Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 01/19/1997Final Appro'Vqd R@por
PROPERTY OF 3 Da!e
COLLINS
FINAL DRAINAGE REPORT
AND EROSION CONTROL STUDY
FOR THE FIRST FILING
PONDS AT OVERLAND
FORT COLLINS, COLORADO
November 6, 1996
A division nJ The Sear -Brown Group
FINAL DRAINAGE REPORT
AND EROSION CONTROL STUDY
FOR THE FIRST FILING
PONDS AT OVERLAND
FORT COLLINS, COLORADO
November 6, 1996
I. Prepared for:
Gateway American Properties
9145 East Kenyon Avenue
Denver, Colorado 80237
(303)741-4082
Prepared by:
RBD, Inc. Engineering Consultants
209 South Meldrum Street
Fort Collins, CO 80521
(303) 482-5922
11 RBD Job Number: 589-011
TMINC.
Engineering Consultants
A division of The Sear -Brown Group
209 S. Meldrum
Fort Collins, Colorado 80521
1
970/482-5922
i
Mr. Basil Hamdan
City of Fort Collins
Utility Services Stormwater
235 Matthews
Fort Collins, Colorado 80522
RE: Letter of Transmittal
Ponds at Overland Project - Filing One
Dear Basil:
October 11, 1996
We are pleased to provide the 100-percent final submittal of the First Filing, Final Drainage Report
for the subject project. The Overall Preliminary Drainage Report for the Ponds at Overland project
was approved in February 1995.
Much of the information provided herein is referenced from the approved report and the proposed
design for the First Filing is very close to the concepts shown in the Overall Preliminary Report.
All computations within this report have been completed in compliance with the City of Fort Collins
Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing earlier
submittals of this report. Please call if you have questions or comments.
Respectfully,
RBD Inc. Engineering Consultants
Prepared By:
��`Cri'/ � _
,
/ _ F8i
aig Cshell, .E.a``0 E
/Pr ject er ro°�o�`° L9•
• O DESH
3
� wraNA .
Reviewed By:
David K. Thaemert, P.E.
Water Resources Engineer
IDenver 303/458-5526
TABLE OF CONTENTS
DESCRIPTION
PAGE
I.
BACKGROUND
1
II.
CANAL IMPORTATION SWMM - FIRST FILING
2
III.
SWMM PARAMETERS
3
IV.
HYDROLOGY
5
V.
REGIONAL DETENTION POND - CLEARVIEW PARK
6
IV.
EXISTING CHANNEL HYDRAULICS
7
IIV.
DRAINAGE FACILITIES DESIGN
7
IIIV.
EROSION CONTROL
g
IX.
WATER QUALITY
g
X.
CONCLUSIONS
9
XI.
REFERENCES
9
APPENDIX
HYDROLOGY I
DETENTION POND STAGE -STORAGE TABLES 2
DETENTION POND OUTLET CALCULATIONS 9
100-YR UPDATED SWMM, FILING ONE 19
SWALE CALCULATIONS 36
RIPRAP CALCULATIONS 41
REINFORCED CONCRETE PIPE CLASSIFICATION CALCULATIONS 62
APPENDIX (cont.)
DESCRIPTION
INLET AND UD SEWER CALCULATIONS
87
EMERGENCY OVERFLOW CALCULATIONS
152
rENERGY
DISSIPATION STRUCTURE DOCUMENTATION
160
WATER QUALITY VOLUME CALCULATIONS
175
EROSION CONTROL CALCULATIONS and ESCROW
182
CALCULATIONS
FOR REX MILLER PROPERTY
191
CHARTS, TABLES AND FIGURES
196
DRAINAGE AND EROSION CONTROL SHEET
BACK POCKET
FINAL DRAINAGE REPORT
AND EROSION CONTROL STUDY
FOR THE FIRST FILING
PONDS AT OVERLAND
' FORT COLLINS, COLORADO
1 I. BACKGROUND
Gateway American, Inc. is proposing a residential subdivision along the west side of Overland Trail
Road and south of the Colorado State University Equine Center. The completed development will
be approximately 282 acres and will include single family detached homes. The portion of the site
planned for ultimate development is approximately 124 acres east of the Dixon Lateral ditch. The
rest of the site (west of the Dixon Lateral ditch) will remain in its existing natural state.
�. Approximately 38 acres is planned for development with the First Filing.
This report for the First Filing is for the approximated southeast quarter of the developable property.
The First Filing is for 84 single-family residential lots, open space, detention facilities, and onsite
infrastructure improvements. The report, including design calculations, support the drainage design
proposed for the site. At the time of preliminary review, Gateway American was requested to have
an approved preliminary design and drainage report. The preliminary design approval was requested
because of the complexity of the site and constrictions in the stormwater system downstream of the
site. The preliminary design and report, as approved, included extensive design and computer
modelling. The design proposed for Filing One is a refinement of the design presented in the
' Preliminary Report.
As part of the proposed development the City of Fort Collins has asked Gateway American to
demonstrate that it is possible to discharge storm water flows from the site at 2 year historic levels
and that the existing channel going eastward from the .proposed development (Clearview
Drainageway) is capable of carrying the 2 year historic flows. The approved preliminary design
demonstrated that discharging at the 2 year historic rate is possible and that the Clearview
Drainageway is capable of conveying the required discharge.
Aerial mapping of the proposed development site was performed by AeroMetric, Inc., in March 1994
and is used as a basis for on -site hydrology. City mapping was used for utility information. RBD,
Inc. survey data was used for: road; existing channel cross section information; and existing
contour data for the two ponds located within Overland Park. The City of Fort Collins aerial maps
and the USGS quad sheets were used for off -site areas.
For a more extensive discussion and presentation of extensive computer modelling reports, the
reader is referred to the Preliminary Report prepared by RBD, Inc., November 1994.
1
1,
' General Ilrainage Concept for the Site
' The proposed project site generally slopes in an easterly direction with grades of less than one
percent up to greater than 20 percent. The greater project site is made up of semi -arid uplands with
some identified jurisdictional wetlands. There are no identified jurisdictional wetlands in the First
Filing. The reader is referred to the wetlands report prepared by Riverside Technology and the soils
report prepared by Empire Laboratories, for the project.
Stormwater drainage will be carried as overland flow through the use of natural drainage channels
(in open space areas) and in the streets and man-made drainage swales through developed portions
' of the site. In concept, the idea is for much of the site to remain in its natural state therefore, the
overland flow of stormwater will enhance the wetlands and provide needed moisture to upland plant
species. As stormwater flow travels through the developed portion of the site it will be intercepted
' and channelled to on -site drainage detention ponds. After the flow is routed through the drainage
detention ponds it is discharged through one of two pipes under Overland Trail Road and into the
Clearview Drainageway. Some grading is required in the Clearview Drainageway to allow the
discharge pipe to "daylight" into the drainage channel.
II. SWMM FOR FIRST FILING
The Canal Importation Basin Masterplan Storm Water Management Model prepared by Resource
Consultants, in 1983, was used as the basis upon which update modifications were made. The
SWMM was given to RBD, Inc. by the City of Fort Collins Storm Water Utility Personnel. Storm
Water Utility Personnel transferred the input file from a mainframe computer format to personal
computer format. RBD, Inc. has assumed the SWMM is correct and has therefore not verified the
model as it existed prior to updating it. RBD, Inc. has made modifications to the SWMM to reflect
the conditions in the Canal Importation Basin as they presently exist in the vicinity of the study area.
' The only subbasins updated were those which affected the design of the Gateway American site, the
Clearview channel and the two ponds directly downstream of the site. Once update modifications
' were made to reflect existing conditions, the model was run to determine the 2 year historic release
rate from the entire drainage area above Overland Trail Rd., which drains to the Clearview
Drainageway. The model was then modified to reflect the Gateway American development
including the proposed regional ponds (which have a total discharge rate equal to the determined
2 year historic rate) and the model was re -run to reflect the 100 year condition. The updated SWMM
and analysis was then used to determine whether Clearview Drainageway east of Overland Trail
Rd.. has adequate capacity to convey the discharge from the drainage area above, downstream to
the existing two Clearview Ponds within Overland Park.
I
In the original SWMM prepared by Resource Consultants, the Basins which contribute runoff to
the existing two ponds at Overland Park (Clearview Ponds) are 1,10,40,41,18 and 19. Since the
limit of our study was immediately downstream of the two ponds, the basins stated above were the
only basins which were looked at for possible updating or modification.
2
I
r
Basin 10 was modified because a portion of the discharge was redirected when the Colorado State
University Equine Center was built. In the updated model the Equine Center is shown as a separate
basin (486) and the existing detention pond within the Equine Center site was incorporated into the
updated model. The Equine Center also affected the original delineation of sub -basin 41. In the
revised model Basin 86 drains through detention pond number 301 and then into the existing
' Pleasant Valley and Lake Canal.
' The delineation of basin 41 was revised based on the proposed site plan for the Two Ponds at
Overland Site, and on aerial topo maps obtained at the City of Fort Collins. The original SWMM
Model showed basin 41 as having 318.4 acres, the revised model shows the total drainage area as
' being(37 8 acres. Although it is not known (because the original SWMM schematic did not show
the upper limits of basin 41) it is possible that the original basin 41 did not go above the Dixon
Canyon Lateral which would account for the approximate 100 acre difference. Sub -basin 41 was
' then broken up intobasins, nineteen of which represent the proposed Gateway American site.
As shown on the SWMM schematic in the Appendix, a portion of the undeveloped Gateway
American site does not drain into the Canal Importation Basin, but instead drains north toward
College Lake.
III. SWMM BASIN PARAMETERS
' The following table lists the SWMM Basin Parameters for all of the Basins to the west of Overland
Trail Road. The SWMM sub -basins do not correspond to the site Rational Method hydrology in
' terms of numbering of the basins. However, the areas as delineated on the SWMM sub -basin map
are the same areas used for the Rational Method hydrology calculations with the difference being
some basins are combinations of two or more Rational Method hydrology sub -basins. The Rational
Method hydrology sub -basins may be seen on the drainage plan provided in the pocket in the back
of this report. The SWMM sub -basins are shown schematically on the exhibit in the Appendix.
' The sub -basin " tributary width" parameter was determined by dividing the area of the sub -basin by
the average of ten overland flow lengths from the back of the lot to the street, swale or channel. For
those sub -basins which are not developed, the basin "tributary width" was determined by dividing
the area of the basin by the length of flow to a channelized or concentrated flow point. The lengths
, slopes and types of conveyance elements were then input as the actual physical representation of
' what occurs, whether it is street flow, channel flow or pipe flow etc. The following table lists all of
the sub -basin parameters as they were input into the model.
1 3
�J
I
u
I
I
I
SWMM BASIN PARAMETERS
SUB -BASIN #
CONVEYANCE
ELEMENT
BASIN
WIDTH
(ft)
AREA
(ACRES)
% IMP.
SLOPE
(ft/ft)
86
300
950
11.6
23
.015
350
372
2875
6.6
45
.03'
351
373
2396
5.5
45
.023
352
374
958
2.2
45
.024
353
375
7115
14.7
45
.038
354
376
1026
3.3
40
.1
355
313
5791
22.6
20
.019
356
378
3298
5.3
45
.026
357
379
4530
15.6
40
.038
358
380
1350
3.1
15
.071
359
381
8451
9.7
47
.037
360
317
1646
1.7
67
.034
361
383
1220
1.4
24
.03
362
384
4937
1.7
90
.035
363
385
938
1.4
20
.013
364
386
4704
10.8
16
.013
365
387
1794
7.2
15
.017
366
388
2693
3.4
10
.02
367
389
1321
91.0
10
.098
368
390
740
17.0
10
.111
369
391
1160
21.3
10
.209
370
392
2197
80.7
10
.284
371
393
443
11.2
10
.054
92
307
1300
85.1
10
.05
340
386
3049
2.8
64
.006
341
333
871
1.1
58
.02
700
699
1 2434
1.9
69
.005
701
698
2962
1.7
72
.005
-Total �41-tv ac.
4
A
_1
1 III. HYDROLOGY
Hydrological Criteria
The Rational Method for determining surface runoff and street capacity was used for the project
site. The 2-year and 100-year storm event criteria, obtained by the City of Fort Collins, were
used in calculating runoff values. These calculations and criteria are included in the Appendix
of this report.
SOME OF THE FOLLOWING DISCUSSION IS PRESENTED IN THE "OVERALL
PRELIMINARY DRAINAGE REPORT. It is suggested that the "Overall Preliminary Drainage
Report" be reviewed as background material.
Sub -basins 500, 501, 502, 504, 505, 506, and 507 are designed to drain to the east via the street
system to the low point at Design Point 50. However, only sub -basins 501 and 502 are outside the
limits of the First Filing. Sub -basin 503 flows directly to Detention Pond 397.
Basins 600, 601, 602, and 607 drain easterly to the low point in the road at Design Points 67 and 60.
Flow at Design Point 67 is to be intercepted in a 15' inlet until the capacity is exceeded during the
1 100 year storm event and overtop the crown of the road and flow to Design Point 60. This overflow
is to be intercepted along with runoff from Basin 600 in a 15' inlet and be transported in a 30" pipe
into Detention Pond 396.
Basin 605 drains to the east where the runoff is to be intercepted in a sidewalk culvert and
transported in a swale to Detention Pond 396.
Basins 603 and 604 drain to the east along the street to the low point at Design Point 64. Flow is to
' be intercepted in a 5' inlet until capacity is exceeded during the 100 year storm event and then
overtop the crown and flow to Design Point 66. A 5' inlet at Design Point 66 is to intercept this
overflow and runoff from Basin 606 and carry flow through a pipe into Detention Pond 396.
' Basins 700 and 701 consist of the west half of Overland Trail fronting the site and a portion of the
main entrance road which drains back onto Overland Trail. The runoff is to be intercepted in 15' curb
' inlet 70 and carried underneath Overland Trail in a pipe. This flow is to be released undetained from
the site. The release rates from the ponds have been reduced to account for this undetained flow.
Additionally, runoff from the northbound lanes of Overland Trail Road are intercepted and carried
to the Clearview Drainageway. It is believed that determining the runoff from the northbound lanes
of Overland Trail Road is beyond the scope of the study. Therefore, the runoff from the northbound
lanes of Overland Trail Road is assumed to be the same as that of subbasins 700 and 701.
I
1 5
11
I
' IV. REGIONAL DETENTION PONDS - CLEARVIEW PARK
' There are five ponds within the proposed development. However, only four ponds are proposed for
construction with the First Filing, ponds 396, 397, 398 and 399. One pond is being used solely as
a ornamental pond, and will not be used for detention; it is shown as pond #398 on the SWMM
schematic and drainage sheet. Since the only flow draining to pond #398 is from the immediate area
around it , pond #398 will not have an outlet but is tied to pond 399 with an equalizing pipe to
provide some circulation between ponds. Pond #399 will also be used as a wet pond but will be
surcharged for the purposes of detention. Therefore, the 40 hour criteria for WQ Capture Volume
is used as a conservative design element. Pond #399 has 6.32 acre-ft capacity with 5.5 acre-ft being
' used. At the present time, pond # 396 has 34.33 acre-ft with 28.9 acre-ft being used. Pond #395 has
20.28 acre-ft with 15.8 acre-ft being used. Pond # 397 is the only pond being fully utilized with
4.42 acre-ft available and 4.3 acre-ft being used. The water quality outlets are considered in the
' hydraulic performance characteristics for the outlets of ponds 396 and 399 (please see the rating
curves in the appendix).
' It should be noted that pond #395 hasbeen graded for determining of an area -capacity curve for the
SWMM modeling effort, only. Pond #395 is not planned for construction with Filing One.
Therefore, at the time of proposed Second Filing construction Detention Pond #395 will be final
graded. This is being done to provide the owner as much flexibility as possible with the site and to
design a pond that will function properly with the side -spill weir at its time of construction. It is
expected that Pond #395 will be constructed with Filing Two.
The flow from Overland Trail and a small portion of the flow from the main entry into the proposed
Ponds development is not captured and detained on site. However, the portion of undetained flow
has been subtracted from the total allowable release rate that the on -site detention ponds can
discharge into the Clearview drainageway. Based on the 2 year SWMM, which was done with the
' original Canal Importation Basin SWMM update by RBD, Inc., the 2 year historical flow rate at the
point where the Two Ponds site discharges into the Clearview drainageway is 54 cfs.
' During the design of the proposed Ponds at Overland development, the basin tributary widths have
increased dramatically as compared to the Canal Importation Basin SWMM. However, the real
control point is what the Clearview drainageway can handle. The 54 cfs appears to be the limit of
the capacity of the Clearview drainageway and is the flow rate which was agreed on between the
City and RBD during the preliminary design. Therefore, the maximum release rate from Ponds 399
and 396 plus the undetained flows from Overland Trail is 54 cfs.
The pond design now takes into account the undetained flow from Overland Trail Road and the
' proposed Ponds site and subtracts this from the allowable release rate. The discharge from the site
will cross under Overland Trail Road and daylight in the Clearview Drainageway. The Clearview
Drainageway requires regrading from the East side of Overland Trail to the first street crossing
(Virginia Dale Dr.). The flow line of the Clearview Drainageway will be lowered approximately 3
feet from the current 5108 feet to 5105.3 feet. This will provide a lower outfall point for the
1 6
' detention ponds and will provide more operating head for the proposed outfall pipes. Proposed re-
grading (a longitudinal slope of 0.0067 ft/ft) exceeds the City criteria of 0.005 ft/ft.
' V. EXISTING CHANNEL HYDRAULICS
' The proposed regrading of the Clearview Drainageway between Overland Trail Road and Virginia
Dale Dr. will convey the required capacity of 71 cfs (1.33 times the design discharge of 54 cfs). The
proposed cross-section has 6 foot horizontal to 1 foot vertical side slopes and a 0.0067 ft/ft
longitudinal slope.
' VI DRAINAGE FACILITIES DESIGN
The proposed design includes the construction of improvements for detention ponds numbers 396
' and 399. Detention pond 396 has a bottom slope of approximately 0.005 ft/ft, therefore an under
drain is planned.
' Typical Type R curb inlets, culverts and sidewalk culverts are planned at several locations. Box
culverts are proposed for conveying storm water discharge under Banyan St.
' The formerly proposed invert siphon pipes for outlets to the Clearview Drainageway have been
reconfigured as conventional (straight) pipes. The system is controlled by the inlet conditions and
pipe friction.
The Clearview Channel outfall point will have a energy dissipation structure at the terminal end of
several pipes. The dissipation structure will be used to reduce the energy and thus prevent scour
(displacement of the riprap) in the Clearview Drainageway.
In addition to the dissipation structure at the Clearview Drainageway, a similar structure is planned
' for the inlet pipe to pond 396 (the pipe outfalling from Detention Pond 397).
Some off -site hydrologic design and culvert design was provided for the Rex Miller property
immediately adjacent to the southeast comer of the first filing. Provided is an 18-inch RCP culvert
feeding pond 396. It should be noted that the volume of water from this area is accounted for in the
SWMM therefore, no additional water is tributary to pond 396. There is a divider in the Appendix
specifically for this work effort.
VI. EROSION CONTROL
General Concept
' The Project Site lies within the Moderate Rainfall Erodibility Zone and Moderate Wind Erodibility
Zone as shown on the City of Fort Collins zone maps. The potential exists for erosion problems
' during construction.
The provided erosion calculations have a Performance Standard of 79.8 during construction and 93.9
1 7
' The provided erosion calculations have a Performance Standard of 79.8 during construction and 93.9
after construction. The during construction and post -construction effectiveness calculations result
' in 93.4 and 97, respectively. Thus the proposed erosion control design meets City criteria.
The proposed detention ponds within the developed parcel along the east edge of the project site
' have the potential for erosion problems until adequate sediment barriers are installed together with
revegetating the disturbed ground.
After the overlot and utility installation has been completed, the parking/driveway surfaces will
receive the curb, area inlet, gutter, and pavement surfaces. A gravel inlet filter will be installed
' around the curb inlets until the permanent landscaping surfaces (grass sod or seeding and mulching)
have been installed. Straw bale dams will be used in the drainage swales and all disturbed areas will
require seeding and mulching.
Once all of the improvements have been completed, the gravel inlet filters and sediment fence can
be removed from the construction site.
Permanent erosion control includes the use of rip rap, and grouted rip rap.
' Erosion Control Escrow
The comparison between the reseeding/mulch and the erosion control BMPs shown on the Erosion
' and Drainage sheet have been calculated at $13,150 and $14,000, respectively. Therefore, with
erosion control escrow required to be 150-percent of the higher cost, the erosion escrow is $21,000.
' The comparison is provided in the Appendix.
VIL WATER QUALITY
' General Concept
' The proposed use of the Ponds at Overland development is residential. Once the proposed
subdivision is established, no water quality problems are anticipated. During construction, as
discussed in the Erosion Section, sediments are anticipated. On the Project Site are Jurisdictional
' Wetlands. A feature of the project is to enhance the wetlands to mitigate any detrimental effects of
the proposed project. The proposed use of wetlands is consistent with City of Fort Collins
stormwater quality program. A water quality capture volume will be provided in the respective
' detention ponds #396 and #399.
The water quality outlets consist of a perforated steel plate (fashioned into a box) with 1.5 inch to
3 inch rock placed against it and an weir around the top of the steel plate. The top elevation for the
box is at an elevation required for the capture volume. The holes in each of the steel plate boxes are
8
I!
sized to release the water quality capture volume over an estimated minimum of 40 hours. The
hydraulics of the pond outlets are such that outfall discharge is controlled by downstream conditions,
' or an orifice plate.
VII. CONCLUSIONS
' Compliance with Standards
' Computations within this report have been completed in compliance with the City of Fort Collins
Storm Drainage Design Criteria (May 1984).
Drainage Concept
' The three detention ponds proposed for construction with Filing One will provide the needed
mitigation of storm water flows to reduce the flow to the Clearview Drainageway to an acceptable
level. There will be one each outfall pipe from detention pond #399 and #396 which will discharge
' into the Clearview Drainageway. There will also be pipes from the proposed 15-foot inlets along
the west edge of Overland Trail Road. The third Detention Pond #397 discharges to Detention Pond
#396.
' The Clearview drainageway is planned for regrading from the east side of Overland Trail Road to .
Virginia Dale Drive. It is anticipated that a small portion of drainage easement are needed. The
' needed drainage easement is shown on the construction drawings.
' Erosion Control
A variety of BMP's are planned during the construction phase and are shown on the Drainage and
' Erosion Control Plan (sheet 5/38 of the construction drawings). The comparison of the BMP's
shown on the Erosion and Drainage sheet and site reseeding resulted in the Erosion Control Escrow
required for the First Filing at $31,000.
' Water Quality
The proposed use of the Ponds at Overland development is residential. Once the proposed
subdivision is established, no water quality problems are anticipated. During construction, as
discussed in the Erosion Section, sediments are anticipated. The greater site includes jurisdictional
wetlands (however, no jurisdictional wetlands are within the First Filing). Therefore, as a site
enhancement wet ponds are designed as part of the project features within Detention Ponds #396 and
#399.
0
A
VIII.
1. Original 100 YR SWMM model for the Canal Importation Basin done by Resource
Consultants on 2/5/83.
2. Canal Importation Basin SWMM Update and Proposed Regional Detention Pond,
done by RBD, Inc. Engineering Consultants, July 1994.
3. Overall Preliminary Drainage Report and Erosion Control Study - Ponds at Overland,
done by RBD, Inc., Engineering Consultants, November 1994.
4. City of Fort Collins Storm Drainage Criteria Manual, May 1984.
5. City of Fort Collins Erosion Control Manual.
10
APPENDIX
L-
HYDROLOGY
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
zr
N
LL
0
0
Q
U)
s
�4
i
v c;
>`1
0
i
0
LL
f
�1
`I
Z
J_
LL
N
Z
O ti LL .
0 LL.
O
Q �
Z
Z 9 V
O N >.
LUL
LUZLL!
}
P a CV
ui
N
N
N
N
z
z
J_
_z
_z
J
LL
Il
LL
E
C
C
C
O
C
0
0
0
Z
O
+_
w
_
0-.
v
a
a
C
C
C
C
0
0
0
z
0
O
N
Y
Coll
cnU)
z(1)
aa
�aa
o
0o
oCL
CL
a
1
0
a
+-
LO
I�-
LO
N
O
T
O
Ln
N
LO
I--
CA
CO
M
I-
CV)
co
ti
00
LO
CO
00
O
00
V.
T
cM
qq•
tif,-
O
O
N
.�
T
T
T
T
T
T
T
LL
Li)
00
O
O
N
CO
CO
T
N
(0
00
M
U)
CD
LO
N
.0
N
r-
�
N
M
N
M
w
Lo
6
N
M
N
M
M�
r�-
LO
v-
T
0�
N
M
M
M
N
N
M�"T
Cn
Q
N
CO
N
N
CO
N
N
M
T
T
M
N
cM
c i
0)
0)(0
0
Ln
M
M
I�-
O
M
0
CO
T
N
M
M
co
a)
T
N
N
V.-
N
N
N
N
O
O
cM
T
N
0
0
00
0
0
0
0
0
0
0
0
0
0
0
0
O
�
LO
CD
0)
CO
N
I�
CD
O
Cr)
�
O
LO
N
(O
N
O
M
(A
N
LO
qq•
Ln
T
LO
O
CO
I
M
0
M
N
T
T
c
J
T
O
Un
T
Wq
qT
m
.-
O
O
M
w
I�-
N
T
Lo
(O
N
qqT
qqT
CO
4
00
w
00
N
qqT
O
r
00
1- ,C
E
cu
N
O
LO
qT
O
Ln
O
O
O
Ln
O
00
00
"I
Ln
U)
O
C4)
�+
(p
Lc)
T
CO
r
I-
LO
N
LO
LO
T
T
LO
T
r
CO
m
T
T
T
T
T
F
C
C
J
(0
f�-
U)
q
r
N
00
LO
LO
'IT
O
ti
ID
CO
Ln
1�
CC)
NT
CD
I`
ti
M
M�
LO
M
I�
M
CO
Ln
(fl
W
U
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
+B
m
�
0
T
O
M
N
O
W
0�
T
T
00
co
d'
Lo
CB
a)C)
O
LO
I--
(0
O
T
M
0
M
O
LO
M
o
M
O
00
`
a m
T
N'
N
O
T
T
N
f--
O
LO
O
T
T
T
(N
T
c
O
T
N
O
T
N
M
"•
LO
0
I�-
M
o
T
N
M
C
o
0
o
0
0
o
0
0
0
0
0
0
0
0
0
0
O
'
cu
O
0 m
3
I
0
1
t
1
1
11
t
z
z
z
z
0000
IL
IL
a
a
z
z
z
z
0000
P:
P:pP:
z
z
z
z
w
w
w
w
�-
�-F-
�-
wwww
0000
N
1--
CN
V-
V-U-)
M
1-
0)0
0
144
Ln
M
v-
(D
Loi--
1-�
Lf)
O
00
00
to
v
V--
T-
It-,
T-
�
T-
�
�
(V
N
N
O
LO
�
Lf)
IT
Li)
00
M
CM
cM
00
Co
N
N
O
Li)
I--
CO
O
1-�
LO
N
LO
Lf)
M
00
Ln
LO
Cfl
Cp
of
0p
O
qT
�
r-
�
T-'
�
qT--V-
v-
v-
v-
N
(VT-
•-
�
1�
(p
CD
(p
LO
LO
Lf)
Lo
Lo
LO
LO
LO
U-)
LO
O
O
O
N
N
O
0
0
0
0
0
0
0
0
O
O
O
O
O
O
LO
O
O
O
O
O
O
O
LO
O
O
00
M
O
I�-
U)
00
Iq
LO
0
Lf)
LO
M
N
N
LO
LO
O
M
O
00
r-
c'M
M
N
T-
O
�
O
cM
C.)
CM
0
00
N
T-
O
1�
1�-
(A
N
T-
CV
O
Gi
O
"q
q
m
m
Lo
0
00
t--
T
M
N
N
N
N
O
LO
O
LO
LO
O
LO
LO
N
T-
00
00
00
O
O
O
O
LO
LO
LO
Cl
O
O
O
�-
O
M
O
O
N
CM
M
O
LO
LO
LO
C)
cM
r-
�
N
�
�
O
ti
m
LO
O
LO
(M
cM
co
LO
LO
O)
00
LO
I�-
00
[�-
LO
(p
U)
N
N
N
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
M
N
00
Lo
0
O
O
v'
0
qT
0)
qT
0
Cp
O�
N
N
00
N
C
O
I-
M
N
N
qq
O
O
O
4
T-
N
�
O
N
�
�
O
I-_
M
�
LC)
CO
1�-
00
0')
O
O
r-
00
q;T
Lf)
O
O
O
O
O
O
O
r-
r-
O
O
O
Cp
Cp
O
(p
(p
O
O
O
C0
CD
co
1�
I�-
co
I
M
1
o
�rvt"
V
C)
y
�
0
�
O
ao
u,
L
0
Z
J_
L,L
LLL
O LL
O
d
Z
Z
~ JZ
W w
Z
C9
=
U >
Z O
CO)
WC.)
U
LL.
O a
w
W Z
a
o
H
R7
O
0
N
N
N
j
N
rn
rn
rn
rn
c
C
c
C
LL
C
C
c
Q
C
0
0
0
Z
O
c
c
c
a
c
U)
a
a
a
c
H
a
O
o
c
o
c
w
w
w
E
Z
vim)
E
E
Eaaa�
Q.c.cLn
can
0
0
0
N
w
0
M
M
0
m
N
a
a
CL
:
a
�
(o
Lo
(o
O
CO
LO
"T
O
fl-
(O
In
M
Lo
Lo
. -
+
.�
L6pl:
liV:
v)
00
f--
M
of
N
M
f--
6
00
w
O
U0
0o
O
O
N
M
W
'--
N
(O
M
M
Lo
(O
U?
N
N
M
0
to
to
N
M
N
M
M
d•
E
U?
•-
(O
�t
N
O
0o
0o
N
N
CO
q-
a-
N
co
N
N
co
N
N
M
co
N
co
co
O
m
to
LO
V)
O
0)
00
(O
co
N
M
M
a)
E
N
N
T-
N
N
ILO�
N
N
O
O
M
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I�-
to
O
O
M
N
I--
O
O
M�
O
LO
N
O
'T
CO
O
N
to
'q
u)
U-)
(o
(O
V
CO
(O
ti
00
>
(Q
N
L
J
N
(o
(o
O
(O
I--
00
O
u)
�-
r�-
O
Cl
O
(O
o)
F- .0
M
to
r-
N
N
M
M
IT
1�-
O
IT
M�
d'
v
E
C
N
N
N
N
M
i�
O
mt
N
N
N
N
N
M
N
N
P
>
OtoItOLoO000O0000Lo0LOO
(O
to
W
I�-
to
N
U)
Lo
r-
Lo
(O
N
C
J
(oI--
tov
N00LoLod
OI--M(oLo1--
U
O
qT
CO
�
ti
CO
M
�Y
Lo
M
I�
M
(O
Lo
(O
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ci
m
I--
(O
T-
O
0o
N
00
CO
(o
qq m
s-
00
00
qT
to
f6
O
Lo
ti
0
O
C)M
O
C)
Lo
cc)O
0o
C)
CC)
`) U
Q cc
N
N
C:)�-
Mr--
CD
Lo
0
.-
N
c
N
O
N
O
N
Mqq
-
to
(o
r�
cc)
C)N
M
C
0
0
0
0
0
0
0
0
0
C)
0
0
0
0
0
0
V'
'T
'T
LO
0
0
0
LO
to
to
O
(O
(O
Co
N
N ca
JOLO
C) CO
I
I
I
I
1
�
z
z
z
z
0000
M(Ln.rl
z
z
z
z
0000
z
z
z
z
LO
LO
wwww
�-
E-
o
0
0
0
�
O
O
t`
O
t`
O
N
(0
cM
ti
M
M
T-
N
�h
�( )
M
00
ti
r�
M
N
O
r-
O
CO
T-
O
M
LO
00
cM
M
M
co
M
N
CM
N
M
N
O
l!)
N
to
In
m
00
00
(O
N
N
N�
r-
T'-Ir-
�-
IC\!
.
.
.
�
r—
r�
co
(o
LO
LO
LO
LO
LO
m
LO
LO
U)
LO
0
0
0"
N
N
0
0
0
0
0
0
00
O
O
O
O
O
O
LO
0
0
0
0
0
0
0
LO
O
O
co
co
O
ti
LO
00
IT
U)
to
U)
In
M
N
N
LO
LO
(O
M
O
00
�
M
M
N
(D
O)
O
O
N
M
O
IT
IT
00
O
M
O
O
O
�
N
r-
O
r-
117
00
M
r`
N
N
N
r-
(O
N
00
N
N
O
U)
O
LO
N
.-
T-
.-
LO
O
In
CM
o0
w
00
0
0
0
0
0
0
In
O
O
O
O
T--
r-
O
M
O
O
N
M
M
O
LD
LO
LO
M
(M
r-
T-
T-
N
T-
O
r-I
O
LO
O
Ln
m
M
M
LO
LO
m
CO
Lo
ti
.
w
r`
Lo
coLo
ti
r`
r`
ti
N
N
N
CV
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
M
N
00
LO
W
0
0
IT
0
fir'
O
Iq
O
T-
(�
O4;3-
N
N
w
N
v
O
r`
M
N
N"T
0
6
6
`T
N
�
O
N
�
�
O
r,
M
'IT
U-)(
fti-WM0
0T--00ITLO0
O
O
O
O
O
O
r
0
0
0
(D
(O
O
10
10
(O
10
(fl
14
10
10
�
M
M
cM
M
11
I
1
I
I
R SY,
�O
c
A A
v
egg
�N
`
OPti
npoo
Om
Um
:o
o.
por
u
y`
J `c7i
�
YJ Owdd
d
'F.m
q
do
d m
�e
�
ry
v`
a°1
$
U
O Z N
m
a
o^
P
d
r
m
i
m
mrvN
ry Avi
nP rvm�nNN
mn
n
mmNNm,NN�
Nmm
n
ri ei riJ.: oiJ
nri
ri
Jrriri�JJri
.-.-�
>
��pp
O is
y
N
pp qq nn ��pp
OA �pOYlq
a�
qq
ONOb�SCr10
��pp
NIOIm PI
Nm
y'�
I\mvm
N:
�
OO, pO,
Q'�'o
ry
�
n
�i
ioo
a
ei
mcr
y'
N
�
N
S
fl
ry
1\V
S
6
8
S
H
e
m
N
Q
M1
p
O
pe
N
h F
0 � m
1V
N
N
O
N
O
IV
OO
N
mmF
bryPry NPN
NN,
N,N 01,
Fppmm
PPC�P
Y,�Y
qp
as P'Yl���
0q
a
D'1
yl pmp
NOm0YYM S
0000
imp,
+
000
H
U O y
J J f
J
J
J
J
J
J
QN
p9
899
aJ
pJ
pJ QJ
�J10J NJ pJmJ
SJ OJ SJ SJ ;2J OJ.2JpJ
0J 0J
pJ
rJ
OQNOQN
1 yam\
NN
OI
�
�N NOOaV OO
17N
N
..ryvi Vj0001V
NNNN
O
000
tl
Ob\
A
a
ry
0
FPN
NOIC�I`1
OmSF0
a
�p
Nnm17
O
O
nbry
f'1
Y
b
b
{Ny
�n�Imrmm�Oflm
f
K
W
0
p
m
ZL�
O
ti
el
G
F^�I
O�V
w
N
O
N N N N mPImm
�YmYmPNm
+'
m
ry
�p
FqO N m F m
pN m�Sry
NSbS
S
N
tbV
q
Y
O
ID
O
0
O.!^
::Vv
{y
N
N
NONJM\11\m
ry NY
P
mOP�bT C\I
y�
VI
m�ry�
pS
10
SIN
17
N
m F
rc
Wv0
�IVN
N
m
O�JgI�oOO YppI OOr
m
Jf�11VJCOO\
m
� \
N
��-10'1
�
Oi
F N
Gq�^
S��
r
Srr�Of'INSN
N NfNI
q
:
8 � SSS
An m
W
SSSS
O
n
N
m
00
S
1
Y 0
m
Z�m
m0lp
IG
N
0O1�m01�000
]U �U YI
Y
NO
�G
N
rmm
r
m
m
m �G
FW ._
2 ••
��pp
bib
C G O
�p
N
N
yy
nti1N1AYNnnOI
G
�p
17 CPIO
\
p �p
.Nb b m m Pn vmi
Yf
Sul rN
n
rrr
C
U m
O
O
O O OO O O O OO O
C G C
C
O
G G O C G G G G
O
O O OO C
G
O
O
...
OO
O O
'<
Nm
F '
b
'
'
om YOFmoN
NNm 'W^V)r
io, a
^ IV0
m
IV
IV
ry
PNrrOOoo
YImm01�Y1N Y1
m
omoo
NNNN
m
^
m
YP
mFm
r
w Is
_gym
0
-w�
Y
Cb
ej
Y
m
G
3 gN
Om
Oi
m
P
mrm
F
a 'i Y
r 1�^
'
'
NNm ` ` F
` `^
NOmPrNNN
lV
NNNN
0
b
N
b
F
icn
F
m N
�
f
TIh
Oyl
i0
a
b
n
N
NN
so
bP
p
q
8S�
:
g
oQ000OOao �
g o[[ pp
8QPoryP a'pll;Q m
pp
8
�p
r
I
I
I
L J
I
ao
ab�
$eaa
00
o '-
a..�o
o�
at ii
$"'a,�
Named
3
iur\{
c
c
P
vo
a
O
iL7�i
n
gfi n
c
fir\
m R
m
j�
�Om
dm N
9
O
O Z N
v
W
W Q &
N
-o
brlN
NO NmNNN
mn
mml'INmNN�
����
OF
Nwi fi
m
Nm mJJNJ
nm
n
JlV Pi 1'1 .:J Jnj
OiMNiN
���
2
(J^
O!b
1�11In
1'1
IG
S17 INp lNlp flp
�N n�qJ�
mry
mH
ry
�
N::IIVpp
pNN
NNNNJN�n
�p + ON
+OO
m
Nf'1
E
I
�
NN�O
I
E
� ^'E
(ii
O
N
�mO
8
Oi g g g
N
0
m
!1 mN
Q v
N
R
R
r
r R
OXm
v
N
JmN^YI
U
m^'
m
�ti000'UI YI YI^
N
I4 �C0
K
m U O 9
J J
J
J J J
Jp Jp JQ Jp
J J J
J
J
J J J J J J J J
J
J J
Jp
J
J
J Q Q Q
W
pJ p
mmn
n
R
ID
pJ
Q p p Q p
m YOI YI I�mm01p
�-N NO'0'NO
O
\b
C1
p p
�NOOl�mbm
JNm1'10'GCN
p p p
mO m, �O,
SEES
N
RRN
J X
1'j
N
E
NNNN
G
OOG
LL
p
Ofm
�p
Cl
�p y q q
m Plym NlNp_CNIp f10
q rp
1p UIN
O
m
gz G;
0
m +
YOOR
0
9
P I�IpN
P
O
N
1'l l'lN
m
1� �ryGllnJmJ�
�GN
'SNm
NNN NJ1�
NY1JC1
fl
YI 17Nn
O
m
O
r N
O z4'
'
'
,
LL
m
f
0
�
W
Orb
1?
�p
p SaOm NiO,R mN mO
m
N mry
O
p�
T
ry p
(7S Y^IN��ImV�
m
V
�OSR
R
n
m
m rlpn
0
O
q
N O
W p'
z
m
m
Ih-NONnJ1'IJ�-
m'N
^
'
NYI OIm�NJn
`
NN-N
m
N
\ m
O
m
P N
o�v
rc
soVox9s�m
02S.
n
m xza
�
R
NN
Vi
m oJJNno3G;;
m nr
n�000f
m
NOP
o
N
ri •- •-
m
`o
p 1p
Nmv!NmNNm,
'
p
N lmVmIF
m
®1��0NNN
NNNN
N
O �OOip
N
N
Y
N 1
N
2 �m
N CI N
N
M M N n N A N
N lV J
N 1V N N m N m
N
N N OI N
N
N N N N
N
N
N N
F
Z
$gym
2
vmi n'n nN�"Vi eyinn
.qi M�
S
7$'�mm�o�n
SN1 N
°1n
no
N
n N
U m
coc
m
e 000000ccc
o ee
e
m
oao.c c co
0
oo oc
o
o
000
0
0
o c
mnm
m
omNYonuOm
I�AOi'�(IF
�o, m\
^d
m
Y
ry
�o,o oo
NmmmnNO1N
�
O
o00o
NNNN
N
m
m
mnm
n
I�
s .01
'
N
`
^
aim
G
�
mN
ry
N
O N.. 0 0 0 0
O O O O
N
E\
IanV
I
n
N NN
O
N
YIOONnV1NN
m
NNNN
m
0
mnm
n
i
o
g m
N'
�^N
C
0
Z
W
19
N
$8
$
sS
8e:
9oa�A
SHE
HUMMS
$9
2
2 aoa
M
�
:
\\IN
V"
\
'Yi 23
n
eN
Leo `mmm3m$u
m
m'mm$
ieo
a
S
n:
o��
DETENTION POND STAGE STORAGE TABLES
I
II
I
`•Jot. ��tl
VOI a�'•L�a
00%
i
11
l�
CLIENT `f JOBNO.559-oli
NC PROJECT Rids CALCULATIONS FOR
Engineering Consultants MADEBY 4-- DATE_111%CHECKED BY_ DATE -SHEET-OF
&l yr_n
G
A-
->
_
n.
0
511 l
ono
4.SSS-3.Gr-A=..:0:9
5113
7.93-�3
7.93-3 G = 4
51i5
16.26
�1 11
SPl�` 162b-3.6_ i,
...... 511
� 1
2t�.12
13.4►
5 ►1 �5
32 . �� .
_.. _ . :Zt
¢s
32.o9 -3:6 .
sn 5
3s.3
ssI-'I- _:
F
E
wm
I-"
7.21
2_SZ
(goe) Apedeo
I
1
1
1 I
I I
1
I
1
1
1
1 I
1 1
1 1
1 1
1
1
I
I
I
I
1
1
I
I
I
1 1
I I
I I
I 1
1 1
I I
I I
I I
I
I
I
I
I
I
I
1
I
1
I 1
I 1
I
1 1
I I
1 I
1 1
I I
I
I
I
I
I
I
I
I
I
I
1
1
1
I
I
I
I
I
I
1 1
1 1
I
I I
1 1
I I
I I
1 I
1 I
I 1
I 1
I I
I I
I I
I
1
I
I
1
I
1
I
I
1
I
1
1
1
I
1
1
I
I
I
I
1
1
1
1
I
I
1
I
I I
1 1
I I
1 1
1 1
1 1
1 1
I I
I I
I I
I
1 1
I I
1 1
I 1
1
1 I
I I
I I
I I
I
I
1
1
1
1
I
I
I
I
I
1
I
I
I
I
I
1
I 1
I
1
1 I
1 1
I I
I I
I I
I I
1
1
1
1
1
I
I I
I I
I
I
I
1
I
1 I
I
1
1
1
1
I
1
I
1
I
1
1 1
1 1
I 1
I I
1 1
1 1
I
1
I
1
I
I
1
1
1
1 1
1 1
1 1
I I
1 I
1 1
1 1
1 I
Go
O
Ln
Go
O
(sp) afueLPSIG
0
OOOCOM V'P-O.-MCO
LO
O �.-hh 1-1OCN CACD
Ow
U '
v
7
;
0
1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
CQ^ ;
O o o o o Q 00 0 0 0 0
�
N U '
v '
I
N
U
I
OOOCOMITt 0)MCO
O U
C
0 LO h I- P- LO V. N CA CO
CA
C
��
OrrO6O6�C.'ieM-.'i-4 G
ALL
w
N�
LL
U
C
+
iL
'
OOOODCl) l- CpI�NOOCO
OOOOMN0N0
o
30
V � 0.,..
C
'
V'00)
^
CID�--�NNM
0000 V'(ONf,NODIn�
V'
(tf >�
3 j
`O
>
QU o0
>
o.
�...
I
0 0 0 0 0 0 0 0 0 0 CD O
C
0 00 00 0 0 0 00 0
c
O
"'.'CL ^ i
aio.=c�irivLricflr�aooio
N� 3
>
__N
Lid000LnLnLA0LA0Ln0
L`C N
L
W i
_0
0 3( 7
tA03:0
co
7
co
n
co
ci E
arc
1
L
N J
`o
m0 —
3 W
C (D
L +
mL C
U J
rnr
Q , 3
n +
N N>
N Q O
'
a =aci
265 Tn CL
a CL $W
C7 m
CXo
II IF
> > ` W
• N p 7- O
N N V E
'
'0 N aa)Q>i
jN
�> 0 E
0�0+
>= LC
�Y O. ) CIS'X
N C1
C @ 3 W
LLOZ
+ p E
wQ YE
>Y- 3
C
O N Cl) r, Cl) CM O r GO O P- r N O R N
r CO N IO LO N N r- Q LO 0 O) r I,W0
3= II
CND N II LQ
n Y
11
II U'p-'LL
II
2L=
C W C C
0ioioorMwr-C)MFl- LriOivoi
00�
COJ
1 OJ J
O
�Yv==WCY=UZww
U
I
oOCOnMMOrOrNO
�
0=
M U7r'7ION Nh V1O0Q)r 1- 0 M
R
C m °, o .^-
L N .-
w
hCDOOrM LO I�OMi� MMMVV
O O O
v�
r r r r r r r r r r.r r r
O
i
O O O O O O O O O O O O O O O O
L-
CO
L
3
w
m
C ;
0
L) a i
=
m
Q
tm
N
0
7 i
N y
E
() N I
oNM N0O r�CO (O f0 000t0 CO CO
C
i
OrNMM �7QQ? R Q C Q R V
Q
r r r r r e= r r r r r r r r r
E
N Q
r?
+
U v
O
�
i
O M CO C O N r CO N M M M M M M M
''
LO O
IOO
� �
LO n O O N M Mv V 7 R C R Q R
!T
Q 1
O O C r r r r r r r r r r r r
t
.
U f
N N
11
OCDMMCOOrM0 LOCO MIS CD
C
Y
0
r h CO O LO 10O 0 I� CD M r M 000 r
0
J J
O O r N C CD CD 1.4 CO N 6 016 r
N
co
rrrNN MM'7
O W O
2
'
i
OMCO O MW ON LOON MO r V W
rN � M0 f�00rM RLO t` (00
'
O l
_
0> y r.
�N M CLOOf` OOr NM �N0
C
i
y
; " I
LL
0lONLnOMO(rOQNOT°f�O(NOw o
'y.
�Ci CD
0
_^ '
}-
m
n
O CD
O
CD
t N
0006r rCV C M tri (O I� CD O
r
C
r
W
r r r r r r r r r r r r r r r r
ap
,
v
It II II II
II
G 1
O LOM f�N IOr I�NCOO C CDNfOO
'
O
0 Y O
Q W
J
W
C i
i
03�
f` r �O NOIOMr O W OOM N
O' rr NN M C LO CO fD r-� CO 00
5
O
`
d
`
OOLO mC00 R Om O CON(OR O
'
N
Q
IO ONLOO MCDOIOrCpNC0
c
O
U
W I� M LOr
ON
i
O N CtO COO NCOO NO
r r r N
O V
M
^
.. ...
r r r N N M
c
r
O
O
N
m
m
O1
c
of
Oi
N I
W
II II II II
II II II
U
ON R(O CDON BCD CDO N COOO
N J
0 0 C
Z 00
W
_ Q Q
W
❑ i
U
¢
U
12
m
`m
'
Ponds at Overland Trail
Pond #397 - Detention Pond Rating Curve
l
YVx
Elevation
Area
Incremental
Cumulative
Discharge
C wY
(Acre)
Volume
(Ac-ft)
Volume
(Ac-ft)
(cfs);'
'
/
5133
0
0
0
'
5134
0.83
0.28
0.28
20.11*
5135
0.93
0.42
0.7
56.85
5136
0.97
0.5
1.35
118.18
5137
1.03
0.97
3.22
136.46
'
5138
1.21
1.28
4.5
152.57
Area -Elevation
Capacity -Elevation
Area
v 5 Cumulative Vol.
Q
�4
0
3
�2 m
co 1
EO
v 5133 5134 5135 5136 5137 5138
Elevation (ft)
Elevation - discharge
5138
—5137
c
5136
15
a�
w 5135
5134
20 40 60 80 100 120 140 160
Discharge (cfs)
' CURRENT DATE: 10-09-1996
CURRENT TIME: 15:07:31
1
11
11
FHWA CULVERT ANALYSIS
HY-8, VERSION 4.3
C
SITE DATA
U--------------------------
L
INLET
OUTLET
CULVERT
V
ELEV.
ELEV.
LENGTH
#
(FT)
--------------------------
(FT)
(FT)
1
124.50
113.00
788.08
2
3
4
5
6
FILE DATE: 10-09-1996
FILE NAME: POND
CULVERT SHAPE, MATERIAL, INLET
-----------------------------------------------
BARRELS
SHAPE SPAN RISE MANNING INLET
MATERIAL (FT) (FT) n TYPE
-----------------------------------------------
1 RCP 4.50 4.50 .012 CONVENTIONAL
FILE: POND CULVERT HEADWATER ELEVATION (FT)
DISCHARGE
1
2
3
4
5
0
124.50
0.00
0.00
0.00
0.00
18
125.99
0.00
0.00
0.00
0.00
35
126.84
0.00
0.00
0.00
0.00
53
127.53
0.00
0.00
0.00
0.00
70
128.12
0.00
0.00
0.00
0.00
88
128.67
0.00
0.00
0.00
0.00
105
129.24
0.00
0.00
0.00
0.00
123
129.86
0.00
0.00
0.00
0.00
140
130.56
0.00
0.00
0.00
0.00
145
130.78
0.00
0.00
0.00
0.00
175
132.26
0.00
0.00
0.00
0.00
175
132.26
0.00
0.00
0.00
0.00
The above
Q and
HW are for
a point above
the
roadway.
DATE: 10-09-1996
6 ROADWAY
0.00
110.80
0.00
111.13
0.00
111.14
0.00
111.14
0.00
111.15
0.00
111.16
0.00
111.18
0.00
111.19
0.00
111.21
0.00
111.22
0.00
111.24
0.00
0.00
'
2
CURRENT DATE: 10-09-1996
FILE DATE:
10-09-1996
'
CURRENT TIME: 15:07:31
FILE NAME:
POND
PERFORMANCE CURVE FOR CULVERT # 1
- 1 ( 4.5 BY 4.5
) RCP
HEAD- INLET OUTLET
'DIS-
CHARGE WATER CONTROL CONTROL FLOW
NORMAL
CRITICAL OUTLET
TAILWATER
FLOW ELEV. DEPTH DEPTH TYPE
DEPTH
DEPTH VEL.
DEPTH
VEL.
DEPTH
(cf s) (ft) (ft) (ft) <F4>
(ft)
(ft) (fps)
(ft)
(fps)
(ft)
0 124.50 0.00 0.00 0-NF
0.00
0.00 0.00
0.00
0.00
-2.20
18 125.99 1.49 1.49 1-S2n
0.77
1.17 9.51
0.77
3.76
-1.87
35 126.84 2.34 2.34 1-S2n
1.10
1.69 11.51
1.10
4.91.-1.69
'
53 127.53 3.03 3.03 1-.S2n
1.37
2.09 12.78
1.37
5.73
-1.55
70 128.12 3.62 3.62 1-S2n
1.59
2.43 13.87
1.59
6.39
-1.42
'
88 128.67 4.17 4.17 1-S2n
105 129.24 4.74 4.74 5-S2n
1.81
1.99
2.74 14.66
3.00 15.43
1.81
1.99
6.95
7.43
-1.30 .
-1.19
123 129.86 5.36 5.36 5-S2n
2.18
3.25 16.03
2.18
7.87
-1.09
140 130.56 6.06 6.06 5-S2n
2.36
3.47 16.56
2.36
8.26
-0.99
145 130.78 6.28 6.28 5-S2n
2.41
3.53 16.70
2.41
8.36
-0.96
175 132.26 7.76 7.76 5-S2n
2.72
3.81 17.42
2.72
8.95
-0.80.
'
El. inlet face invert 124.50
El. inlet throat invert 0.00
ft
ft
El. outlet
E1. inlet crest
invert
113.00
0.00
ft
ft
SITE DATA ***** CULVERT INVERT
**************
INLET STATION (FT)
100.00
INLET ELEVATION (FT)
124.50
'
OUTLET STATION (FT)
OUTLET ELEVATION (FT)
888.00
113.00
NUMBER OF BARRELS
1
SLOPE (V-FT/H-FT)
0.0146
CULVERT LENGTH ALONG SLOPE (FT)
788.08
***** CULVERT DATA SUMMARY ************************
BARREL SHAPE CIRCULAR
'
BARREL DIAMETER 4.50 FT
BARREL MATERIAL CONCRETE
BARREL MANNING'S N 0.012
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL SQUARE EDGE WITH
HEADWALL
INLET DEPRESSION NONE
[-1
I&
CURRENT DATE: 10-09-1996
' CURRENT TIME: 15:07:31
191
FILE DATE: 10-09-1996
FILE NAME: POND
TAILWATER
REGULAR
CHANNEL CROSS SECTION ****************
'
BOTTOM WIDTH
SIDE SLOPE
(FT)
H/V (X:1)
14.00
0.0
CHANNEL
SLOPE V/H (FT/FT)
0.005
MANNING'S
N (.01-0.1)
0.013
CHANNEL
INVERT ELEVATION
(FT)
110.80
'
CULVERT
NO.1 OUTLET INVERT ELEVATION
113.00 FT
'
******* UNIFORM
FLOW RATING CURVE
FOR DOWNSTREAM CHANNEL
FLOW
W.S.E. FROUDE
DEPTH
VEL.
SHEAR
(CFS)
(FT) NUMBER
(FT)
(FPS)
(PSF)
0.00
110.80 0.000
0.00
0.00
0.00
17.50
111.13 1.149
0.33
3.76
0.10
35.00
111.31 1.214
0.51
4.91
0.16
52.50
70.00
111.45 1.249
111.58 1.273
0.65
0.78
5.73
6.39
0.20
0.24
87.50
111.70 1.291
0.90
6.95
0.28
105.00
111.81 1.304
1.01
7.43
0.31
122.50
111.91 1.314
1.11
7.87
0.35
140.00
112.01 1.322
1.21
8.26
0.38
145.00
112.04 1.324
1.24
8.36
0.39
175.00
112.20 1.334
1.40
8.95
0.44
ROADWAY OVERTOPPING
DATA
ROADWAY SURFACE
GRAVEL
EMBANKMENT
TOP WIDTH (FT)
5.00
'
CREST LENGTH (FT)
400.00
OVERTOPPING CREST ELEVATION
(FT)
37.50
1
DETENTION POND OUTLET
CALCULATIONS
RBD, Inc., Engineering
Consultants
'
The Ponds at Overland
Detention
Pond 397 Outlet
'
Type D grate:
Open length, L =
'
Open width, W =
Clogging, c =
Weir equation:
Qw=CLcH^1.5
C =
3.0
Lc =
6.7 ft
'
H
Qw Qo
(ft)
(cfs) (cfs)
'
-------------
0.00
--------------------------
"000 0.00
0.50
7.11 48.25
1.00
20.10 68.23
'
1.50
36.93 83.57
2.00,
56.85 96.49
2.50
3.00
__ 107.88
118.18
3.50
127.65
4.00
136.46
'
4.50
=_
144.74
5.00
152.57
'
5.50
160.02
1
,40 -
'
,zo .
,00 .
eo .
$ 60
o I
'
40 .
]0
0r
'
0
1
1
589-011
6.7 ft
4.2 ft
50%
Orifice equation
Qo = C Ac (2gH)^0.5
C = 0.6
Ac = 14.2 ft2
Q(100) = 146.1 cfs
d(100) = 4.55 ft
1 2 J 4
H..d (fl)
a Mir - 0i -Controlling
11-Nov-96
1
100-YEAR UPDATED
STORMWATER MANAGEMENT MODEL
OFF
SITE
0 ,
U
rn
M
rl
z
m
191W E
1
331
F
PROPOSED
DEVELOPMENT
SITE
7
PLEASANT VALLEY
/ AND LAKE CANAL \
33 9 \ 0 9 400
e, /. � 40;6
NZ
THE PONDS AT SWMM SCHEMATIC
OVERLAND
75
374 35
37.
1�
605
OFF
SITE
2�=�I
OVERLAND TRAIL ROAD
700 r�� ��$� 701
401
<1 18 LEGEND I
CLEARVIEW 312 CONVEYANCE ELEMENT I
�I
DRAINAGEWA.Y 203 DUMMY NODE
I
64 SUB —BASIN
CLEARVIEW 3 f:'l 417 DETENTION POND I
PONDS
5
:mDInc.
Engineering Consultants
I
11
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY
I
1 TAPE OR DISK ASSIGNMENTS
UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
JIN(1)
JIN(2)
J1N(3)
JIN(4)
JIN(5)
JIN(6)
JIN(7)
JIN(8)
JIN(9)
JIN(10)
2
1
0
0
0
0
0
0
0
0
JOUT(1)
JOUT(2)
JOUT(3)
JOUT(4)
JOUT(5)
JOUT(6)
JOUT(7)
JOUT(8)
JOUT(9)
JOUT(10)
1
2
0
0
0
0
0
0
0
0
NSCRAT(1)
NSCRAT(2).
NSCRAT(3)
NSCRAT(4)
NSCRAT(5)
3
4
0
0
0
il WATERSHED PROGRAM CALLED
I
ENTRY MADE TO RUNOFF MODEL ***
100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. Collins, CO
DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge w/ Pond 399 @5114
NUMBER OF TIME STEPS 300
INTEGRATION TIME INTERVAL (MINUTES) 1.00
1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
60 .96 1.44 1.68 3.00 5.04 9.00
1.20 .84 .60 .48 .36 .36 .24
.24 .24 .12 .12 .00
3.72 2.16 1.56
.24 .24 .24
100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. Collins, LO
DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge w/ Pond 399 @5114
' SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN)
NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV.
-2 0 .0 .0 .0 .0300 .016 .250 .100 .300
INFILTRATION RATE(IN/HR) GAGE
MAXIMUM MINIMUM DECAY RATE NO
.51 .50 .00180
I
1
2
1
800.0
12.0
36.0
.0070
.016
.250
.100
.300
.51
.50
3
3
700.0
14.4
39.0
.0060
.016
.250
.100
.300
.51
.50
.00180
4
5
7
2200.0
2300.0
31.6
44.5
35.0
38.0
.0080
.0070
.016
.016
.250
.250
.100
.300
.51
.50
.00180
.00180
5
6
9
3000.0
56.1
37.0
.0100
.016
.250
.100
.100
.300
.300
.51
.51
.50
.00180
7
11
2900.0
48.3
24.0
.0150
.016
.250
.100
.300
.51
.50
.00180
8
13
2200.0
37.6
30.0
.0100
.016
.250
.100
.300
.51
.50
.00180
9
15
1000.0
25.3
64.0
.0060
.016
.250
.100
.300
.51
.50
.00180
83
19
2850.0
30.2
35.0
.0110
.016
.250
.100
.300
.51
.50
.00180
84
2
2400.0
44.0
15.0
.0100
.016
.250
.100
.300
.51
.50
.00180
10
4
2000.0
49.6
20.0
.0100
.016
.250
.100
.300
.50
.00180
11
22
24
4540.0
2400.0
88.6
48.9
22.0
36.0
.0200
.0130
.016
.016
.250
.250
.100
.300
.51
.51
.50
.50
.00180
.00180
12
13
28.
32
2400.0
27.4
39.0
.0110
.016
.250
.100
.100
.300
.300
.51
.51
.50
.50
.00180
14
2520.0
50.2
39.0
.0090
.016
.250
.100
.300
.51
.00180
15
34
3800.0
58.6
40.0
.0130
.016
.250
.100
.300
.51
.50
.00180
16
37
5100.0
43.1
39.0
.0100
.016
.250
.100
.300
51
.50
.00180
�18Y-
38
5520.0
46.4
32.0
.0150
.016
.250
.100
.300
.51
.50
.50
.00180
19�-
55
8300.0
47.6
31.0
.0250
.016
.250
.100
.300
.51
.50
.00180
201L
57
5500.0
3900.0
31.6
29.0
.0250
.016
.250
.100
.300
.51
.50
.00180
.00180
21
59
2400.0
106.3
59.7
40.0
.0080
.016
.250
.100
.300
.51
.50
.00180
22
61
3100.0
62.4
40.0
32.0
.0080
.016
.250
.100
.300
.51
.50
.00180
23
65
2600.0
35.4
48.0
.0070
.0070
.016
.250
.100
.300
.51
.50
.00180
24
69
2200.0
48.3
40.0
.0080
.016
.016
.250
.250
.100
.300
.51
.50
.00180
36
37
43
1600.0
39.0
40.0
.0050
.016
.250
.100
.100
.300
.300
.51
.50
.00180
38
12
41
2000.0
22.9
40.0
.0100
.016
.250
.100
.300
.51
.51
.50
.50
.00180
17
70
500.0
2000.0
15.5
43.3
10.0
.0100
.016
.250
.100
.300
.51
.50
.00180
.00180
401-
101
2150.0
18.5
40.0
.0050
.016
.250
.100
.300
.51
.50
.00180
43
104
2000.0
71.0
40.0
33.0
.0200
.016
.250
.100
.300
.51
.50
.00180
58
136
4200.0
49.2
45.0
.0400
.016
.250
.100
.300
.51
.50
.00180
59
131
6400.0
38.4
40.0
.0050
.0100
.016
.250
.100
.300
.51
.50
.00180
60
135
6400.0
52.2
40.0
.0150
.016
.016
.250
.250
.100
.300
.51
.50
.00180
61
130
5800.0
133.2
30.0
.0050
.016
.250
.100
.100
.300
.51
.50
.00180
62
63
132
3200.0
61.5
35.0
.0150
.016
.250
.100
.300
.300
.51
.50
.00180
64
143
2000.0
16.9
40.0
.0100
.016
.250
.100
.300
.51
.51
.50
.00180
65
144
2200.0
37.4
40.0
.0150
.016
.250
.100
.300
.51
.50
.00180
66
145'
138
3600.0
67.1
60.0
.0200
.016
.250
.100
.300
.51
.50
.50
.00180
.00180
67
133
3000.0
55.2
40.0
.0040
.016
.250
.100
.300
.51
.50
.00180
68
137
4000.0
77.7
40.0
.0050
.016
.250
.100
.300
.51
.50
69
141
7200.0
3300.0
109.4
40.0
.0800
.016
.250
.100
.300
.51
.50
.00180
.00180
70
140
8000.0
34.4
49.6
40.0
40.0
.0100
.016
.250
.100
.300
.51
.50
.00180
71
155
2000.0
61.5
45.0
.0100
.016
.250
.100
.300
.51
.50
.00180
72
154
4600.0
86.0
45.0
.0200
.016
.250
.100
.300
.51
.50
.00180
73
153
2000.0
53.2
40.0
.0050
.0040
.016
.016
.250
.100
.300
.51
.50
.00180
74
151
4000.0
72.1
50.0
.0400
.016
.250
.250
.100
.100
.300
.51
.50
.00180
75
76
152
1000.0
41.3
60.0
.0200
.016
.250
.100
.300
.300
.51
.51
.50
.00180
77
160
157
6400.0
132.2
40.0
.0100
.016
.250
.100
.300
.51
.50
.50
.00180
.00180
78
158
3200.0
34.1
50.0
.0050
.016
.250
.100
.300
.51
.50
.00180
79
159
2900.0
96.2
60.0
.0100
.016
.250
.100
.300
.51
.50
.00180
80
165
2600.0
93.2
45.0
.0100
.016
.250
.100
.300
.51
.50
.00180
81
3200.0
52.2
45.0
.0100
.016
.250
.100
.300
.51
82
162
6800.0
80.7
45.0
.0100
.016
.250
.100
.300
.51
.50
.00180
85
164
3000.0
63.5
40.0
.0200
.016
.250
.100
.300
.51
.50
.50
.00180
86
148
6000.0
107.4
20.0
.0100
.016
.250
.100
.300
.51
.50
.00180
92
300
307
950.0
11.6
23.0
.0150
.016
.250
.100
.300
.51
.50
.00180
.00180
350
372
1300.0
85.1
10.0
.0500
.016
.250
.100
.300
.51
.50
.00180
351
373
2875.0
6.6
45.0
.0300
.016
.250
.100
.300
.51
.50
.00180
352
2396.0
5.5
45.0
.0230
.016
.250
.100
.300
.51
.50
353
374
958.0
2.2
45.0
.0240
.016
.250
.100
.300
.51
.50
.00180
354
375
7115.0
14.7
45.0
.0380
.016
.250
.100
.300
.51
.50
.00180
355
376
1026.0
3.3
40.0
.1000
.016
.250
.100
.300
.51
.50
.00180
.00180
356
313
5791.0
22.6
20.0
.0190
.016
.250
.100
.300
.51
.50
.00180
357
378
379
3298.0
5.3
45.0
.0260
.016
.250
.100
.300
.51
.50
.00180
358
4530.0
15.6
40.0
.0380
.016
.250
.100
.300
.51
.50
.00180
359
380
1350.0
3.1
15.0
.0710
.016
.250
.100
.300
.51
.50
.00180
381
8451.0
9.7
47.0
.0370
.016
.250
.100
.300
360
317
1646.0
1.7
67.0
.0340
.016
.250
.100
.300
.51
.50
.00180
361
383
1220.0
1.4
24.0
.0300
.016
.250
.100
.300
.51
.51
.50
.50
.00180
.00180
1
I
I
I
362
384
4937.0
1.7
363
385
938.0
1.4
364
386
4704.0
10.8
365
387
1794.0
7.2
366
388
2693.0
3.4
367
389
1321.0
91.0
368
390
740.0
17.0
369
391
1160.0
21.3
370
392
2197.0
80.7
371
393
443.0
11.2
341
333
871.0
1.1
340
386
3049.0
2.8
<700
699,'
2434.0
1.9
70C 1"
69�
2962.0
1.7
TOTAL NUMBER OF SUBCATCHMENTS,
TOTAL TRIBUTARY AREA (ACRES),
HYDROGRAPHS WILL BE SAVED FOR
86 350 351
359 360 361
369 370 371
90.0
20.0
16.0
15.0
10.0
10.0
10.0
10.0
10.0
10.0
58.0
64.0
69.0
72.0
85
3555.70
THE FOLLOWING
352
362
18
.0350
.016
.250
.100
.300
.51
.50
.00180
.0130
.016
.250
.100
.300
.51
.50
.00180
.0130
.016
.250
.100
.300
.51
.50
.00180
.0170
.016
.250
.100
.300
.51
.50
.00180
.0200
.016
.250
.100
.300
.51
.50
.00180
.0980
.016
.250
.100
.300
.51
.50
.00180
.1110
.016
.250
.100
.300
.51
.50
.00180
.2090
.016
.250
.100
.300
.51
.50
.00180
.2840
.016
.250
.100
.300
.51
.50
.00180
.0540
.016
.250
.100
.300
.51
.50
.00180
.0200
.016
.250
.100
.300
.51
.50
.00180
.0060
.016
.250
.100
.300
.51
.50
.00180
.0050
.016
.250
.100
.300
.51
.50
.00180
.0050
.016
.250
.100
.300
.51
.50
.00180
24 SUBCATCHMENTS FOR
SUBSEQUENT
USE WITH
UDSWM2-PC
353
354
355
356
357
358
363
364
365
366
367
368
1 100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. CoLLins, CO
DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge w/ Pond 399 @5114
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS
TIME(HR/MIN) 18 86 350 351 352 353 354 355 356 357
0 1. .0 .0 .0 \
0. 0 0 0 0 0 0
0 2. 0 0 / .0 .0 .0 .0 .0 .0
0 3. .0 .0/ .0 .0 .0 .0.- .0 .0 .0 .0\
0 4./ .0 ;.0 .0 :0 .0 0 .0 .0 . .0 .0
0 5,. 1 0 .0: 0 0 .0 .0 .0 .0 \
0 6. 1 / .0 .0 0 7. 0 0 .0 .0 0 .0 0 .0 .0
1 % ..�; .0 0 1 \ .0 ` .0 .0 .0
0 8. 1 i .0 .0. 0 1 .0 J 0 .0 .1
0 \9. 1 :2 1 0 4 2 2 3
0 tq. 3r0 .3 1.0 7 3 2.6 1.5 1.0 1.8
/ 0 11. 7.1 .7 2.1 1.7 7 5.4 1.1 3.4 2.0., �' 4.1
0 12. `.. .12.2 \ 1.4 3.3 2. 1.1 7.9 / 1.6 5.1 2.9% . 6.5
0 13. 15.9 \. 2.0 3.9 3A 1.3 9.0 1.8 6.0 3:3 7.8
0 14. 18.3 •2.5' 4.1 A.4 1.4 9.g' 1.9 6.3 /3.4 8.5
0 15. 19.7 2.'9 4.2 % 3.5 1.4 Y.5 1.9 6.5 3.4 8.8
0 16. 21.3 3.3`., 4.5 3.7 1.5 TO.1 2.0 6.9 3.7 `.9.4
0 17. 23.0 3.7 4.8 ,i 4.0 1.6 10.9 2.2 7.V 3.9 1➢.1
0 18. 23.9 4.0 5.0 4.1 1.6 11.1 2.2 7!6 4.0 10.4
0 19. 24.4 4.15:0 4.2 1.7. 11.2 2.2 '7.6 4.0 10.5
0 \\2024.7 4.3 5.0 4.2 1.7 11.2 2.2 7.6 4.0 10.5,
0 R 29.7 5.0 6.3 5.2 2.1 14.4 2.9 9.7 5.2 13.1
0 2�, 37.6 6.1 8.2 6.7 2.7 18.7 3.8 ' 12.5 6.8 16.8 '
0 23 41.7 6.9 8.9 7.3 2.9 20.0 4.0 13.6 7.2 18:4
0 24. .. 44.6 7.5 9.4 7.8 3.1 21.4 4.3 14.4 '7.7 19.6
0 25. 47.1 7.9 10.1 8.3 3.3 23.0 4.7 15.5 8.3 20.8
0 26. 59.4 9.5 13.4 10.9 4.4 31.4 6.5 21.0 11.5", 27.3
0 27. 77.9 12.0 18.1 14.6 5.9 42.5 8.9 28.7 15/6 \, 36.6
0 28. 89.1 13.8 20.4 16.5 6.6 47.7 10 1 33.1 4 41.6
'\0 29. 97.6 15.1 22.1 17.9 7.2 51.8 11.0`. 37.1 18.9 45.4
D. 30. 105.2 16.2 23.7 '. 19.1 7.7 55.4 11.9 41.3 20.2 \48.9
O'- 31. 136.9 20.2 31.5 25.3 10.2 74.2 16.1 56.0:' 27.2 64.9.•'
0 '32. 182.0 26.3 41.5 33.5 13.5 97.5 21.1 `,75.;4 35.6 86 0
0 33, 207.4 30.4 45.4 36.8 14.8 105.4 22.9 86.2 38.4 95.5
0 34. 227.0 33.5 48.3 39.2, 15.8 111.7 24.4 96.5 40.7 �102.8\
0 35. 244.7 36.1 50.6 41.2 16.5 116.5 25.6 106.4. 42.3 108.9
0 36. 223.5 33.8 42.8 35.2 14.1 96.7 21.5 99.5'`• 35.0' 95.0
0 37. 188.5 29.1 32.9 27.3 10.9 73.2 16.5 87.3 26.3 75.8
0 38. 177.6 27.3 29.9 24.9 10.0 66.6 15.1 84.8 `y24.0 69.8
11
4 26. 3. 1 \ 1.5 1�•. .4
4 27. ..3 1 1.4 .4
4 28. .3 .1 1.4 .4
4 29. .3 1 1.4 .4
4 30. .3 1 1.4 ". .4
4 31. .3 .1 1-.3 .4
4 32. .3 1 1.3 .4
4 \33. .3 .1. 1.3 .4
4 '34. .3 1 1.3 "44
4 35. .3 .1 1.2 .4
4 36. .3 .1 1.2 .4
4 37e .3 .1 1.2 .4
4 38. .2 .0 1.2 .4
4 39. .2 .0 1.2 .4-.--
4 40. .2 .0 1.1 4"
4 4. .2 .0 1.1 .3
4 42. .2 .0 1.1 .- .3
4 43. .2 .0 1..1 ,3
4 44. .2 .0 1.1 .3
4 45. .2 .0 1.0 / .3
4 46. .2 .0 1.V .3
4 47. .2 .0 1'.0 .3 -
4 48. .2 .0 ;' 1.0 ,Y"
4 49. .2 .0 1.0 i .3
4 50. .2l .0 1.0 .3
4 51. R.0 .9 .3
4 52. -2 .0 .9 .3
4 53. i" .2 .0 .9 .3
4 54:' .2 .0 .9 .3
I 4 55. .2 .3
4 56. .2 .,0 9 3
4 57. .2 .0
4 58. .2
4 59. .2 .0 8 3
5 _ 0. .2 .0.3
100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. Collins, CO
DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge u/ Pond 399 @5114
/I *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
WATERSHED AREA (ACRES) 3555.700
TOTAL RAINFALL (INCHES) 2.890
TOTAL INFILTRATION (INCHES) .549
TOTAL
WATERSHED OUTFLOW (INCHES)
2.010
,.
TOTAL
SURFACE STORAGE AT END OF STROM (INCHES)
.331
ERROR
IN CONTINUITY, PERCENTAGE OF RAINFALL
.000
100-yr/CANAL IMPORTATION BASIN Proposed Cond, PHASEI.NEW, Ft, Collins, CO
DATE: 8/1/95 BY RBD ENGINEERS INC. Pond 395 discharge u/ Pond 399 @5114
0
WIDTH
INVERT
SIDE SLOPES
OVERBANK/SURCHARGE
GUTTER GUTTER NDP
NP OR DIAM
LENGTH
SLOPE
HORIZ TO VERT
MANNING DEPTH JK
NUMBER CONNECTION
(FT)
(FT)
(FT/FT)
L R
N (FT)
300 301 0
4 CHANNEL .0
OVERFLOW 18.0
420.
420.
.0360
.0360
50.0 50.0
20.0 20.0
.016 .40 0
.020 10.00
f
u J
301
102
3
2
PIPE
.0
150.
.0050
.0
.0
.013
.00
0
RESERVOIR
STORAGE
IN ACRE-FEET VS
SPILLWAY OUTFLOW
389�
.0
.0
.9 1.3
1.2
41.3
387J
102
0
1
CHANNEL
5.0
2200.
.0200
5.0
5.0
.035
100.00
0
375J
394
374
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
0
4
CHANNEL
.0
1500.
.0380
50.0
50.0
.016
.40
0
372
OVERFLOW
36.0
1500.
.0380
20.0
20.0
.020
10.00
394
0
4
CHANNEL
.0
650.
.0200
50.0
50.0
.016
.40
0
374/
OVERFLOW
36.0
650.
.0200
20.0
20.0
.020
10.00
373
0
4
CHANNEL
.0
600.
.0240
50.0
50.0
.016
.40
0
OVERFLOW
36.0
600.
.0240
20.0
20.0
.020
10.00
373
394
0
5
PIPE
2.0
150.
.0667
.0
.0
.013
2.00
0
'
390
OVERFLOW
.0
150.
.0667
4.0
4.0
.035
10.00
313
0
1
CHANNEL
10.0
600.
.1100
10.0
10.0
10.00
0
391J
/
313
0
1
CHANNEL
10.0
800.
.2100
10.0
10.0
.035
10.00
0
376
313 /
313
383
0
4
CHANNEL
OVERFLOW
.0
36.0
550.
550.
.0300
.0300
50.0
20.0
50.0
20.0
.035
.016.
.020
.40
10.00
0
378).
384
0
1
CHANNEL
30.0
2200.
.0160
4.0
4.0
.035
10.00
0
0
4
CHANNEL
.0
1580.
.0260
50.0
50.0
.016
.40
0
3841
394
OVERFLOW
18.0
1580.
.0260
20.0
20.0
.020
10.00
1
0
4
CHANNEL
OVERFLOW
.0
36.0
1000.
1000.
.0380
.0380
50.0
20.0
50.0
20.0
.016
.40
10.00
0
379J
330
0
4
CHANNEL
.0
1400.
.0380
.0
50.0
.020
.016
.40
0
392J
OVERFLOW
18.0
1400.
.0380
20.0
20.0
.020
10.00
380-)
330
397
0
1
CHANNEL
10.0
2800.
.2840
10.0
10.0
.035
10.00
0
330/
397
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
397
383
0
1
CHANNEL
10.0
100.
.1000
4.0
4.0
.035
10.00
0
6
2
PIPE
.0
150.
.0050
.0
.0
.013
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.00
383/
331
.0
.0
.5 7.1
1.0
20.1
1.5
36.9
3.0
118.2
4.0 136.5
381J
382
0
2
PIPE
5.0
788.
.0140
.0
.0
.013
.5.00
0
0
4
CHANNEL
.0
700.
.0370
.0
50.0
.016
.40
0
OVERFLOW
18.0
700.
.0370
20.0
20.0
10.00
317
382�
331
333
0
4
CHANNEL
OVERFLOW
.0
36.0
600.
600.
.0300
.0300
50.0
20.0
50.0
20.0
.020
.016
.020
.40
10.00
0
333J
331
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
0
5
PIPE
2.5
150.
.0100
.0
.0
.013
2.50
0
OVERFLOW
.0
150.
.0100
4.0
4.0
10.00
'
393
386
0
5
PIPE
OVERFLOW
3.0
.0
370.
370.
.0050
.0050
.0
4.0
.0
4.0
.035
.013
3.00
10.00
0
386�
331
331
396
0
3
.0
0.
.0010
.0
.0
.035
.001
10.00
0
385J
332
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
332�
398
0
4
CHANNEL
OVERFLOW
-0
18.0
600.
600.
.0130
.0130
.0
20.0
50.0
20.0
.016
.020
.40
10.00
0
388
400
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
C30_7
3
.0
0.
.0010
.0
.0
.001
10.00
0
_
30
0
4
CHANNEL
28.0
2000.
.0200
.0
.0
.016
10.00
0
309 20
0
3
OVERFLOW
56.0
2000.
.0200
50.0
50.0
.020
10.00
1
.0
0.
.0010
.0
.0
.001
10.00
0
2
22
0
1
CHANNEL
15.0
800.
.0004
2.0
2.0
.020
100.00
0
6
0
1
CHANNEL
12.0
2400.
.0004
1.0
1.0
100.00
0
3
5
0
1
CHANNEL
15.0
700.
.0140
30.0
-0
.020
100.00
0
4
8
0
1
CHANNEL
18.0
2000.
.0004
1.0
1.0
.016
100.00
0
5
7
0
1
CHANNEL
1.0
1100.
.0120
30.0
30.0
.020
100.00
0
6
206
4
5
PIPE
6.9
1000.
.0004
.0
.0
.016
.035
6.90
207
OVERFLOW
300.0
200.
.0020
.0
.0
.040
100.00
DIVERSION
.0
TO GUTTER
.0
NUMBER 207 - TOTAL
49.1 .0
0 VS DIVERTED 0
49.1 .1
IN CFS
5000.0 4950.9
206
12
0
3
.0
0.
.0010
.0
.0
10.00
0
207
13
0
3
100.0
0.
.0010
.0
.0
.001
100.00
0
7
9
0
5
PIPE
2.0
1150.
.0100
.0
.0
.001
2.00
0
8
208
4
5
OVERFLOW
PIPE
1.0
9.0
1150.
1200.
.0100
.0004
30.0
.0
30.0
.0
.013
.016
.035
100.00
9.00
209
OVERFLOW
150.0
900.
.0005
.0
.0
.004
100.00
DIVERSION
TO GUTTER
NUMBER 209 - TOTAL 0 VS DIVERTED 0
IN CFS
.0
.0
99.7 .0
99.7
.1
5000.0 4900.3
208
19
0
3
100.0
0.
.0010
.0
.0
100.00
0
209
130
0
3
100.0
0.
.0010
.0
.0
.001
100.00
0
9
11
0
5
PIPE
3.0
1500.
.0120
.0
.0
.001
.013
3.00
0
11
211
4
OVERFLOW
1.0
1500.
.0120
30.0
30.0
.016
100.00
5
PIPE
3.0
1450.
.0090
.0
.0
.012
3.00
212
OVERFLOW 1.0 1450.
.0090
30.0
30.0
.016
100.00
DIVERSION
TO GUTTER
NUMBER 212 - TOTAL 0 VS DIVERTED 0
IN CFS
.0
.0
73.7 .0 73.7 .1
5000.0
4926.3
211
13
0
3
100.0 0.
.0010
.0
.0
100.00
0
212
6
0
3
100.0 0.
.0010
.0
.0
.001
100.00
0
12
40
0
1
CHANNEL 12.0 3100.
.0004
1.0
1.0
.001
100.00
0
13
213
6
5
PIPE 3.0 1100.
OVERFLOW 1.0 1100.
.0070
.0070
.0
30.0
.0
30.0
.020
.012
.016
3.00
100.00
214
DIVERSION
TO GUTTER
NUMBER 214 - TOTAL 0 VS DIVERTED 0
IN CFS
213
.0
.0
98.0 .0 100.8 .8
129.0
14.2
182.7
52.6
384.0 200.0
15
0
3
100.0 0.
.0010
.0
.0
100.00
0
214
8
0
3
100.0 0.
.0010
.0
.0
.001
100.00
0
15
130
4
2
PIPE .0 100.
.0100
.0
.0
.001
.015
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
16.5 .0 33.6 .0
50.6
184.4
19
41
0
1
CHANNEL 18.0 1300.
.0004
1.0
1.0
100.00
0
22d
222
4
5
PIPE 7.8 2600.
.0004
.0
.0
.020
.035
7.80
223
OVERFLOW 100.0 100.
.0104
4.0
4.0
.040
100.00
DIVERSION
TO GUTTER
NUMBER 223 - TOTAL 0 VS DIVERTED 0
IN CFS
222 /
101
.0
0
.0
3
50.0 .0 50.1 .1
5000.0
4950.0
101 /
102
100.0 0.
.0010
.0
.0
.001
100.00
0
1021
0
1
CHANNEL 15.0 2000.
.0004
2.0
2.0
.020
100.00
0
_
103J
103
605
0
3
100.0 0.
.0010
.0
.0
.001
100.00
0
6
4
CHANNEL 4.0 200.
.0010
4.0
4.0
.035
3.00
394
DIVERSION
TO GUTTER
OVERFLOW 45.0 200.
NUMBER 394 - TOTAL 0 VS DIVERTED 0
.0010
IN CFS
4.0
4.0
.040
10.00
605/
202
.0
.0
50.0 .0 60.0 10.0
100.0
50.0
150.0
100.0
1000.0 950.0
394!
395
0
3
100.0 0.
.0010
.0
.0
.001
100.00
0
395
400
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
4
2
PIPE .0 150.
.0050
.0
.0
.013
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.00
4001
.0
.0
10.9 1.0 15.9 2.0
20.9
13.4
396
399
401
0
13
3
.0 0.
.0010
.0
.0
.001
10.00
0
'
RESERVOIR
2
STORAGE IN
PIPE .0 150.
ACRE-FEET VS SPILLWAY OUTFLOW
.0050
.0
.0
.013
.00
0
0
.0
.0 1.1 .0 1.1
.0
1.1
.0
1.1
1.0 8.6
4.3
9.7
8.3 10.7 12.7 11.7
17.3
12.6
22.5
13.4
28.5 14.2
31.7
14.6
398J
401
10
2
PIPE .0 150.
.0050
.0
.0
.013
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.00
.0
.0
.0 .0 .1 .0
.2
.0
.4
.0
.6
399j
.8
.0
1.1 .0 1.5 .0
1.9
.0
.0
401
9
RESERVOIR
2
STORAGE IN
PIPE .0 150.
ACRE-FEET VS SPILLWAY OUTFLOW
.0050
.0
.0
.013
.00
0
.0
.0
.0 .1 .0 .1
.0
.1
.0
.1
2.2 12.1
/
3.6
13.7
5.1 15.2 6.6 16.6
699
401
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
698 401
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
zz30
3
.0 0.
.0010
.0
.0
.001
10.00
0
24
0
3
100.0 0.
.0010
.0
.0
.001
100.00
0
26
0
1
CHANNEL 1.0 1100.
.0090
4.0
4.0
100.00
0
26
28
4
RESERVOIR
2
STORAGE IN
PIPE 2.5 24.
ACRE-FEET VS SPILLWAY OUTFLOW
.0040
.0
.0
.040
.013
2.50
0
.0
.0
.5 .0 .7 8.0
.9
220.0
28
30
0
4
CHANNEL 2.0 550.
.0140
3.0
3.0
.040
3.00
0
OVERFLOW 2.0 550.
.0140
100.0
100.0
100.00
30
32
7
2
PIPE 2.5 10.
.0050
.0
.0
.080
.012
2.50
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.3 .0 .5 .0
.8
7.6
.9
29.3
1.1 44.0
1.2
570.5
32
34
0
4
CHANNEL 3.0 1260.
OVERFLOW 3.0 1260.
.0090
.0090
3.0
100.0
3.0
100.0
.040
4.00
100.00
0
34
38
0
4
CHANNEL 5.0 1900.
.0100
3.0
3.0
.080
.040
4.00
0
OVERFLOW 5.0 1900.
.0100
100.0
100.0
100.00
37
38
0
4
CHANNEL 3.0 1900.
.0100
3.0
3.0
.080
.040
3.00
0
OVERFLOW 3.0 1900.
.0100
100.0
100.0
100.00
38
40
0
4
CHANNEL 5.0 1960.
.0040
4.0
4.0
.080
.040
4.00
0
OVERFLOW 5.0 1960.
.0040
100.0
100.0
100.00
40
240
4
5
PIPE 6.9 1000.
.0004
.0
.0
.080
.035
6.90
241
OVERFLOW 10.0 1100.
.0004
10.0
10.0
.040
100.00
DIVERSION
TO GUTTER NUMBER 241 - TOTAL 0 VS DIVERTED 0
IN CFS
.0
.0
49.1 .0
49.1
.1
5000.0
4950.9
240
67
0
3
100.0
0.
.0010
.0
.0
100.00
0
241
41
0
3
100.0
0.
.0010
.0
.0
.001
.001
100.00
0
41
242
4
5
PIPE
9.0
500.
.0004
.0
.0
.035
9.00
243
OVERFLOW
50.0
600.
.0003
5.0
5.0
.040
100.00
DIVERSION
TO GUTTER
NUMBER 243 - TOTAL
0 VS DIVERTED 0
IN CFS
242
70
.0
0
.0
3
99.7 .0
99.7
100.0
.1
0.
5000.0
.0010
4900.3
.0
.0
.001
100.00
0
243
145
0
3
100.0
0.
.0010
.0
.0
.001
100.00
0
43
98
0
1
CHANNEL
18.0
2000.
.0004
1.5
1.5
100.00
0
4�51P
53
0
4
CHANNEL
1.5
1400.
.0040
10.0
10.0
.020
.040
2.50
0
OVERFLOW
3.0
1400.
.0040
100.0
100.0
100.00
55
7
2
PIPE
.1
300.
.0110
.0
.0
.080
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.9 3.1
2.7
17.5
4.7
34.0
7.1
50.2
7.9
54.0
-s-554-
57
8.5
10
RESERVOIR
120.0
2
STORAGE IN
PIPE .1
ACRE-FEET VS SPILLWAY OUTFLOW
300.
.0110
.0
.0
.013
.10
0
.0
.0
.0 1.4
.1
7.5
.2
12.0
.6
14.7
1.5
16.0
3.2
18.0
5.7 20.0
6.0
48.6
6.5
100.6
579
59
0
4
CHANNEL
3.0
1950.
.0070
2.0
2.0
.040
3.00
0
59 Q-
OVERFLOW
3.0
1950.
.0070
100.0
100.0
.080
100.00
4
61
0
4
CHANNEL
5.0
1200.
.0070
4.0
4.0
.040
3.00
0
OVERFLOW
5.0
1200.
.0070
100.0
100.0
100.00
61
63
63
0
4
CHANNEL
OVERFLOW
5.0
5.0
1550.
1550.
D060
.0060
4.0
100.0
4.0
100.0
.080
.040
.080
3.00
100.00
0
68
5
2
PIPE
3.0
50.
.0100
.0
.0
.013
.3.00
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.3 .0
1.8
.0
4.7
25.0
9.3
280.0
65
67
0
4
CHANNEL
1.0
2600.
.0100
33.0
1.0
.016
1.50
0
OVERFLOW
1.0
2600.
.0100
33.0
100.0
100.06
67
69
0
1
CHANNEL
12.0
950.
.0004
1.5
1.5
.040
100.00
0
68
268
4
5
PIPE
6.9
2400.
.0004
.0
.0
.020
.035
6.90
269
'
DIVERSION
TO GUTTER
OVERFLOW 50.0
NUMBER 269 - TOTAL 0 VS DIVERTED
1600.
0
.0006
IN CFS
100.0
100.0
.040
100.00
0
.0
49.1 .0
49.1
.1
5000.0
4950.9
268
69
0
3
100.0
0.
.0010
.0
.0
100.00
0
269
70
0
3
100.0
0.
.0010
.0
.0
.001
100.00
0
69
98
0
1
CHANNEL
12.0
2400.
.0004
1.5
1.5
.001
100.00
0
70
270
4
5
PIPE
9.0
100.
.0004
.0
.0
.020
.035
9.00
271
OVERFLOW
10.0
600.
.0001
50.0
50.0
.040
100.00
DIVERSION
TO GUTTER NUMBER 271 - TOTAL
0 VS DIVERTED
0
IN CFS
270
43
.0
0
.0
99.7 .0
99.7
.1
5000.0
4900.3
3
100.0
0.
.0010
.0
.0
.001
100.00
0
?Z1�
145
0
3
100.0
0.
.0010
.0
100.00
0
'�-98�
�199
_7>
0
1
CHANNEL
30.0
1000.
.0040
30.0
.0
30.0
.001
.035
100.00
0
0
-i'04�
0
1
CHANNEL
30.0
1000.
.0040
30.0
30.0
.035
100.00
0
<202�
0
3
100.0
0.
.0010
.0
.0
100.00
0
203 51
104 98
0
0
3
1
CHANNEL
100.0
0.
.0010
.0
.0
.001
.001
100.00
0
15.0
3950.
.0004
2.0
2.0
.020
100.00
0
130
- 137
0
5
PIPE
2.0
2900.
.0080
.0
.0
.013
2.00
0
OVERFLOW
1.0
2900.
.0080
30.0
30.0
.016
100.00
135
0
1
CHANNEL
2.0
3200.
.0080
30.0
30.0
.016
100.00
0
'131
132
133
0
1
CHANNEL
2.0
1600.
.0100
30.0
30.0
.016
100.00
0
133
154
0
5
PIPE
2.0
2400.
.0100
.0
.0
.014
2.00
0
OVERFLOW
2.0
2400.
.0100
30.0
30.0
.016
100.00
134
234
4
5
PIPE
3.5
800.
.0070
.0
.0
.014
3.50
235
OVERFLOW
2.0
1800.
0031
30.0
30.0
.016
100.00
DIVERSION
TO GUTTER NUMBER 235 - TOTAL
0 VS DIVERTED 0
IN CFS
.0
.0
84.0 .0
84.0
.1
5000.0
4916.0
234
155
0
3
100.0
0.
.0010
.0
.0
.001
100.00
0
235
154
0
3
100.0
0.
.0010
.0
.0
.001
100.00
0
135
155
0
5
PIPE
1.8
3200.
.0080
.0
.0
.014
1.80
0
OVERFLOW
2.0
3200.
.0080
30.0
30.0
.016
100.00
136
139
0
1
CHANNEL
1.0
4200.
.0050
30.0
30.0
.016
100.00
0
137
134
0
5
PIPE
3.5
1800.
.0080
.0
.0
.014
3.50
0
OVERFLOW
2.0
1800.
.0080
30.0
30.0
.016
100.00
138
133
0
5
PIPE
1.5
2000.
.0040
.0
.0
.013
1.50
0
OVERFLOW
2.0
2000.
.0040
30.0
30.0
.016
100.00
139
238
7
4
CHANNEL
OVERFLOW
1.0
1.0
700.
500.
.0060
.0084
.0
30.0
.0
4.0
.014
.016
1.00
100.00
239
u
u
DIVERSION
TO GUTTER
NUMBER 239 - TOTAL 0 VS
DIVERTED 0 IN CFS
.0
-0
.1 .0
6.2
1.4
42.2
34.5
59.4
51.0
129.7 119.2
218.0
200.0
�J
238
239
153
0
3
100.0
0.
.0010
.0
.0
.001
100.00
0
140
151
156
0
3
100.0
0.
.0010
.0
.0
.001
100.00
0
141
156
0
1
CHANNEL
2.0
4000.
.0100
30.0
30.0
.016
100.00
0
0
5
PIPE
1.3
1400.
.0100
.0
.0
.013
1.30
0
142
160
OVERFLOW
2.0
.1400.
.0100
30.0
30.0
.016
100.00
4
2
PIPE
2.5
400.
.0050
.0
.0
.013
100.00
0
-
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
5.7 72.2
21.4
144.0
48.6
264.0
143
144
146
147
0
1
CHANNEL
2.0
1500.
.0080
30.0
30.0
.016
100.00
0
0
5
PIPE
1.3
800.
.0050
.0
.0
.013
1.30
0
145
147
OVERFLOW"
2.0
800.
.0050
30.0
30.0
.016
100.00
0
5
PIPE
2.0
2000.
.0070
.0
.0
.013
2.00
0
146
245
OVERFLOW
2.0
2000.
.0070
30.0
30.0
.016
100.00
4
5
PIPE
1.3
1200.
.0030
.0
.0
.013
1.30
246
OVERFLOW
2.0
200.
.0180
30.0
30.0
.016
100.00
DIVERSION
TO GUTTER
NUMBER 246 - TOTAL O VS DIVERTED 0
IN CFS
245
.0
.0
3.8 .0
3.8
.1
5000.0
4996.2
246
147
136
0
0
3
3
100.0
100.0
0.
0.
.0010
.0
.0
.001
100.00
0
147
247
4
5
.0010
.0
.0
.001
100.00
0
PIPE
2.8
2000.
.0050
.0
.0
.013
2.80
248
'OVERFLOW
10.0
400.
.0250
50.0
50.0 -
.040
100.00
DIVERSION
TO GUTTER
NUMBER 248 - TOTAL 0 VS DIVERTED 0
IN CFS
247
.0
.0
40.2 .0
40.2
-1
5000.0
4959.8
248
99
148'
0
3
100.0
0.
.0010
.0
.0
.001
100.00
`O
148
149
0
0
3
100.0
0.
.0010
.0
.0,
001
100.00
0
5
PIPE
1.3
1800.
0060
.0
.0
.013
1.30
0
149
249
OVERFLOW
50.0
1800.
.0060
50.0
50.0
.040
100.00
4
5
PIPE
7.8
1200.
.0004
.0
.0
.035
7.80
250
OVERFLOW
50.0
600.
.0008
50.0
50.0
.040
100.00
DIVERSION
TO GUTTER
NUMBER 250 - TOTAL 0 VS DIVERTED 0
IN CFS
249
0
.0
68.1 .0
68.1
.1
5000.0
4931-9
�L\
250
99
150
0
3
100.0
0.
.0010
.0
.0
.001
100.00
0
Jp
150
151
0
6
3
100.0
0.
.0010
.0
.0
.001
100.00
0
_"
2
PIPE
.0
100.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
.01
151
.0
.0
1.2 .0
7.8
.0
17.6
.0
31.8
.0
49'.0 780.0
��
142
0
5
PIPE
2.0
2200.
.0030
.0
.0
.013
2.00
0
152
160
11.5
2200.
.0030
50.0
0
50.0
100.00
0
5
PIPEERFLOW
1900.
.0030
0
0013
1.50
0
153
157
OVERFLOW
2.0
1900.
.0030
30.0
30.0
.016
100.00
0
5
PIPE
2.3
2400.
.0050
.0
.0
.013
2.30
0
` J
154
157
OVERFLOW
2.0
2400.
.0050
30.0
30.0
'016
100.00
0
5
PIPE
4.0
2300.
.0050
.0
.0
.014
4.00
0
OVERFLOW
2.0
2300.
.0050
30.0
30.0
.016
100.00
156
0
5
PIPE
4.0
1600.
.0100
.0
.0
.014
4.00
0
1�155
156
OVERFLOW
2.0
1600.
.0100
30.0
30.0
.016
100.00
98
0
5
PIPE
4.0
500.
.0100
.0
.0
.013
4.00
0
157
OVERFLOW
100.0
500.
.0100
100.0
100.0
.030
100.00
163
0
5
PIPE
4.0
900.
.0050
.0
.0
.013
4.00
0
158
OVERFLOW
2.0
900.
.0050
30.0
30.0
.016
100.00
98
0
5
PIPE
2.3
1800.
.0100
.0
-0
.013
2.30
0
159
OVERFLOW
2.0
1800.
.0100
30.0
30.0
.016
100.00
98
0
5
PIPE
4.5
2800.
.0100
.0
.0
.013
' 4.50
0
r ?
160
OVERFLOW
2-0
2800.
.0100
30.0
30.0
.016
100.00
161
0
5
PIPE
3-5
2900.
.0050
.0
.0
.013
3.50
0
161
OVERFLOW
2.0
2900.
.0050
30.0
30.0
.016
100.00
261
4
5
PIPE
3.5
500.
.0050
.0
.0
.013
3.50
262
OVERFLOW
5.0
600.
.0042
10.0
10.0
.040
100.00
DIVERSION
TO GUTTER
NUMBER 262 - TOTAL
0 VS DIVERTED
0
IN CFS
.0
.0
76.5 .0
76.5
.1
5000.0
4923.5
261
162
0
3
100.0
0.
.0010
.0
.0
100.00
0
262
164
0
3
100-0
0.
.0010
.0
.001
100.00
0
162
99
0
5
PIPE
4.0
2400.
.0100
.0
.0
.0
.001
.013
4.00
0
163
OVERFLOW
2.0
2400.
.0100
30.0
30.0
.016
100.00
263
4
5
PIPE
4.0
500.
.0100
.0
.0
.013
4.00
264
OVERFLOW
2.0
1200.
.0042
30.0
30.0
.016
100.00
r
DIVERSION
.0
TO GUTTER
.0
NUMBER 264 - TOTAL
154.4 .0
0 VS DIVERTED
154.4
0
.1
IN CFS
5000.0
4845.6
4j,
I
I
11
I
I
I
I
I
I
263
264
159 0
160
3
100.0
0.
.0010
.0
.0
.001
100.00
164
0
99 0
3
100.0
0.
.0010
.0
.0
.001
100.00
165
1
CHANNEL
10.0
2000.
.0050
20.0
20.0
.040
100.00
99 0
5
PIPE
2.0
2000.
.0100
.0
.0
.013
2.00
TOTAL NUMBER
Of GUTTERS/PIPES,
156
OVERFLOW 2.0
2000.
.0100
30.0
30.0
.016
100.00
100-yr/CANAL
IMPORTATION BASIN
Proposed
Cord. PHASEI.NEW,
Ft. Collins,
CO
DATE: 8/1/95
BY RBD ENGINEERS
INC. Pond
395 discharge
u/ Pond 399
@5114
ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES
GUTTER
TRIBUTARY GUTTER/PIPE
TRIBUTARY
SUBAREA
D.A.(AC)
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
12.0
2
0
0
0
0
0
0
0
0
0
0
83
0
0
0
0
0
0
0
0
0
44.0
3
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
14.4
4
0
0
0
0
0
0
0
0
0
0
84
0
0
0
0
0
0
0
0
0
49.6
5
3
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
46.0
6
2
212
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
44.0
7
5
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
90.5
8
4
214
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
49.6
9
7
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
146.6
11
9
0
0
C
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
194.9
12
206
0
0
0
0
0
0
0
0
0
37
0
0
0
0
0
0
0
13
207
211
0
0
0
0
0
0
0
0
7
0
0
0
0
66.9
15
213
0
0
0
0
0
0
0
0
0
0
0
0
0
0
232.5
19
208
0
0
0
0
8
0
0
0
0
0
0
0
0
0
257.8
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
79.8
22
1
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
100.6
24
223
0
0
0
0
0
0
0
0
0
11
0
0
0
0
0
0
0
0
0
48.9
26
24
0
0
0
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
48.9
28
26
0
0
0
0
0
0
0
0
0
12
0
0
0
0
0
0
0
0
0
76.3
30
28
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
76.3
32
30
0
0
0
0
0
0
0
0
0
13
0
0
0
0
0
0
0
0
0
126.5
34
32
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
0
0
0
185.1
37
0
0
0
0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
43.1
38
34
37
0
0
0
0
0
0
0
0
16
0
0
0
0
0
0
0
0
0
274.6
40
12
38
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
341.5
41
19
241
0
0
0
0
0
0
0
0
38
0
0
0
0
0
0
43
270
0
0
0
0
0
0
0
0
0
36
0
0
0
0
95.3
51
401
203
0
0
0
D
0
0
0
0
0
0
0
0
0
0
177.6
53
51
0
0
0
18
0
0
0
0
0
0
0
0
0
301.5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
301.5
55
53
0
0
0
0
0
0
0
0
0
19
0
0
0
0
0
0
0
0
0
333.1
57
55
0
0
0
0
0
0
0
0
0
20
0
0
0
0
0
0
0
0
0
439.4
59
57
0
0
0
0
0
0
0
0
0
21
0
0
0
0
0
0
0
0
0
499.1
61
59
0
0
0
0
0
0
0
0
0
22
0
0
0
0
0
0
0
0
0
561.5
63
61
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
561.5
65
0
0
0
0
0
0
0
0
0
0
23
0
0
0
0
0
0
0
0
0
35.4
67
240
65
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
376.9
68
63
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
561.5
69
67
268
0
0
0
0
0
0
0
0
24
0
0
0
0
0
0
0
0
0
986.7
70
242
269
0
0
0
0
0
0
0
0
17
0
0
0
0
0
0
98
43
69
104
156
158
159
0
0
0
0
0
0
0
0
0
0
0
0
138.6
99
98
247
249
162
164
165
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2884.9
101
222
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3555.7
40
0
0
0
0
0
0
0
0
0
119.1
102
301
389
101
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
221.7
103
102
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
221.7
104
202
0
0
0
0
0
C
0
0
0
43
0
0
0
0
0
0
0
0
0
377.8
130
209
15
0
0
0
0
0
0
0
0
61
0
0
0
0
0
0
0
0
0
391.0
131
0
0
0
0
0
0
0
0
0
0
59
0
0
0
0
0
0
0
0
0
38.4
132
0
0
0
0
0
0
0
0
0
0
62
0
0
0
0
0
0
0
0
0
61.5
133
132
138
0
0
0
0
0
0
0
0
67
0
0
0
0
0
0
0
0
0
194.4
134
137
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
500.4
135
131
0
0
0
0
0
0
0
0
0
60
0
0
0
0
0
0
0
0
0
90.6
136
246
0
0
0
0
0
0
0
0
0
58
0
0
0
0
0
0
0
0
0
49.2
137
130
0
0
0
0
0
0
0
0
0
68
0
0
0
0
0
0
0
0
0
500.4
138
0
0
0
0
0
0
0
0
0
0
66
0
0
0
0
0
0
0
0
0
55.2
139
136
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
49.2
140
0
0
0
0
0
0
0
0
0
0
70
0
0
0
0
0-
0
0
0
0
49-6
141
0
0
0
0
0
0
0
0
0
0
69
0
0
0
0
0
0
0
0
0
34.4
142
151
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
72.1
143
0
0
0
0
0
0
0
0
0
0
63
0
0
0
0
0
0
0
0
0
16.9
144
0
0
0
0
0
0
0
0
0
0
64
0
0
0
0
0
0
0
0
0
37.4
145
243
271
0
0
0
0
0
0
0
0
65
0
0
0
0
0
0
0
0
0
67.1
146
143
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16.9
147
144
145
245
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
121.4
148
248
0
0
0
0
0
0
0
0
0
85
0
0
0
0
0
0
0
0
0
107.4
149
148
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
107.4
150
250
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
151
152
239
0
150
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
74
75
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
72.1
41.3
153
238
0
0
0
0
0
0
0
0
0
73
0
0
0
0
0
0
0
0
0
102.4
154
133
235
0
0
0
0
0
0
0
0
72
0
0
0
0
0
0
0
0
0
280.4
155
234
135
0
0
0
0
0
0
0
0
71
0
0
0
0
0
0
0
0
0
652.5
156
140
141
155
0
0
0
0
0
0
0
0
0
0
0
0
0
157
153
154
0
0
0
0
0
0
0
0
77
0
0
0
0
0
0
0
0
736.5
158
0'
0
0
0
0
0
0
0
0
0
78
0
0
0
0
0
0
0
0
0
0
0
0
416.9
159
263
0
0
0
0
0
0
0
0
0
79
0
0
0
0
0
0
0
0
0
96.2
160
142
152
264
0
0
0
0
0
0
0
76
0
0
0
0
0
0
0
0
0
0
0
510.1
245.6
161
160
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
245.6
162
261
0
0
0
0
0
0
0
0
0
81
0
0
0
0
0
0
0
0
0
326.3
163
157
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
416.9
164
262
0
0
0
0
0
0
0
0
0
82
0
0
0
0
0
0
0
0
0
63.5
165
0
0
0
0
0
0
0
0
0
0
80
0
0
0
0
0
0
0
0
0
52.2
202
309
605
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
306.8.
203
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
207
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
208
209
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
49.6
211
11
0
0
0
0
0
0
0
0
0
0
0,
0
0
0
0
0
0
0
0
.0
194.9
212
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
213
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
232.5
214
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
222
22
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
100.6
223
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
234
134
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
500.4
235
238
0
139
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
49.2
239
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
240
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
341.5
241
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
242
41
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
95.3
243
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
245
146
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
16.9
246
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
247
147
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
121.4
248
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
249
149
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
107.4
250
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
261
161
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
245.6
262
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
263
163
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
416.9
264
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
268
68
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
561.5
269
270
0
70
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
138.6
271
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
300
0
0
0
0
0
0
0
0
0
0
86
0
0
0
0
0
0
0
0
0
.0
11.6
301
300
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11.6
307
0
0
0
0
0
0
0
0
0
0
92
0
0
0
0
0
0
0
0
0
85.1
313
390
391
376
0
0
0
0
0
0
0
355
0
0
0
0
0
0
0
0
0
64.2
317
0
0
0
0
0
0
0
0
0
0
360
0
0
0
0
0
0
0
0
0
1.7
330
379
392
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
96.3
333
372
382
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
341
350
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10.8
6.6
373
374
0
0
0
0
0
0
0
0
0
351
0
0
0
0
0
0
0
0
0
22.4
374
.375
0
0
0
0
0
0
0
0
0
352
0
0
0
0
0
0
0
0
0
16.9
375
0
0
0
0
0
0
0
0
0
0
353
0
0
0
0
0
0
0
0
0
14.7
r
376
0
0
0
0
0
0
0
0
0
0
354
0
0
0
0
0
0
0
0
0
3.3
i
378
0
0
0
0
0
0
0
0
0
0
356
0
0
0
0
0
0
0
0
0
5.3
379
0
0
0
0
0
0
0
0
0
0
357
0
0
0
0
0
0
0
0
0
15.6
381
0
0
0
0
0
0
0
0
0
0
359
0
0
0
0
0
0
0
0
0
9.7
383
313
397,
0
0
0
0
0
0
0
0
361
0
0
0
0
0
0
0
0
0
165.0
384
378
0
0
0
0
0
0
0
0
0
362
0
0
0
0
0
0
0
0
0
7.0
385
0
0
0
0
0
0
0
0
0
0
363
0
0
0
0
0
0
0
0
0
1.4
389
390
0
0
0
0
0
0
0
0
0
0
0
367
0
0
0
0
0
0
0
0
0
91.0
0
0
0
0
0
0
0
0
0
368
0
0
0
0
0
0
0
0
0
17.0
391
0
0
0
0
0
0
0
0
0
0
369
0
0
0
0
0
0
0
0
0
21.3
392
0
0
0
0
0
0
0
0
0
0
370
0
0
0
0
0
0
0
0
0
80.7
0
394
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
371
0
0
0
0
0
0
0
0
0
0
0
11.2
Q9,6
(33997 '
331
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0t2.
380
330
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
�398�
'*A
332
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
605
400
103
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NONCONVERGENCE
IN GUTTER
DURING
0
TIME
0
STEP
0
147
0 0 0
AT CONVEYANCE
0
ELEMENT
0
26
0
0
0
0
0
0
0
0
0
100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. COLLins, CO
DATE: 8/1/95 BY RED ENGINEERS INC. Pond 395 discharge u/ Pond 399 @5114
^� HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS
v
THE UPPER NUMBER IS DISCHARGE IN CFS
THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES:
( ) DENOTES DEPTH ABOVE INVERT IN FEET
(S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW.
(1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH
(D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER
(0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER
TIME(HR/MIN) 331 332 383 394 395 396 398 399 400 401
0 1. .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( )
0 4. .02 .00 .00 .02 .00 .03 .00 .00 .00 .04
.00( ) .00( ) .00( ) .00( ) .00(S) .00( ) .00( ) .00( ) .00( ) .00( )
0 7. .04 .00 .00 .03 .00 .04 .00 .00 .00 .06
.00( ) .00( ) .01( ) .00( ) .00(S) .00( ) .00( ) .00( ) .00( ) .00( )
0 10. 2.87 .01 .03 1.86 .00 1.11 .00 .15 .49 2.57
.00( ) .00( ) .04( ) .00( ) .00(S) .00(S) 00(S) 00(S) .00( ) .00( )
0 13. 11.03 .12 .30 8.22 .00 1.30 .00 .16 .33 4.64
'�. .00( ) .00( ) .12( ) .00( ) .02(S) .03(S) 00(S) .00(S) .00( ) .00( )
0 16. 16.94 .23 1.05 14.81 .01 1.69 .00 .17 .77 6.09
.00( ) .00( ) .21( ) .00( ) .07(S) .08(S) .00(S) .00(S) .00( ) .00( )
0 19. 20.28 .33 2.87 20.63 .01 2.23 .00 .18 .42 6.47
,\00( ) .00( ) .34( ) .00( ) .14(S) .15(S) .00(S) 00(S) .00( ) .00( )
0 22. 34.03 .48 6.18 32.33 .02 2.96 .00 .19 1.22 10.73
.00( ) .00( ) .49( ) .00( ) .25(S) .24(S) 00(S) .01(S) .00( ) .00( )
0 25. 47.89 .73 11.82 44.30 .04 4.13 .00 .22 1.91 12.61
�
.00( ) .00( ) .67( ) .00( ) .41(S) .40(S) .01(S) .01(S) .00( ) .00( > / 0 28. 98.90 1.55 24.02 81.99 .06 6.32 .00 .32 6.88 22.84
.00( ) .00( ) .94( ) .00( ) .67(S) .68(S) .01(S) .03(S) .00( ) .00( )
0 31. 170.25 3.01 50.68 131.82 .10 8.66 .00 .51 14.13 36.12
.00( ) .00( ) 1.37( ) .00( ) 1.09(S) 1.17(S) .02(S) .07(S) .00( ) .00( )
0 34. 304.95 5.96 113.82 232.36 .17 8.97 .00 .90 21.84 41.88
.00( ) .00( ) 2.10( ) .00( ) 1.84(S) 2.11(S) .04(S) .14(S) .00( ) .00( )
0 37. 368.45 7.14 211.42 284.93 .27 9.43 .00 1.34 17.81 26.38
.00( ) .00( ) 3.04( ) .00( ) 2.96(S) 3.51(S) .07(S) .22(S) .00( ) .00( )
0 40. 406.88 6.44 279.44 293.50 .38 9.89 .00 1.66 14.80 24.99
.00( ) .00( ) 3.73( ) .00( ) 4.16(S) 5.07(S) .09(S) .28(S) .00( ) .00( )
0 43. 397.62 5.24 304.13 272.56 .49 10.30 .00 1.90 10.58 20.46
.00( ) .00( ) 4.04( ) .00( ) 5.33(S) 6.70(S) .12(S) .32(S) .00( ) .00( )
0 46. 384.50 4.24 306.24 251.89 .59 10.70 .00 2.07 8.52 19.22
.00( ) .00( ) 4.07( ) .00( ) 6.41(S) 8.28(S) .14(S) .35(S) .00( ) .00( )
0 49. 364.85 3.40 299.73 227.25 .68 11.04 .00 2.19 6.88 18.80
'00( ) .00( ) 3.98( ) .00( ) 7.40(S) 9.78(S) .15(S) .38(S) .00( ) .00( )
0 52. 345.09 2.78 289.36 208.72 .76 11.36 .00 2.28 5.85 18.01
.00( ) .00( ) 3.85( ) .00( ) 8.30(S) 11.20(S) .17(S) .39(S) .00( ) .00( >
0 55. 326.16 2.29 277.14 . 192.29 .84 11.66 .00 2.35 4.91 18.10
.00( ) .00( ) 3.71( ) .00( ) 9.12(S) 12.54(S) .18(S) .41(S) .00( ) .00( )
0 58. 304.94 1.87 264.05 179.64 .91 11.91 .00 2.40 4.21 17.21
.00( ) .00( ) 3.56( ) .00( ) 9.88(S) 13.80(S) .19(S) .42(S) .00( ) .00( )
' 1 1. 285.40 1.54 250.43 169.70 .97 12.14 .00 2.43 3.38 16.99
.00( ) .00( ) 3.42( ) .00( ) 10.60(S) 14.97(S) .19(S) .42(S) .00( ) .00( )
1 4. 266.31 1.25 236.65 158.45 1.07 12.36 .00 2.45 3.15 16.71
.00( ) .00( ) 3.28( ) .00( ) 11.28(S) 16.06(S) .20(S) .42(S) .00( ) .00( )
1 7. 248.53 1.02 223.22 146.69 1.20 12.55 .00 2.46 2.64 16.64
.00( ) .00( ) 3.15( ) .00( ) 11.90(S) 17.07(S) .20(S) .43(S) .00( ) .00( )
1 10. 232.57 .83 210.35 135.61 1.32 12.71 .00 2.46 2.64 16.55
.00( ) .00( ) 3.03( ) .00( ) 12.48(S) 18.01(S) .21(S) ARS) .00( ) .00( )
1 13. 217.25 .68 198.17 124.79 1.42 12.84 .00 2.46 2.30 16.47
.00( ) .00( ) 2.92( ) .00( ) 13.01(S) 18.88(S) .21(S) .43(S) .00( ) .00( )
1 16. 203.94 ' .57 186.77 115.30 1.52 12.97 .00 2.46 2.43 16.42
.00( ) .00( ) 2.81( ) .00( ) 13.50(S) 19.70(S) .21(S) .43(S) .00( ) .00( )
1 19. 191.80 .49 176.25 106.87 1.61 13.08 .00 2.46 2.21 16.59
.00( ) .00( ) 2.71( ) .00( ) 13.95(S) 20.46(S) .22(S) .43(S) .00( ) .00( )
1 22. 180.50 .42 166.47 99.32 1.70 13.19 .00 2.45 2.36 16.40
.00( ) .00( ) 2.62( ) .00( ) 14.37(S) 21.18(S) .22(S) .43(S) .00( ) .00( )
1 25. 168.16 .35 155.73 92.32 1.78 13.30 .00 2.45 2.16 16.49 '
.00( ) .00( ) 2.52( ) .00( ) 14.76(S) 21.85(S) .22(S) .42(S) .00( ) .00( )
1 28. 150.94 .31 139.39 86.24 1.85 13.39 .00 2.44 2.38 16.46
:00( ) .00( ) 2.36( ) .00( ) 15.12(S) 22.45(S) .22(S) .42(S) .00( ) .00( )
1 31. 135.67 .27 125.04 80.74 1.92 13.46 .00 2.44 2.20 16.60
.00( ) .00( ) 2.22( ) .00( ) 15.46(S) 22.99(S) .22(S) .42(S) .00( ) - .00( )
1 34. 122.72 .24 112.61 76.08 1.98 13.53 .00 2.44 2.42 16.57
.00( ) .00( ) 2.09( ) .00( ) 15.78(S) 23.46(S) .22(S) .42(S) .00( ) .00( )
1 37• 111.22 .22 101.81 71.83 2.48 13.58 .00 2.44 2.69 16.70
.00( ) .00( ) 1.98( ) .00( ) 16.07(S) 23.89(S) .22(S) .42(S) .00( ) .00( )
1 40. 101.47 .20 92.40 68.22 3.10 13.63 .00 2.45 3.48 16.68
.00( ) .00( ) 1.88( ) .00( ) 16.35(S) 24.27(S) .22(S) .43(S) .00( ) .00( )
1 43. 92.68 .18 84.19 64.85 3.69 13.68 .00 2.48 3.85 16.84
.00( ) .00( ) 1.79( ) .00( ) 16.61(S) 24.62(S) .22(S) .43(S) .00( ) .00( )
1 46. 85.24 .17 77.00 61.96 4.24 13.72 .00 2.52 4.58 16.83
.00( ) .00( ) 1.70( ) .00( ) 16.86(S) 24.93(S) .23(S) .44(S) .00( ) .00( )
1 49. 78.43 .16 70.69 59.20 4.76 13.76 .00 2.57 4.89 17.00
.00( ) .00( ) 1.63( ) .00( ) 17.09(S) 25.21(S) .23(S) .45(S) .00( ) .00( )
1 52. 72.21 .15 65.06 56.50 5.25 13.79 .00 2.63 5.52 16.84
'00( ) .00( ) 1.56( ) .00( ) 17.31(S) 25.46(S) .23(S) .46(S) .00( ) .00( )
1 55. 66.17 .13 59.93 53.61 5.71 13.83 .00 2.69 5.77 16.93
.00( ) .00( ) 1.49( ) .00( ) 17.51(S) 25.69(S) .23(S) .47(S) .00( ) .00( )
1 58. 61.12 .12 55.23 51.00 6.14 13.85 .00 2.77 6.39 16.92
.00( ) .00( ) 1.43( ) .00( ) 17.70(S) 25.90(S) .23(S) .48(S) .00( ) .00( )
2 1. 56.46 .10 51.24 48.25 6.54 13.88 .00 2.85 6.55 17.01
.00( ) .00( ) 1.38( ) .00( ) 17.88(S) 26.08(S) .23(S) .50(S) .00( ) .00( )
2 4. 52.85 .09 48.22 45.30 6.92 13.90 .00 2.94 7.10 16.92
'00( ) .00( ) 1.34( ) .00( ) 18.05(S) 26.25(S) .23(S) .52(S) .00( ) .00( )
2 7. 49.26 .07 45.32 41.11 7.25 13.92 .00 3.03 7.22 17.06
.00( ) .00( ) 1.30( ) .00( ) 18.20(S) 26.41(S) .23(S) .53(S) .00( ) .00( )
2 10. 46.24 .06 42.54 37.37 7.55 13.94 .00 3.13 7.71 17.07
.00( ) .00( ) 1.25( ) .00( ) 18.33(S) 26.54(S) .23(S) .55(S) .00( ) .00( )
2 13. 43.14 .05 39.89 33.71 7.81 13.96 .00 3.23 7.75 17.26
.00( ) .00( ) 1.21( ) .00( ) 18.44(S) 26.67(S) .23(S) .57(S) .00( ) .00( )
2 16. 40.56 .04 37.41 30.32 8.03 13.97 .00 3.34 8.17 17.29
'00( ) .00( ) 1.18( ) .00( ) 18.54(S) 26.79(S) .23(S) .591S) .00( ) .00( )
2 19, 37.87 .04 35.08 26.87 8.22 13.99 .00 3.44 8.15 17.48
.00( ) .00( ) 1.14( ) .00( ) 18.63(S) 26.89(S) .23(S) .61(S) .00( ) .00( )
2 22. 35.66 .03 32.90 23.71 8.38 14.00 .00 3.55 8.51 17.52
.00( ) .00( ) 1.10( ) .00( ) 18.70(S) 26.99(S) .23(S) .63(S) .00( ) .00( )
2 25. 33.32 .03 30.87 20.51 8.51 14.01 .00 3.66 8.43 17.72
'00( ) .00( ) 1.07( ) .00( ) 18.75(S) 27.07(S) .23(S) .65(S) .00( ) .00( )
2 28. 31.44 .03 28.98 17.61 8.60 14.02 .00 3.77 8.72 17.76
.00( ) .00( ) 1.04( ) .00( ) 18.80(S) 27.15(S) .23(S) .67(S) .00( ) .00( )
2 31. 29.41 .02 27.24 14.68 8.67 14.03 .00 3.88 8.59 17.95
.00( ) .00( ) 1.00( ) .00( ) 18.83(S) 27.21(S) .23(S) .69(S) .00( ) .00( )
2 34. 27.99 .02 25.80 12.04 8.72 14.04 .00 . 3.98 8.83 17.98
,
I I
.00(
) .00(
) .98( )
00( )
18.85(S)
27.27(S)
.23(S)
.71(S)
.00( )
.00( )
2
37.
26.42
.02
24.49
9.37
8.74
14.04
.00
4.09
8.64
18.18
.00(
) .00(
) .95( )
.00( )
18.86(S)
27.33(S)
.23(S)
.73(S)
.00( )
.00( )
2
40.
25.22
.01
23.24
7.00
8.73
14.05
.00
4.19
8.84
18.20
.00(
) .00(
) .93( )
.00( )
18.85(S)
27.38(S)
.23(S)
.75(S)
.00( )
.00( )
2
43.
23.80
.01
22.07
4.58
8.70
14.06
.00
4.29
8.60
18.39
.00(
) .00(
) .91( )
.00( )
18.84(S)
27.42(S)
.23(S)
77(S)
.00( )
.00( )
2
46.
22.74
.01
20.95
2.44
8.65
14.06
.00
4.39
8.76
18.41
.00(
) .00(
) .88( )
.00( )
18.82(S)
27.46(S)
.23(S)
.78(S)
.00( )
.00( )
2
49.
21.44
.01
19.89
.32
8.59
14.07
.00
4.48
8.49
18.59
.00(
) .00(
) .86( )
.00( )
18.79(S)
27.49(S)
.23(S)
.80(S)
.00( )
.00( )
2
52.
20.51
.01
18.88
.36
8.51
14.07
.00
4.57
8.61
18.60
.00(
) .00(
) .84( )
.00( )
18.76(S)
27.52(S)
.23(S)
.82(S)
.00( )
.00( )
2
55.
19.33
.01
17.93
.25
8.43
14.07
.00
4.66
8.33
18.77
.00(
) .00(
) .82( )
.00( )
18.72(S)
27.54(S)
.23(S)
.83(S)
.00( )
.00( )
2
58.
18.51
.01
17.03
.30
8.36
14.08
.00
4.74
8.46
18.78
.00(
) .00(
) .80( )
.00( )
18.69(S)
27.56(S)
.23(S)
.85(S)
.00( )
.00( )
3
1.
17.44
.00
16.17
.19
8.28
14.08
.00
4.82
8.18
18.94
.00(
) .00(
) .78( )
.00( )
18.65(S)
27.58(S)
.23(S)
.86(S)
.00( )
.00( )
3
4.
16.72
.00
15.36
.25
8.21
14.08
.00
4.89
8.31
18.94
.00(
) .00(
) .76( )
.00( )
18.62(S)
27.59(S)
.23(S)
.88(S)
.00( )
.00( )
3
7.
15.74
.00
14.60
.15
8.14
14.08
.00
4.97
8.03
19.09
00(
) .00(
) .74( )
.00( )
18.59(S)
27.60(S)
.23(S)
.89(S)
.00( )
.00( )
3
10.
15.11
.00
13.87
.22
8.06
14.08
.00
5.04
8.16
19.08
.00(
) .00(
) .72( )
.00( )
18.56(S)
27.61(S)
.23(S)
.90(S)
.00( )
.00( )
3
13.
14.22
.00
13.18
.12
7.99
14.08
.00
5.10
7.89
19.22
.00(
) .00(
) .71( )
.00( )
18.52(S)
27.61(S)
.23(S)
.92(S)
.00( )
.00( )
3
16.
13.67
.00
12.53
.18
7.92
14.08
.00
5.17
8.02
19.21
.00(
) ,00(
) .69( )
.00( )
18.49(S)
27.61(S)
.23(S)
.93(S)
.00( )
.00( )
3
19.
12.86
.00(
.00
) .00(
11.91
) .67( )
.09
.00( )
7.84
18.46(S)
14.08
27.61(S)
.00
.23(S)
5.23
.94(S)
7.74
.00( )
19.35
.00( )
3
22.
12.38
.00
11.33
.16
7.77
14.08
.00
5.28
7.87
19.32
.00(
) .00(
) .66( )
.00( )
18.43(S)
27.60(S)
.23(S)
.95(S)
.00( )
.00( )
3
25.
11.63
.00
10.78
.07
7.70
14.08
.00
5.34
7.60
19.46
.00(
) .00(
) .64( )
.00( )
18.40(S)
27.59(S)
.23(S)
.96(S)
.00( )
.00( )
3
28.
11.22
.00
10.25
.14
7.63
14.08
.00,
5.39
7.73
19.43
.00(
) .00(
) .62( )
.00( )
18.36(S)
27.58(S)
.23(S)
.97(S)
.00( )
.00( )
3
31.
10.54
.00
9.75
.05
7.56
14.08
.00
5.44
7.46
19.55
.00(
) .00(
) .61( )
.00( )
18.33(S)
. 27.57(S)
.23(S)
.98(S)
.00( )
.00( )
3
34.
10.19
.00
9.30
.12
7.49
14.07
.00
5.48
7.59
19.52
.00(
) .00(
) .60( )
.00( )
18.30(S)
27.55(S)
.23(S)
.99(S)
.00( )
.00( )
3
37.
9.68
.00
8.96
.03
7.42
14.07
.00
5.53
7.32
19.64
.00(
) .00(
) .59( )
.00( )
18.27(S)
27.53(S)
.23(S)
.99(S)
.00( )
.00( )
3
40.
9.51
.00
8.67
.11
7.36
14.07
.00
5.57
7.46
19.60
.00(
) .00(
) .58( )
.00( )
18.24(S)
27.52(S)
.23(S)
1.00(S)
.00( )
.00( )
3
43.
9.04
.00
8.39
.02
7.29
14.07
.00
5.61
7.19
19.71
.00(
) .00(
) .57( )
.00( )
18.21(S)
27.50(S)
.23(S)
1.01(S)
.00( )
.00( )
3
46.
8.89
.00
8.12
.10
7.22
14.06
.00
5.64
7.32
19.67
.00(
) .00(
) .56( )
.00( )
18.18(S)
27.47(S)
.23(S)
1.02(S)
.00( )
.00( )
3
49.
8.45
.00
7.85
.01
7.16
14.06
.00
5.68
7.05
19.78
.00(
) .00(
) .55( )
.00( )
18.15(S)
27.45(S)
.23(S)
1.02(S)
.00( )
.00( )
3
52.
8.31
.00
7.59
.08
7.09
14.06
.00
5.71
7.19
19.73
.ON
) .00(
) .54( )
.00( )
18.12(S)
27.43(S)
.23(S)
1.03(S)
.00( )
.00( )
3
55.
7.88
.00
7.33
.00
7.03
14.05
.00
5.74
6.92
19.83
.00(
) .00(
) .53( )
.00( )
18.09(S)
27.40(S)
.23(S)
1.03(S)
.00( )
.00( )
3
58.
7.77
.00
7.09
.07
6.96
14.05
.00
5.77
7.06
19.78
.00(
) .00(
) .52( )
.00( )
18.07(S)
27.38(S)
.23(S)
1.04(S)
.00( )
.00( )
4
1.
7.35
.00
6.84
.00
6.90
14.05
.00
5.79
6.79
19.88
.00(
) .00(
) .51( )
.00( )
18.04(S)
27.35(S)
.23(S)
1.04(S)
.00( )
.00( )
4
4.
7.25
.00
6.61
.06
6.83
14.04
.00
5.82
6.93
19.82
.00(
) .00(
) .51( )
.00( )
18.01(S)
27.32(S)
.23(S)
1.05(S)
.00( )
.00( )
4
7.
6.85
.00
6.38
.00
6.77
14.04
.00
5.84
6.67
19.92
.00(
) .00(
) .50( )
.00( )
17.98(S)
27.30(S)
.23(S)
1.05(S)
.00( )
.00( )
4
10.
6.76
.00
6.16
.04
6.71
14.04
.00
5.86
6.81
19.85
.00(
) .00(
) .49( )
.00( )
17.95(S)
27.27(S)
.23(S)
1.06(S)
.00( )
.00( )
4
13,
6,38
.00(
.00
) .00(
5,95
) .48( )
.00
.00( )
6.65
17.93(S)
14.03
27.23(S)
.00
,23(S)
5.88
1.06(S)
6.54
.00( )
19.95
00( )
4
16.
6.30
.00
5.74
.03
6.58
14.03
.00
5.89
6.69
19.88
.00(
) .00(
) .47( )
.00( )
17.90(S)
27.20(S)
.23(S)
1.06(S)
.00( )
.00( )
4
19.
5.93
.00
5.54
.00
6.52
14.02
.00
5.91
6.42
19.97
.00(
) .00(
) .47( )
.00( )
17.87(S).
27.17(S)
.23(S)
1.06(S)
.00( )
.00( )
1
4
22.
5.87
.00
5.35
.00(
)
.00( )
.46( )
4
25.
5.52
.00
5.16
.00(
)
.00( )
.45( )
4
28.
5.47
.00
4.97
.00(
)
00( )
.44( )
4
31,
5.13
.00
4.80
.00(
)
.00( )
.43( )
4
34.
5.09
.00
4.62
.00(
)
.00( )
.43( )
4
37.
4.76
.00
4.46
.00(
'4.74
)
.00( )
.42( )
4
40.
.00
4.30
.00(
)
.00( )
.41( )
4
43.
4.42
.00
4.14
00(
)
.00( )
.47( )
4
46.
4.40
.00
3.99
.00(
)
.00( )
.40( )
4
49.
4.09 '
.00
3.84
.00(
)
.00( )
.39( )
4
52.
4.09
.00
3.70
.00(
)
.00( )
.38( )
4
55.
3.79
.00
3.56
.00(
)
.00( )
.38( )
4
58.
3.80
.00
3.43
.00(
)
.00( )
.37( )
THE FOLLOWING
CONVEYANCE
ELEMENTS HAVE NUMERICAL
STABILITY
PROBLEMS THAT LEAD
TO HYDRAULIC
_
OSCILLLATIONS
DURING THE
SIMULATION.
6
8
26 30
53
55 63
142 146 150
156
161
163 301 330
333 373
395 396 397
399
.03
6.46
14.02
.00
5.92
6.56
19.90
.00( )
17.85(S)
27.14(S)
.23(S)
1.07(S)
.00( )
.00( )
.00
6.40
14.01
.00
5.93
6.30
19.98
.00( )
17.82(S)
27.10(S)
.23(S)
1.07(S)
.00( )
.00( )
.02
6.34
14.01
.00
5.94
6.45
19.91
.00( )
17.79(S)
27.07(S)
.23(S)
1.07(S)
.00( )
.00( )
.00
6.29
14.00
.00
5.95
6.18
19.99
.00( )
17.77(S)
27.03(S)
.23(S)
1.07(S)
.00( )
.00( )
.02
6.23
14.00
.00
5.96
6.33
19.92
.00( )
17.74(S)
26.99(S)
.23(S)
1.07(S)
.00( )
.00( )
.00
6.17
13.99
.00
5.96
6.07
20.00
.00( )
17.71(S)
26.96(S)
.23(S)
1.07(S)
.00( )
.00( )
.02
6.11
13.99
.00
5.97
6.22
19.92
.00( )
17.69(S)
26.92(S)
.23(S)
1.08(S)
.00( )
.00( )
.00
6.06
13.98
.00
5.97
5.96
19.99
.00( )
17.66(S)
26.88(S)
.23(S)
1.08(S)
.00( )
.00( )
.02
6.00
13.98
.00
5.97
6.10
19.91
.00( )
17.64(S)
26.84(S)
.23(S)
1.08(S)
.00( )
.00( )
.00
5.95
13.97
.00
5.97
5.84
19.98
.00( )
17.61(S)
26.80(S)
.23(S)
1.08(S)
.00( )
.00( )
.02
5.89
13.97
.00
5.97
5.99
19.90
.00( )
17.59(S)
26.76(S)
.23(S)
1.08(S)
.00( )
.00( )
.00
5.84
13.96
.00
5.97
5.73
19.97
.00( )
17.57(S)
26.72(S)
.23(S)
1.08(S)
.00( )
.00( )
.02
5.78
13.96
.00
5.96
5.88
19.88
.00( )
17.54(S)
26.68(S)
.23(S)
1.07(S)
.00( )
.00( )
100-yr/CANAL IMPORTATION BASIN Proposed Cond. PHASEI.NEW, Ft. Collins, CO
DATE: 8/1/95 BY RED ENGINEERS INC. Pond 395 discharge u/ Pond 399 @5114
I*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS ***
CONVEYANCE
ELEMENT
PEAK
(CFS)
STAGE
(FT)
STORAGE
(AC -FT)
TIME
(HR/MIN)
1
28.5
1.1
0
40.
2
45.3
1.8
0
57.
3
.7
.4
0
.
4
54
54.4
1.5
0
49
49.
5
137.1
.9
0
37.
6
415.9
7.7
0
44.
7
8
..1
306
306.2
9.3
0
0
.
52
52.
9
385.5
4.2
0
40.
11
459.7
4.4
0
42.
12
75.0
2.4
1
1.
13
15
486.8
.0
4.5
.0
29.6
0
5
48.
0.
19
145.5
2.8
0
54.
22
207.3
8.3
0
39.
24
227.3
3.3
0
43.
26
226.4
2.5
.9
0
44.
28
275.5
3.3
0
46.
30
276.1
2.5
1.1
0
47.
32
355.9
4.0
0
48.
34
37
451.9
139.5
4.1
2.7
0
0
50.
38.
38
566.1
4.7
0
56.
40
582.4
12.4
1
8.
41
43
663.0
157.1
13.8
2.8
1
0
13.
49.
I
51
184.6
2.5
0
40.
53
44.5
.1
6.3
1
23.
55
48.3
.1
6.0
1
48.
57
213.6
3.6
0
45.
59
326.6
3.4
0
44.
61
387.3
3.7
0
52.
63
318.6
3.0
8.7
1
11.
65
112.1
1.0
0
39.
67
146.1
3.3
0
45.
68
221.6
8.2
1
36.
69
233.8
4.3
0
56.
70
264.4
11.8
1
57.
98
1811.3
3.4
0
48.
99
30T7.5
4.2
1
2,
101
83.4
2.1
0
51.
102
176.7
(DIRECT
FLOW)
0
47.
103
176.4
3.6
0
50.
104
190.4
3.3
1
0.
130
315.5
3.2
0
57.
131
114.3
.9
0
41.
132
133
178.1
451.6
1.0
3.4
0
0
37.
42.
134
538.6
5.2
0
46.
135
239.6
2.9
0
44.
136
135.6
1.0
0
47.
137
612.5
5.0
0
40.
138
125.2
2.5
0
41.
139
135.2
2.1
0
48.
140
141.3
.9
0
42.
141
142
120.9
196.4
2.1
2.5
26.2
0
3
37.
3.
143
56.8
.7
0
38.
144
133.3
2.3
0
36.
145
666.0
3.7
1
18.
146
56.7
1.8
0
38.
147
696.5
4.3
1
18,
148
704.0
3.0
1
25.
149
692.8
10.4
1
31.
'
150
151
415.5
424.6
.0
3.3
41.0
2
2
5.
12,
152
123.3
2.5
0
42.
153
111.0
3.1
0
43.
154
987.0
6.1
0
49.
155
467.8
5.2
0
42.
156
704.5
4.9
0
43.
157
1149.9
6.2
0
50.
158
338.8
3.5
0
39.
159
160
374.1
1280.6
5.4
5.8
0
0
42.
58.
161
1273.5
8.4
1
0.
162
337.7
5.0
0
39.
163
1130.7
6.2
0
52.
164
1183.1
3.6
1
7.
165
165.0
2.9
0
38.
202
138.6
(DIRECT
FLOW)
0
37.
203
.0
(DIRECT
FLOW)
0
0.
206
207
49.1
366.9
(DIRECT
(DIRECT
FLOW)
FLOW)
1
0
51.
45.
208
99.6
(DIRECT
FLOW)
0
52.
209
206.6
(DIRECT
FLOW)
0
52.
211
73.6
(DIRECT
FLOW)
0
42.
212
386.1
(DIRECT
FLOW)
0
42.
213
211.5
(DIRECT
FLOW)
0
48.
`-
214
275.3
(DIRECT
FLOW)
0
48.
222
50.0
(DIRECT
FLOW)
0
52.
223
234
157.3
83.9
(DIRECT
(DIRECT
FLOW)
FLOW)
0
0
40.
46.
235
454.7
(DIRECT
FLOW)
0
47.
238
11.0
(DIRECT
FLOW)
0
48.
239
124.2
(DIRECT
FLOW)
0
48.
i
240
49.0
(DIRECT
FLOW)
1
8.
11
I
'1
1
I
L
I
241
533.4
(DIRECT
FLOW)
1
9.
242
99.6
(DIRECT
FLOW)
1
13.
243
563.4
(DIRECT
FLOW)
1
13.
245
3.7
(DIRECT
FLOW)
2
10.
246
53.0
(DIRECT
FLOW)
0
39.
247
40.1
(DIRECT
FLOW)
1
18.
248
656.4
(DIRECT
FLOW)
1
19.
249
68.0
(DIRECT
FLOW)
1
31.
250
624.8
(DIRECT
FLOW)
1
32.
261
76.4
(DIRECT
FLOW)
1
0.
262
1197.1
(DIRECT
FLOW)
1
0.
263
154.4
(DIRECT
FLOW)
0
52.
264
'976.3
(DIRECT
FLOW)
0
53.
268
49.0
(DIRECT
FLOW)
1
36.
269
172.6
(DIRECT
FLOW)
1
37.
270
99.6
(DIRECT
FLOW)
1
57.
271
164.7
(DIRECT
FLOW)
1
58.
300
34.7
.4
0
35.
301
12.1 '
.0
1.0
1
5.
307
88.6
.4
0
37.
309
88.6
(DIRECT
FLOW)
0
37.
313
176.1
1.0
0
42.
317
14.1
.3
0
35.
330
253.8
1.3
0
36.
331
408.4
(DIRECT
FLOW)
0
41.
332
7.3
(DIRECT
FLOW)
0
36.
333
86.9
4.2
0
35.
372
44.4
.4
0
35.
373
132.2
3.4
0
36.
374
101.2
.5
0
37.
375
93.5
.5
0
36.
376
23.9
.3
0
35.
378
30.8
.4
0
36.
379
92.8
.6
0
36.
380
21.7
(DIRECT
FLOW)
0
35.
381
79.5
.6
0
35.
382
79.5
(DIRECT
FLOW)
0
35.
383
306.7
4.1
0
45.
384
37.7
.4
0
36.
385
7.3
.3
0
36.
386
101.6
(DIRECT
FLOW)
0
35.
387
31.0
(DIRECT
FLOW)
0
35.
388
22.9
(DIRECT
FLOW)
0
35.
389
95.6
1.4
0
42.
390
38.9
.4
0
36.
391
66.3
.5
0
36.
392
175.7
.7
0
41.
393
20.8
1.4
0
35.
tOG
707 S
in
400 23.1 (DIRECT FLOW) 0 35.
401 41.9 (DIRECT FLOW) 0 34.
605 50.0 (DIRECT FLOW) 1 5.
698 15.3 (DIRECT FLOW) 0 34.
699 16.7 (DIRECT FLOW) 0 34.
ENDPROGRAM PROGRAM CALLED
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
LOCATION
MAX. VOL.
REQUIRED
AC -FT
MAX. VOL.
IN POND
AC -FT.
MAX.
STAGE
FT.
MAX
Q
CFS
COMMENT
Pond 395
18.9
18.4
5114.6
8.7
Pond 396
28.1
38.6
5117.9
14.1
Pond 397
4.4
4.4
5138.0
146.6
Pond 399
1.1
5.6
5111.8
6.0
Clearview
Channel
NA
NA
NA
41.9
54 cfs
allowable
SWALE CALCULATIONS
RBD INC. ENGINEERING CONSULTANTS
CHANNEL RATING INFORMATION
Ponds at Overland
swale at DP 65
1
ELEVATION
(feet)
98.20
'
98.40
98.60
98.80
9.00
99.20
'99.0
99.60
99.80
100.00
STA
--
ELEV
--
100.00
100.00
108.00
98.00
116.00
100.00
'N' VALUE
----------
SLOPE
-------------
(ft/ft)
0.060
0.0200
AREA
VELOCITY
DISCHARGE
FROUDE
(sq ft)
--(fps)-
--(cfs)--
NO.
0.2
0.7
0.12
0.41
0.6
1.2
0.75
0.46
1.4
1.5
2.22
0.50
2.6
1.9
4.79
0.52
4.0
2.2
8.68
0.54
AD.
5.8
2.4
14. 117<5
56
7.8
2.7.
21.28
0.57
10.2
3.0
30.38
0.58
13.0
3.2
41.58 ,
0.60
16.0
3.4
55.07 i
0.61
L..St. S h-tFr�nni � � �• EQ
1.33•� 'Il.�ct5
d,�.
�e" =f-t-
3�,
U
RBD INC. ENGINEERING CONSULTANTS
CHANNEL RATING INFORMATION
Swale E
STA
ELEV
100.00
100.00
104.00
99.00
108.00
100.00
'N' VALUE
----------
SLOPE
-------------
(ft/ft)
0.060
0.0275
ELEVATION
AREA
VELOCITY
DISCHARGE
FROUDE
(feet)
---------
(sq ft)
-------
(fps)
--------
(cfs)
---------
NO.
------
99.10
0.0
0.5
0.02
0.43
99.20
0.2
0.9
0.14
0.49
99.30
0.4
1.1
0.41
0.52
99.40
0.6
1.4
0.88
0.54
99.50
1.0
1.6
1.60 -
0.57
T.(,-(0 99. 60
1_.4
1.8
2. 61 -34
0.58
j .}399.70
2.0
2.0
3.93 0.60
99.80
2.6
2.2
5.61
0.61
99.90
3.2
2.4
7.68
0.62
100.00
4.0
2.5
10.17
0.63
ICJ 1
r
i CUp
\■
1.
Av
I
OPEN CHANNEL FLOW ANALYSIS TRAPEZOIDAL CHANNEL
' Developed by James Guo, Civil Eng. Dept, U of Colorado at Denver ?0
Metro Denver Cities/Counties and UD&FCD Pool Fund Study
- User= :KEVIN GINGERY RBD INC. FT. COLLINS COLORADO ..........................
ON DATE 08-18-1995 AT TIME 10:13:50
' *** PROJECT TITLE: The Ponds at Overland Trail - Pleasent Valley Lake Canal
CHANNEL ROUGHNESS IS GIVEN
*** DESIGN FLOW RATE AND CHANNEL GEOMETRIES:
FLOW RATE (CFS)= 85.00
MANNING ROUGHNESS = 0.0300
' - CHANNEL SLOPE (FT/FT)= 0.0010
BOTTOM WIDTH (FEET)= 4.00
RIGHT SIDE SLOPE(FT/FT)= 3.00
LEFT SIDE SLOPE (FT/FT) = 3.00. P,!g c� S
** NORMAL FLOW CONDITIONS: v( gyp, _ Z� 47 �f
FLOW DEPTH (FEET)= 2.97 FfeebC _ (, (;O
FLOW AREA (SQ FT)= 38.27
FLOW VELOCITY (FPS)= 2.22
WETTED PERIMETER (FEET) = 22.75 UeP�'h 3`�i� �t
TOP WIDTH (FEET)= 21.80
FROUDE NUMBER = 0.30
' SPECIFIC FORCE (KLB)= 3.08
SPECIFIC ENERGY (FEET)= 3.04
SEQUENT DEPTH (FT)= 0.75
' ! ALTERNATE DEPTH (FT)= 1.05
** CRITICAL FLOW CONDITIONS:
DEPTH (FEET)= 1.64
FLOW AREA (SQ FT)= 14.57
FLOW VELOCITY (FPS)= 5.84
WETTED PERIMETER (FEET)= 14.34
MINIMUM SPECIFIC FORCE (KLB)= 1.57
MINIMUM SPECIFIC ENERGY (FT)= 2.1642
' SLOPE (FT/FT)= 0.0135
RECOMMENDATIONS ON' FREEBOARD:
FOR CONCRETE CHANNEL (2.0+0.025*VELOCITY*DEPTHA0.33)= 2.08 FEET
' FOR A MAJOR DRAINAGE CHANNEL (100-YR FLOOD) >= 1.0 FOOT
FOR A MINOR DRAINAGE CHANNEL (2 OR 5-YR FLOOD) >= 0.58 FEET
RECOMMENDATIONS FOR ERODABLE CHANNEL:
(MINOR FLOOD) 2 <= FLOW VELOCITY <= 5 TO 7 FPS (MAJOR FLOOD)
' FROUDE NUMBER (TURBULENCE FACTOR)<= 0.80
1
1
RBD
INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
l(�'
1
East End of Clearview Drainageway
where 29.7 cfs of the 54 cfs Q100 spill
1
into the street
WEIR COEF.
1
3.100
STA ELEV
1
100.0 10.00
120.0 8.00
160.0 8.00
180.0 10.00
ELEVATION DISCHARGE
1
(feet) (cfs)
---------
---------
8.00 0.00
o _ 8.20 11.48
z�'�
8.40 33.59
G S
8.60 63.74
8.80 101.27
9.00 145.92
9.20 197.58
9.40 256.24
9.60 321.94
9.80 394.74
10.00 474.72
1j
1•�
i
1:
1
1
w
RIP RAP CALCULATIONS
RMINC.
Engineering Consultants
A division of The Sear -Brown Group
106
Z
t
CLIENT Lj,Ar 4,r t ; JOB NO. 5 {
PROJECT •I _tL l CALCULATIONS FOR
MADE BV_�_a DATE CHECKED BY DATE SHEET--LOF
s
o
L
BIZ Z`f
TMINC.
Engineering Consultants
A division of The Sear -Brown Group
1
1
r
1
1
1
1
1
1
1
CLIENT
PROJECT CALCULATIONS
MADE BYDATE CHECKED BY -DATE _
f
�3
JOB NO.
SHEET Z OF
****** HYCHL ****** (Version 2.0) ******
Commands Read From File: C:\MODELS\HYCHL\BANYAN.CHL
JOB banyan
UNI 0
** UNITS PARAMETER = 0 (ENGLISH)
CHL 0.02 60.9
'TRP 20 4 4
** LEFT SIDE SLOPE 4.0 AND RIGHT SIDE SLOPE
** THE BASE WIDTH OF THE TRAPEZOID (FT) 20.00
LRR 1 2 42 2.65 0.15
** D50 (FT) 1.00
** ANGLE OF REPOSE (DEGREES) 42.00
** SPECIFIC GRAVITY 2.65
** SHIELDS PARAMETER .150
END
***************END OF COMMAND FILE************
banyan
INPUT REVIEW
--DESIGN-PARAMETERS:
DESIGN DISCHARGE (CFS): 60.90
CHANNEL SHAPE: TRAPEZOIDAL
------CHANNEL SLOPE (FT/FT): .020
---------------------------.--
HYDRAULIC CALCULATIONS USING BATHURST
-------------------------------------
FLOW (CFS) 60.90
'MAX DEPTH (FT) 1.27
AREA (FT"2) 31.61
WETTED PERIMETER (FT) 30-41
HYDRAULIC RADIUS (FT) 1.04
AVG VELOCITY (FT/SEC) 1.93
MANNINGS EQUIVALENT .114
Davg / D50 1.05
FROUDE NUMBER .30
REYNOLDS NUMBER (10"5) 2.28
------------------
STABILITY ANALYSIS
------------------
LINING PERMIS SHR
' CONDITION TYPE (LB/FT -- -
BOTTOM; STRAIGHT RIPRAP 15.44
SIDE; STRAIGHT RIPRAP 14.39
*** NORMAL END OF HYCHL ***
I
4.0
CALL. SHR
(LB/FTA2)
1.58
1.47
6/
Date 10-10-96
3/3
IF L o w-
P G--o
STAB.
FACTOR REMARKS
9.77 STABLE
9.79 / STABLE
I
I
11
1
I
1
1
I
T:IDINC.
Engineering Consultants
A division of The Sear -Brown Croup
CLIENT ���1id'T`- "✓�" rh'.w�°J'-�t I JOBNO.
PROJECT CALCULATIONS FOR
MADEBV_DATE CHECKED BY DATE SHEET--LOF
C : �'rC lOLiI .l�
L4
"fart, V- S A S A
4
or
L _
I
�Ka �
Zv �s f D VI C d - �v�tr Ss 't ✓
CLIENT
JOB NO.��
INC.
PROJECT
CALCULATIONS FOR
Engineering Consultants
MADEBr(LLLDATE Q•i(] CHECKEDBVDATE
SHEET OF
A division of The Sear -Brown Group
****** HYCHL ****** (Version 2.0) ****** Date 10-10-96
' Commands Read From File: C:\MODELS\HYCHL\WEST.CHL
JOB west
UN 0
** UNITS PARAMETER = 0 (ENGLISH)
CHL 0.04 20
' VSH 6 6
** V-SHAPE RIGHT Z1 = 6.0 AND LEFT Z2 = 6.0
LRR 1 2 40 2.65 0.047
'** D50 (FT) 1.00
** ANGLE OF REPOSE (DEGREES) 40.00
** SPECIFIC GRAVITY 2.65
** SHIELDS PARAMETER .047
END
***************END OF COMMAND FILE************
'west --------
INPUT REVIEW
------------
' DESIGN PARAMETERS:
DESIGN DISCHARGE (CFS):
CHANNEL SHAPE:
CHANNEL SLOPE (FT/FT):
I
-------------------------------------
HYDRAULIC CALCULATIONS USING BATHURST
-------------------------------------
20 . 00 -=!Q---- FL-6-r in
VSHAPED
.040
FLOW (CFS)
20.00
'MAX
DEPTH (FT)
AREA (FT�2)
1.27
9.66
WETTED PERIMETER (FT)
15-44
HYDRAULIC RADIUS (FT)
.63
'AVG
VELOCITY (FT/SEC)
2.07
MANNINGS EQUIVALENT
.107
Davg / D50
.63
FROUDE NUMBER
.32
REYNOLDS NUMBER (10-4) 1.28
'
------------------
STABILITY -ANALYSIS
LINING
PERMIS SHR
CALL. SHR
STAB.
'
CONDITION
---------
TYPE
(LB/FT�2)
(LB/FTA2)
FACTOR REMARKS
BOTTOM; STRAIGHT
------
RIPRAP
----------
4.84
---------
3.17
------ -------
1.53 STABLE
SIDE; STRAIGHT
RIPRAP
4.68
2.95
1.59 STABLE
*** NORMAL END OF HYCHL ***
****** HYCHL ****** (Version 2.0) ****** Date 09-16-96
Commands Read From File: C:\MODELS\HYCHL\396A.CHL q/5
' UNI 0
** UNITSJOB PARAMETER = 0 (ENGLISH) ;
•- *+ ;'`
CHL 0.045 3.5
' VSH 6 6
** V-SHAPE RIGHT Z1 = 6.0 AND LEFT Z2 = 6.0
LRR 12 2 42 2.65 0.047
'** D50 (FT) 12.00
** ANGLE OF REPOSE (DEGREES) 42.00
** SPECIFIC GRAVITY 2.65 rY-
** SHIELDS PARAMETER .047 L_
' END
***************END OF COMMAND FILE************
[J
------------
INPUT REVIEW
------------
DESIGN PARAMETERS:
DESIGN DISCHARGE (CFS): 3.50
CHANNEL SHAPE: VSHAPED
CHANNEL SLOPE (FT/FT): .045
-------------------------------------
HYDRAULIC CALCULATIONS USING BATHURST
-------------------------------------
FLOW (CFS)
MAX DEPTH (FT)
AREA (FT�2)
WETTED PERIMETER (FT)
HYDRAULIC RADIUS (FT)
AVG VELOCITY (FT/SEC)
MANNINGS EQUIVALENT
Davg / D50
FROUDE NUMBER
REYNOLDS NUMBER (10A4)
3.50
-
2.06
25.35
25.01
1_01
.14
2.347
.09
.02
53.14
------------------
•STABILITY ANALYSIS
------------------
LINING
' CONDITION TYPE --
BOTTOM; STRAIGHT RIPRAP
SIDE; STRAIGHT RIPRAP
*** NORMAL END OF HYCHL ***
i
PERMIS SHR CALC. SHR STAB.
(LB/FT-2) (LB/FTA2) FACTOR
58.07 5.79 10.03
56.29 5.39 10.45
REMARKS
STABLE
STABLE
****** HYCHL ****** (Version 2.0) ****** Date 08-16-
:nmands Read From File: C:\MODELS\HYCHL\NEW.CHL L19
' JOB new
UNI 0 Gh;:jCiGr�1i
UNITS PARAMETER = 0 (ENGLISH)
CHL 0.015 27.72 ma c , C'1 c � ci V
VSH 6 6 L (
V-SHAPE RIGHT Z1 = 6.0 AND LEFT Z2 = 6.0��-{-
N 0.03 0.03
** LOW FLOW N VALUE= .030 `
SIDE SLOPE N VALUE= .030
LRR 0.75 0 2.5 0.047
** D50 (FT)7
ANGLE OF RE .OSFI(DEGREES) 40.00 �o(C C� Sn'.•.�ty (\�' t �-� ldc�
SPECIFIC GRAVITY 2.50 I
* SHIELDS PARAMETER .047 �-) TO J
END
r***********END OF COMMAND FILE************
.iew
e?UT REVIEW
fESIGN PARAMETERS:
DESIGN DISCHARGE (CFS): 27.72-w- - ,/
CHANNEL SHAPE: VSHAPED
CHANNEL SLOPE (FT/FT): .015
)RAULIC CALCULATIONS USING NORMAL DEPTH
-----------------------------------------
' DESIGN MAXIMUM
.LOW (CFS)
27.72
653.93
?TH (FT)
1.08
3.52
M (FT-2)
6.97
74.55
NETTED PERIMETER (FT)
13.11
42.88
RADIUS (FT)
.53
1.74
U�AULIC
CITY (FT/SEC)
3.98
8.77
INGS N (LOW FLOW)
.030
.030
YNOLDS NUMBER (10�5) .79
---------------
3TABILITY ANALYSIS
----------------
LINING
PERMIS SHR
CONDITION
---------
TYPE
------
(LB/FT-2)
----------
BOTTOM; STRAIGHT
RIPRAP
3.30
SIDE; STRAIGHT
RIPRAP
3.19
r:
NORMAL END OF HYCHL ***
CALC. SHR STAB.
(LB/FTA2) FACTOR REMARKS
1.01 3.27 STABLE
.94 3.40 STABLE
I
I
I
H
C
1
LJ
%owc
Engineering Consultants
CUENT
PitOJWT' C/ r�S 44CnAEt � .
MADE BYE DATS 4(I 1�� HECKED BY
f
.CULATiONS FORZ��j
DATE SHEET 1 OF v
-3
****** HYCHL ****** (Version 2.0) ****** Date 08-09-95 �I
' Commands Read From File: C:\MODELS\HYCHL\504009PV.CHL
' JOB PONDS CHANNEL
UNI 0
** UNITS PARAMETER = 0 (ENGLISH)
CHL 0.005 54
'_ VSH 6 6
** V-SHAPE RIGHT Z1. = 6.0✓ AND LEFT Z2 = 6.0✓
N 0.03-" 0.03--
** LOW FLOW N VALUE= .030
** SIDE SLOPE N VALUE= .030
LRR 1 2 40 2.5 0.047
** D50 (FT) 1.0 1_�C
** ANGLE OF REPOSE (DEGREES) 40.00 T
** SPECIFIC GRAVITY 2.50✓
** SHIELDS PARAMETER .047 ✓
END
' k**************END OF COMMAND FILE************
PONDS CHANNEL
'
INPUT REVIEW
------------
'
DESIGN PARAMETERS:
DESIGN DISCHARGE
(CFS):
✓
54.00
CHANNEL SHAPE:
VSHAPED ✓
CHANNEL SLOPE (FT/FT):
.005 ✓
----------------------
HYDRAULIC
-------------
- -----
CALCULATIONS
-----------------------------------------
USING NORMAL DEPTH
DESIGN.
MAXIMUM
FLOW (CFS)
54.00
152
DEPTH (FT)
1.70
.8 .
1 . 0
AREA (FT�2)
17.33
1192 6
WETTED PERIMETER (FT)
20.68
171 3
RADIUS (FT)
.84
.9
'HYDRAULIC
VELOCITY (FT/SEC)
3.12
1 .7
MANNINGS N (LOW FLOW)
.030
.030
REYNOLDS NUMBER (10�5)
1.22
*** WARNING *** REYNOLDS NUMBER IS
LARGER THAN 10A5
------------------
' STABILITY -ANALYSIS
LINING
CONDITION TYPE
PERMIS SHR
(LB/FTA2)
CALC. SHR
STAB.
-
(LB/FT�2)
FACTOR
REMARKS
------
BOTTOM; STRAIGHT RIPRAP
----------
4.40
---------
.53
------
8.30
-------
STABLE --'
�-
SIDE; STRAIGHT RIPRAP
4.25
.49
8.62
STABLE �
*** NORMAL END OF HYCHL ***
No Text
'
INC
CLIENT - JOB NO.
PROJECT CALCULATIONS FOR
Engineering Consultants
MADE BY- DATE CHECKED BY -DATE SHEET OF
I
0
1
I
L'
****** HYCHL ****** (Version 2.0) ****** Date 08-10-9
1 Commands Read From File: C:\MODELS\HYCHL\504009PV.CHL n `
(� InJl•I/�1Zt (i,�YL� t �L
1
1
1
1
1
1
1
JOB cul at prospect 1� r
UNI 0
** UNITS PARAMETER = 0 (ENGLISH)
CHL 0.04 20
VSH 6 6
** V-SHAPE RIGHT Z1 = 6.0/AND LEFT Z2 = 6.0 /
N 0.03 0.03
** LOW FLOW N VALUE= .030
** SIDE SLOPE N VALUE= .030 /
LRR 1 2 40 2.5 0.047
** D50 (FT) 1.00
** ANGLE OF REPOSE (DEGREES) 40.00
** SPECIFIC GRAVITY 2.50'/
** SHIELDS PARAMETER .047
END
***************END OF COMMAND FILE************
cul at prospect
------------
INPUT REVIEW
------------
DESIGN PARAMETERS:
DESIGN DISCHARGE (CFS): 20.00
CHANNEL SHAPE: VSHAPED
CHANNEL SLOPE (FT/FT): .040
---------------------
HYDRAULIC CALCULATIONS USING NORMAL DEPTH
----------------- ------------------------
1 DESIGN MAXI
FLOW (CFS) 20.00 1 8.
1 DEPTH (FT) .79 . 6
AREA (FT�2) 3.78 18 4
WETTED PERIMETER (FT) 9.65 21 44
1 HYDRAULIC RADIUS (FT) .39 7
VELOCITY (FT/SEC) 5.30
MANNINGS N (LOW FLOW) .030 .0 0
REYNOLDS NUMBER (10-5) 1.22
*** WARNING *** REYNOLDS NUMBER IS LAR ER THAN 10�5
*** WARNING *** Davg/D50 <= 2 FOR THE MAXIMUM DISCHARGE PROCEDURE.
1 Qmax MAY BE INCORRECT BECAUSE IT REQUIRES BATHURST
------------------
1 STABILITY ANALYSIS
-
LINING PERMIS SHR CALC. SHR STAB.
CONDITION TYPE (LB/FT-2) (LB/FT�2) FACTOR REMARKS
--------- -------------------------------�-------
BOTTOM; STRAIGHT RIPRAP 4.40 1.98 2.22�STABLE
SIDE; STRAIGHT RIPRAP 4.25 1.84 2.31 STABLE
*** NORMAL END OF HYCHL ***
1
' :WNC
Engineering Consultants
I
CLIENT
PROJECT I CE-J S, '' CALCULATIONS
MADE BVW,-L4- �,� DATE CHECKED BY- DATE
Of
****** HYCHL ****** (Version 2.0) ******
Date 08-10-95 .
Commands Read From File: C:\MODELS\HYCHL\504009PV.CHL
JOB Banyan = S y ' S
o
UNI 0
** UNITS PARAMETER = 0 (ENGLISH)
CHL 0.067 54
VSH 4 4
'
** V-SHAPE RIGHT Z1 = 4.0 AND LEFT Z2 = 4.0
. N 0.03 0.03r,/
'**
LOW FLOW N VALUE= .030
** SIDE SLOPE N VALUE= .030
LRR 1.5 2/40 2.5 0.047
** D50 (FT) 1.50
ANGLE OF REPOSE (DEGREES) 40.00
'**
** SPECIFIC GRAVITY 2.50/'/
** SHIELDS PARAMETER .047
END
'
***************END OF COMMAND FILE************
Banyan
w------------
INPUT REVIEW
DESIGN PARAMETERS:
'
DESIGN DISCHARGE (CFS): 54.00
CHANNEL SHAPE: VSHAPED
CHANNEL SLOPE (FT/FT): .067
1
-----------------------------------------
HYDRAULIC CALCULATIONS USING NORMAL DEPTH
-----------------------------------------
DESIGN MAXIMUM
(CFS) 54.00 106
'FLOW
DEPTH (FT) 1.22 1 8
AREA (FT A2) 5.97 9. 6
WETTED PERIMETER (FT) 10.07 13 2
RADIUS (FT) .59 . 7
'HYDRAULIC
VELOCITY (FT/SEC) 9.05 1 . 3
MANNINGS N (LOW FLOW) .030 .0 0
REYNOLDS NUMBER (10A5) 2.24
*** WARNING *** REYNOLDS NUMBER IS LARGER THAN 10A5
*** WARNING *** Davg/D50 <= 2 FOR THE MAXIMUM DISCHARGE
PROCEDURE.
'
Qmax MAY BE INCORRECT BECAUSE IT REQUIRES BATHURST
------------------
STABILITY ANALYSIS
------------------
LINING PERMIS SHR CALC. SHR
STAB.
CONDITION TYPE-- (LB/FT-2) (LB/FTA2)
FACTOR REMARKS
--------- -------------------
BOTTOM; STRAIGHT RIPRAP 6.60 5.11
------------
1.29/ STABLE /'
SIDE; STRAIGHT RIPRAP 6.11 4.29�
1.42./ STABLE'/
*** NORMAL END OF HYCHL ***
I
11
I
I
r
I
1
L
CLIENT 1' I �:'L��"f'+LI *V'6Y -'�I' p:� JOB NO.%
INN PROJECT 77'11 =I 4 vl H J
CALCULATIONSFOR dl IZ'���-�•,.•r ,�
Engineering Consultants MADE BY a:�-: DATEi'17 (.CHECKED BY —DATE -SHEET _1OF
zz.
� rI
TiL,a�Ls
�^v
1
I
r.
****** HYCHL ****** (Version 2.0) ****** Date 10-10-9
' Commands Read From File: C:\MODELS\HYCHL\CURRANT.CHL 1
JOB currant � (,r ' o,- G d u Cwriol- �tt
UNI 0 ^
** UNITS PARAMETER = 0 (ENGLISH) h
CHL 0.02 300.1 � 14: `"�;: i i'� C+.•:'. .' �Ur. �• _�'i .,�
TRP 24 8 8
** LEFT SIDE SLOPE 8.0 AND RIGHT SIDE SLOPE
** THE BASE WIDTH OF THE TRAPEZOID (FT) 24.00
'LRR 1 2 42 2.65 0.15
** D50 (FT) 1.00
** ANGLE OF REPOSE (DEGREES) 42.00
** SPECIFIC GRAVITY 2.65
** SHIELDS PARAMETER .150
END
***************END OF COMMAND FILE************
currant
INPUT REVIEW
'
--DESIGN-PARAMETERS:
DESIGN DISCHARGE
(CFS):
SHAPE:
CHANNEL SLOPE (FT/FT):
-----CHANNEL
------------------------------
HYDRAULIC CALCULATIONS
USING BATHURST
-------------------------------------
FLOW (CFS)
300.10
MAX DEPTH (FT)
AREA (FT�2)
2.35
100.03
WETTED PERIMETER (FT)
61.75
HYDRAULIC RADIUS (FT)
1.62
1
AVG VELOCITY (FT/SEC)
3.00
MANNINGS EQUIVALENT
.098
Davg / D50
1.63
FROUDE NUMBER
.34
REYNOLDS NUMBER (10A5)
2.28
STABILITY ANALYSIS
------------------
LINING
' CONDITION TYPE --
BOTTOM; STRAIGHT RIPRAP
SIDE; STRAIGHT RIPRAP
*** NORMAL END OF HYCHL ***
1
LI
300.10
TRAPEZOIDAL
.020 -,
PERMIS SHR
(LB/FT-2)
15.44
15.18
8.0
CALL. SHR
(LB/FTA2)
2.93
2.76
STAB.
FACTOR
5.26 /
5.50
}
REMARKS
STABLE
STABLE
I
I
I
I
I
I
11
RMINC
Engineering Consultants
CLIENT JOB NO.5-L!L:
6'WEV,
PROJECT '37-a-JS CALCULATIONSFOR I pi
MADEBY444t4 DATEi--1 -V1,CHECKED BY DATE SHEET
7�>
V
A7 Or
V
HL
5(D
iD
LEI r
I
RMINIC
CLIENT ''
614t j-VA11 jlw G 1 JOB NO. PROJECT I =' :.d S r T= Y"c fl c CALCULATIONS FOR
Engineering Consultants MADE BY CG F� DATE ''tom HECKED BY DATE SHEET ?_ OF
��r_jo `\ l `f/
CLIENT �-1N- L'•'Y�'�-1 l IL.GF�'�
I ! JOB NO.
INC. PROJECT ��=��'�S A<r//�L��-1�L{-�k.d. CALCULATIONS FOR �a�rie 4wYN4+v-�
Engineering Consultants MADEBY�DATE :±�LCHECKED BY OATE SHEET 3 OF 3
J /EIcv
I
b-L
REINFORCED CONCRETE PIPE CLASSIFICATION
CALCULATIONS
C 76
TABLE 1 Design Requirements for Class I Reinforced Concrete PipeA
0t* See Section 5equfor bass of acceptance specified by the purchaser.
strength test rirements in pounds -force per linear footoof pipe uncer the 4vee-edge-bearing method shall be either the DIoad (test load expressed in
%nds-force per linear loot per foot of diameter) to produce a 0.014n. crack. or the Daoads to produce the 0.014n. crack and the uttimate bad as specified below.
. by the internal diameter of the pipe in feet
woad to poduce a 0.014n. crack 800
Daoad to produce the unimate load 1200
Reinforcement. in?/linear ft of pipe wad
Wad A Wad B
Lln!,emal nated --- - Concrete Strength, 4000 psi Concrete Strength, 400D psi
Diameter, %,,all Circular Circular
in. Thick. Reinforcement _ Elopt;af Wad Reinforcement° Elliptical
ihickness,
mess. Inner Outer Reinforcerne- ° in. Inner Outer Reinforcement°
Cage Cage Cage Cage
60 5 025 0.15 028 6 0.21 0.13 023
66 5112 0.30 0.18 0.33 61/2 025 0.15 028
72 6 0.35 0.21 0.39 7 029 0.17 022
78 61h 0.40 0.24 OA4 71/2 0.32 0.19 0.36
84 7 0.45 027 0.50 8 0.37 022 - 0.41
90 71k 0.49 029 0.54 81h 0.41 025 0.46
' 96 6 - - 0.54 0.32 0.60 9 0.46 028 0.51
Concrete Strength, 5000 psi
102 8t4 0.63 O.Sa Inner C'veu'ar 025 91h 0.54 0.32 Inner Ccudar 022
' Mus Elliptical 0.38 Plus Elliptical 0.32
108 9 0.68 0.41 Inner Circular 027 10 0.61 0.37 Inner Circular 024
Plus Elliptical 0.41 Plus Elliptical 0.37
1A ... ... ... ... A ... ... ... ...
132 A A
138 A A
1" 44 ... ... ... ... A
A For noddied or special desxm see 72 or with the permission of the purchaser uaTize the provisions of specification C 655. Steel areas may be interpolated between
shown for variations in diameter, loading. or wad thickness. Pipe over 95 in. in diameter shad have two circular cages or an inner circular plus are e3ptical cage. ..
As an alternative to designs requaTV both inner and aver circular cages the reedorcement may be positioned and proporwred in either of the following manners;
enter circular cage plus an eFptcat cage such that the area of the ed'Qtical ace shad not be less than that specified for the outer cage in the table and the total area
of the inter cirnlar cage pits the edplical cage shad not be less than that speakd for the enter cage in the table,
ester and outer cage plus quadrant mats in accordance with Fig. 1. or
rtuter and outer cage plus an elliptical cage in accordance with Fig. 2.
Elliptical and quadrant steel must be held in place by means of holQng rods. chairs. or other poseive means throughout the entire casting operabaL
aired in 6.1. 6.2. and 6.4; by crushing tests on concrete
or cured concrete cylinders; by absorption tests on
selected samples from the wall of the pipe: and by inspection
P° the finished pipe including amount and placement of
forcement to determine its conformance with the ac-
ted design and its freedom from defects.
5.1.3 When agreed upon by the purchaser and manufac-
r, any portion or any combination of the tests itemized
1.1 or 5.1.2 may form the basis of acceptance.
2 AgeforAccepiance-Pipe shall be considered ready for
acceptance when it conforms to the requirements as indi-
mfd by the specified tests.
6- Materi21S
1fi Cement -Cement shall conform to the requirements
ponland cement of Specification C 150 or shall be
ponland blast -furnace slag cement or ponland-pozzolan
c ent conforming to the requirements of Specification
c 95.
2.9ggregaies-Aggreg2tes shall conform to Specification
:33 except that the requirement for gradation shall not
Iv.
2
6.3.4dmixtures and Blends -Admixtures and blends may
be used with the approval of the purchaser.
6.4 Steel Reinforcement -Reinforcement shall consist of
wire conforming to Specification A 82 or Specification A 496
or of wire fabric conforming to Specification A 185 or
Specification A 497 or of ban of Grade 40 steel conforming
to Specification A 615.
7. Design
7.1 Design Tables -The diameter, wall thickness, com-
pressive strength of the concrete, and the area of the
circumferential reinforcement shall be as prescribed for
Classes I to V in Tables 1 to 5, except as provided in 7.2.
7.1.1 Footnotes to the tables herein are intended to be
amplifications of tabulated requirements and are to be
considered applicable and binding as if they were contained
in the body of the specification.
7.2 Modired and Special Designs:
7.2. I If permitted by the purchaser the manufacturer may
request approval by the purchaser of modified designs that
differ.from the designs in 7.1; or special designs for sizes and
loads beyond those shown in Tables I to 5, 7.1, or special
designs for pipe sizes that do not have steel reinforcement
ac
9� 1,16 �
ILT
Note -See Section 5 for basis of J.
TABLE 2 Design Requirements for Class 11 Reinforced Concrete Pipe"
�
ceprance speafled by the pur...aser.
' The strength test requirements in pounds -force per linear foot of ape under the Wee -edge -bearing method Shan be either the D-bad (test bad expressed in
crack. pounds -force per linear foot per foot of diameter) to produce a 0.ol4n. cra, or the D•Ioads to produce the 0.01-in, rack and the ultimate bad as specified below,
multiplied by the intemal diameter of the pipe in feet.
D-Ioad to produce a 0.01-'rn. crack 1000
D-load to produce the ultimate Icad 1500
Reinforcement, in.zrynear It of pipe wan
Wan A Wan B
Internal Wall
' Designated Concrete Strength, 4000 psi
Dianneter, Circular
in. Wan Reinforcement ° Elliot
12
15
18
21
24
27
30
33
36
42
48
54
60
66
72
78
84
90
96
Thickness,
1s/4
17/8
2
21/4
21A
2s/s
236
27A
3
31h
4
41/2
5
51/z
6
61A
7
71/2
6
Inner
Cage
0.078
0.078
0.079
0.12
0.13
0.15
0.15
0.16
0.14
0.16
021
025
0.30
0.35
0.41
OA6
051
0.57
0.62
Cuter
Cage
0.08
0.10
0.13
OAS
0.18
021
025
028
0.31
0.34
0.37
Reinforcement`
0.079
0.10
0.11
0.13
0.14
0.15
0.15
0.18
0.23
028
0.33
029
0.45
0.51
057
0.63
0.69
Concrete Strength, 4000 psi
Circular
Wan
Reinforcement°
Thickness,
in.
Inner
Outer
Cage
Cage
2
0.078
...
214
0.078
...
21/2
0.078
...
V1.
0.078
...
3
0.07°
...
3%
0.13
...
31/2
0.14
...
3Y.
0.15
4E
0.12
0.07
41h
0.15
0.09
5
0.18
0.11
51h
022
0.13
.6
025
0.15
6112
0.31
0.19
7
0.35
021
71rt
0.40
024
8
0.46
028
81/2
0.51
0.31
9
0.57
0.34
Concrete Strength, 5000 psi
Elliptical Wan
Reinforcement" Thickness,
in.
0.079
0.078
0.07 °
0.11
0.12
0.13
0.13
0.17
020
024
028
0.34
0.39
0."
051
057
0.63
2%
3
31A
314
3%
4
4w
4Yr
SUE
5%
53L
6v.
M
7Y.
7%
814
82A
9%
946
Concrete Strength, 4000 psi
Circular
Reinforoementc
Inner
Cage
0.07°
0.07°
0.07°
0.07°
0.07°
0.07°
0.07°
0.07°
0.07
0.10
0.14
0.17
022
025
0.30
0.35
0.41
0.48
0.55
Outer
Cage
0.07
0.07
0.08
0.10
0.13
0.15
0.18
021
025
029
0.33
Elliptical
Reinforcement"
0.07°
0.07°
0.07°
0.07°
0.07°
0.07°
0.08
0.11
0.15
0.19
024
028
0.33
0.39
0.46
OS3
0.61
102 81h 0.76 0.46 Inner 0.30 91/2 0.68 0.41 Inner 027 101/4 0.62 0.37 Inner 025
C17cular Circular Circular
Plus El- 0.46 Plus El. 0.41 Plus ID-0.37
6ptxal nPtiW Optical
108 9 0.65 051 Inner 0.34 10 0.76 0.46 Inner 0.30 103'4 0.70 OR2 Inner 028
Circular Circular Circular
Plus El- 051 Plus E]- 0.46 Plus El. 0.42
114 " .. ... Optical "knical nptial
... ...
126 " ... ... ... "
132 " ... ... ...
.. ...
lab" ... ... ... ... " ... ... ... ... ... ...
144 " ... ... ... " ... ... ... " ... ... ... ...
... ... ... ... ...
• For mortified or special designs see 72 or with the permission of yne N Chaser utilize the Provisions of Specification C 655.
Steel areas may be interpolated between those shown for variations to 60neter. loading. or wan thickness. Pipe over 96 in. in diameter stwo dra
tall have trlar cages.
or an inner circular plus one elliptical race.
° For these classes and saes. the minimum Practical steel reinforcement is specified. The actual ultimate strength is greater than the minimum strength specified for
nonremforoad pipe of equivalent diameters in SPedScatior. C 14.
o As an ahemative to designs requiring both k:ner and outer circular Cages the reinforcement may be Positioned and proporioned in either of the following manner:
An inner circular cage plus an elliptical Cage such that the area of the eliq; cal cage s.`.zfl not be less than that specified for the outer age in the table and the total area
Of the inner circular cage plus the elliptical cage Shan not be less than -.at specified for � e inner cage in the table.
An inner and alter cage plus quadrant mats in accordance with Fig. 1, or
An inner and outer cage Plus an elliptical cage in accordance with Fig. 2.
eElliptical and quadrant steel must be nerd in place by means of holding rods, dais. or other PosiCve means throughout the entire casting operation.
As an alternative. single cage reinforcement may be used. The reinforcement area in square in. per linear foot shall be 020 for wan 8 and 0.16 for wan C.
areas shown in Tables I to 5 of 7.1.
7.2.2 Such modified or special designs shall be based on
rational or empirical evaluations of the ultimate strength and
cracking behavior of the pipe and shall fully describe to the
purchaser any deviations from the requirements of 7.1. The
descriptions of modified or special designs shall include the
wall thickness, the concrete strength, and the area, t}pe,
placement, number of layers, and strength of the steel
reinforcement.
7.2.3 The manufacturer shall submit to the purchaser
proof of the adequacy of the proposed modified or special
design. Such proof may comprise the submission of certified
three -edge -bearing tests already made, which are acceptable
to the purchaser or, if such three -edge -bearing tests are not
available or acceptable, the manufacturer may be required to
perform proof tests on sizes and classes selected by the
purchaser to demonstrate the adequacy of the proposed
design.
3
C 76
' Pi fe in eo fordo Z "i anA s.raller� (c75
�- ►'urn#+• CIaSS is
TABLE 3 Design Requirements for Class III Reinforced Concrete Pipe"
Nore-See Section 5 for bass of acceptance specified by the purchaser.
The strength test requirements in poundsdorce per linear foot of pipe under the three -edge -bearing method SW be either the D-bad pest bad expressed in
fcrce per linear foot per foot of diameter) to produce a 0.01-in. crack or the INoads to produce the 0.01-irt crack and the ultimate bad as specified below,
..:tdtip6ed by the internal diameter of the pipe in feet.
Ddoad to produce a 0.014 n. tack 1350 `�--
■ Daoad to produx the ultimate bad 2000 �-
Reinforce,
w.nt in.=rynesr ft of pipe wag
Wag A
was a
wag C
e
gnate0
Concrete Str 4000 psi
e^9m•
Conte ete Strength, 4000 psi
Concrete Strength, 4000 psi
iameter,
wag Circular
Thick. ReedokcememD Elliptical This-
Re•nfacemente Elliptical
Thick..
Circular
m Reintorceentc
Elliptical
nesses. Reinforce-
Inner Outer fnmtD nesses,
in.
Reinforce-
Inner Outer tD
flesses.
Inner Outer
Reinforoe-
rnent O
.
Cage Cage in..
Cage Cage
in.
Cage Cage
_ 12
13h 0.079 ... ... 2
0.078 ... ...
22A
0.078 ...
15
11h 0.079 ... ... 21/4
0.078 ...
3
0.078 ...
...
18
2 0.078 ... 0.078 21h
0.078 ... 0.078
314
0.078
0.070
21
21A 0.14 0.11. 23/4
0.076 0.078
314
0.078 ...
0.078
'
24
21h 0.17 0.14 3
0.071 ... 0.078
3s/4
0.07
0.076
27
2% 0.16 0.16 31/4
0.16 ... 0.14
4
0.08
0.078
30
23/4 0.19 ... 0.18 31h
0.18 ... 0.15
41/4
0.10
0.08
33
27h 021 ... 020 33/4
020 ... 0.17
41h
0.12
0.10
3 021 0.13 023 4 e
0.17 0.10 0.19
450
0.08 0.07
0.09
'36
42
31h 025 0.15 028 41/a
021 0.13 023
51/4
0.12 0.07
0.13
48
4 0.32 0.19 0.35 5
024 0.14 027
54'4
0.16 0.10
0.18
S4
41h 038 023 OA2 51h
029 0.17 0.32
61/4
021 0.13
023
60
5 0.44 026 0.49 6
0.34 020 038
63/4
025 0.15
028
66
51h 0.50 030' 0.55 61/2
0.41 025 OA6
71/4
031 0.19
0.34
72
6 0.S7 0.34 0.63 7
0.49 029 054
73/4
036 022
OAO
Concrete Strength. 5000 psi
78
61/2 0.64 038 0.71 71/2
057 034 0.63
81/4
0.42 025
OA7
84
7 0.72 0.43 0.80 8
0.64 038 0.71
83L
050 030
OS6
Corcete Strength, S000 psi
Concrete Strength, 5000 psi
90
71h 0.61 OA9 0.90 81h
0.69 0.41 0.77
9%
059 035
0.66
.'
96
8 093 0S6 1.03 9
036 0.46 0.84
93/4
0.70 0.42
inner 028
Circular
Plus Elm 0.42
6plical
102
81h tA3 0.62 Liner 0.41 91h
Circular
090 0.54 inner 0.36
Circular
101/4
0.83 OSO
Ww 033
Plus EF 0.62
Plus E. 054
Circular
Plus El- OSO
6ptical
6pDral
6✓rical
108
9 122 013 Inner OA9 10
Circular
1.08 0.65 Utner OA3
Circular
103/4
099 0.59
Inner 0A0
Plus El- 033
Fetus El. 0.65
Circular
Plus El- O.S9
liplical
1pliew
Wks!
114
A ... ... ... ... w
...
w
120
i1 ... ... w
... ... ...
w
... ...
126
w ... ... ... ... "
... ...
... ...
w
... ...
... ...
... ...
... ...
... ...
1
w w
...
w
144 44
1
Aw
... ... ... ...
... ... ...
w
...
... ...
For modified or special designs see 72 or with the permission of the purchaser uta¢e the provisions of Specification C 655.
Steel areas may be interpolated between those shown for variations in diameter. loading, or wall thickness. Pipe
over 96 in. in diameter shall have two circular rages
EV
inner circular pLe; one elliptical rage.
For these
Gasses and sizes, the rnirwrium practW steel reinforcement
is speci.5ed. The actual ultimate strength is greater than the minimum strength specified for
e'udorced pipe of equivalent dameters in Spedfiatign C 14.
s an ahemative to designs requiring both inner and outer circular cages the reinforcement may be positioned and proportioned in either of the follow ng manners:
e An inner circular cage plus an elliptical cage such that the area of the elliptim' age shag not be less than that specified for the outer cage in the table and the total area
inner d=Aar
cage plus the elliptical cage shag not be less than that speafied for the inner cage in the table,
inner and outer cage pits quadrant mas in accordance with Fig. 1, or
'corer and outer cage plus an elliptical cage in accordance with Fg. 2.
eElliptical and quadrant steel must be held in place by means of holding rods, chairs, or other positive means throughout the entire casting operation. ...
A; an alternative, single cage reinforcement may be used. The renfcroement area in square in. per linear foot shall be 030 for wag B and 020 for wag C.
4
C 76 t�
' TABLE 4 Design Requirements for Class IV Reinforced Concrete Pipe•
NOTE -See Section 5 for basis of acceptance specified by the purchaser. 69
' The strength test requirements in pounds -force per linear foot of pipe under the threeed"aring method shall be either the O•bad (test bad expressed in
pounds -force per linear foot per foot of diameter) to produce a 0.01-h crack, or the Needs to produce the 0.014n. crack and the ultimate bad as specified below,
multiplied by the internal diameter of the pipe in feet
D-load to produce a 0.014n. crack 4000 •� - -
' --`-- - Noad to produce the ultimate bad 3000 �----
_ Reinforcement, in.z/linear it of pipe wan
Wall _A Wan B
Internal-�--------.. Wall C
' Designated Concrete Strength. 50DO psi Concrete Strength, 4000
psiConcrete Strength, 4000 psi
Diameter, Circuw Circular Circular
in. Wan Reinforcements Elliptical Wag Reinforcement° Elliptical Wan Reinforcements Elliptical
Thickness.- Reinforce- TN&Jms, Reinforce-
n. Thickness. ReeNoroE-
n, Inner Outer memo Inner Outer etc in hoer Outer ate
' Cage Cage Cage Cage Cage Cage
12 134 0.15 ... ... 2 0.07 ... 2i'4 0.07c' ...
15 11/e 0.16 2% 0.10 .. 3 0.070
18 2 0.17 ... 0.15 2% 0.14 0.11 316 0.070 0.078
21 24 023 ... 021 234 020 0.17 3h 0.07° 0.07c
' 24 2!a 029 027 3 027 023 32A 0.07 0.07 0.08
27 24 0.33 0.31 auk 0.31 ... 025 4 0.08 0.07 0.09
30 234 038 ... 035 3% 035 ... 028 414 0.09 0.07 0.10
33 A • • • 34 027 0.16 0.30 4% 0.11 0.07 0.12
36 " 4 o30 0.18 0.33. 43A
' 42 A ... ... ... 0.14 0.08 0.15
434 035 025 0.47
48 5 0.42 025 0.<7 Sy 026 0.12 029
54 • 5.4 026 O.t6 029
5% 050 0.30 0.5s 614 0.34 020 038
' ... ... ... - Concrete Strength, 5000 psi -
66 A 6 059 035 0.66 63A 0.41 025 0.46
66 • ... ... ... 61h 0.69 0.41 0.77 714 051 , 0.31 0.57
72 ' A ...
.. -Concrete Strength, 5psi
A
78 "' A 0.79 O.d7 0.88 716 0.61 03000 7 0.68
... 81rr 0.71 0.43 0.79
9A :: A ... ... .. Bi. 0.85 051 0:94
96 • A A
102 • A A
108 A ... ... A ... A ... ... ...
120 A A ... ... ... A
... ... ... 126 A ... ... A ... ...
132 A ... ... ... A ... ... ... A
t36 A ... ... ...
144 A ... ... ... A
'A For modified or special designs see 72 or with the permission of the purchaser utiEze .71e provisions of Spec6cation C 655. Steel areas maybe interpolated between
thoe shown for variations in diameter. loading. or was thickness. Pipe over 96 in. in diameter shall have two circular ages or an eatar eecTxlar plus one elliptical toga.
As an alternative to designs requiring both ether and outer circular cages the reinforcement may be positioned and proportioned in either of the following manners:
An inner circular age plus an elliptical cage such that the area of the elliptical cage shag not be less than that specified for the outer cage in the table and the total area
of the inner circular cage plus the elliptical cage shag not be less than that specified for one inner cage in Lie table, .
An inner and outer cage plus quadrant mats in accordance with Fig. 1. or
An inner and outer cage plus an elliptical cage in accordance with Fig. 2.
For Wan C. in saes 24 to 33 in., a single circular cage with an area not less than the sL,.n of the specified emir and outer circular reinforcement areas.
c Elliptical and quadrant steel must be held in place by means of holding rods. chairs, or other positive rneans throughout the entire casting operation.
For these classes and sizes, the minimum practical steel reinforcement is specified.
7.3.4 Such pipe must meet all of the test and performance
requirements specified by the purchaser in accordance with
'Section 5.
7.3 Area -In this specification, when the word area is not
described by adjectives, such as cross-section or single wire, it
shall be understood to be the cross -sectional area of rein-
forcement per unit lengths of pipe.
8. Reinforcement
8.1 Circun jerential Reinforcemenl-A line of circumfer-
ential reinforcement for any given total area may be com-
posed of two layers for pipe with wall thicknesses of less than
7 in. or three layers for pipe with wall thicknesses of 7 in. or
greater. The layers shall not be separated by more than the
thickness of one longitudinal plus 'Ain. The multiple lavers
shall be fastened together to form a single rigid cage. All
other specification requirements such as laps, welds, and
tolerances of placement in the wall of the pipe, etc., shall
apply to this method of fabricating a line of reinforcement.
8.1.1 Where one line of circular reinforcement is used, it
shall be placed from 35 to 50 % of the wall thickness from
the inner surface of the pipe, except that for wall thicknesses
less than 3x/_ in., the protective cover of the concrete over the
5
PROGRAM SAMM- ponds at overland
' PU*5IN.
MM
D-LOAD REQUIREMENTS FOR A IAMETERCIRCULAR PIPE
-I-P E D A T A
-----------------------------------------------------
DIAMETER (in.) 15.00
WALL B, THICKNESS (in.) 2.250
N S T A L L A T I O N C O N D I T I O N S
--------------------------------------------------------------------------------
MINIMUM DEPTH OF FILL (ft.) 1.50
MAXIMUM DEPTH OF FILL (ft.) 20.00
SOIL DENSITY (lb/cu. ft.) 135.0
BEDDING CLASS B
INSTALLATION TYPE TRENCH
TRENCH WIDTH (ft.) 4.00
SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650
PAGE 2
' PARAMETERS TO COMPUTE TRANSITION WIDTH
POSITIVE PROJECTION RATIO 1.00
POSITIVE SETTLEMENT RATIO 0.50
SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650
' SOIL LATERAL PRESSURE COEFICIENT 0.33
A D D I T I O N A L L 0 A D S
rLIVE LOAD AASHTO HS-20
NO SURCHARGE LOAD
A -C T O R S O F S A F E T Y
------------------------ - -
-- - - -
FACTOR OF
SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE)
1.00; 1.00
FACTOR OF
SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE
WITH ASTM C 76
DL.01
LESS THAN 2000 LBS/FT/FT
1.5
DL.01
GREATER THAN 3000 LBS/FT/FT
1.25
'
DL.01
BETWEEN 2000 AND 3000 LBS/FT/FT
INTERPOLATED
I
I
6
1ROGRAM SAMM-.ponds at overland
PAGE 3
�2 E S U L T S O F A N A L Y S I S �� 1
--------------------------------------------------------------------------------
' PIPE
DEPTH
(ft.)
7
L
------EARTH LOAD-----
LIVE
SURCH
TOTAL
BED
REQUIRED D-LOAD
ARCHING >TRANS LOAD
LOAD
LOAD
LOAD
FACT
0.01 in. ULT.
FACTOR (lb/ft)
(lb/ft)
(lb/ft)
(lb/ft)
(lb/ft/ft)
1.5
1.17
Y
385.
1732.
0.
2117.
3.33
508.
762.
2.5
1.30
Y
715.
902.
0.
1617.
2.90
446.
668.
3.5
1.43
Y
1096.
537.
0.
1633.
2.72
480.
719.
4.5
1.44
Y
1421.
381.
i';
0.
1802.
2.68
538.
808.
5.5
1.45
Y
1747.
285.'
0.
2032.
2.65
613.
920.
6.5
1.45
Y
2070.
222.
0.
2292.
2.63
697.
1045.
7.5
1.45
Y
2393.
178.
0.
2571.
2.62
786.
1178.
8.5
1.46
Y
2716.
146.
0.
2862.
2.61
878.
1317.
-9_.5.-___
1.46
Y
3040.
122.
0.
3162.
2.60
973.
1459.
•10.5
1.46
Y
3363.
103.
�(
0.
3466.
2.59
1069.
1�0T.
11.5
1.46
Y
3681.
89._�;4
0.
3770.
2.59
1165.
1747.
2.2,5 -
1.46
Y
4004.
77.bA
0.
4081.
2.59
1263.
1894.
13.5
1.46
Y
4327.
68.
0.
4395.
2.58
1362.
2042.
14.5
1.44
N
4567.
60.
0.
4626.
2.56
1447.
2171.
15.5
16.5
1.39
1.34
N
N
4723.
4868.
53.
48.
Al
0
0..
4777.
4915.
2.52
1518.
2277.
17.5
1:30
N
5000.
43.E
0.
5043.
2.48
2.45
1584.
1645.
2376.
2468.
18.5
1.26
N
5123.
39.
0.
5162.
2.43
1703.
2554.
19.5
1.22
N
5235.
35.
0.
5271.
2.40
1760.
2640.
20.0
1.21
N
5288.
34.
0.
5322.
2.38
1786.
2678.
0
PROGRAM SAMM- ponds at overland
PAGE 2
'
P OG S
D-LOAD REQUIREMENTS FOR A
18 IN. DIAMETER CIRCULAR PIPE
-I-P
E D A T A
DIAMETER (in.) -----------------------------------------------------
18.00
WALL B, THICKNESS (in.)
2.500
N
S T A L
--------------------------------------------------------------------------------
L A T I O N C O N D I
T I O N S
MINIMUM DEPTH OF FILL (ft.)
1.00
'
MAXIMUM DEPTH OF FILL (ft.)
20.00
SOIL DENSITY (lb/cu. ft.)
135.0
BEDDING CLASS
B
'
INSTALLATION TYPE
TRENCH
TRENCH WIDTH (ft.)
4.00
SOIL LATERAL PRESSURE/FRICTION TERM (KMU')
0.1650
' PARAMETERS TO COMPUTE TRANSITION WIDTH
POSITIVE PROJECTION RATIO 1.00
POSITIVE SETTLEMENT RATIO 0.50
' SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650
SOIL LATERAL PRESSURE COEFICIENT 0.33
A D D I T I O N A L L 0 A D S
----------------------------------------------------------------------
r LIVE LOAD AASHTO HS-20
NO SURCHARGE LOAD
-A-C T O R S O F S A F E T Y
----------------------- - - - - --
FACTOR OF
SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE)
1.00; 1.00
FACTOR OF
SAFETY ON ULTIMATE LOAD (EARTH,LIVE) IN ACCORDANCE
WITH ASTM C 76
'
DL.01
LESS THAN 2000 LBS/FT/FT
1.5
DL.01
GREATER THAN 3000 LBS/FT/FT
1.25
'
DL.01
BETWEEN 2000 AND 3000 LBS/FT/FT
INTERPOLATED
0
1
PROGRAM SAMM- ponds at overland PAGE 3
�Z E S U L T S. 0 F A N A L Y S I S \
--------------------------------------------------------------------------------
PIPE
------EARTH LOAD-----
LIVE
SURCH
TOTAL
BED
REQUIRED
D-LOAD
DEPTH
ARCHING
>TRANS
LOAD
LOAD
LOAD
LOAD
FACT
0.01 in.
ULT.
FACTOR
(lb/ft)
(lb/ft)
(lb/ft)
(lb/ft)
(lb/ft/ft)
'(ft.)
1.0
1.09
Y
282.
2603.C�S'5
0.
2886.
4.35
443.
664.
2.0
1.19
Y
618.
1455.
0.
2072.
3.21
431.
646.
1.31
Y
1016.
751.
0.
1767.
2.89
407.
611.
'3.0
4.0
1.43
Y
1477.
516.bL�SSS
0.
1992.
2.73
486.
730.
5.0
1.44
Y
1860.
378.
0.
2238.
2.69
555.
833.
6.0
1.45
Y
2244.
290.
0.
2534.
2.66
635.
953.
'
7.0
1.45
Y
2625.
229.
0.
2855.
2.64
721.
1081.
8.0
1.45
Y
3007.
186.CIA555-
0.
3193.
2.63
810.
1215.
9.0
1.45
V
3388
155
0
3542
2.62
902
1354.
1.42
N
3677.
130.
0.
3807.
2.57
988.
1483.
'10.0
11.0
1.37
N
3904.
ill.
0.
4015.
2.51
1067.-
1600.
12.0
1.32
N
4113.
96.
i
0.
4210.
2.46
1140.
1710.
'13.0
14.0
1,28
1.24
N
N
4306.
4483.
84.6,(,gSSJ-(�
74.
0.
0.
4390.
4557.
2.41
2.38
1213.
1277.
1820.
1915.
15.0
1.20
N
4647.
66.
0.
4712.
2.35
1337.
2006.
16.0
1.16
N
4797.
59.
0.
4856.
2.32
1393.
2090.
1_1_9
N
a
53
0
4988.
2.30
1445.
2168.
'17.0
18.0
1.09
N
5063.
48.
�SS�
0.
5111.
2.28
1494.
19.0
1.05
N
5180.
43.L
0.
5224.
2.26
1539.
2309.
'
20.0
1.02
N
5288.
40.
0.
5328.
2.25
1581.
2372.
n
1
I'
ARAM SAMM- Ponds at Overland
PAGE 2 .
�I
P O SAMM
D-LOAD REQUIREMENTS FOR A 24 IN. DIAMETER CIRCULAR
PIPE
P E D A T A
------ --------------------------------------------------------
DIAMETER (in.)
24.00
WALL B, THICKNESS (in.)
IS
3.000
T A L L A T I O N C O N D I T I O N S
-------------------------------------------------------------------------------
. MINIMUM DEPTH OF FILL (ft.)
2.00
:iMAXIMUM
'
DEPTH OF FILL (ft.)
20.00
SOIL DENSITY (lb/cu. ft.)
135.0
BEDDING CLASS
B
INSTALLATION TYPE
TRENCH
TRENCH WIDTH (ft.)
6.00
SOIL LATERAL PRESSURE/FRICTION TERM (KMU')
0.1924
TO COMPUTE TRANSITION WIDTH
,PARAMETERS
POSITIVE PROJECTION RATIO
1.00
POSITIVE SETTLEMENT RATIO
0.50
' SOIL LATERAL PRESSURE/FRICTION TERM (KMU)
SOIL LATERAL PRESSURE COEFICIENT
0.1924
0.33
D D I T I O N A L L O A D S
.: LIVE -LOAD ------------------------- -----
--------------------------
-----HS--- ------
AASHTO
NO SURCHARGE LOAD
1
C T 0 R S O F S A F E T Y
-------
----------------------------------------------------
FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE)
-----------------
1.00; 1.00
FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE WITH ASTM C 76
DL.01 LESS THAN 2000 LBS/FT/FT
1.5
DL.01 GREATER THAN 3000 LBS/FT/FT
1.25
' DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT
INTERPOLATED
I
1
I
Z!RAM SAMM- Ponds at Overland
a
PAGE 3
JS U L T S O F A N A L Y S I S 7/� �✓
---------------------------------------------------------------------------
:' JE ------EARTH LOAD----- LIVE SURCH TOTAL BED (REQUIRED D-LOAD
I .TH ARCHING >TRANS LOAD LOAD LOAD LOAD FACT 0.01 in. ULT.
(ft.) FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft)
1.0 1.17 Y 790. 1781. ``••--�0. 2571. 3.45 373. 559.
3.0 1.27 Y 1287. 927.C1 0. 2213. 3.03 365. 548.
J.- 0 1.38 Y 1866. 641. 0. 2506. 2.82 444. 666.
.0 1.46 Y 2470. 472. 0. 2942. 2.71 542. 813.
3.0 1.47 Y 2981. 363. 0. 3344. 2.68 624. 936.
7.0 1.48 Y 3495. 288. 0. 3784. 2.65 713. 1069.
11
0 235. 0. 4240. 2.64 804. 1206.
.0 1.49 Y 4514. 195-tLprSS--T 0. 4710. 2.62 898. 1347.
10.0 1.49 Y 5024. 165. 0. 5189. 2.61 993 1490
U
0
J
1.49
1.49
Y
Y
5533.
6043.
141. 'j�
122.r L4sSS-
5675.
2.60
1090.
1635.
0.
6165.
2.60
1187.
1781.
.0
1.49
Y
6553.
107. 0.
6660.
2.59
1286.
1928.
1 0
1.49
1.50
Y
Y
7062.
7572.
94. 0.
84. 0.
7157.
7656.
2.59
1384..
2076.
2.58
1483.
2225.
0
17.0
1.49
Y
8070.
75. (�
8145.
2.58
1580.
2370.
1.46
N
8385.
�,pSS/0.
68.p.
8452.
2.55
1656.
2485.
0
1.42
N
8648.
61. 0.
8710.
2.52
1726.
2588.
, : .0
1.39
N
8896.
56. 0.
8951.
2.50
1791.
2687.
2 .0
1.35
N
9128.
51. 0.
9178.
2.47
1857.
2785.
u
I
I
1
I
�ROGRAM SAMM- ponds at overland PAGE 2
ROGRAM`i SAMM
D-LOAD REQUIREMENTS FOR A 30 IN: DIAMETER CIRCULAR PIPE
-I-P E D A T A
-------------------------------------------------------------
DIAMETER (in.) 30.00
WALL B, THICKNESS (in.) 3.500
N S T A L L A T I O N C O N D I T I O N S
--------------------------------------------------------------------------------
MINIMUM DEPTH OF FILL (ft.) 1.00
MAXIMUM DEPTH OF FILL (ft.) 20.00
SOIL DENSITY (lb/cu. ft.) 135.0
BEDDING CLASS B
INSTALLATION TYPE TRENCH
TRENCH WIDTH (ft.) 6.00
SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650
PARAMETERS TO COMPUTE TRANSITION WIDTH
POSITIVE PROJECTION RATIO 1.00
POSITIVE SETTLEMENT RATIO 0.50
SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650
SOIL LATERAL PRESSURE COEFICIENT 0.33
A D D I T I O N A L L 0 A D S
------------------------------------------------------------------------------
LIVE LOAD AASHTO HS-20
- NO SURCHARGE LOAD
A --
C T O R S O F S A F E T Y
-
---------------------
--------
FACTOR OF
SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE)
1.00;
FACTOR OF
SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE
.1.00
WITH ASTM C 76
DL.01
LESS THAN 2000 LBS/FT/FT
1.5
DL.01
GREATER THAN 3000 LBS/FT/FT
1.25
DL.01
BETWEEN 2000 AND 3000 LBS/FT/FT
INTERPOLATED
_T't
ROGRAM SAMM- ponds at overland PAGE 3
1
„V
`t E S U L T S O F A N A L Y S I S �D
--------------------------------------------------------------------------------
' PIPE
DEPTH
(ft. )
d
11
I
1
------EARTH LOAD-----
LIVE
SURCH
TOTAL
BED
REQUIRED D-LOAD
ARCHING >TRANS LOAD
LOAD
LOAD
LOAD
FACT
0.01 in. ULT.
FACTOR (lb/ft)
(lb/ft)
(lb/ft)
(lb/ft)
(lb/ft/ft)
1.0
1.06
Y
439.
2830.
0.
3269.
5.00
261.
392.
2.0
1.12
Y
928.
2069.
0
2997.
3.84
312.
468.
3.0
1.18
Y
1473.
1084.
�yY
0..
2557.
3.28
312.
468.
4.0
1.25
Y
2078.
754.
\
0.
2832.
3.02
375.
562.
5.0
1.32
Y
2752.
558.
0.
3310.
2.87
461.
692.
6.0
1.40
Y
3503.
431.
V
0.
3933.
2.76
570.
855.
7.0
1.43
Y
4171.
343.
0.
4515.
2.71
666.
999.
8.0
1.44
Y
4786.
�281.
0.
5066.
2.69
754.
1131.
9.0
1.44
Y
5407.
234.
/
0.
5640.
2.67
845.
1268.
10.0
1.45
Y
6020.
198.
/�
0.
6218.
2.65
937.
1405.
11.0
1.45
Y
6634.
170.
47
0.
6804.
2.64
1029.
1544.
12.0
1.42
N
7115.
147.
0.
7263.
2.61
1115.
1672.
13.0
1.39
N
7523.
129.�
0.
7652.
2.56
1194.
1791.
14.0
1.36
N
7908.
114.
0.
8022
2.53
1270
1905.
15.0
1.33
N
8273.
101.
0.
8375.
2.49
1347.
2021.
16.0
1.29
N
8619.
91.
0.
8709.
2.46
1418.
2127.
17.0
1.26
N
8946.
82.
0.
9027.
2.43
1486.
2229.
18.0
1.24
N
9255.
74.
'
0.
9329.
2.41
1551.
2326.
19.0
1.21
N
9548.
67.
0.
9615.
2.38
1613.
2419.
20.0
1.18
N
9825.
62.
0
9887
2.37
1672
2508.
�ROGRAM SAMM- ponds at overland PAGE 2
PROGRAM AMM
D-LOAD REQUIREMENTS FOR A
48 IN. DIAMETER CIRCULAR PIPE
I-P
-
E D A T A
--------------------------------------------------------------
DIAMETER (in.)
48.00
WALL B, THICKNESS (in.)
5.000
N
S T A L L A T
--------------------------------------------------------------------------------
I O N C O N D I
T I O N S
'
MINIMUM DEPTH OF FILL (ft.)
MAXIMUM DEPTH OF FILL (ft.)
1.00
20.00
SOIL DENSITY (lb/cu. ft.)
135.0
BEDDING CLASS B
INSTALLATION TYPE TRENCH
TRENCH WIDTH (ft.) 8.00
SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650
PARAMETERS TO COMPUTE TRANSITION WIDTH
POSITIVE PROJECTION RATIO 1.00
POSITIVE SETTLEMENT RATIO 0.50
SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650
SOIL LATERAL PRESSURE COEFICIENT, 0.33
A D D I T I O N A L L 0 A D S
'-----------------------------------------------------------LIVE LOAD AASHTO---HS-20-- - - ----
NO SURCHARGE LOAD
-A -C ---
T O R S O F S A F E T Y
------------------
-- - - - - --
FACTOR OF
SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE)
1.00; 1.00
FACTOR OF
SAFETY ON ULTIMATE LOAD (EARTH,LIVE) IN ACCORDANCE
WITH ASTM C 76
DL.01
LESS THAN 2000 LBS/FT/FT
1.5
DL.01
GREATER THAN 3000 LBS/FT/FT
1.25
DL.01
BETWEEN 2000 AND 3000 LBS/FT/FT
INTERPOLATED
I
I
' -TW
tROGRAM
SAMM- ponds
at overland
PAGE 3
tE
S U
L T S O
F
�� 1
--------------------------------------------------------------------------------
A N A L Y
S I S
PIPE
------EARTH
LOAD-----
LIVE
SURCH
TOTAL
BED
D-LOAD
DEPTH
ARCHING
>TRANS LOAD
LOAD
LOAD
LOAD
FACT
(REQUIRED
0.01 in.
ULT.
(ft.)
FACTOR
(lb/ft)
(lb/ft)
(lb/ft)
(lb/ft)
(lb/ft/ft)
'
1.0
1.03
Y
675.
2331.
0.
3006.
5.00
150.
225.
2.0
1.07
Y
1398.
2475.
0.
3874.
5.00
193.
290.
'3.0
4.0
1.11
1.15
Y
Y
2172.
3001.
1474.
1039.
0.
0.
3646.
3.93
232.
348.
4040.
3.46
292.
438.
5.0
1.19
Y
3889.
778.
0.
4666.
3.22
363.
544.
6.0
1.24
Y
4839.
606.\,��'
0.
5445.
3.06
445.
668.
7.0
1.28
Y
5856.
487.^^�I`
0.
6343.
2.94
539.
808.
8.0
1.33
Y
6945.
401.V
0.
7346.
2.86
643.
964.
9.0
1.38
Y
8111.
336.
0.
8447.
2.79
758.
1137.
1.36
N
8850.
286.
0.
9136.
2.63
870.
1305.
'10.0
11.0
N
.9550.
246.
0.
9796.
2.57
954.
1431.
12.0
13.0
1.31
N
10222.
215.
`v 0.
10437.
2.52
1035.
1552.
1.28
N
10867.
189.
C�� 0.
11056.
2.48
1113.
1670.
14.0
15.0
1.26
N
11486.
167.
0.
11653.
2.44
1193.
1790.
1.23
N
12080.
149.0
0.
12229.
2.41
1267.
1900.
16.0
1.21
N
12650.
334.
0.
12784.
2.39
1338.
6'1.
17.0
18.0
1.19
1.17
N
N
13197.
13721.
121.
110.
�� 0.
13318.
2.37
1407.
2110.
0.
13831.
2.35
1473.
2210.
19.0
1.15
N
14225.
100.
V 0.
14325.
2.33
1538.
2307.
20.0
1.13
N
14708.
92.
0.
14800.
2.31
1600.
2400.
I
I
I
1
jq
IROGRAM SAMM- ponds at overland
ROG SAMM
D-LOAD REQUIREMENTS FOR A 54 I . DIAMETER CIRCULAR PIPE
I P E D A T A
-------------------------------------------------------------------------------
DIAMETER (in.) 54.00
WALL B, THICKNESS (in.) 5.500
IN S T A L L A T I O N C O N D I T I O N S
PAGE 2
' MINIMUM DEPTH OF FILL (ft.) 1.00
MAXIMUM DEPTH OF FILL (ft.) 20.00
SOIL DENSITY (lb/cu. ft.) 135.0
BEDDING CLASS B
INSTALLATION TYPE TRENCH
TRENCH WIDTH (ft.) 8.00
SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650
' PARAMETERS TO COMPUTE TRANSITION WIDTH
POSITIVE PROJECTION RATIO 1.00
POSITIVE SETTLEMENT RATIO 0.50
SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650
SOIL LATERAL PRESSURE COEFICIENT 0.33
A D D I T I O N A L L 0 A D S
LIVE LOAD AASHTO HS-20
NO SURCHARGE LOAD
-A-C T O R S O F S A F E T Y
FACTOR OF
SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE)
1.00; 1.00
'
FACTOR OF
SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE
WITH ASTM C 76
DL.01
LESS THAN 2000 LBS/FT/FT
1.5
DL.01
GREATER THAN 3000 LBS/FT/FT
1.25
'
DL.01
BETWEEN 2000 AND 3000 LBS/FT/FT
INTERPOLATED
D
�ROGRAM SAMM- ponds at overland PAGE 3
E S U L T S O F A N A L Y S I S
--------------------------------------------------------------------------------
' PIPE ------EARTH LOAD----- LIVE SURCH TOTAL BED IREQUIRED D-LOAD
DEPTH ARCHING >TRANS LOAD LOAD LOAD LOAD FACT 0.01 in. ULT.
(ft.) FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft)
' 1.0 1.03 Y 754. 2147. 0. 2901. 5.00 129. 193.
2.0 1.06 Y 1555. 2359. 0. 3914. 5.00 174. 261.
1 3.0 1.10 Y 2407. 1581. 0. 3988. 4.19 212. 318.
4.0 1.13 Y 3312. 1119. L 0. 4431. 3.62 272. 408.
5.0 1.17 Y 4274. 840. �yk`7' 0. 5115. 3.33 341. 512.
6.0 1.21 Y 5297. 657. v+ 0. 5954. 3.15 420. 629.
7.0 1.25 Y 6383. 529. 0. 6913. 3.03 508. 761.
8.0 1.26 N 7359. 436. 0. 7796. 2.85 608. 912.
9.0 1.23 N 8120. 366. 0. 8486. 2.62 718. 1078.
10.0 1.21 N 8850. 312. 0. 9162. 2.47 825. 1237.
11.0 1.19 N 9550. 270. ,\y0. 9820. 2.36 923. 138.5.
12.0 1.16 N 10222. 235. 0. 10457. 2.33 998. 1497.
13.0 1.14 N 10867. 207. \}� 0. 11074. 2.30 1070. 1604.
'14.0 1.12 N 11486. 184.V" 0. 11670. 2.28 1139. 1708.
15.0 1.10 N 12080. 164. 0. 12244. 2.26 1205. 1808.
16.0 1.08 N 12650. 147. 0. 12797. 2.24 1270. 1906.
'17.0 1.06 N 13197. 133. 0. 13330. 2.22 1332. 1999.
18.0 1.04 N 13721. 121. S� 0. 13842. 2.21 1392. 2088.
19.0 1.02 N 14225. 110. 0. 14335. 2.20 1450. 2175.
20.0 1.01 N 14708. 101. 0. 14809. 2.18 1507. 2260.
I
C
i1
FROGRAM SAMM-.ponds at overland
PAGE 2
P/ Oi2 GRAM` SAMM
D-LOAD REQUIREMENTS FOR A 160 IN. DIAMETER CIRCULAR PIPE
********************************************************************************
-
I-P E D A T A
-------------------------------------------------------------
DIAMETER (in.) 60.00
WALL B, THICKNESS (in.) 6.000
tN S T A L L A T I O N C O N D I T I O N S
--------------------------------------------------------------------------------
' MINIMUM .DEPTH OF FILL (ft.) 1.00
MAXIMUM DEPTH OF FILL (ft.) 20.00
SOIL DENSITY (lb/cu. ft.) 135.0
BEDDING CLASS B
INSTALLATION TYPE TRENCH
TRENCH WIDTH (ft.) 10.00
SOIL LATERAL PRESSURE/FRICTION TERM (KMU') 0.1650
' PARAMETERS TO COMPUTE TRANSITION WIDTH
POSITIVE PROJECTION RATIO 1.00
POSITIVE SETTLEMENT RATIO 0.50
SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.1650
' SOIL LATERAL PRESSURE COEFICIENT 0.33
A D D I T I O N A L L 0 A D S
--------------------------------------------------------------- - - ----
LIVE LOAD AASHTO HS-20
NO SURCHARGE LOAD
A C T 0 --R S O F S A F E T Y
-
----
------------------
-- - - - - --
FACTOR OF
SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE)
1.00; 1.00
FACTOR OF
SAFETY ON ULTIMATE LOAD (EARTH,LIVE) IN ACCORDANCE
WITH ASTM C 76
'
DL.01
LESS THAN 2000 LBS/FT/FT
1.5
DL.01
GREATER THAN 3000 LBS/FT/FT
1.25
'
DL.01
BETWEEN 2000 AND 3000 LBS/FT/FT
INTERPOLATED
1 20
�ROGRAM SAMM- ponds at overland PAGE 3
It E S U L T S O F A N A L Y S I S �O
--------------------------------------------------------------------------------
' PIPE
------EARTH LOAD-----
LIVE
SURCH
TOTAL
BED
D-LOAD
DEPTH
ARCHING
>TRANS
LOAD
LOAD
LOAD
LOAD
FACT
(REQUIRED
0.01 in.
ULT.
(ft.)
FACTOR
(lb/ft)
(lb/ft)
(lb/ft)
(lb/ft)
(lb/ft/ft)
'
1.0
1.03
Y
833.
1989.
0.
2822.
5.00
113.
169.
2.0
1.06
Y
1712.
2253.
0.
3965.
5.00
158.
238.
'3.0
4.0
1.09
1.12
Y
Y
2642.
3624.
1680.
1194.
�`\
Y
0.
0.
4322.
4818.
4.48
3.79
193.
254.
290.
5.0
1.15
Y
4662.
899.
0.
5561.
381.
6.0
1.18
Y
5758.
705.
G
0.
6463.
3.45
3.25
322.
398.
483.
597.
7.0
1.22
Y
6916.
569.
0.
7485.
3.11
482.
723.
8.0
1.26
Y
8140.
470.
0.
8610.
3.00
573
860.
9.0
1.29
Y
9433.
395.
0.
9828.
2.92
673.
1010.
1
10.0
11.0
1.33
1.37
Y
Y
10799.
12242.
337.
292.
/��/
0
0..
11136.
2.85
781.
1171.
12534.
2.80
897.
1345.
12.0
1.38
N
13377.
255.
0.
13632.
2.69
1013.
1519.
13.0
1.36
N
14271.
224.
G
0.
14495.
2.62
1106.
1660.
14.0
1.33
N
15135.
199.
0.
15335.
2.58
1189.
1784.
15.0
1.31
N
15972.
178.
0.
16150.
2.54
1270.
1905.
�j
16942.
2.51
1351.
2027.
1
17.0
18.0
1.28
1.26
N
N
17565.
18323.
145.
132.E
C,'v
0.
0.
17710.-
2.48
1428.
2142.
19.0
1.24
�/
18454.
2.45
1504.
2256.
N
19056.
120.
0.
19176.
2.43
1577.
2366.
i
20.0
1.22
N
19765.
110.
0.
19876.
2.41
1648.
2472.
i
t_ J
i
1
111, ail , a fi,,
:' •.eta T,aCaM[43 •
TONGUE and GROOVE JOINT
VERTICAL ELLIPTICAL, V-E
' AREA OF REINFORCEMENT STEEL, NUMBER OF CAGES,
AND CONCRETE COMPRESSIVE STRENGTHS SHALL BE
1 IN CONFORMANCE WITH AST,M, SPECIFiuvoNS.
ASTM C- 507
\ RrwC[RRT
TONGUE and GROOVE JOINT
HORIZONTAL ELLIPTICAL, H-E
R Nf R M I
OR ELLIPTICAL CAGE
ALL DIMENSIONS ARE SUBJECT TO ALLOWABLE SPECIFICATION
1
1
1
1
1
NO SCALE.
SSTEEL REINFORC T SHOWN IS SCHEMATIC.
EQUIVALENT
ROUND
NOMINAL DIAMETER
ACTUAL DIAMETER
WALL
OUTER
DIAMETER
THICKNESS
RADIUS
ER
RADIUS
N
NGTN
INSIDE
PERT
END
AREA
APPROXIMATE
WEIGHT
MINOR
AJOR
MINOR AXIS
MAJOR AXIS
gC,
R.E. gC,
per
IRoIEs
roar
vacs
RCRes
wcHEs
ecxcs
I
R
NOMINAL
":-.:..
..:.:
.....
_
�
FECT
FEET
E4a4RE FEET
FOIaAlpS/ffNR
"8.8780
.6875
.�T.S': �.
5.0
24 AQL
1
30
19.1875
30. 1250
11.50
29.5000
7.5
6.7
3.3
300
;.
365625
:. 73.,...
.:
..
..
36 Q
29
45
28.8125
45.4375
4.50
" 16.8125
43.8750
7.5
10.0
7.4
625
42":�."'.34:0625
'53.3125•:
.,,
'S.00'':
.:-..
'i9.625p
-
48
38
60
38,3125
59 9375
550
21.9373
57.1250
7.5
13.2
12 9
1000
'.=54"
."•-43
°68 .., .
.: 48 4375' '
67.8750 `-
'6.00 `.''
. 24.6250`
64:3730•
60 la
48
76
I
48.1875
75.5000
6.50
27.1250
71.6250
7.5
16.7
20.5
1475
-::53
-:83 ,...
.:-53.0000'
':'-'$3.0625
.T.00':
--29:7500"
"78.5000
7.5
i. tea
72
58
91
57,8750
I 90.5625
7.50
32.3750
85.4375A520
:,248.
1.745`::
2pgp
78 .. ':''.`i6"63.
0000 :-�
980000 :
--8A034:9373
92.3750'
7
"" 235084
66
106
67.5625
105.5625
8.50
37,5000
99.3125
2660
9072.4375
'-
13.1250'"
' 9.00
:40.1260
t9.5
106.2300'
96
77
12177.2500
!
120.6250
9.50
42.6075
113.1250
3420
102=':82.
'`�28`'•
80000
126.0000.'.9.75
43.0625
u8:7300
$725 ''
114
87
136
67.0625
13S.5625
10.00
47.5000
926.2500
6.0
30,0
66.4
4050
" - 1 7 4 i=
..'92-
"143...
92.0000
N3.0000
"" .10.50
5060000
13311875
6.0
31.6
i74.0
4470
120
97
":I06
151
96.6875 I
150.'625
11.00
52.6250
140, 1250
6.0
3363
82.0
4930
- 132 `-.. "'
166:'--'
.. 106.0000"0000
12.00
57.8125
154.0000
6.0
36.7
' -99.2 -
5900"
144 116 ISO 116.0000 1 180.0000 13.00 63.0000 167.0750 6.0 40.0 118.6 7000
Q IRdi4ottF H.E. END SECTIONS available
$300 bounr boulevzra • v:eana, ti:r;;i.^.ia__:S2
© May 1967 (Revised)
owl
' GEGAft
_.
ORCret��
ipe
1
I
1
.1
LOADS AND SUPPORTING STRENGTHS
ELLIPTICAL AND ARCH PIPE
The hydraulic and structural characteristics of
elliptical and arch shapes offer advantages, under certain
conditions, over the circular shape commonly used for
sewer and culvert pipe.
For minimum cover conditions, or where vertical
clearance is limited by existing structures, horizontal
elliptical and arch pipe are particularly suitable since
the vertical heights are less than the height of hydrauli-
cally equivalent circular sizes. Horizontal elliptical and
arch pipe have greater flow capacity for the same depth
of flow than most other structures of equivalent full
capacity.
Vertical elliptical pipe, because of its narrower
span, requires less excavation for trench installations
and is subjected to less backfiil load. Because of the
greater height of section of vertical elliptical pipe, in -
FIGURE 1 TRENCH INSTALLATION
Original Ground
creased side support is realized in embankment installa-
tions and the fill load is also reduced because of the
smaller span. These structural characteristics make
vertical elliptical pipe particularly suitable where deep
trenches or high embankment fills are necessary. In
addition, the geometric properties of vertical elliptical
pipe make its use advantageous where horizontal clear-
ance is limited by existing structures. Hydraulically,
vertical elliptical pipe provides higher flushing velocities
under minimum flow conditions.
Horizontal and vertical elliptical pipe represent
two different products from the standpoint of structural
strength, hydraulics and type of application. Arch pipe
is similar to horizontal elliptical pipe in that the ratios
of vertical rise to horizontal span are approximately the
same for both shapes.
FIGURE 2 LOAD COEFFICIENT DIAGRAM
FOR TRENCH INSTALLATIONS
12 — --i
10 l—-
__ _ 2 =
¢ 6
I..
_._.., - ........
0
1 2 3 4 5
VALUES OF LOAD COEFFICIENT C.
.1
11
TABLE III THREE -EDGE BEARING TEST STRENGTHS
MINIMUM D-LOADS IN THREE- GE BEARING TEST
Pounds Per Linear Foot Per F of Inside Horizontal Span
Horizontal Elliptical
Arch
Vertical Elliptical
0.01" Crack
Do.oi
Ultimate
0.01" Crack
Ultimate
0.01" Crack
Ultimate
Dos.
Dox,
Doze.
Do.oi
Dick
600
900
1000
1500
1000
1500
ai HE -A
v7 II
a
VE-II
800
00
HE-1
1350
2000
VE-111
1350
2000
1000
1500
HE-11
,co IV
2000
3000
VE-IV
2000
3000
HE -III
1350
2000
c0
LO
0,-
i
VE-V
3000
3750
cm;
HE-IV
2000
I
3000
<
t VE-VI
4000
5000
Example 1: Horizontal Elliptical Pipe
Given: A 38-inch x 60-inch horizontal elliptical
pipe (equivalent 48-inch circular) with a
51h-inch wall thickness is to be installed in
a 7-foot wide trench and covered with 1.0
1 foot of sand and gravel backfill material
weighing 110 pounds per cubic foot.
The required pipe strength in terms of the
0.01-inch crack D-load.
1. Determination of Earth Load (WE)
For trench installations involving shallow
cover the load should be computed by both
the trench equation and the embankment
equation and the lesser value used. The
trench backfill load is given by equation (1).
Wd=CdwBd2
From Figure 2, for H/Bd = 0.14 and sand
and gravel backfill, the load coefficient
Cd = 0.14.
Wd = 0.14 x 110 x (7)2
Wd = 755 pounds per linear foot
The embankment fill load is given by equa-
tion (2).
WN=C,WB"-o
In evaluating the embankment fill load a
settlement ratio rad, and projection ratio p,
must first be assumed. Based on an rd
value of 0.7 and p value of 0.7, the product
rsdp = 0.49.
From Figure 4, for H/Bo = 0.17 and rsdp =
0.49, the load coefficient C, = 0.17.
Wo = 0.17 x 110 x (5.92)2
W� = 652 pounds per linear foot
Since Wo is less than Wd, the trench width
does not affect the load and the load is a
maximum of 652 pounds per linear foot
2. Determination of Live Load (WL)
From Design Data 32: HIGHWAY LIVE LOADS
ON CONCRETE ELLIPTICAL PIPE for H = 1.0
foot. Bo= 5.92 feet, a single 16,000 pound dual
wheel load on an unsurfaced roadway. 30 percent
impact, the live load is 2,610 pounds per linear
foot.
3. Selection of Bedding
A Class C bedding will be assumed.
4. Determination of Bedding Factor (Bf)
From Figure 6, for horizontal elliptical pipe
installed on a Class C bedding the bedding
factor is 1.5.
5. Application of Factor of Safety (F.S.)
A factor of safety of 1.0 based on the 0.01-
inch crack will be applied.
6. Selection of Pipe
The D-load is given by equation (7).
D-load = WL - WE x F.S.
Bf x S
2,610 - 652
D0.01= 1.5x5.0 x 1.0
Answer: D0.01 = 435 pounds per linear foot
per foot of inside. hori-
zontal span.
From Table III, the minimum 0.1-inch crack D-ioad
for an ASTM C507 Class HE -I pipe is 800. Therefore, a
Class HE-] pipe would be more than adequate.
9
BFRAM SAMM- Ponds at Overland � / PAGE 2 _
'PROGRAM SAMM
D-LOAD REQUIREMENTS FOR A 30 IN. SPAN HORIZONTAL ELLIPTICAL PIPE
P E D A T A
--------------------------------------------------------------
SPAN (in.) 30.00�
RISE (in.) 19.00✓
' WALL THICKNESS (in.) 3.250 ✓
N S T A L L A T I O N C O N D I T I O N S
-------------------------------- -----
MINIMUM DEPTH OF FILL (ft.) � 2.00-/
MAXIMUM DEPTH OF FILL (ft.) 5.00
SOIL DENSITY (lb/cu. ft.) 135.0✓
' BEDDING CLASS BIO?4EN13
INSTALLATION TYPE POSITIVE PROJECTING EMBAN
POSITIVE PROJECTION RATIO MENT v
' POSITIVE SETTLEMENT RATIO
SOIL LATERAL PRESSURE/FRICTION TERM (KMU) 0.0.7070
SOIL LATERAL PRESSURE COEFICIENT 0.20
:ID I T I O N -----
A L L 0 A D S
---------------
--------
LIVE LOAD AASHTO HS-20 OR AASHTO INTERSTATE
,NO SURCHARGE LOAD
A C T O R S O F S A F E T Y
----------------------------------
---------------------------------------------
FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH, LIVE) 1•.00; 1.00
FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH, LIVE) IN ACCORDANCE WITH ASTM C 76
DL.01 LESS THAN 2000 LBS/FT/FT 1.5
' DL.01 GREATER THAN 3000 LBS/FT/FT 1.25
DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT INTERPOLATED
F S U L T S O F A N A L Y S I S
..1----------------------------------------------------------------------------
'IPE ------EARTH LOAD----- LIVE SURCH TOTAL BED REQUIRED D-LOAD
)I. ARCHING LOAD LOAD LOAD LOAD FACT 10.01 in. ULT.
:i FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft)
t0 1.14 935. 2256. 0. 3190. 2.19872._�
.0 1.22 1498. 1168. 0. 2666. 488. 732.
o 1.30 2138. 804. 0. 2. 2.18 540. 8
S.0 1.33 2726. 625. 3350. 2.18 616.
t
1 I 1
' lvtti�� �/.jn�f�'✓1
I
rROGRAM SAMM- ponds at overland
J
PAGE 2
PROGRAM SAMM
D-LOAD REQUIREMENTS FOR A 45 IN. SPAN HORIZONTAL ELLIPTICAL PIPE
********************************************************************************
I
P E D A T A
-------------------------------------------------------------
SPAN (in.)
45.00
RISE (in.)
29.00
WALL THICKNESS (in.)
4.500
I N
S T A L L A T I O N C O N D I T I O N S
'
---------------------------------------------------------------------
MINIMUM DEPTH OF FILL (ft.)
1.00
MAXIMUM DEPTH OF FILL (ft.)
20.00
SOIL DENSITY (lb/cu. ft.)
135.0
'
BEDDING CLASS
B
INSTALLATION TYPE
TRENCH
TRENCH WIDTH (ft.)
8.00
SOIL LATERAL PRESSURE/FRICTION TERM (KMU')
0.1650
'
PARAMETERS TO COMPUTE TRANSITION WIDTH
POSITIVE PROJECTION RATIO
0.50
POSITIVE SETTLEMENT RATIO
0.50
SOIL LATERAL PRESSURE/FRICTION TERM (KMU)
0.1650
SOIL LATERAL PRESSURE COEFICIENT
0.33
DDI
- -
-T I 0 N A L L 0 A D S
-
-------------------------------------
LIVE LOAD
------------
AASHTO HS-20
NO SURCHARGE LOAD
A
C T
--------------------------------------------------------------------------------
O R S O F S A F E T Y
FACTOR OF SAFETY ON 0.01 INCH CRACK D-LOAD (EARTH,LIVE)
1.00; 1.00
'
FACTOR OF SAFETY ON ULTIMATE LOAD (EARTH,LIVE) IN ACCORDANCE
WITH ASTM C 76
DL.01 LESS THAN 2000 LBS/FT/FT
1.5
'
DL,01 GREATER THAN 3000 LBS/FT/FT
DL.01 BETWEEN 2000 AND 3000 LBS/FT/FT
1.25
INTERPOLATED
�ROGRAM SAMM- ponds at overland PAGE 3
�2 E S U L T S O F A N A L Y S I S
--------------------------------------------------------------------------------
' PIPE ------EARTH LOAD----- LIVE SURCH TOTAL BED (REQUIRED D-LOAD
DEPTH ARCHING >TRANS LOAD LOAD LOAD LOAD FACT 0.01 in. ULT.
(ft.) FACTOR (lb/ft) (lb/ft) (lb/ft) (lb/ft) (lb/ft/ft)
1.0 1.04 Y 630. 3088. 0. 3718. 2.27r78
6- 6
2.0 1.08 Y 1309. 2882. 0. 4190. 2.27 737.
'3.0 1.12 Y 2039. 1571. -f 0. 3609. 2.25 642.
4.0 1.16 Y 2824. 1093. �- Y 0. 3917. 2.24 701.
5.0 1.21 Y 3669. 809. 0. 4478. 2.23 804.
6.0 1.25 Y 4563. 625. 0. 5188. 2.22 934.
'7.0 1.26 Y 5348. 499. 0. 5846. 2.221054.
8.0 1.26 Y 6129. 408. 0. 6536. 2.221179.
9.0 1.26 Y 6914. 340.-11 0. 7254. 2.221309.
10.0 1.27 Y 7694. 287.�`' 0. 7982. 2.221441.
11.0 1.27 Y 8474. 247. 0. 8721. 2.21 1050. 1575.
12.0 1.27 Y 9254. 214. 0. 9468. 2.2 1140. 1711.
13.0 1.27 Y 10034. 187. 0. 10221. 2.2 1231. 1847.
t14.0 1.27 Y 10814. 166.� 0. 10979. 2.2 1323. 1984.
15.0 1.27 Y 11593. 147. 0. 11741. 2.2 1415. 2122.
16.0 1.27 Y 12373. 132. 0. 12505. 2.2 1507. 2261.
'17.0 1.27 Y 13153. 119. 0. 13272. 2. 1 1600. 2400. 18.0 1.25 N 13721. 108. 0. 13829. 2. 0 1675. 2512.
19.0 1.23 N 14225. 98. 0. 14323. 2. 9 1744•. 2616.
20.0 1.21 N 14708. 90. 0. 14798. 2. 8 1810. 2715.
11
INLET
AND UDSEWER
CALCULATIONS
h
%0INC.
Engineering Consultants
A division of The Sear -Brown Group
!
1
!
CLIENT �i' i "�V A-L '�--' LI���rY1 JOB NO.
PROJECT - /ctS CALCULATIONS FOR LC �- ` %'•a�T,�)
I u
MADE BY,; DATE DATE I'1;.'I,r CHECKED BY- DATE SHEET OF
T-
-
Lr
�c_o.tS i
t�
7'a
S �
1 L(l�'Ze
1.0
�� Li
-----------------------------------------
REPORT OF STORM SEWER SYSTEM DESIGN
' USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
------------------------------------------------------------------------------
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .....................................
ON DATA 09-12-1996 AT TIME 13:05:29
*** PROJECT TITLE :
Inlet #41 & #40 to Pond 395
' *** RETURN PERIOD OF FLOOD IS 2 YEARS
IRAINFALL INTENSITY FORMULA IS GIVEN
I*** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS
----------------------------------------------------------------------
TIME
OF CONCENTRATION
MANHOLE
BASIN
OVERLAND
GUTTER
BASIN
RAIN I
PEAK FLOW
ID NUMBER
----------------------------------------------------------------------
AREA * C
To (MIN)
Tf (MIN)
TC (MIN)
INCH/HR
CFS
3.00
0.10
0.00
0.00
10.00
3.79
0.38
2.00
1.00
0.10
0.10
0.00
0.00
0.00
0.00
10.00
10.00
3.79
3.79
0.38
0.38
4.00
0.05
0.00
0.00
5.00
5.00
0.25
ITHE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES
FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES
FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES
AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES
WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED
WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS
1 *** SUMMARY OF HYDRAULICS AT MANHOLES
------------------------------------------
MANHOLE
CNTRBTING
RAINFALL
RAINFALL
7------------------------------------
DESIGN
GROUND
WATER
COMMENTS
ID NUMBER
AREA * C
DURATION
INTENSITY
PEAK FLOW
ELEVATION
ELEVATION
MINUTES
INCH/HR
CFS
FEET
FEET
-------------------------------------------------------------------------------
3.00
0.00
10.00
0.00
0.25
5119.50
18.92
OK
2.00
0.00
10.18
0.00
22.95
5119.50
18.09
OK
1.00
0.00
0.00
0.00
22.95
5119.00
16.75
OK
4.00
0.05
5.00
5.00
0.25
19.50
18.92
OK
OK MEANS WATER ELEVATION
IS LOWER THAN GROUND ELEVATION
' *** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 1
SEWER
MANHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
--------------ID-
NO* -
ID NO.
------------------
--(IN)-(FT)
(IN) (FT)
-----------------------------
(IN) (FT)
(FT)
1.00
2.00
1.00
ROUND
23.67
/24.00
0.00
0.00
2.00
3.00
3.00
2.00
ROUND
5.09
✓ 5.00
0.00
0.00
4.00
3.00
ROUND
5.05
✓15.00
0.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE WAS USED
'
----------------------------------------------------------------------------
SEWER
DESIGN
FLOW
NORMAL
NORAML
CRITIC
CRITIC
FULL
FROUDE
COMMENT
ID
FLOW Q
FULL Q
DEPTH
VLCITY
DEPTH
VLCITY
VLCITY
NO.
--
NUMBER
------------------------------------------------------------------------
CFS
CFS
FEET
FPS
FEET
FPS
FPS
1.0
23.0
23.9
1.57
8.66
1.69
0.09
7.31
1.20
V-OK
2.0
0.3
4.5
0.20
1.97
0.22
155.82
0.20
0.93
V-LOW
3.0
0.3
4.6
0.20
2.00
0.22
155.82
0.20
0.95
V-LOW
IFROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
----------------------------------------------------------------------
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
(FT)
(FT)
(FT)
(FT)
----------------------------------------------------------------------
�'
1.00
1.11
16.40
16.00
5101.10
5101.00
OK
2.00
0.48
17.25
17.15
5101.00
5101.10
OK
3.00
0.50
17.26
17.26
0.99
5100.99
NO.0--
OK
MEANS BURIED
DEPTH
IS GREATER THAN REQUIRED SOIL
COVER OF
1.5 FEET
' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
r
-------------------------------------------------------------------------------
ct
'SEWER
ID NUMBER
SEWER SURCHARGED
LENGTH
LENGTH
CROWN ELEVATION
UPSTREAM DNSTREAM
WATER ELEVATION
UPSTREAM DNSTREAM
FLOW
CONDITION
FEET
FEET
FEET
FEET
FEET
FEET
---------------------------------------------------------------------
1.00
2.00
36.00
0.00
18.40
18.00
18.09
16.75
JUMP
21.00
21.00
18.50
18.40
18.92
18.09
PRSS'ED
3.00
0.10
0.10
18.51
18.51
18.92
18.92
PRSS'ED
rPRSS'ED=PRESSURED
FLOW;
JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
I*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
UPST MANHOLE
SEWER.
JUNCTURE LOSSES DOWNST
MANHOLE
SEWER MANHOLE ENERGY
FRCTION BEND
BEND LATERAL LATERAL MANHOLE
ENERGY
'
ID NO ID NO. ELEV FT------FT--K-COEF
-- --------
LOSS FT K COEF LOSS FT ID -
-------- -------- -------
---FT
-- -
1.0 2.00 18.92
1.34 1.00
0.83 0.00 0.00 1.00
16.75
2.0 3.00 18.92
0.00 0.05
0.00 0.00 0.00 2.00
18.92
'
3.0 4.00 18.92
0.00 0.25
0.00 0.00 0.00 3.00
18.92
BEND LOSS =BEND K* FLOWING FULL VHEAD
IN SEWER.
LATERAL LOSS= OUTFLOW
FRICTION LOSS=O MEANS
FULL VHEAD-JCT
IT IS NEGLIGIBLE
LOSS K*INFLOW FULL VHEAD
OR POSSIBLE ERROR DUE TO
FRICTION LOSS INCLUDES
JUMP.
SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES
THE VELOCITY HEAD OF FULL FLOW CONDITION.
.A MINIMUM JUCTION
LOSS OF 0.05
FT WOULD BE INTRODUCED UNLESS
LATERAL K
FRICTION LOSS
WAS ESTIMATED BY
BACKWATER CURVE COMPUTATIONS.
I
I
CLIENT — 1N'�C_�✓� Ftnrl'. [, Avg JOB NO.
RWINC. PROJECT —7 kA S CALCULATIONS FOR -
' Engineering Consultants MADEBY��DATE D'12-&ECKED BY DATE SHEET-1 OF
A division of The S,a -Brown Group -
ZC) C �S C Iva i d rn
c lip v�Si
G
MAC
do -
1
Cam,,: i521a, �u9
y �GiS
i
I I
I I _
'To F i-J 31 } I .. c-V)
�1rr&A''�,v
ntd i:e
`✓4
r ikA� �.
,h,�•� �� D� It
C�IiC' q
3
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
' *** EXECUTED BY DENVER CITY/COUNTY USE ONLY .....................................
ON DATA 10-11-1996 AT TIME 08:39:51
*** PROJECT TITLE :
' *** RETURN PERIOD OF FLOOD IS 100 YEARS
RAINFALL INTENSITY FORMULA IS GIVEN
I*** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS
----------------------------------------------------------------------
'TIME OF CONCENTRATION
MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW
ID NUMBER AREA * C To (MIN). Tf (MIN) TC (MIN) INCH/HR CFS
----------------------------------------------------------------------
1.00 .0 .00/ XO
� 0.0 X
.04
2.00 O 1 0.0 1. 0.0
3.00 0. 1 0. 10 0 0. 4
' 4.00 0 0 0 0 10. 0 0.
5.00 0.02 .0 .0 101 .2
THE SHORTEST DESIGN RAINF L DURATION IS FIVE MINUTES
FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES
FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES
AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES
WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED
WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS
*** SUMMARY OF HYDRAULICS AT MANHOLES
--------------------------------------------------------------------------
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR -----CFS------FEET------FEET--------
----------------------------------------- --
1.00 0.00 0.00 0.00 53.00 17.50 15.25 OK
2.00 0.00 10.30 0.00 53.00 20.85 21.54 NO
I
r
44
3.00
0.00
10.18
0.00
35.80
21.66
22.52
NO
4.00
0.00
10.00
0.00
20.29
21.21
23.31
NO
5.00
0.02
5.00
1014.50
20.29
23.58
24.04
NO
OK
MEANS WATER ELEVATION
IS LOWER THAN GROUND ELEVATION
***
SUMMARY
OF SEWER
HYDRAULICS
NOTE:
THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
r-------------------------------------------------------------------------------
SEWER
MAMHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID
NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
NO.
ID NO.
(IN) (FT)
(IN) (FT)
(FT)
--------------ID
12.00
--------------
2.00
1.00
------(IN)-(FT)
ROUND
36.35
-----------------------------
42.00
30.00
0.00
23.00
3.00
2.00
ROUND
28.30
30.00
30.00
0.00
r
34.00
4.00
3.00
ROUND
22.88
24.00
30.00
0.00
45.00
5.00
4.00
ARCH
22.45
24.00
19.00
30.00
rDIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
'REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
' EXISTTNG SIZE WAS USED
--
--------
SEWER
--------
DESIGN
------------------------------
FLOW
NORMAL
NORAML
------------
CRITIC
CRITIC
---------------
FULL
FROUDE
----
COMMENT
ID
FLOW Q
FULL Q
DEPTH
VLCITY
DEPTH
VLCITY
VLCITY
NO.
NUMBER
CFS
CFS
FEET
FPS
FEET
FPS
FPS
-------------------------------------------------------------------------
12.0
53.0
31.9
2.50
10.80
2.30
11.23
10.80
0.00
V-OK
23.0
35.8
41.9
1.78
9.60
2.03
12.44
7.29
1.32
V-OK
34.0
20.3
41.9
1.23
8.47
1.52
11.42
4.13
1.53
V-OK
45.0
20.3
25.7
1.37
8.70
1.61
7.32
6.20
1.39
V-OK
r
FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
'----------------------------------------------------------------------
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
o
(FT)
(FT)
--------------------
12.00
0.60
------(FT)------(FT)
18.35
----------------------------------
17.29
0.00
-2.29
NO
23.00
1.04
18.56
17.87
0.00
0.48
NO
34.00
1.04
17.71
16.75
1.00
1.81
NO
45.00
1.15
20.79
19.13
1.21
0.50
NO
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
1
--------------------------------------------------=----------------------------
' SEWER 'SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET FEET FEET FEET FEET FEET
-------------------------------------------------------------------------------
r
12.00
177.00
177.00
20.85
19.79
21.54
15.25
PRSS'ED
23.00
66.00
66.00
21.06
20.37
22.52
21.54
PRSS'ED
34.00
92.00
92.00
20.21
19.25
23.31
22.52
PRSS'ED
45.00
144.00
144.00
22.37
20.71
24.04
23.31
PRSS'ED
' PRSS'ED=PRESSURED
FLOW;
JUMP=POSSIBLE HYDRAULIC JUMP;
SUBCR=SUBCRITICAL
FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
UPST MANHOLE
SEWER
JUNCTURE LOSSES DOWNST
MANHOLE
MANHOLE ENERGY
FRCTION BEND
BEND LATERAL LATERAL MANHOLE
ENERGY
ID NO ID NO. ELEV FT
FT K COEF
LOSS FT K COEF LOSS- FT-----ID------FT-
--SEWER
--------------------------------------------------------
12.0 2.00 22.35
9.29 1.00
1.81 0.00 0.00 1.00
15.25
23.0 3.00 24.34
0.50 0.60
0.50 0.00 0.00 2.00
22.35
'
34.0 4.00 25.58
0.22 0.05
0.01 0.00 0.00 3.00
24.34
45.0 5.00 26.64
1.03 0.05
0.03 0.00 0.00 4.00
25.58
'BEND
LOSS =BEND K* FLOWING FULL VHEAD
IN SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT
LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS
IT IS NEGLIGIBLE
OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES
SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES
THE VELOCITY HEAD OF FULL FLOW CONDITION.
A. MINIMUM JUCTION LOSS OF 0.05
FT WOULD BE INTRODUCED UNLESS
LATERAL K
FRICTION LOSS
WAS ESTIMATED BY
BACKWATER CURVE COMPUTATIONS.
1
1
CLIENT. `{k —Ir k1f �'1kV` JOBNO. fi5q-0
TMINC. PROJE(T,, "�nnh��GN,CA S CALCULATIONS FOR b l CI cr: i_IX
Engineering Consultants MADE BY cL'DATE Ly ECKEDBY DATE SHEET 1 OF
A division of The Stu -Brown Group
SC)
-r�,� C1' v•2�
L=oa/
"izca
i
Zw"(MCP
�5 W
n�r
I�
--------------------------------_____________
' REPORT OF STORM SEWER SYSTEM DESIGN
' USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
' DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
---DENVER, COLORADO
------------------------------------------------------------------------------
*** EXECUTED'BY DENVER CITY/COUNTY USE ONLY .....................................
ON DATA 10-11-1996 AT TIME 12:19:04
' *** PROJECT TITLE
design point 50
' *** RETURN PERIOD OF FLOOD IS 2 YEARS
1 RAINFALL INTENSITY FORMULA IS GIVEN
*** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS
----------------------------------------------------------------------
TIME OF CONCENTRATION
MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW
ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS ,
-----------------------------------------------------------------------
1.00 0.1 X
.0 1 .0 9 0.3
' 2.00 1 0 1. 0 3 9 0
3.00 0. 0 0 0 10 00 3.79 0 8
4.00 0. 0 0 0 0 11 1 .8
5.00 0 1 0.0 2; .9 .5 .2
' THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES
FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES
FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES
AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES
WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED
WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS
I*** SUMMARY OF HYDRAULICS AT MANHOLES
-------------------------------------------------------------------------------
CNTRBTING
RAINFALL
RAINFALL
DESIGN
GROUND
WATER
COMMENTS
'MANHOLE
ID NUMBER
AREA * C
DURATION
INTENSITY
PEAK FLOW
ELEVATION
ELEVATION
MINUTES
INCH/HR
CFS
FEET
FEET
'------------------------------------------------------------------------------
1.00
0.00
0.00
0.00
12.07
16.00
13.50
OK
2.00
0.00
24.11
0.00
12.07
19.50
17.64
OK
3.00
0.00
23.93
0.00
0.25
19.50
17.64
OK
i
4.00
0.10
5.00
118.20
11.82
19.60
17.76
OK
5.00
0.10
23.93
2.50
0.25
19.50
17.69
OK
OK
MEANS WATER ELEVATION
IS LOWER
THAN GROUND ELEVATION
***
SUMMARY
OF SEWER
HYDRAULICS
NOTE:
THE GIVEN
FLOW DEPTH -TO -SEWER SIZE RATIO= .8
SEWER
MAMHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID
NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
'
----ID-
NO*
----ID-NO_----
------(IN)-(FT)
---- -----
(IN) (FT)
-----
(IN) (FT)
----- ----- ---------
(FT)
21.00
2.00
1.00
ROUND
14.03
15.00
24.00
0.00
32.00
3.00
2.00
ROUND
5.09
15.00
15.00
0.00
42.00
4.00
2.00
ROUND
21.43
24.00
24.00
0.00
'
53.00
5.00
3.00
ROUND
5.05
15.00
15.00
0.00
'DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
'SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE WAS USED
SEWER
DESIGN FLOW
NORMAL
NORAML
CRITIC
CRITIC
FULL
FROUDE COMMENT '
'ID
FLOW Q FULL Q
DEPTH
VLCITY
DEPTH
VLCITY VLCITY
NO.
NUMBER
-------------------------------------------------------------------------------
CFS CES
FEET
FPS
FEET
FPS
FPS
21.0
12.1 50.7
0.66
13.23
1.24
5.88
3.84
3.35 V-OK
'
32.0
0.3 4.5
0.20
1.97
0.22
81.95
0.20
0.93 V-LOW
42.0
11.8 16.0
1..28
5.58
1.23
0.12
3.76
0.94 V-OK
53.0
0.3 4.6
0.20
2.00
0.22
80.25
0.20
0.95 V-LOW
'
FROUDE NUMBER=0
INDICATES
THAT A
PRESSURED FLOW OCCURS
SEWER
SLOPE INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM DNSTREAM
UPSTREAM
DNSTREAM
(FT)
(FT)
(FT)
(FT)
-----------------------------
----------
----------
--------------------
c
21.00
5.00
16.40
13.00
1.10
1.00
NO--FC-''�+
32.00
0.48
17.26
17.16
0.99
1.09
NO
42.00
0.50
16.50
16.50
1.10
1.00
NO � 151(-7
'
53.00
0.50
17.35
17.35
0.90
0.90
NO C 4t�'>' s
/;fo
4c iL S(.,% .cw'
OK MEANS BURIED DEPTH IS
GREATER
THAN REQUIRED SOIL
COVER OF
2
FEET 3wria,L
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER SEWER
SURCHARGED
CROWN ELEVATION
WATER ELEVATION FLOW
ID NUMBER LENGTH
FEET '---------------------FEET------FEET------FEET------FEET
LENGTH
UPSTREAM DNSTREAM
UPSTREAM DNSTREAM CONDITION
FEET
21.00 68.00
0.00
18.40 15.00
------
17.64 13.50 JUMP
32.00 21.00 0.00 18.51 18.41 17.64 17.64 JCR
' 42.00 0.10 0.00 18.50 18.50 17.76 17.64 SUBCR
53.00 0.10 0.00 18.60 18.60 .17.69 17.64 SUBCR
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
1 -------------------------------------------------------------------------------
UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE
--SEWER- - ------MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY
ID NO ID NO. ELEVFTFT- K COEF LOSS FT K COEF LOSS FT----- ------ IDFT-
-------------------------------
21.0 2.00 17.87 4.14 1.00 0.23 0.00 0.00 1.00 13.50
' 32.0 3.00 17.64 0.00 1.00 0.00 0.00 0.00 2.00 17.87
42.0 4.00 17.98 0.05 0.25 0.05 0.00 0.00 2.00 17.87
53.0 5.00 17.69 0.05 0.25 0.00 0.00 0.00 3.00 17.64
' BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
'FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K
' FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
[1
11
1
1
1
1
1
1
1
INC.
Engineering Consultants
A division of The Star Brown Group
0%
CLIENT /I '�' NI J JOBNO.T¢l C I I
PROJEC// CALCULATIONS FOR I z L� i_ '(
MADE BY (L DATE l�" 5Lo CHECKED BY -DATE SHEET L OF
d tc_-� 0�iµ2VAt-lr
�c7x,d bw�l.�pl.l
FA
?� oc� L—?
le?''(30,i304-)
,t
_' o � �"__--- Ei(�tiit5,,5>7 I �I i"v S � �li�oL� :'�-•,
IZS LF
4
I
REPORT OF STORM SEWER SYSTEM DESIGN
1 USING UDSEWER-MODEL VERSION 4
DEVELOPED
1 BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
1 IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
1 *** EXECUTED BY DENVER CITY/COUNTY USE ONLY .....................................
ON DATA 09-12-1996 AT TIME 13:45:50
*** PROJECT TITLE :
1 Pond 396 outfall to the clearview channel
1
*** RETURN
PERIOD OF
FLOOD IS
100 YEARS
RAINFALL INTENSITY FORMULA
IS GIVEN
*** SUMMARY OF SUBBASIN RUNOFF
PREDICTIONS
----------------------------
-----------------------
TIME OF CONCENTRATION
MANHOLE
BASIN
OVERLAND
GUTTER
BASIN
RAIN I
PEAK FLOW
ID NUMBER
----------------------------------------------------------------------
AREA * C
To (MIN).
Tf (MIN) Tc
(MIN)
INCH/HR
CFS
1
1.00
0.50
0.00
0.00
0.00
4.75
2.37
2.00
0.50
0.00
0.00
0.00
4.75
2.37
3.00
0.50
0.00
0.00
0.00
4.75
2.37
1
4.00
0.00
0.00
0.00
0.00
0.00
14.10
THE SHORTEST DESIGN RAINFALL DURATION IS FIVE
MINUTES
1 FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES
FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES
AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES
WHEN WEIGHTED RUNOFF COEFF=>..2 , THE BASIN IS CONSIDERED TO BE URBANIZED
WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS
i
*** SUMMARY OF HYDRAULICS AT MANHOLES
11
-------------------------------------------------------------------------------
1 MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
----------------------------------------------------- 7-------------------------
i
1.00
0.00 0.00
0.00
14.10. 11.50
6.56
OK
2.00
0.00 5.13
0.00
14.10 12.60
8.66
OK
'
3.00
0.00 0.00
0.00
14.10 12.00
9.41
OK
4.00
0.00 0.00
0.00
14.10 12.00
9.23
OK
t***
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
SUMMARY
OF SEWER HYDRAULICS
'
NOTE:
THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 8
-------------------------------------------------------------------------------
SEWER
ID NUMBER
MAMHOLE NUMBER
UPSTREAM DNSTREAM
SEWER
SHAPE
REQUIRED SUGGESTED EXISTING
DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH
-----------------------------------------------------------------=-------------
ID NO. ID NO.
(IN) (FT) (IN) (FT) (IN)
(FT)
(FT)
'
1.00
2.00 1.00
ROUND
23.87 27.00
0.00
0.00
2.00
3.00 2.00
ROUND
55.85 60.00
0.00
0.00
3.00
4.00 3.00
ROUND
22.89 24.00
0.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER
ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE
IN FEET
'REQUIRED
DIAMETER WAS DETERMINED
BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER
WAS DETERMINED
BY COMMERCIALLY 'AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED
BY THE
SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE
----------------------------------------------------------------------------
WAS USED
SEWER DESIGN FLOW NORMAL
NORAML
CRITIC CRITIC FULL
FROUDE
COMMENT
ID FLOW Q FULL Q DEPTH
VLCITY
DEPTH VLCITY VLCITY
NO.
--NUMBER
- ------------------------------------------------------------------------
CFS CFS FEET
FPS
FEET FPS FPS
1.0
14.1 19.6 1.41
5.37
1.30 5.90 3.55
0.86
V-OK
2.0
14.1 17.1 3.46
0.97
1.12 4.27 0.72
0.10
V-LOW
'
3.0
14.1 16.0 1.45
5.76
1.35 6.25 4.49
0.87
V-OK
FROUDE NUMBER=O
INDICATES THAT A
PRESSURED
FLOW OCCURS
----------------------------------------------------------------------
SEWER
SLOPE INVERT ELEVATION
BURIED DEPTH COMMENTS
ID NUMBER
UPSTREAM DNSTREAM
UPSTREAM DNSTREAM
------------------------------
(FT)------(FT)------(FT)
(FT)
1.00
0.40 7.05
6.55
--------------------
3.30 2.7b OK
2.00
0.43 5.50
4.21
1.50 3.39
NO
'
3.00
0.50 8.60
8.60
1.40 1.40
NO
OK MEANS BURIED
DEPTH IS GREATER
THAN REQUIRED
SOIL COVER OF 2
FEET
'
*** SUMMARY
OF HYDRAULIC GRADIENT
LINE ALONG
SEWERS
--- ----------------------------------------------------------------------------
SEWER
SEWER SURCHARGED
CROWN ELEVATION WATER ELEVATION
FLOW
ID NUMBER
LENGTH LENGTH UPSTREAM
DNSTREAM UPSTREAM DNSTREAM CONDITION
'
-------------------------
FEET FEET
FEET
FEET
1.00
12.5.00 0.00
-FEET------FEET
9.30
- -----------------------------
8.80 8.66
6.56
SUBCR
2.00
3.00
300.00 0.00
0.10 0.00
10.50
10.60
9.21 9.41
10.60 9.23
8.66
9.41
SUBCR
SUBCR
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
t
I c-�
' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
---------------------------------------------------------------------------
'UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY
ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT
1.0 2.00 8.85 2.10 1.00 0.20 0.00 0.00 1.00 6.56
2.0 3.00 9.42 0.57 0.05 0.00 0.00 0.00 2.00 8.85
'3.0 4.00 9.55 0.05 0.25 0.08 0.00 0.00 3.00 9.42
BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
't. NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
1
1
1
1
1
CLIENT �k i'��- -JOB NO.
INC. PROJECT TI-2h JS A'f� qD� 16_fd4 -j+ CALCULATIONS FOR �� bFI x iE1�
Engineering Consultants MADE Bvzji_ DATECL -CHECKED BY DATE SHEETOF
A division of The Sear -Brown Croup
,V '" {
=0 z< i�•� jJ
At
-----________________
r REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 4
DEVELOPED
' BY
DAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .....................................
ON DATA 09-12-1996 AT TIME 13:58:21
*** PROJECT TITLE Pond 399 to clearview channel
' *** RETURN PERIOD OF FLOOD IS 100 YEARS
RAINFALL INTENSITY FORMULA IS GIVEN
*** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS
1-------------------- ------------------------------------------
TIME OF CONCENTRATION
MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW
-ID-NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS
------ ----- --------------- ---------- ---------- --------------------
1.00 0.25 0.00 0.00 0.00 4.75 1.19
' 2.00 0.25 0.00 0.00 0.00 4.75 1.19
3.00 0.25 0.00 0.00 5.00 24.00 6.00
' THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES
FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES
'FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES
AT THE 1ST DESIGN POINT, TC <=(IO+TOTAL LENGTH/180) IN MINUTES
WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED
WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS
r*** SUMMARY OF HYDRAULICS AT MANHOLES
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA
* C
DURATION
INTENSITY PEAK
FLOW
ELEVATION
ELEVATION
-----------------------------------------------------------
�
MINUTES
INCH/HR
CFS
FEET------FEET--
1.00
0.00
0.00
0.00
6.00
10.50
--------
6.56 OK
2.00
0.00
5.00
0.00
6.00
12.00
9.94 OK
3.00
0.25
5.00
24.00
6.00
12.00
10.04 OK
OK MEANS WATER ELEVATION
IS LOWER THAN GROUND
ELEVATION
*** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER .SIZE RATIO= .8
r
SEWER
MAMHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
ID NO.
ID NO.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
'
-------------------------------------------------------------------------------
1.00
2.00
1.00
ROUND
14.54
18.00
0.00
0.00
2.00
3.00
2.00
ROUND
16.62
18.00
0.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE WAS USED
-------------------------------------------------------------------------------
SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT
ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO.
NUMBER CFS CFS FEET FPS FEET FPS FPS
-------------------------------------------------------------------------------
' 1.0 6.0 10.6 0.81 6.20 0.94 5.13 3.40 1.36 V-OK
2.0 6.0 7.4 1.02 4.69 0.94 5.13 3.40 0.86 V-OK
FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
----------------------------------------------------------------------
SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS
ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM
°s (FT) (FT) (FT) (FT)
----------- -----------------------------------------------------------
1.00 1.02 9.00 7.30 1.50 1.70 NO
2.00 0.50 9.05 9.05 1.45 1.45 NO
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
---------------------------------------
--------------------------
SEWER ----- SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET
------FEET
------FEET
------FEET
------FEET
------FEET
---------
1.00 167.00 17.55 10.50 8.80 9.94 6.56 JUMP
2.00 0.10 0.00 10.55 10.55 10.04 9.94 SUBCR
lPRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
'UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY
ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT
-----------------------------------------------------------------------
1.0 2.00 10.12 3.38 1.00 0.18 0.00 0.00 1.00 6.56
2.0 3.00 10.22 - 0.05 0.25 0.04 0.00 0.00 2.00 10.12
BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
11
0
I
11
I
I
I
1
i
a
1
TMINC.
Engineering Consultants
A division of The Sear -Brown Group
! F'
I
11
i
1,
I
I
I
I
10)
CLIENT —JOB NO2F0_!0LL_
PROJECT CALCULATIONS FOR
MADEBY 6CP1 DATE i__L4/cHECKED BY —DATE —SHEET --I— OF
i + e
IT
'I '�V
112-
0
&, t 61 Lf c" � �-_"
�� [e-
.L� ;o (,
7�
I
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
-------------------------------------------------
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .....................................
' ON DATA 09-12-1996 AT TIME 14:14:50
*** PROJECT TITLE :
n
*** RETURN PERIOD OF FLOOD IS 5 YEARS
1 RAINFALL INTENSITY FORMULA IS GIVEN
*** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS
-----------------
TIME
---------------------------------------
OF CONCENTRATION
MANHOLE
BASIN
OVERLAND
GUTTER
BASIN
RAIN I
PEAK FLOW
ID NUMBER
AREA * C
To (MIN)
Tf (MIN)
Tc (MIN)
INCH/HR
CFS
1.00
0.25
0.00
0.00
0.00
4.75
1.19
2.00
0.25
0.00
0.00
0.00
4.75
1.19
3.00
0.25
0.00
0.00
0.00
4.75
1.19
'
4.00
0.25
0.00
0.00
0.00
4.75
1.19
5.00
0.25
0.00
0.00
5.00
52.52
13.13
6.00
0.25
0.00
0.00
5.00
52.52
13.13
THE SHORTEST DESIGN
RAINFALL DURATION
IS
FIVE MINUTES
FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES
FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES
AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES
WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED
WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS
I
*** SUMMARY OF HYDRAULICS AT MANHOLES
--------------------------------------------------------------------------
MANHOLE
CNTRBTING
RAINFALL
RAINFALL
DESIGN
GROUND
WATER COMMENTS
ID
NUMBER
AREA * C
DURATION
INTENSITY
PEAK FLOW
ELEVATION
ELEVATION
' -----------------------MINUTES
INCH---------CFS------FEET------FEET
1.00
0. 0
-------------
0 00
0 0'
52.52
10.50
-----------
6.56
OK
2.00
3.00
_0.. ;
0. 0
_�._.-5- &--
5.,.0/ 0 00
52.52
13.13
11.10
11.07
10.56
11.38
OK
NO
4.00
uu
13.13
11.07
11.38
NO
5.00
_0.,. 5 .r''
5 . 00
52
13.13
11.07
1145
NO
6.00
0 -T 5.00
_
52 13.13
11.07
,{
11..45 j4
NO
OK
MEANS WATER
ELEVATION
IS OWER
THAN GROUND
ELEVATION
***
SUMMARY
OF SEWER
HYDRAULICS
NOTE:
THE GIVEN FLOW DEPTH
-TO -SEWER
SIZE RATIO= .8
1 -Q.
Tt
SEWER
MAMHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
-.
EXISTING
ID
NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
-------------------------------------------------------------------------------
ID NO.
ID NO.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
1.00
2.00
1.00
ARCH
33.04
36.00
29.00
45.00
2.00
3.00
2.00
ARCH
2O.87
24.00
19.00
30.00
3.00
4.00
2.00
ARCH
2O.87
24'00
19.00
30.00
4.00
5.00
3.00
ARCH
22.29
24.00
19.00
30.00
5.00
6.00
4.00
ARCH
22.29
24.00
19.00
30.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
'SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE WAS USED
--
-------
--------
--------
--------
--------
--------
--------
--------
-------
-------
SEWER
DESIGN
FLOW
NORMAL
NORAML
CRITIC
CRITIC
FULL
FROUDE
COMMENT
ID
FLOW Q
FULL Q
DEPTH
VLCITY
DEPTH
VLCITY
VLCITY
NO.
-------------------------------------------------------------------------------
NUMBER
CFS
CFS
FEET
FPS
FEET
FPS
FPS
1.0
2.0
52.5
13.1
71.2
20.2
1.97
1.20
10.44
6.57
2.34
1.29
8.62
24.05
7.03
4.01
1.41
1.16
V-OK
V-OK
3.0
13.1
20.2
1.20
6.57
1.29
6.01
4.01
1.16
V-OK
4.0
13.1
16.9
1.35
5.72
1.29
6-01
4.01
0.92
V-OK
5.0
13.1
16.9
1.35
5.72
1.29
6.01
4.01
0.92
V-OK
FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
----------------------------------------------------------------------
SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS
1
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
------------
(FT)
(FT)
(FT)
(FT)
1.00
0.98
7.64
7.05
1.04
1.04
NO
i
2.00
3.00
0.71
0.71
8.20
8.20
7.70
7.70
1.29
1.29
1.82
1.82
NO Z-� 15 �nq�jn
NO
4.00
0.50
8.22
8.22
1.27
1.27
NO
Th�+'f�gl
5.00
0.50
8.22
8.22
1.27
1.27
NO iyr?+k;s,
' OK
MEANS BURIED DEPTH
IS GREATER THAN REQUIRED SOIL
COVER OF
2 FEET S��"
***
SUMMARY
OF HYDRAULIC GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
iSEWER
ID
NUMBER
SEWER SURCHARGED
LENGTH LENGTH
CROWN ELEVATION WATER ELEVATION FLOW
UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
-------------------------------------------------------------------------------
FEET
FEET
FEET
FEET
FEET
FEET
i
1.00
61.00
61.00
10.06
9.46
10.56
6.56 PRSS'ED
2.00
70.00
70.00
9.78
9.28
11.38
10.56 PRSS'ED
3.00
70.00
70.00
9.78
9.28
11.38
10.56 PRSS'ED
4.00
0.10
0.10
9.80
9.80
11.45
11.38 PRSS'ED
5.00
0.10
0.10
9.80
9.80
11.45
11.38 PRSS'ED
PRS
S' ED= PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
i
i*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
----------------
--------
------------------
---------------
--------------------
-
UPST
MANHOLE
SEWER
JUNCTURE LOSSES DOWNST
MANHOLE
SEWER MANHOLE
ENERGY
FRCTION BEND
BEND LATERAL LATERAL MANHOLE
ENERGY
ID NO ID NO.
-----------------------------------------------------
ELEV FT
FT K COEF
LOSS FT K COEF LOSS- FTID
1.0 2.00
11.32
4.00 1.00
----- ------FT
0.77 0.00 0.00 1.00
-
6.56
2.0 3.00
3.0 4.00
11.63
11.63
0.21 0.40
0.21 0.40
0.10 0.00 0.00 2.00
0.10 0.00 0.00 2.00
11.32
11.32
4.0 5.00
11.70
0.00 0.25
0.06 0.00 0.00 3.00
11.63
5.0 6.00
11.70
0.00 0.25
0.06 0.00 0.00 4.00
11.63
'
BEND LOSS =BEND K* FLOWING FULL VHEAD
IN SEWER.
LATERAL LOSS=
OUTFLOW FULL VHEAD-JCT
LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS
FRICTION LOSS INCLUDES
IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD
DENOTES
THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM
JUCTION LOSS OF 0.05
FT WOULD BE INTRODUCED UNLESS LATERAL K
FRICTION
LOSS
WAS ESTIMATED BY
BACKWATER CURVE COMPUTATIONS.
i*** SUMMARY OF EARTH EXCAVATION VOLUME FOR COST ESTIMATE.
i
1 ��z
THE TRENCH SIDE SLOPE = 1
MANHOLE GROUND INVERT MANHOLE
ID NUMBER ELEVATION ELEVATION HEIGHT
FT FT
-
------------------ -- FT
--------------------------------------------------------
1.00 10.50 7.05 3.45
2.00 11.10 7.64 3.46
3.00 11.07 8.20 2.87
4.00 11.07 8.20 2.87
5.00 11.07 8.22 2.85
' 6.00 11.07 8.22 2.85
-------------------------- ----------------------------------------------------
1 SEWER UPS BENCH W H DNS3,--BENCH WIDTH MEN WALL\ EARTH
ID NUM R O GROUND A INVERT O GRO I T LENGTH CKNE�S- VO E
T F I�; FT FT NC S C YD
1 0 .15 .43 .15 6.43 00 4.0 65.0:�\
.00 6.57 .5.01 7.63 >' 5`.,01 70'. 3.04 56,:'`1
00 6.57 i 5.01 �q-63. 5. 0l1 .70.00 , f 3.04 6.7
I 4. 0 .53' 5. 6..y�r3 5,:"O1� 0.10;'' 3.04 1
5 01, 6". 3 f;01 �53, ;5.01�\ 0.1'0 04 % 0�1
,...;
TOT EARTH VOi, FO EWER T NCHES = '178. Q,86 CUBI YARDS'' f�
SEWE FLOW LIN IS DETE INED & THE USER
/ f
TH LUM WAS IMATE TO HAVE
BOTTO DTH=DI TER OR IDTH OF WEIY + 2 */B` B=O FE WHjW D ETER OR IDTH <Z48 INC S
=T FEE N DI ETER OR` TH 48 IN HE
]TI
IF OTTOM DTH <MI, W�% FT, MINIM WI H WAS USED.
BAC FILL I) TH UNDER EWER`WAS SSUMED E ONE FOOT/
SEWE .WALL THICKNESS=EQIVLNT D.I TER IN I /12 +1AN INCHES
I
1
1
1 _ ii3
CLIENT p" yrl�[`' � JOB NO.TM
' INC. PROJECT CALCULATIONS FOR
Engineering Consultants MADE sYC.'°.7 DATE >� CHECKED BY- DATE SHEET L OF
A divi.sinn of The Stu, -Brown Group
1
/� s�
1 -
I�ca25�
✓Lti
\hLD
64
1
I
V
p LF
1
-------------------------------------------------
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 4
DEVELOPED
1 BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .....................................
ON DATA 09-12-1996 AT TIME 14:33:53
*** PROJECT TITLE : DP60 and DP67 Upstream half k> '
*** RETURN PERIOD OF FLOOD IS 100 YEARS E� _j ; o� � t✓{S �v-j%z :'t :1 :.:-
RAINFALL INTENSITY FORMULA IS GIVEN
t �I
*** SUMMARY OF SUBBASIN-RUNOFF PREDICTIONS I- I
------------------------------------------------
TIME OF CONCENTRATION
MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW
ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS 42cw,
-'�IIOL
T
1.00 0.25 0.00 0.00 0.00 4.75 1.19-
2.00 0.25 0.00 0.00 0.00 4.75 1.19 II� Zs�G
3.00 0.25 0.00 0.00 5.00 32.08 8.02
4.00 0.25 0.00 0.00 0.00 4.75 1.19
5.00 0.25 0.00 0.00 5.00 83.76 20.94
THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES
FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES
FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES
AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES
'WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED
WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS
*** SUMMARY OF HYDRAULICS AT MANHOLES
--------------------------------------------------------------------------
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
1-----------------------MINUTES INCH/HR CFS FEET FEET
-------------------------------------------------------
1.00 0.00 0.00 0.00 28.96 19.19 15.50 OK
2.00 0.00 5.08 0.00 28.96 19.15 15.20 OK
' 3.00 0.25 5.00 32.08 8.02 19.15 15.49 OK
4.00 0.00 5.00 0.00 20.94 19.32 16.70 OK
5.00 0.25 5.00 83.76 20.94 19.32 17.12 OK
' OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
*** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
-------------------------------------------------------------------------------
1
SEWER MAMHOLE NUMBER
SEWER
REQUIRED SUGGESTED EXISTING
ID NUMBER UPSTREAM DNSTREAM
SHAPE
DIA(HIGH) DIA(HIGH)
DIA(HIGH)
WIDTH
ID NO. ID NO.
-------------------------------------------------------------------------------
(IN) (FT) (IN) (FT)
(IN) (FT)
(FT)
'
1.00 2.00 1.00
2.00 4.00 2.00
ROUND
ROUND
29.99 33.00
23.32 24.00
0.00
0.00
0.00
0.00
3.00 3.00 2.00
ROUND
18.53 21.00
0.00
0.00
4.00 5.00 4.00
ROUND
26.55 27.00
0.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER
ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER
HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY
AVAILABLE
SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE
SUGGESTED SEWER SIZE;
OTHERWISE,
'EXISTTNG
SIZE WAS USED
--------
-----------------------------------------------------------------------
SEWER DESIGN FLOW NORMAL
NORAML
CRITIC CRITIC
FULL FROUDE
COMMENT
'
ID FLOW Q FULL Q DEPTH
CFS CFS FEET
VLCITY
FPS
DEPTH VLCITY VLCITY NO.
--NUMBER
----------.----------
FEET FPS
FPS
-------- --------
1.0 29.0. 37.5 1.81
--------
6.97
-------- -----------------------
1.78 7.10
4.88 0.97
V-OK
2.0 20.9 22.7 1.52
8.19
1.63 10.54
6.67 1.18
V-OK
3.0 8.0 11.2 1.09
5.08
1.05 5.34
3.33 0.93
V-OK
4.0 20.9 22.0 1.76
6.29
1.59 6.96
5.27 0.83
V-OK
FROUDE NUMBER=O INDICATES THAT A
----------------------------------------------------------------------
PRESSURED
FLOW OCCURS
SEWER SLOPE INVERT ELEVATION
BURIED DEPTH
COMMENTS
ID NUMBER UPSTREAM DNSTREAM
UPSTREAM DNSTREAM
(FT)
----------------------------------------------------------------------
(FT)
(FT) (FT)
1.00 0.50 14.42
14.42
1.98 2.02
NO
2.00 1.00 15.07
14.67
2.25 2.48
OK
3.00 0.50 15.42.
15.42
1.98 1.98
NO
4.00 0.50 15.35
15.35
1.72 1.72
NO
OK MEANS
BURIED DEPTH IS GREATER
THAN REQUIRED
SOIL COVER OF
2 FEET
*** SUMMARY OF HYDRAULIC GRADIENT
-------------------------------------------------------------------------------
LINE ALONG SEWERS
SEWER SEWER SURCHARGED
CROWN ELEVATION WATER ELEVATION
FLOW
'
-ID NUMBER LENGTH LENGTH UPSTREAM
-FEET------FEET------FEET------FEET------FEET----_-FEET
-----------
DNSTREAM UPSTREAM
DNSTREAM CONDITION
1.00 0.10 0.00
17.17
17.17 15.20
--------------
15.50
SUBCR
2.00 40.00 0.00
17.07
16.67 16.70
15.20
JUMP
3.00 0.10 0.00
17.17
17.17 15.49
15.20
SUBCR
4.00 0.10 0.00
17.60
17.60 17.12
16.70
SUBCR
'
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE
HYDRAULIC JUMP; SUBCR=SUBCRITICAL
FLOW
*** SUMMARY OF ENERGY GRADIENT LINE
ALONG
SEWERS
-------------------------------------------------------------------------------
UPST MANHOLE SEWER
JUNCTURE LOSSES
DOWNST MANHOLE
SEWER MANHOLE ENERGY FRCTION
ID NO. ID NO. ELEV FT FT
BEND BEND LATERAL LATERAL
K COEF LOSS FT K COEF LOSS
MANHOLE ENERGY
FT
---------------
ID
FT
----- ---------------
1.0 2.00 15.57 0.05
---- -----
0.05
----------- -----
0.02 0.00 0.00
-------------------
1.00
15.50
1
NO
2.0 4.00 17.39 1.14 1.00 0.69 0.00 0.00 2.00
15.57
3.0 3.00 15.66 0.05 0.25 0.04 0.00 0.00 2.00
15.57
'
4.0 5.00 17.55 0.05 0.25 0.11 0.00 0.00 4.00
17.39
1
BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
1
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
1
i
i
1
i
i
1
1
171
1
1
1
1
i
liT
1
' CURRENT DATE: 09-12-1996
CURRENT TIME: 17:13:47
I
I
L]
FHWA CULVERT ANALYSIS
HY-8, VERSION 4.3
C
SITE DATA
U--------------------------
L
INLET OUTLET
CULVERT
V
ELEV. ELEV.
LENGTH
#
(FT) (FT)
--------------------------
(FT)
1
11. 17 / 10 . 50 J
150 . 00d
2
3
4
5
6
FILE DATE: 09-12-1996
FILE NAME: DP60
CULVERT SHAPE, MATERIAL, INLET
-----------------------------------------------
BARRELS
SHAPE SPAN RISE MANNING INLET
MATERIAL (FT) (FT) n TYPE
--------------------------------
1 RCP ✓ 2.50 ✓ 2.50�-/ .013,/ CONVENTIONAL
FILE: DP60 CULVE T HEADWATER ELEVATION (FT
DISCHARGE
1
2
3
4
5
0
11.17
0.00
0.00
0.00
0.00
3
11.89
0.00
0.00
0.00
0.00
6
12.30
0.00
0.00
0.00
0.00
10
12.64
0.00
0.00
0.00
0.00
13
12.93
0.00
0.00
0.00
0.00
16
13.34
0.00
0.00
0.00
0.00
19
13.56
0.00
0.00
0.00
0.00
22
13.80
0.00
0.00
0.00
0.00
26
14.03
0.00
0.00
0.00
0.00
29
14.26
0.00
0.00
0.00
0.00
14.
0.00
0.00
0.00
0.00
430
60
�19.65
_
0.00
0.00
0.00
0.00
The above
Q and
HW are for
a point above
the
roadway.
I4�� (_1�
DATE: 09-12-1996
6 ROADWAY
0.00
19.20
0.00
19.25
0.00
19.29
0.00
19.31
0.00
19.34
0.00
19.36
0.00
19.38
0.00
19.39
0.00
19.41
0.00
19.43
0.00
19.44
0.00
0.00
/Z
I
C-7) JA-+0 'sn;
19 = io=
.o5
2
CURRENT DATE: 09-12-1996
FILE DATE:
09-12-1996
'
CURRENT TIME: 17:13:47
FILE NAME:
DP60
PERFORMANCE CURVE FOR CULVERT # 1
- 1 ( 2.5
BY 2.5
) RCP
HEAD- INLET OUTLET
'DIS-
CHARGE WATER CONTROL CONTROL FLOW
NORMAL
CRITICAL
OUTLET
TAILWATER
FLOW ELEV. DEPTH DEPTH TYPE
DEPTH
DEPTH
VEL.
DEPTH
VEL.
DEPTH
'
(cfs) (ft) (ft) (ft) <F4>
(ft)
(ft)
(fps)
(ft)
(fps)
(ft)
0 11.17 0.00 0.00 0-NF
0.00
0.00
0.00
0.00
0.00
-0.20
3 11.89 0.72 0.72 1-S2n
0.57
0.58
3.80
0.57
1.43
0.08
6 12.30 1.13 1.13 1-S2n
0.82
0.83
4.59
0.82
1.86
0.23
10 12.64 1.47 1.47 1-S2n
1.02
1.03
5.11
1.02
2.17
0.35
13 12.93 1.76 1.76 1-S2n
1.20
1.20
5.51
1.20
2.41
0.46
'
16 13.34 2.01 2.17 2-M2c
19 13.56 2.26 2.39 2-M2c
1.37
1.54
1.35
1.48
5.94
6.32
1.35
1.48
2.61
2.78
0.57
0.66
22 13.80 2.51 2.63 2-M2c
1.72
1.60
6.74
1.60
2.94
0.75
26 14.03 2.77 2.86 2-M2c
1.92
1.72
7.10
1.72
3.08
0.84
'
29 14.26 3.05 3.09 2-M2c
2.20
1.82
7.52
1.82
3.21
0.92
30 14.66 3.16 3.49 6-FFn
2.50
1.86
6.10
2.50
3.25
0.95
'
El. inlet face invert 11.17
El. inlet throat invert 0.00
ft
ft
El. outlet
El. inlet
invert
10.50
ft
crest
0.00
ft
***** SITE DATA ***** CULVERT INVERT
**************
INLET STATION (FT)
100.00
INLET ELEVATION (FT)
11.17
OUTLET STATION (FT)
250.00
'
OUTLET ELEVATION (FT)
10.50
NUMBER OF BARRELS
1
SLOPE (V-FT/H-FT)
0.0045
'
CULVERT LENGTH ALONG SLOPE (FT)
150.00
***** CULVERT DATA SUMMARY ************************
BARREL SHAPE CIRCULAR
'
BARREL DIAMETER 2.50 FT
BARREL MATERIAL CONCRETE
BARREL MANNING'S N 0.013
'
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL SQUARE EDGE
WITH
HEADWALL
INLET DEPRESSION NONE
r
11
' CURRENT DATE: 09-12-1996
' CURRENT TIME: 17:13:47
4
FILE DATE: 09-12-1996
FILE NAME: DP60
TAILWATER
REGULAR
CHANNEL CROSS SECTION ****************
'
BOTTOM WIDTH (FT)
SIDE SLOPE H/V (X:1)
8.00
0.0
CHANNEL
SLOPE V/H (FT/FT)
0.020
MANNING'S
N (.01-0.1)
0.060
CHANNEL
INVERT ELEVATION
(FT)
10.30
CULVERT
NO.1 OUTLET INVERT ELEVATION
10.50 FT
******* UNIFORM
FLOW RATING CURVE
FOR DOWNSTREAM CHANNEL
FLOW
W.S.E. FROUDE
DEPTH
VEL.
SHEAR
(CFS)
(FT) NUMBER
(FT)
(FPS)
(PSF)
'
0.00
10.30 0.000
0.00
0.00
0.00
3.20
10.58 0.477
0.28
1.43
0.35
6.40
10.73 0.500
0.43
1.86
0.54
9.60
12.80
10.85 0.513
10.96 0.520
0.55
0.66
2.17
2.41
0.69
0.83
16.00
11.07 0.525
0.77
2.61
0.96
19.20
11.16 0.529
0.86
2.78
1.08
'
22.40
11.25 0.531
0.95
2.94
1.19
25.60
11.34 0.533
1.04
3.08
1.30
28.80
11.42 0.534
1.12
3.21
1.40
29.96
11.45 0.534
1.15
3.25
1.44
ROADWAY OVERTOPPING
DATA
ROADWAY SURFACE
GRAVEL
EMBANKMENT
TOP WIDTH (FT)
5.00
'
CREST LENGTH (FT)
100.00
OVERTOPPING CREST ELEVATION
(FT)
19.20
�Ji
RWINC.
Engineering Consultants
A division of The Sear -Brown Group
E�X;S-�l
� 2v
CLIENT Gl �'' 1 c. btiH'L Y'�I4-•';�i% id,n JOB NO. S 59-a 1
PROJECT //� ��'.•. i,kv ci CALCULATIONS FOR' Lc, Y1..hTL' C IxiLR- UI W
MADE BY 06N DATE Z:I vi J�CHECKED BY- DATE SHEET OF
0
I
i Z_(
1
CURRENT DATE: 12-27-1995
' CURRENT TIME: 16:24:29
DIS-
CHARGE
FLOW
(cfs)
2
FILE DATE: 12-27-1995
FILE NAME: PONDS'
PERFORMANCE CURVE FOR CULVERT # 1 - 2 ( 4.5 BY 4.5 ) RCP
HEAD- INLET OUTLET
WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER
ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH
(ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft)
0
20.68
0.00
0.00
0-NF
0.00
0.00
0.00
0.00
0.00
0.00
18
21.67
0.99
0.99
1-S2n
0.59
0.83
7.05
0.59
1.07
1.69
36
22.20
1.52
1.52
1-S2n
0.87
1.19
8.28
0.87
1.33
2.71
54
23.17
1.98
2.49
3-Mlt
1.06
1.47
1.98
3.61
1.50
3.61
72
24.04
2.39
3.36
3-Mlt
1.23
1.72
2.28
4.45
1.62
4.45
90
24.75
2.76
4.07
1-Slf
1.39
1.93
2.83
4.50
1.71
5.26
108
25.64
3.09
4.96
4-FFt
1.52
2.12
3.40
4.50
1.79
6.04
126
26.53
3.39
5.85
4-FFt
1.66
2.30
3.96
4.50
1.85
6.81
144
27.44
3.69
6.76
4-FFt
1.79
2.47
4.53
4.50
1.91
7.56
162
28.35
3.97
7.67
4-FFt
1.91
2.63
5.09
4.50
1.95
8.30
175
29,.01
4.18
8.33
4-FFt
1.99
2.74
5.50
4.50
1.98
8.83
El. inlet
face
invert
20.68
ft
El.
outlet
invert
19.24
ft
El. inlet
throat invert
0.00 ft
El.
inlet crest
0.00
ft:
SITE DATA ***** CULVERT INVERT
**************
INLET STATION (FT)
100.00
INLET ELEVATION (FT)
20.68
OUTLET STATION (FT)
220.00
'
OUTLET ELEVATION (FT)
19.24
-
NUMBER OF BARRELS
2
'
SLOPE (V-FT/H-FT)
CULVERT LENGTH ALONG SLOPE (FT)
0.0120
120.01
***** CULVERT DATA SUMMARY ************************
BARREL SHAPE
CIRCULAR
'
BARREL DIAMETER
4.50 FT
BARREL MATERIAL
CONCRETE
'
BARREL MANNING'S N
INLET TYPE
0.013
CONVENTIONAL
INLET EDGE AND WALL
SQUARE EDGE WITH HEADWALL
INLET DEPRESSION
NONE
r
I
11
l 2-�
---------------------------
' REPORT OF STORM SEWER SYSTEM DESIGN
' USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
' JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
-------------------------------------------------------------------------
-------------------------------------
' *** EXECUTED BY DENVER CITY/COUNTY USE ONLY .....................................
ON DATA 09-12-1996 AT TIME 17:46:23
' *** PROJECT TITLE : existing/new extension of culvert on the end of
Clearview drainageway
***. RETURN PERIOD OF FLOOD IS 100 YEARS
' RAINFALL INTENSITY FORMULA IS GIVEN
*** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS
-------------------------
-----------------------------------------
TIME
OF CONCENTRATION
MANHOLE
BASIN
OVERLAND.
GUTTER
BASIN
RAIN I
PEAK FLOW
ID NUMBER
AREA * C
To (MIN)
Tf (MIN)
Tc (MIN)
INCH/HR
CFS
---------------------------------------------------------------------
1.00
_
0.25
0.00
0.00
0.00
4.75
1.19
2.00
0.25
0.00
0.00
0.00
4.75
1.19
3.00
0.25
0.00
0.00
0.00
4.75
1.19
'
4.00
0.25
0.00
0.00
0.00
4.75
1.19
5.00
0.25
0.00
0.00
5.00
72.00
18.00
THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES
'FOR RURAL AREA, BASIN TIME OF CONCENTRATION =>10 MINUTES
FOR URBAN AREA, BASIN TIME OF CONCENTRATION =>5 MINUTES
AT THE 1ST DESIGN POINT, TC <=(10+TOTAL LENGTH/180) IN MINUTES
WHEN WEIGHTED RUNOFF COEFF=> .2 , THE BASIN IS CONSIDERED TO BE URBANIZED
' WHEN TO+TF<>TC, IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS
*** SUMMARY OF HYDRAULICS AT MANHOLES
--------------------------------------------------------------------
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
' -ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
------------------7---------------------------------------------------------
1.00 0.00 0.00 0.00 18.00 3.50 3.14 OK
2.00
0.00
5.26
0.00
18.00
4.50
4.13
OK
3.00
0.00
5.16
0.00
18.00
5.00
4.49
OK
1
4.00
0.00
5.00
0.00
18.00
6.00
5.00
OK
5.00
0.25
5.00
72.00
18.00
6.50
5.27
OK
OK MEANS WATER ELEVATION
IS LOWER
THAN GROUND ELEVATION
***
SUMMARY
OF SEWER
HYDRAULICS
1
NOTE:
THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
1
-------------------------------------------------------------------------------
SEWER
ID NUMBER
MAMHOLE
UPSTREAM
NUMBER
DNSTREAM
SEWER
SHAPE
REQUIRED
DIA(HIGH)
SUGGESTED
DIA(HIGH)
EXISTING
DIA(HIGH) WIDTH
-------------------------------------------------------------------------------
ID NO.
ID NO.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
21.00
2.00
1.00
ROUND
24.00
24.00
24.00
0.00
1
23.00
3.00
2.00
ROUND
22.97
24.00
0.00
0.00
34.00
4.00
3.00
ROUND
22.97
24.00
0.00
0.00
1
43.00
5.00
4.00
ROUND
25.09
27.00
0.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
1 FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISTTNG SIZE WAS USED
-------------------------------------------------------------------------------
1
SEWER
DESIGN
FLOW
NORMAL
NORAML
CRITIC
CRITIC
FULL
FROUDE
COMMENT
ID
FLOW Q
FULL Q
DEPTH
VLCITY
DEPTH
VLCITY
VLCITY
NO.
NUMBER
CFS
CFS
FEET
FPS
FEET
FPS
FPS
1
-----------------------------------------------------------------------
21.0
18.0
18.0
2.00
5.73
1.53
6.99
5.73
0.00
V-OK
23.0
18:0
20.3
1-47
7.30
1.53
6.99
5.73
1.09
V-OK
34.0
18.0
20.3
1.47
7.30
1.53
6.99
5.73
1.09
V-OK
1
43.0
18.0
22.0
1.55
6.16
1.48
6.49
4.53
0.92
V-OK
FROUDE NUMBER=0 INDICATES THAT A PRESSURED FLOW OCCURS
1----------------------------------------------------------------------
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
--------------
----°s-------(FT)---
(FT)
(FT)
(FT)
21.00
-0.01
1.62
- -----------------------------------
1.64
0.88
-0.14
NO
23.00
0.80
1.96
1.61
1.04
0.89
NO
1
34.00
0.80
2.51
1.97
1.49
1.03
NO
43.00
0.50
2.35
2.35
1.90
1.40
NO
1 OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
1-------------------------------------------------------------------------------
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
1 FEET------FEETFEET FEET FEET FEET
------ --------
---------------------------------------------------
21.00 137.00 0.00 3.62 3.64 4.13 3.14 PRSS'ED
1
23.00
43.80
43.80
3.96
3.61
4.49
4.13
PRSS'ED
34.00
68.00
68.00
4.51
3.97
5.00
4.49
PRSS'ED
43.00
0.10
0.10
4.60
4.60
5.27
5.00
PRSS'ED
'
PRSS'ED=PRESSURED
***
FLOW;
JUMP=POSSIBLE
HYDRAULIC JUMP; SUBCR=SUBCRITICAL
FLOW
SUMMARY OF
ENERGY GRADIENT
LINE ALONG
SEWERS
----------------
UPST
-------------------
MANHOLE
SEWER
-------------------------------------------
JUNCTURE LOSSES
DOWNST
MANHOLE
SEWER MANHOLE
ENERGY
FRCTION
BEND
BEND LATERAL
LATERAL
MANHOLE
ENERGY
ID NO ID NO.
---- --------
ELEV FT
--------
FT
--------
K COEF LOSS FT K COEF
-------- -------- --------
LOSS FT
--------
ID
--------
FT
--------
21.0 2.00
4.64
0.99
1.00
0.51 0.00
0.00
1.00
3.14
23.0 3.00
5.00
0.28
0.16
0.08 0.00
0.00
2.00
4.64
1
34.0 4.00
5.51
0.43
0.16
0.08 0.00
0.00
3.00
5.00
43.0 5.00
5.59
0.00
0.25
0.08 0.00
0.00
4.00
5.51
'BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
1
1
I
IJ
1
1
RWINC.
Engineering Consultants
A division of The Sean Brown Group
r
r
r
r
r
r
i
1
r
1
r
1
1
;1L
caQ^f"
CLIENT
PROJECT
MADE BYDATE CHECKED BY
CALCULATIONS FOR
_ DATE
10
3"
❑ o 05
Lt
/-�
23 `-CJoa
D
Z"J S
Cfl wry, :22 �
400 LF O�(nOa� I•U`7a
JOB NO.
OF
1
REPORT OF STORM SEWER SYSTEM DESIGN
' USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
I
I
I
11
i
1
L
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .............................................
ON DATA 10-11-1996 AT TIME 11:38:57
*** PROJECT TITLE :
Golden Currant Blvd.
*** RETURN PERIOD OF FLOOD IS 100 YEARS
(Design flow hydrology not calculated using UDSEWER)
*** SUMMARY OF HYDRAULICS AT MANHOLES
-------------------------------------------------------------------------------
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS'
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
-------------------------------------------------------------------------------
1.00 300.10 22.00 18.50 OK
2.00 300.10 25.00 23.78 OK
3.00 300.10 32.00 26.26 OK
4.00 146.10 38.00 33.18 OK
5.00 88.05 33.00 30.16 OK
6.00 88.05 33.00 30.28 OK
7.00 146.10 38.00 33.51 OK
8.00 88.05 33.00 30.16 OK
9.00 88.05 33.00 30.28 OK
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
*** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 1
-------------------------------------------------------------------------------
SEWER
MAMHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
-- ____
ID NO.
--------------------
ID NO.
_ -
_(IN) (FT)
(1N) (FT)
(IN) (FT)
(FT)
12.00
2.00
1.00
ROUND
----------------------------------
63.29
66.00
60.00
0.00
23.00
3.00
2.00
ROUND
63.29
66.00
60.00
0.00
34.00
4.00
3.00
ROUND
40.69
42.00
54.00
0.00
35.00
5.00
3.00
ROUND
39.96
42.00
54.00
0.00
36.00
8.00
3.00
ROUND
39.96
42.00
54.00
0.00
47.00
7.00
4.00
ROUND
40.69
42.00
54.00
0.00
56.00
6.00
5.00
ROUND
39.96
42.00
54.00
0.00
89.00
9.00
8.00
ROUND
39.96
42.00
54.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
i ZIT
REQUIRED
DIAMETER
WAS DETERMINED
BY SEWER
HYDRAULIC CAPACITY.
SUGGESTED
DIAMETER WAS DETERMINED
BY COMMERCIALLY
AVAILABLE SIZE.
FOR A NEW
SEWER,
FLOW WAS
ANALYZED BY THE
SUGGESTED SEWER
SIZE; OTHERWISE,
EXISITNG
SIZE WAS
USED
'
-------------------------------------•----------------------------------
SEWER
ID
DESIGN
FLOW 0
FLOW
FULL 0
NORMAL
DEPTH
NORAML
VLCITY
CRITIC
DEPTH
CRITIC
FULL
FROUDE
COMMENT
NUMBER
-------------------------------------------------------------------------------
CFS
CFS
FEET
FPS
FEET
VLCITY
FPS
VLCITY
FPS
NO.
12.0
300.1
261.1
5.00
15.28
4.59
15.90
15.28
0.00
V-OK
23.0
300.1
261.1
5.00
15.28
4.59
15.90
15.28
0.00
V-OK
34.0
146.1
311.8
2.17
19.28
3.55
22.32
9.19
2.62
V-OK
35.0
88.1
197.2
2.11
12.04
2.74
14.40
5.54
1.66
V-OK
36.0
88.1
197.2
2.11
12.04
2.74
8.68
5.54
1.66
V-OK
47.0
146.1
311.8
2.17
19.28
3.55
6.55
9.19
2.62
V-OK
'
56.0
88.1
197.2
2.11
12.04
2.74
14.40
5.54
1.66
V-OK
89.0
88.1
197.2
2.11
12.04
2.74
8.68
5.54
1.66
V-OK
'
FROUDE NUMBER=O INDICATES
THAT A
PRESSURED
FLOW OCCURS
L
LEI
I
1
1
----------------------------------------------------------------------
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
------------------x
-------(
(FT)
-------------------------------------------
(FT)
(FT)
(FT)
12.00
1.00
17.50
13.50
2.50
3.50
OK
23.00
1.00
19.24
17.50
7.76
2.50
OK
34.00
2.50
24.59
19.24
8.91
8.26
OK
35.00
1.00
20.68
19.48
7.82
8.02
OK
36.00
1.00
20.68
19.48
7.82
8.02
OK
47.00
2.50
24.61
24.61
8.89
8.89
OK
56.00
1.00
20.78
20.78
7.72
7.72
OK
89.00
1.00
20.78
20.78
7.72
7.72
OK
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
------------------------------------------------------------------------------
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
--------------------------------------------------------------------
FEET
FEET
FEET
FEET
FEET
FEET
12.00
400.00
400.00
22.50
18.50
23.78
18.50
PRSS'ED
23.00
174.00
174.00
24.24
22.50
26.26
23.78
PRSS'ED
34.00
214.00
214.00
29.09
23.74
33.18
26.26
PRSS'ED
35.00
120.00
120.00
25.18
23.98
30.16
26.26
PRSS'ED
36.00
120.00
120.00
25.18
23.98
30.16
26.26
PRSS'ED
47.00
0.10
0.10
29.11
29.11
33.51
33.18
PRSS'ED
56.00
0.10
0.10
25.28
25.28
30.28
30.16
PRSS'ED
89.00
0.10
0.10
25.28
25.28
30.28
30.16
PRSS'ED
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
----------------------------------------------------------
UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY
ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT
-------------------------------------------------------------------------------
12.0
2.00
27.41
5.28 1.00
3.63
0.00
0.00
1.00
18.50
23.0
3.00
29.89
2.30 0.05
0.18
0.00
0.00
2.00
27.41
34.0
4.00
34.49
1.17 0.10
0.13
0.25
3.30
3.00
29.89
'
35.0
5.00
30.64
0.24 1.08
0.51
0.00
0.00
3.00
29.89
36.0
8.00
30.64
0.24 1.08
0.51
0.00
0.00
3.00
29.89
47.0
7.00
34.82
0.00 0.25
0.33
0.00
0.00
4.00
34.49
56.0
6.00
30.76
0.00 0.25
0.12
0.00
0.00
5.00
30.64
'
89.0
9.00
30.76
0.00 0.25
0.12
0.00
0.00
8.00
30.64
BEND LOSS
=BEND
K* FLOWING FULL VHEAD
IN SEWER.
LATERAL
LOSS=
OUTFLOW FULL VHEAD-JCT
LOSS K*INFLOW
FULL
VHEAD
FRICTION
LOSS=O
MEANS
IT IS NEGLIGIBLE
OR POSSIBLE
ERROR
DUE TO
JUMP.
'
FRICTION
LOSS INCLUDES
SEWER INVERT DROP
AT MANHOLE
NOTICE:
VHEAD DENOTES
THE VELOCITY HEAD OF FULL
FLOW CONDITION.
A MINIMUM JUCTION
LOSS OF 0.05
FT WOULD
BE INTRODUCED UNLESS LATERAL K=O.
FRICTION LOSS
WAS ESTIMATED BY
BACKWATER
CURVE COMPUTATIONS.
I
1
t
INC
CLIENT
JOB NO.
PROJECT CALCULATIONS FOR
Engineering Consultants
MADE BY DATE CHECKED BY DATE
-SHEET-OF
1 �ti rr
--
--------------
n
A14,.
.
--
- -
i
11
1
CURRENT DATE: 12-27-1995
' CURRENT TIME: 16:24:29
�-�o
3
FILE DATE: 12-27-1995
FILE NAME: PONDS
TAILWATER
******* REGULAR
CHANNEL
CROSS SECTION ****************
BOTTOM WIDTH (FT)
10.00
SIDE SLOPE H/V
(X:1)
0.0
CHANNEL
SLOPE V/H
(FT/FT)
0.000
MANNING'S
N (.01-0.1)
0.023
1
CHANNEL
INVERT
ELEVATION
(FT)
19.24
CULVERT
NO.1 OUTLET INVERT ELEVATION
19.24 FT
UNIFORM
FLOW RATING CURVE
FOR DOWNSTREAM CHANNEL
FLOW
W.S.E.
FROUDE
DEPTH
VEL.
SHEAR
'
(CFS)
0.00
(FT)
19.24
NUMBER
0.000
(FT)
0.00
(FPS)
0.00
(PSF)
0.00
18.00
20.93
0.145
1.69
1.07
0.02
36.00
21.95
0.142
2.71
1.33
0.03
54.00
22.85
0.139
3.61
1.50
0.05
1
72.00
23.69
0.135
4.45
1.62
0.06
90.00
24.50
0.132
5.26
1.71
0.07
108.00
126.00
25.28
26.05
0.128
0.125
6.04
6.81
1.79
1.85
0.08
0.08
_
144.00
26.80
0.122
7.56
1.91
0.09
162.00
27.54
0.119
8.30
1.95
0.10
175.00
28.07
0.118
8.83
1.98
0.11
'
ROADWAY OVERTOPPING
DATA
ROADWAY SURFACE
GRAVEL
EMBANKMENT
TOP WIDTH (FT)
20.00
CREST LENGTH (FT)
50.00
OVERTOPPING CREST
ELEVATION
(FT)
33.00
1
I
ji
1
i3i
-------------------------------------------------------------
' REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
JAMES L.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO
AT DENVER
IN COOPERATION WITH
'
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .............................................
ON DATA 12-26-1995 AT TIME 12:37:54
'
*** PROJECT TITLE :
Golden Currant Storm Sewer - 100 year Run
*** RETURN PERIOD OF FLOOD IS 100 YEARS
*** SUMMARY OF HYDRAULICS AT MANHOLES
-------------------------------------------------------------------------------
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND
WATER COMMENTS
'
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
----------- ------------------------------------------------------
1.00 320.00 22.00
17.20
OK
2.00 320.00 26.00.
24.56
OK
3.00 320.00 34.00
27.92
OK
'
4.00 145.00 38.00
32.42
OK
5.00 175.00 33.00
32.32
OK
6.00 175.00 33.00
32.47
OK
7.00 145.00 38.00
32.74
OK
'
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
'
*** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO=
.8
-------------------------------------------------------------------------------
SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED
EXISTING
ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH)
WIDTH
ID NO. ID NO. (IN) (FT) (IN) (FT) (IN)
-------------------------------------------------------------------------------
(FT)
(FT)
12.00 2.00 1.00 ROUND 66.65 72.00
60.00
0.00
23.00 3.00 2.00 ROUND 66.65 72.00
60.00
0.00
34.00 4.00 3.00 ROUND 41.72 48.00
54.00
0.00
47.00 7.00 4.00 ROUND 49.54 54.00
54.00
0.00
35.00 5.00 3.00 ROUND 53.15 54.00
72.00
0.00
'
56.00 6.00 5.00 ROUND 53.15 54.00
72.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE;
OTHERWISE,
EXISITNG SIZE WAS USED
-------------------------------------------------------------------------------
SEWER
DESIGN
FLOW
NORMAL
NORAML
CRITIC
CRITIC
FULL
FROUDE
COMMENT
ID
FLOW 0
FULL 0
DEPTH
VLCITY
DEPTH
VLCITY
VLCITY
NO.
'
NUMBER
--
CFS
---
CFS
FEET
FPS
FEET
FPS
FPS
12.0
320.0
---
242.5
--..-..'.---
5.00
16.30
----
4.65
--
16.81
16.30
0.00
V-OK
'
23.0
34.0
320.0
145.0
242.5
289.5
5.00
2.25
16.30
18.22
4.65
3.54
16.81
23.88
16.30
9.12
0.00
2.41
V-OK
V-OK
47.0
145.0
183.1
3.02
12.77
3.54
10.82
9.12
1.37
V-OK
35.0
175.0
394.3
2.80
13.52
3.60
9.90
6.19
1.62
V-OK
56.0
175.0
394.3
2.80
13.52
3.60
9.90
6.19
1.62
V-OK
FROUDE NUMBER=O INDICATES
THAT A
PRESSURED
FLOW OCCURS
----------------------------------------------------------------------
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
10 NUMBER
UPSTREAM DNSTREAM
UPSTREAM
DNSTREAM
----------------------------------------------------------------------
%
(FT)
(FT)
(FT)
(FT)
12.00
23.00
1.00
1.00
17.50
19.24
13.50
17.50
3.50
9.76
3.50
3.50
OK
OK
34.00
2.50
24.59
19.24
8.91
10.26
OK
47.00
1.00
24.59
24.59
8.91
8.91
OK
35.00
1.00
20.44
19.24
6.56
8.76
OK
'
56.00
1.00
20.44
20.44
6.56
6.56
OK
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1.5 FEET
' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET
FEET
.FEET
FEET FEET
FEET
12.00
---- ---- ----------
400.00
--------------------------------------------------
0.00
22.50
18.50 24.56
17.20 PRSS'ED
23.00
174.00
174.00
24.24
22.50 27.92
24.56 PRSS'ED
34.00
214.00
214.00
29.09
23.74 32.42
27.92`PRSS'ED
47.00
35.00
0.10
120.00
0.10
120.00
29.09
26.44
29.09 32.74
25.24 32.32
32.42 PRSSIED
27.92-PRSSIED
'
56.00
0.10
0.10
26.44
26.44 32.47
32.32 PRSS'ED
PRSS'ED=PRESSURED FLOW;
JUMP=POSSIBLE
HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE
ALONG
SEWERS
-------------------------------------------------------------------------------
UPST MANHOLE
SEWER
JUNCTURE LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY
- IDNOID NO. ELEV FT
-----------------------------------------------------------------------
FRCTION
FT
BEND BEND LATERAL LATERAL MANHOLE ENERGY
K COEF LOSS FT K COEF LOSS FT ID FT
12.0
2.00 28.69
9.42
0.50
2.06 0.00 0.00
1.00 17.20
23.0
3.00 32.05
3.03
0.08
0.33 0.00 0.00
2.00 28.69
34.0
4.00 33.71
1.34
0.25
0.32 0.00 0.00
3.00 32.05
47.0
7.00 34.03
0.00
0.25
0.32 0.00 0.00
4.00 33.71
35.0
5.00 32.91
0.24
1.06
0.63 0.00 0.00
3.00 32.05
56.0
6.00 33.06
0.00
0.25
0.15 0.00 0.00
5.00 32.91
BEND LOSS
=BEND K* FLOWING
FULL
VHEAD IN
SEWER.
'
LATERAL
LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION
LOSS=O MEANS
IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION
LOSS INCLUDES
SEWER INVERT DROP
AT MANHOLE
'
NOTICE: VHEAD DENOTES
THE VELOCITY
HEAD OF FULL FLOW CONDITION.
1
1
A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O.
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
J
1
I
' CURRENT DATE: 12-27-1995
CURRENT TIME: 16:24:29
I
I
11
1
FILE DATE: 12-27-1995
FILE NAME: PONDS
FHWA CULVERT ANALYSIS
HY-81 VERSION
4.0
C
SITE DATA
CULVERT
SHAPE,
MATERIAL, INLET
U--------------------------
-----------------------------------
L
INLET
OUTLET
CULVERT BARRELS
V
ELEV.
ELEV.
LENGTH SHAPE
SPAN
RISE MANNING
#
(FT)
--------------------------
(FT)
(FT) MATERIAL
(FT)
(FT) n
1
20.68
19.24
-----------------------------------
120.01 2 RCP
4.50
4.50 .013
2
3
4
5
6
FILE: PONDS CULVERT HEADWATER ELEVATION (FT)
DISCHARGE
1
2
3
4
5
0
20.68
0.00
0.00
0.00
0.00
18
21.67
0.00
0.00
0.00
0.00
36
22.20
0.00
0.00
0.00
0.00
54
23.17
0.00
0.00
0.00
0.00
72
24.04
0.00
0.00
0.00
0.00
90
24.75
0.00
0.00
0.00
0.00
108
25.64
0.00
0.00
0.00
0.00
126
26.53
0.00.
0.00
0.00
0.00
144
27.44
0.00
0.00
0.00
0.00
162
28.35
0.00
0.00
0.00
0.00
175
29.01
0.00
0.00
0.00
0.00
280
34.76
0.00
0.00
0.00
0.00
The above Q and HW are for a point above the roadway.
33 =
INLET
TYPE
------------
CONVENTIONAL
DATE: 12-27-1995
6 ROADWAY
0.00
33.00
0.00
33.27
0.00
33.42
0.00
33.54
0.00
33.65
0.00
33.75
0.00
33.84
0.00
33.93
0.00
34.01
0.00
34.09
0.00
34.14
0.00
0.00
z i9 iy
#/f+aA-i�/5r3 p ,zcZowi/�c�D/�77bJ
l
ND
Zti W
O O
Nd.
O � N N N n n1 n Y Y Y N N Ip ip
VWN
Wrm
tONnNmhQYgNON^
nCOTO �'=tOnmOlO NrfN
r N
W�
z
aoNneNn m lnoNnYNnoY
O^^ N
Ov
W.
N N N N N h Y1
S
b O i0 D i0 O ip0 ip Oip GiOOu
I I 1 1 1 1
1 1 1I I I I I I I I
U
L
L
rn
x
=10
Ow
U
u
-11
^mN
J<
�iV
J
a-'
J° u>
N V
Zb
o sx9
a ;r1o<m
IWW<
°_ o
v W
c
$W
NIO YI
mp
2
= twok
z z�
N
wit
=On
O<
I p U
YI <Z
Z
W
m W
x J 2
2
<
t n a z
p
.Y I J
2
- O
b
7
N
O 3.Z Q W
U
N O W J
?
N3
G 1
%
OO a
b 3
u
WLa Z
o~
W x q$O U
Nb
U W
Q r
O
I<
>
+ d
'Fm
W 3
Z J N
41
Z
ON
W a
m
61
M. J
¢
Q
i
�3
N W
N
p
_
Z;ex
pp �
41Z 23 Od
0 Om
ozIm
<i
Wm
oW
Z
x<
y1
J
O
u
ZO OO WNP�
ZJ��
Umzmo
Z
cr o
p
>N 6c�' <,�
z�
i QJ W<
MW- W< NW
x M d
N 2 Z W
J
an Um C WK
py O
V
Z<
<N w
W
OJJ
dO
O pt
X
<V
/�v^
`JS
F
NZW
CZUV3V
WOWC
W
NmW
Uti
SU
p�WOC
Q
yJUZW Z
NOyOIV2<J'J-<J
IrNd<aU--UNQ
C=UKm fU�V
NN U4
=
1
►
�—Rom"—II-LO1�'-y�l
W
r.
z -Z
O I ;N
O I Y 1Y
to ,_ 1.
11I
MM
II
1
k
a
LLS
n
n
yy
I
U
W z
F-10�
vYi
J
1
4
0
<
1
W
1'UCV
W
drp^
r
W
W
ZOZ
W
pOWN
U� tr �
6
rWU5
mZO
Am-
S
Oz
Y
O
N.
W ~
W
p
o
Y
m
o
I < O
0 Z O
c
U O
O
^
W F-
V) W
'
J
Y
a O
N Z 3
o
zp
Orc
Z
7O
_O
VZ.
W
S
w
~
pQ
'NN
0
0
a_
<
�u
Oy
and
O Z
O
\U
Q Q
�Z
NO
t W
C H
mo
n�
OW
JW
z
-10
m Jp O�
UZ
no
W
�
0
O2
H
no
VJi6
Q m W <
¢Npmu
a
W
W
�p;2\
SV
•<N
<JO Nm
J
W W yl
W
pJZ
N
Qp3
zd`Z<
�FWO
n
Z<Vd
:1
Xa x
nIN
n2
X
II
Xm
Y
n
xN
OW x5
p�
W W
S
� I
W +11
a
Y
W
O
N
�
I
G
e
d
I. IF
o
Z O
Z �
- I o
U a 'It
O ,
W Qom)
d Z cI WI
LLI
�a �I
mm
Z =
W V
Wo Z
VI
W rW-
N L
C
V.
<jI
G W
C
• u
h
�F- O10
W O<
0'
mo
W = Z N
N W' I..
We
N J
J J m
Y �O
4
W I'
Q
T
1 W
I t. _l
t Z
I ✓ '
1 �
b p
Z ,
H
osF-
inti N
= U <
W
d y �
1 J W
i >
O
1 y
go
Q m J
o_ U '
VWi f•' W
W >
Z e
W ,
j O
�1 t
-----------------------------------------------------------------------------
1 UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OFiCOLORADO AT DENVER
1 ---SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
--------- ------- ---------------- ---- -------------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ..............................
ON DATE 12-26-1995 AT TIME 12:17:01
*** PROJECT TITLE: The Ponds
1 *** GRATE INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: $ J..jL 7 6aK pr.a Pl). 5 rDe- pF (jospRp �c.ci T�
1 INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
1 INLET GRATE WIDTH (ft)= 11.50
INLET GRATE LENGTH (ft)= 4.83
INLET GRATE TYPE =Type 16 Grate Inlet
1 NUMBER OF GRATES = 1.00
SUMP DEPTH ON GRATE (ft)= 3.00
GRATE OPENING AREA RATIO M = 0.60
1 IS THE INLET GRATE NEXT TO A CURB ?-- NO
Note: Sump is the additional depth to flow depth.
STREET GEOMETRIES:
iSTREET LONGITUDINAL SLOPE (%) = 1.00
STREET CROSS SLOPE (%) = 2.00
1 STREET MANNING N = 0.016
GUTTER DEPRESSION (inch)= 1.50
GUTTER WIDTH (ft) = 2.00
1 STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 49.00
1 GUTTER FLOW DEPTH (ft) = 1.11
FLOW VELOCITY ON STREET (fps)= 7.14
FLOW CROSS SECTION AREA (sq ft)= 24.73
GRATE CLOGGING FACTOR (%)= 50.00
1 CURB OPENNING CLOGGING FACTOR(%)= 10.00
INLET INTERCEPTION CAPACITY:
1 FOR 1 GRATE INLETS:
DESIGN DISCHARGE (cfs)= 175.00
1 IDEAL GRATE INLET CAPACITY (cfs)= 363.28
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)= 175.00
CARRY-OVER FLOW (cfs)= 0.00
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED (cfs)= 175.00
CARRY-OVER FLOW (cfs)= 0.00
1
11
No Text
TV F. L ComkL zcx 6,,.Lv y-ul-
. , 1
' CURRENT DATE: 10 -19 -19 9 5 L L/,L �� Li.�/ sJ �� �`' WI,E DATE: 10 -19 -19 95
CURRENT TIME: 19:19:24 FILE NAME: PVLBOX
'
FHWA CULVERT ANALYSIS
HY-8, VERSION
4.3
'
C
SITE DATA
CULVERT
SHAPE,
MATERIAL, INLET
U--------------------------
-----------------------------------------------
L
V
INLET
ELEV.
OUTLET
ELEV.
CULVERT
LENGTH
BARRELS
SHAPE
SPAN
RISE
MANNING
INLET
#
(FT)
--------------------------
(FT)
(FT)
MATERIAL
(FT)
(FT)
n
TYPE
1
11.00
10.71
81.20
------------------------------------------
1 RCB
7.00
4.00
.013
7
CONVENTIONAL
2
3
4
5
6
SUMMARY OF CULVERT FLOWS (CFS)
FILE:
PVLBOX
DATE: 10-19-1995
ELEV (FT)
TOTAL
1
2 3
4
5
6
ROADWAY
ITR
11.00
0
0
0 0
0
0
0
0
1
11.71
4
4
0 0
0
0
0
0
1
'
12.19
8
8
0 0
0
0
0
0
1
12.57
12
12
0 0
0
0
0
0
1
12.88
16
16
0 0
0
0
0
0
1
13.16
20
20
0 0
0
0
0
0
1
'
13.41
24
24
0 0
0
0
0
0
1
13.63
28
28
0 0
0
0
0
0
1
13.84
32
32
0 0
0
0
0
0
1
'
14.04
36
36
0 0
0
0
0
0
1
14.22
40
40
0 0
0
0
0
0
1
17.50
116
116
0 0
0
0
0
OVERTOPPING
I
I
I
SUMMARY OF ITERATIVE SOLUTION ERRORS
HEAD
ERROR(FT) Y
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
<1> TOLERANCE (FT) = 0.010
HEAD
ELEV (FT)
11.00
11.71
12.19
12.57
12.88
13.16
13.41
13.63
13.84
14.04
14 22
FILE: PVLBOX
TOTAL
FLOW(CFS)
0
4
8
12
16
20
24
28
32
36
40
FLOW
ERROR(CFS)
0
0
0
0
0
0
0
0
0
0
0
DATE: 10-19-1995
6 FLOW
ERROR
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
<2> TOLERANCE (%) = 1.000
2
CURRENT DATE: 10-19-1995 FILE DATE: 10-19-1995
' CURRENT TIME: 19:19:24 FILE NAME: PVLBOX
PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 7 BY 4 ) RCB
'DIS- HEAD- INLET OUTLET
CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER
FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH
(cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft)
0 11.00 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 -0.11
4 11.71 0.40 0.71 3-Mlt 0.17 0.22 0.64 0.90 0.45 0.90
8 12.19 0.56 1.19 3-Mlt 0.33 0.34 0.83 1.38 0.56 .1.38
12 12.57 0.72 1.57 3-Mlt 0.45 0.45 0.98 1.75 0.63 1.75
16 12.88 0.87 1.88 3-Mlt 0.53 0.55 1.11 2.06 0.68 2.06
20 13.16 1.01 2.16 3-Mlt 0.62 0.63 1.23 2.33 0.73 2.33
24 13.41 1.14 2.41 3-Mlt 0.70 0.72 1.33 2.57 0.77 2.57
28 13.63 1.26 2.64 3-Mlt 0.79 0.79 1.43 2.79 0.80 2.79
32 13.84 1.38 2.85 3-Mlt 0.85 0.87 1.53 3.00 0.83 3.00
36 14.04 1.49 3.04 3-Mlt 0.92 0.94 1.61 3.19 0.86 3.19
40 14.22 1.60 3.23 3-Mlt 0.99 1.01 1.70 3.37 0.88 3.37
El. inlet face invert 11.00 ft El. outlet invert 10.71 ft
El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
**** SITE DATA ***** EMBANKMENT TOE **************
UPSTREAM STATION (FT) 100.00
UPSTREAM ELEVATION (FT) 11.00
UPSTREAM EMBANKMENT SLOPE (X:1) 0.10
DOWMSTREAM STATION (FT) 182.00
DOWNSTREAM ELEVATION (FT.) 10.71
DOWNSTREAM EMBANKMENT SLOPE (X:1) 0.10
***** CULVERT DATA SUMMARY ************************
BARREL SHAPE BOX
BARREL SPAN 7.00 FT
BARREL RISE 4.00 FT
BARREL MATERIAL CONCRETE
BARREL MANNING'S N 0.013
INLET TYPE CONVENTIONAL
\ INLET EDGE AND WALL 1:1 BEVEL
INLET DEPRESSION NONE
1
i
C
CURRENT DATE: 10-19-1995
' CURRENT TIME: 19:19:24
3 141
FILE DATE: 10-19-1995
FILE NAME: PVLBOX
TAILWATER
REGULAR
CHANNEL CROSS SECTION
****************
BOTTOM WIDTH (FT)
SIDE SLOPE H/V (X:1)
7.00
1.8
CHANNEL
SLOPE V/H (FT/FT)
0.000
MANNING'S
N (.01-0.1)
0.040
CHANNEL
INVERT ELEVATION
(FT)
10.60
CULVERT
NO.1 OUTLET INVERT ELEVATION
10.71 FT
******* UNIFORM
FLOW RATING CURVE
FOR DOWNSTREAM CHANNEL
FLOW
W.S.E. FROUDE
DEPTH
VEL.
SHEAR
(CFS)
(FT) NUMBER
(FT)
(FPS)
(PSF)
'
0.00
10.60 0.000
0.00
0.00
0.00
4.00
11.61 0.079
1.01
0.45
0.01
8.00
12.09 0.081
1.49
0.56
0.02
12.00
16.00
12.46 0.082
12.77 0.082
1.86
2.17
0.63
0.68
0.02
0.03
20.00
13.04 0.082
2.44
0.73
0.03
24.00
13.28 0.082
2.68
0.77
0.03
28.00
13.50 0.083
2.90
0.80
0.04
32.00
13.71 0.083
3.11
0.83
0.04
36.00
13.90 0.083
3.30
0.86
0.04
40.00
14.08 0.083
3.48
0.88
0.04
ROADWAY OVERTOPPING
DATA
ROADWAY SURFACE
PAVED
EMBANKMENT
TOP WIDTH (FT)
50.00
'
CREST LENGTH
(FT)
100.00
OVERTOPPING CREST ELEVATION
(FT)
17.50
1
------------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY � 4L
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER l`
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------- - -
-- --------------------------------------------------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 09-16-1996 AT TIME 18:43:25
f*** PROJECT TITLE: ponds
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: "eL� D 2 �J
y 1�
' INLET HYDRAULICS: ON A GRADE.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 20.00
REQUIRED CURB OPENING LENGTH (ft)= 24.06
'
IDEAL CURB OPENNING EFFICIENCY = 0.96
ACTURAL CURB OPENNING EFFICIENCY = 0.94
'
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) = 1.00
STREET CROSS SLOPE (°a) = 2.00
STREET MANNING N = 0.016
GUTTER DEPRESSION .(inch)= 1.50
GUTTER WIDTH (ft) = 2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 13.47
GUTTER FLOW DEPTH (ft) = 0.39
FLOW VELOCITY ON STREET (fps)= 3.17
FLOW CROSS SECTION AREA (sq ft)= 1.94
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR (°c)= 5.00
INLET INTERCEPTION CAPACITY:
'
IDEAL INTERCEPTION CAPACITY (cfs)= 5.92
/
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)=
6.17
FLOW INTERCEPTED (cfs)=
5.80
CARRY-OVER FLOW (cfs)=
0.37
'
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
6.17
FLOW INTERCEPTED (cfs)=
5.62
----CARRY-OVER -FLOW (cfs)=
------- -----------------------------
0.55
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
'
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT
DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND
-------------------------------------------------------------------=----------
UD&FCD
'USER:KEVIN
GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 09-16-1996 AT TIME 18:44:09
*** PROJECT TITLE: ponds
***
I
I
11
1
CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: .le '40 too-yIz-
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
REQUIRED CURB OPENING LENGTH (ft)=
IDEAL CURB OPENNING EFFICIENCY =
ACTURAL CURB OPENNING EFFICIENCY =
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
STREET CROSS SLOPE M =
STREET MANNING N -
GUTTER DEPRESSION (inch)=
GUTTER WIDTH (ft) =
STREET FLOW HYDRAULICS: '
20.00
54.43
0.56
0.54
1.00
2.00
0.016
1.50
2.00
WATER SPREAD ON STREET (ft) = 24.63
GUTTER FLOW DEPTH (ft) = 0.62
FLOW VELOCITY ON STREET (fps)= 4.47
FLOW CROSS SECTION AREA (sq ft)= 6.19
GRATE CLOGGING FACTOR (°s)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 5.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 15.57
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)=
27.72
FLOW INTERCEPTED (cfs) =
14.92
CARRY-OVER FLOW (cfs)=
12.80
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
27.72
FLOW INTERCEPTED (cfs)=
14.79
-CARRYOVER
------ - --- -CARRY-OVER FLOW (cfs)=
12.93
-------------------------------------
UDINLET: INLET AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT
DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND
------------------------------------------------------------------------------
UD&FCD
GINGERY-RDB INC FT. COLLINS COLORADO..............................
rUSER:KEVIN
ON DATE 09-16-1996 AT TIME 18:45:39
*** PROJECT TITLE: ponds
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER:�,O���
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
35.00
REQUIRED CURB OPENING LENGTH (ft)=
34.49
IDEAL CURB OPENNING EFFICIENCY =
1.00
ACTURAL CURB OPENNING EFFICIENCY =
1.00
'
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
1.00
STREET CROSS SLOPE (%)
2.00
STREET MANNING N
0.016
GUTTER DEPRESSION (inch)=
1.50
'
GUTTER WIDTH (ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
17.59
GUTTER FLOW DEPTH (ft) =
0.48
FLOW VELOCITY ON STREET (fps)=
3.66
FLOW CROSS SECTION AREA (sq ft)=
GRATE CLOGGING FACTOR (%)=
3.22
50.00
CURB OPENNING CLOGGING FACTOR(%)=
5.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
11.82
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
11.82
FLOW INTERCEPTED
(cfs)=
11.79,E
CARRY-OVER
FLOW (cfs)=
0.03
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
11.82
FLOW INTERCEPTED (cfs)=
11.23
CARRY-OVER
FLOW (cfs)=
0.59
1
44
------------------------------------------------------------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
-----SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-------------------------------------------
-------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 09-16-1996 AT TIME 18:47:57
*** PROJECT TITLE: INLET DESIGN
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: j 62, 2-y2
INLET HYDRAULICCS: ON A GRADE. I
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
10.00
REQUIRED CURB OPENING LENGTH (ft)=
8.40
'
IDEAL CURB OPENNING EFFICIENCY =
1.00
ACTURAL CURB OPENNING EFFICIENCY =
1.00
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
1.00
STREET CROSS SLOPE (%) =
2.00
'
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.50
GUTTER WIDTH (ft) =
2.00
'
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
5.33
GUTTER FLOW DEPTH (ft) =
0.23
FLOW VELOCITY ON STREET (fps)=
2.32
FLOW CROSS SECTION AREA (sq ft)=
0.41
GRATE CLOGGING FACTOR (%)=
50.00
CURB OPENNING CLOGGING FACTOR(%)=
10.00
INLET. INTERCEPTION CAPACITY:
'
IDEAL INTERCEPTION CAPACITY (cfs)=
0.95
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
0.95
FLOW INTERCEPTED (cfs)=
0.95
CARRY-OVER
FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
0.95
FLOW INTERCEPTED
(cfs)=
0.85
CARRY-OVER
FLOW (cfs)=
0.10
------------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
--SUPPORTED-BY-METRO DENVER CITIES/COUNTIES AND UD&FCD
-----
- --
--
-----------------------------------------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 09-16-1996 AT TIME 18:53:38
' *** PROJECT TITLE: dp 60
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 10
J
Ci
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 15.00
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 45.00
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.25
Note: The sump depth is additional depth to flow depth.
STREET GEOMETRIES:
' STREET LONGITUDINAL SLOPE (t) =
STREET CROSS SLOPE (%) =
STREET MANNING N =
' GUTTER DEPRESSION (inch)=
GUTTER WIDTH (ft) =
11
I
STREET FLOW HYDRAULICS:
1.00
2.00
0.016
1.50
2.00
WATER SPREAD ON STREET (ft) = 23.50
GUTTER FLOW DEPTH (ft) = 0.60
FLOW VELOCITY ON STREET (fps)= 4.34
FLOW CROSS SECTION AREA (sq ft)= 5.65
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(01)= 5.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
BY FAA HEC-12 METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
BY DENVER UDFCD METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
32.97
(cfs)=
24.45
(cfs) =
24.45
/
(cfs)=
0.00
(cfs) =
24.45
(cfs)=
24.45
(cfs)=
0.00
I ,LT
------------------------------------------------------------------------------
1 UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
--SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
----
-------- ------------------------------------------------------------
-
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................
ON DATE 09-16-1996 AT TIME 18:55:58
1 *** PROJECT TITLE: dp 67 ✓
1 *** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 10
'
INLET HYDRAULICS: IN A SUMP.
1
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
15.00
HEIGHT OF CURB OPENING (in)=
6.00
1
INCLINED THROAT ANGLE (degree)=
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.25
'
Note: The sump depth is additional
depth to
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
1.00
STREET CROSS SLOPE (°*) =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.50
1
GUTTER WIDTH (ft) =
2.00
1
1
1
1
1
i
i
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) T 25.00
GUTTER FLOW DEPTH (ft) = 0.63
FLOW VELOCITY ON STREET (fps)= 4.51
FLOW CROSS SECTION AREA (sq ft)= 6.38
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(°*)= 5.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
BY FAA HEC-12 METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
BY DENVER UDFCD METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
37.72
(cfs) =
(cfs) =
(cfs) =
(cfs) =
(cfs) =
(cfs) =
flow depth.
28.87
28.87
0.00
28.87
28.87
0.00
�I
(L�5
11
11
H
1
11
I
*** CURB OPENING INLET HYDRAULICS AND SIZING.
INLET ID NUMBER: 10
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 5.00
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 0.00
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.25
Note: The sump depth is additional depth to flow depth.
STREET GEOMETRIES:
STREET
LONGITUDINAL
SLOPE (o) =
1.00
STREET
CROSS SLOPE
(%) =
2.00
STREET
MANNING N
=
0.016
GUTTER
DEPRESSION
(inch)=
1.50
GUTTER
WIDTH
(ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET
(ft) =
9.03
GUTTER FLOW DEPTH
(ft) =
0.31
FLOW VELOCITY ON STREET
(fps)=
2.65
FLOW CROSS SECTION AREA
(sq ft)=
0.94
GRATE CLOGGING FACTOR
M =
50.00
CURB, OPENNING CLOGGING
FACTOR (%)=
20.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 8.19
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 2.48
FLOW INTERCEPTED (cfs)= 2.48
CARRY-OVER FLOW (cfs)= 0.00
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.48
FLOW INTERCEPTED (cfs)= 2.48
CARRY-OVER FLOW (cfs)= 0.00
------------------------------------------------------------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
-------------SUPPORTED -BY-METRO DENVER CITIES/COUNTIES AND UD&FCD
-----------------------------------------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 09-16-1996 AT TIME 19:02:47
' *** PROJECT TITLE: dp 64 100 yEZ
' *** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 10
INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
10.00
HEIGHT OF CURB OPENING (in)=
6.00
'
INCLINED THROAT ANGLE (degree)=
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.25
'
Note: The sump depth is additional depth to flow
depth.
STREET GEOMETRIES:
'
STREET LONGITUDINAL SLOPE ('k) =
1.00
STREET CROSS SLOPE M =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)--
1.50
'
GUTTER WIDTH (ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
12.53
GUTTER FLOW DEPTH (ft) =
0.38
FLOW VELOCITY ON STREET (fps)=
3.05
'
FLOW CROSS SECTION AREA (sq ft)=
1.70
GRATE CLOGGING FACTOR (%)=
50.00
CURB OPENNING CLOGGING FACTOR (%)=
5.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
21.26
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
5.16
FLOW INTERCEPTED
(cfs)=
5.16
CARRY-OVER
FLOW (cfs)=
0.00
'
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
5.16
5.16
CARRY-OVER
FLOW (cfs)=
0.00
----------------------------------------=-------------------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
--SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
----------- --------------------------------------------------------------
-
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................
ON DATE 09-16-1996 AT TIME 19:04:10
' *** PROJECT TITLE: dp 66 10 0-\
' *** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 10.
' INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
5.00
HEIGHT OF CURB OPENING (in)=
6.00
'
INCLINED THROAT ANGLE (degree)=
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.25
'
Note: The sump depth is additional
depth to flow
depth.
STREET GEOMETRIES:
'
STREET LONGITUDINAL SLOPE (%) =
1.00
STREET CROSS SLOPE (°s) =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.50
'
GUTTER WIDTH (ft) =
2.00
STREET FLOW HYDRAULICS:
'
WATER SPREAD ON STREET (ft) =
11.50
GUTTER FLOW DEPTH (ft) =
0.35
FLOW VELOCITY ON STREET (fps)=
2.93
'
FLOW CROSS SECTION AREA (sq ft)=
1.45
GRATE CLOGGING FACTOR 06)=
50.00
'
CURB OPENNING CLOGGING FACTOR(%)=
10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
9.31
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
4.27
FLOW INTERCEPTED
(cfs)=
4.27
CARRY-OVER
FLOW (cfs)=
0.00
'
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
4.27
4.27
CARRY-OVER
FLOW (cfs)=
0.00
1
i .
------------------------------------------------------------------------------
1 UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
------- - ---- -SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
--------------------------------------------------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 09-16-1996 AT TIME 19:05:26
1 *** PROJECT TITLE: dp 70 Cn1 GVLr� 4"1 "rjG*�� L
' *** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 10
i
1
1
1
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 20.00
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 0.00
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.25
Note: The sump depth is additional depth to flow depth.
STREET GEOMETRIES:
1 STREET LONGITUDINAL SLOPE (%) =
STREET CROSS SLOPE (%) =
STREET MANNING N =
' GUTTER DEPRESSION (inch)=
GUTTER WIDTH (ft) =
1
1
1
1
1
1
STREET FLOW HYDRAULICS:
1.00
2.00
0.016
1.50
2.00
WATER SPREAD ON STREET (ft) = 24.06
GUTTER FLOW DEPTH (ft) = 0.61
FLOW VELOCITY ON STREET (fps)= 4.41
FLOW CROSS SECTION AREA (sq ft)= 5.92
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 5.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
BY FAA HEC-12 METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
BY DENVER UDFCD METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
49.75
(cfs)=
26.26
(cfs)=
26.26
(cfs)=
0.00
(cfs)=
26.26
(cfs)=
26.26
(cfs)=
0.00
0
NO
1
11
EMERGENCY OVERFLOW
CALCULATIONS
------------------------------------
HYDRO POND
RESERVOIR FLOOD ROUTING AND FLOW ANALYSIS
VERSION 3
DEVELOPED BY
JAMES C.Y. GUO, PHD, P.E.
DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF COLORADO AT DENVER
' EXECUTED BY DENVER CITY/COUNTY USE ONLY .......................................
ON DATE 08-15-1995 AT TIME 11:30:08
-----------------------------
*** PROJECT TITLE: THE PONDS AT OVERLAND TRAIL - PHASE 1 - POND 396
*** LAYOUT OF OUTLET WORKS:
NO ORIFICE IS SPECIFIED.
' THERE ARE 1 WEIR(S)
----------------------------------------------------------------------
CREST ELEV CREST LENGTH WEIR COEFF SIDE SLOPE Z
FEET ' ----------------------FEET------------------ FT/FT
-- --------------------
5118.50 10.00 3.00 4.00
' ***
STAGE -AREA -STORAGE
CURVE FOR THE RESERVOIR:
'
----------------------------------------------------------------------
ELEVATION
CONTOUR EQUIVALENT
POND BANK
CUMULATED
(STAGE)
AREA DIAMETER
SIDE SLOPE
STORAGE
FEET
ACRES
FEET
FEET/FEET
ACRE -FT
----------------------------------------------------------------------
5109.00
0.00
0.00
0.00
0.00
5110.00
0.56
176.24
88.12
0.28
5111.00
2.56
376.81
100.29
1.84
'
5112.00
2.86
398.27
10.73
4.55
5113.00
3.84
461.49
31.61
7.90
5114.00
4.02
472.18
5.35
11.83
5115.00
4.78
514.89
21.35
16.23
'
5116.00
3.70
453.00
30.94
20.47
5117.00
6.80
614.12
80.56
25.72
5118.00
4.32
489.49
62.32
31.28
'
5119.00
7.88
661.09
85.80
37.38
5120.00
6.04
578.78
41.15
44.34
'
***
THE GIVEN
INFLOW AND COMPUTED OUTFLOW
HYDROGRAPHS
ARE TABULATED AS FOLLOWS:
-----------
-------------------
--------------------------
------------------
IN
RESERVOIR
STAGE AND
OUTFLOW
TIME
RATE
STAGE STORAGE
ORIFICE
WEIR
OUTFLOW
MINUTE--
----CFS------FEET
ACRE -FT
CFS
15.00
0.00
-------CFS--------CFS
5109.00 0.00
0.00
------
0.00
0.00
'
30.00-
45.00
15.20
154.20
5109.56 0.16
5111.03 1.91
0.00
0.00
0.00
0.00
0.00
0.00
60.00
381.80
5112.85 7.44
0.00
0.00
0.00
75.00
293.80
5114.59 14.42
0.00
0.00
0.00
90.00
205.90
5115.78
19.59
0.00
0.00
0.00
'
105.00
120.00
142.50
98.30
5116.51
5116.98
23.18
25.67
0.00
0.00
0.00
0.00
0.00
0.00
135.00
67.40
5117.30
27.38
0.00
0.00
0.00
150.00
46.60
5117.51
28.56
0.00
0.00
0.00
'
165.00
32.90
5117.65
29.38
0.00
0.00
0.00
180.00
23.80
5117.76
29.97
0.00
0.00
0.00
195.00
16.10
5117.85
30.38
0.00
0.00
0.00
210.00
11.50
5117.88
30.67
0.00
0.00
0.00
'
225.00
8.60
5117.92
30.87
0.00
0.00
0.00
240.00
6.80
5117.96
31.03
0.00
0.00
0.00
255.00
5.30
5117.98
31.16
0.00
0.00
0.00
'
270.00
4.30
5118.00
31.26
0.00
0.00
0.00
285.00
3.40
5118.01
31.34
0.00
0.00
0.00
300.00
2.70
5118.02
31.40
0.00
0.00
0.00
315.00
2.10
5118.03
31.45
0.00
0.00
0.00
'
330.00
1.70
5118.03
31.49
0.00
0.00
0.00
345.00
1.30
5118.05
31.52
0.00
0.00
0.00
360.00
1.10
5118.04
31.54
0.00
0.00
0.00
375.00
0.80
5118.05
31.56
0.00
0.00
0.00
390.00
0.70
5118.05
31.58
0.00
0.00
0.00
405.00
0.50
5118.05
31.59
0.00
0.00
0.00
420.00
0.40
5118.06
31.60
0.00
0.00
0.00
'
435.00
0.20
5118.06
31.61
0.00
0.00
0.00
450.00
0.20
5118.05
31.61
0.00
0.00
0.00
465.00
0.10
0.00
0.00
0.00
0.00
0.00
NOTE: OUTFLOW WAS
DETERMINED BY
POND
OUTLETS
OUTFLOW = ORIFICE
FLOW +
WEIR FLOW
ORIFICE FLOW
= TOTAL FLOW
RATE
THROUGH THE
ORIFICES
'
WEIR FLOW
= TOTAL FLOW
RATE
THROUGH THE
WEIRS
' ***
DISTRIBUTION OF WEIR
***
FLOW AMONG
WEIRS
IS LISTED
BELOW
WEIR FLOW
FOR THE. WEIR
AT ELEVATION OF
5118.5
FEET
--TIME-FLOW-RATE
TIME -FLOW
-RATE
TIME -FLOW
-RATE
MINUTE
CFS
MINUTE
CFS
MINUTE
CFS
------------------------------------------------------------
15.00
0.00
30.00
0.00
45.00
0.00
60.00
0.00
75.00
0.00
90.00
0.00
105.00
0.00
120.00
0.00
135.00
0.00
'
150.00
0.00
165.00
0.00
180.00
0.00
195.00
0.00
210.00
0.00
225.00
0.00
240.00
0.00
255.00
0.00
270.00
0.00
285.00
0.00
300.00
0.00
315.00
0.00
330.00
0.00
345.00
0.00
360.00
0.00
375.00
0.00
390.00
0.00
405.00
0.00
420.00
0.00
435.00
0.00
450.00
0.00
'
465.00
0.00
0.00
0.00
0.00
0.00
le
*** COMPARISON BETWEEN PEAK RELEASE RATE AND MAXIMUM ALLOWABLE REALEASE RATE
----------------------------------------------------------------------
AT OUTFLOW PEAK AT MAXIMUM
------------RELEASE RATE ALLOWABLE RATE
------------------------------------------------------
i5S
r-P
u
11
THE RELEASE FLOW RATE IN CFS
STAGE IN FEET AT EACH RELEASE RATE
STORAGE AT EACH RELEASE RATE ACRE -FT
OUTFLOW DISTRIBUTION AMONG THE WEIRS)
AT ELEVATION IN FEET OF 5118.50
0.00
5118.05
31.61
IiiffiIl]
12.00
5119.03
192AW- i]
11.62
r
---------------------------------------
HYDRO POND
RESERVOIR FLOOD ROUTING AND FLOW ANALYSIS
VERSION 3
DEVELOPED BY
' JAMES C.Y. GUO, PHD, P.E.
DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF COLORADO AT DENVER
EXECUTED BY DENVER CITY/COUNTY USE ONLY .......................................
ON DATE 10-10-1996 AT TIME 21:32:29
*** PROJECT TITLE THE PONDS AT OVERLAND TRAIL - PHASE 1 - POND 397
*** LAYOUT OF OUTLET WORKS:
INO ORIFICE IS SPECIFIED.
THERE ARE 1
---------=------------------------------------------------------------
WEIR(S)
CREST.ELEV CREST LENGTH
WEIR COEFF
SIDE
SLOPE Z
FEET
FEET
1V:ZH
FT/FT
---------------------=
5137.00
---------------------------------
20.00
3.00
---------------
4.00
***
STAGE -AREA
-STORAGE
CURVE FOR THE RESERVOIR:
ELEVATION
CONTOUR EQUIVALENT
POND BANK
CUMULATED
(STAGE)
AREA DIAMETER
SIDE SLOPE
STORAGE
FEET
ACRES
------ --
FEET
FEET/FEET
ACRE -FT
5132.00
0.00
0.00
0.00
0.00
5133.00
2.12
176.24
88.12
0.28
5134.00
2.20
189.32
6.54
0.80
5135.00
2.32
203.82
7.25
1.28
5136.00
2.40
212.28
4.23
1.76
5137.00
2.56
220.82
4.22
2.24
5138.00
2.68
357.64
68.46
4.50
***
THE GIVEN
INFLOW AND COMPUTED OUTFLOW
HYDROGRAPHS
ARE TABULATED AS FOLLOWS:
--------------------------------------------------------------------------
INFLOW
RESERVOIR STAGE AND OUTFLOW
TIME
RATE
STAGE
STORAGE
ORIFICE
WEIR
OUTFLOW
MINUTE
CFS
FEET
ACRE -FT
CFS
CFS
CFS
--------------------------------------------------------------------------
0.00
0.00
5132,00
0.00
0.00
0.00
0.00
10.00
2.00
5132.00
0.01
0.00
0.00
0.00
20.00
25.00
5132.75
0.20
0.00
0.00
0.00
30.00
115.00
5134.81
1.16
0.00
0.00
0.00
40.00
194.00
5137.81
2.68
0.00
66.21
66.21 .
50.00
221.00
5138.34
4.90
0.00
122.68
122.68
60.00
173.00
5137.59
4.21
0.00
196.56
196.56
70.00
136.00
5137.44
3.05
0.00
146.21
146.21
80.00
104.00
5137.28
2.55
0.00
85.75
85.75
90.00
83.00
5137.16
2.31
0.00
63.51
63.51
100.00
68.00
5137.00
2.24
0.00
33.43
33.43
110.00 58.00 5136.90
2.09
0.00 17.70
17.70
I�
M
120.00 49.00 5136,85
130.00 37.00 5136.70
2.01
1.93
0.00 4.00
0.00 0.00
4.00
0.00
140.00 26.00 5136.62
1.56
0.00 0.00
0.00
150.00 7.00, 5136.46
1.37
0.00 0.00
0.00
160.00 0.00 5136.34
1.34
0.00 0.00
0.00
170.00 0.00 5136.20
1.28
0.00 0.00
0.00
180.00 0.00 5136.05
1.18
0.00 0.00
0.00
190.00 0.00 5136.00
200.00 0.00 5135.76
1.12
1.01
0.00 0.00
0.00 0.00
0.00
0.00
NOTE: OUTFLOW WAS DETERMINED BY POND OUTLETS
OUTFLOW = ORIFICE FLOW + WEIR FLOW
ORIFICE FLOW = TOTAL
FLOW RATE THROUGH THE ORIFICES
WEIR FLOW = TOTAL
FLOW RATE THROUGH THE WEIRS
***
DISTRIBUTION OF WEIR FLOW AMONG WEIRS
IS LISTED BELOW
WEIR FLOW FOR THE
WEIR AT ELEVATION OF 5137 FEET
------------------------------------------------------------
TIME FLOW RATE TIME
FLOW RATE
TIME FLOW RATE
�.
MINUTE CFS MINUTE
------------------------------------------------------------
CFS
MINUTE CFS
10.00 0.00 20.00
40.00 66.21 50.00
0.00
122.68
30.00 0.00
60.00 196.56
70.00 146.21 80.00
85.75
90.00 63.51
100.00 33.43 110.00
17.70
120.00 4.00
130.00 0.00 140.00
0.00
150.00 0.00
*** COMPARISON BETWEEN PEAK RELEASE RATE AND MAXIMUM ALLOWABLE REALEASE
RATE
----------------------------------------------------------------------
AT
OUTFLOW PEAK AT
MAXIMUM
---------------------------------
------RELEASE
RATE ALLOWABLE RATE
----------------------------
THE RELEASE FLOW RATE IN CFS
STAGE IN FEET AT EACH RELEASE RATE
196.56
5138.34
145.00
5137.25
STORAGE AT EACH RELEASE RATE ACRE -FT
4.90
4.40
OUTFLOW DISTRIBUTION AMONG
THE WEIR(S)
AT ELEVATION IN FEET OF
5137.00
196.56
i
1
I
1
-------
HYDRO POND
RESERVOIR FLOOD ROUTING AND FLOW
ANALYSIS
VERSION 3
DEVELOPED BY
JAMES C.Y. GUO, PHD, P.E.
DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF COLORADO AT DENVER
EXECUTED
BY DENVER CITY/COUNTY USE ONLY .......................................
ON DATE 09-16-1996 AT TIME
14:32:29
*** PROJECT
TITLE THE
PONDS AT OVERLAND TRAIL - PHASE 1 - POND 399
*** LAYOUT
OF OUTLET WORKS:
NO
ORIFICE IS
SPECIFIED.
THERE
ARE 1
WEIR(S)
----------------------------------------------------------------------
CREST ELEV CREST LENGTH WEIR COEFF
SIDE
SLOPE Z
-------
-.---FEET FEET----------------1V:ZH
-------------
FT/FT
5114.00 20.00 3.00
-------------------
4.00
*** STAGE -AREA -STORAGE
CURVE FOR THE RESERVOIR:
----------------------------------------------------------------------
ELEVATION
CONTOUR EQUIVALENT
POND BANK
CUMULATED
(STAGE)
AREA DIAMETER SIDE
SLOPE
STORAGE
---------------------
FEET
ACRES FEET
FEET/FEET
ACRE -FT
5109.00
5110.00
-------------------------------------------------
0.00 0.00
2.12 342.90
0.00
171.45
0.00
1.06
5111.00
2.20 350.81
159.45
2.22
5112.00
2.32 358.71
126.69
3.48
5113.00
2.40 367.80
120.30
4.84
5114.00
2.56 376.81
113.93
6.32
5115.00
2.68 386.90
97.19
7.90
*** THE GIVEN INFLOW AND COMPUTED OUTFLOW HYDROGRAPHS
ARE TABULATED AS FOLLOWS:
--------------------------------------------------------------------------
INFLOW
RESERVOIR STAGE AND
OUTFLOW
TIME
RATE
STAGE STORAGE ORIFICE
WEIR
OUTFLOW
MINUTE
CFS
FEET ACRE -FT CFS
CFS
CFS
--------------------------------------------------------------------------
30.00
0.00
5109.00 0.00 0.00
0.00
0.00
60.00
17.00
5109.38 0.35 0.00
0.00
0.00
90.00
22.70
5110.05 1.17 0.00
0.00
0.00
120.00
24.50
5110.90 2.15 0.00
0.00
0.00
150.00
25.70
5111.76 3.18 0.00
0.00
0.00
180.00
25.80
5112.60 4.25 0.00
0.00
0.00
210.00
25.00
5113.33 5.30 0.00
0.00
0.00
240.00
24.10
5113.98 6.31 0.00
0.00
0.00
270.00
23.30
5114.39 6.97 0.00
15.75
15.75
300.00
22.40
5114.51 7.10 0.00
23.51
23.51
i
330.00
21.40
5114.46
7.10
0.00
20.43
20.43
360.00
20.40
5114.49
7.08
0.00
22.11
22.11
390.00
19.50
5114.45
7.05
0.00
_
19.17
19.17
420.00
18.60
5114.44
7.05
0.00
19.03
19.03
450.00
480.00
17.50
16.40
5114.44
5114.40
7.01
6.99
0.00
0.00
18.90
16.14
18.90
16.14
510.00
15.40
5114.41
6.96
0.00
17.05
17.05
540.00
14.40
5114.37
6.93
0.00
14.43
14.43
570.00
13.50
5114.36
6.92
0.00
13.90
13.90
600.00
12.60
5114.34
6.91
0.00
12.67
12.67
630.00
0.00
5114.27
6.72
0.00
8.95
8.95
660.00
690.00
0.00
0.00
5114.10
0.00
6.50
0.00
1.86
1.86
0.00
0.00
0.00
0.00
NOTE: OUTFLOW WAS
DETERMINED BY POND
OUTLETS
OUTFLOW = ORIFICE
FLOW + WEIR FLOW
ORIFICE FLOW
= TOTAL
FLOW RATE
THROUGH THE
ORIFICES
WEIR FLOW
= TOTAL
FLOW RATE
THROUGH THE
WEIRS
***
DISTRIBUTION OF WEIR
FLOW AMONG WEIRS
IS LISTED
BELOW
*** WEIR FLOW
FOR THE
WEIR AT ELEVATION
OF
5114 FEET
--------------------
---------------------------------------
TIME
FLOW RATE
TIME
FLOW RATE
TIME
FLOW RATE
MINUTE
-------------------------------------
CFS
MINUTE
CFS
CFS
30.00
0.00
60.00
0.00
---MINUTE
90.00
-----
0.00
120.00
0.00
150.00
0.00
180.00
0.00
210.00
0.00
240.00
0.00
270.00
15.75
300.00
23.51
330.00
20.43
360.00
22.11
390.00
19.17
420.00
19.03
450.00
18.90
480.00
16.14
510.00
17.05
540.00
14.43
'
570.00
13.90
600.00
12.67
630.00
8.95
660.00
1.86
690.00.
0.00
0.00
0.00
*** COMPARISON BETWEEN PEAK RELEASE RATE AND MAXIMUM ALLOWABLE REALEASE RATE
----------------------------------------------------------------------
AT
OUTFLOW PEAK
AT MAXIMUM
RELEASE RATE
ALLOWABLE RATE
rTHE
----------------------------------------------------------------------
RELEASE FLOW RATE IN CFS
23.51
16.00
STAGE IN FEET AT EACH RELEASE RATE
5114.51
5114.41
'
STORAGE AT EACH RELEASE RATE ACRE -FT
7.10
6.97
'
OUTFLOW DISTRIBUTION AMONG THE WEIR(S)
AT ELEVATION IN FEET OF 5114.00
23.51
15.99
I
1,
1 6t,
�l
I
I
I
u
I
I
1
1
1
11
1
ENERGY DISSIPATION
STRUCTURE DOCUMENTATION
O
ol
1
i
i
I
A
r
I
e
I
Section
c ion 6
Stilling basin for pipe or open channel outlets
(Basin VI)
aE stilling basin developed in these tests is an
impact -type energy dissipator, contained in a
relatively small boxlike structure, which re-
quires no tail water for successful performance.
Although the emphasis in this discussion is placed
on use with pipe outlets, the entrance structure
may be modified for use with an open channel
en. trance.
Generalized design rules and procedures are
presented to allow determining the proper basin
size and all critical dimensions for a range of dis-
charges up to 339 cubic feet per second and velocities
up to about 30 feet per second. Greater discharges
may be handled by constructing multiple units
side by side. The efficiency of the basin in ac-
complisbing energy losses is greater than a
hydraulic jump of the same Froude number.
The development of this short impact -type
basin was initiated by the need for some 50 or
more stilling structures on a single irrigation
project. The need was for relatively small basins
providing energy dissipation independent of a tail
water curve or tail water of any ]rind.
Since individual model studies on 50 small
stilling structures were too costly a procedure,
tests were made on a single setup which was
modified as necessary to generalize the design for
the range of expected operations.
Test Procedure
Hydraulic models. Hydraulic models were used
to develop the stilling basin, determine the dis-
charge limitations, and obtain dimensions for the
various parts of the basin. Basins 1.6 to 2.0 feet
wide were used in the tests. The inlet pipe was
6 s inches, inside diameter, and was equipped with
a slide gate well upstream from the basin entrance
so that the desired relations between head, depth,
and velocity could be obtained. The pipe was
transparent so that backwater effects in the pipe
could be studied. Discharges of over 3 cubic feet
per second and velocities up to 15 feet per second
81
j61.
167 Z-
I
11
I
I
82
could be obtained during the tests. Hydraulic
model -prototype relations were used to scale up s
the results to predict performance for discharges
up to 339 second -feet and velocities up to 30 feet
per second.
The basin was tested in a tail box containing
gravel formed into a trapezoidal channel. The
size of the gravel was changed several times dur-
ing the tests. The outlet channel bottom was
slightly wider than the basin and had 1:1 side
slopes. A tail gate was provided at the down-
stream end to evaluate the effects of tail water.
Development of basin. The shape of the basin
evolved from the development tests was the
result of extensive investigations on many different
arrangements. These tests are discussed briefly
to show the need for the various parts of the
adopted design.
With the many combinations of discharge,
velocity, and depth possible f the ainco mingfl w,
it became apparent durinroearly tests
at
some device was needed at the stilling basin
entrance to convert the many possible flow
patterns into a common pattern. The vertical
hanging baffle proved to be this device, Figure 42.
Regardless of the depth or velocity of the incoming
flow (within the prescribed limits) the flow after
striking the baffle acted the same as any other
combination of depth and velocity. Thus, some
of the variables were eliminated from the problem.
The effect of velocity alone was then investi-
gated, and it was found that for velocities 30 feet
per second and below the performance of the
structure was primarily dependent on the dis-
charge. Actually, the velocity of the incoming
flow does affect the performance of the basin, but
from a practical point of view it could be elimi-
nated from consideration. Had this not been
done, an excessive amount of testing would have
been required to evaluate and express the effect
of velocity.
For velocities of 30 feet per second or less the
basin width W was found to be a function of the
discharge, Figure 42. Other basin dimensions
are related to the width. To determine the
necessary width, erosion test results, judgment,
and operating experiences were all used, and the
advice of laboratory and design personnel was
used to obtain the finally determined limits.
Since no definite line of demarcation between a
"too wide" or "too narrow" basin exists, It was
HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS
necessary to work between two more definite lines,w-
hon in Figure 42 as the upper and lower limits.
These lines required far less judgment to deter-
mine than a single intermediate line.
Various basin sizes, discharges, and velocities
were tested taking note of the erosion, wave heights,
energy losses, and general performance. When
the upper and lower limit lines had been estab-
lished, a line about midway between the two was
used to establish the proper width of basin for
various discharges. The exact line is not shown
because strict adherence to a single curve would
result in difficult -to -use fractional dimensions.
Accuracy of this degree is not justifiable. Figure
43 shows typical performance of the recommended
stilling basin for the three limits discussed. It is
evident that the center photograph (B) represents
a compromise between the upper limit operation
which is very mild and the lower limit operation
which is approaching the unsafe range.
Using the middle range of basin widths, other
basin dimensions were determined, modified,,
and made minimum by means of trial and error
tests on the several models. Dimensions for nine
different basins are shown in Table 11. These
should not be arbitrarily reduced since in the in-
terests of economy the dimensions have been
reduced as much as is safely possible.
Performance of basin. Energy dissipation is
initiated by flow striking the vertical hanging baffle
and being turned upstream by the horizontal
portion of the baffle and by the floor, in vertical
eddies. The structure, therefore, requires no
tail water for energy dissipation as is necessary for
a hydraulic jump basin. Tail water as high as
dos Figure 42, however, will improve the per-
formance by reducing outlet velocities, providing
a smoother water surface, and reducing tendencies
toward erosion. Excessive tail water, on the
other hand, will cause some flow to pass over the
top of the baffle. This should be avoided if
possible.
The effectiveness of the basin is best illustrated
by comparing the energy losses within the struc-
ture to those which occur in a hydraulic jump.
Based on depth and velocity measurements made
in the approach pipe and in the downstream chan-
nel (no tail water), the change in momentum was
computed as explained in Section 1 for the hy-
draulic jump. The Froude number of the in -
STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS
I
_ d
•
',•�4
., i
I
i I-
Il-
--_T ..
--
v
II
II
<Q .°
s
SEC. A -A
II
I�
3
`ao__
II
II
i
��-
k
�tl
-e o,
-PLAN
------ b-------- k- PLAN
a -----� ----� ty� (equals tw with 8•max)
t"--
4 Dia.(min)--
�.
-3°Fillet
v
=_1
i
-t'------ b
Io
cr
cL
o0
Z (4emirl)
:o:
k v
I
oo7�oa
o
:.:.
___ _______
i _
I
o0
O
- -:
SECTION
Bedding '
SECTION
STILLING BASIN DESIGN
ALTERNATE
END SILL
F
W
W
LL
z
0
Nam 1,
lagMEN
mom
Now
���r���
60 so .. zoo
wlJL r1 KUC Ir4 C.F.S.
DISCHARGE LIMITS
FIGURE 42. Impact -type energy dissipator (Basin VI).
83
84 HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS 1 6-If
I
i
1
1
I
■
■
I
1
STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS
■■■■■■■n■■■■■■■■■■■
. ■■■■■■n■.■■■■■.-■-n
■
.■MEMO■■■■■
■■■■■W"M■■■■■■■■■
■■■M■NWAMn■■n■n
n■Mr■Mm■n■n■■
■MnM■n■■n
. ■WWMrim■■■■M■n■■■
■vi■uM■n■■■n■■M■n
05AMIMnnM■n■01111
■EMMEMn■M■n■■M■n■
oJWM■n■■■■n■■■■n
Mn■M■nn■n■■nm
.
FAM■■■n■■M■■■■■n
M■MEM■n■nM■M■nn,
■ms
M■MnnnMM■■n
F,• 9
FIGURE 44.-Comparison of energy !oases—impacf basin
and hydraulic jump.
coming flow was computed using D,, obtained by
converting the flow area in the partly full pipe
into an equivalent rectangle as wide as the pipe
diameter. Compared to the losses in the hydraulic
jump, Figure 44, the impact basin shows greater
efficiency in performance. Inasmuch as the basin
would have performed just as efficiently had the
flow been introduced in a rectangular cross section,
the above conclusion is valid.
Basin Design
Table 11. and the key drawing, Figure 42, may
be used to obtain dimensions for the usual struc-
ture operating within usual ranges. However, a
further understanding of the design limitations
may help the designer to modify these dimensions
when necessary for special operating conditions.
The basin dimensions, Columns 4 to 13, are a
function of the maximum discharge to be expected,
Column 3. Velocity at the stilling basin entrance
need not be considered, except that it should not
greatly exceed 30 feet per second.
85
Columns 1 and 2 give the pipe sizes which
have been used in field installations. However,
these may be changed as necessary. The sug-
gested sizes were obtained by assuming the ve-
locity of flow to be 12 feet per second. The pipes
shown would then flow full at maximum discharge
or they would flow half full at 24 feet per second.
The basin operates as well whether a small pipe
flowing full or a larger pipe flowing partially full
is used. The pipe size may therefore be modified
to fit existing conditions, but the relation be-
tween structure size and discharge should be
maintained as given in the table. In fact, a pipe
need not be used at all; an open channel having
a width less than the basin width will perform
equally as well.
The invert of the entrance pipe, or open chan-
nel, should be held at the elevation shown on the
drawing of Figure 42, in line with the bottom of the
baffle and the top of the end sill, regardless of the
size of the pipe selected. The entrance pipe
may be tilted downward somewhat without af-
fecting performance adversely. A limit of 15°
is a suggested maximum although the loss in
efficiency at 20' may not cause excessive erosion.
For greater slopes use a horizontal or sloping pipe
(up to 150) two or more diameters long just up-
stream from the stilling basin.
For submerged conditions a hydraulic jump
may be expected to form in the downstream end
of the pipe sealing the exit end. If the upper
end of the pipe is also sealed by incoming flow, a
vent may be necessary to prevent pressure fluctu-
ation in the system. A vent to the atmosphere,
say one -sixth the pipe diameter, should be installed
upstream from the jump.
The notches shown in the baffle are. provided
to aid in cleaning out the basin after prolonged
nonuse of the structure. When the basin has
silted level full of sediment before the start of the
spill, the notches provide concentrated jets of
water to clean the basin. If cleaning action is
not considered necessary the notches need not be
constructed. However, the basin is designed to
carry the full discharge, shown in Table 11, over
the top of the baffle if for any reason the space
beneath the baffle becomes clogged, Figure 45C.
Although performance is obviously not as good, it
is acceptable.
rl
I
I
HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS
F
n �
1
u
a
_ _
+ �. i, l
V
W
{Iy
�\
c
9
3
�
\
m
�'
rn
_y
�3
E
u
i
I
il
[J
STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS 87
4 A —Erosion of channel bed —standard wall and end sill.
B—Less erosion occurs with alternative end sill and
IV wall design.
' C--Flow appearance when entire maximum discharge
Passes over top of bale during emergency operation.
' FrcuaE 45.—Channel erosion and emergency operation for maximum tabular discharge —impact type energy dissipator—no
tail water (Basin VI).
With the basin operating normally, the notches
provide some concentration of flow passing over
the end sill, resulting in some tendency to scour,
Figure 45A. Riprap as shown on the drawing
will provide ample protection in the usual in-
stallation, but if the best possible performance is
desired, it is recommended that the alternate end
sill and 45° end walls be used, Figures 45B and 42.
The extra sill length reduces flow concentration,
scour tendencies, and the height of waves in the
downstream channel.
' Figure 46 shows the performance of a prototype
structure designed from Table 11. The basin.
designed for a maximum discharge of 165 second -
feet, is shown discharging 130 second -feet at a
higher than recommended entrance velocity of
about 39 feet per second. Performance is entirely
satisfactory.
Conclusions and Recommendations
The following procedures and rules pertain to
the design of Basin VI:
1. Use of Basin VI is limited to installa-
tions where the velocity at the entrance to
the stilling basin does not greatly exceed 30
feet per second.
2. From the maximum expected discharge,
determine the stilling basin dimensions, using
3
Table 11, Columns to 13. The use of mul-
tiple units side by side may prove economical
in some cases.
3. Compute the necessary pipe area from
the velocity and discharge. The values in
Table 11, Columns 1 and 2, are suggested
sizes based on a velocity of 12 feet per second
and the desire that the pipe run full at the
88 HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS 165
dschar,e given in Column :3. Regardless of 4. Although tail water is not necessary for
the pipe size chosen, maintain the relation successful operation, a moderate depth of tail
between discharge and balsa❑ size given in waiter will improve the performance. For
the table. An open channel entrance may be best performance set the basin so that
used in plaice of a pipe.. The approach maximum tail water does not exceed d+9,
channel should be narrower than the basin 2
-.I invert elevation the same as the pipe. Figure 42.
►A ?
/_-ik
�_ sue!
:�✓/.��
`_f., L�
_��a{�-
_ +.1�'sr-..�_�' f 4 �.'L.� iL'i liF
;V
✓.
sn-
Discharge 130 c.f.s. (80 per-
cent of maximum)
FiecaE 46.—Prototype per-
formance of Basin VI.
I
11
1
1
1
STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS
5. Suggested thicknesses of various parts of
the basin are given in Columns 14 to 18,
Table 11.
6. The suggested sizes for the riprap pro-
tective blanket, given in Column 19 of Table
11, show the minimum size of individual
stones which will resist movement when
critical velocity occurs over the end sill.
Since little is known regarding the effect of
interlocking rock pieces, most of the riprap
should consist of the sizes given or larger.
An equation (34), (35) for determining minimum
stone sizes, which appears from a limited
number of experiments and observations to
be accurate, is given below
Vb=2.61/d
where
Vb=bottom velocity in feet per second
d=diameter of rock in inches
The rock is assumed to have a specific gravity
89
of about 2.65. The accuracy of the equation
is not known for velocities above 16 feet per
second.
7. The entrance pipe or channel may be
tilted downward about 15° without affecting
performance adversely. For greater slopes
use a horizontal or sloping pipe (up to 15°)
two or more diameters long just upstream
from the stilling basin. Maintain proper
elevation of invert at entrance as shown on
the drawing.
8. If a hydraulic jump is expected to form
in the downstream end of the pipe and the
pipe entrance is sealed by incoming flow,
install a vent about one -sixth the pipe
diameter at any convenient location upstream
from the jump.
9. For best possible operation of basin use,
an alternative end sill and 45° wall design
are shown in Figure 42. Erosion tendencies
will be reduced as shown in Figure 45.
IL
1
114)
CLIENT
C
JOB N0.5= -O 11
1
INC.
PROJECT
�� S
CALCULATIONS
FOR
i C—"'
� z ^' f • -1, •`i i�s:'r�t-.
Engineering Consultants
MADE BV DATE CHECKED BY—
DATE
SHEET OF `
A division of The Sear -Brown Group
�i'1.�)%G '��
(l•�
.-1- "T.
�. i ,:, .. �dj
rr'� c.. I
V
i
z
�tiL
-�`ln d —r� S, �'c�� —f%w ,%—;L`���"it•-1XXyy ,�4._ir�C. 1 �L�- ��b� C.'C '"�-4�
{ V
W r
1
•
r
?o -
1
1
1
1
INC.
Engineering Consultants
A division of The Sear -Brown Group
1
in
1
1
1
1
1
1
(-�1
CLIENT l� JOB NO. � —mil
PROJECTD�16401 CALCULATIONS FOR �'t�',✓:i-"�( 5�� �l.+�i�,k";,
MADE BYQ DATER CHECKED BV_ DATE SHEET Z OF
It
ZLo%
iz �
0.55 � _ 4:
D- 5, 5* l o =
II I
<Z-AY
_ z ,Z____o__
INC.
Engineering Consultants
A division nfThe Sear -Brown Group
CLIENT �'YY UYll..l i'1'l,tt ;,f:-s.�.. `-+ JOB NO. 0,
PROJECT T -I '�"- -(� �1Fa.6, CALCULATIONS FOR AC-.1 -A��
MADEBV CCt{t{ DATE_CHECKED BY- DATE SHEET 3 OF
i
i .-
I
/ I = 0,
1
lv 'Ij. G
J
1
I
I
11
1
Worksheet T3
Worksheet for Rectangular Channel
' Project Description
Project File c:lhaestadifmwlponds.fm2
Worksheet Pond 396 impact basin
Flow Element Rectangular Channel
Method Manning's Formula
Solve For Channel Depth
11
Input Data
Mannings Coefficient
0.013
Channel Slope
0.005000 ft/ft
Bottom Width
14.00 ft
Discharge
322.70 efs
Results
Depth
2.08
ft .-�-
Flow Area
29.14
ft°
Wetted Perimeter
18.16
ft
Top Width
14.00
ft
Critical Depth
2.55
ft
Critical Slope
0.002727 ft/ft
Velocity
11.08
ft/s
Velocity Head
1.91
ft
Specific Energy
3.99
ft
Froude Number
1.35
Flow is supercritical.
09H0196
03,02:13 PM
FkowMaster v5.13
Haested Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
1
Worksheet
Worksheet for Rectangular Channel
Project Description
Project File c:\haestad\fmwlponds.fm2 I ,.. I
Worksheet Clearview impact basin !� fk f v lt,:-�-w
Flow Element Rectangular Channel
Method Manning's Formula
Solve For Channel Depth
'
Input Data
Mannings Coefficient
0.013
Channel Slope
0.005000 ft/ft
Bottom Width
8.00
ft
Discharge
61.00
cfs
Results
Depth
1.06
ft ---Q4--
'
Flow Area
8.49
ft'
Wetted Perimeter
10.12
ft
Top Width
8.00
ft
'
Critical Depth
1.22
ft
Critical Slope
0.003287
ft/ft
Velocity
Velocity Head
7.19
0.80
ft/s
ft
Specific Energy
1.86
ft
Froude Number
1.23
'
Flow is supercritical.
1
' a9r10,96
nc
03:06:02 PM Haestad Methods, I. 37 Brookside Road Waterbury, CT 067ce (2(33) 755.1666
FlowMaster v5.13
Page 1 of 1
1�5
I
11
1
I
I
WATER QUALITY
CAPTURE VOLUME
CALCULATIONS
I
I
11
RWINC.
'
Engineering Consultants
A division of The Sear -Brown Group
I
I
CLIENT _Ni.Vi'\�iA',lLl,j-'�C'� r/' L.-�^ JOB NO.�-^
PROJECT I[.'>'.>'-P-•�(riy'^q/��=V:. CALCULATIONSFOR�.CJC^i1
MADE BY L DATE 1 f ` I I� CHECKED BY DATE SHEET y OF
r
�' i .i )'..i:i '-' I � � r � 7 �'Yl �. � �-.y11�-("`t � t= r.:� �j'_'-/�•�,\,�-L� 1 � f In G � 1
1 I CI
G`t'
I
m ^ '
_-r—rZ-o 'i3 w) rTV� !T'"L r� (� � � � :wf i�:7`� � is "�.1• < r ='.� ' f
IZ,420 L+ Ae- t
L
`IT
i
j-
t-' i 'T'-cr T J �`� 1. �- u : ; fi
/r
�-6
CLIENT JOB NO.
A
INC. PROJECT CALCULATIONSFOR
Engineering Consultants MADE BY it DATEi fHECKED BY- DATE -SHEET OF
A division of The Sear -Brown Group
12,
ti
t
L+
�A)
flzt L
c'-V-
41
-S CA
2- Arc-, PZA-�i�
L
7,
I
I
CLIENT
INC,
PROJECT CALCULATIONSFOR
Engineering Consultants
MADE BYed— DATS_LjLtCHECKED BY —DATE
—SHEET OF
A division of The Sean Brown Group
rv,
.Z u- -
I
I
I
F
I
T
I
I
11
Ta .Z
1
1
1
l
1
1
1
i.
1
r
DRAINAGE CRITERIA MANUAL (V. 3)
Water Qua
Level (inch
volume for
Threaded
1
Gravel -112'
3' Rock) u
/Perforated
Il ,Ffter Fabric
Water Quality (Min. 3 ft)
Riser Pipe (See Detail)
Notes: 1. The outlet �' ;' ;•' ; :: :p b: pipe shall tie sized to ntrol i;?:r.'•'i�;::�: :::•.":;:,.
overflow into the concrete riser. +:: ;::; :•; :; :•ai}i.'
2. Alternate designs indude a
Hydrobrake outlet (or orifice
designs) as brig as th by ulic
performance matches thi
STRUCTURAL BMPs
1�
i,
r 8rate for Lockable
w G
Storms
Pipe—►
Base to Prevent
configuration. OUTLET WORKS Hydrpstatic Uplift
NOT TO SCALE
Notes: 1. Minimum number of holes = 8
2. Minimum hole diameter = 1B• dia Maximum
1-12"diameter Air
Vent in Threaded Cap
Rows O O 00- Water Quality
4 Outlet Holes
O O O
4- Ductile Iron or
Q Steel Pipe
WATER QUALITY
RISER PIPE
NOT TO SCALE
Number of PerloraGad Columns
"
X
Riser � Hole Diameter, in. -.
Diameter
(in.) 1Y4' 1/Y 3/4' 1•
4 8 8 _
6" 12 12 9
8 16 16 .12 8
10 20 20.,14 10.
12 24 24 I8 12
Hole Diameter Area of Hole
(in.) (in.2 )
1/8 0.013
1/4 0.049
3/8 0.110
1/2 0.196
5/6 _ _ _ _ _._ 0.307
3/4 _. __. _ _. 0.442
7/8 0.601
1 0.785
FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY
s-1-t9sz
EXTENDED DETENTION BASIN
UDFCD
WATER QUALITY
RISER PIPE
NOT TO SCALE
Number of PerloraGad Columns
"
X
Riser � Hole Diameter, in. -.
Diameter
(in.) 1Y4' 1/Y 3/4' 1•
4 8 8 _
6" 12 12 9
8 16 16 .12 8
10 20 20.,14 10.
12 24 24 I8 12
Hole Diameter Area of Hole
(in.) (in.2 )
1/8 0.013
1/4 0.049
3/8 0.110
1/2 0.196
5/6 _ _ _ _ _._ 0.307
3/4 _. __. _ _. 0.442
7/8 0.601
1 0.785
FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY
s-1-t9sz
EXTENDED DETENTION BASIN
UDFCD
FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY
s-1-t9sz
EXTENDED DETENTION BASIN
UDFCD
)J 0
1 C
v E
i.
J \
O 0.4
v
E
0
> 0.e
m
m
U
. a 0.1
3 0.0
0.0.
0.0,
0.0'
DRAINAGE CRITERIA MANUAL(V. 3)
SOLUTION: Required Area per
I ri
rip
FAAA
INN
FAR
WA
AV, , /,A
FAA
rAJA
NA
VAA
FA
I
WAAFAA
08i
rAAmi
1AA
room
Orr
N%%
111�■
r4A
' - -- - -- v.cu u.qv u.eu ,.0 �2:0'r 4.0 6
Required Area per Row (In.2) - • .. ; -�
r •J r.•
r-.
Source: Douglas County Storm Drainage and TwMical CnbM 19w.
FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION
BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME
Rev. 3-1-1994
UDFCD
to
DRAINAGE CRITERIA MANUAL (V. 3)
0
I
0.1
o
r
�
m
m
t
m
�
3
ram.
s-t-1992
UDFCD
Or'
0.1
STORMWATER QUALITY MANAGEMENT
i
I
ortenc
&Hot
ed De
r Drat
e ntior
i time
Basi
(Dry)
l
D
1
m.,tentk
-Hour
n Pon
Drain
Is (Wf
Time
)
.000
000
u lu ZO 30 1 50 60 70 60 90 100
Percent Impervious Area in Tributary Watershed
Source: Urbanos, Guo, Tudwr (1989)
Note: Watershed inches of runoff shall aodv to the
entire watershed tributary to the B Facility.
FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (WQCV)
EROSION CONTROL
CALCULATIONS
RBD, Inc.
ie(&
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RAINFALL PERFORMANCE STANDARD EVALUATION
#589-011
PROJECT: Ponds at Overland STANDARD FORM
CALCULATED BY: CCH DATE: 09/16/96
DEVELOPED
ERODIBILIT
Asb
Lsb
Ssb
Lb
Sb
PS
SUBBASIN
ZONE
(ac)
(ft)
(%)
(ft)
(%)
(%)
502
moderate
1.12
500
3.2
501
moderate
1.08
705
3.3
500
moderate
0.6
350
1.5
601
moderate
1.88
765
2.8
607
moderate
2.55
880
3.5
602
moderate
2.04
835
2.75
603
moderate
1.85
1020
2.75
604
moderate
0.63
678
0.9
600
moderate
moderate
1.08
0.92
255
-165
0.75
0.9
605
606
moderate
0.48
538
1.7
364
moderate
9.24
550
0.5
399
moderate
3.41
400
9.3
700
moderate
1.90
1200
0.8
701
moderate
1.74
820
1.0
608
moderate
1.26
530
2.0
607
moderate
2.55
580
1.9
609
moderate
2.80
600
1.9
610
moderate
4.04
375
1.2
611
moderate
0.44
50
1.3
Total
41.61
150
1.8
76.4
r-AAivirLt UMLL.ULA i 1UNO
Lb = sum(AiLi)/sum(Ai) = (1.12 x 500 +... + 0.44 x 50)/ 41.61
150 ft
Sb = sum(AiSi)/sum(Ai) = (1.12 x 3.20 +... + 0.44 x 1.30)/ 41.61
1.8 %
PS (during construction) = 76.4 (from Table 8A)
PS (after construction) = 76.4/0.85 = 89.9
RBD, Inc.
194
EFFECTIVENESS CALCULATIONS
#589-011
PROJECT:
Ponds at Overland
STANDARD FORM B
CALCULATED BY:
CCH
DATE: 09/16/96
Erosion Control
C-Facto
P-Facto
Comment
Number
Method
Value
I Value
6
Gravel Filter
1
0.8
placed at area inlets
8
Silt Fence Barrier
1
0.5
down wind and down stream
1
Bare Soil - Packed and smooth
1
1
5
Straw Bale Barrier
1
0.8
swales and channels
9
Asphalt/Concrete Pavement
0.01
1
paved and constructed
21
Temporary Vegetation
0.45
1
SUB
PS
AREA
BASIN
(ac)
/
Site
76.4
41.61
SUB
SUB
AREA
Practice
C *A
P - A Remarks
BASIN
AREA
(ac)
DURING CONSTRUCTWN
502
1.12
5
1.12
0.89 Straw Bales
501
1.08
21
1.08
1.08 temporary vegetation
500
0.6
21
0.60
0.60 temporary vegetation
601
1.88
21
1.88
1.88 temporary vegetation
607
2.55
21
2.55
2.55 temporary vegetation
602
2.04
21
2.04
2.04 temporary vegetation
603
1.85
21
1.85
1.85 temporary vegetation
604
0.63
21
0.63
0.63 temporary vegetation
600
1.08
21
1.08
1.08 temporary vegetation
605
0.92
21
0.92
0.92 temporary vegetation
606
0.48
21
0.48
0.48 temporary vegetation
364
9.24.
6
9.24
7.39 gravel filter
399
3.41
6
3.41
2.73 gravel filter
700
1.90
9
1.90
1.90 asphalt
701
1.74
9
1.74
1.74 asphalt
608
1.26
21
1.26
1.26 temporary vegetation
607
2.55
21
2.55
2.55 temporary vegetation
609
2.80
21
2.80
2.80 temporary vegetation
610
4.04
21
4.04
4.04 temporary vegetation
611
0.44
21
0.44
0.44 temporary vegetation
Cnet = [1.08x1.00+...+1.85x1.00]/2.55
= 0.55
Pnet = 0.8x[1.08x1.00+...+1.85x1.00]/2.55
0.43 , 613
EFF = (1-C"P)100 = (1-0.55'0.43)100
76.35
REID, Inc.
F8
EFFECTIVENESS CALCULATIONS
#589-011
PROJECT: Ponds at Overland
STANDARD FORM B
CALCULATED BY: CCH
DATE: 09/16/96
Erosion Control
C-Facto
P-Facto
Comment
Number
Method
Value
Value
9
Asphalt/Concrete Pavement
0.01
1
paved and constructed
14
Established Grass Ground Cover - 50%
0.08
1
SUB
PS
AREA
BASIN
N
(ac)
Site
89.9
41.61
SUB
SUB
AREA
Practice
C *A
P * A Remarks
BASIN
AREA
(ac)
AFTER CONSTRUCTION
502
1.12
14
0.09
1.12 Established Grass Ground Cover - 50
501
1.08
9
0.01
1.08 Asphalt/Concrete Pavement
500
0.6
14
0.05
0.60 Established Grass Ground Cover - 50
601
1.88
14
0.15
1.88 Established Grass Ground Cover - 50
607
2.55
14
0.20
2.55 Established Grass Ground Cover - 50
602
2.04
14
0.16
2.04 Established Grass Ground Cover - 50
603
1.85
14
0.15
1.85 Established Grass Ground Cover - 50
604
0.63
14
0.05
0.63 Established Grass Ground Cover - 50
600
14
14
0.09
0.07
1.08 Established Grass Ground Cover - 50
0.92 Established Grass Ground Cover - 50
1.08
0.92
605
606
0.48
14
0.04
0.48 Established Grass Ground Cover - 50
364
9.24
14
0.74
9.24 Established Grass Ground Cover - 50
399
3.41
14
0.27
3.41 Established Grass Ground Cover - 50
700
1.90
9
0.01
1.08 Asphalt Pavement
701
1.74
9
0.02
1.74 Asphalt/Concrete Pavement
608
1.26
14
0.10
1.26 Established Grass Ground Cover - 50
607
2.55
14
0.20
2.55 Established Grass Ground Cover - 50
609
2.80
14
0.22
2.80 Established Grass Ground Cover - 50
610
4.04
14
0.32
4.04 Established Grass Ground Cover - 50
611
0.44
14
0.04
0.44 Established Grass Ground Cover - 50
Cnet = [1.080.01+...+2.04x0.08]/2.55
= 0.07
Pnet = [1.08x1.00+...+2,04x1.00]/2.55
= 0.01
EFF = (1-C*P)100 = (1-0.07*0.01)100
= 99.92
> 76.40
RBD, Inc.
15l
EROSION CONTROL CONSTRUCTION SEQUENCE
#589-011
PROJECT: Ponds at Overland STANDARD FORM C
CALCULATED BY: - CCH DATE: 09/16/96
SEQUENCE FOR 1996 ONLY
Indicate by use of a bar line or symbols when erosion control measures will be installed.
Major modifications to an approved schedule may require submitting a new schedule for
approval by the City Engineer.
YEAR 96 97
OVERLOT GRADING MONTH O N D J F M A M J J A S
WIND EROSION CONTROL
Soil Roughening
Perimeter Barrier
Additional Barriers
Vegetative Methods
Soil Sealant
Other
RAINFALL EROSION CONTROL
STRUCTURAL:
Sediment Trap/Basin
Inlet Filters
Straw Barriers
Silt Fence Barriers 211 fl!
Sand Bags
Bare Soil Preparation
Contour Furrows
Terracing
Asphalt/Concrete Paving
Other
VEGETATIVE:
Permanent Seed Planting
Mulching/Sealant
Temporary Seed Planting r
Sod Installation
Nettings/Mats/Blankets
Other 0`7`71
STRUCTURES: INSTALLED BY
VEGETATION/MULCHING CONTRACTOR
DATE SUBMITTED
MAINTAINED BY
APPROVED BY CITY OF FORT COLLINS ON
LI
RBD, Inc. I
1
1
1
[1
1
I
11
LJ
11
EROSION CONTROL COST ESTIMATE
Ponds at Overland
-
PREPARED BY:
CCH
DATE:
09/16/96
CITY RESEEDING Cuzi 1
Unit
o a
Method
Quantity Unit
Cost
Cost
Notes
Reseed/mulch
41.61 ac
$500
$20,805
See Note 1.
Subtotal
$20,805
Contingency
50%
$10,403
Total
$31,208
EROSION CONTROL MEASURES
Unit
Total
Number Method
Quantity Unit
Cost
Cost
Notes
6 Gravel Filter
8 ea
$300
$2,400
5 Straw Bale Barrier
50 ea
$150
$7,500
9 Asphalt/Concrete Pavement
11.24 ac
$0
$0
1 Bare Soil - Packed and smooth
4.77 AC
$0
$0
8 Silt Fence Barrier
600 If
$3
$1,800
21 Temporary Vegetation
30.36 acre
$250
$7,590
Subtotal
$19,290
Contingency
50%
$9,645
Total
$28,935
Total Security
$31,208
tjj
CALCULATIONS FOR
REX MILLER PROPERTY
T3DINC.
Engineering Consultants
A division of The Sear -Brown Group
I
I
1, 'I
1z"
CLIENT Ali JOB NO.
PROJECT T,,�Iz a� ,,A CALCULATIONS FOR 7iLVL c
MADE BY0 0 DATALL15'CHECKED BY —DATE —SHEET --!—OF A—
A -ILL
T
I
qi
1
CURRENT DATE: 10-10-1996
CURRENT TIME: 22:44:38
FHWA CULVERT ANALYSIS
HY-8, VERSION 4.3
C
SITE DATA
U--------------------------
L
INLET
OUTLET
CULVERT
V
ELEV.
ELEV.
LENGTH
#
(FT)
--------------------------
(FT)
(FT)
1
20.00
19.80
40.00
2
3
4
5
6
FILE DATE: 10-10-1996
FILE NAME: REX
CULVERT SHAPE, MATERIAL, INLET
-----------------------------------------------
BARRELS
SHAPE SPAN RISE MANNING INLET
MATERIAL (FT) (FT) n TYPE
-----------------------------------------------
1 RCP 1.50 1.50 .013 CONVENTIONAL
FILE: REX
CULVERT HEADWATER ELEVATION (FT)
DATE: 10-10-1996
'
DISCHARGE
1
.2
3
4
5
6
ROADWAY
0
20.00
0.00
0.00
0.00
0.00
•0.00
23.50
0
20.34
0.00
0.00
0.00
0.00
0.00
23.52
1
20.48
0.00
0.00
0.00
0.00
0.00
23.53
'
1
20.48
0.00
0.00
0.00
0.00
0.00
23.54
1
20.58
0.00
0.00
0.00
0.00
0.00
23.55
20.67
0.00
0.00
0.00
0.00
0.00
23.56
'2
Q z2
20.76
0.00
0.00
0.00
0.00
0.00
23.56
2,`e�S\ 2
�'3�-20`.995--:ZZ-
20.92 / 0.00
0.00
0.00
0.00
0.00
23.57
0.00
0.00
0.00
0.00
0.00
23.57
3
21.06
0.00
0.00
0.00
0.00
0.00
23.58
4
21.12
0.00
0.00
0.00
0.00
0.00
23.59
14
23.72
0.00
0.00
0.00
0.00
0.00
0.00
'
The above
Q and
HW are for a point
above
the roadway.
`i
Lq
y� d
i
Ig- 1.
i
sM
O.coS
•��`
1
I,S�
u
Iit
PERFORMANCE CURVE FOR CULVERT # 1
- 1 ( 1.5
BY 1.5
) RCP
'
DIS- HEAD- INLET OUTLET
CHARGE WATER CONTROL CONTROL FLOW
NORMAL
CRITICAL
OUTLET
TAILWATER
'
FLOW ELEV. DEPTH DEPTH TYPE
(cfs) (ft) (ft) (ft)
DEPTH
DEPTH
VEL.
DEPTH
VEL.
DEPTH
<F4>
(ft)
(ft)
(fps)
(ft)
(fps)
(ft)
0 20.00 0.00 0.00 0-NF
0.00
0.00
0.00
0.00
0.00
-0.10
0 .20.34 0.26 0.34 3-Mlt
0.21
0.21
1.45
0.29
0.58
0.29
1 20.48 0.37 0.48 3-Mlt
0.31
0.31
1.80
0.41
0.69
0.41
1 20.48 0.48 0.48 1-S2n
0.37
0.38
3.02
0.37
0.76
0.49
1 20.58 0.58 0.58 1-S2n
0.44
0.44
3.24
0.44
0.82
0.56
'
2 20.67 0.67 0.67 1-S2n
0.49
0.49
3.50
0.49
0.86
0.61
2 20.76 0.76 0.76 1-S2n
0.54
0.54
3.64
0.54
0.90
0.66
2 20.92 0.83 0.92 3-Mit
0.59
0.59
2.98
0.71
0.94
0.71
3 20.95 0.87 0.95 3-Mit
0.61
0.61
3.06
0.73
0.95
0.73
3 21.06 0.98 1.06 3-Mlt
0.68
0.67
3.35
0.79
1.00
0.79
4 21.12 1.04 1.12 3-Mlt
0.72
0.71
3.52
0.82
1.02
0.82
El. inlet face invert 20.00
ft
El. outlet
invert
19.80 ft
El. inlet throat invert 0.00
ft
El. inlet crest
0.00 ft
*****
SITE DATA ***** CULVERT INVERT
**************
INLET STATION (FT)
100.00
INLET ELEVATION (FT)
20.00
'
OUTLET STATION (FT)
140.00
OUTLET ELEVATION (FT)
19.80
'
NUMBER OF BARRELS
SLOPE (V-FT/H-FT)
1
0.0050
CULVERT LENGTH ALONG SLOPE (FT)
40.00
CULVERT DATA SUMMARY ************************
BARREL SHAPE CIRCULAR
BARREL DIAMETER 1.50 FT
'
BARREL MATERIAL CONCRETE
BARREL MANNING'S N 0.013
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL SQUARE EDGE
WITH
HEADWALL
INLET DEPRESSION NONE
2
'11
'
TAILWATER
'
******* REGULAR CHANNEL
SIDE SLOPE H/V
CROSS SECTION ****************
(X:1)
4.0
CHANNEL
SLOPE V/H (FT/FT)
0.005
MANNING'S
N (.01-0.1)
0.060
CHANNEL
INVERT ELEVATION
(FT)
19.70
CULVERT
NO.1 OUTLET INVERT ELEVATION
19.80 FT
UNIFORM
FLOW RATING CURVE
FOR DOWNSTREAM CHANNEL
FLOW
W.S.E.
FROUDE
DEPTH
VEL.
SHEAR
(CFS)
(FT)
NUMBER
(FT)
(FPS)
(PSF)
'
0.00
19.70
0.000
0.00
0.00
0.00
0.35
20.09
0.163
0.39
0.58
0.12
0.70
20.21
0.170
0.51
0.69
0.16
1.05
20.29
0.174
0.59
0.76
0.18
'
1.40
20.36
0.177
0.66
0.82
0.20
1.75
20.41
0.180
0.71
0.86
0.22
2.10
20.46
0.182
0.76
0.90
0.24-
'
2.45
20.51
0.184
0.81
0.94
0.25
2.60
20.53
0.185
0.83
0.95
0.26
3.15
20.59
0.187
0.89
1.00
0.28
3.50
20.62
0.188
0.92
1.02
0.29
ROADWAY OVERTOPPING
DATA
ROADWAY SURFACE
GRAVEL
EMBANKMENT
TOP WIDTH (FT)
24.00
'
CREST LENGTH (FT)
50.00
OVERTOPPING CREST
ELEVATION
(FT)
23.50
1
1
i
3
Jib
CHARTS, TABLES, FIGURES
r
MAY 1984
.3
9
3
:or
I Fa
0.8
s=0.4%
F-0.5
I
I
I
I
BELOW
ALLOWABLE
STREET
I
MINIMUM
GRADE
I
1
I
.00
2 4 6 8 10 12 14
SLOPE OF GUTTER (%)
Figure 4-2
REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY
Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain
allowable gutter capacity.
(From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965)
4-4
DESIGN CRITERIA
I
Calculations for Curb Capacities and Velocities
Major and Minor Storms
' oer City of Fort Collins Storm Drainage Design Criteria
RESIDENTIAL with drive over curb and gutter Prepared by: RBD, Inc.
C is for one side of the road only February 28, 1992
is based on theoretical capacities
Area = 2.63 sq.ft. Area = 20.11 sq.ft.
Minor Storm : Major Storm
Slope : Red. • Minor • 0 V Major • 0 V
(.) :Factor : X . (cfs) (fps) . X : (cfs) (fps)
0.40 : 0.50 : $6.71 . 2.74 2.09 : 696.73 : 22.03 2.19 :
0.50 : 0.65 . 66.71 . 3.99 2.33 : 696.73 : 32.02 : 2.45 .
0.60 : 0.80 : 86.71 : 5.37 : 2.55 : 696.73 : 43.17 : 2.68 :
0.70 : 0.80 : 86.71 : 5.80 : 2.76 : 696.73 : 46.63 : 2.90 :
0.80 : 0.80 : 86.71 6.20 : 2.95 : 696.3 : 49.85 : 3.10 :
0.90 : 0.80 : 86.71 6.58 : 3.13 : 696.73 : 52.ES : 3.29
'1.00 : 0.80 : 66.71 6.94 : 3.3D : 696.3 : 55.74 : 3.46
1.25 : 0.80 : 66.71 7.76 : 3.69 : 696.3 : 62.32 : 3.87
1.50 : 0.80 : 86.71 8.50 : 4.04 : 696.73 : 68.27 : 4.24
1.75 : 0.80 : 86.71 9.18 : 4.36 : 696.73 : 73.3 : 4.58
2.OD : 0.80 : 66.71 : 9.81 : 4.66 : 696.3 : 78.83 4.90
2.25 : 0.78 : 66.71 : 10.15 : 4.95 : 696.73 : 81.52 : 5.20
2.50 : 0.76 : 86.71 : 10.42 : 5.21 : 696.73 : E3.72 : 5.48
'2.75 : 0.74 : 86.71 : 10.64 : 5.47 : 696.73 : 85.50 : 5.75
3.00 : 0.72 : 86.71 : 10.81 : 5.71 : 696.3 : 66.29 : 6.00
3.25 : 0.69 : $6.71 : 10.79 : 5.94 : 696.3 : 66.67 : 6.25
3.50 : 0.66 : 86.71 : 10.71 : 6.17 : 696.73 : 86.03 : 6.48
3.75 : 0.63 : 96.71 : 10.58 : 6.38 : 696.73 : E5.00 : 6.71
4.00 : 0.60 : 66.71 : 10.41 : 6.59 : 696.3 : E3.61 : 6.93
4.25 : 0.58 : 86.71 : 10.37 : 6.80 : 696.73 : E3.31 : 7.14
4.50 : 0.54 : 86.71 : 9.93 : 6.99 : 696.73 : 79.81 : 7.35
4.75 . 0.52 : 66.71 . 9.83 : 7.19 : 696.3 : 78.96 : 7.55
5.00 : 0.49 : 86.71 : 9.50 : 7.37 : 696.3 : 76.34 : 7.75
'5.25 : 0.46 : 86.71 : 9.14 : 7.55 : 696.73 : 3.43 : 7.94
5.50 : 0.44 : 86.71 : 8.95 : 7.3 : 696.3 : 71.89 : 8.13
5.75 : 0.42 : 66.71 : 8.3 : 7.91 : 696.3 : 70.17 : 8.31
6.00 : 0.40 : 66.71 : 8.50 : 8.08 : 696.73 : 68.27 : 8.49
I
I
9
ab
CLIEKT I I Q11,
UJC PROJECT CALCULATIONS FORc_-N
-JOBNO.
uyr_�_?_ 1=_�
Engineering Consultants MADESY DAYE2-'�Z CHECKED BY DATE _SHEET
D'F 7
:-7-
a . - _-_ _ _
-5- -7777aGL . - -- - - - -—
-_--__ _ - -
_
_ _ - :_
- - -- --- ------
7 1
CLIENT ` ,z4 nc F:EmT ` 'r-sL.ts!S
rI!JC PROJECT CALCULATIONS FORa'r =?
Engineering Consultants M.ADESY DA:- E Z-57- CHECKED5Y ' DATE SHEET Z OF Z
- - --- ------ --- - -- --- -
:
_
7.
61
i
.A Is 1=Z
r: _.. C2ols.rr.1 ; .S1-lals:. L!or_.. E�cc.��.�_._ C-�".—.. _ _ 1i�8 i'r.-•t �--� li.rd'r��. L.IV �= lC
_ / L22=G _ C>�`•� SIGH 0�.: ST26BT C�:L_Y.� ?.:'CI�Zx:at�. .- Oox4S _.
Izl:.
:._ : - -,(L.ro•SD=99 'cam.=99. c.33 16.83
r:...1vi�tJ� Itl�s n 23: i'7 : o 0 4s: iz=.1.� o.oas. _ -- �-c
IJ- •
Ullt=• _2z-�5liS-
�/I-d 1J T�Jh1��S 1✓bl..d�otJ Ly- Z ) -17
----
- - L NA
--
- - I -
L
alcutations for Curb Capacities and Velocities
Aslor and Minor Stores
' ^er City of Fort Collins Storrs Draina_ce Design Criteria
OLLECTDR w/ 611 Vertical curb and gutter Prepared by: R&D, Inc.
'0 is for one side of the road only February 28, 1M
is based on theoretical capacities
' Area = 3.55 sq.ft. Area = 28.96 sq.ft.
Minor Stomp Major Storm
;tope Red. Minor 0 V . Major . 0 V
(X) :Factor : X . (cfs) (fps) . X . (cfS) (fps)
' 0.40 : 0.50 : 135.32 : 4.28 2.41 : 1129.59 : 35.72 2.47
0.50 : 0.65 : 135.32 : 6.22 2.70 : 1129.59 : 51.92 2.76
0.60 : O.SO : 135.32 : 8.39 : 2.95 : 1129.59 : 70.00 3.02
0.70 : 0.80 : 135.32 : 9.06 3.19 : 1129.59 : 75.61 3.26
0.80 : 0.80 : 135.32 :. 9.68 3.41 : 1129.59 : 63.83 3.49
0.90 : 0.80 : 135.32 : 10.27 3.62 : 1129.59 : 85.73 3.70
1.00 : 0.80 : 135.32 : 10.83 3.61 : 1129.59 : 93.37 : 3.90
1.25 O.SO : 135.32 : 12.10 4.26 : 1129.59 : 101.03 4.36
1.50 0.80 : 135.32 : 13.26 4.67 : 1129.59 : 110.68 ; 4.78 ;
1.75 0.80 : 135.32 : 14.32 5.04 : 1129.59 : 119.54 5.16
2.00 0.80 : 135.32 : 15.31 5.39 : 1129.59 : 127.80 5.52
2.25 0.78 : 135.32 : 15.83 5.72 : 1129.59 : 132.16 5.85
2.51 : 0.76 : 135.32 : 16.26 6.03 : 1129.59 : 135.74 : 6.17
2.75 : 0.74 : 135.32 : 16.61 6.32 : 1129.59 : 138.62 6.47
3.00 : 0.72 : 135.32 : 16.88 : 6.60 : 1129.59 : 140.87 : 6.76
3.25 : 0.69 : 135.32 : 16.83 6.87 : 1129.59 : 140.51 7.03
3.50 : 0.66 : 135.32 : 16.71 7.13 : 1129.59 : 139.48 : 7.30
3.75 : 0.63 : 135.32 : 16.51 7.33 : 1129.59 : 137.81 7.55
4.00 : 0.60 : 135.32 : 16.24 : 7.62 : 1129.59 : 135.55 : 7.80
4.25 : 0.58 : 135.32 : 16.18 : 7.S6 : 1129.59 : 135.07 : 8.04
'4.50 : 0.54 : 135.32 : 15.50 : 8.09 : 1129.59 : 129.40 : 8.27
4.75 : 0.52 : 135.32 : 15.34 : 8.31 : 1129.59 : 128.02 : 8.50
5.00 : 0.49 : 135.32 : 14.83 : 8.52 : 1129.59 : 123.77 : 8.72
'5.25 : 0.46 : 135.32 : 14.26 8.73 : 1129.59 : 119.06 : 8.94
5.50 : 0.44 135.32 : 13.96 8.94 : 1129.59 : 716.56 : 9.15
5.75 : 0.42 : 135.32 : 13.63 9.14 : 1129.59 : 113.76 : 9.35
6.00 : 0.40 135.32 : 13.26 9.34 : 1129.59 : 110.68 : 9.55
I
I
i
L
�7 �•— v
CLtEA7 Tel C* -
JOB NO.
PROJECT CALCULATIONS FOR l-.I
Engineering Consultants MADEtSY _ •t DATE 7-SZ CHECKED EY DATE SNEET_]_OF —_7
cSUTZ :
F.=L�pis
tlll�• t= "Tc7.
KA tti10 STzSr_: l
PEZ 5)=_TIOr.t� : a-Z.Z.Z. , .. GTY. or- r=aZT . r • • r , r.js �CSiL-�.1. 'c
�uE�, t�: :mil EC2 3T1G dL CaLD! _Z G11pGr tTf LG S, . i.
pf CAL. t _T✓. /-T t
n?.QES�.C��i�ICUEt�1T
_.._ ... c..�:._ _.S_—� J G1.1l�lEt '_ �l�oP1Ei _ .. FT/1=T.. _ ._ .__... _-- •-- ..L... _�i
' �.: _ �1=CJ P ?'"�'' ^ L-. C1= C•2jOS5 5t� e� E _ _
C�zXr33x16. r + 1
3.SS ate'
.:.: -Cal i�TGI.: � -.. _ . - �- • - - _ -- - - - --•.
i 1
I- : 1
I
I
I
I
I
F_
0
I
I
t
I
I
I
I
I
I-
I
CLIENT,( 1 'T14 0;=
JOB NO.
INC
PROJECT
CALCULATIONS FO
;--j
Engineering Consultants
MADESY�DATC 7 �Z CHECKED BY
DATE -SHEET
7 OF
Calculations for Curb Capacities and Velocities
!ajor and Minor Storms
per City of Fort Collins Storm Drainaee Design Criteria
ARTERIAL w/ 6„ Vertical curb and putter Prepared by: RSD, Inc.
0 is for one side of the road only February 28, 1992
J is based on theoretical capacities
Area = 3.55 sq.ft. Area = 47.52 sq.ft.
Minor Storm : Major Storm
Slope Red. 'Minor 0 V Major 0 V
M :Factor : X . (cfs) (fps) . X . (cfs) (fps)
' 0.40 : 0.50 : 135.32 : 4.28 2.41 : 2031.62 : 64.25 2.7D ;
0.50 : 0.65 : 135.32 : 6.22 2.70 : 2031.62 : 93.38 3.02
0.60 : 0.80 : 135.32 : 8.39 2.95 : 20-1.62 : 125.£9 : 3.31
0.70 : 0.80 : 135.32 : 9.06 3.19 : 2031.62 : 135.98 : 3.58
O.SD : 0.80 : 135.32 :. 9.63 3.41 : 2031.62 : 145.37 : 3.82
0.90 : 0.80 : 135.32 : 10.27 3.62 : 2031.62 : 154.19 : 4.06
1 1.00 : 0.80 : 135.32 : 10.83 3.£1 : 2031.62 : 162.53 4.23
1.25 : 0.80 : 135.32 : 12.10 4.26 : 2031.62 : 181.71 4.78
1.50 : O.SD : 135.32 : 13.26 4.67 : 2031.62 : 199.06 : 5.24
1.75 : 0.80 : 135.32 : 14.32 S.D4 : 2031.62 : 215.01 5.66
'2.00 : 0.80 : 135.32 : 15.31 5.39 : 2031.62 : 229.E5 6.05
2.25 : 0.78 : 135.32 : 15.83 5.72 : 2031.62 : 237.70 : 6.41
2.50 : 0.76 : 135.32 : 16.26 6.D3 : 2031.62 : 244.13 ; 6.76
2.75 : 0.74 : 135.32 : 16.61 6.32 : 2031.62 : 249.31 7.09
3.00 : 0.72 : 135.32 : 16.88 6.60 : 2031.62 : 253.36 : 7.41 :
3.25 : 0.69 : 135.32 : 16.83 6.27 : 2031.62 : 252.72 : 7.71
3.50 : 0.66 : 135.32 : 16.71 : 7.13 : 2031.62 : 250.E5 8.00
1 3.75 : 0.63 : 135.32 : 16.51 : 7.38 : 2031.62 : 247.86 : 8.28
4.00 : D.60 : 135.32 : 16.24 : 7.62 : 2031.62 : 243.79 8.55
4.25 : 0.58 : 135.32 : 16.18 : 7.56 : 2031.62 : 242.92 : 8.81
'4.50 : 0.54 : 135.32 : 15.50 : 8.09 : 2031.62 : 232.72 : 9.07
4.75 : 0.52 : 135.32 : 15.34 : 8.31 : 2031.62 : 230.25 9.32
5.00 : 0.49 : 135.32 : 14.83 : 8.52 : 2031.62 : 222.6D 9.55
5.25 : 0.46 : 135,32 : 14.26 : 8.73 : 2031.62 : 214.13 9.83
5.50 : 0.44 : 135.32 : 13.56 : 8.94 : 2031.62 : 209.64 10.03
5.75 : 0.42 : 135.32 : 13.63 : 9.14 : 2031.62 : 204.61 10.25
6.00 : 0.40 : 135.32 : 13.26 : 9.34 : 2031.62 : 199.06 10.47
I
Engineering Consultants
CLIENT <:aJ 1-Y 4== -JOB NO.
PROJECT CALCULkTiONS FOR
WADE BY=n, OkTE CHECKED By- DATE - SHEET OF
I
I
11
I
I
I
11
I-
I
I
I
I
I
I
it
Engineering Consultants
CLIENT --y �- ::�> Zrr Lj k � JOB NO.
PROJECT CALCULATIONS FOR 6,1
MADE EY-ZD-, DATE Z'Z CHECKED BY - DATE -SHEET 7- OF 7-
I
r-7
.--jj
T-=7-777 T
--7
-A -3 A '-
-=-77
2,53i7Z- L-o
S
DRAINAGE CRITERIA MANUAL
-4
2C
0
RIPRAP
PA
Ea
No
Oda
PpMd
Nnw
Yt /D .o is 1A
Use Do instead of D whenever flow is supercritical in the barrel.
**Use Type L for a distance of 3D downstream.
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT
A
h
DRAINAGE CRITERIA MANUAL
L
6 = Expansion Angle
mmmmmmmm
M-0
00
.1 .2 .3 .4 .5 .6 .7 .8
TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D
RIPRAP
FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS
1 1-15-82
URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT
2G�