Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 01/19/1997
Final Appro'Vqd R@por PROPERTY OF 3 Da!e COLLINS FINAL DRAINAGE REPORT AND EROSION CONTROL STUDY FOR THE FIRST FILING PONDS AT OVERLAND FORT COLLINS, COLORADO November 6, 1996 A division nJ The Sear -Brown Group FINAL DRAINAGE REPORT AND EROSION CONTROL STUDY FOR THE FIRST FILING PONDS AT OVERLAND FORT COLLINS, COLORADO November 6, 1996 I. Prepared for: Gateway American Properties 9145 East Kenyon Avenue Denver, Colorado 80237 (303)741-4082 Prepared by: RBD, Inc. Engineering Consultants 209 South Meldrum Street Fort Collins, CO 80521 (303) 482-5922 11 RBD Job Number: 589-011 TMINC. Engineering Consultants A division of The Sear -Brown Group 209 S. Meldrum Fort Collins, Colorado 80521 1 970/482-5922 i Mr. Basil Hamdan City of Fort Collins Utility Services Stormwater 235 Matthews Fort Collins, Colorado 80522 RE: Letter of Transmittal Ponds at Overland Project - Filing One Dear Basil: October 11, 1996 We are pleased to provide the 100-percent final submittal of the First Filing, Final Drainage Report for the subject project. The Overall Preliminary Drainage Report for the Ponds at Overland project was approved in February 1995. Much of the information provided herein is referenced from the approved report and the proposed design for the First Filing is very close to the concepts shown in the Overall Preliminary Report. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing earlier submittals of this report. Please call if you have questions or comments. Respectfully, RBD Inc. Engineering Consultants Prepared By: ��`Cri'/ � _ , / _ F8i aig Cshell, .E.a``0 E /Pr ject er ro°�o�`° L9• • O DESH 3 � wraNA . Reviewed By: David K. Thaemert, P.E. Water Resources Engineer IDenver 303/458-5526 TABLE OF CONTENTS DESCRIPTION PAGE I. BACKGROUND 1 II. CANAL IMPORTATION SWMM - FIRST FILING 2 III. SWMM PARAMETERS 3 IV. HYDROLOGY 5 V. REGIONAL DETENTION POND - CLEARVIEW PARK 6 IV. EXISTING CHANNEL HYDRAULICS 7 IIV. DRAINAGE FACILITIES DESIGN 7 IIIV. EROSION CONTROL g IX. WATER QUALITY g X. CONCLUSIONS 9 XI. REFERENCES 9 APPENDIX HYDROLOGY I DETENTION POND STAGE -STORAGE TABLES 2 DETENTION POND OUTLET CALCULATIONS 9 100-YR UPDATED SWMM, FILING ONE 19 SWALE CALCULATIONS 36 RIPRAP CALCULATIONS 41 REINFORCED CONCRETE PIPE CLASSIFICATION CALCULATIONS 62 APPENDIX (cont.) DESCRIPTION INLET AND UD SEWER CALCULATIONS 87 EMERGENCY OVERFLOW CALCULATIONS 152 rENERGY DISSIPATION STRUCTURE DOCUMENTATION 160 WATER QUALITY VOLUME CALCULATIONS 175 EROSION CONTROL CALCULATIONS and ESCROW 182 CALCULATIONS FOR REX MILLER PROPERTY 191 CHARTS, TABLES AND FIGURES 196 DRAINAGE AND EROSION CONTROL SHEET BACK POCKET FINAL DRAINAGE REPORT AND EROSION CONTROL STUDY FOR THE FIRST FILING PONDS AT OVERLAND ' FORT COLLINS, COLORADO 1 I. BACKGROUND Gateway American, Inc. is proposing a residential subdivision along the west side of Overland Trail Road and south of the Colorado State University Equine Center. The completed development will be approximately 282 acres and will include single family detached homes. The portion of the site planned for ultimate development is approximately 124 acres east of the Dixon Lateral ditch. The rest of the site (west of the Dixon Lateral ditch) will remain in its existing natural state. �. Approximately 38 acres is planned for development with the First Filing. This report for the First Filing is for the approximated southeast quarter of the developable property. The First Filing is for 84 single-family residential lots, open space, detention facilities, and onsite infrastructure improvements. The report, including design calculations, support the drainage design proposed for the site. At the time of preliminary review, Gateway American was requested to have an approved preliminary design and drainage report. The preliminary design approval was requested because of the complexity of the site and constrictions in the stormwater system downstream of the site. The preliminary design and report, as approved, included extensive design and computer modelling. The design proposed for Filing One is a refinement of the design presented in the ' Preliminary Report. As part of the proposed development the City of Fort Collins has asked Gateway American to demonstrate that it is possible to discharge storm water flows from the site at 2 year historic levels and that the existing channel going eastward from the .proposed development (Clearview Drainageway) is capable of carrying the 2 year historic flows. The approved preliminary design demonstrated that discharging at the 2 year historic rate is possible and that the Clearview Drainageway is capable of conveying the required discharge. Aerial mapping of the proposed development site was performed by AeroMetric, Inc., in March 1994 and is used as a basis for on -site hydrology. City mapping was used for utility information. RBD, Inc. survey data was used for: road; existing channel cross section information; and existing contour data for the two ponds located within Overland Park. The City of Fort Collins aerial maps and the USGS quad sheets were used for off -site areas. For a more extensive discussion and presentation of extensive computer modelling reports, the reader is referred to the Preliminary Report prepared by RBD, Inc., November 1994. 1 1, ' General Ilrainage Concept for the Site ' The proposed project site generally slopes in an easterly direction with grades of less than one percent up to greater than 20 percent. The greater project site is made up of semi -arid uplands with some identified jurisdictional wetlands. There are no identified jurisdictional wetlands in the First Filing. The reader is referred to the wetlands report prepared by Riverside Technology and the soils report prepared by Empire Laboratories, for the project. Stormwater drainage will be carried as overland flow through the use of natural drainage channels (in open space areas) and in the streets and man-made drainage swales through developed portions ' of the site. In concept, the idea is for much of the site to remain in its natural state therefore, the overland flow of stormwater will enhance the wetlands and provide needed moisture to upland plant species. As stormwater flow travels through the developed portion of the site it will be intercepted ' and channelled to on -site drainage detention ponds. After the flow is routed through the drainage detention ponds it is discharged through one of two pipes under Overland Trail Road and into the Clearview Drainageway. Some grading is required in the Clearview Drainageway to allow the discharge pipe to "daylight" into the drainage channel. II. SWMM FOR FIRST FILING The Canal Importation Basin Masterplan Storm Water Management Model prepared by Resource Consultants, in 1983, was used as the basis upon which update modifications were made. The SWMM was given to RBD, Inc. by the City of Fort Collins Storm Water Utility Personnel. Storm Water Utility Personnel transferred the input file from a mainframe computer format to personal computer format. RBD, Inc. has assumed the SWMM is correct and has therefore not verified the model as it existed prior to updating it. RBD, Inc. has made modifications to the SWMM to reflect the conditions in the Canal Importation Basin as they presently exist in the vicinity of the study area. ' The only subbasins updated were those which affected the design of the Gateway American site, the Clearview channel and the two ponds directly downstream of the site. Once update modifications ' were made to reflect existing conditions, the model was run to determine the 2 year historic release rate from the entire drainage area above Overland Trail Rd., which drains to the Clearview Drainageway. The model was then modified to reflect the Gateway American development including the proposed regional ponds (which have a total discharge rate equal to the determined 2 year historic rate) and the model was re -run to reflect the 100 year condition. The updated SWMM and analysis was then used to determine whether Clearview Drainageway east of Overland Trail Rd.. has adequate capacity to convey the discharge from the drainage area above, downstream to the existing two Clearview Ponds within Overland Park. I In the original SWMM prepared by Resource Consultants, the Basins which contribute runoff to the existing two ponds at Overland Park (Clearview Ponds) are 1,10,40,41,18 and 19. Since the limit of our study was immediately downstream of the two ponds, the basins stated above were the only basins which were looked at for possible updating or modification. 2 I r Basin 10 was modified because a portion of the discharge was redirected when the Colorado State University Equine Center was built. In the updated model the Equine Center is shown as a separate basin (486) and the existing detention pond within the Equine Center site was incorporated into the updated model. The Equine Center also affected the original delineation of sub -basin 41. In the revised model Basin 86 drains through detention pond number 301 and then into the existing ' Pleasant Valley and Lake Canal. ' The delineation of basin 41 was revised based on the proposed site plan for the Two Ponds at Overland Site, and on aerial topo maps obtained at the City of Fort Collins. The original SWMM Model showed basin 41 as having 318.4 acres, the revised model shows the total drainage area as ' being(37 8 acres. Although it is not known (because the original SWMM schematic did not show the upper limits of basin 41) it is possible that the original basin 41 did not go above the Dixon Canyon Lateral which would account for the approximate 100 acre difference. Sub -basin 41 was ' then broken up intobasins, nineteen of which represent the proposed Gateway American site. As shown on the SWMM schematic in the Appendix, a portion of the undeveloped Gateway American site does not drain into the Canal Importation Basin, but instead drains north toward College Lake. III. SWMM BASIN PARAMETERS ' The following table lists the SWMM Basin Parameters for all of the Basins to the west of Overland Trail Road. The SWMM sub -basins do not correspond to the site Rational Method hydrology in ' terms of numbering of the basins. However, the areas as delineated on the SWMM sub -basin map are the same areas used for the Rational Method hydrology calculations with the difference being some basins are combinations of two or more Rational Method hydrology sub -basins. The Rational Method hydrology sub -basins may be seen on the drainage plan provided in the pocket in the back of this report. The SWMM sub -basins are shown schematically on the exhibit in the Appendix. ' The sub -basin " tributary width" parameter was determined by dividing the area of the sub -basin by the average of ten overland flow lengths from the back of the lot to the street, swale or channel. For those sub -basins which are not developed, the basin "tributary width" was determined by dividing the area of the basin by the length of flow to a channelized or concentrated flow point. The lengths , slopes and types of conveyance elements were then input as the actual physical representation of ' what occurs, whether it is street flow, channel flow or pipe flow etc. The following table lists all of the sub -basin parameters as they were input into the model. 1 3 �J I u I I I SWMM BASIN PARAMETERS SUB -BASIN # CONVEYANCE ELEMENT BASIN WIDTH (ft) AREA (ACRES) % IMP. SLOPE (ft/ft) 86 300 950 11.6 23 .015 350 372 2875 6.6 45 .03' 351 373 2396 5.5 45 .023 352 374 958 2.2 45 .024 353 375 7115 14.7 45 .038 354 376 1026 3.3 40 .1 355 313 5791 22.6 20 .019 356 378 3298 5.3 45 .026 357 379 4530 15.6 40 .038 358 380 1350 3.1 15 .071 359 381 8451 9.7 47 .037 360 317 1646 1.7 67 .034 361 383 1220 1.4 24 .03 362 384 4937 1.7 90 .035 363 385 938 1.4 20 .013 364 386 4704 10.8 16 .013 365 387 1794 7.2 15 .017 366 388 2693 3.4 10 .02 367 389 1321 91.0 10 .098 368 390 740 17.0 10 .111 369 391 1160 21.3 10 .209 370 392 2197 80.7 10 .284 371 393 443 11.2 10 .054 92 307 1300 85.1 10 .05 340 386 3049 2.8 64 .006 341 333 871 1.1 58 .02 700 699 1 2434 1.9 69 .005 701 698 2962 1.7 72 .005 -Total �41-tv ac. 4 A _1 1 III. HYDROLOGY Hydrological Criteria The Rational Method for determining surface runoff and street capacity was used for the project site. The 2-year and 100-year storm event criteria, obtained by the City of Fort Collins, were used in calculating runoff values. These calculations and criteria are included in the Appendix of this report. SOME OF THE FOLLOWING DISCUSSION IS PRESENTED IN THE "OVERALL PRELIMINARY DRAINAGE REPORT. It is suggested that the "Overall Preliminary Drainage Report" be reviewed as background material. Sub -basins 500, 501, 502, 504, 505, 506, and 507 are designed to drain to the east via the street system to the low point at Design Point 50. However, only sub -basins 501 and 502 are outside the limits of the First Filing. Sub -basin 503 flows directly to Detention Pond 397. Basins 600, 601, 602, and 607 drain easterly to the low point in the road at Design Points 67 and 60. Flow at Design Point 67 is to be intercepted in a 15' inlet until the capacity is exceeded during the 1 100 year storm event and overtop the crown of the road and flow to Design Point 60. This overflow is to be intercepted along with runoff from Basin 600 in a 15' inlet and be transported in a 30" pipe into Detention Pond 396. Basin 605 drains to the east where the runoff is to be intercepted in a sidewalk culvert and transported in a swale to Detention Pond 396. Basins 603 and 604 drain to the east along the street to the low point at Design Point 64. Flow is to ' be intercepted in a 5' inlet until capacity is exceeded during the 100 year storm event and then overtop the crown and flow to Design Point 66. A 5' inlet at Design Point 66 is to intercept this overflow and runoff from Basin 606 and carry flow through a pipe into Detention Pond 396. ' Basins 700 and 701 consist of the west half of Overland Trail fronting the site and a portion of the main entrance road which drains back onto Overland Trail. The runoff is to be intercepted in 15' curb ' inlet 70 and carried underneath Overland Trail in a pipe. This flow is to be released undetained from the site. The release rates from the ponds have been reduced to account for this undetained flow. Additionally, runoff from the northbound lanes of Overland Trail Road are intercepted and carried to the Clearview Drainageway. It is believed that determining the runoff from the northbound lanes of Overland Trail Road is beyond the scope of the study. Therefore, the runoff from the northbound lanes of Overland Trail Road is assumed to be the same as that of subbasins 700 and 701. I 1 5 11 I ' IV. REGIONAL DETENTION PONDS - CLEARVIEW PARK ' There are five ponds within the proposed development. However, only four ponds are proposed for construction with the First Filing, ponds 396, 397, 398 and 399. One pond is being used solely as a ornamental pond, and will not be used for detention; it is shown as pond #398 on the SWMM schematic and drainage sheet. Since the only flow draining to pond #398 is from the immediate area around it , pond #398 will not have an outlet but is tied to pond 399 with an equalizing pipe to provide some circulation between ponds. Pond #399 will also be used as a wet pond but will be surcharged for the purposes of detention. Therefore, the 40 hour criteria for WQ Capture Volume is used as a conservative design element. Pond #399 has 6.32 acre-ft capacity with 5.5 acre-ft being ' used. At the present time, pond # 396 has 34.33 acre-ft with 28.9 acre-ft being used. Pond #395 has 20.28 acre-ft with 15.8 acre-ft being used. Pond # 397 is the only pond being fully utilized with 4.42 acre-ft available and 4.3 acre-ft being used. The water quality outlets are considered in the ' hydraulic performance characteristics for the outlets of ponds 396 and 399 (please see the rating curves in the appendix). ' It should be noted that pond #395 hasbeen graded for determining of an area -capacity curve for the SWMM modeling effort, only. Pond #395 is not planned for construction with Filing One. Therefore, at the time of proposed Second Filing construction Detention Pond #395 will be final graded. This is being done to provide the owner as much flexibility as possible with the site and to design a pond that will function properly with the side -spill weir at its time of construction. It is expected that Pond #395 will be constructed with Filing Two. The flow from Overland Trail and a small portion of the flow from the main entry into the proposed Ponds development is not captured and detained on site. However, the portion of undetained flow has been subtracted from the total allowable release rate that the on -site detention ponds can discharge into the Clearview drainageway. Based on the 2 year SWMM, which was done with the ' original Canal Importation Basin SWMM update by RBD, Inc., the 2 year historical flow rate at the point where the Two Ponds site discharges into the Clearview drainageway is 54 cfs. ' During the design of the proposed Ponds at Overland development, the basin tributary widths have increased dramatically as compared to the Canal Importation Basin SWMM. However, the real control point is what the Clearview drainageway can handle. The 54 cfs appears to be the limit of the capacity of the Clearview drainageway and is the flow rate which was agreed on between the City and RBD during the preliminary design. Therefore, the maximum release rate from Ponds 399 and 396 plus the undetained flows from Overland Trail is 54 cfs. The pond design now takes into account the undetained flow from Overland Trail Road and the ' proposed Ponds site and subtracts this from the allowable release rate. The discharge from the site will cross under Overland Trail Road and daylight in the Clearview Drainageway. The Clearview Drainageway requires regrading from the East side of Overland Trail to the first street crossing (Virginia Dale Dr.). The flow line of the Clearview Drainageway will be lowered approximately 3 feet from the current 5108 feet to 5105.3 feet. This will provide a lower outfall point for the 1 6 ' detention ponds and will provide more operating head for the proposed outfall pipes. Proposed re- grading (a longitudinal slope of 0.0067 ft/ft) exceeds the City criteria of 0.005 ft/ft. ' V. EXISTING CHANNEL HYDRAULICS ' The proposed regrading of the Clearview Drainageway between Overland Trail Road and Virginia Dale Dr. will convey the required capacity of 71 cfs (1.33 times the design discharge of 54 cfs). The proposed cross-section has 6 foot horizontal to 1 foot vertical side slopes and a 0.0067 ft/ft longitudinal slope. ' VI DRAINAGE FACILITIES DESIGN The proposed design includes the construction of improvements for detention ponds numbers 396 ' and 399. Detention pond 396 has a bottom slope of approximately 0.005 ft/ft, therefore an under drain is planned. ' Typical Type R curb inlets, culverts and sidewalk culverts are planned at several locations. Box culverts are proposed for conveying storm water discharge under Banyan St. ' The formerly proposed invert siphon pipes for outlets to the Clearview Drainageway have been reconfigured as conventional (straight) pipes. The system is controlled by the inlet conditions and pipe friction. The Clearview Channel outfall point will have a energy dissipation structure at the terminal end of several pipes. The dissipation structure will be used to reduce the energy and thus prevent scour (displacement of the riprap) in the Clearview Drainageway. In addition to the dissipation structure at the Clearview Drainageway, a similar structure is planned ' for the inlet pipe to pond 396 (the pipe outfalling from Detention Pond 397). Some off -site hydrologic design and culvert design was provided for the Rex Miller property immediately adjacent to the southeast comer of the first filing. Provided is an 18-inch RCP culvert feeding pond 396. It should be noted that the volume of water from this area is accounted for in the SWMM therefore, no additional water is tributary to pond 396. There is a divider in the Appendix specifically for this work effort. VI. EROSION CONTROL General Concept ' The Project Site lies within the Moderate Rainfall Erodibility Zone and Moderate Wind Erodibility Zone as shown on the City of Fort Collins zone maps. The potential exists for erosion problems ' during construction. The provided erosion calculations have a Performance Standard of 79.8 during construction and 93.9 1 7 ' The provided erosion calculations have a Performance Standard of 79.8 during construction and 93.9 after construction. The during construction and post -construction effectiveness calculations result ' in 93.4 and 97, respectively. Thus the proposed erosion control design meets City criteria. The proposed detention ponds within the developed parcel along the east edge of the project site ' have the potential for erosion problems until adequate sediment barriers are installed together with revegetating the disturbed ground. After the overlot and utility installation has been completed, the parking/driveway surfaces will receive the curb, area inlet, gutter, and pavement surfaces. A gravel inlet filter will be installed ' around the curb inlets until the permanent landscaping surfaces (grass sod or seeding and mulching) have been installed. Straw bale dams will be used in the drainage swales and all disturbed areas will require seeding and mulching. Once all of the improvements have been completed, the gravel inlet filters and sediment fence can be removed from the construction site. Permanent erosion control includes the use of rip rap, and grouted rip rap. ' Erosion Control Escrow The comparison between the reseeding/mulch and the erosion control BMPs shown on the Erosion ' and Drainage sheet have been calculated at $13,150 and $14,000, respectively. Therefore, with erosion control escrow required to be 150-percent of the higher cost, the erosion escrow is $21,000. ' The comparison is provided in the Appendix. VIL WATER QUALITY ' General Concept ' The proposed use of the Ponds at Overland development is residential. Once the proposed subdivision is established, no water quality problems are anticipated. During construction, as discussed in the Erosion Section, sediments are anticipated. On the Project Site are Jurisdictional ' Wetlands. A feature of the project is to enhance the wetlands to mitigate any detrimental effects of the proposed project. The proposed use of wetlands is consistent with City of Fort Collins stormwater quality program. A water quality capture volume will be provided in the respective ' detention ponds #396 and #399. The water quality outlets consist of a perforated steel plate (fashioned into a box) with 1.5 inch to 3 inch rock placed against it and an weir around the top of the steel plate. The top elevation for the box is at an elevation required for the capture volume. The holes in each of the steel plate boxes are 8 I! sized to release the water quality capture volume over an estimated minimum of 40 hours. The hydraulics of the pond outlets are such that outfall discharge is controlled by downstream conditions, ' or an orifice plate. VII. CONCLUSIONS ' Compliance with Standards ' Computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria (May 1984). Drainage Concept ' The three detention ponds proposed for construction with Filing One will provide the needed mitigation of storm water flows to reduce the flow to the Clearview Drainageway to an acceptable level. There will be one each outfall pipe from detention pond #399 and #396 which will discharge ' into the Clearview Drainageway. There will also be pipes from the proposed 15-foot inlets along the west edge of Overland Trail Road. The third Detention Pond #397 discharges to Detention Pond #396. ' The Clearview drainageway is planned for regrading from the east side of Overland Trail Road to . Virginia Dale Drive. It is anticipated that a small portion of drainage easement are needed. The ' needed drainage easement is shown on the construction drawings. ' Erosion Control A variety of BMP's are planned during the construction phase and are shown on the Drainage and ' Erosion Control Plan (sheet 5/38 of the construction drawings). The comparison of the BMP's shown on the Erosion and Drainage sheet and site reseeding resulted in the Erosion Control Escrow required for the First Filing at $31,000. ' Water Quality The proposed use of the Ponds at Overland development is residential. Once the proposed subdivision is established, no water quality problems are anticipated. During construction, as discussed in the Erosion Section, sediments are anticipated. The greater site includes jurisdictional wetlands (however, no jurisdictional wetlands are within the First Filing). Therefore, as a site enhancement wet ponds are designed as part of the project features within Detention Ponds #396 and #399. 0 A VIII. 1. Original 100 YR SWMM model for the Canal Importation Basin done by Resource Consultants on 2/5/83. 2. Canal Importation Basin SWMM Update and Proposed Regional Detention Pond, done by RBD, Inc. Engineering Consultants, July 1994. 3. Overall Preliminary Drainage Report and Erosion Control Study - Ponds at Overland, done by RBD, Inc., Engineering Consultants, November 1994. 4. City of Fort Collins Storm Drainage Criteria Manual, May 1984. 5. City of Fort Collins Erosion Control Manual. 10 APPENDIX L- HYDROLOGY 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 zr N LL 0 0 Q U) s �4 i v c; >`1 0 i 0 LL f �1 `I Z J_ LL N Z O ti LL . 0 LL. O Q � Z Z 9 V O N >. LUL LUZLL! } P a CV ui N N N N z z J_ _z _z J LL Il LL E C C C O C 0 0 0 Z O +_ w _ 0-. v a a C C C C 0 0 0 z 0 O N Y Coll cnU) z(1) aa �aa o 0o oCL CL a 1 0 a +- LO I�- LO N O T O Ln N LO I-- CA CO M I- CV) co ti 00 LO CO 00 O 00 V. T cM qq• tif,- O O N .� T T T T T T T LL Li) 00 O O N CO CO T N (0 00 M U) CD LO N .0 N r- � N M N M w Lo 6 N M N M M� r�- LO v- T 0� N M M M N N M�"T Cn Q N CO N N CO N N M T T M N cM c i 0) 0)(0 0 Ln M M I�- O M 0 CO T N M M co a) T N N V.- N N N N O O cM T N 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 O � LO CD 0) CO N I� CD O Cr) � O LO N (O N O M (A N LO qq• Ln T LO O CO I M 0 M N T T c J T O Un T Wq qT m .- O O M w I�- N T Lo (O N qqT qqT CO 4 00 w 00 N qqT O r 00 1- ,C E cu N O LO qT O Ln O O O Ln O 00 00 "I Ln U) O C4) �+ (p Lc) T CO r I- LO N LO LO T T LO T r CO m T T T T T F C C J (0 f�- U) q r N 00 LO LO 'IT O ti ID CO Ln 1� CC) NT CD I` ti M M� LO M I� M CO Ln (fl W U O O O O O O O O O O O O O O O O +B m � 0 T O M N O W 0� T T 00 co d' Lo CB a)C) O LO I-- (0 O T M 0 M O LO M o M O 00 ` a m T N' N O T T N f-- O LO O T T T (N T c O T N O T N M "• LO 0 I�- M o T N M C o 0 o 0 0 o 0 0 0 0 0 0 0 0 0 0 O ' cu O 0 m 3 I 0 1 t 1 1 11 t z z z z 0000 IL IL a a z z z z 0000 P: P:pP: z z z z w w w w �- �-F- �- wwww 0000 N 1-- CN V- V-U-) M 1- 0)0 0 144 Ln M v- (D Loi-- 1-� Lf) O 00 00 to v V-- T- It-, T- � T- � � (V N N O LO � Lf) IT Li) 00 M CM cM 00 Co N N O Li) I-- CO O 1-� LO N LO Lf) M 00 Ln LO Cfl Cp of 0p O qT � r- � T-' � qT--V- v- v- v- N (VT- •- � 1� (p CD (p LO LO Lf) Lo Lo LO LO LO U-) LO O O O N N O 0 0 0 0 0 0 0 0 O O O O O O LO O O O O O O O LO O O 00 M O I�- U) 00 Iq LO 0 Lf) LO M N N LO LO O M O 00 r- c'M M N T- O � O cM C.) CM 0 00 N T- O 1� 1�- (A N T- CV O Gi O "q q m m Lo 0 00 t-- T M N N N N O LO O LO LO O LO LO N T- 00 00 00 O O O O LO LO LO Cl O O O �- O M O O N CM M O LO LO LO C) cM r- � N � � O ti m LO O LO (M cM co LO LO O) 00 LO I�- 00 [�- LO (p U) N N N N O O O O O O O O O O O O O O M N 00 Lo 0 O O v' 0 qT 0) qT 0 Cp O� N N 00 N C O I- M N N qq O O O 4 T- N � O N � � O I-_ M � LC) CO 1�- 00 0') O O r- 00 q;T Lf) O O O O O O O r- r- O O O Cp Cp O (p (p O O O C0 CD co 1� I�- co I M 1 o �rvt" V C) y � 0 � O ao u, L 0 Z J_ L,L LLL O LL O d Z Z ~ JZ W w Z C9 = U > Z O CO) WC.) U LL. O a w W Z a o H R7 O 0 N N N j N rn rn rn rn c C c C LL C C c Q C 0 0 0 Z O c c c a c U) a a a c H a O o c o c w w w E Z vim) E E Eaaa� Q.c.cLn can 0 0 0 N w 0 M M 0 m N a a CL : a � (o Lo (o O CO LO "T O fl- (O In M Lo Lo . - + .� L6pl: liV: v) 00 f-- M of N M f-- 6 00 w O U0 0o O O N M W '-- N (O M M Lo (O U? N N M 0 to to N M N M M d• E U? •- (O �t N O 0o 0o N N CO q- a- N co N N co N N M co N co co O m to LO V) O 0) 00 (O co N M M a) E N N T- N N ILO� N N O O M N O O O O O O O O O O O O O O O O O I�- to O O M N I-- O O M� O LO N O 'T CO O N to 'q u) U-) (o (O V CO (O ti 00 > (Q N L J N (o (o O (O I-- 00 O u) �- r�- O Cl O (O o) F- .0 M to r- N N M M IT 1�- O IT M� d' v E C N N N N M i� O mt N N N N N M N N P > OtoItOLoO000O0000Lo0LOO (O to W I�- to N U) Lo r- Lo (O N C J (oI-- tov N00LoLod OI--M(oLo1-- U O qT CO � ti CO M �Y Lo M I� M (O Lo (O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ci m I-- (O T- O 0o N 00 CO (o qq m s- 00 00 qT to f6 O Lo ti 0 O C)M O C) Lo cc)O 0o C) CC) `) U Q cc N N C:)�- Mr-- CD Lo 0 .- N c N O N O N Mqq - to (o r� cc) C)N M C 0 0 0 0 0 0 0 0 0 C) 0 0 0 0 0 0 V' 'T 'T LO 0 0 0 LO to to O (O (O Co N N ca JOLO C) CO I I I I 1 � z z z z 0000 M(Ln.rl z z z z 0000 z z z z LO LO wwww �- E- o 0 0 0 � O O t` O t` O N (0 cM ti M M T- N �h �( ) M 00 ti r� M N O r- O CO T- O M LO 00 cM M M co M N CM N M N O l!) N to In m 00 00 (O N N N� r- T'-Ir- �- IC\! . . . � r— r� co (o LO LO LO LO LO m LO LO U) LO 0 0 0" N N 0 0 0 0 0 0 00 O O O O O O LO 0 0 0 0 0 0 0 LO O O co co O ti LO 00 IT U) to U) In M N N LO LO (O M O 00 � M M N (D O) O O N M O IT IT 00 O M O O O � N r- O r- 117 00 M r` N N N r- (O N 00 N N O U) O LO N .- T- .- LO O In CM o0 w 00 0 0 0 0 0 0 In O O O O T-- r- O M O O N M M O LD LO LO M (M r- T- T- N T- O r-I O LO O Ln m M M LO LO m CO Lo ti . w r` Lo coLo ti r` r` ti N N N CV 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 M N 00 LO W 0 0 IT 0 fir' O Iq O T- (� O4;3- N N w N v O r` M N N"T 0 6 6 `T N � O N � � O r, M 'IT U-)( fti-WM0 0T--00ITLO0 O O O O O O r 0 0 0 (D (O O 10 10 (O 10 (fl 14 10 10 � M M cM M 11 I 1 I I R SY, �O c A A v egg �N ` OPti npoo Om Um :o o. por u y` J `c7i � YJ Owdd d 'F.m q do d m �e � ry v` a°1 $ U O Z N m a o^ P d r m i m mrvN ry Avi nP rvm�nNN mn n mmNNm,NN� Nmm n ri ei riJ.: oiJ nri ri Jrriri�JJri .-.-� > ��pp O is y N pp qq nn ��pp OA �pOYlq a� qq ONOb�SCr10 ��pp NIOIm PI Nm y'� I\mvm N: � OO, pO, Q'�'o ry � n �i ioo a ei mcr y' N � N S fl ry 1\V S 6 8 S H e m N Q M1 p O pe N h F 0 � m 1V N N O N O IV OO N mmF bryPry NPN NN, N,N 01, Fppmm PPC�P Y,�Y qp as P'Yl��� 0q a D'1 yl pmp NOm0YYM S 0000 imp, + 000 H U O y J J f J J J J J J QN p9 899 aJ pJ pJ QJ �J10J NJ pJmJ SJ OJ SJ SJ ;2J OJ.2JpJ 0J 0J pJ rJ OQNOQN 1 yam\ NN OI � �N NOOaV OO 17N N ..ryvi Vj0001V NNNN O 000 tl Ob\ A a ry 0 FPN NOIC�I`1 OmSF0 a �p Nnm17 O O nbry f'1 Y b b {Ny �n�Imrmm�Oflm f K W 0 p m ZL� O ti el G F^�I O�V w N O N N N N mPImm �YmYmPNm +' m ry �p FqO N m F m pN m�Sry NSbS S N tbV q Y O ID O 0 O.!^ ::Vv {y N N NONJM\11\m ry NY P mOP�bT C\I y� VI m�ry� pS 10 SIN 17 N m F rc Wv0 �IVN N m O�JgI�oOO YppI OOr m Jf�11VJCOO\ m � \ N ��-10'1 � Oi F N Gq�^ S�� r Srr�Of'INSN N NfNI q : 8 � SSS An m W SSSS O n N m 00 S 1 Y 0 m Z�m m0lp IG N 0O1�m01�000 ]U �U YI Y NO �G N rmm r m m m �G FW ._ 2 •• ��pp bib C G O �p N N yy nti1N1AYNnnOI G �p 17 CPIO \ p �p .Nb b m m Pn vmi Yf Sul rN n rrr C U m O O O O OO O O O OO O C G C C O G G O C G G G G O O O OO C G O O ... OO O O '< Nm F ' b ' ' om YOFmoN NNm 'W^V)r io, a ^ IV0 m IV IV ry PNrrOOoo YImm01�Y1N Y1 m omoo NNNN m ^ m YP mFm r w Is _gym 0 -w� Y Cb ej Y m G 3 gN Om Oi m P mrm F a 'i Y r 1�^ ' ' NNm ` ` F ` `^ NOmPrNNN lV NNNN 0 b N b F icn F m N � f TIh Oyl i0 a b n N NN so bP p q 8S� : g oQ000OOao � g o[[ pp 8QPoryP a'pll;Q m pp 8 �p r I I I L J I ao ab� $eaa 00 o '- a..�o o� at ii $"'a,� Named 3 iur\{ c c P vo a O iL7�i n gfi n c fir\ m R m j� �Om dm N 9 O O Z N v W W Q & N -o brlN NO NmNNN mn mml'INmNN� ���� OF Nwi fi m Nm mJJNJ nm n JlV Pi 1'1 .:J Jnj OiMNiN ��� 2 (J^ O!b 1�11In 1'1 IG S17 INp lNlp flp �N n�qJ� mry mH ry � N::IIVpp pNN NNNNJN�n �p + ON +OO m Nf'1 E I � NN�O I E � ^'E (ii O N �mO 8 Oi g g g N 0 m !1 mN Q v N R R r r R OXm v N JmN^YI U m^' m �ti000'UI YI YI^ N I4 �C0 K m U O 9 J J J J J J Jp Jp JQ Jp J J J J J J J J J J J J J J J J Jp J J J Q Q Q W pJ p mmn n R ID pJ Q p p Q p m YOI YI I�mm01p �-N NO'0'NO O \b C1 p p �NOOl�mbm JNm1'10'GCN p p p mO m, �O, SEES N RRN J X 1'j N E NNNN G OOG LL p Ofm �p Cl �p y q q m Plym NlNp_CNIp f10 q rp 1p UIN O m gz G; 0 m + YOOR 0 9 P I�IpN P O N 1'l l'lN m 1� �ryGllnJmJ� �GN 'SNm NNN NJ1� NY1JC1 fl YI 17Nn O m O r N O z4' ' ' , LL m f 0 � W Orb 1? �p p SaOm NiO,R mN mO m N mry O p� T ry p (7S Y^IN��ImV� m V �OSR R n m m rlpn 0 O q N O W p' z m m Ih-NONnJ1'IJ�- m'N ^ ' NYI OIm�NJn ` NN-N m N \ m O m P N o�v rc soVox9s�m 02S. n m xza � R NN Vi m oJJNno3G;; m nr n�000f m NOP o N ri •- •- m `o p 1p Nmv!NmNNm, ' p N lmVmIF m ®1��0NNN NNNN N O �OOip N N Y N 1 N 2 �m N CI N N M M N n N A N N lV J N 1V N N m N m N N N OI N N N N N N N N N N F Z $gym 2 vmi n'n nN�"Vi eyinn .qi M� S 7$'�mm�o�n SN1 N °1n no N n N U m coc m e 000000ccc o ee e m oao.c c co 0 oo oc o o 000 0 0 o c mnm m omNYonuOm I�AOi'�(IF �o, m\ ^d m Y ry �o,o oo NmmmnNO1N � O o00o NNNN N m m mnm n I� s .01 ' N ` ^ aim G � mN ry N O N.. 0 0 0 0 O O O O N E\ IanV I n N NN O N YIOONnV1NN m NNNN m 0 mnm n i o g m N' �^N C 0 Z W 19 N $8 $ sS 8e: 9oa�A SHE HUMMS $9 2 2 aoa M � : \\IN V" \ 'Yi 23 n eN Leo `mmm3m$u m m'mm$ ieo a S n: o�� DETENTION POND STAGE STORAGE TABLES I II I `•Jot. ��tl VOI a�'•L�a 00% i 11 l� CLIENT `f JOBNO.559-oli NC PROJECT Rids CALCULATIONS FOR Engineering Consultants MADEBY 4-- DATE_111%CHECKED BY_ DATE -SHEET-OF &l yr_n G A- -> _ n. 0 511 l ono 4.SSS-3.Gr-A=..:0:9 5113 7.93-�3 7.93-3 G = 4 51i5 16.26 �1 11 SPl�` 162b-3.6_ i, ...... 511 � 1 2t�.12 13.4► 5 ►1 �5 32 . �� . _.. _ . :Zt ¢s 32.o9 -3:6 . sn 5 3s.3 ssI-'I- _: F E wm I-" 7.21 2_SZ (goe) Apedeo I 1 1 1 I I I 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1 I I I I 1 1 I I I 1 1 I I I I I 1 1 1 I I I I I I I I I I I I I 1 I 1 I 1 I 1 I 1 1 I I 1 I 1 1 I I I I I I I I I I I I 1 1 1 I I I I I I 1 1 1 1 I I I 1 1 I I I I 1 I 1 I I 1 I 1 I I I I I I I 1 I I 1 I 1 I I 1 I 1 1 1 I 1 1 I I I I 1 1 1 1 I I 1 I I I 1 1 I I 1 1 1 1 1 1 1 1 I I I I I I I 1 1 I I 1 1 I 1 1 1 I I I I I I I I I 1 1 1 1 I I I I I 1 I I I I I 1 I 1 I 1 1 I 1 1 I I I I I I I I 1 1 1 1 1 I I I I I I I I 1 I 1 I I 1 1 1 1 I 1 I 1 I 1 1 1 1 1 I 1 I I 1 1 1 1 I 1 I 1 I I 1 1 1 1 1 1 1 1 1 I I 1 I 1 1 1 1 1 I Go O Ln Go O (sp) afueLPSIG 0 OOOCOM V'P-O.-MCO LO O �.-hh 1-1OCN CACD Ow U ' v 7 ; 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CQ^ ; O o o o o Q 00 0 0 0 0 � N U ' v ' I N U I OOOCOMITt 0)MCO O U C 0 LO h I- P- LO V. N CA CO CA C �� OrrO6O6�C.'ieM-.'i-4 G ALL w N� LL U C + iL ' OOOODCl) l- CpI�NOOCO OOOOMN0N0 o 30 V � 0.,.. C ' V'00) ^ CID�--�NNM 0000 V'(ONf,NODIn� V' (tf >� 3 j `O > QU o0 > o. �... I 0 0 0 0 0 0 0 0 0 0 CD O C 0 00 00 0 0 0 00 0 c O "'.'CL ^ i aio.=c�irivLricflr�aooio N� 3 > __N Lid000LnLnLA0LA0Ln0 L`C N L W i _0 0 3( 7 tA03:0 co 7 co n co ci E arc 1 L N J `o m0 — 3 W C (D L + mL C U J rnr Q , 3 n + N N> N Q O ' a =aci 265 Tn CL a CL $W C7 m CXo II IF > > ` W • N p 7- O N N V E ' '0 N aa)Q>i jN �> 0 E 0�0+ >= LC �Y O. ) CIS'X N C1 C @ 3 W LLOZ + p E wQ YE >Y- 3 C O N Cl) r, Cl) CM O r GO O P- r N O R N r CO N IO LO N N r- Q LO 0 O) r I,W0 3= II CND N II LQ n Y 11 II U'p-'LL II 2L= C W C C 0ioioorMwr-C)MFl- LriOivoi 00� COJ 1 OJ J O �Yv==WCY=UZww U I oOCOnMMOrOrNO � 0= M U7r'7ION Nh V1O0Q)r 1- 0 M R C m °, o .^- L N .- w hCDOOrM LO I�OMi� MMMVV O O O v� r r r r r r r r r r.r r r O i O O O O O O O O O O O O O O O O L- CO L 3 w m C ; 0 L) a i = m Q tm N 0 7 i N y E () N I oNM N0O r�CO (O f0 000t0 CO CO C i OrNMM �7QQ? R Q C Q R V Q r r r r r e= r r r r r r r r r E N Q r? + U v O � i O M CO C O N r CO N M M M M M M M '' LO O IOO � � LO n O O N M Mv V 7 R C R Q R !T Q 1 O O C r r r r r r r r r r r r t . U f N N 11 OCDMMCOOrM0 LOCO MIS CD C Y 0 r h CO O LO 10O 0 I� CD M r M 000 r 0 J J O O r N C CD CD 1.4 CO N 6 016 r N co rrrNN MM'7 O W O 2 ' i OMCO O MW ON LOON MO r V W rN � M0 f�00rM RLO t` (00 ' O l _ 0> y r. �N M CLOOf` OOr NM �N0 C i y ; " I LL 0lONLnOMO(rOQNOT°f�O(NOw o 'y. �Ci CD 0 _^ ' }- m n O CD O CD t N 0006r rCV C M tri (O I� CD O r C r W r r r r r r r r r r r r r r r r ap , v It II II II II G 1 O LOM f�N IOr I�NCOO C CDNfOO ' O 0 Y O Q W J W C i i 03� f` r �O NOIOMr O W OOM N O' rr NN M C LO CO fD r-� CO 00 5 O ` d ` OOLO mC00 R Om O CON(OR O ' N Q IO ONLOO MCDOIOrCpNC0 c O U W I� M LOr ON i O N CtO COO NCOO NO r r r N O V M ^ .. ... r r r N N M c r O O N m m O1 c of Oi N I W II II II II II II II U ON R(O CDON BCD CDO N COOO N J 0 0 C Z 00 W _ Q Q W ❑ i U ¢ U 12 m `m ' Ponds at Overland Trail Pond #397 - Detention Pond Rating Curve l YVx Elevation Area Incremental Cumulative Discharge C wY (Acre) Volume (Ac-ft) Volume (Ac-ft) (cfs);' ' / 5133 0 0 0 ' 5134 0.83 0.28 0.28 20.11* 5135 0.93 0.42 0.7 56.85 5136 0.97 0.5 1.35 118.18 5137 1.03 0.97 3.22 136.46 ' 5138 1.21 1.28 4.5 152.57 Area -Elevation Capacity -Elevation Area v 5 Cumulative Vol. Q �4 0 3 �2 m co 1 EO v 5133 5134 5135 5136 5137 5138 Elevation (ft) Elevation - discharge 5138 —5137 c 5136 15 a� w 5135 5134 20 40 60 80 100 120 140 160 Discharge (cfs) ' CURRENT DATE: 10-09-1996 CURRENT TIME: 15:07:31 1 11 11 FHWA CULVERT ANALYSIS HY-8, VERSION 4.3 C SITE DATA U-------------------------- L INLET OUTLET CULVERT V ELEV. ELEV. LENGTH # (FT) -------------------------- (FT) (FT) 1 124.50 113.00 788.08 2 3 4 5 6 FILE DATE: 10-09-1996 FILE NAME: POND CULVERT SHAPE, MATERIAL, INLET ----------------------------------------------- BARRELS SHAPE SPAN RISE MANNING INLET MATERIAL (FT) (FT) n TYPE ----------------------------------------------- 1 RCP 4.50 4.50 .012 CONVENTIONAL FILE: POND CULVERT HEADWATER ELEVATION (FT) DISCHARGE 1 2 3 4 5 0 124.50 0.00 0.00 0.00 0.00 18 125.99 0.00 0.00 0.00 0.00 35 126.84 0.00 0.00 0.00 0.00 53 127.53 0.00 0.00 0.00 0.00 70 128.12 0.00 0.00 0.00 0.00 88 128.67 0.00 0.00 0.00 0.00 105 129.24 0.00 0.00 0.00 0.00 123 129.86 0.00 0.00 0.00 0.00 140 130.56 0.00 0.00 0.00 0.00 145 130.78 0.00 0.00 0.00 0.00 175 132.26 0.00 0.00 0.00 0.00 175 132.26 0.00 0.00 0.00 0.00 The above Q and HW are for a point above the roadway. DATE: 10-09-1996 6 ROADWAY 0.00 110.80 0.00 111.13 0.00 111.14 0.00 111.14 0.00 111.15 0.00 111.16 0.00 111.18 0.00 111.19 0.00 111.21 0.00 111.22 0.00 111.24 0.00 0.00 ' 2 CURRENT DATE: 10-09-1996 FILE DATE: 10-09-1996 ' CURRENT TIME: 15:07:31 FILE NAME: POND PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 4.5 BY 4.5 ) RCP HEAD- INLET OUTLET 'DIS- CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cf s) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 124.50 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 -2.20 18 125.99 1.49 1.49 1-S2n 0.77 1.17 9.51 0.77 3.76 -1.87 35 126.84 2.34 2.34 1-S2n 1.10 1.69 11.51 1.10 4.91.-1.69 ' 53 127.53 3.03 3.03 1-.S2n 1.37 2.09 12.78 1.37 5.73 -1.55 70 128.12 3.62 3.62 1-S2n 1.59 2.43 13.87 1.59 6.39 -1.42 ' 88 128.67 4.17 4.17 1-S2n 105 129.24 4.74 4.74 5-S2n 1.81 1.99 2.74 14.66 3.00 15.43 1.81 1.99 6.95 7.43 -1.30 . -1.19 123 129.86 5.36 5.36 5-S2n 2.18 3.25 16.03 2.18 7.87 -1.09 140 130.56 6.06 6.06 5-S2n 2.36 3.47 16.56 2.36 8.26 -0.99 145 130.78 6.28 6.28 5-S2n 2.41 3.53 16.70 2.41 8.36 -0.96 175 132.26 7.76 7.76 5-S2n 2.72 3.81 17.42 2.72 8.95 -0.80. ' El. inlet face invert 124.50 El. inlet throat invert 0.00 ft ft El. outlet E1. inlet crest invert 113.00 0.00 ft ft SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 100.00 INLET ELEVATION (FT) 124.50 ' OUTLET STATION (FT) OUTLET ELEVATION (FT) 888.00 113.00 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0146 CULVERT LENGTH ALONG SLOPE (FT) 788.08 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR ' BARREL DIAMETER 4.50 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.012 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE [-1 I& CURRENT DATE: 10-09-1996 ' CURRENT TIME: 15:07:31 191 FILE DATE: 10-09-1996 FILE NAME: POND TAILWATER REGULAR CHANNEL CROSS SECTION **************** ' BOTTOM WIDTH SIDE SLOPE (FT) H/V (X:1) 14.00 0.0 CHANNEL SLOPE V/H (FT/FT) 0.005 MANNING'S N (.01-0.1) 0.013 CHANNEL INVERT ELEVATION (FT) 110.80 ' CULVERT NO.1 OUTLET INVERT ELEVATION 113.00 FT ' ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (CFS) (FT) NUMBER (FT) (FPS) (PSF) 0.00 110.80 0.000 0.00 0.00 0.00 17.50 111.13 1.149 0.33 3.76 0.10 35.00 111.31 1.214 0.51 4.91 0.16 52.50 70.00 111.45 1.249 111.58 1.273 0.65 0.78 5.73 6.39 0.20 0.24 87.50 111.70 1.291 0.90 6.95 0.28 105.00 111.81 1.304 1.01 7.43 0.31 122.50 111.91 1.314 1.11 7.87 0.35 140.00 112.01 1.322 1.21 8.26 0.38 145.00 112.04 1.324 1.24 8.36 0.39 175.00 112.20 1.334 1.40 8.95 0.44 ROADWAY OVERTOPPING DATA ROADWAY SURFACE GRAVEL EMBANKMENT TOP WIDTH (FT) 5.00 ' CREST LENGTH (FT) 400.00 OVERTOPPING CREST ELEVATION (FT) 37.50 1 DETENTION POND OUTLET CALCULATIONS RBD, Inc., Engineering Consultants ' The Ponds at Overland Detention Pond 397 Outlet ' Type D grate: Open length, L = ' Open width, W = Clogging, c = Weir equation: Qw=CLcH^1.5 C = 3.0 Lc = 6.7 ft ' H Qw Qo (ft) (cfs) (cfs) ' ------------- 0.00 -------------------------- "000 0.00 0.50 7.11 48.25 1.00 20.10 68.23 ' 1.50 36.93 83.57 2.00, 56.85 96.49 2.50 3.00 __ 107.88 118.18 3.50 127.65 4.00 136.46 ' 4.50 =_ 144.74 5.00 152.57 ' 5.50 160.02 1 ,40 - ' ,zo . ,00 . eo . $ 60 o I ' 40 . ]0 0r ' 0 1 1 589-011 6.7 ft 4.2 ft 50% Orifice equation Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 14.2 ft2 Q(100) = 146.1 cfs d(100) = 4.55 ft 1 2 J 4 H..d (fl) a Mir - 0i -Controlling 11-Nov-96 1 100-YEAR UPDATED STORMWATER MANAGEMENT MODEL OFF SITE 0 , U rn M rl z m 191W E 1 331 F PROPOSED DEVELOPMENT SITE 7 PLEASANT VALLEY / AND LAKE CANAL \ 33 9 \ 0 9 400 e, /. � 40;6 NZ THE PONDS AT SWMM SCHEMATIC OVERLAND 75 374 35 37. 1� 605 OFF SITE 2�=�I OVERLAND TRAIL ROAD 700 r�� ��$� 701 401 <1 18 LEGEND I CLEARVIEW 312 CONVEYANCE ELEMENT I �I DRAINAGEWA.Y 203 DUMMY NODE I 64 SUB —BASIN CLEARVIEW 3 f:'l 417 DETENTION POND I PONDS 5 :mDInc. Engineering Consultants I 11 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY I 1 TAPE OR DISK ASSIGNMENTS UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) JIN(1) JIN(2) J1N(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2). NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 il WATERSHED PROGRAM CALLED I ENTRY MADE TO RUNOFF MODEL *** 100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. Collins, CO DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge w/ Pond 399 @5114 NUMBER OF TIME STEPS 300 INTEGRATION TIME INTERVAL (MINUTES) 1.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 60 .96 1.44 1.68 3.00 5.04 9.00 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .12 .12 .00 3.72 2.16 1.56 .24 .24 .24 100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. Collins, LO DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge w/ Pond 399 @5114 ' SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 INFILTRATION RATE(IN/HR) GAGE MAXIMUM MINIMUM DECAY RATE NO .51 .50 .00180 I 1 2 1 800.0 12.0 36.0 .0070 .016 .250 .100 .300 .51 .50 3 3 700.0 14.4 39.0 .0060 .016 .250 .100 .300 .51 .50 .00180 4 5 7 2200.0 2300.0 31.6 44.5 35.0 38.0 .0080 .0070 .016 .016 .250 .250 .100 .300 .51 .50 .00180 .00180 5 6 9 3000.0 56.1 37.0 .0100 .016 .250 .100 .100 .300 .300 .51 .51 .50 .00180 7 11 2900.0 48.3 24.0 .0150 .016 .250 .100 .300 .51 .50 .00180 8 13 2200.0 37.6 30.0 .0100 .016 .250 .100 .300 .51 .50 .00180 9 15 1000.0 25.3 64.0 .0060 .016 .250 .100 .300 .51 .50 .00180 83 19 2850.0 30.2 35.0 .0110 .016 .250 .100 .300 .51 .50 .00180 84 2 2400.0 44.0 15.0 .0100 .016 .250 .100 .300 .51 .50 .00180 10 4 2000.0 49.6 20.0 .0100 .016 .250 .100 .300 .50 .00180 11 22 24 4540.0 2400.0 88.6 48.9 22.0 36.0 .0200 .0130 .016 .016 .250 .250 .100 .300 .51 .51 .50 .50 .00180 .00180 12 13 28. 32 2400.0 27.4 39.0 .0110 .016 .250 .100 .100 .300 .300 .51 .51 .50 .50 .00180 14 2520.0 50.2 39.0 .0090 .016 .250 .100 .300 .51 .00180 15 34 3800.0 58.6 40.0 .0130 .016 .250 .100 .300 .51 .50 .00180 16 37 5100.0 43.1 39.0 .0100 .016 .250 .100 .300 51 .50 .00180 �18Y- 38 5520.0 46.4 32.0 .0150 .016 .250 .100 .300 .51 .50 .50 .00180 19�- 55 8300.0 47.6 31.0 .0250 .016 .250 .100 .300 .51 .50 .00180 201L 57 5500.0 3900.0 31.6 29.0 .0250 .016 .250 .100 .300 .51 .50 .00180 .00180 21 59 2400.0 106.3 59.7 40.0 .0080 .016 .250 .100 .300 .51 .50 .00180 22 61 3100.0 62.4 40.0 32.0 .0080 .016 .250 .100 .300 .51 .50 .00180 23 65 2600.0 35.4 48.0 .0070 .0070 .016 .250 .100 .300 .51 .50 .00180 24 69 2200.0 48.3 40.0 .0080 .016 .016 .250 .250 .100 .300 .51 .50 .00180 36 37 43 1600.0 39.0 40.0 .0050 .016 .250 .100 .100 .300 .300 .51 .50 .00180 38 12 41 2000.0 22.9 40.0 .0100 .016 .250 .100 .300 .51 .51 .50 .50 .00180 17 70 500.0 2000.0 15.5 43.3 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 .00180 401- 101 2150.0 18.5 40.0 .0050 .016 .250 .100 .300 .51 .50 .00180 43 104 2000.0 71.0 40.0 33.0 .0200 .016 .250 .100 .300 .51 .50 .00180 58 136 4200.0 49.2 45.0 .0400 .016 .250 .100 .300 .51 .50 .00180 59 131 6400.0 38.4 40.0 .0050 .0100 .016 .250 .100 .300 .51 .50 .00180 60 135 6400.0 52.2 40.0 .0150 .016 .016 .250 .250 .100 .300 .51 .50 .00180 61 130 5800.0 133.2 30.0 .0050 .016 .250 .100 .100 .300 .51 .50 .00180 62 63 132 3200.0 61.5 35.0 .0150 .016 .250 .100 .300 .300 .51 .50 .00180 64 143 2000.0 16.9 40.0 .0100 .016 .250 .100 .300 .51 .51 .50 .00180 65 144 2200.0 37.4 40.0 .0150 .016 .250 .100 .300 .51 .50 .00180 66 145' 138 3600.0 67.1 60.0 .0200 .016 .250 .100 .300 .51 .50 .50 .00180 .00180 67 133 3000.0 55.2 40.0 .0040 .016 .250 .100 .300 .51 .50 .00180 68 137 4000.0 77.7 40.0 .0050 .016 .250 .100 .300 .51 .50 69 141 7200.0 3300.0 109.4 40.0 .0800 .016 .250 .100 .300 .51 .50 .00180 .00180 70 140 8000.0 34.4 49.6 40.0 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 71 155 2000.0 61.5 45.0 .0100 .016 .250 .100 .300 .51 .50 .00180 72 154 4600.0 86.0 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 73 153 2000.0 53.2 40.0 .0050 .0040 .016 .016 .250 .100 .300 .51 .50 .00180 74 151 4000.0 72.1 50.0 .0400 .016 .250 .250 .100 .100 .300 .51 .50 .00180 75 76 152 1000.0 41.3 60.0 .0200 .016 .250 .100 .300 .300 .51 .51 .50 .00180 77 160 157 6400.0 132.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .50 .00180 .00180 78 158 3200.0 34.1 50.0 .0050 .016 .250 .100 .300 .51 .50 .00180 79 159 2900.0 96.2 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 80 165 2600.0 93.2 45.0 .0100 .016 .250 .100 .300 .51 .50 .00180 81 3200.0 52.2 45.0 .0100 .016 .250 .100 .300 .51 82 162 6800.0 80.7 45.0 .0100 .016 .250 .100 .300 .51 .50 .00180 85 164 3000.0 63.5 40.0 .0200 .016 .250 .100 .300 .51 .50 .50 .00180 86 148 6000.0 107.4 20.0 .0100 .016 .250 .100 .300 .51 .50 .00180 92 300 307 950.0 11.6 23.0 .0150 .016 .250 .100 .300 .51 .50 .00180 .00180 350 372 1300.0 85.1 10.0 .0500 .016 .250 .100 .300 .51 .50 .00180 351 373 2875.0 6.6 45.0 .0300 .016 .250 .100 .300 .51 .50 .00180 352 2396.0 5.5 45.0 .0230 .016 .250 .100 .300 .51 .50 353 374 958.0 2.2 45.0 .0240 .016 .250 .100 .300 .51 .50 .00180 354 375 7115.0 14.7 45.0 .0380 .016 .250 .100 .300 .51 .50 .00180 355 376 1026.0 3.3 40.0 .1000 .016 .250 .100 .300 .51 .50 .00180 .00180 356 313 5791.0 22.6 20.0 .0190 .016 .250 .100 .300 .51 .50 .00180 357 378 379 3298.0 5.3 45.0 .0260 .016 .250 .100 .300 .51 .50 .00180 358 4530.0 15.6 40.0 .0380 .016 .250 .100 .300 .51 .50 .00180 359 380 1350.0 3.1 15.0 .0710 .016 .250 .100 .300 .51 .50 .00180 381 8451.0 9.7 47.0 .0370 .016 .250 .100 .300 360 317 1646.0 1.7 67.0 .0340 .016 .250 .100 .300 .51 .50 .00180 361 383 1220.0 1.4 24.0 .0300 .016 .250 .100 .300 .51 .51 .50 .50 .00180 .00180 1 I I I 362 384 4937.0 1.7 363 385 938.0 1.4 364 386 4704.0 10.8 365 387 1794.0 7.2 366 388 2693.0 3.4 367 389 1321.0 91.0 368 390 740.0 17.0 369 391 1160.0 21.3 370 392 2197.0 80.7 371 393 443.0 11.2 341 333 871.0 1.1 340 386 3049.0 2.8 <700 699,' 2434.0 1.9 70C 1" 69� 2962.0 1.7 TOTAL NUMBER OF SUBCATCHMENTS, TOTAL TRIBUTARY AREA (ACRES), HYDROGRAPHS WILL BE SAVED FOR 86 350 351 359 360 361 369 370 371 90.0 20.0 16.0 15.0 10.0 10.0 10.0 10.0 10.0 10.0 58.0 64.0 69.0 72.0 85 3555.70 THE FOLLOWING 352 362 18 .0350 .016 .250 .100 .300 .51 .50 .00180 .0130 .016 .250 .100 .300 .51 .50 .00180 .0130 .016 .250 .100 .300 .51 .50 .00180 .0170 .016 .250 .100 .300 .51 .50 .00180 .0200 .016 .250 .100 .300 .51 .50 .00180 .0980 .016 .250 .100 .300 .51 .50 .00180 .1110 .016 .250 .100 .300 .51 .50 .00180 .2090 .016 .250 .100 .300 .51 .50 .00180 .2840 .016 .250 .100 .300 .51 .50 .00180 .0540 .016 .250 .100 .300 .51 .50 .00180 .0200 .016 .250 .100 .300 .51 .50 .00180 .0060 .016 .250 .100 .300 .51 .50 .00180 .0050 .016 .250 .100 .300 .51 .50 .00180 .0050 .016 .250 .100 .300 .51 .50 .00180 24 SUBCATCHMENTS FOR SUBSEQUENT USE WITH UDSWM2-PC 353 354 355 356 357 358 363 364 365 366 367 368 1 100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. CoLLins, CO DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge w/ Pond 399 @5114 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS TIME(HR/MIN) 18 86 350 351 352 353 354 355 356 357 0 1. .0 .0 .0 \ 0. 0 0 0 0 0 0 0 2. 0 0 / .0 .0 .0 .0 .0 .0 0 3. .0 .0/ .0 .0 .0 .0.- .0 .0 .0 .0\ 0 4./ .0 ;.0 .0 :0 .0 0 .0 .0 . .0 .0 0 5,. 1 0 .0: 0 0 .0 .0 .0 .0 \ 0 6. 1 / .0 .0 0 7. 0 0 .0 .0 0 .0 0 .0 .0 1 % ..�; .0 0 1 \ .0 ` .0 .0 .0 0 8. 1 i .0 .0. 0 1 .0 J 0 .0 .1 0 \9. 1 :2 1 0 4 2 2 3 0 tq. 3r0 .3 1.0 7 3 2.6 1.5 1.0 1.8 / 0 11. 7.1 .7 2.1 1.7 7 5.4 1.1 3.4 2.0., �' 4.1 0 12. `.. .12.2 \ 1.4 3.3 2. 1.1 7.9 / 1.6 5.1 2.9% . 6.5 0 13. 15.9 \. 2.0 3.9 3A 1.3 9.0 1.8 6.0 3:3 7.8 0 14. 18.3 •2.5' 4.1 A.4 1.4 9.g' 1.9 6.3 /3.4 8.5 0 15. 19.7 2.'9 4.2 % 3.5 1.4 Y.5 1.9 6.5 3.4 8.8 0 16. 21.3 3.3`., 4.5 3.7 1.5 TO.1 2.0 6.9 3.7 `.9.4 0 17. 23.0 3.7 4.8 ,i 4.0 1.6 10.9 2.2 7.V 3.9 1➢.1 0 18. 23.9 4.0 5.0 4.1 1.6 11.1 2.2 7!6 4.0 10.4 0 19. 24.4 4.15:0 4.2 1.7. 11.2 2.2 '7.6 4.0 10.5 0 \\2024.7 4.3 5.0 4.2 1.7 11.2 2.2 7.6 4.0 10.5, 0 R 29.7 5.0 6.3 5.2 2.1 14.4 2.9 9.7 5.2 13.1 0 2�, 37.6 6.1 8.2 6.7 2.7 18.7 3.8 ' 12.5 6.8 16.8 ' 0 23 41.7 6.9 8.9 7.3 2.9 20.0 4.0 13.6 7.2 18:4 0 24. .. 44.6 7.5 9.4 7.8 3.1 21.4 4.3 14.4 '7.7 19.6 0 25. 47.1 7.9 10.1 8.3 3.3 23.0 4.7 15.5 8.3 20.8 0 26. 59.4 9.5 13.4 10.9 4.4 31.4 6.5 21.0 11.5", 27.3 0 27. 77.9 12.0 18.1 14.6 5.9 42.5 8.9 28.7 15/6 \, 36.6 0 28. 89.1 13.8 20.4 16.5 6.6 47.7 10 1 33.1 4 41.6 '\0 29. 97.6 15.1 22.1 17.9 7.2 51.8 11.0`. 37.1 18.9 45.4 D. 30. 105.2 16.2 23.7 '. 19.1 7.7 55.4 11.9 41.3 20.2 \48.9 O'- 31. 136.9 20.2 31.5 25.3 10.2 74.2 16.1 56.0:' 27.2 64.9.•' 0 '32. 182.0 26.3 41.5 33.5 13.5 97.5 21.1 `,75.;4 35.6 86 0 0 33, 207.4 30.4 45.4 36.8 14.8 105.4 22.9 86.2 38.4 95.5 0 34. 227.0 33.5 48.3 39.2, 15.8 111.7 24.4 96.5 40.7 �102.8\ 0 35. 244.7 36.1 50.6 41.2 16.5 116.5 25.6 106.4. 42.3 108.9 0 36. 223.5 33.8 42.8 35.2 14.1 96.7 21.5 99.5'`• 35.0' 95.0 0 37. 188.5 29.1 32.9 27.3 10.9 73.2 16.5 87.3 26.3 75.8 0 38. 177.6 27.3 29.9 24.9 10.0 66.6 15.1 84.8 `y24.0 69.8 11 4 26. 3. 1 \ 1.5 1�•. .4 4 27. ..3 1 1.4 .4 4 28. .3 .1 1.4 .4 4 29. .3 1 1.4 .4 4 30. .3 1 1.4 ". .4 4 31. .3 .1 1-.3 .4 4 32. .3 1 1.3 .4 4 \33. .3 .1. 1.3 .4 4 '34. .3 1 1.3 "44 4 35. .3 .1 1.2 .4 4 36. .3 .1 1.2 .4 4 37e .3 .1 1.2 .4 4 38. .2 .0 1.2 .4 4 39. .2 .0 1.2 .4-.-- 4 40. .2 .0 1.1 4" 4 4. .2 .0 1.1 .3 4 42. .2 .0 1.1 .- .3 4 43. .2 .0 1..1 ,3 4 44. .2 .0 1.1 .3 4 45. .2 .0 1.0 / .3 4 46. .2 .0 1.V .3 4 47. .2 .0 1'.0 .3 - 4 48. .2 .0 ;' 1.0 ,Y" 4 49. .2 .0 1.0 i .3 4 50. .2l .0 1.0 .3 4 51. R.0 .9 .3 4 52. -2 .0 .9 .3 4 53. i" .2 .0 .9 .3 4 54:' .2 .0 .9 .3 I 4 55. .2 .3 4 56. .2 .,0 9 3 4 57. .2 .0 4 58. .2 4 59. .2 .0 8 3 5 _ 0. .2 .0.3 100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. Collins, CO DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge u/ Pond 399 @5114 /I *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 3555.700 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .549 TOTAL WATERSHED OUTFLOW (INCHES) 2.010 ,. TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .331 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 100-yr/CANAL IMPORTATION BASIN Proposed Cond, PHASEI.NEW, Ft, Collins, CO DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge u/ Pond 399 @5114 0 WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 300 301 0 4 CHANNEL .0 OVERFLOW 18.0 420. 420. .0360 .0360 50.0 50.0 20.0 20.0 .016 .40 0 .020 10.00 f u J 301 102 3 2 PIPE .0 150. .0050 .0 .0 .013 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 389� .0 .0 .9 1.3 1.2 41.3 387J 102 0 1 CHANNEL 5.0 2200. .0200 5.0 5.0 .035 100.00 0 375J 394 374 0 3 .0 0. .0010 .0 .0 .001 10.00 0 0 4 CHANNEL .0 1500. .0380 50.0 50.0 .016 .40 0 372 OVERFLOW 36.0 1500. .0380 20.0 20.0 .020 10.00 394 0 4 CHANNEL .0 650. .0200 50.0 50.0 .016 .40 0 374/ OVERFLOW 36.0 650. .0200 20.0 20.0 .020 10.00 373 0 4 CHANNEL .0 600. .0240 50.0 50.0 .016 .40 0 OVERFLOW 36.0 600. .0240 20.0 20.0 .020 10.00 373 394 0 5 PIPE 2.0 150. .0667 .0 .0 .013 2.00 0 ' 390 OVERFLOW .0 150. .0667 4.0 4.0 .035 10.00 313 0 1 CHANNEL 10.0 600. .1100 10.0 10.0 10.00 0 391J / 313 0 1 CHANNEL 10.0 800. .2100 10.0 10.0 .035 10.00 0 376 313 / 313 383 0 4 CHANNEL OVERFLOW .0 36.0 550. 550. .0300 .0300 50.0 20.0 50.0 20.0 .035 .016. .020 .40 10.00 0 378). 384 0 1 CHANNEL 30.0 2200. .0160 4.0 4.0 .035 10.00 0 0 4 CHANNEL .0 1580. .0260 50.0 50.0 .016 .40 0 3841 394 OVERFLOW 18.0 1580. .0260 20.0 20.0 .020 10.00 1 0 4 CHANNEL OVERFLOW .0 36.0 1000. 1000. .0380 .0380 50.0 20.0 50.0 20.0 .016 .40 10.00 0 379J 330 0 4 CHANNEL .0 1400. .0380 .0 50.0 .020 .016 .40 0 392J OVERFLOW 18.0 1400. .0380 20.0 20.0 .020 10.00 380-) 330 397 0 1 CHANNEL 10.0 2800. .2840 10.0 10.0 .035 10.00 0 330/ 397 0 3 .0 0. .0010 .0 .0 .001 10.00 0 397 383 0 1 CHANNEL 10.0 100. .1000 4.0 4.0 .035 10.00 0 6 2 PIPE .0 150. .0050 .0 .0 .013 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .00 383/ 331 .0 .0 .5 7.1 1.0 20.1 1.5 36.9 3.0 118.2 4.0 136.5 381J 382 0 2 PIPE 5.0 788. .0140 .0 .0 .013 .5.00 0 0 4 CHANNEL .0 700. .0370 .0 50.0 .016 .40 0 OVERFLOW 18.0 700. .0370 20.0 20.0 10.00 317 382� 331 333 0 4 CHANNEL OVERFLOW .0 36.0 600. 600. .0300 .0300 50.0 20.0 50.0 20.0 .020 .016 .020 .40 10.00 0 333J 331 0 3 .0 0. .0010 .0 .0 .001 10.00 0 0 5 PIPE 2.5 150. .0100 .0 .0 .013 2.50 0 OVERFLOW .0 150. .0100 4.0 4.0 10.00 ' 393 386 0 5 PIPE OVERFLOW 3.0 .0 370. 370. .0050 .0050 .0 4.0 .0 4.0 .035 .013 3.00 10.00 0 386� 331 331 396 0 3 .0 0. .0010 .0 .0 .035 .001 10.00 0 385J 332 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 332� 398 0 4 CHANNEL OVERFLOW -0 18.0 600. 600. .0130 .0130 .0 20.0 50.0 20.0 .016 .020 .40 10.00 0 388 400 0 3 .0 0. .0010 .0 .0 .001 10.00 0 C30_7 3 .0 0. .0010 .0 .0 .001 10.00 0 _ 30 0 4 CHANNEL 28.0 2000. .0200 .0 .0 .016 10.00 0 309 20 0 3 OVERFLOW 56.0 2000. .0200 50.0 50.0 .020 10.00 1 .0 0. .0010 .0 .0 .001 10.00 0 2 22 0 1 CHANNEL 15.0 800. .0004 2.0 2.0 .020 100.00 0 6 0 1 CHANNEL 12.0 2400. .0004 1.0 1.0 100.00 0 3 5 0 1 CHANNEL 15.0 700. .0140 30.0 -0 .020 100.00 0 4 8 0 1 CHANNEL 18.0 2000. .0004 1.0 1.0 .016 100.00 0 5 7 0 1 CHANNEL 1.0 1100. .0120 30.0 30.0 .020 100.00 0 6 206 4 5 PIPE 6.9 1000. .0004 .0 .0 .016 .035 6.90 207 OVERFLOW 300.0 200. .0020 .0 .0 .040 100.00 DIVERSION .0 TO GUTTER .0 NUMBER 207 - TOTAL 49.1 .0 0 VS DIVERTED 0 49.1 .1 IN CFS 5000.0 4950.9 206 12 0 3 .0 0. .0010 .0 .0 10.00 0 207 13 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 7 9 0 5 PIPE 2.0 1150. .0100 .0 .0 .001 2.00 0 8 208 4 5 OVERFLOW PIPE 1.0 9.0 1150. 1200. .0100 .0004 30.0 .0 30.0 .0 .013 .016 .035 100.00 9.00 209 OVERFLOW 150.0 900. .0005 .0 .0 .004 100.00 DIVERSION TO GUTTER NUMBER 209 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 99.7 .0 99.7 .1 5000.0 4900.3 208 19 0 3 100.0 0. .0010 .0 .0 100.00 0 209 130 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 9 11 0 5 PIPE 3.0 1500. .0120 .0 .0 .001 .013 3.00 0 11 211 4 OVERFLOW 1.0 1500. .0120 30.0 30.0 .016 100.00 5 PIPE 3.0 1450. .0090 .0 .0 .012 3.00 212 OVERFLOW 1.0 1450. .0090 30.0 30.0 .016 100.00 DIVERSION TO GUTTER NUMBER 212 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 73.7 .0 73.7 .1 5000.0 4926.3 211 13 0 3 100.0 0. .0010 .0 .0 100.00 0 212 6 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 12 40 0 1 CHANNEL 12.0 3100. .0004 1.0 1.0 .001 100.00 0 13 213 6 5 PIPE 3.0 1100. OVERFLOW 1.0 1100. .0070 .0070 .0 30.0 .0 30.0 .020 .012 .016 3.00 100.00 214 DIVERSION TO GUTTER NUMBER 214 - TOTAL 0 VS DIVERTED 0 IN CFS 213 .0 .0 98.0 .0 100.8 .8 129.0 14.2 182.7 52.6 384.0 200.0 15 0 3 100.0 0. .0010 .0 .0 100.00 0 214 8 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 15 130 4 2 PIPE .0 100. .0100 .0 .0 .001 .015 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 16.5 .0 33.6 .0 50.6 184.4 19 41 0 1 CHANNEL 18.0 1300. .0004 1.0 1.0 100.00 0 22d 222 4 5 PIPE 7.8 2600. .0004 .0 .0 .020 .035 7.80 223 OVERFLOW 100.0 100. .0104 4.0 4.0 .040 100.00 DIVERSION TO GUTTER NUMBER 223 - TOTAL 0 VS DIVERTED 0 IN CFS 222 / 101 .0 0 .0 3 50.0 .0 50.1 .1 5000.0 4950.0 101 / 102 100.0 0. .0010 .0 .0 .001 100.00 0 1021 0 1 CHANNEL 15.0 2000. .0004 2.0 2.0 .020 100.00 0 _ 103J 103 605 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 6 4 CHANNEL 4.0 200. .0010 4.0 4.0 .035 3.00 394 DIVERSION TO GUTTER OVERFLOW 45.0 200. NUMBER 394 - TOTAL 0 VS DIVERTED 0 .0010 IN CFS 4.0 4.0 .040 10.00 605/ 202 .0 .0 50.0 .0 60.0 10.0 100.0 50.0 150.0 100.0 1000.0 950.0 394! 395 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 395 400 0 3 .0 0. .0010 .0 .0 .001 10.00 0 4 2 PIPE .0 150. .0050 .0 .0 .013 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .00 4001 .0 .0 10.9 1.0 15.9 2.0 20.9 13.4 396 399 401 0 13 3 .0 0. .0010 .0 .0 .001 10.00 0 ' RESERVOIR 2 STORAGE IN PIPE .0 150. ACRE-FEET VS SPILLWAY OUTFLOW .0050 .0 .0 .013 .00 0 0 .0 .0 1.1 .0 1.1 .0 1.1 .0 1.1 1.0 8.6 4.3 9.7 8.3 10.7 12.7 11.7 17.3 12.6 22.5 13.4 28.5 14.2 31.7 14.6 398J 401 10 2 PIPE .0 150. .0050 .0 .0 .013 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .00 .0 .0 .0 .0 .1 .0 .2 .0 .4 .0 .6 399j .8 .0 1.1 .0 1.5 .0 1.9 .0 .0 401 9 RESERVOIR 2 STORAGE IN PIPE .0 150. ACRE-FEET VS SPILLWAY OUTFLOW .0050 .0 .0 .013 .00 0 .0 .0 .0 .1 .0 .1 .0 .1 .0 .1 2.2 12.1 / 3.6 13.7 5.1 15.2 6.6 16.6 699 401 0 3 .0 0. .0010 .0 .0 .001 10.00 0 698 401 0 3 .0 0. .0010 .0 .0 .001 10.00 0 zz30 3 .0 0. .0010 .0 .0 .001 10.00 0 24 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 26 0 1 CHANNEL 1.0 1100. .0090 4.0 4.0 100.00 0 26 28 4 RESERVOIR 2 STORAGE IN PIPE 2.5 24. ACRE-FEET VS SPILLWAY OUTFLOW .0040 .0 .0 .040 .013 2.50 0 .0 .0 .5 .0 .7 8.0 .9 220.0 28 30 0 4 CHANNEL 2.0 550. .0140 3.0 3.0 .040 3.00 0 OVERFLOW 2.0 550. .0140 100.0 100.0 100.00 30 32 7 2 PIPE 2.5 10. .0050 .0 .0 .080 .012 2.50 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 .0 .5 .0 .8 7.6 .9 29.3 1.1 44.0 1.2 570.5 32 34 0 4 CHANNEL 3.0 1260. OVERFLOW 3.0 1260. .0090 .0090 3.0 100.0 3.0 100.0 .040 4.00 100.00 0 34 38 0 4 CHANNEL 5.0 1900. .0100 3.0 3.0 .080 .040 4.00 0 OVERFLOW 5.0 1900. .0100 100.0 100.0 100.00 37 38 0 4 CHANNEL 3.0 1900. .0100 3.0 3.0 .080 .040 3.00 0 OVERFLOW 3.0 1900. .0100 100.0 100.0 100.00 38 40 0 4 CHANNEL 5.0 1960. .0040 4.0 4.0 .080 .040 4.00 0 OVERFLOW 5.0 1960. .0040 100.0 100.0 100.00 40 240 4 5 PIPE 6.9 1000. .0004 .0 .0 .080 .035 6.90 241 OVERFLOW 10.0 1100. .0004 10.0 10.0 .040 100.00 DIVERSION TO GUTTER NUMBER 241 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 49.1 .0 49.1 .1 5000.0 4950.9 240 67 0 3 100.0 0. .0010 .0 .0 100.00 0 241 41 0 3 100.0 0. .0010 .0 .0 .001 .001 100.00 0 41 242 4 5 PIPE 9.0 500. .0004 .0 .0 .035 9.00 243 OVERFLOW 50.0 600. .0003 5.0 5.0 .040 100.00 DIVERSION TO GUTTER NUMBER 243 - TOTAL 0 VS DIVERTED 0 IN CFS 242 70 .0 0 .0 3 99.7 .0 99.7 100.0 .1 0. 5000.0 .0010 4900.3 .0 .0 .001 100.00 0 243 145 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 43 98 0 1 CHANNEL 18.0 2000. .0004 1.5 1.5 100.00 0 4�51P 53 0 4 CHANNEL 1.5 1400. .0040 10.0 10.0 .020 .040 2.50 0 OVERFLOW 3.0 1400. .0040 100.0 100.0 100.00 55 7 2 PIPE .1 300. .0110 .0 .0 .080 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .9 3.1 2.7 17.5 4.7 34.0 7.1 50.2 7.9 54.0 -s-554- 57 8.5 10 RESERVOIR 120.0 2 STORAGE IN PIPE .1 ACRE-FEET VS SPILLWAY OUTFLOW 300. .0110 .0 .0 .013 .10 0 .0 .0 .0 1.4 .1 7.5 .2 12.0 .6 14.7 1.5 16.0 3.2 18.0 5.7 20.0 6.0 48.6 6.5 100.6 579 59 0 4 CHANNEL 3.0 1950. .0070 2.0 2.0 .040 3.00 0 59 Q- OVERFLOW 3.0 1950. .0070 100.0 100.0 .080 100.00 4 61 0 4 CHANNEL 5.0 1200. .0070 4.0 4.0 .040 3.00 0 OVERFLOW 5.0 1200. .0070 100.0 100.0 100.00 61 63 63 0 4 CHANNEL OVERFLOW 5.0 5.0 1550. 1550. D060 .0060 4.0 100.0 4.0 100.0 .080 .040 .080 3.00 100.00 0 68 5 2 PIPE 3.0 50. .0100 .0 .0 .013 .3.00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 .0 1.8 .0 4.7 25.0 9.3 280.0 65 67 0 4 CHANNEL 1.0 2600. .0100 33.0 1.0 .016 1.50 0 OVERFLOW 1.0 2600. .0100 33.0 100.0 100.06 67 69 0 1 CHANNEL 12.0 950. .0004 1.5 1.5 .040 100.00 0 68 268 4 5 PIPE 6.9 2400. .0004 .0 .0 .020 .035 6.90 269 ' DIVERSION TO GUTTER OVERFLOW 50.0 NUMBER 269 - TOTAL 0 VS DIVERTED 1600. 0 .0006 IN CFS 100.0 100.0 .040 100.00 0 .0 49.1 .0 49.1 .1 5000.0 4950.9 268 69 0 3 100.0 0. .0010 .0 .0 100.00 0 269 70 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 69 98 0 1 CHANNEL 12.0 2400. .0004 1.5 1.5 .001 100.00 0 70 270 4 5 PIPE 9.0 100. .0004 .0 .0 .020 .035 9.00 271 OVERFLOW 10.0 600. .0001 50.0 50.0 .040 100.00 DIVERSION TO GUTTER NUMBER 271 - TOTAL 0 VS DIVERTED 0 IN CFS 270 43 .0 0 .0 99.7 .0 99.7 .1 5000.0 4900.3 3 100.0 0. .0010 .0 .0 .001 100.00 0 ?Z1� 145 0 3 100.0 0. .0010 .0 100.00 0 '�-98� �199 _7> 0 1 CHANNEL 30.0 1000. .0040 30.0 .0 30.0 .001 .035 100.00 0 0 -i'04� 0 1 CHANNEL 30.0 1000. .0040 30.0 30.0 .035 100.00 0 <202� 0 3 100.0 0. .0010 .0 .0 100.00 0 203 51 104 98 0 0 3 1 CHANNEL 100.0 0. .0010 .0 .0 .001 .001 100.00 0 15.0 3950. .0004 2.0 2.0 .020 100.00 0 130 - 137 0 5 PIPE 2.0 2900. .0080 .0 .0 .013 2.00 0 OVERFLOW 1.0 2900. .0080 30.0 30.0 .016 100.00 135 0 1 CHANNEL 2.0 3200. .0080 30.0 30.0 .016 100.00 0 '131 132 133 0 1 CHANNEL 2.0 1600. .0100 30.0 30.0 .016 100.00 0 133 154 0 5 PIPE 2.0 2400. .0100 .0 .0 .014 2.00 0 OVERFLOW 2.0 2400. .0100 30.0 30.0 .016 100.00 134 234 4 5 PIPE 3.5 800. .0070 .0 .0 .014 3.50 235 OVERFLOW 2.0 1800. 0031 30.0 30.0 .016 100.00 DIVERSION TO GUTTER NUMBER 235 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 84.0 .0 84.0 .1 5000.0 4916.0 234 155 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 235 154 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 135 155 0 5 PIPE 1.8 3200. .0080 .0 .0 .014 1.80 0 OVERFLOW 2.0 3200. .0080 30.0 30.0 .016 100.00 136 139 0 1 CHANNEL 1.0 4200. .0050 30.0 30.0 .016 100.00 0 137 134 0 5 PIPE 3.5 1800. .0080 .0 .0 .014 3.50 0 OVERFLOW 2.0 1800. .0080 30.0 30.0 .016 100.00 138 133 0 5 PIPE 1.5 2000. .0040 .0 .0 .013 1.50 0 OVERFLOW 2.0 2000. .0040 30.0 30.0 .016 100.00 139 238 7 4 CHANNEL OVERFLOW 1.0 1.0 700. 500. .0060 .0084 .0 30.0 .0 4.0 .014 .016 1.00 100.00 239 u u DIVERSION TO GUTTER NUMBER 239 - TOTAL 0 VS DIVERTED 0 IN CFS .0 -0 .1 .0 6.2 1.4 42.2 34.5 59.4 51.0 129.7 119.2 218.0 200.0 �J 238 239 153 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 140 151 156 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 141 156 0 1 CHANNEL 2.0 4000. .0100 30.0 30.0 .016 100.00 0 0 5 PIPE 1.3 1400. .0100 .0 .0 .013 1.30 0 142 160 OVERFLOW 2.0 .1400. .0100 30.0 30.0 .016 100.00 4 2 PIPE 2.5 400. .0050 .0 .0 .013 100.00 0 - RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 5.7 72.2 21.4 144.0 48.6 264.0 143 144 146 147 0 1 CHANNEL 2.0 1500. .0080 30.0 30.0 .016 100.00 0 0 5 PIPE 1.3 800. .0050 .0 .0 .013 1.30 0 145 147 OVERFLOW" 2.0 800. .0050 30.0 30.0 .016 100.00 0 5 PIPE 2.0 2000. .0070 .0 .0 .013 2.00 0 146 245 OVERFLOW 2.0 2000. .0070 30.0 30.0 .016 100.00 4 5 PIPE 1.3 1200. .0030 .0 .0 .013 1.30 246 OVERFLOW 2.0 200. .0180 30.0 30.0 .016 100.00 DIVERSION TO GUTTER NUMBER 246 - TOTAL O VS DIVERTED 0 IN CFS 245 .0 .0 3.8 .0 3.8 .1 5000.0 4996.2 246 147 136 0 0 3 3 100.0 100.0 0. 0. .0010 .0 .0 .001 100.00 0 147 247 4 5 .0010 .0 .0 .001 100.00 0 PIPE 2.8 2000. .0050 .0 .0 .013 2.80 248 'OVERFLOW 10.0 400. .0250 50.0 50.0 - .040 100.00 DIVERSION TO GUTTER NUMBER 248 - TOTAL 0 VS DIVERTED 0 IN CFS 247 .0 .0 40.2 .0 40.2 -1 5000.0 4959.8 248 99 148' 0 3 100.0 0. .0010 .0 .0 .001 100.00 `O 148 149 0 0 3 100.0 0. .0010 .0 .0, 001 100.00 0 5 PIPE 1.3 1800. 0060 .0 .0 .013 1.30 0 149 249 OVERFLOW 50.0 1800. .0060 50.0 50.0 .040 100.00 4 5 PIPE 7.8 1200. .0004 .0 .0 .035 7.80 250 OVERFLOW 50.0 600. .0008 50.0 50.0 .040 100.00 DIVERSION TO GUTTER NUMBER 250 - TOTAL 0 VS DIVERTED 0 IN CFS 249 0 .0 68.1 .0 68.1 .1 5000.0 4931-9 �L\ 250 99 150 0 3 100.0 0. .0010 .0 .0 .001 100.00 0 Jp 150 151 0 6 3 100.0 0. .0010 .0 .0 .001 100.00 0 _" 2 PIPE .0 100. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .01 151 .0 .0 1.2 .0 7.8 .0 17.6 .0 31.8 .0 49'.0 780.0 �� 142 0 5 PIPE 2.0 2200. .0030 .0 .0 .013 2.00 0 152 160 11.5 2200. .0030 50.0 0 50.0 100.00 0 5 PIPEERFLOW 1900. .0030 0 0013 1.50 0 153 157 OVERFLOW 2.0 1900. .0030 30.0 30.0 .016 100.00 0 5 PIPE 2.3 2400. .0050 .0 .0 .013 2.30 0 ` J 154 157 OVERFLOW 2.0 2400. .0050 30.0 30.0 '016 100.00 0 5 PIPE 4.0 2300. .0050 .0 .0 .014 4.00 0 OVERFLOW 2.0 2300. .0050 30.0 30.0 .016 100.00 156 0 5 PIPE 4.0 1600. .0100 .0 .0 .014 4.00 0 1�155 156 OVERFLOW 2.0 1600. .0100 30.0 30.0 .016 100.00 98 0 5 PIPE 4.0 500. .0100 .0 .0 .013 4.00 0 157 OVERFLOW 100.0 500. .0100 100.0 100.0 .030 100.00 163 0 5 PIPE 4.0 900. .0050 .0 .0 .013 4.00 0 158 OVERFLOW 2.0 900. .0050 30.0 30.0 .016 100.00 98 0 5 PIPE 2.3 1800. .0100 .0 -0 .013 2.30 0 159 OVERFLOW 2.0 1800. .0100 30.0 30.0 .016 100.00 98 0 5 PIPE 4.5 2800. .0100 .0 .0 .013 ' 4.50 0 r ? 160 OVERFLOW 2-0 2800. .0100 30.0 30.0 .016 100.00 161 0 5 PIPE 3-5 2900. .0050 .0 .0 .013 3.50 0 161 OVERFLOW 2.0 2900. .0050 30.0 30.0 .016 100.00 261 4 5 PIPE 3.5 500. .0050 .0 .0 .013 3.50 262 OVERFLOW 5.0 600. .0042 10.0 10.0 .040 100.00 DIVERSION TO GUTTER NUMBER 262 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 76.5 .0 76.5 .1 5000.0 4923.5 261 162 0 3 100.0 0. .0010 .0 .0 100.00 0 262 164 0 3 100-0 0. .0010 .0 .001 100.00 0 162 99 0 5 PIPE 4.0 2400. .0100 .0 .0 .0 .001 .013 4.00 0 163 OVERFLOW 2.0 2400. .0100 30.0 30.0 .016 100.00 263 4 5 PIPE 4.0 500. .0100 .0 .0 .013 4.00 264 OVERFLOW 2.0 1200. .0042 30.0 30.0 .016 100.00 r DIVERSION .0 TO GUTTER .0 NUMBER 264 - TOTAL 154.4 .0 0 VS DIVERTED 154.4 0 .1 IN CFS 5000.0 4845.6 4j, I I 11 I I I I I I 263 264 159 0 160 3 100.0 0. .0010 .0 .0 .001 100.00 164 0 99 0 3 100.0 0. .0010 .0 .0 .001 100.00 165 1 CHANNEL 10.0 2000. .0050 20.0 20.0 .040 100.00 99 0 5 PIPE 2.0 2000. .0100 .0 .0 .013 2.00 TOTAL NUMBER Of GUTTERS/PIPES, 156 OVERFLOW 2.0 2000. .0100 30.0 30.0 .016 100.00 100-yr/CANAL IMPORTATION BASIN Proposed Cord. PHASEI.NEW, Ft. Collins, CO DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge u/ Pond 399 @5114 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 12.0 2 0 0 0 0 0 0 0 0 0 0 83 0 0 0 0 0 0 0 0 0 44.0 3 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 14.4 4 0 0 0 0 0 0 0 0 0 0 84 0 0 0 0 0 0 0 0 0 49.6 5 3 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 46.0 6 2 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44.0 7 5 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 90.5 8 4 214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.6 9 7 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 146.6 11 9 0 0 C 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 194.9 12 206 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 13 207 211 0 0 0 0 0 0 0 0 7 0 0 0 0 66.9 15 213 0 0 0 0 0 0 0 0 0 0 0 0 0 0 232.5 19 208 0 0 0 0 8 0 0 0 0 0 0 0 0 0 257.8 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 79.8 22 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 100.6 24 223 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 48.9 26 24 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48.9 28 26 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 76.3 30 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.3 32 30 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 126.5 34 32 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 185.1 37 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 43.1 38 34 37 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 274.6 40 12 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 341.5 41 19 241 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0 43 270 0 0 0 0 0 0 0 0 0 36 0 0 0 0 95.3 51 401 203 0 0 0 D 0 0 0 0 0 0 0 0 0 0 177.6 53 51 0 0 0 18 0 0 0 0 0 0 0 0 0 301.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 301.5 55 53 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 333.1 57 55 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 439.4 59 57 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 499.1 61 59 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 561.5 63 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 561.5 65 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 35.4 67 240 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 376.9 68 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 561.5 69 67 268 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 986.7 70 242 269 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 98 43 69 104 156 158 159 0 0 0 0 0 0 0 0 0 0 0 0 138.6 99 98 247 249 162 164 165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2884.9 101 222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3555.7 40 0 0 0 0 0 0 0 0 0 119.1 102 301 389 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 221.7 103 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 221.7 104 202 0 0 0 0 0 C 0 0 0 43 0 0 0 0 0 0 0 0 0 377.8 130 209 15 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 391.0 131 0 0 0 0 0 0 0 0 0 0 59 0 0 0 0 0 0 0 0 0 38.4 132 0 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 61.5 133 132 138 0 0 0 0 0 0 0 0 67 0 0 0 0 0 0 0 0 0 194.4 134 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500.4 135 131 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 90.6 136 246 0 0 0 0 0 0 0 0 0 58 0 0 0 0 0 0 0 0 0 49.2 137 130 0 0 0 0 0 0 0 0 0 68 0 0 0 0 0 0 0 0 0 500.4 138 0 0 0 0 0 0 0 0 0 0 66 0 0 0 0 0 0 0 0 0 55.2 139 136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.2 140 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0- 0 0 0 0 49-6 141 0 0 0 0 0 0 0 0 0 0 69 0 0 0 0 0 0 0 0 0 34.4 142 151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72.1 143 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0 0 0 0 0 16.9 144 0 0 0 0 0 0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 37.4 145 243 271 0 0 0 0 0 0 0 0 65 0 0 0 0 0 0 0 0 0 67.1 146 143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16.9 147 144 145 245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121.4 148 248 0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 107.4 149 148 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 107.4 150 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 151 152 239 0 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 72.1 41.3 153 238 0 0 0 0 0 0 0 0 0 73 0 0 0 0 0 0 0 0 0 102.4 154 133 235 0 0 0 0 0 0 0 0 72 0 0 0 0 0 0 0 0 0 280.4 155 234 135 0 0 0 0 0 0 0 0 71 0 0 0 0 0 0 0 0 0 652.5 156 140 141 155 0 0 0 0 0 0 0 0 0 0 0 0 0 157 153 154 0 0 0 0 0 0 0 0 77 0 0 0 0 0 0 0 0 736.5 158 0' 0 0 0 0 0 0 0 0 0 78 0 0 0 0 0 0 0 0 0 0 0 0 416.9 159 263 0 0 0 0 0 0 0 0 0 79 0 0 0 0 0 0 0 0 0 96.2 160 142 152 264 0 0 0 0 0 0 0 76 0 0 0 0 0 0 0 0 0 0 0 510.1 245.6 161 160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 245.6 162 261 0 0 0 0 0 0 0 0 0 81 0 0 0 0 0 0 0 0 0 326.3 163 157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 416.9 164 262 0 0 0 0 0 0 0 0 0 82 0 0 0 0 0 0 0 0 0 63.5 165 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 52.2 202 309 605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 306.8. 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 208 209 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 49.6 211 11 0 0 0 0 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0 .0 194.9 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 232.5 214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 222 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 100.6 223 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 234 134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 500.4 235 238 0 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 49.2 239 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 240 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 341.5 241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 242 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95.3 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 245 146 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 16.9 246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 247 147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121.4 248 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 249 149 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 107.4 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 261 161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 245.6 262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 263 163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 416.9 264 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 268 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 561.5 269 270 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 138.6 271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 0 .0 11.6 301 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.6 307 0 0 0 0 0 0 0 0 0 0 92 0 0 0 0 0 0 0 0 0 85.1 313 390 391 376 0 0 0 0 0 0 0 355 0 0 0 0 0 0 0 0 0 64.2 317 0 0 0 0 0 0 0 0 0 0 360 0 0 0 0 0 0 0 0 0 1.7 330 379 392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96.3 333 372 382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 341 350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.8 6.6 373 374 0 0 0 0 0 0 0 0 0 351 0 0 0 0 0 0 0 0 0 22.4 374 .375 0 0 0 0 0 0 0 0 0 352 0 0 0 0 0 0 0 0 0 16.9 375 0 0 0 0 0 0 0 0 0 0 353 0 0 0 0 0 0 0 0 0 14.7 r 376 0 0 0 0 0 0 0 0 0 0 354 0 0 0 0 0 0 0 0 0 3.3 i 378 0 0 0 0 0 0 0 0 0 0 356 0 0 0 0 0 0 0 0 0 5.3 379 0 0 0 0 0 0 0 0 0 0 357 0 0 0 0 0 0 0 0 0 15.6 381 0 0 0 0 0 0 0 0 0 0 359 0 0 0 0 0 0 0 0 0 9.7 383 313 397, 0 0 0 0 0 0 0 0 361 0 0 0 0 0 0 0 0 0 165.0 384 378 0 0 0 0 0 0 0 0 0 362 0 0 0 0 0 0 0 0 0 7.0 385 0 0 0 0 0 0 0 0 0 0 363 0 0 0 0 0 0 0 0 0 1.4 389 390 0 0 0 0 0 0 0 0 0 0 0 367 0 0 0 0 0 0 0 0 0 91.0 0 0 0 0 0 0 0 0 0 368 0 0 0 0 0 0 0 0 0 17.0 391 0 0 0 0 0 0 0 0 0 0 369 0 0 0 0 0 0 0 0 0 21.3 392 0 0 0 0 0 0 0 0 0 0 370 0 0 0 0 0 0 0 0 0 80.7 0 394 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 371 0 0 0 0 0 0 0 0 0 0 0 11.2 Q9,6 (33997 ' 331 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0t2. 380 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �398� '*A 332 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 605 400 103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NONCONVERGENCE IN GUTTER DURING 0 TIME 0 STEP 0 147 0 0 0 AT CONVEYANCE 0 ELEMENT 0 26 0 0 0 0 0 0 0 0 0 100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. COLLins, CO DATE: 8/1/95 BY RED ENGINEERS INC. Pond 395 discharge u/ Pond 399 @5114 ^� HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS v THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 331 332 383 394 395 396 398 399 400 401 0 1. .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 4. .02 .00 .00 .02 .00 .03 .00 .00 .00 .04 .00( ) .00( ) .00( ) .00( ) .00(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 7. .04 .00 .00 .03 .00 .04 .00 .00 .00 .06 .00( ) .00( ) .01( ) .00( ) .00(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 10. 2.87 .01 .03 1.86 .00 1.11 .00 .15 .49 2.57 .00( ) .00( ) .04( ) .00( ) .00(S) .00(S) 00(S) 00(S) .00( ) .00( ) 0 13. 11.03 .12 .30 8.22 .00 1.30 .00 .16 .33 4.64 '�. .00( ) .00( ) .12( ) .00( ) .02(S) .03(S) 00(S) .00(S) .00( ) .00( ) 0 16. 16.94 .23 1.05 14.81 .01 1.69 .00 .17 .77 6.09 .00( ) .00( ) .21( ) .00( ) .07(S) .08(S) .00(S) .00(S) .00( ) .00( ) 0 19. 20.28 .33 2.87 20.63 .01 2.23 .00 .18 .42 6.47 ,\00( ) .00( ) .34( ) .00( ) .14(S) .15(S) .00(S) 00(S) .00( ) .00( ) 0 22. 34.03 .48 6.18 32.33 .02 2.96 .00 .19 1.22 10.73 .00( ) .00( ) .49( ) .00( ) .25(S) .24(S) 00(S) .01(S) .00( ) .00( ) 0 25. 47.89 .73 11.82 44.30 .04 4.13 .00 .22 1.91 12.61 � .00( ) .00( ) .67( ) .00( ) .41(S) .40(S) .01(S) .01(S) .00( ) .00( > / 0 28. 98.90 1.55 24.02 81.99 .06 6.32 .00 .32 6.88 22.84 .00( ) .00( ) .94( ) .00( ) .67(S) .68(S) .01(S) .03(S) .00( ) .00( ) 0 31. 170.25 3.01 50.68 131.82 .10 8.66 .00 .51 14.13 36.12 .00( ) .00( ) 1.37( ) .00( ) 1.09(S) 1.17(S) .02(S) .07(S) .00( ) .00( ) 0 34. 304.95 5.96 113.82 232.36 .17 8.97 .00 .90 21.84 41.88 .00( ) .00( ) 2.10( ) .00( ) 1.84(S) 2.11(S) .04(S) .14(S) .00( ) .00( ) 0 37. 368.45 7.14 211.42 284.93 .27 9.43 .00 1.34 17.81 26.38 .00( ) .00( ) 3.04( ) .00( ) 2.96(S) 3.51(S) .07(S) .22(S) .00( ) .00( ) 0 40. 406.88 6.44 279.44 293.50 .38 9.89 .00 1.66 14.80 24.99 .00( ) .00( ) 3.73( ) .00( ) 4.16(S) 5.07(S) .09(S) .28(S) .00( ) .00( ) 0 43. 397.62 5.24 304.13 272.56 .49 10.30 .00 1.90 10.58 20.46 .00( ) .00( ) 4.04( ) .00( ) 5.33(S) 6.70(S) .12(S) .32(S) .00( ) .00( ) 0 46. 384.50 4.24 306.24 251.89 .59 10.70 .00 2.07 8.52 19.22 .00( ) .00( ) 4.07( ) .00( ) 6.41(S) 8.28(S) .14(S) .35(S) .00( ) .00( ) 0 49. 364.85 3.40 299.73 227.25 .68 11.04 .00 2.19 6.88 18.80 '00( ) .00( ) 3.98( ) .00( ) 7.40(S) 9.78(S) .15(S) .38(S) .00( ) .00( ) 0 52. 345.09 2.78 289.36 208.72 .76 11.36 .00 2.28 5.85 18.01 .00( ) .00( ) 3.85( ) .00( ) 8.30(S) 11.20(S) .17(S) .39(S) .00( ) .00( > 0 55. 326.16 2.29 277.14 . 192.29 .84 11.66 .00 2.35 4.91 18.10 .00( ) .00( ) 3.71( ) .00( ) 9.12(S) 12.54(S) .18(S) .41(S) .00( ) .00( ) 0 58. 304.94 1.87 264.05 179.64 .91 11.91 .00 2.40 4.21 17.21 .00( ) .00( ) 3.56( ) .00( ) 9.88(S) 13.80(S) .19(S) .42(S) .00( ) .00( ) ' 1 1. 285.40 1.54 250.43 169.70 .97 12.14 .00 2.43 3.38 16.99 .00( ) .00( ) 3.42( ) .00( ) 10.60(S) 14.97(S) .19(S) .42(S) .00( ) .00( ) 1 4. 266.31 1.25 236.65 158.45 1.07 12.36 .00 2.45 3.15 16.71 .00( ) .00( ) 3.28( ) .00( ) 11.28(S) 16.06(S) .20(S) .42(S) .00( ) .00( ) 1 7. 248.53 1.02 223.22 146.69 1.20 12.55 .00 2.46 2.64 16.64 .00( ) .00( ) 3.15( ) .00( ) 11.90(S) 17.07(S) .20(S) .43(S) .00( ) .00( ) 1 10. 232.57 .83 210.35 135.61 1.32 12.71 .00 2.46 2.64 16.55 .00( ) .00( ) 3.03( ) .00( ) 12.48(S) 18.01(S) .21(S) ARS) .00( ) .00( ) 1 13. 217.25 .68 198.17 124.79 1.42 12.84 .00 2.46 2.30 16.47 .00( ) .00( ) 2.92( ) .00( ) 13.01(S) 18.88(S) .21(S) .43(S) .00( ) .00( ) 1 16. 203.94 ' .57 186.77 115.30 1.52 12.97 .00 2.46 2.43 16.42 .00( ) .00( ) 2.81( ) .00( ) 13.50(S) 19.70(S) .21(S) .43(S) .00( ) .00( ) 1 19. 191.80 .49 176.25 106.87 1.61 13.08 .00 2.46 2.21 16.59 .00( ) .00( ) 2.71( ) .00( ) 13.95(S) 20.46(S) .22(S) .43(S) .00( ) .00( ) 1 22. 180.50 .42 166.47 99.32 1.70 13.19 .00 2.45 2.36 16.40 .00( ) .00( ) 2.62( ) .00( ) 14.37(S) 21.18(S) .22(S) .43(S) .00( ) .00( ) 1 25. 168.16 .35 155.73 92.32 1.78 13.30 .00 2.45 2.16 16.49 ' .00( ) .00( ) 2.52( ) .00( ) 14.76(S) 21.85(S) .22(S) .42(S) .00( ) .00( ) 1 28. 150.94 .31 139.39 86.24 1.85 13.39 .00 2.44 2.38 16.46 :00( ) .00( ) 2.36( ) .00( ) 15.12(S) 22.45(S) .22(S) .42(S) .00( ) .00( ) 1 31. 135.67 .27 125.04 80.74 1.92 13.46 .00 2.44 2.20 16.60 .00( ) .00( ) 2.22( ) .00( ) 15.46(S) 22.99(S) .22(S) .42(S) .00( ) - .00( ) 1 34. 122.72 .24 112.61 76.08 1.98 13.53 .00 2.44 2.42 16.57 .00( ) .00( ) 2.09( ) .00( ) 15.78(S) 23.46(S) .22(S) .42(S) .00( ) .00( ) 1 37• 111.22 .22 101.81 71.83 2.48 13.58 .00 2.44 2.69 16.70 .00( ) .00( ) 1.98( ) .00( ) 16.07(S) 23.89(S) .22(S) .42(S) .00( ) .00( ) 1 40. 101.47 .20 92.40 68.22 3.10 13.63 .00 2.45 3.48 16.68 .00( ) .00( ) 1.88( ) .00( ) 16.35(S) 24.27(S) .22(S) .43(S) .00( ) .00( ) 1 43. 92.68 .18 84.19 64.85 3.69 13.68 .00 2.48 3.85 16.84 .00( ) .00( ) 1.79( ) .00( ) 16.61(S) 24.62(S) .22(S) .43(S) .00( ) .00( ) 1 46. 85.24 .17 77.00 61.96 4.24 13.72 .00 2.52 4.58 16.83 .00( ) .00( ) 1.70( ) .00( ) 16.86(S) 24.93(S) .23(S) .44(S) .00( ) .00( ) 1 49. 78.43 .16 70.69 59.20 4.76 13.76 .00 2.57 4.89 17.00 .00( ) .00( ) 1.63( ) .00( ) 17.09(S) 25.21(S) .23(S) .45(S) .00( ) .00( ) 1 52. 72.21 .15 65.06 56.50 5.25 13.79 .00 2.63 5.52 16.84 '00( ) .00( ) 1.56( ) .00( ) 17.31(S) 25.46(S) .23(S) .46(S) .00( ) .00( ) 1 55. 66.17 .13 59.93 53.61 5.71 13.83 .00 2.69 5.77 16.93 .00( ) .00( ) 1.49( ) .00( ) 17.51(S) 25.69(S) .23(S) .47(S) .00( ) .00( ) 1 58. 61.12 .12 55.23 51.00 6.14 13.85 .00 2.77 6.39 16.92 .00( ) .00( ) 1.43( ) .00( ) 17.70(S) 25.90(S) .23(S) .48(S) .00( ) .00( ) 2 1. 56.46 .10 51.24 48.25 6.54 13.88 .00 2.85 6.55 17.01 .00( ) .00( ) 1.38( ) .00( ) 17.88(S) 26.08(S) .23(S) .50(S) .00( ) .00( ) 2 4. 52.85 .09 48.22 45.30 6.92 13.90 .00 2.94 7.10 16.92 '00( ) .00( ) 1.34( ) .00( ) 18.05(S) 26.25(S) .23(S) .52(S) .00( ) .00( ) 2 7. 49.26 .07 45.32 41.11 7.25 13.92 .00 3.03 7.22 17.06 .00( ) .00( ) 1.30( ) .00( ) 18.20(S) 26.41(S) .23(S) .53(S) .00( ) .00( ) 2 10. 46.24 .06 42.54 37.37 7.55 13.94 .00 3.13 7.71 17.07 .00( ) .00( ) 1.25( ) .00( ) 18.33(S) 26.54(S) .23(S) .55(S) .00( ) .00( ) 2 13. 43.14 .05 39.89 33.71 7.81 13.96 .00 3.23 7.75 17.26 .00( ) .00( ) 1.21( ) .00( ) 18.44(S) 26.67(S) .23(S) .57(S) .00( ) .00( ) 2 16. 40.56 .04 37.41 30.32 8.03 13.97 .00 3.34 8.17 17.29 '00( ) .00( ) 1.18( ) .00( ) 18.54(S) 26.79(S) .23(S) .591S) .00( ) .00( ) 2 19, 37.87 .04 35.08 26.87 8.22 13.99 .00 3.44 8.15 17.48 .00( ) .00( ) 1.14( ) .00( ) 18.63(S) 26.89(S) .23(S) .61(S) .00( ) .00( ) 2 22. 35.66 .03 32.90 23.71 8.38 14.00 .00 3.55 8.51 17.52 .00( ) .00( ) 1.10( ) .00( ) 18.70(S) 26.99(S) .23(S) .63(S) .00( ) .00( ) 2 25. 33.32 .03 30.87 20.51 8.51 14.01 .00 3.66 8.43 17.72 '00( ) .00( ) 1.07( ) .00( ) 18.75(S) 27.07(S) .23(S) .65(S) .00( ) .00( ) 2 28. 31.44 .03 28.98 17.61 8.60 14.02 .00 3.77 8.72 17.76 .00( ) .00( ) 1.04( ) .00( ) 18.80(S) 27.15(S) .23(S) .67(S) .00( ) .00( ) 2 31. 29.41 .02 27.24 14.68 8.67 14.03 .00 3.88 8.59 17.95 .00( ) .00( ) 1.00( ) .00( ) 18.83(S) 27.21(S) .23(S) .69(S) .00( ) .00( ) 2 34. 27.99 .02 25.80 12.04 8.72 14.04 .00 . 3.98 8.83 17.98 , I I .00( ) .00( ) .98( ) 00( ) 18.85(S) 27.27(S) .23(S) .71(S) .00( ) .00( ) 2 37. 26.42 .02 24.49 9.37 8.74 14.04 .00 4.09 8.64 18.18 .00( ) .00( ) .95( ) .00( ) 18.86(S) 27.33(S) .23(S) .73(S) .00( ) .00( ) 2 40. 25.22 .01 23.24 7.00 8.73 14.05 .00 4.19 8.84 18.20 .00( ) .00( ) .93( ) .00( ) 18.85(S) 27.38(S) .23(S) .75(S) .00( ) .00( ) 2 43. 23.80 .01 22.07 4.58 8.70 14.06 .00 4.29 8.60 18.39 .00( ) .00( ) .91( ) .00( ) 18.84(S) 27.42(S) .23(S) 77(S) .00( ) .00( ) 2 46. 22.74 .01 20.95 2.44 8.65 14.06 .00 4.39 8.76 18.41 .00( ) .00( ) .88( ) .00( ) 18.82(S) 27.46(S) .23(S) .78(S) .00( ) .00( ) 2 49. 21.44 .01 19.89 .32 8.59 14.07 .00 4.48 8.49 18.59 .00( ) .00( ) .86( ) .00( ) 18.79(S) 27.49(S) .23(S) .80(S) .00( ) .00( ) 2 52. 20.51 .01 18.88 .36 8.51 14.07 .00 4.57 8.61 18.60 .00( ) .00( ) .84( ) .00( ) 18.76(S) 27.52(S) .23(S) .82(S) .00( ) .00( ) 2 55. 19.33 .01 17.93 .25 8.43 14.07 .00 4.66 8.33 18.77 .00( ) .00( ) .82( ) .00( ) 18.72(S) 27.54(S) .23(S) .83(S) .00( ) .00( ) 2 58. 18.51 .01 17.03 .30 8.36 14.08 .00 4.74 8.46 18.78 .00( ) .00( ) .80( ) .00( ) 18.69(S) 27.56(S) .23(S) .85(S) .00( ) .00( ) 3 1. 17.44 .00 16.17 .19 8.28 14.08 .00 4.82 8.18 18.94 .00( ) .00( ) .78( ) .00( ) 18.65(S) 27.58(S) .23(S) .86(S) .00( ) .00( ) 3 4. 16.72 .00 15.36 .25 8.21 14.08 .00 4.89 8.31 18.94 .00( ) .00( ) .76( ) .00( ) 18.62(S) 27.59(S) .23(S) .88(S) .00( ) .00( ) 3 7. 15.74 .00 14.60 .15 8.14 14.08 .00 4.97 8.03 19.09 00( ) .00( ) .74( ) .00( ) 18.59(S) 27.60(S) .23(S) .89(S) .00( ) .00( ) 3 10. 15.11 .00 13.87 .22 8.06 14.08 .00 5.04 8.16 19.08 .00( ) .00( ) .72( ) .00( ) 18.56(S) 27.61(S) .23(S) .90(S) .00( ) .00( ) 3 13. 14.22 .00 13.18 .12 7.99 14.08 .00 5.10 7.89 19.22 .00( ) .00( ) .71( ) .00( ) 18.52(S) 27.61(S) .23(S) .92(S) .00( ) .00( ) 3 16. 13.67 .00 12.53 .18 7.92 14.08 .00 5.17 8.02 19.21 .00( ) ,00( ) .69( ) .00( ) 18.49(S) 27.61(S) .23(S) .93(S) .00( ) .00( ) 3 19. 12.86 .00( .00 ) .00( 11.91 ) .67( ) .09 .00( ) 7.84 18.46(S) 14.08 27.61(S) .00 .23(S) 5.23 .94(S) 7.74 .00( ) 19.35 .00( ) 3 22. 12.38 .00 11.33 .16 7.77 14.08 .00 5.28 7.87 19.32 .00( ) .00( ) .66( ) .00( ) 18.43(S) 27.60(S) .23(S) .95(S) .00( ) .00( ) 3 25. 11.63 .00 10.78 .07 7.70 14.08 .00 5.34 7.60 19.46 .00( ) .00( ) .64( ) .00( ) 18.40(S) 27.59(S) .23(S) .96(S) .00( ) .00( ) 3 28. 11.22 .00 10.25 .14 7.63 14.08 .00, 5.39 7.73 19.43 .00( ) .00( ) .62( ) .00( ) 18.36(S) 27.58(S) .23(S) .97(S) .00( ) .00( ) 3 31. 10.54 .00 9.75 .05 7.56 14.08 .00 5.44 7.46 19.55 .00( ) .00( ) .61( ) .00( ) 18.33(S) . 27.57(S) .23(S) .98(S) .00( ) .00( ) 3 34. 10.19 .00 9.30 .12 7.49 14.07 .00 5.48 7.59 19.52 .00( ) .00( ) .60( ) .00( ) 18.30(S) 27.55(S) .23(S) .99(S) .00( ) .00( ) 3 37. 9.68 .00 8.96 .03 7.42 14.07 .00 5.53 7.32 19.64 .00( ) .00( ) .59( ) .00( ) 18.27(S) 27.53(S) .23(S) .99(S) .00( ) .00( ) 3 40. 9.51 .00 8.67 .11 7.36 14.07 .00 5.57 7.46 19.60 .00( ) .00( ) .58( ) .00( ) 18.24(S) 27.52(S) .23(S) 1.00(S) .00( ) .00( ) 3 43. 9.04 .00 8.39 .02 7.29 14.07 .00 5.61 7.19 19.71 .00( ) .00( ) .57( ) .00( ) 18.21(S) 27.50(S) .23(S) 1.01(S) .00( ) .00( ) 3 46. 8.89 .00 8.12 .10 7.22 14.06 .00 5.64 7.32 19.67 .00( ) .00( ) .56( ) .00( ) 18.18(S) 27.47(S) .23(S) 1.02(S) .00( ) .00( ) 3 49. 8.45 .00 7.85 .01 7.16 14.06 .00 5.68 7.05 19.78 .00( ) .00( ) .55( ) .00( ) 18.15(S) 27.45(S) .23(S) 1.02(S) .00( ) .00( ) 3 52. 8.31 .00 7.59 .08 7.09 14.06 .00 5.71 7.19 19.73 .ON ) .00( ) .54( ) .00( ) 18.12(S) 27.43(S) .23(S) 1.03(S) .00( ) .00( ) 3 55. 7.88 .00 7.33 .00 7.03 14.05 .00 5.74 6.92 19.83 .00( ) .00( ) .53( ) .00( ) 18.09(S) 27.40(S) .23(S) 1.03(S) .00( ) .00( ) 3 58. 7.77 .00 7.09 .07 6.96 14.05 .00 5.77 7.06 19.78 .00( ) .00( ) .52( ) .00( ) 18.07(S) 27.38(S) .23(S) 1.04(S) .00( ) .00( ) 4 1. 7.35 .00 6.84 .00 6.90 14.05 .00 5.79 6.79 19.88 .00( ) .00( ) .51( ) .00( ) 18.04(S) 27.35(S) .23(S) 1.04(S) .00( ) .00( ) 4 4. 7.25 .00 6.61 .06 6.83 14.04 .00 5.82 6.93 19.82 .00( ) .00( ) .51( ) .00( ) 18.01(S) 27.32(S) .23(S) 1.05(S) .00( ) .00( ) 4 7. 6.85 .00 6.38 .00 6.77 14.04 .00 5.84 6.67 19.92 .00( ) .00( ) .50( ) .00( ) 17.98(S) 27.30(S) .23(S) 1.05(S) .00( ) .00( ) 4 10. 6.76 .00 6.16 .04 6.71 14.04 .00 5.86 6.81 19.85 .00( ) .00( ) .49( ) .00( ) 17.95(S) 27.27(S) .23(S) 1.06(S) .00( ) .00( ) 4 13, 6,38 .00( .00 ) .00( 5,95 ) .48( ) .00 .00( ) 6.65 17.93(S) 14.03 27.23(S) .00 ,23(S) 5.88 1.06(S) 6.54 .00( ) 19.95 00( ) 4 16. 6.30 .00 5.74 .03 6.58 14.03 .00 5.89 6.69 19.88 .00( ) .00( ) .47( ) .00( ) 17.90(S) 27.20(S) .23(S) 1.06(S) .00( ) .00( ) 4 19. 5.93 .00 5.54 .00 6.52 14.02 .00 5.91 6.42 19.97 .00( ) .00( ) .47( ) .00( ) 17.87(S). 27.17(S) .23(S) 1.06(S) .00( ) .00( ) 1 4 22. 5.87 .00 5.35 .00( ) .00( ) .46( ) 4 25. 5.52 .00 5.16 .00( ) .00( ) .45( ) 4 28. 5.47 .00 4.97 .00( ) 00( ) .44( ) 4 31, 5.13 .00 4.80 .00( ) .00( ) .43( ) 4 34. 5.09 .00 4.62 .00( ) .00( ) .43( ) 4 37. 4.76 .00 4.46 .00( '4.74 ) .00( ) .42( ) 4 40. .00 4.30 .00( ) .00( ) .41( ) 4 43. 4.42 .00 4.14 00( ) .00( ) .47( ) 4 46. 4.40 .00 3.99 .00( ) .00( ) .40( ) 4 49. 4.09 ' .00 3.84 .00( ) .00( ) .39( ) 4 52. 4.09 .00 3.70 .00( ) .00( ) .38( ) 4 55. 3.79 .00 3.56 .00( ) .00( ) .38( ) 4 58. 3.80 .00 3.43 .00( ) .00( ) .37( ) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC _ OSCILLLATIONS DURING THE SIMULATION. 6 8 26 30 53 55 63 142 146 150 156 161 163 301 330 333 373 395 396 397 399 .03 6.46 14.02 .00 5.92 6.56 19.90 .00( ) 17.85(S) 27.14(S) .23(S) 1.07(S) .00( ) .00( ) .00 6.40 14.01 .00 5.93 6.30 19.98 .00( ) 17.82(S) 27.10(S) .23(S) 1.07(S) .00( ) .00( ) .02 6.34 14.01 .00 5.94 6.45 19.91 .00( ) 17.79(S) 27.07(S) .23(S) 1.07(S) .00( ) .00( ) .00 6.29 14.00 .00 5.95 6.18 19.99 .00( ) 17.77(S) 27.03(S) .23(S) 1.07(S) .00( ) .00( ) .02 6.23 14.00 .00 5.96 6.33 19.92 .00( ) 17.74(S) 26.99(S) .23(S) 1.07(S) .00( ) .00( ) .00 6.17 13.99 .00 5.96 6.07 20.00 .00( ) 17.71(S) 26.96(S) .23(S) 1.07(S) .00( ) .00( ) .02 6.11 13.99 .00 5.97 6.22 19.92 .00( ) 17.69(S) 26.92(S) .23(S) 1.08(S) .00( ) .00( ) .00 6.06 13.98 .00 5.97 5.96 19.99 .00( ) 17.66(S) 26.88(S) .23(S) 1.08(S) .00( ) .00( ) .02 6.00 13.98 .00 5.97 6.10 19.91 .00( ) 17.64(S) 26.84(S) .23(S) 1.08(S) .00( ) .00( ) .00 5.95 13.97 .00 5.97 5.84 19.98 .00( ) 17.61(S) 26.80(S) .23(S) 1.08(S) .00( ) .00( ) .02 5.89 13.97 .00 5.97 5.99 19.90 .00( ) 17.59(S) 26.76(S) .23(S) 1.08(S) .00( ) .00( ) .00 5.84 13.96 .00 5.97 5.73 19.97 .00( ) 17.57(S) 26.72(S) .23(S) 1.08(S) .00( ) .00( ) .02 5.78 13.96 .00 5.96 5.88 19.88 .00( ) 17.54(S) 26.68(S) .23(S) 1.07(S) .00( ) .00( ) 100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. Collins, CO DATE: 8/1/95 BY RED ENGINEERS INC. Pond 395 discharge u/ Pond 399 @5114 I*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE ELEMENT PEAK (CFS) STAGE (FT) STORAGE (AC -FT) TIME (HR/MIN) 1 28.5 1.1 0 40. 2 45.3 1.8 0 57. 3 .7 .4 0 . 4 54 54.4 1.5 0 49 49. 5 137.1 .9 0 37. 6 415.9 7.7 0 44. 7 8 ..1 306 306.2 9.3 0 0 . 52 52. 9 385.5 4.2 0 40. 11 459.7 4.4 0 42. 12 75.0 2.4 1 1. 13 15 486.8 .0 4.5 .0 29.6 0 5 48. 0. 19 145.5 2.8 0 54. 22 207.3 8.3 0 39. 24 227.3 3.3 0 43. 26 226.4 2.5 .9 0 44. 28 275.5 3.3 0 46. 30 276.1 2.5 1.1 0 47. 32 355.9 4.0 0 48. 34 37 451.9 139.5 4.1 2.7 0 0 50. 38. 38 566.1 4.7 0 56. 40 582.4 12.4 1 8. 41 43 663.0 157.1 13.8 2.8 1 0 13. 49. I 51 184.6 2.5 0 40. 53 44.5 .1 6.3 1 23. 55 48.3 .1 6.0 1 48. 57 213.6 3.6 0 45. 59 326.6 3.4 0 44. 61 387.3 3.7 0 52. 63 318.6 3.0 8.7 1 11. 65 112.1 1.0 0 39. 67 146.1 3.3 0 45. 68 221.6 8.2 1 36. 69 233.8 4.3 0 56. 70 264.4 11.8 1 57. 98 1811.3 3.4 0 48. 99 30T7.5 4.2 1 2, 101 83.4 2.1 0 51. 102 176.7 (DIRECT FLOW) 0 47. 103 176.4 3.6 0 50. 104 190.4 3.3 1 0. 130 315.5 3.2 0 57. 131 114.3 .9 0 41. 132 133 178.1 451.6 1.0 3.4 0 0 37. 42. 134 538.6 5.2 0 46. 135 239.6 2.9 0 44. 136 135.6 1.0 0 47. 137 612.5 5.0 0 40. 138 125.2 2.5 0 41. 139 135.2 2.1 0 48. 140 141.3 .9 0 42. 141 142 120.9 196.4 2.1 2.5 26.2 0 3 37. 3. 143 56.8 .7 0 38. 144 133.3 2.3 0 36. 145 666.0 3.7 1 18. 146 56.7 1.8 0 38. 147 696.5 4.3 1 18, 148 704.0 3.0 1 25. 149 692.8 10.4 1 31. ' 150 151 415.5 424.6 .0 3.3 41.0 2 2 5. 12, 152 123.3 2.5 0 42. 153 111.0 3.1 0 43. 154 987.0 6.1 0 49. 155 467.8 5.2 0 42. 156 704.5 4.9 0 43. 157 1149.9 6.2 0 50. 158 338.8 3.5 0 39. 159 160 374.1 1280.6 5.4 5.8 0 0 42. 58. 161 1273.5 8.4 1 0. 162 337.7 5.0 0 39. 163 1130.7 6.2 0 52. 164 1183.1 3.6 1 7. 165 165.0 2.9 0 38. 202 138.6 (DIRECT FLOW) 0 37. 203 .0 (DIRECT FLOW) 0 0. 206 207 49.1 366.9 (DIRECT (DIRECT FLOW) FLOW) 1 0 51. 45. 208 99.6 (DIRECT FLOW) 0 52. 209 206.6 (DIRECT FLOW) 0 52. 211 73.6 (DIRECT FLOW) 0 42. 212 386.1 (DIRECT FLOW) 0 42. 213 211.5 (DIRECT FLOW) 0 48. `- 214 275.3 (DIRECT FLOW) 0 48. 222 50.0 (DIRECT FLOW) 0 52. 223 234 157.3 83.9 (DIRECT (DIRECT FLOW) FLOW) 0 0 40. 46. 235 454.7 (DIRECT FLOW) 0 47. 238 11.0 (DIRECT FLOW) 0 48. 239 124.2 (DIRECT FLOW) 0 48. i 240 49.0 (DIRECT FLOW) 1 8. 11 I '1 1 I L I 241 533.4 (DIRECT FLOW) 1 9. 242 99.6 (DIRECT FLOW) 1 13. 243 563.4 (DIRECT FLOW) 1 13. 245 3.7 (DIRECT FLOW) 2 10. 246 53.0 (DIRECT FLOW) 0 39. 247 40.1 (DIRECT FLOW) 1 18. 248 656.4 (DIRECT FLOW) 1 19. 249 68.0 (DIRECT FLOW) 1 31. 250 624.8 (DIRECT FLOW) 1 32. 261 76.4 (DIRECT FLOW) 1 0. 262 1197.1 (DIRECT FLOW) 1 0. 263 154.4 (DIRECT FLOW) 0 52. 264 '976.3 (DIRECT FLOW) 0 53. 268 49.0 (DIRECT FLOW) 1 36. 269 172.6 (DIRECT FLOW) 1 37. 270 99.6 (DIRECT FLOW) 1 57. 271 164.7 (DIRECT FLOW) 1 58. 300 34.7 .4 0 35. 301 12.1 ' .0 1.0 1 5. 307 88.6 .4 0 37. 309 88.6 (DIRECT FLOW) 0 37. 313 176.1 1.0 0 42. 317 14.1 .3 0 35. 330 253.8 1.3 0 36. 331 408.4 (DIRECT FLOW) 0 41. 332 7.3 (DIRECT FLOW) 0 36. 333 86.9 4.2 0 35. 372 44.4 .4 0 35. 373 132.2 3.4 0 36. 374 101.2 .5 0 37. 375 93.5 .5 0 36. 376 23.9 .3 0 35. 378 30.8 .4 0 36. 379 92.8 .6 0 36. 380 21.7 (DIRECT FLOW) 0 35. 381 79.5 .6 0 35. 382 79.5 (DIRECT FLOW) 0 35. 383 306.7 4.1 0 45. 384 37.7 .4 0 36. 385 7.3 .3 0 36. 386 101.6 (DIRECT FLOW) 0 35. 387 31.0 (DIRECT FLOW) 0 35. 388 22.9 (DIRECT FLOW) 0 35. 389 95.6 1.4 0 42. 390 38.9 .4 0 36. 391 66.3 .5 0 36. 392 175.7 .7 0 41. 393 20.8 1.4 0 35. tOG 707 S in 400 23.1 (DIRECT FLOW) 0 35. 401 41.9 (DIRECT FLOW) 0 34. 605 50.0 (DIRECT FLOW) 1 5. 698 15.3 (DIRECT FLOW) 0 34. 699 16.7 (DIRECT FLOW) 0 34. ENDPROGRAM PROGRAM CALLED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 LOCATION MAX. VOL. REQUIRED AC -FT MAX. VOL. IN POND AC -FT. MAX. STAGE FT. MAX Q CFS COMMENT Pond 395 18.9 18.4 5114.6 8.7 Pond 396 28.1 38.6 5117.9 14.1 Pond 397 4.4 4.4 5138.0 146.6 Pond 399 1.1 5.6 5111.8 6.0 Clearview Channel NA NA NA 41.9 54 cfs allowable SWALE CALCULATIONS RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION Ponds at Overland swale at DP 65 1 ELEVATION (feet) 98.20 ' 98.40 98.60 98.80 9.00 99.20 '99.0 99.60 99.80 100.00 STA -- ELEV -- 100.00 100.00 108.00 98.00 116.00 100.00 'N' VALUE ---------- SLOPE ------------- (ft/ft) 0.060 0.0200 AREA VELOCITY DISCHARGE FROUDE (sq ft) --(fps)- --(cfs)-- NO. 0.2 0.7 0.12 0.41 0.6 1.2 0.75 0.46 1.4 1.5 2.22 0.50 2.6 1.9 4.79 0.52 4.0 2.2 8.68 0.54 AD. 5.8 2.4 14. 117<5 56 7.8 2.7. 21.28 0.57 10.2 3.0 30.38 0.58 13.0 3.2 41.58 , 0.60 16.0 3.4 55.07 i 0.61 L..St. S h-tFr�nni � � �• EQ 1.33•� 'Il.�ct5 d,�. �e" =f-t- 3�, U RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION Swale E STA ELEV 100.00 100.00 104.00 99.00 108.00 100.00 'N' VALUE ---------- SLOPE ------------- (ft/ft) 0.060 0.0275 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) --------- (sq ft) ------- (fps) -------- (cfs) --------- NO. ------ 99.10 0.0 0.5 0.02 0.43 99.20 0.2 0.9 0.14 0.49 99.30 0.4 1.1 0.41 0.52 99.40 0.6 1.4 0.88 0.54 99.50 1.0 1.6 1.60 - 0.57 T.(,-(0 99. 60 1_.4 1.8 2. 61 -34 0.58 j .}399.70 2.0 2.0 3.93 0.60 99.80 2.6 2.2 5.61 0.61 99.90 3.2 2.4 7.68 0.62 100.00 4.0 2.5 10.17 0.63 ICJ 1 r i CUp \■ 1. Av I OPEN CHANNEL FLOW ANALYSIS TRAPEZOIDAL CHANNEL ' Developed by James Guo, Civil Eng. Dept, U of Colorado at Denver ?0 Metro Denver Cities/Counties and UD&FCD Pool Fund Study - User= :KEVIN GINGERY RBD INC. FT. COLLINS COLORADO .......................... ON DATE 08-18-1995 AT TIME 10:13:50 ' *** PROJECT TITLE: The Ponds at Overland Trail - Pleasent Valley Lake Canal CHANNEL ROUGHNESS IS GIVEN *** DESIGN FLOW RATE AND CHANNEL GEOMETRIES: FLOW RATE (CFS)= 85.00 MANNING ROUGHNESS = 0.0300 ' - CHANNEL SLOPE (FT/FT)= 0.0010 BOTTOM WIDTH (FEET)= 4.00 RIGHT SIDE SLOPE(FT/FT)= 3.00 LEFT SIDE SLOPE (FT/FT) = 3.00. P,!g c� S ** NORMAL FLOW CONDITIONS: v( gyp, _ Z� 47 �f FLOW DEPTH (FEET)= 2.97 FfeebC _ (, (;O FLOW AREA (SQ FT)= 38.27 FLOW VELOCITY (FPS)= 2.22 WETTED PERIMETER (FEET) = 22.75 UeP�'h 3`�i� �t TOP WIDTH (FEET)= 21.80 FROUDE NUMBER = 0.30 ' SPECIFIC FORCE (KLB)= 3.08 SPECIFIC ENERGY (FEET)= 3.04 SEQUENT DEPTH (FT)= 0.75 ' ! ALTERNATE DEPTH (FT)= 1.05 ** CRITICAL FLOW CONDITIONS: DEPTH (FEET)= 1.64 FLOW AREA (SQ FT)= 14.57 FLOW VELOCITY (FPS)= 5.84 WETTED PERIMETER (FEET)= 14.34 MINIMUM SPECIFIC FORCE (KLB)= 1.57 MINIMUM SPECIFIC ENERGY (FT)= 2.1642 ' SLOPE (FT/FT)= 0.0135 RECOMMENDATIONS ON' FREEBOARD: FOR CONCRETE CHANNEL (2.0+0.025*VELOCITY*DEPTHA0.33)= 2.08 FEET ' FOR A MAJOR DRAINAGE CHANNEL (100-YR FLOOD) >= 1.0 FOOT FOR A MINOR DRAINAGE CHANNEL (2 OR 5-YR FLOOD) >= 0.58 FEET RECOMMENDATIONS FOR ERODABLE CHANNEL: (MINOR FLOOD) 2 <= FLOW VELOCITY <= 5 TO 7 FPS (MAJOR FLOOD) ' FROUDE NUMBER (TURBULENCE FACTOR)<= 0.80 1 1 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA l(�' 1 East End of Clearview Drainageway where 29.7 cfs of the 54 cfs Q100 spill 1 into the street WEIR COEF. 1 3.100 STA ELEV 1 100.0 10.00 120.0 8.00 160.0 8.00 180.0 10.00 ELEVATION DISCHARGE 1 (feet) (cfs) --------- --------- 8.00 0.00 o _ 8.20 11.48 z�'� 8.40 33.59 G S 8.60 63.74 8.80 101.27 9.00 145.92 9.20 197.58 9.40 256.24 9.60 321.94 9.80 394.74 10.00 474.72 1j 1•� i 1: 1 1 w RIP RAP CALCULATIONS RMINC. Engineering Consultants A division of The Sear -Brown Group 106 Z t CLIENT Lj,Ar 4,r t ; JOB NO. 5 { PROJECT •I _tL l CALCULATIONS FOR MADE BV_�_a DATE CHECKED BY DATE SHEET--LOF s o L BIZ Z`f TMINC. Engineering Consultants A division of The Sear -Brown Group 1 1 r 1 1 1 1 1 1 1 CLIENT PROJECT CALCULATIONS MADE BYDATE CHECKED BY -DATE _ f �3 JOB NO. SHEET Z OF ****** HYCHL ****** (Version 2.0) ****** Commands Read From File: C:\MODELS\HYCHL\BANYAN.CHL JOB banyan UNI 0 ** UNITS PARAMETER = 0 (ENGLISH) CHL 0.02 60.9 'TRP 20 4 4 ** LEFT SIDE SLOPE 4.0 AND RIGHT SIDE SLOPE ** THE BASE WIDTH OF THE TRAPEZOID (FT) 20.00 LRR 1 2 42 2.65 0.15 ** D50 (FT) 1.00 ** ANGLE OF REPOSE (DEGREES) 42.00 ** SPECIFIC GRAVITY 2.65 ** SHIELDS PARAMETER .150 END ***************END OF COMMAND FILE************ banyan INPUT REVIEW --DESIGN-PARAMETERS: DESIGN DISCHARGE (CFS): 60.90 CHANNEL SHAPE: TRAPEZOIDAL ------CHANNEL SLOPE (FT/FT): .020 ---------------------------.-- HYDRAULIC CALCULATIONS USING BATHURST ------------------------------------- FLOW (CFS) 60.90 'MAX DEPTH (FT) 1.27 AREA (FT"2) 31.61 WETTED PERIMETER (FT) 30-41 HYDRAULIC RADIUS (FT) 1.04 AVG VELOCITY (FT/SEC) 1.93 MANNINGS EQUIVALENT .114 Davg / D50 1.05 FROUDE NUMBER .30 REYNOLDS NUMBER (10"5) 2.28 ------------------ STABILITY ANALYSIS ------------------ LINING PERMIS SHR ' CONDITION TYPE (LB/FT -- - BOTTOM; STRAIGHT RIPRAP 15.44 SIDE; STRAIGHT RIPRAP 14.39 *** NORMAL END OF HYCHL *** I 4.0 CALL. SHR (LB/FTA2) 1.58 1.47 6/ Date 10-10-96 3/3 IF L o w- P G--o STAB. FACTOR REMARKS 9.77 STABLE 9.79 / STABLE I I 11 1 I 1 1 I T:IDINC. Engineering Consultants A division of The Sear -Brown Croup CLIENT ���1id'T`- "✓�" rh'.w�°J'-�t I JOBNO. PROJECT CALCULATIONS FOR MADEBV_DATE CHECKED BY DATE SHEET--LOF C : �'rC lOLiI .l� L4 "fart, V- S A S A 4 or L _ I �Ka � Zv �s f D VI C d - �v�tr Ss 't ✓ CLIENT JOB NO.�� INC. PROJECT CALCULATIONS FOR Engineering Consultants MADEBr(LLLDATE Q•i(] CHECKEDBVDATE SHEET OF A division of The Sear -Brown Group ****** HYCHL ****** (Version 2.0) ****** Date 10-10-96 ' Commands Read From File: C:\MODELS\HYCHL\WEST.CHL JOB west UN 0 ** UNITS PARAMETER = 0 (ENGLISH) CHL 0.04 20 ' VSH 6 6 ** V-SHAPE RIGHT Z1 = 6.0 AND LEFT Z2 = 6.0 LRR 1 2 40 2.65 0.047 '** D50 (FT) 1.00 ** ANGLE OF REPOSE (DEGREES) 40.00 ** SPECIFIC GRAVITY 2.65 ** SHIELDS PARAMETER .047 END ***************END OF COMMAND FILE************ 'west -------- INPUT REVIEW ------------ ' DESIGN PARAMETERS: DESIGN DISCHARGE (CFS): CHANNEL SHAPE: CHANNEL SLOPE (FT/FT): I ------------------------------------- HYDRAULIC CALCULATIONS USING BATHURST ------------------------------------- 20 . 00 -=!Q---- FL-6-r in VSHAPED .040 FLOW (CFS) 20.00 'MAX DEPTH (FT) AREA (FT�2) 1.27 9.66 WETTED PERIMETER (FT) 15-44 HYDRAULIC RADIUS (FT) .63 'AVG VELOCITY (FT/SEC) 2.07 MANNINGS EQUIVALENT .107 Davg / D50 .63 FROUDE NUMBER .32 REYNOLDS NUMBER (10-4) 1.28 ' ------------------ STABILITY -ANALYSIS LINING PERMIS SHR CALL. SHR STAB. ' CONDITION --------- TYPE (LB/FT�2) (LB/FTA2) FACTOR REMARKS BOTTOM; STRAIGHT ------ RIPRAP ---------- 4.84 --------- 3.17 ------ ------- 1.53 STABLE SIDE; STRAIGHT RIPRAP 4.68 2.95 1.59 STABLE *** NORMAL END OF HYCHL *** ****** HYCHL ****** (Version 2.0) ****** Date 09-16-96 Commands Read From File: C:\MODELS\HYCHL\396A.CHL q/5 ' UNI 0 ** UNITSJOB PARAMETER = 0 (ENGLISH) ; •- *+ ;'` CHL 0.045 3.5 ' VSH 6 6 ** V-SHAPE RIGHT Z1 = 6.0 AND LEFT Z2 = 6.0 LRR 12 2 42 2.65 0.047 '** D50 (FT) 12.00 ** ANGLE OF REPOSE (DEGREES) 42.00 ** SPECIFIC GRAVITY 2.65 rY- ** SHIELDS PARAMETER .047 L_ ' END ***************END OF COMMAND FILE************ [J ------------ INPUT REVIEW ------------ DESIGN PARAMETERS: DESIGN DISCHARGE (CFS): 3.50 CHANNEL SHAPE: VSHAPED CHANNEL SLOPE (FT/FT): .045 ------------------------------------- HYDRAULIC CALCULATIONS USING BATHURST ------------------------------------- FLOW (CFS) MAX DEPTH (FT) AREA (FT�2) WETTED PERIMETER (FT) HYDRAULIC RADIUS (FT) AVG VELOCITY (FT/SEC) MANNINGS EQUIVALENT Davg / D50 FROUDE NUMBER REYNOLDS NUMBER (10A4) 3.50 - 2.06 25.35 25.01 1_01 .14 2.347 .09 .02 53.14 ------------------ •STABILITY ANALYSIS ------------------ LINING ' CONDITION TYPE -- BOTTOM; STRAIGHT RIPRAP SIDE; STRAIGHT RIPRAP *** NORMAL END OF HYCHL *** i PERMIS SHR CALC. SHR STAB. (LB/FT-2) (LB/FTA2) FACTOR 58.07 5.79 10.03 56.29 5.39 10.45 REMARKS STABLE STABLE ****** HYCHL ****** (Version 2.0) ****** Date 08-16- :nmands Read From File: C:\MODELS\HYCHL\NEW.CHL L19 ' JOB new UNI 0 Gh;:jCiGr�1i UNITS PARAMETER = 0 (ENGLISH) CHL 0.015 27.72 ma c , C'1 c � ci V VSH 6 6 L ( V-SHAPE RIGHT Z1 = 6.0 AND LEFT Z2 = 6.0��-{- N 0.03 0.03 ** LOW FLOW N VALUE= .030 ` SIDE SLOPE N VALUE= .030 LRR 0.75 0 2.5 0.047 ** D50 (FT)7 ANGLE OF RE .OSFI(DEGREES) 40.00 �o(C C� Sn'.•.�ty (\�' t �-� ldc� SPECIFIC GRAVITY 2.50 I * SHIELDS PARAMETER .047 �-) TO J END r***********END OF COMMAND FILE************ .iew e?UT REVIEW fESIGN PARAMETERS: DESIGN DISCHARGE (CFS): 27.72-w- - ,/ CHANNEL SHAPE: VSHAPED CHANNEL SLOPE (FT/FT): .015 )RAULIC CALCULATIONS USING NORMAL DEPTH ----------------------------------------- ' DESIGN MAXIMUM .LOW (CFS) 27.72 653.93 ?TH (FT) 1.08 3.52 M (FT-2) 6.97 74.55 NETTED PERIMETER (FT) 13.11 42.88 RADIUS (FT) .53 1.74 U�AULIC CITY (FT/SEC) 3.98 8.77 INGS N (LOW FLOW) .030 .030 YNOLDS NUMBER (10�5) .79 --------------- 3TABILITY ANALYSIS ---------------- LINING PERMIS SHR CONDITION --------- TYPE ------ (LB/FT-2) ---------- BOTTOM; STRAIGHT RIPRAP 3.30 SIDE; STRAIGHT RIPRAP 3.19 r: NORMAL END OF HYCHL *** CALC. SHR STAB. (LB/FTA2) FACTOR REMARKS 1.01 3.27 STABLE .94 3.40 STABLE I I I H C 1 LJ %owc Engineering Consultants CUENT PitOJWT' C/ r�S 44CnAEt � . MADE BYE DATS 4(I 1�� HECKED BY f .CULATiONS FORZ��j DATE SHEET 1 OF v -3 ****** HYCHL ****** (Version 2.0) ****** Date 08-09-95 �I ' Commands Read From File: C:\MODELS\HYCHL\504009PV.CHL ' JOB PONDS CHANNEL UNI 0 ** UNITS PARAMETER = 0 (ENGLISH) CHL 0.005 54 '_ VSH 6 6 ** V-SHAPE RIGHT Z1. = 6.0✓ AND LEFT Z2 = 6.0✓ N 0.03-" 0.03-- ** LOW FLOW N VALUE= .030 ** SIDE SLOPE N VALUE= .030 LRR 1 2 40 2.5 0.047 ** D50 (FT) 1.0 1_�C ** ANGLE OF REPOSE (DEGREES) 40.00 T ** SPECIFIC GRAVITY 2.50✓ ** SHIELDS PARAMETER .047 ✓ END ' k**************END OF COMMAND FILE************ PONDS CHANNEL ' INPUT REVIEW ------------ ' DESIGN PARAMETERS: DESIGN DISCHARGE (CFS): ✓ 54.00 CHANNEL SHAPE: VSHAPED ✓ CHANNEL SLOPE (FT/FT): .005 ✓ ---------------------- HYDRAULIC ------------- - ----- CALCULATIONS ----------------------------------------- USING NORMAL DEPTH DESIGN. MAXIMUM FLOW (CFS) 54.00 152 DEPTH (FT) 1.70 .8 . 1 . 0 AREA (FT�2) 17.33 1192 6 WETTED PERIMETER (FT) 20.68 171 3 RADIUS (FT) .84 .9 'HYDRAULIC VELOCITY (FT/SEC) 3.12 1 .7 MANNINGS N (LOW FLOW) .030 .030 REYNOLDS NUMBER (10�5) 1.22 *** WARNING *** REYNOLDS NUMBER IS LARGER THAN 10A5 ------------------ ' STABILITY -ANALYSIS LINING CONDITION TYPE PERMIS SHR (LB/FTA2) CALC. SHR STAB. - (LB/FT�2) FACTOR REMARKS ------ BOTTOM; STRAIGHT RIPRAP ---------- 4.40 --------- .53 ------ 8.30 ------- STABLE --' �- SIDE; STRAIGHT RIPRAP 4.25 .49 8.62 STABLE � *** NORMAL END OF HYCHL *** No Text ' INC CLIENT - JOB NO. PROJECT CALCULATIONS FOR Engineering Consultants MADE BY- DATE CHECKED BY -DATE SHEET OF I 0 1 I L' ****** HYCHL ****** (Version 2.0) ****** Date 08-10-9 1 Commands Read From File: C:\MODELS\HYCHL\504009PV.CHL n ` (� InJl•I/�1Zt (i,�YL� t �L 1 1 1 1 1 1 1 JOB cul at prospect 1� r UNI 0 ** UNITS PARAMETER = 0 (ENGLISH) CHL 0.04 20 VSH 6 6 ** V-SHAPE RIGHT Z1 = 6.0/AND LEFT Z2 = 6.0 / N 0.03 0.03 ** LOW FLOW N VALUE= .030 ** SIDE SLOPE N VALUE= .030 / LRR 1 2 40 2.5 0.047 ** D50 (FT) 1.00 ** ANGLE OF REPOSE (DEGREES) 40.00 ** SPECIFIC GRAVITY 2.50'/ ** SHIELDS PARAMETER .047 END ***************END OF COMMAND FILE************ cul at prospect ------------ INPUT REVIEW ------------ DESIGN PARAMETERS: DESIGN DISCHARGE (CFS): 20.00 CHANNEL SHAPE: VSHAPED CHANNEL SLOPE (FT/FT): .040 --------------------- HYDRAULIC CALCULATIONS USING NORMAL DEPTH ----------------- ------------------------ 1 DESIGN MAXI FLOW (CFS) 20.00 1 8. 1 DEPTH (FT) .79 . 6 AREA (FT�2) 3.78 18 4 WETTED PERIMETER (FT) 9.65 21 44 1 HYDRAULIC RADIUS (FT) .39 7 VELOCITY (FT/SEC) 5.30 MANNINGS N (LOW FLOW) .030 .0 0 REYNOLDS NUMBER (10-5) 1.22 *** WARNING *** REYNOLDS NUMBER IS LAR ER THAN 10�5 *** WARNING *** Davg/D50 <= 2 FOR THE MAXIMUM DISCHARGE PROCEDURE. 1 Qmax MAY BE INCORRECT BECAUSE IT REQUIRES BATHURST ------------------ 1 STABILITY ANALYSIS - LINING PERMIS SHR CALC. SHR STAB. CONDITION TYPE (LB/FT-2) (LB/FT�2) FACTOR REMARKS --------- -------------------------------�------- BOTTOM; STRAIGHT RIPRAP 4.40 1.98 2.22�STABLE SIDE; STRAIGHT RIPRAP 4.25 1.84 2.31 STABLE *** NORMAL END OF HYCHL *** 1 ' :WNC Engineering Consultants I CLIENT PROJECT I CE-J S, '' CALCULATIONS MADE BVW,-L4- �,� DATE CHECKED BY- DATE Of ****** HYCHL ****** (Version 2.0) ****** Date 08-10-95 . Commands Read From File: C:\MODELS\HYCHL\504009PV.CHL JOB Banyan = S y ' S o UNI 0 ** UNITS PARAMETER = 0 (ENGLISH) CHL 0.067 54 VSH 4 4 ' ** V-SHAPE RIGHT Z1 = 4.0 AND LEFT Z2 = 4.0 . N 0.03 0.03r,/ '** LOW FLOW N VALUE= .030 ** SIDE SLOPE N VALUE= .030 LRR 1.5 2/40 2.5 0.047 ** D50 (FT) 1.50 ANGLE OF REPOSE (DEGREES) 40.00 '** ** SPECIFIC GRAVITY 2.50/'/ ** SHIELDS PARAMETER .047 END ' ***************END OF COMMAND FILE************ Banyan w------------ INPUT REVIEW DESIGN PARAMETERS: ' DESIGN DISCHARGE (CFS): 54.00 CHANNEL SHAPE: VSHAPED CHANNEL SLOPE (FT/FT): .067 1 ----------------------------------------- HYDRAULIC CALCULATIONS USING NORMAL DEPTH ----------------------------------------- DESIGN MAXIMUM (CFS) 54.00 106 'FLOW DEPTH (FT) 1.22 1 8 AREA (FT A2) 5.97 9. 6 WETTED PERIMETER (FT) 10.07 13 2 RADIUS (FT) .59 . 7 'HYDRAULIC VELOCITY (FT/SEC) 9.05 1 . 3 MANNINGS N (LOW FLOW) .030 .0 0 REYNOLDS NUMBER (10A5) 2.24 *** WARNING *** REYNOLDS NUMBER IS LARGER THAN 10A5 *** WARNING *** Davg/D50 <= 2 FOR THE MAXIMUM DISCHARGE PROCEDURE. ' Qmax MAY BE INCORRECT BECAUSE IT REQUIRES BATHURST ------------------ STABILITY ANALYSIS ------------------ LINING PERMIS SHR CALC. SHR STAB. CONDITION TYPE-- (LB/FT-2) (LB/FTA2) FACTOR REMARKS --------- ------------------- BOTTOM; STRAIGHT RIPRAP 6.60 5.11 ------------ 1.29/ STABLE /' SIDE; STRAIGHT RIPRAP 6.11 4.29� 1.42./ STABLE'/ *** NORMAL END OF HYCHL *** I 11 I I r I 1 L CLIENT 1' I �:'L��"f'+LI *V'6Y -'�I' p:� JOB NO.% INN PROJECT 77'11 =I 4 vl H J CALCULATIONSFOR dl IZ'���-�•,.•r ,� Engineering Consultants MADE BY a:�-: DATEi'17 (.CHECKED BY —DATE -SHEET _1OF zz. � rI TiL,a�Ls �^v 1 I r. ****** HYCHL ****** (Version 2.0) ****** Date 10-10-9 ' Commands Read From File: C:\MODELS\HYCHL\CURRANT.CHL 1 JOB currant � (,r ' o,- G d u Cwriol- �tt UNI 0 ^ ** UNITS PARAMETER = 0 (ENGLISH) h CHL 0.02 300.1 � 14: `"�;: i i'� C+.•:'. .' �Ur. �• _�'i .,� TRP 24 8 8 ** LEFT SIDE SLOPE 8.0 AND RIGHT SIDE SLOPE ** THE BASE WIDTH OF THE TRAPEZOID (FT) 24.00 'LRR 1 2 42 2.65 0.15 ** D50 (FT) 1.00 ** ANGLE OF REPOSE (DEGREES) 42.00 ** SPECIFIC GRAVITY 2.65 ** SHIELDS PARAMETER .150 END ***************END OF COMMAND FILE************ currant INPUT REVIEW ' --DESIGN-PARAMETERS: DESIGN DISCHARGE (CFS): SHAPE: CHANNEL SLOPE (FT/FT): -----CHANNEL ------------------------------ HYDRAULIC CALCULATIONS USING BATHURST ------------------------------------- FLOW (CFS) 300.10 MAX DEPTH (FT) AREA (FT�2) 2.35 100.03 WETTED PERIMETER (FT) 61.75 HYDRAULIC RADIUS (FT) 1.62 1 AVG VELOCITY (FT/SEC) 3.00 MANNINGS EQUIVALENT .098 Davg / D50 1.63 FROUDE NUMBER .34 REYNOLDS NUMBER (10A5) 2.28 STABILITY ANALYSIS ------------------ LINING ' CONDITION TYPE -- BOTTOM; STRAIGHT RIPRAP SIDE; STRAIGHT RIPRAP *** NORMAL END OF HYCHL *** 1 LI 300.10 TRAPEZOIDAL .020 -, PERMIS SHR (LB/FT-2) 15.44 15.18 8.0 CALL. SHR (LB/FTA2) 2.93 2.76 STAB. FACTOR 5.26 / 5.50 } REMARKS STABLE STABLE I I I I I I 11 RMINC Engineering Consultants CLIENT JOB NO.5-L!L: 6'WEV, PROJECT '37-a-JS CALCULATIONSFOR I pi MADEBY444t4 DATEi--1 -V1,CHECKED BY DATE SHEET 7�> V A7 Or V HL 5(D iD LEI r I RMINIC CLIENT '' 614t j-VA11 jlw G 1 JOB NO. PROJECT I =' :.d S r T= Y"c fl c CALCULATIONS FOR Engineering Consultants MADE BY CG F� DATE ''tom HECKED BY DATE SHEET ?_ OF ��r_jo `\ l `f/ CLIENT �-1N- L'•'Y�'�-1 l IL.GF�'� I ! JOB NO. INC. PROJECT ��=��'�S A<r//�L��-1�L{-�k.d. CALCULATIONS FOR �a�rie 4wYN4+v-� Engineering Consultants MADEBY�DATE :±�LCHECKED BY OATE SHEET 3 OF 3 J /EIcv I b-L REINFORCED CONCRETE PIPE CLASSIFICATION CALCULATIONS C 76 TABLE 1 Design Requirements for Class I Reinforced Concrete PipeA 0t* See Section 5equfor bass of acceptance specified by the purchaser. strength test rirements in pounds -force per linear footoof pipe uncer the 4vee-edge-bearing method shall be either the DIoad (test load expressed in %nds-force per linear loot per foot of diameter) to produce a 0.014n. crack. or the Daoads to produce the 0.014n. crack and the uttimate bad as specified below. . by the internal diameter of the pipe in feet woad to poduce a 0.014n. crack 800 Daoad to produce the unimate load 1200 Reinforcement. in?/linear ft of pipe wad Wad A Wad B Lln!,emal nated --- - Concrete Strength, 4000 psi Concrete Strength, 400D psi Diameter, %,,all Circular Circular in. Thick. Reinforcement _ Elopt;af Wad Reinforcement° Elliptical ihickness, mess. Inner Outer Reinforcerne- ° in. Inner Outer Reinforcement° Cage Cage Cage Cage 60 5 025 0.15 028 6 0.21 0.13 023 66 5112 0.30 0.18 0.33 61/2 025 0.15 028 72 6 0.35 0.21 0.39 7 029 0.17 022 78 61h 0.40 0.24 OA4 71/2 0.32 0.19 0.36 84 7 0.45 027 0.50 8 0.37 022 - 0.41 90 71k 0.49 029 0.54 81h 0.41 025 0.46 ' 96 6 - - 0.54 0.32 0.60 9 0.46 028 0.51 Concrete Strength, 5000 psi 102 8t4 0.63 O.Sa Inner C'veu'ar 025 91h 0.54 0.32 Inner Ccudar 022 ' Mus Elliptical 0.38 Plus Elliptical 0.32 108 9 0.68 0.41 Inner Circular 027 10 0.61 0.37 Inner Circular 024 Plus Elliptical 0.41 Plus Elliptical 0.37 1A ... ... ... ... A ... ... ... ... 132 A A 138 A A 1" 44 ... ... ... ... A A For noddied or special desxm see 72 or with the permission of the purchaser uaTize the provisions of specification C 655. Steel areas may be interpolated between shown for variations in diameter, loading. or wad thickness. Pipe over 95 in. in diameter shad have two circular cages or an inner circular plus are e3ptical cage. .. As an alternative to designs requaTV both inner and aver circular cages the reedorcement may be positioned and proporwred in either of the following manners; enter circular cage plus an eFptcat cage such that the area of the ed'Qtical ace shad not be less than that specified for the outer cage in the table and the total area of the inter cirnlar cage pits the edplical cage shad not be less than that speakd for the enter cage in the table, ester and outer cage plus quadrant mats in accordance with Fig. 1. or rtuter and outer cage plus an elliptical cage in accordance with Fig. 2. Elliptical and quadrant steel must be held in place by means of holQng rods. chairs. or other poseive means throughout the entire casting operabaL aired in 6.1. 6.2. and 6.4; by crushing tests on concrete or cured concrete cylinders; by absorption tests on selected samples from the wall of the pipe: and by inspection P° the finished pipe including amount and placement of forcement to determine its conformance with the ac- ted design and its freedom from defects. 5.1.3 When agreed upon by the purchaser and manufac- r, any portion or any combination of the tests itemized 1.1 or 5.1.2 may form the basis of acceptance. 2 AgeforAccepiance-Pipe shall be considered ready for acceptance when it conforms to the requirements as indi- mfd by the specified tests. 6- Materi21S 1fi Cement -Cement shall conform to the requirements ponland cement of Specification C 150 or shall be ponland blast -furnace slag cement or ponland-pozzolan c ent conforming to the requirements of Specification c 95. 2.9ggregaies-Aggreg2tes shall conform to Specification :33 except that the requirement for gradation shall not Iv. 2 6.3.4dmixtures and Blends -Admixtures and blends may be used with the approval of the purchaser. 6.4 Steel Reinforcement -Reinforcement shall consist of wire conforming to Specification A 82 or Specification A 496 or of wire fabric conforming to Specification A 185 or Specification A 497 or of ban of Grade 40 steel conforming to Specification A 615. 7. Design 7.1 Design Tables -The diameter, wall thickness, com- pressive strength of the concrete, and the area of the circumferential reinforcement shall be as prescribed for Classes I to V in Tables 1 to 5, except as provided in 7.2. 7.1.1 Footnotes to the tables herein are intended to be amplifications of tabulated requirements and are to be considered applicable and binding as if they were contained in the body of the specification. 7.2 Modired and Special Designs: 7.2. I If permitted by the purchaser the manufacturer may request approval by the purchaser of modified designs that differ.from the designs in 7.1; or special designs for sizes and loads beyond those shown in Tables I to 5, 7.1, or special designs for pipe sizes that do not have steel reinforcement ac 9� 1,16 � ILT Note -See Section 5 for basis of J. TABLE 2 Design Requirements for Class 11 Reinforced Concrete Pipe" � ceprance speafled by the pur...aser. ' The strength test requirements in pounds -force per linear foot of ape under the Wee -edge -bearing method Shan be either the D-bad (test bad expressed in crack. pounds -force per linear foot per foot of diameter) to produce a 0.ol4n. cra, or the D•Ioads to produce the 0.01-in, rack and the ultimate bad as specified below, multiplied by the intemal diameter of the pipe in feet. D-Ioad to produce a 0.01-'rn. crack 1000 D-load to produce the ultimate Icad 1500 Reinforcement, in.zrynear It of pipe wan Wan A Wan B Internal Wall ' Designated Concrete Strength, 4000 psi Dianneter, Circular in. Wan Reinforcement ° Elliot 12 15 18 21 24 27 30 33 36 42 48 54 60 66 72 78 84 90 96 Thickness, 1s/4 17/8 2 21/4 21A 2s/s 236 27A 3 31h 4 41/2 5 51/z 6 61A 7 71/2 6 Inner Cage 0.078 0.078 0.079 0.12 0.13 0.15 0.15 0.16 0.14 0.16 021 025 0.30 0.35 0.41 OA6 051 0.57 0.62 Cuter Cage 0.08 0.10 0.13 OAS 0.18 021 025 028 0.31 0.34 0.37 Reinforcement` 0.079 0.10 0.11 0.13 0.14 0.15 0.15 0.18 0.23 028 0.33 029 0.45 0.51 057 0.63 0.69 Concrete Strength, 4000 psi Circular Wan Reinforcement° Thickness, in. Inner Outer Cage Cage 2 0.078 ... 214 0.078 ... 21/2 0.078 ... V1. 0.078 ... 3 0.07° ... 3% 0.13 ... 31/2 0.14 ... 3Y. 0.15 4E 0.12 0.07 41h 0.15 0.09 5 0.18 0.11 51h 022 0.13 .6 025 0.15 6112 0.31 0.19 7 0.35 021 71rt 0.40 024 8 0.46 028 81/2 0.51 0.31 9 0.57 0.34 Concrete Strength, 5000 psi Elliptical Wan Reinforcement" Thickness, in. 0.079 0.078 0.07 ° 0.11 0.12 0.13 0.13 0.17 020 024 028 0.34 0.39 0." 051 057 0.63 2% 3 31A 314 3% 4 4w 4Yr SUE 5% 53L 6v. M 7Y. 7% 814 82A 9% 946 Concrete Strength, 4000 psi Circular Reinforoementc Inner Cage 0.07° 0.07° 0.07° 0.07° 0.07° 0.07° 0.07° 0.07° 0.07 0.10 0.14 0.17 022 025 0.30 0.35 0.41 0.48 0.55 Outer Cage 0.07 0.07 0.08 0.10 0.13 0.15 0.18 021 025 029 0.33 Elliptical Reinforcement" 0.07° 0.07° 0.07° 0.07° 0.07° 0.07° 0.08 0.11 0.15 0.19 024 028 0.33 0.39 0.46 OS3 0.61 102 81h 0.76 0.46 Inner 0.30 91/2 0.68 0.41 Inner 027 101/4 0.62 0.37 Inner 025 C17cular Circular Circular Plus El- 0.46 Plus El. 0.41 Plus ID-0.37 6ptxal nPtiW Optical 108 9 0.65 051 Inner 0.34 10 0.76 0.46 Inner 0.30 103'4 0.70 OR2 Inner 028 Circular Circular Circular Plus El- 051 Plus E]- 0.46 Plus El. 0.42 114 " .. ... Optical "knical nptial ... ... 126 " ... ... ... " 132 " ... ... ... .. ... lab" ... ... ... ... " ... ... ... ... ... ... 144 " ... ... ... " ... ... ... " ... ... ... ... ... ... ... ... ... • For mortified or special designs see 72 or with the permission of yne N Chaser utilize the Provisions of Specification C 655. Steel areas may be interpolated between those shown for variations to 60neter. loading. or wan thickness. Pipe over 96 in. in diameter stwo dra tall have trlar cages. or an inner circular plus one elliptical race. ° For these classes and saes. the minimum Practical steel reinforcement is specified. The actual ultimate strength is greater than the minimum strength specified for nonremforoad pipe of equivalent diameters in SPedScatior. C 14. o As an ahemative to designs requiring both k:ner and outer circular Cages the reinforcement may be Positioned and proporioned in either of the following manner: An inner circular cage plus an elliptical Cage such that the area of the eliq; cal cage s.`.zfl not be less than that specified for the outer age in the table and the total area Of the inner circular cage plus the elliptical cage Shan not be less than -.at specified for � e inner cage in the table. An inner and alter cage plus quadrant mats in accordance with Fig. 1, or An inner and outer cage Plus an elliptical cage in accordance with Fig. 2. eElliptical and quadrant steel must be nerd in place by means of holding rods, dais. or other PosiCve means throughout the entire casting operation. As an alternative. single cage reinforcement may be used. The reinforcement area in square in. per linear foot shall be 020 for wan 8 and 0.16 for wan C. areas shown in Tables I to 5 of 7.1. 7.2.2 Such modified or special designs shall be based on rational or empirical evaluations of the ultimate strength and cracking behavior of the pipe and shall fully describe to the purchaser any deviations from the requirements of 7.1. The descriptions of modified or special designs shall include the wall thickness, the concrete strength, and the area, t}pe, placement, number of layers, and strength of the steel reinforcement. 7.2.3 The manufacturer shall submit to the purchaser proof of the adequacy of the proposed modified or special design. Such proof may comprise the submission of certified three -edge -bearing tests already made, which are acceptable to the purchaser or, if such three -edge -bearing tests are not available or acceptable, the manufacturer may be required to perform proof tests on sizes and classes selected by the purchaser to demonstrate the adequacy of the proposed design. 3 C 76 ' Pi fe in eo fordo Z "i anA s.raller� (c75 �- ►'urn#+• CIaSS is TABLE 3 Design Requirements for Class III Reinforced Concrete Pipe" Nore-See Section 5 for bass of acceptance specified by the purchaser. The strength test requirements in poundsdorce per linear foot of pipe under the three -edge -bearing method SW be either the D-bad pest bad expressed in fcrce per linear foot per foot of diameter) to produce a 0.01-in. crack or the INoads to produce the 0.01-irt crack and the ultimate bad as specified below, ..:tdtip6ed by the internal diameter of the pipe in feet. Ddoad to produce a 0.014 n. tack 1350 `�-- ■ Daoad to produx the ultimate bad 2000 �- Reinforce, w.nt in.=rynesr ft of pipe wag Wag A was a wag C e gnate0 Concrete Str 4000 psi e^9m• Conte ete Strength, 4000 psi Concrete Strength, 4000 psi iameter, wag Circular Thick. ReedokcememD Elliptical This- Re•nfacemente Elliptical Thick.. Circular m Reintorceentc Elliptical nesses. Reinforce- Inner Outer fnmtD nesses, in. Reinforce- Inner Outer tD flesses. Inner Outer Reinforoe- rnent O . Cage Cage in.. Cage Cage in. Cage Cage _ 12 13h 0.079 ... ... 2 0.078 ... ... 22A 0.078 ... 15 11h 0.079 ... ... 21/4 0.078 ... 3 0.078 ... ... 18 2 0.078 ... 0.078 21h 0.078 ... 0.078 314 0.078 0.070 21 21A 0.14 0.11. 23/4 0.076 0.078 314 0.078 ... 0.078 ' 24 21h 0.17 0.14 3 0.071 ... 0.078 3s/4 0.07 0.076 27 2% 0.16 0.16 31/4 0.16 ... 0.14 4 0.08 0.078 30 23/4 0.19 ... 0.18 31h 0.18 ... 0.15 41/4 0.10 0.08 33 27h 021 ... 020 33/4 020 ... 0.17 41h 0.12 0.10 3 021 0.13 023 4 e 0.17 0.10 0.19 450 0.08 0.07 0.09 '36 42 31h 025 0.15 028 41/a 021 0.13 023 51/4 0.12 0.07 0.13 48 4 0.32 0.19 0.35 5 024 0.14 027 54'4 0.16 0.10 0.18 S4 41h 038 023 OA2 51h 029 0.17 0.32 61/4 021 0.13 023 60 5 0.44 026 0.49 6 0.34 020 038 63/4 025 0.15 028 66 51h 0.50 030' 0.55 61/2 0.41 025 OA6 71/4 031 0.19 0.34 72 6 0.S7 0.34 0.63 7 0.49 029 054 73/4 036 022 OAO Concrete Strength. 5000 psi 78 61/2 0.64 038 0.71 71/2 057 034 0.63 81/4 0.42 025 OA7 84 7 0.72 0.43 0.80 8 0.64 038 0.71 83L 050 030 OS6 Corcete Strength, S000 psi Concrete Strength, 5000 psi 90 71h 0.61 OA9 0.90 81h 0.69 0.41 0.77 9% 059 035 0.66 .' 96 8 093 0S6 1.03 9 036 0.46 0.84 93/4 0.70 0.42 inner 028 Circular Plus Elm 0.42 6plical 102 81h tA3 0.62 Liner 0.41 91h Circular 090 0.54 inner 0.36 Circular 101/4 0.83 OSO Ww 033 Plus EF 0.62 Plus E. 054 Circular Plus El- OSO 6ptical 6pDral 6✓rical 108 9 122 013 Inner OA9 10 Circular 1.08 0.65 Utner OA3 Circular 103/4 099 0.59 Inner 0A0 Plus El- 033 Fetus El. 0.65 Circular Plus El- O.S9 liplical 1pliew Wks! 114 A ... ... ... ... w ... w 120 i1 ... ... w ... ... ... w ... ... 126 w ... ... ... ... " ... ... ... ... w ... ... ... ... ... ... ... ... ... ... 1 w w ... w 144 44 1 Aw ... ... ... ... ... ... ... w ... ... ... For modified or special designs see 72 or with the permission of the purchaser uta¢e the provisions of Specification C 655. Steel areas may be interpolated between those shown for variations in diameter. loading, or wall thickness. Pipe over 96 in. in diameter shall have two circular rages EV inner circular pLe; one elliptical rage. For these Gasses and sizes, the rnirwrium practW steel reinforcement is speci.5ed. The actual ultimate strength is greater than the minimum strength specified for e'udorced pipe of equivalent dameters in Spedfiatign C 14. s an ahemative to designs requiring both inner and outer circular cages the reinforcement may be positioned and proportioned in either of the follow ng manners: e An inner circular cage plus an elliptical cage such that the area of the elliptim' age shag not be less than that specified for the outer cage in the table and the total area inner d=Aar cage plus the elliptical cage shag not be less than that speafied for the inner cage in the table, inner and outer cage pits quadrant mas in accordance with Fig. 1, or 'corer and outer cage plus an elliptical cage in accordance with Fg. 2. eElliptical and quadrant steel must be held in place by means of holding rods, chairs, or other positive means throughout the entire casting operation. ... A; an alternative, single cage reinforcement may be used. The renfcroement area in square in. per linear foot shall be 030 for wag B and 020 for wag C. 4 C 76 t� ' TABLE 4 Design Requirements for Class IV Reinforced Concrete Pipe• NOTE -See Section 5 for basis of acceptance specified by the purchaser. 69 ' The strength test requirements in pounds -force per linear foot of pipe under the threeed"aring method shall be either the O•bad (test bad expressed in pounds -force per linear foot per foot of diameter) to produce a 0.01-h crack, or the Needs to produce the 0.014n. crack and the ultimate bad as specified below, multiplied by the internal diameter of the pipe in feet D-load to produce a 0.014n. crack 4000 •� - - ' --`-- - Noad to produce the ultimate bad 3000 �---- _ Reinforcement, in.z/linear it of pipe wan Wall _A Wan B Internal-�--------.. Wall C ' Designated Concrete Strength. 50DO psi Concrete Strength, 4000 psiConcrete Strength, 4000 psi Diameter, Circuw Circular Circular in. Wan Reinforcements Elliptical Wag Reinforcement° Elliptical Wan Reinforcements Elliptical Thickness.- Reinforce- TN&Jms, Reinforce- n. Thickness. ReeNoroE- n, Inner Outer memo Inner Outer etc in hoer Outer ate ' Cage Cage Cage Cage Cage Cage 12 134 0.15 ... ... 2 0.07 ... 2i'4 0.07c' ... 15 11/e 0.16 2% 0.10 .. 3 0.070 18 2 0.17 ... 0.15 2% 0.14 0.11 316 0.070 0.078 21 24 023 ... 021 234 020 0.17 3h 0.07° 0.07c ' 24 2!a 029 027 3 027 023 32A 0.07 0.07 0.08 27 24 0.33 0.31 auk 0.31 ... 025 4 0.08 0.07 0.09 30 234 038 ... 035 3% 035 ... 028 414 0.09 0.07 0.10 33 A • • • 34 027 0.16 0.30 4% 0.11 0.07 0.12 36 " 4 o30 0.18 0.33. 43A ' 42 A ... ... ... 0.14 0.08 0.15 434 035 025 0.47 48 5 0.42 025 0.<7 Sy 026 0.12 029 54 • 5.4 026 O.t6 029 5% 050 0.30 0.5s 614 0.34 020 038 ' ... ... ... - Concrete Strength, 5000 psi - 66 A 6 059 035 0.66 63A 0.41 025 0.46 66 • ... ... ... 61h 0.69 0.41 0.77 714 051 , 0.31 0.57 72 ' A ... .. -Concrete Strength, 5psi A 78 "' A 0.79 O.d7 0.88 716 0.61 03000 7 0.68 ... 81rr 0.71 0.43 0.79 9A :: A ... ... .. Bi. 0.85 051 0:94 96 • A A 102 • A A 108 A ... ... A ... A ... ... ... 120 A A ... ... ... A ... ... ... 126 A ... ... A ... ... 132 A ... ... ... A ... ... ... A t36 A ... ... ... 144 A ... ... ... A 'A For modified or special designs see 72 or with the permission of the purchaser utiEze .71e provisions of Spec6cation C 655. Steel areas maybe interpolated between thoe shown for variations in diameter. loading. or was thickness. Pipe over 96 in. in diameter shall have two circular ages or an eatar eecTxlar plus one elliptical toga. As an alternative to designs requiring both ether and outer circular cages the reinforcement may be positioned and proportioned in either of the following manners: An inner circular age plus an elliptical cage such that the area of the elliptical cage shag not be less than that specified for the outer cage in the table and the total area of the inner circular cage plus the elliptical cage shag not be less than that specified for one inner cage in Lie table, . An inner and outer cage plus quadrant mats in accordance with Fig. 1. or An inner and outer cage plus an elliptical cage in accordance with Fig. 2. For Wan C. in saes 24 to 33 in., a single circular cage with an area not less than the sL,.n of the specified emir and outer circular reinforcement areas. c Elliptical and quadrant steel must be held in place by means of holding rods. chairs, or other positive rneans throughout the entire casting operation. For these classes and sizes, the minimum practical steel reinforcement is specified. 7.3.4 Such pipe must meet all of the test and performance requirements specified by the purchaser in accordance with 'Section 5. 7.3 Area -In this specification, when the word area is not described by adjectives, such as cross-section or single wire, it shall be understood to be the cross -sectional area of rein- forcement per unit lengths of pipe. 8. Reinforcement 8.1 Circun jerential Reinforcemenl-A line of circumfer- ential reinforcement for any given total area may be com- posed of two layers for pipe with wall thicknesses of less than 7 in. or three layers for pipe with wall thicknesses of 7 in. or greater. The layers shall not be separated by more than the thickness of one longitudinal plus 'Ain. The multiple lavers shall be fastened together to form a single rigid cage. All other specification requirements such as laps, welds, and tolerances of placement in the wall of the pipe, etc., shall apply to this method of fabricating a line of reinforcement. 8.1.1 Where one line of circular reinforcement is used, it shall be placed from 35 to 50 % of the wall thickness from the inner surface of the pipe, except that for wall thicknesses less than 3x/_ in., the protective cover of the concrete over the 5 PROGRAM SAMM- ponds at overland ' PU*5IN. MM D-LOAD REQUIREMENTS FOR A IAMETERCIRCULAR PIPE -I-P E D A T A ----------------------------------------------------- DIAMETER (in.) 15.00 WALL B, THICKNESS (in.) 2.250 N S T A L L A T I O N C O N D I T I O N S -------------------------------------------------------------------------------- MINIMUM DEPTH OF FILL (ft.) 1.50 MAXIMUM DEPTH OF FILL (ft.) 20.00 SOIL DENSITY (lb/cu. ft.) 135.0 BEDDING CLASS B INSTALLATION TYPE TRENCH TRENCH WIDTH (ft.) 4.00 SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650 PAGE 2 ' PARAMETERS TO COMPUTE TRANSITION WIDTH POSITIVE PROJECTION RATIO 1.00 POSITIVE SETTLEMENT RATIO 0.50 SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650 ' SOIL LATERAL PRESSURE COEFICIENT 0.33 A D D I T I O N A L L 0 A D S rLIVE LOAD AASHTO HS-20 NO SURCHARGE LOAD A -C T O R S O F S A F E T Y ------------------------ - - -- - - - FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE) 1.00; 1.00 FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE WITH ASTM C 76 DL.01 LESS THAN 2000 LBS/FT/FT 1.5 DL.01 GREATER THAN 3000 LBS/FT/FT 1.25 ' DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT INTERPOLATED I I 6 1ROGRAM SAMM-.ponds at overland PAGE 3 �2 E S U L T S O F A N A L Y S I S �� 1 -------------------------------------------------------------------------------- ' PIPE DEPTH (ft.) 7 L ------EARTH LOAD----- LIVE SURCH TOTAL BED REQUIRED D-LOAD ARCHING >TRANS LOAD LOAD LOAD LOAD FACT 0.01 in. ULT. FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft) 1.5 1.17 Y 385. 1732. 0. 2117. 3.33 508. 762. 2.5 1.30 Y 715. 902. 0. 1617. 2.90 446. 668. 3.5 1.43 Y 1096. 537. 0. 1633. 2.72 480. 719. 4.5 1.44 Y 1421. 381. i'; 0. 1802. 2.68 538. 808. 5.5 1.45 Y 1747. 285.' 0. 2032. 2.65 613. 920. 6.5 1.45 Y 2070. 222. 0. 2292. 2.63 697. 1045. 7.5 1.45 Y 2393. 178. 0. 2571. 2.62 786. 1178. 8.5 1.46 Y 2716. 146. 0. 2862. 2.61 878. 1317. -9_.5.-___ 1.46 Y 3040. 122. 0. 3162. 2.60 973. 1459. •10.5 1.46 Y 3363. 103. �( 0. 3466. 2.59 1069. 1�0T. 11.5 1.46 Y 3681. 89._�;4 0. 3770. 2.59 1165. 1747. 2.2,5 - 1.46 Y 4004. 77.bA 0. 4081. 2.59 1263. 1894. 13.5 1.46 Y 4327. 68. 0. 4395. 2.58 1362. 2042. 14.5 1.44 N 4567. 60. 0. 4626. 2.56 1447. 2171. 15.5 16.5 1.39 1.34 N N 4723. 4868. 53. 48. Al 0 0.. 4777. 4915. 2.52 1518. 2277. 17.5 1:30 N 5000. 43.E 0. 5043. 2.48 2.45 1584. 1645. 2376. 2468. 18.5 1.26 N 5123. 39. 0. 5162. 2.43 1703. 2554. 19.5 1.22 N 5235. 35. 0. 5271. 2.40 1760. 2640. 20.0 1.21 N 5288. 34. 0. 5322. 2.38 1786. 2678. 0 PROGRAM SAMM- ponds at overland PAGE 2 ' P OG S D-LOAD REQUIREMENTS FOR A 18 IN. DIAMETER CIRCULAR PIPE -I-P E D A T A DIAMETER (in.) ----------------------------------------------------- 18.00 WALL B, THICKNESS (in.) 2.500 N S T A L -------------------------------------------------------------------------------- L A T I O N C O N D I T I O N S MINIMUM DEPTH OF FILL (ft.) 1.00 ' MAXIMUM DEPTH OF FILL (ft.) 20.00 SOIL DENSITY (lb/cu. ft.) 135.0 BEDDING CLASS B ' INSTALLATION TYPE TRENCH TRENCH WIDTH (ft.) 4.00 SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650 ' PARAMETERS TO COMPUTE TRANSITION WIDTH POSITIVE PROJECTION RATIO 1.00 POSITIVE SETTLEMENT RATIO 0.50 ' SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650 SOIL LATERAL PRESSURE COEFICIENT 0.33 A D D I T I O N A L L 0 A D S ---------------------------------------------------------------------- r LIVE LOAD AASHTO HS-20 NO SURCHARGE LOAD -A-C T O R S O F S A F E T Y ----------------------- - - - - -- FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE) 1.00; 1.00 FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH,LIVE) IN ACCORDANCE WITH ASTM C 76 ' DL.01 LESS THAN 2000 LBS/FT/FT 1.5 DL.01 GREATER THAN 3000 LBS/FT/FT 1.25 ' DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT INTERPOLATED 0 1 PROGRAM SAMM- ponds at overland PAGE 3 �Z E S U L T S. 0 F A N A L Y S I S \ -------------------------------------------------------------------------------- PIPE ------EARTH LOAD----- LIVE SURCH TOTAL BED REQUIRED D-LOAD DEPTH ARCHING >TRANS LOAD LOAD LOAD LOAD FACT 0.01 in. ULT. FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft) '(ft.) 1.0 1.09 Y 282. 2603.C�S'5 0. 2886. 4.35 443. 664. 2.0 1.19 Y 618. 1455. 0. 2072. 3.21 431. 646. 1.31 Y 1016. 751. 0. 1767. 2.89 407. 611. '3.0 4.0 1.43 Y 1477. 516.bL�SSS 0. 1992. 2.73 486. 730. 5.0 1.44 Y 1860. 378. 0. 2238. 2.69 555. 833. 6.0 1.45 Y 2244. 290. 0. 2534. 2.66 635. 953. ' 7.0 1.45 Y 2625. 229. 0. 2855. 2.64 721. 1081. 8.0 1.45 Y 3007. 186.CIA555- 0. 3193. 2.63 810. 1215. 9.0 1.45 V 3388 155 0 3542 2.62 902 1354. 1.42 N 3677. 130. 0. 3807. 2.57 988. 1483. '10.0 11.0 1.37 N 3904. ill. 0. 4015. 2.51 1067.- 1600. 12.0 1.32 N 4113. 96. i 0. 4210. 2.46 1140. 1710. '13.0 14.0 1,28 1.24 N N 4306. 4483. 84.6,(,gSSJ-(� 74. 0. 0. 4390. 4557. 2.41 2.38 1213. 1277. 1820. 1915. 15.0 1.20 N 4647. 66. 0. 4712. 2.35 1337. 2006. 16.0 1.16 N 4797. 59. 0. 4856. 2.32 1393. 2090. 1_1_9 N a 53 0 4988. 2.30 1445. 2168. '17.0 18.0 1.09 N 5063. 48. �SS� 0. 5111. 2.28 1494. 19.0 1.05 N 5180. 43.L 0. 5224. 2.26 1539. 2309. ' 20.0 1.02 N 5288. 40. 0. 5328. 2.25 1581. 2372. n 1 I' ARAM SAMM- Ponds at Overland PAGE 2 . �I P O SAMM D-LOAD REQUIREMENTS FOR A 24 IN. DIAMETER CIRCULAR PIPE P E D A T A ------ -------------------------------------------------------- DIAMETER (in.) 24.00 WALL B, THICKNESS (in.) IS 3.000 T A L L A T I O N C O N D I T I O N S ------------------------------------------------------------------------------- . MINIMUM DEPTH OF FILL (ft.) 2.00 :iMAXIMUM ' DEPTH OF FILL (ft.) 20.00 SOIL DENSITY (lb/cu. ft.) 135.0 BEDDING CLASS B INSTALLATION TYPE TRENCH TRENCH WIDTH (ft.) 6.00 SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1924 TO COMPUTE TRANSITION WIDTH ,PARAMETERS POSITIVE PROJECTION RATIO 1.00 POSITIVE SETTLEMENT RATIO 0.50 ' SOIL LATERAL PRESSURE/FRICTION TERM (KMU) SOIL LATERAL PRESSURE COEFICIENT 0.1924 0.33 D D I T I O N A L L O A D S .: LIVE -LOAD ------------------------- ----- -------------------------- -----HS--- ------ AASHTO NO SURCHARGE LOAD 1 C T 0 R S O F S A F E T Y ------- ---------------------------------------------------- FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE) ----------------- 1.00; 1.00 FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE WITH ASTM C 76 DL.01 LESS THAN 2000 LBS/FT/FT 1.5 DL.01 GREATER THAN 3000 LBS/FT/FT 1.25 ' DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT INTERPOLATED I 1 I Z!RAM SAMM- Ponds at Overland a PAGE 3 JS U L T S O F A N A L Y S I S 7/� �✓ --------------------------------------------------------------------------- :' JE ------EARTH LOAD----- LIVE SURCH TOTAL BED (REQUIRED D-LOAD I .TH ARCHING >TRANS LOAD LOAD LOAD LOAD FACT 0.01 in. ULT. (ft.) FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft) 1.0 1.17 Y 790. 1781. ``••--�0. 2571. 3.45 373. 559. 3.0 1.27 Y 1287. 927.C1 0. 2213. 3.03 365. 548. J.- 0 1.38 Y 1866. 641. 0. 2506. 2.82 444. 666. .0 1.46 Y 2470. 472. 0. 2942. 2.71 542. 813. 3.0 1.47 Y 2981. 363. 0. 3344. 2.68 624. 936. 7.0 1.48 Y 3495. 288. 0. 3784. 2.65 713. 1069. 11 0 235. 0. 4240. 2.64 804. 1206. .0 1.49 Y 4514. 195-tLprSS--T 0. 4710. 2.62 898. 1347. 10.0 1.49 Y 5024. 165. 0. 5189. 2.61 993 1490 U 0 J 1.49 1.49 Y Y 5533. 6043. 141. 'j� 122.r L4sSS- 5675. 2.60 1090. 1635. 0. 6165. 2.60 1187. 1781. .0 1.49 Y 6553. 107. 0. 6660. 2.59 1286. 1928. 1 0 1.49 1.50 Y Y 7062. 7572. 94. 0. 84. 0. 7157. 7656. 2.59 1384.. 2076. 2.58 1483. 2225. 0 17.0 1.49 Y 8070. 75. (� 8145. 2.58 1580. 2370. 1.46 N 8385. �,pSS/0. 68.p. 8452. 2.55 1656. 2485. 0 1.42 N 8648. 61. 0. 8710. 2.52 1726. 2588. , : .0 1.39 N 8896. 56. 0. 8951. 2.50 1791. 2687. 2 .0 1.35 N 9128. 51. 0. 9178. 2.47 1857. 2785. u I I 1 I �ROGRAM SAMM- ponds at overland PAGE 2 ROGRAM`i SAMM D-LOAD REQUIREMENTS FOR A 30 IN: DIAMETER CIRCULAR PIPE -I-P E D A T A ------------------------------------------------------------- DIAMETER (in.) 30.00 WALL B, THICKNESS (in.) 3.500 N S T A L L A T I O N C O N D I T I O N S -------------------------------------------------------------------------------- MINIMUM DEPTH OF FILL (ft.) 1.00 MAXIMUM DEPTH OF FILL (ft.) 20.00 SOIL DENSITY (lb/cu. ft.) 135.0 BEDDING CLASS B INSTALLATION TYPE TRENCH TRENCH WIDTH (ft.) 6.00 SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650 PARAMETERS TO COMPUTE TRANSITION WIDTH POSITIVE PROJECTION RATIO 1.00 POSITIVE SETTLEMENT RATIO 0.50 SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650 SOIL LATERAL PRESSURE COEFICIENT 0.33 A D D I T I O N A L L 0 A D S ------------------------------------------------------------------------------ LIVE LOAD AASHTO HS-20 - NO SURCHARGE LOAD A -- C T O R S O F S A F E T Y - --------------------- -------- FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE) 1.00; FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE .1.00 WITH ASTM C 76 DL.01 LESS THAN 2000 LBS/FT/FT 1.5 DL.01 GREATER THAN 3000 LBS/FT/FT 1.25 DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT INTERPOLATED _T't ROGRAM SAMM- ponds at overland PAGE 3 1 „V `t E S U L T S O F A N A L Y S I S �D -------------------------------------------------------------------------------- ' PIPE DEPTH (ft. ) d 11 I 1 ------EARTH LOAD----- LIVE SURCH TOTAL BED REQUIRED D-LOAD ARCHING >TRANS LOAD LOAD LOAD LOAD FACT 0.01 in. ULT. FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft) 1.0 1.06 Y 439. 2830. 0. 3269. 5.00 261. 392. 2.0 1.12 Y 928. 2069. 0 2997. 3.84 312. 468. 3.0 1.18 Y 1473. 1084. �yY 0.. 2557. 3.28 312. 468. 4.0 1.25 Y 2078. 754. \ 0. 2832. 3.02 375. 562. 5.0 1.32 Y 2752. 558. 0. 3310. 2.87 461. 692. 6.0 1.40 Y 3503. 431. V 0. 3933. 2.76 570. 855. 7.0 1.43 Y 4171. 343. 0. 4515. 2.71 666. 999. 8.0 1.44 Y 4786. �281. 0. 5066. 2.69 754. 1131. 9.0 1.44 Y 5407. 234. / 0. 5640. 2.67 845. 1268. 10.0 1.45 Y 6020. 198. /� 0. 6218. 2.65 937. 1405. 11.0 1.45 Y 6634. 170. 47 0. 6804. 2.64 1029. 1544. 12.0 1.42 N 7115. 147. 0. 7263. 2.61 1115. 1672. 13.0 1.39 N 7523. 129.� 0. 7652. 2.56 1194. 1791. 14.0 1.36 N 7908. 114. 0. 8022 2.53 1270 1905. 15.0 1.33 N 8273. 101. 0. 8375. 2.49 1347. 2021. 16.0 1.29 N 8619. 91. 0. 8709. 2.46 1418. 2127. 17.0 1.26 N 8946. 82. 0. 9027. 2.43 1486. 2229. 18.0 1.24 N 9255. 74. ' 0. 9329. 2.41 1551. 2326. 19.0 1.21 N 9548. 67. 0. 9615. 2.38 1613. 2419. 20.0 1.18 N 9825. 62. 0 9887 2.37 1672 2508. �ROGRAM SAMM- ponds at overland PAGE 2 PROGRAM AMM D-LOAD REQUIREMENTS FOR A 48 IN. DIAMETER CIRCULAR PIPE I-P - E D A T A -------------------------------------------------------------- DIAMETER (in.) 48.00 WALL B, THICKNESS (in.) 5.000 N S T A L L A T -------------------------------------------------------------------------------- I O N C O N D I T I O N S ' MINIMUM DEPTH OF FILL (ft.) MAXIMUM DEPTH OF FILL (ft.) 1.00 20.00 SOIL DENSITY (lb/cu. ft.) 135.0 BEDDING CLASS B INSTALLATION TYPE TRENCH TRENCH WIDTH (ft.) 8.00 SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650 PARAMETERS TO COMPUTE TRANSITION WIDTH POSITIVE PROJECTION RATIO 1.00 POSITIVE SETTLEMENT RATIO 0.50 SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650 SOIL LATERAL PRESSURE COEFICIENT, 0.33 A D D I T I O N A L L 0 A D S '-----------------------------------------------------------LIVE LOAD AASHTO---HS-20-- - - ---- NO SURCHARGE LOAD -A -C --- T O R S O F S A F E T Y ------------------ -- - - - - -- FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE) 1.00; 1.00 FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH,LIVE) IN ACCORDANCE WITH ASTM C 76 DL.01 LESS THAN 2000 LBS/FT/FT 1.5 DL.01 GREATER THAN 3000 LBS/FT/FT 1.25 DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT INTERPOLATED I I ' -TW tROGRAM SAMM- ponds at overland PAGE 3 tE S U L T S O F �� 1 -------------------------------------------------------------------------------- A N A L Y S I S PIPE ------EARTH LOAD----- LIVE SURCH TOTAL BED D-LOAD DEPTH ARCHING >TRANS LOAD LOAD LOAD LOAD FACT (REQUIRED 0.01 in. ULT. (ft.) FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft) ' 1.0 1.03 Y 675. 2331. 0. 3006. 5.00 150. 225. 2.0 1.07 Y 1398. 2475. 0. 3874. 5.00 193. 290. '3.0 4.0 1.11 1.15 Y Y 2172. 3001. 1474. 1039. 0. 0. 3646. 3.93 232. 348. 4040. 3.46 292. 438. 5.0 1.19 Y 3889. 778. 0. 4666. 3.22 363. 544. 6.0 1.24 Y 4839. 606.\,��' 0. 5445. 3.06 445. 668. 7.0 1.28 Y 5856. 487.^^�I` 0. 6343. 2.94 539. 808. 8.0 1.33 Y 6945. 401.V 0. 7346. 2.86 643. 964. 9.0 1.38 Y 8111. 336. 0. 8447. 2.79 758. 1137. 1.36 N 8850. 286. 0. 9136. 2.63 870. 1305. '10.0 11.0 N .9550. 246. 0. 9796. 2.57 954. 1431. 12.0 13.0 1.31 N 10222. 215. `v 0. 10437. 2.52 1035. 1552. 1.28 N 10867. 189. C�� 0. 11056. 2.48 1113. 1670. 14.0 15.0 1.26 N 11486. 167. 0. 11653. 2.44 1193. 1790. 1.23 N 12080. 149.0 0. 12229. 2.41 1267. 1900. 16.0 1.21 N 12650. 334. 0. 12784. 2.39 1338. 6'1. 17.0 18.0 1.19 1.17 N N 13197. 13721. 121. 110. �� 0. 13318. 2.37 1407. 2110. 0. 13831. 2.35 1473. 2210. 19.0 1.15 N 14225. 100. V 0. 14325. 2.33 1538. 2307. 20.0 1.13 N 14708. 92. 0. 14800. 2.31 1600. 2400. I I I 1 jq IROGRAM SAMM- ponds at overland ROG SAMM D-LOAD REQUIREMENTS FOR A 54 I . DIAMETER CIRCULAR PIPE I P E D A T A ------------------------------------------------------------------------------- DIAMETER (in.) 54.00 WALL B, THICKNESS (in.) 5.500 IN S T A L L A T I O N C O N D I T I O N S PAGE 2 ' MINIMUM DEPTH OF FILL (ft.) 1.00 MAXIMUM DEPTH OF FILL (ft.) 20.00 SOIL DENSITY (lb/cu. ft.) 135.0 BEDDING CLASS B INSTALLATION TYPE TRENCH TRENCH WIDTH (ft.) 8.00 SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650 ' PARAMETERS TO COMPUTE TRANSITION WIDTH POSITIVE PROJECTION RATIO 1.00 POSITIVE SETTLEMENT RATIO 0.50 SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650 SOIL LATERAL PRESSURE COEFICIENT 0.33 A D D I T I O N A L L 0 A D S LIVE LOAD AASHTO HS-20 NO SURCHARGE LOAD -A-C T O R S O F S A F E T Y FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE) 1.00; 1.00 ' FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE WITH ASTM C 76 DL.01 LESS THAN 2000 LBS/FT/FT 1.5 DL.01 GREATER THAN 3000 LBS/FT/FT 1.25 ' DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT INTERPOLATED D �ROGRAM SAMM- ponds at overland PAGE 3 E S U L T S O F A N A L Y S I S -------------------------------------------------------------------------------- ' PIPE ------EARTH LOAD----- LIVE SURCH TOTAL BED IREQUIRED D-LOAD DEPTH ARCHING >TRANS LOAD LOAD LOAD LOAD FACT 0.01 in. ULT. (ft.) FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft) ' 1.0 1.03 Y 754. 2147. 0. 2901. 5.00 129. 193. 2.0 1.06 Y 1555. 2359. 0. 3914. 5.00 174. 261. 1 3.0 1.10 Y 2407. 1581. 0. 3988. 4.19 212. 318. 4.0 1.13 Y 3312. 1119. L 0. 4431. 3.62 272. 408. 5.0 1.17 Y 4274. 840. �yk`7' 0. 5115. 3.33 341. 512. 6.0 1.21 Y 5297. 657. v+ 0. 5954. 3.15 420. 629. 7.0 1.25 Y 6383. 529. 0. 6913. 3.03 508. 761. 8.0 1.26 N 7359. 436. 0. 7796. 2.85 608. 912. 9.0 1.23 N 8120. 366. 0. 8486. 2.62 718. 1078. 10.0 1.21 N 8850. 312. 0. 9162. 2.47 825. 1237. 11.0 1.19 N 9550. 270. ,\y0. 9820. 2.36 923. 138.5. 12.0 1.16 N 10222. 235. 0. 10457. 2.33 998. 1497. 13.0 1.14 N 10867. 207. \}� 0. 11074. 2.30 1070. 1604. '14.0 1.12 N 11486. 184.V" 0. 11670. 2.28 1139. 1708. 15.0 1.10 N 12080. 164. 0. 12244. 2.26 1205. 1808. 16.0 1.08 N 12650. 147. 0. 12797. 2.24 1270. 1906. '17.0 1.06 N 13197. 133. 0. 13330. 2.22 1332. 1999. 18.0 1.04 N 13721. 121. S� 0. 13842. 2.21 1392. 2088. 19.0 1.02 N 14225. 110. 0. 14335. 2.20 1450. 2175. 20.0 1.01 N 14708. 101. 0. 14809. 2.18 1507. 2260. I C i1 FROGRAM SAMM-.ponds at overland PAGE 2 P/ Oi2 GRAM` SAMM D-LOAD REQUIREMENTS FOR A 160 IN. DIAMETER CIRCULAR PIPE ******************************************************************************** - I-P E D A T A ------------------------------------------------------------- DIAMETER (in.) 60.00 WALL B, THICKNESS (in.) 6.000 tN S T A L L A T I O N C O N D I T I O N S -------------------------------------------------------------------------------- ' MINIMUM .DEPTH OF FILL (ft.) 1.00 MAXIMUM DEPTH OF FILL (ft.) 20.00 SOIL DENSITY (lb/cu. ft.) 135.0 BEDDING CLASS B INSTALLATION TYPE TRENCH TRENCH WIDTH (ft.) 10.00 SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650 ' PARAMETERS TO COMPUTE TRANSITION WIDTH POSITIVE PROJECTION RATIO 1.00 POSITIVE SETTLEMENT RATIO 0.50 SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650 ' SOIL LATERAL PRESSURE COEFICIENT 0.33 A D D I T I O N A L L 0 A D S --------------------------------------------------------------- - - ---- LIVE LOAD AASHTO HS-20 NO SURCHARGE LOAD A C T 0 --R S O F S A F E T Y - ---- ------------------ -- - - - - -- FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE) 1.00; 1.00 FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH,LIVE) IN ACCORDANCE WITH ASTM C 76 ' DL.01 LESS THAN 2000 LBS/FT/FT 1.5 DL.01 GREATER THAN 3000 LBS/FT/FT 1.25 ' DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT INTERPOLATED 1 20 �ROGRAM SAMM- ponds at overland PAGE 3 It E S U L T S O F A N A L Y S I S �O -------------------------------------------------------------------------------- ' PIPE ------EARTH LOAD----- LIVE SURCH TOTAL BED D-LOAD DEPTH ARCHING >TRANS LOAD LOAD LOAD LOAD FACT (REQUIRED 0.01 in. ULT. (ft.) FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft) ' 1.0 1.03 Y 833. 1989. 0. 2822. 5.00 113. 169. 2.0 1.06 Y 1712. 2253. 0. 3965. 5.00 158. 238. '3.0 4.0 1.09 1.12 Y Y 2642. 3624. 1680. 1194. �`\ Y 0. 0. 4322. 4818. 4.48 3.79 193. 254. 290. 5.0 1.15 Y 4662. 899. 0. 5561. 381. 6.0 1.18 Y 5758. 705. G 0. 6463. 3.45 3.25 322. 398. 483. 597. 7.0 1.22 Y 6916. 569. 0. 7485. 3.11 482. 723. 8.0 1.26 Y 8140. 470. 0. 8610. 3.00 573 860. 9.0 1.29 Y 9433. 395. 0. 9828. 2.92 673. 1010. 1 10.0 11.0 1.33 1.37 Y Y 10799. 12242. 337. 292. /��/ 0 0.. 11136. 2.85 781. 1171. 12534. 2.80 897. 1345. 12.0 1.38 N 13377. 255. 0. 13632. 2.69 1013. 1519. 13.0 1.36 N 14271. 224. G 0. 14495. 2.62 1106. 1660. 14.0 1.33 N 15135. 199. 0. 15335. 2.58 1189. 1784. 15.0 1.31 N 15972. 178. 0. 16150. 2.54 1270. 1905. �j 16942. 2.51 1351. 2027. 1 17.0 18.0 1.28 1.26 N N 17565. 18323. 145. 132.E C,'v 0. 0. 17710.- 2.48 1428. 2142. 19.0 1.24 �/ 18454. 2.45 1504. 2256. N 19056. 120. 0. 19176. 2.43 1577. 2366. i 20.0 1.22 N 19765. 110. 0. 19876. 2.41 1648. 2472. i t_ J i 1 111, ail , a fi,, :' •.eta T,aCaM[43 • TONGUE and GROOVE JOINT VERTICAL ELLIPTICAL, V-E ' AREA OF REINFORCEMENT STEEL, NUMBER OF CAGES, AND CONCRETE COMPRESSIVE STRENGTHS SHALL BE 1 IN CONFORMANCE WITH AST,M, SPECIFiuvoNS. ASTM C- 507 \ RrwC[RRT TONGUE and GROOVE JOINT HORIZONTAL ELLIPTICAL, H-E R Nf R M I OR ELLIPTICAL CAGE ALL DIMENSIONS ARE SUBJECT TO ALLOWABLE SPECIFICATION 1 1 1 1 1 NO SCALE. SSTEEL REINFORC T SHOWN IS SCHEMATIC. EQUIVALENT ROUND NOMINAL DIAMETER ACTUAL DIAMETER WALL OUTER DIAMETER THICKNESS RADIUS ER RADIUS N NGTN INSIDE PERT END AREA APPROXIMATE WEIGHT MINOR AJOR MINOR AXIS MAJOR AXIS gC, R.E. gC, per IRoIEs roar vacs RCRes wcHEs ecxcs I R NOMINAL ":-.:.. ..:.: ..... _ � FECT FEET E4a4RE FEET FOIaAlpS/ffNR "8.8780 .6875 .�T.S': �. 5.0 24 AQL 1 30 19.1875 30. 1250 11.50 29.5000 7.5 6.7 3.3 300 ;. 365625 :. 73.,... .: .. .. 36 Q 29 45 28.8125 45.4375 4.50 " 16.8125 43.8750 7.5 10.0 7.4 625 42":�."'.34:0625 '53.3125•: .,, 'S.00'': .:-.. 'i9.625p - 48 38 60 38,3125 59 9375 550 21.9373 57.1250 7.5 13.2 12 9 1000 '.=54" ."•-43 °68 .., . .: 48 4375' ' 67.8750 `- '6.00 `.'' . 24.6250` 64:3730• 60 la 48 76 I 48.1875 75.5000 6.50 27.1250 71.6250 7.5 16.7 20.5 1475 -::53 -:83 ,... .:-53.0000' ':'-'$3.0625 .T.00': --29:7500" "78.5000 7.5 i. tea 72 58 91 57,8750 I 90.5625 7.50 32.3750 85.4375A520 :,248. 1.745`:: 2pgp 78 .. ':''.`i6"63. 0000 :-� 980000 : --8A034:9373 92.3750' 7 "" 235084 66 106 67.5625 105.5625 8.50 37,5000 99.3125 2660 9072.4375 '- 13.1250'" ' 9.00 :40.1260 t9.5 106.2300' 96 77 12177.2500 ! 120.6250 9.50 42.6075 113.1250 3420 102=':82. '`�28`'• 80000 126.0000.'.9.75 43.0625 u8:7300 $725 '' 114 87 136 67.0625 13S.5625 10.00 47.5000 926.2500 6.0 30,0 66.4 4050 " - 1 7 4 i= ..'92- "143... 92.0000 N3.0000 "" .10.50 5060000 13311875 6.0 31.6 i74.0 4470 120 97 ":I06 151 96.6875 I 150.'625 11.00 52.6250 140, 1250 6.0 3363 82.0 4930 - 132 `-.. "' 166:'--' .. 106.0000"0000 12.00 57.8125 154.0000 6.0 36.7 ' -99.2 - 5900" 144 116 ISO 116.0000 1 180.0000 13.00 63.0000 167.0750 6.0 40.0 118.6 7000 Q IRdi4ottF H.E. END SECTIONS available $300 bounr boulevzra • v:eana, ti:r;;i.^.ia__:S2 © May 1967 (Revised) owl ' GEGAft _. ORCret�� ipe 1 I 1 .1 LOADS AND SUPPORTING STRENGTHS ELLIPTICAL AND ARCH PIPE The hydraulic and structural characteristics of elliptical and arch shapes offer advantages, under certain conditions, over the circular shape commonly used for sewer and culvert pipe. For minimum cover conditions, or where vertical clearance is limited by existing structures, horizontal elliptical and arch pipe are particularly suitable since the vertical heights are less than the height of hydrauli- cally equivalent circular sizes. Horizontal elliptical and arch pipe have greater flow capacity for the same depth of flow than most other structures of equivalent full capacity. Vertical elliptical pipe, because of its narrower span, requires less excavation for trench installations and is subjected to less backfiil load. Because of the greater height of section of vertical elliptical pipe, in - FIGURE 1 TRENCH INSTALLATION Original Ground creased side support is realized in embankment installa- tions and the fill load is also reduced because of the smaller span. These structural characteristics make vertical elliptical pipe particularly suitable where deep trenches or high embankment fills are necessary. In addition, the geometric properties of vertical elliptical pipe make its use advantageous where horizontal clear- ance is limited by existing structures. Hydraulically, vertical elliptical pipe provides higher flushing velocities under minimum flow conditions. Horizontal and vertical elliptical pipe represent two different products from the standpoint of structural strength, hydraulics and type of application. Arch pipe is similar to horizontal elliptical pipe in that the ratios of vertical rise to horizontal span are approximately the same for both shapes. FIGURE 2 LOAD COEFFICIENT DIAGRAM FOR TRENCH INSTALLATIONS 12 — --i 10 l—- __ _ 2 = ¢ 6 I.. _._.., - ........ 0 1 2 3 4 5 VALUES OF LOAD COEFFICIENT C. .1 11 TABLE III THREE -EDGE BEARING TEST STRENGTHS MINIMUM D-LOADS IN THREE- GE BEARING TEST Pounds Per Linear Foot Per F of Inside Horizontal Span Horizontal Elliptical Arch Vertical Elliptical 0.01" Crack Do.oi Ultimate 0.01" Crack Ultimate 0.01" Crack Ultimate Dos. Dox, Doze. Do.oi Dick 600 900 1000 1500 1000 1500 ai HE -A v7 II a VE-II 800 00 HE-1 1350 2000 VE-111 1350 2000 1000 1500 HE-11 ,co IV 2000 3000 VE-IV 2000 3000 HE -III 1350 2000 c0 LO 0,- i VE-V 3000 3750 cm; HE-IV 2000 I 3000 < t VE-VI 4000 5000 Example 1: Horizontal Elliptical Pipe Given: A 38-inch x 60-inch horizontal elliptical pipe (equivalent 48-inch circular) with a 51h-inch wall thickness is to be installed in a 7-foot wide trench and covered with 1.0 1 foot of sand and gravel backfill material weighing 110 pounds per cubic foot. The required pipe strength in terms of the 0.01-inch crack D-load. 1. Determination of Earth Load (WE) For trench installations involving shallow cover the load should be computed by both the trench equation and the embankment equation and the lesser value used. The trench backfill load is given by equation (1). Wd=CdwBd2 From Figure 2, for H/Bd = 0.14 and sand and gravel backfill, the load coefficient Cd = 0.14. Wd = 0.14 x 110 x (7)2 Wd = 755 pounds per linear foot The embankment fill load is given by equa- tion (2). WN=C,WB"-o In evaluating the embankment fill load a settlement ratio rad, and projection ratio p, must first be assumed. Based on an rd value of 0.7 and p value of 0.7, the product rsdp = 0.49. From Figure 4, for H/Bo = 0.17 and rsdp = 0.49, the load coefficient C, = 0.17. Wo = 0.17 x 110 x (5.92)2 W� = 652 pounds per linear foot Since Wo is less than Wd, the trench width does not affect the load and the load is a maximum of 652 pounds per linear foot 2. Determination of Live Load (WL) From Design Data 32: HIGHWAY LIVE LOADS ON CONCRETE ELLIPTICAL PIPE for H = 1.0 foot. Bo= 5.92 feet, a single 16,000 pound dual wheel load on an unsurfaced roadway. 30 percent impact, the live load is 2,610 pounds per linear foot. 3. Selection of Bedding A Class C bedding will be assumed. 4. Determination of Bedding Factor (Bf) From Figure 6, for horizontal elliptical pipe installed on a Class C bedding the bedding factor is 1.5. 5. Application of Factor of Safety (F.S.) A factor of safety of 1.0 based on the 0.01- inch crack will be applied. 6. Selection of Pipe The D-load is given by equation (7). D-load = WL - WE x F.S. Bf x S 2,610 - 652 D0.01= 1.5x5.0 x 1.0 Answer: D0.01 = 435 pounds per linear foot per foot of inside. hori- zontal span. From Table III, the minimum 0.1-inch crack D-ioad for an ASTM C507 Class HE -I pipe is 800. Therefore, a Class HE-] pipe would be more than adequate. 9 BFRAM SAMM- Ponds at Overland � / PAGE 2 _ 'PROGRAM SAMM D-LOAD REQUIREMENTS FOR A 30 IN. SPAN HORIZONTAL ELLIPTICAL PIPE P E D A T A -------------------------------------------------------------- SPAN (in.) 30.00� RISE (in.) 19.00✓ ' WALL THICKNESS (in.) 3.250 ✓ N S T A L L A T I O N C O N D I T I O N S -------------------------------- ----- MINIMUM DEPTH OF FILL (ft.) � 2.00-/ MAXIMUM DEPTH OF FILL (ft.) 5.00 SOIL DENSITY (lb/cu. ft.) 135.0✓ ' BEDDING CLASS BIO?4EN13 INSTALLATION TYPE POSITIVE PROJECTING EMBAN POSITIVE PROJECTION RATIO MENT v ' POSITIVE SETTLEMENT RATIO SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.0.7070 SOIL LATERAL PRESSURE COEFICIENT 0.20 :ID I T I O N ----- A L L 0 A D S --------------- -------- LIVE LOAD AASHTO HS-20 OR AASHTO INTERSTATE ,NO SURCHARGE LOAD A C T O R S O F S A F E T Y ---------------------------------- --------------------------------------------- FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE) 1•.00; 1.00 FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE WITH ASTM C 76 DL.01 LESS THAN 2000 LBS/FT/FT 1.5 ' DL.01 GREATER THAN 3000 LBS/FT/FT 1.25 DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT INTERPOLATED F S U L T S O F A N A L Y S I S ..1---------------------------------------------------------------------------- 'IPE ------EARTH LOAD----- LIVE SURCH TOTAL BED REQUIRED D-LOAD )I. ARCHING LOAD LOAD LOAD LOAD FACT 10.01 in. ULT. :i FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft) t0 1.14 935. 2256. 0. 3190. 2.19872._� .0 1.22 1498. 1168. 0. 2666. 488. 732. o 1.30 2138. 804. 0. 2. 2.18 540. 8 S.0 1.33 2726. 625. 3350. 2.18 616. t 1 I 1 ' lvtti�� �/.jn�f�'✓1 I rROGRAM SAMM- ponds at overland J PAGE 2 PROGRAM SAMM D-LOAD REQUIREMENTS FOR A 45 IN. SPAN HORIZONTAL ELLIPTICAL PIPE ******************************************************************************** I P E D A T A ------------------------------------------------------------- SPAN (in.) 45.00 RISE (in.) 29.00 WALL THICKNESS (in.) 4.500 I N S T A L L A T I O N C O N D I T I O N S ' --------------------------------------------------------------------- MINIMUM DEPTH OF FILL (ft.) 1.00 MAXIMUM DEPTH OF FILL (ft.) 20.00 SOIL DENSITY (lb/cu. ft.) 135.0 ' BEDDING CLASS B INSTALLATION TYPE TRENCH TRENCH WIDTH (ft.) 8.00 SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650 ' PARAMETERS TO COMPUTE TRANSITION WIDTH POSITIVE PROJECTION RATIO 0.50 POSITIVE SETTLEMENT RATIO 0.50 SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650 SOIL LATERAL PRESSURE COEFICIENT 0.33 DDI - - -T I 0 N A L L 0 A D S - ------------------------------------- LIVE LOAD ------------ AASHTO HS-20 NO SURCHARGE LOAD A C T -------------------------------------------------------------------------------- O R S O F S A F E T Y FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE) 1.00; 1.00 ' FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH,LIVE) IN ACCORDANCE WITH ASTM C 76 DL.01 LESS THAN 2000 LBS/FT/FT 1.5 ' DL,01 GREATER THAN 3000 LBS/FT/FT DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT 1.25 INTERPOLATED �ROGRAM SAMM- ponds at overland PAGE 3 �2 E S U L T S O F A N A L Y S I S -------------------------------------------------------------------------------- ' PIPE ------EARTH LOAD----- LIVE SURCH TOTAL BED (REQUIRED D-LOAD DEPTH ARCHING >TRANS LOAD LOAD LOAD LOAD FACT 0.01 in. ULT. (ft.) FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft) 1.0 1.04 Y 630. 3088. 0. 3718. 2.27r78 6- 6 2.0 1.08 Y 1309. 2882. 0. 4190. 2.27 737. '3.0 1.12 Y 2039. 1571. -f 0. 3609. 2.25 642. 4.0 1.16 Y 2824. 1093. �- Y 0. 3917. 2.24 701. 5.0 1.21 Y 3669. 809. 0. 4478. 2.23 804. 6.0 1.25 Y 4563. 625. 0. 5188. 2.22 934. '7.0 1.26 Y 5348. 499. 0. 5846. 2.221054. 8.0 1.26 Y 6129. 408. 0. 6536. 2.221179. 9.0 1.26 Y 6914. 340.-11 0. 7254. 2.221309. 10.0 1.27 Y 7694. 287.�`' 0. 7982. 2.221441. 11.0 1.27 Y 8474. 247. 0. 8721. 2.21 1050. 1575. 12.0 1.27 Y 9254. 214. 0. 9468. 2.2 1140. 1711. 13.0 1.27 Y 10034. 187. 0. 10221. 2.2 1231. 1847. t14.0 1.27 Y 10814. 166.� 0. 10979. 2.2 1323. 1984. 15.0 1.27 Y 11593. 147. 0. 11741. 2.2 1415. 2122. 16.0 1.27 Y 12373. 132. 0. 12505. 2.2 1507. 2261. '17.0 1.27 Y 13153. 119. 0. 13272. 2. 1 1600. 2400. 18.0 1.25 N 13721. 108. 0. 13829. 2. 0 1675. 2512. 19.0 1.23 N 14225. 98. 0. 14323. 2. 9 1744•. 2616. 20.0 1.21 N 14708. 90. 0. 14798. 2. 8 1810. 2715. 11 INLET AND UDSEWER CALCULATIONS h %0INC. Engineering Consultants A division of The Sear -Brown Group ! 1 ! CLIENT �i' i "�V A-L '�--' LI���rY1 JOB NO. PROJECT - /ctS CALCULATIONS FOR LC �- ` %'•a�T,�) I u MADE BY,; DATE DATE I'1;.'I,r CHECKED BY- DATE SHEET OF T- - Lr �c_o.tS i t� 7'a S � 1 L(l�'Ze 1.0 �� Li ----------------------------------------- REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ------------------------------------------------------------------------------ *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ..................................... ON DATA 09-12-1996 AT TIME 13:05:29 *** PROJECT TITLE : Inlet #41 & #40 to Pond 395 ' *** RETURN PERIOD OF FLOOD IS 2 YEARS IRAINFALL INTENSITY FORMULA IS GIVEN I*** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS ---------------------------------------------------------------------- TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER ---------------------------------------------------------------------- AREA * C To (MIN) Tf (MIN) TC (MIN) INCH/HR CFS 3.00 0.10 0.00 0.00 10.00 3.79 0.38 2.00 1.00 0.10 0.10 0.00 0.00 0.00 0.00 10.00 10.00 3.79 3.79 0.38 0.38 4.00 0.05 0.00 0.00 5.00 5.00 0.25 ITHE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS 1 *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------ MANHOLE CNTRBTING RAINFALL RAINFALL 7------------------------------------ DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 3.00 0.00 10.00 0.00 0.25 5119.50 18.92 OK 2.00 0.00 10.18 0.00 22.95 5119.50 18.09 OK 1.00 0.00 0.00 0.00 22.95 5119.00 16.75 OK 4.00 0.05 5.00 5.00 0.25 19.50 18.92 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 1 SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH --------------ID- NO* - ID NO. ------------------ --(IN)-(FT) (IN) (FT) ----------------------------- (IN) (FT) (FT) 1.00 2.00 1.00 ROUND 23.67 /24.00 0.00 0.00 2.00 3.00 3.00 2.00 ROUND 5.09 ✓ 5.00 0.00 0.00 4.00 3.00 ROUND 5.05 ✓15.00 0.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ' ---------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. -- NUMBER ------------------------------------------------------------------------ CFS CFS FEET FPS FEET FPS FPS 1.0 23.0 23.9 1.57 8.66 1.69 0.09 7.31 1.20 V-OK 2.0 0.3 4.5 0.20 1.97 0.22 155.82 0.20 0.93 V-LOW 3.0 0.3 4.6 0.20 2.00 0.22 155.82 0.20 0.95 V-LOW IFROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- �' 1.00 1.11 16.40 16.00 5101.10 5101.00 OK 2.00 0.48 17.25 17.15 5101.00 5101.10 OK 3.00 0.50 17.26 17.26 0.99 5100.99 NO.0-- OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1.5 FEET ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS r ------------------------------------------------------------------------------- ct 'SEWER ID NUMBER SEWER SURCHARGED LENGTH LENGTH CROWN ELEVATION UPSTREAM DNSTREAM WATER ELEVATION UPSTREAM DNSTREAM FLOW CONDITION FEET FEET FEET FEET FEET FEET --------------------------------------------------------------------- 1.00 2.00 36.00 0.00 18.40 18.00 18.09 16.75 JUMP 21.00 21.00 18.50 18.40 18.92 18.09 PRSS'ED 3.00 0.10 0.10 18.51 18.51 18.92 18.92 PRSS'ED rPRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW I*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS UPST MANHOLE SEWER. JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ' ID NO ID NO. ELEV FT------FT--K-COEF -- -------- LOSS FT K COEF LOSS FT ID - -------- -------- ------- ---FT -- - 1.0 2.00 18.92 1.34 1.00 0.83 0.00 0.00 1.00 16.75 2.0 3.00 18.92 0.00 0.05 0.00 0.00 0.00 2.00 18.92 ' 3.0 4.00 18.92 0.00 0.25 0.00 0.00 0.00 3.00 18.92 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FRICTION LOSS=O MEANS FULL VHEAD-JCT IT IS NEGLIGIBLE LOSS K*INFLOW FULL VHEAD OR POSSIBLE ERROR DUE TO FRICTION LOSS INCLUDES JUMP. SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. .A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I I CLIENT — 1N'�C_�✓� Ftnrl'. [, Avg JOB NO. RWINC. PROJECT —7 kA S CALCULATIONS FOR - ' Engineering Consultants MADEBY��DATE D'12-&ECKED BY DATE SHEET-1 OF A division of The S,a -Brown Group - ZC) C �S C Iva i d rn c lip v�Si G MAC do - 1 Cam,,: i521a, �u9 y �GiS i I I I I _ 'To F i-J 31 } I .. c-V) �1rr&A''�,v ntd i:e `✓4 r ikA� �. ,h,�•� �� D� It C�IiC' q 3 REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ' *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ..................................... ON DATA 10-11-1996 AT TIME 08:39:51 *** PROJECT TITLE : ' *** RETURN PERIOD OF FLOOD IS 100 YEARS RAINFALL INTENSITY FORMULA IS GIVEN I*** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS ---------------------------------------------------------------------- 'TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER AREA * C To (MIN). Tf (MIN) TC (MIN) INCH/HR CFS ---------------------------------------------------------------------- 1.00 .0 .00/ XO � 0.0 X .04 2.00 O 1 0.0 1. 0.0 3.00 0. 1 0. 10 0 0. 4 ' 4.00 0 0 0 0 10. 0 0. 5.00 0.02 .0 .0 101 .2 THE SHORTEST DESIGN RAINF L DURATION IS FIVE MINUTES FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS *** SUMMARY OF HYDRAULICS AT MANHOLES -------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR -----CFS------FEET------FEET-------- ----------------------------------------- -- 1.00 0.00 0.00 0.00 53.00 17.50 15.25 OK 2.00 0.00 10.30 0.00 53.00 20.85 21.54 NO I r 44 3.00 0.00 10.18 0.00 35.80 21.66 22.52 NO 4.00 0.00 10.00 0.00 20.29 21.21 23.31 NO 5.00 0.02 5.00 1014.50 20.29 23.58 24.04 NO OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 r------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH NO. ID NO. (IN) (FT) (IN) (FT) (FT) --------------ID 12.00 -------------- 2.00 1.00 ------(IN)-(FT) ROUND 36.35 ----------------------------- 42.00 30.00 0.00 23.00 3.00 2.00 ROUND 28.30 30.00 30.00 0.00 r 34.00 4.00 3.00 ROUND 22.88 24.00 30.00 0.00 45.00 5.00 4.00 ARCH 22.45 24.00 19.00 30.00 rDIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET 'REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, ' EXISTTNG SIZE WAS USED -- -------- SEWER -------- DESIGN ------------------------------ FLOW NORMAL NORAML ------------ CRITIC CRITIC --------------- FULL FROUDE ---- COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------- 12.0 53.0 31.9 2.50 10.80 2.30 11.23 10.80 0.00 V-OK 23.0 35.8 41.9 1.78 9.60 2.03 12.44 7.29 1.32 V-OK 34.0 20.3 41.9 1.23 8.47 1.52 11.42 4.13 1.53 V-OK 45.0 20.3 25.7 1.37 8.70 1.61 7.32 6.20 1.39 V-OK r FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS '---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM o (FT) (FT) -------------------- 12.00 0.60 ------(FT)------(FT) 18.35 ---------------------------------- 17.29 0.00 -2.29 NO 23.00 1.04 18.56 17.87 0.00 0.48 NO 34.00 1.04 17.71 16.75 1.00 1.81 NO 45.00 1.15 20.79 19.13 1.21 0.50 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS 1 --------------------------------------------------=---------------------------- ' SEWER 'SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- r 12.00 177.00 177.00 20.85 19.79 21.54 15.25 PRSS'ED 23.00 66.00 66.00 21.06 20.37 22.52 21.54 PRSS'ED 34.00 92.00 92.00 20.21 19.25 23.31 22.52 PRSS'ED 45.00 144.00 144.00 22.37 20.71 24.04 23.31 PRSS'ED ' PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS- FT-----ID------FT- --SEWER -------------------------------------------------------- 12.0 2.00 22.35 9.29 1.00 1.81 0.00 0.00 1.00 15.25 23.0 3.00 24.34 0.50 0.60 0.50 0.00 0.00 2.00 22.35 ' 34.0 4.00 25.58 0.22 0.05 0.01 0.00 0.00 3.00 24.34 45.0 5.00 26.64 1.03 0.05 0.03 0.00 0.00 4.00 25.58 'BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A. MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 1 CLIENT. `{k —Ir k1f �'1kV` JOBNO. fi5q-0 TMINC. PROJE(T,, "�nnh��GN,CA S CALCULATIONS FOR b l CI cr: i_IX Engineering Consultants MADE BY cL'DATE Ly ECKEDBY DATE SHEET 1 OF A division of The Stu -Brown Group SC) -r�,� C1' v•2� L=oa/ "izca i Zw"(MCP �5 W n�r I� --------------------------------_____________ ' REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE ' DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT ---DENVER, COLORADO ------------------------------------------------------------------------------ *** EXECUTED'BY DENVER CITY/COUNTY USE ONLY ..................................... ON DATA 10-11-1996 AT TIME 12:19:04 ' *** PROJECT TITLE design point 50 ' *** RETURN PERIOD OF FLOOD IS 2 YEARS 1 RAINFALL INTENSITY FORMULA IS GIVEN *** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS ---------------------------------------------------------------------- TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS , ----------------------------------------------------------------------- 1.00 0.1 X .0 1 .0 9 0.3 ' 2.00 1 0 1. 0 3 9 0 3.00 0. 0 0 0 10 00 3.79 0 8 4.00 0. 0 0 0 0 11 1 .8 5.00 0 1 0.0 2; .9 .5 .2 ' THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS I*** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS 'MANHOLE ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET '------------------------------------------------------------------------------ 1.00 0.00 0.00 0.00 12.07 16.00 13.50 OK 2.00 0.00 24.11 0.00 12.07 19.50 17.64 OK 3.00 0.00 23.93 0.00 0.25 19.50 17.64 OK i 4.00 0.10 5.00 118.20 11.82 19.60 17.76 OK 5.00 0.10 23.93 2.50 0.25 19.50 17.69 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ' ----ID- NO* ----ID-NO_---- ------(IN)-(FT) ---- ----- (IN) (FT) ----- (IN) (FT) ----- ----- --------- (FT) 21.00 2.00 1.00 ROUND 14.03 15.00 24.00 0.00 32.00 3.00 2.00 ROUND 5.09 15.00 15.00 0.00 42.00 4.00 2.00 ROUND 21.43 24.00 24.00 0.00 ' 53.00 5.00 3.00 ROUND 5.05 15.00 15.00 0.00 'DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. 'SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ' 'ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER ------------------------------------------------------------------------------- CFS CES FEET FPS FEET FPS FPS 21.0 12.1 50.7 0.66 13.23 1.24 5.88 3.84 3.35 V-OK ' 32.0 0.3 4.5 0.20 1.97 0.22 81.95 0.20 0.93 V-LOW 42.0 11.8 16.0 1..28 5.58 1.23 0.12 3.76 0.94 V-OK 53.0 0.3 4.6 0.20 2.00 0.22 80.25 0.20 0.95 V-LOW ' FROUDE NUMBER=0 INDICATES THAT A PRESSURED FLOW OCCURS SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM (FT) (FT) (FT) (FT) ----------------------------- ---------- ---------- -------------------- c 21.00 5.00 16.40 13.00 1.10 1.00 NO--FC-''�+ 32.00 0.48 17.26 17.16 0.99 1.09 NO 42.00 0.50 16.50 16.50 1.10 1.00 NO � 151(-7 ' 53.00 0.50 17.35 17.35 0.90 0.90 NO C 4t�'>' s /;fo 4c iL S(.,% .cw' OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET 3wria,L *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH FEET '---------------------FEET------FEET------FEET------FEET LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET 21.00 68.00 0.00 18.40 15.00 ------ 17.64 13.50 JUMP 32.00 21.00 0.00 18.51 18.41 17.64 17.64 JCR ' 42.00 0.10 0.00 18.50 18.50 17.76 17.64 SUBCR 53.00 0.10 0.00 18.60 18.60 .17.69 17.64 SUBCR PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS 1 ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE --SEWER- - ------MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEVFTFT- K COEF LOSS FT K COEF LOSS FT----- ------ IDFT- ------------------------------- 21.0 2.00 17.87 4.14 1.00 0.23 0.00 0.00 1.00 13.50 ' 32.0 3.00 17.64 0.00 1.00 0.00 0.00 0.00 2.00 17.87 42.0 4.00 17.98 0.05 0.25 0.05 0.00 0.00 2.00 17.87 53.0 5.00 17.69 0.05 0.25 0.00 0.00 0.00 3.00 17.64 ' BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. 'FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K ' FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. [1 11 1 1 1 1 1 1 1 INC. Engineering Consultants A division of The Star Brown Group 0% CLIENT /I '�' NI J JOBNO.T¢l C I I PROJEC// CALCULATIONS FOR I z L� i_ '( MADE BY (L DATE l�" 5Lo CHECKED BY -DATE SHEET L OF d tc_-� 0�iµ2VAt-lr �c7x,d bw�l.�pl.l FA ?� oc� L—? le?''(30,i304-) ,t _' o � �"__--- Ei(�tiit5,,5>7 I �I i"v S � �li�oL� :'�-•, IZS LF 4 I REPORT OF STORM SEWER SYSTEM DESIGN 1 USING UDSEWER-MODEL VERSION 4 DEVELOPED 1 BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER 1 IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO 1 *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ..................................... ON DATA 09-12-1996 AT TIME 13:45:50 *** PROJECT TITLE : 1 Pond 396 outfall to the clearview channel 1 *** RETURN PERIOD OF FLOOD IS 100 YEARS RAINFALL INTENSITY FORMULA IS GIVEN *** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS ---------------------------- ----------------------- TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER ---------------------------------------------------------------------- AREA * C To (MIN). Tf (MIN) Tc (MIN) INCH/HR CFS 1 1.00 0.50 0.00 0.00 0.00 4.75 2.37 2.00 0.50 0.00 0.00 0.00 4.75 2.37 3.00 0.50 0.00 0.00 0.00 4.75 2.37 1 4.00 0.00 0.00 0.00 0.00 0.00 14.10 THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES 1 FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES WHEN WEIGHTED RUNOFF COEFF=>..2 , THE BASIN IS CONSIDERED TO BE URBANIZED WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS i *** SUMMARY OF HYDRAULICS AT MANHOLES 11 ------------------------------------------------------------------------------- 1 MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ----------------------------------------------------- 7------------------------- i 1.00 0.00 0.00 0.00 14.10. 11.50 6.56 OK 2.00 0.00 5.13 0.00 14.10 12.60 8.66 OK ' 3.00 0.00 0.00 0.00 14.10 12.00 9.41 OK 4.00 0.00 0.00 0.00 14.10 12.00 9.23 OK t*** OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION SUMMARY OF SEWER HYDRAULICS ' NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 8 ------------------------------------------------------------------------------- SEWER ID NUMBER MAMHOLE NUMBER UPSTREAM DNSTREAM SEWER SHAPE REQUIRED SUGGESTED EXISTING DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH -----------------------------------------------------------------=------------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ' 1.00 2.00 1.00 ROUND 23.87 27.00 0.00 0.00 2.00 3.00 2.00 ROUND 55.85 60.00 0.00 0.00 3.00 4.00 3.00 ROUND 22.89 24.00 0.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET 'REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY 'AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE ---------------------------------------------------------------------------- WAS USED SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. --NUMBER - ------------------------------------------------------------------------ CFS CFS FEET FPS FEET FPS FPS 1.0 14.1 19.6 1.41 5.37 1.30 5.90 3.55 0.86 V-OK 2.0 14.1 17.1 3.46 0.97 1.12 4.27 0.72 0.10 V-LOW ' 3.0 14.1 16.0 1.45 5.76 1.35 6.25 4.49 0.87 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ------------------------------ (FT)------(FT)------(FT) (FT) 1.00 0.40 7.05 6.55 -------------------- 3.30 2.7b OK 2.00 0.43 5.50 4.21 1.50 3.39 NO ' 3.00 0.50 8.60 8.60 1.40 1.40 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS --- ---------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION ' ------------------------- FEET FEET FEET FEET 1.00 12.5.00 0.00 -FEET------FEET 9.30 - ----------------------------- 8.80 8.66 6.56 SUBCR 2.00 3.00 300.00 0.00 0.10 0.00 10.50 10.60 9.21 9.41 10.60 9.23 8.66 9.41 SUBCR SUBCR PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW t I c-� ' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS --------------------------------------------------------------------------- 'UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT 1.0 2.00 8.85 2.10 1.00 0.20 0.00 0.00 1.00 6.56 2.0 3.00 9.42 0.57 0.05 0.00 0.00 0.00 2.00 8.85 '3.0 4.00 9.55 0.05 0.25 0.08 0.00 0.00 3.00 9.42 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE 't. NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. ' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 1 1 1 1 CLIENT �k i'��- -JOB NO. INC. PROJECT TI-2h JS A'f� qD� 16_fd4 -j+ CALCULATIONS FOR �� bFI x iE1� Engineering Consultants MADE Bvzji_ DATECL -CHECKED BY DATE SHEETOF A division of The Sear -Brown Croup ,V '" { =0 z< i�•� jJ At -----________________ r REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED ' BY DAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ..................................... ON DATA 09-12-1996 AT TIME 13:58:21 *** PROJECT TITLE Pond 399 to clearview channel ' *** RETURN PERIOD OF FLOOD IS 100 YEARS RAINFALL INTENSITY FORMULA IS GIVEN *** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS 1-------------------- ------------------------------------------ TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW -ID-NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS ------ ----- --------------- ---------- ---------- -------------------- 1.00 0.25 0.00 0.00 0.00 4.75 1.19 ' 2.00 0.25 0.00 0.00 0.00 4.75 1.19 3.00 0.25 0.00 0.00 5.00 24.00 6.00 ' THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES 'FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES AT THE 1ST DESIGN POINT, TC <=(IO+TOTAL LENGTH/180) IN MINUTES WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS r*** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ----------------------------------------------------------- � MINUTES INCH/HR CFS FEET------FEET-- 1.00 0.00 0.00 0.00 6.00 10.50 -------- 6.56 OK 2.00 0.00 5.00 0.00 6.00 12.00 9.94 OK 3.00 0.25 5.00 24.00 6.00 12.00 10.04 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER .SIZE RATIO= .8 r SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ' ------------------------------------------------------------------------------- 1.00 2.00 1.00 ROUND 14.54 18.00 0.00 0.00 2.00 3.00 2.00 ROUND 16.62 18.00 0.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- ' 1.0 6.0 10.6 0.81 6.20 0.94 5.13 3.40 1.36 V-OK 2.0 6.0 7.4 1.02 4.69 0.94 5.13 3.40 0.86 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM °s (FT) (FT) (FT) (FT) ----------- ----------------------------------------------------------- 1.00 1.02 9.00 7.30 1.50 1.70 NO 2.00 0.50 9.05 9.05 1.45 1.45 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS --------------------------------------- -------------------------- SEWER ----- SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET ------FEET ------FEET ------FEET ------FEET ------FEET --------- 1.00 167.00 17.55 10.50 8.80 9.94 6.56 JUMP 2.00 0.10 0.00 10.55 10.55 10.04 9.94 SUBCR lPRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- 'UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ----------------------------------------------------------------------- 1.0 2.00 10.12 3.38 1.00 0.18 0.00 0.00 1.00 6.56 2.0 3.00 10.22 - 0.05 0.25 0.04 0.00 0.00 2.00 10.12 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 11 0 I 11 I I I 1 i a 1 TMINC. Engineering Consultants A division of The Sear -Brown Group ! F' I 11 i 1, I I I I 10) CLIENT —JOB NO2F0_!0LL_ PROJECT CALCULATIONS FOR MADEBY 6CP1 DATE i__L4/cHECKED BY —DATE —SHEET --I— OF i + e IT 'I '�V 112- 0 &, t 61 Lf c" � �-_" �� [e- .L� ;o (, 7� I REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ------------------------------------------------- *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ..................................... ' ON DATA 09-12-1996 AT TIME 14:14:50 *** PROJECT TITLE : n *** RETURN PERIOD OF FLOOD IS 5 YEARS 1 RAINFALL INTENSITY FORMULA IS GIVEN *** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS ----------------- TIME --------------------------------------- OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS 1.00 0.25 0.00 0.00 0.00 4.75 1.19 2.00 0.25 0.00 0.00 0.00 4.75 1.19 3.00 0.25 0.00 0.00 0.00 4.75 1.19 ' 4.00 0.25 0.00 0.00 0.00 4.75 1.19 5.00 0.25 0.00 0.00 5.00 52.52 13.13 6.00 0.25 0.00 0.00 5.00 52.52 13.13 THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS I *** SUMMARY OF HYDRAULICS AT MANHOLES -------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ' -----------------------MINUTES INCH---------CFS------FEET------FEET 1.00 0. 0 ------------- 0 00 0 0' 52.52 10.50 ----------- 6.56 OK 2.00 3.00 _0.. ; 0. 0 _�._.-5- &-- 5.,.0/ 0 00 52.52 13.13 11.10 11.07 10.56 11.38 OK NO 4.00 uu 13.13 11.07 11.38 NO 5.00 _0.,. 5 .r'' 5 . 00 52 13.13 11.07 1145 NO 6.00 0 -T 5.00 _ 52 13.13 11.07 ,{ 11..45 j4 NO OK MEANS WATER ELEVATION IS OWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 1 -Q. Tt SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED -. EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ------------------------------------------------------------------------------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 1.00 2.00 1.00 ARCH 33.04 36.00 29.00 45.00 2.00 3.00 2.00 ARCH 2O.87 24.00 19.00 30.00 3.00 4.00 2.00 ARCH 2O.87 24'00 19.00 30.00 4.00 5.00 3.00 ARCH 22.29 24.00 19.00 30.00 5.00 6.00 4.00 ARCH 22.29 24.00 19.00 30.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. 'SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED -- ------- -------- -------- -------- -------- -------- -------- -------- ------- ------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. ------------------------------------------------------------------------------- NUMBER CFS CFS FEET FPS FEET FPS FPS 1.0 2.0 52.5 13.1 71.2 20.2 1.97 1.20 10.44 6.57 2.34 1.29 8.62 24.05 7.03 4.01 1.41 1.16 V-OK V-OK 3.0 13.1 20.2 1.20 6.57 1.29 6.01 4.01 1.16 V-OK 4.0 13.1 16.9 1.35 5.72 1.29 6-01 4.01 0.92 V-OK 5.0 13.1 16.9 1.35 5.72 1.29 6.01 4.01 0.92 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS 1 ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ------------ (FT) (FT) (FT) (FT) 1.00 0.98 7.64 7.05 1.04 1.04 NO i 2.00 3.00 0.71 0.71 8.20 8.20 7.70 7.70 1.29 1.29 1.82 1.82 NO Z-� 15 �nq�jn NO 4.00 0.50 8.22 8.22 1.27 1.27 NO Th�+'f�gl 5.00 0.50 8.22 8.22 1.27 1.27 NO iyr?+k;s, ' OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET S��" *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- iSEWER ID NUMBER SEWER SURCHARGED LENGTH LENGTH CROWN ELEVATION WATER ELEVATION FLOW UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION ------------------------------------------------------------------------------- FEET FEET FEET FEET FEET FEET i 1.00 61.00 61.00 10.06 9.46 10.56 6.56 PRSS'ED 2.00 70.00 70.00 9.78 9.28 11.38 10.56 PRSS'ED 3.00 70.00 70.00 9.78 9.28 11.38 10.56 PRSS'ED 4.00 0.10 0.10 9.80 9.80 11.45 11.38 PRSS'ED 5.00 0.10 0.10 9.80 9.80 11.45 11.38 PRSS'ED PRS S' ED= PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW i i*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ---------------- -------- ------------------ --------------- -------------------- - UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ----------------------------------------------------- ELEV FT FT K COEF LOSS FT K COEF LOSS- FTID 1.0 2.00 11.32 4.00 1.00 ----- ------FT 0.77 0.00 0.00 1.00 - 6.56 2.0 3.00 3.0 4.00 11.63 11.63 0.21 0.40 0.21 0.40 0.10 0.00 0.00 2.00 0.10 0.00 0.00 2.00 11.32 11.32 4.0 5.00 11.70 0.00 0.25 0.06 0.00 0.00 3.00 11.63 5.0 6.00 11.70 0.00 0.25 0.06 0.00 0.00 4.00 11.63 ' BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS FRICTION LOSS INCLUDES IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. i*** SUMMARY OF EARTH EXCAVATION VOLUME FOR COST ESTIMATE. i 1 ��z THE TRENCH SIDE SLOPE = 1 MANHOLE GROUND INVERT MANHOLE ID NUMBER ELEVATION ELEVATION HEIGHT FT FT - ------------------ -- FT -------------------------------------------------------- 1.00 10.50 7.05 3.45 2.00 11.10 7.64 3.46 3.00 11.07 8.20 2.87 4.00 11.07 8.20 2.87 5.00 11.07 8.22 2.85 ' 6.00 11.07 8.22 2.85 -------------------------- ---------------------------------------------------- 1 SEWER UPS BENCH W H DNS3,--BENCH WIDTH MEN WALL\ EARTH ID NUM R O GROUND A INVERT O GRO I T LENGTH CKNE�S- VO E T F I�; FT FT NC S C YD 1 0 .15 .43 .15 6.43 00 4.0 65.0:�\ .00 6.57 .5.01 7.63 >' 5`.,01 70'. 3.04 56,:'`1 00 6.57 i 5.01 �q-63. 5. 0l1 .70.00 , f 3.04 6.7 I 4. 0 .53' 5. 6..y�r3 5,:"O1� 0.10;'' 3.04 1 5 01, 6". 3 f;01 �53, ;5.01�\ 0.1'0 04 % 0�1 ,...; TOT EARTH VOi, FO EWER T NCHES = '178. Q,86 CUBI YARDS'' f� SEWE FLOW LIN IS DETE INED & THE USER / f TH LUM WAS IMATE TO HAVE BOTTO DTH=DI TER OR IDTH OF WEIY + 2 */B` B=O FE WHjW D ETER OR IDTH <Z48 INC S =T FEE N DI ETER OR` TH 48 IN HE ]TI IF OTTOM DTH <MI, W�% FT, MINIM WI H WAS USED. BAC FILL I) TH UNDER EWER`WAS SSUMED E ONE FOOT/ SEWE .WALL THICKNESS=EQIVLNT D.I TER IN I /12 +1AN INCHES I 1 1 1 _ ii3 CLIENT p" yrl�[`' � JOB NO.TM ' INC. PROJECT CALCULATIONS FOR Engineering Consultants MADE sYC.'°.7 DATE >� CHECKED BY- DATE SHEET L OF A divi.sinn of The Stu, -Brown Group 1 /� s� 1 - I�ca25� ✓Lti \hLD 64 1 I V p LF 1 ------------------------------------------------- REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED 1 BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH ' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ..................................... ON DATA 09-12-1996 AT TIME 14:33:53 *** PROJECT TITLE : DP60 and DP67 Upstream half k> ' *** RETURN PERIOD OF FLOOD IS 100 YEARS E� _j ; o� � t✓{S �v-j%z :'t :1 :.:- RAINFALL INTENSITY FORMULA IS GIVEN t �I *** SUMMARY OF SUBBASIN-RUNOFF PREDICTIONS I- I ------------------------------------------------ TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS 42cw, -'�IIOL T 1.00 0.25 0.00 0.00 0.00 4.75 1.19- 2.00 0.25 0.00 0.00 0.00 4.75 1.19 II� Zs�G 3.00 0.25 0.00 0.00 5.00 32.08 8.02 4.00 0.25 0.00 0.00 0.00 4.75 1.19 5.00 0.25 0.00 0.00 5.00 83.76 20.94 THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES 'WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS *** SUMMARY OF HYDRAULICS AT MANHOLES -------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION 1-----------------------MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------- 1.00 0.00 0.00 0.00 28.96 19.19 15.50 OK 2.00 0.00 5.08 0.00 28.96 19.15 15.20 OK ' 3.00 0.25 5.00 32.08 8.02 19.15 15.49 OK 4.00 0.00 5.00 0.00 20.94 19.32 16.70 OK 5.00 0.25 5.00 83.76 20.94 19.32 17.12 OK ' OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- 1 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. ------------------------------------------------------------------------------- (IN) (FT) (IN) (FT) (IN) (FT) (FT) ' 1.00 2.00 1.00 2.00 4.00 2.00 ROUND ROUND 29.99 33.00 23.32 24.00 0.00 0.00 0.00 0.00 3.00 3.00 2.00 ROUND 18.53 21.00 0.00 0.00 4.00 5.00 4.00 ROUND 26.55 27.00 0.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, 'EXISTTNG SIZE WAS USED -------- ----------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ' ID FLOW Q FULL Q DEPTH CFS CFS FEET VLCITY FPS DEPTH VLCITY VLCITY NO. --NUMBER ----------.---------- FEET FPS FPS -------- -------- 1.0 29.0. 37.5 1.81 -------- 6.97 -------- ----------------------- 1.78 7.10 4.88 0.97 V-OK 2.0 20.9 22.7 1.52 8.19 1.63 10.54 6.67 1.18 V-OK 3.0 8.0 11.2 1.09 5.08 1.05 5.34 3.33 0.93 V-OK 4.0 20.9 22.0 1.76 6.29 1.59 6.96 5.27 0.83 V-OK FROUDE NUMBER=O INDICATES THAT A ---------------------------------------------------------------------- PRESSURED FLOW OCCURS SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM (FT) ---------------------------------------------------------------------- (FT) (FT) (FT) 1.00 0.50 14.42 14.42 1.98 2.02 NO 2.00 1.00 15.07 14.67 2.25 2.48 OK 3.00 0.50 15.42. 15.42 1.98 1.98 NO 4.00 0.50 15.35 15.35 1.72 1.72 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT ------------------------------------------------------------------------------- LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ' -ID NUMBER LENGTH LENGTH UPSTREAM -FEET------FEET------FEET------FEET------FEET----_-FEET ----------- DNSTREAM UPSTREAM DNSTREAM CONDITION 1.00 0.10 0.00 17.17 17.17 15.20 -------------- 15.50 SUBCR 2.00 40.00 0.00 17.07 16.67 16.70 15.20 JUMP 3.00 0.10 0.00 17.17 17.17 15.49 15.20 SUBCR 4.00 0.10 0.00 17.60 17.60 17.12 16.70 SUBCR ' PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION ID NO. ID NO. ELEV FT FT BEND BEND LATERAL LATERAL K COEF LOSS FT K COEF LOSS MANHOLE ENERGY FT --------------- ID FT ----- --------------- 1.0 2.00 15.57 0.05 ---- ----- 0.05 ----------- ----- 0.02 0.00 0.00 ------------------- 1.00 15.50 1 NO 2.0 4.00 17.39 1.14 1.00 0.69 0.00 0.00 2.00 15.57 3.0 3.00 15.66 0.05 0.25 0.04 0.00 0.00 2.00 15.57 ' 4.0 5.00 17.55 0.05 0.25 0.11 0.00 0.00 4.00 17.39 1 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE 1 NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 i i 1 i i 1 1 171 1 1 1 1 i liT 1 ' CURRENT DATE: 09-12-1996 CURRENT TIME: 17:13:47 I I L] FHWA CULVERT ANALYSIS HY-8, VERSION 4.3 C SITE DATA U-------------------------- L INLET OUTLET CULVERT V ELEV. ELEV. LENGTH # (FT) (FT) -------------------------- (FT) 1 11. 17 / 10 . 50 J 150 . 00d 2 3 4 5 6 FILE DATE: 09-12-1996 FILE NAME: DP60 CULVERT SHAPE, MATERIAL, INLET ----------------------------------------------- BARRELS SHAPE SPAN RISE MANNING INLET MATERIAL (FT) (FT) n TYPE -------------------------------- 1 RCP ✓ 2.50 ✓ 2.50�-/ .013,/ CONVENTIONAL FILE: DP60 CULVE T HEADWATER ELEVATION (FT DISCHARGE 1 2 3 4 5 0 11.17 0.00 0.00 0.00 0.00 3 11.89 0.00 0.00 0.00 0.00 6 12.30 0.00 0.00 0.00 0.00 10 12.64 0.00 0.00 0.00 0.00 13 12.93 0.00 0.00 0.00 0.00 16 13.34 0.00 0.00 0.00 0.00 19 13.56 0.00 0.00 0.00 0.00 22 13.80 0.00 0.00 0.00 0.00 26 14.03 0.00 0.00 0.00 0.00 29 14.26 0.00 0.00 0.00 0.00 14. 0.00 0.00 0.00 0.00 430 60 �19.65 _ 0.00 0.00 0.00 0.00 The above Q and HW are for a point above the roadway. I4�� (_1� DATE: 09-12-1996 6 ROADWAY 0.00 19.20 0.00 19.25 0.00 19.29 0.00 19.31 0.00 19.34 0.00 19.36 0.00 19.38 0.00 19.39 0.00 19.41 0.00 19.43 0.00 19.44 0.00 0.00 /Z I C-7) JA-+0 'sn; 19 = io= .o5 2 CURRENT DATE: 09-12-1996 FILE DATE: 09-12-1996 ' CURRENT TIME: 17:13:47 FILE NAME: DP60 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 2.5 BY 2.5 ) RCP HEAD- INLET OUTLET 'DIS- CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH ' (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 11.17 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 -0.20 3 11.89 0.72 0.72 1-S2n 0.57 0.58 3.80 0.57 1.43 0.08 6 12.30 1.13 1.13 1-S2n 0.82 0.83 4.59 0.82 1.86 0.23 10 12.64 1.47 1.47 1-S2n 1.02 1.03 5.11 1.02 2.17 0.35 13 12.93 1.76 1.76 1-S2n 1.20 1.20 5.51 1.20 2.41 0.46 ' 16 13.34 2.01 2.17 2-M2c 19 13.56 2.26 2.39 2-M2c 1.37 1.54 1.35 1.48 5.94 6.32 1.35 1.48 2.61 2.78 0.57 0.66 22 13.80 2.51 2.63 2-M2c 1.72 1.60 6.74 1.60 2.94 0.75 26 14.03 2.77 2.86 2-M2c 1.92 1.72 7.10 1.72 3.08 0.84 ' 29 14.26 3.05 3.09 2-M2c 2.20 1.82 7.52 1.82 3.21 0.92 30 14.66 3.16 3.49 6-FFn 2.50 1.86 6.10 2.50 3.25 0.95 ' El. inlet face invert 11.17 El. inlet throat invert 0.00 ft ft El. outlet El. inlet invert 10.50 ft crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 100.00 INLET ELEVATION (FT) 11.17 OUTLET STATION (FT) 250.00 ' OUTLET ELEVATION (FT) 10.50 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0045 ' CULVERT LENGTH ALONG SLOPE (FT) 150.00 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR ' BARREL DIAMETER 2.50 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.013 ' INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE r 11 ' CURRENT DATE: 09-12-1996 ' CURRENT TIME: 17:13:47 4 FILE DATE: 09-12-1996 FILE NAME: DP60 TAILWATER REGULAR CHANNEL CROSS SECTION **************** ' BOTTOM WIDTH (FT) SIDE SLOPE H/V (X:1) 8.00 0.0 CHANNEL SLOPE V/H (FT/FT) 0.020 MANNING'S N (.01-0.1) 0.060 CHANNEL INVERT ELEVATION (FT) 10.30 CULVERT NO.1 OUTLET INVERT ELEVATION 10.50 FT ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (CFS) (FT) NUMBER (FT) (FPS) (PSF) ' 0.00 10.30 0.000 0.00 0.00 0.00 3.20 10.58 0.477 0.28 1.43 0.35 6.40 10.73 0.500 0.43 1.86 0.54 9.60 12.80 10.85 0.513 10.96 0.520 0.55 0.66 2.17 2.41 0.69 0.83 16.00 11.07 0.525 0.77 2.61 0.96 19.20 11.16 0.529 0.86 2.78 1.08 ' 22.40 11.25 0.531 0.95 2.94 1.19 25.60 11.34 0.533 1.04 3.08 1.30 28.80 11.42 0.534 1.12 3.21 1.40 29.96 11.45 0.534 1.15 3.25 1.44 ROADWAY OVERTOPPING DATA ROADWAY SURFACE GRAVEL EMBANKMENT TOP WIDTH (FT) 5.00 ' CREST LENGTH (FT) 100.00 OVERTOPPING CREST ELEVATION (FT) 19.20 �Ji RWINC. Engineering Consultants A division of The Sear -Brown Group E�X;S-�l � 2v CLIENT Gl �'' 1 c. btiH'L Y'�I4-•';�i% id,n JOB NO. S 59-a 1 PROJECT //� ��'.•. i,kv ci CALCULATIONS FOR' Lc, Y1..hTL' C IxiLR- UI W MADE BY 06N DATE Z:I vi J�CHECKED BY- DATE SHEET OF 0 I i Z_( 1 CURRENT DATE: 12-27-1995 ' CURRENT TIME: 16:24:29 DIS- CHARGE FLOW (cfs) 2 FILE DATE: 12-27-1995 FILE NAME: PONDS' PERFORMANCE CURVE FOR CULVERT # 1 - 2 ( 4.5 BY 4.5 ) RCP HEAD- INLET OUTLET WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 20.68 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 18 21.67 0.99 0.99 1-S2n 0.59 0.83 7.05 0.59 1.07 1.69 36 22.20 1.52 1.52 1-S2n 0.87 1.19 8.28 0.87 1.33 2.71 54 23.17 1.98 2.49 3-Mlt 1.06 1.47 1.98 3.61 1.50 3.61 72 24.04 2.39 3.36 3-Mlt 1.23 1.72 2.28 4.45 1.62 4.45 90 24.75 2.76 4.07 1-Slf 1.39 1.93 2.83 4.50 1.71 5.26 108 25.64 3.09 4.96 4-FFt 1.52 2.12 3.40 4.50 1.79 6.04 126 26.53 3.39 5.85 4-FFt 1.66 2.30 3.96 4.50 1.85 6.81 144 27.44 3.69 6.76 4-FFt 1.79 2.47 4.53 4.50 1.91 7.56 162 28.35 3.97 7.67 4-FFt 1.91 2.63 5.09 4.50 1.95 8.30 175 29,.01 4.18 8.33 4-FFt 1.99 2.74 5.50 4.50 1.98 8.83 El. inlet face invert 20.68 ft El. outlet invert 19.24 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft: SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 100.00 INLET ELEVATION (FT) 20.68 OUTLET STATION (FT) 220.00 ' OUTLET ELEVATION (FT) 19.24 - NUMBER OF BARRELS 2 ' SLOPE (V-FT/H-FT) CULVERT LENGTH ALONG SLOPE (FT) 0.0120 120.01 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR ' BARREL DIAMETER 4.50 FT BARREL MATERIAL CONCRETE ' BARREL MANNING'S N INLET TYPE 0.013 CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE r I 11 l 2-� --------------------------- ' REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 4 DEVELOPED BY ' JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ------------------------------------------------------------------------- ------------------------------------- ' *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ..................................... ON DATA 09-12-1996 AT TIME 17:46:23 ' *** PROJECT TITLE : existing/new extension of culvert on the end of Clearview drainageway ***. RETURN PERIOD OF FLOOD IS 100 YEARS ' RAINFALL INTENSITY FORMULA IS GIVEN *** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS ------------------------- ----------------------------------------- TIME OF CONCENTRATION MANHOLE BASIN OVERLAND. GUTTER BASIN RAIN I PEAK FLOW ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS --------------------------------------------------------------------- 1.00 _ 0.25 0.00 0.00 0.00 4.75 1.19 2.00 0.25 0.00 0.00 0.00 4.75 1.19 3.00 0.25 0.00 0.00 0.00 4.75 1.19 ' 4.00 0.25 0.00 0.00 0.00 4.75 1.19 5.00 0.25 0.00 0.00 5.00 72.00 18.00 THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES 'FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED ' WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS *** SUMMARY OF HYDRAULICS AT MANHOLES -------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ' -ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------7--------------------------------------------------------- 1.00 0.00 0.00 0.00 18.00 3.50 3.14 OK 2.00 0.00 5.26 0.00 18.00 4.50 4.13 OK 3.00 0.00 5.16 0.00 18.00 5.00 4.49 OK 1 4.00 0.00 5.00 0.00 18.00 6.00 5.00 OK 5.00 0.25 5.00 72.00 18.00 6.50 5.27 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS 1 NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 1 ------------------------------------------------------------------------------- SEWER ID NUMBER MAMHOLE UPSTREAM NUMBER DNSTREAM SEWER SHAPE REQUIRED DIA(HIGH) SUGGESTED DIA(HIGH) EXISTING DIA(HIGH) WIDTH ------------------------------------------------------------------------------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 21.00 2.00 1.00 ROUND 24.00 24.00 24.00 0.00 1 23.00 3.00 2.00 ROUND 22.97 24.00 0.00 0.00 34.00 4.00 3.00 ROUND 22.97 24.00 0.00 0.00 1 43.00 5.00 4.00 ROUND 25.09 27.00 0.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. 1 FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED ------------------------------------------------------------------------------- 1 SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS 1 ----------------------------------------------------------------------- 21.0 18.0 18.0 2.00 5.73 1.53 6.99 5.73 0.00 V-OK 23.0 18:0 20.3 1-47 7.30 1.53 6.99 5.73 1.09 V-OK 34.0 18.0 20.3 1.47 7.30 1.53 6.99 5.73 1.09 V-OK 1 43.0 18.0 22.0 1.55 6.16 1.48 6.49 4.53 0.92 V-OK FROUDE NUMBER=0 INDICATES THAT A PRESSURED FLOW OCCURS 1---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM -------------- ----°s-------(FT)--- (FT) (FT) (FT) 21.00 -0.01 1.62 - ----------------------------------- 1.64 0.88 -0.14 NO 23.00 0.80 1.96 1.61 1.04 0.89 NO 1 34.00 0.80 2.51 1.97 1.49 1.03 NO 43.00 0.50 2.35 2.35 1.90 1.40 NO 1 OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS 1------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION 1 FEET------FEETFEET FEET FEET FEET ------ -------- --------------------------------------------------- 21.00 137.00 0.00 3.62 3.64 4.13 3.14 PRSS'ED 1 23.00 43.80 43.80 3.96 3.61 4.49 4.13 PRSS'ED 34.00 68.00 68.00 4.51 3.97 5.00 4.49 PRSS'ED 43.00 0.10 0.10 4.60 4.60 5.27 5.00 PRSS'ED ' PRSS'ED=PRESSURED *** FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ---------------- UPST ------------------- MANHOLE SEWER ------------------------------------------- JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ---- -------- ELEV FT -------- FT -------- K COEF LOSS FT K COEF -------- -------- -------- LOSS FT -------- ID -------- FT -------- 21.0 2.00 4.64 0.99 1.00 0.51 0.00 0.00 1.00 3.14 23.0 3.00 5.00 0.28 0.16 0.08 0.00 0.00 2.00 4.64 1 34.0 4.00 5.51 0.43 0.16 0.08 0.00 0.00 3.00 5.00 43.0 5.00 5.59 0.00 0.25 0.08 0.00 0.00 4.00 5.51 'BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 1 I IJ 1 1 RWINC. Engineering Consultants A division of The Sean Brown Group r r r r r r i 1 r 1 r 1 1 ;1L caQ^f" CLIENT PROJECT MADE BYDATE CHECKED BY CALCULATIONS FOR _ DATE 10 3" ❑ o 05 Lt /-� 23 `-CJoa D Z"J S Cfl wry, :22 � 400 LF O�(nOa� I•U`7a JOB NO. OF 1 REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO I I I 11 i 1 L *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 10-11-1996 AT TIME 11:38:57 *** PROJECT TITLE : Golden Currant Blvd. *** RETURN PERIOD OF FLOOD IS 100 YEARS (Design flow hydrology not calculated using UDSEWER) *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS' ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 300.10 22.00 18.50 OK 2.00 300.10 25.00 23.78 OK 3.00 300.10 32.00 26.26 OK 4.00 146.10 38.00 33.18 OK 5.00 88.05 33.00 30.16 OK 6.00 88.05 33.00 30.28 OK 7.00 146.10 38.00 33.51 OK 8.00 88.05 33.00 30.16 OK 9.00 88.05 33.00 30.28 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 1 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH -- ____ ID NO. -------------------- ID NO. _ - _(IN) (FT) (1N) (FT) (IN) (FT) (FT) 12.00 2.00 1.00 ROUND ---------------------------------- 63.29 66.00 60.00 0.00 23.00 3.00 2.00 ROUND 63.29 66.00 60.00 0.00 34.00 4.00 3.00 ROUND 40.69 42.00 54.00 0.00 35.00 5.00 3.00 ROUND 39.96 42.00 54.00 0.00 36.00 8.00 3.00 ROUND 39.96 42.00 54.00 0.00 47.00 7.00 4.00 ROUND 40.69 42.00 54.00 0.00 56.00 6.00 5.00 ROUND 39.96 42.00 54.00 0.00 89.00 9.00 8.00 ROUND 39.96 42.00 54.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET i ZIT REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ' -------------------------------------•---------------------------------- SEWER ID DESIGN FLOW 0 FLOW FULL 0 NORMAL DEPTH NORAML VLCITY CRITIC DEPTH CRITIC FULL FROUDE COMMENT NUMBER ------------------------------------------------------------------------------- CFS CFS FEET FPS FEET VLCITY FPS VLCITY FPS NO. 12.0 300.1 261.1 5.00 15.28 4.59 15.90 15.28 0.00 V-OK 23.0 300.1 261.1 5.00 15.28 4.59 15.90 15.28 0.00 V-OK 34.0 146.1 311.8 2.17 19.28 3.55 22.32 9.19 2.62 V-OK 35.0 88.1 197.2 2.11 12.04 2.74 14.40 5.54 1.66 V-OK 36.0 88.1 197.2 2.11 12.04 2.74 8.68 5.54 1.66 V-OK 47.0 146.1 311.8 2.17 19.28 3.55 6.55 9.19 2.62 V-OK ' 56.0 88.1 197.2 2.11 12.04 2.74 14.40 5.54 1.66 V-OK 89.0 88.1 197.2 2.11 12.04 2.74 8.68 5.54 1.66 V-OK ' FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS L LEI I 1 1 ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ------------------x -------( (FT) ------------------------------------------- (FT) (FT) (FT) 12.00 1.00 17.50 13.50 2.50 3.50 OK 23.00 1.00 19.24 17.50 7.76 2.50 OK 34.00 2.50 24.59 19.24 8.91 8.26 OK 35.00 1.00 20.68 19.48 7.82 8.02 OK 36.00 1.00 20.68 19.48 7.82 8.02 OK 47.00 2.50 24.61 24.61 8.89 8.89 OK 56.00 1.00 20.78 20.78 7.72 7.72 OK 89.00 1.00 20.78 20.78 7.72 7.72 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION -------------------------------------------------------------------- FEET FEET FEET FEET FEET FEET 12.00 400.00 400.00 22.50 18.50 23.78 18.50 PRSS'ED 23.00 174.00 174.00 24.24 22.50 26.26 23.78 PRSS'ED 34.00 214.00 214.00 29.09 23.74 33.18 26.26 PRSS'ED 35.00 120.00 120.00 25.18 23.98 30.16 26.26 PRSS'ED 36.00 120.00 120.00 25.18 23.98 30.16 26.26 PRSS'ED 47.00 0.10 0.10 29.11 29.11 33.51 33.18 PRSS'ED 56.00 0.10 0.10 25.28 25.28 30.28 30.16 PRSS'ED 89.00 0.10 0.10 25.28 25.28 30.28 30.16 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ---------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 12.0 2.00 27.41 5.28 1.00 3.63 0.00 0.00 1.00 18.50 23.0 3.00 29.89 2.30 0.05 0.18 0.00 0.00 2.00 27.41 34.0 4.00 34.49 1.17 0.10 0.13 0.25 3.30 3.00 29.89 ' 35.0 5.00 30.64 0.24 1.08 0.51 0.00 0.00 3.00 29.89 36.0 8.00 30.64 0.24 1.08 0.51 0.00 0.00 3.00 29.89 47.0 7.00 34.82 0.00 0.25 0.33 0.00 0.00 4.00 34.49 56.0 6.00 30.76 0.00 0.25 0.12 0.00 0.00 5.00 30.64 ' 89.0 9.00 30.76 0.00 0.25 0.12 0.00 0.00 8.00 30.64 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. ' FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I 1 t INC CLIENT JOB NO. PROJECT CALCULATIONS FOR Engineering Consultants MADE BY DATE CHECKED BY DATE -SHEET-OF 1 �ti rr -- -------------- n A14,. . -- - - i 11 1 CURRENT DATE: 12-27-1995 ' CURRENT TIME: 16:24:29 �-�o 3 FILE DATE: 12-27-1995 FILE NAME: PONDS TAILWATER ******* REGULAR CHANNEL CROSS SECTION **************** BOTTOM WIDTH (FT) 10.00 SIDE SLOPE H/V (X:1) 0.0 CHANNEL SLOPE V/H (FT/FT) 0.000 MANNING'S N (.01-0.1) 0.023 1 CHANNEL INVERT ELEVATION (FT) 19.24 CULVERT NO.1 OUTLET INVERT ELEVATION 19.24 FT UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR ' (CFS) 0.00 (FT) 19.24 NUMBER 0.000 (FT) 0.00 (FPS) 0.00 (PSF) 0.00 18.00 20.93 0.145 1.69 1.07 0.02 36.00 21.95 0.142 2.71 1.33 0.03 54.00 22.85 0.139 3.61 1.50 0.05 1 72.00 23.69 0.135 4.45 1.62 0.06 90.00 24.50 0.132 5.26 1.71 0.07 108.00 126.00 25.28 26.05 0.128 0.125 6.04 6.81 1.79 1.85 0.08 0.08 _ 144.00 26.80 0.122 7.56 1.91 0.09 162.00 27.54 0.119 8.30 1.95 0.10 175.00 28.07 0.118 8.83 1.98 0.11 ' ROADWAY OVERTOPPING DATA ROADWAY SURFACE GRAVEL EMBANKMENT TOP WIDTH (FT) 20.00 CREST LENGTH (FT) 50.00 OVERTOPPING CREST ELEVATION (FT) 33.00 1 I ji 1 i3i ------------------------------------------------------------- ' REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES L.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH ' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 12-26-1995 AT TIME 12:37:54 ' *** PROJECT TITLE : Golden Currant Storm Sewer - 100 year Run *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ' ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ----------- ------------------------------------------------------ 1.00 320.00 22.00 17.20 OK 2.00 320.00 26.00. 24.56 OK 3.00 320.00 34.00 27.92 OK ' 4.00 145.00 38.00 32.42 OK 5.00 175.00 33.00 32.32 OK 6.00 175.00 33.00 32.47 OK 7.00 145.00 38.00 32.74 OK ' OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) ------------------------------------------------------------------------------- (FT) (FT) 12.00 2.00 1.00 ROUND 66.65 72.00 60.00 0.00 23.00 3.00 2.00 ROUND 66.65 72.00 60.00 0.00 34.00 4.00 3.00 ROUND 41.72 48.00 54.00 0.00 47.00 7.00 4.00 ROUND 49.54 54.00 54.00 0.00 35.00 5.00 3.00 ROUND 53.15 54.00 72.00 0.00 ' 56.00 6.00 5.00 ROUND 53.15 54.00 72.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. ' NUMBER -- CFS --- CFS FEET FPS FEET FPS FPS 12.0 320.0 --- 242.5 --..-..'.--- 5.00 16.30 ---- 4.65 -- 16.81 16.30 0.00 V-OK ' 23.0 34.0 320.0 145.0 242.5 289.5 5.00 2.25 16.30 18.22 4.65 3.54 16.81 23.88 16.30 9.12 0.00 2.41 V-OK V-OK 47.0 145.0 183.1 3.02 12.77 3.54 10.82 9.12 1.37 V-OK 35.0 175.0 394.3 2.80 13.52 3.60 9.90 6.19 1.62 V-OK 56.0 175.0 394.3 2.80 13.52 3.60 9.90 6.19 1.62 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS 10 NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ---------------------------------------------------------------------- % (FT) (FT) (FT) (FT) 12.00 23.00 1.00 1.00 17.50 19.24 13.50 17.50 3.50 9.76 3.50 3.50 OK OK 34.00 2.50 24.59 19.24 8.91 10.26 OK 47.00 1.00 24.59 24.59 8.91 8.91 OK 35.00 1.00 20.44 19.24 6.56 8.76 OK ' 56.00 1.00 20.44 20.44 6.56 6.56 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1.5 FEET ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET .FEET FEET FEET FEET 12.00 ---- ---- ---------- 400.00 -------------------------------------------------- 0.00 22.50 18.50 24.56 17.20 PRSS'ED 23.00 174.00 174.00 24.24 22.50 27.92 24.56 PRSS'ED 34.00 214.00 214.00 29.09 23.74 32.42 27.92`PRSS'ED 47.00 35.00 0.10 120.00 0.10 120.00 29.09 26.44 29.09 32.74 25.24 32.32 32.42 PRSSIED 27.92-PRSSIED ' 56.00 0.10 0.10 26.44 26.44 32.47 32.32 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY - IDNOID NO. ELEV FT ----------------------------------------------------------------------- FRCTION FT BEND BEND LATERAL LATERAL MANHOLE ENERGY K COEF LOSS FT K COEF LOSS FT ID FT 12.0 2.00 28.69 9.42 0.50 2.06 0.00 0.00 1.00 17.20 23.0 3.00 32.05 3.03 0.08 0.33 0.00 0.00 2.00 28.69 34.0 4.00 33.71 1.34 0.25 0.32 0.00 0.00 3.00 32.05 47.0 7.00 34.03 0.00 0.25 0.32 0.00 0.00 4.00 33.71 35.0 5.00 32.91 0.24 1.06 0.63 0.00 0.00 3.00 32.05 56.0 6.00 33.06 0.00 0.25 0.15 0.00 0.00 5.00 32.91 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. ' LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE ' NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. 1 1 A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. J 1 I ' CURRENT DATE: 12-27-1995 CURRENT TIME: 16:24:29 I I 11 1 FILE DATE: 12-27-1995 FILE NAME: PONDS FHWA CULVERT ANALYSIS HY-81 VERSION 4.0 C SITE DATA CULVERT SHAPE, MATERIAL, INLET U-------------------------- ----------------------------------- L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING # (FT) -------------------------- (FT) (FT) MATERIAL (FT) (FT) n 1 20.68 19.24 ----------------------------------- 120.01 2 RCP 4.50 4.50 .013 2 3 4 5 6 FILE: PONDS CULVERT HEADWATER ELEVATION (FT) DISCHARGE 1 2 3 4 5 0 20.68 0.00 0.00 0.00 0.00 18 21.67 0.00 0.00 0.00 0.00 36 22.20 0.00 0.00 0.00 0.00 54 23.17 0.00 0.00 0.00 0.00 72 24.04 0.00 0.00 0.00 0.00 90 24.75 0.00 0.00 0.00 0.00 108 25.64 0.00 0.00 0.00 0.00 126 26.53 0.00. 0.00 0.00 0.00 144 27.44 0.00 0.00 0.00 0.00 162 28.35 0.00 0.00 0.00 0.00 175 29.01 0.00 0.00 0.00 0.00 280 34.76 0.00 0.00 0.00 0.00 The above Q and HW are for a point above the roadway. 33 = INLET TYPE ------------ CONVENTIONAL DATE: 12-27-1995 6 ROADWAY 0.00 33.00 0.00 33.27 0.00 33.42 0.00 33.54 0.00 33.65 0.00 33.75 0.00 33.84 0.00 33.93 0.00 34.01 0.00 34.09 0.00 34.14 0.00 0.00 z i9 iy #/f+aA-i�/5r3 p ,zcZowi/�c�D/�77bJ l ND Zti W O O Nd. O � N N N n n1 n Y Y Y N N Ip ip VWN Wrm tONnNmhQYgNON^ nCOTO �'=tOnmOlO NrfN r N W� z aoNneNn m lnoNnYNnoY O^^ N Ov W. N N N N N h Y1 S b O i0 D i0 O ip0 ip Oip GiOOu I I 1 1 1 1 1 1 1I I I I I I I I U L L rn x =10 Ow U u -11 ^mN J< �iV J a-' J° u> N V Zb o sx9 a ;r1o<m IWW< °_ o v W c $W NIO YI mp 2 = twok z z� N wit =On O< I p U YI <Z Z W m W x J 2 2 < t n a z p .Y I J 2 - O b 7 N O 3.Z Q W U N O W J ? N3 G 1 % OO a b 3 u WLa Z o~ W x q$O U Nb U W Q r O I< > + d 'Fm W 3 Z J N 41 Z ON W a m 61 M. J ¢ Q i �3 N W N p _ Z;ex pp � 41Z 23 Od 0 Om ozIm <i Wm oW Z x< y1 J O u ZO OO WNP� ZJ�� Umzmo Z cr o p >N 6c�' <,� z� i QJ W< MW- W< NW x M d N 2 Z W J an Um C WK py O V Z< <N w W OJJ dO O pt X <V /�v^ `JS F NZW CZUV3V WOWC W NmW Uti SU p�WOC Q yJUZW Z NOyOIV2<J'J-<J IrNd<aU--UNQ C=UKm fU�V NN U4 = 1 ► �—Rom"—II-LO1�'-y�l W r. z -Z O I ;N O I Y 1Y to ,_ 1. 11I MM II 1 k a LLS n n yy I U W z F-10� vYi J 1 4 0 < 1 W 1'UCV W drp^ r W W ZOZ W pOWN U� tr � 6 rWU5 mZO Am- S Oz Y O N. W ~ W p o Y m o I < O 0 Z O c U O O ^ W F- V) W ' J Y a O N Z 3 o zp Orc Z 7O _O VZ. W S w ~ pQ 'NN 0 0 a_ < �u Oy and O Z O \U Q Q �Z NO t W C H mo n� OW JW z -10 m Jp O� UZ no W � 0 O2 H no VJi6 Q m W < ¢Npmu a W W �p;2\ SV •<N <JO Nm J W W yl W pJZ N Qp3 zd`Z< �FWO n Z<Vd :1 Xa x nIN n2 X II Xm Y n xN OW x5 p� W W S � I W +11 a Y W O N � I G e d I. IF o Z O Z � - I o U a 'It O , W Qom) d Z cI WI LLI �a �I mm Z = W V Wo Z VI W rW- N L C V. <jI G W C • u h �F- O10 W O< 0' mo W = Z N N W' I.. We N J J J m Y �O 4 W I' Q T 1 W I t. _l t Z I ✓ ' 1 � b p Z , H osF- inti N = U < W d y � 1 J W i > O 1 y go Q m J o_ U ' VWi f•' W W > Z e W , j O �1 t ----------------------------------------------------------------------------- 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OFiCOLORADO AT DENVER 1 ---SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------- ------- ---------------- ---- ------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 12-26-1995 AT TIME 12:17:01 *** PROJECT TITLE: The Ponds 1 *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: $ J..jL 7 6aK pr.a Pl). 5 rDe- pF (jospRp �c.ci T� 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: 1 INLET GRATE WIDTH (ft)= 11.50 INLET GRATE LENGTH (ft)= 4.83 INLET GRATE TYPE =Type 16 Grate Inlet 1 NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 3.00 GRATE OPENING AREA RATIO M = 0.60 1 IS THE INLET GRATE NEXT TO A CURB ?-- NO Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: iSTREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (%) = 2.00 1 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 1 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 49.00 1 GUTTER FLOW DEPTH (ft) = 1.11 FLOW VELOCITY ON STREET (fps)= 7.14 FLOW CROSS SECTION AREA (sq ft)= 24.73 GRATE CLOGGING FACTOR (%)= 50.00 1 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: 1 FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 175.00 1 IDEAL GRATE INLET CAPACITY (cfs)= 363.28 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 175.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 175.00 CARRY-OVER FLOW (cfs)= 0.00 1 11 No Text TV F. L ComkL zcx 6,,.Lv y-ul- . , 1 ' CURRENT DATE: 10 -19 -19 9 5 L L/,L �� Li.�/ sJ �� �`' WI,E DATE: 10 -19 -19 95 CURRENT TIME: 19:19:24 FILE NAME: PVLBOX ' FHWA CULVERT ANALYSIS HY-8, VERSION 4.3 ' C SITE DATA CULVERT SHAPE, MATERIAL, INLET U-------------------------- ----------------------------------------------- L V INLET ELEV. OUTLET ELEV. CULVERT LENGTH BARRELS SHAPE SPAN RISE MANNING INLET # (FT) -------------------------- (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 11.00 10.71 81.20 ------------------------------------------ 1 RCB 7.00 4.00 .013 7 CONVENTIONAL 2 3 4 5 6 SUMMARY OF CULVERT FLOWS (CFS) FILE: PVLBOX DATE: 10-19-1995 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 11.00 0 0 0 0 0 0 0 0 1 11.71 4 4 0 0 0 0 0 0 1 ' 12.19 8 8 0 0 0 0 0 0 1 12.57 12 12 0 0 0 0 0 0 1 12.88 16 16 0 0 0 0 0 0 1 13.16 20 20 0 0 0 0 0 0 1 ' 13.41 24 24 0 0 0 0 0 0 1 13.63 28 28 0 0 0 0 0 0 1 13.84 32 32 0 0 0 0 0 0 1 ' 14.04 36 36 0 0 0 0 0 0 1 14.22 40 40 0 0 0 0 0 0 1 17.50 116 116 0 0 0 0 0 OVERTOPPING I I I SUMMARY OF ITERATIVE SOLUTION ERRORS HEAD ERROR(FT) Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <1> TOLERANCE (FT) = 0.010 HEAD ELEV (FT) 11.00 11.71 12.19 12.57 12.88 13.16 13.41 13.63 13.84 14.04 14 22 FILE: PVLBOX TOTAL FLOW(CFS) 0 4 8 12 16 20 24 28 32 36 40 FLOW ERROR(CFS) 0 0 0 0 0 0 0 0 0 0 0 DATE: 10-19-1995 6 FLOW ERROR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <2> TOLERANCE (%) = 1.000 2 CURRENT DATE: 10-19-1995 FILE DATE: 10-19-1995 ' CURRENT TIME: 19:19:24 FILE NAME: PVLBOX PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 7 BY 4 ) RCB 'DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 11.00 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 -0.11 4 11.71 0.40 0.71 3-Mlt 0.17 0.22 0.64 0.90 0.45 0.90 8 12.19 0.56 1.19 3-Mlt 0.33 0.34 0.83 1.38 0.56 .1.38 12 12.57 0.72 1.57 3-Mlt 0.45 0.45 0.98 1.75 0.63 1.75 16 12.88 0.87 1.88 3-Mlt 0.53 0.55 1.11 2.06 0.68 2.06 20 13.16 1.01 2.16 3-Mlt 0.62 0.63 1.23 2.33 0.73 2.33 24 13.41 1.14 2.41 3-Mlt 0.70 0.72 1.33 2.57 0.77 2.57 28 13.63 1.26 2.64 3-Mlt 0.79 0.79 1.43 2.79 0.80 2.79 32 13.84 1.38 2.85 3-Mlt 0.85 0.87 1.53 3.00 0.83 3.00 36 14.04 1.49 3.04 3-Mlt 0.92 0.94 1.61 3.19 0.86 3.19 40 14.22 1.60 3.23 3-Mlt 0.99 1.01 1.70 3.37 0.88 3.37 El. inlet face invert 11.00 ft El. outlet invert 10.71 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft **** SITE DATA ***** EMBANKMENT TOE ************** UPSTREAM STATION (FT) 100.00 UPSTREAM ELEVATION (FT) 11.00 UPSTREAM EMBANKMENT SLOPE (X:1) 0.10 DOWMSTREAM STATION (FT) 182.00 DOWNSTREAM ELEVATION (FT.) 10.71 DOWNSTREAM EMBANKMENT SLOPE (X:1) 0.10 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE BOX BARREL SPAN 7.00 FT BARREL RISE 4.00 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.013 INLET TYPE CONVENTIONAL \ INLET EDGE AND WALL 1:1 BEVEL INLET DEPRESSION NONE 1 i C CURRENT DATE: 10-19-1995 ' CURRENT TIME: 19:19:24 3 141 FILE DATE: 10-19-1995 FILE NAME: PVLBOX TAILWATER REGULAR CHANNEL CROSS SECTION **************** BOTTOM WIDTH (FT) SIDE SLOPE H/V (X:1) 7.00 1.8 CHANNEL SLOPE V/H (FT/FT) 0.000 MANNING'S N (.01-0.1) 0.040 CHANNEL INVERT ELEVATION (FT) 10.60 CULVERT NO.1 OUTLET INVERT ELEVATION 10.71 FT ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (CFS) (FT) NUMBER (FT) (FPS) (PSF) ' 0.00 10.60 0.000 0.00 0.00 0.00 4.00 11.61 0.079 1.01 0.45 0.01 8.00 12.09 0.081 1.49 0.56 0.02 12.00 16.00 12.46 0.082 12.77 0.082 1.86 2.17 0.63 0.68 0.02 0.03 20.00 13.04 0.082 2.44 0.73 0.03 24.00 13.28 0.082 2.68 0.77 0.03 28.00 13.50 0.083 2.90 0.80 0.04 32.00 13.71 0.083 3.11 0.83 0.04 36.00 13.90 0.083 3.30 0.86 0.04 40.00 14.08 0.083 3.48 0.88 0.04 ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 50.00 ' CREST LENGTH (FT) 100.00 OVERTOPPING CREST ELEVATION (FT) 17.50 1 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY � 4L DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER l` SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------- - - -- -------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-16-1996 AT TIME 18:43:25 f*** PROJECT TITLE: ponds *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: "eL� D 2 �J y 1� ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 20.00 REQUIRED CURB OPENING LENGTH (ft)= 24.06 ' IDEAL CURB OPENNING EFFICIENCY = 0.96 ACTURAL CURB OPENNING EFFICIENCY = 0.94 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (°a) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION .(inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 13.47 GUTTER FLOW DEPTH (ft) = 0.39 FLOW VELOCITY ON STREET (fps)= 3.17 FLOW CROSS SECTION AREA (sq ft)= 1.94 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR (°c)= 5.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 5.92 / BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.17 FLOW INTERCEPTED (cfs)= 5.80 CARRY-OVER FLOW (cfs)= 0.37 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.17 FLOW INTERCEPTED (cfs)= 5.62 ----CARRY-OVER -FLOW (cfs)= ------- ----------------------------- 0.55 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY ' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND -------------------------------------------------------------------=---------- UD&FCD 'USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-16-1996 AT TIME 18:44:09 *** PROJECT TITLE: ponds *** I I 11 1 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: .le '40 too-yIz- INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE M = STREET MANNING N - GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: ' 20.00 54.43 0.56 0.54 1.00 2.00 0.016 1.50 2.00 WATER SPREAD ON STREET (ft) = 24.63 GUTTER FLOW DEPTH (ft) = 0.62 FLOW VELOCITY ON STREET (fps)= 4.47 FLOW CROSS SECTION AREA (sq ft)= 6.19 GRATE CLOGGING FACTOR (°s)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 5.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 15.57 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 27.72 FLOW INTERCEPTED (cfs) = 14.92 CARRY-OVER FLOW (cfs)= 12.80 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 27.72 FLOW INTERCEPTED (cfs)= 14.79 -CARRYOVER ------ - --- -CARRY-OVER FLOW (cfs)= 12.93 ------------------------------------- UDINLET: INLET AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND ------------------------------------------------------------------------------ UD&FCD GINGERY-RDB INC FT. COLLINS COLORADO.............................. rUSER:KEVIN ON DATE 09-16-1996 AT TIME 18:45:39 *** PROJECT TITLE: ponds *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER:�,O��� INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 35.00 REQUIRED CURB OPENING LENGTH (ft)= 34.49 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (%) 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 17.59 GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= 3.66 FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= 3.22 50.00 CURB OPENNING CLOGGING FACTOR(%)= 5.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 11.82 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 11.82 FLOW INTERCEPTED (cfs)= 11.79,E CARRY-OVER FLOW (cfs)= 0.03 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.82 FLOW INTERCEPTED (cfs)= 11.23 CARRY-OVER FLOW (cfs)= 0.59 1 44 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER -----SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------- ------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-16-1996 AT TIME 18:47:57 *** PROJECT TITLE: INLET DESIGN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: j 62, 2-y2 INLET HYDRAULICCS: ON A GRADE. I GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 8.40 ' IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (%) = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 5.33 GUTTER FLOW DEPTH (ft) = 0.23 FLOW VELOCITY ON STREET (fps)= 2.32 FLOW CROSS SECTION AREA (sq ft)= 0.41 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET. INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 0.95 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.95 FLOW INTERCEPTED (cfs)= 0.95 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.95 FLOW INTERCEPTED (cfs)= 0.85 CARRY-OVER FLOW (cfs)= 0.10 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED-BY-METRO DENVER CITIES/COUNTIES AND UD&FCD ----- - -- -- ----------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-16-1996 AT TIME 18:53:38 ' *** PROJECT TITLE: dp 60 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 J Ci INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (t) = STREET CROSS SLOPE (%) = STREET MANNING N = ' GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 11 I STREET FLOW HYDRAULICS: 1.00 2.00 0.016 1.50 2.00 WATER SPREAD ON STREET (ft) = 23.50 GUTTER FLOW DEPTH (ft) = 0.60 FLOW VELOCITY ON STREET (fps)= 4.34 FLOW CROSS SECTION AREA (sq ft)= 5.65 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(01)= 5.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 32.97 (cfs)= 24.45 (cfs) = 24.45 / (cfs)= 0.00 (cfs) = 24.45 (cfs)= 24.45 (cfs)= 0.00 I ,LT ------------------------------------------------------------------------------ 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---- -------- ------------------------------------------------------------ - USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON DATE 09-16-1996 AT TIME 18:55:58 1 *** PROJECT TITLE: dp 67 ✓ 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 ' INLET HYDRAULICS: IN A SUMP. 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 1 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 ' Note: The sump depth is additional depth to STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (°*) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 1 GUTTER WIDTH (ft) = 2.00 1 1 1 1 1 i i STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) T 25.00 GUTTER FLOW DEPTH (ft) = 0.63 FLOW VELOCITY ON STREET (fps)= 4.51 FLOW CROSS SECTION AREA (sq ft)= 6.38 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(°*)= 5.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 37.72 (cfs) = (cfs) = (cfs) = (cfs) = (cfs) = (cfs) = flow depth. 28.87 28.87 0.00 28.87 28.87 0.00 �I (L�5 11 11 H 1 11 I *** CURB OPENING INLET HYDRAULICS AND SIZING. INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 1.00 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 9.03 GUTTER FLOW DEPTH (ft) = 0.31 FLOW VELOCITY ON STREET (fps)= 2.65 FLOW CROSS SECTION AREA (sq ft)= 0.94 GRATE CLOGGING FACTOR M = 50.00 CURB, OPENNING CLOGGING FACTOR (%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.19 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 2.48 FLOW INTERCEPTED (cfs)= 2.48 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.48 FLOW INTERCEPTED (cfs)= 2.48 CARRY-OVER FLOW (cfs)= 0.00 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER -------------SUPPORTED -BY-METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-16-1996 AT TIME 19:02:47 ' *** PROJECT TITLE: dp 64 100 yEZ ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE ('k) = 1.00 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)-- 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.53 GUTTER FLOW DEPTH (ft) = 0.38 FLOW VELOCITY ON STREET (fps)= 3.05 ' FLOW CROSS SECTION AREA (sq ft)= 1.70 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR (%)= 5.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 21.26 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.16 FLOW INTERCEPTED (cfs)= 5.16 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= 5.16 5.16 CARRY-OVER FLOW (cfs)= 0.00 ----------------------------------------=------------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------- -------------------------------------------------------------- - USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON DATE 09-16-1996 AT TIME 19:04:10 ' *** PROJECT TITLE: dp 66 10 0-\ ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10. ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (°s) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 11.50 GUTTER FLOW DEPTH (ft) = 0.35 FLOW VELOCITY ON STREET (fps)= 2.93 ' FLOW CROSS SECTION AREA (sq ft)= 1.45 GRATE CLOGGING FACTOR 06)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.31 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 4.27 FLOW INTERCEPTED (cfs)= 4.27 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= 4.27 4.27 CARRY-OVER FLOW (cfs)= 0.00 1 i . ------------------------------------------------------------------------------ 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ------- - ---- -SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-16-1996 AT TIME 19:05:26 1 *** PROJECT TITLE: dp 70 Cn1 GVLr� 4"1 "rjG*�� L ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 i 1 1 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 20.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: 1 STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) = STREET MANNING N = ' GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 1 1 1 1 1 1 STREET FLOW HYDRAULICS: 1.00 2.00 0.016 1.50 2.00 WATER SPREAD ON STREET (ft) = 24.06 GUTTER FLOW DEPTH (ft) = 0.61 FLOW VELOCITY ON STREET (fps)= 4.41 FLOW CROSS SECTION AREA (sq ft)= 5.92 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 5.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 49.75 (cfs)= 26.26 (cfs)= 26.26 (cfs)= 0.00 (cfs)= 26.26 (cfs)= 26.26 (cfs)= 0.00 0 NO 1 11 EMERGENCY OVERFLOW CALCULATIONS ------------------------------------ HYDRO POND RESERVOIR FLOOD ROUTING AND FLOW ANALYSIS VERSION 3 DEVELOPED BY JAMES C.Y. GUO, PHD, P.E. DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF COLORADO AT DENVER ' EXECUTED BY DENVER CITY/COUNTY USE ONLY ....................................... ON DATE 08-15-1995 AT TIME 11:30:08 ----------------------------- *** PROJECT TITLE: THE PONDS AT OVERLAND TRAIL - PHASE 1 - POND 396 *** LAYOUT OF OUTLET WORKS: NO ORIFICE IS SPECIFIED. ' THERE ARE 1 WEIR(S) ---------------------------------------------------------------------- CREST ELEV CREST LENGTH WEIR COEFF SIDE SLOPE Z FEET ' ----------------------FEET------------------ FT/FT -- -------------------- 5118.50 10.00 3.00 4.00 ' *** STAGE -AREA -STORAGE CURVE FOR THE RESERVOIR: ' ---------------------------------------------------------------------- ELEVATION CONTOUR EQUIVALENT POND BANK CUMULATED (STAGE) AREA DIAMETER SIDE SLOPE STORAGE FEET ACRES FEET FEET/FEET ACRE -FT ---------------------------------------------------------------------- 5109.00 0.00 0.00 0.00 0.00 5110.00 0.56 176.24 88.12 0.28 5111.00 2.56 376.81 100.29 1.84 ' 5112.00 2.86 398.27 10.73 4.55 5113.00 3.84 461.49 31.61 7.90 5114.00 4.02 472.18 5.35 11.83 5115.00 4.78 514.89 21.35 16.23 ' 5116.00 3.70 453.00 30.94 20.47 5117.00 6.80 614.12 80.56 25.72 5118.00 4.32 489.49 62.32 31.28 ' 5119.00 7.88 661.09 85.80 37.38 5120.00 6.04 578.78 41.15 44.34 ' *** THE GIVEN INFLOW AND COMPUTED OUTFLOW HYDROGRAPHS ARE TABULATED AS FOLLOWS: ----------- ------------------- -------------------------- ------------------ IN RESERVOIR STAGE AND OUTFLOW TIME RATE STAGE STORAGE ORIFICE WEIR OUTFLOW MINUTE-- ----CFS------FEET ACRE -FT CFS 15.00 0.00 -------CFS--------CFS 5109.00 0.00 0.00 ------ 0.00 0.00 ' 30.00- 45.00 15.20 154.20 5109.56 0.16 5111.03 1.91 0.00 0.00 0.00 0.00 0.00 0.00 60.00 381.80 5112.85 7.44 0.00 0.00 0.00 75.00 293.80 5114.59 14.42 0.00 0.00 0.00 90.00 205.90 5115.78 19.59 0.00 0.00 0.00 ' 105.00 120.00 142.50 98.30 5116.51 5116.98 23.18 25.67 0.00 0.00 0.00 0.00 0.00 0.00 135.00 67.40 5117.30 27.38 0.00 0.00 0.00 150.00 46.60 5117.51 28.56 0.00 0.00 0.00 ' 165.00 32.90 5117.65 29.38 0.00 0.00 0.00 180.00 23.80 5117.76 29.97 0.00 0.00 0.00 195.00 16.10 5117.85 30.38 0.00 0.00 0.00 210.00 11.50 5117.88 30.67 0.00 0.00 0.00 ' 225.00 8.60 5117.92 30.87 0.00 0.00 0.00 240.00 6.80 5117.96 31.03 0.00 0.00 0.00 255.00 5.30 5117.98 31.16 0.00 0.00 0.00 ' 270.00 4.30 5118.00 31.26 0.00 0.00 0.00 285.00 3.40 5118.01 31.34 0.00 0.00 0.00 300.00 2.70 5118.02 31.40 0.00 0.00 0.00 315.00 2.10 5118.03 31.45 0.00 0.00 0.00 ' 330.00 1.70 5118.03 31.49 0.00 0.00 0.00 345.00 1.30 5118.05 31.52 0.00 0.00 0.00 360.00 1.10 5118.04 31.54 0.00 0.00 0.00 375.00 0.80 5118.05 31.56 0.00 0.00 0.00 390.00 0.70 5118.05 31.58 0.00 0.00 0.00 405.00 0.50 5118.05 31.59 0.00 0.00 0.00 420.00 0.40 5118.06 31.60 0.00 0.00 0.00 ' 435.00 0.20 5118.06 31.61 0.00 0.00 0.00 450.00 0.20 5118.05 31.61 0.00 0.00 0.00 465.00 0.10 0.00 0.00 0.00 0.00 0.00 NOTE: OUTFLOW WAS DETERMINED BY POND OUTLETS OUTFLOW = ORIFICE FLOW + WEIR FLOW ORIFICE FLOW = TOTAL FLOW RATE THROUGH THE ORIFICES ' WEIR FLOW = TOTAL FLOW RATE THROUGH THE WEIRS ' *** DISTRIBUTION OF WEIR *** FLOW AMONG WEIRS IS LISTED BELOW WEIR FLOW FOR THE. WEIR AT ELEVATION OF 5118.5 FEET --TIME-FLOW-RATE TIME -FLOW -RATE TIME -FLOW -RATE MINUTE CFS MINUTE CFS MINUTE CFS ------------------------------------------------------------ 15.00 0.00 30.00 0.00 45.00 0.00 60.00 0.00 75.00 0.00 90.00 0.00 105.00 0.00 120.00 0.00 135.00 0.00 ' 150.00 0.00 165.00 0.00 180.00 0.00 195.00 0.00 210.00 0.00 225.00 0.00 240.00 0.00 255.00 0.00 270.00 0.00 285.00 0.00 300.00 0.00 315.00 0.00 330.00 0.00 345.00 0.00 360.00 0.00 375.00 0.00 390.00 0.00 405.00 0.00 420.00 0.00 435.00 0.00 450.00 0.00 ' 465.00 0.00 0.00 0.00 0.00 0.00 le *** COMPARISON BETWEEN PEAK RELEASE RATE AND MAXIMUM ALLOWABLE REALEASE RATE ---------------------------------------------------------------------- AT OUTFLOW PEAK AT MAXIMUM ------------RELEASE RATE ALLOWABLE RATE ------------------------------------------------------ i5S r-P u 11 THE RELEASE FLOW RATE IN CFS STAGE IN FEET AT EACH RELEASE RATE STORAGE AT EACH RELEASE RATE ACRE -FT OUTFLOW DISTRIBUTION AMONG THE WEIRS) AT ELEVATION IN FEET OF 5118.50 0.00 5118.05 31.61 IiiffiIl] 12.00 5119.03 192AW- i] 11.62 r --------------------------------------- HYDRO POND RESERVOIR FLOOD ROUTING AND FLOW ANALYSIS VERSION 3 DEVELOPED BY ' JAMES C.Y. GUO, PHD, P.E. DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF COLORADO AT DENVER EXECUTED BY DENVER CITY/COUNTY USE ONLY ....................................... ON DATE 10-10-1996 AT TIME 21:32:29 *** PROJECT TITLE THE PONDS AT OVERLAND TRAIL - PHASE 1 - POND 397 *** LAYOUT OF OUTLET WORKS: INO ORIFICE IS SPECIFIED. THERE ARE 1 ---------=------------------------------------------------------------ WEIR(S) CREST.ELEV CREST LENGTH WEIR COEFF SIDE SLOPE Z FEET FEET 1V:ZH FT/FT ---------------------= 5137.00 --------------------------------- 20.00 3.00 --------------- 4.00 *** STAGE -AREA -STORAGE CURVE FOR THE RESERVOIR: ELEVATION CONTOUR EQUIVALENT POND BANK CUMULATED (STAGE) AREA DIAMETER SIDE SLOPE STORAGE FEET ACRES ------ -- FEET FEET/FEET ACRE -FT 5132.00 0.00 0.00 0.00 0.00 5133.00 2.12 176.24 88.12 0.28 5134.00 2.20 189.32 6.54 0.80 5135.00 2.32 203.82 7.25 1.28 5136.00 2.40 212.28 4.23 1.76 5137.00 2.56 220.82 4.22 2.24 5138.00 2.68 357.64 68.46 4.50 *** THE GIVEN INFLOW AND COMPUTED OUTFLOW HYDROGRAPHS ARE TABULATED AS FOLLOWS: -------------------------------------------------------------------------- INFLOW RESERVOIR STAGE AND OUTFLOW TIME RATE STAGE STORAGE ORIFICE WEIR OUTFLOW MINUTE CFS FEET ACRE -FT CFS CFS CFS -------------------------------------------------------------------------- 0.00 0.00 5132,00 0.00 0.00 0.00 0.00 10.00 2.00 5132.00 0.01 0.00 0.00 0.00 20.00 25.00 5132.75 0.20 0.00 0.00 0.00 30.00 115.00 5134.81 1.16 0.00 0.00 0.00 40.00 194.00 5137.81 2.68 0.00 66.21 66.21 . 50.00 221.00 5138.34 4.90 0.00 122.68 122.68 60.00 173.00 5137.59 4.21 0.00 196.56 196.56 70.00 136.00 5137.44 3.05 0.00 146.21 146.21 80.00 104.00 5137.28 2.55 0.00 85.75 85.75 90.00 83.00 5137.16 2.31 0.00 63.51 63.51 100.00 68.00 5137.00 2.24 0.00 33.43 33.43 110.00 58.00 5136.90 2.09 0.00 17.70 17.70 I� M 120.00 49.00 5136,85 130.00 37.00 5136.70 2.01 1.93 0.00 4.00 0.00 0.00 4.00 0.00 140.00 26.00 5136.62 1.56 0.00 0.00 0.00 150.00 7.00, 5136.46 1.37 0.00 0.00 0.00 160.00 0.00 5136.34 1.34 0.00 0.00 0.00 170.00 0.00 5136.20 1.28 0.00 0.00 0.00 180.00 0.00 5136.05 1.18 0.00 0.00 0.00 190.00 0.00 5136.00 200.00 0.00 5135.76 1.12 1.01 0.00 0.00 0.00 0.00 0.00 0.00 NOTE: OUTFLOW WAS DETERMINED BY POND OUTLETS OUTFLOW = ORIFICE FLOW + WEIR FLOW ORIFICE FLOW = TOTAL FLOW RATE THROUGH THE ORIFICES WEIR FLOW = TOTAL FLOW RATE THROUGH THE WEIRS *** DISTRIBUTION OF WEIR FLOW AMONG WEIRS IS LISTED BELOW WEIR FLOW FOR THE WEIR AT ELEVATION OF 5137 FEET ------------------------------------------------------------ TIME FLOW RATE TIME FLOW RATE TIME FLOW RATE �. MINUTE CFS MINUTE ------------------------------------------------------------ CFS MINUTE CFS 10.00 0.00 20.00 40.00 66.21 50.00 0.00 122.68 30.00 0.00 60.00 196.56 70.00 146.21 80.00 85.75 90.00 63.51 100.00 33.43 110.00 17.70 120.00 4.00 130.00 0.00 140.00 0.00 150.00 0.00 *** COMPARISON BETWEEN PEAK RELEASE RATE AND MAXIMUM ALLOWABLE REALEASE RATE ---------------------------------------------------------------------- AT OUTFLOW PEAK AT MAXIMUM --------------------------------- ------RELEASE RATE ALLOWABLE RATE ---------------------------- THE RELEASE FLOW RATE IN CFS STAGE IN FEET AT EACH RELEASE RATE 196.56 5138.34 145.00 5137.25 STORAGE AT EACH RELEASE RATE ACRE -FT 4.90 4.40 OUTFLOW DISTRIBUTION AMONG THE WEIR(S) AT ELEVATION IN FEET OF 5137.00 196.56 i 1 I 1 ------- HYDRO POND RESERVOIR FLOOD ROUTING AND FLOW ANALYSIS VERSION 3 DEVELOPED BY JAMES C.Y. GUO, PHD, P.E. DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF COLORADO AT DENVER EXECUTED BY DENVER CITY/COUNTY USE ONLY ....................................... ON DATE 09-16-1996 AT TIME 14:32:29 *** PROJECT TITLE THE PONDS AT OVERLAND TRAIL - PHASE 1 - POND 399 *** LAYOUT OF OUTLET WORKS: NO ORIFICE IS SPECIFIED. THERE ARE 1 WEIR(S) ---------------------------------------------------------------------- CREST ELEV CREST LENGTH WEIR COEFF SIDE SLOPE Z ------- -.---FEET FEET----------------1V:ZH ------------- FT/FT 5114.00 20.00 3.00 ------------------- 4.00 *** STAGE -AREA -STORAGE CURVE FOR THE RESERVOIR: ---------------------------------------------------------------------- ELEVATION CONTOUR EQUIVALENT POND BANK CUMULATED (STAGE) AREA DIAMETER SIDE SLOPE STORAGE --------------------- FEET ACRES FEET FEET/FEET ACRE -FT 5109.00 5110.00 ------------------------------------------------- 0.00 0.00 2.12 342.90 0.00 171.45 0.00 1.06 5111.00 2.20 350.81 159.45 2.22 5112.00 2.32 358.71 126.69 3.48 5113.00 2.40 367.80 120.30 4.84 5114.00 2.56 376.81 113.93 6.32 5115.00 2.68 386.90 97.19 7.90 *** THE GIVEN INFLOW AND COMPUTED OUTFLOW HYDROGRAPHS ARE TABULATED AS FOLLOWS: -------------------------------------------------------------------------- INFLOW RESERVOIR STAGE AND OUTFLOW TIME RATE STAGE STORAGE ORIFICE WEIR OUTFLOW MINUTE CFS FEET ACRE -FT CFS CFS CFS -------------------------------------------------------------------------- 30.00 0.00 5109.00 0.00 0.00 0.00 0.00 60.00 17.00 5109.38 0.35 0.00 0.00 0.00 90.00 22.70 5110.05 1.17 0.00 0.00 0.00 120.00 24.50 5110.90 2.15 0.00 0.00 0.00 150.00 25.70 5111.76 3.18 0.00 0.00 0.00 180.00 25.80 5112.60 4.25 0.00 0.00 0.00 210.00 25.00 5113.33 5.30 0.00 0.00 0.00 240.00 24.10 5113.98 6.31 0.00 0.00 0.00 270.00 23.30 5114.39 6.97 0.00 15.75 15.75 300.00 22.40 5114.51 7.10 0.00 23.51 23.51 i 330.00 21.40 5114.46 7.10 0.00 20.43 20.43 360.00 20.40 5114.49 7.08 0.00 22.11 22.11 390.00 19.50 5114.45 7.05 0.00 _ 19.17 19.17 420.00 18.60 5114.44 7.05 0.00 19.03 19.03 450.00 480.00 17.50 16.40 5114.44 5114.40 7.01 6.99 0.00 0.00 18.90 16.14 18.90 16.14 510.00 15.40 5114.41 6.96 0.00 17.05 17.05 540.00 14.40 5114.37 6.93 0.00 14.43 14.43 570.00 13.50 5114.36 6.92 0.00 13.90 13.90 600.00 12.60 5114.34 6.91 0.00 12.67 12.67 630.00 0.00 5114.27 6.72 0.00 8.95 8.95 660.00 690.00 0.00 0.00 5114.10 0.00 6.50 0.00 1.86 1.86 0.00 0.00 0.00 0.00 NOTE: OUTFLOW WAS DETERMINED BY POND OUTLETS OUTFLOW = ORIFICE FLOW + WEIR FLOW ORIFICE FLOW = TOTAL FLOW RATE THROUGH THE ORIFICES WEIR FLOW = TOTAL FLOW RATE THROUGH THE WEIRS *** DISTRIBUTION OF WEIR FLOW AMONG WEIRS IS LISTED BELOW *** WEIR FLOW FOR THE WEIR AT ELEVATION OF 5114 FEET -------------------- --------------------------------------- TIME FLOW RATE TIME FLOW RATE TIME FLOW RATE MINUTE ------------------------------------- CFS MINUTE CFS CFS 30.00 0.00 60.00 0.00 ---MINUTE 90.00 ----- 0.00 120.00 0.00 150.00 0.00 180.00 0.00 210.00 0.00 240.00 0.00 270.00 15.75 300.00 23.51 330.00 20.43 360.00 22.11 390.00 19.17 420.00 19.03 450.00 18.90 480.00 16.14 510.00 17.05 540.00 14.43 ' 570.00 13.90 600.00 12.67 630.00 8.95 660.00 1.86 690.00. 0.00 0.00 0.00 *** COMPARISON BETWEEN PEAK RELEASE RATE AND MAXIMUM ALLOWABLE REALEASE RATE ---------------------------------------------------------------------- AT OUTFLOW PEAK AT MAXIMUM RELEASE RATE ALLOWABLE RATE rTHE ---------------------------------------------------------------------- RELEASE FLOW RATE IN CFS 23.51 16.00 STAGE IN FEET AT EACH RELEASE RATE 5114.51 5114.41 ' STORAGE AT EACH RELEASE RATE ACRE -FT 7.10 6.97 ' OUTFLOW DISTRIBUTION AMONG THE WEIR(S) AT ELEVATION IN FEET OF 5114.00 23.51 15.99 I 1, 1 6t, �l I I I u I I 1 1 1 11 1 ENERGY DISSIPATION STRUCTURE DOCUMENTATION O ol 1 i i I A r I e I Section c ion 6 Stilling basin for pipe or open channel outlets (Basin VI) aE stilling basin developed in these tests is an impact -type energy dissipator, contained in a relatively small boxlike structure, which re- quires no tail water for successful performance. Although the emphasis in this discussion is placed on use with pipe outlets, the entrance structure may be modified for use with an open channel en. trance. Generalized design rules and procedures are presented to allow determining the proper basin size and all critical dimensions for a range of dis- charges up to 339 cubic feet per second and velocities up to about 30 feet per second. Greater discharges may be handled by constructing multiple units side by side. The efficiency of the basin in ac- complisbing energy losses is greater than a hydraulic jump of the same Froude number. The development of this short impact -type basin was initiated by the need for some 50 or more stilling structures on a single irrigation project. The need was for relatively small basins providing energy dissipation independent of a tail water curve or tail water of any ]rind. Since individual model studies on 50 small stilling structures were too costly a procedure, tests were made on a single setup which was modified as necessary to generalize the design for the range of expected operations. Test Procedure Hydraulic models. Hydraulic models were used to develop the stilling basin, determine the dis- charge limitations, and obtain dimensions for the various parts of the basin. Basins 1.6 to 2.0 feet wide were used in the tests. The inlet pipe was 6 s inches, inside diameter, and was equipped with a slide gate well upstream from the basin entrance so that the desired relations between head, depth, and velocity could be obtained. The pipe was transparent so that backwater effects in the pipe could be studied. Discharges of over 3 cubic feet per second and velocities up to 15 feet per second 81 j61. 167 Z- I 11 I I 82 could be obtained during the tests. Hydraulic model -prototype relations were used to scale up s the results to predict performance for discharges up to 339 second -feet and velocities up to 30 feet per second. The basin was tested in a tail box containing gravel formed into a trapezoidal channel. The size of the gravel was changed several times dur- ing the tests. The outlet channel bottom was slightly wider than the basin and had 1:1 side slopes. A tail gate was provided at the down- stream end to evaluate the effects of tail water. Development of basin. The shape of the basin evolved from the development tests was the result of extensive investigations on many different arrangements. These tests are discussed briefly to show the need for the various parts of the adopted design. With the many combinations of discharge, velocity, and depth possible f the ainco mingfl w, it became apparent durinroearly tests at some device was needed at the stilling basin entrance to convert the many possible flow patterns into a common pattern. The vertical hanging baffle proved to be this device, Figure 42. Regardless of the depth or velocity of the incoming flow (within the prescribed limits) the flow after striking the baffle acted the same as any other combination of depth and velocity. Thus, some of the variables were eliminated from the problem. The effect of velocity alone was then investi- gated, and it was found that for velocities 30 feet per second and below the performance of the structure was primarily dependent on the dis- charge. Actually, the velocity of the incoming flow does affect the performance of the basin, but from a practical point of view it could be elimi- nated from consideration. Had this not been done, an excessive amount of testing would have been required to evaluate and express the effect of velocity. For velocities of 30 feet per second or less the basin width W was found to be a function of the discharge, Figure 42. Other basin dimensions are related to the width. To determine the necessary width, erosion test results, judgment, and operating experiences were all used, and the advice of laboratory and design personnel was used to obtain the finally determined limits. Since no definite line of demarcation between a "too wide" or "too narrow" basin exists, It was HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS necessary to work between two more definite lines,w- hon in Figure 42 as the upper and lower limits. These lines required far less judgment to deter- mine than a single intermediate line. Various basin sizes, discharges, and velocities were tested taking note of the erosion, wave heights, energy losses, and general performance. When the upper and lower limit lines had been estab- lished, a line about midway between the two was used to establish the proper width of basin for various discharges. The exact line is not shown because strict adherence to a single curve would result in difficult -to -use fractional dimensions. Accuracy of this degree is not justifiable. Figure 43 shows typical performance of the recommended stilling basin for the three limits discussed. It is evident that the center photograph (B) represents a compromise between the upper limit operation which is very mild and the lower limit operation which is approaching the unsafe range. Using the middle range of basin widths, other basin dimensions were determined, modified,, and made minimum by means of trial and error tests on the several models. Dimensions for nine different basins are shown in Table 11. These should not be arbitrarily reduced since in the in- terests of economy the dimensions have been reduced as much as is safely possible. Performance of basin. Energy dissipation is initiated by flow striking the vertical hanging baffle and being turned upstream by the horizontal portion of the baffle and by the floor, in vertical eddies. The structure, therefore, requires no tail water for energy dissipation as is necessary for a hydraulic jump basin. Tail water as high as dos Figure 42, however, will improve the per- formance by reducing outlet velocities, providing a smoother water surface, and reducing tendencies toward erosion. Excessive tail water, on the other hand, will cause some flow to pass over the top of the baffle. This should be avoided if possible. The effectiveness of the basin is best illustrated by comparing the energy losses within the struc- ture to those which occur in a hydraulic jump. Based on depth and velocity measurements made in the approach pipe and in the downstream chan- nel (no tail water), the change in momentum was computed as explained in Section 1 for the hy- draulic jump. The Froude number of the in - STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS I _ d • ',•�4 ., i I i I- Il- --_T .. -- v II II <Q .° s SEC. A -A II I� 3 `ao__ II II i ��- k �tl -e o, -PLAN ------ b-------- k- PLAN a -----� ----� ty� (equals tw with 8•max) t"-- 4 Dia.(min)-- �. -3°Fillet v =_1 i -t'------ b Io cr cL o0 Z (4emirl) :o: k v I oo7�oa o :.:. ___ _______ i _ I o0 O - -: SECTION Bedding ' SECTION STILLING BASIN DESIGN ALTERNATE END SILL F W W LL z 0 Nam 1, lagMEN mom Now ���r��� 60 so .. zoo wlJL r1 KUC Ir4 C.F.S. DISCHARGE LIMITS FIGURE 42. Impact -type energy dissipator (Basin VI). 83 84 HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS 1 6-If I i 1 1 I ■ ■ I 1 STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS ■■■■■■■n■■■■■■■■■■■ . ■■■■■■n■.■■■■■.-■-n ■ .■MEMO■■■■■ ■■■■■W"M■■■■■■■■■ ■■■M■NWAMn■■n■n n■Mr■Mm■n■n■■ ■MnM■n■■n . ■WWMrim■■■■M■n■■■ ■vi■uM■n■■■n■■M■n 05AMIMnnM■n■01111 ■EMMEMn■M■n■■M■n■ oJWM■n■■■■n■■■■n Mn■M■nn■n■■nm . FAM■■■n■■M■■■■■n M■MEM■n■nM■M■nn, ■ms M■MnnnMM■■n F,• 9 FIGURE 44.-Comparison of energy !oases—impacf basin and hydraulic jump. coming flow was computed using D,, obtained by converting the flow area in the partly full pipe into an equivalent rectangle as wide as the pipe diameter. Compared to the losses in the hydraulic jump, Figure 44, the impact basin shows greater efficiency in performance. Inasmuch as the basin would have performed just as efficiently had the flow been introduced in a rectangular cross section, the above conclusion is valid. Basin Design Table 11. and the key drawing, Figure 42, may be used to obtain dimensions for the usual struc- ture operating within usual ranges. However, a further understanding of the design limitations may help the designer to modify these dimensions when necessary for special operating conditions. The basin dimensions, Columns 4 to 13, are a function of the maximum discharge to be expected, Column 3. Velocity at the stilling basin entrance need not be considered, except that it should not greatly exceed 30 feet per second. 85 Columns 1 and 2 give the pipe sizes which have been used in field installations. However, these may be changed as necessary. The sug- gested sizes were obtained by assuming the ve- locity of flow to be 12 feet per second. The pipes shown would then flow full at maximum discharge or they would flow half full at 24 feet per second. The basin operates as well whether a small pipe flowing full or a larger pipe flowing partially full is used. The pipe size may therefore be modified to fit existing conditions, but the relation be- tween structure size and discharge should be maintained as given in the table. In fact, a pipe need not be used at all; an open channel having a width less than the basin width will perform equally as well. The invert of the entrance pipe, or open chan- nel, should be held at the elevation shown on the drawing of Figure 42, in line with the bottom of the baffle and the top of the end sill, regardless of the size of the pipe selected. The entrance pipe may be tilted downward somewhat without af- fecting performance adversely. A limit of 15° is a suggested maximum although the loss in efficiency at 20' may not cause excessive erosion. For greater slopes use a horizontal or sloping pipe (up to 150) two or more diameters long just up- stream from the stilling basin. For submerged conditions a hydraulic jump may be expected to form in the downstream end of the pipe sealing the exit end. If the upper end of the pipe is also sealed by incoming flow, a vent may be necessary to prevent pressure fluctu- ation in the system. A vent to the atmosphere, say one -sixth the pipe diameter, should be installed upstream from the jump. The notches shown in the baffle are. provided to aid in cleaning out the basin after prolonged nonuse of the structure. When the basin has silted level full of sediment before the start of the spill, the notches provide concentrated jets of water to clean the basin. If cleaning action is not considered necessary the notches need not be constructed. However, the basin is designed to carry the full discharge, shown in Table 11, over the top of the baffle if for any reason the space beneath the baffle becomes clogged, Figure 45C. Although performance is obviously not as good, it is acceptable. rl I I HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS F n � 1 u a _ _ + �. i, l V W {Iy �\ c 9 3 � \ m �' rn _y �3 E u i I il [J STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS 87 4 A —Erosion of channel bed —standard wall and end sill. B—Less erosion occurs with alternative end sill and IV wall design. ' C--Flow appearance when entire maximum discharge Passes over top of bale during emergency operation. ' FrcuaE 45.—Channel erosion and emergency operation for maximum tabular discharge —impact type energy dissipator—no tail water (Basin VI). With the basin operating normally, the notches provide some concentration of flow passing over the end sill, resulting in some tendency to scour, Figure 45A. Riprap as shown on the drawing will provide ample protection in the usual in- stallation, but if the best possible performance is desired, it is recommended that the alternate end sill and 45° end walls be used, Figures 45B and 42. The extra sill length reduces flow concentration, scour tendencies, and the height of waves in the downstream channel. ' Figure 46 shows the performance of a prototype structure designed from Table 11. The basin. designed for a maximum discharge of 165 second - feet, is shown discharging 130 second -feet at a higher than recommended entrance velocity of about 39 feet per second. Performance is entirely satisfactory. Conclusions and Recommendations The following procedures and rules pertain to the design of Basin VI: 1. Use of Basin VI is limited to installa- tions where the velocity at the entrance to the stilling basin does not greatly exceed 30 feet per second. 2. From the maximum expected discharge, determine the stilling basin dimensions, using 3 Table 11, Columns to 13. The use of mul- tiple units side by side may prove economical in some cases. 3. Compute the necessary pipe area from the velocity and discharge. The values in Table 11, Columns 1 and 2, are suggested sizes based on a velocity of 12 feet per second and the desire that the pipe run full at the 88 HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS 165 dschar,e given in Column :3. Regardless of 4. Although tail water is not necessary for the pipe size chosen, maintain the relation successful operation, a moderate depth of tail between discharge and balsa❑ size given in waiter will improve the performance. For the table. An open channel entrance may be best performance set the basin so that used in plaice of a pipe.. The approach maximum tail water does not exceed d+9, channel should be narrower than the basin 2 -.I invert elevation the same as the pipe. Figure 42. ►A ? /_-ik �_ sue! :�✓/.�� `_f., L� _��a{�- _ +.1�'sr-..�_�' f 4 �.'L.� iL'i liF ;V ✓. sn- Discharge 130 c.f.s. (80 per- cent of maximum) FiecaE 46.—Prototype per- formance of Basin VI. I 11 1 1 1 STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS 5. Suggested thicknesses of various parts of the basin are given in Columns 14 to 18, Table 11. 6. The suggested sizes for the riprap pro- tective blanket, given in Column 19 of Table 11, show the minimum size of individual stones which will resist movement when critical velocity occurs over the end sill. Since little is known regarding the effect of interlocking rock pieces, most of the riprap should consist of the sizes given or larger. An equation (34), (35) for determining minimum stone sizes, which appears from a limited number of experiments and observations to be accurate, is given below Vb=2.61/d where Vb=bottom velocity in feet per second d=diameter of rock in inches The rock is assumed to have a specific gravity 89 of about 2.65. The accuracy of the equation is not known for velocities above 16 feet per second. 7. The entrance pipe or channel may be tilted downward about 15° without affecting performance adversely. For greater slopes use a horizontal or sloping pipe (up to 15°) two or more diameters long just upstream from the stilling basin. Maintain proper elevation of invert at entrance as shown on the drawing. 8. If a hydraulic jump is expected to form in the downstream end of the pipe and the pipe entrance is sealed by incoming flow, install a vent about one -sixth the pipe diameter at any convenient location upstream from the jump. 9. For best possible operation of basin use, an alternative end sill and 45° wall design are shown in Figure 42. Erosion tendencies will be reduced as shown in Figure 45. IL 1 114) CLIENT C JOB N0.5= -O 11 1 INC. PROJECT �� S CALCULATIONS FOR i C—"' � z ^' f • -1, •`i i�s:'r�t-. Engineering Consultants MADE BV DATE CHECKED BY— DATE SHEET OF ` A division of The Sear -Brown Group �i'1.�)%G '�� (l•� .-1- "T. �. i ,:, .. �dj rr'� c.. I V i z �tiL -�`ln d —r� S, �'c�� —f%w ,%—;L`���"it•-1XXyy ,�4._ir�C. 1 �L�- ��b� C.'C '"�-4� { V W r 1 • r ?o - 1 1 1 1 INC. Engineering Consultants A division of The Sear -Brown Group 1 in 1 1 1 1 1 1 (-�1 CLIENT l� JOB NO. � —mil PROJECTD�16401 CALCULATIONS FOR �'t�',✓:i-"�( 5�� �l.+�i�,k";, MADE BYQ DATER CHECKED BV_ DATE SHEET Z OF It ZLo% iz � 0.55 � _ 4: D- 5, 5* l o = II I <Z-AY _ z ,Z____o__ INC. Engineering Consultants A division nfThe Sear -Brown Group CLIENT �'YY UYll..l i'1'l,tt ;,f:-s.�.. `-+ JOB NO. 0, PROJECT T -I '�"- -(� �1Fa.6, CALCULATIONS FOR AC-.1 -A�� MADEBV CCt{t{ DATE_CHECKED BY- DATE SHEET 3 OF i i .- I / I = 0, 1 lv 'Ij. G J 1 I I 11 1 Worksheet T3 Worksheet for Rectangular Channel ' Project Description Project File c:lhaestadifmwlponds.fm2 Worksheet Pond 396 impact basin Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth 11 Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Bottom Width 14.00 ft Discharge 322.70 efs Results Depth 2.08 ft .-�- Flow Area 29.14 ft° Wetted Perimeter 18.16 ft Top Width 14.00 ft Critical Depth 2.55 ft Critical Slope 0.002727 ft/ft Velocity 11.08 ft/s Velocity Head 1.91 ft Specific Energy 3.99 ft Froude Number 1.35 Flow is supercritical. 09H0196 03,02:13 PM FkowMaster v5.13 Haested Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 Worksheet Worksheet for Rectangular Channel Project Description Project File c:\haestad\fmwlponds.fm2 I ,.. I Worksheet Clearview impact basin !� fk f v lt,:-�-w Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth ' Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Bottom Width 8.00 ft Discharge 61.00 cfs Results Depth 1.06 ft ---Q4-- ' Flow Area 8.49 ft' Wetted Perimeter 10.12 ft Top Width 8.00 ft ' Critical Depth 1.22 ft Critical Slope 0.003287 ft/ft Velocity Velocity Head 7.19 0.80 ft/s ft Specific Energy 1.86 ft Froude Number 1.23 ' Flow is supercritical. 1 ' a9r10,96 nc 03:06:02 PM Haestad Methods, I. 37 Brookside Road Waterbury, CT 067ce (2(33) 755.1666 FlowMaster v5.13 Page 1 of 1 1�5 I 11 1 I I WATER QUALITY CAPTURE VOLUME CALCULATIONS I I 11 RWINC. ' Engineering Consultants A division of The Sear -Brown Group I I CLIENT _Ni.Vi'\�iA',lLl,j-'�C'� r/' L.-�^ JOB NO.�-^ PROJECT I[.'>'.>'-P-•�(riy'^q/��=V:. CALCULATIONSFOR�.CJC^i1 MADE BY L DATE 1 f ` I I� CHECKED BY DATE SHEET y OF r �' i .i )'..i:i '-' I � � r � 7 �'Yl �. � �-.y11�-("`t � t= r.:� �j'_'-/�•�,\,�-L� 1 � f In G � 1 1 I CI G`t' I m ^ ' _-r—rZ-o 'i3 w) rTV� !T'"L r� (� � � � :wf i�:7`� � is "�.1• < r ='.� ' f IZ,420 L+ Ae- t L `IT i j- t-' i 'T'-cr T J �`� 1. �- u : ; fi /r �-6 CLIENT JOB NO. A INC. PROJECT CALCULATIONSFOR Engineering Consultants MADE BY it DATEi fHECKED BY- DATE -SHEET OF A division of The Sear -Brown Group 12, ti t L+ �A) flzt L c'-V- 41 -S CA 2- Arc-, PZA-�i� L 7, I I CLIENT INC, PROJECT CALCULATIONSFOR Engineering Consultants MADE BYed— DATS_LjLtCHECKED BY —DATE —SHEET OF A division of The Sean Brown Group rv, .Z u- - I I I F I T I I 11 Ta .Z 1 1 1 l 1 1 1 i. 1 r DRAINAGE CRITERIA MANUAL (V. 3) Water Qua Level (inch volume for Threaded 1 Gravel -112' 3' Rock) u /Perforated Il ,Ffter Fabric Water Quality (Min. 3 ft) Riser Pipe (See Detail) Notes: 1. The outlet �' ;' ;•' ; :: :p b: pipe shall tie sized to ntrol i;?:r.'•'i�;::�: :::•.":;:,. overflow into the concrete riser. +:: ;::; :•; :; :•ai}i.' 2. Alternate designs indude a Hydrobrake outlet (or orifice designs) as brig as th by ulic performance matches thi STRUCTURAL BMPs 1� i, r 8rate for Lockable w G Storms Pipe—► Base to Prevent configuration. OUTLET WORKS Hydrpstatic Uplift NOT TO SCALE Notes: 1. Minimum number of holes = 8 2. Minimum hole diameter = 1B• dia Maximum 1-12"diameter Air Vent in Threaded Cap Rows O O 00- Water Quality 4 Outlet Holes O O O 4- Ductile Iron or Q Steel Pipe WATER QUALITY RISER PIPE NOT TO SCALE Number of PerloraGad Columns " X Riser � Hole Diameter, in. -. Diameter (in.) 1Y4' 1/Y 3/4' 1• 4 8 8 _ 6" 12 12 9 8 16 16 .12 8 10 20 20.,14 10. 12 24 24 I8 12 Hole Diameter Area of Hole (in.) (in.2 ) 1/8 0.013 1/4 0.049 3/8 0.110 1/2 0.196 5/6 _ _ _ _ _._ 0.307 3/4 _. __. _ _. 0.442 7/8 0.601 1 0.785 FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY s-1-t9sz EXTENDED DETENTION BASIN UDFCD WATER QUALITY RISER PIPE NOT TO SCALE Number of PerloraGad Columns " X Riser � Hole Diameter, in. -. Diameter (in.) 1Y4' 1/Y 3/4' 1• 4 8 8 _ 6" 12 12 9 8 16 16 .12 8 10 20 20.,14 10. 12 24 24 I8 12 Hole Diameter Area of Hole (in.) (in.2 ) 1/8 0.013 1/4 0.049 3/8 0.110 1/2 0.196 5/6 _ _ _ _ _._ 0.307 3/4 _. __. _ _. 0.442 7/8 0.601 1 0.785 FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY s-1-t9sz EXTENDED DETENTION BASIN UDFCD FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY s-1-t9sz EXTENDED DETENTION BASIN UDFCD )J 0 1 C v E i. J \ O 0.4 v E 0 > 0.e m m U . a 0.1 3 0.0 0.0. 0.0, 0.0' DRAINAGE CRITERIA MANUAL(V. 3) SOLUTION: Required Area per I ri rip FAAA INN FAR WA AV, , /,A FAA rAJA NA VAA FA I WAAFAA 08i rAAmi 1AA room Orr N%% 111�■ r4A ' - -- - -- v.cu u.qv u.eu ,.0 �2:0'r 4.0 6 Required Area per Row (In.2) - • .. ; -� r •J r.• r-. Source: Douglas County Storm Drainage and TwMical CnbM 19w. FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME Rev. 3-1-1994 UDFCD to DRAINAGE CRITERIA MANUAL (V. 3) 0 I 0.1 o r � m m t m � 3 ram. s-t-1992 UDFCD Or' 0.1 STORMWATER QUALITY MANAGEMENT i I ortenc &Hot ed De r Drat e ntior i time Basi (Dry) l D 1 m.,tentk -Hour n Pon Drain Is (Wf Time ) .000 000 u lu ZO 30 1 50 60 70 60 90 100 Percent Impervious Area in Tributary Watershed Source: Urbanos, Guo, Tudwr (1989) Note: Watershed inches of runoff shall aodv to the entire watershed tributary to the B Facility. FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (WQCV) EROSION CONTROL CALCULATIONS RBD, Inc. ie(& 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 RAINFALL PERFORMANCE STANDARD EVALUATION #589-011 PROJECT: Ponds at Overland STANDARD FORM CALCULATED BY: CCH DATE: 09/16/96 DEVELOPED ERODIBILIT Asb Lsb Ssb Lb Sb PS SUBBASIN ZONE (ac) (ft) (%) (ft) (%) (%) 502 moderate 1.12 500 3.2 501 moderate 1.08 705 3.3 500 moderate 0.6 350 1.5 601 moderate 1.88 765 2.8 607 moderate 2.55 880 3.5 602 moderate 2.04 835 2.75 603 moderate 1.85 1020 2.75 604 moderate 0.63 678 0.9 600 moderate moderate 1.08 0.92 255 -165 0.75 0.9 605 606 moderate 0.48 538 1.7 364 moderate 9.24 550 0.5 399 moderate 3.41 400 9.3 700 moderate 1.90 1200 0.8 701 moderate 1.74 820 1.0 608 moderate 1.26 530 2.0 607 moderate 2.55 580 1.9 609 moderate 2.80 600 1.9 610 moderate 4.04 375 1.2 611 moderate 0.44 50 1.3 Total 41.61 150 1.8 76.4 r-AAivirLt UMLL.ULA i 1UNO Lb = sum(AiLi)/sum(Ai) = (1.12 x 500 +... + 0.44 x 50)/ 41.61 150 ft Sb = sum(AiSi)/sum(Ai) = (1.12 x 3.20 +... + 0.44 x 1.30)/ 41.61 1.8 % PS (during construction) = 76.4 (from Table 8A) PS (after construction) = 76.4/0.85 = 89.9 RBD, Inc. 194 EFFECTIVENESS CALCULATIONS #589-011 PROJECT: Ponds at Overland STANDARD FORM B CALCULATED BY: CCH DATE: 09/16/96 Erosion Control C-Facto P-Facto Comment Number Method Value I Value 6 Gravel Filter 1 0.8 placed at area inlets 8 Silt Fence Barrier 1 0.5 down wind and down stream 1 Bare Soil - Packed and smooth 1 1 5 Straw Bale Barrier 1 0.8 swales and channels 9 Asphalt/Concrete Pavement 0.01 1 paved and constructed 21 Temporary Vegetation 0.45 1 SUB PS AREA BASIN (ac) / Site 76.4 41.61 SUB SUB AREA Practice C *A P - A Remarks BASIN AREA (ac) DURING CONSTRUCTWN 502 1.12 5 1.12 0.89 Straw Bales 501 1.08 21 1.08 1.08 temporary vegetation 500 0.6 21 0.60 0.60 temporary vegetation 601 1.88 21 1.88 1.88 temporary vegetation 607 2.55 21 2.55 2.55 temporary vegetation 602 2.04 21 2.04 2.04 temporary vegetation 603 1.85 21 1.85 1.85 temporary vegetation 604 0.63 21 0.63 0.63 temporary vegetation 600 1.08 21 1.08 1.08 temporary vegetation 605 0.92 21 0.92 0.92 temporary vegetation 606 0.48 21 0.48 0.48 temporary vegetation 364 9.24. 6 9.24 7.39 gravel filter 399 3.41 6 3.41 2.73 gravel filter 700 1.90 9 1.90 1.90 asphalt 701 1.74 9 1.74 1.74 asphalt 608 1.26 21 1.26 1.26 temporary vegetation 607 2.55 21 2.55 2.55 temporary vegetation 609 2.80 21 2.80 2.80 temporary vegetation 610 4.04 21 4.04 4.04 temporary vegetation 611 0.44 21 0.44 0.44 temporary vegetation Cnet = [1.08x1.00+...+1.85x1.00]/2.55 = 0.55 Pnet = 0.8x[1.08x1.00+...+1.85x1.00]/2.55 0.43 , 613 EFF = (1-C"P)100 = (1-0.55'0.43)100 76.35 REID, Inc. F8 EFFECTIVENESS CALCULATIONS #589-011 PROJECT: Ponds at Overland STANDARD FORM B CALCULATED BY: CCH DATE: 09/16/96 Erosion Control C-Facto P-Facto Comment Number Method Value Value 9 Asphalt/Concrete Pavement 0.01 1 paved and constructed 14 Established Grass Ground Cover - 50% 0.08 1 SUB PS AREA BASIN N (ac) Site 89.9 41.61 SUB SUB AREA Practice C *A P * A Remarks BASIN AREA (ac) AFTER CONSTRUCTION 502 1.12 14 0.09 1.12 Established Grass Ground Cover - 50 501 1.08 9 0.01 1.08 Asphalt/Concrete Pavement 500 0.6 14 0.05 0.60 Established Grass Ground Cover - 50 601 1.88 14 0.15 1.88 Established Grass Ground Cover - 50 607 2.55 14 0.20 2.55 Established Grass Ground Cover - 50 602 2.04 14 0.16 2.04 Established Grass Ground Cover - 50 603 1.85 14 0.15 1.85 Established Grass Ground Cover - 50 604 0.63 14 0.05 0.63 Established Grass Ground Cover - 50 600 14 14 0.09 0.07 1.08 Established Grass Ground Cover - 50 0.92 Established Grass Ground Cover - 50 1.08 0.92 605 606 0.48 14 0.04 0.48 Established Grass Ground Cover - 50 364 9.24 14 0.74 9.24 Established Grass Ground Cover - 50 399 3.41 14 0.27 3.41 Established Grass Ground Cover - 50 700 1.90 9 0.01 1.08 Asphalt Pavement 701 1.74 9 0.02 1.74 Asphalt/Concrete Pavement 608 1.26 14 0.10 1.26 Established Grass Ground Cover - 50 607 2.55 14 0.20 2.55 Established Grass Ground Cover - 50 609 2.80 14 0.22 2.80 Established Grass Ground Cover - 50 610 4.04 14 0.32 4.04 Established Grass Ground Cover - 50 611 0.44 14 0.04 0.44 Established Grass Ground Cover - 50 Cnet = [1.080.01+...+2.04x0.08]/2.55 = 0.07 Pnet = [1.08x1.00+...+2,04x1.00]/2.55 = 0.01 EFF = (1-C*P)100 = (1-0.07*0.01)100 = 99.92 > 76.40 RBD, Inc. 15l EROSION CONTROL CONSTRUCTION SEQUENCE #589-011 PROJECT: Ponds at Overland STANDARD FORM C CALCULATED BY: - CCH DATE: 09/16/96 SEQUENCE FOR 1996 ONLY Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. YEAR 96 97 OVERLOT GRADING MONTH O N D J F M A M J J A S WIND EROSION CONTROL Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers 211 fl! Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting r Sod Installation Nettings/Mats/Blankets Other 0`7`71 STRUCTURES: INSTALLED BY VEGETATION/MULCHING CONTRACTOR DATE SUBMITTED MAINTAINED BY APPROVED BY CITY OF FORT COLLINS ON LI RBD, Inc. I 1 1 1 [1 1 I 11 LJ 11 EROSION CONTROL COST ESTIMATE Ponds at Overland - PREPARED BY: CCH DATE: 09/16/96 CITY RESEEDING Cuzi 1 Unit o a Method Quantity Unit Cost Cost Notes Reseed/mulch 41.61 ac $500 $20,805 See Note 1. Subtotal $20,805 Contingency 50% $10,403 Total $31,208 EROSION CONTROL MEASURES Unit Total Number Method Quantity Unit Cost Cost Notes 6 Gravel Filter 8 ea $300 $2,400 5 Straw Bale Barrier 50 ea $150 $7,500 9 Asphalt/Concrete Pavement 11.24 ac $0 $0 1 Bare Soil - Packed and smooth 4.77 AC $0 $0 8 Silt Fence Barrier 600 If $3 $1,800 21 Temporary Vegetation 30.36 acre $250 $7,590 Subtotal $19,290 Contingency 50% $9,645 Total $28,935 Total Security $31,208 tjj CALCULATIONS FOR REX MILLER PROPERTY T3DINC. Engineering Consultants A division of The Sear -Brown Group I I 1, 'I 1z" CLIENT Ali JOB NO. PROJECT T,,�Iz a� ,,A CALCULATIONS FOR 7iLVL c MADE BY0 0 DATALL15'CHECKED BY —DATE —SHEET --!—OF A— A -ILL T I qi 1 CURRENT DATE: 10-10-1996 CURRENT TIME: 22:44:38 FHWA CULVERT ANALYSIS HY-8, VERSION 4.3 C SITE DATA U-------------------------- L INLET OUTLET CULVERT V ELEV. ELEV. LENGTH # (FT) -------------------------- (FT) (FT) 1 20.00 19.80 40.00 2 3 4 5 6 FILE DATE: 10-10-1996 FILE NAME: REX CULVERT SHAPE, MATERIAL, INLET ----------------------------------------------- BARRELS SHAPE SPAN RISE MANNING INLET MATERIAL (FT) (FT) n TYPE ----------------------------------------------- 1 RCP 1.50 1.50 .013 CONVENTIONAL FILE: REX CULVERT HEADWATER ELEVATION (FT) DATE: 10-10-1996 ' DISCHARGE 1 .2 3 4 5 6 ROADWAY 0 20.00 0.00 0.00 0.00 0.00 •0.00 23.50 0 20.34 0.00 0.00 0.00 0.00 0.00 23.52 1 20.48 0.00 0.00 0.00 0.00 0.00 23.53 ' 1 20.48 0.00 0.00 0.00 0.00 0.00 23.54 1 20.58 0.00 0.00 0.00 0.00 0.00 23.55 20.67 0.00 0.00 0.00 0.00 0.00 23.56 '2 Q z2 20.76 0.00 0.00 0.00 0.00 0.00 23.56 2,`e�S\ 2 �'3�-20`.995--:ZZ- 20.92 / 0.00 0.00 0.00 0.00 0.00 23.57 0.00 0.00 0.00 0.00 0.00 23.57 3 21.06 0.00 0.00 0.00 0.00 0.00 23.58 4 21.12 0.00 0.00 0.00 0.00 0.00 23.59 14 23.72 0.00 0.00 0.00 0.00 0.00 0.00 ' The above Q and HW are for a point above the roadway. `i Lq y� d i Ig- 1. i sM O.coS •��` 1 I,S� u Iit PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 1.5 BY 1.5 ) RCP ' DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER ' FLOW ELEV. DEPTH DEPTH TYPE (cfs) (ft) (ft) (ft) DEPTH DEPTH VEL. DEPTH VEL. DEPTH <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 20.00 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 -0.10 0 .20.34 0.26 0.34 3-Mlt 0.21 0.21 1.45 0.29 0.58 0.29 1 20.48 0.37 0.48 3-Mlt 0.31 0.31 1.80 0.41 0.69 0.41 1 20.48 0.48 0.48 1-S2n 0.37 0.38 3.02 0.37 0.76 0.49 1 20.58 0.58 0.58 1-S2n 0.44 0.44 3.24 0.44 0.82 0.56 ' 2 20.67 0.67 0.67 1-S2n 0.49 0.49 3.50 0.49 0.86 0.61 2 20.76 0.76 0.76 1-S2n 0.54 0.54 3.64 0.54 0.90 0.66 2 20.92 0.83 0.92 3-Mit 0.59 0.59 2.98 0.71 0.94 0.71 3 20.95 0.87 0.95 3-Mit 0.61 0.61 3.06 0.73 0.95 0.73 3 21.06 0.98 1.06 3-Mlt 0.68 0.67 3.35 0.79 1.00 0.79 4 21.12 1.04 1.12 3-Mlt 0.72 0.71 3.52 0.82 1.02 0.82 El. inlet face invert 20.00 ft El. outlet invert 19.80 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 100.00 INLET ELEVATION (FT) 20.00 ' OUTLET STATION (FT) 140.00 OUTLET ELEVATION (FT) 19.80 ' NUMBER OF BARRELS SLOPE (V-FT/H-FT) 1 0.0050 CULVERT LENGTH ALONG SLOPE (FT) 40.00 CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 1.50 FT ' BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE 2 '11 ' TAILWATER ' ******* REGULAR CHANNEL SIDE SLOPE H/V CROSS SECTION **************** (X:1) 4.0 CHANNEL SLOPE V/H (FT/FT) 0.005 MANNING'S N (.01-0.1) 0.060 CHANNEL INVERT ELEVATION (FT) 19.70 CULVERT NO.1 OUTLET INVERT ELEVATION 19.80 FT UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (CFS) (FT) NUMBER (FT) (FPS) (PSF) ' 0.00 19.70 0.000 0.00 0.00 0.00 0.35 20.09 0.163 0.39 0.58 0.12 0.70 20.21 0.170 0.51 0.69 0.16 1.05 20.29 0.174 0.59 0.76 0.18 ' 1.40 20.36 0.177 0.66 0.82 0.20 1.75 20.41 0.180 0.71 0.86 0.22 2.10 20.46 0.182 0.76 0.90 0.24- ' 2.45 20.51 0.184 0.81 0.94 0.25 2.60 20.53 0.185 0.83 0.95 0.26 3.15 20.59 0.187 0.89 1.00 0.28 3.50 20.62 0.188 0.92 1.02 0.29 ROADWAY OVERTOPPING DATA ROADWAY SURFACE GRAVEL EMBANKMENT TOP WIDTH (FT) 24.00 ' CREST LENGTH (FT) 50.00 OVERTOPPING CREST ELEVATION (FT) 23.50 1 1 i 3 Jib CHARTS, TABLES, FIGURES r MAY 1984 .3 9 3 :or I Fa 0.8 s=0.4% F-0.5 I I I I BELOW ALLOWABLE STREET I MINIMUM GRADE I 1 I .00 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 DESIGN CRITERIA I Calculations for Curb Capacities and Velocities Major and Minor Storms ' oer City of Fort Collins Storm Drainage Design Criteria RESIDENTIAL with drive over curb and gutter Prepared by: RBD, Inc. C is for one side of the road only February 28, 1992 is based on theoretical capacities Area = 2.63 sq.ft. Area = 20.11 sq.ft. Minor Storm : Major Storm Slope : Red. • Minor • 0 V Major • 0 V (.) :Factor : X . (cfs) (fps) . X : (cfs) (fps) 0.40 : 0.50 : $6.71 . 2.74 2.09 : 696.73 : 22.03 2.19 : 0.50 : 0.65 . 66.71 . 3.99 2.33 : 696.73 : 32.02 : 2.45 . 0.60 : 0.80 : 86.71 : 5.37 : 2.55 : 696.73 : 43.17 : 2.68 : 0.70 : 0.80 : 86.71 : 5.80 : 2.76 : 696.73 : 46.63 : 2.90 : 0.80 : 0.80 : 86.71 6.20 : 2.95 : 696.3 : 49.85 : 3.10 : 0.90 : 0.80 : 86.71 6.58 : 3.13 : 696.73 : 52.ES : 3.29 '1.00 : 0.80 : 66.71 6.94 : 3.3D : 696.3 : 55.74 : 3.46 1.25 : 0.80 : 66.71 7.76 : 3.69 : 696.3 : 62.32 : 3.87 1.50 : 0.80 : 86.71 8.50 : 4.04 : 696.73 : 68.27 : 4.24 1.75 : 0.80 : 86.71 9.18 : 4.36 : 696.73 : 73.3 : 4.58 2.OD : 0.80 : 66.71 : 9.81 : 4.66 : 696.3 : 78.83 4.90 2.25 : 0.78 : 66.71 : 10.15 : 4.95 : 696.73 : 81.52 : 5.20 2.50 : 0.76 : 86.71 : 10.42 : 5.21 : 696.73 : E3.72 : 5.48 '2.75 : 0.74 : 86.71 : 10.64 : 5.47 : 696.73 : 85.50 : 5.75 3.00 : 0.72 : 86.71 : 10.81 : 5.71 : 696.3 : 66.29 : 6.00 3.25 : 0.69 : $6.71 : 10.79 : 5.94 : 696.3 : 66.67 : 6.25 3.50 : 0.66 : 86.71 : 10.71 : 6.17 : 696.73 : 86.03 : 6.48 3.75 : 0.63 : 96.71 : 10.58 : 6.38 : 696.73 : E5.00 : 6.71 4.00 : 0.60 : 66.71 : 10.41 : 6.59 : 696.3 : E3.61 : 6.93 4.25 : 0.58 : 86.71 : 10.37 : 6.80 : 696.73 : E3.31 : 7.14 4.50 : 0.54 : 86.71 : 9.93 : 6.99 : 696.73 : 79.81 : 7.35 4.75 . 0.52 : 66.71 . 9.83 : 7.19 : 696.3 : 78.96 : 7.55 5.00 : 0.49 : 86.71 : 9.50 : 7.37 : 696.3 : 76.34 : 7.75 '5.25 : 0.46 : 86.71 : 9.14 : 7.55 : 696.73 : 3.43 : 7.94 5.50 : 0.44 : 86.71 : 8.95 : 7.3 : 696.3 : 71.89 : 8.13 5.75 : 0.42 : 66.71 : 8.3 : 7.91 : 696.3 : 70.17 : 8.31 6.00 : 0.40 : 66.71 : 8.50 : 8.08 : 696.73 : 68.27 : 8.49 I I 9 ab CLIEKT I I Q11, UJC PROJECT CALCULATIONS FORc_-N -JOBNO. uyr_�_?_ 1=_� Engineering Consultants MADESY DAYE2-'�Z CHECKED BY DATE _SHEET D'F 7 :-7- a . - _-_ _ _ -5- -7777aGL . - -- - - - -— -_--__ _ - - _ _ _ - :_ - - -- --- ------ 7 1 CLIENT ` ,z4 nc F:EmT ` 'r-sL.ts!S rI!JC PROJECT CALCULATIONS FORa'r =? Engineering Consultants M.ADESY DA:- E Z-57- CHECKED5Y ' DATE SHEET Z OF Z - - --- ------ --- - -- --- - : _ 7. 61 i .A Is 1=Z r: _.. C2ols.rr.1 ; .S1-lals:. L!or_.. E�cc.��.�_._ C-�".—.. _ _ 1i�8 i'r.-•t �--� li.rd'r��. L.IV �= lC _ / L22=G _ C>�`•� SIGH 0�.: ST26BT C�:L_Y.� ?.:'CI�Zx:at�. .- Oox4S _. Izl:. :._ : - -,(L.ro•SD=99 'cam.=99. c.33 16.83 r:...1vi�tJ� Itl�s n 23: i'7 : o 0 4s: iz=.1.� o.oas. _ -- �-c IJ- • Ullt=• _2z-�5liS- �/I-d 1J T�Jh1��S 1✓bl..d�otJ Ly- Z ) -17 ---- - - L NA -- - - I - L alcutations for Curb Capacities and Velocities Aslor and Minor Stores ' ^er City of Fort Collins Storrs Draina_ce Design Criteria OLLECTDR w/ 611 Vertical curb and gutter Prepared by: R&D, Inc. '0 is for one side of the road only February 28, 1M is based on theoretical capacities ' Area = 3.55 sq.ft. Area = 28.96 sq.ft. Minor Stomp Major Storm ;tope Red. Minor 0 V . Major . 0 V (X) :Factor : X . (cfs) (fps) . X . (cfS) (fps) ' 0.40 : 0.50 : 135.32 : 4.28 2.41 : 1129.59 : 35.72 2.47 0.50 : 0.65 : 135.32 : 6.22 2.70 : 1129.59 : 51.92 2.76 0.60 : O.SO : 135.32 : 8.39 : 2.95 : 1129.59 : 70.00 3.02 0.70 : 0.80 : 135.32 : 9.06 3.19 : 1129.59 : 75.61 3.26 0.80 : 0.80 : 135.32 :. 9.68 3.41 : 1129.59 : 63.83 3.49 0.90 : 0.80 : 135.32 : 10.27 3.62 : 1129.59 : 85.73 3.70 1.00 : 0.80 : 135.32 : 10.83 3.61 : 1129.59 : 93.37 : 3.90 1.25 O.SO : 135.32 : 12.10 4.26 : 1129.59 : 101.03 4.36 1.50 0.80 : 135.32 : 13.26 4.67 : 1129.59 : 110.68 ; 4.78 ; 1.75 0.80 : 135.32 : 14.32 5.04 : 1129.59 : 119.54 5.16 2.00 0.80 : 135.32 : 15.31 5.39 : 1129.59 : 127.80 5.52 2.25 0.78 : 135.32 : 15.83 5.72 : 1129.59 : 132.16 5.85 2.51 : 0.76 : 135.32 : 16.26 6.03 : 1129.59 : 135.74 : 6.17 2.75 : 0.74 : 135.32 : 16.61 6.32 : 1129.59 : 138.62 6.47 3.00 : 0.72 : 135.32 : 16.88 : 6.60 : 1129.59 : 140.87 : 6.76 3.25 : 0.69 : 135.32 : 16.83 6.87 : 1129.59 : 140.51 7.03 3.50 : 0.66 : 135.32 : 16.71 7.13 : 1129.59 : 139.48 : 7.30 3.75 : 0.63 : 135.32 : 16.51 7.33 : 1129.59 : 137.81 7.55 4.00 : 0.60 : 135.32 : 16.24 : 7.62 : 1129.59 : 135.55 : 7.80 4.25 : 0.58 : 135.32 : 16.18 : 7.S6 : 1129.59 : 135.07 : 8.04 '4.50 : 0.54 : 135.32 : 15.50 : 8.09 : 1129.59 : 129.40 : 8.27 4.75 : 0.52 : 135.32 : 15.34 : 8.31 : 1129.59 : 128.02 : 8.50 5.00 : 0.49 : 135.32 : 14.83 : 8.52 : 1129.59 : 123.77 : 8.72 '5.25 : 0.46 : 135.32 : 14.26 8.73 : 1129.59 : 119.06 : 8.94 5.50 : 0.44 135.32 : 13.96 8.94 : 1129.59 : 716.56 : 9.15 5.75 : 0.42 : 135.32 : 13.63 9.14 : 1129.59 : 113.76 : 9.35 6.00 : 0.40 135.32 : 13.26 9.34 : 1129.59 : 110.68 : 9.55 I I i L �7 �•— v CLtEA7 Tel C* - JOB NO. PROJECT CALCULATIONS FOR l-.I Engineering Consultants MADEtSY _ •t DATE 7-SZ CHECKED EY DATE SNEET_]_OF —_7 cSUTZ : F.=L�pis tlll�• t= "Tc7. KA tti10 STzSr_: l PEZ 5)=_TIOr.t� : a-Z.Z.Z. , .. GTY. or- r=aZT . r • • r , r.js �CSiL-�.1. 'c �uE�, t�: :mil EC2 3T1G dL CaLD! _Z G11pGr tTf LG S, . i. pf CAL. t _T✓. /-T t n?.QES�.C��i�ICUEt�1T _.._ ... c..�:._ _.S_—� J G1.1l�lEt '_ �l�oP1Ei _ .. FT/1=T.. _ ._ .__... _-- •-- ..L... _�i ' �.: _ �1=CJ P ?'"�'' ^ L-. C1= C•2jOS5 5t� e� E _ _ C�zXr33x16. r + 1 3.SS ate' .:.: -Cal i�TGI.: � -.. _ . - �- • - - _ -- - - - --•. i 1 I- : 1 I I I I I F_ 0 I I t I I I I I I- I CLIENT,( 1 'T14 0;= JOB NO. INC PROJECT CALCULATIONS FO ;--j Engineering Consultants MADESY�DATC 7 �Z CHECKED BY DATE -SHEET 7 OF Calculations for Curb Capacities and Velocities !ajor and Minor Storms per City of Fort Collins Storm Drainaee Design Criteria ARTERIAL w/ 6„ Vertical curb and putter Prepared by: RSD, Inc. 0 is for one side of the road only February 28, 1992 J is based on theoretical capacities Area = 3.55 sq.ft. Area = 47.52 sq.ft. Minor Storm : Major Storm Slope Red. 'Minor 0 V Major 0 V M :Factor : X . (cfs) (fps) . X . (cfs) (fps) ' 0.40 : 0.50 : 135.32 : 4.28 2.41 : 2031.62 : 64.25 2.7D ; 0.50 : 0.65 : 135.32 : 6.22 2.70 : 2031.62 : 93.38 3.02 0.60 : 0.80 : 135.32 : 8.39 2.95 : 20-1.62 : 125.£9 : 3.31 0.70 : 0.80 : 135.32 : 9.06 3.19 : 2031.62 : 135.98 : 3.58 O.SD : 0.80 : 135.32 :. 9.63 3.41 : 2031.62 : 145.37 : 3.82 0.90 : 0.80 : 135.32 : 10.27 3.62 : 2031.62 : 154.19 : 4.06 1 1.00 : 0.80 : 135.32 : 10.83 3.£1 : 2031.62 : 162.53 4.23 1.25 : 0.80 : 135.32 : 12.10 4.26 : 2031.62 : 181.71 4.78 1.50 : O.SD : 135.32 : 13.26 4.67 : 2031.62 : 199.06 : 5.24 1.75 : 0.80 : 135.32 : 14.32 S.D4 : 2031.62 : 215.01 5.66 '2.00 : 0.80 : 135.32 : 15.31 5.39 : 2031.62 : 229.E5 6.05 2.25 : 0.78 : 135.32 : 15.83 5.72 : 2031.62 : 237.70 : 6.41 2.50 : 0.76 : 135.32 : 16.26 6.D3 : 2031.62 : 244.13 ; 6.76 2.75 : 0.74 : 135.32 : 16.61 6.32 : 2031.62 : 249.31 7.09 3.00 : 0.72 : 135.32 : 16.88 6.60 : 2031.62 : 253.36 : 7.41 : 3.25 : 0.69 : 135.32 : 16.83 6.27 : 2031.62 : 252.72 : 7.71 3.50 : 0.66 : 135.32 : 16.71 : 7.13 : 2031.62 : 250.E5 8.00 1 3.75 : 0.63 : 135.32 : 16.51 : 7.38 : 2031.62 : 247.86 : 8.28 4.00 : D.60 : 135.32 : 16.24 : 7.62 : 2031.62 : 243.79 8.55 4.25 : 0.58 : 135.32 : 16.18 : 7.56 : 2031.62 : 242.92 : 8.81 '4.50 : 0.54 : 135.32 : 15.50 : 8.09 : 2031.62 : 232.72 : 9.07 4.75 : 0.52 : 135.32 : 15.34 : 8.31 : 2031.62 : 230.25 9.32 5.00 : 0.49 : 135.32 : 14.83 : 8.52 : 2031.62 : 222.6D 9.55 5.25 : 0.46 : 135,32 : 14.26 : 8.73 : 2031.62 : 214.13 9.83 5.50 : 0.44 : 135.32 : 13.56 : 8.94 : 2031.62 : 209.64 10.03 5.75 : 0.42 : 135.32 : 13.63 : 9.14 : 2031.62 : 204.61 10.25 6.00 : 0.40 : 135.32 : 13.26 : 9.34 : 2031.62 : 199.06 10.47 I Engineering Consultants CLIENT <:aJ 1-Y 4== -JOB NO. PROJECT CALCULkTiONS FOR WADE BY=n, OkTE CHECKED By- DATE - SHEET OF I I 11 I I I 11 I- I I I I I I it Engineering Consultants CLIENT --y �- ::�> Zrr Lj k � JOB NO. PROJECT CALCULATIONS FOR 6,1 MADE EY-ZD-, DATE Z'Z CHECKED BY - DATE -SHEET 7- OF 7- I r-7 .--jj T-=7-777 T --7 -A -3 A '- -=-77 2,53i7Z- L-o S DRAINAGE CRITERIA MANUAL -4 2C 0 RIPRAP PA Ea No Oda PpMd Nnw Yt /D .o is 1A Use Do instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT A h DRAINAGE CRITERIA MANUAL L 6 = Expansion Angle mmmmmmmm M-0 00 .1 .2 .3 .4 .5 .6 .7 .8 TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D RIPRAP FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 1 1-15-82 URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT 2G�