Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 03/21/2005I
p
p
p
I'
Anal Ap oved R9po►z
ate
FINAL
DRAINAGE AND EROSION CONTROL
REPORT FOR
SETTLER'S CREEK
J•R ENGINEERING
A Subsidiary of Westrian
p
I
1
F
FINAL
' DRAINAGE AND EROSION CONTROL
REPORT FOR
SETTLER'S CREEK
1
1
Prepared by
'
JR ENGINEERING
2620 E. Prospect Rd., Suite 190
Fort Collins, Colorado 80525
'
(970)491-9888
tPrepared for
FAR Hills Developers, LLC
t 225 Route 202
Basking Ridge, NJ 07920
1
March 4, 2005
' Job Number 39402.00
_'
I
' March 4 2005 ]•R ENGINEERING
A Westrian Company
Mr. Basil Hamdan
City of Fort Collins
'
Stormwater Utility
700 Wood Street
Fort Collins, CO 80521
RE: Final Drainage and Erosion Control Report for Settler's Creek
tDear Basil,
We are pleased to submit to you for your approval, this Final Drainage and Erosion Control
Report for Settler's Creek. All comments from the February 16, 2005 Staff Project Review
Report have been addressed. All computations within this report have been completed in
' compliance with the City of Fort Collins Storm Drainage Design Criteria dated May 1984,
revised April 1997.
tWe greatly appreciate your time and consideration in reviewing this final submittal. Please call
if you have any questions.
' Sincerely,
' JR Engineering
Prepareg by, Reviewed by,
�g4 S---rt
Erika Schneider W. Lee Watkins, P.E.
Design Engineer II Project Manager
Iattachments
I
t2620 East Prospect Road, Suite 190, Fort Collins, CO 80525
970-491-9888 • Fax: 970-491-9984 • www.jrengineering.00m
CERTIFICATION
I hereby certify that this report for the final drainage design of Settler's Creek was prepared
under my direct supervision in accordance with the provisions of the City of Fort Collins
Stormwater Utility STORM DRAINAGE DESIGN CRITERIA AND CONSTRUCTION
STANDARDS for the owners thereof.
Respectfully Submitted,
W. Lee Watkins
Colorado Professional Engineer No. 38325
For and On Behalf of JR Engineering
38326
4,
�SS/pNALENG\�
0
I
[1
1
1
I
TABLE OF CONTENTS
TABLE OF CONTENTS............
PAGE
....................................................... i
1. INTRODUCTION.....................................................................................
1.1 Project Description..........................................................................
1.2 Master Drainage Basin & Other Drainage Reports .........................
1.3 Purpose and Scope of Report ...........................................................
1.4 Design Criteria & Methods..............................................................
1.5 Vertical Datum.................................................................................
2. HISTORIC DRAINAGE..
................................................. 3
3. LOCAL HYDRAULIC ANALYSIS FOR DEVELOPED CONDITIONS ..........................3
3.1
General Flow Routing.................................................................................................3
3.2
Proposed Sub -basin Descriptions...............................................................................3
3.3
Hydrologic Analysis of the Proposed Drainage Conditions.......................................5
4. STORM WATER FACILITY DESIGN...............................................................................7
4.1
Allowable Street Capacity..........................................................................................7
4.2
Inlet Sizing..................................................................................................................7
4.3
Storm Sewer System...................................................................................................7
4.4
Water quality .................................................. ;............................................................
8
4.5
Pond Description........................................................................................................8
5. MODSWMM AND EXTRAN.................................................................................................9
6. EROSION CONTROL.......................................................................................................10
6.1 Erosion and Sediment Control Measures.................................................................10
6.2 Dust Abatement........................................................................................................11
6.3 Tracking Mud on City Streets...................................................................................11
6.4 Maintenance..............................................................................................................11
6.5 Permanent Stabilization............................................................................................11
7. REFERENCES...................................................................................................................13
APPENDIX A MAPS AND FIGURES
APPENDIX B HYDROLOGIC CALCULATIONS
APPENDIX C STREET CROSS SECTIONS
APPENDIX D INLET CALCULATIONS
APPENDIX E STORM PIPE AND SWALE CALCULATIONS
APPENDIX F WATER QUALITY AND DETENTION POND CALCULATIONS
APPENDIX G RIPRAP AND EROSION CONTROL CALCULATIONS
APPENDIX H EXCERPTS FROM OTHER REPORTS
Final Drainage and Erosion Control Report Page i
Settler's Creek March 2005
I
' 1. INTRODUCTION
1.1 Project Description
Settler's Creek is a 13.6-acre proposed mixed -use development located in a portion of the
' southwest quarter of Section 36, Township 7 North, Range 69 West of the Sixth Principal
Meridian, in the City of Ft. Collins, Latimer County, Colorado. The site is bounded by
Somerset Subdivision to the north, JFK Parkway to the west, Pier Condominiums to the
' east and Harmony Center to the south. Landings Park is also located to the north and east
of the site. A vicinity map is included in Appendix A.
' 1.2 Master Drainage Basin & Other Drainage Reports
' The Master Drainage Basin for Settler's Creek is the McClellands Creek Master Drainage
Basin. The "Hydrologic Update to the McClellands Master Drainage Plan and Harmony
' Centre Master Drainage Plan" by Lidstone & Anderson, Inc. dated October 1997, the
"McClellands Creek Master Drainage Plan Update Final Report and Technical
Appendix" by ICON Engineering, Inc. dated November, 2000 (revised March 2003) and
' the "Final Drainage Report for Harmony Centre" by Drexel Barrell & Co. dated
December 19, 1997 were all consulted during preparation of this report.
' 1.3 Purpose and Scope of Report
tThis report describes the proposed drainage facilities for Settler's Creek and includes
consideration of all on -site and tributary off -site runoff. Design calculations are included
for all drainage structures including detention facilities required for this project.
' 1.4 Design Criteria & Methods
This report and associated calculations were prepared to meet requirements established in
' the "City of Fort Collins Storm Drainage Design Criteria and Construction Standards"
(SDDCCS), dated May 1984 and updated April 1997. The new rainfall criteria as
amended by Ordinance 42.199 were used for the 10 and 100 year design storms. Where
applicable, the criteria established in the "Urban Storm Drainage Criteria Manual"
(UDFCD), developed by the Denver Regional Council of Governments, were also used.
' Local drainage facilities, including storm pipes and inlets, were designed to carry peak
' minor storm event flows from the 10-year storm event. Flows from the major storm
event, the 100-year stone, are conveyed through the storm sewer system with overflows
t Final Drainage and Erosion Control Report Page 1
Settler's Creek March 2005
cascading downward towards the regional detention facility. The cascading runoff shall
' not cause any point in the parking area to be inundated more than 18 inches. The regional
detention facility was preliminarily evaluated under the 100-year storm event using the
11
1
Rational Volumetric Method. The regional detention facility was reevaluated using
ModSWMM and EXTRAN during final compliance.
With the development of this project, we are improving the area storm water runoff water
quality. In the existing condition, the existing pond does not provide for any water
quality detention. This project is only required to provide water quality detention for the
proposed development. However, we are upgrading the existing pond to include water
quality for both the proposed development and the existing developments currently
discharging to said pond. Though this upgrade benefits downstream properties and helps
the City with their water quality goals, it imposes a substantial impact on the required
pond volume. In an effort to mitigate the effects of the additional water quality storage
volume, it is necessary to maintain the pond's side slopes to 3:1. Therefore, we hereby
request a variance to the City of Fort Collins standard of 4:1 minimum slope to allow 3:1
side slopes in the areas of the detention pond. It is our contention that the increased slope
is stable and will not pose any public safety hazards. We also believe that the benefit
from improving the existing storm water discharge condition far outweighs any negative
impacts from increasing the pond's side slope.
1.5 Vertical Datum
Two benchmarks were used as a basis for all elevations, these benchmarks being the City
of Fort Collins vertical control benchmark 46-94 and benchmark #48-01. Benchmark #6-
94 is located at the on south side of Harmony Road at the northwest comer of 625 East
Harmony Road (Front Range Baptist Church), on the east end of the north wall of a
concrete irrigation drop structure. This benchmark elevation is 5013.98. Benchmark
#48-01 is located approximately 1/2 mile south of Horsetooth Road, west of College
Avenue at the entrance to Barnes and Nobel Bookstore, in the northeast corner of their
parking lot, on a concrete curb. This benchmark elevation is 5033.57.
1
Final Drainage and Erosion Control Report
Settler's Creek
Page 2
March 2005
' 2. HISTORIC DRAINAGE
The Settler's Creek project site includes approximately 13.6 acres of land. The majority
' of the site is currently covered in native grasses. Generally, the site drains in a
southeasterly direction with slopes from 1 to 3%.
1
1
Soils on site are predominately Fort Collins loams (Soil number 35). These soils are
characteristically known to have slow runoff and slight to moderate wind and water
erosion. These soils belong to the Hydrologic group B. A small portion of the site's soils
are Soil number 74; however, because this portion is so small, only Soil number 35 will
be considered in this analysis. Please refer to Appendix A for further information
regarding the soils in this site.
3. LOCAL HYDRAULIC ANALYSIS FOR DEVELOPED CONDITIONS
3.1 General Flow Routing
This report defines the proposed drainage and erosion control plan for the Settler's Creek
property. The plan includes consideration of all on -site and off -site runoff. The plan
addresses the hydrologic ramifications associated with the development of the Settler's
Creek property and identifies the proposed storm facilities that will allow this project to
develop without adversely impacting downstream properties. This report routed flows to
the regional detention pond in the southeast portion of the site for detention and water
quality.
3.2 Proposed Sub -basin Descriptions
A summary of the drainage patterns within each sub -basin and at each design point is
provided in the following discussion. Details of the drainage facility design are included
in Section 4.
Sub -basin 100 is located in the northwestern portion of the site just to the east of
JFK Parkway. The runoff generated from this area sheet flows to the private drive
and then flows to the on -grade inlet located at design point 1G. These flows are
then piped to the stone system located in the southern portion of the property and
eventually discharges into Regional Detention Pond 488.
Final Drainage and Erosion Control Report
Settler's Creek
Page 3
March 2005
Sub -basin 101 is located in the western portion of the site just to the east of JFK
' Parkway. The runoff generated from this area either sheet flows to area inlets
(design points IA -IF) or is conveyed via PVC pipe from the roof drains to the
' storm system located in the southern portion of the property. This flow eventually
discharges into Regional Detention Pond 488.
Sub -basin 102 is located just to the east of sub -basin 101. Runoff from this basin
' sheet flows to the private drive and then gutter flows to the on -grade inlet located
at design point 2. These flows are then piped to the storm system located in the
southern portion of the property and eventually discharges into Regional
' Detention Pond 488.
Runoff from sub -basins 103 and 104, located in the southern portion of the site,
is conveyed via sheet and gutter flow to design point 3. The flows are then joined
' with sub -basin 108 and flow to design point 8 where a sump inlet is located.
These flows are then piped to the regional detention pond via the southern storm
' system.
Sub -basin 105A includes the center portion of the site. The runoff from this area
' is conveyed to three area inlets (design points 5A-1, 5A-2 and 5A-3) via sheet
flow. The runoff is then routed to the regional detention pond via the northern
' storm system.
' Sub -basin 105B also includes the center portion of the site. The runoff generated
from this area either sheet flows to area inlets (design points 5B-5E) or is
conveyed via PVC pipe from the roof drains to the storm system located in the
eastern portion of the property. This flow eventually discharges into Regional
Detention Pond 488.
k
Runoff from Sub -basin 106, located in the northern portion of the site, is
conveyed to an on -grade inlet located at design point 6 via sheet flow and gutter
flow. The northern storm system will then pipe it to the regional detention pond.
Sub -basins 107 and 108 include the eastern portion of the site. Sub -basin 107's
runoff is conveyed via overland flow and gutter flow to design point 7 where it is
collected by a sump inlet and then piped into the regional detention pond via the
Final Drainage and Erosion Control Report
Settler's Creek
Page 4
March 2005
I
1
1
I
i
northern storm system. This inlet also captures major storm inlet overflow from
the on -grade inlet located at design point 6. Sub -basin 108's runoff, along with
sub -basin 103 and 104, is captured in the sump inlet at design point 8 and also
piped into the regional detention pond via the southern storm system. This inlet
also captures major storm inlet overflow from the on -grade inlet located at design
point 2. Any over flow of this inlet during the major storm event will flow to the
5' curb cut located near design point 8 and then to Regional Detention Pond 488.
The area in Sub -basin 109 includes the Regional Detention Pond 488. Please
refer to Section 4.5 for a description of Pond 488.
3.3 Hydrologic Analysis of the Proposed Drainage Conditions
The Rational Method was used to determine the 2-year, 10-year and 100-year peak runoff
values for each sub -basin. Runoff coefficients were assigned using Table 3-2 of the
SDDCCS Manual. The Rational Method is given by:
Q = CtCIA (1)
where Q is the maximum rate of runoff in cfs, A is the total area of the basin in acres, Cf
is the storm frequency adjustment factor, C is the runoff coefficient, and I is the rainfall
intensity in inches per hour for a storm duration equal to the time of concentration. The
frequency adjustment factor, Cr, is 1.0 for the initial 2-year and 10-year storm and 1.25
for the major 100-year storm. The runoff coefficient is dependent on land use or surface
characteristics.
The rainfall intensity is selected from Rainfall Intensity Duration Curves for the City of
Fort Collins (Figure 3.1 of SDDCCS). In order to utilize the Rainfall Intensity Duration
Curves, the time of concentration is required. The following equation is used to
determine the time of concentration
tt = ti + tt (2)
where t, is the time of concentration in minutes, ti is the initial or overland flow time in
minutes, and tr is the conveyance travel time in minutes. The initial or overland flow time
is calculated with the SDDCCS Manual equation:
Final Drainage and Erosion Control Report
Settler's Creek
Page 5
March 2005
I
1
C-
1
I
1
t
ti=[1.87(l.l-CCf)Lo.51/(s)0.33 (3)
where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the
average slope of the basin in percent, and C and Q are as defined previously.
In order to compute the peak Q at a junction where a confluence occurs, let QA, TA, IA
correspond to the tributary area with the longer time of concentration, and QB, TB, IB
correspond to the tributary area with the shorter time of concentration and Qp, Tp, Ip
correspond to the peak Q and time of concentration.
If the tributary areas have the same time of concentration, the tributary Q's are added
directly to obtain the combined peak Q.
QP=QA+QB TP=TA=TB
If the tributary areas have different times of concentration, the smaller of the tributary Q's
must be corrected as follows:
(1) The usual case is where the tributary area with the longer time of concentration has
the larger Q. In this case, the smaller Q is corrected by a ratio of the intensities and added
to the larger Q to obtain the combined peak Q. The tabling is then continued downstream
using the longer time of concentration.
QP = QA + QB * IA/IB Tp = TA
(2) In some cases, the tributary area with the shorter time of concentration has the larger
Q. In this case, the smaller Q is corrected by a ratio of the times of concentration and
added to the larger Q to obtain the combined peak Q. The tabling is then continued
downstream using the shorter time of concentration.
QP = QB + QA * TB/TA Tp = TB
All hydrologic calculations associated with the sub -basins shown on the attached drainage
plan are included in Appendix B of this report.
Final Drainage and Erosion Control Report
Settler's Creek
Page 6
March 2005
' 4. STORM WATER FACILITY DESIGN
4.1 Allowable Street Capacity
' Street and gutter depth was calculated using the computer program FlowMaster
developed by Haestad Methods, Inc. The 10-year storm was used as the minor (initial)
storm event and the 100-year storm was used as the major storm event for street capacity
calculations. During the initial storm, runoff was not allowed to overtop the top back of
curb for the private streets. During the major storm, the depth of water was restricted to
the minimum of either 18" or the depth at the flow line of the garages. See the street
capacity cross sections in Appendix C for more detailed information.
' 4.2 Inlet Sizing
Most inlets were sized using the computer program UDINLET that was developed by
' James C. Y. Guo of the University of Colorado at Denver. However, UDINLET is used
for inlets in streets. There are several area inlets designed for this development that are
not located in paved sections. These inlets were sized assuming the inlets act as an
' orifice. The open area of the Type C Area grated inlet was calculated and a maximum
head on the grate was found in order to determine the flows through the inlet. Computer
' output files for the inlet sizing are provided in Appendix D of this report. All inlets were
designed to intercept the 100-year peak flows with overflows cascading downward
' towards the regional detention facility. The cascading runoff shall not cause any point in
the parking area to be inundated more than 18 inches. All inlet locations are shown on
' the utility plans for the construction of this project. Inlet sizing calculations are located
in Appendix D.
' 4.3 Storm Sewer System
1
For the storm pipe design, the computer program StormCAD, developed by Haestad
Methods, Inc. was used. The software uses the rational method to route flows through the
pipe such that we do not assume that all inlets are peaking at the same time. The user
inputs the area of the tributary basin and its respective coefficient of runoff as well as the
time of concentration for the basin. The software is then given an IDF table to calculate
flows and route the flows through the pipe network.
StormCAD considers whether a storm pipe is under inlet or outlet control and if the flow
is uniform, varied, or pressurized and applies the appropriate equations (Manning's,
11
Final Drainage and Erosion Control Report
Settler's Creek
Page 7
March 2005
I
[]
t
1
Kutter's, Hazen -Williams, etc). StormCAD also takes into account tailwater effects and
hydraulic losses that are encountered in the storm structures.
StormCAD calculates the losses through an inlet or manhole by allowing the user to
assign a coefficient for the equation,
hL= K*(VZ/2g)
Where hL = headloss
K = headloss coefficient
V = average velocity (ft/s)
g = gravitational constant (32.2 ft/s2)
The storm pipe design was performed for the complete construction of the Settler's Creek
development and all calculations are provided in Appendix E of this report.
A flared end section and riprap is required at all storm system outfalls. During final
compliance, riprap has been sized according to the pipe size and the flow conditions at
the outlet. Guidelines from the "Urban Storm Drainage Criteria Manual" (UDFCD) will
be used to design the riprap outfalls.
4.4 Water Quality
Water quality improvements with extended detention water quality pond will be provided
for the proposed development. Even though it is not required, water quality capture
volume will be provided for the entire Harmony Centre site and was calculated using
methods outlined in the Urban Storm Drainage Criteria Manual. A drain time of the
brim -full capture volume of 40 hours was used. The 100-yr flood will be detained above
the water quality capture volume (WQCV) in the detention pond. Calculations for the
water quality capture volume are included in Appendix F.
4.5 Pond Description
All pond design was completed utilizing ModSwmm and EXTRAN for final compliance.
Currently, this Pond 488 (Harmony Centre Pond) is designed for detention only. For this
development, this pond is proposed to have water quality storage of 1.85 ac-ft at a water
surface elevation of about 5003.46 feet via a water quality outlet structure. It was
determined that Pond 488 requires a detention volume of about 11.24 ac-ft at a 100-yr
water surface elevation of about 5006.68 feet and a discharge rate of about 14.7cfs.
Final Drainage and Erosion Control Report
Settler's Creek
Page 8
March 2005
According to the current Harmony Centre and Pier Ponds EXTRAN model, the current
' release rate for Pond 488 is 14.7 cfs with a 100-yr water surface elevation of 5006.68 feet;
therefore, the release rate would remain unchanged and is therefore acceptable. Please
' refer to the models included in Appendices F and H.
' 5. ModSWMM AND EXTRAN
' A detailed hydraulic analysis of the Pier and Harmony Centre Detention Pond system was
performed for the McClellands Master Drainage Plan using the Extended Transport Block
' of the EPA's Storm Water Management Model (EXTRAN). The modeling used a three -
step process by first using ModSwmm to generate the hydrographs for input into
EXTRAN, secondly by using EXTRAN to model the two detention ponds of the Pier and
Harmony Centre Detention Pond system and thirdly by using ModSwmm with the
EXTRAN generated stage discharge relationships for the ponds. The McClellands
Master Drainage Plan EXTRAN analysis of the Harmony Centre Pond was performed for
two scenarios: (1) the currently proposed (interim) development condition, which
assumes the Settler's Creek and Goodwill properties as undeveloped (also called the
Marin West Property); and (2) a conceptual analysis of the fully -developed condition,
assuming commercial development of the Settler's Creek and Goodwill properties. The
' fully developed EXTRAN results showed that Pond 488 would not have sufficient
volume for the fully developed condition and that the most efficient use of the detention
1
r
for the fully developed condition would be to expand the storage capacity of Pond 488.
We have updated the ModSwmm percent imperviousness of basins 488 (Settler's Creek
Property) and 489 (Goodwill Property) to generate new hydrographs for input into
EXTRAN. We have also re -graded Pond 488 to expand the storage capacity and have
updated the area -depth data in the fully developed EXTRAN model. Finally, we have
updated the McClellands Master Drainage ModSwmm model with the new stage
discharge relationships generated by EXTRAN.
According to the updated EXTRAN results, Pond 488 would have a maximum 100-year
water surface elevation of 5006.68, corresponding to a detention volume of 11.24 ac-ft
and discharge of 14.7cfs.
Currently, the allowable pending elevation in the Pier Pond is 5003.7' with a
corresponding peak discharge of approximately 41 cfs, with 19.59cfs through the 2 1 " RCP
and 21.63cfs overflowing to Boardwalk for a total of 41cfs. As part of the proposed
Final Drainage and Erosion Control Report
Settler's Creek
Page 9
March 2005
design, the maximum water surface elevation in the Pier Pond would be 5003.7', which
' remains unchanged from existing conditions. The discharge through the existing 21-inch
RCP would be 19.31 cfs, while overflow onto Boardwalk would be 25.39 cfs for a total
11
r
of 44.8 cfs. Currently, the overflow at Boardwalk is at an elevation of 5003.62, which is
less than the maximum overtopping elevation of 5003.69. With the development of
Settler's Creek, the overflow elevation of Boardwalk would increase only 0.04' to
5003.66', which is less than the maximum overtopping elevation of 5003.69' and does
not exceed the maximum increase of 0.04' required by the City of Fort Collins. Please
refer to Appendix H for the existing condition EXTRAN and ModSwmm analysis of
Harmony Centre and Pier Condominiums Ponds and Appendix F for the updated
EXTRAN and ModSwmm analysis.
6. EROSION CONTROL
6.1 Erosion and Sediment Control Measures
Erosion and sedimentation will be controlled on -site by use of inlet filters, silt fences, and
gravel construction entrances. These measures are designed to limit the overall sediment
yield increase due to construction as required by the City of Fort Collins. A construction
schedule showing the overall period for construction activities, erosion control
effectiveness calculations and cost estimates have been included for final compliance.
Please refer to Appendix G for riprap calculations and erosion control calculations and
schedules.
The grading operation of Settler's Creek will occur at the beginning of the project
following demolition completion. The demolition portion of the project will take place in
month one as denoted in the construction sequence bar graph located in Appendix G.
Initially, before the grading operation takes place, clear and grub of the property shall take
place. During this time, silt fencing, soil roughing, vehicle tracking control and water
trucks shall be utilized. The regional pond shall be utilized as sediment trap by using a
gravel filter at the outlet until construction is complete.
Upon commencement of rough grading, approved seeding/mulching shall be planted in
' accordance with the approved landscape plan and will occur within 30 days unless
otherwise approved by the City Utility. As curb and gutter is built and inlets and storm
structures are constructed, inlet protection and riprap pads shall be constructed as shown
Final Drainage and Erosion Control Report
Settler's Creek
Page 10
March 2005
on the overall erosion control plan. Inlet protection may be removed once all
' improvements planned for that watershed are complete. Silt fence barriers and vehicle
tracking devices may only be removed once development is complete.
' 6.2 Dust Abatement
' During the performance of the work required by these specifications or any operations
appurtenant thereto, whether on right-of-way provided by the City or elsewhere, the
' contractor shall furnish all labor, equipment, materials, and means required. The
Contractor shall carry out proper efficient measures wherever and as necessary to reduce
' dust nuisance, and to prevent dust nuisance, which has originated from his operations
from damaging crops, orchards, cultivated fields, and dwellings, or causing nuisance to
persons. The Contractor will be held liable for any damage resulting from dust originating
' from his operations under these specifications on right-of-way or elsewhere.
6.3 Tracking Mud on City Streets
It is unlawful to track or cause to be tracked mud or other debris onto city streets or
' rights -of -way unless so ordered by the Director of Engineering in writing. Wherever
construction vehicles access routes or intersect paved public roads, provisions must be
' made to minimize the transport of sediment (mud) by runoff or vehicles tracking onto the
paved surface. Stabilized construction entrances are required per the detail shown in the
' Erosion Control details, with base material consisting of 6" coarse aggregate. The
contractor will be responsible for clearing mud tracked onto city streets on a daily basis.
6.4 Maintenance
Temporary and permanent erosion and sediment control practices must be maintained and
repaired as needed to assure continued performance of their intended function. Straw
bales, inlet protection and silt fences will require periodic replacement. Sediment traps
' (behind hay bale barriers) shall be cleaned when accumulated sediments equal about one-
half of trap storage capacity. Maintenance is the responsibility of the developer.
6.5 Permanent Stabilization
' All soils exposed during land disturbing activity (stripping, grading, utility installations,
stockpiling, filling, etc.) shall be kept in a roughened condition by ripping or disking
along land contours until mulch, vegetation or other permanent erosion control is
installed. No soils in areas outside project street rights of way shall remain exposed by
' Final Drainage and Erosion Control Report Page 11
Settler's Creek March 2005
t
t
1
land disturbing activity for more than thirty (30) days before required temporary or
permanent erosion control (e.g. seed/ mulch, landscaping, etc.) is installed, unless
otherwise approved by the Stormwater Utility. Vegetation shall not be considered
established until a ground cover is achieved which is demonstrated to be mature and
stable enough to control soil erosion as specified in paragraph 11.3.10 of the City of Fort
Collins Storm Drainage Construction Standards.
Final Drainage and Erosion Control Report
Settler's Creek
Page 12
March 2005
I
1
1 7. REFERENCES
1 1. "Storm Drainage Design Criteria and Construction Standards (SDDCCS)", May
1984, City of Fort Collins.
1 2. Urban Drainage and Flood Control District, "Urban Storm Drainage Criteria
Manual", Volumes 1 and 2, dated June 2001, and Volume 3, dated September
1992.
1 3. Lidstone & Anderson, Inc., "Hydrologic Update to the McClellands master
1 Drainage Plan (Lemay Avenue to Latimer County Canal No. 2) and Harmony
Centre Master Drainage Plan" October 1997.
4. Drexel Barrel] & Co, "Final Drainage Report for Harmony Centre" December
1 1997.
5. ICON Engineering, Inc., "McClellands Creek Drainage Master Plan Update Final
1 Report & Technical Appendix" November 2000 (Revised March 2003).
6. ICON Engineering, Inc., "McClellands Creek Drainage Master Plan Update
1 Selected Plan Report" April 2003.
i
1
1
1
i
1
1
1
i
Final Drainage and Erosion Control Report
Settler's Creek
Page 13
March 2005
I
1
1
1
1
' APPENDIX A
' MAPS AND FIGURES
11
I
1
' Final Drainage and Erosion Control Report Appendix
Settler's Creek March 2005
I
1
1
I
I
1
PROJECT
SITE
UTMAN PK
EAST TR
PAVILLION
r
LN 3
�
N
Y
d
W
Y
>
0
F—
N
EAST HARMONY
ROAD
Q
W
y
Y
J
Q
Q
r
q
C NCR
0
Q
W
J
O
m
O
N
VICINITY
MAP
N.T.S
VICINITY MAP
SETTLER'S CREEK
39402.00
AUGUST 24, 2004
SHEET 01 OF 01
J•R ENGINEERING
A Wntrbn Cmpany
2620 W Rcsped Rvd SA 190• Fort WM 00 WO
970-491-m. Fac 970-A91-99B0 a
I
I
1
1
1
1
1
Soils Map
Soil Survey of Larimer County Area, Colorado
United States Department of Agriculture
Soil Conservation Service and Forest Service
December 1980
LARIMER COUNTY AREA, COLORADO
23
4/3) moist; moderate coarse subangular
blocky structure; very hard, friable;
thin nearly continuous clay films on ped
faces; mildly alkaline; clear wavy
boundary.
133ca-17 to 21 inches; light yellowish brown
(10YR 6/4) loam, yellowish brown
(10YR 5/4) moist; weak coarse suban-
gular blocky structure; slightly hard,
very friable; few thin patchy clay films
on ped faces; violently effervescent; cal-
cium carbonate as soft nodules; moder-
ately alkaline; clear wavy boundary.
Clca-21 to 31 inches; light yellowish brown
(10YR 6/4) loam, dark yellowish brown
(10YR 4/4) moist; massive; slightly
hard, very friable; violently efferves-
cent; calcium carbonate as soft nodules;
moderately alkaline; clear smooth
boundary.
C2-31 to 60 inches; yellowish brown (10YR 5/4)
loam, dark yellowish brown (10YR 4/4)
moist; massive; hard, friable; strongly
effervescent; moderately alkaline.
The solum ranges from 15 to 30 inches in thickness.
Reaction ranges from neutral to moderately alkaline.
The A horizon is loam or light clay loam 3 to 9 inches
thick. The B2 horizon is heavy loam or light clay loam.
Granitic material is below a depth of 40 inches in some
profiles.
31—Farnuf loam, 2 to 10 percent slopes. This nearly
level to strongly sloping soil is in valley fills and on side
slopes. This soil has the profile described as represen-
tative of the series.
Included with this soil in mapping are some small
areas of Rock outcrop and small areas of soils that are
similar to Farnuf soil but in which granite bedrock is
at a depth of less than 40 inches.
Runoff is moderate, and the hazard of erosion is
moderate.
This soil is suited to pasture and native grasses.
Capability unit VIe-6, dryland; Loamy Park range
site; not assigned to a windbreak suitability group.
32—Farnuf-Boyle-Rock outcrop complex, 10 to 25
percent slopes. This moderately steep soil is on ridges
and valleysides. It is about 40 percent Farnuf loam,
about 30 percent Boyle gravelly sandy loam, and about
20 percent Rock outcrop. Farnuf loam is lower and
more nearly level, Boyle gravelly sandy loam is higher
and on ridges, and Rock outcrop is commonly steeper
but is scattered throughout. The Farnuf soil has a pro-
file similar to the one described as representative of
the Farnuf series, but the combined thickness of the
surface layer and subsoil is about 18 inches. The Boyle
soil has a profile similar to the one described as rep-
resentative of the Boyle series.
Included with this complex in mapping is about 10
Percent areas of Breece soils and areas of soils that are
similar to Farnuf soil but in which granite bedrock is
at a depth of less than 40 inches.
Runoff is rapid, and the hazard of erosion is severe.
This soil is suited to native grasses. It is also used
for wildlife habitat. Capability unit VIe-5, dryland;
Farnuf soil in Loamy Park range site, Boyle soil in
Rocky Loam range site, and Rock outcrop not assigned
to a range site; not assigned to a windbreak suitability
group.
Fluvaquents, Nearly Level
33—Fluvaquents, nearly level. This soil is on flood
plains, low terraces, and bottom lands. The surface
and underlying layers are extremely variable, range
from sandy loam to clay loam, and are commonly
stratified with thin layers of sand or clay. In places
the underlying material is sand and gravel. A water
table is commonly at a depth of less than 12 inches at
some time during spring and summer, and the soil is
also flooded occasionally during spring and summer.
Drainage is impractical or impossible because of a
lack of suitable outlets.
Runoff is slight. The hazard of erosion is slight,
although there is some cutting on areas near stream
channels in places.
This soil is suited to pasture or native grasses. A
few areas are used for hay. Capability unit Vw-1, dry -
land; Wet Meadow range site; windbreak suitability
group 5.
Fort Collins Series
The Fort Collins series consists of deep, well drained
soils that formed in alluvium. These soils are on ter-
races and fans. Elevation ranges from 4,800 to 5,500
feet. Slopes are 0 to 9 percent. The native vegetation
is mainly blue grama and western wheatgrass and
some forbs and shrubs. Mean annual precipitation
ranges from 13 to 15 inches, mean annual air tem-
perature ranges from 48' to 50' F, and the frost -free
season ranges from 135 to 150 days.
In a representative profile the surface layer is light
brownish gray loam about 5 inches thick. The subsoil
is light brownish gray, brown, and pale brown loam
about 19 inches thick. The underlying material is pale
brown loam.
Permeability is moderate, and the available water
capacity is high. Reaction is neutral above a depth of
about 8 inches, mildly alkaline between depths of 8
and 18 inches, and moderately alkaline below a depth
of 18 inches.
These soils are used for irrigated and dryfarmed
crops and pasture.
Representative profile of Fort Collins loam, 0 to 1
percent slopes, in native grass, approximately 1 block
north of LaPorte Avenue on North Shields Street and
500 feet west of North Shields Street in sec. 11, T. 7
N., R. 69 W.:
A1-0 to 5 inches; light brownish gray (10YR
6/2) loam, dark grayish brown (10YR
4/2) moist; moderate fine granular
structure; soft, very friable; noncalcare-
ous; neutral; clear smooth boundary.
Bl-5 to 8 inches, light brownish gray (10YR
6/2) loam, dark grayish brown (10YR
4/2) moist; moderate fine subangular
blocky structure parting to fine granu-
lar; hard, very friable; few patchy clay
[]
24 SOIL SURVEY
films on peds; noncalcareous; neutral;
inches thick. The combined thickness of the A and B
clear smooth boundary.
horizons is 15 to 30 inches. The B2 horizon is loam to
132-8 to 18 inches; brown (10YR 5/3) heavy
light clay loam.
loam, dark brown (10YR 4/3) moist;
34—Fort Collins loam, 0 to 1 percent slopes. This
moderate medium prismatic structure
level soil is on terraces and fans. This soil has the
parting to moderate fine subangular
profile described as representative of the series.
blocky; very hard, very friable; many
Included with this soil in mapping are a few small
thin patchy clay films on peds and in
areas of soils that are more sloping. Also included are
root channels and pores; noncalcareous;
small areas of soils that have a surface layer of clay
mildly alkaline; gradual smooth bound-
loam and small areas of Stoneham soils.
ary.
Runoff is slow, and the hazard of erosion is slight.
133ca-18 to 24 inches; pale brown (10YR 6/3)
If irrigated (fig. 5), this soil is well suited to corn,
loam, brown (10YR 5/3) moist; weak
sugar beets, alfalfa, barley, and dry beans. Under dry -
medium subangular blocky structure;
land management it is suited to wheat and barley. It
hard, very friable; few thin patchy clay
is also well suited to pasture and native grasses. Capa-
films on peds and in some root channels;
bility unit I, irrigated; Loamy Plains range site;
some visible secondary calcium carbon-
windbreak suitability group 1.
ate occurring mostly as concretions; cal- --I.35—Fort Collins loam, 1 to 3 percent slopes. This
careous; moderately alkaline; gradual
smooth boundary.
nearly level soil is on terraces and fans. This soil has a
Cca-24 to 60 inches; pale brown (10YR 6/3)
profile similar to the one described as representative
loam, brown (lOYia 5/3) moist;
of the series, but the combined thickness of the surface
cmas-alcium
sire; hard, very friable; visible calcium
layer and subsoil is about 22 inches.
Included
carbonate occurring as concretions and
with this soil in mapping are a few small
pp g
in thin seams and streaks; calcareous.
areas of soils that are more sloping or less sloping. Also
moderately alkaline; gradual smooth
included are some small areas of Stoneham and Kim
boundary.
soils and a few small areas of soils that have a gravelly
The A horizon is loam or light clay loam 5 to 13
layer below a depth of 40 inches.
Figure 5. Furrow irrigation on Fort Collins loam, 0 to 1 percent slopes.
LARIMER COUNTY
i Runoff is slow, and the hazards of wind and water
erosion are slight to moderate.
If irrigated, this soil is well suited to corn, sugar
,.tbeets, alfalfa, barley, and dry beans. Under dryland
management it is suited to wheat and barley. It is also
well suited to pasture and native grasses. Capability
units IIe-1, irrigated, and IVe-3, dryland; Loamy
Plains range site; windbreak suitability group 1.
36—Fort Collins loam, 3 to 5 percent slopes. This
gently sloping soil is on the edges of terraces and fans.
This soil has a profile similar to the one described as
representative of the series, but the combined thick-
ness of the surface layer and subsoil is about 20 inches.
Included with this soil in mapping are a few areas
of soils that are more sloping or less sloping. Also in-
cluded are small areas of Stoneham and Kim soils and
'a few areas of soils that have a gravelly surface layer.
Runoff is moderate, and the hazards of wind and
water erosion are moderate.
If irrigated, this soil is suited to corn, barley, and
alfalfa and, to a lesser extent, sugar beets and dry
beans. Under dryland management it is suited to
wheat and barley. It is also well suited to pasture and
native grasses. Capability units IIIe-2, irrigated, and
'IVe-3, dryland; Loamy Plains range site; windbreak
suitability group 1.
37—Fort Collins loam, 5 to 9 percent slopes. This
strongly sloping soil is on terrace edges and the steeper
!'part of fans. This soil has a profile similar to the one
described as representative of the series, but the com-
bined thickness of the surface layer and subsoil is
..about 18 inches.
Included with this soil in mapping are a few small
areas of soils that are more sloping or less sloping and
a few small areas of soils that have a gravelly surface
layer. Also included are small areas of Larimer,
1' Stoneham, and Kim soils.
Runoff is rapid, and the hazards of wind and water
erosion are severe.
If irrigated, this soil is suited to alfalfa and barley
'and other small grain or pasture. It is suited to pasture
or native grasses under dryland management. Capa-
bility units IVe-1, irrigated, and VIe-1, dryland;
Loamy Plains range site; windbreak suitability
'. group 1.
Foxcreek Series
The Foxcreek series consists of deep, poorly drained
soils that formed in alluvium. These soils are on low
terraces and bottom lands and are underlain by sand
and gravel at a depth of 20 to 40 inches. Elevation
ranges from 7,800 to 8,800 feet. Slopes are 0 to 3
percent. The native vegetation is mainly timothy, red -
top, sedges, and other water -tolerant grasses. Mean
annual precipitation ranges from 12 to 16 inches,
mean annual air temperature ranges from 42' to 46'
F, and the frost -free season ranges from 60 to 85 days.
In a representative profile a 1-inch-thick layer of
organic material is on the surface. The surface layer
is mottled dark brown loam about 5 inches thick. The
subsoil is mottled dark grayish brown or brown silty
clay loam about 17 inches thick. The underlying ma-
terial is mottled brown sandy clay loam about 14
;inches thick over sand and gravel.
AREA,COLORADO
25
Permeability is moderate above a depth of about 36
inches and very rapid below that depth. The available
water capacity is medium to high. Reaction is slightly
acid above a depth of about 22 inches and neutral
below that depth.
These soils are mainly used for irrigated hay.
Representative profile of Foxcreek loam, 0 to 3 per-
cent slopes, in irrigated hayland, 400 feet south of
Hohnholtz Lake Road, west of the Laramie River in
sec. 7, T. 11 N., R. 67 W.:
0-1 inch to 0; undecomposed and partly decom-
posed organic material.
Alg-0 to 5 inches; dark brown (7.5YR 3/2)
loam, dark brown (7.5YR 3/2) moist;
common fine distinct dark reddish brown
(2.5YR 3/4) mottles; weak moderate
subangular blocky structure; hard, fri-
able; slightly acid; clear smooth bound-
ary.
B2g-5 to 17 inches; dark grayish brown (10YR
4/2) silty clay loam, very dark grayish
brown (10YR 3/2) moist; common me-
dium distinct red (2.5YR 4/6) mottles;
weak medium subangular and angular
blocky structure; hard, friable; slightly
acid; clear smooth boundary.
B3g-17 to 22 inches; brown (10YR 4/3) silty
clay loam, brown (10YR 4/3) moist;
common fine distinct yellowish red (5YR
4/6) mottles; weak to moderate medium
subangular blocky structure; very hard,
firm; slightly acid; clear smooth bound-
ary.
Clg-22 to 36 inches; brown (10YR 5/3) sandy
clay loam, brown (10YR 4/3) moist;
common medium distinct yellowish red
(5YR 4/6) mottles; massive; hard, fri-
able; neutral; clear smooth boundary.
IIC2cag-36 to 60 inches; sand and gravel; very
slightly effervescent; calcium carbonate
on underside of pebbles.
The A horizon is loam, clay loam, or silty clay loam
3 to 8 inches thick. It is slightly acid to neutral. The
Bg horizon is loam, light clay loam, or silty clay loam.
It is slightly acid to neutral. The C and IIC horizons
are generally neutral or mildly alkaline. The IIC hori-
zon is very slightly effervescent to strongly efferves-
cent and weak accumulations of calcium carbonate are
mainly on the underside of pebbles.
38—Foxcreek loam, 0 to 3 percent slopes. This
nearly level soil is on low terraces and bottom lands.
Included with this soil in mapping are a few small
areas of Blackwell and Newfork soils. Also included
are a few small areas of soils that have a cobbly and
stony surface layer.
Runoff is slow, and the hazard of water erosion is
slight.
If irrigated, this soil is suited to hay and meadow.
It is also suited to pasture or native grasses. Capability
unit VIw-1, irrigated; Mountain Meadow range site;
not assigned to a windbreak suitability group.
Gapo Series
The Gapo series consists of deep, poorly drained
LARIMER COUNTY AREA, COLORADO
TABLE 8—Soil and eater features —Continued
131
Soil name and
map symbol
Hydro-
logic
Flooding
Depth to
seasonal
high
Bedrock
Potential
frost
group
Frequency
Duration
Months
water table
Depth
Hardness
action
Feet
Inches
Elbeth:
•30:
Elbeth part --------
B
None --------
-------------
--------------
>6.0
>60
-----------
Moderate.
Moen part _________
C
None ______________________
______________
>6.0
20-40
Hard _____
Moderate.
Farnuf:
31 ------------------
•32:
B
None --------
-------------
-------------
>6.0
>60
-----------
Moderate.
Farnuf part ________
B
None ______________________
______________
>6.0
>60
___________
Moderate.
Boyle part _________
D
None ________
______________
______________
>6.0
0-20
Rippable able __
Moderate.
Rock outcrop part.
luvaquents:
33 ___________________
________
Frequent ____
Brief _______
April -June ___
0.5-25
>60
___________
Low.
Collins:
34, 35, 36, 37
O
None
Kort
__________
______________________
______________
>6.0
>60
___________
Moderate.
oxcreek:
38 ___________________
C
Rare ________
Brief _______
April -May ___
0-0.5
>60
___________
High.
�apo:
39 -------------------
D
None ----------------------
-------------
3.0
>60
----------
High.
Garrett:
40 ___________________
B
Rare ________
Very brief ___
--------------
>6.0
>60
___________
Moderate.
41 -------------------
B
None ---------------------
--------------
>6.0
>60
-----------
Moderate.
ravel pits:
42.
aploborolls:
'43:
Haploborolls part ---
-------
None --------
--------------
-------------
>6.0
----------
---------
Rock outcrop part.
Faplustolls:
44 ___________________
________
None ________
______________
______________
>6.0
__________
___________
'45:
Haplustolls part ----
--------
None -------
-------------
--------------
>6.0
----------
----------
Rock outcrop part.
arlan:
46. 47 -------------
B
None --------
------------
------------
>6.0
>60
---------
Moderate.
�eldt:
49. 49 ----------------
C
None --------
--------------
---"---------
>6.0
>60
-----'--'--
Moderate.
Keith:
50 ----------------
ildor:
B
None _____—-
__________--
—
_ -------------
>6.0
>60
----_____
Moderate.
51 _________------
C
None ______________________
_ -------------
>6.0
20-40
Rippable __
High.
t 'S2:
Kildor part ________
C
None --------
--------------
--------------
>6.0
20-40
Rippable __
High.
Shale outcrop part.
Kim:
54, 55 _____________
B
None ________
______________
______________
>6.0
>60
___________
Moderate.
'13,
'56:
Kim part __________
B
None ______________________
______
_ _______
>6.0
>60
___________
Moderate.
Thedalund part _____
C
None ______________________
______________
>6.0
20-40
Rippable __
Moderate.
irtley:
S7___________________
C
None ______________________
--------------
>6.0
20-40
Rippable __
Moderate.
i
I
1
I APPENDIX B
I'
1
t
1
1
HYDROLOGIC CALCULATIONS
Final Drainage and Erosion Control Report Appendix
Settler's Creek March 2005
I
1
11
W
'
J
m
Q
1
CC�
C
W
CD
a
'
Q
1
s
O w
U
Q
N
M
Cl
M
r
N
W
N
N
m
M
N
W
Q
Q
N
O
Q
N
r
.-
d
O
w
M.
Q
W
CO
W
N
I�
Q
O
o c
.E
o
W
rn
o
0
o
W
W
0
0
0
0
0
0
c
co
w
�ci
ui
Sri
u-i
vi
r
iri
�ri
ui
ui
ui
C6
u
s
.E
-
r
ai
6
6
6
o
ui
vi
w
N
N
O
OWi
Q
aOD
0
0
ONi
a
0
a
O
O
O
�
O
Z
O
•-
�
O
Z
Z
O
fi
o
e
v
n
n
m
a
ano
W�
W
Q�
Q
o
U
o
0
0
0
o
Z
o
0
0
o
Z
o
Z
o
U
o
0
0
0
o
Z
o
0
0
o
Z
o
Z
d
W
~ N
O
O
C
C
0
LL
M<
W
m
N
1
n
1
JR Engineering
2620 E. Prospect Rd., Ste. 190
Fort Collins, CO 8525
RUNOFF COEFFICIENTS & % IMPERVIOUS
LOCATION: Settler's Creek
PROJECT NO: 39402.00
COMPUTATIONS BY: es
DATE: 9/13/2004
Recommended Runoff Coefficients from Table 3-3 of City of Fort Collins Design Criteria
Recommended % Impervious from Urban Storm Drainage Criteria Manual
' Streets, parking lots (asphalt):
Sidewalks (concrete):
Roofs:
Lawns (flat <2%, sandy soil):
L
Runoff
%
coefficient
Impervious
C
0.95
100
0.95
96
0.95
90
0.10
0
SUBBASIN
DESIGNATION
TOTAL
AREA
(ac.)
TOTAL
AREA
(sq.ft)
ROOF
AREA
(sq.fq
PAVED
AREA
(sq.Iq
SIDEWALK
AREA
(sq.fp
LANDSCAPE
AREA
(sq.ft)
RUNOFF
COEFF.
(C)
%
Impervious
100
0.28
12,087
0
4,039
882
7,166
0.45
40
101
0.74
32,402
13,361
0
1,463
17,577
0.49
41
102
1.61
69,999
22,991
19,294
7,979
19,736
0.71
68
103
1.42
61,754
17,830
24,057
2,757
17,111
0.71
69
104
0.60
26,182
2,420
20,342
120
3,300
0.84
86
105A
1.47
63,985
15,251
0
1,968
46,766
0.33
24
1059
0.68
29,729
16,334
0
2.792
10,603
0.65
58
106
2.15
93.850
31,565
37,906
5,933
18,426
0.78
77
107
0.57
24,788
8,965
8,693
1,532
5,577
0.76
74
108
0.79
34,407
12,580
10,789
5,656
5,382
0.82
80
109
3.01
131,042
0
0
0
131,042
0.10
0
' Equations
Calculated C coefficients & % Impervious are area weighted
C=7(Ci Ai) /At
Ci = runoff coefficient for specific area, Ai
Ai = areas of surface with runoff coefficient of Ci
n = number of different surfaces to consider
At = total area over which C is applicable; the sum of all Ai's
1
' 3940200(low.zls
' w
N
1
1
Q
N
N Z
W
O Z
00
QU
m LL
�0
m LU
F
u
N
d
y O p O
U P
!n t+1 N G1
II
U
z �
E
LL
0 = m
in
E
II
m
m
U
m
y N
U
J
O
N
n1
O
u)
m
Q
1�
O
Omi
a
COi
a
N
Z
= Q
N Z N
V
m
Z
b
m
Cl
N
Z
N
Z
O
m
U m
F._.
u �
Z
m
Z
m
U y
Z
Z
m
O
LL
z
>'s—
a
U
a
b
b
b
b
b
Q
b
b
b
b
a
b
Q
b
Z
Z
Z
m
O
<<
O
O
O
O
O
C
C
O
O
O
O
W
m`v
w
pT
Z
Z
N
N
O
a
J v v
C
m
T
b
t'J
(V
Z
N
Z
V
E `=
O
01
O�
b
O
a
l
N
b
O
a
O
a
O
NONZN
Z
N
N
4
a
t2
m
N
a
2
oo
o
N
a
N¢
b
F.
Z
N
Z
z
Z
�' E, e
a
J v
J
m
w
V
Q
m
n
lD
F
m
n
m
0^
O
O
O
O
O
Z
O
O
C
o
Z
O
Z
O
E �
zF
N
1�
m
V
fp
O
V
m
m
N
O
+
n
-
m
O
N U
.
0
.
0
�
�-
O
N
T
O
lV
O
(V
O
(V
m
m
O
Z
a
m
ao
O
O
m
�
m
o
Z
z
N
a
y
a
N
m
O
m
N
m
m
h
CI
m
m
T
m
O
w LL
m
N 0
n
d N
d
N �
N
d O
N 0
0
Z
IO
m
m n
O
n N
m YI
N m
=
E
LL
m
Ti
p
Y pwj
w
N
g
m¢
n
m
m v�
Q m
Q N
Z m
O v N
par
u �
li =,_,
n.-m�d
vi
Zlno
n a3m3m
u i `
m
m n¢
n¢
LL
w
m
m
m¢-
-
m
N
(V (V
lV
tV
tV
N N
3 N
(V
;
Tim
i
m
m
m
m m
'o
m¢
m
m
m m¢
`
m
Q m
g P
o
o
0
0
3 ...
0
3 0
3 0`
p
W
p
O e m
w
w
wpm
J
F =
d
m
m N
m¢
m
m
m m
a¢
n
O
m
m m
O¢
l7
.m
O
Q O
a O
(VONN2NNONZN�N
V1
y
y� ry
G
y�
C
5
€_E
d—
w
Q
¢
a
Q
F W
C
G
C O
C
O
O
O O
O
C
Z
w H
Nnd
loam
2i
m�v^ionmo
¢
O
O-
--
O
N �
O
N O
N O
N m
m
m
m _
_
N o
o__
m
N
2
J a
WO d
m
mp
m
U
m
m
z
z
0
OZ Q
Z
O F F
F EU(
y
u 0 2
o
O a 0
o
o
m
m
o
0
o
m
m
o
0
0
0
0
0
m
A
N
IN
N
N
N
1�
�
1n
N
N
IN
m
J
z °
~
E
LL
y
� E
m
ti
w
pp
¢
o
¢
N
W Z
0
`.
U ¢
F
u �
o
m
m
n
o¢
m
m
N
m¢
a¢
o
II L
m
m
N
a
a
3
N
r
d
N
N
m
U � �
N
m
C O
fro
m
m
Z
(d�j
p
L E v
O
N
N
t'1
m<
m
m
N
J
LL
_
v
>vm
Q
m
L
00
0
0
0
0
0
0
0
0
0
p
C m
m
o
0
0
0
0
0
0
0
0
0
0
m
W
o'
-
0
0
0
O¢
O
N vv
W
m
r
Y
C
MM
N
N
jL
M
Z
Z
d
w
c?n
m
J
F Z
m
r
N
r
Co
a E m
o
m
m
m
o¢
m
N
N
o
Q
o¢
o
N
N
N
O a
m
d
N
N
N
d
Q
m
pp
N
N
Q
N
Q
O
L
d
d
N
m
N
m
N
d
N
Z
N
Z
c_ a
J
n
m
o
m
m
m
O
o
m
0
0.
o
z
o
o
o
o
z
o
z
0
ZQ
U
..
J
U
w
v
am
¢
a
o
0
v
n
n
n
m
m
�
Z
m
z
J=
O
O
O
p
O
0
0
0
0
O
0
F �
zF
an
N
d
r
m
N
a
O
m
N
O
r
d
m^
m
r
N
N
O
m
r
m
O
N
O
Z
a
a
m
o
0
0
00
m
0
0
0
0
o
0
0
N
o
z
W
N
Fcw-,o
N
m
a
N
m rU'
a
0
C O e
E E
2 '
E
3
0
0
N
0
JR Engineering
2620 E. Prospect Rd., Ste- 190
Fort Collins, CO 80525
RATIONAL METHOD PEAK RUNOFF
(City of Fort Collins, 2-Yr Storm)
LOCATION: Settler's Creek
PROJECT NO: 39402.00
COMPUTATIONS BY: cs
DATE: 9/ 13/2004
2 yr storm, Cf = 1.00
DIRECT RUNOFF
CARRY OVER
TOTAL
REMARKS
Design
Point
Tributary
Sub -basin
A
Ise)
C Cf
tc
(min)
1
(iNhr)
0 (2)
(CIS)
from
Design
Point
0 (2)
(CIS)
0(2)tot
(CIS)
1G
100
0.28
0.45
7.1
2.52
0.3
0.3
On -grade Inlet
1A-lF
101
0.74
0.49
11.7
2,08
03
0.8
Area Inlets
2
102
1.64
0.74
8A
2.38
2.7
2.7
On -grade Inlet
3
103
1.42
0.71
7.0
2.53
2.6
2.6
4
104
0.60
0A4
5.0
2.80
1.4
1 1.4
3
103+104
2.02
1 N/A
1 7.0
2.53
1 N/A
3.8
5A
105A
1.47
0.78
7.1
2.52
2.9
2.9
Area Inlet
5B-5E
105B
0.68
0.76
10.2
2.20
1.1
1A
Area Inlets
6
106
2.15
0.82
7.4
2A8
4.4
4A
7
107
0.57
0.76
5.0
2.85
1.2
1.2
3
103+104
2.02
N/A
7.0
2.53
N/A
3.8
8
108
0.79
0.82
5.0
2.85
1.8
1.8
8
(103+104)+108
2.81
N/A
5.0
2.85
N/A
5.5
Sump Inlet
9
109
3.01
0.10
8.1
2.41
0.7
0.7
Pond 488
O=C,CiA
0 = peak discharge (cfs)
C = runoff coefficient
C, = frequency adjustment factor
i = rainfall intensity (in/hr) from City of Fort Collins IDF curve (4/16199)
A = drainage area (acres) I = 24.2211 (10+ lc)o.r
3940200tiow.xls
JR Engineering
2620 E. Prospect Rd., Ste. 190
Fort Collins, CO 80525
RATIONAL METHOD PEAK RUNOFF
(City of Fort Collins, 10-Yr Storm)
LOCATION: Settler's Creek
PROJECT NO: 39402.00
COMPUTATIONS BY: es
DATE: 9/13/2004
10yrstorm, Cf= 1.00
DIRECT RUNOFF
CARRYOVER
TOTAL
REMARKS
Design
Point
Tributary
Sub -basin
A
(ac)
CCf
tc
(min)
i
(Whr)
Q(10)
(cfs)
from
Design
Point
Q(10)
(cfs)
Q(10)tot
(cfs)
1G
100
0.28
OAS
7.1
4.31
0.5
0.5
On -grade Inlet
IA-1F
101
0.74
0,49
11.7
3.56
1.3
1.3
Area Inlets
2
102
1.61
0,71
8,4
4.06
4.6
4.6
On -grade Inlet
3
103
1.42
0.71
6.2
4.50
4.6
2
0.84
5.4
4
1 104
0.60
0,84
5.4
4.67
2.4
1 2.4
3
103-104
2.02
N/A
6.2
4.50
N/A
T7
5A
105A
1.47
0.78
7.1
4.30
4.9
4.9
Area Inlet
SME
1058
0.68
0.76
10.2
3.77
2.0
2.0
Area Inlets
6
106
2.15
0.82
7.4
4.24
1 7.5
7.5
7
107
0.57
0.76
5.0
4.87
2.1
2.1
3
103+104
2,02
N/A
6.2
4.50
N/A
7.7
8
108
0.79
0,82
5.0
4.87
3.1
3.1
8
(103+104)+108
2.81
N/A
5.0
4.87
N/A
10.6
Sump Inlet
9
109
3.01
0,10
8A
4.11
1.2
1.2
Pond 488
Q=C,CiA
Q = peak discharge (cfs)
C = runoff coefficient
Cf = frequency adjustment factor
i = rainfall intensity (in/hr) from City of Fort Collins OF curve (4/16/99)
A= drainage area (acres) i=41+44/(10+tty01s'4
3940200flow.xls
1
1
1
1
1
1
1
t
JR Engineering
2620 E. Prospect Rd., Ste. 190
Fort Collins, CO 80525
RATIONAL METHOD PEAK RUNOFF
(City of Fort Collins, 100-Yr Storm)
LOCATION: Settlers Creek
PROJECT NO: 39402.00
COMPUTATIONS BY: es
DATE: 9/13/2004
100 yr storm, CIF = 1.25
DIRECT RUNOFF
CARRY OVER
TOTAL
REMARKS
Des.
Point
Area
Design.
A
(ac)
C Cf
tc
(min)
i
(iNhr)
Q if 00)
(cfs)
from
Design
Point
Q (100)
(cfs)
Q(100)tot
(cfs)
1G
100
0.28
0.56
6.0
9.28
1.4
1.4
On -grade Inlet
tAAF
101
0,74
0.61
9.8
7.83
3.6
3.6
Area Inlets
2
102
1.61
0.89
5.9
9.35
13.3
13.3
On -grade Inlet
3
103
1 42
1.00
5.0
9.95
14.1
2, SA
14.6
28.7
4
104
0.60
0,98
5.0
1 9.95
5.9
5.9
3
103-104
2,02
N/A
5.0
9.95
N/A
34.5
5A
105A
1.47
0.89
5.8
9.35
12.3
12,3
Area Inlet
5B-5E
105E
0,68
1.00
7.8
8.53
5.8
5.8
Area Inlets
6
106
2,15
1.00
5.0
9.95
21.4
21.4
7
107
0.57
0.95
5,0
9.95
SA
5.4
3
103-104
2,02
N/A
5.0
9.95
N/A
34.5
8
108
079
1.00
5.0
9.95
7.9
7.9
8
(103-104)+108
281
N/A
5.0
9.95
N/A
42A
Sump Inlet
9
109
3.01
0.13
8.0
8.44
3.2
T
3.2 IPond
488
U = c w u = peak oiscnarge (cis) U = runoff coetriaent
i = rainfall intensity (iNhr) from City of Fort Collins OF curve (4/16/99)
3940200flow.As
A = drainage area (acres)
i = 84.682 / (10a tc)' ""
I
I
' APPENDIX C
' STREET CROSS SECTIONS
I
I
I
1
1
Final Drainage and Erosion Control Report Appendix
' Settler's Creek March 2005
Cross Section A Major Storm (100-yr)
Worksheet for Irregular Channel
Project Description
Worksheet Cross Section A Major Storm (100-yr)
Flow Element Irregular Channel
Method Manning's Formula
Solve For Channel Depth
Input Data
Channel Slope 0.008000 ft/ft
Discharge 13.30 cts
Options
Current Roughness Method Improved Lotters Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Metho, Horton's Method
Results
Mannings Coefficient
0.016
Water Surface Elevation
0.48 ft
Elevation Range
0.00 to 1.11
Flow Area
4.5 ft-
Wetted Perimeter
21.64 ft
Top Width
21.43 ft
Actual Depth
0.48 It
Critical Elevation
0.50 ft
Critical Slope
0.006244 ft/ft
Velocity
2.93 ft/s
Velocity Head
0.13 ft
Specific Energy
0.62 ft
Froude Number
1.12
Flow Type
Supercritical
Roughness Segments
Start End
Mannings
Station Station
Coefficient
-0+00.5 0+24.5
0.016
Natural Channel Points
Station Elevation
(ft) (tt)
-0+00.5 0.50
0+00.0 0.00
0+01.0 0.08
0+12.0 0.30
0+23.0 0.52
0+24.0 0.61
0+24.5 1.11
Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 [7.0005[
11/16/04 11:29:46 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Cross Section A Major Storm (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cross Section A Major Storm (100-yr)
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.016
Channel Slope
0.008000 Wit
Water Surface Elevation
0.48 it
Elevation Range _
0.00 to 1.11
Discharge
13.30 cfs
1.20
1.00
0.80
0.60
0.40
0.20
0.00
-0+05.0 0+00.0 0+05.0 0+10.0 0+15.0 0+20.0
0+25.0
V:10.01�1
HA
11TS
Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmaster\streetcap.lm2 JR Engineering FlowMaster v7.0 [7.0005)
11/18/04 11+29+51 AM ®Haeslad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Cross Section B Major Storm (100-yr)
' Worksheet for Irregular Channel
' Project Description
Worksheet Cross Section B Major Storm (100-yr)
Flow Element Irregular Channel
' Method Manning's Formula
Solve For Channel Depth
Input Data
Channel Slope 0.005000 ft/ft
Discharge 28.70 cfs
' Options
Current Roughness Method Improved Lotters Method
Open Channel Weighting Method Improved Lotter's Method
' Closed Channel Weighting Metho Horton's Method
Results
Mannings Coefficient 0.016
Water Surface Elevation 0.53 it
Elevation Range 0.00 to 0.97
' Flow Area 10.7 ft2
Wetted Perimeter 40.62 It
Top Width 40.57 ft
Actual Depth 0.53 ft
Critical Elevation 0.52 ft
Critical Slope 0.005908 ttift
Velocity 2.69 ft/s
' Velocity Head 0.11 ft
Specific Energy 0.65 ft
Froude Number 0.93
Flow Type Subcritical
Roughness Segments
Start End Mannings
Station Station Coefficient
-0+26.0 0+17.5 0.016
' Natural Channel Points
Station Elevation
(tt) (ft)
'-0+26.0 0.56
-0+12.0 0.30
-0+01.0 0.08
' 0+00.0 0.00
0+01.0 0.08
0+16.0 0.38
0+17.0 0.47
0+17.5 0.97
' Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 [7.0005]
11/22/04 01:02:57 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Cross Section B Major Storm (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Crass Section 6 Major Storm (100-yr)
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.016
Channel Slope
0.005000 Wit
Water Surface Elevation
0.53 ft
Elevation Range
0.00 to 0.97
Discharge
28.70 cis
1.00
0.80
0.60
0.40
0.20
0.00
-0+30.0 -0+25.0 -0+20.0 -0+15.0-0+10.0-0+05.0 0+00.0 0+05.0 0+10.0 0+15.0 0+20.0
V: 10.0�
H:1
NTS
Project Engineer: JR Engineering
z:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 (7.00051
11/22/04 01:03:03 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
LJI
Cross Section C Major Storm (100-yr)
' Worksheet for Irregular Channel
' Project Description
Worksheet Cross Section C Major Storm (100-yr)
Flow Element Irregular Channel
' Method Manning's Formula
Solve For Channel Depth
' Input Data
Channel Slope 0.005000 ft/ft
Discharge 7.90 cfs
' Options
Current Roughness Method Improved Lotter's Method
' Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Metho, Horton's Method
Results
' Mannings Coefficient 0.016
Water Surface Elevation 0.44 1t
Elevation Range 0.00 to 1.66
' Flow Area 3.7 ftT
Wetted Perimeter 19.43 It
Top Width 19.24 ft
Actual Depth 0.44 It
Critical Elevation 0.42 It
Critical Slope 0.006675 ft/ft
Velocity 2.16 ft/s
' Velocity Head 0.07 ft
Specific Energy 0.51 It
Froude Number 0.87
Flow Type Subcritical
' Roughness Segments
' Start End Mannings
Station Station Coefficient
0+17.5-0+41.5 0.016
Natural Channel Points
Station Elevation
(ft) (h)
' 0+17.5 1.66
0+17.0 1.16
0+16.0 1.08
' 0+01.0 0.86
0+00.0 0.78
-0+01.0 0.86
-0+40.0 0.08
'-0+41.0 0.00
-0+41.5 0.50
' Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 [7.0005)
11/18/04 11:30:20 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Cross Section C Major Storm (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cross Section C Major Storm (100-yr)
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.016
Channel Slope
0.005000 fvft
Water Surface Elevation
0.44 ft
Elevation Range
0.00 to 1.66
Discharge
7.90 cfs
1.80
1.60
1.40
1.20
1.00
0.80
0.60 �
0.40
0.20
0.00
-0+45.0 -0+35.0 -0+25.0 -0+15.0 -0+05.0 0+05.0
0+20.0
v:1D.DN
H:1
NTS
Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.0 [7.0005]
11/18/04 11:30:26 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Cross Section D Minor Storm (10-yr)
Worksheet for Irregular Channel
Project Description
Worksheet Cross Section D Minor Storm (10-yr)
Flow Element Irregular Channel
Method Manning's Formula
Solve For Channel Depth
Input Data
Channel Slope 0.005000 ft/ft
Discharge 7.40 cfs
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Metho. Horton's Method
Results
Mannings Coefficient
0.016
Water Surface Elevation
0.43 It
Elevation Range
0.00 to 1.47
Flow Area
3.5 ft'
Wetted Perimeter
18.66 ft
Top Width
18.47 ft
Actual Depth
0.43 ft
Critical Elevation
0.41 ft
Critical Slope
0.006718 ft/ft
Velocity
2.14 ft/s
Velocity Head
0.07 ft
Specific Energy
0.50 ft
Froude Number
0.87
Flow Type
Subcritical
Roughness Segments
Start End Mannings
Station Station Coefficient
-0+41.5 0+00.5 0.016
Natural Channel Points
Station
Elevation
(ft)
(ft)
-0+4t5
1.47
-0+41.0
0.97
-0+40.0
0.88
-0+01.0
0.08
0+00.0
0.00
0+00.5
0.50
Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmasler\streetcap.fm2 JR Engineering FlowMaster v7.017.00051
01/19/05 09:04:41 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Cross Section D Minor Storm (10-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cross Section D Minor Storm (10-yr)
Flaw Element
Irregular Channel
Method
Manning's Formula
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.016
Channel Slope
0.005000 ft/ft
Water Surface Elevation
0,43 ft
Elevation Range
0.00 to 1.47
Discharge
7.40 cfs
1.60 ---
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0 00
I
-----------'--
I
I
;
-
-- ---
---I
I
I
-I--
I
—
I
-0+45.0 -0+40.0 -0+35.0 -0+30.0 -0+25.0 -0+20.0 -0+15.0 -0+10.0 -W5.0 0+00.0 0+05.0
v:10.0[._---
H:1
NTS
Project Engineer: JR Engineering
x:\3940000.all139402001flowmaster\streetcap.fm2 JR Engineering FlowMaster v7.017.00051
01/19/05 09:04:52 AM 0 Haestad Methods, tnc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1665 Page i of 1
Cross Section D Major Storm (100-yr)
Worksheet for Irregular Channel
Project Description
Worksheet Cross Section D Major Storm (100-yr)
Flow Element Irregular Channel
Method Manning's Formula
Solve For Channel Depth
Input Data
Channel Slope 0.005000 ft/ft
Discharge 21.40 cfs
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Metho. Horton's Method
Results
Mannings Coefficient
0.016
Water Surface Elevation
0.62 ft
Elevation Range
0.00 to 1.47
Flow Area
7.7 ft-
Wetted Perimeter
27.82 ft
Top Width
27.49 ft
Actual Depth
0.62 ft
Critical Elevation
0.60 ft
Critical Slope
0.005853 ft/ft
Velocity
2.79 We
Velocity Head
0.12 ft
Specific Energy
0.74 ft
Froude Number
0.93
Flow Type
Subcritical
Calculation Messages:
Water elevation exceeds lowest end station by 0.11605182 ft.
Roughness Segments
Start End Mannings
Station Station Coefficient
-0+41.5 0+00.5 0.016
Natural Channel Points
Station
Elevation
(ft)
(ft)
-0+41.5
1.47
-0+41.0
0.97
-0+40.0
0.88
-0+01.0
0.08
0+00.0
0.00
0+00.5
0.50
Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmasler\slreelcap.fm2 JR Engineering FlowMaster v7.0 (7.00051
01/19/05 09.04:22 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Cross Section D Major Storm (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cross Section D Major Storm (100-yr)
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.016
Channel Slope
0.005000 ft/ft
Water Surface Elevation
0.62 ft
Elevation Range
0.00 to 1.47
Discharge
21.40 cfs
t.ou
1.40
1.20
1.00
0.80
0.60
0.40
0.20
000
I
-0+45.0 -0+40.0 -0+35.0 -0+30.0 -0+25.0 -0+20.0 -0+15.0 -0+10.0 -0+05.0 0+00.0 0+05.0
V 10.OI__
H:1
NTS
Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmaster\slreelcap.fm2 JR Engineering FlowMasler v7.0 [7.0005)
01/19/05 09:04:31 AM 0 Haestao Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA -1-203-755-1666 Page 1 of 1
I
I
I
I
1
I
' APPENDIX D
I INLET CALCULATIONS
1
1
I
Final Drainage and Erosion Control Report Appendix
Settler's Creek March 2005
-------------------- ---------------------------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
CIVIL ENG DEPT. U OF COLORADO AT DENVER
t- -- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
---------------------------------------------------------------
USER:JR ENGINEERS-DENVER CO ..................................................
DATE 11-10-2004 AT TIME 15:51:58
* PROJECT TITLE: Settler's Creek [_�,IP 161
*** COMBINATION INLET: GRATE INLET AND CURB OPENING:
*** GRATE INLET HYDRAULICS
AND SIZING::
'
INLET ID NUMBER: 1
/ !
'
INLET HYDRAULICS: ON
A GRADE,
GIVEN INLET DESIGN INFORMATION:
INLET GRATE WIDTH
(ft)=
1.87
'
INLET GRATE LENGTH
(ft)=
3.25
INLET GRATE TYPE
=Type
16 Grate
Inlet
NUMBER OF GRATES
=
1.00
'
IS THE INLET GRATE
NEXT TO A
CURB ?-- YES
Note: Sump is the
additional
depth to
flow depth.
'
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE
(%) =
0.50
STREET CROSS SLOPE
(%)
2.00
'
STREET MANNING N
0.016
GUTTER DEPRESSION
(inch)=
2.00
GUTTER WIDTH
(ft) =
2.00
STREET FLOW HYDRAULICS:
I
I
WATER SPREAD ON STREET (ft) = 7.53
GUTTER FLOW DEPTH (ft) = 0.32
FLOW VELOCITY ON STREET (fps)= 1.90
FLOW CROSS SECTION AREA (sq ft)= 0.73
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 20.00
INLET INTERCEPTION CAPACITY:
FOR 1 GRATE INLETS:
DESIGN DISCHARGE
IDEAL GRATE INLET CAPACITY
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED
(cfs)= 1.40
(cfs)= 1.19
(cfs)= 1.09
(cfs)= 0.59
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 10
' INLET HYDRAULICS: ON A GRADE.
' GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
3.30
'
REQUIRED CURB OPENING LENGTH (ft)=
7.52
IDEAL CURB OPENNING EFFICIENCY =
0.65
'
ACTURAL CURB OPENNING EFFICIENCY =
0.54
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
0.20
'
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
FLOW INTERCEPTED
(cfs)=
CARRY-OVER FLOW
(cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
FLOW INTERCEPTED (cfs)=
CARRY-OVER FLOW (cfs)=
' *** SUMMARY FOR THE COMBINATION INLET:
THE TOTAL DESIGN PEAK FLOW RATE
(cfs)=
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
FLOW INTERCEPTED BY CURB OPENING(cfs)=
TOTAL FLOW INTERCEPTED
(cfs)=
CARRYOVER FLOW
(cfs)=
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
'
FLOW INTERCEPTED BY CURB OPENING
(cfs)=
TOTAL FLOW INTERCEPTED
(cfs)=
CARRYOVER FLOW
(cfs)=
I
I
1
0.31
0.17
0.14
0.81
0.16
0.65
1.40 ao
1.09
0.17
1.26
0.14
0.59
0.16
0.75
0.65
--------------------
'
--- ----------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
CIVIL ENG DEPT. U OF COLORADO AT DENVER
'--
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
USER:JR
- - ---------------------------------------------------------------
ENGINEERS-DENVER CO ..................................................
DATE
11-10-2004 AT TIME 15:57:31
*
PROJECT
TITLE: Settler's Creek
167
'
***
COMBINATION INLET: GRATE INLET AND CURB OPENING:
***
GRATE INLET HYDRAULICS AND SIZINGG:
INLET ID NUMBER: 1
'
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
INLET GRATE WIDTH (ft)= 1.87
INLET GRATE LENGTH (ft)= 3.25
INLET GRATE TYPE =Type 16 Grate Inlet
NUMBER OF GRATES = 1.00
IS THE INLET GRATE NEXT TO A CURB ?-- YES
Note: Sump is the additional depth to flow
depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) = 1.00
STREET CROSS SLOPE M 2.00
'
STREET MANNING N 0.016
GUTTER DEPRESSION (inch)= 2.00
GUTTER WIDTH (ft) = 2.00
STREET FLOW HYDRAULICS:
'
WATER SPREAD ON STREET (ft) = 2.00
GUTTER FLOW DEPTH (ft) = 0.21
FLOW VELOCITY ON STREET (fps)= 2.43
FLOW CROSS SECTION AREA (sq ft)= 0.21
'
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 20.00
'
INLET INTERCEPTION CAPACITY:
FOR 1 GRATE INLETS:
DESIGN DISCHARGE (cfs)= 0.50
IDEAL GRATE INLET CAPACITY (cfs)= 0.50
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)= 0.50
'
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED (cfs)= 0.25
'
***
CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 1
'
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
3.30
'
REQUIRED CURB OPENING LENGTH (ft)=
5.26
IDEAL CURB OPENNING EFFICIENCY =
0.83
'
ACTURAL CURB OPENNING EFFICIENCY =
0.72
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
0.00
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
FLOW INTERCEPTED
(cfs)=
CARRY-OVER FLOW
(cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
'
FLOW INTERCEPTED
(cfs)=
CARRY-OVER FLOW
(cfs)=
*** SUMMARY FOR THE COMBINATION INLET:
THE TOTAL DESIGN PEAK FLOW RATE
(cfs)=
BY FAA HEC-12 METHOD:
'
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
FLOW INTERCEPTED BY CURB OPENING(cfs)=
TOTAL FLOW INTERCEPTED
CARRYOVER FLOW
(cfs)=
(cfs)=
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
'
FLOW INTERCEPTED BY CURB OPENING
(cfs)=
TOTAL FLOW INTERCEPTED
(cfs)=
CARRYOVER FLOW
(cfs)=
I
[1
0.00
0.00
0.00
0.25
0.00
0.25
0.50 �_- CD --)
0.50
0.00
0.50
0.00
0.25
0.00
0.25
0.25
1
---------------------- ------------------------
-----------------------
UDINLET: INLET HYDARULICS AND SIZING .
DEVELOPED BY
CIVIL ENG DEPT. U OF COLORADO AT DENVER
------ - SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
---------------------------------------------------------------
USER:JR ENGINEERS-DENVER CO ..................................................
DATE 11-10-2004 AT TIME 15:18:32
* PROJECT TITLE: Settler's Creek
*** COMBINATION INLET:
GRATE INLET AND CURB OPENING:
*** GRATE INLET HYDRAULICS
AND SIZING:
INLET ID NUMBER: 2
'
INLET HYDRAULICS:
ON A GRADE.
GIVEN INLET DESIGN
INFORMATION:
INLET GRATE WIDTH
(ft)=
1.87
INLET GRATE LENGTH
(ft)=
3.25
INLET GRATE TYPE
=Type
16 Grate Inlet
NUMBER OF GRATES
=
2.00
'
IS THE INLET GRATE
NEXT TO A CURB ?-- YES
Note: Sump is the
additional depth to
flow depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE M = 1.00
STREET CROSS SLOPE
M
2.00
'
STREET MANNING N
0.016
GUTTER DEPRESSION
(inch)=
2.00
'
GUTTER WIDTH
(ft) =
2.00
STREET FLOW HYDRAULICS:
'
WATER SPREAD ON STREET
(ft) =
18.25
GUTTER FLOW DEPTH
(ft) =
0.53
FLOW VELOCITY ON STREET
(fps)=
3.80
FLOW CROSS SECTION AREA (sq ft)= 3.50
GRATE CLOGGING FACTOR M = 50.00
CURB OPENNING CLOGGING FACTOR(%)= 20.00
' INLET INTERCEPTION CAPACITY
FOR 2 GRATE INLETS:
DESIGN DISCHARGE
(cfs)=
13.30
IDEAL GRATE INLET CAPACITY
(cfs)=
8.70
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED
(cfs)=
5.93
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED
(cfs)=
4.35
'
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 2
'
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
7.00
REQUIRED CURB OPENING LENGTH (ft)= 32.73
IDEAL CURB OPENNING EFFICIENCY =
0.35
ACTURAL CURB OPENNING EFFICIENCY =
0.29
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
2.59
'
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
FLOW INTERCEPTED
(Cfs)=
CARRY-OVER FLOW
(cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
FLOW INTERCEPTED
(cfs)=
CARRY-OVER FLOW
(cfs)=
*** SUMMARY FOR THE COMBINATION INLET:
THE TOTAL DESIGN PEAK FLOW RATE
(cfs)=
'
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
FLOW INTERCEPTED BY CURB OPENING(cfs)=
TOTAL FLOW INTERCEPTED
(cfs)=
CARRYOVER FLOW
(cfs)=
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
'
FLOW INTERCEPTED BY CURB OPENING
(cfs)=
TOTAL FLOW INTERCEPTED
(cfs)=
CARRYOVER FLOW
(cfs)=
I
7.37
2.11
5.26
8.95
2.07
6.88
13.30 � ��—
5.93
2.11
8.04
5.26
4.35
2.07
6.42
6.88
1
-------------------------------7-------------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
CIVIL ENG DEPT. U OF COLORADO AT DENVER
- -- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
----------------------------------------------------------------
USER:JR ENGINEERS-DENVER CO ........................................
DATE 08-16-2004 AT TIME 11:04:36 Yp
* PROJECT TITLE: Settler's Creek
' *** COMBINATION INLET: GRATE INLET AND CURB OPENING:
*** GRATE INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 2
'
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
'
INLET GRATE WIDTH
(ft)=
1.87
INLET GRATE LENGTH
(ft)=
3.25
INLET GRATE TYPE
=Type
16 Grate Inlet
NUMBER OF GRATES
=
2.00
'
IS THE INLET GRATE NEXT TO
A CURB ?--
YES
Note: Sump is the additional depth to
flow depth.
'
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE M = 1.00
' STREET CROSS SLOPE M 2.00
STREET MANNING N 0.016
GUTTER DEPRESSION (inch)= 2.00
GUTTER WIDTH (ft) = 2.00
STREET FLOW HYDRAULICS:
'
WATER SPREAD ON STREET (ft) =
11.59
GUTTER FLOW DEPTH (ft) =
0.40
FLOW VELOCITY ON STREET (fps)=
3.06
FLOW CROSS SECTION AREA (sq ft)=
1.51
GRATE CLOGGING FACTOR M =
50.00
CURB OPENNING CLOGGING FACTOR(%)=
20.00
INLET INTERCEPTION CAPACITY:
FOR 2 GRATE INLETS:
'
DESIGN DISCHARGE (cfs)=
4.60
IDEAL GRATE INLET CAPACITY (cfs)=
3.69
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)=
2.93
'
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED (cfs)=
1.84
'
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 2
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
7.00
'
REQUIRED CURB OPENING LENGTH (ft)= 17.65
IDEAL CURB OPENNING EFFICIENCY =
0.60
'
ACTURAL CURB OPENNING EFFICIENCY =
0.50
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
1.00
'
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
FLOW INTERCEPTED
(cfs)=
CARRY-OVER FLOW
(cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
'
FLOW INTERCEPTED
(cfs)=
CARRY-OVER FLOW
(cfs)=
*** SUMMARY FOR THE COMBINATION INLET:
THE TOTAL DESIGN PEAK FLOW RATE
(cfs)=
'
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
FLOW INTERCEPTED BY CURB OPENING(cfs)=
TOTAL FLOW INTERCEPTED
(cfs)=
'
CARRYOVER FLOW
(cfs)=
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
'
FLOW INTERCEPTED BY CURB OPENING
(cfs)=
TOTAL FLOW INTERCEPTED
(cfs)=
CARRYOVER FLOW
(cfs)=
1
1
1.67
0.83
0.84
2.76
0.80
1.96
4.60
2.93
0.83
3.76 p
0.84
1.84
0.80
2.64
1.96
-------------------------- ----------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-----------------------------------------------------------------
SER:JR ENGINEERS-DENVER CO ..................................
DATE 11-22-2004 AT TIME 13:07:10 �� .� LI
* PROJECT TITLE: Settler's Creek
*** COMBINATION INLET: GRATE INLET AND CURB OPENING:
*** GRATE INLET HYDRAULICS AND SIZING:
' INLET ID NUMBER: 8 Cpr. b N«h d
' INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
(I 0 0 y (2
)/�L �
' INLET GRATE WIDTH (ft)= 1.87
INLET GRATE LENGTH (ft)= 3.25
INLET GRATE TYPE =Type 16 Grate Inlet
' NUMBER OF GRATES = 3.00
SUMP DEPTH ON GRATE (ft)= 0.17
GRATE OPENING AREA RATIO M = 0.60
IS THE INLET GRATE NEXT TO A CURB ?-- YES
' Note: Sump is the additional depth to flow depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) = 1.00
STREET CROSS SLOPE M = 2.00
' STREET MANNING N = 0.016
GUTTER DEPRESSION (inch)= 2.00
GUTTER WIDTH (ft) = 2.00
' STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 28.94
' GUTTER FLOW DEPTH (ft) = 0.75
FLOW VELOCITY ON STREET (fps)= 4.98
FLOW CROSS SECTION AREA (sq ft)= 8.54
GRATE CLOGGING FACTOR M = 50.00
CURB OPENNING CLOGGING FACTOR(°%)= 20.00
INLET INTERCEPTION CAPACITY:
' FOR 3 GRATE INLETS:
DESIGN DISCHARGE (cfs)= 42.40
IDEAL GRATE INLET CAPACITY (cfs)= 35.45
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)= 17.72
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED (cfs)= 17.72
*** CURB OPENING INLET HYDRAULICS AND SIZING:
' INLET ID NUMBER: 8
i
' INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
10.70
HEIGHT OF CURB OPENING (in)=
INCLINED THROAT ANGLE (degree)=
6.00
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.17
'
Note: The sump depth is additional
depth to
flow depth.
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
27.52
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
24.68
FLOW INTERCEPTED (cfs)=
22.02
'
CARRY-OVER FLOW (cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
2.66
24.68
FLOW INTERCEPTED (cfs)=
22.02
CARRY-OVER FLOW (cfs)=
2.66
'
*** SUMMARY FOR THE COMBINATION INLET:
'
THE TOTAL DESIGN PEAK FLOW RATE
BY FAA HEC-12 METHOD:
(cfs)=
42.40 o0
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
17.72
FLOW INTERCEPTED BY CURB OPENING(cfs)=
22.02
TOTAL FLOW INTERCEPTED
(cfs)=
39.74 1
CARRYOVER FLOW
(cfs) =
2.66
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
17.72
'
FLOW INTERCEPTED BY CURB OPENING
(cfs)=
22.02
TOTAL FLOW INTERCEPTED
(cfs)=
39.74
'
CARRYOVER FLOW
(cfs)=
2.66
[1
r
I
I
I
I
I
------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-- -------------------------------------------
USER:JR ENGINEERS-DENVER CO.......
DATE 11-18-2004 AT TIME 09:45:45 /'//
** PROJECT TITLE: Settlers' Creek (,-Ot /d C,,) U.
' *** COMBINATION INLET: GRATE INLET AND CURB OPENING:
*** GRATE INLET HYDRAULICS AND SIZING:
' INLET ID NUMBER: 8
' INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
' INLET GRATE WIDTH (ft)= 1.87
INLET GRATE LENGTH (ft)= 3.25
INLET GRATE TYPE =Type 16 Grate Inlet
' NUMBER OF GRATES = 3.00
SUMP DEPTH ON GRATE (ft)= 0.00
GRATE OPENING AREA RATIO (%) = 0.60
' IS THE INLET GRATE NEXT TO A CURB ?-- YES
Note: Sump is the additional depth to flow depth.
STREET GEOMETRIES:
' STREET LONGITUDINAL SLOPE (s) = 1.00
STREET CROSS SLOPE W = 2.00
STREET MANNING N = 0.016
GUTTER DEPRESSION (inch)= 2.00
GUTTER WIDTH (ft) = 2.00
' STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 16.56
GUTTER FLOW DEPTH (ft) = 0.50
FLOW VELOCITY ON STREET (fps)= 3.61
FLOW CROSS SECTION AREA (sq ft)= 2.91
GRATE CLOGGING FACTOR M = 50.00
CURB OPENNING CLOGGING FACTOR(%)= 20.00
INLET INTERCEPTION CAPACITY:
FOR 3 GRATE INLETS:
DESIGN DISCHARGE (cfs)= 10.60
' IDEAL GRATE INLET CAPACITY (cfs)= 14.22
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)= 7.11
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED (cfs)= 7.11
*** CURB OPENING INLET HYDRAULICS AND SIZING:
' INLET ID NUMBER: 8
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 10.70
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 0.00
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.00
Note: The sump depth is additional depth to flow depth.
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 11.56
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
CARRY-OVER FLOW (cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
CARRY-OVER FLOW (cfs)=
*** SUMMARY FOR THE COMBINATION INLET:
THE TOTAL DESIGN PEAK FLOW RATE (cfs)=
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED BY GRATE INLET (cfs)=
FLOW INTERCEPTED BY CURB OPENING(cfs)=
TOTAL FLOW INTERCEPTED (cfs)=
CARRYOVER FLOW (cfs)=
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED BY GRATE INLET (cfs)=
FLOW INTERCEPTED BY CURB OPENING (cfs)=
TOTAL FLOW INTERCEPTED (cfs)=
CARRYOVER FLOW (cfs)=
[1
1
1
11
3.49
3.49
0.00
3.49
3.49
0.00
10.60—
7.11
3.49
10.60
0.00
7.11
3.49
10.60
0.00
----------------- - ---- --------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
CIVIL ENG DEPT. U OF COLORADO AT DENVER
-- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
---------------------------------------------------
SER:JR ENGINEERS-DENVER CO ..................................................
DATE 01-18-2005 AT TIME 11:05:22
** PROJECT TITLE: Settler's Creek
*** COMBINATION INLET: GRATE INLET AND CURB OPENING:
*** GRATE INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 6
' INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
'
INLET GRATE WIDTH
(ft)=
1.87
INLET GRATE LENGTH
(ft)=
3.25
INLET GRATE TYPE
=Type
16 Grate Inlet
NUMBER OF GRATES
=
2.00
SUMP DEPTH ON GRATE
(ft)=
0.17
GRATE OPENING AREA RATIO
(%) =
0.60
IS THE INLET GRATE NEXT TO A
CURB ?-- YES
'
Note: Sump is the additional depth to
flow depth.
STREET GEOMETRIES:
' STREET LONGITUDINAL SLOPE (%) = 1.00
STREET CROSS SLOPE (%) =
2.00
t
STREET MANNING N = 0.016
GUTTER DEPRESSION (inch)=
2.00
GUTTER WIDTH (ft) =
2.00
'
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
22.19
GUTTER FLOW DEPTH (ft) =
0.61
'
FLOW VELOCITY ON STREET (fps)=
4.24
FLOW CROSS SECTION AREA (sq ft)=
5.09
GRATE CLOGGING FACTOR (%)=
CURB OPENNING CLOGGING FACTOR(%)=
50.00
20.00
INLET INTERCEPTION CAPACITY:
'
FOR 2 GRATE INLETS:
DESIGN DISCHARGE (cfs)=
21.40
IDEAL GRATE INLET CAPACITY (cfs)=
21.18
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)=
10.59
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED (cfs)=
10.59
*** CURB OPENING INLET HYDRAULICS AND SIZING:
'
INLET ID NUMBER: 6
a
' INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
7.00
HEIGHT OF CURB OPENING (in)=
6.00
'
INCLINED THROAT ANGLE (degree)=
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.17
'
Note: The sump depth is additional
depth to
flow depth.
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
16.62
'
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
10.81
FLOW INTERCEPTED (cfs)=
10.81
'
CARRY-OVER FLOW (cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
0.00
10.81
FLOW INTERCEPTED (cfs)=
10.81
CARRY-OVER FLOW (cfs)=
0.00
*** SUMMARY
FOR THE COMBINATION INLET:
THE TOTAL DESIGN PEAK FLOW RATE
(cfs)=
21.40 — o0
t
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
10.59
FLOW INTERCEPTED BY CURB OPENING(cfs)=
10.81
'
TOTAL FLOW INTERCEPTED
(cfs)=
21.40
CARRYOVER FLOW
(cfs)=
0.00
BY DENVER UDFCD METHOD:
-
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
10.59
'
FLOW INTERCEPTED BY CURB OPENING
(cfs)=
10.81
TOTAL FLOW INTERCEPTED
(cfs)=
21.40
CARRYOVER FLOW
(cfs)=
0.00
1
1
-
UDINLET: INLET HYDARULICS AND SIZING
--------
DEVELOPED BY
CIVIL ENG DEPT. U OF COLORADO AT DENVER
'-- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
----------------------------------------------------------------
USER:JR ENGINEERS-DENVER CO ..................................................
DATE 01-18-2005 AT TIME 11:11:11r
* PROJECT TITLE: Settler's Creek
' *** COMBINATION INLET: GRATE INLET AND CURB OPENING:
*** GRATE INLET HYDRAULICS AND SIZING:
'
INLET ID NUMBER: 6 `�_.�i
`` f
tINLET
HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
'
INLET GRATE WIDTH (ft)= 1.87
INLET GRATE LENGTH (ft)= 3.25
INLET GRATE TYPE =Type 16 Grate Inlet
NUMBER OF GRATES = 2.00
'
SUMP DEPTH ON GRATE (ft)= 0.17
GRATE OPENING AREA RATIO (%) = 0.60
'
IS THE INLET GRATE NEXT TO A CURB ?-- YES
Note: Sump is the additional depth to flow
depth.
STREET GEOMETRIES:
'
STREET LONGITUDINAL SLOPE (%) = 1.00
STREET CROSS SLOPE M = 2.00
STREET MANNING N = 0.016
'
GUTTER DEPRESSION (inch)= 2.00
GUTTER WIDTH (ft) = 2.00
'
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 14.31
GUTTER FLOW DEPTH (ft) = 0.45
FLOW VELOCITY ON STREET (fps)= 3.36
FLOW CROSS SECTION AREA (sq ft)= 2.22
'
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 20.00
INLET INTERCEPTION CAPACITY:
FOR 2 GRATE INLETS:
DESIGN DISCHARGE (cfs)= 7.50
IDEAL GRATE INLET CAPACITY (cfs)= 15.10
'
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)= 7.50
BY DENVER UDFCD METHOD:
'
FLOW INTERCEPTED (cfs)= 7.50
*** CURB OPENING INLET HYDRAULICS AND SIZING:
'
INLET ID NUMBER: 6
I
'
INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
7.00
'
HEIGHT OF CURB OPENING (in)=
INCLINED THROAT ANGLE (degree)=
6.00
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.17
'
Note: The sump depth is additional
depth to
flow depth.
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
11.99
'
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
0.00
FLOW INTERCEPTED (cfs)=
0.00
'
CARRY-OVER FLOW (cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
0.00
0.00
FLOW INTERCEPTED (cfs)=
0.00
CARRY-OVER FLOW (cfs)=
0.00
*** SUMMARY FOR THE COMBINATION INLET:
THE TOTAL DESIGN PEAK FLOW RATE
(cfs)=
7.50= Q\d
'
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
7.50
FLOW INTERCEPTED BY CURB OPENING(cfs)=
0.00
TOTAL FLOW INTERCEPTED
(cfs)=
7.50
CARRYOVER FLOW
(cfs)=
0.00
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
7.50
'
FLOW INTERCEPTED BY CURB OPENING
(cfs)=
0.00
TOTAL FLOW INTERCEPTED
(cfs)=
7.50
'
CARRYOVER FLOW
(cfs)=
0.00
1
11
I
-- ----------
' UDINLET: INLET HYDARULICS AND SIZING
----
DEVELOPED- - --- BY-----
CIVIL ENG DEPT. U OF COLORADO AT DENVER
--- - SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
----------------------------------------------------------------
USER:JR ENGINEERS-DENVER CO ..................................................
DATE 01-19-2005 AT TIME 07:40:06
* PROJECT TITLE: Settler's Creek
' *** COMBINATION INLET: GRATE INLET AND CURB OPENING:
*** GRATE INLET HYDRAULICS AND SIZING:
' INLET ID NUMBER: 7
' INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
INLET GRATE WIDTH (ft)= 1.87
INLET GRATE LENGTH (ft)= 3.25
INLET GRATE TYPE =Type 16 Grate Inlet
' NUMBER OF GRATES = 1.00
SUMP DEPTH ON GRATE (ft)= 0.17
GRATE OPENING AREA RATIO (%) = 0.60
' IS THE INLET GRATE NEXT TO A CURB ?-- YES
Note: Sump is the additional depth to flow depth.
STREET GEOMETRIES:
' STREET LONGITUDINAL SLOPE (%) = 0.50
STREET CROSS SLOPE (%) = 2.00
' STREET MANNING N = 0.016
GUTTER DEPRESSION (inch)= 2.00
GUTTER WIDTH (ft) = 2.00
' STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 14.50
' GUTTER FLOW DEPTH (ft) = 0.46
FLOW VELOCITY ON STREET (fps)= 2.39
FLOW CROSS SECTION AREA (sq ft)= 2.27
' GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 20.00
INLET INTERCEPTION CAPACITY:
FOR 1 GRATE INLETS:
DESIGN DISCHARGE (cfs)= 5.40
' IDEAL GRATE INLET CAPACITY (cfs)= 10.40
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)= 5.20
' BY DENVER UDFCD METHOD:
FLOW INTERCEPTED (cfs)= 5.20
*** CURB OPENING INLET HYDRAULICS AND SIZING:
',,, INLET ID NUMBER: 7
' INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
3.30
'
HEIGHT OF CURB OPENING (in)=
INCLINED THROAT ANGLE (degree)=
6.00
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.17
'
Note: The sump depth is additional
depth to
flow depth.
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
7.87
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
0.20
FLOW INTERCEPTED (cfs)=
0.20
'
CARRY-OVER FLOW (cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
0.00
0.20
FLOW INTERCEPTED (cfs)=
0.20
CARRY-OVER FLOW (cfs)=
0.00
*** SUMMARY
FOR THE COMBINATION INLET:
THE TOTAL DESIGN PEAK FLOW RATE
(cfs)=
5.40 = ��cx7
'
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
5.20
FLOW INTERCEPTED BY CURB OPENING(cfs)=
0.20
'
TOTAL FLOW INTERCEPTED
(cfs)=
5.40
CARRYOVER FLOW
(cfs)=
0.00
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
5.20
'
FLOW INTERCEPTED BY CURB OPENING
(cfs)=
0.20
TOTAL FLOW INTERCEPTED
(cfs)=
5.40
'
CARRYOVER FLOW
(cfs)=
0.00
1
1
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
CIVIL ENG DEPT. U OF COLORADO AT DENVER
' SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
USER:JR ENGINEERS-DENVER CO ..................................................
DATE 01-19-2005 AT TIME 07:41:19
** PROJECT TITLE: Settler's Creek )�\
'
*** COMBINATION INLET: GRATE INLET AND CURB OPENING:
*** GRATE INLET HYDRAULICS AND SIZING:
'
INLET ID NUMBER: 7
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
'
INLET GRATE WIDTH (ft)= 1.87
INLET GRATE LENGTH (ft)= 3.25
INLET GRATE TYPE =Type 16
Grate Inlet
NUMBER OF GRATES = 1.00
'
SUMP DEPTH ON GRATE (ft)= 0.17
GRATE OPENING AREA RATIO (%) = 0.60
'
IS THE INLET GRATE NEXT TO A CURB ?-- YES
Note: Sump is the additional depth to flow
depth.
STREET GEOMETRIES:
'
STREET LONGITUDINAL SLOPE (°s) = 0.50
STREET CROSS SLOPE M = 2.00
STREET MANNING N = 0.016
GUTTER DEPRESSION (inch)= 2.00
GUTTER WIDTH (ft) = 2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 9.41
GUTTER FLOW DEPTH (ft) = 0.35
'
FLOW VELOCITY ON STREET (fps)= 2.01
FLOW CROSS SECTION AREA (sq ft)= 1.05
GRATE CLOGGING FACTOR M = 50.00
'
CURB OPENNING CLOGGING FACTOR(%)= 20.00
INLET INTERCEPTION CAPACITY:
FOR 1 GRATE INLETS:
DESIGN DISCHARGE (cfs)= 2.10
IDEAL GRATE INLET CAPACITY (cfs)= 7.97
'
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)= 2.10
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED (cfs)= 2.10
*** CURB OPENING INLET HYDRAULICS AND SIZING:
'
INLET ID NUMBER: 7
' INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
3.30
'
HEIGHT OF CURB OPENING (in)=
INCLINED THROAT ANGLE (degree)=
6.00
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.17
'
Note: The sump depth is additional
depth to
flow depth.
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
6.03
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
0.00
FLOW INTERCEPTED (cfs)=
0.00
'
CARRY-OVER FLOW (cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
0.00
0.00
FLOW INTERCEPTED (cfs)=
0.00
CARRY-OVER FLOW (cfs)=
0.00
'
*** SUMMARY FOR THE COMBINATION
INLET:
THE TOTAL DESIGN PEAK FLOW RATE
(cfs)=
2.10
= Q ��
'
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
2.10
FLOW INTERCEPTED BY CURB OPENING(cfs)=
0.00
'
TOTAL FLOW INTERCEPTED
(cfs)=
2.10
CARRYOVER FLOW
(cfs)=
0.00
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED BY GRATE INLET
(cfs)=
2.10
FLOW INTERCEPTED BY CURB OPENING
(cfs)=
0.00
TOTAL FLOW INTERCEPTED
(cfs)=
2.10
CARRYOVER FLOW
(cfs)=
0.00
1
Inlet Flow Calculation for Area Inlets
Project:
Settler's Creek
'
Job Number:
39402.00
Calculations by :
as
Date:
1111612004
' Objective: to find the number of grates required for area inlets in grassy areas
' Geometry at inlet
V WSEL
t
t
U
Grate Dimensions and information
Width(W): 2,79167 feet
Length (L): 3.354167 feet
Opening Ratio (R): 0.5 sq fVsq it
Reduction Factor (F): 50
Grate Flow:
Use the orifice equation Q; = C-A'SQRT(2-g'H) to find the ideal inlet capacity.'
-See Hydraulic Design Handbook by McGraw-Hill for verificaiton of equation use and C value
C = Orifice discharge coefficient= 0.67
A = Orifice area (ft2) - open area of grate
g = gravitational constant = 32.2 fVs2
H = head on grate centroid, ponding depth (feet)
Then multiply by the reduction factor for the allowable capacity.
QG = Q.' (1-F)
DP 5A3
Q =
6.15 cis
H =
0.25 it
Single Type C Inlet
A=
W'L'R
=
4.68 fe
Q; =
C'A'SQRT(2'g'H)
=
12.59 cis
QG=
Qi-F
=
6.29 cis
USE: Single Type C Inlet
DP 5A7-SA2
Q = 3.08 cis
H = 0.25 it
Single Type C Inlet
A = W'L'R
= 4.68 ft2
Q, = C'A'SQRT(2'g'H)
= 12.59 cis
On Q;'F
6.29 cis
USE : Single Type C Inlet
rim=11.5, head=12.49, ff=12.95
Double Type C Inlet
A= 2'W'L'R
= 9.36 ft2
Q; = C'A'SQRT(2'g'H)
25.17 cis
QG= Q;'F
12.59 cis
rim=11.5, head=12.49, ff=12.95
Double Type C Inlet
A = 2-W'L'R
= 9.36 it
Q; = C-A'SQRT(2'g'H)
25.17 cis
QG= Q;'F
= 12.59 cis
Triple Type C Inlet
A= 3'W'L'R
= 14.05 fe
O; = C'A-SQRT(2'g'H)
= 37.76 cis
QG= Q;'F
= 18.88 cis
Triple Type C Inlet
A = 3'W'L-R
= 14.05 fe
Q; = CA'SQRT(2'g'H)
= 37.76 cis
QG= Q;'F
= 18.88 cis
JR Engineering
2620 East Prospect Rd . Sutle 190
Fort Collins, CO 80525
1
Pagel
I
JR Engineering
2620 East Prospect Rd., Suite 190
Fort Collins, CO 80525
Inlet Flow Calculation for Area Inlets
Project: Settler's Creek
Job Number: 39402.00
Calculations by : as
Date: 11/16/2004
Objective: to find the number of grates required for area inlets in grassy areas
' Geometry at inlet
WSEL
[1
Grate Dimensions and information
Width (W):
2.79167 feet
Length (L):
3.354167 feet
Opening Ratio (R):
0.5 sq fVsq 1t
Reduction Factor IF):
50%
DP 5B-5E
Q = 1.45
cis
H = 0.25
ft
' Single Type C Inlet
A = W'L'R
4.68 ftz
O; = C'A'SQRT(2'g'H)
t = 12.59 cfs
Qo= Q;'F
6.29 cfs
[1
Double Type C Inlet
A = 2'W'L'R
9.36 ft2
Q; = C'A'SQRT(2'g'H)
25.17 cfs
Qo= Q;-F
12.59 cfs
USE : Single Type C Inlet
DP 1A-1F
Q = 0.6 cfs
H = 0.25 it
Single Type C Inlet
A = W'L'R
4.68 ft2
Q; = C'A'SQRT(2'g'H)
= 12.59 cfs
Qo= Q;'F
6.29 cfs
Double Type C Inlet
A= 2'W'L'R
= 9.36 ft2
Q; = C'A'SQRT(2'g'H)
25.17 cfs
Qo= Q;'F
12.59 cfs
USE: Single Type C Inlet
Triple Type C Inlet
A = 3'W'L'R
= 14.05 ft2
Q; = C'A'SQRT(2'g'H)
37.76 cfs
Qo= Q;'F
= 18.88 cfs
Triple Type C Inlet
A = 3-W'L'R
= 14.05 112
O; = C'A'SQRT(2'g'H)
37.76 cfs
Qo= Q;'F
18.88 cfs
' Page2
1
o�ect:
lient:
11bject•.
[1
I
11
1
I
I
I
By: Chk. By:
Job No: _ )
Date: j-R ENGINEERING
A Westrlan Company
Sheet No: of _
'jt
✓/T
n%.
�7 nl�
�,c)
q�.__�
1A-L -
7-t
] {{
�� j$
-+�_
7= _
.
1 ��
_{
f
+
it
-44
TPi-I
TI
T
444
_
LEF-
IL
IT! it -
_I
#ii1
it
-J
-
1"
�4
jtI�i�T
41-
J
it IT,
"..
iI
{NI-
--�i
i1
--1Sifit�fL'
�
it
14
L
14
41
1I
I
U.
-T.-It-L;12
it
awl
r -
1
i:i_
r'
-, � +
+a-F
J�
{
I
-f
r
.
1
ra I
_
�_I 4T
��
r_
1�
1
1
1
1
1
C
O
�w
U j y
d N n
m W
O
O N
m W
N N
N
N
W O n
m
N N
H m
W (D O
W O
m
N
� N
N
mN
Q Q
Q Q
mN d
N
d
C')
N C
O
O
O
Q
Q
O O
O O
O
O O
O
O
O O
O
N d
N
m
m
Z
Z
m M
0 w
w
O m
O
W
m N
w j
� U
O
O
O
O
O O
O O
O
O O
O
O
O O
O
W
No
OI=^
d
N
M
A
N
m
W
Ol
w
N
n
W
O
O
w
m
t0 U N
d
n
O
w
N
N
M
w
w
M
N
N
w
d
d
N
N
N
N
N
Q
Q
M
v
d
m
<
<
m
Q
w
m
w
n n N m
N
d m
Ol
r
O n w
w
n w N
M M M
d N w
0 w
O rn r
w d
0
N O O
0 0
r r
N
d N
O n
r n
N O1 M
N
m m O
m m
m
d m m
m
O m
lh lh lh
N N
N
N N
d M
M M
N M
N
N
N
O
O
0 r r
O O
r r j
O O
a
T C�C�
00000000000000000000000000000000000_'
c-
J
I N w w
w 0
N
m N
N w
N N
N w w
w
w N N
w N
w
w N W
m
w N
w N
m w w
N m j
W C
m
M
M
N
r
r
O
d
m
M
M
W
n
n
Q
O1
d C O
w
y) j N�
N
C�
N
•-
�-
�-
�
O
O
T
O
O
O)
m
m
N
N ;
3 E_"
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
O W
w
N
w
N
N
N
N
w
N
10
H
w
N
N
m
CO
m
r r n
N m N d N W n r m O
w
r n w
N N
M
d d M w m w N
M Q m
m n
N
O m
W
d d m
w
O O
w 0
OI N O
n w
W y,r
M M M
M N
N
N N
d^
M M
N N M
M
- e- N
N
fV (V
0 0) n
n n.
o c�
TC'J
0 0 0
0 0
0
0 0
0 0
0 0
0 0 0
0
0 0 0
f
0 0
f
0
`^^^
0 0 0
0
0 0
0 0
0 0
0 0 0
0 O:
0 0
J
=
N N Vl
N �O
w
w w
w w
YI w
N t0 N
N
N �O w
m N
N
N w N
N
w N
i0 N
N N N
N N
E c
rn
m
M
o
rn
M
n
n
o
d
w
m
m
r
d
W r o
m
(P
M
o
n
m
r
rn
M
m
Cl
N N
41 Nam'^
N
N
N
N
O
O
O
O j
O
O
0
O
O
O
O
O
O
O
O
O
O
O
O
O
N
w
w
N
N
.- m
n
W
OI
N
O
O
N
O
n O
N m
M O
m m
m
m
V
w
O
m
n M
m
y r
r� d
o
vi
e
v
v d
d co
vi
of �
of
of
n �
vi
C
O O
O
O
O
d
O r
O O
O
O O
O
m
m N
O
0
o M
0
M
r
w
M w
o n
N
rn r
m
n
n
n
N
w
10 N
m
tp
N w
M
m
N (V
O
m
0
0
0
0
0
0 0
0 0
0
0 0
0
0
0 0
0
W
N N
N
N
w
w
w N
N N
N
N N
N
N
N w
m
T
r
r
n
M
O
N
w
m
m
N
w
O
w
m
w
y'
N
Q
d
O
n
O
W�
d
d
d
d
O
•-
d
M
w
w
m
N
�
r
m
O)
N
❑Uv
I
0 0 N N Q
d
w w
w w
m m n
n
O O n
n N
N
d d 0)
O)
m m
M M
A W
jp
N
Ol O) OI
m
O1 0)
m M
L
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
M
n
Q
Q
N
m
O
m
N
M
N
N
O
O
O
N
d
O
O
N
O
O
Q
N
O
O)
O)
n
r
d�O
O
O
O
O
O
T
0)
r
O
O
n
O
m
M
O
0
W
w
O
0
Ol
d
w
w
m
W
r
w
N
O
O)
O
m
N
w
d
O
O
w
M
O
Q
O
w
w
d
Q
m
M
0
o
0
d
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
C
0
0
O
O
O
0
O
O
O
O
O
O
O
O
O
O
O
C
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
W `
u
0
0
0
0
0 0
o
E=
o
0
0
0
0 0
0
W
e
Q
Y
O
O of
O j
to
v
W
w
w
m
m
w
w
w
w
v
a
W
W
m
w
W
10
v
w
v
w
m
w
m
v
m
m
w
m
u
u
w
u
u
o
u
0
u
0
�
v
`v
u
o
u
u
`u
N
a
C
c
C
C
C
C
C
C
C
c
c
c
c
C
C
c
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
o
>
>
>
>
7
>
>
>
>
>
>
N
>
>
>
7
7
U
U
U
u
U
20
L)
o
U
U
c .o
c
O Wn
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
.0 N .0
U
G
U
C
U
C
U
C
U
C
C
U
C
U
C
U
C
U
C
U
C
w
M
U
C
U
C
U
C
U
C
U
C
W N
N
N W
N
N
N
N
W
W
m
d
N
d
N
O
O
m
O
m
m
N
N
!
N
M
M
M
M
N
Z
n
w
O
N
O
f `°
n (9
w
W
J
C'f IT
W❑
M
N
O
O
2
U fw')
2
m M !2
M Q
M
N
LL ry
t7
N
z t0
1
2
N
S
N
a=
a-
a=
a_
d_
d-
a m
d-
a w
d-
a
0 a w
a_
N
a,
a
0 a w
M w.
N
N
n
N
C
U
E
F x 0
I
1
1
' APPENDIX E
' STORM PIPE AND SWALE CALCULATIONS
[1
1
t
C
' Final Drainage and Erosion Control Report Appendix
Settler's Creek March 2005
1
1
1
1
1
1
1
1
1
1
1
1
d
0
8
�i
Xya
V
r �
A
<I
N
oil
U
2
I�
I
1
1
1
a
1 L
L
�-3
1
1
1
L
O
a
a)
w
0
0
m
U
i
8a
m
m
O
3m^
m
m
m
_ 0
�
o
o
0
0
0
W 1-
N
vi
'OCw
0
� o G
N
�
N N
Cl C
N N Cl
oQ
(7 Q
N O d
m m
mO
N C
O O
O
O
O O
O O
O
N R
O
V0
O O
O
O
O O
O O
O
N p
= O
N'V
O
O
N
m
N
0
w
w
N
N
m
1p
d
m
n
o
r
n
m
O
M O Q
m
m w � N w 0 m m n m m N N N
m m
M W
U^
N N r
N
7N
n
0 w m
w
m w n
m m O
m n
m m
m
o_
-
o o
.- o
o m o
of
6 of m
fo 6 r
o o
o 6
.a m
_o
0
0 0
0 0
O
0 0 0
o0000000000
0
0 0 0
0 0 0
0 0
0 0
000
N N N
N
N 0 'no
N Ip
m 6,6
N
O
m
N
O
m
m
O
O
O
y r
o
m
w
N
n
d
m
0
n
0
m;m
m
O
m
0
m
w
n
m
O
N
C >�
O
O
O
O
O
O
O
O
3 0
O
O
O
O
O
O
O
O
O
O
O W
wO
VO
0
N
m
N
N
m
N
N
O m
m
m w w N 0 N
n m m m m N m
y
N N m
n
N .-
N N
O r
o o ci
m
o
w m w
m pi m
r m 0
w ro r
o m
r co
r m
co �o
TUB J
0 0 0
0
0 0
0 0
0 0 0
0
0 0 0
0 0 0
0 0
0 0
S
N m m
m
N
N N m
0 0 N
Ip N
tp N
E c
o
m
m
N
0
m
m
0
n
m
m
N
v> m^
of
m
o
m
o
m
n
6
u�
0
0
0
0
0
0
0
oER
0
0
0
W
w
r
0d
N
O'
O
O
m
O
O
�o
c
O N
O
m
O O
O t7
O O
O
O
O
V. n
N
0
O w
N Q
O O
O
O
.- N
N
O O
O
O
�>�
d
o 0
o
a
0 0
0 0
0 0
0
0
W
N N
N
Y1
N N
N N
N N
N
N
w0^
t7
m
th
N
r
m
0
r
w
m
r
d
n
0
m
ynu
M
UUv
0 0 0
0
0 0
0 0
0 0 0
0
0 0 0
0 0 0
0 0
0 0
N y i y
d d N
N
m m
O O
OR m m
Yl
m OR m
m OR m
m m
m m
L
O
O
O
O
O
O
O
O
O
O
P^
O
O
O
O
O
O
O
O
O
0
c
of
n
vi
v
o
of
of
o
0
a
w
m
m
m
n
o_
o
n
d
U N^
N
m
th
N
^
m
O
O
O
N
M
N
N
r
d
m
m
O
0
0
(")
n
lh
n
N
n
n
n
N
m
C (n—
O
O
O
O
O
O
O
N
O
O
O
O
O
O
O
O
O
O
O
O
n
n
n
N
N
n
n
C
O
O
O
O
O
O
O
O
O
O
O
C
N `
O
O
O
O
O
O
O
O
O
O
Rm^
o
DEr
o
2A
<
(DO
m
m
m
v
w
v
v
v
m
w
10
w
0
v
u
m
u
u
0
ro
m
d
U
U
U
U
U
U
jp
C
C
C
C
C
C
C
C
C
U
0
U
U
U
U
U
U
U
U
p
N
N
N
N
N
N
N
Q
0
0
0
0L
`0
0
V
N
2
U
2
U
=
U
U
U
U
U
c o
c
c
c
p O a
lh
L
U
c
M
L
U
N
L
U
L
U
t
U
L
U
u
dfnU
X
X
C
%
G
C
C
C
C
N
N
N
O
O
d
N
m
N
N
N
S
>
>
¢ m W
m¢
O
OO
hdm
N
m
_
--
CL
v)CL a_
d_
a u
m
U
c
O
C
m
a
'a
t
[I
t
t
O
a
a,
W
0
Vl
7
U
7
c
m
m
J O
m
m
3 m2
m
m
ry W
O
O
N N r
A
M M N N
Q Q Q
Q N
M O
M m 0
m 0
� 0 .�
t7 M m (")
�
N N Q
N
m m Q
("l n N
n m O m N
N
m m O
N
N c
O O
O O
O O
O
O
O
h 0
O m
N N
m N
m
N
m
o U
O O
O O
O O
O
O
O
a�
m y
2 O
a
m
N
m
O
m
N
a
0
vi r
cv
m
_
O
Q M a
O
a
M N o
m
� N Q
N Q m
m m m O
N
m O m
5 c
r M
m
N r NCO
n m N
m Cl! r
M m m Q—
Q m m
d`.
m
n m m
0 0
0
0 0 0
0
0 0 0
0
0 0 0
0 0 0 0
0 0 0 0
0
0
0 0 0
0 0 0
J
N N N
N
N N m
N
N m N
N m N
N m N N
N
N 10 N
N C O
O
m
T
N
n
Q m
O
n
O
O
co
C>>-
O
O
O O
O
O
O
3 C N
O
O
O
O
O
O O
O
O
O
O W
N
m
N
N
N
N m
10
N
N
WE
o 0 o
rn
r N m
N
.- n M
ry OR ry
r M m a
a
- Q m
N N
N .-
.- O O
m M1 m W
O
m n m
T C7Jv
0 0 0
0
0 0 0
0
0 0 00
0 0
Co 0 0 0
0
0 0 0
x
N N N
N
N N m
N
N N N
.O m m
m m N N
N
N m N
E c
O
m
m
N
O
m
N
0
m a 0
Q
Q
O
m
W
N n
m
m
N
N N r^
m
O
—
m
O
O
m
O
0 m
O
r
O
N
O
N
O
N C>
W
N
N
N
N
N N
N
N
N
m
*$
0 C
N
W; Cl
rn n
N M
m
m N
Q
M
N o
Q N Q
m o
Q N
j 0
O
O N
O N
O O
O
M 0 0
O O
O
Q r
N N
O Ot
N
Q O O
O O
N
N
N O O
O O
m
0 0
0
0 0 0
0 0
W
Vl N
Yf N
N N
N
N 1616
N N
N
Q
m
o
D)
n t7
C1
M
O
O1p^
M
NM
N
n
N n
m
Q
0
V1 m,
m
N
m
N
N
N O)
1D
r
m
y a
M
U
N N N
N
M M O
O
N
N
.- 0 0 0 0 0
N y 3 ^y
Q
Q
O in 0�j
mm��WmNNNNQQmmmmm
L
O
O
O
O
O
O O
O
O
O
c r
of
r
vi
a
o
of
ri
o
0
s
m
m
N
m
r
o
o
M
Q
d2
M
N
r
m
N
O
r
O
O
O
O
N
M
N
N
r
a m
m
O
O
O ZI.
t7
n
Cl
r
O
N
O
n n
O O
n
N
N
O
N
O
O
O
O
O
O
O O
O
O
O
C2
C)
C')
M C')
M
C)
C)
O
O
O
O
O
O
O O
O
O
O
N
GEC
o
2m
v
to
w
m
m
v
m
w v
m
m
m
d
U
U
U
U
U
U U
U
U
U
N
U
U
U
U
U
U U
U
U
U
o n
0
m
o
A
o
.o
NL
o
E
o
8 2
E
E
8
y
x
U
U U
U
2
U
2
U
U
p o
c
c
c
p O Q
L
U
c
M
L
U
c
M
L
L U U
c c
L
U
c
L
U
c
-aM
U
c
NU)'V
%
X
%
N
N
N
o
p
W
N N
W
N
y
N¢
v
¢_ U_
m_
O
Fx
0¢2
dN
_
dN N
aN
dN
dm d ry da_
m
d uJ
C
n
L
r
c
a
E
O
02
v0 ,0 a
m Q Q
�=m
0 O i a
W
O
A 0N 0 O
m m
w M
�xa
1
1
1
1
1
1
1
1
1
1
1
1
t
HG
Title: Sealer's Creek
x:\3940000.all\3940200\stormcad\south pipe run.stm
11/10/04 09:16:32 AM
Scenario: South Pipe Run-100yr
JR Engineering
®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666
OLet o Nrtl
If
Project Engineer: JR Engineering, es
Sto"CAD v5.5 [5,50031
Page 1 of 1
i
I V
l0
u
u
U)
1
m O
w
3
>
�m
O
o
V- w
vi
o
n o o
Q a
Q o
o o m
m
r m
N m
m o
o pg
m
o
v c� vi
o e
o 0
N C
O O
O
m m
U
O r
m
a0m
O O
O
m
0,
N
O
m�
m 0,
N
n
m N Q
n n o
Q N
rn r
m m
m m
m
0
0 0 0
0 0
0 0
00000000
J
N
N N N
N N
N N
N C
N L O
Q
m
Q
m
n
m
W
m
m
3=m�
O
O
O
O
O W
N
N
N
N
CJ
m m N
Q Q
N m
m m
r
c�
T C'J
o
O
0 0 0
0
O O O
0 0
O O
0 0
O O
J
=
N
N N N
N N
N N
E c
rn
Q
Q
n
N C>
O
O
O
O
O
O
O
� W
N
N
Ifl
N
m m
N Cl
m
Cl
Cl
�o
c
o o
N
o
o
r r
ry
o
E >
of of
o
ci
� v"
o 0
0
0
w
N N
N
N
OIU^
N
r
[i
m a u
n
m
m
m
O U
w o o rn rn m rn rn
N
L
Cv
m
N
Q
U m ^
N
O
O
m
m
W
2 G�
O
N
N
O
Q
ONv
O
O
O
O
n
N
N
N
C
O
O
O
O
O
O
O
m
uEv
0
0
o
0
2m
v
v
m
m
m
m
m
m
v
v
m
v
m
V
U
U
U
m
C
U
C
C
C
U
U
U
0 a
`m
o
U m
N
`O
>
>
UL
u
U
2
U
U
c 0
c
U m d
L
m
L
U
L
U
mUy
C
[7
x
C
C
N m
m
Q
N
N
m
a
Q
n
o
m
2
2
y
J
O
n
O
Q L
d`0dv~idv~id0
C
I
1
C
7
1
1�
'A m N
a O
�p O
3 N ^ N a
>� EviR
a a OI >
HW Wo
d m N m m 0) rn N N N N m m Of O) n n Ol O) m m r Q m m N Vl m co
.� N N N N M M M r m m m m Q .O j N lh ` (O N O O d d m m N N OI W W rn Q Q rn rn rn m m O v v N 4 o o N N N N N � E
W oN N d d d d Q Q M Q d M Q< V N N N N N N N .. E
a 0
m e O O O Q _Q O O O O O O O O O O O O
m a N m N N rn N m N O m O m m N m
2 O O O Z Z O O O O O O O O O O O 61 ME
a
= O �
O
Ot = m M O rn N N m rn r rn m r m N m N m
N O d m N rn rn d rn rn M �- N rn rn N d
> d M M N N d O N d M d M Q Q Q N m N
M m N O r m M O d m M m d �- Q m m N m Q N Q N m m m n n N m N l
a O r r r r m N N d m Q N d M r r N m N Q N M N mN m N m m m M
m 9. a M M M M M M M M^' d` M M Q M M N N N N N N N N N �- O m 0) rn of
D m c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
To .-
J N m N m N N N N N N N N 66 N N N N N N N N N N N N N N N m N m N N N
d q m M O r O O M N r m b n 6 m m d O
o O O m o m N N 1
O O O O O O O O O O O O O co O O O N
O WId
N Yl N N N N N N N N N N N N r
m m m m O n m M Q Q M M O Q b- m Q N Q d m d OI rn N m r r N m tCl
n r r m N N m m N N Q M Q O O r n m d Q N M W W N m N m m m M O
m M M M M M M M M d O Q Q M M Q Q M M M N N N N N N N N O Ol 01 rn 1 N
To J v O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0, I
= N N N N m N N N N m N N N N N N N N N N m N m m N N m N N N N m N N N j
E c rn m M o rn M n n o Q m m rn m r Q N
m >= o m m M o r N n rn M n m M N Q
m>>^ N N N N - - O - O O - rn O rn m i(l
v O O O O O O O O O O O O O O O O O I O
w m m N N N N N N N N N N N N N N N 0
O
N
m
n
m
OI
N
O
O
N
O
r
N
O
m
M
m
O
m
m
N
d
N
m
O
m
r
M
m
of
o
Q
vi
o
Q
v
d
v
m
ui
of
�
of
ai
r�
r
vi
�� v
�o
m
C
O
O
O
O
O
Q
O
r
O
O
O
O
O
O
rn
m
N
O
O
O
M
M
n
m
M
N
O
n
O
O
N
m
rn
n
rn
>
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
W
N
N
N
N
N
rn O ^
'N
N
N
N
m
rn
O
m
oi
d
d
d
N
Q
d
O
n
O
m
d
M
N
N
t0
N
n
m
rn
N
UUv
m m m m
m m m m m m m m
n
n
m m n r
m m d d
M
M d
d
n
n
6 y ?� ,,y^yll
E
N N
m m
d IT
O
M
N N
m m
m
m
N
N
m
m
m
m
n n
N
N O
O
N
N
M
M M
M
M
r
O N
�
� �
N N
M
m m
r r
M M
N
N
d
d
N
m
d
Q
m m
O
O m
m
rn
rn
n
n r
n
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
.L..
rn^
o
0
0
0
0
0
o
O
o
0
o
O
O
o
o
O
o
c r
ri
o
o
r
ri
of
m
m
n
d
o
vi
ai
o
aC
Q
O
Or
N
O
O
dUa
Nmm
Omrn
rnrm
rnNO
rrrn
m
M
O
O
m
O
O
rnO^
Q
O
M
O
Q
O
m
m
Q
Q
m
M
cam`-
o
p
p
p
0
Q
o
0
0
0
o
p
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
E
I
c c
0
O
o
O
O
O
O
0
0
0
0
O
O
o
6
0
0
c
o
o
c
o
c
c
o
0
0
0
0
0
0
0
0
0
0
m
1
^
U
O
O
O
O
O
O
O
E
E
o
0
0
0
o
O
oo
2 m"
v
v
o
o
v
o
m
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
u
o
p
o
o
u
u
u
u
u
u
u
u
u
m
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
r
n
C m
u
C
m
c a
m
m
m
m
m
m
m
m
m
m
m
c
m
m
m
m
m
a
2_
2_
2_
2_
2_
�_
�_
O
�_
N
J
2_
2
V
O
2_
O
U
O
"
j pp
mm
U
U
U
U
U
U
U
U
U
U
U
p
m
U
U
U
U
U
t
a
O
c
0 a.n
L
U
L
U
t
U
t
U
L
U
L
U
L
U
L
U
L
U
L
L
m
L
L
L
L
L
OO
U
U
U
U
U
U
U
ry a
N
N
N
M
M
M
M
V M N
N
Z
Z
m ''
O
m
O
co
r N
N O O
oo
c
1
y N
J
U. O W m U m a M LL Nm
QLLMWM Mm QOd=
17
d- a-M_m-Q. 0
m 0 d-
d O d 0 LL s
a a
0ama m
F K o
ou
N
u
N
1
1
1�
O
Q
N
w
O
N
7
U
7
d
m
0
O
(p
m_
m co
rn m m
O
U j N
N
Cl? cow
r n m
YJ O
0 0
N
N C
O
O O
N y
O
n t0
N U
W O
S
m
CiW
n
O1
n
_
N�
rn rn m r
41 O W N tp Ot
0 m
N
O
O O
O O O
O O
00000000
J
N
�O �O
N N N
LO LO
N C
m e o
O
a
r
O
> >
o
0
0
0
c 4
O
O
O
O
O W
N
N
N
N
N
m 19
n c0
"= y C
O O
COc0 N 19
W O
m y z.
of
of of
r
m co
C7J
0
O
0 0
O O
0 0 0 0 0
O O O
0 0
O O
T
L(I
vi N N
O h
E -
rn
a
a
r
o o
o
a
n
m
w w m --
l
vi
m
o
Co
N c�
O
O
O
0
O—
� W
7L
N
m m
m
r
6vi
of
2 0
y
C
O
O N
O
o
n
n N
o
E
E��
y
o
o
0
0 0
0
W
N
N N
N
c >•
m
r
r
u�
y 0 U
m
m
O
N
p U ...
N N
t0 (p t0
tp (O
m y; y
m
fO �o
m rn m
rn rn
O y O U
r
n n
v v e
0 0
r
m
m m
n n r
n n
NLL�
L
o
0
0
0
o
0
0
0
a
w
N
O
Ol
Ol
2
n
n
o
a
a
w
ay
o
0
m
0
o
0
0
0
a
C
O
O
O
O
c
O
O
O
O
N
�E=
o 0
0 0
2m
o e
0
w
v
d
m
t0
v
v
v
m
N
U
U
U
U
0
�
U 0
C
U
0
U
0
U
o n
o
L
r
�
NN
U
2
U
U
c o
c
0 N Q
L
U
N
L
U
L
U
u H,c
C
m
C
C
N A N
K
N U
(p
m
C
N
N
a
N
o
O
a
m
a m
o
m
o
n
rn
N
m N
a-dwaando
C
M
c
n
L
'o
c
C�
C
0
h
xoa
N O
m m a
U q o
woo
NWOO
O
N m
N YJ Z:
H x o
`I
1
1
t
co 00
'e
C
0
a
' o
N
C
ico
d
V
1
1
N 0
and
�w
N n O
�O
d
O
O O
N C
O
0
o
d d
= o
O =
N
d U N
y
jd�
m
N UOe
N
N CO
I?2
`
nj
O
O
T(, C
O
O O
J
4
N O
d C
d � O
N
O�
y j d
O
C 1 v
� d
m
O1
O w
<
= d C
m
n m
d p
M
N O
9 C
O
O
O m
O m
TUJ
=
0
0 Q
E c
dco
m�6
>
o
O
N C d
O
O—
� w
�
rn
N
0
N
od�
_o
O
O
N
d
0
0
0
0
W
N
N
C«
,.Lm,z3JO
d
d6U
W
U
0
0 0
H
i�li
u1
L
p
O
d
C2
a
nr
0
2 0
o
c<q�
0
0
C
C C
p
C
O
d `
dC
O
� d v
o
d
d
U
a
c d
0 0
�
U N
�
U
d L
UN
U
C
o d n
N �
N V
C
yU
V% d
02
m
m
a
a
p
_
d
J
Z
a
d 0
i�
m
H x 0
Curb Cut at Design Point 8
Worksheet for Rectangular Channel
Project Description
Worksheet
CURB CUT at DP 8
Flow Element
Rectangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.013
Channel Slope
0.010000 ft/ft
Bottom Width
5.00 ft
Discharge
2.66 cfs
Results
Depth
0.16 It
Flow Area
0.8 112
Wetted Perimeter
5.33 ft
Top Width
5.00 ft
Critical Depth
0.21 ft
Critical Slope
0.004632 ft/ft
Velocity
3.27 ft/s
Velocity Head
0.17 It
Specific Energy
0.33 ft
Froude Number
1.43 .
Flow Type
Supercritical
Project Engineer: JR Engineering
x:\3940000.all\3940200\Ilowmaster\swales.fm2 JR Engineering FlowMaster v7.0 j7.0005]
11/22/04 01:08:59 PM ®Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Cross Section -Curb Cut at Design Point 8
Cross Section for Rectangular Channel
Project Description
Worksheet
CURB CUT at DP 8
Flow Element
Rectangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.013
Channel Slope
0.010000 f /ft
Depth
0.16 it
Bottom Width
5.00 ft
Discharge
2.66 cis
0.16 ft
1
V:2.0�
H:1
NTS
Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmaster\swales.fm2 JR Engineering FlowMaster v7.0 j7.00051
11/22/04 01:09:04 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Spillway from Home Depot Curb Cut
Worksheet for Triangular Channel
Project Description
Worksheet
Spillway from Home Depot Curb Cu
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.040
Channel Slope
0.112500 ft/ft
Left Side Slope
4.00 H : V
Right Side Slope
4.00 H : V
Discharge
3.73 cfs
Results
Depth
0.45 ft
Flow Area
0.8 ft2
Wetted Perimeter
3.74 ft
Top Width
3.63 It
Critical Depth
0.56 It
Critical Slope
0.037145 ft/ft
Velocity
4.54 ftla
Velocity Head
0.32 It
Specific Energy
0.77 It
Froude Number
1.68
Flow Type
Supercritical
Project Engineer: JR Engineering
x:\3940000.all\3940200\flowmaster\swales.tm2 JR Engineering FlowMaster v7.0 (7.00051
11/12/04 11:50.05 AM C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
n
u
Cross Section --Spillway from Home Depot Curb Cut
' Cross Section for Triangular Channel
' Project Description
Worksheet Spillway from Home Depot Curb Cu
Flow Element Triangular Channel
Method Manning's Formula
Solve For Channel Depth
' Section Data
Mannings Coefficient 0.040
Channel Slope 0.112500 ft/ft
Depth 0.45 It
' Left Side Slope 4.00 H : V
Right Side Slope 4.00 H : V
Discharge 3.73 cfs
1
' 0.45 ft
' V:2.0N
H:1
NTS
' Project Engineer: JR Engineering
x:\3940000.all\3940200\I1owmaster\swales.fm2 JR Engineering FlowMaster v7.017.0005]
11/12/04 11:50:10 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 USA .1-203-755-1666 Page 1 of 1
t_1
1
n
1
APPENDIX F
' WATER QUALITY AND DETENTION POND CALCULATIONS
1
LJ
j
1
1
Final Drainage and Erosion Control Report
Settler's Creek
Appendix
March 2005
I
1
1
1
1
' WATER QUALITY OUTLET STRUCTURE DESIGN
1
1
1
1
1
1
Final Drainage and Erosion Control Report
Settlers Creek
CALCULATIONS
Appendix
March 2005
JR Engineering
1
1
1
1
1
WATER QUALITY CAPTURE VOLUME SUMMARY
FOR EXTENDED DETENTION
PROJECT NAME: SETTLER'S CREEK
JR PROJECT NO: 39402.00
COMPUTATIONS BY: ES
DATE: 08/18/04
Guidelines from Urban Strom Drainage Criterial Manual, September 1999
(Referenced figures are attached at the end of this section)
Use 40-hour brim -full volume drain time for extended detention basin
Water quality Capture Volume, WQCV = 1.0 - (0.91 ' i3 - 1.19' iZ + 0.78i)
Design Volume: Vol = WQCW12' Area' 1.2
MAJOR
BASIN
Trib.
area
(acres)
Impervious
Ratio, la
%Impervious
I = Ia/100
I WOCV
(watershed inches)
Design
Volume, Vol.
POND 488
65.00
71.9
0.72
0.28
1.85
3940200pond.xls,11 /11 /2004,7:57 AM
I
1
k
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
POND 488
Project Name:
SETTLER'S CREEK
Project Number:
39402.00
Company:
1R Engineering
Designer:
ES
Date:
8/18/2004
1. Basin Storage Volume
A) Tributary Area's Imperviousness Ratio (i=ljl00)
la =
72
%
i =
0.719
B) Contributing Watershed Area (Area)
A=
65.00
acres
C) Water Quality Capture Volume (WQCV)
WQCV =
0.28
watershed inches
(WQCV = 1.0 ' (0.91 ' is - 1.19' iz + 0.78i) )
D) Design Volume: Vol = WQCV/12Area' 1.2
Vol. =
1.85
ac-ft
2. Outlet Works
A) Outlet Type (Check One)
x
Orifice Plate
Perforated Riser Pipe
Other:
B) Depth at Outlet Above Lowest Perforations (H)
H =
2.95
ft
C) Required Maxiumum Outlet Area per Row, (Ao)
Ao =
2.9
square inches
(Figure EDB-3)
D) Perforation Dimensions (enter one only)
i) Circular Perforation Diamter OR
D =
1 15/16
inches, OR
ii) 2" Height Rectangular Perforation Width
W =
inches
E) Number of Columns Inc, See Table 6a-1 for Maximum)
nc =
1
number
F) Actual Design Outlet Area per Row (k)
Ao =
2.95
square inches
G) Number of Rows (nr)
nr =
9
number
H) Total outlet Area (At)
Ao, =
26.55
square inches
' 3. Trash Rack
1
A) Needed Open Area
A, = 0.5' (Figure 7 Value)' A.,
A, = 903.0
square inches
B) Type of Outlet Opening (Check One)
x
< 2" Diameter Round
2" High Rectanaular
Other:
C) For 2", or Smaller, Round Opening (Ref: Figure 6a)
I) Width of Trash Rack and Concrete Opening (W.nd
Ww„ r = 24
inches
from Table 6a-1
ii) Height of Trash Rack Screen (HTR)
HTR = 33 3/8
inches
= H - 2" for flange of top support
iii) Type of Screen Based on Depth H)
x
S.S. #93 VE Wire (US Filter)
Describe if "other"
Other:
iv) Screen Opening Slot Dimension,
x
0.139" (US Filter)
Describe if "other"
Other:
v) Spacing of Support Rod (O.C.)
1
inches
Type and Size of Support rod (Ref: Table 6a-2)
TE .074"x.75"
vi) Type and size of Holding Frame (Ref: Table 6a-2)
1.0" x 1 1/2"
angle
1
Page 1
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of rectangular Opening (W) W =
ii) Width of Perforated Plate Opening (Wconc=W+12") Wconc =
iii) Width of Trashrack Opening (Wopening) Wop ning =
from Table 6b-1
iv) Height of Trash Rack Screen (HTR) HTR =
1
v) Type of Screen (based on Detph H)
(Describe if "other)
'
vi) Cross -bar Spacing (Based on Table 6b-1, KlempTM KPP
Grating). Describe if "other"
U
11
vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2)
(Based on depth of WQCV surcharge)
4. Detention Basin length to width ratio
5. Pre -sedimentation Forebay Basin - Enter design values
A) Volume (5 to 10% of the Design Volume in 1 D)
B) Surface Area
C) Connector Pipe Diameter
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides
6. Two -Stage Design
A) Top Stage (DWg = 2' minumum) DWo =
B) Bottom Stage (Des = DWo + 1.5' min, DWo + 3.0' max.
Storage = 5% to 15% of Total WQCV)
C) Micro Pool (Minimum Depth = the Larger of
0.5`Top Stage Depth or 2.5 feet)
Storage =
Des =
Storage =
Surf. Area =
Depth =
Storage =
Surf. Area =
D) Total Volume: Volt, = Storage from 5A + 6A + 6B Vol,o, _
Must be> Design Volume in 1D
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Minimum Z = 4, flatter preferred
8. Dam Embankment Side Slopes (Z, horizontal distance per unit ver
Minimum Z = 4, flatter preferred
9. Vegetation (Check the method or describe "other")
inches
inches
inches
inches
KlempTM KPP Series Aluminum
Other:
inches
Other:
rlbla,
acre-feet
acres
inches
yes/no
feet
acre-feet
feel
acre-feet
acres
feet
acre-feet
acres
0 acre-feet
Z = 4 (horizontal/vertical)
Z = 4 (horizontal/vertical)
x Native Grass
—Irrigation Turf Grass
Other:
Page 2
DRAINAGE CRITERIA MANUAL (V.3)
' 10
6.
' 4.
2.
' w 0.6
U
1 � 0.4
STRUCTURAL BEST MANAGEMENT PRACTICES
0
E
1 m
"a- 0.CIS
2
0
U
Ci
3
' 0.06
0.04
' 0.02
' 0.01
STRUCTURAL BEST MANAGEMENT PRACTICES
.0
0
EXAMPLE: DWO = 4.5 ft
0 WQCV = 2.1 acre-feet
SOLUTION: Required Area per
Row = 1.75 in?
0
EQUATION:
WQCV
a=
K 40
0 in which,
K40=0.013DWQ+0,22DWQ -0.10
0
_;;'0Z
rZ
O ��\
ti l
h
Qr
�e
�JF
c`
0.02 0.04 0.06 0.10 0.20 0.40 0.60 1.0 2.0 4.0 6.0
Required Area per Row,a (in.2)
' FIGURE EDB-3
Water Quality Outlet Sizing:
Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume
'9-1-99
Urban Drainage and Flood Control District S-43
0.02 0.04 0.06 0.10 0.20 0.40 0.60 1.0 2.0 4.0 6.0
Required Area per Row,a (in.2)
' FIGURE EDB-3
Water Quality Outlet Sizing:
Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume
'9-1-99
Urban Drainage and Flood Control District S-43
,I
11
Orifice Plate Perforation Sizing
Circular Perforation Sizing
Chart may be applied to orifice plate or vertical pipe outlet.
• Designer may interpolate to the nearest 32nd inch
to better match the required area. if desired.
Rectangular Perforation Sizing
Only one column of rectangular perforations allowed.
Rectangular Height = 2 inches
Rectangular Width (inches) = Required Area per Row (sq in)
2"
Urban Drainage and
Flood Control District
Droinoge Criteria Manual (V.3)
n.: 00.1a.a.y
Figure 5
WOCV Outlet Orifice
Perforation Sizing
No Text
Table 6a-1: Standardized WQCV Outlet Design Using 2" Diameter Circular Openings.
Minimum Width (W,,,eJ of Concrete Opening for a Well -Screen -Type Trash Rack.
See Figure 6-a for Explanation of Tents.
of Circular
--- --" "
�••^• ^cone 1 rct i.mumn Of Holes as a Funct
Opening
(inches)
H=2.0'
H=3.0'
11=4.0•
H=5.0'
H=6.1
< 0.25
3 in.
3 in.
3 in.
3 in.
3 in.
< 0.50
3 in.
3 in.
3 in.
3 in.
3 in.
< 0.75
3 in.
6 in.
6 in.
6 in.
6 in.
< 1.00
6 in.
9 in.
9 in.
9 t
9 in.
< 1.25
9 in.
12 in.
12 in.
12 in.
IS in.
< 1.50
12 in.
15 in.
18 in.
18 in.
18 in.
< 1.75
18 in.
21 in.
21 in.
24 in.
24 in.
< 2.00
21 in.
24 in.
27 in.
30 in.
30 in.
Table 6a-2: Standardized WQCV Outlet Design Using 2" Diameter Circular Openings.
US FilterTM Stainless Steel Well -Screen' (or equal) Trash Rack Design
Specifications,
Max. Width Screen H93 VEE Support Rod Support Rod, Total Screen (
of Opening Wire Slot Opening Type On -Center, I s
FT'
0.13<,
0.135
0.135
0.139
0.139
#156 VFF
TE.
KIit =
Maximum
Number of
Columns
14
14
7
4
2
2
Steel Frame
Type
1" 0.655 • J,;:x 1.0
Lu
I.011x I%:"
1" 1.155"
I'
1 '/: h I'w.
'US Filter, St. Paul, Minnesota, USA
DESIGN EXAMPLE:
Given: A WQCV outlet with three columns of 5/8 inch (0.625 in) diameter openings.
Water Depth H above the lowest opening of 3.5 feet.
Find: The dimensions for a well street trash rack within the mounting frame.
Solution: From Table 6a-I with an outlet opening diameter of 0.75 inches (i.e., rounded up from 5/8 inch
actual diameter of the opening) and the Waler Depth H = 4 feet (i.e., rounded up from 3.5 feet). The
minimum width for each column of openings is 6 inches. Thus, the total width is W ,on, = 36 = 18 inches.
The total height, after adding the 2 feet below the lowest row of openings, and subtracting 2 inches for the
flange of the top support channel, is 64 inches. Thus,
Trash rack dimensions within the mounting frame = 18 inches wide x 64 inches high
From Table 6n-2 select the ordering specifications for an I8", or less, wide opening trash rack using US
Filter (or equal) stainless steel well -screen with N93 VEE wire, 0.139"openings between wires, TE .074" x .50"support rods on LO" on -center spacing, total rack thickness of 0.655" and x 1.0" w Carbon steel franc. elded
Table 6a
I
1
1
1
' MODSWMM MODEL TO GENERATE HYDROGRAPHS FOR
t
1
1
1
1
t
Final Drainage and Erosion Control Report
Settler's Creek
INPUT INTO EXTRAN
Appendix
March 2005
Oroject: "St �'L Z '5 6,,,( k Job No: �qqe.).
dent. By: Chk. By: - Date: -It /I "11'e
f f
Subject
I
I
I
I
I
I
I
I
r
I
F
I
I
I
I
I
I
Sheet No: of
ft)
J-R ENGINEERING
AWastrian Company
J.
H
A-L
-jj-,j-,'I-�-
4
7-1
41
41 -'1
L
d
f
�T
T
t +
4-
fla-
7
7
q
�4
71
-4-4- 4.
4
v,
+
4
T.,
J.
,oj
��J 7�
ck�
i
---
A
4 -
4
�J_
4�
-A
's
!4
.. . .. .. .......
_7
4-i
JJ
A
T
4
Irtd-
�j-� +
L
T : -
I r. j
j_-T
4
1 !A
i A..
AL
14
7
4-
L
I
'Schneider, Erika
From: Feissner, Herman [Herman.Feissner@Nolte.com]
Sent: Thursday, August 19, 2004 3:55 PM
To: ESchneider@JREngineering.com
Subject: Goodwill Site Drainage Information
' Erika,
I apologize for taking so long to get this information to you.
' First, both 24" x 38°culverts will be used.
Second, here is what goes where.
'North Culvert:
Interim 100-year developed runoff to this culvert:
3.70 cfs from two (2) 10' Type 'R' Curb Inlets
'2.55 cfs from undeveloped parcel north of Pavilion Lane
3.60 cfs from Fort Collins Retail Center (this is in the SWMM Models
that I've reviewed)
'Ultimate 100-year developed runoff to this culvert:
3.70 cfs from two (2) 10' Type 'R' Curb Inlets
0.72 cfs (approx. 3.15 ac at 0.23 cfs/ac) from future detention pond on
'parcel north of Pavilion Lane
3.60 cfs from Fort Collins Retail Center (this runoff will 'pass
through' the future pond)
'South Culvert:
Ultimate 100-year developed runoff to this culvert:
0.72 cfs from on -site detention pond at Goodwill Industries project site
'Imperviousness of project site: approx. 66% (This includes the extension
of Pavilion Lane)
1
1
1
Let me know If you have other questions.
Herman Feissner, P.E.
Associate Engineer
Nolte Associates, Inc.
Fort Collins, Colorado
Direct: (970) 419-1340
Office: (970) 221-2400
FAX: (970) 221-2415
E-mail: herman.feissner@nolte.com
[]
1
MMP-XTD.IN
2 1 1 2
3 4
WATERSHED 0
HARMONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION
100-YEAR EVENT FILE: MMP-XTD.DAT 7R ENG., 11/17/04, USED FOR DEVEL EXTRAN
600 0 0 1.0 1 1.0 1
25 5
1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46
1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75
0.73 0.71 0.69 0.67
-2 .016 .250 0.1 0.3 .51 0.5 .0018
UPDATED BASIN 388 AND 389 INFORMATION
1 382 582 700 0.8 67. .013 .016 .25 .1 .3 .51 .5 .0018
1 383 483 2439 5.6 85. .020 .016 .25 .1 .3 .51 .5 .0018
1 384 84 2400 6.9 84. .020 .016 .25 .1 .3 .51 .5 .0018
1 385 85 2100 6.3 52. .020 .016 .25 .1 .3 .51 .5 .0018
1 386 586 3543 12.2 70. .010 .016 .25 .1 .3 .51 .5 .0018
1 387 586 800 3.2 70. .025 .016 .25 .1 .3 .51 .5 .0018
1 388 588 3300 13.6 72. .011 .016 .25 .1 .3 .51 .5 .0018
1 389 88 3049 7.0 66. .020 .016 .25 .1 .3 .51 .5 .0018
1 390 490 550 1.4 70. .020 .016 .25 .1 .3 .51 .5 .0018
1 391 491 600 2.8 70. .020 .016 .25 .1 .3 .51 .5 .0018
1 392 588 1100 6.6 90. .020 .016 .25 .1 .3 .51 .5 .0018
1 393 88 4400 11.8 95. .020 .016 .25 .1 .3 .51 .5 .0018
1 394 92 900 1.4 90. .020 .016 .25 .1 .3 .51 .5 .0018
1 396 496 2950 13.5 '93. .013 .016 .25 .1 .3 .51 .5 .0018
1 397 497 810 3.9 85. .021 .016 .25 .1 .3 .51 .5 .0018
0
0
92 89 0 2 2. 1000. .010 0. 0. .013 2.
-1 395 89 4 3 .1 1. .1
0.0 0.0 0.5 3.6 9.6 3.6 9.85 0.0
89 88 0 1 0. 800. .007 4. 4. .035 5.
490 90 4 2 .1 1. .1
0.00 0. 0.20 0.46 0.22 0.48 0.24 2.50
491 90 4 2 .1 1. .1
0.00 0. 0.50 1.0 0.60 91.9 0.70 260.
90 88 0 4 0. 500. .010 50. 50. .016 .5
50. 500. .010 10. 10. .035 5.
496 88 6 2 .1 1. .1
0.00 0. 0.01 12.0 0.11 12.4 0.79 12.8
2.06 13.2 3.53 31.6
88 588 0 1 0. 700. .008 4. 4. .035 5.
497 588 7 2 1 1. .1
0.00 0. 0.01 1.57 0.05 1.61 0.36 1.67
0.67 1.73 0.84 1.76 1.30 20.16
588 488 0 3 .1 1.
488 586 2 2 .1 1. .1
0.00 0.0 50.0 0.0
683 582 682 3 3 .1 1. .1
0.0 0.0 4.6 1.3 8.0 1.8
682 82 0 3 .1 1.
683 0 3 .1 1.
82 85 0 4 0. 1300. .014 50. 50. .016 .5
50. 1300. .014 10. 10. .035 5.
85 586 0 4 0. 1000. .011 50. 50. .016 .5
50. 1000. .011 10. 10. .035 S.
84 586 0 4 0. 700. .010 50. 50. .016 .5
50. 700. .010 10. 10. .035 5.
586 486 0 3 .1 1.
486 584 '2 2 .1 1. .1
0.00 0.0 50.0 0.0
Page 1
MMP-XTD.IN
' 4
4
586 588 488 486
ENDPROGRAM
[1
1
1
L
Page 2
11
1
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF a EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY
TAPE OR DISK ASSIGNMENTS
JIN(1) JIN(2) JIN(3)
2 1 0
' JOUT(1) JOUT(2) JOUT13)
1 2 0
NSCRAT(1)
3
IERSHED PROGRAM CALLED
UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
JIN14) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10)
0 0 0 0 0 0 0
JOUT(4) JOUT(5) JOUT16) JOUT(7) JOUT(8) JOUT(9) JOUT(10)
0 0 0 0 0 0 0
NSCRAT(2) NSCRAT M NSCRAT(4) NSCRAT(5)
4 0 0 0
IENTRY MADE TO RUNOFF MODEL •^
HARMONY CENTRE AND PIER DETENTION POND ANALYSIS--INPwW HYDROGRAPH GENERATION
YEAR EVENT FILE: MMP-XTD.DAT OR ENG., 11/17/04, USED MR DEVEL EXTRAN
BER OF TIME STEPS 600
EGRATION TIME INTERVAL (MINUTES) 1.00
0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46
1.22 1.06 1.00 .95 .91 .87 .84 .81 .78 .75
.73
.71
.69
.67
.00
HARMONY
CENTRE
AND PIER
DETENTION
POND ANALYSIS
--INFLOW HYDROGRAPH GENERATION
YEAR EVENT
FILE: M4P-XTD.DAT
JR ENG.,
11/17/04,
USED FOR
DEVEL EXTRAN
SUBAREA
GUTTER WIDTH
AREA
PERCENT
SLOPE
RESISTANCE FACTOR
SURFACE STORAGE(IN)
BER
OR MANHOLE
(FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
2
0
.0
.0
.0
.0300
.016
.250
.100
.300
2
582
700.0
.8
67.0
.0130
.016
.250
.100
.300
383
483
2439.0
5.6
85.0
.0200
.016
.250
.100
.300
384
84
2400.0
6.9
84.0
.0200
.016
.250
.100
.300
5
85
2100.0
6.3
52.0
.0200
.016
.250
.100
.300
6
586
3543.0
12.2
70.0
.0100
.016
.250
.100
.300
7
586
800.0
3.2
70.0
.0250
.016
.250
.100
.300
388
588
3300.0
13.6
72.0
.0110
.016
.250
.100
'.300
389
88
3049.0
7.0
66.0
.0200
.016
.250
.100
.300
490
550.0
1.4
70.0
.0200
.016
.250
.100
.300
1
'0
491
600.0
2.8
70.0
.0200
.016
.250
.100
.300
2
588
1100.0
6.6
90.0
.0200
.016
.250
.100
.300
393
88
4400.0
11.8
95.0
.0200
.016
.250
.100
.300
394
92
900.0
1.4
90.0
.0200
.016
.250
.100
.300
6
496
2950.0
13.5
93.0
.0130
.016
.250
.100
.300
7
497
810.0
3.9
85.0
.0210
.016
.250
.100
.300
AL NUMBER
OF
SUBCATCHMENTS, 15
TO AL TRIBUTARY
AREA (ACRES),
97.00
1
INFILTRATION RATE(IN/HR) GAGE
MAXIMUM MINIMUM DECAY RATE NO
.51
.50
.00180
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1'
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
HARMONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION
YEAR EVENT FILE: MMP-XTD.DAT JR ENG., 11/17/04, USED FOR DEVEL EXTRAN
••' CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL
�ERSHED AREA (ACRES) 97.000
TOTAL RAINFALL (INCHES) 3.669
AL INFILTRATION (INCHES) .250
AL WATERSHED OUTFLOW (INCHES) 3.313
AL SURFACE STORAGE AT END OF STROM (INCHES) .106
OR IN CONTINUITY, PERCENTAGE OF RAINFALL .000
�rONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION
YEAR EVENT FILE: MMP-XTD.DAT JR MO., 11/17/04, USED FOR DEVEL EXTRAN
WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE
EA GUTTER NDP NP OR DIAM LENGTH SLOPE HORI2 TO VERT MANNING DEPTH JK
BER CONNECTION (FT) (FT) (FT/FT) L R N (FT)
92
89
0
2
PIPE
2.0
1000.
.0100
89
4
3
.1
7.
.0010
15
TIME IN HAS
VS INFLOW IN CPS
.000
.0
.500 3.6
9.600
3.6
9.850
89
88
0
1
CHANNEL
.0
800.
.0070
490
90
4
2
PIPE
.1
1.
.0010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.000
.0
.200 .5
.220
.5
.240
1
90
4
2
PIPE
.1
1.
.0010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.500 1.0
.600
91.9
.700
88
0
4
CHANNEL
.0
500.
.0100
�0
OVERFLOW
50.0
500.
.0100
6
88
6
2
PIPE
.1
1.
.0010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.000
.0
.010 12.0
.110
12.4
.790
588
0
1
CHANNEL
.0
700.
.0080
7
�8
588
7
2
PIPE
.1
1.
.0010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.000
.0
.010 1.6
.050
1.6
.360
1.300
20.2
8
488
0
3
.1
1.
.0010
8
586
2
2
PIPE
.1
1.
.0010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.000
.0 50.000 .0
582
682
3
3
.1
1.
.0010
DIVERSION
.000
TO GUTTER NUMBER 683 - TOTAL
.0 4.600 1.3
Q VS DIVERTE➢ Q IN
8.000 1.8
CPS
2
82
0
3
.1
1.
.0010
3
0
0
3
.1
1.
.0010
82
85
0
4
CHANNEL
.0
1300.
.0140
586
0
4
OVERFLOW
CHANNEL
50.0
.0
1300.
1000.
.0140
.0110
15
OVERFLOW
50.0
1000.
.0110
d
586
0
4
CHANNEL
.0
700.
.0100
OVERFLOW
50.0
700.
.0100
6
486
0
3
.1
1.
.0010
6
5 84
2
2
PIPE
.1
1.
.0010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.000
.0 50.000
.0
TOTAL NUMBER
OF GUTTERS/PIPES,
19
CONY
CENTRE
AND
PIER DETENTION
POND ANALYSIS
--INFLOW HYDROGRAPH
GENERATION
100-YEAR EVENT FILE:
IM/P-XTD.DAT
JR ENG.,
11/17/04, USED
FOR DEVEL EXTRAN
LGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES
.0
.0
.013
2.00
0
.0
.0
.001
.10
-1
.0
4.0
4.0
.035
5.00
0
.0
.0
.001
.10
0
2.5
.0
.0
.001
.10
0
260.0
50.0
50.0
.016
.50
0
10.0
10.0
.035
5.00
.0
.0
.001
.10
0
12.8
2.060
13.2
3.530
31.6
4.0
4.0
.035
5.00
0
.0
.0
.001
.10
0
1.7
.670
1.7
.840
1.8
.0
.0
.001
10.00
0
.0
.0
.001
.10
0
.0
.0
.001
.10
683
.0
.0
.001
10.00
0
.0
.0
.001
10.00
0
50.0
50.0
.016
.50
0
10.0
10.0
.035
5.00
50.0
50.0
.016
.50
0
10.0
10.0
.035
5.00
50.0
50.0
.016
.50
0
10.0
10.0
.035
5.00
.0
.0
.001
10.00
0
.0
.0
.001
.10
0
GUTTER
TRIBUTARY
GUTTER/PIPE
TRIBUTARY
SUBAREA
D.A.(AC)
82
682 0
0 0 0
0
0
0
0
0
0 0
0 0
0
0
0
0
0
0
.8
84
0 0
0 0 0
0
0
0
0
0
384 0
0 0
0
0
0
0
0
0
6.9
85
82 0
0 0 0
0
0
0
0
0
385 0
0 0
0
0
0
0
0
0
7.1
88
89 90
496 0 0
0
0
0
0
0
389 393
0 0
0
0
0
0
0
0
37.9
89
92 395
0 0 0
0
0
0
0
0
0 0
O 0
0
0
0
0
0
0
1.4
1
90 490 491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.2
t92
0
0
0
0
0
0
0
0
0 0
395
0
0
0
0
0
0
0
0
0 0
486
586
0
0
0
0
0
0
0
0 0
'
488
588
0
0
0
0
0
0
0
0 0
490
0
0
0
0
0
0
0
0
0 0
491
0
0
0
0
0
0
0
0
0 0
496
0
0
0
0
0
0
0
0
0 0
497
0
0
0
0
0
0
0
0
0 0
582
0
0
0
0
0
0
0
0
0 0
'
586
488
05
84
0
0
0
0
0
0 0
588
88
497
0
0
0
0
0
0
0 0
682
582
0
0
0
0
0
0
0
0 0
611
0
0
0
0
0
0
0
0
0 0
'
394 0
0 0
0 0
0 0
390 0
391 0
396 0
397 0
382 0
386 387
388 392
0 0
0 0
HARMONY CENTRE AND PIER DETENTION POND ANALYSIS --INFLOW HYDROGRAPH GENERATION
�0-YEAR EVENT FILE: MMP-XTD.DAT JR MG., 11/17/04, USED FOR DEVEL E%TRAN
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 4 CONVEYANCE ELEMENTS
0 0
0
0
0
0
0
0
1.4
0 0
0
0
0
0
0
0
.0
0 0
0
0
0
0
0
0
91.4
0 0
0
0
0
0
0
0
62.0
0 0
0
0
0
0
0
0
1.4
0 0
0
0
0
0
0
0
2.8
0 0
0
0
0
0
0
0
13 .5
0 0
0
0
0
0
0
0
3.9
0 0
0
0
0
0
0
0
.8
0 0
0
0
0
0
0
0
91.4
0 0
0
0
0
0
0
0
62.0
0 0
0
0
0
0
0
0
.8
0 0
0
0
0
0
0
0
.0
' THE
UPPER NUMBER IS DISCHARGE
IN CPS
THE
LOWER NUMBER IS ONE OF
THE
FOLLOWING
CASES:
( )
DENOTES DEPTH
ABOVE INVERT
IN FEET
(S1
DENOTES STORAGE
IN AC -FT
FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW.
(I)
DENOTES GUTTER
INFLOW
IN CPS
FROM SPECIFIED INFLOW HYDROGRAPH
'
(D)
DENOTES DISCHARGE
IN CPS
DIVERTED
FROM THIS GUTTER
(0)
DENOTES STORAGE
IN AC -FT
FOR SURCHARGED GUTTER
TIME(HR/MIN)
486
488
586
588
1.
.0
.0
.0
.0
.00( I
.001 1
.00( 1
.00( )
0 2.
.0
.0
.0
.0
.00(s)
.00( 1
.00( )
.00( )
3.
.0
.0
.1
.0
oo(s)
.co(s)
ool )
ool r
4.
.0
.0
.1
.1
.00(Sl
.00(s)
.00( 1
.00( I
0 5.
.0
.0
.1
.1
.00(s)
.00(s)
.00( 1
.00( )
6.
.0
.0
.1
.1
.00(S)
.00(5)
.00( )
.00( 1
0 7.
.0
.0
.6
.7
. 00(s)
.00(S)
.00( 1
.00( I
B.
.0
.0
2.2
3.0
.00(s)
.00(s)
o
.o( I
.00( )
9.
.0
.0
4.5
6.7
.01(S)
.01(S)
.00( I
.00( 1
0 10.
.0
.0
6.9
11.5
.02 (5)
.03151
.00( 1
.001 1
11.
.0
.0
9.7
17.4
.03(5)
.05(S)
.00( I
.001 I
12.
.0
.0
12.5
24.1
.05(S)
.08(S)
.00( 1
.00( )
13.
.0
.0
15.1
30.7
.0715)
.12 Is1
.001 )
.001 1
19.
.0
.0
17.3
36.6
.09(S)
.17(S)
.00( 1
.00( 1
0 15.
.0
.0
19.1
41.7
16.
.121S)
.0
.22(S)
.0
22.5
.00( 1
48.6
.01( )
l
.15(S)
.28(5)
.00( )
.00( I
17.
.0
.0
27.3
57.3
.18(S)
.36(S)
.00(
1
.00( )
18.
.0
.0
31.3
64.9
.zz(s
.45(s)
.00t
)
.00( I
19.
.0
.0
34.4
71.0
.27(S)
.54(5)
.00(
1
.00( I
0 20.
.0
.0
36.8
75.8
.32(S)
.64(S)
.00(
1
.00( )
21.
.0
.0
40.4
81.9
'
.38(S)
.75(S)
.00(
1
.001 I
22.
.0
.0
45.1
89.7
.44(s)
.88(S)
.00(
1
.00(
1
0 23.
.0
.0
49.1
96.4
.50(S)
1.01(s)
.00(
1
.00(
1
'
24.
.0
.0
52.5
102.0
.57(S)
1.14(S)
.00(
)
.00(
1
0 25.
.0
.0
55.4
106.5
.65(S)
1.29(S)
.00(
I
.00(
1
26.
.0
.0
66.3
122.3
'
.74(S)
1.45(SI
.00(
I
.00(
1
27.
.0
.0
84.3
149.4
.85(S)
1.65(5)
.001
I
.00(
I
0 28.
.0
.0
98.5
171.8
1
.98(S)
1.8815)
.00(
)
00( 1
29.
.0
.0
109.5
188.9
1.13(S)
2.13(S)
.oat )
.00( 1
30.
.0
.0
118.1
201.4
1 .2915)
2.40151
.001 1
.00( 1
31.
.0
.0
143.2
237.1
1.48(S)
2.721S)
.00( 1
.00( 1
0
32.
.0
.0
181.5
293.8
33.
1.72151
.0
3.1115)
.0
207.1
.001 I
335.0
.001 1
2.00(S)
3.55(S)
.001 1
.00( I
34.
.0
.0
224.7
362.5
2.30(S)
4.041S)
.00( )
.00( I
35.
.0
.0
238.2
380.5
2 .62151
4.56151
.001 1
.00f )
36.
.0
.0
221.5
350.7
2.93(S)
5.05(S)
.00( 1
.001 )
0
37.
.0
.0
188.7
293.5
3.19(5)
5.47(S)
.001 1
.001 1
38.
.0
.0
169.5
256.7
3.43(S)
5.83(S)
.001 1
.00( 1
39.
.0
.0
156.0
233.1
3.65(S)
6.17(S)
.00( 1
.00( I
0
40.
.0
.0
145.9
217.7
3.85(S)
6.47(SI
.00( 1
.00( 1
41.
.0
.0
132.7
198.6
4.04(S)
6.75(S)
.00( 1
.00( )
0
42.-
.0
.0
117.4
176.6
4.21(S)
7.00(S)
.00( )
.00( 1
43.
.0
.0
106.5
160.7
4.36151
7.23(S)
.00( )
.00( 1
44.
.0
.0
98.4
149.4
4.49(S)
7.44(SI
.00( 1
.001 )
0
45.
.0
.0
92.4
141.3
4.62(S)
7.64(S)
.00( I
.001 1
46.
.0
.0
94.6
131.0
4.74(S)
7.82(S)
.00( )
.00( 1
0
47.
.0
.0
75.5
118.7
4.85(S)
7.99(SI
.00( 1
.00( I
48.
.0
.0
68.6
309.2
4 .95151
8.14 (S)
.001 1
.00( 1
49.
.0
.0
63.2
102.0
5.04(S)
8.29(S)
.001 1
.00( 1
0
50.
.0
.0
59.0
96.6
5.12151
8.42 (SI
.001
51.
.0
.0
54.9
91.6
5.20(S)
8.55(S)
.00( I
.001 1
52.
.0
.0
51.1
86.8
5.27(S)
8.67(5)
.00( )
.00( 1
53.
.0
.0
48.0
83.0
5.34151
8.79151
.00( 1
.00( I
54.
.0
.0
45.5
80.1
5.40(S)
8.90(SI
.00( I
.001 1
0
55.
.0
.0
43.4
77.9
56.
5.46151
.0
9.00 (S)
.0
41.3
-00( )
75.8
.001 )
5.52(S)
9.11(S)
.00( 1
.00( I
57.
.0
.0
39.2
73.6
5.57(S)
9.21(S)
.00( I
.00(
1
58.
.0
.0
37.5
71.8
5.62(S)
9.31(S)
.001 )
.001
1
59.
.0
.0
36.0
70.;
5.67(S)
9.41(S)
.00( 1
.00(
I
1
0.
.0
.0
34.8
69.1
5.72 (S)
9.50151
.001 1
.00(
)
1.
.0
.0
33.6
67.9
5.77(S)
9.60(S)
.00(
)
.00(
1
2.
.0
.0
32.5
66.6
5.82(S)
9.69(S)
.00(
1
.00(
1
1
3.
.0
.0
31.5
65.6
5.86(S)
9.78(5)
.001
)
.00(
1
'
4.
.0
.0
30.7
64.7
5.90151
9.87(S)
.00(
I
.001
1
1
5.
.0
.0
30.0
64.0
5.94(S)
9.96(S)
.00(
1
.00(
)
6.
.0
.0
29.3
63.2
'
5.98(S)
10.0515)
.00(
1
.00(
1
7.
.0
.0
28.6
62.3
6.02(S)
10.13(S)
.00(
1
.00(
)
1
B.
.0
.0
28.0
61.6
6.06(S)
10.22(S)
.00(
)
.00(
1
'
9.
.0
.0
29.5
60.9
6.10(S)
10.30(S)
.00(
I
.001
1
1
10.
.0
.0
27.1
60.4
6.14(S)
10.38(S)
.001
1
.00(
)
11.
.0
.0
26.6
59.8
6.17(S)
10.4715)
.00(
1
.001
I
12.
.0
.0
26.1
59.2
6.21(S)
10.55(S)
.001
1
.00(
1
1
13.
.0
.0
25.7
58.6
1
6.25(S)
10.63(S)
.001
1
.001
1
14.
.0
.0
25.3
58.2
6.28(S)
10.7115)
.001 I
.00( 7
ls.
.0
.0
25.0
57.8
fi .32151
10.79151
.001 I
.001 1
16.
.0
.0
24.6
57.3
6.35(S)
10.87(5)
.00( )
.001 1
1
17.
.0
.0
24.2
56.8
6.38151
10.9515)
.001 )
.00( 1
18.
.0
.0
23.9
56.3
6.42(S)
11.0215)
.001 )
.001 )
19.
.0
.0
23.6
55.9
6.45(S)
11.30(S)
.00( 1
.001 1
20.
.0
.0
27.3
55.5
6.48151
11.18151
.00( I
.001 I
21.
.0
.0
23.0
55.2
6.51(SI
11.25(S)
.00( 1
.00( I
1
22.
.0
.0
22.7
54.7
6.54(S)
11.33(S)
.00( )
.00( I
23.
.0
.0
22.4
54.4
6.57(S)
11.40(S)
.00( 1
.00( 1
24.
.0
.0
22.2
54.0
6.61(5)
11.48(S)
.001 1
.00( 1
1
25.
.0
.0
22.0
53.8
6.64151
11.55(S)
.00( I
.001 1
26.
.0
.0
21.8
53.4
6.67(5)
11.63(S)
.00( 1
.001 1
1
27.
.0
.0
21.5
53.1
6.70(5)
11.70(S)
.00( )
.00( )
28.
.0
.0
21.3
52.7
6.72(5)
11.7](S)
.001 1
.00( )
29.
.0
.0
21.1
52.5
6.75151
11.85(S)
-00( )
.00( 1
1
30.
.0
.0
20.9
52.2
6.7B(5)
11.92(S)
.00( )
.00( )
31.
.0
.0
20.7
51.9
6.81(5)
11.99(S)
.001 1
.00( )
1
32.
.0
.0
20.4
51.6
6.84(5)
12.06(S)
.00( 1
.00( 1
33.
.0
.0
20.2
51.3
6. 87 (5)
12.13151
.00( )
.00( )
34.
.0
.0
20.0
51.0
6.89(S)
12.20(5)
.00( )
.00( )
1
35.
.0
.0
19.9
50.8
6.92(5)
12.27
(5)
.001 1
.00( )
36.
.0
.0
19.7
50.5
6.95(S)
12.34(5)
.00( 1
.00(
1
37.
.0
.0
19.4
50.2
6.9815)
12.41(S)
.001 )
.00(
)
38.
.0
.0
19.2
49.9
7.00151
12.48
(S)
.00( 1
.001
1
39.
.0
.0
19.1
49.6
7.03(S)
12.55(S)
.00( 1
.00(
I
1
40.
.0
.0
18.9
49.4
91.
7.05151
.0
12.6115)
.0
16.7
.001 )
.001
49.1
1
7.08151
12.68(S)
.001 I
.00(
1
42.
.0
.0
18.6
48.8
7.11(S)
12.75(S)
.00(
)
.00(
)
43.
.0
.0
18.4
98.6
7.13 (5)
12.82
(S)
.001
1
.00(
1
44.
.0
.0
18.3
48.4
7.16(S)
12.88(S)
.00(
)
.00(
)
1
45.
.0
.0
18.1
48.2
7.18(S)
12.95(S)
.00(
1
.00(
)
46.
.0
.0
1B.0
48.0
7.21(S)
13.02(S)
.00(
)
.00(
1
47.
.0
.0
17.8
47.B
7.23(S)
13.08(5)
.00(
)
.001
)
1
48.
.0
.0
17.7
47.6
7.26(5)
13.15(S)
.001
1
.00(
1
'
49.
.0
.0
17.6
47.4
7.28(S)
13.21(S)
.001
1
.001
1
1
50.
.0
.0
17.4
47.2
7.30(S)
13.28(5)
.001
1
.00(
1
51.
.0
.0
17.3
47.0
'
7.33(S)
13.34(S)
.001
I
.001
I
52.
.0
.0
17.2
46.8
7.35(S)
13.41(S)
.00(
1
.00(
1
1
53.
.0
.0
17.0
46.6
7.37(S)
13.47(S)
.001
1
.00(
I
'
54.
.0
.0
16.9
46.4
7.40(S)
13.54(5)
.001
)
.001
1
1
55.
.0
.0
16.8
46.2
7.42(5)
13.60(S)
.001
1
.001
1
56.
.0
.0
16.7
46.1
7.44(S)
13.66(S)
.001
1
.00(
1
57.
.0
.0
16.5
45.8
7.47(S)
13.73(5)
.001
1
.001
1
1
58.
.0
.0
16.4
45.6
'
7.49(5)
13.79(S)
.001
I
.001
I
59.
.0
.0
16.3
45.5
7.51(S)
13.85(S)
.00( )
.00( I
0.
.0
.0
16.2
45.3
7. 53151
13.9115)
.001 1
.00( 1
1.
.0
.0
15.0
43.6
7.55(S)
13.97(5)
.00( 1
.00( 1'
2
2.
.0
.0
13.0
40.4
7.571S1
14.031S)
.001 1
.001 1
3.
.0
.0
11.3
37.5
7.59(5)
14.08151
.00( )
.001 1
4.
.0
.0
9.9
35.0
7.60(S)
14.13(S)
.00( )
.00( 1
5.
.0
.0
8.8
32.9
7.62(S)
14.18151
.00( 1
.001 I
6.
.0
.0
7.8
31.1
7.63(S)
14.22(5)
.00( )
.00( I
2
7.
.0
.0
6.9
29.6
7.64(S)
14.26(S)
.001 )
.00( )
8.
.0
.0
6.2
28.9
7.64(S)
19.30151
.001 )
.001 1
9.
.0
.0
5.6
27.3
7.65(S)
14.34(S)
.001 )
.00( I
2
10.
.0
.0
5.0
26.4
7.66(s)
14.38(S)
.00( 1
.00( 1
11.
.0
.0
4.6
25.6
7.67(S)
14.41(S)
.00( )
.001 )
2
12.
.0
.0
4.2
25.0
7.67(S)
14.45(S)
.00( )
.00( 1
13.
.0
.0
3.8
24.4
7.68(5)
14.98(5)
.00( 1
.001 1
14.
.0
.0
3.5
23.9
7.68(S)
14.51(S)
.00( )
.00( 1
2
15.
.0
.0
3.2
23.5
7.69(S)
14.55(S)
.001 )
.00( 1
16.
.0
.0
2.9
23.2
7.69(S)
14.58(S)
.001 )
.001 1
2
17.
.0
.0
2.7
22.9
7.69(S)
14.61(5)
.00( 1
.00( I
18.
.0
.0
2.5
22.6
7.70151
19.64
(S)
.00( 1
.00( )
19.
.0
.0
2.3
22.3
7.70(S)
14.67(S)
.001 1
.00( 1
2
20.
.0
.0
2.2
22.1
21.
7.70Is1
.0
14.70
(S)
.0
.00( 1
2.0
21.9
.001 )
7.71(S)
14.73(5)
.00( 1
.00( 1
22.
.0
.0
1.9
21.8
7.71(S)
14.76(S)
.00( )
.00(
)
23.
.0
.0
1.8
21.6
7.71151
14.79151
.00( 1
.001
1
24.
.0
.0
1.7
21.5
7.71(S)
14.82(S)
.001 )
.001
)
2
25.
.0
.0
1.6
21.4
26.
7.72(S)
.0
14.851S1
.0
.001 )
1.5
.00(
21.3
)
7.72(5)
14.88(S)
.00( )
.001
1
27.
.0
.0
1.4
21.2
7.72(S)
14.91(S)
.00( )
.00(
1
28.
.0
.0
1.3
21.1
7.72151
14.9415)
.001 )
.001
1
29.
.0
.0
1.2
21.0
7.72(S)
14.97(s)
.00( 1
.00(
1
2
30.
.0
.0
1.2
20.9
7.73(S)
15.00(S)
.001 1
.00(
)
31.
.0
.0
1.1
20.8
'
7.73(SI
15.03(S)
.00( )
.001
1
32.
.0
.0
1.0
20.8
7.73(S)
15_05(S)
.00( )
.00(
)
2
33.
.0
.0
1.0
20.7
7.73(S)
15.08(S)
.00( 1
.00(
)
'
34.
.0
.0
.9
20.6
7.73(5)
15.11(S)
.00( I
.00(
I
2
35.
.0
.0
.9
20.6
7.73(S)
15.14(S)
.00( )
.001
)
36.
.0
.0
.8
20.5
'
7.73(5)
15.17151
.001 1
.00(
1
37.
.0
.0
.8
20.5
7.73(S)
15.201S)
.001 1
.001
)
2
38.
.0
.0
.8
20.4
7.74(S)
15.22(5)
.00( )
.00(
1
'
39.
.0
.0
.7
20.4
7.74(S)
15.25(S)
.00( 1
.00(
I
2
40.
.0
.0
.7
20.4
7.74(S)
15.28(S)
.001 1
.00(
1
41.
.0
.0
.7
20.3
7.74151
15.31151
.001 1
.00(
I
42.
.0
.0
.6
20.3
7.741S)
15.34(S)
.001 1
.001
1
2
43.
.0
.0
.6
20.3
1
7.74(S)
15.36(S)
.001 1
.001
1
44.
.0
.0
6
20.2
7.74(S)
15.391S1
.001 1
.00( 1
45.
.0
.0
.5
20.2
7 J4(5)
15.42(5)
.001 1
.001 I
46.
.0
.0
.5
20.2
7.74(S)
15.45(S)
.00( 1
.00( 1
2
47.
.0
.0
.5
20.1
48.
7.74 (S)
.0
15.48151
.0
.001 1
.5
20.1
.00( )
7.74(S)
15.501S)
.00( I
.00( )
49.
.0
.0
.5
20.1
7.74(S)
15.53(S)
.001 I
.00( 1
50.
.0
.0
.4
20.1
7.74(5)
15.56151
.001 )
.00( 1
51.
.0
.0
.4
20.0
7.751S)
15.59(S)
.001 )
.001 1
2
52.
.0
.0
.4
20.0
7.75(S)
15.611S)
.10( I
.001 1
53.
.0
.0
.4
20.0
7.75(S)
15.64151
.001 1
.001 1
54.
.0
.0
.4
20.0
7.75(S)
15.67(S)
.001 )
.00( 1
55.
.0
.0
.4
19.9
7.75(5)
15.70151
.001 )
.001 1
56.
.0
.0
.3
19.9
7.75(S)
15.72(S)
.001 1
.00( )
2
57.
.0
.0
.3
19.9
7.75(S)
15.751S)
.00( 1
.00( )
58.
.0
.0
.3
19.9
7.75(S)
15.78151
.00( 1
.00( )
59.
.0
.0
.3
19.9
7.75(S)
15.81(S)
.001 )
.00( )
3
0.
.0
.0
.3
19.8
7.75(S)
15.83(S)
.00( 1
.00( )
1.
.0
.0
.3
19.8
7.75(S)
15.86(S)
.00( I
.00( )
3
2.
.0
.0
.3
19.8
7.75(S)
15.89(S)
.001 )
.00( )
3.
.0
.0
.3
19.8
7.75(5)
15.91151
.001 1
.001 I
4.
.0
.0
.3
19.8
7.75(S)
.15.94(S)
.001 I
.00( )
3
5.
.0
.0
.2
19.8
7.75(S)
15.97(S)
.001 1
.00( 1
6.
.0
.0
.2
19.7
7.75(S)
16.00(S)
.001 1
.001 1
3
7.
.0
.0
.2
19.7
7.75(S)
16.02(S)
.001 1
.001 1
8.
.0
.0
.2
19.7
7.75151
16.05IS1
.001 )
.00( )
9.
.0
.0
.2
19.7
7.75(S)
16.08(S)
.001 )
.001 1
3
10.
.0
.0
.2
19.7
11.
7.75(S)
.0
16.10(S)
.0
.00( 1
.2
19.6
.001 1
7.75(S)
16.13(S)
.001 1
.00( 1
12.
.0
.0
.2
19.6
7.75(S)
16.16(S)
.001 )
.001 1
13.
.0
.0
.2
19.6
7.75(5)
16.19151
.00( 1
.001 )
14.
.0
.0
.2
19.6
7.75(S)
16.21(S)
.001 )
.00( 1
3
15.
.0
.0
.2
19.6
16.
7.751S)
.0
16.24(S)
.0
.001 )
.2
.001
19.5
)
1
7.75(S)
16.27(S)
.001 I
.001
)
17.
.0
.0
.2
19.5
7.75(S)
16.29(S)
.001 )
.001
1
3
18.
.0
.0
.2
19.5
7.75(S)
16.32151
.001 I
.001
1
1
19.
.0
.0
.1
19.5
7.75(S)
16.35(S)
.001 )
.001
I
3
20.
.0
.0
.1
19.5
7.75(S)
16.37(S)
.001 1
.00(
1
21.
.0
.0
.1
19.5
'
7.75151
16.401S)
.001 )
.001
I
22.
.0
.0
.1
19.4
7.75(S)
16.43(S)
.001 1
.001
1
3
23.
.0
.0
.1
19.4
7.75(S)
16.45(S)
.001 I
.001
1
'
24.
.0
.0
.1
19.4
7.75(S)
16.48(S)
.001 )
.001
1
3
25.
.0
.0
.1
19.4
7.75(S)
16.51(S)
.001 I
.00(
)
26.
.0
.0
.1
19.9
'
7.75(S)
16.5315)
.00( 1
.001
1
27.
.0
.0
.1
19.4
7.75151
16.56(S)
.001 1
.00(
1
3
28.
.0
.0
.1
19.3
1
7.75(S)
16.5915)
.001 I
.001
I
29.
.0
.0
.1
19.3
7.75(S)
16.61(S)
.001 1
.001 I
30.
.0
.0
.1
19.3
7 .75151
16
.64151
.00( 1
.001 I
31.
.0
.0
.1
19.3
7.76(S)
16.67(S)
.00( I
.001 1
3
32.
.0
.0
.1
19.J
33.
7.76151
.0
16.691S1
.0
.00( I
.1
19.3
.001 1
7.76(S)
16.72(S)
.001 1
.001 1
34.
.0
.0
.1
19.2
7.76(5)
16.75(S)
.001 1
.001 )
35.
.0
.0
.1
19.2
7.76151
16.77151
.001 1
.001 )
36.
.0
.0
.1
19.2
7.76(S)
16.80(S)
.001 1
.00( )
3
37.
.0
.0
.1
19.2
7.76(S)
16.83(S)
.00( 1
.001 1
38.
.0
.0
.1
19.2
7.76(S)
16.85151
.001 1
.001 1
39.
.0
.0
.1
19.2
7.76(S)
16.88(S)
.00( 1
.001 1
3
40.
.0
.0
.1
19.1
7.76(S)
16.90(S)
.00( )
.00( )
41.
.0
.0
.1
19.1
7.76(S)
16.931S)
.001 )
.00( 9
3
42.
.0
.0
.1
19.1
7.76(S)
16.96(S)
.001 1
.00( )
43.
.0
.0
.1
19.1
7.76151
16.9815)
.001 1
.00( )
44.
.0
.0
.1
19.1
7.76(S)
17.01(S)
.001 )
.00( 1
3
45.
.0
.0
.1
19.1
7.76(S)
17.04(S)
.00( 1
.001 1
46.
.0
.0
.1
19.0
7.76(S)
17.06(S)
.001 1
.001 I
3
47.
.0
.0
.1
19.0
7.76(S)
17.09(S)
.001 1
.00( I
48
.0
.0
.1
18.9
i
7.76151
17.11151
.001 1
.00( )
49.
.0
.0
.1
18.9
7.76(S)
17.14(S)
.00( )
.001 1
3
50.
.0
.0
.1
18.8
7.76(S)
17.17(S)
.001 )
.001 I
51.
.0
.0
.1
17.6
7.76(S)
17.19(S)
.00( 1
.00( )
3
52.
.0
.0
.1
15.2
7.76(SI
17.21(S)
.001 1
.00( 1
53.
.0
.0
.1
13.1
7.76(S)
17.23151
.001 1
.001 1
54.
.0
.0
.1
11.5
7.76(S)
17.25(S)
.00( )
.001 1
3
55.
.0
.0
.1
10.4
56.
7.76(S)
.0
17.26(S)
.0
.00( )
.1
9.5
.001 I
7.76(S)
17.28(S)
.001 1
.00( 1
57.
.0
.0
.1
8.8
7.76(S)
17.29(S)
.00( )
.001 1
58.
.0
.0
.1
8.3
7.76(5)
17.30151
.00( )
.001 )
59.
.0
.0
.1
8.0
7.76(5)
17.31(S)
.001 1
.00( I
4
0.
.0
.0
.1
7.7
7.76(S)
17.32(S)
.10( 1
.001 )
1.
.0
.0
.1
7.4
1
7J6(S)
17.34(S)
.00( 1
.001 I
2.
.0
.0
.1
7.2
7.76(S)
17.35(S)
.001 I
.00( 1
3.
.0
.0
.1
7.1
7.76(5)
17.35151
.001 1
.001 )
4.
.0
.0
.1
7.0
].76(S)
17.36(S)
.00( )
.001
1
4
5.
.0
.0
.1
6.9
7.76(S)
17.37(S)
.001 r
.00(
1
6.
.0
.0
.1
6.8
t
7 .76151
17.38151
.001 )
.001
1
7.
.0
.0
.1
6.7
7.76(S)
17.39(S)
.001 1
.001
1
4
8.
.0
.0
.1
6.7
7.76(S)
17.40(S)
.001 1
.00(
1
9.
.0
.0
.1
6.7
7.76(S)
17.41(S)
.001 1
.001
1
4
10.
.0
.0
.1
6.6
7.76(S)
17.42(S)
.001 )
.001
1
11.
.0
.0
.1
6.6
'
7.76151
17.43151
.001 )
.001
)
12.
.0
.0
.1
6.6
7.76(S)
17.44(S)
.00( )
.00(
I
4
13.
.0
.0
.1
6.6
1
7.761S)
17.45(S)
.001 )
.001
I
4
14.
.0
.0
.1
6.5
7.]6(S)
17.46(S)
.001 1
.001 I
15.
.0
.0
.1
6.5
].]6151
1'/.
47(5)
.001 I
.001 1
16.
.0
.0
.1
6.5
7.76(S)
17.47(S)
.001 1
.001 1
4
17.
.0
.0
.1
6.5
7.76(S)
17.48(S)
.001 )
.001 )
18.
.0
.0
.1
6.5
7.76(S)
17.49(S)
.001 )
.001 )
9
19.
.0
.0
.1
6.5
7.76(S)
17.50(S)
.001 1
.001 )
20.
.0
.0
.1
6.5
7.76(s)
17.51
(S)
.001 I
.001 1
21.
.0
.0
.1
6.5
7.76(S)
17.52(S)
.001 1
.001 )
4
22.
.0
.0
.1
6.5
23.
7.76(S)
.0
17.53(S)
.0
.00( I
.1
.001 1
6.5
7.76(S)
17.54(S)
.00( I
.00( )
4
24.
.0
.0
.1
6.5
7.76(S)
17.55(S)
.00( )
.00( 1
25.
.0
.0
.1
6.5
7.76151
17.55151
.001 1
.00( )
26.
.0
.0
.1
6.5
7.76(S)
17.56(S)
.001 1
.00( )
4
27.
.0
.0
.1
6.5
7.76(S)
17.57(S)
.10( 1
.001 1
28.
.0
.0
.1
6.4
1
7.76(S)
17.58(S)
.001 I
.00( 1
29.
.0
.0
.0
6.4
7.76(S)
17.59(S)
.00( )
.00( I
30.
.0
.0
.0
6.4
7.76(5)
17.60151
.001 )
.001 I
31.
.0
.0
.0
6.4
7.76(S)
17.61(S)
.001 1
.00( )
4
32.
.0
.0
.0
6.4
7.76(S)
17.62(S)
.001 1
.00( )
33.
.0
.0
.0
6.4
7.76(S)
17.62
(S)
.001 1
.001 1
34.
.0
.0
.0
6.4
7.76(S)
17.63(S)
.001 )
.00( 1
4
35.
.0
.0
.0
6.4
7.76(S)
17.64(S)
.001 1
.00( 1
36.
.0
.0
.0
6.4
7.76(S)
17.65(SI
.00( 1
.00( )
4
37.
.0
.0
.0
6.4
7.76(S)
17.66(S)
.00( 1
.00( 1
38.
.0
.0
.0
6.4
7.76151
17.67
(5)
.00( )
.00( I
39.
.0
.0
.0
6.4
7.76(S)
17.68(S)
.001 )
.00( 1
4
40.
.0
.0
.0
6.4
7.76(S)
17.69(S)
.001 )
.001 1
41.
.0
.0
.0
6.4
7.76(S)
17.70(S)
.00( 1
.001 1
4
42.
.0
.0
.0
6.4
7.76(S)
17.70(S)
.00( )
.00( 1
43.
.0
.0
.0
6.4
7.76(S)
17.71151
.001 1
.00( )
44.
.0
.0
.0
6.4
7.76(S)
17.721S)
.00( 1
.001 1
4
45.
.0
.0
.0
6.4
46.
7.76(5)
.0
17.73(S)
.0
.00( I
.0
.001 1
6.4
1
7.76(S)
17.74(S)
.001 )
.00( )
47.
.0
.0
.0
6.4
7.76(S)
17.75(S)
-001 1
.00( )
98.
.0
.0
.0
6.9
7 .7fi (SI
17 .76151
.001 1
.001 1
49.
.0
.0
.0
6.4
7.76(S)
17.76(S)
.001 1
.00( I
4
50.
.0
.0
.0
6.4
7.761S)
17.771S)
.101 I
.00( )
51.
.0
.0
.0
6.4
1
7.76(S)
17.78(S)
.00( )
.001 1
52.
.0
.0
.0
6.4
7.76(S)
17.79(S)
.001 1
.00( )
4
53.
.0
.0
.0
6.3
7.76(S)
17.80(S)
.00( I
.001 1
54.
.0
.0
.0
6.3
7.76(S)
17.81(S)
.001 )
.001 1
4
55.
.0
.0
.0
6.3
7.76(S)
17.82(S)
.001 )
.001 1
56.
.0
.0
.0
6.3
'
7.76151
17.83
(S)
.001 I
.001 I
57.
.0
.0
.0
6.3
7.76(S)
17.83(S)
.001 1
.001 1
4
58.
.0
.0
.0
6.3
7.76(S)
17.84(S)
.001 1
.00( 1
59.
.0
.0
.0
6.3
7.76(S)
17.85(S)
.00( 1
.001 1
0.
.0
.0
.0
6.3
7.76(S)
17.86151
.001 I
.00( )
1.
.0
.0
.0
6.3
7.76(5)
17.87(S)
.00( I
.00( I
5
2.
.0
.0
.0
6.3
3.
].76(5)
.0
I7.88
(S)
.0
.00( 1
.0
.001 1
6.3
7.76(S)
17.89(S)
.00( 1
.001 1
4.
.0
.0
.0
6.3
7.76(S)
17.90(S)
.001 1
.00( 1
5.
.0
.0
.0
6.3
7.76(S)
17.90(S)
.001 )
.001 1
6.
.0
.0
.0
6.3
7.76(S)
17.91(5)
.001 1
.00( )
5
7.
.0
.0
.0
6.3
7.76(S)
17.921S)
.001 1
.00( 1
B.
.0
.0
.0
6.3
1
7.76(S)
17.93(S)
.001 I
.00( 1
9.
.0
.0
.0
6.3
7.76(S)
17.94(S)
.00( 1
.00( I
10.
.0
.0
.0
6.3
7.76(S)
17.95151
.001 )
.001 I
11.
.0
.0
.0
6.3
7.76(S)
17.96(S)
.00( 1
.001 )
5
12.
.0
.0
.0
6.3
7.76(S)
17.96(S)
.00( 1
.00( )
13.
.0
.0
.0
6.3
7.76(5)
17.97151
.001 1
.001 )
14.
.0
.0
.0
6.3
7.76(S)
17.98(S)
.00( )
.00( 1
5
15.
.0
.0
.0
6.3
7.76(S)
17.99(SI
.00( )
.00( I
16.
.0
.0
.0
6.3
7.76(S)
18.00(5)
.00( 1
.00( )
5
17.
.0
.0
.0
6.3
7.76(S)
18.01(5)
.001 1
.00( )
18.
.0
.0
.0
6.3
7.76(S)
18.02
(S)
.001 I
.001 1
19.
.0
.0
.0
6.3
7.76(5)
18.02(S)
.001 )
.00( I
5
20.
.0
.0
.0
6.3
7.76(S)
MOM
.00( 1
.001 I
21.
.0
.0
.0
6.3
7.76(S)
18.04(S)
.00( )
.001 1
5
22.
.0
.0
.0
6.2
7.76151
18.05(S)
.00( )
.001 )
23.
.0
.0
.0
6.2
7 .76(5)
18.06(5)
.00( 1
.001 }
24.
.0
.0
.0
6.2
7.76(S)
18.07(5)
.001 1
.001 )
5
25.
.0
.0
.0
6.2
7.76(S)
18.08151
.001 I
.00( 1
26.
.0
.0
.0
6.2
7.7615)
18.08(S)
.00( 1
.00( )
27.
.0
.0
.0
6.2
7.76(S)
18.09(S)
.00( 1
.00( )
28.
.0
.0
.0
6.2
7.76(5)
18.10
(S)
.001 1
.00( 1
29.
.0
.0
.0
6.2
7.76(S)
18.11(S)
.00( 1
.001 1
5
30.
.0
.0
.0
6.2
31.
7.761S1
.0
18.12(S)
.0
.001
.0
6.2
l
7.76(S)
18.13(S)
.00( )
.00( )
32.
.0
.0
.0
6.2
7.76(S)
18.14(S)
.00( 1
.00( )
33.
.0
.0
.0
6.2
7.76(S)
18.14
(5)
.001 I
.00( )
34.
.0
.0
.0
6.2
7.76(S)
Ml51S)
.00( )
.00( I
5
35.
.0
.0
.0
6.2
7.76(S)
18.16(S)
.00( 1
.00( )
36.
.0
.0
.0
6.2
7.76151
18.17(5)
.00( )
.00( )
37.
.0
.0
.0
6.2
7.76(S)
18.18(S)
.00( I
.00( 1
5
38.
.0
.0
.0
6.2
7.76(S)
18.19(S)
.001 I
.001 1
'
39.
.0
.0
.0
6.2
7.76(5)
18.19151
.001 )
.00( I
5
40.
.0
.0
.0
6.2
7.76(S)
18.20(S)
.00( I
.00( )
41.
.0
.0
.0
6.2
'
7.7615)
18.21151
.001 1
.00( 1
42.
.0
.0
.0
6.2
7.76(S)
18.22(S)
.001 1
.001 1
5
43.
.0
.0
.0
6.2
1
7.76(S)
18.23(S)
.001 1
.00( )
44.
.0
.0
.0
6.2
7.76(S)
18.24(S)
.001 I
.001 1
45.
.0
.0
.0
6.2
7.76151
18.25151
.00I I
.001 I
46.
.0
.0
.0
6.2
7.76(S)
18.25(S)
.001 1
.001 I
5 47.
.0
.0
.0
6.2
48.
7.76151
.0
18.26
(S)
.0
.001 )
.0
.001 )
6.2
7.76(S)
18.27(S)
.001 1
.00( )
49.
.0
.0
.0
6.2
7.76(S)
18.28(5)
.001 1
.001 1
50.
.0
.0
.0
6.2
7.76(S)
18.29151
.00( 1
.001 I
51.
.0
.0
.0
6.2
7.76(S)
18.30(S)
.00( I
.001 1
5 52.
.0
.0
.0
6.2
7.761S1
18.30(S)
.001 )
.00( )
53.
.0
.0
.0
6.2
1
7.76(S)
18.31(S)
.001 1
.00( 1
54.
.0
.0
.0
6.1
7.76(S)
18.32(S)
.001 I
.001 I
55.
.0
.0
.0
6.1
7.76(S)
18.33(5)
.001 1
.001 I
56.
.0
.0
.0
6.1
7.76(S)
18.34(SI
.00( )
.00( )
5 57.
.0
.0
.0
6.1
7.76(S)
18.35(S)
.001 1
.00( )
SB.
.0
.0
.0
6.1
7 .76151
18.36151
.00( )
.001 I
59.
.0
.0
.0
6.1
7.76151
18.36(SI
.00( )
.00( 1
6 0.
.0
.0
.0
6.1
7.76(S)
18.37(S)
.00( )
.00( )
1.
.0
.0
.0
6.1
7.76(S)
18.38(S)
.001 1
.001 1
6 2.
.0
.0
.0
6.1
7.76(S)
18.39(S)
.00( )
.00( )
3.
.0
.0
.0
6.1
7.]6(5)
18.90
(S)
.001 )
.00( 1
4.
.0
.0
.0
6.1
7.76(S)
18.41(S)
.001 1
.001 1
6 5.
.0
.0
.0
6.1
7.76(S)
18.41(S)
.00( 1
.001 1
6.
.0
.0
.0
6.1
7.76(S)
18.42(S)
.001 1
.00( )
6 7.
.0
.0
.0
6.1
7.76(S)
18.43(S)
.001 1
.001 1
B.
.0
.0
.0
6.1
7.76(5)
18.49151
.00( )
.00( )
9.
.0
.0
.0
6.1
7.76(S)
18.45(5)
.00( )
.00( 1
6 10.
.0
.0
.0
6.1
7.76151
18.46151
.001 1
.00( 1
11.
.0
.0
.0
6.1
7.761S)
18.46(S)
.001 1
.001 I
12.
.0
.0
.0
6.1
7.76(S)
18.47(S)
.001 1
.00( 1
13.
.0
.0
.0
6.1
7.76(5)
18.48151
.001 I
.001 I
14.
.0
.0
.0
6.1
7.76(S)
18.49(S)
.00( I
.00( )
6 15.
.0
.0
.0
6.1
16.
7.761S1
.0
18.501S1
.0
.001 1
.0
.001 1
6.1
7.]6(S)
18.51(S)
.001 )
-00( 1
17.
.0
.0
.0
6.1
7.761S)
18.51(S)
.001 )
.001 1
18.
.0
.0
.0
6.1
7.76(S)
18.52151
.001 I
.001 I
19.
.0
.0
.0
6.1
7.76(S)
18.53(S)
.00( )
.00( )
6 20.
.0
.0
.0
6.1
7.76(S)
18.54(S)
.001 1
.001 1
21.
.0
.0
.0
6.1
7.76(5)
18.55(5)
.001 )
.001 1
22.
.0
.0
.0
6.1
7.76(S)
18.56(5)
.001 1
.001 1
6 23.
.0
.0
.0
6.1
7.76(S)
18.56(S)
.00( I
.001 1
24.
.0
.0
.0
6.1
7.76(S)
18.57(S)
.001 1
.001 )
6 25-
.0
.0
.0
6.1
7.76(S)
18.58(S)
.001 I
.001 1
26.
.0
.0
.0
6.1
'
7.76(5)
18.59151
.001 1
.001 1
27.
.0
.0
.0
6.1
7.76(S)
18.60(S)
.001 1
.001 )
6 28.
.0
.0
.0
6.1
1
7.76(S)
18.61(S)
.001 I
.00( )
29.
.0
.0
.0
6.0
7.76(S)
18.61(SI
.001 1
.001 1
30.
.0
.0
.0
6.0
7.76151
18.62151
.001 I
.00( 1
31.
.0
.0
.0
6.0
7.761S)
18.63(S)
.001 1
.00( 1
6
32.
.0
.0
.0
6.0
7.76(SI
18.64(SI
.001 )
1
33.
.0
.0
.0
.00(
6.0
1
7.76(S)
18.65(S)
.001 1
.00( )
34.
.0
.0
.0
6.0
7.76(S)
18.66(S)
.001 I
.001 1
35.
.0
.0
.0
6.0
7.76(S)
18.66 (S)
.001 I
.001 1
36.
.0
.0
.0
6.0
7.76(S)
18.671S1
.00( )
.00( I
6
37.
.0
.0
.0
6.0
7.76(S)
18.68151
.001 1
.00( I
38.
.0
.0
.0
6.0
7.76(S)
18.69 (S)
.001 1
.00( 1
39.
.0
.0
.0
6.0
7.76(S)
18.70(S)
.00( )
.001 1
6
40.
.0
.0
.0
6.0
7.76(S)
18.701S1
.00( )
.001 I
41.
.0
.0
.0
6.0
7.76(S)
18.71(S)
.00( 1
.00( I
6
42.
.0
.0
.0
6.0
7.76(S)
18.72(S)
.001 1
.00( 1
43.
.0
.0
.0
6.0
7 .76151
18.73151
.001 1
.001 1
44.
.0
.0
.0
6.0
7.76(S)
18.74(S)
.00( 1
.00( I
6
45.
.0
.0
.0
6.0
7.76(S)
18.75(S)
.001 I
.00( )
46.
.0
.0
.0
6.0
7.76(S)
18.75(S)
.001 1
.001 1
6
47.
.0
.0
.0
6.0
7.76(SI
18.76(S)
.00( )
.00( I
48.
.0
.0
.0
6.0
796(5)
18.77 (S)
.001 I
.00( 1
49.
.0
.0
.0
6.0
7.76(S)
18.78(S)
.001 )
.001 1
6
50.
.0
.0
.0
6.0
7.76 (SI
18.79151
.00( 1
.00( 1
51.
.0
.0
.0
6.0
7.76(S)
18.80(S)
.001 I
.001 1
52.
.0
.0
.0
6.0
7.76(S)
18.80151
.00( )
.00( 1
53.
.0
.0
.0
6.0
7.76151
18.81151
.001 1
.00( 1
54.
.0
.0
.0
6.0
7.76(S)
18.82(SI
.001 )
.001 )
6
55.
.0
.0
.0
6.0
56.
7.76151
.0
18.83151
.0
.001 1
.0
.001 1
6.0
7.76(S)
18.84151
.001 1
.00( I
57.
.0
.0
.0
6.0
7.76(S)
18.84(S)
.00( )
.001 )
58.
.0
.0
.0
6.0
7.76(S)
18.85(5)
.00( )
.001 1
59.
.0
.0
.0
6.0
7.76(S)
18.86(S)
.001 I
.00( )
7
0.
.0
.0
.0
6.0
7.761S)
11,1716)
.00(
1.
.0
.0
.0
6.0
7.76(S)
18.88151
.001 1
.00( 1
2.
.0
.0
.0
6.0
7.76(S)
18.89151
.001 1
.00( 1
7
3.
.0
.0
.0
6.0
7.]6(S)
18.89(S)
.001 1
.001 1
4.
.0
.0
.0
6.0
7.76(S)
18.90(5)
.001 )
.001 )
7
5.
.0
.0
.0
6.0
7.76(S)
18.91(S)
.001 1
.00( )
6.
.0
.0
.0
6.0
'
7 .76151
18.92151
.001 )
.001 )
7.
.0
.0
.0
6.0
7.76(S)
18.93(S)
.001 1
.00( 1
7
8.
.0
.0
.0
5.9
7.76(S)
18.93(S)
.001 I
.001 1
'
9.
.0
.0
.0
5.9
7.76(S)
18.94(S)
.00( 1
.00( I
7
10.
.0
.0
.0
5.9
7.76(S)
18.95(S)
.001 1
.001 )
11.
.0
.0
.0
5.9
7.76(S)
18.96151
.00( )
.001 )
12.
.0
.0
.0
5.9
7.76(S)
16.9](S)
.00( 1
.001 1
7
13.
.0
.0
.0
5.9
1
7.76(S)
18.98(S)
.001 1
.001 )
14.
.0
.0
.0
5.9
7.76(5)
18.9815)
.001 1
.001 1
15.
.0
.0
.0
5.9
7.76(S)
18.99
(S)
.00( 1
.001 I
16.
.0
.0
.0
5.9
7.76(S)
19.00(S)
.00( )
.00( 1
7
17.
.0
.0
.0
5.9
7.761S)
19.01(SI
.001 1
.001 1
18.
.0
.0
.0
5.9
1
7.76(S)
19.02(S)
.001 )
.00( 1
19.
.0
.0
.0
5.9
7.76(S)
19.02(S)
.00( )
.00( )
20.
.0
.0
.0
5.9
7.76151
19.03(5)
.00( 1
.00( )
21.
.0
.0
.0
5.9
7.76(S)
19.04151
.001 1
.001 )
7
22.
.0
.0
.0
5.9
7.76(S)
19.05(S)
.001 I
.00( )
23.
.0
.0
.0
5.9
7.76(5)
19.06151
.001 1
.001 1
24.
.0
.0
.0
5.9
7.76(S)
19.06(S)
.00( )
.001 1
7
25.
.0
.0
.0
5.9
7.76(S)
19.07(S)
.00( )
.00( 1
26.
.0
.0
.0
5.9
7.76(S)
19.08(S)
.00( )
.00( I
7
27.
.0
.0
.0
5.9
7.76(S)
19.09(S)
.00( )
.00( 1
28.
.0
.0
.0
5.9
7.76151
19.3015)
.001 1
.001 )
29.
.0
.0
.0
5.9
7.76(S)
19.10151
.001 I
.00( )
7
30.
.0
.0
.0
5.9
7.76(5)
19.11(S)
.00( )
.00( )
31.
.0
.0
.0
5.9
7.76(S)
19.12(S)
.00( )
.001 1
7
32.
.0
.0
.0
5.9
7.76(S)
19.13(S)
.00( 1
.00( )
33.
.0
.0
.0
5.9
7.76(5)
19.14151
.001 1
.00( )
34.
.0
.0
.0
5.9
7.76(S)
19.15(S)
.001 1
.00( )
7
35.
.0
.0
.0
5.9
7.76(S)
19.15(S)
.00( )
.00( )
36.
.0
.0
.0
5.9
7.76(S)
19.16(S)
.00( )
.00( )
37.
.0
.0
.0
5.9
7.76(S)
19.17(5)
.00( 1
.00( 1
38.
.0
.0
.0
5.9
7.76151
19.1815)
.00( I
.001 1
39.
.0
.0
.0
5.9
7.76(S)
19.19(S)
.00( )
.00( 1
7
40.
.0
.0
.0
5.9
41.
7.76(S)
.0
19.19(S)
.0
.00( 1
.0
.00( 1
5.9
1
7.761S)
19.20(S)
.00( 1
.00( )
42.
.0
.0
.0
5.9
7.76(S)
19.21(5)
.00( 1
.00( 1
43.
.0
.0
.0
5.8
7.76(S)
19.22
(S)
.00( )
.00( )
44.
.0
.0
.0
5.8
7.761S)
19.23(S)
.00( 1
.001 1
7
45.
.0
.0
.0
5.8
7.76(S)
19.2315)
.00( )
.00( )
46.
.0
.0
.0
5.8
7.76(5)
19.24(S)
.00( 1
.00( )
47.
.0
.0
.0
5.8
7.76(S)
19.25(S)
.001 )
.00( 1
7
48.
.0
.0
.0
5.8
7.76(S)
19.261S)
.00( 1
.00( 1
'
49.
.0
.0
.0
5.9
7.76(S)
19.27(S)
.00( )
.001 )
7
50.
.0
.0
.0
5.8
7.76(S)
19.27(S)
.001 )
.00( 1
51.
.0
.0
.0
5.7
7.76(S)
19.28
(S)
.001 I
.00( )
52.
.0
.0
.0
5.4
7.76(S)
19.29(S)
.00( 1
.00( )
7
53.
.0
.0
.0
5.1
7.76(S)
19.30(S)
.001 1
.00( 1
'
54.
.0
.0
.0
5.0
7.76(S)
19.301S)
.00( I
.001 1
7
55.
.0
.0
.0
4.8
7.76(S)
19.31(S)
.00( )
.001 )
56.
.0
.0
.0
4.7
'
7.76(5)
19.32151
.001 1
.001 1
57.
.0
.0
.0
4.6
7.76(5)
19.32(S)
.00( I
.00( I
7
58.
.0
.0
.0
4.5
1
7.761S)
19.33(S)
.001 1
.001 1
59.
.0
.0
.0
4.5
7.76(S)
19.33(S)
.001 )
.001 1
0.
.0
.0
.0
4.4
].]6151
19.34151
.001 1
.001 1
1.
.0
.0
.0
4.4
7.76(S)
19.35(5)
.001 I
.001 I
8
2.
.0
.0
.0
4.3
3.
7.76151
.0
19.35151
.0
.001 I
.0
.001 1
4.3
7.76(S)
19.36(S)
.001 1
.001 1
4.
.0
.0
.0
4.3
7.76(S)
19.36(S)
.001 )
.001 1
5.
.0
.0
.0
4.3
7.76151
19.37151
.001 )
.001 1
6.
.0
.0
.0
4.2
7.76(S)
19.38(S)
.00( 1
.00( I
8
7.
.0
.0
.0
4.2
7.7615)
19.3815I
.00( )
.00( I
8.
.0
.0
.0
9.2
7.761S)
19.39(SI
.00( I
.00( 1
9.
.0
.0
.0
4.2
7.76(S)
19.39(S)
.001 I
.001 )
10.
.0
.0
.0
4.2
7.76151
19.40
IS1
.001 1
.001 1
11.
.0
.0
.0
4.2
7.76(S)
19.40(S)
.001 1
.001 1
8
12.
.0
.0
.0
4.2
7.76(S)
19.41151
.00( 1
.00( 1
13.
.0
.0
.0
4.2
7.76(5)
19.42
(SI
.001 I
.00( )
14.
.0
.0
.0
4.2
7.]6(S)
19.42(S)
.001 I
.001 )
8
15.
.0
.0
.0
4.2
7.76(S)
19.43(S)
.00( )
.001 1
16.
.0
.0
.0
4.2
7.76(S)
19.43(SI
.001 1
.001 1
8
17.
.0
.0
.0
4.2
7.76(S)
19.44(S)
.001 I
.00( )
18.
.0
.0
.0
4.2
7J61S1
19.44151
.001 1
.001 )
19.
.0
.0
.0
4.2
7.76(S)
19.45(9)
.001 )
.001 1
8
20.
.0
.0
.0
4.2
7.76(S)
19.46(SI
.00( 1
.00( I
21.
.0
.0
.0
4.2
].76(S)
19.46(S)
.00( I
.00( 1
8
22.
.0
.0
.0
4.2
7.76151
19.471S)
.001 )
.001 )
23.
.0
.0
.0
4.2
7.76(S)
19.47151
.00( 1
.001 1
24.
.0
.0
.0
4.2
7.76(S)
19.48(SI
.00( 1
.00( 1
8
25.
.0
.0
.0
4.2
26.
].76(5)
.0
19.48151
.0
.001 1
.0
.001 )
4.2
7.76(S)
19.49(S)
-001 1
.001 1
27.
.0
.0
.0
4.2
7.76(S)
19.50(S)
.00( r
.00( I
28.
.o
.o
.0
4.2
7.76(s)
19.50(5)
.00( I
.00l 1
29.
.o
.o
.o
4.2
7.761S)
19.51(S)
.001 1
.001 1
8
30.
.0
.0
.0
4.1
31.
7.76(S)
.0
19.11IS1
.0
.001 1
.0
.10( 1
4.1
1
7.76(S)
19.521S)
.00( 1
.001 )
32.
.0
.0
.0
4.1
7.76(S)
19.52(S)
.00( 1
.001 I
33.
.0
.0
.0
4.1
7.]6(5)
19.53151
.001 1
.001 1
34.
.0
.0
.0
4.1
7.76(S)
19.54(S)
.001 1
.001 1
8
35.
.0
.0
.0
4.1
7.76(S)
19.54(S)
.00( I
.001 I
36.
.0
.0
.0
9.1
7.76151
19.55
(S)
.001 1
.001 )
37.
.0
.0
.0
4.1
7.76(S)
19.55(S)
.00( )
.001 1
8
38.
.0
.0
.0
4.1
7.]6(S)
19.56(S)
.001 1
.001 I
39.
.0
.0
.0
4.1
7.76(S)
19.56(S)
.001 1
.001 1
8
40.
.0
.0
.0
4.1
7.76(S)
19.57(S)
.00( )
.001 I
41.
.0
.0
.0
9.1
'
7.76(S)
19.57151
.001 I
.001 )
42.
.0
.0
.0
4.1
7J6(S)
19.58(S)
.001 1
.001 )
8
43.
.0
.0
.0
4.1
1
7.76(5)
19.59151
.001 1
.001 1
I
8
44.
.0
.0
.0
4.1
7. 76151
19.
59()
.001 1
.00( 1
45.
.0
0
.0
4.1
7 .7615)
19.60131
.001 I
.001 1
46.
.0
.0
.0
4.1
7.76(S)
19.60151
.00( I
.001 1
8
47.
.0
.0
.0
4.1
7.76151
19.61151
.001 1
.001 1
98.
.0
0
.0
9.1
7.76(S)
19.61(5)
.001 1
.001 1
49.
.0
.0
.0
4.1
7.76(S)
19.62(5)
.001 )
.00( I
50.
.0
.0
.0
4.1
7.76(S)
19.63151
.001 1
.00( 1
51.
.0
.0
.0
4.1
7.76(5)
19.63(S)
.00( 1
.00( I
8
52.
.0
.0
.0
4.1
53.
7.76(5)
.0
19.64151
.0
.001 )
.0
.001 1
4.1
7.76(S)
19.64(S)
.001 )
.001 1
54.
.0
.0
.0
4.1
7.76(S)
19.65(S)
.001 )
.00( I
55.
.0
.0
.0
6.1
7.76(S)
19.65151
.001 1
.001 I
56.
.0
.0
.0
4.1
7.76(S)
19.66(S)
.00( 1
.00( 1
8
57.
.0
.0
.0
4.1
58.
7.76(S)
.0
19.67(SI
.0
.001 1
.0
.001 1
4.1
1
7.76(S)
19.67(S)
.001 )
.001 I
59.
.0
.0
.0
4.1
7.76(S)
19.68(5)
.001 1
.001 I
0.
.0
.0
.0
9.1
7.76(S)
19.68151
.001 1
.001 )
1.
.0
.0
.0
4.1
7.76(S)
19.69(S)
.00( 1
.001 1
9
2.
.0
.0
.0
4.1
7.76(S)
19.69(S)
.001 1
.001 1
3.
.0
.0
.0
4.1
I
7.76(S)
19.70151
.001 1
.00( )
4.
.0
.0
.0
4.1
7.76(S)
19.70(S)
.00( )
.001 1
9
5.
.0
.0
.0
4.1
7.76(S)
19.71(S)
.001 )
.00( I
6.
.0
.0
.0
4.1
7.76(S)
19.721S)
.00( 1
.00( )
9
7.
.0
.0
.0
4.1
7.76(S)
19.72(S)
.00( )
.001 )
8.
.0
.0
.0
4.1
7.76(S)
19.73(5)
.001 )
.001 I
9.
.0
.0
.0
4.1
7.76(S)
19.73(S)
.001 1
.00( 1
9
10.
.0
.0
.0
4.1
7.76(S)
19.741S)
.00( )
.001 1
11.
.0
.0
.0
4.1
7.76(S)
19.74(S)
.001 )
.001 1
9
12.
.0
.0
.0
4.1
7.76(S)
19.75(S)
.00( 1
.001 I
13.
.0
.0
.0
4.1
7.76(S)
19.75151
.00( )
.001 1
14.
.0
.0
.0
4.1
7.76(S)
19.76(S)
.001 1
.00( 1
9
15.
.0
.0
.0
4.1
16.
7.96(5)
.0
19.77151
.0
.00( I
.0
.001 1
4.1
7.76(S)
19.77(S)
.001 )
.001 1
17.
.0
.0
.0
4.1
7.76(S)
19.78(5)
.001 1
.001 1
18.
.0
.0
.0
9.1
7.76151
19.78(5)
.001 1
.001 1
19.
.0
.0
.0
4.1
7.76(S)
19.79(S)
.00( 1
.00( 1
9
20.
.0
.0
.0
4.1
21.
7.761S)
.0
19.791S)
.0
.00( I
.0
.10( 1
4.1
1
7.76(S)
19.80(5)
.001 1
.001 1
22.
.0
.0
.0
4.1
7.76(S)
19.80(5)
.00( 1
.001 )
23.
.0
.0
.0
9.1
7.76(S)
19.811S1
.001 1
.001 1
24.
.0
.0
.0
4.1
7.76(S)
19.82(S)
.001 1
.001 1
9
25.
.0
.0
.0
4.1
7.76(S)
19.82(S)
.001 1
.001 1
26.
.0
.0
.0
4.1
7.76(S)
19.83(5)
.001 )
.001 1
27.
.0
.0
.0
4.1
7.76(S)
19.83(S)
.00( 1
.001 1
9
28.
.0
.0
.0
4.1
1
7.76(S)
19.84(S)
.001 I
.001 1
1
9
29.
.0
.0
.0
4.1
7.76(S)
19.841SI
.00(
1
-001 )
30.
.0
.0
.0
9.1
7.76151
19.85IS1
.001
1
.001 1
31.
.0
.0
.0
4.1
7.76(S)
19.85(SI
.00(
I
.00( 1
9
32.
.0
.0
.0
4.1
7.76(S)
19.8615)
.00(
1
.00( 1
'9
33.
.0
.0
.0
4.1
7.76(S)
19.87(S)
.001
1
.00( )
9
34.
.0
.0
.0
4.1
7.76(S)
19.87(S)
.00(
)
.OG( 1
9
35.
.0
7.76(5)
19.88(S)
.0
.0
.00(
1
4.1
.00( 1
9
36.
.0
.0
.0
4.1
7.76(S)
19.88(S)
.00(
1
.00( I
9
37.
.0
.0
.0
4.1
'9
38.
7.76(S)
.0
19.89(5)
.0
.00(
.0
1
.00( )
4.0
7.76(S)
19.89151
.00(
)
.00( )
9
39.
.0
.0
.0
4.0
7.7615)
19.90(S)
.00(
1
.00( 1
9
10,
.0
7.76(S)
19.90(S)
.0
.0
.00(
I
4.0
.00( 1
9
41.
.0
.0
.0
3.9
7.76(S)
19.91(S)
.00(
I
.001 I
9
42.
.0
.0
.0
3.9
43.
7.76(S)
.0
19.92151
.0
.10(
.0
1
.00( )
3.8
7.76151
19.92
(5)
.001
1
.00( 1
44.
.0
.0
.0
3.7
7.76(S)
19.93(5)
.00(
1
.00( 1
9
45.
.D
.0
.0
3.6
7.76(S)
19.93(S)
.00(
)
.001 )
9
46.
.0
.0
.0
3.4
7.76(S)
19.94(S)
.00(
1
.00( )
9
47.
.0
.0
.0
3.3
7.76(S)
19.94(S)
.00(
1
.00( )
48.
.0
.0
.0
3.2
7 J6(5)
19.94151
.001
1
.001 I
49.
.0
.0
.0
3.0
7.76(S)
19.95(S)
.00(
1
.00( )
9
50.
.0
.0
.0
2.8
7.76(S)
19.95(5)
.00(
1
.00( 1
51.
.0
.0
.0
2.7
7.76(S)
19.96(S)
.00(
)
.00( )
9
52.
.0
.0
.0
2.5
7.76(S)
19.96(5)
.00(
1
.00( 1
53.
.0
.0
.0
2.4
7 .76(S)
19.96151
.00(
I
.00( 1
54.
.0
.0
.0
2.2
7.76(S)
19.97(5)
.001
)
.00( I
9
55.
.0
.0
.0
2.0
7.76(S)
19.97(S)
.00(
)
.00( 1
56.
.0
.0
.0
1.9
7.76(S)
19.97(S)
.00(
1
.00( )
9
57.
.0
.0
.0
1.8
7.76(S)
19.97151
.00(
)
.00( 1
58.
.0
.0
.0
1.7
7.76(S)
19.98151
.00(
)
.00( )
59.
.0
.0
.0
1.6
7.76(S)
19.98(5)
.00(
)
.00( )
10
0.
.0
.0
.0
1.5
1
7.76(S)
19.98(5)
.00(
1
.001 1
HARMONY CENTRE AND PIER
DETENTION POND ANALYSIS
--INFLOW
HYDROGRAPH GENERATION
YEAR EVENT FILE: MMP-XTD.DAT
JR ENG.,
11117/04,
USED FOR DEVEL EXTRAN
'•• PEAK FLOWS, STAGES AND STORAGES
OF GUTTERS AND DETENTION DAMS "•
NOTE :5 IMPLIES A SURCHARGED ELEMENT AND
:D
IMPLIES A SURCHARGED DETENTION FACILITY
IONVEYANCE
PEAK
STAGE
STORAGE
TIME
EMENT:TYPE
(CPS)
(FT)
(AC -FT)
(HR/MIN)
3.
.2
0
3.
84:4
57.3
.5
0
355.
'8:4
85:4
44.2
.5
0
36.
88:1
194.7
3.1
0
35.
89:1
13.6
1.2
0
37.
90:4
4.9
.2
1
0.
92:2
13.3
1.1
0
35.
3 9 5
: 3
3.6
(DIRECT FLOW)
0
31.
483:3
55.3
(DIRECT FLOW)
0
35.
486:2
.0
.1
7.8:D
10
0.
488:2
.0
.1
20.O:D
10
0.
'490:2
2.1
.i
.2:D
0
50.
'
491:2
3.6
.1
.5:D
0
55.
496:2
13.2
.1
2.1:D
1
7.
1.8
.1
.8:D
2
1.
t497:2
582:3
7.7
(DIRECT
FLOW(
0
35.
584:3
.0
(DIRECT
FLOW)
1
19.
586:3
238.2
(DIRECT
FLOW)
0
35.
588:3
380.5
(DIRECT
FLOW)
0
35.
682:3
683:3
6.0
1.8
(DIRECT
(DIRECT
FLOW)
FLOW)
0
0
35.
35.
'
(PROGRAM PROGRAM CALLED
[l
1
1
I
1
1
1
1
t
1
UPDATED EXTRAN MODEL
Final Drainage and Erosion Control Report
Settler's Creek
Appendix
March 2005
1
1
1
1
Proposed Detention Ponds - Stage/Area
LOCATION:
SETTLER'S CREEK
PROJECT NO:
39402.00
COMPUTATIONS BY:
ES
SUBMITTED BY:
JR Engineering
DATE:
1/6/2005
Stage -Area Input into Extran
Pond 488
Stage
(h)
Surface
Area
(W)
Surface
Area
(ac)
Depth
(tt)
5000.51
0
0
0
5001
2620
0.060
0.49
5002
21633
0.497
1.49
5003
58085
1.333
2.49
5004
108749
2.497
3.49
5005
157600
3.618
4.49
5 006
165268
3.794
5.49
5007
171491
3.937
6.49
5008
177708
4.080
7.49
3940200pond.xls
NBLOCK JIN(1) JOUT(1)
1 0 0
WITCH NSCRAT(3) NSCRAT(2) NSCRAT(3) NSCRAT(4)
1 1 2 3 4
® 0 'eave32.prn'
$EXTRAN
'HARMONY CENTER 4 PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN'
1/06/2005 JR ENGINEERING Pile: Pier. dat'
GO line (OPTIONAL)
ISOL Solution technique parameter.
• = 0 Explicit EXTRAN solution
= 1 Enhanced explicit solution
= 2 Iterative explicit solution using variable
time -steps DELI (group B1). Iteration
limit is ITMAX and convergence criterion is
• SURTOL (group B2).
KSUPER = 0 Use minimum of normal flow and dynamic flow
when water surface slope < conduit slope (default).
= 1 Normal flow always used when flow is supercritical.
T SOL KSUPER
SO 0 0
JELEV JDOWN
0 0
NTCYC DELI TZERO NSTART INTER JNTER REDO
3600 10.0 0.0 1 360 30 0
` METRIC NEQUAL AMEN ITMAX SURTOL
0 1 0 30 0.05
NHPRT NQPRT NPLT LPLT NJSW
4 5 0 0 2
30001 30002 30010 30011
B5 1001 1010 1011 90004 90005
• NCOND NJUNCI NJUNC2 Qo TYPE AFULL DEEP WIDE
'1001 30002 30001 0. 1 0.0 1.50 0.0
1010 30001 30010 0. 1 0.0 1.75 0.0
1011 30010 30011 0. 6 0.0 4.00 1.0
• JUNCTION NODES
JUN GRELEV Z QINST YO
' 30001 5005.0 4997.66 0.0 0.0
30002 5008.0 5000.51 0.0 0.0
30010 5004.0 4996.34 0.0 0.0
D1 30011 5004.0 4994.69 0.0 0.0
• JUNCTION DETENTION STORAGE DEFINITION
'JSTORE GELEV ASTORE NUMST (AREA IN ACRES
LOWER PORTION OF PIER DETENTION POND
E1 30001 5005.0 -1.0 B
LEN ZP1. ZP2 ROUGH SIR SPH
113. 0.0 2.4 .0156 0.0 0.0
210. 0.0 0.0 .0158 0.0 0.0
300. 0.0 0.0 0.060 1.5 3.5
VS. DEPTH IN FEET)
E2 0.100 0.0 0.188 0.34 0.300 1.34 0.545 2.34 0.606 3.34
0.770 4.34 2.916 6.34 2.916 7.34
UPPER PORTION OF DETENTION POND AMMENDED TO SETTLER'S CREEK DEVELOPMENT (1-06-05)
30002 5008.0 -1.0 9
E2 0.010 0.0 0.060 0.49 0.497 1.49 1.333 2.49 2.490 3.49
3.618 4.49 3.994 5.49 3.939 6.49 4.080 7.49
OVERFLOW WEIR SECTION TO SIMULATE STREET OVERTOPPING FOR PIER POND
30001 30010 1 5.6 9.3 30.0 2.6
OVERFLOW WEIR SECTION ADDED BY ICON
G1 30002 30001 1 5.95 6.55 26.0 2.6
• BOUNDARY CONDITIONS
30011
2
4995.0
K1
I
K3
I
K3
I
K3
K3
K3
K3
K3
K3
30002 30001
0 0.00 0.00
0.0833 0.1 0.1
0.1669 11.5 6.9
0.1833 19.4 9.7
0.2000 24.1 12.5
0.2167 30.9 15.1
0.2333 36.6 17.3
0.2500 41.7 19.1
0.2667 48.6 22.5
0.2833 57.3 27.3
0.3000 64.9 31.3
0.3167 71.0 34.4
0.3333 75.8 36.8
0.3500 81.9 40.4
0.3667 89.7 45.1
0.3833 96.4 49.1
0.4000 102.0 52.5
0.4167 106.5 55.4
0.4333 122.3 66.3
0.4500 149.4 84.3
0.4667 191.8 98.5
0.4833 1BB.9 309.E
0.5000 201.4 118.1
I
K3
0.5167
237.1
143.2
5J33
.0.
'0.
0.5500
335
JJ5.0
207.1
0.5667
362.5
224.7
K3
0.5833
380.5
238.2
K3
0.6000
350.7
221.5
0.6167
293.3
188.7
0.6333
256.7
169.5
0.6500
233.1
156.0
K3
0.6667
21].]
145.9
K3
0.6833
198.6
132.7
0.7000
1.E
16.
0.]16]
16060.]
106.5
0.7333
149.4
98.4
0.7500
141.3
92-.4
K3
0.]66]
131.0
84.6
0.8000
109.2
0.8000
109.2
68.6
68.6
0.8167
102.0
63.2
0.8333
96.6
59.0
K3
0.8500
91.6
54.9
0.8
8..
O.B833 B33
83.0
4898.0
0.9000
80.1
45.5
0.9167
]].9
43.4
K3
0.9333
75.B
41.3
0.9500
73.
39.2
0.9667
71.0
3].5
0.9833
70.3
36.0
1.0000
69.1
34.8
K3
1.0833
64.0
30.0
1.
60.
2.
2500
1.2500
57.8
25.0
1.3333
55.5
23.3
1.4167
53.8
22.0
K3
1.5000
52.2
20.9
K3
1.5833
50.8
19.9
49.4
18.9
'1.6667
1.7500
48.2
18.1
1.8333
47.2
17.4
K3
1.9167
46.2
16.8
K3 2.0000
45.3
16.2
26.4
5.0
t2.1667
2.3333
22.1
2.2
2.5000
20.9
1.2
R3 2.6667
20.4
0.7
K3
2.8333
20.1
0.4
19.8
0.3
'3.0000
3.1667
19.7
0.2
3.3333
19.5
0.1
K3
3.5000
19.3
0.1
K3
3.6667
19.1
0.1
10.0
0.1
'.0000
9 .0000
4
].]
0.1
4.1667
6.6
0.1
K3
4.3333
6.5
0.1
K3
4.5000
6.4
0.0
4.
6.4
0.0
'
.8333
6.
0.0
5.0000
0000
6.33
0.0
K3
5.1667
6.3
0.0
K3
5.3333
6.3
0.0
5.3500
6.2
0.0
5.3667
6.2
0.0
5.3833
6.2
0.0
6.0000
6.1
0.0
K3
6.5000
6.0
0.0
7.5000
6.0
0.0
7.5000
5 .9
0.0
8.0000
4.4
0.0
8.5000
4.1
0.0
K3 9.0000 4.1 0.0
9.5000 4.1 0.0
10.0000 1.5 0.0
DPROGR
1
1
........... .......................... I ......... ..
U.S. Environmental Protection Agency
Storm Water Management Model (SWMM)
' Version 4.4H
CDM/OSU Ongoing Version 4.4h
Release Date - July 30, 2004
Camp Dresser & McKee and Oregon St. Univ.
;
Chuck Moore, Bob Dickinson, and Wayne Huber
' Compiled using Compaq Visual Fortran v.6.6 `
'
Developed by
• Metcalf & Eddy, Inc.
University of Florida
water Resources Engineers, Inc.
'
(Now Camp Dresser & McKee, Inc.)
September 1970
Version 4.3 (outdated) is
'
Distributed and Maintained by
U.S. Environmental Protection Agency
• Center for Exposure Assessment Modeling (CEAM)
f
Athens Environmental Research Laboratory
960 College Station Road
' Athens, GA 30605-2'120
•,•.,,This'is`an'updated•release`of'SwMM4.4h••••'
• no longer formally supported by the EPA.
` If problems occur executing this model
contact Wayne Huber at Oregon State. U.,
'
wayne.huber®orst.edu,
or Robert Dickinson at Camp Dresser &
• McKee, DickinsonREQCDM.COM. '
• The EPA -supported version is SWMMMS at:
'
h..pn//w .ep•,9ov/ednnrm„/sw /index.htm«.
• This is an implementation of EPA SWMM 4.4H `
Nature is ull finite cau...
have never occurred in experience" da Vinci
occurred in.experienc„wV.. Vinci..
##q###q##le names by
Blockkggqqqqq##
File names by SWMM Block q
JIN > Input to a Block q
JOUT > Output from a Block #
lqo##coolq#ql#oqq#q#qqq#k#k##q#gpgq#q#q#qq#
JIN for Block 4 1 File o 0 save32.prn
JOUT For Block # 1 File # 0 save32.prn
Scratch file names for this simulation. #
q gckk#qkq##k########ggqqo#q#qqq##ooggqqkk
CRAT 4 1 File o 1 SCRTI.UF
�. Parameter Values on• the Tapes. Common. Block..
Number
of
Subcatchments in the Runoff Block
(NW)......
2000
Number
of
Channel/Pipes in the Runoff Block
(NG)......
2000
umber
of
Connections to Runoff Channels/Inlets
(NCP).
6
umber
of
Water Quality Constituents (MQUAL)..........
20
umber
of
Runoff Land Uses per Subcatchment
(NLU).....
20
Number
of
Groundwater Plot/prints in Runoff
(NGW).....
400
Number
of
Interface Locations for all Blocks
(NIE)....
2000
umber of Elements in the Transport Block (NET)....... 1000
umber of Storage Junctions in Transport (NTSE)....... 100
umber of Transport interface input locations (NTHI).. 500
Number of Transport interface output locations (NTHO). 500
Number of Transport input locations on R lines (NTHR). 80
,umber of Transport printed output locations INTOA).., s0
umber of Tabular Flow Splitters in Transport (NTSP).. 50
umber of Elements in the Extras Block (NEE)..... . 4000
Number of Pumps in Extran WEN_ .................... 1000
Number of Orifices in Extran (NED).................... 200
I
Number of Tide Gates/Free Outfalls in Extran )NTG)....
1000
Number of Extran Weirs (NEW) ..........................
400
Number of Extran Printout Locations INPO).............
150
Number of Tide Elements in Extran (NTE)...............
50
Number of Natural Channels (NNC) ......................
1200
Number of Storage Junctions in Extran (NYSE)..........
2000
of Time History Data Points in Extran )NTVAL)..
500
'Number
Number of Data Points for Variable Storage Elements
in the Extran Block (NVST)..... .... ....
200
Number of Input Hydrographs in Extran (NEH)...........
500
Number of Allowable Channel Connections to
Junctions in the Extran Block (NCHN)................
15
Number Rain Gages in Rain and Runoff (MAXRG)..... .....
200
Number PRATE/VRATE Points for Extran Pump
Input(MAXPRA)......................................
10
Number of Variable Orifices in Extran (NVORF)..... ....
50
of Variable Orifice Data Points )NVOTIM).......
50
'Number
Number of Allowable Precip. Values/yr in Rain (LIMRN).
5000
Number of Storm Events for Rain Analysis )LSTORM).....20000
Number of Plugs for Plug -flow in S/T (NPLUG) ....
3000
Number Conduits for Extran Results to ASCII
File(MXFLOWI.......................................
400
....u.•............ ........... ..uu....................
Entry made to the EXTENDED TRANSPORT MODEL (EXTRAN)
developed 1973 by Camp, Dresser and McKee (CDM) with
•
modifications 1977-1991 by the University of Florida.
.
• Most recent update: July 2004 by CDM and Oregon
State University
"Smooth runs the water where the brook is deep."
Shakespeare, Henry VI, II, III, 1
. «. u....+...... u. u..... a ........ r........ »....:....
-------
I RONMENTAL PROTECTION AGENCY •••E%TENDED TRANSPORT PROGRAM `•••
WASHINGTON, D.C. •+•+
••••
••••
ANALYSIS MODULE `•••
HARMONY CENTER a PIER DET ION POND DEVELOPED COND.
SIMULATION WITH EXTRU4
1/06/2005 JR ENGINEERING Pile: Pier.dat
ontrol information for simulation
Integration cycles ................. 3600
length of integration step is...... 10.00 seconds
imulation length... ............... 10.00 hours
Create equivalent conduits based
on the COURANT condition )no local
osses)............................ 1
se U.S. customary units for I/0... 0
Printing starts in cycle........... 1
intermediate printout intervals of 360 cycles
ntermediate printout intervals of. 60.00 minutes
Summary printout intervals of...... 30 cycles
Ummdry printout time interval of.. 5.00 minutes
of start file parameter (JREDO)... 0
Initial time (TZERO)............... 0.00 hours
his is time displacement from JIN interface file starting date/time when
nterface file is used.
his also describes starting hour in K3 line hydrograph input when K3
Ines are used.
Initial date (default) ............. 19410802 (yr/mo/day)
COTE: Initial date from JIN interface file will be used, if accessed,
nless IDATZ is negative.
teration variables: ITMAX........ 30
SURTOL........ 0.0500
efault surface area of junctions.... 12.5/ square feet.
"TRAM VERSION 3.3 SOLUTION. (ISOL = 0).
Sum of junction flow is zero during surcharge.
WATER RESOURCES DIVISION
CAMP DRESSER a MCKEE INC.
ANNANDALE, VIRGINIA
NORMAL FLOW OPTION WHEN THE WATER
URFACE SLOPE IS LESS THAN THE
ROUND SURFACE SLOPE (KSUPER=O)....
JSW INPUT HYDROGRAPH JUNCTIONS.... 2
Printed output for the following 4 Junctions
30001 30002 30010 30011
Printed output for the following 5 Conduits
t1001 1010 1011 90004 90005
INTERMEDIATE HEADER LINES ARE PRINTED AS IN ORIGINAL PROGRAM
' IDS ARE WRITTEN AS IN ORIGINAL PROGRAM
CONDUIT LENGTHS ON C1 LINE MUST EQUAL IRREGULAR SECTION LENGTH ENTERED ON THE C3 OR X1 LINES (IWLEN = 0)
JELEV = 0 (DEFAULT). STANDARD INPUTS ARE DEPTHS NOT ELEVATIONS
' JDOWN - 0 - Minimum of normal or critical depth will be used at free outfalls (I1).
Chara c t e ribtic depth for M2 and S2 water surface profiles will be computed as in previous versions of EXTRAN (IM2 = 0).
' SEDIMENT DEPTHS WILL NOT BE READ FROM C1 LINES
Intermediate continuity output will not be created
1 ----
ENVIRONMENTAL PROTECTION AGENCY •••• EXTENDED TRANSPORT PROGRAM •••• WATER RESOURCES DIVISION
,ASHINGTON, D.C. CAMP DRESSER & MCKEE INC.
ANALYSIS MODULE ANNANDALE, VIRGINIA
HARMONY CENTER & PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN
1/06/2005 JR ENGINEERING File: Pier.dat
1
•••u.•u.................0 u.«••••:•.-.......uu.•
• Conduit Data
NP
CONDUIT
LENGTH
CONDUIT
AREA
MANNING MAX WIDTH
DEPTH
JUNCTIONS
INVERT HEIGHT
TRAPEZOID
NUM
----
NUMBER
------
(FT)
-------
CLASS
(SO FT)
COEF.
(FT)
(PT)
AT THE ENDS
ABOVE JUNCTIONS
SIDE SLOPES
1001
113.
--------
CIRCULAR
------
1.77
----------------
0.01560
1.50
-----
1.50
------- -------
30002 30001
---------------
0.00 2.40
_____ -----
2
'1
1010
210.
CIRCULAR
2.41
0.01580
1.75
1.75
30001 30010
3
1011
300.
TRAPEZOID
60.00
0.06000
1.00
4.00
30010 30011
3.50
3.50
.Equivalent Conduit
Volume RAnalyis
.•...
put full depth Volume............ 1.8705E+04 cubic feet
full depth Volume .............. 1.8705E+04 cubic feet
volume / Old volume ratio...... 1.0000
1-----------------------""__--------------------'""____________
IRONMENTAL PROTECTION AGENCY •"• EXTENDED TRANSPORT PROGRAM •••. WATER RESOURCES DIVISION
SHINGTON, D.C. •••+ •+•+ CAMP DRESSER & MCKEE INC
'••• ANALYSIS MODULE .... ANNANDAL£, VIRGINIA
HARMONY CENTER & PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN
1/01/2005 JR ENGINEERING File: Pier.dat
Junction Data
�P"JUNCTION••••GROUND••••CROWN•••'+INVERT•••'•QINST INITIAL CONNECTING CONDUITS
NUM NUMBER ELEV. ELEV. ELEV. CFS DEPTH(FT)
--- -------------------- ---------------------- -_-----------'___'-
1 30001 5005.00 5001.56 4997.66 0.00 0.00 1001 1010
2 30002 5008.00 5002.01 5000.51 0.00 O.OD 1001
3 30010 5004.00 5000.34 4996.34 0.00 0.00 1010 1011
4 30011 5004.00 4998.69 4994.69 0.00 0.00 1011
===> WARNING :.-. THE INVERT OF CONDUIT 1001 LIES ABOVE THE CROWN OF ALL CONDUITS AT JUNCTION
t-------...-i---------------"_"---.---.-_-------------.-.---""---------------
30001
IRONMENTAL PROTECTION AGENCY "'• EXTENDED TRANSPORT PROGRAM •••• WATER RESOURCES DIVISION
WASHINGTON, D.C. "•' ...' CAMP DRESSER & MCKEE INC.
'•+• ANALYSIS MODULE •+" ANNANDALE, VIRGINIA
HARMONY CENTER 6 PIER DETENTION POND DEVELOPED CONE. SIMULATION WITH EXTRAN
1/06/2005 JR ENGINEERING File: Pier.dat
,••••••••••STORAGE•ODNCT IDN•DA•AM ••UMAR•
MAXIMUM OR
PEAK OR
CROWN
TORAGE
JUNCTION
JUNCTION
CONSTANT SURFACE
CONSTANT VOLUME
ELEVATION
NUMBER
OR NAME
TYPE
AREA (FT2)
(CUBIC FEET)
(FT)
30001
VARIABLE
127020.95
373766.62
5005.000
30002
VARIABLE
177724.B0
773762.75
5008.000
• ................WEIR
................:
DATA
FROM TO LINK CREST WEIR WEIR DISCHARGE SUBMERGENCE NUMBER OF END V-NOTCH ANGLE
OND DISCHARGE
JUNCTION JUNCTION NUMBER TYPE HEIGHT(FT) TOP (FT) LENGTH (FT) COEFFICIENT EQUATION CONTRACTIONS OR SIDE SLOPE
COEFFICIENT
30001 30010 90004 1 5.60 7.30 30.00 2.6000
30002 30001 90005 1 5.95 6.55 26.00 2.6000
FREE OUTFALL DATA (DATA GROUP I1)
BOUNDARY CONDITION ON DATA GROUP J1
FALL AT JUNCTION.... 30011 HAS BOUNDARY CONDITION NUMBER... 1
____________________
'••• EXTENDED TRANSP ENVIRONMENTAL PROTECTION AGENCYORT PROGRAM •••• WATER RESOURCES DIVISION
WASHINGTON, D.C. '••• •••• CAMP DRESSER 6 MCKEE INC.
'•••• ANALYSIS MODULE •••• ANNANDALE, VIRGINIA
HARMONY CENTER & PIER DETENTION POND DEVELOPED CONE. SIMULATION WITH EXTRAN
1/06/2005 JR ENGINEERING File: Pier.dat
• INTERNAL CONNECTIVITY INFORMATION
' CONDUIT JUNCTION JUNCTION
90004 30001 30010
90005 30002 30001
90006 30011 0
• BOUNDARY CONDITON INFORMATION
• DATA GROUPS J1-J4
BC NUMBER.. 1 CONTROL WATER SURFACE ELEVATION IS.. 4995.00 FEET.
ZERO •••..1941214 O.0000000E.00
••LINE•INPUT HYDROGRAPHS•(DATA• GROUPS• K1•K3)••••
Expect 2 junction IDs on each K2 line.
iSWINPUT•LOCATIONS FROM• K2' LINES..••••••••••••••
30002 30001
tSIRONMENTAL PROTECTION AGENCY •••• EXTENDED TRANSPORT PROGRAM '••' WATER RESOURCES DIVISION
HINGTON, D.C. •••• '••• CAMP DRESSER S MCKEE INC.
'••• ANALYSIS MODULE •`•• ANNANDALE, VIRGINIA
'HARMONY CENTER S PIER DETENTION POND DEVELOPED CONE, SIMULATION WITH EXTRAN
1/06/2005 JR ENGINEERING File: Pier.daL
•
INITIAL MODEL CONDITION '
•rINITIAL
-I--N--/
rerr r�uru•
TIME _ ..... 0.00• HOURS '
uu.0
UNCTION /
DEPTH / ELEVATION =__
"•" JUNCTION IS SURCHARGED.
30001/
0.00 / 4997.66 30002/
0.00 /
5000,51
30010/ 0.00 / 4996.34
0.00 / 4994.69
'30011/
CONDUIT/
FLOW =•_ - CONDUIT
>1010/
USES THE
NORMAL FLOW
OPTION.
1001/
0.00
0.00
1011/
0.00 90004/ 0.00
90005/
0.00 90006/
0.00
CONDUIT/
VELOCITY
'
1001/
0.00 1010/
0.00
1011/
0.00
CONDUIT/
CROSS SECTIONAL AREA
'
lool/
CONDUIT/
0.00 1010/
HYDRAULIC RADIUS
0.00
1011/
0.00
1001/
0.00 1010/
0.00
1011/
0.00
CONDUIT/ UPSTREAM/ DOWNSTREAM ELEVATION
1001/ 5000.51/ 5000.06 1030/ 4997.66/ 4996.34 1011/ 4996.34/ 4994.69
# # a # # # # # # # # a # # # # # # # # a # # # a a q a # # a IX # # # # # # #
___> System inflows (data group K3) at 0.00 hours 1 Junction / Inflow,cfs )
30002/ 0.00E+00 30001/ 0.00E+00
# # # a 8 # # # # # # # N a # a # a a # # a # # # # q # # q # # # # # # # q q
-_> System inflows (data group K3) at 0.08 hours ( Junction / Inflow,cfs )
30002/ 1.00E-01 30001/ 1.00E-01
# # # # k # # a aaa # q # q q # # # # # # k q # N # # a # # # # # # # # # q
# # a a # # a # a q # # # a q q # # # # # # a q a # # a # # N # N # # a # # q
_> System inflows (data group K3) at 0.17 hours ( Junction / Inflow,cfs )
30002/ 1.15E+01 30001/ 6.90E+00
q # # # # # # # # # # # d # # # # a # a q # a # q q q q a q a a # # q q # q #
# # # # # # # # # # # # # # # # # 4 # # 4 a M # # k # # # # # a # q q # a a #
_> System inflows (data group K3) at O.18 hours ( Junction / Inflow,cfs )
30002/ 1.74E+01 30001/ 9.7OE+00
# # # # q # # # # # # q # 4 a a a # # # # # # # # # # q # # # # # N # N # N #
# # # # q # # # # # q # # # # # # # # # # # 4 a # # # q q # # # # # # # # q #
_> System inflows (data group K3) at 0.20 hours ( Junction / Inflow,cfs )
30002/ 2.41E+01 30001/ 1.25E+01
9 a # # q # # # # # # q q # q q # a a # a # # # # # # # # 9 a # # # # # q # #
# # a # q # # # M # q q a # q q # 4 a # a # # # # # # # # a a a a a # k q # #
_> System inflows (data group X3) at 0.22 hours ( Junction / In£low,cfs )
30002/ 3.07E+01 30001/ 1.51E+01
# # # # # # # # # # # N # # # # # # q # N # q q # # q # # # # # # q # # # # q
q # # # # # # # # # # q # a q # # # # # # # a a # # # # a # # # # # # a # a #
_> System inflows (data group K3) at 0.23 hours ( Junction / Inflow,cfs 1
30002/ 3.66E+01 30001/ 1.73E+01
#a##a##®##aaa####aaaa#######a###a#a#aaa
R # # # # # # a a # # # q # d # k # # # # # # # q a # # # a # # # # # a a a #
_> System inflows (data group K3) at 0.25 hours ( Junction / In Elow,cfs )
30002/ 4.17E+01 30001/ 1.91E+01
# q a# q## q q## g N## q### a## a q## k q q# q q q# M# q# q
q # # # # # # # q # 0 # # # a # # # # q # # q q a # q # q # # # # # q # q # q
_> System inflows (data group K3) at 0.27 hours ( Junction / Inflow,cfs 1
30002/ 4.86E+01 30001/ 2.25E+01
# # # a q a # # q # # a # # # # # # # # # q # # # q a a # # a q # q # # q a a
# # # # # q q a # a # # # # # # q # q a M q a a # q q a # # # # # a a a a # #
_> System inflows (data group K3) at 0.28 hours ( Junction / Inflow,cfs )
30002/ 5.73E.01 30001/ 2.73E+01
# a a a # # q q # # a q q q # # # # # # # q # # q # # # # # # q # # a # k N q
## 0 q a### 0 4# q# g q N N# 0 00 q N 9### a a a## q### N N#
_> System inflows (data group K3) at 0.30 hours ( Junction / Inflow,cfs 1
30002/ 6.49E+01 30001/ 3.13E.01
# # # # # # IX q a # a # a # # a q # # # # q a q q a q # # # # # # q # q # a # #
###### q q q a a a# a g q a q a# a q k## k## a a 4 g a q# 44
4#
_> System inflows (data group K3) at 0.32 hours ( Junction / Inflow,cfs )
30002/ 7.10E+01 30001/ 3.44E+01
a a a## g a N a N q q# a a a### a### a a# a a## a q# a# R## q q
q q## a# N a a a q# a a a a# a a a# a a k 44
a q## q### N a q# q
> System inflows (data group K3) at 0.33 hours ( Junction / Inflow,cfs 1
30002/ 7.58E+01 30001/ 3.68E+01
4 # 4 4 4 0 4 4 4 4 4 4 4 0 4 4 4 4 0 a 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 a 4 4 0
11
a # a # a a 4 # a # # # # # # # a # a a # a # # a # N a # # a # # # N # # a a #
> System inflows (data group K3) at .0.35 hours 1 Junction / Inflow,cfs 1
30002/ 8.19E+01 30001/ 4.04E.01
# # # a a M # M q # # # # # # # q q # # q 4 q q q # # # a # # # N # # q q q q
N### q q q# a####### a a q# a N 4 a g q###### N a a# g q k q
System inflows (data group K3) at 0.37 hours 1 Junction / Inflo.,efa )
> 30002/ 8.97E+01 30001/ 4.51E+01
# q # # a # # q # q N # q # # a a N # a # # # a # # # # # # # # # q # # # # #
## M# N a d# N q a# q# k k a a## a## N N a a N### N# q q q## N
> System inflows (data group K3) at 0.38 hours ( Junction / Inflow,cfs 1
30002/ 9.64E+01 30001/ 4.91E+01
# # # # N N # # # # a N # a # # # # q # q q # # q q q N N q k k # q # # a # #
9 # M # k k # # # # # # # # # # # # # q N q q # N # # # # # q k # k # # # # q a
System inflows (data group K31 at 0.40 hours 1 Junction / Inflow,cfs )
-> 30002/ 1.02E+02 30001/ 5.25E+01
N N # M # # q q N # k # # # # # a # N a # a # a q # # k a # # q # # q # # # #
g q N q q 0# q q####### a# a## N# a g q N### a a# q q q q q q#
System inflows (data group K3) at 0.42 hours 1 Junction / Inflow,cfs )
_> 30002/ 1.06E+02 30001/ 5.54E+01
q q q # a a # # # q # # # # # q q # # a # a q q # q q # # # # # q # q q # # q
# q # q q a # # # # q # # q a # q # # a q q # # d # q q # # d # # q # k q # # #
C--> System inflows (data group K3) at 0.43 hours ( Junction / Inflow,cfs 1
30002/ 1.22E+02 30001/ 6.63E+01
# N## q N q q q###### N## g a q q q a a N k q###### N## q#
a # N N # q N a q # # # # # # # # N N # # # # N a a q # a # a # # N a # # a # N
System inflows (data group K3) at 0.45 hours ( Junction / Inflow,cfs 1
30002/ 1.49E+02 30001/ 8.43E+01
a a a N# a a a#### a## q# 4 a a# a######## a a a N a a# a#
q k q a a a 9 # # # # a # # # # # q N a # a # # # # # # a # N # # a # # a a a a
System inflows (data group K3) at 0.47 hours ( Junction / Inflow,cfs 1
30002/ 1.72E+02 30001/ 9.85E+01
# # # # # a # # # # # # # # # # # a # # # # q q q # M # # q q # q q N q # q #
# q # # # # # # 4 # # # # N # N N # # # # a a # q q # # # k # q # q a # # # q #
-- > System inflows (data group K3) at 0.48 hours ( Junction / Inflow,cfs )
30002/ 1.89E+02 30001/ 1.10E.02
' # # # # # N # # # # # q # # # # q # # # # #qqq # # # q q # # k # # q # # #
a # # # # N # # a # # # # # # # # q a # # # # a # # # # # # # # # # # # # # # #
System inflows (data group K3) at 0.50 hours ( Junction / Inflow,cfs )
30002/ 2.03E.02 30001/ 1.18E+02
q q q # # # # # # # a # # # # a # k N N # # # # # # q # # # # # q q q # q q q
N q q q # q N q 4 # # q # k # # # # # # # q a 0 # # # a a # # # # # # q # # # q
System inflows (data group K3) at 0.52 hours ( Junction / Inflow,cfs )
30002/ 2.37E+02 30001/ 1.43E+02
# # # # N # a # # # # # # # # a # a # a q ff # k # # # # # # # # # # # q q # q
# N # # # 9 # k # # # # # # # N # # # # # # # # # # # # # # # # N a q # N q q #
System inflows (data group K3) at 0.53 hours 1 Junction / Inflow,cfs )
30002/ 2.94E+02 30001/ 1.82E+02
q # # # # # # # q # # # q # a # # # # # N # # # a # # # # # # # k # a N # # a
# a## N# a q a # # q# a a# a# N q# 44# 4 N### a a N N# N# 4 a
System inflows (data group K3) at 0.55 hours I Junction / Inflow,cfs )
30002/ 3.35E+02 30001/ 2.07E.02
# k # # # a # # a # # # # # a # # # # # # # # N a # # # a q # # # q a M # # a
a q # # a N 9 # # N # # a # a # # # # # # # N a a q # # # # # # 9 # a # 0 # q
System inflows (data group X3) at 0.57 hours ( Junction / Inflow,cfs )
30002/ 3.62E+02 30001/ 2.25E+02
# a # a a q # q k # q q q # # a a # # # N # # # # # # # # q # N # q q M q # #
# # # M # # # M M # # # # # # # N N # a # N # # # # a # # # # # # # # q # # q
System inflows (data group K3) at 0.58 hours ( Junction / Inflow,cfs )
30002/ 3.80E+02 30001/ 2.38E+02
# q # # # N N k k # # # # # k # # # # # # N a # # # # # # q # q # # # q # # #
q # a 0 a # a N # # # # # # # a a a # N # N k N N # N # # # # # # # a 4 # # #
System inflows (data group K3) at 0.60 hours 1 Junction / Inflow,cfs )
30002/ 3.51E+02 30001/ 2.22E+02
# # a a a N # # # # N # N # # # N # # # N N # a N # # # a # # # # a # # N # #
# # # # N # # # # # # N # a # a # N # N # # # # # # # # # q # # # # a a N # 9
==_> System inflows (data group K3) at 0.62 hours ( Junction / Inflow,cfs )
30002/ 2.93E+02 30001/ 1.89E+02
q q 4# N# N N# N N N# N# N a#### a a N# a# a a N# N N N# a# N#
# # # # # # N a # # N N # a # # # # # N N N # # a # N # # # # # # a a a N # a
___> System inflows (data group K3) at 0.63 hours ( Junction / Inflow,cfs )
30002/ 2.59E+02 30001/ 1.90E.02
«« a a a a# a g w a q q a### N# 444 a# w g q q q q a q q q d q a a q
# a#«### a a g w## a a# N N a d N a 4 d k a a N N N N 4 4 a# q## a
System inflows (data group K3) at 0.65 hours ( Junction / Inflow,cfs )
30002/ 2.33E.02 30001/ 1.56E+02
# q####### a###### a q# a g q q q q q d k# q q q# g q q# q#
# a# q q# 9####0 a N# a g q q q q q q q q q q a q a a# g w a q# a#
System inflows (data group K3) at 0.67 hours ( Junction / Inflow,cfs I
30002/ 2.18E+02 30001/ 1.46E+02
# # # # # q # # a # w # # # # # # a # # # # a q a a # N # a q a # # N q # # q
« # # # # # # # q 4 # # # # # # # # # # 0 # a N q N q q q a k # # # d N a # a
System inflows (data group K3) at 0.68 hours 1 Junction / Inflow,cfs )
30002/ 1.99E+02 30001/ 1.33E+02
q####### a##### w### w g q q q### g q# q# q q a q q w a q
# # # # q # # # # # # a a # # # # 4 # # # N N # k N q a k q q q # # q M # # #
System inflows (data group K3) at 0.70 hours ( Junction / Inflow,cfs )
30002/ 1.77E+02 30001/ 1.17E.02
## a# a## q## w# 0 a#### N# a# q q# a## g q q M q# g N N# q
# # a # # # N # # # # # # # # k q # q # q a q q a # k q # # a q q # a a # # w
System inflows (data group K3) at 0.72 hours 1 Junction / Inflow,cfs )
30002/ 1.61E+02 30001/ 1.06E+02
# q # # # N # q # # # # # k # # # # # # N N N # k N w # a a N d # a # a # # #
# # # a # # # # # # # # # q w # # N N # q a # # # # w a k a # # d # a # # N q
System inflows (data group K3) at 0.73 hours ( Junction / Inflow,cfs )
30002/ 1.49E+02 30001/ 9.84E+01
# w # # w a # # # # a # # # # # # q # # # a a q # a q q q # q # # a q # q q q
# N # # # # # a # a # q # # # a # # q N # # w d q w # q # a # a # # a # # # w
System inflows (data group K3) at 0.75 hours 1 Junction / Inflow,cfs 1
30002/ 1.41E+02 30001/ 9.24E.01
# # # q # N q # a # # a k # # # # N a # # # # # N # N a # q # q # # N # # # N
### q# N q# a#### d### N## q## a a N g 4#### q q q q q q q
System inflows (data group K3) at 0.77 hours ( Junction / Inflow,cfs )
30002/ 1.31E.02 30001/ 8.46E+01
# w # # # # # # # # # # # # # # q # # a # # # # # # # # q N # # q q M # q # # a
# # k # # # # # # # # # # # # q # N # # # # # # N # # # # # # q a # q # # # w
System inflows (data group K3) at 0.78 hours ( Junction / Inflow,cfs )
30002/ 1.99E+02 30001/ 7.55E+01
# q w # # # q # # # # # # a # # # # # # # 0 k q N # # q # # a # # # a # # # a #
# # # # # # # # a # # # # N # # # # # # # # q # a # a # # a # # q # q # # # #
System inflows (data group K3) at 0.80 hours ( Junction / Inflow,cfs )
30002/ 1.09E+02 30001/ 6.86E+01
# # q # # a # # # # a a a a # # # # # # # # # # q # q q a q # # # # # # a # # #
# q # # # a # # # # a N k # # # # # # # a a a # # a q # a # q # N # # # # # #
System inflows (data group K3) at 0.82 hours ( Junction / Inflow,cfs 1
30002/ 1.02E+02 30001/ 6.32E+01
k # q # q q # # # # q # IX q # # # # k # a # # # a # # # a a # # # q k a k q # q
# q# k q q# q# N## q## d## M a q#### a g a q# q q## a### q
System inflows (data group K3) at 0.63 hours ( Junction / Inflow,cfs I
30002/ 9.66E+01 30001/ 5.90E+01
# # a # # # a # a # # # q # N # # # # # a # # # # # q # # q # # q q # # M a a #
# # # # # a # a # # # q # # # # N # # q # a # # N q q q # N q q q N # q k # q
System inflows (data group K3) at 0.65 hours 1 Junction / Inflow,cfs )
30002/ 9.16E+01 30001/ 5.49E+01
g q a a q q# a### q# a q k#### a# N k q# g N q q a q q q q q q q##
# p# q# q### q a## q# g q q N w a q a q a a q a# N N# g k# N q q#
System inflows (data group K3) at 0.87 hours 1 Junction / Inflow,cfs )
30002/ 8.68E+01 30001/ 5.11E+01
# # q # q # # q # a # N # # # # # # # # # # k q q q q N q # # # # # a q IX # q #
# # # # q # # # w # # # IX q # # # # N # # # # # # a q a q q # # # # # q # # k
System inflows (data group K3) at 0.68 hours ( Junction / Inflow,cfs )
30002/ 8.30E+01 30001/ 4.80E+01
# # # # # # # # # # N N # # # # N # # N w # # N # # # q # q # a a q q # # # # #
q # N # # # # # a # # # a # # # # # # N a # # a N a k a q N N a q q # # # # d
System inflows Idata group K3) at 0.90 hours ( Junction / Inflow,cfs 1
30002/ 8.01E+01 30001/ 4.55E+01
## q### N##### g q a a q q q q a M M q q## g N q q a q q a# g q a q
# q###### a### g q q q q q q q q q a q d a q# N q# q q a# a###
System inflows (data group K3) at 0.92 hours 1 Junction / Inflow,cfs 1
30002/ 7.79E+01 30001/ 4.34E+01
# q# a 4494#4 a# d# N# a 4 N a## N## a g q q q k N q q q a q d q q
N a 4### 4 4# 4### 0 4 4 9 a# 0 N### 4# 4## 9# N# g a 4# a
I
System inflows (data group K3) at 0.93 hours 1 Junction / Inflow,cfs )
30002/ 7.58E+01 30003/ 4.13E+01
# # # # a x a # # # # # # # # a # # # # # a # a d a q a # # k a a # # # q # q
a d## k# a#### 0 N N N a### a a a### a## k## a## a g d# N
System inflows (data group K3) at 0.95 hours ( Junction / Inflow,cfs )
30002/ 7.36E+01 30001/ 3.92E+01
# a a # # M # N d # q a a N # # # # # # # # # # # # # q a q a # q d # # # # #
# # # # # N # # # # a N a a # # # # # a # # # # a # # # 4 # q # N a N # q # #
System inflows (data group K3) at 0.97 hours 1 Junction / Inflow,cfs I
30002/ 7.18E+01 30001/ 3.75E+01
# q # k a k N a a # # # # k # a # # # k # q # N # # q # q # q q a a # # # # #
# a # # a x # k # # # # # # # # # # # # # a # a # # # a a # q # # # N # # # a
System inflows (data group K3) at 0.98 hours ( Junction / Inflow,cfe )
30002/ 7.03E+01 30001/ 3.60E+01
# a a# k###### a q#### a a### a a### g a q q q q a q q## N
# # # # N # k # N # a a q N # # k a # # # # # # # # q IX k d # N k k # q # # a
System inflows (data group K3) at 1.00 hours ( Junction / Inflow,cfs )
30002/ 6.91E+01 30001/ 3.48E+01
q # # # # # # a a # # # a # # # # # # # # a # # # R # a q d # # q q q # a a #
CYCLE 360 TIME 1 HRS - 0.00 MIN
'UNCTION / DEPTH / ELEVATION ===> - JUNCTION IS SURCHARGED.
30001/ 6.07 / 5003.73 30002/ 5.23 / 5005+74 30010/ 2.79 / 4999.13
30011/ 1.45 / 4996.14
CONDUIT/ FLOW >'" CONDUIT USES THE NORMAL FLOW OPTION.
3001/ 11.66 3010/ 19.32 1011/ 44.69 90004/ 25.50
90005/ 0.00 90006/ 44.69
a q a### 4 d a d# a N N# k a a# a 4# d a## a a a A d k d# d##
System inflows (data group K3) at 1.08 hours ( Junction / Inflow,cfs )
30002/ 6.40E+01 30001/ 3.00E+01
# # # a # # # # a # # N N # N q a q # # # # # q # # a q q # q # q N # # # q #
q q # # a # # # k N # # # q # # a k # # # k k # a # k # # # # # q q # # # a N
System inflows (data group K3) at 1.17 hours ( Junction / Inflow,cfs I
30002/ 6.04E+01 30001/ 2.73E+01
# # N # N N # a # # # N # a a # a # # # # # # # # a q q # # q N # # # # # # q
q # # # # # # # a # # # # # # # # # # # # # # k # # # # # # q q q # # a a # k
System inflows (data group K3) at 1.25 hours ( Junction / Inflow,cfs 1
30002/ 5.78E+01 30001/ 2.50E+01
### a### q q## q a a####### a# q# g q## k q q q# a q N q q
# # N # # # a q a # a N # # # # # # # # # p a p a # # # d q a q N # a a # # #
System inflows (data group K3) at 1.33 hours ( Junction / Inflow,cfs )
30002/ 5.55E+01 30001/ 2.33E+01
# # # # x a q # # a N N # a # # # # # a a # # # q q N N q q q q q # # # # # #
# # # # # N k # # # # # # # a a # # N # # a # # # a q q k q q q # a # # # # #
System inflows (data group K3) at 1.42 hours ( Junction / Inflow,cfe )
30002/ 5.38E+01 30001/ 2.20E+01
# # # a # # # # # # # # # # a a # # # # # # # # q # N IX a a # q q q q # # a #
# a # # # a # a # # # # # # # a # # # # # k A # # a # # a a # q a # N a # a #
System inflows (data group K3) at 1.50 hours ( Junction / Inflow,cfs )
30002/ 5.22E+01 30001/ 2.09E+01
## a# a# N a##### a a a# N## k a q# q q# q a q# R a o#####
q a### q q x a q#### k# a#### a# a# a g a a# g q q a # # # a#
System inflows (data group K3) at 1.58 hours ( Junction / Inflow,cfs 1
30002/ 5.08E+01 30001/ 1.99E+01
# q# a# k a d# a a 4 k## k a### N a N## a g 4 a a# q a## N# a#
# q # a # x a N N k # a # # # # a # # q a # # a # # q # # # q q # a # # # a #
--=> System inflows (data group K3) at 1.67 hours ( Junction / Inflow,cfs )
30002/ 4.94E+01 30001/ 1.89E+01
# q # # N k # N # # a a # # # # N # # # # a # N # a # # # # q q q q q N q q #
# d#### k# 4 k k 0 a# d### q q a# q### a N k a k a N# a# N##
=> System inflows (data group K3) at 1.75 hours ( Junction / InElow,cfs )
30002/ 4.82E+01 110111 1.81E+01
###### k# a q a# a N N N# a# q## N a# a# g q q q# g q q q# a#
R # a # # # # N # q # k a # # # # N # # # # a # # # k k N N a N 9 # a q M # #
=> System inflows (data group K3) at 1.83 hours 1 Junction / Inflow,cfs )
30002/ 4.72E+01 30001/ 194E+01
U# d# k## g q q q a k a# q# a g q a a q q## N q# a a## k q# d# d d
# d a d a# k a d d d# a# q## k a a a# a## a k# a a a## g a N##
_> System inflows (dais group K3) at 1.92 hours ( Junction / Inflow,cfs )
30002/ 4.62E+01 30001/ 1.68E,01
1
# d q#### d 4 a## 44 0 a N##### a d g d q q a q q q q q q q q## q
q # # k # # # # # N # # k d # # a # a # a q # q q # # # # # q # q q q # a # #
_> System inflows (data group K3) at 2.00 hours ( Junction / Inflow,cfs )
30002/ 4.53E.01 30001/ 1.62E+01
# # q q q d q # # # d # a a # # N # a # # # # # q # # # # q # q # q q # q # q q
VE 720 TIME 2 HRS - 0.00 MIN
JUNCTION / DEPTH / ELEVATION =__ ... JUNCTION IS SURCHARGED.
30001/ 5.94 / 5003.60 30002/ 6.10 / 5006.61 30010/ 2.56 /
'30011/ 1.30 / 4995.99
CONDUIT/ FLOW =__ •^ CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 14.28 >1010/ 19.51 3011/ 34.99 90004/
90005/ 3.85 90006/ 34.99
# a # a N # a # # # # # N # q # q # 0 # N a # # # # a N # # # # # # # # a q q
> System inflows (data group K3) at 2.17 hours ( Junction / Inflow,cfs )
30002/ 2.64E+01 30001/ 5.00E-00
d # a # # # N # k 4 # a q # # # a # a 4 q # 4 q # # # # # # # a a a # # # # # q
# q # # # # # N N # # q # # # # # # # q # # q a N # # N # # # # R # # # # # #
System inflows (data group K3) at 2.33 hours ( Junction / Inflow,cfs )
30002/ 2.21E+01 30001/ 2.20E+00
q q # # k # # # # # ft # # # # # # # q # # # # # # # # # # # # N d # # N d k # q
q # # q q # # # # # # a # # d # # # # # # q k q # q # q d q # q q # # d q # #
System inflowa (data group K3) at 2.50 hours ( Junction / Inflow,cfs )
30002/ 2.09E+01 30001/ 1.20E+00
# # # q # # # a q q # # M N q a # a # # # # # # # # # q q # # # # d # # q a a q
# q # q N # # q q # q N # q # a # # # # # # d # # q # # # # # # q q # # a a N
_=> System inflows (data group K3) at 2.67 hours ( Junction / Inflow,cfs )
3D002/ 2.04E.01 30001/ 7.00E-01
# # N d # # a # # # # # a a # a # # # # # N # # # # # # # # a q # q q q k q # q
40 # # # # # N # # # N # # a N # # q # q # # # # # # # # 4 q # q R # # # # a
> System inflows (data group K3) at 2.83 hours ( Junction / Inflow,cfs )
30002/ 2.012.01 30001/ 4.00E-01
# q # # # # # q # a # a # # q # N # # # # # # # q # # q N q # # # # # a q q # q
q # # a N # q N # # # X # q # # # # # # # # # q # # k # q # # # # # # # # # k
_> System inflows (data group K3) at 3.00 hours ( Junction / Inflow,cfs )
30002/ 1.98E.01 30001/ 3.00E-01
# # N # # # # # a # # q N # # # # # # a # # # # # # # # # # # # a # q # q # # q
4998.90
15.45
CLE 3080 TIME 3 HRS - 0.00 MIN
CTION / DEPTH / ELEVATION =__ "•" JUNCTION IS SURCHARGED.
30001/ 5.76 / 5003.42 30002/ 6.16 / 5006.67 30010/ 2.26 / 4998.60
30011/ 1.12 / 4995.81
' CONDUIT/ FLOW =__ CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 14.84 >1010/ 19.75 3011/ 24.79 90004/
90005/ 6.30 90006/ 24.79
q # # # # k # N d # # # # q N # # # # # a a # # # # N a a # # # # # q # # # # #
System inflows (data group K3) at 3.17 hours ( Junction / Inflow,cfs )
30002/ 1.97E+01 30001/ 2.00E-01
# 0 d q q q k # # a q q N # # # # a # # # # # N N a # # # N # # a q # q # N # #
# # q # q N # # # # # q q # # # # # a # a # k # # a a # # # q # q # # q # # # X
System inflows (data group K3) at 3.33 hours I Junction / Inflow,cfs )
30002/ 1.95E+01 30001/ 1.00E-01
q q # a N # q # # q q d k # # # a # # # # # # # # # # # # # d # q q q q k # 4 q
##### q q q# q q## N N## N a## N a N# g q### q# q q# q q## q
> System inflows (data group K3) at 3.50 hours ( Junction / Inflow,cfs 1
30002/ 1.93E+01 30001/ 1.00E-01
# # # # # a # M a # a # # # # a # # # # # # # # # # # # N # N # # # a # N # #
# # # # q q N # # q # # # # # # # # # # N # a # # # a # # N 0 0 # # 0 # N # # #
System inflows (data group K31 at 3.67 hours I Junction / Inflow,cfs 1
30002/ 1.91E-01 30001/ 1.00E-01
# q # # # a # N # N # # # # # a # q # 4 # # a a # # # # # # # q q N # # # q #
# # a # # # # # a # # # # # # # 4 a q a a a # # # # # # # # # a # q # N # a q a
> System inflows (data group K3) at 3.83 hours ( Junction / Inflow,cfs )
�30002/ 1.88E+01 30001/ 1.00E-01
# ## q# a q a q# g q# q# q###### q q# N# g q# q# q q M q q q q
a###qq#qq#qqq#N#qq#aa#aa#XX###qq#dggqaqa
_> System inflows (data group K3) at 4.00 hours ( Junction / Inflow,cfs )
130002/ 7.70E+00 30001/ 1.00E-01
# # d a # # # a a # # a k # # d # # # k # # a # # a # # # # N a a # # # # a #
4.93
CYCLE 1440 TIME 4 HR.S 0.00 MIN
'UNCTION / DEPTH / ELEVATION =__> "_" JUNCTION IS SURCHARGED.
30001/ 5.68 / 5003.34 30002/ 6.11 / 5006.62 30030/ 2.15 / 4998.49
30011/ 1.05 / 4995.74
CONDUIT/ FLOW =__ >•" CONDUIT USES THE NORMAL FLOW OPTION.
3001/ 14.91 1010/ 19.81 loll/ 21.60 90004/
90005/ 4.29 90006/ 21.60
# # # # # # # # # # # # 0 # # # N # a # # # # # # # N N N N a # # # N # # N N
___> System inflows (data group K3) at 4.17 hours ( Junction / Inflow,cfs 1
30002/ 6.60E+00 30001/ 1.00E-01
' # # # # # N # q # # q N # # q # # # # # # # # # q q q q q q # # # # q q # # #
# q # a # N # # # X # X # # # # # # # q q q q q q # # # # # # # # # # # # # #
System inflows (data group K3) at 4.33 hours 1 Junction / Inflow,cfs 1
30002/ 6.50E+00 30001/ 1.00E-01
'### N a k 4 N# q q q# k####### q## g q q q# q# M q# N g q q R
# k q q q # # # # # # # # # # # # # q # # # # # # # # N # q N N N q N # # # #
System inflows (data group K3) at 4.50 hours ( Junction / Inflow,cfs )
30002/ 6.40E+00 30001/ 0.00E+00
'q # q q # # # # q # # N # q # N # # # # q # # # # # a q q q # # # # # d q # #
# q q # # # N # # # k q # # a # # # # # # # # 4 q # q q q q # # q d a d # q q
System inflows (data group K3) at 4.67 hours ( Junction / Inflow,afs
30002/ 6.40E+00 30001/ 0.00E+00
# q # a # # # # # q # q # N # # # k # # # # # N # # # # # q # q q q q q q # #
# # # # # # # # # q # # # # # # # # # q # # # N # # # # # q d M q # q # # # #
System inflows (data group K3) at 4.83 hours ( Junction / Inflow,cfs )
30002/ 6.40E+00 30001/ 0.00E+00
#4q###ggN#0#044h904######a####q#q##0
# d # # # N M N M q # # # # # # # # # # # # # # # # q # # # # # q q 4 q N # #
System inflows (data group K3) at 5-00 hours ( Junction / Inflow.cfs )
30002/ 6.30E+00 30001/ 0.00E+00
'# # # a # # # # # # # N # # # # # # # # q # # # # # # # # # a q N # q q q # q
YCLE 1800 TIME 5 HRS - 0.00 MIN
JUNCTION / DEPTH / ELEVATION =__ "•" JUNCTION IS SURCHARGED.
t 30001/ 5.52 / 5003.18 30002/ 5.91 / 5006.42 30010/ 2.08 / 4998.42
30011/ 1.01 / 4995.70
CONDUIT/ FLOW =__ >•" CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 14.82 1010/ 19.63 loll/ 19.62 90004/
90005/ 0.00 90006/ 19.62
# # # N a # # # # a # # # # # # # # 0 N # # 0 # # # # # # # # # # q # # # # #
__> System inflows (data group K3) at 5.17 hours ( Junction / Inflow,cfs )
30002/ 6.30E+00 30001/ 0.00E+00
# # # # # N N N # # # # # # # # # # # # # # # # q q # q q # # # # # q # q # q
# # # # # # # # # # # # 4 # # # N # # # # # # # # # # # # # # # # # q N # # #
> System inflows (data group K3) at 5.33 hours ( Junction / In£low,cfs )
30002/ 6.30E+00 30001/ 0.00E+00
# # # # # q M # # # # # M # N # # # # # # # # # q k q q # # # q # q # # # # #
# # # # a N # N N # q q q # a # # # # # # q # # # q a k # # # # # # N # # N #
_> System inflows (data group K3) at 5.35 hours ( Junction / Inflow,cfs )
30002/ 6.20E+00 30001/ 0.00E+00
# # # N # # # q q q q q q q # # # # # # # # # # # # # # # # # # # # N # # # #
q # # # # # # q q # # # q # X # # # # # # # N # # # X # # # # # # # q # # # #
_> System inflows (data group K3) at 5.37 hours ( Junction / Inflow,cfa )
30002/ 6.20E+00 30001/ 0.00E+00
# N # # N # # # # # # # # # # # # # # # # # # # # # # # # # # # # # q q q # q
# # # # # 4 # # # a # # # # # # # # # a # # # q # q q # # # # # # # q # q N #
> System inflows (data group K3) at 5.38 hours ( Junction / In£low,afs )
30002/ 6.20E+00 30001/ 0.00E+00
# # # a # # # # # # a # # # # # # # # # # q # # k # X # q q a # # # # a # # q
q q q q # a a a a # # k # # # # # # # # # # # # # # # # # # # # N # q # q X #
_> System inflows (data group K3) at 6.00 hours ( Junction / Inflow,cfs )
30002/ 6.10E+00 30001/ 0.00E+00
X R#### a# ft# a N# X####### N# a a a a a a a a## g q d d# N
CLE 2160 TIME 6 HRS - 0.00 MIN
JUNCTION / DEPTH / ELEVATION =__ "•" JUNCTION IS SURCHARGED.
30001/ 5,12 / 1002,11 30002/ 5,72 / 5006,21 300101 2.07 / 1991,40
30011/ 1.00 / 4995+69
CONDUIT/ FLOW CONDUIT USES THE NORMAL FLOW OPTION.
3001/ 14.85 >1010/ 19.25 loll/ 19.25 90004/
90005/ 0.00 90006/ 19 25
1.'/2
0.00
0.00
I
# # N # # # # N # # # # k # # # N # # # N d a # a N a # k 0 # 0 # 4 # a 11 # # N
System inflows (data group K3) at 6.50 hours ( Junction / Inflow,cfs 1
30002/ 6.00E+00 30001/ 0.00E.00
# # k # # # # # # # # # # q # # # # q q q a q a q # q # q # q q q q q M q # # q
## q q q####### N k a# a# q# q## g q q# N## g q q q# q q## q
> System inflows (data group K3) at 7.00 hours ( Junction / Inflow,cfs )
30002/ 6.00E+00 30001/ 0.00E+00
q a##### a###### a## 9 R a N N a N## g d d# q q q H a q q q# q
:LE 2520 TIME 9 HRS - -0.00 MIN
MON / DEPTH / ELEVATION " JUNCTION IS SURCHARGED.
30001/ 5.12 / 5002.78 30002/ 5.53 / 5006.04 30010/ 2.05 / 4998.39
30011/ 0.99 / 4995.68
' CONDUIT/ FLOW =__>"•" CONDUIT USES THE NORMAL FLOW OPTION.
3001/ 14.87 1010/ 18.85 1011/ 16.86 90004/
90005/ 0.00 90006/ 18.86
####### a# 9#4 a### 0#4 g d q q N q## g q N d q N q q q N M q q
System inflows (data group K3) at 9.50 hours 1 Junction / Inflow,cfs 1
> 30002/ 5.90E+00 30001/ 0.00E+00
# q # # # a # # # a # # # a # # # # # # # # # # q # q # # k # # q # 0 q q k N
# # # # # k # # # # # # # # a a N N # # # N # # a # a q # # # # # q N a # q # N
> System inflows (data group K3) at 8.00 hours ( Junction / Inflow,cfs 1
30002/ 4.40E+00 30001/ 0.00E+00
# # # # # # # # # # a q # a N # # # N # # q # q q q q q q # q d d # q # N # q
CLE 2880 TIME 8 HRS - 0.00 MIN
CTION / DEPTH / ELEVATION ===> ""' JUNCTION IS SURCHARGED.
30001/ 4.91 / 5002.51 30002/ 5.33 / 5005.84 30030/ 2.03 / 4998.37
30011/ 0.98 / 4995.67
' CONDUIT/ FLOW =__> "•" CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 14.B8 3010/ 18.43 loll/ 18.45 900041
90005/ 0.00 90006/ 18.45
# # # # # # # # # # # # a # # # # # # # # q q # # # # q # q q # # # # # # # # #
__> System inflows (data group K3) at 8.50 hours 1 Junction / Inflow,cEs )
30002/ 4.10E+00 30001/ 0.00E+00
q # # # # # # # # # # # # q # q # # # # # # # # q # # q q # # # # # # q # # #
# # # # # # # # # # # a # # q q q R # # # # # # # # a # # q # # # # # # q a # #
---> System inflows (data group K3) at 9.00 hours 1 Junction / Inflow,cfs 1
30002/ 4.10E+00 30001/ 0.00E+00
# a # # # # # # # # # # 4 # # # # # a # q q q q # q q # # q q q # # # # # # #
CYCLE 3240 TIME 9 HRS - 0.00 MIN
IFCfION / DEPTH / ELEVATION =__> "•" JUNCTION IS SURCHARGED.
30001/ 4.69 / 5002.35 30002/ 5.09 / 5005.60 30010/ 2.01 / 4998.35
30011/ 0.97 / 4995.66
' CONDUIT/ FLOW =__> - CONDUIT USES THE NORMAL FLOW OPTION.
3001/ 14.84 1030/ 17.59 loll/ 18.00 90004/
9000s/ 0.00 90006/ 18.00
# a N # # N # a # # a N a # # # # # # a # N # # # # a # # a # # # # # # N # a N
System inflows (data group K3) at 9.50 hours ( Junction / Inflow,cfs I
30002/ 4.10E+00 30001/ 0.00E+00
q### a# g q k q# q# k#### a##### a a g k### g q q N a# q#
q # # # # # # q q # q # # # # # N N # # # # # # # N # # # # # N # N a a # # #
System inflows (data group K3) at 10.00 hours ( Junction / Inflow,cfs I
30002/ 1.50E+00 30001/ 0.00E+00
# # # # # # B # # # # # # a # # # N # # q q q q # q q q # # q q # a q q # # #
CYCLE 3600 TIME 10 HRS - 0.00 MIN
INCTION / DEPTH / ELEVATION ===> "+" JUNCTION IS SURCHARGED.
30001/ 4.45 / 5002.11 30002/ 4.64 / 5005.35 30010/ 1.99 / 4998.33
30011/ 0.96 / 4995.65
'CONDUIT/ FLOW ==_> "•" CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 14.80 1010/ 17.50 1011/ 171 51 90004/
90005/ 0.00 90006/ 17.51
FINAL MODEL CONDITION +
'.FINAL TIME e-.+'++1.0:00 HOURS.:
> ENDING DATE AND TIME OF EXTRAN RUN ARE:
JULI AN DATE: 1941214
1
0.00
0.00
0.00
0.00
I
YR/MO/DA: 1941/ B/ 2
IME OF DAY: 10.000 HRS
UNCTION / DEPTH / ELEVATION "•" JUNCTION IS SURCHARGED.
30001/ 4.45 / 5002.11 30002/ 4.84 / 5005.35 30010/ 1.99 / 4998.33
30011/ 0.96 / 4995.65
' CONDUIT/ FLOW =__ ... CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 14.80 1010/ 17.50 1011/ 17.51 90004/ 0.00
90005/ 0.00 90006/ 17.51
' CONDUIT/ VELOCITY
1001/ 8.38 3030/ 7.27 1011/ 1.92
CONDUIT/ CROSS SECTIONAL AREA
3001/ 1.77 1010/ 2.41 1011/ 9.11
' CONDUIT/ FINAL VOLUME
1001/ 199.69 1010/ 505.11 1011/ 1733.88
CONDUIT/ HYDRAULIC RADIUS
1001/ 0.38 1030/ 0.44 1011/ 0.7B
CONDUIT/ UPSTREAM/ DOWNSTREAM ELEVATION
1001/ 5005.35/ 5002.11 3010/ 5002.11/ 4998.33 1011/ 4998.33/ 4995.65
�k#qkk#kk##kk#kggqqNNqkq#ggqq###kq#q##q##k#kgkkk#q#
Surcharge Iteration Summary #
q##gkkk#kk#qq#k#qkk#kggkqqqq####qq#q###N#k#k#k#kq#M
aximum number of iterations in a time step..... 1
oral number of iterations in the simulation.. 7200
verage numberof iterations per time step...... 2.00
Surcharge iterations during the simulation...... 0
jaximum surcharge flow error during simulation.. 0.00E+00 cfs
otal number of time steps during simulation.. 3600
1
.•...............•.•••••..•.••....................,
CONDUIT COURANT CONDITION SUMMARY
TIME IN• MINUTES• DELT•; COURANT T IME• STEPe•.•••••:
• SEE BELOW FOR EXPLANATION OF COURANT TIME STEP.
'CONDUIT # TIME(MN) CONDUIT # TIME(FE4) CONDUIT # TIME HIM CONDUIT # TIME(MN)
1001 583.17 1010 336.00 1011 0.00
1,,,=, ••,CONDUIT•COURANT•CONDITION•SUMMARY•=•••
r r.,,,..,.,,, u„«, a„u ,. u,,. • • «. u.., a u,
• COURANT = CONDUIT LENGTH
',..ME`STEP
.. «,, ,,,,,,,,,,, •, •, •„•, •„WIDTH,,,
VELOCITY + SORT(GAVT•AREA/WIDTH)
• AVERAGE COURANT CONDITION TIME STEP(SECONDS)
IONDUIT _# TIME(SEC) __
CONDUIT # TIME(SEC) _ CONDUIT # TIME(SEC)CONDUIT # TIME(SEC)
______ _______ ________ _______ _________ _________________ ________
1001 6.92 1010 14.51 1011 42.12
;;`RAN CONTINUITY BALANCE• AT THE LAST TIME STEP•:
• u,. .D.. H. u u ,.HH
JUNCTION INFLOW, OUTFLOW OR STREET FLOODING
JUNCTION INFLOW, FT3
________ ____________
30001 3.4007E+05
30002 8.7840E+05
JUNCTION OUTFLOW, FT3
• INITIAL SYSTEM VOLUME 6.2300E-03 CU FT
• TOTAL SYSTEM INFLOW VOLUME = 1.2185R.06 CU FT •
1
I
• INFLOW + INITIAL VOLUME
1.2185E+06 CU FT `
TOTAL SYSTEM OUTFLOW
8.0081E+05 CU FT
VOLUME LEFT IN SYSTEM =
4.2426E+05 CU FT
• OUTFLOW + FINAL VOLUME
1.2251E+06 CU FT
�•ERROR •IN CONTINUITY, PERCENT
-0.54
TEST WRITE OF ALTERNATIVE CONTINUITY
ERROR CALCULATION
LEFT IN SYSTEM = 4.1775E+05
CU. FT.
tLUME
RROR IN CONTINUITY PERCENT =
-0.07
q####qqN#Nq#NgNgq##ggNq#NNNNNggqNNqqqqqqNqqqqqqqqqqq#gqqq
T i m e H i s t o r y o f t h
e H. G. L. ( Feet) q
##ggqqqqqqqqqqqqq#gqqq#q#ggqqqNNqq#qqqqq#qqq#q#q#NNggqqq
1
HARMONY CENTER 6 PIER DETENTION POND DEVELOPED COND. SIMULATION WITH E%TRAN
1/06/2005 OR ENGINEERING File: Pier.dat
Junction: 30001 Junction:
Time Ground: 5005.00 Ground:
Hr:Mn:Sc Elevation Depth Elevation
' 0: 5:
0: 10:
0:15:
0:20:
0:25:
' 0: 3:
0:35:
0:40:
0:45:
0:50:
0:55:
1: 0:
1: 5:
1:10:
1:15:
' 1:2:
1 :25:
1:30:
1:35:
1:40:
1:45:
1:50:
1:55:
2: 0:
2: 5:
2:10:
2:15:
2:20:
2 : 2 5 :
2:30:
2:35:
' 2:40:
2 :95:
2:50:
2:55:
3: 0:
' 3: 5:
3 :30:
3:15:
3:20:
3:25:
' 3:30:
3 :35:
3:40:
3:45:
3:50:
' :5:
40: 0:
4: 5:
4:10:
4:15:
4:20:
4:25:
4:30:
4 :35:
4 :40:
'4: :
9 : SO:
4:55:
5: 0:
5: 5:
__ -__-_____
0 4997.66
" - - --
0.00
"----_--
5000.54
0 4997.88
0.22
5001.17
0 4996.43
0.76
5001.77
0 4999.14
1.48
5002.39
0 4999.87
2.21
5002.93
0 5000.92
3.26
5003.55
0 5002.50
4.84
5004.37
0 5003.22
5.56
5004.96
0 5003.53
5.67
5005.26
0 5003.67
6.01
5005.49
0 5003.72
6.06
5005.63
0 5003.73
6.07
5005.74
0 5003.73
6.07
5005.84
0 5003.72
6.06
5005.93
0 5003.71
6.05
5006.02
0 5003.70
6.04
5006.10
0 5003.68
6.02
5006.17
0 5003.67
6.01
5006.25
0 5003.65
5.99
5006.31
0 5003.64
5.98
5006.38
0 5003.62
5.96
5006.44
0 5003.61
5.95
5006.50
0 5003.60
5.94
5006.56
0 5003.60
5.94
5006.61
0 5003.59
5.93
5006.65
0 5003.58
5.92
5006.67
0 5003.56
5.90
5006.67
0 5003.54
5.88
5006.68
0 5003.52
5.86
5006.68
0 5003.50
5.84
5006.68
0 5003.48
5.82
5006.68
0 5003.47
5.81
5006.67
0 5003.45
5.79
5006.67
0 5003.44
5.78
5006.67
0 5003.43
5.77
5006.67
0 5003.42
5.76
5006.67
0 5003.41
5.75
5006.66
0 5003.40
5.74
5006.66
0 5003.39
5.73
5006.66
0 5003.39
5.73
5006.66
0 5003.38
5.72
5006.65
0 5003.37
5.71
5006.65
0 5003.37
5.71
5006.65
O 5003.36
5.70
5006.65
0 5003.35
5.69
5006.65
0 5003.35
5.69
5006.64
0 5003.35
5.68
5006.64
0 5003.34
5.68
5006.62
0 SOD3.33
5.67
5006.60
0 5003.32
5.66
5006.58
0 5003.31
5.65
5006.56
0 5003.30
5.64
5006.54
0 5003.29
5.63
5006.52
0 5003.27
5.61
5006.51
0 5003.26
5.60
5006.49
0 5003.24
5.58
5006.48
0 5003.23
5.57
5006.46
0 5003.21
5.55
5006.45
0 5003.19
5.53
5006.43
0 5003.18
5.52
5006.42
0 5003.16
5.50
S006.40
30002
Junction:
30010
Junction:
5008.00
Ground:
5004.00
Ground:
Depth
-----
Elevation
---------
Depth
Elevation
0.03
4996.34
-----
0.00
---------
4995.00
0.66
4996.36
0.02
4995.00
1.26
4996.76
0.42
4995.00
1.88
4997.77
1.43
4995.32
2.42
4998.06
1.72
4995.49
3.04
4998.18
1.84
4995.55
3.86
4998.33
1.99
4995.65
4.45
4998.41
2.07
4995.69
4.75
4998.69
2.35
4995.87
4.9B
4990.98
2.64
4996.04
5.12
4999.09
2.75
4996.12
5.23
4999.13
2.79
4996.14
5.33
4999.13
2.79
4996.14
5.42
4999.11
2.77
4996.14
5.51
4999.09
2.75
4996.12
5.59
4999.07
2.73
4996.10
5.66
4999.04
2.70
4996.09
5.74
4999.01
2.67
4996.07
5.80
4998.99
2.65
4996.05
5.87
4998.97
2.63
4996.04
5.93
4998.94
2.60
4996.02
5.99
4998.92
2.58
4996.01
6.05
4998.90
2.56
4996.00
6.10
4998.90
2.56
4995.99
6.14
4998.69
2.55
4995.99
6.16
499B.B6
2.52
4995.98
6.16
4998.83
2.49
4995.95
6.17
4998.79
2.45
4995.93
6.17
4998.76
2.42
4995.91
6.17
4998.73
2.39
4995.89
6.17
4998.70
2.36
4995.87
6.16
499B.68
2.34
4995.86
6.16
4998.65
2.31
4995.04
6.16
4999.63
2.29
4995.83
6.16
4998.62
2.28
4995.82
6.16
4998.60
2.26
4995.81
6.15
4998.50
2.25
4995.80
6.15
4998.57
2.23
4995.79
6.15
4998.56
2.22
4995.79
6.15
4998.55
2.21
4995.78
6.14
4998.54
2.20
4995.77
6.14
4998.53
2.19
4995.77
6.14
4998.52
2.19
4995.76
6.14
4998.52
2.18
4995.76
6.14
4998.51
2.17
4995.75
6.13
4998.50
2.16
4995.75
6.13
4998.50
2.16
4995.75
6.11
4998.49
2.15
4995J4
6.09
4998.48
2.14
4995.74
6.07
4996.47
2.13
4995.73
6.05
4998.46
2.12
4995.72
6.03
4998.45
2.11
4995.72
6.01
4998.44
2.10
4995.71
6.00
4998.43
2.09
4995.70
5.98
4998.43
2.09
4995.70
5.97
4998.42
2.08
4995.70
5.95
4998.42
2.08
4995.70
5.94
4998.42
2.08
4995.70
5.92
4998.42
2.08
4995.70
5.91
4998.42
2.08
4995.70
5.89
4998.42
2.08
4995.70
30021
S004.00
Depth
0 31
0.31
0.31
0.63
0.80
0.86
0.96
1.00
1.18
1.35
1.43
1.45
1.45---- PIE4 POND
1.45
1.43
1.41
1.40
1.38
1.36
1.35
1.33
1.32
1.31
1.30
1.30
1.29
1.26
1.24
1.22
1.20
1.18---- POND 488
1.17
1.15
1.14
1.13
1.12
1 .11
1.10
1.10
1.09
l.OB
1.08
1.07
1.07
1.06
1.06
1.06
1.05
1.05
1.04
1.03
1.03
1.02
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
5:10:
0
5003.15
5.49
5006.39
5.88
4998.42
2.03
1995.70
1.01
0
5003.13
5,49
5006.37
5.86
4998.42
2.06
4995.70
1.01
'5:15:
5:20:
0
5003111
5.45
5006.36
5.85
4998.42
2.08
4995.
69
1.00
5:
25:
0
5003.10
5.44
5006.34
5.83
4998.41
2.07
4995.
69
1.00
5:30:
0
5003.08
5.42
5006.32
5.81
4998.41
2.07
4995.69
1.00
5:35:
0
5003.06
5.40
5006.31
5.80
4998.41
2.07
4995.69
1.00
0
5003.05
5.39
5006.29
5.98
4998.41
2.01
i935.
69
1.00
'5:40:
5:45:
0
5003.
03
5.39
5006.28
5.77
4998.41
2.01
1995.69
1.00
5:
50:
0
5003.
01
5.35
5006.26
5.75
4998.41
2.07
4995.
69
1.00
5:55:
0
5003.00
5.34
5006.25
5.74
4998.41
2,07
4995.69
1.00
6:
0:
0
5002.98
5.32
5006.23
5.72
4998.40
2.09
4995.69
1.00
6:
5:
0
5002.96
5.30
5006.21
5.71
4998.40
2.06
4995.69
1.00
6:30:
0
5002.95
5.29
5006.20
5.69
4998.40
2.06
4995.69
1.00
6:15:
0
5002.93
5.27
5006.18
5.67
4996.40
2.06
4995.69
1.00
6:20:
0
5002.91
5.25
5006.17
5.66
4998.40
2.06
4995.69
1.00
6:25:
0
5002.90
5.24
5006.15
5.64
4998.40
2.06
4995.69
1.00
6 :30:
0
5002.88
5.22
5006.14
5.63
4991
40
2.06
4995.68
0.99
'
6:35:
0
5002.86
5.20
5006.12
5.61
4991.40
2.06
4995.68
0.99
6 :40:
0
5002.85
5.19
5006.10
5.59
4998.39
2.05
499S.68
0.99
6:45:
0
5002.83
5.17
5006.09
5.58
4998.39
2.05
4995.68
0.99
6:50:
0
5002.81
5.15
5006.09
5.56
4998.39
2.05
4995.68
0.99
6:55:
0
5002,80
5.14
5006.06
5.55
4998.39
2.05
4995.6E
0.99
0: 0:
0
5002.78
5.12
5006.04
5.53
4998.39
2.05
4995.68
0.99
0: 5:
0
5002.76
5.10
5006.02
5_51
4998.39
2.05
4995.68
0.99
0:10:
0
5002.74
5.08
5006.01
5.50
4998.39
2.05
4995.68
0.99
9:15:
0
5002.73
5.09
5005.99
5.48
4998.39
2.05
4995.68
0.99
2720:
0 5002.71
5.05
5005.97
5.46
4998.38
2.04
4995.68
0.99
0 5002.69
5.03
5005.96
5.45
4998.38
2.04
4995.68
0.99
'9:25:
7:30:
0 5002.68
5.02
5005.94
5.43
4998.38
2.04
4995.68
0.99
9:35:
0 5002.66
5.00
5005.93
5.42
4998.38
2.04
4995.67
0.98
7:40:
0 5002.64
4.98
5005.91
5.40
4998.38
2.04
4995.67
0.98
7 :45,
0 5002,12
4,96
5105,89
5,38
4998,38
2,04
4195,67
0.98
0 5002.61
4.95
5005.87
5.36
4998.36
2.04
4995.67
0.98
'9:50:
9: 55:
0 5002.59
4,93
5005.B5
5.34
4998.37
2,03
4995.69
0.98
8: 0:
0 500.2...
57
4.91
5005.84
5.33
4998.37
2.03
4995.67
0.98
6: 5:
0 5002.55
4.89
5005.82
5.31
4998.35
2.03
4995.67
0.98
8:10:
0 5002.53
4.80
5005.80
5.29
4998.37
2,03
4995.67
0.98
8:15:
0 5002.52
4,86
5005.9B
5.20
4998.37
2.03
4995.67
0.98
8:20:
0 5002.50
4.84
5005.76
5.25
4996.37
2.03
4995.67
0.98
8:25:
0 5002.48
4.82
5005.74
5.23
4998.37
2.03
4995.69
0.98
8:30:
0 5002.46
4.80
5005.72
5.21
4998.36
2.02
4995.67
0.98
8:35:
0 5002.44
4.78
5005.70
5.19
4998.36
2.02
4995.67
0.98
0 5002.43
4.97
5005.68
5.19
4998.36
2.02
4995.66
0.97
'8:40:
8:45:
0 5002.41
4.95
5005.66
5.15
4998.36
2.02
4995.66
0.97
8:50:
0 5002.39
4.73
5005.64
5.13
4998.36
2.02
4995.66
0.97
8:55:
0 5002.37
4.91
5005.62
5.11
4998.36
2.02
4995.66
0.97
9:
0:
0 5002.35
4.69
5005.60
5.09
4998.35
2.01
4995.66
0.97
9: 5:
0
5002.33
4.67
5005.58
5.07
4998.35
2.01
4995.66
0.97
9:10:
0
5002.31
4.63
5005.56
5.05
4998.35
2.01
4995.66
0.97
9:15:
0
5002.29
4.63
5005.54
5.03
4998.35
2.01
4995.66
0.99
9:20:
0
5002.27
4.61
5005.52
5.01
4998.35
2.01
4995.66
0.97
9:25:
0
5002.25
4.59
5005.50
4.99
4998.35
2.01
4995.66
0.97
0
5002.24
4.58
5005.48
4.97
4998.34
2.00
4995.66
0.99
'9:30:
9:35:
0
5002.22
4.56
5005.46
4.95
4998.34
2.00
4995.66
0.97
9:40:
0
5002.20
4.54
5005.44
4.93
4998.34
2.00
4995.65
0.96
9:45:
0
5002.18
4.52
5005.42
4.91
4998.34
2.00
4995.65
0.96
9:50:
0
5002.16
4.50
5005.39
4.88
4998.34
2.00
4995.65
0.96
0
5002.14
4.48
5005.37
4.86
4998.33
2.00
4995.65
0.96
�9:55:
0: 0: 0
5002.11
4.45
5005.35
4.84
4998.33
1.99
4995.65
0.96
Mean
5002.83
5.17
5005.93
5.42
4998.46
2.12
4995.74
1.05
Maximum
5003.73
6.00
5006.68
6.17
4999.13
2.99
4996.14
1.45
Minimum
4997.66
0.00
5000.54
0.03
4996.34
0.00
4995.00
0.31
I
............................-......+.0 r. ........
M A.•r..uS.T A..rI Sr rr r.r.S
HARMONY CENTER 6 PIER DETENTION POND DEVELOPED COND.
SIMULATION WITH EXTRAN
110112101 JR ENGINEERING File: Pier.dat
UPPERMOST MEAN MAXIMUM
TIME
FEET OF
FEET MAX.
LENGTH
LENGTH
MAXIMUM
GROUND PIPE CROWN JUNCTION JUNCTION JUNCTION
OF
SURCHARGE
DEPTH IS
OF
OF
JUNCTION
JUNCTION ELEVATION ELEVATION ELEVATION AVERAGE ELEV.
OCCURENCE
AT MAX
BELOW GROUND
SURCHARGE
FLOODING
AREA
NUMBER IFTI IFTI IFTI 6 CHANGE IFTI
HR, MIN.
ELEVATION
ELEVATION
(MIN)
(MINI
(SQ.FT)
30001 5005.00 5005,00 5002.81 0.0291 5003.74
1 1
0.00
1.26
0.0
0.0 1.147Er05
30002 5008.00 5008+00 5005.91 0.0276 5006.68
2 25
0.00
1.32
0.0
0.0 1.695Et05
30010 5004.00 5000+34 4998.45 0. 0259 4999+13
1 2
0.00
4.87
0.0
0.0 2.941E+03
30011 S004.00 4998+69 4995.73 0.0156 4996+15
1 2
0.00
9.85
0.0
0.0 4.069Et03
�qq#q#kk#kkkggk#k##k##kkq######qdk###q##qq#q
# Time History of Flow and Velocity #
4 Q(Cfs), Vel(ftJs), Total(rchlC feet) 4
d#gdgqkdq##ddd#k###qd#d#####k#gdgq#ggqqkqqqqq
HARMONY
CENTER 6 PIER
DETENTION
POND DEVELOPED
COND.
SIMULATION
WITH
EXTRAN
1/06/2005
JR
ENGINEERING File:
Pier.dat
21•
RCP
TOTAL
OVERFLOW
Time
Conduit:
1001
Conduit:
1010
Conduit:
1011
Conduit:
90004
Conduit:
90005
t:Mn:
So Flow
Veloc.
Flow
Veloc.
Flow
Velo,
Flow
Veloc.
Flow
Veloc.
0:
______
5:
____
0 0.00
______
0.32
_._.
0.00
......
0.22
____
0.00
______
0.00
____
0.00
______
0.00
____
0.00
------
0.00
0 1.92
2.94
0.10
1.30
0.00
0.01
0.00
0.00
0.00
0.00
'0:30:
0:15:
0 5.68
4.11
2.60
3.54
0.58
0.67
0.00
0.00
0.00
0.00
0:20:
0 8.70
5.24
10.73
5.03
7.01
1.46
0.00
0.00
0.00
0.00
0:25:
0 10.70
6.27
12.23
5.08
11.63
1.71
0.00
0.00
0.00
0.00
0:30:
0 12.61
7.27
14.81
6.11
13.91
1.80
0.00
0.00
0.00
0.00
0 11.28
6.41
18.31
7.58
17.45
1.92
0.00
0.00
0.00
0.00
'0:35:
0:40:
0 30.85
6.14
19.71
8.18
19.42
1.98
0.00
0.00
0.00
0.00
0:45:
0 10.83
6.13
19.80
8.24
27.71
2.18
10.94
0.00
0.00
0.00
0:50:
0 11.11
6.28
19.49
8.11
38.20
2.39
20.23
0.00
0.00
0.00
0:55:
0 11.37
6.43
19.36
8.05
43.07
2.48
24.29
0.00
0.00
0.00
1:
0:
0 11.66
6.59
19.32
8.03
44.69
2.50
25.50
0.00
0.00
0.00
1:
5:
0 11.95
6.76
19.31
8.03
44.79
2.51
25.39
0.00
0.00
0.00---- PIER POND
1:10:
0 12.23
6.92
19.32
8.03
44.13
2.50
24.60
0.00
0.00
0.00
1:15:
0 12.50
7.07
19.34
8.04
43.10
2.48
23.56
0.00
0.00
0.00
1:20:
0 12.76
7.21
19.36
8.05
42.02
2.46
22.42
0.00
0.00
0.00
0 13.00
7.35
19.36
8.06
40.86
2.44
21.26
0.00
0.00
0.00
'1:25:
1:30:
0 13.22
7.48
19.40
8.07
39.82
2.43
20.16
0.00
0.00
0.00
1:35:
0 13.43
7.60
19.42
8.08
38.71
2.41
19.08
0.00
0.00
0.00
1:40:
0 13.63
7.71
19.45
8.08
37.72
2.39
18.09
0.00
0.00
0.00
1:45:
0 13.82
7.82
19.47
8.09
36.84
2.37
17.15
0.00
0.00
0.00
1:50:
0 13.91
7.92
19.49
8.10
35.95
2.36
16.29
0.00
0.56
0.00
0 14.15
8.00
19.50
8.11
35.32
2.35
15.72
0.00
2.03
0.00
'1:55:
2:
0:
0 14.28
8.08
19.51
8.11
34.99
2.31
15.45
0.00
3.85
0.00
2:
5:
0 14.39
8.14
19.52
8.11
34.63
2.33
i4.99
0.00
5.42
0.00
2:10:
0 14.47
8.19
19.54
8.12
33.74
2.32
13.91
0.00
6.30
0.00
2
:15:
0 14.54
8.23
19.57
8.13
32.38
2.29
12.55
0.00
6.66
0.00
2:20:
0 14.59
8.26
19.59
8.15
31.16
2.26
11.27
0.00
6.82
0.00
2:25:
0 14.64
8.28
19.62
8.16
29.95
2.24
10.09
0.00
6.85
0.00
2:30:
0 14.68
8.31
19.65
8.17
28.91
2.22
9.04
0.00
6.82
0.00
2:35:
0 14.72
8.33
19.67
8.18
27.97
2.20
8.11
0.00
6.75
0.00 ---- POND 488
2:
41:
0 14.75
8.35
19.69
8.19
27.18
2.18
7.30
0.00
6.69
0.00
0 14.77
8.36
19.71
8.19
26.47
2.16
6.61
0.00
6.59
0.00
'2:45:
2:50:
0 14.80
8.37
19.72
8.20
25.83
2.15
5.97
0.00
6.50
0.00
2:55:
0 14.82
8.39
19.74
8.21
25.27
2.13
5.42
0.00
6.39
0.00
3:
0:
0 14.84
8.40
19.75
8.21
24.79
2.12
4.93
0.00
6.30
0.00
3:
5:
0 14.85
8.41
19.76
8.22
24.35
2.11
4.50
0.00
6.19
0.00
0 14.81
8.41
19.77
8.22
23.97
2.10
4.11
0.00
6.08
0.00
'3:10:
3:15:
0 14.68
8.42
19.77
8.22
23.62
2.09
3.78
0.00
5.99
0.00
3:20:
0 14.89
8.43
19.78
8.22
23.31
2.09
3.47
0.00
5.88
0.00
3:25:
0 14.90
8.43
19.78
8.23
23.04
2.08
3.17
0.00
5.79
0.00
3:30:
0 14.91
8.44
19.79
8.23
22.77
2.07
2.92
0.00
5.68
0.00
3:35:
0 14.92
8.44
19.79
8.23
22.52
2.07
2.69
0.00
5.57
0.00
3:40:
0 14.93
8.45
19.80
8.23
22.33
2.06
2.47
0.00
5.47
0.00
3:45:
0 14.94
8.45
19.80
8.23
22.13
2.05
2.27
0.00
5.38
0.00
3:50:
0 14.94
8.46
19.80
8.23
21.95
2.05
2.10
0.00
5.28
0.00
3:55:
0 14.
94
8.45
19.80
8.23
21.78
2.05
1.93
0.00
4.96
0.00
0:
0 14.91
8.44
19.81
8.23
21.60
2.04
1.72
0.00
4.29
0.00
'4:
4:
5:
0 14.89
8.42
19.81
8.23
21.33
2.03
1.47
0.00
3.51
0.00
4:10:
0 14.86
8.41
19.81
8.24
21.07
2.03
1.19
0.00
2.78
0.00
4:15:
0 14.84
8.40
19.81
8.24
20.79
2.02
0.89
0.00
2.14
0.00
4:20:
0 14.83
8.39
19.81
8.23
20.49
2.01
0.59
0.00
1.59
0.00
4:25:
0 14.82
8.39
19.80
8.23
20.20
2.00
0.32
0.00
1.12
0.00
4:30:
0 14.81
8.38
19.79
8.23
19.94
2.00
0.11
0.00
0.72
0.00
4 :
3 5 :
0 14.81
B.38
19.78
8.22
19.80
1.99
0.00
0.00
0.39
0.00
4:40:
0 14.81
8.38
19.75
8.21
19.75
1.99
0.00
0.00
0.15
0.00
4:45:
0 14.81
8.38
19.72
8.20
19.73
1.99
0.00
0.00
0.01
0.00
0 14.81
8.38
19.69
8.19
19.69
1.99
0.00
0.00
0.00
0.00
'4:50:
4:55:
0 14.82
8.36
19.66
8.17
19.66
1.99
0.00
0.00
0.00
0.00
5:
0:
0 14.82
8.39
19.63
8.16
19.62
1.99
0.00
0.00
0.00
0.00
5:
5:
0 14.82
8.39
19.59
8.15
19.60
1.99
0.00
0.00
0.00
0.00
5:10:
0 14.82
8.39
19.56
8.13
19.57
1.98
0.00
0.00
0.00
0.00
0 14.82
8.39
19.53
8.12
19.54
1.98
0.00
0.00
0.00
0.00
'5:15:
5:20:
0 14.83
8.39
19.50
8.11
19.51
1.98
0.00
0.00
0.00
0.00
5:25:
0 14.83
8.39
19.47
8.09
19.48
1.98
0.00
0.00
0.00
0.00
5:30:
0 14.63
8.39
19.44
8.08
19.44
1.98
0.00
0.00
0.00
0.00
5:35:
0 14.84
8.40
19.40
8.07
19.42
1.98
0.00
0.00
0.00
0.00
5:40:
0 14.84
8.40
19.37
8.06
19.38
1.98
0.00
0.00
0.00
0.00
0 14.84
8.40
19.34
8.04
19.35
1.98
0.00
0.00
0.00
0.00
'5:45:
5:50:
0 14.84
8.40
19.31
6.03
19.32
1.98
0.00
0.00
0.00
0.00
5:55:
0 14.84
8.40
19.2E
8.02
19.29
1.98
0.00
0.00
0.00
0.00
6:
0:
0 14.85
8.40
19.25
8.00
19.25
1.98
0.00
0.00
0.00
0.00
6:
5:
0 14.85
0.40
19.21
7.99
19.23
1.97
0.00
0.00
0.00
0.00
6:10:
0 14.85
8.40
19.18
7.97
19.19
1.97
0.00
0.00
0.00
0.00
6:15:
0 14.85
8.40
19.15
7.96
19.14
1.97
0.00
0.00
0.00
0.00
6:20:
0 14.85
8.41
19.11
7.95
19.13
1.97
0.00
0.00
0.00
0.00
6:25:
0 14.85
8.41
19.08
7.93
19.09
1.97
0.00
0.00
0.00
0.00
6:30:
0 14.66
8.41
19.05
7.92
19.05
1.97
0.00
0.00
0.00
0.00
6:35: 0 14.86 8.41 19.02 7.91 19.03 1.97 0.00 0.00 0.00 0.00
40:
0
14.86
8.41
18.98
7.89
18.99
1.97
0.00
0.00
0.00
0.00
'6:
6: 45:
0
14.
86
8.41
18.95
7.88
18.
95
1.97
0.00
0.00
0.00
0.00
6: 50:
0
14.86
8.41
18.92
7.87
18.
92
1.96
0.00
0.00
0.00
0.00
6: 55:
0
14.67
8.41
18.68
7.85
18.89
1.96
0.00
0.00
0.00
0.00
7: 0:
0
14.87
6.41
18.85
7.84
18.86
1.96
0.00
0.00
0.00
0.00
7: 5:
0
14.87
8.42
18.81
7.82
18.84
1.96
0.00
0.00
0.00
0.00
7:10:
0
14.87
8.42
18.78
7.81
18.78
1.96
0.00
0.00
0.00
0.00
7:1S:
0
14.88
8.42
1B.75
7.79
16.76
1.96
0.00
0.00
0.00
0.00
7:20:
0
14.88
8.42
18.71
7.78
18.73
1.96
0.00
0.00
0.00
0.00
7:25:
0
14.88
8.42
18.66
7.77
18.69
1.96
0.00
O.DD
0.00
0.00
7:30:
0 14.88
a.42
18.65
7.75
18.65
1.96
0.00
0.DO
D.00
0.00
7:35:
0 14.89
8.42
18.61
7.74
10.61
1.96
0.00
0.00
0.00
0.00
7:40:
0 14.89
8.42
18.57
7.72
18.59
1.96
0.00
0.00
0.00
0.00
7:45:
0 14.89
8.42
18.54
7.71
18.53
1.95
0.00
0.00
0.00
0.00
7:50:
0 14.88
8.42
18.50
7.69
18.52
1.95
0.00
0.00
0.00
0.00
7: 55:
0 14.88
8.42
18.47
7.68
18.48
1.95
0.00
0.00
0.00
0.00
8: 0:
0 14.88
8.42
18.43
7.66
18.45
1.95
0.00
0.00
0.00
0.00
0: 5:
0 14.88
8.42
18.40
7.65
18.41
1.95
0.00
0.00
D.00
0.00
B:10:
0 14.87
8.42
18.36
7.63
18.31
2.95
0.00
0.00
0.00
0.00
8:15:
0 14.87
8.41
1B.33
7.62
18.32
1.95
0.00
0.00
0.00
0.00
8:20:
0 14.87
8.41
18.29
7.60
18.30
1.95
0.00
0.00
0.00
0.00
8 :25:
I:
0 14.86
B.41
18.25
7.59
18.27
1.95
0.00
0.00
0.00
0.00
8:30:
0 14.86
8.41
18.22
7.57
18.22
1.94
0.00
0.00
0.00
0.00
8:35:
0 14.86
8.41
18.18
7.56
18.18
1.94
0.00
0.00
0.00
0.00
8:40:
0 14.85
8.40
18.14
7.54
18.15
1.94
0.00
0.00
0.00
0.00
:45:
0 14.85
8.40
18.10
7.53
1 18.12
1.94
0.00
0.00
0.00
0.00
8: 50:
'8
0 14.85
8.40
18.06
7.51
18,
08
1.94
0.00
0.00
0.00
0.00
8: 55:
0 14.84
8.40
18.03
7.49
18.02
1.94
0.00
0.00
0.00
0.00
9: 0:
0 14.84
8.40
17.99
7.48
18.00
1.94
a.00
0.00
0.00
0.00
9: 5:
0 14.84
8.40
17.95
7.46
17.97
1.94
0.00
0.00
0.00
0.00
9:10:
0 14.84
8.40
17.91
7.41
17.92
1.93
0.00
0.00
0.00
0.00
0 14.84
8.40
17.87
7.43
17.88
1.93
0.00
0.00
0.00
0.00
'9:15:
9:20:
0 14.83
8.40
17.83
7.41
17.85
1.93
0.00
0.00
0.00
0.00
9:25:
0 14.83
8.39
17.79
7.40
17.80
1.9.3
0.00
O.DO
0.00
0.00
9:30:
0 14.83
B.39
17.75
7.38
17.77
1.93
0.00
0.00
0.00
0.00
9: 35: 0
14.83
8.39
17.71
7.36
17.72
1.91
0.00
0.01
0.00
0.00
0
14.83
8.39
17.67
7.35
17.
67
1.93
0.00
0.00
0.00
0.00
'9:40:
9:45: 0
14.82
8.39
17.62
7.33
17.64
1.93
0.00
0.00
0.00
0.00
9:50: 0
14.52
8.39
17.58
7.31
17.60
1.92
0.00
0.00
0.00
0.00
9:55: 0
14.81
8.38
17.54
7.29
17.56
1.92
0.00
0.00
0.00
0.00
10: 0: 0
14.80
8.38
17.50
7.27
17.51
1.92
0.00
0.00
0.00
0.00
Mean
14.08
8.00
18.46
7.71
22.32
2.01
3.92
0.00
1.36
0.00
aximum
14.94
8.46
19.81
8.24
44.79
2.51
25.50
0.00
6.85
0.00
inimum
0.00
0.32
0.00
0.22
0.00
0.00
0.00
0.00
0.00
0.00
Total 5.069E+05
6.647E+05
8.035E+05
1.410E+05
4.905E+04
.............................................................
• C O N D U I T S U M M A R Y S T A T I S T I C S '
HARMONY CENTER & PIER DETENTION POND DEVELOPED COND. SIMULATION WITH EXTRAN
1/06/2005 SR ENGINEERING File: Pier.dat
CONDUIT
MAXIMUM
TIME
MAXIMUM
TIME
RATIO OF MAXIMUM DEPTH ABOVE
LENGTH CONDUIT
DESIGN DESIGN VERTICAL
COMPUTED
OF
COMPUTED
OF
MAX. TO INV. AT CONDUIT ENDS
OF NORM
SLOPE
CONDUIT
FLOW VELOCITY DEPTH
FLOW
OCCURRENCE
VELOCITY
OCCURRENCE
DESIGN UPSTREAM DOWNSTREAM
FLOW
UMBER
(CPS) (FPS) (IN)
(CPS)
HR. MIN.
(FPS)
HR. MIN.
FLOW (FT) (FT)
(MIN)
(FT/FT)
1001 5.52E+00
3.12 1B.000
1.49E+01
3 51
8.46
3 51
2.71 6.17 3.68
0.0
0.0039B
1010 1.03E+01
4.30 21.000
1.99E+01
0 42
8.29
0 42
1.93 6.09 2.79
0.0
0.00629
1011 1.74E+02
2.91 48.000
4.49E.01
1 2
2.51
1 3
0.26 2.79 1.46
8.0
0.00550
UNDEF UNDEF UNDEF
2.56E+01
1 1
'90004
90005
UNDEF UNDEF UNDEF
6.85E+00
2 21
90006
UNDEF UNDEF UNDEF
4.49E+01
1 2
1
•SUBCRITICAL*AND'CRITICAL'FLOWASSUMPTIONS•FROM+:
' SUBROUTINE HEAD. SEE FIGURE 5-4 IN
f
THE EXTRAN '
MANUAL FOR FURTHER
INFORMATION.
LENGTH LENGTH
LENGTH
LENGTH
'
OF OF
OF UPSTR.
OF DOWNSTR.
MEAN
TOTAL MAXIMUM MAXIMUM
CONDUIT
DRY SUBCRITICAL
CRITICAL
CRITICAL
FLOW
AVERAGE
FLOW HYDRAULIC CROSS
SECT
NUMBER
FLOW(MIN) FLOW(MIN)
FLOW(MIN)
FLOW(MIN)
(CPS)
4 CHANGE
CUBIC FT RADIUS(FT) AREA(FT2)
1001
0.50 S68.00
0.00
31.50
14.02
0.1077
5.0477E+05 0.4564 1.7671
'
1010
1.33 593.67
0.00
5.00
18.39
0.0639
6.6212E+05 0.5324 2.4053
1011
6.33 593.67
0.00
0.00
22.24
0.0131
8.0081E+05 1.0874 17,8910
90004
UNDEFINED UNDEFINED
UNDEFINED
UNDEFINED
3.92
1.4109E+05
9DO05
UNDEFINED UNDF.FINF,D
UNDEFINED
UNDEFINED
1.36
4.9062E+04
11
90006 UNDEFINED UNDEFINED UNDEFINED UNDEFINED 22.24 B.00B1Ea05
...........................................................
AVERAGEk' CHANGE' IN JUNCTION OR CONDUIT` IS DEFINED AS:
• CONDUIT k CHANGE __> 100.0 ( Q(n.l) - Q(n) ) / Qfull `
` JUNCTION k CHANGE __> 100.0 ( Y(n.l) - Y(n) ) / Yfull
The Conduit• with• the• largest average change•••••••••' 1001` had 0.106 percent
The Junction with the largest average change... 30001 had 0.029 percent
> Extended Transport model simulation ended normally.
$NMM 4.4H simulation ended normally.
Always check output file for possible warning messages.
Your input file was named : x:\3940000.all\3940200\E
Your output file was named: x:\3940000.all\394a200\E
�•.y....1111.4.4H"•S:mulation• Date- and• Time. Summary.':
Starting Date.. January 13, 2005 '
Time... 7:24:31.470
' Ending Date... January 13, 2005 '
Elapsed Time.. 1,130 minutes.
Elapsed Time.. 67.813 seconds.
L
Project:
cj Job No: n off, J�
Ient: By: Chk. By: Date: 7 '__
Ibject: Sheet No: _ of
i
1
[1
i
i
1
1
1
1
i
i
1
1
1
1
i
fV
J•R ENGINEERING
A Westrian Company
�{_Gf ✓ti,7�-Oi'% i /`i � I < � /' n_'v �d ' i S
��
� 'NL'tAM_�l+%�.✓
7-4
i-J
1
0
4�
ILI
Cry �!
�o� l ��ll,N
s
I
{
T /
Bent: _
ibject:
�, c
By: e�g Chk. By:
Job No: 5q 40
Date:
Sheet No: _ of
J•R ENGINEERING
A Westrian Company
Proposed Detention Ponds - Stage/Storage
LOCATION:
SETTLER'S CREEK
PROJECT NO:
39402.00
COMPUTATIONS BY: ES
SUBMITTED BY:
JR Engineering
DATE:
1/7/2005
V = 1/3 d (A + B + sgrt(A'B))
where V = volume between contours, ft3
d = depth between contours, ft
A = surface area of contour
POND INVERT=
WQCV=
100-YR WSEL =
SPILLWAY EL =
TOP OF BANK =
Pond 488
Stage
(ft)
Surface
Area
W)
Incremental
Storage
(ac-ft)
Total
Storage
(ac-ft)
Detention
Storage
(ac-ft)
5000.51
0
5001
2620
0.000
0.00
0
5002
21633
0.243
0.24
0.00
5003
58085
0.881
1.12
0.00
5003.46
81239
0.727
1.85
0.00
5004
108749
1.885
3.01
1.88
5005
157600
3.040
6.05
4.92
5006
165268
3.706
9.75
8.63
5006.68
169499
2.613
12.37
11.24
5007
171491
3.865
13.62
15.11
5008
177708
4.008
17.63
19.12
WQCV Provided =
100-yr Detention Volume Required =
1.85 ac-ft 5003.46
11.24 ac-ft per EXTRAN 5006.68 14.7cfs release rate
3940200pond.xls
I
1
' UPDATED MCCLELLAND'S MASTER DRAINAGE
J
1
L
Final Drainage and Erosion Control Report
Settler's Creek
MODSWMM MODEL
Appendix
March 2005
I
' ORIFICE SIZING
' LOCATION: SETTLER'S CREEK
PROJECT NO: 39402.00
' COMPUTATIONS BY: ES
SUBMITTED BY: JR Engineering
DATE: 1 /7/2005
' Submerged Orifice Outlet:
release rate is described by the orifice equation,
Qn = CA sqrt( 2g(h-E,))
' where Qo = orifice outflow (cfs)
C. = orifice discharge coefficient
' g = gravitational acceleration = 32.20 ft/s
A, = effective area of the orifice (W)
Ea = greater of geometric center elevation of the orifice or d/s HGL (ft)
th = water surface elevation (ft)
Pond 488 Outlet
' Q. = 14.70 cfs (maximum allowable release rate)
outlet pipe dia = D = 18.0 in
Invert elev. = 5000.51 ft (inv. "D" on outlet structure)
' Ea = 5003.23 ft (upstream HGL for peak 100 yr flow - from StormCAD)
h = 5006.68 ft - 100 yr WSEL
Co = 0.67
tsolve for effective area of orifice using the orifice equation
A. = 1.472 ft`
t = 212.0 in`
orifice dia. = d = 16.43 in
Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering)
' d/ D = 0.91
kinematic viscosity, v = 1.22E-05 ft2/s
Reynolds no. = Rea = 4Q/(7rdv) = 1.12E+06
' Co = (K in figure) = 0.67 check
Use d = 16 317 in
A. = 1.472 ft' = 212.01 in `
Qmax = 14.70 cis
11
1
' orifice - 100yr, 3940200pond.xls
Detention Pond 488 Storage -Discharge Curve
1
1
1
1
1
t
LOCATION:
SETTLER'S CREEK
PROJECT NO:
39402.00
COMPUTATIONS BY:
ES
SUBMITTED BY:
1R Engineering
DATE:
1/6/2005
100-yr outlet Spillway
orifice dia. = 16.43 in dia.
Ao = 1.47 ftz L = 146 it
outlet invert = 5000.51 ft C = 2.6
orifice center= 5001A9 it
Co = 0.67
WQCV=
100 WSEL=
Qo = Co Av sgrt( 2g [h-(Eo 0.5D)j)
aoorox
Stage
h
(ft)
Volume
storage
(ac-ft)
Water
Depth
(ft)
100yr-Orifice
discharge
(cfs)
EXTRAN
Discharge
(cfs)
5000.51
0.00
0.00
5001,00
0.00
0.49
5002.00
0.24
1.49
5003.00
1.12
2.49
5003.46
1.85
2.95
1 11.91
5004.00
3.01
3.49
13.26
5004.96
5.93
4.45
10.85
5005.00
6.05
4.49
15.44
5005.93
9.50
5.42
12.23
5006.00
9.75
5.49
17.35
5006.10
10.14
5.59
12.76
5006.68
12.37
6.17
18.54
14.72
5007.00 1
13.62
6.49
19.07
Approx. orifice discarge calculated using E. equal to the center elevation of the orifice
Pond 488
EXTRAN
Depth
(ft)
Resulting
EXTRAN
Elevation
(k)
Stage
h
(ft)
Det. Volume
storage
(ac-ft)
Pond 488
EXTRAN
Discharge
(cfs)
5000.51
0.00
5001.00
0.00
5002.00
0.24
5003.00
1.12
5003.46
1.85
5004.00
3.01
4.45
5004.96
5004.96
5.93
10.85
5005.00
6.05
5.42
5005.93
5005.93
9.50
12.23
5006.00
9.75
5.59
5006.10
5006.10
10.14
12.76
6.17
5006.68
5006.68
12.37
14.72
5007.00
13.62
Pond 488 Rating, 3940200pond.xls
I
2 1 1 2
3 4
ERSHED 0
LELLANDS BASIN MODEL (FULLY INTEG.) DEVEL.
100-YEAR EVENT FILE: MMCD-100.DAT OR ENG.,
600 0 0 1.0 1 1.0
25 5
00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48
.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78
0.93 0.91 0.69 0.69
-2 .016 .250
UPDATED BASIN WIDTHS
1 80 50 7109 86.2 40 .01
1 6D 50 1150 8.95 40 .01
1 70 61023929.38 40 .01
1 130 51 716124.66 40 .01
1 100 51 287513.19 40 .01
1 ISO 4 1590 1.84 80 .02
BASIN 130 SPLIT INTO 110-118 BY ICON
1 110 11 12SO 1.93 99 .02
1 111 11 700 1.05 99 .01
'1 112 112 "50 1.34 99 .01
1 113 12 1200 1.34 99 .01
1 114 12 950 1.67 99 .01
1 115 13 1050 1.70 99 .01
1 116 13 1400 2.16 99 .01
'1 117 51 1000 2,85 99 .O1
1 118 14 1250 1.07 99 .01
1 320 11 932 2.14 85 .01
1 120 22 387517.79 80 .02
1 90 2 571513.12 10 .01
' 1 190 51 210 1.38 80 .001
1 200 20 455031.34 80 .0
1
1 210 44 1090 7.51 80 .01
1 240 7 1742 5.00 80 .01
1 220 45 968322.23 65 .01
1 260 46 345423.79 50 .01
'1 230 49 640314.70 65 .O1
1 290 291 1278 5.87 80 .01
1 340 34 1260 4.34 SO .01
• BASIN 280 SPLIT INTO 280-283 BY ICON
1 280 275 1000 2.04 99 .02
'1 281 28 1650 3.16 99 .01
1 282 29 850 1.50 99 .01
1 283 30 1250 2.02 99 .01
1 330 33 700 5.63 80 .01
1 160 16 3500 4.02 84 .02
'1 121 16 850 1.43 80 .01
1 122 22 1200 1.81 60 .01
1 250 250 500 1.60 80 .01
• OAKRIDGE BLOCK ONE
1 270 270 625 3.30 60 .01
'1 271 271 2017 6.30 55 .01
1 272 272 617 1.50 31 .09
1 360 36 3223 2.37 87 .02
COND. 6/30/99;Re, MBF 3/22/00
UPDATED 1/07/05
1.46
0.95
0.1 0.3 .51 0.5 .0018
• ALL FOLLOWING BASINS FROM MIRAMONT MASTER PLAN, RBD, INC.
1 201 320 321314.75 25.0183
1 202 322 187321.50 50.0165
1 203 172 702432.25 80.0100
1 204 166 413819.00 80.0100
1 205 168 650 5.85 47.0105
'1 206 191 958 7.70 70.0080
1 207 176 171813.80 57.0235
1 208 178 293633.61 70.0170
1 209 321 679523.40 40.0085
1 165 324 299110.30 40.0100
'1 211 325 316510.90 64.0200
1 212 328 1220 4.20 60.0380
1 213 180 147216.89 30.0055
1 214 179 465 1.62 90.0110
1 215 331 500 0.70 90.0270
1 216 32T 1405 0.96 90,0060
ALL FOLLOWING BASINS FROM STETSON CREEK MASTER PLAN, RED, INC.
SUBBASINS 301 & 302 MODIFIED FOR HARMONY VILLAGE BY JR ENGINEERING.
• ADDED TO MODEL BY ICON
1
301
301 131528,54
71
.005
.430
0.6
1
302
951373647.50
45
.01
.390
0.6
SUBBASIN
303 DELETED FOR
WILLOW
SPRINGS
NORTH,
BY ICON
CE
365 CHANGED TO 396 BY
ICON
1
305
3691709778.50
35.0.0110
1
306
372 2535 8.73
31.2.0200
1
307
360 2951 5,42
17.0.1262
1
308
370 2042 7.03
40.0.0200
1
309
362 888 1.63
4.0.1262
1
311
371 807 2,78
40.0.0200
1
312
363 569 2,09
2.3.1262
I
1 313 367 495 0.91 1.0.0500
1 314 402647091. 15 34.0.0280
1 315 374 417914.39 40.0.0200
BASIN 316 CHANGED TO REFLECT BOMBS VALLEY HOSPITAL BY ICON
1 316 39 192460.OD 85.0.017 0.3
1 317 594 150717.30 57.0.0140 0.3
1 318 593 169919.50 47.0.0150 0.3
_____________ ___________
ALL FOLLOWING SU13BASINS ARE FROM G&0 1986 MCCLELLANDS BASIN MASTER PLAN
+ EXISTING CONDITION SUBBASINS STWN STETSON CREEK & CTY RD 9
1 217 368 4008 18.4 45. .010
'1 218 368 5053 17.4 50. .030
1 222 32 5605 19.3 50. .008
1 223 102 6699 23.0 50. .040
1 224 102 3006 13.8 45. .010
+ G&O SUBBASIN 215 RENUMBERED AS 225, REDUCED TO EXCLUDE WILDWOOD
1 225 3514288 65.6 45. .006
SUBBASIN 304 MODELED BY FOLLOWING DEVELOPED BASINS, FROM
• WILLOW SPRINGS END DRAINAGE PLAN, LIDSTONE & ANDERSON, JUNE 1996
1 1 201 1200 8.5 40.0.0200 .016 .250 .1 .3 .51 .5 .00IBO
'1 2 202 2000 4.1 68.0.0200 .016 .250 .1 .3 .31 .50 .00180
1 3 203 600 5.7 44.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 4 209 750 1.6 74.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 5 209 1600 2.7 68.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 6 210 3800 7.6 66.0.0200 .016 .250 .1 .3 .51 .50 .00180
'1 7 209 ISO 3.3 5/.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 8 210 450 2.3 67.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 9 209 3000 20.2 30.0,0200 .016 .250 .1 .3 .51 .50 .00180
1 10 210 1400 9.1 26.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 14 214 1000 4.8 54.0.0200 .016 .250 .1 .3 .51 .50 .00180
'1 15 211 1300 4.4 9.0.0200 .016 .250 .1 .3 .51 .50 .00160
1 16 216 200 1.8 12.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 20 223 600 4.1 46.0.0200 .016 .250 .1 .3 .51 .so .00180
1 21 223 1400 9.0 46.0.0200 .016 .250 .1 .3 .51 .50 .OD180
1 22 223 1800 7.3 52.0.0200 .016 .250 .1 .3 .51 .50 .00180
'1 23 224 1000 2.2 61.0.0200 .016 .150 .1 .3 .51 .50 -00180
1 24 224 600 3.1 34.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 25 226 900 4.0 65.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 26 226 10DO 2.7 32.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 30 130 2750 5.9 67.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 31 131 1700 3.6 67.0.0200 .016 .250 .1 .3 .51 .50 .00180
'1 32 330 400 2.0 48.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 39 216 700 3.1 11.0.0200 .016 .250 .1 .3 .51 .50 .001BO
1 40 140 1300 6.4 30.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 41 357 800 4.3 43.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 42 241 900 1.5 75.0.0200 .016 .250 .1 .3 .51 .50 .00180
'1 50 251 1800 8.1 42.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 63 252 2250 8.9 61.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 61 261 650 2.1 80.0.0200 .016 .250 .1 .3 .51 .50 .00180
1 62 262 1200 4.7 42.0.0200 .016 .250 .1 .3 .51 .50 .00180
SUBBASINS 370 TO 399 UPSTREAM OF LEMAY AVENUE (LIDSTONE & ANDERSON, 1997)
1 370 S70 1050 6.1 63. .010 .016 .25 .1 .3 .31 .5 .0018
1 371 571 2000 11.7 45. .020 .016 .25 .1 .3 .Sl .5 .0018
1 372 572 4900 26.7 45. .020 .016 .25 .1 .3 .51 .5 .0018
1 373 73 2000 8.2 90. .015 .016 .25 .1 .3 .51 .5 .0018
'1 374 574 8000 18.3 86. .020 .016 .25 .1 .3 .51 .5 .0018
1 375 75 5400 26.4 48. .020 .016 .25 .1 .3 .51 .5 .0018
1 376 576 2222 5.1 85. .010 .016 .25 .1 .3 .51 .5 .00lB
1 377 S77 400 1.9 70. .010 .016 .25 .1 .3 .51 .5 .0018
1 308 577 450 2.3 90. .010 .016 .25 .1 .3 .Sl .5 .0018
'1 379 479 450 1.5 00. .010 .016 .25 .1 .3 .51 .5 .0018
1 380 480 350 1.4 70. .010 .016 .25 .1 .3 .51 .5 .0018
1 381 481 550 2.6 30. .010 .016 .25 .1 .3 .51 .5 .0018
1 382 5B2 700 0.8 67. .013 .016 .23 .1 .3 .51 .5 .0018
1 383 493 2439 5.6 85. .020 .016 .25 .1 .3 .Sl .5 .0018
'1 384 84 2400 6.9 84. .020 .016 .25 .1 .3 .Sl .5 .0018
1 385 85 2100 6.3 52. .020 .016 .25 .1 .3 .51 .5 .0018
1 386 586 3543 12.2 70. .010 .016 .25 .1 .3 .51 .5 .0018
1 387 586 BOO 3.2 70. .025 .016 .25 .1 .3 .51 .5 .0018
• SUBBASINS 388 AND 389 SETTLER'S CREEK AND GOODWILL DEVELOPMENTS
(OR ENGINEERING, 12/02/04)
1 388 588 3300 13.6 72. .011 .016 .25 .1 .3 .51 .5 .0018
1 389 86 3049 7.0 66. .020 .016 .25 .1 .3 .51 .5 .0018
1 390 490 550 1.4 70. .020 .016 .25 .1 .3 .Sl .5 .0018
1 391 491 600 2.8 90. .020 .016 .25 .1 .3 .51 .5 .0018
'1 392 588 1100 6.6 90. .020 .016 .21 .1 .3 .51 .5 .0018
1 393 88 4400 11.8 95. .020 .016 .25 .1 .3 .51 .5 .cols
1 394 92 900 1.4 90, .020 -016 .25 .1 .3 .51 .5 .0018
1 396 496 2950 13.5 93. .013 .016 .25 .1 .3 .51 .5 .0018
1 397 497 810 3.9 85. .021 .016 .25 .1 .3 .51 .5 .0018
1SUBBASINS 400 TO 407 WILD WOOD FARMS (ICON ENGINEERING, INC. OCT, 1996)
1 400 400 860 9.9 50. .020 .016 .25 .1 .3 .51 .5 .0018
1 401 406 1170 16.3 20. .015 .016 .25 .1 .3 .51 .5 .0018
1 402 406 1520 19.4 45. .020 .016 .25 .1 .3 .51 .5 .0018
1 403 381 4792 11.0 85. .017 .016 .25 .1 1 51 .5 .0018
1 404 382 1790 10.4 55. .025 .016 .25 .1 .3 .51 .5 .0018
1 405 402 3080 3.5 90. .020 .016 .25 .1 .3 .51 .5 .0018
1 406 383 2053 14.1 38. .015 .016 .25 .1 .3 .51 .5 .0018
1 407 384 1921 13.2 40. .015 .016 .25 .1 .3 .51 .5 .0018
1 408 40416901 38.8 85. .015 .016 .25 .1 .3 .51 .5 .0018
'SUBBASINS 500 TO 510 FOSSIL LAKE VILLAGE (ICON ENGINEERING, OCT, 1998)
1 500 517 7812 26.9 50. .010 .016 .25 .1 .3 .51 .5 .0018
1 501 416 5489 18.9 50. .020 .016 .25 .1 .3 .51 .5 .0018
1 502 517 $053 17.4 50. .020 .016 .25 .1 .3 .51 .5 .0018
1 503 41512981 44.7 50. .015 .016 .25 .1 .3 .51 .5 .0018
1 504 415 3427 11.8 50. .020 .016 .25 .1 .3 .51 .5 .0018
'SUBBASIN 504 SPLIT INTO 504 6 514 BY ICON
1 514 413 8160 28.1 50. .020 .G16 .25 .1 .3 .51 .5 .0018
1 505 40919544 67.3 50. .020 .016 .25 .1 .3 .51 .5 .0018
1 506 412 429B 14.8 50. .020 .016 .25 .1 .3 .51 .5 .001B
1 507 412 4559 15.7 50. .010 .016 .25 .1 .3 .51 .5 .001B
1 506 281 7667 26.4 50. .010 .016 .25 .1 .3 .51 .5 .0018
1 509 411 3862 13.3 50. .010 .016 .25 .1 .3 .51 .5 .0018
1 510 411 5227 18.0 50. .010 .016 .25 .1 .3 .51 .5 .0018
--------------------------------
SUBBASINS 511 TO 513 HOMESTEAD (ICON ENGINEERING, OUT, 1998)
1 511 283 8516 39.1 35. .010 .016 .25 .1 .3 .51 .5 .0018
1 512 386/0215 46.9 35. .010 .016 .25 .1 .3 .51 .5 .0018
1 513 38636126124.4 35. .010 .016 .25 .1 .3 .51 .5 .0018
0
0
CE 15 REMOVED BY ICON
0 4 8 0 1 0 800 0.0044 4 4 0.035 5.0
' CONVEYANCE ELEMENT 8 ADDED BY ICON
0 8 2 0 1 10 1750 0.010 4 4 0.035 5.0
0 7 6 0 1 0 1400 0.0100 0 50 0.016 1.5
0 6 50 0 1 0 1200 0.0032 4 4 0.035 5.0
CE 13 REMOVED BY ICON
0 35 102 0 1 0 1250 0.010 50 50 0.045 5.0
0 16 22 0 1 0 540 0.006 50 50 0.016 2.0
tCE 11 SPLIT INTO 11-14 BY ICON
0 11 12 0 1 0 700 0.006 50 0 0.016 1.5
0 12 13 0 1 0 050 0.006 50 0 0.016 1.5
0 13 51 0 1 0 500 0.006 50 0 0.016 1.5
0 14 51 0 1 0 900 0.006 50 0 0.016 1.5
'CE 112 ADDED BY ICON
0 112 11 0 1 0 700 0.010 50 0 0.016 1.5
CE 9 REMOVED BY ICON
• CE 16 REMOVED BY ICON
0 20 51 0 1 0 1100 0.005 4 4 0.035 5.0
0 21 44 0 1 0 1200 0.005 50 0 0.016 1.5
0 44 51 0 1 3 800 0.005 10 10 0.035 2.0
CE 220 CHANGED TO BASIN BY ICON
' -1 220 43 3 3 0 1
' 0 0 0.32 11.87 4.1 0
' 0 45 43 3 1 0.1 1 0.001 0.016 0.1
0 0 0.1 11.80 10. 11.87
0 22 43 0 1 0 1600 0.007 4 4 0.035 5.0
• CE 43 CHANGED TO NON -ROUTING ELEMENT BY ICON
0 43 51 3 0.1 1 0.001 0.016 0.1
CONVEYANCE ELEMENTS 50 AND 51 REPLACE C.E. 17 FOR PROPER ROUTING TO POND 2
0 50 2 0 1 10 1000 0. 005 15 15 0.040 5.0
0 51 9 0 1 10 500 0.005 15 15 0.040 5.0
0 9 2 0 1 5 1000 0.006 15 15 0.035 5.0
• CE 230 CHANGED TO BASIN BY ICON
1 230 1B 3 3 0 1
0. 0. 0.30 7.21 7.16 0
0 47 12 3 1 0.1 1 0.001 0.016 0.1
0 0 0.1 7.21 10. 7.21
• 0 24 1 0 1 0 700 0.008 50 0 0.016 1.5
OAKRIDGE BUSINESS PARK 4TH S 8TH FILING OUTLET
0 250 25 3 2 0.1 1 0.005 0.013 0.1
0 0 0.31 0.32 0.33 5.
0 25 22 0 2 1.25 500 0.005 0.013 1.25
' CE 260 CHANGED TO BASIN BY ICON
-1 260 42 3 3 0 1
0. 0. 0.24 11.19 6.99 0
CE 290 CHANGED TO BASIN BY ICON
-1 290 18 3 3 0 1
• 0. 0. 0.22 3.06 6.98 0
' 291 12 3 2 .1 1. 0.005 0.016 .1
0. 0. 0.10 3.06 10.0 3.06
0 46 42 3 1 0.1 1 0. 001 0.016 0.1
0 0 0.1 11.19 10. 11.19
0 26 42 0 5 3.5 800 0.005 0.016 3.5
10 800 0.005 4 4 0.035 5.5
0 42 22 0 2 6 1 0,005 0.016 6.0
�OAKRIDGE BLOCK ONE
0 270 27 0 3 0 1 0.001 0.001 10.0
0 201 27 0 5 2.25 45 0.004 0.013 2.25
0 45 0,004 198 ll� 0.020 5.0
t
0 272
275
6 2
0.1
10 0.001
0.01.3
J.I
0
0.50
0
1.16
0.02
0.76
0.43
1.32
0.13
0.76
::.2F
0.98
0 275
27
0 2
3.5
676 0.0084
0.013
3.5
0 27
41
8 2
0.1
10 0.001
0.01-1
J.1
0
0
0.03
0.78
0,22
2.51
0.57
3.46
0,90
0 41
26
4,21
0 5
1.37
4.0
4.89
'_00 0.005
2.10
57.63
tL;
0.0,6
191-38
6.0
'
10
100 0.005
50
50
0.0_c
5.0
0 36
26
0 5
1.25
90 0.014
0.033
1.25
0
90 0.014
200
200
0.020
5.0
CE 2B SPLIT
INTO 2B-30
BY ICON
0 28
275
0 1
0
1000 0.005
0
50
0.016
1.5
0 29
28
0 1
0
1650 0.005
0
50
0.016
1.5
0 30
29
0 1
0
850 0.005
0
50
0.016
1.5
•
CE 340 CHANGED
TO BASIN BY ICON
-1 340
16
3 3
0
1
0.
0.
0.23
1.91
6,96
0
'
34
16
3 2
.1
1. 0.005
0.016
.1
0.0
0.0
0.1
1.91
10.0
1.91
•
COVEYANCE ELEMENTS
BETWEEN 92 AND 470 UPSTREAM OF LEMAY AVENUE (L n
A, 1997)
92
99
0 2
2.
1000. .010
0.
U.
.013
2.
-1 395
89
4 3
.1
1.
.1
0.0
0.0
0.5
3.6
9.6
3.6
9.95
0.0
99
88
0 1
0.
800. .007
4.
4.
.035
5.
490
90
4 2
.1
1.
.1
0.00
0.
0.20
0.46
0.22
0.48
0-4
2.50
POND 491
REVISED
BY
ICON
'
491
90
4 2
.1
1.
.1
0.00
0.
0.50
1.0
0.60
91.9
0.70
260.
90
BE
0 4
0.
500. .010
50.
50.
.016
.5
50.
500. .010
10.
10.
.035
S.
496
BB
6 2
.1
1.
.1
t
0.00
0.
0.01
12.0
0.11
12.4
0.79
12.8
2.06
13.2
3.53
31.6
BB
SBB
0 1
0.
]00. .008
4.
4.
.035
S.
491
588
> 2
.1
1.
.1
0.00
0.
0.01
1.57
0.05
1.61
0.36
1.67
0.67
1.73
0.84
1.76
1.30
20.16
588
488
0 3
.1
1.
•
HARMONY
CENTRE DETENTION POND RATING CURVE WAS COMPILED PROM THE
•
RESULTS
OF EXTRAN DYNAMIC PLOW MODEL AND IS NOT APPLICABLE
TO ANY
INFLOW CONDITION OTHER THAN
THAT WHICH IS
MODELED HEREIN
'
POND 488
REVISED BY
SR ENGINEERING FROM EXTRAN ANALYSIS 1/07/05
4B8
586
5 2
.1
1.
.1
0.00
0.0
5.93
10.85
9.50
12.23
10.14
12.76
12.37
14.72
683
682
3 3
.
1.
.1
0.0
0.0
0.0
4 .6
1.3
8.0
1.8
682
B2
0 3
.1
1.
683
0 3
.1
1.
82
85
0 4
0.
1300. .014
50.
50.
.016
.5
85
586
0 4
50.
0.
1300. .014
1000. .011
10.
50.
10.
50.
.035
.016
5.
.5
'
50.
1000. .011
10.
10.
.035
5.
84
586
0 4
0.
700. .010
50.
50.
.016
.5
50.
700. .010
10.
10.
.035
5.
586 4B6 0 3
PIER DETENTION POND
.1
REVISED
1.
BY ICON 6/30/99
Revised by MBF
3/22/00
486
584
6 2
.1
1.
.1
0.00
0.0
0.01
1.52
0.25
12.01
1.05
19.96
3.76
23.72
4.87
41.22
584
684
9 3
.1
1.
.1
0.0
0.0
20.0
0.0
21.0
1.0
24.0
3.0
1673
27.0
6.0
30.0
9.0
48.0
27.0
684
83
0 3
.1
1.
673
73
0 3
.1
1.
83
583
0 1
5.
400. .005
4.
4.
.035
5.
POND 483
REVISED
BY
ICON
483
583
4 2
.1
1.
.1
0.00
0.
0.94
2.8
1.14
2.6
4.0
2.B
583
72
0 3
.1
1.
72
572
0 5
3.
700, .004
0.
0.
.013
3.
0.
700. .006
50.
50.
.016
5.
73
572
0 4
0.
1300. .006
50.
50.
.016
.5
50.
1300. .006
10.
10.
.035
5.
` POND 481
removed
so
model could
be run in
new MODSWMM 11/17/04
481
5]]
3
.1
1.
.1
POND 480
REVISED
BY
ICON
460
5]]
9 2
.1
1.
.1
0.00
0.
0.02
I.
0.03
2.
0.05
4.
0.06
6.
0.07
9.
0.08
14.
0.09
18.
0.10
20.
5]]
6 2
.1
1.
.1
'479
0.00
0.
0.03
0.5
0.09
1.
0.05
2.5
0,07
8.
0.08
12.7
5]]
477
0 3
.l
I.
477
76
14 2
.1
1.
.1
0.00
0. 0.05
2.
0.19
4.
0.25
6.
0.27
8. 0.29
12.
0.30
16.
0.32
20.
'
0.34
30. 0.36
45.
0.39
60.
0.46
75.
0.50
90. 0.55
305.
76
576 0 1 0.
800. .00?
4.
4.
.035
5.
576
574 0 3 .1
1.
75
574 0 1 5.
600. .007
4.
4.
.035
5.
'
574
474 0 3 .1
1.
474
74 8 2 .1
1.
.1
0.00
0.0 2.23
0.5
5.94
2.0
10.23
4.4
13.60
B.0 15.13
10.2
16.66
12.5
18.20
13.5
'
"!4
572
572 0 1 10.
472 0 3 .1
700. .006
1.
10.
10.
.035
5.
472
571 12 2 .1
1.
.1
0.00
0. 0.71
3.
0.89
6.
1.18
9.
1.73
12. 2.52
15.
3.66
18.
5.11
21.
6.95
571
24, 7,76
491 0 3 .2
29,
1.
1,04
30,
9,50
81.
471
590 9 2 .1
1.
.1
0.00
0. 0.19
10.
0.39
20.
0.68
30.
0.77
32. 0.84
40.
0.67
50.
0.89
60.
0,97
590
101,
470 0 3 .1
1.
'
470
31 7 2 .1
1.
.1
.
0.00
0. 0.08
10.
0.12
20.
0.24
30.
0.66
40. 1.00
44.
1.47
160.
END OF LIDSTONE
& ANDERSON INSERT
UPSTREAM OF LEMAY AVENUE
0 31
275 0 5 3
108 0.0075
0.013
3.0
30
108 0.0075
50.
50.
.035
5.
ARTIFICIAL
OVERFLOW CHANNEL TO ELIMINATE SURCHARGE
0 33
21 0 1 0
700 0.008
50
0
0.016
1.5
OAKRIDGE
POND WITH REVISED OUTLET HYDRAULICS
0 2
216 12 2 0.1
77 0.007
0.013
0.1
0.0
0.0 0.59
86.17
2.36
115.72
6.19
144.72
12.05
169.80 19.65
193.70
28.60
214.81
33.64
224.38
38.67
233.10 49.31
251.39
59.39
269.69
70.59
287.99
ALL FOLLOWING CONVEYANCE ELEMENTS FROM MIRAMONT MASTER PLAN, RED, INC.
POND 166
(301) RATING CURVE
COMPOSITES 3 DETENTION PONDS IN
BASIN 204
0 166
167 3 2 0.1
96 0.0060
0
0
0.013
0.10
0.0
0.0 1.6
24.0
3.4
26.4
0 167
169 0 1 4.00
260 0.0021
2
2
0.035
4.00
POND 168
(303) RATING CURVE
FROM EVANGELICAL COVENANT REPORT BY LANDMARK
POND 168
EXTENDED BY ICON
0 168
169 5 2 0.1
10 0.0010
0
0
0.013
0.10
0.0
0.0 0.07
0.90
0.43
1.36
0.72
93.26
1.01
261.36
CE 169 CHANGED TO PIPE W/OVERFLOW BY ICON
'
0 169
170 0 5 2.27
40 0.0070
0
0
0.013
2.27
40
40 0.0070
50
50
0.016
4.00
0 170
174 0 1 4.00
460 0.0021
2
2
0.035
4.00
•
FUTURE DETENTION POND 171 (306)
0 171
174 3 2 0.1
10 0.0038
0
0
0.013
0.10
0.0
0.0 1.0
4.0
2.0
4.3
POND 172
(307) RATING CURVE
COMPOSITES 5 DETENTION
PONDS IN
BASIN 203
'
POND 172
EXTENDED BY ICON
0 172
173 5 2 0.1
120 0.0033
0
0
0.013
0.10
0.0
0.0 6.5
5.5
8.0
6.0
9.0
97.9
10.0
266.
CE 173 CHANGED
TO CHANNEL W/OVERFLOW
BY ICON
0 173
17S 0 4 0
1200 0.0050
4
4
0.035
1.10
30
1200 0.0050
150
150
0.035
3.00
CE 304 CHANGED
TO PIPE W/OVERFLOW BY ICON
0 174
175 0 5 2.25
75 0.0211
0
0
0.013
2.25
40
75 0.0211
50
50
0.016
4.00
CE 175 CHANGED
TO PIPE W/OVERFLOW BY ICON
0 195
177 0 5 2.50
853 0.0123
0
0
0.013
2.50
POND 176
50
(311) RATING CURVE
853 0.0123
FROM OAKRIDGE
50
WEST PUD
50
REPORT BY
0.016
RBD
4.00
POND 176
EXTENDED BY ICON
0 176
177 T 2 0.1
315 0.0020
0
0
0.013
0.10
0.0
0.0 0.04
1.10
0.23
1.71
0.79
2.15
1.78
2.56 2.44
94.46
3.10
261.7E
CE 177 CHANGED
TO PIPE W/OVERFLOW
BY ICON
'
0 177
341 0 5 3.00
480 0.0100
0
0
0.013
3.00
10.0
480 0.0100
50
50
0.016
5.00
0 178
177 9 2 0.10
1310 0.0033
0
0
0.013
0.10
0.0
0.0 1.95
5.0
2.70
5.8
3.4
6.5
4.2
8.8 4.6
16.2
4.9
29.5
5.2
44.
'
5.5
60.
0 320
321 0 1 5.00
1350 0.0050
4
4
0.035
4.00
•
POND 321
EXTENDED BY ICON
0 321
324 10 2 0.1
300 0.0053
0
0
0.013
0.10
0.0
0.0 0.05
0.0
0.31
2.6
0.79
4.3
'
1.52
5.5 2.55
6.4
3.85
0.3
5.40
8.0
6.30
99.9 7.20
268.
•
FUTURE DETENTION
POND 322
0 322
323 3 2 0.3
10 0.0100
0
0
0.013
0.10
0.0 0.0 1.9 11.0 4.0 11.3
0 323 324 0 1 0 1500 0.0142 50 0 0.016 1.50
CE 324 MODELED USING HGL AS SLOPE
0 324 331 0 2 3.00 36 0.0222 0 0 0.013 3.00
0 325 326 0 1 4.00 420 0.0050 4 4 0.035 3.00
* CE 326 MODELED USING HGL AS SLOPE
' ADDED OVERFLOW TO CE 326 TO ELIMINATE SURCHARGE - ICON
0 326 327 0 5 3.50 214 0.0168 0 0 0.013 3.50
40 214 0.0168 50 50 0.016 5.0
0 320 329 0 1 4.00 950 0,0050 4 4 0.035 3.00
CE 328 MODELED WITH STREET CROWN OVERFLOW USING HGL AS SLOPE
' 0 328 329 0 5 1.75 101 0.0149 0.013 1.75
0 101 0.0149 133 44 0.016 5.0
0 329 180 0 1 5.00 . 240 0.0050 4 4 0.035 4.00
• CE 179 (330) MODELED WITH STREET CROWN OVERFLOW USING HGL AS SLOPE
0 179 324 0 5 1.50 80 0.0110 0.013 1.50
0 80 0.0110 167 167 0.016 5.0
CE 331 MODELED USING HGL AS SLOPE
0 331 325 0 2 3.00 30 0.0267 0 0 0.013 3.00
RATING CURVE FOR POND 180 WAS REVISED BY THE CITY (11/19/99)
0 180 341 8 2 0.10 20 0.0040 0 0 0.013 0.10
' 0.0 0.0 0.21 4.00 1.00 1B.00 1.91 37.20
2.95 52. 40 4.16 68.00 4.82 98.00 5.17 88.00
0 341 4 0 5 5.20 120 0.0040 0 0 0,013 5.20
0 120 0.0040 50 50 0.016 9.00
•---- -------------------- --------------------------- -------- ------.'-___
.ALL FOLLOWING CONVEYANCE ELEMENTS FROM STETSON CREEK. MASTER PLAN, RED, INC.
'CONCEPTUAL DETENTION FOR SUBBASINS 301 AND 303
CE 303 REMOVED BY ICON
POND 301 REVISED BY JR ENGINEERING FOR HARMONY VILLAGE, ADDED BY ICON
0 301 91 9 2 0.1 1 0.0050 0.013 0.1
' 0,00 0.0 0,10 2,21 0.85 4.20 1.88 5.32
2.45 5.96 3.27 13.38 4.26 14.36 4.56 36.21
5.73 5/.96
0 9i 93 0 1 0 1325 0.0150 4 4 0.060 5.0
0 93 94 11 2 0.1 1 0.0050 0.013 0.1
' 0,10 0.0 0,05 0,00 0,51 0.0 1,98 0.0
1.62 1.9 2.40 5.40 3.33 7.7 4.35 14.
5.41 20.7 6.52 93.90 7.65 219.5
0 94 241 0 1 0 500 0.0027 3 3 0.035 5.0
0 95 93 0 3 0 1
0 357 358 0 1 16 10 0.0050 4 4 0.045 4.00
0 35B 359 0 2 9.44 103 0.0050 0.013 9.44
0 359 360 0 1 16 950 0.0050 4 4 0.045 4.00
0 360 361 0 2 9.44 46 0.0050 0.013 9.44
0 361 362 0 1 16 619 0.0050 4 4 0.045 4.00
0 362 363 0 1 16 215 0.0050 4 4 0.045 4.00
0 363 364 0 1 16 415 0.0050 4 4 0.045 4.00
OVERFLOW ADDED TO CE 364 FOR DEV. COND. BY ICON
0 364 366 0 4 16 90 0.0050 4 4 0.045 5.00
40 90 0.0050 50 50 0.035 6.00
CE 365 CHANGED TO 396 BY ICON
0 369 366 0 4 0 1125 0.0045 4 4 0.035 2.30
50 1125 0.0045 50 SO 0.035 5.00
OVERFLOW ADDED TO CE 366 FOR DEV. CORD. BY ICON
0 366 367 0 4 16 377 0.0050 4 4 0.045 5.00
40 377 0.0050 50 50 0.035 6.00
' OVERFLOW ADDED TO CE 38 AND 39 FOR DEV. COST. BY ICON
0 38 373 0 4 0 lOB0 0.0050 4 4 0.035 3.50
40 1080 0.0050 50 50 0.016 4.50
0 39 38 0 4 0 860 0.0050 4 4 0.035 3.50
40 860 0.0050 50 50 0.016 4.50
'THE SEAR -BROWN GROUP - POUDRE VALLEY HOSPITAL SITE
CONVEYANCE ELEMENTS CHANGED TO 591, 592, 593, 594 BY ICON
• POND 593 WITHIN BASIN 318
0 593 592 10 2 0.10 1 0.005 0.013 0.10
0.00 0.0 .57 0.50 1.14 3.04 1.40 3.57
1.79 6.40 2.45 9.32 2.60 9.71 3.23 11.14
4.01 12.73 4.99 14.12
0 592 39 0 1 4.0 1000 0.016 4.0 4.0 0.035 3.5
• POND 594 WITHIN BASIN 317
' 0 594 591 10 2 0.10 1 0.005 0.013 0.10
0.00 0.0 0.36 2.70 0.74 2.99 1.12 3.26
1.40 3.39 1.69 5.44 2.26 8.42 2.40 8.55
2.90 8.96 3.54 9.46
0 591 39 0 1 0 1300 0.005 4.0 4.0 0.035 3.5
• -----------------------------------------------------------------------
'CONVEYANCE ELEMENT 40 ADDED BY ICON
0 40 373 0 1 5 1400 0.0050 4 4 0.035 5.00
POND 370 REVISED BY ICON
0 370 361 2 2 0.10 1 0.0050 0.013 0.10
0.00 0.0 0.96 33.52
0 371 362 2 2 0.10 1 0.0015 0.013 0.10
0.00 0.0 .550 1.95
POND 372 RATING CURVE FROM STETSON CREEK 2ND FILING, BY NORTHERN ENGINEERING
0 372 363 6 2 0.10 1 0,0020 0.013 0.10
0.00 0.00 0,17 10. 00 0.42 22.37 0.74 33.27
0.94 39.98 1.19 50. 54
' 0 393 364 1B 2 0.10 1 0.0042 0.013 0.10
0.00 0.0 .061 0.00 .465 0.0 1.578 0.0
3.566 6.4 6.256 16.8 6.909 18.0 7.562 18.8
8.216 19.6 8.869 20.8 9.522 21.6 9.910 31.5
10.296 49.4 10.683 72.6 11.075 99.7 11.463 130.9
'13.4 333.7 15.52 429.6
POND 374 EXTENDED BY ICON
0 374 38 14 2 0.10 1 0.0040 0.013 0,10
0.00 0.0 .009 0.00 .119 0.0 0.230 0.0
0.409 1.13 0.469 2.11 0.528 2.76 0.678 3.94
' 0.827 4.84 1.062 5.60 1.29T 6.27 1.532 5.97
1.911 7.29 2.341 59.9
__________________________I _....
......
.....
....
• ALL FOLLOWING CONV. ELEMENTS ARE FROM G60 1986 MCCLELLANDS BASIN MASTER PLAN
' EXISTING CONDITION CONVEYANCE ELEMENTS SUBBASINS BTWN STETSON CREEK 4 CIY RD
' 0 32 102 0 1 1.0 500 0.006 75 1.5 0.045 5.0
0 367 368 0 4 5.0 950 0.009 2.0 2.5 0.045 8.0
35.0 950 0.007 75.0 45.0 0.045 14.0
0 368 102 0 4 5.0 1960 0.010 3.0 3.0 0.045 5.0
30.0 1960 0.010 60.0 30.0 0.045 11.0
CROSSING UNDER CFY RD 9; PER RHO 1989 MCCLELLANOS BASIN CH. IMP. PHASE ONE
0 102 410 0 5 4.5 50 0.005 0.024 5.6
29.0 50 0.005 25 100 0.018 10.0
' SUBBASIN 304 MODELED BY FOLLOWING CONVEYANCE ELEMENTS, FROM
' WILLOW SPRINGS PM DRAINAGE PLAN, LIDSTONE b ANDERSON, JUNE 1996
201 202 0 3 .1 1.
202 209 0 3 .1 1.
203 209 0 3 .1 1.
209 210 0 3 .1 1.
' 10 3 .1 1.
3140 10 190 16 2 .1 1.
0.0 0.0 0.38 0.13 1.00 1.19 1.50 1.97
3,40 3.93 4.36 6.64 6.03 9.94 8.87 8.36
10.27 8.56 11.49 9.03 12.41 9.21 12.99 9.32
' 13,17 9,19 13.72 9.45 13.85 9.46 13.89 9.48
214 315 0 3 .1 1.
215 315 0 3 .1 1.
POND 315 REVISED BY ICON
315 216 8 2 .1 1.
' 0.0 0.0 0.06 2,11 0,24 3,01 0,59 4,00
0.85 4.50 1.23 5.00 1.43 96.9 1.63 265.0
216 116 0 3 .1 1.
116 140 0 1 10. 1650. .003 4.0 4.0 .035 5.0
140 357 0 1 10. 000. .003 4.0 4.0 .035 5.0
123 224 0 3 .1 1.
224 334 0 3 .1 1.
POND 334 REVISED BY ICON 6/25/99
334 124 11 2 .1 1.
0.0 0.0 0.07 4.00 0.24 6.00 0.52 8.00
0.97 10.0 1.64 12.0 2.46 14.0 3.44 16.0
4.66 18.0 5.09 18.63 S.SB 19.33
124 226 0 2 3.0 625. .0080 0.0 0.0 .011 5.0
226 336 0 3 .1 1.
• POND 336 REVISED BY ICON
336 337 8 2 .1 1.
' 0.0 0.0 0.15 4.00 0.44 6.00 0.98 8.00
1.85 10.0 2.27 10.7 2.54 36.8 2.81 84.3
130 131 0 2 3.0 450. .0070 0.0 0.0 .013 3.0
131 330 0 2 3.5 250. .0070 0.0 0.0 .013 3.5
330 241 7 2 .1 1.
0.0 0.0 0.07 1.00 0.23 2.00 0.57 3.00
1.05 4.0 1.85 5.00 2.96 6.00
251 350 0 3 .1 1.
• POND 350 REVISED BY ICON
350 216 9 2 .1 1.
0.0 0.0 0.07 1.00 0.25 2.00 0.63 3.00
0.82 3.5 1.10 4.00 1.15 4.10 1.30 96.0
1.45 264.1
252 160 0 3 .1 1.
160 261 0 5 1.5 205. .0100 0.0 0.0 .013 1.5
0.0 275. .0100 10. 10. .035 5.0
261 262 0 3 .1 1.
262 365 0 3 .1 1.
365 241 7 2 .1 1.
0.0 0.0 1.2S 6.3 2.42 7.5 2.52 14.0
2.63 25.9 2.73 41.3 2.83 59.5
241 141 0 3 .1 1.
141 357 0 1 10.0 500. .0030 4.0 4.0 .035 5.0
• WILDWOOD FARM SUBDIVISION (ICON ENGINEERING, INC)
381 0.0 392 5.2 .1 1. .1
0.0 0.0 0.48 2.2 0.96 5.51 2.03 6.3
2.14 48.9
382 401 16 2 .1 1. .1
0.0 0.0 0.09 1.2 0.24 2.4 0.51 3.6
0,59 4.0 0,61 6.0 1,70 7 2 0,71 8.4
0.83
9.6
0.84
10.0
0.93
12.0
1.10
20.0
1.24
30.0
1.35
40.0
1.47
50.0
1.51
55.0
'
401
402
0 1
2.
550.
.013
50.
50.
.016
1.
402
406
0 1
2.
950.
.006
50.
50.
.016
1.
400
406
0 1
10.
710.
.006
S.
6.
.040
2.
406
380
0 3
.1
1.
.1
POND 380
REVISED
BY
ICON 6/25/99
'
380
403
12 2
.1
1.
.1
0.0
0.0
2.90
8.8
3.09
9.3
3.19
10.0
3.59
15.0
3.99
20.0
4.80
21.8
5.00
22.0
5.54
22.9
6.24
52.4
6.58
75.1
6.93
107.7
384
404
5 2
.1
1.
.1
'
0.0
0.0
0.0
1.01
3.9
1.89
9.3
1.94
11.5
1.98
15.5
383
407
9 2
.1
1.
.1
0.0
0.0
.736
1.34
1.328
3.89
1.58
4.37
1.76
4.65
2.05
22.32
2.10
56.67
'
403
407
0 1
5.
950.
.004
4.
4.
.045
5.
402
405
0 3
.1
1.
.1
405
410
0 5
3.5
2000.
.002
0.
0.
.013
3.5
40.
2000.
.002
50.
50.
.016
5.
404
409
0 5
3.5
40.
900,
900.
0.015
0.015
0.
50.
0.
50_
.016
.016
3.5
5.
HOMESTEAD SUBDIVISION (ICON
ENGINEERING,
INC)
388
387
0 1
5.
1300.
.009
150.
150.
.045
S.
3:7
36
386
284
0 1
0 1
5.
4.
750.
800.
.007
.003
150.
150.
150.
150.
.045
.045
5.
5.
'
284
283
0 1
4.
700.
.0063
150.
150.
.045
5.
283
282
0 1
7.
1000.
.0057
70.
40.
.045
5.
282
410
0 1
9.
800.
.046
9.
1.5
.045
5.
FOSSIL CREEK
VILLAGE
(ICON
ENGINEERING,
INC)
281
414
0 1
2.
1500.
.015
55.
76.
.035
5.
409
413
0 1
I.
1500.
.010
50.
50.
.045
5.0
410
411
0 4
S.
600.
.045
2.5
3.0
.035
7.
45.
600.
.045
25.0
50.0
.035
13.
411
412
0 4
5.
1060.
.0038
3.
2.
.035
6.
30.
1060.
.0038
35.0
60.0
.035
11.
412
413
0 4
S.
870.
.006
5.0
2.0
.035
6.
50.
870.
.006
30.0
45.0
.035
12.
413
414
0 5
5.
40.
.006
0.
0.
.035
5.
50.
40.
.006
100.
100.
.016
10.
'
414
415
0 1
5.
1180.
.006
30.0
25.0
.035
10.
415
416
0 1
5.
1050.
.006
40.
50.
.035
10.
416
517
0 1
5.
800.
.006
40.
25.
.035
6.
517
417
0 3
.1
1.
.1
SWIFT RESERVIOR
NOT
MODEL AS
A ROUTING ELEMENT
417
0
0 2
.1
1.
.003
0.
0.
.035
.1
0
2
SBB
�86
PROGRAM
I
1
I
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
'
DEVELOPED BY
METCALF EDDY, INC,
i
UNIVERSITY OF FLORIDA
'
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 19]0)
UPDATED BY
UNIVERSITY OF FLORIDA (JUNE 19]3)
'
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 19]4)
TAPE OR DISK ASSIGNMENTS
BOYLE ENGINEERING CORPORATION (MARCH 19B5, JULY 19B5)
JIN(3) JIN(2) JIN(3)
JIN(4) JIN(51 JIN(6) JIN(]) JIN(8) JIN(9)
JIN(1O)
'
2 1 0
JOUT(1) JOUT(2) JOUT(3)
0 0 0 0 0 0
JOUT(4) JOUI(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9)
0
JOUT(30)
1 2 0
0 0 0 0 0 0
0
NSCRAT(1)
NSCRAT(2) NSCRAT(3) NSCRAT(4)
NSCRAT(5)
'
3
4 0 0
0
WATERSHED PROGRAM CALLED
' ••` ENTRY MADE TO RUNOFF MODEL •••
MCCLELLANDS BASIN MODEL (PULLY INTEO.) DEVEL. COMM. 6/30/99;Rev. MBP 3/22/00
100-YEAR EVENT PILE: MMCD-100.DAT OR MG., UPDATED 1/07/05
NUMBER OF TIME STEPS 600
INTEGRATION TIME INTERVAL (MINUTES) 1.00
' 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
' 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.4B 1.46
1.22 1.06 1.00 .95 .91 .87 .84 .B1 .78 .75
.73 .71 .69 .67 .00
' MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. MBF 3/22/00
100-YEAR EVENT FILE: MMCD-100.DAT OR MG., UPDATED 1/07/05
SUBAREA
GUTTER
WIDTH
AREA
PERCENT
SLOPE
RESISTANCE
FACTOR
SURFACE STORAGE(IN)
INFILTRATION
RATE(IN/HR)
GAGE
NUMBER OR
MANHOLE
(FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
MAXIMUM
MINIMUM
DECAY RATE
NO
-2
0
.0
.0
00180
.0
.0300
.016
.250
.100
.300
.51
.50
'
80
50
7309.0
B6.2
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
60
50
1150.0
8.9
40.0
.0100
.016
.250
.100
.300
.51
.50
00180 1
70
6
10239.0
29.4
40.0
.0100
.016
.250
.100
.300
.51,
.50
'
.00180 1
130
51
7161.0
24.7
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
100
51
2B75.0
13.2
40.0
.0100
.016
.250
.100
.300
.51
.50
00180
1
4
1590.0
1.8
80.0
.0200
.016
.250
.100
.300
.51
.50
001818 0 1
110
11
1250.0
1.9
99.0
.0200
.016
.250
100
.300
.51
.50
.00180 1
111
11
700.0
1 . 1
99.0
.0300
016
.250
.100
.300
51
.50
00160
'
112
112
750.0
1.3
99.0
.0100
.016
.250
.100
.300
.51
.50
00180
1
113
12
1200.0
1.3
99.0
.0100
.016
.250
.100
.300
51
.50
.00180
1
114
12
950.0
1.7
99.0
.0100
.016
.250
.100
.300
.51
.50
'
00180
1
115
13
1050.0
1.7
99.0
.0100
.016
.250
.100
.300
.51
.50
.001B0
1
116
13
1400.0
2.2
99.0
.0100
.016
.250
.100
.300
.51
.50
'
0180
117
1
51
3000.0
2.9
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
118
14
1250.0
1.1
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
320
00160
11
1
932.0
2.1
B5.0
.0100
.016
.250
.100
.300
.51
.50
120
22
3875.0
17.8
Bolo
.0200
.016
.250
.100
.300
.51
.50
.00180
1
90
2
5715.0
13.1
10.0
.0100
.. 016
.250
.100
.300
.51
.50
00180
190
1
51
250.0
1.4
80.0
.0300
.016
.250
.300
.100
.51
.50
.00180
1
200
20
4550.0
31.3
80.0
.0100
.016
.250
.100
.300
.51
.50
.001B0
1
210
44
1090.0
0.5
80.0
.0100
.100
.300
.51
.50
00180
1
.016
.250
'
240
7
1742.0
5.0
80.0
.0100
.016
.250
.100
.300
-51
.50
.00180
1
220
45
9683.0
22.2
85.0
.0100
.016
.250
.100
.300
.51
.50
00180
260
46
1454.0
23.8
50.0
.0300
.016
.250
.300
.100
.51
.50
'
00160
1
230
47
6403.0
14.7
85.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
290
291
1278.0
5.9
80.0
.0100
.016
.250
.300
-300
.51
.50
00180
'
3
34
1260.0
4.3
80.0
.0100
.016
.250
.100
.300
.51
.50
001818 0
1
280
275
1000.0
2.0
99.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
281
28
1650.0
3.2
99.0
.0100
.016
.250
.100
.300
.51
.50
'
00180
1
282
29
850.0
1.5
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
283
30
1250.0
2.0
99.0
.0100
.016
.250
.100
.300
.51
.50
O0180
1
'
330
33
700.0
5.6
80.0
.0100
.016
.250
.100
.300
.51
.50
001818 0
1
160
16
3500.0
4.0
84.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
121
16
850.0
1.4
80.0
.0100
.016
.250
.100
.300
.51
.50
'
00160
1
122
22
1200.0
1.8
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
250
250
500.0
1.6
80.0
.0100
.016
.250
.100
.300
.51
.50
00180
1
'
2
270
625.0
3.3
60.0
.0100
.016
.250
.300
.300
.51
.50
001818 0
1
271
271
2017.0
6.3
55.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
]]2
272
B17.0
1.5
31.0
.0900
.016
.250
.100
.300
.51
.50
'
00180
1
360
36
3223.0
2.4
87.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
201
320
3213.0
14.8
25.0
.01B3
.016
.250
.100
.300
.51
.50
202
322
1873.0
21.5
50.0
.0165
.016
.250
.100
.300
.51
.50
'
.00180
100180
203
172
7024.0
32.3
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
204
166
4138.0
19.0
80.0
.0100
00180
1
.016
.250
.100
.300
.51
.50
t
205
168
650.0
SA47.0
.0105
.016
.250
.100
.300
.51
.50
.00180
1
206
171
958.0
].]
70.0
.0080
.016
.250
.100
.300
.51
.50
00180
207
176
1718.0
13.8
57.0
.0215
.016
.250
.100
.300
.51
.50
'
001BO
1
208
178
2936.0
33.6
70.0
.0170
.016
.250
.100
.300
.51
.50
.00180
1
209
321
6795.0
23.4
40.0
.0085
.016
.250
.100
.300
.51
.50
00180
'
165
324
2991.0
10.1
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
211
325
3165.0
10.9
64.0
.0200
.016
.250
.300
.300
.51
.50
.00100
1
1
212
320
1220.0
4.2
80.0
.0380
.016
.250
.100
.300
.51
.50
0180
'
213
I80
1972.0
16.9
30.0
.0055
.016
.250
.300
.300
.51
.50
OO1BO
1
214
179
465.0
1.6
90.0
.0110
.016
.250
.100
.300
.51
.50
.00180
1
215
331
500.0
.7
90.0
.0270
.016
.250
.100
.300
.51
.50
00180
1
216
327
1405.0
1.0
90.0
.0060
.016
.250
.100
.300
.51
.50
.00180
1
301
301
3315.0
28.5
71.0
.0050
.016
.430
.100
.600
.51
.50
'
00180
302
95
13736.0
47.5
45.0
.0300
.016
.390
.300
.600
.51
.50
OO1BO
1
305
369
17097.0
78.5
35.0
.0110
.016
.250
.100
.300
.51
.50
.00180
1
306
00180
372
1
2535.0
6.7
31.2
.0200
.016
.250
.100
.300
.51
.50
'
307
360
2951.0
5.4
17.0
.1262
.016
.250
.100
.300
.51
.50
.00180
1
308
370
2042.0
7.0
40.0
.0200
.016
.250
.100
.300
.51
.50
00180
309
1
362
BBB.O
1.5
4.0
.1262
.016
.250
.300
.300
.51
.50
'
.001BO
I
311
371
807.0
2.8
40.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
312
163
569.0
2.1
2.3
.1262
.016
.250
.100
.300
.51
.10
00180
1
'
313
36]
495.0
.9
1.0
.0500
.016
.250
.100
.300
.51
.50
.00180
1
314
40
26470.0
91.2
34.0
.0200
.016
.250
.100
.300
.51
.50
.001BO
1
315
374
4179.0
14.4
40.0
.0200
.016
.250
.100
.300
.51
.50
t
00100
1
316
39
1924.0
67.0
85.0
.0170
.016
.250
.100
.300
.51
.50
.00180
1
317
594
1507.0
17.3
57A
.0140
.016
.250
.100
-300
.51
.50
0180
'
316
593
1699.0
19.5
97.0
.0150
.016
.250
.100
.100
.51
.50
.00180
1
217
366
4008.0
18.4
45.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
218
368
5053.0
17.4
50.0
.0300
.016
.250
.100
.300
.51
.50
'
00180
1
222
32
5605.0
19.3
50.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
223
102
6679.0
23.0
50.0
.0400
.016
.250
.100
.300
.51
.50
00180
1
'
224
102
3006.0
13.8
45.0
.0100
.016
.250
.100
.300
.51
.50
00180
1
225
35
14298.0
65.6
45.0
.0060
.016
.250
.100
.300
.51
.50
.00180
1
1
201
1200.0
8.5
40.0
.0200
.016
.250
.100
.300
.51
.50
'
001BO
1
2
202
2000.0
4.1
68.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
3
203
800.0
5.7
44.0
.0200
.016
.250
.100
.300
.51
.50
00180
1
'
9
209
750.0
1.6
74.0
.0200
.016
.250
.300
.300
.51
.50
oolea
1
5
209
1600.0
2.7
68.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
'
6
00180
210
1
3BOO.0
7.6
66.0
.0200
.016
.250
.100
.300
.51
.50
7
209
750.0
3.3
57.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
8
210
450.0
2.3
67.0
.0200
.016
.250
.100
.300
.51
.50
00180
9
209
3000.0
20.2
30.0
.0200
.016
.250
.300
.300
.51
.50
.00180
1
10
210
1400.0
9.1
26.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
14
214
1000.0
4.8
54.0
.0201
.016
.251
.100
.300
.51
.10
00180
1
t
15
215
1300.0
4.4
9.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
16
216
200.0
1.8
12.0
.0200
.016
.250
.100
.300
.51
.50
00180
20
223
600.0
4.1
96.0
.0200
.016
.250
.100
.300
.51
.50
'
.00180
1
21
223
1400.0
9.0
46.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
22
223
1800.0
7.3
52.0
.0200
.016
.250
.300
.300
.51
.50
00180
23
229
1000.0
2.2
61.0
.0200
.016
.250
.300
.300
.51
.50
003B0
1
24
224
600.0
3.1
34.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
1
25
226
900.0
4.0
65.0
.0200
.016
.250
.100
.300
.51
.SD
00180
26
226
1000.0
2.7
12.0
.0200
.016
.250
.300
.300
.51
.50
00180
1
30
130
2750.0
5.9
67.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
31
131
1700.0
3.6
67A
.0200
.016
.250
.100
.300
.51
.50
'
00180
1
32
330
400.0
2.0
48.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
39
216
700.0
3.1
11.0
.0200
.016
.250
.100
.300
.51
.50
00180
'
90
140
1100.0
6.4
30.0
.0200
.016
.250
.300
.300
.51
.50
00180
1
41
357
900.0
4.3
43.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
'
42
001 a
241
1
900.0
1.5
75.0
.0200
.016
.250
.100
.300
.51
.50
50
251
1800.0
8.1
42.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
63
252
2250.0
8.9
61.0
.0200
.016
.250
.100
.300
.51
.50
00180
61
1
261
650.0
2.1
80.0
.0200
.016
.250
.100
.300
.51
.50
'
.00180
1
62
262
1200.0
4.7
42.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
370
570
3050.0
6.1
63.0
.0100
.016
.250
.100
.3DO
.51
.51
00180
1
'
371
571
2000.0
11.7
45.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
372
572
4900.0
26.7
45.0
.0200
.016
.250
.100
.300
.51
.50
OO1B0
373
73
2000.0
8.2
90.0
.0150
.016
.250
.300
.300
.51
.50
'
OO1B0
1
374
574
8000.0
18.3
86.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
375
75
5400.0
28.4
46.0
.0200
.016
.250
.100
.300
.51
.50
00180
'
396
576
2222.0
5.1
85.0
.0100
.016
.250
.300
.300
.51
.50
00100
1
3]]
5]]
400.0
1.9
70.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
3]8
5]]
450.0
2.3
70.0
.0100
.016
.250
.100
.300
.51
.50
'
00180
1
379
979
450.0
1.5
70.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
380
480
350.0
1.4
70.0
.0100
.016
.250
.100
.300
.51
.50
00180
1
'
3
481
550.0
2.6
70.0
.0100
.016
.250
.100
.300
.51
.50
001818 0
1
382
582
700.0
.8
67.0
.0130
.016
.250
.100
.300
.51
.50
.00180
1
383
483
2439.0
5.6
85.0
.0200
.016
.250
.100
.300
.51
.50
t
00180
1
364
84
2400.0
6.9
84.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
385
85
2100.0
6.3
52.0
.0200
.016
.250
.100
.300
.51
.50
O386
1
'
586
3593.0
12.2
70.0
.0300
.016
.250
.300
.300
.53
.50
001818 0
1
387
586
800.0
3.2
70.0
.0250
.016
.250
.100
.300
.51
.50
.00180
1
'
388
00180
5B8
1
3300.0
13.6
72.0
.0110
.016
.250
.100
.300
.51
.50
389
BB
3049.0
7.0
66.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
390
490
550.0
1.4
70.0
.0200
.016
.250
.100
.300
.51
.50
'
00180
391
1
491
600.0
2.8
70.0
.0200
.016
.250
.300
.300
.51
.50
.001BO
1
392
568
1100.0
6.6
90.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
391
BB
4400.0
11.8
95.0
.0100
.116
.250
.100
.310
.11
.00180
1
.51
394
92
900.0
1.4
90.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
396
496
2950.0
13.5
93.0
.0130
.016
.250
.100
.300
.51
.50
00180
1
397
497
810.0
3.9
85.0
.0210
.016
.250
.100
.300
.51
.50
'
.001BO
1
400
400
860.0
9.9
50.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
401
406
1170.0
16.7
20.0
.0150
.016
.250
.100
.300
.51
.50
00180
'
4
406
1520.0
17.9
95.0
.0200
.016
.250
.300
.300
.51
.50
001818 0
1
403
381
4792.0
11.0
85.0
.0170
.016
.250
.100
.300
.51
.50
.001BO
3
1
404
382
1790.0
10.4
55.0
00180
905
402
3080.0
3.5
90.0
.00180
1
406
383
2053.0
14.1
38.0
.001B0
1
407
384
1921.0
13.2
40.0
00180
1
40B
404
16901.0
38.8
85.0
.00180
1
500
517
7812.0
26.9
50.0
00180
'
501
416
5489.0
18.9
50.0
00180
1
502
517
5053.0
17.4
50.0
.00180
1
503
415
12981.0
44.7
50.0
'
00180
1
504
415
3427.0
11.8
50.0
.00180
1
514
413
8160.0
26.1
50.0
00180
505
1
409
19549.0
60.7
50.0
.00180
1
506
412
4298.0
14.8
50.0
.001B0
1
507
00180
412
1
4559.0
15.9
50.0
'
508
281
7667.0
26.4
50.0
00180
1
509
411
3862.0
13.3
50.0
0180
1
510
411
5227.0
18.0
50.0
'
.00180
1
511
283
8516.0
39.1
35.0
.00180
1
512
386
10215.0
46.9
35.0
0180
513
388
36126.0
129.9
35.0
.001B0
1
TOTAL
NUMBER OF
SUBCATCHMENTS, 159
TOTAL
TRIBUTARY
AREA (ACRES), 2151.62
1
1
1
1
1
.0250
.016
.250
.100
.300
.51
.50
.0200
.016
.250
.100
.300
.Sl
.50
.0150
.016
.250
.100
.300
.Sl
.50
.0150
.016
.250
.100
.300
.52
.50
.0150
.016
.250
.100
.300
.51
.50
.0100
.016
.250
.100
.300
.51
.50
.0200
.016
.250
.100
.300
.51
.50
.0200
.016
.2SO
.100
.300
.51
.50
.0150
.016
.250
.100
.300
.51
.50
.0200
.016
.250
.100
.300
.51
.50
.0200
.016
.250
.100
.300
.51
.50
.0200
.016
.250
.100
.300
.51
.50
.0200
.016
.250
.100
.300
.51
.50
. 0100
.016
.250
.100
.300
.51
.50
.0100
.016
.250
.100
.300
.51
.50
.0100
.016
.250
.100
.300
.51
.50
.0100
.016
.250
.100
.300
.51
.50
.0100
.016
.250
.100
.300
.51
.50
.0100
.016
.250
.100
.300
.51
.50
.0100
.016
.250
.100
.300
.51
.50
MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. MBF 3/22/00
100-YEAR EVENT FILE: MMCD-100.DAT JR MG., UPDATED 1/07/05
••. CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL `••
WATERSHED AREA (ACRES) 2151.620
TOTAL RAINFALL (INCHES) 3.669
TOTAL INFILTRATION (INCHES) .572
TOTAL WATERSHED OUTFLOW (INCHES) 2.958
TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .138
ERROR IN CONTINUITY. PERCENTAGE OF RAINFALL .000
MaCLELLANDS BASIN MODEL (FULLY
INTEG.) DEVEL. COND.
6/30/99;Re,
MBF 3/22/00
100-YEAR EVENT FILE:
MMCD-100.DAT
JR ENG.,
UPDATED
1/07/OS
WIDTH
INVERT
SIDE
SLOPES
OVERBANK/SURCHARGE
GUTTER GUTTER
NDP
NP
OR DI AM
LENGTH
SLOPE
HORI2
TO VERT
MANNING
DEPTH JK
NUMBER CONNECTION
(FT)
(FT)
(FT/FT)
L
R
N
(FT)
4 8
0
1
CHANNEL
.0
800.
.0044
4.0
4.0
.035
5.00 0
8 2
0
1
CHANNEL
10.0
1750.
.0100
4.0
4.0
.035
5.00 0
T 6
0
1
CHANNEL
.0
1400.
.0100
.0
50.0
.016
1.50 0
6 "50
0
I
CHANNEL
.0
1200.
.0032
4.0
4.0
.035
5.00 0
1
1
1
1
1
1
35
102
0
1
CHANNEL
.0 1250.
.0100
50.0
50.0
.045
5.00
0
16
22
0
1
CHANNEL
.0 540.
.0060
50.0
50.0
.016
2.00
0
11
12
0
1
CHANNEL
.0 700.
.0060
50.0
.0
.016
1.50
0
12
13
0
1
CH IMEL
.0 850.
.0060
50.0
.0
.016
1.50
0
13
51
0
1
CHANNEL
.0 500.
.0060
50.0
.0
.016
1.50
0
14
51
0
1
CHANNEL
.0 900.
.0060
50.0
.0
.016
1.50
0
112
11
0
1
CHANNEL
.0 700.
.0100
50.0
.0
.016
1.50
0
20
51
0
1
CHANNEL
.0 1100.
.0050
4.0
4.0
.035
5.00
0
21
44
0
1
CHANNEL
.0 1200.
.0050
50.0
.0
.016
1.50
0
44
51
0
1
CHANNEL
3.0 800.
.0050
10.0
10.0
.035
2.00
0
45
43
3
1
CHANNEL
.1 1.
.0010
.0 .0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.000
.0
.100 11.9
10.000 11.9
22
43
0
1
CHANNEL
.0 1600.
.0070
4.0
4.0
.035
5.00
0
43
51
0
3
.1 1.
.0010
.0 .0
.016
.10
0
50
2
0
1
CHANNEL
10.0 1000.
.0050
15.0
15.0
.040
5.00
0
51
9
0
1
CHANNEL
10.0 500.
.0050
15.0
15.0
.040
5.00
0
9
2
-0
1
CHANNEL
5.0 1000.
.0060
15.0
15.0
.035
5.00
0
47
12
3
1
CHANNEL
.1 1.
.0010
.0 .0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE FEET VS
SPILLWAY OUTFLOW
.000
.0
.100 9.2
10.000 0.2
250
25
3
2
PIPE
.1 1.
.0050
.0 .0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.000
.0
.310 .3
.330 5.0
25
22
0
2
PIPE
1.3 500.
.0050
.0
.0
.013
1.25
0
291
12
3
2
PIPE
.1 1.
.0050
.0
.0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.000
.0
.100 3.1
10.000 3.1
46
42
3
1
CHANNEL
.1 1.
.0010
.0
.0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.000
.0
.100 11.2
10.000 11.2
26
42
0
5
PIPE
3.5 800.
.0050
.0
.0
.016
3.50
0
OVERFLOW
10.0 800.
.0050
4.0
4.0
.035
5.50
42
22
0
2
PIPE
6.0 1.
.0050
.0
.0
.016
6.00
0
270
27
0
3
.0 1.
.0010
.0
.0
.001
10.00
0
271
27
0
5
PIPE
2.3 45.
.0040
.0
.0
.013
2.25
0
OVERFLOW
.0 45.
.0040
198.0
110.0
.020
5.00
272
275
6
2
PIPE
.1 10.
.0010
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.000
.0
.020 .4
.130 .8
.290
1.0
.500
1.2
.760
1.3
275
27
0
2
PIPE
3.5 676.
.0084
.0
.0
.013
3.50
0
27
41
8
2
PIPE
.1 10.
.0010
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.030 .8
.220 2.5
.520
3.5
.900
4.2
1.310
4.8
2.100
57/ 6
3.200 191.4
41
26
0
5
PIPE
4.0 100.
.0050
.0
.0
.016
4.00
0
OVERFLOW
10.0 100.
.0050
50.0
50.0
.016
5.00
36
26
0
5
PIPE
1.3 90.
.0140
.0
.0
.013
1.25
0
OVERFLOW
.0 90.
.0140
200.0
200.0
.020
5.00
28
275
0
1
CHANNEL
.0 1000.
.0050
.0
50.0
.016
1.50
0
1
1
1
1
29
28
0
1
CHANNEL .0 1650.
.0050
.0 50.0
.016
1.50
0
30
29
0
1
CHANNEL .0 850.
.0050
.0 50.0
.016
1.50
0
34
16
3
2
PIPE .1 1.
.0050
.0
.0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.100 1.9 10.000 1.9
92
89
0
2
PIPE 2.0 1000.
.0100
.0
.0
.013
2.00
0
395
89
4
3
.1 1.
.0010
.0
.0
.001
.10
-1
TIME IN HRS VS INFLOW IN CPS
.000
.0
.500 3.6 9.600 3.6
9.850
.0
89
88
0
1
CHANNEL .0 800.
.0070
4.0
4.0
.035
5.00
0
490
90
4
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.200 .5 .220 .5
.240
2.5
491
90
4
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.500 1.0 .600 91.9
.700
260.0
90
88
0
4
CHANNEL .0 500.
.0100
50.0
50.0
.016
.50
0
OVERFLOW 50.0 500.
.0300
10.0
10.0
.035
5.00
496
88
6
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.010 12.0 .110 12.4
.790
12.8
2.060
13.2
3,530
31.6
BB
588
0
1
CHANNEL .0 700.
.0080
4.0
4.0
.035
5.00
0
497
588
7
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE FEET VS SPILLWAY OUTFLOW
.000
.0
.010 1.6 .050 1.6
.360
1.7
.670
1.7
.840
1.8
1.300
20.2
588
488
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
488
586
5
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
5.930 10.9 9.500 12.2
10.140
12.8
12.370
14.7
582
682
3
3
.1 1.
.0010
.0
.0
.001
.10
683
DIVERSION
TO GUTTER NUMBER 683 - TOTAL Q VS DIVERTED Q
IN CPS
.000
.0
4.600 1.3 B.000 1.8
682
82
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
683
0
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
02
85
0
4
CHANNEL .0 1300.
.0140
50.0
50.0
.016
.50
0
OVERFLOW 50.0 1300.
.0140
10.0
10.0
.035
5.00
85
586
0
4
CHANNEL .0 1000.
.0110
50.0
50.0
.016
.50
0
OVERFLOW 50.0 1000.
.0110
10.0
10.0
.035
5.00
84
586
0
4
CHANNEL .0 700.
.0100
50.0
50.0
.016
.50
0
OVERFLOW 50.0 700.
.0100
10.0
10.0
.035
5.00
586
486
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
486
584
6
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.010 1.5 .250 12.0
1.050
18.0
3.760
23.7
4.870
41.2
584
684
7
3
.1 1.
.0010
.0 .0
.001
.10
673
DIVERSION
TO GUTTER NUMBER 623 - TOTAL Q VS DIVERTED Q
IN CPS
.000
.0 20.000
.0 21.000 1.0
24.000
3.0
27.000
6.0
30.000
9.0
48.000
27.0
684
83
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
673
73
0
3
.1 1.
.0030
.0
.0
.001
10.00
0
83
583
0
1
CHANNEL 5.0 400.
.0050
4.0
4.0
.035
5.00
0
483
583
4
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.940 2.8 1.140 2.8
4.000
2.8
583
72
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
72
572
0
5
PIPE 3.0 700.
.0040
.0 .0
.011
3.00
0
OVERFLOW .0 700.
.0040
50.0
50.0
.016
5.00
73
572
0
4
CHANNEL .0 1300.
.0060
50.0
50.0
.016
.50
0
OVERFLOW 50.0 1300.
.0060
10.0
10.0
.035
5.00
461
577
a
3
.1 1.
.0010
.0 .0
.001
.10
a
480
577
9
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE FEET VS SPILLWAY OUTFLOW
.000
.0
.020 1.0 .030 2.0
.050
4.0
.060
6.0
.070
9.0
.080
14.0
.090 18.0 .100 20.0
479
577
6
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.030 .5 .040 1.0
.050
2.5
.070
B.0
.080
12.7
577
477
0
3
.1 1.
.0030
.0 .0
.001
10.00
a
477
76
14
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.050 2.0 .190 4.0
.250
6.0
.270
8.0
.290
12.0
.300
16.0
.320 20.0 .340 30.0
.360
45.0
.390
60.0
.460
75.0
.500
90.0
.550 105.0
76
576
0
1
CHANNEL .0 800.
.0070
4.0
4.0
.035
5.00
0
576
574
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
75
574
0
1
CHANNEL 5.0 600.
.0070
4.0
4.0
.035
5.00
0
574
474
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
474
74
B
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
2.230 .5 5.940 2.0
10.230
4.4
13.600
8.0
15.130
10.2
16.660
12.5
18.200 13.5
74
572
0
1
CHANNEL 10.0 700.
.0080
10.0
10.0
.035
5.00
0
572
472
a
3
.1 1.
.0010
.0
.0
.001
10.00
0
472
571
12
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.710 3.0 .B90 6.0
1.180
9.0
1.730
12.0
2.520
15.0
3.660
18.0
5.110 21.0 6.950 24.0
7.760
27.0
8.040
30.0
9.500
81.0
571
471
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
471
570
9
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.190 10.0 .390 20.0
.680
30.0
.770
32.0
.640
40.0
.870
50.0
.890 60.0 .970 100.0
570
470
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
470
31
7
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.080 10.0 .120 20.0
.240
30.0
.660
40.0
1.000 44.0
31 275
3.00 0
5.00
33 21
1.50 0
2 216
.10 0
19.650 193.7
1.470 160.0
0 5 PIPE 3.0 108. .0075
OVERFLOW 30.0 108
0 1 CHANNEL .0 700
12 2 PIPE .1 77
RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
.000 .0 .590 86.2 2.360 115.7
.0075
.0080
.0070
.0 .0
50.0 50.0
50.0 .0
0 .0
.013
.035
.016
.013
6.170 144.7 12.050 169.8
28.600
214.8
33.640 224.4 3v.670 233.1
49.310
251.4
59.390
269.7
70.590
288.0
166
16/
3
2
PIPE .1 96.
.0060
.0 .0
.013
30
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
1.60D 24.0 3.400 26.4
16
169
0
1
CHANNEL 4.0 260.
.0021
2.0
2.0
.035
4.00
0
16B
169
5
2
PIPE .1 10.
.0010
.0 .0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.030 .9 .430 1.4
.020
93.3
1.010
261.4
169
170
0
5
PIPE 2.3 40.
.0070
.0 .0
.013
2.29
0
OVERFLOW 40.0 40.
.0070
50.0
50.0
.016
4.00
170
174
0
1
CHANNEL 4.0 460.
.0021
2.0
2.0
.035
4.00
0
171
174
3
2
PIPE .1 10.
.0030
.0 .0
.013
10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
1.000 4.0 2.000 4.3
172
173
5
2
PIPE .1 120.
.0033
.0 .0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
6.500 5.5 8.000 6.0
9.000
97.9
10.000
266.0
173
175
0
4
CHANNEL .0 1200.
.0050
4.0
4.0
.035
1.10
0
OVERFLOW 30.0 1200.
.005D
150.0
150.0
.035
3.00
174
175
0
5
PIPE 2.3 75.
.0211
.0 .0
.013
2.25
0
OVERFLOW 40.0 '5.
.0211
50.0
50.0
.016
4.00
175
177
0
5
PIPE 2.5 853.
.0223
.0 .0
.013
2.50
0
OVERFLOW 50.0 85f.
.0123
50.0
50.0
.016
4.00
176
177
T
2
PIPE .1 315.
.0020
.0 .0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.040 1.1 .230 1.7
.790
2.1
1.780
2.6
2.440
94.5
3.100
261.8
177
341
0
5
PIPE 3.0 460.
.0100
.0 .0
.013
3.00
0
OVERFLOW 10.0 480.
.0100
50.0
50.0
.016
5.00
17B
177
9
2
PIPE .1 1310.
.0033
.0 .0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE -FEEL VS SPILLWAY OUTFLOW
.000
.0
1.950 5.0 2.700 5.8
3.400
6.5
4.200
B.B
4.600
16.2
4.900
29.5
5.200 44.0 5.500 60.0
320
321
0
1
CHANNEL 5.0 1350.
.0050
4.0
4.0
.035
4.00
0
321
324
10
2
PIPE .1 300.
.0053
.0 .0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.050 .0 .310 2.6
.790
4.3
1.520
5.5
2.550
6.4
3.860
9.3
5.400 8.0 6.300 99.9
T.200
268.0
322
323
3
2
PIPE .1 10.
.0100
.0 .0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
1.90D 11.0 4.000 11.3
323
324
0
1
CHANNEL .0 1500.
.0142
50.0
.0
.D16
1.50
0
324
331
0
2
PIPE 3.0 36.
.0222
.0 .0
.013
3.00
0
325
326
0
1
CHANNEL 4.0 420.
.0050
4.0
4.0
.035
3.00
0
326
327
0
5
PIPE 3.5 214.
.016E
.0
.0
.013
3.50
0
OVERFLOW 40.0 214.
.0168
50.0
50.0
.016
5.00
327
329
0
1
CHANNEL 4.0 050.
.0050
4.0
4.0
.035
3.00
0
328
329
0
5
PIPE 1.8 101.
.0149
.0
.0
.013
1.75
0
OVERFLOW .0 101.
.0149
133.0
44.0
.016
5.00
329
160
0
1
CHANNEL 5.0 240.
.0050
4.0
4.0
.035
4.00
0
179
324
0
5
PIPE 2.5 80.
.0110
.0
.0
.013
1.50
0
OVERFLOW .0 80.
.0110
161.0
161.0
.016
5.00
331
325
0
2
PIPE
3.0 30.
.0267
.0
.0
.013
3.00
0
ISO
341
8
2
PIPE
.1 20.
.0040
.0
.0
.013
10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.000
.0
.210 4.0
1.000 18.0
1.910
37.2
2.950
52.4
4.160
68.0
4.820
78.0
5.670 88.0
341
4
0
5
PIPE
5.2 120.
.0040
.0
.0
.013
5.20
0
OVERFLOW
.0 120.
.0040
50.0
50.0
.016
7.00
301
91
9
2
PIPE
.1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.000
.0
.100 2.2
.850 4.2
1.880
5.3
2.450
5.8
3.270
13.4
4.260
14.4
4.560 36.2
5.930 57.8
91
93
0
1
CHANNEL
.0 1325.
.0150
4.0
4.0
.060
5.00
0
93
94
11
2
PIPE
.1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.000
.0
.050 .0
.510 .0
.980
.0
1.620
1.9
2.400
5.4
3.330
7.2
4.35D 14.0
5.410 20.2
6.520
93.9
2.650
219.5
94
241
0
1
CHANNEL
.0 500.
.0027
3.0
3.0
.035
5.00
0
95
93
0
3
.0 1.
.0010
.0
.0
.001
10.00
0
357
358
0
1
CHANNEL
16.0 10.
.0050
4.0
4.0
.045
4.00
0
358
359
0
2
PIPE
9.4 103.
.0050
.0
.0
.013
9.44
0
359
360
0
1
CHANNEL
16.0 950.
.0050
4.0
4.0
.045
4.00
0
360
361
0
2
PIPE
9.4 46.
.0050
.0
.0
.013
9.44
0
361
362
0
1
CHANNEL
16.0 619.
.0050
4.0
4.0
.045
4.00
0
362
363
0
1
CHANNEL
16.0 215.
.0050
4.0
4.0
.045
4.00
0
363
364
0
1
CHANNEL
16.0 415.
.0050
4.0
4.0
.045
4.00
0
364
366
0
4
CHANNEL
16.0 90.
.0050
4.0
4.0
.045
5.00
0
OVERFLOW
40.0 90.
.0050
50.0
50.0
.035
6.00
369
366
0
4
CHANNEL
.0 1125.
.0045
4.0
4.0
.035
2.30
0
OVERFLOW
50.0 1125.
.0045
50.0
50.0
.035
5.00
366
367
0
4
CHANNEL
16.0 399.
.0050
4.0
4.0
.045
5.00
0
OVERFLOW
40.0 377.
.0050
50.0
50.0
.035
6.00
38
373
0
4
CHANNEL
.0 1080.
.0050
4.0
4.0
.035
3.50
0
OVERFLOW
40.0 1080.
.0050
50.0
50.0
.016
4.50
39
38
0
4
CHANNEL
.0 860.
.0050
4.0
4.0
.035
3.50
0
OVERFLOW
40.0 860.
.0050
50.0
50.0
.016
4.50
593
592
30
2
PIPE
.1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.570 .5
1.140 3.0
1.400
3.6
1.790
6.4
2.450
9.3
2.600
9.7
3.230 11.1
4.010 12.7
4.970
14 .1
592
39
0
1
CHANNEL
4.0 1000.
.0160
4.0
4.0
.035
3.50
0
594
591
10
2
PIPE
.1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.000
.0
.360 2.7
.740 3.0
1.120
3.3
1.400
3.4
1.690
5.4
2.260
B.4
2.400 8.6
2.900 9.0
3.540
9.5
591
39
0
1
CHANNEL
.0 1300.
.0050
4.0
4.0
.035
3.50
0
40
373
0
1
CHANNEL
5.0 1400.
.0050
4.0
4.0
.035
5.00
0
370
361
2
2
PIPE
.1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.000
.0
.960 33.5
371
362
2
2
PIPE
.1 1.
.0015
.0
.0
.013
.10
0
1
1
1
1
1
1
1
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.550 1.8
372
363
6
2
PIPE .1 1.
.0020
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.170 10.0 .420 22.4
.340
33.3
.940
38.0
1.170
50.5
373
364
18
2
PIPE .1 1.
.0042
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.061 .0 .465 .0
1.57B
.0
3.566
6.4
6.256
16.8
6.909
18.0
0.562 1B.8 8.216 19.6
8.869
20.8
9.522
21.6
9.910
31.5
10.298
49.4
10.687 72.6 11.075 99.7
11.463
130.9
13.400
333.7
15.520
429.6
374
38
14
2
PIPE .1 1.
.0040
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE FEET VS SPILLWAY OUTFLOW
.000
.0
.009 .0 .119 .0
.230
.0
.409
1.1
.469
2.1
.528
2.8
.676 3.9 .827 4.8
1.062
5.6
1.299
6.3
1.532
6.9
1.711
7.3
2.341 59.9
32
102
0
1
CHANNEL 1.0 500.
.0060
75.0
1.5
.045
5.00
0
367
368
0
4
CHANNEL 5.0 950.
.00V0
2.0
2.5
.045
6.00
0
OVERFLOW 35.0 950.
.0090
95.0
45.0
.045
14.00
368
102
0
4
CHANNEL 5.0 1960.
.0100
3.0
3.0
.045
5.00
0
OVERFLOW 30.0 1960.
.0100
60.0
30.0
.045
11.00
102
410
0
5
PIPE 4.5 50.
.0050
.0
.0
.024
5.60
0
OVERFLOW 29.0 50.
.0050
25.0
100.0
.018
10.00
201
202
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
202
209
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
203
209
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
209
210
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
210
310
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
310
140
16
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.380 .1 1.000 1.2
1.500
2.0
3.400
3.9
4.360
6.6
6.730
7.7
8.870 8.4 10.270 8.8
11.470
9.0
12.410
9.2
12.990
9.3
13.370
9.4 13.720 9.4 13.850 9.5
13.890
9.5
214
315
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
215
315
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
315
216
8
2
PIP£ .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.060 2.0 .240 3.0
.590
4.0
.650
4.5
1.230
5.0
1.430
96.9
1.630 265.0
216
116
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
116
140
0
1
CHANNEL 10.0 1650.
.0030
4.0
4.0
.035
5.00
0
140
357
0
1
CHANNEL 10.0 700.
.0030
4.0
4.0
.035
5.00
0
223
224
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
224
334
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
334
124
11
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.070 4.0 .240 6.0
.520
8.0
.970
10.0
1.640
12.0
2.460
14.0
3.440 16.0 4.660 18.0
5.090
18.6
5.580
19.3
124
226
0
2
PIPE 3.0 825.
.0080
.0
.0
.011
5.00
0
226
336
0
3
.1 I.
.0010
.0
.0
.001
10.00
0
336
359
8
2
PIPE .1 1.
0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.150 4.0 .440 6.0
.980
8.0
1.850
10.0
2.270
10.7
2.540
36.8
2.810 84 .3
130
131
0
2
PIPE 3.0 450.
.0070
.0 .0
.013
3.00
0
131
330
0
2
PIPE 3.5 250.
.00�0
.0 .0
.013
3.50
0
330
241
T
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.070 1.0 .230 2.0
.570
3.0
1.050
4.0
1.850
5.0
2.960
6.0
251
350
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
350
216
9
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.070 1.0 .250 2.0
.610
3.0
.620
3.5
1.100
4.0
1.150
4.1
1.300 96.0 1.450 264.1
252
160
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
160
261
0
5
PIPE 1.5 275.
.0100
.0 .0
.013
1.50
0
OVERFLOW .0 275.
.0100
10.0
10.0
.035
5.00
261
262
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
262
365
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
365
241
7
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
1.250 5.3 2.420 7.5
2.520
14.0
2.630
25.9
2.730
41.3
2.830
59.5
241
141
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
141
357
0
1
CHANNEL 10.0 500.
.0030
4.0
4.0
.035
5.00
0
381
382
5
-2
PIP£ .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.480 2.2 .960 5.5
2.030
6.3
2.140
48.9
382
401
16
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.090 1.2 .240 2.4
.510
3.6
.590
4.0
.650
6.0
.700
7.2
.760 8.4 .830 9.6
.840
10.0
.930
12.0
1.100
20.0
1.240
30.0
1.350 40.0 1.470 50.0
1.510
55.0
401
402
0
1
CHANNEL 2.0 550.
.0130
50.0
50.0
.016
1.00
0
402
406
0
1
CHANNEL 2.0 950.
.0060
50.0
50.0
.016
1.00
0
400
406
0
1
CHANNEL 10.0 710.
.0060
5.0
6.0
.040
2.00
0
406
380
0
3
.1 1.
.0010
.0 .0
.001
.10
0
380
403
12
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
2.700 8.8 3.090 9.3
3.190
10.0
3.590
15.0
3.990
20.0
4.870
21.8
5.000 22.0 5.540 22.9
6.240
52.4
6.580
75.1
6.930
109.9
384
404
5
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
1.010 3.7 1.890 9.3
1.940
11.5
1.980
15.5
383
407
7
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.736 1.3 1.326 3.9
1.580
4.4
1.760
4.7
2.050
22.3
2.100
58.7
403
407
0
1
CHANNEL 5.0 950.
.0040
4.0
4.0
.045
5.00
0
407
405
0
3
.1 1.
.0010
.0
.0
.001
.10
0
405
410
0
5
PIPE 3.5 2000.
.0020
.0
.0
.013
3 .50
0
OVERFLOW 40.0 2000.
.0020
50.0
50.0
.016
5.00
404
407
0
5
PIPE
3.5
900.
.0150
.0
.0
.016
3.50
0
OVERFLOW
40.0
900.
.0150
50.0
50.0
.016
5-00
388
387
0
1
CHANNEL
5.0
1300.
.0090
150.0
150.0
.045
5.00
0
387
386
0
1
CHANNEL
5.0
750.
.0070
150.0
150.0
.045
5.00
0
386
284
0
1
CHANNEL
4.0
800.
.0030
150.0
150.0
.045
5.00
0
284
283
0
1
CHANNEL
4.0
700.
.0063
150.0
150.0
.045
5.00
0
283
282
0
1
CHANNEL
7.0
1000,
.0057
70.0
40.0
.045
5.00
0
282
410
0
1
CHANNEL
9.0
B00.
.0460
9.0
1.5
.045
5.00
0
281
414
0
1
CHANNEL
2.0
1500.
.0150
55.0
76.0
.035
5.00
0
409
413
0
1
CHANNEL
1.0
1500.
.0100
50.0
50.0
.045
5.00
0
410
412
0
4
CHANNEL
5.0
600.
.0450
2.5
3.0
.035
0.00
0
OVERFLOW
45.0
600.
.0950
25.0
50.0
.035
13.00
411
412
0
4
CHANNEL
5.0
1060,
.0038
3.0
2.0
.035
5 .00
0
OVERFLOW
30.0
1060.
.0038
35.0
60.0
.035
11.00
412
413
0
4
CHANNEL
5.0
870.
.0060
5.0
2.0
.035
6.00
0
OVERFLOW
50.0
870,
.0060
30.0
45.0
.035
12.00
413
414
0
5
PIPE
5.0
40.
.0060
.0
.0
.035
5.00
0
OVERFLOW
50.0
40-
.0060
100.0
100.0
.016
10.00
414
415
0
1
CHANNEL
5.0
i1F0.
.0060
30.0
25.0
.035
10.00
0
415
416
0
1
CHANNEL
5.0
1050.
.0060
40.0
50.0
.035
10.00
0
416
517
0
1
CHANNEL
5.0
800.
.0060
40.0
25.0
.035
6.00
0
517
417
0
3
.1
1.
.0010
.0
.0
.001
.10
0
417
0
0
2
PIPE
.1
1.
.0030
.0
.0
.035
.10
0
TOTAL NUMBER
OF GUTTERS/PIPES, 203
MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;ReV. MBF 3/22/00
100-YEAR EVENT FILE: MCD-100.DAT SR ENG., UPDATED 1/07/05
ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES
GUTTER
TRIBUTARY
GUTTER/PIPE
D. A.
(AC)
2
B
50
9
0
0
0
0 0
0 0
0
0
0
793.9
4
341
0
0
0
0
0
0 0
0 0
0
0
0
219.3
6
7
0
0
0
0
0
0 0
0 0
0
0
0
34.4
7
0
0
0
0
0
0
0 0
0 0
0
0
0
5.0
B
4
0
0
0
0
0
0 0
0 0
0
0
0
219.3
9
51
0
0
0
0
0
0 0
0 0
0
0
0
431.9
11
112
0
0
0
0
0
0 0
0 0
0
0
0
6.5
12
11
47
291
0
0
0
0 0
0 0
0
0
0
30.0
13
12
0
0
0
0
0
0 0
0 0
0
0
0
33.9
14
0
0
0
0
0
0
0 0
0 0
0
0
0
1.1 .
16
34
0
0
0
0
0
0 0
0 0
0
0
0
9.8
20
0
0
0
0
0
0
0 0
0 0
0
0
0
31.3
21
33
0
0
0
0
0
0 0
0 0
0
0
0
5.6
22
16
25
42
0
0
0
0 0
0 0
0
0
0
288.2
TRIBUTARY SUBAREA
90
0
0
0
0
0 0
ISO
0
0
0
0
0 0
70
0
0
0
0
0 0
240
0
0
0
0
0 0
0
0
0
0
0
0 0
0
0
0
0
0
0 0
110
111
320
0
0
0 0
113
114
0
0
0
0 0
115
116
0
0
0
0 0
us
0
0
0
0
0 0
160
121
0
0
0
0 0
200
0
0
0
0
0 0
0
0
0
0
0
0 0
120
122
0
0
0
0 0
25
250
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
6
26
91
36
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
233.9
27
270
271
275
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
231.0
28
29
0
0
0
0
0
0
0
0
0
281
0
0
0
0
0 0
0
0
0
6.]
29
30
0
0
0
0
0
0
0
0
0
282
0
0
0
0
0 0
0
0
0
3.5
30
0
0
0
0
0
0
0
0
0
0
283
0
0
0
0
0 a
a
0
0
2.0
31
470
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
211.2
32
0
0
0
0
0
0
0
0
0
0
222
0
a
a
0
0 0
0
0
0
19.3
33 _
0
0
0
0
0
0
0
0
0
0
330
0
0
0
0
0 0
'
0
0
0
5.6
34
0
0
0
0
0
a
0
0
0
0
340
0
0
0
0
0 0
0
0
0
4.3
35
a
a
0
0
0
0
0
0
0
0
225
0
0
0
0
a 0
0
0
0
36
65.6
0
0
0
0
0
0
0
0
D
0
360
0
0
0
0
0 0
0
0
0
2.4
38
39
374
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
118.2
0
0
39
0
592
103.a
591
0
0
0
0
0
0
0
0
316
a
0
0
0
0 0
'
40
0
0
0
0
0
0
0
0
0
0
314
0
0
0
0
0 0
0
0
0
91 .2
41
27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
231 .0
42
46
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
'
0
0
0
257.2
43
45
22
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
310.4
44
21
0
0
0
0
0
0
0
0
0
210
0
0
0
0
0 0
0
0
0
'
45
o
0
0
0
0
0
0
0
0
o
zzo
0
0
0
0
0 0
o
a
o
22.1
z2.z
46
0
0
0
0
0
0
0
0
0
0
260
0
0
0
0
0 0
0
0
0
23.8
47
0
0
0
0
a
0
0
0
0
0
230
0
0
0
0
0 0
0
0
0
14.]
50
6
0
0
0
0
0
0
0
0
0
80
60
0
0
0
0 0
0
0
0
129.5
51
13
14
20
44
43
0
0
0
0
0
130
100
117
190
0
0 0
0
0
0
431.9
'
n
583
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
9].0
73
673
0
0
0
0
0
0
a
0
0
373
0
0
0
0
0 0
a
0
0
8.2
74
474
0
0
0
0
0
0
0
0
0
0
a
0
0
0
0 0
0
0
0
61.5
]6
0
0
0
0
0
0
0
0
0
0
375
0
0
0
0
0 0
0
0
0
28.4
76
4]]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
9
'
82
682
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
.8
83
684
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
91.4
84
0
0
0
0
0
0
0
0
0
0
384
0
a
0
0
0 0
0
0
0
6.9
85
82
0
0
0
0
0
0
0
0
0
3B5
0
0
0
0
0 0
0
0
0
].1
BB
89
90
496
0
0
0
0
0
0
0
389
393
0
0
0
0 0
'
0
0
0
89
37.9
92
395
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
1.4
90
490
491
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
a
0
4.2
0
0
91
0
301
28.5
0
0
a
0
0
0
0
0
0
0
0
0
0
0
0 0
'
92
0
0
0
0
0
0
0
0
0
0
394
0
0
0
0
0 0
0
0
0
1.4
93
91
95
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
76,0
94
93
0
0
0
0
0
0
a
0
0
0
0
0
0
0
0 0
'
a
0
0
]6.0
95
0
0
0
0
0
0
0
0
0
0
302
0
0
0
0
0 0
0
0
0
4].5
102
35
32
368
0
0
0
0
0
0
0
223
224
a
0
0
0 0
0
0
0
1502.9
'
112
0
0
a
a
0
0
0
0
0
0
112
0
0
0
0
0 0
0
0
0
3.3
116
216
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0
816.1
1
1
1
1
1
124
334
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
25.!
130
0
0
0
0
0
0
0
0
0
0
30
0
0
0
0
0 0
0 0 0
5.9
131
130
0
0
0
0
0
0
0
0
0
31
0
0
0
0
0 0
0 0 0
9.5
140
310
116
0
0
0
0
0
0
0
0
40
0
0
0
0
0 0
0 0 0
887.6
141
241
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
104.7
16D
252
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
8.9
166
0
0
0
0
0
0
0
0
0
0
204
0
0
0
0
0 0
0 0 0
19.0
167
166
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
19.0
168
0
0
0
0
0
0
0
0
0
0
205
0
0
0
0
0 0
0 0 0
5.8
169
167
168
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
24.9
170
169
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
24.9
121
0
0
0
0
0
0
0
0
0
0
206
0
0
0
0
0 0
0 0 c
7.7
172
0
0
0
0
0
0
0
0
0
0
203
0
0
0
0
0 0
0 0 0
32.3
193
172
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
32.3
174
170
171
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
32.6
175
103
174
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
64.8
176
0
0
0
0
0
0
0
0
0
0
207
0
0
0
0
0 0
0 0 0
13.8
170
195
116
178
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
112.2
178
0
0
0
0
0
0
0
0
0
0
208
0
0
0
0
0 0
0 0 0
33.6
129
0
0
0
0
0
0
0
0
0
0
214
0
0
0
0
0 0
0 0 0
1.6
1B0
329
0
0
0
0
0
0
0
0
0
213
0
0
0
0
0 0
0 0 0
105.2
201
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0 0
0 0 0
8.5
202
201
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0 0
0 0 0
12.6
203
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0 0
0 0 0
5.!
209
202
203
0
0
0
0
0
0
0
0
4
5
7
9
0
0 0
0 0 0
46.1
210
209
0
0
0
0
0
0
0
0
0
6
8
10
0
0
0 0
0 0 0
65.1
214
0
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0 0
0 0 0
4.8
215
0
0
0
0
0
0
0
0
0
0
is
0
0
0
0
0 0
0 0 0
4.4
216
2
315
350
0
0
0
0
0
0
0
16
39
0
0
0
0 0
0 0 0
816.1
223
0
0
0
0
0
0
0
0
0
0
20
21
22
0
0
0 0
0 0 0
20.4
224
223
0
0
0
0
0
0
0
0
0
23
24
0
0
0
0 0
0 0 0
25.7
226
124
0
0
0
0
0
0
0
0
0
25
26
0
0
0
0 0
0 0 0
32.4
241
94
330
365
0
0
0
0
0
0
0
42
0
0
0
0
0 0
0 0 0
104.7
250
0
0
0
0
0
0
0
0
0
0
250
0
0
0
0
0 0
0 0 0
1.6
251
0
0
0
0
0
0
0
0
0
0
50
0
0
0
0
0 0
0 0 0
8.1
252
0
0
0
0
0
0
0
0
0
0
63
0
0
0
0
0 0
0 0 0
8.9
261
160
0
0
0
0
0
0
0
0
0
61
0
0
0
0
0 0
0 0 0
11.0
262
261
0
0
0
0
0
0
0
0
0
62
0
0
0
0
0 0
0 0 0
15.1
270
0
0
0
0
0
0
0
0
0
0
270
0
0
0
0
0 0
0 0 0
3.3
291
0
0
0
0
0
0
0
0
0
0
291
0
0
0
0
0 0
0 0 0
6.3
272
0
0
0
0
0
0
0
0
0
0
272
0
0
0
0
0 0
0 0 0
1.5
275
272
28
31
0
0
0
0
0
0
0
260
0
0
0
0
0 0
0 0 0
221.4
281
0
0
0
0
0
0
0
0
0
0
508
0
0
0
0
0 0
0 0 0
26.4
282
283
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
2.10.4
1
1
1
1
1
1
1
1
283
284
0
0
0
0
0
0
0
0
0
511
0
0
0
0
0 0
0 0 0
210.4
284
386
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
1l1.3
291
0
0
0
0
0
0
0
0
0
0
290
0
0
0
0
0 0
0 0 0
5.9
301
0
0
0
0
0
0
0
0
0
0
301
0
0
0
0
0 0
0 0 0
28.5
310
210
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
65.1
315
214
215
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
9.2
320
0
0
0
0
0
0
0
0
0
0
201
0
0
0
0
0 0
0 0 0
14.8
321
320
0
0
0
0
0
0
0
0
0
209
0
0
0
0
0 0
0 0 0
38.1
322
0
0
0
0
0
0
0
0
0
0
202
0
0
0
0
0 0
0 0 0
21.5
323
322
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
21.5
324
321
323
179
0
0
0
0
0
0
0
165
0
0
0
0
0 0
0 0 0
11.6
325
331
0
0
0
0
0
0
0
0
0
211
0
0
0
0
0 0
0 0 0
33.2
326
325
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
43.2
327
326
0
0
0
0
0
0
0
0
0
216
0
0
0
0
0 0
0 0 0
1
32B
0
0
0
0
0
0
0
0
0
0
212
0
0
0
0
0 0
0 0 0
4.2
329
327
32B
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
88.3
330
131
0
0
0
0
0
0
0
0
0
32
0
0
0
0
0 0
0 0 0
_1.5
331
324
0
0
0
0
0
0
0
0
0
215
0
0
0
0
0 0
0 0 0
2.3
334
224
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
25.E
336
226
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
32.4
341
102
180
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
217.4
350
251
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
8.1
350
140
336
141
0
0
0
0
0
0
0
41
0
0
0
0
0 0
0 0 0
1029.0
358
357
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
1029.0
359
358
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
1029.0
360
359
0
0
0
0
0
0
0
0
0
307
0
0
0
0
0 0
0 0 0
1034.4
361
360
370
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
1041.4
362
361
371
0
0
0
0
0
0
0
0
309
0
0
0
0
0 0
0 0 0
1045.9
363
362
372
0
0
0
0
0
0
0
0
312
0
0
0
0
0 0
0 0 0
3056.7
364
363
373
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
1266.0
365
262
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
15.5
366
364
369
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
1344.5
367
366
0
0
0
0
0
0
0
0
0
313
0
0
0
0
0 0
0 0 0
1345.4
366
367
0
0
0
0
0
0
0
0
0
217
218
0
0
0
0 0
0 0 0
1381.2
369
0
0
0
0
0
0
0
0
0
0
305
0
0
0
0
0 0
0 0 0
1B.5
370
0
0
0
0
0
0
0
0
0
0
308
0
0
0
0
0 0
0 0 0
!.0
371
0
0
0
0
0
0
0
0
0
0
311
0
0
0
0
0 0
0 0 0
2.8
392
0
0
0
0
0
0
0
0
0
0
306
0
0
0
0
0 0
0 0 0
8.9
373
36
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
209.3
304
0
0
0
0
0
0
0
0
0
0
315
0
0
0
0
0 0
0 0 0
14.4
380
406
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
68.9
381
0
0
0
0
0
0
0
0
0
0
403
0
0
0
0
0 0
0 0 0
11 .0
382
381
0
0
0
0
0
0
0
0
0
404
0
0
0
0
0 0
0 0 0
21.4
383
0
0
0
0
0
0
0
0
0
0
406
0
0
0
0
0 0
0 0 0
14-1
1
1
1
1
1
1
1
1
384
0
0
0
0
0
0
0
0
0
0
409
0
0
0
0
0 0
0 0 0
13.2
386
389
0
0
0
0
0
0
0
0
0
512
0
0
0
0
0 0
0 0 0
301.3
3B9
388
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
124.4
388
0
0
0
0
0
0
0
0
0
0
513
0
0
0
0
0 0
0 0 0
124.4
395
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
.0
400
0
0
0
0
0
0
0
0
0
0
400
0
0
0
0
0 0
0 0 0
9.9
401
382
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
21.4
402
401
0
0
0
0
0
0
0
0
0
405
0
0
0
0
0 0
0 0 0
24.9
403
380
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
66.9
404
3tl4
0
0
0
0
0
0
0
0
0
408
0
0
0
0
0 0
0 0 0
52.0
405
409
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
135.0
406
402
400
0
0
0
0
0
0
0
0
401
402
0
0
0
0 0
0 0 0
6B.^
409
383
403
404
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
135.0
409
0
0
0
0
0
0
0
0
0
0
505
0
0
0
0
0 0
0 0 0
6'.3
410
102
405
282
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
1848.3
411
410
0
0
0
0
0
0
0
0
0
509
510
0
0
0
0 0
0 0 0
1B79.6
412
411
0
0
0
0
0
0
0
0
0
506
509
0
0
0
0 0
0 0 0
1910.1
413
4n?
412
0
0
0
0
0
0
0
0
514
0
0
0
0
0 0
0 0 0
2005.5
414
:..
...
0
0
0
0
0
0
0
0
0
..
0
0
0
0 ..
0 0 0
2031.9
415
414
0
0
0
0
0
0
0
0
0
503
504
0
0
0
0 0
0 0 0
2088.4
416
415
0
0
0
0
0
0
0
0
0
501
0
0
0
0
0 0
0 0 0
2109.3
419
519
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
2151.6
490
590
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
211.2
491
591
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
205.1
492
592
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
193.4
494
594
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
61.5
499
599
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
9.9
499
0
0
0
0
0
0
0
0
0
0
399
0
0
0
0
0 0
0 0 0
1.5
460
0
0
0
0
0
0
0
0
0
0
380
0
0
0
0
0 0
0 0 0
1.4
481
0
0
0
0
0
0
0
0
0
0
361
0
0
0
0
0 0
0 0 0
2.6
483
0
0
0
0
0
0
0
0
0
0
383
0
0
0
0
0 0
0 0 0
5.6
486
586
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
91.4
488
568
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0 0
62.0
490
0
0
0
0
0
0
0
0
0
0
390
0
0
0
0
0 0
0 0 0
1.4
491
0
0
0
0
0
0
0
0
0
0
391
0
0
0
0
0 0
0 0 0
2.8
496
0
0
0
0
0
0
0
0
0
0
396
0
0
0
0
0 0
0 0 0
13.5
499
0
0
0
0
0
0
0
0
0
0
399
0
0
0
0
0 0
0 0 0
3.9
510
416
0
0
0
0
0
0
0
0
0
500
502
0
0
0
0 0
0 0 0
2151.6
590
491
0
0
0
0
0
0
0
0
0
390
0
0
0
0
0 0
0 0 0
211.2
591
402
0
0
0
0
0
0
0
0
0
371
0
0
0
0
0 0
0 0 0
205.1
592
92
93
94
0
0
0
0
0
0
0
392
0
0
0
0
0 0
0 0 0
193.4
594
576
95
0
0
0
0
0
0
0
0
394
0
0
0
0
0 0
0 0 0
61.5
596
96
0
0
0
0
0
0
0
0
0
396
0
0
0
0
0 0
0 0 0
14.6
597
481
480
499
0
0
0
0
0
0
0
37
398
0
0
0
0 0
0 0 0
9.9
582
0 0 0 0 0 0 0 0 0 0
382
0
0
0
0
0 0
o
0 o
s
583
83 483 0 0 0 0 0 0 0 0
0
0
0
0
0
0 0
0
0 0
97.0
584
486 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0 0
0
0 0
91.4
566
468 85 84 0 0 0 0 0 0 a
386
387
0
0
0
0 0
'
0
0 0
91.4
588
88 497 0 0 0 0 0 0 0 0
389
392
0
0
0
0 0
0
0 0
62.0
591
594 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0 0
'
0
0 0
592
17.3
593 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0 0
0
0 0
19.5
593
0 0 0 0 0 0 0 0 0 0
718
0
0
0
0
0 0
0
0 0
19.5
0
594
0 0
0 0 0 0 0 0 0 0 0 0
17.3
317
0
0
0
0
0 0
'
673
0 a 0 0 0 0 0 0 0 0
0
0
0
0
0
0 0
682
582 0 0 0 0 0 0 0 0 0
0
G
0
0
0
0 0
0
0
88
683
J C 0 0 0 0 0 0 0 0
0
0
0
0
0
0 0
'
0
0 0
.0
6B4
50
0 0 0 0 0 0 0 0 0
0
0
0
0
0
0 0
0
0 0
91.4
MCCLELLANDS
BASIN
MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. MBE 3/22/00
100
YEAR EVENT
FILE: MMCD-100.DAT OR ENG., UPDATED 1/07/05
HYDROGRAPHS
ARE
LISTED FOR THE FOLLOWING 2 CONVEYANCE ELEMENTS
THE UPPER
NUMBER IS DISCHARGE IN CPS
THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES:
( ) DENOTES DEPTH ABOVE INVERT IN FEET
(S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE
INCLUDES
SPILLWAY
OUTFLOW.
(I) DENOTES GUTTER INFLOW IN CPS FROM SPECIFIED INFLOW HYDROGRAPH
(D) DENOTES DISCHARGE IN CPS DIVERTED FROM THIS GUTTER
(0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER
TIME(HR/MIN)
586 588
0
1.
.0 .0
'
0
2.
.0 .0
.DO( ) .00( )
0
3.
.1 .0
.00( ) .00( 1
0
9.
1 1
.00( 1 .00( )
0
S.
.1 .1
.00( ) .00( )
0
6.
.1 .3
.00( ) .001 )
0
T.
.6 .T
.00( ) .00( I
0
8.
2.2 3.0
.001 ) .00 ( )
'
0
9.
4.5 6
.00( ) .00( )
0
10.
7.0 11.5
.00( .00( )
0
11,
9.8 30.9
.001 ) .00( )
'
0
12.
12.7 24.1
.00( ) .00( 1
0
13.
15.3 30.7
.00( ) .001 )
0
14.
17.6 36.6
'
.00( ) .00( )
0
15.
19.5 41.7
.00( ) .00( 1
0
16.
23.0 48.6
.00( ) .001 1
'
0
17.
20.0 57.3
.001 ) .00( )
0
18.
32.1 64.9
.00( ) .00( I
0
19.
35.4 11.0
'
-001 1 .00( )
0
20.
38.0 75.8
00( I .00( )
0
21.
41.8 81.9
I
1
I
Cl
[]
.00( 1
.00( 1
0 22.
46.9
89.9
.00( )
.00( )
0 23.
50.9
96.4
.00( 1
.00( )
0 24.
54.6
102.0
.00( I
.00( )
0 25.
57.8
106.5
.00( 1
.001 )
0 26.
68.9
122.3
.00( )
.00( 1
0 27.
89.3
149.4
.00( )
.00( I
0 20.
101.9
171.8
.00( )
.00( )
0 29.
113.4
186.9
.00( )
.00( )
0 30,
122.4
201.4
.00( 1
.00( )
0 31.
148.1
237.1
.00( 1
.00( )
0 32.
197.1
293.8
.00( )
.00( )
0 33.
213.5
335.0
.00( )
.00( )
0 34.
232.0
362.5
.00(
.00( )
0 35.
246.3
380.5
.001 1
.00( 1
0 36.
230.6
350.7
.00( )
.00( I
0 37.
198.5
293.5
.00( )
.00( I
0 36.
180.0
256.7
.00( 1
.00( )
0 39.
166.9
233.1
.00( 1
.00( )
0 40,
156.9
217.7
.00( I
.00( )
0 41.
143.8
198.6
.00( )
.00( )
0 42.
12B.6
176.6
.001 )
.00( )
0 43.
117.7
160.7
.00( I
.001 1
0 44.
109.8
149.4
.00( )
.00(
)
0 45.
103.8
141.3
.00( I
.00(
)
0 46.
96.1
131.0
.00( )
.00(
1
0 40.
87.1
118.9
.00( )
.001
1
0 48.
80.2
109.2
.00( )
.00(
)
0 49.
74.8
102.0
.00( )
.00(
)
0 50.
90.6
96.6
.00( 1
.00(
1
0 51.
66.9
91.6
.00( )
.00(
)
0 52,
62.9
86.8
.00(
)
.00(
1
0 53.
59.8
83.0
.00(
)
.00(
)
0 54,
57.3
80.1
.00(
)
.00(
)
0 55.
55.3
77.9
.00(
1
.00(
1
0 56.
53.2
95.8
' .00(
)
.00(
)
0 59.
51.2
73.6
.00(
1
.00(
)
0 58.
49.4
71.8
.00(
I
.001
)
0 59.
46.0
70.3
.001
1
.00(
)
1 0.
46.8
69.1
.00(
I
.00(
1
1 1.
45.7
67.9
.00(
)
.00(
)
1 2.
44.6
66.6
.00(
1
.00(
)
1 3.
43.0
65.6
.00(
I
1 4.
42.9
64.9
.00(
1
.00(
)
1 5.
42.2
64.0
.00 ( ,
. 00 ( ,
1
6.
41.6
63.2
'
.001 )
.001 )
1
].
40.9
62.3
.00( )
.00( )
1
B.
40.3
61.6
.001 I
.00( )
'
1
9.
39.9
60.9
.00( 1
.00( I
1
10.
39.5
60.4
.00( 1
.00( 1
1
11.
39.1
59.8
'
.00( ,
.00( I
1
12.
38.6
59.2
.001 )
.001 )
1
13.
38.2
58.6
.001 )
.001 )
'
1
19.
37.9
58.2
.00l )
.001 )
1
15.
3].]
57.8
.00( 1
.001 )
'
1
16.
39.4
.00( 1
57.3
.00l )
1
1].
37.O
56.8
.00( 1
.00( 1
1
18.
36.7
56.3
.00; 1
.00( 1
1
19,
36.5
55.9
'
.001 1
.00( 1
1
20.
36.3
55.5
.00 ( )
.00 1 )
1
21.
36.0
55.2
.00(
1
22.
35.8
54.7
.00 ( 1
.00( 1
1
23.
35.5
54.4
.OG( i
.00( 1
1
24.
35.
59.0
.0ol )
.00( 1
1
25.
35.2
53.B
.00( 1
.00( )
1
26.
35.0
53.4
.00( I
.00( 1
'
1
27.
39.8
53.1
.00( )
.00( 1
1
28.
34.6
52.7
.001 )
.00( I
1
29.
39.5
52.5
'
.001 1
-001 )
1
30.
34.3
52.2
.00( 1
.00( 1
1
31.
34.2
51.9
.00( )
.00( 1
'
1
32.
39.0
51.6
.00( )
.00( 1
1
33.
33.8
51.3
.00( )
.00( )
1
34.
33.7
51 .0
'
.00( 1
.001 )
1
35.
31.5
50.8
.00( )
.00( I
1
36.
33.4
so.5
.00( )
.001 )
'
1
37.
33.2
50.2
.00( 1
.00( )
1
38.
33.1
49.9
.001 )
.00( 1
1
39.
32.9
99.6
'
.00( 1
.001 I
1
40.
32.8
49.4
.00( I
.001 )
1
41.
32.7
49.1
.00( )
.00( )
1
42.
32.5
98.8
'
.00( )
.00( 1
1
43.
32.4
48.6
.00( 1
.001 )
3
44.
32.
0
48.4
'
1
45.
32.2
48.2
.00( )
.00( 1
1
46.
32.1
48.0
.001 I
.001 )
1
47.
32.0
97.8
'
.00( )
.00( )
1
48.
31.9
47.6
.00( )
.00( 1
3
49.
31.8
47.4
t
1
t
.00( I
.00( I
t 50.
31.8
47.2
.00( )
.00( 1
1 51.
31.7
47.0
.00( )
.00( )
1 52.
31.5
46.8
.00( 1
.00( )
1 53.
31.4
46.6
.00( 1
.00( 1
1 54.
31.4
46.4
.00( )
.00( )
1 55.
31.3
46.2
.00( )
.00( )
1 56.
31.2
46.1
.00( )
.00( )
1 57.
31.1
45.8
.001 )
.00( )
1 58.
31.0
45.6
.00( )
.00( )
1 59.
30.9
45.5
.00( 1
.00( 1
2 0.
30.9
45.3
.00( 1
.00( )
2 1.
29.9
43.6
.00
00
2 2.
27.9
40.4
.00 1 )
.00 ( )
2 3.
26.1
37.5
.00 ( )
.001 )
2 4.
24.7
35.0
.00( 1
.^0( 1
2 S.
23.6
32.9
. 00 ( )
.00 ( )
2 6.
22.6
31.1
.00( )
.001 1
2 7.
21.B
29.5
.00( 1
.001 )
2 8.
21.1
28.4
.00( )
.001 1
2 9.
20.5
22.3
.00( )
.00( )
2 10.
20.0
26.4
.001 1
.00( )
2 11.
19.5
25.6
.00( )
.00( 1
2 12.
19.1
25.0
.00O
.00( )
2 13.
18.8
24.4
.00( )
.00( )
2 14.
18.4
23.9
.00( )
.00( 1
2 15.
18.2
23.5
.00( )
.001 1
2 16.
17.9
23.2
AO( 1
.00( )
2 10.
17.7
22.9
.00( I
.00( )
2 18.
17.5
22.6
.00( )
.001
I
2 19.
17.4
22.3
.00( I
.00(
)
2 20.
17.2
22.1
.00( )
.00(
1
2 21.
17.1
21.9
.00(
)
.00
( )
2 22.
16.9
21.8
.00(
1
.00(
)
2 23.
16.8
21.6
.00(
)
.00(
1
2 24.
16.7
21.5
.00(
I
.00(
)
2 25.
16.6
21.4
.00(
)
.00(
)
2 26.
16.5
21.3
.00(
)
.
00 ( )
2 27.
16.5
21.2
.00(
1
.00(
)
2 28.
16.4
21.1
.00(
)
.00(
1
2 29.
16.3
21.0
.00(
1
.00(
1
2 30.
16.3
20.9
.00(
1
.00(
)
2 31.
16.2
20.8
.001
)
.00(
)
2 32.
16.1
10.8
.00(
1
.00(
1
2 33.
16.1
20.7
.00( 1
.00( )
2
34.
16.1
20.6
. 00( )
.001 )
2
35.
16.0
20.6
.00( 7
.001 1
2
36.
16.D
20.5
.00l 1
.00( 1
'
2
37.
15.9
20.5
.00( 1
.00( )
2
38.
15.9
20.4
.001 )
.00( )
2
39.
15.9
20.9
'
2
40.
15.9
20.4
.00( )
.00( 1
2
41.
15.8
20.3
.001 )
.00( 1
'
2
42.
]5.8
20.3
.00( 1
.00( I
2
43.
15.8
2D.3
.00( 1
.00( 1
'
2
44.
15.8
.001 1
20.2
.00( )
2
45.
20.2
.001 1
.00( )
2
46.
15.l
20.2
2
9'.
.001 1
_ 5.
.00( 1
20.1
'
.00( )
.001 1
2
48.
15.7
20.1
AO
Aot
2
49,
15.
2D.1
0
2
50.
15.E
20.1
2
51.
15.7
20.0
.00( 1
.001 )
2
52.
15.6
20.0
'
.00( )
.00( 1
2
53.
15.6
20.0
.00( )
.00( )
2
54.
15.6
20.0
.00( 1
.00( )
2
55.
15.6
19.9
.001 )
.00( 1
2
56.
15.6
19.9
.00( )
.00( 1
2
52.
15.6
19.9
'
.00( )
.00( )
2
58.
15.6
19.9
.00( )
.00( )
2
59.
15.6
1919
.00( )
.00( 1
'
3
0.
15.6
19.8
.00( )
.00( I
3
1.
15.6
19.8
.00( 1
.00( )
3
2.
15.6
19.8
'
.00( 1
.001 )
3
;.
35.6
19.0
.00( )
.00( 1
3
4.
15.6
19.8
.00( )
.00( )
3
5.
15.6
19.8
.001 )
.00( )
3
6.
15.5
19.7
.00( I
.00( 1
3
'/.
15.5
19.
.00( )
.001 1
3
8.
15.5
19.7
.00( 1
.00( )
3
9.
15.5
19.7
.00( I
.00( 1
3
10.
15.5
19.7
'
.00( )
.001 )
3
11.
15.5
19.6
.00( )
.00( )
3
12.
15.5
.00( I
19.6
.001 1
'
3
13.
15.5
19.6
.00( )
.00( )
3
14.
15.5
19.6
.001 )
.00( )
3
15.
15.5
19.6
'
.00( 1
.00( 1
3
16.
15.5
19.5
.001 I
.00( I
3
17.
15.5
19.5
3
1B.
15.
1915
'
0
. 00( 1
.00( )
3
19.
15.5
19.5
.001 )
.001 1
3
20.
15.5
19.5
.00( )
.001 1
'
3
21.
15.5
19.5
.001 )
.001 1
3
22.
15.5
19.4
.001 )
.00 ( 1
l
23.
15.5
19.4
'
. 00( 1
.00( )
3
24.
15.5
19.4
.00( )
.00( )
3
25.
15.5
19.4
.00( 1
.001 1
'
3
26,
15.5
19.4
.00( 1
.001 I
3
27.
35.5
19.4
.00( )
.00( )
'
3
28.
15.
.00
00( I
19.3
.00( )
3
29.
15.5
19.3
.00( 1
.00( 1
3
30.
15.5
19.3
3
31.
.00( 1
15.5
.00; 1
15.3
'
.001 1
.00( 1
3
32.
15.5
19.3
.00( 1
.001 )
3
33.
15.
19.3
.00
00( )
.001 1
t
3
39.
15.5
19.2
.00 ( 1
. 00 ( 1
3
35.
15.5
19.2
.001 1
.00( 1
3
36.
15.6
19.2
'
.00( )
.00( )
3
37.
15.6
19.2
.00( )
.00( )
3
38.
15.6
19.2
.00( )
.00( )
3
39.
15.6
19.2
.00( )
.00( )
3
40.
15.6
19.1
.00( )
.00( )
3
41.
15.6
19.1
'
.001 )
.00( )
3
42.
15.6
19.1
.00( )
.00( 1
3
43.
15.6
19.1
.00( )
.001 1
'
3
99.
15.6
19.1
.00( )
.00( )
3
45.
15.6
19.1
.00( I
.001 )
l
96.
15.
19.0
.00 0 ( )
.001 )
3
47.
15.6
19.0
.00( )
.00( )
3
46.
15.6
18.9
.00( I
.001 1
3
99.
15.6
10.9
.00( )
.00( )
3
50.
15.6
18.8
.00( )
.001 )
3
51.
15.
1].6
'
.00
00( 1
.001 )
3
52.
15.6
1S.2
.001 )
.00( )
3
53.
15.6
13.1
.00( I
.00( I
3
59.
15.6
11.5
'
.00( 1
.00( )
3
55.
15.6
10.4
.00( )
.001 I
3
56,
15.6
9.5
.001 )
'
3
57,
15.6
8.8
.001 )
.00( )
3
58.
15.6
8.3
. 00 ( 1
.00( 1
3
59.
15.5
8.0
'
.001 )
.00( )
4
0.
15.5
7.9
.00( 1
.00( 1
4
1.
15.5
7.4
1
. 00 ( )
. 00 ( 1
9
2.
15.5
7.2
'
4
3.
15.5
7.1
.001 1
.001 1
4
4.
15.5
9.0
.001 )
.00 ( )
'
4
5.
15.5
6.9
.001 )
.00 ( )
4
6.
15.5
6.8
.001 )
.00 ( )
9
'].
15.5
6.9
.001 )
.00 ( ,
4
8.
15.4
6.7
.001 )
.00( ,
4
9.
15.4
6.7
.001 )
.00 ( 1
'
4
30.
15.9
5.6
.001 I
.001 I
4
11.
15.4
6.6
.00( )
.00( )
9
12.
15.
0
6.6
t
4
13.
15.4
G.6
.00( )
.00( )
4
14.
15.4
6.5
4
15.
.00( )
15.4
.00( )
.001 1
.00( )
4
16.
15.4
6.5
.00( 1
.00( )
9
17.
15.
6.5
0
'
4
18.
15.3
6.5
.001 )
.00( )
4
19.
15.3
.,
,.00(
.001 )
)
4
20.
15.
6.5
'
.001 1
.00( 1
4
21.
15.3
6.5
.00 ( )
.001 )
4
22.
15.3
6.5
.00( )
.00( )
'
4
23.
15.3
6.5
.001 1
.00( )
4
24.
15.3
6.5
.00( 1
.00( )
4
25.
15.3
6.5
.00l )
.00( )
4
26.
15.2
6.5
.00( )
.00( )
4
27.
15.2
6.5
.00( 1
.00( )
4
28.
15.2
6.4
.00( I
.00( )
4
23.
15.2
6.4
.00( )
.00( )
4
30.
15.2
6.4
'
.00( 1
.00( )
9
33.
15.2
6.4
.001 )
.00 ( )
4
32.
15.2
6.4
.00( )
.)
4
33.
15.2
6.4
.00( )
.0o( )
4
34.
15.2
6.4
.00( 1
.001 )
'
4
35,
15.2
.00( )
6.4
.00( )
4
36.
15.1
6.4
.001 I
.00( )
4
39.
15.1
6.4
.001 )
.001 1
9
38.
15.3
6.4
.00( )
.00( )
4
39.
15.1
6.4
.00( I
.00( )
9
40.
15.1
6.4
.00( )
.001 I
'
4
41.
15.1
6.4
.001 )
.00( 1
4
42.
15.1
6.4
.00( I
.001 )
4
43.
15.1
6.4
'
.00( )
.001 I
4
44.
15.1
6.4
.001 1
.00( )
4
45.
15,0
6.4
4
.00( ,
.00( ,
4
96.
15.0
6.4
'
4
47.
15.0
6.4
.OD( I
.00( )
4
48.
15.0
6.4
.oD( I
.00( )
'
9
49.
15.0
6.4
.00( )
.00( 1
4
50.
15.0
6.4
.00( I
.00( 1
9
Si.
15.0
6.9
'
.00( 1
.00( 1
4
52.
15.0
6.4
.00( )
.00( )
4
53.
15.0
6.3
.00( I
.00( 1
'
4
54.
14.9
6.3
.00( I
.00( I
4
55.
14.9
6.3
.00( 1
.00( )
9
56.
14.9
6.;
'
.00( )
.001 )
4
57.
14.9
.00( )
.00( )
4
SB.
140
5.3
9
59.
.00( )
14.3
.00f )
6 3
'
.00( )
.00( )
5
0.
14.9
6.3
.00l 1
.Do( )
S
1.
14.9
.00( 1
6.3
.00( )
'
5
2.
14.9
6.3
.001 1
.00( )
5
3.
14.9
6.3
S
9.
19.8
6.3
'
.00 )
.001 I
5
5.
14.8
6.3
.00( I
.00( )
5
6.
14.8
6.3
.00( 1
.001 )
'
5
].
19.8
6.3
.00( )
.00( )
5
B.
14.0
6.3
.00( )
.00( I
S
9.
19.8
6.3
'
.00( )
.001 )
5
10.
14.8
6.3
.00( )
.00( )
5
11.
14.6
6.3
.00( 1
.001 )
'
5
12.
19.8
6.3
.00( 1
.00( )
5
13.
14.8
6.3
.00( )
.00( )
S
14.
19.7
6.3
'
.001 1
.001 )
5
15.
19.7
6.3
.00( 1
.00( )
5
16.
14.7
6.3
.00( )
.00( I
'
5
17.
14.7
6.3
.00( )
.001 1
5
18.
14.7
6.3
.00( I
.00( )
S
19.
14.7
6.7
'
5
20.
14.7
6.3
.00( )
.00( 1
5
21.
14.7
6.3
.00( )
.OD( )
5
22.
14.7
6.2
.00( )
.00( )
5
23.
14.6
6.2
.00( )
.00( I
S
24.
19.6
.00( 1
6.2
.00( )
'
5
25.
14.6
6.2
.00( 1
.00( )
5
26,
14.6
6.2
.00( )
.00( )
5
27.
14.6
6.2
.00( )
.00( I
5
28-
14.6
6.2
.001 I
.00( 1
5
29.
14 .6
6.2
AO( )
.00( 1
S
30.
19.
6.2
'
.00
00( I
00( )
5
31.
14.6
6.2
.00 I )
. 00 ( )
5
32.
14.6
6.2
.001 )
.00 ( 1
5
33.
14.5
6.2
.00( )
.00( )
5
34.
14.5
6.2
.00( )
.00( 1
S
35.
14.5
6.2
'
.00( )
.00 ( 1
5
36.
14.5
6.2
.001 )
.00 ( 1
5
37.
14.5
6.2
.00( )
.00( 1
'
5
38.
14 .5
6.].
.00( )
.001 7
5
39.
14.5
6.2
.Do( )
.00( I
S
40.
19.
6.2
'
.00
00( )
.001 )
5
41.
14.5
6.2
.00( 1
.001 1
5
42.
14.5
6.2
.ODI )
.00( 1
'
5
43.
14.4
5.2
.001 1
.00( 1
5
44.
14.4
6.2
.00( 1
.00( 1
S
45,
14.9
.001 1
6.2
.00( )
'
5
46.
14.4
6.2
.DO( I
ou(
5
49.
14.4
6.2
.00( 1
.00( )
5
aB.
14.4
6.2
.00( )
.00( 1
5
49.
14.4
6.2
.00( )
.001 1
5
50.
14.4
6.2
.00( )
.001 )
'
5
51.
14.4
6.2
.001 I
.00( )
5
52.
14.4
6.2
.00( )
.00( )
5
53.
34.3
6.2
.00( )
.00 ( )
5
54.
14.3
6.1
.00( )
.00( I
5
55.
14.3
6.1
.00( I
.00( I
'
5
56.
19.3
6.1
.001 1
.00( )
5
59.
14.3
6.1
.00( I
.00( )
S
SB.
14.3
6.1
'
5
59.
14.3
6.1
.00( )
.00( )
6
0.
14.3
6.1
.001 I
.00( )
'
6
3.
19.3
6.1
.00( )
.00( )
6
2.
14.3
6.1
.00( )
.00( )
6
J.
14.2
6.1
'
.00( )
.001 I
6
4.
14.2
6.1
.001 1
.00( )
6
S.
14.2
6.1
.00( )
.00( )
6
6.
14.2
6.1
'
.00( )
.00( )
6
7.
14.2
6.1
.00( )
.00( 1
6
B.
19.
.00 01 1
6.1
.001 1
'
6
9.
14.2
6.1
.00( )
.00( )
6
10.
14.2
6.1
.00( )
.00( 1
6
11.
19.2
6.1
'
.00( )
.00( 1
6
12.
34.2
6.1
.00! )
.00( 1
6
13.
14 1
6.1
00( )
.1
.00( 1
6
19.
]4.
6.1
'
6
15.
14.1
6.1
.001 1
.001 )
6
16.
14.1
6.1
.001 )
.001 1
'
6
17.
14.3
6.1
.00( )
.00( )
6
18.
14.1
6.1
.001 )
.00( )
6
19.
14.1
6.1
'
.00( )
.00( 1
6
20.
14.1
6.1
.00( I
.00( I
6
21.
14.1
6.1
.001 )
.00 1
'
6
22.
14 .1
6A
.001 )
.00( )
6
23.
14.1
6.1
.001 )
.00( )
6
24.
19.0
.001 )
6.1
.00( )
6
25.
14.0
6.1
.00( I
.00( 1
6
26.
14.0
6.1
.00( 1
.oc( 1
6
27.
14 .0
6.1
'
.00( 1
.00( 1
6
28.
14.0
6.1
.00( 1
.00( 1
6
29,
14.0
.00( 1
6.0
.00( I
'
6
30.
14.0
6.0
.001
6
31.
14.0
6.0
.0o1 1
.00(
6
32.
14.0
6.0
'
.001 )
.00( 1
6
33.
14.0
6.0
.001 )
.00( )
6
39.
13.9
6.0
.00( )
.00( )
6
35.
13.9
6.0
.00 ( )
.00( 1
6
36.
13.9
6.0
.00( )
.00( )
6
37.
13.9
6.0
6
38.
13.9
6.0
.00( )
.00( 1
6
39.
13.9
6.0
.00( 1
.001 1
'
6
40.
13.9
6.0
.00( 1
.00( )
6
41.
13.9
6.0
.00( )
.00( 1
6
42.
13.9
6.0
'
.001 )
.001 1
6
93.
13.9
6.0
.00( )
.00( 1
6
44.
13.9
6.0
.001 )
6
45.
13.8
6.0
.00( I
.00( 1
6
46.
13.6
6.0
.00( )
.00( I
6
43.
13 .8
6.0
'
.001 1
.00 ( )
6
48.
13.8
6.0
.00( )
.00( )
6
49.
13.8
6.0
.001 )
.00 ( )
'
6
50.
13.8
6.0
.001 )
.00( 1 .
6
51.
13.6
6.0
.001 )
-00( I
6
52,
13.8
.001 1
6.0
.00( 1
'
6
53.
13.8
6.0
.00( )
.001 I
6
54.
13.8
6.0
.001 1
.00 ( )
6
55.
13.2
6.0
'
.00( 1
.00( 1
6
56.
13.7
6.0
.001 I
.c0( I
6
57.
13.7
6.0
1
.00( ,
.00( I
6
56.
ll.]
6.0
'
.001 )
.00( I
6
59.
13.7
6.0
.00( 1
.001 I
]
0.
13.7
6.0
.00( )
.001 )
]
1.
13.7
6.0
.00( )
.00( )
]
2.
13.9
6.0
.00( )
.00( )
]
J.
13.]
6.0
]
4.
13.7
6.0
.00( )
.00( 1
]
5.
13.7
6.0
.001 1
.00( I
'
]
6.
13.6
6.0
.00( 1
.001 I
]
].
13.6
6.0
.00( )
.001 1
]
B.
13.6
5.9
'
.00( )
.00( )
7
9.
13.6
y9
.001 1
.00 ( )
]
30.
13.6
5.9
.00( )
]
11
13.6
5.9
.00( 1
.00( 1
]
12.
13.6
5.9
.00( 1
.00( )
]
13.
13.6
.00( )
5.9
.001 )
'
]
14.
13.6
5.9
.001 1
.00( 1
]
15.
13.6
5.9
.00( 1
.001 1
]
16.
13.6
5.9
'
.00( 1
.001 )
]
17.
13.5
5.9
.001 )
.00( )
]
18.
13.5
5.9
.001 1
.00( 1
'
]
19.
13.5
5.9
-00( )
.001 )
]
20.
13.5
5.9
.00( )
.001 )
]
21.
13.5
5.9
.001 1
.00( 1
]
22.
13.5
5.9
.00( )
.00( )
]
23.
13.5
5.9
.00( )
.001 )
'
]
29.
13.5
5.9
.00( )
.00( )
]
25.
13.5
5.9
.00( 1
.00( )
]
26.
13.5
5.9
'
.00( )
.001 I
]
2].
13.9
5.9
.001 1
.00( )
]
28.
13.4
5.9
.00( )
.001 ).
]
29.
13.4
5.9
.00( 1
.00( )
]
30.
13.4
5.9
.00( )
.00( I
]
31.
13.4
5.9
.00( )
.001 )
]
32.
13.4
5.9
.00( 1
.00( I
]
33.
13.4
5.9
.00( )
.001 1
]
34.
13.4
5.9
.001 )
.00( )
]
35.
13.4
5.9
.00( )
.00( 1
]
36.
13.9
.00( )
5.9
.001 1
'
]
37.
13.4
5.9
.001 1
.00( 1
]
38.
13.3
5.9
.00( 1
.001 I
]
39.
13 .3
5.9
'
.00( )
.00( 1
]
40.
13.3
5.9
AO( I
.001 1
7
41.
13.3
5.9
.00 ( )
.001 ,
742.
13.
5.9
'
.00
00( 1
.00( 1
]
43.
13.3
5.8
.001 )
.Oo( )
7
44.
13.3
5.8
.001 )
.00( )
'
]
45.
13.3
S.B
.001 I
.001 1
]
46.
13.3
5.8
.00 ( I
.001 )
]
47.
13 .3
5.8
'
.001 1
.00 ( )
]
48.
13.3
5.8
.001 )
.00 ( )
]
49.
13.3
5.8
.001 )
.00 ( )
]
50.
13.2
5.8
.001 )
.00 ( )
]
51.
13.2
5.]
.001 1
.00( 1
'
]
52.
13 .2
.00( )
5.4
.ou( 1
]
53.
13.2
5.1
.00( )
.00( )
]
54.
13.2
5.0
.oa( )
.oa. l
'
]
55.
13.2
9.8
.001 1
.001
]
56.
13.2
4.]
.00( 1
.001 i
]
57.
13.2
.00
4.6
00
'
]
58.
13.2
4.5
.00( )
.00(
]
59.
13.2
4.5
.00 ( 1
.001 i
8
0.
13.
9.4
'
.00 0 ( )
.00 ( 1
8
1.
13.1
4.4
.00 L)
.00( )
8
2.
13.1
4.3
.001 )
.00( I
'
8
3.
13.1
4.3
.00( )
.00( )
8
4.
13.1
4.3
.00( 1
.00( )
8
S.
13.
4.3
.001
00( )
.00( 1
8
6.
13.1
4.2
.00( )
.001 )
8
].
13.1
4.2
.00( )
.00( )
'
8
8.
13.1
4.2
.00( )
.00( 1
8
9.
13.0
4.2
.00 ( )
.00 1 )
B
10.
13.0
4.2
'
.001 )
.00 ( )
8
11.
13.0
9.2
.00 ( )
.00 ( )
8
12.
13.0
4.2
.001 I
.00( )
'
8
13.
13.0
4.2
.00 ( )
.00 ( I
8
14.
13.0
4.2
.001 )
.00 ( )
B
15.
13.0
4.2
'
8
16.
13.0
4.2
.001 )
.00 ( 1
8
17.
13.0
4.2
.00( )
.00( )
8
18.
12.9
4.2
.001 1
.001 1
8
19.
12.9
4.2
.00( )
.00( )
8
20,
12.9
.00 ( )
4.2
.001 )
8
21.
12.9
4.2
.00( )
.00( )
B
22.
12.9
4.2
.00( )
.001 1
8
23.
12.9
4.2
'
.001 I
.00( 1
6
24,
12.9
4.2
8
25.
12.9
4.2
I
1
1
1
11
Ij
1
.00( 1
.00( ,
8
26.
12 .9
4.2
.00( )
.00f 1
8
27.
12.9
4.2
.00( )
.00( )
8
28.
12.8
4.2
.00( 1
.00( )
8
29.
12.8
4.2
.00( I
.00( )
B
30.
12.8
4.1
.00 ( )
.00 ( 1
8
31.
12.8
4.1
.00( )
.001 1
8
32.
12.B
4.1
.001 )
.001 )
8
33.
12.8
4.1
.00( )
.00( )
8
34.
12.8
4.1
.00( 1
.00 )
8
35.
12.8
4.1
.00( )
.00( I
B
36.
12.8
4.1
.00( )
.00( 1
8
37.
_2.9
4.1
.001 )
.001 )
8
38.
12.0
4.1
.001 ,
.00( 1
8
3^.
12 .7
4.1
.00( 1
.00! )
8
40..
12.7
4.1
00( )
.001 )
8
41.
12 .7
4.1
.00( )
B
42.
12.E
4.1
.00 ( 1
. 00 ( )
8
43.
12.7
4.1
00( 1
.00( )
8
44.
12.7
4.1
.00( )
.001 1
8
45.
12.7
4.1
.00( 1
.00( )
8
46.
12.7
4.1
.00( )
.00( 1
6
47.
12.7
4.1
.00( )
.00( )
8
48.
12.6
4.1
.00( )
.00( )
8
49.
12.6
4.1
.00( 1
.00( )
8
50.
12.6
4.1
.00( )
.00( I
6
51.
12.6
4.1
.0o I )
.001 )
8
52.
12.6
4.1
.001 1
.00 )
8
53.
12.6
4.1
.00( )
.00( 1
8
54.
12.6
4.1
.001 )
.00( )
8
55.
12.6
4.1
.00( I
.00( )
8
56.
12.6
4.1
.00( )
.00( )
8
57.
12.6
4.1
.00( 1
.00( )
8
58.
12.5
4.1
.00( )
.00( 1
8
59.
12.5
4.1
.001 )
.001 )
9
0.
12.5
4.1
.00( )
.00( 1
9
1.
12.5
4.1
.001 1
.00( 1
9
2.
12.5
4.1
.00( 1
.00( )
9
3.
12.5
4.1
.001 )
.00( 1
9
4.
12.5
4.1
.00( 1
.00( )
9
5.
12.5
4.1
. 00 ( I
.00( )
9
6.
12.5
4.1
.001 1
.001 1
9
7.
12.5
4.1
.00( )
.00( )
9
8.
12.5
4.1
00( 1
.00( )
9
9.
12 4
4.1
.001 )
.001 1
9
10.
12.4
4.1
'
.001 )
.001 I
9
11.
12.4
4.1
.001 1
.00( )
9
12.
12.4
4.1
.001 I
.00( )
'
9
13.
12.4
4.1
AD( 1
.00( )
9
14.
12.4
4.1
.00( I
.00( )
9
15.
12.4
4.1
'
.00( 1
.00( )
9
16.
12.4
4.1
.00( )
.00( )
9
11.
12.4
4.1
.aol )
00( I
9
18.
12.9
9A
.001 )
.001 I
9
19.
12.3
4.1
.001 1
.001 )
9
20.
12.3
4.1
'
-00( )
.00( )
9
21.
12.3
4.1
.001 1
.00( )
9
22.
12.3
4.1
.001 )
.00( )
'
9
23.
12 .3
4.1
.00( 1
9
24.
12.3
4.1
.oaf 1
.001 I
9
25.
12.3
.001 )
9.
.001 I
'
9
26,
12.3
4.1
ON
oll
9
27.
12.3
4.1
.00( 1
.001 1
9
2B.
12.
9.1
00
00
9
29.
12.3
4.1
_
.00 ( )
.001 )
9
30.
12.3
4.1
.00( 1
.001 )
9
31.
12.3
4.1
.00( 1
.00( )
9
32.
12.2
4.1
.001 )
.00( 1
9
73.
12.2
4.1
.00( )
.001 )
9
34.
12.2
4.1
.00( )
.001 )
9
35.
12.2
4.1
.001 1
.001 )
'
9
36.
12.2
4.1
.001 )
.00( )
9
37.
12.2
4.1
.00( )
.001 )
9
38.
12.2
4.0
.001 )
.00 ( )
9
39.
12.2
4.0
.OUI I
.00( )
9
40.
12.2
4.0
.00( )
.00( 1
'
9
41.
12.2
3.9
.00( )
.00( )
9
42.
12.2
3.9
.00( 1
.00( 1
9
43.
12.2
3.8
'
.00( )
.00( 1
9
44.
12.2
3.7
.001 )
.001 )
9
4S.
12.2
3.6
.001 )
.00( )
9
96.
12.2
3.9
.001 )
.001 I
9
47.
12.2
3.3
AD( )
.00 ( )
'
9
48,
12.2
.00( 1
3.2
.00( )
9
49.
12.2
3.0
.00( )
.001 )
9
So.
12.2
2.8
9
51.
.001 )
12.2
.001 )
2.7
AD 1
.00( )
9
52.
12.2
2.5
.00( )
.001 1
9
51.
12.2
2.4
1
. 00 ( ) . 00 ( 1
9 54. 12.1 2.2
'
0
. 00( I .001 I
9 55. 12.1 2.0
' .00 ( I .00 ( 1
9 56. 12.1 1.9
.001 ) .00I )
'
9 50. 12.1 1.8
.00( ) .00( )
9 58. 12.1 1.7
.001 ) .00( 1
9 59. 12.1 1.6
'
.00( I .oal I
10 0. 12.1 1.5
.00( I .001 )
THE FOLLOWING CONVEYANCE ELEMENTS WERE SURCHARGED
DURING THE SIMULATION. THIS COULD LEAD TO ERRORS
IN THE SIMULATION RESULTS!!
417
THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL
STABILITY PROBLEMS THAT LEAD TO HYDRAULIC
OSCILLLATIONS OUR ING THE SIMULATION.
42 102 174 324 331 358 310 397 413 470
471 496
1
lJI
LJ
I
LJ
FJ
1
1
1 I
L✓
MCCLELLANDS BASIN MODEL (FULLY INTEG.) DE'JEL. CONE. 6/30/99;Re, MBF 3/22/00
100-YEAP EVENT FILE: MMCD 100.DAT JR ENG., UPDATED 1/07/05
"• PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS •••
... NOTE :S IMPLIES A SURCHARGED ELEi4EN;' AND :D IMPLIES A SURCHARGED DETENTION FACILITY
CONVEYANCE
PEAK
STAGE
STCFAGE
TIME
ELEMENT:TYPE
ICES)
(FT)
(AC
FT)
(HR/MIN)
2:2
275.9
.1
63.2:D
2
27.
4:1
193.6
3.5
1
0.
6:1
173.7
3.5
0
37.
7 1
35.4
.6
0
36.
8:1
189.1
2.0
1
6.
9:1
753.3
3.1
0
41.
11:1
54.2
.8
0
35.
12:1
81.2
.9
0
36.
13:1
107.9
1.0
0
36.
14:1
0.9
.4
0
36.
16:1
51.4
.6
0
35.
20:1
218.8
3.6
0
36.
21:1
31.2
.6
0
41.
22:1
210.7
3.3
0
37.
25:2
1.6
.5
1
5.
26:5
102.6
4.6
0
56.
27:2
102.3
.1
2.5:D
0
51.
28:1
35.0
.T
0
37.
29:1
18.2
.5
0
40.
30:1
15.5
.5
0
36.
31:5
72.9
3.2
2
1.
32:1
112.1
1.2
0
36.
33:1
41.5
.7
0
36.
34:2
1.9
.1
.9:D
2
1.
35:1
269.4
1.4
0
39.
36:5
23.6
1.5
0
35.
38:4
340.7
3.9
0
43.
39:4
371.5
3.9
0
38.
40:1
490.7
4.2
0
36.
41:5
102.2
4.3
0
52.
42:2
115.3
2.9
0
55.
43:3
222.6
(DIRECT
FLOW)
0
37.
44:1
65.9
1.5
0
40.
45:2
11.9
.1
4.4:D
2
0.
46:1
11.2
.1
3.9:D
2
1.
47:1
7.2
.1
3.O:D
2
1.
50:1
497.3
2.8
0
39.
51:1
817.1
3.4
0
37.
92:5
23.8
1.6
1
31.
T3:4
51.6
.6
0
37.
74:1
9.6
.4
2
21.
75:1
188.8
2.6
0
35.
96:1
58.9
2.0
0
39.
82:4
3.4
.2
0
36.
83:1
21.0
1.0
0
54.
84!4
57.3
.5
0
35.
B5:4
44.2
.5
0
36.
BB:1
194.7
3.1
0
35.
89:1
13.6
1.2
0
39.
90A
4.9
.2
1
0.
9:.
1.6
1
.
92:2
1313.3
1.1
0
35
35.
93:2
72.1
.1 6.2:D
1
2.
94:1
71.8
2.9
1
6.
95:3
284.0
(DIRECT FLAW)
0
35.
102.5
1133.8
7.2
0
58.
'
112:1
11.4
.4
0
35.
116:1
265.2
3.3
2
29.
124:2
16.9
1.0
1
32.
130:2
55.3
2.4
0
35.
1:2
.
3.3
0
3.
14040:1
29595.2
1.1
2
30.
141:1
95.3
1.9
1
6.
160:5
74.3
2.9
0
35.
166:2
25.6
.1 2.8:D
0
55.
16:.
I.T
0
.
168:2
1919.0
.1
.S:D
0
4242.
169:5
44.1
2.4
0
42.
170:1
42.1
2.2
0
46.
171:2
4.1
.1 1.5:D
2
1.
'
1T2:2
173:4
10.8
5.8
.1 B.1:D
1.1
2
2
3.
9.
194:5
46.6
1.9
0
46.
175:5
48.7
2.3
0
49.
176:2
25.B
.1 ].9:D
0
51.
1:
1 78T8:2
11T.1
45.9
3.9
.1 5.3:C
0
0
5.
58.
179:5
15.7
1.6
0
35.
180:2
80.3
.1 5.O:D
1
29.
201:3
52.3
(DIRECT FLOW)
0
35.
202:3
203:3
91.2
37.0
(DIRECT FLOW)
(DIRECT FLOW)
0
0
35.
35.
209:3
304.8
(DIRECT FLOW)
0
35.
210:3
442.6
(DIRECT FLOW)
0
35.
214:3
37.9
(DIRECT FLOW)
0
35.
215:3
21.9
!DIRECT FLOW!
0
35.
216:3
265.4
(DIRECT FLOW)
2
23.
'
223:3
147.2
(DIRECT FLOW)
0
35.
224:3
186.6
(DIRECT FLOW)
0
35.
226:3
66.2
(DIRECT FLOW)
0
35.
241:3
95.8
(DIRECT FLOW)
1
3.
250:2
1.6
.1
.3:D
1
2.
1
251:3
57.3
(DIRECT FLOW)
0
35.
252:3
76.6
(DIRECT FLAW)
0
35.
261:3
94.5
(DIRECT FLAW)
0
35.
262:3
128.9
(DIRECT FLOW)
0
35.
270:3
25.4
(DIRECT FLOW)
0
35.
201:5
51.2
2.6
0
35.
272:2
.9
.1
.2:1)
1
15.
275:2
89.1
2.0
0
50.
281:1
122.3
.8
0
38.
262:1
487.3
2.4
1
3.
'
2B3:1
488.1
1.9
1
2.
284:1
450.7
1.2
0
58.
291:2
3.1
.1 1.2:D
2
1.
301:2
28.3
.1 4.5:D
1
14.
310:2
9.5
.1 13.8:D
2
10.
'
315:2
11.3
.1 1.2:D
1
0.
320:1
56.2
1.6
0
41.
321:2
38.4
.1 S.T:D
1
12.
322:2
11.2
.1 3.5:D
2
0.
32:
11.2
.4
1
.
'
324:2
97.6
2.1
0
35
35.
325:1
181.3
2.9
0
36.
326:5
178.8
3.7
0
36.
327:1
164.3
2.7
0
3B.
3 2 8 : 5
41 .
2.
0
3.
'
329:1
18484.4
2.8
0
38.
330:2
5.4
.1 2.3:0
2
1.
331:2
100.2
2.3
0
35.
334:2
16.9
.1 4.O:D
1
31.
3:2
J 4141:5
.0
19393.5
.1 2.4:D
4.6
2
0
3.
56.
'
350:2
11.7
.1 1.2:D
0
56.
359:1
3B1.9
3.3
1
19.
358:2
381.9
4.0
1
19.
3:
36060:2
38..
384.94
4.1
1
1
2.
20.
'
361:1
394.3
3.3
1
19.
362:1
396.5
3.4
1
19.
363:1
409.2
3.4
1
17.
364:4
TT4.9
4.0
1
2.
365:2
18.3
.1 2.6:D
1
0.
366:4
933.8
5.1
0
55.
369:4
932.8
6.9
0
57.
360:4
949.5
5.6
1
5.
369:4
309.0
3.1
0
40.
370:2
20.4
.. .6:D
0
45.
371:2
1.5
.1 .S:D
1
3B.
'
372:2
27.1
.1 .6:D
0
45.
373:2
432.8
.1 15.6:D
0
55.
394:2
24.8
.1 1.9:D
0
51.
3B0:2
75.0
.1 6.6:D
1
13.
381:2
11.6
.1 2.0:D
0
58,
'
382:2
33.2
.1 1.3:D
0
46.
383:2
16.0
.1 1.9:D
1
].
384:2
10.9
.1 1.9:0
1
21.
3 8 6 : 1
4]3.3
1.5
0
52.
387:1
411.6
1.2
0
47.
3 8 8 : 1
460.3
1.2
0
41.
395:3
3.6
(DIRECT FLOW)
0
31.
400:1
48.7
1.2
0
37.
401:1
32.6
.4
0
48.
402:1
37.0
.5
0
.
403:1
]3.1
2.2
1
19
19.
404:5
35].3
4.1
0
35.
405:5
196.5
4.2
0
41.
406:3
229.9
(DIRECT FLOW)
0
35.
407:3
361.5
(DIRECT FLOW)
0
35.
'
409:1
326.4
1.5
0
38.
410:4
1733.4
5.1
1
1.
411:4
1755.4
7.6
1
4.
412:4
1781.3
6.8
1
6.
413 :5
1907.8
5.5
1
3.
'
414:1
1947.3
3.7
1
5.
415:1
2000.5
3.1
1
6.
416:1
201].1
3.5
1
].
417:2
.0
.1 459.7:S
30
0.
470:2
4 ]1 :2
73.0
69.8
.1 1. 1:D
.1 .9:D
2
2
0.
0.
'
472:2
64.4
.1 9.0:D
2
1.
474:2
9.6
.1 14.7:D
2
15.
4]]:2
68.6
.1 .4:D
D
36.
4:2
98080:2
12.
10.5
.1 .1:D
.1 .I:D
0
0
3.
36.
481:3
22.2
(DIRECT FLOW)
0
35.
483:2
2.8
.1 1.2:D
2
1.
486:2
39.6
.1 4.8:D
1
10----------- PIER POND
411:2
490:2
15.6
2.1
.1 13.3:D
.1 .2:D
3
0
52.----------POND 488
50.
'
491:2
3.6
.1 .S:D
0
55.
496:2
13.2
.1 2.1:D
1
].
497:2
1.8
.1 .B:D
2
1.
517:3
2061.5
(DIRECT FLOW)
0
56.
570:3
93.0
(DIRECT FLOW)
0
40.
571:3
96.0
(DIRECT FLOW)
0
35.
572:3
256.0
(DIRECT FLOW)
0
35.
594:3
460.0
)DIRECT FLOW)
0
35.
576:3
90.1
(DIRECT FLOW)
0
35.
5]]:3
80.3
(DIRECT FLOW)
0
35.
582:3
].]
(DIRECT FLOW)
0
35.
583:3
23.8
(DIRECT FLOW)
0
54.
584:3
39.6
(DIRECT FLOW)
1
10.
586:3
246.3
(DIRECT FLOW)
0
35.
588:3
380.5
(DIRECT FLOW)
0
35.
'
591:1
9.1
1.1
2
5.
592:1
11.0
.6
1
59.
593:2
11.0
.1 3.2:D
1
56.
594:2
9.1
.1 3.O:D
2
1.
673:3
3E.6
(DIRECT FLOW)
1
10.
'
682:3
6.0
(DIRECT FLAW)
0
35.
6 0 3 : 3
1.8
(DIRECT FLOW)
0
35.
604:3
21.0
(DIRECT FLOW)
0
43.
ENDPROGRAM
PROGRAM CALLED
Proposed Detention Ponds - Stage/Storage
LOCATION:
SETTLER'S CREEK
PROJECT NO:
39402.00
COMPUTATIONS BY: ES
SUBMITTED BY:
JR Engineering
DATE:
1/7/2005
V = 1/3 d (A + B + sgrt(A"B))
where V = volume between contours, ft3
d = depth between contours, It
A = surface area of contour
POND/NVERT=
WQCV=
100-YR WSEL =
SPILLWAY EL =
TOP OF BANK =
Pond 488
Stage
(ft)
Surface
Area
(ft)
Incremental
Storage
(ac-ft)
Total
Storage
(ac-ft)
Detention
Storage
(ac-ft)
5000.51
0
5001
2620
0.000
0.00
0
5002
21633
0.243
0.24
0.00
5003
58085
0.881
1.12
0.00
5003.46
81239
0.727
1.85
0.00
5004
108749
1.885
3.01
1.88
5005
157600
3.040
6.05
4.92
5006
165268
3.706
9.75
8.63
5006.68
169499
2.613
12.37
11.24
5007
171491
3.865
13.62
15.11
5008
177708
4.008
17.63
19.12
WQCV Provided =
1.85
ac-ft
5003.46
100-yr Detention Volume Required =
11.24
ac-ft per EXTRAN
5006.68 14.7cfs release rate
100-yr Detention Volume Required =
13.30
ac-ft per SWMM
5007.20 15.6cfs release rate
3940200pond.xls
I
[1
1
1
Detention Pond
Emergency Overflow Spillway Sizing
LOCATION: SETTLER'S CREEK
PROJECT NO: 39402.00
COMPUTATIONS BY: ES
SUBMITTED BY: JR Engineering
DATE: 1/6/2005 top of berm
Equation for flow over a broad crested weir _
Q = CLH312 +
where C = weir coefficient = 2.6 spill elevation
H = overflow height
L = length of the weir
The pond has a spill elevation equal to the maximum water surface elevation in the pond
Size the spillway assuming that the pond outlet is completely clogged.
Pond 488
Q (100) =
Spill elev =
Top of berm elev.=
Spill Flow Depth, H =
Weir length required:
L=
UseL=
380.5
cfs (peak flow into pond)
5007.00
ft
5008.00
ft
1.00
146 ft
146 ft
v = 2.57 ft/s
' spillway, 3940200pond.xls
Project: ( / _3 ofe /\ Job No: O-1 O 0
i
i
liene By: L /S Chk. By:
Date: / d
�bject: IL AA raa n/< \ / (2, F /� < l 1� / ,,xeet No: _ of
1
1
I
1
1
1
1
[7
1
1
1
i
1
1
1
1
fV
J•R ENGINEERING
A Westylan Company
I
E
APPENDIX G
RIPRAP AND EROSION CONTROL CALCULATIONS
�I
1
1
' Final Drainage and Erosion Control Report Appendix
Settler's Creek March 2005
1/10/2005
LOCATION: SETTI.ER'S CREEK
ITEM: RIPRAP CALCULATIONS FOR CHANNEL AND SPILLWAY LININGS
COMPUTATIONS BY: ES
SUBMITTED BY: JR ENGINEERING
DATE: 09/29/04
Riprap requirements for a stable channel lining are based on the
equation from Storm Drainage Design Criteria, City of Fort Collins, CO, May 1984
V SO 17 = 5.8
where:
V = mean channel velocity (Ns)
S = longitudinal channel slope (B/R)
Ss = specific gravity of rock (minimum
S , = 2.50)
d,= rock size in feel for which 50 percent
of the riprap
by weight is smaller
Determine what riprap is required using
Table 8.2
Channel Longitudinal
Specific
Class of
ds°
Min. Riprap
Velocity Depth Slope
Gravity
V S°'1r
Froude
Is
Riprap
Table 8.1
Thickness
LOCATION
(ftfs) (R) (ff/R)
of Rock
(Ss • 1)0°°
Number
F <0.8 7
Table S.2
(in)
(in)
Curb Cut Swale for Home Depot
4.54 0.45 0.113
2.5
2.40
1,19
FALSE
6
6
10.5
Emergency Spillway for Pond 488
2.6 1.00 0.250
2.5
1.55
D45
TRUE
6
6
10.5
Curb Cut for DP 8
2.7 0.12 0.010
2.5
0.95
1.39
FALSE
NONE
NONE
NONE
394020ORiprap xis
u2
�«°
7
�
f
§
{
!i.
§
! 0-
)if---
__
«0
�(
a�f;r=
u
__
§{
_
U.
ia
§
�(
r
�))\_\\
70§0-5
!
a�
$:%
JIȤ!
\}
§22
5(Sa!
S//:
¢r
ƒ
c
c
d
E
adi
N
C
O
D
d
L
N
V N
�
O
C
O
d N
> w
N
C
O A
C y O
D N
O V
C O c d
o >
N
c N
a o 0 0
u
O L O
C (ID d
7 `U OI d
y n o o
m
d D
"p —010
D
L
�p n N
II
� II U
O o
II II II
> >
N
U r
d U
�
N �
c
N �
Q 0
N
o �
c
G D
N d
u
� N
m
o d
LL�
7
L N v l 0 0 0
_aa0 5 �co of
E E E
0 0 0
U) rnN
,1
1
1
1
DRAINAGE CRITERIA MANUAL
MAJOR DRAINAGE
Table 5-1
CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP
Riprap
% Smaller Than
Intermediate Rock
d50*
Designation
Given Size
Dimension
By Weight
(Inches)
(Inches)
Type VL
70-100
12
50-70
9
35-50
6
6**
2-10
2
Type L
70-100
15
50-70
12
35-50
9
9**
2-10
3
Type M
70-100
21
50-70
18
35-50
12
12
2-10
4
Type H
100
30
50-70
24
35-50
18
18
2-10
6
Type VH
100
42
50-70
33
35-50
24
24
2-10
9
*d50 = Mean particle size
** Bury types VL and L with native top soil and revegetate to protect
from vandalism.
5.2 Wire Enclosed Rock
Wire enclosed rock refers to rocks that are bound together in a
wire basket so that they act as a single unit. One of the major
advantages of wire enclosed rock is that it provides an alternative in
situations where available rock sizes are too small for ordinary
riprap. Another advantage is the versatility that results from the
regular geometric shapes of wire enclosed rock. The rectangular
blocks and mats can be fashioned into almost any shape that can be
1
11-15-82
1
i
l
1
1
1
1
1
1
1
1i
1
1
1
1
1
1
1
1
DRAINAGE CRITERIA MANUAL (V. 1)
M.
In
4C
0
0
KI
MAJOR DRAINAGE
�EENEWAAEFAIA
0
PAAFE
E
■■
�..
-
Ew
.2 .4 .6 .8 lb
Yt/D
Use Do instead of D whenever flow is' supercritical in the barrel.
**Use Type L for o distance of 3D downstream .
FIGURE MD-21
Riprap Erosion Protection at Circular Conduit Outlet Valid for Q/D' 5 <_ 6.0
06/2001
Urban Drainage and Flood Control District
u. 101
DRAINAGE CRITERIA MANUAL (V. 1)
MAJOR DRAINAGE
m
C
� O
N
a_
_R
V
Z
O
rn
2
a
x
w
6 = Expansion Angle
IMENNEN
N'
ma
0
FAA
No
0
.I .2 .3 A .5 .6 .7 .8
TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D
FIGURE MD-23
Expansion Factor for Circular Conduits
06/2001
Urban Drainage and Flood Control District
MD-111
' JR Engineering
2620 E. Prospect Rd., Sle. 190
' Fort Collins, CO 80525
I
1
RAINFALL PERFORMANCE STANDARD EVALUATION
PROJECT: Settler's Creek STANDARD FORMA
COMPLETED BY: es DATE: 10-Nov-04
DEVELOPED
ERODIBILITY
Asb
Isb
SO
At' LI
Ai -Si
Lb
Sb
PS
St1BBASIN(s)
ZONE
(AC)
(FT)
(%)
(FT)
(%)
(%)
100
MODERATE
0.28
143
1.7
39.6
0.5
,
101
0.74
313
L5
233.1
1.1
102
1.61
405
10
650.8
1.7
103
1A2
554
L6
785.7
2.3
104
0,60
448
1.3
269.4
0.8
105A
1.47
517
1.5
759.7
2.2
105B
0.68
906
1.2
618.3
0.8
106
2.15
398
1.1
857.8
2.3
107
0.57
235
1.1
133.5
0.6
108
-
0.79
230
1.1
182.0
0.9
109
3.01
425
1.0
1278.5
3.1
Teal
13.32
5908.25
16.25
436
1.2
78.2%
Ash =Sub -basin area
Lsb = Sub -basin Flow path length
Ssb = Sub -basin slope
'
Lb = Average (low path length = sum(Ai Li)/sum(Ai)
Sb = Average slope = sum(Ai Si)/Sum (Ai)
rI
1
C
1
u
PS is taken from Table 8-a (Table 5.1, Erosion Control Reference Manual) by interpolation.
An Erosion Control Plan will be developed to contain PS% of the rainfall sedimentation
that would normally Flow off a bare ground site during a 10-year, or less, precipitation event.
Erosion.xls
' o
o
0.1 01000
vvinInIn
In
WmWmm
o
rnrna+ol000000
' o
cvvalrilnln
v
mWWWmWmwww
M
W m W W W W W m m W W W W W m
o
.
r0!1!0! mmo o,mO101aa+0:O mO +0:
. . . . . .
.
o
. . . . . . . . . . . . . .
vvavvvvvvvvvvvvvvvvv
N
W m W rD W W W W W W W W W W W W m W W W
O
0 m v in w%0%D ID rr r rrr rr r r rr W W W W W W
O o
vvvvavv.rcvvvvvvvvvvvvvvvvv
ri
OD CO (D W CO CO CO W CO W W OD 70 CO W W CO CO CO CO W W W W CO W
O
mNM V In In In IO W ID ID ID ID r r r r r r r r r r W co W
0
a Ir
�;��V.VVV-Wvva
�
W W W W m m W W W W W m m m W m W W m W m m m W m m
O
IDONMv VInInIn V1IO�O%00IDWWIDWWrrrrrr
. V1 c�
f`1v V ;4;44;;V V ;44;4;4 V vvv V vv
-
z
co m cu CO W CO W CO CO W CO CO W Co m Co m m m cO m co co Co Wm
F-I
aO
vrnrrNMnv V V vin In In lf1 111 In 4'11n In IO ID ID ID ID IDr
O r
4,4 v v v v v v; v V V 44 444 444 V v v 44 v
U
cDmcommmmmmcDm W WmmWmmmm W mW W W W
a O
OIO W O1riNNnMnn V VvvV Vvvin In lfl In lD lD
'
O W
M M M v v V V V V V v V V V V V V V V V v V V v V V
iTy
CO W OD GO W W CO cO W CD m CO m W m m W W W W W W W W m m
'
O
LLlN lnr ri r. riN NNNNnMMM n vv V v V
Q.
10dp
. . .
'
co k. `--In
NMrim MnvvvvvvV VvvVvvV vvvvvV
co c0 co co co CO co CO W CO W W W W W W W W W W W m W W W W
W W
0
ma 0In
rimrinvinln DlDrrrmm W W Wmmmrn00000
'
I 44 a v
N N M men n n M M M M n n n M n 4,4 4,4 f4 v v V v v
I
EI 0 O
CO CO CO CO cO CO CO W CO 00 CO W W CO CO CO CO CO CO W W Co W Co W Co
0
W In CO O ri N M V V In In In IO W ID ID %0 r r', r r Co Co W O1 M
V7 v
rl N N M M n M M n M n M n M M M n n n M M n n M n n
W
CO m m m OD m m CO m m m CO CO m m m W W m W W m W W m m
U In
Hl 4 M N W 00ri N N M M Mvv v v v In In In W W W r r
4
\ .
M
N N N N f•I P1 P1 P1 P1 n P1 f•1 n M Mnn M M n M n M M n
'
cc coOD coc0 co co co co co co co Go W co co co co co co W co co W co W
WO
MN ID CO M0 ri NNMMM V V v V v V In In In In ID W ID IO
(Y. n
W
O ri ri r-1 .-I NN NN NN NNNN fV NNNNN NN N NN
m W W W W W W W W CO W OD CO CO CO W m W CO W CO CO CO W W W
DO
In
In In OI N M V In ID rrrm WmOI O\0101110.1 C!C!
a
a N
0% O 0 H ri ri ri 'i r-1 ri ri ri ri ri ri ra ri ri ri N N N N N N
1T
rc000mcoaomcomaoWoommm Wm W Wmmmm Wm W
_
ka.
z O
vtnOM In IDm m01000 ri ri ri r♦ N NNNnM nM Mn
H
.0 N
Qi
W 01 O O O O O O O 4 .-I r'i ri 11 4 r4 ri r-I 4 .� 4 rl 4 r•1 4 ri
r r m m CO CO CO CO CO CO m W W m W m CO CO m m m W Co m Co m
' In
co N co V In r r m OI OI O O ri ri rl ri ri N N N n M n nM
ri
ID co m ON m OI O10101 O101 o o0000000000000
r r r r r r r r r r In co m m m W W CO m CO W W W CO W cr
r 010 ri N M M v V In In In In ID W0 DID r r ID%0%0
ri
vlDrrrrcDc;cD W caW cDcD0D W Wm W co W W com W
rrrrrrrrrrrrrrrnrrrrrrrrrrr
In
movlDrWWrrrIDIDIDInvvnMN1 m( ai iOID
'
O
O N N N N N N NN NN N N N N NN N N N ri It ri ri 00
r r r r r r r r r r r r r r r r n Ir r r r r r r r r
3 F,
00000000000000000000000000
'
O O E+
O o o o o o o o o o o o o o o o o o o o o o o o o o
a4Z k.
ri NM V 0I0r W 010.-1 NM V 0 W N W 0 0 0 0 0 0 M 0
:i.a"
.-1 rir♦ri ri ri ri riririNNn n V vIn
MARCH 1991
DESIGN
CRITERIA
n
T
JR Engineering
2620 E. Prospect Rd., Ste. 190
' Fort Collins, CO 80525
1
1
EFFECTIVENESS CALCULATIONS
PROJECT:
Settler's Creek
STANDARD FORM B
COMPLETEDBY:
es
DATE: 10-Nov-04
EROSION CONTROL
C-FACT'OR
P-FACTOR
METHOD
VALUE
VALUE
COMMENT
BARE SOIL
1.00
1.00
SMOOTH CONDITION
ROUGHENEDGROUND
1.00
0.90
ROADS/WALKS
0.01
1.00
GRAVEL FILTERS
1.00
0.80
PLACED AT INLETS
SILT FENCE
1.00
0.50
SEDIMENTTRAP
1.00
0.50
STRAW MULCH (S = 1-5%)
0.06
1.00
FROM TABLE 8B
STRAW BARRIERS
1.00
0.80
EFF = (I-C*P)* 100
MAJOR
SUB
BASIN AREA
EROSION CONTROL METHODS
BASIN
BASIN
(Ac)
100
0.28
ROADS/WALKS
0.11 Ac.
ROUGHENEDGR.
0.08 Ac.
STRAW/MULCH
0.08 Ac.
GRAVEL FILTER
NET C-FACTOR
0.32
NET P-FACTOR
0.78
EFF = (I -C*P)* 100 =
75.3%
101
0.74
ROADS/WALKS
0.34 Ac.
ROUGHENED GR.
0.20 Ac.
STRAW/MULCH
0.20 Ac.
GRAVEL FILTER
NET C-FACTOR
0.29
NET P-FACTOR
0.78
EFF = (I-C*P)* 100 =
77.3%
102
1.61
ROADS/WALKS
1.15 Ac.
ROUGHENEDGR.
0.23 Ac.
STRAW/MULCH
0.23 Ac.
GRAVEL FILTER
NET C-FACTOR
0.16
NET P-FACTOR
0.79
EFF = (1-C*P)* 100 =
8T6%
103
1.42
ROADS/WALKS
1.02 Ac.
ROUGHENED GR.
0.20 Ac.
STRAW/MULCH
0.20 Ac.
GRAVEL FILTER
NET C-FACTOR
0.15
NET P-FACTOR
0.79
EFF = (I-C*P)* 100 =
87.8%
' 3940200erosion.XLS
I
11
11
J
L
JR Engineering
2620 E. Prospect Rd., Ste. 190
Fort Collins, CO 80525
PROJECT:
Settler's Creek
STANDARD FORM B
COMPLETED BY:
es
DATE: 10-Nov-04
EROSION CONTROL
C-FACTOR
II -FACTOR
METHOD
VALUE
VALUE
COMMENT
BARE SOIL
I.00
1.00
SMOOTH CONDITION
ROUGHENEDGROUND
1.00
0.90
ROADS/WALKS
0.01
1.00
GRAVELFILTERS
1.00
0.80
PLACED AT INLETS
SILT FENCE
1.00
0.50
SEDIMENTTRAP
1.00
0.50
STRAW MULCH IS = 1-5%)
0.06
1.00
FROM TABLE 8B
STRAW BARRIERS
1.00
0.80
EFF = (1-C*P)• 100
MAJOR
SUB
BASIN AREA
EROSION CONTROL METHODS
BASIN
BASIN
(Ac)
104
0.60
ROADS/WALKS
0.53 Ac.
ROUGHENEDGR.
0.04 Ac.
STRAW/MULCH
0.04 Ac.
GRAVEL FILTER
NET C-FACTOR
0.08
NET P-FACTOR
0.79
EFF = (I -C'P)• 100 =
94.0%
105A
1.47
ROADS/WALKS
0.40 Ac.
ROUGHENED GR.
0.54 Ac.
STRAW/MULCH
0.54 Ac.
GRAVEL FILTER, SILT FENCE
NET C-FACTOR
0.39
NET P-FACTOR
0.39
EFF= (I-C'P)-100 =
85.0%
105B
0.68
ROADS/WALKS
0.44 Ac.
ROUGHENEDGR.
0.12 Ac.
STRAW/MULCH
0.12 Ac.
SILT FENCE
NET C-FACTOR
0.20
NET P-FACTOR
0.49
EFF = (1-C'P)• 100 =
90.4%
106
2.15
ROADS/WALKS
1.74 Ac.
ROUGHENED GR.
0.20 Ac.
STRAW/MULCH
0.20 Ac.
GRAVEL FILTER
NETC-FACTOR
0.11
NET P-FACTOR
0.79
EFF = (1-C'P)• 100 =
91.4%
107
0.57
ROADS/WALKS
0." Ac.
ROUGHENED GR.
0.06 Ac.
STRAW/MULCH
0.06 Ac.
SILT FENCE
NETC-FACTOR
0.13
NET P-FACTOR
0.49
EFF = (I -C"P)k 100 =
93.7%
3940200erosion.XLS
I
1
CIS
JR Engineering
2620 E. Prospect Rd., Ste. 190
Fod Collins, CO 80525
PROJECT:
Settler's Creek
STANDARD FORM B
COMPLETED BY:
es
DATE: 10-Nov-04
EROSION CONTROL
C-FACTOR
P-FACTOR
METHOD
VALUE
VALUE
COMMENT
BARE SOIL
1.00
1.00
SMOOTH CONDITION
ROUGHENEDGROUND
1.00
0.90
ROADS/WALKS
0.01
1.00
GRAVELFILTERS
1.00
0.80
PLACED AT INLETS
SILT FENCE
1.00
0.50
SEDIMENTTRAP
1.00
0.50
STRAW MULCH IS = 1-5%)
0.06
1.00
FROM TABLE 8B
STRAW BARRIERS
1.00
0.80
EFF = (I-C*P)" 100
MAJOR
SUB
BASIN AREA
EROSION CONTROL METHODS
BASIN
BASIN
(Ac)
108
0.79
ROADS/WALKS
0.67 Ac.
ROUGHENED OR.
0.06 Ac.
STRAW/MULCH
0.06 Ac.
SILT FENCE
NET C-FACTOR
0.09
NET P-FACTOR
0.50
EFF = U -C*P)* 100 =
95.5%
109
3.01
ROADS/WALKS
0.00 Ac.
ROUGHENEDGR.
1.50 Ac.
STRAW/MULCH
1.50 Ac.
GRAVEL FILTER
NETC-FACTOR
0.53
NET P-FACTOR
0.76
EFF = (1-C"P)" 100 =
59.7%
TOTAL AREA 13.32 ac
TOTAL EFF = 82.0% IF (basin area * eff) / total area
REQUIRED PS = 78.2%
' Since 82.0%> 78.2%, the proposed plan is o.k.
I
3940200erosion.XLS
CONSTRUCTION SEQUENCE
' Project: SETTLER'S CREEK Date: 3/03/2005
1
1
11
C
11
i
Indicate with bar line when constructions will occur and when BMP's will be installed/removed in relation to the construction phase
CONSTRUCTION PHASE (Week/Month)
1
2
3
4
5
6
7
8
9
10
11
12
Grading (Include Offsite)
Overlot
§yy
>
Detention/WC) Ponds
s
Swales, Drainageways, Streams
Ditches
*c
Pipeline Installation (Include Offsite)
Water
Sanitary Sewer
Stormwater
Ott
Concrete Installation (Include Offsite)
Area Inlets
t ,
Jr
Curb Inlets
Pond Outlet Structures_
)_z
Curb and Gutter
Box Culverts, Bridges
Steel Installation (Include Offsites)
Grading/Basezw�
z=F4
Pavementti�
Miscellaneous (Include Offsite)
Drop Structures
Other (List)
BEST MANAGEMENT PRACTICES
Structural— "Installation"
Silt Fence Barriers
P
Contour Furrows (Ripping/Disking)
4
Sediment Trap/Filter
%,:7777
Vehicle Tracking Pads
Flow Barriers (Bales, Wattles, Etc.)
Inlet Filter;r
Sand Bags
Bare Soil Preparation
Terracing
Stream Flow Diversion
Rip Rap
Other (List)
"All BMPs to be removed once construction is complete
VEGETATIVE
Temporary Seed Planting
Mulching/Sealant
Permanent Seed Planting
Sod Installation
Nettings/Blankets/Mats
<-
Other (List)
1
1
1
1
i
1
1
1
1
1
i
1
i
1
1
i
1
1
1
Settler's Creek
EROSION CONTROL COST ESTIMATE
JOB NO. 39402.00
EROSION CONTROL MEASURES
COMPLETED BY: ES
ITEM
DESCRIPTION
UNITS
I UNIT COST
1QUANTITY
I TOTAL COST
1
TEMPORARY SEED & MULCH
ACRE
$ 725.00
13.3
$ 9,657.09
2
SILT FENCE
LF
$ 3.00
3,694
S 11,080.80
3
GRAVEL CONSTRUCTION ENTRANCE
EACH
$ 500.00
1
S 500.00
4
INLET PROTECTION
EACH
$ 250.00
26
s 6,500.00
5
STRAW BALES
EACH
$ 3.25
0
$ -
6
SEDIMENT TRAP/BASIN
EACH
$ 500.00
1
$ 500.00
COST $ 28,237.89
CITY RESEEDING COST FOR TOTAL SITE. AREA
ITEM
DESCRIPTION
UNITS
I UNIT COST
1QUANTITY
I TOTAL COST
1
RESEED/MULCH (ALL disturbed area on and off site)
I ACRE
I i $ 725.00
13.3
$ 9,657.09
COST S 9,657.09
WITH FACTOR OF
t
t
1
I
' APPENDIX H
' EXCERPTS FROM OTHER REPORTS
F-
r
I
I
i
I
I
I
I
F�
' Final Drainage and Erosion Control Report Appendix
Settler's Creek March 2005
1
1
1
1
1
1
1
1
1
McCLELLANDS CREEK
MASTER DRAINAGE PLAN UPDATE
FINAL REPORT & TECHNICAL APPENDIX
(VOLUME I OF 2)
NOVEMBER 30, 2000
(Revised March 2003)
Prepared for:
City of Fort Collins
Utilities
700 Wood Street
Fort Collins, CO 80522
Contact: Ms. Susan Hayes
(970)221-6700
Prepared by:
ICON Engineering, Inc.
8100 South Akron Street, Suite 300
Englewood, CO 80112
(303)221-0802
City of Fort Collins
No Text
1
1
HARMONY CENTER
INPUT
HYDROGRAPH
3I
76
88
3821 = OUT OF MODEL
384
DIVERSION 375
ELEMENT
5
LEMAY
30 29 28
282 281 280
203
204
1
17
67
1 1 9
205
1 C
1 3
320
202
r�
MIRAMONT
1.27-
2
25 ��326
3.
211
212
271
NITH
McCLELLANDS CREEK
SWMM ROUTING SCHEMATIC
111
Basin
Conveyance
112 W' .,
Element
g1
Detention
Pond
270
Node
340
34 160
121
360 6 36_A '
26 122 \
260 46 42 j
25�
5
250
240
OAKRIDGE
110 itt N2
112 ,
320 1 114 330
47
230 91
290
113
0 1 116
115' 2010
45 1 190 /
J. 21
20
. 200
4 g
;118
90
2
SEE
FIGURE
3.2b
McClellands Creek Master Drainage Plan Update 11/00
FIGURE 3-2a
I
1
1
1
' EXISTING CONDITION EXTRAN MODEL FROM
CITY OF FORT COLLINS
1
1
1
Final Drainage and Erosion Control Report
Settler's Creek
d
Appendix
March 2005
1
FEATURE i
EXTQAN �,emailc �i rum
CHECKED BY E
�-
1
Node 0%Dlser�
11 ofmoielin9 reach
1
1
Air dtllgwS &Mnd
Iol I Dwn4feom 6ourdwalk
o�
1
1
Note a4 Ntxnd of
/� yob{o al -inch RCP
�N I
1
1
'FVR
GLOW
FFDDFDlR
=""l
G*'/rK-'tiT5
—7/u(9,
Nev-Pow Weir I I I 1m�
6dl-incHpCp
5eehon goao�l logo of 144 pe
der De4eAJOA `Pbga
3� I Sfara9e 7unohan
PcOP05 cd
IS-incb kcp r
(onneChn, Ape
7 IAFW tt � rip
(5umm4 vn a¢ 5WMM elode-
II Dea ennj Doti CeRitr
�1Od DefcniunPanb
${orn9eT�ncfio^
.IAWii ro rAph
(Nodc5t �yom Ails xroo-W)
*
NBLOCK JIN(1) JOUT(1)
SW
1 0 0
'
*
NITCH NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4)
MM
1 1 2 3 4
@
0 'save32.prn'
$EXTRAN
'
Al
'HARMONY CENTER & PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN'
Al
16/24/1999 ICON ENGINEERING, INC. File: Pier.dat Revised MBF 3/22/00'
*
BO line (OPTIONAL)
'
*
ISOL Solution technique parameter.
*
= 0 Explicit EXTRAN solution
*
= 1 Enhanced explicit solution
'
*
*
= 2 Iterative explicit solution using variable
time -steps <_ DELT (group B1). Iteration
*
limit is ITMAX and convergence criterion is
*
SURTOL (group B2).
KSUPER = 0 Use minimum of normal flow and dynamic flow
'
*
when water surface slope < conduit slope (default).
*
= 1 Normal flow always used when flow is supercritical.
*
ISOL KSUPER
BO
0 0
*
JELEV JDOWN
BB
0 0
*
NTCYC DELT TZERO NSTART INTER JNTER REDO
'
B1
3600 10.0 0.0 1 360 30 0
*
METRIC NEQUAL AMEN ITMAX SURTOL
B2
0 1 0 30 0.05
*
NHPRT NQPRT NPLT LPLT NJSW
B3
4 5 0 0 2
B4
30001 30002 30010 30011
B5
1001 1010 1011 90004 90005
'
* NCOND NJUNCI NJUNC2 Qo TYPE AFULL DEEP WIDE LEN ZP1 ZP2 ROUGH STH
SPH
Cl
1001 30002 30001 0. 1 0.0 1.50 0.0 113. 0.0 2.38 .0156 0.0
0.0
C1
1010 30001 30010 0. 1 0.0 1.75 0.0 210. 0.0 0.0 .0158 0.0
0.0
Cl
1011 30010 30011 0. 6 0.0 4.00 1.0 300. 0.0 0.0 0.060 3.5
3.5
*
JUNCTION NODES
*
JUN GRELEV Z QINST YO
'
D1
D1
30001 5005.0 4197,16 0.0 0.0
30002 5007.0 5000.45 0.0 0.0
D1
30010 5004.0 4996.34 0.0 0.0
D1
30011 5004.0 4994.69 0.0 0.0
*
JUNCTION DETENTION STORAGE DEFINITION
* JSTORE
GELEV ASTORE NUMST (AREA IN ACRES VS. DEPTH IN FEET)
*
LOWER PORTION OF PIER DETENTION POND
*
E1
30001 5005.0 -1.0 8
E2
0.100 0.0 0.188 0.34 0.300 1.34 0.545 2.34 0.606
3.34
0.770 4.34 2.916 6.34 2.916 7.34
*
UPPER PORTION OF DETENTION POND AMMENDED TO AS-BIULT DATA BY ICON 6/24/99
'
El
30002 5007.0 -1.0 7
E2
0.010 0.0 0.521 1.55 1.5 2.55 2.2 3.55 2.79
4.55
3.23 5.55 3.34 6.05
'
*
OVERFLOW WEIR SECTION TO SIMULATE STREET OVERTOPPING FOR PIER POND
G1
30001 30010 1 5.6 7.3 30.0 2.6
*
OVERFLOW WEIR SECTION ADDED BY ICON
G1
30002 30001 1 5.95 6.55 26.0 2.6
'
*
BOUNDARY CONDITIONS
11
30011
1
11
2
'
J2
4995.0
K1
2
'
K2
30002
30001
K3
0
0
0
K3
1
0
0
1
K3
1.0833
0.1
0.1
K3
1.1667
6.7
5.3
'
K3
K3
1.1833
1.2
10.3
14.6
7.7
10.2
K3
1.2167
19.1
12.6
K3
1.2333
23.3
14.8
K3
1.25
27.1
16.7
'
K3
1.2667
31.7
19.7
K3
1.2833
37.2
24.0
K3
1.3
41.9
27.7
'
K3
1.3167
45.8
30.8
K3
1.3333
49.1
33.3
K3
1.35
53.0
36.6
K3
1.3667
57.8
40.9
K3
1.3833
62.1
44.7
K3
1.4
65.8
47.9
K3
1.4167
69.0
50.8
'
K3
1.4333
78.5
59.9
K3
1.45
94.2
75.3
K3
1.4667
107.7
88.4
K3
1.4833
119.0
99.1
'
K3
1.5
128.4
107.7
K3
1.5167
151.0
129.6
K3
1.5333
185.8
163.5
K3
1.55
213.5
188.1
K3
1.5667
235.7
206.3
K3
1.5833
253.3
220.8
K3
K3
1.6167
1.6
243.9
217.6
209.9
183.6
K3
1.6333
200.5
166.7
K3.
1.65
189.2
154.0
K3
1.6667
181.9
144.4
'
K3
1.6833
172.0
132.4
K3
1.7
159.9
118.7
K3
1.7167
151.0
108.3
'
K3
1.7333
144.3
100.5
K3
1.75
139.3
94.5
K3
1.7667
132.8
87.1
K3
1.7833
124.9
78.7
'
K3
1.8
118.5
71.9
K3
1.8167
113.3
66.5
K3
1.8333
109.1
62.2
K3
1.85
105.1
58.1
K3
1.8667
101.1
54.2
K3
1.8833
97.8
51.0
'
K3
K3
1.9167
1.9
95.0
92.7
48.3
46.1
I
I
C
1
K3
1.9333
90.5
43.9
K3
1.95
88.3
41.7
K3
1.9667
86.3
39.9
K3
1.9833
84.6
38.3
K3
2
83.0
36.9
K3
2.0833
75.7
31.6
K3
2.1667
70.0
28.2
K3
2.25
65.4
25.8
K3
2.3333
61.6
23.9
K3
2.4167
58.4
22.4
K3
2.5
55.7
31.1
K3
2.5833
53.3
21.1
K3
2.6667
51.1
19.0
K3
2.75
49.2
18.1
K3
2.8333
47.5
17.4
K3
2.9167
46.0
16.7
K3
3
44.6
16.0
K3
3.1667
31.5
5.7
K3
3.3333
27.1
2.7
K3
3.5
25.1
1.6
K3
3.6667
23.9
1.0
K3
3.8333
23.0
.7
K3
4
22.3
.5
K3
4.1667
21.8
.4
K3
4.3333
21.2
.3
K3
4.5
20.8
.2
K3
4.6667
20.4
.2
K3
4.8333
19.9
.1
K3
5
8.6
.1
K3
5.1667
7.4
.1
K3
5.3333
7.2
.1
K3
5.5
7.0
.1
K3
5.6667
6.9
.1
K3
5.8333
6.8
.0
K3
6
6.7
.0
K3
6.1667
6.6
.0
K3
6.3333
6.5
.0
K3
6.35
6.5
.0
K3
6.3667
6.5
.0
K3
6.3833
6.5
.0
K3
7
6.2
.0
K3
7.5
6.1
.0
K3
8
6.0
.0
K3
8.5
5.9
.0
K3
9
4.4
.0
K3
9.5
4.1
.0
K3
10
4.1
.0
K3
10.5
4.1
.0
K3
11
1.5
.0
$ENDPROGRAM
1
.................................................
' U.S. Environmental Protection Agency
Version .... ....... CON beta)
*'.Storm sign 4.40 (Lahnt.MCON .ISWMM.. ..'..:
Developed by
'
•••••••••••'••Metcalf•6'Eddy•'Inc•......••••••••*
University of Florida
' Water Resources Engineers, Inc. '
nd n'R:..•*.•"
a1970
.M`Xee:'�I
September ....
: •••••(Now 'CampSeprember
Distributed and Maintained by
...« ............................................
' U.S. Environmental Protection Agency
' Center for Exposure Assessment Modeling (CEAM)•
` Athens Environmental Research Laboratory '
• 960 College Station Road
• ....••Athens, GA 30605-2720
• This is a new release of SHINN. If any
problems occur executing this model
system, contact Mr. Frank Stancil,
U.S. Environmental Protection Agency.
' 706/355-8328 (voice)
• e-mail: stancil@athens.ath.epa.gov '
Or contact Wayne C. Huber at Oregon St. U..
541/737-6150 or huberw@ccmail.orst.edu
Or Michael F. Schmidt at Camp Dresser e
• McKee (904) 281-0170 SCHMIDTMF@CDM.COM
' •••This•is•an• implementation• of • EPA• SwMM• 4.40
• 'Nature is full of infinite causes which
• have never occurred in experience- da Vinci
#X#kkkkk##k#####k###k####################8#
#
File names by SWNM Block #
#
#
JIN -> Input to a Block k
JOUT > Output from a Block #
k##k###N##N#######k########################
JIN
for Block # 1 File # 0 save32.prn
'
JOUT
Xk#XkpMMp
for Block # 1 File k 0 save32.prn
kpp kN#k###k#ppp#pM#ppp#p#p#ppXppM#
# Scratch
file names for this simulation. #
##k#XXkkXXX##k#######0#*#####k##t##########
'
NSCRAT.p..........
File
' Parameter
..p....1..SCRT...)F...............
Values on the Tapes Common Block
'
Number
of Subcatchments in the Runoff Block INW) ......
1000
Number
of Channel/Pipes in the Runoff Block ING)......
1000
Number
of Connections to Runoff Channels/Inlets (NCP).
6
Number
of Runoff Water Quality Constituents (NRQ1.....
10
Number
of Runoff Land Uses per Subcatchment (NLU).....
10
Number
of Groundwater Subcatchments in Runoff (NGW)...
100
Number
of Interface Locations for all Blocks INIE)....
1000
Number
of Elements in the Transport Block (NET).......
300
Number
of Storage Junctions in Transport (NTSE).......
100
Number
of Input Hydrographs in Transport (NTH)........
80
Number
of Tabular Flow Splitters in Transport (NTSP)..
50
Number
of Elements in the Extran Block (NEE)..........
1400
Number
of Pumps in Extras (NEP).......................
75
Number
of Orifices in Extras (NEO)....................
200
Number
Of Tide Gates/Free Outfalls in Extran (NTG)....
200
Number
Of Extras Weirs I NEW) ..........................
60
u
1
1
I
1
Number
of Extran Printout Locations (NPO).............
30
Number
of Tide Elements in Extran (NTE)...............
20
Number
of Natural Channels (MCI ......................
200
Number
of Storage Junctions in Extran ( NVSE)..........
300
Number
of Time History Data Points in Extran (NTVAL)..
500
Number
of Data Points for Variable Storage Elements
in the Extran Block (MUST) ..........................
25
Number
of Input Hydrographs in Extran INEH)...........
400
Number
of Allowable Channel Connections to
Junctions in the Extran Block (NCHN I ................
15
Number
Rain Gages in Rain and Runoff (MAXRG)..........
200
Number
PRATE/VRATE Points for Extran Pump
Input IMAXPRA) ......................................
30
Number
of Variable Orifices in Extran ( NVORF).........
50
Number
of Variable Orifice Data Points (NVOTIM).......
50
Number
of Allowable Precip. Values/yr in Rain (LIMEN).
5000
Number
of Storm Events for Rain Analysis (LSTORM).....
5000
Number
of Plugs for Plug -flow in S/T (NPLUG)..........
3000
Number
Conduits for Extran Results to ASCII
File
(MXFLOW).......................................
150
'•Entry'made•Co•the•IXTENDED•TAANS PORT• MODEL'(EXTRAN)••••
• developed 1973 by Canes, Dresser and McKee (CDM) with
• modifications 1977-1991 by the University of Florida.
' Most recent update: July 1997 by CDM, Oregon
State University, and XP Software, Inc. '
"Smooth runs the water where the brook is deep." '
• Shakespeare, Henry VI, II, III, 1
1 ____ ------------------------------
ENVIRONMENTAL PROTECTION AGENCY `•" EXTENDED TRANSPORT PROGRAM '•••
DIVISION
WASHINGTON, D.C. "`• ••••
INC.
•"` ANALYSIS MODULE `•'•
HARMONY CENTER 4 PIER DETENTION POND INTERIM COM. SIMULATION WITH EXTRM
6/24/1999 ICON ENGINEERING, INC. File! Pier.dat Revised MBF 3/22/00
Intermediate continuity output will not be created
Control information for simulation
Integration cycles ................. 3600
Length of integration step is...... 10.00 seconds
Simulation length .................. 10.00 hours
Create equivalent conduits based
on the COURANT condition (no local
losses) ............................ 1
Use U.S. customary units for I/0... 0
Printing starts in cycle........... 1
Intermediate printout intervals of. 360 cycles
Intermediate printout intervals of. 60.00 minutes
Summary printout intervals of...... 30 cycles
Summary printout time interval of.. 5.00 minutes
Hot start file parameter (JREDOI... 0
Initial time (TZER0) ............... 0.00 hours
Initial date (default) ............. 880101 (yr/mo/day)
Iteration variables: ITMAX......... 30
SURTOL........ 0,0500
Default surface area of junctions.... 12.57 square feet.
EXTRAN VERSION 3.3 SOLUTION. (ISOL = 0).
WATER RESOURCES
CAMP DRESSER 6 MCKEE
ANNANDALE, VIRGINIA
I
Sum of junction flow is zero during
surcharge.
NORMAL FLOW OPTION WHEN THE WATER
SURFACE SLOPE IS LESS THAN THE
'
GROUND SURFACE SLOPE (KSUPER=O)....
NJSW INPUT HYDROGRAPH JUNCTIONS....
2
'
Printed output for the following 4
Junctions
30001 30002 30010
30011
Printed output for the following 5
Conduits
1001 1010 1011
90004 90005
1 _____
_____
ENVIRONMENTAL PROTECTION AGENCY
" " EXTENDED TRANSPORT
PROGRAM
'•*' WATER RESOURCES
DIVISION
'
WASHINGTON, D.C.
.•.•
. "' CAMP DRESSER & MCKEE
INC.
••.. ANALYSIS
MODULE
'••• ANNANDALE, VIRGINIA
HARMONY CENTER & PIER DETENTION
POND INTERIM COND. SIMULATION
WITH EXTRAN
6/24/1999 ICON ENGINEERING, INC. File: Pier.dat Revised MBF
3/22/00
1
'
.................»,..conduit Da..a............
«..,...
IMP CONDUIT LENGTH CONDUIT
AREA MANNING MAX WIDTH
DEPTH
JUNCTIONS INVERT HEIGHT
TRAPEZOID
NUM NUMBER (FT) CLASS
(SQ FT) COEF .- (FT)
(FT)
AT THE ENDS ABOVE JUNCTIONS
SIDE SLOPES
'
1 1001 113. CIRCULAR
2 1010 210. CIRCULAR
1.77 0.01560 1.50
2.41 0.01580 1.75
1.50
1.75
30002 30001 0.00 2.38
30001 30010
3 1011 300. TRAPEZOID
60.00 0.06000 1.00
4.00
30010 30011
3.50 3.50
'
• ...................
•••equivalentConduitVolumeAnalysis
.........................................
Input full depth volume............
1.8705E.04 cubic feet
'
New full depth volume ..............
1.8705E+04 cubic feet
New volume / Old volume ratio......
1.0000
I________________________________________________________________________________
ENVIRONMENTAL PROTECTION AGENCY
EXTENDED TRANSPORT
PROGRAM
WATER RESOURCES
'
DIVISION
::=:
....
WASHINGTON, D.C.
CAMP DRESSER & MCKEE
INC.
•••• ANALYSIS
MODULE
`••• ANNANDALE, VIRGINIA
HARMONY CENTER & PIER DETENTION
POND INTERIM COND. SIMULATION
WITH EXTRAN
6/24/1999 ICON ENGINEERING, INC.
File: Pier.dat Revised MBF 3/22100
1
•
...................J
..ction.Data....................:
.........un
.:.................... ».................
IMP JUNCTION GROUND CROWN
INVERT QINST INITIAL
CONNECTING
CONDUITS
'
NUM NUMBER ELEV. ELEV.
ELEV. CPS DEPTH(FT)
1 30001 5005.00 5001.54
4997.66 0.00 0.00
1001 1010
2 30002 5007.00 5001.95
5000.45 0.00 0.00
1001
'
3 30010 5004.00 5000.34
4 30011 5004.00 4998.69
4996.34 0.00 0.00
4994.69 0.00 0.00
1010 1011
1011
_- > WARNING ! THE INVERT OF CONDUIT
1001 LIES ABOVE THE CROWN
OF ALL
CONDUITS AT JUNCTION 30001
1------------ ______________________________.______________________________________
ENVIRONMENTAL PROTECTION AGENCY .... EXTENDED TRANSPORT PROGRAM '•" WATER RESOURCES
DIVISION
[]
WASHINGTON, D.C. ....
"'• CAMP DRESSER 6 MCKEE
INC.
•••• ANALYSIS MODULE
.... ANNANDALE, VIRGINIA
'
HARMONY CENTER 6 PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN
6/24/1999 ICON ENGINEERING. INC. File: Pier.dat Revised MBF 3122/00
' STORAGE '
JUNCTION DATA SUMMARY
......................................................
MAXIMUM OR PEAK OR CROWN
STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION
NUMBER OR NAME TYPE AREA (FT2) (CUBIC FEET) (FT)
___
____ _______________ ---------
30001 VARIABLE 127020.95 373786.63 5005.000
30002 VARIABLE 145490.39 453874.53 5007.000
.............................................
' WEIR DATA
FROM TO LINK CREST WEIR WEIR
DISCHARGE SUBMERGENCE NUMBER OF
END V-NOTCH ANGLE SECOND DISCHARGE
JUNCTION .UNCTION NUMBER TYPE HEIGHT(FT) TOP(FT) LENGTH(FT) COEFFICIENT EQUATION
'
CONTRACTIONS OR SIDE SLOPE COEFFICIENT
30001 30010 90004 1 5.60 7.30 30.00
2.6000
30002 30001 90005 1 5.95 6.55 26.00
2.6000
'
•(DATA `GROUP
'`'•'t•••••FREE' OUTFALL• DATA Il)•'•••`
' BOUNDARY CONDITION ON DATA GROUP J1 '
'
•
•••30011`HAS
OUTFALL•AT•JUNCTION
.... BOUNDARY CONDITION NUMBER... 1
1____________ _--_ -_--_
ENVIRONMENTAL PROTECTION AGENCY EXTENDED TRANSPORT PROGRAM
WATER RESOURCES
DIVISION
'
WASHINGTON, D.C.
CAMP DRESSER & MCKEE
INC.
•••` ANALYSIS MODULE
••" ANNANDALE, VIRGINIA
HARMONY CENTER fi PIER DETENTION POND INTERIM CONE. SIMULATION WITH EXTRAN
'
6/24/1999 ICON ENGINEERING. INC. File: Pier.dat Revised MBF 3/22/00
..•.••....NTERNAb• CONNECTIVITY. INFORMATION
CONDUIT
JUNCTION JUNCTION
90004
30001 30010
90005
30002 30001
90006
30011 0
1
'
:••••••••BOUNDARY•COITJ
ITON•INFORMATION••••• ••••'•'•`
DATA GROUPS J1-J4
BE NUMBER.. 1 CONTROL WATER SURFACE ELEVATION IS.. 4995.00 FEET.
TZERO = 88001 0.000000
•
1............LZNE-INPUT........HYDROG..RA...PHS.....(DATA.....GROUPS.........K1-K3.).....
Expect 2 junction IDS on each K2 line.
NJSW INPUT LOCATIONS FROM K2 LINES:
1
I
30002
30001
1---------------------------------------------------------'
ENVIRONMENTAL
PROTECTION AGENCY
EXTENDED TRANSPORT PROGRAM
'
DIVISION
....
....
WASHINGTON, D.C.
INC.
"^
ANALYSIS MODULE ....
'
HARMONY CENTER 6 PIER DETENTION POND INTERIM
COND. SIMULATION WITH EXTRAN
6/24/1999
ICON ENGINEERING, INC. File: Pier.dat
Revised MBF 3/22/00
1]
1
1
1
1
` INITIAL MODEL CONDITION '
• INITIAL TIME = 0.00 HOURS
...................... r r r..........
JUNCTION / DEPTH / ELEVATION =__> ••` JUNCTION IS SURCHARGED.
30001/ 0.00 / 4997.66 30002/ 0.00 / 5000.45 30010/ 0.00 / 4996.34
30011/ 0.00 / 4994.69
CONDUIT/ FLOW =__>•. CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 0.00 1010/ 0.00 3011/ 0.00 90004/ 0.00
90005/ 0.00 90006/ 0.00
CONDUIT/ VELOCITY
1001/ 0.00 1010/ 0.00 1011/ 0.00
CONDUIT/ CROSS SECTIONAL AREA
1001/ 0.00 1010/ 0.00 3011/ 0.00
CONDUIT/ HYDRAULIC RADIUS
1001/ 0.00 1030/ 0.00 1011/ 0.00
CONDUIT/ UPSTREAM/ DOWNSTREAM ELEVATION
1001/ 5000.45/ 4997.66 3030/ 4997.66/ 4996.34 1011/ 4996.34/ 4994.69
X # # # # # # # # # # # # # # # # # # # # # # # # # X X # X # # # # # # # # # #
System inflows (data group K3) at 0.00 hours ( Junction / Inflow,cfs )
30002/ 0.00E+00 30001/ 0.00E+00
k # # # # # # 0 # # # # # # # # # # # # # k # # # k X # # # # # # # # # # # # p
System inflows (data group K3) at 1.00 hours ( Junction / Inflow,cfs 1
30002/ O.00E.00 30001/ 0.00E+00
k # # # # # # # # # # # # # X # # # k # # # # # # # # # # # # k # # # # # p # #
CYCLE 360 TIME 1 HRS - 0.00 MIN
JUNCTION / DEPTH / ELEVATION =__> .. JUNCTION IS SURCHARGED.
30001/ 0.00 / 4997.66 30002/ 0.00 / 5000.45 30030/ 0.00 / 4996.34
30011/ 0.31 / 4995.00
CONDUIT/ FLOW ""' CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 0.00 1010/ 0.00 1011/ 0.00 90004/ 0.00
90005/ 0.00 90006/ 0.00
System inflows (data group K3) at 1.08 hours ( Junction / Inflow,cfs 1
300021 1.00E-01 30001/ 1.00E-01
# # # # X # # # # # # X # # # X # # # N # k # # # # # X # # # # # # # # # # # N
# # # # # # # k # # # # X # # # # X # X # # # # # k # # N # # # # # # # # X # #
System inflows (data group K3) at 1.17 hours 1 Junction / Inflow,cfs I
30002/ 6.70E.00 30001/ 5.30E+00
# # # # # # k k # # # # k # # # p p # # k N k # # # # X # # # # k # # # X Y # #
System inflows (data group K3) at 1.18 hours 1 Junction / Inflow.cfs I
30002/ 1.03E+01 30001/ 7.70E.00
# # # # # X # # # # # # # # # k k N # # # # # # # # # X X # # # # # # # 0 X # #
# # # # # # # # # # # # # # # # # N # 0 # X k # # # # # # N # # # # # k # # # #
System inflows (data group K3) at 1.20 hours ( Junction / Inflow,cfs I
30002/ 1.46E+01 30001/ 1.02E+01
# # # # # # # # k # # # # # k # k # # # # # # # # # k p X # # # # # # # # # # #
# # # k # # # # # # # # # # # # # k # # # # # # p # # k # # # # q # # # # # # #
System inflows (data group K3) at 1.22 hours 1 Junction / Inflow,cfs 1
30002/ 1.91E+01 30001/ 1.26E.01
WATER RESOURCES
CAMP DRESSER 4 MCKEE
ANNANDALE, VIRGINIA
# # k # # k # N # # # # # # # # # # # # # M # # k # # # # # # # # 8 # X # # # #
# # k # # N # # N p # # # # # # # # # # # k # # # # # # # # # # # # # # # # # #
System inflows (data group K3) at 1.23 hours 1 Junction / Inflow,cfs I
300021 2.33E+01 30001/ 1.48E+01
# # # # 4 N X # # # R # # # # # # R # # # # # N N # # # # # # # # # # # # # # #
R # # # # # N q # # R # k # N N # # # # # # # # # # # X X R # # # # # # # # # #
System inflows (data group K3) at 1.25 hours I Junction / Inflow,cfs 1
30002/ 2.71E+01 30001/ 1.67E+01
# # # # # # # # # # # # # # # # k # # # # k # # # # # # # # # # # # # # # N # #
# # # # # # # # # # # # # k # # N N # # # # # # # # # k M # # # # # # k # # # #
System inflows (data group K3) at 1.27 hours 1 Junction / Inflow,cfs I
' 30002/ 3.17E+01 30001/ 1.97E+01
# # # # X # p # # # R # # # # # # # # k # # # k # # k N # # # # N # # # # # M #
# k # # # M M N M # # k # # # X 0 # # # k # M # # # # # N # # N # # # # # # # #
System inflows (data group K3) at 1.28 hours 1 Junction / Inflow,cfs 1
' 30002/ 3.72E+01 30001/ 2.40E+01
# # # k # # M # # N # # # # # X # # # # # # # # # k N # # # # # # # # # # # # #
# # # # # # N # # # # # # # k X # # # # # # k # N # # # # M # # # # # # # X # #
System inflows (data group K3) at 1.30 hours ( Junction / Inflow,cfs 1
' 30002/ 4.19E+01 3000l/ 2.77E+01
# # k # X # # N # # # # # N # # R # Y N # # # k # # # # # # # # # # # # # k # N
k # # k k # # N N N X # # k # # # # # # # k # # # # # # # # # # # N X # N X # k
System inflows (data group K3) at 1.32 hours 1 Junction / Inflow,cfs 1
' 30002/ 4.58E+01 30001/ 3.08E+01
# # # # k # # # # # # # # # # # N # # # k # # k # # # p k # # # X # # # # # M p
System inflows (data group K3) at 1.33 hours I Junction / Inflow,cfs )
' 30002/ 4.91E+01 30001/ 3.33E+01
Y # # # X # N M Y # # # # # # # # # # # # # p # # N # X M # # # # # # # # # # R
# # # # # X # # R # # # # # # # # # # R # # # X # p k R N # # # M # # # R # # #
System inflows Idata group K3) at 1.35 hours I Junction / Inflow,cfs 1
' 30002/ 5.30E+01 30001/ 3.66E+01
# # # # # # N # # # # # # # # # # # # # # # # # # # # N # # # # # # # # # # # X
# # # # # # # # # # # k # # # # M # # # # # # k # k # k # # # # # # k # # # # #
System inflows (data group K3) at 1.37 hours ( Junction / Inflow,cfs )
' 30002/ 5.78E+01 30001/ 4.09E+01
# # # # # # # # # # # # # # # # # # # # # # # # Y # # M # # # # # # # # # # # N
X N k # # Y # # N # # # # # # # # # # # Y # # # # X # # # # # # # # # # # # M #
System inflows (data group K3) at 1.38 hours 1 Junction / Inflow,cfs 1
' 30002/ 6.21E+01 30001/ 4.47E+01
# # # # # # # M # # # # # # k # # # # # # # # # M # # k k k # # # # # # # # # #
X # # # # # N # # # # # # # # # # # # # M # # # # # # # # # k k # # X # # # # M
System inflows (data group K3) at 1.40 hours ( Junction / Inflow,cfs I
' 30002/ 6.58E+01 30001/ 4.79E+01
# # # # # k # # # N # # M M # # # Y # # k # # X 0 # # N R # # # # p # # N # # #
# # # # # # # # 0 # # # # # X # # # # # # # # # # N # # # R # # # M # 0 # # # M
System inflows (data group K3) at 1.42 hours 1 Junction / Inflow,cfs I
' 30002/ 6.90E+01 30001/ 5.08E+01
# p# p# g N p p p k### k p## p## g k p# N k k k k p#### q p# p p
X # # # # # N # # # # # X # # # # # # # # # # # # # p p # # # k # p # N k X # #
System inflows (data group K3) at 1.43 hours ( Junction / Inflow,cfs I
' 30002/ 7.85E+01 30001/ 5.99E+01
# # # N # N # # # # # # # # k # # N # # # q # # p p p # # X # # # # # # # X # #
# N # # # # N # # # # # # # # # N # # # X p k # # # p # # # X # # M # # # # # #
System inflows (data group K3) at 1.45 hours 1 Junction / Inflow,cfs 1
' 30002/ 9.42E+01 3000l/ 7.53E+01
N # # # # X # # N # # # # # # # # # X # k # k # # # # # N # # # # # # # N # # #
# # # # # # N # # # # # # # # # N # # # # # # # # # M # # # # k # # # # # X # #
System inflows (data group K3) at 1.47 hours ( Junction / Inflow,cfs 1
30002/ 1.08E+02 30001/ 8.84E+01
# # # # k # N # # # # # # # # p N # N # # # # # # # # # # # # # # # # # # # # #
# # k # k # # N # k # # k # # p N 4 N N N # # # # # # # # # k # # N # # # # # Y
System inflows (data group K3) at 1.48 hours 1 Junction / Inflow.cfs 1
' 30002/ 1.19E+02 30001/ 9.91E+01
# # N # N Y N # N # # # # # # # # # X # N # N X # # N # 0 N p # # # # # # # p #
1
# # p # # # # # # # # # # X # N # # # # # # k # # # # # # Y # # # # # # # # # #
System inflows (data group K3) at 1.50 hours 1 Junction / Inflow,cfs I
' 30002/ 1.28E+02 30001/ 1.08E+02
# M # # # N # # # X N # # # # # # # # # # X # # # % # # 8 # # # # # # N # # # #
System inflows (data group K3) at 1.52 hours 1 Junction / Inflow,cfs I
' 30002/ 1.51E+02 30001/ 1.30E+02
N # # # # # # # # # N N # # # # # # Y # N # N # # # # # # N N # N # # # p # p #
N # # # # # k # # # N # # # # # # # # # # # # # Y # # # # # # # # # # # N N # #
System inflows (data group K3) at 1.53 hours ( Junction / Inflow,cfs 1
' 30002/ 1.86E+02 30001/ 1.64E+02
# # X 8 # # # # # # # # N # # # # # # # # # # # # # # # 0 # # # # # # # # # # N
# k # # # # k # # # # # # # # # # # # # # # # X # N # # # # # # # # # # # # # #
System inflows (data group K3) at 1.55 hours ( Junction / Inflow,cfs )
' 30002/ 2.14E+02 30001/ 1.88E+02
# N # # # Y # Y k p p # # # N # # # X # N # # # X N # # # k # 0 # N # X N # N Y
Y Y k## Y Y# N N X## N#### Y X#### N### N X X N N# N Y N# N#
System inflows (data group K3) at 1.57 hours ( Junction / Inflow,cfs )
' 30002/ 2.36E+02 30001/ 2.06E+02
# # # # # # # # # # N # # # # # # # # # # # # # Y # # # # # tl 8 # # X # # Y # #
N N # # # # # # X # # # # N # # # X # # # # 0 # # # # # # # # # X # # # # # # #
===> System inflows (data group K3) at 1.58 hours I Junction / Inflow,cfs )
30002/ 2.53E+02 30001/ 2.21E+02
# # # # % # X # # # # # # # # # # Y # # # # # # N k # # # # N # N # # # p # # #
System inflows (data group K3) at 1.60 hours ( Junction / Inflow,cfs )
30002/ 2.44E+02 30001/ 2.10E+02
p # # # # Y # # # # # p N X # # # # # # # # # N N Y # # # Y # # # # N X # Y # N
q # # # % # # # # N N # # # # # # # # k # # # # p Y # # # X # # # tl X N # # # k
System inflows (data group K3) at 1.62 hours 1 Junction / Inflow,cfs 1
30002/ 2.18E+02 30001/ 1.84E+02
N # # # # # # # # # # # k # # # # # # # # # # # M # k # N # # # # N X # # # # #
System inflows (data group K3) at 1.63 hours ( Junction / Inflow,cfs )
310021 2.01E+02 30001/ 1.67E+02
X N # k # # # Y # # # N # # # # # # # N # N Y # # N % # # # k # # # # # # # # #
# I Y # # # # k 0 X # # N # # k k # # N # N N # Y # N # Y N # # # # # # N # # #
---> System inflows (data group K3) at 1.65 hours ( Junction / Inflow,cfs 1
310021 1.89E+02 100011 1.54E+02
# # # # # # # Y p # # # # # # # # X # # # X # # % N # # # # # # # # # # # N # #
-> System inflows (data group K3) at 1.67 hours ( Junction / Inflow,cfs )
30002/ 1.82E+02 30001/ 1.44E+02
M-p #### p### p p p### p k X p p k X M p p k p# p p p p M p p p M# M
M tl k M Y Y Y X M X X M# p## Y p k# p p p p# M M# M A p p M N Y p# k# p
> System inflows (data group K3) at 1.68 hours ( Junction / Inflow,cfs )
30002/ 1.72E+02 30001/ 1.32E+02
Y
#-tl k Y Y M X p N N p p p p Y p Y X N## N N X X X# p### p p p p p N Y p N
# N# N# M Y## p N M# p M N# p# N Y# N N N Y N### N##% p p# N M Y
> System inflows Idata group K3) at 1.70 hours ( Junction / Inflow,cfs )
30002/ 1.60E+02 30001/ 1.19E+02
p p # # # # # # # # p # # # # # # # # # # # # # # # # # # # # # # p # # # N # #
p p k## p p p k p p p g p p## p# Y g p p M p p### p### p p p# p p M
System inflows (data group K3) at 1.72 hours ( Junction / Inflow,cfs )
30002/ 1.51E+02 30001/ 1.08E+02
' M-Y p# M k p N## tl p## k# M%# p p M p p# N###### M N N# X###
X N p # M p p # k # % p # # # # # # k p N # # N N # # # # N # k k X # N # N # %
> System inflows (data group K3) at 1.73 hours ( Junction / Inflow,cfs )
30002/ 1.44E+02 30001/ 1.01E+02
' p # # # # k k # # # N # # # # # # # # # # # # # # # # # # # # # # X # # # # N #
p p # # # k X # # # # X # # # # # # # # N # # # # # # # # # # # # # # # X # k #
System inflows (data group K3) at 1.75 hours ( Junction / Inflow,cfs )
30002/ 1.39E+02 30001/ 9.45E+01
## tl # ## tl # ## tl : p #1 ## # # # # ## # # # # # N ## p # X # ## N # # # # N p tl X # #
p p p# M M p p p p 1 p p p p### p p p p p p p p M# p p# p p p M p p p X p
[1
I
1
iI
I
1
System inflows (data group K3) at 1.77 hours I Junction / Inflow,cfs I
30002/ 1.33E+02 30001/ 8.71E+01
## p## N# p k k p# g tl p p p p k N p p q k p p p M k p p k## p p p p p#
g p p N k p p p k p p p p p p p p p p M p# A p p p p p k p p# k# p k# p p#
System inflows (data group K3) at 1.78 hours 1 Junction / Inflow,cfs 1
30002/ 1.25E+02 30001/ 7.87E+01
p g p k# p p p p## k p# k p p p p k p#
# # # q # N # k # k # k # # # q # # # # # k # # # # k p p # # # # # # p # p k #
System inflows (data group K3) at 1.80 hours I Junction / Inflow,cfs )
30002/ 1.19E+02 30001/ 7.19E+01
# k # # k # # # # # # # k # 0 # # # # N # # # # # # # # # k k # k # # # # # N #
# # # # k # N # # # # # # # # # # # # # # # # # # # Y # # # # # k # # # # # # #
System inflows (data group K3) at 1.82 hours 1 Junction / Inflow,cfs 1
30002/ 1.13E+02 30001/ 6.65E+01
# # # # X # # # # # # k # # # # p # # # # # k # p # X # # # # # # # k # k X # #
System inflows (data group K3) at 1.83 hours I Junction / Inflow,ofs )
30002/ 1.09E+02 30001/ 6.22E+01
N # # N # # k # # N # # # # # # # # # # # # # # k # # X X k # # N # # Y # k k k
# # # # # # # k # # # # # # k # # # k # # # # # # # # X # # # # k # # # # # # #
System inflows (data group K3) at 1.85 hours 1 Junction / IRflow,Cfa 1
30002/ 1.05E+02 30001/ 5.81E+01
# # # # # # # # k # # # # # # # # k # # # # # # # # # p # # # # # # k k # # # #
# # k k k k # # # # k # # # # # N # # # # # # k # # # # a X k # # # # 0 k # # k
___> System inflows (data group K3) at 1.87 hours ( Junction / Inflow,cfs 1
30002/ 1.01E+02 30001/ 5.42E+01
# k # # # # # # N # # k # # # # # p # k k q k # # # # # # # # k k # # # # k k #
# # # # # # # # N # k # # # # # # N Y # N k k # # X # k k # # # # # # 0 # # # #
System inflows (data group K3) at 1.88 hours I Junction / Inflow,cfs 1
30002/ 9.78E+01 30001/ 5.10E+01
p # # # # # # # # # # k # # # # N Y # k # % % # # # Y # # # # # N # # # k # # k
Y # # # # # # # # # # k # N # # Y # # # # k k # X # # X # # k # # # # # k k k #
System inflows (data group K3) at 1.90 hours ( Junction / Inflow,cfs 1
30002/ 9.50E+01 30001/ 4.83E+01
# # k k # # k # # # # # # # # # # # # # # # # k # # # # # # # # # k # # # # # #
# # # # # # k k # # # N # Y k # # # k # # # # k # # # # # N # # # # # k # # # #
System inflows (data group K3) at 1.92 hours ( Junction / Inflow,cfs 1
30002/ 9.27E+01 30001/ 4.61E+01
k # # # # k N N # X k # k k # N # # N # N # # # # # # # k # k # # # # N Y # X #
# # # # # # k # # # # # # # # # # k # # # # # # # N k N # a A # # # # N # # N #
_> System inflows (data group K3) at 1.93 hours ( Junction / Infl ow,cfs I
30002/ 9.05E+01 30001/ 4.39E+01
# # # # # # # # # # # # # # # k # # # # # # # # # a # # # k # # # # # # k # N N
# # # # k # % # k # k # k # # # # # a # # k k # k # # k # # k # # # # # # # # N
> System inflows (data group K3) at 1.95 hours ( Junction / Inflow,cfs 1
30002/ 8.83E+01 30001/ 4.17E+01
# # k # # N # # # # # # # # # N # # # N # # # # k # # # # # # # # k # # N N # N
k# N k#### N X k N k### k N N# k k k## N N####### k# N N# N
> System inflows (data group K3) at 1.97 hours I Junction / Inflow,cfs 1
30002/ 8.63E+01 30001/ 3.99E+01
# # # # # # # N # # # k # k Y # # # # k # # # N # # # # # # # # k # # # # # # #
# p # # # # # # k # # # k # # N N # tl # k k # # k # # k # k # # p N # # # # Y #
___> System inflows (data group K3) at 1.98 hours ( Junction / Infl ow,cfs )
30002/ 8.46E+01 30001/ 3.83E+01
# # # # # # # # # # # # # # # # # N # p p # # # # # # # # % # # k # # # Y tl # #
System inflows (data group K3) at 2.00 hours ( Junction / Inflow,cfs 1
30002/ 8.30E+01 30001/ 3.69E+01
# # # # # # # p # # # # # # # k # # # k # # # N # # # # # # # # # # # # # # # #
CYCLE 720 TIME 2 HRS - 0.00 MIN
JUNCTION / DEPTH / ELEVATION =__> ... JUNCTION IS SURCHARGED.
30001/ 6.01 / 5003.67 30002/ 4.97 / 5005.42 30010/ 2.57 / 4998.91
30011/ 1.38 / 4996.07
[1
I
I
CONDUIT/ FLOW ' CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 10.86 >1010/ 19.63 1011/ 39.92 90004/
90005/ 0.00 90006/ 39.92
p k A # k # # p k # # p p # Y # N # Y # # Y # # # # Y # Y # k N k # k # # # X #
System inflows (data group K31 at 2.08 hours ( Junction / Inflow,cfs )
30002/ 7.57E+01 30001/ 3.16E+01
# k # k # Y # N # N N N # k # # # # X R # # R # N # N # # # N # # # # # p # # X
Y## k Y p Y Y## Y X# k k##### N# Y k# k M k## X k# p# N## N#
_> System inflows (data group K3) at 2.17 hours ( Junction / Inflow,cfs )
30002/ 7.00E+01 300011 2.82E+01
k M tl M k# N N p N p p k# p p# g p p p p## p p p p N q# X##### k p p
> System inflows (data group K3) at 2.25 hours ( Junction / Inflow,cfs 1
30002/ 6.54E+01 30001/ 2.58E+01
N X # M # # # # # X # # # N N 0 # # # # 11 # # # X # M M # M # k M # # N Y # # tl
N # # # # # # # k # # k # # # # # # # # # # # # # # M k X # # Y # X M N Y # N #
System inflows (data group K3) at 2.33 hours 1 Junction / Inflow,cfs )
30002/ 6.16E+01 30001/ 2.39E+01
# # # k # k # N # # M # # # # # N # Y N # # k k # # # 0 # 0 k N # N k N # X # k
# # # # # Y # # 8 # # p # # # k N M # k # # # # # # # # Y k # M # k k M N # # N
System inflows (data group K3) at 2.42 hours I Junction / Inflow,efs 1
30002/ 5.84E+01 30001/ 2.24E+01
M # Y Y k # # N M # p # # # # # # # N M # # # # N # M # # N # # # # # # # N N #
k # # # k N N M N M p # # # # M # # # M # N # # Y k M # # # # Y k # N # Y # Y #
System inflows (data group K31 at 2.50 hours 1 Junction / Inflow,efs )
30002/ 5.57E+01 30001/ 3.11E+01
N # # # k # M # M # N X # k k # # # N # # # M # # # # # # # # k # # q # # # # X
System inflows (data group K3) at 2.58 hours 1 Junction / Inflow,cfs 1
30002/ 5.33E+01 30001/ 2.11E+01
R Y k Y p X p# p p k X# k N p p# p# p p# k p p p p N p N N p X k M tl# p p
# Y # # # Y # # N a # # # # # # # # # # k # Y # # # # # N # Y M # N N M M # q k
System inflows (data group K3) at 2.67 hours ( Junction / Inflow,cfs 1
30002/ 5.11E+01 30001/ 1.90E+01
X # q # # # # k p k # # # N # Y Y # # k # X Y # # # k N M N X # N # # # # # 0 #
# # # N k # # # tl # # # # # k # # # # p N # # k # N M X M # # # k k # # # # # q
System inflows (data group K3) at 2.75 hours I Junction / Inflow,cfs )
30002/ 4.92E+01 30001/ 1.81E+01
# X X# N X R k p# N## k# N k# Y k#### Y k X N# X M Y M## N Y## X
System inflows (data group K3) at 2.83 hours 1 Junction / Inflow,cfs )
30002/ 4.75E+01 30001/ 1.74E+01
## N tl p p X p p# p# k p p# p p p p p## M N# q# p M p p X p# N k p p p
N # # # # # Y k N k # N # # N N N # # # N # # # Y # # N # M M # k X # M # # N tl
System inflows (data group K3) at 2.92 hours 1 Junction / Inflow,cfs I
30002/ 4.60E+01 30001/ 1.67E+01
X N# X## N N N N M Y## X# N## N N### k## X p Y p k# R k k N N##
# 0 # # # # # # k # # # # # # Y # # # k # Y # # # # # # # # # N X # # k Y # M #
System inflows (data group K3) at 3.00 hours ( Junction / Inflow,cfs I
30002/ 4.46E+01 30001/ 1.60E+01
N X # # N # 0 # X # # # # # # # # X # # # # k # # # # # # p # # # # # X N # N #
CYCLE 1080 TIME 3 HRS - 0.00 MIN
20.64
JUNCTION / DEPTH / ELEVATION =__> - JUNCTION IS SURCHARGED.
30001/ 5.94 / 5003.60 30002/ 6.12 / 5006.58 30010/ 2.47 / 4998.81
30011/ 1.31 / 4996.00
CONDUIT/ FLOW =__>"' CONDUIT USES THE NORMAL FLOW OPTION.
1001/ 14.19 1030/ 19.71 1011/ 35.45 90004/ 15.72
90005/ 4.90 90006/ 35.45
N # k # # # # M # # # # N # N # M k N # # # # k p Y N N X M # # # # X # # Y # #
___> System inflows (data group K3) ac 3.17 hours ( Junction / Inflow,cfs )
30002/ 3.15E+01 30001/ 5.70E+00
k # k # # Y Y # Y N # # # Y # # # # # # Y # # k # # N N # tl # Y # # # k Y # % #
N N Y N # # # # Y N # # k Y k # # # # N N N N # # k # N # # k # # # # k # N # #
___> System inflows (data group K3) at 3.33 hours ( Junction / Inflow,cfs )
I
30002/
2.71E+01
30001/ 2.70E+00
p g k p# p
p## p p p g
p p##
p p p p
p p p
p p p
p p p## p M p p p p p p
p p g p# p
p# p p p p q
p p##
g p p p
p p p#
p##
p p# M## p p p# p q
System
inflows (data
group
K3) at
3.50
hours
( Junction / Inflow,cfs 1
30002/
2.51E+01
30001/ 1.60E+00
# # # # # #
# # # # # # N
# # #
# q # # k
# # #
# # #
# X # # # # # # # # # # #
X p # # # Y
p p N # # # #
X # #
# # # # #
# # N
N # #
# # Y # # # # # # # # # #
System
inflows (data
group
K3) at
3.67
hours
1 Junction / Inflow,cfs )
300021
2.39E+01
30001/ 1.00E+00
N k X # # #
# # # # p # p
# # X
# X # # #
X # #
# # #
# # N # # # X # # # # # #
# X X # # #
# # # # p # #
# # #
# # # # #
# # #
0 # X
# # # # # # # # p p # # #
System
inflows (data
group
K3) at
3.83
hours
( Junction / Inflow,cfs 1
30002/
2.30E+01
30001/ 7.00E-01
8 # X # # #
8 # # # # X X
# # #
# # # # #
N # #
# # #
# # # # # # # # # # # # #
# # 8 # # #
# X # # # X #
# # #
N N # X #
# # #
# # #
# # # # # # # # # X # # #
System
inflows (data
group
K3) at
4.00
hours
( Junction / Inflow,cfs I
30002/
2.23E+01
30001/
5.00E-01
# # # # k #
# # # # # # #
# # #
# Y X # X
# N N
# # #
# # # # # # Y # N # # # #
CYCLE
1440 TIME 4 MS -
0.00 MIN
'
JUNCTION /
DEPTH / ELEVATION
- =_> • JUNCTION IS SURCHARGED.
30001/
5.81 / 5003.47
30002/
6.22
/ 5006.67
30010/ 2.24 / 4998.58
30011/
1.17 / 4995.86
'
CONDUIT/
FLOW =__>"'
CONDUIT USES THE NORMAL FLOW OPTION.
1001/
14.73
1010/ 19
.88
1011/
27.29 90004/
90005/
9.28
90006/ 27.29
# X # # # #
# q # # k # #
# # X
N X # Y tl
# tl X
# # #
# X # # # X tl N # X # # #
=__> System
inflows (data
group
K3) at
4.17
hours
( Junction / Inflow,cfs )
t
30002/
2.18E+01
30001/
4.00E-01
# p X # # #
# # # N X N X
X X #
# # # # #
# # #
# # #
# # N # # # N # # # # # #
X k X X X#
k# k N p p p
p X##
X p p###
k#
p p##
p# p p p N## k# p
System
30002/
inflows (data
2.12E+01
group
30001/
K3) at
3.00E-01
4.33
hours
1 Junction / Inflow,cfs 1
# N # # # #
# # # k N p #
# # k
X X # # #
# # #
# # #
# # # p # # 8 # # N # # #
System
30002/
inflows (data
2.08E+01
group
30001/
K3) at
2.00E-01
4.50
hours
1 Junction / Inflow,cfs )
# # # # # #
# X X # # # #
# # #
8 # # # #
N # N
N N #
% # # N # # # X X # R # #
N # p # N #
# N # # Y # #
# # #
# N # # N
X # k
# # #
X # # # # # # k # X # # #
___> System
inflows Idate
group
K3) at
4,17
hours
I Junction / Inflow,cfs 1
'
30002/
2.04E+01
30001/
2.00E-01
p X k# p##
p p# p k X
p k####
p p
M# p###
k X# p# p# p p k# k#
p k k# p##
g q q p p p
M###
N k p N
k X k
X##
q k# M A p p# p p X k#
System
inflows (data
group
K3) at
4.B3
hours
I Junction / Inflow,cfs )
'
30002/
1.99E+01
30001/
1.00E-01
# % # # #.Y
# # # N # # X
# # #
X # # # #
tl q #
# # #
X # # # # N t # # N X # #
p N # # # #
# X p # N # #
N # #
# # # # #
M # #
# # #
# # # # # # Y # # # # # #
System
inflows (data
group
K3) at
5.00
hours
( Junction / Inflow,cfs )
30002/
8.60E+00
30001/
1.00E-01
p # p # # N
# # # # # # #
# # #
# # # # #
# # N
# # #
# # X N X # X # # # # # #
CYCLE
1800 TIME 5
HRS -
0.00 MIN
'
JUNCTION / DEPTH / ELEVATION
=__> ""'
JUNCTION
IS
SURCHARGED.
30001/
5.73 / 5003.39
30002/
6.15 /
5006.
60 30030/ 2.13 / 4998.47
30011/
1.10 / 4995.79
CONDUIT/
FLOW =__> '•• CONDUIT
USES THE NORMAL
FLOW
OPTION.
'
1001/
14.75
1010/
19.96
3011/
23.60
90004/
90005/
5.88
90006/
23.60
# # # # # #
Y # # X # # #
# # # X #
# # #
N N N
# # # #
X # #
# k
N # X # # # #
System
inflows (data
group K3)
at
5.17
hours 1
Junction
/ Inflow,cfs )
'
30002/
7.40E+00
30001/ 1.00E-01
# N # # # #
# # # # # X #
# # # # #
# # #
# k X
# # # #
# # #
# #
X # # # # # #
# # # # # #
# # # X X X N
# # # # #
# # #
# # #
k # # #
# k #
# #
p # # # # # #
___> System
inflows (data
group K3)
at
5.33
hours (
Junction
/ Inflow,cfs 1
'
30002/
7.20E+00
30001/ 1.00E-01
7.32
3.55
I
1
p p## p p p p p p X p p# p p# p p g p p p# p p p p p p p# p##### p p
# # # # p # # # # # # X # # # N # X X p # # p # # # # # # # Y # Y Y Y Y # # # #
___> System inflows (data group K3) at 5.50 hours ( Junction / Inflow,cfs )
30002/ 7.00E+00 30001/ 1.00E-01
# # Y # # # 4 # tl # # # # # # # # # # 0 # # N # # # # # # Y # # # # # # # # N %
# Y X # # # # # p # # 0 # # # Y # # # N # # N X # # # # # # # # X # # # # # Y N
System inflows (data group K3) at 5.67 hours 1 Junction / Inflow,cfs 1
30002/ 6.90E+00 30001/ 1.00E-01
p## p Y# p# X## p p k k p g p q p p p p# p# M# p p# p k k#### p p
Y # X # # # # N X # # # # q # # # Y Y # Y Y # # 8 # # # X # # 0 # N p # # # # #
System inflows (data group K3) at 5.83 hours ( Junction / Inflow,cfs 1
30002/ 6.80E+00 30001/ 0.00E+00
# p k k## p p# X p##### k p g p q p# k# p# p# p p p p p k k# k p p
# # # # # N N p # N X # # # # # Y # # # # # Y # # # k Y # # # # p # # Y # Y # #
System inflows (data group K3) at 6.00 hours I Junction / Inflow,cfs 1
30002/ 6.70E+00 30001/ 0.00E+00
# # N # # # # # # # # # # # # # # # # Y # # # # # # # # # # # # N N # # # # # #
CYCLE 2160 TIME 6 HRS - 0.00 MIN
' JUNCTION / DEPTH / ELEVATION =__> "+" JUNCTION IS SURCHARGED.
30001/ 5.55 / 5003.21 30002/ 5.92 / 5006.37 30010/ 2.00 / 4998.34
300111 1.01 / 4995.70
CONDUIT/
FLOW
==_> "' CONDUIT USES THE NORMAL FLOW
OPTION.
'
1001/
14.63
10101
19.86
1011/
19.87
90004/
90005/
0.00
90006/
19.87
N tl X # # #
# N # # X #
# # # # # #
# N #
# N #
# # N X
X # #
# N
N # # # # X #
System
inflows (data
group K3)
at
6.17
hours (
Junction
/ Inflow,cfs 1
'
30002/
6.60E+00
30001/ 0.00E+00
# # # # # #
# # # # # N
# # # # # #
# N N
# # #
# # # #
# # #
X #
# # # # # # #
# # # # # #
# # # # N N
# # # # # 0
# # #
Y # #
# # # #
# # #
# #
# # # # k # #
___> System
inflows (data group K3)
at
6.33
hours (
Junction
/ Inflow,cfs I
30002/
6.50E+00
30001/ 0.00E+00
'
# # N # # #
X # k # # #
# % # # # N
# # Y
# p #
# # # #
# X N
# X
X # # # # # #
# # # # # #
# # # # 0 #
# # # # # #
# # N
N X #
# # # #
# N #
N #
X N # # # # #
System
inflows (data group K3)
at
6.35
hours 1
Junction
/ Inflow,cfs )
30002/
6.50E+00
30001/ 0.00E+00
'
# p N# Y p
p p p q# p
p p k k##
p N p
p X##
M# X
p p X
p p
p# tl Y Y p#
N # k # # #
# # # # # X
# tl k # # P
N X p
# # #
X X # #
X # #
p #
# # # # # # #
System
inflows (data group K3)
at
6.37
hours 1
Junction
/ Inflow,.£. )
30002/
6.50E+00
30001/ 0.00E+00
'
# # # # # N
# Y N # # #
X # # # Y #
# # X
X # #
# # # #
# # #
X #
# X X # # # Y
System
inflows (data group K3)
at
6.38
hours (
Junction
/ Inflow,cfs 1
30002/
6.50E+00
30001/ 0.00E+00
'
# N # # # #
# # p # # N
# # # # X #
# Y X
X # #
p # # #
# # #
# p
p # # # # # #
System
inflows (data group K3)
at
7.00
hours (
Junction
/ Infl ow,cfs )
30002/
6.20E+00
30001/ 0.00E+00
'
X # # # 0 #
# X # # # N
# # # # # #
X # #
# Y X
# # # #
# X #
# #
X # # # # % #
CYCLE
2520 TIME
7 HRS - 0.00
MIN
' JUNCTION / DEPTH / ELEVATION =__> ••" JUNCTION IS SURCHARGED.
5 30001/ 5.34 / 5003.00 30002/ .71 / 5006.16 30010/ 1.98 / 4998.32
30011/ 1.00 / 4995.69
CONDUIT/
FLOW '" CONDUIT
>1010/
USES
THE NORMAL FLOW
OPTION.
1001/
14.65
19.45
1011/
19.46
90004/
'
90005/
0.00
90006/
19.46
# k Y # # 8
# # # # Y X #
# Y Y # #
# # Y
# #
# Y # # #
# # Y
# X
X # # # # # #
System
inflows (data
group K3)
at
7.50
hours (
Junction
/ Inflow,cfs I
30002/
6.10E+00
30001/ 0.00E+00
'
N # # # # #
# N X X # X #
X # # # #
X Y #
# #
X # # k N
N Y #
N X
X # X Y # # #
# Y # % # #
# # # # # # #
# X # X #
# N N
% N
# # # # #
# # Y
# X
N # # # N # #
System
inflows (data
group K3)
at
8.00
hours I
Junction
/ Inflow,cfs 1
'
30002/
6.00E+00
30001/ 0.00E+00
p X p p p g p p p p p p# p## k p p p p p p p p p p p p p p p p p p p p## p
0.00
0.00
1
I
1
1
1
1
1
1
t
1
CYCLE
2880 TIME
8 HRS - 0.00 MIN
JUNCTION /
DEPTH / ELEVATION =__> ""' JUNCTION
IS SURCHARGED.
30001/
5.12 / 5002.78
30002/ 5.49 /
50D5. 94
30010/
1.97 / 4998.31
30011/
0.99 / 4995.68
CONDUIT/
FLOW =__>•• CONDUIT USES THE
NORMAL FLOW
OPTION.
1001/
14.65
3010/ 19.02
loll/
19.03
90004/
0.00
90005/
0.00
90006/ 19.03
k # # X # #
# # # # # # #
# # # # # # # # # # N #
# X p p # #
# # # #
# # # # #
System
inflows (data
group K3) at 8.50 hours
1 Junction
/ Inflow,cfs )
30002/
5.90E+00
30001/ 0.00E+00
N # # # X #
# # k # # # #
# # X X k # # # # # # #
# # # # # #
# # # #
# # # # X
X p # # # #
# # k k # # #
# # # # # # X # # # # #
# # k k # #
# # # #
# # # # #
System
inflows Idata
group K3) at 9.00 hours ( Junction
/ Inflow,cfs 1
30002/
4.40E+00
30001/ 0.00E+00
# # # N # #
k # # # # # #
# # # # # # # # # # # #
# # X # # #
# # # #
# # # # #
CYCLE
3240 TIME 9 HRS - 0.00 MIN
JUNCTION / DEPTH / ELEVATION =__> ... JUNCTION IS SURCHARGED.
30001/
4.89 / 5002.55
300021 5.25 /
5005.70
300101
1.95 / 4990.29
30011/
0.98 / 4995.67
CONDUIT/
FLOW =__>•• CONDUIT USES THE
NORMAL FLOW
OPTION.
1001/
14.64
1010/ 18.56
loll/
18.58
90004/
0.00
90005/
0.00
900061 18.58
## p M k##
p X# p p p
p p p# X p# p p k# p####
p#
k p######
k
System
inflows (data
group K3) at 9.50 hours ( Junction
/ Inflow,cfs 1
300D2/
4.10E+00
30001/ 0.00E+00
# k # # # #
# # # # # k #
k k # # # # # # # # # 8
# N # # # #
# # # X
# # # # #
# # # # # #
# # # # # X #
k k # # # # k # # # # #
# # N # # #
# # # k
# # # # #
System
inflows (data
group K3) at 10.00 hours ( Junction
/ Inflow, cfs )
30002/
4.10E+00
30001/ 0.00E+00
# # # # # #
# # # # # # #
# # # N # # # # # # # #
# # # # # #
# # # #
# # # # #
CYCLE
3600 TIME 30
HRS - 0.00 MIN
JUNCTION / DEPTH / ELEVATION =__ "•" JUNCTION IS SURCHARGED.
30001/
4.63 / 5002.29
30002/ 4.97 /
5005.42
30010/
1.93 / 4998.27
30011/
0.97 / 4995.66
CONDUIT/
FLOW =__>
"•" CONDUIT USES THE
NORMAL FLOW
OPTION.
1001/
14.56
1010/ 18.05
1011/
18.05
90004/
0.00
90005/
0.00
90006/ 18.05
.•..
• FINAL
MODEL CONDITION •
• FINAL TIME = 10.00
HOURS •
JUNCTION / DEPTH / ELEVATION
=__> ••" JUNCTION IS SURCHARGED.
30001/
4.63 / 5002.29
30002/ 4.97 /
5005.42
30030/
1.93 / 4998.27
30011/
0.97 / 4995.66
CONDUIT/
FLOW
"" CONDUIT USES THE
>1010/
NORMAL FLOW
OPTION.
1001/
14.56
18.05
1011/
18.05
90004/
0.00
90005/
0.00
90006/ 18.05
CONDUIT/
VELOCITY
1001/
8.24
1030/ 7.51
loll/
1.88
CONDUIT/ CROSS SECTIONAL
AREA
1001/
1.77
Iolo/ 2.41
1011/
9.61
CONDUIT/
FINAL VOLUME
1001/
199.69
1010/ 505.11
loll/ 2882.72
CONDUIT/ HYDRAULIC
RADIUS
1001/
0.38
1010/ 0.44
1011/
0.76
CONDUIT/ UPSTREAM/
DOWNSTREAM
ELEVATION
1D01/
5005.42/ 5002.29
1010/ 5002.29/
4998.27
1011/
4998.27/ 4995.66
I
1###################################################
# Surcharge Iteration Summary #
###################################################
' Maximum number of iterations in a time step..... 1
Total number of iterations in the simulation.. 7200
Average number of iterations per time step...... 2.00
Surcharge iterations during the simulation...... 0
' Maximum surcharge flow error during simulation.. 0.00E+00 cfs
Total number of time steps during simulation.. 3600
1
••••••••••CONDUIT• COURANT • CONDITION' SUMMARY••••*••.
• TIME IN MINUTES DELT > COURANT TIME STEP
• SEE BELOW FOR EXPLANATION OF COURANT TIME STEP. `
CONDUIT # CONDUIT # ND COUIT # CONDUIT # ------- -------- -------- --------
1001 519.33 1010 348.00 1011 0.00
• CONDUIT COURANT CONDITION SUMMARY
• COURANT = CONDUIT LENGTH
• TIDE STEP =----------- --
......... a...../E.00.TY... SORT(GRVT-AREA/WIDTH...
• AVERAGE COURANT CONDITION TIME STEPISECONDS) •
CONDUIT # TIME(SEC) CONDUIT # TIME(SEC) CONDUIT # TIME(SEC) CONDUIT # TIME(SEC)
_________ ___ __
1001 7.69 1010 15.12 1011 38.16
' EXTRAN CONTINUITY BALANCE AT THE LAST TIME STEP
JUNCTION• INFLOW, OUTFLOW. OR. STREET. FLOODING.'.
' JUNCTION INFLOW- FT3
30001 3.3724E+05
30002 8.1399E+05
JUNCTION OUTFLOW, FT3
30011 7.4644E+05 '
• INITIAL SYSTEM VOLUME = 6.2300E-03 CU FT •
' TOTAL SYSTEM INFLOW VOLUME 1.1512E+06 CU FT
. INFLOW ... INITIAL . VOLUME.•............5.2E:06. CU. FT..
:-TOTAL SYSTEM OUTFLOW = 7.4644E+05 CU FT .
• VOLUME LEFT IN SYSTEM = 4.1970E+05 CU FT
' OUTFLOW + FINAL VOLUME ... ..1.1661E+06 CU •FT '
`
'• ERROR' IN• NU CONTIITY•• PERCENT = ••1,30•••*•`
.u...«..«.«.............:..........................
1 1
#########################################################
N T i m e H i s t o r y o f t h e H. G. L. ( Fee[) #
#########################################################
t HARMONY CENTER 6 PIER DETENTION FOND INTERIM COND. SIMULATION WITH EXTRAN
6/24/1999 ICON ENGINEERING, INC. File: Pier.dat Revised MBF 3/22100
Junction: 30001 Junction: 30002 Junction: 30010 Junction: 30011
' Time Ground: 5005.00 Ground: 5007.00 Ground: 5004.00 Ground: 5004.00
Hr:Mn: So Elevation Depth Elevation Depth Elevation Depth Elevation Depth
1
I
1
1
[I
--------
0: 5:
0
---------
4997.
66
-----
0.00
---------
5000.45
-----
0.00
---------
4996.34
-----
0.00
---------
4995.00
-----
0.31
0:10:
0
4997.
66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
0:15:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
0:20:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
0:25:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
0:30:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
0:35:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
0:40:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
0:45:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
0:50:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
0:55:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
1: 0:
0
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
1: 5:
0
4997.66
0.00
5000.47
0.02
4996.34
0.00
4995.00
0.31
1:10:
0
4997.82
0.16
5000.79
0.34
4996.35
0.01
4995.00
0.31
1:15:
0
4998.26
0.60
5001.30
0.85
4996.63
0.29
4995.00
0.31
1:20:
0
4998.94
1.28
5001.90
1.45
4997.52
1.18
4995.21
0.52
1:25:
0
4999.65
1.99
5002.42
1.97
4997.95
1.61
4995.47
0.78
1:30:
0
5000.63
2.97
5002.94
2.49
4998.08
1.74
4995.54
0.85
1:35:
0
5002.25
4.59
5003.68
3.23
499B.23
1.89
4995.64
0.95
1:40:
0
5003.05
5.39
5004.33
3.8B
499B.31
1.97
4995.69
1.00
1:45:
0
5003.39
5.73
5004.73
4.2B
499B.41
2.07
4995.75
1.06
1:50:
0
5003.56
5.90
5005.02
4.57
4998.69
2.35
4995.93
1.24
1:55:
0
5003.64
5.98
5005.24
4.79
4998.84
2.50
4996.02
1.34
2: 0:
0
5003.67
6.01
5005.42
4.97
4998.91
2.57
4996.07
1.38
2: 5:
0
5003.69
6.02
5005.57
5.12
4998.94
2.60
4996.09
1.40
2:10:
0
5003.69
6.03
5005.71
5.26
4998.94
2.61
4996.09
1.40 iA
2:15:
0
5003.68
6.02
5005.83
5.38
4998.94
2.60
4996.09
1.40
2:20:
0
5003.67
6.01
5005.94
5.49
4998.92
2.58
4996.08
1.39
2:25:
0
5003.66
6.00
5006.04
5.59
4998.90
2.56
4996.06
1.37
2:30:
0
5003.66
6.00
5006.14
5.69
4998.90
2.56
4996.06
1.37
2:35:
0
5003.66
6.00
5006.23
5.78
4998.90
2.56
4996.06
1.37
2:40:
0
5003.65
5.98
5006.31
5.86
4998.88
2.54
4996.05
1.36
2 :45:
0
5003.63
5.97
5006.38
5.93
4998.85
2.51
4996.03
1.34
2:50:
0
5003.62
5.96
5006.46
6.00
4998.83
2.49
4996.02
1.33
2:55:
0
5003.61
5.95
5006.52
6.07
4998.81
2.47
4996.01
1.32
3: 0:
0
5003.60
5.94
5006.58
6.12
4998.81
2.47
4996.00
1.31
3: 5:
0
5003.60
5.94
5006.62
6.17
4998.80
2.46
4996.00
1.31
3:10:
0
5003.59
5.93
5006.65
6.19
4998.78
2.44
4995.99
1.30
3:15:
0
5003.57
5.91
5006.66
6.21
4998.75
2.41
4995.97
1.28
3:20:
0
5003.55
5.89
5006.67
6.22
4998.73
2.39
4995.95
1.26
3:25:
0
5003.54
5.88
5006.67
6.22
4998.70
2.36
4995.94
1.25
3:30:
0
5003.53
5.87
5006.68
6.23
4998.68
2.34
4995.92
1.23
3:35:
0
5003.51
5.85
5006.68
6.23
4998.66
2.32
4995.91
1.22
3:40:
0
5003.50
5.84
5006.68
6.23
4998.64
2.30
4995.90
1.20
3:45:
0
5003.49
5.83
5006.68
6.22
499B.63
2.29
4995.88
1.19
3:50:
0
5003.48
5.82
5006.67
6.22
4998.61
2.27
4995.87
1.18
3:55:
0
5003.48
5.81
5006.67
6.22
4998.60
2.26
4995.87
1.18
4: 0:
0
5003.47
5.81
5006.67
6.22
4998.58
2.24
4995.86
1.17
4: 5:
0
5003.46
5.80
5006.66
6.21
4998.57
2.23
4995.85
1.16
4:10:
0
5003.45
5.79
5006.66
6.21
4998.56
2.22
4995.84
1.15
4:15:
0
5003.44
5.78
5006.66
6.21
4998.55
2.21
4995.84
1.15
4:20:
0
5003.44
5.78
5006.65
6.20
4998.54
2.20
4995.83
1.14
4:25:
0
5003.43
5.77
5006.65
6.20
4998.53
2.19
4995.83
1.14
4:30:
0
5003.43
5.77
5006.64
6.19
4998.52
2.18
4995.82
1.13
4:35:
0
5003.42
5.76
5006.64
6.19
499B.51
2.17
4995.81
1.12
4:40:
0
5003.41
5.75
5006.63
6.18
4998.50
2.16
4995.81
1.12
4:45:
0
5003.41
5.75
5006.63
6.18
4998.49
2.15
4995.80
1.11
4:50:
0
5003.40
5.74
5006.63
6.18
4998.48
2.14
4995.80
1.11
4:55:
0
5003.40
5.74
5006.62
6.17
4998.48
2.14
4995.79
1.10
5: 0:
0
5003.39
5.73
5006.60
6.15
4998.47
2.13
4995.79
1.10
5: 5:
0
5003.38
5.72
5006.57
6.12
4998.45
2.11
4995.78
1.09
5:10:
0
5003.37
5.71
5006.55
6.10
499B.44
2.10
4995.77
1.08
5:15:
0
5003.35
5.69
5006.53
6.08
4998.42
2.08
4995.76
1.07
5:20:
0
5003.34
5.68
5006.51
6.06
4998.41
2.07
4995.75
1.06
5:25:
0
5003.32
5.66
5006.49
6.04
4998.39
2.05
4995.74
1.05
5:30:
0
5003.31
5.65
5006.47
6.02
4998.38
2.04
4995.73
1.04
5:35:
0
5003.29
5.63
5006.45
6.00
4998.36
2.02
4995.72
1.03
5:40:
0
5003.28
5.62
5006.43
5.98
4998.35
2.01
4995.71
1.02
5:45:
0
5003.26
5.60
5006.42
5.97
499B.34
2.00
4995.71
1.02
5:50:
0
5003.24
5.58
5006.40
5.95
4998.34
2.00
4995.70
1.01
5:55:
0
5003.23
5.57
5006.38
5.93
4998.34
2.00
4995.70
1.01
6: 0:
0
5003.21
5.55
5006.37
5.92
4998.34
2.00
4995.70
1.01
6: 5:
0
5003.19
5.53
5006.35
5.90
4998.34
2.00
4995.70
1.01
6: 10:
0
5003.17
5.51
5006.33
5.88
4998.33
2.00
4995.
70
1.01
6:15:
0
5003.16
5.50
5006.32
5.87
4998.33
1.99
4995.?0
1.01
6:20:
0
5003.14
5.48
5006.30
5.85
4998.33
1.99
4995.70
1.01
6:25:
0
5003.12
5.46
5006.28
5.83
4998.33
1.99
4995.70
1.01
6:30:
0
5003.10
5.44
5006.27
5.82
4998.33
1.99
4995.70
1.01
6 :35:
0
5003.09
5.43
5006.25
5.80
4998.33
1.99
4995.70
1.01
6:40:
0
5003.07
5.41
5006.23
5.78
4998.33
1.99
4995.70
1.01
6: 45:
0
5003.05
5.39
5006.21
5.76
4998.33
1.99
4995.70
1.01
6: 5 0 :
0
5003.03
5.37
5006.20
5.75
4998.32
1.98
4995.70
1.01
6: 55:
0
1111,02
1,31
1111*11
5,11
1998.32
1.98
4995.69
1.00
7: 0:
0
5003.00
5.34
5006.16
5.71
4998.32
1.98
4995.69
1.00
'
7: 5:
0
5002.98
5.32
5006.
14
5.69
4998.32
1.98
4995.69
1.00
7:10:
0
5002.96
5.30
5006.13
5.68
4998.32
1.98
4995.69
1.00
7:15:
0
5002.94
5.28
5006.11
5.66
4998.32
1.98
4995.69
1.00
7:20:
0
5002.92
5.26
5006.09
5.64
4998.32
1.98
4995.69
1.00
7:25:
0
5002.91
5.25
5006.07
5.62
4998.32
1.98
4995.69
1.00
'
7:30:
0
5002.89
5.23
5006.05
5.60
4998.31
1.97
4995.69
1.00
7:35:
0
5002.87
5.21
5006.03
5.58
4998.31
1.97
4995.69
1.00
7:40:
0
5002.85
5.19
5006.02
5.57
4998.31
1.97
4995.69
1.00
7:45:
0
5002.83
5.17
5006.00
5.55
4998.31
1.97
4995.69
1.00
7:50:
0 5002.81
5.15
5005.98
5.53
4998.31
1.97
4995.69
1.00
'
7:55:
0 5002.80
5.14
5005.96
5.51
4998.31
1.97
4995.69
1.00
8: 0:
0 5002.78
5.12
5005.94
5.49
4998.31
1.97
4995.68
0.99
8: 5:
0 5002.76
5.10
5005.92
5.47
4998.30
1.96
4995.68
0.99
8:10:
0 5002.74
5.08
5005.91
5.46
4998.30
1.96
4995.68
0.99
8: 15:
0 5002.72
5.06
5005.89
5.44
4998.30
1.96
4995.68
0.99
8:20:
0 5002.70
5.04
5005.87
5.42
4998.30
1.96
4995.68
0.99
8:25:
0 5002.68
5.02
5005.85
5.40
4998.30
1.96
4995.68
0.99
8:30:
0 5002.66
5.00
5005.83
5.38
4998.30
1.96
4995.68
0.99
8:35:
0 5002.64
4.98
5005.81
5.36
4998.30
1.96
4995.68
0.99
B:40:
0 5002.62
4.96
5005.79
5.34
4998.29
1.95
4995.68
0.99
8: 45:
0 5002.60
4.94
5005.77
5.32
4998.29
1.95
4995.68
0.99
8: 50:
0 5002.58
4.92
5005.75
5.30
4998.29
1.95
4995.68
0.99
8:55:
0 5002.57
4.91
5005.73
5.28
4998.29
1.95
4995.67
0.99
9: 0:
0 5002.55
4.89
5005.70
5.25
4998.29
1.95
4995.67
0.98
9: 5:
0 5002.
53
4.87
5005.68
5.23
499 B.
29
1.95
4995.67
0.98
'
9:10:
0 5002.50
4.84
5005.66
5.21
4998.29
1.95
4995.67
0.98
9:15:
0 5002.48
4.82
5005.64
5.19
4998.28
1.94
4995.67
0.98
9:20:
0 5002.46
4.80
5005.61
5.16
4998.28
1.94
4995.67
0.98
9:25:
0 5002.44
4.78
5005.59
5.14
4998.28
1.94
4995.67
0.98
9:30:
0 5002.42
4.76
5005.56
5.11
4998.28
1.94
4995.67
0.98
'
9:35:
0 5002.40
4.74
5005.54
5.09
4998.28
1.94
4995.67
0.98
9:40:
0 5002.38
4.72
5005.52
5.07
4998.27
1.94
4995.67
0.98
9:45:
0 5002.36
4.70
5005.49
5.04
4998.27
1.93
4995.67
0.98
9:50:
0 5002.34
4.68
5005.47
5.02
4998.27
1.93
4995.67
0.97
9:55: 0
5002.32
4.66
5005.44
4.99
4998.27
1.93
4995.66
0.97
'
10: 0: 0
5002.29
4.63
5005.42
4.97
4998.27
1.93
4995.66
0.97
Mean
5002.36
4.70
5005.32
4.87
4998.19
1.85
4995.68
0.99
Maximum
5003.69
6.03
5006.68
6.23
4998.94
2.61
4996.09
1.40
Minimum
4997.66
0.00
5000.45
0.00
4996.34
0.00
4995.00
0.31
' ....J•U N.C.T+I 0•N...B U•M`M A. R.Y`.•S.T.A•T•. S.T•I C.S...
HARMONY CENTER & PIER DETENTION POND INTERIM COND.
SIMULATION WITH EXTRAN
6/24/1999 ICON ENGINEERING, INC. File: Piez.dat Revised MBF
3/22/00
'
UPPERMOST MEAN
MAXIMUM
TIME
FEET OF
FEET MAX.
LENGTH
LENGTH MA%IMUM
GROUND PIPE CROWN JUNCTION JUNCTION
JUNCTION
OF
SURCHARGE
DEPTH IE
OF
JUNCTION
JUNCTION ELEVATION ELEVATION ELEVATION AVERAGE
ELEV.
OCCURINCE
AT MAX
BELOW GROUND
SURCHARGE
FLOODING AREA
NUMBER (FT) (FT) (FT) 8 CHANGE
(FT)
HR. MIN.
ELEVATION
ELEVATION
(MIN)
(MIN) (SQ.FT)
30001 5005.00 5005.00 5002.35 0.0281
5003.69
2 7
0.00
1.31
0.0
0.0 1.124E+05
30002 5007.00 5007.00 5005.30 0.0317
5006.68
3 35
0.00
0.32
0.0
0.0 1.472E+05
30010 5004+00 5000.34 4998.18 0.0239
4998.95
2 9
0.00
5.05
0.0
'
0.0 2.582E+03
30011 5004.00 4998.69 4995.68 0.0151
4996.09
2 7
0.00
7.91
0.0
0.0 3.888E+03
1
##############pppp##########8################
p Time History of Flow and Velocity p
# Q(cfs), Vel(Et/s), Total(cubic feet) #
################################pppp#########
OF
I
1
1
1
HARMONY CENTER 6 PIER
DETENTION
POND INTERIM COND.
SIMULATION
WITH
E%TRAN
6/24/1999
ICON ENGINEERING,
INC. File:,yier.
I�l �.t10
dat
Revised MBF
3/22/00
Time
Conduit:
1001
Conduit
3010
Conduit:
IF301\1
Conduit:
90004
Conduit:
90005
Hr:Mn:SC
Flow
Veloc.
Flow
Veloc.
Flow
Veloc.
Flow
Veloc.
Flow
Veloc.
________
0: 5:
____
0 0.00
______
0.00
____
0.00
______
0.00
____
0.00
______
0.00
____
0.00
______
0.00
____
0.00
------
0.00
0:10:
0 0.00
0.00
0.00
O.DO
0.00
0.00
0.00
0.00
0.00
0.00
0:15:
0 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0:20:
0 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0:25:
0 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0:30:
0 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0:35:
0 0.00
0.00
0.00
0.00
0.00
0.00
DAD
0.00
0.00
0.00
0:40:
0 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0:45:
0 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0:50:
0 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0:55:
0 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1: 0:
0 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1: 5:
0 0.00
0.28
0.00
0.21
0.00
0.00
0.00
0.00
0.00
0.00
1:10:
0 0.47
1.87
0.07
1.08
0.00
0.00
0.00
0.00
0.00
0.00
1:15:
0 2.90
3.26
1.52
2.98
0.33
0.49
0.00
0.00
0.00
0.00
1:20:
0 6.49
4.26
8.92
4.92
4.87
1.26
0.00
0.00
0.00
0.00
1 :25:
0 8.43
4.99
12.01
5.06
11.16
1.63
0.00
0.00
0.00
0.00
1:30:
0 10.19
5.92
14.35
5.94
13.67
1.73
0.00
0.00
0.00
0.00
1:35:
0 9.93
5.66
17.96
7.42
17.02
1.84
0.00
0.00
0.00
0.00
1:40:
0 9.31
5.27
19.55
8.11
19.25
1.91
0.00
0.00
0.00
0.00
1:45:
0 9.51
5.38
20.09
8.35
21.81
1.98
3.63
0.00
0.00
0.00
1: 50:
0 9.92
5.61
19.86
8.26
30.97
2.19
12.84
0.00
0.00
0.00
1:55:
0 10.39
5.87
19.70
8.19
36.96
2.31
18.12
0.00
0.00
0.00
2: 0:
0 10.86
6.14
19.63
8.16
39.92
2.36
20.64
0.00
0.00
0.00
2: 5:
0 11.30
6.39
19.60
8.15
41.03
2.38
21.60
0.00
0.00
0.00
2:10:
0 11.71
6.62
19.59
8.14
41.24
2.38
21.63
0.00
0.00
0.00
2:15:
0 12.07
6.83
19.59
8.15
40.88
2.38
21.19
0.00
0.00
0.00
2:20:
0 12.41
7.02
19.60
8.15
40.26
2.36
20.53
0.00
0.00
0.00
2:25:
0 12.71
7.19
19.62
8.16
39.47
2.35
19.73
0.00
0.00
0.00
2:30:
0 12.96
7.33
19.63
8.16
39.25
2.35
19.76
0.00
0.00
0.00
2:35:
0 13.18
7.46
19.62
9.16
39.47
2.35
19.73
0.00
0.00
0.00
2:40:
0 13.43
7.60
19.64
8.16
38.49
2.34
18.65
0.00
0.00
0.00
2:45:
0 13.66
7.73
19.66
8.17
37.39
2.32
17.53
0.00
0.00
0.00
2:50:
0 13.87
7.85
19.68
8.18
36.42
2.30
16.56
0.00
0.83
0.00
2:55:
0 14.05
7.95
19.70
8.19
35.79
2.29
15.96
0.00
2.73
0.00
3: 0:
0 14.19
8.03
19.71
8.19
35.45
2.28
15.72
0.00
4.90
0.00
3: 5:
0 14.31
8.09
19.71
8.19
35.22
2.28
15.42
0.00
6.87
0.00
3:10:
0 14.40
8.15
19.72
8.20
34.48
2.26
14.56
0.00
8.15
0.00
3:15:
0 14.47
8.19
19.74
8.21
33.45
2.24
13.50
0.00
8.92
0.00
3:20:
0 14.53
0.22
19.76
8.22
32.45
2.22
12.49
0.00
9.41
0.00
3:25:
0 14.58
8.25
19.78
8.22
31.52
2.21
11.54
0.00
9.69
0.00
3: 30:
0 14.61
8.27
19.80
8.23
30.69
2.19
10.74
0.00
9.82
0.00
3:35:
0 14.64
8.29
19.82
8.24
29.96
2.17
10.01
0.00
9.85
0.00
3:40:
0 14.67
8.30
19.83
8.25
29.31
2.16
9.35
0.00
9.82
0.00
3:45:
0 14.69
8.31
19.85
8.25
28.73
2.15
8.77
0.00
9.74
0.00
3:50:
0 14.70
8.32
19.86
8.26
28.21
2.14
8.25
0.00
9.61
0.00
3:55:
0 14.72
8.33
19.87
8.26
27.74
2.13
7.77
0.00
9.46
0.00
4: 0:
0 14.73
8.34
19.88
8.27
27.29
2.12
7.32
0.00
9.28
0.00
4: 5:
0 14.74
8.34
19.89
8.27
26.91
2.11
6.94
0.00
9.10
0.00
4:10:
0 14.75
8.35
19.90
8.27
26.52
2.10
6.56
0.00
8.90
0.00
4:15:
0 14.75
8.35
19.91
8.28
26.19
2.09
6.21
0.00
8.70
0.00
4:20:
0 14.76
8.35
19.91
8.28
25.87
2.08
5.87
0.00
8.50
0.00
4 :25:
0 14.76
8.36
19.92
8.28
25.55
2.08
5.56
0.00
8.28
0.00
4:30:
0 14.77
8.36
19.93
8.28
25.22
2.07
5.23
0.00
8.08
0.00
4:35:
0 14.78
8.36
19.93
8.29
24.94
2.06
4.95
0.00
7.86
0.00
4:40:
0 14.78
8.36
19.94
8.29
24.68
2.05
4.66
0.00
7.67
0.00
4:45:
0 14.78
8.37
19.94
8.29
24.41
2.05
4.39
0.00
7.46
0.00
4:50:
0 14.79
8.37
19.95
8.29
24.15
2.04
4.13
0.00
7.24
0.00
4:55:
0 14.78
8.36
19.95
8.30
23.87
2.D4
3.88
0.00
6.80
0.00
5: 0:
0 14.75
8.35
19.96
8.30
23.60
2.03
3.55
0.00
5.88
0.00
5: 5:
0 14.72
8.33
19.96
8.30
23.23
2.02
3.17
0.00
4.84
0.00
5:10:
0 14.69
8.31
19.97
8.30
22.77
2.01
2.71
0.00
3.89
0.00
5:15:
0 14.67
8.30
19.97
8.30
22.33
2.00
2.24
0.00
3.04
0.00
5:20:
0 14.65
8.29
19.98
8.31
21.86
1.99
1.75
0.00
2.33
0.00
5:25:
0 14.64
8.29
19.98
6.31
21.37
1.97
1.29
0.00
1.72
0.00
5:30:
0 14.63
8.28
19.98
8.31
20.95
1.96
0.85
0.00
1.18
0.00
5:35:
0 14.63
8.26
19.98
8.31
20.55
1.95
0.48
0.00
0.75
0.00
5:40:
0 14.63
8.28
19.97
8.30
20.22
1.94
0.18
0.00
0.40
0.00
5:45:
0 14.63
8.28
19.95
8.30
20.00
1.94
0.00
0.00
0.14
0.00
5:50:
0 14.63
8.28
19.92
8.28
19.93
1.93
0.00
0.00
0.00
0.00
5:55:
0 14.63
8.28
19.89
8.27
19.89
1.93
0.00
0.00
0.00
0.00
6: 0:
0 14.63
8.28
19.86
8.26
19.87
1.93
0.00
0.00
0.00
0.00
6: 5:
0 14.63
8.28
19.83
8.24
19.83
1,93
0.00
0.00
0.00
0.00
6:10:
0 14.64
9.28
19.79
8.23
19.80
1.93
0.00
0.00
0.00
0.00
1
t
6: 15:
0
14.64
8.28
19.76
8.22
19.75
1.93
0.00
0.00
0.00
0.00
6:20:
0
14.64
8.28
19.73
8.20
19.74
1.93
0.00
0.00
0.00
0.00
6:25:
0
14.64
8.29
19.69
8.19
19.71
1.93
0.00
0.00
0.00
0.00
6:30:
0
14.64
8.29
19.66
8.17
19.68
1.93
0.00
0.00
0.00
0.00
6:35:
0
14.64
8.29
19.62
8.16
19.63
1.93
0.00
0.00
0.00
0.00
6:40:
0
14.64
8.29
19.59
8.15
19.58
1.92
0.00
0.00
0.00
0.00
6:45:
0
14.65
8.29
19.56
8.13
19.57
1.92
0.00
0.00
0.00
0.00
6:50:
0
14.65
8.29
19.52
8.12
19.53
1.92
0.00
0.00
0.00
0.00
6: 55:
0
14.65
8.29
19.49
8.10
19.49
1.92
0.00
0.00
0.00
0.00
7: 0:
0
14.65
8.29
19.45
8.09
19.46
1.92
0.00
0.00
0.00
0.00
7: 5:
0
14.65
8.29
19.42
8.07
19.42
1.92
0.00
0.00
0.00
0.00
7:10:
0
14.65
8.29
19.38
8.06
19.41
1.92
0.00
0.00
0.00
0.00
7:15:
0
14.65
8.29
19.35
8.04
19.36
1.92
0.00
0.00
0.00
0.00
7:20:
0
14.65
8.29
19.31
8.03
19.32
1.92
0.00
0.00
0.00
0.00
7:25:
0
14.65
8.29
19.28
8.02
19.28
1.92
0.00
0.00
0.00
0.00
7:30:
0
14.65
8.29
19.24
8.00
19.26
1.91
0.00
0.00
0.00
0.00
7:35:
0
14.65
8.29
19.21
7.99
19.22
1.91
0.00
0.00
0.00
0.00
7:40:
0
14.65
8.29
19.17
7.97
19.18
1.91
0.00
0.00
0.00
0.00
7:45:
0
14.65
8.29
19.13
7.96
19.14
1.91
0.00
0.00
0.00
0.00
7:50:
0
14.65
8.29
19.10
7.94
19.11
1.91
0.00
0.00
0.00
0.00
7:55:
0
14.65
8.29
19.06
7.93
19.07
1.91
0.00
0.00
0.00
0.00
8: 0:
0
14.65
8.29
19.02
7.91
19.03
1.91
0.00
0.00
0.00
0.00
8: 5:
0
14.65
8.29
18.99
7.89
18.99
1.91
0.00
0.00
0.00
0.00
8:10:
0
14.65
8.29
18.95
7.88
1B.94
1.91
0.00
0.00
0.00
0.00
8:15:
0
14.65
8.29
18.91
7.86
18.92
1.91
0.00
0.00
0.00
0.00
8:20:
0
14.65
8.29
18.87
7.85
18.89
1.90
0.00
0.00
0.00
0.00
8:25:
0
14.65
8.29
18.84
7.83
18.85
1.90
0.00
0.00
0.00
0.00
8:30:
0
14.65
8.29
18.80
7.82
18.81
1.90
0.00
0.00
0.00
0.00
8:35:
0
14.65
8.29
18.76
7.80
18.78
1.90
0.00
0.00
0.00
0.00
8:40:
0
14.65
8.29
18.72
7.78
18.73
1.90
O.DO
0.00
0.00
0.00
8:45:
0
14.65
8.29
18.68
7.77
18.69
1.90
0.00
0.00
0.00
0.00
8:50:
0
14.65
8.29
18.64
7.75
18.65
1.90
0.00
0.00
0.00
0.00
8:55:
0
14.64
8.29
18.60
7.74
18.61
1.90
0.00
0.00
0.00
0.00
9: 0:
0
14.64
8.28
18.56
7.72
18.58
1.89
0.00
0.00
0.00
0.00
9: 5:
0
14.63
8.28
18.52
7.70
18.54
1.89
0.00
0.00
0.00
0.00
9:10:
0
14.62
8.27
18.48
7.69
18.50
1.89
0.00
0.00
0.00
0.00
9:15:
0
14.62
8.27
18.44
7.67
18.45
1.89
0.00
0.00
0.00
0.00
9:20:
0
14.61
8.27
18.40
7.65
18.41
1.89
0.00
0.00
0.00
0.00
9 :25:
0
14.60
8.26
18.36
7.63
18.37
1.89
0.00
0.00
0.00
0.00
9:30:
0
14.60
8.26
18.32
7.62
18.33
1.89
0.00
0.00
0.00
0.00
9:35:
0
14.59
8.26
18.27
7.60
18.29
1.89
0.00
0.00
0.00
0.00
9:40:
0
14.58
8.25
18.23
7.58
18.24
1.88
0.00
0.00
0.00
0.00
9:45:
0
14.58
8.25
18.19
7.56
18.19
1.88
0.00
0.00
0.00
0.00
9 : 50:
0
14.57
8.25
18.14
7.54
18.16
1.88
0.00
0.00
0.00
0.00
9:55:
0
14.57
8.24
18.10
7.52
18.11
1.88
0.00
0.00
0.00
0.00
10: 0:
0
14.56
8.24
18.05
7.51
18.05
1.88
0.00
0.00
0.00
0.00
Mean
12.29
6.99
16.81
7.03
20.81
1.77
4.07
0.00
1.93
0.00
Maximum
14.79
8.37
20.09
8.35
41.24
2.38
21.63
0.00
9.85
0.00
Minimum
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Total
4.423E+05
6.050E+05
7.490E+05
1.464E+05
6.955E+04
1
... ...*......I ............. R.*... S. T.A..................
HARMONY CENTER 6 PIER DETENTION POND INTERIM COND. SIMULATION WITH EXTRAN
6/24/1999 ICON ENGINEERING, INC. File: Piec.dat Revised MBF 3/22/00
CONDUIT MAXIMUM TIME
LENGTH CONDUIT
DESIGN DESIGN VERTICAL COMPUTED OF
OF NORM SLOPE
CONDUIT. FLOW VELOCITY DEPTH FLOW OCCURRENCE
FLOW
NUMBER (CFS) (FPS) (IN) (CPS) HR. MIN.
(MIN) (FT/FT)
______ _______ ________ ________ _______ __________
1001 5.27E+00 2.98 18.000 1.48E+01 4 50
0.0 0.00363
1010 1.03E+01 4.30 21.000 2.01E+01 1 44
0.0 0.00629
1011 1.74E+02 2.91 48.000 4.13E+01 2 7
8.5 0.00550
90004 UNDEF UNDEF UNDEF 2.17E+01 2 6
90005 UNDEF UNDEF UNDEF 9.85E+00 3 31
MAXIMUM TIME RATIO OF MAXIMUM DEPTH ABOVE
COMPUTED OF MAX. TO INV. AT CONDUIT ENDS
VELOCITY OCCURRENCE DESIGN UPSTREAM DOWNSTREAM
(FPS) HR. MIN. FLOW (FT) (FT)
_______ __________ _______ _________
8.37 4 50 2.80 6.23 3.65
8.35 1 44 1.94 6.03 2.61
2.38 2 7 0.24 2.61 1.40
F
90006 UNDEF
UNDEF UNDEF 4.13E+01
2 7
1
•'SUBCRITICAL.
.....................................Rom
AND.CRITICAL.FLOW.ABEUMP'C
ZONS FROM
'
SUBROUTINE HEAD. SEE FIGURE 5-4 IN
THE EXTRAN
'
MANUAL FOR FURTHER INFORMATION. '
..................................................
LENGTH LENGTH LENGTH
LENGTH
OF OF OF UPSTR.
OF DOWNSTR.
MEAN
TOTAL
MAXIMUM
MAXIMUM
CONDUIT
DRY SUBCRITICAL CRITICAL
CRITICAL
FLOW
AVERAGE
FLOW
HYDRAULIC CROSS
SECT
'
NUMBER
PLOW (MIN) FLOW(MIN) FLOWIMIN)
FLOW(MIN)
(CES)
4 CHANGE
CUBIC FT
RADIUS(FT)
AREA(FT2)
1001
60.50 507.00 0.00
32.50
12.23
0.106E
4.4032E+05
0.4449
'
1.7671
1010
61.33 538.67 0.00
0.00
16.73
0.0630
6.0236E+O5
0.5316
2.4053
1011
66.67 533.33 0.00
0.00
20.73
0.0123
7.4644E.05
1.0296
17.3226
'
90004
UNDEFINED UNDEFINED UNDEFINED
UNDEFINED
4.07
1.4676E+05
90005
UNDEFINED UNDEFINED UNDEFINED
UNDEFINED
1.93
6.9544E+04
90006
UNDEFINED UNDEFINED UNDEFINED
UNDEFINED
20.73
7.4644E+05
'
••AV£RAGE•B•CHANGE'IN
JUNCTION OR'CONOUIT•ZS•DEFINED'AS•'•'•
• CONDUIT 9
CHANGE __> 100.0 ( Q(o+1) - Q(n) 1
/ Qfull
' JUNCTION 8
.......................«
CHANGE __> 100.0 1 Y(n+l) - Y(n) 1
»............ .....................
/ Yfull
'
The Conduit
with the largest average change...
1001 had
0.107
percent
The Junction
with the largest average change...
30002 had
0.032
percent
Extended Transport model simulation ended normally.
Correct Block Name not found.
was found instead. Program stops.
Check your data input for the following problems:
' 1. Using the wrong executable file.
2. Too many hydrograph input data lines.
3. SWHM Block is commented out of MAIN.FOR
4. Wrong input sequence of data (likely!).
Your
input file
was
named : pier.dat
Your
output
file was
named: pier.out
imu'..i.....on
Tme Summary
Is t.. nd.....
'
:•••.••.SWT.......
• Starting
Date..
March
I...........
31, 0
Time...
13:52:35:88
• Ending
Date...
March
31, 0 '
•
Time...
13:53: 3:62
Elapsed
Time...
0.467 minutes.
'
• Elapsed
.............................:.........................
Time...
27.999 seconds.
I
1
i
1
' EXISTING CONDITION MCCLELLAND'S MASTER DRAINAGE
MODSWMM MODEL FROM CITY OF FORT COLLINS
1
1
'�l
I
1
Ll
Final Drainage and Erosion Control Report
Settler's Creek
Appendix
March 2005
1
2 1 1 2
3 4
ERSHED 0
RLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. MSF 3/22/00
PTED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG.
600 0 0 1.0 1 1.0
25 5
.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12
1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81
73 0.71 0.69 0.67
-2 .016
UPDATED BASIN WIDTHS
1 80 50 7109 86.2 40 .01
1 60 50 1150 8.95 40 .01
1 70 61023929.38 40 .01
1 130 51 716124.66 40 .01
1 100 51 287513.19 40 .01
1 150 4 1590 1.84 80 .02
BASIN 110 SPLIT INTO 110-118 BY ICON
1 110 11 1250 1.93 99 .02
'1 111 11 700 1.05 99 .01
1 112 112 750 1.34 99 .01
1 113 12 1200 1.34 99 .01
'1 114 12 950 1,67 99 .01
1 115 13 1050 1.70 99 .01
1 116 13 1400 2.16 99 .01
1 117 51 1000 2.85 99 .01
'1 118 14 1250 1.07 99 .01
1 320 11 932 2.14 85 .01
1 120 22 387517.79 80 .02
1 90 2 571513,12 10 01
'1 190 51 250 1.38 80 .01
1 200 20 455031.34 80 .01
1 210 44 1090 7.51 80 .01
'1 240 7 1742 5.00 80 .01
1 220 45 968322.23 85 .01
1 260 46 345423.79 50 .01
1 230 47 640314.70 85 .01
1 290 291 1278 5.87 80 .01
1 340 34 1260 4.34 80 .01
* BASIN 280 SPLIT INTO 280-283 BY ICON
'1 280 275 1000 2.04 99 .02
1 281 28 1650 3.16 99 .01
1 282 29 850 1.50 99 .01
1 283 30 1250 2.02 99 .01
1 330 33 700 5.63 80 .01
1 160 16 3500 4.02 84 .02
1 121 16 850 1.43 80 .01
1 122 22 1200 1.81 80 .01
' 1 250 250 500 1.60 80 .01
* OAKRIDGE BLOCK ONE
1 270 270 625 3.30 60 .01
'1 271 271 2017 6.30 55 .01
1 272 272 817 1.50 31 .09
1 360 36 3223 2.37 87 .02
2.48 1.46
0.78 0.75
250 0.1 0.3 .51 0.5 .0018
* 'ALL FOLLOWING BASINS FROM MIRAMONT MASTER PLAN,
RBD, INC.
1
1 201 320 321314.75• 25.0183
1 202 322 187321.50 50.0165
203
172
702432.25
80.0100
'1
1
204
166
413819.00
80.0100
1
205
168
650 5.85
47.0105
1
206
171
958 7.70
70.0080
'1
207
176
171813.80
57.0235
1
208
178
293633.61
70.0170
1
209
321
679523.40
40.0085
'1
1
165
211
324
325
299110.30
316510.90
40.0100
64.0200
1
212
328
1220 4.20
80.0380
1
213
180
147216.89
30.0055
'1 214 179 465 1.62 90.0110
1 215 331 500 0.70 90.0270
1 216 327 1405 0.96 90.0060
*'----------------------------------------------------------------
ALL FOLLOWING BASINS FROM STETSON CREEK MASTER PLAN, RBD, INC.
* SUBBASINS 301 & 302 MODIFIED FOR HARMONY VILLAGE BY JR ENGINEERING.
* ADDED TO MODEL BY ICON
'1 301 301 331528.54 71 .005 .430 0.6
1 302 951373647.50 45 .01 .390 0.6
* SUBBASIN 303 DELETED FOR WILLOW SPRINGS NORTH, BY ICON
*'CE 365 CHANGED TO 396 BY ICON
1 305 3691709778.50 35.0.0110
1 306 372 2535 8.73 31.2.0200
1 307 360 2951 5.42 17.0.1262
t1 308 370 2042 7.03 40.0.0200
1 309 362 888 1.63 4.0.1262
1 311 371 807 2.78 40.0.0200
1 312 363 569 2.09 2.3.1262
'1 313 367 495 0.91 1.0.0500
1 314 402647091.15 34.0.0200
1 315 374 417914.39 40.0.0200
*'BASIN 316 CHANGED TO REFLECT POUDRE VALLEY HOSPITAL BY ICON
1 316 39 192467.00 85.0.017 0.3
1 317 594 150717.30 57.0.0140 0.3
1 318 593 169919.50 47.0.0150 0.3
*-------------------------------------- --------------- -
* ALL FOLLOWING SUBBASINS ARE FROM G&O 1986 MCCLELLANDS BASIN MASTER PLAN
* EXISTING CONDITION SUBBASINS BTWN STETSON CREEK & CTY RD 9
1 217 368 4018 18.4 41, .010
1 218 368 5053 17.4 50. .030
1 222 32 5605 19.3 50. .008
1 223 102 6679 23.0 50. .040
* '1 224 102 3006 13.8 45. .010
G&O SUBBASIN 215 RENUMBERED AS 225, REDUCED TO EXCLUDE WILDWOOD
1 225 3514288 65.6 45. .006
k_____________________________________ ____
* ,SUBBASIN 304 MODELED BY FOLLOWING DEVELOPED BASINS, FROM
* WILLOW SPRINGS PUD DRAINAGE PLAN, LIDSTONE & ANDERSON, JUNE 1996
1
1
201
1200
8.5
40.0.0200
.016
.250
.1
.3
.51
.5
.00180
2
202
2000
4.1
68.0.0200
.016
.250
.1
.3
.51
.50
.00180
'1
1
3
203
800
5.7
44.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
4
209
750
1.6
74.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
5
209
1600
2.7
68.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
6
210
3800
7.6
66.0.0200
.016
.250
.1
.3
.51
.50
.00180
11
1
1
7
209
750
3.3
57.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
8
210
450
2.3
67.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
9
209
3000
20.2
30.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
10
210
1400
9.1
26.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
14
214
1000
4.8
54.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
15
215
1300
4.4
9.0.0200
.016
.250
.1
.3
.51
.50
.00180
'1
16
216
200
1.8
12.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
20
223
600
4.1
46.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
21
223
1400
9.0
46.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
22
223
1800
7.3
52.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
23
224
1000
2.2
61.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
24
224
600
3.1
34.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
25
226
900
4.0
65.0.0200
.016
.250
.1
.3
.51
.50
.00180
'1
26
226
1000
2.7
32.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
30
130
2750
5.9
67.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
31
131
1700
3.6
67.0.0200
.016
.250
.1
.3
.51
.50
.00180
'1
1
32
39
330
216
400
700
2.0
3.1
48.0.0200
11.0.0200
.016
.016
.250
.250
.1
.1
.3
.3
.51
.51
.50
.50
.00180
.00180
1
40
140
1300
6.4
30.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
41
357
800
4.3
43.0.0200
.016
.250
.1
.3
.51
.50
.00180
42
241
900
1.5
75.0.0200
.016
.250
.1
.3
.51
.50
.00180
'1
1
50
251
1800
8.1
42.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
63
252
2250
8.9
61.0.0200
.016
.250
.1
.3
.51
.50
.00180
1
1
61
62
261
262
650
1200
2.1
4.7
80.0.0200
42.0.0200
.016
.016
.250
.250
.1
.1
.3
.3
.51
.51
.50
.50
.00180
.00180
*
---------
---
-----
-----
----------
-----
-----
------------
--- -----
---------
*
SUBBASINS 370 TO 397
UPSTREAM OF
LEMAY
AVENUE
(LIDSTONE
& ANDERSON, 1997)
370
570
1050
6.1
63.
.010
.016
.25
.1
.3
.51
.5
.0018
'1
1
371
571
2000
11.7
45.
.020
.016
.25
.1
.3
.51
.5
.0018
1
372
572
4900
26.7
45.
.020
.016
.25
.1
.3
.51
.5
.0018
1
373
73
2000
8.2
90.
.015
.016
.25
.1
.3
.51
'1
374
574
8000
18.3
86.
.020
.016
.25
.1
.3
.51
.5
.5
.0018
.0018
1
375
75
5400
28.4
48.
.020
.016
.25
.1
.3
.51
.5
.0018
1
376
576
2222
5.1
85.
.010
.016
.25
.1
.3
.51
.5
.0018
377
577
400
1.9
70.
.010
.016
.25
.1
.3
.51
.5
.0018
'1
1
378
577
450
2.3
70.
.010
.016
.25
.1
.3
.51
.5
.0018
1
379
479
450
1.5
70.
.010
.016
.25
.1
.3
.51
.5
.0018
1
380
480
350
1.4
70.
.010
.016
.25
.1
.3
.51
.5
.0018
1
381
481
550
2.6
70.
.010
.016
.25
.1
.3
.51
.5
.0018
1
382
582
700
0.8
67.
.013
.016
.25
.1
.3
.51
.5
.0018
1
383
483
2439
5.6
85.
.020
.016
.25
.1
.3
.51
.5
.0018
'1
1
384
385
84
85
2400
2100
6.9
6.3
84.
52.
.020
.020
.016
.016
.25
.25
.1
.1
.3
.3
.51
.51
.5
.5
.0018
.0018
1
386
586
3543
12.2
70.
.010
.016
.25
.1
.3
.51
.5
.0018
1
387
586
800
3.2
70.
.025
.016
.25
.1
.3
.51
.5
.0018
1
388
588
6970
16.0
85.
.020
.016
.25
.1
.3
.51
.5
.0018
1
389
88
3049
7.0
85.
.020
.016
.25
.1
.3
.51
.5
.0018
1
390
490
550
1.4
70.
.020
.016
.25
.1
.3 .51
.5
.0018
'1
1
391
392
411
588
610
1100
2.8
6.6
71,
90.
.021
.020
.016
.016
.25
.25 .1
.1
.3 .51
.3 .51
.5
.5
.0018
.0018
1
393
88
4400
11.8
95.
.020
.016
.25 .1
.3 .51
.5
.0018
1
394
92
900
1.4
90.
.020
.016
.25 .1
.3 .51
.5
.0018
396
496
2950
13.5
93.
.013
.016
.25 .1
.3 .51
.5
.0018
'1
-----------------------------------------------------------------------
1
397
497
810
3.9
85.
.021
.016
.25 .1
.3 .51
.5
.0018
F
SUBBASINS
400
TO 407
WILD WOOD FARMS (ICON
ENGINEERING,
INC.
OCT,
1998)
'
1
400
400
860
9.9
50.
.020
.016
.25 .1
.3 .51
.5
.0018
'
1
401
406
1170 16.7
20.
.015
.016
.25
.1
.3
.51
.5
.0018
1
402
406
1520 17.4
45.
.020
.016
.25
.1
.3
.51
.5
.0018
403
381
4792 11.0
85.
.017
.016
.25
.1
.3
.51
.5
.0018
'1
1
404
382
1790 10.4
55.
.025
.016
.25
.1
.3
.51
.5
.0018
1
405
402
3080 3.5
90.
.020
.016
.25
.1
.3
.51
.5
.0018
406
313
2153 14.1
38.
.015
.016
.25
.l
.3
'1
1
407
384
1921 13.2
40.
.015
.016
.25
.1
.3
.51
.51
.5
.5
.0018
.0018
1
408
40416901
38.8
85.
.015
.016
.25
.1
.3
.51
.5
.0018
*
--
---
------------------------------
-----
SUBBASINS 500
TO 510
FOSSIL
LAKE
VILLAGE (ICON ENGINEERING,
OCT,
1998)
1
500
517
7812 26.9
50.
.010
.016
.25
.1
.3
.51
.5
.0018
1
501
416
5489 18.9
50.
.020
.016
.25
.1
.3
.51
.5
.0018
1
502
517
5053 17.4
50.
.020
.016
.25
.1
.3
.51
.5
.0018
'1
503
41512981
44.7
50.
.015
.016
.25
.1
.3
:51
.5
.0018
1
504
415
3427 ll.B
50.
.020
.016
.25
.1
.3
.51
.5
.0018
*
SUBBASIN
504
SPLIT INTO 504
& 514
BY
ICON
514
413
8160 28.1
50.
.020
.016
.25
.1
.3
.51
.5
.0018
'1
1
505
40919544
67.3
50.
.020
.016
.25
.1
.3
.51
.5
.0018
1
506
412
4298 14.8
50.
.020
.016
.25
.1
.3
.51
.5
.0018
1
507
412
4559 15.7
50.
.010
.016
.25
.1
.3
.51
.5
.0018
t1
508
281
7667 26.4
50.
.010
.016
.25
.1
.3
.51
.5
.0018
1
509
411
3862 13.3
50.
.010
.016
.25
.1
.3
.51
.5
.0018
1
510
411
5227 18.0
50.
.010
.016
.25
.1
.3
.51
.5
.0018
*
--------------------
SUBBASINS 511
TO 513
----------------------------------
HOMESTEAD (ICON ENGINEERING,
OCT,
1998)
1
511
283
8516 39.1
35.
.010
.016
.25
.1
.3
.51
.5
.0018
1
512
38610215
46.9
35.
.010
.016
.25
.1
.3
.51
.5
.0018
'
1
513
38836126124.4
35.
.010
.016
.25
.1
.3
.51
.5
.0018
0
0
*
CE
15 REMOVED
BY ICON
0
4
8
0 1
0
800
0.0044
4
4
0.035
5.0
*
CONVEYANCE ELEMENT
8
ADDED BY
ICON
8
2
0 1
10
1750
0.010
4
4
0.035
5.0
'0
0
7
6
0 1
0
1400
0.0100
0
50
0.016
1.5
0
6
50
0 1
0
1200
0.0032
4
4
0.035
5.0
*
CE
13 REMOVED
BY ICON
0
35
102
0 1
0
1250
0.010
50
50
0.045
5.0
0
16
22
0 1
0
540
0.006
50
50
0.016
2.0
*
CE
11 SPLIT
INTO 11-14
BY ICON
0
0
11
12
12
13
0 1
0 1
0
0
700
850
0.006
0.006
50
50
0
0
0.016
0.016
1.5
1.5
0
13
51
0 1
0
500
0.006
50
0
0.016
1.5
0
14
51
0 1
0
900
0.006
50
0
0.016
1.5
*'CE
112 ADDED BY ICON
0
112
11
0 1
0
700
0.010
50
0
0.016
1.5
*
CE
9 REMOVED
BY ICON
*CE
18 REMOVED
BY ICON
'0
20
51
0 1
0
1100
0.005
4
4
0.035
5.0
0
21
44
0 1
0
1200
0.005
50
0
0.016
1.5
0
44
51
0 1
3
800
0.005
10
10
0.035
2.0
*
CE
220 CHANGED
TO BASIN
BY ICON
*
-1
220
43
3 3
0
1
*
0
0
0.32
11.87
4.1
0
0
45
43
3 1
0.1
1
1,001
0.016
0.1
'
0
0
0.1
11.87
10.
11.87
11
0
22
43 0 1
0
1600
0.007
4
4
0.035
5.0
*
CE
43 CHANGED TO NON -ROUTING ELEMENT
BY ICON
0
43
51 3
0.1
1
0.001
0.016
0.1
CONVEYANCE ELEMENTS 50 AND
51 REPLACE
C.E.
17 FOR
PROPER
ROUTING
TO
POND 2
0
50
2 0 1
10
1000
0.005
15
15
0.040
5.0
0
51
9 0 1
10
500
0.005
15
15
0.040
5.0
0
9
2 0'l
5
1000
0.006
15
15
0.035
5.0
CE
230 CHANGED TO
BASIN BY
ICON
*
-1
230
18 3 3
0
1
0.
0.
0.30
7.21
7.16
0
0
47
12 3 1
0.1
1
0.001
0.016
0.1
0
0
0.1
7.21
10.
7.21
*
0
24
7 0 1
0
700
0.008
50
0
0.016
1.5
OAKRIDGE
BUSINESS
PARK 4TH
& 8TH FILING
OUTLET
0
250
25 3 2
0.1
1
0.005
0.013
0.1
0
0
0.31
0.32
0.33
5.
0
CE
25
260 CHANGED
22 0 2
TO
1.25
BASIN BY
500
ICON
0.005
0.013
1.25
1
260
42 3 3
0
1
*
0.
0.
0.24
11.19
6.99
0
CE
290 CHANGED
TO
BASIN BY
ICON
-1
290
18 3 3
0
1
*
0.
0.
0.22
3.06
6.98
0
1
211
0.
12 3 2
0.
.1
0.10
1.
3.06
0,005
10.0
3.06
0.016
.1
0
46
42 3 1
0.1
1
0.001
0.016
0.1
0
0
0.1
11.19
10.
11.19
0
26
42 0 5
3.5
800
0.005
0.016
3.5
'
10
800
0.005
4
4
0.035
5.5
0
42
22 0 2
6
1
0.005
0.016
6.0
*'OAKRIDGE
BLOCK ONE
0
270
27 0 3
0
1
0.001
0.001
10.0
0
271
27 0 5
2.25
45
0.004
0.013
2.25
0
45
0.004
198
117
0.020
5.0
0
272
275 6 2
0.1
10
0.001
0.013
0.1
0
0
0.02
0.43
0.13
0.76
0.29
0.98
0.50
1.16
0.76
1.32
0
275
27 0 2
3.5
676
0.0084
0.013
3.5
0
27
41 8 2
0.1
10
0.001
0.013
0.1
0
0
0.03
0.78
0.22
2.51
0.52
3.46
0.90
4.21
1.37
4.84
2.10
57.63
3.20
191.38
'
0
41
26 0 5
4.0
10
100
100
0.005
0.005
50
50
0.016
0.016
4.0
5.0
0
36
26 0 5
1.25
90
0.014
0.013
1.25
0
90
0.014
200
200
0.020
5.0
*,CE
28 SPLIT
INTO 28-30 BY ICON
0
28
275 0 1
0
1000
0.005
0
50
0.016
1.5
0
29
28 0 1
0
1650
0.005
0
50
0.016
1.5
0
30
29 0 1
0
850
0.005
0
50
0.016
1.5
CE
340 CHANGED TO BASIN BY ICON
*
-1
340
16 3 3
0
1
*
0.
0.
0.23
1.91
6.96
0
34
16 3 2
.1
1.
0.005
0.016
.1
0.0
0.0
0.1
1.91
10.0
1.91
*
COVEYANCE
ELEMENTS
BETWEEN 92
AND 470
UPSTREAM OF
LEMAY AVENUE
(L &
A, 1997)
92
89 0 2
2.
1000.
.010
0.
0.
.013
2.
'-1
395
89 4 3
.1
1.
.1
0.0
0.0
0.5
3.6
9.6
3.6
9.85
O.0
89
88 0 1
0.
800.
.007
4.
4.
.035
5.
490
90 4 2
.1
1.
.1
0.00
0.
0.20
0.46
0.22
0.48
0.24
2.5C
POND 491
REVISED BY
ICON
491
90 4 2
.1
1.
.1
'
0.00
0.
0.50
1.0
0.60
91.9
0.70
260.
90
88 0 4
0.
500.
.010
50.
50.
.016
.5
50.
500.
.010
10.
10.
.035
5.
496
88 6 2
.1
1.
.1
0.00
0.
0.01
12.0
0.11
12.4
0.79
12.8
2.06
13.2
3.53
31.6
88
588 0 1
0.
700.
.008
4.
4.
.035
5.
'
497
588 7 2
.1
1.
.1
0.00
0.
0.01
1.57
0.05
1.61
0.36
1.67
0.67
1.73
0.84
1.76
1.30
20.16
588
488 0 3
.1
1.
HARMONY
CENTRE DETENTION POND RATING CURVE WAS COMPILED FROM THE
RESULTS
OF EXTRAN DYNAMIC FLOW MODEL AND
IS NOT APPLICABLE
TO ANY
*
INFLOW CONDITION
OTHER THAN
THAT WHICH
IS
MODELED
HEREIN
POND 488
REVISED BY
ICON FROM EXTRAN ANALYSIS 6/30/99 revised by MBF
3/22/00
488
586 8 2
.1
1.
.1
0.00
0.0
2.99
9.93
3.92
10.0
5.65
10.4
6.81
�83 582
11.3
682 3 3
8.73
.1
12.96
1.
10.11
16.78
10.83
24.49
.1
0.0
0.0
4.6
1.3
8.0
1.8
682
82 0 3
.1
1.
683
0 3
.1
1.
'
82
85 0 4
0.
1300.
.014
50.
50.
.016
.5
50.
1300. .014
10.
10.
.035
5.
85
586 0 4
0.
1000. .011
50.
50.
'
50.
1000. .011
10.
10.
.016
.035
.5
5.
84
586 0 4
0.
700. .010
50.
50.
.016
.5
50.
700. .010
10.
10.
.035
5.
486 0 3
.1
1.
*,586
PIER DETENTION POND
REVISED
BY ICON 6/30/99 Revised by MBF
3/22/00
486
584 6 2
.1
1.
.1
0.00
0.0
0.01
1.52
0.25
12.01
1.05
17.96
3.76
23.72
4.87
41.22
73 584
684 7 3
.1
1.
.1
0.0
0.0
20.0
0.0
21.0
1.0
24.0
3.0
27.0
684
6.0
83 0 3
30.0
.1
9.0
1.
48.0
27.0
673
73 0 3
.1
1.
83
583 0 1
5.
400. .005
4.
4.
.035
S.
*'
POND 483
REVISED BY
ICON
483
583 4 2
.1
1.
.1
0.00
0.
0.94
2.8
1.14
2.8
4.0
2.8
583
72 0 3
.1
1.
'
72
572 0 5
3.
700. .004
0.
0.
.013
3.
0.
700. .006
50.
50.
.016
5.
73
572 0 4
0.
1300. .006
50.
50.
.016
.5
50.
1300. .006
10.
10.
.035
5.
POND 481
removed so
model could
be run
in
new MODSWMM 11/17/04
481
577 3
.1
1.
.1
POND 480
REVISED BY
ICON
'
480
577 9 2
.1
1.
.1
0.00
0.
0.02
1.
0.03
2.
0.05
4.
0.06
6.
0.07
9.
0.08
14.
0.09
18.
0.10
20.
479
577
6 2
0.00
0.
0.03
0.5
0.04
1.
0.05
2.5
0.07
8.
0.08
12.7
'
577
477
0 3
.1
1.
477
76
14 2
.1
1.
,1
0.00
0.
0.05
2.
0.19
4.
0.25
6.
0.27
8.
0.29
12.
0.30
16.
0.32
20.
'
0.34
30.
0.36
45.
0.39
60.
0.46
75.
0.50
90.
0.55
105.
76
576
0 1
0.
800.
.007
4.
4.
.035
5.
576
574
0 3
.1
1.
75
574
0 1
5.
600.
.007
4.
4.
.035
5.
574
474
0 3
.1
1.
'
474
0.00
74
8 2
0.0
.1
2.23
1.
0.5
5.94
2.0
10.23
,1
4.4
13.60
8.0
15.13
10.2
16.66
12.5
18.20
13.5
74
572
0 1
10.
700.
.008
10.
10.
.035
5.
572
472
0 3
.1
1.
'
472
571 12 2
.1
1.
.1
0.00
0.
0.71
3.
0.89
6.
1.18
9.
'
1.73
6.95
12.
24.
2.52
7.76
15.
27.
3.66
8.04
18.
30.
5.11
9.50
21.
81.
571
471
0 3
471
570
9 2
0.00
0.
0.19
10.
0.39
20.
0.68
30.
'
0.77
32.
0.84
40.
0.87
50.
0.89
60.
0.97
100.
570
470
0 3
.1
1.
'
470
31
7 2
.1
1.
_1
0.00
0.
0.08
10.
0.12
20.
0.24
30.
0.66
40.
1.00
44.
1.47
160.
*'END
OF LIDSTONE
& ANDERSON INSERT
UPSTREAM OF LEMAY AVENUE
0 31
275
0 5
3
108
0.0075
0.013
3.0
30
108
0.0075
50.
50.
.035
5.
* ARTIFICIAL OVERFLOW
CHANNEL TO ELIMINATE SURCHARGE
0 33
21
0 1
0
700
0.008
50
0
0.016
1.5
*
OAKRIDGE
POND
WITH
REVISED OUTLET
HYDRAULICS
0 2
216 12
2
0.1
77
0.007
0.013
0.1
'0.0
12.05
169.80
0.0
0.59
19.65
86.17
193.70
2.36
28.60
115.72
214.81
6.17
33.64
144.72
224.38
38.67
233.10
49.31
251.39
59.39
269.69
70.59
287.99
-------------------------------
-------------------------------
"
ALL FOLLOWING
CONVEYANCE ELEMENTS
FROM MIRAMONT MASTER PLAN,
RBD,
INC.
•
POND 166
(301)
RATING
CURVE
COMPOSITES 3 DETENTION
PONDS IN
BASIN
204
0 166
167
3 2
0.1
96
0.0060
0
0
0.013
0.10
0.0
0.0
1.6
24.0
3.4
26.4
'0
167
169
0 1
4.00
260
0.0021
2
2
0.035
4.00
POND 168
(303)
RATING
CURVE
FROM EVANGELICAL
COVENANT REPORT
BY LANDMARK
'
POND 168
EXTENDED BY
ICON
0 168
169
5 2
0.1
10
0.0010
0
0
0.013
0.10
'
0.0
0.0
0.07
0.90
0.43
1.36
0.72
93.26
1.01
261.36
CE 169 CHANGED
TO PIPE
W/OVERFLOW
BY ICON
0 169
170
0 5
2.27
40
0.0070
0
0
0.013
2.27
1
40
40 0.0070
50
50
0.016
4.00
0 170
174 0 1
4.00
460 0.0021
2
2
0.035
4.00
FUTURE DETENTION
POND 171
(306)
0 171
174 3 2
0.1
10 0.0038
0
0
0.013
0.10
0.0
0.0
1.0
4.0
2.0
4.3
* POND 172
(307) RATING
CURVE COMPOSITES
5 DETENTION
PONDS IN
BASIN
203
POND 172
EXTENDED
BY ICON
0 172
173 5 2
0.1
120 0.0033
0
0
0.013
0.10
0.0
0.0
6.5
5.5
8.0
6.0
9.0
97.9
10.0
CE 173 CHANGED
266.
TO
CHANNEL
W/OVERFLOW
BY ICON
0 173 175 0 4 0 1200 0.0050 4
30 1200 0.0050 150
CE 174 CHANGED TO PIPE W/OVERFLOW BY ICON
0 174 175 0 5 2.25 75 0.0211
40 75 0.0211
CE 175 CHANGED TO PIPE W/OVERFLOW BY ICON
0 175 177 0 5 2.50 853 0.0123
50 853 0.0123
* POND 176 (311) RATING CURVE FROM OAKRIDGE WEST
POND 176 EXTENDED BY ICON
0 176 177 7 2 0.1 315 0.0020
0.0 0.0 0.04 1.10 0.23
1.78 2.56 2.44 94.46 3.10
CE 177 CHANGED TO PIPE W/OVERFLOW BY ICON
0 177 341 0 5 3.00 480 0.0100
10.0 480 0.0100
0
50
4 0.035 1.10
150 0.035 3.00
0 0.013 2.25
50 0.016 4.00
0 0 0.013 2.50
50 50 0.016 4.00
PUD REPORT BY RBD
0 0 0.013 0.10
1.71 0.79 2.15
261.78
0 0 0.013
50 50 0.016
0
178
177
9 2
0.10
1310
0.0033
0
0
0.013
0.0
0.0
1.95
5.0
2.70
5.8
3.4
4.2
8.8
4.6
16.2
4.9
29.5
5.2
5.5
60.
0
320
321
0 1
5.00
1350
0.0050
4
4
0.035
*
POND 321
EXTENDED
BY
ICON
0
321
324
10 2
0.1
300
0.0053
0
0
0.013
'
0.0
1.52
0.0
5.5
0.05
2.55
0.0
6.4
0.31
3.85
2.6
7.3
0.79
5.40
6.30
99.9
7.20
268.
* FUTURE DETENTION POND 322
0
322
323
3 2
0.1
10
0.0100
0
0
0.013
'
0.0
0.0
1.9
11.0
4.0
11.3
0
323
324
0 1
0
1500
0.0142
50
0
0.016
*ICE
324 MODELED USING
HGL AS
SLOPE
0
324
331
0 2
3.00
36
0.0222
0
0
0.013
0
325
326
0 1
4.00
420
0.0050
4
4
0.035
* CE
326 MODELED USING
HGL AS
SLOPE
OVERFLOW TO CE
326 TO
ELIMINATE SURCHARGE - ICON
]ADDED
0
326
327
0 5
3.50
214
0.0168
0
0
0.013
40
214
0.0168
50
50
0.016
0
327
329
0 1
4.00
750
0.0050
4
4
0.035
]CE
328 MODELED WITH STREET CROWN OVERFLOW
USING HGL
AS SLOPE
0
328
329
0 5
1.75
101
0.0149
0.013
0
101
0.0149
133
44
0.016
329
180
0 1
5.00
240
0.0050
4
4
0.035
`
'0
CE
179 (330)
MODELED
WITH STREET
CROWN OVERFLOW USING HGL AS
SLOPE
0
179
324
0 5
1.50
80
0.0110
0.013
0
80
0.0110
167
167
0.016
ICE 331 MODELED USING HGL AS SLOPE
3.00
5.00
0.10
6.5
44.
4.00
0.10
4.3
8.0
0.10
1.50
3.00
3.00
3.50
5.0
3.00
1.75
5.0
4.00
1.50
5.0
'
0
331 325
0 2 3.00
30 0.0267 0
0 0
* RATING CURVE
FOR POND
180 WAS
REVISED BY THE CITY
(11/19/99)
0
180 341
8 2 0.10
20 0.0040 0
0 0
'
0.0
0.0
0.21
4.00 1.00
18.00
2.95
52.40
4.16
68.00 4.82
78.00
013 3.00
013 0
1.91
5.67
0 341 4 0 5 5.20 120 0.0040 0 0 0.013 5.
0 120 0.0040 -- 50 -50 0.016 7.
--------------------------------------------------------
* ALL FOLLOWING CONVEYANCE ELEMENTS FROM STETSON CREEK MASTER PLAN, RBD,
* CONCEPTUAL DETENTION FOR SUBBASINS 301 AND 303
CE 303 REMOVED BY ICON
POND 301 REVISED BY JR ENGINEERING FOR HARMONY VILLAGE, ADDED BY ICON
10
37.20
88.00
20
00
INC.
0 301
91 9 2
0.1
1
0.0050
0.013
0.1
' 0.00
0.0
0.10
2.21
0.85
4.20
1.88
5.32
2.45
5.76
3.27
13.38
4.26
14.36
4.56
36.21
5.73
57.76
'
'0 91
0 93
93 0 1
94 11 2
0
0.1
1325
1
0.0150
0.0050
4
4
0.060
0.013
5.0
0.1
0.00
0.0
0.05
0.00
0.51
0.0
0.98
0.0
1.62
1.9
2.40
5.40
3.33
7.7
4.35
14.
20.7
6.52
93.90
7.65
219.5
'5.41
0 94
241 0 1
0
500
0.0027
3
3
0.035
5.0
0 95
93 0 3
0
1
'0 357
0 358
358 0 1
359 0 2
16
9.44
10
103
0.0050
0.0050
4
4
0.045
0.013
4.00
9.44
0 359
360 0 1
16
950
0.0050
4
4
0.045
4.00
0 360
361 0 2
9.44
46
0.0050
0.013
9.44
361
362 0 1
16
619
0.0050
4
4
0.045
4.00
'0
0 362
363 0 1
16
215
0.0050
4
4
0.045
4.00
0 363
364 0 1
16
415
0.0050
4
4
0.045
4.00
* OVERFLOW
ADDED TO CE
364 FOR
DEV. COND. BY
ICON
' 0 364
366 0 4
16
90
0.0050
4
4
0.045
5.00
40
90
0.0050
50
50
0.035
6.00
* CE 365 CHANGED TO 396
BY ICON
0 369
366 0 4
0
1125
0.0045
4
4
0.035
2.30
50
1125
0.0045
50
50
0.035
5.00
* OVERFLOW
ADDED TO CE
366 FOR DEV. COND. BY
ICON
0 366
367 0 4
16
377
0.0050
4
4
0.045
5.00
40
377
0.0050
50
50
0.035
6.00
*
OVERFLOW
ADDED TO CE
38 AND
39 FOR
DEV. COND.
BY ICON
0 38
373 0 4
0
1080
0.0050
4
4
0.035
3.50
' 0 39
38 0 4
40
0
1080
860
0.0050
0.0050
50
4
50
4
0.016
0.035
4.50
3.50
------------------------
40
860
0.0050
50
50
0.016
4.50
*
THE SEAR
-BROWN GROUP
-----------------------------
- POUDRE VALLEY HOSPITAL
SITE
•
CONVEYANCE ELEMENTS CHANGED
TO 591,
592, 593,
594 BY
ICON
* POND 593
WITHIN BASIN
318
0 593
592 10 2
0,10
1
0,015
0.013
0.10
0.00
0.0
.57
0.50
1.14
3.04
1.40
3.57
1.79
6.40
2.45
9.32
2.60
9.71
3.23
11.14
4.01
12.73
4.97
14.12
592
39 0 1
4.0
1000
0.016
4.0
4.0
0.035
3.5
'0
POND 594
WITHIN BASIN
317
0 594
591 10 2
0.10
1
0.005
0.013
0.10
0.00
0.0
0.36
2.70
0.74
2.99
1.12
3.26
'
1.40
3.39
1.69
5.44
2.26
8.42
2.40
8.55
1 2.90 8.96 3.54 9.46
0 591 39 0 1 0 1300 0.005 4.0 4.0 0.035 3.5
---- ------------------------------- --------
CONVEYANCE ELEMENT 40 ADDED BY ICON
0 40 373 0 1 5 1400 0.0050 4 4 0.035 5.00
* POND 370 REVISED BY ICON
' 0 370 361 2 2 0.10 1 0.0050 0.013 0.10
0.00 0.0 0.96 33.52
0 371 362 2 2 0.10 1 0.0015 0.013 0.10
0.00 0.0 .550 1.75
POND 372 RATING CURVE FROM STETSON CREEK 2ND FILING, BY NORTHERN ENGINEERING
0 372 363 6 2 0.10 1 0.0020 0.013 0.10
0.00 0.00 0.17 10.00 0.42 22.37 0.74 33.27
'0.94 37.98 1.17 50.54
0 373 364 18 2 0.10 1 0.0042 0.013 0.10
0.00 0.0 .061 0.00 .465 0.0 1.578 0.0
3.566 6.4 6.256 16.8 6.909 18.0 7.562 18.8
8.216 19.6 8.869 20.8 9.522 21.6 9.910 31.5
10.298 49.4 10.687 72.6 11.075 99.7 11.463 130.9
13.4 333.7 15.52 429.6
POND 374 EXTENDED BY ICON
0 374 38 14 2 0.10 1 0.0040 0.013 0.10
0.00 0.0 .009 0.00 .119 0.0 0.230 0.0
'0,409 1,13 0,469 2,11 0,528 2,76 0.678 3.94
0.827 4.84 1.062 5.60 1.297 6.27 1.532 6.87
1.711 7.29 2.341 59.9
* -----------------------------------------------------------------------
ALL FOLLOWING CONY. ELEMENTS ARE FROM G&O 1986 MCCLELLANDS BASIN MASTER PLAN
EXISTING CONDITION CONVEYANCE ELEMENTS SUBBASINS BTWN STETSON CREEK & CTY RD
0 32 102 0 1 1.0 500 0.006 75 1.5 0.045 5.0
0 367 368 0 4 5.0 950 0.007 2.0 2.5 0.045 8.0
'35.0 950 0.007 75.0 45.0 0.045 14.0
0 368 102 0 4 5.0 1960 0.010 3.0 3.0 0.045 5.0
30.0 1960 0.010 60.0 30.0 0.045 11.0
CROSSING UNDER CTY RD 9; PER RBD 1987 MCCLELLANDS BASIN CH. IMP. PHASE ONE
0 102 410 0 5 4.5 50 0.005 0.024 5.6
29.0 50 0.005 25 100 0.018 10.0
` -----------------------------------------------------------------------
'"� SUBBASIN 304 MODELED BY FOLLOWING CONVEYANCE ELEMENTS, FROM
*� WILLOW SPRINGS PUD DRAINAGE PLAN, LIDSTONE & ANDERSON, JUNE 1996
201 202 0 3 .1 1.
' 202 209 0 3 .1 1.
203 209 0 3 .1 1.
209 210 0 3 .1 1.
210 310 0 3 .1 1.
310 140 16 2 .1 1.
0.0 0.0 0.38 0.13 1.00 1.19 1.50 1.97
3.40 3.93 4.36 6.64 6.73 7.74 8.87 8.36
' 10.27 8,76 11,47 9,13 12,41 9,21 12.99 9.32
13.37 9.39 13.72 9.45 13.85 9.48 13.89 9.48
214 315 0 3 .1 1.
215 315 0 3 .1 1.
*' POND 315 REVISED BY ICON
315 216 8 2 .1 1.
0.0 0.0 0.06 2.00 0.24 3.00 0.59 4.00
0.85 4.50 1.23 5.00 1.43 96.9 1.63 265.0
' 216 116 0 3 .1 1.
6
52.
12.6
6.0
.001 )
.001 )
57.
12.8
6.0
.00( 1
.00( 1
54.
12.8
6.0
.001 1
.001 I
6
55.
12.8
6.0
.001 )
.001 1
56.
12.7
6.0
.00( 1
.001 )
6
57.
12.7
6.0
.00( 1
.001 )
SB.
12.7
6.0
.aol 1
.aal r
59.
12.7
6.0
.001 )
.00( I
7
0.
12.7
6.0
1.
.001 )
12.7
.001 I
6.0
.0o1 )
.001 )
2.
12.7
6.0
.00( 1
.00( 1
3.
12.7
6.0
.00( r
.001 1
4.
12.7
6.0
.00( I
.00( I
7
S.
12.7
6.0
.001 )
.001 )
6.
12.7
6.0
.001 1
.001 )
7.
12.7
6.0
.00( 1
.001 1
B.
12.6
5.9
.001 I
.00( 1
9.
12.6
5.9
.00( )
.00( I
7
10.
12.6
5.9
.001 1
.001 )
11.
12.6
5.9
.00l 1
.00l 1
12.
12.6
5.9
.00( 1
.001 1
7
13.
12.6
5.9
.00( )
.00( I
14.
12.6
5.9
.00( 1
.001 1
7
15.
12.6
5.9
.00( 1
.001 1
16.
12.6
5.9
.00( )
.001 1
17.
12.6
5.9
.001 1
.00( I
7
18.
12.6
5.9
.00l )
.001 )
19.
12.6
5.9
.00( 1
.001 1
7
20.
12.5
5.9
.00( 1
.00( I
21.
12.5
5.9
.00l 1
.00l 1
22.
12.5
5.9
.00( )
.00( 1
7
23.
12.5
5.9
.)
.001 I
29.
12.55
5.9
.001 )
.001 )
25.
12.5
5.9
.00( 1
.001 1
26.
12.5
5.9
.00( )
.oa( r
27.
12.5
5.9
.001 1
.001 1
7
28.
12.5
5.9
.001 I
.001 1
29.
12.5
5.9
.001 I
.001 1
30.
12.5
5.9
.001 )
.001 )
31.
12.5
5.9
.001 1
.001 1
32.
12.5
5.9
.001 )
.001 1
7
33.
12.4
5.9
.00( )
.00( )
34.
12.4
5.9
'
.00( )
.001 )
35.
12.4
5.9
.001 1
.001 1
7
36.
12.4
5.9
1
.001 I
.001 I
7
37.
12.4
5.9
.001 1
.001 1
38.
12.4
5.9
.00( 1
.001 1
39.
12.4
5.9
.001 1
.001 1
7
40.
12.9
5.9
OD(I
.001 I
41.
12.4 A
5.9
.00( 1
.001 I
42.
12.4
5.9
.00( 1
.00( I
43.
12.4
5.8
.00( )
.001 1
44.
12.4
5.8
.00( 1
.00( 1
7
45.
12.3
5.8
4.
.00( I
12.3
.001 1
5.8
.001 1
.00( 1
47.
12.3
5.8
.001 1
.00( )
68.
12.3
5.8
.00( 1
.00( )
49.
12.3
5.8
.00( I
.00( 1
7
50,
12.3
5.8
.00( )
.001 1
51.
12.3
5.7
.00( )
.00( I
52.
12.3
5.4
.00( I
.001 1
7
53.
12.3
5.1
.001 1
.001 I
54.
12.3
5.0
.001 )
.001 I
7
55.
12.3
4.8
.00( 1
.00( 1
56.
12.3
4.7
.00( I
.001 1
57.
12.2
4.6
.001 )
.001 1
7
58.
12.2
4.5
.001 1
.001 1
59.
12.2
4.5
.00( )
.00( I
8
0.
12.2
4.4
.001 1
.00( 1
1.
12.2
4.4
.00( 1
.001 1
2.
12.2
4.3
.00( I
.00( 1
8
3.
12.2
4.3
.001 )
.001 I
4.
12.2
4.3
.00( 1
.00( )
5.
12.2
4.3
.00( I
.001 I
6.
12.2
4.2
.001 )
.00( )
7.
12.2
4.2
.00( 1
.001 1
8
S.
12.1
4.2
9.
.00f )
12.1
.001 1
4.2
.00( 1
.001 1
10.
12.1
4.2
.001 1
.00( I
11.
12.1
4.2
.00( 1
.001 )
12.
12.1
4.2
.o01 1
.00( I
8
13.
12.1
4.2
.001 )
.00 ( 1
1.
12.1
4.2
.001 1
.001 )
15.
12.1
4.2
.00( I
.00( 1
8
16.
12.1
4.2
.001 1
.00( I
'
17.
12.1
9.2
.001 1
.001 1
8
18.
12.0
4.2
.001 1
.00( 1
19.
12.0
4.2
'
.00( )
.00( )
20.
12.0
4.2
.001 1
.001 1
8
21.
12.0
4.2
.001 1
.001 )
18
22.
12.0
4.2
.001 1
.001 1
23.
12.0
4.2
AD( )
.00t I
24.
12.0
4.2
.001 1
.001 1
8
25.
12.0
4.2
26.
.001 )
12.0
.001 1
4.2
.001 1
.001 )
27.
12.0
4.2
.001 I
.001 1
28.
12.0
4.1
.00( )
.001 I
29.
11.9
4.2
.001 )
.001 )
8
30.
11.9
4.1
.00( 1
.001 1
3.
11.9
4.1
.001 1
.001 I
32.
11.9
4.1
.001 I
.00( I
33.
11.9
4.1
.001 1
.00( )
34.
11.9
4.1
.00( 1
.00( )
8
35.
11.9
4.1
.00( 1
.001 1
36.
11.9
4.1
.00c )
.00( I
37.
11.9
4.1
.00( )
.001 )
8
38.
11.9
4.1
.001 1
.001 )
39.
11.8
4.1
.00( 1
.00( 1
8
40.
11.8
4.1
.00( I
.00( )
41.
11.8
9.1
.00l )
.00( )
42.
11.8
4.1
.00( r
.00( r
8
43.
11.8
4.1
.00( I
.001 I
44.
11.8
4.1 '
.001 )
.00( I
8
45.
11.8
4.1
.001 1
.001 1
46.
11.8
4.1
.00( I
.00( I
47.
11.8
4.1
.00( )
.00( )
8
48.
11.8
4.1
.00( 1
.001 1
49.
11.8
4.1
.001 1
.00( I
50.
11.7
4.1
.001 )
.001 )
51.
11.7
4.1
.00( 1
.001 1
52.
11.7
4.1
.00( 1
.00( )
8
53.
11.7
4.1
54.
.001 1
11.7
.001 1
4.1
.00( 1
.00( 1
55.
11.7
4.1
.001 )
.001 )
56.
11.7
4.1
.00( I
.001 1
57.
11.7
4.1
.00( 1
.001 )
8
58.
11.7
4.1
.001 )
.001 1
59.
11.7
4.1
'
.00( 1
.001 I
0.
11.7
4.1
.001 )
.001 1
9
1.
11.6
4.1
.00( I
.001 I
2.
11.6
4.1
.00( I
.001 )
9
3.
11.6
4.1
.001 )
.001 )
4.
11.6
4.1
'
.001 )
.001 1
5.
11.6
4.1
.00( 1
.001 I
9
6.
11.6
4.1
1
.001 )
.001 1
4 7. 11.6 4.1
. 00 ( )
.00( 1
8.
11.6
4.1
. 001 1
.00( 1
9.
11.6
4.1
.00( I
.00( 1
9
10.
11.6
4.1
.00( 1
.00( 1
11.
11.6
4.1
1
.001 1
.00( 1
12.
11.5
4.1
.001 1
.00( 1
13.
11.5
4.1
oo( 1
00( I
14.
11.5
4.1
.00( 1
.00( 1
9
15.
11.5
4.1
.00( I
.001 )
16.
11.5
4.1
.001 1
.00( 1
17.
11.5
4.1
.00( 1
.00( 1
18.
11.5
4.1
.00c 1
.00( 1
19.
11.5
4.1
.00( I
.001 1
9
20.
11.5
4.1
.001 )
.00( )
21.
11.5
4.1
.00( 1
.001 1
22.
11.5
4.1
.00( 1
.00( I
9
23.
11.4
4.1
.001 1
.00( I
29.
11.9
4.1
.00( 1
.00( I
9
25.
11.4
4.1
.00( )
.00( )
26.
11.4
4.1
.00l 1
.00t 1
27.
11.4
4.1
.00( I
.00( I
9
28.
11.4
4.1
.00( 1
.001 1
'
29.
11.4
4.1
.00( 1
.00( 1
9
30.
11.4
4.1
.00( 1
.00( I
31.
11.4
4.1
.00( 1
.001 I
32.
11.4
4.1
.001 )
.001 1
9
33.
11.4
4.1
.001 )
.001 1
34.
11.3
4.1
.00( 1
.00( 1
35.
11.3
4.1
.00( )
.00( )
36.
11.3
4.1
.oat 1
.00( 1
37.
11.3
9.1
.00( )
.001 I
9
38.
11.3
4.0
.001 1
11.3
.00( )
4.0
.00( 1
.00( I
40.
40.
11.3
4.0
.001 )
.001 1
41.
11.3
3.9
.00( I
.001 1
42.
11.3
3.9
.00( 1
AO( ( 1
9
43.
11.3
3.8
.001 )
.001 )
94.
11.3
3.7
'
.00( 1
.00( 1
45.
11.3
3.6
.00( I
.00( I
9
46.
11.3
3.4
.001 )
.001 I
'
47.
11.2
3.3
.00( 1
.00( 1
9
48.
11.2
3.2
.00( 1
.00( 1
99.
11.2
3.0
'
.00( )
.001 )
50.
11.2
2.8
.00( 1
.00( 1
9
51.
11.2
2.7
1
.00( 1
.00( )
1
9
52.
11.2
2.5
.001
) .001 I
53.
11.2
2.4
.00(
1 .001 I
54.
11.2
2.2
.00(
1 .00( I
9
55.
11.2
2.0
.001
) .001 1
9
1
56.
11.2
1.9
.00(
) .001 1
9
57.
11.2
1.8
.00(
1 .00( 1
58.
11.1
1.7
oo(
I ooc I
59.
11.1
1.6
.001
) .00( I
10
0.
11.1
1.5
.00(
1 .001 )
FOLLOWING
NCE
CONVEYAMENTS
ELE WERE SURCHARGED
IN
G THE SIMULATION.
THIS COULD LEAD TO ERRORS
THE SIMULATION
RESULTS!!
417
FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL
BILITY PROBLEMS THAT LEAD TO HYDRAULIC
ILLLATIONS DURING THE SIMULATION.
42 102 174 324 331 358 360 382 413 470
471
1
MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;ReV. MBF 3/22/00
ADOPTED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG., USED FOR DEVEL EXTRAN
1
- PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS `••
- NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY
ONVEYANCE PEAK STAGE STORAGE TIME
EMENT:TYPE (CPS) (FT) (AC -FT) (HR/MIN)
2:2 276.3 .1 63.4:D 2 29.
193.6
3.5
1
0.
'4:1
6:1
173.7
3.5
0
37.
7:1
35.4
.6
0
36.
8:1
189.1
2.0
1
6.
9:1
753.3
3.1
0
41.
1:1
.2
.8
0
35.
'
12:1
81
81.2
.9
0
36.
13:1
107.9
1.0
0
36.
14:1
7.9
.4
0
36.
16:1
51.4
.6
0
35.
218.8
3.6
0
36.
'20:1
21:1
31.2
.6
0
41.
22:1
210.7
3.3
0
37.
25:2
1.6
.5
1
5.
26:5
102.6
4.6
0
56.
27:2
102.3
.1
2.5:D
0
51,
28:1
35.0
.7
0
37.
29:1
18.2
.5
0
40.
30:1
15.5
.5
0
36.
31:5
79.4
3.3
2
2.
3:1
33:1
1.
97.5
41
1.
.7
0
0
36.
36.
'
34:2
1.9
.1
.9:D
2
1.
35:1
269.4
1.4
0
39.
36:5
23.6
1.5
0
35.
11:4
39:4
340.7
371.5
3.9
3.9
0
0
43.
38.
40:1
490.7
4.2
0
36.
41:5
102.3
4.3
0
52.
42:2
115.3
2.9
0
55.
43:3
222.6
(DIRECT
FLOW)
0
37.
44:1
67.9
1.5
0
40.
45:1
11.9
.1
4.4:D
2
0.
46:1
11.2
.1
3.9:D
2
1.
47:1
7.2
.1
3.0:D
2
1.
50:1
497.3
2.8
0
39.
51:1
817.1
3.4
0
37.
72:5
23.8
2.6
1
30.
73:4
51.6
.6
0
37.
74:1
9.6
.4
2
21.
75:1
188.8
2.6
0
35.
58.9
2.0
0
39.
'76:1
82:4
3.4
.2
0
36.
83:1
21.0
1.0
0
53.
84:4
57.3
.5
0
35.
85:4
44.2
.5
0
36.
1
88:1 199.1 3.1 0 35
19.1
13.6
1.2
0
37.
90:4
4.9
.2
1
0.
9:.
1.
1
.
92:2
1313.3
1.1
0
35
35.
93:2
72.1
.1 6.2:D
1
2.
94:1
71.8
2.9
1
6.
95:3
284.0
(DIRECT FLOW)
0
35.
102:5
1133.8
7.2
0
58.
112:1
11.4
.4
0
35.
116:1
285.6
3.3
2
31.
124:2
16.9
1.0
1
32.
130:2
55.3
2.4
0
35.
131:2
140:1
86.6
295.5
3.1
3.3
0
2
35.
31.
141:1
95.3
1.9
1
6.
160:5
74.3
2.9
0
35.
166:2
25.6
.1
2.8:D
0
55.
167:1
168:2
25.6
19.0
1.7
.1
.5:D
0
0
56.
42.
169:5
44.1
2.4
0
42.
170:1
42.1
2.2
0
46.
171:2
4.1
.1
1.S:D
2
1.
172:2
173:4
10.8
8.8
.1
1.1
8.1:D
2
2
3.
9.
174:5
46.6
1.9
0
46.
175:5
48.7
2.3
0
49.
176:2
25.8
.1
1.9:D
0
51.
177:5
178:2
117.1
46.9
3.4
.1
5.3:D
0
0
55.
58.
179:5
15.7
1.6
0
35.
180:2
80.3
.1
5.0:D
1
29.
201:3
52.3
(DIRECT
FLOW)
0
35.
212:3
91.2
(DIRECT
FLOW(
0
15.
203:3
37.0
(DIRECT
FLOW(
0
35.
209:3
304.8
(DIRECT
FLOW)
0
35.
210:3
442.6
(DIRECT
FLOW)
0
35.
214:3
37.9
(DIRECT
FLOW)
0
35.
215:3
21.9
(DIRECT
FLOW)
0
35.
285.7
(DIRECT
FLOW)
2
25.
t216:3
223:3
147.2
(DIRECT
FLOW)
0
35.
224:3
186.6
(DIRECT
FLOW)
0
35.
226:3
66.2
(DIRECT
FLOW)
0
35.
241:3
95.8
(DIRECT
FLOW)
1
3.
250:2
1.6
.1
.3:D
1
2.
251:3
57.3
(DIRECT
FLOW)
0
35.
252:3
76.6
(DIRECT
FLOW)
0
35.
261:3
94.5
(DIRECT
FLOW)
0
35.
262:3
128.9
(DIRECT
FLOW)
0
35.
270:3
25.4
(DIRECT FLOW)
0
35.
271:5
51.2
2.6
0
35.
272:2
.9
.1 .2:D
1
15.
275:2
87.1
2.7
0
50.
281:1
122.3
.8
0
38.
282:1
487.3
2.4
1
3.
283:1
488.1
1.9
1
2.
284:1
450.7
1.2
0
58.
291:2
3.1
.1
1.2:D
2
1.
301:2
28.3
.1
4.5:D
1
14.
310:2
9.5
.1
13.8:D
2
10.
315:2
11.3
.1
1.2:D
1
0.
320:1
56.2
1.6
0
41.
321:2
38.4
.1
5.7:D
1
12.
322:2
11.2
.1
3.5:D
2
0.
323:1
11.2
.4
1
59.
324:2
97.6
2.4
0
35.
325:1
181.3
2.9
0
36.
326:5
176.8
3.7
0
36.
327:1
164.3
2.7
0
38.
328:5
329:1
1
41.0
184.4
2.0
2.8
0
0
35.
38.
330:2
5.4
.1
2.3:D
2
1.
331:2
100.2
2.3
0
35.
334:2
16.9
.1
4.0:D
1
31.
36:2
19.0
.1
2.4:D
2
1.
41:5
193.5
4.6
0
56.
50:2
11.7
.1
1.2:D
0
56.
57:1
381.9
3.3
1
19.
358:2
381.9
4.0
1
19.
359:1
381.7
3.3
1
22.
60:2
384.4
4.1
1
20.
61:1
394.3
3.3
1
19.
62:1
396.5
3.4
1
19,
363:1
409.2
3.4
1
17.
364:4
774.9
4.7
1
2.
65:2
18.3
.1
2.6:0
1
0.
66:4
933.8
5.1
0
55.
67:4
932.8
6.9
0
57.
368:4
949.5
5.6
1
5.
369:4
309.0
3.1
0
40.
170:2
20.4
.1
.6:D
0
45.
�371:2
1.5
.1
.5:D
1
38.
372-2
27.1
.1
.6:D
0
45.
373:2
432.8
.1
15.6:D
0
55.
374:2
24.8
.1
1.9:D
0
51.
380:2
75.0
.1
6.6:D
1
13.
381:2
11.8
.1
2.0:0
0
58.
382:2
33.2
.1
1.3:D
0
46.
383:2
384:2
16.0
10.9
.1
.1
1.9:D
1.9:D
1
1
7.
21.
386:1
473.3
1.5
0
52.
387:1
411.8
1.2
0
47.
388:1
460.3
1.2
0
41.
391:3
400:1
3.6
48.7
(DIRECT
1.2
FLOW)
0
0
31,
37.
401:1
32.6
.4
0
48.
402:1
37.0
.5
0
50.
403:1
73.1
2.2
1
19.
404:5
357.3
4.1
0
35.
196.5
4.2
0
41.
'405:5
406:3
229.9
(DIRECT
FLOW)
0
35.
407:3
361.5
(DIRECT
FLOW)
0
35.
409:1
326.4
1.5
0
38.
410:4
1133.4
5.1
1
1.
411:4
1755.4
7.6
1
4.
412:4
1781.3
6.8
1
6.
413:5
1907.8
6.5
1
3.
414:1
1947.3
3.7
1
5.
411:1
2000.5
3.1
1
6.
416:1
2017.1
3.5
1
7.
417:2
.0
.1
461.9:S
10
0.
470:2
79.5
.1
1.1:D
2
1.
471:2
76.8
.1
.9:D
2
0.
472:2
71.9
.1
9.2:D
2
3.
9.6
.1
14.7:D
2
15.
'474:2
477:2
68.6
.1
.4:D
0
36.
479:2
12.2
.1
.1:D
0
35.
480:2
10.5
.1
.1:D
0
36.
481:3
22.2
(DIRECT
FLOW)
0
35.
2.8
.1
1.2:D
2
1.
'483:2
486:2
48.2
.1
5.3:D
2
3.
488:2
37.4
.1
12.0:D
2
3.
490:2
2.1
.1
.2:D
0
50.
491:2
3.6
.1
.5:D
0
55.
496:2
13.2
.1
2.1:D
1
7.
497:2
1.8
.1
.8:D
2
1.
517:3
2061.5
(DIRECT
FLOW)
0
56.
570:3
93.0
(DIRECT
FLOW)
0
40.
571:3
96.0
(DIRECT
FLOW)
0
35.
572:3
256.1
(DIRECT
FLOW)
0
35.
574:3
460.0
)DIRECT
FLOW)
0
35.
576:3
90.1
(DIRECT
FLOW)
0
35.
577:3
80.3
.)DIRECT
FLOW)
0
35.
582:3
7.7
)DIRECT
FLOW)
0
35.
583:3
23.8
)DIRECT
FLOW)
0
53.
584:3
48.2
(DIRECT
FLOW)
2
3.
586:3
248.4
(DIRECT
FLOW)
0
35.
588:3
422.0
(DIRECT
FLOW)
0
35.
591:1
9.1
1.1
2
5.
11.0
.6
1
59.
�592:1
593:2
11.0
.1
3.2:D
1
56.
594:2
9.1
.1
3.0:D
2
1.
673:3
27.2
(DIRECT
FLOW)
2
3.
682:3
6.0
(DIRECT
FLOW)
0
35.
683:3
684:3
1.8
21.0
IDIRECT
(DIRECT
FLOW)
FLOW)
0
0
35.
42.
PROGRAM
PROGRAM CALLED
----------PIER POW
----------POWD 488
1
I
1
1
1
1
1
1
1
I
0
0
0
0
0
0
0
0
0
0
112
0
0
0
0
0
0
0
0
0
1.3
216
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
818.5
334
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25.7
0
0
0
0
0
0
0
0
0
0
30
0
0
0
0
0
0
0
0
0
5.9
130
0
0
0
0
0
0
0
0
0
31
0
0
0
0
0
0
0
0
0
9.5
310
116
0
0
0
0
0
0
0
0
40
0
0
0
0
0
0
0
0
0
890.0
241
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
104.7
252
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8.9
0
0
0
0
0
0
0
0
0
0
204
0
0
0
0
0
0
0
0
0
19.0
166
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
19.0
0
0
0
0
0
0
0
0
0
0
205
0
0
0
0
0
0
0
0
0
5.8
167
168
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24.9
169
0
0
0
0
0
0
0
0
0
D
0
0
0
0
0
0
0
0
0
24.9
0
0
0
0
0
0
0
0
0
0
206
0
0
0
0
0
0
0
0
0
7.7
0
0
0
0
0
0
0
0
0
0
203
0
0
0
0
0
0
0
0
0
32.3
172
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
32.3
170
171
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
32.6
173
174
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
64.8
0
0
0
0
0
0
0
0
0
0
207
0
0
0
0
0
0
0
0
0
13.8
175
176
178
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
112.2
0
0
0
0
0
0
0
0
0
0
208
0
0
0
0
0
0
0
0
0
33.6
0
0
0
0
0
0
0
0
0
0
214
0
0
0
0
0
0
0
0
0
1.6
329
0
0
0
0
0
0
0
0
0
213
0
0
0
0
0
0
0
0
0
105.2
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
8.5
201
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
12.6
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
5.7
202
203
0
0
0
0
0
0
0
0
4
5
7
9
0
0
0
0
0
0
46.1
209
0
0
0
0
0
0
0
0
0
6
8
10
0
0
0
0
0
0
0
65.1
0
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
0
0
0
4.8
0
0
0
0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
4.4
2
315
350
0
0
0
0
0
0
0
16
39
0
0
0
0
0
0
0
0
818.5
0
0
0
0
0
0
0
0
0
0
20
21
22
0
0
0
0
0
0
0
20.4
223
0
0
0
0
0
0
0
0
0
23
24
0
0
0
0
0
0
0
0
25.7
124
0
0
0
0
0
0
0
0
0
25
26
0
0
0
0
0
0
0
0
32.4
94
330
365
0
0
0
0
0
0
0
42
0
0
0
0
0
0
0
0
0
104.7
0
0
0
0
0
0
0
0
0
0
250
0
0
0
0
0
0
0
0
0
1.6
0
0
0
0
0
0
0
0
0
0
50
0
0
0
0
0
0
0
0
0
8.1
0
0
0
0
0
0
0
0
0
0
63
0
0
0
0
0
0
0
0
0
8.9
160
0
0
0
0
0
0
0
0
0
61
-0
0
0
0
0
0
0
0
0
11.0
261
0
0
0
0
0
0
0
0
0
62
0
0
0
0
0
0
0
0
0
15.7
0
0
0
0
0
0
0
0
0
0
270
0
0
0
0
0
0
0
0
0
3.3
0
0
0
0
0
0
0
0
0
0
271
0
0
0
0
0
0
0
0
0
6.3
0
0
0
0
0
0
0
0
0
0
272
0
0
0
0
0
0
0
0
0
1.5
272
28
31
0
0
0
0
0
0
0
280
0
0
0
0
0
0
0
0
0
223.8
0
0
0
0
0
0
0
0
0
0
508
0
0
0
0
0
0
0
0
0
26.4
283
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
210.4
284
0
0
0
0
0
0
0
0
0
511
0
0
0
0
0
0
o
o
0
210.4
386
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
171.3
0
0
0
0
0
0
0
0
0
0
290
0
0
0
0
0
0
0
0
0
5.9
0
0
0
0
0
0
0
0
0
0
301
0
0
0
0
0
0
0
0
0
28.5
210
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
65.1
214
215
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9.2
0
0
0
0
0
0
0
0
0
0
201
0
0
0
0
0
0
0
0
0
14.8
320
0
0
0
0
0
0
0
0
0
209
0
0
0
0
0
0
0
0
0
36.1
0
0
0
0
0
0
0
0
0
0
202
0
0
0
0
0
0
0
0
0
21.5
322
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
21.5
321
323
179
0
0
0
0
0.
0
0
165
0
0
0
0
0
0
0
0
0
71.6
331
0
0
0
0
0
0
0
0
0
211
0
0
0
0
0
0
0
0
0
83.2
325
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
83.2
326
0
0
0
0
0
0
0
0
0
216
0
0
0
0
0
0
0
0
0
84.1
0
0
0
0
0
0
0
0
0
0
212
0
0
0
0
0
0
0
0
0
4. 2
327
328
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
88.3
131
0
0
0
0
0
0
0
0
0
32
0
0
0
0
0
0
0
0
0
11.5
324
0
0
0
0
0
0
0
0
0
215
0
0
0
0
0
0
0
0
0
72.3
224
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25.7
226
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
32.4
177
180
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
217.4
251
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8.1
140
336
141
0
0
0
0
0
0
0
41
0
0
0
0
0
0
0
0
0
1031.4
357
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1031.4
358
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1031.4
359
0
0
0
0
0
0
0
0
0
307
0
0
0
0
0
0
0
0
0
1036.8
360
370
0
0
0
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
1043.8
361
371
0
0
0
0
0
0
0
0
309
0
0
0
0
0
0
0
0
0
1048.3
362
372
0
0
0
0
0
0
0
0
312
0
0
0
0
0
0
0
0
0
1059.1
363
373
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1268.4
262
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
15.7
364
369
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1346.9
366
0
0
0
0
0
0
0
0
0
313
0
0
0
0
0
0
0
0
0
1347.8
367
0
0
0
0
0
0
0
0
0
217
218
0
0
0
0
0
0
0
0
1383.6
0
0
0
0
0
0
0
0
0
0
305
0
0
0
0
0
0
0
0
0
78.5
0
0
0
0
0
0
0
0
0
0
308
0
0
0
0
0
0
0
0
0
7.0
0
0
0
0
0
0
0
0
0
0
311
0
0
0
0
0
0
0
0
0
2.8
0
0
0
0
0
0
0
0
0
0
306
0
0
0
0
0
0
0
0
0
8.7
38
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
209.3
0
0
0
0
0
0
0
0
0
0
315
0
0
0
0
0
0
0
0
0
14 .4
406
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
68.9
0
0
0
0
0
0
0
0
0
0
403
0
D
D
0
0
0
0
0
0
11.0
381
0
0
0
0
0
0
0
0
0
404
0
0
0
0
0
0
0
0
0
21.4
0
0
0
0
0
0
0
0
0
0
406
0
0
0
0
0
0
0
0
0
14.1
'
384
0 0 0 0
0
0
0
0
0
0
407
0
0
0
0
0
0
0
0
0
13.2
386
387 0 0 0
0
0
0
0
0
0
512
0
0
0
0
0
0
0
0
0
171.3
387
388 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
124.9
388
0 0 0 0
0
0
0
0
0
0
513
0
0
0
0
0
0
0
0
0
124.4
'
395
0 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
400
0 0 0 0
0
0
0
0
0
0
400
0
0
0
0
0
0
0
0
0
9.9
401
382 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
21.4
112
401 0 0 0
0
0
0
0
0
0
405
0
0
0
0
0
0
0
0
0
24.9
403
380 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
68.9
'
404
384 0 0 0
0
0
0
0
0
0
408
0
0
0
0
0
0
0
0
0
52.0
405
407 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
135.0
406
402 400 0 0
0
0
0
0
0
0
401
402
0
0
0
0
0
0
0
0
68.9
407
383 403 404 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
135.0
409
0 0 0 0
0
0
0
0
0
0
505
0
0
0
0
0
0
0
0
0
67.3
410
102 405 282 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1850.7
411
410 0 0 0
0
0
0
0
0
0
509
510
0
0
0
0
0
0
0
0
1882.0
412
411 0 0 0
0
0
0
0
0
0
506
507
0
0
0
0
0
0
0
0
1912.5
413
409 412 0 0
0
0
0
0
0
0
514
0
0
0
0
0
0
0
0
0
2007.9
414
281 413 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2034.3
'
415
414 0 0 0
0
0
0
0
0
0
503
504
0
0
0
0
0
0
0
0
2090.8
416
415 0 0 0
0
0
0
0
0
0
501
0
0
0
0
0
0
0
0
0
2109.7
417
517 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2154.0
470
570 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
213.6
471
571 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
207.5
'
472
572 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
195. B
474
574 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
61.5
477
577 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9.7
479
0 0 0 0
0
0
0
0
0
0
379
0
0
0
0
0
0
0
0
0
1.5
480
0 0 0 0
0
0
0
0
0
0
380
0
0
0
0
0
0
0
0
0
1.4
481
0 0 0 0
0
0
0
0
0
0
381
0
0
0
0
0
0
0
0
0
2.6
483
0 0 0 0
0
0
0
0
0
0
383
0
0
0
0
0
0
0
0
0
5.6
486
586 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
93.8
488
588 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
64.4
490
0 0 0 0
0
0
0
0
0
0
390
0
0
0
0
0
0
0
0
0
1.4
'
491
0 0 0 0
0
0
0
0
0
0
391
0
0
0
0
0
0
0
0
0
2.8
496
0 0 0 0
0
0
0
0
0
0
396
0
0
0
0
0
0
0
0
0
13.5
497
0 0 0 0
0
0
0
0
0
0
397
0
0
0
0
0
0
0
0
0
3.9
517.
416 0 0 0
0
0
0
0
0
0
500
502
0
0
0
0
0
0
0
0
2154.0
570
471 0 0 0
0
0
0
0
0
0
370
0
0
0
0
0
0
0
0
0
213.6
571
472 0 0 0
0
0
0
0
0
0
371
0
0
0
0
0
0
0
0
0
207.5
572
72 73 74 0
0
0
0
0
0
0
372
0
0
0
0
0
0
0
0
0
195.8
574
576 75 0 0
0
0
0
0
0
0
374
0
0
0
0
0
0
0
0
0
61.5
576
76 0 0 0
0
0
0
0
0
0
376
0
0
0
0
0
0
0
0
0
14.8
577
481 480 479 0
0
0
0
0
0
0
377
378
0
0
0
0
0
0
0
0
9.7
'
582
0 0 0 0
0
0
0
0
0
0
382
0
0
0
0
0
0
0
0
0
.8
583
83 483 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
99.4
584
486 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
93.8
586
488 65 84 0
0
0
0
0
0
0
386
387
0
0
0
0
0
0
0
0
93.8
'
588
591
88 497 0 0
594 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
388
0
392
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
64.4
17.3
592
593 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
19.5
593
0 0 0 0
0
0
0
0
0
0
318
0
0
0
0
0
0
0
0
0
19.5
594
0 0 0 0
0
0
0
0
0
0
317
0
0
0
0
0
0
0
0
0
17.3
0 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
682
582 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
. B
'173
683
0 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
684
584 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
93. B
LELLANDS
BASIN MODEL (FULLY INTEG.)
DEVEL.
COND.
6/30/99;Rev.
MBF 3/22/00
PTE➢ 100-YEAR EVENT FILE: MMCD-100.DAT
ICON ENG., USED FOR
DEVEL EXTRAN
IROGRAPHS ARE LISTED FOR THE FOLLOWING
2 CONVEYANCE ELEMENTS
THE UPPER
NUMBER IS DISCHARGE
IN CFS
THE LOWER
NUMBER IS ONE OF THE
FOLLOWING
CASES:
( ) DENOTES DEPTH ABOVE
INVERT IN FEET
(S) DENOTES STORAGE
IN AC -FT FOR
DETENTION DAM. DISCHARGE
INCLUDES
SPILLWAY
OUTFLOW.
(I) DENOTES GUTTER
INFLOW IN
CPS
FROM SPECIFIED
INFLOW HYDROGRAPH
(D) DENOTES DISCHARGE IN CPS
DIVERTED FROM
THIS GUTTER
(0) DENOTES STORAGE
IN AC -FT FOR
SURCHARGED GUTTER
(HR/MIN)
586 588
0
1.
.0 .0
.00( ) .001 1
'
2.
0 0
00 ( .00( )
0
3.
.1 .1
.00O .00( )
4.
1 .1
5.
.1 .2
.00O .00( )
0
6.
.2
1
.00( ) .00( 1
7.
.6
1.3
.001
1 .001 1
S.
2.2
5.3
.00t
) .00l 1
9.
4.5
10.8
.001
1 .00(
0
10.
7.1
16.9
.001 1
.001 1
11.
.9
23.9
.00( 1
.001 1
12.
12.9
31.4
.001 1
.001 1
13.
15.7
38.4
. 001 1
.001 1
14.
18.0
44.4
.001 I
.00( 1
0
15.
20.1
49.5
.00( 1
.001 1
16.
23.7
57.5
ool r
oo( 1
17.
28.8
68.3
.00( I
.00( 1
0
18.
33.1
76.8
.001 )
.00( 1
19.
36.6
83.2
.00( 1
.001 1
0
20.
39.4
88.0
.00( 1
.00( I
21.
43.4
95.2
.001 I
-00( 1
22.
48.5
104.8
.00( 1
.001 1
0
23.
53.0
112.4
.001 1
.001 I
29.
56.9
118.4
.001 I
.00( 1
0
25.
60.4
123.0
.00( )
.00( 1
26.
71.9
144.1
.00( 1
.001 1
27.
90.7
178.8
.001 I
.001 I
0
28.
105.8
203.0
.001 )
.001 )
29.
117.7
219.3
.001 1
.001 I
30.
127.3
230.2
.001 I
.001 1
31.
153.1
274.8
32.
191.5
343.4
.00( )
.001 1
0
33.
217.1
384.1
34.
.001 1
234.9
.001 I
407.9
.00( I
.00( )
36.
248.9
422.0
.00( 1
.001 1
36.
231.9
374.3
.001 I
.001 1
37.
199.4
299.8
.00( )
.001 1
0
38.
180.5
259.9
.00( I
.001 1
39.
167.2
236.3
'
.00( )
.001 1
40.
157.4
221.9
.001 1
.00( I
0
41.
144.4
200.6
.001 )
.001 )
'
42.
129.3
175.7
.001 1
.00( 1
0
43.
118.6
159.6
.00( )
.001 )
94.
110.7
149.0
'
.00( I
.001 1
45.
104.9
141.9
.00( )
.001 1
0
46.
97.2
130.7
.001 1
.001 1
t
47.
88.2
117.0
.001 I
.001 I
0
48,
81.4
107.4
.00( 1
.001 1
49.
76.1
100.6
.00( )
.001 I
so.
72.2
95.8
.001 1
.001 1
0
51.
68.5
91.0
1
.001 )
.001 1
52.
64.9
86.3
.001 I
.001 1
53.
62.1
82.8
.00( )
.001 I
54.
59.8
80.2
.001 1
.001 1
0
55.
58.0
78.4
.001 1
.001 1
56.
56.1
76.5
.00( 1
.00( I
57.
54.2
74.3
.00( 1
.00( 1
58.
52.7
72.7
. 001 1
.001 )
59.
51.5
71.4
.00( I
.001 1
1
0.
50.4
70.4
.001 )
.00( 1
1.
49.5
69.4
.001 1
.001 1
2.
48.6
68.2
.001 I
.00( )
1
3.
47.8
67.3
.001 I
.001 )
4.
47.2
66.6
.00( 1
.001 1
1
5.
46.7
66.0
.00( 1
.00( I
b.
46.4
65.3
.00( 1
.00( )
7.
46.4
64.5
.00( 1
.001 1
1
8.
46.4
63.8
.00( )
.001 1
9.
46.6
63.3
.001 1
.00( l
1
10.
46.8
62.8
.001 1
.001 1
11.
46.9
62.3
.00( 1
.001 1
12.
47.0
61.7
.001 1
.00( )
1
13.
47.2
61.2
.001 I
.001 )
19.
97.4
60.7
.00( 1
.001 I
15.
47.6
60.4
.00( )
.00( 1
16.
47.8
59.9
.00( I
.001 )
17.
47.9
59.4
.001 )
.001 1
1
18.
48.1
59.0
19.
.001 1
d8.3
.001 I
58.6
.00( 1
.001 )
20.
48.6
58.3
.00( 1
.001 1
21.
48.7
57.9
.001 1
.001 I
22.
48.9
57.5
.00( 1
.001 1
1
23.
49.1
57.1
.001 1
.001 1
24.
49.3
56.8
'
oo( I
ool r
25.
49.5
56.6
.001 1
.001 1
1
26.
49.7
56.3
.001 )
.001 )
'
27.
99.8
55.9
.001 1
.00( I
1
28.
50.0
55.5
.00( I
.001 )
29.
50.2
55.3
'
.00( 1
.001 I
30.
50.4
55.0
.001 I
.001 )
1
31.
50.6
54.7
.001 1
.001 )
'
32.
50.7
59.4
.001 )
.001 1
1
33.
50.8
54.0
.001 1
.001 I
39.
51.0
53.8
.00( 1
.001 1
35.
51.1
53.6
.001 I
.00( 1
1
36.
51.3
53.3
1
.001 1
.001 1
1
37.
51.4
52.9
.001 1
.001 )
38.
51.5
52.6
.001 1
.001 1
39.
51.6
52.3
.001 1
.001 I
1
40.
51.7
52.1
.001 1
.001 1
91.
51.8
51.9
.00( 1
.001 I
42.
51.9
51.6
.00( I
.00( )
43.
52.0
51.3
.00( 1
.001 1
44.
52.1
51.1
.001 )
.00( 1
1
45.
52.3
51.0
46.
.401 1
52.4
.001 1
50.8
.00( 1
.00( I
47.
sz.a
sa.s
.00( 1
.00( I
48.
52.5
50.3
.00( 1
.001 I
49.
52.6
50.1
.001 1
.00( 1
1
50.
52.7
50.0
.001 1
.001 1
51.
52.8
49.8
.001 1
.001 1
52.
52.8
49.5
.001 I
.00( 1
1
53.
52.9
49.3
.00 ( )
.001 1
54.
53.0
49.1
.001 )
.00( 1
1
55.
53.1
49.0
.001 1
.00( I
56.
53.1
48.8
.00l 1
.00l I
57.
53.2
48.5
. 001 I
.00( I
1
58.
53.2
48.3
.001 )
.001 1
59.
53.3
48.2
. 001 I
.001 I
2
0.
53.3
48.0
.001 )
.00( 1
1.
52.2
45.5
.00( )
.001 I
2.
50.3
41.2
.001 )
.00( I
2
3.
48.6
37.8
.001 1
.001 1
4.
47.2
34.9
.00( 1
.00( 1
5.
46.0
32.6
.00( )
.00( I
6.
44.9
30.7
.001 1
.001 )
7.
44.0
29.1
.001 1
.00( 1
2
8.
43.1
27.8
9.
.001 1
42.4
.001 )
26.7
.001 1
.001 1
10.
41.7
25.8
.00( 1
.001 1
11.
41.0
25.0
.00( 1
.001 1
12.
40.4
24.4
.00( 1
.001 1
2
13.
39.9
23.8
.001 1
.001 )
14.
39.4
23.4
.00( I
.001 I
15.
38.9
23.0
.00( 1
.001 1
2
16.
38.5
22.6
.001 )
.001 )
'
17.
38.1
22.3
.001 I
.001 I
2
18.
37.7
22.1
.00( I
AN I
19.
37.3
21.9
'
.001 I
.001 1
20.
36.9
21.7
.001 1
.00( 1
2
21.
36.6
21.5
1
.001 1
.001 1
1
2
22.
36.3
21.3
.001 1
.001 1
23.
36.0
21.2
.001 1
.00( 1
24.
35.7
21.1
.001 1
.001 1
2
25.
35.4
21.0
.00( I
.001 1
26.
35.1
20.9
.00( I
.00( 1
27.
34.8
20.8
.00( )
.00( 1
28.
36.5
20.7
.00( 1
.00( 1
29.
34.3
20.7
.00( 1
.001 1
2
30.
34.0
20.6
31.
.001 )
33.8
.001 1
20.5
.001 )
.001 )
32.
33.5
20.5
.00( 1
.00( )
33.
33.3
20.4
ao( r
oo( 1
34.
33.1
20.4
.00( 1
.00( 1
2
35.
32.9
20.3
.00f )
.00( 1
3.
32.7
20.3
.001 )
.001 1
37.
32.4
20.3
.00( 1
.00( I
2
38.
32.2
20.2
.00 ( )
.001 1
39.
32.0
20.2
.00( )
.00( I
2
40.
31.8
20.2
.00( )
.00( )
41.
31.6
20.1
.001 )
.00( )
42.
31.5
20.1
.00( I
.001 I
2
43.
31.3
20.1
.001 I
.001 I
94.
31.1
20.1
.00( 1
.001 )
2
45.
30.9
20.0
.00( I
.00( 1
46.
30.7
20.0
.001 )
.00( I
47.
30.6
-20.0
.00( 1
.00( )
2
48.
30.4
20.0
.00( )
.001 1
49.
30.2
20.0
.00( )
.00( )
2
5o.
30.1
19.9
.00( 1
.001 )
51.
29.9
19.9
.00( 1
.001 1
52.
29.7
19.9
.001 1
.00( I
2
53.
29.6
19.9
.001 1
.001 )
54.
29.4
19.9
.00( 1
.00( 1
55.
29.3
19.8
.00( 1
.00( )
56.
29.1
19.8
.00( 1
.00( 1
57.
29.0
19.8
.00( )
.00( 1
2
58,
28.9
19.8
.001 1
.00( 1
59.
28.7
19.8
.00( 1
.00( I
0.
28.6
19.8
.00( )
.001 )
1.
28.4
19.8
.001 1
.001 )
2.
28.3
19.7
.00( 1
.001 1
3
3.
28.2
19.7
.001 1
.00( 1
4.
28.0
19.7
.00( )
.001 )
5.
27.9
19.7
.00( )
.001 )
3
6.
27.6
19.7
.00( I
.00( 1
I
3
7.
27.7
19.7
.00( 1
.00( 1
8.
27.5
19.7
.00( 1
.001 1
9.
27.4
19.6
.00( )
.001 1
3
10.
27.3
19.6
.001 1
.00l 1
11.
27.2
19.6
.001 I
.001 I
12.
27.1
19.6
.001 1
.001 1
13.
27.0
19.6
.00( 1
.001 )
14.
26.B
19.6
.001 )
.001 )
3
15.
26.7
19.5
16.
26.6
.001 1
19.5
.001 1
.00( 1
.00( 1
17.
26.5
19.5
.001 )
.00( )
18.
26.4
19.5
. 001 )
.001 )
19.
26.3
19.5
.00( 1
.00( 1
3
20.
26.2
19.5
2.
26.1
.00( 1
19.9
.00( 1
.001 1
.00( I
22.
26.0
19.4
.00( )
.001 )
23.
25.9
19.4
. Ool I
.Ool )
24.
25.B
19.4
.00( )
.00( r
3
25.
25.7
19.4
.00( 1
.00( 1
26.
25.6
19.9
.00( I
-00( )
27.
25.5
19.3
.001 )
.001 )
3
28.
25.4
19.3
.001
1
.00( 1
'
29.
25.3
19.3
.001
)
.00( )
3
30.
25.2
19.3
.00(
1
.001 )
31.
25.2
19.3
'
oo( r
ool )
32.
25.1
19.3
.001
1
.00( )
3
33.
25.0
19.2
.001
)
.001 I
34.
24.9
19.2
.00(
1
.00( 1
3
35.
24.8
19.2
.001
)
AO( )
36.
24.7
19.2
.00(
)
.001 )
37.
24.6
19.2
.001
1
.001 1
3
38.
24.6
19.2
.001
1
.001 1
39.
24.5
19.2
.001
)
.00( )
40.
24.4
19.1
.001
1
.001 1
41.
24.3
19.1
.00(
)
.00(
)
42.
24.2
19.1
.001
1
.00(
1
3
43.
24.2
19.1
4.
.001
24.1
1
.00(
19.1
)
.00(
)
.001
)
45.
24.0
19.1
.001
1
.001
1
46.
23.9
19.0
.00(
)
.001
I
47.
23.9
19.0
.00(
)
.001
)
3
48.
23.8
18.9
.001
1
.001
1
49.
23.7
18.9
'
.00l
1
.00l
1
50.
23.7
18.8
AN I
.00(
1
3
51.
23.6
17.6
1
.001
I
.00(
1
3
52.
23.5
15.2
.001 1
.001 1
53.
23.
13.1
.00
001 1
.001 1
54.
23.2
11.5
.00( 1
.00(
3
55.
23.0
10.4
.001 1
.001 1
56.
22.8
9.5
.001 I
.001 1
57.
22.6
8.8
.00( I
.00( 1
58.
22.4
8.3
.00( 1
.00( 1
59.
22.2
7.9
.001 1
.001 I
4
0.
22.0
7.6
.001 1
.001 1
1.
21.8
7.4
.001 )
.00( 1
2.
21.6
7.2
.001 1
.00( 1
3.
21.3
7.1
.00( 1
-00( 1
4.
21.1
7.0
.00( 1
.00( I
4
5.
20.9
6.9
.001 )
.00 ( )
6.
20.7
6.8
.0501 1
.001 1
7.
20.5
6.7
.00( )
.00( I
S.
20.3
6.7
. 00( 1
.00( )
9.
20.1
6.7
.001 1
.001 1
4
10.
19.9
6.6
.00( I
.001 I
11.
19.7
6.6
.00( 1
.00( )
12.
19.5
6.6
.001 1
.001 1
4
13.
19.3
6.6
'00( )
.001 I
14.
19.1
6.5
.001 1
.001 1
4
15.
19.0
6.5
.00( 1
.001 I
16.
18.8
6.5
.00( 1
.00( )
17.
18.6
6.5
.00( I
.001 1
4
18.
18.4
6.5
.00 ( )
.001 I
19.
18.3
6.5
.001 1
.001 1
4
20.
18.1
6.5
.00( )
.001 I
21.
17.9
6.5
.001 )
.00( 1
22.
17.7
6.5
.00( I
.001 1
4
23.
17.6
6.5
.001 1
.001 1
29.
17.4
6.5
.00( I
.001 1
25.
17.3
6.5
.00( )
.00( I
26.
17.1
6.5
.00( 1
.00( )
27.
16.9
6.4
.001 )
.00( 1
4
28.
16.8
6.4
.00( I
.001 1
16.8
6.40
.001 1
.001 I
30.
30.
16.7
6.4
.00( 1
.001 1
9
31,
16.7
6.4
.00t 1
.00( 1
1
32.
16.7
6.4
.001 1
.001 )
4
33.
16.6
6.4
.00( I
.001 1
34.
16.6
6.4
'
.001 )
.001 I
35.
16.5
6.4
.001 )
.001 1
4
36.
16.5
6.4
1
.001 1
.001 1
4
37.
16.5
6.4
.001 1
.00( 1
38.
16.4
6.4
.00( 1
.00( 1
39.
16.4
6.4
.001 )
.001 )
4
40.
16.4
6.4
.00( I
.00( I
41.
16.3
6.4
.00( I
.00( I
4
42.
16.3
6.4
.001 1
.00( 1
43.
16.2
6.4
.00( )
.00( I
44.
16.2
6.4
.001 )
.001 )
4
45.
16.2
6.4
4.
.001 1
16.1
.001 )
6.4
.00( 1
.00( )
4]7.
16.1
6.4
.00( )
.00( 1
48.
16.1
6.4
.00( 1
.00( )
49.
16.0
6.4
.001 1
.00( I
4
50.
16.0
6.4
.001 )
.001 )
5.
15.9
6.9
.001 )
.001 )
52.
15.9
6.9
.00( 1
.00( 1
53.
15.9
6.3
. 00( 1
.00( 1
54.
15.8
6.3
.00( 1
.00( )
4
55.
15.8
6.3
.001 1
.00( 1
56.
15.8
6.3
.00( 1
.001 1
57.
15.7
6.3
.00( 1
.00( 1
4
58.
15.7
6.3
.001 1
.001 )
59.
15.7
6.3
.Oo1 )
.001 )
5
0.
15.6
6.3
.001 I
.00( I
1.
15.6
6.3
.00( 1
.00( )
2.
15.5
6.3
.00( 1
.001 1
5
3.
15.5
6.3
.001 )
.001 1
9.
15.5
6.3
.001 )
.001 1
5.
15.4
6.3
.001 )
.001 )
6.
15.4
6.3
.001 1
.001 1
7.
15.4
6.3
.00( I
.00( 1
5
B.
15.3
6.3
.001 1
.00( 1
9.
15.3
6.3
.001 )
.001 )
10.
15.3
6.3
.001 I
.00( I
11.
15.2
6.3
.00( 1
.001 1
12.
15.2
6.3
.00( 1
.00( 1
5
13.
15.2
6.3
.001 1
.001 1
1.
15.1
6.3
.001 1
.001 1
15.
15.1
6.3
.00( I
.00( I
16.
15.1
6.3
. 001 )
.001 1
17.
15.0
6.3
.001 )
.001 )
5
18.
15.0
6.3
.00( I
.00( )
19.
15.0
6.3
.00( 1
.001 )
20.
14.9
6.3
.00( 1
.00( 1
5
21.
14.9
6.3
.ON 1
.001 1
5
22.
14.9
6.2
.001 1
.001 1
23.
14.8
6.2
.00( 1
.001 1
24.
14.8
6.2
.00( I
.00( 1
5
25.
14.8
6.2
.001 1
.00( 1
26.
14.7
6.2
.001 1
.001 1
27.
14.7
6.2
.00( 1
.00( 1
28.
14.7
6.2
.00( 1
.001 I
29.
14.6
6.2
.00( I
.00( 1
5
30.
14.6
6.2
.001 )
.00( 1
3.
14.6
6.2
.001 1
.001 1
32.
14.5
6.2
.00( 1
.001 1
33.
14.5
6.2
.001 )
.00( I
34.
14.5
6.2
.00( 1
.001 1
5
35.
14.4
6.2
.001 1
.001 )
36.
14.4
6.2
.001 1
.00( )
37.
14.4
6.2
.001 1
.00( 1
5
38.
14.4
6.2
.001 )
.001 1
39.
14.3
6.2
.00( )
.00( 1
5
40.
14.3
6.2
.001 1
.001 I
41.
19.3
6.2
.00( 1
.001 1
42.
14.2
6.2
.00( 1
.00( I
5
43.
14.2
6.2
.001 )
.00( )
64.
14.2
6.2
.00( 1
.001 1
5
45.
14.1
6.2
.001 )
.00( 1
46.
14.1
6.2
.00( 1
.00( 1
47,
14.1
6.2
.001 )
.001 1
5
48.
14.0
6.2
.001 1
.001 1
49.
14.0
6.2
.00( I
.001 1
50.
14.0
6.2
.001 )
.001 I
51.
14.0
6.2
.001 1
.001 )
52.
13.9
6.2
.00( )
.001 1
5
53.
13.9
6.2
.001 1
.001 )
54.
13.9
6.1
.001 I
.001 1
55.
13.8
6.1
.001 )
.00( 1
56.
13.8
6.1
.00( 1
.001 )
57.
13.8
6.1
.001 1
.001 1
5
58.
13.8
6.1
.001 1
.001 1
50.
13.7
6.1
.001 I
.001 1
.
13.7
b.l
.001 )
.001 )
6
1.
13.7
6.1
.001 1
.001 1
'
2.
13.6
6.1
.00( )
.00( I
6
3.
13.6
6.1
.001 1
.001 1
4.
13.6
6.1
'
.00( 1
.00l )
5.
13.6
6.1
.001 1
.001 )
6
6.
13.5
6.1
1
.001 1
.001 I
6.1
7.
13.5
.00( 1
.001 1
8.
13.5
6.1
.00( 1
.00f 1
9.
13.4
6.1
.00( 1
.oat 1
6
10.
13.4
6.1
.001 1
.001 1
11.
13.4
6.1
.001 I
.001 1
12.
13.4
6.1
.00( I
.001 1
13.
13.3
6.1
.00( ,
.001 1
14.
13.3
6.1
.001 1
.00( 1
6
15.
13.3
6.1
1.
.00( 1
13.2
.00( I
6.1
.00( 1
.00( 1
17.
13.2
6.1
.00( I
.00( 1
18.
13.2
6.1
.001 I
.001 1
19.
13.2
6.1
.001 I
.001 )
6
20.
13.1
6.1
.001 I
.001 )
21.
13.1
6.1
.001 )
.001 1
22.
13.1
6.1
.00( 1
.00( 1
6
23.
13.1
6.1
.00( 1
.001 1
29.
13.0
6.1
.00( 1
.001 1
6
25.
13.0
6.1
.00( 1
.001 1
26.
13.0
6.1
.00( I
.001 1
27.
13.0
6.1
.001 ,
.001 1
6
28.
13.0
6.1
.001 1
.00( I
29.
13.0
6.0
.001 1
.001 )
6
30.
13.0
6.0
.001 1
.001 1
31.
13.0
6.0
.00( 1
.001 1
32.
12.9
6.0
.001 )
.001 I
6
33.
12.9
6.0
.001 )
.001 )
34.
12.9
6.0
.001 1
.001 )
35.
12.9
6.0
.00( 1
.00( 1
36.
12.9
6.0
.001 )
.001 I
37.
12.9
6.0
.o01 1
.00( ,
6
38.
12.9
6.0
.00( I
.001 1
39.
12.9
6.0
.001 )
.001 1
40.
12.9
6.0
.00( 1
.00( 1
91.
12.9
6.0
.001 1
.001 1
42.
12.9
6.0
.001 I
.001 I
6
43.
12.9
6.0
.8 ,
,
44.
12.8
6.0
'
.00( 1
.001 1
6.
5
12.8
6..0001
.001 I
.001 1
6
46.
12.8
6.0
.001 ,
.001 ,
47.
12.8
6.0
.00( 1
.001 1
6
48.
12.8
6.0
.00( I
.001 I
49.
12.8
6.0
'
. 001 1
.001 )
50.
12.8
6.0
.001 I
.00( 1
6
51.
12.8
6.0
.001 I
.001 I
I
'
116
140
0
1
10.
1650.
.003
140
357
0
1
10.
700.
.003
223
224
0
3
.1
1.
224
334
0
3
.1
1.
POND 334
REVISED BY
ICON 6/25/99
334
124
11
2
.1
1.
' 0.0
0.0
0.07
4.00
0.97
10.0
1.64
12.0
4.66
18.0
5.09
18.63
124
226
226
336
0
0
2
3
3.0
.1
825.
1.
.0080
POND 336
REVISED BY
ICON
336
357
8
2
.1
1.
0.0
0.0
0.15
4.00
'
1.85
10.0
2.27
10.7
130
131
0
2
3.0
450.
.0070
' 131
330
330
241
0
7
2
2
3.5
.1
250.
1.
.0070
0.0
0.0
0.07
1.00
1.05
4.0
1.85
5.00
251
350
0
3
.1
1.
*'
POND 350
REVISED
BY
ICON
350
216
9
2
.1
1.
0.0
0.0
0.07
1.00
' 0.82
3.5
1.10
4.00
1.45
264.1
4.0 4.0 .035 5.0
4.0 4.0 .035 5.0
0.24 6.00 0.52
2.46 14.0 3.44
5.58 19.33
0.0 0.0 .011 5.0
8.00
16.0
0.44
6.00
0.98 8.00
2.54
36.8
2.81 84.3
0.0
0.0
.013 3.0
0.0
0.0
.013 3.5
0.23
2.00
0.57 3.00
2.96
6.00
0.25 2.00 0.63 3.00
1.15 4.10 1.30 96.0
252
160
0
3
.1
1.
160
261
0
5
1.5
275.
.0100
0.0
0.0
'
0.0
275.
.0100
10.
10.
261
262
0
3
.1
1.
262
365
0
3
.1
1.
365
241
7
2
.1
1.
0.0
0.0
1.25
6.3
2.42
7.5
2.63
25.9
2.73
41.3
2.83
59.5
241
141
141
357
0
0
3
1
.1
10.0
1.
500.
4.0
*t
-------------------
.0030
4.0
*
WILDWOOD
--------
FARM SUBDIVISION (ICON
--------
ENGINEERING,
--------
--------
INC)
381
382
5
2
.1
1.
'
0.0
0.0
0.48
2.2
0.96
5.51
2.14
48.9
382
401
16
2
1.
'
0.0
0.0
.1
0.09
1.2
0.24
2.4
0.59
4.0
0.65
6.0
0.70
7.2
0.83
9.6
0.84
10.0
0.93
12.0
1.24
30.0
1.35
40.0
1.47
50.0
'
401
402
0
1
2.
550.
.013
50.
50.
402
406
0
1
2.
950.
.006
50.
50.
400
406
0
1
10.
710.
.006
5.
6.
406
380
0
3
.1
1.
*
POND 380
REVISED BY
ICON 6/25/99
380
403
12
2
.1
1.
0.0
0.0
2.70
8.8
3.09
9.3
3.59
15.0
3.99
20.0
4.87
21.8
5.54
22.9
6.24
52.4
6.58
75.1
384
404
5
2
.1
1.
'
0.0
0.0
1.01
3.7
1.89
9.3
.013 1.5
.035 5.0
2.52 14.0
.035 5.0
.1
2.03 6.3
.1
0.51
3.6
0.76
8.4
1.10
20.0
1.51
55.0
016
1.
016
1.
040
2.
.1
.l
3.19
10.0
5.00
22.0
6.93
107.7
1
1.94
11.5
tJ
1.98 15.5
383
407
7
2
.1
1.
0.0
0.0
.736
1.34
1.328
'
1.76
4.65
2.05
22.32
2.10
403
407
0
1
5.
950.
.004
4.
407
405
0
3
.1
1.
'
405
410
0
5
3.5
2000.
.002
0.
40.
2000.
.002
50.
404
407
0
5
3.5
900.
0.015
0.
*
----------
--
40.
-------------------------
900.
0.015
50.
*
HOMESTEAD
SUBDIVISION
(ICON
ENGINEERING, INC)
388
387
0
1
5.
1300.
.007
150.
387
386
0
1
5.
750.
.007
150.
'
386
284
0
1
4.
800.
.003
150.
284
283
0
1
4.
700.
.0063
150.
283
282
282
410
0
0
1-
1
9_
1000.
800_
.0057
70.
9.
--7.
-.046
*
FOSSIL CREEK
VILLAGE
(ICON ENGINEERING, INC)
281
414
0
1
2.
'1500.
.015
55.
t
409
413
0
1
1.
1500.
.010
50.
410
411
0
4
5.
600.
.045
2.5
45.
600.
.045
25.0
'
411
412
0
4
5.
1060.
.0038
3.
30.
1060.
.0038
35.0
412
413
0
4
5.
870.
.006
5.0
50.
870.
.006
30.0
413
414
0
5
5.
40.
.006
0.
50.
40.
.006
100.
414
415
0
1
5.
1180.
.006
30.0
415
416
0
1
5.
1050.
.006
40.
416
517
0
1
5.
800.
.006
40.
517
417
0
3
.1
1.
*'
SWIFT RESERVIOR
NOT MODEL AS
A ROUTING
ELEMENT
417
0
0
2
.1
1.
.003
0.
0
2
86 588
ENDPROGRAM
1
3.89
1.58
58.67
4.
.045
0.
.013
50.
.016
0.
.016
50.
---------------
.016
4.37
150.
.045
5.
150.
.045
5.
150.
.045
5.
150.
.045
5.
40.
.045
5.
1.5
--------------------
.045
5.
76.
.035
5.
50.
.045
5.0
3.0
.035
7.
50.0
.035
13.
2.
.035
6.
60.0
.035
11.
2.0
.035
6.
45.0
.035
12.
0.
.035
5.
100.
.016
10.
25.0
.035
10.
50.
.035
10.
25.
.035
6.
.1
0.
.035
.1
1
I
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF . EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY
TAPE OR DISK ASSIGNMENTS
JIN(1) JIN(2) JIN(3)
2 1 0
' JOUT(1) JOUT(2) JOUT(3)
1 2 0
NSCRAT(1)
3
IBIBBED PROGRAM CALLED
IENTRY MADE TO RUNOFF MODEL
UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, DULY 1985)
JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10)
0 0 0 0 0 0 0
JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(30)
0 0 0 0 0 0 0
NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5)
4 0 0 0
MCCLELLANDS EASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/991Rw. MEF 3/22/00
PTM 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENO.
HER OF TIME STEPS 600
MTEGRATION TIME INTERVAL (MINUTES) 1.00
0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46
' 1.22 1.06 1.00 .95 .91 .87 .84 .81 .78 .75
.73 .71 .69 .67 .00
LELLANDS BASIN MODEL
(FULLY INTEG.) DEVEL.
CORD.
6/30/99;Rev.
MBF 3/22/00
PTED
100-YEAR
EVENT
FILE: MMCO-100.DAT
ICON MG.,
USED FOR
DEVEL EXTRAN
SUBAREA
GUTTER
WIDTH
AREA
PERCENT
SLOPE
RESISTANCE
FACTOR SURFACE
STORAGE(IN)
INFILTRATION
RATE(IN/HR)
GAGE
HER
OR MANHOLE
(FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
MAXIMUM
MINIMUM DECAY RATE
NO
2
0
.0
.0
.0
.0300
.016
.250
.100
.300
.51
.50
.00180
0
50
7109.0
86.2
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
60
50
1150.0
8.9
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
70
6
10239.0
29.4
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
51
7161.0
24.7
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
�0
0
51
2875.0
13.2
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
0
4
1590.0
1.8
80.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
110
11
1250.0
1.9
99.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
111
11
700.0
1.1
99.0
.0100
.016
.250
.100
.300
.51
:50
.00180
1
2
112
750.0
1.3
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
3
12
1200.0
1.3
99.0
.O100
.016
.250
.100
.300
.51
.50
.00180
1
4
12
950.0
1.7
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
115
13
1050.0
1.7
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
116
13
1400.0
2.2
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
51
1000.0
2.9
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
8
17
14
1250.0
1.1
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
0
11
932.0
2.1
85.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
120
22
3875.0
17.8
80.0
.0200
.016
.250
.100
.300
.51
.50
.00180
1
90
2
5715.0
13.1
10.0
.0100
.016
.250
.100
.300
.51
.50
.00IBO
1
10
51
250.0
1.4
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
20
4550.0
31.3
30.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
44
1090.0
7.5
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
7
1742.0
5.0
50.0
.0100
.016
.250
.100
.300
-51
.50
.00180 1
45
9683.0
22.2
85.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
46
3454.0
23.8
50.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
47
6403.0
14.7
85.D
.0100
.016
.250
.100
.300
.51
.50
.00180 1
291
1278.0
5.9
80.D
.0100
.016
.250
.100
.300
.51
.50
.00180 1
34
1260.0
4.3
8D.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
275
1000.0
2.0
99.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
28
1650.0
3.2
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
29
850.0
1.5
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
30
1250.0
2.0
99.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
33
700.0
5.6
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
16
3500.0
4.0
84.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
16
850.0
1.4
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
22
1200.0
1.8
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
250
500.0
1.6
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
270
625.0
3.3
60.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
271
2017.0
6.3
55.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
272
817.0
1.5
31.0
.0900
.016
.250
.IOD
.300
.51
.50
.00180 1
36
3223.0
2.4
87.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
320
3213.0
14.8
25.0
.0183
.016
.250
.100
.300
.51
.50
.00180 1
322
1873.0
21.5
50.0
.0165
.016
.250
.100
.300
.51
.50
.00180 1
172
7024.0
32.3
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
166
4138.0
19.0
80.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
168
650.0
5.8
47.0
.0105
.016
.250
.100
.300
.51
.50
.00180 1
171
958.0
7.7
70.0
.0080
.016
.250
.100
.300
.51
.50
.00180 1
176
1718.0
13.8
57.0
.0235
.016
.250
.100
.300
.51
.50
.00180 1
178
2936.0
33.6
70.0
.0170
.016
.250
.100
.300
.51
.50
.00180 1
321
6795.0
23.4
40.0
.0085
.016
.250
.100
.300
.51
.50
.00180 1
324
2991.0
10.3
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
325
3165.0
10.9
64.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
320
1220.0
4.2
80.0
.0380
.016
.250
.100
.300
.51
.50
.00180 1
180
1472.0
16.9
30.0
.0055
.016
.250
.100
.300
.51
.50
.00180 1
179
465.0
1.6
90.0
.0110
.016
.250
.100
.300
.51
.50
.00180 1
331
500.D
.7
90.0
.0270
.016
.250
.100
.300
.51
.50
.00180 1
327
1405.0
1.0
90.0
.0060
.016
.250
.100
.300
.51
.50
.00180 1'
301
3315.0
28.5
71.0
.0050
.016
.430
.100
.600
.51
.50
.00180 1
95
13736.0
47.5
45.0
.0100
.016
.390
.100
.600
.51
.50
.00180 1
369
17097.0
78.5
35.0
.0110
.016
.250
.100
.300
.51
.50
.00180 1
372
2535.0
8.7
31.2
.0200
.016
.250
.100
.300
.51
.50
.00180 1
360
2951.0
5.4
17.0
.1262
.016
.250
.100
.300
.51
.50
.00180 1
370
2042.0
7.0
40.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
362
888.0
1.6
4.0
.1262
.016
.250
.100
.300
.51
.50
.00180 1
371
807.0
2.8
40.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
363
569.0
2.1
2.3
.1262
.016
.250
.100
.300
.51
.50
.00180 1
367
495.0
.9
1.0
.0500
.016
.250
.100
.300
.51
.50
.00180 1
40
26470.0
91.2
34.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
374
4179.0
14.4
40.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
39
1924.0
67.0
85.0
.0170
.016
.250
.100
.300
.51
.50
.00180 1
594
1507.0
17.3
57.0
.0140
.016
.250
.100
.300
.51
.50
.00180 1
593
1699.0
19.5
47.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
368
4008.0
18.4
45.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
368
5053.0
17.4
50.0
.0300
.016
.250
.100
.300
.51
.50
.00180 1
32
5605.0
19.3
50.0
.0080
.016
.250
.100
.300
.51
.50
.00180 1
102
6679.0
23.0
50.0
.0400
.016
.250
.100
.300
.51
.50
.00180 1
102
3006.0
13.8
45.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
35
14288.0
65.6
45.0
.0060
.016
.250
.100
.300
.51
.50
.00180 1
201
1200.0
8.5
40.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
202
2000.0
4.1
68.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
203
800.0
5.7
44.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
209
750.0
1.6
74.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
209
1600.0
2.7
68.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
210
3800.0
7.6
66.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
209
750.0
3.3
57.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
210
450.0
2.3
67.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
209
3000.0
20.2
30.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
210
1400.0
9.1
26.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
214
1000.0
4.8
54.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
215
1300.0
4.4
9.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
216
200.0
1.8
12.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
223
600.0
4.1
46.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
223
1400.0
9.0
46.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
223
1800.0
7.3
52.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
224
1000.0
2.2
61.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
224
600.0
3.1
34.0
.0200
.016
.250
.100
.300
.51
.50
.OD180 1
226
900.0
4.0
65.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
226
1000.0
2.7
32.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
130
2750.0
5.9
67.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
131
1700.0
3.6
67.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
330
400.0
2.0
48.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
216
700.0
3.1
11.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
140
1300.0
6.4
30.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
357
800.0
4.3
43.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
241
900.0
1.5
75.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
251
1800.0
8.1
42.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
252
2250.0
8.9
61.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
261
650.0
2.1
80.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
262
1200.0
4.7
42.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
570
1050.0
6.1
63.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
11 571 2000.0 11.7
372 572 4900.0 26.7
73
8.
9 574
8000.0
000.0
18.3
5 75
5400.0
28.4
T/3
6 576
2222.0
5.1
377 577
400.0
1.9
8
577
450.0
9
479
450.0
1.
.5
0
480
350.0
1.4
1
481
550.0
2.6
382
582
700.0
.8
383
983
2439.0
5.6
4
84
2400.0
6.
5
85
2100.0
6.3
6
586
3543.0
12.2
387
586
800.0
3.2
388
588
6970.0
16.0
88
.0
3049.0
.
�9
0
490
550.0
1
.4
1
491
600.0
2.8
392
588
1100.0
6.6
393
88
4400.0
11.8
4
92
900.0
1.4
6
496
2950.0
13.5
7
497
810.0
3.9
400
400
860.0
9.9
401
406
1170.0
16.7
2
406
1520.0
17.4
3
381
4792.0
11.0
4
382
1790.0
10.4
405
402
3080.0
3.5
406
383
2053.0
14.1
91.0
3.
�7 404
8 909
16901.0
38.8
0 517
7812.0
26.9
501 416
5489.0
18.9
502 517
5053.0
17.4
3
415
12981.0
44.7
4
415
3427.0
11.8
4
413
8160.0
28.1
505
409
19544.0
67.3
506
412
4298.0
14.8
7
412
4559.0
15.7
8
01
281
7667.0
26.4
9
411
3862.0
13.3
0
411
5227.0
18.0
511
283
8516.0
39.1
2
388
3
388
36126.0
36126.0
12d.d
24.4
AL
NUMBER OF
SUBCATCHMENTS,
159
AL
TRIBUTARY
AREA (ACRES),
2154
45.0
.020)
.016
.250
.100
.300
.51
.50
.00180 1
45.0
.0200
.016
.250
.100
.300
.51
.50
00180 1
90.0
.01511
.016
.250
.100
.300
.51
.50
00180 1
86.0
.0201)
.016
.250
.100
.300
.51
.50
.00180 1
48.0
.G200
.016
.250
.100
.300
.51
.50
.00180 1
85.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
70.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
70.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
70.0
.0100
.016
.250
.100
.300
.51
.50
00180 1
70.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
70.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
67.0
.0130
.016
.250
.100
.300
.51
.50
.00180 1
85.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
84.0
.0209
.016
.250
.100
.300
.51
.50
.00180 1
52.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
70.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
70.0
.0250
.016
.250
.100
.300
.51
.50
.00180 1
85.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
85.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
70.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
70.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
90.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
95.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
90.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
93.0
.0130
.016
.250
.100
.300
.51
.50
.00180 1
85.0
.0210
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
20.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
45.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
85.0
.0170
.016
.250
.100
.300
.51
.50
.00180 1
55.0
.0250
.016
.250
.100
.300
.51
.50
.00180 1
90.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
38.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
40.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
85.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
50.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
35.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
35.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
35.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
02
LELLANDS BASIN MODEL )FULLY INTEG.) DEVEL. COND. 6/30/99;Re, MBF 3/22/00
PIED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG., USED FOR DEVEL EKTRAN
ICONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ...
IERSHED AREA (ACRES) 2154.020
AL RAINFALL (INCHES) 3.669
TOTAL INFILTRATION (INCHES) .570
AL WATERSHED OUTFLOW (INCHES) 2.961
AL SURFACE STORAGE AT END OF STROM (INCHES) .138
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000
MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. CORD. 6/30/99;Re, MBF 3/22/00
ADOPTED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG.. USED FOR DEVEL EKTRAN
WIDTH
INVERT
SIDE
SLOPES
GUTTER
GUTTER
NDP
NP
OR DIAM
LENGTH
SLOPE
HORIZ
TO VERT
t�HER
CONNECTION
(FT)
(FT)
(FT/FT)
L
R
4
8
0
1
CHANNEL
.0
800.
.0044
4.0
4.0
8
2
0
1
CHANNEL
1.0.0
1750.
.010D
4.0
4.0
7
6
0
1
CHANNEL
.0
1400.
.0100
.0
50.0
1
50
0
1
CHANNEL
.0
1200.
.0032
4.0
4.0
OVERBANK/SURCHARGE
MANNING DEPTH JK
N (FT)
035 5.00
035 5.00
016 1.50
035 5.00
35
102
0
1
CHANNEL .0 1250.
.0100
50.0
50.0
.045
5.00
0
16
22
0
1
CHANNEL .0 540.
.0060
50.0
50.0
.016
2.00
0
11
'12
12
13
0
0
1
1
CHANNEL .0 700.
CHANNEL .0 850.
.0060
.0060
50.0
50.0
.0
.0
.016
.016
1.50
1.50
0
0
13
51
0
1
CHANNEL .0 500.
.0060
50.0
.0
.016
1.50
0
14
51
0
1
CHANNEL .0 900.
.0060
50.0
.0
.016
1.50
0
112
11
0
1
CHANNEL .0 700.
.0100
50.0
.0
.016
1.50
0
20
21
51
44
0
0
1
1
CHANNEL .0 1100.
CHANNEL .0 1200.
.0050
.0050
4.0
50.0
4.0
.0
.035
.016
5.00
1.50
0
0
44
51
0
1
CHANNEL 3.0 Boo.
.0050
10.0
10.0
.035
2.00
0
45
43
3
1
CHANNEL .1 1.
.0010
.0
.0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.100 11.9 10.000 11.9
22
43
0
1
CHANNEL .0 1600.
.0070
4.0
4.0
.035
5.00
0
43
51
0
3
.1 I.
.0010
.0
.0
.016
.10
0
50
2
0
1
CHANNEL 10.0 1000.
.0050
15.0
15.0
.040
5.00
0
51
9
0
1
CHANNEL 10.0 500.
.0050
15.0
15.0
.040
5.00
0
9
2
0
1
CHANNEL 5.0 1000.
.0060
15.0
15.0
.035
5.00
0
47
12
3
1
CHANNEL .1 1.
.0010
.0
.0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.100 7.2 10.000 7.2
250
25
3
2
PIPE .1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.310 .3 .330 5.0
25
22
0
2
PIPE 1.3 500.
.0050
.0
.0
.013
1.25
0
91
12
3
2
PIPE .1 1.
.0050
.0
.0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.100 3.1 10.000 3.1
46
42
3
1
CHANNEL .1 1.
.0010
.0
.0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.100 11.2 10.000 11.2
26
42
0
5
PIPE 3.5 Boo.
.0050
.0
.0
.016
3.50
0
OVERFLOW 10.0 800.
.0050
4.0
4.0
.035
5.50
42
22
0
2
PIPE 6.0 1.
.0050
.0
.0
.016
6.00
0
70
27
0
3
.0 1.
.0010
.0
.0
.001
10.00
0
71
27
0
5
PIPE 2.3 45.
.0040
.0
.0
.013
2.25
0
OVERFLOW .0 45.
.0040
198.0
117.0
.020
5.00
272
275
6
2
PIPE .1 10.
.0010
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.GOO
.0
.020 .4 .130 .8
.290
1.0
.500
1.2
.760 1.3
75
27
0
2
PIPE 3.5 676.
.0084
.0
.0
.013
3.50
0
27
41
8
2
PIPE .1 10.
.0010
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.030 .8 .220 2.5
.520
3.5
.900
4.2
1.370 4.9
2.100
57.6
3.200 191.4
91
26
0
5
PIPE 4.0 100.
.0050
.0
.0
.016
4.00
0
OVERFLOW 10.0 100.
.0050
50.0
50.0
.016
5.00
36
26
0
5
PIPE 1.3 90.
.0140
.0
.0
.013
1.25
0
OVERFLOW .0 90.
.0140
200.0
200.0
.020
5.00
,28
275
0
1
CHANNEL .0 1000.
.0050
.0
50.0
.016
1.50
0
29
28
0
1
CHANNEL .0 1650.
.0050
.0
50.0
.016
1.50
0
30
29
0
1
CHANNEL .0 850.
.0050
.0
50.0
.016
1.50
0
34
16
3
2
PIPE .1 1.
.0050
.0
.0
.016
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.100 1.9 10.000 1.9
92
89
0
2
PIPE 2.0 1000.
.0100
.0
.0
.013
2.00
0
95
89
4
3
.1 1.
.0010
.0
.0
.001
.10
-1
TIME IN MS VS INFLOW IN CPS
,89
BB
.000
0
.0
1
.500 3.6 9.600 3.6
CHANNEL .0 800.
9.850
.0070
.0
4.0
4.0
.035
5.00
0
90
90
4
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.200 .5 .220 .5
.240
2.5
90
4
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
�91
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.500 1.0 .600 91.9
.700
260.0
90
88
0
4
CHANNEL .0 500.
.0100
50.0
50.0
.016
.50
0
OVERFLOW 50.0 500.
.0100
10.0
10.0
.035
5.00
496
88
6
2
PIPE .1 1.
.0010
.0
.0
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.001
.000
.0
.010 12.0 .110 12.4
.790
12.8
2.060
13.2
3.530 31.6
8
588
0
1
CHANNEL .0 700.
.0080
4.0
4.0
.035
5.00
0
497
588
7
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.010 1.6 .050 1.6
.360
1.7
.670
1.7
.840 1.8
1.300
20.2
8
488
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
488
586
8
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
2.990 9.9 3.920 10.0
5.650
10.4
6.850
11.3
8.730 13.0
10.110
16.8 10.830
24.5
2
682
3
3
.1 1.
.0010
.0
.0
.001
.10
683
DIVERSION
TO GUTTER NUMBER 683 - TOTAL Q VS DIVERTED Q
IN CPS
.000
.0
4.600 1.3 8.000 1.8
2
82
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
3
0
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
2
85
0
4
CHANNEL .0 1300.
.0140
50.0
50.0
.016
.50
0
OVERFLOW 50.0 1300.
.0140
10.0
10.0
.035
5.00
85
586
0
4
CHANNEL .0 1000.
.0110
50.0
50.0
.016
.50
0
1
OVERFLOW 50.0 1000.
.0110
10.0
10.0
.035
5.00
1
84
586
0
4
CHANNEL .0 700.
.0100
50.0
50.0
.016
.50
0
OVERFLOW 50.0 700.
.0100
10.0
10.0
.035
5.00
6
486
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
6
584
6
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.010 1.5 .250 12.0
1.050
18.0
3.760
23.7
4.870
41.2
584
694
7
3
.1 1.
.0010
.0 .0
.001
.10
673
DIVERSION
TO GUTTER
NUMBER 673 - TOTAL Q VS DIVERTED Q
IN CFS
.000
.0
20.000 .0 21.000 1.0
24.000
3.0
27.000
6.0
30.000
9.0
48.000
27.0
4
83
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
673
73
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
3
583
0
1
CHANNEL 5.0 400.
.0050
4.0
4.0
.035
5.00
0
3
583
4
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE -FEED VS SPILLWAY OUTFLOW
.000
.0
.940 2.8 1.140 2.8
4.000
2.8
583
72
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
72
572
0
5
PIPE 3.0 700.
.0040
.0 .0
.013
3.00
0
OVERFLOW .0 700.
.0040
50.0
50.0
.016
5.00
3
572
0
4
CHANNEL .0 1300.
.0060
50.0
50.0
.016
.50
0
OVERFLOW 50.0 1300.
.0060
10.0
10.0
.035
5.00
481
577
0
3
.1 1.
.0010
.0 .0
.001
.10
0
577
9
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
�80
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.020 1.0 .030 2.0
.050
4.0
.060
6.0
.070
9.0
.080
14.0
.090 18.0 .100 20.0
479
577
6
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.030 .5 .040 1.0
.050
2.5
.070
8.0
.080
12.7
7
477
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
7
76
14
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.050 2.0 .190 4.0
.250
6.0
.270
8.0
.290
12.0
.300
16.0
.320 20.0 .340 30.0
.360
45.0
.390
60.0
.460
75.0
.500
90.0
.550 105.0
6
576
0
1
CHANNEL .0 800.
.0070
4.0
4.0
.035
5.00
0
576
574
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
75
574
0
1
CHANNEL 5.0 600.
.0070
4.0
4.0
.035
5.00
0
474
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
4
�4
74
8
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
2.230 .5 5.940 2.0
10.230
4.4
13.600
8.0
15.130
10.2
16.660
12.5
18.200 13.5
4
572
0
1
CHANNEL 10.0 700.
.0080
10.0
10.0
.035
5.00
0
2
472
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
2
571
12
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.710 3.0 .890 6.0
1.180
9.0
1.730
12.0
2.520
15.0
3.660
18.0
5.110 21.0 6.950 24.0
7.760
27.0
8.040
30.0
9.500
81.0
1
471
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
1
570
9
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.190 10.0 .390 20.0
.680
30.0
.770
32.0
.840
40.0
.870
50.0
.890 60.0 .970 100.0
0
470
0
3
.1 1.
.0010
.0 .0
.001
10.00
0
0
31
7
2
PIPE .1 1.
.0010
.0 .0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.080 10.0 .120 20.0
.240
30.0
.660
40.0
1.000
44.0
1.470
160.0
275
0
5
PIPE 3.0 108.
.0075
.0 .0
.013
3.00
0
�1
OVERFLOW 30.0 108.
.0075
50.0
50.0
.035
5.00
3
21
0
1
CHANNEL .0 700.
.0080
50.0
.0
.016
1.50
0
2
216
12
2
PIPE .1 77.
.0070
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.590 86.2 2.360 115.7
6.170
144.7
12.050
169.8
19.650
193.7
28.600
214.8 33.640 224.4 38.670 233.1
49.310
251.4
59.390
269.7
70.590
288.0
6
167
3
2
PIPE .1 96.
.0060
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
7
169
.000
0
.0
1
1.600 24.0 3.400 26.4
CHANNEL 4.0 260.
.0021
2.0
2.0
.035
4.00
0
8
169
5
2
PIPE .1 10.
.0010
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.070 .9 .430 1.4
.720
93.3
1.010
261.4
9
170
0
5
PIPE 2.3 40.
.0070
.0
.0
.013
2.27
0
OVERFLOW 40.0 40.
.0070
50.0
50.0
.016
4.00
0
174
0
1
CHANNEL 4.0 460.
.0021
2.0
2.0
.035
4.00
0
1
174
3
2
PIPE .1 10.
.0038
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
1.000 4.0 2.000 4.3
173
5
2
PIPE .1 120.
.0033
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
6.500 5.5 8.000 6.0
9.000
97.9
10.000
266.0
173
175
0
4
CHANNEL .0 1200.
.0050
4.0
4.0
.035
1.10
0
OVERFLOW 30.0 1200.
.0050
150.0
150.0
.035
3.00
175
0
5
PIPE 2.3 75.
.0211
.0
.0
.013
2.25
0
OVERFLOW 40.0 75.
.0211
50.0
50.0
.016
4.00
177
0
5
PIPE 2.5 853.
.0123
.0
.0
.013
2.50
0
OVERFLOW 50.0 853.
.0123
50.0
50.0
.016
4.00
176
177
7
2
PIPE .1 315.
.0020
.0
.0
.013
.10
0
1
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
'
000
.0
.040 1.1 .230 1.7
.790
2.1
1.780
2.6
2.440
94.5
3..100
261.E
]7
341
0
5
PIPE 3.0 480.
.0100
.0
.0
.013
3.00
0
OVERFLOW 10.0 480.
.0100
50.0
50.0
.016
5.00
8
177
9
2
PIPE .1 1310.
.0033
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
1.950 5.0 2.700 5.8
3.400
6.5
4.200
8.8
4.600
16.2
0
321
4.900
0
29.5
1
5.200 44.0 5.500 60.0
CHANNEL 5.0 1350.
.0050
4.0
4.0
.035
4.00
0
1
324
10
2
PIPE .1 300.
.0053
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.050 .0 .310 2.6
.790
4.3
1.520
5.5
2.550
6.4
3.850
7.3
5,400 8.0 6.300 99.9
7.200
268.0
2
323
3
2
PIPE .1 10.
.0100
.0
.0
.013
.10
0
�
RESERVOIR
STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
1.900 11.0 4.000 11.3
323
324
0
1
CHANNEL .0 1500.
.0142
50.0
.0
.016
1.50
0
4
331
0
2
PIPE 3.0 36.
.0222
.0
.0
.013
3.00
0
5
326
0
1
CHANNEL 4.0 420.
.0050
4.0
4.0
.035
3.00
0
6
327
0
5
PIPE 3.5 214.
.0168
.0
.0
.013
3.50
0
OVERFLOW 40.0 214.
.016E
50.0
50.0
.016
5.00
327
329
0
1
CHANNEL 4.0 750.
.0050
4.0
4.0
.035
3.00
0
328
329
0
5
PIPE 1.8 101.
.0149
.0
.0
.013
1.75
0
OVERFLOW .0 101.
.0149
133.0
44.0
.016
5.00
9
180
0
1
CHANNEL 5.0 240.
.0050
4.0
4.0
.035
4.00
0
9
324
0
5
PIPE 1.5 80.
.0110
.0
.0
.013
1.50
0
OVERFLOW .0 80.
.0110
167.0
167.0
.016
5.00
331
325
0
2
PIPE 3.0 30.
.0267
.0
.0
.013
3.00
0
341
8
2
PIPE .1 20.
.0040
.0
.0
.013
.10
0
�0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.210 4.0 1.000 18.0
1.910
37.2
2.950
52.4
4.160
68.0
4.820
78.0
5.670 88.0
341
4
0
5
PIPE 5.2 120.
.0040
.0
.0
.013
5.20
0
OVERFLOW .0 120.
.0040
50.0
50.0
.016
7.00
1
91
9
2
PIPE .1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.100 2.2 .850 4.2
1.880
5.3
2.450
5.8
3.270
13.4
4.260
14.4
4.560 36.2 5.730 57.8
1
93
0
1
CHANNEL .0 1325.
.0150
4.0
4.0
.060
5.00
0
3
94
11
2
PIPE .1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.050 .0 .510 .0
.980
.O
1.620
1.9
2.400
5.4
3.330
7.7
4.350 14.0 5.410 20.7
6.520
93.9
7.650
219.5
4
241
0
1
CHANNEL .0 500.
.0027
3.0
3.0
.035
5.00
0
5
93
0
3
.0 1.
.0010
.0
.0
.001
10.00
0
7
358
0
1
CHANNEL 16.0 10.
.0050
4.0
4.0
.045
4.00
0
358
359
0
2
PIPE 9.4 103.
.0050
.0
.0
.013
9.44
0
359
360
0
1
CHANNEL 16.0 950.
.0050
4.0
4.0
.045
4.00
0
0
361
0
2
PIPE 9.4 46.
.0050
.0
.0
.013
9.44
0
1
0
362
0
1
CHANNEL 16.0 619.
.0050
4.0
4.0
.045
4.00
0
2
363
0
1
CHANNEL 16.0 215.
.0050
4.0
4.0
.045
4.00
0
63
364
0
1
CHANNEL 16.0 415.
.0050
4.0
4.0
.045
4.00
0
364
366
0
4
CHANNEL 16.0 90.
.0050
4.0
4.0
.045
5.00
0
OVERFLOW 40.0 90.
.0050
50.0
50.0
.035
6.00
9
366
0
4
CHANNEL .0 1125.
.0045
4.0
4.0
.035
2.30
0
OVERFLOW 50.0 1125.
.0045
50.0
50.0
.035
5.00
6
367
0
4
CHANNEL 16.0 377.
.0050
4.0
4.0
.045
5.00
0
OVERFLOW 40.0 377.
.0050
50.0
50.0
.035
6.00
373
0
4
CHANNEL .0 IOBO.
.0050
4.0
4.0
.035
3.50
0
�8
OVERFLOW 40.0 1080.
.0050
50.0
50.0
.016
4.50
9
38
0
4
CHANNEL .0 860.
.0050
4.0
4.0
.035
3.50
0
OVERFLOW 40.0 860.
.0050
50.0
50.0
.016
4.50
593
592
30
2
PIPE .1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
.000
STORAGE IN
.0
ACRE-FEET VS SPILLWAY OUTFLOW
.570 .5 1.140 3.0
1.400
3.6
1.790
6.4
2.450
9.3
2.600
9.7
3.230 ll.l 4.010 12.7
- 4.970
14.1
2
39
0
1
CHANNEL 4.0 1000.
.0160
4.0
4.0
.035
3.50
0
594
591
10
2
PIPE .1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.360 2.7 .740 3.0
1.120
3.3
1.400
3.4
1.690
5.4
2.260
8.4
2.400 8.6 2.900 9.0
3.540
9.5
1
39
0
1
CHANNEL .0 1300.
.0050
4.0
4.0
.035
3.50
0
40
373
0
1
CHANNEL 5.0 1400.
.0050
4.0
4.0
.035
5.00
0
370
361
2
2
PIPE .1 1.
.0050
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.960 33.5
1
362
2
2
PIPE .1 1.
.0015
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.550 1.B
2
363
6
2
PIPE .1 1.
.0020
.0
.0
.013
.10
0
1
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.170 10.0 .420 22.4
.740
33.3
.940
38.0
1.170
50.5
373
364
18
2
PIPE .1 1.
.0042
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.061 .0 .465 .0
1,578
.0
3.566
6.4
6.256
16.8
'
6.909
18.0
7.562 18.8 8.216 19.6
8.869
20.8
9.522
21.6
9.910
31.5
10.298
49.4 10,687
72.6 11.075 99.7
11.463
130.9
13.400
333.7
15.520
429.6
374
38
14
2
PIPE .1 I.
.0040
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
' h
.000
.0
.009 .0 .119 .0
.230
.0
.409
1.1
.469
2.1
'
.528
2.8
.678 3.9 .827 4.8
1.062
5.6
1.297
6.3
1.532
6.9
1.711
7.3
2.341 59.9
2
102
0
1
CHANNEL 1.0 500.
.0060
75.0
1.5
.045
5.00
0
7
368
0
4
CHANNEL 5.0 950.
.0070
2.0
2.5
.045
8.00
0
OVERFLOW 35.0 950.
.0070
75.0
45.0
.045
14.00
68
102
0
4
CHANNEL 5-0 1960.
.0100
3.0
3.0
.045
5.00
0
OVERFLOW 30.0 1960.
.0100
60.0
30.0
.045
11.00
02
410
0
S
PIPE 4.5 50.
.0050
.0
.0
.024
5.60
0
OVERFLOW 29.0 50.
.0050
25.0
100.0
.011
10.00
1
202
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
2
209
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
203
209
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
9
210
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
0
310
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
0
140
16
2
PIPE .1 1.
.0010
.0
.0
.001
.10 0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.380 .1 1.000 1.2
1.500
2.0
3.400
3.9
4.360
6.6
6.730
7.7
8.870 8.4 10.270 8.8
11.470
9.0
12.410
9.2
12.990
9.3
13.370
9.4
13.720 9.4 13.850 9.5
13.89G
9.5
4
315
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
5
315
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
315
216
8
2
PIPE .1 1.
.0010
.0
.0
.001
.10 0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.OGO 2.0 .240 3.0
.590
4.0
.850
4.5
1.230
5.0
1.430
96.9
1.630 265.0
6
116
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
116
140
0
1
CHANNEL 10.0 1650.
.0030
4.0
4.0
.035
5.00
0
140
357
0
1
CHANNEL 10.0 700.
.0030
4.0
4.0
.035
5.00
0
3
224
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
4
334
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
4
124
11
2
PIPE .1 1.
.0010
.0
.0
.001
.10 0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.070 4.0 .240 6.0
.520
8.0
.970
10.0
1.640
12.0
2.460
14.0
3.440 16.0 4.660 18.0
5.090
18.6
5.580
19.3
4
226
0
2
PIPE 3.0 825.
.0080
.0
.0
.011
5.00
0
6
336
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
336
357
8
2
PIPE .1 1.
.0010
.0
.0
.001
.10 0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.150 4.0 .440 6.0
.980
8.0
1.850
10.0
2.270
10.7
2.540
36.8
2.810 84.3
0
131
0
2
PIPE 3.0 450.
.0070
.0
.0
.013
3.00
0
131
330
0
2
PIPE 3.5 250.
.0070
.0
.0
.013
3.50
0
330
241
7
2
PIPE .1 1.
.0010
.0
.0
.001
.10 0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
'
.000
.0
.070 1.0 .230 2.0
.570
3.0
1.050
4.0
1.850
5.0
2.960
6.0
251
350
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
350
216
9
2
PIPE .1 1.
.0010
.0
.0
.001
.10 0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.070 1.0 .250 2.0
.630
3.0
.820
3.5
1.100
4.0
1.150
4.1
1.300 96.0 1.450 264.1
2
160
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
160
261
0
5
PIPE 1.5 275.
.0100
.0
.0
.013
1.50
0
OVERFLOW .0 275.
.0100
10.0
10.0
.035
5.00
1
262
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
2
365
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
5
241
7
2
PIPE .1 1.
.0010
.0
.0
.001
.10 0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
2.830
.0
59.5
1.250 6.3 2.420 7.5
2.520
14.0
2.630
25.9
2.730
41.3
1
141
0
3
.1 1.
.0010
.0
.0
.001
10.00
0
1
357
0
1
CHANNEL 10.0 500.
.0030
4.0
4.0
.035
5.00
0
381
382
5
2
PIPE .1 1.
.0010
.0
.0
.001
.10 0
RESERVOIR
.000
STORAGE IN
.0
ACRE-FEET VS SPILLWAY OUTFLOW
.480 2.2 .960 5.5
2.030
6.3
2.140
48.9
2
401
16
2
PIPE .1 1.
.0010
.0
.0
.001
.10 0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.090 1.2 .240 2.4
.510
3.6
.590
4.0
.650
6.0
.700
7.2
.760 8.4 .830 9.6
.840
10.0
12.0
1.100
20.0
1.240
30.0
1.350 40.0 1.470 50.0
1.510
55.0
.930
1
402
0
1
CHANNEL 2.0 550.
.0130
50.0
50.0
.016
1.00
0
2
406
0
1
CHANNEL 2.0 950.
.0060
50.0
50.0
.016
1.00
0
400
406
0
1
CHANNEL 10.0 710.
.0060
5.0
6.0
.040
2.00
0
406
380
0
3
.1 1.
.0010
.0
.0
.001
.10
0
403
12
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
'0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
2.700 8.8 3.090 9.3
3.190
10.0
3.590
15.0
3.990
20.0
4.870
21.8
5.000 22.0 5.540 22.9
6.240
52.4
6.580
75.1
6.930
107.7
384
404
5
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
1.010 3.7 1.890 9.3
1.940
11.5
1.980
15.5
3
407
7
2
PIPE .1 1.
.0010
.0
.0
.001
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.000
.0
.736 1.3 1.328 3.9
1.580
4.4
1.760
4.7
2.050
22.3
2.100
58.7
3
407
0
1
CHANNEL 5.0 950.
.0040
4.0
4.0
.045
5.00
0
7
405
0
3
.1 1.
.0010
.0
.0
.001
.10
0
405
410
0
5
PIPE 3.5 2000.
.0020
.0
.0
.013
3.50
0
OVERFLOW 40.0 2000.
.0020
50.0
50.0
.016
5.00
407
0
5
PIPE 3.5 900.
.0150
.0
.0
.016
3.50
0
388
387
0 1
7
38
0 1
6
284
0 1
4
263
0 1
3
282
0 1
282
410
0 1
1
414
0 1
9
413
0 1
0
411
0 4
411
412
0 4
2
413
0 4
3
414
0 5
414
415
0 1
5
416
0 1
17 6
517
0 1
417
0 3
417
0
0 2
T(YrAL NUMBER OF GUTTERS/PIPES, 203
OVERFLOW
40.0
900.
.0150
50.0
50.0
.016
5.00
CHANNEL
5.0
1300.
.0070
150.0
150.0
.015
5.00
0
CHANNEL
5.0
750.
.0070
150.0
150.0
.015
5.00
0
CHANNEL
4.0
800.
.0030
150.0
150.0
.045
5.00
0
CHANNEL
4.0
700.
.0063
150.0
150.0
.045
5.00
0
CHANNEL
7.0
1000.
.0057
70.0
40.0
.045
5.00
0
CHANNEL
9.0
800.
.0460
9.0
1.5
.045
5.00
0
CHANNEL
2.0
.1500.
.0150
55.0
76.0
.035
5.00
0
CHANNEL
1.0
1500.
.0100
50.0
50.0
.045
5.00
0
CHANNEL
5.0
600.
.0450
2.5
3.0
.035
7.00
0
OVERFLOW
45.0
600.
.0450
25.0
50.0
.035
13.00
CHANNEL
5.0
1060.
.0038
3.0
2.0
.035
6.00
0
OVERFLOW
30.0
1060.
.0038
35.0
60.0
.035
11.00
CHANNEL
5.0
870.
.0060
5.0
2.0
.035
6.00
0
OVERFLOW
50.0
870.
.0060
30.0
45.0
.035
12.00
PIPE
5.0
40.
.0060
.0
.0
.035
5.00
0
OVERFLOW
50.0
40.
.0060
100.0
100.0
.016
10.00
CHANNEL
5.0
1180.
.0060
30.0
25.0
.035
10.00
0
CHANNEL
5.0
1050.
.0060
40.0
50.0
.035
10.00
0
CHANNEL
5.0
800.
.0060
40.0
25.0
.035
6.00
0
.1
1.
.0010
.0
.0
.001
.10
0
PIPE
.1
1.
.0030
.0
.0
.035
.10
0
MCCLELLANDS BASIN MODEL (FULLY INTEG.) DEVEL. COND. 6/30/99;Rev. REP 3/22/00
ADOPTED 100-YEAR EVENT FILE: MMCD-100.DAT ICON ENG., USED FOR DEVEL EXTRAN
1
ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES
1
1
1
GUTTER
TRIBUTARY GUTTER/PIPE
TRIBUTARY SUBAREA
D.A.(AC)
2
8
50
9
0
0
0
0
0
0
0
90
0
0
0
0
0
0
0
0
0
796.3
4
341
0
0
0
0
0
0
0
0
0
150
0
0
0
0
0
0
0
0
0
219.3
6
7
0
0
0
0
0
0
0
0
0
70
0
0
0
0
0
0
0
0
0
34.4
7
0
0
0
0
0
0
0
0
0
0
240
0
0
0
0
0
0
0
0
0
5.0
8
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
219.3
9
51
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
434.3
11
112
0
0
0
0
0
0
0
0
0
110
Ill
320
0
0
0
0
0
0
0
6.5
12
11
47
291
0
0
0
0
0
0
0
113
114
0
0
0
0
0
0
0
0
30.0
13
12
0
0
0
0
0
0
0
0
0
115
116
0
0
0
0
0
0
0
0
33.9
14
0
0
0
0
0
0
0
0
0
0
118
0
0
0
0
0
0
0
0
0
1.1
16
34
0
0
0
0
0
0
0
0
0
160
121
0
0
0
0
0
0
0
0
9.8
20
0
0
0
0
0
0
0
0
0
0
200
0
0
0
0
0
0
0
0
0
31.3
21
33
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5.6
22
16
25
42
0
0
0
0
0
0
0
120
122
0
0
0
0
0
0
0
0
290.6
25
250
0
0
0
0
0
0
0
0
0
0
O
0
0
0
0
0
0
0
0
1.6
26
41
36
0
0
0
O
0
0
0
0
O
0
0
0
0
0
0
0
0
0
235.8
27
270
271
275
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
233.4
28
29
0
0
0
0
0
0
0
0
0
281
0
0
0
0
0
0
0
0
0
6.7
29
30
0
0
0
0
0
0
0
0
0
282
0
0
0
0
0
0
0
0
0
3.5
30
0
0
0
0
0
0
0
0
0
0
283
0
0
0
0
0
0
0
0
0
2.0
31
470
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
213.6
32
0
0
0
0
0
0
0
0
0
0
222
0
0
0
0
0
0
0
0
0
19.3
33
0
0
0
0
0
0
0
0
0
0
330
0
0
0
0
0
0
0
0
0
5.6
34
0
0
0
0
0
0
0
0
0
0
340
0
0
0
0
0
0
0
0
0
4.3
35
0
0
0
0
0
0
0
0
0
0
225
0
0
0
0
0
0
0
0
0
65.6
36
0
0
0
0
0
0
0
0
0
0
360
0
0
0
0
0
0
0
0
0
2.4
38
39
374
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
118.2
39
592
591
0
0
0
0
0
0
0
0
316
0
0
0
0
0
0
0
0
0
103.8
40
0
0
0
0
0
0
0
0
0
0
314
0
0
0
0
0
0
0
0
0
91.2
41
27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
233.4
42
46
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
259.6
43
45
22
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
312.8
44
21
0
0
0
0
0
0
0
0
0
210
0
0
0
0
0
0
0
0
0
13.1
45
0
0
0
0
0
0
0
0
0
0
220
0
0
0
0
0
0
0
0
0
22.2
46
0
0
0
0
0
0
0
0
0
0
260
0
0
0
0
0
0
0
0
0
23.8
47
0
0
O
0
0
0
0
0
0
0
230
0
O
O
0
0
0
0
0
0
14.7
50
6
0
0
0
0
0
0
0
0
O
80
60
0
0
0
0
0
0
0
0
129.5
51
13
14
20
44
43
0
0
0
0
0
130
100
117
190
0
0
0
0
0
0
434.3
72
5B3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
99.4
73
673
0
0
0
0
0
0
0
0
0
373
0
0
0
0
0
0
0
0
0
8.2
74
474
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
61.5
75
0
0
0
0
0
0
0
0
0
0
375
0
0
0
O
0
0
0
0
0
28.4
76
477
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9.7
82
682
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.8
83
684
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
93.8
84
0
0
0
0
0
0
0
0
0
0
384
0
0
0
0
0
0
0
0
0
6.9
85
82
0
0
0
0
0
0
0
0
0
385
0
0
0
0
0
0
0
0
O
7.1
88
89
90
496
0
0
0
0
0
0
0
389
393
0
0
0
0
O
0
0
0
37.9
89
92
395
0
0
0
O
0
0
0
0
0
0
0
0
0
0
0
O
0
0
1.4
90
490
491
0
0
0
0
0
0
O
0
0
0
0
0
0
0
0
0
0
0
4.2
91
301
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
28.5
92
0
0
0
0
0
0
0
0
0
0
394
0
0
0
0
0
0
0
0
0
1.4
93
91
95
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
76.0
94
93
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
76.0
95
0
0
0
0
0
0
0
0
0
0
302
0
0
0
0
0
0
0
0
0
47.5
102
35
32
368
0
0
0
0
0
0
0
223
224
0
0
0
0
0
0
0
0
1505.3
A ,I l ItII9ryF� STSENI R
1 � I III II
Will
\ N
W Ave
VAAV •\� ♦ / AQ'"V CsuL
\\�\�\
-'. `v A VO vA A ♦ �.
simin
I
LLL
o' Own
DRAINAGE SUMMARY TABLE
011 TrbuWy An! 1(2) C(10) C(I00) 0(10) w(100) Cl all0I1et Q10011WI
yLON
Poll 1-1 (MIN) (MNI (VIA) (CIA) 14:1111
- 1.5'
1G WO 0.9 0.tl 0.tl O.Y T.I SA 0.3 0.5 1A 0
1A-1F 10, 0] 0.N QN 0.81 11.7 aS 0.5 1.9 3.B tS'
2 1@ to 0.T1 0.11 0.•9 SA 5.9 2T W.5 LT.3 CROSS SECTION A -A
3 103 1.1 0.71- 0.11 1.0D 52 50 1 2.0 aW AT N.T.S
Ill 1% 1 0..8 1 0.A I an 1 0.0 1 5.0 1 `+0 1 12 1 2.1 1 54 I
F-R--T-lm I as I am I ow I too I 50 1 5.0 1 1.8 1 11 1 79_ 1
2 0'
D
5'
:Una NI••
TD 1.5'
2o'
NTS
D
clawledeAsmQueell
N.TS
IP / IP
I
, •-l'
® II{
LS JB
� IP
! A
-
t-
108
V
ee-l...
- R
u
NOTES -_
50 25 0 50 100 1. ER090N CWTRh NOTES CAN BE EWWD W ME GENERAL NOTES MET.
2 GARAES W ME NORM MLL HAYS DOYMSPWTS TO DIRECT STORYWATER W SM
SCALE ,• - 50'
L
Fa
(n
__ _ _- _--- - T
YW'•19- TYPE L + F F i + + +
T BURIED MPRAP (ME
I DEiNL SHEET 2]) + '•' +/ i- V- 1_ I f
NL ( SE
SHEET 27
+ +\& 11 k i A'AIRKIYE PAN I -
I- 1 ion
-71
8'r8'.IB- TYPE L I + I� 1 /+ + + + + + I
BURIfO Al ( 'V/ -..II
DETAL MEET 27) +� 1.' -+ r I + +
+I i + + + i + + +
r �', eqq II f ,+ + + + I�1,11 i
_ fY MI 1 + + 1 hI
a' 110d:E PAN A, 1. +. Y 1. 1. .1' + i
2x
wo
r � 'y�� POND 488 - + H + + POND AM EWERGENCY
100-YR I + + + (ME DETAIL THIS SHE
WSEL=5006.68 + it
' 'f 13,1Y•I8- TYPE L �I + + + hiiI'+ h
Irr DENIED Mi /I: I I\. �+ TPoWE PM] O DETAIL SHEET
L MEET an ( O
1 A' 1RIGE PAN O \
i + 1
I j
yz. l?MkIE P,y] W 1 � ..1 � 1RIDt1F PAx
C �e' PoG E PAN W PEND WillW WRET
1
1 I.Ix r; g ® STRUCTURE
1' iPobtE PIN 01 A, I : , 1 SE OETNL SHEET 30)
8B'M11B- TYPE L
01RIED Will (SEE , t 4
•�•�. ,.
��TYPICAL SECTION
3, fee-
SINE
Om (CPS)
DEPTH. D l
IAL
I SLOPE
Aw `IELOOTY
A
13.3
a,18'
asm
2.9 FT/S
B
2d1
0.53'
0.5x
2.7 l
C
7.9
O41'
O.Sx
2.2 l
D
21.4
0.62'
a5x
2.8l
I,,:�r
Ei
•s
SPILLWAY
0100
IENOIH (L)
Ol of)
p ATION
M/AIION
SLOPE. (5)
AM 1A�TY
PWO a88
381 m
I" IT
I
5007.00'
5008.00'
n
2.6 FT/S
A
WwdX-
W<w53
�aa�ga, I
�<mwill
59
FwLE�CJm�
N
N O O
K }
o z o
of
bozo
yN JJ
ED (NQ3
m W
LEGEND
M P ®ENDER C ^EE 9 G YO s'
n
®
m
m
m
SF
SILT FENCE
oFP?.lie-tw.C�SII:.
u•i
o
�5
i
9c
S
U
w
IP INUT PROTECTION
";'t
D^024Yn
©®OCONSTRUCTON
ENTRANCE
x
of0N
WITH VEHICLE TRACKING
COlA
Alt
zR
za
SEDIMENT TRAP
®
Q
d
PROPOSED RICRAC
C LEE Co P.E. x0.
P.E.
OL]N25
DAISLel
NO oI WDINf 01 / EYmlli
f01 "
Q O
fIf
DESIGN PUNT
City of Fort Collim Colorado
z
z
t0
UTILITY
PLAN APPROVAL
Q
TO1
APPROVED:
M
t_i
0
BASIN IDENTIFICATION
GIY Fnquv
We1.0
50 RUNOFi COEFTIGENT
J 0
CHECKED BY:
AREA IN ACRES
MAW ! YbHe EuSy
DW
<W (1)
y ROW DIRECTION
CHECKED BY:
OR
su mmis WIRY
WI•
i
W-
W� W- DRAINAGE SUB BASIN
CHECKED BY:
___-.-_..
PSY ! P•valim
Dot•
+ 100-YR INUNDATION AREA
CHECKED BY:
f .._
LWWl Ery
DON•
SHEET
T8 OP
30
CHECKED BY:
I
Del.
JOB N0.
38A0200