Loading...
HomeMy WebLinkAboutDrainage Reports - 04/03/1998FINAL DRAINAGE AND EROSION CONTROL STUDY FOR HEWLETT-PACKARD COMPANY BUILDING 4 FORT COLLINS, COLORADO April 3,1998 THE SEAR -BROWN GROUP Standards in Excellence THE SEAR -BROWN GROUP FULL -SERVICE DESIGN PROFESSIONALS ' FORMERLY RBD, INC. 209 SOUTH MELDRUM FORT COLLINS, COLORADO 80521-2603 970-482-5922 FAX:970-482-6368 April 3, 1998 Mr. Basil Hamdan City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 SUBJECT: Final Drainage and Erosion Control Study Hewlett-Packard Building 4 Dear Basil: We are pleased to resubmit to you, for your review and approval, this Final Drainage and Erosion Control Study for the Hewlett-Packard Building 4. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, The Sear -Brown Prepared By: Reviewed By: �A --Kevin W. Gingery, Senior Engineering Manager NEW YORK • PENNSYLVANIA COLORADO•UTAH STANDARDS IN EXCELLENCE EQUAL OPPORTUNITY EMPLOYER 1 1 1 1 FINAL DRAINAGE AND EROSION CONTROL STUDY FOR HEWLETT-PACKARD BUILDING 4 FORT COLLINS, COLORADO April 3, 1998 Prepared for: IDC Portland Office 2020 S.W. Fourth Avenue, 3rd Floor Portland, Oregon 97201 Prepared by: The Sear -Brown Group 209 S. Meldrum Fort Collins, Colorado 80521 (970) 482-5922 RBD Job No. 799-001 TABLE OF CONTENTS PAGE I. GENERAL LOCATION AND DESCRIPTION 1 A. Location 1 B. Description of Project 1 II. DRAINAGE BASINS A. Major Drainage Basin Description 1 B. Sub -Basin Descriptions 2 C. SWMM Model Compliance 2 III. DRAINAGE DESIGN CRITERIA A. Regulations 3 B. Development Criteria Reference and Constraints 3 C. Hydrological Criteria 3 D. Hydraulic Criteria 3 E. Variances from Criteria 3 IV. DRAINAGE FACILITY DESIGN A. General Concept 4 B. Specific Details 4 V. STORM WATER QUALITY A. General Concept 7 VI. EROSION CONTROL A. General Concept 7 B. Specific Details 7 VII. CONCLUSIONS A. Compliance with Standards 8 B. Drainage Concept 8 C. Storm Water Quality 8 D. Erosion Control Concept 9 REFERENCES 9 APPENDIX VICINITY MAP HYDROLOGY DESIGN OF STORM SEWERS DESIGN OF INLETS RIPRAP DESIGN ' EROSION CONTROL CHARTS, FIGURES AND TABLES EXCERPTS FROM BUILDING 5 REPORT, 100 YEAR SWMM MODEL I I A 1 I I 40 65 70 78 91 I FINAL DRAINAGE AND EROSION CONTROL STUDY FOR HEWLETT-PACKARD BUILDING 4 FORT COLLINS, COLORADO I. GENERAL LOCATION AND DESCRIPTION A. Location The Hewlett-Packard Building 4 site is located in southeast Fort Collins (see vicinity map in the Appendix), north of Harmony Road and east of County Road 9 within the southwest 1/4 of section 33, township 7 north, range 68 west of the 6th P.M., City of Fort Collins, Larimer County, Colorado. B. Description of Property The Hewlett-Packard Building 4 site is north of the existing Fort Collins Hewlett- Packard office and industrial park. The site encompasses approximately 32 acres. The existing topography generally slopes from west to east at approximately 0.7 percent. Native grasses overlaying lean clay with sand or sandy lean clay cover the majority of the site. In the southern portion of the site there are existing parking lots with modular buildings. There are newly constructed parking areas and an office building, Building 5, are located east of the site. The existing Building 2 is southeast of the construction area. II. DRAINAGE BASINS A. Major Basin Drainage Description The Hewlett-Packard site lies entirely within the Fox Meadows Drainage Basin which is approximately bounded by Horsetooth Road on the north, Harmony road on the south, the Cache La Poudre River and I-25 on the east and Lemay Avenue on the west(refer to the general location Map in the Appendix). A Master Plan for the Fox Meadows Drainage Basin (Basin H) was Prepared by Resource Consultants, Inc., in 1981. This area was studied again by Nolte and Associates in 1990 when a master drainage plan was prepared for the Hewlett-Packard site. Nolte's master drainage report did not alter any of the assumption or conclusions which were made in the Fox Meadows Master Drainage Plan. .1 A I The Regional Channel located along County Road 9 and the north boundary of the Hewlett-Packard property which was recommended in the Nolte report was designed and built with the Hewlett-Packard Building 5 project. The channel was designed for the 100 year storm and discharges to the north detention pond. The north detention pond discharges to a series of detention ponds to the south through an existing 30 inch diameter pipe. Nolte's report recommended that the 30 inch diameter outlet pipe of this north pond be enlarged to 48 inch diameter at the full development of the entire Hewlett Packard site. This increased diameter is required to avoid surcharging the north detention pond which would result in uncontrolled overland flow. This enlargement is part of this project but is not included in this report. It is intended that an addendum to this report will be submitted and construction of this improvement be completed before the certificate of occupancy is granted. B. Sub -Basin Drainage Description Historically the site receives flows from the west at two discharge points along County Road 9. Flows discharge from the Symbios site through 2-30 inch diameter concrete pipes under County road 9 at the top of the regional drainage channel. Flow from a second discharge point at the northwest corner of the Hewlett-Packard property will ultimately come from three sources (1) Symbios 1 Logic (2) English Ranch (3) local drainage from 2 residential properties. The off -site and on -site storm runoff then flows east where it is intercepted by local roadside ditches or the ditch adjacent to the newly constructed parking lot for Building 5 which takes the runoff north to the"regional drainage channel. 1 C. SWMM Model compliance The Original Master Drainage Report for the Hewlett Packard Site, Preston Kelly Subdivision, Fort Collins, Colorado created a SWMM computer model for the site. During the development of the Hewlett Packard Building 5 project the Final Drainage Study for Hewlett Packard Company Building_5 report this model was modified to reflect the new conditions as well as update the SWMM parameters to those the City of Fort Collins criteria. Please see the Appendix for a copy of the model with the revisions. The purpose of this modified SWMM model was to size the regional drainage channel which is located along the north property line of the Hewlett Packard site. The Hewlett Packard Building 4 project is located primarily in subcatchment area 32 . The original input file to the modified SWMM anticipated a catchment area to contain 31.3 acres with a percent impervious area of 60 percent. The proposed 0 drainage catchment area has an area of 32.1 acres with a percent impervious area of 32 percent. Due to the nearly equivalent subcatchment area and the much smaller percent of impervious area proposed the site, conditions will be well within the parameters set by the Building 5 SWMM model. III. DRAINAGE DESIGN CRITERIA A. Regulations rThe City of Fort Collins Storm Drainage Design Criteria as established by the Fox Meadows Basin Drainage Master Plan will be used in the preparation of this report. B. Development Criteria Reference and Constraints The Hewlett-Packard Building 4 site drainage is designed in conformance with the Fox Meadows Basin Drainage Master Plan (Basin H) and the Hewlett-Packard Master Drainage Plan by Nolte. C. Hydrological Criteria The runoff to the regional drainage channel was previously calculated for Building ' 5 and excerpts from that are contained in the Appendix. The most recent 100-year storm event hyetograph and infiltration parameters determined by the City of Fort Collins were used in the calculation of the runoff values. The rational method is used to determine the peak flow from the developed runoff for design of the hydraulic structures and interior roadway drainage facilities. These are designed using the 10 and 100 year rainfall criteria from the City of Fort Collins. D. Hydraulic Criteria All calculations within this study have been prepared in accordance with the City ' of Fort Collins Drainage Criteria and are included in the appendix. E. Variances from Criteria No variances are requested for the proposed site. I 1, 3 r IIV. DRAINAGE FACILITY DESIGN A. General Concept The site will be designed to conform with the Master Drainage Report For Hewlett Packard, with the majority of the storm water flows being conveyed to the regional channel to the north. Offsite flows from the west and north are intercepted by the regional channel and are accounted for in the SWMM modeling. Offsite flows to the south and west are conveyed away from the site in the existing Hewlett Packard storm drainage system. West of Building 4 the storm water from all of the parking areas except for the south east section of parking flow to curb inlets and then are piped to the regional channel. The other section of parking drains to the local storm drainage system which flow south as it has historically done. The perimeter road drains to curb inlets, then to pipes and then to the regional channel. Building 4 has four main roof drain pipes which outfall to the north and east, these outfall to a collection system which empties into the regional channel. East of Building 4 is a complicated system of existing and proposed storm drains. The existing storm sewers generally take storm water to the southeast and are sized for the minor storm. The proposed system will take flows to the regional channel and be sized for the 100 year storm. B. Specific Details County Road 9, Basins OS-1, OS-2 and OS-3 lie to the west of the site and drain to the regional channel through existing inlets. The storm flows from County ' Road 9 are accounted for in the regional channel SWMM model as are the storm flows which enter the site from Symbios and English Ranch. The storm runoff which is generated in Basin 1 is also accounted for by the SWMM model. The rest of the hydrology calculations for the site are based on the rational method. Basins 21, 19, 18, 17 and 14 all drain to the existing storm drain system to the south. A new area inlet has been added to Basin 17 to facilitate the new grading. ' This storm drainage system, generally 12" diameter pipes at 0.3 % slope, has a 1 4 limited capacity of approximately 2 cfs. Evidently the storm drainage system has worked adequately up until now. In order to not worsen downstream conditions we have reduced the amount of impervious surface area. Basins 21,19,18 and 17 will have a reduced impervious area with the removal of the existing modular buildings and associated parking and their replacement with landscaped areas. ' This reduces the amount of storm water historically flows through this system. The modular buildings and the associated parking which will be removed have a total area of 3.2 acres. See pages 1 la and 1 lb of the appendix for an exhibit. ' The rest of the storm drainage system which conveys the majority of the storm water generated by the site consists primarily of three main storm drain outfalls. Starting from the west with Basins 22, 22a and 23. These consist primarily of parking area where each area drains to its own type `R' inlets. These Basins then drain to a pipe (Profile A) which flows north toward the regional channel. These storm flows are then joined by flows from the perimeter road (Basins 2,3,4 and 5). These combined flows then discharge into the regional channel. Because of a conflict with the electric and telephone duct a series of eliptical pipes with headwall are used to discharge stormwater to the regional channel. A Type `R' inlet box is being used as vault for the multiple pipes. We did not account for this Type `R' inlet in our drainage calculations as it will make little difference to the overall calculations. This entire length of pipe is designed for th e 100 year storm. Also due to a conflict with the same duct bank another vault with a series of elliptical pipes is used to discharge flows to the regional channel. As a matter of economy, the three incoming pipes which were separate are now combined and tie into a large Type `R' Inlet. In the middle of the site Basins 11, 24, 24a, 24b, 25, 25a and 26a storm drain system (Profile B) taked flows from a parking area and a landscape area west of the building north towards the regional channel, these storm flows are joined by roof drainage from Basins 9 and 10. The storm drain pipe then connects to a type `R' inlets which receive flows from Basins 6 and 8. The flows then go to the large typ `R' Inlet which combines the flows of the three pipe runs. There is a large discrepancy between the time of concentration for Basin 6 and that for the parking and roof drainage. We compared the results for two scenarios. (1) including Basin 6 with the long time of concentration and (2) excluding Basin 6 with a short time of concentration. We chose the worst case for our design of the pipe system. Please refer to the Hydrology tables in the appendix for details. The pipe discharges the storm flows to the regional channel. This entire pipe system is designed for the 100 year storm. The storm drainage for the eastern portion of the site is by far the most ' complicated. This consists of a mixture of existing and proposed storm drains. Starting from the south, Basin 14 and 16 for the most part stay in tact and discharge storm water to existing area inlets with no increase in area. The two main storm drainage systems which serve the east side of the building work together. One serves to pick up the 10 year flows from the roofs of the building while the other will accept the excess storm water produced during the 100 year storm through inlets. Because of the complexity of the system it was necassary to have a low level pipe system. The only way to drain this system was ' through an existing l 8inch pipe which took flows through the HP campus to one of the southern detention ponds. Unfortunately there is not enough capacity in this pipe to accept even the 10 year storms. Therefore, an overflow system needed to be designed to take the excess flows. This was done on Profile E where the next pipe south of the existing 18 inch pipe has a reverse grade. The reverse grade is set at 1% so that sedimentation is minimized. An orifice was placed on the entrance to the pipe which takes flows to the existing 18 inch pipe. This orifice was sized to pass 3 cubic feet per second(cfs) in order to avoid surcharging the the existing system. This is half of the existing system's capacity. Basin 12 and 13 generate storm water from the main roof and discharge the flows ' to the east to their own storm drain system(Profile Q. This system discharges to the Regional Drainage Channel and is designed for the 10 year storm. During the 100 year storm the excess flows are discharged to the east into basins 27 and 30. ' Basins 27, 30 and 31 are small service areas to the east of the building which are served by a separate stone drainage system (Profile E) and separate area inlets. The area inlets also are sized for the excess flow which spills off of the roof during the 100 year storm. All these Basins contribute to the new proposed sewer. Basin 32, which is the truck loading area is served by a strip drain (Profile F) which then outfalls to the new proposed sewer. Both Profile C and Profile F combine with Profile B in the type `R' Inlet on the north side of the access road. Continuing with the eastern portion of the site, the roof drainage from Building 1 ' and Basin 16 flow into the existing system which flows north. Basin 15, the roof area of a new chemical storage building joins the existing system and flows from basin 16. The roof drainage from this building flows to a storm sewer to the east of the building. Basins 29 and 28 are primarily part of a service road at the back of the chemical storage building. These are served by two area inlets located near their original locations. The flows from these basins are taken by the same proposed pipe which serves the chemical storage building. This pipe conveys storm water to the north where it connects to the existing system downstream of the orifice plate 6 I L_1 I V. 1 1 1 1 ". 1 1 1 1 1 1 1 The Chemical storage Building has overflow piping to take any chemical spill to concrete containment vault. This vault is shown near to the east side of building on the erosion control plans at the back of the report. Basin 33 is an existing basin which discharges to existing area inlets. Basin 14 flows are taken via rerouted piping to the south. As before this area has always drained this direction and we are not making this condition any worse. Basin OS-4 is an existing basin which is the present chemical storage area which is set below the surrounding grade. It is served by it own area inlets. STORM WATER QUALITY A. General Concept Beginning in October of 1992, the water quality of storm water runoff was required to be addressed on all final design utility plans. Hewlett-Packard is anticipating construction beginning in the Summer of 1998. Therefore for this study, we have sought to find various Best Management Practices for the treatment of storm water quality runoff. Runoff is conveyed by a grassed lined regional channel through existing detention ponds in order to provide an opportunity for pollutants to be removed. The detention pond releases at a very slow rate therefore many of the pollutants will settle out. EROSION CONTROL A. General Concept The Hewlett-Packard Building 4 site is in the moderate wind and moderate rain erodability Zones per the City of Fort Collins zone maps. The potential exists for erosion problems during construction, and after construction until the disturbed ground is again vegetated. In accordance with the City of Fort Collins Erosion Control Reference Manual for Construction Sites, the erosion control performance standard is 77.40 %during construction and 91.1% after construction. The erosion control specified on the Final Drainage and Erosion Control Plan will result in a performance standard during construction of 79.33% and 98.95% after construction. B. Specific Detail Prior to overlot grading all silt fence must be in place and gravel inlet filter must I be inlets. placed on all existing area The areas covered by road and parking lot must have a 1 inch layer of gravel mulch (1/4" to 1 %z" gravel) applied at the of at least 135 tons/acre. All other disturbed areas except Basin 6 should have a roughened surface. Disturbed areas ' of Basin 6 will have straw mulch applied and crimped. After installation of the concrete sidewalk, culvert and curb inlets, the inlets shall be filtered with a combination of concrete blocks, ''/2" wire screen and 3/4" coarse gravel. After installation of the storm drains, riprap protection and gravel inlet filters shall be installed. ' If the disturbed areas will not be built within one growing season, a permanent seed shall be applied. The estimate of probable costs for erosion control is ($31,939) x (1.5) _ $47,909 for an escrow amount. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A ' Colorado Department of Health NPDES Permit will be required before any construction grading can begin. VII. CONCLUSIONS A. Compliance with Standards ' All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. B. Drainage Concept The proposed drainage concepts adequately provide for the developed runoff from the site and are within the parameters set out in the Master Drainage Plan for Hewlett Packard. IC. Water Quality Control Because storm water quality has become a requirement, the site has addressed this storm water aspect. Swales and detention ponds have been used to improve the water quality. 0 ri D. Erosion Control Concept The proposed erosion control concepts adequately provide for the control of wind and rainfall erosion from the Hewlett-Packard Building 4 Expansion. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance standards will be met. The proposed erosion control concepts presented in this report and shown on the erosion control plan are in compliance with the City of Fort Collins erosion control criteria. REFERENCES 1 N 3. 4. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, Revised January 1992. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins Colorado, January 1991. Fox Meadows Basin(basin H) Drainage Master Plan, Fort Collins, Colorado, by Resource Consultants Inc., February 25, 1981. Master Drainage Report, Hewlett Packard Site, Preston Kelly Subdivision, Fort Collins, Colorado, by Nolte and Associates, revised October 1990. I C] I 1 11 1 1 I 1 IJ I I �I 1 APPENDIX 0 C I 1 I 1 I 1 1 1 [1 I 1 I I 1 11 VICINITY MAP 1 z DRAKE RD. Z� F Q r Q Ll L4 HORSETOOTH RD. } a o a W a 0 z PROJECT as SITE z � F HARMONY RD. o► 0 z U VICINITY MAP N.T.S. I 11) 1 1 1 11 1 1 1 11 1 1 I 1 1] HYDROLOGY 1 RBD, Inc., Engineering Consultants `t 1 1 I 1 1 [l 1 I Weighted Runoff Coefficients sheet 1 of 1 Project # 799-001 JAM HP Building 4 03/13/98 This sheet calculates the composite "C" values for the Rational Method. Numbers 20 and 21a are not used esign Area Impervious "C" Pervious "C" A,total (ac.) A,imp (ac. A,perv. ac. o imp opery Comp. "C" OFF3ITE BASINS OS1 0.95 0.25 0.87 0.58 0.29 67% 33% 0.72 OS2 0.95 0.25 1.52 0.94 0.58 62% 38% 0.68 OS3 0.95 0.25 0.79 0.41 0.38 52% 48% 0.61 OS4 0.95 0.25 0.57 0.57 0 100% 0% 0.95 OS5 0.95 0.25 0.68 0.52 0.16 76% 24% 0.79 OS6 0.95 0.25 2.31 1.62 0.69 70% 30% 0.74 ONSITE BASINS 1 0.95 0.25 5.28 0.00 5.28 0% 100% 0.25 2 0.95 0.251 1.23 0.191 1.04 15% 85% 0.36 3 0.95 0.25 0.8 0.13 0.67 16% 84% 0.36 4 0.95 0.25 0.3 0.19 0.11 63% 37% 0.69 5 0.95 0.25 0.21 0.13 0.08 62% 38% 0.68 6 0.95 0.25 11.82 0.08 11.74 1% 99% 0.25 7 0.95 0.25 0.75 0.23 0.52 31% 69% 0.46 8 0.95 0.25 0.52 0.28 0.24 54% 46% 0.63 9 0.95 0.25 0.99 0.99 0 100% 0% 0.95 10 0.95 0.25 0.46 0.46 01 100% 0% 0.95 11 0.95 0.25 0.38 0.38 0 100% 0% 0.95 12 0.95 0.25 0.7 0.7 0 100% 0% 0.95 13 0.95 0.25 0.5 0.5 0 100% 0% 0.95 14 0.95 0.25 0.28 0.28 0 100% 0% 0.95 15 0.95 0.25 0.31 0.31 0 100% 0% 0.95 16 0.95 0.25 0.17 0.17 0 100% 0% 0.95 17 0.95 0.25 2.66 1.00 1.66 38% 62% 0.51 18 0.95 0.25 0.9 0.05 0.85 6% 94% 0.29 19 0.95 0.25 2.85 0.10 2.75 4% 96% 0.27 ; : ',,20 c 0 0 _ ' 0 "'0.00 1-'0, 0% ' ''0% - `0.-00 21 0.95 0.25 0.74 0.28 0.46 38% 62% 0.51 • 21a, :. _ . .0 ,, _,-, 0 . , , 0 N 0000 <t 0% :0°/a �;000 22 0.95 0.25 1.01 0.79 0.22 78% 22% 0.80 22a 0.95 0.25 0.87 0.72 0.15 83% 17% 0.83 23 0.95 0.25 0.74 0.49 0.25 67% 34% 0.72 24 0.95 0.25 0.63 0.56 0.07 89% 11% 0.87 24a 0.95 0.25 0.37 0.35 0.02 95% 5% 0.91 24B 0.95 0.25 0.31 0.25 0.06 81% 19% 0.81 25 0.95 0.25 0.65 0.48 0.17 74% 26% 0.77 25A 0.95 0.25 0.54 0.42 0.12 78% 22% 0.79 26 0.95 0.25 0.29 0.03 0.261 10% 90% 0.32 27 0.95 0.25 0.21 0.21 0 100% 0% 0.95 28 0.95 0.25 0.05 0.05 0 100% 0% 0.95 29 0.95 0.25 0.05 0.05 01 100% 0% 0.95 30 0.95 0.25 0.17 0.17 0 100% 0% 0.95 31 0.95 0.25 0.17 0.17 0 100% 0% 0.95 32 0.95 0.25 0.85 0.84 0.006 99% 1% 0.95 33 0.95 0.25 0.48 0.24 0.24 50% 50% 0.60 34 0.95 0.25 0.3 0.09 0.21 30% 70% 0.46 SITE 39.541 12.37 27.18 31.28% 68.73% 0.47 2 ' Storm Drainage Design and Technical Criteria RBD, Inc., Engineering Consultants 799-001 SUBDIVISION: HP Building 4 ' CALCULATED BY: JAM TIME OF CONCENTRATION STORM 10 yr DATE 03/13/98 Cf = 1.00 ti = 1.87(1.1 - C z C/)D"0.5 S"1/3 tc= ti+tL SUB -BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS DESIG: AREA C LENGTH SLOPE ti LENGTH SLOPE VELOCITY tL tc (ac) (ft) N (min) (ft) N (ft/s) (min) (min) 1 2 3 4 5 6 7 7a 8 9 10 11 12 OFFSITE BASINS OS1 0.87 0.72 17 2.00 2.3 37 PA 0.50 1.34 0.5 5.0 OS2 1.52 0.68 17 2.00 2.6 62 PA 0.60 1.47 0.7 5.0 OS3 0.79 0.61 17 2.00 3.0 27 PA 0.50 1.34 0.3 5.0 OS4 0.57 0.95 0 1.00 0.0 18 PA 3.00 3.35 0.1 5.0 OS5 0.68 0.79 8 3.50 1.1 60 PA 2.00 2.72 0.4 5.0 OS6 2.31 0.74 70 3.50 3.7 40 PA 0.70 1.59 0.4 5.0 ONSITE BASINS 1 5.28 0.25 90 5.50 8.5 2300 GW 0.50 1.09 35.2 43.7 2 1.23 0.36 40 10.00 4.1 580 PA 0.60 1.47 6.6 10.7 3 0.80 0.36 80 0.70 13.9 400 PA 0.60 1.47 4.5 18.4 4 0.30 0.69 10 1.00 2.4 570 PA 0.60 1.47 6.5 8.9 5 0.21 0.68 10 1.00 2.5 360 PA 0.60 1.47 4.1 6.6 6 11.82 0.25 500 0.40 48.0 690 GW 0.40 0.97 11.8 59.8 7 0.75 0.46 90 1.00 11.3 720 PA 0.60 1.47 8.2 19.5 8 0.52 0.63 13 3.50 2.1 680 PA 0.60 1.47 7.7 9.8 9 0.99 0.95 0 1.00 0.0 300 PA 1.50 2.35 2.1 5.0 10 0.46 0.95 0 1.00 0.0 140 PA 1.50 2.35 1.0 5.0 11 0.38 0.95 0 1.00 0.0 130 PA 1.50 2.35 0.9 5.0 12 0.70 0.95 0 1.00 0.0 240 PA 1.50 2.35 1.7 5.0 13 0.50 0.95 0 1.00 0.0 150 PA 1.50 2.35 1.1 5.0 14 0.28 0.95 0 1.00 0.0 100 PA 1.00 1.91 0.9 5.0 15 0.31 0.95 0 1.00 0.0 140 PA 1.00 1.91 1.2 5.0 16 0.17 0.95 0 1.00 0.0 90 PA 1.00 1.91 0.8 5.0 17 2.66 0.51 45 2.00 5.8 520 PL 1.00 0.66 13.1 19.0 18 0.90 0.29 200 1.75 17.8 0 PL 1.00 0.66 0.0 17.8 19 2.85 0.27 390 18.00 11.6 0 PL 1.00 0.66 0.0 11.6 L." `? 0'0 7r b'd Not;used t 21 0.74 0.51 50 8.00 3.9 250 PA 2.50 3.05 1.4 5.2 t « 21 a - �.� � 0 00 � a 0':OU 0 0 l)0 ' 0 0 0 0 T `0 00 "" 0 00 0 0 , _ '0 0 Not Used ' ,. 22 1.01 0.80 60 12.00 1.9 350 PA 1.00 1.91 3.1 5.0 22a 0.87 0.83 55 12.00 1.6 350 PA 1.00 1.91 3.1 5.0 23 0.74 0.72 58 12.00 2.4 350 PA 1.00 1.91 3.1 5.4 24 0.63 0.87 0 1.00 0.0 310 PA 1.00 1.91 2.7 5.0 24a 0.37 0.91 0 1.00 0.0 290 PA 1.00 1.91 2.5 5.0 24B 0.31 0.81 0 1.00 0.0 235 PA 0.80 1.70 2.3 5.0 25 0.65 0.77 60 3.00 3.3 210 PA 1.00 1.91 1.8 5.2 25A 0.54 0.79 0 1 0.0 240 PA 1 1.91 2.1 5.0 26 0.29 0.32 140 1.5 15.1 0 PL 1 0.66 0.0 15.1 27 0.21 0.95 0 1 0.0 80 PA 4.6 4.17 0.3 5.0 28 0.05 0.95 0 1 0.0 50 PA 1 1.91 0.4 5.0 29 0.05 0.95 0 1 0.0 50 PA 1 1.91 0.4 5.0 30 0.17 0.95 0 1 0.0 65 PA 4 3.88 0.3 5.0 31 0.17 0.95 0 1 0.0 90 PA 3 3.35 0.4 5.0 32 0.85 0.95 15 0.5 1.4 280 PA 0.6 1.47 3.2 5.0 33 0.48 0.60 35 0.1 11.9 275 PA 0.6 1.47 3.1 15.0 34 0.30 0.46 30 0.5 8.3 210 PA 0.6 1.47 2.4 10.6 Note: Column 7a codes the channel type for velocity calculations. PA = Paved Area, PL = Pasture& Lawns, GW = Grassed Waterway, Storm Drainage Design and Technical Criteria ' R80, Inc., Engineering Consultants I 799-001 SUBDIVISION: HP Building 4 CALCULATED BY: JAM 1 1 t 1 TIME OF CONCENTRATION STORM 100 yr DATE 03/13/98 cf = 1.25 ti = 1.87(1.1 - C x Cf)D"0.5 SA(1/3) tc = ti + tL SUB -BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL tc REMARKS DESIG: AREA C LENGTH SLOPE ti LENGTH SLOPE VELOCITY tL (ac) (ft) M (min) (ft) N (ft1s) (min) (min) 1 2 3 4 5 6 7 7a 8 9 10 11 12 OFFSITE BASINS OS1 ERR 0.72 17 2.00 1.2 37 PA 0.50 1.34 0.5 5.0 OS2 1.52 0.68 17 2.00 1.5 62 PA 0.60 1.47 0.7 5.0 OS3 0.79 0.61 17 2.00 2.0 27 PA 0.50 1.34 0.3 5.0 OS4 0.57 0.95 0 1.00 0.0 18 PA 3.00 3.35 0.1 5.0 OS5 0.68 0.79 8 3.50 0.4 60 PA 2.00 2.72 0.4 5.0 OS6 2.31 0.74 70 3.50 1.8 40 PA 0.70 1.59 0.4 5.0 ONSITE BASINS 1 5.28 0.25 90 5.50 7.9 2300 GW 0.50 1.09 35.2 43.1 2 1.23 0.36 40 10.00 3.6 580 PA 0.60 1.47 6.6 10.2 3 0.80 0.36 80 0.70 12.2 400 PA 0.60 1.47 4.5 16.7 4 0.30 0.69 10 1.00 1.4 570 PA 0.60 1.47 6.5 7.9 5 0.21 0.68 10 1.00 1.5 360 PA 0.60 1.47 4.1 5.5 6 11.82 0.25 500 0.40 44.4 690 GW 0.40 0.97 11.8 56.2 7 0.75 0.46 90 1.00 9.2 720 PA 0.60 1.47 8.2 17.4 8 0.52 0.63 13 3.50 1.4 680 PA 0.60 1.47 7.7 9.1 9 0.99 0.95 0 1.00 0.0 300 PA 1.50 2.35 2.1 5.0 10 0.46 0.95 0 1.00 0.0 140 PA 1.50 2.35 1.0 5.0 11 0.38 0.95 0 1.00 0.0 130 PA 1.50 2.35 0.9 5.0 12 0.70 0.95 0 1.00 0.0 240 PA 1.50 2.35 1.7 5.0 13 0.50 0.95 0 1.00 0.0 150 PA 1.50 2.35 1.1 5.0 14 0.28 0.95 0 1.00 0.0 100 PA 1.00 1.91 0.9 5.0 15 0.31 0.95 0 1.00 0.0 140 PA 1.00 1.91 1.2 5.0 16 0.17 0.95 0 1.00 0.0 90 PA 1.00 1.91 0.8 5.0 17 2.66 0.51 45 2.00 4.6 520 PL 1.00 0.66 13.1 17.7 18 0.90 0.29 200 1.75 16.2 0 PL 1.00 0.66 0.0 16.2 19 2.85 0.27 390 18.00 10.7 0 PL 1.00 0.66 0.0 10.7 20'x° °.. , `� 0.00 "`MOLd-0 21 0.74 0.51 50 8.00 3.0 250 PA 2.50 3.05 1.4 5.0 2 a 0 0'd ,<- 0 00 0:00 =0':0 e- 0 0 0 00 0.00' mn 7' i 0�0 Not tJsed', 22 1.01 0.80 60 12.00 0.7 350 PA 1.00 1.91 3.1 5.0 22a 0.87 0.83 55 12.00 0.6 350 PA 1.00 1.91 3.1 5.0 23 0.74 0.72 58 12.00 1.3 350 PA 1.00 1.91 3.1 5.0 24 0.63 0.87 0 1.00 0.0 310 PA 1.00 1.91 2.7 5.0 24a 0.37 0.91 0 1.00 0.0 290 PA 1.00 1.91 2.5 5.0 24B 0.31 0.81 0 1.00 0.0 235 PA 0.80 1.70 2.3 5.0 25 0.65 0.77 60 3.00 1.4 210 PA 1.00 1.91 1.8 5.0 25A 0.54 0.79 0 1.00 0.0 240 PA 1.00 1.91 2.1 5.0 26 0.29 0.32 140 1.50 13.5 0 PL 1.00 0.66 0.0 13.5 27 0.21 0.95 0 1.00 0.0 80 PA 4.60 4.17 0.3 5.0 28 0.05 0.95 0 1.00 0.0 50 PA 1.00 1.91 0.4 5.0 29 0.05 0.95 0 1.00 0.0 50 PA 1.00 1.91 0.4 5.0 30 0.17 0.95 0 1.00 0.0 65 PA 4.00 3.88 0.3 5.0 31 0.17 0.95 0 1.00 0.0 90 PA 3.00 3.35 0.4 5.0 32 0.85 0.95 15 0.50 0.9 280 PA 0.60 1.47 3.2 5.0 33 0.48 0.60 35 0.10 8.3 275 PA 0.60 1.47 3.1 11.5 34 0.30 0.46 30 0.50 6.8 210 PA 0.60 1.47 2.4 9.2 Note: Column 7a codes the channel type for velocity calculations. PA = Paved Area, PL = Pasture& Lawns, GW = Grassed Waterway, Storrs Drainage Design and Technical Criteria / E <k , (( }} B© . ,,. ... ...... .. a. .. ,. .., ,a e..�.... R© ---------- . a !! e!! OEV %. ......... SEE seat a \\ ...... e ............. Q2uxas=»=: .. ;\�, h© ` zz�......... \y 855 Be@eeEeeg§\seeeeaee! . Post e©Eeee.....0 Wiese©"e! �{ Qrgg=oo222=an@@; q. > /\ \ `\ \� @ Qp. ..... o @; (§ §- | eR9 ° )����.... \#n#eea (( 0[ -.§a it / 6 § 1m 000000 | | | ! ■ m I 11 I 1 [1 F O z 1 W O 8 N _ � 4 w a z K O N S. _ S O ` b G 9 �Pt 1 _ A^Wg N anima �'h•'fY rq��a -'f'lry ilg n ���wwwwut ut:+�wniw nbnnanrynmbmnn r2r2rr "Z���000000aa�o^,^o z nQnp'' QOnp'' Sw=wqnp 4 �LLLL�bLLf �LL LLLLLLLLO6�6�u ... .............. nnnnV.+..nnNnmvn tlN .1 nmmmo .mn__oommrym na_q m- W Vl �iy NII I�CC .OI�Yi^^"'^Y1J IVb�N S m� b J O .4 U IV N n,n O,On VV11n YY11 y�y�m__m__ m�0^V mm HIV HIV IVNV O�V U�U S -NnNN _Nnnr`.RARRRSSSSSS OOe33 RRRRSSSS S.S SSSSSS �y^,o ee coo66o6cecddodoo �v n +n n 3g J J yW�y C n y b JLL nmmmo N.enm_mn ry'q w O� f K nnmmne _o,o nary„mryo'm, m, OK �� ONN�«N .nnn_00�000 O m 600 od0000 66o..uadd6dd6d �gn EE emnRmmnnnn _m mmmm - onen m_m^mmmm..n n.nom _n.:oudriJudoo�6do_d w^ am S.. sEd z S�eR an�V g,E^mRv$R�e. Ass `�eeone mo ���aoo�.e���n�em� R __mmm p �.,N �a�men me e n !��^nt aye 11VV r lV��rv„„1V N1`VNryfIOOn�RRflry �^ OJ 8 y. a 8 8 a a E � o 0 �2ry n mn nnn n nn__nn.nn y2N n .,m mmn m o.00m�rrv� no` 4� T — p pp L— nrvrv� rvn vM F N a2 �2 00 Coo O ......... rvry n.n .... .. m i — i� 8888 r$ O�� o0o eooe oa ww r nn.n <- _ n mnrvn _ nm .n wr m mmrvmao.00 o- __U- m n n o- K U =�_ ' n _ mnnn man new m.n o�oo��nn� OGK Sin B.'-g0 Wu Q"o O�000n m.00ry o0000eoeo�n 000000000000000 888 X� �88888888888 en wr E�m wwwwww nnmmmn n mm _ wwwmwwwmmww mwmn ................. z .......................... ..8me..Wm.. � me eeeeeeeeeeeeeeeeem a memmeeeeeeeee bi_n oeeevo mmmmmm �rnwmrv._eeeee888�88888oS8o8880�880088:.'_° mrca��r mm f' n mmmm Em b �m z a rc van mmmmmm .__ 8' nmm _mo� mmm _. R N W b LL NNNNNN N mSy `� o0000o nmm�mnrrnnnne� O U d�� 6� ~ 0 0 0 00 o�000 0 _ I I Q O W Wo r N h o � W Q O2 q^ 8 E � O $ � N � 8 N O r Y m r _. w e d m n NZ N i dm ry n^p- i �ry �NNNN ry�yy{ n H ry NHNry NN rye cry �ryoN ry t N MG\�ryma \Vinif WNWN NNNIV�V� V ryN 3 6 Z 6 y 6 6 1 6 N ryryy m ry6 aaaamaa nnw°imZutpc Z Z¢w w Wm" w1i cep! C oo000000ME O^,mo 2d ¢¢ rc rc rc rc 2 m w a¢ m LL W Z w w m 0 0 O OOOOOU00000 mmUaoO LL LL LL LL f LL LL LL LL LL 0 6 F a-LL � N v m O 0 N N � 0 0 0 N tl O ry O ry N m t O tl N f1ttNN ��VMl M1 M1 MINmtlttVYINN W i o^N N rym�rv� Pmm�mnnO12 u�PmPm + Ih C O Oi� r 0 ryf�N Olt���� [V Z O {Vry y1 I) N C v �y^ N10 V Nlh N ,p 0 ONPPP0011701 P,PPPPNPPIpP\�tl N �NNNN\^^NYI YI NMI IV MI YI pIAqq�N N � N ry ry � m LL V� pN pN aN Ory oN mt ON QN pry 'N01+1 fO O1N NNfI Ool�f0�l 0l l+l OI OINN��m �m b ododooddd6d0000ddddde6 N N N Cl v: 333ia%� Y W W J J J G 0 0 0 0 F N 000 O LL LL� N N 0 t �ryry V O P 0 O n 0 n n O O N N N P N P m f1 NIhNNNOm���INVry�NAt OO OO'PJf� ozE- K LL 777 rcV Y ZP�ryNnNO1�000"'N � O N N10 V 7 t O P N O NN Om1�ryNV� b � v K vO � ��yy ppO� pp ��pp qq ry q ON0�01p�00N .. . . P�mNOINVNNr Nry�NNO�J�NO)OI�bNMI�OG�GCO NC . b�.�inm gi, HrymBi,n nnbrOi, Z F P .. . . .8 m m N m m m m o O n n ry n n m m m m m m n F 2 Z c 000000 U m occ000 ocoococ0000ccooco 0000QOOOOOOOOOOOO ]•.jn L C O!n P m, w o O o m" M N,N P O O V n W, nNNOmOnmmtltll�mOP�00NM1 YI M1 Mlm0 ry 0 ry t n O tl O V 0 tl t n n 0 o V N 0 n t 000.=��ccoc1occc,cccoo _ 6}m Cc � yN v U LL m y V Z; 0Z vV NO10 01 AN^ m P n n O P P � 0 0 N b P ry m N ry P O N P n N n 0 1` N YIN 0 p N m m m m N N T n m n m m P P YI N Q �btl: fl RN y 0 O 0 N{myry�({�(��N'mJNVf(f`�`M`ry O�?J00 �I Z QLL 111 tlV �{�{yylN tta.4 ^{�dVn`Vn`VMiN NN N�N�OOm Na m N�V^Nry NryNm Nn N� f Mr; Nryryh ry��ry ry �� �boaigm N P ^ m m o mN� a :n: H�e�rmi �rmitl�rvoatlmn^�o,�nn�^ au' � J � NnN I I I ' DESIGN OF STORM SEWERS M 69 tlu Ej I ISTORM DRAIN/UDSEWER MODELING: ' The majority of the storm flows are conveyed north to the regional channel through four main storm drain systems. Due to the constraints of the elevation of the channel outfall and the conflicts with the existing telephone and electric duct banks, small, multiple elliptical pipes are required to avoid these utilities. The Rational Method was used to compute the flows at the inlet boxes, and the result was that small, multiple elliptical pipes are required. The multiple pipes are modeled in UDSEWER as an equivalent box drain. The box drain in the UDSEWER model has the equivalent area as the multiple pipes which are required. The height of the box is 14% which is the inside height of the proposed elliptical pipe. The width of the box was calculated by dividing the total pipe area required for the given flows by the height ( h = 14"). The energy loss coefficient, Kb,was calculated with the equation: Kb = Ke (1-(AI/A2))2, where Kb = 0.5. A Kb< 0.05 was calculated so a Kb = 0.05 was used. A I I THE SEAR -BROWN GROUP �Project: 1-� 4- 9- qq Project No. Pip-0 By: Checked: Date: Sheet - of WSfLEtC) 3.10 14 (TVP F'M ALL 6C�,Enp) 4,5 ,C<- LF-Gco fl ffiJ1f-)A0LC-' 00 0 Z:_ 2 W LL O w IL R z Z J_ 7 m a X � fM M M N N�� N NI 0000000 O O M O O O O O O O 6666666 O o O O O N M O O o 0 0 0 N O 0 M N N O , D O o 0 0 0 6 6 0 n(OMraOnn�M uiriaoaioaoadaddai nNfOM(OMnnt00Dl f0 W n N N M f0 (O O O V `7 0 n 0 0 O O O o o o o I G O O o 0 007 o CD N N V V R '0T �V O O CO O O O O O O O O to nn co to N n co 0 M M O n�,MNcnc`liooco M M N CO C, N (0 nco t0 g « N co C M f0 to-O ov ov o 0 0 0 0 0 � v N N N N O n M M o n n 0 0 M �o ; .; M LO to C) n am ;o n 'n N N NCN Q) m 0) CN N N N C4 N N N �MNM V M10 n CO Wa r� LU W J W O uj O W 2 d U) n. = J LU J W D 2 2 � aU) U Q LU U W 2 N Q X Z '7 W � J R 1 J 0 Q W LLJ Q H 2 V) F- M LLJ � J W U J XO W Coa a Q « v) Q fU a I IN STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Civil Eng. Dept, U. of Colorado at Denver Denver Cities/Counties 8 UDFCD Pool ----------- -Metro -Fund -Study ------------ USER:RDB-Fort Collins -Colorado ............................................... ON DATA 04-03-1998 AT TIME 12:00:11 VERSION=01-17-1997 *** PROJECT TITLE :HP BLD 4 *** RETURN PERIOD OF FLOOD IS 100 YEARS (Design flow hydrology not calculated using UDSEWER) *** SUMMARY OF HYDRAULICS AT MANHOLES -------------------------------------------------'.---------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR ------------------------------------------------------------------------------- CFS FEET FEET 1.00 21.40 14.45 17.40 NO 2.00 21.40 21.57 17.73 OK 3.00 22.10 21.10 18.88 OK 4.00 22.10 21.00 19.95 OK 5.00 9.10 21.73 20.97 OK 6.00 7.00 7.60 5.20 19.81 19.81 18.64 18.79 OK OK 8.00 5.20 19.81 18.83 OK 9.00 9.10 21.73 21.03 OK 10.00 16.40 22.50 20.20 OK 90.00 21.40 21.45 17.40- OK ' OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS ' NOTE: THE GIVEN FLOW DEPTH -TO -SEWER ---------------------------------------------------------------------- SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ' ID NO. ID NO. --------------------------------------------------------------- (IN) (FT) (IN) (FT) (IN) (FT) (FT) 32.00 3.00 2.00 ROUND 28.25 30.00 30.00 0.00 43.00 4.00 3.00 ROUND 28.25 30.00 30.00 0.00 510.00 5.00 10.00 ROUND 20.26 21.00 21.00 0.00 62.00 6.00 2.00 ROUND 18.93 21.00 21.00 0.00 76.00 7.00 6.00 ROUND 16.35 18.00 18.00 0.00 87.00 8.00 7.00 ROUND 16.42 18.00 18.00 0.00 95,00 9.00 5.00 ROUND 20.26 21.00 21.00 0.00 104.00 10.00 4.00 ROUND 25.38 27.00 27.00 0.00 290.00 2.00 90.00 ROUND 29.65 30.00 33.00 0.00 - 901.00 90.00 1.00 BOX 0.89 1.00 1.17 5.09 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES ' DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. ' NUMBER CFS CFS FEET FPS FEET FPS FPS _ --- --- ---- ---'.' 32.0 22.1 26.0 1.77 5.95 ---- 1.59 --- -- 6.69 4.50 0.82 V-OK 43.0 22.1 26.0 1.77 5.95 1.59 6.69 4.50 0,82 V-OK 510.0 9.1 10.0 1.30 4.73 1.12 5.61 3.78 0.74 V-OK 62.0 7.6 10.0 1.14 4.59 1.02 5.23 3.16 0.81 V-OK 76.0 5.2 6.7 0.99 4.21 0.88 4.85 2.94 0.80 V-OK 87.0 5.2 6.7 1.00 4.17 0.88 4.85 2.94 0.78 V-OK ' 95.0 9.1 10.0 1.30 4.73 1.12 5.61 3.78 0.74 V-OK 1 I �S 104.0 16.4 19.4 1.59 5.47 1.41 6.26 4.12 0.80 V-OK 290.0 21.4 28.6 1.78 5.28 1.53 6.30 3.60 0.75 V-OK 901.0 21.4 22.4 0.89 4.71 0.82 5.13 3.59 0.88 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS --------------------------------------------------....---------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM X FT) ---- 32.00 0.40 15.76 .... 15.02 .... 2.84 ---- 4.05 OK 43.00 0.40 17.23 15.86 1.27 2.74 NO 510.00 0.40 18.56 17.68 1.42 3.07 NO 62.00 0.40 16.33 15.02 1.73 4.80 NO 76.00 0.41 16.57 16.43 1.74 1.88 NO 87.00 0.40 16.67 16.67 1.64 1.64 NO 95.00 0.40 18.56 18.56 1.42 1.42 NO 104.00 0.39 17.58 17.33 2.67 1.42 NO 290.00 0.29 14.92 14.56 3.90 4.14 OK 901.00 0.29 14.67 14.45 5.61 -1.17 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 32.00 185.90 ---- 185.90 ---- 18.26 ---- 17.52 .--- 18.88 ---- 17.73 PRSSIED 43.00 343.70 343.70 19.73 18.36 19.95 18.88 PRSSIED 510.00 220.70 220.70 20.31 19.43 20.97 20.20 PRSSIED 62.00 327.80 327.80 18.08 16.77 18.64 17.73 PRSSIED 76.00 34.50 34.50 18.07 17.93 18.79 18.64 PRSSIED 87.00 0.10 0.10 18.17 18.17 18.83 18.79 PRSS�ED 95.00 0.10 0.10 20.31 20.31 21.03 20.97 PRSSIED 104.00 63.63 63.63 19.83 19.58 20.20 19.95 PRSSIED 290.00 123.50 75.03 17.67 17.31 17.73 17.40 SUBCR ' 901.00 75.30 75.30 15.84 15.62 17.40 17.40 PRSS!ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS -------------------------------------------------------------------...--------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID -- -- NO. ELEV FT --- ---- -- FT -'.. K COEF LOSS FT K COEF LOSS FT ID FT 32.0 3.00 19.21 -- 1.18 - ---- ------- 0.00 - 0.00 ---- ---- '- ' 0.35 0.09 2.00 17.95 43.0 4.00 20.27 0.99 0.20 0.06 0.00 0.00 3.00 19.21 ' 510.0 5.00 21.19 0.72 0.05 0.01 0.00 0.00 10.00 20.46 62.0 6.00 18.79 0.75 0.62 0.10 0.00 0.00 2.00 17.95 76.0 7.00 18.93 0.08 0.38 0.05 0.00 0.00 6.00 18.79 87.0 8.00 18.96 0.00 0.25 0.03 0.00 0.00 7.00 18.93 95.0 9.00 21.25 0.00 0.25 0.06 0.00 0.00 5.00 21.19 104.0 10.00 20.46 0.18 0.06 0.02 0.00 0.00 4.00 20.27 290.0 2.00 17.95 0.34 0.05 0.01 0.00 0.00 90.00 17.60 901.0 90.00 17.60 0.20 1.00 0.00 0.00 0.00 1.00 17.40 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT 1S NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. lG ' HP BLD 4 CONFLICT 2,15,20,3,2,1,.8,500,300,.2,Y 1,100 1.35,28.5,10,.786 ' 11 1, 14.45,0, 1 ,901 ,0,0,0 21.4,0,1,.5,0,0,0,0,0 2 , 21.57 , 290 , 2 , 62, 32 , 0, 0 21.4,0, 1 ,.5,0,0,0,0,0 3,21.1,32,1,43,0,0,0 22.1 ,0, 1,.5,0,0,0,0,0 4,21,43,1,104,0,0,0 22.1,0,1,.5,0,0,0,0,0 5,21.73,510,1,95,0,0,0 9.1,0,1,.5,0,0,0,0,0 6,19.81,62,1,76,0,0,0 7.6,0, 1 ,.5,0,0,0,0,0 7, 19.81 ,76, 1 ,87,0,0,0 ' 5.2,0,1,.5,0,0,0,0,0 8, 19.81,87,0,0,0,0,0 5.2,0, 1,.5,0,0,0,0,0 ' 9 , 21.73 , 95 , 0 , 0 , 0 , 0, 0 9.1 ,0, 1 ,.5,0,0,0,0,0 10,22.5,104,1,510,0,0,0 16.4,0, 1,.5,0,0,0,0,0 90,21.45,901 , 1 ,290,0,0,0 21.4,0,1,.5,0,0,0,0,0 10 32, 185.9,.4, 18.26,.013,0,.35, 1 ,30,0 43,343.7,.4,19.73,.013,.2,0,1,30,0 510,220.7,.4,20.31,.013,.05,0,1,21,0 62,327.8,.4, 18.08,.013,.62,0, 1 ,21 ,0 76,34.5,.41,18.07,.013,.38,0,1,18,0 87,.1 ,.4, 18.17,.013,.25,0, 1 , 18,0 95,.1 ,.4,20.31 ,.013,.25,0, 1,21 ,0 104,63.63,.39,19.83,.013,.06,0,1,27,0 290, 123.5,.29, 17.67,.013,.05,0,1 ,33,0 901,75.3,.29,15.84,.013,1,0,2,1.17,5.09 ' .,0 290, 123.5,.29, 17.67,.013,.05,0, 1 ,33,0 901 , 75.3 , .29 , 15.84 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 THE pCo�rL-w-r SEAR -BROWN GROUP \' Project: n� �I `l 1 Protect No. BY: 1" Checked: Date: ft\*h H )4 12T? Sheet of IS rT F!h ;• r.. Tr1Kc" J FrU�r� THE SEAR r.1'oWrJ-NP Qch,S Pult)S �.✓♦T C-: �C - R�6Ho►ZAL;,4Fs.���a�L(REHC+j2-) PLA,) *OF/16, T (See ykc ud- ox,"� 6w 04 `h e.,,e t_� `+�i; Z�0.2% &4P A\ —LI 93 0 Thf-IL �lOf�c IS Tuc.�T-8. morlt_�g n _Pc CombrrD (NCCT �. „x Exir 1ulE7 -9 ib m w J LL O cr a v 0 Z_ C] J_ D m a- m 000000000000000000001 O O O O N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O G O C O 0 0 0 O COOOONNu)NOOMfO fDN Nu)to O M T r O M GD N M N T N O O M CO N N T T T T T T T T T T T T T T T T T T T T O M u) N N fV fV t6 sf ui fO lh f��!'Q 'v vfO haDrl�ui ui a0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0l O G O O O O O C O O O O C 0 0 0 0 u) ui 0 T T T T T N (o7 )mNN W MO�OLOO�OOriN�NOC N T N N T T T T T T T O N r u) OD R 010 N M u) t0 r , T T r T T T T M T T MIT c0 r a0 mO) O rT T T T T T T T T T N N 00000��00000vovrrn�mco r-� 9 a0 ui ui CO aO T ri ui co, co, O M N N N O O M M T T T T T T T T rl r-00 DOMM000O T o o o o o o m u) uQ co O r r Lquq o f °4 M '� rn rn O O u) r aOcoof Tof aio00oTo"oTa0a0 T T T T T N T T N N N N N N" N N T T N N OT T N M R u) 0 r co O O T I T T T T T T T T T N N C N C ) Q s iLU 'a- J F >,0- �Du •emu H 0 Z < Q L �5c O L j W C W F •S � F :0 Z L D F r THE z �a SEAT-'WdXVN GROUP r po Project: }�� 13LL� -i Project No. BY: TLb Checked: Date: 3 �11IG `c Sheet of 1�` ws ICL5 Q _ ) y 89 AT TIM WbL ,r �20G/LE J !ice Ct %:L/ e 9' ly' xz1 1;62= ' EwT 7M, iuLET _I'o Ews�rJCr IF" Gp5T/Ob- ED I 17 M N z Q m IT W (D z W O J J LL m a= T M V M M N N N N O O O I D O O O O O O O O N O O O O O 666666666 O W N 0 0 W O N IO O O M O O O N M N T O T O O O O T O v n 090,00 " 0 0 Mnntoto M co(O V Rt•S tliv? T T T T T T T T T n N O m T (00091 O M 1D N (D m m N 6 N T T T T N N T T T T T T T T T O T f07 O M M f0'+7 in M M 0 0- O O O G O O (O M� W CODO�N0 N co n O 0OD O N N M M V tMO OMD OMi ao ao ao cD ao CO ao 0 0 0 0 0 0 0 0 0 0 TTMM0Un0mnn T T W Di T O NiV� (D fD T T T T n N O W O N m M NI V CD �O N T O) m QI O) noi�r ao�rwc6 T T T T T T T T T N M V LO f0 co O) V N co co co co co co V O O O z Q' N z 0 W -i W 0 O 2 _U y 2 F a U Ix W S i+4 X V m } J J H U a cn N S O z W J W a a 2 THE SEAR -BROWN GROUP 'Project: LI, Ll Project No.� �l BY: TLh, Checked: Date: _r4��l' Sheet ofi_ EF157 SD - 2C0F DnRItJS (� j2D=Il �' RNCF f. 04 N S R(Lr S£SVrN 6 D F02 Fort nie low- 6 qc o T m 1zraslr2lt A\ do ws Env ly;eq ��- � �iF1Y.Ew� %-RDiv=Er'i� • �./�:�,',� (_?LC � I'Lft1J �; 21 �L�f 0 b, �, , 2- 9 AT TN\S I�JIcT p2fJFl�� D,C,QE %bn'+b�N� . :rC tJ l� Di Q p 6 DP �Sls �;,4?010 i, a SA ,' sz- U a� 0 0. v z Z 0 _J 5 m a x 00010000 O 0000400 90 66000006 O N Cn O N ON w O O O O M N M N e-OOO�O�O "ItN to M O M M M MI CO �CMMM Cu O M V M.-� Otn N V N 6 0 6 N 0 1O I 0000000 M O O M M M M 1� NO MO O N NO O N NO 00000000 co CDMO co O CV) 0 N M N, Cn0 O CD 0 N N (V) V' COO n CD i M M M M Cl) M M 100000000 Cn Cn Cn N N 1 CO CV CV I- N 9 0 0 0 O O T coI� of c6 ai o 0 0 0 N m o m W o rl co m W cD z LLI lU Cn Z 0 W J W 0 0 2 _N C7 x F N M CO a Lj I 7 11 1 11 1 1 I ------------------------------------------------------------------------ STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties 8 UDFCD Pool Fund Study USER:RDB-Fort Collins -Colorado ............................................... ON DATA 04-03-1998 AT TIME 11:25:34 VERSION=01-17-1997 *** PROJECT TITLE :HP BLD 4 **' RETURN PERIOD OF FLOOD IS 100 YEARS (Design flow hydrology not calculated using UDSEWER) *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ------------------------------------------------------------------------------- MINUTES INCH/HR CFS FEET FEET 1.00 61.10 12.00 14.89 NO 2.00 61.10 17.47 14.72 OK 3.00 37.00 17.67 14.97 OK 4.00 34.70 18.58 15.62 OK 5.00 28.70 18.56 16.43 OK 6.00 25.80 19.68 17.31 OK 7.00 25.80 21.00 18.64 OK 8.00 0.70 19.73 19.25 OK 9.00 0.70 19.73 19.25 OK 10.00 3.10 20.50 17.35 OK 11.00 3.10 20.50 17.37 OK 12.00 1.40 20.50 16.35 OK 13.00 1.40 20.50 16.36 OK 14.00 18.70 21.80 18.85 OK 15.00 8.90 20.31 19.56 OK 16.00 1.40 20.50 19.87 OK 17.00 13.30 20.90 19.15 OK 18.00 15.80 21.90 19.05 OK 19.00 18.80 18.00 17.16 OK 20.00 183.80 18.00 17.60 OK 21.00 1.40 20.50 19.88 OK 82.00 19.30 19.82 16.78 OK 83.00 19.30 17.50 17.84 NO 84.00 11.90 17.28 17.90 NO 85.00 10.50 18.10 17.95 OK 86.00 4.90 17.95 18.02 NO 87.00 4.90 17.95 18.03 NO 88.00 7.70 16.95 18.09 NO 89.00 7.70 16.65 18.13 NO 92.00 10.30 19.82 16.09 OK 93.00 10.30 18.84 17.70 OK 94.00 1.50 19.00 18.33 OK 95.00 1.50 20.50 18.39 OK 96.00 1.50 20.50 18.40 OK 97.00 2.20 20.50 18.08 OK 98.00 2.20 20.50 18.10 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 21.00 2.00 1.00 BOX 0.87 1.00 1.17 13.21 32.00 3.00 2.00 ROUND 34.28 36.00 36.00 0.00 43.00 4.00 3.00 ROUND 33.46 36.00 36.00 0.00 54.00 5.00 4.00 ROUND 31.16 33.00 33.00 0.00 65.00 6.00 5.00 ROUND 29.94 33.00 33.00 0.00 L-r ' 76.00 7.00 6.00 ROUND 29.94 33.00 33.00 0.00 87.00 8.00 7.00 ROUND 7.74 15.00 15.00 0.00 98.00 9.00 8.00 ROUND 7.74 15.00 15.00 0.00 ' 105.00 1110.00 10.00 11.00 5.00 10.00 ROUND ROUND 13.53 13.53 15.00 15.00 15.00 15.00 0.00 0.00 124.00 12.00 4.00 ROUND 10.04 15.00 15.00 0.00 1312.00 13.00 12.00 ROUND 10.04 15.00 15.00 0.00 147.00 14.00 7.00 ROUND 26,54 27.00 27.00 0,00 1615.00 16.00 15.00 ROUND 10.04 15.00 15.00 0.00 ' 1517.00 15.00 17.00 ROUND 21.20 24.00 21.00 0.00 1718.00 17.00 18.00 ROUND 24.65 27.00 24.00 0.00 1814.00 18.00 14.00 ROUND 26.29 27.00 27.00 0.00 193.00 19.00 3.00 ROUND 16.56 18.00 18.00 0.00 ' 2019.00 20.00 19.00 ROUND 16.56 18.00 18.00 0.00 2116.00 21.00 16.00 ROUND 10.04 15.00 15.00 0.00 821.00 82.00 2.00 ROUND 22.88 24.00 33.00 0.00 832.00 83.00 82.00 ROUND 42,00 42,00 42.00 0,00 843.00 84.00 83.00 ROUND 23.50 24.00 33.00 0.00 854.00 85.00 84.00 ROUND 22.56 24.00 33.00 0.00 865.00 86.00 85.00 ROUND 16.95 18.00 21.00 0.00 876.00 87.00 86.00 ROUND 16.95 18.00 21.00 0.00 883.00 88.00 83.00 ROUND 18.86 21.00 21.00 0.00 898.00 89.00 88.00 ROUND 20.08 21.00 21.00 0.00 921.00 92.00 2.00 ROUND 18.86 21.00 21.00 0.00 932.00 93.00 92.00 ROUND 24.17 27.00 21.00 38.00 ' 943,00 954.00 94,00 95.00 93,00 94.00 ROUND ROUND 10,87 10.94 15,00 15.00 15.00 15.00 0.00 0.00 965.00 96.00 95.00 ROUND 10.94 15.00 15.00 0.00 973.00 97.00 93.00 ROUND 12.63 15.00 15.00 0.00 987,00 98,00 97.00 ROUND 12,63 15.00 15,00 0,00 ' DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. ' SUGGESTED DIAMETER FOR A NEW SEWER, WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED --------------------------------------.---------------------------------------- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER ------------------------------------------------------------------------------- CFS CFS FEET FPS FEET FPS FPS 21.0 61.1 64.1 0.87 5.29 0.87 5.30 3.95 1.00 V-OK 32.0 37.0 42.3 2.17 6.75 1.97 7.50 5.23 0.83 V-OK 43.0 34.7 42.3 2.07 6.68 1.91 7.31 4.91 0.86 V-OK 54.0 28.7 33.5 1.96 6.35 1.77 7.08 4.83 0.83 V-OK 65.0 25.8 33.5 1.81 6.23 1,611 6.79 4.34 0,87 V-OK 76.0 25.8 33.5 1.81 6.23 1.68 6.79 4.34 0.87 V-OK t 87.0 0.7 4.1 0.35 2.49 0.35 2.46 0.57 0.88 V-LOW 98.0 0.7 4.1 0.35 2.49 0.35 2.46 0.57 0.88 V-LOW 105.0 3.1 4.1 0.81 3.67 0.71 4.32 2.53 0.77 V-OK 1110.0 3.1 4.1 0.81 3.67 0.71 4.32 2.53 0.77 V-OK ' 124.0 1.4 4.1 0.50 3.02 0.49 3.13 1.14 0.87 V-OK 1312.0 1.4 4.1 0.50 3.02 0.49 3.13 1.14 0.87 V-OK 147.0 18.7 19.6 1.75 5.62 1.51 6.59 4.70 0.74 V-OK 1615.0 1517.0 1.4 4.1 8.9 8.7 0.50 1.75 3,02 3.70 0,49 1.11 3,13 5.56 1,14 3.70 0.87 0.00 V-OK V-OK 1718.0 13.3 12.4 2.00 4.23 1.31 6.10 4.23 0.00 V-OK 1814.0 15.8 17.0 1.72 4.86 1.38 6.17 3.97 0.66 V-OK 193.0 18.8 23.6 1.01 14.80 1.43 10.80 10.64 2.74 V-OK 2019.0 18.8 23.6 1.01 14.80 1.43 10.80 10.64 2.74 V-OK ' 2116.0 1.4 4.1 0.50 3.02 0.49 3.13 1.14 0.87 V-OK 821.0 19.3 51.4 1.17 8.03 1.46 6.02 3.25 1.51 V-OK 832.0 19.3 19.3 3.50 2.01 1.40 5.38 2.01 0.00 V-LOW 843.0 11.9 29.5 1,22 4.70 1.15 5,06 2.00 0,86 V-OK 854.0 10.5 29.0 1.14 4.49 1.10 4.75 1.77 0.85 V-OK 865.0 4.9 8.7 0.94 3.73 0.81 4.47 2.04 0.76 V-OK 876.0 4.9 8.7 0.94 3.73 0.81 4.47 2.04 0.76 V-OK 883.0 7.7 10.3 1.13 4.69 1.03 5.25 3.20 0.84 V-OK ' 898.0 7.7 8.7 1.28 4.09 1.03 5.25 3.20 0.65 V-OK Zs I 1 [J 1 I [1 C F I 921.0 10.3 13.8 1.13 6.28 1.19 5.89 4.28 1.12 V-OK 932.0 10.3 7.1 1.75 4.28 1.19 5.89 4.28 0.00 V-OK 943.0 1.5 3.5 0.57 2.77 0.50 3.25 1.22 0.74 V-LOW 954.0 1.5 3.5 0.57 2.73 0.50 3.25 1.22 0.73 V-LOW 965.0 1.5 3.5 0.57 2.73 0.50 3.25 1.22 0.73 V-LOW 973.0 2.2 3.5 0.72 3.01 0.61 3.67 1.79 0.69 V-OK 987.0 2.2 3.5 0.72 3.01 0.61 3.67 1.79 0.69 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM -------------------------- (FT) (FT) (FT) (FT) 21.00 0.30 12.07 11.99 4.23 -1.16 NO 32.00 0.40 12.39 12.24 2.28 2.23 OK 43.00 0.40 13.50 12.49 2.08 2.18 OK 54.00 0.40 14.21 13.60 1.60 2.23 NO 65.00 0.40 15.21 14.31 1.72 1.50 NO 76.00 0.40 16.44 15.26 1.81 1.67 NO 87.00 0.40 17.00 16.45 1.48 3.30 NO 98.00 0.40 17.15 17.15 1.33 1.33 NO 105.00 0.40 14.77 14.31 4.48 3.00 OK 1110.00 0.40 13.52 13.52 5.73 5.73 OK 124.00 0.40 14.06 13.60 5.19 3.73 OK 1312.00 0.40 14.06 14.06 5.19 5.19 OK 147.00 0.40 16.71 16.45 2.84 2.30 OK 1615.00 0.40 18.19 17.40 1.06 1.66 NO 1517.00 0.30 17.41 17.09 1.15 2.06 NO 1718.00 0.30 17.09 17.02 1.81 2.88 NO 1814.00 0.30 17.02 16.71 2.63 2.84 OK 193.00 5.00 15.50 14.50 1.00 1.67 NO 2019.00 5.00 15.50 15.49 1.00 1.01 NO 2116.00 0.40 18.19 18.19 1.06 1.06 NO 821.00 0.94 15.32 12.37 1.75 2.35 NO 832.00 -1.00 12.50 14.28 1.50 2.04 NO 843.00 0.31 11.29 11.20 3.24 3.55 OK 854.00 0.30 11.61 11.39 3.74 3.14 OK 865.00 0.30 11.96 11.71 4.24 4.64 OK 876.00 0.30 11.96 11.96 4.24 4.24 OK 883.00 0.30 12.84 12.60 2.36 3.15 OK 898.00 0.30 12.84 12.84 2.06 2.36 OK 921.00 0.75 14.90 12.55 3.17 3.17 OK 932.00 0.20 15.40 14.90 1.69 3.17 NO 943.00 0.30 15.85 15.40 1.90 2.19 NO 954.00 0.29 16.14 15.94 3.11 1.81 NO 965.00 0.29 16.14 16.14 3.11 3.11 OK 973.00 0.29 15.58 15.38 3.67 2.21 OK 987.00 0.29 15.58 15.58 3.67 3.67 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------ 21.00 26.60 26.60 13.24 13.16 14.72 14.89 PRSSIED 32.00 38.00 0.00 15.39 15.24 14.97 14.72 SUBCR 43.00 253.10 0.00 16.50 15.49 15.62 14.97 SUBCR 54.00 152.00 0.00 16.96 16.35 16.43 15.62 SUBCR 65.00 226.10 0.00 17.96 17.06 17.31 16.43 SUBCR 76.00 296.00 0.00 19.19 18.01 18.64 17.31 SUBCR 87.00 137.40 137.40 18.25 17.70 19.25 18.64 PRSSIED 98.00 0.10 0.10 18.40 18.40 19.25 19.25 PRSSIED 105.00 115.00 115.00 16.02 15.56 17.35 16.43 PRSSIED 1110.00 0.10 0.10 14.77 14.77 17.37 17.35 PRSSIED 124.00 115.00 115.00 15.31 14.85 16.35 15.62 PRSSIED 11 Lb ' 1312.00 0.10 0.10 15.31 15.31 16.36 16.35 PRSS'ED 147.00 66.13 0.00 18.96 18.70 18.85 18.64 SUBCR 1615.00 197.00 197.00 19.44 18.65 19.87 19.56 PRSS'ED 1517.00 108.00 108.00 19.16 18.84 19.56 19.15 PRSS'ED ' 1718.00 24.79 24.79 19.09 19.02 19.15 19.05 PRSS'ED 1814.00 104.69 0.00 19.27 18.96 19.05 18.85 SUBCR 193.00 20.00 0.00 17.00 16.00 17.16 14.97 JUMP 1 2019.00 2116.00 0.10 0.10 0.10 0.10 17.00 19.44 16.99 19.44 17.60 19.88 17.16 19.87 PRSS'ED PRSS'ED 821.00 313.80 0.00 18.07 15.12 16.78 14.72 JUMP 832.00 177.80 177.80 16.00 17.78 17.84 16.78 PRSS'ED 843.00 28.90 28.90 14.04 13.95 17.90 17.84 PRSS'ED 854.00 72.80 72.80 14.36 14.14 17.95 17.90 PRSS'ED ' 865.00 84.00 84.00 13.71 13.46 18.02 17.95 PRSS'ED 876.00 0.10 0.10 13.71 13.71 18.03 18.02 PRSS'ED 883.00 80.20 80.20 14.59 14.35 18.09 17.84 PRSS'ED 898.00 0.10 921.00 313.80 0.10 119.80 14.59 16.65 14.59 14.30 18.13 16.09 18.09 14.72 PRSS'ED JUMP 932.00 251.90 251.90 17.15 16.65 17.70 16.09 PRSS'ED 943.00 150.00 150.00 17.10 16.65 18.33 17.70 PRSS'ED 954.00 67.60 67.60 17.39 17.19 18.39 18.33 PRSS'ED 965.00 0.10 0.10 17.39 17.39 18.40 18.39 PRSS'ED 973.00 67.60 67.60 16.83 16.63 18.08 17.70 PRSS'ED 987.00 0.10 0.10 16.83 16.83 18.10 18.08 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ------------------------------------------------------------------------------- ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT 21.0 2.00 14.96 0.07 1.00 0.00 0.00 0.00 1.00 14.89 ' 32.0 3.00 15.54 0.42 0.38 0.16 0.00 0.00 2.00 14.96 43.0 4.00 16.32 0.74 0.10 0.04 0.00 0.00 3.00 15.54 54.0 5.00 17.05 0.48 0.70 0.25 0.00 0.00 4.00 16.32 65.0 6.00 17.92 0.58 0.00 0.00 0.25 0.29 5.00 17.05 76.0 7.00 19.24 0.94 1.32 0.39 0.00 0.00 6.00 17.92 ' 87.0 8.00 19.26 0.02 0.82 0.00 0.00 0.00 7.00 19.24 98.0 9.00 19.26 0.00 0.25 0.00 0.00 0.00 8.00 19.26 105.0 10.00 17.44 0.26 1.32 0.13 0.00 0.00 5.00 17.05 1110.0 11.00 17.47 0.00 0.25 0.02 0.00 0.00 10.00 17.44 ' 124.0 12.00 16.37 0.05 0.10 0.00 0.00 0.00 4.00 16.32 1312.0 13.00 16.38 0.00 0.25 0.01 0.00 0.00 12.00 16.37 147.0 14.00 19.22 0.00 0.06 0.02 0.00 0.00 7.00 19.24 1615.0 16.00 19.90 0.09 1.32 0.03 0.00 0.00 15.00 19.78 ' 1517.0 15.00 19.78 0.34 0.06 0.01 0.00 0.00 17.00 19.43 1718.0 17.00 19.43 0.09 0.04 0.01 0.00 0.00 18.00 19.33 1814.0 18.00 19.33 0.10 0.04 0.01 0.00 0.00 14.00 19.22 193.0 19.00 18.92 2.28 0.62 1.09 0.00 0.00 3.00 15.54 2019.0 20.00 19.36 0.00 0.25 0.44 0.00 0.00 19.00 18.92 ' 2116.0 21.00 19.90 0.00 0.25 0.01 0.00 0.00 16.00 19.90 821.0 82.00 17.34 2.37 0.05 0.01 0.00 0.00 2.00 14.96 832.0 83.00 17.91 0.48 1.32 0.08 0.00 0.00 82.00 17.34 843.0 84.00 854.0 85.00 17.97 18.00 0.01 0.03 0.00 0.05 0.00 0.00 0.25 0.00 0.05 0.00 83.00 84.00 17.91 17.97 865.0 86.00 18.08 0.08 0.05 0.00 0.00 0.00 85.00 18.00 876.0 87.00 18.10 0.00 0.25 0.02 0.00 0.00 86.00 18.08 883.0 88.00 18.25 0.13 1.32 0.21 0.00 0.00 83.00 17.91 898.0 89.00 18.29 0.00 0.25 0.04 0.00 0.00 88.00 18.25 ' 921.0 92.00 16.63 1.66 0.05 0.01 0.00 0.00 2.00 14.96 932.0 93.00 17.99 1.34 0.05 0.01 0.00 0.00 92.00 16.63 943.0 94.00 18.35 0.08 0.00 0.00 0.25 0.28 93.00 17.99 ' 954.0 95.00 965.0 96.00 18.42 18.42 0.04 0.00 1.32 0.25 0.03 0.01 0.00 0.00 0.00 0.00 94.00 95.00 18.35 18.42 973.0 97.00 18.13 0.08 1.32 0.07 0.00 0.00 93.00 17.99 987.0 98.00 18.15 0.00 0.25 0.01 0.00 0.00 97.00 18.13 ABEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. 11 C-7 ' LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE ' NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. II tJ I I I C X I 1 I 1 I 1 I ,I 1 1 HP BLD 4 PROFILE B 2, 15,20,3,2, 1 ,.8,500,300,.2,Y 1,100 1.35,28.5,10,.786 36 1,12,0,1,21,0,0,0 61.1 ,0, 1 ,.5,0,0,0,0,0 2, 17.47,21,3,32,821,921,0 61.1,0,1,.5,0,0,0,0,0 3, 17.67,32,2, 193,43,0,0 37,0,1,.5,0,0,0,0,0 4, 18.58,43,2, 124,54,0,0 34.7,0, 1 ,.5,0,0,0,0,0 5, 18.56,54,2, 105,65,0,0 28.7,0,1,.5,0,0,0,0,0 6, 19.68,65, 1 ,76,0,0,0 25.8,0, 1 ,.5,0,0,0,0,0 7,21 ,76,2,87, 147,0,0 25.8,0, 1 ,.5,0,0,0,0,0 8,19.73,87,l,98,0,0,0 .7,0,1,.5,0,0,0,0,0 9, 19.73 , 98 , 0 , 0 , 0, 0 , 0 .7,0,1,.5,0,0,0,0,0 10,20.5, 105, 1, 1110,0,0,0 3.1 ,0, 1 ,.5,0,0,0,0,0 11 ,20.5, 1110,0,0,0,0,0 3.1,0,1,.5,0,0,0,0,0 12,20.5, 124, 1 , 1312,0,0,0 1.4,0, 1 ,.5,0,0,0,0,0 13,20.5, 1312,0,0,0,0,0 1.4,0, 1 ,.5,0,0,0,0,0 14,21.8, 147, 1 , 1814,0,0,0 18.7,0, 1 ,.5,0,0,0,0,0 15,20.31 , 1517, 1 , 1615,0,0,0 8.9,0, 1 ,.5,0,0,0,0,0 16,20.5, 1615, 1 ,2116,0,0,0 1.4,0, 1 ,.5,0,0,0,0,0 17,20.9, 1718, 1 , 1517,0,0,0 13.3,0, 1 ,.5,0,0,0,0,0 18,21.9, 1814, 1 , 1718,0,0,0 15.8,0, 1 ,.5,0,0,0,0,0 19, 18, 193, 1,2019,0,0,0 18.8,0, 1 ,.5,0,0,0,0,0 20, 18,2019,0,0,0,0,0 1 -1 I 1 1 I 0 1 I 18.8,0, 1 ,.5,0,0,0,0,0 21 ,20.5,2116,0,0,0,0,0 1.4,0, 1 ,.5,0,0,0,0,0 82,19.82,821,l,832,0,0,0 19.3,0, 1 ,.5,0,0,0,0,0 83, 17.5,832,2,843,883,0,0 19.3,0, 1 ,.5,0,0,0,0,0 84,17.28,843,1,854,0,0,0 11.9,0, 1 ,.5,0,0,0,0,0 85,18.1,854,1,865,0,0,0 10.5,0, 1 ,.5,0,0,0,0,0 86, 17.95,865, 1,876,0,0,0 4.9,0, 1 ,.5,0,0,0,0,0 87, 17.95,876,0,0,0,0,0 4.9,0, 1 ,.5,0,0,0,0,0 88, 16.95,883, 1 ,898,0,0,0 7.7,0, 1 ,.5,0,0,0,0,0 89, 16.65,898,0,0,0,0,0 7.7,0, 1 ,.5,0,0,0,0,0 92, 19.82,921 , 1 ,932,0,0,0 10.3,0, 1 ,.5,0,0,0,0,0 93,18.84,932,2,943,973,0,0 10.3,0, 1,.5,0,0,0,0,0 94, 19,943, 1 ,954,0,0,0 1.5,0, 1 ,.5,0,0,0,0,0 95,20.5,954, 1 ,965,0,0,0 1.5,0, 1 ,.5,0,0,0,0,0 96 , 20.5, 965 , 0 , 0 , 0, 0 , 0 1.5,0, 1 ,.5,0,0,0,0,0 97,20.5,973, 1,987,0,0,0 2.2,0, 1 ,.5,0,0,0,0,0 98,20.5,987,0,0,0,0,0 2.2,0, 1 ,.5,0,0,0,0,0 35 21,26.6,.3,13.24,.013,1,0,2,1.17,13.21 32,38,.4,15.39,.013,.38,0,1,36,0 43,253.1,.4,16.5,.013,.l 0,1,36,0 54, 152,.4, 16.96,.013,.7,0, 1,33,0 65,226.1 ,.4, 17.96,.013,0,.25, 1 ,33,0 76,296,.4, 19.19,.013, 1.32,0, 1 ,33,0 87, 137.4,.4, 18.25,.013,.82,0, 1 , 15,0 98,.1,.4,18.4,.013,.25,0,1,15,0 105, 115,.4, 16.02,.013, 1.32,0, 1 , 15,0 1110,.1,.4,14.77,.013,.25,0,1,15,0 124, 115,.4, 15.31 ,.013,.1 ,0, 1 , 15,0 I ' 1312,.1,.4,15.31,.013,.25,0,1,15,0 147,66.13,.4, 18.96,.013,.06,0, 1,27,0 ' 1615,197,.4,19.44,.013,1.32,0,1,15,0 1517,108,.3,19.16,.013,.06,0,1,21,0 1718,24.79,.3, 19.09,.013,.04,0, 1,24,0 ' 1814, 104.69,.3, 19.27,.013,.04,0, 1 ,27,0 193,20,5,17,.013,.62,0,1,18,0 2019,.1 , 5 , 17,.013,.25,0, 1 , 18,0 2116,.1 ,.4, 19.44,.013,.25,0, 1, 15,0 821 ,313.8,.94, 18.07,.013,.05,0, 1 ,33,0 832,177.8;1,16,.013,1.32,0,1,42,0 843,28.9,.31,14.04,.013,0,.25,1,33,0 854,72.8,.3, 14.36,.013,.05,0, 1,33,0 865,84,.3,13.71,.013,.05,0,1,21,0 876,.1 ,.3, 13.71 ,.013,.25,0, 1 ,21 ,0 883,80.2,.3, 14.59,.011, 1.32,0, 1,21,0 898,.1,.3,14.59,.013,.25,0,1,21,0 921 ,313.8,.75, 16.65,.013,.05,0, 1 ,21 ,0 932,251.9,.2, 17.15,.013,.05,0, 1,21,38 ' 943,150,.3,17.1,.013,0,.25,1,15,0 954,67.6,.29, 17.39,.013, 1.32,0, 1, 15,0 965,.1,.29, 17.39,.013,.25,0,1,15,0 973,67.6,.29,16.83,.013,1.32,0,1,15,0 987,.l ,.29, 16.83,.013,.25,0, 1 , 15,0 ' -,15,0 973,67.6,.29,16.83,.013,1.32,0,1,15,0 987,.1,.29,16.83,. 1 i I I 1 THE SEAR -BROWN GROUP Project: `Lb 4 Project No. 7�q Oc )/ By: Checked: Date: ��� Sheet of go, as�� J Zm f?Ia"00 rNv ovz : 491i,'}2 Icy Sb ArCA. IIJLL-T -/S l Q- 2.5 C-FS L=3Y''s 1I @0, 3,°,6 N NNII I � 000 000 aoo O N N O M N O r-0 coo n PI ui ui ui r r r O N N corrl vvv 0001 O O o M co IT co m M 000 O�, n m cd O . N M N M V O O O N � � N N N O M O O In N O 0 m Oi co co � N M R rn m a ' STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties 8 UDFCD Pool Fund Study --_---__-_-- USER:RDB-Fort Collins -Colorado ............................................... ON DATA 04-02-1998 AT TIME 10:30:53 VERSION=01-17-1997 *** PROJECT TITLE :hp bld 4 *** RETURN PERIOD OF FLOOD IS 100 YEARS (Design flow hydrology not calculated using UDSEWER) ' *** SUMMARY OF HYDRAULICS AT MANHOLES ---"'------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ' 1D NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR '_'-------------------'.'------------------------------------------------------ CFS FEET FEET 1.00 2.50 19.50 15.27 OK 2.00 2.50 19.25 15.65 OK ' 3.00 2.50 18.00 16.04 OK 4.00 2.50 18.00 16.08 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ' ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. ------------------------------------------------------------------------------- (IN) (FT) (IN) (FT) (IN) (FT) (FT) 21.00 2.00 1.00 ROUND 12.31 15.00 12.00 0.00 ' 32.00 3.00 2.00 ROUND 13.09 15.00 12.00 0.00 43.00 4.00 3.00 ROUND 13.09 15.00 12.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER DIMENSION UNITS FOR BOX SEWER ARE IN FEET ARE IN INCHES REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED -------- ---- --- ---- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ' ID FLOW Q FULL Q DEPTH VLCITY NUMBER CFS CFS FEET FPS DEPTH VLCITY VLCITY NO. FEET FPS FPS --------------------------------------------------------------------------- 21.0 2.5 2.3 1.00 3.18 0.68 4.42 3.18 0.00 V-OK 32.0 2.5 2.0 1.00 3.18 0.68 4.42 3.18 0.00 V-OK 43.0 2.5 2.0 1.00 3.18 0.68 4.42 3.18 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS -' SEWER SLOPE INVERT ELEVATION - ------------ BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) -------."------------------------------------------------------------ 21.00 0.43 14.60 14.27 3.65 4.23 OK ' 32.00 0.31 14.72 14.60 2.28 3.65 OK 43.00 0.31 14.72 14.72 2.28 2.28 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET F ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ' ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET ------------------------------------------------------------------------------- FEET FEET FEET FEET FEET 21.00 77.00 32.00 38.70 77.00 38.70 15.60 15.27 15.65 15.27 PRSS'ED 15.72 15.60 16.04 15.65 PRSS'ED 43.00 0.10 0.10 15.72 15.72 16.08 16.04 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE ' SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT ------------------------------------------------------------------------------- FT K COEF LOSS FT K COEF LOSS FT ID FT 21.0 2.00 15.80 0.53 0.05 0.00 0.00 0.00 1.00 15.27 32.0 3.00 16.20 0.19 1.32 0.21 0.00 0.00 2.00 15.80 ' 43.0 4.00 16.24 0.00 0.25 0.04 0.00 0.00 3.00 16.20 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. ' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 1 ' hp bld 4 profile k ' 2,12,20,3,2,1,.8,500,300,.2,Y 1,100 1.35,28.5, 10,.786 ' 4 1, 19.5,0, 1,21 ,0,0,0 2.5,0,1,.5,0,0,0,0,0 2, 19.25,21 , 1 ,32,0,0,0 2.5,0,1,.5,0,0,0,0,0 ' 3,18,32,1,43,0,0,0 2.5,0, 1,.5,0,0,0,0,0 4,18,43,0,0,0,0,0 2.5,0,1,.5,0,0,0,0,0 3 21,77,.43, 15.6,.013,.05,0, 1 , 12,0 32,38.7,.31,15.72,.013,1.32,0,1,12,0 43,.1,.31,15.72,.013,.25,0,1,12,0 �1,12,0 ' 32,38.7,.31,15.72,.013 I lJ , THE SEAR -BROWN GROUP Project: Protect No. -� BY: Checked: Date: Sheet of I w NoT� ', n or pil_o �r�•. (oO GFS. IJc Cgp�,C V�_ Of %.a CF5 ✓k Or fir' i r l rru Sf C `fort r �Y n I� 11 i r .1 EXISTING 12 INCH PIPE CAPACITY Worksheet for Circular Channel Project Description Project File c:\haestad\fmw\hpbld4.fm2 Worksheet existing pipes Flow Element Circular Channel Method Manning's Formula Solve For Full Flow Capacity Input Data Mannings Coefficient 0.013 Channel Slope 0.003000 ft/ft Diameter 12.00 in Results Depth 1.00 ft Discharge 1.95 cfs Flow Area 0.79 ft' Wetted Perimeter 3.14 ft Top Width 0.00 ft Critical Depth 0.60 ft Percent Full 100.00 Critical Slope 0.006791 ft/ft Velocity 2.48 ft/s Velocity Head 0.10 ft Specific Energy FULL ft Froude Number FULL Maximum Discharge 2.10 cfs Full Flow Capacity 1.95 cfs Full Flow Slope 0.003000 ft/ft TI�!S t5 11JCJ1A06� T� IUusr�rl 02/16/98 FlowMaster v5.13 04:14:13 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 CONSTRUCT CHAWUNK FENCE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ CONSTRUCT • 1 • G CHAINLINK FENCE `� - ` t ' + \ 28+00 + 28+00 + 1 f 2J+00� �22Y00 O1.�' .�4 �e T6-13 •.�`• .�.c 1� 1 p 21+00 77 'i6t00 s 20+00 + ~ co7S 1' W 89348013' .6 O N ,q Y ` 71,4s' as 5 (9) 14"x23" HE 1 rA 0 See prof ile below FOE+oo 17 -- - — - — - — '------ N 3 40 LF 12' CMP J �� SEE PROFILE, THIS SHEET i" 1 1 V W w •y. > > a ' _r ,.2J ono - 2,9.4cb a1 omn'S - awn ,� $ �� • 1 omYi - 3.1198 \ / �• 0+40 FES 1P I e e e 4o U- 4920 12' CYP EXISTING - --- - GROUND PROPOSED GRADE 4915 4910 $ 0 n 3 +9 +3 CURVE RADIUS LENGTH TANGENT CHORD BEARING DELTA tt3 250.00 79.70 40.19 79.36 N B1V182 w 18�854 CL! 250.00 79.70 40.19 79.J6 5 Bt•0152 E 18�884 CLS SJ0.00 J30.70 170.93 325.J8 N 72� 19 w 35'a501 as Note: i Note: The shee+ is o, cv4-ov+ ST&I•g5oromwo IrOw, the Sear -Brown 13vihia119 5 R0'LOOPROEFNSION RER 70 SHEETEETC-C-2.s PIQr15 skowlrt t%e re lon0.i ch0.nr,eFER l y RETO GRADING PLANS FOR w4}Qr Suri qEe rof i le. 9 ( ) I•t' K 23 hERCP CONTOURS IN ROADWAY/PARKING LOT P � See profile below City of Fort Collins, Co. UMM PLAN APPR CENTERLINE CURVE TABLE . _ - _ APPROVED: grai0r d Ln am - n..4cr. d1 0mi, 5 . a4]z CHECKED BY: l•_�... t �_ �- 4 , O, - y42n CAu Unm' I,D7FlCAI,ON CENTER of COLoaAoo z.s z.s 1 800 922 1987 CHECKED BY:sti•� utafty 534-6700" HORL 0 10 25 w K'rw e�weia. mM. — CHECKED BY: Paris t BeI • .• • •• PROFILE RT scm IN FEET . �. �3 ENNINNINNINNIII-M� �••�� �i� ��ilwww�► �+_!� ' .a i%����i'�i���t��ii�ii��i ���t•>r� ���� r'�'i1�i��i� MMMMMM mumMENGE Mrs •�� ���_�j�,iii,�i m.• m I r 1 1 I I I 1 I I I I DESIGN OF INLETS 40 I 1--------------------------------------------------- ----------------------&\ ---- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD - -------------------------------------------- -------------------------------- ISER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. N DATE 02-16-1998 AT TIME 16:38:23 I** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= 45.00 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 ' STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 17.50 GUTTER FLOW DEPTH (ft) = 0.43 FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 2.43 2.46 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.53 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.00 ' FLOW INTERCEPTED (cfs)= 6.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.00 FLOW INTERCEPTED (cfs)= 6.00 CARRY-OVER FLOW (cfs)= 0.00 1 I -------------------------------------------------- �z ---------------------- -- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------ ------------------------------------------------------- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. DATE 02-16-1998 AT TIME 16:37:04 �* PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 2 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= 45.00 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 ' STREET CROSS SLOPE M = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 17.13 GUTTER FLOW DEPTH (ft) = 0.42 ' FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 2.41 2.37 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.47 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.70 FLOW INTERCEPTED (cfs)= 5.70 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.70 ' FLOW INTERCEPTED (cfs)= 5.70 CARRY-OVER FLOW (cfs)= 0.00 I ------------------------------------------------------------------------ ---- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................... tm DATE 02-16-1998 AT TIME 16:42:29 r* PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 3 ' INLET HYDRAULICS: IN A SUMP, GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE LATERAL WIDTH OF DEPRESSION (degree)= (ft)= 45.00 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION GUTTER WIDTH (inch)= (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 20.88 GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= 2.66 FLOW CROSS SECTION AREA (sq ft)= 3.43 GRATE CLOGGING FACTOR 06)= 50.00 CURB OPENNING CLOGGING FACTOR (%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 19.99 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 9.10 FLOW INTERCEPTED (cfs)= 9.10 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 9.10 FLOW INTERCEPTED (cfs)= 9.10 CARRY-OVER FLOW (cfs)= 0.00 11 ---------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. DATE 03-16-1998 AT TIME 08:34:32 * PROJECT TITLE: HP Bld4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 4 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 I STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.13 GUTTER FLOW DEPTH (ft) = 0.45 FLOW VELOCITY ON STREET (fps)= 2.58 FLOW CROSS SECTION AREA (sq ft)= 2.16 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 19.43 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.60 FLOW INTERCEPTED (cfs)= 5.60 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.60 FLOW INTERCEPTED (cfs)= 5.60 CARRY-OVER FLOW (cfs)= 0.00 1------------------------------------------------------------------------- AS-- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 02-16-1998 AT TIME 16:47:07 *** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 5 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= 45.00 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (°s) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 11.50 GUTTER FLOW DEPTH (ft) = 0.40 FLOW VELOCITY ON STREET (fps)= 2.36 FLOW CROSS SECTION AREA (sq ft)= 1.49 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 10.29 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.50 FLOW INTERCEPTED (cfs)= 3.50 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.50 FLOW INTERCEPTED (cfs)= 3.50 CARRY-OVER FLOW (cfs)= 0.00 1 I I 1------------------------------------------------------------------------ a�-- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD I=----------------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. N DATE 02-16-1998 AT TIME 16:48:02 I** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: rINLET ID NUMBER: 6 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= 45.00 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. ! STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 13.75 GUTTER FLOW DEPTH (ft) = 0.44 FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 2.55 2.06 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.65 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.20 ! FLOW INTERCEPTED (cfs)= 5.20 ` CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.20 ! FLOW INTERCEPTED (cfs)= 5.20 CARRY-OVER FLOW (cfs)= 0.00 H -----------------------------------------------------------------------�� UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. DATE 02-16-1998 AT TIME 16:50:54 * PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 7 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 12.51 IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 0.94 0.87 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.84 GUTTER FLOW DEPTH (ft) = 0.38 ' FLOW VELOCITY ON STREET (fps)= 2.31 FLOW CROSS SECTION AREA (sq ft)= 1.34 GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW I 2.93 (cfs)= 3.10 (cfs)= 2.70 (cfs)= 0.40 (cfs) = 3.10 (cfs) = 2.49 (cfs) = 0.61 JEW Fco Gas ?c 7rL L------------------------------------------------------------------------- — UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. DATE 03-16-1998 AT TIME 08:42:30 �* PROJECT TITLE: HP Bld4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 8 INLET HYDRAULICS: ON A GRADE, GIVEN INLET DESIGN INFORMATION: rGIVEN CURB OPENING LENGTH (ft)= 30.00 REQUIRED CURB OPENING LENGTH (ft)= 10.76 IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY 1.00 = 1.00 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (-06 = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 9.59 GUTTER FLOW DEPTH (ft) = 0.36 FLOW VELOCITY ON STREET (fps)= 2.22 FLOW CROSS SECTION AREA (sq ft)= 1.09 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 5.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 2.40 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 2.40 FLOW INTERCEPTED (cfs)= 2.40 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.40 FLOW INTERCEPTED (cfs)= 2.28 CARRY-OVER FLOW (cfs)= 0.12 TPE r CRC u�K _ Fret �-cc�:-� _� :•,:<;c_-- TO 7Hr 11J1.c�? /` .. G��T . Cr r. � <C7;_ �J =oi iJT (�UkC15 1��N7EfL FlN� ILc�fiE� 1�0 �DILTF{ l':Y1.FiYJ,4Crf CH aua�� r ------------------------------ "9 ---------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. DATE 02-16-1998 AT TIME 16:53:34 * PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 9 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= 45.00 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 19.56 GUTTER FLOW DEPTH (ft) = 0.46 FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 2.57 3.04 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.82 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 7.80 FLOW INTERCEPTED (cfs)= 7.80 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 7.80 FLOW INTERCEPTED (cfs)= 7.80 CARRY-OVER FLOW (cfs)= 0.00 I 11 / O _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ G_ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------- ls---R-:-KEEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. N DATE 02-16-1998 AT TIME 16:54:30 '** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: f' INLET ID NUMBER: 10 I r I I INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH ( f t) = Note: The sump depth is additional STREET GEOMETRIES: 5.00 6.00 45.00 2.00 0.25 depth to flow depth. STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 13.47 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 2.17 FLOW CROSS SECTION AREA (sq ft)= 1.53 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR (%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.63 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.30 FLOW INTERCEPTED (cfs)= 3.30 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.30 FLOW INTERCEPTED (Cfs)= 3.30 CARRY-OVER FLOW (cfs)= 0.00 ------------------------------------------------------------------ - - - - -- CI---- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------- ------------------------------------------------------- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. �S ON DATE 02-16-1998 AT TIME 16:55:31 '*** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 12 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= 45.00 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.44 GUTTER FLOW DEPTH (ft) = 0.35 FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 2.11 1.33 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.27 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 2.80 FLOW INTERCEPTED (cfs)= 2.80 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.80 FLOW INTERCEPTED (cfs)= 2.80 CARRY-OVER FLOW (cfs)= 0.00 I 1------------------------------------------------------------------------- -- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------- ------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. IN DATE 02-16-1998 AT TIME 16:56:17 '** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: tINLET ID NUMBER: 13 INLET HYDRAULICS: IN A SUMP, ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= 45.00 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: 1 WATER SPREAD ON STREET (ft) = 15.91 GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 2.33 2.06 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 10.49 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 4.80 ' FLOW INTERCEPTED (cfs)= 4.80 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 4.80 FLOW INTERCEPTED (cfs)= 4.80 CARRY-OVER FLOW (cfs)= 0.00 I i ' The Sear Group -Brown ' Project Location Design Point 26 INLET 11 Grate: (specify) Open length, L = Open width, W = ' Clogging, c = Grate area = ' Stage interval, dh = Weir equation: Qw = C Lc H^1.5 ' C = 3.0 Lc = 1.8 ft ' H Qw Qo (ft) (cfs) (cfs) 0.00 0.00 0.00 0.10 0.17 1.23 0.20 0.49 1.74 ' 0.30 0.90 2.14 0.40 1.38 2.47 0.50 1.93 2.76 ' 0.60 2.54 3.02 0.70 3.20 3.26 0.80 3.91 3.49 ' 0.90 4.66 3.70 1.00 -- 3.90 ' 1.10 -- 4.09 8 4 3 0 m � 2 ' 0 1 Neenah Grate Number: R3401 0.9 ft 1.8 ft 50% 1.6198 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 0.8 ft2 Q(100) = 0.7 cfs d(100) = 0.25 ft r -- --- --- r� _ r _ _ _ i 0 / 0 0.2 0.4 0.8 0.8 1 Head (ft) Weir Orifice eee�Conlrollirq J 03-Apr-98 ' The Sear -Brown Group ' Project Location Design Point 17 INLET 14 Grate: (specify) Open length, L = ' Open width, W = Clogging, c = Grate area = ' Stage interval, dh = equation: 'Weir Qw = C Lc H^1.5 C = 3.0 ' Lc = 2.7 ft H Qw Qo (ft) _- (cfs) (cfs) 0.00 0.00 0.00 0.10 0.26 3.70 ' 0.20 0.72 5.23 0.30 1.33 6.41 0.40 2.05 7.40 ' 0.50 2.86 8.27 0.60 3.76 9.06 ' 0.70 4.74 9.79 0.80 5.80 10.47 0.90 6.92 11.10 1.00 11.70 1.10 12.27 14 ' 12 10 � 8 m 8 S 2 2 0 Neenah Grate Number: R3401 C 2.7 ft 1.8 ft 50% 4.86 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 2.4 ft2 Q(100) = 11.6 cfs d(100) = 1.00 ft ------------------------- may' ______- ______ _'-'_________________� -- - -----------------1 1 0 0.2 0.4 0.6 0.8 1 Head (ft) -�- Weir Orifice Controlling 1.2 16-Mar-98 The Sear -Brown Group Project Location Design Point 14 INLET - 15 Grate: (specify) Open length, L = ' Open width, W = Clogging, c = Grate area = ' Stage interval, dh = Weir equation: ' Qw = C Lc H^1.5 C = 3.0 Lc = 1.8 ft ' H Qw Qo ' ---- -------- --------------(cfs) - 0.00 0.00 0.00 ' 0.10 0.20 0.17 1.22 0.48 1.72 0.30 0.89 2.11 0.40 1.37 2.44 ' 0.50 1.91 2.73 0.60 2.51 2.99 0.70 3.16 3.23 ' 0.80 3.86 3.45 0.90 4.61 3.66 ' 1.00 3.86 1.10 __ 4.05 5 ' 4 3 Ea f+ 2 6 1 Neenah Grate number: R3401 0.9 ft 1.8 ft 50% 1.602 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 0.8 ft2 Q(100) = 2.6 cfs d(100) = 0.60 ft ■ i -- ---- -- ------- --- - - -- -- _ _ ___ _ _-w- ___ ___ ___ _____ ----- ___ -r----- - ----- -.0000 0 0.2 0.4 0.6 0.6 1 Head (ft) -W Weir -} 0drice IMMEME Controlling 1.2 03-Apr-98 The Sear -Brown Group Project Location Design Point 27 INLET - 16 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate area = Stage interval, dh = Weir equation: Qw = C Lc H^1.5 C = 3.0 Lc = 2.7 ft H Qw Qo (ft) (cfs) (cfs) 0.00 0.00 0.00 0.10 0.25 3.62 0.20 0.72 5.12 0.30 1.32 6.27 0.40 2.03 7.24 0.50 2.83 8.09 0.60 3.72 8.86 0.70 4.69 9.57 0.80 5.73 10.23 0.90 -- 10.85 1.00 -- 11.44 1.10 -- 12.00 14 12 10 8 a ,t 6 s 4 2 0 Neenah Grate Number: R3401C 2.7 ft 1.8 ft 50% 4.75 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 2.4 ft2 Q(100) = 4.9 cfs d(100) = 0.72 ft ---------------------------- --_ -_ -_1=_ _______ �r r' _ _ - _ - _�,. '_ _ _ _ _ _ _ _ _ _ _ _ _ ___ ------------ ---------- --- ------ - - - - -- i--------------------- 0 0.2 0.4 0.6 0.8 1 Head (ft) -�- Weir -+ Orifice mommin Controlling 1.2 16-Mar-98 The Sear -Brown Group 5-4 Project Location Design Point 30 INLET - 17 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate area = Stage interval, dh = Weir eauation: Qw = C Lc H^1.5 C = 3.0 Lc = 2.7 ft H Qw Qo (ft) (cfs) (cfs) 0.00 0.00 0.00 0.10 0.26 3.70 0.20 0.72 5.23 0.30 1.33 6.41 0.40 2.05 7.40 0.50 2.86 8.27 0.60 3.76 9.06 0.70 4.74 9.79 0.80 5.80 10.47 0.90 6.92 11.10 1.00 -- 11.70 1.10 -- 12.27 P s a Neenah Grate Number: R3401C 2.7 ft 1.8 ft 50% 4.86 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 2.4 ft2 Q(100) = 5.6 cfs d(100) = 0.78 ft ---------------------------- ------------------ ----------- - - - - ---- - - - - -- -------- - - - - -- - -- - - - -- --------- -------------------- 0 0.2 0.4 0.6 0.8 1 Head (ft) -�- Weir -+ Orifice amummiControRing 1.2 16-Mar-98 The Sear -Brown Group Project Location Design Point 31 INLET - 18 Grate: (specify) Open length, L = Open width, W = ' Clogging, c = Grate area = ' Stage interval, dh = Weir equation: Qw = C Lc H^1.5 ' C = 3.0 Lc = 1.8 ft H Qw Qo (ft) (cfs) (cfs) - -------- ____ -------------- 0.00 0.00 0.00 0.10 0.17 1.22 ' 0.20 0.48 1.72 0.30 0.89 2.11 0.40 1.37 2.44 ' 0.50 -- 2.73 0.60 -- 2.99 0.70 -- 3.23. ' 0.80 -- 3.45 0.90 -- 3.66 1.00 3.86 1.10 =_ 4.05 5 4 '9 3 m 2 O 1 0 0 0.2 0.4 0.6 0.8 1 Head (8) -t Weir Odfice �ConVolling Neenah Grate Number: R3401 1.8 ft 0.9 ft 50% 1.602 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 0.8 ft2 Q(100) = 1.5 cfs d(100) = 0.41 ft ter' _ _ _ f r i r 1.2 03-Apr-98 The Sear Group -Brown ' Project Neenah Grate Number: R4990 Location Design Point 32 INLET- 19 (-rNE M&OC- !� l tc" R-T GOAD (IJQ& _!'40L,k_ ' Grate: (specify) Open length, L = 45.0 ft Open width, W = 1.0 ft ' Clogging, c = 50% Grate area = 45 ' Stage interval, dh = 0.1 ft Weir equation: Orifice equation: ' Qw = C Lc H^1.5 Qo = C Ac (2gH)^0.5 C = 3.0 C = 0.6 Lc = 45.0 ft Ac = 22.5 ft2 H Qw Qo (ft) (cfs) (cfs) 1 --------- -------- 0.0.0----0 0.0000 00 0.10 4.27 34.26 0.20 12.07 48.45 0.30 22.18 59.34 0.40 34.15 68.52 Q(100) = 7.7 cfs ' 0.50 -- 76.61 d(100) = 0.14 ft 0.60 -- 83.92 0.70 90.64 ' 0.80 96.90 0.90 -- 102.78 ' 1.00 _= 108.34 1.10 113.62 ' 120 ' 100 e0 u" so 5 40 20 0 = ------- - - - - -- * __-_______ x _________ 0 0.2 0.4 0.6 D.8 1 Head (ft) ' -�- Weir Onfice -C,,1,otinq 1.2 59 17-Feb-98 1 1 ER INLET FRAMES AND GRATES -� R-3397 Gutter Inlet �Fft le and Grate r,. Heavy Duty `�•., ��:`��� Total Weight 330 Pounds Note opening at rear of frame. 23 20g r� i I'z Via'' IZ I I 7 6 I - 1 r^17e 2 Also avoiloble with Type V grate. 25� 23 (See R-3157.2 page 108). 3PB 264 Order as R-3397-1. Zoo.LR-3401 Single Gutter Inlet Frame and Grate Heavy Duty Total Weight 410 Pounds 1 L[R-3401-C Triple Gutter Inlet Frames and Grates 1 Double unit, total weight 790 pounds; triple unit, total weight 1160 pounds. If grates installed with slots in same direction as traffic —not recommended for bicycle traffic. For safety standards see 1 pages 88 to 93. }zl} zn;---� 1 vi� •: it l� N I`21" I r i 1 1 PLAN VIEW R-3401 PLAN VIEW R-34018 Illustrating R-3401 Illustrating R-3401-B NEENAH 26� 24m 0 0 ° 0 ° 0 � o 0 U a 0 c o 0 I �^ o 0 o o o . rrj PLAN VIEW R-3401 C Illustrating R-3401-G R-4990 Heavy Duty Trench Frames with Grated or Solid Covers MATERIALS: All frames and grates are furnished standard in Gray Iron, Class 35, for heavy duty use. For extra heavy duty use, see page 170 for Airport Trenches. Standard Cover Dimensions 1 Catalog Dimensions in inches Weight per lineal foot (without frame) No. A B C Type A Type C Type D Type E Type P Frome" R-4990-AX 8 1 %2 6 19 22 19 22 25 12 R-4990-BX 10 1 %2 8 24 27 29 27 31 12 R-4990-CX 12 1 %2 10 28 31 40 36 37 12 R-4990-DX 14 1.%gam„ ate. ��90-EX 17 1 %z 15 39 52 55 49 -.. — �..... 1'2 ' R-4990-FX 20 1 %2 18 54 67 70 70 — 12 R-4990-GX 23 1%2 21 60 77 85 — — 12 R-4990-HX 26 1 %2 24 71 100 85 — — 12 R-4990-JX 30 1 2 1 27• 100 120 100 — I — 17 R-4990-KX 33 2 30* 110 140 150 — — 17 R-4990-LX 36 2 33' 120 130 185 — — 17 R-4990-MX 39 2 36• 1 130 200 180 — — 17 R-4990-NX 45 2 42" 150 245 210 — — 17 R-4990-OX 51 2 48• 1 190 — 215 — — 17 *%4" Annular spacing 'Weight per foot —includes both sides. R-4991 Light Duty ' Trench Frames with Grated or Solid Covers Standard Cover Dimensions Catalog Dimensions in inches III eight per lineal foot (without frame) No. A B C Type A Type C Type D Type E Type P Frame* R-4991-AX 8 1 V2 6 12 15 22 17 — 12 R-4991-BX 10 136 8 14 18 28 27 — 12 R-4991-CX 12 116 10 13 23 34 23 — 12 R-4991-DX 14 1 V2 12- 16 22 27 28 — 12 R-4991-EX. 17 1 Y2 15 29 29 37 38 — 12 R-4441-FX 20 1 %2 18 41 42 42 42 12 R-4991-GX 23 1 Y2 21 51 51 55 51 — 12 R-4991-HX 26 1 V 24 44 58 65 63 — 12 R-4991-JX 29 1%2 27 71 79 74 74 — 12 R-4991-KX 32 1 %2 30 52 90 86 87 — 12 R-4991-LX 35 1)h 33 120 — 100 105 — 12 R-4991-MX 38 136 36 95 120 110 115 — 12 R-4991-NX 44 1 y2 42 115 155 120 115 — 12 R-4991-OX 50 136 48 135 145 105 110 — 12 ' "Weight per foot —includes both sides. NdAINAI A$pMAAOAER OPEN A SOLID GRATE> iLID 1 , C r• a• 4 ' HEAVY DUTY ' N E E NAH �FOUNORV COMPANY Illustrating heavy duty trench frames and Type A grates to drain loading ramp. Designs in this series are being used successfully in subway construction, intersecting elevated highways and underpasses, airport hangar doors, ramps and other special purposes. Illustrating trench frames with grated covers in the deck area around a municipal pool. 6NOMINAL A ANNUL OPEN SOLID SPACE GRATE LID •Lr.• m C t a LIGHT DUTY The above schematic drawings identify basic dimensions only and do not apply to oll cover designs. Bar and rib depths, plate thicknesses, and seating widths, may vary on different sizes and styles. If your project has design restrictions, ask for approval drawings. I I I [1 I FREE OPEN AREAS OF NEENAH GRATES (Continued) CATALOG FT. NO. TYPE OPEN R-3152 ........A .......1.0 R-3157-1 ......A ....... 1.1 R-3157-2 ......V ....... 1.5 R-3157-A ......K ....... 1.7 R-3159-A ......S ....... 1.3 R-3161 ........S .......1.3 R-3165 ........A .......1.4 R-3169 ........B.......0.7 R-3170 ........B .......0.7 R-3174 ........A ....... 1.4 R-3175 ........A .......1.8 R-3180 ........0 .......0.9 R-3203-A ...... A or C...1.0 R-3203-B ...... A or C ...1.0 R-3203-C ...... A orC ...1.0 R-3205 ........K .......0.9 R3210........ C....... 1.7 R-3210 ........ DR/DL ..1.7 R-3210 ........D.......1.7 R-3210-A ......0 .......1.7 R-3210-AL .....L .......1.5 R-3210-L ......L .......1.5 R3220 ........ C .......1.5 R-3220-L ......L .......1.5 R-3222-C ......0 .......1.4 R-3222-LA .....L .......1.0 R-3222-1A .....L .......1.0 R-3227 ........D .......2.3 R-3227-C ......0 .......1.9 R-3227-D ...... DR/DL... 2.3 R-3228-BD..... DR/DL... 2.3 R-3228-G ......D .......2.2 R-3228-H ......0 ....... 1.9 R-3228-J ......D .......2.2 R-3228-K ......0 .......1.9 R-3229-A ......0 ....... 1.5 R-3229-L ......L .......1.5 R-3233 ........A .......2.8 R-3233-D ......A .......2.8 R-3234-B1 .....0 .......1.3 R-3235 ........0 .......1.3 R-3236 ........0 .......1.2 R-3236-1 ......0 .......1.2 R-3236-A ......0 .......1.2 R-3236-B ......0 .......1.2 R-3237 ........0 .......1.3 R-3237-1 ......0 .......1.3 R-3237-A ......0 .......1.3 R-3237-B ......0 .......1.3 R-3238 ........ C .......1.3 R-3239-A ......A ....... 1.0 R-3240 ........0 ....... 2.3 R3246 ........ C .......1.7 R-3246-A ......0 .......2.2 R3246-A ...... DR/DL... 2.7 R-3246-AL ..... L .......3.0 R-3246-C ...... D .......2.2 R3246-CL ..... L ....... 1.6 R-3246-E ......0 .......1.8 R-3246-F _._...0 ....... 1.8 R3246-G ...... DR/DL... 1.9 R-3247-A ...... DR/DL... 5.1 R-3249-F ......S ....... 1.1 R-3250 ........K .......1.5 R-3250-A ......K ....... 1.5 R3250-1 ......K .......1.5 R-3250-B ...... K ....... 1.4 R-3250-C ......K ....... 1.4 R-3250-BL..... L .......1.0 R-3250-CL .....L .......1.0 R-3250-BV ..... V ....... 1.3 R-3250-CV .....V ....... 1.3 R-3250-DV..... V .......1.3 R-3251 ........0 .......1.0 R-3252-A ......V .......1.3 R3259 ........ A .......1.7 R-3260-A ......A .......3.2 R-3261-A 1 ..... C ....... 1.1 R-3266 ........V .......0.6 R-3267 ........V .......0.3 R-3270 ........ A .......0.9 R-3272 ........A .......1.2 R-3273-A ......0 .......1.2 R-3274 ........0 .......1.2 R-3274-A ......0 ....... 1.4 so. CATALOG FT. NO. TYPE OPEN R-3274-B ......0 .......1.4 R-3275........ A .......1.0 R-3277 ........A .......1.0 R-3278-1 ......0 .......1.3 R-3278-A ......0 .......1.3 R-3278-AL ..... L .......0.7 R-3280-A ......0 .......1.8 R-3280-B ......0 .......1.2 R-3281-A ......0 ....... 1.0 R-3281-AL ..... L .......0.5 R-3281-B ...... DR/DL...1.0 R-3283-A ......B .......1.4 R-3283-B ......B.......2.8 R-3283-C ......B.......4.2 R-3285-Al ..... C .......0.9 R-3286 ........0 .......0.8 R-3286-BV ..... V .......0.7 R-3286.9V .....V .......0.7 R-3287 ........0 .......1.4 R-3287-5 ......V .......3.0 R-3287-10V .... V ....... 1.1 R-3287-11V ....V ....... 1.1 R-3287-15 .....V .......3.0 R-3287-16 .....V .......3.0 R-3287-SB10... S .......1.5 R-3287-SS11... S .......1.5 R-3288-E2..... DR/DL... 2.6 R-3288-HV2.... V .......3.2 R-3289-A ......D.......1.5 R-3289-HV..... V .......1.6 R-3289-L ......0 .......1.5 R-3289-C ...... DR/DL... 1.3 R-3290 ........0 .......1.7 R-3290-A ......0 .......2.6 R-3290-B ......D .......3.5 R-3290-C ......0.......3.8 R-3291........ C .......1.7 R-3292 ........0 .......1.8 R-3293 ........D .......2.8 R-3295-A ......0.......4.7 R-3295-B ......D.......7.1 R-3295-AL ..... L .......3.2 R-3295-BL ..... L .......4.8 R-3295-AV .....V .......3.6 R-3295-BV..... V .......5.4 R-3296-A ......0 .......3.6 R-3296-8 ......0 .......6.4 R-3297-1 ......0 .......2.3 R-3336 ........ A or C ...1.8 R-3337-A ......0 ....... 1.1 R-3338-F ......A ....... 1.4 R-3338-G ......A .......2.8 R-3339 ........ C ....... 1.6 R-3339-A ...... A or C ... 1.8 R-3340-B ......0 ....... 1.3 R-3340-D ......0 ....... 1.2 R-3341........ K .......0.3 R-3342 ........K .......0.5 R-3344 ........K ....... 1.1 R-3345 ........K ....... 1.1 R-3346 ........K ....... 1.4 R-3347 ........K .......1.3 R-3347-A ...... K ....... 2.3 R-3348 ........ K ....... 1.9 R-3349-A ...... K....... 1.8 R-3350 ........ K .......2.2 R-3351 ........ K ....... 2.7 R-3356-A ......K ....... 1.5 R-3357-A ......K.......2.0 R-3359 ........K ....... 1.1 R-3360-A ...... K ....... 1.6 R-3361 ........ K .......3.4 R-3362 ........C.......2.3 R-3362-1 ...... C ....... 2.3 R-3363-1 ......0 .......4.6 R-3381 ........K.......1.0 R-3382 ........K.......2.3 R-3383-A ...... K....... 2.7 R-3383-B ......K.......4.0 R-3390 ........K.......2.2 R-3392 ........K .......1.8 R-3393-A ......K .......2.0 R-3396 ........K.......3.2 R-3397 ........A ....... 1.1 R-3397-1 ......V .......1.5 SO. CATALOG FT. NO. TYPE OPEN R-3401 ........ D....... 1.9 R-3401-B ...... B....... 3.8 ���i3401 G R R-3402 ........ A or C ... 03_. R-3402-E ...... A or C ... 2.1 R3403 ........ A or C ... 1.1 R-3403-A ...... B....... 1.5 R-3403-F ...... A....... 3.2 R3404 ........ A or C ... 1.4 R-3405 ........ A or C ... 1.5 R-3405-A ...... A or C ... 1.3 R-3405-B ...... A or C ... 1.5 R-3406 ........0 ....... 1.8 R-3406-A ......0 ....... 1.8 R3406-2 ......0 ....... 1.8 R-3406-2A .....0 ....... 1.8 R-3408-L ......L ....... 1.2 R-3408-AL .....L ....... 2.4 R-3408-BL..... L ....... 2.4 R-3409 ........0 ....... 1.5 R-3413 ........0 ....... 1.5 R-3415 ........A ....... 4.1 R-3416 ........A ....... 1.4 R-3420 ........A ....... 1.2 R-3423 ........ B....... 1.6 R-3425-A ...... K....... 1.6 R-3425-8 ......K ....... 1.6 R-3429-A ...... A or C ... 1.0 R-3430 ........ A or C ... 0.9 R-3433 ........ A or C ... 1.5 R-3438-A ...... A or C ... 7.0 R-3443 ........A ....... 0.7 R-3443-B ......A ....... 0.7 R-3448-8 ......0 ....... 1.1 R-3448-C ......0 ....... 0.9 R-3448-D ......S ....... 1.2 R-3449 ........0 ....... 0.9 R-3451 ........0 ....... 1.5 R-3451-B ......0 ....... 1.7 R-3454 ........A ....... 4.1 R-3454-B ...... D....... 2.5 R-3455-A ......A ....... 2.6 R-3455-C ......A ....... 2.6 R-3457-C ...... B....... 6.0 R-3460-A ......A ....... 0.8 R-3460-D ......0 ....... 0.8 R-3461 ........0 ....... 1.5 R-3462-B ...... DR/DL... 1.8 R-3463-B ...... DR/DL... 3.5 R-3465 ........A ....... 0.7 R-3466-A ......A ....... 1.2 R-3469 ........A ....... 2.7 R-3469-E2 .....8 or D... 2.3 R-3471 ........0 ....... 0.6 R3472 ........ AorC... 1.3 R-3473 ........0 ....... 0.9 R-3475 ........ A ....... 2.7 R-3475-1 ......A ....... 2.7 R-3475-3 ......A ....... 4.1 R-3475-E ...... A ....... 2.7 R-3475-F ...... C ....... 5.4 R-3475-G ...... C ....... 8.1 R-3475-H ......0 .......10.8 R-3477 ..... ...0 ....... 3.3 R-3480 ........0 ....... 3.3 R-3480-A ......A ....... 1.6 R-3501-A ...... M....... 0.9 R-3501-B ...... M ....... 0.9 R-3501-D2A.... M....... 1.0 R-3501-E2 ..... M ....... 1.4 R-3501-H2..... M....... 3.3 R-3501-1-13 ..... M....... 3.0 R-3501-H L ..... M ....... 3.3 R-3501-1-14 ..... M ....... 3.0 R-3501-LlA .... M....... 1.2 R-3501-M ...... M....... 2.3 R-3501-N ...... M....... 1.5 R-3501-0 ...... M...... 1.4 R-3501-P ...... M ....... 1.5 R-3501-R ...... M ....... 2.6 R-3501-TL ..... M....... 1.4 R-3501-TR ..... M....... 1.4 R-3502-A ...... M ....... 1.4 R-3502-8 ...... M....... 1.4 R-3502-D2..... M....... 1.9 NEENAH FOUNoRy COMFW111y CATALOG FOT. NO, TYPE OPEN R-3503 ........ M....... 1.3 R-3503-B ......M....... 2.0 R-3504-F ...... M....... 2.8 R-3506-A2 ..... M....... 1.4 R-3506-B ...... M....... 1.2 R-3506-B1..... M....... 1.3 R-3506-82..... M....... 1.3 R-3507-C .... ..M....... 1.6 R-3507-D ......M....... 1.6 R-3508-A2 .....M....... 1.7 R-3508-B ......M....... 1.8 R-3508-81.... .M....... 1.9 R-3508-C ...... M....... 1 4, R-3509 ........ M....... n.9 R-3510........M....... �.t R-351 1 ........ M ....... 2.•) R-3513.... ....M....... 1.4 R-3516........ M....... 4.5 R-3516-1 .... ..M....... 2 R-3517........ M....... ix R-3525-1 ......K....... 1 1 R-3525-L ...... L ....... 1.o R-3526.1 ......K....... 1.8 R-3526-L ......L ....... 1.6 R-3527-M ......V ....... 1.6 R-3527-V ......V ....... 0.8 R-3528-V ......V ....... 0.8 R-3529-V ......V ....... 1.6 R-3531-A ...... A or C ... 6.0 R-3531-B ...... A or C ... 6.0 R-3531-C ......AorC... 3.0 R-3531-0 ...... A or C ... 3.0 R-3531-E ...... A or C ... 4.7 R-3570 ....... .A ....... 2.4 R-3570-A ......A ....... 2.4 R-3571........ A........ 2.4 R-3571-A ...... A ....... 2.4 R-3572 ........DR/DL... 5.1 R-3573 .... ....DR/DL... 4.4 R-3574 ........ DR/DL... 5.6 R-3574-L ......L ....... 2.3 R-3575........8....... 2.6 R-3576 ........ DR/DL... 2.4 R-3577........D....... 1.8 R-3578........L ....... 2.3 R-3579 ........L ....... 1.4 R-3580 ........L ....... 1.4 R-3580-1 ......L ....... 2.6 R-3581 ........V ....... 2.2 R-3588 ... .....D....... 1.8 R-3588-L ......L .... 1.5 R-3589 ........ D ....... 1.8 R-3589-L ......L ....... 1.5 R-3591 ........ A ....... 1.5 R-3593 ........0 ....... 2.5 R-3594 ........ S ....... 1.8 R-3599-A ...... L ....... 0.1 R-3807 ........ K....... 6.0 R-3808-1 ......0 ....... 5.2 R-3808-2 ......0 ....... 10.3 R-3900 ........ A or C ... 6.6 R-3900-A ...... A or C ... 4.4 R-3902-A ...... C ....... 2.4 R-3919 ........ DR/DL... 1.4 R-3920 ........ B or D... 1.5 R-3921-A ...... B....... 1.0 R-3921-D ...... D....... 0.7 R-3922 ........V ....... 0.8 R-3922-A ......V ....... 0.8 R-3924 ........ B....... 2.3 R-3928 ........8 ....... 0.5 R-3929 ........ B....... 0.2 R-3930 ........ B or D ... 0.3 R-3931 ........ B or D ... 0.3 R-3933 ........ B or D... 0.6 R-3935 ........ A or C ... 0.6 R-3936-A ......0 ....... 1.0 R-3940 ........A ....... 1.0 R-3942 ........V ....... 0.8 R-3943 ........V ....... 1.2 R-3948 ........ D....... 1.4 R-3952 ........ D ....... 1.1 R-3954 ........ B....... 1.8 R3961 ........ D....... 0.7 'Per Lineal Foot Type K indicates "Special' grate style and is not among standard types as illustrated. Type M indicates roll type or mountable curb. 267 FREE OPEN AREAS OF NEENAH GRATES (Continued) I i 1 i i r i 1 so. CATALOG FT. NO. TYPE OPEN R-3976 ........B.......0.2 R-3977 ........13 .......0.1 R-4001-A ......0 .......0.3 R-4001-B ......0 .......0.3 R-4003-A ......A .......0.9 R-4003-B ......A .......0.9 R-4003-C ......A .......0.9 R-4004-A ......0 .......1.3 R-4004-B ......B .......1.5 R-4004-C ......8 .......1.5 R-4004-G ......D.......1.9 R-4005-A2 .....B or D...0.4 R-4006 ........ B or D ... 0.3 R-4007 ........ B or D ...0.4 R-4008-B ......B or D...0.4 R-4011-B 1 ..... B or D ... 0.4 R-4014-B ......0 .......2.8 R-4014-C ......0 ....... 2.4 R-4014-E ......0 .......3.0 R-4014-T ......D.......1.3 R-4014-T1 .....D.......0.8 R-4015-A ......8 .......0.2 R-4015-A1 .....8 .......0.2 R-4015-8 ......0 .......0.4 R-4015-C ......B .......0.2 R-4015-D ......B .......0.2 R-4016-A ......B.......0.6 R-4016-B ......0 .......0.5 R-4016-E ......A .......0.6 R-4016-E1 .....A .......0.6 R-4016-F ......0 .......0.6 R-4016-G ......B .......0.8 R-4016-H1..... A .......0.6 R-4016-K ......D ....... 1.1 R-4017 ........B .......0.4 R-4017-1 ......B .......0.4 R-4018 ........8 .......0.2 R-4027-B ......0 .......1.1 R-4030-4 ......G ....... 0.1 R-4030.6 ......G .......0.1 R-4030-8 ......G .......0.2 R-4030-10 .....G .......0.3 R-4030-12 .....G .......0.4 R-4030-15 .....G .......0.8 R-4030-18 .....B .......1.1 R-4030-21 .....B .......1.3 R-4030-24 .....B .......2.1 R-4030-27 .....G .......2.8 R-4030-30 .....G .......3.5 R-4040-6 ......E .......0.1 R-4040-8 ...... E .......0.2 R-4040-10 .....E .......0.3 R-4040-12 .....E .......0.4 R-4040-15 .....E .......0.7 R-4040-18 ..... E ....... 1.2 R-4040-21 .....G ....... 1.4 R-4040-24 .....G ....... 1.6 R-4040-27 .....G.......2.3 R-4040-30 .....G .......2.9 R-4370-1 ......0 .......0.1 R-4370-2 ...... G....... 0.2 R-437D-3 ......E .......0.4 R-4370-4 ......G .......0.6 R-4370-5 ......G .......0.8 R-4370-6 ......G .......0.8 R-4370-7 ......G .......0.8 R-4370-8 ......E .......1.0 R-4370-9 ......0 ....... 1.3 R-4370-10 .....G ....... 1.1 R-4370-12 .....F .......0.9 R-4370-13 .....G ....... 1.3 R-4370-14A ....G .......0.9 R-4370-15 ..... D ....... 1.0 R-4370-17 ..... D....... 0.9 R-4370-18 .....E .......1.3 R-4370-21 .....D.......0.9 R-4370-22 .....0 .......1.1 R-4370-23 ..... G ....... 0.9 R-4370-25 .....G .......2.0 R-4370-26 .....G .......1.7 R-4370-27A ....G ....... 2.4 R-4373-2 ......K ....... 1.0 sq. in. R-4373-3 ......K ....... 1.0sq. in. R-4373-4 ......K ....... 3.0sq. in. CATALOG FT. NO. TYPE OPEN R-4373-6 ......K ....... 3.0sq. in. R-4373-8 ......K ....... 4.0sq. in. R-4373-10 .....K ....... 5.0sq. in. R-4373-12 .....K ....... 8.0sq. in. R-4373-15 .....K .......20.0 R-4380-AA1 .... E ....... sq. in. 2.8sq. in. R-4380-A ......E ....... 3.7sq. in. R-4380-Al ..... E ....... 6.0sq. in. R-4380-B1 ..... E ....... 4.8sq. in. R-4380-1 ......E ....... 5.4sq. in. R-4380.3 ......E ....... 6.0sq. in. R-4380-4 ......E .......0.1 R-4380-4A1 .... E .......0.1 R-4380.4A ..... E .......0.2 R-4380-6 ......G .......0.2 R-4380-7 ......G .......0.3 R-4380.8 ......E .......0.3 R-4380-9 ......E .......0.4 R-4380-10 .....E .......0.5 R-4380-11 .....E .......0.5 R-438G-12 .....E .......0.6 R-4380-13 .....G.......0.7 R-4380-13A .... E .......0.9 R-4380-14 .....E .......0.7 R-4380-15 .....E.......0.6 R-4380-16 .....E.......0.8 R-4380-17 .....E .......0.8 R-4380-18 .....G .......0.7 R-4380-21 ..... G . ; .....1.3 R-4380-22 .....G.......1.5 R-4380-23 .....G .......1.1 R-4380-24 .....G .......1.7 R-4380-25 .....G.......2.5 R-4380-26 .....G.......2.7 R-4385-B ......E.......0.1 R-4385-C ......E.......0.3 R-4385-E ......E.......0.5 R-4385-F ......E .......0.5 R-4385-G ......E.......1.0 R-4385-H ......G.......1.6 R-4385-J ......G.......2.5 R-4385-K ......G.......2.7 R-4389-0 ......8.......0.2 R-4390 ........B.......0.3 R-4391-A ......B.......0.1 R-4392 ........B.......0.8 R-4393 ........0 .......1.0 R-4400 ........8.......0.1 R-4401 ........A.......0.1 R-4403 ........A .......0.3 R-4404-C ......B.......0.5 R-4405-M5 ..... C ....... 1.5 R-4406 ........B.......0.5 R-4406-A ...... B....... 0.5 R-4406-C ......A .......0.4 R-4406.1 ...... A ....... 0.5 R-4406-2 ......0 .......0.6 R-4407-2A .....8 .......0.6 R-4408 ........ B .......0.3 R-4409 ........ A ....... 0.4 R-4409-A ......0 ....... 0.7 R-4409-C ...... 8....... 0.5 R-4409-E ...... A ....... 0.5 R-4409-G ...... B ....... 0.8 R-4410 ........B.......0.8 R-4421 ........0 ....... 1,0 R-4423-A ...... A ....... 1.2 R-4424 ........ A ....... 0.6 R-4430-A ......A.......0.6 R-4430-At ..... C .......0.2 R-4430-B ...... C .......0.7 R-4430-C ......0 ....... 1.4 R-4435-1 ...... C ....... 0.8 R-4441 ........A ....... 0.3 R-4441-A ......A.......0.3 R-4443 ........A ....... 0.4 R-4444 ........ A ....... 0.4 R-4449 ........ A .......0.8 R-4450 ........ A .......0.8 R-4450-A ......A.......0.6 R-4451 .... .... C ....... 0.7 R-4454 ........0 ....... 0.9 R-4460 ........ A ....... 0.8 R-4462 ........ B ....... 0.9 CATALOG FOT. NO. TYPE OPEN R-4470 ........A .......1.5 R-4511 ........A .......0.5 R-4525 ........A .......0.8 R-4530 ........A .......0.8 R-4531 ........A .......0.8 R-4540 ........0 ....... 1.0 R-4541........ A ....... 1.0 R-4544 ........A .......1.8 R-4545 ........A .......1.6 R-4548 ........A .......1.0 R-4550 ........0 .......0.8 R-4552 ........A .......0.6 R-4557 ........A .......0.8 R-4558 ........0 .......1.1 R-4570-1 ......A ....... 0.9 R-4570-2 ......A .......0.9 R-4573 ........A .......1.1 R-4575-A ......A ....... 1.7 R-4575-C ......0 .......2.9 R-4579 ........A .......0.8 R-4583 ........A .......0.9 R-4584 ........A .......1.3 R-4585 ........A .......1.9 R-4586 ........A .......1.5 R-4600 ........A .......0.9 R-4603-A ......A .......0.8 R-4604 ........0 .......1.3 R-4604-C ......A .......0.7 R-4604-D ......A .......1.5 R-4608 ........A .......0.8 A-4610 ........A ....... 1.0 R-4620 ........A .......0.8 R-4630 ........0 .......0.9 R-4632 ........0 ....... 1.1 R-4640 ........A .......1.3 R-4641-A ......A .......1.2 R-4641-C ......0 ....... 1.1 R-4641-F ......A .......1.8 R-4649 ........A ....... 1.1 R-4649-1 ......0 .......2.2 R-4652 ........A .......1.5 R-4654-C ......0 .......3.6 R-4660 ........0 ....... 1.1 R-4662 ........A .......1.3 R-4670-A ......A ....... 1.1 R-4671 ........A ....... 1.1 R-4672 ........0 .......1.1 R-4689 ........0 .......1.4 R-4692-A ...... D ....... 2.0 R-4698 ........A ....... 1.7 R-4710 ........0 .......1.5 R-4711 ........0 ....... 1.1 R-4718 ........A .......2.7 R-4720 ........0 .......0.9 R-4721-A ......A ....... 1.2 R-4725 ........0 .......1.6 R-4730 ........A .......2.0 R-4731........ A ....... 2.5 R-4732 ........ A ....... 2.0 R-4736 ........0 .......1.1 R-4738 ........A ....... 1.1 R-4739 ........ C ....... 1.3 R-4740 ........0 .......2.1 R-4750 ........0 ....... 2.4 R-4750-1 ......A .......2.8 R-4751 ........0 ....... 1.9 R-4752 ........0 .......2.3 R-4755-B ......A .......2.8 R-4755-C ......0 .......2.9 R-4759 ........ C ....... 1.5 R-4760 ........0 ....... 1.7 R-4762 .... .... C .......2.4 R-4765 ........ A ....... 1.4 R-4780 ........0 .......3.1 R-4781........ C .......3.0 R-4795 ........A .......3.2 R-4798 ........ C ....... 2.4 R-4808 ........ C ....... 1.4 R-4809 ........0 .......1.5 R-4810 ........0 .......1.5 R-4820 ........0 .......1.6 R-4821-A ......0 ....... 1.7 R-4825 ..... ... C .......1.8 R-4825-A ......A .......2.1 R-4825-B ......0 .......2.0 CATALOG NO. TYPE FT. 0= R-4826 ........A .......1.3 R-4828 ........ A ....... 19 R-4829 ........0 ....... .3 22 R-4830 ........0 .......0.9 R-4832 ........ C ....... 1.5 R-4832-8 ......0 .......1.8 R-4833 ........A .......2.3 R-4834-B ...... B .......1.7 R-4835-1 .... ..0 .......4.9 R-4837 ........A .......2.2 R-4839 ........A .......2.1 R-4840 ........0 .......2.8 R-4843 ........A .......2.6 R-4846 ........0 .......5.6 R-4850 ........0 .......2.7 R-4852 ........0 ....... 1.7 R-4853 ........A .......2.5 R-4853-A ......A .......3.1 R-4853-B1..... C .......3.3 R-4855 ........A .......2.0 R-4856 ........0 .......3.1 R-4857 ........A .......3.1 R-4859-C ......A .......2.4 R-4880 ........0 .......2.5 R-4880-C ......0 .......2.2 R-4884-A ......0 .......3.3 R-4890 ........0 .......3.4 R-4891 ........A .......3.5 R-4893 ........0 .......6.0 R-4893-B ......0 .......1.9 R-4894 ........0 .......3.3 R-4895-2 ......A .......6.6 R-4938 ........A .......0.8 R-4938-1 ......A .......1.5 R-4938-A ......A .......0.8 R-4938-B ......A .......0.2 R-4939-B ...... K .......4.7 sq. in. R-4941 ........ B....... 0.4 R-4941-A ......B .......0.4 R-4942-A ......A .......0.7 R-4943 ........ K....... 0.3 R-4943-A ......K .......0.3 R-4943-B ......K .......0.3 R-4976-1 ......A .......0.9 R-4976-1 ......B.......0.9 R-4976-2 ......A .......1.5 R-4976-2 ......B .......1.5 R-4976-3 ......A .......2.5 R-4976-3 ......B .......2.5 R-4976-4 ......A ....... 3.7 R-4976-4 ...... B ....... 3.7 R-4976-5 ...... B ....... 5.2 R-4977-1 ......A ....... 1.5 R-4977-1 ...... B... .... 1.5 R-4977-2 ......A ....... 2.0 R-4977-2 ... ... B .......2.0 R-4977-3 ......A ...!...3.7 R-4977-3 ......B.......3.7 R-4977-4 ...... A ....... 5.3 R-4977-4 ......6 .......5.3 R-4977-5 ......A ....... 8.0 R-4977-5 ......8 .......8.0 R-4990-AA ..... A ....... 0.2 R-4990-AX ..... A ....... 0.2 C.......0.3- P.......0.1 R-4990-SA.....A .......0.3 R-4990-BX.....A ....... 0.3- C....... 0.3 P.......0.1 R-4990-CA ..... A ....... 0.4 R-4990-CX ..... A ....... 0.4 C.......0.4- P.......0.1 R-4990-DA ..... A ....... 0.4 #_R-4990-DX ..... A ......: 0.4 C....... 0.5- P...... .0:2 R-4990-EA ..... A ....... 0.5 R-4990-EX.....A .......0.6- C.......0.5 R-4990-FA .....A .......0.6- R-4990-FX ..... A A. ....0.7- C..'.....0.8 Type K indicates "Special" grate style and is not among standard types as illustrated. • NOTE: On catalog #'s R-4990-AA thru R-4999-1-9, SO. FT OPEN is per lineal toot. ' 268 NEENAH IVi 4 I I I E I i I n I I I RIP RAP DESIGN 1 The Sear -Brown Group Project: Hewlett Packard Building 4 Designer.' J Allen-M Project #: 799-001 Date: 02/16/98 Location: West Outfall (PROFILE - A) Pipe dia.: 33 in Tailwater.' 0.8 ft Discharge 21.4 cfs Max. V. 5 fus 1. Required riprap type: Q/DA2.5 = 1.71 < 6 --> use design charts D = 2.75 ft YVD = 0.29 Q/D^1.5 = 4.69 d50 = 6 in > Use Class 6 riprap 2. Expansion factor: 1 / [2 tan(theta)] = 4.4 3. Riprap length: At = Q/V = 4.28 ft2 L = 1/[2tan(theta)]'(AUYt - D) = 11 ft 4. Governing limits: L>3D= 8ft <=11ft-->OK L<10D= 28ft =>11ft-->OK J. Maximum depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width = 3D = 3 (33 in 112) = 8 ft Summary: Class 6 riprap Length = 11 ft Depth = 1 ft Width = 8 ft Bury with 6 inches topsoil. Use Class 12 Riprap as minimum Riprap Design (DL/? I4i- — ,"I. F. • '-�:'_� __ h_-.-��i�T2/%rlP(' L I - _'I jI: �1�, _:fin,. �'n 16-Feb-98 The Sear -Brown Group Riprap Design (6�1 Project: Project Title Designer: JCE Project #: 000-000 Date: 03/16/98 Location: PROFILE - B Pipe dia.: 36 in Tailwater: 1.2 ft Discharge 41.2 cfs Max. V. 5 fUs 1. Required riprap type: Q/D42.5 = 2.64 < 6 --> use design charts D = 3.00 ft Yt/D = 0.40 Q/D^1.5 = 7.93 d50 = 6 in —> Use Class 6 riprap 2. Expansion factor: 1 / [2 tan(theta)] = 4.4 3. Riprap length At = QN = 8.24 ft2 L = 1/[2tan(theta)]'(At(Yt - D) = 17 ft 4. Governing limits: L>3D= 9 ft <=17ft—>OK L<10D= 30 ft =>17ft-->OK 5. Maximum depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width = 3D = 3 (36 in /12) = 9 ft Summary: Class 6 riprap Length = 17 ft Depth = 1 ft Width = 9 ft Bury with 6 inches topsoil. Use Class 12 Riprap as a Minimum. e evkr�'P<% f4 16-Mar-98 The Sear -Brown Group Riprap Design A I Project: Project Title Designer: JCE Project #. 799-001 Date: 03/16/98 Location: Outfall From Roof Drain 12,13 (Profile - C) Pipe dia.: 27 in Tailwater.• 0.9 ft Discharge 10.3 cfs Max. V. 5 ft/s 1. Required riprap type: Q/D^2.5 = 1.36 < 6 —> use design charts D = 2.25 ft YUD = 0.40 Q/D^1.5 = 3.05 d50 = in ---> Use Class 0 riprap 2. Expansion factor.' 1 / [2 tan(theta)] = 4.4 3. Riprap length: At=QN= L = 1/[2tan(theta)]-(At/Yt - D) _ 4. Governing limits: L>3D= 7 ft L<10D= 23 ft 5. Maximum depth: Depth = 2d50 = 2 (0 in / 12) _ 2.06 ft2 ft increase length to 7 ft =>0ft—>OK ItI 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: IWidth = 3D = 3 (27 in /12) _ Summary: Class 0 riprap Length = 7 ft Depth = ft Width = 7 ft 1 1 7ft Use class 12 Riprap as a.minimum 16-Mar-98 The Sear -Brown Group Riprap Design 1.09 I I 11 Project., Project Title Designer: JCE Project #: 799-001 Date: 03/16/98 Location: East Outfall (Profile - E) Pipe dia.: 36 in Tailwater.• 1.2 ft Discharge 19.3 cfs Max. V: 5 ft/s I. Required riprap type: Q/D^2.5 = 1.24 < 6 —> use design charts D = 3.00 ft Yt/D = 0.40 Q/DAl.5 = 3.71 d50 = 6 in —> Use Class 6 riprap 2. Expansion factor., 1 / [2 tan(theta)] = 4.4 3. Riprap length: At=QN= L = 1/[2tan(theta)]*(At/Yt - D) _ 4. Governing limits: L>3D= 9 ft L<10D= 30 ft 5. Maximum depth: Depth = 2d50 = 2 (6 in / 12) _ 3.86 ft2 1ft increase length to 9 ft => 1 ft --> OK 1ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width = 3D = 3 (36 in /12) = 9 ft Summary. Class 6 riprap Use class 12 Riprap as a minimum Length = 9 ft Depth = 1 ft ' Width = 9 ft Bury with 6 inches topsoil. I 16-Mar-98 I qO I I 1 1 1 I 1 1 I 11 1 EROSION CONTROL it r RBD, Inc. I I I t r i RAINFALL PERFORMANCE STANDARD EVALUATION 799-001 PROJECT: ICBD Genesis IV STANDARD FORM CALCULATED BY: JAM DATE: 02/17/98 Developed Erodibilty Asb Lsb Ssb Lb Sb PS Subbasin Zone (ac) (ft % ft 1 moderate 5.28 2390 0.50 2 moderate 1.23 620 0.60 3 moderate 0.80 480 0.60 4 moderate 0.30 560 0.60 5 moderate 0.21 370 0.60 6 moderate 11.82 1190 0.70 7 moderate 0.75 800 0.70 8 moderate 0.52 690 1.00 9 moderate 0.28 240 1.50 10 moderate 0.28 240 1.50 11 moderate 1.07 500 1.50 12 moderate 1.45 400 1.50 13 moderate 0.12 130 1.50 14 moderate 0.28 100 1.00 15 moderate 0.31 140 1.00 16 moderate 0.17 90 1.00 17 moderate 2.66 560 2.00 18 moderate 0.90 200 2.00 19 moderate 2.85 390 2.00 20 moderate 0.00 0 0.00 21 moderate 0.74 300 3.00 21A moderate 0.00 0 0.00 22 moderate 1.01 410 1.50 22A moderate 0.87 405 0.00 23 moderate 0.74 405 1.50 24 moderate 0.63 310 1.50 24A moderate 0.37 290 1.50 24B moderate 0.31 235 1.50 25 moderate 0.65 270 1.50 25A moderate 0.54 240 1.50 26 moderate 0.29 140 1.50 27 moderate 0.15 80 4.60 28 moderate 0.05 50 1.00 29 moderate 0.05 50 1.00 30 moderate 0.14 65 4.00 31 moderate 0.17 90 3.00 32 moderate 0.85 295 0.60 33 moderate 0.48 310 0.60 34 moderate 0.30 240 0.60 Total 39.62 14275 52.2 868 1.0 77.4 cnAnnrLt',P%Ll.ULA i iUrva Lb = sum(AiLi)/sum(Ai) _ (5.28 x 2390 +... + 0.30 x 240)/ 0.30 868 It Sb = sum(AiSi)/sum(Ai) _ (5.28 x 0.50 +... + 0.30 x 0.60)/ 39.62 1.0 % PS (during construction) = 77.4 (from Table 8A) PS (after construction) = 77.4/0.85 = 91.1 L'S RPS Up -left 400 72.7 Down -right 900 78.2 Interp. 828 77.41 - �I RBD, Inc. ' 799-001 I I i I r I I 1 I EFFECTIVENESS CALCULATIONS Total Site as one phase PROJECT: ICBD Genesis IV STANDARD FORM B CALCULATED BY: JAM DATE: 02/17/98 Erosion Control C-Facto P-Factor Comment Number Method Value Value 3 Bare Soil - Rough Irregular Surface 1 0.9 placed at area inlets 5 Straw Bale Barrier 1 0.8 placed at swales 6 Gravel Filter 1 0.8 placed at boundaries 8 Silt Fence Barrier 1 0.5 9 AsphaltlConcrete Pavement 0.01 1 all areas not paved 17 Established Grass Ground Cover -80% 0.03 1 18 Established Grass Ground Cover - 90% 0.025 1 19 Established Grass Ground Cover -100% 0.02 1 38 Gravel Mulch 0.05 1 39 Hay or Straw Dry Mulch (1.5% slope) 0.06 1 area not disturbed during Construction MAJOR BASIN % ac SITE 77.4 39.62 Practice C *A P ' A Remarks BASIN BASIN ac SITE DURING CONSTRUCTION 1 PERVIOUS AREA 5.28 17 0.16 5.28 Established Grass Ground Cover - 80% 1 ROADWAY 0.00 0.00 0.00 0.00 2 PERVIOUS AREA 1.04 3 1.04 0.94 Bare Soil - Rough Irregular Surface 2 ROADWAY 0.19 38 0.00 0.19 Gravel Mulch 3 PERVIOUS AREA 0.67 18 0.02 0.67 Established Gress Ground Cover - 90% 3 ROADWAY 0.13 38 0.00 0.13 Gravel Mulch 4 PERVIOUS AREA 0.11 3 0.11 0.10 Bare Soil - Rough Irregular Surface 4 ROADWAY 0.19 38 0.00 0.19 Gravel Mulch 5 PERVIOUS AREA 0.08 3 0.08 0.07 Bare Soil- Rough Irregular Surface 5 ROADWAY 0.13 39 0.00 0.13 Hay or Straw Dry Mulch (1-5% slope) 6 PERVIOUS AREA 11.74 39 0.23 11.74 Hay or Straw Dry Mulch (1-5% slope) 6 ROADWAY 0.08 3 0.08 0.07 Bare Soil - Rough Irregular Surface 7 PERVIOUS AREA 0.52 3 0.52 0,47 Bare Soil - Rough Irregular Surface 7 ROADWAY 0.23 6 0.23 0.18 Gravel Filter 8 PERVIOUS AREA 0.24 3 0.24 0.22 Bare Soil - Rough Irregular Surface 8 ROADWAY 0.28 38 0.01 0.28 Gravel Mulch 9 PERVIOUS AREA 0.00 0 0.00 0.00 0.00 9 ROADWAY 0.28 9 0.00 0.28 AsphaNConcrete Pavement 10 PERVIOUS AREA 0.00 0 0.00 0.00 0.00 10 ROADWAY 0.28 9 0.00 0.28 Asphalt/Concrete Pavement 11 PERVIOUS AREA 0.00 0 0.00 0.00 0.00 11 ROADWAY 1.07 9 0.01 1.07 Asphalt/Concrete Pavement 12 PERVIOUS AREA 0.00 0 0.00 0.00 0.00 12 ROADWAY 1.45 9 0.01 1.45 Asphalt/Concrete Pavement 13 PERVIOUS AREA 0.00 0 0.00 0.00 0.00 13 ROADWAY 0.12 9 0.00 0.12 Asphalt/Concrele Pavement 14 PERVIOUS AREA 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface 14 ROADWAY 0.28 38 0.01 0.28 Gravel Mulch 15 PERVIOUS AREA 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface 15 ROADWAY 0.31 38 0.01 0.31 Gravel Mulch 16 PERVIOUS AREA 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface 16 ROADWAY 0.17 38 0.00 0.17 Gravel Mulch 17 PERVIOUS AREA 1.66 3 1.66 1.49 Bare Soil - Rough Irregular Surface 17 ROADWAY 1.00 3 1.00 0.90 Bare Soil - Rough Irregular Surface 18 PERVIOUS AREA 0.85 3 0.85 0.77 Bare Soil- Rough Irregular Surface 18 ROADWAY 0.05 3 0.05 0.05 Bare Soil - Rough Irregular Surface 19 PERVIOUS AREA 2.75 3 2.75 2.48 Bare Soil - Rough Irregular Surface 19 ROADWAY 0.10 3 0.10 0.09 Bare Soil - Rough Irregular Surface 20 PERVIOUS AREA 0.00 0 0.00 0.00 0.00 20 ROADWAY 0.00 0 0.00 0.00 0.00 21 PERVIOUS AREA 0.46 18 0.01 0.46 Established Grass Ground Cover - 90% 21 ROADWAY 0.28 9 0.00 0.28 Asphalt/Concrete Pavement RBD, Inc. 'l3 ' EFFECTIVENESS CALCULATIONS Total Site as one phase 799-001 r 11 n I I PROJECT: ICBD Genesis IV STANDARD FORM B CALCULATED BY: JAM DATE: 02/17/98 Erosion Control C-Facto P-Factor Comment Number Method Value Value 3 Bare Soil - Rough Irregular Surface 1 0.9 placed at area inlets 5 Straw Bale Barrier 1 0.8 placed at swales 6 Gravel Filter 1 0.8 placed at boundaries 8 Silt Fence Barrier 1 0.5 9 AsphslVCon rete Pavement 0.01 1 all areas not paved 17 Established Grass Ground Cover - 80% 0.03 1 18 Established Grass Ground Cover - 90% 0.025 1 19 Established Grass Ground Cover- 100% 0.02 1 38 Gravel Mulch 0.05 1 39 Hey or Strew Dry Mulch (1-5% slope) 0.06 1 area not disturbed during Construction BASIN % AREA ac SITE 77.4 39.62 0 0.00 0.00 0.00 21A ROADWAY 0.00 0 0,00 0.00 0.00 22 PERVIOUS AREA 0.22 3 0.22 0.20 Bare Soil - Rough Irregular Surface 22 ROADWAY 0.79 38 0.02 0.79 Gravel Mulch 22A PERVIOUS AREA 0.15 3 0.15 0.14 Bare Soil - Rough Irregular Surface 22A ROADWAY 0.72 38 0.01 0.72 Gravel Mulch 23 PERVIOUS AREA 0.25 3 0.25 0.23 Bare Soil - Rough Irregular Surface 23 ROADWAY 0.49 38 0.01 0.49 Gravel Mulch 24 PERVIOUS AREA 0.07 3 0.07 0.06 Bare Soil - Rough Irregular Surface 24 ROADWAY 0.56 38 0.01 0.56 Gravel Mulch 24A PERVIOUS AREA 0.02 3 0.02 0.02 Bare Soil - Rough Irregular Surface 24A ROADWAY 0.35 38 0.01 0.35 Gravel Mulch 25 PERVIOUS AREA 0.17 3 0.17 0.15 Bare Soil - Rough Irregular Surface 25 ROADWAY 0.48 38 0.01 OAS Gravel Mulch 25A PERVIOUSAREA 0.12 3 0.12 0.11 Bare Soil- Rough Irregular Surface 25A ROADWAY 0.42 38 0.01 0.42 Gravel Mulch 26 PERVIOUS AREA 0.26 3 0.26 0.23 Bare Soil - Rough Irregular Surface 26 ROADWAY 0.03 38 0.00 0.03 Gravel Mulch 27 PERVIOUS AREA 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface 27 ROADWAY 0.15 38 0.00 0.15 Gravel Mulch 28 PERVIOUS AREA 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface 28 ROADWAY 0.05 38 0.00 0.05 Gravel Mulch 29 PERVIOUS AREA 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface 29 ROADWAY 0.05 38 0.00 0.05 Gravel Mulch 30 PERVIOUS AREA 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface, 30 ROADWAY 0.14 38 0.00 0.14 Gravel Mulch 31 PERVIOUS AREA 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface 31 ROADWAY 0.17 38 000 0.17 Gravel Mulch 32 PERVIOUS AREA 0.01 3 0.01 0.01 Bare Soil - Rough Irregular Surface 32 ROADWAY 0.84 38 0.02 0.84 Gravel Mulch 33 PERVIOUS AREA 0.24 18 0.01 0.24 Established Gress Ground Cover - 90% 33 ROADWAY 0.24 38 0.00 0.24 Gravel Mulch 34 PERVIOUS AREA 0.09 18 0.00 0.09 Established Gress Ground Cover - 90% 34 ROADWAY 0.21 38 0.00 0.21 Gravel Mulch 10.5919 38.289 Cnel=(2.02x 1.00+..+3.09x,g6y68.66 = 0.27 Pnel=(2.02x.90+..+3.09xl.G0y68.68 0.77 EFF = (1-C-P)100 = (1-0.27-0.77)100 = 79.33 > 77.4 (PS) Assume paving not constructed within 6 weeks; use gravel inlet filters at all area inlets & silt fence at swales & downstream perimeters. RBD, Inc. id EFFECTIVENESS CALCULATIONS Total Site 799-001 PROJECT: ICBD Genesis IV STANDARD FORM B CALCULATED BY: JAM DATE: 02/17/98 Erosion Control C-Facto P-Facto Comment Number Method Value Value 9 Asphalt/Concrete Pavement 0.01 1 Paved and constructed 16 Established Grass Ground Cover- 70% 0.04 1 Lawns and openspace 19 Established Grass Ground Cover -100% 0.02 1 Area not disturbed during construction BASIN % ac SITE 91.1 39.62 Practice C *A P ' A Remarks BASIN BASIN ac AFTER CONSTRUCTION 1 PERVIOUS AREA 5.28 16 0.21 5.28 Established Grass Ground Cover - 70% 1 ROADWAY 0 9 0.00 0.00 Asphalt/Concrete Pavement 2 PERVIOUS AREA 1.04 16 0.04 1.04 Established Grass Ground Cover - 70% 2 ROADWAY 0.19 9 0.00 0.19 Asphalt/Concrete Pavement 3 PERVIOUS AREA 0.67 16 0.03 0.67 Established Grass Ground Cover - 70% 3 ROADWAY 0.13 9 0.00 0.13 Asphalt/Concrete Pavement 4 PERVIOUS AREA 0.11 16 0.00 0.11 Established Grass Ground Cover - 70% 4 ROADWAY 0.19 9 0.00 0.19 Asphalt/Concrete Pavement 5 PERVIOUS AREA 0.08 16 0.00 0.08 Established Grass Ground Cover - 70% 5 ROADWAY 0.13 9 0.00 0.13 Asphalt/Concrete Pavement 6 PERVIOUS AREA 11.74 16 0.47 11.74 Established Grass Ground Cover - 70% 6 ROADWAY 0.08 9 0.00 0.08 Asphalt/Concrete Pavement 7 PERVIOUS AREA 0.52 16 0.02 0.52 Established Grass Ground Cover - 70% 7 ROADWAY 0.23 9 0.00 0.23 Asphalt/Concrete Pavement 8 PERVIOUS AREA 0.24 16 0.01 0.24 Established Grass Ground Cover - 70% 8 ROADWAY 0.28 9 0.00 0.28 Asphalt/Concrete Pavement 9 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 9 ROADWAY 0.28 9 0.00 0.28 Asphalt/Concrete Pavement 10 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 10 ROADWAY 0.28 9 0.00 0.28 Asphalt/Concrete Pavement 11 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover-70% 11 ROADWAY 1.07 9 0.01 1.07 Asphalt/Concrete Pavement 12 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 12 ROADWAY 1.45 9 0.01 1.45 Asphalt/Concrete Pavement 13 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 13 ROADWAY 0.12 9 0.00 0.12 Asphalt/Concrete Pavement 14 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 14 ROADWAY 0.28 9 0.00 0.28 Asphalt/Concrete Pavement 15 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 15 ROADWAY 0.31 9 0.00 0.31 Asphalt/Concrete Pavement 16 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 16 ROADWAY 0.17 9 0.00 0.17 Asphalt/Concrete Pavement 17 PERVIOUS AREA 1.66 16 0.07 1.66 Established Grass Ground Cover - 70% 17 ROADWAY 1 9 0.01 1.00 Asphalt/Concrete Pavement 18 PERVIOUS AREA 0.85 16 0.03 0.85 Established Grass Ground Cover - 70% 18 ROADWAY 0.05 9 0.00 0.05 Asphalt/Concrete Pavement 19 PERVIOUS AREA 2.75 16 0.11 2.75 Established Grass Ground Cover - 70% 19 ROADWAY 0.1 9 0.00 0.10 Asphalt/Concrete Pavement 20 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 20 ROADWAY 0 9 0.00 0.00 Asphalt/Concrete Pavement 21 PERVIOUS AREA 0.46 16 0.02 0.46 Established Grass Ground Cover - 70% 211 ROADWAY 0.281 9 0.00 0.28 Asphalt/Concrete Pavement ' RBD, Inc. 799-001 1 11 [1 1 EFFECTIVENESS CALCULATIONS Total Site PROJECT: ICBD Genesis IV STANDARD FORM B CALCULATED BY: JAM DATE: 02/17/98 Erosion Control C-Facto P-Facto Comment Number Method Value Value 9 Asphalt/Concrete Pavement 0.01 1 Paved and constructed 16 Established Grass Ground Cover - 70% 0.04 1 Lawns and openspace 19 Established Grass Ground Cover - 100% 0.02 1 Area not disturbed during construction BASIN P5 % AREA ac SITE 91.1 39.62 16 0.00 0.00 Established Grass Ground Cover - 70% 21A ROADWAY 0 9 0.00 0.00 Asphalt/Concrete Pavement 22 PERVIOUS AREA 0.22 16 0.01 0.22 Established Grass Ground Cover - 70% 22 ROADWAY 0.79 9 0.01 0.79 Asphalt/Concrete Pavement 22A PERVIOUS AREA 0.15 16 0.01 0.15 Established Grass Ground Cover - 70% 22A ROADWAY 0.72 9 0.01 0.72 Asphalt/Concrete Pavement 23 PERVIOUS AREA 0.25 16 0.01 0.25 Established Grass Ground Cover - 70% 23 ROADWAY 0.49 9 0.00 0.49 Asphalt/Concrete Pavement 24 PERVIOUS AREA 0.07 16 0.00 0.07 Established Grass Ground Cover - 70% 24 ROADWAY 0.56 9 0.01 0.56 Asphalt/Concrete Pavement 24A PERVIOUS AREA 0.02 16 0.00 0.02 Established Grass Ground Cover - 70% 24A ROADWAY 0.35 9 0.00 0.35 Asphalt/Conorete Pavement 25 PERVIOUS AREA 0.17 16 0.01 0.17 Established Grass Ground Cover - 70%, 25 ROADWAY 0.48 9 0.00 0.48 Asphalt/Concrete Pavement 25A PERVIOUS AREA 0.12 16 0.00 0.12 Established Grass Ground Cover- 70% 25A ROADWAY 0.42 9 0.00 0.42 Asphalt/Concrete Pavement 26 PERVIOUS AREA 0.26 16 0.01 0.26 Established Grass Ground Cover - 70% 26 ROADWAY 0.03 9 0.00 0.03 Asphalt/Concrete Pavement 27 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 27 ROADWAY 0.15 9 0.00 0.15 Asphalt/Concrete Pavement 28 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 28 ROADWAY 0.05 9 0.00 0.05 Asphalt/Concrete Pavement 29 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 29 ROADWAY 0.05 9 0.00 0.05 Asphalt/Concrete Pavement 30 PERVIOUS AREA 0 19 0.00 0.00 Established Grass Ground Cover - 100% 30 ROADWAY 0.14 9 0.00 0.14 Asphalt/Concrete Pavement 31 PERVIOUS AREA 0 16 0.00 0.00 Established Grass Ground Cover - 70% 31 ROADWAY 0.17 9 0.00 0.17 Asphalt/Concrete Pavement 32 PERVIOUS AREA 0.01 16 0.00 0.01 Established Grass Ground Cover - 70%, 32 ROADWAY 0.84 9 0.01 0.84 Asphalt/Concrete Pavement 33 PERVIOUS AREA 0.24 16 0.01 0.24 Established Grass Ground Cover - 70% 33 ROADWAY 0.24 9 0.00 0.24 Asphalt/Concrete Pavement 34 PERVIOUS AREA 0.09 16 0.00 0.09 Established Grass Ground Cover - 70% 34 ROADWAY 0.21 9 0.00 0.21 Asphalt/Concrete Pavement Gnat = [5.28x0o4+..,+0.24x0.04]/39.62 = 0.02 Pnet = 15.28x1.00+.,,+0.24x1.00]/39.62 0.52 EFF = (1-C-P)100 = (1-0.02-0.52)100 = 98.95 > 91.1 (PS) ,15 ' RBD, Inc. I 1 1 EROSION CONTROL COST ESTIMATE Genesis IV 799-00T— PREPARED BY: —I TLD DATE: 02/17/98 GITY RESEEDING C06 Unit o a Method Quantity Unit Cost Cost Notes Reseed/mulch 39.3 ac $500 $19,650 See Note 1. Subtotal $19,650 Contingency 50% $9,825 Total $29,475 EROSION CONTROL MEASURES Unit Total Number Method Quantity Unit Cost Cost Notes 5 Straw Bale Barrier 2 ea $150 $300 6 Gravel Filter 23 ea $300 $6,900 8 Silt Fence Barrier 3010 LF $3 $9,030 38 Gravel Mulch 7.24 ac $1,350 $9,774 39 Hay or Straw Dry Mulch (1-5% slope) 11.87 ac $500 $5,935 Subtotal $31,939 Contingency 50% $15,970 Total $47, 909 Total Security $47,909 Notes: 1. A<1 ac=$1300/ac; A=1-10 ac=$650/ac; A>10 ac=$500/ac. 9,-+ I I I 1 1 1 1 1 CONSTRUCTION SEQUENCE YEAR 1998 1999 MONTH F I M I A I M I J I J I A I S I 0 I N I D J OVERLOT GRADING WIND EROSION CONTROL Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other —Gravel Mulch VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation N ettings/Mats/Blankets Other STRUCTURES: INSTALLED BY MAINTAINED BY VEGETATION/MULCHING CONTRACTOR DATE SUBMITTED APPROVED BY CITY OF FORT COLLINS ON �l I CHARTS, TABLES AND FIGURES 1 I 1 [J 1 1 11 1 1 1 1 1 DRAINAGE CRITERIA MANUAL RUNOFF , .% 1 1 1 1 1 1 i 1 1 1 1 1 1 1 5( 3( I— 2 C 3 1 IMME N■ ��� ► ,����ri� 111=1111 mill �I�IIIII a� / Il I' ' s��■� �ME�I�� •, WA-f,-�"r ���■����on�I�I� Y�MMIIIIFMEFAN iA� '� iiiaMMON0011� .5: •c ••' .0 1 2 3 5 10 20 VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING '1UNDEVELQPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55. USDA, SCS Jan. 1975. 5-1-84 • URBAN DRAINAGE & FLOOD CONTROL DISTRICT DRCOG No Text 1 1 1 1 INTERPOLATED VALUES FOR 100 YEAR INTENSITIES Tc Value U,�µ�, 5.00 9.0 5.10 9.0 5.20 8.9 5.30 8.9 5.40 8.9 5.50 8.8 5.60 8.8 5.70 8.7 5.80 8.7 5.90 8.7 6.00 8.6 6.10 8.6 6.20 8.6 6.30 8.5 6.40 8.5 6.50 8.5 6.60 8.4 6.70 8.4 6.80 8.4 6.90 8.3 7.00 8.3 7.10 8.2 7.20 8.2 7.30 8.2 7.40 8.1 7.50 8.1 7.60 8.1 7.70 8.0 7.80 8.0 7.90 8.0 8.00 7.9 8.10 7.9 8.20 7.8 8.30 7.8 j 8.40 7.8 8.50 7.7 8.60 7.7 8.70 7.7 8.80 7.6 8.90 7.6 9.00 7.6 9.10 7.5 9.20 7.5 9.30 7.5 9.40 7.4 9.50 7.4 9.60 7.3 9.70 7.3 9.80 7.3 9.90 7.2 10.00 7.2 1.0 12 5 �2 .9 II 10 4 8 10 3 .8 6 9 0 4-�'�LL 2 7 tL `OG yZ• ' U ' 8 w 3 �.� / 1.5 o. 6 �N 2� o 7 ti 5 Ex t 1.0 .2rw-.:•� -1 N, _ - w 5.5 CY ---o .8 cn 6 w L" cD w 5 x z o .7 uw. .4 z z .4 ►- - w z = 4.5 . Z. 0 3 0 .6 w 4 L 2 0 .5 z Z 1 z z F- .3 ILL! 3.5 . w w T .4 ar o ao U. J ,1 w 0 0 0 .08 .25 3 ' _ = 0 .06 0 .3 '� co U. z_ a: .04 Cr ' 2.5 ww w 25 .2 .03 f �- a 3 a .02 0 .2 a = 2 V t- a_ 15 .01 0 .15 L w 0 0 '. --- -- - -- -- a 1.5 yoa_ ' a=2h 10 I 1.2 ' Figure 5-2 n NOMOGOAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" -% Adapted from Bureau of Public Roads Nomograph MAY 1984 5.10 DESIGN CRITERIA 1 1 t y 1984 NM LL. .9 ,8 .7 .3 .2 .I "t s=06 F= 0.8 s 0.4 % Fc0.5 BELOW MINIMUM I ALLOWABLE I STREET GRADE 0 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 DESIGN CRITERIA 1 1 I III II I STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA OLE AND JUNCTION LOSSES O/ PL AN NOTE rw A+J Typo p/ PLAN of 1.161. oA A a •, USE EQUATION 801 SECTION P = K CASE I INLET ON MAIN LINE yr k= v+OS /rl.tnbeIa e., /Nti:hLihe. o. PLAN USE EQUATION 805 v�. _ K vf= Cd K= �rjejlgc� TABLE 803 USE EQUATION 805 x °' 1— k VIZ ° Vf Vs SECTION CASE 11 INLET ON MAIN LINE PLAN USE EQUATION 801 ' i aie k31.2s SECTION CASE IQ INLET OR MANHOLE AT BEGINNING OF LINE SECTION CASE III MANHOLE ON MAIN LINE CASE III Wr H A° BRANCH LATERAL • CASE NO. K . 9c K , I 5 22 11/2 075 II 0.25 45 0.50 IV 1.25 60 0.35 90 0.25 No Lateral See Case I I Date: NOV 1984' REFERENCE: Rev: APWA Special Report No. 49, 1981 Table 88 C-Factors and P-Factors for Evaluating EFF Values. Treatment C-Factor P-Factor BARE SOIL Packed and smooth................................................................ 1.00 1.00 Freshly disked........................................................................ 1.00 0.90 Roughirregular surface........................................................... 1.00 0.90 �I SEDIMENT BASIN/TRAP................................................................. 1.00 0.50111 STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG ........................ 1.00 0.80 SILTFENCE BARRIER..................................................................... 1.00 0.50 ASPHALT/CONCRETE PAVEMENT---- ....... AVEMENT...................0.01 1.00 ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. B-A 1.00 SODGRASS................................................................................ 0.01 1.00 TEMPORARY VEGETATION/COVER CROPS .................................... 0.4512' 1.00 HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10"' 1.00 i SOIL SEALANT....................................................................0.01-0.60"' 1.00 EROSION CONTROL MATS/BLANKETS............................................ 0.10 1.00 GRAVEL MULCH Mulch shall consist of gravel having a diameter of approximately 1/4' to 1 1/2' and applied at a rate of at least 135 tons/acre.............. 0.05 1.00 HAY OR STRAW DRY MULCH After plantino orass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil. Slope (°6) 1 to 05...:.........................................................................0.06 1.00 ........... 0.06 1.00 11 to 15............................................................................. 0.07 1.00 16 to 20............................................................................. 0.11 1.00 21 to 25.............................................................................0.14 1.00 25 to 33.............................................................................0.17 1.00 > 33.......................................................................... 0.20 1.00 NOTE: Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation. 11) Must be constructed as the first step in overlot grading. . (2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required. 13) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. i IMARCH 1991 8.6 DESIGN CRITERIA $b Table 8-8 C-Factors and P-Factors for Evaluating EFF Values (continued from previous page). Treatment C-Factor P-Factor CONTOUR FURROWED SURFACE Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. Basin Maximum Slope Length (°,G) (feet) 1 to 2 ..1.00 0. 300 3 to 5 00.............................................................:1.00 0.50 0 6 to 8 200................................................................. 1.00 0.50 9 to 12 120..............................................................:...........1.00 0.60 13 to 16 80..........................................................................1.00 0.70 17 to 20 60..........................................................................1.00 0.80 > 20 50.......................................................................... 1.00 0.90 TERRACING Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic ' methods, otherwise P-Factor = 1.00. Basin Slope (°,6) 1 to 2..................................................................................... 1.00 0.12 ... 9 to 12. . 3 to: 8................................................................................... 1.00 1.00 0.12 0.1 13 to 16 ............................................... . 1.00 0.14 17 to 20.....................................................................................1.00 0.16 > 20..................................................................................... 1.00 0.18 NOTE.- Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation. ,1 11 ' MARCH 1991 E-7 DESIGN CRITERIA I I i . 11 n 0 n O a 0 U y z H a a 0 U G1 En M w4 z[? �C E+ Va W U 1, MARCH 19E O Of0�000 41 m m m m m O -ma% 10%000000 . . . . . . . . . O 4 17 V' 4 In In In In Ifl In V m m m m m m m m m m O m0101c1Qt01010101at c1 C1000 . . . . . . . . . . . . . . . . M mmmmmmmmmmmmCOmm O r m m CI! 0! c1 11 1 01 OI � � tT 0! c1 c cO 01 01 . . . . . • . . . . . . . . . . • N m m m m m m m m m m m m f0 m m m m m m m 0 0mvm%0w 001-rrrrrrnrnrrmmmmmm . . .................. .... o vV�V'V'vV'�I'vV'vvrsr.rvvvvvvrvvvvv rl mmm00m000Om00mmm0�mmmmmmmmmmmmm O mNM V'Ifl In In lD ID ID ID �D tOrnnnnnnnrnmmCO . . . . . . . . . . . . . . . . . . . . . . . . . m m m m m oo co co co m m m ro m co m m m m m m m m m m m O tDONMV V lnlnUlln101D�IDID�D�DIDIo�orrnrnn m m m m m m m m m m m m 0 m m m m m co co m m m m m m O V'OIrINMM V' V' V'�'IflUllf)Illlnlnlnlnul101DlDtDtDIDn . ....... ... . ........ r MMvvvverV�vervvawva'V�vV'vvvV'vver m m m m m m m m m m m m O m m m m m m m m m m m m m O OIDmOrIrINNMMMMV'tTV'V'V'V'V'V'1lllfllfllfltDlD . . . . . • . . . . . . . . . . . . . . . . . . . . . mmmmmmmmm00m mmmmCOmmmmmmmmmm .O lflNlf1rm0100rirlriNNNNNMMMMMtTe}'�' V' V' 'In N M M M M M V' V' V' V' 10 V' v V' V' V V V V v V' V' V' V' V' V' m m m m m m m m m m m m. m m m m m m m m m m m m m m to rICOr-IMd'IAIfIIDtOrnrmmmmCOm010�0�00000 . . . . . . . . . . . . . . . . . . . . . . . . . . . '.P NNN1 P1 Mf'1M f'fMMMMMMMMMMMMMV'V' V'V' V' cOODmmmcOmmmmmmmmmmmmmmmmmmmm O IDInmOrINM V V lnlntfft01010IDI0rrnnmmm010► st' .�NNf"1 f"1 M1 f'1 Mf'f P1MMMMMMMMMMMMMMMM mmm00mCID mmmmmmt0mmmmmmmmmmmt0 CO In rtrllnnmOOrqNNMMMV'a!vvvInInInwwwNN . . . . . . . . . . . . . . . . . . . . . . . . . . M riNNNNNI t'1 P'1 C'1 f"1MMMMMMMMMMMMMMMM m m m m m m m m m m m m 0 m m m m m m m m m m m m m O MN�O m 010 riNNMMMV' V'V'V' V'V'In 111 111 In tD �D �D 10 I"l Orl rl rl4 NNNNNN N N N N N N N N N N N N N NN m m m m c0 0D CO L0 00 m m m N m m m m m m m m m m m m m In Ifllno�NMVlnlornnmcomo,a+rno�mo�000000 . .................... .... N 0; O O 4444rl 4r! 44444 rI 444 rI N N NNN N rcomcocococommmmmwmmmmmmmmmmmmm O v00mm%0wwm000Hrir HNNNNMMMMMM . . . . O. . . • . . . • . . . . . . . • . . . . . • . N m Q1 O O O O O O 'i .� rl rl rl ri ri •-1 r♦ rl •-1 •-1 r♦ rl .i rI r! nnmoocoaocommcommoommmmmmmmmmmmm In mNmrlv0NNwm0100rIr1r l.4r4NNNMMMMM . . . . . . . • . . . . . . . . . . . . . . . . . rl �0mm0\0101010;c;0101000000000000000 rrnnnnnrnnnmcommmmmmmmmmmmm 0. %DM0"0'ra%0rINMM V'-0InInlnW)%D%D%DtDnr%DID%D . • . • . . . . . . . . . . . . . . . . . . . . . r♦ V IDnnnrcD coaocx m co mmmmmmmmmmm nrrrnrrrrnrrrnrnrrrnrnrrrr In C%0 V'%DrmmnnnlD %D%DInV ldMMNNM0ewHcn%0 . ............ ............. O O N N N N N N N N N N N N N N N N N N N 1( r 1 r l r{ 0 0 rnrrrrrrrrr rrrrnrrfrrrrnnr x EH-�• 00000000000000000000000000 up 00000000000000000000000000 zG. rINM V InIDrmOIo.�NnvullDrmrnolnolnolno W v rlrlrirlrlrirleir-IriNNMM V' V' In a M 8•4 DESIGN CRITERIA u � 1 I 1 I I I I I I 1 : I I ( I ► I 1 i I I 1 L cc cc co co �C C O C C C C C -}ua-�q.snCp� a.1OT?+Lz0 i r� C C� C O C Aft Mao 1,6 DRAINAGE CRITERIA MANUAL MAJUR DRAINAGE 11 Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap % Smaller Than Intermediate Rock d50* Designation Given Size. Dimension By Weight (Inches) (Inches) Type VL 70-100 12 50-70 9 35-50 6 6** 2-10 2 Type L 70-100 15 50-70 12 35-50 9 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 50-70 24 35-50 18 18 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 9 *d50 = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit. One of the major advantages of wire enclosed rock is that it provides an alternative in situations where available rock size's are too small for ordinary riprap. Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be fashioned into almost any shape that can be 11-15-82 MV f G. = Expansion Angle OEM ImApm VAA�MM i .1 .2 .3 .4 ..5 .6 .7 .8 TAILWATER DEPTH/CCNDUIT HEIGHT, Yt/D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT 1-i-� q1 X4 n 4C 0 _ a 2C I I I ( I I 00 .2 A Y t/D .6 .8 1.0 Use Do insteod of D whenever flow is supercritical in the barrel. *Use Type L for a distance of 3D downslrecm. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE a FLOOD CONTROL DISTRICT ' EXCERPTS FROM BUILDING 5 REPORT 100 YEAR SWMM MODEL I I 0 1 I I 1 P FINAL DRAINAGE STUDY FOR HEWLETT-PACKARD COMPANY BUILDING 5 FORT COLLINS, COLORADO October 4, 1996 I ' Prepared for: H + L Architecture 1621 18th Street, Suite 100 ' Denver, Colorado 80202 Prepared by: RBD, Inc. Engineering Consultants A Division of Sear Brown 209 South Meldrum Fort Collins, Colorado 80521 (970) 482-5922 RBD Job No. 282-015 REV.3 I IL I w� CV :0 a z: W !Z a Cr ' O W o : ;U u W . C3 : W o U) - cc LL n� 2 Q� W W Q � m J z PAGE 70 REMOVED /7 r- nD I I 9� iSWMM input file 282013S1.DAT: t 1 1 2 t4 3 ERSH0 LETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; R8D, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT 96 5.0 1 10. 1 025 5.0 .60 0.96 1.44 1.68 3.00 5.04 9.00 3:72 2.16 1.56 .20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 '2 .016 .25 .1 .3 .51 .5 .0018 1 21 125 3200 66.3 40 .004 1 23 126 4000 61.3 40 .007 1 24 127 2600 10.6 40 .003 1 31 128 5000 87.9 40 .008 1 32 35 3200 31.3 60 .003 1 33 42 600 13.3 10 .050 1 34 39 4800 78.6 70 .005 1 30 38 1630 18.7 72 .007 ' 0 0 1 36 35 0 1 3.0 900.0 .0037 4.0 4.0 .060 10.00 1 35 38 0 1 5.0 1300.0 .0037 4.0 4.0 .035 10.00 1 38 40 0 1 5.0 1900.0 .0046 4.0 4.0 .035 10.00 0 40 43 10 2 .01 100.0 .01 .023 .01 0.00 0.00 0.44 20.00 0.98 20.00 1.61 20.0 2.35 24.0 3.25 50.0 4.74 80.0 7.03 100.0 8.23 110.0 9.86 250.0 1 43 42 0 5 4.0 650.0 .025 0.0 0.0 .016 4.00 50.0 650.0 .025 50.0 50.0 .035 100.0 0 39 41 11 2 .01 100.0 .01 .023 .01 0.00 0.00 0.06 2.00 1.04 31.0 2.10 38.0 3.23 46.00 4.45 52.00 5.37 54.0 5.78 56.0 7.16 60.0 8.66 64.00 10.28 68.0 i 41 42 0 5 4.7 300.0 .050 0.0 0.0 .016 4.70 50.0 300.0 .025 50.0 50.0 .035 100.00 0 42 203 8 2 .01 0.1 .11 .001 100.0 .0 .0 2.0 21.0 4.2 22.5 6.90 23.5 9.9 24.2 13.4 25.0 16.4 214.5 19.6 575.6 1 125 213 0 1 2.0 2600.0 .004 30.0 30.0 .016 100.00 1 126 214 0 1 2.0 2000.0 .004 30.0 30.0 .016 100.00 1 127 35 0 1 2.0 1300.0 .006 30.0 30.0 .016 100.00 i 128 215 0 1 2.0 2600.0 .004 30.0 30.0 .016 100.00 TEEORETICAL 3-POINT RATING CURVES FOR FUTURE UPSTREAM DETENTION PONDS 213 35 3 2 0.1 100.0 .010 .013 0.1 0 .0 5.33 24.0 6.0 24.0 214 35 3 2 0.1 100.0 .010 .013 0.1 .0 .0 5.70 24.0 7.0 24.0 215 .36 3 2 0.1 100.0 .010 .013 0.1 .0 .0 9.32 24.0 10.0 24.0 0 12 1 35 38 39 41 42 40 43 213 214 215 36 127 PROGRAM I I ' SWMM output file 282013SLOUT: ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 - DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA ' WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) ' UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) IWATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT ER OF TIME STEPS 96 i,.iEGRATION TIME INTERVAL (MINUTES) 5.00 10.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH 'FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 .00 �HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 .51 .50 .00180 21 125 3200.0 66.3 40.0 .0040 .016 .250 .100 .300 .51 .50 .00180 1 126 4000.0 61.3 40.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 '23 24 127 2600.0 10.6 40.0 .0030 .016 .250 .100 .300 .51 .50 .00180 1 31 128 5000.0 87.9 40.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 32 35 3200.0 31.3 60.0 .0030 .016 .250 .100 .300 .51 .50 .00180 1 33 42 600.0 13.3 10.0 .0500 .016 .250 .100 .300 .51 .50 .00180 1 34 39 4800.0 78.6 70.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 30 38 1630.0 18.7 72.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 8 TOTAL TRIBUTARY AREA (ACRES), 368.00 1 ETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT 'n_.ISED I *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PCMODEL *** ' _RSHED AREA (ACRES) 368.000 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .479 TOTAL WATERSHED OUTFLOW (INCHES) 2.195 ' TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .216 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .004 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 36 35 0 1 CHANNEL 3.0 900. .0037 4.0 4.0 .060 10.00 1 35 38 0 1 CHANNEL 5.0 1300. .0037 4.0 4.0 .035 10.00 1 38 40 0 1 CHANNEL 5.0 1900. .0046 4.0 4.0 .035 10.00 1 40 43 10 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 20.0 1.0 20.0 1.6 20.0 2.4 24.0 3.3 50.0 4.7 80.0 7.0 100.0 8.2 110.0 9.9 250.0 43 42 0 5 PIPE 4.0 650. .0250 .0 .0 .016 4.00 1 OVERFLOW 50.0 650. .0250 50.0 50.0 .035 100.00 39 41 11 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .1 2.0 1.0 31.0 2.1 38.0 3.2 46.0 4.5 52.0 5.4 54.0 5.8 56.0 7.2 60.0 8.7 64.0 10.3 68.0 41 42 0 5 PIPE 4.7 300. .0500 .0 .0 .016 4.70 1 OVERFLOW 50.0 300. .0500 50.0 50.0 .035 100.00 42 203 8 2 PIPE 0 0. 1100 .0 .0 .001 100.00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 2.0 21.0 4.2 22.5 6.9 23.5 9.9 24.2 13.4 25.0 16.4 214.5 19.6 575.6 125 213 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 126 214 0 1 CHANNEL 2.0 2000. .0040 30.0 30.0 .016 100.00 1 127 35 0 1 CHANNEL 2.0 1300. .0060 30.0 30.0 .016 100.00 1 128 215 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 213 35 3 2 PIPE .1 100. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 5.3 24.0 6.0 24.0 214 35 3 2 PIPE .1 100. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 5.7 24.0 7.0 24.0 215 36 3 2 PIPE .1 100. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 9.3 24.0 10.0 24.0 TOTAL NUMBER OF GUTTERS/PIPES, 15 ' HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES ' GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 35 36 127 213 214 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 257.4 36 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87.9 38 35 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 276.1 39 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 78.6 40 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 276.1 41 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78.6 42 43 41 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 368.0 43 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 276.1 125 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 126 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 127 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 128 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 ' 213 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 214 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 215 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS A� 0 0 0 66.3 0 0 0 61.3 0 0 0 10.6 0 0 0 87.9 0 0 0 66.3 0 0 0 61.3 0 0 0 87.9 THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. ' (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 35 36 38 39 40 41 42 43 127 213 0 5. .00 .00 .00 .02 .00 .01 .00 .00 .00 .00 .00( ) .00( ) .00( ) .00(s) .00( ) .02( ) .00(s) .00( ) .00( ) .00( ) O 10. .02 .00 .01 .18 .00 .11 .01 .00 .02 .01 .02( ) .00( ) .01( ) .01(S) .00(S) .06( ) .00(S) .00( ) .02( ) .00(S) 0 15. .92 .00 .43 2.11 .06 1.67 .17 .01 .66 .02 .20( ) .00( ) .12( ) .06(S) .00(S) .22( ) .02(S) .03( ) .11( ) .00(S) ' 0 20. 5.94 .56( ) .00 .01( 3.46 ) .39( ) 7.58 .25(S) .57 .01(5) 7.01 .43( ) .63 .06(S) .25 .11( 2.61 ) .20( ) .09 .02(S) 0 25. 18.68 .02 13.38 19.26 2.70 18.31 1.78 1.78 5.87 .34 1.02( ) .04( ) .81( ) .64(S) .06(S) .68( ) .17(S) .28( ) .28( ) .07(S) 0 30. 47.78 .11 40.05 34.08 9.20 33.39 4.33 7.32 13.03 1.05 1.61( ) .10( ) 1.41( ) 1.51(S) .20(S) .92( ) .41(S) .54( ) .38( ) .23(S) 35. 114.15 .48 106.51 46.98 20.00 46.42 9.10 17.96 30.11 2.86 2.40( ) .24( ) 2.22( ) 3.43(S) .61(S) 1.08( ) .87(S) .84( ) .54( ) .63(S) O 40. 164.63 1.52 182.26 55.50 20.00 55.27 15.11 21.05 37.99 6.14 2.83( ) .45( ) 2.82( ) 5.68(S) 1.46(S) 1.18( ) 1.44(S) .91( ) .59( ) 1.36(S) 0 45. 153.45 3.55 206.34 59.88 31.88 59.72 21.02 28.56 30.60 10.08 2.74( ) .69( ) 2.97( ) 7.12(S) 2.62(S) 1.23( ) 2.03(S) 1.06( ) .54( ) 2.24(S) 0 50. 135.29 6.38 195.78 62.33 58.95 62.27 21.51 55.22 25.08 13.71 2.59( ) .92( ) 2.91( ) 8.03(S) 3.69(S) 1.25( ) 2.74(S) 1.50( ) .50( ) 3.04(S) 0 55. 123.07 9.53 176.21 63.93 75.43 63.86 22.10 74.57 20.67 16.77 ' 2.48( ) 1.11( ) 2.78( ) 8.63(S) 4.51(S) 1.27( ) 3.61(S) 1.77( ) .46( ) 3.72(S) 1 0. 115.01 12.60 158.05 64.85 83.29 64.84 22.63 82.37 16.95 19.28 2.41( ) 1.26( ) 2.65( ) 9.01(S) 5.12(S) 1.28( ) 4.55(S) 1.87( ) .43( ) 4.28(S) 1 5, 109.02 15.34 143.13 65.33 87.22 65.31 22.99 87.09 13.73 21.29 2.35( ) 1.37( ) 2.53( ) 9.20(S) 5.57(S) 1.28( ) 5.53(S) 1.93( ) .39( ) 4.73(S) 1 10. 104.57 17.67 131.41 65.49 90.15 65.50 23.36 89.70 11.11 22.89 2.31( ) 1.46( ) 2.44( ) 9.26(S) 5.90(S) 1.28( ) 6.52(S) 1.97( ) .36( ) 5.08(S) 1 15. 100.94 19.59 122.34 65.41 92.29 65.41 23.64 92.19 9.04 24.01 2.27( ) 1.53( ) 2.36( ) 9.23(S) 6.15(S) 1.28( ) 7.51(S) 2.00( ) .33( ) 5.36(S) 1 20. 97.64 21.14 115.23 65.16 93.84 65.18 23.88 93.63 7.48 24.01 2.24( ) 1.59( ) 2.30( ) 9.13(S) 6.32(S) 1.28( ) 8.51(S) 2.02( ) .31( ) 5.58(S) 1 25. 94.64 22.37 109.43 64.78 94.92 64.79 24.11 94.86 6.26 24.01 2.21( ) 1.63( ) 2.24( ) 8.98(S) 6.45(S) 1.28( ) 9.50(S) 2.03( ) .28( ) 5.75(S) ' 1 30. 92.01 23.17 104.55 64.30 95.62 64.33 24.33 95.53 5.28 24.01 2.18( ) 1.65( ) 2.20( ) 8.78(S) 6.53(S) 1.27( ) 10.48(S) 2.04( ) .26( ) 5.89(S) 1 35. 89.85 23.59 100.56 63.73 96.03 63.76 24.56 96.01 4.54 24.01 2.16( ) 1.66( ) 2.16( ) 8.56(S) 6.58(S) 1.27( ) 11.46(S) 2.05( ) .25( ) 5.99(S) 1 40. 88.09 23.79 97.34 63.09 96.20 63.13 24.78 96.18 3.98 24.01 ' 2.14( ) 1.67( ) 2.13( ) 8.32(S) 6.59(S) 1.26( ) 12.43(S) 2.05( ) .24( ) 6.07(S) 1 45. 86.64 23.90 94.76 62.42 96.19 62.45 25.00 96.20 3.55 24.01 2.12( ) 1.67( ) 2.10( ) 8.07(S) 6.59(S) 1.25( ) 13.39(S) 2.05( ) .22( ) 6.13(S) 1 50. 85.45 23.95 92.69 61.72 96.05 61.76 74.05 96.06 3.20 24.01 ) 1.68( ) 2.08( ) 7.81(S) 6.58(S) 1.25( ) 14.18(S) 2.05( ) .21( ) 6.17(S) '2.11( 1 55. 84.22 23.98 90.81 61.00 95.80 61.02 105.43 95.83 2.86 24.01 2.09( ) 1.68( ) 2.06( ) 7.53(S) 6.55(S) 1.24( ) 14.67(S) 2.05( ) .20( ) 6.20(S) 0. 82.90 23.99 88.93 60.23 95.45 60.27 125.07 95.49 2.52 24.01 2.08( ) 1.68( ) 2.04( ) 7.25(S) 6.51(S) 1.23( ) 14.98(S) 2.04( ) .19( ) 6.21(S) 2 5. 81.50 24.00 86.98 59.38 95.01 59.42 137.12 95.07 2.17 24.01 2.06( ) 1.68( ) 2.02( ) 6.95(S) 6.46(S) 1.22( ) 15.17(S) 2.04( ) .18( ) 6.21(S) 2 10. 80.07 24.00 84.96 58.47 94.48 58.52 144.24 94.55 1.84 24.01 2.05( ) 1.68( ) 2.00( ) 6.63(S) 6.40(S) 1.21( ) 15.29(S) 2.03( ) .17( ) 6.19(S) ' ' 2 15. 78.84 24.01 83.07 57.54 93.87 57.58 148.18 93.94 1.57 24.01 2.03( ) 1.68( ) 1.98( ) 6.31(S) 6.33(S) 1.20( ) 15.35(S) 2.02( ) .16( ) 6.16(S) 2 20. 77.84 24.01 81.41 56.59 93.19 56.64 150.06 93.27 1.34 24.01 2.02( ) 1.68( ) 1.96( ) 5.98(S) 6.25(S) 1.19( ) 15.38(S) 2.01( ) .15( ) 6.13(S) ' 2 25. 77.04 24.01 80.02 55.40 92.46 55.46 150.56 92.55 1.16 24.01 2.01( ) 1.68( ) 1.95( ) 5.66(S) 6.17(S) 1.18( ) 15.39(S) 2.00( ) .14( ) 6.08(S) 30. 76.40 24.01 78.87 53.91 91.70 53.98 150.06 91.79 1.01 24.01 2 35. 2.00( ) 75.87 1.68( ) 24.01 1.93( ) 77.93 5.33(S) 53.21 6.08(S) 90.93 1.16( ) 53.20 15.38(S) 149.00 1.99( ) 91.01 .13( ) .89 6.02(S) 24.01 2.00( ) 1.68( ) 1.92( ) 5.00(S) 5.99(S) 1.16( ) 15.36(S) 1.98( ) .12( ) 5.95(S) 2 40. 75.43 24.01 77.17 52.50 90.15 52.56 147.73 90.23 .79 24.01 1.99( ) 1.68( ) 1.91( ) 4.68(S) 5.90(S) 1.15( ) 15.34(S) 1.97( ) .12( ) 5.88(S) 2 45. 75.06 24.01 76.53 51.54 89.37 51.57 146.29 89.46 .70 24.01 ' 1.99( ) 1.68( ) 1.91( ) 4.36(S) 5.81(S) 1.14( ) 15.32(S) 1.96( ) .11( ) 5.80(S) 2 50. 74.75 24.01 76.01 49.97 88.61 50.08 144.60 88.69 .63 24.01 1.98( ) 1.68( ) 1.90( ) 4.04(S) 5.73(S) 1.12( ) 15.29(S) 1.95( ) AN ) 5.71(S) ' 2 55. 74.43 1.98( ) 24.01 1.68( ) 75.55 1.89( ) 48.44 3.73(S) 87.86 5.64(S) 48.48 1.10( ) 142.65 15.26(S) 87.94 1.94( ) .56 .10( ) 24.01 5.62(S) 3 0. 73.96 24.01 75.10 46.95 87.12 47.04 140.55 87.21 .51 24.01 1.97( ) 1.68( ) 1.89( ) 3.42(S) 5.56(S) 1.09( ) 15.23(S) 1.94( ) .10( ) 5.53(S) 3 5. 73.37 24.01 74.58 45.29 86.41 45.35 138.34 86.49 .46 24.01 1.97( ) 1.68( ) 1.88( ) 3.13(S) 5.47(S) 1.07( ) 15.19(S) 1.93( ) .09( ) 5.43(S) 3 10. 72.74 24.01 74.00 43.28 85.70 43.39 135.98 85.78 .42 23.99 1.96( ) 1.68( ) 1.88( ) 2.85(S) 5.39(S) 1.04( ) 15.16(S) 1.92( ) .09( ) 5.33(S) 3 15. 71.96 24.01 73.33 41.35 85.00 41.42 133.48 85.08 .38 23.52 3 20. 1.95( ) 71.00 1.68( ) 24.01 1.87( ) 72.55 2.57(S) 39.50 5.31(S) 84.29 1.02( ) 39.61 15.12(S) 130.92 1.91( ) 84.37 .08( ) .34 5.22(S) 23.05 1.94( ) 1.68( ) 1.86( ) 2.31(S) 5.23(S) 1.00( ) 15.08(S) 1.90( ) .08( ) 5.12(S) 3 .25. 69.97 24.01 71.64 37.75 83.58 37.82 128.35 83.66 .31 22.58 1.92( ) 1.68( ) 1.85( ) 2.06(S) 5.15(S) .97( ) 15.04(S) 1.89( ) .08( ) 5.01(S) 3 30. 68.91 23.94 70.66 36.17 82.86 36.25 125.82 82.94 .29 22.11 1.91( ) 1.68( ) 1.84( ) 1.82(S) 5.07(S) .95( ) 15.00(S) 1.88( ) .07( ) 4.91(S) 3 35. 67.80 23.76 69.62 34.65 82.11 34.72 123.36 82.20 .26 21.65 1.89( ) 1.67( ) 1.82( ) 1.59(S) 4.98(S) .93( ) 14.96(S) 1.87( ) .07( ) 4.81(S) 3 40, 66.63 1.88( ) 23.52 1.66( ) 68.52 1.81( ) 33.19 1.37(S) 81.35 4.89(S) 33.27 .92( ) 120.95 14.92(S) 81.44 1.86( ) .24 .07( ) 21.19 4.70(S) 3 45. 65.41 23.26 67.36 31.79 80.57 31.86 118.60 80.66 .22 20.73 1.86( ) 1.65( ) 1.80( ) 1.16(S) 4.81(S) .90( ) 14.88(S) 1.85( ) .06( ) 4.60(S) 3 50. 64.18 22.97 66.17 28.70 79.47 28.94 115.98 79.62 .20 20.28 1.85( ) 1.65( ) 1.78( ) .96(S) 4.71(S) .85( ) 14.84(S) 1.84( ) .06( ) 4.50(S) ' 55. 62.94 22.68 64.95 23.66 77.67 23.96 112.37 77.91 .18 19.83 1.83( ) 1.64( ) 1.77( ) .79(S) 4.62(S) .78( ) 14.78(S) 1.81( ) .06( ) 4.40(S) 0. 61.71 22.38 63.72 19.53 75.94 19.72 107.76 76.11 .17 19.39 4 5. 1.81( ) 60.48 1.63( ) 22.08 1.75(.) 62.49 .65(S) 16.15 4.54(S) 74.28 .71( ) 16.37 14.71(S) 102.82 1.79( ) 74.48 .06( ) .15 4.31(S) 18.96 1.80( ) 1.62( ) 1.73( ) .54(S) 4.46(S) .65( ) 14.63(S) 1.77( ) .05( ) 4.21(S) 4 10. 59.28 21.78 61.27 13.38 72.67 13.52 97.94 72.84 .14 18.53 1.78( ) 1.61( ) 1.72( ) .44(S) 4.38(S) .59( ) 14.55(S) 1.75( ) .05( ) 4.11(S) 4 15. 58.09 21.48 60.06 11.11 71.11 11.27 93.31 7130 .13 18.11 ' 1.76( ) 1.60( ) 1.70( ) .37(S) 4.30(S) .54( ) 14.48(S) 1.73( ) .05( ) 4.02(S) 4 20. 56.91 21.18 58.86 9.24 69.60 9.35 89.03 69.77 .11 17.69 1.75( ) 1.59( ) 1.69( ) .30(S) 4.22(S) .50( ) 14.41(S) 1.70( ) .05( ) 3.93(S) 4 25. 55.76 1.73( ) 20.88 1.58( ) 57.68 1.67( ) 7.70 .25(S) 68.13 4.15(S) 7.82 .45( ) 85.12 14.35(S) 68.31 1.68( ) .10 .04( ) 17.28 3.84(S) 4 30. 54.62 20.59 56.52 6.44 66.70 6.52 81.57 66.87 .09 16.88 1.71( ) 1.57( ) 1.65( ) .21(S) 4.08(S) .42( ) 14.30(S) 1.67( ) .04( ) 3.75(S) 4 35. 53.50 20.29 55.38 5.40 65.31 5.48 78.35 65.47 .09 16.49 1.70( ) 1.56( ) 1.64( ) .17(S) 4.01(S) .38( ) 14.24(S) 1.65( ) .04( ) 3.66(S) 4 40. 52.40 20.00 54.25 4.54 63.95 4.60 75.44 64.11 .08 16.10 1.68( ) 1.55( ) 1.62( ) .15(S) 3.94(S) .35( ) 14.20(S) 1.63( ) .04( ) 3.57(S) 45. 51.32 19.71 53.14 3.83 62.62 3.89 72.80 62.77 .07 15.72 ' 4 50. 1.66( ) 50.26 1.54( ) 19.42 1.61( ) 52.05 .12(S) 3.24 3.88(S) 61.32 .33( ) 3.29 14.16(S) 70.38 1.61( ) 61.47 .04( ) .06 3.49(S) 15.35 1.65( ) 1.53( ) 1.59( ) .10(S) 3.81(S) .30( ) 14.12(S) 1.59( ) .03( ) 3.41(S) 4 55. 49.22 19.13 50.98 2.75 60.05 2.80 68.17 60.20 .06 14.98 1.63( ) 1.52( ) 1.58( ) .09(S) 3.75(S) .28( ) 14.08(S) 1.57( ) .03( ) 3.32(S) 5 0. 48.19 18.85 49.93 2.35 58.80 2.39 66.13 58.95 .05 14.62 1.62( ) 1.51( ) 1.56( ) .07(S) 3.69(S) .26( ) 14.05(S) 1.55( ) .03( ) 3.24(S) 5 5. 47.18 18.56 48.90 2.01 57.59 2.05 64.24 57.73 .05 14.27 1.60( ) 1.50( ) 1.55( ) .06(S) 3.63(S) .24( ) 14.02(S) 1.54( ) .03( ) 3.17(S) 5 10. 46.19 18.28 47.88 1.70 56.39 1.73 62.47 56.54 .04 13.92 1.58( ) 1.49( ) 1.53( ) .05(S) 3.57(S) .22( ) 13.99(S) 1.52( ) .03( ) 3.09(S) ' 5 15. 45.22 18.01 46.89 1.44 55.23 1.47 60.80 55.37 .04 13.58 1.57( ) 1.48( ) 1.52( ) .04(S) 3.51(S) .21( ) 13.97(S) 1.50( ) .03( ) 3.01(S) 20. 44.27 17.73 45.91 1.23 54.08 1.26 59.22 54.22 .03 13.25 1.55( ) 1.47( ) 1.50( ) .04(S) 3.45(S) .19( ) 13.94(S) 1.49( ) .02( ) 2.94(S) 5 25. 43.34 17.46 44.95 1.06 52.96 1.08 57.72 53.10 .03 12.93 1.54( ) 1.46( ) 1.48( ) .03(S) 3.40(S) .18( ) 13.92(S) 1.47( ) .02( ) 2.87(S) 5 30. 42.42 17.19 44.01 91 51.86 .93 56.30 52.00 .03 12.61 1.52( ) 1.45( ) 1.47( ) .03(S) 3.34(S) .17( ) 13.90(S) 1.45( ) .02( ) 2.80(S) ' 5 35. 41.52 16.93 43.09 50.78 1.51( ) 1.44( ) 1.46( ) .79 .02(S) 3.29(S) .81 .16( ) 54.95 13.87(S) 50.92 1.44( ) .02 .02( ) 12.30 I 2.73(S) V 5 40. 40.64 16.67 42.19 .69 49.62 .71 53.63 49.77 .02 l� 11.99 1.49( ) 1.43( ) 1.44( ) .02(S) 3.24(S) .15( ) 13.85(S) 1.42( ) .02( ) 2.66(S) ' 5 45. 39.77 16.41 41.30 .61 48.19 .62 52.30 48.39 .02 11.69 1.48( ) 1.42( ) 1.43( ) .02(S) 3.19(S) .14( ) 13.83(S) 1.40( ) .02( ) 2.60(S) 50. 38.93 16.15 40.43 .54 46.87 .55 50.92 47.02 .01 11.40 ' 5 55. 1.46( ) 38.09 1.41( 15.89 ) 1.41( ) 39.58 .02(S) .48 3.14(S) 45.63 .13( ) .49 13.81(S) 49.54 1.38( ) 45.79 .02( ) .01 2.53(S) 11.12 1.45( ) 1.40( ) 1.40( ) .01(S) 3.10(S) .12( ) 13.79(S) 1.36( ) .01( ) 2.47(S) 6 0. 37.28 15.64 38.74 .43 44.46 .43 48.20 44.60 .01 10.84 1.43( ) 1.39( ) 1.38( ) .01(S) 3.06(S) .12( ) 13.77(S) 1.34( ) .01( ) 2.41(S) 6 5. 36.48 15.40 37.92 .38 43.35 .39 46.90 43.49 .01 10.57 1.42( ) 1.38( ) 1.37( ) .01(S) 3.02(S) .11( ) 13.75(S) 1.32( ) .01( ) 2.34(S) 6 10. 35.70 15.15 37.12 .34 42.29 .35 45.66 42.43 .01 10.30 1.40( ) 1.37( ) 1.35( ) .01(S) 2.98(S) .11( ) 13.73(S) 1.30( ) .01( ) 2.29(S) 6 15, 34.93 1.39( ) 14.91 1.36( 36.33 ) 1.34( ) .31 .01(S) 41.28 2.95(S) .31 .10( ) 44.48 13.71(S) 41.42 1.29( ) .01 .01( ) 10.04 2.23(S) 6 20. 34.18 14.67 35.56 .28 40.32 .28 43.35 40.44 .01 9.78 1.37( ) 1.35( ) 1.33( ) .01(S) 2.91(S) .10( ) 13.69(S) 1.27( ) .01( ) 2.17(S) 6 25. 33.45 14.44 34.80 .25 39.39 .25 42.27 39.51 .01 9.54 1.36( ) 1.34( ) 1.31( ) .01(S) 2.88(S) .09( ) 13.67(S) 1.26( ) .01( ) 2.12(S) ' 6 30. 32.73 14.20 34.06 .22 38.49 .23 41.23 38.61 .01 9.29 1.34( ) 1.33( ) 1.30( ) .01(S) 2.85(S) .09( ) 13.66(S) 1.24( ) .01( ) 2.06(S) 6 35. 32.02 13.98 33.34 .20 37.62 .21 40.24 37.74 .01 9.06 ' 6 40. 1.33( ) 31.33 1.32( 13.75 ) 1.29( ) 32.62 .01(S) .18 2.82(S) 36.78 .08( ) .19 13.64(S) 39.29 1.23( ) 36.90 .01( ) .01 2.01(S) 8.82 1.32( ) 1.31( ) 1.27( ) .01(S) 2.79(S) .08( ) 13.63(S) 1.21( ) .01( ) 1.96(S) 6 45. 30.65 13.53 31.93 .17 35.97 .17 38.37 36.08 .00 8.60 1.30( ) 1.30( ) 1.26( ) .01(S) 2.76(S) .08( ) 13.61(S) 1.20( ) .01( ) 1.91(S) 6 50. 29.99 13.31 31.25 .15 35.18 .16 37.49 35.28. .00 8.38 ' 1.29( ) 1.29( ) 1.25( ) .00(S) 2.74(S) .07(.) 13.60(S) 1.19( ) .01( ) 1.86(S) 6 55. 29.34 13.09 30.58 .14 34.40 .14 36.63 34.51 .00 8.16 1.27( ) 1.28( ) 1.23( ) .00(S) 2.71(S) .07( ) 13.58(S) 1.17( ) .01( ) 1.81(S) ' 7 0, 28.71 1.26( ) 12.88 1.27( 29.92 ) 1.22( ) .13 .00(S) 33.65 2.68(S) .13 .07( ) 35.80 13.57(S) 33.76 1.16( ) .00 .01( ) 7.95 1.76(S) 7 5. 28.09 12.66 29.28 .11 32.92 .12 34.99 33.02 .00 7.74 1.25( ) 1.26( ) 1.21( ) .00(S) 2.66(S) .06( ) 13.56(S) 1.15( ) .01( ) 1.72(S) 7 10. 27.48 12.46 28.66 .10 32.20 .11 34.21 32.30 .00 7.54 1.23( ) 1.25( ) 1.19( ) .00(S) 2.63(S) .06( ) 13.55(S) 1.13( ) .01( ) 1.67(S) ' 15. 26.88 12.25 28.04 .10 31.51 .10 33.45 31.60 .00 7.35 1.22( ) 1.24( ) 1.18( ) .00(S) 2.61(S) .06( ) 13.53(S) 1.12( ) .01( ) 1.63(S) 7 20. 26.30 12.05 27.44 .09 30.83 .09 32.71 30.92 .00 7.16 7 25. 1.21( ) 25.73 1.23( 11.85 ) 1.17( ) 26.85 .00(S) .08 2.59(S) 30.16 .06( ) .09 13.52(S) 31.99 1.11( ) 30.25 .01( ) .00 1.59(S) 6.97 1.20( ) 1.22( ) 1.16( ) .00(S) 2.56(S) .06( ) 13.51(S) 1.10( ) .01( ) 1.55(S) 7 30. 25.17 11.65 26.28 .08 29.51 .08 31.29 29.60 .00 6.79 1.18( ) 1.21( ) 1.14( ) .00(S) 2.54(S) .05( ) 13.50(S) 1.08( ) .01( ) 1.51(S) 7 35. 24.63 11.46 25.71 .07 28.87 .08 30.60 28.96 .00 6.61 1.17( ) 1.20( ) 1.13( ) .00(S) 2.52(S) .05( ) 13.49(S) 1.07( ) .01( ) 1.47(S) 7 40. 24.09 11.27 25.16 .07 28.25 .07 29.94 28.34 .00 6.43 1.16( ) 1.19( ) 1.12( ) .00(S) 2.50(S) .05( ) 13.48(S) 1.06( ) .01( ) 1.43(S) ' 7 45, 23.57 1.14( ) 11.08 1.18( 24.62 ) 1.11( ) .07 .00(S) 27.64 2.48(S) .07 .05( ) 29.28 13.47(S) 27.73 1.05( ) .00 .00( ) 6.27 1.39(S) 7 50. 23.06 10.90 24.09 .06 27.05 .06 28.65 27.14 .00 6.10 1.13( ) 1.18( ) 1.10( ) .00(S) 2.46(S) .05( ) 13.46(S) 1.04( ) .00( ) 1.35(S) 7 55. 22.55 10.71 23.57 .06 26.47 .06 28.03 26.55 .00 5.94 1.12( ) 1.17( ) 1.08( ) .00(S) 2.44(S) .05( ) 13.45(S) 1.03( ) .00( ) 1.32(S) 8 0. 22.06 10.53 23.07 .06 25.90 .06 27.42 25.98 .00 5.78 1.11( ) 1.16( ) 1.07( ) .00(S) 2.42(S) .05( ) 13.44(S) 1.01( ) .00( ) 1.28(S) ' HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT ,HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 2 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. ' (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYOROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER ,TIME(HR/MIN) 214 211 ' 0 5. .00 .00 .00( ) .00( ) 0 10. 01 01 .00(s) .00(s) 15. .03 .02 .01(S) .01(S) 0 20. 16 .11 .04(S) .04(S) 0 25. .57 .41 0 30. 1.60 1.17 .38(S) .45(S) 0 35. 4.02 3.02 .95(S) 1.17(S) 0 40. 8.01 6.18 1.90(S) 2.40(S) 0 45. 12.2.29 9.77 ' 2.92(S) 3.79(S) 0 15.83 12.94 .50. 3.76(S) 5.02(S) 0 55. 18.66 15.61 4.43(s) 6.06(S) 1 0. 20.90 17.82 4.96(s) 6.92(S) 1 5. 22. 19.65 5.3.38(S) 7.63(s) 1 10. 24.01 21.13 5.70(S) 8.20(S) 1 15. 24.01 22.34 5.95(s) 8.67(S) ' 1 20. 24.01 23.30 6.14(S) 9.05(S) 1 25. 24.01 24.01 6.29(S) 9.35(S) 1 30. 24.01 24.01 6.39(S) 9.59(S) 1 35. 24.01 24.01 6.47(s) 9.79(S) 40. 24.01 24.01 6.52(S) 9.95(S) 45. 24.01 24.01 6.55(S) 10.08(S) 50. 24. 24.01 6.5.56(S) 10.18(S) 55. 24.01 24.01 6.56(S) 10.26(S) 0. 24.01 24.01 6.54(S) 10.32(S) ' 5. 24.01 24.01 6.51(S) 10.36(S) 2 10. 24.01 24.01 6.47(S) 10.38(S) 2 15. 24.01 24.01 ' 6.41(S) 10.38(S) 2 20. 24.01 24.01 6.34(S) 10.37(S) 2 25. 24.01 24.01 6.27(S) 10.34(S) 2 Irl. 24.01 24.01 6.18(S) 10.30(S) 7 35. 24.01 24.01 6.09(S) 10.24(S) 2 40. 24.01 24.01 5.99(S) 10.18(s) 2 45. 24.01 24.01 5.88(S) 10.11(S) ' 2 50. 24.01 24.01 5.77(S) 10.03(S) 2 55. 23.83 24.01 5.66(S) 9.94(S) 3 0. 23.34 24.01 5.54(S) 9.85(S) 5. 22.86 24.01 5.43(S) 9.76(S) S 10. 22.37 24.01 5.31(S) 9.66(S) 3 15. 21.89 24.01 5.20(S) 9.55(S) 3 20. 21.41 24.01 5.08(S) 9.44(S) ' 3 25. 20.94 24.01 4.97(S) 9.33(S) 3 30. 20.47 23.73 v. ' 4.86(S) 9.21(S) 35. 20.01 23.43 4.75(S) 9.10(S) 3 40. 19.55 23.13 4.64(S) 8.98(S) 3 45. 19.10 22.83 4.53(S) 8.86(S) 3 50. 18.65 22.53 4.43(S) 8.74(S) ' 3 55. 18.22 22.22 4.32(S) 8.63(S) 4 0. 17.78 21.92 4.22(S) 8.51(S) 4 5. 17.36 21.62 ' 4.12(S) 8.39(S) 4 10. 16.94 21.32 4.02(S) 8.27(S) 4 15. 16.53 21.01 3.92(S) 8.16(S) 4 20. 16.13 20.71 3.83(S) 8.04(S) 4 25. 15.74 20.42 3.74(S) 7.93(S) 4 30. 15.35 20.12 3.64(S) 7.81(S) 4 35. 14.97 19.83 3.55(S) 7.70(S) ' 4 40. 14.60 19.53 3.47(S) 7.58(S) 4, 45. 14.24 19.24 3.38(S) 7.47(S) 4 50. 13.88 18.96 3.30(S) 7.36(S) 4 55. 13.53 18.67 3.21(S) 7.25(S) 0. 13.19 18.39 3.13(S) 7.14(S) 5 5. 12.86 18.11 3.05(5) 7.03(S) 5 10. 12.53 17.83 2.97(S) 6.92(S) 5 15. 12.21 17.56 2.90(S) 6.82(S) 5 20. 11.90 17.29 2.82(S) 6.71(S) ' 5 25. 11.60 17.02 2.75(S) 6.61(S) 5 30. 11.30 16.75 2.68(S) 6.50(S) 5 35. 11.01 16.49 ' 2.61(S) 6.40(S) 5 40. 10.72 16.23 2.54(S) 6.30(S) 5 45. 10.44 15.97 2.48(S) 6.20(S) 5 50. 10.17 15.72 2.41(S) 6.10(S) 5 55. 9.91 15.47 2.35(S) 6.00(S) 6 0. 9.65 15.22 2.29(S) 5.91(S) 6 5. 9.39 14.98 2.23(S) 5.81(S) 6 10. 9.15 14.74 2.17(S) 5.72(S) 6 15. 8.91 14.50 2.11(S) 5.63(S) 20. 8.67 14.27 '6 2.06(S) 5.54(S) 25. 8.44 14.03 2.00(S) 5.45(S) 6 30. 8.22 1.95(S) 13.81 5.36(S) 6 35. 8.00 13.58 1.90(S) 5.27(S) 6 40. 7.79 13.36 1.85(S) 5.18(S) 6 45. 7.58 13.14 6 50. 1.80(S) 5.10(S) 7 .37 12.92 1.75(S) 5.01(S) 55. 7.18 12.71 1.70(S) 4.93(S) 7 0. 6.98 12.50 1.66(S) 4.85(S) 7 5. 6.79 12.29 1.61(S) 4.77(S) 7 10. 6.61 12.09 ' 1.57(S) 4.69(S) 7 15. 6.43 11.89 1.53(S) 4.61(S) 7 20. 6.26 11.69 ' 1.48(S) 4.54(S) 7 25. 6.09 11.49 1.44(S) 4.46(S) 7 30. 5.92 11.30 1.40(S) 4.38(S) 7 35. 5.76 11.11 1.37(S) 4.31(S) 7 40. 5.60 10.92 1.33(S) 4.24(S) 7 45. 5.45 10.74 1.29(S) 4.17(S) 7 50. 5.30 10.56 1.26(S) 4.10(S) 7 55. 5.15 10.38 ' 1.22(S) 4.03(S) 8 0. 5.01 10.20 1.19(S) 3.96(S) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC ,OSCILLLATIONS DURING THE SIMULATION. 39 40 41 42 43 213 214 215 ETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT '*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** I t CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 35 164.6 2.8 0 40. GEhT2AL 36 24.0 1.7 2 30. w Es-r 38 206.3 3.0 0 45- EIS T 39 65.5 .0 9.3 1 10. 40 96.2 .0 6.6 1 40. 41 65.5 1.3 1 10. 42 150.6 .0 15.4 2 25. 43 96.2 2.1 1 45. 125 135.8 1.0 0 45. 126 167.1 1.1 0 40. 127 38.0 .6 0 40. 128 216.5 1.3 0 40. 203 150.6 (DIRECT FLOW) 2 25. 213 24.0 .1 6.2 2 0. 214 24.0 .1 6.6 1 50. 215 24.0 .1 10.4 2 15. 'ENDPROGRAM PROGRAM CALLED RGh!lGNo4L De41/Vft¢E-*t4A/NE4-