Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 09/30/1999
. �F �' . Report FORT 60LI ' AS itT'!`ILi'1`IES �. L FINAL DRAINAGE STUDY & EROSION CONTROL REPORT FOR TRACT G RAINTREE COMMERCIAL P.U.D. PRESERVE APARTMENTS PHASE 2 G IIl andmark FINAL DRAINAGE STUDY & EROSION CONTROL REPORT FOR TRACT G RAINTREE COMMERCIAL P.U.D. PRESERVE APARTMENTS PHASE 2 Prepared For: Wagner Architectural Team, Ltd. 10730 E. Bethany Drive #113 Aurora, CO 80014 Date: April 8, 1999 Final Revision September 9, 1999 Project No. WAGA-8D2D-01-304 Consulting Engineer: Landmark Engineering Ltd. 3521 West Eisenhower Boulevard Loveland, CO 80537 u 0 April 8, 1999 Final Revision September 9, 1999 Project No. WAGA-8D2D-0 1 -304 Mr. Donnie Dustin City of Fort Collins Stormwater Utility Department 700 Wood Street Fort Collins, CO 80522 Dear Mr. Dustin: On behalf of our client we are submitting the attached Final Drainage Study for Tract G of Raintree Commercial P.U.D., aka, the Preserve Apartments Phase 2. The purpose of this report is to evaluate and present the drainage impacts from the proposed construction of the Preserve Apartments Phase 2 project. The drainage report will present the changes to the developed flow conditions and proposed improvements to resolve the impacts of the drainage flow condition. The Final Drainage Study for Tract G, Raintree Commercial P.U.D., Preserve Apartments Phase 2 was ' prepared in accordance with the provisions of the City of Fort Collins Storm Drainage Criteria-- revised January 1997. ' Loonan/&, Associates, Inc. /f �POt6uauG/s�F�'%_ P4fies R. Loonan, P.E.' Registered Professional Engineer Colorado P.E. 19195 Landmark Engineering A. JHrr, P.E. ' RegisteredXrofessioi Colorado P.E. 26857 \\\\\\Poo iREC/ST �o A. F 26857 r .-1 :.W %igs�ONAl1�, VICINITY MAP [1 ROLAND MOORS PARK 0 O w � w PROJECT ��oR• = SITE RP`N� cn (n li 0 i!s cn SNP N w DRAKE ROAD o SCALE 1"=1000' TABLE OF CONTENTS Page No. Introduction............................................................... 1-1 Existing Condition Description ................................................ 1 - 1 Drainage Impact............................................................ 1-2 Offsite Runoff Onsite Runoff Detention Ponds Erosion and Sediment Control ................................................. 1-7 APPENDIX A Drainage Computations Drainage Exhibit APPENDIX B Final Drainage Study for Raintree Commercial P.U.D. - Phase II APPENDIX C Soil Report TABLE OF CONTENTS Pa a No. Introduction............................................................... 1-1 Existing Condition Description ................................................ 1 - 1 Drainage Impact............................................................ 1-2 Offsite Runoff Onsite Runoff Detention Ponds Request for Variance........................................................ 1-7 Erosion and Sediment Control ................................................. 1-8 APPENDIX A Drainage Computations Drainage Exhibit APPENDIX B Final Drainage Study for Raintree Commercial P.U.D. - Phase II APPENDIX C Soil Report FINAL DRAINAGE STUDY FOR TRACT G RAINTREE COMMERCIAL P.U.D. PRESERVE APARTMENTS - PHASE 2 Introduction The Preserve Apartments, Phase 2 lies on Tract G of Raintree Commercial P.U.D. A Final Drainage Study has been prepared by Parsons & Associates and approved for the Raintree Commercial P.U.D. Copies of the final drainage studies are included in the Appendix. The purpose of this drainage study is to evaluate and present the drainage impacts from the Preserve Apartments Phase 2 on the approved final drainage studies. In the evaluation, a site description of the prof ect will be presented and its relationship to the Raintree Commercial P.U.D. development. The drainage report will present the changes to the developed flow conditions and proposed improvements to resolve the impact of the drainage flow condition. Existins Condition Description Currently, the ground is relatively level and covered with grass, with the exception of the Southwest corner where a sand volleyball court exists. The site is bounded by Raintree Drive on the West and North, and by Raintree Shopping Center on the East and South. Existing parking and asphalt driveways that are associated with the existing commercial structures are located adjacent to the Eastern and Southeastern boundaries of this site. Tract G is 78,085 sq. ft. The site slopes from East to West and drains to an existing swale and into an existing 18" RCP storm pipe located near Raintree Drive. Offsite detention, as required by the Spring 1-1 Creek Master Plan, is being provided in Ponds "A" and "B" to the West of Raintree Drive. However, onsite detention must be provided to reduce peak flows to the capacity of offsite storm sewer capacity. As shown within Parson's Drainage Study and as calculated in Appendix A, the capacity of the offsite storm sewer limits runoff from Tract G as well as offsite tributary area to 6.9 cfs. Please refer to Appendix B for a copy of Parson's Drainage Report. Tract G is located within the Spring Creek Drainage Basin. Drainage Impact Proposed Site Conditions The Preserve Apartments Phase 2 consists of two (2) 5,300 sq. ft., three story buildings and 3 garage buildings. Private driveways, parking areas and walkways will be constructed onsite as apart of this project. An asphalt half -court basketball court is being proposed adjacent to the Eastern property line. The following is a brief description of the proposed subbasins for this site. Please refer to the Drainage Exhibit located in the pocket of this report. OFFSITE BASINS Subbasin I - Offsite drainage area is located East of this site. This subbasins land use consists of asphalt parking and driveways, roof top, and landscape areas. This subbasin drains to Design Point DPI. 1-2 I 1 1 H ONSITE BASINS Subbasin 1B: - This subbasin is located on the Eastern portion of the site. It's land use consists of asphalt parking and driveways, roof tops, concrete walkways, asphalt basketball court and landscape areas. This subbasin drains to Design Point DP Subbasin 2A: - This subbasin is located on the Northeastern portion of the site. It's land use consists of asphalt parking and driveways, roof tops, concrete walks and a small portion.of landscape area. This subbasin drains to Design Point DP2 which is a storm inlet located in the driveway. From DP2, the runoff will be conveyed by a storm sewer system to Detention Pond No. 2. Subbasin 213: - This subbasin is located in the central area of the site. It's land use consists of asphalt parking and driveways, roof tops, concrete walks, and a small portion of landscape area. This subbasin drains to Design Point DP3 where it is combined in a storm sewer with runoff from Design Points DPI and DP2, and drains to Detention Pond No. 2. Subbasin 2C: - This subbasin is located in the Northern portion of the site. It's land use consists of roof top and landscape areas. This subbasin drains to Design Point DP4 which is a flared end section of a storm pipe located in the landscape area. From DP4 the runoff will be conveyed by a storm sewer system to Detention Pond No. 2. Subbasin 2D: - This subbasin is located in the Northwestern portion of the site. It's land use consists of roof top and landscape areas. This subbasin drains to Design Point DP5 which is a storm inlet located in the 1-3 I 1 11 1 lJ landscape area. From DP5, the runoff is combined with runoff from DP4 and is conveyed in a storm sewer to Detention Pond No. 2. Subbasin 2E: - This subbasin is located in the Southwestern portion of this site. It's land use consists of rooftop and landscape areas. This subbasin drains to Design Point DP6 which is a flared end section of a storm pipe located in the landscape area. From DP6 the runoff will be conveyed by a storm sewer system to Detention Pond No. 2. Subbasin 2F: - This subbasin is located in the Western portion of the site. It's land use consists of roof top and landscape areas. This subbasin drains to Design point DP7 which is a storm inlet located in the landscape area. From DP7, the runoff is combined with runoff from DP6 and is conveyed in a storm sewer to Detention Pond No. 2. Subbasin 2G: - This subbasin is located in the Western portion of the site and consists of the area that directly drains to Detention Pond No. 2. This subbasin land use consists of walkways and landscape areas. The outfall point for this subbasin is the same as the outfall point for Detention Pond No. 2 which is DP8. Subbasin 3A: - This subbasin is located in the Southern portion of the site. Its land use consists of an asphalt driveway, concrete walks and landscape areas. This subbasin drains offsite to Design Point DP9. Offsite Runoff Tract G is located within Subbasin I-1 as designated in the Final Drainage Report for Raintree Commercial P.U.D., Phase II as prepared by Parsons & Associates. Subbasin I-1 is designated as having a basin area of 1-4 I 1 1 2.98 acres consisting of 1.793 acres of Tract G and 1.187 acres of offsite area to the East. The offsite area to the East drains onto an existing parking lot, through a curb opening and into a swale that runs through Tract G to an existing storm sewer (Line G). This offsite runoff was considered in our drainage calculations. The maximum release rate for Subbasin I-1 as limited to 6.9 cfs due to downstream storm sewer restrictions. Please refer to the calculations located in the Appendix A. The adjacent street (Raintree Dr.) Runoff has been accounted for in previously approved drainage reports (See Lidstone & Anderson, Preserve Phase 1 Study). ' Onsite Runoff There are two detention ponds being planned for this site. The Eastern pond (Pond No. 1) will detain runoff from the adjacent site to the East as well as a portion of the runoff from Tract G. The proposed basketball court as well as a small portion of the parking lot and landscape area will be within the 100-Year water surface of Pond No. 1. The remainder of Tract G will drain to Pond No. 2. There will be a pipe connecting Pond No. 1 to Pond No. 2. Most of the site drainage will be collected as surface runoff in concrete pans and concrete gutters. However, the landscape area located between the apartment buildings and Raintree Drive will be collected in a storm system consisting of inlets and storm sewer and conveyed to Pond No. 2. Pond No. 2 will discharge into the existing storm sewer (Line G) which in turn drains into the existing storm sewer system in Raintree Drive. 1-5 A small portion of the site, Subbasin 3A, will drain offsite undetained onto Raintree P.U.D. and into the existing Pond D for Raintree P.U.D. Using the information in the "Addendum to Stormwater Drainage Report for the Raintree P.U.D.," dated December 1984 prepared by Parsons & Associates, the required volume of detention will increase 590 cubic feet, but the total volume of 3726 cubic feet will not exceed the capacity of Pond D (4,100 cubic feet). Detention Ponds As stated in the approved Drainage Study for Raintree Commercial P.U.D. as well as the S WMM model that was prepared for the Preserve P.U.D., Phase II, the capacity of the downstream storm system is limiting the discharge from Subbasin I-1 to 6.9 cfs. The existing detention pond located on Tract G has a calculated 100- Year water surface elevation of 5056.50 feet. The single existing pond will be regraded and replaced with two detention ponds. However, based on our calculations, the 100-Year water surface will not exceed 5056.50 and the 100-Year discharge into the storm sewer (Line G) will be 6.9 cfs. The capacity of storm sewer Line G is 6.9 cfs. Offsite detention ponding was provided in Ponds A and B located North of the Preserve Apartments. The required volume of detention ponding was determined from using the mass - inflow -outflow method which is the method that Parsons & Associates utilized in their previous study. The drainage study for the Preserve P.U.D. that was prepared by TST, Inc. (dated November 30, 1993) used UDSEWER to calculate the water surface at Detention Pond No. 2. The spillway for the proposed detention ponds will be the same as the spillway for the existing pond. The existing spillway is the Northern drive to the commercial area. The maximum water surface level prior to the stormwater spilling into Raintree Drive is an elevation of 5057.80 feet. The finish floor of all buildings 1-6 are located above this elevation. The lowest finish floor elevation of the surrounding buildings is the Easternmost garage whose finished floor elevation is 5058.10. The SWMM model that we ran assumed an orifice plate restriction on the outlet of Detention Pond 2. The orifice would restrict the peak flow from the pond to 7.1 cfs, but will also restrict lower flows, thereby requiring more detention storage volume. This SWMM model calculated 0.3 Ac-Ft. of detention ponding required on the proposed site. To meet this requirement, the 100-Year water surface would be at an elevation of 5057.0, which is still below the finish floor elevations of all the buildings. From evaluating the SWMM output, it is our recommendation that the outlet of Detention Pond 2 be an 18" RCP with an orifice plate installed. The orifice plate should have a -1/2" opening. REQUEST FOR VARIANCE Due to the existing conditions, we are requesting a variance to the City of Fort Collins freeboard requirements. As mentioned previously, the proposed emergency overflow elevation will be only 0.72 feet below the lowest finish floor elevation of the proposed buildings. The lowest being the Easternmost garage. All apartment buildings finish floor elevations will be a minimum of 18 inches above the emergency spillway elevation. The existing commercial building is currently only 0.08 feet above the spillway elevation. With the proposed improvements, the existing building will be 0.50 feet above the spillway. The existing emergency spillway for the existing pond is the Northern drive to the commercial area. In order to increase the freeboard and the elevation of the spillway, a 2 feet wide sidewalk culvert is being proposed. The sidewalk culvert will be located in the Northeast corner of the existing parking lot for the commercial 1-7 [1 1 area. With the proposed sidewalk culvert, the emergency spillway elevation will be revised from 5057.80 to 5057.38 feet. The lowest proposed finish floor elevation is the Easternmost garage whose finished floor elevation is 5058.10 feet. The existing finish floor elevation_ of the North building is 5058.12 feet. The lowest existing finish floor elevation is for the Pulse Athletic Club at the South end of the site with a finished floor elevation of 5057.86. EROSION AND SEDIMENT CONTROL This report describes methods which are recommended to control wind erosion, water erosion and sediment during and after the construction of drainage structures and site grading. ' Discussion The clearing and stripping of land for site grading, overlot grading, or for the construction of drainage structures, may cause localized erosion rates with subsequent deposition and damage to offsite properties. Uncontrolled, such erosion could destroy the aesthetic and practical values of individual sites, and cause damage to downstream property. In general, erosion and sediment control measures will consist of minimizing soil exposure, controlled runoff across exposed areas, and sediment control at drainage structures. Each of these measures is described below and should be utilized by the developer and/or the contractor during any construction activity which occurs at this site. 1-8 11 General Erosion and Sediment Control Measures Minimizing Soil Exposure: Where practical, the construction area and duration of soil exposure should be kept to a minimum. All other areas should have a good cover of vegetation or mulch. Grading should be completed as soon as possible after commencement. A temporary cover crop, a permanent vegetative cover crop, or other landscaping should be established in the disturbed areas. Revegetation may consist of native grasses, lawn grasses, or various winter wheat. Decorative rock, flower gardens, or shrubs may also be utilized in the final landscaping to cover the soil. Reseeded areas should be mulched with straw or hay to protect exposed soil until vegetation is established. Erosion Control Plan The proposed erosion control measures are presented on the Grading and Erosion Control Plan located in Appendix A of this report. In summary, the erosion control measures consist of: 1. Detention Pond 2 will be over -excavated creating a temporary sediment pond. 2. Installation of silt fences along Southwest, West and North boundary of the site. 3. Installation of construction entrances to reduce the amount of mud being tracked onto paved surfaces will be installed at the entrances to the site. 4. Drill seed irrigated drought tolerant turf seed mix (hydo mulched) or turf sodded. 5. Landscaping in parking islands, walkways and other disturbed areas. 1-9 1 1 1 1 Stormwater Quality To improve the stormwater quality prior to leaving this site, grass swales will be used to filter the storm runoff from the parking areas. The runoff from Subbasin 1B will drain to Design Point 1 via a grass swale from the sidewalk culverts. Subbasins 2A and 2B will drain to proposed inlets and into storm pipes until it reaches Detention Pond 2. The grass bottom of Detention Pond 2 will act to filter the storm runoff. 1-10 1 1 1 1 Erosion Control Cost Estimate Item No. Description Qty. Unit Unit Cost Total I Temp. Sediment Trap 170 CY $ 1.00 $ 170.00 2 Silt Fence 360 LF 3.00 1,080.00 3 Inlet Protection 6 Ea. 300.00 1,800.00 4 Straw Bale Protection 2 Ea. 150.00 300.00 5 Temporary Seeding 0.58 Ac. 655.00 379.90 Construction Cost 3,729.90 50% of Construction Cost 1,864.95 Total Security$5 594.85 City Reseeding Cost Item No. Description Qty. Unit Unit Cost Total 1 Reseeding 1.70 Ac $655.00 $1,113.50 Construction Cost 1,113.50 50% of Construction Cost 556.75 Total Security $1,670.25 Required Security $5 594.85 APPENDIX A P.CESE<'vc zz' Z tL I� J 1 1 C 1 Co/niti/J llc 1" V!f-GG/ES ,%Bow Ps9st'soc/% /2,�,.�✓.c"T -%or/9c 1rof'l`.eu/cv1 /i.f'�is� =o•�1i o.Z9 /x c=[�o,�s)lo.Z9 = o. r755 -t- a• 76 �T7s*L r/'-�-�E-Ct/: ac.iS /¢�G'/r'h+-. a 0• Z % /%G Co�iaos/� � _ ��0.�5 )lo, oy')f (o-9S>lJ•Z�)'�D,3/ = o, g? ,50 9 O, BS U,Fr ti�r�o.c . Po,y,� / - 5�•8 /ems/,v.5 //57 f Z•`��E.evioc s /�.�E/1 = -`/z I-d Z%= G /y- .�., vsc. rs-v.,G /`�.e�/✓ = O. Z � t a. a �/, = O.3 3 /3� f O, 3 �_ /• 5Z /•tc Co.,, r� c =/o, iS ) /o• 3 3) f-/o. 95-)(/ SGr/3—/Ji}S//✓ Z TOTALi = O. Z L! 0 I 11 1 17L Wr- o,o�,- y� ed.'>;P /7Z7- c=L<o,�s-�lo,a�)�Io,SS>(oo6)��ai� = ®,`f.�' Co.�vo��r� G=�(o, �s)(o.oG) t (o•isl<o.os.>�/�', ii = o, ,s/ Co.�=�i��sirc C= rlo.i7 �<o.00� tld.4S�<U.a'7).7�0•iS Ol z .scig-P�.�siv � j : Torte_ /�.��.•v = O, JZ f�c /�� Go.�vos�rf C= 1'<o,is><o.v7)t<o•95><ao$J]�o.�2 oc s Go. vc�si� G = r(o, S>(o.la) f j�'o, 9Si(�.oz)Oo/9 U L 1 O N LO a) L .0 .o 0) Z w I /I /�G 4E5�civT. ZrnP�.Cvidris /�J�Fiq = o. o y /4c 7' 77r /V c J 91 T�i�iCEGoiz-e--r Id' RESERVE APTS - PHASE 2 100 Yr Storm TRIBUTARY AREA: 2.89 COMPOSITE C x Cf: 0.89 ' C x Cf x A= 2.5721 �PSTREAM POND = Qin: 0.00 DESIGN Qout: 6.90 ' Qtrib-in TOTAL VOLUME in VOLUME out VOLUME OF TIME i (CCFiA) Qpond-in Qin (Qin x T x 60) (gout x T x 60) PONDING MIN. in/hr cfs cfs cfs CU FT CU FT CU FT 5 8.00 20.58 0 20.58 6173 2070 4103 10 7.20 18.52 0 18.52 11111 4140 6971 15 6.00 15.43 0 15.43 13889 6210 7679 '20 5.20 13.37 0 13.37 16050 8280 7770 25 4.60 11.83 0 11.83 17747 10350 7397 30 4.15 10.67 0 10.67 19214 12420 6794 35 3.82 9.83 0 9.83 20633 14490 6143 40 3.50 9.00 0 9.00 21606 16560 5046 45 3.24 8.33 0 8.33 22501 18630 3871 50 3.00 7.72 0 7.72 23149 20700 2449 55 2.78 7.15 0 7.15 23596 22770 826 60 2.60 6.69 0 6.69 24075 24840 -765 90 1.85 4.76 0 4.76 25695 37260 -11565 120 1.43 3.68 0 3.68 26482 49680 -23198 150 1.18 3.04 0 3.04 27316 62100 -34784 180 1.05 2.70 0 2.70 29168 74520 -45352 I 1 1 11 YoL C/���E �iG .(�fT.F/.il�'Oi✓ /o��v/OE/i xv- Z ' m n. o 75 0 sSo Lv v O o� t 'z° W 5-6.� 3z � ' FLU✓, IC �TZ FT3 �T3 5 j;O Z/ 7lo yo y y 257�3 S6.0 ZG 38 1'y o3 �yp� S6,G S 3 4/6 y GP/U S7.dU 3 y ' Torc Voc-E ✓�lo.�S= Z3zyrt- 3y /� �i ,ems x V L/• S, Ec, -- v = S6.50 7L7 Z4,145- Vac- =cG /�3 (� y-f 7L7%Fj.�/ 1 No Text No Text �Qp 1.420 " -zr-t z m a c 0 a 0 U ti 1 Ln CD Un ,c . W 17 = SSG 3 G�.0 1A/ I 1 � 1� U ' W CD d VJ I 10 W Z J 1 W 0 a LO I ^U a �om ao 1 ou � c NINS d v I4a_{ N LLJ O 4 d O o p o 0 o p o O O O O 0 O 1 4 _ LAD rn O i O o 0 vi v M Q 4l(0 � O i O o 0 N J O O IS O o 1•y O c• O p � 0 � D Q � O' Q O O O OIN O O O O O C� n c� O p O O O O O p p 0 p n 0' N ^ a a - LA �i oO `Qcu 1T In M a 3�4+ Z F s, 4-73 HLd�Q' QniC�/ RZlG�/ r` CO C N Q Ih N N O O O O It u I ]C Y Y Y 0 0 °n 0 U'\ Q I� fV S t d w = S � �O J Cl a = v Z 11 N w S I O J fV W a+ w fV VN ]C II Sa No Text S;tt 11 pil 1 1 1 ih%r/ 105� Yh' �To/t �/l .` Ih�cn� r'%���rr/ /O 5�/�' <i7'orM ir�feh5i �ih�iir% ioa Y/? s ro ena n 17-1 � /, 22 2• Zo 3 So 2,02 3 24 5 p 1,04 55 D, 79 fo o, G 8 i, zo /ZO �, $2 p, /So �, ¢3 G , 75 - /g /0 0 �'s`/ o,1�5 OS I 1 u cu 0 1 m a E 0 N t j w 7 u 1 I 1 7Z7 -71/L//3-TE2 /'ice/�siui=/S Gz = o.y5 r�z vo.z79�' � lJI�lTI �.�. c / .'6/9 l �'3) �/ror� /`��65���✓E 1Y 22, Torn-G "g = D. 5-027 G=o..G7 DtF 7-70,l� voL /�f/�i,5 Je A,=Q /J. /Llo7x = � f . / 9YL/ SruoY -sizEo TiS',F 772:=NT/O/�/ j�On/I� lj/f1� ON G Ica = / Z 5 To TEE girl iicsj= Ti�i� y/��/� c T TH.yT 77z/4-oT lj �!�-S� Pi�.t'so.�.i S G�3-G CuG/lLTI��/S v✓ifS T //./G/��'�:+� Th�.E /�/"JocivT Off- �GTFiiiT�''�✓ dam../ ,O i/�E/_' / �'Sc� '� s D�'•s= ��'-i�i�li.0 F �h�/��7-) /5 ST/GC 73� OF I-1 J ,PRESERVE APTS - PHASE 2 - Design Point DP9 100 Yr Storm ' TRIBUTARY AREA: 0.5079 COMPOSITE C x Cf: 0.67 ' C x Cf x A= 0.4253.66 UPSTREAM POND = Qin: 0.00 ' DESIGN Qout: 0.10 Qtrib-in TOTAL VOLUME in VOLUME out VOLUME OF TIME i (CCFiA) Qpond-in Qin (Qin x T x 60) (gout x T x 60) PONDING MIN. in/hr cfs cfs cfs CU FT CU FT CU FT '5 8.00 3.40 0 3.40 1021 30 991 10 7.20 3.06 0 3.06 1838 60 1778 15 6.00 2.55 0 2.55 2297 90 2207 5.19 2.21 0 2.21 2649 120 2529 '20 25 4.58 1.95 0 1.95 2922 150 2772 30 4.17 1.77 0 1.77 3193 180 3013 35 3.79 1.61 0 1.61 3385 210 3175 40 3.50 1.49 0 1.49 3573 240 3333 45 3.23 1.37 0 1.37 3710 270 3440 50 3.00 1.28 0 1.28 3828 300 .3528 2.79 1.19 0 1.19 3916 330 3586 '55 60 2.60 1.11 0 1.11 3981 360 3621 65 2.43 1.03 0 1.03 4031 390 3641 '70 75 2.30 2.17 0.98 0.92 0 0 0.98 0.92 4109 4154 420 450 3689 3704 80 2.06 0.88 0 0.88 4206 480 3726 �- 85 1.95 0.83 0 0.83 4230 510 3720 I I Lit r i." PARSONS & CUENT JOB NO.. L2i h C r% ASSOCIATES PROJECT CALCULATONS FORh1IJYa5£ CONSULTING ENGINEERS Ft. Collins. Colo,.do 80524 MADE BY JAP� DATE 7 CHECKED BY DATE SHEET •1 OF AREA: 8.4179 - -- - C:.0.7088_'- Q ADD: 8.8080 �- -�_.. _ ' � Q REI: 0.1680 T :5.0009 T :38.0080 T :55.9000 T :80.0800 I :8.9009 I :4.1708 1 :2.7990 1 :2.8688 91:2.9253 QI:1.5248 91:1.0282 91:0.7533 YI:817.5908 VI:2,744.6627 VI:3,366.6546 VI:3,615.6788 VR:38.8088 VR:188.8880 YR:338.8080 VR:48880000 D :847.5980 D :2,564.6627 D :3,836.6546 D :3,135.6708 T :10.0080 T :35.0800 T :60.0880 T :85.0880 I :7.2089 I :3.7980 I :2.6008 I :1.9589 ' 91:2.6328 01:1.3859 91:8.9587 01:0.7138 VI:1,579.6628 YI:2,918.3078 VI:3,422.6018 VI:3,636.5136 YR:68.8880 VR:210.8888 YR:360.0800 YR:518.8880 D :1,519.6620 D :2,790.3878 D :3,062.6018 D :3,126.5136 T :15.0800 T :48. 0018 T :65.0888 I :6.9080 I :3.5098 I :2.4388 01:2.1948 0:1.2798 91:8.8886 VI:1,974.5775 VI:3,871.5650 VI:3,465.3835 YR:98.0888 VR:240.8888 YR:398.8880 - D :1,884.5775 D :2,831.5650 D :3,875.3835 . -' - T :20.0080 T :45.0800 T :78.0099 _ -- [ I :5.1908 I :3.2380 I :2.3088 f 91:1.8978 01:1.1811 91:8.8410 T- ' YI:2,277.3461 YI:3,188.9427 YI:3,532.2998 YR:128.8800 VR:M A888 VR:428.8000 - -- --- D :2,157.3461 D :2,918.9427 D :3,112.2998 I , T :25.9880 T -.58.8888 T :75.8880 I :4.5800 I :3.0088 I :2.1788 QI:1.6747 VI:2,512.1814 QI:1.8978 VI:3,290.9625 01:8.7935 VI:3,578.6943 --------- _I VR:158.8808 VR:388.8008. VR:458.0880 -;._._ ....... D :2,362.1814 D :2,998.9625 D :3,120.6943 u Qj u PARSONS & CUENT JOB NO.$i"L.�-r a ASSOCIATES PROJECT CALCULATIONS FOR 1_,rPdt}�A�� CONSULTING ENGINEERS _ J Ft. Collins. Colorado 80524 MADE By DATE II -Hi} CHECKED BY DATII SHEET—L,� OF I I I iFa.S. I , j ci.izc, Ate! OR:Ij?�—��ra►�..��_ -.. — —•--, l _ i w� fin. , sue+ n���,,c,: .- - �----�-- � _�....._. _._._;.._._�_. I - - I __ ............. ; : I I +- i ' ( I —�—•--- -- '- --�.._ 1. _ - - - — _ —e tt I _ At : r : l t I ,........ . i 1 , 1 .._._ y I i -- : : : J ILEY�.: gn,slLa ouoTor-S OWAROM $nrsl>J Sou u aA�Y �u >` , riPriEr :Yioi i OlZdp Ck, •.I ' _ 021 FIGS TAt�LE hN �-3 ern 2+�2 elF-y - le t. lea S POI 10 Q ear A Cf+.> / � 0.10 1.50 0.0167 O.1 / 1•�6 1.50 0. B041Z 0.9 P rr. / h h � / h Po ps von er�tul�Ec� 31ao '�� "'> .• z'd*. ' "'^ W�. ELlSVOTf Ol.7 1\ R Y Y 0.. �:Y2.i+: 'U�:3>e '? O..Y >w;;:�T�C "im. Q�Ir•�0 v WRM 1 < cuCfB:;> 60 �E Sdal�7 zu sa J.J V. OUT•".,. �� a>v. .. . F :?s:.'�«.off>�•.<1 o.5s nceE .....:......� :.........:......... F. -. -- i /�o z J r m a. 0 a E 0 t m 11 Lo a) 47 . C 0) C 119 w 1 �ll t NET /3 fzF.� �� Ors v/� ice_. /�, zT = Z , 3 FT FGv ��/� = 4,70J/Z• 3 = Z.Oy c��FTz Qs oU = D• SpG c�3 FG o v��SQ GT = O, 70/0, 3 - %�onioitil� O.Z5-FT Q/ao = O, .5 8 c7� gO � ,PF0007`lG�'✓ �Gc���✓fso�r= Z.3=O.32s�FTZ Fico m Gi to� S- S 1 1 1 1 1 n PIPE CULVERT ANALYSIS p COMPUTATION OF CULVERT PERFORMANCE CURVE January 14, 1999 PROGRAM INPUT DATA DESCRIPTION VALUE Culvert Diameter(ft)....................................... 2.0 FHWA Chart Number ........................................... 1 FHWA Scale Number (Type of Culvert Entrance) ................ 2 Manning's Roughness Coefficient (n-value)................... 0.013 Entrance Loss Coefficient of Culvert Opening ................ 0.5 Culvert Length(ft)......................................... 78.95 Invert Elevation at Downstream end of Culvert (ft).......... 54.34 Invert Elevation at Upstream end of Culvert (ft)............ 54.5 Culvert Slope(ft/ft)....................................... 0.002 Starting Flow Rate(cfs).................................... 11.68 Incremental Flow Rate(cfs)................................. 0.0 Ending Flow Rate(cfs)...................................... 11.68 Starting Tailwater Depth(ft) ............................... 2.0 Incremental Tailwater Depth(ft)............................ 1.0 Ending Tailwater Depth(ft)................................. 2.0 COMPUTATION RESULTS Flow Tailwater Headwater (ft) Normal Critical Depth at Outlet Rate Depth Inlet Outlet Depth Depth Outlet Velocity (cfs) -------------------------------------------------------------------------------- (ft) Control Control (ft) (ft) (ft) (fps) 11.68 2.0 1.85 2.37 2.0 1.23 2.0 3.72 HYDROCALC Hydraulics for Windows, Version 1.0 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone:(281)440-3787, Fax:(281)440-4742, Email: software®dodson-hydro.com All Rights Reserved. 1 1 1 1 1 1 1 1 1 PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE January 14, 1999 PROGRAM INPUT DATA DESCRIPTION VALUE Culvert Diameter(ft)....................................... 1.25 FHWA Chart Number ........................................... 1 FHWA Scale Number (Type of Culvert Entrance) ................ 2 Manning's Roughness Coefficient (n-value)................... 0.013 Entrance Loss Coefficient of Culvert Opening ................. 0.5 Culvert Length(ft)......................................... 20.0 Invert Elevation at Downstream end of Culvert (ft).......... 54.42 Invert Elevation at Upstream end of Culvert (ft)............ 56.5 Culvert Slope(ft/ft)....................................... 0.104 Starting Flow Rate(cfs).................................... 0.69 Incremental Flow Rate(cfs)................................. 0.0 Ending Flow Rate(cfs)..................•.................... 0.69 Starting Tailwater Depth(ft)................................ 0.0 Incremental Tailwater Depth(ft)............................ 1.0 Ending Tailwater Depth(ft)................................. 0.0 COMPUTATION RESULTS Flow Tailwater Headwater (ft) Normal Critical Depth at Outlet Rate Depth Inlet Outlet Depth Depth Outlet Velocity (cfs) -------------------------------------------------------------------------------- (ft) Control Control (ft) (ft) (ft) (fps) 0.69 0.0 0.38 0.0 0.16 0.32 0.16 7.79 HYDROCALC Hydraulics for Windows, Version 1.0 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone:(281)440-3787, Fax:(281)440-4742, Email:software@dodson-hydro.com All Rights Reserved. H 1 iJ 1 1 -)i""�o PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE January 14, 1999 PROGRAM INPUT DATA DESCRIPTION VALUE Culvert Diameter(ft)....................................... 1.25 FHWA Chart Number ........................................... 1 FHWA Scale Number (Type of Culvert Entrance) ................ 2 Manning's Roughness Coefficient (n-value)................... 0.013 Entrance Loss Coefficient of Culvert Opening ................ 0.5 Culvert Length(ft)......................................... 42.78 Invert Elevation at Downstream end of Culvert (ft).......... 54.35 Invert Elevation at Upstream end of Culvert (ft)............ 57.0 Culvert Slope(ft/ft)....................................... 0.0619 Starting Flow Rate(cfs).................................... 0.78 Incremental Flow Rate(cfs)................................. 0.0 Ending Flow Rate(cfs)...................................... 0.78 Starting Tailwater Depth(ft) ............................... 0.0 Incremental Tailwater Depth(ft)............................ 1.0 Ending Tailwater Depth(ft)................................. 0.0 COMPUTATION RESULTS Flow Tailwater Headwater (ft) Normal Critical Depth at Outlet Rate Depth Inlet Outlet Depth Depth Outlet Velocity (cfs) -------------------------------------------------------------------------------- (ft) Control Control (ft) (ft) (ft) (fps) 0.78 0.0 0.43 0.0 0.19 0.35 0.19 6.77 HYDROCALC Hydraulics for Windows, Version 1.0 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone:(281)440-3787, Fax:(281)440-4742, Email:software@dodson-hydro.com All Rights Reserved. ' cc,", /LFTF_ TRAPEZOIDAL CHANNEL ANALYSIS ' NORMAL DEPTH COMPUTATION January 15, 1999 DESCRIPTION VALUE Flow Rate(cfs)............................................. 3.76 Channel Bottom Slope(ft/ft)................................ 0.005 Manning's Roughness Coefficient (n-value)................... 0.016 Channel Left Side Slope (horizontal/vertical)............... Channel Right Side Slope (horizontal/vertical).............. 50.0 50.0 Channel Bottom Width (ft)................................... 2.0 ' COMPUTATION RESULTS DESCRIPTION -------------------------------------------------------------------------------- VALUE ' Normal Depth(ft)........................................... Flow Velocity (fps)••••••••••••• • 0.2— 1.51 Froude Number •••••••••••••••••••...........................• 0.8 Velocity Head(ft).......................................... 0.04 Energy Head(ft)............................................ 0.24 Cross -Sectional Area of Flow (sq ft)• 2.49 ' Top Width of Flow (ft)......•• .......................• 22.39 ' HYDROCALC Hydraulics for Windows, Version 1.0 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone:(281)440-3787, Fax:(281)440-4742, Email:software@dodson-hydro.com All Rights Reserved. 1 0 11 TRAPEZOIDAL CHANNEL ANALYSIS ' NORMAL DEPTH COMPUTATION rLow _ G%/vO�2 January 15, 1999 PROGRAM INPUT DATA DESCRIPTION VALUE ' -------------------------------------------------------------------------------- Flow Rate(cfs)............................................. 0.8 Channel Bottom Slope(ft/ft)................................ 0.005 Manning's Roughness Coefficient (n-value)................... 0.016 ' Channel Left Side Slope (horizontal/vertical)... *....... *::. Channel Right Side Slope (horizontal/vertical).............. 50.0 50.0 Channel Bottom Width (ft)............ . 2.0 COMPUTATION RESULTS ' DESCRIPTION -------------------------------------------------------------------------------- VALUE Normal Depth(ft)........................................... 0.11 < Flow Velocity (fps)......................................... 1.03 ' Froude Number ............................................... 0.731 Velocity Head(ft).......................................... 0.02 Energy Head(ft)............................................ 0.12 Cross -Sectional Area of Flow (sq ft) 0.78 .......................• Top Width of Flow (ft)......•• • 12.63 ' HYDROCALC Hydraulics for Windows, Version 1.0 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 west, Suite 314, Houston, TX 77069 Phone: (281) 440-3787, Fax: (281) 440-4742, Email:software@dodson-hydro.com All Rights Reserved. 0 1 I 1 1 1 TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION January 15, 1999 PROGRAM INPUT DATA DESCRIPTION VALUE Flow Rate(cfs)............................................. 2.48 Channel Bottom Slope(ft/ft)................................ 0.017 Manning's Roughness. Coefficient (n-value)................... 0.015 Channel Left Side Slope (horizontal/vertical)............... 0.0 Channel Right Side Slope (horizontal/vertical).............. 0.0 Channel Bottom Width(ft)................................... 2.0 ' DESCRIPTION COMPUTATION RESULTS VALUE -------------------------------------------------------------------------------- Normal Depth(ft)........................................... 0.27 ' Flow Velocity (fps) ......................................... 4.6 Froude Number ............................................... 1.562 Velocity Head(ft).......................................... 0.33 EnergyHead(ft)............................................ 0.6 ' Cross -Sectional Area of Flow (sq ft)........................ 0.54 Top Width of Flow (ft)...................................... 2.0 HYDROCALC Hydraulics for Windows, Version 1.0 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281) 440-3787, Fax: (281) 440-4742, Email:software@dodson-hydro.com All Rights Reserved. L� 1 1 RAINFALL PERPORMANCE STANDARD EVALUATION PROJECT: j�2FsvE /9�vrs ,oh�' STANDARD -FORK A COMPLETED BY: J X L DATE: ////5'/58 DEVELO ED ERODIBI TY Asb Ss S PS SUBBA$IN ZONE (ac) (ft) (4) (feet) M (�) o PC5 i r /. Z / Soo ' 0•.93 v TF y 3 yo i, o 7y-3e HIM 93.3Y DESIGN CRRERIA 1 U EFFECTIVENESS CALCULATIONS PROJECT: STANDARD RM B COMPLETED BY: J /e L DATE: Erosion Control C-Factor P-Factor Method Value Value Comment MAJOR PS SUB AREA BASIN (t) BASIN (AC) CALCULATIONS 7 9, 3 o��s /, z / 2Nss Az f; 0, z y !sue Ln/ro C-Fx�rur =((0.0/ ko.zy)t(O.oixa-yZ)�ZI IA�TI7 -FJ3c-TeX = /. 00 pNS�YE /. ?c) 1A�>z� C-J= e%a2�((O.o/x0,576)tlo.oi,c �-G,iC TOR 4 6 ' MARCH 1!!l 8-15 DESIGN CRIIBUA CONSTRUCTION SLomcm PROJECT: f 2F5Fiu� /%yf-g �%lfuS.d� .0 STANDARD PORN SEQUZWCZ FOR 19 " ONLY cmamsm BY: C curs: / -/;2 95 'Indicate by use of a bar lino Major modifications to an or symbols when erosion control Measures will be installed. approved schodu approval by the City Engineer. Is may require submitting a now schedule for YEAR qy9 MONTH ' ovsRloT aRAD sa I � j WIND EROSICN CONTROL I i Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods ' Soil Sealant Other 'RAINFALL EROSICW CONTROL STRUCTURAL: Sediment Trap/Basin ' Inlet Filters Straw Barriers Silt Pence Barriers Sand "go i Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other I VEfisTATIVE: Permanent good Planting Mulching/Sealant Temporary Seed Planting Sod Installation ' Mettings/Mats/slankets Other WTRUCTURZS: INSTALLZD BY MAINTAINn BY GETATION/MULCHING CONTRACTOR ATE SUBMITTED APPROVED BY CITY OF FORT COLLINS ON MARCH 1991 8-1s DESIGN CR[TEPAA Q, l 7. L-t c m a o S = O, Do.5 Ss = Z' 3-z:) a E 0 ' vs o.i ss-/)o.G�= <3,eYl? Dos)o./lz.s -l.Gj ,6c V) L O p �J O .0 Q1 C LLJ p /7ZOl.ciEl/c ' V Av /.l,2 s 3.y7,�s �s�e uJou Vo<OU Yo %/JC }r/, 70 _ ./ 7o y�3 ox fq.2:�- L/9ooF%z ��rs r•i.t pE/'T o� GVF2F?«�Ivp�� 1 [J SWMM APPENDIX 1 1 1 1 1 1 11 1 1 1 1 H 1 1 11 n I EXISTING SWMM SCHEMATIC FROM LIDSTONE & ' ANDERSON FOR THE PRESERVE PHASE I 1 I 1 1 1 11 r 1 1 1 1 I 1 1 LEGEND OSUBBASIN ' CONVEYANCE/ ROUTING ELEMENT O NODE DETENTION POND 3 ) ( 1 0 206 15" DIA. RCP 1106 S = 0.5% 7 30I POND 1 Hl POND 2 203) (209 205 304 POND B 7 207 107 118" DIA. RCP S = 1,45e 108 115" DIA. RCP S = 1.1% we 109 1.15" DIA. RCP S = 3.6% 5 .' FIGURE 3 SCHEMATIC DIAGRAM OF THE DETENTION SYSTEM SWMM MODEL I EXISTING SWMM INPUT FILE FROM LIDSTONE & ' ANDERSON FOR THE PRESERVE PHASE I 1 1 1 11 1 1 1 J I� 1 I 11 I ' 2 1 1 2 3 WATERSHED 0 'RESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 00-YR EVENT FILE: PRE-ALL.DAT. LIDSTONE 6 ANDERSON, INC., CLD 10-28-1993 �Wllhxjt� ��ri]�n -60 0000 S. 1 1. - 1 ,J +' �� incnhij 25 5. FOJ�1r7� .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 ' Su/M NIJJ�. 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 / filer r '.24 1 .12 1 .12 .12 3012300. 0. 6.55 55. .020 .020 .25 .1 .3 .9 .43 .0018I 1 2 3021600. 3.69 63. .020 .020 .25 .1 .3 .9 .43 .0018 - On-]irC 1- •`•`✓45i;:j ;; n x j 1 3 2031700. 5.12 55. .050 .020 .25 .1 .3 .9 .43 .0018 5 205 925. 0.98 01. .200 .020 .25 .001 .001 .9 .43 .0018- l7E'[r;iro- Pond -L) �,(1CI Ac ajl 1 1 6 7 206 207 700. 625. 3.20 92. 2.87 34. .020 .020 .25 .1 .3 .9 .43 .0018 i y 70;• Lp /(�,� r( �; �5; U, D .018 .020 .25 .1 .3 .9 .43 .0018 p�F-51�C D A S ' 6 1 2 3 5 6 7 6 1 2 3 5 6 7 301 209 8 2 0.1 1. .1000 0. 0. .024 0.1 0.0 0. .001 0.82 .03 0.98 .15 1.11 7� II (Or�Q ' 37 1.22 .64 1.33 .94 1.43 1.29 1.52 302 209 6.2 0.1 1. .1000 0. 0." .024 0.1 0.0 0. .001 0.99 ,03 1.29 .16 1.54 �ond a .37 203 205 1.75 3 .64 0.1 1. 1.94 .100 0. 0. .024 0.1 F&S,nl� r'r rncosSokon 206 106 3 0.1 1. .100 0. 0. .024 0.1 FEW from ori5 r[a n (G 106 208 2 1.25 357. .005 0. 0. .013 1.25 207 107 3 0.1 1. .100 0. 0. .024 0.1 orr5r7c % 107 108 2 1.50 32. .014 0. 0. .013 1.501 108 208 2 1_25 71. .011 0. 0. .013 1.25 208 109 3 0.1 1. .100 0. . 0. .024 0.1 109 209 2 1.25 248. .036 0. 0. .013 1.25fry5(✓e�!/On•�n'S 209 205 3 0.1 1. .100 0. 0. .024 0.1 rio�+7o eA:5'1•: j �I Oi='lam 205 304 304 0 3 7 2 0.1 0.1 1. 1. 100 .100 0. 0. 0. 0. .024 0.1 .024 0.1 0.0 0. .18 2.75 .46 3.65 .88 4.37 _ 1.37 4.98 1.96 5.53 2.62 6.03 10 301 302 304 203 106 107 108 208 209 205 10 301 302 304 203 106 107 108 208 209 205 NDPROGRAM 11 1 I EXISTING SWMM OUTPUT FILE FROM LIDSTONE & ' ANDERSON FOR THE PRESERVE PHASE I 1 1 1 1 1 L 1 H 1 1 1 1 1 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL ' DEVELOPED BY UPDATED BY 'APE OR DISK ASSIGNMENTS METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1983) JIN(1) JIN(2) JIN(3) J1N(4) JIN(5) JIN(6) JIN M JIN(8) JIN(9) JIN(JO) 2 1 0 0- 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT M JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRATOt 3 NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 4 .0 0 0 -f ��'�L�-• OUT -7heP�m,-f'je rr.100 5umm OvFpc;- 1 WATERSHED PROGRAM CALLED •`• ENTRY MADE TO RUNOFF MODEL •*' PRESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE: PRE-ALL.DAT LIDSTONE 8 ANDERSON, INC., CLD 10-28-1993 NUMBER OF TIME STEPS 60 1 1NTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 ' 1.20 .64 .60 .48 .36 .36 .24 .24 .24 .24 .12 .12 .12 .00 .24 I ' -RESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE: PRE-ALL.DAT LIDSTONE & ANDERSON, INC., CLD 10-28-1993 1 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE .UMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE 1 301 2300. 6.6 55.0 .0200 .020 .250 .100 .300 NO '2 3 302 203 1600. 1700. 3.7 5.1 63.0 55.0 .0200 .020 .250 .100 .300 .90 .90 .43 .43 .00180 .00180 1 1 .0500 .020 .250 .100 .300 .90 .43 .00180 1 5 205 925. 1.0 1.0 .2000 .020 .250 .001 .001 .90 .43 .00180 1 6 206 700. 3.2 92.0 .0200 .020 .250 .100 .300 .90 7 207 625. 2.9 34.0 .0180 .020 .250 .100 .300 .43 .00180 1 .90 .43 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 6 'OTAL TRIBUTARY AREA (ACRES), 22.41 HYOROGRAPHS WILL BE SAVED FOR THE FOLLOWING 6 SUSCATCHMENTS FOR SUBSEQUENT USE WITH UDSWM2-PC 1 2 3 5 6 7 I I I I C I 1 I ,RESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE: PRE-ALL.DAT LIDSTONE 8 ANDERSON, INC.; CLD 10-28-1993 �YDROGRAPHS ARE LISTED FOR THE FOLLOWING 6 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS IME(HR/MIN) 1 2 3 5 6 7 ' 0 5. 0. 0. 0. 0. 0. 0. 0 10. 0. 0. 0. 0. 0. 0. 0 15. 3. 2. 3. 0. 1. 1. 0 20. 6. 4. 5. 1. 4. 2. 0 25. 9. 6. 7. 2. 7. 2. 0 30. 19. 13. 16. 3. 13. 5. 0 35. 42. 026- 35. O 24. 12. I0 40. 37. 21. 29. 6. 20. 13. S�GoGS�n r�euks 0 45. 18. 9. 13. 2. 9. 8. t0 50. 13. 7. 10. 2. 6. 7. 0 55. 9. 5. 7. 1. 5. 5. 1 0. 7. 4. 5. 1. 3. 4. 1 5. 5. 3. 3. 0. 3. 3. 1 10. 3. 2. 2. 0. 2. 2. 1 15. 3. 1. 2. 0. 1. 2. 1 20. 2. 1. 1. 0. 1. 1. 1 25. 2. 1. 1. 0. 1 30. 1. 1. 1. 0. 1 35. 1. 1. 1. 0. 1 40. 1. 1. 1. 0. 1 45. 1. 1. 1. 0. 1 50. 1. 1. 1. 0. 1. 0. 1 55. 1. 0. 0. 0. 0. 0. 2 0. 1. 0. 0. 0. 0. 0. 1 2 2 5. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 2 45. 20. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ' 2 25. 0. 0. 0. 0. 0. 0. 2 2 30. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 2 40. 45. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 50. 0. 0. 0, 0. 0. 0. 2 55. 0. 0. 0. 0. 0. 0. 3 0. 0. 0. 0. 0. 0. 0. 3 3 S. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 15. 0, 0, 0, 0, 0. 0. 3 20. 0. 0. 0. 0. 0. 0. I3 25. 0. 0. 0. 0. 0. 0. 3 3 30. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 40. 0. 0. 0. 0. 0. 0. 3 45. 0. 0. 0. 0. 0. 0. 3 50. 0. 0. 0. 0. 0. 0. 3 4 55. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 t4 5. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 15. 0. 0. 0. 0. 0. 0. 4 1 4 20. 25. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 30. 0. 0. 0. 0. 0. 0. 4 35. 1 4 40. 4 45. 1 4 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. I RESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE: PRE-ALL.DAT LIDSTONE 6 ANDERSON, INC., CLD 10.28-1993 '* CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ••* WATERSHED AREA (ACRES) 22.410 (TOTAL RAINFALL (INCHES) 2.880 TOTAL INFILTRATION (INCHES) .350 TOTAL WATERSHED OUTFLOW (INCHES) 2.371 ,TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .158 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 i I I i 1 [1 1 i [1 1 ''RESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE: PRE-ALL.DAT LIDSTONE 3 ANDERSON,•INC., CLD 10-28-1993 - WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE UTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH AUMBER CONNECTION (FT) (FT) (FT/FT) L R N JK (FT) 301 209 8 2 PIPE .1 1. .1000 .0 .0 .024 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 11 �v p A -0 .0 .0 .8 .0 1.0 .2 1.1 .4 1.2 .6 1.3 .9 1.4 1.3 1.5 302 209 6 2 PIPE .1 1. .1000 .0 .0 .024 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 203 205 .0 0 .0 3 .0 1.0 .0 .1 1.3 1. .2 1.5 .4 1.8 .6 1.9 .1000 .0 .0 .024 .10 0 206 106 0 3 .1 1. .1000 .0 .0 .024 .10 0 106 208 0 2 PIPE 1.3 357. .0050 .0 .0 .013 1.25 0 207 107 0 3 .1 1. .1000 .0 .0 .024 .10 0 107 108 0 2 PIPE 1.5 32. .0140 .0 .0 .013 1.50 C 108 208 0 2 PIPE 1.3 71. .0110 .0 .0 .013 1.25 C 208 109 0 3 .1 1. .1000 .0 .0 .024 .10 C 109 209 0 2 PIPE 1.3 248. .0360 .0 .0 .013 1.25 C 209 205 0 3 .1 1. .1000 .0 .0 .024 .10 C 205 304 0 3 .1 1. .1000 .0 .0 .024 .10' C 304 0 7 2 PIPE .1 1. .1000 .0 .0 .024 .10 C < RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW O •0 .2 2.8 .5 3.7 .9 4.4 1.4 5.0 2.0 5.5 2.6 6.0 TOTAL NUMBER OF GUTTERS/PIPES, 13 - RESERVE DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE: PRE-ALL.DAT LIDSTONE 8 ANDERSON, INC., CLD 10-.28-1993 I"RRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TR 106 206 0 0 0 0 0 0 0 0 0 0 107 207 0 0 0 0 0 0 0 0 0 0 ' 108 107 0 0 0 0 0 0 0 0 0 0 109 20B 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 0 3 205 203 209 0 0 0 0 0 0 0 0 5 206 0 0 0 0 0 0 0 0 0 0 6 207 0 0 0 0 0 0 0 0 0 0 7 208 106 108 0 0 0 0 O 0 0 0 O 209 301 302 109 0 0 0 0 0 0 0 0 ' 301 0 0 0 0 0 0 0 .0 0 0 1 302 0 0 0 0 0 0 0 0 0 0 2 304 205 0 0 0 0 0 0 0 0 0 0 HYDROGRAPHS WILL BE STORED FOR THE FOLLOWING 10 POINTS ■ 301 302 304 203 106 107 108 208 IBUTARY SUBAREA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 209 205 209 205 PRESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE: PRE-ALL.DAT LIDSTONE & ANDERSON, INC., CLD 10-28-1993 �YDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS ' THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN ACRE -FT FOR SURCHARGED PIPE OR DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER � +s ?ws pond3 �IME(HR/MIN) 301 302 304 203 106 107 108 208 209 205 C 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O(S) O(S) O(S) .0( ) .0( ) .0( ) .0( ) .0( ) .O( ) .O( ) 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .O(S) O(S) O(S) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .O( ) 0 15. 1. 1. 1. 3. 2. 2. 1. 2. 2. 5. O(S) O(S) D(S) .0( ) .5( ) .4( ) .4( ) .0( ) .0( ) .0( ) 0 20. 1. 1. 2. 5. 5. 2. 2. 5. 7. 12. .1(S) O(S) .1(S) .O( ) 1.0( ) .4( ) .4( ) .0( ) .0( ) ) .0( 0 25. 1. 1. 3. 7. 5. 3. 3. 7. 10. 18. 1(S) 1(S) .2(S) .0( ) 1.3( ) .5( ) .6( ) .0( ) .0( ) .0( ) 0. 30. 1. 2. 4. 16. 5. 7. 7. 10. 12. 32. .2(S) 1(S) .4(S) .0( ) 1.3( ) .8( ) 1.2( ) .O( ) .0( ) .0( ) 0 35. 1. 2. 4. 35. 5. 13. 7. 12. 15. 57. .5(S) .3(S) .8(S) .0( ) 1.3( ) 1.5( ) 1.3( ) .0( ) .0( ) .0( ) ' 0 40. 1. 2. 5. 29. 5. 13. 7. 112. 15. 50. .8(S) .4(S) 1.1(S) .0( ) 1.3( ) 1.5( ) 1.3( );'• .0( ) .0( ) .0( ) 0 45. 1. 2. 5. 13. 5. 8. 7. 12. 15. 31. .9(S) .5(S) 1.3(S) 0( ) 1.3( ) .9( ) 1.3(,) .0( ) .0( ) .0( ) ' 0 50, 1. .9(S) 2. .5(S) 5. 1.4(S) 10. .0( ) 5. 1.3( ) 5. .7( ) 7. 1.3( ) 12. .0( ) 16. .0( ) 27. .0( ) 0 55. 1. 2. 5. 7. 5. 5. 7. 12. 16. 23. ' 1.O(S) .5(S) 1.6(S) .0( ) 1.3( ) .7( ) 1.3( ) .0( ) .0( > .0( ) 1 0. 1. 2. 5. 5. 5. 3. 7. 12. 16. 21. 1.0(5) .6(S) 1.7(S) .0( ) 1.3( ) .5( ) 1.3( ) .0( ) .0( ) .0( f oAG �r J ,J,,� : O G a�•(1 �„o• Ocf5 1 5. 1. 2. 5. 3. 5. 3. 7. 12. 16. 19. 1.1(S) 6(S) 1.8(S) .0( ) 1.3( ) .5( ) 1.3( ) .0( ) .0( ) .0( ) 1 10. 1. 2. 5. 2. 5. 1. 7. 12. 15. 18. ' 1.1(S) .6(S) 1.8(s) _ -0( ) 1.3( ) .3( ) 1.1( ) .0( ) 0( ) •0( ) 1 15. 1. 2. 5. 2. 5. 2. 0. 8. 12. 14. ' 1.1(S) .6(S) 1.9(S)_ .•0( ) 1.3( ) .4( ) .0( ) 0( ) •0( ) •0( ) 1 20. 1. 2. 6. 1. 5. 1. 2. 6. 9. 11. 1.1(s) .6(S) 1.9(s) .0( ) 1.3( ) .2( ) .5( ) .0( ) •0( ) •0( ) 1 25. font ; 1. {1,,,: I•I Fc•F' »:1:5�{s 2. 6. 1. 5. 1. 0. 6. 10. 11. 1.1(S) .5(S) 2.0(S) .0( ) 1.3( ) .3( ) .0( ) .0( ) .0( ) .0( ) . 1 30. 1. 2. 6. 1. 5. 0. 2. 6. 9. 10. 1.1(S) .5(S) 2.0(S) .0( ) 1.3( ) .2( ) .4( ) .0( ) .0( ) .0( ) 1 35. 1. 2. 6. 1. 5. 1. 0. 6. 9. 10. 1.1(s) .5(S) 2.0(S) .0( ) 1.3( ) .3( ) .0( ) .0( ) .0( ) .0( ) 1 40. 1. 2. 6. 1. 5. 0. 1. 6. 9. 10. 1.1(s) .5(S) 2.1(S) .0( ) 1.3( ) .1( ) .4( ) ,0( ) .0( ) .0( ) 1 45. 1. 2. 6. 1. 5. 1. 0. 6. 9. 10. ' 1.1(S) .5(S) 2.1(S) .0( ) 1.3( ) .3( ) .1( ) .0( ) .0( ) .0( ) 1 50. 1. 2. 6. 1. 5. 0. 1. 5. 9. 9. ' 1.1(s) .5(S) 2.1(S) ,0( ) 1.3( ) .1( ) .3( ) .0( ) .0( ) .0( ) 1 55. 1. 2. 6. 0. 5. 1. 0. 5. 9. 9. ' 1.1(s) .5(S) 2.1(S) .0( ) 1.3( ) .2( ) ,0( ) .0( ) .0( ) ,0( ) 2 0. 1. 2. 6. 0. 5. 0. 1. 5. 9. 9. ' 1.1(s) .5(S) 2.2(S) ,0( ) ►�ondt3 1.3( ) VIDO: .1( ) •PiQiw=5.7c`5 .3( ) .0( ) .0( ) .0( ) .a 2 5. 1. 2. 6. 0. 2. 0. 0. 4. 7. 7. 1.1(S) .5(s) 2.2(S) .0( ) .6( ) .2( ) .0( ) .0( ) .0( ) .0( ) 2 10. 1. 2. 6. 0. 0. 0. 0. 1. 5, 5. 1.1(S) .5(S) 2.2(S) ,0( ) .0( ) .0( ) .2( ) .0( ) M ) .0( ) 2 15. 1. 2. 6., 0. 0. 0. 0. 0. 4. 4. 1.0(S) .4(S) 2.2(S) .0( ) .1( ) .2( ) M ) .0( ) .0( ) .0( ) ' 2 20. 1. 2. 6. 0. 0. 0. 0. 0. 4. 4. 1.0(s) A(S) 2.1(s) .0( ) .1( ) .0( ) .2( )1- .0( ) -0( ) .0( ) 2 25. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. 1.0(S) A(S) 2.1(S) .0( ) .1( ) .1( ) M ) •0( ) .0( ) •0( ) ' 2 30. 1. 1.0(S) 2. .4(s) 6. 2.1(S) 0, .0( ) 0,. ) 0. ) 0. ) 0. 3. 3. -I( .0( .1( .0( ) .0( ) .0( ) 2 35. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. ' 1.0(S) .4(S) 2.1(s) .0( ) .1( ) .1( ) .0( ) .0( ) .0( ) .0( ) 2 40. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. 1.0(S) .4(S) 2.1(S) .0( ) .1( ) .O( ) .1( ) .0( ) .0( ) .0( > 2 45. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. 1.0(5) .4(S) 2.1(S) .0( ) .1( ) .1( ) .0( ) •0( ) .0( ) .0( ) 2 50. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3, 1.0(S) .4(S) 2.1(S) .0( ) .1( ) .0( ) .1( ) .0( ) .0( ) .0( ) 2 55. 1. 2., 6. 0. 0. 0. 0.. 0. 3. 3, 1.O(S) .3(S) 2.0(S) .0( ) ,1( ) .1( ) .0( ) .0( ) ,0( ) ,0( ) ' 3 0. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. 1.O(S) .3(S) 2.0(S) .0( ) .1( ) .0( ) .1( ) .0( ) ,0( ) ,0( ) ' 3 5. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. .9(S) .3(S) 2.0(S) ,0( ) .1( ) 1( ) .0( ) .0( ) .0( ) .0( ) ' 3 10. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. .9(S) .3(S) 2.0(S) .0( ) .0( ) .0( ) .1( ) .0( ) .0( ) .0( ) ' 3 15. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. .9(S) .3(S) 2.0(S) .0( ) .0( ) .1( ) .0( ) .0( ) .0( ) .0( ) 3 20. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. .9(5) .3(S) 2.0(S) .0( ) .0( ) .0( ) .1( ) .0( ) .0( ) .0( ) 3 25. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. ' .9(S) .3(S) ISM .0( ) .0( ) A( ) .0( ) .0( ) .0( ) .0( ) 3 30. 1. 2. 6. 0. 0. 0. 0. 0. 3. 3. ' .9(S) .3(S) 1.9(S) .0( ) .0( ) .0( ) .1( ) .0( ) .0( ) .0( ) 3 35. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. ' .9(s) .3(S) 1.9(S) ,0( ) .0( ) .0( ) .0( ) .0( ) ,0( ) ,0( ) 3 40. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. .9(S) .2(S) 1.9(S) ,0( ) .0( ) ,0( ) .0( ) .0( ) .0( ) .0( ) 3 45. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. .9(S) .2(S) 1.9(S) .0( ) .0( ) .0( ) .0( ) .0( ) ,0( ) .0( ) 3 50. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. .9(S) .2(S) 1.9(S) .0( ) .0( ) .0( ) .0( ) .0( ) .O( ) .0( ) 3 55. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. 8(S) .2(S) 1.8(S) .0( ) ,0( ) .0( ) ,0( ) .0( ) .0( ) .0( ) 4 0. 1. 2. 5. 0. 0. 0. 0. •0. 3. 3. .8(S) .2(S) 1.8(S) .0( ) .0( ) .0( ) .0( ):.' .0( ) .0( ) .0( ) 4 5. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. ' .8(S) .2(S) 1.8(S) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) ,0( ) 4 10. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. ' .8(S) .2(S) 1.8(S) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 4 15. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. ' .8(S) .2(S) 1.8(S) .0( ) .0( ) .0( ) .0( ) .0( ) .0( > .0( ) 4 20. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. t4 .8(S) .2(S) 1.8(S) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .O( ) 25. 1. 2. 5. 0. 0. 0. 0. 0. 3. 3. .8(S) .1(S) 1.7(S) .O( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 4 30. 4 35. 4 40. 4 45. ' 4 50. ' 4 55. ' S 0. 1 1, 2. 5. 0. 0. 0. 0. 0. 3, 3. .8(S) 1(S) 1.7(S) .0( ) ,0( ) .0( ) 0( ) 0( ) .0( ) .0( ) 1. 1. 5. 0. 0. 0. 0. 0. 3. 3. .8(S) AM -1.7(S) ,0( ) ,0-( ) 0( ) 0( ) ,0( ) 0( ) p( ) 1. 1. 5. 0. 0. 0. 0. 0. 3. 3. .8(S) .1(S) 1.7(S) .0( ) .0( ) ,0( ) .0( ) ,0( ) .0( ) .0( ) ' 1. 1. 5. 0. 0. 0. 0. 0. 3, 3, .7(S) .1(S) 1.7(S) ,0( ) .0( ) ,0( ) ,0( ) ,0( ) .0( ) ,0( ) 1. 1. 5. 0. 0. 0. 0. 0. 3. 3. .7(S) AM 1.7(S) .0( ) ,0( ) ,0( ) .0( ) ,0( ) .0( ) .0( ) 1. 1. S. 0. 0. 0. 0. 0. 3. 3. .7(S) 1(S) 1.6(S) .0( ) .0( ) ,0( ) ,0( ) ,0( ) .0( ) ,0( ) 1. 1. 5. 0. 0. 0. 0. 0. 3. 3. .7(S) .1(S) 1.6(S) ,0( ) .0( ) 0( ) ,0( ) .0( ) ,0( ) .0( ) RESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE: PRE-ALL.DAT LIDSTONE 8 ANDERSON, INC., CLD 10-28-1993 PEAK FLOWS OF GUTTERS AND STORAGES OF RESERVOIRS ••* CONVEYANCE PEAK STORAGE TIME ELEMENT (CFS) (AC -FT) (HR/MIN) 207 13. 0. 0 40. 107 13. 0. 0 35. ' 206 24. 0. 0 35. 108 7. 0. 0 30. 106 5. 0. 0 25. ' 208 12. 0. 0 35. 109 13. 0. 0 35. 302 2. 1. 1 5. 301 1. 1. 1 25. 209 16. 0. 1 0. 203 35. 0. 0 35. 205 57. 0. 0 35. 304 6.2. 2 5. ,'NDPROGRAM PROGRAM CALLED 1 1 1 1 1 1 1 1 1 1 1 1 REGENERATED (WITH MODSWMM) EXISTING SWMM INPUT FILE FROM LIDSTONE & ANDERSON FOR THE PRESERVE PHASE I I 1 2 1 1 2 3 4 WATERSHED 1/0 PRESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE:PRE-ALL.DAT LIDSTONE & ANDERSON, INC., 10-28-1993 60 0 0 5.0 1 1.0 1 24 5.0 0.60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 ' UPDATED ON 1/16/99 BY LOONAN & ASSOCIATES TO INCLUDE PHASE II OF THE • PRESERVE AND DETENTION POND FOR PHASE II. 1 -2 .020 .25 .10 .30 .90 .43 - .0018 1 301 2300 6.55 55..020 2 302 1600 3.69 63..020 3 203 1700 5.12 55..050 5 205 925 0.98 01..200 6 206 700 3.20 92..020 7 207 625 2.87 34..018 6 1 2 3 5 6 7 6 1 2 3 5 6 7 0 301 209 8 2 0.1 0.0 0.0 .001 .37 1.22 .64 0 302 209 6 2 0.1 0.0 0.0 .001 .37 1.75 .64 0 203 205 0 3 0.1 0 206 106 0 3 0.1 0 106 208 0 2 1.25 0 207 107 0 3 0.1 0 107 108 0 2 1.50 0 108 208 0 2 1.25 0 208 109 0 3 0.1 0 109 209 0 2 1.25 0 209 205 0 3 0.1 0 205 304 0 3 0.1 0 304 0 7 2 0.1 0.0 0.0 .18 1.37 4.98 1.98 1. .100 0. 0. .024 0.1 0.62 .03 0.98 .15 1.11 1.33 .94 1.43 1.29 1.52 1. .100 0. 0. .024 0.1 0.99 .03 1.29 .16 1.54 1.94 1. .100 0. 0. .024 0.1 1. 100 0. 0. .024 0.1 357. .005 0. 0. .013 1.25 1. .100 0. 0. .024 0.1 32. .014 0. 0. .013 1.50 71. .011 0. 0. .013 1.25 1. .100 0. 0. .024 0.1 248. .036 0. 0. .013 1.25 1. .100 0. 0. .024 0.1 1. .100 0. 0. .024 0.1 1. .100 0. 0. .024 0.1 2.75 .46 3.65 .88 4.37 5.53 2.62 6.03 10 301 302 304 203 106 107 108 208 209 205 10 301 302 304 203 106 107 108 208 209 205 ENDPROGRAM FI REGENERATED (WITH. MODSWMM) EXISTING ' SWMM OUTPUT FILE FROM LIDSTONE & ANDERSON FOR THE PRESERVE PHASE I 1 1 1 I I I I I 1 I I I I I I 1 1 1 1 H 0 0 Nz o V v N h O m ' J z P r rn a zo E.o �a w 0 N m E .+ w z a 7 O U 3 r N £ w w m h m O 1 W w Z O z w o H w W m z S r w F m W a OV w f. V a 2 0 F O H m o P O o U r h z m m O� rn M '-I c (L z pH W F O O I C j WU F W N m a W h U z o F O Q O I W O W V O d h O U Zo Z S Ori H o H h m m O ZEl H S H C .n Q7 V 2 Z a H O O [w.l r>i u nat [.Wl o a a z ❑ z �n �n ❑ W W m w M H ❑ O O N ❑ W U W z w w H p a O O W H h Oh 0 H z O (7 j Z o a H z + E.m El a lH7 O O m F H H r a w vHi ai o a w `;.' az o wa a s a a o a a o ❑ar > a as >a o > W a z o E o K P a" o F H F H ❑ m >. H G C W F m cn N w Z a z �. rj p V m Z tO P N £ 0 Gp1 N Z H Z m E+ m m n a W a « .1 a❑ W x E a E- za aF< z o F o a w a F z H w z a w H P o a� m h o ❑ (� a £ G a P l0 W F � ❑ E ,zi❑ El � ❑ m w �G mEC ^] W Ora7 Om cl U N N F m zH E N Fr'i V '� z C mF 4a]IFi1 ❑ a '� O U C O z o O F Ew za E c:•. Ham£ w H £ W W O m wH ozz a ❑ wW ❑ ❑Z '" '� £ F z z C(D a HN �� ❑ w o w a CNN p o W C w W O E.aN z \O h N F > G W H W c uzi Iai r m U 6 w m l CO w o F OO 1 J 71 LJ I� L 1 wQ U Z .-I H tititi., u W o 0 0 0 0 0 0 aF ad,mmmmmmm \ o000000 H �0000000 , W FM r� a £ 0 Z£ M M M M M M M oz«««< F £ a H£ O O O o 0 0 o Z x H rEE� m U a a d � I z >0000000 £ w E H a0000000 3 °o w £ O F E F H N > 3 Z Lx O O O O O O O H W W o 0 0 0 0 0 o W S a £H�-IH Hr-IHH m El m 3 F p W w 14 O `� E [a] H 0>o000000 O N N N N N to N m H N E w N N W N N N N N IO t/1 u M w0� W N C.M 00 m�DCM<mMlpOmm.�lOMOmrio tpN<cMNN om 0r a .-INNNNmIONMNNti.-1 '-I m H a W Q d W I U > Q a d N O O O O O O O m y m I E W W N N N N N N N F I I Z m H E m a 2 H 2 ri M 1p N M 0, m lD < M N H H H H mz E a U E N a mz x H p _ w F o 0 0 0 0 0 o m p H F Z • d [u000000m 0 a Z V I N N W O O O O N O O ❑ CG m N N z Z W `� 00. c9 a z H a ab Z>>0000000 a nry ;tea a UW oN N z 14 £ N tO N OE M c j W H M O . 0. c M H O d H N O m .0 O . . . . . . . . . . . . . . . . N<r IDNmN O�lp <MN •-�.-I H N� a N .+ ao 41 a.-.O Nr HONOR = 4 C, z .a W U • • • • • • • F z a a' a lOM N�--�MN a W Q a m • M E S Q z❑LD Z N O z a 0 F N O O H at L1 V' O H N .... m c H H c. H F a £ C❑ H E. 0 ..... . . NMNN <MCJ r• HH n a _ O O O O O O O S U W a A CA H N N ai C ow o 1 0 0 F— 4 C ❑ W H--• OOONON a m W W Z a 3 Mv�r cir� U a ZO O d N H H m W.W N G y W Gm F t, H o o H m o N r m N< m m N H r M N H 0 m. c N H W H Q [.4 i+a z a .Ha MNG1T Hl0 r MN l0 c M.NN HH H H H.-� . oa �" a W F a o.-�NMNNr 3 W a p E. O z 000000 5 F p E. .. W O M M N N N N W o m I a O [!] m S I W 2 H W W £ H H £ . . . . . . . . . . . . . . . . . . . . . > / a ZF 5 W W a . N O N O N O N O N O N O N O N O N O N O N O N O N O N O zm C C (.X c� K z r� N N M M ua m l a mNHNMN�Or a a Owl I, W �yO p 0 1 O Q Q ❑ H 0000000000 O.-1.-i .r .-i,-i,-1 'y .-I ,y ,y ,-y ti N N NN a"i m Z E+ F S O:0 d H S E U 1 1 1 y O y S a ° w a w 1 w F w H E., H •+.ti .1 H . 00 W • H N . . . . . . . . . . . . . . . . . . . . . . . 1 O I w N •� 6 N O � I a m 1 £ d N 1 rti ti .� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. H I o c o m r c rn o z H rZi , N cc z 3 f`. tom`. . . [9Z ❑H � N N N H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a p z a p z oz o a z w m a 0 az as o z Q a s 1 00000000000000000000000000000000o ................................ a b aW O a z a H ZO z £ F C N Z w o a a Hp y E ao s w o ao 1 0 0 0 0 0 0 0 co o < Q .a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U< m z a F Z O p Z Z 2 z 0 H F a N N W H w w H ' a W Ow ^ y y w S z O E a C a a 4 Za :L W H a w W w Za .. ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 OH G m m < . F W S U a z H Z O O CL O E- I-. E w 1 Z .-] w w p E tail a a S E+ y W O Z F Z a 4Fl w ❑ F m H z a a w a z a o • O Vl O t(1 O I(1 O tf1 O ifl O U1 O ill O Y1 O N O Vl O vl O ul O O N O Ifl O Vl O ((4 Z a H W w U I w w ; 2 Z `L. H 3 N z w 1 a s wN O u N a w a a a a a a wr W o ♦ E E a E. a E a F O a N W o a o w� a 3 p E o E p F p E a w ao a,r r I PN 01'-IMN r P �L h O O 00000000000 UN0101H.-I QMNN�O NNMN�D ID �O MN N H N W a Q �+ o000000000000 u a x., o 0 oolnooln oln000 xo Q N W C 0 0 0 0 0 0 0 0 0 0 0 0 0 W O z Z P P P P M P M M P M P P P l N N N O O O O O O O O O O O O O O Z Z O O 1V C 0 0 0 0 0 0 0 0 0 z O O O O O O O O O O O O O P P a W > a G Q o 00 N Q NEl a0000000000000 N O O 0 0 0 0 0 0 0 0 0 0 0 Q wHa m 0 O P O . C a W F O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 F a El C O\ O .-I O O N OONO P'-1 ODD 000 T m >uai rF.. '-' O OOOO.y .-1 O M 000 1..1 Z p FOOOOMvt for OO H NO ¢� H o 3 0 H O N m a ElW Z Ga `y W a O H O H M r P N 3 M N O tr: o F F F O m O I FO C. Q� Q e-1 H .-i .-1 O 3 `"ay 3 o "� a .o 000000000000o r H H a o p d d N a E m O N m h Q U O O O O O O O O O O > '-I > H > N H O O O H d F F W W W W W W W W W W W Q Z O 0 0 0 0 0 0 0 0 0 0 0 0 0 lD a� a[.� a as a as O ' H I O 61 W M H 1 O. W 0 H H H H H a a m a I N O a N H a W oo a o000000000000z Q U Q u a z H Q Q t1 S 61 H a Q \ a o O O O O O O O Z N N M M N M N N M N M M N O O O O O O a M W W W 000 N Z .0 F F d 0 0 H N F O 61 O i0 M H p a o F voFi N Z a Z E a ' a a H o a rn H o a cn `C E Q E� z CD O l0 O OOOOOOOOOOr O a d Z p E O 0 0 G a C N d H O M W W W F a W C W N W \ P I O O O O c C u � c o 0 o 5 LN.i C IQ N Z F Z14 OH n' 0 0 0 0 0 W F O O F 0 0 0 0 0 0 0 0 QI O f• U L1 p �Omr m© O�01 u'1 �,O �= E W Z a Z O p 0 0 0 0 0 0 0 0 0 O G. N a U Z N r N .y .ti N H N N M O F 4H4 fu H ' O o 3 U a W El Z E. C W N W Z F W FOrmO�M�nOr roOitiN P 6xi ti O W £ O O O O O O O O O O O O O O O a s W W z > W H r H N N N N N N M M M M ' F W = O O r r W m Ol 01 N P O O O O O H W qC a j O O O O 00 O O O W O a �„ Q S I I P O O M � W lD O H O N r m W r N O P r O M tD m 0000 N O POm.� MM H r l0O W N OMH P NN M\O Pr W Nat p P NmND\ip OlO OtD O�OO ' M .y N M P Pr-1PHNHNHNHNHNtiNHN.-�N.y N'-1N NNNNNNN ^_ — O O rM W P W . ' O .OMO .ONH . . . . .(TNm .p. . . .O. . . .p. . . . . . . . .N 3 O a n V N N N N N N N N N_ N N N N N N N_ N N N N N_ ' O ti O O O O Q\ O O O H .y N N M N P r P m P O� N ONO N O N O N O N p N 3 M O N O N O N O N O N O H H .i .i e-1 �-1 '-I r-1 .-I rl �-1 e-1 .-1 '-1 �-1 .-1 '-I rl rl .-1 .i rl �-1 .-1 •-I .-1 H .-1 H .-1 i-1 a a N N O O O O O O O O O O O O O O O O O O O O O O OO H OlDO N 0�00�00 NO P O r OMOrON OlOO N O H O H O x O OlOOMO r O.+0�000� O H O WO — .-. .-. .-. — .-. C S x i s O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 H O P O O O W O N O N O N O N O N O N O N O N O N O P O O N O m O c 0 0 0 P O UOa E ry u t r N N N N N N N. N . r ..... u. . u. . u. . u. . u. . .-. .-. — — — • p N F .-. .-. — — .-. .-. — — .-. .-. — — .-. — — — v y v .... — — — — — — — — — — — Z O H F O O 0 0 0 0 0 0 0 0 0 0 OOHONOM .O OlOONO W OO OrOc0.- OPONOOOrO W ONO 000 OcOr 0 £ O w O U ry • . . N W H CL C C H a E M W 4 [:] U N W FOWIZ 4 w C C E O z N g w a N o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 •1 z Z C M N H cwi o H Q O Z U _ _ _ O 0 0 0 0 0 0 o ow a" w _ � M m H r W M r m m m w OOOO PMIDP O PmlOMOMOMOMOMOMOMOMOMNNPN I:J z H H O H Z C7 H coH C C] W x Q W O ~ MlON W MNN�ON cN '~ '~ N M r r r r r r r r N r-I ti ' O E U�[ a C S w x< 4 w C a E F U C =O MO FNO — .-. — ,.. C] S . Z OO N N N N N w w wW r OOOONMtOM PCP�D POPO W . ' F ] N N F E E. E.E O H . . . .010mN . . . . . .ONrNCD NNNlON c.. HHO M M m M z zz z O C C CZ] [w w w w w 4][il 0000 � Od 70 V DO N O O O O_ O_ O_ O_ O O_ O O_ O_ O_ O_ O_ O_ O_ O_ — •,.. ... FQ. V Q. . O. H C C O . . . . . . . . . . . . 0. . Q. f. 4. . . . . . . ... O ti mm z S F E a £ N O N O N O N O N O N O N O N O N O N O N O x m ' p x E. I N_ N N N N N N N N N N P M .-I O1 W l0 P l� rlr ♦-I r'-1r rlr.-1r "l 1p rl 10 r1 1p OlDO�D O�OOlD O1OOl001N 01N Ol tll OlN 011n 01 tt> W C W c mP W P W P W Pr P rMr Mr -'1 N ✓) N �(1 N V1 N N N N N N N tl1 N N N N N t(1 N N N Ul N ✓1 N �/1 •-I N .-� N ti N .i N .-1 .-� N '-I ✓1 N N .� N .� N N N ti Vt 'i Vf ,.y .y U1 .-1 Q� W r �O i(1 P N .4 O O� r 1D N P m .-� O 01 W r \O N M N .•� O 01 W r �O N N N N N N N_ N_ N N N N N N N_ N N N_ En N_ N W r t0 V1 P m m N r-1 O — W r l0 - - �ONOutO N O VtOvtONOvtONOvtO vt O\ut O�uf OAP 01P O\P O\PTPp�PO� P01P W P W c W c W P W P W P W P W P W P W .-� '-1 .i '-I �-1 ri rl '-I r-I .y .4 .-I '-I rl �-1 .-� r1 N .-1 .-I '-1 'i rl '-I rl .y '-1 .-I .i .-1 '-I .-� .-1 r-1 .-1 .-I rl • '-1 'y �y O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O m O N O N O N O N O N 0.- I O.- � O. i O ti O.- W W r P M M M M m m M m � " � " � • � • � . ( . . . � . . � . O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O .. .. .. .. .. O O O O O O O O O O O O O O O O O O O O O O O O O O O O — . .-i o.-i om o r o W o vi ono PO P OMO MOMO m O N ON O N ONON O.y O.-I O.-1 OH 0.+000000000000000 ------------------------------ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O — — — — — — — — N .( V .. -1 ..... -.. -.. -. .. . — - ------------------------------ O v b .y m m ti r O r m w r V1 l V l v V c v m m . .. i N ....... -. ... O O O N O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lh I < < < < M M M m M M m M _. ..... . . v. . . . . . v1 . v1 . v1 . V1 . . . . v. . v. O 11 11 1 1 1 1 1 1 1 J 1 1 1 1 1 1 1 1 1 N N N N N N N N Mr Mr MtO MlDM�0 Nl0 N�DN� . . . . . . . . . . . . . . . . U1 N �7 e-1 V1 e-I i() .-1 N �-1 tl1 rl � .1 N •-I ✓1 rl N •H ✓1 •-1 Yl .-1 Vt .-I P N P O Q O Q r Q r Q r P r P r P r P r Q r O O O O O O p O N E m o m o rn o rn o m o m o m o m o H N N N N N N N N a H U O o 0 0 0 0 0 0 0 0 0 o O 0 0 0 H Q m k W « O O O O o 0 0 0 o p rn N a O I x N N N N N N N N d N w a Z o O O N N H N • W N _ _ _ O O O O O O O O a V m z F W W H Z O O O O O O O O O O O O O O O O I" I W H •... O i (1 O O N U t V 1 O N O U1 V 1 O oN az Sao Q aw x o000000000H.yN as NN oa N•• ^ _ _ _ Z00 W a w0 m Z Z F Z w_ N N N N O p❑ O O O O O O O O O O O O O O O O o E+ O U D . N Z H ..4 w F C > 0 a Z Z O U N a W N O£ 0 0 0 0 0 0 0 O O O O O O Ou a La. La. Laaa [ 0 NO [Ni]4.71 . 04 N x H 2OQ a o rUr�� Q F F E F F E uUuuuu .�20 000000000000 00oO W U W E.r7 Z.a G'w W I'' W �" m w ' a OU W -� a Caaa a w N w 0£ F F C Na u F a W • • OODOOO ..7 aH Z< ❑V E, ._. Hr1 �H------`. wEE- wa W D. <� N a F N O w r E u O O O . . > F O Z a Z .+ 000 o > N H Z£ C o w H F w F w 0. a W w . . . u H o z a a d M N ti £ E m m P F W N£ M m H Z N .al Z Z O F O W d 3 W £ 3 d00 Z 4m u>+ . Ox Hr I W W •• zF E a 0 w w w N F N N N N M M M M M M N N N OZ x H C a w 0 > W nor mO�M Ott tOr m0�.-INP C E 00 �.] W �+ d Z Z£ U W 0000000000000 Q P P Q Q Q Q N w W Q U O W O «« U x O Z ti x E.N M a 0 « k W E. OH ENO 1 I REVISED SWMM SCHEMATIC FOR PHASE II OF THE PRESERVE 1 1 1 1 I [1 1 I 1 1 1 I 1 LEGEND OSUBBASIN ' CONVEYANCE/ ROUTING ELEMENT O NODE DETENTION POND 3 ) ( 1 no 206 15' DIA. RCP S = 0.5% 1106 2 M: 7 po 108 115' DIA. RCP S = 1.1% d POND 1 IHI POND 2 1 09 15' DIA. RCP S = 3.6% 203 209 5 �evl $ei ' FIGURE 3 205 SCHEMATIC DIAGRAM OF THE DETENTION SYSTEM SWMM MODEL 304 POND B I POND RATING CURVE FOR THE PRESERVE PHASE II DETENTION POND (SWMM POND 207) 1 1 1 1 1 I 1 1 1 I I 1 ITMPuT F-o/z SI�/%'7l"''� /`>7oUEG 151zer"v = 2.o z '6�c G lrN/iS c.� /ric r- e-o. Qi 7 %ice ro 1 a I .o . 0 ^TT rT ._ Lo 19 w S9•U �%z �tsy o� 3,26 1- 5740.v Z.%Z sb3z G• �Z- d • �`j' I S� 5 .3,Z2 � � �� D•I a �•9a 3139 D.z/ 7,o6 3•gZ /�zvs O.3� 7•4Z y - fPs i3 = /S'itii�dE x -s3-28 1 Q 9 Z`L) 7� 1 4% %oZ •�a�� 4 o�oer� ��g 1 I D,E��.�r-rory 3....� z. I d �I L PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE January 15, 1999 ---------------------------------------- PROGRAM INPUT DATA DESCRIPTION VALUE Culvert Diameter(ft)....................................... 1.5 FHWA Chart Number ........................................... 1 FHWA Scale Number (Type of Culvert Entrance) ................ 3 Manning's Roughness Coefficient (n-value)................... 0.013 Entrance Loss Coefficient of Culvert Opening ................ 0.5 Culvert Length(ft)......................................... 14.0 Invert Elevation at Downstream end of Culvert (ft).......... 0.0 Invert Elevation at Upstream end of Culvert (ft)............ 0.14 Culvert Slope(ft/ft)....................................... 0.01 Starting Flow Rate(cfs).................................... 1.0 Incremental Flow Rate(cfs)................................. 0.2 Ending Flow Rate(cfs)...................................... 7.0 Starting Tailwater Depth(ft) ............................... 1.5 Incremental Tailwater Depth(ft)............................ 0.0 Ending Tailwater Depth(ft)................................. 1.5 COMPUTATION RESULTS Flow Tailwater Headwater (ft) Normal Rate Depth Inlet Outlet Depth (cfs) ------------------------------------------------ (ft) Control Control (ft) 1.0 1.5 0.5 1.37 0.31 1.2 1.5 0.55 1.37 0.34 1.4 1.5 0.6 1.38 0.37 1.6 1.5 0.64 1.38 0.4 1.8 1.5 0.69 1.39 0.42 2.0 1.5 0.73 1.39 0.44 2.2 1.5 0.77 1.4 0.47 2.4 1.5 0.81 1.41 0.49 2.6 1.5 0.84 1.42 0.51 2.8 1.5 0.88 1.43 0.53 3.0 1.5 0.91 1.44 0.55 3.2 1.5 0.95 1.45 0.57 3.4 1.5 0.98 1.46 0.59 3.6 1.5 1.02 1.47 0.61 3.8 1.5 1.05 1.49 0.62 4.0 1.5 1.08 1.5 0.64 4.2 1.5 1.12 1.51 0.66 4.4 1.5 1.15 1.53 0.68 4.6 1.5 1.18 1.54 0.69 4.8 1.5 1.21 1.56 0.71 5.0 1.5 1.24 1.58 0.73 5.2 1.5 1.27 1.6 0.75 5.4 1.5 1.3 1.61 0.76 5.6 1.5 1.33 1.63 0.78 5.8 1.5 1.37 1.65 0.8 6.0 1.5 1.4 1.67 0.81 6.2 1.5 1.43 1.7 0.83 6.4 1.5 1.46 1.72 0.85 6.6 1.5 1.49 1.74 0.86 6.8 1.5 1.52 1.76 0.88 7.0 1.5 1.55 1.79 0.9 Critical Depth at Outlet Depth Outlet Velocity (ft) ------------------------------ (ft) (fps) 0.37 1.5 0.57 0.41 1.5 0.68 0.44 1.5 0.79 0.48 1.5 0.91 0.5 1.5 1.02 0.53 1.5 1.13 0.56 1.5 1.24 0.59 1.5 1.36 0.61 1.5 1.47 0.64 1.5 1.58 0.66 1.5 1.7 0.68 1.3 1.81 0.7 1.5 1.92 0.72 1.5 2.04 0.75 1.5 2.15 0.77 1.5 2.26 0.79 1.5 2.38 0.8 1.5 2.49 0.82 1.5 2.6 0.84 1.5 2.72 0.86 1.5 2.83 0.88 1.5 2.94 0.9 1.5 3.06 0.91 1.5 3.17 0.93 1.5 3.28 0.95 1.5 3.4 0.96 1.5 3.51 0.98 1.5 3.62 0.99 1.5 3.73 1.01 1.5 3.85 1.02 1.5 3.96 HYDROCALC Hydraulics for Windows, Version 1.0 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281) 440-3787, Fax: (281) 440-4742, Email:software@dodson-hydro.com REVISED SWMM INPUT FILE FOR THE PRESERV E ' PHASE II I I [1 I I I I �l 1 I I I 1 2 1 1 2 3 4 ' WATERSHED 1/0 PRESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS 100-YR EVENT FILE: PREPHAII.DAT BASED ON L 6 A FILE: PRE -ALL. DAT DONE ON 10-28-93 29 60 5.0 0 0 5.0 1 1.0 1 0.60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 x 1 * UPDATED ON 1/16/99 BY LOONAN & ASSOCIATES TO INCLUDE PHASE II OF THE * PRESERVE x AND DETENTION POND FOR PHASE II. 1 -2 .020 .25 .10 .30 .90 .43 .0018 1 301 2300 6.55 55..020 ' 2 302 1600 3.69 63..020 3 203 1700 5.12 55..050 5 205 925 0.98 01..200 6 7 206 207 700 1574 3.20 92..020 2.89 70..018 L !� '111crVIOUS Ca1.14 I Al eca 6 ary iaSin W dT,� 1 6 2 3 5 6 7 ru, kj . 1 2 3 5 6 7 ' 0 301 209 6 2 0.1 1. .100 0. 0. .024 0.1 0.0 0.0 .001 0.82 .03 0.98 .15 1.11 .37 1.22 .64 1.33 .94 1.43 1.29 1.52 0 302 0.0 209 6 2 0.0 0.1 .001 1. 0.99 .100 0. .03 0. 1.29 .024 .16 0.1 1.54 .37 1.75 .64 1.94 0 203 205 0 3 0.1 1. .100 0. 0. .024 0.1 0 206 106 0 3 0.1 1. 100 0. 0. .024 0.1 0 106 208 0 2 1.25 357. .005 0. 0. .013 1.25 0 207 108 5 2 0.1 1000. .100 0. 0. .013 0.1 0.0 0.0 0.01 1.3 .06 6.4 .11 6.9 0 6.9 j•_ 1 � 0 108 108 208 0 2 1.25 71. .011 0. 0. .013 1.25 0 0 208 109 109 0 3 0.1 1. .100 0. 0. .024 0.1 L� T 0� ��¢, 209 0 2 1.25 248. .036 0. 0. .013 1.25 0 209 205 0 3 0.1 1. .100 0. 0. .024 0.1 0 205 304 0 3 0.1 1. .100 0. 0. .024 0.1 0 304 0 7 2 0..1 1. .100 0. 0. .024 0.1 0.0 0.0 .18 2.75 .46 3.65 .88 4.37 ' 1.37 4.98 1.98 5.53 2.62 6.03 10 ' 301 10 302 301 203 106 107 108 208 209 205 301 302 304 203 106 107 108 208 209 205 ENDPROGRAM r I I I I ' REVISED SWMM OUTPUT FILE FOR THE PRESERVE PHASE II I 1 I I I [1 I 11 1 1 I 1 1 1 1 1 1 N O O Z O F O q O O c h z P r m m N h O H N W rn h N N F H o a a r w w >. o W m m h a 0 N a o o o r I., z C h m NE N cc3 W W N y O N w z omi z r7 W O F a O H H twit G w U r r w C C z o F o H O OU O h O W W O c O N U h t++ Z 00 rn H C w z w a oU o y as to z z F a❑ na U 2 HO E,O Qo .a F o w 0 o O a h o 9Z a s Pto o M z ❑ H ❑ H m O z N U N W F£ w Hw O W a W O w �>i U mQ O a Lu to a C. z❑ z ❑ ii ❑ o W H H O Q O N O UC w > w ho W U O 0 O 0 H z O h O ❑ F H O M + E. E �Ui C W zQ z to 14 H M H W H U H Z 0 0 F Uzi W N C N O C W .-, .-, N w O W r]O ❑ Q i� v a a CUC_ F.> W > z NO O W F m m N O h O fY O W E. m tD c H £ 3 ❑ W £ ccH❑ N rn N H H z y w s h « rtn in Qwa M M FCC m z Q Z O F O w Z Q< H Q E C w H P OCQ N ❑ m w W £ O Q lDQ ON W N N U E-E H O Z C > ❑ m Z.i FN QM £ C O r/iE wN w a Q h O ❑ D OE z.W-1 Ham Z O W (FA W H W £ w W G O N G ❑ z H O Z Z ❑ z FZ z�C� C N F H ❑ ? i w O W Q 0 izi h O w C w w OE- C N Z v' N N h N F > 0 w H w C w w N W W � < F « o £ F C C F" 3 + W Zrzi H 0 0 11 Ci 1 1 1 W O H H H H H H FZ W ---F 00 O 0000 aa�mmmmmmm � o000000 H 0 0 0 0 0 0 0 W E.a D Z£ M M M M M M M O H P Q Q Q P Q P H Z E H E. £ a D H£ 0 0 0 0 0 0 0 [u HO�O�0101 O10101 H � N a a d > I a Z 9 0 0 0 0 0 0 0 E E H a0000000 3 z LD D W C O Ex ElE. > g Z N U d H H H H H H H D NI H 3m wH ON 3 .4 F [[ u O N w f u 0 W ti W O W D E 0. a> 0 0 0 0 0 0 0 w < .0 o a N N N N N N N N " o W Z a O W W W r OOmPHmr N�NrhO�Q OQ�r �DNNUINPMN.-10 00 W N C. Z O R R H M N O .-1 �O lD N M NE. N a W Od p H N H D E. > ao 4a000000o N ao R F W N N N N N N N E I ..] N d0000000 Z h zEn £ �o ooPm�N�O O1m HlDQNrnNNornmrrr�oNQN'-1 H I N W W a x Z a H E. Z .... HMIONM O1m lD Q M N •--I e-1.-V '-I a FFCC x H N cai a m m x W W _ W Elo 0 0 0 0 0 0 p U E. " 2.] d d a N O a d E O O O O N O O N L.. d W u' I O O O O O O m h M N O r c N.- I• ti ti O O O O O O O O O 0 ... . Od ZO . w V as �a0000000 .Z. as a Z V W (1 M N .1 N O M O N R Z Z N O£ N\DN 01h Q a H M OOTmNNNm01 W r 01 c Qm Q H OlmmmmtpQMH H H p N W d H N O NO H p O NP rlONmNO�lO cMN H H H N Lv Nw .] HM N•-I as rN a O z m W o N r H O N O. E m 2 U R E+ a a lOMNHMN R[Q W - U Z E+-- 0 Z N w C7p F N OO H01 O��OOHNO01 1p NmC HOIr rl0 lD l0NPN.+.� H H F H £ a 0 H H a N M N N l0 H O� r c M N H H H U w n Q O H N N O F E • • • • Oo 0 N O Q EE+ < c m p ^ a '1. 3 M�ormrNUR O N•titi H.P]WwN pG W D a x H H •-� OO V'JmN Qm p NCO .tir MCJ H.-. . .] Z� .0. .Nr . . . . . W H W .7 W H w M N 01 O� H l0 r M Q� l0 Q M N N H H •-• H H H E. F z 0 0• Q$ w •-� Q M •-� .-� W E R OHNMNtOr w < p F D£ 000000 a F p E- .-. O M M N N N N W D N I W a O m M S £ H dQ H I w Z H W R Z E F a ; W N C W a s S H H N N M M P Q N N H H N N M M Q Q N N H H 0 K Q N O v � QO £ N H N m N M U) a w 01 dO O 0 0 a O H 0 0 0 0 0 0 0 0 0 0 0 r+ H H H H H H H H H •-� H N N N (\ m 2 F E 2 d H x F 11 M M V1 I ON a I ON wo a I wo W H O W OO . . . . 0 0000 4Ni W • H O .0 . . .0 . .0 . . . . .0 . . . . . . . 00 [Nu W o 00 ❑ v a m ao o ao •-.-�rl00000000000000000000000000000 o via U 4 z< G za H I N W I N O M O 01 T ti N ti m vt O O H I m G v W M v H O N N m G ❑ W 2 a O O N ❑ W za. . . . .0 . . . .0000 . . . . . . . .0 .00 . . .00000 O oa z Q o G a ti El S a G N a s o z a a s 00000000000000000000000000000000 o Qo m H w a `�0 El rHr�� a< x a h w zm — o o a am < E.< F y 0 0 Q E- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 0 m . z O U 2 ❑ z E z U ❑ z H H N N W H W W U H H E H 4 C G w n N W z H O a W G O L . .. zm 0 L L w a u z — w 0 � F N z_ o L . . . . . . . . . . . . . . . . . . . . . . . . . . . E w " a 2 U Q ii O D O O H E W w ❑ E H m < E y U z ❑ E W 2 z H [mi] W I w O N O u1 O vt O In O u1 O vt O vt O IA O N O N O N O V1 O VI O v) O ut O N O N N M M v c Vt N .+ ti N N M M m V1 �.7 W [N F W H w F m 7 W W v N H •-I N M M c v vt N W Z S H 3 N H as o n wr u a a a a a m umi am• N N N N N N N N M M M M M M M M M M M M c v v v v v c• c c P c W O W E. F Q E-F �+ F Q F O m N I C o 0 0 0 W O o G ti S E W a N Ql H H P N 11 •-� M t(1 r P U N H N W x Q 0 U a m- y d w �oV o ~ � 0 •� oolno HHNH � � .noln000 N.-IN H�-1 .i � � 0 o00000000000 Q N °� s o00000000000 w o cD Z Z z P P P P M M M P M P P P � ul 000000000000 O O O O O O O O O O O O Cv P •0000 N •000000 P OW o 0 .� o0000000000o y 0 ' 0 N 00 y Q a000000000000 N wHa y $ o •y 0 0000 �,y 000000 � P Q m y 000 000 O 00000 01 O C Q 'F 1 ' WE, 0 w W a FHOOH i y fVa z H E_• zCu _ SHE HCv 3 O d Z W 0 z z CO W F u •� O z0 U p a . W w E. p FF £ Up (7 Z O o .-I o .-I o 30H a w 00 N a a a y 1 .i > E+ w w W aw G WC Ewa z N H W �o.P. O E y C H O 0 m 0 • C W C N H o M o o .•� OH a w F Oo .-I •>. a a w y .7 > E. W W W aw z N H W zo o E+ VI C H 0 O C W C N N 0 M 0 0 0 0 • o 0 0 0 o M .1 H r o MOOtO ..1 .-I M H •ti W W wwW www M M N N O 0 0 0 to NHNH MlD lOr o o o o NN.-�N 0 0 0 0 0 0 ti o M o 0 0 o rlo HH.-I P .-I .-I m ti .-� .� r N a w E.H o O �.D a y .7 .-1 W w W W c• a aw G w cLw Q z H N M N M M N W ao C y C H O O 0 0 0 0 o r y C fJHNNM mm01 O�NP 0 0 0 0 0 0 N N HNNM 1p 3M o W 3 H y i W v H W Qoo a OF y C H O 0 5 C 1p "' Vi t D W O, N [Ci] E-E F O O W to £ O z a O El M 00N a I w o W N O m w W wo o F via za y w W W a.a+ w zQ ow Q Z V1 O vim �" y Q m Q E" Ur Qp z H H F H O Q C W zC 00. H •• E w W W 2 I W W W 7 W V] I 4'O fL .-+ w a C E C'1 O Q y E• z W £ U u U � w O E+ Z w £ W z Q F' Q 0 0 0 0 0 0 0 0 0 0 0 0 C F O O O M N D I O O- I N O m N m O 000000000000 o0000000000o r yo F IZ- o00000000000�o � U' o00000000000z H O O O O O O O O O O O O a M C wO ON a �000000000000� F W C F O O O O O O O O O O O O P O W C F O O O O O O O m N O O O O O N tE/1 ti C 0r p0 f'IOOHOOK W N E 0 0 0 0 0 o O coo 3 W y F Fmm01M N�JrmOIHN P �•H O O O O O O O O O O O O O Q O C7HH.iNNNNNNMMM M U OK O pMi 3m O N w o w H O m w W w z 00 m aQ a ❑ va H Q O W Q.4" y zQ o a w 4.3 a z y 0 Ho N a Q Z p Q El U p H H O Q 5 a W zC �� W w o z I W W W 5 C N W o W L 1� ' N E Z w W a w ' w V z Q N W > Z w P 0000 �O P Om H c M.-Ir IOOm N OM H PN ✓1 M �OMr P W NO. �(. O O O H M t0 P O P Oi N P �O tp tD �p N P P M N ti O N 0 0 0 0 .-1 O M O P O Vt .y r M m P m P N ut T N 41 N O\ N T N Q1 Vf 01 N 01 N O� N O N O\ ut O\ V1 O� N O O a w— _ _ _ _ _ _ _ _ _ _ _ El O O m 0 0 0 .i .-� N N M vt P C• P m P O\ ut O ul O N O N O vt O N O V1 O V1 . u. . u. . v. . in . �+ p Q 3 a a H a— — — N O O O O O O O O O O O O O O O O O O O O O p H o c� — — a s o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 6: O OOOOr O v1000.-i ON O N OO�Om00�0 mOO�OmO P ON000r 000 P O BOO MO •-1 rl ry rl '-I rl rl rl rl .i !-I O Z G En El — — — — — — — — — H T C7 O O O O O O O O O O O O O O O O O O O O O O pw F ..-. . . .N . . . . .N . u. . . .N ..-. . . ..aO mOm .Q. . . . . . OOm . V. . .O H O O H a 0 w• M N P M N N N .-1 .i H 'y 'y 'y ..� F N w Q F Z x ..W wEpV ,.., N W F O W W,. .� �. .� w W W W F �. 0 — — — N o w a N p p p p 0— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q Z W M O O O . O. ... N . V H C N> C O O w H O N N P r b N m N •ri • .-1 Z ccw U O H W E-F Z N F 3> w H w w Lo w Oa H V 3 U .-. — — O O — `. — — — — — — U a Q O Z Q - -- - - - _ _ _ _ _ _ _ _ _ _ ow .4H . M M M m N O O H w O H Z W H O ........ r. v t N m M O M p 0 0 0 0 0 0 0 0 0 0 01 0 V 1 01 N m.- O m P N M V> N r N P N WH (.7 H .� .-� M N r WSQw aw w xcQQ�wxcQ Q w F d E. V a O m O F N 0 — — o Z o o O o 0 o O O o 0 0 0 0 o p O o o p o 0 0 p ONNNNN r o000000000000000000000000000000000000000000. w w W w w o N N F F F F 0 ti H H O O O O Z Z Z Z Z z a w W w w W W W O p 0 0 0 - O_ O O_ O_ O_ O_ O_ O O_ O_ O_ O_ O_ O_ �' OOOO r 1m . . .G,O�N � . . .0. .C. .0. .G. .C. . . . . . . .O. .01 .-. C. . . .00 �• 3 =• O pa E F iZi . . v. . ✓1 . . . v. . v. O N O N O N O N O N O N M M P P ✓1 m H F u I Yl N Y1 N Ill N u1 N V1 N N N Il) N Vl N V1 N Vl N N N Ill N N N V1 N Vl N N N Vl N IA N u1 Ol W r �O ul P N .i O Ol r �O V1 P M .-I O 01 W r l0 vl M N .—I O Ol W r �O OlP W P W P W P W P W P W P W P W P W M W M W MrMrMrMr MrMrNrNrNrNIO NCO N�ON�N�N�O .a 1p .i lD .-IN.+ .� N O lA O N . IC. . 111 . IA O IA . l(. . l(. . t(. .Ill Ol . Ol 4(. . . O. . . . O. . Ol . O. .. OP . . : r N . ry ti P W P W P W P W P W P W P W P W P W P W ------------------------------ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O W W r P M M M M M M M M M (+1 fn •!h M • (. •(+. •l". •(. • M . f". .(". .rl . f". .l'. .M .f. .rl • ------------------------------ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O of . N . t+l . Cl O M 01.. . . . . . . . . . . . . . . . . . . O O . . . . . . . . . . . O . . . . . . . . . . . . . . . . . 01 01 r P M M M M M M M M M M M M M M M M M M M M M M M M M M . . . . f'. ..-I ..-I OOOOOO.00OO.00OOOO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N r - — — — — — — — — — — O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ............................................................ P rl r O N M r-I N V1 IlI c P C C c M M l'1 M M M M I"1 Ql O Gl O O It1 NN.y .y .y .ti .+.--i ti p 00000000000000 00000 00000000 0000 00000000000 p Ul O I!1 O Ul O vl O N O vl O N O ul O N O u1 O N O N O N O Ill O N O •+ N N N N N N N N N N N N M M M M M M M M M M M M P P P P P 1 J I r L I r N N N N N N N N . . . . . . . . . . . . . . . . N.-�N.-I viH vi .tiNti P H POPO (/jJ.J T W r �D V1 P M N P r P r P r P r P r P r P r P r 0 0 0 0 0 0 0 0 E+ O� . N N N N N N N N a H V ^ l j M (aai O O O O O O O O O O O O O O O O O O O O O O O O O . . . . . . . . p z . . . . . . . .� w El Z W F H O N ❑ k N O O O O O O O O O O� O Q� O W O W O W O W O N❑ D El N Q N N N N N N N N do ❑a Z ❑ a N a 00 H Z Q F Q W N 0 0 0 0 o O o o Q C and F W WH "' z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • ❑ a W. N M P M M M P M P N H Z a Q ❑£ Z H H F C w 5 U' O a Q a❑ 00 O OOOOOO.J H N N ... za a xw a o W❑ Sao w dw El 0E- NN ❑ ❑❑o 000C 0C 0.0 00000000F �O as �`� atE., N❑ z� a V N .J lON W O a z O Z WO O E. Q 3 3 3 3 3 c W Wa > N £ 000 00 3 S❑z z[❑,] 0.W7 " "' "' ❑ N 0 a. N W W 0 0 0 0 0 0 0 z o z 4 Q z m V �d w FF F FF U U U V U o 0 0 0 0 0 0 0 0 0 0 0 0 W W W W W 0 0 0 0 o W V W F a aF o W— ac c cc a F C iJ a�- aa0 ' W W w N H H ❑ V V: F m a H z c W E.W W m Q Q o °an Z zaF NN r a N N CJ N N fJ N N F U' Z C V 0000000000000000? F C O d Q N 1 b: CMNNNtO OWN P Nrnr N.zi F w Q O a 0 O LE] 7 F W N H [[ U Pr N�n�M��u>,�,-i vi U .J H U a❑ W H d � '-1 M Vl N H E F m P W3.Ei V H Q V ONO T4 •. H N j H a zzm ❑E-E O wd a W E a 0 z .4 0 L • O x H W 0 i� F N I W W •• Z. �(1 O ut O u'1 O Ul O r-1 F NO a [-E QO a a W w �d W i E. NNNMMMNMMNNN OW z S H M 0.3.1 > CCG Q F 140 W Z > W tommMu, iOrmo,tiN c H F �O m H w N d z Z E 000000000000 P P P P P P P 1f1 W W O rl W Q U O N I W O #« O w H H r y N N N N N N M M M xFNM I 1 1 1 1 1 i 1 2 1 1 2 3 WATERSHED 9 1/0 - n iJ-�/••'ci PRESERVE - DETENTION ROUTING ANALYSIS ALL PONDS AND BASINS, PLUS OFFSITE FLOWS �. f 100-YR EVENT FILE: PREPHAII. DAT BASED ON L & A FILE: PRE -ALL. DAT DONE ON 10-28-93�,fj.-/� 60 0 0 5.0 1 1.0 1 ' 24 5.0 0.60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 * UPDATED ON 1/16/99 BY LOONAN & ASSOCIATES TO INCLUDE PHASE II OF THE * PRESERVE AND DETENTION POND FOR PHASE II. - 1 -2 .020 .25 .10 .30 .90 .43 .0018 1 301 2300 6.55 55..020 2 302 1600 3.69 63..020 3 203 1700 5.12 55..050 5 205 925 0.98 01..200 6 206 700 3.20 92..020 7 207 1574 2.89 70..018 6 1 2 3 5 6 7 6 1 2 3 5 6 7 0 301 209 8 2 0.1 1. .100 0. 0. .024 0.1 0.0 0.0 .001 0.82 .03 0.98 .15 1.11 .37 1.22 .64 1.33 .94 1.43 1.29 1.52 0 302 209 6 2 0.1 1. .100 0. 0. .024 0.1 0.0 0.0 .001 0.99 .03 1.29 .16 1.54 .37 1.75 .64 1.94 0 203 205 0 3 0.1 1. .100 0. 0. .024 0.1 0 206 106 0 3 0.1 1. 100 0. 0. .024 0.1 0 106 208 0 2 1.25 357. .005 0. 0. .013 1.25 0 207 108 7 2 0.1 1000. .100 0. 0. .013 0.1 0.0 0.0 0.01 2.4 .06 4.5 .11 5.9 0.18 6.5 0.20 6.9 0.33 7.1 0 108 208 0 2 1.25 71. .011 0. 0. .013 1.25 0 208 109 0 3 0.1 1. .100 0. 0. .024 0.1 0 109 209 0 2 1.25 248. .036 0. 0. .013 1.25 0 209 205 0 3 0.1 1. .100 0. 0. .024 0.1 0 205 304 0 3 0.1 1. .100 0. 0. .024 0.1 0 304 0 7 2 0.1 1. .100 0. 0. .024 0.1 0.0 0.0 .18 2.75 .46 3.65 .88 4.37 1.37 4.98 1.98 5.53 2.62 6.03 10 301 302 304 203 106 107 108 208 209 205 ' 10 301 302 304 203 106 107 108 208 209 205 ENDPROGRAM 1 I 1 i 1 1 1 [1 r rn .a a U w m a N E H o a w o rn m o a H U1 W W H h z a > m W w u W w Z rn F O H .� w W E O a u a w EEla Z W h U a £ W u O a a z a Z H a ❑H OU W U c7 a H F Z a Z a W > fa++ to w H H OE v1 >+ O >+ V a H + E-i 0 1 1Fi U' H z w m a m 0 a w z u > w > CEl .W-1 El KC £ 3 S £ m z 0 H F V w F O a a m a >. m a n❑i F ❑il o w a £ > ❑ Z w a C ❑ O Z W 0 0 E O "O O l0 P z Z H E O U N N h O h z Z rn m 20 Eo �p a• h O •-I N N c m m h O VwW' 3 w r N h Z O N M wo r r w El Z Z o F o H O y O P h O , O O❑ m as HO El QO �-7 E O Pl0 h O W U 2 C 2 O M . h vl Z N W El W m nai [ail oa _ ❑ow N U ow H o D a h O 0 z o M h N F H M za wlm-iZ aw o W 11 ❑>a P P as zo El a 00:0 h O U N F CO KPH NO « rm in awa « a s w x£ a M « am Z F O Ha a F w z o F o a W a F 2 W Z vi h ❑ ❑ V W £ 4 S Q ElO ❑ O £ z H H F a n z w W H 04 ❑ £ a w oa oa ON a o as a >w� N N zH EN aM a z o w F a z W� a a lO P P m H a h o O m H •• w H £ .� w Ol m N h U VI V OFF z4 Ha£ w W N W Fw W i£i 0 z z H w ❑ W £ F H ❑ "'� '� £ ❑z El Za V Z N ElO ❑ 1 w 0 W a ONN h OO W a W w O E aN Z IO h W F > U W H a w a w WN w w a W 0 1 m w o a E « w o £ F a s E" a 3 « a o a ,-, ❑ z z H H O O w w I I t I I I I t rl W 0 aZ W 00 0 0 0 0 0 aH �mmmmmmm \ o000000 H a0000000 U H 0 p Z£ m m M M M M M O H P P P P P P P H Z E H E £ a p H£ 0 0 0 0 0 0 0 0. O.0. H Q m £ a a I a W Z> 0 0 0 0 0 0 0 H W0000000 3 z M M m m m M m mo H W� � D W W S H O F ElF H y > 3 Z W 0 0 0 0 0 0 0 H M W W O O O O O O O W M El rn U dti.iH H.--IHH m O� 3 m WIHi 3 O N W F o N a l O Z a l m W O VI W Ev O W - .-I W H O EZ W>000000o W EZ R H O O W lfl u> N Ifl In V1 vt m H O > V1 F W N N N N N N N m N W W W Z U 4i R W W W r O O m O. u'. . �O In to il. 00 p to W W Z OOp 0. . . . . . . . . . . . . . io u�mN ti.iti m W W O N w W N. y N d 0 Q R 0 0 0 0 0 0 0 m W w 0 E W N N N N N N N F I - a m a o o o o o 0 Zr - a 2 R . N H W m 1p OOPmlO ut l001m Hl0P Vl 01 IlfN O0. V. PN H za I Z . . . .�. .H M�ONMO�m �O PM N ti.i H H co d O W W F O 000000 m o (i El z a a W 0 0 0 0 0 o m O Z a Q Q O\ m N N N O N r I m l0 Q.. G+ m a F 0 0 0 0 N 0 0 m m r I O O O O O O O O O O �o V cn o z R Q Z 0 W w (7 d w � a a o 0 0 0 0 0 0 .zi as a U It U W �n rh vi .-iN0 morn RO 0 0 W fL H M 0001m NVI1N mOlmr Ol P Pm P.-, O�mmmmm PM.-+H a l£i a N O m H p O . . . . . . . . . . . . . . . . . . . . . . . . N P r �O ✓1 m N T l0 P M N .-I r-1 '1 NN mN[u V7 W N a a .HmNH aR < Q^.o �n r.HONrn El 4 z W U F Z Q Q Q �O Mud .-I MN QF W a N -W M l7 p F --, O Z Z m W Z H H £ W p F W N m. lflN lO .-1 Olr PmN.1 rti H O a W E,[F.000lnoPF � Q as p W H— o0o Nor R In W W Z W 3 miorrnr�n UR z W F Oa N .1 H .-� m W W N O a (A W O W 0] R H •• H O O H 0. Vl t..-I f". O. C. .-�. W a W H W O a W �+ a E W Z 14 . . . . . . W Z 0 F 40000r W H H El E" W H P m .--i .H I m a C) pH �£ 000000WF ZE- ❑H �. U' M M N N N N W O m W W P] 67 S I W S H O £ H G H . . . . . . . . . . . . . . . . . . . . . . . . . . . W W p W 7" F u W W (a[ £ N O U1 O 111 O N O in O In O ✓1 O V1 O vt O ul O In O vt O N O V1 a. W W > WW �I z VI Q p7N r�NMNIOr R Q W 01 W W W O Wo f11 £ 1 po O H 00000000OOO.i .H H H.-1 H'-I .i H'-1 .y HN NNN 000 HHS W O W H E r M 3 m O N a� W o W H El Z OO O o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W W 00 w ao .-.-.-�oo000000000000000000000000000 . via H I FCC W m m ❑ w z .a 000000000000000000000000000000000 w w oa w w 1414 a 00000000000000000000000000000000o ao ................................. w H ❑ w W a Q am a F 0 0 0 0 o O o 0 0 0 0 0 0 0 o O o 0 0 o O o O o 0 0 o O O O o o o U O ................................ Z. H H oa a m W -. oa . z a W H E. W F z W o NOutO wO in Ou'to uto ut Oin O uto utO ut0w0 wOu) o wOulO W 14 N N M M v C N u> H H N N M M C C w N rV H N N M M C C ul as W N N N N N N N N N M M M M M M M M M M M M V C P C C c v C c C C C w w I W O ao O O 01 N m O M H N O C m m M N N N N i i I I i I �J I I I 1 [I I I I 1 I I +N O�HHCNOIHM V1r c U N H N W Q a M 0 0 n Q x '� � � In o00000000000 U ax o 0 oono non000 O E F �- i0 to 000000000000 `� ❑ H N H H O z N O a O O OO O O O O O O O O w o cD z v c v C M M M v r •' 1 C c V• O O O O O O O O O O O O Z Z O O 0 0 0 0 0 0 0 0 0 0 - 000000000000 EC4 a c N c o o •0000 o0000. O O O O O O O O O O O O vt w>x o p N 00 Q m a000000000000 ni o 0 0000 00000 ,y . 0 o n rn m o m x H H N c m 0 0 0 0 0 0 0 0 0 0 0 0 01 � O N Iti a W E o O o 0 0 0 0 0 0 0 0 0 O F W w O H O N 00 N O .-1 .y O10000 m m K O\ O O 0 0 0 0 p M 0 0 0 H H H HOOH OHO.-1 HH M a m w z .... H O O 8 m O N x al F.� wo O F H O H MHHrO N HHm H H,-1 l0 H w w3H Ino r v W o Moot N No a o OM w w a.. m O � w E [ El w Z O 0❑ H 0 p £ 0 0 0 0 0, ON m 0 0 0 0 0 0 0 0 0 0 0 0 •a F o❑(" v 3 3 0 a a 14 14 o a 000000000 o r H .aa H H m a Q 0 d H m H E m m m m m m m m w mIn m o m a m m ma o00000000000 0 > J H 7 N m , N .. o E za M W W W W W W [Ea W W W W w QH o000000000000�0 a,w cyw o,ww w a ww W w m o H I O M H I O H H O H H H I N ❑ m m w • w w w w w w m w W a H a x a OQ a o00000000000z a a a U a mb H H z z z z as a a m a O 11 N N M M N N N M N M M N Q Z 0 a o0000000000o aM z w W w w m E,ly O O (.D0 c U0 17 p.-I u 0 H O F H m H w r m w o a 0 O SON >.m u \000000000000s 4 m ❑ w F m m VFI m z z E. ry' G m HOO cc H O x m m Qa Q E-00000000rn000 0wc ❑ m O -�o o d o r HOM O • 0 0 0 0 0 r )-IOtO O w • w LD ❑ Z m u O O z a a a a N" " '" z '" H W M F H w C W W W S E O o o O O O NO O O O O Wm w m m O F O O El w 5 a 0.' U O N H M m z W w E+ m O E-Z w Q H a H E- O a U s r m o M o o H o o in w N W ElO H •• m EF 0 0 0 O O O O W O E U O� O� N�Omm mm�N c 0 E w O m N N N N HM N M F w o 0 o o o o 0 0 0 0 o w W. a N N N HN.-� NHNN M O w H u Z OU � O 3 m ❑ E m w m z W E+ z w E m x £ 7 W E�mQ�M lt)lDr m01HN m wH O z W W � r4z w w a m (.7H "' N N N N N M M M M Em H£ H O N O O O o O 0i� z a O O M M N 0 0 0 0 0 0 F W O U ZE,Q N• N '-I N H N N M w p C x I m m m m m m m m m m m m m m m m Vi m m m m O O M m m r .i N O1 P r W r vl N fT N O P m H P 0 0 0 0 iA O P O m H P M H r l0 O W r1 O M ti P N N M �O M r P m V 1 W if1 � LD O l0 O �O O l0 .-� r p M r-1 N M P P 'i P H m .-1 m .� vl .-I m H ul .-1 vl .i ill .-1 Vl .y N N ul N Vl N ✓1 N V1 - m m m m m m m m m m m m m m m m m m m m N O O O O .-1 O M O P O tll .-1 r M W P m P fT V1 Ol Ul 01 Vl 01 m m m Ql m Ol m fT N m m 01 vt 01 lh Ol � (T p O a ry _ _ _ m m m m m m m m m m m m m m m m m m m m O O O N V1 rl M H N r ill O P l0 W 01 (T 01 01 Ol Ol W N OOOOfTOOO.-�rINNMmPr PmP01 UlO lllOm011lO l()O t!)OUIO VIO vt Otl7OmOm 3 M rl H �--I •4 r-1 '-I rl �-1 '-I �-1 H .-1 rl rl .-1 '-1 '-I '-I '-I .-I rl .-1 .-1 .-1 'i .-1 '-I r-1 .-1 i-1 a a H m O O O O O O O O O O O O O O O O O O O O O O x O OOrI OtOO�O MO.H000r 001Or0l0OmOmONO W OMONOiOOr000O1O10 O d N M lD m ri M P ✓1 P � P P P M M N .'-I O O m m u a z U H O a— — — — — — — — — — a x o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 3 tz O 0 0 0 0 N . O l . O 1 0 0 0 r O N O N O r O O O V l O c O m 0 P 0 01 0 0 0 N O M O N 0 0 0 m U O W N M m r (T O N N 0,4 [au E o z 7 Y H U W £ w H p `. `. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ❑ H F ❑ O O . . . vlOr O i00N000NONO00M0 POiO OOIOmOmOr OIA O1D O O. . r OP Z U£ W N p. .O W u1 c rl N ti O 01 Ol O W O U' HaQra ElZ m W S .. W W £ o U - - - - - m+ O W Z .. .� �. W E ww W a F o _. — — — — _, — — — _. _. — — — — — m ❑ w z m o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q Z W M 0 0 0 OO1OmON0lllONOmOOIO W Or OOIOPO PO W OPOHOfTOmOmOmO W UHQLm> % O . . . . . C7 F Ow U❑ O N N P r l0 M N Ot <D P M N H ry H 1-4 z z H W F Z m F > W H W W rm„Oa lz-I 13UU - - 0 - - - - - - Ua Q o z Q -- — -- -- ,- ,- _ _ _ — — _ _ _ _ — O W a H H M o m W H m 0 H N H w O H Z w z m0 O O O O P N P O ll) .-1 r m m M O M N W 0 .i H V1 T Vl Ol Ol Ol m O W H r N l0 P m M M O O 01 w W" (D H .-1 N M P N r r H l0 .� r H l0 t0 m t11 ill v f"1 N r-1 w x Q W W w O F U m< u a x Q w x QQ Q wFz E+UQ>; x0 CL O E+ m 0 - - - - - - - - - - U W FOHF _ - `� m w❑mc�om _, .z O O O O O O O O O O O O O O O O O O O O p o O m m m m m r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ww w w w O . . . . . . . . . . . . . . . . . . . . . . . . . m m El F F ElH . H H O O O O O z z z z z a a w w w w w w w o o m o❑ ww — — £ £ — 0 0 0 o O o 0 0 0 0 0 o O o 0 0 0 z z H M M r N r O O M M M N H m 1p P H m U1 N OOOO• tii(. . .0. . . . . .4. .Ol .(T . . .0. . . . . .Q. .O. .O. .Ol a 0 a o xa E+ F z £ ill O il1 O m O itl O ill O �Il O m O N O m O tll O N O S w F I m N O W r ul m N O ti r.irtir Nr Nr N . . r i-1 r �r +r,-��ti�o o�no�o oio ono ono o�nrn�n rn�nmNOl tll 0�lf1 O11I1 W P W PNP W PNP W P N N N It) N It) N V) N In N Vl N N N V1 N N N tl) N N N N N Ill N VI N to N tt N N N U1 N ti N '-1 N 4 N O Ol W r 10 Vl P N .y O 01 r t0 II1 P M .-i O 01 W r �D U1 M N .-I O Ol W r N N N N N N N N N O 1!1 O Lll O II'1 O Ill O tf1 O Vl O N O l(1 O V1 O In O N E Ifl Ql Ll1 01 P Ol P Ol P Ol P Ol P Ol P 01 P 01 P W P W P W P W P QJ P W P W P W P W P O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 01 0 MOO O I P O r O M O P O m O M O m O m O N O N O N O N O ti O ti O.- O.- O. i 0 0 0 O O O O O O O O O O O M C1 rl r1 M M m M M M m m m m m m m m m m m m M 1 — — — — — — — — — — — — 0 0 0 O o 0 0 0 0 0 0 0 o O o O O o 0 o O O 0 0 0 0 0 0 0 0 O O NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. O . O . O O. O O O O O. O O O O O 0 O. O O O O 0 O O 01 W r P m M m M M m m m m m m m m M m m m m m m m m m m M M ------------------------------ .�-. ..-. O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ' ti H P Ill l0 Ol ut 1p P P m M m N N N N N N N N N ti .a ti .1 .-I ri 'y ,y ..i ti N O O N ..-. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 ' 0 0 0 O O O O O O O O O o O O o O O O O 0 O O 0 O 0 o O O O 0 0 O O O O 0 0 0 O O O 0 O O O 0 O 0 0 O O O 0 0 O o O 0 O r P '4 r O Ifl m rl O O1 W r r lO )p In I(I Vl P P P P P m m M m M m M O Q l O O l O O I l) N N. i ti ti a. i .1 ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P P N . In O Irl O IA O In 0 vt O In O N 0 ✓1 O vl O Ill O In O N O vl O N O In 0 m m m m M m m m m m m m P P P P P u I m r �n M N o m r in r PrMrMrMrMr MHO MlO NCO . . . . . . . . . . . . . . . . . H �I1 -1 �l1 H V1 H N H V1 H U1 '-I N H V1 H Vl m rn m m VI m Vl V1 l0 � P M N H O Ol m ti lA rl Ul r'I Ifl r-i N ry In r-i P �-1 P O P O m m m m m m m m rn m P r P r P r P r P r P r P r P r r�� v� N •i rl -1 H r '-I r 'y O o O O o O O o o E .. . N N N N N N N N Iay U m C. ... ... ... ... ... .-, m i z O O O O O O O O O 0 N .401 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w Z w El H O ❑ m + w W + ❑ 00 0 o 0 0 0 0 0 0 0 0 o m o rn o m o rn o m o m o m o m o ❑ m a ' N N N N N N N N a o ❑ a Z O .a om m a H tiQ za — ' _ 0 0 0 0 0 0 0 0 0 as an d Fw W H z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •❑ ❑ a W H O O 1111 N v1 0 0 N v' 11 0 w d ££ ✓1 P P M M M P P P N rl ❑ m z a Q ❑ £ ZQ H H F W a a 2 0 00000000.-+.-i N KC S W a 0 ❑ vU ao £ d FQ rnm ❑ ❑ ❑ ❑ 00000000000000000 ❑ E 0 U a s ❑ Cw7F QQ w mo m . . . . . . . . . . . . . . . . •rn z H a U Ela I ,-�to t� W < w0 Q0 w rr4 O E< 333 33H N C. W W a > w 0 O £ m-- 000 00 . KCH❑ w a a a a s �U) mSH aQ u El F El _ _ _ _ O o 0 0 o O 0 O O Z O Z O Q z QQ W U U U u U O O O O O O O O O O O O O O O O O w U W W F a Q F Q d' 00 7 E a w. -. 0 E W W W w w M M H H H Fa -I H H H H H H m wE. w❑£ w wrn O O H H N Q ❑U Q w ❑❑❑ .0m m a V1 W F W w 0 Q Q 7 QQ E+ U' z a U --. O O O O O O O O O O O O O O O O O w H a W Z 0 d Q m L V I T M r N O l O O N O N 01 r .> E > m. H .. F w Q w ... z <O O W w E W u ❑- ua ❑ rziH ,a d� '-I M �l1N HH H< Fw rn£ U U 0 mo H ' P+ OM 0E+ O w a �z+N� rZ 3 W£ 3 H I W rru Z E. 0 S H m 0> E. N N O Yl O N O N O a F m O N M M P P tl) N a E+QQ W W xw i El N N N M M M N M M N N N a rl O U' W w Z T a H a M 0414 W H a a s W O > W \ O m 01 M l f) l D r m 01 H N P H F� m 1- W� d Z Z£ 0 0 0 0 0 0 0 0 0 0 0 0 P P P P P P P N w a O W Q U O m I w O k+ ow U a H�-1HNNNNNNMMM X oz.-i M FmM ao + + w E❑ H E. m 0 d H ++ N n � r+r <.., 'Y -� l � _ 1 ,+i.-.•,c ♦ ��� .� -�, trs„ '. '.. ��r�'• ') ' � '7a-w V. ,1 �� �<• �32. Y• :u. •�� -{'�: •9 •' ,; �It: _ �L,��. % � ��.- :•_'•.� i..' .t.-,•T' .�wiY= ._'• RS - .T ., fv Y, Y ��.1�. �•rY� •}• tom`• •t' • tit .. � _ X. La {' `• - ` j���� .� '/i� '-`�``•`' t � t �� �_•3- a,. ems- 1 J-' - � + '' '� a � _. i v •. �" • _ `,» S� �� � \J - M4`r' • • � t' �y 'i�, 36 •2 a, r . hr� /-' J •:�K� i. • ,a:p`r �'=� �• ' < - � � t a % ..ram- _�rti��cL ♦ .�: i • i-� . i _ Y' � _ •ti `t< Y_.T' r }T' yaks J'.. t ..1 I'..{.,�{ •J I/�^ �• .rPT /l '/ •� r �'< . Y r.- " '{G. ' i•K..it \_ �•.. i:� � �__ \'� �•-�.•,�c•� ..�i �ll (Y .6 a-1 •j. i•.'• - N�. i•w '���``'r-�'�.„- .� r' ✓ i•!- 3?.7 R `: ^ /�: .! ��t�. ..r x �(� .r_:`'n'J =.':���}' l'�._�•`}`%i r,��s_QR •CRS. •+ ��� i,�. �,f�•R_��� - .<r l5C`' _ � `-`-:i�,`I+-•'r '' r.r1 aS'ti. '�. j:(:f'. J�7' •+•f�•t. � 1. � , t� � ..� r T--<" 'ra.. • aG� T � ••'�yl �Q, - / �-�� _ -r � -_ _ � �.' - �. ' •i. � . tJ � i„• -. '3ti ' ^a♦_. '-} '�",f ' r T.w }. l /rcQ".:+• . `.�': V -, + . !i` ' J � `/ ,• �'c' a- .Y�Rs�..> r'-'nr+r 3?'�a'..r.�vy-.r_ ,i-_-, i � ,a-,#. .— Y : _�:� .r ,' � l .: . y: < l y.�M _ .. .. w_ �� ,Nf . �.fr ! ,- . � -. '-�:. q'ra, 1• � '� C... '�..♦�1.�'i[t�ri+ya[y'./ .�f-'e'.rt:T.' �1 �,/ G �)� .l� - x � J.. •� y � , _ >r L's''�'r 1 � .. .� __ �� �aa).V• �-`s.!i J ✓!;,�. r _ ,.�,,�„yy :L'-:�� .." r i�°•-'�M+Tj.� y .i. •e__� _ ` ) �7.7 _ _::� -� �_:ii �• QNTROL ' •"• =`. ` /% r• !J,'7 r•sa' `<r—� �_�' ..� , _ i ��'{ ��' �j _ _ x r .iJ3 .. .. _ a •.�2. K ..V _. - %`i �a`�� •/:r t -/. K..^— �•..-\`.7a '\ `; �11.11 __.l."'♦ - _ . < t .. , „� : Y i .'Ci' ✓;;r"' •a'+: r .. <`; `y��''.�rv..' ' � '� `.� . . '."�J yt. 'f!..> t ,F � i - / � •'YJ :w. ' � �k'M`•J,-"f ,' . K � � . `: T_.. � • ' ..V+r. Z.'YL .Jy ...,,'�-.,. .� •- - i." •.r^r •L��" •�>" / a,' �� "i-T � -.L._.a �. si . zk "T-- r �.a [Csart�: ,. �( .•s < �1. al% l '1� - )~'�:'' �r -ii ' <, ) 'j .�-/ 1rf K. * �. / :'` ,, .a, Il:� �. _yam. >. ,•w �;7 �`Jr J ,'l' '� ��.n r.cr•r R - '.'. . I: l,• C_ /• .. s � 1f +t '� ��`'�%' o-YC 7R, r^x ...303rJ.3'T..� �.0 `�i• ry -3 - � .I d .IG� 8.7�z:.BERG Y 0Vf� by�e/' x >,:.:i ! ! ate_:. t ♦, - ♦'SPILLWAY V. x .!. /. r- .�4 yr'+ > / •.; �^ � •s• �. ' < � �7 o-'•< 'J .`.S, ,aa:i ':P< .l' �(j`r ,oI''>'C� 'i "-� .7' +r• 3 r Z is ... • , _ ,' - �� it ,.r}tn. - �) - .+, n'• �`9 S •-. j /. ./c\ty �„ � _ ,t:� ;i •'�. ` '-a =�fS i ; -i .[Q� `r,-' � S-h„w• � y� - _ si:,. jjf � � :' - a _ : Ja•� a e _tr X / ! 1 �pi r. e• yr'X - y' ;, rfa' •tom \` � YZ. •a.. � 4R' �''?:":L.�.fy _. .f f i - - � Y: • t ar_, `�! i.^ t s �:. / /) �p:O .'R / 1. ;� R 5,.�-- `�" ,. �rL Y jr �... / r a �f fro• ti -,.,r r0 iv- �_t ! ..i✓ter, i//,f'` .t R/:. �0 J(fl� .C•5���-� :,:.. :tom ./ "c'�. �, J F !+t:- -'� v I^ @ r 1 >�' � /:: .ri: ��. (� •-� � _ _e % ♦._• /1, r ! f �y'3iM1 ,�" �. ¢ - <I .,yy`_ .L .< '�J .>J-r to 'i `. tY y! GJ~ a•• >1 i•j '` < r �J _D _ :' v -;l _.i ji :i.ir f '2i j ' u.•3^ 1 '.50 "`a ..// '� j t. .�. ,y'.. ( �• ,t ; r Y-a � :'ry .h •. J' .n _ .• 4?� n' a'l�. "~s %>. ;: I � `='r''. �•++.Z �_ ,^r:'+^_g ��.. ' i _:� ••� „i/. `V_,.,.!�� tom•: � I .. .�� � tf `_ a. L'r • t t.. ;A ii 'I' V --. `•. •.= t ,. �I� ,.F',•.. ,� ."` _, h. i.f+ :f y. :t `'T.'• :!Il•'•>. f .JR' _ __ ,i '�'` `.00.tit4 ll.�a•7r t-� :,,l j r a _,�.y,. •' r••r -' ,R.i Gi: '.tom+ .i. f �v .. T �i. .e+�� 7. •"•-`: +,,ol __e- ! i � ��+'Y.^yam / _ i..ti,• �, .� • . '' �.:�?lti��Jti:� K:�•`- .� -! ..'y �''i• £ 1y � J/""-Yf a:- • - A )!j^! �.• � .,..r.+ Clk f Yam'' ! _- _ _'_ '+: , f .-•• r �!.- ::1�i•!'jr s .a. .. i. ,-° ma's �.. J J1E. °V P. % r !: j' �.+�.y�'''�����Ty'. _ ...$:_J' )_` '•I { /. � r. ..a_-?N�f.S: ?)r.:-, �. a. �t'-'Y•_ '..,i .J•� /.="->"r-z�'�. .aT�:a'a �a�.. i Lt _ 1. - :� L :i :k.• ' !•'i`"r i�'� - � �" •-Jpf!•' rr��- "`� _ - .>d. .:✓'t . a � '- "mac . `i+ -W'�' - J i , -_{y` 'Jr �� .a Ya v� -/ ` .�c�/�t'��` ...a.. -r�;F .`,V_ •_--•t�- ..�:f:< .\ Z �. !_•�}� - r " +..'c. J• it/� ..->�r`•[': •C" J.^ ~'. r 7. _ . .a '. i�-�ii . %�3�.y i.. • 1 � - ra:' 'ir �..,a. _ '� _r /�< 1�. > ,- J _ r.1 •i`if �,,�rrr �l�r.. J:^G)'J ;}<<. / '_�'4ae+ v ,ra . {�'`'-+-: ,:- ..<:. ? { -_- i� _ '. ..; may. _`-- '' n<✓ Y.a: •�./v = .. + ;..<.. , � ` + i '- y�f. � 3 .t ••,r. • fG �tt �•.�'� ``,, r_.�r�.�/ -Cjy tea•./� .a � /.K�../• r .' "•J i.' _ �"- ` I ...l. "' ",%<.' ,i .{„4 :J^•V' ate- '' i '<:a, •� '-aC '� .. . -'_ ;<r �,'� '. + <_: i i 1r�: _ ,! ` .r• --Yam','" - -r',k .. � �:r/":� �.�w fa r. -� '- >•. �.i��t, a .'�y^i � � i ",83.� ' 6 se ... ,�. �_ �_�.a..w // ✓ f� _,2.=. FIGURE 4 APPENDIX B I I 1 I I i 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 FINAL DRAINAGE REPORT FOR RAINTREE COMMERCIAL P.U.D., PHASE II MARCH, 1985 ISED APRIL 29, 1985 V Y` Prepared by: Parsons u Associates 432 Link Lane Plaza Fort Collins, Colorado E30524 303-221-2400 Project Number: 85.07 RNT FINAL DRAINAGE REPORT . FOR ' RAINTREE COMMERCIAL F.U.D., PHASE II This report has been prepared to describe the procedures and results ' of a.stormwater drainage study of Raintree Commercial P.U.D., Phase II. A drainage plan showing the grading, sub -catchment basins, and ' stormwater drainage improvements study comply with the requirements is attached. Methods used in set forth in the City of this Fort Collins' "Storm Drainage Design Criteria" and the calculations are contained in an appendix to this report. 11 11 I 1 The project site consists of approximately seven acres of undeveloped land lying West of Shields Street, approximately 500 feet North of Drake Road in Southwest Fort Collins. Adjacent properties, are currently undeveloped, but the land to the North and West has an approved multi -family residential P.U.D. and to the South, Raintree Commercial F.U.D., Phase I, has been approved. Stormwater drainage design for the project site conforms to and is described in the "Stormwater Drainage Report for Raintree P.U.D." (Taranto, Stanton, & Tagge, 1980) and the "Addendum to Stormwater Drainage Report for Raintree P.U.D." (Parsons & Associates, 1985). Since off -site detention is being provided in Ponds "A" and "b" to the West of Raintree Drive, the detention ponds on -site are designed only to reduce flows based on off -site storm sewer capacity. The storm sewers are designed to become part of the storm sewer and detention system of Raintree P.U.D., as shown in the "Addendum". If Raintr P mmercial • t before the residential P.U.D., i wi a necess struct those por ions o e o -site rainaaa�yr=}em required to hanrilP }hP cnmmercia runoff, or to design an aDDroved alternate system. Michael F. Jon , Project Engineer J f y A. Wynne,, P.E. No. 14961 a (� A. (�f 14961 � e, •1 APPENDIX TO FINAL DRAINAGE REPORT FOR RAINTREE COMMERCIAL P.U.D., PHASE I Sub -basin Areas Runoff Coefficients Detention Volumes Mothods of Calculation 1 1 -6 7-9 PARSONS & CLIENT JOB NO. ASSOCIATES PROJECT CALCULATIONS FOR CONSULTING ENGINEERS Ft. Colli...Colo,.d. 80524 MADE By— OATE:k-l',5-'3f; CHECKED BY_ DATE— SHEET OF ... ..... ... . .. ....... . ........ . P, N 0: F CDEFFU ktl� 0.1577 :A Z> ell 0�9 9' 3!7, �5 6:5 (86.0� <2 &'Y) ... ....... . ..... . ..... .. ..... . . -------- -41 ------- ..... .. .. . ... .. . .... . ... ..... . .. ... ... .. . . ... ... .... No Text PARSONS & CLIENT JOB NO. enlb-o 1 14-N ASSOCIATES PROJECT CALCULATIONS FOR CONSULTING ENGINEERS MADE By t- Ft. Collins. C.I.,ado SCS24 DATE,3-- �-� CHECKED BY DATE— SHEET OF .......... .. ....... ... . . .. .. . .. .. .. ........ ... . .. ... . .. p...... .... . .... . .. . .... .......... AREA: 2.9844 ......... ... ... . ........... .. ... ... ...... C: 8.4009 9 ADD: 0.0000 Q REL: 6.9080 . .. ...... . T :5.0009 1 :8.0000 L-2 01:11.9376 .... ...... . . . ....... . . ......... VI:3,581.2880 .... ....... .. ......... . VR:2,078.0000 D :1,511.2800 T :10.0800 1 :7.2000 91:10.7438 z VI:6,446.3040 YR:4,148.0980 1 :2,306.3040 . ......... T :15,0900 . .. ... - 1 01:8.9532 8800 7 ...... YR:6,218.0888 . ... ....... ...... . ........ . .. . .. .......... . ..... .. . ...... .......... ... .. .. .. .. .. ......... .. . .... . ...... ....... . ... .... .... ... ... .. ..... . . .. .... ......... . .. .... ... ... . ..... . .. . ... ...... .. - .......... . ... ... . ....... .. . . ... ........... PARSONS & ASSOCIATES CONSULTING ENGINEERS Ft. C.111... Colorado BOSH v I 11 I I I I I I I I CLIENT PROJECT MADE BY -/Ar-1 DATE .5-'j CHECKED BY Joe No �S, C_):2 cAt.cut-A-noNS FOR C)fZ SE� 1 0 "3 DATE_ SHEET OF .. . . .. . ... 7-7 .......... . ... ... .. ........ ... .... . .. .. .. ...... C, 7 . ........ .. 0.3224 .. . ... . . .. . . .. .. .. C: 0.6580 l .... 0 ADD: 8.0008 ...... ... Q REL: 8.2708 T :5.0088 .............. .. . T :30.0800 1 1 :4. 1708 91:2.8956 QI: 1. 0923 VI:628.680C VI:1,966.1967 .. ... .. ... D :547.6800 D :1,488.1967 T :10.0000 T :35.0880 1 :7.2080 1 :3.7988 01:1.8860 91:8.9928 VI:1,131,6240 VI:2,084.8601 VR:162.8800 VR:567.8000 . ... ... ... . D :969.6240 D :1,517.8601 T :15.0080 1 :6.9880 91:1.5717 VI:1,414.5300 YR:243.8000 D :1, 171.5300 T :20.9800 1 :5.1988 01:1.3595 V 1: 1, 631.4246 YR:324.0800 D :1,307.4246 T :25.0000 1 :4.5898 01:1.1997 Y 1: 1, 799.5965 YR:405.9888 D :1,394.5965 T :49.8080 1 :3.5080 91:0.9168 YI:2,208.3800 YR:648.8800 D :1, 552.3800 T :45.0900 1 :3.2308 01:8.8461 VI:2,284.4660 VR:729.0080 D :1,555.4660 T :59.0080 1 :3.0090 91:0.7859 VI:2)357.5500 YR:810.9000 D :1,547.5500 .... ...... 7" 7" ... . ... ...... .... .. . . ...... .. .. . ........ .. PARSONS & Irk— ASSOCIATES CONSULTING ENGINEERS ' Ft. Collin.. Coloudo 80524 v I CLIENT PROJECT MADE BY �Z/ tl DATE 3d 4", r CHECKED BY T :5.0090 I :8.9080 91:17,6341 V1:5,298.2360 VR:522.8800 D :4,768.2360 T :18.0000 I :7.2089 91:15.8707 V1:9,522.4248 YR:1,044.8880 D :8,478.4248 T :15.0880 I :6.8089 91:13.2256 VI:11,983.8318 T :25.0000 I :4.5880 91:19.0955 YI:15,143.3806 VR:2,618.8080 D :12,533.3006 T :38.0000 1 :4.1700 91:9.1918 VI:16,545.2131 YR:3,132.0800 D :13,413.2131 T :35.0880 I :3.7998 91:8.3542 YI:17,543.7451 JOB NO. 85 `,— CALCULATIONS FOR DATE SWEET OF T :45.0880 I :3.2388 91:7.1198 VI:19,223.3951 YR:4,698.8000 D :14,525.3951 T :50.0800 I :3.8009 01:6.6128 YI:19,838.3858 YR:5,228.0008 D :14,618.3858 T :55.0880 1 :2.7988 9I:6.1499 VI:28,294.6679 tID.c 7AD DDDO • PARSONS & CLIENT JOB No ASSOCIATES PROJECT CALCULATlONSFORrDa;'F-N1:�-ow CONSULTING ENGINEERS Fl. Celli.., Colorado SOS24 MADE By r1j DATE CHECKED By DATE_ SHEET OF r ' 1 1 �_ - .... ....... .... ........ . . ...... .. .. . ....... .. . ...... . ... ........ . ... ....... . ...... ....... ... ...... . ...... .... ..... .. . C -4 72 7 Z . .. ......... A's ?.5- -:,9. 4.5 4 ts 4.3 21 -'6 .......... ...... .. .. . ... . ..... - . .... ..... . .. .. ...... p t .. ... . . ....... ..... ....... ......... .. ... .. .. ... ... .... ... ....... ....... — .......... . ..... ..... . ......... . . I v PARSONS & A ASSOCIATES CONSULTING ENGINEERS Ft. Collins. Colorado BOS24 01+LBL 'DET' 82 'A ?8 03 PROMPT 84 STO 03 co",. 05 1 ?' 86 PROMPT 07 ENTERt 88 1.25 09 * 10 STO 89 I1 'QR ?' 12 PROMPT 13 STO 82 Orel 14 •Q ADD ?' 15 PROMPT 16 STO 18 Q.J 1 17 8 18 STO 05 19.5 20 STO 88 21 'AREA: 22 ARCL 03 23 PRA 24 •C: 25 ARCL 09 26 PRA 27 'Q ADD: 28 ARCL 10 29 PRA 38 •Q REL: 31 ARCL 02 R11= 8.6000 R12= 7.2009 R13= 6.0860 R14= 5.1900 R15= 4.5808 R16= 4.1700 R17= 3.7908 R18= 3.5008 R19= 3.2308 R20= 3.0088 R21= 2.7988 R22= 2.6080 CLIENT_ PROJECT MADE BY, JOB CALCULATIONS FOR DATE CHECKED BY DATE SHEET OF R23= 2.4300 R24= 2.3000 R25= 2.1708 R26= 2.8690 R27= 1.9500 R28= 1.8708 . R29= 1.7888 R30= 1.7090 R31= 1.6280 R32= 1.5708 R33= 1.5008 R34= 1.4300 32 PRA 33 ADY 34+LBL 01 35 RCL 88 36 5 -� 37 38 18 39 + �, I 48 STO 08 41 RCL 4�RC�0 IND 88 43 * __ 44 RCL 83 45 * j 46 RCL 18 47+ r 48 STO 84 pJeL__.....__ 49 RCL 08 58 60 51 52 _STO 01 dam_^ 54 RCL 82 55 RCL 80 j 56 * 57 68 58 * 59 STO 87'lre 1 - W CL 81 61 RCL 87 i 62 - - R35= 1.3800 �� N R36= 1.3200 .., R37= 1.2800 t 1 R38= 1.2480 I N C R R39= 1.2108 R40= 1.1800 R41= 1.1568 R42=, 1.1208 R43= 1.1188 R44= 1.9980 R45= LOW 63 STO.06. o.)t 1 65 ARCL 00 66.PRA 67 'I 68 ARCL IND 88 69 PRA 78 'QI:' 71 ARCL 04 I� 72 PRA 73 'YI:' N 74 ARCL 01 75 PRA 76 'YR:' r- 77 ARCL 07 2 78 PRA 79 'D 88 ARCL 06 81 PRA 82 ADY 83+LBL 05- 84 RCL 06 85 RCL 85 c 86 X>Y? 87 GTO -DET- 88 RCL 06 89 STO 85 98 5 j 91 ST+ 80 92 GTO 01 93 END. N;7 fPARSONS & ASSOCIATES CONSULTING ENGINEERS Ft. Collins. Colorado SCS24 I 1 I 1 JOB PROJECT CALCULATIONS FOR MADE BY DATE CHECKED BY DATE SHEET OF 0 1 FORMULAE Time of Concentration: T = 1.87(1.1 - Ccf)D'5 Where: C = Runoff Coefficient c 5.33 D = Distance in feet S = Slope inpercent cf = Antecedent precipitation factor 1.0.for 2-year and 10-year . 1.25 for 100-year Velocity and Capacity:. V = LA-8 X R'67 X S'S Where: n = Manning's roughness coefficient A = Cross -sectional area in square feet Q =.1.486 X A X R'67 X S'5 R= Hydraulic radius n S = Slope in feet per foot Runoff Quantities: Q = CIAcf Where:.0 = Runoff Coefficient I = Rainfall intensity, inches -per hour A = Area in acres cf = Antecedent precipitation factor 1.0 for 2-year and 10-year 1:25 for 100-year Runoff Volume: V = Q X Tc X 60 Where: Q = Runoff in cubic feet per second Tc = Time of„concentration Orifice Plate: Q = 0.65A 2gh Where: A =.Cross-section area in square feet g = Acceleration due to.gravity, 32 feet/sec.2 h = Height of water above center of opening Detention: Volume is computed by means of a program, using the Modified Rational Method which varies the rate of flow in, while dis- charging at a constant rate. APPENDIX C 1] 11 11 1] 1 7 GEOTECHNICAL ENGINEERING REPORT THE PRESERVE PHASE II RAINTREE DRIVE FORT COLLINS, COLORADO PROJECT NO. 20985094 June 26, 1998 Prepared for: THE PRESERVE 601 CORPORATE CIRCLE GOLDEN, COLORADO 80401 ATTN: MR. DAVID BAILEY Prepared by: Terracon 301 North Howes Street Fort Collins, Colorado 80521 CL Irerrecon :] June 26, 1998 301 N. Howes • P.O. Box 503 Fart Collins, Co:orado 80521.0503 .' The Preserve (070) 404.0359 Fax: (070) 40:1-0•ts,: 601 Corporate Circle Golden, Colorado 80401 3 Attn: Mr. David Bailey Re: Geotechnical Engineering Report The Preserve Phase II Raintree Drive Fort Collins, Colorado ' Project No. 20985094 Terracon has completed a geotechnical engineering exploration for the proposed project to be located at Raintree Drive, Fort Collins, Colorado. This study was performed in general accordance with our proposal number D2098135 dated June 8, 1998. The results of our engineering study, including the boring location diagram, laboratory test results, test boring records, and the geotechnical recommendations needed to aid in the design and construction of foundations and other earth connected phases of this project are attached. The subsoils at the site consist of sandy lean clay underlain by silty or silty clayey sand with gravel. It is our understanding the proposed structures are to supported by post -tensioned slab on ground foundations. Garages are to be supported by reinforced structural slabs with thickened edges. Based on the subsurface conditions encountered, it is our opinion the proposed construction is feasible from a geotechnical engineering point of view. Further details are provided in this report. "II We appreciate the opportunity to be of service to you on this phase of your project. If you have any questions concerning this report, or if we may be of further service to you, please do not hesitate to contact us. - Sincerely, `\`�,EOf PiOFEgSio% 9 TERRACON `a` P`�5\CniF qU •B o � Prepared by:. y. ,���\\\P0� REG/.),>- AIP0. G Reviewed b Q l ' , / ��.+.., � c},' ,ram � •; � _` O: �� LC rt,t r L G 'Nell R. She, od v p R SN liatn J. Attwooll, P.E. 70: C * Senior Engineering Geologist , ; S'; °' ,• Office Manager o ••., :A Copies to: Addressee (2) Wagner Architectural Team Ltd. (1) n n ME .y Terracon TABLE OF CONTENTS Page No. Letterof Transmittal......................-.....................................:................................................ii :3 INTRODUCTION.................................................................................................................1 PROPOSED CONSTRUCTION......................................................................................... I SITEEXPLORATION..........................................................................................................2 FieldExploration......................................................................................................2 LaboratoryTesting.................................................................................................. 2 SITECONDITIONS.............................................................................................................3 - SUBSURFACE CONDITIONS............................................................................................ 3 . Geology................................................................................................................... 3 Soil and Bedrock Conditions...................................................................................4 Field and Laboratory Test Results......................................................................:.... 4 Groundwater Conditions..........................................................................................4 _ CONCLUSIONS AND RECOMMENDATIONS....................................................................5 Geotechnical Considerations...................................................................................5 Post -Tensioned Slab Foundation Systems..............................................................5 - Garage Foundation Systems...................................................................................6 Lateral Earth Pressures...........................................................................................6 Seismic Considerations...........................................................................................7 Pavement Design and Construction.........................................................................7 Earthwork................................................................................................................ 10 ° Site Clearing and Subgrade Preparation.....................................................10 Excavation................................................................................................... 10 FillMaterials................................................................................................. 11 n Placement and Compaction......................................................................... 12 Shrinkage.....................................:.............:................................................. 13 _ Compliance.................................................................................................. 13 Excavation and Trench Construction........................................................... 13 Drainage.................................................................................................................. 14 SurfaceDrainage......................................................................................... 14 Additional Design and Construction Considerations................................................ 14 Exterior Slab Design and Construction........................................................ 14 Underaround Utility Systems........................................................................ 15 Corrosion Protection............:....................................................................... 15 - GENERAL COMMENTS..................................................................................................... 15 v Geotechnical Engineering Exploration The Preserve 7 Project No. 20985094 T. TABLE OF CONTENTS (cont'd) APPENDIX A Site Plan and Boring Location Diagram Logs of Borings APPENDIX B Laboratory Test Results _ APPENDIX C General Notes w APPENDIX D Pavement Notes Tcrracon iv 4 AM J. e 7ky ( •. ly�s ,tom 11f I INTRODUCTION GEOTECHNICAL ENGINEERING REPORT THE PRESERVE PHASE II RAINTREE DRIVE FORT COLLINS, COLORADO Project No. 20985094 June 26, 1998 Terracon " This report contains the results of our geotechnical engineering exploration for the =. proposed two- and three-story apartment complex with detached garages located on Raintree Drive in west -central Fort Collins, Colorado. The site is located in the Southeast 1/4 of Section 22, Township 7 North, Range 69 West of the 6th Principal Meridian. ,;, The purpose of these services is to provide information and geotechnical engineering recommendations relative to: r" subsurface soil conditions • groundwater conditions • foundation design and construction • lateral earth pressures pavement design and construction — earthwork '" drainage The conclusions and recommendations contained in this report are based upon the results of field and laboratory testing, engineering analyses, our experience with similar soil conditions and structures and our understanding of the proposed project. PROPOSED CONSTRUCTION Based on information provided by Wagner Architectural Team Ltd. and Mr. David Bailey, the project is to consist of 2 Nvo- and three-story slab -on -grade apartment buildings and 16 detached garages. The apartment buildings are to be supported by post -tensioned slab - on -ground foundation systems. The garages will be supported by structural slabs with thickened edges. Parking areas are planned adjacent to the buildings. Although final site grading plans were not available prior to preparation of this report, ground floor level is L „ Geotechnical Engineering Exploration Turracon The Preserve v Project No. 20985094 anticipated to be at or riear existing elevations of the streets and parking lots located in and adjacent to the site. . _ SITE EXPLORATION The scope of the services performed for this project included a site reconnaissance by an engineering geologist, a subsurface exploration program, laboratory testing and . engineering analysis. Field Exploration A total of five test borings were drilled on June 10, 1998 to depths of 15 feet at the locations shown on the Site Plan, Figure 1. Four borings were drilled within the footprint of the proposed apartment buildings, and one boring were drilled in the area of the proposed _ detached garages. All borings were advanced with a truck -mounted drilling rig, utilizing 4- inch diameter solid stem auger. _ The borings were located in the field by pacing from property lines and/or existing site features. Elevations were taken at each boring location by measurements with an engineer's level from a temporary bench mark (TBM) shown on the Site Plan. The accuracy of boring locations and elevations should only be assumed to the level implied by n• the methods used. — Continuous lithologic logs of each boring were recorded by the engineering geologist during the drilling operations.. At selected intervals, samples of the subsurface materials were taken by pushing thin -walled Shelby tubes, or by driving split -spoon samplers. Penetration resistance measurements were obtained by driving the split -spoon into the _ subsurface materials with a 140-pound hammer falling 30 inches. The penetration resistance value is a useful index to the consistency, relative density or hardness of the materials encountered. Ground,vater measurements were made in each boring at the time of site exploration, and 13 days after drilling. Laboratory Testing v All samples retrieved during the field exploration were returned to the laboratory for T observation by the project geotechnical engineer, and were classified in accordance with the Unified Soil Classification System described in Appendix C. At that time, the field descriptions were confirmed or modified as necessary and an applicable laboratory testing E •eL:::i%� 4% 5• oy. 1 wpm Yt .. �N 9 I J�i.fL Mkt; . Yvy Oyu �s IRIA .S Geotechnical Engineering Exploration Torlacon The Preserve Project No. 20985094 program was formulated to determine engineering properties of the subsurface materials. Boring logs were prepared and are presented in Appendix A. Selected soil samples were tested for the following engineering properties: • Water content Expansion • Dry density Grain size distribution • Consolidation Plasticity Index • Compressive strength Water soluble sulfate content The significance and purpose of each laboratory test is described in Appendix C. Laboratory test results are presented in Appendix B, and were used for the geotechnicai engineering analyses, and the development of foundation and earthwork recommendations. All laboratory tests were performed in general accordance with the applicable ASTM, local or other accepted standards. SITE CONDITIONS The site consists of a vacant tract of land currently vegetated with weeds and native grasses. Two sand volleyball courts are located on the south part of the site. A large drainage ditch, 25 to 30 feet wide and 4 feet deep, is located in the northern portion of the property and runs in an east -west direction. The site is bordered to the east by commercial buildings, to the west and north by Raintree Drive, and to the south by parking, and drive areas of adjacent commercial buildings. The area is relatively flat with minor drainage to the south. SUBSURFACE CONDITIONS Geology The proposed area is located within the Colorado Piedmont section of the Great Plains physiographic province. The Colorado Piedmont, formed during Late Tertiary and Earl/ Quaternary time (approximately 2,005,000 years ago), is a broad, erosional trench whici'i separates the Southern Rocky Mountains from the High Plains. Structurally, the site lies along the western flank of the Denver Basin. During the Late Mesozoic and Eariy Cenozoic Periods (approximately 70,000,000 years ago), intense tectonic activity occurred, causing the uplifting of the Front Range and associated downwarping of the Denver Basin to the east. Relatively flat uplands and broad valleys characterize the present-day topography of the Colorado Piedmont in this region. The site is underlain by the Geotechnical Engineering Exploration Terracon The Preserve Project No. 20985094 Cretaceous Pierre Formation. The Pierre shale underlies the site at approximate depths of 20 to 30 feet below the surface. The Pierre shale is overlain by alluvial sands and colluvial clays of Pleistocene and/or Recent Age. Mapping completed by the Colorado Geological Survey ('Hart, 1972), indicates the site in an area of "Moderate Swell Potential." Potentially expansive materials mapped in this area include bedrock, weathered bedrock and colluvium (surficial units). Soil and Bedrock Conditions A 1'/z to 2'/z foot layer of sandy lean clay fill was encountered at the surface of the five borings drilled at the site. The fill is moist and medium stiff in consistency. The fill is underlain by sandy lean clay with gravel which extends to depths of 7 to 11% feet below the surface. The lean clay with sand is moist and soft to stiff in consistency. Silty and/or silty clayey sand with gravel underlies the clays and extends to the depths explored. The clays are loose to medium dense and dry to moist. Field and Laboratory Test Results Field and laboratory test results indicate portions of the clay soils have low dry densities and moisture contents and are susceptible to consolidation when wetted. The remainder of the clay soils exhibit moderate bearing characteristics and low swell potential. — Groundwater Conditions Groundwater was not observed in any test boring at the time of the field exploration nor when checked 13 days after drilling. These observations represent only current groundwater conditions, and may not be indicative of other times, or at other locations. Groundwater levels can be expected to fluctuate with varying seasonal and weather conditions. Based upon review of U.S. Geological Survey maps (zHillier, et al, 1983), regional groundwater is expected to be encountered in unconsolidated alluvial deposits on the site, a' depths ranging from 10 to 20 feet below the existing ground surface at the project site. Hart, Stephen S., 1972, Potentially Swelling Soil and Rock in the Front Range Urban Corridor, Colorado, Colorado Geological Survey, Environmental Geology No. 7. zHillier, Donald E.; Schneider, Paul A., Jr.; and Hutchinson, E. Carter, 1933, Depth to Water Table (1979) in the Boulder -Fort Collins -Greeley Area, Front Range Urban Corridor, Colorado, United States Geological Survey, Map 1-855-I. f _ Geotechnical Engineering Exploration .The Preserve Project No. 20985094 CONCLUSIONS AND RECOMMENDATIONS Geotechnical Considerations The following foundation systems were evaluated for use on the site: Tor ra con • post -tensioned slabs on ground • structural slabs bearing on undisturbed soils; and • structural slabs bearing on engineered fill. Design and construction recommendations for foundation systems and other earth connected phases of the project are outlined below. Post -Tensioned Slab Foundation Systems Post -tensioned slab construction are proposed as the foundation system for the buildings. Post -tensioned slabs should be designed using criteria outlined by the Post -Tensioning Institute based on the following: • Maximum Allowable Bearing Pressure............................................................ 1,500 psf • Edge Moisture Variation Distance, em • Center Lift Condition.................................................................................. 5.5 feet • Edge Lift Condition....................................................................................2.5 feet • Total Soil Movement..........................................................................................2 inches Slab-Subgrade friction coefficient, m on polyethylene sheeting................................................................................ 0.75 oncohesionless soils...................................................................................... 1.00 oncohesive soils............................................................................................. 2.00 Post -tensioned slabs, thickened or turn -down edges and/or interior beams should be designed and constructed in accordance with the requirements of the Post -Tensioning Institute and the American Concrete Institute. a (1982), Design and Construction of Post -Tensioned Slabs -on- Ground, Post -Tensioning Institute, First Edition. 1 _ Geotechnical Engineering Exploration i crr, con The Preserve Project No. 20985094 Garage Foundation Systems '- It is our understanding the proposed detached garages are to be supported by 6-inch reinforced structural slabs with fattened edges. In view of the loads transmitted by the proposed garage construction and the soil conditions encountered at the site, it is our opinion the garages can be supported by structural slab -type foundations. All structural slabs should be founded on the original, undisturbed soil or on a structural fill extended to the undisturbed soil. Structural slabs founded at the above levels may be designed for a maximum allowable bearing capacity of 1,500 pounds per square foot (dead load plus maximum live load). The predicted settlement under the above maximum loading as determined by laboratory consolidation tests should be less than 1 inch, generally considered to be within acceptable tolerances. Foundations and masonry walls should be reinforced as necessary to reduce the potential _ for distress caused by differential foundation movement. The use of joints at openings or other discontinuities in masonry walls is recommended. �^ Foundation excavations should be observed by the geotechnical engineer. If the soil conditions encountered differ from those presented in this report, supplemental recommendations will be required. Lateral Earth Pressures For soils above any free water surface, recommended equivalent fluid pressures for unrestrained foundation elements are: �r • Active: Cohesive soil backfill (clay)....................................................................... 45 psf/ft • Passive: Cohesive soil backfill (clay)..................................................................... 350 psf/ft Adhesion at base of footing................................................................................ 500 osf 1 Where the design includes restrained elements -the following equivalent fluid pressures are recommended: At rest Cohesive soil backfill (clay)....................................................................... 60 psf/ft Ir_ Geotechnical Engineering Exploration rerracon The Preserve -, Project No. 20935094 The lateral earth pressures herein are not applicable for submerged soils. Additional 1 recommendations may be necessary if such conditions are to be included in the design. Fill against grade beams and retaining walls should be compacted to densities specified in i "Earthwork". High plasticity clay soils should not be used as backfill against retaining walls. Compaction of each lift adjacent to walls should be accomplished with hand -operated tampers or other lightweight compactors. Overcompaction may cause excessive lateral earth pressures which could result in wall movement. A I I 1 LJ I I Seismic Considerations The project site is located in Seismic Risk Zone I of the Seismic Zone Map of the United States as indicated by the 1997 Uniform Building Code. Based upon the nature of the subsurface materials, a soil profile type Sc should be used for the design of structures for the proposed project (1997 Uniform Building Code, Table No. 16-J). Pavement Design and Construction The required total thickness for the pavement structure is dependent primarily upon the foundation soil or subgrade and upon traffic conditions. Based on the soil conditions encountered at the site, the anticipated type and volume of traffic and using a group index of 12 as the criterion for pavement design, the following minimum pavement thicknesses are recommended: Traffic Area Alternative Recommended Pavement Thicknesses (Inches) Asphalt Concrete Surface Aggregate Base Course Plant -Mixed Bituminous Base Portland Cement Concrete Total Automobile Parking A 3 5 E 6 I 2 3 5 C I I 5 5 Main Traffic Corridors A 3 10 13 6 I 2 I I 41 I I 6�2 C 6 6 Each alternative should be investigated with respect to current material availability and economic conditions. Geotechnical Engineering Exploration The Preserve �urrac"" Project No. 20985094 Aggregate base course (if used on the site) should consist of a blend of sand and gravel which meets strict specifications for quality and gradation. Use of materials meeting Colorado Department of Transportation (CDOT) Class 5 or 6 specifications is recommended for base course. Aggregate base course should be placed in lifts not exceeding six inches and should be compacted to a minimum of 95% Standard Proctor Density (ASTM D698). it Asphalt concrete and/or plant -mixed bituminous base course should be composed of a mixture of aggregate, filler and additives, if required, and approved bituminous material. The bituminous base and/or asphalt concrete should conform to approved mix designs ' stating the Hveem properties, optimum asphalt content, job mix formula and recommended mixing and placing temperatures. Aggregate used in plant -mixed bituminous base course 11 it and/or asphalt concrete should meet particular gradations. Material meeting Colorado Department of Transportation Grading C or CX specification is recommended for asphalt concrete. Aggregate meeting Colorado Department of Transportation Grading G or C specifications is recommended for plant -mixed bituminous base course. Mix designs should be submitted prior to construction to verify their adequacy. Asphalt material should be placed in maximum 3-inch lifts and should be compacted to a minimum of 95% Hveem density (ASTM D1560) (ASTM D1561). Where rigid pavements are used, the concrete should be obtained from an approved mix design with the following minimum properties: " Modulus of Rupture @ 28 days .................................................. 650 psi minimum • Strength Requirements.........................................................................ASTM C94 • Minimum Cement Content............................................................6.5 sacks/cu. yd. CementType................................................................................. Type I Portland Entrained Air Content.................................................................................4 to 8% Concrete Aggregate........................................ASTM C33 and CDOT Section 703 AggregateSize ............................................................................ 1 inch maximum Maximum Water Content.......................................................0.49 lb/lb of cement Maximum Allowable Slump.......................................................................4 inches ' Geotechnical Engineering Exploration The Preserve Terrocon Project No. 20985094 Concrete should be deposited by truck mixers or agitators and placed a maximum of 90 minutes from the time the water is added to the mix. Other specifications outlined by the Colorado Department of Transportation should be followed. ' Longitudinal and transverse joints should be provided as needed in concrete pavements for expansion/contraction and isolation. The location and extent of joints should be based ' upon the final pavement geometry and should be placed (in feet) at roughly twice the slab thickness (in inches) on center in either direction. Sawed joints should be cut within 24- hours of concrete placement, and should be a minimum of 25% of slab thickness plus 1/4 ' inch. All joints should be sealed to prevent entry of foreign material and dowelled where necessary for load transfer. Future performance of pavements constructed on the clay soils at this site will be dependent upon several factors, including: maintaining stable moisture content of the subgrade soils and • providing for a planned program of preventative maintenance. ' Since the clay soils on the site have shrink/swell characteristics, pavements could crack in ' the future primarily because of expansion of the soils when subjected to an increase in _. moisture content to the subgrade. The cracking, while not desirable, does not necessarily constitute structural failure of the pavement. -, The performance of all pavements can be enhanced by minimizing excess moisture which can reach the subgrade soils. The following recommendations should be considered at minimum: Site grading at a minimum 2% grade away from the pavements; Compaction of any utility trenches for landscaped areas to the same criteria as the pavement subgrade; Sealing all landscaped areas in or adjacent to pavements to minimize or prevent moisture migration to subgrade soils; Placing compacted backfill against the exteribr side of curb and gutter; and, Placing curb, gutter and/or sidewalk directly on subgrade soils without the use of base course materials. Preventative maintenance should be planned and provided for an on -going pavement management program in order to enhance future pavement performance. Preventative ..... . J• ��f•�4�W1...1�11.�.nn .............. .1 Geotechnical Engineering Exploration The Preserve Icrui-on Project No. 20985094 'are _ maintenance activities intended to slow the rate of pavement deterioration and to !preserve t the pavement investment. I Preventative maintenance consists of both localized maintenance (e.g. crack sealing and patching) and global maintenance (e.g. surface sealing). Preventative maintenance is usually the first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements. i'. Recommended - preventative maintenance policies for asphalt and jointed concrete pavements, based upon type and severity of distress, are provided in Appendix D. Prior to implementing any maintenance, additional engineering observation is recommended to _ determine the type and extent of preventative maintenance. Earthwork • Site Clearing and Subgrade Preparation: 1. Strip and remove existing vegetation, debris, and other deleterious materials from proposed building and pavement areas. All exposed surfaces should be free of mounds and depressions which could prevent uniform compaction. 2. If unexpected fills or underground facilities are encountered during site clearing, such features should be removed and the excavation thoroughly cleaned prior to backfill placement and/or construction. All excavations should be observed ■ by the geotechnical engineer prior to backfill placement. 3. The site should be initially graded to create a relatively level surface to receive fill, and to provide for a relatively uniform thickness of fill beneath proposed building structures. 4. All exposed areas which will receive fill, floor slabs and/or pavement, once properly cleared and benched where necessary, should be scarified to a minimum depth of 8 inches, conditioned to near optimum moisture content, and compacted. Excavation: It is anticipated that excavations for the proposed construction can be accomplished with conventional earthmoving equipment. Geotechnical Engineering Exploration rcrracon The Preserve Project No. 20985094 2. On -site clay'soils in proposed pavement areas may pump or become unstable or unworkable at high water contents. Workability may be improved by ' scarifying and drying. Overexcavation of wet zones and replacement with ' granular materials may be necessary. Lightweight excavation equipment may be required to reduce subgrade pumping. Minimizing construction traffic on - site is recommended. Use of lime, fly ash, kiln dust, cement or geotextiles could also be considered as a stabilization technique. Laboratory evaluation is recommended to determine ' the effect of chemical stabilization on subgrade soils prior to construction. ' Proof -rolling of the subgrade may be required to determine stability prior to ' paving. Fill Materials: ;., 1. Clean on -site soils or approved imported materials may be used as fill material for the following: - general site grading exterior slab areas • foundation areas pavement areas • interior floor slab areas foundation backfill 2. Select granular materials should be used as backfill behind retaining walls. 3. Frozen soils should not be used as fill or backfill. 4. Imported soils (if required) should conform to the following or be approved by ' the Project Geotechnical Engineer: Percent fines by weight Gradation (ASTM C136) 6.. ......................................................................................................100 3.. ................................................................................................ 70-100 ' No. 4 Sieve................................................................................... 50-80 No. 200 Sieve...........................................................................65 (max) 0 LiquidLimit....................................................................35 (max) • Plasticity Index..............................................................15 (max). n I LI Geotechnical Engineering Exploration The Preserve 7encicun Project No. 20985094 5. Aggregate base should conform to Colorado Department of Transportation Class 5 or 6 specifications. ' Placement and Compaction: ' 1. Place and compact fill in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift. 2. No fill should be placed over frozen ground. 3. Materials should be compacted to the following: Minimum Percent Compaction Material (ASTM D698) Subgrade soils beneath fill areas .........................................., ' On -site soils or approved imported fill: Beneath foundations...................................................................... 95 ' Beneath slabs....................................................................... Beneath pavements....................................................................... 95 Utilities............................................................................................ 95 Aggregate base (beneath slabs) ' Miscellaneous backfill............................................................I........90 ' 4. Clay soils placed around or beneath foundations should be compacted within a moisture content range of optimum to 2 percent above optimum. Clay soils placed beneath pavement should be compacted within a moisture content range of 2 percent below to 2 percent above optimum. 5. Granular soils should be compacted within a moisture content range of 3 ' percent below to 3 percent above optimum unless modified by the project geotechnical engineer. 12 • .r Geotechnical Engineering Exploration The Preserve Ti, r,u wi Project No. 20985094 Shrinkage '" For balancing grading plans, estimated shrink or swell of soils and bedrock when . used as compacted fill following recommendations in this report are as follows: Estimated Shrink(-) Swell (+) Material Based on ASTM D698 n On -site soils: Clays................................................................................-15 to -20% • Compliance Performance of slabs -on -grade, foundations and pavement elements supported on compacted fills or prepared subgrade depend upon compliance with "Earthwork" recommendations. To assess compliance, observation and testing should be performed under the direction of the geotechnical engineer. - Excavation and Trench Construction Excavations into the on -site soils will encounter a variety of conditions. Excavations into the clays and bedrock can be expected to stand on relatively steep temporary ' slopes during construction. However, caving soils and/or groundwater may also be encountered. The individual contractor(s) should be made responsible for designing and constructing stable, temporary excavations as required to maintain stability of both the excavation sides and bottom. ' All excavations should be sloped or shored in the interest of safety following local federal and regulations, including current OSHA excavation and trench safety standards. The soils to be penetrated b the y proposed excavations may vary significantly across the site. The preliminary soil classifications are based solely on the materials encountered in widely spaced exploratory test borings. The contractor should verify that similar conditions exist throughout the proposed area of excavation. If different ' subsurface conditions are encountered at the time of construction, the actual conditions should be evaluated to determine any excavation modifications necessary to maintain safe conditions. ' As a safety measure, it is recommended that all vehicles and soil piles be kept to a minimum lateral distance from the crest of the slope equal to no less than the slope height. ' The exposed slope face should be protected against the elements. I 13 r, T1 g Geotechnical Engineering ring Exploration The Preserve 1cmtcon Project No. 20985094 T Drainage i' Surface Drainage: 1. Positive drainage should be provided during construction and maintained throughout the life of the proposed apartment structures. Infiltration of water into utility or foundation excavations must be prevented during construction. Planters and other surface features which could retain water in areas adjacent ' to the building or pavements should be sealed or eliminated. 2. In areas where sidewalks or paving do not immediately adjoin the structure, we recommend that protective slopes be provided with a minimum grade of approximately 5 percent for at least 10 feet from perimeter walls. Backfill against footings, exterior walls and in utility and sprinkler line trenches should be -' well compacted and free of all construction debris to reduce the possibility of moisture infiltration. •' 3. Downspouts, roof drains or scuppers should discharge into splash blocks or extensions when the ground surface beneath such features is not protected by exterior slabs or paving. 4. Sprinkler systems should not be installed within 5 feet of foundation walls. ' Landscaped irrigation adjacent to the foundation system should be minimized or eliminated. Additional Design and Construction Considerations Exterior Slab Design and Construction ' Exterior slabs -on -grade, exterior architectural features, and utilities founded on, or in backfill may experience some movement due to the volume change of the backfill. ' Potential movement could be reduced by: minimizing moisture increases in the backfill ' controlling moisture -density during placement of backfill using designs which allow vertical movement between the exterior features and ' adjoining structural elements ' placing effective control joints on relatively close centers allowing vertical movements in utility connections 1 14 Geotechnical Engineering Exploration The Preserve Project No. 20985094 • Underground Utility Systems All piping should be adequately bedded for proper load distribution. It is suggested that clean, graded gravel compacted to 75 percent of Relative Density ASTM D4253 be used as bedding. Where utilities are excavated below groundwater, temporary dewatering will be required during excavation, pipe placement and backfilling ' operations for proper construction. Utility trenches should be excavated on safe and stable slopes in accordance with OSHA regulations as discussed above. Backfill ' should consist of the on -site soils or imported materials approved by the geotechnical engineer. The pipe backfill should be compacted to a minimum of 95 percent of Standard Proctor Density ASTM D698. • Corrosion Protection Results of soluble sulfate testing indicate that ASTM Type 1-II Portland cement is suitable for all concrete on or below grade. Foundation concrete should be designed in accordance with the provisions of the ACI Design Manual, Section 318, Chapter 4. GENERAL COMMENTS ' Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical. ' recommendations in the design and specifications. Terracon also should be retained to provide testing and observation during excavation, grading, foundation and construction phases of the project. In the event that any changes of the proposed project are planned, the conclusions and recommendations contained in this report should be reviewed and the report modified or supplemented as necessary. The analyses and recommendations in this report are based in part upon data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations which may occur between borings or -' across the site. The nature and extent of such variations may not become evident until construction. If variations appear, it will be necessary to reevaluate the recommendations of this report. n The scope of services for this project does not include either specifically or by implication any environmental assessment of the site or identification of contaminated or hazardous materials or conditions. If the owner is concerned about the potential for such contamination, other studies should be undertaken. n is I Geotechnical Engineering Exploration The Preserve r:rrac:o;, Project No. 20985094 This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. In the event that changes in the nature, design, or location of the project as outlined in this report, are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes, and either ' verifies or modifies the conclusions of this report in writing. 11 11 L 1 16 r4NE CONNErr OLT OF FH NW CCRNER N ERSEC 11GN E a TON=100.0 I NO.h 1 XI S7WG PAR)CNG LOTS i'IG URE I- SITE PLAN ,j� '� HE PRESERVE PHASE II �l II' .FORT COLLINS COLORADO 'ERRACON PROJECT No 20985094 scnLc i° = so' DRAB?!: JUVE, 1090 DRA'8�i BY. RPM(04SLD) Irerracon LOG Or BORING No. I C t:iN'I' — Patc I of 1 --� ARCInTEET/ UNGUNI ER The Preserve I Wa-ner Architectural Tearn Ltd SITE IZaintree Drive ll k0J I:C'f rort Collins, Colorado The Preserve Pllase II ' co I SAMPLES _I TESTS T O J I J co I \ } H Hui O 1 DESCRIPTION � I } t~i H I z H J H (n 0-> Q = lil 1 U1 W O ll (7 ZZ O F-LLI H C O Approx. Sul -Face EICY.: 96.0 et. [1 E O I ZK O IH }lL OU lr L_ O_QJ ' _ IO 1 O Z F- CC I (n 11] j )= O `_ HU J Ul tL H _1 tL ICLI 11 SS 1 12 14 � jq (- :`iKti" Il tU 11111• 11101st, Stitt 1.5 94.5 j� /I SANDY I Fr\N CLAY �VfTH CiRr�ys[ _- jTan to red, moist Soft to stiff 1 -,+ S.0 Sb.O LUL- `LC _ lA `EY SA\iD WITH _r Tan to red, moist f i Loose to IllediUrn dells-- 10 - i� i SS 112"1 14 I I Lj 21S1'112" 3 j SS j 121"1 13 9 77 j 41G I32!17/68 SULFATE S i = .0020 4 1 ST P12" 5 j SS 9 j 10 SN11 6 1 SS l," -21 ! 4 15.0 SLO BO'CTON1 OF B01?[NG I 15 I � I ' THE STRATI%N ICATION LINES REPRESENT I, " T THE APPROXIMATE BOUNDARY LINES BET'',;EEN SOIL AND ROCK TYPES: IN -SITU, THE TRANSITION MAY BE GRADUAL. "'A"1'ER LliVli[, OBSERVATIONS No Y NOt1C A.n. �`'I b1 atcr checiccd 13 days A.B. Ixxa tc s r:\]; rEU 6-10-9S BORING CO,tiO>LCFiiD 6-10-9S I:IG C1N1E-53 FORLNtnN — NP6 APPROVta) YRS I rOu a 2098S094 LOG OF BORING No.) F�� CLIfN'I' P;tl 1_±j I ARC[!f"1"CC'f / LiVGINL•8R _ The Preserve Wagner Architectural Team Ltd SITIi Raintree Drive PROII°CT Fort Collins, Colorado The Preserve Phase 11 1 —� SAMPLES T TESTS 0 J CD F- w z T�);� H Lu DESCRIPTION } w� to zx ' H HF- H U7 uj m W FF--ptL(� rCL U � 0_ F- O H }. W OU cr W u Approx. Surface I lev.: 95.5 ft. _ w t" o >" w a-1 0 �w zF-(p 0 0 z F- I c cn cc z 0 D- 0 cn s t, Qruw❑ to tan, moist, stiff 1.5 94.0 ' ✓S A ` Q Y LEAN CLAY WITH j/ Tau to red, moist MedILlllt 10 Stiff - i10- --- _ 54.0 _ LI SILTY SAND 1VITH GRAVF-[ I - Rcd, dry, medium dense _ 1 I 15.0 80. i ' BOTT0:�4 OF BORING 15 — THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES Bc T6'EEN SOIL AND ROCK TYPES: IN -SITU, THE TRANSITION MAY BE GRADUAL. \VA'I"t:R LI:V1:I.OUSP.RVA'f[ONS \\I. u None \\'. D. q i\One A.B. \el, Water checked 13 days A.B. CL. l IS'f I 12" CL 3ISS11-,, 1 12 1 7II 1 iSTI 1-)" � 99 13 00 4 I SS 1 12"i 11 - 6 1-1 5 1 SS 112"I 14 I 3 IofI BORINcs'rnl:rl`D 6-10-98 BORING CONIrl.cfrD 6-10-9S RIG GNII -55 I PORGMAN NIZci APPROVED NRS IOB r 209S5094 u LOG OF BORING No. 3 --- _ Page I of I CLIEN'I' ni:CIIIlTC'r/ ENGINEER The Preserve I Wa;ner Architectural Teani Ltd SITE L Raintree Drive PI:01LC r Fort Collins, Colorado The Preserve Phase H I SPNPLES TESTS LD O F 0 o F F- O H LU DESCRIPTION LL C } } c LL z� Of H z W HF H z JH 7- rL Q x H V) (n 0r w CO w W O co 3 f= Cn w O w CD o. u 7) Approx. Surface Elev.: 9G.5 ft. D_ o U Z) E z a. F_ U Of f- O V)n H � 'r LL U W U C Li. (n H O Q LL o0- n(na. JQ_ � N, Bn)w I to tan, moist, stiff r< 1.5 95.0 - - / j j ,SdVD_Y_( jl N CLAY 1VITH CRAVE[. .%.;. Tan to red, moist CL ? N'ledium to stiff ST 12" 9 SG 12610 38; 19!7S SS 12" S I 101 i %� 13 I I f ! i F ST 12„I 7 90 2620 7 I iSS 12„ 15 --� SILTY SAND WITH GRAVE I 10 Red. 1110kt, medium dense L� S-M G SS 112" 13 7 � I 81.s Id BOTTOM OF BORING THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: IN -SITU, THE TRANSITION MAY BE GRADUAL. \VA'FER LEVEL OL'SI:RVr\'I'lONS 130hING om I;ortNc :\PPROVIiD S'I'r\I�fED 6-10-9S \lL 1 =r W.D. r _ None I _ None A. 13. coatPt0cm.[1'LD 6-10-98 r.Ic \ RS CNIG-SS ror.EntnN N'L I Water clTecked 13 days A.B. NI2S Jon; 209Sa094 CLIENT - ' 0 0 J c.t H_ <r CC 0 ;'lx ' 0 LOG OF BORING No. 4 _ Page 1 of I ARCI[I'ITC'r / ENGINEER The Preserve Wagner Architectural Team Ltd Raintme Drive PROILC't' Fort Collins, Colorado The Preserve Phase II SAMPLES I TESTS 0 O cc \ } w H DESCRIPTION LL v > c z LL z= ern w z� W ~ HF Zz w Approx. Surface Elm: 95.5 ft. I-' co W LV m lil O 3 c Z) } W F-'O H }� OUCCLL ¢ J I c e z H � min o �c oa zL-cn ccna e cn F=1J (,_S;tttdLc,tuSltx- Brown to tan. moist, stiff ICLI 1 1 STi 1'" I 1 f7 �c- -��0 9i 0 22 SS 112"I 7 I 17 SANDY C I.AY WIT FL GRAM, I SS 17„ 6 Tan to red, moist Soft to mediumi— S i---s \ND \VITH rRgVp( Red, moist, medium dense B01-1.ON'I OF BORING 5 E CLI 3ISTI 12;;-F I I1 I IOS I 770 4 SS 1? 161 S&I1 51 SS 1 12^1 20 I 7 15 I• HE STRATIFICATIC!i LINES REPRESENT THE APPROXIMATE BOUNDARY LINES ETLIEEN SOIL AND ROCK TYPES: IN -SITU, THE TRANSITION MAY SE GRADUAL. wA'I'IiR I-VVla- 0IISERVATIONS None �r.u. r None A. u.Rm err \Vatcr chccl:cd 13 dars A.B. BORING S•I'AR'rIa' 6-10-98 W)RINc coau LrrrEl> 6-10-9S RIG 6N1C-53 PORl-'" %N NRS APPROVI-n NRS 1I013,r 20955094 LOG OF BORING No. 5 Page I of I Iti?I'I' ARCII['I'GC'r / ENGINEER The Preserve Wegner Architectural Team Ltd Raintree Drive FOrt Collins, Colorado _ The Preserve Phase it J I SAMPLES TESTS Y H cc LL W H W H DESCRIPTION } Z\ W C Z z = H)- H U) U) wW m W O 3 to O Z'L O(U Approx. Surface Elev.: 94.5 ft.. (.. W o U U) Z) z O a. } u W F-- O a. J H O Y LL � L) W LL Z)-• U) z )— rr cnm z oa. mid IX '<i� FII SLLlsy-Cs'ilSltly 1.0 f3anvtT to tan, moist, medium 93 CL I ISSI13" 6 I 211 1 -- S 12" 6 SANDY CLAY WITH _ Cl3�tiYE.L� 'I'an to red, moist, medium CL Z ST 112" 16 105 2050 It SS 12" 5 16 i 7.0 87.5 4 SS 12.. 15 � S ;...II SILTY SAND NVlIj_ RAVEL _]SM — — Red. Moist : Loose to medium dense I 10 I ji� I � 5 SS 12' 9 19I 79.5 � IS � Ti � I I I BOTT0N1 OF BORING I I T STRATIFICATION LINES REPRESENT THE APPROXIMATE 6CUNDARY LINES G EEN SO!L AND ROCK TYPES: IN -SITU, THE TRANSITION MAY BE GRADUAL. WA'1'I:K OUSEKVA'I'10NS 13UKING S'FAK'111) 6-10-9S -1 Nonc W I). Y Non, A.I3. BORING COM1IPLL:1'f_D 6-10-95 Civil-_ 5 I FOREMAN NRS eadcU0 IRIG Water checked 13 days A.B. AI'I'ItOVE!? Nf2S IsOtsd 209S5094 m No Text /s 0 CD Q X m R No Text No Text RELATIVE DENSITY OF COARSE -GRAINED SOILS: Relative Density Very Loose Loose Medium Dense Dpnse Very Dense Extremely Dense GRAIN SIZE TERMINOLOGY Size Range Over 12 in. (300mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75mm) ;/4 to /,200 sieve(4.75mm to Passing #200 Sieve (0.075mm) DRILLING AND EXPLORATION DRILLING & SAMPLING SYMBOLS: Ring Barrell - 2.42" I.D., 3" O.D., unless otherwise noted S11 Split Spoon - 1 " I.D., 2" O.D., unless otherwise noted S Thin PS : Piston Sample -Walled Tube - 2" O.D., unless otherwise noted PA : Power Auger WS : Wash Sample H Hand Auger FT :Fish Tail Bit D Diamond Bit = 4", N, B RB : Rock Bit BS : Bulk Sample A Auger Sample HS :Hollow Stem Auger PM PM : Pressure Meter : Dutch Cone P WB : Wash Bore enetration Test: Blows per foot of a 140 pound hammer falling 30 inches on a 2-inch O.D. split spoon, except vihere noted. WIER LEVEL MEASUREMENT SYMBOLS: WL Water Level lNS :While Sampling WCI : Wet Cave in WD :While Drilling D Dry Cave in BCR : Before Casing Removal A After Boring ACR : After Casting Removal WiJer levels indicated on the boring logs are the levels measured in the borings at the time indicated. In pervious so the indicated levels may reflect the location of groundwater. In tow permeability soils, the accurate de urination of groundwater levels is not possible with only short term observations. DE _RIPTIVE SOIL CLASSIFICATION: So Classification is based on the Unified Soil Classification system and the ASTM Designations D-2487 and D- 24 Coarse Grained Soils have more than 50% of their dry weight retained on a k200 sieve; they are described :is: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a R200 3ie they are described as: clays, if they are plastic, and silts if they are slightly plastic or non -plastic. Major 0 ituents may be added as modifiers and minor constituents may be added according to the relative proportions �a on grain size. In addition to gradation, coarse grained soils are defined on the basis of their relative in- lace Jensity and fine grained soils on the basis of their consistency. p Cl,silty sand, trace gravel, medium dense ISM). 1 Example: Lean clay with sand, trace grovel, stiff CONSISTENCY OF FINE-GRAINED SOILS: confined Compressive trength, Ou, psf Consistency N-Blows/ft. < 500 Very Soft 500 - 1,000 Soft - 2.000 Medium 0-3 4-9 101 01 - 4,000 Stiff 10-29 01 - 8,000 Very Stiff 30-49 8,001-16,000 Very Hard 50-80 RELATIVE PROPORTIONS OF 80+ SAND AND GRAVEL escriptive Term(s) ( Components Also Percent of Major Resent in Sample) Dry Weight Component Trace < 15 of Sample With 15 - 29 MOa,fier > 30 Boulders. Cobbles RELATIVE PROPORTIONS OF FINES Gravel scriptive Term(s) Sand ( components Also Percent of 0.075mm) Present in Sample) Dry Weight Silt or Clay Trace < 5 With 5 - 12 Modifier > 12 c l C UNIFIED SOIL CLASSIFICATION SYSTEM --------------- 1 Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests Soil Classilication Group Symbol 'Group Nam,° rse-Grained Gravels more than Clean Gravels Less more than 509'. retained on 50% of coarse than 5% fines° fraction retained on Cu > 4 and 1 < Cc <3E GW Well -graded gravel' No. 200 sieve No. 4 sieve --_ Cu < 4 and/or 1 > Cc > 3E GP 1 Poorly traded gravel` Gravels with Fines more than 12% fines° Fines classify as ML or NIH GNt Silty gravel,G,H - - - Fines classify as CL or CH GC Clayey gravel".- Sands 5096 or more Clean Sands Less of coarse fraction than 5% fines' Cu > 6 and 1 < Cc < 3E -'--- _- _ SW `Nell-oraded sand' Passes No. 4 sieve Cu < 6 and/or 1 > Cc > 3' SP Sands with Fines Fines classify as fv1L or NIH _ Poorly graded sand' more than 129'° finest SM Silty santic•"-' `- Fines Classify as CL or CH Fine- ir.tined Soils Silts and Clays inorganic SC Clayey sand°"' 5 °' or more PI > 7 and plots on or above "A line' CL Liquid limit less Lean clay`"' as 5 the than 50 or plots below A" line' NIL N CO sieve PI < 4 ' Silt `• organic Liquid limit • oven dried Organic clay`-L-"'-" Liquid limit - no; < 0.75 OL dried - Organic siltRuw.o Silts and Clays inorganic PI lots on or above "A' line Liquid limit SO CH Fat clayaiw or more 1 PI lots belo.v "A" line — -- - fv1H clastic Sii;R" organic Liquid limit •oven dried Liquid limit •not dried Organic c!ayc="" _— < 0.75 OH - c_wo _ Organic silt Hi;hly organic soils Primarily erga nic matter, dark in color, and organic odor PT Peat AS don the material passing the 3-in. — 17 m) sieve `If soil contains 15 to 2C% plus No. _ 0, add 'If field sample contained cobbles or E=u`psa/p: Cc ' (`,'"1 "with sand" or [ith gravel , whichever is be ers, or born, add "with cobbles or J`" .a y4° predominant. be ers, or butt-," to group name. `If soil contains ? 3090 Plus No. 200 -Gr el s with 5 ;0 7 29b fines require dual 'If soil contains > 1 59'a sand, add "with predominantly sand, add "sandy" to group Sv nLols: name. sand" to group name. "If soil contains > 3091, -Plus No. 20C. . G'.:'-GN1 wail -graded gravel with silt °If fines classify as CL-NIL, use dual symbol predominantly gravel, add "gravelly" [o group 0%.WC well -graded gravel with clay GC-GN1, or SC-Siv1. GP M pocrly graded ravel with silt " name. 9 If fines are organic, add "with organic fines" D1PI > 4 and plots on or above "A" line. G' Poorly graded gravel with clay to group name. ° Sands with5 to 1 29'o fines require dual 'If soil contains > 15'/o gravel, add "evi;h PI < 4 or plots below ";%" line. Symbols: gravel" to group name. °PI plots on or above "A' line. S\ANI well graded sand with silt 'If Atterberg limits plot in shaded area, soil is 'PI plots below "A' line. SV C well -graded sand with clay a CL-N1L, silty clay. SP- •1 poorly graded sand with silt 5P-SC poorly graded sand with clay / 0 i I I :Nlr GF Ou i CL -uL ,M- ;P OL -- J Z:; Gr e G Iferracon ' LABORAT ORY TESTS SIGNIFICANCE AND PURPOSE TEST SIGNIFICANCE PURPOSE California Used to evaluate the potential strength of subgrade soil, Pavement Bearing subbase, and base course material, including recycled Thickness i Ratio materials for use in road and airfield pavements. Design onsolidation i Used to develop an estimate of both the rate and amount of Foundation both differential and total settlement of a structure. Design Direct Used to determine the consolidated drained shear strength of Bearing Capacity, Shear soil or rock. Foundation Design & Slope Stability Dry Used to determine the in -place density of natural, inorganic, Index Property Density fine-grained soils. Soil Behavior xpansion Used to measure the expansive potential of fine-grained soil Foundation &Slab and to provide a basis for swell potential classification. Design radation Used for the quantitative determination of the distribution of Soil particle sizes in soil. Classification Liquid & Used as an integral part of engineering classification systems Soil astic Limit, to characterize the fine-grained fraction of soils, and to Classification Plasticity specify the fine-grained fraction of construction materials. Index Permeability Used to determine the capacity of soil or rock to conduct a Groundwater liquid or gas. Flow Analysis pH Used to determine the degree of acidity or alkalinity of a soil. Corrosion Potential esistivity Used to indicate the relative ability of a soil medium to carry Corrosion electrical currents. Potential R-Value Used to evaluate the potential strength of subgrade soil, Pavement subbase, and base course material, including recycled Thickness materials for use in road and airfield pavements. Design So/uble I Used to determine the quantitative amount of soluble Corrosion ulphate sulfates within a soil mass. Potential confined To obtain the approximate compressive strength of soils that Bearing Capacity Compression possess sufficient cohesion to permit testing in the Analysis ' unconfined state. for Foundations UWater Used to determine the quantitative amount of water in a soil Index Property ontent mass. Soil Behavior '.Y y..• ...1 t .. ' REPORT TERMINOLOGY (Based on ASTM D653) Towable Soil The recommended maximum contact stress developed at the interface of the Bearing Capacity foundation element and the supporting material. Alluvium Soil, the constituents of which have been transported in suspension by flowing water and subsequently deposited by sedimentation. �regate Base A layer of specified material placed on a subgrade or subbase usually beneath slabs Course or pavements. Backfill A specified material placed and compacted in a confined area. Bedrock A natural aggregate of mineral grains connected by strong and permanent cohesive forces. Usually requires drilling, wedging, blasting or other methods of extraordinary force for excavation. Bench A horizontal surface in a sloped deposit. Of(Drilled pier A concrete foundation element cast in a circular excavation which may have an �or ShaftJ enlarged base. Sometimes referred to as a cast -in -place pier or drilled shaft. Coefficient of A constant proportionality factor relating normal stress and the corresponding shear IFriction stress at which sliding starts between the two surfaces. Colluvium Soil, the constituents of which have been deposited chiefly by gravity such as at the foot of a slope or cliff. mpaction The densification of a soil by means of mechanical manipulation. 'o rete Slab -on- A concrete surface layer cast directly upon a base, subbase or subgrade, and I Grade typically used as a floor system. Differential Unequal settlement or heave between, or within foundation elements of a TO vement structure. Pressure The pressure or force exerted by soil on any boundary such as a foundation wall. ESA Equivalent Single Axle Load, a criteria used to convert traffic to a uniform standard, (18,000 pound axle loads). En'ineered Fill Specified material placed and compacted to specified density and/or moisture conditions under observations of a representative of a geotechnical engineer. Equivalent Fluid A hypothetical fluid having a unit weight such that it will produce a pressure ' against a lateral support presumed to be equivalent to that produced by the actual soil. This simplified approach is valid only when deformation conditions are such that the pressure increases linearly with depth and the wall friction is neglected. s: Fill (or man- Materials deposited through the action of man prior to exploration of the site. ade fill) Ating Grade The ground surface at the time of field exploration. Barr con M 11 REPORT TERMINOLOGY (Based on ASTM D653) Expansive Potential The potential of a soil to expand (increase in volume) due to absorption of moisture. ' Finished Grade The final grade created as a part of the project. Footing A portion of the foundation of a structure that transmits loads directly to the soil. Foundation The lower part of a structure that transmits the loads to the soil or bedrock. Frost Depth The depth of which the ground becomes frozen during the winter season. Grade Beam A foundation element or wall, typically constructed of reinforced concrete, used to span between other foundation elements such as drilled piers. ' Groundwater Subsurface water found in the zone of saturation of soils, or within fractures in bedrock. ' Heave Upward movement. Lithologic The characteristics which describe the composition and texture of soil and rock by observation. Native Grade The naturally occuring ground surface. tNative Soil Naturally occurring on -site soil, sometimes referred to as natural soil. timum Moisture The water content at which a soil can be compacted to a maximum dry unit Content weight by a given compactive effort. ,Perched Water Groundwater, usually of limited area maintained above a normal water elevation by the presence of an intervening relatively impervious continuing stratum. Scarify To mechanically loosen soil or break down existing soil structure. Settlement Downward movement. in Friction (Side The frictional resistance developed between soil and an element of structure such Shear] as a drilled pier or shaft. Soil (earth) Sediments or other unconsolidated accumulations of solid particles produced by the physical and chemical disintegration of rocks, and which may or may not contain organic matter. Strain Stress The change in length per unit of length in a given direction. The force per unit area. acting within a soil mass. Strip To remove from present location. -Subbase A layer of specified material in a pavement system between the subgrade and base course. ' Subgrade The soil prepared and compacted to support a structure, slab or pavement system. -i=1 rerr i I UNDERDRAIN DETAIL zap, e 60 50 No obi rr STOe.YH SiEW£9 0.00 Yp / / 8 / SU6 � 6A'Slu I • I\ Z'Sm& ..., % Oe1fICE 31ZE6 T`1 ! a R4 s�s es +.•e S�D 4.a bD+M 55 �... 55 56 50 50 52 .e�. F f FO, h^ ON <^ yd of �We .v' tldl3 p'8 i e STOZH a nip. 56wC2. nuE.i-I e ]]S JS YW2 0<00 I*00 800 3.00 PARSONS & ASSOCIATES "°'< 85.07 RNT StBIG: '•m' 432 Link Lene Plaza FL Collins. Colorado 80529 CONSULTING ENGINEERS (303) 221 - 24 00 .�. Ck.ek.4 .Rmp Prepared: we, as t o l:1 48 rl; Y e g how m I4 4.00 5.00 6.00 a Date FRAINTREE COMMERCIAL P.U.D. PHASE II DRAINAGE & GRADING PLAN DESIGN POINT 19UTARV AREA (SDBP4E MLh 2 YR 100 YR C2 SURFACE FLOW 1p0 SURFACE FLOW SYSTEM FLOW .1..md n (.u..) ea m n.D% A 4 IB L52 0.70 3.05 .Be 11.60 11. BeDP20.6) 0.57 .00 1.60 13.20OP3 2B O.AI 0.63 L2l ii 1.0A 3.76 17.OAOVA 2C 0. 1A O. A9 0.22 .51 0.69 0.69OP5 zo o. 11 0.51 o.1e. eA o. 5e 1. z50P6 C 0. 15 0.52 0.25 .e5 0.73 0.16DPl Yf 0. 12OP0 0. 10 0. ♦ O. 14. 30 0.43 17. QOPO JA 009 0.51 0.15 .6A 0.A6 0.A6