing condition EXTRAN and ModSwmm analysis of Harmony Centre and Pier Condominiums Ponds and Appendix F for the updated EXTRAN and ModSwmm analysis. 6. EROSION CONTROL 6.1 Erosion and Sediment Control Measures Erosion and sedimentation will be controlled on -site by use of inlet filters, silt fences, and gravel construction entrances. These measures are designed to limit the overall sediment yield increase due to construction as required by the City of Fort Collins. A construction schedule showing the overall period for construction activities, erosion control effectiveness calculations and cost estimates have been included for final compliance. Please refer to Appendix G for riprap calculations and erosion control calculations and schedules. The grading operation of Settler's Creek will occur at the beginning of the project following demolition completion. The demolition portion of the project will take place in month one as denoted in the construction sequence bar graph located in Appendix G. Initially, before the grading operation takes place, clear and grub of the property shall take place. During this time, silt fencing, soil roughing, vehicle tracking control and water trucks shall be utilized. The regional pond shall be utilized as sediment trap by using a gravel filter at the outlet until construction is complete. Upon commencement of rough grading, approved seeding/mulching shall be planted in ' accordance with the approved landscape plan and will occur within 30 days unless otherwise approved by the City Utility. As curb and gutter is built and inlets and storm structures are constructed, inlet protection and riprap pads shall be constructed as shown Final Drainage and Erosion Control Report Settler's Creek Page 10 March 2005 on the overall erosion control plan. Inlet protection may be removed once all ' improvements planned for that watershed are complete. Silt fence barriers and vehicle tracking devices may only be removed once development is complete. ' 6.2 Dust Abatement ' During the performance of the work required by these specifications or any operations appurtenant thereto, whether on right-of-way provided by the City or elsewhere, the ' contractor shall furnish all labor, equipment, materials, and means required. The Contractor shall carry out proper efficient measures wherever and as necessary to reduce ' dust nuisance, and to prevent dust nuisance, which has originated from his operations from damaging crops, orchards, cultivated fields, and dwellings, or causing nuisance to persons. The Contractor will be held liable for any damage resulting from dust originating ' from his operations under these specifications on right-of-way or elsewhere. 6.3 Tracking Mud on City Streets It is unlawful to track or cause to be tracked mud or other debris onto city streets or ' rights -of -way unless so ordered by the Director of Engineering in writing. Wherever construction vehicles access routes or intersect paved public roads, provisions must be ' made to minimize the transport of sediment (mud) by runoff or vehicles tracking onto the paved surface. Stabilized construction entrances are required per the detail shown in the ' Erosion Control details, with base material consisting of 6" coarse aggregate. The contractor will be responsible for clearing mud tracked onto city streets on a daily basis. 6.4 Maintenance Temporary and permanent erosion and sediment control practices must be maintained and repaired as needed to assure continued performance of their intended function. Straw bales, inlet protection and silt fences will require periodic replacement. Sediment traps ' (behind hay bale barriers) shall be cleaned when accumulated sediments equal about one- half of trap storage capacity. Maintenance is the responsibility of the developer. 6.5 Permanent Stabilization ' All soils exposed during land disturbing activity (stripping, grading, utility installations, stockpiling, filling, etc.) shall be kept in a roughened condition by ripping or disking along land contours until mulch, vegetation or other permanent erosion control is installed. No soils in areas outside project street rights of way shall remain exposed by ' Final Drainage and Erosion Control Report Page 11 Settler's Creek March 2005 t t 1 land disturbing activity for more than thirty (30) days before required temporary or permanent erosion control (e.g. seed/ mulch, landscaping, etc.) is installed, unless otherwise approved by the Stormwater Utility. Vegetation shall not be considered established until a ground cover is achieved which is demonstrated to be mature and stable enough to control soil erosion as specified in paragraph 11.3.10 of the City of Fort Collins Storm Drainage Construction Standards. Final Drainage and Erosion Control Report Settler's Creek Page 12 March 2005 I 1 1 7. REFERENCES 1 1. "Storm Drainage Design Criteria and Construction Standards (SDDCCS)", May 1984, City of Fort Collins. 1 2. Urban Drainage and Flood Control District, "Urban Storm Drainage Criteria Manual", Volumes 1 and 2, dated June 2001, and Volume 3, dated September 1992. 1 3. Lidstone & Anderson, Inc., "Hydrologic Update to the McClellands master 1 Drainage Plan (Lemay Avenue to Latimer County Canal No. 2) and Harmony Centre Master Drainage Plan" October 1997. 4. Drexel Barrel] & Co, "Final Drainage Report for Harmony Centre" December 1 1997. 5. ICON Engineering, Inc., "McClellands Creek Drainage Master Plan Update Final 1 Report & Technical Appendix" November 2000 (Revised March 2003). 6. ICON Engineering, Inc., "McClellands Creek Drainage Master Plan Update 1 Selected Plan Report" April 2003. i 1 1 1 i 1 1 1 i Final Drainage and Erosion Control Report Settler's Creek Page 13 March 2005 I 1 1 1 1 ' APPENDIX A ' MAPS AND FIGURES 11 I 1 ' Final Drainage and Erosion Control Report Appendix Settler's Creek March 2005 I 1 1 I I 1 PROJECT SITE UTMAN PK EAST TR PAVILLION r LN 3 � N Y d W Y > 0 F— N EAST HARMONY ROAD Q W y Y J Q Q r q C NCR 0 Q W J O m O N VICINITY MAP N.T.S VICINITY MAP SETTLER'S CREEK 39402.00 AUGUST 24, 2004 SHEET 01 OF 01 J•R ENGINEERING A Wntrbn Cmpany 2620 W Rcsped Rvd SA 190• Fort WM 00 WO 970-491-m. Fac 970-A91-99B0 a I I 1 1 1 1 1 Soils Map Soil Survey of Larimer County Area, Colorado United States Department of Agriculture Soil Conservation Service and Forest Service December 1980 LARIMER COUNTY AREA, COLORADO 23 4/3) moist; moderate coarse subangular blocky structure; very hard, friable; thin nearly continuous clay films on ped faces; mildly alkaline; clear wavy boundary. 133ca-17 to 21 inches; light yellowish brown (10YR 6/4) loam, yellowish brown (10YR 5/4) moist; weak coarse suban- gular blocky structure; slightly hard, very friable; few thin patchy clay films on ped faces; violently effervescent; cal- cium carbonate as soft nodules; moder- ately alkaline; clear wavy boundary. Clca-21 to 31 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, very friable; violently efferves- cent; calcium carbonate as soft nodules; moderately alkaline; clear smooth boundary. C2-31 to 60 inches; yellowish brown (10YR 5/4) loam, dark yellowish brown (10YR 4/4) moist; massive; hard, friable; strongly effervescent; moderately alkaline. The solum ranges from 15 to 30 inches in thickness. Reaction ranges from neutral to moderately alkaline. The A horizon is loam or light clay loam 3 to 9 inches thick. The B2 horizon is heavy loam or light clay loam. Granitic material is below a depth of 40 inches in some profiles. 31—Farnuf loam, 2 to 10 percent slopes. This nearly level to strongly sloping soil is in valley fills and on side slopes. This soil has the profile described as represen- tative of the series. Included with this soil in mapping are some small areas of Rock outcrop and small areas of soils that are similar to Farnuf soil but in which granite bedrock is at a depth of less than 40 inches. Runoff is moderate, and the hazard of erosion is moderate. This soil is suited to pasture and native grasses. Capability unit VIe-6, dryland; Loamy Park range site; not assigned to a windbreak suitability group. 32—Farnuf-Boyle-Rock outcrop complex, 10 to 25 percent slopes. This moderately steep soil is on ridges and valleysides. It is about 40 percent Farnuf loam, about 30 percent Boyle gravelly sandy loam, and about 20 percent Rock outcrop. Farnuf loam is lower and more nearly level, Boyle gravelly sandy loam is higher and on ridges, and Rock outcrop is commonly steeper but is scattered throughout. The Farnuf soil has a pro- file similar to the one described as representative of the Farnuf series, but the combined thickness of the surface layer and subsoil is about 18 inches. The Boyle soil has a profile similar to the one described as rep- resentative of the Boyle series. Included with this complex in mapping is about 10 Percent areas of Breece soils and areas of soils that are similar to Farnuf soil but in which granite bedrock is at a depth of less than 40 inches. Runoff is rapid, and the hazard of erosion is severe. This soil is suited to native grasses. It is also used for wildlife habitat. Capability unit VIe-5, dryland; Farnuf soil in Loamy Park range site, Boyle soil in Rocky Loam range site, and Rock outcrop not assigned to a range site; not assigned to a windbreak suitability group. Fluvaquents, Nearly Level 33—Fluvaquents, nearly level. This soil is on flood plains, low terraces, and bottom lands. The surface and underlying layers are extremely variable, range from sandy loam to clay loam, and are commonly stratified with thin layers of sand or clay. In places the underlying material is sand and gravel. A water table is commonly at a depth of less than 12 inches at some time during spring and summer, and the soil is also flooded occasionally during spring and summer. Drainage is impractical or impossible because of a lack of suitable outlets. Runoff is slight. The hazard of erosion is slight, although there is some cutting on areas near stream channels in places. This soil is suited to pasture or native grasses. A few areas are used for hay. Capability unit Vw-1, dry - land; Wet Meadow range site; windbreak suitability group 5. Fort Collins Series The Fort Collins series consists of deep, well drained soils that formed in alluvium. These soils are on ter- races and fans. Elevation ranges from 4,800 to 5,500 feet. Slopes are 0 to 9 percent. The native vegetation is mainly blue grama and western wheatgrass and some forbs and shrubs. Mean annual precipitation ranges from 13 to 15 inches, mean annual air tem- perature ranges from 48' to 50' F, and the frost -free season ranges from 135 to 150 days. In a representative profile the surface layer is light brownish gray loam about 5 inches thick. The subsoil is light brownish gray, brown, and pale brown loam about 19 inches thick. The underlying material is pale brown loam. Permeability is moderate, and the available water capacity is high. Reaction is neutral above a depth of about 8 inches, mildly alkaline between depths of 8 and 18 inches, and moderately alkaline below a depth of 18 inches. These soils are used for irrigated and dryfarmed crops and pasture. Representative profile of Fort Collins loam, 0 to 1 percent slopes, in native grass, approximately 1 block north of LaPorte Avenue on North Shields Street and 500 feet west of North Shields Street in sec. 11, T. 7 N., R. 69 W.: A1-0 to 5 inches; light brownish gray (10YR 6/2) loam, dark grayish brown (10YR 4/2) moist; moderate fine granular structure; soft, very friable; noncalcare- ous; neutral; clear smooth boundary. Bl-5 to 8 inches, light brownish gray (10YR 6/2) loam, dark grayish brown (10YR 4/2) moist; moderate fine subangular blocky structure parting to fine granu- lar; hard, very friable; few patchy clay [] 24 SOIL SURVEY films on peds; noncalcareous; neutral; inches thick. The combined thickness of the A and B clear smooth boundary. horizons is 15 to 30 inches. The B2 horizon is loam to 132-8 to 18 inches; brown (10YR 5/3) heavy light clay loam. loam, dark brown (10YR 4/3) moist; 34—Fort Collins loam, 0 to 1 percent slopes. This moderate medium prismatic structure level soil is on terraces and fans. This soil has the parting to moderate fine subangular profile described as representative of the series. blocky; very hard, very friable; many Included with this soil in mapping are a few small thin patchy clay films on peds and in areas of soils that are more sloping. Also included are root channels and pores; noncalcareous; small areas of soils that have a surface layer of clay mildly alkaline; gradual smooth bound- loam and small areas of Stoneham soils. ary. Runoff is slow, and the hazard of erosion is slight. 133ca-18 to 24 inches; pale brown (10YR 6/3) If irrigated (fig. 5), this soil is well suited to corn, loam, brown (10YR 5/3) moist; weak sugar beets, alfalfa, barley, and dry beans. Under dry - medium subangular blocky structure; land management it is suited to wheat and barley. It hard, very friable; few thin patchy clay is also well suited to pasture and native grasses. Capa- films on peds and in some root channels; bility unit I, irrigated; Loamy Plains range site; some visible secondary calcium carbon- windbreak suitability group 1. ate occurring mostly as concretions; cal- --I.35—Fort Collins loam, 1 to 3 percent slopes. This careous; moderately alkaline; gradual smooth boundary. nearly level soil is on terraces and fans. This soil has a Cca-24 to 60 inches; pale brown (10YR 6/3) profile similar to the one described as representative loam, brown (lOYia 5/3) moist; of the series, but the combined thickness of the surface cmas-alcium sire; hard, very friable; visible calcium layer and subsoil is about 22 inches. Included carbonate occurring as concretions and with this soil in mapping are a few small pp g in thin seams and streaks; calcareous. areas of soils that are more sloping or less sloping. Also moderately alkaline; gradual smooth included are some small areas of Stoneham and Kim boundary. soils and a few small areas of soils that have a gravelly The A horizon is loam or light clay loam 5 to 13 layer below a depth of 40 inches. Figure 5. Furrow irrigation on Fort Collins loam, 0 to 1 percent slopes. LARIMER COUNTY i Runoff is slow, and the hazards of wind and water erosion are slight to moderate. If irrigated, this soil is well suited to corn, sugar ,.tbeets, alfalfa, barley, and dry beans. Under dryland management it is suited to wheat and barley. It is also well suited to pasture and native grasses. Capability units IIe-1, irrigated, and IVe-3, dryland; Loamy Plains range site; windbreak suitability group 1. 36—Fort Collins loam, 3 to 5 percent slopes. This gently sloping soil is on the edges of terraces and fans. This soil has a profile similar to the one described as representative of the series, but the combined thick- ness of the surface layer and subsoil is about 20 inches. Included with this soil in mapping are a few areas of soils that are more sloping or less sloping. Also in- cluded are small areas of Stoneham and Kim soils and 'a few areas of soils that have a gravelly surface layer. Runoff is moderate, and the hazards of wind and water erosion are moderate. If irrigated, this soil is suited to corn, barley, and alfalfa and, to a lesser extent, sugar beets and dry beans. Under dryland management it is suited to wheat and barley. It is also well suited to pasture and native grasses. Capability units IIIe-2, irrigated, and 'IVe-3, dryland; Loamy Plains range site; windbreak suitability group 1. 37—Fort Collins loam, 5 to 9 percent slopes. This strongly sloping soil is on terrace edges and the steeper !'part of fans. This soil has a profile similar to the one described as representative of the series, but the com- bined thickness of the surface layer and subsoil is ..about 18 inches. Included with this soil in mapping are a few small areas of soils that are more sloping or less sloping and a few small areas of soils that have a gravelly surface layer. Also included are small areas of Larimer, 1' Stoneham, and Kim soils. Runoff is rapid, and the hazards of wind and water erosion are severe. If irrigated, this soil is suited to alfalfa and barley 'and other small grain or pasture. It is suited to pasture or native grasses under dryland management. Capa- bility units IVe-1, irrigated, and VIe-1, dryland; Loamy Plains range site; windbreak suitability '. group 1. Foxcreek Series The Foxcreek series consists of deep, poorly drained soils that formed in alluvium. These soils are on low terraces and bottom lands and are underlain by sand and gravel at a depth of 20 to 40 inches. Elevation ranges from 7,800 to 8,800 feet. Slopes are 0 to 3 percent. The native vegetation is mainly timothy, red - top, sedges, and other water -tolerant grasses. Mean annual precipitation ranges from 12 to 16 inches, mean annual air temperature ranges from 42' to 46' F, and the frost -free season ranges from 60 to 85 days. In a representative profile a 1-inch-thick layer of organic material is on the surface. The surface layer is mottled dark brown loam about 5 inches thick. The subsoil is mottled dark grayish brown or brown silty clay loam about 17 inches thick. The underlying ma- terial is mottled brown sandy clay loam about 14 ;inches thick over sand and gravel. AREA,COLORADO 25 Permeability is moderate above a depth of about 36 inches and very rapid below that depth. The available water capacity is medium to high. Reaction is slightly acid above a depth of about 22 inches and neutral below that depth. These soils are mainly used for irrigated hay. Representative profile of Foxcreek loam, 0 to 3 per- cent slopes, in irrigated hayland, 400 feet south of Hohnholtz Lake Road, west of the Laramie River in sec. 7, T. 11 N., R. 67 W.: 0-1 inch to 0; undecomposed and partly decom- posed organic material. Alg-0 to 5 inches; dark brown (7.5YR 3/2) loam, dark brown (7.5YR 3/2) moist; common fine distinct dark reddish brown (2.5YR 3/4) mottles; weak moderate subangular blocky structure; hard, fri- able; slightly acid; clear smooth bound- ary. B2g-5 to 17 inches; dark grayish brown (10YR 4/2) silty clay loam, very dark grayish brown (10YR 3/2) moist; common me- dium distinct red (2.5YR 4/6) mottles; weak medium subangular and angular blocky structure; hard, friable; slightly acid; clear smooth boundary. B3g-17 to 22 inches; brown (10YR 4/3) silty clay loam, brown (10YR 4/3) moist; common fine distinct yellowish red (5YR 4/6) mottles; weak to moderate medium subangular blocky structure; very hard, firm; slightly acid; clear smooth bound- ary. Clg-22 to 36 inches; brown (10YR 5/3) sandy clay loam, brown (10YR 4/3) moist; common medium distinct yellowish red (5YR 4/6) mottles; massive; hard, fri- able; neutral; clear smooth boundary. IIC2cag-36 to 60 inches; sand and gravel; very slightly effervescent; calcium carbonate on underside of pebbles. The A horizon is loam, clay loam, or silty clay loam 3 to 8 inches thick. It is slightly acid to neutral. The Bg horizon is loam, light clay loam, or silty clay loam. It is slightly acid to neutral. The C and IIC horizons are generally neutral or mildly alkaline. The IIC hori- zon is very slightly effervescent to strongly efferves- cent and weak accumulations of calcium carbonate are mainly on the underside of pebbles. 38—Foxcreek loam, 0 to 3 percent slopes. This nearly level soil is on low terraces and bottom lands. Included with this soil in mapping are a few small areas of Blackwell and Newfork soils. Also included are a few small areas of soils that have a cobbly and stony surface layer. Runoff is slow, and the hazard of water erosion is slight. If irrigated, this soil is suited to hay and meadow. It is also suited to pasture or native grasses. Capability unit VIw-1, irrigated; Mountain Meadow range site; not assigned to a windbreak suitability group. Gapo Series The Gapo series consists of deep, poorly drained LARIMER COUNTY AREA, COLORADO TABLE 8—Soil and eater features —Continued 131 Soil name and map symbol Hydro- logic Flooding Depth to seasonal high Bedrock Potential frost group Frequency Duration Months water table Depth Hardness action Feet Inches Elbeth: •30: Elbeth part -------- B None -------- ------------- -------------- >6.0 >60 ----------- Moderate. Moen part _________ C None ______________________ ______________ >6.0 20-40 Hard _____ Moderate. Farnuf: 31 ------------------ •32: B None -------- ------------- ------------- >6.0 >60 ----------- Moderate. Farnuf part ________ B None ______________________ ______________ >6.0 >60 ___________ Moderate. Boyle part _________ D None ________ ______________ ______________ >6.0 0-20 Rippable able __ Moderate. Rock outcrop part. luvaquents: 33 ___________________ ________ Frequent ____ Brief _______ April -June ___ 0.5-25 >60 ___________ Low. Collins: 34, 35, 36, 37 O None Kort __________ ______________________ ______________ >6.0 >60 ___________ Moderate. oxcreek: 38 ___________________ C Rare ________ Brief _______ April -May ___ 0-0.5 >60 ___________ High. �apo: 39 ------------------- D None ---------------------- ------------- 3.0 >60 ---------- High. Garrett: 40 ___________________ B Rare ________ Very brief ___ -------------- >6.0 >60 ___________ Moderate. 41 ------------------- B None --------------------- -------------- >6.0 >60 ----------- Moderate. ravel pits: 42. aploborolls: '43: Haploborolls part --- ------- None -------- -------------- ------------- >6.0 ---------- --------- Rock outcrop part. Faplustolls: 44 ___________________ ________ None ________ ______________ ______________ >6.0 __________ ___________ '45: Haplustolls part ---- -------- None ------- ------------- -------------- >6.0 ---------- ---------- Rock outcrop part. arlan: 46. 47 ------------- B None -------- ------------ ------------ >6.0 >60 --------- Moderate. �eldt: 49. 49 ---------------- C None -------- -------------- ---"--------- >6.0 >60 -----'--'-- Moderate. Keith: 50 ---------------- ildor: B None _____—- __________-- — _ ------------- >6.0 >60 ----_____ Moderate. 51 _________------ C None ______________________ _ ------------- >6.0 20-40 Rippable __ High. t 'S2: Kildor part ________ C None -------- -------------- -------------- >6.0 20-40 Rippable __ High. Shale outcrop part. Kim: 54, 55 _____________ B None ________ ______________ ______________ >6.0 >60 ___________ Moderate. '13, '56: Kim part __________ B None ______________________ ______ _ _______ >6.0 >60 ___________ Moderate. Thedalund part _____ C None ______________________ ______________ >6.0 20-40 Rippable __ Moderate. irtley: S7___________________ C None ______________________ -------------- >6.0 20-40 Rippable __ Moderate. i I 1 I APPENDIX B I' 1 t 1 1 HYDROLOGIC CALCULATIONS Final Drainage and Erosion Control Report Appendix Settler's Creek March 2005 I 1 11 W ' J m Q 1 CC� C W CD a ' Q 1 s O w U Q N M Cl M r N W N N m M N W Q Q N O Q N r .- d O w M. Q W CO W N I� Q O o c .E o W rn o 0 o W W 0 0 0 0 0 0 c co w �ci ui Sri u-i vi r iri �ri ui ui ui C6 u s .E - r ai 6 6 6 o ui vi w N N O OWi Q aOD 0 0 ONi a 0 a O O O � O Z O •- � O Z Z O fi o e v n n m a ano W� W Q� Q o U o 0 0 0 o Z o 0 0 o Z o Z o U o 0 0 0 o Z o 0 0 o Z o Z d W ~ N O O C C 0 LL M< W m N 1 n 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 8525 RUNOFF COEFFICIENTS & % IMPERVIOUS LOCATION: Settler's Creek PROJECT NO: 39402.00 COMPUTATIONS BY: es DATE: 9/13/2004 Recommended Runoff Coefficients from Table 3-3 of City of Fort Collins Design Criteria Recommended % Impervious from Urban Storm Drainage Criteria Manual ' Streets, parking lots (asphalt): Sidewalks (concrete): Roofs: Lawns (flat <2%, sandy soil): L Runoff % coefficient Impervious C 0.95 100 0.95 96 0.95 90 0.10 0 SUBBASIN DESIGNATION TOTAL AREA (ac.) TOTAL AREA (sq.ft) ROOF AREA (sq.fq PAVED AREA (sq.Iq SIDEWALK AREA (sq.fp LANDSCAPE AREA (sq.ft) RUNOFF COEFF. (C) % Impervious 100 0.28 12,087 0 4,039 882 7,166 0.45 40 101 0.74 32,402 13,361 0 1,463 17,577 0.49 41 102 1.61 69,999 22,991 19,294 7,979 19,736 0.71 68 103 1.42 61,754 17,830 24,057 2,757 17,111 0.71 69 104 0.60 26,182 2,420 20,342 120 3,300 0.84 86 105A 1.47 63,985 15,251 0 1,968 46,766 0.33 24 1059 0.68 29,729 16,334 0 2.792 10,603 0.65 58 106 2.15 93.850 31,565 37,906 5,933 18,426 0.78 77 107 0.57 24,788 8,965 8,693 1,532 5,577 0.76 74 108 0.79 34,407 12,580 10,789 5,656 5,382 0.82 80 109 3.01 131,042 0 0 0 131,042 0.10 0 ' Equations Calculated C coefficients & % Impervious are area weighted C=7(Ci Ai) /At Ci = runoff coefficient for specific area, Ai Ai = areas of surface with runoff coefficient of Ci n = number of different surfaces to consider At = total area over which C is applicable; the sum of all Ai's 1 ' 3940200(low.zls ' w N 1 1 Q N N Z W O Z 00 QU m LL �0 m LU F u N d y O p O U P !n t+1 N G1 II U z � E LL 0 = m in E II m m U m y N U J O N n1 O u) m Q 1� O Omi a COi a N Z = Q N Z N V m Z b m Cl N Z N Z O m U m F._. u � Z m Z m U y Z Z m O LL z >'s— a U a b b b b b Q b b b b a b Q b Z Z Z m O << O O O O O C C O O O O W m`v w pT Z Z N N O a J v v C m T b t'J (V Z N Z V E `= O 01 O� b O a l N b O a O a O NONZN Z N N 4 a t2 m N a 2 oo o N a N¢ b F. Z N Z z Z �' E, e a J v J m w V Q m n lD F m n m 0^ O O O O O Z O O C o Z O Z O E � zF N 1� m V fp O V m m N O + n - m O N U . 0 . 0 � �- O N T O lV O (V O (V m m O Z a m ao O O m � m o Z z N a y a N m O m N m m h CI m m T m O w LL m N 0 n d N d N � N d O N 0 0 Z IO m m n O n N m YI N m = E LL m Ti p Y pwj w N g m¢ n m m v� Q m Q N Z m O v N par u � li =,_, n.-m�d vi Zlno n a3m3m u i ` m m n¢ n¢ LL w m m m¢- - m N (V (V lV tV tV N N 3 N (V ; Tim i m m m m m 'o m¢ m m m m¢ ` m Q m g P o o 0 0 3 ... 0 3 0 3 0` p W p O e m w w wpm J F = d m m N m¢ m m m m a¢ n O m m m O¢ l7 .m O Q O a O (VONN2NNONZN�N V1 y y� ry G y� C 5 €_E d— w Q ¢ a Q F W C G C O C O O O O O C Z w H Nnd loam 2i m�v^ionmo ¢ O O- -- O N � O N O N O N m m m m _ _ N o o__ m N 2 J a WO d m mp m U m m z z 0 OZ Q Z O F F F EU( y u 0 2 o O a 0 o o m m o 0 o m m o 0 0 0 0 0 m A N IN N N N 1� � 1n N N IN m J z ° ~ E LL y � E m ti w pp ¢ o ¢ N W Z 0 `. U ¢ F u � o m m n o¢ m m N m¢ a¢ o II L m m N a a 3 N r d N N m U � � N m C O fro m m Z (d�j p L E v O N N t'1 m< m m N J LL _ v >vm Q m L 00 0 0 0 0 0 0 0 0 0 p C m m o 0 0 0 0 0 0 0 0 0 0 m W o' - 0 0 0 O¢ O N vv W m r Y C MM N N jL M Z Z d w c?n m J F Z m r N r Co a E m o m m m o¢ m N N o Q o¢ o N N N O a m d N N N d Q m pp N N Q N Q O L d d N m N m N d N Z N Z c_ a J n m o m m m O o m 0 0. o z o o o o z o z 0 ZQ U .. J U w v am ¢ a o 0 v n n n m m � Z m z J= O O O p O 0 0 0 0 O 0 F � zF an N d r m N a O m N O r d m^ m r N N O m r m O N O Z a a m o 0 0 00 m 0 0 0 0 o 0 0 N o z W N Fcw-,o N m a N m rU' a 0 C O e E E 2 ' E 3 0 0 N 0 JR Engineering 2620 E. Prospect Rd., Ste- 190 Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (City of Fort Collins, 2-Yr Storm) LOCATION: Settler's Creek PROJECT NO: 39402.00 COMPUTATIONS BY: cs DATE: 9/ 13/2004 2 yr storm, Cf = 1.00 DIRECT RUNOFF CARRY OVER TOTAL REMARKS Design Point Tributary Sub -basin A Ise) C Cf tc (min) 1 (iNhr) 0 (2) (CIS) from Design Point 0 (2) (CIS) 0(2)tot (CIS) 1G 100 0.28 0.45 7.1 2.52 0.3 0.3 On -grade Inlet 1A-lF 101 0.74 0.49 11.7 2,08 03 0.8 Area Inlets 2 102 1.64 0.74 8A 2.38 2.7 2.7 On -grade Inlet 3 103 1.42 0.71 7.0 2.53 2.6 2.6 4 104 0.60 0A4 5.0 2.80 1.4 1 1.4 3 103+104 2.02 1 N/A 1 7.0 2.53 1 N/A 3.8 5A 105A 1.47 0.78 7.1 2.52 2.9 2.9 Area Inlet 5B-5E 105B 0.68 0.76 10.2 2.20 1.1 1A Area Inlets 6 106 2.15 0.82 7.4 2A8 4.4 4A 7 107 0.57 0.76 5.0 2.85 1.2 1.2 3 103+104 2.02 N/A 7.0 2.53 N/A 3.8 8 108 0.79 0.82 5.0 2.85 1.8 1.8 8 (103+104)+108 2.81 N/A 5.0 2.85 N/A 5.5 Sump Inlet 9 109 3.01 0.10 8.1 2.41 0.7 0.7 Pond 488 O=C,CiA 0 = peak discharge (cfs) C = runoff coefficient C, = frequency adjustment factor i = rainfall intensity (in/hr) from City of Fort Collins IDF curve (4/16199) A = drainage area (acres) I = 24.2211 (10+ lc)o.r 3940200tiow.xls JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (City of Fort Collins, 10-Yr Storm) LOCATION: Settler's Creek PROJECT NO: 39402.00 COMPUTATIONS BY: es DATE: 9/13/2004 10yrstorm, Cf= 1.00 DIRECT RUNOFF CARRYOVER TOTAL REMARKS Design Point Tributary Sub -basin A (ac) CCf tc (min) i (Whr) Q(10) (cfs) from Design Point Q(10) (cfs) Q(10)tot (cfs) 1G 100 0.28 OAS 7.1 4.31 0.5 0.5 On -grade Inlet IA-1F 101 0.74 0,49 11.7 3.56 1.3 1.3 Area Inlets 2 102 1.61 0,71 8,4 4.06 4.6 4.6 On -grade Inlet 3 103 1.42 0.71 6.2 4.50 4.6 2 0.84 5.4 4 1 104 0.60 0,84 5.4 4.67 2.4 1 2.4 3 103-104 2.02 N/A 6.2 4.50 N/A T7 5A 105A 1.47 0.78 7.1 4.30 4.9 4.9 Area Inlet SME 1058 0.68 0.76 10.2 3.77 2.0 2.0 Area Inlets 6 106 2.15 0.82 7.4 4.24 1 7.5 7.5 7 107 0.57 0.76 5.0 4.87 2.1 2.1 3 103+104 2,02 N/A 6.2 4.50 N/A 7.7 8 108 0.79 0,82 5.0 4.87 3.1 3.1 8 (103+104)+108 2.81 N/A 5.0 4.87 N/A 10.6 Sump Inlet 9 109 3.01 0,10 8A 4.11 1.2 1.2 Pond 488 Q=C,CiA Q = peak discharge (cfs) C = runoff coefficient Cf = frequency adjustment factor i = rainfall intensity (in/hr) from City of Fort Collins OF curve (4/16/99) A= drainage area (acres) i=41+44/(10+tty01s'4 3940200flow.xls 1 1 1 1 1 1 1 t JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (City of Fort Collins, 100-Yr Storm) LOCATION: Settlers Creek PROJECT NO: 39402.00 COMPUTATIONS BY: es DATE: 9/13/2004 100 yr storm, CIF = 1.25 DIRECT RUNOFF CARRY OVER TOTAL REMARKS Des. Point Area Design. A (ac) C Cf tc (min) i (iNhr) Q if 00) (cfs) from Design Point Q (100) (cfs) Q(100)tot (cfs) 1G 100 0.28 0.56 6.0 9.28 1.4 1.4 On -grade Inlet tAAF 101 0,74 0.61 9.8 7.83 3.6 3.6 Area Inlets 2 102 1.61 0.89 5.9 9.35 13.3 13.3 On -grade Inlet 3 103 1 42 1.00 5.0 9.95 14.1 2, SA 14.6 28.7 4 104 0.60 0,98 5.0 1 9.95 5.9 5.9 3 103-104 2,02 N/A 5.0 9.95 N/A 34.5 5A 105A 1.47 0.89 5.8 9.35 12.3 12,3 Area Inlet 5B-5E 105E 0,68 1.00 7.8 8.53 5.8 5.8 Area Inlets 6 106 2,15 1.00 5.0 9.95 21.4 21.4 7 107 0.57 0.95 5,0 9.95 SA 5.4 3 103-104 2,02 N/A 5.0 9.95 N/A 34.5 8 108 079 1.00 5.0 9.95 7.9 7.9 8 (103-104)+108 281 N/A 5.0 9.95 N/A 42A Sump Inlet 9 109 3.01 0.13 8.0 8.44 3.2 T 3.2 IPond 488 U = c w u = peak oiscnarge (cis) U = runoff coetriaent i = rainfall intensity (iNhr) from City of Fort Collins OF curve (4/16/99) 3940200flow.As A = drainage area (acres) i = 84.682 / (10a tc)' "" I I ' APPENDIX C ' STREET CROSS SECTIONS I I I 1 1 Final Drainage and Erosion Control Report Appendix ' Settler's Creek March 2005 Cross Section A Major Storm (100-yr) Worksheet for Irregular Channel Project Description Worksheet Cross Section A Major Storm (100-yr) Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Slope 0.008000 ft/ft Discharge 13.30 cts Options Current Roughness Method Improved Lotters Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Metho, Horton's Method Results Mannings Coefficient 0.016 Water Surface Elevation 0.48 ft Elevation Range 0.00 to 1.11 Flow Area 4.5 ft- Wetted Perimeter 21.64 ft Top Width 21.43 ft Actual Depth 0.48 It Critical Elevation 0.50 ft Critical Slope 0.006244 ft/ft Velocity 2.93 ft/s Velocity Head 0.13 ft Specific Energy 0.62 ft Froude Number 1.12 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient -0+00.5 0+24.5 0.016 Natural Channel Points Station Elevation (ft) (tt) -0+00.5 0.50 0+00.0 0.00 0+01.0 0.08 0+12.0 0.30 0+23.0 0.52 0+24.0 0.61 0+24.5 1.11 Project Engineer: JR Engineering x:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 [7.0005[ 11/16/04 11:29:46 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section A Major Storm (100-yr) Cross Section for Irregular Channel Project Description Worksheet Cross Section A Major Storm (100-yr) Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.016 Channel Slope 0.008000 Wit Water Surface Elevation 0.48 it Elevation Range _ 0.00 to 1.11 Discharge 13.30 cfs 1.20 1.00 0.80 0.60 0.40 0.20 0.00 -0+05.0 0+00.0 0+05.0 0+10.0 0+15.0 0+20.0 0+25.0 V:10.01�1 HA 11TS Project Engineer: JR Engineering x:\3940000.all\3940200\flowmaster\streetcap.lm2 JR Engineering FlowMaster v7.0 [7.0005) 11/18/04 11+29+51 AM ®Haeslad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section B Major Storm (100-yr) ' Worksheet for Irregular Channel ' Project Description Worksheet Cross Section B Major Storm (100-yr) Flow Element Irregular Channel ' Method Manning's Formula Solve For Channel Depth Input Data Channel Slope 0.005000 ft/ft Discharge 28.70 cfs ' Options Current Roughness Method Improved Lotters Method Open Channel Weighting Method Improved Lotter's Method ' Closed Channel Weighting Metho Horton's Method Results Mannings Coefficient 0.016 Water Surface Elevation 0.53 it Elevation Range 0.00 to 0.97 ' Flow Area 10.7 ft2 Wetted Perimeter 40.62 It Top Width 40.57 ft Actual Depth 0.53 ft Critical Elevation 0.52 ft Critical Slope 0.005908 ttift Velocity 2.69 ft/s ' Velocity Head 0.11 ft Specific Energy 0.65 ft Froude Number 0.93 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient -0+26.0 0+17.5 0.016 ' Natural Channel Points Station Elevation (tt) (ft) '-0+26.0 0.56 -0+12.0 0.30 -0+01.0 0.08 ' 0+00.0 0.00 0+01.0 0.08 0+16.0 0.38 0+17.0 0.47 0+17.5 0.97 ' Project Engineer: JR Engineering x:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 [7.0005] 11/22/04 01:02:57 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section B Major Storm (100-yr) Cross Section for Irregular Channel Project Description Worksheet Crass Section 6 Major Storm (100-yr) Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.016 Channel Slope 0.005000 Wit Water Surface Elevation 0.53 ft Elevation Range 0.00 to 0.97 Discharge 28.70 cis 1.00 0.80 0.60 0.40 0.20 0.00 -0+30.0 -0+25.0 -0+20.0 -0+15.0-0+10.0-0+05.0 0+00.0 0+05.0 0+10.0 0+15.0 0+20.0 V: 10.0� H:1 NTS Project Engineer: JR Engineering z:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 (7.00051 11/22/04 01:03:03 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 LJI Cross Section C Major Storm (100-yr) ' Worksheet for Irregular Channel ' Project Description Worksheet Cross Section C Major Storm (100-yr) Flow Element Irregular Channel ' Method Manning's Formula Solve For Channel Depth ' Input Data Channel Slope 0.005000 ft/ft Discharge 7.90 cfs ' Options Current Roughness Method Improved Lotter's Method ' Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Metho, Horton's Method Results ' Mannings Coefficient 0.016 Water Surface Elevation 0.44 1t Elevation Range 0.00 to 1.66 ' Flow Area 3.7 ftT Wetted Perimeter 19.43 It Top Width 19.24 ft Actual Depth 0.44 It Critical Elevation 0.42 It Critical Slope 0.006675 ft/ft Velocity 2.16 ft/s ' Velocity Head 0.07 ft Specific Energy 0.51 It Froude Number 0.87 Flow Type Subcritical ' Roughness Segments ' Start End Mannings Station Station Coefficient 0+17.5-0+41.5 0.016 Natural Channel Points Station Elevation (ft) (h) ' 0+17.5 1.66 0+17.0 1.16 0+16.0 1.08 ' 0+01.0 0.86 0+00.0 0.78 -0+01.0 0.86 -0+40.0 0.08 '-0+41.0 0.00 -0+41.5 0.50 ' Project Engineer: JR Engineering x:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 [7.0005) 11/18/04 11:30:20 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section C Major Storm (100-yr) Cross Section for Irregular Channel Project Description Worksheet Cross Section C Major Storm (100-yr) Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.016 Channel Slope 0.005000 fvft Water Surface Elevation 0.44 ft Elevation Range 0.00 to 1.66 Discharge 7.90 cfs 1.80 1.60 1.40 1.20 1.00 0.80 0.60 � 0.40 0.20 0.00 -0+45.0 -0+35.0 -0+25.0 -0+15.0 -0+05.0 0+05.0 0+20.0 v:1D.DN H:1 NTS Project Engineer: JR Engineering x:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 [7.0005] 11/18/04 11:30:26 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section D Minor Storm (10-yr) Worksheet for Irregular Channel Project Description Worksheet Cross Section D Minor Storm (10-yr) Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Slope 0.005000 ft/ft Discharge 7.40 cfs Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Metho. Horton's Method Results Mannings Coefficient 0.016 Water Surface Elevation 0.43 It Elevation Range 0.00 to 1.47 Flow Area 3.5 ft' Wetted Perimeter 18.66 ft Top Width 18.47 ft Actual Depth 0.43 ft Critical Elevation 0.41 ft Critical Slope 0.006718 ft/ft Velocity 2.14 ft/s Velocity Head 0.07 ft Specific Energy 0.50 ft Froude Number 0.87 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient -0+41.5 0+00.5 0.016 Natural Channel Points Station Elevation (ft) (ft) -0+4t5 1.47 -0+41.0 0.97 -0+40.0 0.88 -0+01.0 0.08 0+00.0 0.00 0+00.5 0.50 Project Engineer: JR Engineering x:\3940000.all\3940200\flowmasler\streetcap.fm2 JR Engineering FlowMaster v7.017.00051 01/19/05 09:04:41 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section D Minor Storm (10-yr) Cross Section for Irregular Channel Project Description Worksheet Cross Section D Minor Storm (10-yr) Flaw Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.016 Channel Slope 0.005000 ft/ft Water Surface Elevation 0,43 ft Elevation Range 0.00 to 1.47 Discharge 7.40 cfs 1.60 --- 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0 00 I -----------'-- I I ; - -- --- ---I I I -I-- I — I -0+45.0 -0+40.0 -0+35.0 -0+30.0 -0+25.0 -0+20.0 -0+15.0 -0+10.0 -W5.0 0+00.0 0+05.0 v:10.0[._--- H:1 NTS Project Engineer: JR Engineering x:\3940000.all139402001flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.017.00051 01/19/05 09:04:52 AM 0 Haestad Methods, tnc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1665 Page i of 1 Cross Section D Major Storm (100-yr) Worksheet for Irregular Channel Project Description Worksheet Cross Section D Major Storm (100-yr) Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Slope 0.005000 ft/ft Discharge 21.40 cfs Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Metho. Horton's Method Results Mannings Coefficient 0.016 Water Surface Elevation 0.62 ft Elevation Range 0.00 to 1.47 Flow Area 7.7 ft- Wetted Perimeter 27.82 ft Top Width 27.49 ft Actual Depth 0.62 ft Critical Elevation 0.60 ft Critical Slope 0.005853 ft/ft Velocity 2.79 We Velocity Head 0.12 ft Specific Energy 0.74 ft Froude Number 0.93 Flow Type Subcritical Calculation Messages: Water elevation exceeds lowest end station by 0.11605182 ft. Roughness Segments Start End Mannings Station Station Coefficient -0+41.5 0+00.5 0.016 Natural Channel Points Station Elevation (ft) (ft) -0+41.5 1.47 -0+41.0 0.97 -0+40.0 0.88 -0+01.0 0.08 0+00.0 0.00 0+00.5 0.50 Project Engineer: JR Engineering x:\3940000.all\3940200\flowmasler\slreelcap.fm2 JR Engineering FlowMaster v7.0 (7.00051 01/19/05 09.04:22 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section D Major Storm (100-yr) Cross Section for Irregular Channel Project Description Worksheet Cross Section D Major Storm (100-yr) Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.016 Channel Slope 0.005000 ft/ft Water Surface Elevation 0.62 ft Elevation Range 0.00 to 1.47 Discharge 21.40 cfs t.ou 1.40 1.20 1.00 0.80 0.60 0.40 0.20 000 I -0+45.0 -0+40.0 -0+35.0 -0+30.0 -0+25.0 -0+20.0 -0+15.0 -0+10.0 -0+05.0 0+00.0 0+05.0 V 10.OI__ H:1 NTS Project Engineer: JR Engineering x:\3940000.all\3940200\flowmaster\slreelcap.fm2 JR Engineering FlowMasler v7.0 [7.0005) 01/19/05 09:04:31 AM 0 Haestao Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA -1-203-755-1666 Page 1 of 1 I I I I 1 I ' APPENDIX D I INLET CALCULATIONS 1 1 I Final Drainage and Erosion Control Report Appendix Settler's Creek March 2005 -------------------- --------------------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER t- -- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------- USER:JR ENGINEERS-DENVER CO .................................................. DATE 11-10-2004 AT TIME 15:51:58 * PROJECT TITLE: Settler's Creek [_�,IP 161 *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING:: ' INLET ID NUMBER: 1 / ! ' INLET HYDRAULICS: ON A GRADE, GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 1.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: I I WATER SPREAD ON STREET (ft) = 7.53 GUTTER FLOW DEPTH (ft) = 0.32 FLOW VELOCITY ON STREET (fps)= 1.90 FLOW CROSS SECTION AREA (sq ft)= 0.73 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE IDEAL GRATE INLET CAPACITY BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.40 (cfs)= 1.19 (cfs)= 1.09 (cfs)= 0.59 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 ' REQUIRED CURB OPENING LENGTH (ft)= 7.52 IDEAL CURB OPENNING EFFICIENCY = 0.65 ' ACTURAL CURB OPENNING EFFICIENCY = 0.54 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.20 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= I I 1 0.31 0.17 0.14 0.81 0.16 0.65 1.40 ao 1.09 0.17 1.26 0.14 0.59 0.16 0.75 0.65 -------------------- ' --- ---------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER '-- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR - - --------------------------------------------------------------- ENGINEERS-DENVER CO .................................................. DATE 11-10-2004 AT TIME 15:57:31 * PROJECT TITLE: Settler's Creek 167 ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZINGG: INLET ID NUMBER: 1 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 1.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 2.00 GUTTER FLOW DEPTH (ft) = 0.21 FLOW VELOCITY ON STREET (fps)= 2.43 FLOW CROSS SECTION AREA (sq ft)= 0.21 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 0.50 IDEAL GRATE INLET CAPACITY (cfs)= 0.50 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 0.50 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.25 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 ' REQUIRED CURB OPENING LENGTH (ft)= 5.26 IDEAL CURB OPENNING EFFICIENCY = 0.83 ' ACTURAL CURB OPENNING EFFICIENCY = 0.72 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.00 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED CARRYOVER FLOW (cfs)= (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= I [1 0.00 0.00 0.00 0.25 0.00 0.25 0.50 �_- CD --) 0.50 0.00 0.50 0.00 0.25 0.00 0.25 0.25 1 ---------------------- ------------------------ ----------------------- UDINLET: INLET HYDARULICS AND SIZING . DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------ - SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------- USER:JR ENGINEERS-DENVER CO .................................................. DATE 11-10-2004 AT TIME 15:18:32 * PROJECT TITLE: Settler's Creek *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 2 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 1.00 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 2.00 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 18.25 GUTTER FLOW DEPTH (ft) = 0.53 FLOW VELOCITY ON STREET (fps)= 3.80 FLOW CROSS SECTION AREA (sq ft)= 3.50 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 13.30 IDEAL GRATE INLET CAPACITY (cfs)= 8.70 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 5.93 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 4.35 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 2 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 REQUIRED CURB OPENING LENGTH (ft)= 32.73 IDEAL CURB OPENNING EFFICIENCY = 0.35 ACTURAL CURB OPENNING EFFICIENCY = 0.29 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.59 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= I 7.37 2.11 5.26 8.95 2.07 6.88 13.30 � ��— 5.93 2.11 8.04 5.26 4.35 2.07 6.42 6.88 1 -------------------------------7------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER - -- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------- USER:JR ENGINEERS-DENVER CO ........................................ DATE 08-16-2004 AT TIME 11:04:36 Yp * PROJECT TITLE: Settler's Creek ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 2 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 1.00 ' STREET CROSS SLOPE M 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 11.59 GUTTER FLOW DEPTH (ft) = 0.40 FLOW VELOCITY ON STREET (fps)= 3.06 FLOW CROSS SECTION AREA (sq ft)= 1.51 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= 4.60 IDEAL GRATE INLET CAPACITY (cfs)= 3.69 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.93 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.84 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 2 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 ' REQUIRED CURB OPENING LENGTH (ft)= 17.65 IDEAL CURB OPENNING EFFICIENCY = 0.60 ' ACTURAL CURB OPENNING EFFICIENCY = 0.50 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.00 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 1 1.67 0.83 0.84 2.76 0.80 1.96 4.60 2.93 0.83 3.76 p 0.84 1.84 0.80 2.64 1.96 -------------------------- ---------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------- SER:JR ENGINEERS-DENVER CO .................................. DATE 11-22-2004 AT TIME 13:07:10 �� .� LI * PROJECT TITLE: Settler's Creek *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 8 Cpr. b N«h d ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: (I 0 0 y (2 )/�L � ' INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES = 3.00 SUMP DEPTH ON GRATE (ft)= 0.17 GRATE OPENING AREA RATIO M = 0.60 IS THE INLET GRATE NEXT TO A CURB ?-- YES ' Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE M = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 28.94 ' GUTTER FLOW DEPTH (ft) = 0.75 FLOW VELOCITY ON STREET (fps)= 4.98 FLOW CROSS SECTION AREA (sq ft)= 8.54 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(°%)= 20.00 INLET INTERCEPTION CAPACITY: ' FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 42.40 IDEAL GRATE INLET CAPACITY (cfs)= 35.45 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 17.72 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 17.72 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 8 i ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.70 HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= 6.00 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 ' Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 27.52 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 24.68 FLOW INTERCEPTED (cfs)= 22.02 ' CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.66 24.68 FLOW INTERCEPTED (cfs)= 22.02 CARRY-OVER FLOW (cfs)= 2.66 ' *** SUMMARY FOR THE COMBINATION INLET: ' THE TOTAL DESIGN PEAK FLOW RATE BY FAA HEC-12 METHOD: (cfs)= 42.40 o0 FLOW INTERCEPTED BY GRATE INLET (cfs)= 17.72 FLOW INTERCEPTED BY CURB OPENING(cfs)= 22.02 TOTAL FLOW INTERCEPTED (cfs)= 39.74 1 CARRYOVER FLOW (cfs) = 2.66 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 17.72 ' FLOW INTERCEPTED BY CURB OPENING (cfs)= 22.02 TOTAL FLOW INTERCEPTED (cfs)= 39.74 ' CARRYOVER FLOW (cfs)= 2.66 [1 r I I I I I ------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -- ------------------------------------------- USER:JR ENGINEERS-DENVER CO....... DATE 11-18-2004 AT TIME 09:45:45 /'// ** PROJECT TITLE: Settlers' Creek (,-Ot /d C,,) U. ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 8 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES = 3.00 SUMP DEPTH ON GRATE (ft)= 0.00 GRATE OPENING AREA RATIO (%) = 0.60 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (s) = 1.00 STREET CROSS SLOPE W = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 16.56 GUTTER FLOW DEPTH (ft) = 0.50 FLOW VELOCITY ON STREET (fps)= 3.61 FLOW CROSS SECTION AREA (sq ft)= 2.91 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 10.60 ' IDEAL GRATE INLET CAPACITY (cfs)= 14.22 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 7.11 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 7.11 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 8 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.70 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 11.56 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= [1 1 1 11 3.49 3.49 0.00 3.49 3.49 0.00 10.60— 7.11 3.49 10.60 0.00 7.11 3.49 10.60 0.00 ----------------- - ---- -------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER -- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------- SER:JR ENGINEERS-DENVER CO .................................................. DATE 01-18-2005 AT TIME 11:05:22 ** PROJECT TITLE: Settler's Creek *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 6 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 SUMP DEPTH ON GRATE (ft)= 0.17 GRATE OPENING AREA RATIO (%) = 0.60 IS THE INLET GRATE NEXT TO A CURB ?-- YES ' Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (%) = 2.00 t STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 22.19 GUTTER FLOW DEPTH (ft) = 0.61 ' FLOW VELOCITY ON STREET (fps)= 4.24 FLOW CROSS SECTION AREA (sq ft)= 5.09 GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 50.00 20.00 INLET INTERCEPTION CAPACITY: ' FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 21.40 IDEAL GRATE INLET CAPACITY (cfs)= 21.18 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 10.59 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 10.59 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 6 a ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 ' Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 16.62 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 10.81 FLOW INTERCEPTED (cfs)= 10.81 ' CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.00 10.81 FLOW INTERCEPTED (cfs)= 10.81 CARRY-OVER FLOW (cfs)= 0.00 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 21.40 — o0 t BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 10.59 FLOW INTERCEPTED BY CURB OPENING(cfs)= 10.81 ' TOTAL FLOW INTERCEPTED (cfs)= 21.40 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: - FLOW INTERCEPTED BY GRATE INLET (cfs)= 10.59 ' FLOW INTERCEPTED BY CURB OPENING (cfs)= 10.81 TOTAL FLOW INTERCEPTED (cfs)= 21.40 CARRYOVER FLOW (cfs)= 0.00 1 1 - UDINLET: INLET HYDARULICS AND SIZING -------- DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER '-- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------- USER:JR ENGINEERS-DENVER CO .................................................. DATE 01-18-2005 AT TIME 11:11:11r * PROJECT TITLE: Settler's Creek ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 6 `�_.�i `` f tINLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' SUMP DEPTH ON GRATE (ft)= 0.17 GRATE OPENING AREA RATIO (%) = 0.60 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.31 GUTTER FLOW DEPTH (ft) = 0.45 FLOW VELOCITY ON STREET (fps)= 3.36 FLOW CROSS SECTION AREA (sq ft)= 2.22 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 7.50 IDEAL GRATE INLET CAPACITY (cfs)= 15.10 ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 7.50 BY DENVER UDFCD METHOD: ' FLOW INTERCEPTED (cfs)= 7.50 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 6 I ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 ' HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= 6.00 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 ' Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 11.99 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.00 FLOW INTERCEPTED (cfs)= 0.00 ' CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.00 0.00 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 7.50= Q\d ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 7.50 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 7.50 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 7.50 ' FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 7.50 ' CARRYOVER FLOW (cfs)= 0.00 1 11 I -- ---------- ' UDINLET: INLET HYDARULICS AND SIZING ---- DEVELOPED- - --- BY----- CIVIL ENG DEPT. U OF COLORADO AT DENVER --- - SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------- USER:JR ENGINEERS-DENVER CO .................................................. DATE 01-19-2005 AT TIME 07:40:06 * PROJECT TITLE: Settler's Creek ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 7 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 0.17 GRATE OPENING AREA RATIO (%) = 0.60 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.50 ' GUTTER FLOW DEPTH (ft) = 0.46 FLOW VELOCITY ON STREET (fps)= 2.39 FLOW CROSS SECTION AREA (sq ft)= 2.27 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 5.40 ' IDEAL GRATE INLET CAPACITY (cfs)= 10.40 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 5.20 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 5.20 *** CURB OPENING INLET HYDRAULICS AND SIZING: ',,, INLET ID NUMBER: 7 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 ' HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= 6.00 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 ' Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 7.87 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.20 FLOW INTERCEPTED (cfs)= 0.20 ' CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.00 0.20 FLOW INTERCEPTED (cfs)= 0.20 CARRY-OVER FLOW (cfs)= 0.00 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 5.40 = ��cx7 ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 5.20 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.20 ' TOTAL FLOW INTERCEPTED (cfs)= 5.40 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 5.20 ' FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.20 TOTAL FLOW INTERCEPTED (cfs)= 5.40 ' CARRYOVER FLOW (cfs)= 0.00 1 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ' SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO .................................................. DATE 01-19-2005 AT TIME 07:41:19 ** PROJECT TITLE: Settler's Creek )�\ ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 7 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 1.00 ' SUMP DEPTH ON GRATE (ft)= 0.17 GRATE OPENING AREA RATIO (%) = 0.60 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (°s) = 0.50 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 9.41 GUTTER FLOW DEPTH (ft) = 0.35 ' FLOW VELOCITY ON STREET (fps)= 2.01 FLOW CROSS SECTION AREA (sq ft)= 1.05 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 2.10 IDEAL GRATE INLET CAPACITY (cfs)= 7.97 ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.10 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.10 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 7 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 ' HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= 6.00 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 ' Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.03 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.00 FLOW INTERCEPTED (cfs)= 0.00 ' CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.00 0.00 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 2.10 = Q �� ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.10 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.00 ' TOTAL FLOW INTERCEPTED (cfs)= 2.10 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.10 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 2.10 CARRYOVER FLOW (cfs)= 0.00 1 Inlet Flow Calculation for Area Inlets Project: Settler's Creek ' Job Number: 39402.00 Calculations by : as Date: 1111612004 ' Objective: to find the number of grates required for area inlets in grassy areas ' Geometry at inlet V WSEL t t U Grate Dimensions and information Width(W): 2,79167 feet Length (L): 3.354167 feet Opening Ratio (R): 0.5 sq fVsq it Reduction Factor (F): 50 Grate Flow: Use the orifice equation Q; = C-A'SQRT(2-g'H) to find the ideal inlet capacity.' -See Hydraulic Design Handbook by McGraw-Hill for verificaiton of equation use and C value C = Orifice discharge coefficient= 0.67 A = Orifice area (ft2) - open area of grate g = gravitational constant = 32.2 fVs2 H = head on grate centroid, ponding depth (feet) Then multiply by the reduction factor for the allowable capacity. QG = Q.' (1-F) DP 5A3 Q = 6.15 cis H = 0.25 it Single Type C Inlet A= W'L'R = 4.68 fe Q; = C'A'SQRT(2'g'H) = 12.59 cis QG= Qi-F = 6.29 cis USE: Single Type C Inlet DP 5A7-SA2 Q = 3.08 cis H = 0.25 it Single Type C Inlet A = W'L'R = 4.68 ft2 Q, = C'A'SQRT(2'g'H) = 12.59 cis On Q;'F 6.29 cis USE : Single Type C Inlet rim=11.5, head=12.49, ff=12.95 Double Type C Inlet A= 2'W'L'R = 9.36 ft2 Q; = C'A'SQRT(2'g'H) 25.17 cis QG= Q;'F 12.59 cis rim=11.5, head=12.49, ff=12.95 Double Type C Inlet A = 2-W'L'R = 9.36 it Q; = C-A'SQRT(2'g'H) 25.17 cis QG= Q;'F = 12.59 cis Triple Type C Inlet A= 3'W'L'R = 14.05 fe O; = C'A-SQRT(2'g'H) = 37.76 cis QG= Q;'F = 18.88 cis Triple Type C Inlet A = 3'W'L-R = 14.05 fe Q; = CA'SQRT(2'g'H) = 37.76 cis QG= Q;'F = 18.88 cis JR Engineering 2620 East Prospect Rd . Sutle 190 Fort Collins, CO 80525 1 Pagel I JR Engineering 2620 East Prospect Rd., Suite 190 Fort Collins, CO 80525 Inlet Flow Calculation for Area Inlets Project: Settler's Creek Job Number: 39402.00 Calculations by : as Date: 11/16/2004 Objective: to find the number of grates required for area inlets in grassy areas ' Geometry at inlet WSEL [1 Grate Dimensions and information Width (W): 2.79167 feet Length (L): 3.354167 feet Opening Ratio (R): 0.5 sq fVsq 1t Reduction Factor IF): 50% DP 5B-5E Q = 1.45 cis H = 0.25 ft ' Single Type C Inlet A = W'L'R 4.68 ftz O; = C'A'SQRT(2'g'H) t = 12.59 cfs Qo= Q;'F 6.29 cfs [1 Double Type C Inlet A = 2'W'L'R 9.36 ft2 Q; = C'A'SQRT(2'g'H) 25.17 cfs Qo= Q;-F 12.59 cfs USE : Single Type C Inlet DP 1A-1F Q = 0.6 cfs H = 0.25 it Single Type C Inlet A = W'L'R 4.68 ft2 Q; = C'A'SQRT(2'g'H) = 12.59 cfs Qo= Q;'F 6.29 cfs Double Type C Inlet A= 2'W'L'R = 9.36 ft2 Q; = C'A'SQRT(2'g'H) 25.17 cfs Qo= Q;'F 12.59 cfs USE: Single Type C Inlet Triple Type C Inlet A = 3'W'L'R = 14.05 ft2 Q; = C'A'SQRT(2'g'H) 37.76 cfs Qo= Q;'F = 18.88 cfs Triple Type C Inlet A = 3-W'L'R = 14.05 112 O; = C'A'SQRT(2'g'H) 37.76 cfs Qo= Q;'F 18.88 cfs ' Page2 1 o�ect: lient: 11bject•. [1 I 11 1 I I I By: Chk. By: Job No: _ ) Date: j-R ENGINEERING A Westrlan Company Sheet No: of _ 'jt ✓/T n%. �7 nl� �,c) q�.__� 1A-L - 7-t ] {{ �� j$ -+�_ 7= _ . 1 �� _{ f + it -44 TPi-I TI T 444 _ LEF- IL IT! it - _I #ii1 it -J - 1" �4 jtI�i�T 41- J it IT, ".. iI {NI- --�i i1 --1Sifit�fL' � it 14 L 14 41 1I I U. -T.-It-L;12 it awl r - 1 i:i_ r' -, � + +a-F J� { I -f r . 1 ra I _ �_I 4T �� r_ 1� 1 1 1 1 1 C O �w U j y d N n m W O O N m W N N N N W O n m N N H m W (D O W O m N � N N mN Q Q Q Q mN d N d C') N C O O O Q Q O O O O O O O O O O O O N d N m m Z Z m M 0 w w O m O W m N w j � U O O O O O O O O O O O O O O O O W No OI=^ d N M A N m W Ol w N n W O O w m t0 U N d n O w N N M w w M N N w d d N N N N N Q Q M v d m < < m Q w m w n n N m N d m Ol r O n w w n w N M M M d N w 0 w O rn r w d 0 N O O 0 0 r r N d N O n r n N O1 M N m m O m m m d m m m O m lh lh lh N N N N N d M M M N M N N N O O 0 r r O O r r j O O a T C�C� 00000000000000000000000000000000000_' c- J I N w w w 0 N m N N w N N N w w w w N N w N w w N W m w N w N m w w N m j W C m M M N r r O d m M M W n n Q O1 d C O w y) j N� N C� N •- �- �- � O O T O O O) m m N N ; 3 E_" o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O W w N w N N N N w N 10 H w N N m CO m r r n N m N d N W n r m O w r n w N N M d d M w m w N M Q m m n N O m W d d m w O O w 0 OI N O n w W y,r M M M M N N N N d^ M M N N M M - e- N N fV (V 0 0) n n n. o c� TC'J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 f 0 `^^^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O: 0 0 J = N N Vl N �O w w w w w YI w N t0 N N N �O w m N N N w N N w N i0 N N N N N N E c rn m M o rn M n n o d w m m r d W r o m (P M o n m r rn M m Cl N N 41 Nam'^ N N N N O O O O j O O 0 O O O O O O O O O O O O O N w w N N .- m n W OI N O O N O n O N m M O m m m m V w O m n M m y r r� d o vi e v v d d co vi of � of of n � vi C O O O O O d O r O O O O O O m m N O 0 o M 0 M r w M w o n N rn r m n n n N w 10 N m tp N w M m N (V O m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W N N N N w w w N N N N N N N N N w m T r r n M O N w m m N w O w m w y' N Q d O n O W� d d d d O •- d M w w m N � r m O) N ❑Uv I 0 0 N N Q d w w w w m m n n O O n n N N d d 0) O) m m M M A W jp N Ol O) OI m O1 0) m M L O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O M n Q Q N m O m N M N N O O O N d O O N O O Q N O O) O) n r d�O O O O O O T 0) r O O n O m M O 0 W w O 0 Ol d w w m W r w N O O) O m N w d O O w M O Q O w w d Q m M 0 o 0 d o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M M M M M M M M M M M M M M M M M C 0 0 O O O 0 O O O O O O O O O O O C O O O O O O O O O O O O O O O O O W ` u 0 0 0 0 0 0 o E= o 0 0 0 0 0 0 W e Q Y O O of O j to v W w w m m w w w w v a W W m w W 10 v w v w m w m v m m w m u u w u u o u 0 u 0 � v `v u o u u `u N a C c C C C C C C C c c c c C C c U U U U U U U U U U U U U U U U U o > > > > 7 > > > > > > N > > > 7 7 U U U u U 20 L) o U U c .o c O Wn L L L L L L L L L L L L L L L .0 N .0 U G U C U C U C U C C U C U C U C U C U C w M U C U C U C U C U C W N N N W N N N N W W m d N d N O O m O m m N N ! N M M M M N Z n w O N O f `° n (9 w W J C'f IT W❑ M N O O 2 U fw') 2 m M !2 M Q M N LL ry t7 N z t0 1 2 N S N a= a- a= a_ d_ d- a m d- a w d- a 0 a w a_ N a, a 0 a w M w. N N n N C U E F x 0 I 1 1 ' APPENDIX E ' STORM PIPE AND SWALE CALCULATIONS [1 1 t C ' Final Drainage and Erosion Control Report Appendix Settler's Creek March 2005 1 1 1 1 1 1 1 1 1 1 1 1 d 0 8 �i Xya V r � A <I N oil U 2 I� I 1 1 1 a 1 L L �-3 1 1 1 L O a a) w 0 0 m U i 8a m m O 3m^ m m m _ 0 � o o 0 0 0 W 1- N vi 'OCw 0 � o G N � N N Cl C N N Cl oQ (7 Q N O d m m mO N C O O O O O O O O O N R O V0 O O O O O O O O O N p = O N'V O O N m N 0 w w N N m 1p d m n o r n m O M O Q m m w � N w 0 m m n m m N N N m m M W U^ N N r N 7N n 0 w m w m w n m m O m n m m m o_ - o o .- o o m o of 6 of m fo 6 r o o o 6 .a m _o 0 0 0 0 0 O 0 0 0 o0000000000 0 0 0 0 0 0 0 0 0 0 0 000 N N N N N 0 'no N Ip m 6,6 N O m N O m m O O O y r o m w N n d m 0 n 0 m;m m O m 0 m w n m O N C >� O O O O O O O O 3 0 O O O O O O O O O O O W wO VO 0 N m N N m N N O m m m w w N 0 N n m m m m N m y N N m n N .- N N O r o o ci m o w m w m pi m r m 0 w ro r o m r co r m co �o TUB J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S N m m m N N N m 0 0 N Ip N tp N E c o m m N 0 m m 0 n m m N v> m^ of m o m o m n 6 u� 0 0 0 0 0 0 0 oER 0 0 0 W w r 0d N O' O O m O O �o c O N O m O O O t7 O O O O O V. n N 0 O w N Q O O O O .- N N O O O O �>� d o 0 o a 0 0 0 0 0 0 0 0 W N N N Y1 N N N N N N N N w0^ t7 m th N r m 0 r w m r d n 0 m ynu M UUv 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N y i y d d N N m m O O OR m m Yl m OR m m OR m m m m m L O O O O O O O O O O P^ O O O O O O O O O 0 c of n vi v o of of o 0 a w m m m n o_ o n d U N^ N m th N ^ m O O O N M N N r d m m O 0 0 (") n lh n N n n n N m C (n— O O O O O O O N O O O O O O O O O O O O n n n N N n n C O O O O O O O O O O O C N ` O O O O O O O O O O Rm^ o DEr o 2A < (DO m m m v w v v v m w 10 w 0 v u m u u 0 ro m d U U U U U U jp C C C C C C C C C U 0 U U U U U U U U p N N N N N N N Q 0 0 0 0L `0 0 V N 2 U 2 U = U U U U U c o c c c p O a lh L U c M L U N L U L U t U L U u dfnU X X C % G C C C C N N N O O d N m N N N S > > ¢ m W m¢ O OO hdm N m _ -- CL v)CL a_ d_ a u m U c O C m a 'a t [I t t O a a, W 0 Vl 7 U 7 c m m J O m m 3 m2 m m ry W O O N N r A M M N N Q Q Q Q N M O M m 0 m 0 � 0 .� t7 M m (") � N N Q N m m Q ("l n N n m O m N N m m O N N c O O O O O O O O O h 0 O m N N m N m N m o U O O O O O O O O O a� m y 2 O a m N m O m N a 0 vi r cv m _ O Q M a O a M N o m � N Q N Q m m m m O N m O m 5 c r M m N r NCO n m N m Cl! r M m m Q— Q m m d`. m n m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J N N N N N N m N N m N N m N N m N N N N 10 N N C O O m T N n Q m O n O O co C>>- O O O O O O O 3 C N O O O O O O O O O O O W N m N N N N m 10 N N WE o 0 o rn r N m N .- n M ry OR ry r M m a a - Q m N N N .- .- O O m M1 m W O m n m T C7Jv 0 0 0 0 0 0 0 0 0 0 00 0 0 Co 0 0 0 0 0 0 0 x N N N N N N m N N N N .O m m m m N N N N m N E c O m m N O m N 0 m a 0 Q Q O m W N n m m N N N r^ m O — m O O m O 0 m O r O N O N O N C> W N N N N N N N N N m *$ 0 C N W; Cl rn n N M m m N Q M N o Q N Q m o Q N j 0 O O N O N O O O M 0 0 O O O Q r N N O Ot N Q O O O O N N N O O O O m 0 0 0 0 0 0 0 0 W Vl N Yf N N N N N 1616 N N N Q m o D) n t7 C1 M O O1p^ M NM N n N n m Q 0 V1 m, m N m N N N O) 1D r m y a M U N N N N M M O O N N .- 0 0 0 0 0 N y 3 ^y Q Q O in 0�j mm��WmNNNNQQmmmmm L O O O O O O O O O O c r of r vi a o of ri o 0 s m m N m r o o M Q d2 M N r m N O r O O O O N M N N r a m m O O O ZI. t7 n Cl r O N O n n O O n N N O N O O O O O O O O O O O C2 C) C') M C') M C) C) O O O O O O O O O O O N GEC o 2m v to w m m v m w v m m m d U U U U U U U U U U N U U U U U U U U U U o n 0 m o A o .o NL o E o 8 2 E E 8 y x U U U U 2 U 2 U U p o c c c p O Q L U c M L U c M L L U U c c L U c L U c -aM U c NU)'V % X % N N N o p W N N W N y N¢ v ¢_ U_ m_ O Fx 0¢2 dN _ dN N aN dN dm d ry da_ m d uJ C n L r c a E O 02 v0 ,0 a m Q Q �=m 0 O i a W O A 0N 0 O m m w M �xa 1 1 1 1 1 1 1 1 1 1 1 1 t HG Title: Sealer's Creek x:\3940000.all\3940200\stormcad\south pipe run.stm 11/10/04 09:16:32 AM Scenario: South Pipe Run-100yr JR Engineering ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 OLet o Nrtl If Project Engineer: JR Engineering, es Sto"CAD v5.5 [5,50031 Page 1 of 1 i I V l0 u u U) 1 m O w 3 > �m O o V- w vi o n o o Q a Q o o o m m r m N m m o o pg m o v c� vi o e o 0 N C O O O m m U O r m a0m O O O m 0, N O m� m 0, N n m N Q n n o Q N rn r m m m m m 0 0 0 0 0 0 0 0 00000000 J N N N N N N N N N C N L O Q m Q m n m W m m 3=m� O O O O O W N N N N CJ m m N Q Q N m m m r c� T C'J o O 0 0 0 0 O O O 0 0 O O 0 0 O O J = N N N N N N N N E c rn Q Q n N C> O O O O O O O � W N N Ifl N m m N Cl m Cl Cl �o c o o N o o r r ry o E > of of o ci � v" o 0 0 0 w N N N N OIU^ N r [i m a u n m m m O U w o o rn rn m rn rn N L Cv m N Q U m ^ N O O m m W 2 G� O N N O Q ONv O O O O n N N N C O O O O O O O m uEv 0 0 o 0 2m v v m m m m m m v v m v m V U U U m C U C C C U U U 0 a `m o U m N `O > > UL u U 2 U U c 0 c U m d L m L U L U mUy C [7 x C C N m m Q N N m a Q n o m 2 2 y J O n O Q L d`0dv~idv~id0 C I 1 C 7 1 1� 'A m N a O �p O 3 N ^ N a >� EviR a a OI > HW Wo d m N m m 0) rn N N N N m m Of O) n n Ol O) m m r Q m m N Vl m co .� N N N N M M M r m m m m Q .O j N lh ` (O N O O d d m m N N OI W W rn Q Q rn rn rn m m O v v N 4 o o N N N N N � E W oN N d d d d Q Q M Q d M Q< V N N N N N N N .. E a 0 m e O O O Q _Q O O O O O O O O O O O O m a N m N N rn N m N O m O m m N m 2 O O O Z Z O O O O O O O O O O O 61 ME a = O � O Ot = m M O rn N N m rn r rn m r m N m N m N O d m N rn rn d rn rn M �- N rn rn N d > d M M N N d O N d M d M Q Q Q N m N M m N O r m M O d m M m d �- Q m m N m Q N Q N m m m n n N m N l a O r r r r m N N d m Q N d M r r N m N Q N M N mN m N m m m M m 9. a M M M M M M M M^' d` M M Q M M N N N N N N N N N �- O m 0) rn of D m c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 To .- J N m N m N N N N N N N N 66 N N N N N N N N N N N N N N N m N m N N N d q m M O r O O M N r m b n 6 m m d O o O O m o m N N 1 O O O O O O O O O O O O O co O O O N O WId N Yl N N N N N N N N N N N N r m m m m O n m M Q Q M M O Q b- m Q N Q d m d OI rn N m r r N m tCl n r r m N N m m N N Q M Q O O r n m d Q N M W W N m N m m m M O m M M M M M M M M d O Q Q M M Q Q M M M N N N N N N N N O Ol 01 rn 1 N To J v O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0, I = N N N N m N N N N m N N N N N N N N N N m N m m N N m N N N N m N N N j E c rn m M o rn M n n o Q m m rn m r Q N m >= o m m M o r N n rn M n m M N Q m>>^ N N N N - - O - O O - rn O rn m i(l v O O O O O O O O O O O O O O O O O I O w m m N N N N N N N N N N N N N N N 0 O N m n m OI N O O N O r N O m M m O m m N d N m O m r M m of o Q vi o Q v d v m ui of � of ai r� r vi �� v �o m C O O O O O Q O r O O O O O O rn m N O O O M M n m M N O n O O N m rn n rn > N O O O O O O O O O O O O O O O O O O W N N N N N rn O ^ 'N N N N m rn O m oi d d d N Q d O n O m d M N N t0 N n m rn N UUv m m m m m m m m m m m m n n m m n r m m d d M M d d n n 6 y ?� ,,y^yll E N N m m d IT O M N N m m m m N N m m m m n n N N O O N N M M M M M r O N � � � N N M m m r r M M N N d d N m d Q m m O O m m rn rn n n r n O O O O O O O O O O O O O O O O O .L.. rn^ o 0 0 0 0 0 o O o 0 o O O o o O o c r ri o o r ri of m m n d o vi ai o aC Q O Or N O O dUa Nmm Omrn rnrm rnNO rrrn m M O O m O O rnO^ Q O M O Q O m m Q Q m M cam`- o p p p 0 Q o 0 0 0 o p o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M M M M M M M M M M M M M M M M M E I c c 0 O o O O O O 0 0 0 0 O O o 6 0 0 c o o c o c c o 0 0 0 0 0 0 0 0 0 0 m 1 ^ U O O O O O O O E E o 0 0 0 o O oo 2 m" v v o o v o m a a a a a a a a a a a a a a a a a u o p o o u u u u u u u u u m c c c c c c c c c c c c c c c c c O O O O O O O O O O O O O O O O O U U U U U U U U U U U U U U U U U U r n C m u C m c a m m m m m m m m m m m c m m m m m a 2_ 2_ 2_ 2_ 2_ �_ �_ O �_ N J 2_ 2 V O 2_ O U O " j pp mm U U U U U U U U U U U p m U U U U U t a O c 0 a.n L U L U t U t U L U L U L U L U L U L L m L L L L L OO U U U U U U U ry a N N N M M M M V M N N Z Z m '' O m O co r N N O O oo c 1 y N J U. O W m U m a M LL Nm QLLMWM Mm QOd= 17 d- a-M_m-Q. 0 m 0 d- d O d 0 LL s a a 0ama m F K o ou N u N 1 1 1� O Q N w O N 7 U 7 d m 0 O (p m_ m co rn m m O U j N N Cl? cow r n m YJ O 0 0 N N C O O O N y O n t0 N U W O S m CiW n O1 n _ N� rn rn m r 41 O W N tp Ot 0 m N O O O O O O O O 00000000 J N �O �O N N N LO LO N C m e o O a r O > > o 0 0 0 c 4 O O O O O W N N N N N m 19 n c0 "= y C O O COc0 N 19 W O m y z. of of of r m co C7J 0 O 0 0 O O 0 0 0 0 0 O O O 0 0 O O T L(I vi N N O h E - rn a a r o o o a n m w w m -- l vi m o Co N c� O O O 0 O— � W 7L N m m m r 6vi of 2 0 y C O O N O o n n N o E E�� y o o 0 0 0 0 W N N N N c >• m r r u� y 0 U m m O N p U ... N N t0 (p t0 tp (O m y; y m fO �o m rn m rn rn O y O U r n n v v e 0 0 r m m m n n r n n NLL� L o 0 0 0 o 0 0 0 a w N O Ol Ol 2 n n o a a w ay o 0 m 0 o 0 0 0 a C O O O O c O O O O N �E= o 0 0 0 2m o e 0 w v d m t0 v v v m N U U U U 0 � U 0 C U 0 U 0 U o n o L r � NN U 2 U U c o c 0 N Q L U N L U L U u H,c C m C C N A N K N U (p m C N N a N o O a m a m o m o n rn N m N a-dwaando C M c n L 'o c C� C 0 h xoa N O m m a U q o woo NWOO O N m N YJ Z: H x o `I 1 1 t co 00 'e C 0 a ' o N C ico d V 1 1 N 0 and �w N n O �O d O O O N C O 0 o d d = o O = N d U N y jd� m N UOe N N CO I?2 ` nj O O T(, C O O O J 4 N O d C d � O N O� y j d O C 1 v � d m O1 O w < = d C m n m d p M N O 9 C O O O m O m TUJ = 0 0 Q E c dco m�6 > o O N C d O O— � w � rn N 0 N od� _o O O N d 0 0 0 0 W N N C« ,.Lm,z3JO d d6U W U 0 0 0 H i�li u1 L p O d C2 a nr 0 2 0 o c<q� 0 0 C C C p C O d ` dC O � d v o d d U a c d 0 0 � U N � U d L UN U C o d n N � N V C yU V% d 02 m m a a p _ d J Z a d 0 i� m H x 0 Curb Cut at Design Point 8 Worksheet for Rectangular Channel Project Description Worksheet CURB CUT at DP 8 Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.010000 ft/ft Bottom Width 5.00 ft Discharge 2.66 cfs Results Depth 0.16 It Flow Area 0.8 112 Wetted Perimeter 5.33 ft Top Width 5.00 ft Critical Depth 0.21 ft Critical Slope 0.004632 ft/ft Velocity 3.27 ft/s Velocity Head 0.17 It Specific Energy 0.33 ft Froude Number 1.43 . Flow Type Supercritical Project Engineer: JR Engineering x:\3940000.all\3940200\Ilowmaster\swales.fm2 JR Engineering FlowMaster v7.0 j7.0005] 11/22/04 01:08:59 PM ®Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section -Curb Cut at Design Point 8 Cross Section for Rectangular Channel Project Description Worksheet CURB CUT at DP 8 Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.013 Channel Slope 0.010000 f /ft Depth 0.16 it Bottom Width 5.00 ft Discharge 2.66 cis 0.16 ft 1 V:2.0� H:1 NTS Project Engineer: JR Engineering x:\3940000.all\3940200\flowmaster\swales.fm2 JR Engineering FlowMaster v7.0 j7.00051 11/22/04 01:09:04 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Spillway from Home Depot Curb Cut Worksheet for Triangular Channel Project Description Worksheet Spillway from Home Depot Curb Cu Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.040 Channel Slope 0.112500 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Discharge 3.73 cfs Results Depth 0.45 ft Flow Area 0.8 ft2 Wetted Perimeter 3.74 ft Top Width 3.63 It Critical Depth 0.56 It Critical Slope 0.037145 ft/ft Velocity 4.54 ftla Velocity Head 0.32 It Specific Energy 0.77 It Froude Number 1.68 Flow Type Supercritical Project Engineer: JR Engineering x:\3940000.all\3940200\flowmaster\swales.tm2 JR Engineering FlowMaster v7.0 (7.00051 11/12/04 11:50.05 AM C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 n u Cross Section --Spillway from Home Depot Curb Cut ' Cross Section for Triangular Channel ' Project Description Worksheet Spillway from Home Depot Curb Cu Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth ' Section Data Mannings Coefficient 0.040 Channel Slope 0.112500 ft/ft Depth 0.45 It ' Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Discharge 3.73 cfs 1 ' 0.45 ft ' V:2.0N H:1 NTS ' Project Engineer: JR Engineering x:\3940000.all\3940200\I1owmaster\swales.fm2 JR Engineering FlowMaster v7.017.0005] 11/12/04 11:50:10 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 USA .1-203-755-1666 Page 1 of 1 t_1 1 n 1 APPENDIX F ' WATER QUALITY AND DETENTION POND CALCULATIONS 1 LJ j 1 1 Final Drainage and Erosion Control Report Settler's Creek Appendix March 2005 I 1 1 1 1 ' WATER QUALITY OUTLET STRUCTURE DESIGN 1 1 1 1 1 1 Final Drainage and Erosion Control Report Settlers Creek CALCULATIONS Appendix March 2005 JR Engineering 1 1 1 1 1 WATER QUALITY CAPTURE VOLUME SUMMARY FOR EXTENDED DETENTION PROJECT NAME: SETTLER'S CREEK JR PROJECT NO: 39402.00 COMPUTATIONS BY: ES DATE: 08/18/04 Guidelines from Urban Strom Drainage Criterial Manual, September 1999 (Referenced figures are attached at the end of this section) Use 40-hour brim -full volume drain time for extended detention basin Water quality Capture Volume, WQCV = 1.0 - (0.91 ' i3 - 1.19' iZ + 0.78i) Design Volume: Vol = WQCW12' Area' 1.2 MAJOR BASIN Trib. area (acres) Impervious Ratio, la %Impervious I = Ia/100 I WOCV (watershed inches) Design Volume, Vol. POND 488 65.00 71.9 0.72 0.28 1.85 3940200pond.xls,11 /11 /2004,7:57 AM I 1 k Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility POND 488 Project Name: SETTLER'S CREEK Project Number: 39402.00 Company: 1R Engineering Designer: ES Date: 8/18/2004 1. Basin Storage Volume A) Tributary Area's Imperviousness Ratio (i=ljl00) la = 72 % i = 0.719 B) Contributing Watershed Area (Area) A= 65.00 acres C) Water Quality Capture Volume (WQCV) WQCV = 0.28 watershed inches (WQCV = 1.0 ' (0.91 ' is - 1.19' iz + 0.78i) ) D) Design Volume: Vol = WQCV/12Area' 1.2 Vol. = 1.85 ac-ft 2. Outlet Works A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforations (H) H = 2.95 ft C) Required Maxiumum Outlet Area per Row, (Ao) Ao = 2.9 square inches (Figure EDB-3) D) Perforation Dimensions (enter one only) i) Circular Perforation Diamter OR D = 1 15/16 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns Inc, See Table 6a-1 for Maximum) nc = 1 number F) Actual Design Outlet Area per Row (k) Ao = 2.95 square inches G) Number of Rows (nr) nr = 9 number H) Total outlet Area (At) Ao, = 26.55 square inches ' 3. Trash Rack 1 A) Needed Open Area A, = 0.5' (Figure 7 Value)' A., A, = 903.0 square inches B) Type of Outlet Opening (Check One) x < 2" Diameter Round 2" High Rectanaular Other: C) For 2", or Smaller, Round Opening (Ref: Figure 6a) I) Width of Trash Rack and Concrete Opening (W.nd Ww„ r = 24 inches from Table 6a-1 ii) Height of Trash Rack Screen (HTR) HTR = 33 3/8 inches = H - 2" for flange of top support iii) Type of Screen Based on Depth H) x S.S. #93 VE Wire (US Filter) Describe if "other" Other: iv) Screen Opening Slot Dimension, x 0.139" (US Filter) Describe if "other" Other: v) Spacing of Support Rod (O.C.) 1 inches Type and Size of Support rod (Ref: Table 6a-2) TE .074"x.75" vi) Type and size of Holding Frame (Ref: Table 6a-2) 1.0" x 1 1/2" angle 1 Page 1 D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of rectangular Opening (W) W = ii) Width of Perforated Plate Opening (Wconc=W+12") Wconc = iii) Width of Trashrack Opening (Wopening) Wop ning = from Table 6b-1 iv) Height of Trash Rack Screen (HTR) HTR = 1 v) Type of Screen (based on Detph H) (Describe if "other) ' vi) Cross -bar Spacing (Based on Table 6b-1, KlempTM KPP Grating). Describe if "other" U 11 vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio 5. Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) B) Surface Area C) Connector Pipe Diameter (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides 6. Two -Stage Design A) Top Stage (DWg = 2' minumum) DWo = B) Bottom Stage (Des = DWo + 1.5' min, DWo + 3.0' max. Storage = 5% to 15% of Total WQCV) C) Micro Pool (Minimum Depth = the Larger of 0.5`Top Stage Depth or 2.5 feet) Storage = Des = Storage = Surf. Area = Depth = Storage = Surf. Area = D) Total Volume: Volt, = Storage from 5A + 6A + 6B Vol,o, _ Must be> Design Volume in 1D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Minimum Z = 4, flatter preferred 8. Dam Embankment Side Slopes (Z, horizontal distance per unit ver Minimum Z = 4, flatter preferred 9. Vegetation (Check the method or describe "other") inches inches inches inches KlempTM KPP Series Aluminum Other: inches Other: rlbla, acre-feet acres inches yes/no feet acre-feet feel acre-feet acres feet acre-feet acres 0 acre-feet Z = 4 (horizontal/vertical) Z = 4 (horizontal/vertical) x Native Grass —Irrigation Turf Grass Other: Page 2 DRAINAGE CRITERIA MANUAL (V.3) ' 10 6. ' 4. 2. ' w 0.6 U 1 � 0.4 STRUCTURAL BEST MANAGEMENT PRACTICES 0 E 1 m "a- 0.CIS 2 0 U Ci 3 ' 0.06 0.04 ' 0.02 ' 0.01 STRUCTURAL BEST MANAGEMENT PRACTICES .0 0 EXAMPLE: DWO = 4.5 ft 0 WQCV = 2.1 acre-feet SOLUTION: Required Area per Row = 1.75 in? 0 EQUATION: WQCV a= K 40 0 in which, K40=0.013DWQ+0,22DWQ -0.10 0 _;;'0Z rZ O ��\ ti l h Qr �e �JF c` 0.02 0.04 0.06 0.10 0.20 0.40 0.60 1.0 2.0 4.0 6.0 Required Area per Row,a (in.2) ' FIGURE EDB-3 Water Quality Outlet Sizing: Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume '9-1-99 Urban Drainage and Flood Control District S-43 0.02 0.04 0.06 0.10 0.20 0.40 0.60 1.0 2.0 4.0 6.0 Required Area per Row,a (in.2) ' FIGURE EDB-3 Water Quality Outlet Sizing: Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume '9-1-99 Urban Drainage and Flood Control District S-43 ,I 11 Orifice Plate Perforation Sizing Circular Perforation Sizing Chart may be applied to orifice plate or vertical pipe outlet. • Designer may interpolate to the nearest 32nd inch to better match the required area. if desired. Rectangular Perforation Sizing Only one column of rectangular perforations allowed. Rectangular Height = 2 inches Rectangular Width (inches) = Required Area per Row (sq in) 2" Urban Drainage and Flood Control District Droinoge Criteria Manual (V.3) n.: 00.1a.a.y Figure 5 WOCV Outlet Orifice Perforation Sizing No Text Table 6a-1: Standardized WQCV Outlet Design Using 2" Diameter Circular Openings. Minimum Width (W,,,eJ of Concrete Opening for a Well -Screen -Type Trash Rack. See Figure 6-a for Explanation of Tents. of Circular --- --" " �••^• ^cone 1 rct i.mumn Of Holes as a Funct Opening (inches) H=2.0' H=3.0' 11=4.0• H=5.0' H=6.1 < 0.25 3 in. 3 in. 3 in. 3 in. 3 in. < 0.50 3 in. 3 in. 3 in. 3 in. 3 in. < 0.75 3 in. 6 in. 6 in. 6 in. 6 in. < 1.00 6 in. 9 in. 9 in. 9 t 9 in. < 1.25 9 in. 12 in. 12 in. 12 in. IS in. < 1.50 12 in. 15 in. 18 in. 18 in. 18 in. < 1.75 18 in. 21 in. 21 in. 24 in. 24 in. < 2.00 21 in. 24 in. 27 in. 30 in. 30 in. Table 6a-2: Standardized WQCV Outlet Design Using 2" Diameter Circular Openings. US FilterTM Stainless Steel Well -Screen' (or equal) Trash Rack Design Specifications, Max. Width Screen H93 VEE Support Rod Support Rod, Total Screen ( of Opening Wire Slot Opening Type On -Center, I s FT' 0.13<, 0.135 0.135 0.139 0.139 #156 VFF TE. KIit = Maximum Number of Columns 14 14 7 4 2 2 Steel Frame Type 1" 0.655 • J,;:x 1.0 Lu I.011x I%:" 1" 1.155" I' 1 '/: h I'w. 'US Filter, St. Paul, Minnesota, USA DESIGN EXAMPLE: Given: A WQCV outlet with three columns of 5/8 inch (0.625 in) diameter openings. Water Depth H above the lowest opening of 3.5 feet. Find: The dimensions for a well street trash rack within the mounting frame. Solution: From Table 6a-I with an outlet opening diameter of 0.75 inches (i.e., rounded up from 5/8 inch actual diameter of the opening) and the Waler Depth H = 4 feet (i.e., rounded up from 3.5 feet). The minimum width for each column of openings is 6 inches. Thus, the total width is W ,on, = 36 = 18 inches. The total height, after adding the 2 feet below the lowest row of openings, and subtracting 2 inches for the flange of the top support channel, is 64 inches. Thus, Trash rack dimensions within the mounting frame = 18 inches wide x 64 inches high From Table 6n-2 select the ordering specifications for an I8", or less, wide opening trash rack using US Filter (or equal) stainless steel well -screen with N93 VEE wire, 0.139"openings between wires, TE .074" x .50"support rods on LO" on -center spacing, total rack thickness of 0.655" and x 1.0" w Carbon steel franc. elded Table 6a I 1 1 1 ' MODSWMM MODEL TO GENERATE HYDROGRAPHS FOR t 1 1 1 1 t Final Drainage and Erosion Control Report Settler's Creek INPUT INTO EXTRAN Appendix March 2005 Oroject: "St �'L Z '5 6,,,( k Job No: �qqe.). dent. By: Chk. By: - Date: -It /I "11'e f f Subject I I I I I I I I r I F I I I I I I Sheet No: of ft) J-R ENGINEERING AWastrian Company J. H A-L -jj-,j-,'I-�- 4 7-1 41 41 -'1 L d f �T T t + 4- fla- 7 7 q �4 71 -4-4- 4. 4 v, + 4 T., J. ,oj ��J 7� ck� i --- A 4 - 4 �J_ 4� -A 's !4 .. . .. .. ....... _7 4-i JJ A T 4 Irtd- �j-� + L T : - I r. j j_-T 4 1 !A i A.. AL 14 7 4- L I 'Schneider, Erika From: Feissner, Herman [Herman.Feissner@Nolte.com] Sent: Thursday, August 19, 2004 3:55 PM To: ESchneider@JREngineering.com Subject: Goodwill Site Drainage Information ' Erika, I apologize for taking so long to get this information to you. ' First, both 24" x 38°culverts will be used. Second, here is what goes where. 'North Culvert: Interim 100-year developed runoff to this culvert: 3.70 cfs from two (2) 10' Type 'R' Curb Inlets '2.55 cfs from undeveloped parcel north of Pavilion Lane 3.60 cfs from Fort Collins Retail Center (this is in the SWMM Models that I've reviewed) 'Ultimate 100-year developed runoff to this culvert: 3.70 cfs from two (2) 10' Type 'R' Curb Inlets 0.72 cfs (approx. 3.15 ac at 0.23 cfs/ac) from future detention pond on 'parcel north of Pavilion Lane 3.60 cfs from Fort Collins Retail Center (this runoff will 'pass through' the future pond) 'South Culvert: Ultimate 100-year developed runoff to this culvert: 0.72 cfs from on -site detention pond at Goodwill Industries project site 'Imperviousness of project site: approx. 66% (This includes the extension of Pavilion Lane) 1 1 1 Let me know If you have other questions. Herman Feissner, P.E. Associate Engineer Nolte Associates, Inc. Fort Collins, Colorado Direct: (970) 419-1340 Office: (970) 221-2400 FAX: (970) 221-2415 E-mail: herman.feissner@nolte.com [] 1 MMP-XTD.IN 2 1 1 2 3 4 WATERSHED 0 HARMONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION 100-YEAR EVENT FILE: MMP-XTD.DAT 7R ENG., 11/17/04, USED FOR DEVEL EXTRAN 600 0 0 1.0 1 1.0 1 25 5 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75 0.73 0.71 0.69 0.67 -2 .016 .250 0.1 0.3 .51 0.5 .0018 UPDATED BASIN 388 AND 389 INFORMATION 1 382 582 700 0.8 67. .013 .016 .25 .1 .3 .51 .5 .0018 1 383 483 2439 5.6 85. .020 .016 .25 .1 .3 .51 .5 .0018 1 384 84 2400 6.9 84. .020 .016 .25 .1 .3 .51 .5 .0018 1 385 85 2100 6.3 52. .020 .016 .25 .1 .3 .51 .5 .0018 1 386 586 3543 12.2 70. .010 .016 .25 .1 .3 .51 .5 .0018 1 387 586 800 3.2 70. .025 .016 .25 .1 .3 .51 .5 .0018 1 388 588 3300 13.6 72. .011 .016 .25 .1 .3 .51 .5 .0018 1 389 88 3049 7.0 66. .020 .016 .25 .1 .3 .51 .5 .0018 1 390 490 550 1.4 70. .020 .016 .25 .1 .3 .51 .5 .0018 1 391 491 600 2.8 70. .020 .016 .25 .1 .3 .51 .5 .0018 1 392 588 1100 6.6 90. .020 .016 .25 .1 .3 .51 .5 .0018 1 393 88 4400 11.8 95. .020 .016 .25 .1 .3 .51 .5 .0018 1 394 92 900 1.4 90. .020 .016 .25 .1 .3 .51 .5 .0018 1 396 496 2950 13.5 '93. .013 .016 .25 .1 .3 .51 .5 .0018 1 397 497 810 3.9 85. .021 .016 .25 .1 .3 .51 .5 .0018 0 0 92 89 0 2 2. 1000. .010 0. 0. .013 2. -1 395 89 4 3 .1 1. .1 0.0 0.0 0.5 3.6 9.6 3.6 9.85 0.0 89 88 0 1 0. 800. .007 4. 4. .035 5. 490 90 4 2 .1 1. .1 0.00 0. 0.20 0.46 0.22 0.48 0.24 2.50 491 90 4 2 .1 1. .1 0.00 0. 0.50 1.0 0.60 91.9 0.70 260. 90 88 0 4 0. 500. .010 50. 50. .016 .5 50. 500. .010 10. 10. .035 5. 496 88 6 2 .1 1. .1 0.00 0. 0.01 12.0 0.11 12.4 0.79 12.8 2.06 13.2 3.53 31.6 88 588 0 1 0. 700. .008 4. 4. .035 5. 497 588 7 2 1 1. .1 0.00 0. 0.01 1.57 0.05 1.61 0.36 1.67 0.67 1.73 0.84 1.76 1.30 20.16 588 488 0 3 .1 1. 488 586 2 2 .1 1. .1 0.00 0.0 50.0 0.0 683 582 682 3 3 .1 1. .1 0.0 0.0 4.6 1.3 8.0 1.8 682 82 0 3 .1 1. 683 0 3 .1 1. 82 85 0 4 0. 1300. .014 50. 50. .016 .5 50. 1300. .014 10. 10. .035 5. 85 586 0 4 0. 1000. .011 50. 50. .016 .5 50. 1000. .011 10. 10. .035 S. 84 586 0 4 0. 700. .010 50. 50. .016 .5 50. 700. .010 10. 10. .035 5. 586 486 0 3 .1 1. 486 584 '2 2 .1 1. .1 0.00 0.0 50.0 0.0 Page 1 MMP-XTD.IN ' 4 4 586 588 488 486 ENDPROGRAM [1 1 1 L Page 2 11 1 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF a EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) 2 1 0 ' JOUT(1) JOUT(2) JOUT13) 1 2 0 NSCRAT(1) 3 IERSHED PROGRAM CALLED UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) JIN14) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 0 0 0 0 0 0 0 JOUT(4) JOUT(5) JOUT16) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 0 0 0 0 0 0 0 NSCRAT(2) NSCRAT M NSCRAT(4) NSCRAT(5) 4 0 0 0 IENTRY MADE TO RUNOFF MODEL •^ HARMONY CENTRE AND PIER DETENTION POND ANALYSIS--INPwW HYDROGRAPH GENERATION YEAR EVENT FILE: MMP-XTD.DAT OR ENG., 11/17/04, USED MR DEVEL EXTRAN BER OF TIME STEPS 600 EGRATION TIME INTERVAL (MINUTES) 1.00 0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.00 .95 .91 .87 .84 .81 .78 .75 .73 .71 .69 .67 .00 HARMONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION YEAR EVENT FILE: M4P-XTD.DAT JR ENG., 11/17/04, USED FOR DEVEL EXTRAN SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) BER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. 2 0 .0 .0 .0 .0300 .016 .250 .100 .300 2 582 700.0 .8 67.0 .0130 .016 .250 .100 .300 383 483 2439.0 5.6 85.0 .0200 .016 .250 .100 .300 384 84 2400.0 6.9 84.0 .0200 .016 .250 .100 .300 5 85 2100.0 6.3 52.0 .0200 .016 .250 .100 .300 6 586 3543.0 12.2 70.0 .0100 .016 .250 .100 .300 7 586 800.0 3.2 70.0 .0250 .016 .250 .100 .300 388 588 3300.0 13.6 72.0 .0110 .016 .250 .100 '.300 389 88 3049.0 7.0 66.0 .0200 .016 .250 .100 .300 490 550.0 1.4 70.0 .0200 .016 .250 .100 .300 1 '0 491 600.0 2.8 70.0 .0200 .016 .250 .100 .300 2 588 1100.0 6.6 90.0 .0200 .016 .250 .100 .300 393 88 4400.0 11.8 95.0 .0200 .016 .250 .100 .300 394 92 900.0 1.4 90.0 .0200 .016 .250 .100 .300 6 496 2950.0 13.5 93.0 .0130 .016 .250 .100 .300 7 497 810.0 3.9 85.0 .0210 .016 .250 .100 .300 AL NUMBER OF SUBCATCHMENTS, 15 TO AL TRIBUTARY AREA (ACRES), 97.00 1 INFILTRATION RATE(IN/HR) GAGE MAXIMUM MINIMUM DECAY RATE NO .51 .50 .00180 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1' .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 HARMONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION YEAR EVENT FILE: MMP-XTD.DAT JR ENG., 11/17/04, USED FOR DEVEL EXTRAN ••' CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL �ERSHED AREA (ACRES) 97.000 TOTAL RAINFALL (INCHES) 3.669 AL INFILTRATION (INCHES) .250 AL WATERSHED OUTFLOW (INCHES) 3.313 AL SURFACE STORAGE AT END OF STROM (INCHES) .106 OR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 �rONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION YEAR EVENT FILE: MMP-XTD.DAT JR MO., 11/17/04, USED FOR DEVEL EXTRAN WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE EA GUTTER NDP NP OR DIAM LENGTH SLOPE HORI2 TO VERT MANNING DEPTH JK BER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 92 89 0 2 PIPE 2.0 1000. .0100 89 4 3 .1 7. .0010 15 TIME IN HAS VS INFLOW IN CPS .000 .0 .500 3.6 9.600 3.6 9.850 89 88 0 1 CHANNEL .0 800. .0070 490 90 4 2 PIPE .1 1. .0010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .200 .5 .220 .5 .240 1 90 4 2 PIPE .1 1. .0010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .500 1.0 .600 91.9 .700 88 0 4 CHANNEL .0 500. .0100 �0 OVERFLOW 50.0 500. .0100 6 88 6 2 PIPE .1 1. .0010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .010 12.0 .110 12.4 .790 588 0 1 CHANNEL .0 700. .0080 7 �8 588 7 2 PIPE .1 1. .0010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .010 1.6 .050 1.6 .360 1.300 20.2 8 488 0 3 .1 1. .0010 8 586 2 2 PIPE .1 1. .0010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 50.000 .0 582 682 3 3 .1 1. .0010 DIVERSION .000 TO GUTTER NUMBER 683 - TOTAL .0 4.600 1.3 Q VS DIVERTE➢ Q IN 8.000 1.8 CPS 2 82 0 3 .1 1. .0010 3 0 0 3 .1 1. .0010 82 85 0 4 CHANNEL .0 1300. .0140 586 0 4 OVERFLOW CHANNEL 50.0 .0 1300. 1000. .0140 .0110 15 OVERFLOW 50.0 1000. .0110 d 586 0 4 CHANNEL .0 700. .0100 OVERFLOW 50.0 700. .0100 6 486 0 3 .1 1. .0010 6 5 84 2 2 PIPE .1 1. .0010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 50.000 .0 TOTAL NUMBER OF GUTTERS/PIPES, 19 CONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION 100-YEAR EVENT FILE: IM/P-XTD.DAT JR ENG., 11/17/04, USED FOR DEVEL EXTRAN LGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES .0 .0 .013 2.00 0 .0 .0 .001 .10 -1 .0 4.0 4.0 .035 5.00 0 .0 .0 .001 .10 0 2.5 .0 .0 .001 .10 0 260.0 50.0 50.0 .016 .50 0 10.0 10.0 .035 5.00 .0 .0 .001 .10 0 12.8 2.060 13.2 3.530 31.6 4.0 4.0 .035 5.00 0 .0 .0 .001 .10 0 1.7 .670 1.7 .840 1.8 .0 .0 .001 10.00 0 .0 .0 .001 .10 0 .0 .0 .001 .10 683 .0 .0 .001 10.00 0 .0 .0 .001 10.00 0 50.0 50.0 .016 .50 0 10.0 10.0 .035 5.00 50.0 50.0 .016 .50 0 10.0 10.0 .035 5.00 50.0 50.0 .016 .50 0 10.0 10.0 .035 5.00 .0 .0 .001 10.00 0 .0 .0 .001 .10 0 GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 82 682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .8 84 0 0 0 0 0 0 0 0 0 0 384 0 0 0 0 0 0 0 0 0 6.9 85 82 0 0 0 0 0 0 0 0 0 385 0 0 0 0 0 0 0 0 0 7.1 88 89 90 496 0 0 0 0 0 0 0 389 393 0 0 0 0 0 0 0 0 37.9 89 92 395 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 1.4 1 90 490 491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.2 t92 0 0 0 0 0 0 0 0 0 0 395 0 0 0 0 0 0 0 0 0 0 486 586 0 0 0 0 0 0 0 0 0 ' 488 588 0 0 0 0 0 0 0 0 0 490 0 0 0 0 0 0 0 0 0 0 491 0 0 0 0 0 0 0 0 0 0 496 0 0 0 0 0 0 0 0 0 0 497 0 0 0 0 0 0 0 0 0 0 582 0 0 0 0 0 0 0 0 0 0 ' 586 488 05 84 0 0 0 0 0 0 0 588 88 497 0 0 0 0 0 0 0 0 682 582 0 0 0 0 0 0 0 0 0 611 0 0 0 0 0 0 0 0 0 0 ' 394 0 0 0 0 0 0 0 390 0 391 0 396 0 397 0 382 0 386 387 388 392 0 0 0 0 HARMONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION �0-YEAR EVENT FILE: MMP-XTD.DAT JR MG., 11/17/04, USED FOR DEVEL E%TRAN HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 4 CONVEYANCE ELEMENTS 0 0 0 0 0 0 0 0 1.4 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 91.4 0 0 0 0 0 0 0 0 62.0 0 0 0 0 0 0 0 0 1.4 0 0 0 0 0 0 0 0 2.8 0 0 0 0 0 0 0 0 13 .5 0 0 0 0 0 0 0 0 3.9 0 0 0 0 0 0 0 0 .8 0 0 0 0 0 0 0 0 91.4 0 0 0 0 0 0 0 0 62.0 0 0 0 0 0 0 0 0 .8 0 0 0 0 0 0 0 0 .0 ' THE UPPER NUMBER IS DISCHARGE IN CPS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S1 DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CPS FROM SPECIFIED INFLOW HYDROGRAPH ' (D) DENOTES DISCHARGE IN CPS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 486 488 586 588 1. .0 .0 .0 .0 .00( I .001 1 .00( 1 .00( ) 0 2. .0 .0 .0 .0 .00(s) .00( 1 .00( ) .00( ) 3. .0 .0 .1 .0 oo(s) .co(s) ool ) ool r 4. .0 .0 .1 .1 .00(Sl .00(s) .00( 1 .00( I 0 5. .0 .0 .1 .1 .00(s) .00(s) .00( 1 .00( ) 6. .0 .0 .1 .1 .00(S) .00(5) .00( ) .00( 1 0 7. .0 .0 .6 .7 . 00(s) .00(S) .00( 1 .00( I B. .0 .0 2.2 3.0 .00(s) .00(s) o .o( I .00( ) 9. .0 .0 4.5 6.7 .01(S) .01(S) .00( I .00( 1 0 10. .0 .0 6.9 11.5 .02 (5) .03151 .00( 1 .001 1 11. .0 .0 9.7 17.4 .03(5) .05(S) .00( I .001 I 12. .0 .0 12.5 24.1 .05(S) .08(S) .00( 1 .00( ) 13. .0 .0 15.1 30.7 .0715) .12 Is1 .001 ) .001 1 19. .0 .0 17.3 36.6 .09(S) .17(S) .00( 1 .00( 1 0 15. .0 .0 19.1 41.7 16. .121S) .0 .22(S) .0 22.5 .00( 1 48.6 .01( ) l .15(S) .28(5) .00( ) .00( I 17. .0 .0 27.3 57.3 .18(S) .36(S) .00( 1 .00( ) 18. .0 .0 31.3 64.9 .zz(s .45(s) .00t ) .00( I 19. .0 .0 34.4 71.0 .27(S) .54(5) .00( 1 .00( I 0 20. .0 .0 36.8 75.8 .32(S) .64(S) .00( 1 .00( ) 21. .0 .0 40.4 81.9 ' .38(S) .75(S) .00( 1 .001 I 22. .0 .0 45.1 89.7 .44(s) .88(S) .00( 1 .00( 1 0 23. .0 .0 49.1 96.4 .50(S) 1.01(s) .00( 1 .00( 1 ' 24. .0 .0 52.5 102.0 .57(S) 1.14(S) .00( ) .00( 1 0 25. .0 .0 55.4 106.5 .65(S) 1.29(S) .00( I .00( 1 26. .0 .0 66.3 122.3 ' .74(S) 1.45(SI .00( I .00( 1 27. .0 .0 84.3 149.4 .85(S) 1.65(5) .001 I .00( I 0 28. .0 .0 98.5 171.8 1 .98(S) 1.8815) .00( ) 00( 1 29. .0 .0 109.5 188.9 1.13(S) 2.13(S) .oat ) .00( 1 30. .0 .0 118.1 201.4 1 .2915) 2.40151 .001 1 .00( 1 31. .0 .0 143.2 237.1 1.48(S) 2.721S) .00( 1 .00( 1 0 32. .0 .0 181.5 293.8 33. 1.72151 .0 3.1115) .0 207.1 .001 I 335.0 .001 1 2.00(S) 3.55(S) .001 1 .00( I 34. .0 .0 224.7 362.5 2.30(S) 4.041S) .00( ) .00( I 35. .0 .0 238.2 380.5 2 .62151 4.56151 .001 1 .00f ) 36. .0 .0 221.5 350.7 2.93(S) 5.05(S) .00( 1 .001 ) 0 37. .0 .0 188.7 293.5 3.19(5) 5.47(S) .001 1 .001 1 38. .0 .0 169.5 256.7 3.43(S) 5.83(S) .001 1 .00( 1 39. .0 .0 156.0 233.1 3.65(S) 6.17(S) .00( 1 .00( I 0 40. .0 .0 145.9 217.7 3.85(S) 6.47(SI .00( 1 .00( 1 41. .0 .0 132.7 198.6 4.04(S) 6.75(S) .00( 1 .00( ) 0 42.- .0 .0 117.4 176.6 4.21(S) 7.00(S) .00( ) .00( 1 43. .0 .0 106.5 160.7 4.36151 7.23(S) .00( ) .00( 1 44. .0 .0 98.4 149.4 4.49(S) 7.44(SI .00( 1 .001 ) 0 45. .0 .0 92.4 141.3 4.62(S) 7.64(S) .00( I .001 1 46. .0 .0 94.6 131.0 4.74(S) 7.82(S) .00( ) .00( 1 0 47. .0 .0 75.5 118.7 4.85(S) 7.99(SI .00( 1 .00( I 48. .0 .0 68.6 309.2 4 .95151 8.14 (S) .001 1 .00( 1 49. .0 .0 63.2 102.0 5.04(S) 8.29(S) .001 1 .00( 1 0 50. .0 .0 59.0 96.6 5.12151 8.42 (SI .001 51. .0 .0 54.9 91.6 5.20(S) 8.55(S) .00( I .001 1 52. .0 .0 51.1 86.8 5.27(S) 8.67(5) .00( ) .00( 1 53. .0 .0 48.0 83.0 5.34151 8.79151 .00( 1 .00( I 54. .0 .0 45.5 80.1 5.40(S) 8.90(SI .00( I .001 1 0 55. .0 .0 43.4 77.9 56. 5.46151 .0 9.00 (S) .0 41.3 -00( ) 75.8 .001 ) 5.52(S) 9.11(S) .00( 1 .00( I 57. .0 .0 39.2 73.6 5.57(S) 9.21(S) .00( I .00( 1 58. .0 .0 37.5 71.8 5.62(S) 9.31(S) .001 ) .001 1 59. .0 .0 36.0 70.; 5.67(S) 9.41(S) .00( 1 .00( I 1 0. .0 .0 34.8 69.1 5.72 (S) 9.50151 .001 1 .00( ) 1. .0 .0 33.6 67.9 5.77(S) 9.60(S) .00( ) .00( 1 2. .0 .0 32.5 66.6 5.82(S) 9.69(S) .00( 1 .00( 1 1 3. .0 .0 31.5 65.6 5.86(S) 9.78(5) .001 ) .00( 1 ' 4. .0 .0 30.7 64.7 5.90151 9.87(S) .00( I .001 1 1 5. .0 .0 30.0 64.0 5.94(S) 9.96(S) .00( 1 .00( ) 6. .0 .0 29.3 63.2 ' 5.98(S) 10.0515) .00( 1 .00( 1 7. .0 .0 28.6 62.3 6.02(S) 10.13(S) .00( 1 .00( ) 1 B. .0 .0 28.0 61.6 6.06(S) 10.22(S) .00( ) .00( 1 ' 9. .0 .0 29.5 60.9 6.10(S) 10.30(S) .00( I .001 1 1 10. .0 .0 27.1 60.4 6.14(S) 10.38(S) .001 1 .00( ) 11. .0 .0 26.6 59.8 6.17(S) 10.4715) .00( 1 .001 I 12. .0 .0 26.1 59.2 6.21(S) 10.55(S) .001 1 .00( 1 1 13. .0 .0 25.7 58.6 1 6.25(S) 10.63(S) .001 1 .001 1 14. .0 .0 25.3 58.2 6.28(S) 10.7115) .001 I .00( 7 ls. .0 .0 25.0 57.8 fi .32151 10.79151 .001 I .001 1 16. .0 .0 24.6 57.3 6.35(S) 10.87(5) .00( ) .001 1 1 17. .0 .0 24.2 56.8 6.38151 10.9515) .001 ) .00( 1 18. .0 .0 23.9 56.3 6.42(S) 11.0215) .001 ) .001 ) 19. .0 .0 23.6 55.9 6.45(S) 11.30(S) .00( 1 .001 1 20. .0 .0 27.3 55.5 6.48151 11.18151 .00( I .001 I 21. .0 .0 23.0 55.2 6.51(SI 11.25(S) .00( 1 .00( I 1 22. .0 .0 22.7 54.7 6.54(S) 11.33(S) .00( ) .00( I 23. .0 .0 22.4 54.4 6.57(S) 11.40(S) .00( 1 .00( 1 24. .0 .0 22.2 54.0 6.61(5) 11.48(S) .001 1 .00( 1 1 25. .0 .0 22.0 53.8 6.64151 11.55(S) .00( I .001 1 26. .0 .0 21.8 53.4 6.67(5) 11.63(S) .00( 1 .001 1 1 27. .0 .0 21.5 53.1 6.70(5) 11.70(S) .00( ) .00( ) 28. .0 .0 21.3 52.7 6.72(5) 11.7](S) .001 1 .00( ) 29. .0 .0 21.1 52.5 6.75151 11.85(S) -00( ) .00( 1 1 30. .0 .0 20.9 52.2 6.7B(5) 11.92(S) .00( ) .00( ) 31. .0 .0 20.7 51.9 6.81(5) 11.99(S) .001 1 .00( ) 1 32. .0 .0 20.4 51.6 6.84(5) 12.06(S) .00( 1 .00( 1 33. .0 .0 20.2 51.3 6. 87 (5) 12.13151 .00( ) .00( ) 34. .0 .0 20.0 51.0 6.89(S) 12.20(5) .00( ) .00( ) 1 35. .0 .0 19.9 50.8 6.92(5) 12.27 (5) .001 1 .00( ) 36. .0 .0 19.7 50.5 6.95(S) 12.34(5) .00( 1 .00( 1 37. .0 .0 19.4 50.2 6.9815) 12.41(S) .001 ) .00( ) 38. .0 .0 19.2 49.9 7.00151 12.48 (S) .00( 1 .001 1 39. .0 .0 19.1 49.6 7.03(S) 12.55(S) .00( 1 .00( I 1 40. .0 .0 18.9 49.4 91. 7.05151 .0 12.6115) .0 16.7 .001 ) .001 49.1 1 7.08151 12.68(S) .001 I .00( 1 42. .0 .0 18.6 48.8 7.11(S) 12.75(S) .00( ) .00( ) 43. .0 .0 18.4 98.6 7.13 (5) 12.82 (S) .001 1 .00( 1 44. .0 .0 18.3 48.4 7.16(S) 12.88(S) .00( ) .00( ) 1 45. .0 .0 18.1 48.2 7.18(S) 12.95(S) .00( 1 .00( ) 46. .0 .0 1B.0 48.0 7.21(S) 13.02(S) .00( ) .00( 1 47. .0 .0 17.8 47.B 7.23(S) 13.08(5) .00( ) .001 ) 1 48. .0 .0 17.7 47.6 7.26(5) 13.15(S) .001 1 .00( 1 ' 49. .0 .0 17.6 47.4 7.28(S) 13.21(S) .001 1 .001 1 1 50. .0 .0 17.4 47.2 7.30(S) 13.28(5) .001 1 .00( 1 51. .0 .0 17.3 47.0 ' 7.33(S) 13.34(S) .001 I .001 I 52. .0 .0 17.2 46.8 7.35(S) 13.41(S) .00( 1 .00( 1 1 53. .0 .0 17.0 46.6 7.37(S) 13.47(S) .001 1 .00( I ' 54. .0 .0 16.9 46.4 7.40(S) 13.54(5) .001 ) .001 1 1 55. .0 .0 16.8 46.2 7.42(5) 13.60(S) .001 1 .001 1 56. .0 .0 16.7 46.1 7.44(S) 13.66(S) .001 1 .00( 1 57. .0 .0 16.5 45.8 7.47(S) 13.73(5) .001 1 .001 1 1 58. .0 .0 16.4 45.6 ' 7.49(5) 13.79(S) .001 I .001 I 59. .0 .0 16.3 45.5 7.51(S) 13.85(S) .00( ) .00( I 0. .0 .0 16.2 45.3 7. 53151 13.9115) .001 1 .00( 1 1. .0 .0 15.0 43.6 7.55(S) 13.97(5) .00( 1 .00( 1' 2 2. .0 .0 13.0 40.4 7.571S1 14.031S) .001 1 .001 1 3. .0 .0 11.3 37.5 7.59(5) 14.08151 .00( ) .001 1 4. .0 .0 9.9 35.0 7.60(S) 14.13(S) .00( ) .00( 1 5. .0 .0 8.8 32.9 7.62(S) 14.18151 .00( 1 .001 I 6. .0 .0 7.8 31.1 7.63(S) 14.22(5) .00( ) .00( I 2 7. .0 .0 6.9 29.6 7.64(S) 14.26(S) .001 ) .00( ) 8. .0 .0 6.2 28.9 7.64(S) 19.30151 .001 ) .001 1 9. .0 .0 5.6 27.3 7.65(S) 14.34(S) .001 ) .00( I 2 10. .0 .0 5.0 26.4 7.66(s) 14.38(S) .00( 1 .00( 1 11. .0 .0 4.6 25.6 7.67(S) 14.41(S) .00( ) .001 ) 2 12. .0 .0 4.2 25.0 7.67(S) 14.45(S) .00( ) .00( 1 13. .0 .0 3.8 24.4 7.68(5) 14.98(5) .00( 1 .001 1 14. .0 .0 3.5 23.9 7.68(S) 14.51(S) .00( ) .00( 1 2 15. .0 .0 3.2 23.5 7.69(S) 14.55(S) .001 ) .00( 1 16. .0 .0 2.9 23.2 7.69(S) 14.58(S) .001 ) .001 1 2 17. .0 .0 2.7 22.9 7.69(S) 14.61(5) .00( 1 .00( I 18. .0 .0 2.5 22.6 7.70151 19.64 (S) .00( 1 .00( ) 19. .0 .0 2.3 22.3 7.70(S) 14.67(S) .001 1 .00( 1 2 20. .0 .0 2.2 22.1 21. 7.70Is1 .0 14.70 (S) .0 .00( 1 2.0 21.9 .001 ) 7.71(S) 14.73(5) .00( 1 .00( 1 22. .0 .0 1.9 21.8 7.71(S) 14.76(S) .00( ) .00( ) 23. .0 .0 1.8 21.6 7.71151 14.79151 .00( 1 .001 1 24. .0 .0 1.7 21.5 7.71(S) 14.82(S) .001 ) .001 ) 2 25. .0 .0 1.6 21.4 26. 7.72(S) .0 14.851S1 .0 .001 ) 1.5 .00( 21.3 ) 7.72(5) 14.88(S) .00( ) .001 1 27. .0 .0 1.4 21.2 7.72(S) 14.91(S) .00( ) .00( 1 28. .0 .0 1.3 21.1 7.72151 14.9415) .001 ) .001 1 29. .0 .0 1.2 21.0 7.72(S) 14.97(s) .00( 1 .00( 1 2 30. .0 .0 1.2 20.9 7.73(S) 15.00(S) .001 1 .00( ) 31. .0 .0 1.1 20.8 ' 7.73(SI 15.03(S) .00( ) .001 1 32. .0 .0 1.0 20.8 7.73(S) 15_05(S) .00( ) .00( ) 2 33. .0 .0 1.0 20.7 7.73(S) 15.08(S) .00( 1 .00( ) ' 34. .0 .0 .9 20.6 7.73(5) 15.11(S) .00( I .00( I 2 35. .0 .0 .9 20.6 7.73(S) 15.14(S) .00( ) .001 ) 36. .0 .0 .8 20.5 ' 7.73(5) 15.17151 .001 1 .00( 1 37. .0 .0 .8 20.5 7.73(S) 15.201S) .001 1 .001 ) 2 38. .0 .0 .8 20.4 7.74(S) 15.22(5) .00( ) .00( 1 ' 39. .0 .0 .7 20.4 7.74(S) 15.25(S) .00( 1 .00( I 2 40. .0 .0 .7 20.4 7.74(S) 15.28(S) .001 1 .00( 1 41. .0 .0 .7 20.3 7.74151 15.31151 .001 1 .00( I 42. .0 .0 .6 20.3 7.741S) 15.34(S) .001 1 .001 1 2 43. .0 .0 .6 20.3 1 7.74(S) 15.36(S) .001 1 .001 1 44. .0 .0 6 20.2 7.74(S) 15.391S1 .001 1 .00( 1 45. .0 .0 .5 20.2 7 J4(5) 15.42(5) .001 1 .001 I 46. .0 .0 .5 20.2 7.74(S) 15.45(S) .00( 1 .00( 1 2 47. .0 .0 .5 20.1 48. 7.74 (S) .0 15.48151 .0 .001 1 .5 20.1 .00( ) 7.74(S) 15.501S) .00( I .00( ) 49. .0 .0 .5 20.1 7.74(S) 15.53(S) .001 I .00( 1 50. .0 .0 .4 20.1 7.74(5) 15.56151 .001 ) .00( 1 51. .0 .0 .4 20.0 7.751S) 15.59(S) .001 ) .001 1 2 52. .0 .0 .4 20.0 7.75(S) 15.611S) .10( I .001 1 53. .0 .0 .4 20.0 7.75(S) 15.64151 .001 1 .001 1 54. .0 .0 .4 20.0 7.75(S) 15.67(S) .001 ) .00( 1 55. .0 .0 .4 19.9 7.75(5) 15.70151 .001 ) .001 1 56. .0 .0 .3 19.9 7.75(S) 15.72(S) .001 1 .00( ) 2 57. .0 .0 .3 19.9 7.75(S) 15.751S) .00( 1 .00( ) 58. .0 .0 .3 19.9 7.75(S) 15.78151 .00( 1 .00( ) 59. .0 .0 .3 19.9 7.75(S) 15.81(S) .001 ) .00( ) 3 0. .0 .0 .3 19.8 7.75(S) 15.83(S) .00( 1 .00( ) 1. .0 .0 .3 19.8 7.75(S) 15.86(S) .00( I .00( ) 3 2. .0 .0 .3 19.8 7.75(S) 15.89(S) .001 ) .00( ) 3. .0 .0 .3 19.8 7.75(5) 15.91151 .001 1 .001 I 4. .0 .0 .3 19.8 7.75(S) .15.94(S) .001 I .00( ) 3 5. .0 .0 .2 19.8 7.75(S) 15.97(S) .001 1 .00( 1 6. .0 .0 .2 19.7 7.75(S) 16.00(S) .001 1 .001 1 3 7. .0 .0 .2 19.7 7.75(S) 16.02(S) .001 1 .001 1 8. .0 .0 .2 19.7 7.75151 16.05IS1 .001 ) .00( ) 9. .0 .0 .2 19.7 7.75(S) 16.08(S) .001 ) .001 1 3 10. .0 .0 .2 19.7 11. 7.75(S) .0 16.10(S) .0 .00( 1 .2 19.6 .001 1 7.75(S) 16.13(S) .001 1 .00( 1 12. .0 .0 .2 19.6 7.75(S) 16.16(S) .001 ) .001 1 13. .0 .0 .2 19.6 7.75(5) 16.19151 .00( 1 .001 ) 14. .0 .0 .2 19.6 7.75(S) 16.21(S) .001 ) .00( 1 3 15. .0 .0 .2 19.6 16. 7.751S) .0 16.24(S) .0 .001 ) .2 .001 19.5 ) 1 7.75(S) 16.27(S) .001 I .001 ) 17. .0 .0 .2 19.5 7.75(S) 16.29(S) .001 ) .001 1 3 18. .0 .0 .2 19.5 7.75(S) 16.32151 .001 I .001 1 1 19. .0 .0 .1 19.5 7.75(S) 16.35(S) .001 ) .001 I 3 20. .0 .0 .1 19.5 7.75(S) 16.37(S) .001 1 .00( 1 21. .0 .0 .1 19.5 ' 7.75151 16.401S) .001 ) .001 I 22. .0 .0 .1 19.4 7.75(S) 16.43(S) .001 1 .001 1 3 23. .0 .0 .1 19.4 7.75(S) 16.45(S) .001 I .001 1 ' 24. .0 .0 .1 19.4 7.75(S) 16.48(S) .001 ) .001 1 3 25. .0 .0 .1 19.4 7.75(S) 16.51(S) .001 I .00( ) 26. .0 .0 .1 19.9 ' 7.75(S) 16.5315) .00( 1 .001 1 27. .0 .0 .1 19.4 7.75151 16.56(S) .001 1 .00( 1 3 28. .0 .0 .1 19.3 1 7.75(S) 16.5915) .001 I .001 I 29. .0 .0 .1 19.3 7.75(S) 16.61(S) .001 1 .001 I 30. .0 .0 .1 19.3 7 .75151 16 .64151 .00( 1 .001 I 31. .0 .0 .1 19.3 7.76(S) 16.67(S) .00( I .001 1 3 32. .0 .0 .1 19.J 33. 7.76151 .0 16.691S1 .0 .00( I .1 19.3 .001 1 7.76(S) 16.72(S) .001 1 .001 1 34. .0 .0 .1 19.2 7.76(5) 16.75(S) .001 1 .001 ) 35. .0 .0 .1 19.2 7.76151 16.77151 .001 1 .001 ) 36. .0 .0 .1 19.2 7.76(S) 16.80(S) .001 1 .00( ) 3 37. .0 .0 .1 19.2 7.76(S) 16.83(S) .00( 1 .001 1 38. .0 .0 .1 19.2 7.76(S) 16.85151 .001 1 .001 1 39. .0 .0 .1 19.2 7.76(S) 16.88(S) .00( 1 .001 1 3 40. .0 .0 .1 19.1 7.76(S) 16.90(S) .00( ) .00( ) 41. .0 .0 .1 19.1 7.76(S) 16.931S) .001 ) .00( 9 3 42. .0 .0 .1 19.1 7.76(S) 16.96(S) .001 1 .00( ) 43. .0 .0 .1 19.1 7.76151 16.9815) .001 1 .00( ) 44. .0 .0 .1 19.1 7.76(S) 17.01(S) .001 ) .00( 1 3 45. .0 .0 .1 19.1 7.76(S) 17.04(S) .00( 1 .001 1 46. .0 .0 .1 19.0 7.76(S) 17.06(S) .001 1 .001 I 3 47. .0 .0 .1 19.0 7.76(S) 17.09(S) .001 1 .00( I 48 .0 .0 .1 18.9 i 7.76151 17.11151 .001 1 .00( ) 49. .0 .0 .1 18.9 7.76(S) 17.14(S) .00( ) .001 1 3 50. .0 .0 .1 18.8 7.76(S) 17.17(S) .001 ) .001 I 51. .0 .0 .1 17.6 7.76(S) 17.19(S) .00( 1 .00( ) 3 52. .0 .0 .1 15.2 7.76(SI 17.21(S) .001 1 .00( 1 53. .0 .0 .1 13.1 7.76(S) 17.23151 .001 1 .001 1 54. .0 .0 .1 11.5 7.76(S) 17.25(S) .00( ) .001 1 3 55. .0 .0 .1 10.4 56. 7.76(S) .0 17.26(S) .0 .00( ) .1 9.5 .001 I 7.76(S) 17.28(S) .001 1 .00( 1 57. .0 .0 .1 8.8 7.76(S) 17.29(S) .00( ) .001 1 58. .0 .0 .1 8.3 7.76(5) 17.30151 .00( ) .001 ) 59. .0 .0 .1 8.0 7.76(5) 17.31(S) .001 1 .00( I 4 0. .0 .0 .1 7.7 7.76(S) 17.32(S) .10( 1 .001 ) 1. .0 .0 .1 7.4 1 7J6(S) 17.34(S) .00( 1 .001 I 2. .0 .0 .1 7.2 7.76(S) 17.35(S) .001 I .00( 1 3. .0 .0 .1 7.1 7.76(5) 17.35151 .001 1 .001 ) 4. .0 .0 .1 7.0 ].76(S) 17.36(S) .00( ) .001 1 4 5. .0 .0 .1 6.9 7.76(S) 17.37(S) .001 r .00( 1 6. .0 .0 .1 6.8 t 7 .76151 17.38151 .001 ) .001 1 7. .0 .0 .1 6.7 7.76(S) 17.39(S) .001 1 .001 1 4 8. .0 .0 .1 6.7 7.76(S) 17.40(S) .001 1 .00( 1 9. .0 .0 .1 6.7 7.76(S) 17.41(S) .001 1 .001 1 4 10. .0 .0 .1 6.6 7.76(S) 17.42(S) .001 ) .001 1 11. .0 .0 .1 6.6 ' 7.76151 17.43151 .001 ) .001 ) 12. .0 .0 .1 6.6 7.76(S) 17.44(S) .00( ) .00( I 4 13. .0 .0 .1 6.6 1 7.761S) 17.45(S) .001 ) .001 I 4 14. .0 .0 .1 6.5 7.]6(S) 17.46(S) .001 1 .001 I 15. .0 .0 .1 6.5 ].]6151 1'/. 47(5) .001 I .001 1 16. .0 .0 .1 6.5 7.76(S) 17.47(S) .001 1 .001 1 4 17. .0 .0 .1 6.5 7.76(S) 17.48(S) .001 ) .001 ) 18. .0 .0 .1 6.5 7.76(S) 17.49(S) .001 ) .001 ) 9 19. .0 .0 .1 6.5 7.76(S) 17.50(S) .001 1 .001 ) 20. .0 .0 .1 6.5 7.76(s) 17.51 (S) .001 I .001 1 21. .0 .0 .1 6.5 7.76(S) 17.52(S) .001 1 .001 ) 4 22. .0 .0 .1 6.5 23. 7.76(S) .0 17.53(S) .0 .00( I .1 .001 1 6.5 7.76(S) 17.54(S) .00( I .00( ) 4 24. .0 .0 .1 6.5 7.76(S) 17.55(S) .00( ) .00( 1 25. .0 .0 .1 6.5 7.76151 17.55151 .001 1 .00( ) 26. .0 .0 .1 6.5 7.76(S) 17.56(S) .001 1 .00( ) 4 27. .0 .0 .1 6.5 7.76(S) 17.57(S) .10( 1 .001 1 28. .0 .0 .1 6.4 1 7.76(S) 17.58(S) .001 I .00( 1 29. .0 .0 .0 6.4 7.76(S) 17.59(S) .00( ) .00( I 30. .0 .0 .0 6.4 7.76(5) 17.60151 .001 ) .001 I 31. .0 .0 .0 6.4 7.76(S) 17.61(S) .001 1 .00( ) 4 32. .0 .0 .0 6.4 7.76(S) 17.62(S) .001 1 .00( ) 33. .0 .0 .0 6.4 7.76(S) 17.62 (S) .001 1 .001 1 34. .0 .0 .0 6.4 7.76(S) 17.63(S) .001 ) .00( 1 4 35. .0 .0 .0 6.4 7.76(S) 17.64(S) .001 1 .00( 1 36. .0 .0 .0 6.4 7.76(S) 17.65(SI .00( 1 .00( ) 4 37. .0 .0 .0 6.4 7.76(S) 17.66(S) .00( 1 .00( 1 38. .0 .0 .0 6.4 7.76151 17.67 (5) .00( ) .00( I 39. .0 .0 .0 6.4 7.76(S) 17.68(S) .001 ) .00( 1 4 40. .0 .0 .0 6.4 7.76(S) 17.69(S) .001 ) .001 1 41. .0 .0 .0 6.4 7.76(S) 17.70(S) .00( 1 .001 1 4 42. .0 .0 .0 6.4 7.76(S) 17.70(S) .00( ) .00( 1 43. .0 .0 .0 6.4 7.76(S) 17.71151 .001 1 .00( ) 44. .0 .0 .0 6.4 7.76(S) 17.721S) .00( 1 .001 1 4 45. .0 .0 .0 6.4 46. 7.76(5) .0 17.73(S) .0 .00( I .0 .001 1 6.4 1 7.76(S) 17.74(S) .001 ) .00( ) 47. .0 .0 .0 6.4 7.76(S) 17.75(S) -001 1 .00( ) 98. .0 .0 .0 6.9 7 .7fi (SI 17 .76151 .001 1 .001 1 49. .0 .0 .0 6.4 7.76(S) 17.76(S) .001 1 .00( I 4 50. .0 .0 .0 6.4 7.761S) 17.771S) .101 I .00( ) 51. .0 .0 .0 6.4 1 7.76(S) 17.78(S) .00( ) .001 1 52. .0 .0 .0 6.4 7.76(S) 17.79(S) .001 1 .00( ) 4 53. .0 .0 .0 6.3 7.76(S) 17.80(S) .00( I .001 1 54. .0 .0 .0 6.3 7.76(S) 17.81(S) .001 ) .001 1 4 55. .0 .0 .0 6.3 7.76(S) 17.82(S) .001 ) .001 1 56. .0 .0 .0 6.3 ' 7.76151 17.83 (S) .001 I .001 I 57. .0 .0 .0 6.3 7.76(S) 17.83(S) .001 1 .001 1 4 58. .0 .0 .0 6.3 7.76(S) 17.84(S) .001 1 .00( 1 59. .0 .0 .0 6.3 7.76(S) 17.85(S) .00( 1 .001 1 0. .0 .0 .0 6.3 7.76(S) 17.86151 .001 I .00( ) 1. .0 .0 .0 6.3 7.76(5) 17.87(S) .00( I .00( I 5 2. .0 .0 .0 6.3 3. ].76(5) .0 I7.88 (S) .0 .00( 1 .0 .001 1 6.3 7.76(S) 17.89(S) .00( 1 .001 1 4. .0 .0 .0 6.3 7.76(S) 17.90(S) .001 1 .00( 1 5. .0 .0 .0 6.3 7.76(S) 17.90(S) .001 ) .001 1 6. .0 .0 .0 6.3 7.76(S) 17.91(5) .001 1 .00( ) 5 7. .0 .0 .0 6.3 7.76(S) 17.921S) .001 1 .00( 1 B. .0 .0 .0 6.3 1 7.76(S) 17.93(S) .001 I .00( 1 9. .0 .0 .0 6.3 7.76(S) 17.94(S) .00( 1 .00( I 10. .0 .0 .0 6.3 7.76(S) 17.95151 .001 ) .001 I 11. .0 .0 .0 6.3 7.76(S) 17.96(S) .00( 1 .001 ) 5 12. .0 .0 .0 6.3 7.76(S) 17.96(S) .00( 1 .00( ) 13. .0 .0 .0 6.3 7.76(5) 17.97151 .001 1 .001 ) 14. .0 .0 .0 6.3 7.76(S) 17.98(S) .00( ) .00( 1 5 15. .0 .0 .0 6.3 7.76(S) 17.99(SI .00( ) .00( I 16. .0 .0 .0 6.3 7.76(S) 18.00(5) .00( 1 .00( ) 5 17. .0 .0 .0 6.3 7.76(S) 18.01(5) .001 1 .00( ) 18. .0 .0 .0 6.3 7.76(S) 18.02 (S) .001 I .001 1 19. .0 .0 .0 6.3 7.76(5) 18.02(S) .001 ) .00( I 5 20. .0 .0 .0 6.3 7.76(S) MOM .00( 1 .001 I 21. .0 .0 .0 6.3 7.76(S) 18.04(S) .00( ) .001 1 5 22. .0 .0 .0 6.2 7.76151 18.05(S) .00( ) .001 ) 23. .0 .0 .0 6.2 7 .76(5) 18.06(5) .00( 1 .001 } 24. .0 .0 .0 6.2 7.76(S) 18.07(5) .001 1 .001 ) 5 25. .0 .0 .0 6.2 7.76(S) 18.08151 .001 I .00( 1 26. .0 .0 .0 6.2 7.7615) 18.08(S) .00( 1 .00( ) 27. .0 .0 .0 6.2 7.76(S) 18.09(S) .00( 1 .00( ) 28. .0 .0 .0 6.2 7.76(5) 18.10 (S) .001 1 .00( 1 29. .0 .0 .0 6.2 7.76(S) 18.11(S) .00( 1 .001 1 5 30. .0 .0 .0 6.2 31. 7.761S1 .0 18.12(S) .0 .001 .0 6.2 l 7.76(S) 18.13(S) .00( ) .00( ) 32. .0 .0 .0 6.2 7.76(S) 18.14(S) .00( 1 .00( ) 33. .0 .0 .0 6.2 7.76(S) 18.14 (5) .001 I .00( ) 34. .0 .0 .0 6.2 7.76(S) Ml51S) .00( ) .00( I 5 35. .0 .0 .0 6.2 7.76(S) 18.16(S) .00( 1 .00( ) 36. .0 .0 .0 6.2 7.76151 18.17(5) .00( ) .00( ) 37. .0 .0 .0 6.2 7.76(S) 18.18(S) .00( I .00( 1 5 38. .0 .0 .0 6.2 7.76(S) 18.19(S) .001 I .001 1 ' 39. .0 .0 .0 6.2 7.76(5) 18.19151 .001 ) .00( I 5 40. .0 .0 .0 6.2 7.76(S) 18.20(S) .00( I .00( ) 41. .0 .0 .0 6.2 ' 7.7615) 18.21151 .001 1 .00( 1 42. .0 .0 .0 6.2 7.76(S) 18.22(S) .001 1 .001 1 5 43. .0 .0 .0 6.2 1 7.76(S) 18.23(S) .001 1 .00( ) 44. .0 .0 .0 6.2 7.76(S) 18.24(S) .001 I .001 1 45. .0 .0 .0 6.2 7.76151 18.25151 .00I I .001 I 46. .0 .0 .0 6.2 7.76(S) 18.25(S) .001 1 .001 I 5 47. .0 .0 .0 6.2 48. 7.76151 .0 18.26 (S) .0 .001 ) .0 .001 ) 6.2 7.76(S) 18.27(S) .001 1 .00( ) 49. .0 .0 .0 6.2 7.76(S) 18.28(5) .001 1 .001 1 50. .0 .0 .0 6.2 7.76(S) 18.29151 .00( 1 .001 I 51. .0 .0 .0 6.2 7.76(S) 18.30(S) .00( I .001 1 5 52. .0 .0 .0 6.2 7.761S1 18.30(S) .001 ) .00( ) 53. .0 .0 .0 6.2 1 7.76(S) 18.31(S) .001 1 .00( 1 54. .0 .0 .0 6.1 7.76(S) 18.32(S) .001 I .001 I 55. .0 .0 .0 6.1 7.76(S) 18.33(5) .001 1 .001 I 56. .0 .0 .0 6.1 7.76(S) 18.34(SI .00( ) .00( ) 5 57. .0 .0 .0 6.1 7.76(S) 18.35(S) .001 1 .00( ) SB. .0 .0 .0 6.1 7 .76151 18.36151 .00( ) .001 I 59. .0 .0 .0 6.1 7.76151 18.36(SI .00( ) .00( 1 6 0. .0 .0 .0 6.1 7.76(S) 18.37(S) .00( ) .00( ) 1. .0 .0 .0 6.1 7.76(S) 18.38(S) .001 1 .001 1 6 2. .0 .0 .0 6.1 7.76(S) 18.39(S) .00( ) .00( ) 3. .0 .0 .0 6.1 7.]6(5) 18.90 (S) .001 ) .00( 1 4. .0 .0 .0 6.1 7.76(S) 18.41(S) .001 1 .001 1 6 5. .0 .0 .0 6.1 7.76(S) 18.41(S) .00( 1 .001 1 6. .0 .0 .0 6.1 7.76(S) 18.42(S) .001 1 .00( ) 6 7. .0 .0 .0 6.1 7.76(S) 18.43(S) .001 1 .001 1 B. .0 .0 .0 6.1 7.76(5) 18.49151 .00( ) .00( ) 9. .0 .0 .0 6.1 7.76(S) 18.45(5) .00( ) .00( 1 6 10. .0 .0 .0 6.1 7.76151 18.46151 .001 1 .00( 1 11. .0 .0 .0 6.1 7.761S) 18.46(S) .001 1 .001 I 12. .0 .0 .0 6.1 7.76(S) 18.47(S) .001 1 .00( 1 13. .0 .0 .0 6.1 7.76(5) 18.48151 .001 I .001 I 14. .0 .0 .0 6.1 7.76(S) 18.49(S) .00( I .00( ) 6 15. .0 .0 .0 6.1 16. 7.761S1 .0 18.501S1 .0 .001 1 .0 .001 1 6.1 7.]6(S) 18.51(S) .001 ) -00( 1 17. .0 .0 .0 6.1 7.761S) 18.51(S) .001 ) .001 1 18. .0 .0 .0 6.1 7.76(S) 18.52151 .001 I .001 I 19. .0 .0 .0 6.1 7.76(S) 18.53(S) .00( ) .00( ) 6 20. .0 .0 .0 6.1 7.76(S) 18.54(S) .001 1 .001 1 21. .0 .0 .0 6.1 7.76(5) 18.55(5) .001 ) .001 1 22. .0 .0 .0 6.1 7.76(S) 18.56(5) .001 1 .001 1 6 23. .0 .0 .0 6.1 7.76(S) 18.56(S) .00( I .001 1 24. .0 .0 .0 6.1 7.76(S) 18.57(S) .001 1 .001 ) 6 25- .0 .0 .0 6.1 7.76(S) 18.58(S) .001 I .001 1 26. .0 .0 .0 6.1 ' 7.76(5) 18.59151 .001 1 .001 1 27. .0 .0 .0 6.1 7.76(S) 18.60(S) .001 1 .001 ) 6 28. .0 .0 .0 6.1 1 7.76(S) 18.61(S) .001 I .00( ) 29. .0 .0 .0 6.0 7.76(S) 18.61(SI .001 1 .001 1 30. .0 .0 .0 6.0 7.76151 18.62151 .001 I .00( 1 31. .0 .0 .0 6.0 7.761S) 18.63(S) .001 1 .00( 1 6 32. .0 .0 .0 6.0 7.76(SI 18.64(SI .001 ) 1 33. .0 .0 .0 .00( 6.0 1 7.76(S) 18.65(S) .001 1 .00( ) 34. .0 .0 .0 6.0 7.76(S) 18.66(S) .001 I .001 1 35. .0 .0 .0 6.0 7.76(S) 18.66 (S) .001 I .001 1 36. .0 .0 .0 6.0 7.76(S) 18.671S1 .00( ) .00( I 6 37. .0 .0 .0 6.0 7.76(S) 18.68151 .001 1 .00( I 38. .0 .0 .0 6.0 7.76(S) 18.69 (S) .001 1 .00( 1 39. .0 .0 .0 6.0 7.76(S) 18.70(S) .00( ) .001 1 6 40. .0 .0 .0 6.0 7.76(S) 18.701S1 .00( ) .001 I 41. .0 .0 .0 6.0 7.76(S) 18.71(S) .00( 1 .00( I 6 42. .0 .0 .0 6.0 7.76(S) 18.72(S) .001 1 .00( 1 43. .0 .0 .0 6.0 7 .76151 18.73151 .001 1 .001 1 44. .0 .0 .0 6.0 7.76(S) 18.74(S) .00( 1 .00( I 6 45. .0 .0 .0 6.0 7.76(S) 18.75(S) .001 I .00( ) 46. .0 .0 .0 6.0 7.76(S) 18.75(S) .001 1 .001 1 6 47. .0 .0 .0 6.0 7.76(SI 18.76(S) .00( ) .00( I 48. .0 .0 .0 6.0 796(5) 18.77 (S) .001 I .00( 1 49. .0 .0 .0 6.0 7.76(S) 18.78(S) .001 ) .001 1 6 50. .0 .0 .0 6.0 7.76 (SI 18.79151 .00( 1 .00( 1 51. .0 .0 .0 6.0 7.76(S) 18.80(S) .001 I .001 1 52. .0 .0 .0 6.0 7.76(S) 18.80151 .00( ) .00( 1 53. .0 .0 .0 6.0 7.76151 18.81151 .001 1 .00( 1 54. .0 .0 .0 6.0 7.76(S) 18.82(SI .001 ) .001 ) 6 55. .0 .0 .0 6.0 56. 7.76151 .0 18.83151 .0 .001 1 .0 .001 1 6.0 7.76(S) 18.84151 .001 1 .00( I 57. .0 .0 .0 6.0 7.76(S) 18.84(S) .00( ) .001 ) 58. .0 .0 .0 6.0 7.76(S) 18.85(5) .00( ) .001 1 59. .0 .0 .0 6.0 7.76(S) 18.86(S) .001 I .00( ) 7 0. .0 .0 .0 6.0 7.761S) 11,1716) .00( 1. .0 .0 .0 6.0 7.76(S) 18.88151 .001 1 .00( 1 2. .0 .0 .0 6.0 7.76(S) 18.89151 .001 1 .00( 1 7 3. .0 .0 .0 6.0 7.]6(S) 18.89(S) .001 1 .001 1 4. .0 .0 .0 6.0 7.76(S) 18.90(5) .001 ) .001 ) 7 5. .0 .0 .0 6.0 7.76(S) 18.91(S) .001 1 .00( ) 6. .0 .0 .0 6.0 ' 7 .76151 18.92151 .001 ) .001 ) 7. .0 .0 .0 6.0 7.76(S) 18.93(S) .001 1 .00( 1 7 8. .0 .0 .0 5.9 7.76(S) 18.93(S) .001 I .001 1 ' 9. .0 .0 .0 5.9 7.76(S) 18.94(S) .00( 1 .00( I 7 10. .0 .0 .0 5.9 7.76(S) 18.95(S) .001 1 .001 ) 11. .0 .0 .0 5.9 7.76(S) 18.96151 .00( ) .001 ) 12. .0 .0 .0 5.9 7.76(S) 16.9](S) .00( 1 .001 1 7 13. .0 .0 .0 5.9 1 7.76(S) 18.98(S) .001 1 .001 ) 14. .0 .0 .0 5.9 7.76(5) 18.9815) .001 1 .001 1 15. .0 .0 .0 5.9 7.76(S) 18.99 (S) .00( 1 .001 I 16. .0 .0 .0 5.9 7.76(S) 19.00(S) .00( ) .00( 1 7 17. .0 .0 .0 5.9 7.761S) 19.01(SI .001 1 .001 1 18. .0 .0 .0 5.9 1 7.76(S) 19.02(S) .001 ) .00( 1 19. .0 .0 .0 5.9 7.76(S) 19.02(S) .00( ) .00( ) 20. .0 .0 .0 5.9 7.76151 19.03(5) .00( 1 .00( ) 21. .0 .0 .0 5.9 7.76(S) 19.04151 .001 1 .001 ) 7 22. .0 .0 .0 5.9 7.76(S) 19.05(S) .001 I .00( ) 23. .0 .0 .0 5.9 7.76(5) 19.06151 .001 1 .001 1 24. .0 .0 .0 5.9 7.76(S) 19.06(S) .00( ) .001 1 7 25. .0 .0 .0 5.9 7.76(S) 19.07(S) .00( ) .00( 1 26. .0 .0 .0 5.9 7.76(S) 19.08(S) .00( ) .00( I 7 27. .0 .0 .0 5.9 7.76(S) 19.09(S) .00( ) .00( 1 28. .0 .0 .0 5.9 7.76151 19.3015) .001 1 .001 ) 29. .0 .0 .0 5.9 7.76(S) 19.10151 .001 I .00( ) 7 30. .0 .0 .0 5.9 7.76(5) 19.11(S) .00( ) .00( ) 31. .0 .0 .0 5.9 7.76(S) 19.12(S) .00( ) .001 1 7 32. .0 .0 .0 5.9 7.76(S) 19.13(S) .00( 1 .00( ) 33. .0 .0 .0 5.9 7.76(5) 19.14151 .001 1 .00( ) 34. .0 .0 .0 5.9 7.76(S) 19.15(S) .001 1 .00( ) 7 35. .0 .0 .0 5.9 7.76(S) 19.15(S) .00( ) .00( ) 36. .0 .0 .0 5.9 7.76(S) 19.16(S) .00( ) .00( ) 37. .0 .0 .0 5.9 7.76(S) 19.17(5) .00( 1 .00( 1 38. .0 .0 .0 5.9 7.76151 19.1815) .00( I .001 1 39. .0 .0 .0 5.9 7.76(S) 19.19(S) .00( ) .00( 1 7 40. .0 .0 .0 5.9 41. 7.76(S) .0 19.19(S) .0 .00( 1 .0 .00( 1 5.9 1 7.761S) 19.20(S) .00( 1 .00( ) 42. .0 .0 .0 5.9 7.76(S) 19.21(5) .00( 1 .00( 1 43. .0 .0 .0 5.8 7.76(S) 19.22 (S) .00( ) .00( ) 44. .0 .0 .0 5.8 7.761S) 19.23(S) .00( 1 .001 1 7 45. .0 .0 .0 5.8 7.76(S) 19.2315) .00( ) .00( ) 46. .0 .0 .0 5.8 7.76(5) 19.24(S) .00( 1 .00( ) 47. .0 .0 .0 5.8 7.76(S) 19.25(S) .001 ) .00( 1 7 48. .0 .0 .0 5.8 7.76(S) 19.261S) .00( 1 .00( 1 ' 49. .0 .0 .0 5.9 7.76(S) 19.27(S) .00( ) .001 ) 7 50. .0 .0 .0 5.8 7.76(S) 19.27(S) .001 ) .00( 1 51. .0 .0 .0 5.7 7.76(S) 19.28 (S) .001 I .00( ) 52. .0 .0 .0 5.4 7.76(S) 19.29(S) .00( 1 .00( ) 7 53. .0 .0 .0 5.1 7.76(S) 19.30(S) .001 1 .00( 1 ' 54. .0 .0 .0 5.0 7.76(S) 19.301S) .00( I .001 1 7 55. .0 .0 .0 4.8 7.76(S) 19.31(S) .00( ) .001 ) 56. .0 .0 .0 4.7 ' 7.76(5) 19.32151 .001 1 .001 1 57. .0 .0 .0 4.6 7.76(5) 19.32(S) .00( I .00( I 7 58. .0 .0 .0 4.5 1 7.761S) 19.33(S) .001 1 .001 1 59. .0 .0 .0 4.5 7.76(S) 19.33(S) .001 ) .001 1 0. .0 .0 .0 4.4 ].]6151 19.34151 .001 1 .001 1 1. .0 .0 .0 4.4 7.76(S) 19.35(5) .001 I .001 I 8 2. .0 .0 .0 4.3 3. 7.76151 .0 19.35151 .0 .001 I .0 .001 1 4.3 7.76(S) 19.36(S) .001 1 .001 1 4. .0 .0 .0 4.3 7.76(S) 19.36(S) .001 ) .001 1 5. .0 .0 .0 4.3 7.76151 19.37151 .001 ) .001 1 6. .0 .0 .0 4.2 7.76(S) 19.38(S) .00( 1 .00( I 8 7. .0 .0 .0 4.2 7.7615) 19.3815I .00( ) .00( I 8. .0 .0 .0 9.2 7.761S) 19.39(SI .00( I .00( 1 9. .0 .0 .0 4.2 7.76(S) 19.39(S) .001 I .001 ) 10. .0 .0 .0 4.2 7.76151 19.40 IS1 .001 1 .001 1 11. .0 .0 .0 4.2 7.76(S) 19.40(S) .001 1 .001 1 8 12. .0 .0 .0 4.2 7.76(S) 19.41151 .00( 1 .00( 1 13. .0 .0 .0 4.2 7.76(5) 19.42 (SI .001 I .00( ) 14. .0 .0 .0 4.2 7.]6(S) 19.42(S) .001 I .001 ) 8 15. .0 .0 .0 4.2 7.76(S) 19.43(S) .00( ) .001 1 16. .0 .0 .0 4.2 7.76(S) 19.43(SI .001 1 .001 1 8 17. .0 .0 .0 4.2 7.76(S) 19.44(S) .001 I .00( ) 18. .0 .0 .0 4.2 7J61S1 19.44151 .001 1 .001 ) 19. .0 .0 .0 4.2 7.76(S) 19.45(9) .001 ) .001 1 8 20. .0 .0 .0 4.2 7.76(S) 19.46(SI .00( 1 .00( I 21. .0 .0 .0 4.2 ].76(S) 19.46(S) .00( I .00( 1 8 22. .0 .0 .0 4.2 7.76151 19.471S) .001 ) .001 ) 23. .0 .0 .0 4.2 7.76(S) 19.47151 .00( 1 .001 1 24. .0 .0 .0 4.2 7.76(S) 19.48(SI .00( 1 .00( 1 8 25. .0 .0 .0 4.2 26. ].76(5) .0 19.48151 .0 .001 1 .0 .001 ) 4.2 7.76(S) 19.49(S) -001 1 .001 1 27. .0 .0 .0 4.2 7.76(S) 19.50(S) .00( r .00( I 28. .o .o .0 4.2 7.76(s) 19.50(5) .00( I .00l 1 29. .o .o .o 4.2 7.761S) 19.51(S) .001 1 .001 1 8 30. .0 .0 .0 4.1 31. 7.76(S) .0 19.11IS1 .0 .001 1 .0 .10( 1 4.1 1 7.76(S) 19.521S) .00( 1 .001 ) 32. .0 .0 .0 4.1 7.76(S) 19.52(S) .00( 1 .001 I 33. .0 .0 .0 4.1 7.]6(5) 19.53151 .001 1 .001 1 34. .0 .0 .0 4.1 7.76(S) 19.54(S) .001 1 .001 1 8 35. .0 .0 .0 4.1 7.76(S) 19.54(S) .00( I .001 I 36. .0 .0 .0 9.1 7.76151 19.55 (S) .001 1 .001 ) 37. .0 .0 .0 4.1 7.76(S) 19.55(S) .00( ) .001 1 8 38. .0 .0 .0 4.1 7.]6(S) 19.56(S) .001 1 .001 I 39. .0 .0 .0 4.1 7.76(S) 19.56(S) .001 1 .001 1 8 40. .0 .0 .0 4.1 7.76(S) 19.57(S) .00( ) .001 I 41. .0 .0 .0 9.1 ' 7.76(S) 19.57151 .001 I .001 ) 42. .0 .0 .0 4.1 7J6(S) 19.58(S) .001 1 .001 ) 8 43. .0 .0 .0 4.1 1 7.76(5) 19.59151 .001 1 .001 1 I 8 44. .0 .0 .0 4.1 7. 76151 19. 59() .001 1 .00( 1 45. .0 0 .0 4.1 7 .7615) 19.60131 .001 I .001 1 46. .0 .0 .0 4.1 7.76(S) 19.60151 .00( I .001 1 8 47. .0 .0 .0 4.1 7.76151 19.61151 .001 1 .001 1 98. .0 0 .0 9.1 7.76(S) 19.61(5) .001 1 .001 1 49. .0 .0 .0 4.1 7.76(S) 19.62(5) .001 ) .00( I 50. .0 .0 .0 4.1 7.76(S) 19.63151 .001 1 .00( 1 51. .0 .0 .0 4.1 7.76(5) 19.63(S) .00( 1 .00( I 8 52. .0 .0 .0 4.1 53. 7.76(5) .0 19.64151 .0 .001 ) .0 .001 1 4.1 7.76(S) 19.64(S) .001 ) .001 1 54. .0 .0 .0 4.1 7.76(S) 19.65(S) .001 ) .00( I 55. .0 .0 .0 6.1 7.76(S) 19.65151 .001 1 .001 I 56. .0 .0 .0 4.1 7.76(S) 19.66(S) .00( 1 .00( 1 8 57. .0 .0 .0 4.1 58. 7.76(S) .0 19.67(SI .0 .001 1 .0 .001 1 4.1 1 7.76(S) 19.67(S) .001 ) .001 I 59. .0 .0 .0 4.1 7.76(S) 19.68(5) .001 1 .001 I 0. .0 .0 .0 9.1 7.76(S) 19.68151 .001 1 .001 ) 1. .0 .0 .0 4.1 7.76(S) 19.69(S) .00( 1 .001 1 9 2. .0 .0 .0 4.1 7.76(S) 19.69(S) .001 1 .001 1 3. .0 .0 .0 4.1 I 7.76(S) 19.70151 .001 1 .00( ) 4. .0 .0 .0 4.1 7.76(S) 19.70(S) .00( ) .001 1 9 5. .0 .0 .0 4.1 7.76(S) 19.71(S) .001 ) .00( I 6. .0 .0 .0 4.1 7.76(S) 19.721S) .00( 1 .00( ) 9 7. .0 .0 .0 4.1 7.76(S) 19.72(S) .00( ) .001 ) 8. .0 .0 .0 4.1 7.76(S) 19.73(5) .001 ) .001 I 9. .0 .0 .0 4.1 7.76(S) 19.73(S) .001 1 .00( 1 9 10. .0 .0 .0 4.1 7.76(S) 19.741S) .00( ) .001 1 11. .0 .0 .0 4.1 7.76(S) 19.74(S) .001 ) .001 1 9 12. .0 .0 .0 4.1 7.76(S) 19.75(S) .00( 1 .001 I 13. .0 .0 .0 4.1 7.76(S) 19.75151 .00( ) .001 1 14. .0 .0 .0 4.1 7.76(S) 19.76(S) .001 1 .00( 1 9 15. .0 .0 .0 4.1 16. 7.96(5) .0 19.77151 .0 .00( I .0 .001 1 4.1 7.76(S) 19.77(S) .001 ) .001 1 17. .0 .0 .0 4.1 7.76(S) 19.78(5) .001 1 .001 1 18. .0 .0 .0 9.1 7.76151 19.78(5) .001 1 .001 1 19. .0 .0 .0 4.1 7.76(S) 19.79(S) .00( 1 .00( 1 9 20. .0 .0 .0 4.1 21. 7.761S) .0 19.791S) .0 .00( I .0 .10( 1 4.1 1 7.76(S) 19.80(5) .001 1 .001 1 22. .0 .0 .0 4.1 7.76(S) 19.80(5) .00( 1 .001 ) 23. .0 .0 .0 9.1 7.76(S) 19.811S1 .001 1 .001 1 24. .0 .0 .0 4.1 7.76(S) 19.82(S) .001 1 .001 1 9 25. .0 .0 .0 4.1 7.76(S) 19.82(S) .001 1 .001 1 26. .0 .0 .0 4.1 7.76(S) 19.83(5) .001 ) .001 1 27. .0 .0 .0 4.1 7.76(S) 19.83(S) .00( 1 .001 1 9 28. .0 .0 .0 4.1 1 7.76(S) 19.84(S) .001 I .001 1 1 9 29. .0 .0 .0 4.1 7.76(S) 19.841SI .00( 1 -001 ) 30. .0 .0 .0 9.1 7.76151 19.85IS1 .001 1 .001 1 31. .0 .0 .0 4.1 7.76(S) 19.85(SI .00( I .00( 1 9 32. .0 .0 .0 4.1 7.76(S) 19.8615) .00( 1 .00( 1 '9 33. .0 .0 .0 4.1 7.76(S) 19.87(S) .001 1 .00( ) 9 34. .0 .0 .0 4.1 7.76(S) 19.87(S) .00( ) .OG( 1 9 35. .0 7.76(5) 19.88(S) .0 .0 .00( 1 4.1 .00( 1 9 36. .0 .0 .0 4.1 7.76(S) 19.88(S) .00( 1 .00( I 9 37. .0 .0 .0 4.1 '9 38. 7.76(S) .0 19.89(5) .0 .00( .0 1 .00( ) 4.0 7.76(S) 19.89151 .00( ) .00( ) 9 39. .0 .0 .0 4.0 7.7615) 19.90(S) .00( 1 .00( 1 9 10, .0 7.76(S) 19.90(S) .0 .0 .00( I 4.0 .00( 1 9 41. .0 .0 .0 3.9 7.76(S) 19.91(S) .00( I .001 I 9 42. .0 .0 .0 3.9 43. 7.76(S) .0 19.92151 .0 .10( .0 1 .00( ) 3.8 7.76151 19.92 (5) .001 1 .00( 1 44. .0 .0 .0 3.7 7.76(S) 19.93(5) .00( 1 .00( 1 9 45. .D .0 .0 3.6 7.76(S) 19.93(S) .00( ) .001 ) 9 46. .0 .0 .0 3.4 7.76(S) 19.94(S) .00( 1 .00( ) 9 47. .0 .0 .0 3.3 7.76(S) 19.94(S) .00( 1 .00( ) 48. .0 .0 .0 3.2 7 J6(5) 19.94151 .001 1 .001 I 49. .0 .0 .0 3.0 7.76(S) 19.95(S) .00( 1 .00( ) 9 50. .0 .0 .0 2.8 7.76(S) 19.95(5) .00( 1 .00( 1 51. .0 .0 .0 2.7 7.76(S) 19.96(S) .00( ) .00( ) 9 52. .0 .0 .0 2.5 7.76(S) 19.96(5) .00( 1 .00( 1 53. .0 .0 .0 2.4 7 .76(S) 19.96151 .00( I .00( 1 54. .0 .0 .0 2.2 7.76(S) 19.97(5) .001 ) .00( I 9 55. .0 .0 .0 2.0 7.76(S) 19.97(S) .00( ) .00( 1 56. .0 .0 .0 1.9 7.76(S) 19.97(S) .00( 1 .00( ) 9 57. .0 .0 .0 1.8 7.76(S) 19.97151 .00( ) .00( 1 58. .0 .0 .0 1.7 7.76(S) 19.98151 .00( ) .00( ) 59. .0 .0 .0 1.6 7.76(S) 19.98(5) .00( ) .00( ) 10 0. .0 .0 .0 1.5 1 7.76(S) 19.98(5) .00( 1 .001 1 HARMONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION YEAR EVENT FILE: MMP-XTD.DAT JR ENG., 11117/04, USED FOR DEVEL EXTRAN '•• PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS "• NOTE :5 IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY IONVEYANCE PEAK STAGE STORAGE TIME EMENT:TYPE (CPS) (FT) (AC -FT) (HR/MIN) 3. .2 0 3. 84:4 57.3 .5 0 355. '8:4 85:4 44.2 .5 0 36. 88:1 194.7 3.1 0 35. 89:1 13.6 1.2 0 37. 90:4 4.9 .2 1 0. 92:2 13.3 1.1 0 35. 3 9 5 : 3 3.6 (DIRECT FLOW) 0 31. 483:3 55.3 (DIRECT FLOW) 0 35. 486:2 .0 .1 7.8:D 10 0. 488:2 .0 .1 20.O:D 10 0. '490:2 2.1 .i .2:D 0 50. ' 491:2 3.6 .1 .5:D 0 55. 496:2 13.2 .1 2.1:D 1 7. 1.8 .1 .8:D 2 1. t497:2 582:3 7.7 (DIRECT FLOW( 0 35. 584:3 .0 (DIRECT FLOW) 1 19. 586:3 238.2 (DIRECT FLOW) 0 35. 588:3 380.5 (DIRECT FLOW) 0 35. 682:3 683:3 6.0 1.8 (DIRECT (DIRECT FLOW) FLOW) 0 0 35. 35. ' (PROGRAM PROGRAM CALLED [l 1 1 I 1 1 1 1 t 1 UPDATED EXTRAN MODEL Final Drainage and Erosion Control Report Settler's Creek Appendix March 2005 1 1 1 1 Proposed Detention Ponds - Stage/Area LOCATION: SETTLER'S CREEK PROJECT NO: 39402.00 COMPUTATIONS BY: ES SUBMITTED BY: JR Engineering DATE: 1/6/2005 Stage -Area Input into Extran Pond 488 Stage (h) Surface Area (W) Surface Area (ac) Depth (tt) 5000.51 0 0 0 5001 2620 0.060 0.49 5002 21633 0.497 1.49 5003 58085 1.333 2.49 5004 108749 2.497 3.49 5005 157600 3.618 4.49 5 006 165268 3.794 5.49 5007 171491 3.937 6.49 5008 177708 4.080 7.49 3940200pond.xls NBLOCK JIN(1) JOUT(1) 1 0 0 WITCH NSCRAT(3) NSCRAT(2) NSCRAT(3) NSCRAT(4) 1 1 2 3 4 ® 0 'eave32.prn' $EXTRAN 'HARMONY CENTER 4 PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN' 1/06/2005 JR ENGINEERING Pile: Pier. dat' GO line (OPTIONAL) ISOL Solution technique parameter. • = 0 Explicit EXTRAN solution = 1 Enhanced explicit solution = 2 Iterative explicit solution using variable time -steps DELI (group B1). Iteration limit is ITMAX and convergence criterion is • SURTOL (group B2). KSUPER = 0 Use minimum of normal flow and dynamic flow when water surface slope < conduit slope (default). = 1 Normal flow always used when flow is supercritical. T SOL KSUPER SO 0 0 JELEV JDOWN 0 0 NTCYC DELI TZERO NSTART INTER JNTER REDO 3600 10.0 0.0 1 360 30 0 ` METRIC NEQUAL AMEN ITMAX SURTOL 0 1 0 30 0.05 NHPRT NQPRT NPLT LPLT NJSW 4 5 0 0 2 30001 30002 30010 30011 B5 1001 1010 1011 90004 90005 • NCOND NJUNCI NJUNC2 Qo TYPE AFULL DEEP WIDE '1001 30002 30001 0. 1 0.0 1.50 0.0 1010 30001 30010 0. 1 0.0 1.75 0.0 1011 30010 30011 0. 6 0.0 4.00 1.0 • JUNCTION NODES JUN GRELEV Z QINST YO ' 30001 5005.0 4997.66 0.0 0.0 30002 5008.0 5000.51 0.0 0.0 30010 5004.0 4996.34 0.0 0.0 D1 30011 5004.0 4994.69 0.0 0.0 • JUNCTION DETENTION STORAGE DEFINITION 'JSTORE GELEV ASTORE NUMST (AREA IN ACRES LOWER PORTION OF PIER DETENTION POND E1 30001 5005.0 -1.0 B LEN ZP1. ZP2 ROUGH SIR SPH 113. 0.0 2.4 .0156 0.0 0.0 210. 0.0 0.0 .0158 0.0 0.0 300. 0.0 0.0 0.060 1.5 3.5 VS. DEPTH IN FEET) E2 0.100 0.0 0.188 0.34 0.300 1.34 0.545 2.34 0.606 3.34 0.770 4.34 2.916 6.34 2.916 7.34 UPPER PORTION OF DETENTION POND AMMENDED TO SETTLER'S CREEK DEVELOPMENT (1-06-05) 30002 5008.0 -1.0 9 E2 0.010 0.0 0.060 0.49 0.497 1.49 1.333 2.49 2.490 3.49 3.618 4.49 3.994 5.49 3.939 6.49 4.080 7.49 OVERFLOW WEIR SECTION TO SIMULATE STREET OVERTOPPING FOR PIER POND 30001 30010 1 5.6 9.3 30.0 2.6 OVERFLOW WEIR SECTION ADDED BY ICON G1 30002 30001 1 5.95 6.55 26.0 2.6 • BOUNDARY CONDITIONS 30011 2 4995.0 K1 I K3 I K3 I K3 K3 K3 K3 K3 K3 30002 30001 0 0.00 0.00 0.0833 0.1 0.1 0.1669 11.5 6.9 0.1833 19.4 9.7 0.2000 24.1 12.5 0.2167 30.9 15.1 0.2333 36.6 17.3 0.2500 41.7 19.1 0.2667 48.6 22.5 0.2833 57.3 27.3 0.3000 64.9 31.3 0.3167 71.0 34.4 0.3333 75.8 36.8 0.3500 81.9 40.4 0.3667 89.7 45.1 0.3833 96.4 49.1 0.4000 102.0 52.5 0.4167 106.5 55.4 0.4333 122.3 66.3 0.4500 149.4 84.3 0.4667 191.8 98.5 0.4833 1BB.9 309.E 0.5000 201.4 118.1 I K3 0.5167 237.1 143.2 5J33 .0. '0. 0.5500 335 JJ5.0 207.1 0.5667 362.5 224.7 K3 0.5833 380.5 238.2 K3 0.6000 350.7 221.5 0.6167 293.3 188.7 0.6333 256.7 169.5 0.6500 233.1 156.0 K3 0.6667 21].] 145.9 K3 0.6833 198.6 132.7 0.7000 1.E 16. 0.]16] 16060.] 106.5 0.7333 149.4 98.4 0.7500 141.3 92-.4 K3 0.]66] 131.0 84.6 0.8000 109.2 0.8000 109.2 68.6 68.6 0.8167 102.0 63.2 0.8333 96.6 59.0 K3 0.8500 91.6 54.9 0.8 8.. O.B833 B33 83.0 4898.0 0.9000 80.1 45.5 0.9167 ]].9 43.4 K3 0.9333 75.B 41.3 0.9500 73. 39.2 0.9667 71.0 3].5 0.9833 70.3 36.0 1.0000 69.1 34.8 K3 1.0833 64.0 30.0 1. 60. 2. 2500 1.2500 57.8 25.0 1.3333 55.5 23.3 1.4167 53.8 22.0 K3 1.5000 52.2 20.9 K3 1.5833 50.8 19.9 49.4 18.9 '1.6667 1.7500 48.2 18.1 1.8333 47.2 17.4 K3 1.9167 46.2 16.8 K3 2.0000 45.3 16.2 26.4 5.0 t2.1667 2.3333 22.1 2.2 2.5000 20.9 1.2 R3 2.6667 20.4 0.7 K3 2.8333 20.1 0.4 19.8 0.3 '3.0000 3.1667 19.7 0.2 3.3333 19.5 0.1 K3 3.5000 19.3 0.1 K3 3.6667 19.1 0.1 10.0 0.1 '.0000 9 .0000 4 ].] 0.1 4.1667 6.6 0.1 K3 4.3333 6.5 0.1 K3 4.5000 6.4 0.0 4. 6.4 0.0 ' .8333 6. 0.0 5.0000 0000 6.33 0.0 K3 5.1667 6.3 0.0 K3 5.3333 6.3 0.0 5.3500 6.2 0.0 5.3667 6.2 0.0 5.3833 6.2 0.0 6.0000 6.1 0.0 K3 6.5000 6.0 0.0 7.5000 6.0 0.0 7.5000 5 .9 0.0 8.0000 4.4 0.0 8.5000 4.1 0.0 K3 9.0000 4.1 0.0 9.5000 4.1 0.0 10.0000 1.5 0.0 DPROGR 1 1 ........... .......................... I ......... .. U.S. Environmental Protection Agency Storm Water Management Model (SWMM) ' Version 4.4H CDM/OSU Ongoing Version 4.4h Release Date - July 30, 2004 Camp Dresser & McKee and Oregon St. Univ. ; Chuck Moore, Bob Dickinson, and Wayne Huber ' Compiled using Compaq Visual Fortran v.6.6 ` ' Developed by • Metcalf & Eddy, Inc. University of Florida water Resources Engineers, Inc. ' (Now Camp Dresser & McKee, Inc.) September 1970 Version 4.3 (outdated) is ' Distributed and Maintained by U.S. Environmental Protection Agency • Center for Exposure Assessment Modeling (CEAM) f Athens Environmental Research Laboratory 960 College Station Road ' Athens, GA 30605-2'120 •,•.,,This'is`an'updated•release`of'SwMM4.4h••••' • no longer formally supported by the EPA. ` If problems occur executing this model contact Wayne Huber at Oregon State. U., ' wayne.huber®orst.edu, or Robert Dickinson at Camp Dresser & • McKee, DickinsonREQCDM.COM. ' • The EPA -supported version is SWMMMS at: ' h..pn//w .ep•,9ov/ednnrm„/sw /index.htm«. • This is an implementation of EPA SWMM 4.4H ` Nature is ull finite cau... have never occurred in experience" da Vinci occurred in.experienc„wV.. Vinci.. ##q###q##le names by Blockkggqqqqq## File names by SWMM Block q JIN > Input to a Block q JOUT > Output from a Block # lqo##coolq#ql#oqq#q#qqq#k#k##q#gpgq#q#q#qq# JIN for Block 4 1 File o 0 save32.prn JOUT For Block # 1 File # 0 save32.prn Scratch file names for this simulation. # q gckk#qkq##k########ggqqo#q#qqq##ooggqqkk CRAT 4 1 File o 1 SCRTI.UF �. Parameter Values on• the Tapes. Common. Block.. Number of Subcatchments in the Runoff Block (NW)...... 2000 Number of Channel/Pipes in the Runoff Block (NG)...... 2000 umber of Connections to Runoff Channels/Inlets (NCP). 6 umber of Water Quality Constituents (MQUAL).......... 20 umber of Runoff Land Uses per Subcatchment (NLU)..... 20 Number of Groundwater Plot/prints in Runoff (NGW)..... 400 Number of Interface Locations for all Blocks (NIE).... 2000 umber of Elements in the Transport Block (NET)....... 1000 umber of Storage Junctions in Transport (NTSE)....... 100 umber of Transport interface input locations (NTHI).. 500 Number of Transport interface output locations (NTHO). 500 Number of Transport input locations on R lines (NTHR). 80 ,umber of Transport printed output locations INTOA).., s0 umber of Tabular Flow Splitters in Transport (NTSP).. 50 umber of Elements in the Extras Block (NEE)..... . 4000 Number of Pumps in Extran WEN_ .................... 1000 Number of Orifices in Extran (NED).................... 200 I Number of Tide Gates/Free Outfalls in Extran )NTG).... 1000 Number of Extran Weirs (NEW) .......................... 400 Number of Extran Printout Locations INPO)............. 150 Number of Tide Elements in Extran (NTE)............... 50 Number of Natural Channels (NNC) ...................... 1200 Number of Storage Junctions in Extran (NYSE).......... 2000 of Time History Data Points in Extran )NTVAL).. 500 'Number Number of Data Points for Variable Storage Elements in the Extran Block (NVST)..... .... .... 200 Number of Input Hydrographs in Extran (NEH)........... 500 Number of Allowable Channel Connections to Junctions in the Extran Block (NCHN)................ 15 Number Rain Gages in Rain and Runoff (MAXRG)..... ..... 200 Number PRATE/VRATE Points for Extran Pump Input(MAXPRA)...................................... 10 Number of Variable Orifices in Extran (NVORF)..... .... 50 of Variable Orifice Data Points )NVOTIM)....... 50 'Number Number of Allowable Precip. Values/yr in Rain (LIMRN). 5000 Number of Storm Events for Rain Analysis )LSTORM).....20000 Number of Plugs for Plug -flow in S/T (NPLUG) .... 3000 Number Conduits for Extran Results to ASCII File(MXFLOWI....................................... 400 ....u.•............ ........... ..uu.................... Entry made to the EXTENDED TRANSPORT MODEL (EXTRAN) developed 1973 by Camp, Dresser and McKee (CDM) with • modifications 1977-1991 by the University of Florida. . • Most recent update: July 2004 by CDM and Oregon State University "Smooth runs the water where the brook is deep." Shakespeare, Henry VI, II, III, 1 . «. u....+...... u. u..... a ........ r........ »....:.... ------- I RONMENTAL PROTECTION AGENCY •••E%TENDED TRANSPORT PROGRAM `••• WASHINGTON, D.C. •+•+ •••• •••• ANALYSIS MODULE `••• HARMONY CENTER a PIER DET ION POND DEVELOPED COND. SIMULATION WITH EXTRU4 1/06/2005 JR ENGINEERING Pile: Pier.dat ontrol information for simulation Integration cycles ................. 3600 length of integration step is...... 10.00 seconds imulation length... ............... 10.00 hours Create equivalent conduits based on the COURANT condition )no local osses)............................ 1 se U.S. customary units for I/0... 0 Printing starts in cycle........... 1 intermediate printout intervals of 360 cycles ntermediate printout intervals of. 60.00 minutes Summary printout intervals of...... 30 cycles Ummdry printout time interval of.. 5.00 minutes of start file parameter (JREDO)... 0 Initial time (TZERO)............... 0.00 hours his is time displacement from JIN interface file starting date/time when nterface file is used. his also describes starting hour in K3 line hydrograph input when K3 Ines are used. Initial date (default) ............. 19410802 (yr/mo/day) COTE: Initial date from JIN interface file will be used, if accessed, nless IDATZ is negative. teration variables: ITMAX........ 30 SURTOL........ 0.0500 efault surface area of junctions.... 12.5/ square feet. "TRAM VERSION 3.3 SOLUTION. (ISOL = 0). Sum of junction flow is zero during surcharge. WATER RESOURCES DIVISION CAMP DRESSER a MCKEE INC. ANNANDALE, VIRGINIA NORMAL FLOW OPTION WHEN THE WATER URFACE SLOPE IS LESS THAN THE ROUND SURFACE SLOPE (KSUPER=O).... JSW INPUT HYDROGRAPH JUNCTIONS.... 2 Printed output for the following 4 Junctions 30001 30002 30010 30011 Printed output for the following 5 Conduits t1001 1010 1011 90004 90005 INTERMEDIATE HEADER LINES ARE PRINTED AS IN ORIGINAL PROGRAM ' IDS ARE WRITTEN AS IN ORIGINAL PROGRAM CONDUIT LENGTHS ON C1 LINE MUST EQUAL IRREGULAR SECTION LENGTH ENTERED ON THE C3 OR X1 LINES (IWLEN = 0) JELEV = 0 (DEFAULT). STANDARD INPUTS ARE DEPTHS NOT ELEVATIONS ' JDOWN - 0 - Minimum of normal or critical depth will be used at free outfalls (I1). Chara c t e ribtic depth for M2 and S2 water surface profiles will be computed as in previous versions of EXTRAN (IM2 = 0). ' SEDIMENT DEPTHS WILL NOT BE READ FROM C1 LINES Intermediate continuity output will not be created 1 ---- ENVIRONMENTAL PROTECTION AGENCY •••• EXTENDED TRANSPORT PROGRAM •••• WATER RESOURCES DIVISION ,ASHINGTON, D.C. CAMP DRESSER & MCKEE INC. ANALYSIS MODULE ANNANDALE, VIRGINIA HARMONY CENTER & PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN 1/06/2005 JR ENGINEERING File: Pier.dat 1 •••u.•u.................0 u.«••••:•.-.......uu.• • Conduit Data NP CONDUIT LENGTH CONDUIT AREA MANNING MAX WIDTH DEPTH JUNCTIONS INVERT HEIGHT TRAPEZOID NUM ---- NUMBER ------ (FT) ------- CLASS (SO FT) COEF. (FT) (PT) AT THE ENDS ABOVE JUNCTIONS SIDE SLOPES 1001 113. -------- CIRCULAR ------ 1.77 ---------------- 0.01560 1.50 ----- 1.50 ------- ------- 30002 30001 --------------- 0.00 2.40 _____ ----- 2 '1 1010 210. CIRCULAR 2.41 0.01580 1.75 1.75 30001 30010 3 1011 300. TRAPEZOID 60.00 0.06000 1.00 4.00 30010 30011 3.50 3.50 .Equivalent Conduit Volume RAnalyis .•... put full depth Volume............ 1.8705E+04 cubic feet full depth Volume .............. 1.8705E+04 cubic feet volume / Old volume ratio...... 1.0000 1-----------------------""__--------------------'""____________ IRONMENTAL PROTECTION AGENCY •"• EXTENDED TRANSPORT PROGRAM •••. WATER RESOURCES DIVISION SHINGTON, D.C. •••+ •+•+ CAMP DRESSER & MCKEE INC '••• ANALYSIS MODULE .... ANNANDAL£, VIRGINIA HARMONY CENTER & PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN 1/01/2005 JR ENGINEERING File: Pier.dat Junction Data �P"JUNCTION••••GROUND••••CROWN•••'+INVERT•••'•QINST INITIAL CONNECTING CONDUITS NUM NUMBER ELEV. ELEV. ELEV. CFS DEPTH(FT) --- -------------------- ---------------------- -_-----------'___'- 1 30001 5005.00 5001.56 4997.66 0.00 0.00 1001 1010 2 30002 5008.00 5002.01 5000.51 0.00 O.OD 1001 3 30010 5004.00 5000.34 4996.34 0.00 0.00 1010 1011 4 30011 5004.00 4998.69 4994.69 0.00 0.00 1011 ===> WARNING :.-. THE INVERT OF CONDUIT 1001 LIES ABOVE THE CROWN OF ALL CONDUITS AT JUNCTION t-------...-i---------------"_"---.---.-_-------------.-.---""--------------- 30001 IRONMENTAL PROTECTION AGENCY "'• EXTENDED TRANSPORT PROGRAM •••• WATER RESOURCES DIVISION WASHINGTON, D.C. "•' ...' CAMP DRESSER & MCKEE INC. '•+• ANALYSIS MODULE •+" ANNANDALE, VIRGINIA HARMONY CENTER 6 PIER DETENTION POND DEVELOPED CONE. SIMULATION WITH EXTRAN 1/06/2005 JR ENGINEERING File: Pier.dat ,••••••••••STORAGE•ODNCT IDN•DA•AM ••UMAR• MAXIMUM OR PEAK OR CROWN TORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT) 30001 VARIABLE 127020.95 373766.62 5005.000 30002 VARIABLE 177724.B0 773762.75 5008.000 • ................WEIR ................: DATA FROM TO LINK CREST WEIR WEIR DISCHARGE SUBMERGENCE NUMBER OF END V-NOTCH ANGLE OND DISCHARGE JUNCTION JUNCTION NUMBER TYPE HEIGHT(FT) TOP (FT) LENGTH (FT) COEFFICIENT EQUATION CONTRACTIONS OR SIDE SLOPE COEFFICIENT 30001 30010 90004 1 5.60 7.30 30.00 2.6000 30002 30001 90005 1 5.95 6.55 26.00 2.6000 FREE OUTFALL DATA (DATA GROUP I1) BOUNDARY CONDITION ON DATA GROUP J1 FALL AT JUNCTION.... 30011 HAS BOUNDARY CONDITION NUMBER... 1 ____________________ '••• EXTENDED TRANSP ENVIRONMENTAL PROTECTION AGENCYORT PROGRAM •••• WATER RESOURCES DIVISION WASHINGTON, D.C. '••• •••• CAMP DRESSER 6 MCKEE INC. '•••• ANALYSIS MODULE •••• ANNANDALE, VIRGINIA HARMONY CENTER & PIER DETENTION POND DEVELOPED CONE. SIMULATION WITH EXTRAN 1/06/2005 JR ENGINEERING File: Pier.dat • INTERNAL CONNECTIVITY INFORMATION ' CONDUIT JUNCTION JUNCTION 90004 30001 30010 90005 30002 30001 90006 30011 0 • BOUNDARY CONDITON INFORMATION • DATA GROUPS J1-J4 BC NUMBER.. 1 CONTROL WATER SURFACE ELEVATION IS.. 4995.00 FEET. ZERO •••..1941214 O.0000000E.00 ••LINE•INPUT HYDROGRAPHS•(DATA• GROUPS• K1•K3)•••• Expect 2 junction IDs on each K2 line. iSWINPUT•LOCATIONS FROM• K2' LINES..•••••••••••••• 30002 30001 tSIRONMENTAL PROTECTION AGENCY •••• EXTENDED TRANSPORT PROGRAM '••' WATER RESOURCES DIVISION HINGTON, D.C. •••• '••• CAMP DRESSER S MCKEE INC. '••• ANALYSIS MODULE •`•• ANNANDALE, VIRGINIA 'HARMONY CENTER S PIER DETENTION POND DEVELOPED CONE, SIMULATION WITH EXTRAN 1/06/2005 JR ENGINEERING File: Pier.daL • INITIAL MODEL CONDITION ' •rINITIAL -I--N--/ rerr r�uru• TIME _ ..... 0.00• HOURS ' uu.0 UNCTION / DEPTH / ELEVATION =__ "•" JUNCTION IS SURCHARGED. 30001/ 0.00 / 4997.66 30002/ 0.00 / 5000,51 30010/ 0.00 / 4996.34 0.00 / 4994.69 '30011/ CONDUIT/ FLOW =•_ - CONDUIT >1010/ USES THE NORMAL FLOW OPTION. 1001/ 0.00 0.00 1011/ 0.00 90004/ 0.00 90005/ 0.00 90006/ 0.00 CONDUIT/ VELOCITY ' 1001/ 0.00 1010/ 0.00 1011/ 0.00 CONDUIT/ CROSS SECTIONAL AREA ' lool/ CONDUIT/ 0.00 1010/ HYDRAULIC RADIUS 0.00 1011/ 0.00 1001/ 0.00 1010/ 0.00 1011/ 0.00 CONDUIT/ UPSTREAM/ DOWNSTREAM ELEVATION 1001/ 5000.51/ 5000.06 1030/ 4997.66/ 4996.34 1011/ 4996.34/ 4994.69 # # a # # # # # # # # a # # # # # # # # a # # # a a q a # # a IX # # # # # # # ___> System inflows (data group K3) at 0.00 hours 1 Junction / Inflow,cfs ) 30002/ 0.00E+00 30001/ 0.00E+00 # # # a 8 # # # # # # # N a # a # a a # # a # # # # q # # q # # # # # # # q q -_> System inflows (data group K3) at 0.08 hours ( Junction / Inflow,cfs ) 30002/ 1.00E-01 30001/ 1.00E-01 # # # # k # # a aaa # q # q q # # # # # # k q # N # # a # # # # # # # # # q # # a a # # a # a q # # # a q q # # # # # # a q a # # a # # N # N # # a # # q _> System inflows (data group K3) at 0.17 hours ( Junction / Inflow,cfs ) 30002/ 1.15E+01 30001/ 6.90E+00 q # # # # # # # # # # # d # # # # a # a q # a # q q q q a q a a # # q q # q # # # # # # # # # # # # # # # # # # 4 # # 4 a M # # k # # # # # a # q q # a a # _> System inflows (data group K3) at O.18 hours ( Junction / Inflow,cfs ) 30002/ 1.74E+01 30001/ 9.7OE+00 # # # # q # # # # # # q # 4 a a a # # # # # # # # # # q # # # # # N # N # N # # # # # q # # # # # q # # # # # # # # # # # 4 a # # # q q # # # # # # # # q # _> System inflows (data group K3) at 0.20 hours ( Junction / Inflow,cfs ) 30002/ 2.41E+01 30001/ 1.25E+01 9 a # # q # # # # # # q q # q q # a a # a # # # # # # # # 9 a # # # # # q # # # # a # q # # # M # q q a # q q # 4 a # a # # # # # # # # a a a a a # k q # # _> System inflows (data group X3) at 0.22 hours ( Junction / In£low,cfs ) 30002/ 3.07E+01 30001/ 1.51E+01 # # # # # # # # # # # N # # # # # # q # N # q q # # q # # # # # # q # # # # q q # # # # # # # # # # q # a q # # # # # # # a a # # # # a # # # # # # a # a # _> System inflows (data group K3) at 0.23 hours ( Junction / Inflow,cfs 1 30002/ 3.66E+01 30001/ 1.73E+01 #a##a##®##aaa####aaaa#######a###a#a#aaa R # # # # # # a a # # # q # d # k # # # # # # # q a # # # a # # # # # a a a # _> System inflows (data group K3) at 0.25 hours ( Junction / In Elow,cfs ) 30002/ 4.17E+01 30001/ 1.91E+01 # q a# q## q q## g N## q### a## a q## k q q# q q q# M# q# q q # # # # # # # q # 0 # # # a # # # # q # # q q a # q # q # # # # # q # q # q _> System inflows (data group K3) at 0.27 hours ( Junction / Inflow,cfs 1 30002/ 4.86E+01 30001/ 2.25E+01 # # # a q a # # q # # a # # # # # # # # # q # # # q a a # # a q # q # # q a a # # # # # q q a # a # # # # # # q # q a M q a a # q q a # # # # # a a a a # # _> System inflows (data group K3) at 0.28 hours ( Junction / Inflow,cfs ) 30002/ 5.73E.01 30001/ 2.73E+01 # a a a # # q q # # a q q q # # # # # # # q # # q # # # # # # q # # a # k N q ## 0 q a### 0 4# q# g q N N# 0 00 q N 9### a a a## q### N N# _> System inflows (data group K3) at 0.30 hours ( Junction / Inflow,cfs 1 30002/ 6.49E+01 30001/ 3.13E.01 # # # # # # IX q a # a # a # # a q # # # # q a q q a q # # # # # # q # q # a # # ###### q q q a a a# a g q a q a# a q k## k## a a 4 g a q# 44 4# _> System inflows (data group K3) at 0.32 hours ( Junction / Inflow,cfs ) 30002/ 7.10E+01 30001/ 3.44E+01 a a a## g a N a N q q# a a a### a### a a# a a## a q# a# R## q q q q## a# N a a a q# a a a a# a a a# a a k 44 a q## q### N a q# q > System inflows (data group K3) at 0.33 hours ( Junction / Inflow,cfs 1 30002/ 7.58E+01 30001/ 3.68E+01 4 # 4 4 4 0 4 4 4 4 4 4 4 0 4 4 4 4 0 a 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 a 4 4 0 11 a # a # a a 4 # a # # # # # # # a # a a # a # # a # N a # # a # # # N # # a a # > System inflows (data group K3) at .0.35 hours 1 Junction / Inflow,cfs 1 30002/ 8.19E+01 30001/ 4.04E.01 # # # a a M # M q # # # # # # # q q # # q 4 q q q # # # a # # # N # # q q q q N### q q q# a####### a a q# a N 4 a g q###### N a a# g q k q System inflows (data group K3) at 0.37 hours 1 Junction / Inflo.,efa ) > 30002/ 8.97E+01 30001/ 4.51E+01 # q # # a # # q # q N # q # # a a N # a # # # a # # # # # # # # # q # # # # # ## M# N a d# N q a# q# k k a a## a## N N a a N### N# q q q## N > System inflows (data group K3) at 0.38 hours ( Junction / Inflow,cfs 1 30002/ 9.64E+01 30001/ 4.91E+01 # # # # N N # # # # a N # a # # # # q # q q # # q q q N N q k k # q # # a # # 9 # M # k k # # # # # # # # # # # # # q N q q # N # # # # # q k # k # # # # q a System inflows (data group K31 at 0.40 hours 1 Junction / Inflow,cfs ) -> 30002/ 1.02E+02 30001/ 5.25E+01 N N # M # # q q N # k # # # # # a # N a # a # a q # # k a # # q # # q # # # # g q N q q 0# q q####### a# a## N# a g q N### a a# q q q q q q# System inflows (data group K3) at 0.42 hours 1 Junction / Inflow,cfs ) _> 30002/ 1.06E+02 30001/ 5.54E+01 q q q # a a # # # q # # # # # q q # # a # a q q # q q # # # # # q # q q # # q # q # q q a # # # # q # # q a # q # # a q q # # d # q q # # d # # q # k q # # # C--> System inflows (data group K3) at 0.43 hours ( Junction / Inflow,cfs 1 30002/ 1.22E+02 30001/ 6.63E+01 # N## q N q q q###### N## g a q q q a a N k q###### N## q# a # N N # q N a q # # # # # # # # N N # # # # N a a q # a # a # # N a # # a # N System inflows (data group K3) at 0.45 hours ( Junction / Inflow,cfs 1 30002/ 1.49E+02 30001/ 8.43E+01 a a a N# a a a#### a## q# 4 a a# a######## a a a N a a# a# q k q a a a 9 # # # # a # # # # # q N a # a # # # # # # a # N # # a # # a a a a System inflows (data group K3) at 0.47 hours ( Junction / Inflow,cfs 1 30002/ 1.72E+02 30001/ 9.85E+01 # # # # # a # # # # # # # # # # # a # # # # q q q # M # # q q # q q N q # q # # q # # # # # # 4 # # # # N # N N # # # # a a # q q # # # k # q # q a # # # q # -- > System inflows (data group K3) at 0.48 hours ( Junction / Inflow,cfs ) 30002/ 1.89E+02 30001/ 1.10E.02 ' # # # # # N # # # # # q # # # # q # # # # #qqq # # # q q # # k # # q # # # a # # # # N # # a # # # # # # # # q a # # # # a # # # # # # # # # # # # # # # # System inflows (data group K3) at 0.50 hours ( Junction / Inflow,cfs ) 30002/ 2.03E.02 30001/ 1.18E+02 q q q # # # # # # # a # # # # a # k N N # # # # # # q # # # # # q q q # q q q N q q q # q N q 4 # # q # k # # # # # # # q a 0 # # # a a # # # # # # q # # # q System inflows (data group K3) at 0.52 hours ( Junction / Inflow,cfs ) 30002/ 2.37E+02 30001/ 1.43E+02 # # # # N # a # # # # # # # # a # a # a q ff # k # # # # # # # # # # # q q # q # N # # # 9 # k # # # # # # # N # # # # # # # # # # # # # # # # N a q # N q q # System inflows (data group K3) at 0.53 hours 1 Junction / Inflow,cfs ) 30002/ 2.94E+02 30001/ 1.82E+02 q # # # # # # # q # # # q # a # # # # # N # # # a # # # # # # # k # a N # # a # a## N# a q a # # q# a a# a# N q# 44# 4 N### a a N N# N# 4 a System inflows (data group K3) at 0.55 hours I Junction / Inflow,cfs ) 30002/ 3.35E+02 30001/ 2.07E.02 # k # # # a # # a # # # # # a # # # # # # # # N a # # # a q # # # q a M # # a a q # # a N 9 # # N # # a # a # # # # # # # N a a q # # # # # # 9 # a # 0 # q System inflows (data group X3) at 0.57 hours ( Junction / Inflow,cfs ) 30002/ 3.62E+02 30001/ 2.25E+02 # a # a a q # q k # q q q # # a a # # # N # # # # # # # # q # N # q q M q # # # # # M # # # M M # # # # # # # N N # a # N # # # # a # # # # # # # # q # # q System inflows (data group K3) at 0.58 hours ( Junction / Inflow,cfs ) 30002/ 3.80E+02 30001/ 2.38E+02 # q # # # N N k k # # # # # k # # # # # # N a # # # # # # q # q # # # q # # # q # a 0 a # a N # # # # # # # a a a # N # N k N N # N # # # # # # # a 4 # # # System inflows (data group K3) at 0.60 hours 1 Junction / Inflow,cfs ) 30002/ 3.51E+02 30001/ 2.22E+02 # # a a a N # # # # N # N # # # N # # # N N # a N # # # a # # # # a # # N # # # # # # N # # # # # # N # a # a # N # N # # # # # # # # # q # # # # a a N # 9 ==_> System inflows (data group K3) at 0.62 hours ( Junction / Inflow,cfs ) 30002/ 2.93E+02 30001/ 1.89E+02 q q 4# N# N N# N N N# N# N a#### a a N# a# a a N# N N N# a# N# # # # # # # N a # # N N # a # # # # # N N N # # a # N # # # # # # a a a N # a ___> System inflows (data group K3) at 0.63 hours ( Junction / Inflow,cfs ) 30002/ 2.59E+02 30001/ 1.90E.02 «« a a a a# a g w a q q a### N# 444 a# w g q q q q a q q q d q a a q # a#«### a a g w## a a# N N a d N a 4 d k a a N N N N 4 4 a# q## a System inflows (data group K3) at 0.65 hours ( Junction / Inflow,cfs ) 30002/ 2.33E.02 30001/ 1.56E+02 # q####### a###### a q# a g q q q q q d k# q q q# g q q# q# # a# q q# 9####0 a N# a g q q q q q q q q q q a q a a# g w a q# a# System inflows (data group K3) at 0.67 hours ( Junction / Inflow,cfs I 30002/ 2.18E+02 30001/ 1.46E+02 # # # # # q # # a # w # # # # # # a # # # # a q a a # N # a q a # # N q # # q « # # # # # # # q 4 # # # # # # # # # # 0 # a N q N q q q a k # # # d N a # a System inflows (data group K3) at 0.68 hours 1 Junction / Inflow,cfs ) 30002/ 1.99E+02 30001/ 1.33E+02 q####### a##### w### w g q q q### g q# q# q q a q q w a q # # # # q # # # # # # a a # # # # 4 # # # N N # k N q a k q q q # # q M # # # System inflows (data group K3) at 0.70 hours ( Junction / Inflow,cfs ) 30002/ 1.77E+02 30001/ 1.17E.02 ## a# a## q## w# 0 a#### N# a# q q# a## g q q M q# g N N# q # # a # # # N # # # # # # # # k q # q # q a q q a # k q # # a q q # a a # # w System inflows (data group K3) at 0.72 hours 1 Junction / Inflow,cfs ) 30002/ 1.61E+02 30001/ 1.06E+02 # q # # # N # q # # # # # k # # # # # # N N N # k N w # a a N d # a # a # # # # # # a # # # # # # # # # q w # # N N # q a # # # # w a k a # # d # a # # N q System inflows (data group K3) at 0.73 hours ( Junction / Inflow,cfs ) 30002/ 1.49E+02 30001/ 9.84E+01 # w # # w a # # # # a # # # # # # q # # # a a q # a q q q # q # # a q # q q q # N # # # # # a # a # q # # # a # # q N # # w d q w # q # a # a # # a # # # w System inflows (data group K3) at 0.75 hours 1 Junction / Inflow,cfs 1 30002/ 1.41E+02 30001/ 9.24E.01 # # # q # N q # a # # a k # # # # N a # # # # # N # N a # q # q # # N # # # N ### q# N q# a#### d### N## q## a a N g 4#### q q q q q q q System inflows (data group K3) at 0.77 hours ( Junction / Inflow,cfs ) 30002/ 1.31E.02 30001/ 8.46E+01 # w # # # # # # # # # # # # # # q # # a # # # # # # # # q N # # q q M # q # # a # # k # # # # # # # # # # # # q # N # # # # # # N # # # # # # q a # q # # # w System inflows (data group K3) at 0.78 hours ( Junction / Inflow,cfs ) 30002/ 1.99E+02 30001/ 7.55E+01 # q w # # # q # # # # # # a # # # # # # # 0 k q N # # q # # a # # # a # # # a # # # # # # # # # a # # # # N # # # # # # # # q # a # a # # a # # q # q # # # # System inflows (data group K3) at 0.80 hours ( Junction / Inflow,cfs ) 30002/ 1.09E+02 30001/ 6.86E+01 # # q # # a # # # # a a a a # # # # # # # # # # q # q q a q # # # # # # a # # # # q # # # a # # # # a N k # # # # # # # a a a # # a q # a # q # N # # # # # # System inflows (data group K3) at 0.82 hours ( Junction / Inflow,cfs 1 30002/ 1.02E+02 30001/ 6.32E+01 k # q # q q # # # # q # IX q # # # # k # a # # # a # # # a a # # # q k a k q # q # q# k q q# q# N## q## d## M a q#### a g a q# q q## a### q System inflows (data group K3) at 0.63 hours ( Junction / Inflow,cfs I 30002/ 9.66E+01 30001/ 5.90E+01 # # a # # # a # a # # # q # N # # # # # a # # # # # q # # q # # q q # # M a a # # # # # # a # a # # # q # # # # N # # q # a # # N q q q # N q q q N # q k # q System inflows (data group K3) at 0.65 hours 1 Junction / Inflow,cfs ) 30002/ 9.16E+01 30001/ 5.49E+01 g q a a q q# a### q# a q k#### a# N k q# g N q q a q q q q q q q## # p# q# q### q a## q# g q q N w a q a q a a q a# N N# g k# N q q# System inflows (data group K3) at 0.87 hours 1 Junction / Inflow,cfs ) 30002/ 8.68E+01 30001/ 5.11E+01 # # q # q # # q # a # N # # # # # # # # # # k q q q q N q # # # # # a q IX # q # # # # # q # # # w # # # IX q # # # # N # # # # # # a q a q q # # # # # q # # k System inflows (data group K3) at 0.68 hours ( Junction / Inflow,cfs ) 30002/ 8.30E+01 30001/ 4.80E+01 # # # # # # # # # # N N # # # # N # # N w # # N # # # q # q # a a q q # # # # # q # N # # # # # a # # # a # # # # # # N a # # a N a k a q N N a q q # # # # d System inflows Idata group K3) at 0.90 hours ( Junction / Inflow,cfs 1 30002/ 8.01E+01 30001/ 4.55E+01 ## q### N##### g q a a q q q q a M M q q## g N q q a q q a# g q a q # q###### a### g q q q q q q q q q a q d a q# N q# q q a# a### System inflows (data group K3) at 0.92 hours 1 Junction / Inflow,cfs 1 30002/ 7.79E+01 30001/ 4.34E+01 # q# a 4494#4 a# d# N# a 4 N a## N## a g q q q k N q q q a q d q q N a 4### 4 4# 4### 0 4 4 9 a# 0 N### 4# 4## 9# N# g a 4# a I System inflows (data group K3) at 0.93 hours 1 Junction / Inflow,cfs ) 30002/ 7.58E+01 30003/ 4.13E+01 # # # # a x a # # # # # # # # a # # # # # a # a d a q a # # k a a # # # q # q a d## k# a#### 0 N N N a### a a a### a## k## a## a g d# N System inflows (data group K3) at 0.95 hours ( Junction / Inflow,cfs ) 30002/ 7.36E+01 30001/ 3.92E+01 # a a # # M # N d # q a a N # # # # # # # # # # # # # q a q a # q d # # # # # # # # # # N # # # # a N a a # # # # # a # # # # a # # # 4 # q # N a N # q # # System inflows (data group K3) at 0.97 hours 1 Junction / Inflow,cfs I 30002/ 7.18E+01 30001/ 3.75E+01 # q # k a k N a a # # # # k # a # # # k # q # N # # q # q # q q a a # # # # # # a # # a x # k # # # # # # # # # # # # # a # a # # # a a # q # # # N # # # a System inflows (data group K3) at 0.98 hours ( Junction / Inflow,cfe ) 30002/ 7.03E+01 30001/ 3.60E+01 # a a# k###### a q#### a a### a a### g a q q q q a q q## N # # # # N # k # N # a a q N # # k a # # # # # # # # q IX k d # N k k # q # # a System inflows (data group K3) at 1.00 hours ( Junction / Inflow,cfs ) 30002/ 6.91E+01 30001/ 3.48E+01 q # # # # # # a a # # # a # # # # # # # # a # # # R # a q d # # q q q # a a # CYCLE 360 TIME 1 HRS - 0.00 MIN 'UNCTION / DEPTH / ELEVATION ===> - JUNCTION IS SURCHARGED. 30001/ 6.07 / 5003.73 30002/ 5.23 / 5005+74 30010/ 2.79 / 4999.13 30011/ 1.45 / 4996.14 CONDUIT/ FLOW >'" CONDUIT USES THE NORMAL FLOW OPTION. 3001/ 11.66 3010/ 19.32 1011/ 44.69 90004/ 25.50 90005/ 0.00 90006/ 44.69 a q a### 4 d a d# a N N# k a a# a 4# d a## a a a A d k d# d## System inflows (data group K3) at 1.08 hours ( Junction / Inflow,cfs ) 30002/ 6.40E+01 30001/ 3.00E+01 # # # a # # # # a # # N N # N q a q # # # # # q # # a q q # q # q N # # # q # q q # # a # # # k N # # # q # # a k # # # k k # a # k # # # # # q q # # # a N System inflows (data group K3) at 1.17 hours ( Junction / Inflow,cfs I 30002/ 6.04E+01 30001/ 2.73E+01 # # N # N N # a # # # N # a a # a # # # # # # # # a q q # # q N # # # # # # q q # # # # # # # a # # # # # # # # # # # # # # k # # # # # # q q q # # a a # k System inflows (data group K3) at 1.25 hours ( Junction / Inflow,cfs 1 30002/ 5.78E+01 30001/ 2.50E+01 ### a### q q## q a a####### a# q# g q## k q q q# a q N q q # # N # # # a q a # a N # # # # # # # # # p a p a # # # d q a q N # a a # # # System inflows (data group K3) at 1.33 hours ( Junction / Inflow,cfs ) 30002/ 5.55E+01 30001/ 2.33E+01 # # # # x a q # # a N N # a # # # # # a a # # # q q N N q q q q q # # # # # # # # # # # N k # # # # # # # a a # # N # # a # # # a q q k q q q # a # # # # # System inflows (data group K3) at 1.42 hours ( Junction / Inflow,cfe ) 30002/ 5.38E+01 30001/ 2.20E+01 # # # a # # # # # # # # # # a a # # # # # # # # q # N IX a a # q q q q # # a # # a # # # a # a # # # # # # # a # # # # # k A # # a # # a a # q a # N a # a # System inflows (data group K3) at 1.50 hours ( Junction / Inflow,cfs ) 30002/ 5.22E+01 30001/ 2.09E+01 ## a# a# N a##### a a a# N## k a q# q q# q a q# R a o##### q a### q q x a q#### k# a#### a# a# a g a a# g q q a # # # a# System inflows (data group K3) at 1.58 hours ( Junction / Inflow,cfs 1 30002/ 5.08E+01 30001/ 1.99E+01 # q# a# k a d# a a 4 k## k a### N a N## a g 4 a a# q a## N# a# # q # a # x a N N k # a # # # # a # # q a # # a # # q # # # q q # a # # # a # --=> System inflows (data group K3) at 1.67 hours ( Junction / Inflow,cfs ) 30002/ 4.94E+01 30001/ 1.89E+01 # q # # N k # N # # a a # # # # N # # # # a # N # a # # # # q q q q q N q q # # d#### k# 4 k k 0 a# d### q q a# q### a N k a k a N# a# N## => System inflows (data group K3) at 1.75 hours ( Junction / InElow,cfs ) 30002/ 4.82E+01 110111 1.81E+01 ###### k# a q a# a N N N# a# q## N a# a# g q q q# g q q q# a# R # a # # # # N # q # k a # # # # N # # # # a # # # k k N N a N 9 # a q M # # => System inflows (data group K3) at 1.83 hours 1 Junction / Inflow,cfs ) 30002/ 4.72E+01 30001/ 194E+01 U# d# k## g q q q a k a# q# a g q a a q q## N q# a a## k q# d# d d # d a d a# k a d d d# a# q## k a a a# a## a k# a a a## g a N## _> System inflows (dais group K3) at 1.92 hours ( Junction / Inflow,cfs ) 30002/ 4.62E+01 30001/ 1.68E,01 1 # d q#### d 4 a## 44 0 a N##### a d g d q q a q q q q q q q q## q q # # k # # # # # N # # k d # # a # a # a q # q q # # # # # q # q q q # a # # _> System inflows (data group K3) at 2.00 hours ( Junction / Inflow,cfs ) 30002/ 4.53E.01 30001/ 1.62E+01 # # q q q d q # # # d # a a # # N # a # # # # # q # # # # q # q # q q # q # q q VE 720 TIME 2 HRS - 0.00 MIN JUNCTION / DEPTH / ELEVATION =__ ... JUNCTION IS SURCHARGED. 30001/ 5.94 / 5003.60 30002/ 6.10 / 5006.61 30010/ 2.56 / '30011/ 1.30 / 4995.99 CONDUIT/ FLOW =__ •^ CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.28 >1010/ 19.51 3011/ 34.99 90004/ 90005/ 3.85 90006/ 34.99 # a # a N # a # # # # # N # q # q # 0 # N a # # # # a N # # # # # # # # a q q > System inflows (data group K3) at 2.17 hours ( Junction / Inflow,cfs ) 30002/ 2.64E+01 30001/ 5.00E-00 d # a # # # N # k 4 # a q # # # a # a 4 q # 4 q # # # # # # # a a a # # # # # q # q # # # # # N N # # q # # # # # # # q # # q a N # # N # # # # R # # # # # # System inflows (data group K3) at 2.33 hours ( Junction / Inflow,cfs ) 30002/ 2.21E+01 30001/ 2.20E+00 q q # # k # # # # # ft # # # # # # # q # # # # # # # # # # # # N d # # N d k # q q # # q q # # # # # # a # # d # # # # # # q k q # q # q d q # q q # # d q # # System inflowa (data group K3) at 2.50 hours ( Junction / Inflow,cfs ) 30002/ 2.09E+01 30001/ 1.20E+00 # # # q # # # a q q # # M N q a # a # # # # # # # # # q q # # # # d # # q a a q # q # q N # # q q # q N # q # a # # # # # # d # # q # # # # # # q q # # a a N _=> System inflows (data group K3) at 2.67 hours ( Junction / Inflow,cfs ) 3D002/ 2.04E.01 30001/ 7.00E-01 # # N d # # a # # # # # a a # a # # # # # N # # # # # # # # a q # q q q k q # q 40 # # # # # N # # # N # # a N # # q # q # # # # # # # # 4 q # q R # # # # a > System inflows (data group K3) at 2.83 hours ( Junction / Inflow,cfs ) 30002/ 2.012.01 30001/ 4.00E-01 # q # # # # # q # a # a # # q # N # # # # # # # q # # q N q # # # # # a q q # q q # # a N # q N # # # X # q # # # # # # # # # q # # k # q # # # # # # # # # k _> System inflows (data group K3) at 3.00 hours ( Junction / Inflow,cfs ) 30002/ 1.98E.01 30001/ 3.00E-01 # # N # # # # # a # # q N # # # # # # a # # # # # # # # # # # # a # q # q # # q 4998.90 15.45 CLE 3080 TIME 3 HRS - 0.00 MIN CTION / DEPTH / ELEVATION =__ "•" JUNCTION IS SURCHARGED. 30001/ 5.76 / 5003.42 30002/ 6.16 / 5006.67 30010/ 2.26 / 4998.60 30011/ 1.12 / 4995.81 ' CONDUIT/ FLOW =__ CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.84 >1010/ 19.75 3011/ 24.79 90004/ 90005/ 6.30 90006/ 24.79 q # # # # k # N d # # # # q N # # # # # a a # # # # N a a # # # # # q # # # # # System inflows (data group K3) at 3.17 hours ( Junction / Inflow,cfs ) 30002/ 1.97E+01 30001/ 2.00E-01 # 0 d q q q k # # a q q N # # # # a # # # # # N N a # # # N # # a q # q # N # # # # q # q N # # # # # q q # # # # # a # a # k # # a a # # # q # q # # q # # # X System inflows (data group K3) at 3.33 hours I Junction / Inflow,cfs ) 30002/ 1.95E+01 30001/ 1.00E-01 q q # a N # q # # q q d k # # # a # # # # # # # # # # # # # d # q q q q k # 4 q ##### q q q# q q## N N## N a## N a N# g q### q# q q# q q## q > System inflows (data group K3) at 3.50 hours ( Junction / Inflow,cfs 1 30002/ 1.93E+01 30001/ 1.00E-01 # # # # # a # M a # a # # # # a # # # # # # # # # # # # N # N # # # a # N # # # # # # q q N # # q # # # # # # # # # # N # a # # # a # # N 0 0 # # 0 # N # # # System inflows (data group K31 at 3.67 hours I Junction / Inflow,cfs 1 30002/ 1.91E-01 30001/ 1.00E-01 # q # # # a # N # N # # # # # a # q # 4 # # a a # # # # # # # q q N # # # q # # # a # # # # # a # # # # # # # 4 a q a a a # # # # # # # # # a # q # N # a q a > System inflows (data group K3) at 3.83 hours ( Junction / Inflow,cfs ) �30002/ 1.88E+01 30001/ 1.00E-01 # ## q# a q a q# g q# q# q###### q q# N# g q# q# q q M q q q q a###qq#qq#qqq#N#qq#aa#aa#XX###qq#dggqaqa _> System inflows (data group K3) at 4.00 hours ( Junction / Inflow,cfs ) 130002/ 7.70E+00 30001/ 1.00E-01 # # d a # # # a a # # a k # # d # # # k # # a # # a # # # # N a a # # # # a # 4.93 CYCLE 1440 TIME 4 HR.S 0.00 MIN 'UNCTION / DEPTH / ELEVATION =__> "_" JUNCTION IS SURCHARGED. 30001/ 5.68 / 5003.34 30002/ 6.11 / 5006.62 30030/ 2.15 / 4998.49 30011/ 1.05 / 4995.74 CONDUIT/ FLOW =__ >•" CONDUIT USES THE NORMAL FLOW OPTION. 3001/ 14.91 1010/ 19.81 loll/ 21.60 90004/ 90005/ 4.29 90006/ 21.60 # # # # # # # # # # # # 0 # # # N # a # # # # # # # N N N N a # # # N # # N N ___> System inflows (data group K3) at 4.17 hours ( Junction / Inflow,cfs 1 30002/ 6.60E+00 30001/ 1.00E-01 ' # # # # # N # q # # q N # # q # # # # # # # # # q q q q q q # # # # q q # # # # q # a # N # # # X # X # # # # # # # q q q q q q # # # # # # # # # # # # # # System inflows (data group K3) at 4.33 hours 1 Junction / Inflow,cfs 1 30002/ 6.50E+00 30001/ 1.00E-01 '### N a k 4 N# q q q# k####### q## g q q q# q# M q# N g q q R # k q q q # # # # # # # # # # # # # q # # # # # # # # N # q N N N q N # # # # System inflows (data group K3) at 4.50 hours ( Junction / Inflow,cfs ) 30002/ 6.40E+00 30001/ 0.00E+00 'q # q q # # # # q # # N # q # N # # # # q # # # # # a q q q # # # # # d q # # # q q # # # N # # # k q # # a # # # # # # # # 4 q # q q q q # # q d a d # q q System inflows (data group K3) at 4.67 hours ( Junction / Inflow,afs 30002/ 6.40E+00 30001/ 0.00E+00 # q # a # # # # # q # q # N # # # k # # # # # N # # # # # q # q q q q q q # # # # # # # # # # # q # # # # # # # # # q # # # N # # # # # q d M q # q # # # # System inflows (data group K3) at 4.83 hours ( Junction / Inflow,cfs ) 30002/ 6.40E+00 30001/ 0.00E+00 #4q###ggN#0#044h904######a####q#q##0 # d # # # N M N M q # # # # # # # # # # # # # # # # q # # # # # q q 4 q N # # System inflows (data group K3) at 5-00 hours ( Junction / Inflow.cfs ) 30002/ 6.30E+00 30001/ 0.00E+00 '# # # a # # # # # # # N # # # # # # # # q # # # # # # # # # a q N # q q q # q YCLE 1800 TIME 5 HRS - 0.00 MIN JUNCTION / DEPTH / ELEVATION =__ "•" JUNCTION IS SURCHARGED. t 30001/ 5.52 / 5003.18 30002/ 5.91 / 5006.42 30010/ 2.08 / 4998.42 30011/ 1.01 / 4995.70 CONDUIT/ FLOW =__ >•" CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.82 1010/ 19.63 loll/ 19.62 90004/ 90005/ 0.00 90006/ 19.62 # # # N a # # # # a # # # # # # # # 0 N # # 0 # # # # # # # # # # q # # # # # __> System inflows (data group K3) at 5.17 hours ( Junction / Inflow,cfs ) 30002/ 6.30E+00 30001/ 0.00E+00 # # # # # N N N # # # # # # # # # # # # # # # # q q # q q # # # # # q # q # q # # # # # # # # # # # # 4 # # # N # # # # # # # # # # # # # # # # # q N # # # > System inflows (data group K3) at 5.33 hours ( Junction / In£low,cfs ) 30002/ 6.30E+00 30001/ 0.00E+00 # # # # # q M # # # # # M # N # # # # # # # # # q k q q # # # q # q # # # # # # # # # a N # N N # q q q # a # # # # # # q # # # q a k # # # # # # N # # N # _> System inflows (data group K3) at 5.35 hours ( Junction / Inflow,cfs ) 30002/ 6.20E+00 30001/ 0.00E+00 # # # N # # # q q q q q q q # # # # # # # # # # # # # # # # # # # # N # # # # q # # # # # # q q # # # q # X # # # # # # # N # # # X # # # # # # # q # # # # _> System inflows (data group K3) at 5.37 hours ( Junction / Inflow,cfa ) 30002/ 6.20E+00 30001/ 0.00E+00 # N # # N # # # # # # # # # # # # # # # # # # # # # # # # # # # # # q q q # q # # # # # 4 # # # a # # # # # # # # # a # # # q # q q # # # # # # # q # q N # > System inflows (data group K3) at 5.38 hours ( Junction / In£low,afs ) 30002/ 6.20E+00 30001/ 0.00E+00 # # # a # # # # # # a # # # # # # # # # # q # # k # X # q q a # # # # a # # q q q q q # a a a a # # k # # # # # # # # # # # # # # # # # # # # N # q # q X # _> System inflows (data group K3) at 6.00 hours ( Junction / Inflow,cfs ) 30002/ 6.10E+00 30001/ 0.00E+00 X R#### a# ft# a N# X####### N# a a a a a a a a## g q d d# N CLE 2160 TIME 6 HRS - 0.00 MIN JUNCTION / DEPTH / ELEVATION =__ "•" JUNCTION IS SURCHARGED. 30001/ 5,12 / 1002,11 30002/ 5,72 / 5006,21 300101 2.07 / 1991,40 30011/ 1.00 / 4995+69 CONDUIT/ FLOW CONDUIT USES THE NORMAL FLOW OPTION. 3001/ 14.85 >1010/ 19.25 loll/ 19.25 90004/ 90005/ 0.00 90006/ 19 25 1.'/2 0.00 0.00 I # # N # # # # N # # # # k # # # N # # # N d a # a N a # k 0 # 0 # 4 # a 11 # # N System inflows (data group K3) at 6.50 hours ( Junction / Inflow,cfs 1 30002/ 6.00E+00 30001/ 0.00E.00 # # k # # # # # # # # # # q # # # # q q q a q a q # q # q # q q q q q M q # # q ## q q q####### N k a# a# q# q## g q q# N## g q q q# q q## q > System inflows (data group K3) at 7.00 hours ( Junction / Inflow,cfs ) 30002/ 6.00E+00 30001/ 0.00E+00 q a##### a###### a## 9 R a N N a N## g d d# q q q H a q q q# q :LE 2520 TIME 9 HRS - -0.00 MIN MON / DEPTH / ELEVATION " JUNCTION IS SURCHARGED. 30001/ 5.12 / 5002.78 30002/ 5.53 / 5006.04 30010/ 2.05 / 4998.39 30011/ 0.99 / 4995.68 ' CONDUIT/ FLOW =__>"•" CONDUIT USES THE NORMAL FLOW OPTION. 3001/ 14.87 1010/ 18.85 1011/ 16.86 90004/ 90005/ 0.00 90006/ 18.86 ####### a# 9#4 a### 0#4 g d q q N q## g q N d q N q q q N M q q System inflows (data group K3) at 9.50 hours 1 Junction / Inflow,cfs 1 > 30002/ 5.90E+00 30001/ 0.00E+00 # q # # # a # # # a # # # a # # # # # # # # # # q # q # # k # # q # 0 q q k N # # # # # k # # # # # # # # a a N N # # # N # # a # a q # # # # # q N a # q # N > System inflows (data group K3) at 8.00 hours ( Junction / Inflow,cfs 1 30002/ 4.40E+00 30001/ 0.00E+00 # # # # # # # # # # a q # a N # # # N # # q # q q q q q q # q d d # q # N # q CLE 2880 TIME 8 HRS - 0.00 MIN CTION / DEPTH / ELEVATION ===> ""' JUNCTION IS SURCHARGED. 30001/ 4.91 / 5002.51 30002/ 5.33 / 5005.84 30030/ 2.03 / 4998.37 30011/ 0.98 / 4995.67 ' CONDUIT/ FLOW =__> "•" CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.B8 3010/ 18.43 loll/ 18.45 900041 90005/ 0.00 90006/ 18.45 # # # # # # # # # # # # a # # # # # # # # q q # # # # q # q q # # # # # # # # # __> System inflows (data group K3) at 8.50 hours 1 Junction / Inflow,cEs ) 30002/ 4.10E+00 30001/ 0.00E+00 q # # # # # # # # # # # # q # q # # # # # # # # q # # q q # # # # # # q # # # # # # # # # # # # # # a # # q q q R # # # # # # # # a # # q # # # # # # q a # # ---> System inflows (data group K3) at 9.00 hours 1 Junction / Inflow,cfs 1 30002/ 4.10E+00 30001/ 0.00E+00 # a # # # # # # # # # # 4 # # # # # a # q q q q # q q # # q q q # # # # # # # CYCLE 3240 TIME 9 HRS - 0.00 MIN IFCfION / DEPTH / ELEVATION =__> "•" JUNCTION IS SURCHARGED. 30001/ 4.69 / 5002.35 30002/ 5.09 / 5005.60 30010/ 2.01 / 4998.35 30011/ 0.97 / 4995.66 ' CONDUIT/ FLOW =__> - CONDUIT USES THE NORMAL FLOW OPTION. 3001/ 14.84 1030/ 17.59 loll/ 18.00 90004/ 9000s/ 0.00 90006/ 18.00 # a N # # N # a # # a N a # # # # # # a # N # # # # a # # a # # # # # # N # a N System inflows (data group K3) at 9.50 hours ( Junction / Inflow,cfs I 30002/ 4.10E+00 30001/ 0.00E+00 q### a# g q k q# q# k#### a##### a a g k### g q q N a# q# q # # # # # # q q # q # # # # # N N # # # # # # # N # # # # # N # N a a # # # System inflows (data group K3) at 10.00 hours ( Junction / Inflow,cfs I 30002/ 1.50E+00 30001/ 0.00E+00 # # # # # # B # # # # # # a # # # N # # q q q q # q q q # # q q # a q q # # # CYCLE 3600 TIME 10 HRS - 0.00 MIN INCTION / DEPTH / ELEVATION ===> "+" JUNCTION IS SURCHARGED. 30001/ 4.45 / 5002.11 30002/ 4.64 / 5005.35 30010/ 1.99 / 4998.33 30011/ 0.96 / 4995.65 'CONDUIT/ FLOW ==_> "•" CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.80 1010/ 17.50 1011/ 171 51 90004/ 90005/ 0.00 90006/ 17.51 FINAL MODEL CONDITION + '.FINAL TIME e-.+'++1.0:00 HOURS.: > ENDING DATE AND TIME OF EXTRAN RUN ARE: JULI AN DATE: 1941214 1 0.00 0.00 0.00 0.00 I YR/MO/DA: 1941/ B/ 2 IME OF DAY: 10.000 HRS UNCTION / DEPTH / ELEVATION "•" JUNCTION IS SURCHARGED. 30001/ 4.45 / 5002.11 30002/ 4.84 / 5005.35 30010/ 1.99 / 4998.33 30011/ 0.96 / 4995.65 ' CONDUIT/ FLOW =__ ... CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.80 1010/ 17.50 1011/ 17.51 90004/ 0.00 90005/ 0.00 90006/ 17.51 ' CONDUIT/ VELOCITY 1001/ 8.38 3030/ 7.27 1011/ 1.92 CONDUIT/ CROSS SECTIONAL AREA 3001/ 1.77 1010/ 2.41 1011/ 9.11 ' CONDUIT/ FINAL VOLUME 1001/ 199.69 1010/ 505.11 1011/ 1733.88 CONDUIT/ HYDRAULIC RADIUS 1001/ 0.38 1030/ 0.44 1011/ 0.7B CONDUIT/ UPSTREAM/ DOWNSTREAM ELEVATION 1001/ 5005.35/ 5002.11 3010/ 5002.11/ 4998.33 1011/ 4998.33/ 4995.65 �k#qkk#kk##kk#kggqqNNqkq#ggqq###kq#q##q##k#kgkkk#q# Surcharge Iteration Summary # q##gkkk#kk#qq#k#qkk#kggkqqqq####qq#q###N#k#k#k#kq#M aximum number of iterations in a time step..... 1 oral number of iterations in the simulation.. 7200 verage numberof iterations per time step...... 2.00 Surcharge iterations during the simulation...... 0 jaximum surcharge flow error during simulation.. 0.00E+00 cfs otal number of time steps during simulation.. 3600 1 .•...............•.•••••..•.••...................., CONDUIT COURANT CONDITION SUMMARY TIME IN• MINUTES• DELT•; COURANT T IME• STEPe•.•••••: • SEE BELOW FOR EXPLANATION OF COURANT TIME STEP. 'CONDUIT # TIME(MN) CONDUIT # TIME(FE4) CONDUIT # TIME HIM CONDUIT # TIME(MN) 1001 583.17 1010 336.00 1011 0.00 1,,,=, ••,CONDUIT•COURANT•CONDITION•SUMMARY•=••• r r.,,,..,.,,, u„«, a„u ,. u,,. • • «. u.., a u, • COURANT = CONDUIT LENGTH ',..ME`STEP .. «,, ,,,,,,,,,,, •, •, •„•, •„WIDTH,,, VELOCITY + SORT(GAVT•AREA/WIDTH) • AVERAGE COURANT CONDITION TIME STEP(SECONDS) IONDUIT _# TIME(SEC) __ CONDUIT # TIME(SEC) _ CONDUIT # TIME(SEC)CONDUIT # TIME(SEC) ______ _______ ________ _______ _________ _________________ ________ 1001 6.92 1010 14.51 1011 42.12 ;;`RAN CONTINUITY BALANCE• AT THE LAST TIME STEP•: • u,. .D.. H. u u ,.HH JUNCTION INFLOW, OUTFLOW OR STREET FLOODING JUNCTION INFLOW, FT3 ________ ____________ 30001 3.4007E+05 30002 8.7840E+05 JUNCTION OUTFLOW, FT3 • INITIAL SYSTEM VOLUME 6.2300E-03 CU FT • TOTAL SYSTEM INFLOW VOLUME = 1.2185R.06 CU FT • 1 I • INFLOW + INITIAL VOLUME 1.2185E+06 CU FT ` TOTAL SYSTEM OUTFLOW 8.0081E+05 CU FT VOLUME LEFT IN SYSTEM = 4.2426E+05 CU FT • OUTFLOW + FINAL VOLUME 1.2251E+06 CU FT �•ERROR •IN CONTINUITY, PERCENT -0.54 TEST WRITE OF ALTERNATIVE CONTINUITY ERROR CALCULATION LEFT IN SYSTEM = 4.1775E+05 CU. FT. tLUME RROR IN CONTINUITY PERCENT = -0.07 q####qqN#Nq#NgNgq##ggNq#NNNNNggqNNqqqqqqNqqqqqqqqqqq#gqqq T i m e H i s t o r y o f t h e H. G. L. ( Feet) q ##ggqqqqqqqqqqqqq#gqqq#q#ggqqqNNqq#qqqqq#qqq#q#q#NNggqqq 1 HARMONY CENTER 6 PIER DETENTION POND DEVELOPED COND. SIMULATION WITH E%TRAN 1/06/2005 OR ENGINEERING File: Pier.dat Junction: 30001 Junction: Time Ground: 5005.00 Ground: Hr:Mn:Sc Elevation Depth Elevation ' 0: 5: 0: 10: 0:15: 0:20: 0:25: ' 0: 3: 0:35: 0:40: 0:45: 0:50: 0:55: 1: 0: 1: 5: 1:10: 1:15: ' 1:2: 1 :25: 1:30: 1:35: 1:40: 1:45: 1:50: 1:55: 2: 0: 2: 5: 2:10: 2:15: 2:20: 2 : 2 5 : 2:30: 2:35: ' 2:40: 2 :95: 2:50: 2:55: 3: 0: ' 3: 5: 3 :30: 3:15: 3:20: 3:25: ' 3:30: 3 :35: 3:40: 3:45: 3:50: ' :5: 40: 0: 4: 5: 4:10: 4:15: 4:20: 4:25: 4:30: 4 :35: 4 :40: '4: : 9 : SO: 4:55: 5: 0: 5: 5: __ -__-_____ 0 4997.66 " - - -- 0.00 "----_-- 5000.54 0 4997.88 0.22 5001.17 0 4996.43 0.76 5001.77 0 4999.14 1.48 5002.39 0 4999.87 2.21 5002.93 0 5000.92 3.26 5003.55 0 5002.50 4.84 5004.37 0 5003.22 5.56 5004.96 0 5003.53 5.67 5005.26 0 5003.67 6.01 5005.49 0 5003.72 6.06 5005.63 0 5003.73 6.07 5005.74 0 5003.73 6.07 5005.84 0 5003.72 6.06 5005.93 0 5003.71 6.05 5006.02 0 5003.70 6.04 5006.10 0 5003.68 6.02 5006.17 0 5003.67 6.01 5006.25 0 5003.65 5.99 5006.31 0 5003.64 5.98 5006.38 0 5003.62 5.96 5006.44 0 5003.61 5.95 5006.50 0 5003.60 5.94 5006.56 0 5003.60 5.94 5006.61 0 5003.59 5.93 5006.65 0 5003.58 5.92 5006.67 0 5003.56 5.90 5006.67 0 5003.54 5.88 5006.68 0 5003.52 5.86 5006.68 0 5003.50 5.84 5006.68 0 5003.48 5.82 5006.68 0 5003.47 5.81 5006.67 0 5003.45 5.79 5006.67 0 5003.44 5.78 5006.67 0 5003.43 5.77 5006.67 0 5003.42 5.76 5006.67 0 5003.41 5.75 5006.66 0 5003.40 5.74 5006.66 0 5003.39 5.73 5006.66 0 5003.39 5.73 5006.66 0 5003.38 5.72 5006.65 0 5003.37 5.71 5006.65 0 5003.37 5.71 5006.65 O 5003.36 5.70 5006.65 0 5003.35 5.69 5006.65 0 5003.35 5.69 5006.64 0 5003.35 5.68 5006.64 0 5003.34 5.68 5006.62 0 SOD3.33 5.67 5006.60 0 5003.32 5.66 5006.58 0 5003.31 5.65 5006.56 0 5003.30 5.64 5006.54 0 5003.29 5.63 5006.52 0 5003.27 5.61 5006.51 0 5003.26 5.60 5006.49 0 5003.24 5.58 5006.48 0 5003.23 5.57 5006.46 0 5003.21 5.55 5006.45 0 5003.19 5.53 5006.43 0 5003.18 5.52 5006.42 0 5003.16 5.50 S006.40 30002 Junction: 30010 Junction: 5008.00 Ground: 5004.00 Ground: Depth ----- Elevation --------- Depth Elevation 0.03 4996.34 ----- 0.00 --------- 4995.00 0.66 4996.36 0.02 4995.00 1.26 4996.76 0.42 4995.00 1.88 4997.77 1.43 4995.32 2.42 4998.06 1.72 4995.49 3.04 4998.18 1.84 4995.55 3.86 4998.33 1.99 4995.65 4.45 4998.41 2.07 4995.69 4.75 4998.69 2.35 4995.87 4.9B 4990.98 2.64 4996.04 5.12 4999.09 2.75 4996.12 5.23 4999.13 2.79 4996.14 5.33 4999.13 2.79 4996.14 5.42 4999.11 2.77 4996.14 5.51 4999.09 2.75 4996.12 5.59 4999.07 2.73 4996.10 5.66 4999.04 2.70 4996.09 5.74 4999.01 2.67 4996.07 5.80 4998.99 2.65 4996.05 5.87 4998.97 2.63 4996.04 5.93 4998.94 2.60 4996.02 5.99 4998.92 2.58 4996.01 6.05 4998.90 2.56 4996.00 6.10 4998.90 2.56 4995.99 6.14 4998.69 2.55 4995.99 6.16 499B.B6 2.52 4995.98 6.16 4998.83 2.49 4995.95 6.17 4998.79 2.45 4995.93 6.17 4998.76 2.42 4995.91 6.17 4998.73 2.39 4995.89 6.17 4998.70 2.36 4995.87 6.16 499B.68 2.34 4995.86 6.16 4998.65 2.31 4995.04 6.16 4999.63 2.29 4995.83 6.16 4998.62 2.28 4995.82 6.16 4998.60 2.26 4995.81 6.15 4998.50 2.25 4995.80 6.15 4998.57 2.23 4995.79 6.15 4998.56 2.22 4995.79 6.15 4998.55 2.21 4995.78 6.14 4998.54 2.20 4995.77 6.14 4998.53 2.19 4995.77 6.14 4998.52 2.19 4995.76 6.14 4998.52 2.18 4995.76 6.14 4998.51 2.17 4995.75 6.13 4998.50 2.16 4995.75 6.13 4998.50 2.16 4995.75 6.11 4998.49 2.15 4995J4 6.09 4998.48 2.14 4995.74 6.07 4996.47 2.13 4995.73 6.05 4998.46 2.12 4995.72 6.03 4998.45 2.11 4995.72 6.01 4998.44 2.10 4995.71 6.00 4998.43 2.09 4995.70 5.98 4998.43 2.09 4995.70 5.97 4998.42 2.08 4995.70 5.95 4998.42 2.08 4995.70 5.94 4998.42 2.08 4995.70 5.92 4998.42 2.08 4995.70 5.91 4998.42 2.08 4995.70 5.89 4998.42 2.08 4995.70 30021 S004.00 Depth 0 31 0.31 0.31 0.63 0.80 0.86 0.96 1.00 1.18 1.35 1.43 1.45 1.45---- PIE4 POND 1.45 1.43 1.41 1.40 1.38 1.36 1.35 1.33 1.32 1.31 1.30 1.30 1.29 1.26 1.24 1.22 1.20 1.18---- POND 488 1.17 1.15 1.14 1.13 1.12 1 .11 1.10 1.10 1.09 l.OB 1.08 1.07 1.07 1.06 1.06 1.06 1.05 1.05 1.04 1.03 1.03 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 5:10: 0 5003.15 5.49 5006.39 5.88 4998.42 2.03 1995.70 1.01 0 5003.13 5,49 5006.37 5.86 4998.42 2.06 4995.70 1.01 '5:15: 5:20: 0 5003111 5.45 5006.36 5.85 4998.42 2.08 4995. 69 1.00 5: 25: 0 5003.10 5.44 5006.34 5.83 4998.41 2.07 4995. 69 1.00 5:30: 0 5003.08 5.42 5006.32 5.81 4998.41 2.07 4995.69 1.00 5:35: 0 5003.06 5.40 5006.31 5.80 4998.41 2.07 4995.69 1.00 0 5003.05 5.39 5006.29 5.98 4998.41 2.01 i935. 69 1.00 '5:40: 5:45: 0 5003. 03 5.39 5006.28 5.77 4998.41 2.01 1995.69 1.00 5: 50: 0 5003. 01 5.35 5006.26 5.75 4998.41 2.07 4995. 69 1.00 5:55: 0 5003.00 5.34 5006.25 5.74 4998.41 2,07 4995.69 1.00 6: 0: 0 5002.98 5.32 5006.23 5.72 4998.40 2.09 4995.69 1.00 6: 5: 0 5002.96 5.30 5006.21 5.71 4998.40 2.06 4995.69 1.00 6:30: 0 5002.95 5.29 5006.20 5.69 4998.40 2.06 4995.69 1.00 6:15: 0 5002.93 5.27 5006.18 5.67 4996.40 2.06 4995.69 1.00 6:20: 0 5002.91 5.25 5006.17 5.66 4998.40 2.06 4995.69 1.00 6:25: 0 5002.90 5.24 5006.15 5.64 4998.40 2.06 4995.69 1.00 6 :30: 0 5002.88 5.22 5006.14 5.63 4991 40 2.06 4995.68 0.99 ' 6:35: 0 5002.86 5.20 5006.12 5.61 4991.40 2.06 4995.68 0.99 6 :40: 0 5002.85 5.19 5006.10 5.59 4998.39 2.05 499S.68 0.99 6:45: 0 5002.83 5.17 5006.09 5.58 4998.39 2.05 4995.68 0.99 6:50: 0 5002.81 5.15 5006.09 5.56 4998.39 2.05 4995.68 0.99 6:55: 0 5002,80 5.14 5006.06 5.55 4998.39 2.05 4995.6E 0.99 0: 0: 0 5002.78 5.12 5006.04 5.53 4998.39 2.05 4995.68 0.99 0: 5: 0 5002.76 5.10 5006.02 5_51 4998.39 2.05 4995.68 0.99 0:10: 0 5002.74 5.08 5006.01 5.50 4998.39 2.05 4995.68 0.99 9:15: 0 5002.73 5.09 5005.99 5.48 4998.39 2.05 4995.68 0.99 2720: 0 5002.71 5.05 5005.97 5.46 4998.38 2.04 4995.68 0.99 0 5002.69 5.03 5005.96 5.45 4998.38 2.04 4995.68 0.99 '9:25: 7:30: 0 5002.68 5.02 5005.94 5.43 4998.38 2.04 4995.68 0.99 9:35: 0 5002.66 5.00 5005.93 5.42 4998.38 2.04 4995.67 0.98 7:40: 0 5002.64 4.98 5005.91 5.40 4998.38 2.04 4995.67 0.98 7 :45, 0 5002,12 4,96 5105,89 5,38 4998,38 2,04 4195,67 0.98 0 5002.61 4.95 5005.87 5.36 4998.36 2.04 4995.67 0.98 '9:50: 9: 55: 0 5002.59 4,93 5005.B5 5.34 4998.37 2,03 4995.69 0.98 8: 0: 0 500.2... 57 4.91 5005.84 5.33 4998.37 2.03 4995.67 0.98 6: 5: 0 5002.55 4.89 5005.82 5.31 4998.35 2.03 4995.67 0.98 8:10: 0 5002.53 4.80 5005.80 5.29 4998.37 2,03 4995.67 0.98 8:15: 0 5002.52 4,86 5005.9B 5.20 4998.37 2.03 4995.67 0.98 8:20: 0 5002.50 4.84 5005.76 5.25 4996.37 2.03 4995.67 0.98 8:25: 0 5002.48 4.82 5005.74 5.23 4998.37 2.03 4995.69 0.98 8:30: 0 5002.46 4.80 5005.72 5.21 4998.36 2.02 4995.67 0.98 8:35: 0 5002.44 4.78 5005.70 5.19 4998.36 2.02 4995.67 0.98 0 5002.43 4.97 5005.68 5.19 4998.36 2.02 4995.66 0.97 '8:40: 8:45: 0 5002.41 4.95 5005.66 5.15 4998.36 2.02 4995.66 0.97 8:50: 0 5002.39 4.73 5005.64 5.13 4998.36 2.02 4995.66 0.97 8:55: 0 5002.37 4.91 5005.62 5.11 4998.36 2.02 4995.66 0.97 9: 0: 0 5002.35 4.69 5005.60 5.09 4998.35 2.01 4995.66 0.97 9: 5: 0 5002.33 4.67 5005.58 5.07 4998.35 2.01 4995.66 0.97 9:10: 0 5002.31 4.63 5005.56 5.05 4998.35 2.01 4995.66 0.97 9:15: 0 5002.29 4.63 5005.54 5.03 4998.35 2.01 4995.66 0.99 9:20: 0 5002.27 4.61 5005.52 5.01 4998.35 2.01 4995.66 0.97 9:25: 0 5002.25 4.59 5005.50 4.99 4998.35 2.01 4995.66 0.97 0 5002.24 4.58 5005.48 4.97 4998.34 2.00 4995.66 0.99 '9:30: 9:35: 0 5002.22 4.56 5005.46 4.95 4998.34 2.00 4995.66 0.97 9:40: 0 5002.20 4.54 5005.44 4.93 4998.34 2.00 4995.65 0.96 9:45: 0 5002.18 4.52 5005.42 4.91 4998.34 2.00 4995.65 0.96 9:50: 0 5002.16 4.50 5005.39 4.88 4998.34 2.00 4995.65 0.96 0 5002.14 4.48 5005.37 4.86 4998.33 2.00 4995.65 0.96 �9:55: 0: 0: 0 5002.11 4.45 5005.35 4.84 4998.33 1.99 4995.65 0.96 Mean 5002.83 5.17 5005.93 5.42 4998.46 2.12 4995.74 1.05 Maximum 5003.73 6.00 5006.68 6.17 4999.13 2.99 4996.14 1.45 Minimum 4997.66 0.00 5000.54 0.03 4996.34 0.00 4995.00 0.31 I ............................-......+.0 r. ........ M A.•r..uS.T A..rI Sr rr r.r.S HARMONY CENTER 6 PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN 110112101 JR ENGINEERING File: Pier.dat UPPERMOST MEAN MAXIMUM TIME FEET OF FEET MAX. LENGTH LENGTH MAXIMUM GROUND PIPE CROWN JUNCTION JUNCTION JUNCTION OF SURCHARGE DEPTH IS OF OF JUNCTION JUNCTION ELEVATION ELEVATION ELEVATION AVERAGE ELEV. OCCURENCE AT MAX BELOW GROUND SURCHARGE FLOODING AREA NUMBER IFTI IFTI IFTI 6 CHANGE IFTI HR, MIN. ELEVATION ELEVATION (MIN) (MINI (SQ.FT) 30001 5005.00 5005,00 5002.81 0.0291 5003.74 1 1 0.00 1.26 0.0 0.0 1.147Er05 30002 5008.00 5008+00 5005.91 0.0276 5006.68 2 25 0.00 1.32 0.0 0.0 1.695Et05 30010 5004.00 5000+34 4998.45 0. 0259 4999+13 1 2 0.00 4.87 0.0 0.0 2.941E+03 30011 S004.00 4998+69 4995.73 0.0156 4996+15 1 2 0.00 9.85 0.0 0.0 4.069Et03 �qq#q#kk#kkkggk#k##k##kkq######qdk###q##qq#q # Time History of Flow and Velocity # 4 Q(Cfs), Vel(ftJs), Total(rchlC feet) 4 d#gdgqkdq##ddd#k###qd#d#####k#gdgq#ggqqkqqqqq HARMONY CENTER 6 PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN 1/06/2005 JR ENGINEERING File: Pier.dat 21• RCP TOTAL OVERFLOW Time Conduit: 1001 Conduit: 1010 Conduit: 1011 Conduit: 90004 Conduit: 90005 t:Mn: So Flow Veloc. Flow Veloc. Flow Velo, Flow Veloc. Flow Veloc. 0: ______ 5: ____ 0 0.00 ______ 0.32 _._. 0.00 ...... 0.22 ____ 0.00 ______ 0.00 ____ 0.00 ______ 0.00 ____ 0.00 ------ 0.00 0 1.92 2.94 0.10 1.30 0.00 0.01 0.00 0.00 0.00 0.00 '0:30: 0:15: 0 5.68 4.11 2.60 3.54 0.58 0.67 0.00 0.00 0.00 0.00 0:20: 0 8.70 5.24 10.73 5.03 7.01 1.46 0.00 0.00 0.00 0.00 0:25: 0 10.70 6.27 12.23 5.08 11.63 1.71 0.00 0.00 0.00 0.00 0:30: 0 12.61 7.27 14.81 6.11 13.91 1.80 0.00 0.00 0.00 0.00 0 11.28 6.41 18.31 7.58 17.45 1.92 0.00 0.00 0.00 0.00 '0:35: 0:40: 0 30.85 6.14 19.71 8.18 19.42 1.98 0.00 0.00 0.00 0.00 0:45: 0 10.83 6.13 19.80 8.24 27.71 2.18 10.94 0.00 0.00 0.00 0:50: 0 11.11 6.28 19.49 8.11 38.20 2.39 20.23 0.00 0.00 0.00 0:55: 0 11.37 6.43 19.36 8.05 43.07 2.48 24.29 0.00 0.00 0.00 1: 0: 0 11.66 6.59 19.32 8.03 44.69 2.50 25.50 0.00 0.00 0.00 1: 5: 0 11.95 6.76 19.31 8.03 44.79 2.51 25.39 0.00 0.00 0.00---- PIER POND 1:10: 0 12.23 6.92 19.32 8.03 44.13 2.50 24.60 0.00 0.00 0.00 1:15: 0 12.50 7.07 19.34 8.04 43.10 2.48 23.56 0.00 0.00 0.00 1:20: 0 12.76 7.21 19.36 8.05 42.02 2.46 22.42 0.00 0.00 0.00 0 13.00 7.35 19.36 8.06 40.86 2.44 21.26 0.00 0.00 0.00 '1:25: 1:30: 0 13.22 7.48 19.40 8.07 39.82 2.43 20.16 0.00 0.00 0.00 1:35: 0 13.43 7.60 19.42 8.08 38.71 2.41 19.08 0.00 0.00 0.00 1:40: 0 13.63 7.71 19.45 8.08 37.72 2.39 18.09 0.00 0.00 0.00 1:45: 0 13.82 7.82 19.47 8.09 36.84 2.37 17.15 0.00 0.00 0.00 1:50: 0 13.91 7.92 19.49 8.10 35.95 2.36 16.29 0.00 0.56 0.00 0 14.15 8.00 19.50 8.11 35.32 2.35 15.72 0.00 2.03 0.00 '1:55: 2: 0: 0 14.28 8.08 19.51 8.11 34.99 2.31 15.45 0.00 3.85 0.00 2: 5: 0 14.39 8.14 19.52 8.11 34.63 2.33 i4.99 0.00 5.42 0.00 2:10: 0 14.47 8.19 19.54 8.12 33.74 2.32 13.91 0.00 6.30 0.00 2 :15: 0 14.54 8.23 19.57 8.13 32.38 2.29 12.55 0.00 6.66 0.00 2:20: 0 14.59 8.26 19.59 8.15 31.16 2.26 11.27 0.00 6.82 0.00 2:25: 0 14.64 8.28 19.62 8.16 29.95 2.24 10.09 0.00 6.85 0.00 2:30: 0 14.68 8.31 19.65 8.17 28.91 2.22 9.04 0.00 6.82 0.00 2:35: 0 14.72 8.33 19.67 8.18 27.97 2.20 8.11 0.00 6.75 0.00 ---- POND 488 2: 41: 0 14.75 8.35 19.69 8.19 27.18 2.18 7.30 0.00 6.69 0.00 0 14.77 8.36 19.71 8.19 26.47 2.16 6.61 0.00 6.59 0.00 '2:45: 2:50: 0 14.80 8.37 19.72 8.20 25.83 2.15 5.97 0.00 6.50 0.00 2:55: 0 14.82 8.39 19.74 8.21 25.27 2.13 5.42 0.00 6.39 0.00 3: 0: 0 14.84 8.40 19.75 8.21 24.79 2.12 4.93 0.00 6.30 0.00 3: 5: 0 14.85 8.41 19.76 8.22 24.35 2.11 4.50 0.00 6.19 0.00 0 14.81 8.41 19.77 8.22 23.97 2.10 4.11 0.00 6.08 0.00 '3:10: 3:15: 0 14.68 8.42 19.77 8.22 23.62 2.09 3.78 0.00 5.99 0.00 3:20: 0 14.89 8.43 19.78 8.22 23.31 2.09 3.47 0.00 5.88 0.00 3:25: 0 14.90 8.43 19.78 8.23 23.04 2.08 3.17 0.00 5.79 0.00 3:30: 0 14.91 8.44 19.79 8.23 22.77 2.07 2.92 0.00 5.68 0.00 3:35: 0 14.92 8.44 19.79 8.23 22.52 2.07 2.69 0.00 5.57 0.00 3:40: 0 14.93 8.45 19.80 8.23 22.33 2.06 2.47 0.00 5.47 0.00 3:45: 0 14.94 8.45 19.80 8.23 22.13 2.05 2.27 0.00 5.38 0.00 3:50: 0 14.94 8.46 19.80 8.23 21.95 2.05 2.10 0.00 5.28 0.00 3:55: 0 14. 94 8.45 19.80 8.23 21.78 2.05 1.93 0.00 4.96 0.00 0: 0 14.91 8.44 19.81 8.23 21.60 2.04 1.72 0.00 4.29 0.00 '4: 4: 5: 0 14.89 8.42 19.81 8.23 21.33 2.03 1.47 0.00 3.51 0.00 4:10: 0 14.86 8.41 19.81 8.24 21.07 2.03 1.19 0.00 2.78 0.00 4:15: 0 14.84 8.40 19.81 8.24 20.79 2.02 0.89 0.00 2.14 0.00 4:20: 0 14.83 8.39 19.81 8.23 20.49 2.01 0.59 0.00 1.59 0.00 4:25: 0 14.82 8.39 19.80 8.23 20.20 2.00 0.32 0.00 1.12 0.00 4:30: 0 14.81 8.38 19.79 8.23 19.94 2.00 0.11 0.00 0.72 0.00 4 : 3 5 : 0 14.81 B.38 19.78 8.22 19.80 1.99 0.00 0.00 0.39 0.00 4:40: 0 14.81 8.38 19.75 8.21 19.75 1.99 0.00 0.00 0.15 0.00 4:45: 0 14.81 8.38 19.72 8.20 19.73 1.99 0.00 0.00 0.01 0.00 0 14.81 8.38 19.69 8.19 19.69 1.99 0.00 0.00 0.00 0.00 '4:50: 4:55: 0 14.82 8.36 19.66 8.17 19.66 1.99 0.00 0.00 0.00 0.00 5: 0: 0 14.82 8.39 19.63 8.16 19.62 1.99 0.00 0.00 0.00 0.00 5: 5: 0 14.82 8.39 19.59 8.15 19.60 1.99 0.00 0.00 0.00 0.00 5:10: 0 14.82 8.39 19.56 8.13 19.57 1.98 0.00 0.00 0.00 0.00 0 14.82 8.39 19.53 8.12 19.54 1.98 0.00 0.00 0.00 0.00 '5:15: 5:20: 0 14.83 8.39 19.50 8.11 19.51 1.98 0.00 0.00 0.00 0.00 5:25: 0 14.83 8.39 19.47 8.09 19.48 1.98 0.00 0.00 0.00 0.00 5:30: 0 14.63 8.39 19.44 8.08 19.44 1.98 0.00 0.00 0.00 0.00 5:35: 0 14.84 8.40 19.40 8.07 19.42 1.98 0.00 0.00 0.00 0.00 5:40: 0 14.84 8.40 19.37 8.06 19.38 1.98 0.00 0.00 0.00 0.00 0 14.84 8.40 19.34 8.04 19.35 1.98 0.00 0.00 0.00 0.00 '5:45: 5:50: 0 14.84 8.40 19.31 6.03 19.32 1.98 0.00 0.00 0.00 0.00 5:55: 0 14.84 8.40 19.2E 8.02 19.29 1.98 0.00 0.00 0.00 0.00 6: 0: 0 14.85 8.40 19.25 8.00 19.25 1.98 0.00 0.00 0.00 0.00 6: 5: 0 14.85 0.40 19.21 7.99 19.23 1.97 0.00 0.00 0.00 0.00 6:10: 0 14.85 8.40 19.18 7.97 19.19 1.97 0.00 0.00 0.00 0.00 6:15: 0 14.85 8.40 19.15 7.96 19.14 1.97 0.00 0.00 0.00 0.00 6:20: 0 14.85 8.41 19.11 7.95 19.13 1.97 0.00 0.00 0.00 0.00 6:25: 0 14.85 8.41 19.08 7.93 19.09 1.97 0.00 0.00 0.00 0.00 6:30: 0 14.66 8.41 19.05 7.92 19.05 1.97 0.00 0.00 0.00 0.00 6:35: 0 14.86 8.41 19.02 7.91 19.03 1.97 0.00 0.00 0.00 0.00 40: 0 14.86 8.41 18.98 7.89 18.99 1.97 0.00 0.00 0.00 0.00 '6: 6: 45: 0 14. 86 8.41 18.95 7.88 18. 95 1.97 0.00 0.00 0.00 0.00 6: 50: 0 14.86 8.41 18.92 7.87 18. 92 1.96 0.00 0.00 0.00 0.00 6: 55: 0 14.67 8.41 18.68 7.85 18.89 1.96 0.00 0.00 0.00 0.00 7: 0: 0 14.87 6.41 18.85 7.84 18.86 1.96 0.00 0.00 0.00 0.00 7: 5: 0 14.87 8.42 18.81 7.82 18.84 1.96 0.00 0.00 0.00 0.00 7:10: 0 14.87 8.42 18.78 7.81 18.78 1.96 0.00 0.00 0.00 0.00 7:1S: 0 14.88 8.42 1B.75 7.79 16.76 1.96 0.00 0.00 0.00 0.00 7:20: 0 14.88 8.42 18.71 7.78 18.73 1.96 0.00 0.00 0.00 0.00 7:25: 0 14.88 8.42 18.66 7.77 18.69 1.96 0.00 O.DD 0.00 0.00 7:30: 0 14.88 a.42 18.65 7.75 18.65 1.96 0.00 0.DO D.00 0.00 7:35: 0 14.89 8.42 18.61 7.74 10.61 1.96 0.00 0.00 0.00 0.00 7:40: 0 14.89 8.42 18.57 7.72 18.59 1.96 0.00 0.00 0.00 0.00 7:45: 0 14.89 8.42 18.54 7.71 18.53 1.95 0.00 0.00 0.00 0.00 7:50: 0 14.88 8.42 18.50 7.69 18.52 1.95 0.00 0.00 0.00 0.00 7: 55: 0 14.88 8.42 18.47 7.68 18.48 1.95 0.00 0.00 0.00 0.00 8: 0: 0 14.88 8.42 18.43 7.66 18.45 1.95 0.00 0.00 0.00 0.00 0: 5: 0 14.88 8.42 18.40 7.65 18.41 1.95 0.00 0.00 D.00 0.00 B:10: 0 14.87 8.42 18.36 7.63 18.31 2.95 0.00 0.00 0.00 0.00 8:15: 0 14.87 8.41 1B.33 7.62 18.32 1.95 0.00 0.00 0.00 0.00 8:20: 0 14.87 8.41 18.29 7.60 18.30 1.95 0.00 0.00 0.00 0.00 8 :25: I: 0 14.86 B.41 18.25 7.59 18.27 1.95 0.00 0.00 0.00 0.00 8:30: 0 14.86 8.41 18.22 7.57 18.22 1.94 0.00 0.00 0.00 0.00 8:35: 0 14.86 8.41 18.18 7.56 18.18 1.94 0.00 0.00 0.00 0.00 8:40: 0 14.85 8.40 18.14 7.54 18.15 1.94 0.00 0.00 0.00 0.00 :45: 0 14.85 8.40 18.10 7.53 1 18.12 1.94 0.00 0.00 0.00 0.00 8: 50: '8 0 14.85 8.40 18.06 7.51 18, 08 1.94 0.00 0.00 0.00 0.00 8: 55: 0 14.84 8.40 18.03 7.49 18.02 1.94 0.00 0.00 0.00 0.00 9: 0: 0 14.84 8.40 17.99 7.48 18.00 1.94 a.00 0.00 0.00 0.00 9: 5: 0 14.84 8.40 17.95 7.46 17.97 1.94 0.00 0.00 0.00 0.00 9:10: 0 14.84 8.40 17.91 7.41 17.92 1.93 0.00 0.00 0.00 0.00 0 14.84 8.40 17.87 7.43 17.88 1.93 0.00 0.00 0.00 0.00 '9:15: 9:20: 0 14.83 8.40 17.83 7.41 17.85 1.93 0.00 0.00 0.00 0.00 9:25: 0 14.83 8.39 17.79 7.40 17.80 1.9.3 0.00 O.DO 0.00 0.00 9:30: 0 14.83 B.39 17.75 7.38 17.77 1.93 0.00 0.00 0.00 0.00 9: 35: 0 14.83 8.39 17.71 7.36 17.72 1.91 0.00 0.01 0.00 0.00 0 14.83 8.39 17.67 7.35 17. 67 1.93 0.00 0.00 0.00 0.00 '9:40: 9:45: 0 14.82 8.39 17.62 7.33 17.64 1.93 0.00 0.00 0.00 0.00 9:50: 0 14.52 8.39 17.58 7.31 17.60 1.92 0.00 0.00 0.00 0.00 9:55: 0 14.81 8.38 17.54 7.29 17.56 1.92 0.00 0.00 0.00 0.00 10: 0: 0 14.80 8.38 17.50 7.27 17.51 1.92 0.00 0.00 0.00 0.00 Mean 14.08 8.00 18.46 7.71 22.32 2.01 3.92 0.00 1.36 0.00 aximum 14.94 8.46 19.81 8.24 44.79 2.51 25.50 0.00 6.85 0.00 inimum 0.00 0.32 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 Total 5.069E+05 6.647E+05 8.035E+05 1.410E+05 4.905E+04 ............................................................. • C O N D U I T S U M M A R Y S T A T I S T I C S ' HARMONY CENTER & PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN 1/06/2005 SR ENGINEERING File: Pier.dat CONDUIT MAXIMUM TIME MAXIMUM TIME RATIO OF MAXIMUM DEPTH ABOVE LENGTH CONDUIT DESIGN DESIGN VERTICAL COMPUTED OF COMPUTED OF MAX. TO INV. AT CONDUIT ENDS OF NORM SLOPE CONDUIT FLOW VELOCITY DEPTH FLOW OCCURRENCE VELOCITY OCCURRENCE DESIGN UPSTREAM DOWNSTREAM FLOW UMBER (CPS) (FPS) (IN) (CPS) HR. MIN. (FPS) HR. MIN. FLOW (FT) (FT) (MIN) (FT/FT) 1001 5.52E+00 3.12 1B.000 1.49E+01 3 51 8.46 3 51 2.71 6.17 3.68 0.0 0.0039B 1010 1.03E+01 4.30 21.000 1.99E+01 0 42 8.29 0 42 1.93 6.09 2.79 0.0 0.00629 1011 1.74E+02 2.91 48.000 4.49E.01 1 2 2.51 1 3 0.26 2.79 1.46 8.0 0.00550 UNDEF UNDEF UNDEF 2.56E+01 1 1 '90004 90005 UNDEF UNDEF UNDEF 6.85E+00 2 21 90006 UNDEF UNDEF UNDEF 4.49E+01 1 2 1 •SUBCRITICAL*AND'CRITICAL'FLOWASSUMPTIONS•FROM+: ' SUBROUTINE HEAD. SEE FIGURE 5-4 IN f THE EXTRAN ' MANUAL FOR FURTHER INFORMATION. LENGTH LENGTH LENGTH LENGTH ' OF OF OF UPSTR. OF DOWNSTR. MEAN TOTAL MAXIMUM MAXIMUM CONDUIT DRY SUBCRITICAL CRITICAL CRITICAL FLOW AVERAGE FLOW HYDRAULIC CROSS SECT NUMBER FLOW(MIN) FLOW(MIN) FLOW(MIN) FLOW(MIN) (CPS) 4 CHANGE CUBIC FT RADIUS(FT) AREA(FT2) 1001 0.50 S68.00 0.00 31.50 14.02 0.1077 5.0477E+05 0.4564 1.7671 ' 1010 1.33 593.67 0.00 5.00 18.39 0.0639 6.6212E+05 0.5324 2.4053 1011 6.33 593.67 0.00 0.00 22.24 0.0131 8.0081E+05 1.0874 17,8910 90004 UNDEFINED UNDEFINED UNDEFINED UNDEFINED 3.92 1.4109E+05 9DO05 UNDEFINED UNDF.FINF,D UNDEFINED UNDEFINED 1.36 4.9062E+04 11 90006 UNDEFINED UNDEFINED UNDEFINED UNDEFINED 22.24 B.00B1Ea05 ........................................................... AVERAGEk' CHANGE' IN JUNCTION OR CONDUIT` IS DEFINED AS: • CONDUIT k CHANGE __> 100.0 ( Q(n.l) - Q(n) ) / Qfull ` ` JUNCTION k CHANGE __> 100.0 ( Y(n.l) - Y(n) ) / Yfull The Conduit• with• the• largest average change•••••••••' 1001` had 0.106 percent The Junction with the largest average change... 30001 had 0.029 percent > Extended Transport model simulation ended normally. $NMM 4.4H simulation ended normally. Always check output file for possible warning messages. Your input file was named : x:\3940000.all\3940200\E Your output file was named: x:\3940000.all\394a200\E �•.y....1111.4.4H"•S:mulation• Date- and• Time. Summary.': Starting Date.. January 13, 2005 ' Time... 7:24:31.470 ' Ending Date... January 13, 2005 ' Elapsed Time.. 1,130 minutes. Elapsed Time.. 67.813 seconds. L Project: cj Job No: n off, J� Ient: By: Chk. By: Date: 7 '__ Ibject: Sheet No: _ of i 1 [1 i i 1 1 1 1 i i 1 1 1 1 i fV J•R ENGINEERING A Westrian Company �{_Gf ✓ti,7�-Oi'% i /`i � I < � /' n_'v �d ' i S �� � 'NL'tAM_�l+%�.✓ 7-4 i-J 1 0 4� ILI Cry �! �o� l ��ll,N s I { T / Bent: _ ibject: �, c By: e�g Chk. By: Job No: 5q 40 Date: Sheet No: _ of J•R ENGINEERING A Westrian Company Proposed Detention Ponds - Stage/Storage LOCATION: SETTLER'S CREEK PROJECT NO: 39402.00 COMPUTATIONS BY: ES SUBMITTED BY: JR Engineering DATE: 1/7/2005 V = 1/3 d (A + B + sgrt(A'B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour POND INVERT= WQCV= 100-YR WSEL = SPILLWAY EL = TOP OF BANK = Pond 488 Stage (ft) Surface Area W) Incremental Storage (ac-ft) Total Storage (ac-ft) Detention Storage (ac-ft) 5000.51 0 5001 2620 0.000 0.00 0 5002 21633 0.243 0.24 0.00 5003 58085 0.881 1.12 0.00 5003.46 81239 0.727 1.85 0.00 5004 108749 1.885 3.01 1.88 5005 157600 3.040 6.05 4.92 5006 165268 3.706 9.75 8.63 5006.68 169499 2.613 12.37 11.24 5007 171491 3.865 13.62 15.11 5008 177708 4.008 17.63 19.12 WQCV Provided = 100-yr Detention Volume Required = 1.85 ac-ft 5003.46 11.24 ac-ft per EXTRAN 5006.68 14.7cfs release rate 3940200pond.xls I 1 ' UPDATED MCCLELLAND'S MASTER DRAINAGE J 1 L Final Drainage and Erosion Control Report Settler's Creek MODSWMM MODEL Appendix March 2005 I ' ORIFICE SIZING ' LOCATION: SETTLER'S CREEK PROJECT NO: 39402.00 ' COMPUTATIONS BY: ES SUBMITTED BY: JR Engineering DATE: 1 /7/2005 ' Submerged Orifice Outlet: release rate is described by the orifice equation, Qn = CA sqrt( 2g(h-E,)) ' where Qo = orifice outflow (cfs) C. = orifice discharge coefficient ' g = gravitational acceleration = 32.20 ft/s A, = effective area of the orifice (W) Ea = greater of geometric center elevation of the orifice or d/s HGL (ft) th = water surface elevation (ft) Pond 488 Outlet ' Q. = 14.70 cfs (maximum allowable release rate) outlet pipe dia = D = 18.0 in Invert elev. = 5000.51 ft (inv. "D" on outlet structure) ' Ea = 5003.23 ft (upstream HGL for peak 100 yr flow - from StormCAD) h = 5006.68 ft - 100 yr WSEL Co = 0.67 tsolve for effective area of orifice using the orifice equation A. = 1.472 ft` t = 212.0 in` orifice dia. = d = 16.43 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.91 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Rea = 4Q/(7rdv) = 1.12E+06 ' Co = (K in figure) = 0.67 check Use d = 16 317 in A. = 1.472 ft' = 212.01 in ` Qmax = 14.70 cis 11 1 ' orifice - 100yr, 3940200pond.xls Detention Pond 488 Storage -Discharge Curve 1 1 1 1 1 t LOCATION: SETTLER'S CREEK PROJECT NO: 39402.00 COMPUTATIONS BY: ES SUBMITTED BY: 1R Engineering DATE: 1/6/2005 100-yr outlet Spillway orifice dia. = 16.43 in dia. Ao = 1.47 ftz L = 146 it outlet invert = 5000.51 ft C = 2.6 orifice center= 5001A9 it Co = 0.67 WQCV= 100 WSEL= Qo = Co Av sgrt( 2g [h-(Eo 0.5D)j) aoorox Stage h (ft) Volume storage (ac-ft) Water Depth (ft) 100yr-Orifice discharge (cfs) EXTRAN Discharge (cfs) 5000.51 0.00 0.00 5001,00 0.00 0.49 5002.00 0.24 1.49 5003.00 1.12 2.49 5003.46 1.85 2.95 1 11.91 5004.00 3.01 3.49 13.26 5004.96 5.93 4.45 10.85 5005.00 6.05 4.49 15.44 5005.93 9.50 5.42 12.23 5006.00 9.75 5.49 17.35 5006.10 10.14 5.59 12.76 5006.68 12.37 6.17 18.54 14.72 5007.00 1 13.62 6.49 19.07 Approx. orifice discarge calculated using E. equal to the center elevation of the orifice Pond 488 EXTRAN Depth (ft) Resulting EXTRAN Elevation (k) Stage h (ft) Det. Volume storage (ac-ft) Pond 488 EXTRAN Discharge (cfs) 5000.51 0.00 5001.00 0.00 5002.00 0.24 5003.00 1.12 5003.46 1.85 5004.00 3.01 4.45 5004.96 5004.96 5.93 10.85 5005.00 6.05 5.42 5005.93 5005.93 9.50 12.23 5006.00 9.75 5.59 5006.10 5006.10 10.14 12.76 6.17 5006.68 5006.68 12.37 14.72 5007.00 13.62 Pond 488 Rating, 3940200pond.xls I 2 1 1 2 3 4 ERSHED 0 LELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. 100-YEAR EVENT FILE: MMCD-100.DAT OR ENG., 600 0 0 1.0 1 1.0 25 5 00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 .22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.93 0.91 0.69 0.69 -2 .016 .250 UPDATED BASIN WIDTHS 1 80 50 7109 86.2 40 .01 1 6D 50 1150 8.95 40 .01 1 70 61023929.38 40 .01 1 130 51 716124.66 40 .01 1 100 51 287513.19 40 .01 1 ISO 4 1590 1.84 80 .02 BASIN 130 SPLIT INTO 110-118 BY ICON 1 110 11 12SO 1.93 99 .02 1 111 11 700 1.05 99 .01 '1 112 112 "50 1.34 99 .01 1 113 12 1200 1.34 99 .01 1 114 12 950 1.67 99 .01 1 115 13 1050 1.70 99 .01 1 116 13 1400 2.16 99 .01 '1 117 51 1000 2,85 99 .O1 1 118 14 1250 1.07 99 .01 1 320 11 932 2.14 85 .01 1 120 22 387517.79 80 .02 1 90 2 571513.12 10 .01 ' 1 190 51 210 1.38 80 .001 1 200 20 455031.34 80 .0 1 1 210 44 1090 7.51 80 .01 1 240 7 1742 5.00 80 .01 1 220 45 968322.23 65 .01 1 260 46 345423.79 50 .01 '1 230 49 640314.70 65 .O1 1 290 291 1278 5.87 80 .01 1 340 34 1260 4.34 SO .01 • BASIN 280 SPLIT INTO 280-283 BY ICON 1 280 275 1000 2.04 99 .02 '1 281 28 1650 3.16 99 .01 1 282 29 850 1.50 99 .01 1 283 30 1250 2.02 99 .01 1 330 33 700 5.63 80 .01 1 160 16 3500 4.02 84 .02 '1 121 16 850 1.43 80 .01 1 122 22 1200 1.81 60 .01 1 250 250 500 1.60 80 .01 • OAKRIDGE BLOCK ONE 1 270 270 625 3.30 60 .01 '1 271 271 2017 6.30 55 .01 1 272 272 617 1.50 31 .09 1 360 36 3223 2.37 87 .02 COND. 6/30/99;Re, MBF 3/22/00 UPDATED 1/07/05 1.46 0.95 0.1 0.3 .51 0.5 .0018 • ALL FOLLOWING BASINS FROM MIRAMONT MASTER PLAN, RBD, INC. 1 201 320 321314.75 25.0183 1 202 322 187321.50 50.0165 1 203 172 702432.25 80.0100 1 204 166 413819.00 80.0100 1 205 168 650 5.85 47.0105 '1 206 191 958 7.70 70.0080 1 207 176 171813.80 57.0235 1 208 178 293633.61 70.0170 1 209 321 679523.40 40.0085 1 165 324 299110.30 40.0100 '1 211 325 316510.90 64.0200 1 212 328 1220 4.20 60.0380 1 213 180 147216.89 30.0055 1 214 179 465 1.62 90.0110 1 215 331 500 0.70 90.0270 1 216 32T 1405 0.96 90,0060 ALL FOLLOWING BASINS FROM STETSON CREEK MASTER PLAN, RED, INC. SUBBASINS 301 & 302 MODIFIED FOR HARMONY VILLAGE BY JR ENGINEERING. • ADDED TO MODEL BY ICON 1 301 301 131528,54 71 .005 .430 0.6 1 302 951373647.50 45 .01 .390 0.6 SUBBASIN 303 DELETED FOR WILLOW SPRINGS NORTH, BY ICON CE 365 CHANGED TO 396 BY ICON 1 305 3691709778.50 35.0.0110 1 306 372 2535 8.73 31.2.0200 1 307 360 2951 5,42 17.0.1262 1 308 370 2042 7.03 40.0.0200 1 309 362 888 1.63 4.0.1262 1 311 371 807 2,78 40.0.0200 1 312 363 569 2,09 2.3.1262 I 1 313 367 495 0.91 1.0.0500 1 314 402647091. 15 34.0.0280 1 315 374 417914.39 40.0.0200 BASIN 316 CHANGED TO REFLECT BOMBS VALLEY HOSPITAL BY ICON 1 316 39 192460.OD 85.0.017 0.3 1 317 594 150717.30 57.0.0140 0.3 1 318 593 169919.50 47.0.0150 0.3 _____________ ___________ ALL FOLLOWING SU13BASINS ARE FROM G&0 1986 MCCLELLANDS BASIN MASTER PLAN + EXISTING CONDITION SUBBASINS STWN STETSON CREEK & CTY RD 9 1 217 368 4008 18.4 45. .010 '1 218 368 5053 17.4 50. .030 1 222 32 5605 19.3 50. .008 1 223 102 6699 23.0 50. .040 1 224 102 3006 13.8 45. .010 + G&O SUBBASIN 215 RENUMBERED AS 225, REDUCED TO EXCLUDE WILDWOOD 1 225 3514288 65.6 45. .006 SUBBASIN 304 MODELED BY FOLLOWING DEVELOPED BASINS, FROM • WILLOW SPRINGS END DRAINAGE PLAN, LIDSTONE & ANDERSON, JUNE 1996 1 1 201 1200 8.5 40.0.0200 .016 .250 .1 .3 .51 .5 .00IBO '1 2 202 2000 4.1 68.0.0200 .016 .250 .1 .3 .31 .50 .00180 1 3 203 600 5.7 44.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 4 209 750 1.6 74.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 5 209 1600 2.7 68.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 6 210 3800 7.6 66.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 7 209 ISO 3.3 5/.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 8 210 450 2.3 67.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 9 209 3000 20.2 30.0,0200 .016 .250 .1 .3 .51 .50 .00180 1 10 210 1400 9.1 26.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 14 214 1000 4.8 54.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 15 211 1300 4.4 9.0.0200 .016 .250 .1 .3 .51 .50 .00160 1 16 216 200 1.8 12.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 20 223 600 4.1 46.0.0200 .016 .250 .1 .3 .51 .so .00180 1 21 223 1400 9.0 46.0.0200 .016 .250 .1 .3 .51 .50 .OD180 1 22 223 1800 7.3 52.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 23 224 1000 2.2 61.0.0200 .016 .150 .1 .3 .51 .50 -00180 1 24 224 600 3.1 34.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 25 226 900 4.0 65.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 26 226 10DO 2.7 32.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 30 130 2750 5.9 67.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 31 131 1700 3.6 67.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 32 330 400 2.0 48.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 39 216 700 3.1 11.0.0200 .016 .250 .1 .3 .51 .50 .001BO 1 40 140 1300 6.4 30.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 41 357 800 4.3 43.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 42 241 900 1.5 75.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 50 251 1800 8.1 42.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 63 252 2250 8.9 61.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 61 261 650 2.1 80.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 62 262 1200 4.7 42.0.0200 .016 .250 .1 .3 .51 .50 .00180 SUBBASINS 370 TO 399 UPSTREAM OF LEMAY AVENUE (LIDSTONE & ANDERSON, 1997) 1 370 S70 1050 6.1 63. .010 .016 .25 .1 .3 .31 .5 .0018 1 371 571 2000 11.7 45. .020 .016 .25 .1 .3 .Sl .5 .0018 1 372 572 4900 26.7 45. .020 .016 .25 .1 .3 .51 .5 .0018 1 373 73 2000 8.2 90. .015 .016 .25 .1 .3 .51 .5 .0018 '1 374 574 8000 18.3 86. .020 .016 .25 .1 .3 .51 .5 .0018 1 375 75 5400 26.4 48. .020 .016 .25 .1 .3 .51 .5 .0018 1 376 576 2222 5.1 85. .010 .016 .25 .1 .3 .51 .5 .00lB 1 377 S77 400 1.9 70. .010 .016 .25 .1 .3 .51 .5 .0018 1 308 577 450 2.3 90. .010 .016 .25 .1 .3 .Sl .5 .0018 '1 379 479 450 1.5 00. .010 .016 .25 .1 .3 .51 .5 .0018 1 380 480 350 1.4 70. .010 .016 .25 .1 .3 .51 .5 .0018 1 381 481 550 2.6 30. .010 .016 .25 .1 .3 .51 .5 .0018 1 382 5B2 700 0.8 67. .013 .016 .23 .1 .3 .51 .5 .0018 1 383 493 2439 5.6 85. .020 .016 .25 .1 .3 .Sl .5 .0018 '1 384 84 2400 6.9 84. .020 .016 .25 .1 .3 .Sl .5 .0018 1 385 85 2100 6.3 52. .020 .016 .25 .1 .3 .51 .5 .0018 1 386 586 3543 12.2 70. .010 .016 .25 .1 .3 .51 .5 .0018 1 387 586 BOO 3.2 70. .025 .016 .25 .1 .3 .51 .5 .0018 • SUBBASINS 388 AND 389 SETTLER'S CREEK AND GOODWILL DEVELOPMENTS (OR ENGINEERING, 12/02/04) 1 388 588 3300 13.6 72. .011 .016 .25 .1 .3 .51 .5 .0018 1 389 86 3049 7.0 66. .020 .016 .25 .1 .3 .51 .5 .0018 1 390 490 550 1.4 70. .020 .016 .25 .1 .3 .Sl .5 .0018 1 391 491 600 2.8 90. .020 .016 .25 .1 .3 .51 .5 .0018 '1 392 588 1100 6.6 90. .020 .016 .21 .1 .3 .51 .5 .0018 1 393 88 4400 11.8 95. .020 .016 .25 .1 .3 .51 .5 .cols 1 394 92 900 1.4 90, .020 -016 .25 .1 .3 .51 .5 .0018 1 396 496 2950 13.5 93. .013 .016 .25 .1 .3 .51 .5 .0018 1 397 497 810 3.9 85. .021 .016 .25 .1 .3 .51 .5 .0018 1SUBBASINS 400 TO 407 WILD WOOD FARMS (ICON ENGINEERING, INC. OCT, 1996) 1 400 400 860 9.9 50. .020 .016 .25 .1 .3 .51 .5 .0018 1 401 406 1170 16.3 20. .015 .016 .25 .1 .3 .51 .5 .0018 1 402 406 1520 19.4 45. .020 .016 .25 .1 .3 .51 .5 .0018 1 403 381 4792 11.0 85. .017 .016 .25 .1 1 51 .5 .0018 1 404 382 1790 10.4 55. .025 .016 .25 .1 .3 .51 .5 .0018 1 405 402 3080 3.5 90. .020 .016 .25 .1 .3 .51 .5 .0018 1 406 383 2053 14.1 38. .015 .016 .25 .1 .3 .51 .5 .0018 1 407 384 1921 13.2 40. .015 .016 .25 .1 .3 .51 .5 .0018 1 408 40416901 38.8 85. .015 .016 .25 .1 .3 .51 .5 .0018 'SUBBASINS 500 TO 510 FOSSIL LAKE VILLAGE (ICON ENGINEERING, OCT, 1998) 1 500 517 7812 26.9 50. .010 .016 .25 .1 .3 .51 .5 .0018 1 501 416 5489 18.9 50. .020 .016 .25 .1 .3 .51 .5 .0018 1 502 517 $053 17.4 50. .020 .016 .25 .1 .3 .51 .5 .0018 1 503 41512981 44.7 50. .015 .016 .25 .1 .3 .51 .5 .0018 1 504 415 3427 11.8 50. .020 .016 .25 .1 .3 .51 .5 .0018 'SUBBASIN 504 SPLIT INTO 504 6 514 BY ICON 1 514 413 8160 28.1 50. .020 .G16 .25 .1 .3 .51 .5 .0018 1 505 40919544 67.3 50. .020 .016 .25 .1 .3 .51 .5 .0018 1 506 412 429B 14.8 50. .020 .016 .25 .1 .3 .51 .5 .001B 1 507 412 4559 15.7 50. .010 .016 .25 .1 .3 .51 .5 .001B 1 506 281 7667 26.4 50. .010 .016 .25 .1 .3 .51 .5 .0018 1 509 411 3862 13.3 50. .010 .016 .25 .1 .3 .51 .5 .0018 1 510 411 5227 18.0 50. .010 .016 .25 .1 .3 .51 .5 .0018 -------------------------------- SUBBASINS 511 TO 513 HOMESTEAD (ICON ENGINEERING, OUT, 1998) 1 511 283 8516 39.1 35. .010 .016 .25 .1 .3 .51 .5 .0018 1 512 386/0215 46.9 35. .010 .016 .25 .1 .3 .51 .5 .0018 1 513 38636126124.4 35. .010 .016 .25 .1 .3 .51 .5 .0018 0 0 CE 15 REMOVED BY ICON 0 4 8 0 1 0 800 0.0044 4 4 0.035 5.0 ' CONVEYANCE ELEMENT 8 ADDED BY ICON 0 8 2 0 1 10 1750 0.010 4 4 0.035 5.0 0 7 6 0 1 0 1400 0.0100 0 50 0.016 1.5 0 6 50 0 1 0 1200 0.0032 4 4 0.035 5.0 CE 13 REMOVED BY ICON 0 35 102 0 1 0 1250 0.010 50 50 0.045 5.0 0 16 22 0 1 0 540 0.006 50 50 0.016 2.0 tCE 11 SPLIT INTO 11-14 BY ICON 0 11 12 0 1 0 700 0.006 50 0 0.016 1.5 0 12 13 0 1 0 050 0.006 50 0 0.016 1.5 0 13 51 0 1 0 500 0.006 50 0 0.016 1.5 0 14 51 0 1 0 900 0.006 50 0 0.016 1.5 'CE 112 ADDED BY ICON 0 112 11 0 1 0 700 0.010 50 0 0.016 1.5 CE 9 REMOVED BY ICON • CE 16 REMOVED BY ICON 0 20 51 0 1 0 1100 0.005 4 4 0.035 5.0 0 21 44 0 1 0 1200 0.005 50 0 0.016 1.5 0 44 51 0 1 3 800 0.005 10 10 0.035 2.0 CE 220 CHANGED TO BASIN BY ICON ' -1 220 43 3 3 0 1 ' 0 0 0.32 11.87 4.1 0 ' 0 45 43 3 1 0.1 1 0.001 0.016 0.1 0 0 0.1 11.80 10. 11.87 0 22 43 0 1 0 1600 0.007 4 4 0.035 5.0 • CE 43 CHANGED TO NON -ROUTING ELEMENT BY ICON 0 43 51 3 0.1 1 0.001 0.016 0.1 CONVEYANCE ELEMENTS 50 AND 51 REPLACE C.E. 17 FOR PROPER ROUTING TO POND 2 0 50 2 0 1 10 1000 0. 005 15 15 0.040 5.0 0 51 9 0 1 10 500 0.005 15 15 0.040 5.0 0 9 2 0 1 5 1000 0.006 15 15 0.035 5.0 • CE 230 CHANGED TO BASIN BY ICON 1 230 1B 3 3 0 1 0. 0. 0.30 7.21 7.16 0 0 47 12 3 1 0.1 1 0.001 0.016 0.1 0 0 0.1 7.21 10. 7.21 • 0 24 1 0 1 0 700 0.008 50 0 0.016 1.5 OAKRIDGE BUSINESS PARK 4TH S 8TH FILING OUTLET 0 250 25 3 2 0.1 1 0.005 0.013 0.1 0 0 0.31 0.32 0.33 5. 0 25 22 0 2 1.25 500 0.005 0.013 1.25 ' CE 260 CHANGED TO BASIN BY ICON -1 260 42 3 3 0 1 0. 0. 0.24 11.19 6.99 0 CE 290 CHANGED TO BASIN BY ICON -1 290 18 3 3 0 1 • 0. 0. 0.22 3.06 6.98 0 ' 291 12 3 2 .1 1. 0.005 0.016 .1 0. 0. 0.10 3.06 10.0 3.06 0 46 42 3 1 0.1 1 0. 001 0.016 0.1 0 0 0.1 11.19 10. 11.19 0 26 42 0 5 3.5 800 0.005 0.016 3.5 10 800 0.005 4 4 0.035 5.5 0 42 22 0 2 6 1 0,005 0.016 6.0 �OAKRIDGE BLOCK ONE 0 270 27 0 3 0 1 0.001 0.001 10.0 0 201 27 0 5 2.25 45 0.004 0.013 2.25 0 45 0,004 198 ll� 0.020 5.0 t 0 272 275 6 2 0.1 10 0.001 0.01.3 J.I 0 0.50 0 1.16 0.02 0.76 0.43 1.32 0.13 0.76 ::.2F 0.98 0 275 27 0 2 3.5 676 0.0084 0.013 3.5 0 27 41 8 2 0.1 10 0.001 0.01-1 J.1 0 0 0.03 0.78 0,22 2.51 0.57 3.46 0,90 0 41 26 4,21 0 5 1.37 4.0 4.89 '_00 0.005 2.10 57.63 tL; 0.0,6 191-38 6.0 ' 10 100 0.005 50 50 0.0_c 5.0 0 36 26 0 5 1.25 90 0.014 0.033 1.25 0 90 0.014 200 200 0.020 5.0 CE 2B SPLIT INTO 2B-30 BY ICON 0 28 275 0 1 0 1000 0.005 0 50 0.016 1.5 0 29 28 0 1 0 1650 0.005 0 50 0.016 1.5 0 30 29 0 1 0 850 0.005 0 50 0.016 1.5 • CE 340 CHANGED TO BASIN BY ICON -1 340 16 3 3 0 1 0. 0. 0.23 1.91 6,96 0 ' 34 16 3 2 .1 1. 0.005 0.016 .1 0.0 0.0 0.1 1.91 10.0 1.91 • COVEYANCE ELEMENTS BETWEEN 92 AND 470 UPSTREAM OF LEMAY AVENUE (L n A, 1997) 92 99 0 2 2. 1000. .010 0. U. .013 2. -1 395 89 4 3 .1 1. .1 0.0 0.0 0.5 3.6 9.6 3.6 9.95 0.0 99 88 0 1 0. 800. .007 4. 4. .035 5. 490 90 4 2 .1 1. .1 0.00 0. 0.20 0.46 0.22 0.48 0-4 2.50 POND 491 REVISED BY ICON ' 491 90 4 2 .1 1. .1 0.00 0. 0.50 1.0 0.60 91.9 0.70 260. 90 BE 0 4 0. 500. .010 50. 50. .016 .5 50. 500. .010 10. 10. .035 S. 496 BB 6 2 .1 1. .1 t 0.00 0. 0.01 12.0 0.11 12.4 0.79 12.8 2.06 13.2 3.53 31.6 BB SBB 0 1 0. ]00. .008 4. 4. .035 S. 491 588 > 2 .1 1. .1 0.00 0. 0.01 1.57 0.05 1.61 0.36 1.67 0.67 1.73 0.84 1.76 1.30 20.16 588 488 0 3 .1 1. • HARMONY CENTRE DETENTION POND RATING CURVE WAS COMPILED PROM THE • RESULTS OF EXTRAN DYNAMIC PLOW MODEL AND IS NOT APPLICABLE TO ANY INFLOW CONDITION OTHER THAN THAT WHICH IS MODELED HEREIN ' POND 488 REVISED BY SR ENGINEERING FROM EXTRAN ANALYSIS 1/07/05 4B8 586 5 2 .1 1. .1 0.00 0.0 5.93 10.85 9.50 12.23 10.14 12.76 12.37 14.72 683 682 3 3 . 1. .1 0.0 0.0 0.0 4 .6 1.3 8.0 1.8 682 B2 0 3 .1 1. 683 0 3 .1 1. 82 85 0 4 0. 1300. .014 50. 50. .016 .5 85 586 0 4 50. 0. 1300. .014 1000. .011 10. 50. 10. 50. .035 .016 5. .5 ' 50. 1000. .011 10. 10. .035 5. 84 586 0 4 0. 700. .010 50. 50. .016 .5 50. 700. .010 10. 10. .035 5. 586 4B6 0 3 PIER DETENTION POND .1 REVISED 1. BY ICON 6/30/99 Revised by MBF 3/22/00 486 584 6 2 .1 1. .1 0.00 0.0 0.01 1.52 0.25 12.01 1.05 19.96 3.76 23.72 4.87 41.22 584 684 9 3 .1 1. .1 0.0 0.0 20.0 0.0 21.0 1.0 24.0 3.0 1673 27.0 6.0 30.0 9.0 48.0 27.0 684 83 0 3 .1 1. 673 73 0 3 .1 1. 83 583 0 1 5. 400. .005 4. 4. .035 5. POND 483 REVISED BY ICON 483 583 4 2 .1 1. .1 0.00 0. 0.94 2.8 1.14 2.6 4.0 2.B 583 72 0 3 .1 1. 72 572 0 5 3. 700, .004 0. 0. .013 3. 0. 700. .006 50. 50. .016 5. 73 572 0 4 0. 1300. .006 50. 50. .016 .5 50. 1300. .006 10. 10. .035 5. ` POND 481 removed so model could be run in new MODSWMM 11/17/04 481 5]] 3 .1 1. .1 POND 480 REVISED BY ICON 460 5]] 9 2 .1 1. .1 0.00 0. 0.02 I. 0.03 2. 0.05 4. 0.06 6. 0.07 9. 0.08 14. 0.09 18. 0.10 20. 5]] 6 2 .1 1. .1 '479 0.00 0. 0.03 0.5 0.09 1. 0.05 2.5 0,07 8. 0.08 12.7 5]] 477 0 3 .l I. 477 76 14 2 .1 1. .1 0.00 0. 0.05 2. 0.19 4. 0.25 6. 0.27 8. 0.29 12. 0.30 16. 0.32 20. ' 0.34 30. 0.36 45. 0.39 60. 0.46 75. 0.50 90. 0.55 305. 76 576 0 1 0. 800. .00? 4. 4. .035 5. 576 574 0 3 .1 1. 75 574 0 1 5. 600. .007 4. 4. .035 5. ' 574 474 0 3 .1 1. 474 74 8 2 .1 1. .1 0.00 0.0 2.23 0.5 5.94 2.0 10.23 4.4 13.60 B.0 15.13 10.2 16.66 12.5 18.20 13.5 ' "!4 572 572 0 1 10. 472 0 3 .1 700. .006 1. 10. 10. .035 5. 472 571 12 2 .1 1. .1 0.00 0. 0.71 3. 0.89 6. 1.18 9. 1.73 12. 2.52 15. 3.66 18. 5.11 21. 6.95 571 24, 7,76 491 0 3 .2 29, 1. 1,04 30, 9,50 81. 471 590 9 2 .1 1. .1 0.00 0. 0.19 10. 0.39 20. 0.68 30. 0.77 32. 0.84 40. 0.67 50. 0.89 60. 0,97 590 101, 470 0 3 .1 1. ' 470 31 7 2 .1 1. .1 . 0.00 0. 0.08 10. 0.12 20. 0.24 30. 0.66 40. 1.00 44. 1.47 160. END OF LIDSTONE & ANDERSON INSERT UPSTREAM OF LEMAY AVENUE 0 31 275 0 5 3 108 0.0075 0.013 3.0 30 108 0.0075 50. 50. .035 5. ARTIFICIAL OVERFLOW CHANNEL TO ELIMINATE SURCHARGE 0 33 21 0 1 0 700 0.008 50 0 0.016 1.5 OAKRIDGE POND WITH REVISED OUTLET HYDRAULICS 0 2 216 12 2 0.1 77 0.007 0.013 0.1 0.0 0.0 0.59 86.17 2.36 115.72 6.19 144.72 12.05 169.80 19.65 193.70 28.60 214.81 33.64 224.38 38.67 233.10 49.31 251.39 59.39 269.69 70.59 287.99 ALL FOLLOWING CONVEYANCE ELEMENTS FROM MIRAMONT MASTER PLAN, RED, INC. POND 166 (301) RATING CURVE COMPOSITES 3 DETENTION PONDS IN BASIN 204 0 166 167 3 2 0.1 96 0.0060 0 0 0.013 0.10 0.0 0.0 1.6 24.0 3.4 26.4 0 167 169 0 1 4.00 260 0.0021 2 2 0.035 4.00 POND 168 (303) RATING CURVE FROM EVANGELICAL COVENANT REPORT BY LANDMARK POND 168 EXTENDED BY ICON 0 168 169 5 2 0.1 10 0.0010 0 0 0.013 0.10 0.0 0.0 0.07 0.90 0.43 1.36 0.72 93.26 1.01 261.36 CE 169 CHANGED TO PIPE W/OVERFLOW BY ICON ' 0 169 170 0 5 2.27 40 0.0070 0 0 0.013 2.27 40 40 0.0070 50 50 0.016 4.00 0 170 174 0 1 4.00 460 0.0021 2 2 0.035 4.00 • FUTURE DETENTION POND 171 (306) 0 171 174 3 2 0.1 10 0.0038 0 0 0.013 0.10 0.0 0.0 1.0 4.0 2.0 4.3 POND 172 (307) RATING CURVE COMPOSITES 5 DETENTION PONDS IN BASIN 203 ' POND 172 EXTENDED BY ICON 0 172 173 5 2 0.1 120 0.0033 0 0 0.013 0.10 0.0 0.0 6.5 5.5 8.0 6.0 9.0 97.9 10.0 266. CE 173 CHANGED TO CHANNEL W/OVERFLOW BY ICON 0 173 17S 0 4 0 1200 0.0050 4 4 0.035 1.10 30 1200 0.0050 150 150 0.035 3.00 CE 304 CHANGED TO PIPE W/OVERFLOW BY ICON 0 174 175 0 5 2.25 75 0.0211 0 0 0.013 2.25 40 75 0.0211 50 50 0.016 4.00 CE 175 CHANGED TO PIPE W/OVERFLOW BY ICON 0 195 177 0 5 2.50 853 0.0123 0 0 0.013 2.50 POND 176 50 (311) RATING CURVE 853 0.0123 FROM OAKRIDGE 50 WEST PUD 50 REPORT BY 0.016 RBD 4.00 POND 176 EXTENDED BY ICON 0 176 177 T 2 0.1 315 0.0020 0 0 0.013 0.10 0.0 0.0 0.04 1.10 0.23 1.71 0.79 2.15 1.78 2.56 2.44 94.46 3.10 261.7E CE 177 CHANGED TO PIPE W/OVERFLOW BY ICON ' 0 177 341 0 5 3.00 480 0.0100 0 0 0.013 3.00 10.0 480 0.0100 50 50 0.016 5.00 0 178 177 9 2 0.10 1310 0.0033 0 0 0.013 0.10 0.0 0.0 1.95 5.0 2.70 5.8 3.4 6.5 4.2 8.8 4.6 16.2 4.9 29.5 5.2 44. ' 5.5 60. 0 320 321 0 1 5.00 1350 0.0050 4 4 0.035 4.00 • POND 321 EXTENDED BY ICON 0 321 324 10 2 0.1 300 0.0053 0 0 0.013 0.10 0.0 0.0 0.05 0.0 0.31 2.6 0.79 4.3 ' 1.52 5.5 2.55 6.4 3.85 0.3 5.40 8.0 6.30 99.9 7.20 268. • FUTURE DETENTION POND 322 0 322 323 3 2 0.3 10 0.0100 0 0 0.013 0.10 0.0 0.0 1.9 11.0 4.0 11.3 0 323 324 0 1 0 1500 0.0142 50 0 0.016 1.50 CE 324 MODELED USING HGL AS SLOPE 0 324 331 0 2 3.00 36 0.0222 0 0 0.013 3.00 0 325 326 0 1 4.00 420 0.0050 4 4 0.035 3.00 * CE 326 MODELED USING HGL AS SLOPE ' ADDED OVERFLOW TO CE 326 TO ELIMINATE SURCHARGE - ICON 0 326 327 0 5 3.50 214 0.0168 0 0 0.013 3.50 40 214 0.0168 50 50 0.016 5.0 0 320 329 0 1 4.00 950 0,0050 4 4 0.035 3.00 CE 328 MODELED WITH STREET CROWN OVERFLOW USING HGL AS SLOPE ' 0 328 329 0 5 1.75 101 0.0149 0.013 1.75 0 101 0.0149 133 44 0.016 5.0 0 329 180 0 1 5.00 . 240 0.0050 4 4 0.035 4.00 • CE 179 (330) MODELED WITH STREET CROWN OVERFLOW USING HGL AS SLOPE 0 179 324 0 5 1.50 80 0.0110 0.013 1.50 0 80 0.0110 167 167 0.016 5.0 CE 331 MODELED USING HGL AS SLOPE 0 331 325 0 2 3.00 30 0.0267 0 0 0.013 3.00 RATING CURVE FOR POND 180 WAS REVISED BY THE CITY (11/19/99) 0 180 341 8 2 0.10 20 0.0040 0 0 0.013 0.10 ' 0.0 0.0 0.21 4.00 1.00 1B.00 1.91 37.20 2.95 52. 40 4.16 68.00 4.82 98.00 5.17 88.00 0 341 4 0 5 5.20 120 0.0040 0 0 0,013 5.20 0 120 0.0040 50 50 0.016 9.00 •---- -------------------- --------------------------- -------- ------.'-___ .ALL FOLLOWING CONVEYANCE ELEMENTS FROM STETSON CREEK. MASTER PLAN, RED, INC. 'CONCEPTUAL DETENTION FOR SUBBASINS 301 AND 303 CE 303 REMOVED BY ICON POND 301 REVISED BY JR ENGINEERING FOR HARMONY VILLAGE, ADDED BY ICON 0 301 91 9 2 0.1 1 0.0050 0.013 0.1 ' 0,00 0.0 0,10 2,21 0.85 4.20 1.88 5.32 2.45 5.96 3.27 13.38 4.26 14.36 4.56 36.21 5.73 5/.96 0 9i 93 0 1 0 1325 0.0150 4 4 0.060 5.0 0 93 94 11 2 0.1 1 0.0050 0.013 0.1 ' 0,10 0.0 0,05 0,00 0,51 0.0 1,98 0.0 1.62 1.9 2.40 5.40 3.33 7.7 4.35 14. 5.41 20.7 6.52 93.90 7.65 219.5 0 94 241 0 1 0 500 0.0027 3 3 0.035 5.0 0 95 93 0 3 0 1 0 357 358 0 1 16 10 0.0050 4 4 0.045 4.00 0 35B 359 0 2 9.44 103 0.0050 0.013 9.44 0 359 360 0 1 16 950 0.0050 4 4 0.045 4.00 0 360 361 0 2 9.44 46 0.0050 0.013 9.44 0 361 362 0 1 16 619 0.0050 4 4 0.045 4.00 0 362 363 0 1 16 215 0.0050 4 4 0.045 4.00 0 363 364 0 1 16 415 0.0050 4 4 0.045 4.00 OVERFLOW ADDED TO CE 364 FOR DEV. COND. BY ICON 0 364 366 0 4 16 90 0.0050 4 4 0.045 5.00 40 90 0.0050 50 50 0.035 6.00 CE 365 CHANGED TO 396 BY ICON 0 369 366 0 4 0 1125 0.0045 4 4 0.035 2.30 50 1125 0.0045 50 SO 0.035 5.00 OVERFLOW ADDED TO CE 366 FOR DEV. CORD. BY ICON 0 366 367 0 4 16 377 0.0050 4 4 0.045 5.00 40 377 0.0050 50 50 0.035 6.00 ' OVERFLOW ADDED TO CE 38 AND 39 FOR DEV. COST. BY ICON 0 38 373 0 4 0 lOB0 0.0050 4 4 0.035 3.50 40 1080 0.0050 50 50 0.016 4.50 0 39 38 0 4 0 860 0.0050 4 4 0.035 3.50 40 860 0.0050 50 50 0.016 4.50 'THE SEAR -BROWN GROUP - POUDRE VALLEY HOSPITAL SITE CONVEYANCE ELEMENTS CHANGED TO 591, 592, 593, 594 BY ICON • POND 593 WITHIN BASIN 318 0 593 592 10 2 0.10 1 0.005 0.013 0.10 0.00 0.0 .57 0.50 1.14 3.04 1.40 3.57 1.79 6.40 2.45 9.32 2.60 9.71 3.23 11.14 4.01 12.73 4.99 14.12 0 592 39 0 1 4.0 1000 0.016 4.0 4.0 0.035 3.5 • POND 594 WITHIN BASIN 317 ' 0 594 591 10 2 0.10 1 0.005 0.013 0.10 0.00 0.0 0.36 2.70 0.74 2.99 1.12 3.26 1.40 3.39 1.69 5.44 2.26 8.42 2.40 8.55 2.90 8.96 3.54 9.46 0 591 39 0 1 0 1300 0.005 4.0 4.0 0.035 3.5 • ----------------------------------------------------------------------- 'CONVEYANCE ELEMENT 40 ADDED BY ICON 0 40 373 0 1 5 1400 0.0050 4 4 0.035 5.00 POND 370 REVISED BY ICON 0 370 361 2 2 0.10 1 0.0050 0.013 0.10 0.00 0.0 0.96 33.52 0 371 362 2 2 0.10 1 0.0015 0.013 0.10 0.00 0.0 .550 1.95 POND 372 RATING CURVE FROM STETSON CREEK 2ND FILING, BY NORTHERN ENGINEERING 0 372 363 6 2 0.10 1 0,0020 0.013 0.10 0.00 0.00 0,17 10. 00 0.42 22.37 0.74 33.27 0.94 39.98 1.19 50. 54 ' 0 393 364 1B 2 0.10 1 0.0042 0.013 0.10 0.00 0.0 .061 0.00 .465 0.0 1.578 0.0 3.566 6.4 6.256 16.8 6.909 18.0 7.562 18.8 8.216 19.6 8.869 20.8 9.522 21.6 9.910 31.5 10.296 49.4 10.683 72.6 11.075 99.7 11.463 130.9 '13.4 333.7 15.52 429.6 POND 374 EXTENDED BY ICON 0 374 38 14 2 0.10 1 0.0040 0.013 0,10 0.00 0.0 .009 0.00 .119 0.0 0.230 0.0 0.409 1.13 0.469 2.11 0.528 2.76 0.678 3.94 ' 0.827 4.84 1.062 5.60 1.29T 6.27 1.532 5.97 1.911 7.29 2.341 59.9 __________________________I _.... ...... ..... .... • ALL FOLLOWING CONV. ELEMENTS ARE FROM G60 1986 MCCLELLANDS BASIN MASTER PLAN ' EXISTING CONDITION CONVEYANCE ELEMENTS SUBBASINS BTWN STETSON CREEK 4 CIY RD ' 0 32 102 0 1 1.0 500 0.006 75 1.5 0.045 5.0 0 367 368 0 4 5.0 950 0.009 2.0 2.5 0.045 8.0 35.0 950 0.007 75.0 45.0 0.045 14.0 0 368 102 0 4 5.0 1960 0.010 3.0 3.0 0.045 5.0 30.0 1960 0.010 60.0 30.0 0.045 11.0 CROSSING UNDER CFY RD 9; PER RHO 1989 MCCLELLANOS BASIN CH. IMP. PHASE ONE 0 102 410 0 5 4.5 50 0.005 0.024 5.6 29.0 50 0.005 25 100 0.018 10.0 ' SUBBASIN 304 MODELED BY FOLLOWING CONVEYANCE ELEMENTS, FROM ' WILLOW SPRINGS PM DRAINAGE PLAN, LIDSTONE b ANDERSON, JUNE 1996 201 202 0 3 .1 1. 202 209 0 3 .1 1. 203 209 0 3 .1 1. 209 210 0 3 .1 1. ' 10 3 .1 1. 3140 10 190 16 2 .1 1. 0.0 0.0 0.38 0.13 1.00 1.19 1.50 1.97 3,40 3.93 4.36 6.64 6.03 9.94 8.87 8.36 10.27 8.56 11.49 9.03 12.41 9.21 12.99 9.32 ' 13,17 9,19 13.72 9.45 13.85 9.46 13.89 9.48 214 315 0 3 .1 1. 215 315 0 3 .1 1. POND 315 REVISED BY ICON 315 216 8 2 .1 1. ' 0.0 0.0 0.06 2,11 0,24 3,01 0,59 4,00 0.85 4.50 1.23 5.00 1.43 96.9 1.63 265.0 216 116 0 3 .1 1. 116 140 0 1 10. 1650. .003 4.0 4.0 .035 5.0 140 357 0 1 10. 000. .003 4.0 4.0 .035 5.0 123 224 0 3 .1 1. 224 334 0 3 .1 1. POND 334 REVISED BY ICON 6/25/99 334 124 11 2 .1 1. 0.0 0.0 0.07 4.00 0.24 6.00 0.52 8.00 0.97 10.0 1.64 12.0 2.46 14.0 3.44 16.0 4.66 18.0 5.09 18.63 S.SB 19.33 124 226 0 2 3.0 625. .0080 0.0 0.0 .011 5.0 226 336 0 3 .1 1. • POND 336 REVISED BY ICON 336 337 8 2 .1 1. ' 0.0 0.0 0.15 4.00 0.44 6.00 0.98 8.00 1.85 10.0 2.27 10.7 2.54 36.8 2.81 84.3 130 131 0 2 3.0 450. .0070 0.0 0.0 .013 3.0 131 330 0 2 3.5 250. .0070 0.0 0.0 .013 3.5 330 241 7 2 .1 1. 0.0 0.0 0.07 1.00 0.23 2.00 0.57 3.00 1.05 4.0 1.85 5.00 2.96 6.00 251 350 0 3 .1 1. • POND 350 REVISED BY ICON 350 216 9 2 .1 1. 0.0 0.0 0.07 1.00 0.25 2.00 0.63 3.00 0.82 3.5 1.10 4.00 1.15 4.10 1.30 96.0 1.45 264.1 252 160 0 3 .1 1. 160 261 0 5 1.5 205. .0100 0.0 0.0 .013 1.5 0.0 275. .0100 10. 10. .035 5.0 261 262 0 3 .1 1. 262 365 0 3 .1 1. 365 241 7 2 .1 1. 0.0 0.0 1.2S 6.3 2.42 7.5 2.52 14.0 2.63 25.9 2.73 41.3 2.83 59.5 241 141 0 3 .1 1. 141 357 0 1 10.0 500. .0030 4.0 4.0 .035 5.0 • WILDWOOD FARM SUBDIVISION (ICON ENGINEERING, INC) 381 0.0 392 5.2 .1 1. .1 0.0 0.0 0.48 2.2 0.96 5.51 2.03 6.3 2.14 48.9 382 401 16 2 .1 1. .1 0.0 0.0 0.09 1.2 0.24 2.4 0.51 3.6 0,59 4.0 0,61 6.0 1,70 7 2 0,71 8.4 0.83 9.6 0.84 10.0 0.93 12.0 1.10 20.0 1.24 30.0 1.35 40.0 1.47 50.0 1.51 55.0 ' 401 402 0 1 2. 550. .013 50. 50. .016 1. 402 406 0 1 2. 950. .006 50. 50. .016 1. 400 406 0 1 10. 710. .006 S. 6. .040 2. 406 380 0 3 .1 1. .1 POND 380 REVISED BY ICON 6/25/99 ' 380 403 12 2 .1 1. .1 0.0 0.0 2.90 8.8 3.09 9.3 3.19 10.0 3.59 15.0 3.99 20.0 4.80 21.8 5.00 22.0 5.54 22.9 6.24 52.4 6.58 75.1 6.93 107.7 384 404 5 2 .1 1. .1 ' 0.0 0.0 0.0 1.01 3.9 1.89 9.3 1.94 11.5 1.98 15.5 383 407 9 2 .1 1. .1 0.0 0.0 .736 1.34 1.328 3.89 1.58 4.37 1.76 4.65 2.05 22.32 2.10 56.67 ' 403 407 0 1 5. 950. .004 4. 4. .045 5. 402 405 0 3 .1 1. .1 405 410 0 5 3.5 2000. .002 0. 0. .013 3.5 40. 2000. .002 50. 50. .016 5. 404 409 0 5 3.5 40. 900, 900. 0.015 0.015 0. 50. 0. 50_ .016 .016 3.5 5. HOMESTEAD SUBDIVISION (ICON ENGINEERING, INC) 388 387 0 1 5. 1300. .009 150. 150. .045 S. 3:7 36 386 284 0 1 0 1 5. 4. 750. 800. .007 .003 150. 150. 150. 150. .045 .045 5. 5. ' 284 283 0 1 4. 700. .0063 150. 150. .045 5. 283 282 0 1 7. 1000. .0057 70. 40. .045 5. 282 410 0 1 9. 800. .046 9. 1.5 .045 5. FOSSIL CREEK VILLAGE (ICON ENGINEERING, INC) 281 414 0 1 2. 1500. .015 55. 76. .035 5. 409 413 0 1 I. 1500. .010 50. 50. .045 5.0 410 411 0 4 S. 600. .045 2.5 3.0 .035 7. 45. 600. .045 25.0 50.0 .035 13. 411 412 0 4 5. 1060. .0038 3. 2. .035 6. 30. 1060. .0038 35.0 60.0 .035 11. 412 413 0 4 S. 870. .006 5.0 2.0 .035 6. 50. 870. .006 30.0 45.0 .035 12. 413 414 0 5 5. 40. .006 0. 0. .035 5. 50. 40. .006 100. 100. .016 10. ' 414 415 0 1 5. 1180. .006 30.0 25.0 .035 10. 415 416 0 1 5. 1050. .006 40. 50. .035 10. 416 517 0 1 5. 800. .006 40. 25. .035 6. 517 417 0 3 .1 1. .1 SWIFT RESERVIOR NOT MODEL AS A ROUTING ELEMENT 417 0 0 2 .1 1. .003 0. 0. .035 .1 0 2 SBB �86 PROGRAM I 1 I ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 ' DEVELOPED BY METCALF EDDY, INC, i UNIVERSITY OF FLORIDA ' WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 19]0) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 19]3) ' HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 19]4) TAPE OR DISK ASSIGNMENTS BOYLE ENGINEERING CORPORATION (MARCH 19B5, JULY 19B5) JIN(3) JIN(2) JIN(3) JIN(4) JIN(51 JIN(6) JIN(]) JIN(8) JIN(9) JIN(1O) ' 2 1 0 JOUT(1) JOUT(2) JOUT(3) 0 0 0 0 0 0 JOUT(4) JOUI(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) 0 JOUT(30) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) ' 3 4 0 0 0 WATERSHED PROGRAM CALLED ' ••` ENTRY MADE TO RUNOFF MODEL ••• MCCLELLANDS BASIN MODEL (PULLY INTEO.) DEVEL. COMM. 6/30/99;Rev. MBP 3/22/00 100-YEAR EVENT PILE: MMCD-100.DAT OR MG., UPDATED 1/07/05 NUMBER OF TIME STEPS 600 INTEGRATION TIME INTERVAL (MINUTES) 1.00 ' 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR ' 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.4B 1.46 1.22 1.06 1.00 .95 .91 .87 .84 .B1 .78 .75 .73 .71 .69 .67 .00 ' MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. MBF 3/22/00 100-YEAR EVENT FILE: MMCD-100.DAT OR MG., UPDATED 1/07/05 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 .0 .0 00180 .0 .0300 .016 .250 .100 .300 .51 .50 ' 80 50 7309.0 B6.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 60 50 1150.0 8.9 40.0 .0100 .016 .250 .100 .300 .51 .50 00180 1 70 6 10239.0 29.4 40.0 .0100 .016 .250 .100 .300 .51, .50 ' .00180 1 130 51 7161.0 24.7 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 100 51 2B75.0 13.2 40.0 .0100 .016 .250 .100 .300 .51 .50 00180 1 4 1590.0 1.8 80.0 .0200 .016 .250 .100 .300 .51 .50 001818 0 1 110 11 1250.0 1.9 99.0 .0200 .016 .250 100 .300 .51 .50 .00180 1 111 11 700.0 1 . 1 99.0 .0300 016 .250 .100 .300 51 .50 00160 ' 112 112 750.0 1.3 99.0 .0100 .016 .250 .100 .300 .51 .50 00180 1 113 12 1200.0 1.3 99.0 .0100 .016 .250 .100 .300 51 .50 .00180 1 114 12 950.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 ' 00180 1 115 13 1050.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .001B0 1 116 13 1400.0 2.2 99.0 .0100 .016 .250 .100 .300 .51 .50 ' 0180 117 1 51 3000.0 2.9 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 118 14 1250.0 1.1 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 320 00160 11 1 932.0 2.1 B5.0 .0100 .016 .250 .100 .300 .51 .50 120 22 3875.0 17.8 Bolo .0200 .016 .250 .100 .300 .51 .50 .00180 1 90 2 5715.0 13.1 10.0 .0100 .. 016 .250 .100 .300 .51 .50 00180 190 1 51 250.0 1.4 80.0 .0300 .016 .250 .300 .100 .51 .50 .00180 1 200 20 4550.0 31.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .001B0 1 210 44 1090.0 0.5 80.0 .0100 .100 .300 .51 .50 00180 1 .016 .250 ' 240 7 1742.0 5.0 80.0 .0100 .016 .250 .100 .300 -51 .50 .00180 1 220 45 9683.0 22.2 85.0 .0100 .016 .250 .100 .300 .51 .50 00180 260 46 1454.0 23.8 50.0 .0300 .016 .250 .300 .100 .51 .50 ' 00160 1 230 47 6403.0 14.7 85.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 290 291 1278.0 5.9 80.0 .0100 .016 .250 .300 -300 .51 .50 00180 ' 3 34 1260.0 4.3 80.0 .0100 .016 .250 .100 .300 .51 .50 001818 0 1 280 275 1000.0 2.0 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 281 28 1650.0 3.2 99.0 .0100 .016 .250 .100 .300 .51 .50 ' 00180 1 282 29 850.0 1.5 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 283 30 1250.0 2.0 99.0 .0100 .016 .250 .100 .300 .51 .50 O0180 1 ' 330 33 700.0 5.6 80.0 .0100 .016 .250 .100 .300 .51 .50 001818 0 1 160 16 3500.0 4.0 84.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 121 16 850.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 ' 00160 1 122 22 1200.0 1.8 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 250 250 500.0 1.6 80.0 .0100 .016 .250 .100 .300 .51 .50 00180 1 ' 2 270 625.0 3.3 60.0 .0100 .016 .250 .300 .300 .51 .50 001818 0 1 271 271 2017.0 6.3 55.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 ]]2 272 B17.0 1.5 31.0 .0900 .016 .250 .100 .300 .51 .50 ' 00180 1 360 36 3223.0 2.4 87.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 201 320 3213.0 14.8 25.0 .01B3 .016 .250 .100 .300 .51 .50 202 322 1873.0 21.5 50.0 .0165 .016 .250 .100 .300 .51 .50 ' .00180 100180 203 172 7024.0 32.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 204 166 4138.0 19.0 80.0 .0100 00180 1 .016 .250 .100 .300 .51 .50 t 205 168 650.0 SA47.0 .0105 .016 .250 .100 .300 .51 .50 .00180 1 206 171 958.0 ].] 70.0 .0080 .016 .250 .100 .300 .51 .50 00180 207 176 1718.0 13.8 57.0 .0215 .016 .250 .100 .300 .51 .50 ' 001BO 1 208 178 2936.0 33.6 70.0 .0170 .016 .250 .100 .300 .51 .50 .00180 1 209 321 6795.0 23.4 40.0 .0085 .016 .250 .100 .300 .51 .50 00180 ' 165 324 2991.0 10.1 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 211 325 3165.0 10.9 64.0 .0200 .016 .250 .300 .300 .51 .50 .00100 1 1 212 320 1220.0 4.2 80.0 .0380 .016 .250 .100 .300 .51 .50 0180 ' 213 I80 1972.0 16.9 30.0 .0055 .016 .250 .300 .300 .51 .50 OO1BO 1 214 179 465.0 1.6 90.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 215 331 500.0 .7 90.0 .0270 .016 .250 .100 .300 .51 .50 00180 1 216 327 1405.0 1.0 90.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 301 301 3315.0 28.5 71.0 .0050 .016 .430 .100 .600 .51 .50 ' 00180 302 95 13736.0 47.5 45.0 .0300 .016 .390 .300 .600 .51 .50 OO1BO 1 305 369 17097.0 78.5 35.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 306 00180 372 1 2535.0 6.7 31.2 .0200 .016 .250 .100 .300 .51 .50 ' 307 360 2951.0 5.4 17.0 .1262 .016 .250 .100 .300 .51 .50 .00180 1 308 370 2042.0 7.0 40.0 .0200 .016 .250 .100 .300 .51 .50 00180 309 1 362 BBB.O 1.5 4.0 .1262 .016 .250 .300 .300 .51 .50 ' .001BO I 311 371 807.0 2.8 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 312 163 569.0 2.1 2.3 .1262 .016 .250 .100 .300 .51 .10 00180 1 ' 313 36] 495.0 .9 1.0 .0500 .016 .250 .100 .300 .51 .50 .00180 1 314 40 26470.0 91.2 34.0 .0200 .016 .250 .100 .300 .51 .50 .001BO 1 315 374 4179.0 14.4 40.0 .0200 .016 .250 .100 .300 .51 .50 t 00100 1 316 39 1924.0 67.0 85.0 .0170 .016 .250 .100 .300 .51 .50 .00180 1 317 594 1507.0 17.3 57A .0140 .016 .250 .100 -300 .51 .50 0180 ' 316 593 1699.0 19.5 97.0 .0150 .016 .250 .100 .100 .51 .50 .00180 1 217 366 4008.0 18.4 45.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 218 368 5053.0 17.4 50.0 .0300 .016 .250 .100 .300 .51 .50 ' 00180 1 222 32 5605.0 19.3 50.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 223 102 6679.0 23.0 50.0 .0400 .016 .250 .100 .300 .51 .50 00180 1 ' 224 102 3006.0 13.8 45.0 .0100 .016 .250 .100 .300 .51 .50 00180 1 225 35 14298.0 65.6 45.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 1 201 1200.0 8.5 40.0 .0200 .016 .250 .100 .300 .51 .50 ' 001BO 1 2 202 2000.0 4.1 68.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 3 203 800.0 5.7 44.0 .0200 .016 .250 .100 .300 .51 .50 00180 1 ' 9 209 750.0 1.6 74.0 .0200 .016 .250 .300 .300 .51 .50 oolea 1 5 209 1600.0 2.7 68.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 6 00180 210 1 3BOO.0 7.6 66.0 .0200 .016 .250 .100 .300 .51 .50 7 209 750.0 3.3 57.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 8 210 450.0 2.3 67.0 .0200 .016 .250 .100 .300 .51 .50 00180 9 209 3000.0 20.2 30.0 .0200 .016 .250 .300 .300 .51 .50 .00180 1 10 210 1400.0 9.1 26.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 14 214 1000.0 4.8 54.0 .0201 .016 .251 .100 .300 .51 .10 00180 1 t 15 215 1300.0 4.4 9.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 16 216 200.0 1.8 12.0 .0200 .016 .250 .100 .300 .51 .50 00180 20 223 600.0 4.1 96.0 .0200 .016 .250 .100 .300 .51 .50 ' .00180 1 21 223 1400.0 9.0 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 22 223 1800.0 7.3 52.0 .0200 .016 .250 .300 .300 .51 .50 00180 23 229 1000.0 2.2 61.0 .0200 .016 .250 .300 .300 .51 .50 003B0 1 24 224 600.0 3.1 34.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 25 226 900.0 4.0 65.0 .0200 .016 .250 .100 .300 .51 .SD 00180 26 226 1000.0 2.7 12.0 .0200 .016 .250 .300 .300 .51 .50 00180 1 30 130 2750.0 5.9 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 31 131 1700.0 3.6 67A .0200 .016 .250 .100 .300 .51 .50 ' 00180 1 32 330 400.0 2.0 48.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 39 216 700.0 3.1 11.0 .0200 .016 .250 .100 .300 .51 .50 00180 ' 90 140 1100.0 6.4 30.0 .0200 .016 .250 .300 .300 .51 .50 00180 1 41 357 900.0 4.3 43.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 42 001 a 241 1 900.0 1.5 75.0 .0200 .016 .250 .100 .300 .51 .50 50 251 1800.0 8.1 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 63 252 2250.0 8.9 61.0 .0200 .016 .250 .100 .300 .51 .50 00180 61 1 261 650.0 2.1 80.0 .0200 .016 .250 .100 .300 .51 .50 ' .00180 1 62 262 1200.0 4.7 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 370 570 3050.0 6.1 63.0 .0100 .016 .250 .100 .3DO .51 .51 00180 1 ' 371 571 2000.0 11.7 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 372 572 4900.0 26.7 45.0 .0200 .016 .250 .100 .300 .51 .50 OO1B0 373 73 2000.0 8.2 90.0 .0150 .016 .250 .300 .300 .51 .50 ' OO1B0 1 374 574 8000.0 18.3 86.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 375 75 5400.0 28.4 46.0 .0200 .016 .250 .100 .300 .51 .50 00180 ' 396 576 2222.0 5.1 85.0 .0100 .016 .250 .300 .300 .51 .50 00100 1 3]] 5]] 400.0 1.9 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 3]8 5]] 450.0 2.3 70.0 .0100 .016 .250 .100 .300 .51 .50 ' 00180 1 379 979 450.0 1.5 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 380 480 350.0 1.4 70.0 .0100 .016 .250 .100 .300 .51 .50 00180 1 ' 3 481 550.0 2.6 70.0 .0100 .016 .250 .100 .300 .51 .50 001818 0 1 382 582 700.0 .8 67.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 383 483 2439.0 5.6 85.0 .0200 .016 .250 .100 .300 .51 .50 t 00180 1 364 84 2400.0 6.9 84.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 385 85 2100.0 6.3 52.0 .0200 .016 .250 .100 .300 .51 .50 O386 1 ' 586 3593.0 12.2 70.0 .0300 .016 .250 .300 .300 .53 .50 001818 0 1 387 586 800.0 3.2 70.0 .0250 .016 .250 .100 .300 .51 .50 .00180 1 ' 388 00180 5B8 1 3300.0 13.6 72.0 .0110 .016 .250 .100 .300 .51 .50 389 BB 3049.0 7.0 66.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 390 490 550.0 1.4 70.0 .0200 .016 .250 .100 .300 .51 .50 ' 00180 391 1 491 600.0 2.8 70.0 .0200 .016 .250 .300 .300 .51 .50 .001BO 1 392 568 1100.0 6.6 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 391 BB 4400.0 11.8 95.0 .0100 .116 .250 .100 .310 .11 .00180 1 .51 394 92 900.0 1.4 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 396 496 2950.0 13.5 93.0 .0130 .016 .250 .100 .300 .51 .50 00180 1 397 497 810.0 3.9 85.0 .0210 .016 .250 .100 .300 .51 .50 ' .001BO 1 400 400 860.0 9.9 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 401 406 1170.0 16.7 20.0 .0150 .016 .250 .100 .300 .51 .50 00180 ' 4 406 1520.0 17.9 95.0 .0200 .016 .250 .300 .300 .51 .50 001818 0 1 403 381 4792.0 11.0 85.0 .0170 .016 .250 .100 .300 .51 .50 .001BO 3 1 404 382 1790.0 10.4 55.0 00180 905 402 3080.0 3.5 90.0 .00180 1 406 383 2053.0 14.1 38.0 .001B0 1 407 384 1921.0 13.2 40.0 00180 1 40B 404 16901.0 38.8 85.0 .00180 1 500 517 7812.0 26.9 50.0 00180 ' 501 416 5489.0 18.9 50.0 00180 1 502 517 5053.0 17.4 50.0 .00180 1 503 415 12981.0 44.7 50.0 ' 00180 1 504 415 3427.0 11.8 50.0 .00180 1 514 413 8160.0 26.1 50.0 00180 505 1 409 19549.0 60.7 50.0 .00180 1 506 412 4298.0 14.8 50.0 .001B0 1 507 00180 412 1 4559.0 15.9 50.0 ' 508 281 7667.0 26.4 50.0 00180 1 509 411 3862.0 13.3 50.0 0180 1 510 411 5227.0 18.0 50.0 ' .00180 1 511 283 8516.0 39.1 35.0 .00180 1 512 386 10215.0 46.9 35.0 0180 513 388 36126.0 129.9 35.0 .001B0 1 TOTAL NUMBER OF SUBCATCHMENTS, 159 TOTAL TRIBUTARY AREA (ACRES), 2151.62 1 1 1 1 1 .0250 .016 .250 .100 .300 .51 .50 .0200 .016 .250 .100 .300 .Sl .50 .0150 .016 .250 .100 .300 .Sl .50 .0150 .016 .250 .100 .300 .52 .50 .0150 .016 .250 .100 .300 .51 .50 .0100 .016 .250 .100 .300 .51 .50 .0200 .016 .250 .100 .300 .51 .50 .0200 .016 .2SO .100 .300 .51 .50 .0150 .016 .250 .100 .300 .51 .50 .0200 .016 .250 .100 .300 .51 .50 .0200 .016 .250 .100 .300 .51 .50 .0200 .016 .250 .100 .300 .51 .50 .0200 .016 .250 .100 .300 .51 .50 . 0100 .016 .250 .100 .300 .51 .50 .0100 .016 .250 .100 .300 .51 .50 .0100 .016 .250 .100 .300 .51 .50 .0100 .016 .250 .100 .300 .51 .50 .0100 .016 .250 .100 .300 .51 .50 .0100 .016 .250 .100 .300 .51 .50 .0100 .016 .250 .100 .300 .51 .50 MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. MBF 3/22/00 100-YEAR EVENT FILE: MMCD-100.DAT JR MG., UPDATED 1/07/05 ••. CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL `•• WATERSHED AREA (ACRES) 2151.620 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .572 TOTAL WATERSHED OUTFLOW (INCHES) 2.958 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .138 ERROR IN CONTINUITY. PERCENTAGE OF RAINFALL .000 MaCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Re, MBF 3/22/00 100-YEAR EVENT FILE: MMCD-100.DAT JR ENG., UPDATED 1/07/OS WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DI AM LENGTH SLOPE HORI2 TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 4 8 0 1 CHANNEL .0 800. .0044 4.0 4.0 .035 5.00 0 8 2 0 1 CHANNEL 10.0 1750. .0100 4.0 4.0 .035 5.00 0 T 6 0 1 CHANNEL .0 1400. .0100 .0 50.0 .016 1.50 0 6 "50 0 I CHANNEL .0 1200. .0032 4.0 4.0 .035 5.00 0 1 1 1 1 1 1 35 102 0 1 CHANNEL .0 1250. .0100 50.0 50.0 .045 5.00 0 16 22 0 1 CHANNEL .0 540. .0060 50.0 50.0 .016 2.00 0 11 12 0 1 CHANNEL .0 700. .0060 50.0 .0 .016 1.50 0 12 13 0 1 CH IMEL .0 850. .0060 50.0 .0 .016 1.50 0 13 51 0 1 CHANNEL .0 500. .0060 50.0 .0 .016 1.50 0 14 51 0 1 CHANNEL .0 900. .0060 50.0 .0 .016 1.50 0 112 11 0 1 CHANNEL .0 700. .0100 50.0 .0 .016 1.50 0 20 51 0 1 CHANNEL .0 1100. .0050 4.0 4.0 .035 5.00 0 21 44 0 1 CHANNEL .0 1200. .0050 50.0 .0 .016 1.50 0 44 51 0 1 CHANNEL 3.0 800. .0050 10.0 10.0 .035 2.00 0 45 43 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 11.9 10.000 11.9 22 43 0 1 CHANNEL .0 1600. .0070 4.0 4.0 .035 5.00 0 43 51 0 3 .1 1. .0010 .0 .0 .016 .10 0 50 2 0 1 CHANNEL 10.0 1000. .0050 15.0 15.0 .040 5.00 0 51 9 0 1 CHANNEL 10.0 500. .0050 15.0 15.0 .040 5.00 0 9 2 -0 1 CHANNEL 5.0 1000. .0060 15.0 15.0 .035 5.00 0 47 12 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE FEET VS SPILLWAY OUTFLOW .000 .0 .100 9.2 10.000 0.2 250 25 3 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .310 .3 .330 5.0 25 22 0 2 PIPE 1.3 500. .0050 .0 .0 .013 1.25 0 291 12 3 2 PIPE .1 1. .0050 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 3.1 10.000 3.1 46 42 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 11.2 10.000 11.2 26 42 0 5 PIPE 3.5 800. .0050 .0 .0 .016 3.50 0 OVERFLOW 10.0 800. .0050 4.0 4.0 .035 5.50 42 22 0 2 PIPE 6.0 1. .0050 .0 .0 .016 6.00 0 270 27 0 3 .0 1. .0010 .0 .0 .001 10.00 0 271 27 0 5 PIPE 2.3 45. .0040 .0 .0 .013 2.25 0 OVERFLOW .0 45. .0040 198.0 110.0 .020 5.00 272 275 6 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .020 .4 .130 .8 .290 1.0 .500 1.2 .760 1.3 275 27 0 2 PIPE 3.5 676. .0084 .0 .0 .013 3.50 0 27 41 8 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .030 .8 .220 2.5 .520 3.5 .900 4.2 1.310 4.8 2.100 57/ 6 3.200 191.4 41 26 0 5 PIPE 4.0 100. .0050 .0 .0 .016 4.00 0 OVERFLOW 10.0 100. .0050 50.0 50.0 .016 5.00 36 26 0 5 PIPE 1.3 90. .0140 .0 .0 .013 1.25 0 OVERFLOW .0 90. .0140 200.0 200.0 .020 5.00 28 275 0 1 CHANNEL .0 1000. .0050 .0 50.0 .016 1.50 0 1 1 1 1 29 28 0 1 CHANNEL .0 1650. .0050 .0 50.0 .016 1.50 0 30 29 0 1 CHANNEL .0 850. .0050 .0 50.0 .016 1.50 0 34 16 3 2 PIPE .1 1. .0050 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 1.9 10.000 1.9 92 89 0 2 PIPE 2.0 1000. .0100 .0 .0 .013 2.00 0 395 89 4 3 .1 1. .0010 .0 .0 .001 .10 -1 TIME IN HRS VS INFLOW IN CPS .000 .0 .500 3.6 9.600 3.6 9.850 .0 89 88 0 1 CHANNEL .0 800. .0070 4.0 4.0 .035 5.00 0 490 90 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .200 .5 .220 .5 .240 2.5 491 90 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .500 1.0 .600 91.9 .700 260.0 90 88 0 4 CHANNEL .0 500. .0100 50.0 50.0 .016 .50 0 OVERFLOW 50.0 500. .0300 10.0 10.0 .035 5.00 496 88 6 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .010 12.0 .110 12.4 .790 12.8 2.060 13.2 3,530 31.6 BB 588 0 1 CHANNEL .0 700. .0080 4.0 4.0 .035 5.00 0 497 588 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE FEET VS SPILLWAY OUTFLOW .000 .0 .010 1.6 .050 1.6 .360 1.7 .670 1.7 .840 1.8 1.300 20.2 588 488 0 3 .1 1. .0010 .0 .0 .001 10.00 0 488 586 5 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 5.930 10.9 9.500 12.2 10.140 12.8 12.370 14.7 582 682 3 3 .1 1. .0010 .0 .0 .001 .10 683 DIVERSION TO GUTTER NUMBER 683 - TOTAL Q VS DIVERTED Q IN CPS .000 .0 4.600 1.3 B.000 1.8 682 82 0 3 .1 1. .0010 .0 .0 .001 10.00 0 683 0 0 3 .1 1. .0010 .0 .0 .001 10.00 0 02 85 0 4 CHANNEL .0 1300. .0140 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1300. .0140 10.0 10.0 .035 5.00 85 586 0 4 CHANNEL .0 1000. .0110 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1000. .0110 10.0 10.0 .035 5.00 84 586 0 4 CHANNEL .0 700. .0100 50.0 50.0 .016 .50 0 OVERFLOW 50.0 700. .0100 10.0 10.0 .035 5.00 586 486 0 3 .1 1. .0010 .0 .0 .001 10.00 0 486 584 6 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .010 1.5 .250 12.0 1.050 18.0 3.760 23.7 4.870 41.2 584 684 7 3 .1 1. .0010 .0 .0 .001 .10 673 DIVERSION TO GUTTER NUMBER 623 - TOTAL Q VS DIVERTED Q IN CPS .000 .0 20.000 .0 21.000 1.0 24.000 3.0 27.000 6.0 30.000 9.0 48.000 27.0 684 83 0 3 .1 1. .0010 .0 .0 .001 10.00 0 673 73 0 3 .1 1. .0030 .0 .0 .001 10.00 0 83 583 0 1 CHANNEL 5.0 400. .0050 4.0 4.0 .035 5.00 0 483 583 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .940 2.8 1.140 2.8 4.000 2.8 583 72 0 3 .1 1. .0010 .0 .0 .001 10.00 0 72 572 0 5 PIPE 3.0 700. .0040 .0 .0 .011 3.00 0 OVERFLOW .0 700. .0040 50.0 50.0 .016 5.00 73 572 0 4 CHANNEL .0 1300. .0060 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1300. .0060 10.0 10.0 .035 5.00 461 577 a 3 .1 1. .0010 .0 .0 .001 .10 a 480 577 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE FEET VS SPILLWAY OUTFLOW .000 .0 .020 1.0 .030 2.0 .050 4.0 .060 6.0 .070 9.0 .080 14.0 .090 18.0 .100 20.0 479 577 6 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .030 .5 .040 1.0 .050 2.5 .070 B.0 .080 12.7 577 477 0 3 .1 1. .0030 .0 .0 .001 10.00 a 477 76 14 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .050 2.0 .190 4.0 .250 6.0 .270 8.0 .290 12.0 .300 16.0 .320 20.0 .340 30.0 .360 45.0 .390 60.0 .460 75.0 .500 90.0 .550 105.0 76 576 0 1 CHANNEL .0 800. .0070 4.0 4.0 .035 5.00 0 576 574 0 3 .1 1. .0010 .0 .0 .001 10.00 0 75 574 0 1 CHANNEL 5.0 600. .0070 4.0 4.0 .035 5.00 0 574 474 0 3 .1 1. .0010 .0 .0 .001 10.00 0 474 74 B 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.230 .5 5.940 2.0 10.230 4.4 13.600 8.0 15.130 10.2 16.660 12.5 18.200 13.5 74 572 0 1 CHANNEL 10.0 700. .0080 10.0 10.0 .035 5.00 0 572 472 a 3 .1 1. .0010 .0 .0 .001 10.00 0 472 571 12 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .710 3.0 .B90 6.0 1.180 9.0 1.730 12.0 2.520 15.0 3.660 18.0 5.110 21.0 6.950 24.0 7.760 27.0 8.040 30.0 9.500 81.0 571 471 0 3 .1 1. .0010 .0 .0 .001 10.00 0 471 570 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .190 10.0 .390 20.0 .680 30.0 .770 32.0 .640 40.0 .870 50.0 .890 60.0 .970 100.0 570 470 0 3 .1 1. .0010 .0 .0 .001 10.00 0 470 31 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .080 10.0 .120 20.0 .240 30.0 .660 40.0 1.000 44.0 31 275 3.00 0 5.00 33 21 1.50 0 2 216 .10 0 19.650 193.7 1.470 160.0 0 5 PIPE 3.0 108. .0075 OVERFLOW 30.0 108 0 1 CHANNEL .0 700 12 2 PIPE .1 77 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .590 86.2 2.360 115.7 .0075 .0080 .0070 .0 .0 50.0 50.0 50.0 .0 0 .0 .013 .035 .016 .013 6.170 144.7 12.050 169.8 28.600 214.8 33.640 224.4 3v.670 233.1 49.310 251.4 59.390 269.7 70.590 288.0 166 16/ 3 2 PIPE .1 96. .0060 .0 .0 .013 30 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.60D 24.0 3.400 26.4 16 169 0 1 CHANNEL 4.0 260. .0021 2.0 2.0 .035 4.00 0 16B 169 5 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .030 .9 .430 1.4 .020 93.3 1.010 261.4 169 170 0 5 PIPE 2.3 40. .0070 .0 .0 .013 2.29 0 OVERFLOW 40.0 40. .0070 50.0 50.0 .016 4.00 170 174 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 4.00 0 171 174 3 2 PIPE .1 10. .0030 .0 .0 .013 10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.000 4.0 2.000 4.3 172 173 5 2 PIPE .1 120. .0033 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 6.500 5.5 8.000 6.0 9.000 97.9 10.000 266.0 173 175 0 4 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 OVERFLOW 30.0 1200. .005D 150.0 150.0 .035 3.00 174 175 0 5 PIPE 2.3 75. .0211 .0 .0 .013 2.25 0 OVERFLOW 40.0 '5. .0211 50.0 50.0 .016 4.00 175 177 0 5 PIPE 2.5 853. .0223 .0 .0 .013 2.50 0 OVERFLOW 50.0 85f. .0123 50.0 50.0 .016 4.00 176 177 T 2 PIPE .1 315. .0020 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .040 1.1 .230 1.7 .790 2.1 1.780 2.6 2.440 94.5 3.100 261.8 177 341 0 5 PIPE 3.0 460. .0100 .0 .0 .013 3.00 0 OVERFLOW 10.0 480. .0100 50.0 50.0 .016 5.00 17B 177 9 2 PIPE .1 1310. .0033 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE -FEEL VS SPILLWAY OUTFLOW .000 .0 1.950 5.0 2.700 5.8 3.400 6.5 4.200 B.B 4.600 16.2 4.900 29.5 5.200 44.0 5.500 60.0 320 321 0 1 CHANNEL 5.0 1350. .0050 4.0 4.0 .035 4.00 0 321 324 10 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .050 .0 .310 2.6 .790 4.3 1.520 5.5 2.550 6.4 3.860 9.3 5.400 8.0 6.300 99.9 T.200 268.0 322 323 3 2 PIPE .1 10. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.90D 11.0 4.000 11.3 323 324 0 1 CHANNEL .0 1500. .0142 50.0 .0 .D16 1.50 0 324 331 0 2 PIPE 3.0 36. .0222 .0 .0 .013 3.00 0 325 326 0 1 CHANNEL 4.0 420. .0050 4.0 4.0 .035 3.00 0 326 327 0 5 PIPE 3.5 214. .016E .0 .0 .013 3.50 0 OVERFLOW 40.0 214. .0168 50.0 50.0 .016 5.00 327 329 0 1 CHANNEL 4.0 050. .0050 4.0 4.0 .035 3.00 0 328 329 0 5 PIPE 1.8 101. .0149 .0 .0 .013 1.75 0 OVERFLOW .0 101. .0149 133.0 44.0 .016 5.00 329 160 0 1 CHANNEL 5.0 240. .0050 4.0 4.0 .035 4.00 0 179 324 0 5 PIPE 2.5 80. .0110 .0 .0 .013 1.50 0 OVERFLOW .0 80. .0110 161.0 161.0 .016 5.00 331 325 0 2 PIPE 3.0 30. .0267 .0 .0 .013 3.00 0 ISO 341 8 2 PIPE .1 20. .0040 .0 .0 .013 10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .210 4.0 1.000 18.0 1.910 37.2 2.950 52.4 4.160 68.0 4.820 78.0 5.670 88.0 341 4 0 5 PIPE 5.2 120. .0040 .0 .0 .013 5.20 0 OVERFLOW .0 120. .0040 50.0 50.0 .016 7.00 301 91 9 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 2.2 .850 4.2 1.880 5.3 2.450 5.8 3.270 13.4 4.260 14.4 4.560 36.2 5.930 57.8 91 93 0 1 CHANNEL .0 1325. .0150 4.0 4.0 .060 5.00 0 93 94 11 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .050 .0 .510 .0 .980 .0 1.620 1.9 2.400 5.4 3.330 7.2 4.35D 14.0 5.410 20.2 6.520 93.9 2.650 219.5 94 241 0 1 CHANNEL .0 500. .0027 3.0 3.0 .035 5.00 0 95 93 0 3 .0 1. .0010 .0 .0 .001 10.00 0 357 358 0 1 CHANNEL 16.0 10. .0050 4.0 4.0 .045 4.00 0 358 359 0 2 PIPE 9.4 103. .0050 .0 .0 .013 9.44 0 359 360 0 1 CHANNEL 16.0 950. .0050 4.0 4.0 .045 4.00 0 360 361 0 2 PIPE 9.4 46. .0050 .0 .0 .013 9.44 0 361 362 0 1 CHANNEL 16.0 619. .0050 4.0 4.0 .045 4.00 0 362 363 0 1 CHANNEL 16.0 215. .0050 4.0 4.0 .045 4.00 0 363 364 0 1 CHANNEL 16.0 415. .0050 4.0 4.0 .045 4.00 0 364 366 0 4 CHANNEL 16.0 90. .0050 4.0 4.0 .045 5.00 0 OVERFLOW 40.0 90. .0050 50.0 50.0 .035 6.00 369 366 0 4 CHANNEL .0 1125. .0045 4.0 4.0 .035 2.30 0 OVERFLOW 50.0 1125. .0045 50.0 50.0 .035 5.00 366 367 0 4 CHANNEL 16.0 399. .0050 4.0 4.0 .045 5.00 0 OVERFLOW 40.0 377. .0050 50.0 50.0 .035 6.00 38 373 0 4 CHANNEL .0 1080. .0050 4.0 4.0 .035 3.50 0 OVERFLOW 40.0 1080. .0050 50.0 50.0 .016 4.50 39 38 0 4 CHANNEL .0 860. .0050 4.0 4.0 .035 3.50 0 OVERFLOW 40.0 860. .0050 50.0 50.0 .016 4.50 593 592 30 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .570 .5 1.140 3.0 1.400 3.6 1.790 6.4 2.450 9.3 2.600 9.7 3.230 11.1 4.010 12.7 4.970 14 .1 592 39 0 1 CHANNEL 4.0 1000. .0160 4.0 4.0 .035 3.50 0 594 591 10 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .360 2.7 .740 3.0 1.120 3.3 1.400 3.4 1.690 5.4 2.260 B.4 2.400 8.6 2.900 9.0 3.540 9.5 591 39 0 1 CHANNEL .0 1300. .0050 4.0 4.0 .035 3.50 0 40 373 0 1 CHANNEL 5.0 1400. .0050 4.0 4.0 .035 5.00 0 370 361 2 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .960 33.5 371 362 2 2 PIPE .1 1. .0015 .0 .0 .013 .10 0 1 1 1 1 1 1 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .550 1.8 372 363 6 2 PIPE .1 1. .0020 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .170 10.0 .420 22.4 .340 33.3 .940 38.0 1.170 50.5 373 364 18 2 PIPE .1 1. .0042 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .061 .0 .465 .0 1.57B .0 3.566 6.4 6.256 16.8 6.909 18.0 0.562 1B.8 8.216 19.6 8.869 20.8 9.522 21.6 9.910 31.5 10.298 49.4 10.687 72.6 11.075 99.7 11.463 130.9 13.400 333.7 15.520 429.6 374 38 14 2 PIPE .1 1. .0040 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE FEET VS SPILLWAY OUTFLOW .000 .0 .009 .0 .119 .0 .230 .0 .409 1.1 .469 2.1 .528 2.8 .676 3.9 .827 4.8 1.062 5.6 1.299 6.3 1.532 6.9 1.711 7.3 2.341 59.9 32 102 0 1 CHANNEL 1.0 500. .0060 75.0 1.5 .045 5.00 0 367 368 0 4 CHANNEL 5.0 950. .00V0 2.0 2.5 .045 6.00 0 OVERFLOW 35.0 950. .0090 95.0 45.0 .045 14.00 368 102 0 4 CHANNEL 5.0 1960. .0100 3.0 3.0 .045 5.00 0 OVERFLOW 30.0 1960. .0100 60.0 30.0 .045 11.00 102 410 0 5 PIPE 4.5 50. .0050 .0 .0 .024 5.60 0 OVERFLOW 29.0 50. .0050 25.0 100.0 .018 10.00 201 202 0 3 .1 1. .0010 .0 .0 .001 10.00 0 202 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 203 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 209 210 0 3 .1 1. .0010 .0 .0 .001 10.00 0 210 310 0 3 .1 1. .0010 .0 .0 .001 10.00 0 310 140 16 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .380 .1 1.000 1.2 1.500 2.0 3.400 3.9 4.360 6.6 6.730 7.7 8.870 8.4 10.270 8.8 11.470 9.0 12.410 9.2 12.990 9.3 13.370 9.4 13.720 9.4 13.850 9.5 13.890 9.5 214 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 215 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 315 216 8 2 PIP£ .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .060 2.0 .240 3.0 .590 4.0 .650 4.5 1.230 5.0 1.430 96.9 1.630 265.0 216 116 0 3 .1 1. .0010 .0 .0 .001 10.00 0 116 140 0 1 CHANNEL 10.0 1650. .0030 4.0 4.0 .035 5.00 0 140 357 0 1 CHANNEL 10.0 700. .0030 4.0 4.0 .035 5.00 0 223 224 0 3 .1 1. .0010 .0 .0 .001 10.00 0 224 334 0 3 .1 1. .0010 .0 .0 .001 10.00 0 334 124 11 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .070 4.0 .240 6.0 .520 8.0 .970 10.0 1.640 12.0 2.460 14.0 3.440 16.0 4.660 18.0 5.090 18.6 5.580 19.3 124 226 0 2 PIPE 3.0 825. .0080 .0 .0 .011 5.00 0 226 336 0 3 .1 I. .0010 .0 .0 .001 10.00 0 336 359 8 2 PIPE .1 1. 0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .150 4.0 .440 6.0 .980 8.0 1.850 10.0 2.270 10.7 2.540 36.8 2.810 84 .3 130 131 0 2 PIPE 3.0 450. .0070 .0 .0 .013 3.00 0 131 330 0 2 PIPE 3.5 250. .00�0 .0 .0 .013 3.50 0 330 241 T 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .070 1.0 .230 2.0 .570 3.0 1.050 4.0 1.850 5.0 2.960 6.0 251 350 0 3 .1 1. .0010 .0 .0 .001 10.00 0 350 216 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .070 1.0 .250 2.0 .610 3.0 .620 3.5 1.100 4.0 1.150 4.1 1.300 96.0 1.450 264.1 252 160 0 3 .1 1. .0010 .0 .0 .001 10.00 0 160 261 0 5 PIPE 1.5 275. .0100 .0 .0 .013 1.50 0 OVERFLOW .0 275. .0100 10.0 10.0 .035 5.00 261 262 0 3 .1 1. .0010 .0 .0 .001 10.00 0 262 365 0 3 .1 1. .0010 .0 .0 .001 10.00 0 365 241 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.250 5.3 2.420 7.5 2.520 14.0 2.630 25.9 2.730 41.3 2.830 59.5 241 141 0 3 .1 1. .0010 .0 .0 .001 10.00 0 141 357 0 1 CHANNEL 10.0 500. .0030 4.0 4.0 .035 5.00 0 381 382 5 -2 PIP£ .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .480 2.2 .960 5.5 2.030 6.3 2.140 48.9 382 401 16 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .090 1.2 .240 2.4 .510 3.6 .590 4.0 .650 6.0 .700 7.2 .760 8.4 .830 9.6 .840 10.0 .930 12.0 1.100 20.0 1.240 30.0 1.350 40.0 1.470 50.0 1.510 55.0 401 402 0 1 CHANNEL 2.0 550. .0130 50.0 50.0 .016 1.00 0 402 406 0 1 CHANNEL 2.0 950. .0060 50.0 50.0 .016 1.00 0 400 406 0 1 CHANNEL 10.0 710. .0060 5.0 6.0 .040 2.00 0 406 380 0 3 .1 1. .0010 .0 .0 .001 .10 0 380 403 12 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.700 8.8 3.090 9.3 3.190 10.0 3.590 15.0 3.990 20.0 4.870 21.8 5.000 22.0 5.540 22.9 6.240 52.4 6.580 75.1 6.930 109.9 384 404 5 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.010 3.7 1.890 9.3 1.940 11.5 1.980 15.5 383 407 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .736 1.3 1.326 3.9 1.580 4.4 1.760 4.7 2.050 22.3 2.100 58.7 403 407 0 1 CHANNEL 5.0 950. .0040 4.0 4.0 .045 5.00 0 407 405 0 3 .1 1. .0010 .0 .0 .001 .10 0 405 410 0 5 PIPE 3.5 2000. .0020 .0 .0 .013 3 .50 0 OVERFLOW 40.0 2000. .0020 50.0 50.0 .016 5.00 404 407 0 5 PIPE 3.5 900. .0150 .0 .0 .016 3.50 0 OVERFLOW 40.0 900. .0150 50.0 50.0 .016 5-00 388 387 0 1 CHANNEL 5.0 1300. .0090 150.0 150.0 .045 5.00 0 387 386 0 1 CHANNEL 5.0 750. .0070 150.0 150.0 .045 5.00 0 386 284 0 1 CHANNEL 4.0 800. .0030 150.0 150.0 .045 5.00 0 284 283 0 1 CHANNEL 4.0 700. .0063 150.0 150.0 .045 5.00 0 283 282 0 1 CHANNEL 7.0 1000, .0057 70.0 40.0 .045 5.00 0 282 410 0 1 CHANNEL 9.0 B00. .0460 9.0 1.5 .045 5.00 0 281 414 0 1 CHANNEL 2.0 1500. .0150 55.0 76.0 .035 5.00 0 409 413 0 1 CHANNEL 1.0 1500. .0100 50.0 50.0 .045 5.00 0 410 412 0 4 CHANNEL 5.0 600. .0450 2.5 3.0 .035 0.00 0 OVERFLOW 45.0 600. .0950 25.0 50.0 .035 13.00 411 412 0 4 CHANNEL 5.0 1060, .0038 3.0 2.0 .035 5 .00 0 OVERFLOW 30.0 1060. .0038 35.0 60.0 .035 11.00 412 413 0 4 CHANNEL 5.0 870. .0060 5.0 2.0 .035 6.00 0 OVERFLOW 50.0 870, .0060 30.0 45.0 .035 12.00 413 414 0 5 PIPE 5.0 40. .0060 .0 .0 .035 5.00 0 OVERFLOW 50.0 40- .0060 100.0 100.0 .016 10.00 414 415 0 1 CHANNEL 5.0 i1F0. .0060 30.0 25.0 .035 10.00 0 415 416 0 1 CHANNEL 5.0 1050. .0060 40.0 50.0 .035 10.00 0 416 517 0 1 CHANNEL 5.0 800. .0060 40.0 25.0 .035 6.00 0 517 417 0 3 .1 1. .0010 .0 .0 .001 .10 0 417 0 0 2 PIPE .1 1. .0030 .0 .0 .035 .10 0 TOTAL NUMBER OF GUTTERS/PIPES, 203 MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;ReV. MBF 3/22/00 100-YEAR EVENT FILE: MCD-100.DAT SR ENG., UPDATED 1/07/05 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE D. A. (AC) 2 B 50 9 0 0 0 0 0 0 0 0 0 0 793.9 4 341 0 0 0 0 0 0 0 0 0 0 0 0 219.3 6 7 0 0 0 0 0 0 0 0 0 0 0 0 34.4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 5.0 B 4 0 0 0 0 0 0 0 0 0 0 0 0 219.3 9 51 0 0 0 0 0 0 0 0 0 0 0 0 431.9 11 112 0 0 0 0 0 0 0 0 0 0 0 0 6.5 12 11 47 291 0 0 0 0 0 0 0 0 0 0 30.0 13 12 0 0 0 0 0 0 0 0 0 0 0 0 33.9 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1.1 . 16 34 0 0 0 0 0 0 0 0 0 0 0 0 9.8 20 0 0 0 0 0 0 0 0 0 0 0 0 0 31.3 21 33 0 0 0 0 0 0 0 0 0 0 0 0 5.6 22 16 25 42 0 0 0 0 0 0 0 0 0 0 288.2 TRIBUTARY SUBAREA 90 0 0 0 0 0 0 ISO 0 0 0 0 0 0 70 0 0 0 0 0 0 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 111 320 0 0 0 0 113 114 0 0 0 0 0 115 116 0 0 0 0 0 us 0 0 0 0 0 0 160 121 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 120 122 0 0 0 0 0 25 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 26 91 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233.9 27 270 271 275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 231.0 28 29 0 0 0 0 0 0 0 0 0 281 0 0 0 0 0 0 0 0 0 6.] 29 30 0 0 0 0 0 0 0 0 0 282 0 0 0 0 0 0 0 0 0 3.5 30 0 0 0 0 0 0 0 0 0 0 283 0 0 0 0 0 a a 0 0 2.0 31 470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 211.2 32 0 0 0 0 0 0 0 0 0 0 222 0 a a 0 0 0 0 0 0 19.3 33 _ 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 ' 0 0 0 5.6 34 0 0 0 0 0 a 0 0 0 0 340 0 0 0 0 0 0 0 0 0 4.3 35 a a 0 0 0 0 0 0 0 0 225 0 0 0 0 a 0 0 0 0 36 65.6 0 0 0 0 0 0 0 0 D 0 360 0 0 0 0 0 0 0 0 0 2.4 38 39 374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 118.2 0 0 39 0 592 103.a 591 0 0 0 0 0 0 0 0 316 a 0 0 0 0 0 ' 40 0 0 0 0 0 0 0 0 0 0 314 0 0 0 0 0 0 0 0 0 91 .2 41 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 231 .0 42 46 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 0 0 0 257.2 43 45 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 310.4 44 21 0 0 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 ' 45 o 0 0 0 0 0 0 0 0 o zzo 0 0 0 0 0 0 o a o 22.1 z2.z 46 0 0 0 0 0 0 0 0 0 0 260 0 0 0 0 0 0 0 0 0 23.8 47 0 0 0 0 a 0 0 0 0 0 230 0 0 0 0 0 0 0 0 0 14.] 50 6 0 0 0 0 0 0 0 0 0 80 60 0 0 0 0 0 0 0 0 129.5 51 13 14 20 44 43 0 0 0 0 0 130 100 117 190 0 0 0 0 0 0 431.9 ' n 583 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9].0 73 673 0 0 0 0 0 0 a 0 0 373 0 0 0 0 0 0 a 0 0 8.2 74 474 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 61.5 ]6 0 0 0 0 0 0 0 0 0 0 375 0 0 0 0 0 0 0 0 0 28.4 76 4]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 ' 82 682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .8 83 684 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91.4 84 0 0 0 0 0 0 0 0 0 0 384 0 a 0 0 0 0 0 0 0 6.9 85 82 0 0 0 0 0 0 0 0 0 3B5 0 0 0 0 0 0 0 0 0 ].1 BB 89 90 496 0 0 0 0 0 0 0 389 393 0 0 0 0 0 ' 0 0 0 89 37.9 92 395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4 90 490 491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 4.2 0 0 91 0 301 28.5 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 92 0 0 0 0 0 0 0 0 0 0 394 0 0 0 0 0 0 0 0 0 1.4 93 91 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76,0 94 93 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 ' a 0 0 ]6.0 95 0 0 0 0 0 0 0 0 0 0 302 0 0 0 0 0 0 0 0 0 4].5 102 35 32 368 0 0 0 0 0 0 0 223 224 a 0 0 0 0 0 0 0 1502.9 ' 112 0 0 a a 0 0 0 0 0 0 112 0 0 0 0 0 0 0 0 0 3.3 116 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 816.1 1 1 1 1 1 124 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.! 130 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 5.9 131 130 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 9.5 140 310 116 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 887.6 141 241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104.7 16D 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.9 166 0 0 0 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 19.0 167 166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.0 168 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 5.8 169 167 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 170 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 121 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 0 0 0 0 c 7.7 172 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 32.3 193 172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.3 174 170 171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.6 175 103 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.8 176 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 13.8 170 195 116 178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112.2 178 0 0 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0 0 0 0 33.6 129 0 0 0 0 0 0 0 0 0 0 214 0 0 0 0 0 0 0 0 0 1.6 1B0 329 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 105.2 201 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8.5 202 201 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12.6 203 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 5.! 209 202 203 0 0 0 0 0 0 0 0 4 5 7 9 0 0 0 0 0 0 46.1 210 209 0 0 0 0 0 0 0 0 0 6 8 10 0 0 0 0 0 0 0 65.1 214 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 4.8 215 0 0 0 0 0 0 0 0 0 0 is 0 0 0 0 0 0 0 0 0 4.4 216 2 315 350 0 0 0 0 0 0 0 16 39 0 0 0 0 0 0 0 0 816.1 223 0 0 0 0 0 0 0 0 0 0 20 21 22 0 0 0 0 0 0 0 20.4 224 223 0 0 0 0 0 0 0 0 0 23 24 0 0 0 0 0 0 0 0 25.7 226 124 0 0 0 0 0 0 0 0 0 25 26 0 0 0 0 0 0 0 0 32.4 241 94 330 365 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 104.7 250 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 1.6 251 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 8.1 252 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0 0 0 0 0 8.9 261 160 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 11.0 262 261 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 15.1 270 0 0 0 0 0 0 0 0 0 0 270 0 0 0 0 0 0 0 0 0 3.3 291 0 0 0 0 0 0 0 0 0 0 291 0 0 0 0 0 0 0 0 0 6.3 272 0 0 0 0 0 0 0 0 0 0 272 0 0 0 0 0 0 0 0 0 1.5 275 272 28 31 0 0 0 0 0 0 0 260 0 0 0 0 0 0 0 0 0 221.4 281 0 0 0 0 0 0 0 0 0 0 508 0 0 0 0 0 0 0 0 0 26.4 282 283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.10.4 1 1 1 1 1 1 1 1 283 284 0 0 0 0 0 0 0 0 0 511 0 0 0 0 0 0 0 0 0 210.4 284 386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1l1.3 291 0 0 0 0 0 0 0 0 0 0 290 0 0 0 0 0 0 0 0 0 5.9 301 0 0 0 0 0 0 0 0 0 0 301 0 0 0 0 0 0 0 0 0 28.5 310 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65.1 315 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.2 320 0 0 0 0 0 0 0 0 0 0 201 0 0 0 0 0 0 0 0 0 14.8 321 320 0 0 0 0 0 0 0 0 0 209 0 0 0 0 0 0 0 0 0 38.1 322 0 0 0 0 0 0 0 0 0 0 202 0 0 0 0 0 0 0 0 0 21.5 323 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.5 324 321 323 179 0 0 0 0 0 0 0 165 0 0 0 0 0 0 0 0 0 11.6 325 331 0 0 0 0 0 0 0 0 0 211 0 0 0 0 0 0 0 0 0 33.2 326 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43.2 327 326 0 0 0 0 0 0 0 0 0 216 0 0 0 0 0 0 0 0 0 1 32B 0 0 0 0 0 0 0 0 0 0 212 0 0 0 0 0 0 0 0 0 4.2 329 327 32B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88.3 330 131 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 _1.5 331 324 0 0 0 0 0 0 0 0 0 215 0 0 0 0 0 0 0 0 0 2.3 334 224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.E 336 226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.4 341 102 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 217.4 350 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.1 350 140 336 141 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 1029.0 358 357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1029.0 359 358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1029.0 360 359 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 1034.4 361 360 370 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1041.4 362 361 371 0 0 0 0 0 0 0 0 309 0 0 0 0 0 0 0 0 0 1045.9 363 362 372 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0 0 0 0 3056.7 364 363 373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1266.0 365 262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15.5 366 364 369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1344.5 367 366 0 0 0 0 0 0 0 0 0 313 0 0 0 0 0 0 0 0 0 1345.4 366 367 0 0 0 0 0 0 0 0 0 217 218 0 0 0 0 0 0 0 0 1381.2 369 0 0 0 0 0 0 0 0 0 0 305 0 0 0 0 0 0 0 0 0 1B.5 370 0 0 0 0 0 0 0 0 0 0 308 0 0 0 0 0 0 0 0 0 !.0 371 0 0 0 0 0 0 0 0 0 0 311 0 0 0 0 0 0 0 0 0 2.8 392 0 0 0 0 0 0 0 0 0 0 306 0 0 0 0 0 0 0 0 0 8.9 373 36 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 209.3 304 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 14.4 380 406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 381 0 0 0 0 0 0 0 0 0 0 403 0 0 0 0 0 0 0 0 0 11 .0 382 381 0 0 0 0 0 0 0 0 0 404 0 0 0 0 0 0 0 0 0 21.4 383 0 0 0 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 0 0 14-1 1 1 1 1 1 1 1 1 384 0 0 0 0 0 0 0 0 0 0 409 0 0 0 0 0 0 0 0 0 13.2 386 389 0 0 0 0 0 0 0 0 0 512 0 0 0 0 0 0 0 0 0 301.3 3B9 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124.4 388 0 0 0 0 0 0 0 0 0 0 513 0 0 0 0 0 0 0 0 0 124.4 395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 400 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 0 0 0 0 9.9 401 382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.4 402 401 0 0 0 0 0 0 0 0 0 405 0 0 0 0 0 0 0 0 0 24.9 403 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66.9 404 3tl4 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 0 0 0 0 52.0 405 409 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135.0 406 402 400 0 0 0 0 0 0 0 0 401 402 0 0 0 0 0 0 0 0 6B.^ 409 383 403 404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135.0 409 0 0 0 0 0 0 0 0 0 0 505 0 0 0 0 0 0 0 0 0 6'.3 410 102 405 282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1848.3 411 410 0 0 0 0 0 0 0 0 0 509 510 0 0 0 0 0 0 0 0 1B79.6 412 411 0 0 0 0 0 0 0 0 0 506 509 0 0 0 0 0 0 0 0 1910.1 413 4n? 412 0 0 0 0 0 0 0 0 514 0 0 0 0 0 0 0 0 0 2005.5 414 :.. ... 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 .. 0 0 0 2031.9 415 414 0 0 0 0 0 0 0 0 0 503 504 0 0 0 0 0 0 0 0 2088.4 416 415 0 0 0 0 0 0 0 0 0 501 0 0 0 0 0 0 0 0 0 2109.3 419 519 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2151.6 490 590 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 211.2 491 591 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205.1 492 592 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 193.4 494 594 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.5 499 599 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.9 499 0 0 0 0 0 0 0 0 0 0 399 0 0 0 0 0 0 0 0 0 1.5 460 0 0 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 0 1.4 481 0 0 0 0 0 0 0 0 0 0 361 0 0 0 0 0 0 0 0 0 2.6 483 0 0 0 0 0 0 0 0 0 0 383 0 0 0 0 0 0 0 0 0 5.6 486 586 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91.4 488 568 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62.0 490 0 0 0 0 0 0 0 0 0 0 390 0 0 0 0 0 0 0 0 0 1.4 491 0 0 0 0 0 0 0 0 0 0 391 0 0 0 0 0 0 0 0 0 2.8 496 0 0 0 0 0 0 0 0 0 0 396 0 0 0 0 0 0 0 0 0 13.5 499 0 0 0 0 0 0 0 0 0 0 399 0 0 0 0 0 0 0 0 0 3.9 510 416 0 0 0 0 0 0 0 0 0 500 502 0 0 0 0 0 0 0 0 2151.6 590 491 0 0 0 0 0 0 0 0 0 390 0 0 0 0 0 0 0 0 0 211.2 591 402 0 0 0 0 0 0 0 0 0 371 0 0 0 0 0 0 0 0 0 205.1 592 92 93 94 0 0 0 0 0 0 0 392 0 0 0 0 0 0 0 0 0 193.4 594 576 95 0 0 0 0 0 0 0 0 394 0 0 0 0 0 0 0 0 0 61.5 596 96 0 0 0 0 0 0 0 0 0 396 0 0 0 0 0 0 0 0 0 14.6 597 481 480 499 0 0 0 0 0 0 0 37 398 0 0 0 0 0 0 0 0 9.9 582 0 0 0 0 0 0 0 0 0 0 382 0 0 0 0 0 0 o 0 o s 583 83 483 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97.0 584 486 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91.4 566 468 85 84 0 0 0 0 0 0 a 386 387 0 0 0 0 0 ' 0 0 0 91.4 588 88 497 0 0 0 0 0 0 0 0 389 392 0 0 0 0 0 0 0 0 62.0 591 594 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 0 0 0 592 17.3 593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.5 593 0 0 0 0 0 0 0 0 0 0 718 0 0 0 0 0 0 0 0 0 19.5 0 594 0 0 0 0 0 0 0 0 0 0 0 0 17.3 317 0 0 0 0 0 0 ' 673 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 682 582 0 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 88 683 J C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 0 0 0 .0 6B4 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91.4 MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. MBE 3/22/00 100 YEAR EVENT FILE: MMCD-100.DAT OR ENG., UPDATED 1/07/05 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 2 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CPS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CPS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CPS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 586 588 0 1. .0 .0 ' 0 2. .0 .0 .DO( ) .00( ) 0 3. .1 .0 .00( ) .00( 1 0 9. 1 1 .00( 1 .00( ) 0 S. .1 .1 .00( ) .00( ) 0 6. .1 .3 .00( ) .001 ) 0 T. .6 .T .00( ) .00( I 0 8. 2.2 3.0 .001 ) .00 ( ) ' 0 9. 4.5 6 .00( ) .00( ) 0 10. 7.0 11.5 .00( .00( ) 0 11, 9.8 30.9 .001 ) .00( ) ' 0 12. 12.7 24.1 .00( ) .00( 1 0 13. 15.3 30.7 .00( ) .001 ) 0 14. 17.6 36.6 ' .00( ) .00( ) 0 15. 19.5 41.7 .00( ) .00( 1 0 16. 23.0 48.6 .00( ) .001 1 ' 0 17. 20.0 57.3 .001 ) .00( ) 0 18. 32.1 64.9 .00( ) .00( I 0 19. 35.4 11.0 ' -001 1 .00( ) 0 20. 38.0 75.8 00( I .00( ) 0 21. 41.8 81.9 I 1 I Cl [] .00( 1 .00( 1 0 22. 46.9 89.9 .00( ) .00( ) 0 23. 50.9 96.4 .00( 1 .00( ) 0 24. 54.6 102.0 .00( I .00( ) 0 25. 57.8 106.5 .00( 1 .001 ) 0 26. 68.9 122.3 .00( ) .00( 1 0 27. 89.3 149.4 .00( ) .00( I 0 20. 101.9 171.8 .00( ) .00( ) 0 29. 113.4 186.9 .00( ) .00( ) 0 30, 122.4 201.4 .00( 1 .00( ) 0 31. 148.1 237.1 .00( 1 .00( ) 0 32. 197.1 293.8 .00( ) .00( ) 0 33. 213.5 335.0 .00( ) .00( ) 0 34. 232.0 362.5 .00( .00( ) 0 35. 246.3 380.5 .001 1 .00( 1 0 36. 230.6 350.7 .00( ) .00( I 0 37. 198.5 293.5 .00( ) .00( I 0 36. 180.0 256.7 .00( 1 .00( ) 0 39. 166.9 233.1 .00( 1 .00( ) 0 40, 156.9 217.7 .00( I .00( ) 0 41. 143.8 198.6 .00( ) .00( ) 0 42. 12B.6 176.6 .001 ) .00( ) 0 43. 117.7 160.7 .00( I .001 1 0 44. 109.8 149.4 .00( ) .00( ) 0 45. 103.8 141.3 .00( I .00( ) 0 46. 96.1 131.0 .00( ) .00( 1 0 40. 87.1 118.9 .00( ) .001 1 0 48. 80.2 109.2 .00( ) .00( ) 0 49. 74.8 102.0 .00( ) .00( ) 0 50. 90.6 96.6 .00( 1 .00( 1 0 51. 66.9 91.6 .00( ) .00( ) 0 52, 62.9 86.8 .00( ) .00( 1 0 53. 59.8 83.0 .00( ) .00( ) 0 54, 57.3 80.1 .00( ) .00( ) 0 55. 55.3 77.9 .00( 1 .00( 1 0 56. 53.2 95.8 ' .00( ) .00( ) 0 59. 51.2 73.6 .00( 1 .00( ) 0 58. 49.4 71.8 .00( I .001 ) 0 59. 46.0 70.3 .001 1 .00( ) 1 0. 46.8 69.1 .00( I .00( 1 1 1. 45.7 67.9 .00( ) .00( ) 1 2. 44.6 66.6 .00( 1 .00( ) 1 3. 43.0 65.6 .00( I 1 4. 42.9 64.9 .00( 1 .00( ) 1 5. 42.2 64.0 .00 ( , . 00 ( , 1 6. 41.6 63.2 ' .001 ) .001 ) 1 ]. 40.9 62.3 .00( ) .00( ) 1 B. 40.3 61.6 .001 I .00( ) ' 1 9. 39.9 60.9 .00( 1 .00( I 1 10. 39.5 60.4 .00( 1 .00( 1 1 11. 39.1 59.8 ' .00( , .00( I 1 12. 38.6 59.2 .001 ) .001 ) 1 13. 38.2 58.6 .001 ) .001 ) ' 1 19. 37.9 58.2 .00l ) .001 ) 1 15. 3].] 57.8 .00( 1 .001 ) ' 1 16. 39.4 .00( 1 57.3 .00l ) 1 1]. 37.O 56.8 .00( 1 .00( 1 1 18. 36.7 56.3 .00; 1 .00( 1 1 19, 36.5 55.9 ' .001 1 .00( 1 1 20. 36.3 55.5 .00 ( ) .00 1 ) 1 21. 36.0 55.2 .00( 1 22. 35.8 54.7 .00 ( 1 .00( 1 1 23. 35.5 54.4 .OG( i .00( 1 1 24. 35. 59.0 .0ol ) .00( 1 1 25. 35.2 53.B .00( 1 .00( ) 1 26. 35.0 53.4 .00( I .00( 1 ' 1 27. 39.8 53.1 .00( ) .00( 1 1 28. 34.6 52.7 .001 ) .00( I 1 29. 39.5 52.5 ' .001 1 -001 ) 1 30. 34.3 52.2 .00( 1 .00( 1 1 31. 34.2 51.9 .00( ) .00( 1 ' 1 32. 39.0 51.6 .00( ) .00( 1 1 33. 33.8 51.3 .00( ) .00( ) 1 34. 33.7 51 .0 ' .00( 1 .001 ) 1 35. 31.5 50.8 .00( ) .00( I 1 36. 33.4 so.5 .00( ) .001 ) ' 1 37. 33.2 50.2 .00( 1 .00( ) 1 38. 33.1 49.9 .001 ) .00( 1 1 39. 32.9 99.6 ' .00( 1 .001 I 1 40. 32.8 49.4 .00( I .001 ) 1 41. 32.7 49.1 .00( ) .00( ) 1 42. 32.5 98.8 ' .00( ) .00( 1 1 43. 32.4 48.6 .00( 1 .001 ) 3 44. 32. 0 48.4 ' 1 45. 32.2 48.2 .00( ) .00( 1 1 46. 32.1 48.0 .001 I .001 ) 1 47. 32.0 97.8 ' .00( ) .00( ) 1 48. 31.9 47.6 .00( ) .00( 1 3 49. 31.8 47.4 t 1 t .00( I .00( I t 50. 31.8 47.2 .00( ) .00( 1 1 51. 31.7 47.0 .00( ) .00( ) 1 52. 31.5 46.8 .00( 1 .00( ) 1 53. 31.4 46.6 .00( 1 .00( 1 1 54. 31.4 46.4 .00( ) .00( ) 1 55. 31.3 46.2 .00( ) .00( ) 1 56. 31.2 46.1 .00( ) .00( ) 1 57. 31.1 45.8 .001 ) .00( ) 1 58. 31.0 45.6 .00( ) .00( ) 1 59. 30.9 45.5 .00( 1 .00( 1 2 0. 30.9 45.3 .00( 1 .00( ) 2 1. 29.9 43.6 .00 00 2 2. 27.9 40.4 .00 1 ) .00 ( ) 2 3. 26.1 37.5 .00 ( ) .001 ) 2 4. 24.7 35.0 .00( 1 .^0( 1 2 S. 23.6 32.9 . 00 ( ) .00 ( ) 2 6. 22.6 31.1 .00( ) .001 1 2 7. 21.B 29.5 .00( 1 .001 ) 2 8. 21.1 28.4 .00( ) .001 1 2 9. 20.5 22.3 .00( ) .00( ) 2 10. 20.0 26.4 .001 1 .00( ) 2 11. 19.5 25.6 .00( ) .00( 1 2 12. 19.1 25.0 .00O .00( ) 2 13. 18.8 24.4 .00( ) .00( ) 2 14. 18.4 23.9 .00( ) .00( 1 2 15. 18.2 23.5 .00( ) .001 1 2 16. 17.9 23.2 AO( 1 .00( ) 2 10. 17.7 22.9 .00( I .00( ) 2 18. 17.5 22.6 .00( ) .001 I 2 19. 17.4 22.3 .00( I .00( ) 2 20. 17.2 22.1 .00( ) .00( 1 2 21. 17.1 21.9 .00( ) .00 ( ) 2 22. 16.9 21.8 .00( 1 .00( ) 2 23. 16.8 21.6 .00( ) .00( 1 2 24. 16.7 21.5 .00( I .00( ) 2 25. 16.6 21.4 .00( ) .00( ) 2 26. 16.5 21.3 .00( ) . 00 ( ) 2 27. 16.5 21.2 .00( 1 .00( ) 2 28. 16.4 21.1 .00( ) .00( 1 2 29. 16.3 21.0 .00( 1 .00( 1 2 30. 16.3 20.9 .00( 1 .00( ) 2 31. 16.2 20.8 .001 ) .00( ) 2 32. 16.1 10.8 .00( 1 .00( 1 2 33. 16.1 20.7 .00( 1 .00( ) 2 34. 16.1 20.6 . 00( ) .001 ) 2 35. 16.0 20.6 .00( 7 .001 1 2 36. 16.D 20.5 .00l 1 .00( 1 ' 2 37. 15.9 20.5 .00( 1 .00( ) 2 38. 15.9 20.4 .001 ) .00( ) 2 39. 15.9 20.9 ' 2 40. 15.9 20.4 .00( ) .00( 1 2 41. 15.8 20.3 .001 ) .00( 1 ' 2 42. ]5.8 20.3 .00( 1 .00( I 2 43. 15.8 2D.3 .00( 1 .00( 1 ' 2 44. 15.8 .001 1 20.2 .00( ) 2 45. 20.2 .001 1 .00( ) 2 46. 15.l 20.2 2 9'. .001 1 _ 5. .00( 1 20.1 ' .00( ) .001 1 2 48. 15.7 20.1 AO Aot 2 49, 15. 2D.1 0 2 50. 15.E 20.1 2 51. 15.7 20.0 .00( 1 .001 ) 2 52. 15.6 20.0 ' .00( ) .00( 1 2 53. 15.6 20.0 .00( ) .00( ) 2 54. 15.6 20.0 .00( 1 .00( ) 2 55. 15.6 19.9 .001 ) .00( 1 2 56. 15.6 19.9 .00( ) .00( 1 2 52. 15.6 19.9 ' .00( ) .00( ) 2 58. 15.6 19.9 .00( ) .00( ) 2 59. 15.6 1919 .00( ) .00( 1 ' 3 0. 15.6 19.8 .00( ) .00( I 3 1. 15.6 19.8 .00( 1 .00( ) 3 2. 15.6 19.8 ' .00( 1 .001 ) 3 ;. 35.6 19.0 .00( ) .00( 1 3 4. 15.6 19.8 .00( ) .00( ) 3 5. 15.6 19.8 .001 ) .00( ) 3 6. 15.5 19.7 .00( I .00( 1 3 '/. 15.5 19. .00( ) .001 1 3 8. 15.5 19.7 .00( 1 .00( ) 3 9. 15.5 19.7 .00( I .00( 1 3 10. 15.5 19.7 ' .00( ) .001 ) 3 11. 15.5 19.6 .00( ) .00( ) 3 12. 15.5 .00( I 19.6 .001 1 ' 3 13. 15.5 19.6 .00( ) .00( ) 3 14. 15.5 19.6 .001 ) .00( ) 3 15. 15.5 19.6 ' .00( 1 .00( 1 3 16. 15.5 19.5 .001 I .00( I 3 17. 15.5 19.5 3 1B. 15. 1915 ' 0 . 00( 1 .00( ) 3 19. 15.5 19.5 .001 ) .001 1 3 20. 15.5 19.5 .00( ) .001 1 ' 3 21. 15.5 19.5 .001 ) .001 1 3 22. 15.5 19.4 .001 ) .00 ( 1 l 23. 15.5 19.4 ' . 00( 1 .00( ) 3 24. 15.5 19.4 .00( ) .00( ) 3 25. 15.5 19.4 .00( 1 .001 1 ' 3 26, 15.5 19.4 .00( 1 .001 I 3 27. 35.5 19.4 .00( ) .00( ) ' 3 28. 15. .00 00( I 19.3 .00( ) 3 29. 15.5 19.3 .00( 1 .00( 1 3 30. 15.5 19.3 3 31. .00( 1 15.5 .00; 1 15.3 ' .001 1 .00( 1 3 32. 15.5 19.3 .00( 1 .001 ) 3 33. 15. 19.3 .00 00( ) .001 1 t 3 39. 15.5 19.2 .00 ( 1 . 00 ( 1 3 35. 15.5 19.2 .001 1 .00( 1 3 36. 15.6 19.2 ' .00( ) .00( ) 3 37. 15.6 19.2 .00( ) .00( ) 3 38. 15.6 19.2 .00( ) .00( ) 3 39. 15.6 19.2 .00( ) .00( ) 3 40. 15.6 19.1 .00( ) .00( ) 3 41. 15.6 19.1 ' .001 ) .00( ) 3 42. 15.6 19.1 .00( ) .00( 1 3 43. 15.6 19.1 .00( ) .001 1 ' 3 99. 15.6 19.1 .00( ) .00( ) 3 45. 15.6 19.1 .00( I .001 ) l 96. 15. 19.0 .00 0 ( ) .001 ) 3 47. 15.6 19.0 .00( ) .00( ) 3 46. 15.6 18.9 .00( I .001 1 3 99. 15.6 10.9 .00( ) .00( ) 3 50. 15.6 18.8 .00( ) .001 ) 3 51. 15. 1].6 ' .00 00( 1 .001 ) 3 52. 15.6 1S.2 .001 ) .00( ) 3 53. 15.6 13.1 .00( I .00( I 3 59. 15.6 11.5 ' .00( 1 .00( ) 3 55. 15.6 10.4 .00( ) .001 I 3 56, 15.6 9.5 .001 ) ' 3 57, 15.6 8.8 .001 ) .00( ) 3 58. 15.6 8.3 . 00 ( 1 .00( 1 3 59. 15.5 8.0 ' .001 ) .00( ) 4 0. 15.5 7.9 .00( 1 .00( 1 4 1. 15.5 7.4 1 . 00 ( ) . 00 ( 1 9 2. 15.5 7.2 ' 4 3. 15.5 7.1 .001 1 .001 1 4 4. 15.5 9.0 .001 ) .00 ( ) ' 4 5. 15.5 6.9 .001 ) .00 ( ) 4 6. 15.5 6.8 .001 ) .00 ( ) 9 ']. 15.5 6.9 .001 ) .00 ( , 4 8. 15.4 6.7 .001 ) .00( , 4 9. 15.4 6.7 .001 ) .00 ( 1 ' 4 30. 15.9 5.6 .001 I .001 I 4 11. 15.4 6.6 .00( ) .00( ) 9 12. 15. 0 6.6 t 4 13. 15.4 G.6 .00( ) .00( ) 4 14. 15.4 6.5 4 15. .00( ) 15.4 .00( ) .001 1 .00( ) 4 16. 15.4 6.5 .00( 1 .00( ) 9 17. 15. 6.5 0 ' 4 18. 15.3 6.5 .001 ) .00( ) 4 19. 15.3 ., ,.00( .001 ) ) 4 20. 15. 6.5 ' .001 1 .00( 1 4 21. 15.3 6.5 .00 ( ) .001 ) 4 22. 15.3 6.5 .00( ) .00( ) ' 4 23. 15.3 6.5 .001 1 .00( ) 4 24. 15.3 6.5 .00( 1 .00( ) 4 25. 15.3 6.5 .00l ) .00( ) 4 26. 15.2 6.5 .00( ) .00( ) 4 27. 15.2 6.5 .00( 1 .00( ) 4 28. 15.2 6.4 .00( I .00( ) 4 23. 15.2 6.4 .00( ) .00( ) 4 30. 15.2 6.4 ' .00( 1 .00( ) 9 33. 15.2 6.4 .001 ) .00 ( ) 4 32. 15.2 6.4 .00( ) .) 4 33. 15.2 6.4 .00( ) .0o( ) 4 34. 15.2 6.4 .00( 1 .001 ) ' 4 35, 15.2 .00( ) 6.4 .00( ) 4 36. 15.1 6.4 .001 I .00( ) 4 39. 15.1 6.4 .001 ) .001 1 9 38. 15.3 6.4 .00( ) .00( ) 4 39. 15.1 6.4 .00( I .00( ) 9 40. 15.1 6.4 .00( ) .001 I ' 4 41. 15.1 6.4 .001 ) .00( 1 4 42. 15.1 6.4 .00( I .001 ) 4 43. 15.1 6.4 ' .00( ) .001 I 4 44. 15.1 6.4 .001 1 .00( ) 4 45. 15,0 6.4 4 .00( , .00( , 4 96. 15.0 6.4 ' 4 47. 15.0 6.4 .OD( I .00( ) 4 48. 15.0 6.4 .oD( I .00( ) ' 9 49. 15.0 6.4 .00( ) .00( 1 4 50. 15.0 6.4 .00( I .00( 1 9 Si. 15.0 6.9 ' .00( 1 .00( 1 4 52. 15.0 6.4 .00( ) .00( ) 4 53. 15.0 6.3 .00( I .00( 1 ' 4 54. 14.9 6.3 .00( I .00( I 4 55. 14.9 6.3 .00( 1 .00( ) 9 56. 14.9 6.; ' .00( ) .001 ) 4 57. 14.9 .00( ) .00( ) 4 SB. 140 5.3 9 59. .00( ) 14.3 .00f ) 6 3 ' .00( ) .00( ) 5 0. 14.9 6.3 .00l 1 .Do( ) S 1. 14.9 .00( 1 6.3 .00( ) ' 5 2. 14.9 6.3 .001 1 .00( ) 5 3. 14.9 6.3 S 9. 19.8 6.3 ' .00 ) .001 I 5 5. 14.8 6.3 .00( I .00( ) 5 6. 14.8 6.3 .00( 1 .001 ) ' 5 ]. 19.8 6.3 .00( ) .00( ) 5 B. 14.0 6.3 .00( ) .00( I S 9. 19.8 6.3 ' .00( ) .001 ) 5 10. 14.8 6.3 .00( ) .00( ) 5 11. 14.6 6.3 .00( 1 .001 ) ' 5 12. 19.8 6.3 .00( 1 .00( ) 5 13. 14.8 6.3 .00( ) .00( ) S 14. 19.7 6.3 ' .001 1 .001 ) 5 15. 19.7 6.3 .00( 1 .00( ) 5 16. 14.7 6.3 .00( ) .00( I ' 5 17. 14.7 6.3 .00( ) .001 1 5 18. 14.7 6.3 .00( I .00( ) S 19. 14.7 6.7 ' 5 20. 14.7 6.3 .00( ) .00( 1 5 21. 14.7 6.3 .00( ) .OD( ) 5 22. 14.7 6.2 .00( ) .00( ) 5 23. 14.6 6.2 .00( ) .00( I S 24. 19.6 .00( 1 6.2 .00( ) ' 5 25. 14.6 6.2 .00( 1 .00( ) 5 26, 14.6 6.2 .00( ) .00( ) 5 27. 14.6 6.2 .00( ) .00( I 5 28- 14.6 6.2 .001 I .00( 1 5 29. 14 .6 6.2 AO( ) .00( 1 S 30. 19. 6.2 ' .00 00( I 00( ) 5 31. 14.6 6.2 .00 I ) . 00 ( ) 5 32. 14.6 6.2 .001 ) .00 ( 1 5 33. 14.5 6.2 .00( ) .00( ) 5 34. 14.5 6.2 .00( ) .00( 1 S 35. 14.5 6.2 ' .00( ) .00 ( 1 5 36. 14.5 6.2 .001 ) .00 ( 1 5 37. 14.5 6.2 .00( ) .00( 1 ' 5 38. 14 .5 6.]. .00( ) .001 7 5 39. 14.5 6.2 .Do( ) .00( I S 40. 19. 6.2 ' .00 00( ) .001 ) 5 41. 14.5 6.2 .00( 1 .001 1 5 42. 14.5 6.2 .ODI ) .00( 1 ' 5 43. 14.4 5.2 .001 1 .00( 1 5 44. 14.4 6.2 .00( 1 .00( 1 S 45, 14.9 .001 1 6.2 .00( ) ' 5 46. 14.4 6.2 .DO( I ou( 5 49. 14.4 6.2 .00( 1 .00( ) 5 aB. 14.4 6.2 .00( ) .00( 1 5 49. 14.4 6.2 .00( ) .001 1 5 50. 14.4 6.2 .00( ) .001 ) ' 5 51. 14.4 6.2 .001 I .00( ) 5 52. 14.4 6.2 .00( ) .00( ) 5 53. 34.3 6.2 .00( ) .00 ( ) 5 54. 14.3 6.1 .00( ) .00( I 5 55. 14.3 6.1 .00( I .00( I ' 5 56. 19.3 6.1 .001 1 .00( ) 5 59. 14.3 6.1 .00( I .00( ) S SB. 14.3 6.1 ' 5 59. 14.3 6.1 .00( ) .00( ) 6 0. 14.3 6.1 .001 I .00( ) ' 6 3. 19.3 6.1 .00( ) .00( ) 6 2. 14.3 6.1 .00( ) .00( ) 6 J. 14.2 6.1 ' .00( ) .001 I 6 4. 14.2 6.1 .001 1 .00( ) 6 S. 14.2 6.1 .00( ) .00( ) 6 6. 14.2 6.1 ' .00( ) .00( ) 6 7. 14.2 6.1 .00( ) .00( 1 6 B. 19. .00 01 1 6.1 .001 1 ' 6 9. 14.2 6.1 .00( ) .00( ) 6 10. 14.2 6.1 .00( ) .00( 1 6 11. 19.2 6.1 ' .00( ) .00( 1 6 12. 34.2 6.1 .00! ) .00( 1 6 13. 14 1 6.1 00( ) .1 .00( 1 6 19. ]4. 6.1 ' 6 15. 14.1 6.1 .001 1 .001 ) 6 16. 14.1 6.1 .001 ) .001 1 ' 6 17. 14.3 6.1 .00( ) .00( ) 6 18. 14.1 6.1 .001 ) .00( ) 6 19. 14.1 6.1 ' .00( ) .00( 1 6 20. 14.1 6.1 .00( I .00( I 6 21. 14.1 6.1 .001 ) .00 1 ' 6 22. 14 .1 6A .001 ) .00( ) 6 23. 14.1 6.1 .001 ) .00( ) 6 24. 19.0 .001 ) 6.1 .00( ) 6 25. 14.0 6.1 .00( I .00( 1 6 26. 14.0 6.1 .00( 1 .oc( 1 6 27. 14 .0 6.1 ' .00( 1 .00( 1 6 28. 14.0 6.1 .00( 1 .00( 1 6 29, 14.0 .00( 1 6.0 .00( I ' 6 30. 14.0 6.0 .001 6 31. 14.0 6.0 .0o1 1 .00( 6 32. 14.0 6.0 ' .001 ) .00( 1 6 33. 14.0 6.0 .001 ) .00( ) 6 39. 13.9 6.0 .00( ) .00( ) 6 35. 13.9 6.0 .00 ( ) .00( 1 6 36. 13.9 6.0 .00( ) .00( ) 6 37. 13.9 6.0 6 38. 13.9 6.0 .00( ) .00( 1 6 39. 13.9 6.0 .00( 1 .001 1 ' 6 40. 13.9 6.0 .00( 1 .00( ) 6 41. 13.9 6.0 .00( ) .00( 1 6 42. 13.9 6.0 ' .001 ) .001 1 6 93. 13.9 6.0 .00( ) .00( 1 6 44. 13.9 6.0 .001 ) 6 45. 13.8 6.0 .00( I .00( 1 6 46. 13.6 6.0 .00( ) .00( I 6 43. 13 .8 6.0 ' .001 1 .00 ( ) 6 48. 13.8 6.0 .00( ) .00( ) 6 49. 13.8 6.0 .001 ) .00 ( ) ' 6 50. 13.8 6.0 .001 ) .00( 1 . 6 51. 13.6 6.0 .001 ) -00( I 6 52, 13.8 .001 1 6.0 .00( 1 ' 6 53. 13.8 6.0 .00( ) .001 I 6 54. 13.8 6.0 .001 1 .00 ( ) 6 55. 13.2 6.0 ' .00( 1 .00( 1 6 56. 13.7 6.0 .001 I .c0( I 6 57. 13.7 6.0 1 .00( , .00( I 6 56. ll.] 6.0 ' .001 ) .00( I 6 59. 13.7 6.0 .00( 1 .001 I ] 0. 13.7 6.0 .00( ) .001 ) ] 1. 13.7 6.0 .00( ) .00( ) ] 2. 13.9 6.0 .00( ) .00( ) ] J. 13.] 6.0 ] 4. 13.7 6.0 .00( ) .00( 1 ] 5. 13.7 6.0 .001 1 .00( I ' ] 6. 13.6 6.0 .00( 1 .001 I ] ]. 13.6 6.0 .00( ) .001 1 ] B. 13.6 5.9 ' .00( ) .00( ) 7 9. 13.6 y9 .001 1 .00 ( ) ] 30. 13.6 5.9 .00( ) ] 11 13.6 5.9 .00( 1 .00( 1 ] 12. 13.6 5.9 .00( 1 .00( ) ] 13. 13.6 .00( ) 5.9 .001 ) ' ] 14. 13.6 5.9 .001 1 .00( 1 ] 15. 13.6 5.9 .00( 1 .001 1 ] 16. 13.6 5.9 ' .00( 1 .001 ) ] 17. 13.5 5.9 .001 ) .00( ) ] 18. 13.5 5.9 .001 1 .00( 1 ' ] 19. 13.5 5.9 -00( ) .001 ) ] 20. 13.5 5.9 .00( ) .001 ) ] 21. 13.5 5.9 .001 1 .00( 1 ] 22. 13.5 5.9 .00( ) .00( ) ] 23. 13.5 5.9 .00( ) .001 ) ' ] 29. 13.5 5.9 .00( ) .00( ) ] 25. 13.5 5.9 .00( 1 .00( ) ] 26. 13.5 5.9 ' .00( ) .001 I ] 2]. 13.9 5.9 .001 1 .00( ) ] 28. 13.4 5.9 .00( ) .001 ). ] 29. 13.4 5.9 .00( 1 .00( ) ] 30. 13.4 5.9 .00( ) .00( I ] 31. 13.4 5.9 .00( ) .001 ) ] 32. 13.4 5.9 .00( 1 .00( I ] 33. 13.4 5.9 .00( ) .001 1 ] 34. 13.4 5.9 .001 ) .00( ) ] 35. 13.4 5.9 .00( ) .00( 1 ] 36. 13.9 .00( ) 5.9 .001 1 ' ] 37. 13.4 5.9 .001 1 .00( 1 ] 38. 13.3 5.9 .00( 1 .001 I ] 39. 13 .3 5.9 ' .00( ) .00( 1 ] 40. 13.3 5.9 AO( I .001 1 7 41. 13.3 5.9 .00 ( ) .001 , 742. 13. 5.9 ' .00 00( 1 .00( 1 ] 43. 13.3 5.8 .001 ) .Oo( ) 7 44. 13.3 5.8 .001 ) .00( ) ' ] 45. 13.3 S.B .001 I .001 1 ] 46. 13.3 5.8 .00 ( I .001 ) ] 47. 13 .3 5.8 ' .001 1 .00 ( ) ] 48. 13.3 5.8 .001 ) .00 ( ) ] 49. 13.3 5.8 .001 ) .00 ( ) ] 50. 13.2 5.8 .001 ) .00 ( ) ] 51. 13.2 5.] .001 1 .00( 1 ' ] 52. 13 .2 .00( ) 5.4 .ou( 1 ] 53. 13.2 5.1 .00( ) .00( ) ] 54. 13.2 5.0 .oa( ) .oa. l ' ] 55. 13.2 9.8 .001 1 .001 ] 56. 13.2 4.] .00( 1 .001 i ] 57. 13.2 .00 4.6 00 ' ] 58. 13.2 4.5 .00( ) .00( ] 59. 13.2 4.5 .00 ( 1 .001 i 8 0. 13. 9.4 ' .00 0 ( ) .00 ( 1 8 1. 13.1 4.4 .00 L) .00( ) 8 2. 13.1 4.3 .001 ) .00( I ' 8 3. 13.1 4.3 .00( ) .00( ) 8 4. 13.1 4.3 .00( 1 .00( ) 8 S. 13. 4.3 .001 00( ) .00( 1 8 6. 13.1 4.2 .00( ) .001 ) 8 ]. 13.1 4.2 .00( ) .00( ) ' 8 8. 13.1 4.2 .00( ) .00( 1 8 9. 13.0 4.2 .00 ( ) .00 1 ) B 10. 13.0 4.2 ' .001 ) .00 ( ) 8 11. 13.0 9.2 .00 ( ) .00 ( ) 8 12. 13.0 4.2 .001 I .00( ) ' 8 13. 13.0 4.2 .00 ( ) .00 ( I 8 14. 13.0 4.2 .001 ) .00 ( ) B 15. 13.0 4.2 ' 8 16. 13.0 4.2 .001 ) .00 ( 1 8 17. 13.0 4.2 .00( ) .00( ) 8 18. 12.9 4.2 .001 1 .001 1 8 19. 12.9 4.2 .00( ) .00( ) 8 20, 12.9 .00 ( ) 4.2 .001 ) 8 21. 12.9 4.2 .00( ) .00( ) B 22. 12.9 4.2 .00( ) .001 1 8 23. 12.9 4.2 ' .001 I .00( 1 6 24, 12.9 4.2 8 25. 12.9 4.2 I 1 1 1 11 Ij 1 .00( 1 .00( , 8 26. 12 .9 4.2 .00( ) .00f 1 8 27. 12.9 4.2 .00( ) .00( ) 8 28. 12.8 4.2 .00( 1 .00( ) 8 29. 12.8 4.2 .00( I .00( ) B 30. 12.8 4.1 .00 ( ) .00 ( 1 8 31. 12.8 4.1 .00( ) .001 1 8 32. 12.B 4.1 .001 ) .001 ) 8 33. 12.8 4.1 .00( ) .00( ) 8 34. 12.8 4.1 .00( 1 .00 ) 8 35. 12.8 4.1 .00( ) .00( I B 36. 12.8 4.1 .00( ) .00( 1 8 37. _2.9 4.1 .001 ) .001 ) 8 38. 12.0 4.1 .001 , .00( 1 8 3^. 12 .7 4.1 .00( 1 .00! ) 8 40.. 12.7 4.1 00( ) .001 ) 8 41. 12 .7 4.1 .00( ) B 42. 12.E 4.1 .00 ( 1 . 00 ( ) 8 43. 12.7 4.1 00( 1 .00( ) 8 44. 12.7 4.1 .00( ) .001 1 8 45. 12.7 4.1 .00( 1 .00( ) 8 46. 12.7 4.1 .00( ) .00( 1 6 47. 12.7 4.1 .00( ) .00( ) 8 48. 12.6 4.1 .00( ) .00( ) 8 49. 12.6 4.1 .00( 1 .00( ) 8 50. 12.6 4.1 .00( ) .00( I 6 51. 12.6 4.1 .0o I ) .001 ) 8 52. 12.6 4.1 .001 1 .00 ) 8 53. 12.6 4.1 .00( ) .00( 1 8 54. 12.6 4.1 .001 ) .00( ) 8 55. 12.6 4.1 .00( I .00( ) 8 56. 12.6 4.1 .00( ) .00( ) 8 57. 12.6 4.1 .00( 1 .00( ) 8 58. 12.5 4.1 .00( ) .00( 1 8 59. 12.5 4.1 .001 ) .001 ) 9 0. 12.5 4.1 .00( ) .00( 1 9 1. 12.5 4.1 .001 1 .00( 1 9 2. 12.5 4.1 .00( 1 .00( ) 9 3. 12.5 4.1 .001 ) .00( 1 9 4. 12.5 4.1 .00( 1 .00( ) 9 5. 12.5 4.1 . 00 ( I .00( ) 9 6. 12.5 4.1 .001 1 .001 1 9 7. 12.5 4.1 .00( ) .00( ) 9 8. 12.5 4.1 00( 1 .00( ) 9 9. 12 4 4.1 .001 ) .001 1 9 10. 12.4 4.1 ' .001 ) .001 I 9 11. 12.4 4.1 .001 1 .00( ) 9 12. 12.4 4.1 .001 I .00( ) ' 9 13. 12.4 4.1 AD( 1 .00( ) 9 14. 12.4 4.1 .00( I .00( ) 9 15. 12.4 4.1 ' .00( 1 .00( ) 9 16. 12.4 4.1 .00( ) .00( ) 9 11. 12.4 4.1 .aol ) 00( I 9 18. 12.9 9A .001 ) .001 I 9 19. 12.3 4.1 .001 1 .001 ) 9 20. 12.3 4.1 ' -00( ) .00( ) 9 21. 12.3 4.1 .001 1 .00( ) 9 22. 12.3 4.1 .001 ) .00( ) ' 9 23. 12 .3 4.1 .00( 1 9 24. 12.3 4.1 .oaf 1 .001 I 9 25. 12.3 .001 ) 9. .001 I ' 9 26, 12.3 4.1 ON oll 9 27. 12.3 4.1 .00( 1 .001 1 9 2B. 12. 9.1 00 00 9 29. 12.3 4.1 _ .00 ( ) .001 ) 9 30. 12.3 4.1 .00( 1 .001 ) 9 31. 12.3 4.1 .00( 1 .00( ) 9 32. 12.2 4.1 .001 ) .00( 1 9 73. 12.2 4.1 .00( ) .001 ) 9 34. 12.2 4.1 .00( ) .001 ) 9 35. 12.2 4.1 .001 1 .001 ) ' 9 36. 12.2 4.1 .001 ) .00( ) 9 37. 12.2 4.1 .00( ) .001 ) 9 38. 12.2 4.0 .001 ) .00 ( ) 9 39. 12.2 4.0 .OUI I .00( ) 9 40. 12.2 4.0 .00( ) .00( 1 ' 9 41. 12.2 3.9 .00( ) .00( ) 9 42. 12.2 3.9 .00( 1 .00( 1 9 43. 12.2 3.8 ' .00( ) .00( 1 9 44. 12.2 3.7 .001 ) .001 ) 9 4S. 12.2 3.6 .001 ) .00( ) 9 96. 12.2 3.9 .001 ) .001 I 9 47. 12.2 3.3 AD( ) .00 ( ) ' 9 48, 12.2 .00( 1 3.2 .00( ) 9 49. 12.2 3.0 .00( ) .001 ) 9 So. 12.2 2.8 9 51. .001 ) 12.2 .001 ) 2.7 AD 1 .00( ) 9 52. 12.2 2.5 .00( ) .001 1 9 51. 12.2 2.4 1 . 00 ( ) . 00 ( 1 9 54. 12.1 2.2 ' 0 . 00( I .001 I 9 55. 12.1 2.0 ' .00 ( I .00 ( 1 9 56. 12.1 1.9 .001 ) .00I ) ' 9 50. 12.1 1.8 .00( ) .00( ) 9 58. 12.1 1.7 .001 ) .00( 1 9 59. 12.1 1.6 ' .00( I .oal I 10 0. 12.1 1.5 .00( I .001 ) THE FOLLOWING CONVEYANCE ELEMENTS WERE SURCHARGED DURING THE SIMULATION. THIS COULD LEAD TO ERRORS IN THE SIMULATION RESULTS!! 417 THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS OUR ING THE SIMULATION. 42 102 174 324 331 358 310 397 413 470 471 496 1 lJI LJ I LJ FJ 1 1 1 I L✓ MCCLELLANDS BASIN MODEL (FULLY INTEG.) DE'JEL. CONE. 6/30/99;Re, MBF 3/22/00 100-YEAP EVENT FILE: MMCD 100.DAT JR ENG., UPDATED 1/07/05 "• PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS ••• ... NOTE :S IMPLIES A SURCHARGED ELEi4EN;' AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STCFAGE TIME ELEMENT:TYPE ICES) (FT) (AC FT) (HR/MIN) 2:2 275.9 .1 63.2:D 2 27. 4:1 193.6 3.5 1 0. 6:1 173.7 3.5 0 37. 7 1 35.4 .6 0 36. 8:1 189.1 2.0 1 6. 9:1 753.3 3.1 0 41. 11:1 54.2 .8 0 35. 12:1 81.2 .9 0 36. 13:1 107.9 1.0 0 36. 14:1 0.9 .4 0 36. 16:1 51.4 .6 0 35. 20:1 218.8 3.6 0 36. 21:1 31.2 .6 0 41. 22:1 210.7 3.3 0 37. 25:2 1.6 .5 1 5. 26:5 102.6 4.6 0 56. 27:2 102.3 .1 2.5:D 0 51. 28:1 35.0 .T 0 37. 29:1 18.2 .5 0 40. 30:1 15.5 .5 0 36. 31:5 72.9 3.2 2 1. 32:1 112.1 1.2 0 36. 33:1 41.5 .7 0 36. 34:2 1.9 .1 .9:D 2 1. 35:1 269.4 1.4 0 39. 36:5 23.6 1.5 0 35. 38:4 340.7 3.9 0 43. 39:4 371.5 3.9 0 38. 40:1 490.7 4.2 0 36. 41:5 102.2 4.3 0 52. 42:2 115.3 2.9 0 55. 43:3 222.6 (DIRECT FLOW) 0 37. 44:1 65.9 1.5 0 40. 45:2 11.9 .1 4.4:D 2 0. 46:1 11.2 .1 3.9:D 2 1. 47:1 7.2 .1 3.O:D 2 1. 50:1 497.3 2.8 0 39. 51:1 817.1 3.4 0 37. 92:5 23.8 1.6 1 31. T3:4 51.6 .6 0 37. 74:1 9.6 .4 2 21. 75:1 188.8 2.6 0 35. 96:1 58.9 2.0 0 39. 82:4 3.4 .2 0 36. 83:1 21.0 1.0 0 54. 84!4 57.3 .5 0 35. B5:4 44.2 .5 0 36. BB:1 194.7 3.1 0 35. 89:1 13.6 1.2 0 39. 90A 4.9 .2 1 0. 9:. 1.6 1 . 92:2 1313.3 1.1 0 35 35. 93:2 72.1 .1 6.2:D 1 2. 94:1 71.8 2.9 1 6. 95:3 284.0 (DIRECT FLAW) 0 35. 102.5 1133.8 7.2 0 58. ' 112:1 11.4 .4 0 35. 116:1 265.2 3.3 2 29. 124:2 16.9 1.0 1 32. 130:2 55.3 2.4 0 35. 1:2 . 3.3 0 3. 14040:1 29595.2 1.1 2 30. 141:1 95.3 1.9 1 6. 160:5 74.3 2.9 0 35. 166:2 25.6 .1 2.8:D 0 55. 16:. I.T 0 . 168:2 1919.0 .1 .S:D 0 4242. 169:5 44.1 2.4 0 42. 170:1 42.1 2.2 0 46. 171:2 4.1 .1 1.5:D 2 1. ' 1T2:2 173:4 10.8 5.8 .1 B.1:D 1.1 2 2 3. 9. 194:5 46.6 1.9 0 46. 175:5 48.7 2.3 0 49. 176:2 25.B .1 ].9:D 0 51. 1: 1 78T8:2 11T.1 45.9 3.9 .1 5.3:C 0 0 5. 58. 179:5 15.7 1.6 0 35. 180:2 80.3 .1 5.O:D 1 29. 201:3 52.3 (DIRECT FLOW) 0 35. 202:3 203:3 91.2 37.0 (DIRECT FLOW) (DIRECT FLOW) 0 0 35. 35. 209:3 304.8 (DIRECT FLOW) 0 35. 210:3 442.6 (DIRECT FLOW) 0 35. 214:3 37.9 (DIRECT FLOW) 0 35. 215:3 21.9 !DIRECT FLOW! 0 35. 216:3 265.4 (DIRECT FLOW) 2 23. ' 223:3 147.2 (DIRECT FLOW) 0 35. 224:3 186.6 (DIRECT FLOW) 0 35. 226:3 66.2 (DIRECT FLOW) 0 35. 241:3 95.8 (DIRECT FLOW) 1 3. 250:2 1.6 .1 .3:D 1 2. 1 251:3 57.3 (DIRECT FLOW) 0 35. 252:3 76.6 (DIRECT FLAW) 0 35. 261:3 94.5 (DIRECT FLAW) 0 35. 262:3 128.9 (DIRECT FLOW) 0 35. 270:3 25.4 (DIRECT FLOW) 0 35. 201:5 51.2 2.6 0 35. 272:2 .9 .1 .2:1) 1 15. 275:2 89.1 2.0 0 50. 281:1 122.3 .8 0 38. 262:1 487.3 2.4 1 3. ' 2B3:1 488.1 1.9 1 2. 284:1 450.7 1.2 0 58. 291:2 3.1 .1 1.2:D 2 1. 301:2 28.3 .1 4.5:D 1 14. 310:2 9.5 .1 13.8:D 2 10. ' 315:2 11.3 .1 1.2:D 1 0. 320:1 56.2 1.6 0 41. 321:2 38.4 .1 S.T:D 1 12. 322:2 11.2 .1 3.5:D 2 0. 32: 11.2 .4 1 . ' 324:2 97.6 2.1 0 35 35. 325:1 181.3 2.9 0 36. 326:5 178.8 3.7 0 36. 327:1 164.3 2.7 0 3B. 3 2 8 : 5 41 . 2. 0 3. ' 329:1 18484.4 2.8 0 38. 330:2 5.4 .1 2.3:0 2 1. 331:2 100.2 2.3 0 35. 334:2 16.9 .1 4.O:D 1 31. 3:2 J 4141:5 .0 19393.5 .1 2.4:D 4.6 2 0 3. 56. ' 350:2 11.7 .1 1.2:D 0 56. 359:1 3B1.9 3.3 1 19. 358:2 381.9 4.0 1 19. 3: 36060:2 38.. 384.94 4.1 1 1 2. 20. ' 361:1 394.3 3.3 1 19. 362:1 396.5 3.4 1 19. 363:1 409.2 3.4 1 17. 364:4 TT4.9 4.0 1 2. 365:2 18.3 .1 2.6:D 1 0. 366:4 933.8 5.1 0 55. 369:4 932.8 6.9 0 57. 360:4 949.5 5.6 1 5. 369:4 309.0 3.1 0 40. 370:2 20.4 .. .6:D 0 45. 371:2 1.5 .1 .S:D 1 3B. ' 372:2 27.1 .1 .6:D 0 45. 373:2 432.8 .1 15.6:D 0 55. 394:2 24.8 .1 1.9:D 0 51. 3B0:2 75.0 .1 6.6:D 1 13. 381:2 11.6 .1 2.0:D 0 58, ' 382:2 33.2 .1 1.3:D 0 46. 383:2 16.0 .1 1.9:D 1 ]. 384:2 10.9 .1 1.9:0 1 21. 3 8 6 : 1 4]3.3 1.5 0 52. 387:1 411.6 1.2 0 47. 3 8 8 : 1 460.3 1.2 0 41. 395:3 3.6 (DIRECT FLOW) 0 31. 400:1 48.7 1.2 0 37. 401:1 32.6 .4 0 48. 402:1 37.0 .5 0 . 403:1 ]3.1 2.2 1 19 19. 404:5 35].3 4.1 0 35. 405:5 196.5 4.2 0 41. 406:3 229.9 (DIRECT FLOW) 0 35. 407:3 361.5 (DIRECT FLOW) 0 35. ' 409:1 326.4 1.5 0 38. 410:4 1733.4 5.1 1 1. 411:4 1755.4 7.6 1 4. 412:4 1781.3 6.8 1 6. 413 :5 1907.8 5.5 1 3. ' 414:1 1947.3 3.7 1 5. 415:1 2000.5 3.1 1 6. 416:1 201].1 3.5 1 ]. 417:2 .0 .1 459.7:S 30 0. 470:2 4 ]1 :2 73.0 69.8 .1 1. 1:D .1 .9:D 2 2 0. 0. ' 472:2 64.4 .1 9.0:D 2 1. 474:2 9.6 .1 14.7:D 2 15. 4]]:2 68.6 .1 .4:D D 36. 4:2 98080:2 12. 10.5 .1 .1:D .1 .I:D 0 0 3. 36. 481:3 22.2 (DIRECT FLOW) 0 35. 483:2 2.8 .1 1.2:D 2 1. 486:2 39.6 .1 4.8:D 1 10----------- PIER POND 411:2 490:2 15.6 2.1 .1 13.3:D .1 .2:D 3 0 52.----------POND 488 50. ' 491:2 3.6 .1 .S:D 0 55. 496:2 13.2 .1 2.1:D 1 ]. 497:2 1.8 .1 .B:D 2 1. 517:3 2061.5 (DIRECT FLOW) 0 56. 570:3 93.0 (DIRECT FLOW) 0 40. 571:3 96.0 (DIRECT FLOW) 0 35. 572:3 256.0 (DIRECT FLOW) 0 35. 594:3 460.0 )DIRECT FLOW) 0 35. 576:3 90.1 (DIRECT FLOW) 0 35. 5]]:3 80.3 (DIRECT FLOW) 0 35. 582:3 ].] (DIRECT FLOW) 0 35. 583:3 23.8 (DIRECT FLOW) 0 54. 584:3 39.6 (DIRECT FLOW) 1 10. 586:3 246.3 (DIRECT FLOW) 0 35. 588:3 380.5 (DIRECT FLOW) 0 35. ' 591:1 9.1 1.1 2 5. 592:1 11.0 .6 1 59. 593:2 11.0 .1 3.2:D 1 56. 594:2 9.1 .1 3.O:D 2 1. 673:3 3E.6 (DIRECT FLOW) 1 10. ' 682:3 6.0 (DIRECT FLAW) 0 35. 6 0 3 : 3 1.8 (DIRECT FLOW) 0 35. 604:3 21.0 (DIRECT FLOW) 0 43. ENDPROGRAM PROGRAM CALLED Proposed Detention Ponds - Stage/Storage LOCATION: SETTLER'S CREEK PROJECT NO: 39402.00 COMPUTATIONS BY: ES SUBMITTED BY: JR Engineering DATE: 1/7/2005 V = 1/3 d (A + B + sgrt(A"B)) where V = volume between contours, ft3 d = depth between contours, It A = surface area of contour POND/NVERT= WQCV= 100-YR WSEL = SPILLWAY EL = TOP OF BANK = Pond 488 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Total Storage (ac-ft) Detention Storage (ac-ft) 5000.51 0 5001 2620 0.000 0.00 0 5002 21633 0.243 0.24 0.00 5003 58085 0.881 1.12 0.00 5003.46 81239 0.727 1.85 0.00 5004 108749 1.885 3.01 1.88 5005 157600 3.040 6.05 4.92 5006 165268 3.706 9.75 8.63 5006.68 169499 2.613 12.37 11.24 5007 171491 3.865 13.62 15.11 5008 177708 4.008 17.63 19.12 WQCV Provided = 1.85 ac-ft 5003.46 100-yr Detention Volume Required = 11.24 ac-ft per EXTRAN 5006.68 14.7cfs release rate 100-yr Detention Volume Required = 13.30 ac-ft per SWMM 5007.20 15.6cfs release rate 3940200pond.xls I [1 1 1 Detention Pond Emergency Overflow Spillway Sizing LOCATION: SETTLER'S CREEK PROJECT NO: 39402.00 COMPUTATIONS BY: ES SUBMITTED BY: JR Engineering DATE: 1/6/2005 top of berm Equation for flow over a broad crested weir _ Q = CLH312 + where C = weir coefficient = 2.6 spill elevation H = overflow height L = length of the weir The pond has a spill elevation equal to the maximum water surface elevation in the pond Size the spillway assuming that the pond outlet is completely clogged. Pond 488 Q (100) = Spill elev = Top of berm elev.= Spill Flow Depth, H = Weir length required: L= UseL= 380.5 cfs (peak flow into pond) 5007.00 ft 5008.00 ft 1.00 146 ft 146 ft v = 2.57 ft/s ' spillway, 3940200pond.xls Project: ( / _3 ofe /\ Job No: O-1 O 0 i i liene By: L /S Chk. By: Date: / d �bject: IL AA raa n/< \ / (2, F /� < l 1� / ,,xeet No: _ of 1 1 I 1 1 1 1 [7 1 1 1 i 1 1 1 1 fV J•R ENGINEERING A Westylan Company I E APPENDIX G RIPRAP AND EROSION CONTROL CALCULATIONS �I 1 1 ' Final Drainage and Erosion Control Report Appendix Settler's Creek March 2005 1/10/2005 LOCATION: SETTI.ER'S CREEK ITEM: RIPRAP CALCULATIONS FOR CHANNEL AND SPILLWAY LININGS COMPUTATIONS BY: ES SUBMITTED BY: JR ENGINEERING DATE: 09/29/04 Riprap requirements for a stable channel lining are based on the equation from Storm Drainage Design Criteria, City of Fort Collins, CO, May 1984 V SO 17 = 5.8 where: V = mean channel velocity (Ns) S = longitudinal channel slope (B/R) Ss = specific gravity of rock (minimum S , = 2.50) d,= rock size in feel for which 50 percent of the riprap by weight is smaller Determine what riprap is required using Table 8.2 Channel Longitudinal Specific Class of ds° Min. Riprap Velocity Depth Slope Gravity V S°'1r Froude Is Riprap Table 8.1 Thickness LOCATION (ftfs) (R) (ff/R) of Rock (Ss • 1)0°° Number F <0.8 7 Table S.2 (in) (in) Curb Cut Swale for Home Depot 4.54 0.45 0.113 2.5 2.40 1,19 FALSE 6 6 10.5 Emergency Spillway for Pond 488 2.6 1.00 0.250 2.5 1.55 D45 TRUE 6 6 10.5 Curb Cut for DP 8 2.7 0.12 0.010 2.5 0.95 1.39 FALSE NONE NONE NONE 394020ORiprap xis u2 �«° 7 � f § { !i. § ! 0- )if--- __ «0 �( a�f;r= u __ §{ _ U. ia § �( r �))\_\\ 70§0-5 ! a� $:% JI»§! \} §22 5(Sa! S//: ¢r ƒ c c d E adi N C O D d L N V N � O C O d N > w N C O A C y O D N O V C O c d o > N c N a o 0 0 u O L O C (ID d 7 `U OI d y n o o m d D "p —010 D L �p n N II � II U O o II II II > > N U r d U � N � c N � Q 0 N o � c G D N d u � N m o d LL� 7 L N v l 0 0 0 _aa0 5 �co of E E E 0 0 0 U) rnN ,1 1 1 1 DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap % Smaller Than Intermediate Rock d50* Designation Given Size Dimension By Weight (Inches) (Inches) Type VL 70-100 12 50-70 9 35-50 6 6** 2-10 2 Type L 70-100 15 50-70 12 35-50 9 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 50-70 24 35-50 18 18 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 9 *d50 = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit. One of the major advantages of wire enclosed rock is that it provides an alternative in situations where available rock sizes are too small for ordinary riprap. Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be fashioned into almost any shape that can be 1 11-15-82 1 i l 1 1 1 1 1 1 1 1i 1 1 1 1 1 1 1 1 DRAINAGE CRITERIA MANUAL (V. 1) M. In 4C 0 0 KI MAJOR DRAINAGE �EENEWAAEFAIA 0 PAAFE E ■■ �.. - Ew .2 .4 .6 .8 lb Yt/D Use Do instead of D whenever flow is' supercritical in the barrel. **Use Type L for o distance of 3D downstream . FIGURE MD-21 Riprap Erosion Protection at Circular Conduit Outlet Valid for Q/D' 5 <_ 6.0 06/2001 Urban Drainage and Flood Control District u. 101 DRAINAGE CRITERIA MANUAL (V. 1) MAJOR DRAINAGE m C � O N a_ _R V Z O rn 2 a x w 6 = Expansion Angle IMENNEN N' ma 0 FAA No 0 .I .2 .3 A .5 .6 .7 .8 TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D FIGURE MD-23 Expansion Factor for Circular Conduits 06/2001 Urban Drainage and Flood Control District MD-111 ' JR Engineering 2620 E. Prospect Rd., Sle. 190 ' Fort Collins, CO 80525 I 1 RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: Settler's Creek STANDARD FORMA COMPLETED BY: es DATE: 10-Nov-04 DEVELOPED ERODIBILITY Asb Isb SO At' LI Ai -Si Lb Sb PS St1BBASIN(s) ZONE (AC) (FT) (%) (FT) (%) (%) 100 MODERATE 0.28 143 1.7 39.6 0.5 , 101 0.74 313 L5 233.1 1.1 102 1.61 405 10 650.8 1.7 103 1A2 554 L6 785.7 2.3 104 0,60 448 1.3 269.4 0.8 105A 1.47 517 1.5 759.7 2.2 105B 0.68 906 1.2 618.3 0.8 106 2.15 398 1.1 857.8 2.3 107 0.57 235 1.1 133.5 0.6 108 - 0.79 230 1.1 182.0 0.9 109 3.01 425 1.0 1278.5 3.1 Teal 13.32 5908.25 16.25 436 1.2 78.2% Ash =Sub -basin area Lsb = Sub -basin Flow path length Ssb = Sub -basin slope ' Lb = Average (low path length = sum(Ai Li)/sum(Ai) Sb = Average slope = sum(Ai Si)/Sum (Ai) rI 1 C 1 u PS is taken from Table 8-a (Table 5.1, Erosion Control Reference Manual) by interpolation. An Erosion Control Plan will be developed to contain PS% of the rainfall sedimentation that would normally Flow off a bare ground site during a 10-year, or less, precipitation event. Erosion.xls ' o o 0.1 01000 vvinInIn In WmWmm o rnrna+ol000000 ' o cvvalrilnln v mWWWmWmwww M W m W W W W W m m W W W W W m o . r0!1!0! mmo o,mO101aa+0:O mO +0: . . . . . . . o . . . . . . . . . . . . . . vvavvvvvvvvvvvvvvvvv N W m W rD W W W W W W W W W W W W m W W W O 0 m v in w%0%D ID rr r rrr rr r r rr W W W W W W O o vvvvavv.rcvvvvvvvvvvvvvvvvv ri OD CO (D W CO CO CO W CO W W OD 70 CO W W CO CO CO CO W W W W CO W O mNM V In In In IO W ID ID ID ID r r r r r r r r r r W co W 0 a Ir �;��V.VVV-Wvva � W W W W m m W W W W W m m m W m W W m W m m m W m m O IDONMv VInInIn V1IO�O%00IDWWIDWWrrrrrr . V1 c� f`1v V ;4;44;;V V ;44;4;4 V vvv V vv - z co m cu CO W CO W CO CO W CO CO W Co m Co m m m cO m co co Co Wm F-I aO vrnrrNMnv V V vin In In lf1 111 In 4'11n In IO ID ID ID ID IDr O r 4,4 v v v v v v; v V V 44 444 444 V v v 44 v U cDmcommmmmmcDm W WmmWmmmm W mW W W W a O OIO W O1riNNnMnn V VvvV Vvvin In lfl In lD lD ' O W M M M v v V V V V V v V V V V V V V V V v V V v V V iTy CO W OD GO W W CO cO W CD m CO m W m m W W W W W W W W m m ' O LLlN lnr ri r. riN NNNNnMMM n vv V v V Q. 10dp . . . ' co k. `--In NMrim MnvvvvvvV VvvVvvV vvvvvV co c0 co co co CO co CO W CO W W W W W W W W W W W m W W W W W W 0 ma 0In rimrinvinln DlDrrrmm W W Wmmmrn00000 ' I 44 a v N N M men n n M M M M n n n M n 4,4 4,4 f4 v v V v v I EI 0 O CO CO CO CO cO CO CO W CO 00 CO W W CO CO CO CO CO CO W W Co W Co W Co 0 W In CO O ri N M V V In In In IO W ID ID %0 r r', r r Co Co W O1 M V7 v rl N N M M n M M n M n M n M M M n n n M M n n M n n W CO m m m OD m m CO m m m CO CO m m m W W m W W m W W m m U In Hl 4 M N W 00ri N N M M Mvv v v v In In In W W W r r 4 \ . M N N N N f•I P1 P1 P1 P1 n P1 f•1 n M Mnn M M n M n M M n ' cc coOD coc0 co co co co co co co Go W co co co co co co W co co W co W WO MN ID CO M0 ri NNMMM V V v V v V In In In In ID W ID IO (Y. n W O ri ri r-1 .-I NN NN NN NNNN fV NNNNN NN N NN m W W W W W W W W CO W OD CO CO CO W m W CO W CO CO CO W W W DO In In In OI N M V In ID rrrm WmOI O\0101110.1 C!C! a a N 0% O 0 H ri ri ri 'i r-1 ri ri ri ri ri ri ra ri ri ri N N N N N N 1T rc000mcoaomcomaoWoommm Wm W Wmmmm Wm W _ ka. z O vtnOM In IDm m01000 ri ri ri r♦ N NNNnM nM Mn H .0 N Qi W 01 O O O O O O O 4 .-I r'i ri 11 4 r4 ri r-I 4 .� 4 rl 4 r•1 4 ri r r m m CO CO CO CO CO CO m W W m W m CO CO m m m W Co m Co m ' In co N co V In r r m OI OI O O ri ri rl ri ri N N N n M n nM ri ID co m ON m OI O10101 O101 o o0000000000000 r r r r r r r r r r In co m m m W W CO m CO W W W CO W cr r 010 ri N M M v V In In In In ID W0 DID r r ID%0%0 ri vlDrrrrcDc;cD W caW cDcD0D W Wm W co W W com W rrrrrrrrrrrrrrrnrrrrrrrrrrr In movlDrWWrrrIDIDIDInvvnMN1 m( ai iOID ' O O N N N N N N NN NN N N N N NN N N N ri It ri ri 00 r r r r r r r r r r r r r r r r n Ir r r r r r r r r 3 F, 00000000000000000000000000 ' O O E+ O o o o o o o o o o o o o o o o o o o o o o o o o o a4Z k. ri NM V 0I0r W 010.-1 NM V 0 W N W 0 0 0 0 0 0 M 0 :i.a" .-1 rir♦ri ri ri ri riririNNn n V vIn MARCH 1991 DESIGN CRITERIA n T JR Engineering 2620 E. Prospect Rd., Ste. 190 ' Fort Collins, CO 80525 1 1 EFFECTIVENESS CALCULATIONS PROJECT: Settler's Creek STANDARD FORM B COMPLETEDBY: es DATE: 10-Nov-04 EROSION CONTROL C-FACT'OR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENEDGROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENTTRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (I-C*P)* 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 100 0.28 ROADS/WALKS 0.11 Ac. ROUGHENEDGR. 0.08 Ac. STRAW/MULCH 0.08 Ac. GRAVEL FILTER NET C-FACTOR 0.32 NET P-FACTOR 0.78 EFF = (I -C*P)* 100 = 75.3% 101 0.74 ROADS/WALKS 0.34 Ac. ROUGHENED GR. 0.20 Ac. STRAW/MULCH 0.20 Ac. GRAVEL FILTER NET C-FACTOR 0.29 NET P-FACTOR 0.78 EFF = (I-C*P)* 100 = 77.3% 102 1.61 ROADS/WALKS 1.15 Ac. ROUGHENEDGR. 0.23 Ac. STRAW/MULCH 0.23 Ac. GRAVEL FILTER NET C-FACTOR 0.16 NET P-FACTOR 0.79 EFF = (1-C*P)* 100 = 8T6% 103 1.42 ROADS/WALKS 1.02 Ac. ROUGHENED GR. 0.20 Ac. STRAW/MULCH 0.20 Ac. GRAVEL FILTER NET C-FACTOR 0.15 NET P-FACTOR 0.79 EFF = (I-C*P)* 100 = 87.8% ' 3940200erosion.XLS I 11 11 J L JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: Settler's Creek STANDARD FORM B COMPLETED BY: es DATE: 10-Nov-04 EROSION CONTROL C-FACTOR II -FACTOR METHOD VALUE VALUE COMMENT BARE SOIL I.00 1.00 SMOOTH CONDITION ROUGHENEDGROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVELFILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENTTRAP 1.00 0.50 STRAW MULCH IS = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (1-C*P)• 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 104 0.60 ROADS/WALKS 0.53 Ac. ROUGHENEDGR. 0.04 Ac. STRAW/MULCH 0.04 Ac. GRAVEL FILTER NET C-FACTOR 0.08 NET P-FACTOR 0.79 EFF = (I -C'P)• 100 = 94.0% 105A 1.47 ROADS/WALKS 0.40 Ac. ROUGHENED GR. 0.54 Ac. STRAW/MULCH 0.54 Ac. GRAVEL FILTER, SILT FENCE NET C-FACTOR 0.39 NET P-FACTOR 0.39 EFF= (I-C'P)-100 = 85.0% 105B 0.68 ROADS/WALKS 0.44 Ac. ROUGHENEDGR. 0.12 Ac. STRAW/MULCH 0.12 Ac. SILT FENCE NET C-FACTOR 0.20 NET P-FACTOR 0.49 EFF = (1-C'P)• 100 = 90.4% 106 2.15 ROADS/WALKS 1.74 Ac. ROUGHENED GR. 0.20 Ac. STRAW/MULCH 0.20 Ac. GRAVEL FILTER NETC-FACTOR 0.11 NET P-FACTOR 0.79 EFF = (1-C'P)• 100 = 91.4% 107 0.57 ROADS/WALKS 0." Ac. ROUGHENED GR. 0.06 Ac. STRAW/MULCH 0.06 Ac. SILT FENCE NETC-FACTOR 0.13 NET P-FACTOR 0.49 EFF = (I -C"P)k 100 = 93.7% 3940200erosion.XLS I 1 CIS JR Engineering 2620 E. Prospect Rd., Ste. 190 Fod Collins, CO 80525 PROJECT: Settler's Creek STANDARD FORM B COMPLETED BY: es DATE: 10-Nov-04 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENEDGROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVELFILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENTTRAP 1.00 0.50 STRAW MULCH IS = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (I-C*P)" 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 108 0.79 ROADS/WALKS 0.67 Ac. ROUGHENED OR. 0.06 Ac. STRAW/MULCH 0.06 Ac. SILT FENCE NET C-FACTOR 0.09 NET P-FACTOR 0.50 EFF = U -C*P)* 100 = 95.5% 109 3.01 ROADS/WALKS 0.00 Ac. ROUGHENEDGR. 1.50 Ac. STRAW/MULCH 1.50 Ac. GRAVEL FILTER NETC-FACTOR 0.53 NET P-FACTOR 0.76 EFF = (1-C"P)" 100 = 59.7% TOTAL AREA 13.32 ac TOTAL EFF = 82.0% IF (basin area * eff) / total area REQUIRED PS = 78.2% ' Since 82.0%> 78.2%, the proposed plan is o.k. I 3940200erosion.XLS CONSTRUCTION SEQUENCE ' Project: SETTLER'S CREEK Date: 3/03/2005 1 1 11 C 11 i Indicate with bar line when constructions will occur and when BMP's will be installed/removed in relation to the construction phase CONSTRUCTION PHASE (Week/Month) 1 2 3 4 5 6 7 8 9 10 11 12 Grading (Include Offsite) Overlot §yy > Detention/WC) Ponds s Swales, Drainageways, Streams Ditches *c Pipeline Installation (Include Offsite) Water Sanitary Sewer Stormwater Ott Concrete Installation (Include Offsite) Area Inlets t , Jr Curb Inlets Pond Outlet Structures_ )_z Curb and Gutter Box Culverts, Bridges Steel Installation (Include Offsites) Grading/Basezw� z=F4 Pavementti� Miscellaneous (Include Offsite) Drop Structures Other (List) BEST MANAGEMENT PRACTICES Structural— "Installation" Silt Fence Barriers P Contour Furrows (Ripping/Disking) 4 Sediment Trap/Filter %,:7777 Vehicle Tracking Pads Flow Barriers (Bales, Wattles, Etc.) Inlet Filter;r Sand Bags Bare Soil Preparation Terracing Stream Flow Diversion Rip Rap Other (List) "All BMPs to be removed once construction is complete VEGETATIVE Temporary Seed Planting Mulching/Sealant Permanent Seed Planting Sod Installation Nettings/Blankets/Mats <- Other (List) 1 1 1 1 i 1 1 1 1 1 i 1 i 1 1 i 1 1 1 Settler's Creek EROSION CONTROL COST ESTIMATE JOB NO. 39402.00 EROSION CONTROL MEASURES COMPLETED BY: ES ITEM DESCRIPTION UNITS I UNIT COST 1QUANTITY I TOTAL COST 1 TEMPORARY SEED & MULCH ACRE $ 725.00 13.3 $ 9,657.09 2 SILT FENCE LF $ 3.00 3,694 S 11,080.80 3 GRAVEL CONSTRUCTION ENTRANCE EACH $ 500.00 1 S 500.00 4 INLET PROTECTION EACH $ 250.00 26 s 6,500.00 5 STRAW BALES EACH $ 3.25 0 $ - 6 SEDIMENT TRAP/BASIN EACH $ 500.00 1 $ 500.00 COST $ 28,237.89 CITY RESEEDING COST FOR TOTAL SITE. AREA ITEM DESCRIPTION UNITS I UNIT COST 1QUANTITY I TOTAL COST 1 RESEED/MULCH (ALL disturbed area on and off site) I ACRE I i $ 725.00 13.3 $ 9,657.09 COST S 9,657.09 WITH FACTOR OF t t 1 I ' APPENDIX H ' EXCERPTS FROM OTHER REPORTS F- r I I i I I I I F� ' Final Drainage and Erosion Control Report Appendix Settler's Creek March 2005 1 1 1 1 1 1 1 1 1 McCLELLANDS CREEK MASTER DRAINAGE PLAN UPDATE FINAL REPORT & TECHNICAL APPENDIX (VOLUME I OF 2) NOVEMBER 30, 2000 (Revised March 2003) Prepared for: City of Fort Collins Utilities 700 Wood Street Fort Collins, CO 80522 Contact: Ms. Susan Hayes (970)221-6700 Prepared by: ICON Engineering, Inc. 8100 South Akron Street, Suite 300 Englewood, CO 80112 (303)221-0802 City of Fort Collins No Text 1 1 HARMONY CENTER INPUT HYDROGRAPH 3I 76 88 3821 = OUT OF MODEL 384 DIVERSION 375 ELEMENT 5 LEMAY 30 29 28 282 281 280 203 204 1 17 67 1 1 9 205 1 C 1 3 320 202 r� MIRAMONT 1.27- 2 25 ��326 3. 211 212 271 NITH McCLELLANDS CREEK SWMM ROUTING SCHEMATIC 111 Basin Conveyance 112 W' ., Element g1 Detention Pond 270 Node 340 34 160 121 360 6 36_A ' 26 122 \ 260 46 42 j 25� 5 250 240 OAKRIDGE 110 itt N2 112 , 320 1 114 330 47 230 91 290 113 0 1 116 115' 2010 45 1 190 / J. 21 20 . 200 4 g ;118 90 2 SEE FIGURE 3.2b McClellands Creek Master Drainage Plan Update 11/00 FIGURE 3-2a I 1 1 1 ' EXISTING CONDITION EXTRAN MODEL FROM CITY OF FORT COLLINS 1 1 1 Final Drainage and Erosion Control Report Settler's Creek d Appendix March 2005 1 FEATURE i EXTQAN �,emailc �i rum CHECKED BY E �- 1 Node 0%Dlser� 11 ofmoielin9 reach 1 1 Air dtllgwS &Mnd Iol I Dwn4feom 6ourdwalk o� 1 1 Note a4 Ntxnd of /� yob{o al -inch RCP �N I 1 1 'FVR GLOW FFDDFDlR =""l G*'/rK-'tiT5 —7/u(9, Nev-Pow Weir I I I 1m� 6dl-incHpCp 5eehon goao�l logo of 144 pe der De4eAJOA `Pbga 3� I Sfara9e 7unohan PcOP05 cd IS-incb kcp r (onneChn, Ape 7 IAFW tt � rip (5umm4 vn a¢ 5WMM elode- II Dea ennj Doti CeRitr �1Od DefcniunPanb ${orn9eT�ncfio^ .IAWii ro rAph (Nodc5t �yom Ails xroo-W) * NBLOCK JIN(1) JOUT(1) SW 1 0 0 ' * NITCH NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) MM 1 1 2 3 4 @ 0 'save32.prn' $EXTRAN ' Al 'HARMONY CENTER & PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN' Al 16/24/1999 ICON ENGINEERING, INC. File: Pier.dat Revised MBF 3/22/00' * BO line (OPTIONAL) ' * ISOL Solution technique parameter. * = 0 Explicit EXTRAN solution * = 1 Enhanced explicit solution ' * * = 2 Iterative explicit solution using variable time -steps <_ DELT (group B1). Iteration * limit is ITMAX and convergence criterion is * SURTOL (group B2). KSUPER = 0 Use minimum of normal flow and dynamic flow ' * when water surface slope < conduit slope (default). * = 1 Normal flow always used when flow is supercritical. * ISOL KSUPER BO 0 0 * JELEV JDOWN BB 0 0 * NTCYC DELT TZERO NSTART INTER JNTER REDO ' B1 3600 10.0 0.0 1 360 30 0 * METRIC NEQUAL AMEN ITMAX SURTOL B2 0 1 0 30 0.05 * NHPRT NQPRT NPLT LPLT NJSW B3 4 5 0 0 2 B4 30001 30002 30010 30011 B5 1001 1010 1011 90004 90005 ' * NCOND NJUNCI NJUNC2 Qo TYPE AFULL DEEP WIDE LEN ZP1 ZP2 ROUGH STH SPH Cl 1001 30002 30001 0. 1 0.0 1.50 0.0 113. 0.0 2.38 .0156 0.0 0.0 C1 1010 30001 30010 0. 1 0.0 1.75 0.0 210. 0.0 0.0 .0158 0.0 0.0 Cl 1011 30010 30011 0. 6 0.0 4.00 1.0 300. 0.0 0.0 0.060 3.5 3.5 * JUNCTION NODES * JUN GRELEV Z QINST YO ' D1 D1 30001 5005.0 4197,16 0.0 0.0 30002 5007.0 5000.45 0.0 0.0 D1 30010 5004.0 4996.34 0.0 0.0 D1 30011 5004.0 4994.69 0.0 0.0 * JUNCTION DETENTION STORAGE DEFINITION * JSTORE GELEV ASTORE NUMST (AREA IN ACRES VS. DEPTH IN FEET) * LOWER PORTION OF PIER DETENTION POND * E1 30001 5005.0 -1.0 8 E2 0.100 0.0 0.188 0.34 0.300 1.34 0.545 2.34 0.606 3.34 0.770 4.34 2.916 6.34 2.916 7.34 * UPPER PORTION OF DETENTION POND AMMENDED TO AS-BIULT DATA BY ICON 6/24/99 ' El 30002 5007.0 -1.0 7 E2 0.010 0.0 0.521 1.55 1.5 2.55 2.2 3.55 2.79 4.55 3.23 5.55 3.34 6.05 ' * OVERFLOW WEIR SECTION TO SIMULATE STREET OVERTOPPING FOR PIER POND G1 30001 30010 1 5.6 7.3 30.0 2.6 * OVERFLOW WEIR SECTION ADDED BY ICON G1 30002 30001 1 5.95 6.55 26.0 2.6 ' * BOUNDARY CONDITIONS 11 30011 1 11 2 ' J2 4995.0 K1 2 ' K2 30002 30001 K3 0 0 0 K3 1 0 0 1 K3 1.0833 0.1 0.1 K3 1.1667 6.7 5.3 ' K3 K3 1.1833 1.2 10.3 14.6 7.7 10.2 K3 1.2167 19.1 12.6 K3 1.2333 23.3 14.8 K3 1.25 27.1 16.7 ' K3 1.2667 31.7 19.7 K3 1.2833 37.2 24.0 K3 1.3 41.9 27.7 ' K3 1.3167 45.8 30.8 K3 1.3333 49.1 33.3 K3 1.35 53.0 36.6 K3 1.3667 57.8 40.9 K3 1.3833 62.1 44.7 K3 1.4 65.8 47.9 K3 1.4167 69.0 50.8 ' K3 1.4333 78.5 59.9 K3 1.45 94.2 75.3 K3 1.4667 107.7 88.4 K3 1.4833 119.0 99.1 ' K3 1.5 128.4 107.7 K3 1.5167 151.0 129.6 K3 1.5333 185.8 163.5 K3 1.55 213.5 188.1 K3 1.5667 235.7 206.3 K3 1.5833 253.3 220.8 K3 K3 1.6167 1.6 243.9 217.6 209.9 183.6 K3 1.6333 200.5 166.7 K3. 1.65 189.2 154.0 K3 1.6667 181.9 144.4 ' K3 1.6833 172.0 132.4 K3 1.7 159.9 118.7 K3 1.7167 151.0 108.3 ' K3 1.7333 144.3 100.5 K3 1.75 139.3 94.5 K3 1.7667 132.8 87.1 K3 1.7833 124.9 78.7 ' K3 1.8 118.5 71.9 K3 1.8167 113.3 66.5 K3 1.8333 109.1 62.2 K3 1.85 105.1 58.1 K3 1.8667 101.1 54.2 K3 1.8833 97.8 51.0 ' K3 K3 1.9167 1.9 95.0 92.7 48.3 46.1 I I C 1 K3 1.9333 90.5 43.9 K3 1.95 88.3 41.7 K3 1.9667 86.3 39.9 K3 1.9833 84.6 38.3 K3 2 83.0 36.9 K3 2.0833 75.7 31.6 K3 2.1667 70.0 28.2 K3 2.25 65.4 25.8 K3 2.3333 61.6 23.9 K3 2.4167 58.4 22.4 K3 2.5 55.7 31.1 K3 2.5833 53.3 21.1 K3 2.6667 51.1 19.0 K3 2.75 49.2 18.1 K3 2.8333 47.5 17.4 K3 2.9167 46.0 16.7 K3 3 44.6 16.0 K3 3.1667 31.5 5.7 K3 3.3333 27.1 2.7 K3 3.5 25.1 1.6 K3 3.6667 23.9 1.0 K3 3.8333 23.0 .7 K3 4 22.3 .5 K3 4.1667 21.8 .4 K3 4.3333 21.2 .3 K3 4.5 20.8 .2 K3 4.6667 20.4 .2 K3 4.8333 19.9 .1 K3 5 8.6 .1 K3 5.1667 7.4 .1 K3 5.3333 7.2 .1 K3 5.5 7.0 .1 K3 5.6667 6.9 .1 K3 5.8333 6.8 .0 K3 6 6.7 .0 K3 6.1667 6.6 .0 K3 6.3333 6.5 .0 K3 6.35 6.5 .0 K3 6.3667 6.5 .0 K3 6.3833 6.5 .0 K3 7 6.2 .0 K3 7.5 6.1 .0 K3 8 6.0 .0 K3 8.5 5.9 .0 K3 9 4.4 .0 K3 9.5 4.1 .0 K3 10 4.1 .0 K3 10.5 4.1 .0 K3 11 1.5 .0 $ENDPROGRAM 1 ................................................. ' U.S. Environmental Protection Agency Version .... ....... CON beta) *'.Storm sign 4.40 (Lahnt.MCON .ISWMM.. ..'..: Developed by ' •••••••••••'••Metcalf•6'Eddy•'Inc•......••••••••* University of Florida ' Water Resources Engineers, Inc. ' nd n'R:..•*.•" a1970 .M`Xee:'�I September .... : •••••(Now 'CampSeprember Distributed and Maintained by ...« ............................................ ' U.S. Environmental Protection Agency ' Center for Exposure Assessment Modeling (CEAM)• ` Athens Environmental Research Laboratory ' • 960 College Station Road • ....••Athens, GA 30605-2720 • This is a new release of SHINN. If any problems occur executing this model system, contact Mr. Frank Stancil, U.S. Environmental Protection Agency. ' 706/355-8328 (voice) • e-mail: stancil@athens.ath.epa.gov ' Or contact Wayne C. Huber at Oregon St. U.. 541/737-6150 or huberw@ccmail.orst.edu Or Michael F. Schmidt at Camp Dresser e • McKee (904) 281-0170 SCHMIDTMF@CDM.COM ' •••This•is•an• implementation• of • EPA• SwMM• 4.40 • 'Nature is full of infinite causes which • have never occurred in experience- da Vinci #X#kkkkk##k#####k###k####################8# # File names by SWNM Block # # # JIN -> Input to a Block k JOUT > Output from a Block # k##k###N##N#######k######################## JIN for Block # 1 File # 0 save32.prn ' JOUT Xk#XkpMMp for Block # 1 File k 0 save32.prn kpp kN#k###k#ppp#pM#ppp#p#p#ppXppM# # Scratch file names for this simulation. # ##k#XXkkXXX##k#######0#*#####k##t########## ' NSCRAT.p.......... File ' Parameter ..p....1..SCRT...)F............... Values on the Tapes Common Block ' Number of Subcatchments in the Runoff Block INW) ...... 1000 Number of Channel/Pipes in the Runoff Block ING)...... 1000 Number of Connections to Runoff Channels/Inlets (NCP). 6 Number of Runoff Water Quality Constituents (NRQ1..... 10 Number of Runoff Land Uses per Subcatchment (NLU)..... 10 Number of Groundwater Subcatchments in Runoff (NGW)... 100 Number of Interface Locations for all Blocks INIE).... 1000 Number of Elements in the Transport Block (NET)....... 300 Number of Storage Junctions in Transport (NTSE)....... 100 Number of Input Hydrographs in Transport (NTH)........ 80 Number of Tabular Flow Splitters in Transport (NTSP).. 50 Number of Elements in the Extran Block (NEE).......... 1400 Number of Pumps in Extras (NEP)....................... 75 Number of Orifices in Extras (NEO).................... 200 Number Of Tide Gates/Free Outfalls in Extran (NTG).... 200 Number Of Extras Weirs I NEW) .......................... 60 u 1 1 I 1 Number of Extran Printout Locations (NPO)............. 30 Number of Tide Elements in Extran (NTE)............... 20 Number of Natural Channels (MCI ...................... 200 Number of Storage Junctions in Extran ( NVSE).......... 300 Number of Time History Data Points in Extran (NTVAL).. 500 Number of Data Points for Variable Storage Elements in the Extran Block (MUST) .......................... 25 Number of Input Hydrographs in Extran INEH)........... 400 Number of Allowable Channel Connections to Junctions in the Extran Block (NCHN I ................ 15 Number Rain Gages in Rain and Runoff (MAXRG).......... 200 Number PRATE/VRATE Points for Extran Pump Input IMAXPRA) ...................................... 30 Number of Variable Orifices in Extran ( NVORF)......... 50 Number of Variable Orifice Data Points (NVOTIM)....... 50 Number of Allowable Precip. Values/yr in Rain (LIMEN). 5000 Number of Storm Events for Rain Analysis (LSTORM)..... 5000 Number of Plugs for Plug -flow in S/T (NPLUG).......... 3000 Number Conduits for Extran Results to ASCII File (MXFLOW)....................................... 150 '•Entry'made•Co•the•IXTENDED•TAANS PORT• MODEL'(EXTRAN)•••• • developed 1973 by Canes, Dresser and McKee (CDM) with • modifications 1977-1991 by the University of Florida. ' Most recent update: July 1997 by CDM, Oregon State University, and XP Software, Inc. ' "Smooth runs the water where the brook is deep." ' • Shakespeare, Henry VI, II, III, 1 1 ____ ------------------------------ ENVIRONMENTAL PROTECTION AGENCY `•" EXTENDED TRANSPORT PROGRAM '••• DIVISION WASHINGTON, D.C. "`• •••• INC. •"` ANALYSIS MODULE `•'• HARMONY CENTER 4 PIER DETENTION POND INTERIM COM. SIMULATION WITH EXTRM 6/24/1999 ICON ENGINEERING, INC. File! Pier.dat Revised MBF 3/22/00 Intermediate continuity output will not be created Control information for simulation Integration cycles ................. 3600 Length of integration step is...... 10.00 seconds Simulation length .................. 10.00 hours Create equivalent conduits based on the COURANT condition (no local losses) ............................ 1 Use U.S. customary units for I/0... 0 Printing starts in cycle........... 1 Intermediate printout intervals of. 360 cycles Intermediate printout intervals of. 60.00 minutes Summary printout intervals of...... 30 cycles Summary printout time interval of.. 5.00 minutes Hot start file parameter (JREDOI... 0 Initial time (TZER0) ............... 0.00 hours Initial date (default) ............. 880101 (yr/mo/day) Iteration variables: ITMAX......... 30 SURTOL........ 0,0500 Default surface area of junctions.... 12.57 square feet. EXTRAN VERSION 3.3 SOLUTION. (ISOL = 0). WATER RESOURCES CAMP DRESSER 6 MCKEE ANNANDALE, VIRGINIA I Sum of junction flow is zero during surcharge. NORMAL FLOW OPTION WHEN THE WATER SURFACE SLOPE IS LESS THAN THE ' GROUND SURFACE SLOPE (KSUPER=O).... NJSW INPUT HYDROGRAPH JUNCTIONS.... 2 ' Printed output for the following 4 Junctions 30001 30002 30010 30011 Printed output for the following 5 Conduits 1001 1010 1011 90004 90005 1 _____ _____ ENVIRONMENTAL PROTECTION AGENCY " " EXTENDED TRANSPORT PROGRAM '•*' WATER RESOURCES DIVISION ' WASHINGTON, D.C. .•.• . "' CAMP DRESSER & MCKEE INC. ••.. ANALYSIS MODULE '••• ANNANDALE, VIRGINIA HARMONY CENTER & PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN 6/24/1999 ICON ENGINEERING, INC. File: Pier.dat Revised MBF 3/22/00 1 ' .................»,..conduit Da..a............ «..,... IMP CONDUIT LENGTH CONDUIT AREA MANNING MAX WIDTH DEPTH JUNCTIONS INVERT HEIGHT TRAPEZOID NUM NUMBER (FT) CLASS (SQ FT) COEF .- (FT) (FT) AT THE ENDS ABOVE JUNCTIONS SIDE SLOPES ' 1 1001 113. CIRCULAR 2 1010 210. CIRCULAR 1.77 0.01560 1.50 2.41 0.01580 1.75 1.50 1.75 30002 30001 0.00 2.38 30001 30010 3 1011 300. TRAPEZOID 60.00 0.06000 1.00 4.00 30010 30011 3.50 3.50 ' • ................... •••equivalentConduitVolumeAnalysis ......................................... Input full depth volume............ 1.8705E.04 cubic feet ' New full depth volume .............. 1.8705E+04 cubic feet New volume / Old volume ratio...... 1.0000 I________________________________________________________________________________ ENVIRONMENTAL PROTECTION AGENCY EXTENDED TRANSPORT PROGRAM WATER RESOURCES ' DIVISION ::=: .... WASHINGTON, D.C. CAMP DRESSER & MCKEE INC. •••• ANALYSIS MODULE `••• ANNANDALE, VIRGINIA HARMONY CENTER & PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN 6/24/1999 ICON ENGINEERING, INC. File: Pier.dat Revised MBF 3/22100 1 • ...................J ..ction.Data....................: .........un .:.................... »................. IMP JUNCTION GROUND CROWN INVERT QINST INITIAL CONNECTING CONDUITS ' NUM NUMBER ELEV. ELEV. ELEV. CPS DEPTH(FT) 1 30001 5005.00 5001.54 4997.66 0.00 0.00 1001 1010 2 30002 5007.00 5001.95 5000.45 0.00 0.00 1001 ' 3 30010 5004.00 5000.34 4 30011 5004.00 4998.69 4996.34 0.00 0.00 4994.69 0.00 0.00 1010 1011 1011 _- > WARNING ! THE INVERT OF CONDUIT 1001 LIES ABOVE THE CROWN OF ALL CONDUITS AT JUNCTION 30001 1------------ ______________________________.______________________________________ ENVIRONMENTAL PROTECTION AGENCY .... EXTENDED TRANSPORT PROGRAM '•" WATER RESOURCES DIVISION [] WASHINGTON, D.C. .... "'• CAMP DRESSER 6 MCKEE INC. •••• ANALYSIS MODULE .... ANNANDALE, VIRGINIA ' HARMONY CENTER 6 PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN 6/24/1999 ICON ENGINEERING. INC. File: Pier.dat Revised MBF 3122/00 ' STORAGE ' JUNCTION DATA SUMMARY ...................................................... MAXIMUM OR PEAK OR CROWN STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT) ___ ____ _______________ --------- 30001 VARIABLE 127020.95 373786.63 5005.000 30002 VARIABLE 145490.39 453874.53 5007.000 ............................................. ' WEIR DATA FROM TO LINK CREST WEIR WEIR DISCHARGE SUBMERGENCE NUMBER OF END V-NOTCH ANGLE SECOND DISCHARGE JUNCTION .UNCTION NUMBER TYPE HEIGHT(FT) TOP(FT) LENGTH(FT) COEFFICIENT EQUATION ' CONTRACTIONS OR SIDE SLOPE COEFFICIENT 30001 30010 90004 1 5.60 7.30 30.00 2.6000 30002 30001 90005 1 5.95 6.55 26.00 2.6000 ' •(DATA `GROUP '`'•'t•••••FREE' OUTFALL• DATA Il)•'•••` ' BOUNDARY CONDITION ON DATA GROUP J1 ' ' • •••30011`HAS OUTFALL•AT•JUNCTION .... BOUNDARY CONDITION NUMBER... 1 1____________ _--_ -_--_ ENVIRONMENTAL PROTECTION AGENCY EXTENDED TRANSPORT PROGRAM WATER RESOURCES DIVISION ' WASHINGTON, D.C. CAMP DRESSER & MCKEE INC. •••` ANALYSIS MODULE ••" ANNANDALE, VIRGINIA HARMONY CENTER fi PIER DETENTION POND INTERIM CONE. SIMULATION WITH EXTRAN ' 6/24/1999 ICON ENGINEERING. INC. File: Pier.dat Revised MBF 3/22/00 ..•.••....NTERNAb• CONNECTIVITY. INFORMATION CONDUIT JUNCTION JUNCTION 90004 30001 30010 90005 30002 30001 90006 30011 0 1 ' :••••••••BOUNDARY•COITJ ITON•INFORMATION••••• ••••'•'•` DATA GROUPS J1-J4 BE NUMBER.. 1 CONTROL WATER SURFACE ELEVATION IS.. 4995.00 FEET. TZERO = 88001 0.000000 • 1............LZNE-INPUT........HYDROG..RA...PHS.....(DATA.....GROUPS.........K1-K3.)..... Expect 2 junction IDS on each K2 line. NJSW INPUT LOCATIONS FROM K2 LINES: 1 I 30002 30001 1---------------------------------------------------------' ENVIRONMENTAL PROTECTION AGENCY EXTENDED TRANSPORT PROGRAM ' DIVISION .... .... WASHINGTON, D.C. INC. "^ ANALYSIS MODULE .... ' HARMONY CENTER 6 PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN 6/24/1999 ICON ENGINEERING, INC. File: Pier.dat Revised MBF 3/22/00 1] 1 1 1 1 ` INITIAL MODEL CONDITION ' • INITIAL TIME = 0.00 HOURS ...................... r r r.......... JUNCTION / DEPTH / ELEVATION =__> ••` JUNCTION IS SURCHARGED. 30001/ 0.00 / 4997.66 30002/ 0.00 / 5000.45 30010/ 0.00 / 4996.34 30011/ 0.00 / 4994.69 CONDUIT/ FLOW =__>•. CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 0.00 1010/ 0.00 3011/ 0.00 90004/ 0.00 90005/ 0.00 90006/ 0.00 CONDUIT/ VELOCITY 1001/ 0.00 1010/ 0.00 1011/ 0.00 CONDUIT/ CROSS SECTIONAL AREA 1001/ 0.00 1010/ 0.00 3011/ 0.00 CONDUIT/ HYDRAULIC RADIUS 1001/ 0.00 1030/ 0.00 1011/ 0.00 CONDUIT/ UPSTREAM/ DOWNSTREAM ELEVATION 1001/ 5000.45/ 4997.66 3030/ 4997.66/ 4996.34 1011/ 4996.34/ 4994.69 X # # # # # # # # # # # # # # # # # # # # # # # # # X X # X # # # # # # # # # # System inflows (data group K3) at 0.00 hours ( Junction / Inflow,cfs ) 30002/ 0.00E+00 30001/ 0.00E+00 k # # # # # # 0 # # # # # # # # # # # # # k # # # k X # # # # # # # # # # # # p System inflows (data group K3) at 1.00 hours ( Junction / Inflow,cfs 1 30002/ O.00E.00 30001/ 0.00E+00 k # # # # # # # # # # # # # X # # # k # # # # # # # # # # # # k # # # # # p # # CYCLE 360 TIME 1 HRS - 0.00 MIN JUNCTION / DEPTH / ELEVATION =__> .. JUNCTION IS SURCHARGED. 30001/ 0.00 / 4997.66 30002/ 0.00 / 5000.45 30030/ 0.00 / 4996.34 30011/ 0.31 / 4995.00 CONDUIT/ FLOW ""' CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 0.00 1010/ 0.00 1011/ 0.00 90004/ 0.00 90005/ 0.00 90006/ 0.00 System inflows (data group K3) at 1.08 hours ( Junction / Inflow,cfs 1 300021 1.00E-01 30001/ 1.00E-01 # # # # X # # # # # # X # # # X # # # N # k # # # # # X # # # # # # # # # # # N # # # # # # # k # # # # X # # # # X # X # # # # # k # # N # # # # # # # # X # # System inflows (data group K3) at 1.17 hours 1 Junction / Inflow,cfs I 30002/ 6.70E.00 30001/ 5.30E+00 # # # # # # k k # # # # k # # # p p # # k N k # # # # X # # # # k # # # X Y # # System inflows (data group K3) at 1.18 hours 1 Junction / Inflow.cfs I 30002/ 1.03E+01 30001/ 7.70E.00 # # # # # X # # # # # # # # # k k N # # # # # # # # # X X # # # # # # # 0 X # # # # # # # # # # # # # # # # # # # N # 0 # X k # # # # # # N # # # # # k # # # # System inflows (data group K3) at 1.20 hours ( Junction / Inflow,cfs I 30002/ 1.46E+01 30001/ 1.02E+01 # # # # # # # # k # # # # # k # k # # # # # # # # # k p X # # # # # # # # # # # # # # k # # # # # # # # # # # # # k # # # # # # p # # k # # # # q # # # # # # # System inflows (data group K3) at 1.22 hours 1 Junction / Inflow,cfs 1 30002/ 1.91E+01 30001/ 1.26E.01 WATER RESOURCES CAMP DRESSER 4 MCKEE ANNANDALE, VIRGINIA # # k # # k # N # # # # # # # # # # # # # M # # k # # # # # # # # 8 # X # # # # # # k # # N # # N p # # # # # # # # # # # k # # # # # # # # # # # # # # # # # # System inflows (data group K3) at 1.23 hours 1 Junction / Inflow,cfs I 300021 2.33E+01 30001/ 1.48E+01 # # # # 4 N X # # # R # # # # # # R # # # # # N N # # # # # # # # # # # # # # # R # # # # # N q # # R # k # N N # # # # # # # # # # # X X R # # # # # # # # # # System inflows (data group K3) at 1.25 hours I Junction / Inflow,cfs 1 30002/ 2.71E+01 30001/ 1.67E+01 # # # # # # # # # # # # # # # # k # # # # k # # # # # # # # # # # # # # # N # # # # # # # # # # # # # # # k # # N N # # # # # # # # # k M # # # # # # k # # # # System inflows (data group K3) at 1.27 hours 1 Junction / Inflow,cfs I ' 30002/ 3.17E+01 30001/ 1.97E+01 # # # # X # p # # # R # # # # # # # # k # # # k # # k N # # # # N # # # # # M # # k # # # M M N M # # k # # # X 0 # # # k # M # # # # # N # # N # # # # # # # # System inflows (data group K3) at 1.28 hours 1 Junction / Inflow,cfs 1 ' 30002/ 3.72E+01 30001/ 2.40E+01 # # # k # # M # # N # # # # # X # # # # # # # # # k N # # # # # # # # # # # # # # # # # # # N # # # # # # # k X # # # # # # k # N # # # # M # # # # # # # X # # System inflows (data group K3) at 1.30 hours ( Junction / Inflow,cfs 1 ' 30002/ 4.19E+01 3000l/ 2.77E+01 # # k # X # # N # # # # # N # # R # Y N # # # k # # # # # # # # # # # # # k # N k # # k k # # N N N X # # k # # # # # # # k # # # # # # # # # # # N X # N X # k System inflows (data group K3) at 1.32 hours 1 Junction / Inflow,cfs 1 ' 30002/ 4.58E+01 30001/ 3.08E+01 # # # # k # # # # # # # # # # # N # # # k # # k # # # p k # # # X # # # # # M p System inflows (data group K3) at 1.33 hours I Junction / Inflow,cfs ) ' 30002/ 4.91E+01 30001/ 3.33E+01 Y # # # X # N M Y # # # # # # # # # # # # # p # # N # X M # # # # # # # # # # R # # # # # X # # R # # # # # # # # # # R # # # X # p k R N # # # M # # # R # # # System inflows Idata group K3) at 1.35 hours I Junction / Inflow,cfs 1 ' 30002/ 5.30E+01 30001/ 3.66E+01 # # # # # # N # # # # # # # # # # # # # # # # # # # # N # # # # # # # # # # # X # # # # # # # # # # # k # # # # M # # # # # # k # k # k # # # # # # k # # # # # System inflows (data group K3) at 1.37 hours ( Junction / Inflow,cfs ) ' 30002/ 5.78E+01 30001/ 4.09E+01 # # # # # # # # # # # # # # # # # # # # # # # # Y # # M # # # # # # # # # # # N X N k # # Y # # N # # # # # # # # # # # Y # # # # X # # # # # # # # # # # # M # System inflows (data group K3) at 1.38 hours 1 Junction / Inflow,cfs 1 ' 30002/ 6.21E+01 30001/ 4.47E+01 # # # # # # # M # # # # # # k # # # # # # # # # M # # k k k # # # # # # # # # # X # # # # # N # # # # # # # # # # # # # M # # # # # # # # # k k # # X # # # # M System inflows (data group K3) at 1.40 hours ( Junction / Inflow,cfs I ' 30002/ 6.58E+01 30001/ 4.79E+01 # # # # # k # # # N # # M M # # # Y # # k # # X 0 # # N R # # # # p # # N # # # # # # # # # # # 0 # # # # # X # # # # # # # # # # N # # # R # # # M # 0 # # # M System inflows (data group K3) at 1.42 hours 1 Junction / Inflow,cfs I ' 30002/ 6.90E+01 30001/ 5.08E+01 # p# p# g N p p p k### k p## p## g k p# N k k k k p#### q p# p p X # # # # # N # # # # # X # # # # # # # # # # # # # p p # # # k # p # N k X # # System inflows (data group K3) at 1.43 hours ( Junction / Inflow,cfs I ' 30002/ 7.85E+01 30001/ 5.99E+01 # # # N # N # # # # # # # # k # # N # # # q # # p p p # # X # # # # # # # X # # # N # # # # N # # # # # # # # # N # # # X p k # # # p # # # X # # M # # # # # # System inflows (data group K3) at 1.45 hours 1 Junction / Inflow,cfs 1 ' 30002/ 9.42E+01 3000l/ 7.53E+01 N # # # # X # # N # # # # # # # # # X # k # k # # # # # N # # # # # # # N # # # # # # # # # N # # # # # # # # # N # # # # # # # # # M # # # # k # # # # # X # # System inflows (data group K3) at 1.47 hours ( Junction / Inflow,cfs 1 30002/ 1.08E+02 30001/ 8.84E+01 # # # # k # N # # # # # # # # p N # N # # # # # # # # # # # # # # # # # # # # # # # k # k # # N # k # # k # # p N 4 N N N # # # # # # # # # k # # N # # # # # Y System inflows (data group K3) at 1.48 hours 1 Junction / Inflow.cfs 1 ' 30002/ 1.19E+02 30001/ 9.91E+01 # # N # N Y N # N # # # # # # # # # X # N # N X # # N # 0 N p # # # # # # # p # 1 # # p # # # # # # # # # # X # N # # # # # # k # # # # # # Y # # # # # # # # # # System inflows (data group K3) at 1.50 hours 1 Junction / Inflow,cfs I ' 30002/ 1.28E+02 30001/ 1.08E+02 # M # # # N # # # X N # # # # # # # # # # X # # # % # # 8 # # # # # # N # # # # System inflows (data group K3) at 1.52 hours 1 Junction / Inflow,cfs I ' 30002/ 1.51E+02 30001/ 1.30E+02 N # # # # # # # # # N N # # # # # # Y # N # N # # # # # # N N # N # # # p # p # N # # # # # k # # # N # # # # # # # # # # # # # Y # # # # # # # # # # # N N # # System inflows (data group K3) at 1.53 hours ( Junction / Inflow,cfs 1 ' 30002/ 1.86E+02 30001/ 1.64E+02 # # X 8 # # # # # # # # N # # # # # # # # # # # # # # # 0 # # # # # # # # # # N # k # # # # k # # # # # # # # # # # # # # # # X # N # # # # # # # # # # # # # # System inflows (data group K3) at 1.55 hours ( Junction / Inflow,cfs ) ' 30002/ 2.14E+02 30001/ 1.88E+02 # N # # # Y # Y k p p # # # N # # # X # N # # # X N # # # k # 0 # N # X N # N Y Y Y k## Y Y# N N X## N#### Y X#### N### N X X N N# N Y N# N# System inflows (data group K3) at 1.57 hours ( Junction / Inflow,cfs ) ' 30002/ 2.36E+02 30001/ 2.06E+02 # # # # # # # # # # N # # # # # # # # # # # # # Y # # # # # tl 8 # # X # # Y # # N N # # # # # # X # # # # N # # # X # # # # 0 # # # # # # # # # X # # # # # # # ===> System inflows (data group K3) at 1.58 hours I Junction / Inflow,cfs ) 30002/ 2.53E+02 30001/ 2.21E+02 # # # # % # X # # # # # # # # # # Y # # # # # # N k # # # # N # N # # # p # # # System inflows (data group K3) at 1.60 hours ( Junction / Inflow,cfs ) 30002/ 2.44E+02 30001/ 2.10E+02 p # # # # Y # # # # # p N X # # # # # # # # # N N Y # # # Y # # # # N X # Y # N q # # # % # # # # N N # # # # # # # # k # # # # p Y # # # X # # # tl X N # # # k System inflows (data group K3) at 1.62 hours 1 Junction / Inflow,cfs 1 30002/ 2.18E+02 30001/ 1.84E+02 N # # # # # # # # # # # k # # # # # # # # # # # M # k # N # # # # N X # # # # # System inflows (data group K3) at 1.63 hours ( Junction / Inflow,cfs ) 310021 2.01E+02 30001/ 1.67E+02 X N # k # # # Y # # # N # # # # # # # N # N Y # # N % # # # k # # # # # # # # # # I Y # # # # k 0 X # # N # # k k # # N # N N # Y # N # Y N # # # # # # N # # # ---> System inflows (data group K3) at 1.65 hours ( Junction / Inflow,cfs 1 310021 1.89E+02 100011 1.54E+02 # # # # # # # Y p # # # # # # # # X # # # X # # % N # # # # # # # # # # # N # # -> System inflows (data group K3) at 1.67 hours ( Junction / Inflow,cfs ) 30002/ 1.82E+02 30001/ 1.44E+02 M-p #### p### p p p### p k X p p k X M p p k p# p p p p M p p p M# M M tl k M Y Y Y X M X X M# p## Y p k# p p p p# M M# M A p p M N Y p# k# p > System inflows (data group K3) at 1.68 hours ( Junction / Inflow,cfs ) 30002/ 1.72E+02 30001/ 1.32E+02 Y #-tl k Y Y M X p N N p p p p Y p Y X N## N N X X X# p### p p p p p N Y p N # N# N# M Y## p N M# p M N# p# N Y# N N N Y N### N##% p p# N M Y > System inflows Idata group K3) at 1.70 hours ( Junction / Inflow,cfs ) 30002/ 1.60E+02 30001/ 1.19E+02 p p # # # # # # # # p # # # # # # # # # # # # # # # # # # # # # # p # # # N # # p p k## p p p k p p p g p p## p# Y g p p M p p### p### p p p# p p M System inflows (data group K3) at 1.72 hours ( Junction / Inflow,cfs ) 30002/ 1.51E+02 30001/ 1.08E+02 ' M-Y p# M k p N## tl p## k# M%# p p M p p# N###### M N N# X### X N p # M p p # k # % p # # # # # # k p N # # N N # # # # N # k k X # N # N # % > System inflows (data group K3) at 1.73 hours ( Junction / Inflow,cfs ) 30002/ 1.44E+02 30001/ 1.01E+02 ' p # # # # k k # # # N # # # # # # # # # # # # # # # # # # # # # # X # # # # N # p p # # # k X # # # # X # # # # # # # # N # # # # # # # # # # # # # # # X # k # System inflows (data group K3) at 1.75 hours ( Junction / Inflow,cfs ) 30002/ 1.39E+02 30001/ 9.45E+01 ## tl # ## tl # ## tl : p #1 ## # # # # ## # # # # # N ## p # X # ## N # # # # N p tl X # # p p p# M M p p p p 1 p p p p### p p p p p p p p M# p p# p p p M p p p X p [1 I 1 iI I 1 System inflows (data group K3) at 1.77 hours I Junction / Inflow,cfs I 30002/ 1.33E+02 30001/ 8.71E+01 ## p## N# p k k p# g tl p p p p k N p p q k p p p M k p p k## p p p p p# g p p N k p p p k p p p p p p p p p p M p# A p p p p p k p p# k# p k# p p# System inflows (data group K3) at 1.78 hours 1 Junction / Inflow,cfs 1 30002/ 1.25E+02 30001/ 7.87E+01 p g p k# p p p p## k p# k p p p p k p# # # # q # N # k # k # k # # # q # # # # # k # # # # k p p # # # # # # p # p k # System inflows (data group K3) at 1.80 hours I Junction / Inflow,cfs ) 30002/ 1.19E+02 30001/ 7.19E+01 # k # # k # # # # # # # k # 0 # # # # N # # # # # # # # # k k # k # # # # # N # # # # # k # N # # # # # # # # # # # # # # # # # # # Y # # # # # k # # # # # # # System inflows (data group K3) at 1.82 hours 1 Junction / Inflow,cfs 1 30002/ 1.13E+02 30001/ 6.65E+01 # # # # X # # # # # # k # # # # p # # # # # k # p # X # # # # # # # k # k X # # System inflows (data group K3) at 1.83 hours I Junction / Inflow,ofs ) 30002/ 1.09E+02 30001/ 6.22E+01 N # # N # # k # # N # # # # # # # # # # # # # # k # # X X k # # N # # Y # k k k # # # # # # # k # # # # # # k # # # k # # # # # # # # X # # # # k # # # # # # # System inflows (data group K3) at 1.85 hours 1 Junction / IRflow,Cfa 1 30002/ 1.05E+02 30001/ 5.81E+01 # # # # # # # # k # # # # # # # # k # # # # # # # # # p # # # # # # k k # # # # # # k k k k # # # # k # # # # # N # # # # # # k # # # # a X k # # # # 0 k # # k ___> System inflows (data group K3) at 1.87 hours ( Junction / Inflow,cfs 1 30002/ 1.01E+02 30001/ 5.42E+01 # k # # # # # # N # # k # # # # # p # k k q k # # # # # # # # k k # # # # k k # # # # # # # # # N # k # # # # # # N Y # N k k # # X # k k # # # # # # 0 # # # # System inflows (data group K3) at 1.88 hours I Junction / Inflow,cfs 1 30002/ 9.78E+01 30001/ 5.10E+01 p # # # # # # # # # # k # # # # N Y # k # % % # # # Y # # # # # N # # # k # # k Y # # # # # # # # # # k # N # # Y # # # # k k # X # # X # # k # # # # # k k k # System inflows (data group K3) at 1.90 hours ( Junction / Inflow,cfs 1 30002/ 9.50E+01 30001/ 4.83E+01 # # k k # # k # # # # # # # # # # # # # # # # k # # # # # # # # # k # # # # # # # # # # # # k k # # # N # Y k # # # k # # # # k # # # # # N # # # # # k # # # # System inflows (data group K3) at 1.92 hours ( Junction / Inflow,cfs 1 30002/ 9.27E+01 30001/ 4.61E+01 k # # # # k N N # X k # k k # N # # N # N # # # # # # # k # k # # # # N Y # X # # # # # # # k # # # # # # # # # # k # # # # # # # N k N # a A # # # # N # # N # _> System inflows (data group K3) at 1.93 hours ( Junction / Infl ow,cfs I 30002/ 9.05E+01 30001/ 4.39E+01 # # # # # # # # # # # # # # # k # # # # # # # # # a # # # k # # # # # # k # N N # # # # k # % # k # k # k # # # # # a # # k k # k # # k # # k # # # # # # # # N > System inflows (data group K3) at 1.95 hours ( Junction / Inflow,cfs 1 30002/ 8.83E+01 30001/ 4.17E+01 # # k # # N # # # # # # # # # N # # # N # # # # k # # # # # # # # k # # N N # N k# N k#### N X k N k### k N N# k k k## N N####### k# N N# N > System inflows (data group K3) at 1.97 hours I Junction / Inflow,cfs 1 30002/ 8.63E+01 30001/ 3.99E+01 # # # # # # # N # # # k # k Y # # # # k # # # N # # # # # # # # k # # # # # # # # p # # # # # # k # # # k # # N N # tl # k k # # k # # k # k # # p N # # # # Y # ___> System inflows (data group K3) at 1.98 hours ( Junction / Infl ow,cfs ) 30002/ 8.46E+01 30001/ 3.83E+01 # # # # # # # # # # # # # # # # # N # p p # # # # # # # # % # # k # # # Y tl # # System inflows (data group K3) at 2.00 hours ( Junction / Inflow,cfs 1 30002/ 8.30E+01 30001/ 3.69E+01 # # # # # # # p # # # # # # # k # # # k # # # N # # # # # # # # # # # # # # # # CYCLE 720 TIME 2 HRS - 0.00 MIN JUNCTION / DEPTH / ELEVATION =__> ... JUNCTION IS SURCHARGED. 30001/ 6.01 / 5003.67 30002/ 4.97 / 5005.42 30010/ 2.57 / 4998.91 30011/ 1.38 / 4996.07 [1 I I CONDUIT/ FLOW ' CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 10.86 >1010/ 19.63 1011/ 39.92 90004/ 90005/ 0.00 90006/ 39.92 p k A # k # # p k # # p p # Y # N # Y # # Y # # # # Y # Y # k N k # k # # # X # System inflows (data group K31 at 2.08 hours ( Junction / Inflow,cfs ) 30002/ 7.57E+01 30001/ 3.16E+01 # k # k # Y # N # N N N # k # # # # X R # # R # N # N # # # N # # # # # p # # X Y## k Y p Y Y## Y X# k k##### N# Y k# k M k## X k# p# N## N# _> System inflows (data group K3) at 2.17 hours ( Junction / Inflow,cfs ) 30002/ 7.00E+01 300011 2.82E+01 k M tl M k# N N p N p p k# p p# g p p p p## p p p p N q# X##### k p p > System inflows (data group K3) at 2.25 hours ( Junction / Inflow,cfs 1 30002/ 6.54E+01 30001/ 2.58E+01 N X # M # # # # # X # # # N N 0 # # # # 11 # # # X # M M # M # k M # # N Y # # tl N # # # # # # # k # # k # # # # # # # # # # # # # # M k X # # Y # X M N Y # N # System inflows (data group K3) at 2.33 hours 1 Junction / Inflow,cfs ) 30002/ 6.16E+01 30001/ 2.39E+01 # # # k # k # N # # M # # # # # N # Y N # # k k # # # 0 # 0 k N # N k N # X # k # # # # # Y # # 8 # # p # # # k N M # k # # # # # # # # Y k # M # k k M N # # N System inflows (data group K3) at 2.42 hours I Junction / Inflow,efs 1 30002/ 5.84E+01 30001/ 2.24E+01 M # Y Y k # # N M # p # # # # # # # N M # # # # N # M # # N # # # # # # # N N # k # # # k N N M N M p # # # # M # # # M # N # # Y k M # # # # Y k # N # Y # Y # System inflows (data group K31 at 2.50 hours 1 Junction / Inflow,efs ) 30002/ 5.57E+01 30001/ 3.11E+01 N # # # k # M # M # N X # k k # # # N # # # M # # # # # # # # k # # q # # # # X System inflows (data group K3) at 2.58 hours 1 Junction / Inflow,cfs 1 30002/ 5.33E+01 30001/ 2.11E+01 R Y k Y p X p# p p k X# k N p p# p# p p# k p p p p N p N N p X k M tl# p p # Y # # # Y # # N a # # # # # # # # # # k # Y # # # # # N # Y M # N N M M # q k System inflows (data group K3) at 2.67 hours ( Junction / Inflow,cfs 1 30002/ 5.11E+01 30001/ 1.90E+01 X # q # # # # k p k # # # N # Y Y # # k # X Y # # # k N M N X # N # # # # # 0 # # # # N k # # # tl # # # # # k # # # # p N # # k # N M X M # # # k k # # # # # q System inflows (data group K3) at 2.75 hours I Junction / Inflow,cfs ) 30002/ 4.92E+01 30001/ 1.81E+01 # X X# N X R k p# N## k# N k# Y k#### Y k X N# X M Y M## N Y## X System inflows (data group K3) at 2.83 hours 1 Junction / Inflow,cfs ) 30002/ 4.75E+01 30001/ 1.74E+01 ## N tl p p X p p# p# k p p# p p p p p## M N# q# p M p p X p# N k p p p N # # # # # Y k N k # N # # N N N # # # N # # # Y # # N # M M # k X # M # # N tl System inflows (data group K3) at 2.92 hours 1 Junction / Inflow,cfs I 30002/ 4.60E+01 30001/ 1.67E+01 X N# X## N N N N M Y## X# N## N N### k## X p Y p k# R k k N N## # 0 # # # # # # k # # # # # # Y # # # k # Y # # # # # # # # # N X # # k Y # M # System inflows (data group K3) at 3.00 hours ( Junction / Inflow,cfs I 30002/ 4.46E+01 30001/ 1.60E+01 N X # # N # 0 # X # # # # # # # # X # # # # k # # # # # # p # # # # # X N # N # CYCLE 1080 TIME 3 HRS - 0.00 MIN 20.64 JUNCTION / DEPTH / ELEVATION =__> - JUNCTION IS SURCHARGED. 30001/ 5.94 / 5003.60 30002/ 6.12 / 5006.58 30010/ 2.47 / 4998.81 30011/ 1.31 / 4996.00 CONDUIT/ FLOW =__>"' CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.19 1030/ 19.71 1011/ 35.45 90004/ 15.72 90005/ 4.90 90006/ 35.45 N # k # # # # M # # # # N # N # M k N # # # # k p Y N N X M # # # # X # # Y # # ___> System inflows (data group K3) ac 3.17 hours ( Junction / Inflow,cfs ) 30002/ 3.15E+01 30001/ 5.70E+00 k # k # # Y Y # Y N # # # Y # # # # # # Y # # k # # N N # tl # Y # # # k Y # % # N N Y N # # # # Y N # # k Y k # # # # N N N N # # k # N # # k # # # # k # N # # ___> System inflows (data group K3) at 3.33 hours ( Junction / Inflow,cfs ) I 30002/ 2.71E+01 30001/ 2.70E+00 p g k p# p p## p p p g p p## p p p p p p p p p p p p p## p M p p p p p p p p g p# p p# p p p p q p p## g p p p p p p# p## p p# M## p p p# p q System inflows (data group K3) at 3.50 hours ( Junction / Inflow,cfs 1 30002/ 2.51E+01 30001/ 1.60E+00 # # # # # # # # # # # # N # # # # q # # k # # # # # # # X # # # # # # # # # # # X p # # # Y p p N # # # # X # # # # # # # # # N N # # # # Y # # # # # # # # # # System inflows (data group K3) at 3.67 hours 1 Junction / Inflow,cfs ) 300021 2.39E+01 30001/ 1.00E+00 N k X # # # # # # # p # p # # X # X # # # X # # # # # # # N # # # X # # # # # # # X X # # # # # # # p # # # # # # # # # # # # # 0 # X # # # # # # # # p p # # # System inflows (data group K3) at 3.83 hours ( Junction / Inflow,cfs 1 30002/ 2.30E+01 30001/ 7.00E-01 8 # X # # # 8 # # # # X X # # # # # # # # N # # # # # # # # # # # # # # # # # # # # 8 # # # # X # # # X # # # # N N # X # # # # # # # # # # # # # # # # X # # # System inflows (data group K3) at 4.00 hours ( Junction / Inflow,cfs I 30002/ 2.23E+01 30001/ 5.00E-01 # # # # k # # # # # # # # # # # # Y X # X # N N # # # # # # # # # Y # N # # # # CYCLE 1440 TIME 4 MS - 0.00 MIN ' JUNCTION / DEPTH / ELEVATION - =_> • JUNCTION IS SURCHARGED. 30001/ 5.81 / 5003.47 30002/ 6.22 / 5006.67 30010/ 2.24 / 4998.58 30011/ 1.17 / 4995.86 ' CONDUIT/ FLOW =__>"' CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.73 1010/ 19 .88 1011/ 27.29 90004/ 90005/ 9.28 90006/ 27.29 # X # # # # # q # # k # # # # X N X # Y tl # tl X # # # # X # # # X tl N # X # # # =__> System inflows (data group K3) at 4.17 hours ( Junction / Inflow,cfs ) t 30002/ 2.18E+01 30001/ 4.00E-01 # p X # # # # # # N X N X X X # # # # # # # # # # # # # # N # # # N # # # # # # X k X X X# k# k N p p p p X## X p p### k# p p## p# p p p N## k# p System 30002/ inflows (data 2.12E+01 group 30001/ K3) at 3.00E-01 4.33 hours 1 Junction / Inflow,cfs 1 # N # # # # # # # k N p # # # k X X # # # # # # # # # # # # p # # 8 # # N # # # System 30002/ inflows (data 2.08E+01 group 30001/ K3) at 2.00E-01 4.50 hours 1 Junction / Inflow,cfs ) # # # # # # # X X # # # # # # # 8 # # # # N # N N N # % # # N # # # X X # R # # N # p # N # # N # # Y # # # # # # N # # N X # k # # # X # # # # # # k # X # # # ___> System inflows Idate group K3) at 4,17 hours I Junction / Inflow,cfs 1 ' 30002/ 2.04E+01 30001/ 2.00E-01 p X k# p## p p# p k X p k#### p p M# p### k X# p# p# p p k# k# p k k# p## g q q p p p M### N k p N k X k X## q k# M A p p# p p X k# System inflows (data group K3) at 4.B3 hours I Junction / Inflow,cfs ) ' 30002/ 1.99E+01 30001/ 1.00E-01 # % # # #.Y # # # N # # X # # # X # # # # tl q # # # # X # # # # N t # # N X # # p N # # # # # X p # N # # N # # # # # # # M # # # # # # # # # # # Y # # # # # # System inflows (data group K3) at 5.00 hours ( Junction / Inflow,cfs ) 30002/ 8.60E+00 30001/ 1.00E-01 p # p # # N # # # # # # # # # # # # # # # # # N # # # # # X N X # X # # # # # # CYCLE 1800 TIME 5 HRS - 0.00 MIN ' JUNCTION / DEPTH / ELEVATION =__> ""' JUNCTION IS SURCHARGED. 30001/ 5.73 / 5003.39 30002/ 6.15 / 5006. 60 30030/ 2.13 / 4998.47 30011/ 1.10 / 4995.79 CONDUIT/ FLOW =__> '•• CONDUIT USES THE NORMAL FLOW OPTION. ' 1001/ 14.75 1010/ 19.96 3011/ 23.60 90004/ 90005/ 5.88 90006/ 23.60 # # # # # # Y # # X # # # # # # X # # # # N N N # # # # X # # # k N # X # # # # System inflows (data group K3) at 5.17 hours 1 Junction / Inflow,cfs ) ' 30002/ 7.40E+00 30001/ 1.00E-01 # N # # # # # # # # # X # # # # # # # # # # k X # # # # # # # # # X # # # # # # # # # # # # # # # X X X N # # # # # # # # # # # k # # # # k # # # p # # # # # # ___> System inflows (data group K3) at 5.33 hours ( Junction / Inflow,cfs 1 ' 30002/ 7.20E+00 30001/ 1.00E-01 7.32 3.55 I 1 p p## p p p p p p X p p# p p# p p g p p p# p p p p p p p# p##### p p # # # # p # # # # # # X # # # N # X X p # # p # # # # # # # Y # Y Y Y Y # # # # ___> System inflows (data group K3) at 5.50 hours ( Junction / Inflow,cfs ) 30002/ 7.00E+00 30001/ 1.00E-01 # # Y # # # 4 # tl # # # # # # # # # # 0 # # N # # # # # # Y # # # # # # # # N % # Y X # # # # # p # # 0 # # # Y # # # N # # N X # # # # # # # # X # # # # # Y N System inflows (data group K3) at 5.67 hours 1 Junction / Inflow,cfs 1 30002/ 6.90E+00 30001/ 1.00E-01 p## p Y# p# X## p p k k p g p q p p p p# p# M# p p# p k k#### p p Y # X # # # # N X # # # # q # # # Y Y # Y Y # # 8 # # # X # # 0 # N p # # # # # System inflows (data group K3) at 5.83 hours ( Junction / Inflow,cfs 1 30002/ 6.80E+00 30001/ 0.00E+00 # p k k## p p# X p##### k p g p q p# k# p# p# p p p p p k k# k p p # # # # # N N p # N X # # # # # Y # # # # # Y # # # k Y # # # # p # # Y # Y # # System inflows (data group K3) at 6.00 hours I Junction / Inflow,cfs 1 30002/ 6.70E+00 30001/ 0.00E+00 # # N # # # # # # # # # # # # # # # # Y # # # # # # # # # # # # N N # # # # # # CYCLE 2160 TIME 6 HRS - 0.00 MIN ' JUNCTION / DEPTH / ELEVATION =__> "+" JUNCTION IS SURCHARGED. 30001/ 5.55 / 5003.21 30002/ 5.92 / 5006.37 30010/ 2.00 / 4998.34 300111 1.01 / 4995.70 CONDUIT/ FLOW ==_> "' CONDUIT USES THE NORMAL FLOW OPTION. ' 1001/ 14.63 10101 19.86 1011/ 19.87 90004/ 90005/ 0.00 90006/ 19.87 N tl X # # # # N # # X # # # # # # # # N # # N # # # N X X # # # N N # # # # X # System inflows (data group K3) at 6.17 hours ( Junction / Inflow,cfs 1 ' 30002/ 6.60E+00 30001/ 0.00E+00 # # # # # # # # # # # N # # # # # # # N N # # # # # # # # # # X # # # # # # # # # # # # # # # # # # N N # # # # # 0 # # # Y # # # # # # # # # # # # # # # k # # ___> System inflows (data group K3) at 6.33 hours ( Junction / Inflow,cfs I 30002/ 6.50E+00 30001/ 0.00E+00 ' # # N # # # X # k # # # # % # # # N # # Y # p # # # # # # X N # X X # # # # # # # # # # # # # # # # 0 # # # # # # # # # N N X # # # # # # N # N # X N # # # # # System inflows (data group K3) at 6.35 hours 1 Junction / Inflow,cfs ) 30002/ 6.50E+00 30001/ 0.00E+00 ' # p N# Y p p p p q# p p p k k## p N p p X## M# X p p X p p p# tl Y Y p# N # k # # # # # # # # X # tl k # # P N X p # # # X X # # X # # p # # # # # # # # System inflows (data group K3) at 6.37 hours 1 Junction / Inflow,.£. ) 30002/ 6.50E+00 30001/ 0.00E+00 ' # # # # # N # Y N # # # X # # # Y # # # X X # # # # # # # # # X # # X X # # # Y System inflows (data group K3) at 6.38 hours ( Junction / Inflow,cfs 1 30002/ 6.50E+00 30001/ 0.00E+00 ' # N # # # # # # p # # N # # # # X # # Y X X # # p # # # # # # # p p # # # # # # System inflows (data group K3) at 7.00 hours ( Junction / Infl ow,cfs ) 30002/ 6.20E+00 30001/ 0.00E+00 ' X # # # 0 # # X # # # N # # # # # # X # # # Y X # # # # # X # # # X # # # # % # CYCLE 2520 TIME 7 HRS - 0.00 MIN ' JUNCTION / DEPTH / ELEVATION =__> ••" JUNCTION IS SURCHARGED. 5 30001/ 5.34 / 5003.00 30002/ .71 / 5006.16 30010/ 1.98 / 4998.32 30011/ 1.00 / 4995.69 CONDUIT/ FLOW '" CONDUIT >1010/ USES THE NORMAL FLOW OPTION. 1001/ 14.65 19.45 1011/ 19.46 90004/ ' 90005/ 0.00 90006/ 19.46 # k Y # # 8 # # # # Y X # # Y Y # # # # Y # # # Y # # # # # Y # X X # # # # # # System inflows (data group K3) at 7.50 hours ( Junction / Inflow,cfs I 30002/ 6.10E+00 30001/ 0.00E+00 ' N # # # # # # N X X # X # X # # # # X Y # # # X # # k N N Y # N X X # X Y # # # # Y # % # # # # # # # # # # X # X # # N N % N # # # # # # # Y # X N # # # N # # System inflows (data group K3) at 8.00 hours I Junction / Inflow,cfs 1 ' 30002/ 6.00E+00 30001/ 0.00E+00 p X p p p g p p p p p p# p## k p p p p p p p p p p p p p p p p p p p p## p 0.00 0.00 1 I 1 1 1 1 1 1 t 1 CYCLE 2880 TIME 8 HRS - 0.00 MIN JUNCTION / DEPTH / ELEVATION =__> ""' JUNCTION IS SURCHARGED. 30001/ 5.12 / 5002.78 30002/ 5.49 / 50D5. 94 30010/ 1.97 / 4998.31 30011/ 0.99 / 4995.68 CONDUIT/ FLOW =__>•• CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.65 3010/ 19.02 loll/ 19.03 90004/ 0.00 90005/ 0.00 90006/ 19.03 k # # X # # # # # # # # # # # # # # # # # # # N # # X p p # # # # # # # # # # # System inflows (data group K3) at 8.50 hours 1 Junction / Inflow,cfs ) 30002/ 5.90E+00 30001/ 0.00E+00 N # # # X # # # k # # # # # # X X k # # # # # # # # # # # # # # # # # # # # # X X p # # # # # # k k # # # # # # # # # X # # # # # # # k k # # # # # # # # # # # System inflows Idata group K3) at 9.00 hours ( Junction / Inflow,cfs 1 30002/ 4.40E+00 30001/ 0.00E+00 # # # N # # k # # # # # # # # # # # # # # # # # # # # X # # # # # # # # # # # # CYCLE 3240 TIME 9 HRS - 0.00 MIN JUNCTION / DEPTH / ELEVATION =__> ... JUNCTION IS SURCHARGED. 30001/ 4.89 / 5002.55 300021 5.25 / 5005.70 300101 1.95 / 4990.29 30011/ 0.98 / 4995.67 CONDUIT/ FLOW =__>•• CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.64 1010/ 18.56 loll/ 18.58 90004/ 0.00 90005/ 0.00 900061 18.58 ## p M k## p X# p p p p p p# X p# p p k# p#### p# k p###### k System inflows (data group K3) at 9.50 hours ( Junction / Inflow,cfs 1 300D2/ 4.10E+00 30001/ 0.00E+00 # k # # # # # # # # # k # k k # # # # # # # # # 8 # N # # # # # # # X # # # # # # # # # # # # # # # # X # k k # # # # k # # # # # # # N # # # # # # k # # # # # System inflows (data group K3) at 10.00 hours ( Junction / Inflow, cfs ) 30002/ 4.10E+00 30001/ 0.00E+00 # # # # # # # # # # # # # # # # N # # # # # # # # # # # # # # # # # # # # # # # CYCLE 3600 TIME 30 HRS - 0.00 MIN JUNCTION / DEPTH / ELEVATION =__ "•" JUNCTION IS SURCHARGED. 30001/ 4.63 / 5002.29 30002/ 4.97 / 5005.42 30010/ 1.93 / 4998.27 30011/ 0.97 / 4995.66 CONDUIT/ FLOW =__> "•" CONDUIT USES THE NORMAL FLOW OPTION. 1001/ 14.56 1010/ 18.05 1011/ 18.05 90004/ 0.00 90005/ 0.00 90006/ 18.05 .•.. • FINAL MODEL CONDITION • • FINAL TIME = 10.00 HOURS • JUNCTION / DEPTH / ELEVATION =__> ••" JUNCTION IS SURCHARGED. 30001/ 4.63 / 5002.29 30002/ 4.97 / 5005.42 30030/ 1.93 / 4998.27 30011/ 0.97 / 4995.66 CONDUIT/ FLOW "" CONDUIT USES THE >1010/ NORMAL FLOW OPTION. 1001/ 14.56 18.05 1011/ 18.05 90004/ 0.00 90005/ 0.00 90006/ 18.05 CONDUIT/ VELOCITY 1001/ 8.24 1030/ 7.51 loll/ 1.88 CONDUIT/ CROSS SECTIONAL AREA 1001/ 1.77 Iolo/ 2.41 1011/ 9.61 CONDUIT/ FINAL VOLUME 1001/ 199.69 1010/ 505.11 loll/ 2882.72 CONDUIT/ HYDRAULIC RADIUS 1001/ 0.38 1010/ 0.44 1011/ 0.76 CONDUIT/ UPSTREAM/ DOWNSTREAM ELEVATION 1D01/ 5005.42/ 5002.29 1010/ 5002.29/ 4998.27 1011/ 4998.27/ 4995.66 I 1################################################### # Surcharge Iteration Summary # ################################################### ' Maximum number of iterations in a time step..... 1 Total number of iterations in the simulation.. 7200 Average number of iterations per time step...... 2.00 Surcharge iterations during the simulation...... 0 ' Maximum surcharge flow error during simulation.. 0.00E+00 cfs Total number of time steps during simulation.. 3600 1 ••••••••••CONDUIT• COURANT • CONDITION' SUMMARY••••*••. • TIME IN MINUTES DELT > COURANT TIME STEP • SEE BELOW FOR EXPLANATION OF COURANT TIME STEP. ` CONDUIT # CONDUIT # ND COUIT # CONDUIT # ------- -------- -------- -------- 1001 519.33 1010 348.00 1011 0.00 • CONDUIT COURANT CONDITION SUMMARY • COURANT = CONDUIT LENGTH • TIDE STEP =----------- -- ......... a...../E.00.TY... SORT(GRVT-AREA/WIDTH... • AVERAGE COURANT CONDITION TIME STEPISECONDS) • CONDUIT # TIME(SEC) CONDUIT # TIME(SEC) CONDUIT # TIME(SEC) CONDUIT # TIME(SEC) _________ ___ __ 1001 7.69 1010 15.12 1011 38.16 ' EXTRAN CONTINUITY BALANCE AT THE LAST TIME STEP JUNCTION• INFLOW, OUTFLOW. OR. STREET. FLOODING.'. ' JUNCTION INFLOW- FT3 30001 3.3724E+05 30002 8.1399E+05 JUNCTION OUTFLOW, FT3 30011 7.4644E+05 ' • INITIAL SYSTEM VOLUME = 6.2300E-03 CU FT • ' TOTAL SYSTEM INFLOW VOLUME 1.1512E+06 CU FT . INFLOW ... INITIAL . VOLUME.•............5.2E:06. CU. FT.. :-TOTAL SYSTEM OUTFLOW = 7.4644E+05 CU FT . • VOLUME LEFT IN SYSTEM = 4.1970E+05 CU FT ' OUTFLOW + FINAL VOLUME ... ..1.1661E+06 CU •FT ' ` '• ERROR' IN• NU CONTIITY•• PERCENT = ••1,30•••*•` .u...«..«.«.............:.......................... 1 1 ######################################################### N T i m e H i s t o r y o f t h e H. G. L. ( Fee[) # ######################################################### t HARMONY CENTER 6 PIER DETENTION FOND INTERIM COND. SIMULATION WITH EXTRAN 6/24/1999 ICON ENGINEERING, INC. File: Pier.dat Revised MBF 3/22100 Junction: 30001 Junction: 30002 Junction: 30010 Junction: 30011 ' Time Ground: 5005.00 Ground: 5007.00 Ground: 5004.00 Ground: 5004.00 Hr:Mn: So Elevation Depth Elevation Depth Elevation Depth Elevation Depth 1 I 1 1 [I -------- 0: 5: 0 --------- 4997. 66 ----- 0.00 --------- 5000.45 ----- 0.00 --------- 4996.34 ----- 0.00 --------- 4995.00 ----- 0.31 0:10: 0 4997. 66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 0:15: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 0:20: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 0:25: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 0:30: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 0:35: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 0:40: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 0:45: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 0:50: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 0:55: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 1: 0: 0 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 1: 5: 0 4997.66 0.00 5000.47 0.02 4996.34 0.00 4995.00 0.31 1:10: 0 4997.82 0.16 5000.79 0.34 4996.35 0.01 4995.00 0.31 1:15: 0 4998.26 0.60 5001.30 0.85 4996.63 0.29 4995.00 0.31 1:20: 0 4998.94 1.28 5001.90 1.45 4997.52 1.18 4995.21 0.52 1:25: 0 4999.65 1.99 5002.42 1.97 4997.95 1.61 4995.47 0.78 1:30: 0 5000.63 2.97 5002.94 2.49 4998.08 1.74 4995.54 0.85 1:35: 0 5002.25 4.59 5003.68 3.23 499B.23 1.89 4995.64 0.95 1:40: 0 5003.05 5.39 5004.33 3.8B 499B.31 1.97 4995.69 1.00 1:45: 0 5003.39 5.73 5004.73 4.2B 499B.41 2.07 4995.75 1.06 1:50: 0 5003.56 5.90 5005.02 4.57 4998.69 2.35 4995.93 1.24 1:55: 0 5003.64 5.98 5005.24 4.79 4998.84 2.50 4996.02 1.34 2: 0: 0 5003.67 6.01 5005.42 4.97 4998.91 2.57 4996.07 1.38 2: 5: 0 5003.69 6.02 5005.57 5.12 4998.94 2.60 4996.09 1.40 2:10: 0 5003.69 6.03 5005.71 5.26 4998.94 2.61 4996.09 1.40 iA 2:15: 0 5003.68 6.02 5005.83 5.38 4998.94 2.60 4996.09 1.40 2:20: 0 5003.67 6.01 5005.94 5.49 4998.92 2.58 4996.08 1.39 2:25: 0 5003.66 6.00 5006.04 5.59 4998.90 2.56 4996.06 1.37 2:30: 0 5003.66 6.00 5006.14 5.69 4998.90 2.56 4996.06 1.37 2:35: 0 5003.66 6.00 5006.23 5.78 4998.90 2.56 4996.06 1.37 2:40: 0 5003.65 5.98 5006.31 5.86 4998.88 2.54 4996.05 1.36 2 :45: 0 5003.63 5.97 5006.38 5.93 4998.85 2.51 4996.03 1.34 2:50: 0 5003.62 5.96 5006.46 6.00 4998.83 2.49 4996.02 1.33 2:55: 0 5003.61 5.95 5006.52 6.07 4998.81 2.47 4996.01 1.32 3: 0: 0 5003.60 5.94 5006.58 6.12 4998.81 2.47 4996.00 1.31 3: 5: 0 5003.60 5.94 5006.62 6.17 4998.80 2.46 4996.00 1.31 3:10: 0 5003.59 5.93 5006.65 6.19 4998.78 2.44 4995.99 1.30 3:15: 0 5003.57 5.91 5006.66 6.21 4998.75 2.41 4995.97 1.28 3:20: 0 5003.55 5.89 5006.67 6.22 4998.73 2.39 4995.95 1.26 3:25: 0 5003.54 5.88 5006.67 6.22 4998.70 2.36 4995.94 1.25 3:30: 0 5003.53 5.87 5006.68 6.23 4998.68 2.34 4995.92 1.23 3:35: 0 5003.51 5.85 5006.68 6.23 4998.66 2.32 4995.91 1.22 3:40: 0 5003.50 5.84 5006.68 6.23 4998.64 2.30 4995.90 1.20 3:45: 0 5003.49 5.83 5006.68 6.22 499B.63 2.29 4995.88 1.19 3:50: 0 5003.48 5.82 5006.67 6.22 4998.61 2.27 4995.87 1.18 3:55: 0 5003.48 5.81 5006.67 6.22 4998.60 2.26 4995.87 1.18 4: 0: 0 5003.47 5.81 5006.67 6.22 4998.58 2.24 4995.86 1.17 4: 5: 0 5003.46 5.80 5006.66 6.21 4998.57 2.23 4995.85 1.16 4:10: 0 5003.45 5.79 5006.66 6.21 4998.56 2.22 4995.84 1.15 4:15: 0 5003.44 5.78 5006.66 6.21 4998.55 2.21 4995.84 1.15 4:20: 0 5003.44 5.78 5006.65 6.20 4998.54 2.20 4995.83 1.14 4:25: 0 5003.43 5.77 5006.65 6.20 4998.53 2.19 4995.83 1.14 4:30: 0 5003.43 5.77 5006.64 6.19 4998.52 2.18 4995.82 1.13 4:35: 0 5003.42 5.76 5006.64 6.19 499B.51 2.17 4995.81 1.12 4:40: 0 5003.41 5.75 5006.63 6.18 4998.50 2.16 4995.81 1.12 4:45: 0 5003.41 5.75 5006.63 6.18 4998.49 2.15 4995.80 1.11 4:50: 0 5003.40 5.74 5006.63 6.18 4998.48 2.14 4995.80 1.11 4:55: 0 5003.40 5.74 5006.62 6.17 4998.48 2.14 4995.79 1.10 5: 0: 0 5003.39 5.73 5006.60 6.15 4998.47 2.13 4995.79 1.10 5: 5: 0 5003.38 5.72 5006.57 6.12 4998.45 2.11 4995.78 1.09 5:10: 0 5003.37 5.71 5006.55 6.10 499B.44 2.10 4995.77 1.08 5:15: 0 5003.35 5.69 5006.53 6.08 4998.42 2.08 4995.76 1.07 5:20: 0 5003.34 5.68 5006.51 6.06 4998.41 2.07 4995.75 1.06 5:25: 0 5003.32 5.66 5006.49 6.04 4998.39 2.05 4995.74 1.05 5:30: 0 5003.31 5.65 5006.47 6.02 4998.38 2.04 4995.73 1.04 5:35: 0 5003.29 5.63 5006.45 6.00 4998.36 2.02 4995.72 1.03 5:40: 0 5003.28 5.62 5006.43 5.98 4998.35 2.01 4995.71 1.02 5:45: 0 5003.26 5.60 5006.42 5.97 499B.34 2.00 4995.71 1.02 5:50: 0 5003.24 5.58 5006.40 5.95 4998.34 2.00 4995.70 1.01 5:55: 0 5003.23 5.57 5006.38 5.93 4998.34 2.00 4995.70 1.01 6: 0: 0 5003.21 5.55 5006.37 5.92 4998.34 2.00 4995.70 1.01 6: 5: 0 5003.19 5.53 5006.35 5.90 4998.34 2.00 4995.70 1.01 6: 10: 0 5003.17 5.51 5006.33 5.88 4998.33 2.00 4995. 70 1.01 6:15: 0 5003.16 5.50 5006.32 5.87 4998.33 1.99 4995.?0 1.01 6:20: 0 5003.14 5.48 5006.30 5.85 4998.33 1.99 4995.70 1.01 6:25: 0 5003.12 5.46 5006.28 5.83 4998.33 1.99 4995.70 1.01 6:30: 0 5003.10 5.44 5006.27 5.82 4998.33 1.99 4995.70 1.01 6 :35: 0 5003.09 5.43 5006.25 5.80 4998.33 1.99 4995.70 1.01 6:40: 0 5003.07 5.41 5006.23 5.78 4998.33 1.99 4995.70 1.01 6: 45: 0 5003.05 5.39 5006.21 5.76 4998.33 1.99 4995.70 1.01 6: 5 0 : 0 5003.03 5.37 5006.20 5.75 4998.32 1.98 4995.70 1.01 6: 55: 0 1111,02 1,31 1111*11 5,11 1998.32 1.98 4995.69 1.00 7: 0: 0 5003.00 5.34 5006.16 5.71 4998.32 1.98 4995.69 1.00 ' 7: 5: 0 5002.98 5.32 5006. 14 5.69 4998.32 1.98 4995.69 1.00 7:10: 0 5002.96 5.30 5006.13 5.68 4998.32 1.98 4995.69 1.00 7:15: 0 5002.94 5.28 5006.11 5.66 4998.32 1.98 4995.69 1.00 7:20: 0 5002.92 5.26 5006.09 5.64 4998.32 1.98 4995.69 1.00 7:25: 0 5002.91 5.25 5006.07 5.62 4998.32 1.98 4995.69 1.00 ' 7:30: 0 5002.89 5.23 5006.05 5.60 4998.31 1.97 4995.69 1.00 7:35: 0 5002.87 5.21 5006.03 5.58 4998.31 1.97 4995.69 1.00 7:40: 0 5002.85 5.19 5006.02 5.57 4998.31 1.97 4995.69 1.00 7:45: 0 5002.83 5.17 5006.00 5.55 4998.31 1.97 4995.69 1.00 7:50: 0 5002.81 5.15 5005.98 5.53 4998.31 1.97 4995.69 1.00 ' 7:55: 0 5002.80 5.14 5005.96 5.51 4998.31 1.97 4995.69 1.00 8: 0: 0 5002.78 5.12 5005.94 5.49 4998.31 1.97 4995.68 0.99 8: 5: 0 5002.76 5.10 5005.92 5.47 4998.30 1.96 4995.68 0.99 8:10: 0 5002.74 5.08 5005.91 5.46 4998.30 1.96 4995.68 0.99 8: 15: 0 5002.72 5.06 5005.89 5.44 4998.30 1.96 4995.68 0.99 8:20: 0 5002.70 5.04 5005.87 5.42 4998.30 1.96 4995.68 0.99 8:25: 0 5002.68 5.02 5005.85 5.40 4998.30 1.96 4995.68 0.99 8:30: 0 5002.66 5.00 5005.83 5.38 4998.30 1.96 4995.68 0.99 8:35: 0 5002.64 4.98 5005.81 5.36 4998.30 1.96 4995.68 0.99 B:40: 0 5002.62 4.96 5005.79 5.34 4998.29 1.95 4995.68 0.99 8: 45: 0 5002.60 4.94 5005.77 5.32 4998.29 1.95 4995.68 0.99 8: 50: 0 5002.58 4.92 5005.75 5.30 4998.29 1.95 4995.68 0.99 8:55: 0 5002.57 4.91 5005.73 5.28 4998.29 1.95 4995.67 0.99 9: 0: 0 5002.55 4.89 5005.70 5.25 4998.29 1.95 4995.67 0.98 9: 5: 0 5002. 53 4.87 5005.68 5.23 499 B. 29 1.95 4995.67 0.98 ' 9:10: 0 5002.50 4.84 5005.66 5.21 4998.29 1.95 4995.67 0.98 9:15: 0 5002.48 4.82 5005.64 5.19 4998.28 1.94 4995.67 0.98 9:20: 0 5002.46 4.80 5005.61 5.16 4998.28 1.94 4995.67 0.98 9:25: 0 5002.44 4.78 5005.59 5.14 4998.28 1.94 4995.67 0.98 9:30: 0 5002.42 4.76 5005.56 5.11 4998.28 1.94 4995.67 0.98 ' 9:35: 0 5002.40 4.74 5005.54 5.09 4998.28 1.94 4995.67 0.98 9:40: 0 5002.38 4.72 5005.52 5.07 4998.27 1.94 4995.67 0.98 9:45: 0 5002.36 4.70 5005.49 5.04 4998.27 1.93 4995.67 0.98 9:50: 0 5002.34 4.68 5005.47 5.02 4998.27 1.93 4995.67 0.97 9:55: 0 5002.32 4.66 5005.44 4.99 4998.27 1.93 4995.66 0.97 ' 10: 0: 0 5002.29 4.63 5005.42 4.97 4998.27 1.93 4995.66 0.97 Mean 5002.36 4.70 5005.32 4.87 4998.19 1.85 4995.68 0.99 Maximum 5003.69 6.03 5006.68 6.23 4998.94 2.61 4996.09 1.40 Minimum 4997.66 0.00 5000.45 0.00 4996.34 0.00 4995.00 0.31 ' ....J•U N.C.T+I 0•N...B U•M`M A. R.Y`.•S.T.A•T•. S.T•I C.S... HARMONY CENTER & PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN 6/24/1999 ICON ENGINEERING, INC. File: Piez.dat Revised MBF 3/22/00 ' UPPERMOST MEAN MAXIMUM TIME FEET OF FEET MAX. LENGTH LENGTH MA%IMUM GROUND PIPE CROWN JUNCTION JUNCTION JUNCTION OF SURCHARGE DEPTH IE OF JUNCTION JUNCTION ELEVATION ELEVATION ELEVATION AVERAGE ELEV. OCCURINCE AT MAX BELOW GROUND SURCHARGE FLOODING AREA NUMBER (FT) (FT) (FT) 8 CHANGE (FT) HR. MIN. ELEVATION ELEVATION (MIN) (MIN) (SQ.FT) 30001 5005.00 5005.00 5002.35 0.0281 5003.69 2 7 0.00 1.31 0.0 0.0 1.124E+05 30002 5007.00 5007.00 5005.30 0.0317 5006.68 3 35 0.00 0.32 0.0 0.0 1.472E+05 30010 5004+00 5000.34 4998.18 0.0239 4998.95 2 9 0.00 5.05 0.0 ' 0.0 2.582E+03 30011 5004.00 4998.69 4995.68 0.0151 4996.09 2 7 0.00 7.91 0.0 0.0 3.888E+03 1 ##############pppp##########8################ p Time History of Flow and Velocity p # Q(cfs), Vel(Et/s), Total(cubic feet) # ################################pppp######### OF I 1 1 1 HARMONY CENTER 6 PIER DETENTION POND INTERIM COND. SIMULATION WITH E%TRAN 6/24/1999 ICON ENGINEERING, INC. File:,yier. I�l �.t10 dat Revised MBF 3/22/00 Time Conduit: 1001 Conduit 3010 Conduit: IF301\1 Conduit: 90004 Conduit: 90005 Hr:Mn:SC Flow Veloc. Flow Veloc. Flow Veloc. Flow Veloc. Flow Veloc. ________ 0: 5: ____ 0 0.00 ______ 0.00 ____ 0.00 ______ 0.00 ____ 0.00 ______ 0.00 ____ 0.00 ______ 0.00 ____ 0.00 ------ 0.00 0:10: 0 0.00 0.00 0.00 O.DO 0.00 0.00 0.00 0.00 0.00 0.00 0:15: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0:20: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0:25: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0:30: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0:35: 0 0.00 0.00 0.00 0.00 0.00 0.00 DAD 0.00 0.00 0.00 0:40: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0:45: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0:50: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0:55: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1: 0: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1: 5: 0 0.00 0.28 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 1:10: 0 0.47 1.87 0.07 1.08 0.00 0.00 0.00 0.00 0.00 0.00 1:15: 0 2.90 3.26 1.52 2.98 0.33 0.49 0.00 0.00 0.00 0.00 1:20: 0 6.49 4.26 8.92 4.92 4.87 1.26 0.00 0.00 0.00 0.00 1 :25: 0 8.43 4.99 12.01 5.06 11.16 1.63 0.00 0.00 0.00 0.00 1:30: 0 10.19 5.92 14.35 5.94 13.67 1.73 0.00 0.00 0.00 0.00 1:35: 0 9.93 5.66 17.96 7.42 17.02 1.84 0.00 0.00 0.00 0.00 1:40: 0 9.31 5.27 19.55 8.11 19.25 1.91 0.00 0.00 0.00 0.00 1:45: 0 9.51 5.38 20.09 8.35 21.81 1.98 3.63 0.00 0.00 0.00 1: 50: 0 9.92 5.61 19.86 8.26 30.97 2.19 12.84 0.00 0.00 0.00 1:55: 0 10.39 5.87 19.70 8.19 36.96 2.31 18.12 0.00 0.00 0.00 2: 0: 0 10.86 6.14 19.63 8.16 39.92 2.36 20.64 0.00 0.00 0.00 2: 5: 0 11.30 6.39 19.60 8.15 41.03 2.38 21.60 0.00 0.00 0.00 2:10: 0 11.71 6.62 19.59 8.14 41.24 2.38 21.63 0.00 0.00 0.00 2:15: 0 12.07 6.83 19.59 8.15 40.88 2.38 21.19 0.00 0.00 0.00 2:20: 0 12.41 7.02 19.60 8.15 40.26 2.36 20.53 0.00 0.00 0.00 2:25: 0 12.71 7.19 19.62 8.16 39.47 2.35 19.73 0.00 0.00 0.00 2:30: 0 12.96 7.33 19.63 8.16 39.25 2.35 19.76 0.00 0.00 0.00 2:35: 0 13.18 7.46 19.62 9.16 39.47 2.35 19.73 0.00 0.00 0.00 2:40: 0 13.43 7.60 19.64 8.16 38.49 2.34 18.65 0.00 0.00 0.00 2:45: 0 13.66 7.73 19.66 8.17 37.39 2.32 17.53 0.00 0.00 0.00 2:50: 0 13.87 7.85 19.68 8.18 36.42 2.30 16.56 0.00 0.83 0.00 2:55: 0 14.05 7.95 19.70 8.19 35.79 2.29 15.96 0.00 2.73 0.00 3: 0: 0 14.19 8.03 19.71 8.19 35.45 2.28 15.72 0.00 4.90 0.00 3: 5: 0 14.31 8.09 19.71 8.19 35.22 2.28 15.42 0.00 6.87 0.00 3:10: 0 14.40 8.15 19.72 8.20 34.48 2.26 14.56 0.00 8.15 0.00 3:15: 0 14.47 8.19 19.74 8.21 33.45 2.24 13.50 0.00 8.92 0.00 3:20: 0 14.53 0.22 19.76 8.22 32.45 2.22 12.49 0.00 9.41 0.00 3:25: 0 14.58 8.25 19.78 8.22 31.52 2.21 11.54 0.00 9.69 0.00 3: 30: 0 14.61 8.27 19.80 8.23 30.69 2.19 10.74 0.00 9.82 0.00 3:35: 0 14.64 8.29 19.82 8.24 29.96 2.17 10.01 0.00 9.85 0.00 3:40: 0 14.67 8.30 19.83 8.25 29.31 2.16 9.35 0.00 9.82 0.00 3:45: 0 14.69 8.31 19.85 8.25 28.73 2.15 8.77 0.00 9.74 0.00 3:50: 0 14.70 8.32 19.86 8.26 28.21 2.14 8.25 0.00 9.61 0.00 3:55: 0 14.72 8.33 19.87 8.26 27.74 2.13 7.77 0.00 9.46 0.00 4: 0: 0 14.73 8.34 19.88 8.27 27.29 2.12 7.32 0.00 9.28 0.00 4: 5: 0 14.74 8.34 19.89 8.27 26.91 2.11 6.94 0.00 9.10 0.00 4:10: 0 14.75 8.35 19.90 8.27 26.52 2.10 6.56 0.00 8.90 0.00 4:15: 0 14.75 8.35 19.91 8.28 26.19 2.09 6.21 0.00 8.70 0.00 4:20: 0 14.76 8.35 19.91 8.28 25.87 2.08 5.87 0.00 8.50 0.00 4 :25: 0 14.76 8.36 19.92 8.28 25.55 2.08 5.56 0.00 8.28 0.00 4:30: 0 14.77 8.36 19.93 8.28 25.22 2.07 5.23 0.00 8.08 0.00 4:35: 0 14.78 8.36 19.93 8.29 24.94 2.06 4.95 0.00 7.86 0.00 4:40: 0 14.78 8.36 19.94 8.29 24.68 2.05 4.66 0.00 7.67 0.00 4:45: 0 14.78 8.37 19.94 8.29 24.41 2.05 4.39 0.00 7.46 0.00 4:50: 0 14.79 8.37 19.95 8.29 24.15 2.04 4.13 0.00 7.24 0.00 4:55: 0 14.78 8.36 19.95 8.30 23.87 2.D4 3.88 0.00 6.80 0.00 5: 0: 0 14.75 8.35 19.96 8.30 23.60 2.03 3.55 0.00 5.88 0.00 5: 5: 0 14.72 8.33 19.96 8.30 23.23 2.02 3.17 0.00 4.84 0.00 5:10: 0 14.69 8.31 19.97 8.30 22.77 2.01 2.71 0.00 3.89 0.00 5:15: 0 14.67 8.30 19.97 8.30 22.33 2.00 2.24 0.00 3.04 0.00 5:20: 0 14.65 8.29 19.98 8.31 21.86 1.99 1.75 0.00 2.33 0.00 5:25: 0 14.64 8.29 19.98 6.31 21.37 1.97 1.29 0.00 1.72 0.00 5:30: 0 14.63 8.28 19.98 8.31 20.95 1.96 0.85 0.00 1.18 0.00 5:35: 0 14.63 8.26 19.98 8.31 20.55 1.95 0.48 0.00 0.75 0.00 5:40: 0 14.63 8.28 19.97 8.30 20.22 1.94 0.18 0.00 0.40 0.00 5:45: 0 14.63 8.28 19.95 8.30 20.00 1.94 0.00 0.00 0.14 0.00 5:50: 0 14.63 8.28 19.92 8.28 19.93 1.93 0.00 0.00 0.00 0.00 5:55: 0 14.63 8.28 19.89 8.27 19.89 1.93 0.00 0.00 0.00 0.00 6: 0: 0 14.63 8.28 19.86 8.26 19.87 1.93 0.00 0.00 0.00 0.00 6: 5: 0 14.63 8.28 19.83 8.24 19.83 1,93 0.00 0.00 0.00 0.00 6:10: 0 14.64 9.28 19.79 8.23 19.80 1.93 0.00 0.00 0.00 0.00 1 t 6: 15: 0 14.64 8.28 19.76 8.22 19.75 1.93 0.00 0.00 0.00 0.00 6:20: 0 14.64 8.28 19.73 8.20 19.74 1.93 0.00 0.00 0.00 0.00 6:25: 0 14.64 8.29 19.69 8.19 19.71 1.93 0.00 0.00 0.00 0.00 6:30: 0 14.64 8.29 19.66 8.17 19.68 1.93 0.00 0.00 0.00 0.00 6:35: 0 14.64 8.29 19.62 8.16 19.63 1.93 0.00 0.00 0.00 0.00 6:40: 0 14.64 8.29 19.59 8.15 19.58 1.92 0.00 0.00 0.00 0.00 6:45: 0 14.65 8.29 19.56 8.13 19.57 1.92 0.00 0.00 0.00 0.00 6:50: 0 14.65 8.29 19.52 8.12 19.53 1.92 0.00 0.00 0.00 0.00 6: 55: 0 14.65 8.29 19.49 8.10 19.49 1.92 0.00 0.00 0.00 0.00 7: 0: 0 14.65 8.29 19.45 8.09 19.46 1.92 0.00 0.00 0.00 0.00 7: 5: 0 14.65 8.29 19.42 8.07 19.42 1.92 0.00 0.00 0.00 0.00 7:10: 0 14.65 8.29 19.38 8.06 19.41 1.92 0.00 0.00 0.00 0.00 7:15: 0 14.65 8.29 19.35 8.04 19.36 1.92 0.00 0.00 0.00 0.00 7:20: 0 14.65 8.29 19.31 8.03 19.32 1.92 0.00 0.00 0.00 0.00 7:25: 0 14.65 8.29 19.28 8.02 19.28 1.92 0.00 0.00 0.00 0.00 7:30: 0 14.65 8.29 19.24 8.00 19.26 1.91 0.00 0.00 0.00 0.00 7:35: 0 14.65 8.29 19.21 7.99 19.22 1.91 0.00 0.00 0.00 0.00 7:40: 0 14.65 8.29 19.17 7.97 19.18 1.91 0.00 0.00 0.00 0.00 7:45: 0 14.65 8.29 19.13 7.96 19.14 1.91 0.00 0.00 0.00 0.00 7:50: 0 14.65 8.29 19.10 7.94 19.11 1.91 0.00 0.00 0.00 0.00 7:55: 0 14.65 8.29 19.06 7.93 19.07 1.91 0.00 0.00 0.00 0.00 8: 0: 0 14.65 8.29 19.02 7.91 19.03 1.91 0.00 0.00 0.00 0.00 8: 5: 0 14.65 8.29 18.99 7.89 18.99 1.91 0.00 0.00 0.00 0.00 8:10: 0 14.65 8.29 18.95 7.88 1B.94 1.91 0.00 0.00 0.00 0.00 8:15: 0 14.65 8.29 18.91 7.86 18.92 1.91 0.00 0.00 0.00 0.00 8:20: 0 14.65 8.29 18.87 7.85 18.89 1.90 0.00 0.00 0.00 0.00 8:25: 0 14.65 8.29 18.84 7.83 18.85 1.90 0.00 0.00 0.00 0.00 8:30: 0 14.65 8.29 18.80 7.82 18.81 1.90 0.00 0.00 0.00 0.00 8:35: 0 14.65 8.29 18.76 7.80 18.78 1.90 0.00 0.00 0.00 0.00 8:40: 0 14.65 8.29 18.72 7.78 18.73 1.90 O.DO 0.00 0.00 0.00 8:45: 0 14.65 8.29 18.68 7.77 18.69 1.90 0.00 0.00 0.00 0.00 8:50: 0 14.65 8.29 18.64 7.75 18.65 1.90 0.00 0.00 0.00 0.00 8:55: 0 14.64 8.29 18.60 7.74 18.61 1.90 0.00 0.00 0.00 0.00 9: 0: 0 14.64 8.28 18.56 7.72 18.58 1.89 0.00 0.00 0.00 0.00 9: 5: 0 14.63 8.28 18.52 7.70 18.54 1.89 0.00 0.00 0.00 0.00 9:10: 0 14.62 8.27 18.48 7.69 18.50 1.89 0.00 0.00 0.00 0.00 9:15: 0 14.62 8.27 18.44 7.67 18.45 1.89 0.00 0.00 0.00 0.00 9:20: 0 14.61 8.27 18.40 7.65 18.41 1.89 0.00 0.00 0.00 0.00 9 :25: 0 14.60 8.26 18.36 7.63 18.37 1.89 0.00 0.00 0.00 0.00 9:30: 0 14.60 8.26 18.32 7.62 18.33 1.89 0.00 0.00 0.00 0.00 9:35: 0 14.59 8.26 18.27 7.60 18.29 1.89 0.00 0.00 0.00 0.00 9:40: 0 14.58 8.25 18.23 7.58 18.24 1.88 0.00 0.00 0.00 0.00 9:45: 0 14.58 8.25 18.19 7.56 18.19 1.88 0.00 0.00 0.00 0.00 9 : 50: 0 14.57 8.25 18.14 7.54 18.16 1.88 0.00 0.00 0.00 0.00 9:55: 0 14.57 8.24 18.10 7.52 18.11 1.88 0.00 0.00 0.00 0.00 10: 0: 0 14.56 8.24 18.05 7.51 18.05 1.88 0.00 0.00 0.00 0.00 Mean 12.29 6.99 16.81 7.03 20.81 1.77 4.07 0.00 1.93 0.00 Maximum 14.79 8.37 20.09 8.35 41.24 2.38 21.63 0.00 9.85 0.00 Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total 4.423E+05 6.050E+05 7.490E+05 1.464E+05 6.955E+04 1 ... ...*......I ............. R.*... S. T.A.................. HARMONY CENTER 6 PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN 6/24/1999 ICON ENGINEERING, INC. File: Piec.dat Revised MBF 3/22/00 CONDUIT MAXIMUM TIME LENGTH CONDUIT DESIGN DESIGN VERTICAL COMPUTED OF OF NORM SLOPE CONDUIT. FLOW VELOCITY DEPTH FLOW OCCURRENCE FLOW NUMBER (CFS) (FPS) (IN) (CPS) HR. MIN. (MIN) (FT/FT) ______ _______ ________ ________ _______ __________ 1001 5.27E+00 2.98 18.000 1.48E+01 4 50 0.0 0.00363 1010 1.03E+01 4.30 21.000 2.01E+01 1 44 0.0 0.00629 1011 1.74E+02 2.91 48.000 4.13E+01 2 7 8.5 0.00550 90004 UNDEF UNDEF UNDEF 2.17E+01 2 6 90005 UNDEF UNDEF UNDEF 9.85E+00 3 31 MAXIMUM TIME RATIO OF MAXIMUM DEPTH ABOVE COMPUTED OF MAX. TO INV. AT CONDUIT ENDS VELOCITY OCCURRENCE DESIGN UPSTREAM DOWNSTREAM (FPS) HR. MIN. FLOW (FT) (FT) _______ __________ _______ _________ 8.37 4 50 2.80 6.23 3.65 8.35 1 44 1.94 6.03 2.61 2.38 2 7 0.24 2.61 1.40 F 90006 UNDEF UNDEF UNDEF 4.13E+01 2 7 1 •'SUBCRITICAL. .....................................Rom AND.CRITICAL.FLOW.ABEUMP'C ZONS FROM ' SUBROUTINE HEAD. SEE FIGURE 5-4 IN THE EXTRAN ' MANUAL FOR FURTHER INFORMATION. ' .................................................. LENGTH LENGTH LENGTH LENGTH OF OF OF UPSTR. OF DOWNSTR. MEAN TOTAL MAXIMUM MAXIMUM CONDUIT DRY SUBCRITICAL CRITICAL CRITICAL FLOW AVERAGE FLOW HYDRAULIC CROSS SECT ' NUMBER PLOW (MIN) FLOW(MIN) FLOWIMIN) FLOW(MIN) (CES) 4 CHANGE CUBIC FT RADIUS(FT) AREA(FT2) 1001 60.50 507.00 0.00 32.50 12.23 0.106E 4.4032E+05 0.4449 ' 1.7671 1010 61.33 538.67 0.00 0.00 16.73 0.0630 6.0236E+O5 0.5316 2.4053 1011 66.67 533.33 0.00 0.00 20.73 0.0123 7.4644E.05 1.0296 17.3226 ' 90004 UNDEFINED UNDEFINED UNDEFINED UNDEFINED 4.07 1.4676E+05 90005 UNDEFINED UNDEFINED UNDEFINED UNDEFINED 1.93 6.9544E+04 90006 UNDEFINED UNDEFINED UNDEFINED UNDEFINED 20.73 7.4644E+05 ' ••AV£RAGE•B•CHANGE'IN JUNCTION OR'CONOUIT•ZS•DEFINED'AS•'•'• • CONDUIT 9 CHANGE __> 100.0 ( Q(o+1) - Q(n) 1 / Qfull ' JUNCTION 8 .......................« CHANGE __> 100.0 1 Y(n+l) - Y(n) 1 »............ ..................... / Yfull ' The Conduit with the largest average change... 1001 had 0.107 percent The Junction with the largest average change... 30002 had 0.032 percent Extended Transport model simulation ended normally. Correct Block Name not found. was found instead. Program stops. Check your data input for the following problems: ' 1. Using the wrong executable file. 2. Too many hydrograph input data lines. 3. SWHM Block is commented out of MAIN.FOR 4. Wrong input sequence of data (likely!). Your input file was named : pier.dat Your output file was named: pier.out imu'..i.....on Tme Summary Is t.. nd..... ' :•••.••.SWT....... • Starting Date.. March I........... 31, 0 Time... 13:52:35:88 • Ending Date... March 31, 0 ' • Time... 13:53: 3:62 Elapsed Time... 0.467 minutes. ' • Elapsed .............................:......................... Time... 27.999 seconds. I 1 i 1 ' EXISTING CONDITION MCCLELLAND'S MASTER DRAINAGE MODSWMM MODEL FROM CITY OF FORT COLLINS 1 1 '�l I 1 Ll Final Drainage and Erosion Control Report Settler's Creek Appendix March 2005 1 2 1 1 2 3 4 ERSHED 0 RLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. MSF 3/22/00 PTED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG. 600 0 0 1.0 1 1.0 25 5 .00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 73 0.71 0.69 0.67 -2 .016 UPDATED BASIN WIDTHS 1 80 50 7109 86.2 40 .01 1 60 50 1150 8.95 40 .01 1 70 61023929.38 40 .01 1 130 51 716124.66 40 .01 1 100 51 287513.19 40 .01 1 150 4 1590 1.84 80 .02 BASIN 110 SPLIT INTO 110-118 BY ICON 1 110 11 1250 1.93 99 .02 '1 111 11 700 1.05 99 .01 1 112 112 750 1.34 99 .01 1 113 12 1200 1.34 99 .01 '1 114 12 950 1,67 99 .01 1 115 13 1050 1.70 99 .01 1 116 13 1400 2.16 99 .01 1 117 51 1000 2.85 99 .01 '1 118 14 1250 1.07 99 .01 1 320 11 932 2.14 85 .01 1 120 22 387517.79 80 .02 1 90 2 571513,12 10 01 '1 190 51 250 1.38 80 .01 1 200 20 455031.34 80 .01 1 210 44 1090 7.51 80 .01 '1 240 7 1742 5.00 80 .01 1 220 45 968322.23 85 .01 1 260 46 345423.79 50 .01 1 230 47 640314.70 85 .01 1 290 291 1278 5.87 80 .01 1 340 34 1260 4.34 80 .01 * BASIN 280 SPLIT INTO 280-283 BY ICON '1 280 275 1000 2.04 99 .02 1 281 28 1650 3.16 99 .01 1 282 29 850 1.50 99 .01 1 283 30 1250 2.02 99 .01 1 330 33 700 5.63 80 .01 1 160 16 3500 4.02 84 .02 1 121 16 850 1.43 80 .01 1 122 22 1200 1.81 80 .01 ' 1 250 250 500 1.60 80 .01 * OAKRIDGE BLOCK ONE 1 270 270 625 3.30 60 .01 '1 271 271 2017 6.30 55 .01 1 272 272 817 1.50 31 .09 1 360 36 3223 2.37 87 .02 2.48 1.46 0.78 0.75 250 0.1 0.3 .51 0.5 .0018 * 'ALL FOLLOWING BASINS FROM MIRAMONT MASTER PLAN, RBD, INC. 1 1 201 320 321314.75• 25.0183 1 202 322 187321.50 50.0165 203 172 702432.25 80.0100 '1 1 204 166 413819.00 80.0100 1 205 168 650 5.85 47.0105 1 206 171 958 7.70 70.0080 '1 207 176 171813.80 57.0235 1 208 178 293633.61 70.0170 1 209 321 679523.40 40.0085 '1 1 165 211 324 325 299110.30 316510.90 40.0100 64.0200 1 212 328 1220 4.20 80.0380 1 213 180 147216.89 30.0055 '1 214 179 465 1.62 90.0110 1 215 331 500 0.70 90.0270 1 216 327 1405 0.96 90.0060 *'---------------------------------------------------------------- ALL FOLLOWING BASINS FROM STETSON CREEK MASTER PLAN, RBD, INC. * SUBBASINS 301 & 302 MODIFIED FOR HARMONY VILLAGE BY JR ENGINEERING. * ADDED TO MODEL BY ICON '1 301 301 331528.54 71 .005 .430 0.6 1 302 951373647.50 45 .01 .390 0.6 * SUBBASIN 303 DELETED FOR WILLOW SPRINGS NORTH, BY ICON *'CE 365 CHANGED TO 396 BY ICON 1 305 3691709778.50 35.0.0110 1 306 372 2535 8.73 31.2.0200 1 307 360 2951 5.42 17.0.1262 t1 308 370 2042 7.03 40.0.0200 1 309 362 888 1.63 4.0.1262 1 311 371 807 2.78 40.0.0200 1 312 363 569 2.09 2.3.1262 '1 313 367 495 0.91 1.0.0500 1 314 402647091.15 34.0.0200 1 315 374 417914.39 40.0.0200 *'BASIN 316 CHANGED TO REFLECT POUDRE VALLEY HOSPITAL BY ICON 1 316 39 192467.00 85.0.017 0.3 1 317 594 150717.30 57.0.0140 0.3 1 318 593 169919.50 47.0.0150 0.3 *-------------------------------------- --------------- - * ALL FOLLOWING SUBBASINS ARE FROM G&O 1986 MCCLELLANDS BASIN MASTER PLAN * EXISTING CONDITION SUBBASINS BTWN STETSON CREEK & CTY RD 9 1 217 368 4018 18.4 41, .010 1 218 368 5053 17.4 50. .030 1 222 32 5605 19.3 50. .008 1 223 102 6679 23.0 50. .040 * '1 224 102 3006 13.8 45. .010 G&O SUBBASIN 215 RENUMBERED AS 225, REDUCED TO EXCLUDE WILDWOOD 1 225 3514288 65.6 45. .006 k_____________________________________ ____ * ,SUBBASIN 304 MODELED BY FOLLOWING DEVELOPED BASINS, FROM * WILLOW SPRINGS PUD DRAINAGE PLAN, LIDSTONE & ANDERSON, JUNE 1996 1 1 201 1200 8.5 40.0.0200 .016 .250 .1 .3 .51 .5 .00180 2 202 2000 4.1 68.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 1 3 203 800 5.7 44.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 4 209 750 1.6 74.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 5 209 1600 2.7 68.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 6 210 3800 7.6 66.0.0200 .016 .250 .1 .3 .51 .50 .00180 11 1 1 7 209 750 3.3 57.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 8 210 450 2.3 67.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 9 209 3000 20.2 30.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 10 210 1400 9.1 26.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 14 214 1000 4.8 54.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 15 215 1300 4.4 9.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 16 216 200 1.8 12.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 20 223 600 4.1 46.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 21 223 1400 9.0 46.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 22 223 1800 7.3 52.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 23 224 1000 2.2 61.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 24 224 600 3.1 34.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 25 226 900 4.0 65.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 26 226 1000 2.7 32.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 30 130 2750 5.9 67.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 31 131 1700 3.6 67.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 1 32 39 330 216 400 700 2.0 3.1 48.0.0200 11.0.0200 .016 .016 .250 .250 .1 .1 .3 .3 .51 .51 .50 .50 .00180 .00180 1 40 140 1300 6.4 30.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 41 357 800 4.3 43.0.0200 .016 .250 .1 .3 .51 .50 .00180 42 241 900 1.5 75.0.0200 .016 .250 .1 .3 .51 .50 .00180 '1 1 50 251 1800 8.1 42.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 63 252 2250 8.9 61.0.0200 .016 .250 .1 .3 .51 .50 .00180 1 1 61 62 261 262 650 1200 2.1 4.7 80.0.0200 42.0.0200 .016 .016 .250 .250 .1 .1 .3 .3 .51 .51 .50 .50 .00180 .00180 * --------- --- ----- ----- ---------- ----- ----- ------------ --- ----- --------- * SUBBASINS 370 TO 397 UPSTREAM OF LEMAY AVENUE (LIDSTONE & ANDERSON, 1997) 370 570 1050 6.1 63. .010 .016 .25 .1 .3 .51 .5 .0018 '1 1 371 571 2000 11.7 45. .020 .016 .25 .1 .3 .51 .5 .0018 1 372 572 4900 26.7 45. .020 .016 .25 .1 .3 .51 .5 .0018 1 373 73 2000 8.2 90. .015 .016 .25 .1 .3 .51 '1 374 574 8000 18.3 86. .020 .016 .25 .1 .3 .51 .5 .5 .0018 .0018 1 375 75 5400 28.4 48. .020 .016 .25 .1 .3 .51 .5 .0018 1 376 576 2222 5.1 85. .010 .016 .25 .1 .3 .51 .5 .0018 377 577 400 1.9 70. .010 .016 .25 .1 .3 .51 .5 .0018 '1 1 378 577 450 2.3 70. .010 .016 .25 .1 .3 .51 .5 .0018 1 379 479 450 1.5 70. .010 .016 .25 .1 .3 .51 .5 .0018 1 380 480 350 1.4 70. .010 .016 .25 .1 .3 .51 .5 .0018 1 381 481 550 2.6 70. .010 .016 .25 .1 .3 .51 .5 .0018 1 382 582 700 0.8 67. .013 .016 .25 .1 .3 .51 .5 .0018 1 383 483 2439 5.6 85. .020 .016 .25 .1 .3 .51 .5 .0018 '1 1 384 385 84 85 2400 2100 6.9 6.3 84. 52. .020 .020 .016 .016 .25 .25 .1 .1 .3 .3 .51 .51 .5 .5 .0018 .0018 1 386 586 3543 12.2 70. .010 .016 .25 .1 .3 .51 .5 .0018 1 387 586 800 3.2 70. .025 .016 .25 .1 .3 .51 .5 .0018 1 388 588 6970 16.0 85. .020 .016 .25 .1 .3 .51 .5 .0018 1 389 88 3049 7.0 85. .020 .016 .25 .1 .3 .51 .5 .0018 1 390 490 550 1.4 70. .020 .016 .25 .1 .3 .51 .5 .0018 '1 1 391 392 411 588 610 1100 2.8 6.6 71, 90. .021 .020 .016 .016 .25 .25 .1 .1 .3 .51 .3 .51 .5 .5 .0018 .0018 1 393 88 4400 11.8 95. .020 .016 .25 .1 .3 .51 .5 .0018 1 394 92 900 1.4 90. .020 .016 .25 .1 .3 .51 .5 .0018 396 496 2950 13.5 93. .013 .016 .25 .1 .3 .51 .5 .0018 '1 ----------------------------------------------------------------------- 1 397 497 810 3.9 85. .021 .016 .25 .1 .3 .51 .5 .0018 F SUBBASINS 400 TO 407 WILD WOOD FARMS (ICON ENGINEERING, INC. OCT, 1998) ' 1 400 400 860 9.9 50. .020 .016 .25 .1 .3 .51 .5 .0018 ' 1 401 406 1170 16.7 20. .015 .016 .25 .1 .3 .51 .5 .0018 1 402 406 1520 17.4 45. .020 .016 .25 .1 .3 .51 .5 .0018 403 381 4792 11.0 85. .017 .016 .25 .1 .3 .51 .5 .0018 '1 1 404 382 1790 10.4 55. .025 .016 .25 .1 .3 .51 .5 .0018 1 405 402 3080 3.5 90. .020 .016 .25 .1 .3 .51 .5 .0018 406 313 2153 14.1 38. .015 .016 .25 .l .3 '1 1 407 384 1921 13.2 40. .015 .016 .25 .1 .3 .51 .51 .5 .5 .0018 .0018 1 408 40416901 38.8 85. .015 .016 .25 .1 .3 .51 .5 .0018 * -- --- ------------------------------ ----- SUBBASINS 500 TO 510 FOSSIL LAKE VILLAGE (ICON ENGINEERING, OCT, 1998) 1 500 517 7812 26.9 50. .010 .016 .25 .1 .3 .51 .5 .0018 1 501 416 5489 18.9 50. .020 .016 .25 .1 .3 .51 .5 .0018 1 502 517 5053 17.4 50. .020 .016 .25 .1 .3 .51 .5 .0018 '1 503 41512981 44.7 50. .015 .016 .25 .1 .3 :51 .5 .0018 1 504 415 3427 ll.B 50. .020 .016 .25 .1 .3 .51 .5 .0018 * SUBBASIN 504 SPLIT INTO 504 & 514 BY ICON 514 413 8160 28.1 50. .020 .016 .25 .1 .3 .51 .5 .0018 '1 1 505 40919544 67.3 50. .020 .016 .25 .1 .3 .51 .5 .0018 1 506 412 4298 14.8 50. .020 .016 .25 .1 .3 .51 .5 .0018 1 507 412 4559 15.7 50. .010 .016 .25 .1 .3 .51 .5 .0018 t1 508 281 7667 26.4 50. .010 .016 .25 .1 .3 .51 .5 .0018 1 509 411 3862 13.3 50. .010 .016 .25 .1 .3 .51 .5 .0018 1 510 411 5227 18.0 50. .010 .016 .25 .1 .3 .51 .5 .0018 * -------------------- SUBBASINS 511 TO 513 ---------------------------------- HOMESTEAD (ICON ENGINEERING, OCT, 1998) 1 511 283 8516 39.1 35. .010 .016 .25 .1 .3 .51 .5 .0018 1 512 38610215 46.9 35. .010 .016 .25 .1 .3 .51 .5 .0018 ' 1 513 38836126124.4 35. .010 .016 .25 .1 .3 .51 .5 .0018 0 0 * CE 15 REMOVED BY ICON 0 4 8 0 1 0 800 0.0044 4 4 0.035 5.0 * CONVEYANCE ELEMENT 8 ADDED BY ICON 8 2 0 1 10 1750 0.010 4 4 0.035 5.0 '0 0 7 6 0 1 0 1400 0.0100 0 50 0.016 1.5 0 6 50 0 1 0 1200 0.0032 4 4 0.035 5.0 * CE 13 REMOVED BY ICON 0 35 102 0 1 0 1250 0.010 50 50 0.045 5.0 0 16 22 0 1 0 540 0.006 50 50 0.016 2.0 * CE 11 SPLIT INTO 11-14 BY ICON 0 0 11 12 12 13 0 1 0 1 0 0 700 850 0.006 0.006 50 50 0 0 0.016 0.016 1.5 1.5 0 13 51 0 1 0 500 0.006 50 0 0.016 1.5 0 14 51 0 1 0 900 0.006 50 0 0.016 1.5 *'CE 112 ADDED BY ICON 0 112 11 0 1 0 700 0.010 50 0 0.016 1.5 * CE 9 REMOVED BY ICON *CE 18 REMOVED BY ICON '0 20 51 0 1 0 1100 0.005 4 4 0.035 5.0 0 21 44 0 1 0 1200 0.005 50 0 0.016 1.5 0 44 51 0 1 3 800 0.005 10 10 0.035 2.0 * CE 220 CHANGED TO BASIN BY ICON * -1 220 43 3 3 0 1 * 0 0 0.32 11.87 4.1 0 0 45 43 3 1 0.1 1 1,001 0.016 0.1 ' 0 0 0.1 11.87 10. 11.87 11 0 22 43 0 1 0 1600 0.007 4 4 0.035 5.0 * CE 43 CHANGED TO NON -ROUTING ELEMENT BY ICON 0 43 51 3 0.1 1 0.001 0.016 0.1 CONVEYANCE ELEMENTS 50 AND 51 REPLACE C.E. 17 FOR PROPER ROUTING TO POND 2 0 50 2 0 1 10 1000 0.005 15 15 0.040 5.0 0 51 9 0 1 10 500 0.005 15 15 0.040 5.0 0 9 2 0'l 5 1000 0.006 15 15 0.035 5.0 CE 230 CHANGED TO BASIN BY ICON * -1 230 18 3 3 0 1 0. 0. 0.30 7.21 7.16 0 0 47 12 3 1 0.1 1 0.001 0.016 0.1 0 0 0.1 7.21 10. 7.21 * 0 24 7 0 1 0 700 0.008 50 0 0.016 1.5 OAKRIDGE BUSINESS PARK 4TH & 8TH FILING OUTLET 0 250 25 3 2 0.1 1 0.005 0.013 0.1 0 0 0.31 0.32 0.33 5. 0 CE 25 260 CHANGED 22 0 2 TO 1.25 BASIN BY 500 ICON 0.005 0.013 1.25 1 260 42 3 3 0 1 * 0. 0. 0.24 11.19 6.99 0 CE 290 CHANGED TO BASIN BY ICON -1 290 18 3 3 0 1 * 0. 0. 0.22 3.06 6.98 0 1 211 0. 12 3 2 0. .1 0.10 1. 3.06 0,005 10.0 3.06 0.016 .1 0 46 42 3 1 0.1 1 0.001 0.016 0.1 0 0 0.1 11.19 10. 11.19 0 26 42 0 5 3.5 800 0.005 0.016 3.5 ' 10 800 0.005 4 4 0.035 5.5 0 42 22 0 2 6 1 0.005 0.016 6.0 *'OAKRIDGE BLOCK ONE 0 270 27 0 3 0 1 0.001 0.001 10.0 0 271 27 0 5 2.25 45 0.004 0.013 2.25 0 45 0.004 198 117 0.020 5.0 0 272 275 6 2 0.1 10 0.001 0.013 0.1 0 0 0.02 0.43 0.13 0.76 0.29 0.98 0.50 1.16 0.76 1.32 0 275 27 0 2 3.5 676 0.0084 0.013 3.5 0 27 41 8 2 0.1 10 0.001 0.013 0.1 0 0 0.03 0.78 0.22 2.51 0.52 3.46 0.90 4.21 1.37 4.84 2.10 57.63 3.20 191.38 ' 0 41 26 0 5 4.0 10 100 100 0.005 0.005 50 50 0.016 0.016 4.0 5.0 0 36 26 0 5 1.25 90 0.014 0.013 1.25 0 90 0.014 200 200 0.020 5.0 *,CE 28 SPLIT INTO 28-30 BY ICON 0 28 275 0 1 0 1000 0.005 0 50 0.016 1.5 0 29 28 0 1 0 1650 0.005 0 50 0.016 1.5 0 30 29 0 1 0 850 0.005 0 50 0.016 1.5 CE 340 CHANGED TO BASIN BY ICON * -1 340 16 3 3 0 1 * 0. 0. 0.23 1.91 6.96 0 34 16 3 2 .1 1. 0.005 0.016 .1 0.0 0.0 0.1 1.91 10.0 1.91 * COVEYANCE ELEMENTS BETWEEN 92 AND 470 UPSTREAM OF LEMAY AVENUE (L & A, 1997) 92 89 0 2 2. 1000. .010 0. 0. .013 2. '-1 395 89 4 3 .1 1. .1 0.0 0.0 0.5 3.6 9.6 3.6 9.85 O.0 89 88 0 1 0. 800. .007 4. 4. .035 5. 490 90 4 2 .1 1. .1 0.00 0. 0.20 0.46 0.22 0.48 0.24 2.5C POND 491 REVISED BY ICON 491 90 4 2 .1 1. .1 ' 0.00 0. 0.50 1.0 0.60 91.9 0.70 260. 90 88 0 4 0. 500. .010 50. 50. .016 .5 50. 500. .010 10. 10. .035 5. 496 88 6 2 .1 1. .1 0.00 0. 0.01 12.0 0.11 12.4 0.79 12.8 2.06 13.2 3.53 31.6 88 588 0 1 0. 700. .008 4. 4. .035 5. ' 497 588 7 2 .1 1. .1 0.00 0. 0.01 1.57 0.05 1.61 0.36 1.67 0.67 1.73 0.84 1.76 1.30 20.16 588 488 0 3 .1 1. HARMONY CENTRE DETENTION POND RATING CURVE WAS COMPILED FROM THE RESULTS OF EXTRAN DYNAMIC FLOW MODEL AND IS NOT APPLICABLE TO ANY * INFLOW CONDITION OTHER THAN THAT WHICH IS MODELED HEREIN POND 488 REVISED BY ICON FROM EXTRAN ANALYSIS 6/30/99 revised by MBF 3/22/00 488 586 8 2 .1 1. .1 0.00 0.0 2.99 9.93 3.92 10.0 5.65 10.4 6.81 �83 582 11.3 682 3 3 8.73 .1 12.96 1. 10.11 16.78 10.83 24.49 .1 0.0 0.0 4.6 1.3 8.0 1.8 682 82 0 3 .1 1. 683 0 3 .1 1. ' 82 85 0 4 0. 1300. .014 50. 50. .016 .5 50. 1300. .014 10. 10. .035 5. 85 586 0 4 0. 1000. .011 50. 50. ' 50. 1000. .011 10. 10. .016 .035 .5 5. 84 586 0 4 0. 700. .010 50. 50. .016 .5 50. 700. .010 10. 10. .035 5. 486 0 3 .1 1. *,586 PIER DETENTION POND REVISED BY ICON 6/30/99 Revised by MBF 3/22/00 486 584 6 2 .1 1. .1 0.00 0.0 0.01 1.52 0.25 12.01 1.05 17.96 3.76 23.72 4.87 41.22 73 584 684 7 3 .1 1. .1 0.0 0.0 20.0 0.0 21.0 1.0 24.0 3.0 27.0 684 6.0 83 0 3 30.0 .1 9.0 1. 48.0 27.0 673 73 0 3 .1 1. 83 583 0 1 5. 400. .005 4. 4. .035 S. *' POND 483 REVISED BY ICON 483 583 4 2 .1 1. .1 0.00 0. 0.94 2.8 1.14 2.8 4.0 2.8 583 72 0 3 .1 1. ' 72 572 0 5 3. 700. .004 0. 0. .013 3. 0. 700. .006 50. 50. .016 5. 73 572 0 4 0. 1300. .006 50. 50. .016 .5 50. 1300. .006 10. 10. .035 5. POND 481 removed so model could be run in new MODSWMM 11/17/04 481 577 3 .1 1. .1 POND 480 REVISED BY ICON ' 480 577 9 2 .1 1. .1 0.00 0. 0.02 1. 0.03 2. 0.05 4. 0.06 6. 0.07 9. 0.08 14. 0.09 18. 0.10 20. 479 577 6 2 0.00 0. 0.03 0.5 0.04 1. 0.05 2.5 0.07 8. 0.08 12.7 ' 577 477 0 3 .1 1. 477 76 14 2 .1 1. ,1 0.00 0. 0.05 2. 0.19 4. 0.25 6. 0.27 8. 0.29 12. 0.30 16. 0.32 20. ' 0.34 30. 0.36 45. 0.39 60. 0.46 75. 0.50 90. 0.55 105. 76 576 0 1 0. 800. .007 4. 4. .035 5. 576 574 0 3 .1 1. 75 574 0 1 5. 600. .007 4. 4. .035 5. 574 474 0 3 .1 1. ' 474 0.00 74 8 2 0.0 .1 2.23 1. 0.5 5.94 2.0 10.23 ,1 4.4 13.60 8.0 15.13 10.2 16.66 12.5 18.20 13.5 74 572 0 1 10. 700. .008 10. 10. .035 5. 572 472 0 3 .1 1. ' 472 571 12 2 .1 1. .1 0.00 0. 0.71 3. 0.89 6. 1.18 9. ' 1.73 6.95 12. 24. 2.52 7.76 15. 27. 3.66 8.04 18. 30. 5.11 9.50 21. 81. 571 471 0 3 471 570 9 2 0.00 0. 0.19 10. 0.39 20. 0.68 30. ' 0.77 32. 0.84 40. 0.87 50. 0.89 60. 0.97 100. 570 470 0 3 .1 1. ' 470 31 7 2 .1 1. _1 0.00 0. 0.08 10. 0.12 20. 0.24 30. 0.66 40. 1.00 44. 1.47 160. *'END OF LIDSTONE & ANDERSON INSERT UPSTREAM OF LEMAY AVENUE 0 31 275 0 5 3 108 0.0075 0.013 3.0 30 108 0.0075 50. 50. .035 5. * ARTIFICIAL OVERFLOW CHANNEL TO ELIMINATE SURCHARGE 0 33 21 0 1 0 700 0.008 50 0 0.016 1.5 * OAKRIDGE POND WITH REVISED OUTLET HYDRAULICS 0 2 216 12 2 0.1 77 0.007 0.013 0.1 '0.0 12.05 169.80 0.0 0.59 19.65 86.17 193.70 2.36 28.60 115.72 214.81 6.17 33.64 144.72 224.38 38.67 233.10 49.31 251.39 59.39 269.69 70.59 287.99 ------------------------------- ------------------------------- " ALL FOLLOWING CONVEYANCE ELEMENTS FROM MIRAMONT MASTER PLAN, RBD, INC. • POND 166 (301) RATING CURVE COMPOSITES 3 DETENTION PONDS IN BASIN 204 0 166 167 3 2 0.1 96 0.0060 0 0 0.013 0.10 0.0 0.0 1.6 24.0 3.4 26.4 '0 167 169 0 1 4.00 260 0.0021 2 2 0.035 4.00 POND 168 (303) RATING CURVE FROM EVANGELICAL COVENANT REPORT BY LANDMARK ' POND 168 EXTENDED BY ICON 0 168 169 5 2 0.1 10 0.0010 0 0 0.013 0.10 ' 0.0 0.0 0.07 0.90 0.43 1.36 0.72 93.26 1.01 261.36 CE 169 CHANGED TO PIPE W/OVERFLOW BY ICON 0 169 170 0 5 2.27 40 0.0070 0 0 0.013 2.27 1 40 40 0.0070 50 50 0.016 4.00 0 170 174 0 1 4.00 460 0.0021 2 2 0.035 4.00 FUTURE DETENTION POND 171 (306) 0 171 174 3 2 0.1 10 0.0038 0 0 0.013 0.10 0.0 0.0 1.0 4.0 2.0 4.3 * POND 172 (307) RATING CURVE COMPOSITES 5 DETENTION PONDS IN BASIN 203 POND 172 EXTENDED BY ICON 0 172 173 5 2 0.1 120 0.0033 0 0 0.013 0.10 0.0 0.0 6.5 5.5 8.0 6.0 9.0 97.9 10.0 CE 173 CHANGED 266. TO CHANNEL W/OVERFLOW BY ICON 0 173 175 0 4 0 1200 0.0050 4 30 1200 0.0050 150 CE 174 CHANGED TO PIPE W/OVERFLOW BY ICON 0 174 175 0 5 2.25 75 0.0211 40 75 0.0211 CE 175 CHANGED TO PIPE W/OVERFLOW BY ICON 0 175 177 0 5 2.50 853 0.0123 50 853 0.0123 * POND 176 (311) RATING CURVE FROM OAKRIDGE WEST POND 176 EXTENDED BY ICON 0 176 177 7 2 0.1 315 0.0020 0.0 0.0 0.04 1.10 0.23 1.78 2.56 2.44 94.46 3.10 CE 177 CHANGED TO PIPE W/OVERFLOW BY ICON 0 177 341 0 5 3.00 480 0.0100 10.0 480 0.0100 0 50 4 0.035 1.10 150 0.035 3.00 0 0.013 2.25 50 0.016 4.00 0 0 0.013 2.50 50 50 0.016 4.00 PUD REPORT BY RBD 0 0 0.013 0.10 1.71 0.79 2.15 261.78 0 0 0.013 50 50 0.016 0 178 177 9 2 0.10 1310 0.0033 0 0 0.013 0.0 0.0 1.95 5.0 2.70 5.8 3.4 4.2 8.8 4.6 16.2 4.9 29.5 5.2 5.5 60. 0 320 321 0 1 5.00 1350 0.0050 4 4 0.035 * POND 321 EXTENDED BY ICON 0 321 324 10 2 0.1 300 0.0053 0 0 0.013 ' 0.0 1.52 0.0 5.5 0.05 2.55 0.0 6.4 0.31 3.85 2.6 7.3 0.79 5.40 6.30 99.9 7.20 268. * FUTURE DETENTION POND 322 0 322 323 3 2 0.1 10 0.0100 0 0 0.013 ' 0.0 0.0 1.9 11.0 4.0 11.3 0 323 324 0 1 0 1500 0.0142 50 0 0.016 *ICE 324 MODELED USING HGL AS SLOPE 0 324 331 0 2 3.00 36 0.0222 0 0 0.013 0 325 326 0 1 4.00 420 0.0050 4 4 0.035 * CE 326 MODELED USING HGL AS SLOPE OVERFLOW TO CE 326 TO ELIMINATE SURCHARGE - ICON ]ADDED 0 326 327 0 5 3.50 214 0.0168 0 0 0.013 40 214 0.0168 50 50 0.016 0 327 329 0 1 4.00 750 0.0050 4 4 0.035 ]CE 328 MODELED WITH STREET CROWN OVERFLOW USING HGL AS SLOPE 0 328 329 0 5 1.75 101 0.0149 0.013 0 101 0.0149 133 44 0.016 329 180 0 1 5.00 240 0.0050 4 4 0.035 ` '0 CE 179 (330) MODELED WITH STREET CROWN OVERFLOW USING HGL AS SLOPE 0 179 324 0 5 1.50 80 0.0110 0.013 0 80 0.0110 167 167 0.016 ICE 331 MODELED USING HGL AS SLOPE 3.00 5.00 0.10 6.5 44. 4.00 0.10 4.3 8.0 0.10 1.50 3.00 3.00 3.50 5.0 3.00 1.75 5.0 4.00 1.50 5.0 ' 0 331 325 0 2 3.00 30 0.0267 0 0 0 * RATING CURVE FOR POND 180 WAS REVISED BY THE CITY (11/19/99) 0 180 341 8 2 0.10 20 0.0040 0 0 0 ' 0.0 0.0 0.21 4.00 1.00 18.00 2.95 52.40 4.16 68.00 4.82 78.00 013 3.00 013 0 1.91 5.67 0 341 4 0 5 5.20 120 0.0040 0 0 0.013 5. 0 120 0.0040 -- 50 -50 0.016 7. -------------------------------------------------------- * ALL FOLLOWING CONVEYANCE ELEMENTS FROM STETSON CREEK MASTER PLAN, RBD, * CONCEPTUAL DETENTION FOR SUBBASINS 301 AND 303 CE 303 REMOVED BY ICON POND 301 REVISED BY JR ENGINEERING FOR HARMONY VILLAGE, ADDED BY ICON 10 37.20 88.00 20 00 INC. 0 301 91 9 2 0.1 1 0.0050 0.013 0.1 ' 0.00 0.0 0.10 2.21 0.85 4.20 1.88 5.32 2.45 5.76 3.27 13.38 4.26 14.36 4.56 36.21 5.73 57.76 ' '0 91 0 93 93 0 1 94 11 2 0 0.1 1325 1 0.0150 0.0050 4 4 0.060 0.013 5.0 0.1 0.00 0.0 0.05 0.00 0.51 0.0 0.98 0.0 1.62 1.9 2.40 5.40 3.33 7.7 4.35 14. 20.7 6.52 93.90 7.65 219.5 '5.41 0 94 241 0 1 0 500 0.0027 3 3 0.035 5.0 0 95 93 0 3 0 1 '0 357 0 358 358 0 1 359 0 2 16 9.44 10 103 0.0050 0.0050 4 4 0.045 0.013 4.00 9.44 0 359 360 0 1 16 950 0.0050 4 4 0.045 4.00 0 360 361 0 2 9.44 46 0.0050 0.013 9.44 361 362 0 1 16 619 0.0050 4 4 0.045 4.00 '0 0 362 363 0 1 16 215 0.0050 4 4 0.045 4.00 0 363 364 0 1 16 415 0.0050 4 4 0.045 4.00 * OVERFLOW ADDED TO CE 364 FOR DEV. COND. BY ICON ' 0 364 366 0 4 16 90 0.0050 4 4 0.045 5.00 40 90 0.0050 50 50 0.035 6.00 * CE 365 CHANGED TO 396 BY ICON 0 369 366 0 4 0 1125 0.0045 4 4 0.035 2.30 50 1125 0.0045 50 50 0.035 5.00 * OVERFLOW ADDED TO CE 366 FOR DEV. COND. BY ICON 0 366 367 0 4 16 377 0.0050 4 4 0.045 5.00 40 377 0.0050 50 50 0.035 6.00 * OVERFLOW ADDED TO CE 38 AND 39 FOR DEV. COND. BY ICON 0 38 373 0 4 0 1080 0.0050 4 4 0.035 3.50 ' 0 39 38 0 4 40 0 1080 860 0.0050 0.0050 50 4 50 4 0.016 0.035 4.50 3.50 ------------------------ 40 860 0.0050 50 50 0.016 4.50 * THE SEAR -BROWN GROUP ----------------------------- - POUDRE VALLEY HOSPITAL SITE • CONVEYANCE ELEMENTS CHANGED TO 591, 592, 593, 594 BY ICON * POND 593 WITHIN BASIN 318 0 593 592 10 2 0,10 1 0,015 0.013 0.10 0.00 0.0 .57 0.50 1.14 3.04 1.40 3.57 1.79 6.40 2.45 9.32 2.60 9.71 3.23 11.14 4.01 12.73 4.97 14.12 592 39 0 1 4.0 1000 0.016 4.0 4.0 0.035 3.5 '0 POND 594 WITHIN BASIN 317 0 594 591 10 2 0.10 1 0.005 0.013 0.10 0.00 0.0 0.36 2.70 0.74 2.99 1.12 3.26 ' 1.40 3.39 1.69 5.44 2.26 8.42 2.40 8.55 1 2.90 8.96 3.54 9.46 0 591 39 0 1 0 1300 0.005 4.0 4.0 0.035 3.5 ---- ------------------------------- -------- CONVEYANCE ELEMENT 40 ADDED BY ICON 0 40 373 0 1 5 1400 0.0050 4 4 0.035 5.00 * POND 370 REVISED BY ICON ' 0 370 361 2 2 0.10 1 0.0050 0.013 0.10 0.00 0.0 0.96 33.52 0 371 362 2 2 0.10 1 0.0015 0.013 0.10 0.00 0.0 .550 1.75 POND 372 RATING CURVE FROM STETSON CREEK 2ND FILING, BY NORTHERN ENGINEERING 0 372 363 6 2 0.10 1 0.0020 0.013 0.10 0.00 0.00 0.17 10.00 0.42 22.37 0.74 33.27 '0.94 37.98 1.17 50.54 0 373 364 18 2 0.10 1 0.0042 0.013 0.10 0.00 0.0 .061 0.00 .465 0.0 1.578 0.0 3.566 6.4 6.256 16.8 6.909 18.0 7.562 18.8 8.216 19.6 8.869 20.8 9.522 21.6 9.910 31.5 10.298 49.4 10.687 72.6 11.075 99.7 11.463 130.9 13.4 333.7 15.52 429.6 POND 374 EXTENDED BY ICON 0 374 38 14 2 0.10 1 0.0040 0.013 0.10 0.00 0.0 .009 0.00 .119 0.0 0.230 0.0 '0,409 1,13 0,469 2,11 0,528 2,76 0.678 3.94 0.827 4.84 1.062 5.60 1.297 6.27 1.532 6.87 1.711 7.29 2.341 59.9 * ----------------------------------------------------------------------- ALL FOLLOWING CONY. ELEMENTS ARE FROM G&O 1986 MCCLELLANDS BASIN MASTER PLAN EXISTING CONDITION CONVEYANCE ELEMENTS SUBBASINS BTWN STETSON CREEK & CTY RD 0 32 102 0 1 1.0 500 0.006 75 1.5 0.045 5.0 0 367 368 0 4 5.0 950 0.007 2.0 2.5 0.045 8.0 '35.0 950 0.007 75.0 45.0 0.045 14.0 0 368 102 0 4 5.0 1960 0.010 3.0 3.0 0.045 5.0 30.0 1960 0.010 60.0 30.0 0.045 11.0 CROSSING UNDER CTY RD 9; PER RBD 1987 MCCLELLANDS BASIN CH. IMP. PHASE ONE 0 102 410 0 5 4.5 50 0.005 0.024 5.6 29.0 50 0.005 25 100 0.018 10.0 ` ----------------------------------------------------------------------- '"� SUBBASIN 304 MODELED BY FOLLOWING CONVEYANCE ELEMENTS, FROM *� WILLOW SPRINGS PUD DRAINAGE PLAN, LIDSTONE & ANDERSON, JUNE 1996 201 202 0 3 .1 1. ' 202 209 0 3 .1 1. 203 209 0 3 .1 1. 209 210 0 3 .1 1. 210 310 0 3 .1 1. 310 140 16 2 .1 1. 0.0 0.0 0.38 0.13 1.00 1.19 1.50 1.97 3.40 3.93 4.36 6.64 6.73 7.74 8.87 8.36 ' 10.27 8,76 11,47 9,13 12,41 9,21 12.99 9.32 13.37 9.39 13.72 9.45 13.85 9.48 13.89 9.48 214 315 0 3 .1 1. 215 315 0 3 .1 1. *' POND 315 REVISED BY ICON 315 216 8 2 .1 1. 0.0 0.0 0.06 2.00 0.24 3.00 0.59 4.00 0.85 4.50 1.23 5.00 1.43 96.9 1.63 265.0 ' 216 116 0 3 .1 1. 6 52. 12.6 6.0 .001 ) .001 ) 57. 12.8 6.0 .00( 1 .00( 1 54. 12.8 6.0 .001 1 .001 I 6 55. 12.8 6.0 .001 ) .001 1 56. 12.7 6.0 .00( 1 .001 ) 6 57. 12.7 6.0 .00( 1 .001 ) SB. 12.7 6.0 .aol 1 .aal r 59. 12.7 6.0 .001 ) .00( I 7 0. 12.7 6.0 1. .001 ) 12.7 .001 I 6.0 .0o1 ) .001 ) 2. 12.7 6.0 .00( 1 .00( 1 3. 12.7 6.0 .00( r .001 1 4. 12.7 6.0 .00( I .00( I 7 S. 12.7 6.0 .001 ) .001 ) 6. 12.7 6.0 .001 1 .001 ) 7. 12.7 6.0 .00( 1 .001 1 B. 12.6 5.9 .001 I .00( 1 9. 12.6 5.9 .00( ) .00( I 7 10. 12.6 5.9 .001 1 .001 ) 11. 12.6 5.9 .00l 1 .00l 1 12. 12.6 5.9 .00( 1 .001 1 7 13. 12.6 5.9 .00( ) .00( I 14. 12.6 5.9 .00( 1 .001 1 7 15. 12.6 5.9 .00( 1 .001 1 16. 12.6 5.9 .00( ) .001 1 17. 12.6 5.9 .001 1 .00( I 7 18. 12.6 5.9 .00l ) .001 ) 19. 12.6 5.9 .00( 1 .001 1 7 20. 12.5 5.9 .00( 1 .00( I 21. 12.5 5.9 .00l 1 .00l 1 22. 12.5 5.9 .00( ) .00( 1 7 23. 12.5 5.9 .) .001 I 29. 12.55 5.9 .001 ) .001 ) 25. 12.5 5.9 .00( 1 .001 1 26. 12.5 5.9 .00( ) .oa( r 27. 12.5 5.9 .001 1 .001 1 7 28. 12.5 5.9 .001 I .001 1 29. 12.5 5.9 .001 I .001 1 30. 12.5 5.9 .001 ) .001 ) 31. 12.5 5.9 .001 1 .001 1 32. 12.5 5.9 .001 ) .001 1 7 33. 12.4 5.9 .00( ) .00( ) 34. 12.4 5.9 ' .00( ) .001 ) 35. 12.4 5.9 .001 1 .001 1 7 36. 12.4 5.9 1 .001 I .001 I 7 37. 12.4 5.9 .001 1 .001 1 38. 12.4 5.9 .00( 1 .001 1 39. 12.4 5.9 .001 1 .001 1 7 40. 12.9 5.9 OD(I .001 I 41. 12.4 A 5.9 .00( 1 .001 I 42. 12.4 5.9 .00( 1 .00( I 43. 12.4 5.8 .00( ) .001 1 44. 12.4 5.8 .00( 1 .00( 1 7 45. 12.3 5.8 4. .00( I 12.3 .001 1 5.8 .001 1 .00( 1 47. 12.3 5.8 .001 1 .00( ) 68. 12.3 5.8 .00( 1 .00( ) 49. 12.3 5.8 .00( I .00( 1 7 50, 12.3 5.8 .00( ) .001 1 51. 12.3 5.7 .00( ) .00( I 52. 12.3 5.4 .00( I .001 1 7 53. 12.3 5.1 .001 1 .001 I 54. 12.3 5.0 .001 ) .001 I 7 55. 12.3 4.8 .00( 1 .00( 1 56. 12.3 4.7 .00( I .001 1 57. 12.2 4.6 .001 ) .001 1 7 58. 12.2 4.5 .001 1 .001 1 59. 12.2 4.5 .00( ) .00( I 8 0. 12.2 4.4 .001 1 .00( 1 1. 12.2 4.4 .00( 1 .001 1 2. 12.2 4.3 .00( I .00( 1 8 3. 12.2 4.3 .001 ) .001 I 4. 12.2 4.3 .00( 1 .00( ) 5. 12.2 4.3 .00( I .001 I 6. 12.2 4.2 .001 ) .00( ) 7. 12.2 4.2 .00( 1 .001 1 8 S. 12.1 4.2 9. .00f ) 12.1 .001 1 4.2 .00( 1 .001 1 10. 12.1 4.2 .001 1 .00( I 11. 12.1 4.2 .00( 1 .001 ) 12. 12.1 4.2 .o01 1 .00( I 8 13. 12.1 4.2 .001 ) .00 ( 1 1. 12.1 4.2 .001 1 .001 ) 15. 12.1 4.2 .00( I .00( 1 8 16. 12.1 4.2 .001 1 .00( I ' 17. 12.1 9.2 .001 1 .001 1 8 18. 12.0 4.2 .001 1 .00( 1 19. 12.0 4.2 ' .00( ) .00( ) 20. 12.0 4.2 .001 1 .001 1 8 21. 12.0 4.2 .001 1 .001 ) 18 22. 12.0 4.2 .001 1 .001 1 23. 12.0 4.2 AD( ) .00t I 24. 12.0 4.2 .001 1 .001 1 8 25. 12.0 4.2 26. .001 ) 12.0 .001 1 4.2 .001 1 .001 ) 27. 12.0 4.2 .001 I .001 1 28. 12.0 4.1 .00( ) .001 I 29. 11.9 4.2 .001 ) .001 ) 8 30. 11.9 4.1 .00( 1 .001 1 3. 11.9 4.1 .001 1 .001 I 32. 11.9 4.1 .001 I .00( I 33. 11.9 4.1 .001 1 .00( ) 34. 11.9 4.1 .00( 1 .00( ) 8 35. 11.9 4.1 .00( 1 .001 1 36. 11.9 4.1 .00c ) .00( I 37. 11.9 4.1 .00( ) .001 ) 8 38. 11.9 4.1 .001 1 .001 ) 39. 11.8 4.1 .00( 1 .00( 1 8 40. 11.8 4.1 .00( I .00( ) 41. 11.8 9.1 .00l ) .00( ) 42. 11.8 4.1 .00( r .00( r 8 43. 11.8 4.1 .00( I .001 I 44. 11.8 4.1 ' .001 ) .00( I 8 45. 11.8 4.1 .001 1 .001 1 46. 11.8 4.1 .00( I .00( I 47. 11.8 4.1 .00( ) .00( ) 8 48. 11.8 4.1 .00( 1 .001 1 49. 11.8 4.1 .001 1 .00( I 50. 11.7 4.1 .001 ) .001 ) 51. 11.7 4.1 .00( 1 .001 1 52. 11.7 4.1 .00( 1 .00( ) 8 53. 11.7 4.1 54. .001 1 11.7 .001 1 4.1 .00( 1 .00( 1 55. 11.7 4.1 .001 ) .001 ) 56. 11.7 4.1 .00( I .001 1 57. 11.7 4.1 .00( 1 .001 ) 8 58. 11.7 4.1 .001 ) .001 1 59. 11.7 4.1 ' .00( 1 .001 I 0. 11.7 4.1 .001 ) .001 1 9 1. 11.6 4.1 .00( I .001 I 2. 11.6 4.1 .00( I .001 ) 9 3. 11.6 4.1 .001 ) .001 ) 4. 11.6 4.1 ' .001 ) .001 1 5. 11.6 4.1 .00( 1 .001 I 9 6. 11.6 4.1 1 .001 ) .001 1 4 7. 11.6 4.1 . 00 ( ) .00( 1 8. 11.6 4.1 . 001 1 .00( 1 9. 11.6 4.1 .00( I .00( 1 9 10. 11.6 4.1 .00( 1 .00( 1 11. 11.6 4.1 1 .001 1 .00( 1 12. 11.5 4.1 .001 1 .00( 1 13. 11.5 4.1 oo( 1 00( I 14. 11.5 4.1 .00( 1 .00( 1 9 15. 11.5 4.1 .00( I .001 ) 16. 11.5 4.1 .001 1 .00( 1 17. 11.5 4.1 .00( 1 .00( 1 18. 11.5 4.1 .00c 1 .00( 1 19. 11.5 4.1 .00( I .001 1 9 20. 11.5 4.1 .001 ) .00( ) 21. 11.5 4.1 .00( 1 .001 1 22. 11.5 4.1 .00( 1 .00( I 9 23. 11.4 4.1 .001 1 .00( I 29. 11.9 4.1 .00( 1 .00( I 9 25. 11.4 4.1 .00( ) .00( ) 26. 11.4 4.1 .00l 1 .00t 1 27. 11.4 4.1 .00( I .00( I 9 28. 11.4 4.1 .00( 1 .001 1 ' 29. 11.4 4.1 .00( 1 .00( 1 9 30. 11.4 4.1 .00( 1 .00( I 31. 11.4 4.1 .00( 1 .001 I 32. 11.4 4.1 .001 ) .001 1 9 33. 11.4 4.1 .001 ) .001 1 34. 11.3 4.1 .00( 1 .00( 1 35. 11.3 4.1 .00( ) .00( ) 36. 11.3 4.1 .oat 1 .00( 1 37. 11.3 9.1 .00( ) .001 I 9 38. 11.3 4.0 .001 1 11.3 .00( ) 4.0 .00( 1 .00( I 40. 40. 11.3 4.0 .001 ) .001 1 41. 11.3 3.9 .00( I .001 1 42. 11.3 3.9 .00( 1 AO( ( 1 9 43. 11.3 3.8 .001 ) .001 ) 94. 11.3 3.7 ' .00( 1 .00( 1 45. 11.3 3.6 .00( I .00( I 9 46. 11.3 3.4 .001 ) .001 I ' 47. 11.2 3.3 .00( 1 .00( 1 9 48. 11.2 3.2 .00( 1 .00( 1 99. 11.2 3.0 ' .00( ) .001 ) 50. 11.2 2.8 .00( 1 .00( 1 9 51. 11.2 2.7 1 .00( 1 .00( ) 1 9 52. 11.2 2.5 .001 ) .001 I 53. 11.2 2.4 .00( 1 .001 I 54. 11.2 2.2 .00( 1 .00( I 9 55. 11.2 2.0 .001 ) .001 1 9 1 56. 11.2 1.9 .00( ) .001 1 9 57. 11.2 1.8 .00( 1 .00( 1 58. 11.1 1.7 oo( I ooc I 59. 11.1 1.6 .001 ) .00( I 10 0. 11.1 1.5 .00( 1 .001 ) FOLLOWING NCE CONVEYAMENTS ELE WERE SURCHARGED IN G THE SIMULATION. THIS COULD LEAD TO ERRORS THE SIMULATION RESULTS!! 417 FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL BILITY PROBLEMS THAT LEAD TO HYDRAULIC ILLLATIONS DURING THE SIMULATION. 42 102 174 324 331 358 360 382 413 470 471 1 MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;ReV. MBF 3/22/00 ADOPTED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG., USED FOR DEVEL EXTRAN 1 - PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS `•• - NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY ONVEYANCE PEAK STAGE STORAGE TIME EMENT:TYPE (CPS) (FT) (AC -FT) (HR/MIN) 2:2 276.3 .1 63.4:D 2 29. 193.6 3.5 1 0. '4:1 6:1 173.7 3.5 0 37. 7:1 35.4 .6 0 36. 8:1 189.1 2.0 1 6. 9:1 753.3 3.1 0 41. 1:1 .2 .8 0 35. ' 12:1 81 81.2 .9 0 36. 13:1 107.9 1.0 0 36. 14:1 7.9 .4 0 36. 16:1 51.4 .6 0 35. 218.8 3.6 0 36. '20:1 21:1 31.2 .6 0 41. 22:1 210.7 3.3 0 37. 25:2 1.6 .5 1 5. 26:5 102.6 4.6 0 56. 27:2 102.3 .1 2.5:D 0 51, 28:1 35.0 .7 0 37. 29:1 18.2 .5 0 40. 30:1 15.5 .5 0 36. 31:5 79.4 3.3 2 2. 3:1 33:1 1. 97.5 41 1. .7 0 0 36. 36. ' 34:2 1.9 .1 .9:D 2 1. 35:1 269.4 1.4 0 39. 36:5 23.6 1.5 0 35. 11:4 39:4 340.7 371.5 3.9 3.9 0 0 43. 38. 40:1 490.7 4.2 0 36. 41:5 102.3 4.3 0 52. 42:2 115.3 2.9 0 55. 43:3 222.6 (DIRECT FLOW) 0 37. 44:1 67.9 1.5 0 40. 45:1 11.9 .1 4.4:D 2 0. 46:1 11.2 .1 3.9:D 2 1. 47:1 7.2 .1 3.0:D 2 1. 50:1 497.3 2.8 0 39. 51:1 817.1 3.4 0 37. 72:5 23.8 2.6 1 30. 73:4 51.6 .6 0 37. 74:1 9.6 .4 2 21. 75:1 188.8 2.6 0 35. 58.9 2.0 0 39. '76:1 82:4 3.4 .2 0 36. 83:1 21.0 1.0 0 53. 84:4 57.3 .5 0 35. 85:4 44.2 .5 0 36. 1 88:1 199.1 3.1 0 35 19.1 13.6 1.2 0 37. 90:4 4.9 .2 1 0. 9:. 1. 1 . 92:2 1313.3 1.1 0 35 35. 93:2 72.1 .1 6.2:D 1 2. 94:1 71.8 2.9 1 6. 95:3 284.0 (DIRECT FLOW) 0 35. 102:5 1133.8 7.2 0 58. 112:1 11.4 .4 0 35. 116:1 285.6 3.3 2 31. 124:2 16.9 1.0 1 32. 130:2 55.3 2.4 0 35. 131:2 140:1 86.6 295.5 3.1 3.3 0 2 35. 31. 141:1 95.3 1.9 1 6. 160:5 74.3 2.9 0 35. 166:2 25.6 .1 2.8:D 0 55. 167:1 168:2 25.6 19.0 1.7 .1 .5:D 0 0 56. 42. 169:5 44.1 2.4 0 42. 170:1 42.1 2.2 0 46. 171:2 4.1 .1 1.S:D 2 1. 172:2 173:4 10.8 8.8 .1 1.1 8.1:D 2 2 3. 9. 174:5 46.6 1.9 0 46. 175:5 48.7 2.3 0 49. 176:2 25.8 .1 1.9:D 0 51. 177:5 178:2 117.1 46.9 3.4 .1 5.3:D 0 0 55. 58. 179:5 15.7 1.6 0 35. 180:2 80.3 .1 5.0:D 1 29. 201:3 52.3 (DIRECT FLOW) 0 35. 212:3 91.2 (DIRECT FLOW( 0 15. 203:3 37.0 (DIRECT FLOW( 0 35. 209:3 304.8 (DIRECT FLOW) 0 35. 210:3 442.6 (DIRECT FLOW) 0 35. 214:3 37.9 (DIRECT FLOW) 0 35. 215:3 21.9 (DIRECT FLOW) 0 35. 285.7 (DIRECT FLOW) 2 25. t216:3 223:3 147.2 (DIRECT FLOW) 0 35. 224:3 186.6 (DIRECT FLOW) 0 35. 226:3 66.2 (DIRECT FLOW) 0 35. 241:3 95.8 (DIRECT FLOW) 1 3. 250:2 1.6 .1 .3:D 1 2. 251:3 57.3 (DIRECT FLOW) 0 35. 252:3 76.6 (DIRECT FLOW) 0 35. 261:3 94.5 (DIRECT FLOW) 0 35. 262:3 128.9 (DIRECT FLOW) 0 35. 270:3 25.4 (DIRECT FLOW) 0 35. 271:5 51.2 2.6 0 35. 272:2 .9 .1 .2:D 1 15. 275:2 87.1 2.7 0 50. 281:1 122.3 .8 0 38. 282:1 487.3 2.4 1 3. 283:1 488.1 1.9 1 2. 284:1 450.7 1.2 0 58. 291:2 3.1 .1 1.2:D 2 1. 301:2 28.3 .1 4.5:D 1 14. 310:2 9.5 .1 13.8:D 2 10. 315:2 11.3 .1 1.2:D 1 0. 320:1 56.2 1.6 0 41. 321:2 38.4 .1 5.7:D 1 12. 322:2 11.2 .1 3.5:D 2 0. 323:1 11.2 .4 1 59. 324:2 97.6 2.4 0 35. 325:1 181.3 2.9 0 36. 326:5 176.8 3.7 0 36. 327:1 164.3 2.7 0 38. 328:5 329:1 1 41.0 184.4 2.0 2.8 0 0 35. 38. 330:2 5.4 .1 2.3:D 2 1. 331:2 100.2 2.3 0 35. 334:2 16.9 .1 4.0:D 1 31. 36:2 19.0 .1 2.4:D 2 1. 41:5 193.5 4.6 0 56. 50:2 11.7 .1 1.2:D 0 56. 57:1 381.9 3.3 1 19. 358:2 381.9 4.0 1 19. 359:1 381.7 3.3 1 22. 60:2 384.4 4.1 1 20. 61:1 394.3 3.3 1 19. 62:1 396.5 3.4 1 19, 363:1 409.2 3.4 1 17. 364:4 774.9 4.7 1 2. 65:2 18.3 .1 2.6:0 1 0. 66:4 933.8 5.1 0 55. 67:4 932.8 6.9 0 57. 368:4 949.5 5.6 1 5. 369:4 309.0 3.1 0 40. 170:2 20.4 .1 .6:D 0 45. �371:2 1.5 .1 .5:D 1 38. 372-2 27.1 .1 .6:D 0 45. 373:2 432.8 .1 15.6:D 0 55. 374:2 24.8 .1 1.9:D 0 51. 380:2 75.0 .1 6.6:D 1 13. 381:2 11.8 .1 2.0:0 0 58. 382:2 33.2 .1 1.3:D 0 46. 383:2 384:2 16.0 10.9 .1 .1 1.9:D 1.9:D 1 1 7. 21. 386:1 473.3 1.5 0 52. 387:1 411.8 1.2 0 47. 388:1 460.3 1.2 0 41. 391:3 400:1 3.6 48.7 (DIRECT 1.2 FLOW) 0 0 31, 37. 401:1 32.6 .4 0 48. 402:1 37.0 .5 0 50. 403:1 73.1 2.2 1 19. 404:5 357.3 4.1 0 35. 196.5 4.2 0 41. '405:5 406:3 229.9 (DIRECT FLOW) 0 35. 407:3 361.5 (DIRECT FLOW) 0 35. 409:1 326.4 1.5 0 38. 410:4 1133.4 5.1 1 1. 411:4 1755.4 7.6 1 4. 412:4 1781.3 6.8 1 6. 413:5 1907.8 6.5 1 3. 414:1 1947.3 3.7 1 5. 411:1 2000.5 3.1 1 6. 416:1 2017.1 3.5 1 7. 417:2 .0 .1 461.9:S 10 0. 470:2 79.5 .1 1.1:D 2 1. 471:2 76.8 .1 .9:D 2 0. 472:2 71.9 .1 9.2:D 2 3. 9.6 .1 14.7:D 2 15. '474:2 477:2 68.6 .1 .4:D 0 36. 479:2 12.2 .1 .1:D 0 35. 480:2 10.5 .1 .1:D 0 36. 481:3 22.2 (DIRECT FLOW) 0 35. 2.8 .1 1.2:D 2 1. '483:2 486:2 48.2 .1 5.3:D 2 3. 488:2 37.4 .1 12.0:D 2 3. 490:2 2.1 .1 .2:D 0 50. 491:2 3.6 .1 .5:D 0 55. 496:2 13.2 .1 2.1:D 1 7. 497:2 1.8 .1 .8:D 2 1. 517:3 2061.5 (DIRECT FLOW) 0 56. 570:3 93.0 (DIRECT FLOW) 0 40. 571:3 96.0 (DIRECT FLOW) 0 35. 572:3 256.1 (DIRECT FLOW) 0 35. 574:3 460.0 )DIRECT FLOW) 0 35. 576:3 90.1 (DIRECT FLOW) 0 35. 577:3 80.3 .)DIRECT FLOW) 0 35. 582:3 7.7 )DIRECT FLOW) 0 35. 583:3 23.8 )DIRECT FLOW) 0 53. 584:3 48.2 (DIRECT FLOW) 2 3. 586:3 248.4 (DIRECT FLOW) 0 35. 588:3 422.0 (DIRECT FLOW) 0 35. 591:1 9.1 1.1 2 5. 11.0 .6 1 59. �592:1 593:2 11.0 .1 3.2:D 1 56. 594:2 9.1 .1 3.0:D 2 1. 673:3 27.2 (DIRECT FLOW) 2 3. 682:3 6.0 (DIRECT FLOW) 0 35. 683:3 684:3 1.8 21.0 IDIRECT (DIRECT FLOW) FLOW) 0 0 35. 42. PROGRAM PROGRAM CALLED ----------PIER POW ----------POWD 488 1 I 1 1 1 1 1 1 1 I 0 0 0 0 0 0 0 0 0 0 112 0 0 0 0 0 0 0 0 0 1.3 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 818.5 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 5.9 130 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 9.5 310 116 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 890.0 241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104.7 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.9 0 0 0 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 19.0 166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.0 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 5.8 167 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 169 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 24.9 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 7.7 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 32.3 172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.3 170 171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.6 173 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.8 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 13.8 175 176 178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112.2 0 0 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0 0 0 0 33.6 0 0 0 0 0 0 0 0 0 0 214 0 0 0 0 0 0 0 0 0 1.6 329 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 105.2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8.5 201 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12.6 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 5.7 202 203 0 0 0 0 0 0 0 0 4 5 7 9 0 0 0 0 0 0 46.1 209 0 0 0 0 0 0 0 0 0 6 8 10 0 0 0 0 0 0 0 65.1 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 4.8 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 4.4 2 315 350 0 0 0 0 0 0 0 16 39 0 0 0 0 0 0 0 0 818.5 0 0 0 0 0 0 0 0 0 0 20 21 22 0 0 0 0 0 0 0 20.4 223 0 0 0 0 0 0 0 0 0 23 24 0 0 0 0 0 0 0 0 25.7 124 0 0 0 0 0 0 0 0 0 25 26 0 0 0 0 0 0 0 0 32.4 94 330 365 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 104.7 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 1.6 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 8.1 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0 0 0 0 0 8.9 160 0 0 0 0 0 0 0 0 0 61 -0 0 0 0 0 0 0 0 0 11.0 261 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 15.7 0 0 0 0 0 0 0 0 0 0 270 0 0 0 0 0 0 0 0 0 3.3 0 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 6.3 0 0 0 0 0 0 0 0 0 0 272 0 0 0 0 0 0 0 0 0 1.5 272 28 31 0 0 0 0 0 0 0 280 0 0 0 0 0 0 0 0 0 223.8 0 0 0 0 0 0 0 0 0 0 508 0 0 0 0 0 0 0 0 0 26.4 283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 210.4 284 0 0 0 0 0 0 0 0 0 511 0 0 0 0 0 0 o o 0 210.4 386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171.3 0 0 0 0 0 0 0 0 0 0 290 0 0 0 0 0 0 0 0 0 5.9 0 0 0 0 0 0 0 0 0 0 301 0 0 0 0 0 0 0 0 0 28.5 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65.1 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.2 0 0 0 0 0 0 0 0 0 0 201 0 0 0 0 0 0 0 0 0 14.8 320 0 0 0 0 0 0 0 0 0 209 0 0 0 0 0 0 0 0 0 36.1 0 0 0 0 0 0 0 0 0 0 202 0 0 0 0 0 0 0 0 0 21.5 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.5 321 323 179 0 0 0 0 0. 0 0 165 0 0 0 0 0 0 0 0 0 71.6 331 0 0 0 0 0 0 0 0 0 211 0 0 0 0 0 0 0 0 0 83.2 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.2 326 0 0 0 0 0 0 0 0 0 216 0 0 0 0 0 0 0 0 0 84.1 0 0 0 0 0 0 0 0 0 0 212 0 0 0 0 0 0 0 0 0 4. 2 327 328 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88.3 131 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 11.5 324 0 0 0 0 0 0 0 0 0 215 0 0 0 0 0 0 0 0 0 72.3 224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.4 177 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 217.4 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.1 140 336 141 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 1031.4 357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1031.4 358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1031.4 359 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 1036.8 360 370 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1043.8 361 371 0 0 0 0 0 0 0 0 309 0 0 0 0 0 0 0 0 0 1048.3 362 372 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0 0 0 0 1059.1 363 373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1268.4 262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15.7 364 369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1346.9 366 0 0 0 0 0 0 0 0 0 313 0 0 0 0 0 0 0 0 0 1347.8 367 0 0 0 0 0 0 0 0 0 217 218 0 0 0 0 0 0 0 0 1383.6 0 0 0 0 0 0 0 0 0 0 305 0 0 0 0 0 0 0 0 0 78.5 0 0 0 0 0 0 0 0 0 0 308 0 0 0 0 0 0 0 0 0 7.0 0 0 0 0 0 0 0 0 0 0 311 0 0 0 0 0 0 0 0 0 2.8 0 0 0 0 0 0 0 0 0 0 306 0 0 0 0 0 0 0 0 0 8.7 38 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 209.3 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 14 .4 406 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 0 0 0 0 0 0 0 0 0 0 403 0 D D 0 0 0 0 0 0 11.0 381 0 0 0 0 0 0 0 0 0 404 0 0 0 0 0 0 0 0 0 21.4 0 0 0 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 0 0 14.1 ' 384 0 0 0 0 0 0 0 0 0 0 407 0 0 0 0 0 0 0 0 0 13.2 386 387 0 0 0 0 0 0 0 0 0 512 0 0 0 0 0 0 0 0 0 171.3 387 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124.9 388 0 0 0 0 0 0 0 0 0 0 513 0 0 0 0 0 0 0 0 0 124.4 ' 395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 400 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 0 0 0 0 9.9 401 382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.4 112 401 0 0 0 0 0 0 0 0 0 405 0 0 0 0 0 0 0 0 0 24.9 403 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 ' 404 384 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 0 0 0 0 52.0 405 407 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135.0 406 402 400 0 0 0 0 0 0 0 0 401 402 0 0 0 0 0 0 0 0 68.9 407 383 403 404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135.0 409 0 0 0 0 0 0 0 0 0 0 505 0 0 0 0 0 0 0 0 0 67.3 410 102 405 282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1850.7 411 410 0 0 0 0 0 0 0 0 0 509 510 0 0 0 0 0 0 0 0 1882.0 412 411 0 0 0 0 0 0 0 0 0 506 507 0 0 0 0 0 0 0 0 1912.5 413 409 412 0 0 0 0 0 0 0 0 514 0 0 0 0 0 0 0 0 0 2007.9 414 281 413 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2034.3 ' 415 414 0 0 0 0 0 0 0 0 0 503 504 0 0 0 0 0 0 0 0 2090.8 416 415 0 0 0 0 0 0 0 0 0 501 0 0 0 0 0 0 0 0 0 2109.7 417 517 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2154.0 470 570 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213.6 471 571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 207.5 ' 472 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 195. B 474 574 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.5 477 577 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.7 479 0 0 0 0 0 0 0 0 0 0 379 0 0 0 0 0 0 0 0 0 1.5 480 0 0 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 0 1.4 481 0 0 0 0 0 0 0 0 0 0 381 0 0 0 0 0 0 0 0 0 2.6 483 0 0 0 0 0 0 0 0 0 0 383 0 0 0 0 0 0 0 0 0 5.6 486 586 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.8 488 588 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.4 490 0 0 0 0 0 0 0 0 0 0 390 0 0 0 0 0 0 0 0 0 1.4 ' 491 0 0 0 0 0 0 0 0 0 0 391 0 0 0 0 0 0 0 0 0 2.8 496 0 0 0 0 0 0 0 0 0 0 396 0 0 0 0 0 0 0 0 0 13.5 497 0 0 0 0 0 0 0 0 0 0 397 0 0 0 0 0 0 0 0 0 3.9 517. 416 0 0 0 0 0 0 0 0 0 500 502 0 0 0 0 0 0 0 0 2154.0 570 471 0 0 0 0 0 0 0 0 0 370 0 0 0 0 0 0 0 0 0 213.6 571 472 0 0 0 0 0 0 0 0 0 371 0 0 0 0 0 0 0 0 0 207.5 572 72 73 74 0 0 0 0 0 0 0 372 0 0 0 0 0 0 0 0 0 195.8 574 576 75 0 0 0 0 0 0 0 0 374 0 0 0 0 0 0 0 0 0 61.5 576 76 0 0 0 0 0 0 0 0 0 376 0 0 0 0 0 0 0 0 0 14.8 577 481 480 479 0 0 0 0 0 0 0 377 378 0 0 0 0 0 0 0 0 9.7 ' 582 0 0 0 0 0 0 0 0 0 0 382 0 0 0 0 0 0 0 0 0 .8 583 83 483 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.4 584 486 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.8 586 488 65 84 0 0 0 0 0 0 0 386 387 0 0 0 0 0 0 0 0 93.8 ' 588 591 88 497 0 0 594 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 388 0 392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.4 17.3 592 593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.5 593 0 0 0 0 0 0 0 0 0 0 318 0 0 0 0 0 0 0 0 0 19.5 594 0 0 0 0 0 0 0 0 0 0 317 0 0 0 0 0 0 0 0 0 17.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 682 582 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 . B '173 683 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 684 584 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93. B LELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. MBF 3/22/00 PTE➢ 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG., USED FOR DEVEL EXTRAN IROGRAPHS ARE LISTED FOR THE FOLLOWING 2 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CPS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CPS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER (HR/MIN) 586 588 0 1. .0 .0 .00( ) .001 1 ' 2. 0 0 00 ( .00( ) 0 3. .1 .1 .00O .00( ) 4. 1 .1 5. .1 .2 .00O .00( ) 0 6. .2 1 .00( ) .00( 1 7. .6 1.3 .001 1 .001 1 S. 2.2 5.3 .00t ) .00l 1 9. 4.5 10.8 .001 1 .00( 0 10. 7.1 16.9 .001 1 .001 1 11. .9 23.9 .00( 1 .001 1 12. 12.9 31.4 .001 1 .001 1 13. 15.7 38.4 . 001 1 .001 1 14. 18.0 44.4 .001 I .00( 1 0 15. 20.1 49.5 .00( 1 .001 1 16. 23.7 57.5 ool r oo( 1 17. 28.8 68.3 .00( I .00( 1 0 18. 33.1 76.8 .001 ) .00( 1 19. 36.6 83.2 .00( 1 .001 1 0 20. 39.4 88.0 .00( 1 .00( I 21. 43.4 95.2 .001 I -00( 1 22. 48.5 104.8 .00( 1 .001 1 0 23. 53.0 112.4 .001 1 .001 I 29. 56.9 118.4 .001 I .00( 1 0 25. 60.4 123.0 .00( ) .00( 1 26. 71.9 144.1 .00( 1 .001 1 27. 90.7 178.8 .001 I .001 I 0 28. 105.8 203.0 .001 ) .001 ) 29. 117.7 219.3 .001 1 .001 I 30. 127.3 230.2 .001 I .001 1 31. 153.1 274.8 32. 191.5 343.4 .00( ) .001 1 0 33. 217.1 384.1 34. .001 1 234.9 .001 I 407.9 .00( I .00( ) 36. 248.9 422.0 .00( 1 .001 1 36. 231.9 374.3 .001 I .001 1 37. 199.4 299.8 .00( ) .001 1 0 38. 180.5 259.9 .00( I .001 1 39. 167.2 236.3 ' .00( ) .001 1 40. 157.4 221.9 .001 1 .00( I 0 41. 144.4 200.6 .001 ) .001 ) ' 42. 129.3 175.7 .001 1 .00( 1 0 43. 118.6 159.6 .00( ) .001 ) 94. 110.7 149.0 ' .00( I .001 1 45. 104.9 141.9 .00( ) .001 1 0 46. 97.2 130.7 .001 1 .001 1 t 47. 88.2 117.0 .001 I .001 I 0 48, 81.4 107.4 .00( 1 .001 1 49. 76.1 100.6 .00( ) .001 I so. 72.2 95.8 .001 1 .001 1 0 51. 68.5 91.0 1 .001 ) .001 1 52. 64.9 86.3 .001 I .001 1 53. 62.1 82.8 .00( ) .001 I 54. 59.8 80.2 .001 1 .001 1 0 55. 58.0 78.4 .001 1 .001 1 56. 56.1 76.5 .00( 1 .00( I 57. 54.2 74.3 .00( 1 .00( 1 58. 52.7 72.7 . 001 1 .001 ) 59. 51.5 71.4 .00( I .001 1 1 0. 50.4 70.4 .001 ) .00( 1 1. 49.5 69.4 .001 1 .001 1 2. 48.6 68.2 .001 I .00( ) 1 3. 47.8 67.3 .001 I .001 ) 4. 47.2 66.6 .00( 1 .001 1 1 5. 46.7 66.0 .00( 1 .00( I b. 46.4 65.3 .00( 1 .00( ) 7. 46.4 64.5 .00( 1 .001 1 1 8. 46.4 63.8 .00( ) .001 1 9. 46.6 63.3 .001 1 .00( l 1 10. 46.8 62.8 .001 1 .001 1 11. 46.9 62.3 .00( 1 .001 1 12. 47.0 61.7 .001 1 .00( ) 1 13. 47.2 61.2 .001 I .001 ) 19. 97.4 60.7 .00( 1 .001 I 15. 47.6 60.4 .00( ) .00( 1 16. 47.8 59.9 .00( I .001 ) 17. 47.9 59.4 .001 ) .001 1 1 18. 48.1 59.0 19. .001 1 d8.3 .001 I 58.6 .00( 1 .001 ) 20. 48.6 58.3 .00( 1 .001 1 21. 48.7 57.9 .001 1 .001 I 22. 48.9 57.5 .00( 1 .001 1 1 23. 49.1 57.1 .001 1 .001 1 24. 49.3 56.8 ' oo( I ool r 25. 49.5 56.6 .001 1 .001 1 1 26. 49.7 56.3 .001 ) .001 ) ' 27. 99.8 55.9 .001 1 .00( I 1 28. 50.0 55.5 .00( I .001 ) 29. 50.2 55.3 ' .00( 1 .001 I 30. 50.4 55.0 .001 I .001 ) 1 31. 50.6 54.7 .001 1 .001 ) ' 32. 50.7 59.4 .001 ) .001 1 1 33. 50.8 54.0 .001 1 .001 I 39. 51.0 53.8 .00( 1 .001 1 35. 51.1 53.6 .001 I .00( 1 1 36. 51.3 53.3 1 .001 1 .001 1 1 37. 51.4 52.9 .001 1 .001 ) 38. 51.5 52.6 .001 1 .001 1 39. 51.6 52.3 .001 1 .001 I 1 40. 51.7 52.1 .001 1 .001 1 91. 51.8 51.9 .00( 1 .001 I 42. 51.9 51.6 .00( I .00( ) 43. 52.0 51.3 .00( 1 .001 1 44. 52.1 51.1 .001 ) .00( 1 1 45. 52.3 51.0 46. .401 1 52.4 .001 1 50.8 .00( 1 .00( I 47. sz.a sa.s .00( 1 .00( I 48. 52.5 50.3 .00( 1 .001 I 49. 52.6 50.1 .001 1 .00( 1 1 50. 52.7 50.0 .001 1 .001 1 51. 52.8 49.8 .001 1 .001 1 52. 52.8 49.5 .001 I .00( 1 1 53. 52.9 49.3 .00 ( ) .001 1 54. 53.0 49.1 .001 ) .00( 1 1 55. 53.1 49.0 .001 1 .00( I 56. 53.1 48.8 .00l 1 .00l I 57. 53.2 48.5 . 001 I .00( I 1 58. 53.2 48.3 .001 ) .001 1 59. 53.3 48.2 . 001 I .001 I 2 0. 53.3 48.0 .001 ) .00( 1 1. 52.2 45.5 .00( ) .001 I 2. 50.3 41.2 .001 ) .00( I 2 3. 48.6 37.8 .001 1 .001 1 4. 47.2 34.9 .00( 1 .00( 1 5. 46.0 32.6 .00( ) .00( I 6. 44.9 30.7 .001 1 .001 ) 7. 44.0 29.1 .001 1 .00( 1 2 8. 43.1 27.8 9. .001 1 42.4 .001 ) 26.7 .001 1 .001 1 10. 41.7 25.8 .00( 1 .001 1 11. 41.0 25.0 .00( 1 .001 1 12. 40.4 24.4 .00( 1 .001 1 2 13. 39.9 23.8 .001 1 .001 ) 14. 39.4 23.4 .00( I .001 I 15. 38.9 23.0 .00( 1 .001 1 2 16. 38.5 22.6 .001 ) .001 ) ' 17. 38.1 22.3 .001 I .001 I 2 18. 37.7 22.1 .00( I AN I 19. 37.3 21.9 ' .001 I .001 1 20. 36.9 21.7 .001 1 .00( 1 2 21. 36.6 21.5 1 .001 1 .001 1 1 2 22. 36.3 21.3 .001 1 .001 1 23. 36.0 21.2 .001 1 .00( 1 24. 35.7 21.1 .001 1 .001 1 2 25. 35.4 21.0 .00( I .001 1 26. 35.1 20.9 .00( I .00( 1 27. 34.8 20.8 .00( ) .00( 1 28. 36.5 20.7 .00( 1 .00( 1 29. 34.3 20.7 .00( 1 .001 1 2 30. 34.0 20.6 31. .001 ) 33.8 .001 1 20.5 .001 ) .001 ) 32. 33.5 20.5 .00( 1 .00( ) 33. 33.3 20.4 ao( r oo( 1 34. 33.1 20.4 .00( 1 .00( 1 2 35. 32.9 20.3 .00f ) .00( 1 3. 32.7 20.3 .001 ) .001 1 37. 32.4 20.3 .00( 1 .00( I 2 38. 32.2 20.2 .00 ( ) .001 1 39. 32.0 20.2 .00( ) .00( I 2 40. 31.8 20.2 .00( ) .00( ) 41. 31.6 20.1 .001 ) .00( ) 42. 31.5 20.1 .00( I .001 I 2 43. 31.3 20.1 .001 I .001 I 94. 31.1 20.1 .00( 1 .001 ) 2 45. 30.9 20.0 .00( I .00( 1 46. 30.7 20.0 .001 ) .00( I 47. 30.6 -20.0 .00( 1 .00( ) 2 48. 30.4 20.0 .00( ) .001 1 49. 30.2 20.0 .00( ) .00( ) 2 5o. 30.1 19.9 .00( 1 .001 ) 51. 29.9 19.9 .00( 1 .001 1 52. 29.7 19.9 .001 1 .00( I 2 53. 29.6 19.9 .001 1 .001 ) 54. 29.4 19.9 .00( 1 .00( 1 55. 29.3 19.8 .00( 1 .00( ) 56. 29.1 19.8 .00( 1 .00( 1 57. 29.0 19.8 .00( ) .00( 1 2 58, 28.9 19.8 .001 1 .00( 1 59. 28.7 19.8 .00( 1 .00( I 0. 28.6 19.8 .00( ) .001 ) 1. 28.4 19.8 .001 1 .001 ) 2. 28.3 19.7 .00( 1 .001 1 3 3. 28.2 19.7 .001 1 .00( 1 4. 28.0 19.7 .00( ) .001 ) 5. 27.9 19.7 .00( ) .001 ) 3 6. 27.6 19.7 .00( I .00( 1 I 3 7. 27.7 19.7 .00( 1 .00( 1 8. 27.5 19.7 .00( 1 .001 1 9. 27.4 19.6 .00( ) .001 1 3 10. 27.3 19.6 .001 1 .00l 1 11. 27.2 19.6 .001 I .001 I 12. 27.1 19.6 .001 1 .001 1 13. 27.0 19.6 .00( 1 .001 ) 14. 26.B 19.6 .001 ) .001 ) 3 15. 26.7 19.5 16. 26.6 .001 1 19.5 .001 1 .00( 1 .00( 1 17. 26.5 19.5 .001 ) .00( ) 18. 26.4 19.5 . 001 ) .001 ) 19. 26.3 19.5 .00( 1 .00( 1 3 20. 26.2 19.5 2. 26.1 .00( 1 19.9 .00( 1 .001 1 .00( I 22. 26.0 19.4 .00( ) .001 ) 23. 25.9 19.4 . Ool I .Ool ) 24. 25.B 19.4 .00( ) .00( r 3 25. 25.7 19.4 .00( 1 .00( 1 26. 25.6 19.9 .00( I -00( ) 27. 25.5 19.3 .001 ) .001 ) 3 28. 25.4 19.3 .001 1 .00( 1 ' 29. 25.3 19.3 .001 ) .00( ) 3 30. 25.2 19.3 .00( 1 .001 ) 31. 25.2 19.3 ' oo( r ool ) 32. 25.1 19.3 .001 1 .00( ) 3 33. 25.0 19.2 .001 ) .001 I 34. 24.9 19.2 .00( 1 .00( 1 3 35. 24.8 19.2 .001 ) AO( ) 36. 24.7 19.2 .00( ) .001 ) 37. 24.6 19.2 .001 1 .001 1 3 38. 24.6 19.2 .001 1 .001 1 39. 24.5 19.2 .001 ) .00( ) 40. 24.4 19.1 .001 1 .001 1 41. 24.3 19.1 .00( ) .00( ) 42. 24.2 19.1 .001 1 .00( 1 3 43. 24.2 19.1 4. .001 24.1 1 .00( 19.1 ) .00( ) .001 ) 45. 24.0 19.1 .001 1 .001 1 46. 23.9 19.0 .00( ) .001 I 47. 23.9 19.0 .00( ) .001 ) 3 48. 23.8 18.9 .001 1 .001 1 49. 23.7 18.9 ' .00l 1 .00l 1 50. 23.7 18.8 AN I .00( 1 3 51. 23.6 17.6 1 .001 I .00( 1 3 52. 23.5 15.2 .001 1 .001 1 53. 23. 13.1 .00 001 1 .001 1 54. 23.2 11.5 .00( 1 .00( 3 55. 23.0 10.4 .001 1 .001 1 56. 22.8 9.5 .001 I .001 1 57. 22.6 8.8 .00( I .00( 1 58. 22.4 8.3 .00( 1 .00( 1 59. 22.2 7.9 .001 1 .001 I 4 0. 22.0 7.6 .001 1 .001 1 1. 21.8 7.4 .001 ) .00( 1 2. 21.6 7.2 .001 1 .00( 1 3. 21.3 7.1 .00( 1 -00( 1 4. 21.1 7.0 .00( 1 .00( I 4 5. 20.9 6.9 .001 ) .00 ( ) 6. 20.7 6.8 .0501 1 .001 1 7. 20.5 6.7 .00( ) .00( I S. 20.3 6.7 . 00( 1 .00( ) 9. 20.1 6.7 .001 1 .001 1 4 10. 19.9 6.6 .00( I .001 I 11. 19.7 6.6 .00( 1 .00( ) 12. 19.5 6.6 .001 1 .001 1 4 13. 19.3 6.6 '00( ) .001 I 14. 19.1 6.5 .001 1 .001 1 4 15. 19.0 6.5 .00( 1 .001 I 16. 18.8 6.5 .00( 1 .00( ) 17. 18.6 6.5 .00( I .001 1 4 18. 18.4 6.5 .00 ( ) .001 I 19. 18.3 6.5 .001 1 .001 1 4 20. 18.1 6.5 .00( ) .001 I 21. 17.9 6.5 .001 ) .00( 1 22. 17.7 6.5 .00( I .001 1 4 23. 17.6 6.5 .001 1 .001 1 29. 17.4 6.5 .00( I .001 1 25. 17.3 6.5 .00( ) .00( I 26. 17.1 6.5 .00( 1 .00( ) 27. 16.9 6.4 .001 ) .00( 1 4 28. 16.8 6.4 .00( I .001 1 16.8 6.40 .001 1 .001 I 30. 30. 16.7 6.4 .00( 1 .001 1 9 31, 16.7 6.4 .00t 1 .00( 1 1 32. 16.7 6.4 .001 1 .001 ) 4 33. 16.6 6.4 .00( I .001 1 34. 16.6 6.4 ' .001 ) .001 I 35. 16.5 6.4 .001 ) .001 1 4 36. 16.5 6.4 1 .001 1 .001 1 4 37. 16.5 6.4 .001 1 .00( 1 38. 16.4 6.4 .00( 1 .00( 1 39. 16.4 6.4 .001 ) .001 ) 4 40. 16.4 6.4 .00( I .00( I 41. 16.3 6.4 .00( I .00( I 4 42. 16.3 6.4 .001 1 .00( 1 43. 16.2 6.4 .00( ) .00( I 44. 16.2 6.4 .001 ) .001 ) 4 45. 16.2 6.4 4. .001 1 16.1 .001 ) 6.4 .00( 1 .00( ) 4]7. 16.1 6.4 .00( ) .00( 1 48. 16.1 6.4 .00( 1 .00( ) 49. 16.0 6.4 .001 1 .00( I 4 50. 16.0 6.4 .001 ) .001 ) 5. 15.9 6.9 .001 ) .001 ) 52. 15.9 6.9 .00( 1 .00( 1 53. 15.9 6.3 . 00( 1 .00( 1 54. 15.8 6.3 .00( 1 .00( ) 4 55. 15.8 6.3 .001 1 .00( 1 56. 15.8 6.3 .00( 1 .001 1 57. 15.7 6.3 .00( 1 .00( 1 4 58. 15.7 6.3 .001 1 .001 ) 59. 15.7 6.3 .Oo1 ) .001 ) 5 0. 15.6 6.3 .001 I .00( I 1. 15.6 6.3 .00( 1 .00( ) 2. 15.5 6.3 .00( 1 .001 1 5 3. 15.5 6.3 .001 ) .001 1 9. 15.5 6.3 .001 ) .001 1 5. 15.4 6.3 .001 ) .001 ) 6. 15.4 6.3 .001 1 .001 1 7. 15.4 6.3 .00( I .00( 1 5 B. 15.3 6.3 .001 1 .00( 1 9. 15.3 6.3 .001 ) .001 ) 10. 15.3 6.3 .001 I .00( I 11. 15.2 6.3 .00( 1 .001 1 12. 15.2 6.3 .00( 1 .00( 1 5 13. 15.2 6.3 .001 1 .001 1 1. 15.1 6.3 .001 1 .001 1 15. 15.1 6.3 .00( I .00( I 16. 15.1 6.3 . 001 ) .001 1 17. 15.0 6.3 .001 ) .001 ) 5 18. 15.0 6.3 .00( I .00( ) 19. 15.0 6.3 .00( 1 .001 ) 20. 14.9 6.3 .00( 1 .00( 1 5 21. 14.9 6.3 .ON 1 .001 1 5 22. 14.9 6.2 .001 1 .001 1 23. 14.8 6.2 .00( 1 .001 1 24. 14.8 6.2 .00( I .00( 1 5 25. 14.8 6.2 .001 1 .00( 1 26. 14.7 6.2 .001 1 .001 1 27. 14.7 6.2 .00( 1 .00( 1 28. 14.7 6.2 .00( 1 .001 I 29. 14.6 6.2 .00( I .00( 1 5 30. 14.6 6.2 .001 ) .00( 1 3. 14.6 6.2 .001 1 .001 1 32. 14.5 6.2 .00( 1 .001 1 33. 14.5 6.2 .001 ) .00( I 34. 14.5 6.2 .00( 1 .001 1 5 35. 14.4 6.2 .001 1 .001 ) 36. 14.4 6.2 .001 1 .00( ) 37. 14.4 6.2 .001 1 .00( 1 5 38. 14.4 6.2 .001 ) .001 1 39. 14.3 6.2 .00( ) .00( 1 5 40. 14.3 6.2 .001 1 .001 I 41. 19.3 6.2 .00( 1 .001 1 42. 14.2 6.2 .00( 1 .00( I 5 43. 14.2 6.2 .001 ) .00( ) 64. 14.2 6.2 .00( 1 .001 1 5 45. 14.1 6.2 .001 ) .00( 1 46. 14.1 6.2 .00( 1 .00( 1 47, 14.1 6.2 .001 ) .001 1 5 48. 14.0 6.2 .001 1 .001 1 49. 14.0 6.2 .00( I .001 1 50. 14.0 6.2 .001 ) .001 I 51. 14.0 6.2 .001 1 .001 ) 52. 13.9 6.2 .00( ) .001 1 5 53. 13.9 6.2 .001 1 .001 ) 54. 13.9 6.1 .001 I .001 1 55. 13.8 6.1 .001 ) .00( 1 56. 13.8 6.1 .00( 1 .001 ) 57. 13.8 6.1 .001 1 .001 1 5 58. 13.8 6.1 .001 1 .001 1 50. 13.7 6.1 .001 I .001 1 . 13.7 b.l .001 ) .001 ) 6 1. 13.7 6.1 .001 1 .001 1 ' 2. 13.6 6.1 .00( ) .00( I 6 3. 13.6 6.1 .001 1 .001 1 4. 13.6 6.1 ' .00( 1 .00l ) 5. 13.6 6.1 .001 1 .001 ) 6 6. 13.5 6.1 1 .001 1 .001 I 6.1 7. 13.5 .00( 1 .001 1 8. 13.5 6.1 .00( 1 .00f 1 9. 13.4 6.1 .00( 1 .oat 1 6 10. 13.4 6.1 .001 1 .001 1 11. 13.4 6.1 .001 I .001 1 12. 13.4 6.1 .00( I .001 1 13. 13.3 6.1 .00( , .001 1 14. 13.3 6.1 .001 1 .00( 1 6 15. 13.3 6.1 1. .00( 1 13.2 .00( I 6.1 .00( 1 .00( 1 17. 13.2 6.1 .00( I .00( 1 18. 13.2 6.1 .001 I .001 1 19. 13.2 6.1 .001 I .001 ) 6 20. 13.1 6.1 .001 I .001 ) 21. 13.1 6.1 .001 ) .001 1 22. 13.1 6.1 .00( 1 .00( 1 6 23. 13.1 6.1 .00( 1 .001 1 29. 13.0 6.1 .00( 1 .001 1 6 25. 13.0 6.1 .00( 1 .001 1 26. 13.0 6.1 .00( I .001 1 27. 13.0 6.1 .001 , .001 1 6 28. 13.0 6.1 .001 1 .00( I 29. 13.0 6.0 .001 1 .001 ) 6 30. 13.0 6.0 .001 1 .001 1 31. 13.0 6.0 .00( 1 .001 1 32. 12.9 6.0 .001 ) .001 I 6 33. 12.9 6.0 .001 ) .001 ) 34. 12.9 6.0 .001 1 .001 ) 35. 12.9 6.0 .00( 1 .00( 1 36. 12.9 6.0 .001 ) .001 I 37. 12.9 6.0 .o01 1 .00( , 6 38. 12.9 6.0 .00( I .001 1 39. 12.9 6.0 .001 ) .001 1 40. 12.9 6.0 .00( 1 .00( 1 91. 12.9 6.0 .001 1 .001 1 42. 12.9 6.0 .001 I .001 I 6 43. 12.9 6.0 .8 , , 44. 12.8 6.0 ' .00( 1 .001 1 6. 5 12.8 6..0001 .001 I .001 1 6 46. 12.8 6.0 .001 , .001 , 47. 12.8 6.0 .00( 1 .001 1 6 48. 12.8 6.0 .00( I .001 I 49. 12.8 6.0 ' . 001 1 .001 ) 50. 12.8 6.0 .001 I .00( 1 6 51. 12.8 6.0 .001 I .001 I I ' 116 140 0 1 10. 1650. .003 140 357 0 1 10. 700. .003 223 224 0 3 .1 1. 224 334 0 3 .1 1. POND 334 REVISED BY ICON 6/25/99 334 124 11 2 .1 1. ' 0.0 0.0 0.07 4.00 0.97 10.0 1.64 12.0 4.66 18.0 5.09 18.63 124 226 226 336 0 0 2 3 3.0 .1 825. 1. .0080 POND 336 REVISED BY ICON 336 357 8 2 .1 1. 0.0 0.0 0.15 4.00 ' 1.85 10.0 2.27 10.7 130 131 0 2 3.0 450. .0070 ' 131 330 330 241 0 7 2 2 3.5 .1 250. 1. .0070 0.0 0.0 0.07 1.00 1.05 4.0 1.85 5.00 251 350 0 3 .1 1. *' POND 350 REVISED BY ICON 350 216 9 2 .1 1. 0.0 0.0 0.07 1.00 ' 0.82 3.5 1.10 4.00 1.45 264.1 4.0 4.0 .035 5.0 4.0 4.0 .035 5.0 0.24 6.00 0.52 2.46 14.0 3.44 5.58 19.33 0.0 0.0 .011 5.0 8.00 16.0 0.44 6.00 0.98 8.00 2.54 36.8 2.81 84.3 0.0 0.0 .013 3.0 0.0 0.0 .013 3.5 0.23 2.00 0.57 3.00 2.96 6.00 0.25 2.00 0.63 3.00 1.15 4.10 1.30 96.0 252 160 0 3 .1 1. 160 261 0 5 1.5 275. .0100 0.0 0.0 ' 0.0 275. .0100 10. 10. 261 262 0 3 .1 1. 262 365 0 3 .1 1. 365 241 7 2 .1 1. 0.0 0.0 1.25 6.3 2.42 7.5 2.63 25.9 2.73 41.3 2.83 59.5 241 141 141 357 0 0 3 1 .1 10.0 1. 500. 4.0 *t ------------------- .0030 4.0 * WILDWOOD -------- FARM SUBDIVISION (ICON -------- ENGINEERING, -------- -------- INC) 381 382 5 2 .1 1. ' 0.0 0.0 0.48 2.2 0.96 5.51 2.14 48.9 382 401 16 2 1. ' 0.0 0.0 .1 0.09 1.2 0.24 2.4 0.59 4.0 0.65 6.0 0.70 7.2 0.83 9.6 0.84 10.0 0.93 12.0 1.24 30.0 1.35 40.0 1.47 50.0 ' 401 402 0 1 2. 550. .013 50. 50. 402 406 0 1 2. 950. .006 50. 50. 400 406 0 1 10. 710. .006 5. 6. 406 380 0 3 .1 1. * POND 380 REVISED BY ICON 6/25/99 380 403 12 2 .1 1. 0.0 0.0 2.70 8.8 3.09 9.3 3.59 15.0 3.99 20.0 4.87 21.8 5.54 22.9 6.24 52.4 6.58 75.1 384 404 5 2 .1 1. ' 0.0 0.0 1.01 3.7 1.89 9.3 .013 1.5 .035 5.0 2.52 14.0 .035 5.0 .1 2.03 6.3 .1 0.51 3.6 0.76 8.4 1.10 20.0 1.51 55.0 016 1. 016 1. 040 2. .1 .l 3.19 10.0 5.00 22.0 6.93 107.7 1 1.94 11.5 tJ 1.98 15.5 383 407 7 2 .1 1. 0.0 0.0 .736 1.34 1.328 ' 1.76 4.65 2.05 22.32 2.10 403 407 0 1 5. 950. .004 4. 407 405 0 3 .1 1. ' 405 410 0 5 3.5 2000. .002 0. 40. 2000. .002 50. 404 407 0 5 3.5 900. 0.015 0. * ---------- -- 40. ------------------------- 900. 0.015 50. * HOMESTEAD SUBDIVISION (ICON ENGINEERING, INC) 388 387 0 1 5. 1300. .007 150. 387 386 0 1 5. 750. .007 150. ' 386 284 0 1 4. 800. .003 150. 284 283 0 1 4. 700. .0063 150. 283 282 282 410 0 0 1- 1 9_ 1000. 800_ .0057 70. 9. --7. -.046 * FOSSIL CREEK VILLAGE (ICON ENGINEERING, INC) 281 414 0 1 2. '1500. .015 55. t 409 413 0 1 1. 1500. .010 50. 410 411 0 4 5. 600. .045 2.5 45. 600. .045 25.0 ' 411 412 0 4 5. 1060. .0038 3. 30. 1060. .0038 35.0 412 413 0 4 5. 870. .006 5.0 50. 870. .006 30.0 413 414 0 5 5. 40. .006 0. 50. 40. .006 100. 414 415 0 1 5. 1180. .006 30.0 415 416 0 1 5. 1050. .006 40. 416 517 0 1 5. 800. .006 40. 517 417 0 3 .1 1. *' SWIFT RESERVIOR NOT MODEL AS A ROUTING ELEMENT 417 0 0 2 .1 1. .003 0. 0 2 86 588 ENDPROGRAM 1 3.89 1.58 58.67 4. .045 0. .013 50. .016 0. .016 50. --------------- .016 4.37 150. .045 5. 150. .045 5. 150. .045 5. 150. .045 5. 40. .045 5. 1.5 -------------------- .045 5. 76. .035 5. 50. .045 5.0 3.0 .035 7. 50.0 .035 13. 2. .035 6. 60.0 .035 11. 2.0 .035 6. 45.0 .035 12. 0. .035 5. 100. .016 10. 25.0 .035 10. 50. .035 10. 25. .035 6. .1 0. .035 .1 1 I ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF . EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) 2 1 0 ' JOUT(1) JOUT(2) JOUT(3) 1 2 0 NSCRAT(1) 3 IBIBBED PROGRAM CALLED IENTRY MADE TO RUNOFF MODEL UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, DULY 1985) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 0 0 0 0 0 0 0 JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(30) 0 0 0 0 0 0 0 NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 4 0 0 0 MCCLELLANDS EASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/991Rw. MEF 3/22/00 PTM 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENO. HER OF TIME STEPS 600 MTEGRATION TIME INTERVAL (MINUTES) 1.00 0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 ' 1.22 1.06 1.00 .95 .91 .87 .84 .81 .78 .75 .73 .71 .69 .67 .00 LELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. CORD. 6/30/99;Rev. MBF 3/22/00 PTED 100-YEAR EVENT FILE: MMCO-100.DAT ICON MG., USED FOR DEVEL EXTRAN SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE HER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 2 0 .0 .0 .0 .0300 .016 .250 .100 .300 .51 .50 .00180 0 50 7109.0 86.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 60 50 1150.0 8.9 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 70 6 10239.0 29.4 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 51 7161.0 24.7 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 �0 0 51 2875.0 13.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 0 4 1590.0 1.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 110 11 1250.0 1.9 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 111 11 700.0 1.1 99.0 .0100 .016 .250 .100 .300 .51 :50 .00180 1 2 112 750.0 1.3 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 3 12 1200.0 1.3 99.0 .O100 .016 .250 .100 .300 .51 .50 .00180 1 4 12 950.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 115 13 1050.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 116 13 1400.0 2.2 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 51 1000.0 2.9 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 8 17 14 1250.0 1.1 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 0 11 932.0 2.1 85.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 120 22 3875.0 17.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 90 2 5715.0 13.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00IBO 1 10 51 250.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 20 4550.0 31.3 30.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 44 1090.0 7.5 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 7 1742.0 5.0 50.0 .0100 .016 .250 .100 .300 -51 .50 .00180 1 45 9683.0 22.2 85.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 46 3454.0 23.8 50.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 47 6403.0 14.7 85.D .0100 .016 .250 .100 .300 .51 .50 .00180 1 291 1278.0 5.9 80.D .0100 .016 .250 .100 .300 .51 .50 .00180 1 34 1260.0 4.3 8D.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 275 1000.0 2.0 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 28 1650.0 3.2 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 29 850.0 1.5 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 30 1250.0 2.0 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 33 700.0 5.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 16 3500.0 4.0 84.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 16 850.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 22 1200.0 1.8 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 250 500.0 1.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 270 625.0 3.3 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 271 2017.0 6.3 55.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 272 817.0 1.5 31.0 .0900 .016 .250 .IOD .300 .51 .50 .00180 1 36 3223.0 2.4 87.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 320 3213.0 14.8 25.0 .0183 .016 .250 .100 .300 .51 .50 .00180 1 322 1873.0 21.5 50.0 .0165 .016 .250 .100 .300 .51 .50 .00180 1 172 7024.0 32.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 166 4138.0 19.0 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 168 650.0 5.8 47.0 .0105 .016 .250 .100 .300 .51 .50 .00180 1 171 958.0 7.7 70.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 176 1718.0 13.8 57.0 .0235 .016 .250 .100 .300 .51 .50 .00180 1 178 2936.0 33.6 70.0 .0170 .016 .250 .100 .300 .51 .50 .00180 1 321 6795.0 23.4 40.0 .0085 .016 .250 .100 .300 .51 .50 .00180 1 324 2991.0 10.3 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 325 3165.0 10.9 64.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 320 1220.0 4.2 80.0 .0380 .016 .250 .100 .300 .51 .50 .00180 1 180 1472.0 16.9 30.0 .0055 .016 .250 .100 .300 .51 .50 .00180 1 179 465.0 1.6 90.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 331 500.D .7 90.0 .0270 .016 .250 .100 .300 .51 .50 .00180 1 327 1405.0 1.0 90.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1' 301 3315.0 28.5 71.0 .0050 .016 .430 .100 .600 .51 .50 .00180 1 95 13736.0 47.5 45.0 .0100 .016 .390 .100 .600 .51 .50 .00180 1 369 17097.0 78.5 35.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 372 2535.0 8.7 31.2 .0200 .016 .250 .100 .300 .51 .50 .00180 1 360 2951.0 5.4 17.0 .1262 .016 .250 .100 .300 .51 .50 .00180 1 370 2042.0 7.0 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 362 888.0 1.6 4.0 .1262 .016 .250 .100 .300 .51 .50 .00180 1 371 807.0 2.8 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 363 569.0 2.1 2.3 .1262 .016 .250 .100 .300 .51 .50 .00180 1 367 495.0 .9 1.0 .0500 .016 .250 .100 .300 .51 .50 .00180 1 40 26470.0 91.2 34.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 374 4179.0 14.4 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 39 1924.0 67.0 85.0 .0170 .016 .250 .100 .300 .51 .50 .00180 1 594 1507.0 17.3 57.0 .0140 .016 .250 .100 .300 .51 .50 .00180 1 593 1699.0 19.5 47.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 368 4008.0 18.4 45.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 368 5053.0 17.4 50.0 .0300 .016 .250 .100 .300 .51 .50 .00180 1 32 5605.0 19.3 50.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 102 6679.0 23.0 50.0 .0400 .016 .250 .100 .300 .51 .50 .00180 1 102 3006.0 13.8 45.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 35 14288.0 65.6 45.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 201 1200.0 8.5 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 202 2000.0 4.1 68.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 203 800.0 5.7 44.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 209 750.0 1.6 74.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 209 1600.0 2.7 68.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 210 3800.0 7.6 66.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 209 750.0 3.3 57.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 210 450.0 2.3 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 209 3000.0 20.2 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 210 1400.0 9.1 26.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 214 1000.0 4.8 54.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 215 1300.0 4.4 9.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 216 200.0 1.8 12.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 223 600.0 4.1 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 223 1400.0 9.0 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 223 1800.0 7.3 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 224 1000.0 2.2 61.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 224 600.0 3.1 34.0 .0200 .016 .250 .100 .300 .51 .50 .OD180 1 226 900.0 4.0 65.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 226 1000.0 2.7 32.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 130 2750.0 5.9 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 131 1700.0 3.6 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 330 400.0 2.0 48.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 216 700.0 3.1 11.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 140 1300.0 6.4 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 357 800.0 4.3 43.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 241 900.0 1.5 75.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 251 1800.0 8.1 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 252 2250.0 8.9 61.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 261 650.0 2.1 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 262 1200.0 4.7 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 570 1050.0 6.1 63.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 11 571 2000.0 11.7 372 572 4900.0 26.7 73 8. 9 574 8000.0 000.0 18.3 5 75 5400.0 28.4 T/3 6 576 2222.0 5.1 377 577 400.0 1.9 8 577 450.0 9 479 450.0 1. .5 0 480 350.0 1.4 1 481 550.0 2.6 382 582 700.0 .8 383 983 2439.0 5.6 4 84 2400.0 6. 5 85 2100.0 6.3 6 586 3543.0 12.2 387 586 800.0 3.2 388 588 6970.0 16.0 88 .0 3049.0 . �9 0 490 550.0 1 .4 1 491 600.0 2.8 392 588 1100.0 6.6 393 88 4400.0 11.8 4 92 900.0 1.4 6 496 2950.0 13.5 7 497 810.0 3.9 400 400 860.0 9.9 401 406 1170.0 16.7 2 406 1520.0 17.4 3 381 4792.0 11.0 4 382 1790.0 10.4 405 402 3080.0 3.5 406 383 2053.0 14.1 91.0 3. �7 404 8 909 16901.0 38.8 0 517 7812.0 26.9 501 416 5489.0 18.9 502 517 5053.0 17.4 3 415 12981.0 44.7 4 415 3427.0 11.8 4 413 8160.0 28.1 505 409 19544.0 67.3 506 412 4298.0 14.8 7 412 4559.0 15.7 8 01 281 7667.0 26.4 9 411 3862.0 13.3 0 411 5227.0 18.0 511 283 8516.0 39.1 2 388 3 388 36126.0 36126.0 12d.d 24.4 AL NUMBER OF SUBCATCHMENTS, 159 AL TRIBUTARY AREA (ACRES), 2154 45.0 .020) .016 .250 .100 .300 .51 .50 .00180 1 45.0 .0200 .016 .250 .100 .300 .51 .50 00180 1 90.0 .01511 .016 .250 .100 .300 .51 .50 00180 1 86.0 .0201) .016 .250 .100 .300 .51 .50 .00180 1 48.0 .G200 .016 .250 .100 .300 .51 .50 .00180 1 85.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 70.0 .0100 .016 .250 .100 .300 .51 .50 00180 1 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 67.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 85.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 84.0 .0209 .016 .250 .100 .300 .51 .50 .00180 1 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 70.0 .0250 .016 .250 .100 .300 .51 .50 .00180 1 85.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 85.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 70.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 70.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 95.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 93.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 85.0 .0210 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 20.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 85.0 .0170 .016 .250 .100 .300 .51 .50 .00180 1 55.0 .0250 .016 .250 .100 .300 .51 .50 .00180 1 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 38.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 40.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 85.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 50.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 35.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 35.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 35.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 02 LELLANDS BASIN MODEL )FULLY INTEG.) DEVEL. COND. 6/30/99;Re, MBF 3/22/00 PIED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG., USED FOR DEVEL EKTRAN ICONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ... IERSHED AREA (ACRES) 2154.020 AL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .570 AL WATERSHED OUTFLOW (INCHES) 2.961 AL SURFACE STORAGE AT END OF STROM (INCHES) .138 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. CORD. 6/30/99;Re, MBF 3/22/00 ADOPTED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG.. USED FOR DEVEL EKTRAN WIDTH INVERT SIDE SLOPES GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT t�HER CONNECTION (FT) (FT) (FT/FT) L R 4 8 0 1 CHANNEL .0 800. .0044 4.0 4.0 8 2 0 1 CHANNEL 1.0.0 1750. .010D 4.0 4.0 7 6 0 1 CHANNEL .0 1400. .0100 .0 50.0 1 50 0 1 CHANNEL .0 1200. .0032 4.0 4.0 OVERBANK/SURCHARGE MANNING DEPTH JK N (FT) 035 5.00 035 5.00 016 1.50 035 5.00 35 102 0 1 CHANNEL .0 1250. .0100 50.0 50.0 .045 5.00 0 16 22 0 1 CHANNEL .0 540. .0060 50.0 50.0 .016 2.00 0 11 '12 12 13 0 0 1 1 CHANNEL .0 700. CHANNEL .0 850. .0060 .0060 50.0 50.0 .0 .0 .016 .016 1.50 1.50 0 0 13 51 0 1 CHANNEL .0 500. .0060 50.0 .0 .016 1.50 0 14 51 0 1 CHANNEL .0 900. .0060 50.0 .0 .016 1.50 0 112 11 0 1 CHANNEL .0 700. .0100 50.0 .0 .016 1.50 0 20 21 51 44 0 0 1 1 CHANNEL .0 1100. CHANNEL .0 1200. .0050 .0050 4.0 50.0 4.0 .0 .035 .016 5.00 1.50 0 0 44 51 0 1 CHANNEL 3.0 Boo. .0050 10.0 10.0 .035 2.00 0 45 43 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 11.9 10.000 11.9 22 43 0 1 CHANNEL .0 1600. .0070 4.0 4.0 .035 5.00 0 43 51 0 3 .1 I. .0010 .0 .0 .016 .10 0 50 2 0 1 CHANNEL 10.0 1000. .0050 15.0 15.0 .040 5.00 0 51 9 0 1 CHANNEL 10.0 500. .0050 15.0 15.0 .040 5.00 0 9 2 0 1 CHANNEL 5.0 1000. .0060 15.0 15.0 .035 5.00 0 47 12 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 7.2 10.000 7.2 250 25 3 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .310 .3 .330 5.0 25 22 0 2 PIPE 1.3 500. .0050 .0 .0 .013 1.25 0 91 12 3 2 PIPE .1 1. .0050 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 3.1 10.000 3.1 46 42 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 11.2 10.000 11.2 26 42 0 5 PIPE 3.5 Boo. .0050 .0 .0 .016 3.50 0 OVERFLOW 10.0 800. .0050 4.0 4.0 .035 5.50 42 22 0 2 PIPE 6.0 1. .0050 .0 .0 .016 6.00 0 70 27 0 3 .0 1. .0010 .0 .0 .001 10.00 0 71 27 0 5 PIPE 2.3 45. .0040 .0 .0 .013 2.25 0 OVERFLOW .0 45. .0040 198.0 117.0 .020 5.00 272 275 6 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .GOO .0 .020 .4 .130 .8 .290 1.0 .500 1.2 .760 1.3 75 27 0 2 PIPE 3.5 676. .0084 .0 .0 .013 3.50 0 27 41 8 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .030 .8 .220 2.5 .520 3.5 .900 4.2 1.370 4.9 2.100 57.6 3.200 191.4 91 26 0 5 PIPE 4.0 100. .0050 .0 .0 .016 4.00 0 OVERFLOW 10.0 100. .0050 50.0 50.0 .016 5.00 36 26 0 5 PIPE 1.3 90. .0140 .0 .0 .013 1.25 0 OVERFLOW .0 90. .0140 200.0 200.0 .020 5.00 ,28 275 0 1 CHANNEL .0 1000. .0050 .0 50.0 .016 1.50 0 29 28 0 1 CHANNEL .0 1650. .0050 .0 50.0 .016 1.50 0 30 29 0 1 CHANNEL .0 850. .0050 .0 50.0 .016 1.50 0 34 16 3 2 PIPE .1 1. .0050 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 1.9 10.000 1.9 92 89 0 2 PIPE 2.0 1000. .0100 .0 .0 .013 2.00 0 95 89 4 3 .1 1. .0010 .0 .0 .001 .10 -1 TIME IN MS VS INFLOW IN CPS ,89 BB .000 0 .0 1 .500 3.6 9.600 3.6 CHANNEL .0 800. 9.850 .0070 .0 4.0 4.0 .035 5.00 0 90 90 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .200 .5 .220 .5 .240 2.5 90 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 �91 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .500 1.0 .600 91.9 .700 260.0 90 88 0 4 CHANNEL .0 500. .0100 50.0 50.0 .016 .50 0 OVERFLOW 50.0 500. .0100 10.0 10.0 .035 5.00 496 88 6 2 PIPE .1 1. .0010 .0 .0 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .001 .000 .0 .010 12.0 .110 12.4 .790 12.8 2.060 13.2 3.530 31.6 8 588 0 1 CHANNEL .0 700. .0080 4.0 4.0 .035 5.00 0 497 588 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .010 1.6 .050 1.6 .360 1.7 .670 1.7 .840 1.8 1.300 20.2 8 488 0 3 .1 1. .0010 .0 .0 .001 10.00 0 488 586 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.990 9.9 3.920 10.0 5.650 10.4 6.850 11.3 8.730 13.0 10.110 16.8 10.830 24.5 2 682 3 3 .1 1. .0010 .0 .0 .001 .10 683 DIVERSION TO GUTTER NUMBER 683 - TOTAL Q VS DIVERTED Q IN CPS .000 .0 4.600 1.3 8.000 1.8 2 82 0 3 .1 1. .0010 .0 .0 .001 10.00 0 3 0 0 3 .1 1. .0010 .0 .0 .001 10.00 0 2 85 0 4 CHANNEL .0 1300. .0140 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1300. .0140 10.0 10.0 .035 5.00 85 586 0 4 CHANNEL .0 1000. .0110 50.0 50.0 .016 .50 0 1 OVERFLOW 50.0 1000. .0110 10.0 10.0 .035 5.00 1 84 586 0 4 CHANNEL .0 700. .0100 50.0 50.0 .016 .50 0 OVERFLOW 50.0 700. .0100 10.0 10.0 .035 5.00 6 486 0 3 .1 1. .0010 .0 .0 .001 10.00 0 6 584 6 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .010 1.5 .250 12.0 1.050 18.0 3.760 23.7 4.870 41.2 584 694 7 3 .1 1. .0010 .0 .0 .001 .10 673 DIVERSION TO GUTTER NUMBER 673 - TOTAL Q VS DIVERTED Q IN CFS .000 .0 20.000 .0 21.000 1.0 24.000 3.0 27.000 6.0 30.000 9.0 48.000 27.0 4 83 0 3 .1 1. .0010 .0 .0 .001 10.00 0 673 73 0 3 .1 1. .0010 .0 .0 .001 10.00 0 3 583 0 1 CHANNEL 5.0 400. .0050 4.0 4.0 .035 5.00 0 3 583 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE -FEED VS SPILLWAY OUTFLOW .000 .0 .940 2.8 1.140 2.8 4.000 2.8 583 72 0 3 .1 1. .0010 .0 .0 .001 10.00 0 72 572 0 5 PIPE 3.0 700. .0040 .0 .0 .013 3.00 0 OVERFLOW .0 700. .0040 50.0 50.0 .016 5.00 3 572 0 4 CHANNEL .0 1300. .0060 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1300. .0060 10.0 10.0 .035 5.00 481 577 0 3 .1 1. .0010 .0 .0 .001 .10 0 577 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 �80 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .020 1.0 .030 2.0 .050 4.0 .060 6.0 .070 9.0 .080 14.0 .090 18.0 .100 20.0 479 577 6 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .030 .5 .040 1.0 .050 2.5 .070 8.0 .080 12.7 7 477 0 3 .1 1. .0010 .0 .0 .001 10.00 0 7 76 14 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .050 2.0 .190 4.0 .250 6.0 .270 8.0 .290 12.0 .300 16.0 .320 20.0 .340 30.0 .360 45.0 .390 60.0 .460 75.0 .500 90.0 .550 105.0 6 576 0 1 CHANNEL .0 800. .0070 4.0 4.0 .035 5.00 0 576 574 0 3 .1 1. .0010 .0 .0 .001 10.00 0 75 574 0 1 CHANNEL 5.0 600. .0070 4.0 4.0 .035 5.00 0 474 0 3 .1 1. .0010 .0 .0 .001 10.00 0 4 �4 74 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.230 .5 5.940 2.0 10.230 4.4 13.600 8.0 15.130 10.2 16.660 12.5 18.200 13.5 4 572 0 1 CHANNEL 10.0 700. .0080 10.0 10.0 .035 5.00 0 2 472 0 3 .1 1. .0010 .0 .0 .001 10.00 0 2 571 12 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .710 3.0 .890 6.0 1.180 9.0 1.730 12.0 2.520 15.0 3.660 18.0 5.110 21.0 6.950 24.0 7.760 27.0 8.040 30.0 9.500 81.0 1 471 0 3 .1 1. .0010 .0 .0 .001 10.00 0 1 570 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .190 10.0 .390 20.0 .680 30.0 .770 32.0 .840 40.0 .870 50.0 .890 60.0 .970 100.0 0 470 0 3 .1 1. .0010 .0 .0 .001 10.00 0 0 31 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .080 10.0 .120 20.0 .240 30.0 .660 40.0 1.000 44.0 1.470 160.0 275 0 5 PIPE 3.0 108. .0075 .0 .0 .013 3.00 0 �1 OVERFLOW 30.0 108. .0075 50.0 50.0 .035 5.00 3 21 0 1 CHANNEL .0 700. .0080 50.0 .0 .016 1.50 0 2 216 12 2 PIPE .1 77. .0070 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .590 86.2 2.360 115.7 6.170 144.7 12.050 169.8 19.650 193.7 28.600 214.8 33.640 224.4 38.670 233.1 49.310 251.4 59.390 269.7 70.590 288.0 6 167 3 2 PIPE .1 96. .0060 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 7 169 .000 0 .0 1 1.600 24.0 3.400 26.4 CHANNEL 4.0 260. .0021 2.0 2.0 .035 4.00 0 8 169 5 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .070 .9 .430 1.4 .720 93.3 1.010 261.4 9 170 0 5 PIPE 2.3 40. .0070 .0 .0 .013 2.27 0 OVERFLOW 40.0 40. .0070 50.0 50.0 .016 4.00 0 174 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 4.00 0 1 174 3 2 PIPE .1 10. .0038 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.000 4.0 2.000 4.3 173 5 2 PIPE .1 120. .0033 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 6.500 5.5 8.000 6.0 9.000 97.9 10.000 266.0 173 175 0 4 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 OVERFLOW 30.0 1200. .0050 150.0 150.0 .035 3.00 175 0 5 PIPE 2.3 75. .0211 .0 .0 .013 2.25 0 OVERFLOW 40.0 75. .0211 50.0 50.0 .016 4.00 177 0 5 PIPE 2.5 853. .0123 .0 .0 .013 2.50 0 OVERFLOW 50.0 853. .0123 50.0 50.0 .016 4.00 176 177 7 2 PIPE .1 315. .0020 .0 .0 .013 .10 0 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 000 .0 .040 1.1 .230 1.7 .790 2.1 1.780 2.6 2.440 94.5 3..100 261.E ]7 341 0 5 PIPE 3.0 480. .0100 .0 .0 .013 3.00 0 OVERFLOW 10.0 480. .0100 50.0 50.0 .016 5.00 8 177 9 2 PIPE .1 1310. .0033 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.950 5.0 2.700 5.8 3.400 6.5 4.200 8.8 4.600 16.2 0 321 4.900 0 29.5 1 5.200 44.0 5.500 60.0 CHANNEL 5.0 1350. .0050 4.0 4.0 .035 4.00 0 1 324 10 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .050 .0 .310 2.6 .790 4.3 1.520 5.5 2.550 6.4 3.850 7.3 5,400 8.0 6.300 99.9 7.200 268.0 2 323 3 2 PIPE .1 10. .0100 .0 .0 .013 .10 0 � RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.900 11.0 4.000 11.3 323 324 0 1 CHANNEL .0 1500. .0142 50.0 .0 .016 1.50 0 4 331 0 2 PIPE 3.0 36. .0222 .0 .0 .013 3.00 0 5 326 0 1 CHANNEL 4.0 420. .0050 4.0 4.0 .035 3.00 0 6 327 0 5 PIPE 3.5 214. .0168 .0 .0 .013 3.50 0 OVERFLOW 40.0 214. .016E 50.0 50.0 .016 5.00 327 329 0 1 CHANNEL 4.0 750. .0050 4.0 4.0 .035 3.00 0 328 329 0 5 PIPE 1.8 101. .0149 .0 .0 .013 1.75 0 OVERFLOW .0 101. .0149 133.0 44.0 .016 5.00 9 180 0 1 CHANNEL 5.0 240. .0050 4.0 4.0 .035 4.00 0 9 324 0 5 PIPE 1.5 80. .0110 .0 .0 .013 1.50 0 OVERFLOW .0 80. .0110 167.0 167.0 .016 5.00 331 325 0 2 PIPE 3.0 30. .0267 .0 .0 .013 3.00 0 341 8 2 PIPE .1 20. .0040 .0 .0 .013 .10 0 �0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .210 4.0 1.000 18.0 1.910 37.2 2.950 52.4 4.160 68.0 4.820 78.0 5.670 88.0 341 4 0 5 PIPE 5.2 120. .0040 .0 .0 .013 5.20 0 OVERFLOW .0 120. .0040 50.0 50.0 .016 7.00 1 91 9 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .100 2.2 .850 4.2 1.880 5.3 2.450 5.8 3.270 13.4 4.260 14.4 4.560 36.2 5.730 57.8 1 93 0 1 CHANNEL .0 1325. .0150 4.0 4.0 .060 5.00 0 3 94 11 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .050 .0 .510 .0 .980 .O 1.620 1.9 2.400 5.4 3.330 7.7 4.350 14.0 5.410 20.7 6.520 93.9 7.650 219.5 4 241 0 1 CHANNEL .0 500. .0027 3.0 3.0 .035 5.00 0 5 93 0 3 .0 1. .0010 .0 .0 .001 10.00 0 7 358 0 1 CHANNEL 16.0 10. .0050 4.0 4.0 .045 4.00 0 358 359 0 2 PIPE 9.4 103. .0050 .0 .0 .013 9.44 0 359 360 0 1 CHANNEL 16.0 950. .0050 4.0 4.0 .045 4.00 0 0 361 0 2 PIPE 9.4 46. .0050 .0 .0 .013 9.44 0 1 0 362 0 1 CHANNEL 16.0 619. .0050 4.0 4.0 .045 4.00 0 2 363 0 1 CHANNEL 16.0 215. .0050 4.0 4.0 .045 4.00 0 63 364 0 1 CHANNEL 16.0 415. .0050 4.0 4.0 .045 4.00 0 364 366 0 4 CHANNEL 16.0 90. .0050 4.0 4.0 .045 5.00 0 OVERFLOW 40.0 90. .0050 50.0 50.0 .035 6.00 9 366 0 4 CHANNEL .0 1125. .0045 4.0 4.0 .035 2.30 0 OVERFLOW 50.0 1125. .0045 50.0 50.0 .035 5.00 6 367 0 4 CHANNEL 16.0 377. .0050 4.0 4.0 .045 5.00 0 OVERFLOW 40.0 377. .0050 50.0 50.0 .035 6.00 373 0 4 CHANNEL .0 IOBO. .0050 4.0 4.0 .035 3.50 0 �8 OVERFLOW 40.0 1080. .0050 50.0 50.0 .016 4.50 9 38 0 4 CHANNEL .0 860. .0050 4.0 4.0 .035 3.50 0 OVERFLOW 40.0 860. .0050 50.0 50.0 .016 4.50 593 592 30 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR .000 STORAGE IN .0 ACRE-FEET VS SPILLWAY OUTFLOW .570 .5 1.140 3.0 1.400 3.6 1.790 6.4 2.450 9.3 2.600 9.7 3.230 ll.l 4.010 12.7 - 4.970 14.1 2 39 0 1 CHANNEL 4.0 1000. .0160 4.0 4.0 .035 3.50 0 594 591 10 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .360 2.7 .740 3.0 1.120 3.3 1.400 3.4 1.690 5.4 2.260 8.4 2.400 8.6 2.900 9.0 3.540 9.5 1 39 0 1 CHANNEL .0 1300. .0050 4.0 4.0 .035 3.50 0 40 373 0 1 CHANNEL 5.0 1400. .0050 4.0 4.0 .035 5.00 0 370 361 2 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .960 33.5 1 362 2 2 PIPE .1 1. .0015 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .550 1.B 2 363 6 2 PIPE .1 1. .0020 .0 .0 .013 .10 0 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .170 10.0 .420 22.4 .740 33.3 .940 38.0 1.170 50.5 373 364 18 2 PIPE .1 1. .0042 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .061 .0 .465 .0 1,578 .0 3.566 6.4 6.256 16.8 ' 6.909 18.0 7.562 18.8 8.216 19.6 8.869 20.8 9.522 21.6 9.910 31.5 10.298 49.4 10,687 72.6 11.075 99.7 11.463 130.9 13.400 333.7 15.520 429.6 374 38 14 2 PIPE .1 I. .0040 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' h .000 .0 .009 .0 .119 .0 .230 .0 .409 1.1 .469 2.1 ' .528 2.8 .678 3.9 .827 4.8 1.062 5.6 1.297 6.3 1.532 6.9 1.711 7.3 2.341 59.9 2 102 0 1 CHANNEL 1.0 500. .0060 75.0 1.5 .045 5.00 0 7 368 0 4 CHANNEL 5.0 950. .0070 2.0 2.5 .045 8.00 0 OVERFLOW 35.0 950. .0070 75.0 45.0 .045 14.00 68 102 0 4 CHANNEL 5-0 1960. .0100 3.0 3.0 .045 5.00 0 OVERFLOW 30.0 1960. .0100 60.0 30.0 .045 11.00 02 410 0 S PIPE 4.5 50. .0050 .0 .0 .024 5.60 0 OVERFLOW 29.0 50. .0050 25.0 100.0 .011 10.00 1 202 0 3 .1 1. .0010 .0 .0 .001 10.00 0 2 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 203 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 9 210 0 3 .1 1. .0010 .0 .0 .001 10.00 0 0 310 0 3 .1 1. .0010 .0 .0 .001 10.00 0 0 140 16 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .380 .1 1.000 1.2 1.500 2.0 3.400 3.9 4.360 6.6 6.730 7.7 8.870 8.4 10.270 8.8 11.470 9.0 12.410 9.2 12.990 9.3 13.370 9.4 13.720 9.4 13.850 9.5 13.89G 9.5 4 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 5 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 315 216 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .OGO 2.0 .240 3.0 .590 4.0 .850 4.5 1.230 5.0 1.430 96.9 1.630 265.0 6 116 0 3 .1 1. .0010 .0 .0 .001 10.00 0 116 140 0 1 CHANNEL 10.0 1650. .0030 4.0 4.0 .035 5.00 0 140 357 0 1 CHANNEL 10.0 700. .0030 4.0 4.0 .035 5.00 0 3 224 0 3 .1 1. .0010 .0 .0 .001 10.00 0 4 334 0 3 .1 1. .0010 .0 .0 .001 10.00 0 4 124 11 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .070 4.0 .240 6.0 .520 8.0 .970 10.0 1.640 12.0 2.460 14.0 3.440 16.0 4.660 18.0 5.090 18.6 5.580 19.3 4 226 0 2 PIPE 3.0 825. .0080 .0 .0 .011 5.00 0 6 336 0 3 .1 1. .0010 .0 .0 .001 10.00 0 336 357 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .150 4.0 .440 6.0 .980 8.0 1.850 10.0 2.270 10.7 2.540 36.8 2.810 84.3 0 131 0 2 PIPE 3.0 450. .0070 .0 .0 .013 3.00 0 131 330 0 2 PIPE 3.5 250. .0070 .0 .0 .013 3.50 0 330 241 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .000 .0 .070 1.0 .230 2.0 .570 3.0 1.050 4.0 1.850 5.0 2.960 6.0 251 350 0 3 .1 1. .0010 .0 .0 .001 10.00 0 350 216 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .070 1.0 .250 2.0 .630 3.0 .820 3.5 1.100 4.0 1.150 4.1 1.300 96.0 1.450 264.1 2 160 0 3 .1 1. .0010 .0 .0 .001 10.00 0 160 261 0 5 PIPE 1.5 275. .0100 .0 .0 .013 1.50 0 OVERFLOW .0 275. .0100 10.0 10.0 .035 5.00 1 262 0 3 .1 1. .0010 .0 .0 .001 10.00 0 2 365 0 3 .1 1. .0010 .0 .0 .001 10.00 0 5 241 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 2.830 .0 59.5 1.250 6.3 2.420 7.5 2.520 14.0 2.630 25.9 2.730 41.3 1 141 0 3 .1 1. .0010 .0 .0 .001 10.00 0 1 357 0 1 CHANNEL 10.0 500. .0030 4.0 4.0 .035 5.00 0 381 382 5 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR .000 STORAGE IN .0 ACRE-FEET VS SPILLWAY OUTFLOW .480 2.2 .960 5.5 2.030 6.3 2.140 48.9 2 401 16 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .090 1.2 .240 2.4 .510 3.6 .590 4.0 .650 6.0 .700 7.2 .760 8.4 .830 9.6 .840 10.0 12.0 1.100 20.0 1.240 30.0 1.350 40.0 1.470 50.0 1.510 55.0 .930 1 402 0 1 CHANNEL 2.0 550. .0130 50.0 50.0 .016 1.00 0 2 406 0 1 CHANNEL 2.0 950. .0060 50.0 50.0 .016 1.00 0 400 406 0 1 CHANNEL 10.0 710. .0060 5.0 6.0 .040 2.00 0 406 380 0 3 .1 1. .0010 .0 .0 .001 .10 0 403 12 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 '0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.700 8.8 3.090 9.3 3.190 10.0 3.590 15.0 3.990 20.0 4.870 21.8 5.000 22.0 5.540 22.9 6.240 52.4 6.580 75.1 6.930 107.7 384 404 5 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.010 3.7 1.890 9.3 1.940 11.5 1.980 15.5 3 407 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .736 1.3 1.328 3.9 1.580 4.4 1.760 4.7 2.050 22.3 2.100 58.7 3 407 0 1 CHANNEL 5.0 950. .0040 4.0 4.0 .045 5.00 0 7 405 0 3 .1 1. .0010 .0 .0 .001 .10 0 405 410 0 5 PIPE 3.5 2000. .0020 .0 .0 .013 3.50 0 OVERFLOW 40.0 2000. .0020 50.0 50.0 .016 5.00 407 0 5 PIPE 3.5 900. .0150 .0 .0 .016 3.50 0 388 387 0 1 7 38 0 1 6 284 0 1 4 263 0 1 3 282 0 1 282 410 0 1 1 414 0 1 9 413 0 1 0 411 0 4 411 412 0 4 2 413 0 4 3 414 0 5 414 415 0 1 5 416 0 1 17 6 517 0 1 417 0 3 417 0 0 2 T(YrAL NUMBER OF GUTTERS/PIPES, 203 OVERFLOW 40.0 900. .0150 50.0 50.0 .016 5.00 CHANNEL 5.0 1300. .0070 150.0 150.0 .015 5.00 0 CHANNEL 5.0 750. .0070 150.0 150.0 .015 5.00 0 CHANNEL 4.0 800. .0030 150.0 150.0 .045 5.00 0 CHANNEL 4.0 700. .0063 150.0 150.0 .045 5.00 0 CHANNEL 7.0 1000. .0057 70.0 40.0 .045 5.00 0 CHANNEL 9.0 800. .0460 9.0 1.5 .045 5.00 0 CHANNEL 2.0 .1500. .0150 55.0 76.0 .035 5.00 0 CHANNEL 1.0 1500. .0100 50.0 50.0 .045 5.00 0 CHANNEL 5.0 600. .0450 2.5 3.0 .035 7.00 0 OVERFLOW 45.0 600. .0450 25.0 50.0 .035 13.00 CHANNEL 5.0 1060. .0038 3.0 2.0 .035 6.00 0 OVERFLOW 30.0 1060. .0038 35.0 60.0 .035 11.00 CHANNEL 5.0 870. .0060 5.0 2.0 .035 6.00 0 OVERFLOW 50.0 870. .0060 30.0 45.0 .035 12.00 PIPE 5.0 40. .0060 .0 .0 .035 5.00 0 OVERFLOW 50.0 40. .0060 100.0 100.0 .016 10.00 CHANNEL 5.0 1180. .0060 30.0 25.0 .035 10.00 0 CHANNEL 5.0 1050. .0060 40.0 50.0 .035 10.00 0 CHANNEL 5.0 800. .0060 40.0 25.0 .035 6.00 0 .1 1. .0010 .0 .0 .001 .10 0 PIPE .1 1. .0030 .0 .0 .035 .10 0 MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. REP 3/22/00 ADOPTED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG., USED FOR DEVEL EXTRAN 1 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES 1 1 1 GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 2 8 50 9 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 796.3 4 341 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 219.3 6 7 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 34.4 7 0 0 0 0 0 0 0 0 0 0 240 0 0 0 0 0 0 0 0 0 5.0 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 219.3 9 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 434.3 11 112 0 0 0 0 0 0 0 0 0 110 Ill 320 0 0 0 0 0 0 0 6.5 12 11 47 291 0 0 0 0 0 0 0 113 114 0 0 0 0 0 0 0 0 30.0 13 12 0 0 0 0 0 0 0 0 0 115 116 0 0 0 0 0 0 0 0 33.9 14 0 0 0 0 0 0 0 0 0 0 118 0 0 0 0 0 0 0 0 0 1.1 16 34 0 0 0 0 0 0 0 0 0 160 121 0 0 0 0 0 0 0 0 9.8 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 31.3 21 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.6 22 16 25 42 0 0 0 0 0 0 0 120 122 0 0 0 0 0 0 0 0 290.6 25 250 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 1.6 26 41 36 0 0 0 O 0 0 0 0 O 0 0 0 0 0 0 0 0 0 235.8 27 270 271 275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233.4 28 29 0 0 0 0 0 0 0 0 0 281 0 0 0 0 0 0 0 0 0 6.7 29 30 0 0 0 0 0 0 0 0 0 282 0 0 0 0 0 0 0 0 0 3.5 30 0 0 0 0 0 0 0 0 0 0 283 0 0 0 0 0 0 0 0 0 2.0 31 470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213.6 32 0 0 0 0 0 0 0 0 0 0 222 0 0 0 0 0 0 0 0 0 19.3 33 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 5.6 34 0 0 0 0 0 0 0 0 0 0 340 0 0 0 0 0 0 0 0 0 4.3 35 0 0 0 0 0 0 0 0 0 0 225 0 0 0 0 0 0 0 0 0 65.6 36 0 0 0 0 0 0 0 0 0 0 360 0 0 0 0 0 0 0 0 0 2.4 38 39 374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 118.2 39 592 591 0 0 0 0 0 0 0 0 316 0 0 0 0 0 0 0 0 0 103.8 40 0 0 0 0 0 0 0 0 0 0 314 0 0 0 0 0 0 0 0 0 91.2 41 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233.4 42 46 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 259.6 43 45 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 312.8 44 21 0 0 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 13.1 45 0 0 0 0 0 0 0 0 0 0 220 0 0 0 0 0 0 0 0 0 22.2 46 0 0 0 0 0 0 0 0 0 0 260 0 0 0 0 0 0 0 0 0 23.8 47 0 0 O 0 0 0 0 0 0 0 230 0 O O 0 0 0 0 0 0 14.7 50 6 0 0 0 0 0 0 0 0 O 80 60 0 0 0 0 0 0 0 0 129.5 51 13 14 20 44 43 0 0 0 0 0 130 100 117 190 0 0 0 0 0 0 434.3 72 5B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.4 73 673 0 0 0 0 0 0 0 0 0 373 0 0 0 0 0 0 0 0 0 8.2 74 474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.5 75 0 0 0 0 0 0 0 0 0 0 375 0 0 0 O 0 0 0 0 0 28.4 76 477 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.7 82 682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .8 83 684 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.8 84 0 0 0 0 0 0 0 0 0 0 384 0 0 0 0 0 0 0 0 0 6.9 85 82 0 0 0 0 0 0 0 0 0 385 0 0 0 0 0 0 0 0 O 7.1 88 89 90 496 0 0 0 0 0 0 0 389 393 0 0 0 0 O 0 0 0 37.9 89 92 395 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 O 0 0 1.4 90 490 491 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 4.2 91 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.5 92 0 0 0 0 0 0 0 0 0 0 394 0 0 0 0 0 0 0 0 0 1.4 93 91 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.0 94 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.0 95 0 0 0 0 0 0 0 0 0 0 302 0 0 0 0 0 0 0 0 0 47.5 102 35 32 368 0 0 0 0 0 0 0 223 224 0 0 0 0 0 0 0 0 1505.3 A ,I l ItII9ryF� STSENI R 1 � I III II Will \ N W Ave VAAV •\� ♦ / AQ'"V CsuL \\�\�\ -'. `v A VO vA A ♦ �. simin I LLL o' Own DRAINAGE SUMMARY TABLE 011 TrbuWy An! 1(2) C(10) C(I00) 0(10) w(100) Cl all0I1et Q10011WI yLON Poll 1-1 (MIN) (MNI (VIA) (CIA) 14:1111 - 1.5' 1G WO 0.9 0.tl 0.tl O.Y T.I SA 0.3 0.5 1A 0 1A-1F 10, 0] 0.N QN 0.81 11.7 aS 0.5 1.9 3.B tS' 2 1@ to 0.T1 0.11 0.•9 SA 5.9 2T W.5 LT.3 CROSS SECTION A -A 3 103 1.1 0.71- 0.11 1.0D 52 50 1 2.0 aW AT N.T.S Ill 1% 1 0..8 1 0.A I an 1 0.0 1 5.0 1 `+0 1 12 1 2.1 1 54 I F-R--T-lm I as I am I ow I too I 50 1 5.0 1 1.8 1 11 1 79_ 1 2 0' D 5' :Una NI•• TD 1.5' 2o' NTS D clawledeAsmQueell N.TS IP / IP I , •-l' ® II{ LS JB � IP ! A - t- 108 V ee-l... - R u NOTES -_ 50 25 0 50 100 1. ER090N CWTRh NOTES CAN BE EWWD W ME GENERAL NOTES MET. 2 GARAES W ME NORM MLL HAYS DOYMSPWTS TO DIRECT STORYWATER W SM SCALE ,• - 50' L Fa (n __ _ _- _--- - T YW'•19- TYPE L + F F i + + + T BURIED MPRAP (ME I DEiNL SHEET 2]) + '•' +/ i- V- 1_ I f NL ( SE SHEET 27 + +\& 11 k i A'AIRKIYE PAN I - I- 1 ion -71 8'r8'.IB- TYPE L I + I� 1 /+ + + + + + I BURIfO Al ( 'V/ -..II DETAL MEET 27) +� 1.' -+ r I + + +I i + + + i + + + r �', eqq II f ,+ + + + I�1,11 i _ fY MI 1 + + 1 hI a' 110d:E PAN A, 1. +. Y 1. 1. .1' + i 2x wo r � 'y�� POND 488 - + H + + POND AM EWERGENCY 100-YR I + + + (ME DETAIL THIS SHE WSEL=5006.68 + it ' 'f 13,1Y•I8- TYPE L �I + + + hiiI'+ h Irr DENIED Mi /I: I I\. �+ TPoWE PM] O DETAIL SHEET L MEET an ( O 1 A' 1RIGE PAN O \ i + 1 I j yz. l?MkIE P,y] W 1 � ..1 � 1RIDt1F PAx C �e' PoG E PAN W PEND WillW WRET 1 1 I.Ix r; g ® STRUCTURE 1' iPobtE PIN 01 A, I : , 1 SE OETNL SHEET 30) 8B'M11B- TYPE L 01RIED Will (SEE , t 4 •�•�. ,. ��TYPICAL SECTION 3, fee- SINE Om (CPS) DEPTH. D l IAL I SLOPE Aw `IELOOTY A 13.3 a,18' asm 2.9 FT/S B 2d1 0.53' 0.5x 2.7 l C 7.9 O41' O.Sx 2.2 l D 21.4 0.62' a5x 2.8l I,,:�r Ei •s SPILLWAY 0100 IENOIH (L) Ol of) p ATION M/AIION SLOPE. (5) AM 1A�TY PWO a88 381 m I" IT I 5007.00' 5008.00' n 2.6 FT/S A WwdX- W<w53 �aa�ga, I �<mwill 59 FwLE�CJm� N N O O K } o z o of bozo yN JJ ED (NQ3 m W LEGEND M P ®ENDER C ^EE 9 G YO s' n ® m m m SF SILT FENCE oFP?.lie-tw.C�SII:. u•i o �5 i 9c S U w IP INUT PROTECTION ";'t D^024Yn ©®OCONSTRUCTON ENTRANCE x of0N WITH VEHICLE TRACKING COlA Alt zR za SEDIMENT TRAP ® Q d PROPOSED RICRAC C LEE Co P.E. x0. P.E. OL]N25 DAISLel NO oI WDINf 01 / EYmlli f01 " Q O fIf DESIGN PUNT City of Fort Collim Colorado z z t0 UTILITY PLAN APPROVAL Q TO1 APPROVED: M t_i 0 BASIN IDENTIFICATION GIY Fnquv We1.0 50 RUNOFi COEFTIGENT J 0 CHECKED BY: AREA IN ACRES MAW ! YbHe EuSy DW <W (1) y ROW DIRECTION CHECKED BY: OR su mmis WIRY WI• i W- W� W- DRAINAGE SUB BASIN CHECKED BY: ___-.-_.. PSY ! P•valim Dot• + 100-YR INUNDATION AREA CHECKED BY: f .._ LWWl Ery DON• SHEET T8 OP 30 CHECKED BY: I Del. JOB N0. 38A0200