Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 10/07/1996Final,�:. ' d Report
r� _
FINAL DRAINAGE AND
EROSION CONTROL STUDY
FOR
THE MIRAMONT VILLAGE P.U.D.
FORT COLLINS, COLORADO
A division q(The Sear -Brown Group
p [E@[E0d1E
AUG
1
1
1
1
1
FINAL DRAINAGE AND
EROSION CONTROL STUDY
FOR
THE MIRAMONT VILLAGE P.U.D.
FORT COLLINS, COLORADO
August 2, 1996
Prepared for:
:'James Company
2919 Valmont Road, Suite 109
Boulder, Colorado 80301
Prepared by:
RBD, Inc. Engineering Consultants
209 South Meldrum
Fort Collins, Colorado 80521
(970) 482-5922
RBD Job No. 607-008
INC.
Engineering Consultants
A division of The Sear -Brown Group
209 S. Meldrum
Fort Collins, Colorado 80521
970/482-5922
August 2, 1996
Mr. Basil Harridan
City of Fort Collins
Utility Services Stormwater. .
235 Mathews
Fort Collins, Colorado 80522
RE: Final Drainage and Erosion Control Study for Miramont Village P.U.D.
Dear Basil:
We are pleased to submit to you, for your review and approval, this Final Drainage and
Erosion Control Study for Miramont Village P.U.D. All computations within this report have
been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria
We appreciate your time and consideration in reviewing this submittal. Please call if you
have any questions.
Respectfully,
RBD Inc. Engineering Consultants
Pr d By:
4 0 OZ
Patricia Kroetch
Project Engineer
Denver303/458-5526
Reviewed by:
David K. Thaemert, P.E.
Water Resources Project
TABLE OF CONTENTS
DESCRIPTION PAGE
I. GENERAL LOCATION AND DESCRIPTION 1
A. LOCATION 1
B. DESCRIPTION OF PROPERTY 1
II. DRAINAGE BASINS 1
A. MAJOR BASIN DESCRIPTION 1
III. DRAINAGE DESIGN CRITERIA 2
A. REGULATIONS 2
B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 2
C. HYDROLOGICAL CRITERIA 2
D. HYDRAULIC CRITERIA 2
E. VARIANCES FROM CRITERIA 2
IV. DRAINAGE FACILITY DESIGN 3
A. GENERAL CONCEPT 3
B. SPECIFIC DETAILS 3
V. STORM WATER QUALITY 4
A. GENERAL CONCEPT 4
VI. EROSION CONTROL 5
A. GENERAL CONCEPT 5
B. SPECIFIC DETAILS 5
VII. CONCLUSIONS 5
A. COMPLIANCE WITH STANDARDS 5
B. DRAINAGE CONCEPT 6
C. STORM WATER QUALITY CONCEPT 6
D. EROSION CONTROL CONCEPT 6
REFERENCES 7
APPENDIX
VICINITY MAP 1
SITE HYDROLOGY 3
DESIGN OF INLETS AND OVERFLOW SWALE 9
STORM PIPE SIZING 17
EROSION CONTROL CALCULATIONS 23
CHARTS, TABLES, AND FIGURES 29
I
I
1
11
1
1
FINAL DRAINAGE AND
EROSION CONTROL STUDY
FOR MIRAMONT VILLAGE, P.U.D.
FORT COLLINS, COLORADO
I. GENERAL LOCATION AND DESCRIPTION
A. Location
Miramont Village P.U.D. (approximately 10.79 acres) is located in the
southeast part of Fort Collins, bounded on the north by The Ramparts at
Miramont P.U.D., by Fossil Creek on the south, and on the east by Lemay
Avenue. The entire P.U.D. is a part of the Oak/Cottonwood Farms Master
Plan. The Upper Meadows at Miramont First and Second Filings, and
Castleridge are northwest of this area and The Ramparts at Miramont is
directly north of this site. Miramont Village can also be further described as
being a part of Section 1, Township 6 North, Range 69 West of the 6th
Principal Meridian, Larimer County, Colorado.
B. Description of Property
The area described as Miramont Village P.U.D. is presently undeveloped
and is open ground covered with native grasses. The property is generally
sloping from north to south at approximately 5%. Runoff historically sheet
flows to the south and into Fossil Creek. This site is being proposed as a 52
lot residential development.
II. DRAINAGE BASINS
' A. Major Basin Description
' The project site is located in the Fossil Creek Drainage Basin and is
described in the report Fossil Creek Drainage Basin Master Drainageway
' Planning Study, prepared by Simons, Li & Associates, Inc., 1982 and is
further described in the Overall Drainage Study for the Oak/Cottonwood
Farms, prepared by RBD, Inc. May, 1992 and revised January, 1995.
11
III. DRAINAGE DESIGN CRITERIA
' A. Regulations
The City of Fort Collins Storm Drainage Design Criteria is being used for
' the subject site.
' B. Development Criteria Reference and Constraints
The Overall Drainage Study for the Oak/Cottonwood Farms, prepared by
' RBD, Inc. May, 1992 (Revised January 1995) criteria and constraints
will be used in this Final Drainage and Erosion Control Study. This
Overall Drainage Study has been updated to reflect all changes made to
' the areas considered within the scope of that report, and was completed
in conjunction with the final design of Miramont P.U.D.
' Miramont Village P.U.D., located within the Fossil Creek Basin
historically drains south to Fossil Creek. The Miramont Village area will
drain undetained into a water quality structure and then into Fossil Creek
' which lies south of this property.
C. Hydrological Criteria
' The rational method was used to determine developed runoff from this
' site. The 2 year, and 100 year rainfall criteria, which was obtained from
the City of Fort Collins, were used in calculating runoff values for this
study. These calculations and rainfall criteria are included in the
appendix.
D. Hydraulic Criteria
' All hydraulic calculations within this report have been prepared in
accordance with the City of Fort Collins Storm Drainage Criteria and are
included in the Appendix.
E. Variances from Criteria
' No variances from City of Fort Collins Storm Drainage Criteria are being
sought for this project.
1
1 2
1
I
IV. DRAINAGE FACILITY DESIGN
' A. General Concept
Development within Miramont Village P.U.D. will comply with the concepts
' presented in the Fossil Creek Drainage Basin Master Drainageway Planning
Study and the Overall Drainage Study for the Oak/Cottonwood Drainage
' Plan. The Mail Creek Basin and the Fossil Creek Basins allow for
undetained storm water runoff directly to Mail Creek and to Fossil Creek.
The proposed drainage and grading plan is included in the back pocket of
' this report.
B. Specific Details
' This site has been broken into six on -site drainage basins and four off -site
basins. The off -site basins 0-1 through 0-4 are an area of the Ramparts at
' Miramont that will sheet flow south and onto the Miramont Village site.
Runoff from basin 0-3 joins the flow from on -site basin 1 and will flow into an
8 foot curb inlet (Inlet 10). Runoff from basin 2 will flow via curb and gutter
' to Inlet 20 (6' type R). Runoff from basin 3 flows via curb and gutter to Inlet
30 (8' type R) and drainage from basin 4 flows into a 6 foot curb inlet (Inlet
40). Runoff from basins 0-2, 0-4, and 5 combine and flow via curb and
gutter into inlet 50 which is a 16 foot curb inlet. The combined 100 year
runoff from all of the basins flow via storm pipe to the south and into a curb
inlet in Southridge Greens Boulevard. See the Appendix for inlet and storm
pipe sizing calculations.
' Inlets 10 through 50 have been sized to accept all of the runoff from the 2
year storm and a majority of the runoff from the 100 year storm (see
Appendix). Flow from the 100 year storm will pond at the inlet and at inlets
' 10 through 40 the ponding depth is less than 6". At inlet 50 the ponding
depth is 8.5" which exceeds the depth of the curb and gutter. The water will
pond in the open space to the north of the inlet and in the street to the south
' of the inlet. Inlets 10 through 40 will have an emergency overflow swale in
the open space to the south of each street. Both swales have been sized to
accept the 100 year flow in the unlikely event of both inlets being 100
' percent clogged (seethe Appendix for swale calculations). In the event that
inlet 50 becomes clogged, the flow will overtop the high point in the entrance
and flow to the inlet in Southridge Greens Boulevard.
' Runoff from basin 6 sheet flows onto Southridge Greens Boulevard and is
collected in the curb and gutter and is then conveyed into the existing curb
inlet in Southridge Greens Boulevard. This inlet will be the collection point
1 3
for the on -site runoff and the flows from Southridge Greens Boulevard. From
this point, a storm pipe will convey this water to the southwest into a
proposed water quality pond. Pollutants will be allowed to settle out and the
storm water will be released directly into Mail Creek. The design of this
pond will occur with the Miramont Valley project to the west of Southridge
' Greens Boulevard. The plans for this water quality pond are included in the
appendix of the plans for Miramont Village for reference.
' Some of the runoff from the Ramparts at Miramont (2.11 cfs) will flow over
the proposed retaining wall at the northerly boundary of this site. Flow depth
' over the wall was calculated to be 0.2" (see Appendix). This amount of flow
was determined to have no erosion impact on the retaining wall footing and
no erosion remediation is proposed.
' Flows from Lemay Avenue have been accounted for in the Final Drainage
and Erosion Control Study for Lemay Avenue Improvements by RBD, Inc. in
' May, 1995. Flows in Southridge Greens Boulevard are accounted for in the
Final Drainage and Erosion Control Study for Miramont Valley, P.U.D. by
RBD, Inc. currently under review at the City.
V. STORM WATER QUALITY
' A. General Concept
' The Miramont Village development is anticipating construction beginning in
the fall of 1996. Best Management Practices for the treatment of storm
' water runoff have been incorporated into the design for this project. The
BMP's included in the erosion control plan for this site are installation of silt
fence and gravel inlet filters during construction. Also included is a water
' quality pond that is being designed and will be constructed with the
Miramont Valley, P.U.D. Runoff from the Miramont Village site will be routed
to this pond via the storm sewer system in Southridge Greens Boulevard.
' This pond will provide a mechanism for pollutants to settle out of the storm
water runoff prior to being released into Fossil Creek.
All construction activities must comply with the State of Colorado permitting
process for Storm water Discharges Associated with Construction Activity.
A Colorado Department of Health NPDES Permit will be required before any
' construction grading can begin.
F_
L
Ell
VI. EROSION CONTROL
' A. General Concept
The Miramont Village Site is in the Moderate Rainfall and Moderate Wind
Erodibility Zones per the City of Fort Collins zone maps. The potential exists
for erosion problems during construction, and after construction until the
' disturbed ground is revegetated or paved. It is anticipated that construction
will begin in June of 1996.
' B. Specific Details
Erosion control for this site during construction includes gravel filters for all
' of the inlets on the site and silt fence to be installed along the downstream
perimeter of the site. All areas that remain disturbed for more than four
weeks will require seeding and mulching to prevent excessive erosion.
' During the four week period, disturbed areas shall be roughened.
After construction of utilities, the streets will have a paved surface and the
' individual units will be constructed. The open areas and the yards of the
units will be seeded or sodded to reduce the erosion potential.
Calculations for erosion control performance standards were completed per
the City of Fort Collins Erosion Control Reference Manual for Construction
1 Sites and are included in the appendix. The erosion control performance
standard for this site during construction is 82.5%. The effectiveness of the
proposed erosion control plan during construction is 82.7%. The erosion
' control performance standard after construction was calculated to be
97.1 %.The effectiveness of the proposed erosion control plan after
construction is 97.5%. Therefore, the erosion control plan will meet the City
of Fort Collins criteria.
VII. CONCLUSIONS
A. Compliance with Standards
' All computations within this report have been completed in compliance with
the City of Fort Collins Erosion Control Reference Manual for Construction
' Sites and the Storm Drainage Design Criteria Manual.
1 5
' B. Drainage Concept
The proposed drainage concepts presented in this study and shown on the
final utility plans adequately provide for the conveyance of developed runoff
from Miramont Village P.U.D. The combination of on -site street capacities
' and the on -site storm sewer system will provide for the developed flows to
reach the proposed off -site water quality pond. This pond is being designed
t and constructed to account for flows generated by the Miramont Village site.
The concepts shown here will also allow for the development to occur and
be in compliance with the Fossil Creek Basin Master Plan. This site will also
' be in compliance with the Overall Drainage plan for the Oak/Cottonwood
Farm.
' If groundwater is encountered at the time of construction, a Colorado
Department of Health Construction Dewatering Permit will be required.
' C. Storm Water Quality Concept
Because storm water quality has become a requirement, the proposed
' design has addressed this storm water aspect. Water from this site will be
routed to a grass -lined water quality pond which will provide an opportunity
for storm water pollutants to filter out of the storm water runoff before the
' runoff flows into Fossil Creek.
D. Erosion Control Concept
' The proposed erosion control concepts adequately provide for the control of
' wind and rainfall erosion from Miramont Village. Through the construction
of the proposed erosion control concepts, the City of Fort Collins
performance standard will be met. The proposed erosion control concepts
' presented in this report and shown on the erosion control plan are in
compliance with the City of Fort Collins Erosion Control Criteria.
H
0
1 6
11
REFERENCES
1. Storm Drainage Design Criteria and Construction Standards by the City of Fort
Collins, Colorado, May 1994, revised March 1991.
2. Erosion Control Reference Manual for. Construction Sites by the City of Fort
Collins, Colorado, January 1991.
3. Fossil Creek Drainage Basin Master Drainageway Planning Study, by Simons, Li
& Associates, Inc., August 1982.
4. Overall Drainage Study for the Oak/Cottonwood Farm Fort Collins, Colorado, by
RBD, Inc., May 4, 1992 and revised January, 1995.
5. Final Drainage and Erosion Control Study for The Ramparts at Miramont P.U.D.,
by RBD, Inc. dated November, 1995.
6. Final Drainage and Erosion Control Study for Miramont Valley P.U.D., by RBD, Inc.
dated March, 1996.
7
I
APPENDIX
H
1
I
1
1
1
1
1
1
1
1
1
i
1
11
1
i
11
1
VICINITY MAP
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DRIVE
\roe
FOSsk
C"
PORTNER RES 1
VICINITY MAP
SCALE: 1 "=2000'
2
ROAD
HARM014Y ROAD
PROJECT
SITE
SITE HYDROLOGY
I
(D
M
Y C)
a-
a-O
U
O
L
N
m
C
O
N
a)
L_
L
O
rn
4)
3
N
U
a)
toCL
ca
O
a
C
E
�O
U
ms
U
U
aa))
O
..
p
O m
O
U
Cu
O
W
'O
w
>
* C
a)
c
m
U E
N
�
cu
to
Cn
m
a-
�--
c
N
co
co
N
aD
(o
ao
00
c0
LO
Cl-
CD
n
CD
to
CD
CM
M
M
M
M
C1 _
ci
o00000
6
0000
6
O
U
.. cn
CD
to
OD
(D
N
CM
O
T7
Co
00
Co
CD
c 3
MN
covU)CM
(D
V O
to
CM
W
A
IT
to
v
c0
0D
00
CD
co
N
a)
as
V
CA
N
'V'
00
P-�
N
to
Z
(O
P
tli
v
ctj
M
co
ao
co
co
00
U a)
T(0CnCDCn'V'
4
"
q
CL
I
I
I
I
CD
CD
LO
cr)
�
v
OCD(AN
�
C1
N
tl)
CO
to
r-
(D
c0
O
N
Cn
u
O
O
O
O
N
�
CC)
0000
O
Q
(DMI��(D�
v
MvCnto
Co
to
coNc0Oto
O
0M
CP)(0
T7
O
OO
OMM
O
00�0
eo
Q
LO
LO
to
U)
LO
LO
LO
U)
Lo
Lo
Lo
to
j
N
N
N
N
N
N
N
N
N
N
N
(N
0=
0
0
0
0
0
0
O
O
O
O
O
O
'Z U
N
a
Cn
to
Cn
tf)
tl)
t()
to
CC7
U)
U')
LO
to
LO
3
CY)
CA
O
(A
(A
CA
CA
O
O
O
O
CD
O_
000666
O
OC;
00
O
(U
N =
C1
c
•—NCMITCo(0
NM
LV
N `)
Q
11J
LL
U-
(n
O
0
r
O
O
11
U
Z
O
T
N co
Z
(j
U
0
O
U
LL
O
W
W
F
U
(1)
rn
ca
S3
C
O
c
m
N
O
a
U
rn
c
}
m
d
Z 0
rn
O LU
C
WCD
g
Cl
J
m
0
O
m
:DQ
(O
fn U
Y
U
N
2 r
O
t`
V' O h N C) It r- r- f` n
J ^
C
CO
to l- (O P.: P�: O Il I-� Il� CO
Z U r
+- E r
I.L v
r
M M N N CO V' LO to (O rn
^
O
N
c0(OCOM000O OOOr
J •c
++ Er
}
tO
c0 00 v v 0o 00 to to to to
I-
M
r r to to CO r� M M M co
U N
v
N N N N M M 6 M CO M
O?O'
W
.�
2w
W
J
O
OOto to 00 0000
Wa.
O
cocMMP�P�00000
J
L�LS
U)
n
a
n.a.aaaa n n.aa
O
OOto�tno totOtoLO
to
MMrna)vr 00000
r(—Dj
tO
�v st v cc)P� rrr Crl
O
r 0O `7 0 cM 0 N N N 00
CO
N CO CO M 4 (O I-:
W
c
z
Z
W
o
000000 0000
O
O O O O O O O O O O
g
O o�
LO
N N O N V' N N N N N
c-
�.
J
r-
W
O=
o
LO LO to LO O o to to LO 0
::3
LO
NV COV'(000 V V VO4
v
H
Z
Z
W
J
LO
00 N r c- M co 00 00 OD co
N
tnn(Op- OtO MMCV) Cl)
000000 0000
V'
(0 ce) P, (O r M V O LO
HCA
UN
O
LO 00 N co (3) tO LO M (O (O
OOr6
Q
� f0
r
OOrOCMM
Q v
Z
m
D
W
(D
r N m t
U)
OOOO
rNCOV'tOCO
5
J.
K W
yo
q
N
t
d>
a
p
a
a
a
p
N C
d
5
tt
p
Eo
g
Em
ga
Em
oa
Em
gv
E°
gad
�m
q
a
n
n
o.
a
ua
f-
O2n
N
ui
Y
m
N
0
O
ai
m
n
>
Z
O
A
Y
O
q
a W Z$ N
ap
y
H
Y
N
Y
N
q
N
q
N
N
{7
Oa O
OWN
J v
W
W Z
O
O
q
q
q
b
N �
N
G
A
Cl
n
OI
r
Qi
Cf
n
'gym
WNer
N
a
a ,•
q
v
�
eJ
Ci
Ci
N
y
JF
Y
m
f
m
N
n
N
A
O
'p .-
Mp
ZQ aq,
Z U
� m
IQ
IQ
m
m
OR
y OX.Y-
q
LL
t7
O
q
A C1
14 Y
m 0
q m q
O q
J LL
n
CI
O
IV tG
lV
fC A'
to N
O Zb�
A �
� LL
0 Z t^
— ]
r
lV
Cl
O
N Y
N tG
m 0
lG
q q q
b n'
O N
Yf Y>
❑ a'
4
p
W
��pp
m
t2
Cf
20
N N
b�p
m 0
W O
O
N g
W V O^
Q¢H
O
O
ry
Y
O
C! Y q
C) 'Q
b
b
m
yO YN
m m
A m
ON
ti n r
O R
W q
N
C)
Cf
N N
N N
N N
N N N
N N
Z v
m
y
mm
U m
c
o
c
o0
00
oc
c ed
o c
L E n
r
Y
m
o
A n
ry .t
q .-
q m
Y q
O O
W �
O
N
O
O
Y
O
N
O
a-m
EL E
J
Z
N
O
N
O
raEm
3=
OU
LL q
Y
Z f
O
Cif
yy
O
CC�
C)
O b
0 Z v Y
(X J
3 E"
r
q
Y
m
Y
1A
O O
1` A
r
m r
N q
h h
q q q
fh n n
Y Y
O O
N
m
m
v
N d
d�
q d
^
N
O
O
N N
N N
Y Y
pp pOp
N Yf s
pp
Tp s
�O-
I
1
1
1
1
1
1
U
LO
N
r
II
U
T
F
w O a)
Z M
0 O
0
rn
m
w
C
O
cm Y
G
}
m
Z 0
0 w
U) ~
>g
r. m J
� u U
�
U
2 `-
O
ui
co
2
N
ON(O V V V hl—l�r
-I ^
OO
tOtotOtO0ao CO000
Z-'E�
Uv
r
CO MNN(O V' LO to LO 0)
^
C O
N
('7CMMMM(M OOOr
J
w �.. r
v
(O
CO co V V'000 NLOLOLO
(M
rr(OtOOOr, MMMM
U N
V
N N N N M M M M CO M
O)
w
H
>
O
OOtO Ln000 0000
Waw
^
O
MMIh ISO OD 0000
Q
0 0
to
rrrr4M (MM MM
0
n
CLn
CL CL CL a a- CL
2
O
O 0 (O (n LO tO to LO LO LO
F.
(O
ce) M a) a) V rh O O O co
^
Z r
In
v V V 0r� r r r M
LU
J
r
(OOIt CO NNNr
^
O
rNNNN(O (OCO(O V
�(D
v
H
0
Z
LU
O
O
O O O O O O 0000
O O O O O O 0 0 0 Cl
g
C o N
t 0
N N O N 4 N N N N N
Q,
0o
v
r r
LU >
u
O
S
0
(O (O LO tO 0 0 LO LO LO 0
il
F-
U)
N V 0 tt O OD V• V v N
HZ��
Z
w
_
J
t0
CO N r r M CO 00 OD 00 00
N
LOh(mh(oto MMMM
U M
o
0 0 0 0 0 0 0000
V
(OM1hr(0 M V'Otn
<Q
0
tnODN00O)tn 0mLO(O
Q
W a
Co CN
O
O O r 6 6 6 O O r 6
Q
Q
Z
0
c]
�w
«
rN CMV
vi
CO
rNM V•LO(O 0000
19
k
�
(
)}
�
{
£
;;
& Q
Ga
0
R
0
k
2
E
)
§�
E!
&
|E
|S
S
\
\�
(`
�j
»
ci
§$a
—
—
—
§
;—
.
.
_
ai
a
§
§'
Cl!
�
W-
q
G
;
:
Q
`
§¥e
§
f
A
A
f
mo2�
r
§
§
(k-`
[
=
o
k
k
k
k
k
§
lo--
#k22
Jk
§
§2�—
.
mog"
G2—`
§h—_
2
®
,
—
cd
cd
§ 2k
§
,
.
�)/e
§
|
§
§§
§§
00
§ §§
5
|
§
§
|3
§|
§§
§ k*
�
£
,
){
�,
|
9
0
k0
0®
® |q
f
|
u �
�
�
��
�
00
�
°
°
`\
`\
\
0\
\
\\ \
rL«
Ci
0
d
\7
) ,
`
2a
9
E)§®,
Cd
,
0
_0
00
0,
(6 td6
Cd
Cd
2\�
`
G
&§
.
,}
m}
v$
0
Q
§
—
/
7
§,
_
,
�
_
,
ON
RR
g7
B 22
S
S
|
I
H
0
n
1
1
1
1
DESIGN OF INLETS AND
EMERGENCY OVERFLOW SWALE
ti
1
-------------------------- ------------------------- --------------------------
UDINLET: INLET HYDARULICS AND SIZING
' DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
kS---------------------------------------------------------------------------
ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
DATE.07-29-1996 AT TIME 12:47:39
I** PROJECT TITLE: Inlet 10
*** CURB OPENING INLET HYDRAULICS AND SIZING:
' INLET ID NUMBER: 10
' INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 8.00
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 45.00
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.08
Note: The sump depth is additional depth to flow depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE M =
0.50
STREET CROSS SLOPE
(%) =
2.00
}
' 'STREET MANNING N
=
0.016
GUTTER DEPRESSION
(inch)=
1.50
GUTTER WIDTH
(ft) =
2.00
STREET FLOW HYDRAULICS:
ItWATER
SPREAD ON STREET
(ft) =
19.19
GUTTER FLOW DEPTH
(ft) =
0.51
FLOW VELOCITY ON STREET
(fps)=
2.72
FLOW CROSS SECTION AREA
(sq ft)=
3.81
GRATE CLOGGING FACTOR
(%)=
50.00
k'1
{
CURB OPENNING CLOGGING
FACTOR(%)=
10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
12.05
'
BY FAA HEC-12 METHOD:
DESIGN FLOW
(cfs)=
10.30
FLOW INTERCEPTED
(Cfs)=
10.30
CARRY-OVER
FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD:
DESIGN FLOW
(cfs)=
10.30
'
FLOW INTERCEPTED
(Cfs)=
10.30
CARRY-OVER
FLOW (cfs)=
0.00
m
.1
-----------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
' DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-.---------------------------
---
------------------------
SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
N DATE.07-29-1996 AT TIME 12:59:24
I** PROJECT TITLE: Inlet 20
1
1
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 20
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
HEIGHT OF CURB OPENING (in)=
INCLINED THROAT ANGLE (degree)=
LATERAL WIDTH OF DEPRESSION (ft)=
SUMP DEPTH (ft)=
Note: The sump depth is additional
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE M =
STREET CROSS SLOPE
00 =
STREET MANNING N
=
GUTTER DEPRESSION
(inch)=
GUTTER WIDTH
(ft) _
STREET FLOW HYDRAULICS:
" WATER SPREAD ON STREET
(ft) =
GUTTER FLOW DEPTH
(ft) =
FLOW VELOCITY ON STREET
(fps)=
FLOW CROSS SECTION AREA
(sq ft)=
GRATE CLOGGING FACTOR
(%)_
CURB OPENNING CLOGGING
FACTOR(%)=
5.00
6.00
45.00
2.00
0.08 .
depth to flow depth.
0.50
2.00
0.016
1.50
2.00
16.09
0.45
2.46
2.72
50.00
10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
BY FAA HEC-12 METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
BY DENVER UDFCD METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
7.56
(cfs) =
(cfs) =
(cfs) =
(cfs) =
(cfs) =
(cfs) =
6.70
6.70
0.00
6.70
6.70
0.00
1 ------------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY.
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
- - ------------------
--------------------------------------
SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................
ON .DATE 07-29-1996 AT TIME 12:55:08
I** PROJECT TITLE: Inlet 30
1
1
1
1
I�
J
1
1
1
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 30
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 8.00
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 45.00
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.08
Note: The sump depth is additional depth to
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) _
STREET CROSS SLOPE
(°> ) _
STREET MANNING N
=
GUTTER DEPRESSION
(inch)=
GUTTER WIDTH
(ft) _
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET
(ft) _
GUTTER FLOW DEPTH
(ft) _
FLOW VELOCITY ON.STREET
(fps)=
FLOW CROSS SECTION AREA
(sq ft)=
GRATE CLOGGING FACTOR
(°s)=
CURB OPENNING CLOGGING
FACTOR(%)=
0.50
2.00
0.016 -
1.50
2.00
17.69
0.48
2.59
3.25
50.00
10.00
flow depth.
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 11.14
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
CARRY-OVER FLOW (cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
CARRY-OVER FLOW (cfs)=
IL -
8.50
8.50
0.00
8.50
8.50
0.00
t-----------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
' DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
---------------------
----
------------------------------
ts--E-R-:-K-E-V-I-N--G-I-N-GE--R-Y---RD-B INC FT. COLLINS COLORADO.............................
N DATE.07-29-1996 AT TIME 13:00:03
PROJECT TITLE: Inlet 40
*** CURB OPENING INLET HYDRAULICS AND SIZING:
tINLET ID NUMBER: 40
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 5.00
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 45.00
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.08
:.■ Note: The sump depth is additional depth to
STREET GEOMETRIES:
flow depth.
STREET LONGITUDINAL SLOPE (%) =
0.50
STREET CROSS SLOPE (%) =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.50
'
..GUTTER WIDTH (ft) =
2.00
4°.
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
15.81
GUTTER FLOW DEPTH (ft) =
0.44
FLOW VELOCITY ON STREET (fps)=
2.44
'
FLOW CROSS SECTION AREA (sq ft)=
2.63
GRATE CLOGGING FACTOR M =
50.00
'
CURB OPENNING CLOGGING FACTOR(%)=
10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
7.44
' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.40
FLOW INTERCEPTED (cfs)= 6.40
CARRY-OVER FLOW (cfs)= 0.00
' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.40
FLOW INTERCEPTED (cfs)= 6.40
CARRY-OVER FLOW (cfs)= 0.00
13 -
t-----------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
' DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-------------------------------------------------------
SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ..............................
DATE 07-29-1996 AT TIME 12:53:01
r** PROJECT TITLE: Inlet 50
1
1
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 50
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 16.00
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 45.00
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.08
Note: The sump depth is additional depth to flow depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
0.50
STREET CROSS SLOPE
M =
2.00
STREET MANNING N
=
0.016
GUTTER DEPRESSION
(inch)=
1.50
GUTTER WIDTH
(ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET
(ft) =
29.13
GUTTER FLOW DEPTH
(ft) =
0.71
FLOW VELOCITY ON STREET
(fps)=
3.51
FLOW CROSS SECTION AREA
(sq ft)=
8.61
GRATE CLOGGING FACTOR
(%)=
50.00
CURB OPENNING CLOGGING
FACTOR(%)=
10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
33.73
BY FAA HEC-12 METHOD:
DESIGN FLOW
(cfs)=
30.30
FLOW INTERCEPTED (cfs)=
30.30
CARRY-OVER
FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD:
DESIGN FLOW
(cfs)=
30.30
FLOW INTERCEPTED (cfs)=
30.30
CARRY-OVER
FLOW (cfs)=
0.00
1¢
RBD INC. ENGINEERING CONSULTANTS
CHANNEL RATING INFORMATION
Miramont Village Overflow Swale A -A
(In use only if inlets are clogged -
Assume both inlets are 100W clogged)
STA ELEV
0.00 5.00
5.00 4.50
8.00 4.00
17.00 4.00
20.00 4.50
25.00 5.00
'N' VALUE SLOPE (ft/ft)
-----------------------
0.060 0.0833
ELEVATION AREA VELOCITY DISCHARGE FROUDE
(feet) (sq ft) (fps) (cfs) NO.
--------- ------- -------- --------- ------
4.10 1.0 1.5 1.42 0.85
-0. 49 4.20 2.0 2.3 4.64 0.95
4. 30 3.2 2.9 ©N /F.B. =22.1 9.37 1.01
4.40 4.6 3.4 15.58 1.05
.50 6.0 3.9 3.27 1.08
- �'� 4.60 7.6 4.2 a 8 31.75 1.10
4.70 9.4 4.5 42.01 1.12
4.80 11.4 4.8 54.20 1.14
4.90 13.6 5.0 68.45 1.15
5.00 16.0 5.3 84.89 1.17
1 09--rH Swr�l E
0 10 + Qw = 10. 3 + G .7 = 17, 0 cFS F 1 D0 - y r S{a►-YYI
1
Soc ir" Sw+tI-E
55+10,4- 14,9 �.Fs ►oo-yr b�bYm
w/F2 EBoNe-D
000x1.33= 22, I cfs
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
Weir calculation for flow over retaining wall
WEIR COEF. 41,5
40.9 To.h, i
2.600
STA
ELEV
0.0
41.50
0.0
40.90
195.0
40.90
195.0
41.50
ELEVATION DISCHARGE
(feet)
(cfs)
40.90
0.00�_ga,=2,I1
41.00
16.03 D, oo = o.o = 0.2"
41.10
45.35
41.20
83.31
41.30
128.26
41.40
179.25
(;Z G� A= D•38(I.25)•9.4 • CIIo�x 19��43560 � 2I I c�5 -+- low over
refainn9 wall
I&
I
1
H
u
1
1
STORM PIPE
SIZING
1`7
Node Descriotion
4
15' Type 'R' Curb Inlet,
Flowline = 4917.04
11
Type 'R' Curb Inlet,
Flowline = 4919.85
12
Type 'R' Curb Inlet,
Flowline = 4927.58
13
Type 'R' Curb Inlet,
Flowline = 4927.30
14
Type 'R' Curb Inlet,
Flowline = 4934.00
15
16
Type'R' Curb Inlet,
Type 'R' Curb Inlet,
Flowline = 4933.75
Flowline = 4933.75 (Dummy Node)
Sewer Description
411 169of 30" RCP @ 1.45% (Upstream Crown = 4918.08) L
1112 161' of 24" NRCP @ 3.50% (Upstream Crown = 4924.22)
Crown = 4925.57)
1213 33' of 24" NRCP @ 3.50°/, (Upstream
1314 104' fo 24" NRCP @ 5.46% (Upstream Crown = 4931.45)
1415 33' of 15" NRCP @ 2.65% (Upstream Crown = 4932.52)
1516 0.1' of 15" NRCP @ 2.65% (Upstream Crown = 4932.52)
6
U 7
Model 5 consists of Node4to Node 16
5C74�I IoSF,, , s�—T
I
1
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .............................................
ON DATA 06-20-1996 AT TIME 16:04:52
*** PROJECT TITLE :
MIRAMONT VILLAGE TRUNKLINE
*** RETURN PERIOD OF FLOOD IS 100 YEARS
*** SUMMARY OF HYDRAULICS AT MANHOLES
-------------------------------------------------------------------------------
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
-------------------------------------------------------------------------------
COMPLETION OF D/S OFFSITE STORM SEWER TO OCCUR WITH THE MIRAMONT
VALLEY PROJECT. ASSOCIATED UDSEWER ANALYSIS MUST DEMONSTRATE NO
SIGNIFICANT U/S IMPACTS BY THE VALLEY TO THE MIRAMONT VILLAGE
STORM SEWER SYSTEM.
4.00
110.00
4917.50
4918.28
OUTLET BASED ON CRITICAL DEPTH
11.00
45.00
4920.38
4919.06
Cl
12.00
36.40
4927.58
4924.12
Cl
13.00
32.80
4927.30
4925.44
CI
14.00
27.80
4934.00
4931.38
Cl
15.00
10.30
4933.75
4933.87
Cl
16.00
10.30
4933.75
4934.15
Cl
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
Cl MEANS "CURB INLET"
*** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 1
SEWER
------------------------------------------------------------------
MAMHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
ID NO.
--------------------------------------------------------------------
ID NO.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
411.00
11.00
4.00
ROUND
29.79
30.00
30.00
0.00
1112.00
12.00
11.00
ROUND
23.32
24.00
24.00
0.00
1213.00
13.00
12.00
ROUND
22.43
24.00
24.00
0.00
1314.00
14.00
13.00
ROUND
19.24
21.00
21.00
0.00
1415.00
15.00
14.00
ROUND
15.31
18.00
15.00
0.00
1516.00
16.00
15.00
ROUND
15.31
18.00
15.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
1
I
11
1
1
1
1
1
0
1
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE WAS USED
------------------------------' --------------------------------
SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT
ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO.
NUMBER CFS CFS FEET FPS FEET FPS FPS
-------------------------------------------------------------------------------
411.0 45.0 46.0 2.00 10.68 2.20 24.05 9.17 1.29 V-OK
1112.0 36.4 39.4 1.52 14.24 1.90 14.61 11.59 2.05 V-OK
1213.0 32.8 39.4 1.39 14.03 1.87 11.93 10.44 2.19 V-OK
1314.0 27.8 35.2 1.17 16.23 1.67 13.84 11.56 2.80 V-OK
1415.0 10.3 9.8 1.25 8.39 1.17 23.29 8.39 0.00 V-OK
1516.0 10.3 9.8 1.25 8.39 1.17 8.63 8.39 0.00 V-OK
FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
-----------
SEWER
SLOPE
- ----- -------------------------------------
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
%
(FT)
(FT)
(FT)
(FT)
----------------------------------------------------------
411.00
1.45
4916.08
4913.63
1.80
1.37
OK
1112.00
3.50
4922.22
4916.59
3.36
1.79
OK
1213.00
3.50
4923.57
4922.42
1.73
3.17
OK
1314.00
5.70
4929.70
4923.77
2.55
1.78
OK
1415.00
2.65
4931.27
4930.40
1.23
2.35
OK
1516.00
2.65
4931.27
4931.27
1.23
1.23
OK
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
------------------------------------------------------------------------------
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
1D NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET
FEET
FEET
FEET
FEET
FEET
-------------------------------------------------------------------------------
411.00
169.00
103.31
4918.58
4916.13
4919.06
4918.28
JUMP
1112.00
161.00
0.00
4924.22
4918.59
4924.12
4919.06
JUMP
1213.00
33.00
3.67
4925.57
4924.42
4925.44
4924.12
JUMP
1314.00
104.00
0.00
4931.45
4925.52
4931.38
4925.44
JUMP
1415.00
33.00
33.00
4932.52
4931.65
4933.87
4931.38
PRSSIED
1516.00
0.10
0.10
4932.52
4932.52
4934.15
4933.87
PRSSIED
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
------------------------------------------------------------------------------
UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY
ID NO ID NO. ELEV FT FT K COEF LOSS FT K CDEF LOSS FT 1D FT
------------------------------------------------------------------------------
411.0 11.00 4920.37 1.43 0.50 0.65 '0.00 0.00 4.00 4918.28
1112.0 12.00 4926.20 5.73 0.05 0.10 0.00 0.00 11.00 4920.37
1213.0 13.00 4927.13 0.89 0.02 0.03 0.00 0.00 12.00 4926.20
1314.0 14.00 4933.45 6.22 0.05 0.10 0.00 0.00 13.00 4927.13
1415.0 15.00 4934.96 0.97 0.50 0.55 0.00 0.00 14.00 4933.45
1
t1516.0 16.00 4935.24 0.00 0.25 0.27 0.00 0.00 15.00 4934.96
BEND LOSS =BEND K* FLOWING FULL VHEAD 1N SEWER,
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O.
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
1
I I
H
1
1
0
1
.0
CHART 4
'
3
'
2
1
I
0
' 0 10 20 30 40 30 60 70 BO 90 100
DISCHARGE-0-CFS
'
6
_S
w
W
W
�u- 4
'
3. Zp
S
a~
W 3
0
-1
J
_
0.2
B
7
F-
W
6 W
U.
u
0
S
~'
a
W
O
J
a
0 100 200 300 400 500 600 700 600 900 10009
OISCHARGE-0-CFS
x ,
•. 14
_.'12
..''
.,
.. . .10
6 d� CANNOT EXCEED TOP OF PIPE
3'
' or.
9' 1a
40 1000 2000 3000 4000
DISCHARGE-0-CFS
' BUREAU OF PUBLIC ROADS
JAN.1964 CRITICAL DEPTH
CIRCULAR PIPE
' 184
• 22
1
i STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 803
MANHOLE AND JUNCTION LOSSES
p/ g jLN Nolt fr All Type p/ PLAN .
•1 1•HI.
USE EQUATION 805
qtP V-" k ViZ
r
Q •0.�. VV3
°- i = •:2S
SECTION SECTION
USE EQUATION 801
ti _ Y. V� CASE I
'�3 INLET ON MAIN LINE yr
SNf..
USE EQUATION 805
T z
NL= - K V1
PLAN
ES CTION
SASE M
IJANHOLE ON WAIN LINE CASE NO.
A BRANCH LA�A1
II
IV
CASE II
INLET ON MAIN LINE
mr
PLAN
USE EQUATION 801.
UL= K
SECT104
CA
INLET OR MANHOLE AT
BEGINNING OF LINE
CASE III
K.
9°
K.
0.05
22-1/2
075
0.25
45
0.50
1.25
60
0.35
90
0.25
No Lateral See Case I
Date: NOV 1984 REFERENCE:
Rev: APVIA Special Report No. 49, 1981
Z2A
- STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 802C
1
STORM SEWER ENERGY LOSS COEFFICIENT
(BENDS AT MANHOLES)
t.t
i�
NO
tz1.
� rL
144
f
1.0
G `h
!L CA
�.
00
G•¢a
0.1
a.rs
+89
0.2
- o
'
t
N
4
I
r
I
I
I
i —
I
Bend at Manhole,
I —
no Special Shaping
Y/
I
Deflector
7
Curved
I
I
i
fiend at N•inhole.
I —
Curved or Deilectorl
Monhole
I
I
•
I
I
o.
D' 20' 400 60' 60' B D' 7 DD'
Do fit clion Angie Y,Degrses
NOTE: l;eod loss cpplied ci oullei of monho!e.
DATE: J A N. 1 9 8 8 REFERENCE:
REV: ldo,ern Sewer Design, AISI, V,roshinglon D.C., 1980.
I
I
1
1
1
1
1
1
1
EROSION CONTROL
CALCULATIONS
1
Z3
RBD, Inc.
' RAINFALL PERFORMANCE STANDARD EVALUATION
' #607-009
1
1
PROJECT: Miramont Village STANDARD FORM
CALCULATED BY: PPK DATE: 03/13/96
DEVELOPE
ERODIBILIT
Asb
Lsb
Ssb
Lb
Sb
PS
SUBBASIN
ZONE
(ac)
(ft
%
ft
1
moderate
0.56
430
1.3
2
moderate
0.83
430
1.3
3
moderate
1.27
495
1.8
4
moderate
0.81
495
1.8
5
moderate
3.96
845
4.0
6
moderate
3.51
775
3.8
Total
10.94
703
3.2
82.5
EXAMPLE CALCULATIONS
' Lb = sum(AiLi)/sum(Ai) _ (0.56 x 430 +... + 3.51 x 775)/ 10.94
703 ft
' Sb = sum(AiSi)/sum(Ai) _ (0.56 x 1.30 + ... + 3.51 x 3.80)/ 10.94
3.2 %
' PS (during construction) = 82.5 (from Table 8A)
PS (after construction) = 82.5/0.85 = 97.1
24
RBD, Inc.
1
1
1
0
1
EFFECTIVENESS CALCULATIONS
#607-009
PROJECT: Miramont Village STANDARD FORM B
CALCULATED BY: PPK DATE: 03/13/96
Erosion Control
C-Facto
P-Facto
Comment
Number Method
Value
Value
4 Sediment/Basin Trap
1
0.5
installed at beginning of construction
6 Gravel Filter
1
0.8
placed at inlets
8 Sift Fence Barrier
1
0.5
placed at downstream perimeter
9 Asphalt/Concrete Pavement
0.01
1
existing on Southridge Greens Blvd
23 Hydraulic Mulch @ 2 tons/acre
0.1
1
used in areas not to be paved
47 Contoured Furrow Surface (3-5% basin slo
1
0.5
SUB
PS
AREA
BASIN
%
ac
Site
82.5
10.94
SUB
SUB
AREA
Practice C • A P • A Remarks
BASIN
AREA
ac
DURING CONSTRUCTION
1
Total
0.56
Seed & Mulch
0.28
23 0.03 0.28 Hydraulic Mulch @ 2 tons/acre
Remain.
0.28
8 0.28 0.14 Silt Fence Barrier
2
Total
0.83
Seed & Mulch
0.55
23 0.06 0.55 Hydraulic Mulch @ 2 tons/acre
Remain.
0.28
8 0.28 0.14 Sift Fence Barrier
3
Total
1.27
Seed & Mulch
0.99
23 0.10 0.99 Hydraulic Mulch @ 2 tons/acre
Remain.
0.28
8 0.28 0.14 SIR Fence Barrier
4
Total
0.81
Seed & Mulch
0.53
23 0.05 0.53 Hydraulic Mulch @ 2 tons/acre
Remain.
0.28
8 0.28 0.14 Sift Fence Banner
5
Total
3.96
Seed & Mulch
3.35
23 0.34 3.35 Hydraulic Mulch @ 2 tons/acre
Remain.
0.61
8 0.61 0.30 Sift Fence Barrier
6
Total
3.51
Impervious
0.90
9 0.01 0.90 Asphaft/Concrete Pavement
Remain.
2.61
23 0.26 2.61 Hydraulic Mulch @ 2 tons/acre
Cnet = [0.28x0.00+,,,+2.61x0.00]/0.90
= 0.23
Pnet = [0.28x0.00+„ +2.61 x0.00y0.90
= 0.74
EFF = (1-C'P)100 = (1-0.23*0.74)100
= 82.69
> 82.5 (PS)
Assume paving not constructed within 6 weeks;
use gravel inlet filters at all inlets & silt fence at
downstream perimeters.
,75
' RBD, Inc.
ul
C
IJ
7
1
1
EFFECTIVENESS CALCULATIONS
0-� 1 1 •
PROJECT: Miramont Village
STANDARD FORM B
CALCULATED BY: PPK
DATE: 03/13/96
Erosion Control
C-Facto
P-Facto
Comment
Number
Method
Value
Value
9
Asphalt/Concrete Pavement
0.01
1
paved and constructed
20
Sod Grass
0.01
1
23
Hydraulic Mulch @ 2 tons/acre
0.1
1
SUB
PS
AREA
BASIN
%
ac
Site
97.1
10.94
SUB
SUB
AREA
Practice
C • A
P' A Remarks
BASIN
AREA
ac
AFTER CONSTRUCTION
1
Total
0.56
Impervious
0.26
9
0.00
0.26 Asphalt/Concrete Pavement
Remain.
0.30
20
0.00
0.30 Sod Grass
2
Total
0.83
Impervious
0.56
9
0.01
0.56 Asphalt/Concrete Pavement
Remain.
0.27
20
0.00
0.27 Sod Grass
3
Total
1.27
Impervious
0.65
9
0.01
0.65 Asphaft/Concrete Pavement
Remain.
0.62
20
0.01
0.62 Sod Grass
4
Total
0.81
Impervious
0.53
9
0.01
0.53 Asphalt/Concrete Pavement
Remain.
0.28
20
0.00
0.28 Sod crass
5
Total
3.96
Impervious
2.17
9
0.02
2.17 Asphalt/Concrete Pavement
Remain.
1.79
20
0.02
1.79 Sod Grass
6
Total
3.51
Impervious
1.64
9
0.02
1.64 Asphalt/Concrete Pavement
Remain.
1.87
23
0.19
1.87 Hydraulic Mulch @ 2 tons/acre
Cnet=10.26x0.01 +„
+1.64x0.01 v3.51
=
0.03
Pnet=10.26x1.00+.,
+1.64x1.00y3.51
1.00
EFF = (1-C`P)100 = (1-0.03'1.00)100
=
97.46
>
97.1 (PS)
2�
' RBD, Inc.
1
.1
1
1J
H
LI
EROSION CONTROL COST ESTIMATE
PROJECT:
Mlramont I age
#60 -009
PREPARED BY:
PPK
DATE:
06/20/96
ICITY RESEEDING COS
Unit
ota
Method
Quantity Unit
Cost
Cost
Notes
Reseed/mulch
10.79 ac
$500
$5,395
See Note 1.
Subtotal
$5,395
Contingency
50%
$2,698
Total
$8,093
EROSION CONTROL MEASURES
Unit
Total
Number Method
Quantity Unit
Cost
Cost
Notes
5 Straw Bale Barrier
5 ea
$150
$750
8 Sift Fence Barrier
1380 LF
$3
$4,140
39 Hay or Straw Dry Mulch (1-5% slope)
8.3 ac
$500
$4,125
Subtotal
$9,015
Contingency
50%
$4,508
Total
$13,523
Total Security
$13,523
Notes: 1. A<1 ac=$1300/ac; A=1-10 ac=$650/ac; A>10 ac=$500/ac.
' RBD, Inc.
1
EROSION CONTROL CONSTRUCTION SEQUENCE
Indicate by use of a bar line or symbols when erosion control measures will be Installed.
Major modifications to an approved schedule may require submitting a new schedule for
approval by the City Engineer.
YEARS 96
WIND EROSION CONTROL
Soil Roughening
Perimeter Barrier
Additional Barriers
Vegetative Methods
Soil Sealant
Other
RAINFALL EROSION CONTROL
STRUCTURAL:
Sediment Trap/Basin
Inlet Filters
Straw Barriers
Silt Fence Barriers
Sand Bags
Bare Soil Preparation
Contour Furrows
Terracing
Asphalt/Concrete Paving
Other
VEGETATIVE:
Permanent Seed Planting
Mulching/Sealant
Temporary Seed Planting
Sod Installation
N ettings/M ats/Blankets
Other
STRUCTURES: INSTALLED BY
VEGETATION/MULCHING CON'
' DATE SUBMITTED
MAINTAINED BY
APPROVED BY CITY OF FORT COLLINS ON
I
E
11
1
11
1
CHARTS, TABLES,
AND FIGURES
Z'�3
I
1
I
1
1
e
i
1
1
T:WINC
Engineering Consultants
CLIENT ANJ \ /(7 JOBNO. - -7-
PROJECT N r 2P,r�. oiv� CALCULATIONSFOR
MADE BY_FVV-DATE �CHECKED BY DATE SHEETOF
-
4 77 -
-- -
_.LOV�/,
CP.�-GS
FOAL ZSI w��0�
r -
ST2��LJ1
Li Li
I
_
I
I '
� .5- .
I
ST
��. DTI I
�J
►J E,_opEN ts'� I
� � I '�
j
T
1
1
'
-
_
i i
1
i
_ ..._
I
_
e
f
I 1
I
7-7717
I
t
it
f
-
r
I
,
, ,
_
�_I
_ -
-
-
- - -
- - --
— - -
I
r
I
I
1-
_1
BIZ
SAD
_
}
•�
_ FC>IZ�C
l� �0 _ 1 I
B
I I
OTH; 51DE5
r{. t
= _
8 z Es
,OF.57
J.
- - _.
I
L
l -
—
I j
'
,
r
�O
0
2.0
T
1 [OUST IO N: 0 • 0.5E (n) Sry JA A
10000
M IS POU404CIS COEFFICIENT IN MANNING
IO
9000
FORMULA APPROPRIATE TO MATERIAL IN
6000
BOTTOM OF CHANNEL O.C1L4a
7000
1 IS AECIPROCAL 0/ CROSS SLOPE
•09
1.0
6000
MCIERCMC[I N A. B PPODIEDINGS 1145,
.07
5000
PAOI ISO, EQUATION I.AI
.80
06
4000
.70
EXAMPLE Isa o.s MEo LINES)
LL
100
•OS
00
G."EMI 1 • 0.03
.60
70
Ui 50
TO, .02 1/n . IEDo �
.04
.50
2000
, • 0.E2 U 30 30- LEI.
LL
20
—
.40
__ — _-- -- to
Z_
1000
— 3
900
' —
02 >1
800
C
700
Cl
--
600 z
..
7
^
s
500 z
o
.3
0
400
W
z
P
INSTRUCTIONS
UE
I
J
01
Q
300
�
:.or
ly)
N
SL
I. CONNCCT [/11 RATIO IT. SLOP[ ISO
Q
05
AND CONNECT DISC.AP69 (0) WITH
,03
z
.00a
200
DEPTH 1JI. THESE TWO LINES MUST
,_`
U
.O$
Q
INTERSECT AT TURN -NO LINE FOR
N
_
•OO7
COMPLETE SOLUTION.
Q
,pl
' `
V
.006
[. 100 $.ALLOW _
T
>
_ I
tl
.005
100
N-SHAPED CHANNEL
90
O
80
AS SHORN USE NOMODRAP.
004
70
150
NET. 1 • r
W
60
CL
'
0
3. TO DETERMINE _ 1
I
.003
40
DISCHARGE 0. I+ -
7
(1)
MAY 1984
30
20
E
From BP
PONTOON OR IN A++CL
..VIM' OCT.Mt: I t
DETERMINE DEPT. J FOR TOTAL DISCMAR61 IN .002
ENTIRE SECTION 0. THEN USE MONOGRAPH TO
0CTIRMIM[ OP IN SECTION R FOR DLPTM
J •J-IR)
i
A. To DITIONONE DISCHARGE
,
4 ...............
IN COMPDS11[ SECTOOM'- W
I OILOM OMSTRUCTIC. S 1
Fro 091AIN DISCHARGE I, ,_, 1 y .00E
SECTION 0 AT ASSUMED 'I.11->'I
DEPTH J ; 011.1N 0. POPE
R SLOPE RATIO 1. AND DEPTH Y THEN 0, • D. • D.
Figure 4-1
NONOGRAPH FOR FLOW IN TRIANGULAR GUTTERS
(From U.S. Dept. of Commerce, Bureau of Public Roads, 1965)
0
4-3
_Z
O
La
f
CO .10
W
a
W oa
CaJ .07
06
-0 .05
W
.04
U
.03
Q
Z
1— a .02
W
a
M
DESIGN CRITERIA
1
1
' MAY 1984
0
.9
M
.7
n
Cr
o .6
F-
U
Q
Z
0 .5
U
0
0
w 4
0:
.3
.2
ves
Cls=06%
F= 0.8
s:0.4%
Fc0.5
I
I
I
I BELOW MINIMUM
ALLOWABLE
I STREET GRADE
0 2 4 6 8 10 12 14
SLOPE OF GUTTER (%)
Figure 4-2
REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY
Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain
allowable gutter capacity.
(From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965)
0
4-4
DESIGN CRITERIA
No Text
Foe PZEFP n c r✓ co N-LL•f
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .............................................
ON DATA 07-31-1996 AT TIME 15:45:02
*** PROJECT TITLE :
MIRAMONT MAJOR STORM SEWER SYSTEM
*** RETURN PERIOD OF FLOOD IS 100 YEARS
SUMMARY OF HYDRAULICS AT MANHOLES
-------------------------------------------------------------------------------
MANHOLE CNTRBTING
RAINFALL RAINFALL DESIGN
GROUND
WATER
COMMENTS
ID NUMBER AREA * C
DURATION INTENSITY PEAK FLOW ELEVATION
ELEVATION
-------------------------------------------------------------------------------
MINUTES INCH/HR CFS
FEET
FEET
31.00
156.10
4913.00
4914.00
NO
=. 1.00
156.10
4913.50
4914.15
NO
2.00
156.10
4915.80
4915.31
OK
3.00
156.10
4917.23
4916.56
OK
4.00
145.50
4917.50
4916.56
OK
5.00
47.41
4919.71
4919.33
OK
600
47.41
4923.68
4920.23
OK -
7:00
43.55
4927.12
4922.75
OK
8.00
39.41
4938.33
4934.40
OK
9.00
35.00
4952.00
4949.67
OK
10.00
35.00
4956.50
4952.80
OK
11.00
58.70
4919.88
4919.36
OK
12.00
40.70
4927.58
4924.29
OK
13.00
36.70
4927.30
4925.47
OK
14.00
31.40
4934.00
4931.55
OK
15.00
10.30
4933.75
4933.20
OK
16.00
10.30
4933.75
4933.34
OK
17.00
19.50
4934.09
4933.15
OK
18.00
19.50
4936.48
4934.28
OK
19:00
19.50
4944.28
4936.79
OK
20:00
19.50
4954.00
4943.94
OK
21.00
14.30
4949.87
4947.23
OK
22.00
14.30
4949.87
4947.48
OK
23.00
2.90
4969.50
4965.69
OK
24.00
2.90
4987.00
4976.19
OK
25.00
2.90
4980.10
4978.22
OK
27.00
2.90
4980.10
4978.29
OK
28.00
35.00
4956.50
4955.19
OK
29.00
35.00
4962.00
4956.62
OK
30.00
35.00
4961.75
4961.38
OK
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
••• SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= 1
-------------------------------------------------------------------------------
SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING
ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH
ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT)
-------------------------------------------------------------------------------
12.00 2.00 1.00 ROUND 51.62 54.00 54.00 0.00
23.00 3.00 2.00 ROUND 46.85 48.00 54.00 0.00
34.00 4.00 3.00 ROUND 56.48 60.00 48.00 0.00
45.00 5.00 4.00 ROUND 31.48 33.00 33.00 0.00
56.00 6.00 5.00 ROUND 26.85 27.00 27.00 0.00
67.00 7.00 6.00 ROUND 26.01 27.00 27.00 0.00
78.00 8.00 7.00 ROUND 21.95 24.00 24.00 0.00
89.00 9.00 8.00 ROUND 20.07 21.00 24.00 0.00
910.00 10.00 9.00 ROUND 32.74 33.00 30.00 0.00
411.00 11.00 4.00 ROUND 32.91 33.00 33.00 0.00
1112.00 12.00 11.00 ROUND 24.32 27.00 27.00 0.00
1213.00 13.00 12.00 ROUND 23.40 24.00 24.00 0.00
1314.00 14.00 13.00 ROUND 20.14 21.00 24.00 0.00
1415.00 15.00 14.00 ROUND 15.31 18.00 18.OD 0.00
1516.00 16.00 15.00 ROUND 15.31 18.00 18.00 0.00
1417.00 17.00 14.00 ROUND 25.69 27.00 24.00 0.00
1718.00 18.00 17.00 ROUND 23.52 24.00 24.00 0.00
1819.00 19.00 18.00 ROUND 23.34 24.00 24.00 0.00
1920.00 20.00 19.00 ROUND 18.00 21.00 18.00 0.00
2021.00 21.00 20.00 ROUND 17.45 18.00 18.00 0.00
2122.00 22.00 21.00 ROUND 17.45 18.00 18.00 0.00
2023.00 23.00 20.00 ROUND 7.58 15.00 15.00 0.00
2324.00 24.00 23.00 ROUND 8.66 15.00 15.00 0.00
1028.00 28.00 10.00 ROUND 32.74 33.00 30.00 0.00
2526.00 25.00 24.00 ROUND 12.65 15.00 15.00 0.00
2627.00 27.00 25.00 ROUND 12.65 15.00 15.00 0.00
2829.00 29.00 28.00 ROUND 24.48 27.00 30.00 0.00
2930.00 30.00 29.00 ROUND 33.10 36.00 30.00 0.00
310.00 1.00 31.00 ROUND 51.62 54.00 54.00 0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE WAS USED
-------------------------------------------- ----------------------------------
SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT
ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO.
NUMBER CFS CFS FEET FPS FEET FPS FPS
-------------------------------------------------------------------------------
' 12.0 156.1 176.6 3.29 12.54 3.65 11.30 9.81 1.25 V-OK
23.0 156.1 228.7 2.73 15.48 3.65 11.30 9.81 1.80 V-OK
34.0 145.5 94.6 4.00 11.58 3.52 13.33 11.58 0.00 V-OK
45.0 47.4 53.9 2.00 10.25 2.27 27.78 7.98 1.31 V-OK
56.0 47.4 48.3 1.81 13.83 2.13 12.19 11.92 1.76 V-OK
67.0 43.5 48.3 1.67 13.74 2.09 12.30 10.95 1.91 V-OK
78.0 39.4 50.2 1.34 17.68 1.92 14.06 12.54 2.87 V-OK
89.0 35.0 56.6 1.14 18.97 1.89 12.83 11.14 3.46 V-OK
910.0 35.0 27.8 2.50 7.13 2.01 8.29 7.13 0.00 V-OK
411.0 58.7 59.3 2.23 11.38 2.44 6.28 9.88 1.30 V-OK
1112.0 40.7 53.9 1.46 14.91 2.07 10.65 10.24 2.33 V-OK
1213.0 36.7 39.4 1.53 14.25 1.90 11.91 11.68 2.04 V-OK
1314.0 31.4 50.3 1.14 16.90 1.85 10.35 9.99 3.07 V-OK
1415.0 10.3 15.9 0.88 9.58 1.23 6.64 5.83 1.98 V-OK
1516.0 10.3 15.9 0.88 9.58 1.23 6.64 5.83 1.98 V-OK
1417.0 19.5 16.3 2.00 6.21 1.59 7.30 6.21 0.00 V-OK
1718.0 19.5 20.6 1.55 7.47 1.59 7.30 6.21 1.05 V-OK
1819.0 19.5 21.1 1.52 7.61 1.59 7.30 6.21 1.10 V-OK
1920.0 19.5 19.6 1.23 12.61 1.44 11.18 11.03 1.93 V-OK
2021.0
14.3
15.6
1.13
10.00
1.37
8.46
8.09
1.68
V-OK
2122.0
14.3
15.6
1.13
10.00
1.37
8.46
8.09
1.68
V-OK
2023.0
2.9
18.0
0.34
10.76
0.69
4.20
2.36
3.85
V-OK
2324.0
2.9
12.6
0.41
8.33
0.69
4.20
2.36
2.69
V-OK
1028.0
35.0
27.8
2.50
7.13
2.01
13.90
7.13
0.00
V-OK
2526.0
2.9
4.6
0.72
3.95
0.69
4.20
2.36
0.90
V-OK
2627.0
2.9
4.6
0.72
3.95
0.69
4.20
2.36
0.90
V-OK
2829.0
35.0
60.4
1.37
12.76
2.01
8.29
7.13
2.14
V-OK
2930.0
35.0
27.0
2.50
7.13
2.01
8.29
7.13
0.00
V-OK
310.0
156.1
176.6
3.29
12.54
3.65
2.53
9.81
1.25
V-OK
FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
----------------------------------------------------------------------
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
%
(FT)
(FT)
(FT)
(FT)
----------------------------------------------------------------------
12.00
0.93
4910.00
4908.33
1.30
0.67
NO
23.00
1.56
4911.23
4910.00
1.50
1.30
OK
34.00
0.50
4912.13
4911.92
1.37
1.31
OK
45.00
1.20
4915.11
4913.57
1.85
1.18
OK
56.00
2.80
4918.11
4915.31
3.32
2.15
OK
67.00
2.80
4920.66
4918.31
4.21
3.12
OK
78.00
5.67
4932.48
4920.91
3.85
4.21
OK
89.00
7.22
4947.78
4932.69
2.22
3.64
OK
910.00
0.53
4949.19
4947.98
4.81
1.52
OK
411.00
1.45
4916.08
4913.63
1.05
1.12
OK
1112.00
3.50
4922.22
4916.59
3.11
1.04
OK
1213.00
3.50
4923.57
4922.42
1.73
3.17
OK
1314.00
5.70
4929.70
4923.77
2.30
1.53
OK
1415.00
2.65
4931.27
4930.40
0.98
2.10
NO
' 1516.00
2.65
4931.27
4931.27
0.98
0.98
NO
1417.00
0.60
4930.15
4929.90
1.94
2.10
OK
- 1718.00
0.96
4932.32
4930.34
2.16
1.75
OK
1819.00
1.00
4935.20
4932.52
7.08
1.96
OK
' 1920.00
4.00
4942.50
4937.74
10.00
5.04
OK
2021.00
2.54
4945.86
4942.71
2.51
9.79
OK
2122.00
2.54
4945.86
4945.86
2.51
2.51
OK
2023.00
5.52
4965.00
4949.99
3.25
2.76
OK
...2324.00
2.70
4975.50
4967.00
10.25
1.25
OK
1028.00
0.53
4950.85
4949.39
3.15
4.61
OK
." 2526.00
0.50
4977.50
4975.56
1.35
10.19
OK
' 2627.00
0.50
4977.50
4977.50
1.35
1.35
OK
2829.00
2.50
4953.00
4951.00
6.50
3.00
OK
2930.00
0.50
4958.50
4958.00
0.75
1.50
NO
310.00
0.93
4908.33
4908.14
0.67
0.36
NO
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
------------------------------------------------------------------------------
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET
FEET
FEET
FEET
FEET
FEET
-------------------------------------------------------------------------------
12.00
180.00
149.90
4914.50
4912.83
4915.31
4914.15
JUMP
23.00
79.00
79.00
4915.73
4914.50
4916.56
4915.31
PRSSIED
34.00
41.00
41.00
4916.13
4915.92
4916.56
4916.56
PRSSIED
45.00
128.00
128.00
4917.86
4916.32
4919.33
4916.56
PRSSIED
56.00
100.00
21.40
4920.36
4917.56
4920.23
4919.33
JUMP
67.00
84.00
2.09
4922.91
4920.56
4922.75
4920.23
JUMP
78.00
204.00
0.00
4934.48
4922.91
4934.40
4922.75
JUMP
89.00
209.00
4.43
4949.78
4934.69
4949.67
4934.40
JUMP
910.00
228.00
228.00
4951.69
4950.48
4952.80
4949.67
PRSSIED
411.00
169.00
103.75
4918.83
4916.38
4919.36
4916.56
JUMP
1112.00
161.00
14.08
4924.47
.4918.84
4924.29
4919.36
JUMP
1213.00
33.00
0.00
4925.57
4924.42
4925.47
4924.29
JUMP
1314.00
104.00
6.02
4931.70
4925.77
4931.55
4925.47
JUMP
1415.00
33.00
33.00
4932.77
4931.90
4933.20
4931.55
PRSS'ED
1516.00
0.10
0.10
4932.77
4932.77
4933.34
4933.20
PRSS'ED
1417.00
41.00
41.00
4932.15
4931.90
4933.15
4931.55
PRSS'ED
1718.00
206.00
106.91
4934.32
4932.34
4934.28
4933.15
JUMP
1819.00
268.00
0.00
4937.20
4934.52
4936.79
4934.28
JUMP
1920.00
119.00
47.27
4944.00
4939.24
4943.94
4936.79
JUMP
2021.00
124.00
43.81
4947.36
4944.21
4947.23
4943.94
JUMP
2122.00
0.10
0.10
4947.36
4947.36
4947.48
4947.23
PRSS'ED
2023.00
272.00
0.40
4966.25
4951.24
4965.69
4943.94
JUMP
2324.00
315.00
0.81
4976.75
4968.25
4976.19
4965.69
JUMP
1028.00
276.00
276.00
4953.35
4951.89
4955.19
4952.80
PRSS'ED
2526.00
387.00
0.00
4978.75
4976.81
4978.22
4976.19
SUBCR
2627.00
0.10
0.00
4978.75
4978.75
4978.29
4978.22
SUBCR
2829.00
80.00
80.00
4955.50
4953.50
4956.62
4955.19
PRSS'ED
2930.00
100.00
100.00
4961.00
4960.50
4961.38
4956.62
PRSS'ED
310.00
20.00
20.00
4912.83
4912.64
4914.15
4914.00
PRSS'ED
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY
ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT
-------------------------------------------------------------------------------
12.0 2.00 4916.81 1.09 0.05 0.07 0.00 0.00 1.00 4915.64
23.0 3.00 4918.05 0.57 0.45 0.67 0.00 0.00 2.00 4916.81
34.0 4.00 4918.64 0.49 0.05 0.10 0.00 0.00 3.00 4918.05
45.0 5.00 4920.32 1.19 0.50 0.49 0.00 0.00 4.00 4918.64
56.0 6.00 4922.44 2.08 0.02 0.04 0.00 0.00 5.00 4920.32
67.0 7.00 4924.62 2.14 0.02 0.04 0.00 0.00 6.00 4922.44
78.0 8.00 4936.84 12.17 0.02 0.05 0.00 0.00 7.00 4924.62
89.0 9.00 4951.59 14.66 0.05 0.10 0.00 0.00 8.00 4936.84
910.0 10.00 4953.59 1.91 0.10 0.08 0.00 0.00 9.00 4951.59
411.0 11.00 4920.87 1.47 0.50 0.76 0.00 0.00 4.00 4918.64
1112.0 12.00 4925.91 4.96 0.05 0.08 0.00 0.00 11.00 4920.87
1213.0 13.00 4927.59 1.63 0.02 0.04 0.00 0.00 12.00 4925.91
1314.0 14.00 4933.10 5.43 0.05 0.08 0.00 0.00 13.00 4927.59
1415.0 15.00 4933.73 0.37 0.50 0.26 0.00 0.00 14.00 4933.10
1516.0 16.00 4933.86 0.00 0.25 0.13 0.00 0.00 15.00 4933.73
1417.0 17.00 4933.75 0.35 0.50 0.30 0.00 0.00 14.00 4933.10
1718.0 18.00 4934.88 0.92 0.36 0.22 0.00 0.00 17.00 4933.75
1819.0 19.00 4937.38 2.41 0.15 0.09 0.00 0.00 18.00 4934.88
1920.0 20.00 4945.83 6.56 1.00 1.89 0.00 0.00 19.00 4937.38
2021.0 21.00 4948.24 1.90 0.50 0.51 0.00 0.00 20.00 4945.83
2122.0 22.00 4948.50 0.00 0.25 0.25 0.00 0.00 21.00 4948.24
2023.0 23.00 4965.77 19.92 0.25 0.02 0.00 0.00 20.00 4945.83
2324.0 24.00 4976.27 10.48 0.25 0.02 0.00 0.00 23.00 4965.77
1028.0. 28.00 4955.98 2.32 0.10 0.08 0.00 0.00 10.00 4953.59
2526.0 25.00 4978.31 2.03 0.05 0.00 0.00 0.00 24.00 4976.27
2627.0 27.00 4978.38 0.05 0.25 0.02 0.00 0.00 25.00 4978.31
2829.0 29.00 4957.41 0.67 0.96 0.76 0.00 0.00 28.00 4955.98
2930.0 30.00 4962.17 4.72 0.05 0.04 0.00 0.00 29.00 4957.41
310.0 1.00 4915.64 0.15 1.00 1.50 0.00 0.00 31.00 4914.00
BEND LOSS =BEND K* FLOWING FULL VNEAD 1N SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O.
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
2.� CF- � n
\ A
6;TS I z3.4 4 IYS
oo�
ITZ
is
-7
3c..4 j + .4. IA
40.7 -S,
6-7!
4-7.41 6,FS,
423
310
-7.4
Of
0%'
�'MIRAMONT Is UD.
i�
\ 0
� TYPE 3 BARRICADE
h \" W
I
leaf
it
I
r
r
B
Rl of 0-2 a .. Ner a l e,... / "Oholloo, If I
•�
PROPOWD
the RAMPARTS AT MYN T ti or' _ '•c4 -ale ._ r � , a I it
r e ., '•
u ar I I ioulNG m / l _ � r
\ 3 I I (
�s1 _ellow-
• 3 �A 1 rW MINING IIA[1 .� t 1
41
I INLET 10 -
D 1—� B. OvE .R. r
0 38 b
39,
3BT }� 36 e J SEE SHEET It _
—._� INLtEA{�ZO - Y.E EEi
T ee W B R Si M PIPE OE9GN--
3 AND INFORMATON
DIX
37
3s 3L PHASI 3 , = e all , A3 r \�N •� �� 156 A i. b5
e0
3 . 14
-•�� 3 SA 1
INLET 0•
rG 1 50 s
T m ! a 5 3 - q• A3 sa lln t
lB - D xy i�ul ITS
))S a l .��\\ , • }3 "\ ,yews+ j��`y � � yam,\I. see — '\
OVERFLOW SWALE 0 � 31S '+. 30 �, — •• �� `� � e e
�.r�, •/I ! LETS rEUP WATER
TYPE 3 BARRICADE- ^2� •� 1�iR•TYP E A IY ALIrY rON •Aje B] Am \
. d1 SHEET I\ E� I
VQ
31 PH/�$E 2 �]� ea x �a 6063e bz
35 V44 AIIr y A •Z_ '� �� �I 11 .l
- Err, 3
zit r
FUT URE \
_ _..-_... �. MIRAMONT �.x
W27
�a� Y
STOP SEWER — A.
j DESI IS INCLUDED
FOR
N ENDI% FOR �\
`tr►he e� m�
6 0 WA R
WAUT FEATURE
FOSSIL CREEK PARK
SLNIMM1.b
EROSION CONTROL NOTES
Si o vegetation Cols Islas be Net wgNeii by HaP�9. Woolen
elyn9 a, u oa ipie pis rm mot , nm roa0.on eu
Combi P. my "I fi..oaone If they Hor. BietlMtl met. .44nq pool M no
..aae .i a y ea .ari a,eeeme ,it .nmhl no-. ma. wr .w..
3 After
g. a r stro. hai ei be opallp onr the seem o a13 lue/rcre, roartroure.
m the hi o'dI pit todso lNy w horW,throw
Or cLmi only the 1Woer the roHMS No.n m this sheet.
3. After the atetes 1,111 fee, mitniled, the ruck"Y , ana Not .erYw to,
pawnpT ANs oltOli of the Curb M la Es Rol .
CwMM1a M o . blocks. 1/2 ' ON lee mean. am a 3/4 mrw, a W,YhI
Ord o 3/4 Inn .wmo yaI
N -7, for/
West, _4 � •• I
A M ri..,...1e k.,R,.,1..J
13
x
PHASE TTo
s _--_�---
IT
�'r >� r P.A. t r 1z
V �ED. A
HUNTINGTON
ZONING rip
\\
DESIGN OF
(KEENS
OLDS. I IN
OLDS. S INCLUBED IN
APPENDIX TOTE REFERENCE
I
I
I I
I
I
I I
I
I
I I
I
I
I 'I
LIIM \I\
COSTING SITE SYDR( Y
TOI Dl.rvpea n s -
1079 mane
Ratb> 'C' -
an
DIUNNAGIL BASH STARIDI 5
IreeC
10aP mro
CGrosto
-
DEP(N
amr
BASx
AREA
Lee)
-e
(CIS)
(on)
15
na
S.o
7F3
zo
z
IW
0..72
nD
6.7
]o
>
37
oel
>.9
95
ro
a
oat
wl
--3—a
Bw
•A
so-.D-•
t9s
It be
ue
W..3
90
a.o-1
A.M
o.as
9.5
31.3
OAKRIOGE ESTATES
ZONING ND
t i� ST. ELIZABETH IETON PARISH
ZONES(;
P I
LEGEND
I
PROPOSED SPOT ELEVATION
—argue PROPOSED CONTOUR
ENSIING CONTOUR
BASIN LINE
INIAMIN1141111 PHASE LINE
eBASIN NUMBER
160AC BASIN AREA
QDESIGN POINT
DIRECTION OF ROW
<I 91T FENCE
STRAW BALE CHECK DAM
J I O SIR AIDED- FILTER INLET
I I
RETAINING WALL
SEE SHEET 5
I
3_
—33
30
E
T
Naasaa�
�I I
t the VILLAGES
I zPIM51'q A
IhI
F
i
SCALE 1--60
LIED 11z loollaral. .raai mamPEE. .11r
Tos4 •a axll !3<
Carl Cary 10
total III. Dole Q
larelt
Nee, w
mg at morm
al
loo
DDIa
Pea p o.. a.a rn✓4`� Ymrrp9m. e
CROWD CEN" offers
all am
.. 1 / - - : -
HpaDolph 0
p� Hare. � yTm
he, I Sorel
SIw
lw
lo"
to
Ir1 -'e'D� m�a ..e ..rile..
FORT ORUNS - WMALAW WATER DISrMCT
SCi EMT(CUOIS SANITAIIM DISTRICT
UTILITY PLAN APPROVAL
APPROVED
9ANAxR
DATE
APPROVED
MIdS pIPNRR
DATE
CALL W L I S NOWCATgN
CENTER OF CCLO
PRELIMINARY 1-800-922-1987
%07 I'OH f-ONSTRITT109
by534-6700 IAA
JV7 V
JUNE 19. 1996
City
of Fort Collin& Colorado
UTRPPY
PLAN APPROVAL
APPROVED:
Director of LopvearlC Bela
CHECKED Bv:
Sala Is aeN..etor Ulilit) pate
CHECKED BY:
94rmnfa UtWI) 4Y
CHECKED Bv:
P.rE. k Rare.goa mIe
CHECKED BY:
Date
CHECKED By
REN9ON
MITE
N
RISK
OFS Ki
oFsIy
ore IT
Dmwm
:
JUNE 1096
607-009
Engineering Consultants
APPROVID
LATE
P9pgr' Ism
1,..^..^ mh DID
MIRAMONT VILLAGE P.U.D.
FORT COLLINS. COLORADO
DRAINAGE 8
EROSION CONTROL PLAN 13 4