Loading...
HomeMy WebLinkAboutDrainage Reports - 10/07/1996Final,�:. ' d Report r� _ FINAL DRAINAGE AND EROSION CONTROL STUDY FOR THE MIRAMONT VILLAGE P.U.D. FORT COLLINS, COLORADO A division q(The Sear -Brown Group p [E@[E0d1E AUG 1 1 1 1 1 FINAL DRAINAGE AND EROSION CONTROL STUDY FOR THE MIRAMONT VILLAGE P.U.D. FORT COLLINS, COLORADO August 2, 1996 Prepared for: :'James Company 2919 Valmont Road, Suite 109 Boulder, Colorado 80301 Prepared by: RBD, Inc. Engineering Consultants 209 South Meldrum Fort Collins, Colorado 80521 (970) 482-5922 RBD Job No. 607-008 INC. Engineering Consultants A division of The Sear -Brown Group 209 S. Meldrum Fort Collins, Colorado 80521 970/482-5922 August 2, 1996 Mr. Basil Harridan City of Fort Collins Utility Services Stormwater. . 235 Mathews Fort Collins, Colorado 80522 RE: Final Drainage and Erosion Control Study for Miramont Village P.U.D. Dear Basil: We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion Control Study for Miramont Village P.U.D. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, RBD Inc. Engineering Consultants Pr d By: 4 0 OZ Patricia Kroetch Project Engineer Denver303/458-5526 Reviewed by: David K. Thaemert, P.E. Water Resources Project TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION 1 A. LOCATION 1 B. DESCRIPTION OF PROPERTY 1 II. DRAINAGE BASINS 1 A. MAJOR BASIN DESCRIPTION 1 III. DRAINAGE DESIGN CRITERIA 2 A. REGULATIONS 2 B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 2 C. HYDROLOGICAL CRITERIA 2 D. HYDRAULIC CRITERIA 2 E. VARIANCES FROM CRITERIA 2 IV. DRAINAGE FACILITY DESIGN 3 A. GENERAL CONCEPT 3 B. SPECIFIC DETAILS 3 V. STORM WATER QUALITY 4 A. GENERAL CONCEPT 4 VI. EROSION CONTROL 5 A. GENERAL CONCEPT 5 B. SPECIFIC DETAILS 5 VII. CONCLUSIONS 5 A. COMPLIANCE WITH STANDARDS 5 B. DRAINAGE CONCEPT 6 C. STORM WATER QUALITY CONCEPT 6 D. EROSION CONTROL CONCEPT 6 REFERENCES 7 APPENDIX VICINITY MAP 1 SITE HYDROLOGY 3 DESIGN OF INLETS AND OVERFLOW SWALE 9 STORM PIPE SIZING 17 EROSION CONTROL CALCULATIONS 23 CHARTS, TABLES, AND FIGURES 29 I I 1 11 1 1 FINAL DRAINAGE AND EROSION CONTROL STUDY FOR MIRAMONT VILLAGE, P.U.D. FORT COLLINS, COLORADO I. GENERAL LOCATION AND DESCRIPTION A. Location Miramont Village P.U.D. (approximately 10.79 acres) is located in the southeast part of Fort Collins, bounded on the north by The Ramparts at Miramont P.U.D., by Fossil Creek on the south, and on the east by Lemay Avenue. The entire P.U.D. is a part of the Oak/Cottonwood Farms Master Plan. The Upper Meadows at Miramont First and Second Filings, and Castleridge are northwest of this area and The Ramparts at Miramont is directly north of this site. Miramont Village can also be further described as being a part of Section 1, Township 6 North, Range 69 West of the 6th Principal Meridian, Larimer County, Colorado. B. Description of Property The area described as Miramont Village P.U.D. is presently undeveloped and is open ground covered with native grasses. The property is generally sloping from north to south at approximately 5%. Runoff historically sheet flows to the south and into Fossil Creek. This site is being proposed as a 52 lot residential development. II. DRAINAGE BASINS ' A. Major Basin Description ' The project site is located in the Fossil Creek Drainage Basin and is described in the report Fossil Creek Drainage Basin Master Drainageway ' Planning Study, prepared by Simons, Li & Associates, Inc., 1982 and is further described in the Overall Drainage Study for the Oak/Cottonwood Farms, prepared by RBD, Inc. May, 1992 and revised January, 1995. 11 III. DRAINAGE DESIGN CRITERIA ' A. Regulations The City of Fort Collins Storm Drainage Design Criteria is being used for ' the subject site. ' B. Development Criteria Reference and Constraints The Overall Drainage Study for the Oak/Cottonwood Farms, prepared by ' RBD, Inc. May, 1992 (Revised January 1995) criteria and constraints will be used in this Final Drainage and Erosion Control Study. This Overall Drainage Study has been updated to reflect all changes made to ' the areas considered within the scope of that report, and was completed in conjunction with the final design of Miramont P.U.D. ' Miramont Village P.U.D., located within the Fossil Creek Basin historically drains south to Fossil Creek. The Miramont Village area will drain undetained into a water quality structure and then into Fossil Creek ' which lies south of this property. C. Hydrological Criteria ' The rational method was used to determine developed runoff from this ' site. The 2 year, and 100 year rainfall criteria, which was obtained from the City of Fort Collins, were used in calculating runoff values for this study. These calculations and rainfall criteria are included in the appendix. D. Hydraulic Criteria ' All hydraulic calculations within this report have been prepared in accordance with the City of Fort Collins Storm Drainage Criteria and are included in the Appendix. E. Variances from Criteria ' No variances from City of Fort Collins Storm Drainage Criteria are being sought for this project. 1 1 2 1 I IV. DRAINAGE FACILITY DESIGN ' A. General Concept Development within Miramont Village P.U.D. will comply with the concepts ' presented in the Fossil Creek Drainage Basin Master Drainageway Planning Study and the Overall Drainage Study for the Oak/Cottonwood Drainage ' Plan. The Mail Creek Basin and the Fossil Creek Basins allow for undetained storm water runoff directly to Mail Creek and to Fossil Creek. The proposed drainage and grading plan is included in the back pocket of ' this report. B. Specific Details ' This site has been broken into six on -site drainage basins and four off -site basins. The off -site basins 0-1 through 0-4 are an area of the Ramparts at ' Miramont that will sheet flow south and onto the Miramont Village site. Runoff from basin 0-3 joins the flow from on -site basin 1 and will flow into an 8 foot curb inlet (Inlet 10). Runoff from basin 2 will flow via curb and gutter ' to Inlet 20 (6' type R). Runoff from basin 3 flows via curb and gutter to Inlet 30 (8' type R) and drainage from basin 4 flows into a 6 foot curb inlet (Inlet 40). Runoff from basins 0-2, 0-4, and 5 combine and flow via curb and gutter into inlet 50 which is a 16 foot curb inlet. The combined 100 year runoff from all of the basins flow via storm pipe to the south and into a curb inlet in Southridge Greens Boulevard. See the Appendix for inlet and storm pipe sizing calculations. ' Inlets 10 through 50 have been sized to accept all of the runoff from the 2 year storm and a majority of the runoff from the 100 year storm (see Appendix). Flow from the 100 year storm will pond at the inlet and at inlets ' 10 through 40 the ponding depth is less than 6". At inlet 50 the ponding depth is 8.5" which exceeds the depth of the curb and gutter. The water will pond in the open space to the north of the inlet and in the street to the south ' of the inlet. Inlets 10 through 40 will have an emergency overflow swale in the open space to the south of each street. Both swales have been sized to accept the 100 year flow in the unlikely event of both inlets being 100 ' percent clogged (seethe Appendix for swale calculations). In the event that inlet 50 becomes clogged, the flow will overtop the high point in the entrance and flow to the inlet in Southridge Greens Boulevard. ' Runoff from basin 6 sheet flows onto Southridge Greens Boulevard and is collected in the curb and gutter and is then conveyed into the existing curb inlet in Southridge Greens Boulevard. This inlet will be the collection point 1 3 for the on -site runoff and the flows from Southridge Greens Boulevard. From this point, a storm pipe will convey this water to the southwest into a proposed water quality pond. Pollutants will be allowed to settle out and the storm water will be released directly into Mail Creek. The design of this pond will occur with the Miramont Valley project to the west of Southridge ' Greens Boulevard. The plans for this water quality pond are included in the appendix of the plans for Miramont Village for reference. ' Some of the runoff from the Ramparts at Miramont (2.11 cfs) will flow over the proposed retaining wall at the northerly boundary of this site. Flow depth ' over the wall was calculated to be 0.2" (see Appendix). This amount of flow was determined to have no erosion impact on the retaining wall footing and no erosion remediation is proposed. ' Flows from Lemay Avenue have been accounted for in the Final Drainage and Erosion Control Study for Lemay Avenue Improvements by RBD, Inc. in ' May, 1995. Flows in Southridge Greens Boulevard are accounted for in the Final Drainage and Erosion Control Study for Miramont Valley, P.U.D. by RBD, Inc. currently under review at the City. V. STORM WATER QUALITY ' A. General Concept ' The Miramont Village development is anticipating construction beginning in the fall of 1996. Best Management Practices for the treatment of storm ' water runoff have been incorporated into the design for this project. The BMP's included in the erosion control plan for this site are installation of silt fence and gravel inlet filters during construction. Also included is a water ' quality pond that is being designed and will be constructed with the Miramont Valley, P.U.D. Runoff from the Miramont Village site will be routed to this pond via the storm sewer system in Southridge Greens Boulevard. ' This pond will provide a mechanism for pollutants to settle out of the storm water runoff prior to being released into Fossil Creek. All construction activities must comply with the State of Colorado permitting process for Storm water Discharges Associated with Construction Activity. A Colorado Department of Health NPDES Permit will be required before any ' construction grading can begin. F_ L Ell VI. EROSION CONTROL ' A. General Concept The Miramont Village Site is in the Moderate Rainfall and Moderate Wind Erodibility Zones per the City of Fort Collins zone maps. The potential exists for erosion problems during construction, and after construction until the ' disturbed ground is revegetated or paved. It is anticipated that construction will begin in June of 1996. ' B. Specific Details Erosion control for this site during construction includes gravel filters for all ' of the inlets on the site and silt fence to be installed along the downstream perimeter of the site. All areas that remain disturbed for more than four weeks will require seeding and mulching to prevent excessive erosion. ' During the four week period, disturbed areas shall be roughened. After construction of utilities, the streets will have a paved surface and the ' individual units will be constructed. The open areas and the yards of the units will be seeded or sodded to reduce the erosion potential. Calculations for erosion control performance standards were completed per the City of Fort Collins Erosion Control Reference Manual for Construction 1 Sites and are included in the appendix. The erosion control performance standard for this site during construction is 82.5%. The effectiveness of the proposed erosion control plan during construction is 82.7%. The erosion ' control performance standard after construction was calculated to be 97.1 %.The effectiveness of the proposed erosion control plan after construction is 97.5%. Therefore, the erosion control plan will meet the City of Fort Collins criteria. VII. CONCLUSIONS A. Compliance with Standards ' All computations within this report have been completed in compliance with the City of Fort Collins Erosion Control Reference Manual for Construction ' Sites and the Storm Drainage Design Criteria Manual. 1 5 ' B. Drainage Concept The proposed drainage concepts presented in this study and shown on the final utility plans adequately provide for the conveyance of developed runoff from Miramont Village P.U.D. The combination of on -site street capacities ' and the on -site storm sewer system will provide for the developed flows to reach the proposed off -site water quality pond. This pond is being designed t and constructed to account for flows generated by the Miramont Village site. The concepts shown here will also allow for the development to occur and be in compliance with the Fossil Creek Basin Master Plan. This site will also ' be in compliance with the Overall Drainage plan for the Oak/Cottonwood Farm. ' If groundwater is encountered at the time of construction, a Colorado Department of Health Construction Dewatering Permit will be required. ' C. Storm Water Quality Concept Because storm water quality has become a requirement, the proposed ' design has addressed this storm water aspect. Water from this site will be routed to a grass -lined water quality pond which will provide an opportunity for storm water pollutants to filter out of the storm water runoff before the ' runoff flows into Fossil Creek. D. Erosion Control Concept ' The proposed erosion control concepts adequately provide for the control of ' wind and rainfall erosion from Miramont Village. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance standard will be met. The proposed erosion control concepts ' presented in this report and shown on the erosion control plan are in compliance with the City of Fort Collins Erosion Control Criteria. H 0 1 6 11 REFERENCES 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1994, revised March 1991. 2. Erosion Control Reference Manual for. Construction Sites by the City of Fort Collins, Colorado, January 1991. 3. Fossil Creek Drainage Basin Master Drainageway Planning Study, by Simons, Li & Associates, Inc., August 1982. 4. Overall Drainage Study for the Oak/Cottonwood Farm Fort Collins, Colorado, by RBD, Inc., May 4, 1992 and revised January, 1995. 5. Final Drainage and Erosion Control Study for The Ramparts at Miramont P.U.D., by RBD, Inc. dated November, 1995. 6. Final Drainage and Erosion Control Study for Miramont Valley P.U.D., by RBD, Inc. dated March, 1996. 7 I APPENDIX H 1 I 1 1 1 1 1 1 1 1 1 i 1 11 1 i 11 1 VICINITY MAP 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DRIVE \roe FOSsk C" PORTNER RES 1 VICINITY MAP SCALE: 1 "=2000' 2 ROAD HARM014Y ROAD PROJECT SITE SITE HYDROLOGY I (D M Y C) a- a-O U O L N m C O N a) L_ L O rn 4) 3 N U a) toCL ca O a C E �O U ms U U aa)) O .. p O m O U Cu O W 'O w > * C a) c m U E N � cu to Cn m a- �-- c N co co N aD (o ao 00 c0 LO Cl- CD n CD to CD CM M M M M C1 _ ci o00000 6 0000 6 O U .. cn CD to OD (D N CM O T7 Co 00 Co CD c 3 MN covU)CM (D V O to CM W A IT to v c0 0D 00 CD co N a) as V CA N 'V' 00 P-� N to Z (O P tli v ctj M co ao co co 00 U a) T(0CnCDCn'V' 4 " q CL I I I I CD CD LO cr) � v OCD(AN � C1 N tl) CO to r- (D c0 O N Cn u O O O O N � CC) 0000 O Q (DMI��(D� v MvCnto Co to coNc0Oto O 0M CP)(0 T7 O OO OMM O 00�0 eo Q LO LO to U) LO LO LO U) Lo Lo Lo to j N N N N N N N N N N N (N 0= 0 0 0 0 0 0 O O O O O O 'Z U N a Cn to Cn tf) tl) t() to CC7 U) U') LO to LO 3 CY) CA O (A (A CA CA O O O O CD O_ 000666 O OC; 00 O (U N = C1 c •—NCMITCo(0 NM LV N `) Q 11J LL U- (n O 0 r O O 11 U Z O T N co Z (j U 0 O U LL O W W F U (1) rn ca S3 C O c m N O a U rn c } m d Z 0 rn O LU C WCD g Cl J m 0 O m :DQ (O fn U Y U N 2 r O t` V' O h N C) It r- r- f` n J ^ C CO to l- (O P.: P�: O Il I-� Il� CO Z U r +- E r I.L v r M M N N CO V' LO to (O rn ^ O N c0(OCOM000O OOOr J •c ++ Er } tO c0 00 v v 0o 00 to to to to I- M r r to to CO r� M M M co U N v N N N N M M 6 M CO M O?O' W .� 2w W J O OOto to 00 0000 Wa. O cocMMP�P�00000 J L�LS U) n a n.a.aaaa n n.aa O OOto�tno totOtoLO to MMrna)vr 00000 r(—Dj tO �v st v cc)P� rrr Crl O r 0O `7 0 cM 0 N N N 00 CO N CO CO M 4 (O I-: W c z Z W o 000000 0000 O O O O O O O O O O O g O o� LO N N O N V' N N N N N c- �. J r- W O= o LO LO to LO O o to to LO 0 ::3 LO NV COV'(000 V V VO4 v H Z Z W J LO 00 N r c- M co 00 00 OD co N tnn(Op- OtO MMCV) Cl) 000000 0000 V' (0 ce) P, (O r M V O LO HCA UN O LO 00 N co (3) tO LO M (O (O OOr6 Q � f0 r OOrOCMM Q v Z m D W (D r N m t U) OOOO rNCOV'tOCO 5 J. K W yo q N t d> a p a a a p N C d 5 tt p Eo g Em ga Em oa Em gv E° gad �m q a n n o. a ua f- O2n N ui Y m N 0 O ai m n > Z O A Y O q a W Z$ N ap y H Y N Y N q N q N N {7 Oa O OWN J v W W Z O O q q q b N � N G A Cl n OI r Qi Cf n 'gym WNer N a a ,• q v � eJ Ci Ci N y JF Y m f m N n N A O 'p .- Mp ZQ aq, Z U � m IQ IQ m m OR y OX.Y- q LL t7 O q A C1 14 Y m 0 q m q O q J LL n CI O IV tG lV fC A' to N O Zb� A � � LL 0 Z t^ — ] r lV Cl O N Y N tG m 0 lG q q q b n' O N Yf Y> ❑ a' 4 p W ��pp m t2 Cf 20 N N b�p m 0 W O O N g W V O^ Q¢H O O ry Y O C! Y q C) 'Q b b m yO YN m m A m ON ti n r O R W q N C) Cf N N N N N N N N N N N Z v m y mm U m c o c o0 00 oc c ed o c L E n r Y m o A n ry .t q .- q m Y q O O W � O N O O Y O N O a-m EL E J Z N O N O raEm 3= OU LL q Y Z f O Cif yy O CC� C) O b 0 Z v Y (X J 3 E" r q Y m Y 1A O O 1` A r m r N q h h q q q fh n n Y Y O O N m m v N d d� q d ^ N O O N N N N Y Y pp pOp N Yf s pp Tp s �O- I 1 1 1 1 1 1 U LO N r II U T F w O a) Z M 0 O 0 rn m w C O cm Y G } m Z 0 0 w U) ~ >g r. m J � u U � U 2 `- O ui co 2 N ON(O V V V hl—l�r -I ^ OO tOtotOtO0ao CO000 Z-'E� Uv r CO MNN(O V' LO to LO 0) ^ C O N ('7CMMMM(M OOOr J w �.. r v (O CO co V V'000 NLOLOLO (M rr(OtOOOr, MMMM U N V N N N N M M M M CO M O) w H > O OOtO Ln000 0000 Waw ^ O MMIh ISO OD 0000 Q 0 0 to rrrr4M (MM MM 0 n CLn CL CL CL a a- CL 2 O O 0 (O (n LO tO to LO LO LO F. (O ce) M a) a) V rh O O O co ^ Z r In v V V 0r� r r r M LU J r (OOIt CO NNNr ^ O rNNNN(O (OCO(O V �(D v H 0 Z LU O O O O O O O O 0000 O O O O O O 0 0 0 Cl g C o N t 0 N N O N 4 N N N N N Q, 0o v r r LU > u O S 0 (O (O LO tO 0 0 LO LO LO 0 il F- U) N V 0 tt O OD V• V v N HZ�� Z w _ J t0 CO N r r M CO 00 OD 00 00 N LOh(mh(oto MMMM U M o 0 0 0 0 0 0 0000 V (OM1hr(0 M V'Otn <Q 0 tnODN00O)tn 0mLO(O Q W a Co CN O O O r 6 6 6 O O r 6 Q Q Z 0 c] �w « rN CMV vi CO rNM V•LO(O 0000 19 k � ( )} � { £ ;; & Q Ga 0 R 0 k 2 E ) §� E! & |E |S S \ \� (` �j » ci §$a — — — § ;— . . _ ai a § §' Cl! � W- q G ; : Q ` §¥e § f A A f mo2� r § § (k-` [ = o k k k k k § lo-- #k22 Jk § §2�— . mog" G2—` §h—_ 2 ® , — cd cd § 2k § , . �)/e § | § §§ §§ 00 § §§ 5 | § § |3 §| §§ § k* � £ , ){ �, | 9 0 k0 0® ® |q f | u � � � �� � 00 � ° ° `\ `\ \ 0\ \ \\ \ rL« Ci 0 d \7 ) , ` 2a 9 E)§®, Cd , 0 _0 00 0, (6 td6 Cd Cd 2\� ` G &§ . ,} m} v$ 0 Q § — / 7 §, _ , � _ , ON RR g7 B 22 S S | I H 0 n 1 1 1 1 DESIGN OF INLETS AND EMERGENCY OVERFLOW SWALE ti 1 -------------------------- ------------------------- -------------------------- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD kS--------------------------------------------------------------------------- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. DATE.07-29-1996 AT TIME 12:47:39 I** PROJECT TITLE: Inlet 10 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 0.50 STREET CROSS SLOPE (%) = 2.00 } ' 'STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ItWATER SPREAD ON STREET (ft) = 19.19 GUTTER FLOW DEPTH (ft) = 0.51 FLOW VELOCITY ON STREET (fps)= 2.72 FLOW CROSS SECTION AREA (sq ft)= 3.81 GRATE CLOGGING FACTOR (%)= 50.00 k'1 { CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 12.05 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 10.30 FLOW INTERCEPTED (Cfs)= 10.30 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 10.30 ' FLOW INTERCEPTED (Cfs)= 10.30 CARRY-OVER FLOW (cfs)= 0.00 m .1 ----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -.--------------------------- --- ------------------------ SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. N DATE.07-29-1996 AT TIME 12:59:24 I** PROJECT TITLE: Inlet 20 1 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 20 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = STREET CROSS SLOPE 00 = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: " WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 5.00 6.00 45.00 2.00 0.08 . depth to flow depth. 0.50 2.00 0.016 1.50 2.00 16.09 0.45 2.46 2.72 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 7.56 (cfs) = (cfs) = (cfs) = (cfs) = (cfs) = (cfs) = 6.70 6.70 0.00 6.70 6.70 0.00 1 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY. DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD - - ------------------ -------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON .DATE 07-29-1996 AT TIME 12:55:08 I** PROJECT TITLE: Inlet 30 1 1 1 1 I� J 1 1 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 30 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 Note: The sump depth is additional depth to STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) _ STREET CROSS SLOPE (°> ) _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) _ GUTTER FLOW DEPTH (ft) _ FLOW VELOCITY ON.STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (°s)= CURB OPENNING CLOGGING FACTOR(%)= 0.50 2.00 0.016 - 1.50 2.00 17.69 0.48 2.59 3.25 50.00 10.00 flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 11.14 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= IL - 8.50 8.50 0.00 8.50 8.50 0.00 t----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------- ---- ------------------------------ ts--E-R-:-K-E-V-I-N--G-I-N-GE--R-Y---RD-B INC FT. COLLINS COLORADO............................. N DATE.07-29-1996 AT TIME 13:00:03 PROJECT TITLE: Inlet 40 *** CURB OPENING INLET HYDRAULICS AND SIZING: tINLET ID NUMBER: 40 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 :.■ Note: The sump depth is additional depth to STREET GEOMETRIES: flow depth. STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 ' ..GUTTER WIDTH (ft) = 2.00 4°. STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.81 GUTTER FLOW DEPTH (ft) = 0.44 FLOW VELOCITY ON STREET (fps)= 2.44 ' FLOW CROSS SECTION AREA (sq ft)= 2.63 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 7.44 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.40 FLOW INTERCEPTED (cfs)= 6.40 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.40 FLOW INTERCEPTED (cfs)= 6.40 CARRY-OVER FLOW (cfs)= 0.00 13 - t----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. DATE 07-29-1996 AT TIME 12:53:01 r** PROJECT TITLE: Inlet 50 1 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 50 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 16.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 29.13 GUTTER FLOW DEPTH (ft) = 0.71 FLOW VELOCITY ON STREET (fps)= 3.51 FLOW CROSS SECTION AREA (sq ft)= 8.61 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 33.73 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 30.30 FLOW INTERCEPTED (cfs)= 30.30 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 30.30 FLOW INTERCEPTED (cfs)= 30.30 CARRY-OVER FLOW (cfs)= 0.00 1¢ RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION Miramont Village Overflow Swale A -A (In use only if inlets are clogged - Assume both inlets are 100W clogged) STA ELEV 0.00 5.00 5.00 4.50 8.00 4.00 17.00 4.00 20.00 4.50 25.00 5.00 'N' VALUE SLOPE (ft/ft) ----------------------- 0.060 0.0833 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) (sq ft) (fps) (cfs) NO. --------- ------- -------- --------- ------ 4.10 1.0 1.5 1.42 0.85 -0. 49 4.20 2.0 2.3 4.64 0.95 4. 30 3.2 2.9 ©N /F.B. =22.1 9.37 1.01 4.40 4.6 3.4 15.58 1.05 .50 6.0 3.9 3.27 1.08 - �'� 4.60 7.6 4.2 a 8 31.75 1.10 4.70 9.4 4.5 42.01 1.12 4.80 11.4 4.8 54.20 1.14 4.90 13.6 5.0 68.45 1.15 5.00 16.0 5.3 84.89 1.17 1 09--rH Swr�l E 0 10 + Qw = 10. 3 + G .7 = 17, 0 cFS F 1 D0 - y r S{a►-YYI 1 Soc ir" Sw+tI-E 55+10,4- 14,9 �.Fs ►oo-yr b�bYm w/F2 EBoNe-D 000x1.33= 22, I cfs RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Weir calculation for flow over retaining wall WEIR COEF. 41,5 40.9 To.h, i 2.600 STA ELEV 0.0 41.50 0.0 40.90 195.0 40.90 195.0 41.50 ELEVATION DISCHARGE (feet) (cfs) 40.90 0.00�_ga,=2,I1 41.00 16.03 D, oo = o.o = 0.2" 41.10 45.35 41.20 83.31 41.30 128.26 41.40 179.25 (;Z G� A= D•38(I.25)•9.4 • CIIo�x 19��43560 � 2I I c�5 -+- low over refainn9 wall I& I 1 H u 1 1 STORM PIPE SIZING 1`7 Node Descriotion 4 15' Type 'R' Curb Inlet, Flowline = 4917.04 11 Type 'R' Curb Inlet, Flowline = 4919.85 12 Type 'R' Curb Inlet, Flowline = 4927.58 13 Type 'R' Curb Inlet, Flowline = 4927.30 14 Type 'R' Curb Inlet, Flowline = 4934.00 15 16 Type'R' Curb Inlet, Type 'R' Curb Inlet, Flowline = 4933.75 Flowline = 4933.75 (Dummy Node) Sewer Description 411 169of 30" RCP @ 1.45% (Upstream Crown = 4918.08) L 1112 161' of 24" NRCP @ 3.50% (Upstream Crown = 4924.22) Crown = 4925.57) 1213 33' of 24" NRCP @ 3.50°/, (Upstream 1314 104' fo 24" NRCP @ 5.46% (Upstream Crown = 4931.45) 1415 33' of 15" NRCP @ 2.65% (Upstream Crown = 4932.52) 1516 0.1' of 15" NRCP @ 2.65% (Upstream Crown = 4932.52) 6 U 7 Model 5 consists of Node4to Node 16 5C74�I IoSF,, , s�—T I 1 REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 06-20-1996 AT TIME 16:04:52 *** PROJECT TITLE : MIRAMONT VILLAGE TRUNKLINE *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- COMPLETION OF D/S OFFSITE STORM SEWER TO OCCUR WITH THE MIRAMONT VALLEY PROJECT. ASSOCIATED UDSEWER ANALYSIS MUST DEMONSTRATE NO SIGNIFICANT U/S IMPACTS BY THE VALLEY TO THE MIRAMONT VILLAGE STORM SEWER SYSTEM. 4.00 110.00 4917.50 4918.28 OUTLET BASED ON CRITICAL DEPTH 11.00 45.00 4920.38 4919.06 Cl 12.00 36.40 4927.58 4924.12 Cl 13.00 32.80 4927.30 4925.44 CI 14.00 27.80 4934.00 4931.38 Cl 15.00 10.30 4933.75 4933.87 Cl 16.00 10.30 4933.75 4934.15 Cl OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION Cl MEANS "CURB INLET" *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 1 SEWER ------------------------------------------------------------------ MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. -------------------------------------------------------------------- ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 411.00 11.00 4.00 ROUND 29.79 30.00 30.00 0.00 1112.00 12.00 11.00 ROUND 23.32 24.00 24.00 0.00 1213.00 13.00 12.00 ROUND 22.43 24.00 24.00 0.00 1314.00 14.00 13.00 ROUND 19.24 21.00 21.00 0.00 1415.00 15.00 14.00 ROUND 15.31 18.00 15.00 0.00 1516.00 16.00 15.00 ROUND 15.31 18.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES 1 I 11 1 1 1 1 1 0 1 DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------' -------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 411.0 45.0 46.0 2.00 10.68 2.20 24.05 9.17 1.29 V-OK 1112.0 36.4 39.4 1.52 14.24 1.90 14.61 11.59 2.05 V-OK 1213.0 32.8 39.4 1.39 14.03 1.87 11.93 10.44 2.19 V-OK 1314.0 27.8 35.2 1.17 16.23 1.67 13.84 11.56 2.80 V-OK 1415.0 10.3 9.8 1.25 8.39 1.17 23.29 8.39 0.00 V-OK 1516.0 10.3 9.8 1.25 8.39 1.17 8.63 8.39 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ----------- SEWER SLOPE - ----- ------------------------------------- INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------- 411.00 1.45 4916.08 4913.63 1.80 1.37 OK 1112.00 3.50 4922.22 4916.59 3.36 1.79 OK 1213.00 3.50 4923.57 4922.42 1.73 3.17 OK 1314.00 5.70 4929.70 4923.77 2.55 1.78 OK 1415.00 2.65 4931.27 4930.40 1.23 2.35 OK 1516.00 2.65 4931.27 4931.27 1.23 1.23 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW 1D NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 411.00 169.00 103.31 4918.58 4916.13 4919.06 4918.28 JUMP 1112.00 161.00 0.00 4924.22 4918.59 4924.12 4919.06 JUMP 1213.00 33.00 3.67 4925.57 4924.42 4925.44 4924.12 JUMP 1314.00 104.00 0.00 4931.45 4925.52 4931.38 4925.44 JUMP 1415.00 33.00 33.00 4932.52 4931.65 4933.87 4931.38 PRSSIED 1516.00 0.10 0.10 4932.52 4932.52 4934.15 4933.87 PRSSIED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------ UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K CDEF LOSS FT 1D FT ------------------------------------------------------------------------------ 411.0 11.00 4920.37 1.43 0.50 0.65 '0.00 0.00 4.00 4918.28 1112.0 12.00 4926.20 5.73 0.05 0.10 0.00 0.00 11.00 4920.37 1213.0 13.00 4927.13 0.89 0.02 0.03 0.00 0.00 12.00 4926.20 1314.0 14.00 4933.45 6.22 0.05 0.10 0.00 0.00 13.00 4927.13 1415.0 15.00 4934.96 0.97 0.50 0.55 0.00 0.00 14.00 4933.45 1 t1516.0 16.00 4935.24 0.00 0.25 0.27 0.00 0.00 15.00 4934.96 BEND LOSS =BEND K* FLOWING FULL VHEAD 1N SEWER, LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. ' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 I I H 1 1 0 1 .0 CHART 4 ' 3 ' 2 1 I 0 ' 0 10 20 30 40 30 60 70 BO 90 100 DISCHARGE-0-CFS ' 6 _S w W W �u- 4 ' 3. Zp S a~ W 3 0 -1 J _ 0.2 B 7 F- W 6 W U. u 0 S ~' a W O J a 0 100 200 300 400 500 600 700 600 900 10009 OISCHARGE-0-CFS x , •. 14 _.'12 ..'' ., .. . .10 6 d� CANNOT EXCEED TOP OF PIPE 3' ' or. 9' 1a 40 1000 2000 3000 4000 DISCHARGE-0-CFS ' BUREAU OF PUBLIC ROADS JAN.1964 CRITICAL DEPTH CIRCULAR PIPE ' 184 • 22 1 i STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 803 MANHOLE AND JUNCTION LOSSES p/ g jLN Nolt fr All Type p/ PLAN . •1 1•HI. USE EQUATION 805 qtP V-" k ViZ r Q •0.�. VV3 °- i = •:2S SECTION SECTION USE EQUATION 801 ti _ Y. V� CASE I '�3 INLET ON MAIN LINE yr SNf.. USE EQUATION 805 T z NL= - K V1 PLAN ES CTION SASE M IJANHOLE ON WAIN LINE CASE NO. A BRANCH LA�A1 II IV CASE II INLET ON MAIN LINE mr PLAN USE EQUATION 801. UL= K SECT104 CA INLET OR MANHOLE AT BEGINNING OF LINE CASE III K. 9° K. 0.05 22-1/2 075 0.25 45 0.50 1.25 60 0.35 90 0.25 No Lateral See Case I Date: NOV 1984 REFERENCE: Rev: APVIA Special Report No. 49, 1981 Z2A - STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 802C 1 STORM SEWER ENERGY LOSS COEFFICIENT (BENDS AT MANHOLES) t.t i� NO tz1. � rL 144 f 1.0 G `h !L CA �. 00 G•¢a 0.1 a.rs +89 0.2 - o ' t N 4 I r I I I i — I Bend at Manhole, I — no Special Shaping Y/ I Deflector 7 Curved I I i fiend at N•inhole. I — Curved or Deilectorl Monhole I I • I I o. D' 20' 400 60' 60' B D' 7 DD' Do fit clion Angie Y,Degrses NOTE: l;eod loss cpplied ci oullei of monho!e. DATE: J A N. 1 9 8 8 REFERENCE: REV: ldo,ern Sewer Design, AISI, V,roshinglon D.C., 1980. I I 1 1 1 1 1 1 1 EROSION CONTROL CALCULATIONS 1 Z3 RBD, Inc. ' RAINFALL PERFORMANCE STANDARD EVALUATION ' #607-009 1 1 PROJECT: Miramont Village STANDARD FORM CALCULATED BY: PPK DATE: 03/13/96 DEVELOPE ERODIBILIT Asb Lsb Ssb Lb Sb PS SUBBASIN ZONE (ac) (ft % ft 1 moderate 0.56 430 1.3 2 moderate 0.83 430 1.3 3 moderate 1.27 495 1.8 4 moderate 0.81 495 1.8 5 moderate 3.96 845 4.0 6 moderate 3.51 775 3.8 Total 10.94 703 3.2 82.5 EXAMPLE CALCULATIONS ' Lb = sum(AiLi)/sum(Ai) _ (0.56 x 430 +... + 3.51 x 775)/ 10.94 703 ft ' Sb = sum(AiSi)/sum(Ai) _ (0.56 x 1.30 + ... + 3.51 x 3.80)/ 10.94 3.2 % ' PS (during construction) = 82.5 (from Table 8A) PS (after construction) = 82.5/0.85 = 97.1 24 RBD, Inc. 1 1 1 0 1 EFFECTIVENESS CALCULATIONS #607-009 PROJECT: Miramont Village STANDARD FORM B CALCULATED BY: PPK DATE: 03/13/96 Erosion Control C-Facto P-Facto Comment Number Method Value Value 4 Sediment/Basin Trap 1 0.5 installed at beginning of construction 6 Gravel Filter 1 0.8 placed at inlets 8 Sift Fence Barrier 1 0.5 placed at downstream perimeter 9 Asphalt/Concrete Pavement 0.01 1 existing on Southridge Greens Blvd 23 Hydraulic Mulch @ 2 tons/acre 0.1 1 used in areas not to be paved 47 Contoured Furrow Surface (3-5% basin slo 1 0.5 SUB PS AREA BASIN % ac Site 82.5 10.94 SUB SUB AREA Practice C • A P • A Remarks BASIN AREA ac DURING CONSTRUCTION 1 Total 0.56 Seed & Mulch 0.28 23 0.03 0.28 Hydraulic Mulch @ 2 tons/acre Remain. 0.28 8 0.28 0.14 Silt Fence Barrier 2 Total 0.83 Seed & Mulch 0.55 23 0.06 0.55 Hydraulic Mulch @ 2 tons/acre Remain. 0.28 8 0.28 0.14 Sift Fence Barrier 3 Total 1.27 Seed & Mulch 0.99 23 0.10 0.99 Hydraulic Mulch @ 2 tons/acre Remain. 0.28 8 0.28 0.14 SIR Fence Barrier 4 Total 0.81 Seed & Mulch 0.53 23 0.05 0.53 Hydraulic Mulch @ 2 tons/acre Remain. 0.28 8 0.28 0.14 Sift Fence Banner 5 Total 3.96 Seed & Mulch 3.35 23 0.34 3.35 Hydraulic Mulch @ 2 tons/acre Remain. 0.61 8 0.61 0.30 Sift Fence Barrier 6 Total 3.51 Impervious 0.90 9 0.01 0.90 Asphaft/Concrete Pavement Remain. 2.61 23 0.26 2.61 Hydraulic Mulch @ 2 tons/acre Cnet = [0.28x0.00+,,,+2.61x0.00]/0.90 = 0.23 Pnet = [0.28x0.00+„ +2.61 x0.00y0.90 = 0.74 EFF = (1-C'P)100 = (1-0.23*0.74)100 = 82.69 > 82.5 (PS) Assume paving not constructed within 6 weeks; use gravel inlet filters at all inlets & silt fence at downstream perimeters. ,75 ' RBD, Inc. ul C IJ 7 1 1 EFFECTIVENESS CALCULATIONS 0-� 1 1 • PROJECT: Miramont Village STANDARD FORM B CALCULATED BY: PPK DATE: 03/13/96 Erosion Control C-Facto P-Facto Comment Number Method Value Value 9 Asphalt/Concrete Pavement 0.01 1 paved and constructed 20 Sod Grass 0.01 1 23 Hydraulic Mulch @ 2 tons/acre 0.1 1 SUB PS AREA BASIN % ac Site 97.1 10.94 SUB SUB AREA Practice C • A P' A Remarks BASIN AREA ac AFTER CONSTRUCTION 1 Total 0.56 Impervious 0.26 9 0.00 0.26 Asphalt/Concrete Pavement Remain. 0.30 20 0.00 0.30 Sod Grass 2 Total 0.83 Impervious 0.56 9 0.01 0.56 Asphalt/Concrete Pavement Remain. 0.27 20 0.00 0.27 Sod Grass 3 Total 1.27 Impervious 0.65 9 0.01 0.65 Asphaft/Concrete Pavement Remain. 0.62 20 0.01 0.62 Sod Grass 4 Total 0.81 Impervious 0.53 9 0.01 0.53 Asphalt/Concrete Pavement Remain. 0.28 20 0.00 0.28 Sod crass 5 Total 3.96 Impervious 2.17 9 0.02 2.17 Asphalt/Concrete Pavement Remain. 1.79 20 0.02 1.79 Sod Grass 6 Total 3.51 Impervious 1.64 9 0.02 1.64 Asphalt/Concrete Pavement Remain. 1.87 23 0.19 1.87 Hydraulic Mulch @ 2 tons/acre Cnet=10.26x0.01 +„ +1.64x0.01 v3.51 = 0.03 Pnet=10.26x1.00+., +1.64x1.00y3.51 1.00 EFF = (1-C`P)100 = (1-0.03'1.00)100 = 97.46 > 97.1 (PS) 2� ' RBD, Inc. 1 .1 1 1J H LI EROSION CONTROL COST ESTIMATE PROJECT: Mlramont I age #60 -009 PREPARED BY: PPK DATE: 06/20/96 ICITY RESEEDING COS Unit ota Method Quantity Unit Cost Cost Notes Reseed/mulch 10.79 ac $500 $5,395 See Note 1. Subtotal $5,395 Contingency 50% $2,698 Total $8,093 EROSION CONTROL MEASURES Unit Total Number Method Quantity Unit Cost Cost Notes 5 Straw Bale Barrier 5 ea $150 $750 8 Sift Fence Barrier 1380 LF $3 $4,140 39 Hay or Straw Dry Mulch (1-5% slope) 8.3 ac $500 $4,125 Subtotal $9,015 Contingency 50% $4,508 Total $13,523 Total Security $13,523 Notes: 1. A<1 ac=$1300/ac; A=1-10 ac=$650/ac; A>10 ac=$500/ac. ' RBD, Inc. 1 EROSION CONTROL CONSTRUCTION SEQUENCE Indicate by use of a bar line or symbols when erosion control measures will be Installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. YEARS 96 WIND EROSION CONTROL Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation N ettings/M ats/Blankets Other STRUCTURES: INSTALLED BY VEGETATION/MULCHING CON' ' DATE SUBMITTED MAINTAINED BY APPROVED BY CITY OF FORT COLLINS ON I E 11 1 11 1 CHARTS, TABLES, AND FIGURES Z'�3 I 1 I 1 1 e i 1 1 T:WINC Engineering Consultants CLIENT ANJ \ /(7 JOBNO. - -7- PROJECT N r 2P,r�. oiv� CALCULATIONSFOR MADE BY_FVV-DATE �CHECKED BY DATE SHEETOF - 4 77 - -- - _.LOV�/, CP.�-GS FOAL ZSI w��0� r - ST2��LJ1 Li Li I _ I I ' � .5- . I ST ��. DTI I �J ►J E,_opEN ts'� I � � I '� j T 1 1 ' - _ i i 1 i _ ..._ I _ e f I 1 I 7-7717 I t it f - r I , , , _ �_I _ - - - - - - - - -- — - - I r I I 1- _1 BIZ SAD _ } •� _ FC>IZ�C l� �0 _ 1 I B I I OTH; 51DE5 r{. t = _ 8 z Es ,OF.57 J. - - _. I L l - — I j ' , r �O 0 2.0 T 1 [OUST IO N: 0 • 0.5E (n) Sry JA A 10000 M IS POU404CIS COEFFICIENT IN MANNING IO 9000 FORMULA APPROPRIATE TO MATERIAL IN 6000 BOTTOM OF CHANNEL O.C1L4a 7000 1 IS AECIPROCAL 0/ CROSS SLOPE •09 1.0 6000 MCIERCMC[I N A. B PPODIEDINGS 1145, .07 5000 PAOI ISO, EQUATION I.AI .80 06 4000 .70 EXAMPLE Isa o.s MEo LINES) LL 100 •OS 00 G."EMI 1 • 0.03 .60 70 Ui 50 TO, .02 1/n . IEDo � .04 .50 2000 , • 0.E2 U 30 30- LEI. LL 20 — .40 __ — _-- -- to Z_ 1000 — 3 900 ' — 02 >1 800 C 700 Cl -- 600 z .. 7 ^ s 500 z o .3 0 400 W z P INSTRUCTIONS UE I J 01 Q 300 � :.or ly) N SL I. CONNCCT [/11 RATIO IT. SLOP[ ISO Q 05 AND CONNECT DISC.AP69 (0) WITH ,03 z .00a 200 DEPTH 1JI. THESE TWO LINES MUST ,_` U .O$ Q INTERSECT AT TURN -NO LINE FOR N _ •OO7 COMPLETE SOLUTION. Q ,pl ' ` V .006 [. 100 $.ALLOW _ T > _ I tl .005 100 N-SHAPED CHANNEL 90 O 80 AS SHORN USE NOMODRAP. 004 70 150 NET. 1 • r W 60 CL ' 0 3. TO DETERMINE _ 1 I .003 40 DISCHARGE 0. I+ - 7 (1) MAY 1984 30 20 E From BP PONTOON OR IN A++CL ..VIM' OCT.Mt: I t DETERMINE DEPT. J FOR TOTAL DISCMAR61 IN .002 ENTIRE SECTION 0. THEN USE MONOGRAPH TO 0CTIRMIM[ OP IN SECTION R FOR DLPTM J •J-IR) i A. To DITIONONE DISCHARGE , 4 ............... IN COMPDS11[ SECTOOM'- W I OILOM OMSTRUCTIC. S 1 Fro 091AIN DISCHARGE I, ,_, 1 y .00E SECTION 0 AT ASSUMED 'I.11->'I DEPTH J ; 011.1N 0. POPE R SLOPE RATIO 1. AND DEPTH Y THEN 0, • D. • D. Figure 4-1 NONOGRAPH FOR FLOW IN TRIANGULAR GUTTERS (From U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 0 4-3 _Z O La f CO .10 W a W oa CaJ .07 06 -0 .05 W .04 U .03 Q Z 1— a .02 W a M DESIGN CRITERIA 1 1 ' MAY 1984 0 .9 M .7 n Cr o .6 F- U Q Z 0 .5 U 0 0 w 4 0: .3 .2 ves Cls=06% F= 0.8 s:0.4% Fc0.5 I I I I BELOW MINIMUM ALLOWABLE I STREET GRADE 0 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 0 4-4 DESIGN CRITERIA No Text Foe PZEFP n c r✓ co N-LL•f REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 07-31-1996 AT TIME 15:45:02 *** PROJECT TITLE : MIRAMONT MAJOR STORM SEWER SYSTEM *** RETURN PERIOD OF FLOOD IS 100 YEARS SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ------------------------------------------------------------------------------- MINUTES INCH/HR CFS FEET FEET 31.00 156.10 4913.00 4914.00 NO =. 1.00 156.10 4913.50 4914.15 NO 2.00 156.10 4915.80 4915.31 OK 3.00 156.10 4917.23 4916.56 OK 4.00 145.50 4917.50 4916.56 OK 5.00 47.41 4919.71 4919.33 OK 600 47.41 4923.68 4920.23 OK - 7:00 43.55 4927.12 4922.75 OK 8.00 39.41 4938.33 4934.40 OK 9.00 35.00 4952.00 4949.67 OK 10.00 35.00 4956.50 4952.80 OK 11.00 58.70 4919.88 4919.36 OK 12.00 40.70 4927.58 4924.29 OK 13.00 36.70 4927.30 4925.47 OK 14.00 31.40 4934.00 4931.55 OK 15.00 10.30 4933.75 4933.20 OK 16.00 10.30 4933.75 4933.34 OK 17.00 19.50 4934.09 4933.15 OK 18.00 19.50 4936.48 4934.28 OK 19:00 19.50 4944.28 4936.79 OK 20:00 19.50 4954.00 4943.94 OK 21.00 14.30 4949.87 4947.23 OK 22.00 14.30 4949.87 4947.48 OK 23.00 2.90 4969.50 4965.69 OK 24.00 2.90 4987.00 4976.19 OK 25.00 2.90 4980.10 4978.22 OK 27.00 2.90 4980.10 4978.29 OK 28.00 35.00 4956.50 4955.19 OK 29.00 35.00 4962.00 4956.62 OK 30.00 35.00 4961.75 4961.38 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ••• SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 1 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 12.00 2.00 1.00 ROUND 51.62 54.00 54.00 0.00 23.00 3.00 2.00 ROUND 46.85 48.00 54.00 0.00 34.00 4.00 3.00 ROUND 56.48 60.00 48.00 0.00 45.00 5.00 4.00 ROUND 31.48 33.00 33.00 0.00 56.00 6.00 5.00 ROUND 26.85 27.00 27.00 0.00 67.00 7.00 6.00 ROUND 26.01 27.00 27.00 0.00 78.00 8.00 7.00 ROUND 21.95 24.00 24.00 0.00 89.00 9.00 8.00 ROUND 20.07 21.00 24.00 0.00 910.00 10.00 9.00 ROUND 32.74 33.00 30.00 0.00 411.00 11.00 4.00 ROUND 32.91 33.00 33.00 0.00 1112.00 12.00 11.00 ROUND 24.32 27.00 27.00 0.00 1213.00 13.00 12.00 ROUND 23.40 24.00 24.00 0.00 1314.00 14.00 13.00 ROUND 20.14 21.00 24.00 0.00 1415.00 15.00 14.00 ROUND 15.31 18.00 18.OD 0.00 1516.00 16.00 15.00 ROUND 15.31 18.00 18.00 0.00 1417.00 17.00 14.00 ROUND 25.69 27.00 24.00 0.00 1718.00 18.00 17.00 ROUND 23.52 24.00 24.00 0.00 1819.00 19.00 18.00 ROUND 23.34 24.00 24.00 0.00 1920.00 20.00 19.00 ROUND 18.00 21.00 18.00 0.00 2021.00 21.00 20.00 ROUND 17.45 18.00 18.00 0.00 2122.00 22.00 21.00 ROUND 17.45 18.00 18.00 0.00 2023.00 23.00 20.00 ROUND 7.58 15.00 15.00 0.00 2324.00 24.00 23.00 ROUND 8.66 15.00 15.00 0.00 1028.00 28.00 10.00 ROUND 32.74 33.00 30.00 0.00 2526.00 25.00 24.00 ROUND 12.65 15.00 15.00 0.00 2627.00 27.00 25.00 ROUND 12.65 15.00 15.00 0.00 2829.00 29.00 28.00 ROUND 24.48 27.00 30.00 0.00 2930.00 30.00 29.00 ROUND 33.10 36.00 30.00 0.00 310.00 1.00 31.00 ROUND 51.62 54.00 54.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED -------------------------------------------- ---------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- ' 12.0 156.1 176.6 3.29 12.54 3.65 11.30 9.81 1.25 V-OK 23.0 156.1 228.7 2.73 15.48 3.65 11.30 9.81 1.80 V-OK 34.0 145.5 94.6 4.00 11.58 3.52 13.33 11.58 0.00 V-OK 45.0 47.4 53.9 2.00 10.25 2.27 27.78 7.98 1.31 V-OK 56.0 47.4 48.3 1.81 13.83 2.13 12.19 11.92 1.76 V-OK 67.0 43.5 48.3 1.67 13.74 2.09 12.30 10.95 1.91 V-OK 78.0 39.4 50.2 1.34 17.68 1.92 14.06 12.54 2.87 V-OK 89.0 35.0 56.6 1.14 18.97 1.89 12.83 11.14 3.46 V-OK 910.0 35.0 27.8 2.50 7.13 2.01 8.29 7.13 0.00 V-OK 411.0 58.7 59.3 2.23 11.38 2.44 6.28 9.88 1.30 V-OK 1112.0 40.7 53.9 1.46 14.91 2.07 10.65 10.24 2.33 V-OK 1213.0 36.7 39.4 1.53 14.25 1.90 11.91 11.68 2.04 V-OK 1314.0 31.4 50.3 1.14 16.90 1.85 10.35 9.99 3.07 V-OK 1415.0 10.3 15.9 0.88 9.58 1.23 6.64 5.83 1.98 V-OK 1516.0 10.3 15.9 0.88 9.58 1.23 6.64 5.83 1.98 V-OK 1417.0 19.5 16.3 2.00 6.21 1.59 7.30 6.21 0.00 V-OK 1718.0 19.5 20.6 1.55 7.47 1.59 7.30 6.21 1.05 V-OK 1819.0 19.5 21.1 1.52 7.61 1.59 7.30 6.21 1.10 V-OK 1920.0 19.5 19.6 1.23 12.61 1.44 11.18 11.03 1.93 V-OK 2021.0 14.3 15.6 1.13 10.00 1.37 8.46 8.09 1.68 V-OK 2122.0 14.3 15.6 1.13 10.00 1.37 8.46 8.09 1.68 V-OK 2023.0 2.9 18.0 0.34 10.76 0.69 4.20 2.36 3.85 V-OK 2324.0 2.9 12.6 0.41 8.33 0.69 4.20 2.36 2.69 V-OK 1028.0 35.0 27.8 2.50 7.13 2.01 13.90 7.13 0.00 V-OK 2526.0 2.9 4.6 0.72 3.95 0.69 4.20 2.36 0.90 V-OK 2627.0 2.9 4.6 0.72 3.95 0.69 4.20 2.36 0.90 V-OK 2829.0 35.0 60.4 1.37 12.76 2.01 8.29 7.13 2.14 V-OK 2930.0 35.0 27.0 2.50 7.13 2.01 8.29 7.13 0.00 V-OK 310.0 156.1 176.6 3.29 12.54 3.65 2.53 9.81 1.25 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 12.00 0.93 4910.00 4908.33 1.30 0.67 NO 23.00 1.56 4911.23 4910.00 1.50 1.30 OK 34.00 0.50 4912.13 4911.92 1.37 1.31 OK 45.00 1.20 4915.11 4913.57 1.85 1.18 OK 56.00 2.80 4918.11 4915.31 3.32 2.15 OK 67.00 2.80 4920.66 4918.31 4.21 3.12 OK 78.00 5.67 4932.48 4920.91 3.85 4.21 OK 89.00 7.22 4947.78 4932.69 2.22 3.64 OK 910.00 0.53 4949.19 4947.98 4.81 1.52 OK 411.00 1.45 4916.08 4913.63 1.05 1.12 OK 1112.00 3.50 4922.22 4916.59 3.11 1.04 OK 1213.00 3.50 4923.57 4922.42 1.73 3.17 OK 1314.00 5.70 4929.70 4923.77 2.30 1.53 OK 1415.00 2.65 4931.27 4930.40 0.98 2.10 NO ' 1516.00 2.65 4931.27 4931.27 0.98 0.98 NO 1417.00 0.60 4930.15 4929.90 1.94 2.10 OK - 1718.00 0.96 4932.32 4930.34 2.16 1.75 OK 1819.00 1.00 4935.20 4932.52 7.08 1.96 OK ' 1920.00 4.00 4942.50 4937.74 10.00 5.04 OK 2021.00 2.54 4945.86 4942.71 2.51 9.79 OK 2122.00 2.54 4945.86 4945.86 2.51 2.51 OK 2023.00 5.52 4965.00 4949.99 3.25 2.76 OK ...2324.00 2.70 4975.50 4967.00 10.25 1.25 OK 1028.00 0.53 4950.85 4949.39 3.15 4.61 OK ." 2526.00 0.50 4977.50 4975.56 1.35 10.19 OK ' 2627.00 0.50 4977.50 4977.50 1.35 1.35 OK 2829.00 2.50 4953.00 4951.00 6.50 3.00 OK 2930.00 0.50 4958.50 4958.00 0.75 1.50 NO 310.00 0.93 4908.33 4908.14 0.67 0.36 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 12.00 180.00 149.90 4914.50 4912.83 4915.31 4914.15 JUMP 23.00 79.00 79.00 4915.73 4914.50 4916.56 4915.31 PRSSIED 34.00 41.00 41.00 4916.13 4915.92 4916.56 4916.56 PRSSIED 45.00 128.00 128.00 4917.86 4916.32 4919.33 4916.56 PRSSIED 56.00 100.00 21.40 4920.36 4917.56 4920.23 4919.33 JUMP 67.00 84.00 2.09 4922.91 4920.56 4922.75 4920.23 JUMP 78.00 204.00 0.00 4934.48 4922.91 4934.40 4922.75 JUMP 89.00 209.00 4.43 4949.78 4934.69 4949.67 4934.40 JUMP 910.00 228.00 228.00 4951.69 4950.48 4952.80 4949.67 PRSSIED 411.00 169.00 103.75 4918.83 4916.38 4919.36 4916.56 JUMP 1112.00 161.00 14.08 4924.47 .4918.84 4924.29 4919.36 JUMP 1213.00 33.00 0.00 4925.57 4924.42 4925.47 4924.29 JUMP 1314.00 104.00 6.02 4931.70 4925.77 4931.55 4925.47 JUMP 1415.00 33.00 33.00 4932.77 4931.90 4933.20 4931.55 PRSS'ED 1516.00 0.10 0.10 4932.77 4932.77 4933.34 4933.20 PRSS'ED 1417.00 41.00 41.00 4932.15 4931.90 4933.15 4931.55 PRSS'ED 1718.00 206.00 106.91 4934.32 4932.34 4934.28 4933.15 JUMP 1819.00 268.00 0.00 4937.20 4934.52 4936.79 4934.28 JUMP 1920.00 119.00 47.27 4944.00 4939.24 4943.94 4936.79 JUMP 2021.00 124.00 43.81 4947.36 4944.21 4947.23 4943.94 JUMP 2122.00 0.10 0.10 4947.36 4947.36 4947.48 4947.23 PRSS'ED 2023.00 272.00 0.40 4966.25 4951.24 4965.69 4943.94 JUMP 2324.00 315.00 0.81 4976.75 4968.25 4976.19 4965.69 JUMP 1028.00 276.00 276.00 4953.35 4951.89 4955.19 4952.80 PRSS'ED 2526.00 387.00 0.00 4978.75 4976.81 4978.22 4976.19 SUBCR 2627.00 0.10 0.00 4978.75 4978.75 4978.29 4978.22 SUBCR 2829.00 80.00 80.00 4955.50 4953.50 4956.62 4955.19 PRSS'ED 2930.00 100.00 100.00 4961.00 4960.50 4961.38 4956.62 PRSS'ED 310.00 20.00 20.00 4912.83 4912.64 4914.15 4914.00 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 12.0 2.00 4916.81 1.09 0.05 0.07 0.00 0.00 1.00 4915.64 23.0 3.00 4918.05 0.57 0.45 0.67 0.00 0.00 2.00 4916.81 34.0 4.00 4918.64 0.49 0.05 0.10 0.00 0.00 3.00 4918.05 45.0 5.00 4920.32 1.19 0.50 0.49 0.00 0.00 4.00 4918.64 56.0 6.00 4922.44 2.08 0.02 0.04 0.00 0.00 5.00 4920.32 67.0 7.00 4924.62 2.14 0.02 0.04 0.00 0.00 6.00 4922.44 78.0 8.00 4936.84 12.17 0.02 0.05 0.00 0.00 7.00 4924.62 89.0 9.00 4951.59 14.66 0.05 0.10 0.00 0.00 8.00 4936.84 910.0 10.00 4953.59 1.91 0.10 0.08 0.00 0.00 9.00 4951.59 411.0 11.00 4920.87 1.47 0.50 0.76 0.00 0.00 4.00 4918.64 1112.0 12.00 4925.91 4.96 0.05 0.08 0.00 0.00 11.00 4920.87 1213.0 13.00 4927.59 1.63 0.02 0.04 0.00 0.00 12.00 4925.91 1314.0 14.00 4933.10 5.43 0.05 0.08 0.00 0.00 13.00 4927.59 1415.0 15.00 4933.73 0.37 0.50 0.26 0.00 0.00 14.00 4933.10 1516.0 16.00 4933.86 0.00 0.25 0.13 0.00 0.00 15.00 4933.73 1417.0 17.00 4933.75 0.35 0.50 0.30 0.00 0.00 14.00 4933.10 1718.0 18.00 4934.88 0.92 0.36 0.22 0.00 0.00 17.00 4933.75 1819.0 19.00 4937.38 2.41 0.15 0.09 0.00 0.00 18.00 4934.88 1920.0 20.00 4945.83 6.56 1.00 1.89 0.00 0.00 19.00 4937.38 2021.0 21.00 4948.24 1.90 0.50 0.51 0.00 0.00 20.00 4945.83 2122.0 22.00 4948.50 0.00 0.25 0.25 0.00 0.00 21.00 4948.24 2023.0 23.00 4965.77 19.92 0.25 0.02 0.00 0.00 20.00 4945.83 2324.0 24.00 4976.27 10.48 0.25 0.02 0.00 0.00 23.00 4965.77 1028.0. 28.00 4955.98 2.32 0.10 0.08 0.00 0.00 10.00 4953.59 2526.0 25.00 4978.31 2.03 0.05 0.00 0.00 0.00 24.00 4976.27 2627.0 27.00 4978.38 0.05 0.25 0.02 0.00 0.00 25.00 4978.31 2829.0 29.00 4957.41 0.67 0.96 0.76 0.00 0.00 28.00 4955.98 2930.0 30.00 4962.17 4.72 0.05 0.04 0.00 0.00 29.00 4957.41 310.0 1.00 4915.64 0.15 1.00 1.50 0.00 0.00 31.00 4914.00 BEND LOSS =BEND K* FLOWING FULL VNEAD 1N SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 2.� CF- � n \ A 6;TS I z3.4 4 IYS oo� ITZ is -7 3c..4 j + .4. IA 40.7 -S, 6-7! 4-7.41 6,FS, 423 310 -7.4 Of 0%' �'MIRAMONT Is UD. i� \ 0 � TYPE 3 BARRICADE h \" W I leaf it I r r B Rl of 0-2 a .. Ner a l e,... / "Oholloo, If I •� PROPOWD the RAMPARTS AT MYN T ti or' _ '•c4 -ale ._ r � , a I it r e ., '• u ar I I ioulNG m / l _ � r \ 3 I I ( �s1 _ellow- • 3 �A 1 rW MINING IIA[1 .� t 1 41 I INLET 10 - D 1—� B. OvE .R. r 0 38 b 39, 3BT }� 36 e J SEE SHEET It _ —._� INLtEA{�ZO - Y.E EEi T ee W B R Si M PIPE OE9GN-- 3 AND INFORMATON DIX 37 3s 3L PHASI 3 , = e all , A3 r \�N •� �� 156 A i. b5 e0 3 . 14 -•�� 3 SA 1 INLET 0• rG 1 50 s T m ! a 5 3 - q• A3 sa lln t lB - D xy i�ul ITS ))S a l .��\\ , • }3 "\ ,yews+ j��`y � � yam,\I. see — '\ OVERFLOW SWALE 0 � 31S '+. 30 �, — •• �� `� � e e �.r�, •/I ! LETS rEUP WATER TYPE 3 BARRICADE- ^2� •� 1�iR•TYP E A IY ALIrY rON •Aje B] Am \ . d1 SHEET I\ E� I VQ 31 PH/�$E 2 �]� ea x �a 6063e bz 35 V44 AIIr y A •Z_ '� �� �I 11 .l - Err, 3 zit r FUT URE \ _ _..-_... �. MIRAMONT �.x W27 �a� Y STOP SEWER — A. j DESI IS INCLUDED FOR N ENDI% FOR �\ `tr►he e� m� 6 0 WA R WAUT FEATURE FOSSIL CREEK PARK SLNIMM1.b EROSION CONTROL NOTES Si o vegetation Cols Islas be Net wgNeii by HaP�9. Woolen elyn9 a, u oa ipie pis rm mot , nm roa0.on eu Combi P. my "I fi..oaone If they Hor. BietlMtl met. .44nq pool M no ..aae .i a y ea .ari a,eeeme ,it .nmhl no-. ma. wr .w.. 3 After g. a r stro. hai ei be opallp onr the seem o a13 lue/rcre, roartroure. m the hi o'dI pit todso lNy w horW,throw Or cLmi only the 1Woer the roHMS No.n m this sheet. 3. After the atetes 1,111 fee, mitniled, the ruck"Y , ana Not .erYw to, pawnpT ANs oltOli of the Curb M la Es Rol . CwMM1a M o . blocks. 1/2 ' ON lee mean. am a 3/4 mrw, a W,YhI Ord o 3/4 Inn .wmo yaI N -7, for/ West, _4 � •• I A M ri..,...1e k.,R,.,1..J 13 x PHASE TTo s _--_�--- IT �'r >� r P.A. t r 1z V �ED. A HUNTINGTON ZONING rip \\ DESIGN OF (KEENS OLDS. I IN OLDS. S INCLUBED IN APPENDIX TOTE REFERENCE I I I I I I I I I I I I I I I 'I LIIM \I\ COSTING SITE SYDR( Y TOI Dl.rvpea n s - 1079 mane Ratb> 'C' - an DIUNNAGIL BASH STARIDI 5 IreeC 10aP mro CGrosto - DEP(N amr BASx AREA Lee) -e (CIS) (on) 15 na S.o 7F3 zo z IW 0..72 nD 6.7 ]o > 37 oel >.9 95 ro a oat wl --3—a Bw •A so-.D-• t9s It be ue W..3 90 a.o-1 A.M o.as 9.5 31.3 OAKRIOGE ESTATES ZONING ND t i� ST. ELIZABETH IETON PARISH ZONES(; P I LEGEND I PROPOSED SPOT ELEVATION —argue PROPOSED CONTOUR ENSIING CONTOUR BASIN LINE INIAMIN1141111 PHASE LINE eBASIN NUMBER 160AC BASIN AREA QDESIGN POINT DIRECTION OF ROW <I 91T FENCE STRAW BALE CHECK DAM J I O SIR AIDED- FILTER INLET I I RETAINING WALL SEE SHEET 5 I 3_ —33 30 E T Naasaa� �I I t the VILLAGES I zPIM51'q A IhI F i SCALE 1--60 LIED 11z loollaral. .raai mamPEE. .11r Tos4 •a axll !3< Carl Cary 10 total III. Dole Q larelt Nee, w mg at morm al loo DDIa Pea p o.. a.a rn✓4`� Ymrrp9m. e CROWD CEN" offers all am .. 1 / - - : - HpaDolph 0 p� Hare. � yTm he, I Sorel SIw lw lo" to Ir1 -'e'D� m�a ..e ..rile.. FORT ORUNS - WMALAW WATER DISrMCT SCi EMT(CUOIS SANITAIIM DISTRICT UTILITY PLAN APPROVAL APPROVED 9ANAxR DATE APPROVED MIdS pIPNRR DATE CALL W L I S NOWCATgN CENTER OF CCLO PRELIMINARY 1-800-922-1987 %07 I'OH f-ONSTRITT109 by534-6700 IAA JV7 V JUNE 19. 1996 City of Fort Collin& Colorado UTRPPY PLAN APPROVAL APPROVED: Director of LopvearlC Bela CHECKED Bv: Sala Is aeN..etor Ulilit) pate CHECKED BY: 94rmnfa UtWI) 4Y CHECKED Bv: P.rE. k Rare.goa mIe CHECKED BY: Date CHECKED By REN9ON MITE N RISK OFS Ki oFsIy ore IT Dmwm : JUNE 1096 607-009 Engineering Consultants APPROVID LATE P9pgr' Ism 1,..^..^ mh DID MIRAMONT VILLAGE P.U.D. FORT COLLINS. COLORADO DRAINAGE 8 EROSION CONTROL PLAN 13 4