Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 12/06/1996 (4)
FINAL DRAINAGE STUDY FOR HEWLETT-PACKARD COMPANY BUILDING 5 FORT COLLINS, COLORADO October 4, 1996 Prepared for: H + L Architecture 1621 18th Street, Suite 100 Denver, Colorado 80202 Prepared by: RBD, Inc. Engineering Consultants A Division of Sear Brown 209 South Meldrum Fort Collins, Colorado 80521 (970) 482-5922 RBD Job No. 282-015 REV. 3 I 1 INC. 1 Engineering Consultants A division JThe Sear -Brown Group 209 S. Meldrum 1 Fort Collins, Colorado 80521 970/482-5922 October 4, 1996 Mr. Basil Harridan. 1 City of Fort Collins Utility Services - Stormwater 235 Mathews Street ' Fort Collins, Colorado 80522 RE: Final Drainage Study for Hewlett-Packard Company Building 5 Dear Basil: 1 We are pleased to resubmit to you, for your review and approval, this Final Drainage Study for the revised Hewlett-Packard expansion. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We have addressed the minor comments noted from your review dated 9-23-96. We appreciate your time and consideration in reviewing this resubmittal. Please call if you have any questions. 1 Respectfully, 1 RBD Inc. Engineering Consultants ��o �Eoi /Prepad by: .- �^� Reviewed by: AL Jen-Morley, P. %� �' l Kevin W. Gingery, PE Engineer `®� Project Manager, Water Resources cc: Maryanne Dinkey - Hewlett-Packard Mark Williams - H + L 1 Denver 303/458-5526 PAGE I. GENERAL LOCATION AND DESCRIPTION 1 A. Location I B. Description of Property I II. DRAINAGE BASINS 1 A. Major Basin Description 1 B. Sub -Basin Description 2 C. SWMM Revisions 2 III. DRAINAGE DESIGN CRITERIA 3 A. Regulations 3 B. Development Criteria Reference and Constraints 3 C. Hydrologic Criteria 3 D. Hydraulic Criteria 3 E. Variances from Criteria 3 IV. DRAINAGE FACILITY DESIGN 3 A. General Concept 3 B. Specific Details 4 V. STORM WATER QUALITY 5 A. General Concept 5 VI. EROSION CONTROL 5 A. General Concept 5 B. Specific Details 5 VII. CONCLUSIONS 6 A. Compliance with Standards 6 B. Drainage Concept 6 C. Storm Water Quality Concept 7 D. Erosion Control Concepts 7 REFERENCES 7 APPENDIX VICINITY MAP 2 HYDROLOGY 3 DESIGN OF INLETS, STORM DRAIN, AND SWALES 14 100-YEAR SWMM MODEL 68 I TABLE OF CONTENTS (continued) u I REGIONAL STORM DRAINAGE CHANNEL 81 RIP RAP DESIGN 98 ' EROSION CONTROL 101 Total pages 110 r 1 1 11 1 1 I t FINAL DRAINAGE STUDY FOR HEWLETT-PACKARD COMPANY BUILDING 5 FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION A. Location The Hewlett-Packard site is located in southeast Fort Collins (see vicinity map in Appendix), north of Harmony Road and east of County Road 9 within the Southwest 1/4 of Section 33, Township 7 North, Range 68 West of the 6th P.M., City of Fort Collins, Larimer County, Colorado. B. Description of Property The Hewlett-Packard Building 5 site is north of the existing Fort Collins Hewlett- Packard office and industrial development and encompasses approximately 24.5 acres. The existing topography generally slopes from west to east at approximately 0.7 percent. Native grasses overlaying lean clay with sand or sandy lean clay cover the majority of the site except for existing parking areas located in the southeast comer. The proposed site consists of one large office buildings and surrounding parking areas which will be developed in a similar style to the previous development. DRAINAGE BASINS A. Major Basin Description The Hewlett-Packard site lies entirely within the Fox Meadows Drainage Basin which is approximately bounded by Horsetooth Road on the north, Harmony Road on the south, the Cache La Poudre River and I-25 on the east and Lemay Avenue on the west (refer to the general location Map in Appendix). A Master Plan for the Fox Meadows Drainage Basin (Basin H) was prepared by Resource Consultants, Inc., in 1981. This area was studied again by Nolte and Associates in 1990 when a master drainage plan was prepared for the Hewlett-Packard site. Nolte's master drainage report did not alter any of the assumptions or conclusions which were made in the Fox Meadows Master Drainage Plan. As recommended in Nolte's Report a regional drainage channel is designed to accept 100-year storm event flows from the developed site and the upstream 1 B. C basins from the west. The channel is located along the north side of the Hewlett- Packard site and discharges to the existing north detention pond. The north detention pond discharges to a series of detention ponds to the south through a 30 inch diameter pipe. Nolte's report recommended that the 30-inch diameter outlet pipe of this north pond be enlarged to 48-inch diameter at the development of the entire Hewlett Packard Site. This increased diameter is required to avoid surcharging the north detention pond which would result in uncontrolled overland flow. It is not clear at which point in the development the outlet pipe should be enlarged. The upgrading of this outlet pipe is outside the scope of this project and is not being constructed at this time. Sub -Basin Description Historically the site receives flows from the west at two discharge points along County Road 9. Flows discharge from the former NCR site, now Symbios, through two 30-inch concrete pipes under County Road 9 at the top of the proposed regional drainage channel. Flow from the second discharge point at the northwest corner of the Hewlett-Packard property presently comes from an existing 18-inch CMP culvert in poor condition and a newly constructed 18 inch diameter RCP pipe. Future flows are expected from the Symbios site and the English Ranch Subdivision. These offsite flows and the onsite flows then flow east overland across the site to the Fossil Creek Reservoir Inlet Ditch. (refer to Figure 2 Fox Meadows Drainage Master Plan in the appendix). A small portion of the site which is currently landscaped discharges flows into the existing stormwater system to the south. SWMM Revisions Infiltration parameters in the SWMM model were updated to match current City of Fort Collins Stormwater Utility criteria. The proposed upstream detention ponds were previously modeled as pipes allowed to surcharge; these were remodeled using three-point rating curves to limit discharge to the 24 cfs each recommended by the Fox Meadows Master Drainage Plan. As described in the Appendix, the two on -site basins (30 and 34) were updated to match current grading, particularly that associated with this project. The conveyance elements (35,36 and 38) which comprise the regional drainage channel were updated from the site master plan to match current design. Additional changes in the basin have occured since the above mentioned SWMM model changes were completed. Specifically the addition of the Symbios site to the west. The Symbios site is required to detain and release at a 100 year rate of 24 cfs which is accounted for in this SWMM model. The Symbios report is not 2 ' for the final site condition and has not yet been approved, therefore we have not updated this SWMM model to reflect the new Symbios site. DRAINAGE DESIGN CRITERIA ' A. Regulations ' The City of Fort Collins Storm Drainage Design Criteria is being used for the subject site. Criteria as established by the Fox Meadows Basin Drainage Master Plan will also be used. ' B. Development Criteria Reference and Constraints The Hewlett-Packard Building 5 site drainage and proposed drainage channel are designed in conformance with the Fox Meadows Drainage Basin Master Plan (Basin H) and the Hewlett-Packard Master Drainage Plan. ' C. Hydrologic Criteria The runoff for the regional drainage channel and site detention requirements are calculated using a SWMM model, updated from Nolte's Master Drainage Plan ' These will be designed for the 100-year storm event. The most recent 100-year storm event hyetograph and infiltration parameters determined by the City of Fort Collins are used in calculating runoff values. ' The rational method is used to determine the peak flow from the developed runoff for design of the hydraulic structures and interior roadway drainage facilities. These are designed using the 10 and 100 year rainfall criteria from the City of Fort Collins. ' D. Hydraulic Criteria All hydraulic calculations within this report are prepared in accordance with the City of Fort Collins Drainage Criteria and included in the Appendix. E. Variances from Criteria No variances are being sought for the proposed project site. i 1 3 IV. DRAINAGE FACILITY DESIGN A. 1.1 General Concept All developed runoff except for sub -basin 15 is routed northeasterly to the regional drainage channel along the north perimeter of the Hewlett-Packard property. Sub - basin 15 discharges to the existing system to the south. The western portion of the site will remain undeveloped except for a temporary circulation road. This area will generally flow overland to the regional drainage channel. The roof drainage is collected from two points and discharged by pipe to the regional drainage channel. All other runoff, which is produced by the parking lots, will surface flow to the north and east discharging through Type R curb inlets into the regional drainage channel. The flows in the regional drainage channel pass through a culvert underneath the east access road and into the existing north detention pond. Specific Details Storm water from sub -basin 5, flows north towards the regional channel and is intercepted by curb and gutter and taken to the east towards design point 6. The flow from sub -basin 5,6 and 7 then discharges to the regional channel through a 15 foot wide Type R curb inlet. Storm water from sub -basin 8 is collected in a 10 foot Type R curb inlet with the by-pass flow continuing to design point 11. No storm flow is intercepted until design point 13 where a 15 foot wide type R inlet intercepts a portion of the flow. The by-pass flow continues to the south east in the curb a gutter until design point 16/17 where flows are intercepted by a 15 foot wide Type R inlet. Design point 16/17 is inundated during the 100 year storm to a level of 4910.13 with flows passing around the curb return and across the access drive into the north detention pond. During the 10 year storm all flows pass to the regional channel through 10 foot wide Type R Inlet. No flows will pass off site during either the 10 year or 100 year storm event. Please refer to the Appendix for water surface elevations and calculations. The Storm water from the building roof area discharges from the north side of the building and flow to a single point northeast of the buildings and is taken to the regional drainage channel by a single pipe. Storm water from sub -basins 15 flows to existing area inlets to the south. 4 jBasin 1, the eastern half of County Road 9 Avenue flows in the street to inlets I which discharge to the regional channel. This is considered in the SWMM model. I! Basin 3 is unimproved except for the western portion of a temporary circulation road. Storm water from this sub -basin sheet flows from west to east then southeast to the regional channel. No positive grading to control flows is anticipated. 1 Basin 4 is unimproved except for the eastern portion of the temporary circulation Iroad. Storm water from this sub -basin sheet flows east to the edge of the proposed parking circulation road where a shallow ditch takes flow north to a culvert which discharges to the regional channel. V. STORM WATER QUALITY A. General Concept Hewlett-Packard is anticipating construction beginning in Fall 1996. We have sought to find various Best Management Practices for the treatment of storm water runoff. The Hewlett-Packard project will be providing a grassed regional drainage channel and existing grassed detention ponds. These grass -lined features will provide a mechanism for pollutants to settle out of the storm water runoff before entering the Fossil Creek Reservoir Inlet Ditch or downstream storm drainage facilities. VI. EROSION CONTROL A. General Concept This development lies within the Moderate Rainfall Erodibility Zone and the Moderate Wind Erodibility Zone per the City of Fort Collins zone maps. The l potential exists for erosion problems after completion of the improvements, due to some existing and proposed site slopes of greater than 2 percent. It is also anticipated that the project site improvements will be subject to both wind and jl rainfall erosion before new vegetation can take hold or before the project is J completed. The Erosion Control Performance Standard (PS) during construction for this project was computed to be 75.9 percent per the criteria in the City of Fort Collins Erosion Control Reference Manual for Construction sites. The Effectiveness J id (EFF) of the proposed erosion control plan during construction was calculated to be 79.8 percent. Therefore, the erosion control plan below meets the City of Fort (1 Collins' requirements. The Effectiveness of the proposed erosion control plan after J construction is 98.4% which exceeds the required 89.2%. A copy of the I' 5 1>> B. calculations has been included in the Appendix. An erosion control escrow cost estimate of $18,826.00 is also included in the Erosion Control section of the Appendix. Specific Details Prior to over lot grading gravel inlet filters must be placed over the two existing inlets at the west portion (basin 9) of the site. After the over lot grading has been completed, the regional drainage channel shall have temporary vegetation seed applied and sedimentation berm installed. After seeding, a hay or straw mulch shall be applied over the seed at a rate of 2 tons/acre minimum, and the mulch shall be adequately anchored, tacked, or crimped into the soil. All other areas which will not be covered by asphalt or building will have a roughened surface. Those roads and parking lots that are to be paved as part of the Building 5 project must have a 1-inch layer of gravel mulch (1/a" to 11h" gravel) applied at a rate of at least 135 tons/acre immediately after over lot grading is completed. The pavement structure shall be applied as soon as possible after the utilities have been installed. After installation of the concrete sidewalk culvert and curb inlets, the inlets shall be filtered with a combination of concrete blocks, 1/2" wire screen, and 3A"coarse gravel. After installation of the storm drains, riprap protection and gravel inlet filters shall be installed at the outlets. If the disturbed areas will not be built on within one growing season, a permanent seed shall be applied. After seeding, a hay or straw mulch shall be applied over the seed at a minimum rate of 2 tons/acre, and the mulch shall be adequately anchored, tacked or crimped into the soil. In the event a portion of the roadway pavement surface and utilities will not be constructed for an extended period of time after over lot grading, a temporary vegetation seed and mulch shall also be applied to the roadway areas as discussed above. All construction activities must also comply with the State of Colorado permitting process for Storm water Discharges Associated with Construction Activity. A Colorado Department of Health NPDES permit will be required before any construction grading can begin within this development. D I ' VII. CONCLUSIONS A. Compliance with Standards All computations that have been completed within this report are in compliance with the City of Fort Collins Erosion Control Reference Manual for Construction Sites and the Storm Drainage Design Criteria Manual. ' B. Drainage Concept The proposed drainage concepts adequately provide for the transmission of developed onsite runoff to the existing drainage facilities at the eastern edge of the subject site. The 100-year runoff generated by development of this site will be carried to the proposed regional drainage channel then to existing onsite detention ponds. The detention ponds will then discharge to the Fossil Creek Reservoir Inlet Ditch in accordance with the Fox meadows Basin (Basin H) Drainage Master Plan. ' If for some unforeseen reason groundwater is encountered at the time of construction, a Colorado Department of Health Construction Dewatering Permit ' would be required. ' C. Storm Water Quality Concept Because storm water quality has become a requirement, the site has addressed this storm water aspect. The grass lined regional drainage channel and the existing detention ponds will provide a mechanism for water pollutants to filter out of the storm water runoff before entering the Fossil Creek Reservoir Inlet Ditch or downstream storm drainage facilities. D. Erosion Control Concepts ' The proposed erosion control concepts adequately provide for the control of wind and rainfall erosion from the Hewlett-Packard Building 5 expansion. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance standards will be met. The proposed erosion control concepts t presented in this report and shown on the erosion control plan are in compliance with the City of Fort Collins erosion control criteria. REFERENCES 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984. 7 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991. 3. Fox Meadows Basin (Basin H) Drainage Master Plan, Fort Collins, Colorado, by Resource Consultants Inc., February 25, 1981. 4. Master Drainage Report, Hewlett Packard Site, Preston Kelly Subdivision, Fort Collins, Colorado by Nolte and Associates, revised October 1990. I 5. Overall Drainage Study for the NCR Site and Preliminary Drainage Study, First Phase NCR Site, Fort Collins, Colorado, by RBD, Inc., Engineering Consultants, May 2, 1994. 0 I r I 1 I 1 I 1 I 1 J 1 I I APPENDIX m I I 1 1 1 1 1 1 1 1 1 1 1 1 VICINITY MAP io 1 DRAKE RD. vn �R f a Aft a J N HORSETOOTH RD. Q o } Q O K W Q K VI U � n n L a i PROJECT o = w SITE } o � m G z o U HARMONY RD. rn Y z 0 0 VICINITY MAP N.T.S. 3 I I 1 1 11 1 I 1 1 1 1 I I I I I HYDROLOGY io 1 ' RBD, Inc., Engineering Consultants ' Weighted Runoff Coefficients ' Project # 282-015 JAM ' Hewlett Packard Building 5 08/19/96 This sheet calculates the composite "C" values for the Rational Method. 1 Design Imperv Area ious Pervious "C" A,total ac. A,imp ac. Percent Pervious Comp. "C"1 tPercenlf- 0.95 0.250.45 0.00 1.00 0.25 2 0.95 0.25 7.16 0.00 0.00 1.00 0.25 3 0.95 0.25 13.64 0.06 0.00 1.00 0.25 4 0.95 0.25 1.88 0.27 0.15 0.85 0.35 5 0.95 0.25 1.02 0.70 0.68 0.32 0.73 6 0.95 0.25 1.29 1.02 0.79 0.21 0.80 7 0.95 0.25 0.76 0.62 0.82 0.18 0.82 8 0.95 0.25 1.05 0.79 0.75 0.25 0.78 9 0.95 0.25 1.33 0.45 0.34 0.66 0.49 10 0.95 0.25 0.42 0.17 0.41 0.59 0.54 11 0.95 0.25 1.04 0.59 0.56 0.44 0.65 12 0.95 0.25 1.47 1.47 1.00 0.00 0.95 13 0.95 0.25 0.74 0.52 0.70 0.30 0.74 14 0.95 0.25 0.78 0.62 0.79 0.21 0.80 15 0.95 0.25 0.63 0.23 0.37 0.63 0.51 16 0.95 0.25 3.33 1.96 0.59 0.41 0.66 17 0.95 0.25 1.62 0.88 0.54 0.46 0.63 18 0.95 0.25 0.24 0.13 0.55 0.45 0.63 SITE 0.95 0.25 38.85 10.48 0.27 0.73 0.44 ' Storm Drainage Design and Technical Criteria S RBD, Inc., Engineering Consultants Weighted Runoff Coefficients Project 282-015 Hewlett Packard Building 5 JAM 10/03/96 ='ISSQ. HARD FT PERVIOU SQ. FT Storm Drainage Design and Technical Criteria ' RBD, Inc., Engineering Consultants ' 282-015 SUBDIVISION: ' Hewlett Packard Building 5 CALCULATED BY: JAM TIME OF CONCENTRATION STORM 10 yr DATE 08/15196 of= 1.00 5 = 1.870.1 - C x C813"0.5 S^(1/3) tc=ti+tL SUB -BASIN DATA IINITIAUOVERLAND TIME TRAVEL TIME FINAL REMARKS DESIG: AREA C LENGTH SLOPE ti LENGTHI ISLOPE VELOCITY tL to (ac) (ft) (%) (min) (ft) (%) (1 5) (min) (min) 1 2 3 4 5 6 7 7a 8 9 10 11 12 1 0.45 0.25 20 2.00 5.6 0 G 0.60 1.19 0.0 5.6 2 7.16 0.25 20 2.00 5.6 3976 G 0.60 1.19 55.6 61.2 3 13.64 0.25 500 0.50 44.6 700 G 0.60 1.19 9.8 54.4 4 1.BB 0.35 410 0.50 35.7 0 G 0.60 1.19 0.0 35.7 5 1.02 0.73 16 2.00 2.2 372 PA 0.70 1.59 3.9 6.1 6 1.29 0.80 50 1.00 3.9 460 PA 0.80 1.70 4.5 8.4 7 0.76 0.82 50 1.00 3.6 375 PA 1.00 1.91 3.3 6.9 8 1.05 0.78 50 1.00 4.3 466 PA 1.50 2.35 3.3 7.6 9 1.33 0.49 71 2.00 7.7 293 PA 0.60 1.47 3.3 11.0 10 1.50 0.33 30 1.00 7.9 121 PA 0.60 1.47 1.4 9.3 11 1.04 0.65 88 3.00 5.5 453 PA 1.00 1.91 4.0 9.5 12 1.47 0.95 100 1.00 2.8 0 PA 1.00 1.91 0.0 5.0 13 0.74 0.74 30 1.00 3.7 562 PA 1.00 1.91 4.9 8.6 14 0.78 0.80 40 2.00 2.8 655 PA 1.00 1.91 5.7 8.5 15 0.63 0.51 100 1.00 11.1 0 PA 0.70 1.59 0.0 11.1 16 3.33 0.66 120 2.00 7.1 B00 PA 0.70 1.59 8.4 15.5 17 1.62 0.63 100 2.00 7.0 517 PA 0.70 1.59 5.4 12.4 18 0.24 0.63 180 2.00 9.3 0 PA 0.70 1.59 0.0 9.3 Note: Column 7a codes the channel type for velocity calculations. PA = Paved Area, PL = Pasture& Lawns, GW = Grassed Waterway, ' Slonn Drainage Design and Technical Criteria f �� §A /\ ®G \6 _� /� `o F:! Mv Wz t2,2"" ®e© !e© - a a� � /6 .. 2seee52e5 ��� �y g&3RG2�2g =gg \r R2 \\ ,y \gga2g2Rgg §=g/ " 0. K«� ��..�.-��:_,:_:22 . ____ rRBD, Inc., Engineering Consultants 282-015 SUBDIVISION: ' Hewlett Packard Building 5 CALCULATED BY: JAM TIME OF CONCENTRATION STORM 100 yr DATE 08/15/96 cf = 1.25 ti = 1.870.1 - C x CnD'0.s SA(1/3) tc=ti+tL SUB -BASIN DATA I INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS DESIG: AREA C LENGTH SLOPE I LENGTHI ISLOPE VELOCITY tL tc (ac) (ft) (%) (min) (ft) (%) (fUs) (min) (min) 1 2 3 4 5 6 7 7a 8 9 10 11 12 1 0.45 0.25 20 2.00 5.2 0 G 0.60 1.19 0.00 5.2 2 7.16 0.25 20 2.00 5.2 3976 G 0.60 1.19 55.56 60.8 3 13.64 0.25 500 0.50 41.3 700 G 0.60 1.19 9.78 51.1 4 1.88 0.35 410 0.50 31.5 0 G 0.60 1.19 0.00 31.5 5 1.02 0.73 16 2.00 1.1 372 PA 0.70 1.59 3.91 5.0 6 1.29 0.80 50 1.00 1.3 460 PA 0.80 1.70 4.51 5.8 7 0.76 0.82 50 1.00 1.3 375 PA 1.00 1.91 3.28 5.0 8 1.05 0.78 50 1.00 1.7 466 PA 1.50 2.35 3.31 5.0 9 1.33 0.49 71 2.00 6.1 293 PA 0.60 1.47 3.33 9.5 10 1.50 0.33 30 1.00 7.0 121 PA 0.60 1.47 1.37 8.4 11 1.04 0.65 88 3.00 3.6 453 PA 1.00 1.91 3.96 7.5 12 1.47 0.95 100 1.00 1.9 0 PA 1.00 1.91 0.00 5.0 13 0.74 0.74 30 1.00 1.8 562 PA 1.00 1.91 4.91 6.7 14 0.78 0.80 40 2.00 0.9 655 PA 1.00 1.91 5.73 6.7 15 0.63 0.51 100 1.00 8.7 0 PA 0.70 1.59 0.00 8.7 16 3.33 0.66 120 2.00 4.5 800 PA 0.70 1.59 8.40 12.9 17 3.33 0.63 100 2.00 4.6 517 PA 0.70 1.59 5.43 10.0 18 3.33 0.63 180 2.00 6.1 0 PA 0.70 1.59 0.00 6.1 1 r r 1 1 1 1 r rStorm Drainage Design and Technical Criteria R I 8 a Y uu 3i w w w fl�¢fl¢i F awv"� f> - ao- NO �Le ZN oxm V' TN F i3$L- i N O 00 r� ¢u 2?y^= O�v ¢ OQ —m o m=a�--o«oa-eve� s. samo rvn wpm z x�aas�ss: ese cRe rvn m rmm mmrm m 1.8. m r mm mommmmommmmmmmmmmo m ommm ......nmm n u- n�m ww Pzp PiEm of 2. RS RR ¢w a_'En r$�n nnmm�rnmm n n z o0 -rvn.nmrm 3 " so z a C � N m a u rvn norm No Text DRAINAGE CRITERIA MANUAL RUNOFF i 30 I— 20 z W U 2 W a 10 Z W a 0 5 y W En 3 0 Ucc 2 W a 5 .1 MEN DOE milli IN vI I■N■WMEN milli ■■11� .����■■■■� 2 .3 5 1 2 3 5 10 20 VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING "UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: 'Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. 5 -1-84 URBAN DRAINAGE 3 FLOOD CONTROL DISTRICT ' INTERPOLATED VALUES FOR 100 YEAR INTENSITIES - ' Tc Value- 5.00 9.0 5.10 9.0 5.20 8.9 5.30 8.9 SAO 8.9- 5.50 8.8 5.60 8.8 ' 5.70 8.7 5.80 8.7 . 0 6.00 8 8.6 6.10 8.6 6.20 8.6 6.30 8.5 6.40 8.5 6.50 8,5 6.60 8.4 6.70 8.4 ' 6.80 8.4 6.90 8.3 _.. 7.00 8.3 ' 7.10 8.2 7.20 8.2 7.30 8.2 ' .. 7.40 7.50 8.1 8.1 7.60 8.1 7.70 8.0 - - 7.80 8.0 7.90 8.0 8.00 7.9 8.10 7.9 8.20 7.8 8.30 7.8 8.40 7.8 1 8.0 8.60 77 7.7 8.70 7.7 8.80 7.6 8.90 7.6- - 9.00 7.6 9.10 7.5 9.20 7.5 9.30 7.5 ' 9.40 7.4 9.50 7.4 9.0 7.3 9.70 - 7.3 9.80 7.3 9.90 7.2 10.00 7.2 - No Text 1 1 4- 0 I I I 1 DESIGN OF INLETS, STORM SEWER AND SWALES I I I I I 1 I I I 11 I 1----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------ - kN_ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ............................. DATE 08-22-1996 AT TIME 13:26:40 !** PROJECT TITLE: hewlett packard builing 5 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 6 )p INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 ! LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ! STREET LONGITUDINAL SLOPE (o) = 0.60 STREET CROSS SLOPE COO = 1.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 29.31 GUTTER FLOW DEPTH (ft) = 0.46 FLOW VELOCITY ON STREET (fps)= 2.51 ! FLOW CROSS SECTION AREA (sq ft)= 4.46 GRATE CLOGGING FACTOR W = 50.00 CURB OPENNING CLOGGING FACTOR M = 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 29.44 L BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 11.20 FLOW INTERCEPTED (cfs)= 11.20 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.20 FLOW INTERCEPTED (cfs)= 11.20 CARRY-OVER FLOW (cfs)= 0.00 ! /�0 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 08-22-1996 AT TIME 13:35:03 *** PROJECT TITLE: hewlett packard builing 5 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 6 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 0.60 STREET CROSS SLOPE (o) = 1.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 40.75 GUTTER FLOW DEPTH (ft) = 0.57 FLOW VELOCITY ON STREET (fps)= 3.05 FLOW CROSS SECTION AREA (sq ft)= 8.47 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR M = 15.00 INLET INTERCEPTION CAPACITY IDEAL INTERCEPTION CAPACITY (cfs)= 32.45 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 26.10 FLOW INTERCEPTED (cfs)= 26.10 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 26.10 FLOW INTERCEPTED (cfs)= 26.10 CARRY-OVER FLOW (cfs)= 0.00 I 11 i I I I 1 I I I I i A 1 I I PAGE 17 REMOVED I ----------------------------------------------------------------------------/� , UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 08-15-1996 AT TIME 15:25:27 *** PROJECT TITLE: HP BUILDING 5 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 8 1 o y INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (°s) _ STREET CROSS SLOPE (°s) _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: 10.00 17.56 0.78 0.70 0.50 1.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 19.75 GUTTER FLOW DEPTH (ft) = 0.36 FLOW VELOCITY ON STREET (fps)= 1.88 FLOW CROSS SECTION AREA (sq ft)= 2.12 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.12 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 4.00 FLOW INTERCEPTED (cfs)= 2.79 CARRY-OVER FLOW (cfs)= 1.21 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 4.00 FLOW INTERCEPTED (cfs)= 2.65 CARRY-OVER FLOW (cfs)= 1.35 1.--------------------------------------------------------------------------- i9 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------ - SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. N DATE 08-15-1996 AT TIME 15:25:03 ** PROJECT TITLE: HP BUILDING 5 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 8 1n o 4- w� l INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 29.60 ' IDEAL CURB OPENNING EFFICIENCY = 0.52 ACTURAL CURB OPENNING EFFICIENCY = 0.46 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 0.50 STREET CROSS SLOPE (°s) = 1.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 28.00 GUTTER FLOW DEPTH (ft) = 0.45 FLOW VELOCITY ON STREET (fps)= 2.24 FLOW CROSS SECTION AREA (sq ft)= 4.09 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.82 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 9.20 FLOW INTERCEPTED (cfs)= 4.20 CARRY-OVER FLOW (cfs)= 5.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 9.20 FLOW INTERCEPTED (cfs)= 4.10 ' CARRY-OVER FLOW (cfs)= 5.10 I I I ------------------------------------------------------------------------ - - - - -- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 08-15-1996 AT TIME 16:34:48 *** PROJECT TITLE: HP BUILDING 5 *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: c INLET ID NUMBER: 9 Vcn _ Qc c_ �4<-✓, INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 2.00 INLET GRATE LENGTH (ft)= 3.00 INLET GRATE TYPE =Nonstandard Grate NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 0.08 GRATE OPENING AREA RATIO W = 0.50 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (>) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.38 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 2.27 FLOW CROSS SECTION AREA (sq ft)= 1.24 GRATE CLOGGING FACTOR (%)= 20.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 2.80 IDEAL GRATE INLET CAPACITY (cfs)= 6.43 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.80 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.80 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 9 I 1 I r INLET HYDRAULICS: IN A SUMP. #� GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 2.80 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.51 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= I*** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= i I I 1 11 WE C1 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 08-15-1996 AT TIME 16:30:37 *** PROJECT TITLE: HP BUILDING 5 *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: TM 9 \ ad C- J n� INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 2.00 INLET GRATE LENGTH (ft)= 3.00 INLET GRATE TYPE =Nonstandard Grate NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 0.08 GRATE OPENING AREA RATIO (%) = 0.50 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 0.60 STREET CROSS SLOPE M ) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.59 GUTTER FLOW DEPTH (ft) = 0.46 FLOW VELOCITY ON STREET (fps)= 2.62 FLOW CROSS SECTION AREA (sq ft)= 2.30 GRATE CLOGGING FACTOR M = 20.00 CURB OPENNING CLOGGING FACTOR M = 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 6.00 IDEAL GRATE INLET CAPACITY (cfs)= 8.30 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 6.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 6.00 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP.% /O O e�"Y- GI GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 2.80 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 5.82 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.00 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.00 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 6.00 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 6.00 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 6.00 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 6.00 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 6.00 CARRYOVER FLOW (cfs)= 0.00 1 I 1 a3 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY ' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -----------------------------------------------------------------------------1 USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ................................ ON DATE 08-15-1996 AT TIME 16:40:02 *** PROJECT TITLE: HP BUILDING 5 *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 b Gam' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: , INLET GRATE WIDTH (ft)= 2.00 INLET GRATE LENGTH (ft)= 3.00 INLET GRATE TYPE =Nonstandard Grate NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 0.08 GRATE OPENING AREA RATIO (°s) = 0.50 , IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (°s) = 0.60 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 6.13 GUTTER FLOW DEPTH (ft) = 0.29 FLOW VELOCITY ON STREET (fps)= 2.02 FLOW CROSS SECTION AREA (sq ft)= 0.54 , GRATE CLOGGING FACTOR (°s)= 20.00 CURB OPENNING CLOGGING FACTOR(,0 = 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 1.10 ' IDEAL GRATE INLET CAPACITY (cfs)= 4.71 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.10 , BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.10 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. n CDC J` I i I r I I I I I r I I I [1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 2.80 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.30 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.00 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.00 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 1.10 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.10 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 1.10 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.10 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 1.10 CARRYOVER FLOW (cfs)= 0.00 I UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 08-15-1996 AT TIME 16:39:15 *** PROJECT TITLE: HP BUILDING 5 *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 (O O INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 2.00 INLET GRATE LENGTH (ft)= 3.00 INLET GRATE TYPE =Nonstandard Grate NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 0.08 GRATE OPENING AREA RATIO (1) = 0.50 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 9.59 GUTTER FLOW DEPTH (ft) = 0.36 FLOW VELOCITY ON STREET (fps)= 2.22 FLOW CROSS SECTION AREA (sq ft)= 1.09 GRATE CLOGGING FACTOR (%)= 20.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS DESIGN DISCHARGE (cfs)= 2.40 IDEAL GRATE INLET CAPACITY (cfs)= 6.10 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.40 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.40 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 ' }rw INLET HYDRAULICS: IN A SUMP. fl lC7tY 1 GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 2.80 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.27 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= 0.00 0.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.00 ' FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 2.40 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.40 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 2.40 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.40 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 2.40 CARRYOVER FLOW (cfs)= 0.00 I C ,' I [1 I ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 08-22-1996 AT TIME 13:24:35 *** PROJECT TITLE: hewlett packard builing 5 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 13 \u c�e�frK~— INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (°s) _ STREET CROSS SLOPE 00 _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: 15.00 21.04 0.89 0.84 0.50 1.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 22.38 GUTTER FLOW DEPTH (ft) = 0.39 FLOW VELOCITY ON STREET (fps)= 1.99 FLOW CROSS SECTION AREA (sq ft)= 2.67 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.74 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.30 FLOW INTERCEPTED (cfs)= 4.46 CARRY-OVER FLOW (cfs)= 0.84 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.30 FLOW INTERCEPTED (cfs)= 4.27 CARRY-OVER FLOW (cfs)= 1.03 I------------------------------------------------------------------------ (--- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------- - SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. N DATE 08-22-1996 AT TIME 13:46:33 ** PROJECT TITLE: hewlett packard builing 5 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 13 /0(� ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 REQUIRED CURB OPENING LENGTH (ft)= 37.92 IDEAL CURB OPENNING EFFICIENCY = 0.60 ACTURAL CURB OPENNING EFFICIENCY = 0.52 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE M = 1.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 33.06 ' GUTTER FLOW DEPTH (ft) = 0.50 FLOW VELOCITY ON STREET (fps)= 2.46 FLOW CROSS SECTION AREA (sq ft)= 5.63 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 8.22 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 13.80 FLOW INTERCEPTED (cfs)= 7.20 ' CARRY-OVER FLOW (cfs)= 6.60 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 13.80 FLOW INTERCEPTED (cfs)= 6.99 ' CARRY-OVER FLOW (cfs)= 6.81 1 30 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 10-03-1996 AT TIME 11:07:07 *** PROJECT TITLE: HEWLETT PACKARD BUILDING 5 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 16 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 1.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 33.63 GUTTER FLOW DEPTH (ft) = 0.50 FLOW VELOCITY ON STREET (fps)= 2.48 FLOW CROSS SECTION AREA (sq ft)= 5.82 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY IDEAL INTERCEPTION CAPACITY (cfs)= 30.61 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 14.40 FLOW INTERCEPTED (cfs)= 14.40 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 14.40 FLOW INTERCEPTED (cfs)= 14.40 CARRY-OVER FLOW (cfs)= 0.00 ------------------------------------------------------------------------ �' UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. N DATE 08-22-1996 AT TIME 13:47:54 I** PROJECT TITLE: hewlett packard builing 5 lJ 1 I I *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 16 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 15.00 6.00 45.00 2.00 0.25 depth to flow depth. ' STREET LONGITUDINAL SLOPE M = 0.50 STREET CROSS SLOPE (%) = 1.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 47.88 GUTTER FLOW DEPTH (ft) = 0.65 ' FLOW VELOCITY ON STREET (fps)= 3.08 FLOW CROSS SECTION AREA (sq ft)= 11.63 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR (%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 34.19 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 36.00 FLOW INTERCEPTED (cfs)= 29.06 CARRY-OVER FLOW (cfs)= 6.94 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 36.00 ' FLOW INTERCEPTED (cfs)= 29.06 CARRY-OVER FLOW (cfs)= 6.94 11 LJ PAGES 32-35 REMOVED --------------------------------------------------------------------------36 UDINLET: STREET CAPACITY ANALYSIS DEVELOPED BY DR. JAMES GUO, CIVIL ENG, U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD POOL FUND STUDY ------------------------------------------------------------------------------ SER=:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. N DATE 08-14-1996 AT TIME 13:55:33 *** PROJECT TITLE: STREET- FLOW /-," 10"Z 01AIZ7 : ** STREET CROSS SECTIONAL IDEAL CAPACITY: ITHE GIVEN STREET X-SECTIONAL GOEMETRIES: LONGITUDINAL STREET SLOPE M = 1.00 MANNING N CURB HEIGHT = (in)= 0.016 6.00 MAXIMUM FLOW DEPTH (in)= 12.00 STREET ON LEFTSIDE OF CROWN: LEFTSIDE STREET WIDTH (ft)= 28.00 CROSS SLOPE (1) = 1.00 ' DEPRESSION AT GUTTER (in)= 2.00 GUTTER WIDTH (ft)= 2.00 SIDEWALK CROSS SLOPE (1V:ZH) Z = 50.00 STREET ON RIGHTSIDE OF CROWN RIGHTSIDE STREET WIDTH (ft)= 28.00 CROSS SLOPE (o) = 1.00 DEPRESSION AT GUTTER (in)= 2.00 ' GUTTER WIDTH (ft)= 2.00 SIDEWALK CROSS SLOPE (1V:ZH) Z = 50.00 RATING CURVE FOR STREET IDEAL CAPACITY-FLOWRATE VS DEPTH: ------------------------------------ FLOW DEPTH LEFTSIDE AT GUTTER RATE VLCITY SPREAD INCHES CFS FPS FT ------------------------------------ 1.00 0.04 1.18 0.89 2.00 0.38 2.03 2.00 3.00 1.00 1.95 8.33 4.00 3.45 2.22 16.67 5.00 8.76 2.66 25.00 6.00 17.76 3.10 28.00 7.00 30.26 3.35 32.17 8.00 46.35 3.47 36.33 9.00 66.25 3.53 40.50 10.00 90.14 3.58 44.67 11.00 118.23 3.62 48.83 12.00 150.72 3.66 53.00 --------------------------------- RIGHTSIDE TOTAL 'RATE VLCITY SPREAD FLO FPS FT CS 0.04 1.18 0.89i 0.09 0.38 .03 2.00 0.76 1.00 1. 0.33 2.01 3.45 2.22 /i16.67 6.89 8.76 2.66 5.00 17.52 17.76 3A 2 00 35.51 30.26 3�35 32. 60.51 46.35 /3.47 36.33 92.71 66.25 3.53 40.50 2.49 90.1A 3.58 44.67 18 27 118A3 3.62 48.83 236. 1,50.72 3.66 53.00 301.44 ------------------------------ - - - - ----- ------------------------ - - - - -- THE CURB HEIGHT IS 6 INCHES. THE STREET CAPACITY REDUCTION FACTOR FOR MINOR STORM= .8 THE STREET CAPACITY REDUCTION FACTOR FOR MAJOR STORM= .8 --------------------------------------------------------- TMINC. Engineering Consultants Adi mie of The Se"-Bro."Group CLIENT I't I PROJECT 7� CALCULATIONS FOR MADE BY_DATE CHECKED BY- DATE 177 to w to w w w 40 LF 4920 12" CMP EXISTING . GROUND PROPOSED GRADE 4915 0 4910 � �; Ui z 0 a> o> +? +? 0+50 0+00 12• CMP PROFILE >-t 1 NO.Zg Z—CAI Jo ET —OF 1 -�-->t 1 �URRENT DATE: 08-29-1996 , FILE DATE: URRENT TIME: 16:40:28 FILE NAME: FHWA CULVERT ANALYSIS HY-8, VERSION 4.3 C SITE DATA U-------------------------- L INLET OUTLET CULVERT V ELEV. ELEV. LENGTH # (FT) -------------------------- (FT) (FT) 1 15.50 15.10 40.00 2 3 4 5 6 08-29-1996 HPDP4 CULVERT SHAPE, MATERIAL, INLET ----------------------------------------------- BARRELS SHAPE SPAN RISE MANNING INLET MATERIAL (FT) (FT) n TYPE ----------------------------------------------- 1 CSP 1.00 1.00 .024 CONVENTIONAL 1 SUMMARY OF CULVERT FLOWS (CPS) FILE: HPDP4 DATE: 08-29-1996 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 15.50 0 0 0 0 0 0 0 0 1 15.89 0 0 0 0 0 0 0 0 1 16.04 1 1 0 0 0 0 0 0 1 16.17 1 1 0 0 0 0 0 0 1 16.29 1 1 0 0 0 0 0 0 1 16.35 2 2 0 0 0 0 0 0 1 ' 16.53 2 2 0 0 0 0 0 0 1 16.90 2 2 0 0 0 0 0 0 1 17. 14 3 3 0 0 0 0 0 0 1 17.42 3 3 0 0 0 0 0 0 1 17.73 3 3 0 0 0 0 0 0 1 17.75 3 3 0 0 0 0 0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: HPDP4 DATE: 08-29-1996 HEAD HEAD TOTAL FLOW % FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR ' 15.50 0.00 0 0 0.00 15.89 0.00 0 0 0.00 16.04 0.00 1 0 0.00 16.17 0.00 1 0 0.00 ' 16.29 0.00 1 0 0.00 16.35 0.00 2 0 0.00 16.53 16.90 0.00 0.00 2 2 0 0 0.00 0.00 17.14 0.00 3 0 0.00 17.42 0.00 3 0 0.00 17.73 0.00 3 0 0.00 <1> TOLERANCE (FT) = 0.010 <2> TOLERANCE M = 1.000 2 ' CURRENT DATE: 08-29-1996 FILE DATE: 08-29-1996 CURRENT TIME: 16:40:28 FILE NAME: HPDP4 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 1 BY 1 ) CSP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER , FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 15.50 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 -2.33 ' 0 15.89 0.32 0.39 2-M2c 0.28 0.23 2.45 0.23 0.00 -2.33 1 16.04 0.48 0.54 2-M2c 0.40 0.34 2.89 0.34 0.00 -2.33 1 16.17 0.61 0.67 2-M2c 0.51 0.42 3.21 0.42 0.00 -2.33 , 1 16.29 0.72 0.79 2-M2c 0.61 0.48 3.50 0.48 0.00 -2.33 2 16.35 0.77 0.85 2-M2c 0.66 0.52 3.66 0.52 0.00 -2.33 2 16.53 0.92 1.03 2-M2c 0.85 0.60 4.02 0.60 0.00 -2.33 ' 2 16.90 1.04 1.40 6-FFn 1.00 0.65 2.94 1.00 0.00 -2.33 3 17.14 1.18 1.64 6-FFn 1.00 0.70 3.36 1.00 0.00 -2.33 3 17.42 1.33 1.92 6-FFn 1.00 0.74 3.78 1.00 0.00 -2.33 3 17.73 1.50 2.23 6-FFn 1.00 0.78 4.20 1.00 0.00 -2.33 , El. inlet face invert 15.50 El. inlet throat invert 0.00 ft ft El. outlet El. inlet crest invert 15.10 ft 0.00 ft ' ***** SITE DATA ***** CULVERT INVERT INLET STATION (FT) 0.00 INLET ELEVATION (FT) 15.50 OUTLET STATION (FT) 40.00 OUTLET ELEVATION (FT) 15.10 t NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0100 CULVERT LENGTH ALONG SLOPE (FT) 40.00 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR , BARREL DIAMETER 1.00 FT BARREL MATERIAL CORRUGATED STEEL BARREL MANNING'S N 0.024 INLET TYPE CONVENTIONAL ' INLET EDGE AND WALL MITERED TO CONFORM TO SLOPE INLET DEPRESSION NONE _ [, VRENT DATE: 08-29-1996 CURRENT TIME: 16:40:28 TAILWATER CONSTANT WATER SURFACE ELEVATION ' 12.77 ' ROADWAY OVERTOPPING DATA ROADWAY SURFACE EMBANKMENT TOP WIDTH (FT) CREST LENGTH (FT) OVERTOPPING CREST ELEVATION (FT) 1 1 PAVED 28.00 30.00 17.75 3 FILE DATE: 08-29-1996 FILE NAME: HPDP4 �-o I WENT I 1 T JOB NO. � -617 NC Engineering Consultants PROJECT EWI�'IWW� CALCULATIONSFOR U-C) SE-U-)SP MADEBY174M DATE�� CHECKED BY- DATE -SHEET-OF 17; I i 1!; -7z 7 7. -__ _T L-- ---- I (47, _77 L L _7 L-1 I Lj� 7- -TT 7 1 4-44� lifff I LI V 77 L' L - X-41 7 --------- - ---- ------ ... .... ..... I-T J.. r1-6.;.. ....... 7 t J L L T -7t _LL -A--i. H_ 7 4 I I I I I V, I I I I I I I I I I Wo CLIENT 1:1 Y L JOB NO. PROJECT j���i l� ,1 1�o iu �; S CALcuun= oNS FOR ( ) C) < J C= v KADEBVag DATEIPA (z CHECKED BY- DATE -SKEET-OF _ 1 I LJ 1 1 1 1 ''i 4-) 1 REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 4 DEVELOPED ' BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT ' DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ' ON DATA 10-07-1996 AT TIME 17:13:55 *** PROJECT TITLE : HP Building 5 ' *** RETURN PERIOD OF FLOOD IS 100 YEARS ' *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ' 1.00 ------- ___------- ______--- _____----- 26.10 ____________________ 9.61 12.63 NO 2.00 26.10 14.75 13.07 OK 3.00 26.10 14.75 13.34 OK ' OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION **• SUMMARY OF SEWER,HYDRAULICS. NOTE: THE GIVEN FLOW DEPTH•TO-SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 10.00 _____________________________________"""'""'"""""------"""' 2.00 1.00 ROUND 19.03 21.00 24.00 0.00 20.00 3.00 2.00 ROUND 25.33 27.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES , DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, , EXISITNG SIZE WAS USED I 4z-- 1 1 1 1 1 1 1 1 ----------I-------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL D DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 10.0 26.1 48.6 1.04 15.75 1.77 8.89 8.31 3.05 V-OK 20.0 26.1 22.7 2.00 8.31 1.77 8.89 8.31 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS 1D NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ---------------------------------------------------------------------- % (FT) (FT) (FT) (FT) 10.00 4.59 10.75 9.11 2.00 -1.50 NO 20.00 1.00 10.76 10.76 1.99 1.99 No OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS _______________________________________________________________________________ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION .FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET __________________________________________________________________ .. - 10.00 35.71 33.10 12.75 11.11 13.07 12.63 JUMP 20.00- 0.10- 0.10 12.76 12.76 13.34 13.07 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW - *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ________________________________________________________________________________ UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT- _______________________________________________________________________ 10.0 2.00 14.14 0.44 1.00 1.07 0.00 0.00 1.00 12.63 20.0 3.00 14.41 0.00 0.25 0.27 0.00 0.00 2.00 14.14 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE; VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. i 2rz d CLIENT 41 YL JOB NO. PROJECT IA P `�t�����LOI�-1 L.� OAICUV+iIONSFOR � �� G +�- MADE BY''((��aA DATE CpVLL CHECKED BY_ DATE SHEEP OF _ 1 1 L 0 I [1 [] I I I REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 10-03-1996 AT TIME 15:36:23 *** PROJECT TITLE : HEWLETT PACKARD BUILDING 5 LINE F *** RETURN PERIOD OF FLOOD IS 5 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES - _______________________________________________________________________________ _ MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ___________ ______________________ _________ 1.00 4.10 7.73 10.45 NO 2.00 4.10 14.08 10.56 OK 3.00 4.10 14.08 10.61 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 10.00 2.00 1.00 ROM 9.26 15.00 15.00 0.00 20.00 3.00 2.00 ROUND 30.00 33.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCM SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET - REOUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED 4-s 1 ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS _______________________________________________________________________________ 10.0 4.1 14.9 0.45 10.35 0.82 4.82 3.34 3.17 V-OK 20.0 4.1 0.6 1.25 3.34 0.82 4.82 3.34 0.00 V-OK ' FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM X (FT) _____---- __________________________---- ____________________ ---- ---- ---- 10.00 5.28 9.58 7.73 3.25 -1.25 NO ' 20.00 0.01 9.58 9.58 3.25 3.25 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET ' ••. SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS _______________________________________________________________________________ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION ' FEET FEET FEET FEET FEET FEET _______________________________________________________________________________ 10.00 35.01 27.81 10.83 8.98 10.56 10.45 JUMP 20.00 0.10 0.00 10.83 10.83 10.61 10.56 PRSS'ED PRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW "• SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ____ _____________.... ____.... ____---- ____---- ____---- 10.0 2.00 10.73 0.11 1.00 0.17 0.00 0.00 1.00 10.45 20.0 3.00 10.78 0.00 0.25 0.04 0.00 0.00 2.00 10.73 BEND LOSS =BEND K` FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K•INFLW FULL VHEAD ' FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. , FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 ' PAGES 46-48 REMOVED 1 1 1 1 1 1 I 1 E1 1 1 1 �p� 'f7 CLIENT I 1 L JOBNO. NC PROIECT�A F U � - IM 6. S CALCULATIONS FOR Engineering Consultants MADE BY74fm DATES U1 CHECKED BY DATE -SHEET -OF ■ S0 I 1 I 1 REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER. COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 10-03-1996 AT TIME 15:24:21 *** PROJECT TITLE : HEWLETT PACKARD BUILDING 5 LINE G *** RETURN PERIOD OF FLOOD IS 5 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES _______________________________________________________________________________ MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 7.00 5.67 9.90 NO 2.00 7.00 11.60 10.23 OK 3.00 7.00 11.60 10.36 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 _______________________________________________________________________________ SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH _______________________________________________________________________________ ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 10.00 2.00 1.00 ROUND 11.4I 15.00 15.00 0.00 20.00 3.00 2.00 ROUND 36.66 42.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED s/ ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW O FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS _______________________________________________________________________________ 10.0 7.0 14.5 0.61 11.72 1.05 6.34 5.70 2.99 V-OK 20.0 7.0 0.6 1.25 5.70 1.05 6.34 5.70 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ______________________________________________________________________ SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ___________________________________________________________ 10.00 5.02 7.10 5.67 3.25 -1.25 NO 20.00 0.01 7.10 7.10 3.25 3.25 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET "• SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS _______________________________________________________________________________ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET _______________________________________________________________________________ 10.00 28.51 28.51 8.35 6.92 10.23 9.90 PRSS'ED 20.00 0.10 0.10 8.35 8.35 10.36 10.23 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ••• SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS -------------------- _________________________________________________________ UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ----------------------------------------------------------------------------- 10.0 2.00 10.74 0.33 1.00 0.51 0.00 0.00 1.00 9.90 20.0 3.00 10.87 0.00 0.25 0.13 0.00 0.00 2.00 10.74 BEND LOSS =BEND K'* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K•INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. II I 1 [I I Cll 7 LJ 1 Line H Pipe Capacity Worksheet for Circular Channel tProject Description Project File c:\haestad\fmw\282015.fm2 Worksheet Line H Pipe Sizing ' Flow Element Circular Channel Method Manning's Formula Solve For Full Flow Capacity Input Data ' Mannings Coefficient 0.013 Channel Slope 0.050600 ft/ft Diameter 21.00 in Results Depth 1.75 ft ' Discharge 35.64 cfs Flow Area 2.41 ft' Wetted Perimeter 5.50 ft ' Top Width 0.00 ft Critical Depth 1.73 ft Percent Full 100.00 ' Critical Slope 0.046583 ft/ft Velocity 14.82 ft/s Velocity Head 3.41 ft Specific Energy FULL ft Froude Number FULL ' Maximum Discharge Full Flow Capacity 38.34 cfs 35.64 cfs Full Flow Slope 0.050600 ft/ft ' /z,. J /���✓,'at� IOC of ;'y.v,,-�:-�.. �'�" C�� ovals 1 10/08/96 FlowMaster v5.13 ' 09:05:17 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1655 Page 1 of 1 I 1 PAGES 52-54 REMOVED LJ I �l r-, I 1 1 i p 1 I FI LE: WEIRRAT t HP BUILDING 5 WEIR RATING CURVE AT DESIGN POINT 16 19-Aug-96 WATER WEIR As WEIR TOTAL SURFACE OUTFLOW (elev) (cfs) 9.82 0 0 0 9.96 0.0 7.4 7.392 10.06 0.8 24.9 25.706 10.16 4.7 50.5 55.246 100 YEAR WLEL = 10.13 — 0, = 4--1 .1 c. 4 5 5-4 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA DESIGN POINT 16 OVERFLOW WEIR WEIR COEF. 3.000 STA ELEV 0.0 10.52 230.0 9.82 380.0 10.16 ELEVATION (feet) 9.82 9.92 10.02 10.12 O� I cam. S2 DISCHARGE (cfs) 0.00 2.58 14.61 40.25 n i 1 1 1 1 1 1 i 1 1 1 1 1 1 i 1 i 1 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA EAST OVERFLOW WEIR WEIR COEF. 3.000 STA ELEV 0.0 10.46 0.0 9.96 50.0 10.16 50.0 10.66 ELEVATION DISCHARGE (feet) (cfs) --------- 9.96 --------- 0.00 10.06 0.84 10.16 4.74 10.26 13.42 10.36 24.65 19.46 37.95 Q oo = 4-7 70) (c) �6 LwantNEl_. U.. �i � �j T3DiNC. Engineering Consultants A division oJThe Sear -Brown Group O1-0 G Ip.r CLIENT / � 4L JOB N0. PROJECT j"' o(' / CALCULATIONS FOR 1' ae r MADE BY_DATE CHECKED BYDATE-SHEET _OF I Y8� 146c, �o cx� 60 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA HP BUILDING 5 ACCESS DRIVE WEIR WEIR COEF. 2.600 STA ELEV 0.0 10.50 110.0 10.00 110.0 9.50 160.0 10.00 180.0 10.50 ELEVATION DISCHARGE (feet) (cfs) 9.50 0.00 9.60 0.29 9.70 1.64 9.80 4.53 9.90 9.30 10.00 16.25 10.10 27.67 10.20 43.52 10.30 64.81 10.40 92.31 10.50 126.69 No Text NC Engineering Consultants I I h 11 1 H CLIENT ,-ILL 4 ;z,4+ JOBNO. f2SZ-01S PROJECT—H- OE �D6 -!5 CALCULATIONSFOR MADEBY DATE CNECKEDBY _ DATE SHEET-4_ OF REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ' *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. I' ON DATA 10-03-1996 AT TIME 13:47:02 *** PROJECT TITLE : HP FTC BUILDING 5 (ROOF DRAIN SYSTEM) *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES _________________----------"'--"""-"'-""''------------""'-"'--"'---- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR ___________ CFS FEET FEET ______________________________ 1.00 21.60 12.00 10.50 ________ OK 2.00 21.60 16.10 11.43 OK 3.00 21.60 17.30 12.67 OK 4.00 19.20 17.00 14.18 OK 5.00 12.60 16.90 15.10 OK 6.00 6.00 16.40 15.58 OK 7.00 6.00 16.10 15.79 OK 8.00 6.00 16.10 15.83 OK 9.00 6.60 18.50 17.20 OK 10.00 6.60 18.50 16.20 OK 11.00 2.40 17.00 13.47 OK 12.00 2.40 17.00 OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION 13.51 OK ' 11 6� I I *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 _______________________________________________________________________________ SEWER 14AMHOLE ID NUMBER UPSTREAM NUMBER DNSTREAM SEWER SHAPE REQUIRED DIA(HIGH) SUGGESTED DIA(HIGH) EXISTING DIA(HIGH) WIDTH ID NO. ------------------------------------- ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 10.00 2.00 1.00 __________________________________________ ROUND 23.59 24.00 24.00 0.00 20.00 3.00 2.00 ROUND 23.59 24.00 24.00 0.00 ' 30.00 4.00 3.00 ROUND 24.84 27.00 24.00 0.00 40.00 5.00 4.00 ROUND 21.21 24.00 24.00 0.00 50.00 6.00 5.00 ROUND 16.06 18.00 18.00 0.00 ' 60.00 7.00 70.00 8.00 6.00 7.00 ROUND ROUND 16.06 16.06 18.00 18.00 18.00 18.00 0.00 0.00 59.00 9.00 5.00 ROUND 14.68 15.00 12.00 0.00 41.00 10.00 4.00 ROUND 14.68 15.00 12.00 0.00 31.00 11.00 3.00 ROUND 10.35 12.00 12.00 0.00 32.00 12.00 11.00 ROUND 10.35 12.00 12.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE REQUIRED DIAMETER WAS DETERMINED IN FEET BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED 11 it 1 I I I I ---------------------------------------- SEWER DESIGN FLOW NORMAL NORAML ID FLOW 0 FULL 0 DEPTH VLCITY NUMBER CFS CFS FEET FPS _______________________________ 10.0 21.6 22.7 1.56 8.22 20.0 21.6 22.7 1.56 8.22 30.0 19.2 17.6 2.00 6.11 40.0 12.6 17.6 1.25 6.08 50.0 6.0 8.2 0.96 5.05 60.0 6.0 8.2 0.96 5.05 70.0 6.0 8.2 0.96 5.05 59.0 6.6 3.9 1.00 8.40 41.0 6.6 3.9 1.00 8.40 31.0 2.4 3.6 0.60 4.88 32.0 2.4 3.6 0.60 4.88 ------------------------------------- CRITIC CRITIC FULL FROUDE COMMENT DEPTH VLCITY VLCITY NO. FEET FPS FPS _______________________________ 1.66 7.77 6.88 1.15 V-OK 1.66 7.77 6.88 1.15 V-OK 1.58 8.14 6.11 0.00 V-OK 1.27 9.10 4.01 1.04 V-OK 0.94 10.77 3.40 0.98 V-OK 0.94 5.13 3.40 0.98 V-OK 0.94 5.13 3.40 0.98 V-OK 0.95 7.78 8.40 0.00 V-OK 0.95 8.55 8.40 0.00 V-OK 0.66 11.96 3.06 1.21 V-OK 0.66 4.35 3.06 1.21 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------- SEWER SLOPE ________________________________________________ INVERT ELEVATION BURIED DEPTH COMMENTS 1D NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ______________________________________________________________________ % (FT) (FT) (FT) (FT) 10.00 1.00 9.01 7.50 5.09 2.50 OK 20.00 1.00 11.01 9.21 4.29 4.89 OK 30.00 0.60 11.86 11.21 3.14 4.09 OK 40.00 0.60 12.20 12.06 2.70 2.94 OK 50.00 0.60 13.07 12.70 1.83 2.70 OK 60.00 0.60 13.26 13.17 1.34 1.73 NO 70.00 0.60 13.29 13.29 1.31 1.31 NO 59.00 1.00 13.10 12.47 4.40 3.43 OK 41.00 1.00 13.32 12.83 4.18 3.17 OK 31.00 1.00 12.36 12.21 3.64 4.09 OK 32.00 1.00 12.16 12.16 3.84 3.84 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1.5 FEET I (,s 1 *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 10.00 150.51 100.98 11.01 9.50 11.43 10.50 JUMP 20.00 179.68 68.64 13.01 11.21 12.67 11.43 JUMP 30.00 107.96 107.96 13.86 13.21 14.18 12.67 PRSS'ED 40.00 23.89 23.89 14.20 14.06 15.10 14.18 PRSS'ED 50.00 62.44 62.44 14.57 14.20 15.58 15.10 PRSS'ED 60.00 14.18 14.18 14.76 14.67 15.79 15.58 PRSS'ED 70.00 0.10 0.10 14.79 14.79 15.83 15.79 PRSS'ED 59.00 41.00 62.85 48.68 62.85 48.68 14.10 14.32 13.47 13.83 17.20 16.20 15.10 14.18 PRSS'ED PRSS'ED ' 31.00 15.00 15.00 13.36 13.21 13.47 12.67 PRSS'ED 32.00 0.10 0.10 13.16 13.16 13.51 13.47 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS _______________________________________________________________________________ UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ---------- 10.0 20.0 _____________________________________________________________________ 2.00 12.16 3.00 13.40 0.92 0.77 1.02 0.64 0.75 0.47 0.00 0.00 0.00 0.00 1.00 2.00 10.50 12.16 , 30.0 4.00 14.76 0.77 0.00 0.00 0.25 0.59 3.00 13.40 40.0 5.00 15.35 0.07 0.00 0.00 0.25 0.52 4.00 14.76 50.0 6.00 15.76 0.20 0.00 0.00 0.25 0.21 5.00 15.35 60.0 7.00 15.97 0.05 0.90 0.16 0.00 0.00 6.00 15.76 70.0 8.00 16.01 0.00 0.25 0.04 0.00 0.00 7.00 15.97 59.0 9.00 18.30 1.83 1.02 1.12 0.00 0.00 5.00 15.35 41.0 10.00 17.29 1.41 1.02 1.12 0.00 0.00 4.00 14.76 31.0 32.0 11.00 13.61 12.00 13.65 0.07 0.00 1.02 0.25 0.15 0.04 0.00 0.00 0.00 0.00 3.00 11.00 13.40 13.61 ` BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE ' NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 11 1 1 11 AINAGE DESIGN AND TECHNICAL CRITERIA TABLE 8d2C I`M SEWER ENERGY LOSS COEFFICIENT r (BENDS AT MANHOLES) • r.3 I rz•f I 1.2 I I.I1 I !pl I I.cV I `A % I X o.e i A.K Bend al Minhob, I . ;7p— no Spoc4lsh3pinp I' u 7 dlY Deflodoi o Cvned Bond�lA4inhoL, I Cumd e'Doll.clorf D.l �•Jz I d./c• ' I I 0. 0.0 I I f 1 o' 20' . 60' 60' DO' 700' DolleclIon Anple ' NOTE: Heod loss opplied of oullel of manhde. 8 REFERENCE: Modern Sewer Design AISI 1}'cshinq!on D.C., 1980. STORM DRAINAGE DESIGN AND TECHNICAL. CRITERIA TABLE 803 MANHOLE AND JUNCTION LOSSES PLAq USE EQUATION III y17 V, J .'.Z.5r E EQUATION 001 5 CC TiON L-= K CASE I CASE It INLET OR ),(AIRLI1,,E or INLET ON MAIN LINE WITH BRANCH LATERAL USE EQUATION 801 WL= K WJE EQUATION 1305 51 MOq L) -s E-- Z_ M CA�E T9 vi INLET OR I4ANHOLE AT BEGINNING OF LINE JECTIQN r IJANHQt F ON MAIN t IN CASE IH DRANC.4 LATE)qAj- CASE NO. K. K. C� z 0.05 22-1/Z 11 0.2S 45 0.50 IV 1.25 60 0.35 90 0.25 No Lateral See Case I No= NC)V 1984. REFERENCE:. APYIA Special Report No. 49, 1981 I I I I I I I I I I I u WZ I 1 i 100 YEAR SWMM MODEL 1 11 t a 1 1 I 10 I � 17 CO D LU 0 C"j < z LLJ C) uLL:D LU LLI cc .LL 'In � o PAGE 70 REMOVED �l 11//1. CLIENT T'Y 1 L� l�t G JOB NO. �Z—C l� RMNC PROJECT Ardt �a1 C�q� CALCULATIONS FOR SW10I NI Engineering Consultants MADEBY��yy--l�DATE 1 I &HECKED BY DATE SHEET OF /f1�gcQ �Lnts '�xts,i. SWhIM /t'lod�c�frwis $n((d(. l _ _ 7 0 %o r<; 0,00�___.--- �c I8,71 ac W— A-1c — 616,7-OCL(sS66) aQ.SIn ^ j /vL�+.l.5' ,4oi' Asi area -+-- ct ccoUr f Fc� a ctla• Je n — �8- 6 ccC—_ rE"'k 5 ; r \ L"+d-,- -f-a eV✓, cev-, V cy a n Ge -e(en�r-f- 38 IminveyCZrl .1{s SlaIL-- �-.los L/= I r = cl slGFre- 6.CO3� �5=6,005 �tv�l. S>a. I�fOd Co n J'ey QnCe eieM�'r."� �YS = 06 0 r SWMM input file 282013S1.DAT: 2 1 1 2 3 4 ' WATERSHED 0 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT 96 5.0 1 10. 1 25 5.0 ' 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 -2 .016 .25 .1 .3 .51 .5 .0018 1 21 125 3200 66.3 40 .004 1 23 126 4000 61.3 40 .007 1 24 127 2600 10.6 40 .003 1 31 128 5000 87.9 40 .008 1 32 35 3200 31.3 60 .003 ' 1 33 42 600 13.3 10 .050 _ 1 34 39 4800 78.6 70 .005 1 30 38 1630 18.7 72 0 .007 0 1 36 35 0 1 3.0 900.0 .0037 4.0 4.0 .060 10.00 1 35 38 0 1 5.0 1300.0 .0037 4.0 4.0 .035 10.00 1 38 40 0 1 5.0 1900.0 .0046 4.0 4.0 .035 10.00 ' 0 40 43 10 2 .01 100.0 .01 .023 .01 0.00 0.00 0.44 20.00 0.98 20.00 1.61 20.0 2.35 24.0 3.25 50.0 4.74 80.0 7.03 100.0 8.23 110.0 9.86 250.0 1 43 42 0 5 4.0 650.0 .025 0.0 0.0 .016 4.00 50.0 650.0 .025 50.0 50.0 .035 100.0 0 39 41 11 2 .01 100.0 .01 .023 .01 0.00 0.00 0.06 2.00 1.04 31.0 2.10 38.0 3.23 46.00 4.45 52.00 5.37 54.0 5.78 56.0 7.16 60.0 8.66 64.00 10.28 68.0 1 41 42 0 5 4.7 300.0 .050 0.0 0.0 .016 4.70 50.0 300.0 .025 50.0 50.0 .035 100.00 0 42 203 8 2 .01 0.1 .11 .001 100.0 .0 .0 2.0 21.0 4.2 22.5 6.90 23.5 9.9 24.2 13.4 25.0 16.4 214.5 19.6 575.6 1 125 213 0 1 2.0 2600.0 .004 30.0 30.0 .016 100.00 1 126 214 0 1 2.0 2000.0 .004 30.0 30.0 .016 100.00 1 127 35 0 1 2.0 1300.0 .006 30.0 30.0 .016 100.00 1 128 215 0 1 2.0 2600.0 .004 30.0 30.0 .016 100.00 • THEORETICAL 3-POINT RATING CURVES FOR FUTURE UPSTREAM DETENTION PONDS 213 35 3 2 0.1 100.0 .010 .013 0.1 .0 .0 5.33 24.0 6.0 24.0 214 35 3 2 0.1 100.0 .010 .013 0.1 .0 .0 5.70 24.0 7.0 24.0 215 36 3 2 0.1 100.0 .010 .013 0.1 .0 .0 9.32 24.0 10.0 24.0 0 12 1 35 38 39 41 42 40 43 213 214 215 36 127 ENDPROGRAM 1 713 SWMM output rile 282013S1.OUT: ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF • EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) WATERSHED PROGRAM CALLED *" ENTRY MADE TO RUNOFF MODEL '** ' HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT NUMBER OF TIME STEPS 96 INTEGRATION TIME INTERVAL (MINUTES) 5.00 10.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 ' 1.20 .114 .60 .48 .36 .36 .24 .24 .24 .24 .24 .12 .12 .00 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 21 125 3200.0 66.3 40.0 .0040 .016 .250 .100 .300 23 126 4000.0 61.3 40.0 .0070 .016 .250 .100 .300 24 127 2600.0 10.6 40.0 .0030 .016 .250 .100 .300 31 128 5000.0 87.9 40.0 .0080 .016 .250 .100 .300 32 35 3200.0 31.3 60.0 .0030 .016 .250 .100 .300 33 42 600.0 13.3 10.0 .0500 .016 .250 .100 .300 34 39 4800.0 78.6 70.0 .0050 .016 .250 .100 .300 30 38 1630.0 18.7 72.0 .0070 .016 .250 .100 .300 TOTAL NUMBER OF SUBCATCHMENTS, 8 TOTAL TRIBUTARY AREA (ACRES), 368.00 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT 1.56 .24 INFILTRATION RATE(IN/HR) GAGE MAXIMUM MINIMUM DECAY RATE NO .51 .50 .00180 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 I 7 ' *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *" WATERSHED AREA (ACRES) 368.000 TOTAL RAINFALL (INCHES) 2.890 , TOTAL INFILTRATION (INCHES) .479 TOTAL WATERSHED OUTFLOW (INCHES) 2.195 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .216 , ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .004 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORI2 TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 36 35 0 1 CHANNEL 3.0 900. .0037 4.0 4.0 .060 10.00 1 35 38 38 0 40 0 1 1 CHANNEL 5.0 CHANNEL 5.0 1300. 1900. .0037 .0046 4.0 4.0 4.0 4.0 .035 .035 10.00 10.00 1 1 ' 40 43 10 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 20.0 1.0 20.0 1.6 20.0 2.4 24.0 3.3 50.0 4.7 80.0 7.0 100.0 8.2 110.0 9.9 250.0 43 42 0 5 PIPE 4.0 650. .0250 .0 .0 .016 4.00 1 OVERFLOW 50.0 650. .0250 50.0 50.0 .035 100.00 39 41 11 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 1.0 31.0 2.1 38.0 3.2 46.0 4.5 52.0 5.4 54.0 5.8 56.0 7.2 60.0 8.7 64.0 10.3 68.0 41 42 0 5 PIPE 4.7 300. .0500 .0 .0 .016 4.70 1 OVERFLOW 50.0 300. .0500 50.0 50.0 .035 100.00 42 203 8 2 PIPE .0 0. .1100 .0 .0 .001 100.00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 2.0 21.0 4.2 22.5 6.9 23.5 9.9 24.2 13.4 25.0 16.4 214.5 19.6 575.6 125 213 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 126 214 0 1 CHANNEL 2.0 2000. .0040 30.0 30.0 .016 100.00 1 127 35 0 1 CHANNEL 2.0 1300. .0060 30.0 30.0 .016 100.00 1 , 128 215 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 213 35 3 2 PIPE .1 100. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 5.3 24.0 6.0 24.0 214 35 3 2 PIPE .1 100. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 5.7 24.0 7.0 24.0 215 36 3 2 PIPE .1 100. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 9.3 24.0 10.0 24.0 TOTAL NUMBER OF GUTTERS/PIPES, 15 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE 35 36 127 213 214 0 0 36 215 0 0 0 0 0 38 35 0 0 0 0 0 39 0 0 0 0 0 0 40 38 0 0 0 0 0 41 39 0 0 0 0 0 42 43 41 0 0 0 0 43 40 0 0 0 0 0 TRIBUTARY SUBAREA 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I D.A.(AC) 0 257.4 0 87.9 0 276.1 0 78.6 0 276.1 , 0 78.6 0 368.0 0 276.1 I 125 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 66.3 126 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 61.3 127 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 10.6 ' 128 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 87.9 213 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66.3 214 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.3 215 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87.9 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 35 36 38 39 40 41 42 43 127 213 0 5. .00 .00 .00 .02 .00 .01 .00 .00 .00 .00 0 10. .00( .02 ) .00( .00 ) .00( ) .01 .00(S) .18 .00( ) .00 .02( .11 ) .00(5) .01 .00( ) .00 .00( ) .02 .00( ) .01 .02( ) .00( ) .01( ) .01(S) .00(S) .06( ) .00(5) .00( ) .02( ) .00(S) 0 15. .92 .00 .43 2.11 .06 1.67 .17 .01 .66 .02 .20( ) .00( ) .12( ) .06(S) .00(S) .22( ) .02(S) .03( ) .11( ) .00(S) 0 20. 5.94 .00 3.46 7.58 .57 7.01 .63 .25 2.61 .09 .56( ) .0% ) .39( ) .25(S) .01(S) .43( ) .06(S) .11( ) .20( ) .02(S) 0 25. 18.68 .02 13.38 19.26 2.70 18.31 1.78 1.78 5.87 .34 1.02( ) .04( ) .81( ) .64(S) .06(S) .68( ) .17(S) .28( ) .28( ) .07(S) 0 30. 47.78 .11 40.05 34.08 9.20 33.39 4.33 7.32 13.03 1.05 1.61( ) .10( ) 1.41( ) 1.51(S) .20(S) .92( ) .41(S) .54( ) .38( ) .23(S) 0 35. 114.15 .48 106.51 46.98 20.00 46.42 9.10 17.96 30.11 2.86 2.40( ) .24( ) 2.22( ) 3.43(S) .61(S) 1.08( ) .87(S) .84( ) .54( ) .63(S) 0 40. 164.63 1.52 182.26 55.50 20.00 55.27 15.11 21.05 37.99 6.14 2.83( ) .45( ) 2.82( ) 5.68(S) 1.46(S) 1.18( ) 1.44(S) .91( ) .59( ) 1.36(S) �. 0 45. 153.45 3.55 206.34 59.88 31.88 59.72 21.02 28.56 30.60 10.08 2.74( ) .69( ) 2.97( ) 7.12(S) 2.62(S) 1.23( ) 2.03(S) 1.06( ) .54( ) 2.24(S) 0 50. 135.29 6.38 195.78 62.33 58.95 62.27 21.51 55.22 25.08 13.71 2.59( ) .92( ) 2.91( ) 8.03(S) 3.69(S) 1.25( ) 2.74(S) 1.50( ) .50( ) 3.04(S) 0 55. 123.07 9.53 176.21 63.93 75.43 63.86 22.10 74.57 20.67 16.77 I 2.48( ) 1.11( ) 2.78( ) 8.63(S) 4.51(S) 1.27( ) 3.61(S) 1.77( ) .46( ) 3.72(S) 1 0. 115.01 12.60 158.05 64.85 83.29 64.84 22.63 82.37 16.95 19.28 2.41( ) 1.26( ) 2.65( ) 9.01(S) 5.12(S) 1.28( ) 4.55(S) 1.87( ) .43( ) 4.28(S) 1 5. 109,02 2.35( 15,34 ) 1.37( ) 143.13 2.53( ) 65.33 9.20(S) 87.22 5.57(S) 65.31 1.28( ) 22.99 5.53(S) 87.09 1.93( ) 13.73 .39( ) 21.29 4.73(S) 1 10. 104.57 17.67 131.41 65.49 90.15 65.50 23.36 89.70 11.11 22.89 2.31( ) 1.46( ) 2.44( ) 9.26(S) 5.90(S) 1.28( ) 6.52(S) 1.97( ) .36( ) 5.08(S) 1 15. 100.94 19.59 122.34 65.41 92.29 65.41 23.64 92.19 9.04 24.01 2.27( ) 1.53( ) 2.36( ) 9.23(S) 6.15(S) 1.28( ) 7.51(S) 2.00( ) .33( ) 5.36(S) 1 20. 97.64 21.14 115.23 65.16 93.84 65.18 23.88 93.63 7.48 24.01 2.24( ) 1.59( ) 2.30( ) 9.13(5) 6.32(S) 1.28( ) 8.51(S) 2.02( ) .31( ) 5.58(S) 1 25. 94.64 22.37 109.43 64.78 94.92 64.79 24.11 94.86 6.26 24.01 2.21( ) 1.63( ) 2.24( ) 8.98(S) 6.45(S) 1.28( ) 9.50(S) 2.03( ) .28( ) 5.75(S) 1 30. 92.01 23.17 104.55 64.30 95.62 64.33 24.33 95.53 5.28 24.01 2.18( ) 1.65( ) 2.20( ) 8.78(S) 6.53(S) 1.27( ) 10.48(S) 2.04( ) .26( ) 5.89(S) 1 35. 89.85 23.59 100.56 63.73 96.03 63.76 24.56 96.01 4.54 24.01 2.16( ) 1.66( ) 2.16( ) 8.56(S) 6.58(S) 1.27( ) 11.46(S) 2.05( ) .25( ) 5.99(S) 1 40. 88.09 23.79 97.34 63.09 96.20 63.13 24.78 96.18 3.98 24.01 ' 2.14( ) 1.67( ) 2.13( ) 8.32(S) 6.59(S) 1.26( ) 12.43(S) 2.05( ) .24( ) 6.07(S) 1 45. 86.64 23.90 94.76 62.42 96.19 62.45 25.00 96.20 3.55 24.01 2.12( ) 1.67( ) 2.10( ) 8.07(S) 6.59(S) 1.25( ) 13.39(S) 2.05( ) .22( ) 6.13(S) 1 50. 85.45 23.95 92.69 61.72 96.05 61.76 74.05 96.06 3.20 24.01 2.11( ) 1.68( ) 2.08( ) 7.81(S) 6.58(S) 1.25( ) 14.18(S) 2.05( ) .21( ) 6.17(S) 1 55. 84.22 23.98 90.81 61.00 95.80 61.02 105.43 95.83 2.86 24.01 2.09( ) 1.68( ) 2.06( ) 7.53(S) 6.55(S) 1.24( ) 14.67(S) 2.05( ) .20( ) 6.20(S) 2 0. 82.90 23.99 88.93 60.23 95.45 60.27 125.07 95.49 2.52 24.01 2.08( ) 1.68( ) 2.04( ) 7.25(S) 6.51(S) 1.23( ) 14.98(S) 2.04( ) .19( ) 6.21(S) 2 5. 81.50 24.00 86.98 59.38 95.01 59.42 137.12 95.07 2.17 24.01 2.06( ) 1.68( ) 2.02( ) 6.95(S) 6.46(S) 1.22( ) 15.17(S) 2.04( ) .18( ) 6.21(S) 2 10. 80.07 24.00 84.96 58.47 94.48 58.52 144.24 94.55 1.84 24.01 2.05( ) 1.68( ) 2.00( ) 6.63(S) 6.40(S) 1.21( ) 15.29(S) 2.03( ) .17( ) 6.19(S) ' 2 15. 78.84 24.01 83.07 57.54 93.87 57.58 148.18 93.94 1.57 24.01 2.03( ) 1.68( ) 1.98( ) 6.31(S) 6.33(S) 1.20( ) 15.35(S) 2.02( ) .16( ) 6.16(S) 2 20. 77.84 24.01 81.41 56.59 93.19 56.64 150.06 93.27 1.34 24.01 2.02( ) 1.68( ) 1.96( ) 5.98(S) 6.25(S) 1.19( ) 15.38(S) 2.01( ) .15( ) 6.13(S) ' 2 25. 77.04 24.01 80.02 55.40 92.46 55.46 150.56 92.55 1.16 24.01 2.01( ) 1.68( ) 1.95( ) 5.66(S) 6.17(S) 1.18( ) 15.39(S) 2.00( ) .14( ) 6.08(S) 2 30. 76.40 24.01 78.87 53.91 91.70 53.98 150.06 91.79 1.01 24.01 2.00( ) 1.68( ) 1.93( ) 5.33(S) 6.08(S) 1.16( ) 15.38(S) 1.99( ) .13( ) 6.02(S) 2 35. 75.87 24.01 77.93 53.21 90.93 53.20 149.00 91.01 .89 24.01 2.00( ) 1.68( ) 1.92( ) 5.00(S) 5.99(S) 1.16( ) 15.36(S) 1.98( ) .12( ) 5.95(S) 2 40. 75.43 24.01 77.17 52.50 90.15 52.56 147.73 90.23 .79 24.01 1.99( ) 1.68( ) 1.91( ) 4.68(S) 5.90(S) 1.15( ) 15.34(S) 1.97( ) .12( ) 5.88(S) 2 45. 75.06 24.01 76.53 51.54 89.37 51.57 146.29 89.46 .70 24.01 1.99( ) 1.68( ) 1.91( ) 4.36(S) 5.81(S) 1.14( ) 15.32(S) 1.96( ) .11( ) 5.80(S) 2 50. 74.75 24.01 76.01 49.97 88.61 50.08 144.60 88.69 .63 24.01 1.98( ) 1.68( ) 1.90( ) 4.04(S) 5.73(S) 1.12( ) 15.29(S) 1.95( ) .10( ) 5.71(S) 2 55. 74.43 24.01 75.55 48.44 87.86 48.48 142.65 87.94 .56 24.01 1.98( ) 1.68( ) 1.89( ) 3.73(S) 5.64(S) 1.10( ) 15.26(S) 1.94( ) AN ) 5.62(S) 3 0. 73.96 24.01 75.10 46.95 87.12 47.04 140.55 87.21 .51 24.01 1.97( ) 1.68( ) 1.89( ) 3.42(S) 5.56(S) 1.09( ) 15.23(S) 1.94( ) AN ) 5.53(S) 3 5. 73.37 24.01 74.58 45.29 86.41 45.35 138.34 86.49 .46 24.01 1.97( ) 1.68( ) 1.88( ) 3.13(S) 5.47(S) 1.07( ) 15.19(S) 1.93( ) .09( ) 5.43(S) 3 10. 72.74 24.01 74.00 43.28 85.70 43.39 135.98 85.78 .42 23.99 1.96( ) 1.68( ) 1.88( ) 2.85(S) 5.39(S) 1.04( ) 15.16(S) 1.92( ) .09( ) 5.33(S) 3 15. 71.96 24.01 73.33 41.35 85.00 41.42 133.48 85.08 .38 23.52 1.95( ) 1.68( ) 1.87( ) 2.57(S) 5.31(S) 1.02( ) 15.12(S) 1.91( ) .08( ) 5.22(S) 3 20. 71.00 24.01 72.55 39.50 84.29 39.61 130.92 84.37 .34 23.05 ' 1.94( ) 1.68( ) 1.86( ) 2.31(S) 5.23(S) 1.00( ) 15.08(S) 1.90( ) .08( ) 5.12(S) 3 25. 69.97 24.01 71.64 37.75 83.58 37.82 128.35 83.66 .31 22.58 1.92( ) 1.68( ) 1.85( ) 2.06(S) 5.15(S) .97( ) 15.04(S) 1.89( ) .08( ) 5.01(S) 3 30. 68.91 23.94 70.66 36.17 82.86 36.25 125.82 82.94 .29 22.11 , 1.91( ) 1.68( ) 1.84( ) 1.82(S) 5.07(S) .95( ) 15.00(S) 1.88( ) .07( ) 4.91(S) 3 35. 67.80 23.76 69.62 34.65 82.11 34.72 123.36 82.20 .26 21.65 1.89( ) 1.67( ) 1.82( ) 1.59(S) 4.98(S) .93( ) 14.96(S) 1.87( ) .07( ) 4.81(S) 3 40. 66.63 23.52 68.52 33.19 81.35 33.27 120.95 81.44 .24 21.19 1.88( ) 1.66( ) 1.81( ) 1.37(S) 4.89(S) .92( ) 14.92(S) 1.86( ) .07( ) 4.70(S) 3 45. 65.41 23.26 67.36 31.79 80.57 31.86 118.60 80.66 .22 20.73 1.86( ) 1.65( ) 1.80( ) 1.16(S) 4.81(S) .90( ) 14.88(S) 1.85( ) .06( ) 4.60(S) 3 50. 64.18 22.97 66.17 28.70 79.47 28.94 115.98 79.62 .20 20.28 1.85( ) 1.65( ) 1.78( ) .96(S) 4.71(S) .85( ) 14.84(S) 1.84( ) .06( ) 4.50(S) 3 55. 62.94 22.68 64.95 23.66 77.67 23.96 112.37 77.91 .18 19.83 1.83( ) 1.64( ) 1.77( ) .79(S) 4.62(S) .78( ) 14.78(S) 1.81( ) .06( ) 4.40(S) 4 0. 61.71 22.38 63.72 19.53 75.94 19.72 107.76 76.11 .17 19.39 1.81( ) 1.63( ) 1.75( ) .65(S) 4.54(S) .71( ) 14.71(S) 1.79( ) .06( ) 4.31(S) 4 5. 60.48 22.08 62.49 16.15 74.28 16.37 102.82 74.48 .15 18.96 1.80( ) 1.62( ) 1.73( ) .54(S) 4.46(S) .65( ) 14.63(S) 1.77( ) .05( ) 4.21(S) 4 10. 59.28 21.78 - 61.27 13.38 72.67 13.52 97.94 72.84 .14 18.53 1.78( ) 1.61( ) 1.72( ) .44(S) 4.38(S) .59( ) 14.55(S) 1.75( ) .05( ) 4.11(S) 4 15. 58.09 21.48 60.06 11.11 71.11 11.27 93.31 71.30 .13 18.11 1.76( ) 1.60( ) 1.70( ) .37(S) 4.30(S) .54( ) 14.48(S) 1.73( ) .05( ) 4.02(S) 4 20. 56.91 21.18 58.86 9.24 69.60 9.35 89.03 69.77 .11 17.69 1.75( ) 1.59( ) 1.69( ) .30(S) 4.22(S) .50( ) 14.41(S) 1.70( ) .05( ) 3.93(S) 4 25. 55.76 20.88 57.68 7.70 68.13 7.82 85.12 68.31 .10 17.28 1.73( ) 1.58( ) 1.67( ) .25(S) 4.15(S) .45( ) 14.35(S) 1.68( ) .04( ) 3.84(S) , 4 30. 54.62 20.59 56.52 6.44 66.70 6.52 81.57 66.87 .09 16.88 1.71( ) 1.57( ) 1.65( ) .21(S) 4.08(S) .42( ) 14.30(S) 1.67( ) .04( ) 3.75(S) 4 35. 53.50 20.29 55.38 5.40 65.31 5.48 78.35 65.47 .09 16.49 1.70( ) 1.56( ) 1.64( ) .17(S) 4.01(S) 38( ) 14.24(S) 1.65( ) .04( ) 3.66(S) 4 40. 52.40 20.00 54.25 4.54 63.95 4.60 75.44 64.11 .08 16.10 , 1.68( ) 1.55( ) 1.62( ) .15(S) 3.94(S) .35( ) 14.20(S) 1.63( ) .04( ) 3.57(S) 4 45. 51.32 19.71 53.14 3.83 62.62 3.89 72.80 62.77 .07 15.72 1.66( ) 1.54( ) 1.61( ) 3.88(S) .33( ) 14.16(S) 1.61( ) .04( ) 3.49(S) 4 50. 50.26 19.42 52.05 .12(S) 3.24 61.32 3.29 70.38 61.47 .06 15.35 1.65( ) 1.53( ) 1.59( ) .10(S) 3.81(S) .30( ) 14.12(S) 1.59( ) .03( ) 3.41(S) 4 55. 49.22 19.13 50.98 2.75 60.05 2.80 68.17 60.20 .06 14.98 1.63( ) 1.52( ) 1.58( ) .09(S) 3.75(S) .28( ) 14.08(S) 1.57( ) .03( ) 3.32(S) 5 0. 48.19 18.85 49.93 2.35 58.80 2.39 66.13 58.95 .05 14.62 1.62( ) 1.51( ) 1.56( ) .07(S) 3.69(S) .26( ) 14.05(S) 1.55( ) .03( ) 3.24(S) ' 5 5. 47.18 18.56 48.90 2.01 57.59 2.05 64.24 57.73 .05 14.27 1.60( ) 1.50( ) 1.55( ) .06(S) 3.63(S) .24( ) 14.02(S) 1.54( ) .03( ) 3.17(S) 5 10. 46.19 18.28 47.88 1.70 56.39 1.73 62.47 56.54 .04 13.92 1.58( ) 1.49( ) 1.53( ) .05(S) 3.57(S) .22( ) 13.99(S) 1.52( ) .03( ) 3.09(S) 5 15. 45.22 18.01 46.89 1.44 55.23 1.47 60.80 55.37 .04 13.58 1.57( ) 1.48( ) 1.52( ) .04(S) 3.51(S) .21( ) 13.97(S) 1.50( ) .03( ) 3.01(S) 5 20. 44.27 17.73 45.91 1.23 54.08 1.26 59.22 54.22 .03 13.25 1.55( ) 1.47( ) 1.50( ) .04(S) 3.45(S) .19( ) 13.94(S) 1.49( ) .02( ) 2.94(S) 5 25. 43.34 17.46 44.95 1.06 52.96 1.08 57.72 53.10 .03 12.93 ' 1.54( ) 1.46( ) 1.48( ) .03(S) 3.40(S) .18( ) 13.92(S) 1.47( ) .02( ) 2.87(S) 5 30. 42.42 17.19 44.01 .91 51.86 .93 56.30 52.00 .03 12.61 1.52( ) 1.45( ) 1.47( ) .03(S) 3.34(S) .17( ) 13.90(S) 1.45( ) .02( ) 2.80(S) ' S 35. 41.52 16.93 43.09 .79 50.78 .81 54.95 50.92 .02 12.30 1.51( ) 1.44( ) 1.46( ) .02(S) 3.29(5) .16( ) 13.87(S) 1.44( ) .02( ) 2.73(S) ' S 40, 40,64 1.49( ) 16.67 1.43( ) 42,19 1.44( ) .69 .02(S) 49,62 3.24(S) .71 .15( ) 53,63 13.85(5) 49. 77 1.42( .02 ) .02( ) 11.99 2.66(S) 5 45. 39.77 16.41 41.30 .61 48.19 .62 52.30 48.39 .02 11.69 1.48( ) 1.42( ) 1.43( ) .02(S) 3.19(S) .14( ) 13.83(S) 1.40( ) .02( ) 2.60(S) 5 50. 38.93 16.15 40.43 .54 46.87 .55 50.92 47.02 .01 11.40 1.46( ) 1.41( ) 1.41( ) .02(S) 3.14(S) .13( ) 13.81(S) 1.38( ) .02( ) 2.53(S) 5 55. 38.09 15.89 39.58 .48 45.63 .49 49.54 45.79 .01 11.12 1.45( ) 1.40( ) 1.40( ) .01(S) 3.10(S) .12( ) 13.79(S) 1.36( ) .01( ) 2.47(S) 6 0. 37.28 15.64 38.74 .43 44.46 .43 48.20 44.60 .01 10.84 6 5. 1.43( ) 36.48 1.39( ) 15.40 1.38( ) 37.92 .01(S) .38 3.06(S) 43.35 .12( ) .39 13.77(S) 46.90 1.34( 43.49 ) .01( ) .01 2.41(S) 10.57 1.42( ) 1.38( ) 1.37( ) .01(S) 3.02(S) .1% 1 13.75(S) 1.32( ) .01( ) 2.34(S) 6 TO. 35.70 15.15 37.12 .34 42.29 .35 45.66 42.43 .01 10.30 1.40( ) 1.37( ) 1.35( ) .01(S) 2.98(S) .11( ) 13.73(S) 1.30( ) .01( ) 2.29(S) 6 15. 34.93 14.91 36.33 .31 41.28 .31 44.48 41.42 .01 10.04 1.39( ) 1.36( ) 1.34( ) .01(S) 2.95(S) .10( ) 13.71(S) 1.29( ) .01( ) 2.23(S) 6 20. 34.18 14.67 35.56 .28 40.32 .28 43.35 40.44 .01 9.78 1.37( ) 1.35( ) 1.33( ) .01(S) 2.91(S) .10( ) 13.69(S) 1.27( ) .01( ) 2.17(S) ' 6 25, 33,45 1.36( ) 14,44 1.34( ) 34.80 1.31( ) .25 .01(S) 39,39 2.88(S) .25 .09( ) 42,27 13.67(S) 39,51 1.26( .01 ) .01( ) 9,54 2.12(S) 6 30. 32.73 14.20 34.06 .22 38.49 .23 41.23 38.61.01 9.29 1.34( ) 1.33( ) 1.30( ) .01(S) 2.85(S) .09( ) 13.66(S) 1.24( ) .01( ) 2.06(S) 6 35. 32.02 13.98 33.34 .20 37.62 .21 40.24 37.74 .01 9.06 1.33( ) 1.32( ) 1.29( ) .01(S) 2.82(S) .08( ) 13.64(S) 1.23( ) .01( ) 2.01(S) 6 40. 31.33 13.75 32.62 .18 36.78 .19 39.29 36.90 .01 8.82 1.32( ) 1.31( ) 1.27( ) .01(S) 2.79(S) .08( ) 13.63(S) 1.21( ) .01( ) 1.96(S) 6 45. 30.65 13.53 31.93 .17 35.97 .17 38.37 36.08 .00 8.60 1.30( ) 1.30( ) 1.26( ) .01(S) 2.76(S) .08( ) 13.61(S) 1.20( ) .01( ) 1.91(S) 6 50. 29.99 13.31 31.25 .15 35.18 .16 37.49 35.28 .00 8.38 1 1.29( ) 1.29( ) 1.25( ) .00(S) 2.74(S) .07( ) 13.60(S) 1.19( ) .01( ) 1.86(S) 6 55. 29.34 13.09 30.58 .14 34.40 .14 36.63 34.51 .00 8.16 1.27( ) 1.28( ) 1.23( ) .00(5) 2.71(S) .07( ) 13.58(S) 1.17( ) .01( ) 1.81(S) 7 0. 28.71 12.88 29.92 .13 33.65 .13 35.80 33.76 .00 7.95 1.26( ) 1.27( ) 1.22( ) .00(S) 2.68(S) .07( ) 13.57(S) 1.16( ) .01( ) 1.76(S) 7 5. 28.09 12.66 29.28 .11 32.92 .12 34.99 33.02 .00 7.74 1.25( ) 1.26( ) 1.21( ) .00(S) 2.66(S) .06( ) 13.56(S) 1.15( ) .01( ) 1.72(S) 7 10. 27.48 12.46 28.66 .10 32.20 .11 34.21 32.30 .00 7.54 1.23( ) 1.25( ) 1.19( ) .00(S) 2.63(S) .06( ) 13.55(S) 1.13( ) .01( ) 1.67(S) 7 15. 26.88 12.25 28.04 .10 31.51 .10 33.45 31.60 .00 7.35 1.22( ) 1.24( ) 1.18( ) .00(S) 2.61(S) .06( ) 13.53(S) 1.12( ) .01( ) 1.63(S) 7 20. 26.30 12.05 27.44 .09 30.83 .09 32.71 30.92 .00 7.16 1.21( ) 1.23( ) 1.17( ) .00(S) 2.59(S) .06( ) 13.52(S) 1.11( ) .01( ) 1.59(S) 7 25. 25.73 11.85 26.85 .08 30.16 .09 31.99 30.25 .00 6.97 1.20( ) 1.22( ) 1.16( ) .00(S) 2.56(S) .06( ) 13.51(S) 1.10( ) .01( ) 1.55(S) 7 30. 25.17 11.65 26.28 .08 29.51 .08 31.29 29.60 .00 6.79 1.18( ) 1.21( ) 1.14( ) .00(S) 2.54(S) .OS( ) 13.50(S) 1.08( ) .01( ) 1.51(S) 7 35. 24.63 11.46 25.71 .07 28.87 .08 30.60 28.96 .00 6.61 ' 1.17( ) 1.20( ) 1.13( ) .00(S) 2.52(S) .05( ) 13.49(S) 1.07( ) .01( ) 1.47(S) 7 40. 24.09 11.27 25.16 .07 28.25 .07 29.94 28.34 .00 6.43 1.16( ) 1.19( ) 1.12( ) .00(S) 2.50(S) .05( ) 13.48(S) 1.06( ) .01( ) 1.43(S) 7 45, 23.57 1.14( ) 11.08 1.18( ) 24.62 1.11( ) .07 .00(S) 27.64 2.48(S) .07 .05( ) 29.28 13.47(S) 27,73 1.05( .00 ) .00( ) 6,27 1.39(S) 7 50. 23.06 10.90 24.09 .06 27.05 .06 28.65 27.14 .00 6.10 1.13( ) 1.18( ) 1.10( ) .00(S) 2.46(S) .05( ) 13.46(S) 1.04( ) .00( ) 1.35(S) 7 55. 22.55 10.71 23.57 .06 26.47 .06 28.03 26.55 .00 5.94 1.12( ) 1.17( ) 1.08( ) .00(S) 2.44(S) .05( ) 13.45(S) 1.03( ) .00( ) 1.32(S) ' 8 0. 22.06 10.53 23.07 .06 25.90 .06 27.42 25.98 .00 5.78 1.11( ) 1.16( ) 1.07( ) .00(S) 2.42(S) .05( ) 13.44(S) 1.01( ) .00( ) 1.28(S) ' HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 2 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS ' THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER ft TIME(HR/MIN) 214 215 1 0 5. .00 .00 .) ) 0 10. .01 .01 , .00(s) .00(s) 0 15. .03 .02 .Oi(S) .01(S) 0 20. .16 .11 .04(S) .04(S) 0 25. .57 .41 .13(S) .16(S) 0 30. 1.60 1.17 .38(S) .45(S) 0 35. 4.02 3.02 .95(S) 1.17(S) 0 40. 8.01 6.18 1.90(S) 2.40(S) 0 45. 12.29 9.77 2.92(S) 3.79(S) 0 50. 15.83 12.94 3.76(S) 5.02(8) 0 55. 18.66 15.61 ' 4.43(S) 6.06(S) 1 0. 20.90 17.82 4.96(S) 6.92(S) 1 5. 22.66 19.65 5.38(S) 7.63(S) 1 10. 24.01 21.13 5.70(S) 8.20(S) 1 15. 24.01 5.95(S) 22.34 8.67(S) , 1 20. 24.01 23.30 6.14(S) 9.05(S) 1 25. 24.01 24.01 6.29(S) 9.35(S) 1 30. 24.01 24.01 ' 6.39(S) 9.59(S) 1 35. 24.01 24.01 6.47(S) 9.79(S) i 40. 24.01 24.01 6.52(S) 9.95(S) , 1 45. 24.01 24.01 6.55(S) 10.08(S) 1 50. 24.01 24.01 6.56(S) 10.18(S) 1 55. 24.01 24.01 6.56(s) 10.26(S) 2 0. 24.01 24.01 6.54(S) 10.32(S) 2 5. 24.01 24.01 6.51(S) 10.36(S) 2 10. 24.01 24.01 2 15. 6.47(S) 24.01 10.38(S) 24.01 6.41(S) 10.38(S) 2 20. 24.01 24.01 6.34(S) 10.37(S) 2 25. 24.01 24.01 6.27(S) 10.34(S) 2 30. 24.01 24.01 6.18(S) 10.30(S) 2 35. 24.01 24.01 6.09(S) 10.24(S) 2 40. 24.01 24.01 5.99(S) 10.18(S) 2 45. 24.01 24.01 5.88(S) 10.11(S) 2 50. 24.01 24.01 ' 5.77(S) 10.03(S) 2 55. 23.83 24.01 5.66(S) 9.94(S) 3 0. 23.34 24.01 5.54(S) 9.85(S) ' 3 5. 22.86 24.01 5.43(S) 9.76(S) 3 10. 22.37 24.01 5.31(S) 9.66(S) ' 3 15. 21.89 24.01 5.20(S) 9.55(S) 3 20. 21.41 24.01 5.08(S) 9.44(S) 3 25. 20.94 24.01 3 30. 4.97(S) 20.47 9.33(S) 23.73 4.86(S) 9.21(S) 3 35. 20.01 23.43 4.75(S) 9.10(S) 3 40. 19.55 23.13 I 4.64(S) 8.98(S) 3 45. 19.10 22.83 4.53(S) 8.86(S) 3 50, 18.65 4.43(S) 22.53 8.74(S) 3 55. 18.22 22.22 4.32(S) 8.63(S) 4 0. 17.78 21.92 4.22(S) 8.51(S) 4 5. 17.36 21.62 4.12(S) 8.39(S) 4 10. 16.94 21.32 4 15. 4.02(S) 16.53 8.27(S) 21.01 3.92(S) 8.16(S) 4 20. 16.13 20.71 3.83(S) 8.04(S) 4 25. 15.74 20.42 3.74(5) 7.93(S) 4 30. 15.35 20.12 3.64(S) 7.81(S) 4 35. 14.97 19.83 3.5.55(S) 7.70(S) 4 40. 14.60 19.53 3.47(S) 7.58(S) 4 45. 14.24 19.24 3.38(S) 7.47(S) ' 4 50. 13.88 18.96 3.30(S) 7.36(S) 4 55. 13.53 18.67 3.21(S) 7.25(S) 5 0. 13.19 18.39 3.13(S) 7.14(S) 5 5. 12.86 18.11 3.05(S) 7.03(S) 5 10. 12.53 2.97(S) 17.83 6.92(S) 5 15. 12.21 17.56 " 2.90(S) 6.82(S) 5 20. 11.90 17.29 2.82(S) 6.71(S) 5 25. 11.60 17.02 2.75(S) 6.61(S) 5 30. 11.30 16.75 5 35. 2.68(S) 11.01 6.50(S) 16.49 2.61(S) 6.40(S) 5 40. 10.72 16.23 2.54(S) 6.30(S) 5 45. 10.44 15.97 2.48(S) 6.20(S) 5 50. 10.17 15.72 2.41(S) 6.10(S) 5 55. 9.91 15.47 2.35(S) 6.00(S) 6 0. 9.65 15.22 2.29(S) 5.91(S) 6 5. 9.39 14.98 2.23(S) 5.81(S) 6 10. 9.15 14.74 2.17(S) 5.72(S) 6 15. 8.91 14.50 2.11(S) 5.63(S) 6 20. 8.67 14.27 2.06(S) 5.54(S) 6 25. 8.44 14.03 2.00(S) 5.45(S) 6 30. 8.22 13.81 1.95(S) 5.36(S) 6 35. 8.00 13.58 1.90(S) 5.27(S) 6 40. 7.79 13.36 ty C� ' 1.85(S) 5.18(S) 6 45. 7.58 13.14 1.80(S) 5.10(S) b 50. 7.37 12.92 , 1.75(S) 5.01(S) 6 55. 7.18 12.71 1.70(S) 4.93 (S) 7 0. 6.98 12.50 1.66(S) 4.85(S) , 7 5. 6.79 12.29 1.61(S) 4.77(S) 7 10. 6.61 1.57(S) 12.09 4.69(S) ' 7 15. 6.43 11.89 1.53(S) 4.61(S) 7 20. 6.26 11.69 1.48(S) 4.54(S) 7 25. 6.09 11.49 1.44(S) 4.46(S) 7 30. 5.92 11.30 1.40(S) 7 35. 5.76 4.38(S) 11.11 1.37(S) 4.31(S) 7 40. 5.60 10.92 1.33(S) 4.24(S) 7 45. 5.45 10.74 1.29(S) 4.17(S) ' 7 50. 5.30 10.56 1.26(S) 4.10(S) 7 55. 5.15 10.38 1 .22(S) 4.03(S) 8 0. 5.01 10.20 , 1.19(S) 3.96(S) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. ' 39 40 41 42 43 213 214 215 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED r REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT ." PEAK FLOWS, STAGES AND STORAGES '•• OF GUTTERS AND DETENSION DAMS CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 35 164.6 2.8 0 40. GcNT"L 36 24.0 1.7 2 30. wEST jjEfTIGNAL 4i/VRCfE' �!H{/1NNF_ 38 206.3 3.0 0. 45- EksT 39 65.5 .0 9.3 1 10. 40 96.2 .0 6.6 1 40. 41 65.5 1.3 1 10. 42 150.6 .0 15.4 2 25. 43 96.2 2.1 1 45. 125 135.8 1.0 0 45. 126 167.1 1.1 0 40. 127 38.0 .6 0 40. 128 216.5 1.3 0 40. 203 150.6 (DIRECT FLOW) 2 25. 213 24.0 .1 6.2 2 0. , 214 24.0 .1 6.6 1 50. 215 24.0 .1 10.4 2 15. ENDPROGRAM PROGRAM CALLED ' I 1 a I I I 1 11 I I r A I I r REGIONAL STORM DRAINAGE CHANNEL n Conveyance Element 36 Cross Section for Trapezoidal Channel Project Description Project File cAhaestad1tfmw\282013.fm2 Worksheet Conveyance Element 36 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.005700 ft/ft Depth 1.52 ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 3.00 ft Discharge 24.00 cfs 1.52 ft �--•� 1 3.00 ft V H 1 NTS 08r2gm FlowMaster v5.13 09.14.17 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1665 Page 1 of 1 e3 1 Table Rating Table for Trapezoidal Channel Project Description Project File c:\haestad\fm1M282013.fm2 Worksheet Conveyance Element 36 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Discharge E L L1 I Constant Data 0.060 Mannings Coefficient Channel Slope 0.005700 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 3.00 ft Input Data Minimum Maximum Increment Depth 1.00 2.00 0.10 ft ' . Rating Table Depth Discharge Velocity (ft) (cfs) (ft/s) 1.00 9.54 1.36 1.10 11.70 1.44 1.20 14.13 1.51 1.30 16.85 1.58 1.40 19.85 1.65 1.50 23.15 1.71 1.60 26.77 1.78 1.70 30.71 1.84 voo K V33 1.80 34.99 1.91 1.90 39.61 1.97 2.00 44.59 2.03 08129/96 FlowMaster v5.13 09:15:57 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page i of 1 REGIONAL CHANNEL CONVEYANCE ELEMENT 35 AND 38 Cross Section for Trapezoidal Channel Project Description Project File c:\haestad\fmw1282015.fm2 Worksheet conveyance element 38t?- 3�5' Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.035 Channel Slope 0.004300 ft/ft Depth 3.41 ft Left Side Slope 4.000000 H: V Right Side Slope 4.000000 H : V Bottom Width 5.00 ft Discharge 274.00 cfs 3.41 ft 5.00 ft V H 1 NTS 08/19/96 FlowMaster v5.13 03:08:56 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 8� 1 Table Rating Table for Trapezoidal Channel Project Description Project File c:\haestad\fmw\282015.fm2 Worksheet conveyance element 38435' ' Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Constant Data Mannings Coefficient 6.035 Channel Slope 0.004300 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 5.00 ft Input Data Minimum Maximum Increment Discharge 150.00 300.00 25.00 cfs , Rating Table Discharge Depth Velocity (cfs) (ft) (ft/s) 150.00 2.62 3.69 175.00 2.81 3.84 200.00 2.98 3.97 225.00 3.13 4.0 o�\� 3_oZ 250.00 3.28 4.20 \.o 275.00 3.42 4.314 \ I z� _ �'•, Scis` '14 3'�z 300.00 3.55 4.40 08/19/96 FlowMaster v5.13 03:15:12 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 ' 1 CURRENT DATE: 10-03-1996 URRENT TIME: 16:14:57 FILE DATE: 10-03-1996 FILE NAME: HPCUL-E +++++++++++++++++++++++++ FHWA CULVERT ANALYSIS ++++++*+*+++++++++*+++++++ ++++++++++++++++++++++++++ HY-8, VERSION 4.3 ++++++++*+++++++++++++++++ C SITE DATA CULVERT SHAPE, MATERIAL, INLET U-------------------------- ----------------------------------------------- L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET # (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 2 3 4 5 6 +++ -------------------------- 3.60 2.83 72.00 ----------------------------------------------- 1 RCPE 6.33 4.00 .013 CONVENTIONAL SUMMARY OF CULVERT FLOWS (CFS) FILE: HPCUL-E DATE: 10-03-1996 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 3.60 0 0 0 0 0 0 0 0 1 4.53 10 10 0 0 0 0 0 0 1 6.37 70 70 0 0 0 0 0 0 1 7.22 105 105 0 0 0 0 0 0 1 8.11 140 140 0 0 0 0 0 0 1 9.14 17570 175 ior'`70 0 0 0 0 0 1 210 1 8 0 0 0 0 0 10 6 10.11 245 203 0 0 0 0 0 41 6 10.21 280 206 0 0 0 0 0 72 4 10.30 315 208 0 0 0 0 0 106 4 10.37 350 210 0 0 0 0 0 137 3 9.70 192 192 0 0 0 0 0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: HPCUL-E DATE: 10-03-1996 HEAD HEAD TOTAL FLOW % FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR 3.60 0.00 0 0 0.00 4.53 0.00 10 0 0.00 6.37 0.00 70 0 0.00 7.22 0.00 105 0 0.00 8.11 0.00 140 0 0.00 9.14 0.00 175 0 0.00 9.94 -0.01 210 1 0.70 10.11 -0.01 245 1 0.54 10.21 -0.01 280 2 0.61 10.30 -0.01 315 1 0.35 10.37 -0.00 350 3 0.82 <1> TOLERANCE (FT) = 0.010 <2> TOLERANCE M = 1.000 V 1 2 1 CURRENT DATE: 10-03-1996 FILE DATE: 10-03-1996 CURRENT TIME: 16:14:57 FILE NAME: HPCUL-E ******************************************************************************** PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 6.333333 BY 4 ) RCPE ******************************************************************************** DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER , FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 3.60 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 10 4.53 0.93 0.93 1-S2n 0.50 0.68 5.83 0.53 2.41 0.57 70 6.37 2.77 2.77 1-S2n 1.36 1.93 10.00 1.47 4.14 1.52 105 7.22 3.62 3.62 1-S2n 1.70 2.42 11.10 1.87 4.60 1.84 , 140 8.11 4.51 4.51 5-S2n 2.00 2.82 11.95 2.23 4.96 2.10 175 9.14 5.54 5.54 5-S2n 2.30 3.16 12.70 2.57 5.25 2.33 198 9.94 6.34 6.34 5-S2n 2.49 3.33 13.23 2.77 5.51 2.53 , 203 10.11 6.51 6.51 5-S2n 2.53 3.36 13.34 2.81 5.73 2.70 206 10.21 6.61 6.61 5-S2n 2.55 3.38 13.44 2.82 5.92 2.87 208 10.29 6.69 6.69 5-S2n 2.57 3.40 13.43 2.86 6.10 3.02 210 10.37 6.77 6.77 5-S2n 2.59 3.41 13.47 2.88 6.27 3.16 ******************************************************************************** El. inlet face invert 3.60 ft El. outlet invert 2.83 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INLET STATION (FT) INLET ELEVATION (FT) OUTLET STATION (FT) OUTLET ELEVATION (FT) NUMBER OF BARRELS SLOPE (V-FT/H-FT) INVERT ************** CULVERT LENGTH ALONG SLOPE (FT) ***** CULVERT DATA SUMMARY BARREL SHAPE BARREL SPAN BARREL RISE BARREL MATERIAL BARREL MANNING'S N INLET TYPE INLET EDGE AND WALL INLET DEPRESSION 0.00 3.60 72.00 2.83 1 0.0107 72.00 ELLIPTICAL 6.33 FT 4.00 FT CONCRETE 0.013 CONVENTIONAL SQ. EDGE WITH HEADWALL NONE /-� , ©. � SfEMT� 4--6 FO_S 3 IURRENT DATE: 10-03-1996 FILE DATE: 10-03-1996 CURRENT TIME: 16:14:57 FILE NAME: HPCUL-E ******************************************************************************** ************************** TAILWATER ************************** ******************************************************************************** ******* REGULAR CHANNEL CROSS SECTION **************** BOTTOM WIDTH (FT) 5.00 SIDE SLOPE H/V (X:l) 4.0 CHANNEL SLOPE V/H (FT/FT) 0.010 MANNING'S N (.01-0.1) 0.035 CHANNEL INVERT ELEVATION (FT) 2.83 CULVERT NO.1 OUTLET INVERT ELEVATION 2.83 FT ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (CFS) (FT) NUMBER (FT) (FPS) (PSF) 0.00 2.83 0.000 0.00 0.00 0.00 10.00 3.40 0.562 0.57 2.41 0.36 70.00 4.35 0.591 1.52 4.14 0.95 105.00 4.67 0.598 140.00 4.93 0.603 1.84 2.10 4.60 4.96 1.15 1.31 175.00 5.16 0.607 2.33 5.25 1.45 210.00 5.36 0.611 2.53 5.51 1.58 245.00 5.53 0.614 2.70 5.73 1.69 280.00 5.70 0.616 2.87 5.92 1.79 315.00 5.85 0.619 3.02 6.10 1.88 350.00 5.99 0.621 3.16 6.27 1.97 ******************************************************************************** ************************** ROADWAY OVERTOPPING DATA ************************** ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 24.00 ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. (FT) (FT) ' 1 0.00 10.10 2 80.00 9.70 3 140.00 10.10 I 1 I ' W u N M M V V N P P V v m N 0 G M N /• A N N O M O m .O M N O m V m O J N O U v O N N N M M N P N A .O O m m A yr P �•• Wp O O �' N M V N 'O 0 A m �, 11 C , Jv) �ny) n y V' J d' •+ m P = 2^ N N N N Ifs m O^ U a�u p u O O^ N M V A P \ U m `• c �> U 0 0 � � 0 0� � r- j U O O O O O^ N N P O O R A V� "y• 6� A N N N S 6 �� M^ O O y y A ✓ � ^n �.JL.• tWJ v O N N N N N P N N N N 2 O � N M V N 'O A m W K O 2 O W O O � N M V V y .O A m d W p 2 J P O O O O O O O O O O OC J O O O O O-O O O O L y r 2 r r C_.�T IY'1 L/ y��t,�'��Zryltlfi%.CG 1y JOB NO. .:; CALCULA710N5FOR �iPrsT_ V.AOc Sy- DATE CHECKED BY- DATE $MEET_OF ' Jineering Consultants Gj ,r{� •/��j RIPRAP DESIGIJ CULVERT T �V GI4E'_1: lYP E= H wee/ v= 6 /s Q= &P owe 44 8) FIND .he required rinran at the outlet of culvert Solution: Use 17D & FCD criteria Step 1: Determi-e the required type of riprap for erosion DrOtection. t = I �-/C6,33��'" = i, ss 6 -� K� .l�sIn Q/�^z.5 Yt/D = 0. a (if Unknown) Y� =�. S � �Q=z06.3� f1 �—S�i � ` L•� = O.:�I From Fig. 5-7 use ?_ s. Step 2: Deterai-e the e>mansion, factic*i (1/2 tan e) 1 Q/D^2. 5 = i • �S From Fig. 5-3 ; 1/2 tan B = S•� Step 3: Determine the length ofT_ rlpraD protection. zt=Q/-✓ (•✓=5fps or less) L=(1/2 tan B) (::t/Yt - w) L= S. � l � _� 6• � 3 L= S3 • �S P t ' Step a: C;^eC:< if ;"':aX. Cr ?din. limit governs ' L can rot be less than 3D L does rot Jneed to exceed 10D �� I � L=3D= /B, ITI T=10D= L3.3D' use c.� P_ s. Step 5: Deter-.=e max r1_rao deDttl .3\ (from Fig.5-6) x. TZ oak':t � •'�-.i7S. Step 6: Determine cedding material. � �� -�7Nc `II- CGil dT. G!a ss f+� �ddr••.y m.!��'La i Step 7: Determ_-e Riprap width = 3D min. /1 3D= 3 Cb.33�= �g,`l l Gt use Wl� c� P.ns. - x wt,d-c� b�c�dlin� mart-�ia�� DRAINAGE CRITERIA MANUAL RIPRAP q/ 12.3-jL Use Do instead of D whenever flow is supercritical. in the barrel. **use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL RIPRAP CJz E ii A = Expansion Angle NEEMENE 0 ■ W, INE'Armp - - w- m rmomm 1 .2 .3 .4 .5 .6 .7 .8 TAILWATER DEPTH/ CONDUIT HEIGHT, Yt / D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE a FLOOD CONTROL DISTRICT UCT 73 ----- — — — — — — — — — — — — FUTURE STORM DRAIN— — — — — — — — (BY OTHERS) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --------- ------------ ---- )(/s7- 716 1 T. BOB JK 01 rn IC I 0.45 i I ''ti! a. �. in CLIENT�TL JOBNO. Zp.�(7 RMINC PROJECT Y p CALCDLATIONSFOR �',`" -4- Engineering Consultants MADEBY %TAr)DATE 317-5 CHECKED BV DATEQQ SHEET I OF co kI iS — L — 80 SELT t� N Z . be i+oo 1 CURRENT DATE: 10-03-1996 FILE DATE: 10-03-1996 CURRENT TIME: 15:34:00 FILE NAME: HPCUL-W FHWA CULVERT ANALYSIS HY-8, VERSION 4.3 C SITE DATA U----------------- L INLET OUTLET CULVERT V ELEV. ELEV. LENGTH # (FT) -------------------------- (FT) (FT) 1 17.46 17.00 80.00 2 3 4 5 6 CULVERT SHAPE, MATERIAL, INLET ----------------------------------------------- BARRELS SHAPE SPAN RISE MANNING INLET MATERIAL (FT) (FT) n TYPE ----------------------------------------------- 2 RCP 2.00 2.00 .012 CONVENTIONAL I li r SUMMARY OF CULVERT FLOWS (CFS) FILE: HPCUL-W DATE: 10-03-1996 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 20.10 0 0 0 0 0 0 0 0 1 20.12 5 5 0 0 0 0 0 0 1 20.19 10 10 0 0 0 0 0 0 1 20.31 15 15 0 0 0 0 0 0 1 20� 20.47 20 74- 20 0 0 0 0 0 0 1 20.68 0 0 0 0 0 0 1 20.93 30 30 0 0 0 0 0 O 1 21.23 35 35 0 0 0 0 0 0 1 21.57 40 40 0 0 0 0 0 0 1 21.97 45 45 0 0 0 0 0 0 1 , 22.09 50 46 0 0 0 0 0 3 7 22.00 45 45 0 0 0 0 0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: HPCUL-W HEAD HEAD TOTAL FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) 20.10 0.00 0 0 20.12 0.00 5 0 20.19 0.00 10 0 20.31 0.00 15 0 20.47 0.00 20 0 20.68 0.00 25 0 20.93 0.00 30 0 21.23 0.00 35 0 21.57 0.00 40 0 21.97 0.00 45 0 22.09 -0.00 50 0 <1> TOLERANCE (FT) = 0.010 DATE: 10-03-1996 ' % FLOW ERROR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 <2> TOLERANCE (%) = 1.000 1 F 1�6 2 CURRENT DATE: 10-03-1996 FILE DATE: 10-03-1996 CURRENT TIME: 15:34:00 FILE NAME: HPCUL-W PERFORMANCE CURVE FOR CULVERT # 1 - 2 ( 2 BY 2 ) RCP DIS- CHARGE HEAD- WATER INLET CONTROL OUTLET CONTROL FLOW NORMAL CRITICAL FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) 11 r I OUTLET TAILWATER VEL. DEPTH VEL. DEPTH (fps) (ft) (fps) (ft) 0 20.10 0.00 2.64 0-NF 0.00 0.00 0.00 0.00 0.00 3.10 5 20.12 0.71 2.66 4-FFt 0.49 0.54 0.80 2.00 0.00 3.10 10 20.19 1.11 2.73 4-FFt 0.70 0.79 1.59 2.00 0.00 3.10 15 20.31 1.42 2.85 4-FFt 0.88 0.97 2.39 2.00 0.00 3.10 20 20.47 1.70 3.01 4-FFt 1.04 1.13 3.18 2.00 0.00 3.10 25 20.68 1.97 3.22 4-FFt 1.20 1.27 3.98 2.00 0.00 3.10 30 20.93 2.25 3.47 4-FFt 1.36 1.40 4.77 2.00 0.00 3.10 35 21.23 2.57 3.77 4-FFt 1.55 1.50 5.57 2.00 0.00 3.10 40 21.57 2.94 4.11 4-FFt 2.00 1.60 6.37 2.00 0.00 3.10 45 21.97 3.36 4.51 4-FFt 2.00 1.68 7.16 2.00 0.00 3.10 46 22.08 3.48 4.62 4-FFt 2.00 1.70 7.39 2.00 0.00 3.10 El. inlet face invert 17.46 ft El. inlet throat invert 0.00 ft El. outlet invert El. inlet crest **** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 0.00 INLET ELEVATION (FT) 17.46 OUTLET STATION (FT) 80.00 OUTLET ELEVATION (FT) 17.00 NUMBER OF BARRELS 2 SLOPE (V-FT/H-FT) 0.0057 CULVERT LENGTH ALONG SLOPE (FT) 80.00 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 2.00 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N INLET TYPE 0.012 CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH - - HEADWALL INLET DEPRESSION NONE [li I P 17.00 ft 0.00 ft CURRENT DATE: 10-03-1996 CURRENT TIME: 15:34:00 TAILWATER CONSTANT WATER SURFACE ELEVATION 20.10 ROADWAY OVERTOPPING DATA WEIR COEFFICIENT 2.70 EMBANKMENT TOP WIDTH (FT) 60.00 ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. (FT) (FT) 1 0.00 24.00 2 15.00 22.00 3 60.00 22.00 4 70.00 23.00 '7,7-- 1 3 ,FILE DATE: 10-03-1996 FILE NAME: HPCUL-W 1 M I I� r I ' RIP RAP DESIGN 1 I 11 [1 1 I 1 1 i 1 1 10 I RBD, Inc., Engineering Consultants Riprap Design wes� n 2-Q-- .o.,µ� �l ,," Project: Hewlett Packard Fort Collins Designer., jarh ' Project #: 282-013 Date: 08/09/96 Location: Outfall Pipe dia.: 24 in Tailwater 1 ft Discharge 24 cfs Max. V 5 ft/s 1. Required riprap type: 1 Q/DA2.5 = 4.24 < 6 --> use design charts D = 2.00 ft 2.36 YUD = 0.50 1 Q/D^1.5 = 8.49 d50 = 6 in > Use Class 6 riprap , 2. Expansion factor: 1 / [2 tan(theta)] = 5.0 ' 3. Riprap length: At = ON = 4.8 112 L = 1/[2tan(theta)]"(At/Yt - D) = 14 ft , 4. Governing limits: L>3D= 6ft <=14ft-->OK L<10D= 20ft =>14ft—>OK 5. Maximum depth: Depth =2d50=2(6in/12)= 1 ft ' 6. Bedding: Use 1 It thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap width: Width = 3D = 3 (24 in /12) = 6 ft 1 Summary: Class 6 riprap Length = 14 ft Depth = 1 ft Width = 6 ft esA 09-Aug-96 RBD, Inc., Engineering Consultants Riprap Design /oo ' Project: HP BUILDING 5 Designer: JAM Project #: 282-015 Date: 08/19/96 Location: Outfall i,1.4-S Pipe dia.: 21 in Tailwater 1.5 ft Discharge 22.2 cfs Max. V: 5 ft/s 1. Required riprap type: Q/D^2.5 = 5.48 < 6 --> use design charts D = 1.75 ft 2.36 YUD = 0.86 Q/D^1.5 = 9.59 d50 = 6 in ' > Use Class 6 riprap 2. Expansion factor: 1 / [2 tan(theta)] = 6.0 3. Riprap length: At = QN = 4.44 ft2 ' L = 1/[2tan(theta)]'(At/Yt - D) = 7 ft 4. Governing limits: L>3D= 5 ft <=7ft-->OK L<10D= 18ft =>7ft-->OK 5. Maximum depth: ' Depth =2d50=2(6in/12)= 1 ft 6. Bedding: ' Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width = 3D = 3 (21 in /12) = 5 ft Summary: Class 6 riprap Length = 7 ft Depth = 1 ft Width = 5 ft J II li II 19-Aug-96 I /O/ I 1 l i u EROSION CONTROL 1 1 1 1 I 1 1 1 1 I 1 io i /az. RBD, Inc. #282-015 r RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: HEWLETT PACKARD BUILDING 5 STANDARD FORM A CALCULATED BY: JAM DATE: 08/20/96 Developed Erodibilty Asb Lsb Ssb Lb Sb PS Subbasin Zone (ac) (ft % ft 1 moderate 0.45 20 2.00 2 moderate 7.16 3996 0.50 3 moderate 13.64 1200 0.60 4 moderate 1.88 410 1.00 5 moderate 1.02 388 0.70 6 moderate 1.29 510 0.80 7 moderate 0.76 425 1.00 8 moderate 1.05 516 1.50 9 moderate 1.33 364 0.60 10 moderate 0.42 151 0.60 11 moderate 1.04 541 1.00 12 moderate 1.47 100 1.00 13 moderate 0.74 592 1.10 14 moderate 0.78 695 1.00 15 moderate 0.63 100 1.00 16 moderate 3.33 920 2.00 17 moderate 1.62 617 2.00 18 moderate 0.24 180 2.00 Total 38.85 1392 0.8 75.9 EXAMPLE CALCULATIONS Lb = sum(AiLi)/sum(Ai) _ (0.45 x 20 +... + 1.29 x 510)/ 38.85 1392 ft Sb = sum(AiSi)/sum(Ai) _ (0.45 x 2.00 + .., + 1.29 x 0.80)/ 38.85 0.8 % PS (during construction) = 75.9 PS (after construction) = 75.9/0.85 = (from Table 8A) 89.2 RBD, Inc. /03 1 EFFECTIVENESS CALCULATIONS Total Site as one phase #282-015 PROJECT: HEWLETT PACKARD BUILDING 5 STANDARD FORM B CALCULATED BY: JAM DATE: 08/20/96 Erosion Control C-Facto P-Factor Comment Number Method Value Value 3 Bare Soil - Rough Irregular Surface 1 0.9 future landscaped areas 4 SedimentBasin Trap 1 0.5 In regional channel 6 Gravel Filter 1 0.8 Placed at inlets 9 AsphalVConcrete Pavement 0.01 1 existing ashpalt 16 Established Grass Ground Cover - 70% 0.04 1 existing ground cover 19 Established Grass Ground Cover - 100% 0.02 1 exlsbng ground cover 20 Sod Gress 0.01 1 21 Temporary Vegetation 0.45 1 23 Hydraulic Mulch @ 2 tons/acre 0.1 1 placed at outlets and syvales 38 Gravel Mulch 0.05 1 placed in future ashpalt areas 43 Hay or Straw Dry Mulch (21-25% slope) 0.14 1 placed on regional channels MAJOR PS AREA BASIN % ac SITE 75.9 38.85 S BASIN AREA Practice C *A P' A Remarks BASIN CONDITION ac DURING CONSTRUCTION 1 PERVIOUS AREA 0.45 19 0.01 0.45 Established Grass Ground Cover -1D0% 1 HARD AREA 0.00 19 0.00 0.00 Established Gress Ground Cover - 100% 2 PERVIOUS AREA 7.16 4 7.16 3.58 SedimentBasin Trap 2 HARD AREA 0.00 4 0.00 0.00 Sediment/Basin Trap 3 PERVIOUS AREA 13.58 19 0.27 13.58 Established Gress Ground Cover -100% 3 HARD AREA 0.06 38 0.00 0.06 Gravel Mulch 4 PERVIOUS AREA 1.61 19 0.03 1.61 Established Gress Ground Cover -1Do% 4 HARD AREA 0.27 38 0.01 0.27 Gravel Mulch 5 PERVIOUS AREA 0.32 3 0.32 0.29 Bare Sail- Rough Irregular Surface 5 HARD AREA 0.70 38 0.03 0.70 Gravel Mulch 6 PERVIOUS AREA 0.27 3 0.27 0.24 Bare Soil- Rough Irregular Surface 6 HARD AREA 1.02 38 0.05 1.02 Gravel Mulch 7 PERVIOUS AREA 0.14 3 0.14 0.12 Bare Soil- Rough Irregular Surface 7 HARD AREA 0.62 38 0.03 0.62 Gravel Mulch 8 PERVIOUS AREA 0.26 3 0.26 0.23 Bare Soil- Rough Irregular Surface 8 HARDAREA 0.79 38 0.04 0.79 Gravel Mulch 9 PERVIOUS AREA 0.88 3 0.88 0,79 Bare Soil- Rough Irregular Surface 9 HARD AREA 0.45 38 0.02 0.45 Gravel Mulch 1 1 I L RBD, Inc. ' EFFECTIVENESS CALCULATIONS Total Site as one phase #282-015 PROJECT: HEWLETT PACKARD BUILDING 5 STANDARD FORM B CALCULATED BY: JAM DATE: 08/20/96 Erosion Control C-Facto P-Factor Comment Number Method Value Value 3 Bare Soil - Rough Irregular Surface 1 0.9 future landscaped areas 4 SedimentBasin Trap 1 0.5 In regional channel 6 Gravel Filter 1 0.8 Placed at inlets 9 AsphalVConcrete Pavement 0.01 1 existing ashpak 16 Established Grass Ground Cover- 70% 0.04 1 existing ground cover 19 Established Grass Ground Cover - 100% 0.02 1 existing ground cover 20 Sod Grass 0.01 1 21 Temporary Vegetation 0.45 1 23 Hydraulic Mulch Q 2 tons/acre 0.1 1 placed at outlets and swales 38 Gravel Mulch 0.05 1 placed in future ashpak areas 43 Hay or Straw Dry Mulch (21-25% slope) 0.14 1 placed on regional channels MAJOR PS AREA BASIN % ac SITE 75.9 38.85 BASIN Practice C'A P'A Remarks BASIN CONDITION ac 10 PERVIOUS AREA 0.24 3 0.24 0.22 Bare Soil- Rough Irregular Surface 10 HARD AREA 0.17 38 0.01 0.17 Gravel Mulch 11 PERVIOUS AREA 0.45 3 0.45 0.41 Bare Soil- Rough Irregular Surface 11 HARD AREA 0.59 38 0.03 0.59 Gravel Mulch 12 PERVIOUS AREA 0.00 9 0.00 0.00 AsphaWConcrete Pavement 12 HARD AREA 1.47 9 0.01 1.47 Asphalt/Concrele Pavement 13 PERVIOUS AREA 0.22 3 0.22 020 Bare Soil- Rough Irregular Surface 13 HARD AREA 0.52 38 0.03 0.52 Gravel Mulch 14 PERVIOUS AREA 0.16 3 0.16 0.15 Bare Sail- Rough Irregular Surface 14 HARD AREA 0.62 38 0.03 0.62 Gravel Mulch 15 PERVIOUS AREA 0.40 19 0.01 0.40 Established Grass Ground Cover- 100% 15 HARD AREA 0.23 21 0.10 0.23 Temporary Vegetation 16 PERVIOUS AREA 1.38 19 0.03 1.38 Established Gress Ground Cover- 100% 16 HARD AREA 1.96 9 0.02 1.96 Asphalt/Concrete Pavement 17 PERVIOUS AREA 0.74 19 0.01 0.74 Established Grass Ground Cover-100% 17 HARD AREA 0.88 9 001 0.88 Asphaft/Concrete Pavement 18 PERVIOUS AREA 0.11 19 0,00 0.11 Established Grass Ground Cover - t00% 18 HARD AREA 0.13 9 0.00 0.13 AsphalvConcrele Pavement Cnet = 10.45 x 0.02+..+0 13 x 0.01) / 38.85 = 0.28 Pnet = [0.45 x 1.00 +. + 0.13 x 1.00] / 38.85 = 0.72 EFF = (1-C'P)1D0 = (1-0.28'0.72)100 = 79.77 > 75.9 (PS) Assume paving not constructed within 6 weeks; use gravel inlet fitters at all area inlets & sift fence at swales & downstream perimeters. R13D, Inc. In 5- 1 EFFECTIVENESS CALCULATIONS Total Site #282-015 PROJECT: HEWLETT PACKARD BUILDING 5 STANDARD FORM B CALCULATED BY: JAM DATE: 08/20/96 Erosion Control C-Facto P-Facto Comment Number Method Value Value 9 AsphalUConcrete Pavement 0.01 1 Paved and constructed 16 Established Grass Ground Cover - 70% 0.04 1 reestablished open areas 19 Established Grass Ground Cover - 100% 0.02 1 Areas not disturbed during const 20 Sod Grass 0.01 1 newly sodded MAJ R P AREA BASIN % ac SITE 89.2 38.85 BASINPractice C' A P' A Remarks CONDITION ac AFTER CONSTRUCTION 712 PERVIOUS AREA 0.45 19 0.01 0.45 Established Grass Ground Cover - 100% HARD AREA 0.00 19 0.00 0.00 Established Grass Ground Cover- 100% PERVIOUS AREA 7.16 19 0.14 7.16 Established Grass Ground Cover - 100% HARD AREA 0.00 19 0.00 0.00 Established Grass Ground Cover - 100% 3 PERVIOUS AREA 13.58 19 0.27 13.58 Established Grass Ground Cover- 100% 3 HARD AREA 0.06 9 0.00 0.06 Asphalt/Concrete Pavement 4 PERVIOUS AREA 1.61 19 0.03 1.61 Established Grass Ground Cover - 100% 4 HARD AREA 0.27 9 0.00 0.27 Asphalt/Concrete Pavement 5 PERVIOUS AREA 0.32 20 0.00 0.32 Sod Grass 5 HARD AREA 0.70 9 0.01 0.70 Asphalt/Concrete Pavement 6 PERVIOUS AREA 0.27 20 0.00 0.27 Sod Grass 6 HARD AREA 1.02 9 0.01 1.02 Asphalt/Concrete Pavement 7 PERVIOUS AREA 0.14 20 0.00 0.14 Sod Grass 7 HARD AREA 0.62 9 0.01 0.62 Asphalt/Concrete Pavement 8 PERVIOUS AREA 0.26 20 0.00 0.26 Sod Grass 8 HARD AREA 0.79 9 0.01 0.79 Asphalt/Concrete Pavement 9 PERVIOUS AREA 0.88 20 0.01 0.88 Sod Grass 9 HARD AREA 0.451 9 0.00 0.45 Asphalt/Concrete Pavement 1 1 11 [J 11 ' RBD, Inc. �UG EFFECTIVENESS CALCULATIONS Total Site #282-015 PROJECT: HEWLETT PACKARD BUILDING 5 STANDARD FORM B CALCULATED BY: JAM DATE: 08/20/96 Erosion Control C-Facto P-Facto Comment Number Method Value Value 9 Asphalt/Concrete Pavement 0.01 1 Paved and constructed 16 Established Grass Ground Cover - 70% 0.04 1 reestablished open areas 19 Established Grass Ground Cover- 100% 0.02 1 Areas not disturbed during const 20 Sod Grass 0.01 1 newly sodded MAJOR PS AREA BASIN % ac SITE 89.2 38.85 --SON- BASIN A Practice C' A P' A Remarks BASIN CONDITION ac 10 PERVIOUS AREA 0.24 20 0.00 0.24 Sod Grass 10 HARD AREA 0.17 9 0.00 0.17 Asphalt/Concrete Pavement 11 PERVIOUS AREA 0.45 20 0.0o 0.45 Sod Grass 11 HARD AREA 0.59 9 0.01 0.59 Asphalt/Concrete Pavement 12 PERVIOUS AREA 0.00 20 0.00 0.00 Sod Grass 12 HARD AREA 1.47 9 0.01 1.47 AsphalUConcrete Pavement 13 PERVIOUS AREA 0.22 20 0.00 0.22 Sod Grass 13 HARD AREA 0.52 9 0.01 0.52 Asphalt/Concrete Pavement 14 PERVIOUS AREA 0.16 20 0.00 0.16 Sod Grass 14 HARD AREA 0.62 9 0.01 0.62 Asphalt/Concrete Pavement 15 PERVIOUS AREA 0.40 20 0.00 0.40 Sod Grass 15 HARD AREA 0.23 9 0.00 0.23 Asphalt/Concrete Pavement 16 PERVIOUS AREA 1.38 19 0.03 1.38 Established Grass Ground Cover- 100% 16 HARD AREA 1.96 9 0.02 1.96 Asphalt/Concrete Pavement 17 PERVIOUS AREA 0.74 19 0.01 0.74 Established Grass Ground Cover- 100% 17 HARD AREA 0.88 9 0.01 0.88 Asphalt/Concrete Pavement 18 PERVIOUS AREA 0.11 19 0.00 0.11 Established Grass Ground Cover - 100% 18 HARD AREA 0.13 9 0.00 0.13 Asphalt/Concrete Pavement Cnet = [0.45 x 0.02+..+0.13 x 0.02] / 38.85 = 0.02 Pnet = [0.45 x 1.00 +..+ 0.13 x 1.00] / 38.65 = 1.00 EFF = (1-C-P)100 = (1-0.02-1.00)100 98.36 > 89.2 (PS) IRBD, Inc. [ D 1 1 1 1 #282-015 PROJECT: HEWLETT PACKARD BUILDING 5 STANDARD FORM C CALCULATED BY: JAM DATE: oa/20/96 SEQUENCE for 1996 ONLY Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. YEAR 19% 1997 MONTH S O N D J F M A M J J A OVERLOT GRADING IMM EWA WIND EROSION CONTROL Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation / 2i Contour Furrows Terracing Gravel Mulch i f Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting(Channel) i Permanent Seed Planting(Site) Mulching/Sealant Temporary Seed Planting 7mm=7 Sod Installation Neftings/Mats/Blankets Other STRUCTURES: INSTALLED BY VEGETATION/MULCHING CONTRACTOR ' DATE SUBMITTED MAINTAINED BY APPROVED BY CITY OF FORT COLLINS ON RBD,Inc. , EROSION CONTROL COST ESTIMATE PROJECT: HEWLETT PACKARD BUILDING 5 #282-015 PREPARED BY: JAM DATE: 08/20/96 CITY RESEEDING COST Unit Total Method Quantity Unit Cost Cost Notes Reseed/mulch 24.85 ac $500 $12,425 See Note 1. Subtotal $12,425 Contingency 50% $6,213 Total $18,638 EROSION CONTROL MEASURES Unit Total Number Method Quantity Unit Cost Cost Notes 3 Bare Soil - Rough Irregular Surface 2.94 ac $200 $588 4 Sediment/Basin Trap 1 ea $750 $750 8 Gravel Filter 11 ea $300 $3,300 21 Temporary Vegetation 0.23 ac $300 $69 38 Gravel Mulch 5.81 ac $1,350 $7,843 Subtotal $12,551 Contingency 50% $6,275 Total $18,826 Total Secudty $18,826 Notes: 1. A<1 ac=$1300/ac; A=1-10 ac=$650/ac; A>10 ac=$500/ac. / PAGE 26V9 0.40 0.35 0.30 0 0.25 0.20 LL 0.15 0.10 0.05 ESTABLISHED GRASS AND C-FACTORS FORT COLLS, COLORADO ............. . ............ ............. ............ ... ......... ............. .............. ............. ............ . ... . .. ........... .... ...... ............ ........... . .......... . ..... . .. ... .... ..... . .... ...... ..... ......... .... . ...... ............. ............. ............. .... ....... I ......... . ........... ............. ............. ......... . .. .. ...... .. .......... . ...... .. .......... ...... ............. ............. .......... .. ............. .......... ............. ............. ............. ..... .... ...... . ..... . ............. ............ ............ ....... .... ............ .......... ... ............. ............. ............. ............. . .. .............. : ......... ............. ............ ............ a 10 20 30 40 50 60 70 80 90 100 ESTABLEHED CRASS GROUND COVER (7o) FIGURE 5.1 I 0 0 a O ' U e 1 � 0 ao CO r-4 W In 40 A H 0 LO � W U 0 W a a a z z H 1 ' L N.A RCH 1991 o cc%000 0 <r In 111 Ln I n co O q q 0 O O M M M 0 0 0 0 0 0 O CC C <Ln In In In Lf In < co co g tl co O q co co tl 0 q L% C1 Cl C1 C1 L) C\ C) Cl C1 m O O 0 O rr <r r CC«Cc<In In In n tl g tl 0 0 0 0 0 0 tl tl O q 0 tl O r tl co co n CI C1 mC1 C% C% C% c% C1 C% C% In C) m n . . . . . . . . . . . . . . . . . . . . O. C r< C r r C C r<< r C C C< V. C< C N O O q q g q q q tl O q o O tl tl 0 m q O tl 0 o n r In o o tD LC r r. r r r r r r r r r r tl. co tl tl tl. 0 o Ccc r rcr.« r c c.«. r r r r.«c c<cr ri g tl tl O q q tl ca q q q q O tl co tl tl co g tl co tl tl C3 g 0 0 qN nr Ln In Ln tD. oLD 'V 0LD rrrrrrrr r r co tl co L4 n r r r r r r c r r r c r r c<< c c r r r< r< c co co co q c7gOtlq q 000otltl co co co q q C* co tl tl 0 C! 17oNnrrLn n nII] �aa1�1� 1�L�rrrrrr tl n<< C C r r r r r r r« C<<« r<< r c r r tl co co tl tl co tl 0 g co q q q tl co co 0 o co g 0 co co co tl CD 0 < m ri N n n C r r < N In L7 N I1I In In In U) Q Q LD 'U U' L7 r r n n r« C«4 4 r r C C« r r r r C C< r< r <; tl O co O CD CD CD co o g C* co co C* co tl co O 0 0 o co OD cotl 0 O c V OO ri riN N n n nn«<rr r r C In In NIn 1 7N LC n n n r C r r r C C C r r r C C C C C< C C r r r r co co * C* g q g q co co tl O g q tl tl 0 0 0 0 tl tl tl 0 0 0 0 In N In r q C1 O O H r-I ri N N N N N n n n n n r«« �-'In N n n n n n< r r<< C C C C C C< C C r r C r r< g q tl 000q OOtltl q q co co co co OtlC3Oco co co co tl W Ill In r�tar�+nclnlnL7L�rrrcgcgooLnrnrn00oo0 o. ............... a r N N n n n n n n n n n n n n n n n n n n n<<<< r Lei q q c7 0 0 0 0 g tl O tl q co co tl O O tl co tl g tl co CD 0 0 O Q Ln co r-i N n« In In Ln%n%D%D U' L7 r r rr 00001 C1 C ri N N n n n n n n n n n n n n n n n n n n n n n n n coco tl co co O O O co C3 0 0 g O coc 7 co co co CDcJ co co co co0 In ri ri In r 000.-I NNnnn««<In In In U' 0Urr n ri NNN N n n n n n n n n n n n n n n n n n n n n n tltl co co co tl0000 co co00 tl000000 coC cocO tl 0 n N L7 q m O ri N N n n n C < C C C< In Ln LIP) In L7 l0 17 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . n O rar-I ri ri NNNNN N NNNNN N N NN NN N N N N co o 0 o g 0 0 0 0 0 0 0 0 tl O tl tl tl tl q g tl tl tl co co N InlnnNnrL]vrr": cac�c�c� c L�000000 . .......................... N C) 00 H ri ri ri .-i S ri ri ri ri ri r♦ri ri ri ri HN N N N N N r 0 0 0 0 0 0 0 0 0 0 0 0 0 o c7 0 co O tl q co O tl co tl 0 CLn0nLe) V' OOC1000riririHNNNNnnnrnnn . . . . . . . . . . . . . . . . . . . . . . . . . . . N O Cl O O O O O O O ri ri ri ri ri 4 ri ri ri ri ri ri ri ri ri ri ri r r 0 0 0 0 0 O 0 0 0 0 g C3 0 co co q q CC CD O g CD tl CD In q N 0 ririnr r 0Inc1ooririr-iri riNNN n n n n n . . . . . . . . . . . . . . . . . . . . . . . . . . . ri 4 q 0 C1 cl C1 C1 C4 C1 L; C100000 0000000000 r r r r r r r r r r r g q q q q q q q co co co co co tl tl O lD r) O C r n O ri N n n<r In In In In tl tl ,>L7 rr V' Q L7 ri - rL7rrrh0 ;c)OOOggqticq ctl cq Otl rrrrrrrrrtrrrrrrrrrrrrrrrrr N C1 OC 0 r OOr rr kD Lo LD In<r n n NN CINCH Cl V O O N N N N N N N N N N N N N N N N N N N H ri H H 0 0 rrrrrrrrrrrrrrrrrrrrrrrrrr x 00000000000000000000000000 LD 00000000000000000000000000 Z z(~ HNn<N U' rOC1O HNnCIn Vr rtlC1O Ln OIn OV1O [;]... HHHriHHHHHHNN n nr<In a 9.4 DESIGN CRITERIA REMOVE EXIST CMP �I STORM PIPE m-1 I1II1IIIIIIIIIIIIwil II1III1111 1 !LI 11111!III l4 J I �-EXISTING 2-30e RCP EXISTING INLET illy I_ 10A - it lr 2opyUTIUTY EASEMENT E 10 then ED CONSTRUCTION SEQUENCE, FENCE LOC REVISION DESCRIPTION 2-24e CLII BOB FES. TRASHRACK INLETS. �CONSTRUC\ CHANUNK FENCE ♦**0** EI IINUNK FENCE O PROPERTY LINE Mehl SEEDING CHAR lAtle Ir x. ROCnmm ee STINA, ono Appreas , Ini or oa Y. al forth iv TAmpvvy Vpalarm vp/v cvw 0 wn9 w,d, " vy W ow aaanl N Mm«I .pwa1M. Qx v mva al IM Wa yeeFv Awewf� M uwa[nXn a pwvorY b'�e grow awf mhNa. s a N&I Lwa{rl .s ✓w Y W Mbe RTau �. « TOnaa a Wr w wt Aca�la.N pkalm a4 „Iroe v Ray .tar M- 3 2 tma/ma Q R1w1MeMe R hem" Don' AM la WK v(AND w� Wa) Woor 5 - Y 15 2 thin w - earing � W Er0YA [ o Nmma) DI - e 3 YM gpE[Wa 3 Mi SO Hoy .Doe Or Mae M pa }« or noain,. .Sea me at la1 N%a no n ad Hie y,em Wim by mAn a Maine n MpU. YMn awanq wrp nNM yaYaa MY NAma a mllw / Sv9pun *arm rJ pan a e vg9vtM macnmq malp,d, 1 oM«k. If Mga N u-1. hyh , mmiN MAY M a)pW }en NV 15 wv wg w Caul MAP HOW, mbar III Doti Wm ter TO', r114 NmtieeA p ftm•, q oa ua its XeY v Sv "If amaN Midi oil p anepaed ra the M1 by me nl \ , 7� pv ma tY / ownoap Aawa. n enI a Iv Me fM " meM e Saw 114 MMthg Mtn Iv Pm non ma TWpvvy/Ca (a) A crn ap he a^w,p Mot Illy a ft by Are o un. my* a m ML 50% 0 IM pri IEROItl4 i AND? M D ea / MlE Fort - ill A SSECs� (p) umobCW 9 p tdW oW the M Ymn Cm v aw. p a,.. aMmohm@ No �� w m - to 15 v« No yea Ic)em TomsebnMw�an i4mmiabeti6 hill Yay m - Yay 51 an NO 2 ChNIN M " 01 - DAM 31 Yw TM NO No by V. SAN OMIT OF MATCH EFtSnNG VENCE REMOV FENCE EXIyNNG CHAIN UNK FENCE d 1919 I IAA 41 lei ,I - REMOVE a SALVAGE EXISTING FENCE (FOR CONTINUATION OF REMOVAL. SEE SHEETS C-3.2 AS C-El) b Whi �w We �I Ie 011 Alf,i /, I{ I . 3 as I �e - m y - K "` s \ HIS I" HiSIT E%gTNp UNING CALL UTILITY NOTIFIOATK N CENTER OF COLORADO 1-800-922-1987 ast 534-6700 SCALE VIEW g�Dlwarix✓ �PORDAY oN niAviT M1a1a1a1aM, Pq TIE Suwon or ,RCmwaw IpE61 InVIEB DES RUB JAM_ DRAROESJOAE f _ AILGIST 1996 281-015 Enginestifireng Consultants r- APPRCYID DAZE PROYCI hC Y D EXMT M m BLLLNG CONSTRUCTION SEQUENCE,. PRO<cr XEYarI-V. Mb wPLANo 5 ST..w w PCro MWNCE rw w_%L_ b yC KtffD 6Y. JAM DAT'. 9-16-911 wallY9pr motinwma toFo IMe "hwW May rm,, w lll' µ oe haulm Yporf qY E , mf M a non yaya N YEAR to" 1w7 Yam SIOINID JIr IMIAIYI.IIXIAISIOIM D T «ADaeD smoaa wN For m9 pera-,ami 9fw AMR.,! olve y s «Mp t al RVCNmp09CY CAN1 5 SAaF,rllt 1Np/ Met ni SNOW I�mmom Halt mane Pmm9 AGETAT prenewrim mrn9 lQonnM) eeeeeeeeev m yOwlM Finnish; (stet att'v wA t sRIrcTRES WTrtcD 9Y UMTN D. -.-- EDEI.TKNAaaOYl4 caxTAcmR - _ wT s,w.1Tm uroxo.Eo r Pn a rcwT c,N� _ NPDE11 PERLR THE ciNOTE&r m.. ', YAIPIICN'. �,w,. FOR LR pJ ENTON- e sl moon. JlnAffirl l wmtl « a e e Es« C. _ M.G.' s.q m Tale e TPe a*« Mt r rocto, .5 p a (e t H z) VlWnae la p e. Y Wld[ R Mlq uM $ to co Prow Ore grab q \NY a p 1 Y an lent ed chi 1 I.a WEa9p \m \m W a q m e e motwa' I flaw a the and A IM 1 \ \ $0 W al, W Pl 5.69 ao concrete \ U l ya of S Sul I«w tM wb I. .9 q- 9 9 W 1 It E s9 G«R R w/r Mal. }apltlt u ld R Imtl , 0 20 be d C WbFq ma\wltla wale, me damup cars III bad Y,mle 0 1 c I e p Ol p storm be a'atl,vgee n\a the w They cut III wM R- II E oe City Z e ohr t a E eW111Y o atom apor a 1 the e t at I UayDbattleIXa WpW Zme per to Cly 11 Fort Ca ma a a: '1; pair, e[i wrif nlel Ir storm ae IMPeffe"M site I'll o appro 11 it, wnd o n p Into on m a v moan \ pet p Cter 1 po r ne min/all m m,d� Oy 10 lele l hrnt ind kPm w Mere VMS 1 m .r fie even) T, fl r northan . a\ • TA a wWe N A cc,, a ee.wo Old Mh - t -1 o .ne alewn[slw of nq a. FINAL 5 FoshownM mNOL,t cO', Imo wP nal11 gaswe. a. Ma Ew m CmIN N X, No onr polenea po ul [n [w.wa are c.alee nwr 1pe meovf to cm\ro V 'i...0 ,.. 5. OTHER esph M e g. w yr rm le d, o site, no Y aulr 5e unw.YdFen Io Who,, ea Oita vrbOlm lrelum Pw aupp[Ie Sle. moa,eb low Ib raw eapewol Ipefor 1,Into a me ponenb wide petal, Inlet Wpeeprbl n. n9 helCO -.v or VOC meaaurm mmla M onawlagon from LLnX oH-ella R,wNPSNI o t" evmluIl the C'it, Lo Pwom Rla. IV ✓a he 0l mud air «Don V M1It e N Slvm bee, h le the mg wi 'It, wus and eto b Meu a no\ to ial EonY creek qla ditch th a t theAmMWNoW tlw9 rweeap me Howe le teIon nm-p Hemi Gen Renry he I PAWS R rr bo SAID " a m[I,vga mb Eonl GamF Romwv Pilot ml,tlY nu de faG Pon ^ 1 lw a fi. NSPECPCII µD and raENPHCf'. a xem to deI-Irl II the ably curb be pvv%hw a r1e aMmenn pm u,p } qulln 0,1h ana he nlWa the Nwle ma unewtMan W a pip a, cManeY and oCwMG apart Pon. r roAao" Mvs w w11nN M $eclm 6 0l Illo ionnm wq Z SITE uPp tWrilime of the CEPS Gmwtl Pwml\. a. See dwnoge } Erwm cmlyd Pcn (geela [)1. CJf). LEGEND DEVELOPED SITE HYDROLOGY DESIGN PONT BASIN AREA (Poi C (C QM (cce) I 1 O.45 1125 0.6 1.3 2 2 ).1 0.25 2.9 5.8 3 3 13.1 t 0.25 6.0 12.7 4 4 0,35 15 1 3.3 5 5 -1.8 1.0 0,73 3.9 3.4 6 6 1.2 0.80 4.8 11.2 T 2 0.7 0.82 3.1 6.8 B 8 1.0 O78 4.0 9.2 9 9 1.3 0.419 28 6.0 O.ee y1 3.0 2,4 1111111141111 TAX O.BS BS 12 12 1.62 1 0.95 1 7.8 132 13 13 0.24 0.74 1 25 58 14 14 0.)E O80 29 6.6 15 15 0.6 0.51 1.3 31 16 16 J.] 0.66 8.1 17.8 12 17 1.6 0,63 4.1 9.2 15 18 0.2 0.53 0J t.B 6 5.612 J.0 0.78 11$ 26.1 11 8.11 2A 01 6.J 14.3 13 8,11.13 28 0J2 BA 17.9 14 8111.13,14 3.6 034 10.0 22.0 12 8,11 13,14,18,n 10.69 21.6 1 4".1 15 Ra PROPOSED STORM SEWER N/ INLETS EXISTING STORM DRAIN EXISTING CONTOUR (1- INTERVAL) �42� PROPOSED CONTOUR } BASIN DESIGNATION ].6A BASIN AREA (ACRES) -r•--v BASIN BOUNDARY AW her her OMITS OF CONSTRUCTION DESIGN PANT FLOW DIRECTION H.P. HIGH PUNT L.P. LOW PONT STRAW BALE SILT BARRIER OGRAVEL INLET FILTERS PROPOSED SCALE C N M-%A NEW FENCE REMOVAL TO SALVAGE FENCE EROSION CONTROL Imm«btMy after o. of q met ma to be Parr a1P M much N/4 - el after TYw W wialuq Y FMan tmabu IS the IEIICP M aaelmw,t Mai a \meted a,om a sets Orion - tai of asphalt HEWLETT-PACKARD COMPANY BUILDING 5 WAS rm . reari IOTA me sta91n9 pee; City 0f Fort Collins, Colorado ae.MWment main no" o I -aim LOTS, If M wr at a rate al at ImM 135 Ime/aw \dlm. UTILITY PLAN APPROVAL a rage Sulfate. Iab acres APPROVED' ,e r O Wr at ED eeriDe Bate er f in4 apply o hay v Atme mulch of a ern anal At a«auamy CHECKED BY: W. stro, both" mat m Eater h hRwe Unity Data as d mnM as mom on the nests C3I E C32), CHECKED BY: Mt smyroweler Duty a� m d and ertali of the AR"x)fi" CHECKED BY: 1+60 of Me w of mfww NMI be PaTLt a T�Mm B1IO 1 C32. SmMW1 berm to be ,mmwe CHECKED BY: Dale CHECKED BY: av SICCTS SHEET SITE DRAINAGE & EROSION CONTROL PLAN (1) 1 C-3.1 15.1 �a /AD AO LF 12' CMP O E ENDS BOTH ^ ENDS CENTERED ON ROADWAY INV. 155 V' C 0 INV ITO r1 REMOVE FENCE (FOR CONTINUATION OF REMOVAL EAST, SEE SHEET C-tt) T I.}T ao0 - n.xe T:y al aDms=OVN a A I oI,-L73A SECTION RTI tl6 �!IrrRrr—R( 71! If �P u / iII'$ EXISTING BMDNG 2 O Em oleo - nv.Am --_ --� —1 I.,u q . 274'•.T• a.ne- iron I i -� �- a' o t om., - 14M 2.5 25' SECTION c 1. VARIES ACRss RWp 3• SHOULDER TYPE 'R' CURB INLET W/ NRCP.(UK E) ® NOTE EAHT RINK WILL BE 4.1 W qR OR EXISTING MADE IF n Nor W WT. \' N SECTION 7 OJ6 ' ' 1 4 0 ry r B LET % _ \' GAEVER L (1:NYP) 4DRMN ROOF ALTf PROPOSED BWLDNG 6 t L �I LT [7p IF 49 115 CAFETERIA I 10' TAPE 'R' CURB INLET W/ 15wHRCA (ONE F) ,• ,_ Na ,yR \ STRAW BALE SILT BARRIER (TW) �; AMD ANN DNN T TA. !1.. TO 103 CItT of Fort Collins, Colorado LEGEND UTD.ITY PLAN APPROVAL APPROVED: _ PROPOSED STORM SEWER w/ INLETS Waetor el &IyloxM� py - — - EMSTING STORM DRAIN CHECKED BY: T.Im a EnL,..Mi utwtT NM EMSTNG CONTOUR (V INTERVAL) CHECKED BY: ,A2� PROPOSED CONTWR SlDrmrAis UlML7 aM CHECKED BY: _ ] BASIN DESIGNATION PANM k RxTrUov BNe OJ6 BASIN AREA CHECKED BY: DMA �••—••� BASN BOUNDARY CHECKED BY lHW ........ LIMITS O CONSTRUCTION Qq DESIGN POINT FLOW DIRECTION CALL UTILJTY NOTIFICATION CENTER O/F�COLORADD H.P. HIGH PONT FM NIATER IIi41TY WTE. 1-800-922-1987 L.P. LOW POINT RDSIDN CONTROL APPRDVAL on 534-6700 NNGND01"w 88 DAVN N ADrxq STRAW BALE SILT BARRIER mw<�rw m auDe. W EXCAVATS ACIPORO GRAVEL INLET nLTERS •am1 UTUTES ab PROPOSED SWALE Q NEW FENCE REMOVAL k SALVAGE FENCE F �r� nail ��.z •m, m� Arm VIA J\` 10 rWE 'R' CURB INLET x/ y i5A NRCIA (LINE G) I C ��07g3r \ e� Dy ' '� 601,33' II° x 14 �.•� A A • \ 100 WSEL- ♦ .13 � - ••—•• ••-•�••�..^ . T \. \ WE 'A' CUR&INLEi W/ NORTH AMERICAN GREENS P-J00 .'•�• ^ \! 1 •\ 21' NRCP (LINE H) EROSION CONTROL PATTERN \ STAPLE PATTERN SC' �q ax (SEE DETAIL SHEET C-6.3) 3,J -�� - \� •V / V ` SEE DETAIL TEMPORARY i ':I) '\ , s0. / / SEDIMETHIS NTATION BERM. EET 18 _ ff `-}E} TIRE RETAINING WA LS -1J . PJC.Sm - .- I:NOT IN CDNTRAEn 1 / z GONG�b- �. 17 CHANNEL ,- �,.�..�..�.. �..i. /7 V - 162 L - - -EXI�- fill D BUILDING 6 NORM UN DO N GREENS i GEC0 RUN ET 3 (SEE DETAIL SHEET C-B.3) F0 I A = 90TJ000' R - 26.00' \T=28OD' .L-10.8a' RUB JAM DES DRAW DESIGNED (NECKED33D AUGUST t996 282-015 APPec¢D DALE FR.;SGr:::. Engineering Consultants -- - -- ,,_'_ - - HEWLETT-PACKARD COMPANY BUILDING 5 SITE DRAINAGE 6 EROSION CONTROL PLAN (2) <_HEETS SHEET - DES 9 8 6 KIIV E CHANNEL AOGNMENL REMSED ONE a PIPE SM No. BY DATE REASON DESCRIPTION