Loading...
HomeMy WebLinkAboutDrainage Reports - 08/03/20041 1 i 1- 1 1 1 1 1 1 1_ 1 1 1 1 1 1 1 Appiqvsid Rirw Final Ro ate B I Drainage and Erosion Control Report Poudre Valley Health Systems Harmony Campus Infrastructure Project Development Plan, Fort Collins, Colorado May 12, 2004 1 Stantec Consulting Inc 209 South Meldrum Street Fort Collins CO 80521-2603 Tel: (970) 482-5922 Fax: (970) 482-6368 stantec.com ON, May 12, 20nrA Stantec Mr. Basil Hamdan City of Fort Collins Water Utilities --Storm water 700 Wood Street Fort Collins, Colorado 80521 RE: Final Drainage and Erosion Control Report for Poudre Valley Health Systems Harmony Campus Infrastructure Dear Basil: We are pleased to resubmit to you, for your review and approval, this Final Drainage and Erosion Control Report for Poudre Valley Health Systems Harmony Campus Infrastructure. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, Stantec r,, kFcl- / Prepared by: John Gooch, EIT Project Engineer Cc: Samer Al-Haj TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION A. LOCATION 5 B. DESCRIPTION OF PROPERTY 5 II. DRAINAGE BASINS A. MAJOR BASIN DESCRIPTION 5 B. SUB -BASIN DESCRIPTION 6 III.. DRAINAGE DESIGN CRITERIA A. REGULATIONS 6 B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 6 C. HYDROLOGICAL CRITERIA 6 D. HYDRAULIC CRITERIA 7 E. VARIANCE 7 IV. DRAINAGE FACILITY DESIGN A. GENERAL CONCEPT 7 B. SPECIFIC DETAILS 7 V. STORM WATER QUALITY A. GENERAL CONCEPT 12 B. SPECIFIC DETAILS 12 VI. EROSION CONTROL A. GENERAL CONCEPT 12 B. SPECIFIC DETAILS 13 VII. CONCLUSIONS 13 A. COMPLIANCE WITH STANDARDS 13 B. DRAINAGE CONCEPT 14 C. STORM WATER QUALITY 14 D. EROSION CONTROL CONCEPT 14 REFERENCES 14 L APPENDIX PAGE VICINITY MAP/ MODIFIED SWMM MAP A RATIONAL METHOD HYDROLOGY/ STREET CAPACITIES B SWMM POND SIZING, RATING CURVES, WQCV, ORIFICE, & C OVERFLOW WEIR CALCULATIONS STORM DRAIN SIZING: UDSEWER & HY8 ID STORM INLET SIZING: UDINLET E SWALE SIZING & RIPRAP CALCULATIONS F EROSION CONTROL CALCULATIONS G DRAINAGE & EROSION CONTROL PLAN DRAWINGS & DETAILS H ' PROJECT DEVELOPMENT PLAN, DRAINAGE AND EROSION CONTROL REPORT FOR THE POUDRE VALLEY HEALTH SYSTEMS HARMONY CAMPUS INFRASTRUCTURE FORT COLLINS, COLORADO ' I. GENERAL LOCATION AND DESCRIPTION ' A. Location The Poudre Valley Health Systems site is located south of Harmony Road and east of ' Timberline Road in southeastern Fort Collins, Colorado. The site is shown on the Vicinity Map in Appendix A. More particularly, the site is situated in the northwesterly portion of Section 5, Township 6 North, Range 68 West of the Sixth P.M., City of Fort Collins, Larimer County, Colorado. B. Description of Property ' The remainder of Poudre Valley Health Systems Harmony Campus Medical Center site contains approximately 72.6 acres of land, all of which is currently undeveloped and being proposed for Poudre Valley Health Systems Harmony Campus Medical Center Filing 2 (PVHS Filing 2). The majority of the property currently consists of fallow farmland with tall grass vegetation. The site generally slopes in a southeasterly direction at approximately 2.0%. II. DRAINAGE BASINS A. Major Basin Description The PVHS Filing 2 site lies entirely within the McClellands Basin. The project ' drainage is modeled in The McClellands Creek Master Drainage Plan Update (March 2000).. Applicable portions of these studies are included in Appendix C. ' Historic drainage patterns on the subject site are in a southeasterly direction per the McClellands Basin 100-Year Master Plan Update. The site historically discharges into Conveyance Element 39. Conveyance Element 39 is currently an open channel ' that runs along the southern property line of the PVH site. At the southeast corner of the site, Conveyance Element 39 turns the corner and flows south along the east property line of the Timber Creek PUD and the Stetson Creek PUD. Excerpts from ' the McClellands Basin 100-Year Master Plan Update can be found in Appendix C. i ' . 5 u The flow from this site ultimately discharges into the McClellands Basin Drainage way. ' No off -site runoff from properties surrounding the Poudre Valley Hospital site pass through the site. With the construction of PVHS Filing 2, no additional flows are ' anticipated. ' Poudre Valley Hospital Filing 1 has detention ponds #393 and #394 on site. The total area draining to these two ponds is equal to approximately 29 acres. ' In this report, pond 393 will be relocated to the southeast corner of the site and will be called Pond 593, as seen in the updated SWMM model for PVHS Filing 2. It is important to note that Pond 593 will be built in two phases, and therefore, two ' separate SWMM models are included in Appendix C, to show the required pond size for each phase. ' B. Sub -Basin Description Historic drainage patterns on the subject site are in a southeasterly direction. ' Excerpts from the McClellands Basin 100-Year Master Plan Update can be found in Appendix C. No off -site runoff from properties surrounding the Poudre Valley Hospital site traverse through the site. III. DRAINAGE BASIN CRITERIA ' A. Regulations The City of Fort Collins Storm Drainage Design Criteria is being used for the subject site. B. Development Criteria Reference and Constraints ' The criteria and constraints from The McClellands Basin 100-Year Master Plan and the subsequent update, dated March 2000 by Icon Engineering will be utilized in this Drainage Study. The Poudre Valley Hospital site is currently being utilized as ' fallow agricultural land C. Hydrologic Criteria ' The SWMM hydrologic model that was previously used in the McClellands Basin 100-Year Master Plan Update by Icon Engineering, has been utilized and updated in ' this report in order to analyze the hydrologic conditions of the proposed PVHS Filing 2. 1 6 ' D. Hydraulic Criteria ' All calculations within this study have been prepared in accordance with the City of Fort Collins Storm Drainage Criteria and are included in the appendix. ' E. Variance ' A variance is being requested for 0.67' of freeboard for Pond 593. IV. DRAINAGE FACILITY DESIGN A. General Concept ' The purpose of this report is to size the proposed detention pond and present general drainage concepts for PVHS Filing 2, for use when future development of the site is ' reviewed. It is important to note that all storm infrastructure was designed for the 100-year storm. In the future, the north detention pond (existing pond 393) will be moved to the southeast corner of the site (refer to the drainage exhibit in Appendix H). The ' relocated pond 393 (Pond 593 in PVHS Filing 2) will provide the required volume for Filing 2 and act as a regional detention pond. Pond 593 will provide all of the required detention for the second filing and the area that was served by the previous ' location of pond 393. Pond 593 will drain to the existing drainage swale that exists along the north and east boundary of Timber Creek. The release rates from Pond 593 are based on the requirements of the Master Plan for the McClellands Basin, which requires on -site detention using a staged release rate of 0.20 cfs/acre for a 10-year design storm and 0.50 cfs/acre for a 100-year design storm. Please note that the relocation of pond 393 may be delayed until sufficient development has taken place to justify the expense of building the regional pond. ' Phasing of Detention Ponds and Grading At final build -out, all of the detention will occur in the detention ponds at the southwest and southeast corners of the site. In the interim, the two northern existing detention ponds will remain until development requires that they be phased out. 7 ' Initially for the MOBII and PCP sites, both detention ponds will remain. Storm j drainage will flow from the MOBII site to the southern of the two ponds where it will ' overflow over the emergency spillway, into the existing swale, and then south and east into Phase II of the detention pond 593. ' When the next phase of the project removes the southern pond, then the pipe that connects the two ponds will be extended and joined with the pipe that comes from ' the west. There are two options for the discharge of this pipe. One is to pipe it directly to the south and connect to one of the storm pipes crossing Timberwood West. The other is to discharge the pipe into an amenity swale that will pass the ' storm water through the central campus area and then into a pipe and under Timberwood west to the southern swale and then to the southeast detention Pond. ' It is not certain if the northern of the two ponds will ever be removed, as it will likely be used as an amenity and/or for irrigation. If it is removed, an inlet will be constructed on the end of the existing pond connection pipe and flows will go ' through the pipes or swales as noted in option 1 or 2, to the southeast detention pond. B. Specific Details ' The remaining portion of the Poudre Valley Health Systems Harmony Campus Medical Center property contains approximately 72.6 acres of which approximately ' ! 29 acres has been developed with the first phase. Filing 2 has been broken into 34 on -site drainage basins. Basins 2 and 106 Basins 2 and 106 contain a portion of Harmony Road that allows developed runoff to sheet flow into the Spring Canyon Lateral, located between the project site and Harmony road, as it has historically done. ' Basins 3, 4, 30, and 32 Basins 3, 4, 30, and 32 all drain to the existing detention pond 394, located in basin 30. The storm flows from these basins were accounted for in Filing 1, and thus are ' not used in routing with the other on -site basins. However, the 10 and 100-year release rates (3.4 cfs & 8.6 cfs) from pond 394 were added as "other flow" in the rational routing calculations in Appendix B. Storm drain inlets have been provided to intercept the 100-year storm flows from basins 3 and 32, which were previously conveyed to pond 394 via a small swale. These inlets convey the flows into the north end of pond 394. ' Basins 31, 33, and 101 Basins 31 and 33 convey runoff southeast along Timberwood Road until the stone ' flows are captured by 10' Type R Inlets (in sump) at design points 31 and 33. Meanwhile, basin 101's flow is conveyed south overland and into the proposed 2' x 8 - 4' concrete box at design point 101. Here the flow from basins 31, 33, and 101 is conveyed south through the 2'. x 4' box culvert, where it then combines with the ' flows from basins 3, 4, 30, and 32. This combined flow is routed eastward in Swale A/CS260 towards design point 36. ' Basins 102, 34, 35, and 36 Basins 34 and 35 convey runoff east and west along Timberwood Road until the storm flows are captured by 10' Type R Inlets (in sump) at design points 34 and 35. Meanwhile, basin 102's flow is conveyed south overland and into the proposed 2' x Y concrete box at design point 102. Here the flow from basins 34, 35, and 102 is conveyed south through the 2' x 3' box culvert, where it then combines with the ' flows from basins 3, 4, 30, 32, 31, 33, 101, and 36 at design point 36. This combined flow is routed eastward in Swale A/CS260 towards design point 37. ' Basins 50, 51, 52, 53, 103, 104, 38, 39, and 37 Basins 50 and 51 convey storm flows south across Harmony Road and a small ' portion of Snow Mesa Drive where two, 10' Type R Inlets (in sump) capture the flows at design points 50 and 51. The flows from 50 and 51 are conveyed west and then south in 18" and 24" RCP. Meanwhile, basins 52 and 53 convey storm flows ' southeast and northwest along the private drive to two, 5' Type R Inlets (in sump) at design points 52 and 53. The flows from basins 50-53 combine in the 24" RCP and are conveyed south, where basin 104's flow is added. Once combined, the flow from ' basins 50-53, and 104, is directed south towards the 2' x 6' box culvert at design point 103. The flows from basins 50-53, 103, and 104 combine at design point 103 ' and are conveyed south, through the 2' x 6' box culvert. The flow from basins 38 and 39 is conveyed east and west along Timberwood Road to two, 10' Type R Inlets (in sump) at design points 38 and 39. The combined flows continue south in the 2' x 6' culvert towards design point 37. Basin 37 conveys its flows eastward in Swale A/CS260 towards design point 37. Here, the flow from basins 3,4,30-39, 50-53, and 101-104 combine and continue east in Swale 13/260 towards design point 42. Basin 42 Basin 42 conveys its flows east toward design point 42, while joining with that of basins 3, 4, 30-39, 50-53, and 101-104. Two, 2' x 6' concrete box culverts deliver ' the 197.1 cfs flow (100-Yr) to pond 593 (basin 43). ' Basins 48 and 49 Basins 48 and 49 convey storm flows south down Snow Mesa Drive, where two, 15' Type 13 Inlets (on grade) capture the flows at design points 48 and 49. Once ' captured by the inlets, the flow from basins 48 and 49 is conveyed south in 18" and 24" RCP, and finally east into pond 593. Basins 40 and 41 9 ' Basins 40 and 41 convey flows south along Snow Mesa Drive, where two, 10' Type 13 Inlets (on grade) capture the flows at design points 40 and 41. Once captured by ' the inlets, the flow from basins 40 and 41 is conveyed east, via 15" RCP, into pond 593. ' Basins 105, 107, 109, 46, and 47 Basins 105, 107, and 109 convey their flows southeast and into Swale C/CS261, ' located along the eastern boundary of the site. Swale C/CS261 conveys the flows from these basins south towards design point 109, where two, CDOT Type D Inlets (in sump) capture the combined flow from basins 105, 107, and 109. Meanwhile, ' basins 46 and 47 convey flows east along Timberwood Road, where two, 5' Type R Inlets capture the flow at design points 46 and 47. Once captured by the inlets, the flow from basins 46-47 combines with that from basins 105, 107, and 109, and is conveyed south and into pond 593 (basin 43). Basins 108, 44, and 45 ' Basin 108 conveys its flows southeast towards design point 108, where two, CDOT Type D Inlets capture the flow from basin 108. Meanwhile, basins 44 and 45 convey flows east and west along Timberwood Road, where a 10' Type R Inlet (north side of ' Timberwood Road) and a 5' Type R Inlet (south side of Timberwood Road) capture the flow at design points 44 and 45. Once captured by the inlets, the flow from ' basins 44 and 45 combines with that from basin 108 and is conveyed south and into pond 593 (basin 43). Basin 43 Basin 43, located in the southeast comer of the site, is the ultimate design point for the PVHS Filing 2 Site. In the future, Basin 43 (Pond 593) will capture flows from all the basins contained in PVHS Filings 1 and 2. Basin 43/pond 593 will provide ' 18.71 acre-feet of detention (10.9 ac-ft in Phase 11), includingmater quality volume for the PVH Site. Basin 43 will discharge at the staged release rate of 0.20 cfs/acre ' for the 10-year design storm and 0.50 cfs/acre for the 100-year design storm. Detention Ponds ' Detention Pond 393 presently is constructed as a detention pond as well as an irrigation pond and has a total storage capacity of approximately 7 acre-feet, where 2.5 acre-feet of this storage has been allocated for detention storage. The pond is ' comprised of two ponds with an equalizing pipe connecting them. In order to maintain water in the pond for irrigation purposes, the outlet structure will be placed above the irrigation high water surface. As with the outlet structure for Pond 394, ' there is a 10-year and 100 year staged release rate which outlets into a temporary trapezoidal swale that conveys the flows to the existing grass -lined drainage (S WMM ' model Conveyance Element 39) ditch at the south'boundary of the site. Similar to Detention Pond 394, an emergency overflow spillway was designed for this pond with its elevation equal to the 100 year WSEL. t10 1 nI �J j At final build out, detention pond 393 will be relocated to the southeast corner of ' Filing 2 (Pond 593) and will provide 18.71 acre-ft of storage, in accordance with the SWMM model and water quality capture volume calculations. Pond 593 will discharge at the staged release rate of 0.20 cfs/acre for the 10-year design storm and ' 0.50 cfs/acre for the 100-year design storm, in accordance with the Master Plan for the McClelland's Basin. Pond 593 will have a 24 V emergency overflow weir, which ' will convey flows south -and into the existing channel on the south side of the site. Construction of this detention pond will be completed in two phases. n t Phase one construction of the pond will provide 10.9 acre-feet of storage. This required volume is due to 32.84 acres from SWMM Basins 316 and 318 being 80%, impervious (due to construction of PVH Medical Office Building 11 and PVH Primary Care Plaza), with the remaining 43.07 acres of basins 316 and 318 considered in an undeveloped state of 10% impervious. Basin 317 (PVH Phase 1) remains at 80% impervious, as in the original SWMM Model. New impervious percentages were utilized in the Phasing SWMM Model to account for the construction of PVH Phase 2. Basin 316 went from 80% impervious.to 55%, while basin 318, went from 80% impervious to 37% (see 10-Year and 100-Year Phasing SWMM Models and calculations in Appendix Q. Phase two construction of the pond will involve complete build -out of the pond, and will provide for all 103.8 acres of the PVH Site being 80% impervious, as modeled in the original SWMM Model and also the updated model for the PVH Infrastructure Project (refer to Appendix Q. Detention Pond 394 has a storage capacity of 2.3 acre-feet. The outlet structure allows for a 10-year and 100-year staged release rate, which releases the detained flows into the existing grass -lined drainage ditch (SWMM model Conveyance Element 39) at the south boundary of the site. The elevation of the spillway is equal to the 100-year water surface elevation (WSEL). The allowable release rates were determined using the requirements from Master Plan for the McClellands Basin: 0.20 cfs/acre for a 10-year design storm and 0.50 cfs/acre for a 100-year design stoma. SWMM Model In order to analyze the detention ponds within the Poudre Valley Hospital Phase I development, the Urban Drainage Districts SWMM routing computer model was used. The updated McClelland Creek Master Drainage Plan Update (March 2000) was modified to reflect the proposed condition for Filing 2. The entire undeveloped area was considered 80% impervious. However, because phasing was required for pond 593, a second SWMM model was run to accommodate detention for the entire developed portion (27.89 acres) of SWMM Basin 317, and 32.84 developed acres (of the 75.91 acres) for SWMM Basins 316 and 318. The 32.84 acres of development is due to the proposed construction of the PVH Medical Office Building 11 and PVH Primary Care Plaza sites. I 1 The SWMM models and data are located in Appendix C. V. STORM WATER QUALITY ' A. General Concept ' The State of Colorado requires Stormwater Management Plans as part of their pen -nit process. The Poudre Valley Hospital site development is anticipating construction ' beginning in January of 1999. Therefore this study has sought to find various Best Management Practices for the treatment of storm water runoff that could be implemented in the construction phase of the project. ' B. Specific Details Best Management Practices (BMP) for the treatment of storm water runoff has been incorporated into the design for this project. This includes extended detention, grass lined swales and an irrigation pond that will trap sediment. Best management ' practices to be used during construction include gravel mulch, gravel inlet filters, vehicle tracking pads, straw bale area inlet filters, and seeding and straw mulch crimped into areas where grading has occurred. VI. EROSION CONTROL ' A. General Concept ' The Poudre Valley Hospital site lies within the Moderate Rainfall Erodibility Zone and the Moderate Wind Erodibility Zone per the City of Fort Collins zone maps. The ' potential exists for erosion problems during construction, and after construction until the disturbed ground is re -vegetated or paved. There should be minimal to no erosion problems after completion of construction. ' The computed Erosion Control Performance Standards (PS) before and after construction are 78.6 and 92.5 respectively. Furthermore, the effectiveness values ' during and after construction are 95.7 and 97.4 respectively. These computed values meet the City of Fort Collins requirements and can be seen in Appendix H. It is important to note that basins which areas appear very small under the A,b category are due to very little disturbance within the basin. An example would be basin 108, ' where the only disturbance in Phase Two construction will be the construction of the 5' temporary asphalt sidewalk. The walk itself is approximately 0.03 acres and with ' a small portion of dirt on each side of the walk, no other area in the basin is to be disturbed. Therefore, 0.03 acres was used under the A5b column instead of 2.35 acres ' 12 because no erosion control is required on the already established and remaining 2.32- acre grass -area. An erosion control escrow cost estimate of $12,679 (price includes 50% contingency) is also included in Appendix H. This represents the cost to re -seed the entire project, not the cost of the erosion control methods required for construction on the site. B. Specific Details A silt fence will be installed prior to grading of the site, as shown on the drainage and erosion control plan. Upon Phase One construction of detention pond 593 and the outlet structure, the detention pond shall be straw mulched. All other disturbed areas not in a roadway or greenbelt area shall have temporary vegetation seed applied within 30 days of initial disturbance. After seeding, a hay or straw mulch shall be applied over the seed at a rate of 1.5-tons/acre minimum, and the mulch shall be adequately anchored, tacked, or crimped into the soil. Those areas that are to be paved as part of Phase One must have a 1-inch layer of gravel mulch applied at a rate of at least 135 tons/acre 30 days after overlot grading is completed. The pavement structure shall be applied within 30 days after the utilities have been installed. If the disturbed areas will not be built on within one growing season, a permanent seed shall be applied. After seeding, a hay or straw mulch shall be applied over the seed at a minimum rate of 1.5 tons/acre, and the mulch shall be adequately anchored, tacked or crimped into the soil. In the event a portion of the roadway pavement surface and utilities will not be constructed for an extended period of time after overlot grading, a temporary vegetation seed and mulch shall also be applied to the roadway areas as discussed above. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Health NPDES permit has been obtained such that construction grading can continue within this development. CONCLUSIONS A. Compliance with Standards All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. The City of Fort Collins Storm water Utility will not maintain the on -site storm drainage facilities within the Poudre Valley Hospital site. The owners of the Poudre Valley Hospital site will maintain their on -site storm drainage facilities on a regular basis. 13 I I APPENDIX I I I I (- I I 11 I 1 I 1 VICINITY MAP & MODIFIED 1 SWMM MAP 1 1 1 1 1 1 1 1 1 1 1� 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VICINITY MAP SCALE: 1" = 1500' 1 1 1 1 1 i 1 1 1 1 1� 1 1 1 1 1 1 1 r i 1 M O O M Li 01 co M p OI p(D O O a CL I I lI� n M I� � OI M I 00 Y/I / L.Lr M I � U z O in M W LL MW cWc L F- 0 0 N IH u 0 z V) V) O x U } Z O 0 0 0 O -N O C Ug o W W LL Z J Q U In 5 a x D ? 0 j0 �O LLL) z y �Z W <L) iF H aw z J 0 LLU oa yt U = SwN gU� c�a 3 O Eo N E �3 O VCpC(�] N L 7CCl�a N ovma W m�Au NLLmIL a W J � Z w O f2 W N ' Z W Q 2 'U r Om s pxn RE aW �y re . Q.e��9i a h �vaRf ��YRYa Z 0 W Z ZO } Q a F- W 2 Of OZ W 0 m a U Z VI ? O m w Z Z Z OZ m p m z 0 Z ¢ m Z O ¢ Qf m LZ,J w w O w 0 Z N W C9 Ld J I M� N D00 I I 1 1 1 RATIONAL 1 METHODHYDROLOGY/ STREET CAPACITIES 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 o a o 0 0 ............... 0 0 o a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 o m o 0 0 .......... 0 (OV [OV COI N N N N N� O� N m N N N N N m m N N ry ry m T tOV N N N N N N N N ........... Roo .............. a.00 O O O .......... b O ..... m m Om OW b® 0 m m 0 m m m 5 L VJ CO O N m lNV O O m O m n Y1 m Q N N O n n d n O d O O m N nn m . C a o a 6 0 0 0 0 D 'u � m 5 n '°^ PNQ oo m °i �n^Nrvo o �Q o to m m N a ry � = O �@ E � min ry ri6--riNN No rimo � o 0000000 0o dood000000 oN a 38 d a r 0 - O u m n v iO v' r ry ry ry n r n ry ry ry ry m N N N N N N N N N N N N N N N N N O O O O.O O .... O O O O O O O O O O O O O O O O O O O OO OO O O O O C m O1 m m m OI OI OI O� m m m m m ........... OI m m m m m GI ..... O O O O O O O O O .... O O O O O ....... O ........ O O O IZ 1 1 1 1 1 1 1 1 1 r Y i � � 1 61 W K 4 a C N m N O m N r O m "'to 7 N g N m O O IQ m r 0 w O g m 0 0 0 d h O O N N,.., ILL N N d no N d d N 10 (O m N o IQimmmmwtgi,m cvi, 990 obi,ST �20mA A rNi,Moo A A On 2 o. A A.i1 > y W f F W W O > J a F m J W N +� zw Z n>.m aaaaaaaaaaa3a3aaaaa33aaaa33aaaaaaaaaa'r aaaaaaaao.aaOWOaan.aaO�aaaa00aWaaWan.a n.a U ~ JA 2 W Z `Z-'r (O N l m n r d (d0 N M m N (NO W J F� W F- v O jD N o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O m § Z ?t 0 0 o 0 0 0 0 0 o p p o o N o m a of o O n m m N 0 o m^ ino 00o z J cN,Irn---�.-N 4 F U N N m �O m m OJ m W OJ m m CN'1 KI n W W OJ t0 O. n n . S. OJ m N M 0 t0 OJ OJ O N OJ W rtl�i% a o 0 o d d d d o d d c d o d d d d c d c d d d d d d d d d d e d d d d d d Z Q U N lh m N r d N O N t0 p r O ('I d m N O O N O m O d N N r m N f0 N (7 m N N N '- o N m Q 0: a � m Z J m N f/J O ' OO' fyyNmrOpplI O O NC) d N (Or OJm O ANC) YNNr W d d d d d d d d mpp 0 000000 � �C) NN N.y.,) m 1 1 I 1 1 1 1 N 3 m W a < C N ohd ,.,d 99 m 7oq O O m N e'I V N 0 0 0 0 0 0 m O O O V h O O N O ? LL hnhmNN'^fO NN m(ONN �NNNN �NmNNmNNNNN.dl jj5 ,2 N m O OI M m M Ol O M O A 7 OCO � mf 90 1 0 N - - - e- - - - - - - - - ,- - N - - - ! - - - N N - - - - - - {1 t W r W W O N N N N 7�^ m m N N N N N VI N N N N N N r zw aaaaaaasaaa3a3aaaaa33¢aaa33aaaaaaaaaa". 3�maaaaaaaaaaa�a�aaaaa��aaaa��aaaaaaaaaa.. 2 .Xh p p SO(OmS(O�SON SOO SOOOOm SNNS t00MNO �St7 V OON O ��S t00 4 J C_ m h m In H v C0 Nm .-fV O � � � �N�N� �O�-006666 OOOOih000000 � •-00 "' W r 0 5 K Wa W o N 0000080000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000 0 i O N N N N g z H �d NSO V 000CI gj N M N)0OV `r"r `r `r S"`r"N-NNSS Z �000SNn m �-N : t7 •- •- •- •- F U m m m m m m m m m m m m m m m w m m n M m m m m cNi m m m m m m m m m m m��j a o o o o O o O O O o o o o o O o o G o o O O o o o o o o G O o o o o O O O O Z U m m h .{ ("I O N m V h O C) �- V N N O O N O m O? N N h m N m N M m N N p m N N N N m 17 N O m M d h � N f h t 7 N m V � m V m N (7 (") O O m h V 0 V N N N� Q .�. riojN NNd� clNNNO M NO � 0000000000d0000000000:�� mz a Z� 0000000000 .-N N(")M C)(")t7 t7 t7 N N d V V d V V V V V V N N N NpFe. 1 1 1 1 1 1 1 1 1 1 Rational Method 10 Year Design Storm Poudre Valley Hospital 702-100 Routing Flow Time (t4) Runotf Street Pipe Design Point Basins 1, Length Type Slope Velocity Travel ipe Travel 4 C Intensity Area Uirect Runoff Other Runoff o a Runoff Capacity Design Velocity Slope Manning's Roughness Size apaq yDesign Flow Depth Capacity Flow orma Flow Depth verage Velocity Lor tlon (min) (ft) (a) M (ftfs) (min) (min) (min) (inthr) (ac) (cis) (cfs) lots) (cfs) OVS) (fUs) M ..n.. (in) (in) (cfs) (cfs) (in) (fus) Remarks 100 100 5.9 - - -- -- 0.0 0.0 5.9 0.81 4.61 7.61 28.45 0.00 28.45 -- -- -- 2.00 0.018 21 19,70 17.41 15.98 7.64 - 101 701 15.5 -- 0.0 15.5 0.81 3.14 8.13 20.66 0.00 20.66 0.00 .15.00 0.00 0.00 102 102 16.0 -- 0.0 16.0 0.81 3.09 5.68 14.21 0.00 14.21 0.00 0.00 0.00 103 103 21.5 - 0.0 21.6 0.81 2.63 22.26 47.39 000 47.39 0.00 0.00 0.00 104 104 5.5 -- 0.0 5.5 0.81 4.74 2.37 9A1 0.00 9.11 0.00 0,00 0.00 105 105 10.7 - 0.0 10.7 0.81 3.68 4.54 13.52 0.00 13.52 0.00 0.00 0.00 106 106 10.0 - 0.0 10.0 0.81 3.77 1.53 4.67 0.00 4.67 0.00 0.00 0.00 107 107 9.9 -- 0.0 9.9 0.81 3.80 3.80 11.68 0.00 11.68 0.00 0.00 0.00 108 108 11.2 -- 0.0 11.2 0.81 3.61 2.35 6.87 0,00 6.87 0.00 0.00 0.00 109 109 11A -- 0.0 11A 0.81 3.57 2.58 7.46 0.DO 7.46 0.00 0.00 0.00 110 110 7.5 -- 0.0 7.5 0.81 4.25 2.04 7.01 0.00 7.01 0.00 0.00 0.00 111 111 17.1 - 0.0 17.1 0.32 2.99 0.87 0.83 0.00 0.83 0.00 0.00 0.00 3 3 19.3 -- 0.0 19.3 0.81 2.80 3.30 7.47 0.00 7.47 0.0D 0.00 0.00 30 30 25.0 - 0.0 25.0 0.32 2.44 3.43 2.68 0.00 2.68 0.00 0.00 0.00 31 31 7.5 - 0.0 7.5 0.81 4.24 0.71 2.43 D.W 2.43 0.00 0.00 0.00 32 32 9.3 - 0.0 9.3 0.81 3.89 1 A 4 3.59 0.00 3.59 0.00 0.00 0.00 33 33 7.1 - 0.0 7.1 0.81 4.33 0.59 2.07 0,00 2.07 0.00 0.00 0.00 34 34 5.0 - 0.0 5.0 0.81 4.87 0.32 1.27 0.00 1.27 0.00 0.00 0.00 35 35 5.0 - 0.0 5.0 0.81 4.87 0.30 1.17 0.00 1.17 0.00 0.00 0.00 36 36 12.5 -- 0.0 12.5 0.32 3.45 0.50 0.55 0.00 0.55 0.00 0.00 0.00 37 37 15.9 -- 0.0 15.9 0.32 3.10 0.95 0.94 0.DC 0.94 0.00 0.00 0.00 38 38 5.7 -- 0.0 5.7 0.81 4.68 0.40 1.54 0.00 1,54 0.00 0.00 0.00 39 39 6.0 -- 0.0 6.0 0.81 4.60 0.38 1.41 O.GO 1-41 0.00 0.00 0.00 40 40 5.8 - 0.0 5.8 0.81 4.64 0.60 2.27 0.00 2.27 COO 0.00 0.00 41 41 5.6 - 0.0 5.6 0.81 4.70 0.44 1.69 0.00 1.69 0.00 0.00 0.00 42 42 14.2 - 0.0 14.2 0.32 3.27 0.95 0.99 0.00 0.99 0.00 0.00 0.00 43 43 18.6 - 0.0 18.6 0.32 2.85 4.35 3.97 0.00 3,97 0.00 0.00 0.00 44 44 6.9 - 0.0 6.9 0.81 4.37 0.37 1.31 0.00 1.31 0.00 0.00 0.00 45 45 7.0 -- 0.0 7.0 0.81 4.34 0.39 1.37 0.00 1.37 0.00 0.00 0.00 46 46 5.0 -- 0.0 5.0 0.81 4.87 0.06 0.22 O.DO 0.22 0.00 0.00 0.00 47 47 5.0 -- 0.0 5.0 0.81 4.87 0.06 0.23 0.00 0,23 0.00 0.00 0.00 48 48 7.4 -- OD 7.4 0.81 4,27 0.85 2.94 0.00 2.94 0.00 0.00 0.00 49 49 6.7 -- 0.0 6.7 0.81 4.42 0.73 2.62 0.00 2.62 0.00 0,00 0.00 50 50 5.0 - 0.0 5.0 0.81 4.87 0.48 1.91 0.00 1.91 0.00 0.00 0.00 51 51 5.0 -- 0.0 5.0 0.81 4.87 0.62 2.46 0.00 2.46 0.GO 0.00 0.DO 52 52 6.5 - 0.0 6.5 0.81 4.46 0.41 1.46 0.00 1.46 0.00 0.00 0.GO 53 53 5.5 - 0.0 5.6 0.81 4.74 0.22 D.85 0,00 0.85 0.00 0.00 0.00 Routing _ 0.00 0.00 0.DO 32 32 9.3 0.0 PA 1.3 2.2 0.0 9.3 0.81 3.89 1.14 3.59 0.00 3.59 0.00 0.00 0.00 0.00 0.00 0.00 3 32.3 9.3 50,0 PA 0.4 1.2 0.7 10.0 0.81 3.77 4.44 13.57 0,00 13.57 0.00 0.00 0.00 30 32,3,30 10.0 580.0 GW 0.5 1.1 8.9 18.9 0.60 2.82 7.87 13.26 0.00 13.25 0.00 0.00 0.00 101 101 15.5 0.0 PA 0.4 1.2 0.0 15.5 0.81 3.14 8.13 20.66 0.00 20.66 0.00 0.00 0,00 0.00 0.00 0.00 31 101,33,31 15.5 80.0 PA 0.4 1.2 1.1 16.6 0.81 3.03 9.43 23.12 0.00 23.12 0.00 0.00 0.00 102 102 16.0 0.0 PA 0.4 - 1.2 0.0 16.0 0.81 3.09 5.68 14.21 0.DO 1421 0.00 0.00 0.00 0.00 0.00 0.00 35 34-35,102 16.0 80.0 PA 0.4 1.2 1.1 17.1 0,81 2.98 6.30 15.21 0,00 15.21 0.00 0.00 0.00 36 31,33-36,101,102 17.1 50.0 PA 0.4 1.2 0.7 17.8 0.79 2.92 16.23 37.65 3.40 41.05 0.00 0.00 0.00 10-Yr Release Pond= 3.40 cis 51 51 5.0 0.0 PA 1.5 2.3 0.0 5.0 0.81 4.87 0.62 2.46 0.00 2,46 0.00 0.00 0.00 0.00 0.00 0.00 50 50,51 5.0 90.0 PA 0.4 1.2 1.3 6.3 0.81 4.53 1.11 4.07 0,00 4.07 0.00 0.00 0.00 104 50,51,1G4 6.3 310.0 PA 0.4 1.2 4.3 10.6 0.81 3.69 3.48 10.41 0,00 10.41 0.00 0.00 0.00 53 50-53,104 10.6 1ODD PA 0.4 1.2 1.4 12.0 0.81 3.51 4.11 11.66 0.00 11.66 0.00 0.00 0.00 103 50-53,104,103 12.0 115DO PA 0.4 1.2 16.1 28.1 0.81 2.29 26.37 48.98 0,00 48.98 0.00 0.00 0.00 39 50-53,104,103,38.39 28.1 60.0 PA 0.4 1.2 0.8 28.9 0.81 2.26 27.15 49.62 0.00 49.62 0.00 0.00 0.00 37 31,33-39,50-53,101-104 28.9 100.0 GW 0.4 1.0 1.7 30.6 0,79 2.18 44.33 76.81 0.DO 76.81 0.00 0.00 0,00 42 31.33-39,50-53,101-104,42 30.6 220.0 GW 1.0 1.5 2.4 33.0 0.78 2.08 45.28 73.84 3.40 77.24 0.GO 0.00 0.00 10-Yr Release Pond= 3.40 cfs 48 48 7.4 0.0 PA 1.5 -- 2.3 00 7.4 0.81 4.27 0.85 2.94 O.GO 2.94 0.00 0.00 0.00 0.00 0.00 0.00 49 48.49 7.4 40.0 PA 0.4 1.2 0.6 7.9 0.81 4.15 1.58 5,32 0.00 5.32 0.00 0.00 0.00 105 105 10.7 0.0 PA 1.0 - 1.9 0.0 10.7 0.81 3.68 4.54 13,52 0.00 13.52 0.00 0.00 0.00 0.00 0.00 0.00 107 105,107 10.7 400.0 PA 1.0 1.9 3.5 14.2 0.81 3.27 8.34 22.06 0,00 22.06 0.00 0.00 0,00 109 105,107.109 14.2 350.0 PA 1.0 1.9 3.1 17.2 0.81 2.97 10.91 26.25 000 26.25 0.00 0.00 0.00 47 105,107.109,46.47 17.2 80.0 PA 0.4 1.2 1.1 18.4 0.81 2.87 11.03L22(7'25.65 0.00 0.00 0.00 - 0.00 0.00 0.00 108 108 11.2 0.0 PA 0.5 1.3 0.0 11.2 0,81 3.61 2.356.87 0.00 0.00 0.00 45 108.44.45 11.2 60.0 PA 0.4 1.2 0.8 12.0 0.81 3.50 3.118.82 0.00 0.00 0.00 - 0.00 0.00 0,00 40 40 5.8 0.0 PA t5 2.3 0.0 5.8 G.81 4.64 0.602.27 0.00 0.00 0.00 41 40,41 5.13 40.0 PA 0.4 L2 0.6 6.4 0.81 4.50 1.05382 000 0.00 0.00 ' TheSear-Brown Group 12.55 AM 2/112004 II Rational Method 100 Year Design Storm Poudre Valley Hospital 702-100 Routing Flow Time (4) Runoff Street Pipe Design Point Basins 4 Length Type Slope Velocity Travel ripe Travel t<. C C'Ct Intensity Area Direct Runoff Uther Runoff --ToFar Runoff Capacity Design Velocity Slope Manning's Roughness Size apact y Flow Depth Design Flaw orma Flow Depth verage Velocity Loratlen (min) (ff) (a) I%) (111s) (min) (min) (min) (in/hr) (ac) (cis) (efs) (cis) Wit) (fus) INS) N ..n., Capacity 1DO 1DO 5.0 0.0 PA 2.0 2.7 0.0 0.0 5.00 0.81 1.00 9.95 7.61 0.00 (in) (in) (cis) (cis) (in) (ff/5) Remarks 101 101 10.0 -- 0.0 10.03 .75.72 75.72 - -- - 1.00 0.014 18 16.88 10.49- .75.72 G>MaxFlow AVIWO ALUEi 102 102 0.81 1.00 7.71 8.13 62.73 O.CO 62.73 1.00 0.014 42 39.40 100.50 62.73 25.19 10.41 12.7 - 0.0 12.67 0.81 1.00 7.00 5.68 39.76 0.00 39.76 1.00 0.014 36 33.77 66.62 39.76 20.97 9.30 103 103 16A - 0.0 16.44 0.81 1.00 6.22 22.26 138.56 0.00 133,56 1.00 0.014 54 50.65 196.43 138.56 35.18 12.63 104 104 5.0 - 0.0 5.00 0.81 1.00 9.95 2.37 23.62 0.00 23.62 1.00 0,014 48 45.02 143.48 23,62 13.67 8.01 105 105 7.9 -- 0.0 7.87 0.81 1.00 8.50 4.54 38.58 0.00 38.56 1.00 0.014 36 33.77 66.62 38,58 20.57 9.24 106 106 7.2 -- 0.0 7.22 0.81 1,00 8.78 1.53 13.43 0.00 13.43 1.00 0.014 66 61.91 335.43 13.43 9.34 6.54 107 107 7.1 -- 0.0 7.08 0.81 1.00 8.85 3.80 33.63 0.00 33.63 0.00 0.00 0.00 0.00 108 108 8.3 - 0.0 8.35 0.81 1.00 8.31 2.35 19.52 0.00 19.52 0.00 0.00 0.00 0.00 109 109 6.4 -- 0.0 6.40 0.81 1.00 9.18 2.58 23.64 0.00 23.64 0.00 0.00 0.00 0.00 110 110 5.1 - 0.0 5.11 0.81 1.00 9.89 2.04 20.15 0.00 20,15 0.00 0.00 0.00 0.00 111 111 16.4 - 0.0 16.41 0.32 0.40 6.23 0.87 2.18 0.00 2.18 0.00 0.00 0.00 0.00 3 3 16.5 - 0.0 16.45 0.81 1.DO 6.22 3.30 20.53 0.00 20.53 0.00 0.00 0.00 0.00 30 30 23.5 - 0.0 23.50 0.32 0.40 5.14 3.43 7.06 0.00 7.06 0.00 0.00 0.00 0.00 31 31 6.5 - 0.0 6.48 0.81 1.00 9.14 0.71 BAB 0.00 6.48 0.00 0.00 0.00 0.00 32 32 6.1 -- 0.0 6.13 0.81 1.00 9.32 1.14 10.62 0.00 10.62 0.00 0.00 0.00 0.00 33 33 6.1 - 0.0 6.06 0.81 1.00 9.36 0.59 5.52 0.00 5.52 0.00 0.00 0.00 0.00 34 34 5.0 -- 0.0 5.00 0,81 1.00 9.95 0.32 3.21 0.00 3,21 0.00 0.00 0.00 0.00 35 35 5.0 - 0.0 5.00 0.81 1.00 9.95 0.30 2.96 0,00 2.96 0.00 0.00 0.00 0.00 36 36 11.8 -- 0.0 11.81 0,32 0.40 7.20 0.50 143 0,00 1.43 0.00 0.00 0.00 0.00 37 37 15.1 -- 0.0 15.14 0.32 0.40 6.49 0.95 2.47 ODD 247 0.00 0.00 0.00 0.00 38 38 5.0 -- 0.0 5,00 0.81 1.00 9.95 0.40 4.03 0.00 4.03 0.00 0.00 0.00 0.00 39 39 5.0 - 0.0 5.00 O.Bi 1.00 9.95 0.38 3.77 0.00 377 0.00 0.00 0.00 0.00 40 40 5.0 - 0.0 5.00 0.81 1.00 9.95 0.60 6.01 0.00 6.01 0.00 0.00 UO 0.00 41 41 5.0 - 0.0 5.00 0.61 1.00 9.95 0.44 4.42 0.00 4.42 0.00 0.00 0.00 0.00 42 42 13.1 - 0.0 13.07 0.32 0.40 6.91 0.95 2.61 0.00 2.61 0.00 0.00 0.00 0.00 43 43 17.8 -- 0.0 17.76 0.32 0.40 5.98 4.35 10.41 0.00 10.41 0.00 0.00 0.00 0.00 44 44 5.9 - 0.0 5.90 0.81 1.00 9.44 0.37 3.50 0.00 350 0.00 O.DO O.00 0.00 45 45 6.0 - 0.0 6.02 0.81 1.00 9.37 0.39 3.64 0.00 3,64 0.00 0.00 0.00 0.00 46 46 5.0 -- 0.0 5.00 0.61 1,00 9.95 0.06 0,56 0.00 0.56 0.00 0.00 0.00 0.00 47 47 5.0 - 0.0 5.00 0.81 1.00 9.95 0.06 0.58 0.00 0.58 0.00 0.00 0.0G, 0.00 46 48 6.4 - 0.0 6.36 0.81 1.00 9.20 0.85 7.83 0.00 7.83 0.00 0.00 0.00 0.00 49 49 5.7 - 0.0 5.69 0.81 1.00 9.55 0.73 6.99 0.00 6.99 0.00 0.00 O.00 0.00 50 50 5.0 - 0.0 5.00 0.81 1.00 9.95 0.48 4.82 0.00 4.82 0.00 0.00 0.00 0.00 51 51 5.0 - 0.0 5.00 0.81 1.00 9.95 0.62 6.21 0.00 6.21 0.00 0.00 0.00 0.00 52 52 5.5 - 0.0 5.53 0.81 1.00 9.65 0.41 3.91 0.00 3.91 0.00 0.00 0.06 0.00 53 53 5.0 - 0.0 5.00 0.81 1.00 9.95 0.22 2.20 0.00 2.20 0.00 0.00 0.00 - 0.00 Routing _ 0.00 0.00 0.00 0.00 32 32 6.1 0.0 PA 1.3 2.2 0.0 6.13 0.81 1.00 9.32 1.14 10.62 0.00 10.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 32,3 16.5 50.0 PA 0.4 1.2 0.7 17.15 0.81 1.00 6.09 4.44 27.03 0.00 27.03 0.00 0.00 0.00 0.00 30 32,3,30 17.2 580.0 GW 0.5 1.1 8.9 26.03 0.60 0.75 4.88 7.87 28.62 C.00 28.62 0.00 0.00 O.OG 0.00 1 10.0 0.0 PA 0.4 1.2 .0 10.03 0.81 1.00 7.71 8.13 62.73 C.00 62.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31 31 101,3333,31 10.0 80.0 PA 0.4 1.2 1.1 11.15 0.81 1.00 7.38 9.43 69.62 0.00 62.62 0.00 0.00 O.00 0.00 102 102 12.7 0.0 PA 0.4 1.2 0.0 12.67 0.81 1.00 7.00 5.68 39.76 0,00 39.76 0.00 0.00 0.00 0.00 35 34-35,102 12.7 80.0 PA 0.4 1.2 1.1 13.78 0.81 1.00 6.76 6.30 42.57 0.00 4'L57 0.00 0.00 0.00 0.00 36 31,33-36,101,102 13.8 50.0 PA 0.4 1.2 0,7 14.48 0.79 0.99 6.62 16.23 106.74 8,60 115.34 0.00 0.00 O.OG 0.00 0.00 0.00 0.00 0.00 100-Yr Release Pond=8.60 cis 51 51 5.0 0.0 PA 1.5 2.3 0.0 5.00 0.81 1.00 9.95 0.62 6.21 0.00 6.21 0.00 0.00 0.00 0.00 50 50,51 5.0 90.0 PA 0.4 1.2 1.3 6.26 0.81 1.00 9.25 1.11 10.26 0.00 10.26 0.00 0.00 0.00 0.00 0.00 0.00 104 50,51,104 6.3 310.0 PA 0.4 1.2 4.3 10.59 0.81 1.00 7.54 3.48 26.25 0.00 26.25 0.00 0.00 0.00 0.00 0.00 0.00 53 50-53,104 10.6 100.0 PA 0.4 1.2 1.4 1L99 0.81 1,00 7.16 4.11 29.42 0.00 29.42 0.00 0.00 0.00 0.00 103 50-53,104,103 12.0 1150.0 PA 0.4 1.2 16.1 28.08 0.81 1.00 4,69 26.37 123.58 0,00 123.58 0.00 0.00 0.00, 0.00 39 50-53,104,103,38,39 28.1 60.0 PA 0.4 1.2 0.8 28.92 0.81 1.00 4.61 27.15 125.25 0.00 125.25 0.00 0.00 0.00 0.00 37 31.33-39,5M3,101-104 26.9 100.0 GW 0.4 1.0 1.7 30.63 0.79 0.99 4.46 44.33 196.33 0,00 196.33 0.00 0.00 42 31,33-39,50-53,101-104.42 30.6 220.0 GW 1.0 1.5 2.4 33.01 0.78 0.98 4.25 45.28 188.50 8.60 197.10 0.00 0.00 0.00 0.00 0.00 0.00 100-Yr Release Pond=8.60 cis 48 48 6.4 0.0 PA 1.5 2.3 0.0 6.36 0.81 1.00 9.20 0.85 7.83 0.00 7.83 0.00 0.00 0.00 0.00 49 48.49 6.4 40.0 PA 0A 1.2 0.6 6.92 0.61 1.00 8.92 1.58 14.12 0,00 14.12 0.00 0.00 0,00 0.00 0.00 O.00 0,00 0.00 105 105 7.9 0.0 PA 1.0 1.9 0.0 7.87 0.81 1.00 8.50 4.54 38.58 0.00 38,58 0.00 0.00 0.00 0.00 O.Co 0.00 0.00 0.00 107 105,107 7.9 400.0 PA 1.0 1.9 3.5 11.37 0.81 1.00 7.32 8.34 61.05 0.00 61.05 0.00 0.00 0.00 0.00 109 105,107,109 11.4 350.0 PA 1.0 1.9 3.1 14.43 0.81 1.00 6.63 10.91 72.35 0.00 72.35 0.00 0.00 0.00 0.00 47 105,107,109,46,47 14.4 80.0 PA 0.4 1.2 1A 15.55 0.81 1.00 6.41 11.03 70,65 0,00 70,65 0.00 0.00 0.00 0.00 108 108 8.3 0.0 PA 0.5 1.3 0.0 8.35 0.81 1.00 8.31 2.35 19.52 0.00 19.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 45 108,44,45 8.3 60.0 PA 0.4 1.2 0,8 9.18 0.61 1.DO 7.99 3.11 24.85 0.00 24.85 0.00 0.00 0.0C 0.00 40 40 5.0 0.0 PA 1.5 2,3 0.0 5.00 0.81 1.00 9.95 0.60 6.01 0.00 6.01 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.00 41 1 40,41 5.0 1 40.0 PA 0.4 1.2 0.6 1 5.56 1 0.81 I 1,00l 9.63 1.05 10.09 0.00 10 09 0.00 0.00 0.00 0.00 The Seer -Brown Group 12:48 AM 2f112004 I F M O O N O O O O � M v0ioo� o O o O u0ioo'- O O O M ) O O O ooC; O O O o C C 0 0 v d o 0 N N —a0i —aoi O 0 y atl p v 00 N IL 0 0 c n0 U °) N � v � C4C t0 NOOO�C 0 Y O to LoM C)N M M ,1 0 0 ' N v 0 O O O O 0 0 0 0 0 0000 O 000 O O O O O O O O O -41 C C 0 o v w 0 0 ` N y N N w 7 o LL U U rn c � � N >o O N �y (° 000 tO Q)N O(DO N O O O p N W ^^ ? C N O O O O N O ' (n (R 1- 00 (n y ooN ° O o (o(oao0)"t ti 0000 Lo o O Coco (O O ' u�olnmco�5 (0000� (O (O V O�NC V O y ° CO (OO ti W M'S U (00 a 01° (° (O V'O —NC ° p O O O O O d O O N C O O O N �° (y r n M O N N C 0 0 O O O (O O) N O (O O . „ G y O O 3 N J ' y (O (0 NNC m? I O p d O c; O O O O D)N Ot00 Occ W N (dpa^ L V OONO (�c01-f� NBC 3 v 6ci6 (°'No(o� oa 3 a m 3 r N O OON (°O1` r N �C O (OOOp 0 (O Of NO(O e0 CO O 0 0 0 ' p ' 3 N N v v C N 0 0,9 3 J NC O O C O O a Ul d O Lz. E a= CiZ�LL ,3 o C 3wi> N O O 0 C>>O y = a OE OI O. m y W d°°>> U 10oLL 33w0 (�id�mv< E E FL oti 'p v c a E o 0 o a ' U) ti c o c a Li U " FL-- ~ Q} i m n`� V me O d ou o Z ° c -'e .. d O Z 10 > > pyp L+ U O y c p c Z � Q O q m 0 m ay o 0 0 0 O J i ui D LLD ui O O O O O J J J O J 0 0 0 0 >>> O> W W W W O O O O O J J J _O J O O O O >» O> # # # # C . O 0 w N �`z- LL IU f0 O N O O N N _O N (Uw y O a N U (np 0 C Q J O) i0 N N ad � m 3 o w O v 3 o� o o aL j C a2 dU nw U rn U m 3 O o > m N d m J 7 J J O J W W D D D ' J J O J —1 > O > J J O J O W W W O Q. O O O> iL > N y W W W 'u .01 y d J J O J > O i>t y m m ' U O a U 0> r # o > £ •- ui y O D D ¢ Q ¢ C E � a y � y v - i>t iau ' O U 0> N O U c = LLu LL1 LLl > > 7 O QI J J O J Q Q Q C O a V a N fU = LL O o a u V C U c It 0 3 w E `m 3> N m a> a`> o fo rno a>; fo D o m fo > m U-MI i« o. w m w o etl c a�ido oa my O fn oo o tea' E ytl U c ar F- Q t 10 m 3 U o> c o L O 3Q $ o>O a v' o a> > aui m c y V y C 6 A y G m0 V D $ O R O F L C .. A N U U I 0 9 > > ' Q Q N �- O> O m N N N O O M O O m O O O O N O N Q O W W fA O W O W O M N N N O O N N Y N N W W M S O � W W O V m N N O O N N Y,n M OW.] M O O m 00 O O O h O N � W I� m C Nc N N O O 10 h O O N vl O N O f^ �) Q O W m N N O O N N Y m m 0 In N] M O> O m 0 0 0 0 N O N U m V m tT m N N O 0 0 u> f0 0 0 M W O O M O n ry M O V N N O O N N Y M M O U> N S m M O O W O O O N O N Q N W m W c O � N O M M N N O O N Y M— ] M i0 O m �- O O O �O O" W— Q '- �-, -6 m N fV O O O N 10 O O O I� O O O O cD N a � 0 0 0 O O O W O N to O t0 W W m m 0 t0 m N O A N W O M O M O N N O O N f0 M o n v N O N 3 F IO « O 0 V Y V V C y L' ,T+ W �awy a3iY �t3 v.ny' aoa 0 J N N W 0 9 N 0> O O 1 w y 3 E,f_q� W f0 i 7 i0 1 cU_a0 a _rno o `o m 0 .2 0 a � M o� n� _a aa3 yaNw0a cvm 3aa eb O N d 0 O b O 6L v v n a E m° U y g LL H 4 O OI C O a U O~ Uo �y g'0 oo pA u0�a>> Uy t c N > O 2 U V � o 0 o a 6 O C 4 O 3 L U I ' l a 0) O C_ 0 3 m G O Q 0) H � q O > u amp° O m O m II rz L 12 N j m o 0 ' 00 O O y R u = m m OD o O Ei m a ' U v m m > > # # # m 0 t m G O C C O W W W :3 :D D O U m 3 # > U x x m ] a o aU> E vU1 v3 vrrTD 0`U m�o '6-0 iUn• OCm —cOV) _` m«O 0O U .ALL ' O 2V)✓O0 y y VCj m 0 O a m a 3 U 9 U 0 3 E m y m ,`w, 90 macc o CDwy o uu2mw o d0 o e0 o 00o om yv O y 'o a a a U c n F Q L -a lt- O o> a O 0 O « o N > N 0) O y a u m o uyi c m c a o U O m N m U 3 It i ova M O O O N N N O O N N :[ O •- N M v) ] N ^ O W O O O O N O N p LJ O c0 N m C O O m N O O O N N N O O N N ;[ 6 •- N M •- ] l0 fO N O a a 0� O N O O O m N O C N N 9 O O N I` 6 6 M -1 U I� M O t'J to O O N N N N O O N N M O) O •- h N] O V OI N O O m' N N O O N N Y c') m O •� N] p 0) n O N V C N 0 0 O ` N) O V' OI O m O O Q N O N Y V m Qt m] cl I� O N C 21 O r7 M m N W M1 m] -"N O O O N r O O O (» I- O CD I� C o -r N N N Y N (n N] < m 0 W O00 O N ONr)m V C N N O 0 0 O ^ n m O O N N N N �� N N Y m O) N •- N] v o m o 0 0 o N p n M N v tU O N O O N N N N O N N N Y N OI N •- ] p N M m V C o I� N] 6 O m O o o a N O N O N M m V' C V O m M O O m^ N N O O N N N V W O W O O O O N O N Q tMD t0 I� R c o r rn 0 o m� i 6 9 10U 9 10 O O N m 3 m s; E 3 U c U 10 C �. n O O n o v y n m a o a, m w u `o a m m° u m r _rn o z m m 3 L y (' c U 6 m N w o`o 60 oa ova Bov o gKH �= mma mv3 NnU p cvm d o y oa yu: o oE p QaSO ami C O OI C O N 0) U 'y '� U yo O> c oa o u p a_>i U N « C y O 0 n ¢ o m m o U v s O 0 0 0 0 o ° « Q U 11 0 L > U c �9 1 I 1 1 SWMM POND SIZING, RATING 1 CURVES, WQCV, ORIFICE, & OVERFLOW WEIR CALCULATIONS 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 I�J 1 1 1 1 1 C SEAR•BROWN 6CLIENT: Project No: �oZ-goo Project: PVC Checked By: �,py: Date:4-ZIM Sheet: Of: ILL_i, Ml� I Bus, zo,'�.�' a�5 (9a9; 7�� F � tYL4n' If0.51 N 1� Y� A ACNS -- 1— i �T LIA � 3 f —� 3z:99—qSq-38 -C Z SOftt5 l _ 3 S_ 319' = ' G o. 9 /-n<M + j PfCJ Ttn.$ C�> �/Yd ` R�<6 I . /n� .fi/yn� _ i 1 .'�✓ I/ . . . ' .: } .��(("". // � N2..J "�&Sp<•Ch<�t � t , . • • ' /Ucw__Ii1sG_�0% d�tiwc..te tJ�W (�rPu„n5- --- ---_•. � +` q. 38,3% I 4<'+s • � ZI - � lobo• u> N use I0 77 •_ _ . ; iu I �3 �l 8� ��1 4_ q� / YGnS I @ lob• lw�-/J, ws fr E j . P � � « C L L �q ,r &� m z o; _ /LLJ ?I / 9 c Cif C� CL / I � Acco)) Lƒn E \ � k < I § } ,C) ,E 04 �C)|\ \ q L)R in! § §§ o0 �q 0\ &L 2 �§ ƒ§I, | k!®E kx gg < � | | z� E |%|2 08O� Oil'R•� `� Ifills • z ) & & § z z 3 0 b k 90 ( Of E k CIC04) Z < E<<\< G G m m o � z o u 3 - § §o// z g 3 3 2> 3§ z G $ $ h LLJ \ \� E � � � I LO 10 C 0 M U') (0 m N Iq CD U') (0 LO q 0�,� LO m 00)C) ' w ci 6 6 CD CN N vi LO— u E a") 0 E cr >- E a") Or 0 cy CU .22 cu A cu Q v v v 0 E o m r= .2 0 m m F m Cl 'T l- M C� C) 00 (D 04 'T LO (0 U) (D 0) a) � (D . M � r- co COo o L6 c6 CD C,� c"i C\l IT IT to U) I co (D, t- ci I CN: C), O. to c, q C') co C'4 C-4 r� co N a 0 r— C) C) 0 U) I-- Nr LO IT U) cc) r— .T co, 51 E m iC� Yee 4) o --;r M Lo � V' U) (D r, r— CD r.- cl, C) C) 'q CN P� r� G) 0 C) � G) � n C) a) w 6 6 Ci N 04 C-4 �--' CNi M C) U) LO CO CO 0 04 M M Iq M CO Cl): -IT M C, M 0 W a) a N M N CO, 'cr, M, C\i C'j C'i N N 4 N c"j. CD M (n to 1q, Ln C\l r� cl M m co co C'? q w m m m r- w 7 m a) r, C,4 C=i rl, C\i (6 0) cn 0) N Co. M 04 06 T C%j C) r.- C'4 C) 04 (D rl- r— rl- 19T LO cn r, U') M co CD cn (D r, CN (D CC) , C14 [-- C14 C*4 r- 04 Iq Co 0) C) (0 co co co 0) (3) 0) C) CO 77 CL a ID (D (q M M(0 (0 CO (0 LO (D CO LO (D C) , C,4 C-) C-i ,zr Lo ui (o r� 00 (-; to' � > m CV) Lo M! tr u) co C) r-- OC) (3) — (D co 0) m m 0 w oi m co m (0 cn M M 0) Iq (6 m CO M q. I Pond593PhasingRatingCurve5-3-04.txt { Pond 593 Phasing Rating Curve 3.Gooch ' 5-3-04 1 #Units=Elevation,ft,Area,ft2,volume,acft,volume,acft # Elev Area Cumml Avg Cumml Conic # ft ft2 acft acft 4941.0000 102129.1694 12.0218 11.9484 ' 4940.8300 101261.1813 11.6249 11.5516 4940.0000 97076.8201 9.7353 9.6621 4939.0000 92152.3128 7.5633 7.4903 4938.0000 87347.3359. 5.5029 5.4302 4937.0000 82570.9535 3.5525 3.4800 4936.0000 68977.4258 1.8130 1.7428 4935.0000 41169.3012 0.5486 0.4922 ' 4934.0000 6628.8932 0.0000 0.0000 1 Page 1 I 1 1 1 1 1, 1 1 1 1 1 1 i 1 SEAR -BROWN ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970), UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS -OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) *** ENTRY MADE TO RUNOFF MODEL *** PVC pkk5e- IF — io �k- LAJOBS\702100\data\Drainage\SWMM\Phasingpvhl0year.out 1 Printed: 5/12/2004 SEAR•BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999: W/ 3/22/00 EXTRAN ADOPTED 10-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC'.; 10/25/00 NUMBER OF TIME STEPS 600 INTEGRATION TIME INTERVAL (MINUTES) 1.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL.IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .49 .56 .65 1.09 1.39 2.69 4.87 .60 .52 .39 .37 .35 .34 .32 .28 .27 .26 .25 .00 1 1 1 ' L:\J0BS\702100\data\Drainage\SWMM\Phasingpvhl0year.out 2 2.02 1.21 .71 .31 .30 .29 Printed: 5/12/2004 SEAR•BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3122100 EXTRAN ADOPTED 10-YEAR EVENT FILE: MCEl00R.DAT ICON ENGINEERING. INC.; 10/25/00 ' SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) AGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO ' -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 .51 .50 .00180. 80 50 7109.0 86.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 60 50 1150.0 8.9 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 70 6 10239.0 29.4 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 130 51 7161..0 24.7 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 100 51 2875.0 13.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 150 4 1590.0 1.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 110 11 1250.0 1.9 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 111 11 700.0 1.1 99.0 .0100 .016 .250 .100 . .300 .51 .50 .00180 1 112 112 750.0 1.3 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 113 12 1200.0 1.3 99.0 0100 .016 .250 .100 .300 .51 .50 .00180 1 114 12 950.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 115 13 1050.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180' 1 116 13 1400.0 2.2 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 117 51 1000.0 2.9 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 118 14 1250.0 1.1 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 320 11 305.0 2.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 120 22 3875.0 17.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 90 2 5715.0 13.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 190 51 250.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 200 20 4550.0 31.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 210 44 1090.0 7.5 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 240 7 1742.0 5.0 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 220 45 3228.0 22.2 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 260 46 3454.0 23.8 50.0. .0100 .016 .250 .100 .300 .51 .50 .00180 1 230 47 2134.0 14.7 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 290 291 1278.0 5.9 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 340 34 1260.0 4.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 280 275 1000.0 2.0 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 281 28 1650.0 3.2 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 282 29 850.0 1.5 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 ' 283 30 1256.0 2.0 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 330 33 700.0 5.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 160 16 3500.0 4.0 84.0 .0200 .016 .250 .100 . .300 .51 .50 .00180 ' 1 121 16 850.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 122 22 1200.0 1.8 80.0 0100 016 .250 .100 .300 .51 .50 .00180 1 250 250 500.0 1.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 270 270 625.0 3.3 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 271 271 2017.0 6.3 55.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 272 272 817.0 1.5 31.0 .0900 .016 .250 .100 .300 .51 .56 .00180 1 360 36 3223.0 2.4 87.0 .0200 ..016 .250 .100 .300 .51 .50 .00180 1 L:UOBSV02100\data\Drainage\SWMM\Phasingpvhl0year.out 3 Printed: 5/12/2004 I 11 -I LJ LI 1 SEAR -BROWN 201 320 3213.0 14.8 .25.0 .0183 .016 .250 .100 300 .51 .50 .00180 1 202 322 1873.0 21.5 50.0 .0165 .016 .250 .100 .300 .51 .50 .00180 1 203 172 7024.0 32.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 204 166 4138.0 19.0 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 205 168 650.0 5.8 47.0 .0105 .016 .250 .100 .300 .51 .50 .00180 1 206 171 958.0 7.7 70.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 207 176 1718.0 13.8 57.0 .0235 .016 .250 .100 .300 .51 .50 .00180 1 208 178 2936.0 33.6 70.0 .0170 .016 .250 .100 .300. .51 .50 .00180 1 209 321 6795.0 23.4 40.0 .0085 .016 .250 .100 .300 .51 .50 .00180 1 165 324 2991.0 10.3 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 211 325 3165.0 10.9 64.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 212 328 1220.0 4.2 80.0 .0380 .016 .250 .100 .300 .51 .50 .00180 1 213 180 1472.0 16.9 30.0 .0055 .016 .250 .100 .300 .51 .50 .00180 1 214 179 465.0 1.6 90.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 215 331 500.0 .7 90.0 .0270 .016 .250 .100 .300 .51 .50 .00180 1 216 327 1405.0 1.0 90.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 301 301 3315.0 28.5 71.0 .0050 .016 .430 .100 .600 .51 .50 .00180 1 302 95 13736.0 47.5 45.0 .0100 .016 .390 .100 .600 .51 .50 .00180 1 305 369 6839.0 78.5 3.9 .0110 .016 .250 .100 .300 .51 .50 .00180 1 306 372 2535.0 8.7 31.2 .0200 .016 .250 .100 .300 .51 .50 .00180 1 307 360 2951.0 5.4 17.0 .1262 .016 .250 .100 .300 .51 .50 .00180 1 308 370 2042.0 7.0 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 309 362 888.0 1.6 4.0 .1262 .016 .250 .100 .300 .51 .50 .00180 1 1 311 371 807.0 2.8 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 312 363 569.0 2.1 2.3 .1262 .016 .250 .100 .300 .51 .50 .00180 1 313 367 495.0 .9 1.0 .0500 .016 .250 .100 .300 .51 .50 .00180 1 314 40 26470.0 91.2 34.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 315 374 4179.0 14.4 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 316 595 2840.0 13.0 55.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 317 594 3037.0 27.9 80.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 318 592 5477.0 62.9 37.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 217 368 1603.0 18.4 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 218 368 1515.0 17.4 5.0 . .0300 .016 .250 .100 .300 .51 .50 .00180 1 222 32 1681.0 19.3 5.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 223 102 2004.0 23.0 5.0 .0400 .016 .250 .100 .300 .51 .50 .00180 1 224 102 1202.0 13.8 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 225 35 5715.0 65.6 5.0 .0060 .016 .250 .100 .300 51 .50 .00180 1 1 201 1200.0 8.5 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 2 202 2000.0 4.1 68.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 3 203 800.0 5.7 44.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 4 209 750.0 1.6 74.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 5 209 1600.0 2.7 68.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 6 210 3800.0 7.6 66.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 7 209 750.0 3.3 57.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 8 210 450.0 2.3 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 L:UOBS\702100\data\Drainage\SWMM\PhasingpvhlOyear.out 4 Printed: 5/12/2004 SEAR•BROWN ' 9 209 3000.0 20.2 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 10 210 1400.0 9.1 26.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 14 214 1000.0 4.8 54.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 15 215 1300.0 4.4 9.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 16 216 200.0 1.8 12.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 20 223 600.0 4.1 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 21 223 1400.0 9.0 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 22 223 1800.0 7.3 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 23 224 1000.0 2.2 61.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 24 224 600.0 3.1 34.0 .0200 .016 .250 .100 .300 .51. .50 .00180 ' 1 25 226 900.0 4.0 65.0 .0200 .016 .250 .100 .300 .51 .50 .001.80 1 26 226 1000.0 2.7 32.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 30 130 2750.0 5.9 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 31 131 1700.0 3.6 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 32 330 400.0 2.0 48.0 .016 .250 .100 .300 .51 .50 .00180 .0200 1 39 216 700.0 3.1 11.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 40 140 1300.0 6.4 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 41 357 800.0. 4.3 43.0 .0200 .016 ..250 .100 .300 .51 .50 .00180 1 42 241 900.0 1.5 75.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 50 251 1800.0 8.1 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 63 252 2250.0 8.9 61.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 61 261 650.0 2.1 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 62 262 1200.0 4.7 42.0 .0200 .016 .250 .100. .300 .51 .50 .00180 1 370 570 1050.0 6.1 63.0 .0100 .016 .250 .100 .300 .51 :50 .00180 1 371 571 2000.0 11.7 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 372 572 4900.0 26.7 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 373 73 2000.0 8.2 90.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 374 574 8000.0 18.3 86.0 .0200 .016 .250 .100 .300 .51 .50 .00180 t 1 375 75 5400.0 28.4 48.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 376 576 1000.0 5.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 377 577 400.0 1.9 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 378 577 450.0 2.3 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 379 479 450.0 1.5 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 380 480 350.0 1.4 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 381 481 550.0 2.6 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180' 1 382 582 700.0 .8 67.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 383 483 1200.0 5.6 69.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 384 84 2400.0 6.9 84.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 385 85 2100.0 6.3 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 386 586 2000.0 12.2 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 387 586 800.0 3.2 70.0 .0250 .016 .250 .100 .300 .51 .50 .00180 1 388 588 1548.0 16.0 5.0 .0200 .016 .250 .100 .300 .51 .10 .00180 1 389 88 1220.0 7.0 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 390 490 550.0 1.4 70.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 391 491 600.0 2.8 70.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 L:VOBS\702100\data\Drainage\SWMM\Phasingpvhl0year.out 5 Printed: 5/12/2004 SEAR -BROWN ' 392 588 1100.0 6.6 90.0 .0200 .016 ' .250 .100 .300 .51 .50 .00180 1 393 88 4400.0 11.8 95.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 394 92 900.0 1.4 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 396 496 2950.0 13.5 93.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 397 497 810.0 3.9 85.0 .0210 .016 .250 .100 .300 .51 .50 .00180 1 400 400 860.0 9.9 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 401 406 1170.0 16.7 20.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 ' 402 406 1520.0 17.4 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 403 381 .1920.0 11.0 45.0 .0170 .016 .250 .100 .300 .51 .50 .00180 1 404 382 1790.0 10.4 55.0 .0250 .016 .250 .100 .300 .51 .50 .00180 ' 1 405 402 3080.0 3.5 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 406 383 2053.0 14.1 38.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 1 407 384 1921.0 13.2 40.0 .0150 016 .250 .100 .300 .51 .50, .00180 1 408 404 3378.0 38.8 5.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 500 517 3899.0 26.9 5.0 .0100 .016 .250 .100 .300 .51, .50 .00180 ' 1 501 416 2750.0 18.9 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 502 517 3785.0 17.4 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 503 415 3893.0 44.7 5.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 504 415 2570.0 11.8 5.0 .0200 .016 .250 .100. .300 .51 .50 .00180 1 514 413 4080.0 28.1 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 505 409 5867.0 67.3 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 506 412 2143.0 14.8 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 f .1 507 412 2277.0 15.7 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 508 281 3833.0 26.4 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 501 411 1936.0 13.3 5.0 .0100 .016 .251 .100 .300 .51 .50 .00180 1 ' 510 411 2611.0 18.0 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 511 283 5670.0 39.1 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 512 386 6803.0 46.9 25.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 513 388 16060.0 124.4 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 159 ' TOTAL TRIBUTARY AREA (ACRES). 2154.02 7 L ' LAJOBS\702100\data\Drainage\SWMM\PhasingpvhlOyear.out 6 Iw=6m&11P7PIIbTJI SEAR•BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W1 3122100 EXTRAN ADOPTED 10-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.; 10/25/00 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 2154.020 TOTAL RAINFALL (INCHES) 1.711 TOTAL INFILTRATION (INCHES) .664 TOTAL WATERSHED OUTFLOW (INCHES) .880 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .166 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 L:\JOBS\702100\data\Drainage\SWMM\Phasingpvhl0year.out 7 Printed: 5/12/2004 SEAR -BROWN ' McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999: W/ 3/22/00 EXTRAN ADOPTED 10-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.: 10/25/00 WIDTH INVERT SIDE SLOPES VERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK ' NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 4 8 0 1 CHANNEL .0 800. .0044 4.0 4.0 .035 5.00 0 8 2 0 1 CHANNEL 10.0 1750. .0100 4.0 4.0 .035 5.00 ' 0 7 6 0 1 CHANNEL .0 1400. .0100 .0 50.0 .016 1.50 0 6 50 0 1 CHANNEL .0 1200. .0032 4.0 4.0 .035 5.00 ' 0 35 102 0 1 CHANNEL .0 1250. .0100 50.0 50.0 .045 5.00 0 16 22 0 1 CHANNEL .0 540. .0060 50.0 50.0 .016 2.00 0 11 12 0 1 CHANNEL .0 700. .0060 50.0 .0 .016 1.50 0 ' 12 13 0 1 CHANNEL .0 850. .0060 50.0 .0 .016 1.50 0 13 51 0 1 CHANNEL .0 500. .0060 50.0 .0 .016 1.50 ' 0 14 51 0 1 CHANNEL .0 900. .0060 50.0 .0 .016 1.50 0 112 11 0. 1 CHANNEL .0 700. .0100 50.0 .0 .016 1.50 0 20 51 0 1 CHANNEL 0 1100, .0010 4.0 4.0 .035 5.00 ' 0 21 44 0 1 CHANNEL .0 1200. .0050 50.0 .0 .016 1.50 0 44 51 0 1 CHANNEL 3.0 800. .0050 10.0 10.0 .035 2.00 0 45 43 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 11.9 10.0 11.9 22 43 0 1 CHANNEL 0 1600. 0010 4.0 4.0 .031 1,00 ' i 43 51 0 3 .1 1. .0010. .0 .0 .016 .10 0 50 2 0 1 CHANNEL 10.0 1000. .0050 15.0 15.0 .040 5.00 0 51 9 0 1 CHANNEL 10.0 500. .0050 15.0 15.0 .040 5.00 1 0 9 2 0 1 CHANNEL 5.0 1000. .0060 15.0 15.0 .035 5.00 0 47 12 3 1 CHANNEL 1 1. 0010 .0 0 016 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 7.2 10.0 7.2 250 25 6 2 PIPE 1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .0 .2 .0 .2 .1 .3 .3 .3 .3 5.0 25 22 0 2 PIPE 1.3 500. .0050 .0 .0 .013 1.25. 0 291 12 3 2 PIPE .1 1. .0050 .0 .0 .016 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 3.1 10.0 3.1 46 42 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 11.2 10.0 11.2 26 42 0 5 PIPE 3.5 800. .0050 .0 .0 .016 3.50 0 OVERFLOW 10.0 800. .0050 4.0 4.0 .035 5.50 ' 42 22 0 2 PIPE 6.0 1. .0050 .0 .0 .016 6.00 0 270 27 0 3 .0 1. .0010 .0 .0 .001 10.00 0 271 27 0 5 PIPE 2.3 45. .0040 .0 .0 .013 2.25 ' 0 OVERFLOW .0 45. .0040 198.0 117.0 .020 5.00 272 275 6 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 .0 .4 .1 .8 .3 1.0 .5 1.2 .8 1.3 275 27 0 2 PIPE 3.5 676. .0084 .0 .0 .013 3.50 0 ' L:UOBS\702100\data\Drainage\SWMM\Phasingpvh1Oyear.out 8 Printed: 5/12/2004 SEAR•BROWN 27 41 8 2 PIPE 1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .8 .2 2.5 .5 3.5 .9 4.2 1.4 ' 4.8 2.1 57.6 3.2 191.4 41 26 0 5 PIPE 4.0 100. .0050 .0 .0 .016 4.00 0 OVERFLOW 10.0 100. .0050 50.0 50.0 .016 5.00 ' 36 26 0 5 PIPE 1.3 90. .0140 .0 .0 .013 1.25 0 OVERFLOW .0 90. .0140 200.0 200.0 .020 5.00 28 275 0 1 CHANNEL .0 1000. .0050 .0 50.0 .016 1.50 0 ' 29 28 .0 1 CHANNEL .0 1650. .0050 .0 50.0 .016 1.50 0 30 29 0 1 CHANNEL .0 850. .0050 .0 50.0 .016 1.50 0 34 16 3 2 PIPE .1 1. .0050 .0 .0 .016 10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.9 10.0 1.9 92 89 0 2' PIPE 2.0 1000. .0100 .0 .0 .013 2.00 ' 0 395 89 4. 3 .1 1. .0010 .0 .0 .001 .10 -1 TIME IN HRS VS INFLOW IN CFS .0 .0 .5 3.6 9.6 3.6 9.8 .0 89 0 88 0 1 CHANNEL .0 800. .0070 4.0 4.0 .035 5.00 ' 490 90 4 2 PIPE .1 1. .0010 .0 .0 .001. .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 2 .5 .2 .5 .2 2.5 491 90 4 .0 2 PIPE .1 1. .0010 .0 .0 .001 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .5 1.0 .6 91.9 .7 260.0 90 88 0 4 CHANNEL 0 500, 0100 50.0 50.0 .016 .50 0 ' OVERFLOW 50.0 500. .0100 10.0 10.0 .035 5.00 496 88 6 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 12.0 .1 12.4 .8 12.8 2.1 13.2 3.5 ' �. 31.6 88 588 0 1 CHANNEL .0 700. .0080 4.0 4.0 .035 5.00 0 497 588 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.6 .1 1.6 .4 1.7 .7 1.7 .8 1.8 1.3 20.2 588 488 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 488 586 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .5 .3 6.5 .7 8.4 4.9 9.5 5.7 9.9 8.4 12.4 10.1 14.7 10.8 24.5 582 682 3 3 .1 1. .0010 .0 .0 .001 .10 683 DIVERSION TO GUTTER NUMBER 683 - TOTAL 0 VS DIVERTED 0 IN CFS ' 0 .0 4.6 1.3 8.0 1.8 682 82 0 3 .1 1. .0010 .0 .0 .001 10.00 0 683 0 0 3 .1 1. .0010 .0 .0 .001 10.00 0 ' 82 85 0 4 CHANNEL .0 1300. .0140 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1300. .0140 10.0 10.0 .035 5.00 85 586 0 4 CHANNEL .0 1000. .0110 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1000. .0110 10.0 10.0 .035 5.00 84 586 0 4 CHANNEL .0 700. .0100 50.0 50.0 .016 .50 0 OVERFLOW 50.0 700. .0100 10.0 10.0 .035 5.00 586 486 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 486 584 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .1 .1 1.5 .3 8.9 .5 12.0 1.1 ' 14.4 2.4 18.0 3.8 19.6 4.9 41.2 584 684 7 3 .1 1. .0016 .0 .0 .001 .10 673 ' DIVERSION TO GUTTER NUMBER 673 - TOTAL O VS DIVERTED 0 IN CFS L:\JOBS\702100\data\Drainage\SWMM\PhasingpvhlOyear.out 9 Printed: 5/12/2004 SEAR - BROWN ' .0 .0 20.0 .0 21.0 1.0 24.0 3.0 27..0 6.0 30.0 9.0 48.0 27.0 684 83 0 3 1 1. .0010 .0 .0 .001 10.00 ' 0 673 73 0 3 1 1. .0010 .0 .0 .001 10.00 83 583 0 1 CHANNEL 5.0 400. .0050 4.0 4.0 .035 5.00 0 483 583 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .9 2.8 1.1 2.8. 4.0 2.8 583 72 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 72 572 0 5 PIPE 3.0 700. .0040 .0 .0 .013 3.00 0 OVERFLOW .0 700. .0040 50.0 50.0 .016 5.00 73 572 0 4 CHANNEL .0 1300. .0060 50.0 50.0 .016 .50 ' 0 OVERFLOW 50.0 1300. .0060 10.0 10.0 .035 5.00 481 577 11 2 PIPE .1 1. .0010 .0 .0 .001 '.10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 .1 1.0 .1 2.0 .2 4.0 .2 6.0 .2 10.0 .2 12.0 .2 14.0 .2 16.0 .2 18.0 .2 20.0 480 577 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 09.0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .0 1.0 .0 2.0 .1 4.0 .1 6.0 .1 .1 14.0 .1 18.0 .1 20.0 471 577 6 2 PIPE 1 1. 0010 A .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .0 1.0 .1 2.5 .1 8.0 .1 12.7 577 477 0 3 1 1. .0010 .0 .0 .001 10.00 0 ' 477 76 14 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 .2 4.0 .3 6.0 .3 8.0 .3 12.0 ' 3 16.0 .3 20.0 3 30.0 .4 45.0 .4 60.0 .5 " 75.0 5 90.0 6 105.0 76 576 0 1 CHANNEL 0 800. .0070 4.0 4.0 .035 5.00 0 ' 576. 574 0 3 .1 1. .0010 .0 .0 .001 10.00 0 75 574 0 1 CHANNEL 5.0 600. .0070 4.0 4.0 .035 5.00 0 574 474 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 474 74 8 2 PIPE 1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 2.2 .5 5.9 2.0 10.2 4.4 13.6 8.0 15.1 ' 10.2 16.7 12.5 18.2 13.5 74 572 0 1 CHANNEL 10.0 700. .0080 10.0 10.0 .035 5.00 0 572 472 0 3 1 1. .0010 .0 .0 .001 10.00 ' 0 472 571 12 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .7 3.0 .9 6.0 1.2 9.0 1.7 12.0 2.5 ' 15.0 3.7 18.0 5.1 21.0 7.0 24.0 7.8 27.0 8.0 30.0 9.5 81.0 571 471 0 3 .1 1. .0010 .0 .0 .001 10.00 O 471 570 9. 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 10.0 .4 20.0 .7 30.0 .8 32.0 .8 40.0 ' 9 50.0 .9 60.0 1.0 100.0 570 470 0 3 .1 1. .0010 .0 .0 .001 10.00 0 470 31 7 2 PIPE .1 1. 0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 10.0 .1 20.0 .2 30.0 .7 40.0 1.0 44.0 1.5 160.0 ' L:UOBS\702100\data\Drainage\SWMM\PhasingpvhIOyear.out 10 Printed: 5/12/2004 SEAR -BROWN ' 31 275 0 5 PIPE 3.0 108. .0075 .0 .0 .013 3.00 0 OVERFLOW 30.0 108. .0075 50.0 50.0 .035 5.00 33 21 0 1 CHANNEL .0 700. .0080 50.0 .0 .016 1.50 0 ' 2 216 15 2 PIPE .1 77. .0070 .0 .0 .013. .10 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 2.3 .0 16.1 .1 51.3 .6 86.2 2.4 ' 115.7 .0 6.2 .0 144.7 12.1 169.8 19.6 193.7 28.6 214.8 33.6 224.4 38.7 233.1 49.3 251.4 59.4 269.7 70.6 288.0 166 167 3 2 PIPE 1 96. .0060 .0 .0 .013 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.6 24.0 3.4 26.4 167 169 0 1 CHANNEL 4.0 260. .0021 2.0 2.0 .035 4.00 0 168 169 5 2 PIPE .1 10. .0010 .0 .0 .013 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .9 .4 1.4 .7 93.3 1.0 261.4 169 170 0 5 PIPE 2.3 40. .0010 .0 .0 .013 2.27 ' 0 OVERFLOW 40.0 40. .0070 50.0 50.0 .016 4.00 170 174 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 4.00 0 171 174 3 2 PIPE 1 10. 0038 .0 .0 .013 10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1.0 4.0 2.0 4.3 172 173 5 2 PIPE .1 120. .0033 . .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 6.5 5.5 8.0 6.0 9.0 97.9 10.0, 266.0 173 175 0 4 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 OVERFLOW 30.0 1200. .0050 150.0 150.0 .035 3.00 174 175 0 5 PIPE 2.3 75. .0211 .0 .0 013 2:25 ' 0 OVERFLOW 40.0 75. .0211 50.0 50.0 .016. 4.00 175 177 0 5 PIPE 2.5 853. .0123 .0 .0 .013 2.50 0 OVERFLOW 50.0 853. .0123 50.0 50.0 .016 4.00 I, 176 177 7 2 PIPE .1 315. .0020 .0 .0 .013 .10 " 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.1 .2 1.7 .8 2.1 1.8 2.6 2.4 94.5 ' 3.1 261.8 177 341 0 5 PIPE 3.0 480. .0100 .0 .0 .013 3.00 0 OVERFLOW 10.0 480. .0100 50.0 50.0 .016 5.00 178 977 9 2 PIPE .1 1310. .0033 .0 .0 .013 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 2.0 5.0 2.7 5.8 3.4 6.5 4.2 8.8 4.6 16.2 4.9 29.5 5.2 44.0 5.5 60.0 ' 977 177 4 3 .1 1. .0010 .0 .0 . .001 10.00 827 DIVERSION TO GUTTER NUMBER 827 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 16.2 .0 16.3 .1 60.0 43.8 . 827 927 0 1 CHANNEL 1.0 800. .0100 6.0 6.0 .035 4.00 0 ' 927 327 0 1 CHANNEL 10.0 10. .0100 6.0 6.0 .035 10.00 0 320 321 0 1 CHANNEL 5.0 1350. .0050 4.0 4.0 .035 4.00 0 321 324 10 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .3 2.6 .8 4.3 1.5 5.5 2.5 6.4 3.9 7.3 5.4 8.0 6.3 99.9 7.2 268.0 ' 322 323 3 2 PIPE .1 10. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1.9 11.0 4.0 11.3 323 324 0 1 CHANNEL .0 1500500. .0142 50.0 .0 .016 1.50 ' 0 324 331 0 2 PIPE 3.0 36. .0222 .0 .0 .013 3.00 i' O 321 326 0 1 CHANNEL 4.0 420. .0050 4.0 4.0 .035 3.00 ' 0 326 927 0 5 PIPE 3.5 214. .0168 .0 .0 .013 3.50 0 OVERFLOW 40.0 214. .0168 50.0 50.0 .016 5.00 1 Printed: 5/12/2004 L:UOBS\702100\data\Drainage\SWMM\Phasingpvht0year.out 11 SEAR -BROWN ' 327 329 0 1 CHANNEL 4.0 750. .0050 4.0. 4.0 .035 3.00 0 328 329 0 5 PIPE 1.8 101. .0149 .0 .0 .013 1.75 0 OVERFLOW .0 101. .0149 133.0 44.0 .016 5.00 329 180 0 1 CHANNEL 5.0 240. .0050 4.0 4.0 .035 4.00 179 324 0 5 PIPE 1.5 80. .0110 .0 .0 .013 1.50 ' 0 OVERFLOW .0 80. .0110 167.0 167.0 .016 5.00 331 325 0 2 PIPE 3.0 30. .0267 .0 .0 .013 3.00 0 180 341 8 2 PIPE 1 20. .0040 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 4.0 1.0 18.0 1.9 37.2 3.0 52.4 4.2 68.0 4.8 78.0 5.7 88.0 341 0 4 0 5 PIPE 5.2 120. .0040 .0 .0 .013 5.20 ' OVERFLOW .0 120. .0040 50.0 50.0 .016 7.00 301 91 9 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.2 .8 4.2 1.9 5.3 2.5 5.8 3.3 ' 13.4 4.3 14.4 4.6 36.2 5.7 57.8 91 93 0 1 CHANNEL .0 1325. .0150 4.0 4.0 .060 5.00 0 93 94 11 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .5 .0 1.0 .0 1.6 1.9 2.4 5.4 3.3 7.7 4.3 14.0 5.4 20.7 6.5 93.9 7.7 219.5 94 241 0 1 CHANNEL .0 500. .0027 3.0 3.0, .035 5.00 0 95 93 0 3 .0 1. .0010 .0 .0 .001 10.00 0 357 358 0 1 CHANNEL 16.0 10. .0050 4.0 4.0 .045 4.00 0. 358 359 0 2 PIPE 9.4 103. .0050 .0 .0 .013 9.44 0 359 360 0 1 CHANNEL 16.0 950. .00,50 4.0 4.0 .045 4.00 ( 1 360 361 0 2 PIPE 9.4 46. .0050 .0 :0 .013 9.44 0 361 362 0 1 CHANNEL 16.0 619. .0050 4.0 4.0 .045 4.00 0 362 363 0 1 CHANNEL 16.0 215. .0050 4.0 4.0 .045 4.00 0 363 364 0 1 CHANNEL 16.0 415. .0050 4.0 4.0 .045 4.00 0 364 366 0 4 CHANNEL 16.0 90. .0050 4.0 4.0 .045 5.00 0 ' OVERFLOW 40.0 90. .0050 50.0 50.0 .035 6.00 369 366 0 4 CHANNEL .0 1125. .0045 4.0 4.0 .035 2.30 0 OVERFLOW 50.0 1125. .0045 50.0 50.0 .035 5.00 366 367 0 4 CHANNEL 16.0 377. .0050 4.0 4.0 .045 5.00 0 OVERFLOW 40.0 377. .0050 50.0 50.0 .035 6.00 38 373 0 4 CHANNEL .0 1080. .0050 4.0 4.0 .035 3.50 0 OVERFLOW 40.0 1080. .0050 50.0 50.0 .016 4.50 ' 39 38 0 4 CHANNEL .0 860. .0050 4.0 4.0 .035 3.50 0 OVERFLOW 40.0 860. .0050 50.0 50.0 .016 4.50 593 39 11 2 PIPE .0 1. .0010 .0 .0 .001 .00 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.4 .5 2.2 1.8 2.7 3.4 3.2 3.4 16.4 3.5 16.5 5.5 18.6 7.5 20.5 7.8 20.8 7.8 45.7 594 591 14 2 PIPE .0 1. .0010 .0 .0 .001 .00 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .2 .0 .9 .0 1.6 .1 2.0 .2 2.4 - ' 8.4 .4 2.7 .7 3.0 1.1 3.3 1.4 3.4 1.7 5.4 2.3 2.4 8.6 2.9 8.8 595 593 0 2 PIPE 5.0 130. .0040 .0 .0 .013 5.00 i 0 591 0 592 0 1 CHANNEL 10.0 1000. .0050 4.0 4.0 .029 10.00 592 593 0 2 PIPE 20.0 70. .0040 .0 .0 .013 20.00 0 40 373 0 1 CHANNEL 5.0 1400. .0050 4.0 4.0 .035 5.00 0 Printed: 5/12/2004 L:UOBSV02100\data\Drainage\SWMM\Phasingpvhl0year.out 12 SEAR -BROWN ' 370 361 9 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .0 .8 .2 1.1 .4 1.4 .6 ' 2.8 .7 3.2 .8 3.5 1.0 33.5 371 362 7 2 PIPE .1 .1. .0015 .0 .0 .013 .10 ,:-• O RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 .0 .5 .1 1.2 .2 1.4 .3 1.4 .4 1.6 .6 1.8 372 363 6 2 PIPE .1 1. .0020 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 10.0 .4 22.4 .7 33.3 .9 38.0 1.2 50.5 373 364 18 2 PIPE .1 1. .0042 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .1 .0 .5 .0 1.6 .0 3.6 6.4 6.3 16.8 6.9 18.0 7.6 18.8 8.2 19.6 8.9 20.8 9.5 21.6 9.9 31.5 10.3 49.4 10.7 72.6 11.1 99.7 11.5 130.9 13.4 333.7 15.5 ' 429.6 374 38 14 2 PIPE .1 1. .0040 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .1 .0 .2 .0 .4 1.1 .5 2.1 .5 2.8 .7 3.9 .8 4.8 1.1 5.6 1.3 6.3 1.5 6.9 1.7 7.3 2.3 59.9 32 102 0 1 ANNEL 1.0 500. CHANNEL .0060 75.0 1.5 .045 5.00 0 367 368 0 4 CHANNEL 5.0 950. .0070 2.0 2.5 .045 8.00 0 OVERFLOW 35.0 950. .0070 75.0 45.0 .045 14.00 368 102 0 4 CHANNEL 5.0 1960. .0100 3.0 3.0 .045 5.00 ' 0 OVERFLOW 30.0 1960. .0100 60.0 30.0 .045 11.00 102 410 0 5 PIPE 4.5 50. .0050 .0 .0 .024 5.60 O r OVERFLOW 29.0 50. .0050 25.0 100.0 .018 10.00 201 202 0 3 .1 1. .0010 .0 .0 .001 10.00 _.. 0 202 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 203 209 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 209 210 0 3 .1 1. .0010 .0 .0 .001 10.00 0 210 310 0 3 .1 1. .0010 .0 .0 .001 10.00 0 ' 310 140 16 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 .1 1.0 1.2 1.5 2.0 3.4 3.9 4.4 6.6 ' 6.7 7.7 8.9 8.4 10.3 8.8 11.5 9.0 12.4 9.2 13.0 9.3 13.4 9.4 13.7 9.4 13.9 9.5 13.9 9.5 214 315 0 3 .1 1. .0010 .0 .0 .001 10.00 O 215. 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 315 216 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 .2 3.0 .6 4.0 .8 4.5 1.2 5.0 1.4 96.9 1.6 265.0 216 116 0 3 1 1. .0010 .0 .0 .001 10.00 ' 0 116 140 0 1 CHANNEL 10.0 1650. .0030 4.0 4.0 .035 5.00 0 140 357 0 1 CHANNEL 10.0 700. .0030 4.0 4.0 .035 5.00 0 223 224 0 3 .1 1. 0010 .0 .0 .001 10.00 ' 0 224 334 0 3 .1 1.. .0010 .0 .0 .001 10.00 0 334 124 11 2 PIPE .1 1. .0010 .0 .0 .001 .10 O ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .1 4.0 .2 6.0 .5 8.0 1.0 10.0 1.6 12.0 2.5 14.0 3.4 16.0 4.7 18.0 5.1 18.6 5.6 19.3 ' L:UOBS\702100\data\Drainage\SWMM\PhasingpvhlOyear.out 13 Printed: 5/12/2004 SEAR -BROWN 124 226 0 2 PIPE 3.0 US. .0080 .0 .0 .011 5.00 0 226 336 0 3 .1 1. .0010 .0 .0 .001 10.00 0 ' 336 357 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.0 .4 6.0 1.0 8.0 1.9 10.0 2.3 10.7 ' 2.5 36.8 2.8 84.3 130 131 0 2 PIPE 3.0 450. .0070 .0 .0 .013 3.00 0 131 330 0 2 PIPE 3.5 250. .0070 .0 .0 .013 3.50 0 ' 330 241 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.0 .2 2.0 .6 3.0 1.1 4.0 1.9 5.0 ' 3.0 6.0 251 350 0 3 .1 1. .0010 .0 .0 .001 10.00 0 350 216 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.0 .3 2.0 .6 3.0 .8 3.5 1.1 4.0 1.1 4.1 1.3 96.0 1.5 264.1 252 160 0 3 .1 1. .0010 .0 .0 .001 10.00 0 ' 160 261 0 5 PIPE 1.5 275. .0100 .0 .0 .013 1.50 0 OVERFLOW .0 275. .0100 10.0 10.0 .035 5.00 261 262 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 262 365 0 3 .1 1. .0010 .0 .0 .001 10.00 0 365 241 7 2 PIPE 1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 1.3 6.3 2.4 7.5 2.5 14.0 2.6 25.9 2.7 41.3 2.8 59.5 241 141 O 3 .1 1. .0010 .0 .0 .001 10.00 0 ' t 141 -357 0 1 CHANNEL 10.0 500. .0030 4.0 4.0 .035 5.00 0 381 382 5 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 5 2.2 1.0 5.5 2.0 6.3 2.1 48.9 382 401 16 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.2 .2 2.4 .5 3.6 .6 4.0 .7 ' 6.0 .7 7.2 .8 8.4 .8 9.6 .8 10.0 .9 12.0 1.1 20.0 1.2 30.0 1.4 40.0 1.5 50.0 1.5 55.0 401 402 0 1 CHANNEL 2.0 550. .0130 50.0 50.0 016 1.00 0 402 406 0 .1 CHANNEL 2.0 950. .0060 50.0 50.0 .016 1.00 0 400 406 0 1 CHANNEL 10.0 110, 0060 5.0 6.0 .040 2.00 O ' 406 380 0 3 .1 1. .0010 .0 .0 .001 .10 0 380 403 12 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 . RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 2.7 8.8 3.1 9.3 3.2 10.0 3.6 15.0 4.0 20.0 4.9 21.8 5.0 22.0 5.5 22.9 6.2 52.4 6.6 75.1 6.9 107.7 384 404 5 2 PIPE .1 1.. .0010 .0 .0 .001 .10 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.0 3.7 1.9 9.3 1.9 11.5 2.0 15.5 383 407 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .7 1.3 1.3 3.9 1.6 4.4 1.8 4.7 2.0 22.3 2.1 58.7 403 407 0 1 CHANNEL 5.0 950. .0040 4.0 4.0 .045 5.00 . ' 0 407 405 0 3 .1 1. 0010 .0 .0 .001 .10 0 405 410 0 5 PIPE 3.5 2000. .0020 .0 .0 .013 3.50 ' 0 L:UOBS\702100\data\Drainage\SWMM\Phasingpvhl0year.out 14 Printed: 5/12/2004 ' SEAR -BROWN OVERFLOW 40.0 2000. .0020 50.0 50.0 .016 5.00 404 407 0 5 PIPE 3.5 900. .0150 .0 .0 .016 3.50 0 OVERFLOW 40.0 900. .0150 50.0 50.0 .016 5.00 388 387 0 1 CHANNEL 5.0 1300. .0070 150.0 150.0 .045 5.00 0 387 386 0 1 CHANNEL 5.0 750. .0070 150.0 150.0 .045 5.00 0 386 284 0 1 CHANNEL 4.0 800. .0030 150.0 150.0 .045 5.00 ' 0. 284 283 0 1 CHANNEL 4.0 700. .0063 150.0 150.0 .045 5.00 0 283 282 0 1 CHANNEL 7.0 1000. .0057 70.0 40.0 .045 5.00 0 282 410 0 1 CHANNEL 9.0 800. .0460 9.0 1.5 .045 5.00 0 281 414 0 1 CHANNEL 2.0 1500. .0156 55.0 76.0 .035 5.00 0 409 413 0 1 CHANNEL 1.0 1500. .0100 50.0 50.0 .045 5.00 ' 0 410 411 0 4 CHANNEL 5.0 600. .0450 2.5 3.0 .035 7.00 0 OVERFLOW 45.0 600. .0450. 25.0 50.0 .035 13.00 411 412 0 4 CHANNEL 5.0 1060. .0038 3.0 2.0 .035 6.00 0 OVERFLOW 30.0 1060. .0038 35.0 60.0 .035 11.00 412 413 0 4 CHANNEL 5.0 870. .0060 5.0 2.0 .035 6.00 0 OVERFLOW 50.0 870. .0060 30.0 45.0 .035 12.00, ' 413 414 0 5 PIPE 5.0 40. 0060 .0 .0 .035 5.00 0 OVERFLOW 50.0 40. .0660 .100.0 100.0 .016 10.00 414 415 0 1 CHANNEL 5.0 1180. .0060 30.0 25.0 .035 10.00 0 415 416 0 1 CHANNEL 5.0 1050. .0060 40.0 50.0 .035 10.00 0 416 517 0 1 CHANNEL 5.0 800. .0060 40.0 25.0 .035 6.00 0 517 0 417 0 3 .1 1. .0010 .0 .0 .001 .10 ' 417 0 0 2 PIPE .1 1. .0030 .0 .0 .035 .10 0 TOTAL NUMBER OF GUTTERS/PIPES. 207 1, ' L:\JOBS\702100\data\Drainage\SWMM\Phasingpvhl0year.out 15 Printed: 5/12/2004 ' SEAR•BROWN 1 lJ .1 L:UOBS\702100\data\Drainage\SWMM\Phasingpvh10year.out 16 Printed: 5/12/2004 SEAR -BROWN ' McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3122100 EXTRAN ADOPTED 10-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.; 10/25/00 GUTTERS/PIPES ARRANGEMENT OF SUBCATCHMENTS AND GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA 2 8 50 9 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 796.3 4 341 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 219.3 6 7 0 0• 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 34.4 7 0 0 0 0 0 0 0 0 0 0 240 0 0 0 0 0 0 0 0 0 5.0 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .3 9 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 434.3 34 11 112 0 0 0 0 0 0 0 0 0 110 111 320 0 0 0 0 0 0 0 6.5 12 11 47 291 0 0 0 0 0 0 0 113 114 0 0 0 0 0 0 0 0 ' 30.0 13 12 0 0 0 0 0 0 0 0 0 115 116 0 0 0 0 0 0 0 0 33.9 14 0 0 0 0 0 0 0 0 0 0 118 0 0 0 0 0 0 0 0 0 1.1 16 34 0 0 0 0 0 0 0 0 0 160 121 0 0 0 0 0 0 0 0 9.8 20 0 0 0 0 0 0 0 0 0 .0 200 0 0 0 0 0 0 0 0 0 31.3 21 33. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 5.6 ' 22 16 25 42 0 0 0 0 0 0 0 120 122 0 0 0 0 0 0 0 0 290.6 25 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 26 41 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 235.8 27 270 271 .275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233.4 28 29 0 0 0 0 0 0 0 0 0 281 0 0 0 0 0 0 0 0 0 5.7 29 30 0 0 0 0 0 0 0 0 0 282 0 0 0 0 0 0 0 0 0 3.5 30 0 0 0 0 0 0 0 0 0 0 283 0 0 0 0 0 0 0. 0 0 2.0 31 470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 213.6 1 32 0 0 0 0 0 0 0 0 0 0 222 0 0 0 0 0 0 0 0 0 19.3 33 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 5.6 34 0 0 0 0 b 0 0 0 0" 0 340 0 0 0 0 0 0 0 0 0 4.3 35 0 0 0 0 0 0 0 0 0 0 225 0 0 0 0 0 0 0 0 0 65.6 36 0 0 0 0 0 0 0 0 0 0 360 0 0 0 0 0 0 0 0 0 ' 2.4 38 39 374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 118.2 39 593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103.8 40 0 0 0 0 0 D 0 0 0 0 314 0 0 0 0 0 0 0 0 0 91.2 41 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233.4 42 46 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 259.6 43 45 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 312.8 44 21 0 0 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 .1 ' 45 0 0 0 0 0 0 0 0 0 0 220 0 0 0 0 0 0 0 0 0 22.2 46 0 0 0 0 0 0 0 0 0 0 260 0 0 0 0 0 0 0 0 0 23.8 47 0 0 0 0 0 0 0 0 0 0 230 0 0 0 0 0 0 0 0 0 ' 14.7 50 6 0 0 0 0 0 0 0 0 0 80 60 0 0 0 0 0 0 0 0 f 129.5 1. 51 13 14 20 44 43 0 0 0 0 0 130 100 117 190 0 0 0 0 0 0 434.3 ' 72 583 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.4 73 673 0 0 0 0 0 0 0 0 0 373 0 0 0 0 0 0 0 0 0 8.2 ' L:\JOBS\702100\data\Drainage\SWMM\PhasingpvhlOyear.out 17 Printed: 5/12/2004 SEAR -BROWN 74 474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 61.5 75 0 0 0 0 0 0 0 0 0 0 "1 0 0 0 0 0 .0 0 0 0 28.4 76 477 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 0 0 0 0 9.7 I 82 682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 83 684 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 93.8 84 0 0 0 0 0 0 0 0 0 0 384 0 0 0 0 0 0 0 0 0 6.9 85 82 0 0 0 0 0 0 0 0 0 385 0 0 0 0 0 0 0 0 0 7.1 88 89 90 496 0 0 0 0 0 0 0 389 393 0 0 0 0 0 0 0 0 37.9 89 92 395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4 90 490 491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.2 91 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.5 92 0 0 0 0 0 0 0 0 0 0 394 0 0 0 0 0 0 0 0 0 1.4 93 91 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76. 76.0 94 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.0 95 0 0 0 0 0 0 0 0 0 0 302 0 0 0 0 0' 0 0 0 0 47.5 102 35 32 368 0 0 0 0 0 0 0 223 224 0 0 0 0 0 0 0 0 1505.3 112 0 0 0 0 0 0 0 0 0 0 112 0 0 0 0 0 0 0 0 0 1.3 116 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 818.5 124 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 130 0 0 0 0 0 0 0 0' 0 0 30 0 0 0 0 0 0 0 0 0 5.9 131 130 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 9.5 140 310 116 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 .0 ( 141 241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 04 104.7 160 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.9 166 0 0 0 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 19.0 167 166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.0 168 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 5.8 169 167 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 170 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 171 0 0 0 0 0 0 0 0 0 0 106 0 0 0 0 0 0 0 0 0 7.7 172 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 32.3 173 172 0 0 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.3 174 170 171 0 0 0 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.6 175 173 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.8 176 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 13.8 177 175 176 977 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112.2 178 0 0 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0 0 0 0 33.6 179 0 0 0 0 0 0 0 0 0 0 214 0 0 0 0 0 0 0 0 0 1.6 180 329 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 105.2 201 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8.5 202 201 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12.6 203 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 5.7 209 202 203 0 0 0. 0 0 0 0 0 4 5 7 9 0 0 0 0 0 0 46.1 210 209 0 0 0 0 0 0 0 0 0 6 8- 10 0 0 0 0 0 0 0 65.1 214 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 I 4.8 L:UOBS\702100\data\Drainage\SWMM\PhasingpvhlOyear.out 18 Printed: 5/12/2004 SEAR -BROWN ' 215 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 4.4 216 2 315 350 0 0 0 0 0 0 0 16 39 0 0 0 0 0 0 0 0 818.5 223 0 0 0 0 0 0 0 0 0 0 20 21 22 0 0 0 0 0 0 0 20.4 224 223 0 0 0 0 0 0 0 0 0 23 24 0 0 0 0 0 0 0 0 25.7 226 124 0 0 0 0 0 0 0 0 0 25 26 0 0 0 0 0 0 0 0 32.4 241 94 330 365 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 104.7 250 0 0 0 0 0 0 0 0 0 '0 250 0 0 0 0 0 0 0 0 0 1.6 251 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 8.1 252 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0 0 0 0 0 8.9 261 160 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 ' 11.0 262 261 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 15.7 270 0 0 0 0 0 0 0 0 0 0 270 0 0 0 0 0 0 0 0 0 ' 3.3 271 0 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 6.3 272 0 0 0 0 0 0 0 0 0 0 272 0 0 0 0 0 0 0 0 0 1.5 275 272 28 31 0 0 0 0 0 0 0 280 0 0 0 0 0 0 0 0 0 223.8 ' 281 0 0 0 0 0 0 0 0 0 0 508 0 0 0 0 0 0 0 0 0 26.4 282 283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 210.4 283 284 0 0 0 0 0 0 0 0 0 511 0 0 0 0 0 0 0 0 0 ' 210.4 284 386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171.3 291 0 0 0 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 5.9 ' 301 0 0 0 0 0 0 0 0 0 0 301. 0 0 0 0 0 0 0 0 0 28.5 310 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65.1 ( 315 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.2 320 0 0 0 0 0 0 0 0 0 0 201 0 0 0 0 0 0 0 0 0 14.8 321 320 0 0 0 0 0 0 0 0 0 209 0 0 0 0 0 0 0 0 0 38.1 ' 322 0 0 0 0 0 0 0 0 0 0 202 0 0 0 0 0 0 0 0 0 21.5 323 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.5 324 321 323 179 0 0 0 0 0 0 0 165 0 0 0 0 0 0 0 0 0 ' 71.6 325 331 0 0 0 0 0 0 0 0 0 211 0 0 0 0 0 0 0 0 0 83.2 326 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.2 327 927 0 0 0 0 0 0 0 0 0 216 0 0 0 0 0 0 0 0 0. 84.1 . 328 0 0 0 0 0 0 0 0 0 0 212 0 0 0 0 0 0 0 0 0 4.2 329 327 328 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 88.3 330 131 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 11.5 331 324 0 0 0 0 0 0 0 0 0 215 0 0 0 0 0 0 0 0 0 72.3 ' 334 224 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 25.7 336 226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.4 341 177 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 217.4 350 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.1 357 140 336 141 0 0 0 0 0 0 0 41. 0 0 0 0. 0 0 0 0 0 1031.4 358 357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1031.4 359 358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1031.4 360 359 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 1036.8 361 360 370 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1043.8 362 361 371 0 0 0 0 0 0 0 0 309 0. 0 0 0 0 0 0 0 0 ' 1048.3 U: JOBS\702100\d ata\Drainage\SWMM\Phasingpvh I Oyear.out 19 Printed: 5/12/2004 SEAR -BROWN ' 363 362 372 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0 0 0 0 1059.1 364 363 373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1268.4 ' 365 262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15.7 366 364 369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1346.9 367 366 0 0 0 0 0 0 0, 0 0 313 0 0 0 0 0 0 0 0 0 t 1347.8 368 367 0 0 0 0 0 0 0 0 0 217 218 0 0 0 0 0 0 0 0 1383.E 369 0 0 0 0 0 0 0 0 0 0 305 0 0 0 0 0 0 0 0 0 78.5 ' 370 0 0 0 0 0 0 0. 0 0 0 308 0 0. 0 0 0 0 0 0 0 7.0 371 0 0 0 0 0 0 0 0. 0 0 311 0 0 0 0 0 0 0 0 0 2.8 372 0 0 0 0 0 0 0 0 0 0 306 0 0 0 0 0 0 0 0 0 ' 8.7 373 38 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 209.3 374 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 ' 14.4 380 406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 381 10 0 0 0 0 0 .0 0 0 0 403 0 0 0 0 0 0 0 0 0 11.0 382 21.4 381 0 0 0 0 0 0 0 0 0 404 0 0 0 0 0 0 0 0 0 ' 383 0 0 0 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 0 0 14.1 384 0 0 0 0 0 0 0 0 0 0 407 0 0 0 0 0 0 0 0 0 13.2 386 387 0 0 0 0 0 0 0 0 0 512 0 0 0 0 0 0 0 0 0 ' 171.3 387 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124.4 388 0 0 0 0 0 0 0 0 0 0 513 0 0 0 0 0. 0 0 0 0 ' 124.4 395 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 400 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 0 0 0 0 9.9 . 401 382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 21.4 402 401 .0 0 0 0 0 0 0 0 0 405 0 0 0 0 0, 0 0 0 0 24.9 403 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 ' 404 384 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 0 0 0 0 52.0 405 407 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135.0 406 402 400 0 0 0 0 0 0 0 0 401 402 0 0 0 0 0 0 0 0 ' 68.9 407 383 403 404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135.0 409 0 0 0 0 0 0 0 0 0 0 505 0 0 0 0 0 0 0 0 0 67.3 ' 410 102 405 282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1850.7 411 410 0 0 0 0 0 0 0 0 0 509 510 0 0 0 0 0 0 0 0 1882.0 412 411 0 0 0 0 0 0 0 0 0 506 507 0 0 0 0 0 0 0 0 ' 1912.5 413 409 412 0 0 0 0 0 0 0 0 514 0 0 0 0 0 0 0 0 0 2007.9 414 281 413 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 2090.3 415 414 0 0 0 0 0 0 0 0 0 503 504 0 0 0 0 0 0 0 0 2090.8 416 415 0 0 0 0 0 0 0 0 0 501 0 0 0 0 0 0 0 0 0 2109.7 417 517 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 2154.0 470 570 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213.6 471 571 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 .5 ' 472 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 195 95 .8 474 574 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � 61.5 477 577 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.7 479 0 0 0 0 0 0 0 0 0 0 379 0 0 0 0 0 0 0 0 0 1.5 480 0 0 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 0 ' 1.4 L:U OBS\7021 00\data\Drai nag e\SW M M\Phasi ngpvh 1 Oyear. out 20 Printed: 5/12/20G4 SEAR -BROWN ' 481 0 0 0 0 0 0 0 0 0 0 381 0 0 0 0 0 0 0 0 0 2.6 483 0 0 0 0 0 0 0 0 0 0 383 .0 0 0 0 0 0 0 0 0 5.6 ' 486 586 0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 0 0 0 0 93.8 488 588 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 64.4 490 0 0 0 0 0 0 0 0 0 0 390 0 0 0 0 0 0 0 0 0 1.4 491 0 0 0 0 0 0 0 0 0 0 391 0 0 0 0 0 0 0 0 0 2.8 496 0 0 0 0 0 0 0 0 0 0 396 0 0. 0 0 0 0 0 0. 0 13.5 ' 497 0 0 0 0 0 0 0 0 0 0 397 0 0 0 0 0 0 0 0 0 3.9 517 416 0 0 0 0 0 0 0 0 0 500 502 0 0 0 0 0 0 0 0 2154.0 570 471 0 0 0 0 0 0 0 0 0 370 0 0 0 0 0 0 0 0 0 ' 213.6 571 472 0 0 0 0 0 .0 0 0 0 371 0 0 0 0 0 0 0 0 0 207.5 572 72 73 74 0 0 0 0 0 0 0 372 0 0 .0 0 0 0 0 0 .0 195.8 574 576 75 0 0 0 0 0 0 0 0 374 0 0 0 0 0 0 0 0 0 61.5 576 76 0 0 0 0 0 0 0 0 0 376 0 0 0 0 0 0 0 0 0 14.8 577 481 480 479 0 0 0 0 0 0 0 377 378 0 0 0 0 0 0, 0 0 ' 9.7 582 0 0 0 0 0 0 0 0 0 0 382 0 0 0 0 0 0 0 0 0 8 583 83 483 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.4 584 486 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.8 586 488 85 84 0 0 0 0 0 0 0 386 387 0 0 0 0 0 0 0 0 93.8 588 88 497 0 0 0 0 0 0 0 0 388 392 0 0 0 0 0 0 0 0 64.4 591 594 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27.9 592 591 0 0 0 0 0 0 0 0 0 318 0 0 0 0 0 0 0 0 0 90.8 593 595 592 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103.8 594 0 0 0 0 0 0 0 0 0 0 317 0 0 0 0 0 0 0 0 0 27.9 595 0 0 0 0 0 0 0 0 0 0 311 0 0 0 0 0 0 0 0 0 13.0 ' 673 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 682 582 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .8 683 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' .0 684 584 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.8 827 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 927 827 326 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.2 977 178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.6 THE FOLLOWING CONVEYANCE ELEMENTS WERE SURCHARGED ' DURING THE SIMULATION. THIS COULD LEAD TO ERRORS IN THE SIMULATION RESULTS!! 417 THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL ' STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 41 324 331 358 360 470 592 927 ' L:UOBS\702100\data\Drainage\SWMM\PhasingpvhlOyear.out 21 Printed: 5/12/2004 ' SEAR -BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3122100 EXTRAN ADOPTED 10-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.; 10/25/00 ' *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** i *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ' ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 2:2 175.7 .1 13.9:D 1 45. 4:1 63.5 2.3 1 6. 6:1 55.8 2.3 0 40. 7:1 13.9 .4 0 37. 8:1 62.5 1.1 1 14. 9:1 289.9 2.2 0 44. 11:1 17.0 .5 0 36. 12:1 31.6 .6 0 38. ' 13:1 42.3 .7 0 37. 14:1 3.5 .3 0 36. 16:1 23.2 .4 0 35. 20:1 85.8 2.5 0 37. 21:1 12.0 .4 0 43. ' 22:1 91.5 2.4 0 38. 25:2 .3 .2 2 3. 26:5 37.1 2.0 1 7. 27:2 36.3 .1 1.8:D 1 5. 28:1 14.4 .5 0 39. ' 29:1 7.6 .4 0 42. 30:1 6.9 .4 0 36. 31:5 26.3 1.4 0 48. 32:1 5.5 .4 0 51. 33:1 16.4 .5 0 37. 34:2 1.9 .1 .3:D 1 3. 35:1 15.3 .5 0 59. 36:5 11.4 1.4 0 35. 38:4 21.4 1.5 1 45. 39:4 17.4 1.4 2 10. ' 40:1 141.9 2.5 0 37. 41:5 36.3 1.9 1 6. 42:2 48.8 1.8 1 8. 43:3 102.2 (DIRECT FLOW) 0 38. 44:1 45:1 25.9 11.8 1.0 .1 .1:D 0 0 42. 46. ' 46:1 11.2 .1 .9:D 1 2. 47:1 7.1 .1 .1:D 0 49. 50:1 169.6 1.8 0 40. ' S1:1 72:5 317.0 18.5 2.3 1.4 0 1 40. 31. 73:4 22.8 .4 0 38. 74:1 1.9 .2 3 8. 75:1 67.1 1.6 0 36. 76:1 82:4 9.7 1.2 1.0 .1 0 0 52. 39. ' 83:1 17.1 .9 1 28. 84:4 25.8 .4 0 36. 85:4 14.8 .3 0 37. 88:1 89:1 71.7 7.9 2.1 1.0 0 0 36. 38. ' 90:4 .8 .1 1 54. 91:1 5.4 .9 2 7. 92:2 6.1 .7 0 35. 93:2 7.4 .1 3.2:1 2 11, 94:1 7.4 1.3 2 16. 95:3 104.0 (DIRECT FLOW) 0 35. 102:5 272.5 6.3 1 40. 112:1 5.1 .3. 0 36. 116:1 181.9 2.7 1 48. 124:2 10.7 .8 1 4. ' 130:2 23.3 1.4 0 35. 131:2 37.3 1.6 0 35. 140:1 189.6 2.7 1 49. 141:1 15.6 .7 1 57. 160:5 27.8 2.3 0 35. ' 166:2 16.8 .1 1.1:D 0 50. 167:1 16.8 1.4 0 52. 168:2 1.2 .1 .3:D 1 46. 169:5 17.9 1.4 0 52. 170:1 17.7 1.4 0 56. ' 171:2 2.2 .1 .6:0 1 28. 172:2 2.9 .1 3.4:D 2 7. 173:4 2.9 .7 2 19. l 174:5 19.8 1.0 0 57. 175:5 21.6 1.2 1 1. 176:2 2.2 .1 1.O:D 2 1. 177:5 29.3 1.4 1 3. 178:2 5.9 .1 2.8:D 2 2. 179:5 7.3 .9 0 35. 180:2 33.9 .1 1.8:D 1 2. L:UOBS\702100\data\Drainage\SWMM\Phasingpvhl0year.out 22 Printed: 5/12/2004 ' 201:3 18.9 (DIRECT FLOW) 0 35. 202:3 35.5 (DIRECT FLOW) 0 35. 203:3 13.6 (DIRECT FLOW) 0 35. 209:3 113.7 (DIRECT FLOW) 0 35. ' 210:3 166.8 (DIRECT FLOW) 0 35. 214:3 14.5 (DIRECT FLOW) 0 35. 215:3 4.7 (DIRECT FLOW) 0 40. 216:3 182.0 (DIRECT FLOW) 1 41. 223:3 224:3 54.9 69.6 (DIRECT (DIRECT FLOW) FLOW) 0 0 35. 35. ' 226:3 28.2 (DIRECT FLOW) 0 35. 241:3 15.6 (DIRECT FLOW) 1 55. 250:2 .3 .1 .1:D 2 1. 251:3 252:3 20.2 30.5 (DIRECT (DIRECT FLOW) FLOW) 0 0 35. 35. ' 261:3 36.8 (DIRECT FLOW) 0 35. 262:3 48.9 (DIRECT FLOW) 0 35. 270:3 10.1 (DIRECT FLOW) 0 35. 271:5 272:2 20.3 .6 1.9 .1 .1:D 0 0 35. 56. ' 275:2 43.7 1.7 0 41. 281:1 9.8 .3 0 58. 282:1 56.6 .8 1 33. 283:1 284:1 . 49 49.3 .8 .5 1 1 . 26. 26 291:2 3.1 .1 .4:D 1 1. 301:2 5.4 .1 2.O:D 2 1. 310:2 6.8 .1 4.6:D 2 2. 3:2 3.4 .1 .4:D 1 5, 32020:1 14.7 .8 0 42. ' 321:2 6.0 .1 2.O:D 1 55. 322:2 6.5 .1 1.1:D 1 19. 323:1 6.5 .3 1. 27. 321:2 36.8 1.3 0 35. 325:1 70.2 1.9 0 36. ' 326:5 71.2 1.8 0 36. 327:1 61.3 1.8 0 39. 328:5 18.6 1.4 0 35. 329:1 69.9 1.8 0 40. 330:2 3.5 .1 .B:D 1 10. ' 331:2 38.2 1.2 0 35. 334:2 10.7 .1 1.2:0 1 3. 336:2 8.2 .1 1.1:D 2 32. 341:5 63.2 2.1 1 2. 350:2 2.5 .1 A :D 1 12. ' 357:1 213.8 2.4 1 50. 358:2 213.8 3.0 1 51. 359:1 213.8 2.4 1 54. 360:2 214.1 3.0 1 54. 361:1 215.5 2.5 1 55. ' 362:1 216.5 2.5 1 55. 363:1 218.0 2.5 1 53. 364:4 235.8 2.6 1 59. 365:2 5.2 1 1.0:0 1 9. 366:4 247.8 2.6 1 44. ' 367:4 247.8 3.9 1 47. 368:4 253.0 3.3 1 48. 369:4 24.3 1.6 0 51. 370:2 1.4 .1 .4:D 1 28. 371:2 1.2 .1 .1:D 1 1. ' 372:2 9.7 .1 .2:D 0 44. 373:2 18.6 .1 7.4:0 3 19. 374:2 4.6 .1 .8:D 1 8. 380:2 9.3 .1 3.1:D 2 12. 381:2 3.1 .1 .6:D 1 18. ' 382:2 6.5 .1 .7:D 1 11. 383:2 1.9 .1 .9:0 2 1. 384:2 2.7 .1 .7:0 1 40. 386:1 50.4 .6 1 17. 387:1 37.8 .5 1 13. ' 388:1 40.7 5 1 1. 395:3 3.6 (DIRECT FLOW) 0 31. 400:1 17.4 .7 0 38. 401:1 6.4 .2 1 14. 402:1 12.9 .3 0 36. ' 403:1 9.3 .8 2 21. 404:5 16.9 1.0 0 46. 405:5 21.3 1.7 1 7. 406:3 84.9 (DIRECT FLOW) 0 35. 407:3 21.6 (DIRECT FLOW) 1 0. ' 409:1 22.2 .6 1 0. 410:4 349.1 2.5 1 37. 411:4 354.3 4.5 1 39. 412:4 359.4 3.7 1 40. 413:5 414:1 378.7 383.4 5.6 2.0 1 1 36. 41. 415:1 391.0 1.7 1 45. 416:1 393.2 1.9 1 48. 417:2 .0 .1 128.9:5 10 0. ' 470:2 26.3 .1 .2:D 0 48. L:\JOBS\702100\data\Drainage\SWMM\PhasingpvhlOyear.out SEAR -BROWN 23 Printed: 5/12/2004 ' SEAR-BROWN 471:2 21.0 .1 .4:D 0 59. 472:2 18.4 .1 3.9:D 3 18. 474:2 1,9 5.6:1 3 7, 477:2 11.0 .1 .3:D 0 47. t 479:2 3.5 .1 .1:D 0 38. 480:2 3.0 .1 O:D 0 39. 481:2 2.1 .1 .2:D 0 51. 483:2 1.3 .1 .4:1 1 32. 486:2 17.1 .1 2.1:D 1 27. ' 488:2 9.5 .1 4.6:D 2 19. 490:2 .3 .1 .1:D 1 41. 491:2 .5 .1 .2:0 2 0. 416:2 12.8 .1 .6:1 0 49, 497:2 1.7 1 .3:D 1 3. ' 517:3 399.3 (DIRECT FLOW) 1 47. 570:3 31.8 (DIRECT FLOW) 0 36. 571:3 36.0 (DIRECT FLOW) - 0 35. 572:3 99.4 (DIRECT FLOW) 0 -35. 574:3 156.7 (DIRECT FLOW) 0 35. ' 576:3 12.3 (DIRECT FLOW) 0 51. 577:3 20.5 (DIRECT FLOW) 0 36. 582:3 3.4 (DIRECT FLOW) 0 35. 583:3 18.5 (DIRECT FLOW) 1 31. 584:3 17.1 (DIRECT FLOW) 1 27. ' 586:3 96.3 (DIRECT FLOW) 0 35. 588:3 108.7 (DIRECT FLOW) 0 35. 591:1 592:2 8.1 104.3 .4 1.7 1 0 43. ( 35. �_.fR o�uMz Pr ` 593 : 2 17.4 .0 �4 Z2�1-36. - -P- 6. - 594: Z 595:2 36.5 1.6 0 35. 673:3 .0 (DIRECT FLOW) 0 0. 682:3 2.4 (DIRECT FLOW) 0 35. 683:3 1.0 (DIRECT FLOW) 0 35. 684:3 17.1 (DIRECT FLOW) 1 27. 827:1 .0 .0 0 0. 927:1 71.1 1.1 0 37. 977:3 5.9 (DIRECT FLOW) 2 2. ENOPROGRAM PROGRAM CALLED l 1l 1 ' L:UOBS\702100\data\Drainage\SWMM\Phasingpvhl0year.out 24 Printed: 5/12/2004 SEAR -BROWN ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) *** ENTRY MADE TO RUNOFF MODEL *** 16-0 yk- LAJOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 1 Printed: 5/12/2004 ' . SEAR•BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCEIOOR.DAT ICON ENGINEERING, INC.; 10/25/00 ' NUMBER OF TIME STEPS 600 INTEGRATION TIME INTERVAL (MINUTES) 1.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES ' FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.84 5.49 9.95 1.22 1.06 1.00 .95 .91 .87 .84 .73 .71 .69 .67 .00 [J 1 11 1 1 1 t 1 1 1 i 4.12 2.48 1.46 .81 .78 .75 1 L:\JOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 2 Printed: 5/12/2004 SEAR•BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999: W/ 3/22/00 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.; 10/25/00 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) ,AGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RAZE ' NO -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 .51 .50 .00180 80 50 7109.0 86.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180. 1 60 50 1150.0 8.9 40.0 .0100 .016 .250 .100 300 .51 .50 .00180 I 70 6 10239.0 29.4 40.0 .0100 .016 .250 .100 .300 .51 .50. .00180 1 130 51 7161.0 24.7 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 100 51 2875.0 13.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 150 4 1590.0 1.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 110 11 1250.0 1.9 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 111 11 700.0 1.1 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 112 112 750.0 1.3 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 113 1 12 1200.0 1.3 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 114 12 950.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 115 13 1050.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 I 116 13 1400.0 2.2 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 1 117 51 1000.0 2.9 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 118 14 1250.0 1.1 99.0 0100 .016 .250 .100 .300 .51 .50 .00180 1 ' 320 11 305.0 2.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 120 22 3875.0 17.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 90 2 5715.0 13.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 190 51 250.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 200 20 4550.0 31.3 80.0 0100 .016 .250 .100 .301 .51 .50 .01180 1 ' 210 44 1090.0 7.5 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 240 7 1742.0 5.0 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 220 45 3228.0 22.2 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 260 46 3454.0 23.8 50.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 230 47 2134.0 14.7 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 290 291 1278.0 5.9 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 340 34 1260.0 4.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 280 275 1000.0 2.0 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 281 28 1650.0 3.2 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 I 282 29 850.0 1.5 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 I 1 283 30 1250.0 2.0 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 330 33 700.0 5.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 160 16 3500.0 4.0 84.0 .0200 .016 .250 .100 .300 .51 .50 .00180 121 16 850.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 122 22 1200.0 1.8 80.0 .0100 .016 .250 .100 300 .51 .50 .00180 I 250 250 500.0 1.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 I / 270 270 625.0 3.3 60.0 .0100 .016 .250 .100 .300 51 .50 .00180 1 1 ' 271 I 271 2017.0. 6.3 55.0 .0100 .016 .250 .100 .300 .51 .50 .00180 272 272 817.0 1.5 31.0 .0900 .016 .250 .100 .300 .51 .50 .00180 1 360 36 3223.0 2.4 87.0 .0200 .016 .250 .100 .300 .51 .50 .00180 I L:VOBS\702100\data\Drainage\SWMM\Phasingpvht00year.out 3 Printed: 5/12/2004 SEAR - BROWN 201 320 3213.0 14.8 25.0 .0183 .016 .250 .100 .300 .51 .50 .00180 1 202 322 1873.0 21.5 50.0 .0165 .016 .250 .100 .300 .51 .50 .00180 1 203 172 7024.0 32.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 �. 204 166 4138.0 19.0 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 205 168 650.0 5.8 47.0 .0105 .016 .250 .100 .300 .51 .50 .00180 1 206 171 958.0 7.7 70.0 . .0080 .016 .250 .100 .300 .51 .50 .00180 1 207 176 1718.0 13.8 57.0 .0235 .016 .250 .100 .300 .51 .50 .00180 1 208 178 2936.0 33.6 70.0 .0170 .016 .250 .100 .300 .51 .50 .00180 1 209 321 6795.0 23.4 40.0 .0085 .016 .250 .100 .300 .51 .50 .00180 1 165 324 2991.0 10.3 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 211 325 3165.0 10.9 64.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 212 328 1220.0 4.2 80.0 .0380 .016 .250 .100 .300 .51 .50 .00180 1 213 180 1472.0 16.9 30.0 .0055 .016 .250 .100 .300 .51 .50 .00180 1 214 179 465.0 1.6 90.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 215 331 500.0 .7 90.0 .0270 .016 .250 .100 .300 .51 .50 .00180 1 216 327 1405.0 1.0 90.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 301 301 3315.0 28.5 71.0 .0050 .016 .430 .100 .600 .51 .50 .00180 1 302 95 13736.0 47.5 45.0 .0100 .016 .390 .100 .600 .51 .50 .00180 1 305 369 6839.0 78.5 3.9 .0110 .016 .250 .100 .300 .51 .50 .00180 1 306 372 2535.0 8.7 31.2 .0200 016 .251 .110 .300 .51 .50 .00180 1 307 360 2951.0 5.4 17.0 .1262 .016 .250 .100 .300 .51 .50 .00180 1 308 370 2042.0 7.0 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 { 309 362 888.0. 1.6 4.0 .1262 .016 .250 .100 .300 .51 .50 .00180 1 "1 311 371 807.0 2.8 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 312 363 569.0 2.1 2.3 .1262 .016 .250 .100 .300 .51 ..50 .00180 1 313 367 495.0 .9 1.0 , .0500 .016 .250 .100 .300 .51 .50 .00180 1 314 40 26470.0 91.2 34.0 .0200 .016 .250 .100 .300 .51 .50 .00180, 1 315 374 4179.0 14.4 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 316 595 2840.0 13.0 55.0 .0050 .016 .250 .100 .300 .51 .50. .00180 1 317 594 3037.0 27.9 80.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 ' 318 592 5477.0 62.9 37.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 217 368 1603.0 18.4 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 218 368 1515.0 17.4 5.0 .0300 .016 .250 .100 .300 .51 .50 .00180 1 222 32 1681.0 19.3 5.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 223 102 2004.0 23.0 5.0 .0400 .016 .250 .100 .300 .51 .50 .00180 1 224 102 1202.0 13.8 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 225 35 5715.0 65.6 5.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 1 201 1200.0 8.5 40.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 2 202 2000.0 4.1 68.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 3 203 800.0 5.7 44.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 4 209 750.0 1.6 74.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 5 209 1600.0 2.7 68.0 .0200 .016 .250 .100 .300 .51 .50 .00180 l 1 6 210 3800.0 7.6 66.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 7 209 750.0 3.3 57.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 8 210 450.0 2.3 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 L:WOBSV02100\data\Drainage\SWMM\Phasingpvh100year.out 4 Printed: 5/12/2004 SEAR•BROWN ' 9 209 3000.0 20.2 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 10, 210 1400.0 9.1 26.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 14 214 1000.0 4.8 54.0 .0200 .016 .250 .100 .300 .51 .50. .00180 1 15 215 1300.0 4.4 9.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 16 216 200.0 1.8 12.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 20 223 600.0 4.1 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 21 223 1400.0 9.0 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 22 223 1800.0 7.3 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 23 224 1000.0 2.2 61.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 24 224 600.0 3.1 34.0 0100 .016 .250 .100 .300 .51 .11 .00180 25 226 900.0 4.0 65.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 26 226 1000.0 2.7 32.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 30 130 2750.0 5.9 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 31 131 1700.0 3.6 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 32 331 400.0 2.0 48.0 .0200 .016 .250 .100 .300 51 .50 .00180 ' 39 216 700.0 3.1 11.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 40 140 1300.0 6.4 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 41 357 800.0 4.3 43.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 42 241 900.0 1.5 75.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 10 251 1800.0 8.1 42.0 .1201 .016 .250 .100 .300 .51 .50 .00180 1 ' 63 252 2250.0 8.9 61.0 .0200 .016 .250 .100 .300 .51 .50 .00180 I 61 261 650.0 2.1 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 62 262 1200.0 4.7 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 370 570 1050.0 6.1 63.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 371 571 2000.0 11.7 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 372 572 4900.0 26.7 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 373 73 2000.0 8.2 90.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 374 574 8000.0 18.3 86.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 375 75 5400.0 28.4 48.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 376 576 1000.0 5.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 1 377 577 400.0 1.9 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 378 577 450.0 2.3 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 379 479 450.0 1.5 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 380 480 350.0 1.4 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 381 481 550.0 2.6 70.0 .0100 .016. .250 .100 .300 .51 .50 .00180 1 382 582 700.0 .8 67.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 383 483 1200.0 5.6 69.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 1 384 84 2400.0 6.9 84.0 .0200 .016 .250 .100 .300 .51 .50 .00180 385 85 2100.0 6.3 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 386 586 2000.0 12.2 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 387 586 800.0 3.2 70.0 .0250 .016 .250 .100 .300 .51 .50 .00180 1 588 1548.0 16.0 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 (388 l 1 389 88 1220.0 7.0 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 390 490 550.0 1.4 70.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 391 491 600.0 2.8 70.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 L:UOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 5 Printed: 5112/2004 SEAR•BROWN ' 392 588 1100.0 6.6 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 393 88 4400.0 11.8 95.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 394 92 900.0 1.4 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 396 496 2950.0 13.5 93.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 397 497 810.0 3.9 85.0 .0210 .016 .250 .100 .300 .51 .50 .00180 1 400 400 860.0 9.9 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 401 406 1170.0 16.7 20.0 .0150 .016 .250 .100 .300 .51 .50 .00180 ' 1 402 406 1520.0 17.4 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 403 381 1920.0 11.0 45.0 .0170 .016 .250 .100 .300 .51 .50 .00180 1 404 382 1790.0 10.4 55.0 .0250 .016 .250 .100 .300 .51 .50 .00180 1 ' 405 402 3080.0 3.5 90.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 406 383 2053.0 14.1 38.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 407 384 1921.0 13.2 40.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 408 404 3378.0 38.8 5.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 500 1 517 3899.0 26.9 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 501 416 2750.0 18.9 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 502 517 3785.0 17.4 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 503 415 3893.0 44.7 5.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 504 415 2570.0 11.8 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 514 413 4080.0 28.1 5.0 .0201 .016 .250 .100 .300 .51 .50 .00180 1 ' 505 409 5867.0 67.3 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 506 412 2143.0 14.8 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 507 412 2277.0 15.7 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 508 281 3833.0 26.4 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 509 411 1936.0 13.3 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 510 411 2611.0 18.0 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 511 283 5670.0 39.1 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 512 386 6803.0 46.9 25.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 513 388 16060.0 124.4 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 159 TOTAL TRIBUTARY AREA (ACRES). 2154.02 �J L:UOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 6 Printed: 5/12/2004 SEAR•BROWN ' McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCE100R.OAT ICON ENGINEERING, INC.; 10/25/00 CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 2154.020 ' TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .790 ' TOTAL WATERSHED OUTFLOW (INCHES) 2.696 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .184 ' ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL 000 I 1 ' LAJOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 7 Printed: 5/12/2004 SEAR -BROWN ' McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3122100 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING. INC.; 10/25/00 WIDTH INVERT SIDE SLOPES )VERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JNUMBER ' CONNECTION (FT) (FT) (FT/FT) L R N (FT) 4 8 0 1 CHANNEL .0 800. .0044 4.0 4.0 .035 5.00 0 8 2 0 1 CHANNEL. 10.0 1750. .0100 4.0 4.0 .035 5.00 0 7 6 0 1 CHANNEL :O 1400. .0100 .0 50.0 .016 1.50 0 6 50 6 1 CHANNEL .0 1200. .0032 4.0 4.0 .035 5.00 ' 0 35 102 0 1 CHANNEL .0 1250. .0100 50.0 50.0 .045 5.00 0 16 22 0 1 CHANNEL .0 540. .0060 50.0 50.0 .016 Z.00 0 11 12 0 1 CHANNEL .0 700. .0060 50.0 .0 . .016 1.50 0 12 13 0 1 CHANNEL .0 850. .0060 50.0 .0 .016 1.50 0 13 51 0 1 CHANNEL .0 500. .0060 50.0 .0 .016 1.50 0 14 51 0 1 CHANNEL .0 900. .0060 50.0 .0 .016 1.50 0 112 11 0. 1 CHANNEL .0 700. .010.0 50.0 .0 .016 1.50 0 0 20 51 0 1 CHANNEL .0 1100. .0050 4.0 4.0 .035 5.00 ' 21 44 0 1 CHANNEL .0 1200. .0050 50.0 .0 .016 1.50 0 44 51 0 1 CHANNEL 3.0 800. .0050 10.0 10.0 .035 2.00 0 45 43 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1 11.9 10.0 11.9 22 43 0 1 CHANNEL 0 1600, 0170 4.0 4.0 .031 5.00 7 43 51 0 3 .1 1. .0010 .0 .0 .016 .10 0 50 2 0 1 CHANNEL 10.0 1000. .0050 15.0 15.0 .040 5.00 0 51 9 0 1 CHANNEL 10.0 500. .0050 15.0 15.0 .040 5.00 ' 0 9 2 0 1 CHANNEL 5.0 1000. .0060 15.0 15.0 .035 5.00 0 47 12 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .1 7.2 10.0 7.2 250 25 6 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 5.0 25 22 0 2 PIPE 1.3 500. .0050 .0 .0 .013 1.25 0 291 12 3 2 PIPE .1 1. .0050 .0 .0 .016 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1 3.1 10.0 3.1 46 42 3 1 CHANNEL .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1 11.2 10.0 11.2 26 42 0 5 PIPE 3.5 800. .0050 b .0 .016 3.50 0 OVERFLOW 10.0 800. .0050 4.0 4.0 .035 5.50 ' 42 22 0 2 PIPE 6.0 1. .0050 .0 .0 .016 6.00 0 270 27 0 3 .0 1. .0010 .0 .0 .001 10.00 0 271 27 0 5 PIPE 2.3 45. .0040 .0 .0 .013 2.25 ' 0 OVERFLOW .0 45. .0040 198.0 117.0 .020 5.00 272 275 6 2 PIPE .1 10. .0010 .0 .0 .013 .10 . 0 - RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 .0 .4 .1 .8 .3 1.0 .5 1.2 .8 1.3 275 27 0 2 PIPE 3.5 676. .0084 .0 .0 .013 3.50 0 ' L:\JOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 8 Printed: 5/12/2004 SEAR -BROWN ' 27 41 8 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .8 .2 2.5 .5 3.5 .9 4.2 1.4 4.8 2.1 57.6 3.2 191.4 41 26 0 5 PIPE 4.0 100. .0050 .0 .0 .016 4.00 0 OVERFLOW 10.0 100. .0050 50.0 50.0 .016 5.00 ' 36 26 0. 5 PIPE 1.3 90. .0140 .0 .0'' .013 1.25 0 OVERFLOW .0 90. .0140 200.0 200.0 .020 5.00 28 275 0 1 CHANNEL .0 1000. .0050 .0 50.0 .016 1.50 ' 0 29 28 0 1 CHANNEL .0 1650. .0050 .0 50.0 .016 1.50 0 30 29 0 1 CHANNEL .0 850. .0050 .0 50.0 .016 1.50 0 34 16 3 2 PIPE 1 1. .0050 .0 .0 .016 10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.9 10.0 1.9 . 92 89 0 2 PIPE 2.0 1000. .0100 .0 .0 013 2.00 0 395 89 4 3 .1 1. .0010 .0 .0 .001 .10 -1 TIME IN HRS VS INFLOW IN CIS .0 .0 .5 3.6 9.6 3.6 9.8 .0 89 88 0 1 CHANNEL 0 800, 0010 4.0 4.0 .035 5.00 0 490 90 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 0 2 5 2 .5 .2 2.5 491 90 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 5 1.0 6 91.9 7 260.0 90 88 0 4 CHANNEL 0 100, 1110 50.0 50.0 .116 .50 0 OVERFLOW 50.0 500. .0100 10.0 10.0 .035 5.00 496 88 6 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 12.0 .1 12.4 .8 12.8 2.1 13.2 3.5 31.6 88 588 0 1 CHANNEL .0 700. .0080 4.0 4.0 .035 5.00 0 497 588 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.6 .1 1.6 .4 1.7 .7 1.7 .8 1.8 1.3 20.2 588 488 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 488 586 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .5 .3 6.5 .7 8.4 4.9 9.5 5.7 ' 9.9 8.4 12.4 10.1 14.7 10.8 24.5 582 682 3 3 .1 1. .0610 .0 .0 .001 .10 683 DIVERSION TO GUTTER NUMBER 683 - TOTAL 0 VS DIVERTED 0 IN CIS ' 0 .0 4.6 1.3 8.0 1.8 682 82 0 3 .1 1. .0010 .0 .0 .001 10.00 0 683 0 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 82 85 0 4 CHANNEL .0 1300. .0140 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1300. .0140 10.0 10.0 .035 5.00 85 586 0 4 CHANNEL .0 1000. .0110 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1000. .0110 10.0 10.0 .035 5.00 ' 84 586 0 4 CHANNEL .0 700. .0100 50.0 50.0 .016 .50 0 OVERFLOW 50.0 700. .0100 10.0 10.0 .035 5.00 O 586 486 0 3 .1 1. .0010 .0 .0 .001 10.00 486 584 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 1.5 8.9 .5 12.0 1.1 14.4 .0 .0 .0 .1 .1 .3 ' 2.4 18.0 3.8 19.6 4.9 41.2 584 684 7 3 .1 1. .0010 .0 .0 .001 .10 673 ' DIVERSION TO GUTTER NUMBER 613 - TOTAL O VS DIVERTED O IN CIS L:UOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 9 Printed: 5/12/2004 SEAR -BROWN .0 .0 20.0 .0 21.0 1.0 24.0 3.0 27.0 6.0 30.0 9.0 684 83 48.0 0 27.0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 I ` 673 73 0 3 .1 1. .0010 .0 .0 .001 10.00 O 83 0 583 0 1 CHANNEL 5.0 400, 0010 4.0 4,0 .035 1,00 ' 483 583 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 2.8 1.1 2.8 4.0 2.8 583 72 0 .0 3 .9 .1 1. .0010 .0 .0 .001 10.00 ' 0 72 572 0 5 PIPE 3.0 700. .0040 .0 .0 .013 3.00 0 _ OVERFLOW .0 700. .0040 50.0 50.0 .016 5.00 73 572 0 4 CHANNEL .0 1300. .0060 50.0 50.0 .016 .50 ' 0 OVERFLOW 50.0 1300. .0060 10.0 10.0 .035 5.00 481 577 11 2 PIPE .1 1. .0010 .0 .0 .001 .10 010.0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .1 1.0 .1 2.0 .2 4.0 .2 6.0 .2 2 12.0 2 14.0 2 16.0 2 18.0 .2 20.0 480 577 9 2 PIPE 1 1. 0010 .0 .0 .001 ,10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.0 .0 2.0 .1 4.0 .1 6.0 .1 9.0 1 14.0 1 18.0 1 20.0 479 577 6 2 PIPE .1 1. .0010 .0 .0 .001 10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .0 1.0 .1 2.5 .1 8.0 .1 12.7 577 477 0 3 .1 1. .0010 .0 .0 .001 10.00 0 477 76 14 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 .2 4.0 .3 6.0 .3 8.0 .3 j 1.2.0 .3 16.0 .3 20.0 .3 30.0 .4 45.0 .4 60.0 .5 75.0 5 90.0 .6 105.0 76 576 0 1 CHANNEL .0 800. .0070 4.0 4.0 .035 5.00 ' 0 576 574 0 3 .1, 1. .0010 .0 .0 .001 10.00 0 75 574 0 1 CHANNEL 5.0 600. .0070 4.0 4.0 .035 5.00 0 ' 574 474 0 3 .1 1. .0010 .0 .0 .001 10.00 0 474 74 8 2 PIPE 1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR 0 STORAGE IN .0 ACRE-FEET VS SPILLWAY OUTFLOW 2.2 .5 5.9 2.0 10.2 4.4 13.6 8.0 15.1 10.2 16.7 12.5 18.2 13.5 74 572 0 1 CHANNEL 10.0 700. .0080 10.0 10.0 .035 5.00 00 572 472 0 3 .1 1. .0010 .0 .0 .001 10.00 472 571 12 2 PIPE 1 1. .0010 .0 .0 .001 .10 0 RESERVOIR .0 STORAGE IN .0 ACRE-FEET VS SPILLWAY OUTFLOW .7 3.0 .9 6.0 1.2 9.0 1.7 12.0 2.5 ' 15.0 3.7 18.0 5.1 21.0 7.0 24.0 7.8 27.0 8.0 30.0 9.5 81.0 171 471 0 3 .1 1. .0 .0 .001 10.00 0 .0010 ' 471 570 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 10.0 20.0 30.0 32.0 40.0 .0 .0 .2 .4 .7 .8 .8 t 9 50.0 .9 60.0 1.0 100.0 570 470 0 3 .1 1. .0010 .0 .0 .001 10.00 0 470 31 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 10.0 .1 20.0 .2 30.0 .7 40.0 1.0 44.0 1.5 160.0 ' DJOBS\7021 00\data\Drainage\SWMM\Phasingpvh I 00year.out 10 Printed: 5/12/2004 ' SEAR -BROWN 31 275 0 5 PIPE 3.0 108. .0075 .0 .0 .013 3.00 0 OVERFLOW 30.0 108. .0075 50.0 50.0 .035 5.00 33 21 0 1 CHANNEL .0 700. .0080 50.0 .0 .016 1.50 ' 0 2 216 15 2 PIPE .1 77. .0070 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 2.3 .0 16.1 .1 51.3 .6 86.2 2.4 ' 115.7 6.2 144.7 12.1 169.8 19.6 193.7 28.6 214.8 33.6 224.4 38.7 233.1 49.3 251.4 59.4 269.7 70.6 288.0 166 167 3 2 PIPE .1 96. .0060 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1-.6 24.0 3.4 26.4 167 169 0 1 CHANNEL 4.0 260. .0021 2.0 210 .035 4.00 0 ' 168 169 5 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1 .9 4 1.4 7 93.3 1.0 261.4 169 170 0 5 PIPE 2.3 40. .0070 .0 .0 .013 2.27 ' 0 OVERFLOW 40.0 40. .0070 50.0 50.0 .016 4.00 170 174 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 4.00 0 171 174 3 2 PIPE .1 10. .0038 .0 .0 .013 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1.0 4.0 2.0 4.3 172 173 5 2 PIPE .1 120. .0033 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 6.5 5.5 8.0 6.0 9.0 97.9 10.0 266.0 ' ' 173 175 0 4 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 OVERFLOW 30.0 1200. .0050 150.0 150.0 .035 3.00 174 175 0 5 PIPE 2.3 75. .0211 .0 .0 .013 2.25 0 OVERFLOW 40.0 75. .0211 50.0 50.0 .016 4.00 175 177 0 5 PIPE 2.5 853. .0123 .0 .0 .013 2.50 ' f' �.0 0 176 177 7 2 OVERFLOW 50.0 853. PIPE .1 315. .0123 .0020 50.0 .0 50.0 .0 .016 .013 4.00 .10 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 94.5 .0 .0 .0 1.1 .2 1.7 .8 2.1 1.8 2.6 2.4 ' 3.1 261.8 177 341 0 5 PIPE 3.0' 480. .0100 .0 .0 .013 3.00 0 OVERFLOW 10.0 480. .0100 50.0 50.0 .016 5.00 178 977 9 2 PIPE .1 1310. .0033 .0 .0 .013 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 2.0 5.0 2.7 5.8 3.4 6.5 4.2 8.8 4.6 16.2 4.9 29.5 5.2 44.0 5.5 60.0 977 177 4 3 .1 1. .0010 .0 .0 .001 10.00 827 DIVERSION TO GUTTER NUMBER 827 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 16.2 .0 16.3 1 60.0 43.8 827 927 0 1 CHANNEL 1.0 800. .0100 6.0 6.0 .035 4.00 ' 0 927 327 0 1 CHANNEL 10.0 10. .0100 6.0 6.0 .035 _ 10.00 0 320 321 0 1 CHANNEL 5.0 1350. .0050 4.0 4.0 .035 4.00 0 ' 321 324 10 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .3 2.6 .8 4.3 1.5 5.5 2.5 6.4 ' 3.9 7.3 5.4 8.0 6.3 99.9 7.2 268.0 322 323 3 2 PIPE 1 10. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1.9 11.0 4.0 11.3 t 323 324 0 1 CHANNEL .0 1500. .0142 50.0 .0 .016 1.50 0 324 331 0 2 PIPE 3.0 36. .0222 .0 .0 .013 3.00 0 325 326 0 1 CHANNEL 4.0 420. .0050 4.0 4.0 .035 3.00 ' 0 326 927 0 5 PIPE. 3.5 214. .0168 .0 .0 .013 3.50 0 OVERFLOW 40.0 214. .0168 50.0 50.0 .016 5.00 ' L:VOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 11 Printed: 5/12/2004 SEAR -BROWN 327 329 0 1 CHANNEL 4.0 750. .0050 4.0 4.0 .035 3.00 0 328 329 0 5 PIPE 1.8 101. .0149 .0 .0 .013 1.75 0 ' OVERFLOW .0 101. .0149 133.0 44.0 .016 5.00 329 180 0 1 CHANNEL 5.0 240. .0050 4.0 4.0 .035 4.00 _ !- 0 179 324 0 5 PIPE 1.5 80. .0110 .0 .0 1.50 0 .013 ' OVERFLOW .0 80. .0110 167.0 167.0 .016 5.00 331 325 0 2 PIPE 3.0 30. .0267 .0 .0 .013 3.00 0 180 341 8 2 PIPE .1 20. .0040 .0 .0 .013 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 4.0 1.0 18.0 1.9 37.2 3.0 52.4 4.2 68.0 4.8 78.0 5.7 - 88.0 _ 341 4 0 5 PIPE 5.2 120. .0040 .0 .0 .013 5.20 ' 0 OVERFLOW .0 120. .0040 50.0 50.0 .016 7.00 301 91 9 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 .1 2.2 .8 4.2 1.9 5.3 2.5 5.8 3.3 13.4 4.3 14.4 4.6 36.2 5.7 57.8 91 93 0 1 CHANNEL .0 1325. .0150 4.0 4.0 .060 5.00 0 ' 93 94 11 2 PIPE .1 1. .0050 .0 .0 .013 :10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .5 .0 1.0 .0 1.6 1.9 2.4 5.4 ' 3.3 7.7 4.3 14.0 5.4 20.7 6.5 93.9 7.7 219.5 94 241 0 1 CHANNEL .0 500. .0027 3.0 3.0 .035 5700 0 95 93 0 3 .0 1. .0010 .0 .0 .001 10.00 0 357 358 0 1 CHANNEL 16.0 10. .0050 4.0 4.0 .045 4.00 0 358 359 0 2 PIPE 9.4 103. .0050 .0 .0 .013 9.44 0 359 360 0 1 CHANNEL 16.0 950. .0050 4.0 4.0 .045 4.00 ' - 0 360 361 0 2 PIPE 9.4 46. .0050 .0 .0 .013 9.44 0 361 362 0 1 CHANNEL 16.0 619. .0050 4.0 4.0 .045 4.00 0 362 363 0 1 CHANNEL 16.0 215. .0050 4.0 4.0 .045 4.00 0 363 364 0 1 CHANNEL 16.0' 415. .0050 4.0 4.0 .045 4.00 0 364 366 0 4 CHANNEL 16.0 90, 0050 4.0 4.0 .045 5.00 0 ' OVERFLOW 40.0 90. .0050 50.0 50.0 .035 6.00 369 366 0 4 CHANNEL .0 1125. .0045 4.0 4.0 .035 2.30 0 OVERFLOW 50.0 1125. .0045 50.0 50.0 .035 5.00 366 367 0 4 CHANNEL 16.0 377. .0050 4.0 4.0 .045 5.00 ' 0 OVERFLOW 40.0 377. .0050 50.0 50.0 .035 6.00 38 373 0 4 CHANNEL .0 1080. .0050 4.0 4.0 .035 3.50 0 OVERFLOW 40.0 1080. .0050 50.0 50.0 .016 4.50 ' 39 38 0 4 CHANNEL .0 860. .0050 4.0 4.0 .035 3.50 0 _ OVERFLOW 40.0 860. .0050 50.0 50.0 .016 4.50 593 39 13 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.4 .5 2.2 1.8 2.7 3.4 3.2 3.4 16.4 3.5 16.5 5.5 18.6 7.5 20.5 7.8 20.8 7.8 45.7 9.7 49.0 ' 11.6 51.9 594 591 16 2 PIPE .1 1. .0050 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .2 .0 .9 .0 1.6 .1 2.0 .2 ' 2.4 4 2.7 .7 3.0 1.1 3.3 1.4 3.4 1.7 5.4 2.3 8.4 2.4 8.6 2.9 8.6 3.5 8.6 7.0 8.6 ' 595 593 0 2 PIPE 5.0 130. .0040 .0 .0 .013 5.00 0 591 592 0 1 CHANNEL 10.0 1000. .0050 4.0 4.0 .029 10.00 0 592 593 0 2 PIPE 20.0 70. .0040 .0 .0 .013 20.00 ' 0 L:UOBS\702100\data\Drainage\SWMM\PhasingpvhlOOyear.out 12 Printed: 5/12/2004 t SEAR -BROWN 40 373 0 1 CHANNEL 5.0 1400 0 371 311 9 2 PIPE 1 1 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .0 .8 2.8 7 3.2 8 3.5 1.0 33.5 371 362 7 2 PIPE .1 1 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .1 1.2 1.6 6 1.8 ' 372 363 6 2 PIPE .1 1 0 RESERVOIR STORAGE IN ACRE --FEET VS SPILLWAY OUTFLOW .0 .0 .2 ­10.0 .4 22.4 50.5 ' 373 364 18 2 PIPE .1 1 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .5 .0 .8 ' 6.9 18.0 7.6 18.8 8.2 19.6 31.5 10.3 49.4 10.7 72.6 11.1 99.7 429.6 374 38 14 2 PIPE .1 1 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .1 .0 2.1 .5 2.8 .7 3.9 .8 4.8 ' 6.9 1.7 7.3 2.3 59.9 32 102 0 1 CHANNEL 1.0 500 0 367 368 0 4 CHANNEL 5.0 950 ' 0 OVERFLOW 35.0 950 368 102 0 4 CHANNEL 5.0 1960 0 102 410 0 5 OVERFLOW 30.0 1960 PIPE 4.5 50 OVERFLOW 29.0 50 201 202 0 3 .1 1 ' o 202 209 0 3 .1 1 0 203 209 0 3 _ 1 1 0 0 201 210 0 3 .1 1 ' 210 310 0 3 .1 1 0 310 140 16 2 PIPE .1 1 06.6 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .4 .1 1.0 1.2 6.7 7.7 8.9 8.4 10.3 8.8 9.3 13.4 9.4 13.7 9.4 13.9 9.5 214 315 0 3 .1 1 0 215 315 0 3 .1 1 0 315 216 8 2 PIPE .1 1 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 .2 3.0 "0 1.4 96.9 1.6 265.0 216 116 0 3 .1 1 0 116 140 0 1 CHANNEL 10.0 1650 0 140 357 0 1 CHANNEL 10.0 700 ' 0 223 224 0 3 .1 1 0 224 334 0 3 1 0 .1 334 124 11 2 PIPE .1 1 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.0 .2 6.0 .0050 4.0 4.0 .0050 .0 .0 .2 1.1 0015 .0 2 1. 0020 4 .0 .7 33.3 .0042 .0 1.6 .0 8.9 20.8 11.5 130. .0040 9 .0 .2 .0 1.1 5.6 .0060 75.0 .0070 2.0 .0070 75.0 .0100 3.0 .0100 60.0 .0050 .0 .0050 25.0 .0010 .0 .0010 .0 .0010 .0 .0010 .0 .0010 .0 .0010 .0 1.5 2.0 11.5 9.0 13.9 9.5 .0010 .0 .0010 .0010 .0 .0 .6 4.0 .0010 .0030 .0030 .0010 .0010 .0010 sm .035 5.00 .013 .10 4 1.4 .6 0 .013 .3 1.4 0 .013 .9 38.0 0 .013 3.6 6.4 9.5 21.6 13.4 333.7 0 .013 .4 1.1 1.3 6.3 5 .045 5 .045 0 .045 0 .045 0 .045 0 .024 0 .018 o .001 0 .001 0 .001 0 .001 0 .001 0 .001 3.4 3.9 12.4 9.2 0 .001 0 .001 0 .001 8 4.5 0 .0 .001 4.0 4.0 .035 4.0 4.0 .035 0 .0 .001 0 .0 .001 0 .0 .001 8.0 1.0 10.0 .10 .4 10 1.2 10 6.3 9.9 15.5 10 .5 1.5 5.00 8.00 14.00 5.00 11.00 5.60 10.00 10.00 10.00 10.00 10.00 10.00 .10 4.4 13.0 10.00 10.00 .10 1.2 10.00 5.00 5.00 10.00 10.00 .10 1.6 ' 12.0 LAJOBS\7021 00\data\Drainage\SWMM\Phasingpvh 1 00year.out 13 Printed: 5/12/2004 ' SEAR -BROWN 2.5 14.0 3.4 16.0 4.7 18.0 5.1 18.6 5.6 19.3 124 226 0 2 PIPE 3.0 825. .0080 .0 .0 .011 5.00 0 226 336 0 3 .1 1. .0010 .0 .0 .001 10.00 0 336 357 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.0 .4 6.0 1.0 8.0 1.9 10.0 2.3 ' 10.7 2.5 36.8 2.8 84.3 130 131 0 2 PIPE 3.0 450. .0070 .0 .0 .013 3.00 0 131 330 0 2 PIPE 3.5 250. .0070 .0 .0 .013 3.50 ' 0 330 241 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 _ RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.0 .2 2.0 .6 3.0 1.1 4.0 1.9 ' 5.0 3.0 6.0 251 350 0 3 .1 1. .0010 .0 .0 .001 10.00 0 350 216 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.0 .3 2.0 .6 3.0 .8 3.5 1.1 4.0 1.1 4.1 1.3 96.0 1.5 264.1 ' 252 160 0 3 .1 1. .0010 .0 .0 .001 10.00 0 160 261 0 5 PIPE 1.5 275. .0100 .0 .0 .013 1.50 0 OVERFLOW .0 275. .0100 10.0 10.0 .035 5.00 ' 261 262 0 3 .1 1. .0010 .0 .0 .001 10.00 0 262 365 0 3 .1 1. .0010 .0 .0 .001 10.00 0 365 241 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.3 6.3 2.4 7.5 2.5 14.0 2.6 25.9 2.7 41.3 2.8 59.5 241. 141 0 3 .1 1. .0010 .0 .0 .001 10.00 It O 141 357 0 1 CHANNEL 10.0 500. .0030 4.0 4.0 .035 5.00 0 381 0 382 5 2 PIPE 1 1. 0010 .0 .0 .001 .10 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .5 2.2 1.0 5.5 2.0 6.3 2.1 48.9 382 401 16 2 PIPE .1 1. .0010 .0 .0 .001 .10 06.0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .1 1.2 .2 2.4 .5 3.6 .6 4.0 .7 .7 7.2 .8 8.4 .8 9.6 .8 10.0 .9 12.0 1.1 20.0 1.2 30.0 1.4 40.0 1.5 50.0 1.5 55.0 ' 401 402 0 1 CHANNEL 2.0 550. .0130 50.0 50.0 .016 1.00 0 402 406 0 1 CHANNEL 2.0 950. .0060 50.0 50.0 .016 1.00 0 400 406 0 1 CHANNEL 10.0 710. .0060 5.0 6.0 .040 2.00 ' 0 406 380 0 3 .1 1. .0010 .0 .0 .001 .10 0 380 403 12 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 2.7 8.8 3.1 9.3 3.2 10.0 3.6 15.0 4.0 20.0 4.9 21.8 5.0 22.0 5.5 22.9 6.2 52.4 6.6 75.1 6.9 107.7 ' 384 384 404 5 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.0 3.7 1.9 9.3 1.9 11.5 2.0 15.5 383 407 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW / .0 .0 .7 1.3 1.3 3.9 1.6 4.4 1.8 4.7 2.0 22.3 2.1 58.7 ' 403 407 0 1 CHANNEL 5.0 950. .0040 4.0 4.0 .045 5.00 0 407 405 0 3 .1 1. .0010 .0 .0 .001 .10 0 L:�JOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 14 Printed: 5/12/2004 0 405 410 0 0 404 407 0 0 ' 0 388 387 387 386 0 0 0 386 284 0 ' 0 0 284 283 283 282 0 0 0 ' 0 282 281 410 414 0 0 0 409 413 0 0 410 411 411 412 0 0 0 0 412 413 0 0 413 414 0 0 414 415 0 0 415 416 0 ' 0 0 416 517 517 417 0 0 ' 0 417 0 0 TOTAL NUMBER OF GUTTERS/PIPES, 207 r 5 PIPE OVERFLOW 5 PIPE OVERFLOW 1 CHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 4 CHANNEL OVERFLOW 4 CHANNEL OVERFLOW 4 CHANNEL OVERFLOW 5 PIPE OVERFLOW 1 CHANNEL 1 CHANNEL 1 CHANNEL 3 2 PIPE 0JOBS\702100\data\Drainage\SW MM\Phasingpvh 100year.out SEAR -BROWN 3.5 2000. .0020 .0 .0 .013 3.50 40.0 2000. .0020 50.0 50.0 .016 5.00 3.5 900. .0150 0 .0 .016 3.50 40.0 900. .0150 50.0 50.0 .016 5.00 5.0 1300. .0070 150.0 150.0 .045 5.00 5.0 750. .0070 150.0 150.0 .045 5.00 4.0 800. .0030 150.0 150.0 .045 5.00 4.0 700. .0063 150.0 150.0 .045 5.00 7.0 1000. .0057 70.0 40.0 .045 5.00 9.0 800. .0460 9.0 1.5 _..045 5.00 2.0 1500. .0150 55.0 76.0 .035 5.00 1.0 1500. .0100 50.0 50.0 .045 5.00 5.0 600. .0450 2.5 3.0 .035 7.00 45.0 600. .0450 25.0 50.0 .035 13.00 5.0 1060. .0038 3.0 2.0 .035 6.00 30.0 1060. .0038 35.0 60.0 .035 11.00 5.0 870. .0060 5.0 2.0 .035 6.00 50.0 870. .0060 30.0 45.0 .035 12.00 5.0 40. .0060 .0 .0 .035 5.00 50.0 40. .0060 100.0 100.0 .016 10.00 5.0 1180. .0060 30.0 25.0 .035 10.00 5.0 1050. .0060 40.0 50.0 .035 10.00 5.0 800. .0060 40.0 25.0 .035 6.00 .1 1. .0010 .0 .0 .001 .10 .1 1. .0030 .0 .0 .035 .10 15 Printed: 5/12/2004 ' SEAR -BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCE100R.OAT ICON ENGINEERING, INC.; 10/25/00 ' ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES l GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) ' 2 8 50 9 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 796.3 4 341 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 219.3 6 7 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 ' 34.4 7 0 0 0 0 0 0 0 0 0 0 240 0 0 0 0 0 0 0 0 0 5.0 8 4 0 0 0 0 0^ '219.3 9 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 434.3 34 11 112 0 0 0 0 0 0 0 0 0 110 111 320 0 0 0 0 0 0 0 6.5 12 11 47 291 0 0 0 0 0 0 0 113 114 0 0 0 0 0 0 0 0 ' 30.0 13 12 0 0 0 0 0 0 0 0 0 115 116 0 0 0 0 0 0 0 0 33.9 14 0 0 0 0 0 0 0 0 0 0 118 0 0 0 0 0 0 0 0 0 1.1 16 34 0 0 0 0 0 0 0 0 0 160 121 0 0 0 0 0 0 0 0 9.8 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 31.3 21 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 5.6 22 16 25 42 0 0 0 0 0 0 0 120 122 0 0 0 0 0 0 0 0 290.6 25 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 ' 26 41 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 235.8 27 270 271 275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233.4 28 29 0 0 0 0 0 0 0 0 0 281 0 0 0 0 0 0 0 0 0 5.7 \; 29 30 0 0 0 0 0 0 0 0 0 282 0 0 0 0 0 0 0 0 0 - 3.5 30 0 0 0 0 0 0 0 0 0 0 283 0 0 0 0 .0 0 0 0 0 2.0 31 470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213.6 32 0 0 0 0 0 0 0• 0 0 0 222 0 0 0 0 0 0 0 0 0 19.3 5.6 33 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 340 0 0 0 0 0 0 0 0 0 4.3 35 0 0 0 0 0 0 0 0 0 0 225 0 0 0 0 0 0 0 0 0 65.6 36 0 0 0 0 0 0 0 0 0 0 360 0 0 0 0 0 0 0 0 0 2.4 38 39 374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 118.2 39 593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103.8 ' 40 0 0 0 0 0 0 0 0 0 0 314 0 0 0 0 0 0 0 0 0 91.2 _ 41 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233.4 42 46 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 259.6 43 45 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 312.8 44 21 0 0 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 13.1 45 0 0 0 0 0 0 0 0 0 0 220 0 0 0 0 0 0 0 0 0 22.2 46 0 0 0 0 0 0 0 0 0 0 260 0 0 0 0 0 0 0 0 0 23.8 47 0 0 0 0 0 0 0 0 0 0 230 0 0 0 0 0 0 0 0 0 ' 14.7 50 6 0 0 0 0 0 0 0 0 0 80 60 0 0 0 0 0 0 0 0 129.5 51 13 14 20 44 43 0 0 0 0 0 130 100 117 190 0 0 0 0 0 0 �-"434.3 72 583 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.4 73 673 0 0 0 0 0 0 0 0 0 373 0 0 0 0 0 0 0 0 0 8.2 ' L:\JOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 16 Printed: 5/12/2004 SEAR - BROWN 74 474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.5 75 0 0 0 0 0 0 0 0 0 0 371 0 0 0 0 0 0 0 0 0 28.4 ' 76 477 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.7 r 82 682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I $ 83 684 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 93.8 _ 84 0 0 0 0 _ 0 - 0 0 0 0 0 384 0 0 0 0 0 0 0 0 0 6.9 85 82 0 0 0 0 0 0 0 0 0 381 0 0 0 0 0 0 0 0 0 7.1 88 89 90 496 0 0 0 0 0 0 0 389 393 0 0 0 0 0 0 0 0 37.9 89 92 395 0 0 0 0- 0- 0 0 0 0 0 0 0 0 .0.. .0 0_ 0 0 1.4 - 90 490 491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 4.2 91 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.5 92 0 0 0 0 0 0 0 0 0 0 394 0 0 0 0 0 0 0 0 0 1.4 ' 93 91 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.0 94 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.0 95 0 0 0 0 0 0 0 0 0 0 302 0 0 0 0 0 0 0 0 0 ' 47.5 102 35 32 368 0 0 0 0 0 0 0 223 224 0 0 0 0 0 0 0 0 1505.3 112 0 0 0 0 0 0 0 0 0 0 112 0 0 0 0 0 0 0 0 0 1.3 116 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 818 .5 18 ' ' 124 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 130 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 ' 5.9 131 130 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 9.5 140 310 111 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 890.0 ' 141 241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r 104.7 J 160 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.9 166 0 0 0 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 19.0 167 166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0_ 19.0 168 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 5.8 169 167 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 170 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 7.7 111 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 ' 172 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 32.3 173 172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.3 174 170 171 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 ' 32.6 175 173 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.8 176 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 13.8 ' 177 175 176 977 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112.2 178 0 0 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0 0 0 0 33.6 179 0 0 0 0 0 0 0 0 0 0 214 0 0 0 0 0 0 0 0 0 1.6 180 329 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 105.2 201 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8.5 ' 202 201 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12.6 203 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 5.7 209 202 203 0 0 0 0 0 0 0 0 4 5 7 9 0 0 0 0 0 0 46.1 210 209 0 0 0 0 0 0 0 0 0 6 8 10 0 0 0 0 0 0 0 65.1 214 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 ' 4.8 UJOBS\7021 00\data\Drainage\SWMM\Phasi ngpvh 1 00year.out 17 Printed: 5/12/2004 ' SEAR -BROWN 215 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 4.4 818.5 216 2 315 350 0 0 0 0 0 0 0 16 39 0 0 0 0 0 0 0 0 223 0 0 0 0 0 0 0 0 0 0 20 21 22 0 0 0 0 0 0 0 ?0.4 224 223 0 0 0 0 0 0 0 0 0 23 24 0 0 0 0 0 0 0 0 25.7 226 124 0 0 0 0 0 0 0 0 0 25 26 0 0 0 0 0 0 0 0 ' 32.4 241 94 330 365 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 104.7 250 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0-- 0 0 1.6 ' 251 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 8.1 252 0 0 0 0 0 0- 0 0 0 0 63 0 0 0 0 .0... .0 0 0 0 8.9 261 160 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 11.0 262 261 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 15.7 270 0 0 0 0 0 0 0 0 0 0 270 0 0 0 0 0 0 0 0 0 3.3 ' 271 0 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 6.3 272 0 0 0 0 0 0 0 0 0 0 272 0 0 0 0 0 0 0 0 0 1.5 275 272 28 31 0 0 0 0 0 0 0 280 0 0 0 0 0 0 0 0 0 223.8 281 0 0 0 0 0 0 0 0 0 0 508 0 0 0 0 0 0 0 0 0 26.4 282 283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 210.4 283 284 0 0 0 0 0 0 0 0 0 511 0 0 0 0 0 0 0 0 0 210.4 284 386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171.3 291 0 0 0 0 0 0 0 0 0 0 290 0 0 0 0 0 0 0 0 0 ' 5.9 301 0 0 0 0 0 0 0 0 0 0 301 0 0 0 0 0 0 0 0 0 28.5 310 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65.1 315 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 320 0 0 0 0 0 0 0 0 0 0 201 0 0 0 0 0 0 0 0 0 14.8 321 320 0 0 0 0 0 0 0' 0 0 209 0 0 0 0 0 0 0 0 0 ' 38.1 322 0 0 0 0 0 0 0 0 0 0 202 0 0 0 0 0 0 0 0 0_ 21.5 . 323 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 ' 324 321 323 179 0 0 0 0 0 0 0 165 0 0 0 0 0 0 0 0 0 71.6 325 331 0 0 0 0 0 0 0 0 0 211 0 0 0 0 0 0 0 0 0 83.2 83.2 326 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 327 927 0 0 0 0 0 0 0 0 0 216 0 0 0 0 0 0 0 0 0 84.1 328 0 0 0 0 0 0 0 0 0 0 212 0 0 0 0 0 0 0 0 0 4.2 329 327 328 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88. 88.3 330 131 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 11.5 331 324 0 0 0 0 0 0 0 0 0 215 0 0 0 0 0 0 0 0 0 72.3 ' 334 224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 336 226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.4 341 177 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 217.4 350 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.1 357 140 336 141 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 1031.4 ' 358 357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1031.4 359 358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1031.4 360 359 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 ' 1036.8 361 360 370 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1043.8 362 361 371 0 0 0 0 0 0 0 0 309 0 0 0 0 0 0 0 0 0 1048.3 L:UOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 18 Printed: 5/12/2004 ' SEAR -BROWN 363 362 372 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0 0 0 0 1059.1 364 363 373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1268.4 365 262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15.7 366 364 369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1346.9 367 366 0 0 0 0 0 0 0 0 0 313 0 0 0 0 0 0 0 0 0 ' 1347.8 368 367 0 0 0 0 0 0 0 0 0 217 218 0 0 0 0 0 0 0 0 1383.6 369 0 0 0 0 0 0 0 0 0 0 305 0 0 0 0 0 0 0 0 0 78.5 ' 370 0 0 0 0 0 0 0 0 0 0 308 0 0 0 0 0 0 0 0 0' 7.0 371 0 0 0 0 0 0- 0 0 0 0 311 0 0 0 0 -0-,. .0 0 0 0 2.8 372 0 0 0 0 0 0 0 0 0 0 306 0 0 0 0 0 0 0 0 0 8.7 373 38 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 209.3 374 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 14.4 ' 380 406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 381 0 0 0 0 0 0 0 0 0 0 403 0 0 0 0 0 0 0 0 0 11.0 382 381 0 0 0 0 0 0 0 0 0 404 0 0 0 0 0 0 0 0 0 ' 21.4 383 0 0 0 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 0 0 14.1 384 0 0 0 0 0 0 0 0 0 0 407 0 0 0 0 0 0 0 0 0 13.2 386 387 0 0 0 0 0 0 0 0 0 512 0 0 0 0 0 0 0 0 0 171.3 387 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124.4 388 0 0 0 0 0 0 0 0 0 0 513 0 0 0 0 0 0 0 0 0 ' 124.4 395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 400 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 0 0 0 0 9.9 401 382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.4 402 401 0 0 0 0 0 0 0 0 0 405 0 0 0 0 0 0 0 0 0 24.9 403 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 404 384 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 0 0 0 0 52.0 405 407 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 135.0 406 402 400 0 0 0 0 0 0 0 0 401 402 0 0 0 0 0 0 0 0 68.9 407 383 403 404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135.0 67.3 409 0 0 0 0 0 0 0 0 0 0 505 0 0 0 0 0 0 0 0 0 ' 410 102 405 282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1850.7 411 410 0 0 0 0 0 0 0 0 0 501 510 0 0 0 0 0 0 0 0 1882.0 412 411 0 0 0 0 0 0 0 0 0 506 507 0 0 0 0 0 0 0 0 ' 1912.5 413 409 412 0 0 0 0 0 0 0 0 514 0 0 0 0 0 0 0 0 0 ` 2007.9 414 281 413 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2034.3 ' 415 414 0 0 0 0 0 0 0 0 0 503 504 0 0 0 0 0 0 0 0 2090.8 416 411 0 0 0 0 0 0 0 0 0 501 0 0 0 0 0 0 0 0 0 2109.7 417 517 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2154.0 470 570 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213.6 471 171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 207.5 ' 472 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 195.8 474 574 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.5 477 577 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.7 479 0 0 0 0 0 0 0 0 0 0 379 0 0 0 0 0 0 0 0 0 1.5 480 0 0 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 0 1.4 L:UOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 19 Printed: 5/12/2004 SEAR -BROWN 481 0 0 0 0 0 0 0 0 0 0 381 0 0 0 0 0 0 0 0 0 2.6 483 0 0 0 0 0 0 0 0 0 0 383 0 0 0 0 0 0 0 0 0 5.6 ' 486 586 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 93.8 488 588 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.4 490 0 0 0 0 0 0 0 0 0 0 390 0 0 0 0 0 0 0 0 0 ' 1.4 491 0 0 0 0 0 0 0 0 0 0 391 0 0 0 0 0 0 0 0 0 2.8 416 0 0 0 0 0 0 0 0 0 0 396 0 0 0 0 0 0 0 0 0 13.5 497 0 0 0 0 0 0 0 0 0 0 397 0 0 0 0 0 0 0 0 0 3.9 517 416 0 0 0 0 0- 0 0 0 0 500 502 0 0 0 .0._ . .0 0 0 0 2154.0 570 471 0 0 0 0 0 0 0 0 0 370 0 0 0 0 0 0 0 0 0 213.6 571 472 0 0 0 0 0 0 0 0 0 371 0 0 0 0 0 0 0 0 0 207.5 572 72 73 74 0 0 0 0 0 0 0 372 0, 0 0 0 0 0 0 0 0 195.8 ' 574 576 75 0 0 0 0 0 0 0 0 374 0 0 0 0 0 0 0 0 0 61.5 576 76 0 0 0 0 0 0 0 0 0 376 0 0 0 0 0 0 0 0 0 14.8 577 481 480 479 0 0 0 0 0 0 0 377 378 0 0 0 0 0 0 0 0 ' 9.7 582 0 0 0 0 0 0 0 0 0 0 382 0 0 0 0 0 0 0 0 0 .8 583 83 483 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.8 .4 584 486 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93 586 488 85 84 0 0 0 0 0 0 0 386 387 0 0 0 0 0 0 0 0 93.8 588 88 497 0 0 0 0 0 0 0 0 388 392 0 0 0 0 0 0 0 0 ' 64.4 591 594 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27.9 592 591 0 0 0 0 0 0 0 0 0 318 0 0 0 0 0 0 0 0 0 90.8 ' 593 595 592 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103.8 594 0 0 0 0 0 0 0 0 0 0 317 0 0 0 0 0 0 0 0 0 27.9 595 0 0 0 0 0 0 0 0 0 0 316 0 0 0 0 0 0 0 0 0 13.0 673 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 682 582 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 8 683 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 684 584 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.8 .0 827 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 927 827 326 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.2 917 178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.6 ' L:WOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 20 Printed: 5/12/2004 SEAR•BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3122100 EXTRAN ADOPTED 100-YEAR EVENT. FILE: MCE100R.DAT ICON ENGINEERING, INC.; 10/25/00 j HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS ' THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -.FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 592 593 595 0 1. .00( ) .00( ) .00( ) 0 2. .0 .0 .0 .02( ) .00( ) .01( ) 0 3. .0 .0 .0 .03( ) .00(S) .02( ) ' 0 4. .0 .0 .0 .04( ) .00(S) .03(.) 0 5. .1 .0 .0 .05( ) .00(S) .04( ) 0 6. .1 .0 .0 .06( ) .00(S) .05( ) 0 7 .13( ) -00(S) .10( ) 0 8. 1.7 .1 .7 0 9. 25( 3.6 ) .00(5) .23( ) .3 1.6 ' .36( ) .01(S) .35( ) 0 10. 5.8 .6 2.7 .45( ) .02(S) .45( ) 0 11. 8.4 1.0 3.8 .54( ) .03(S) .53( ) ' 0 12. 11.2 1.4 5.0 .61( ) .05(S) .60( ) 0 13. 13.9 1.4 6.0 .68( ) .07(S) .65( ) 0 14. 16.5 1.5 6.8 .74( ) .10(S) .69( ) 0 15. 18.8 1.5 7.4 .78( ) .13(S) .72( ) 0 16. 22.6 1.6 8.9 .85( ) .17(S) .79( ) 0 17. 27.8 1.7 10.9 .94( ) .21(S) .87( ) 0 18. 32.5 1.8 12.3 1.01( ) .27(S) .92( ) 0 19. 36.6 1.9 13.4 ' 1.07( ) .33(S) .96( ) 0 20. 42.4 2.0 A .2 1.14( ) .40(S) .99( ) 0 21. 46.1 2.1 15.6 1.19( ) .48(S) 1.04( ) ' 0 22. 52.6 2.2 17.5 1.26( ) .57(S) 1.10( ) 0 23. 56.1 2.2 18.7 1.30( ) .67(S) 1.14( ) 0 24. 60.3 2.3 19.8 ' 1.35( ) .77(S) 1.17( ) 0 25. 63.1 2.3 20.6 1.38( ) .88(S) 1.19( ) 0 26. 71.8 2.4 25.9 1.46( ) 1.00(S) 1.34( ) ' 0 27. 91.3 2.4 31.6 1.64( ) 1.15(S) 1.48( ) 0 28. 106.3 2.5 38.7 1.76( ) 1.33(S) 1.65( ) 0 29. 116.4 2.6 41.4 ' 1.84( ) 1.53(S) 1.71( ) 0 30. 126.3 2.7 44.5 1.91( ) 1.76(S) 1.77( ) 0 31. 155.1 2.8 53.4 2.11( ) 2.01(S) 1.96( ) ' 0 32. 196.0 2.9 68.3 2.36( ) 2.34(S) 2.24( ) 0 33. 227.7 3.0 78.7 2.54( ) 2.73(S) 2.43( ) 0 34. 245.5 3.1 89.3 2.63( ) 3.16(S) 2.62( ) 0 35. 264.7 16.7 92.3 2.73( ) 3.63(S) 2.68( ) 0 36. 256.2 17.1 80.3 ' 2.68( ) 4.08(S) 2.46( ) LAJ OBS\7021 00\data\D rai nage\SW M M\Phasing pvh 1 00year.out 21 Printed: 5/12/2004 0 37. 227.1 17.6 70.1 2.53( ) 4.49(S) 2.28( ) 0 38.. 213.5 18.0 62.7 2.46( ) 4.86(S) 2.14( ) 0 39. 201.9 18.4 56.8 2.39( ) 5.21(S) 2.02( ) 0 40. 185.2 18.7 55.8 2.30( ) 5.53(S) 2.01( ) 0 41. 179.7 19.0 50.3 ' 2.26( ) 5.82(S) 1.90( ) 0 42. 161.7 19.2 45.2 2.15( ) 6.10(S) 1.79( ) 0 43. 159.5 19.5 42.4 2.14( ) 6.35(S) 1.73( ) 0 44. 151.0 19.7. 40.2 2.08( ) 6.60(S) 1.68( ) 0 45. 149.8 19.9 38.6 2.08( ) 6.83(S) 1.65( ) 0 46. 139.5 20.1 35.4 ' 2.01( ) 7.05(S) 1.57( ) 0 47. 132.5 20.3 32.0 1.96( ) 7.26(S) 1.49( ) 0 48. 126.6 20.5 29.9 ' 0 49. 1.92( ) 122.4 7.45(S) 20.6 1.44( ) 28.0 1.88( ) 7.64(S) 1.40( ) 0 50. 118.7 22.0 26.7 1.86( ) 7.81(S) 1.36( ) 0 51. 114.7 1.83( ) 45.9 7.96(S) 25.1 1.32( ) 0 52. 110.8 46.1 23.7 1.80( ) 8.09(S) 1.28( ) 0 53. 108.0 46.3 22.6 1.78( ) 8.20(S) 1.25( ) 0 54. 105.3 46.5 21.6 1.76( ) 8.32(S) 1.22( ) 0 55. 103.2 46.7 20.8 1.74( ) 8.43(S) 1.20( ) 0 56. 100.5 46.9 19.9 1.72( ) 8.53(S) 1.17( ) ' 0 57. 97.9 47.1 19.0 1.70( ) 8.63(S) 1.15( ) 0 58. 95.8 47.3 18.3 1.68( ) 8.72(S) 1.12( ) 0 59. 93.9 47.4 17.6 1.66( ) 8.81(S) 1.10( ) 1 0. 92.2 47.6 17.1 1.65( ) 8.90(S) 1.09( ) 1 1, 90.4 47.7 16.5 1.63( ) 8.98(S) 1.07( ) 1 2. 88.7 47.8 16.0 1.62( ) 9.06(S) 1.05( ) 1 3. 87.2 48.0 15.5 1.61( ) 9.14(S) 1.04( ) 1 4. 85.8 48.1 15.2 ' 1.59( ) 9.21(S) 1.02( ) 1 5. 84.6 48.2 14.8 1.58( ) 9.29(S) 1.01( ) 1 6, 83.2 48A 14.4 1.57( ) 9.35(S) 1.00( ) ' 1 7. 81.8 48.5 14.0 1.56( ) 9.42(S) .99( ) 1 8. 80.6 48.6 13.7 1.55( ) 9.49(S) .98( ) 1 9. 79.5 48.7 13.4 ' 1.54( ) 9.55(S) .97( ) 1 10. 78.5 48.8 13.2 1.53( ) 9.61(S) .96( ) 1 11. 77.3 48.9 12.9 1.52( ) 9.67(S) .95( ) ' 1 12. 76.2 49.0 12.6 1.51( ) 9.72(S) .94( ) 1 13. 75.2 49.1 12.4 1.50( ) 9.78(S) .93( ) 1 14, 74.3 1.49( ) 49.2 9.83(S) 12.2 .92( ) 1 15. 73.4 49.2 12.0 1.48( ) 9.88(S) .91( ) 1 16. 72.4 . 49.3 11.7 1.47( ) 9.93(S) .90( ) ' 1 17. 71.4 49.4 11.5 1.46( ) 9.97(S) .89( ) 1 18. 70.5 49.5 11.3 1.45( ). 10.02(S) .89( ) ' 1 19, 69.7 1.44( ) 49.5 10.06(S) 11.1 .88( ) 1 20. 68.9 49.6 11.0 1.44( ) 10.11(S) .87( ) 1 21. 68.1 49.6 10.8 L:Inn 1.43( ) 10.15(S) .87( ) S\702100\data\Drainage\SW MM\Phasin9pvh 1 OOyear.out SEAR - BROWN 2 Printed: 5/12/2004 SEAR -BROWN ' 1 22. 67.2 49.7 10.6 1.42( ) 10.19(S) .86( ) 1 23. 66.4 49.8 10.5, 1.41( ) 10.22(S) .85( ) ' 1 24. 65.7 49.8 10.3 1.40( ) 10.26(S) .85( ) 1 25. 65.0 49.9 10.2, 1.40( ) 10.30(S) .84( ) 1 26. 64.2 49.9 10.0 ' 1.39( ) 10.33(S) .84( ) 1 27. 63.5 50.0 9.9 1.38( ) 10.36(S) .83( ) 1 28. 62.8 50.0 9.7 1.37( ) 10.40(S) .83( ) 1 29. 62.1 50.1 9.6 1.37( ) 10.43(S) .82( ) 1 30. 61.5 50.1 9.5 1.36( ) 10.45(S) .82( ) 1 31. 60.8 50.2 9.4 ' 1.35( ) 10.48(S) .81( ) 1 32. 60.1 50.2 9.2 1.35( ) 10.51(S) .80( ) 1 33. 59.5 50.3 9.1 ' 1 34. 1.34( ) 58.8 10.54(S) 50.3 .80( ) 9.0 1.33( ) 10.56(S) .79( ) 1 35. 58.3 50.3 8.9 1.33( ) 10,58(S) .79( ) 1 36, 57.6 1.32( ) 50.4 . 10.61(S) 8.8 J9( ) ' 1 37. 57.0 50.4 8.7 1.31( ) 10,63(S) .78( ) 1 38. 56.4 50.4 8.6 1 39. 1.31( ) 55.8 10.65(S) 50.5 .77( ) 8.5 1.30( ) 10.67(S) .77( ) 1 40. 55.3 50.5 8.4 1.29(. ) 10.69(S) .77( ) 1 41, 54.7 50.5 8.3 1.29( ) 10.70(S) .76( ) ' 1 ' 42. 54.1 50.5 8.2 1.28( ) 10.72(S) .76( ) 1 43. 53.6 50.6 8.1 .28( ) 0.74(S) .75( ) ( 1 44. 53.1 5 50.6 8.0 1.27( ) 10J5(S) J5( ) 1 45. 52.6 50.6 7.9 1.27( ) 10.77(S) .75( ) 1 46. 52.1 50.6 7.9 1.26( ) 10 J8(S) .74( ) 1 47. 51.6 50.7 7.8 1.25( ) 10.79(S) J4( ) 1 48. 51.1 50.7 7.7 1.25( ) 10.80(S) .74( ) 1 49. 50.7 50.7 7.6 1.24( ) 10.81(S) .73( ) 1 50. 50.3 50.7 7.6 1.24( ) 10.82(S) .73( ) 1 51. 49.8 50.7 7.5 1.23( ) 10.83(S) .73( ) 1 52. 49.3 50.7 7.4 1.23( ) 10.84(S) .72( ) 1 53. 48.9 50.7 7.3 1.22( ) 10.85(S) .72( ) 1 54. 48.5 50.8 7.3 ' 1.22( ) 10.86(S) .72( ) 1 55. 48.1 50.8 7.2 1.21( ) 10.86(S) J1( ) 1 56. 47.6 50.8 7.1 1.21( ) 10.87(S) .71( ) ' 1 57. 47.2 50.8 7.0 1.20( ) 10.88(S) .71( ) 1 58. 46.8 50.8 7.0 1.20( ) 10.88(S) .70( ) 1 59. 46.4 50.8 6.9 ' 1.19( ) 10.88(S) .70( ) 2 0. 46.0 50.8 6.9 1.19( ) 10.89(5) .70( ) 2 1. 43.7 50.8 6.3 1.16( ) 10.89(S) .67( ) ' 2 2. 41.0 50.8 5.3 1.13( ) 10.88(S) .62( ) 2 3. 39.2 50.8 4.7 ' 1.10( ) 10.88(S) .58( ) 2 4. 37.4 50.8 4.2 ' 1.08( ) 10.86(S) .55( ) 2 5. 35.9 50.7 3.7 1.06( ) 10.85(S) .52( ) 2 6. 34.6 50.7 3.4 ' 1.04( ) 10.83(S) .50( ) L:UOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 23 Printed: 5/12/2004 2 7. 33.5 50.7 3.1 1.02( ) 10.82(S) .48( ) 2 8. 32.4 50.7 2.8 1.01( ) 10.80(S) .46( ) 2 9. 31.5 50.6 2.6 .99( ) 10.77(S) .44( ) 2 10. 30.6 50.6 2.4 .98( ) 10.75(S) .42( ) 2 11. 29.9 50.5 2.3 .97( ) 10J3(S) .41( ) 2 12. 29.2 50.5 2.1 .96( ) lOJO(S) .40( ) 2 13. 28.5 50.5 2.0 .95( ) 10.67(S) .39( ) ' 2 14. 27.9 50.4 1.9 .94( ) 10.64(S) .38( ) 2 15. 27.3 50.4 1.8 .93( ) 10.62(S) .37( ) 2 16. 26.8 50.3 1.7 ' .92( ) 10.59(S) .36( ) 2 17. 26.3 50.3 1.6 .91( ) 10.56(S) .35( ) 2 18. 25.8 50.2 1.5 .91( ) 10.52(S) .34( ) ' 2 19. 25.4 50.2 1.5 .90( ) 10.49(S) .33( ) 2 20. 25.0 50.1 1.4 .89( ) 10.46(S) .33( ) 2 21. 24.6 50.1 1.3 .89( ) 10.43(S) .32( ) 2 22. 24.2 50.0 1.3 .88( ) 10.39(S) .31( ) 2 23. 23.8 50.0 .1.2 .87( ) 10.36(S) .31( ) ' 2 24. 23.5 49.9 1.2 .87( ) 10.33(S) .30( ) 2 25. 23.1 49.9 1.1 .86( ) 10.29(S) .30( ) ' 2 26. 22.8 .86( ) 49.8 10.25(S) 1.1 .29( ) 2 27. 22.5 49.8 1.0 .85( ) 10.22(S) .28( ) 2 28. 22.2 49.7 1.0 2 29. .84( ) 21.9 10.18(S) 49.6 .28( ) 1.0 .84( ) 10.15(S) .27( ) 2 30. 21.7 49.6 .9 .83( ) 10,116) .21( ) 2 31, 21.4 49.5 .9 .83( ) 10.07(S) .27( ) ' 2 32. 21.1 49.5 .9 .83( ) 10.03(S) .26( ) 2 33. 20.9 49.4 .8 .82( ) 10.00(S) .26( ) 2 34. 20.7 49.4 .8 .82( ) 9.96(S) .25( ) 2 35. 20.4 49.3 .8 .81( ) 9.92(S) .25( ) 2 36. 20.2 49.2 .8 .81( ) 9.88(S) .25( ) 2 37. 20.0 49.2 .7 .80( ) 9.84(S) .24( ) 2 38. 19.8 49.1 .7 .80( ) 9.80(S) .24( ) 2 39. 19.6 49.1 .7 .80( ) 9.76(S) .23( ) 2 40. 19.4 49.0 .7 .79( ) 9.72(S) .23( ) 2 41. 19.2 48.9 .6 .79( ) 9.68(S) .23( ) 2 42. 19.0 48.9 .6 .78( ) 9.64(S) .22( ) 2 43. 18.8 48.8 .6 .78( ) 9.60(S) .22( ) 2 44. 18.6 48.7 .6 ' J8( ) 9.56(S) .22( ) 2 45. 18.4 48.6 .6 .77( ) 9.52(S) .22( ) 2 46. 18.3 48.6 .6 .77( ) 9.48(S) .21( ) ' 2 47. 18.1 48.5 .5 .77( ) 9.44(S) .21( ) 2 48. 17:96( 4 ) 9.40(S) .21( ) 2 49. 17.8 48.4 .5 .76( ) 9.36(S) .20( ) 2 50. 17.6 48.3 .5 .76( ) 9.31(S) .20( ) 2 51. 17.5 48.2 .5 ' 76( ) 9.27(S) .20( ) L:UOBS\702100\data\Drainage\S W MM\Phasingpvh100year.out SEAR -BROWN 24 Printed: 5/12/2004 SEAR - BROWN 2 52. 17.3 48.1 .5 .75( ) 9.23(S) .20( ) 2 53. 17.2 48.1 .5 .75( ) 9.19(S) .19( ) 2 54. 17.1 48.0 .4 .75( ) 9.15(S) .19(.) 2 55. 16.9 47.9 .4 .74( ) 9.11(S) .19( ) 2 56. 16.8 47.8 .4 .74( ) 9.06(S) .19( ) 2 57. 16.7 47.8 .4 .74( ) 9.02(S) .18( ) 2 58. 16.5 47.7 .4 .74( ) 8.98(S) .18( ) ' 2 59. 16.4 47.6 .4 .73( ) 8.94(S) .18( ) 3 0. 16.3 47.5 .4 .73( ) 8.89(S) 18( ) 3 1, 16.2 .73( ) 47.5 8.85(S) .4 .18( ) ' 3 2. 16.0 47.4 .4 .73( ) 8.81(S) .17( ) 3 3. 15.9 47.3 .3 3 4. .72( ) 15.8 8.77(S) 47.3 .17( ) .3 .72( ) 8.72(S) .17( ) 3 5. 15.7 47.2 .3 .72( ) 8.68(S) .17( ) 3 6, 15.6 .72( ) 47.1 8.64(S) .3 .16( ) ' 3 7. 15.5 47.0 .3 .71( ) 8..596) .16( ) 3 8. 15.4 47.0 .3 .71( ) .55(S) .16( ) 3 9. 15.3 46.9 .3 ' .71( ) 8.51(S) .16( ) 3 10. 15.2 46.8 .3 .71( ) 8.47(S) .16( ) 3 11. 15. 46.7 .3 .77 0( ) 8.42(S) .16( ) ' 3 12. 15.0 46.7 .3 .70( ) 8.38(S) .15( ) 3 13. 14.9 46.6 .3 .70( ) 8.34(S) .15( ) 3 14. 14.8 46.5 .3 .70( ) 8.29(S) .15( ) 3 15. 14.7 46.4 .3 .70( ) 8.25(S) .15( ) 3 16. 14.6 46.3 .3 .69( ) 8.21(S) .15( ) ' 3 17. 14.5 46.3 .2 .69( ) 8.16(S) .14( ) 3 18. 14.5 46.2 .2 .69( ) 8.12(S) .14( ) 3 19. 14.4 46.1 .2 ' .69( ) 8.08(S) .14( ) 3 20. 14.3 46.0 .2 .69( ) 8.03(S) .14( ) 3 21. 14.2 46.0 .2 .69( ) 7.99(S) .14( ) ' 3 22. 14.1 45.9 .2 .68( ) 7.95(S) .14( ) 3 23. 14.1 45.8 .2 .68( ) 7.90(S) AM ) 3 24. 14. 45.7 .2 .66 8( ) 7.86(S) .13( ) 3 25. 13.9 40.9 .2 .68( ) 7.82(S) .13( ) 3 26. 13.8 20.8 .2 .68( ) 7.80(S) .13( ) ' 3 27. 13.8 20.7 .2 .68( ) 7.79(S) .13( ) 3 28. 13.7 20.7 .2 .67( ) 7.78(S) .13( ) 3 29. 13.6 20.7 .2 ' .67( ) 7.77(S) .13( ) 3 30. 13.6 20.7 .2 .67( ) 7.76(S) .12( ) 3 31. 13.5 20.7 .2 .67( ) 7.75(S) .12( ) ' 3 32. 13.4 20.7 .2 .67( ) 7.74(S) .12( ) 3 33. 13.4 20.7 .2 .67( ) 7.73(S) .12( ) - 3 34. 13.3 20.7 .2 ' .66( ) 7.72(S) .12( ) 3 35. 13.2 20.7 .2 .66( ) 7.71(S) .12( ) 3 36. 13.2 20.7 .2 ' .66( ) 7.70(S) .12( ) UJOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 25 Printed: 5/12/2004 ' 3 37. 13.1 20.7 .1 .66( ) 7.69(S) .11( ) 3 38. 13.0 20.7 .1 .66( ) 7.68(S) .11( ) ' 3 39. 13.0 20.6 .1 .66( ) 7.67(S) .11( ) l 3 40. 12.9 20.6 .1 .66( ) 7.66(S) .11( ) 3 41. 12.9 20.6 .1 .65( ) 7.65(S) .11( ) 3 42. 12.8 20.6 .1 .65( ) 7.64(S) .11( ) 3 43. 12.8 20.6 .1 .65( ) 7.63(S) .11( ) 3 44. 12.7 20.6 .1 .65( ) 7.61(S) .11( ) 3 45. 12.7 20.6 .1 .65( ) 7.60(S) .10( ) 3 46. 12.6 20.6 .1 .65( ) 7.59(S) .10( ) 3 47. 12.6 20.6 .1 .65( ) 7.58(S) .10( ) 3 48. 12.5 20.6 .1 .65( ) 7.57(S) .10( ) 3 49. 12.5 20.6 .1 .64( ) 7.56(S) .10( ) 3 50. 12.4 20.6 .1 .64( ) 7.55(S) .10( ) 3 51. 12.4 20.5 .1 ' .64( ) 7.54(S) .10( ) 3 52. 12.3 20.5 .1 .64( ) 7.53(S) .10( ) 3 53. 12.3 20.5 .1 3 54. .64( ) 12.2 7.52(S) 20.5 .09( ) .1 ' .64( ) 7.50(S) .09( ) 3 55. 12.2 20.5 .1 .64( ) 7.49(S) .09( ) ' 3 56. 12.1 .64( ) 20.5 7.48(S) .l .09( ) 3 57. 12.1 20.5 .1 .64( ) 7.47(S) .09( ) 3 58. 12.0 20.5 .1 .63( ) 7.46(S) .09( ) 3 59. 12.0 20.5 .1 ' .63( ) 7.45(S) .09( ) 4 0. 12.0 20.4 .1 .63( ) 7.44(S) .09( ) 4 1, 11.9 .63( ) 20.4 7.42(S) .1 .09( ) ' 4 2. 11.9 20.4 .1 .63( ) 7.41(S) .08( ) 4 3. 11.8 20.4 .1 .63( ) .40(S) .08( ) 4 4. 11.8 200.4 .1 ' .63( ) 7.39(S) .08( ) 4 5. 11.8 20.4 .1 .63( ) 7.38(S) .08( ) 4 6., 11.7 20.4 .1 .63( ) 7.37(S) .08( ) ' 4 7. 11.7 20.4 .1 .63( ) 7.35(S) .08( ) 4 8. 11.6 20.4 .1 .62(_) 7.34(S) .08( ) 4 9. 11.6 20.4 .1 ' .62( ) 7.33(S) .08( ) 4 10. 11.6 20.3 .1 .62( ) 7.32(S) .08( ) 4 11. 11.5 20.3 .1 .62( ) 7.31(S) .07( ) ' 4 12. 11.5 20.3 .1 .62( ) 7.29(S) .07( ) 4 13. 11.5 20.3 .1 .62( ) 7.28(S) .071 ) 4 14. 11.4. 20.3 .1 ' .62( ) 7.27(S) .07( ) 4 15. 11.4 20.3 .1 .62( ) 7.26(S) .07( ) 4 16. 11.4 20.3 .1 .62( ) 7.24(S) .07( ) 4 17. 11.3 20.3 .0 .62( ) 7.23(S) .07( ) 4 18. 11.3 20.3 .0 .62( ) 7.22(S) .07( ) 4 19. 11.3 20.2 .0 ' .62( ) 7.21(S) .07( ) 4 20. 11.2 20.2 .0 .61( ) 7.20(S) .07( ) 4 21. 11.2 20.2 .0 .61( ) 7.18(S) .06( ) UJOBS\7021 00\data\Drainage\SWMM\Phasingpvh100year.out SEAR -BROWN 26 Printed: 5/12/2004 ' 4 22. 11.2 20.2 .0 .61( ) 7.17(S) .06( ) 4 23. 11.1 20.2 .0 .61( ) 7.16(S) .06( ) ' 4 24. 11.1 20.2 .0 .61( ) 7.15(S) .06( ) 4 25. 11.1 20.2 .0 .61( ) 7.13(S) .06( ) 4 26. 11.0 20.2 .0 ' .61( ) 7.12(S) .06( ) 4 27. 11.0 20.1 .0 .61( ) 7.11(S) .06( ) 4 28. 11.0 20.1 .0 .61( ) 7.10(S) .06( ) ' 4 29. 11.0 20.1 .0 .61( ) 7.08(S) .06( ) 4 30. 10.9 20.1 .0 .61( ) 7.07(S) .06(.) ' 4 31. 10.9 .61( ) 20.1 7.06(S) .0 .05( ) 4 32. 10.9 20.1 .0 61( ) 7.05(S) .05( ) 4 33. 10.9 20.1 .0 .60( ) 7.03(S) .05( ) ' 4 34. 10.8 20.1 .0 .60( ) 7.02(S) .05( ) 4 35'. 10.8 20.1 .0 .60( ) 7.01(S) .05( ) 4 36. 10.8 .60( ) 20.0 7.00(S) .0 .05( ) ' 4 37. 10.8 20.0 .0 .60( ) 6.98(S) .05( ) 4 38. 10.7 20.0 .0 4 39. .60( ) 10.7 6.97(S) 20.0 .05( ) .0 .60( ) 6.96(S) .05( ) 4 40. 10.7 20.0 .0 .60( ) 6.94(S) 05( ) 4 41. 10.7 2.0 .0 .60( ) 6 .93(S) .OS( ) 4 42. 10.6 20.0 .0 .60( ) 6.92(S) .05( ) 4 43. 10.6 20.0 .0 .60( ) 6.91(S) .04( ) 4 44. 10.6 20.0 .0 ' .60( ) 6.89(S) .04( ) 4 45. 10.6 19.9 .0 .60( ) 6.88(S) .04( ) 4 46. 10.5 19.9 .0 .60( ) 6.87(S) .04( ) ' 4 47. 10.5 19.9 .0 .60( ) 6.85(S) .04( ) 4 48. 10.5 19.9 .0 .60( ) 6.84(S) .04( ) 4 49. 10.5 19.9 .0 ' .59( ) 6.83(S) .04( ) 4 50. 10.5 19.9 .0 .59( ) 6.82(S) .04( ) 4 51. 10.4 19.9 .0 .59( ) 6.80(S) .04( ) '. 4 52. 10.4 19.9 .0 .59( ) 6.79(S) .04( ) 4 53. 10.4 19.8 .0 .59( ) 6.78(S) .03( ) 4 54. 10.4 19.8 .0 ' .59( ) 6.76(S) .03( ) 4 55. 10.4 19.8 .0 .59( ) 6.75(S) .03( ) 4 56. 10.3 19.8 .0 .59( ) 6.74(S) .03( ) ' 4 57. 10.3 19.8 .0 .59( ) 6J2(S) .03( ) 4 58. 10.3 19.8 .0 .59( ) 6.71(S) .03( ) 4 59. 10.3 19.8 .0 ' .59( ) 6.70(S) .03( ) 5 0. 10.3 19.8 .0 .59( ) 6.68(S) .03( ) 5 1. 10.2 19.7 .0 59( ) 6.67(S) .03( ) ' 5 2. 10.2 19.7 .0 .59( ) 6.66(S) .03( ) 5 3. 10.2 19.7 .0 l .59( ) 6.65(S) .03( ) 5 4. 10.2 19.7 .0 .59( ) 6.63(S) .03( ) 5 5. 10.2 19.7 .0 .59( ) 6.62(S) .03( ) 5 6. 10.1 19.7 .0 ' .59( ) 6.61(S) .02( ) L:UOBS\702100\data\Drainage\SW MM\Phasingpvh 1 OOyear.out SEAR -BROWN 27 Printed: 5/12/2004 ' S 7. 10.1 19.7 .0 .02( ) 5 8. 10.1 19.7 .0 .59( ) 6.58(S) .02( ) ' 5 9. 10.1 19.7 .0 .58( ) 6.57(S) .02( ) 5 10. 10.1 19.6 .0 .58( ) 6.55(S) .02( ) 5 11. 10.1 19.6 .0 ' .58( ) 6.54(S) .02( ) 5 12. 10.0 19.6 .0 .58( ) 6.53(S) .02(.) 5 13. 10.0 19.6 .0 58( ) 6.51(S) .02( ) ' 5 14. 10.0 19.6 .0 .58( ) 6.50(S) .02( ) 5 15. 10.0 19.6 .0 .58( ) 6.49(S) .02( ) S 16.. 10.0 19.6 .0 ' .58( ) 6.47(S) .02( ) 5 17. 10.0 19.6 .0 .58( ) 6.46(S) .02( ) 5 18. 10.0 19.5 .0 .58( ) 6.45(S) .02( ) ' 5 19. 9.9 19.5 .0 .58( ) 6.44(S) .02( ) 5 20. 9.9 19.5 .0 .58( ) 6.42(S) .02( ) 5 21. 9.9 19.5 .0 ' .58( ) 6.41(S) .02( ) 5 22. 9.9 19.5 .0 .58( ) 6:40(S) .02( ) 5 23. 9.9 19.5 .0 .58( ) 6.38(S) .02( ) ' 5 24. 9.9 19.5 .0 58( ) 6.37(S) .02( ) 5 25. 9.9 19.5 .0 .58( ) 6.36(S) .02( ) 5 26. 9.8 19.4 .0 ' .58( ) 6.34(S) .02( ) 5 27. 9.8 19.4 .0 .58( ) 6.33(S) .02( ) 5 28. .9.8 19.4 .0 .58( ) .32(S) .02( ) ' 5 29. 9.8 199.4 .0 .58( ) 6.30(S) .02( ) 5 30. 9.8 19.4 .0 .58( ) 6.29(S) .02( ) 5 31. 9.8 19.4 .0 ' .58( ) 6.28(S) .02( ) 5 32. 9.8 19.4 .0 .58( ) 6.26(S) .02( ) 5 33. 9.7 19.4 .0 5 34. .57( ) 9.7 .25(S) 199.3 .02( ) .0 ' .57( ) 6.24(S) .02( ) 5 35. 9.7 19.3 .0 .57( ) 6.22(S) .02( ) S 36, 9.7 .57( ) 19.3 6.21(S) .0 .02( ) ' 5 37. 9.7 19.3 .0 .57( ) 6.20(S) .02( ) 5 38. 9.7 19.3 .0 .57( ) .18(S) .02( ) 5 39. 9.7 199.3 .0 ' .57( ) 6.17(S) .02( ) 5 40. 9.7 19.3 .0 .57( ) 6.16(S) .02( ) 5 41. 9.6 19.3 .0 .57( ) 6.14(S) .02( ) ' 5 42. 9.6 19.3 .0 .57( ) 6.13(S) .02( ) 5 43. 9.6 19.2 .0 .57( ) 6.12(S) .02( ) 5 44. 9.6 19.2 .0 .57( ) 6.10(S) .02( ) 5 45. 9.6 19.2 .0 .57( ) 6.09(S) .02( )' 5 46. 9.6 19.2 .0 .57( ) 6.08(S) .02( ) ' 5 47. 9.6 19.2 .0 .57( ) 6.06(S) .02( ) 5 48. 9.6 19.2 .0 l .57( ) 6.05(S) .02( ) 5 49. 9.6 19.2 .0 ' .57( ) 6.04(S) .02( ) 5 50. 9.5 19.2 .0 .57( ) 6.02(S) .02( ) 5 51. 9.5 19.1 .0 ' .57( ) 6.01(S) .02( ) L:UOBS\702100\data\Drainage\SW MM\Phasingpvh100year.out SEAR - BROWN 28 Printed: 5/12/2004 1 1 t 1 1 1 1 1 5 52. 9.5 19.1 .0 .57( ) 6.00(S) .02( ) 5 53. 9.5 19.1 .0 .57( ) 5.99(S) .02( ) 5 54. 9.5 19.1 .0 .57( ) 5.97(S) .02( ) 5 55. 9.5 19.1 .0 .57( ) 5.96(S) .02( ) 5 56. 9.5 19.1 .0 .57( ) 5.95(S) .02( ) 5 57. 9.5 19.1 .0 .57( ) 5.93(S) .02( ) 5 58. 9.5 19.1 .0 .57( ) 5.92(S) .02( ) 5 59. 9.5 19.0 .0 .57( ) 5.91(S) .02( ) 6 0. 9.4 19.0 .0 .57( ) 5.89(S) .02( ) 6 1. 9.4 19.0 .0 .57( ) 5.88(S) .02( ) 6 2. 9.4 19.0 .0 .57( ) 5.87(S) .02( ) 6 3. 9.4 19.0 .0 .57( ) 5.85(S) .02( ) 6 4. 9.4 19.0 .0 .57( ) 5.84(S) .02( ) 6 5. 9.4 19.0 .0 .57( ) 5.83(S) .02( ) 6 6. 9.4 19.0 .0 .57( ) 5.81(S) .02( ) 6 7. 9.4 18.9 .0 .56( ) 5.80(S) .02( ) 6 8. 9.4 18.9 .0 .56( ) 5.79(S) .02( ) 6 9. 9.4 18.9 .0 .56( ) 5J7(S) .02( ) 6 10. 9.4 18.9 .0 .56( ) 5.76(S) .02( ) 6 11. 9.3 18.9 .0 .56( ) 5.75(S) .02( ) 6 12. 9.3 18.9 .0 .56( ) 5.73(S) .02( ) 6 13. 9.3 18.9 .0 .56( ) 5J2(S) .02( ) 6 14. 9.3 18.9 .0 .56( ) 5J1(S) .02( ) 6 15. 9.3 18.9 .0 .56( ) 5.69(S) .02( ) 6 16. 9.3 18.8 .0 .56( ) 5.68(S) .02( ) 6 17. 9.3 18.8 .0 .56( ) 5.67(S) .02( ) 6 18. 9.3 18.8 .0 .56( ) 5.66(S) .02( ) 6 19. 9.3 18.8 .0 .56( ) 5.64(S) .02( ) 6 20. 9.3 18.8 .0 .56( ) 5.63(S) .02( ) 6 21. 9.3 18.8 .0 .56( ) 5.62(S) .02( ) 6 22. 9.3 18.8 .0 .56( ) 5.60(S) .02( ) 6 23. 9.2 18.8 .0 .56( ) 5.59(S) .02( ) 6 24. 9.2 18.7 .0 .56( ) 5.58(S) .02( ) 6 25. 9.2 18.7 .0 .56( ) 5.56(S) .02( ) 6 26. 9.2 18.7 .0 .56( ) 5.55(S) .02( ) 6 27. 9.2 18.7 .0 .56( ) 5.54(S) .02( ) 6 28. 9.2 18.7 .0 .56( ) 5.52(S) .02( ) 6 29. 9.2 18.7 .0 .56( ) 5.51(S) .02( ) 6 30. 9.2 18.7 .0 .56( ) 5.50(S) .02( ) 6 31. 9.2 18.7 .0 .56( ) 5.49(S) .02( ) 6 32. 9.2 18.6 .0 .56( ) 5.47(S) .02( ) 6 33. 9.2 18.6 .0 .56( ) 5.46(S) .02( ) 6 34. 9.2 18.6 .0 .56( ) 5.45(S) .02( ) 6 35. 9.2 18.6 .0 .56( ) 5.43(S) .02( ) 6 36. 9.2 18.6 .0 .56( ) 5.42(S) .02( ) L:W OBS\702100\data\Drainage\SW MM\Phasingpvh100year.out SEAR•BROWN 29 Printed: 5/12/2004 SEAR - BROWN I 1 L� L 1 I I 6 37. 9.1 18.6 .0 .56( ) 5.41(S) .02( ) 6 38. 9.1 18.6 .0 .56( ) 5.39(S) .02( ) 6 39. 9.1 18.5 .0 .56( ) 5.38(S) .02( ) 6 40. 9.1 18.5 .0 .56( ) 5.37(S) .02( ) 6 41. 9.1 18.5 .0 .56( ) 5.36(S) .02( ) 6 42. 9.1 18.5 .0 .56( ) 5.34(S) .02( ) 6 43. 9.1 18.5 .0 .56( ) 5.33(S) .02( ) 6 44. 9.1 18.5 .0 .56( ) 5.32(S) .02( ) 6 45. 9.1 18.5 .0 .56( ) 5.30(S) .02( ) 6 46. 9.1 18.5 .0 .56( ) 5.29(S) .02( ) 6 47. 9.1 18.4 .0 .56( ) 5.28(S) .02( ) 6 48. 9.1 18.4 .0 .56( ) 5.27(S) .02( ) 6 49. 9.1 18.4 .0 .56( ) 5.25(S) .02( ) 6 50. 9.1 18.4 .0 .56( ) 5.24(S) .02( ) 6 51. 9.1 18.4 .0 .56( ) 5.23(S) .02( ) 6 52. 9.1 18.4 .0 .56( ) 5.21(S) .02( ) 6 53. 9.1 18.4 .0 .56( ) 5.20(S) .02( ) 6 54. 9.0 18.3 .0 .56( ) 5.19(S) .02( ) 6 55. 9.0 18.3 .0 .56( ) 5.18(S) .02( ) 6 56. 9.0 18.3 .0 .56( ) 5.16(S) .02( ) 6 57. 9.0 18.3 .0 .55( ) 5.15(S) .02( ) 6 58. 9.0 18.3 .0 .55( ) 5.14(S) .02( ) 6 59. 9.0 18.3 .0 .55( ) 5.12(S) .02( ) 7 0. 9.0 18.3 .0 .55( ) 5.11(S) .02( ) 7 1. 9.0 18.2 .0 .55( ) 5.10(S) .02( ) 7 2. 9.0 18.2 .0 .55( ) 5.09(S) .02( ) 7 3. 9.0 18.2 .0 .55( ) 5.07(S) .02( ) 7 4. 9.0 18.2 .0 .55( ) 5.06(S) .02( ) 7 5. 9.0 18.2 .0 .55( ) 5.05(S) .02( ) 7 6. 9.0 18.2 .0 .55( ) 5.04(S) .02( ) 7 7. 9.0 18.2 .0 .55( ) 5.02(S) .02( ) 7 8. 9.0 18.1 .0 .55( ) 5.01(S) .02( ) 7 9. 9.0 18.1 .0 .55( ) 5.00(S) .02( ) 7 10. 9.0 18.1 .0 .55( ) 4.98(S) .02( ) 7 11. 9.0 18.1 .0 .55( ) 4.97(S) .02( ) 7 12. 9.0 18.1 .0 .55( ) 4.96(S) .02( ) 7 13. 8.9 18.1 .0 .55( ) 4.95(S) .02( ) 7 14. 8.9 18.1 .0 .55( ) 4.93(S) .02( ) 7 15. 8.9 18.1 .0 .55( ) 4.92(S) .02( ) 7 16. 8.9 18.0 .0 .55( ) 4.91(S) .02( ) 7 17. 8.9 18.0 .0 .55( ) 4.90(S) .02( ) 7 18. 8.9 18.0 .0 .55( ) 4.88(S) .02( ) 7 19. 8.9 18.0 .0 .55( ) 4.87(S) .02( ) 7 20. 8.9 18.0 .0 .55( ) 4.86(S) .02( ) 7 21. 8.9 18.0 .0 .55( ) 4.85(S) .02( ) L:UOBS\702100\data\Drainage\SW MM\Phasingpvh 100year.out 30 Pdnted: 5/12/2004 7 22. 8.9 18.0 .0 .551 ) 4.83(1) 021 ) 7 23. 8.9 17.9 .0 .55( ) 4.82(S) .02( ) ' 7 24. 8.9 17.9 .0 .55( ) 4.81(S) .02( ) (\ 7 25. 8.9 17.9 .0 _ .55( ) 4.80(S) .02( ) 7 26. 8.9 17.9 .0 .55( ) 4.78(S) .02( ) 7 27. 8.9 17.9 .0 .55( ) 4.77(S) 02( ) 7 28. 8.9 17.9 .0 .55( ) 4.76(S) .02( ) ' 7 29. 8.9 17.9 .0 .55( ) 4.75(S) .02( ) 7 30. 8.9 17.9 .0 .55( ) 4.74(S) .02( ) 7 31. 8.9 17.8 .0 ' .55( ) 4.72(S) .01( ) 7 32. 8.9 17.8 .0 .55( ) 4.71(S) .01( ) 7 33, 8.8 17.8 .0 .55( ) 4.70(S) .01( ) 7 34. 8.8 17.8 .0 .55( ) 4.69(S) .01( ) 7 35. 8.8 17.8 .0 .55( ) 4.67(S) .01( ) 7 36. 8.8 17.8 .0 ' .55( ) 4.66(S) .01( ) 7 37. 8.8 17.8 .0 .55( ) 4.65(S) .01( ) 7 38. 8.8 17.7 .0 .55( ) 4.64(S) .01( ) ' 7 39. 8.8 17.7 .0 .55( ) 4.62(S) .01( ) 7 40. 8.8 17.7 .0 .55( ) 4.61(S) .01( ) 7 41. 8.8 17.7 .0 ' .55( ) 4.60(S) .01( ) 7 42. 8.8 17.7 .0 .55( ) 4.59(S) .01( ) 7 43. 8.8 17.7 .0 .55( ) 4.58(S) .01( ) 7 44. 8.8 17.7 .0 .55( ) 4.56(S) .01( ) 7 45. 8.8 17.7 .0 .55( ) 4.55(S) 011 ) 7 46, 8.8 .55( ) 17.6 4.54(S) .0 .01( ) 7 47. 8.8 17.6 .0 .55( ) 4.53(S) .01( ) 7 48. 8.8 17.6 .0 7 49. .55( ) 8.8 4.51(S) 17.6 .01( ) .0 .55( ) 4.50(S) .01( ) 7 50. 8.8 17.6 .0 .55( ) 4.49(S) 01( ) 7 51, 8.8 17.6 .0 .55( ) 4.48(S) .01( ) ' 7 52. 8.8 17.6 .0 .55( ) 4.47(S) .01( ) 7 53. 8.8 17.5 .0 .55( ) 4.45(S) .01( ) 7 54. 8.7 17.5 .0 ' .55( ) 4.44(S) .01( ) 7 55. 8.7 17.5 .0 .55( ) 4.43(S) 01( ) 7 56, 8.7 17.5 .0 .55( ) 4.42(S) .01( ) 7 57. 8.7 17.5 .0 .55( ) 4.41(S) .01( ) 7 58. 8.7 17.5 .0 .55( ) 4.39(S) .01( ) 7 59. 8.7 17.5 .0 ' .55( ) 4.38(S) .01( ) 8 0. 8.7 17.5 .0 .55( ) 4.37(S) .01( ) 8 1. 8.7 17.4 .0 .54( ) 4.36(5) .01( ) ' 8 2. 8.7 17.4 .0 .54( ) 4.34(S) .01( ) 8 3. 8.6 17.4 .0 .54( ) 4.33(S) .01( ) 8 4. 8.6 17.4 .0 .54( ) 4.32(S) .01( ) 8 5. 8.6 17.4 .0 .54( ) 4.31(S) .01( ) 8 6. 8. 17.4 .0 .55 4( ) 4.30(S) .01( ) SEAR -BROWN L:\JOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 31 Printed: 5/12/2004 ' 8 7. 8.5 17.4 .0 .541 ) 4.28111 111 ) 8 8. 8.5 17.3 .0 .54( ) 4.27(S) .01( ) 8 9. 8.5 17.3 .0 .54( ) 4.26(S) .01( ) 8 10. 8.4 17.3 .0 .54( ) 4.25(S) .01( ) 8 11. 8.4 17.3 .0 .54( ) 4.24(S) .01( ) 8 12. 8.3 17.3 .0 .53( ) 4.22(S) .11( ) 8 13, 8.3 17.3 .0 .53( ) 4.21(S) .01( ) ' 8 14. 8.2 17.3 .0 .53( ) 4.20(S) .01( ) 8 15. 8.2 17.3 .0 .53( ) 4.19(S) .11( ) 8 16. 8.1 17.2 .0 .53( ) 4.17(S) .01( ) 8 17. 8.0 17.2 .0 .53( ) 4.16(S) .01( ) 8 18. 8.0 17.2 .0 .52( ) 4.15(S) .01( ) ' 8 19. 7.9 17.2 .0 .52( ) 4.13(S) .01( ) 8 20. 7.9 17.2 .0 .52( ) 4.12(S) .01( ) 8 21. 7.8 17.2 .0 .52( ) 4.11(S) .01( ) 8 22. 7.8 17.2 .0 .52( ) 4.10(S) .01( ) 8 23. 7.7 17.1 .0 .52( ) 4.08(S) .01( ) 8 24. 7.7 17.1 .0 .51( ) 4.07(S) .01( ) 8 25. 7.6 17.1 .0 .51( ) 4.06(S) .01( ) 8 26. 7. 17.1 .0 .55 1( ) 4.04(S) .01( ) 8 27. 7.5 17.1 .0 .51( ) 4.03(S) .01( ) 8 28. 7.4 17.1 .0 .51( ) 4.02(S) .01( ) ' 8 29. 7.4 17.1 .0 .51( ) 4.00(S) .01( ) 8 30. 7.3 17.0 .0 .50( ) 3.99(S) .01( ) ' 8 31. 7.3 .50( ) 17.0 3.98(S) .0 .01( ) 8 32. 7.2 17.0 .0 .50( ) 3.96(S) .01( ) 8 33. 7.2 17.0 .0 8 34. .50( ) 7.1 3.95(S) 17.0 .01( ) .0 .50( ) 3.94(S) .01( ) 8 35. 7.1 17.0 .0 .50( ) 3.92(S) 11( ) 8 36, 7.0 17.0 .0 .49( ) 3.91(S) .01( ) ' 8 37. 7.0 16.9 .0 .49( ) 3.90(S) .01( ) 8 38. 6.9 16.9 .0 .49( ) 3.88(S) .01( ) 8 39. 6.9 16.9 .0 ' .49( ) 3.87(S) .01( ) 8 40. 6.8 16.9 .0 .49( ) 3.85(S) 01( ) 8 41, 6.8 16.9 .0 .49( ) 3.84(S) .01( ) 8 42. 6.7 16.9 .0 .48( ) 3.83(S) .01( ) 8 43. 6.7 16.9 .0 .48( ) 3.81(S) .01( ) 8 44.. 6.6 16.8 .0 ' .48( ) 3.80(S) .01( ) 8 45. 6.6 16.8 .0 .48( ) 3.79(S) 01( ) 8 46, 6.5 16.8 .0 .48( ) 3.77(S) .01( ) ' 8 47. 6.5 16.8 .0 .48( ) 3.76(S) .01( ) 8 48. 6.4 16.8 .0 .47( ) 3.74(S) .01( ) 8 49. 6.4 16.8 .0 .47( ) 3.73(S) .01( ) 8 50. 6.4 16.7 .0 .47( ) 3.71(S) .01( ) 8 51. 6.3 16.7 .0 .47( ) 3.70(S) .01( ) SEAR -BROWN L:\.IOBS\702100\data\Drainage\SWMM\Phasingpvhl00year.out 32 Printed: 5/12/2004 ' 8 52. 6.3 16.7 .0 .471 ) 3.69(1) 011 ) 8 53. 6.2 16.7 .0 .47( ) 3.67(S) .01( ) ' 8 54. 6.2 16.7 .0 .46( ) 3.66(S) .01( ) _ 8 55. 6.1 16.7 .0 .46( ) 3.64(S) .01( ) 8 56. 6.1 16.7 .0 .46( ) 3.63(S) .01( ) 8 57. 6.0 16.6 .0 .46( ) 3.61(S) 01( ) 8 58, 6.0 16.6 .0 .46( ) 3.60(S) .01( ) 8 59. 6.0 16.6 .0 .46( ) 3.58(S) .01( ) 9 0. 5.9 16.6 .0 .46( ) 3.57(S) .01( ) 9 1. 5.9 16.6 .0 ' .45( ) 3.55(S) .01( ) 9 2. 5.8 16.6 .0 .45( ) 3.54(S) .01( ) 9 3. 5.8 16.5 .0 .45( ) 3.52(S) .01( ) ' 9 4. 5.7 16.5 .0 .45( ) 3.51(S) .01( ) 9 5. 5.7 16.5 .0 .45( ) 3.49(S) .01( ) 9 6. 5.7 16.5 .0 ' .45( ) 3.48(S) .01( ) 9 7. 5.6 16.5 .0 .44( ) 3.47(S) .01( ) 9 8. 5.6 16.4 .0 .44( ) 3.45(S) .01( ) 9 9. 5.5 16.4 .0 .44( ) 3.44(S) .01( ) 9 10. 5.5 16.4 .0 .44( ) 3.42(S) .01( ) 9 11. 5.4 6.0 .0 ' .44( ) 3.41(S) .01( ) 9 12. 5.4 5.4 .0 .44( ) 3.41(S) .01( ) 9 13. 5.3 5.4 .0 .43( ) 3.41(S) .01( ) 9 14. 5.3 5.3 .0 .43( ) 3.41(S) .01( ) \ . 9 15. 5.2 5.3 .0 .43( ) 3.41(S) .01( ) 9 16. 5.2 5.2 .0 ' .43( ) 3.41(S) .01( ) 9 17. 5.1 5.2 .0 .43( ) 3.41(S) .01( ) 9 18. 5.1 5.1 .0 9 19. .43( ) 5.0 3.41(S) 5.1 .01( ) .0 .42( ) 3.41(S) .01( ) 9 20. 5.0 5.0 .0 .42( ) 3.41(S) 01( ) 9 21. 4.9 5.0 .0 .42( ) 3.41(S) .01( ) ' 9 22. 4.9 4.9 .0 .42( ) 3.41(S) .01( ) 9 23. 4.9 4.9 .0 .42( ) 3.41(S) .01( ) 9 24. 4.8 4.8 .0 ' .41( ) 3.41(S) .01( ) 9 25. 4.8 4.8 .0 .41( ) 3.41(S) 11( ) 9 26, 4.7 4.7 .0 .41( ) 3.41(S) .01( ) ' 9 27. 4.7 4.7 .0 .41( ) 3.41(S) .01( ) 9 28. 4.6 4.7 .0 .41( ) 3.41(S) .01( ) 9 29. 4.6 4.6 .0 ' .41( ) 3.41(S) .01( ) 9 30. 4.5 4.6 .0 .40( ) 3.41(S) 01( ) 9 31, 4.5 4.5 .0 .40( ) 3.41(S) .01( ) ' 9 32. 4.5 4.5 .0 .40( ) 3.41(S) .01( ) 9 33. 4.4 4.4 .0 .40( ) 3.41(S) .01( ) 9 34. 4.4 4.4 .0 ' .40( ) 3.41(S) .01( ) 9 35. 4.3 4.4 .0 .39( ) 3.41(S) .01( ) 9 36, 4.3 4.3 .0 ' .39( ) 3.41(S) .01( ) SEAR•BROWN L:UOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 33 Printed: 5/12/2004 ' 9 37. 4.3 4.3 .0 .391 ) 3.41(1) .011 ) 9 38, 4.2 4.2 .0 .39( ) 3.41(S) .01( ) ' 9 39. 4.2 4.2 .0 ^ .39( ) 3.41(S) .01( ) \ 9 40. 4.1 4.2 .0 .39( ) 3.41(S) .01( ) 9 41. 4.1 4.1 .0 .38( ) 3.41(S) .01( ) 9 42. 4.1 4.1 .0 .38( ) 3.41(S) 01( ) 9 43, 4.0 4.0 .0 .38( ) 3.41(S) .01( ) 9 44. 4.0 4.0 .0 .38( ) 3.41(S) .01( ) 9 45. 3.9 4.0 .0 .38( ) 3.41(S) .01( ) 9 46. 3.9 3.9 .0 .38( ) 3.41(S) .01( ) 9 47. 3.9 3.9 .0 .37( ) 3.41(S) .01( ) 9 48, 3.8 3.9 .0 .37( ) 3.41(S) .01( ) 9 49. 3.8 3.8 .0 .37( ) 3.41(S) .01( ) 9 50. 3.8 3.8 .0 .37( ) 3.41(S) .01( ) 9 51. 3.7 3.7 .0 ' .37( ) 3.41(S) .01( ) 9 52. 3.7 3.7 .0 .37( ) 3.41(S) .01( ) 9 53. 3.7 3.7 A .37( ) 3.41(S) .01( ) ' 9 54. 3.6 3.7 .0 .36( ) 3.41(S) .01( ) 9 55. 3.6 3.6 .0 .36( ) 3.41(S) .01( ) 9 56. 3.6 3.6 .0 ' .36( ) 3.41(S) .01( ) 9 57. 3.6 3.6 .0 .36( ) 3.41(S) .01( ) 9 58. 3.6 3.6 .0 1 9 59. .36( ) 3.6 3.41(S) 3.6 .01( ) .0 .36( ) 3.41(S) .01( ) 10 0. 3.5 3.6 .0 .36( ) 3.41(S) 01( ) ' THE DURING FOLLOWING CONVEYANCE THE SIMULATION. ELEMENTS WERE SURCHARGED THIS COULD LEAD TO ERRORS IN THE SIMULATION RESULTS!! 417 THE STABILITY FOLLOWING CONVEYANCE PROBLEMS THAT ELEMENTS HAVE LEAD TO HYDRAULIC NUMERICAL OSCILLLATIONS DURING THE SIMULATION. 42 174 324 331 357 358 360 382 413 470 471 592 927 1 SEAR•BROWN L:UOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 34 Printed: 5/12/2004 ' SEAR -BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.: 10/25/00 ' *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** ' *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY ' CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 2:2 273.8 .1 61.9:D 2 30. 4:1 1.8 3.3 0 . 6:1 17373.7 3.5 0 3737. 7:1 35.4 .6 0 36. 8:1 162.8 1.9 1 7. 9:1 741.1 3.1 - 0 41. _ 11:1 40.0 .7 0"36. 12:1 68.0 .8 0 36. 13:1 95.3 .9 0 36. 14:1 7.9 .4 0 36. 16:1 51.4 .6 0 35. 20:1 218.8 3.6 0 36. 21:1 31.2 .6 0 41. 22:1 210.9 3.3 0 37. 25:2 1.5 .5 1 9. 26:5 102.1 4.6 0 56. 27:2 101.7 .1 2.5:D 0 51. ' 28:1 35.0 .7 0 37. 29:1 18.2 .5 0 40. 30:1 15.5 .5 0 36. 31:5 71.4 3.2 2 1. 32:1 29.9 .8 0 48. ' 33:1 41.5 .7 0 36. 34:2 1.9 .1 .9:D 2 1. 35:1 86.1 .9 0 55. 36:5 23.6 1.5 0 35. 38:4 64.7 2.3 1 9. ' 39:4 50.8 2.1 2 3. 40:1 490.7 4.2 0 36. 41:5 101.7 4.3 0 52. 42:2 114.8 2.9 0 55. 43:3 222.8 (DIRECT FLOW) 0 37. 44:1 67.9 1.5 0 40. 45:1 11.9 .1 2.2:0 1 52. 46:1 11.2 .1 3.9:D 2 1. 47:1 7.2 .1 1.6:D 1 58. 50:1 497.3 2.8 0 39. ' 51:1 804.9 3.4 0 37.' 72:5 23.8 1.6 1 36. 73:4 51.3 .6 0 37. 74:1 8.8 .4 2 26. 75:1 188.8 2.6 0 35. 76:1 51.3 1.9 0 41. 82:4 3.4 .2 0 36. 83:1 21.0 1.0 0 58. 84:4 57.3 .5 0 35. 85:4 44.2 .5 0 36. 88:1 152.0 2.8 0 35. 89:1 13.6 1.2 0 37. 90:4 4.9 .2 1 0. 91:1 27.1 1.6 1 23. 92:2 13.3 1.1 0 35. ' 93:7.1 .1 6.2:1 1 2. _ 94:1 71.8 2.9 1 6. 95:3 284.0 (DIRECT FLOW) 0 35. 102:5 845.4 7.0 1 12. 112:1 11.4 .4 0 35. 116:1 283.1 3.3 2 32. 124:2 16.9 1.0 1 32. 130:2 55.3 2.4 0 35. 131:2 88.6 3.1 0 35. 140:1 293.0 3.3 2 32. ' 1:.3 .9 1 . 16060:5 7474.3 2.9 0 355. 166:2 25.6 .1 2.8:D 0 55. 167:1 25.6 1.7 0 56. 168:2 19.0 .1 .5:D 0 42. ' 1:4.1 2.0 4. 17070:1 42.1 2.2 0 46. 171:2 4.1 .1 1.5:D 2 1. 172:2 10.8 .1 8.1:D 2 3. 173:4 8.8 1.1 2 9. ' 174:5 4..0 4. 175:5 48.7 2.3 0 49. 176:2 25.8 .1 1.9:D 0 51. 177:5 88.9 3.3 0 53. 178:2 46.9 .1 5.3:D 0 58. 179:5 15.7 1.6 0 35. 180:2 91.4 .1 6.0:0 1 35. L:\JOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 35 Printed: 5/12/2004 ' 201:3 52.3 (DIRECT FLOW) 0 35. 202:3 91.2 (DIRECT FLOW) 0 35. ' 203:3 37.0 (DIRECT FLOW) 0 35. 209:3 304.8 (DIRECT FLOW) 0 35. 210:3 442.6 (DIRECT FLOW) 0 35. 214:3 37.9 (DIRECT FLOW) 0 35. 215:3 21.9 (DIRECT FLOW) 0 35. ' 211:3 283.2 (DIRECT FLOW) 2 26, 223:3 147.2 (DIRECT FLOW) 0 35. 224:3 186.6 (DIRECT FLOW) 0 35. 226:3 66.2 (DIRECT FLOW) 0 35. 241:3 95.8 (DIRECT FLOW) 1 3. ' 25:2 ..1 .3:D 1 . 251:3 57.3 (DIRECT FLOW) 0 355. 252:3 76.6 (DIRECT FLOW) 0 35. 261:3 94.5 (DIRECT FLOW) 0 35. 262:3 128.9 (DIRECT FLOW) - 0 35. ' 270:3 21A (DIRECT FLOW) 035, 271:5 51.2 2.6 0 35. 272:2 .9 .1 .2:D 1 15. 275:2 86.3 2.7 0 50. 281:1 53.0 .6 0 50. 282:1 298.4 1.9 1 17. ' 283:1 298.7 1.5 1 15. 284:1 259.3 1.0 1 12. 291:2 3.1 .1 1.2:D 2 1. 301:2 28.3 .1 4.5:D 1 14. 310:2 9.5 .1 13.8:D 2 10. ' 315:2 11.3 .1 1.2:D 1 0. 320:1 56.2 1.6 0 41. 321:2 38.4 .1 5.7:D 1 12. 322:2 11.2 .1 3.5:D 2 0. 323:1 11.2 .4 1 59. ' 324:2 97.6 2.4 0 35. 325:1 181.3 2.9 0 36. 326:5 178.8 3.7 0 36. 327:1 164.0 2.7 0 39. 328:5 41.0 2.0 0 35. 329:1 182.8 2.8 0 39. 330:2 5.4 .1 2.3:D 2 1. 331:2 100.2 2.3 0 35. 334:2 16.9 .l 4.O:D 1 31. 336:2 19.0 .1 2.4:0 2 1. 341:5 165.1 3.9 0 56. j 350:2 11.7 .1 1.2:D 0 56. 357:1 380.0 3.3 1 16. 358:2 380.0 4.0 1 16. 359:1 379.8 3.3 1 21. ' 360:2 382.5 4.0 1 20. 361:1 387.9 3.3 1 20. 362:1 390.3 3.3 1 20. 363:1 402.7 3.4 1 18. 364:4 573.4 4.0 1 9. 365:2 18.3 .1 2.6:D 1 0. 366:4 679.6 4.4 1 8. 367:4 678.7 6.0 1 10. 368:4 709.2 5.2 1 15. 369:4 125.4 2.6 0 52. ' 370:2 17.0 .1 .8:D 0 47. 371:2 1.6 .1 .4:D 1 31. 372:2 27.1 .1 .6:D 0 45. 373:2 195.3 .1 12.1:D 1 0. 374:2 24.8 .1 1.9:D 0 51. 380:2 72.7 .1 6.5:1 1 12, 381:2 6.2 .1 1.8:D 1 44. 382:2 31.9 .1 1.3:D 0 46. 383:2 16.0 .1 1.9:D 1 7. 384:2 10.9 .1 1.9:D 1 21. ' 386:1 265.7 1.2 1 6. 387:1 211.2 .9 1 1. 388:1 223.9 9 0 53. 395:3 3.6 (DIRECT FLOW) 0 31. 400:1 48.7 1.2 0 37. ' 40:1 3.3 A0 . 402:1 3550 .6 .5 0 50. 403:1 70.6 2.1 1 18. 404:5 84.0 2.5 0 45. 405:5 129.0 4.0 1 25. ' 416:3 229.8 (DIRECT FLOW) 0 35, 407:3 138.4 (DIRECT FLOW) 1 13. 409:1 122.1 1.1 0 52. 410:4 1262.6 4.5 1 15. 411:4 1286.9 7.1 1 19. ' 412:4 1312.9 6.3 1 21. 413:5 1418.6 6.3 1 19. 414:1 1445.0 3.3 1 22. 415:1 1491.1 2.8 1 24. 416:1 1503.8 3.1 1 26. ' 417:2 .0 .1 409.2:5 10 0, 470:2 71.5 .1 1.1:D 2 0. L: V OBS\702100\data\Drainage\SW MM\Phasingpvhl 00year.out SEAR -BROWN CIA Printed: 5/12/2004 ' SEAR-BROWN 471:2 68.4 .1 .9:D 2 0. 472:2 63.1 .1 9.0:1 2 1. 474:1 8.8 .1 14.1:D 2 21. 477:2 62.0 .1 .4:D 0 37. 479:2 12.2 .1 .1:D 0 35. i� 480:2 10.5 .1 .1:D 0 36. i 481:2 15.2 .1 .2:D 0 37. 483:2 2.8 .1 1.1:D 2 0, 486:2 39.9 .1 4.8:D 1 10. ' 488:2 25.1 .1 10.9:D 2 30. 490:2 2.1 .1 .2:D 0 50. 491:2 3.6 .1 .5:D 0 55. 496:2 13.2 .1 2.1:1 1 7, 497:2 1.8 1 .8:D 2 1. ' 517:3 1539.0 (DIRECT FLOW) 1 26. 570:3 92.6 (DIRECT FLOW) 0 40. 571:3 95.8 (DIRECT FLOW) - 0 35. 572:3 252.3 (DIRECT FLOW) 0" 35. 574:3 409.3 (DIRECT FLOW) 0 35. ' 576:3 67.4 (DIRECT FLOW) 0 40. 577:3 71.3 (DIRECT FLOW) 0 35. 582:3 7.7 (DIRECT FLOW) 0 35. 583:3 23.8 (DIRECT FLOW) 0 58. 584:3 39.9 (DIRECT FLOW) 1 10. ' 586:3 229.7 (DIRECT FLOW) 0 35. 588:3 253.3 (DIRECT FLOW) 0 35. 591:1 8.7 .4 1 26. 592:2 593:2 264.7 50.8 2.7 .1 0.9 0 35. ` j -8 1.-� �00-YA f6Lme ' 594:2 8.7 .1 .D 2 7. 595:2 92.3 2.7 0 35. 673:3 18.9 (DIRECT FLOW) 1 10. 682:3 6.0 (DIRECT FLOW) 0 35. 683:3 1.8 (DIRECT FLOW) 0 35. 684:3 21.0 (DIRECT FLOW) 0 45. 827:1 29.6 1.2 1 3. 927:1 181.6 1.8 0 37. 977:3 46.9 (DIRECT FLOW) 0 58. I 1] H ( ENDPROGRAM PROGRAM CALLED L:UOBS\702100\data\Drainage\SWMM\Phasingpvh100year.out 37 Printed: 5/12/2004 ' SEAR -BROWN ' ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 ' DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) ' UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS ' MISSOURI RIVER DIVISION• CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) ,F *** ENTRY MADE TO RUNOFF MODEL *** 1 , CADocuments and Settings\michaelj\Desktop\Current Projects\pvhlOyear.out 1 Pdnt SEAR -BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3122100 EXTRAN ADOPTED 10-YEAR EVENT FILE: MCE100R.OAT ICON ENGINEERING, INC.; 10/25/00 ' GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) SU,SUBAREA NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 .51 .50 .00180 80 50 7109.0 86.2 40.0 .0100 .016 .250 .100 .300 . .51 .50 .00180 1 60 50 1150.0 8.9 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 70 6 10239.0 29.4 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 130 51 7161.0 24.7 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 100 51 2875.0 13.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 150 4 1590.0 1.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 110 11 1250.0 1.9 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 111 11 700.0 1.1 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 112 112 750.0 1.3 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 113 12 1200.0 1.3 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 114 12 950.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 115 13 1050.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 116 13 1400.0 2.2 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 117 51 1000.0 2.9 99.0 .0100 .016 .250 .100 .300 .51 .50. .00180 1 118 1 14 1250.0 1.1 99.0 .0100 .011 .250 .100 .300 .51 50 .00180 320 11 305.0 2.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 120 22 3875.0 17.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 90 2 5715.0 13.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 190 51 250.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 200 20 4550.0 31.3 80.0 .0100 .016 100 1 .250 .300 .51 .50 .01180 ' 210 44 1090.0 7.5 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 I 240 7 1742.0 5.0 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 220 45 3228.0 22.2 10.0 .0100. .016 .250 .100 .300 .51 .50 .00180 1 260 46 3454.0 23.8 50.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 230 47 2134.0 14.7 10.0 .0100 016 .150 .100 300 .11 .50 .00180 1 ' 290 291 1278.0 5.9 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 340 34 1260.0 4.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 280 275 1000.0 2.0 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 281 28 1650.0 3.2 99.0 .0100 .016 .250 .100 300 .51 .50 .00180 1 282 29 850.0 1.5 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 283 30 1250.0 2.0 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 330 33 700.0 5.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 160 16 3500.0 4.0 84.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 121 16 850.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 122 22 1200.0 1.8 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 ' 250 250 500.0 1.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 270 270 625.0 3.3 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 271 271 2017.0 6.3 55.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 272 272 817.0 1.5 31.0 .0900 .016 .250 .100 .300 .51 .50 .00180 1 360 36 3223.0 2.4 87.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 CADocuments and Settings\michaelj\Desktop\Current Projects\pvhlOyear.out 3 Print ' SEAR -BROWN 9 209 3000.0 20.2 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 1 10 210 1400.0 9.1 26.0 .0200 .016 .250 .100 .300 .51 .50 .00180 14 214 1000.0 4.8 54.0 .0200 .016 .250 .100 .300 .51 .50 .00180 15 215 1300.0 4.4 9.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 16 216 200.0 1.8 12.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 20 223 600.0 4.1 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 21 223 1400,1 9.0 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 22 223 1800.0 7.3 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 23 224 1000.0 2.2 61.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 24 224 600.0 3.1 34.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 25 226 900.0 4.0 65.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 26 226 1000.0 2,7 32,0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 30 130 2750.0 5.9 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 31 131 1700.0 3.6 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 32 330 400.0 2.0 48.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 39 216 700.0 3.1 11.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 40 140 1300.0 6.4 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 41 357 800.0 4.3 43.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 42 241 900.0 1.5 75.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 50 251 1800.0 8.1 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 63 252 2250.0 8.9 61.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 61 261 650.0 2.1 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ..1 62 262 1200.0 4.7 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 370 570 1050.0 6.1 63.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 371 571 2000.0 11.7 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 372 572 4900.0 26.7 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 373 73 2000.0 8.2 90.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 ' 374 574 8000.0 18.3 86.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 375 75 5400.0 28.4 48.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 376 576 1000.0 5.1 10.0 .0100 .016 .250 .100 :300 .51 .50 .00180 ' 1 377 577 400.0 1.9 70.0 .0100, .016 .250 .100 .300 .51 .50 .00180 1 378 577 450.0 2.3 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 379 479 450.0 1.5 70.0 .0100 .016 .250 .100 .300 51 .50 .00180 1 380 480 350.0 1.4 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 1 381 481 550.0 2.6 70.0 0100 .016 .250 .100 .300 .51 .50 .00180 382 582 700.0 .8 67.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 383 483 1200.0 5.6 69.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 384 84 2400.0 6.9 84.0 .0200 .016 .250 .100 .300 .51 .50 00180 1 385 85 2100.0 6.3 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 386 586 2000.0 12,2 60.0 .0110 .016 .250 .100 .300 .51 .50 .00180 ' 387 586 800.0 3.2 70.0 .0250 .016 .250 .100 .300 .51 .50 .00180 1 388 588 1548.0 16.0 5.0 .0200 .016 .250 .100 .300 .51 .50 '. .00180 1 389 88 1220.0 7.0 5.0 .0200 .016 .250 .100 .300. .51 .50 .00180 1 1 390 490 550.0 1.4 70.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 1 391 491 600.0 2.8 70.0 .0200 .016 .250 .100 .300 *11 .50 .00180 CADocuments and Settings\michaelj\Desktop\Current Projects\pvhlOyear.out 5 Prin ' SEAR -BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 10-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING. INC.; 10/25/00 CONTINUITY CHECK,FOR.SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 2154.020 TOTAL RAINFALL (INCHES) 1.711 TOTAL INFILTRATION (INCHES) 650 ' TOTAL WATERSHED OUTFLOW (INCHES) 897 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .164 ' ERROR IN CONTINUITY. PERCENTAGE OF RAINFALL .000 1 1 FI 1 1 1 1 CADocuments and Settings\michaelj\Desktop\Current Projects\pvhl0year.out 7 Print ' SEAR -BROWN. 27. 41 8 2 PIPE 1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' . .0 .0 .0 .8 .2 2.5 .5 3.5 .9 4.2 1.4 4.8 201 57.6 3PIPE 191.4 41 26 5 4.0 100. .0050 .0 .0 .016 4.00 ,.. 0 OVERFLOW 10.0 100. .0050 50.0 50.0 .016 5.00 .36 26 0 5 PIPE 1.3 90. .0140 .0 .0 .013 1.25 0 OVERFLOW .0 90. .0140 200.0 200.0 .020 5.00 0 28 275 0 1 CHANNEL .0 1000. .0050 .0 50.0 .016 1.50 29 28 0 1 CHANNEL .0 1650. .0050 .0 50.0 .016 1.50 0 30 29 0 1 CHANNEL .0 850. .0050 .0 50.0 .016 1.50 0 34 16 3 2 PIPE .1 1. .0050 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.9 10.0 1.9 92 89 0 2 PIPE 2.0 1000. 0100 .0 .0 .013 2.00 0 ' 395 89 4 3 .1 1. .0010 .0 .0 .001 .10 -1 TIME IN HRS VS INFLOW IN CFS 0 .0 5 3.6 9.6 3.6 9.8 .0 89 88 0 1 CHANNEL .0 800. .0070 4.0 4.0 .035 5.00 ' 0 490 90 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 2 .5 2 .5 2 2.5 491 90 4 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 5 1.0 6 91.9 7 260.0 90 88 0 4 CHANNEL .0 500. .0100 50.0 50.0 .016 .50 0 OVERFLOW 50.0 500. .0100 10.0 10.0 .035 5.00 496 88 6 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW (.- .0 .0 .0 12.0 .1 12.4 .8 12.8 2.1 13.2 3.5 31.6 88 588 0 1 CHANNEL .0 700. .0080 4.0 4.0 .035 5.00 0 497 588 7 2 PIPE 1 1. .0010 .0 .0 .001 .10. ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.6 .1 1.6 .4 1.7 .7 1.7 .8 1.8 1.3 20.2 ' 588 488 0 3 .1 1. .0010 .0 .0 .001 10.00 0 488 586 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 . .1 .5 .3 6.5 .7 8.4 4.9 9.5 5.7 9.9 8.4 12.4 10.1 14.7 10.8 24.5 582 682 3 3 .1 1. .0010 .0 .0 .001 .10 683 ' DIVERSION TO GUTTER NUMBER 683 -TOTAL 0 VS DIVERTED O IN CFS 0 .0 4.6 1.3 8.0 1.8 682 82 0 3 .1 1. .0010 .0 .0 .001 10.00 0 683 0 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 82 85 0 4 CHANNEL .0 1300. .0140 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1300, 1140 10.0 10.0 .035 5.00 0 85 586 0 4 CHANNEL .0 1000. .0110 50.0 50.0 .016 .50 ' OVERFLOW 50.0 1000. .0110 10.0 10.0 .035 5.00 84 586 0 4 CHANNEL .0 700. .0100 50.0 50.0 .016 .50 0 586 486 0 3 OVERFLOW 50.0 700. .1 1. .0100 .0010 10.0 .0 10.0 .0 .035 .001 5.00 10.00 ' 0 486 584 9 2 PIPE .1 1. .0010 .0 .0 .001 .10 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .1 .1 1.5 .3 8.9 .5 IM 1.1 ' 14.4 2.4 18.0 3.8 19.6 4.9 41.2 584 684 7 3 .1 1. .0010, .0 .0 .001 .10 ' 673 DIVERSION TO GUTTER NUMBER 673 - TOTAL 0 VS DIVERTED Q IN CFS CADocuments and Settings\michaelj\Desktop\Current Projects\pvhlOyear.out 9 Prini i SEAR -BROWN 31 275 0 5 PIPE 3.0 108. .0075 .0 .0 .013 3.00 0 OVERFLOW 30.0 108. .0075 50.0 50.0 .035 5.00 33 21 0 1 CHANNEL .0 700. .0080 50.0 .0 .016 1.50 ' 0 2 216 15 2 PIPE .1 77. .0070 .0 .0 .013 .10 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 2.3 .0 16.1 .1 51.3 .6 86.2 2.4 i 115.7 6.2 144.7 12.1 169.8 19.6 193.7 28.6 214.8 33.6 224.4 38.7 233.1 49.3 251.4 59.4 269.7 70.6 288.0 166 167 3 2 PIPE .1 96. .0060 .0 .0 .013 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1.6 24.0 3.4 26.4 167 169 0 1 CHANNEL 4.0 260. .0021 2.0 2.0 .035 4.00 1° 168 169 5 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1 .9 4 1.4 7 93.3 1.0 261.4 169 170 0 5 PIPE 2.3 40. .0070 .0 .0 .013 2.27 i 0 OVERFLOW 40.0 40. .0070 50.0 50.0 .016 4.00 170 174 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 4.00 0 171 174 3 2 PIPE .1 10. .0038 .0 .0 .013 .10 i 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.0 4.0 2.0 4.3 172 173 5 2 PIPE .1 120. .0033 .0 .0 .013 .10 i ° RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 6.5 5.5 8.0 6.0 9.0 97.9 10.0 266.0 173 175 0 4 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 i 174 175 0 5 OVERFLOW 30.0 1200. PIPE 2.3 75. .0050 .0211 15.0.0 .0 150.0 .0 .035 .013 3.00 2.25 0 OVERFLOW 40.0 75. .0211 50.0 50.0 .016 4.00 175. 177 0 5 PIPE 2.5 853. .0123 .0 .0 .013 2.50 i - 0 OVERFLOW 50.0 853. .0123 50.0 50.0 .016 4.00 176 177 7 2 PIPE .1 315. .0020 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.1 .2 1.7 .8 2.1 1.8 2.6 2.4 i 94.5 3.1 261.8 177 341 0 5 PIPE 3.0 480. .0100 .0 .0, .013 3.00 0 i 178 977 9 2 OVERFLOW 10.0 480. PIPE .1 1310. .0100 .0033 50.0 .0 50.0 .0 .016 .013 5.00 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 2.0 5.0 2.7 5.8 3.4 6.5 4.2 8.8 4.6 16.2 4.9 29.5 5.2 44.0 5.5 60.0 i 977 177 4 3 .1 1. .0010 .0 .0 .001 10.00 827 DIVERSION TO GUTTER NUMBER 827 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 16.2 .0 16.3 1 . 60.0 43.8 827 927 0 1 CHANNEL 1.0 800. .0100 6.0 6.0 ..035 4.00 i 0 927 327 0 1 CHANNEL 10.0 10. .0100 6.0 . 6.0 .035 10.00 0 320 321 0 1 CHANNEL 5.0 1350. .0050 4.0 4.0 035 4.00 0 i 321 324 10 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .3 2.6 .8 4.3 1.5 5.5 2.5 6.4 i 3.9 7.3 5.4 8.0 6.3 99.9 7.2 268.0 322 323 3 2 PIPE .1 10. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1-9 11.0 4.0 11.3 i 323 324 0 1 CHANNEL .0 1500. .0142 50.0 .0 .016 1.50 0 324 331 0 2 PIPE 3.0 36. .0222 .0 .0 .013 3.00 0 325 326 0 1 CHANNEL 4.0 420. .0050 4.0 4.0 .035 3.00 ' 0 326 927 0 5 PIPE 3.5 214. .0168 .0 .0 .013 3.50 0 OVERFLOW 40.0 214. .0168 50.0 50.0 .016 5.00 ' CADocuments and Settings\michaelj\Desktop\Current Projects\pvhl Oyear.out 11 Prinl ' SEAR -BROWN 370 361 9 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR .0 STORAGE IN .0 ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .8 .2 1.1 .4 1.4 .6 ' 2.8 7 3.2 8 3.5 1.0 33.5 371 362 7 2 PIPE .1 1. .0015 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 1 0 .0 .0 .5 .1 1.2 .2 1.4 .3 1.4 .4 1.6 .6 1.8 372 363 6 2 PIPE 1 1. .0020 .0 .0 .013 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 10.0 .4 22.4 .7 33.3 .9 38.0 1.2 50.5 373 364 18 2 PIPE 1 1. 0042 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .5 .0 1.6 .0 3.6 6.4 6.3 16.8 6.9 18.0 7.6 18.8 8.2 19.6 8.9 20.8 9.5 21.6 9.9 31.5 ' 10.3 49.4 10.7 72.6 11.1 99.7 11.5 130.9 13.4 333.7 15.5 429.6 374 38 14 2 PIPE .1 1. .0040 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .0 .0 .1 .0 .2 .0 .4 1.1 .5 2.1 .5' 2.8 .7 3.9 .8 4.8 1.1 5.6 1.3 6.3 1.5 6.9 1.7 7.3 2.3 59.9 32 102 0 1 CHANNEL 1.0 500. .0060 75.0 1.5 .045 5.00 0 367 368 0 4 CHANNEL 5.0 .950. .0070 2.0 2.5 .045 8.00 0 OVERFLOW 35.0 950. .0070 75.0 45.0 .045 14.00 368 102 0 4 CHANNEL 5.0 1960. .0100 3.0 3.0 .045 5.00 0 OVERFLOW 30.0 1960. .0100 60.0 30.0 .045 11.00 102 410 0 5 PIPE 4.5 50. .0050 .0 .0 .024 5.60 1 OVERFLOW 29.0 50. .0050 25.0 100.0 .018 10.00 201 202 0 3 .1 1. .0010 .0 .0 .001 10.00 0 202 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 ' 203 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 209 210 0 3 .1 1. .0010 .0 .0 .001 10.00 0 210. 310 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 310 140 16 2 PIPE .1 1. .0010 .0 .0 001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 .1 1.0 1.2 1.5 .2.0 3.4 3.19 4.4 ' 6.6 6.7 7.7 8.9 8.4 10.3 8.8 11.5 9.0 12.4 9.2 13.0 9.3 13.4 9.4 13.7 9.4 13.9 9.5 13.9 9.5 ' 214 0 315 0 3 .1 1. .0010 .0 .0 .001 10.00 215 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 315 216 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 05.0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .1 2.0 .2 3.0 .6 4.0 .8 4.5 1.2 1.4 96.9 1.6 265.0 216 0 116 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 116 140 0 1 CHANNEL 10.0 1650. .0030 4.0 4.0 .035 5.00 0 140 357 0 1 CHANNEL 10.0 700. .0030 4.0 4.0 .035 5.00 0 223 224 0 3 .1 1. .0010 .0 .0 .001 10.00 ' 0 224 334 0 3 .1 1. .0010 .0 .0 .001 10.00 ( 0 334 124 11 2 PIPE .1 1. 0010 .0 .0 001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.0 .2 6.0 .5 8.0 1.0 10.0 1.6 12.0 2.5 14.0 3.4 16.0 4.7 18.0 5.1 18.6 5.6 19.3 CADocuments and Settings\michaelj\Desktop\Current Projects\pvhlOyear.out 13 Print 404 0. 407 0 ' 388 387 0 O 387 386 0 ' 386 0 284 0 284 0 283 0 283 0 282 282 410 0 0 0 281 0 414 0 ' 409 0 413 0 410 0 411 0 ' 411 0 412 0 412 0 413 0 ' 413 0 414 0 414 0 415 0 415 416 0 0 416 0 517 0 ' 517 0 417 417 0 0 0 0 TOTAL NUMBER OF GUTTERS/PIPES, 207 i 1 _ 1 SEAR -BROWN OVERFLOW 40.0 2000. .0020 50.0 50.0 .016 5.00 5 PIPE 3.5 900. .0150 .0 .0 .016 3.50 OVERFLOW 40.0 900. .0150 50.0 50.0 .016 5.00 . 1 CHANNEL 5.0 1300. .0070 150.0 150.0 .045 5.00 1 CHANNEL 5.0 750. .0070 150.0 150.0 .045 5.00 1 CHANNEL 4.0 800. .0030 150.0 150.0 .045 5.00 1 CHANNEL 4.0 700. .0063 150.0 150.0 .045 5.00 1 CHANNEL 7.0 1000. .0057 70.0 40.0 .045 5.00 1 CHANNEL 9.0 800. .0460 9.0 1.5 .045 5.00 1 CHANNEL 2.0 1500. .0150 55.0 76.0 .035 5.00 1 CHANNEL 1.0 1500. .0100 50.0 50.0 .045 5.00 4 CHANNEL 5.0 600. .0450 2.5 3.0 .035 7.00 OVERFLOW 45.0 600. .0450 25.0 50.0 .035 13.00 4 CHANNEL 5.0 1060. .0038 3.0 2.0 .035 6.00 OVERFLOW 30.0 1060. .0038 35.0 60.0 .035 11.00 4 CHANNEL 5.0 870. .0060 5.0 2.0 .035 6.00 OVERFLOW 50.0 870. .0060 30.0 45.0 .035 12.00 5 PIPE 5.0 40. .0060 .0 .0 .035 5.00 OVERFLOW 50.0 40. .0060 100.0 100.0 .016 10.00 1 CHANNEL 5.0 1180. .0060 30.0 25.0 .035 10.00 1 CHANNEL 5.0 1050. .0060 40.0 50.0 .035 10.00 1 CHANNEL 5.0 800. .0060 40.0 25.0 .035 6.00 3 .1 1. .0010 .0 .0 .001 .10 2 PIPE .1 1. .0030 .0 .0 .035 .10 CADocuments and Settings\michaelj\Desktop\Current Projects\pvhlOyear.out 15 Prini ' SEAR -BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 10-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.; 10/25/00 ARRANGEMENT f OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER D.A.(AC) TRIBUTARY GUTTER/PIPE ' 2 8 50 9 0 0 0 796.3 4 341 0 0 0 0 0 219.3 6 7 0 0 0 0 0 ' 34.4 7 0 0 0 0 0 0^ 5.0 219.3 8 4 0 0 0 0 0 ' 9 51 0 0 0 0 0 434.3 11 112 0 0 0 0 0 6.5 12 11 47 291 0 0 0 30. 30.0 13 12 0 0 0 0 0 33.9 14 0 0 0 0 0 0 1.1 ' 16 34 0 0 0 0 0 9.8 20 0 0 0 0 0 0 31.3 21 33 0 0 0 0 0 5.6 22 16 25 42 0 0 0 290.6 25 250 0 0 0 0 0 ' 26 41 36 0 0 0 0 235.8 235 27 270 271 275 0 0 0 233.4 7 28 29 0 0 0 0 0 29 30 0 0 0 0 0 3.5 30 0 0 0 0 0 0 2.0 ' 31 470 0 0 0 0 0 213.6 32 0 0 0 0 0 0 19.3 33 0 0 0 0 0 0 ' 5.6 34 0 0 0 0 0 0 4.3 35 0 0 0 0 0 0 65.6 ' 36 0 0 0 0 0 0 2.4 38 39 374 0 0 0 0 118.2 39 593 0 0 0 0 0 ' 103.8 40 0 0 0 0 0 0 91.2 41 27 0 0 0 0 0 ' 233.4 42 46 26 0 0 0 0 259.6 43 45 22 0 0 0 0 312.8 ' 13.1 44 21 0 0 0 0 0 45 0 0 0 0 0 0 22.2 46 0 0 0 0 0 0 23.8 47 0 0 0 0 0 0 ' 14.7 50 6 0 0 0 0 0 129.5 'J 51 13 14 20 44 43 0 434.3 ' 72 583 0 0 0 0 0 99.4 73 673 0 0 0 0 0 ' 8.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TRIBUTARY SUBAREA 90 0 0 0 0 150 O 0 0 0 70 0 0 0 0 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 111 320 0 0 113 114 0 0 0 115 116 0 0 0 118 0 0 0 0 160 121 0 0 0 200 0 0 0 0 0 0 0 0 0 120 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 281 0 0 0 0 282 0 0 0 0 283 0 0 0 0 0 0 0 0 0 222 0 0 0 0 330 0 0 0 0 340 0 0 0 0 225 0 0 0 0 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 210 0 0 0 0 220 0 0 0 0 260 0 0 0 0 230 0 0 0 0 80 60 0 0 0 130 100 117 190 0 0 0 0 0 0 373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CADocuments and Settings\michaelj\Desktop\Current Projects\pvhl0year.out 17 Print ' SEAR -BROWN 215 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 4.4 216 2 315 350 0 0 0 0 0 0 0 16 39 0 0 0 0 0 0 0 0 ' 818.5 223 0 0 0 0 0 0 0 0 0 0 20 21 22 0 0 0 0 0 0 0 0.4 (am'' 224 223 0 0 0 0 0 0 0 0 0 23 24 0 0 0 0 0 0 0 0 25.7 ' 226 124 0 0 0 0 0 0 0 0 0 25 26 0 0 0 0 0 0 0 0 32.4 241 94 330 365 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 104.7 250 0 0 0 0 0 0 0 0 0 0 250 d 0 0 0 0 0 0 0 0 1.6 251 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 8.1 252 0 0 0 0 0 0- 0.. 0 0 0 63 0 0 0 0 0- 0 0 0 0 ' 8.9 261 160 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 11.0 262 261 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 15.7 3.3 210 0 0 0 0 0 0 0 0 0 0 270 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 6.3 272 0 0 0 0 0 0 0 0 0 0 272 0 0 0 0 0 0 0 0 0 1.5 275 272 28 31 0 0 0 0 0 0 0 280 0 0 0 0 0 0 0 0 0 223 223.8 281 0 0 0 0 0 0 0 0 0 0 508 0 0 0 0 0 0 0 0 0 26.4 282 283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 210.4 ' 283 284 0 0 0 0 0 0 0 0 0 511 0 0 0 0 0 0 0 0, 0 210.4 284 386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171.3 291 0 0 0 0 0 0 0 0 0 0 290 0 0 0 0 0 0 0 0 0 ' 5.9 301 0 0 0 0 0 0 0 0 0 0 301 0 0 0 0 0 0 0 0 0 28.5 310 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' �65.1.2 315 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 320 0 0 0 0 0 0 0 0 0 0 201 0 0 0 0 0 0 0 0 0 14.8 321 320 0 0 0 0 0 0 0 0 0 209 0 0 0 0 0 0 0 0 0 ' 38.1 322 0 0 0 0 0 0 0, 0 0 0 202 0 0 0 0 0 0 0 0 0 21.5 323 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.5 324 321 323 179 0 0 0 0 0 0 0 165 0 0 0 0 0 0 0 0 0 71.6 325 331 0 0 0 0 0 0 0 0 0 211 0 0 0 0 0 0 0 0 0 83.2 326 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t 83.2 327 927 0 0 0 0 0 0 0 0 0 216 0 0 0 0 0 0 0 0 0 84.1 328 0 0 0 0 0 0 0 0 0 0 212 0 0 0 0 0 0 0 0 0 4.2 329 327 328 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88.3 330 131 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 11.5 331 324 0 0 0 0 0 0 0 0 0 215 0 0 0 0 0 0 0 0 0 ' 72.3 334 224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 336 226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.4 341 177 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 217.4 350 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.1 357 140 336 141 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 ' 1031.4 358 357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1031.4 359 358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1031.4 ' 360 359 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 1036.8 361 360 370 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1043.8 362 361 371 0 0 0 0 0 0 0 0 309 0 0 0 0 0 0 0 0 0 ' 1048.3 C:\Documents and Settings\michaelj\Desktop\Current Projects\pvhl0year.out 19 Prin1 ' SEAR -BROWN 481 0 0 0 0 0 0 0 0 0 0 2.6 483 0 0 0 0 0 0 0 0. 0 0 5.6 486 586 0 0 0 0 0 0 0 0 0 488 588 0 0 0 0 0 0 0 0 0 ' 64.4 490 0 0 0 0 0 0 0 0 0 0 1.4 491 0 0 0 0 0 0 0 0 0 0 2.8 L 13.5 496 0 0 0 0 0 0 0 0 0 0 497 0 0 0 0 0 0 0 0 0 0 3.9 517 416 0 0 0 0 O' 0.. 0 0 0 2154.0 570 471 0 0 0 0 0 0 0 0 0 213.6 571 472 0 0 0 0 0 0 0 0 0 207.5 195.8 571 72 73 74 0 0 0 0 0 0 0 t 574 576 75 0 0 0 0 0 0 0 0 61.5 576 16 0 0 0 0 0 0 0 0 0 14.8 577 481 480 479 0 0 0 0 0 0 0 9.7 582 0 0 0 0 0 0 0 0 0 0 .8 183 83 483 0 0 0 0 0 0 0 0 99.4 ' 584 486 0 0 0 0 0 0 0 0 0 93.8 586 488 85 84 0 0 0 0 0 0 0 93.8 588 88 497 0 0 0 0 0 0 0 0 ' 64.4 591 594 0 0 0 0 0 0 0 0 0 27.9 592 591 0 0 0 0 0 0 0 0 0 90.8 ' 593 595 592 0 0 0 0 0 0 0 0 .103.8 594 0 0 0 0 0 0 0 0 0 0 27.9 595 0 0 0 0 0 0 0 0 0 0 ' 13.0 673 0 0 0 0 0 0 0. 0 0 0 .0 682 582 0 0 0 0 0 0 0 0 0 8 683 0 0 0 0 0 0 0 0 0 0 .0 684 584 0 0 0 0 0 0 0 0 0 93.8 827 0 0 0 0 0 0 0 0 0 0 .0 927 827 326 0 0 0 0 0 0 0 0 83.2 177 178 0 0 0 0 0 0 0 0 0 33.6 THE FOLLOWING THE CONVEYANCE ELEMENTS WERE SURCHARGED DURING THE SIMULATION. THIS COULD LEAD TO ERRORS IN THE SIMULATION RESULTS!! 417 THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 41 324 331 358 360 470 592 927 A 381 0 0 0 0 0 0 0 0 0 383 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 390 0 0 0 0 0 0 0 0 0 391 0 0 0 0 0 0 0 0 0 396 0 0 0 0 0 0 0 0 0 397 0 0 0 0 0 0 0 0 0 500 502 0 0 -. 0 -0 0 0 0 0 370 0 0 0 0 0 0 0 0 0 371 0 0 0 0 0 0 0 0 0 372 0 0 0 0 0 0 0 0 0 374 0 0 0 0 0 0 0 0 0 376 0 0 0 0 0 0 0 0 0 377 378 0 0 0 0 0 0 0 0 382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 010 386 387 0 0 0 0 0 0 0 0 388 392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 318 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 317 0 0 0 0 0 0 0 0 0 316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t CADocuments and Settings\michaelj\Desktop\Current Projects\pvhl Oyear.out 21 Prinl ' SEAR -BROWN 201:3 18.9 (DIRECT FLOW) 0 35. „ 202:3 35.5 (DIRECT FLOW) 0 35. 203:3 13.6 (DIRECT FLOW) 0 35. ' 209:3 113.7 (DIRECT FLOW) 0 35. 210:3 166.8 (DIRECT FLOW) 0 35. 214:3 14.5 (DIRECT FLOW) 0 35. 215:3 4.7 (DIRECT FLOW) 0 40. 216:3 182.0 (DIRECT FLOW) 1 41. ' 223:3 54.9 (DIRECT FLOW) 0 35. 224:3 69.6 (DIRECT FLOW) 0 35. 226:3 28.2 (DIRECT FLOW) 0 35. 241:3 15.6 (DIRECT FLOW) 1 55. 25:2 251:3 .3 20.2 .1 (DIRECT .1:D FLOW) 2 0 1. 35. 252:3 30.5 (DIRECT FLOW) 0 35. 261:3 36.8 (DIRECT FLOW) 0 35. 262:3 48.9 (DIRECT. FLOW) 0..35. 170:3 271:5 10.1 20.3 (DIRECT 1.9 FLOW) 0 0 35. 35. 272:2 .6 .1 .1:D 0 56. 275:2 43.7 1.7 0 41. 281:1 9.8 .3 0 58. 28:1 283:1 56. 56.7 .8 .8 1 1 33. 31. 284:1 49.3 .5 1 26. 291:2 3.1 .1 A: D 1 1. 301:2 5.4 .1 2.0:D 2 1. 310:2 6.8 .1 4.6:1 2 2, 315:2 3.4 .1 A:D 1 5. ' 320:1 14.7 .8 0 42. 321:2 6.0 .1 2.0:D 1 55. 322:2 6.5 .1 1.1:D 1 19. 323:1 6.5 .3 1 . 324:2 36.8 1.3 0 35 35. ' 325:1 70.2 1.9 0 36. 326:5 71.2 1.8 0 36. 327:1 61.3 1.8 0 39. 328:5 18.6 1.4 0 35. 329:1 69.9 1.8 0 40. ' 330:2 3.5 .1 .8:D 1 10. 331:2 38.2 1.2 0 35. 334:2 10.7 .1 1.2:D 1 3. 336:2 8.2 .1 1.1:D 2 32. 341:5 63.2 2.1 1 2. �._ 350:2 2.5 .1 .4:D 1 12. 357:1 213.8 2.4 1 50. 358:2 213.8 3.0 1 51. 359:1 213.8 2.4 1 54. 360:2 214.1 3.0 1 54. ' 361:1 215.5 2.5 1 55. 362:1 216.5 2.5 1 363:1 218.0 2.5 1 .55. 53. 364:4 236.3 2.6 1 57. 365:2 5.2 .1 1.0:D 1 9. 366:4 248.4 2.6 1 44. 367:4 248.4 3.9 1 47. 368:4 253.7 3.3 1 48. 369:4 24.3 1.6 0 51. 370:2 1.4 .1 .4:D 1 28. 371:2 1.2 .1 .1:D 1 1. 372:2 9.7 .1 .2:D 0 44. 373:2 19.2 .1 7.9:D 3 46. 374:2 4.6 .1 .8:D 1 8. 380:2 9.3 .1 3.1:D 2 12. 381:2 3.1 .1 .6:D 1 18. 382:2 6.5 .1 .7:D 1 11. 383:2 1.9 .1 .9:D 2 1. 384:2 2.7 .1 .7:D 1 40. 386:1 50.4 .6 1 17. 387:1 37.8 .5 1 13. 388:1 40.7 5 1 1. 395:3 3.6 (DIRECT FLOW) 0 31. 400:1 17.4 .7 0 38. ' 40:1 402:1 .4 12.9 .2 .3 1 0 . 36. 36 403:1 9.3 .8 2 21. 404:5 16.9 1.0 0 46. 405:5 21.3 1.7 1 7. ' 406:3 407:3 84.9 21.6 (DIRECT (DIRECT FLOW) FLOW) 0 1 35. 0. 409:1 22.2 .6 1 0. 410:4 350.1 2.5 1 36. 411:4 412:4 355.4 360.4 4.5 3.7 1 1 38. 39. 413:5 379.8 5.6 1 36. 414:1 384.5 2.0 1 41. 415:1 392.1 1.7 1 45. 416:1 394.2 1.9 1 48. 417:2 470:2 .0 26.3 .1 .1 130.9:S .2:D 10 0 0. 48. C:\Documents and Settings\michaelj\Desktop\Current Projects\pvhlOyear.out 23 Print ' SEAR -BROWN ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 ' DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA ' WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) ' HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) *** ENTRY MADE TO RUNOFF MODEL *** 1 1 CADocuments and Settings\michaelj\Desktop\Current Projects\pvh100year.out 1 Print SEAR -BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.; 10/25/00 ' �• SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) ;AGE ' NUMBER NO OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 .51 .50 .00180 80 50 7109.0 86.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 60 1 50 1150.0 8.9 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 70 6 10239.0 29.4 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 130 51 7161.0 24.7 40.0 .0100. .016 .250- .100 .300 .51 ---:50- .00180 1 100 51 2875.0 13.2 40.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 150 4 1590.0 1.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 110 11 1150.0 1.9 99.0 .1201 .016 1 .251 .100 .300 .11 .10 .00180 ' ill 11 700.0 1.1 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 112 112 750.0 1.3 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 113 12 1200.0 1.3 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 114 12 950.0 1.7 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 115 13 1050.0 1.7 99.0 .0100 .016 .250 .100 1 .300 .51 .50 .00180 ' 116 13 1400.0 2.2 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180, 1 117 51 1000.0 2.9 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 118 14 1250.0 1.1 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 320 11 305.0 2.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 120 22 3875.0 17.8 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 90 2 5715.0 13.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 190 51 250.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 200 20 4550.0 31.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 210 44 1090.0 7.5 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 240 7 1742.0 5.0 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 220 45 3228.0 22.2 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 260 46 3454.0 23.8 50.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 230 47 2134.0 14.7 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 290 291 1278.0 5.9 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 340 34 1260.0 4.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 l 280 275 1000.0 2.0 99.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 281 28 1650.0 3.2 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 ' 282 1 29 850.0 1.5 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 283 30 1250.0 2.0 99.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 330 33 700.0 5.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 160 16 3500.0 4.0 84.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 121 16 850.0 1.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 122 1 22 1200.0 1.8 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 250 250 500.0 1.6 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 270 270 625.0 3.3 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 271 271 2017.0 6.3 55.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 272. 272 817.0 1.5 31.0 .0900 .016 .250 .100 .300 .51 .50 .00180 1 360 1 36 3223.0 2.4 87.0 .0200 .016 .250 .100 .300 .51 .50 .00180 CADocuments and Settings\michaelj\Desktop\Current Projects\pvht00year.out 3 Print SEAR -BROWN 9 209 3000.0 20.2 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 10 110 1400.0 9.1 26.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 14 214 1000.0 4.8 54.0 .0200 .016 .250 .100 .300 .51 .50 .00180 15 215 1300.0 4.4 9.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 16 216 200.0 1.8 12.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 20 223 600.0 4.1 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 21 223 1400.0 9.0 46.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 22 223 1800.0 7.3 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 23 224 1000.0 2.2 61.0 .0200. .016 .250- .100 ..300 ...51 ----:50- .00180 1 1 24 224 600.0 3.1 34.0 .0200 .016 .250 .100 .300 .51 .50 .00180 25 226 900.0 4.0 65.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 26 226 1000.0 2.7 32.0 .0200 .016 1 .250 .100 .300 .51 .50 .00180 1 30 130 2750.0 5.9 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 31 131 1700.0 3.6 67.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 32 330 400.0 2.0 48.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 39 216 700.0 3.1 11.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 40 140 1300.0 6.4 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 41 357 800.0 4.3 43.0 .0200 .016 .250 .100 .300 .51 .50 .00180, 1 42 241 900.0 1.5 75.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 50 251 1800.0 8.1 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 63 252 2250.0 8.9 61.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 61 261 650.0 2.1 80.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 C. 62 262 1200.0 4.7 42.0 .0200 .016 .250 .100 .300 .51 .50 .00180 370 570 1050.0 6.1 63.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 371 571 2000.0 11.7 45.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 1 372 572 4900.0 26.7 45.0 .0200 .016 - .250 .100 .300 .51 .50 .00180 1 373 73 2000.0 8.2 90.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 1 374 574 8000.0 18.3 86.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 375 75 5400.0 28.4 48.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 376 576 1000.0 5.1 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 377 577 400.0 1.9 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 378 577 450.0 2.3 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 379 479 450.0 1.5 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 380 480 350.0 1.4 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 ' 1 381 481 550.0 2.6 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 382 582 700.0 .8 67.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 383 483 1200.0 5.6 69.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 384 84 2400.0 6.9 84.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 385 85 2100.0 6.3 52.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 1 386 586 2000.0 12.2 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 387 586 800.0 3.2 70.0 .0250 .016 .250 .100 .300 .51 .50 .00180 1 388 588 1548.0 16.0 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 ' 389 88 1220.0 7.0 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 390 490 550.0 1.4 70.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 1 311 491 600.0 2.8 70.0 .0200 .016 .250 .100 .300 .51 .50 .00180 C:\Documents and Settings\michaelj\Desktop\Current Projects\pvht00year.out 5 Print SEAR•BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.; 10/25/00 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** ' WATERSHED AREA (ACRES) 2154.020 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) TOTAL WATERSHED OUTFLOW (INCHES) .773 2.716 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) _...181 - ' ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 1 .. 1 1 CADocuments and Settings\michaelj\Desktop\Current Projects\pvht00year.out 7 Print ' SEAR -BROWN 27 41 8 2 PIPE .1 10. .0010 .0 .0 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 .0 .8 .2 2.5 .5 3.5 .9 4.8 57.6 3.2 191.4 r2.1 41 26 0 5 PIPE 4.0 100. .0050 .0 .0 ' J OVERFLOW 10.0 100. .0050 50.0 50.0 36 26 0 5 PIPE 1.3 90. .0140 .0 .0 0 OVERFLOW .0 90. .0140 200.0 200.0 ' 0 28 275 0 1 CHANNEL .0 1000. .0050 .0 50.0 29 28 0 1 CHANNEL .0 1650. .0050 .0 50.0 0 30 29 0 1 CHANNEL. .0 850. .0050 .0 50:0 ' 0 34 16 3 2 PIPE .1 1. .0050 .0 .0 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1 1.9 10.0 1.9 0 92 89 0 2 PIPE 2.0 1000, 0100 O 0 ' 395 89 4 3 .1 1. .0010 .0 .0 -1 TIME IN HRS VS INFLOW IN CFS 0 .0 5 3.6 9.6 3.6 9.8 89 88 0 1 CHANNEL .0 800. .0070 .0 4.0 4.0 ' 0 490 90 4 2 PIPE 1 1. .0010 .0 .0 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 2 .5 .2 .5 2 2.5 491 90 4 2 PIPE .1 1. .0010 .0 .0 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 5 1.0 6 91.9 7 260.0 90 88 0 4 CHANNEL .0 500. .0100 50.0 50.0 ' 0 OVERFLOW 50.0 500. .0100 10.0 10.0 496 88 6 2 PIPE .1 1. .0010 .0 .0 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .0 12.0 .1 12.4 .8 12.8 2.1 i1.6 88 588 0 1 CHANNEL .0 700. .0080 4.0 4.0 0 497 588 7 2 PIPE 1 1. .0010 .0 .0 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 0 1.6 .1 1.6 .4 1.7 .7 1.8 1.3 20.2 588 488 0 3 .1 1. .0010 .0 .0 0 488 586 9 2 PIPE .1 1. .0010 .0 .0 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 0 .0 .1 .5 .3 6.5 .7 8.4 4. 9.9 8.4 12.4 10.1 14.7 10.8 24.5 582 682 3 3 .1 1. .0010 .0 .0 683 ' DIVERSION TO GUTTER NUMBER 683 - TOTAL O VS DIVERTED 0 IN CFS .0 .0 4.6 1.3 8.0 1.8 682 82 0 3 .1 1. .0010 .0 .0 0 683 0 0 3 .1 1. .0010 .0 .0 ' 0 82 85 0 4 CHANNEL .0 . 1300. .0140 50.0 50.0 0 OVERFLOW 50.0 1300. .0140 10.0 10.0 85 586 0 4 CHANNEL .0 1000. .0110 50.0 50.0 ' 0 OVERFLOW 50.0 1000. .0110 10.0 10.0 84 586 0 4 CHANNEL .0 700. .0100 50.0 50.0 0 586 486 0 3 OVERFLOW 50.0 700. .1 1. .0100 .0010 10.0 10.0 .0 .0 0 486 584 9 2 PIPE .1 1. .0010 .0 .0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .0 .1 .1 1.5 .3 8.9 E 14.4 2.4 18.0 3.8 19.6 4.9 41.2 584 684 7 3 .1 1. .0010 .0 .0 673 DIVERSION TO GUTTER NUMBER 673 - TOTAL Q VS DIVERTED 0 IN CFS CADocuments and Settings\michaelj\Desktop\Current Projects\pvhtO0year.out 013 .10 4.2 1.4 .016 4.00 .016 5.00 .013 1.25 .020 5.00 .016 1.50 .016 1.50 .016 1.50 .016 .10 013 2.00 001 .10 .035 9 5.00 .001 .10 .001 .110 .016 .50 .035 5.00 .001 .10 13.2 3.5 .035 5.00 .001 .10 1.7 .8 .001 10.00 .001 .10 9.5 5.7 .001 .10 .001 10.00 .001 10.00 .016 .50 .035 5.00 .016 .50 .035 5.00 .016 .50 .035 5.00 .001 10.00 .001 .10 12.0 1.1 .001 .10 9 Print ' SEAR - BROWN 31 275 0 5 PIPE 3.0 108. .0075 .0 .0 .013 3.00 0 OVERFLOW 30.0 108. .0075 50.0 50.0 .035 5.00 33 21 0 1 CHANNEL .0 700. .0080 50.0 .0 .016 1.50 0 2 216 15 2 PIPE .1 77. .0070 .0 .0 .013 .10 ' RESERVOIR 0 STORAGE IN .0 ACRE-FEET VS SPILLWAY OUTFLOW .0 2.3 .0 16.1 .1 51.3 .6 86.2 2.4 115.7 6.2 144.7 12.1 169.8 19.6 193.7 28.6 214.8 33.6 224.4 38.7 233.1 ' 166 167 49.3 3 251.4 2 59.4 269.7 70.6 288.0 PIPE .1 96. .0060 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1-6 -.24.0 3.4 26.4 - 161 161 0 1 CHANNEL 4.0 210, 1021 2.0 2.0 .035 4.00 '0 168 169 5 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1 .9 4 1.4 7 93.3 1.0 261.4 169 170 0 5 PIPE 2.3 40. .0070 .0 .0 .013 2.27 ' 0 OVERFLOW 40.0 40. .0070 50.0 50.0 .016 4.00 170 174 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 4.00 0 171 174 3 2 PIPE .1 10. .0038 .0 .0 .013 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.0 4.0 2.0 4.3 172 173 5 2 PIPE .1 120. .0033 .0 .0 .013 0 .10 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 6.5 5.5 8.0 6.0 9.0 97.9 10.0 266.0 173 175 0 4 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 OVERFLOW 30.0 1200. .0050 150.0 150.0 .035 3.00 174 175 0 5 PIPE 2.3 75. .0211 .0 .0 .013 2.25 0 OVERFLOW 40.0 75. .0211 50.0 50.0 .016 4.00 175 177 0 5 PIPE 2.5 853. .0123 .0 .0 .013 2.50 0 ' 176 177 7 2 OVERFLOW 50.0 853. PIPE .0123 50.0 50.0 .016 4.00 .0 .1 315. .0020. .0 .0 .013 .10 RESERVOIR STORAGE IN ACRE-FEET VS -SPILLWAY OUTFLOW .0 .0 .0 1.1 .2 1.7 .8 2.1 1.8 2.6 2.4 ' 94.5 3.1 261.8 177 341 0 5 PIPE 3.0 480. .0100 .0 .0 .013 3.00 0 OVERFLOW 10.0 480. .0100 50.0 50.0 .016 5.00 178 977 9 2 PIPE .1 1310. .0033 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 2.0 5.0 2.7 5.8 3.4 6.5 4.2 8.8 4.6 16.2 ' 4.9 29.5 5.2 44.0 5.5 60.0 977 177 4 3 .1 1. .0010 .0 .0 .001 10.00 827 DIVERSION TO GUTTER NUMBER 827 - TOTAL 0 VS DIVERTED O IN CFS .0 .0 16.2 .0 16.3 1 60.0 43.8 ' 827 927 0 1 CHANNEL 1.0 800. .0100 6.0 6.0 .035 4.00 0 927 327 0 1 CHANNEL 10.0 10. .0100 6.0 6.0 .035 _ 10.00 0 ' 0 320 321 0 1 CHANNEL 5.0 1350. .0050 4.0 4.0 .035 4.00 321 324 10 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 6.4 .0 .0 .1 .0 .3 2.6 .8 4.3 1.5 5.5 2.5 ' 3.9 7.3 5.4 8.0 6.3 99.9 7.2 268.0 322 323 3 2 PIPE .1 10. .0100 .0 .0 .013 .10 0 ' RESERVOIR 0 STORAGE IN .0 ACRE-FEET VS SPILLWAY OUTFLOW 1.9 11.0 4.0 11.3 323 324 0 1 CHANNEL .0 1500. .0142 50.0 .0 .016 1.50 0 j 324 331 0 2 PIPE 3.0 36. .0222 .0 .0 .013 3.00 ' ) 0 325 326 0 1 CHANNEL 4.0 420. .0050 4.0 4.0 .035 3.00 326 927 0 5 PIPE 3.5 214. .0168 .0 .0 .013 3.50 0 ' OVERFLOW 40.0 214. .0168 50.0 50.0 .016 5.00 CADocuments and Settings\michaelj\Desktop\Current Projects\pvh100year.out 11 Print SEAR -BROWN 40 373 0 1 CHANNEL 5.0 1400 0 0 370 361 9 2 PIPE 1 1 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW r� .0 .0 .0 .0 .0 .8 _.8 371 362 7 7 3.2 2 .8 3.5 1.0 33.5 PIPE .1 1 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .1 1.2 1.6 6 1.8 ' 372 363 6 2 PIPE .1 1. 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW - 0 0 2 10.0 22.4 50.5 .4 ' 373 364 18 2 PIPE .1 1, 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 0 1 0 5 0 16.8 ' 6.9 18.0 7.6 18.8 8.2 19.6 31.5 10.3 49.4 10.7 72.6 11.1 99.7 429.6 374 38 14 2 PIPE .1 1, ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .1 .0 2.1 .5 2.8 .7 3.9 .8 4.8 6.9 1.7 7.3 2.3 59.9 32 102 0 1 CHANNEL 1.0 500 0 367 368 0 4 CHANNEL 5.0 950 0 OVERFLOW 35.0 950 368 102 0 4 CHANNEL 5.0 1960 0 OVERFLOW 30.0 1960 102 410 0 5 PIPE 4.5 50 OVERFLOW 29.0 50 201 202 0 3 .1 1 0 202 209 0 3 .1 1 0 203 209 0 3 .1 1 0 209 210 0 3 .1 1 0 210 310 0 3 .1 1 0 310 140 16 2 PIPE .1 1 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 .1 1.0 1.2 6.6 6.7 7.7 8.9 8.4 10.3 8.8 ' 9.3 13.4 9.4 13.7 9.4 13.9 9.5 214 315 0 3 .1 1 0 215 315 0 3 .1 1 0 315 216 8 2 PIPE .1 1 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 .2 3.0 S.0 1.4 96.9 1.6 265.0 ' 216 116 0 3 .1 1 0 116 140 0 1 CHANNEL 10.0 1650 0 140 357 0 1 CHANNEL 10.0 700 0 223 224 0 3 .1 1 1 0 224 334 0 3 .1 1 ' 334 124 11 2 PIPE .1 1 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 12.0 0 0 1 4.0 .2 6.0 CADocuments and Settings\michaelj\Desktop\Current Projects\pvh100year.out 0050 0050 .2 0015 .2 0020 .7 33. .0042 1.6 8.9 20. 11.5 130. .0040 .2 1.1 5. .0060 7 .0070 .0070 7 .0100 .0100 6 .0050 .0050 2 .0010 .0010 .0010 .0010 .0010 .0010 1.5 2. 11.5 9. 13.9 9. .0010 .0010 .0010 6 4 0010 0030 0030 0010 0010 0010 9 4.0 4.0 .035 5.00 .0 .0 .013 .10 1 .4 1.4 .0 .0 .013 4 .3 1.4 .0 .0 .013 3 .9 38.0 .0 .0 .013 0 3.6 6.4 8 9.5 21.6 9 13.4 333.7 .0 .0 .013 0 .4 1.1 6 1.3 6.3 5.0 1.5 .045 2.0 2.5 .045 5.0 45.0 .045 3.0 3.0 .045 0.0 30.0 .045 .0 .0 .024 5.0 100.0 .018 .0 .0 .001 .0 .0 .001 .0 .0 .001 .0 .0 .001 .0 .0 .001 .0 .0 .001 0 3.4 3.9 0 12.4 9.2 5 .0 .0 .001 .0 .0 .001 .0 .0 .001 0 .8 4.5 .0 .0 .001 4.0 4.0 .035 4.0 4.0 .035 .0 .0 .001 .0 .0 .001 .0 .0 .001 .6 .10 .4 10 1.2 10 6.3 9.9 15.5 .10 .5 1.5 5.00 8.00 14.00 5.00 11.00 5.60 10.00 10.00 10.00 10.00 10.00 10.00 .10 4.4 13.0 10.00 10.00 .10 1.2 10.00 5.00 5.00 10.00 10.00 .10 8.0 1.0 10.0 1.6 13 Print 405 0 410 0 404 0 407 0 388 0 387 0 387 386 0 0 386 0 284 0 284 0 283 283 282 0 0 0 ' 282 0 281 0 410 414 0 0 409 0 413 0 ' 410 0 411 0 411 0 412 0 412 0 413 0 413 0 414 0 ' 414 0 415 0 415 0 416 0 ' 416 0 517 0 517 0 417 0 ' 417 0 0 c TOTAL NUMBER OF GUTTERS/PIPES, 0 207 SEAR -BROWN 5 PIPE 3.5 2000. .0020 .0 .0 .013 3.50 OVERFLOW 40.0 2000. .0020 50.0 50.0 .016 5.00 5 PIPE 3.5 900. .0150 .0 .0 .016 3.50 OVERFLOW 40.0 900. .0150 50.0 50.0 .016 5.00 1 CHANNEL 5.0 1300. .0070 150.0 150.0 .045 5.00 1 CHANNEL 5.0 750. .0070 150.0 150.0 .045 5.00 1 CHANNEL 4.0 800. .0030 150.0 150.0 .045 5.00 1 CHANNEL 4.0 700. .0063 150.0 150.0 .045 5.00 1 CHANNEL 7.0 1000. .0057 70.0 40.0 .045 5.00 1 CHANNEL. 9.0 800. .0460 9.0 1.5 ---.045 5.00 1 CHANNEL 2.0 1500. .0150 55.0 76.0 .035 5.00 1 CHANNEL 1.0 1500. .0100 50.0 50.0 .045 5.00 4 CHANNEL 5.0 600. .0450 2.5 3.0 .035 7.00 OVERFLOW 45.0 600. .0450 25.0 50.0 .035 13.00 4 CHANNEL 5.0 1060. .0038 3.0 2.0 .035 6.00 OVERFLOW 30.0 1060. .0038 35.0 60.0 .035 11.00 4 CHANNEL 5.0 870. .0060 5.0 2.0 .035 6.00 OVERFLOW 50.0 870. .0060 30.0 45.0 .035 12.00 5 PIPE 5.0 40. .0060 .0 .0 .035 5.00 OVERFLOW 50.0 40. .0060 100.0 100.0 .016 10.00 1 CHANNEL 5.0 1180. .0060 30.0 25.0 .035 10.00 1 CHANNEL 5.0 1050. .0060 40.0 50.0 .035 10.00 1 CHANNEL 5.0 800. .0060 40.0 25.0 .035 6.00 3 .1 1. .0010 .0 .0 .001 .10 2 PIPE 1 1. .0030 .0 .0 .035 .10 CADocuments and Settings\michaelj\Desktop\Current Projects\pvh100year.out 15 Print SEAR -BROWN 74 474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.5 28.4 75 0 0 0 0 0 0 0 0 0 0 375 0 0 0 0 0 0 0 0 0 76 477 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 82 682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 83 684 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.8 84 0 0 0 0 0 0 0 0 0 0 384 0 0 0 0 0 0 0 0 0 6.9 7.1 85 82 0 0 0 0 0 0 0 0 0 385 0 0 0 0 0 0 0 0 0 ' 88 89 90 496 0 0 0 0 0 0 0 389 393 0 0 0 0 0 0 0 0 37.9 89 92 395 0 0 0 0- 0- . 0 0 0 0 0 .. 0 0 -- 0 -0- 0 0 0 0 .4 90 490 491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.2 91 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.5 92 0 0 0 0 0 0 0 0 0 0 394 0 0 0 0 0 0 0 0 0 1.4 ' 93 91 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.0 94 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.0 95 0 0 0 0 0 0 0 0 0 0 302 0 0 0 0 0 0 0 0 0 ' 47.5 102 35 32 368 0 0 0 0 0 0 0 223 224 0 0 0 0 0 0 0 0 1505.3 112 0 0 0 0 0 0 0 0 0 0 112 0 0 0 0 0 0 0 0 0 1.3 ' 116 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 0 818.5 124 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 130 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 ' 5.9 131 130 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 9.5 140 310 116 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 890.0 141 241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 160 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.9 166 0 0 0 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 19.0 167 166 0 0 0 0 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0- 19.0 168 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 5.8 ' 169 167 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 170 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 171 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 ' 7.7 172 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 32.3 173 172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 32.3 174 170 171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.6 175 173 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _ 0 64.8 13.8 176 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 ' 177 175 176 977 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112.2 178 0 0 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0 0 0 0 33.6 179 0 0 0 0 0 0 0 0 0 0 214 0 0 0 0 0 0 0 0 0 ' 1.6 180 329 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 105.2 8.5 201 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 202 201 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12.6 203 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 209 202 203 0 0 0 0 0 0 0 0 4 5 7 9 0 0 0 0 0 0 46.1 210 209 0 0 0 0 0 0 0 0 0 6 8 10 0 0 0 0 0 0 0 65.1 4.8 214 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 C:\Documents and Settings\michaelj\Desktop\Current Projects\pvh100year.out 17 Print ' SEAR -BROWN 363 362 372 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0 0 0 0 1059.1 364 363 373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1268.4 365' 161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15.7 366 364 369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1346.9 367 366 0 0 0 0 0 0 0 0 0 313 0 0 0 0 0 0 0 0 0 1347.8 368 367 0 0 0 0 0 0 0 0 0 217 218 0 0 0 0 0 0 0 0 1383.6 ' 78.5 369 0 0 0 0 0 0 0 0 0 0 305 0 0 0 0 0 0 0 0 0 370 0 0 0 0 0 0 0 0 0 0 308 0 0 0 0 0 0 0 0 0 7.0 371 0 0 0 0 0 0" 0.. 0 0 0 311 0 0 0 -- 0 0-- 0 0 0 0 ' 2.8 372 0 0 0 0 0 0 0 0 0 0 306 0 0 0 0 0 0 0 0 0 8.7 373 38 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 209.3 14.4 374 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 ' 380 406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 381 0 0 0 0 0 0 0 0 0 0 403 0 0 0 0 0 0 0 0 0 11.0 382 381 0 0 0 0 0 0 0 0 0 404 0 0 0 0 0 0 0 0 0 21.4 383 0 0 0 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 0 0 14.1 384 0 0 0 0 0 0 0 0 0 0 407 0 0 0 0 0 0 0 0 0 13.2 ' 386 387 0 0 0 0 0 0 0 0 0 512 0 0 0 0 0 0 0 0, 0 171.3 381 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124.4 388 0 0 0 0 0 0 0 0 0 0 513 0 0 0 0 0 0 0 0 0 ' 124.4 395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 400 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 0 0 0 0 9.9 401 382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.4 402 401 0 0 0 0 0 0 0 0 0 405 0 0 0 0 0 0 0 0 0 24.9 403 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 68.9 404 384 0 0 0 0 0 0. 0 0 0 408 0 0 0 0 0 0 0 0 0- 52.0 405 407 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135.0 406 402 400 0 0 0 0 0 0 0 0 401 402 0 0 0 0 0 0 0 0 68.9 407 383 403 404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135.0 409 0 0 0 0 0 0 0 0 0 0 505 0 0 0 0 0 0 0 0 0 67.3 410 102 405 282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1850.7 411 410 0 0 0 0 0 0 0 0 0 509 510 0 0 0 0 0 0 0 0 1882.0 ' 412 411 0 0 0 0 0 0 0 0 0 506 507 0 0 0 0 0 0 0 0 1912.5 ` 413 409 412 0 0 0 0 0 0 0 0 514 0 0 0 0 0 0 0 0 0 2007.9 414 281 413 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 2034.3 415 414 0 0 0 0 0 0 0 0 0 503 504 0 0 0 0 0 0 0 0 2090.8 416 411 0 0 0 0 0 0 0 0 0 501 0 0 0 0 0 0 0 0 0 2109.7 ' 417 517 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2154.0 470 570 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213.6 471 571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 207.5 472 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 195.8 474 574 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 477 577 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.7 479 0 0 0 0 0 0 0 0 0 0 379 0 0 0 0 0 0 0 0 0 1.5 480 0 0 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 0 ' 1.4 C:\Documents and Settings\michaelj\Desktop\Current Projects\pvh100year.out 19 Print SEAR -BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING, INC.; 10/25/00 ' HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 592 593 595 - ' 0 1. .0 .0 .0 .00( ) .00( ) .00( ) 0 2. .0 .0 .0 .02( ) 10( ) 01( ) 0 3. .0 .03( .0 .0 ) .00(S) .02( ) ' 0 4. .0 .0 .0 .04( ) .00(S) .03( ) 0 5. .1 .0 .0 0 6. .OS( .1 ) .00(S) .04( ) .0 .0 ' .06( ) .00(S) .05( ) 0 7. .4 .0 .1 .131 ) 00(S) 11( ) 0 8. 1.8 .1 .7 .26( ) .00(S) .23( ) 0 9. 3.8 .3 1.7 .37( ) .01(S) .36( ) 0 10. 6.3 .6 2.9 .47( ) .02(S) .46( ) 0 11. 9.4 1.1 4.3 ' .56( ) .03(S) .55( ) 0 12. 13.0 1.4 5.7 .66( ) .05(S) .64( ) 0 13, 16.8 1.4 7.0 .74( ) .08(S) .70( ) ' 0 14. 20.7 1.5 8.2 .82( ) .11(S) .76( ) 0 15. 24.6 1.6 9.2 .88( ) .16(S) .80( ) 0 16. 30.3 1.6 11.2 .98( ) .20(S) .88( ) 0 17. 38.7 1.7 13.8 1.10( ) .27(S) .98( ) 0 18. 45.9 1.9 15.8 1.19( ) .34(S) 1.05( ) ' 0 19. 53.3 2.0 17.5 1.27( ) .43(S) 1.10( ) 0 20. 60.4 2.2 18.9 1.35( ) .53(S) 1.14( ) 0 21. 68.6 2.2 21.0 ' 1.43( ) .65(S) 1.21( ) 0 22. 78.4 2.3 23.5 1.53( ) .77(S) 1.28( ) 0 23. 87.7 2.3 25.4 1.61( ) .92(S) 1.33( ) ' 0 24. 96.3 2.4 27.0 1.68( ) 1.08(S) 1.37( ) 0 25. 104.2 2.4 28.2 1.75( ) 1.25(S) 1.40( ) 0 26. 123.6 2.5 34.7 ' 1.89( ) 1.45(S) 1.56( ) 0 27. 151.4 2.6 41.4 2.09( ) 1.69(S) 1.71( ) 0 28. 176.7 2.7 48.1 2.24( ) 1.97(S) 1.85( ) ' 0 29. 199.2 2.8 55.3 2.38( ) 2.30(S) 2.00( ) 0 30. 213.7 2.9 57.8 2.46( ) 2.66(S) 2.04( ) 0 31. 260.3 2.9 68.5 ' 2.70( ) 3.06(S) 2.25( ) 0 32. 322.2 16.3 86.1 3.00( ) 3.56(S) 2.57( ) 0 33. 375.2 16.9 98.9 3.23( ) 4.14(S) 2.79( ) 0 34. 419.8 17.4 112.1 3.41( ) 4.81(S) 3.02( ) 0 35. 443.3 17.9 114.9 3.50( ) 5.54(S) 3.07( ) 0 36. 448.4 18.4 99.9 ' 3.52( ) 6.28(S) 2.81( ) CADocuments and Settings\michaelj\Desktop\Current Projects\pvh100year.out 21 Prin1 1 22. 65.1 48.0 10.6 1.40( ) 14.43(S) .86( ) 1 23. 64.4 48.1 10.5 ' 1.39( ) 14.46(S) .86( ) 1 24. 63.8 48.1 10.4 1.38( ) 14.50(S) .85( ) 1 25. 63.2 48.2 10.4 1.38( ) 14.54(S) .85( ) ' 1 26. 62.5 48.2 10.3 1.37( ) 14.57(S) .85( ) 1 27. 61.9 48.2 10.1 1.36( ) 14.60(S) .84( ) 1 28. 61.3 48.2 10.1 ' 1.36( ) 14.64(S) .84( ) 1 29. 60.7 48.3 10.0 1.35( ) 14.67(S) .83( Z 1 30. 60.3 48.3 9.9 1.35( ) 14.70(S) .83( ) ' 1 31. 59.7 48.3 9.8 1.34( ) 14.73(S) .83( ) 1 32. 59.1 48.4 9.7 1.34( ) 14.76(S) .82( ) 1 33. 58.6 48.4 9.6 ' 1.33( ) 14.78(S) .82( ) 1 34. 58.1 48.4 9.5 1.33( ) 14.81(S) .82( ) 1 35. 57.7 48.4 9.5 1 36. 1.32( 57.2 ) 14.84(S) 48.5 .81( ) 9.4 ' 1.32( ) 14.86(S) .81( ) 1 37. 56.6 48.5 9.3 1.31( ) 14.89(S) 81( ) 1 38. 56.2 1.30( ) 48.5 14.91(S) 9.2 .80( ) ' 1 39. 55.7 48.5 9.1 1.30( ) 14.93(S) .80( ) 1 40. 55.3 48.6 9.1 1 41. 1.30( 54.9 ) 14.95(S) 48.6 .80( ) 9.0 1.29( ) 14.98(S) .79( ) 1 42. 54.4 48.6 8.9 1.29( ) 15.00(S) .79( ) 1 43, 54.1 48.6 8.8 1.28( ) 15.02(S) .79( ) ' 1 44. 53.7 48.6 8.8 1.28( ) 15.04(S) .78( ) _ 1 45. 53.4 48.7 8.7 1.27( ) 15.05(S) .78( ) 1 46. 53.0 48.7 8.6 1.27( ) 15.07(S) .78( ) 1 47. 52.6 48.7 8.6 1.26( ) 15.09(S) .78( ) 1 48. 52.3 48.7 8.5 1.26( ) 15.11(S) .77( ) ' 1 49. 51.9 48.7 8.5 1.26( ) 15.12(S) .77( ) 1 50. 51.6 48.7 8.4 1.25( ) 15.14(S) .77( ) 1 51. 51.3 48.8 8.4 ' 1.25( ) 15.15(S) .77( ) 1 52. 50.9 48.8 8.3 1.25( ) 15.17(S) .76( ) 1 53. 50.6 48.8 8.2 1.24( ) 15.18(S) .76( ) ' 1 54. 50.3 48.8 8.2 1.24( ) 15.20(S) .76( ) 1 55. 50.1 48.8 8.1 1.24( ) 15.21(S) .76( ) 1 56. 49.7 48.8 8.1 ' 1.23( ) 15.22(S) .75( ) 1 57. 49.4 48.8 8.0 1.23( ) 15.23(S) .75( ) 1 58. 49.1 48.9 7.9 1.22( ) 15.25(S) .75( ) ' 1 59. 48.8 48.9 7.9 1.22( ) 15.26(S) .75( ) 2 0. 48.6 48.9 7.9 1.22( ) 15.27(S) .74( ) 2 1. 45.7 48.9 7.2 ' 1.18( ) 15.28(S) .71( ) 2 2. 42.1 48.9 6.1 1.14( ) 15.28(S) .66( ) 2 3. 39.6 48.9 5.3 1.11( ) 15.28(S) .61( ) 2 4. 37.0 48.9 4.6 1.07( ) 15.27(S) .58( ) 2 5. 34.9 48.9 4.1 1.04( ) 15.26(S) .54( ) 2 6. 32.9 48.8 3.6 ' 1.01( ) 15.24(S) .51( ) SEAR•BROWN C:\Documents and Settings\michaelj\Desktop\Current Projects\pvht00year.out 23 Print ' 2 52. 11.7 47.0 .2 .63( ) 13.36(S) .14( ) 2 53. 11.6 46.9 .2 ' .62( ) 13.31(S) .14( ) 2 54. 11.5 46.9 .2 -� .62( ) 13.26(S) .13( ) 2 55. 11.4 46.8 .2 .62( ) 13.21(S) .13( ) ' 2 56. 11.3 46.8 .2 .62( ) 13.17(S) .13( ) 2 57. 11.3 46.7 .2 .61( ) 13.12(S) .13( ) 2 58. 11.2 46.7 .2 ' .61( ) 13.07(S) .13( ) 2 59. 11.1 46.6 .2 .61( ) 13.02(S) .12( Z 3 0. 11.0 46.6 .2 .61( ) 12.97(S) .12( ) ' 3 1. 11.0 46.6 .2 .61( ) 12.92(S) .12( ) 3 2. 10.9 46.5 .2 .61( ) 12.87(S) .12( ) 3 3. 10.9 46.5 .2 ' .60( ) 12.82(S) .12( ) 3 4. 10.8 46.4 .1 .60( ) 12.78(S) .11( ) 3 5. 10.7 46.4 .1 3 6. 10.7 .60( ) 12.73(S) 46.3 .11( ) .1 ' .60( ) 12.68(S) .11( ) 3 7. 10.6 46.3 .l .60( ) 12.63(S) 11( ) 3 8, 10.6 46.2 .1 .60( ) 12.58(S) .11( ) ' 3 9. 10.5 46.2 .1 .60( ) 12.53(S) .10( ) 3 10. 10.5 46.1 .1 .60( ) .48(S) .10( ) 3 11. 10.4 46 46.1 .1 .59( ) 12.43(S) .10( ) 3 12. 10.4 46.0 .1 .59( ) 12.38(S) 10( ) 3 13, 10.4 46.0 .1 .59( ) 12.34(S) .10( ) ' _ T 3 14. 10.3 45.9 .1 .59( ) 12.29(S) .10( ) 3 15. 10.3 45.9 .1 .59( ) .24(S) .09( ) 3 16. 10.2 45 45.8 .1 ' .59( ) 12.19(S) .09( ) 3 17. 10.2 45.8 .1 .59( ) 12.14(S) .09( ) 3 18. 10.2 45.7 .1 .59( ) 12.09(S) .09( ) ' 3 19. 10.1 45.7 .1 .59( ) 12.04(S) .09( ) 3 20. 10.1 45.6 .1 .58( ) 11.99(S) .09( ) 3 21. 10.1 45.6 .1 ' .58( ) 11.94(S) .09( ) 3 22. 10.0 45.5 .1 .58( ) 11.90(S) .08( ) 3 23. 10.0 45.5 .1 .58( ) 11.85(S) .08( ) ' 3 24. 10.0 45.4 .1 .58( ) 11.80(S) .08( ) 3 25. 9.9 45.4 .1 .58( ) 11.75(S) .08( ) 3 26. 9.9 45.3 .1 .58( ) 11.70(S) .08( ) 3 27. 9.9 45.3 .1 .58( ) 11.65(S) .08( ) 3 28. 9.9 45.2 .1 .58( ) 11.60(S) .08( ) ' 3 29. 9.8 45.2 .1 .58( ) 11.55(S) .08( ) 3 30. 9.8 45.1 .1 .58( ) 11.51(S) .08( ) 3 31. 9.8 45.1 .1 .58( ) 11.46(S) .07( ) 3 32. 9.8 45.0 .1 .58( ) 11.41(S) .07( ) 3 33. 9.7 ) 45.0 .1 ) .57( .36(S) .07( ' 3 34. 9.7 44 44.9 .1 .57( ) 11.31(S) .07( ) 3 35. 9.7 44.9 .1 .57( ) 11.26(S) .07( ) 3 36. 9.7 44.8 .0 .57( ) 11.21(S) .07( ) SEAR -BROWN CADocuments and Settings\michaellDesktop\Current Projects\pvh100year.out 25 Pdnt 4 22. 9.1 20.5 .0 .56( ) 9.88(S) .04( ) 4 23. 9.1 20.5 .0 ' .56( ) 9.87(S) .04( ) 4 24. 9.0 20.5 .0 .56( ) 9.85(S) .04( ) ( 4 25. 9.0 20.5 .0 .56( ) 9.84(S) .04( ) ' 4 26. 9.0 20.5 .0 .56( ) 9.82(S) .04( ) 4 27. 9.0 20.5 .0 .55( ) 9.80(S) .04( ) 4 28. 9.0 20.5 .0 ' .55( ) 9.79(S) .04( ) 4 29. 9.0 20.5 .0 .55( ) 9.77(S) .04( ) 4 30. 9.0 20.5 .0 .55( ) 9.76(S) .04( ) ' 4 31. 9.0 20.5 .0 .55( ) 9.74(S) .04( ) 4 32. 9.0 20.4 .0 .55( ) 9.72(S) .04( ) ' 4 33. 9.0 .55( ) 20.4 9.71(S) .0 .04( ) 4 34. 9.0 20.4 .0 .55( ) 9.69(S) .04( ) 4 35. 9.0 20.4 .0 4 36. .55( ) 9.0 9.68(S) 20.4 .04( ) .0 ' .55( ) 9.66(S) .04( ) 4 37. 9.0 20.4 .0 .55( ) 9.65(S) 04( ) 4 38, 9.0 .55( ) 20.4 9.63(S) .0 .04( ) ' 4 39. 9.0 20.4 .0 .55( ) 9.61(S) .04( ) 4 40. 8.9 20.4 .0 .55( ) .60(S) .04( ) 4 41. 8.9 200.4 .0 ' .55( ) 9.58(S) .04( ) 4 42. 8.9 20.4 .0 .55( ) 9.57(S) 04( ) 4 43, 8.9 20.4 .0 .55( ) 9.55(S) .04( ) ' 4 44. 8.9 20.3 .0 .55( ) 9.54(S) .04( ) 4 45. 8.9 20.3 .0 .55( ) .52(S) .04( ) 4 46. 8.9 200.3 .0 t .55( ) 9.50(S) .04( ) 4 47. 8.9 20.3 .0 .55( ) 9.49(S) .04( ) 4 48. 8.9 20.3 .0 .55( ) 9.47(S) .04( ) ' 4 49. 8.9 20.3 .0 .55( ) 9.46(S) .04( ) 4 50. 8.9 20.3 .0 .55( ) 9.44(S) .04( ) 4 51. 8.9 20.3 .0 ' .55( ) 9.43(S) .04( ) 4 52. 8.9 20.3 .0 .55( ) 9.41(S) .04( ) 4 53. 8.9 20.3 .0 .55( ) 9.39(S) .04( ) ' 4 54. 8.9 20.3 .0 .55( ) 9.38(S) .04( ) 4 55. 8.9 20.2 .0 .55( ) 9.36(S) .03( ) 4 56. 8.9 20.2 .0 ' .55( ) 9.35(S) .03( ) 4 57. 8.9 20.2 .0 .55( ) 9.33(S) .03( ) 4 58. 8.9 20.2 .0 .55( ) 9.32(S) .03( ) ' 4 59. 8.9 20.2 .0 .55( ) 9.30(S) .03( ) 5 0. 8.9 20.2 .0 .55( ) 9.29(S) .03( ) 5 1. 8.9 20.2 .0 ' .55( ) 9.27(S) .03( ) 5 2. 8.9 20.2 .0 .55( ) 9.25(S) .03( ) 5 3. 8.9 ) 20.2 .0 ) t 5 4. .55( 8.9 200.2 .24(S) .03( .0 .55( ) 9.22(S) .03( ) 5 5. 8.8 20.2 .0 .55( ) 9.21(S) .03( ) 5 6. 8.8 20.2 .0 .55( ) 9.19(S) .03( ) SEAR - BROWN C:\Documents and Settings\michaelj\Desktop\Current Projects\pvht00year.out 27 Print 5 52. 8.8 19.8 .0 .55( ) 8.49(S) .03( ) 5 53. 8.8 19.8 .0 ' .55( ) 8.47(S) .03( ) 5 54. 8.8 19.8 .0 .55( ) 8.46(S) .03( ) 5 55. 8.8 19.7 .0 .55( ) 8.44(S) .03( ) ' 5 56. 8.8 19.7 .0 .55( ) 8.43(S) .03( ) 5 57. 8.8 19.7 .0 .55( ) 8.41(S) .03( ) S 58. 8.8 19.7 .0 ' .55( ) 8.39(S) .03( ) 5 59. 8.8 19.7 .0 .55( ) 8.38(S) .03( Z 6 0. 8.8 19.7 .0 .55( ) 8.36(S) .03( ) ' 6 1. 8.8 19.7 .0 .55( ) 8.35(S) .02( ) 6 2. 8.8 19.7 .0 .55( ) 8.33(S) .02( ) 6 3. 8.8 19.7 .0 t .55( ) 8.32(S) .02( ) 6 4. 8.8 19.7 .0 .55( ) 8.30(S) .02( ) 6 5. 8.8 19.7 .0 .55( ) 8.29(S) .02( ) ' 6 6. 8.8 19.7 .0 .55( ) 8.27(S) .02( ) 6 7. 8.8 19.6 .0 .55( ) 8.26(S) 01( ) 6 8, 8.8 .55( ) 19.6 8.24(S) .0 .02( ) ' 6 9. 8.8 19.6 .0 .55( ) 8.23(S) .02( ) 6 10. 8.8 19.6 .0 6 11. .55( ) 8.8 8.21(S) 19.6 .02( ) .0 .55( ) 8.20(S) .02( ) 6 12. 8.8 19.6 .0 .55( ) 8.18(S) 02( ) 6 13, 8.8 .55( ) 19.6 8.17(S) .0 .02( ) 6 14. 8.8 19.6 .0 .55( ) 8.16(S) .02( ) 6 15. 8.8 19.6 .0 .55( ) 8.14(S) .02( ) 6 16. 8.8 19.6 .0 t .55( ) 8.13(S) .02( ) 6 17. 8.8 19.6 .0 .55( ) 8.11(S) .02( ) 6 18, 8.8 19.6 A .55( ) 8.10(S) .02( ) ' 6 19. 8.8 19.5 .0 .55( ) 8.08(S) .02( ) 6 20. 8.8 19.5 .0 .55( ) 8.07(S) .02( ) 6 21. 8.8 19.5 .0 .55( ) 8.05(S) .02( ) 6 22. 8.7 19.5 .0 .55( ) 8.04(S) .02( ) 6 23. 8.7 19.5 .0 .55( ) 8.02(S) .02( ) 6 24. 8.7 19.5 .0 .55( ) 8.01(5) .02( ) 6 25. 8.7 19.5 .0 .55( ) 7.99(S) .02( ) 6 26. 8.7 19.5 .0 ' .55( ) 7.98(S) .02( ) 6 27. 8.7 19.5 .0 .55( ) 7.96(S) .02( ) 6 28. 8.7 19.5 .0 .55( ) 7.95(S) .02( ) ' 6 29. 8.7 19.5 .0 .55( ) 7.93(S) .02( ) 6 30. 8.7 19.5 .0 .55( ) 7.92(S) .02( ) 6 31. 8.7 19.4 .0 ' .55( ) 7.90(S) .02( ) 6 32. 8.7 19.4 .0 .55( ) 7.89(S) .02( ) 6 33. 8.7 19.4 .0 .55( ) 7.87(S) .02( ) ' \ 6 34. 8.7 19.4 .0 .55( ) 7.86(S) .02( ) 6 35. 8.7 19.4 .0 .55( ) 7.84(S) .02( ) 6 36. 8.7 19.4 .0 .55( ) 7.83(S) .02( ) SEAR•BROWN C:\Documents and Settings\michaelj\Desktop\Current Projects\pvh100year.out 29 Prini ' 7 22. 8.7 19.0 .0 .551 ) 7.17111 021 ) 7 23, 8.7 .55( ) 19.0 7.15(S) .0 .02( ) ' 7 24. 8.7 18.9 .0 .55( ) 7.14(S) .02( ) ( 7 25. 8.7 18.9 .0 .55( ) 7.12(S) .02( ) 7 26. 8.7 18.9 .0 .55( ) 7.11(S) .02( ) 7 27. 8.7 18.9 .0 .55( ) 7.10(S) 02( ) 7 28. 8.7 18.9 .0 .55( ) 7.08(S) .02( ) ' 7 29. 8.7 18.9 .0 .55( ) 7.07(S) .02( 1 7 30. 8.7 18.9 .0 .55( ) .05(S) .02( ) 7 31. 8.7 188.9 .0 ' .55( ) 7.04(S) .02( ) 7 32. 8.7 18.9 .0 .55( ) 7.03(S) 02( ) 7 33, 8.7 18.9 .0 .55( ) 7.01(S) .02( ) ' 7 34. 8.7 18.9 .0 .55( ) 7.00(S) .02( ) 7 35. 8.7 18.8 .0 .55( ) 6.98(S) .02( ) 7 36. 8.7 18.8 .0 ' .55( ) 6.97(S) .02( ) 7 37. 8.7 18.8 .0 .55( ) 6.96(S) .02( ) 7 38, 8.7 18.8 .0 .55( ) 6.94(S) .02( ) ' 7 39. 8.7 18.8 .0 .55( ) 6.93(S) .02( ) 7 40. 8.7 18.8 .0 .55( ) 6.91(S) .02( ) 7 41. 8.7 18.8 .0 ' .55( ) 6.90(S) .02( ) 7 42. 8.7 18.8 .0 .55( ) 6.89(S) .02( ) 7 43, 8.7 18.8 .0 .54( ) 6.87(S) .02( ) ' 7 44. 8.7 .54( ) 18.8 6.86(S) .0 .02( ) 7 45. 8.7 18.8 .0 .54( ) 6.85(S) .02( ) 7 46. 8.7 18.7 .0 ' .54( ) 6.83(S) .02( ) 7 47. 8.7 18.7 .0 . .54( ) 6.82(S) .02( ) 7 48. 8.7 18.7 .0 .54( ) 6.80(S) .02( ) ' 7 49. 8.7 18.7 .0 .54( ) 6.79(S) .02( ) 7 50. 8.7 18.7 .0 .54( ) 6.78(S) .02( ) ' 7 51. 8.7 .54( ) 18.7 6.76(S) .0 .02( ) 7 52. 8.7 18.7 .0 .54( ) 6.75(S) .02( ) 7 53. 8.7 18.7 .0 7 54. .54( ) 8.7 6.73(S) 18.7 .02( ) .0 ' .54( ) 6.72(S) .02( ) 7 55. 8.7 18.7 .0 .54( ) 6.71(S) .02( ) 7 56, 8. .55 4( ) 18.7 6.69(S) .0 .02( ) ' 7 57. 8.6 18.6 .0 .54( ) 6.68(S) .02( ) 7 58. 8.6 18.6 .0 7 59. .54( ) 8.6 6.67(S) 18.6 .02( ) .0 ' .54( ) 6.65(S) .02( ) 8 0. 8.6 18.6 .0 .54( ) 6.64(S) 11( ) 8 1. 8. .55 4( ) 1.6 6 .62(S) .0 .02( ) t 8 2. 8.6 18.6 .0 .54( ) 6.61(S) .02( ) 8 3. 8.6 18.6 .0 .54( ) .60(S) .02( ) 8 4. 8.6 188.6 .0 .54( ) 6.58(S) .02( ) 8 5. 8.5 18.6 .0 .54( ) 6.57(S) 02( ) 8 6. 8.5 .54( ) 18.6 6.56(S) .0 .02( ) ' SEAR - BROWN C:\Documents and Settings\michaelj\Desktop\Current Projects\pvh100year.out 31 Print SEAR -BROWN 1 1 1 1 1 1 1 8 52. 6.3 18.1 .0 .47( ) 5.86(S) .02( ) 8 53. 6.2 18.1 .0 .47( ) 5.85(S) .02( ) 8 54. 6.2 18.1 .0 .47( ) 5.83(S) .02( ) 8 55. 6.1 18.1 .0 .46( ) 5.81(S) .02( ) 8 56. 6.1 18.1 .0 .46( ) 5.80(S) .02( ) 8 57. 6.1 18.0 .0 .46( ) 5.78(S) .02( ) 8 58. 6.0 18.0 .0 .46( ) 5.76(S) .02( ) 8 59. 6.0 18.0 .0 .46( ) 5.75(S) .02( ) 9 0. 5.9 18.0 .0 .46( ) 5.73(S) .02( ) 9 1. 5.9 18.0 .0 .45( ) 5.71(S) .02( ) 9 2. 5.8 18.0 .0 .45( ) 5.70(S) .02( ) 9 3. 5.8 18.0 .0 .45( ) 5.68(S) .02( ) 9 4. 5.8 18.0 .0 .45( ) 5.66(S) .02( ) 9 5. 5.7 18.0 .0 .45( ) 5.65(S) .02( ) 9 6. 5.7 18.0 .0 .45( ) 5.63(S) .02( ) 9 7. 5.6 17.9 .0 .45( ) 5.61(S) .02( ) 9 8. 5.6 17.9 .0 .44( ) 5.60(S) .02( ) 9 9. 5.5 17.9 .0 .44( ) 5.58(S) .02( ) 9 10. 5.5 17.9 .0 .44( ) 5.56(S) .02( ) 9 11. 5.4 17.9 .0 .44( ) 5.54(S) .02( ) 9 12. 5.4 17.9 .0 .44( ) 5.53(S) .02( ) 9 13. 5.3 17.9 .0 .43( ) 5.51(S) .02( ) 9 14. 5.3 17.9 .0 .43( ) 5.49(S) .02( ) 9 15. 5.2 17.8 .0 .43( ) 5.48(S) .02( ) 9 16. 5.2 17.8 .0 .43( ) 5.46(S) .02( ) 9 17. 5.2 17.8 .0 .43( ) 5.44(S) .02( ) 9 18. 5.1 17.8 .0 .43( ) 5.42(S) .02( ) 9 19. 5.1 17.8 .0 .42( ) 5.41(S) .02( ) 9 20. 5.0 17.8 .0 .42( ) 5.39(S) .02( ) 9 21. 5.0 17.8 .0 .42(.) 5.37(S) .02( ) 9 22. 4.9 17.8 .0 .42( ) 5.35(S) .02( ) 9 23. 4.9 17.8 .0 .42( ) 5.34(S). .02( Y 9 24. 4.8 17.7 .0 .41( ) 5.32(S) .02( ) 9 25. 4.8 17.7 .0 AM ) 5.30(S) .02( ) 9 26. 4.7 17.7 .0 AM ) 5.28(S) .02( ) 9 27. 4.7 17.7 .0 AM ) 5.26(S) .02( ) 9 28. 4.7 17.7 .0 AM ) 5.25(S) .02( ) 9 29. 4.6 17.7 .0 AM ) 5.23(S) .02( ) 9 30. 4.6 17.7 .0 .40( ) 5.215) .02( ) 9 31. 4.5 17.7 .0 .40( ) 5.195) .02( ) 9 32. 4.5 17.6 .0 .40( ) 5.17(S) .02( ) 9 33. 4.4 17.6 .0 .40( ) 5.16(S) .02( ) 9 34. 4.4 17.6 .0 .40( ) 5.14(S) .02( ) 9 35. 4.4 17.6 .0 .40( ) 5.12(S) .02( ) 9 36. 4.3 17.6 .0 .39( ) 5.105) .02( ) C:\Documents and Settings\michaelj\Desktop\Current Projects\pvh100year.out 33 Prin ' SEAR•BROWN McCLELLANDS BASIN MODEL EXIST. COND. JUN 30 1999; W/ 3/22/00 EXTRAN ADOPTED 100-YEAR EVENT FILE: MCE100R.DAT ICON ENGINEERING. INC.; 10/25/00 ' *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** f *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ' ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 2:2 273.8 .1 61.9:D 2 30. 4:1 165.8 3.3 0 59. 6:1 173.7 3.5 0 37. ' 7:1 35.4 .6 0 36. 8:1 162.8 1.9 1 7. 9:1 741.1 3.1 0 41. 11:1 40.0 .7 0 36. 12:1 68.0 .8 0 36. 13:1 95.3 .9 0 36. 14:1 7.9 .4 0 36. 16:1 51.4 .6 0 35. 20:1 218.8 3.6 0 36. 21:1 31.2 .6 0 41. ' 22:1 210.9 3.3 0 37. 25:2 1.5 .5 1 9. 26:5 102.1 4.6 0 56. 27:2 101.7 .1 2.5:D 0 51. 28:1 35.0 .7 0 37. ' 29:1 18.2 .5 0 40. 30:1 15.5 .5 0 36. 31:5 71.4 3.2 2 1. 32:1 29.9 .8 0 48. 33:1 41.5 .7 0 36. 34:2 1.9 .1 .9:D 2 1. 35:1 86.1 .9 0 55. 36:5 23.6 1.5 0 35. 38:4 66.2 2.3 1 3. 39:4 48.9 2.0 2 5. ' 40:1 490.7 4.2 0 36. 41:5 101.7 4.3 0 52. 42:2 114.8 2.9 0 55. 43:3 222.8 (DIRECT FLOW) 0 37. 44:1 67.9 1.5 0 40. ' 45:1 11.9 .1 2.2:0 1 52. 46:1 11.2 .1 3.9:D 2 1. 47:1 7.2 .1 1.6:D 1 58. 50:1 497.3 2.8 0 39. ' 51:1 72:5 804.9 23.8 3.4 1.6 0 1 37. 36. 73:4 51.3 .6 0 37. 74:1 8.8 .4 2 26. 75:1 188.8 2.6 0 35. 76:1 82:4 51.3 3.4 1.9 .2 0 0 41. 36. ' 83:1 21.0 1.0 0 58. 84:4 57.3 .5 0 35. 85:4 44.2 .5 0 36. 88:1 89:1 112.0 13.6 2.8 1.2 0 0 35. 37. ' 90:4 4.9 .2 1 0. 91:1 27.1 1.6 1 23. 92:2 13.3 1.1 0 35. 93:2 72.1 .1 6.2:D 1 2. 94:1 71.8 2.9 1 6. ' 95:3 284.0 (DIRECT FLOW) 0 35. 102:5 852.2 7.0 1 11. 112:1 11.4 .4 0 35. 116:1 283.1 3.3 2 32. 124:2 16.9 1.0 1 32. ' 130:2 55.3 2.4 0 35. 131:2 88.6 3.1 0 35. 140:1 293.0 3.3 2 32. 141:1 95.3 1.9 1 6. 160:5 74.3 2.9 0 35. ' 166:2 25.6 .1 2.8:D 0 55. 167:1 25.6 1.7 0 56. 168:2 19.0 .1 .5:D 0 42. 169:5 44.1 2.4 0 42. 170:1 42.1 2.2 0 46. ' 171:2 4.1 .1 1.5:D 2 1. 172:2 10.8 .1 8.1:D 2 3. 173:4 8.8 1.1 2 9. f' 174:5 46.6 1.9 0 46. 175:5 48.7 2.3 0 49. ' 176:2 25.8 .1 1.9:D 0 51: 177:5 88.9 3.3 0 53. 178:2 46.9 .1 5.3:0 0 58. 179:5 15.7. 1.6 0 35. ' 180:2 91.4 .1 6.O:D 1 35. CADocuments and Settings\michaelj\Desktop\Current Projects\pvh100year.out 35 Prir 471:2 472:2 474:2 477:2 479:2 480:2 481:2 483:2 486:2 488:2 490:2 491:2 496:2 497:2 517:3 570:3 571:3 572:3 574:3 576:3 577:3 582:3 583:3 68.4 63.1 8.8. 62.0 12.2 10.5 15.2 2.8 39.9 25.1 2.1 3.6 13.2 1.8 1545.5 92.6 95.8 252.3 409.3 67.4 71.3 7.7 23.8 84:3 39. ' 586:3 229.7 588:3 253.3 591:1 8.7 592:2 448.4 93:2 48. ' 594:2 8.7 595:2 114.9 673:3 18.9 682:3 6.0 683:3 684:3 1.8 21.0 ' 827:1 29.6 927:1 181.6 977:3 46.9 ' ENDPROGRAM PROGRAM CALLED 1 l 1 .9:D 1 9.0:D 1 14.1:D 1 .4:D 1 .1:D 1 .1:D 1 .2:D 1 1.1:D 1 4.8:D 1 10.9:D 1 .2:D 1 .5:D 1. 2.1:D 1 .8:D (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) .4 3.5 .1 15.3:D .1 6.2:D 3.1 (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) (DIRECT FLOW) 1.2. 1.8 (DIRECT FLOW) SEAR -BROWN 0. 1. 21. 37. 35. 36. 37. 0. 10. 30. 50. 55. 7. 1. 25. 1 40. 35. 35. 1 35. 40. 35. 35. 58. 10. 135. I 35. 26. 1 36. ` 7. , C7G7 C vC11�1 1 35. 10. I 35. 1 35. 1 45. 3. I 37. 1 58. CADocuments and Settings\michaelj\Desktop\Current Projects\pvh100year.out 37 Prin ' ' ✓ �Z TALI-1 �i\ b ry �"�G ruD `l U'�7 `611�'�. ' PVHSEPond2-3-04.txt PVH: Southeast Pond Rating Curve 2-3-04 J . Gooch #units=Elevation, ft, Area, ft2,Vol ume,acft,Vol ume,acft # Elev Area Cumml Avg Cumml Conic ' # ft ft2 acft acft 4941.5000 184303.7040 21.6301 21.5009 4941.0000 180104.7290 19.5387 19.4095 ' 4940.0000 4939.0000 171803.6879 163619.2898 15.4993 11.6492 15.3706 11.5208 4938.0000 155564.7628 7.9855 7.8575 4937.0000 133535.7249 4.6670 4.5423 ' 4936.0000 4935.0000 89147.9060 41748.7074 2.1110 0.6085 2.0033 0.5348 4934.0000 6659.7019 0.0528 0.0368 4933.3100 12.9572 0.0000 0.0000 Page 1 ' Project: PVH Location: Pond 1 Broad Crested Weir - Basic Equation: Q = CoL*H1.5 ' Calculate Q from Dimensions: C= 3.00 L= 241 ft ' H= 0.67 ft Q= 397 cfs ' Calculate L from Q and H C= 3.00 Q= 396 cfs ' H= 0.67 ft L= 241 ft ' Calculate H from Q and L C= 3.00 Q= 396 cfs L= 241 ft ' H= 0.67 ft The Sear -Brown Group Proj. Number: 702I00 By: J. Gooch Q= Qioo x 2....... Q= 198 x 2 = 396 cfs. H= Freeboard - 100-Yr W SEL = 4941.50-4940.83 = 0.67' Therefore... L=241' to co m -T CN 0 co CN (0 q r- r- LO co C) , (D (n M) C) cli cli 4) E E cr co m m Co 0 m m 0 cr 5 0 i5 0 402 0 0 E 00 (0 N cl) 04 (0 r-- 0 CC) C� m r-- " "I' - 0) to 0 C'i C\i r--� a) LO co C� li (r) IX) 0) p CD, �, 6, N, C)l 0) ;�:, LI)i (D U') (D CN I,- C) o v- q U-) c) 'gr U) p p U� C) U') 00 C9 r,�-. tu u) (3) CN & c6' tm C) '%T O (- NT CN (D U) '9t 0) co� U") a C) LO � LO M 0 (O a C) 0 U) 0 0 ci ci ci C-li cli cli Cl) 'i N N (e), CC a) u C, tr) (D U) r- t— (0 'T cl) cl) m O. M CD , (A C) C) U') F� 0) , CN (0 (D C) ci ci C'j C-i cv), cl), cl), -q, 1q, ce), 14, N (o 0) 0) M C) (0, mN to Onto "T m m '-4- m m (D C) a o (N U-j Lo Lo (D co co co C) 00 (o m U-) m 0 q 0) co m LO (0 rl- w w (D 0 0 (0 0 0 c) N c-i ;r L6 (D � c6 N (i M Lo U-) r- > U-) CD (A a LO CD co m co m Itt cn x -4 C) A N CA :3 C) rn _0 C: 0 CL E E 3: U) I l.� rat lGGlj CPA 1 PVH Sear -Brown Storm C Orifice Calculation 702100 100-Year Pond Orifice Plate Basic Equation: ' Q=Cd•A•(2g•(hl-h2))0.5 Revised Equation: ' A=Q/(Cd • (2g • (h 1 - h2 ))0" ' Input Basin Area = 103.80 Contributing Drainage Area Cd= 0.65 Input ' g= 32.20 fUs2 Gravitational Constant h1= 40.83 100 year WSEL h2= 33.31 Invert Elevation of Pipe Q = 51.90 cfs Input Output f A= 3.63 ftZ Calculated orifice area i *r— 12.90 Calculated radius (inches) Orifice opening bottom aligned with invert of pipe, difference in head on the orifice measured from the centerline of the orifice opening ' Orifice Dia. = 25.7960 inches 2.1497 feet 1 1 i 1 ' PVH Sear-Brown Storm C Orifice Calculation 702100 ' 10-Year Pond Orifice Plate mz:l-- Basic Equation: 1 Q=Cd•A•(2g9(h1-h2))0.5 ' Revised Equation: A=Q/(Cd • (2g • (h 1 - h2 ))0.5 ' Input Basin Area = 103.80 Contributing Drainage Area Cd= 0.65 Input ' g= 32.20 f /s2 Gravitational Constant h1= 38.67 100 year WSEL h2= 33.31 Invert Elevation of Pipe ' Q = 20.76 cfs Input Output A= 1.72 ft2 Calculated orifice area "r— 8.88 Calculated radius (inches) ' Orifice opening bottom aligned with invert of pipe, difference in head on the orifice measured from the centerline of the orifice opening Orifice Dia. = 17.7550 inches 1.4796 feet WATER QUALITY CONTROL VOLUME AND _ OUTLET STRUCTURE I 1 .1 I I 1 1 1 1 1 1 1 1 1 1 DRAINAGE CRITERIA MANUAL (V. 3) STRUCTURAL BEST MANAGEMENT PRACTICES 6.0 EXTENDED DETENTION BASIN (EDB)— SEDIMENTATION FACILITY 6.1 Description An extended detention basin (EDB) is a sedimentation basin designed to totally drain dry sometime after stormwater runoff ends. It is an adaptation of a detention basin used for flood control. The primary ''fference is in the outlet design. The EDB uses a much smaller outlet that extends the emptying time of .. v more frequently occurring runoff events to facilitate pollutant removal. The ED% drain time for the brim -full water quality capture volume (i.e., time to fully evacuate the design capture volume) of 40 hours is recommended to remove a significant portion of fine particulate pollutants found in urban stormwater runoff. Soluble pollutant removal can be somewhat enhanced by providing a small wetland marsh or ponding area in the basin's bottom to promote biological uptake. The basins are considered to be "dry" because they are designed not to have a significant permanent pool of water remaining between storm runoff events. However, EDB may develop wetland vegetation and sometimes shallow pools in the bottom portions of the facilities. 6.2 General Application An EDB can be used to enhance stormwater runoff quality and reduce peak stormwater runoff rates. If these basins are constructed early in the development cycle, they can also be used to trap sediment from construction activities within the tributary drainage area. The accumulated sediment, however, will need to be removed after upstream land disturbances cease and before the basin is placed into final long-term use. Also, an EDB can sometimes be retrofitted into existing flood control detention basins. ' EDBs can be used to improve the quality of urban runoff from roads, parking lots, residential neighborhoods, commercial areas, and industrial sites and are generally used for regional or follow-up reatment. They can also be used as an onsite BMP and work well in conjunction with other BMPs, such as upstream onsite source controls and downstream infiltration/filtration basins or wetland channels. If ' 9-1-99 S-35 Urban Drainage and Flood Control District I STRUCTURAL BEST MANAGEMENT PRACTICES DRAINAGE CRITERIA MANUAL (V. 3) i ' desired, a flood routing detention volume can be provided above the water quality capture volume (WQCV) of the basin. ' 6.3 Advantages/Disadvantages 6.3.1 General. An EDB can be designed to provide other benefits such as recreation and open space ' opportunities in addition to reducing peak runoff rates and improving water quality. They are effective in removing particulate matter and the associate heavy metals and other pollutants. As with other BMPs, safety issues need to be addressed through proper design. ' 6.3.2 Physical Site Suitability. Normally, the land required for an EDB is approximately 0.5 to 2.0 percent of the total tributary development area. In high groundwater areas, consider the use of retention ponds (RP) instead in order to avoid many of the problems that can occur when the ED% bottom is located below the seasonal high water table. Soil maps should be consulted, and soil borings ' may be needed to establish design geotechnical parameters. I 6.3.3 Pollutant Removal. The pollutant removal range of an EDB was presented in Table SQ-6 in the• Stormwater Quality Management chapter of this volume. Removal of suspended solids and metals can be moderate to high, and removal of nutrients is low to moderate. The removal of nutrients can be ' improved when a small shallow pool or wetland is included as part of the basin's bottom or the basin is followed by BMPs more efficient at removing soluble pollutants, such as a filtration system, constructed wetlands or wetland channels. The major factor controlling the degree of pollutant removal is the emptying time provided by the outlet. The rate and degree of removal will also depend on influent particle sizes. Metals, oil and grease, and some nutrients have for a close affinity suspended sediment and will be removed partially through sedimentation. 6.3.4 Aesthetics and Multiple Uses. Since an EDB is designed to drain very slowly, its bottom and lower portions will be inundated frequently for extended periods of time. Grasses in this frequently ' inundated zone will tend to die off, with only the species that can survive the specific environment at each site eventually prevailing. In addition, the bottom will be the depository of all the sediment that ' settles out in the basin. As a result, the bottom can be muddy and may have an undesirable appearance to some. To reduce this problem and to improve the basin's availability for other uses (such as open ' space habitat passive recreation), it is suggested that the designer provide a lower -stage basin as suggested in the Two Stage Design procedure. As an alternative, a retention pond (RP) could be used, in which the settling occurs primarily within the permanent pool. ' S-36 9-1-99 Urban Drainage and Flood Control District DRAINAGE CRITERIA MANUAL (V. 3) STRUCTURAL BEST MANAGEMENT PRACTICES ' 6.4 Design Considerations Whenever desirable and feasible, incorporate the EDB within a larger flood control basin. Also, whenever possible try to provide within the basin for other urban uses such as passive recreation, and wildlife habitat. If multiple uses are being contemplated, consider the multiple -stage detention basin to limit inundation of passive recreational areas to one or two occurrences a year. Generally, the area within the WQCV is for not well suited active recreation facilities such as ballparks, playing fields, and picnic areas. These are best located above the WQCV pool level. ' Figure EDB-1 shows a representative layout of an EDB. Although flood control storage can be accomplished by providing a storage volume above the water quality storage, how best to accomplish ' this is not included in this discussion. Whether or not flood storage is provided, all embankments should be protected from catastrophic failure when runoff exceeds the design event. The State Engineer's regulatory requirements for larger dam embankments and storage volumes must be followed whenever regulatory height and/or volume thresholds are exceeded. Below those thresholds, the engineer should ' design the embankment -spillway -outlet system so that catastrophic failure will not occur. Perforated outlet and trash rack configurations are illustrated in the typical details section. Figure EDP-3 equates the WQCV that needs to be emptied over 40 hours, to the total required area of perforations per row for the standard configurations shown in that section. The chart is based on the rows being equally spaced vertically at 4-inch centers. This total area of perforations per row is then used to determine the ' number of uniformly sized holes per row (see detail in the typical details section). One or more perforated columns on a perforated orifice plate integrated into the front of the outlet can be used. Other ' types of outlets may also be used, provided they control the release of the WQCV in a manner consistent with the drain time requirements and are approved in advance by the District. ' Although the soil types beneath the pond seldom prevent the use of this BMP, they should be considered during design. Any potential exfiltration capacity should be considered a short-term characteristic and ignored in the design of the WQCV because exfiltration will decrease over time as the soils clog with fine ' sediment and as the groundwater beneath the basin develops a mound that surfaces into the basin. ' High groundwater should not preclude the use of an EDB. Groundwater, however, should to be during design the design considered and construction, and outlet must account for any Upstream base flows that enter the basin or that may result from groundwater surfacing within the basin itself. Stable, all weather access to critical elements of the pond, such as the inlet, outlet, spillway, and sediment collection areas must be provided for maintenance purposes. 1 ' 9-1-99 S-37 Urban Drainage and Flood Control District STRUCTURAL BEST MANAGEMENT PRACTICES DRAINAGE CRITERIA MANUAL (V. 3) 6.5 Design Procedure and Criteria ' The following steps outline the design procedure and criteria for an EDB. 1. Basin Storage Volume Provide a storage volume equal to 120 percent of the WQCV based on ' a 40-hour drain time, above the lowest outlet (i.e., perforation) in the basin. The additional 20 percent of storage volume provides for ' sediment accumulation and the resultanfloss in storage volume. A. Determine the WQCV tributary catchment; imperviousness. percent Account for the effects of DCIA, if any, on Effective Imperviousness. Using Figure ND-1, determine the reduction in impervious area to ' use with WQCV calculations. B. Find the required storage volume (watershed inches of runoff): Determine the Required WQCV (watershed inches of runoff) using Figure EDB-2, based on the EDB 40 -hour drain time. Calculate the Design Volume in acre-feet as follows: Design Volume = WQCV) * Area * 1.2 ' In which: Area = The watershed area tributary to the extended detention pond . 1.2 factor = Multiplier of 1.2 to account for the additional ' 20% of required storage for sediment accumulation 2. Outlet Works The Outlet Works are to be designed to release the WQCV (i.e., not the 'Design Volume) over a 40-hour period, with no more than 50 percent the WQCV ' of being released in 12 hours. Refer to the Water Quality Structure Details section for schematics pertaining to structure geometry; grates, trash racks, and screens; outlet type: orifice plate or perforated riser pipe; cutoff collar size and location; and all other ' necessary components. For a perforated outlet, use Figure EDB-3 to calculate the required area per row based on WQCV and the depth of perforations at the outlet. See the Water Quality Structure Details section to determine the appropriate perforation geometry and number of rows (The lowest perforations should be set at the water surface elevation of the outlet micropool). The ' total outlet area can then be calculated by multiplying the the area per row by the number of rows. ' S-38 9-1-99 Urban Drainage and Flood Control District DRAINAGE CRITERIA MANUAL (V. 3) STRUCTURAL BEST MANAGEMENT PRACTICES 'C3. Trash Rack Provide a trash rack of sufficient size to prevent clogging of the primary water quality outlet. Size the rack so as not to interfere with the hydraulic capacity of the outlet. Using the total outlet area and the selected perforation diameter (or height), Figures 6, 6a or 7 in the Water Quality Structure Details section will help to detemrine the minimum open area required for the trash rack. If a perforated vertical plate or riser is used ' as suggested in the Manual, use one-half of the total outlet area to calculate the trash rack's size. This accounts for the variable inundation ' of the outlet orifices. Figures 6 and 6a were developed as suggested standardized outlet designs for smaller sites. ' 4. Basin Shape Shape the pond whenever possible with a gradual expansion from the inlet and a gradual contraction toward the outlet, thereby minimizing short circuiting. The basin length to width ratio between the inlet and the outlet should be between 2:1 to 3:1, with the larger being preferred. It ' may be necessary to modify the inlet and outlet points through the use of pipes, swales or channels to accomplish this. ' 5. Two -Stage Design A two -stage design with a pool that fills often with frequently occurring runoff minimizes standing water and sediment deposition in the remainder of the basin. The two stages are as follows: ' A. Top Stage: The top stage should be 2 or more feet deep with its bottom sloped at 2 percent toward the low flow channel. B. Bottom Stage: The active storage basin of the bottom stage should be 1.5 to 3 feet deeper than the top stage and store 5 to 15 percent of the WQCV. Provide a micro -pool below the bottom active storage •, volume of the lower stage at the outlet point. The pool should be''/z the depth of the upper WQCV depth or 2.5 feet, whichever is the ' larger. 6. Low -Flow Channel Conveys low flows from the forebay to the bottom stage. Erosion protection should be provided where the low -flow channel enters bottom ' stage. Lining the low flow channel with concrete is recommended. Otherwise line its sides with VL Type riprap and bottom with concrete. Make it at least 9 inches deep; at a minimum provide capacity equal to ' twice the release capacity at the upstream forebay outlet. 7. Basin Side Slopes Basin side slopes should be stable and gentle to facilitate maintenance and access. Side slopes should be no steeper than 4:1, the flatter, the: ' better and safer. 8. Dam Embankment The embankment should be designed not to fail during a 100-year and larger storms. Embankment slopes should be no steeper than 3:1, preferably 4:1 or flatter, and planted with turf forming grasses. Poorly ' compacted native soils should be excavated and replaced. Embankment soils should be compacted to at least 95 percent of their maximum ' density according to ASTM D 698-70 (Modified Proctor). Spillway structures and overflows should be designed in accordance with local drainage criteria and should consider UDFCD drop -structure design guidelines. ' 9. Vegetation Bottom vegetation provides erosion control and sediment entrapment. Pond bottom, berms, and side sloping areas may be planted with native grasses or with irrigated turf, depending on the local setting. ' 9-1-99 S-39 Urban Drainage and Flood Control District ' STRUCTURAL BEST MANAGEMENT PRACTICES DRAINAGE CRITERIA MANUAL (V. 3) (/ 10. Access All weather stable access to the bottom, forebay, and outlet works area shall be provided for maintenance vehicles. Maximum grades should be �.._ ' 10 percent, and a solid driving surface of gravel, rock, concrete, or gravel -stabilized turf should be provided., 11. Inlet Dissipate flow energy at pond's inflow point(s) to limit erosion and promote particle sedimentation. Inlets should be designed in accordance with-UDECD drop structure criteria or as another type of an -energy ' dissipating structure. 12. Forebay Design Provide the opportunity for larger particles to settle out in the inlet in an area that has a solid surface bottom to facilitate mechanical sediment ' removal. A rock berm should be constructed between the forebay and the main EDB. The forebay volume of the permanent pool should be 5 to 10 percent of the design water quality capture volume. A pipe throughout the berm to convey water the EDB should be offset from the ' inflow streamline to prevent short circuiting and should be sized to drain the forebay volume in 5 minutes. 13. Flood Storage Combining the water quality facility with a flood control facility is ' recommended. The 10-year, 100-year, or other floods may be detained above the WQCV. See Section 1.5.5 of the BMP Planning For New Development and Significant Redevelopmentchapter of this volume for ' further guidance. 14. Multiple Uses Whenever desirable and feasible, incorporate the EDB within a larger flood control basin. Also, whenever possible try to provide for other urban uses such as active or passive recreation, and wildlife habitat. If multiple uses are being contemplated, use the multiple -stage detention i �. basin to limit inundation of passive recreational areas to one or two occurrences a year. Generally, the area within the WQCV is not well suited for active recreation facilities such as ballparks, playing fields, and picnic areas. These are best located above the EDB level. ' 6.6 Design Example Design forms that provide a means of documenting the design procedure are included in the Design tForms section. A completed form follows as a design example. 1 1 ' S-40 9-1-99 Urban Drainage and Flood Control District 1 1 1 1 1 S i RUCTURAL BEST MANAGEMENT PRACTICES Side Slopes No Steeper than 4.1 Presedimentation Top Stage with Forebay 2%/a Slope Floor -Drainage Pile . -� - JI JL Jr Jc JL T �� T JL JL DRAINAGE CRITERIA MANUAL (V.3) Embankment Side Slope No Steeper than 3:1 Embankment Access to' Outlet -Outlet I w/Trash RackSpillway PLAN NOT TO SCALE Frequent Runoff Pool 10% to 25% of WQCV flow Presedementation Secondary Berm Forebay Top of Low Flow Channel Flow Dwq Dispersing Inlet ----------- Size Outlet& F - - Drain Forebay / Volume in 45 Minutes Invert of Solid Driving Low Flow Surface Channel ' Could be Impact Basin, GSB Drop, Concrete Rundown, other Hardened Rundown Water Quality Capture Emergency Spillway Flood Level volume level (including 20% additional volume (eSpillway Crest for sediment storage) (e.g. 100-yr, SPF, PMF, etc.) �l /Spillway Crest ` Cutoff Collar \X Embankment SECTION NOT TO SCALE S=0.0%± Outlet Works (see detail) DMP2 2 DwQ(2' Min) FIGURE EDB-1 Plan and Section of an Extended Detention Basin Sedimentation Facility 9-1-99 Urban Drainage and Flood Control District S-41 STRUCTURAL BEST MANAGEMENT PRACTICES DRAINAGE CRITERIA MANUAL (V. 3) 0.50 0.45 0.40 N 0.35 v L U v 0.30 m t 0.25 m 0.20 0.15 0.10 0.05 000 S-42 Extended Detention Basin 40-hour Drain Time Constructed Wetland Basin 24-hour Drain Time _ 6-hr drain time a = 0.7 12-hr drain time a = 0.8 7NlI 24-hr drain time a = 0.9 — 40-hr drain time a = 1.0 Retention Pond, Porous Pavement Detention and Porous Landscape Detention 12-hour Drain Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Total Imperviousness Ratio (i =1 wy1100) 0.8 0.9 1 FIGURE EDB-2 Water Quality Capture Volume (WQCV), 80`h Percentile Runoff Event, v 9-1-99 Urban Drainage and Flood Control District i 10. 6.1 ' 4.1 ' 2.l ' 1.( DRAINAGE CRITERIA MANUAL (V.3) ' ai 0.6C a� U ' 0.4C E a� 0.2C ' U 0 0.1C ' co ' 0.0E 0.04 0.02 0.01 0.02 STRUCTURAL BEST MANAGEMENT PRACTICES J I EXAMPLE: DWQ=4.5 ft WQCV = 2.1 acre-feet SOLUTION: Required Area per ---. Row = 1.75 in? i EQUATION: WQCV a= K 40 in which, K40=0.013DWQ+0.22DWQ -0.10 C-5 O� ti h Y F if 0.04 0.06 0.10 0.20 0.40 0.60 1.0 2.0 4.0 6.0 Required Area per Row,a (in.2 ) FIGURE EDB-3 Water Quality Outlet Sizing: Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume 9-1-99 Urban Drainage and Flood Control District S-43 ' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 ' Designer: Company: Date: t Project: Location: 1 John Gooch Sear -Brown February 4, 2004 PVH Fort Collins 1. Basin Storage Volume A) Tributary Area's Imperviousness Ratio'(i'= la / 100) B) Contributing Watershed Area (Area) C) Water Quality Capture Volume (WQCV) (WQCV =1.0 * (0.91 " 13 - 1.19 " IZ + 0.78 * 1)) D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 la = i = Area = WQCV = Vol = 80.00 % 0.80 103.80 acres 0.33 ^!watershed inches _ "V3.408, acre-feet 2. 2. Outlet Works A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforation (H) H = 4.00 feet C) Required Maximum Outlet Area per Row, (A.) Ao = = ', 2 87 square inches D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR D = 1.1250 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, See Table 6a-1 For Maximum) nc = E '3 number F) Actual Design Outlet Area per Row (A,) A. = .==ksquare inches G) Number of Rows (nr) nr = - T2.number H) Total Outlet Area (A,,) Aot = 35 7,8 >` square inches 3. Trash Rack A) Needed Open Area: A, = 0.5 * (Figure 7 Value) * Ao, A,.`=square inches B) Type of Outlet Opening (Check One) 4 `.: < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (W� m) from Table 6a-1 Ww c 36 inches ii) Height of Trash Rack Screen (HTR) HTR = � 72" ^ ,;'. inches UDFCD Form.xls, EDB 1 1 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 Designer: John Gooch Company: Sear -Brown Date: February 4, 2004 Project: PVH Location: Fort Collins iii) Type of Screen (Based on Depth H), Describe if "Other" x S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other' X" .0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) 1;OO,, ;inches Type and Size of Support Rod (Ref.: Table 6a-2) TE 0.074 in. x 1.00 in. vi) Type and Size of Holding Frame (Ref.: Table 6a-2) 1.25 in. x 1.50 in. angle D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W ii) Width of Perforated Plate Opening (W.n, = W + 12") Wwnc _ ;inches iii) Width of Trashrack Opening (Wopening) from Table 6b-1 Wopening F 4 ';±inches iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP I It inches Grating). Describe if "Other' Other: vii) Minimum Bearing Bar Size (KlempTm Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio (L/W) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no UDFCD Form.xls, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: John Gooch Company: Sear -Brown Date: February 4, 2004 Project: PVH Location: Fort Collins 6. Two -Stage Design A) Top Stage (Dwo = 2' Minimum) Dwo = feet Storage= acre-feet B) Bottom Stage (Des = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum, DBs = feet Storage = 5% to 15% of Total WQCV) Storage= acre-feet Surf. Area=H. acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.5 " Top Stage Depth or 2.5 Feet) Storage= acre-feet Surf. Area= s .' ., jacres D) Total Volume: Voltot = Storage from 5A + 6A + 6B Voltat = -1 acre-feet Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = 3.00 (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: UDFCD Form.xls, EDB I 1 1 STORM DRAIN SIZING: UDSEWER & HY8 H 0 I 1 �- I I I 1 I I I I 1 NeoUD Results esults Summary 1 1 Project Title: Project Description: Output Created On: 1/31/2004 at 4:48:50 PM _ 1 Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. 1 Sub Basin Information Time of Concentration Manhole Basin loveriand Gutter Basin Rain I Peak Flow 1 ID # [Area * C I(Minutes) I(Minutes)(Minutes) (Inch/Hour) (CFS) 1 1 1 1 1 1 1 1 1 0.041, 5.01 0.01 0.01 256.501 10.3 F 2-1 0.04 F 5.0 0.0 F-0.0 F 255.50 10.2 `- 3� 0.04 F-5.0 0.0 0.0 F 255.50 F 10.2 F -4F 0.04 E 5.oF 6.6 F0.0 F 255.50 F 10.2 F 5 F 0.04 1 5.OF 0.0 F 0.0F 255.50 10.2 6 0.04 F 5.0F0.0 F 0.0E 255.50E 10.2 W 7-- 0.04j 5.0 F 0.0 0.0 255.50F 10.2 F 8 T 0.04 54 0 0.0 F 0.0 F 155.25F 6.2 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Manhole ID # Contributing Area * C Rainfall Duration Ground Rainfall Design[le � Intensity Peak vation Water --` EIeComments Minutes ( ) nch/Hour Flow Feet I� ) ( ) Feet ( ) 1 n I 1 1 I 1 (CFS) E ............................................ ....._...................... _............ Su . rface 1 0 0.0 0.00 10.3 4952.00 4954.90 ;Water ;Present 2 --�� ��-0.28 5.0 (- 36.50 10.2 4960 32 4954.93 �............_3_. _-. I .. .................. 0 24 .......... 5.0I 42 58 (...... 10.2 �...4959.28 ( 4955.01 F -4 -- - 0.2 ( 5.0 51.1011 10.2 4958.77I 4955.09 - (. _- _ 5.......__...._ .............._......0.16.(_.....--- :-- 5.O I--..............._......63.88 (...........10.2.(........4959.1.2.I....._.4955.52 f...................................._..... -6 Y-.� 0.12 5.0 85.17 10.2II 4958.80 4955.72 _._...I.... II I 0.08 I......._-._........._...5.0I ..........._......_. ..............__._._127.75 10.2 r.._...4957.46._.....4956.04.I............................................. 0.04 5.0 555.25 6.2I 4 557.401 49� 56.351- Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. F- Manhole ID Number F Calculated Suggested Existing. _.-._..._..._.._......_..................................._..........._........._.....__........_.. -........_..__...........__....._...._..........._......._........................................._...............I...._. Diame-ter Diameter .... ............... ... Diameter i Sewer ID # Upstream Downstream Sewer (Rise) (Inches) (Rise) (Inches) (Rise) Width (Inches) (FT) iShape i (FT) (FT) (FT) F I F 2 r I lRound 1 -21.21 241 --24 N/A i -2--........_._......3 ............._..._I..__......._....._.2._._.......__._IRound..__......_._..._...__....2.1..2.1 .... __........ ............. ....._...-24 1.........._..._......._..._....._...24..........N/A I '-� 3 - Round - 21.2 24 ��-- 24 N/A �..._ 4_.__...._._..._.._5_._.._._.._.._r........_..:..._......4.._._..__._...._-�Round.`._..........._......_....21.2.I..._._....._._........_.....__.....24.j .........................................24.1...........N/A F 5 F 6 __._..._._I�_...____ 5- y Round F__-_....___....21.2 F 24 F N/A 6 7 I ... _...6... _. .._Round (._.._....._.......................22.3 i................_...................__24.................................._....24 I� I..........N/A -- 7 r--- --8--���-_-- 7 --- Round F 17.6 18 � � 18 j N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. awer Design I Full INormal ) Normal Critical Critical I Full Fronde Comment ID Flow Flow I Denth Velocity nenth Velocity Velocity Number 1J 1 C ( ��(CFS) I(CFS) (Feet) (FPS) (Feet) (FPS) ((FPS) _. 1.._.-1-- i- 10.21._.14.3 i L..._ 1.251 - 5.01 1.14 5.5 F- 2 0 2F 14 3F 1251 5.0 F 1.14 F 5.51 3.3 0.85 F --- -3-- (_10.2� 14.3.C-...-1.25�_ _..._..---......__,...._..._._._....__ 1.14i 5.5( _...........__._...__....._ ._._.._....__.__....._..._ 3.3; 0.85I ..................._................_.... 4 W 10.2 14.3 1.25 5.0 1.14 5.5 0.85 5 ....- (........_-._......__ .............. .... .._...._.. _- 1.141. .......0...85... 3.31 ...........................................5.0 . 6102 124 1.38 5.5� 4.4� .3 0.71.4 � ........ . 7�6.216. .............. ............ 5F 14.3 ._..._...__.,._..._3.3 ....._...... ..m..........0.................-...__................3 . ._ 5 .. ......................... A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information F--F-1 Invert Elevation I� Buried Depth Sewer ID Slope EUpstream !Downstream i Upstream Downstream Comment % I (Feet) (Feet) I (Feet) (Feet) F-1 0.40 j 4951.401 4951.02 6.92 -1.02 Sewer Too Shallow 2 J- 0.40 " 4951.51 �- 4951.41 _ ..... 5.77 - - 6.91 E___....._.._.-.----._.._.....__..._.__. _. I1-�-�� 3 0.40 1 4951.661 4951.53 5.11 5.75 l) 4952.501 4951.66 (--_._._._._... 4.62 _...._.. --....._. ��� 5.11 ...... r_.......__....._..___.._.___.-._._.-._._. _ 5 - 0.40 4952.82 j' 4952.491 3.981 4.631 (-----6 .__....._ r......0.40 ; 4953.301 � 4952.831 ll __-2.16 (._..__....._---__3.97.I .............._...__... ... _. -7FO.401 4953.641 4953.30 2.26 I-� - 2.661 Summary of Hydraulic Grade Line -�� Invert Elevation Water Elevation _.._-..__...._..._..._ Sewer ..............._;....._._..._._..-------...... Sewer ;Surcharged Length' Length -- ._..._ : - Upstream --._.._._.._.__..._.. :._.............._._.. --:............................ .... ....... ............-............................. Downstream !Upstream ;Downstream ........ .i Condition) ID # (Feet) j (Feet) (Feet) (Feet) i (Feet) (Feet) 1 95.6 95.61 4951.40 4951.02 4954.93 4954.90 Pressured 2 24.48 ? 24.48 4951.51 ---....._.............. _..._..... .........._...._.._..... _.......... _.._,...................._....._._..._...._..._.... 4951.41 4955.01 4954.93 Pressured 3 - 33.39 33.39 4951.66 4951.53 4955.09 4955.01 Pressured 4 209.42 ; 209.42 4952.50 4951.661 4955.52 4955.09 Pressured 81.69 8 4952.82 4952.49 ; 4�955.72 4955.52 Pressured 1 1 1 --..._.............. _......... .._-........................................ .�_......._.__........_............ ...__................ _.... _._..........._.... ...........-..._.......... .............. 6 ( 116.49 116.49 4953.30 4952.83 4956.04 7 84.44 I 84.44 4953.64 4953.30 4956.35 Summary of Energy Grade Line 4955.721 Pressured 4956.04 Pressured Upstream Juncture Losses Downstream Manhole Manhole SewerManhole. Energy .-.._._..---......__.._.._._.._._............_.........._........._..___._ Sewer Elevation Friction ............._...._........._..._............. _.._.._.........._._..... Bend Lateral Bend K Lateral K Loss Loss Coefficient _...._........_...._..._.._._........ __..:.......--- ......... Energy Manhole Elevation ID # ID # ID # (Feet) (Feet) Coefficient (Feet) (Feet) (Feet) F-1 F 2 4955.09 0.19 0.05 06 0� 0 .00 0.001 -�-1 4954.90 2 ( 3 4955.18 0.05 0.20 0.03 0.00 0.00 2 4955.09 F 3 F 4 -- 4955.25 0.07 0.05 1 0.01 0.00 0.00 F-3 [ 4955.18 4 5 _ 4955.69 0.42 �0.05 ( 0.01E . 0.00 0.00 4 4955.25 F-5�F 6 4955.88 0.17 0.20 0.03 0.00 0.00 ` 5 -F 4955.69 6 ( 7 4956.21 0.31 0.05 0.01E 0.00 0.00 6 4955.88 7 8T� 4956.54 0.29 0.20 0.04E 0.00 0.00 F7-1 4956.21 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. . A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole Rim Elevation :Invert Elevation ;Manhole Height ID # (Feet) (Feet) E (Feet) 1 _.................................... 4952.00 ........... ..._......--... .---._........ ......... ................ 4951.02 _ ... _.._._............. -------- . 0.98 2 �4960.32 ! 4951.40E 8.92 3 4959.28 4951.51 : 7.77 -V 4 --� 4958 5 . ...:............... 4959.12 .-......... ................... --.......... _....... ......................... 4952.49 : __...._......................... 6.63 F 6 4958.80 4952.82 5.98 7 4957.46 F 4957.40 4953.30 ! 4.16 4953.64 3.76 Upstream Trench Width Downstream FTrench Sewer ID # On Ground (Feet) At Invert (Feet) On Ground (Feet) {Wiidtth-� At Invert (Feet) Trench Length (Feet) wrap Thickness (Inches) Earth Volume ( rbic 1 - -1 -1-7.31 4.51 1.51 4.51 95.61 3.00 172 2 -- 15.0 4.5 17.3 F 4.5 24.48 F 3.00 F 69 3 - 13.7 4.5 F7 15.6 j 4.5F 33.39 F 3.00 F 77 F Y-4- 12.7 4.5 ( 13.7 j 4.5 209.42 3.00 423 5 - 11.5 1 4.5 r 12.8 1 4.5 81.69 3.001 144 �6 7.8 4.5 11.4 f 4.5 116.49 3.00 150 F-7 - 7.6 3.9 8.4 j 3.9 84.44 2.50 F- 74 Total earth volume for sewer trenches = 1107.96 Cubic Yards. The earth volume was estimated to have a bottem width equal to the diameter (or width) of the sewer plus two times either I foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivelant diameter in inches/12)+1 NeoUDS Results Summary Project Title: PVHS Project Description: 5 TK m - N- 13 Output Created On: 2/4/2004 at 9:28:21 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin. Information ��� Time of Concentration Manhole I Basin Overland Gutter Basin Ram I Peak Flow ID # (Area * C (Mmutes)i (Minutes) (Minutes) (Inch/Hour) (CFS) The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design' Manhole Contributing Rainfall Duration; Rainfall 1 1 Peak Ground Water ID # Area C Intensity Flow Elevation Elevation Comments' (Minutes)1 Inch/Hour (CFS) Feet _.._....___. Feet _._....._ (Feet) _..._._....__._..._.., I ......�` AIL.... L� .....` "I�^�__ . ..... _ _.. 0 08 �I—-- 24 9 4945.15� 4941 09i� ---.__4__0 04I777D 19 5 4945 21 4941 95 _^ 77 1i Summary of Sewer Hydraulics Note: The Oven depth to flow ratio is 0.9. —, ^Manhole ID Number` —� Calculated I Suggested u Existing j Sewer; ID # I Upstream _.... Downstream _.... ._.__.._ ..._ _.... Sewer Shape p Diameter (Rise) Inches (Inches) ........-(FT_) Diameter ( (Rise) I Inches (inches) Diameter (Rise) ; Inches ( ) Width! (FT) ...I�IL...��..—�Inound un �odj .... 29 51 i9 _ 3-0) V 24 -i ... N/AI . N/A 14 9 �.. 1..81�. �24� _.. 24j - Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design[lFS Full !Normal! Normal', Critical;[elocityVeIocityritical I Full Sewer; Frondi Flow ow Depth ,Velocity, Depth ) ; Number Comment; �ID (CFS) ) (Feet) r (FPS (Feet) IFPS)w (FPS) _, _ „! 3 19.51 J��6,..2� 4N./5A5(1} i VcloutY Is high, A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth_ Slope Upstreami Downstream Upstream' Downstream; Fsewer ID Comment:. Feet Feet Feet I (Feet) ( ) ( (Feet 4 93i __,___.___.__ _0 40 ._• 4938 38I� 4938 23; __ .._ 4.-��! .___.___ .. 4.91 31' 4940.3 t F.. 4936 68 2.90 6:47a ,i .. _9 ... . -_ _..... ' Summary of Hydraulic Grade Line Invert Elevation Water Elevation �( Sewer Surcharged i � FSeer streamDo Length Upstream Downstream! J',PFee (en (nstr)am Condition' g g Feet Feet t Feet Feet ....-.....Feet _ . 4938.21 4938.02IF 940.5911 F4936.8� Pressured) I_- 37.35 37.35 �4938.38 4938.23 4941.09 4940.5� Pressured) F--� 38 95 35.06 4940 31 4936 68a 4941.09� Ju Summary of Energy Grade Line Upstream I I Juncture Losses Manhole Downstream Manhole J ---- _ ....- Energy Sewer7BendBend Lateral! Sewer Manhole .. Energy Lateral K FrictionLoss Loss ID # ID # Coefficient ManholeElevation ( Elevation ID#(Feet) (Feet)(Feet) .__...._ _ (Feet) (Feet)_.... I ll 1 4941 56 4 73 0 O5� 0 00� 0.00) 0 4936 83 4942.06 0 05.� ... 0 O5.. 0.00� 0.00I��—i ......411. 941.56 _..4942 55 - 0.26 0.38 -. _0 23� ._...- - . _ 0.00� _-. 0 00�1.-...._.-' L ..... 4942.061 ' Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. l.._ NeoUDS Results Summary Project Title: PVHS ' Project Description: ST 9N- Output Created On: 2/4/2004 at 9:39:06 AM Using NeoUDSewer Version 1.1. ' Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. r'- t, 1 7 1 11 Sub Basin. Information _ ........... . ......... ..._..................... _.......... � ...... _........... �� Time of Concentration �I 1 ManhoIell Basin 110verland Gutter Basin Rain I Peak Flowli ID # Area * C1(Minutes)) (Minutes) (Minutes) (Inch/Hour)! (CFS) The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes.. At the first design point, the time constant is <= (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Rainfall Rainfall Design; Ground Water Manhole ID # Contributing * Area C Duration ! I (Mmutes)l Intensity (Inch/Hour)1 Peak Flow Elevation (Feet) ! Elevation (Feet) Comments; (CFS) I ! !Present-,-,.,, F4935.20,,[4936.831, Surface ' Water it _ 4939.751[7 1 17 I 70 7 4945 38) 4941 38;I- 77 . 4944 OOjF 4942 F .._.' 1 L: V O B S\702 100\data\Drain age\u dSewer\STRM -C. doc Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number ; Calculated Su ested Existing Diameter Diameter Diameter Sewer ID # Upstream Downstream! i Sewer Shape (Rise) (Inches) (Rise) (Inches) (Rise) Width (Inches) (FT) Imo'....... il�......._`: IL..�_1...... Round .... 4.6..111._...... 48) 3011. N/AI Imo.... III3 IL._.�`........_ ;i l Round ._.._....... 46111 48 30 ..... N/A �. Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation j Buried Depth it FSewer ID; Slope!Upstream Downstream) Upstream Downstream /o Feet Feet Feet Feet Comment _....._1 iI 0.40;1 4935 2511 4935 021 2.32��Scwcr I oo Shallow! 2 0 40 4935.41) 4935.26iL... 7.47 f 7.681F -- 3.._....!I. 0.46 4935 54� .. . 4935 4.1J1 .... _ _5 �6 I _ . 7.47i1_ L:VODS\702I00\lata\Drainage\udScwer\STRM-C.doc 2 I I I I I I I I I I I I 11 Summary of Hydraulic Grade Line Invert Elevation Water Elevation,, Sewer' e r Sewer Surcharged ream Upstream ownst Downstream Upstream Downstream ownstre am D Len e n g�t) (Feet) Length (Feet) cet� 7 te (Feet) (F t� e t ? I Condition ----75 93 L5j'F 4935.02 493�.L5[-_ 36.831 Pressured F—FTT.-3R11F. - _3734]F Pressured'F _4941.38� Summary of Energy Grade Line Upstream Manhole 7, Downstream I i Juncture Losses I Manho 11 1 le Ene Sewer] d Bend; La.t....eral Energy S......e er BendLoss Lateral K' Manhole ID iI Elevation Fee ; Loss Elevation] 0efrIci I Coefrcen Coefficient; (Feet) [Feet) (Feet) (Feet) .. - F-F — - ---- 6.14 1 IF4936.831 F7_ 4944.59IF::_1�47117:�0 O5F70 16F�:0.00E---O A ET7-4.941.2.917' E- F F: �9:4:5:9�9 F .T.2 :�.l F-0 J6F— Y� - - �-Po ETJ[49:44.5 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. I, DJOBS\7021 00\data\Drainage\udScwer\SI'RM-C.doc 3 I 1. I 1 ^1 J 11 7 NeoUDS Results Summary Project Title: Project Description: s Output Created On: 2/l/2004 at 3:00:37 PM _ Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Time of Concentration 'Manhole Basin Ove�� rland ! G� utterT € Basin Rain I Peak Flow ID # Area * C (Minutes) ;(Minutes) ([Inch Hour) (CFS) - 1 0.04 5.0 0 0.0 675.75 27.0 2 ; 0.041 5.01 0.0 0 675.75 F 27.0 3 ; 0.04 i 01 0.0 i 0.0 675.75F 27.0 4 �0.04 F 5.01 0.01 0.0 F 265.50 10.6 The shortest design rainfall duration is-5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics ' ;Manhole lContributing ID # Area * C Rainfall Duration Rainfall Intensity Design 1 Ground Peak Elevation Flow Water Elevation Comments f 1 (Minutes) (Inch/Hour) (CFS) i (Feet) (Feet) i........__.... _............._.......__._................._.._.......0......._.__......_.._..0.0 ..__...........__....__...0.... r......_27.0 (._..-4951.00.1.._...4949.03 I......... --- ...... ............. .. 2 �1 5.0 �T 225.25 27.0 4953.44 4951.14 (—_-� —� 3 .__..._...i_.......--__...._........._0.08r..._...._ .................5.'0.�..._......._....-337.8.8. ...-27. ... ... -...4952.27�.......4951.81 ......... _..... .... ........... ....... I 1 I/ 0 t 1 1 I �.__.__._._... 4 j 0.04 5.0 265.50 10.61 4952.16 4952.19 jWater I � � jPresent Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number ( Calculated Suggested .........__..___...._._..._.._._..____....._...__ Existing .._ Diameter j Diameter Diameter ,Sewer ID # Upstream Sewer; (Rise) Downstream i !Shape (Inches) (Rise) (Inches) (Rise) (Inches) Width (FT) (FT) (FT) (FT) Y._._...._............. I ....�......_.._�..... 2 _........................................._....._Y 1 Arch ` ___ 30.5 1 �33 (� 24I r 38 .._1 2_7._ 3 —2 !Arch _ 30.5 _ —33 3 F—_ 4.___._._._._.__ 3 —.—_1 Arch (.21.5 I 24 ._.19.�.___ 30. Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design i Full Normal[Normal CriticalFve tical ! Full Sewer Froude Flow ;Flow Depth elocity Depth ocityVelocity Comment ID (CFS) (CFS) (Feet)FPS) (Feet)PS) (FPS) Number _...........I............27.0 i...... 2.8..4. _..........2.01 6.2 1.75 2 F27.0 28.41 ......2.01 6.2 1.75 ......7..1 .' ..._...._. 52 ........_0.76 j ............._._.__..5_.......0 .............._............ 5.0.3 10.6 I 15.21.26.1.. A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth ;Sewer ID 'Slope Upstream .Downstream Upstream Downstre % 1 (Feet) ( (Feet) (Feet) (Feet) Comment 0 1 1 1 I r- I 4949.1414948.50 2.30 0.50 Newer Too Shall ow 2 - 0.40 �4949.23 �4949.14 1.04 _ _ 2.30 ;Sewer Too Shallow 3 0:40 4949.41 4949.22 1.17 1.46 !Sewer Too Shallow Summary of Hydraulic Grade. Line Invert Elevation Water Elevation -� Sewer Sewer Length Surcharged Upstream ;Downstream Length Upstream Downstream Condition ID # (Feet) Feet (Feet) ( ) (Feet) (Feet) (Feet) 1 161 0' 4949.14' 4948.50 4951.14 4949.03 [Subcritical 2 F 26-56F 20.56' 4 9 3 4949.14 4951.81 4951.14 Pressured _.._._.-.._..__.� - F 3 46.66 46.66 ` 4949.41 4949.22 4952.19 4951.81 Pressured Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole ,Sewer ID # Manhole ID # Energy Elevation Sewer Bend K Bend Friction; Loss Coefficient Lateral K !Lateral !Manhole ! Energy Loss Elevation Coefficient ID # (Feet) (Feet) (Feet) (Feet) (Feet) 1 _ F 2 � �4951.73 2.70 � 0.05 0.001 -0.00 ! _ 0.00 ! 1 ' 2 3 4952.22 0.21 0.69 0.28 ! 0.00 ! 0.00 2 4_ 4952.36 0.09 j 0.251 0.041 0.00 !�0.00 ! 3 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. ManhnlP'Rim lPvatinn invert Flevatinn Manhol Hpinht 4949.03 ! 4951.731. 4952.22 I 'l I I 1 I Upstream Trench Downstream Width Trench Width Sewer On At On At Trench Wall Earth Volume ID # Ground Invert Ground Invert Length 1 Thickness (Cubic (Feet) (Feet) (Feet) (Feet) ! (Feet) (Inches) Yards) 1 9.2 5.8 �5.6 8 161 3.58 F �160 2 6.71 5.8 �9.21 5.8 20.56 3.58(_. _....._ 22 I� 3 �._..., _.._._�6.3 5.0 M6.91 5.0E 46.661 3.04 —35 Total earth volume for sewer trenches = 216.52 Cubic Yards. The earth volume was estimated to have a bottem width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivelant diameter in inches/12)+1. . . NeoUDS Results SummaryY ' Project Title: Project Description: STRM-N-E Output Created On: 2/4/200.4 at 10:34:02 AM ' Using NeoUDSewer Version 1. L Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information i Time of Concentration ( I !Manhole! Basin Overland Gutter € Basin Rain I Peak Flow? ID # !Area * C (Minutes) '(Minutes) (Minutes) (Inch/Hour) (CFS) 1! 0.04 5.0 0.0 0.01 1740.501 69.6 2 0.04 5.01 0.01 0.0 1740.501 69.6 3 0.04 F55.6 1 0.01 0.0 1730.501 69.2 j 4 0.04) 5.0 < 0.0— 0.0 1568.25 62.7 The shortest design rainfall duration is-5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Manhole ;Contributing * Rainfall Duration Rainfall Intensity Design ! Ground Peak Elevation Water Elevation Comments ID # Area C Flow (Minutes) (Inch/Hour) (Feet) (CFS) (Feet) 1. 0 ........ ....... ..._.........0.0 .i......_... .......... _...... _._._.....O.00 II 69 _5.._.. 4945.00........4944.30. .... ..... ........ ....... ......... ......... .. j 2 5.0 580.17 69.6 4947.77 4945.16 1 .............. ....... _............... ................. _..................... ...... ........ ....._......._......_....._...._..__ 3 i 0.08 5.O.I.._...._....__..._865.25............69.2.........4947.95........4945.71._.__......._............_._....._.._ 1 L 1 1 1 1 ;Surface 4 0.04 5.0 1568.25 62.7 4946.00 4946.21 'Water Present Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. r_._....._........_ ._.__-_._._...,_,_._....,,,,._.._._............._._..._........._.....,.._._,_. Manhole ID Number ; Calculated Suggested .._._. ( Existing i Diamm- ameter Diameter' F6lameter Sewer ID Upstream !Sewer (Rise) Downstream (Rise) (Rise) Width # iShape (Inches) (Inches) (Inches) (FT) (FT) (FT) (FT) 1 2 1 j Box 2.3 31 2 4 2.__F __3 _� 2 Box _ 2.3 3 �__ 2 F__.._......4. 3 3--1-2-1— 4.__ 3__.__ Box; 2.41 31 4 Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the• suggested diameter was used for hydraulic calculations. iSewer Design Full Normal ID Flow ` Flow Depth (CFS) (CFS) (Feet) ................................._.......................;....... _.....__._........................................ 1 I 69.6 I 44.3 ( 2.00 Normal Velocity Critical Depth Critical Full Velocity Velocity Fronde Comment Number (FPS) (Feet) (FPS) (FPS) _......._............8.7 r...............2.00........................0.0 _.................... ..._........ 8.7 .............. ........... ............ ... N/A (................. ................. ...............................€.................._.........................................._....................................8.7 N//A44.32.00 8.72.00 0.02 69.2 ' 78NA .... ...... ... _ i ........................ 7.8 2.00 0.0).._......._....... 362.7€38.4 2.00 .............. A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation µT Buried Depth !Sewer ID ;Slope Upstream ±Downstream Upstream Downstream Comment /o (Feet) I (Feet) (Feet) (Feet) 1 0.401 4942.98 j 4942.86 2.79 0.14 20.404943.20 4943.00 2.75 2.77 Sewer Too Shallow 0.401 4943.291 4943.201 0.711 2.75 ;Sewer Too Shallow Summary of Hydraulic Grade. Line - Invert Elevation Water Elevation Sewer Surcharged j i�� •� :Sewer ;Upstream ;Downstream Upstream Downstream ID # Length Length (Feet) (Feet) (Feet) (Feet) Condition (Feet) (Feet) j ' 1 30.430.4 4942.98 4942.86 4945.16 4944.30 Pressured 2 ._ 49.33 mm 49.33 4943.20 4943.00 ��4945.71 4945.16 Pressured . _ __._.._..._..._._.. _.__._._.._..._._..__.._ ,..._...._ __ 3 22.33 22.33 4943.29 < 4943.20 �4946.21 �4945.71 Pressured Summary of Energy Grade Line Upstream Downstream Juncture Losses ' Manhole Manhole Energy Sewer Bend i Lateral' Energy Sewer Manhole Bend K j Lateral K Manhole Elevation Friction Loss ; Loss Elevation ID # I ID # Feet . Feet :Coefficient Los CCoefficient! Feet ID # Feet f (Feet) ( ) ( / ( ) ` (Feet) .............r..__ _......................_...... ,,...._. _.,.._ ._,.W..W,,,._.... 1 2 �` 4946.33 2.03 ` 0.05 F0.00 0.00 0.00 1 4944.30 2 �3 4946.87 �0.48 0.05 0.06 0.00 T 0.00 2 4946.33 _. ......_.34.____._..___.4947.16 0.24 0.05 ( 0.05 0.00_,___.__0.00 3... ' 4946.87 ' Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. ' A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. ' Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. ' Manhole 112im Flevatinn Tnvert Elevation �Manhnle Heiuht ID # (Feet) (Feet) (Feet) _ ............._................. ...... '......._................._... 1 4945.00 4942.86 2.14 2 4947.77 4942.98 ( —y-- 4.79 ............ ............................. _...................................._................._........... ............................................ .........._................................... 3 4947.95 4943.20 4.75 4--4946.001 4943.291 2.71 Upstream Trench Downstream (�'��`' Width Trench Width Sewer On At _ I On -- At _. nch nch TreWall Earth Volume ID # Ground Invert I Ground Invert j Length j Thickness (Cubic (Feet) (Feet) (Feet) (Feet) I (Feet) (Inches) Yards) 1 10.9 6.7 5.6j 6.7 0 4.19 36 2 10.8 _....__6.7 10.8 � ] �6.71 49.33 4.19 78 3 6.7 6.7 10.8 F 6.7 22.33 ; 4.19 28 Total earth volume for sewer trenches = 142.49 Cubic Yards. The earth volume was estimated to have a bottem width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivelant diameter in inches/12)+1 NeoUDS Results Summary Project Title: PVHS ' Project Description: STRM-N-F Output Created On: 2/4/2004 at 10:55:42 AM Using NeoUDSewer Version 1.1. ' Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information � _._._......................--._...._........._.._.._...._..__....----....Time of Concentr- _...__.......at.._....._..i.._.on_._. .._.....-..-_..._-._._.._... ��) (� 'r 11 H Manhole Basin Overland; Gutter Basm Rain I ; Peak Flow ID # Area * C. (Mmutes)i (Minutes) (Minutes) (Inch/Hour)] (CFS) The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design: Manhole Contributing Rainfall Duration Rainfall Intensity Peak ' Ground Elevation Water Elevation Comments ID # Area C (Minutes) (Inch/Hour) Flow (CFS) (Feet) (Feet) —� 42.5 4943.00 4940.871,� 42 5 4946 23 Il 1� III _j 42 5 4946.11I _4943.46E— 4943.92 4 39.8F944.00 ' j 4944.25' Surface Water _._.._._._.__...__.-_J.�---._-__-_—._.___-.._iJ Present ^J ' L:\JOBS\702100\data\Drainage\udSewer\STRM-F.doc 1 i, C L 1 c_ 1 Summary of Sewer Hydraulics Note: The Riven death to flow ratio is 0.9. l! Manhole ID Number �� Calculated Suggested Existing Sewer] ID # i Upstream Downstream Sewer Shapel Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) (FT)— Width (FT) L....._�1..._....—....11�._..—....._—...._.`..........._.........1......................�..1 1...................�.....1 _....__Box ..........................._......2.:4 L........................_.................'.Jl..................._.._................__........2 ....�I�L..—......._....-3 I . `..... iI ' 1.....I �......... 1 .....-Boxi ......... 2.4 ......... '.JI. `.il ....... ......3 3 =4 � Box! 2.3 E:::::::::X::=�= Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical[Full Sewer, ID Flowelocity(CFS) Number (Feet) (FPS) (Feet) (FPS) FPS) 42.5` 26.8 2.00 7.1!I 2.00 O.Oj 7.1 N/A �I = 39.8 26.8 2.00 6.6 2.00 0.0� 6.6 N/A = A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth Sewer IDI[Slope',!,Upstream Downstream Upstream DownstreamComment (Feet) (Feet) _ (Feet) (Feet) _ 1 0.40 4941.24 4941.09 2.991 70.09 Sewer'I'oo Shallow'. —� ....0 40 4941 42 4941 25� 2.69i 2 98 �'' 4941.51 4941.42 0.49i 2.69 Sewer Too Shallow 1] L:UOBS\702100\data\Drainage\udSewer\STRM-F.doc 2 Summary of Hydraulic Grade Line ... . .. ... .. ........ ..... .. ... .... . . ..... .. . ....... .. . I . . ..... - .......... ...... ... ....... ........ . ...... I...., ... ....... Invert Elevation Water Elevation Surcharged e er a Upstream Downstream stream ownstreamlt Condition t) t) I Ps t I(Feet) Fe Sewer r th F(FeTe Length Length we 'Feet) n(cF (Feet) t) D 4 1�11 49=410 =943.461 4942iKPressure [:=41 4941�.42 4941.25 49=43.461 981E Pressured d [—[22.3�—[-2.i71F---4:4 S11F 4941.42E�944.251E— 43-92D�ressure Downstream, (Feet) Summary of Energy Grade Line Upstream Juncture Losses Downstream E Manhole I Manhole En Sew B Lateral Energy L Energy Friction F el q Bend Ben Fe Energy Sewer Lateral Manhole Elevation Friction C Loss I t Loss Elevation Coefficient) Coefficients 1 4 D I Fee �Fce� e D (Feet) (Feet) (Feet)! (Feet) Feet) ....... ... ... . ... .... . ... ... . .. .. ..... .. . ...... ... I 4944.2 0.0�11[ 1 0.0011 0. 1 --------- - -------- .... ..... . ..... ... . . .............. --11--4940.K [:f:=[��=O 42 0.05i [TO�4 [=O 00 =0 00 4944.24 =4 I D� =0. 2 Q1 =0 - 0 �-, =0 �11 E 0-001E:�= 49=44.70 Bend loss = Bend K * Flowing ftill ' vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. L: VOB S\702 1 00\data\Drainage\udSewer\STRM-F. doc 3 Bend loss = Bend K * Flowing ftill ' vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. L: VOB S\702 1 00\data\Drainage\udSewer\STRM-F. doc 3 I 1r- NeoUDS Results Summary 1 1 Project Title: Project Description: STRM-N-G Output Created On: 2/4/200-4 at 10:49:30 AM _ 1 Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. 1 Sub Basin Information Time of Concentration V ;Manhole Basin 10verland Gutter ! Basin Rain I Fanch/Hour) Peak Flow; 1 ID # !Area * C !(Minutes) ;(Minutes) ;(Minutes) (CFS) . . 1 0.041 5.0 0.0 0.01 3089.50 123.6 1 2 0.04 5.0 0.0 0.0 3089.50 123.6 - r ----- 3 ! 0.04F 5.0 0.0 i 0.0 3131.25 125.2 1 C 4 0.04 5.0 ! 0.0 , 0.0 3089.50 123.6 __._.__ W__ __ ________- __...____..�.__.. __._.._...� _ The shortest design rainfall duration is 5 minutes. 1 For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. 1 At the first design point, the time constant is <= (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. 1 When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. . 1 Summary Y of Manhole Hydraulics 11 i 'Manhole ;Contributing Rainfall Duration Rainfall Intensity Design ! ! Ground Peak Elevation Water Elevation (Comments ID # Area * C Flow 1 (Minutes) (Inch/Hour) (Feet) (Feet) (CFS) j .................................._................_.........,...................................................... .................................................................................. .............................. ;Surface 1 E 0 0.0 0.00 123.6 i 4940.00 4940.87 Water 11'resent 2 I 0.12 5.0 1029.83 123.6 I 4943.46 4941.72 1 11 I 11 ' ;Sewer Design F Full Normal Normal Critical Critical Full___ Fr oude ID Flow ;Flow Depth Velocity Depth Velocity 1Velocity Number �Comment j (CFS) '(CFS) (Feet) (FPS) (Feet) (FPS) (FPS) 1 123.6 62.2 2.00 10.3 2.00 0.0 !� 10.3 N/A ......... ......................... €_...............:......... I..._...........2.00....................0.4 ................2.00 ............._......O.O. E..................10.4............................. 2 125.2 ; 62.2 ( I ( ....I..................N/A 3 123.6 62.2 2.00 10.3 2.6610.01 10.3 N/A : A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information ..... ......... ........_...._......... _.... ....... ,.... ....... _.......... _..... _.... -- ..... _...... ... ._._..._.._...... j Invert Elevation Buried Depth 'Sewer ID Slope Upst aer m jDow Upstream Downstream Comment 3 0.08 5.0 1565.62 125.2 j 4943.49 4942.40 -� I --[Surface4 0.04 5.0 3089.50 123.6 1 4942.00F8 !Water i 'Present Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. i'lManhole ID Number o— Calculated i Suggested Existing Diameter Diameter Diameter Sewer Upstream Downstream (Sewer (Rise) (Rise) (Rise) Width ID # Shape , (Inches) (Inches) (Inches) (FT) (FT) (FT) (FT) 1 2 � 1 j Box 2.6 31 216 _..._.2 _.I___. 3_I.____ 2 _ _ _(__.Box E__2 6- ___.__ 3_�. _ 2.�_. o �4 3 d Box '2.61 3 2 6 Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically,. the suggested diameter was used for hydraulic calculations. 'c 1 1 1 % (Feet) �� (Feet) C (Feet) r (Feet) f 1__ 0.401 4938.56 4938.17 2.90-0.17;Sewer'l'oo Shallow 2 ' 0.40 ( 4938.73 4938.57 2.76 2.89 3 0.40 1 4 839 82 �4938.73 �1 18 2.76 :Sewer Too Shallow Summary of Hydraulic Grade Line F_F_-, Invert Elevation Water Elevation -[- !Sewer Sewer Length Surcharged !Upstream Downstream Length Upstream Downstream Condition ID # j (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) 1 98.71 98.711 4938.561 4938.17 4941.72 4940.87 Pressured! 2 39.33 39.33 4938.73 4938.57 ( 4942.40 �4941.72 Pressured 3 22.33 �mm.33 j 4938.821 4938.73 22 42. 4988 4942.40 Pressured j Summary of Energy Grade Line Upstream-[- Manhole Juncture Losses ! I Downstream Manhole Sewer Manhole Energy [Elevation Sewer Bend K Bend Lateral Lateral K Manhole I Energy ID # ID # Friction Loss I Loss Elevation ID # (Feet) (Feet) ;Coefficient (Feet) (Coefficient; (Feet) (Feet) 1� 2 4943.37 �2.50 0.051 0.001 0.001 0.00 j 1 4940.87 2 �� 3-..._..____4944.09 0.64 -rvW W0.05 .081 W ✓ W0.001 0.00 1 2 4943.37 3 �� 4944.52 � 0.35 0.05 0.08 0.00 0.00 3 i 4944.09 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. _ A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole [Rim Elevation Invert Elevation (Manhole Height j ID # (Feet) (Feet) (Feet) ........... .........._...... .._.................... ..... .................... ........ __........................ ............ ........._....... ......... ...... .........._.._............. 1 4940.00 ( 4938.17 1.83 i 2 4943.461 4938.561 4.90 .......................................:......._..._._._._..................... .................. ...................._.__..............._................ .......... 3 4943.49 4938.73 4.76 4 4942.00 1 -- 4938.82 ( --- 3.18 Upstream Trench r� Downstream Width Trench WidthEarth Sewer On I At On At j Trench Wall _ ` VolumeW ID # Ground Invert Ground Invert[ Length Thickness (Cubic (Feet) (Feet) { (Feet) j (Feet) I (Feet) (Inches) Yards) 1 15.0 10.8� 8.9� 10.8 98.71' 4.91� 182 2 14.71 10.8 �15.0 11 10.8 39.33 4.91j 98. 1 3 —� 11.5 I 10.81 14.7 ! 10.8' 22.33 ' 4.91 46 Total earth volume for sewer trenches =. 326.14 Cubic Yards. The earth volume was estimated to have a bottem width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivelant diameter in inches/ 12)+1 CURRENT DATE: 02-04-2004 CURRENT TIME: 09:02:13 FHWA CULVERT ANALYSIS HY-8, VERSION 6.1 1 FILE DATE: 02-04-2004 FILE NAME: PVHSCULV C SITE DATA CULVERT SHAPE, MATERIAL, INLET U-------------------------- -----------------------------------------------� L I INLET OUTLET CULVERT I BARRELS V I ELEV. ELEV. LENGTH I SHAPE SPAN RISE MANNING INLET INO.I (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 14936.90 4936.73 89.80 12 RCB 6.00 2.00 .013 CONVENTIONAL 2 3 ISI 6 •I SUMMARY OF CULVERT FLOWS (cfs) FILE: PVHSCULV DATE: 02-04-2004 ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 4937.65 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 4938.07 39.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 4938.44 59.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 4938.76 78.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 4939.06 98.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 .4939.33 118.3 0.0 0'.0 0.0 0.0 0.0 0.0 0.00 0 4939.60 138.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 4939.96 157.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 4940.43 177.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 4940.87 197.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS HEAD HEAD ELEV (ft) ERROR (ft) 0.00 0.000 4937.65 0.000 4938.07 0.000 4938.44 0.000 4938.76 0.000 4939.06 0.000 4939.33 0.000 4939.60 0.000 4939.96 0.000 4940.43 0.000 4940.87 0.000 FILE: PVHSCULV DATE: 02-04-2004 TOTAL FLOW % FLOW FLOW (cfs) ERROR (cfs) ERROR 0.00 0.00 0.00 19.71 0.00 0.00 39.42 0.00 0.00 59.13 0.00 0.00 78.84 0.00 0.00 98.55 0.00 0.00 118.26 0.00 0.00 137.97 0.00 0.00 157.68 0.00 0.00 177.39 0.00 0.00 197.10 0.00 0.00 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (%) = 1.000 2 CURRENT DATE: 02-04-2004 FILE DATE: 02-04-2004 CURRENT TIME: 09:02:13 FILE NAME: PVHSCULV PERFORMANCE CURVE FOR CULVERT 1 - 2( 6.00 (ft) BY 2.00 (ft)) RCB .DIS- HEAD- INLET OUTL-ET_.. - - - CHARGE WATER CONTROL CONTROL FLOW NORMAL GRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) 0.00 4936.90 0.00 0.00 0-NF 0.00 0.00 0.00 0.10 0.00 0.00 19.71 4937.65 0.67 0.74 2-M2c 0.54 0.44 0.44 0.10 3.75 0.00 39.42 4938.07 1.07 1.17 2-M2c 0.84 0.70 0.70 0.10 4.72 0.00 59.13 4938.44 1.40 1.53 2-M2c 1.11 0.91 0.91 0.10 5.40 0.00 78.84 4938.76 1.71 1.86 2-M2c 1.35 1.10 1.10 0.10 5.95 0.00 98.55 4939.06 2.00 2.15 2-M2c 1.57 1.28 1.28 0.10 6.40 0.00 118.26 4939.33 2.30 2.43 2-M2c 1.78 1.45 1.45 0.10 6.81 0.00 137.97 4939.60 2.63 2.69 2-M2c 2.00 1.60 1.60 0.10 7.17 0.00 157.68 4939.96 3.01 3.05 2-M2c 2.00 1.75 1.75 0.10 7.49 0.00 177.39 4940.43 3.43 3.53 2-M2c 2.00 1.90 1.90 0.10 7.79 0.00 197.10 4940.87 3.91 3.96 6-FFc 2.00 2.00 2.00 0.10 8.21 0.00 El. inlet face invert 4936.90 ft El. outlet invert 4936.73 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft ***** SITE DATA ***** EMBANKMENT TOE ************** UPSTREAM STATION 105.79 ft UPSTREAM ELEVATION 4936.92 ft UPSTREAM EMBANKMENT SLOPE (X:l) 4.00 DOWMSTREAM STATION 0.00 ft DOWNSTREAM ELEVATION 4936.71 ft DOWNSTREAM EMBANKMENT SLOPE (X:1) 4.00 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE BOX BARREL SPAN 6.00 ft BARREL RISE 2.00 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE (30-75 DEG. FLARE) INLET DEPRESSION NONE CURRENT DATE: 02-04-2004 CURRENT TIME: 09:02:13 TAILWATER CONSTANT WATER SURFACE ELEVATION 4936.83 3 FILE DATE: 02-04-2004 FILE NAME: PVHSCULV ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH 66.00 ft CREST LENGTH 66.00 ft OVERTOPPING CREST ELEVATION 4941.00 ft •' NeoUDS Results Summary Project Title: PVHS Project Description: STRM-N-I Output Created On: 2/4/2004 at 9:51:15 AM Using NeoUDSewer Version 1.1. ' Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. ' Sub Basin Information I I k�� __.__--.----Time of Concentration ..... -..... ..._......... .......... ....Il !1Manhole - ID # lAiriea*+C�IF(Mminutes)lMinutes asin erland Gutter Basin inutes Rain I nch/Hour ` Peak Flow? CFS ' C The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be ' urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. ' Summary of Manhole Hydraulics u Manhole ID # Contributing Area * C I Rainfall j Duration I I (Minutes)) ! Rainfall Intensity (Inch/Hour), ! Design! Peak i Flow ! CFS � I Ground Elevation (Feet) Water Elevation (Feet) Comments 4937A0 4936.83 —� it 2 �� --- 10 1; 4940.86 4939_15-j E: 6.Oj 4940.83 4940.26 C � I ' L:UOBS\702I00\data\Drainage\udSewer\STRM-I.doc I I Summary of Sewer Hydraulics Note: The eiven death to flow ratio is 0.9. __! Manhole ID Number _ Calculated Suggested Existing Sewer ID # Upstream' Downstream Sewer Shape Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) _ (FT) Diameter (Rise) (Inches) - (Fr) Width "(FT) I 1..............1�....—........_...�..._..................._� 2. ._....-........__._1._...._._.._.__..._; Round 21_1 _._-..._..._._._._._.._...24 .._...._._.._.. - .._._._...._1..5..I ........-N/A Round and arch sewers are measured in inches. ' Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size ' All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. 1( 1 'E Design Flow (CFS) Full Flow I (CFS) Normal Depth (Feet) Normal Velocity (FPS) Critical Depth (Feet) Critical Velocity (FPS) Full Velocity (FPS) Froude Number Comment 4.1 8.21 1.17 8.5 8.2 N/A C--__1 it.. .'_.. _6.0 _.. 4.1 _1.25----- 4.9 ...._.._099...-. .. 4.9J N/A777.1 A Froude number = 0 indicated that a pressured flow occurs. Summary. of Sewer Design Information I� Invert Elevation Buried Depth 1 Slope Upstream Downstream Upstreami Downstream j Sewer ID Comment % (Feet) (Feet) (Feet) (Feet) 1 0 40 4937.15 4937.00 2.46 -1.25 Sewer Too Shallow 2 0 40 -4937 46��' - —' L:UOBS\702100\data\Drainage\udSewer\STRM-Ldoc 2 Summary of Hydraulic Grade Line F77 77F777 Invert Elevation Water Elevation ... ....... FID Sewer Length ..Feet) Surcharged Length (Feet)--_-._ I Upstream; (Feet) Downstream (Feet) Upstream (Feet) Downstream' i (Feet) _._.__.__.._..--.--_. Condition .........:....._._._._.� 36.86 _36.8 4937.151 4937.001 4939.15J 4936 83 Pressured) 42 83 42.83� 4937 32; ........ 4937.15 4940 26� 4939 151 Pressured) Summary of Energy Grade Line 1 Upstream p Juncture Losses Manhole Downstream Manhole Energy Sewer FB11.,,!Lateral anhole BendKLateral K Elevation FrictioLoss FIDID # Coefficient CoefficientsID (Feet) ! (Feet) 051 0.00j O.00i 0.0011 Energy anhole' Elevation #(Feet) (Feet) I 4936 83 1� 3 4940.64 — 0.37' 0 19 0 07I 0 OOj 0.00 F� 4940 20 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump Friction loss includes sewer invert drop at manhole. ' Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 1 LNODS\702100\data\Drainage\udSewer\S'rRM-i.doe 3 1 NeoUDS Results Summary 11 Project Title: PVHS 1 Project Description: S TR M— il--T Output Created On: 2/4/2004 at 10:09:51 AM Using NeoUDSewer Version 1.1. 1 Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. 1 Sub Basin Information 1 u I 1 � Time of Concentration .._. Manhole Basin Overland Gutter Basin Rain I i Peak Flow! ID # i Area * C, (Minutes)l (Minutes) (Minutes) (Inch/Hour) (CFS) 1 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. 1 At the first design point, the time constant is <= (lO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. 1 When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. 1 LAJOBS\702100\data\Drainage\udSewer\STRM-J.doc 1 1 I 1 1 1 1 1 Summary of Manhole Hydraulics Manhole ID # ; Contributing Area * C ! Rainfall Duration Rainfall Intensity y Design Peak Flow Ground I Elevation! li Water Elevation, Comments! (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) F1�1 14 1 4940 00; 4936 83 � 14.1 4941.541F4938.761 14.ilF 4942.641 4939.4911 ����� 14 1 4944 98 4941 06�� L... IL....... I.......14 1 4946 07 4942 521 14 'l 4948 7.5 r4945 98IF 7 8) -_-4948 941 4947 78i ..... ... ,j �r I w78 4948.74 4946.73 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. I J Sewers ID # ,Manhole ID Number j= Upstream Downstream p Sewer Shape _Calculated Diameter (Rise) (Inches) Suggested Diameter (Rise) (Inches) . _ Existin� Diameter (Rise) Widthl (Inches) (FT) _I Round _... ._23.9) .._ _.._ 241 . ._ ._._. _. 241 ... N/A JIB'_Round _. 23_9 ._._._24� I J' Imo_'_. 1 _I�' Round _.___._.23.9� _.__. _ _ �4 241 N/A1 ...I ...II _...11 , . * ... Round .......... ....23 9 _ 24� 1.8i .... � �* _.I '�.. II - .... " I�5 _. ; Roundl ... ,. 23 9� ....... 24I� 18, ... N/AI i 7 il... `�' ... ;Round) ... 23 9) 241I 18�... N/AI 1�� .2.1i� 1.8! ._ . ._.... _ 181 N/Al Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was detemnined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size LA\JOBS\702100\data\Drainage\udScwer\STRM-J.doc 2 I I I I I I I I I I I I 11 All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information . ....... .... .... ... ... ... ...... ...... . .. .. .. . . . ... .. .... . . ... ..... ... . .. ... .... ..... .... .... .... ... -.1--.-- . . . ...... .............. . . ....... ....... . . . .. ............ . ...... . .......... . ... F-T-1111 Invert Elevation j[ Buried Depth [ Slope' pe,1 Upstream Downstreaml Upstream! Downstream Sewer IDS ..-C.0-71nen Comment (Feet) (Feet) (Feet) --- — ------- -- ..._(Feet) 1 11 0.4011 4937.2211 4937.0211 2.3211 0.981ISewer Too Shallow) ... . ... .... . . ............. ............ [77271 . ..... . . ........ .......... . ... .. ... ... 3 IF -F -777�--------- ... .... FO-Z 7T?� 7��F 77T7F-0461F_4-38 61F- —3 ........ . .... —. 61 - 6 87 5 [�14011[ :49 38-92E FF—_4.:]F 6 !'F—.:4 0 [T�3--.6-8 4938.92 F_ .571F--- 7 8 4939.181[-7.99;[ LAJOBS\702 I 00\data\Drainage\udSewer\STRM-J.doc 3 Summary of Hydraulic Grade Line .. ..... _.. ... .... ..... IF777[777 Invert Elevation Water Elevation Sewer ID # I — j 50.06JF 4937 22 4937.02) 4938 76� 4936 83 Subcr�tical 2 70.49 6 4937 51 4937 23 4939 18 4938 76 Subcrriicall �� 82 03j� 4937 83 4937.50 4939.49) 4939 18 Subcnticall r 4 1 G8 3j 68.3j 4938 61� 4938.34 4941 06 4939 49� Pressured) �5� 78 33j 78 33 4938 92� 4938 61j 4942 52 4941.06f Pressured] I � 1) 189 85� 189.85� 4939.68� 493892 4945 98 4942 52I -Pressured �7—[32 6-7 32,671F49�39.55 4939.42 4947.78 4�945.98i Pressured I� 8 � 6 67� 6_67i 4939 25; 4939 18 4946 73j 4945 98 Pressured! Sewer Length Surcharged) Length Upstream � Downstream Upstream Downstream; I Condition (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) ' Summary of Energy Grade Line I Upstream Manhole Juncture Losses Downstream Manhole Sewer; Manhole; Energy Sewer ; Bend K Bend; teral K Lateral MElevation ID #ID # Friction Loss Loss FEatgi)on (Feet) Coeffic>ent[La (Feet)....... oefficientID(Feet) (.Feet) __..4939.21I 2.38 2 3 4939 63 0.30 'F7 ;; 4946.97 _ 3 4L 7 r 8 4948.08 � 0.18' 8 � 9 � 4947.03 0.05 0.051 0.00] 0.00,1 0.00�� 1 I� 4936 83 0 38 0 12; 0.00; O.00I[ 2 4939.21! 0 05 0 02' 0.00� O.00j� 3 i 4939.63 0.05. 0 O5 0 OOj O.00j�4 4939 90 0 O5 .0 051 `0 00� 0.00 f 5 4942 OS'; 0 05' 0 OS' _ 0.000 0.00 � 6 � i4943.51 005' 002�0.251 0.9217�� 4946.97 ' Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A' minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. ' Friction loss was estimated by backwater curve computations. L:\JOBSWN I00\data\Drainage\udSewcr\S'1'RM-J.doc 4 �4 NeoUDS Results Summary Project Title: PVHS ' Project Description: STRM-N-K Output Created On: 2/4/2004 at 10:28:11 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin. Information [�1► ] Time of C1.oncentration I1 I Manhole Basin i Overland Gutter Basin Rain I Peak Flows ID # Area * C; (Minutes), (Minutes) (Minutes)) (Inch/Hour)I (CFS) The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (lO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Te does not equal the catchment Tc, the above criteria superccdes the calculated values. Summary of Manhole Hydraulics Design! n! Manhole Contributing Rainfall Duration Rainfall Intensity , Peak , Ground Elevation Water I Elevations Comments ID # * Area C Minutes ( ); Inch/Hour ( ) Flow (Feet) (Feet) (CFS) IL.... ll.._... .II . _.. _.... ..- t) -.4948 47� 4946 781..- ....... ' L:VOBS\702100\data\Drainage\udSewer\STRM-K.doc 1 I I Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number I Calculated Su ested Ex�stin ' Diameter Diameter Diameter Sewer ID # Upstreami . Downstream I ( Sewer Shape (Rise) (Inches) (Rise) (Inches) (Rise) i (Inches) Width (FT) . .....J ..........�ound ._. cf'>.. (FT)_ ._ . (Fr) . -. 1......:...1 ..._......._..2._.._......_�L__.._..l.._.__...__....._.� R — ..-....__.._16.3...__._..__......_......._. 18 _................_1.81 ...___N/A.� Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth IF +I Sewer ID rpe Upstream Downstream Upstream; Downstream ' (Feet) (Feet) (Feet) j (Feet) Commend j ............. 1 . _..__ � 1.00 j.._..4939 27�� --4939.18) _ ._.7.70j1_ _ ... 8..0711 L:VOBS\702100\data\Drainage\udSewer\STRM-K.doc 2 I I I 11 I I I I I I I Summary of Hydraulic Grade Line .,Invert Elevation Water Elevation wer' Sewer D -4 1 e Sewer , Length] Feet Surcharged Length (Feet) Upstream! (Feet) I Downstream (Feet) Upstream Ups eet [ (F Downstream" st t Fee Condition F- 4939*27i Summary of Energy Grade Line Upstream Juncture Losses Manhole Downstream Manhole .. ..... - Sew Sewer" FID , Energy i w i r Sewer Sewer e e Friction! en Bend Loss K, Lateral L Loss Manhole Energy Elevation! D itElevation (Feet) (Feet) t) Coefficients Coefr le ent (Feet); t), Coe r cient! Coefficient I I F (Feet) 1 0 D (Feet) 4947.021[ 1.3211 0.001 0..215" Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. L:VOBS\702100\data\Drainage\tidSewer\STRM-K.doc 3 ' NeoUDS Results Summary Page 1 of 3 I 1 H f. 1 1 11 1 NeoUDS Results Summary Project Title: Project Description: STEM-N — Output Created On: 2/5/2004 at 9:46:59 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. - Return Period of Flood is 0 Years. Sub Basin Information Time of Concentration Manhole Basin Overland Gutter Basin Rain I Peak Flow ID # Area * C inutes) (Minutes) (Minutes) (Inch/Hour) (CFS) �1 0.04 5.0 0.0 0.0 1297.50 51.9 0 0.04 5.0 0.0 0.0 1297.50 51.9 Qlee Vf-I., -0.� P&") 03 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall Peak Ground Water ID # Area * C Duration Intensity Flow Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS (Feet) (Feet) �1 0 0.0 0.00 51.9 4936.00 4934.72 0 0.04 5.0 1297.50 51.9 4940.83 4936.56 Summary of Sewer Hydraulics Note- The viven denth to flnw rntin is 0 9 Manhole ID Number I CalculatedI Suggested Existing Sewer Sewer Diameter (Rise) Diameter (Rise) Diameter (Rise) Width ID # Upstream Downstream Sha a (Inches) (FT) (Inches) (FT) (Inches) (FT) (FT) file:HC:\Program%20Files\NeoUD Sewer\reports\328513 6019. htm 2/5/2004 ' NeoUDS Results Summary Page 2 of 3 t 1 1 1 i 1 1 1 1 1 ��� Round 42.0]1 4811 30 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment CFS) (CFS) (Feet) (FPS) (Feet) (FPS) (FPS) 51.9 21.2 2.50 10.6 2.28 11.0 10.6 N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth Sewer ID Slope Upstream Downstream Upstream Downstream Comment % (Feet) (Feet) (Feet) (Feet) IL__I__J 0.26 4933.31 L4933.16 5.02 0.34 Sewer Too Shallow�l Summary of Hydraulic Grade Line Invert Elevation Water Elevation S Sewer Length ed Surcharged Length Upstream Downstream Upstream Downstream Condition ID # (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) 56.5611 56.56 4933.31 4933.16 4936.56 4934.72 Pressured Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole Sewer Manhole Energy Sewer Bend K Bend Lateral K Lateral Manhole Energy ID # ID # Elevation Friction Coefficient Loss Coefficient Loss ID # Elevation (Feet) (Feet) (Feet) (Feet) (Feet) �0 4938.30 3.58 0.05 0.00 0.00 0.00 �1 4 334.72 file:HC:\Program%20Files\NeoUD Sewer\reports\32 8513 6019.htm 2/5/2004 ' NeoUDS Results Summary Page 3 of 3 1 1 1 1 1 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. !r A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 1 � 1 Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole ID # Rim Elevation (Feet) Invert Elevation (Feet) Manhole Height Feet �11 4936.00 4933.16 2.84 0 4940.83 1 4933.31 7.52 Upstream Trench Downstream Trench Width Width Earth Sewer ID On Ground At Invert On Ground At Invert Trench Length Wall Thickness Volume # (Feet) (Feet) (Feet) (Feet) (Feet) . (Inches) (Cubic Yards) �1 14.0 5.1 4.6 5.1 56.56 3.50 86 Total earth volume for sewer trenches 86.49 Cubic Yards. The earth volume was estimated to have a ' bottem width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. ' The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivelant diameter in inches/12)+1 1 1 1 file ://C:\Program%20Files\NeoUD Sewer\reports\3 28 513 6019. htm F.7%0111IL'1 1 1� 1 1 1 1 1 1 1 1 1 STORM INLET SIZING: UDINLET Project = Inlet ID = W' Irning 01 T Street Top of Curb or W Tx Crown Allowable Depth V Z f/ Qx/,-Z Y ,Qw d SX a i Discharge in the Gutter cfs Width (Cannot Be Less Than Any Grate Width) W 1 Q0 ft Depression, if Composite Gutter a ............ inches Transverse Slope S, U200 ft/ft Longitudinal Slope S. ft/ft ig's Roughness n Gutter Cross Slope Sw 0'A 033 ft/ft Water Spread Width T ft Water Depth without Gutter Depression y 2 4 inches Water Depth with a Gutter Depression d . ......... ..3.Amc es inches Gutter Conveyance Calculations by HEC-22 Method Spread for Side Flow on the Street (T - W) .......... T. . .............. 8 ft Discharge outside the Gutter Section W, carried in Section T. Q, .... ...... ;.,;,15 cfs Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E. ...... - - 0.32: Discharge within the Gutter Section W Qw 7, cfs Total Flow Rate by HEC-22 Method QT cfs Equivalent Street Transverse Slope S. .::%x:1*:::'q.0465. ft/ft Flow Area A, Va sc, ft Flow Velocity Vs = fps V,*d product Vs*d = lit /s Warning 01: Kmsing"s n-Vi3fue do* ; nol meet 1he us="l criteria, NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTINA1.xls, Street Hy 1/30/2004, 9:58 AM ' Project = Inlet ID = 1 1 1 0 Lu WP P -><--- H Gutter Yd Pan water fir f Flaw Direction gn Information (input) th of a Unit Inlet L _ 5 0o ft I Depression, if any (not part of upstream Composite Gutter) aloca, _ 0;00;inches ht of Curb Opening in Inches H= .............. 6(z.00inches Width for Depression Pan Wp 3,OO: ft ging Factor for a Single Unit (typical value = 0.1) C. of Throat (see USDCM Figure ST-5) Theta =s t#3 tT degrees :e Coefficient (see USDCM Table ST-7) Cd —' .1 Coefficient (see USDCM Table ST-7) Cw = 3Q0 Number of Units in the Curb Opening Inlet No =' 1 a Weir sign Discharge on the Street (from Street Hy) .......................... .......................... Q, _ 2 2 cfs der Depth for the Design Condition Yd inches al Length of Curb Opening Inlet L = 5©Oft )acity as a Weir without Clogging QWcfs gging Coefficient for Multiple Units Coef 300` gging Factor for Multiple Units Clog=i................pOBI )acity as a Weir with Clogging Q a=?:_;y;:;;;::>:,; 4Acfs an Orifice )acity as an Orifice without Clogging Q., = 3 ;' cfs )acity as an Orifice with Clogging Q,a = 30lcfs pacity for Design with Clopping Q. => z> ....... _cfs pture Percentage for this Inlet = Qa 1 Q, = C% _ Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' pvhSTINA1.xls, Curb-S 1/30/2004, 9:58 AM Projeot= Inlet |D= Warning T Street Top of Curb or I W Allowable Depth x rown Geometry linput) wDischarge in the Gutter �� Width (Cannot 8eLess Than Any Grate Width) vv=0 o Depression, ifComposite Gutter a= inches Transverse Slope ux=0,020,01 ft/ft Longitudinal Slope S. ft/ft ig'oRuughneos n=�%����� � �rCross Slope 8~= ft/ft rSpread Width T= * �rDepth without Gutter Depression y= inches .rDepth with aGutter Depression u ���»inoheo arConveyance Calculations hyHEC�oM�ghod _ ad�m� roideF|mwon�heo�(T^Vm" T. ft iangeoutside the Gutter Section VV.carried inSection T, %= cfS !rFlow h,Design Flow Ratio uyFHVVAHEu-22method (Eq.oT-7) s,= iangewithin the Gutter Section vv Q. mS | Flow Rate hyHEC'2zMethod mT=� cfs ,a|entutre�TmneerseSlope 8,= mn Area 4,=''��� sqft Velocity v,= fps VYxn�ngnt Mann/nJyo-Vouadoesoo/muetthe VoOCtA :riterio. NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTINA2.xls, Street Hy 1/30/2004'9:59AM Project = Inlet ID = Lu WP WP �___s nv Direction gn Information (Input) th of a Unit Inlet L 5OOft I Depression, if any (not part of upstream Composite Gutter) ai°.,i 0.00 inches it of Curb Opening in Inches H 6«00 inches Width for Depression Pan WP 3 OOft Sing Factor for a Single Unit (typical value = 0.1) Co 0,08: e of Throat (see USDCM Figure ST-5) Theta =!; 83'_0 degrees e Coefficient (see USDCM Table ST-7) Cd 0,67 Coefficient (see USDCM Table ST-7) C„, 3*00. Number of Units in the Curb Opening Inlet No = t a Weir sign Discharge on the Street (from Street Hy) .......................... Q° _ 9cfs iter Depth for the Design Condition Y° inches al Length of Curb Opening Inlet L 5 O.Oft Dacity as a Weir without Clogging Qw 59cfs gging Coefficient for Multiple Units Coef 1 t00: gging Factor for Multiple Units Clog 0.. 0$j Dacity as a Weir with Clogging Qw, ;' S 7 cfs an Orifice 3acity as an Orifice without Clogging Q. ;: 4 4 cfs Dacity as an Orifice with Clogging Q°d pacity for Design with Clogging Q,#A fcfs pture Percentage for this Inlet = Q, / Q° = C%[D(3DOf% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. pvhSTINA2.xis, Curb-S 1 /30/2004. 9:59 AM Project = Inlet ID = Warning 01 Top of Curb or I W —T — Tx Street Allowable Depth Crown Q xw Q H Y X1, d a n Discharge in the Gutter ... Q. . . ..... .cfs Width (Cannot Be Less Than Any Grate Width) ......... W .......... Depression, if Composite Gutter a 0: inches Transverse Slope S. = -.G,0200ft/ft Longitudinal Slope S. = a.007eft/ft rig's Roughness n tl Ot3 Gutter Cross Slope Sw - P�. IM3. ft/ft Water Spread Width T Water Depth without Gutter Depression ........ y ............ inches Water Depth with a Gutter Depression d 4 7 inches Gutter Conveyance Calculations by HEC-22 Method Spread for Side Flow on the Street (T - W)' .............. T. ... .. ft Discharge outside the Gutter Section W, carried in Section T. Q, cfs Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E. ........ .... Discharge within the Gutter Section W Q„. 21.13: cfs Total Flow Rate by HEC-22 Method QT XXX 1: 1: cfs Equivalent Street Transverse Slope S, 17.06,571 ft/ft ....... ... Flow Area A, ................. XX sc, ft Flow Velocity V, .Z,ai fps V,*d product V.-d ft2/S Warning 01: Nlxming'-s El-vaiue does nol meal th-e USDCN1 criteria, NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTINA3.xls, Street Hy 1/30/2004, 9:37 AM Project = Inlet ID = W Lu WP P ��--i► Yd Gutter gn Information (Input) th of a Unit Inlet I Depression, if any (not part of upstream Composite Gutter) ,it of Curb Opening in Inches Width for Depression Pan ging Factor for a Single Unit (typical value = 0.1) of Throat (see USDCM Figure ST-5) :e Coefficient (see USDCM Table ST-7) Coefficient (see USDCM Table ST-7) Number of Units in the Curb Opening Inlet a Weir sign Discharge on the Street (from Street Hy) iter Depth for the Design Condition al Length of Curb Opening Inlet oacity as a Weir without Clogging gging Coefficient for Multiple Units gging Factor for Multiple Units oacity as a Weir with Clogging an Orifice oacity as an Orifice without Clogging oacity as an Orifice with Clogging Percentage for this Inlet = Q,1 Q, = Water Flow Direction L = 5 t10<ft inches H= .::::::.::.::,.6.00 inches WP Theta =; 63:0degrees Cd =j1 067No Q. = ..::..........: `ksi cfs Yd = 4. 72; inc1 L Qw _:... cfs Coef Clog Q a = 7 4: cfs Q01 cfs Qoa =':.5` 'i� cfs Qa = ;:i%:: i:1>Eliiii:'i5:'::i! cfs Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. Use 10, j-"(ff Lea,.% o-p Ne Able pvhSTINA3.xis, Curb-S 1 /30/2004, 9:42 AM Project = Inlet ID = Warning I - —T Top of Curb or W Tx Allowable Depth V/�, 6 x�x, �-72 Y w H Sx d a Street Crown n Discharge in the Gutter 0, cfs Width (Cannot Be Less Than Any Grate Width) W 2,00., ft Depression, if Composite Gutter a inches Transverse Slope Sx ft/ft Longitudinal Slope so Q008 ft/ft ng's Roughness n . . . . . M01 a fitter Cross Slope S' 0103 ft/ft ater Spread Width T ft ater Depth without Gutter Depression .. Y ......... ...... inches ater Depth with a Gutter Depression d inches fitter Conveyance Calculations by HEC-22 Method )read for Side Flow on the Street (T - W), T. =6 ft scharge outside the Gutter Section W, carried in Section T. % .. ....... A cfs Ater Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E. 050 scharge within the Gutter Section W Q. cfs )tal Flow Rate by HEC-22 Method OT cfs luivalent Street Transverse Slope S. ft/ft Dw Area A, sq ft 3w Velocity V, fps *d product V,'d Ix ft /S + . A. Waming 01: ili3rkESifEe S s-yalue does nol rrwot ttte USDC-Ni (:riieriiil. NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTINA4.xls, Street Hy 1/30/2004, 9:38 AM Project = Inlet ID = 11 I I IC, I I I I Lu WP P �iC---� wate r Yd 1 H Gutter Pan Flow Direction Design Information (Input) Length of a Unit Inlet 00ft Local Depression, if any (not part of upstream Composite Gutter) al°cal = 000 inches Height of Curb Opening in Inches H =' 600>inches Side Width for Depression Pan WP =: 3 OO ft Clogging Factor for a Single Unit (typical value = 0.1) C° Angle of Throat (see USDCM Figure ST-5) Theta = 63 0 degrees Orifice Coefficient (see USDCM Table ST-7) Cd = 0 67 Weir Coefficient (see USDCM Table ST-7) Cw Total Number of Units in the Curb Opening Inlet No s a Weir Design Discharge on the Street (from Street Hy) .......................... .......................... Q, = 62cts Water Depth for the Design Condition Ytl = 502 inches »» �.__ Total Length of Curb Opening Inlet L=........ 1 Eft Capacity as a Weir without Clogging QW = f25: cfs Clogging Coefficient for Multiple Units Coef = 125; Clogging Factor for Multiple Units Clog = .............. D05; Capacity as a Weir with Clogging Q� = 121 cfs As an Orifice Capacity as an Orifice without Clogging Q°i = 1i3 8;cfs Capacity as an Orifice with Clogging Qoa = 1!1 3cfs 1CaDaCitV for Design withClo in Qa1i'3cfs Capture Percentage for this Inlet = Qa I Q° = C% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. .0 IpvhSTINA4.xls, Curb-S 1/30/2004, 9:39 AM Project = Inlet ID = Warning Top of Curb or Allowable Deo H a I —T �—w i —Tx Street Crown Geometry (input) i Discharge in the Gutter Q. 6; cfs Width (Cannot Be Less Than Any Grate Width) W ft Depression, if Composite Gutter a h ,2 inches Transverse Slope .. ............. . 1.:.0.0200: ft/ft Longitudinal Slope S. ............. ft/ft ig's Roughness n V.—V .......... :.0" "0113 itter Cross Slope ............... S„, ws ft/ft ater Spread Width T 0" ft ater Depth without Gutter Depression Y .... 24. inches ater Depth with a Gutter Depression d .. .......... 4 inches A Ater Conveyance Calculations by HEC-22 Method )read for Side Flow on the Street (T,- W)' TX ........ . - , ft scharge outside the Gutter Section W, carried in Section T. % = cfs Ater Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Ea = scharge within the Gutter Section W cfs dal Flow Rate by HEC-22 Method QT :.; J.6: cfs luivalent Street Transverse Slope S. ft/ft )w Area A, sq ft )w Velocity V, 27:. fps *d product V d Warfaing 01: Milnsiag's s-value doe& nol rneet the USOCM recontmendpiJ criterWl NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTINB1.xls, Street Hy 1/30/2004, 9:44 AM GIJRB OPENING 11 fLET [N SPu UM Project PVH ....;.. . Inlet ID ':S f[N 8«li ... . Lu WP P 3►C---� wate r Yd Flow Direction H „r Pan Gutter Design Information (Input) Length of a Unit Inlet Local Depression, if any (not part of upstream Composite Gutter) Height of Curb Opening in Inches Side Width for Depression Pan Clogging Factor for a Single Unit (typical value = 0.1) Angle of Throat (see USDCM Figure ST-5) Orifice Coefficient (see USDCM Table ST-7) Weir Coefficient (see USDCM Table ST-7) Total Number of Units in the Curb Opening Inlet a Weir sign Discharge on the Street (from Street Hy) ter Depth for the Design Condition al Length of Curb Opening Inlet )acity as a Weir without Clogging gging Coefficient for Multiple Units gging Factor for Multiple Units Dacity as a Weir with Clogging an Orifice oacity as an Orifice without Clogging :)acity as an Orifice with Clogging Percentage for this Inlet = Q, / Q, _ Lu :; 5 QO:. ft aiocai — j;: 0;�0. > inches H —i 6OOinches WP [ 3,0(I_ft C, _ ffDB Theta=::.::.:::::;63,II._ degrees Cd =,; 9 67 No .......................... Q. Yd = 4:53iincl ................:........ Oft Qan cfs Coef = 100 Clog Qwa='.':;:::»:>:::<:;:z<r:: -7 2 cfs Q°i5;4 cfs Qoa Q, C%=0f1SL0'% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. pvhSTINB1.xls, Curb-S 1/30/2004, 9:44 AM ' b"darnEng 09 1 T urb or W Tx e Depth n Discharge in the Gutter Width (Cannot Be Less Than Any Grate Width) Depression, if Composite Gutter Transverse Slope Longitudinal Slope ng's Roughness Gutter Cross Slope Water Spread Width Water Depth without Gutter Depression Water Depth with a Gutter Depression Gutter Conveyance Calculations by HEC-22 Method Spread for Side Flow on the Street (T - W) Discharge outside the Gutter Section W, carried in Section T, Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge within the Gutter Section W Total Flow Rate by HEC-22 Method Equivalent Street Transverse Slope Flow Area Flow Velocity ,'d product WEEMing 01: n-VilltEe does nol rneot thc: USDC:'S'i vrfterEa. NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTINB1.xls, Street Hy Q. = W= a= Sx = So = n= Sw = T= y= d= Tx = Qx= E. = Q„, _ QT = S. A: _ Vs = Vol = Street Crown cfs ft inches ft/ft ft/ft It/ft it aches inches ft cfs cfs cfs ft/ft sq it fps ft2/s 1/30/2004, 9:57 AM Project = Inlet ID = Lu wP P _ water Yd f Flow Direction Gutter gn Information (Input) th of a Unit Inlet 5O0ft I Depression, if any (not part of upstream Composite Gutter) aiooai =..:,,;,,,,,,,,;;,,,; 1 QD inches it of Curb Opening in Inches H =: .::::::....::.:::SOO inches Width for Depression Pan WP 3;00<ft Sing Factor for a Single Unit (typical value = 0.1) Co of Throat (see USDCM Figure ST-5) Theta => 6.3 0 degrees e Coefficient (see USDCM Table ST-7) Cd Coefficient (see USDCM Table ST-7) Cw Number of Units in the Curb Opening Inlet No a Weir sign Discharge on the Street (from Street Hy) iter Depth for the Design Condition at Length of Curb Opening Inlet oacity as a Weir without Clogging gging Coefficient for Multiple Units gging Factor for Multiple Units oacity as a Weir with Clogging an Orifice oacity as an Orifice without Clogging oacity as an Orifice with Clogging Percentage for this Inlet = Qa / Qo = Qo = L= ......:.:::.: $ O.O.: ft Q., _ .. _._;.:7 k? cfs Coef= 3150> Clog = Qwa = 7.1! cfs Qo,= 54` cfs Qoa =: :4 9 cfs Q.=;i<_s>>>9 cfs ............:..:....:..... Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' pvhSTINB1.xls, Curb-S 11rI-ef -,� 10, �rulu of Pl-1e Ai jl2 1/30/2004, 9:57 AM Area Inlet Design - Sump Condition Area Inlet for Design Point 108 (STIN-B-3) Project No. 702-100 This sheet computes the controlling area inlet flow condition. Weir Equation CLH' where: H = head above weir Orifice Equation: Q,j_ =Co A. 28F7 where: H= h 2- h I Grate: CDOT Type D Area Inlet Weir: Orifice: Cw.t = 3.20 C.dit. = 0.65 Lcr..r = 11.74 ft. (1) A.fi,. = 7.97 ft2 Logging Factor= 0.30 Number of Inlets = 2 Flowline elevation of grate = 4945.00 100 year Design Flow (cfs) = 19.52 100 year WSEL (19.52) = 4945.52 Head (ft.) Q„..F Q.n&. Qr„m01 WSEL 0.00 0.00 0.00 0.00 4945.00 0.50 18.60 41.13 18.60 4945.50 1.00 52.60 58.17 52.60 4946.00 1.50 96.62 71.24 71.24 4946.50 2.00 148.76 82.27 82.27 4947.00 2.50 207.90 91.98 91.98 4947.50 3.00 273.29 100.76 100.76 4948.00 3.50 344.39 108.83 108.83 4948.50 4.00 420.76 116.34 116.34 4949.00 4.50 502.07 123.40 123.40 4949.50 5.00 588.03 130.07 130.07 4950.00 Notes: ' 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Space width = 0.1640 ff. Bar width = 0.0328 ff. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ff. Effective Grate Length = 2.13 ff. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth = 3.74 ft. 10:58 AM t/30/2004 Project = Inlet ID = a r n i ri 9 —T Top of Curb or W Tx Allowable Depth Q w Q x Y a n Discharge in the Gutter Width (Cannot Be Less Than Any Grate Width) Depression, if Composite Gutter Transverse Slope Longitudinal Slope ig's Roughness utter Cross Slope later Spread Width later Depth without Gutter Depression later Depth with a Gutter Depression utter Conveyance Calculations by HEC-22 Method pread for Side Flow on the Street (T - W)' ischarge outside the Gutter Section W, carded in Section T. utter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) ischarge within the Gutter Section W otal Flow Rate by HEC-22 Method quivalent Street Transverse Slope low Area low Velocity ,*d product Warning 61: M3nning"s n-valua does rol raeot the USDCM criteria, NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTINC1.xls, Street Hy Street Crown Q. cfs W ft a inches Sx GAND ft/ft S. G.0055: ft/ft n S� flift T ft Y inches d ::2 7.inches Tx Q. Eu OT S. As Vs V,*d ft cfs cis cfs ft/ft sq ft fps ftl/s 1/30/2004. 10:04 AM IP Project: Inlet ID: L WIP Curb 1 ^ H Cutter Flow Direction h of a Single Inlet Unit ft Ing Factor for a Single Unit Inlet (typical value = 0.1) C. Depression, if any (not part of upstream Composite Gutter) a,..., 0.0' inches ier of Curb Opening Inlet Units ........... No rsis (Calculated) .................. In Discharge on the Street (from Street Hy) Q. a18'! . Cfs Depth for Design Condition Yd 27 inches Length of Curb Opening Inlet L .......... r Flow to Design Flow Ratio (from Street Hy) .. ........ E° alent Slope S, S. = ADM. ft/ft red Length LT to Have 100% Interception LT = '18V: ft Ing Coefficient Coef = Ing Factor for Multiple -unit Curb Opening Inlet clog 0 na Jve (Unclogged) Length L. r No -Clogging Condition eption Capacity Clogging Condition Interception Capacity wer flow = Q, - Q, = re Percentage for this Inlet = Q, / Q, ;cfs Q. cf s Qb cfs; pvhSTINC1.xls, Curb-G 1/30/2004. 10:06 AM 1 Project Inlet ID = S CtN C» 1 Top of Curb or Allowable Depth 1 � H d 1 1 1 i."SarnEnct 1\ 1 1 1 1 n Discharge in the Gutter Width (Cannot Be Less Than Any Grate Width) Depression, if Composite Gutter Transverse Slope Longitudinal Slope ng's Roughness After Cross Slope ater Spread Width ater Depth without Gutter Depression 'ater Depth with a Gutter Depression utter Conveyance Calculations by HEC-22 Method )read for Side Flow on the Street (T - W) scharge outside the Gutter Section W, carried in Section Tx Ater Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) scharge within the Gutter Section W )tal Flow Rate by HEC-22 Method tuivalent Street Transverse Slope ow Area ow Velocity ;`d product 1 Waraing 01: i`t`ansing's F3-vi3lue3 does nol meet the USOC' S'f tC^f:t33TEniit£3d£i?f crlte3r'W' NOTE: Vs d product should be less than 6.0 for minor event and less than 8.0 for major event. 1 1 1 1 pvhSTINC1.xls, Street Hy Street Crown Q. = >> : < .0 C cfs W ...::,..2:00ft .........:............. .................. ...................... a 2 t) inches S. 4.a204 ft/ft Se QflD5Qlftlft . n ........::.4.01:3 ....................... ...................... ....................... T y inches d={;<>>%<>2iZ inches Tx +..«.+««......`..w '0 ...ft O, ....:.:.......O..:O cfs Ee O„ cfs Qr - :»;;;>:>;;;,;;Qo6€ cfs Se .:,..:: %'Q,1t12$: ft/ft Ae ; sq ft V. fps V,'d = ftZ/s 1/30/2004, 10:08 AM L WP ><- - - 3P. Curb Gutter Flow Direction h of a Single Inlet Unit L, �5:. . 0 0. ft Ing Factor for a Single Unit Inlet (typical value = 0.1) Co Depression, if any (not part of upstream Composite Gutter) alocal = 0.0.: inches )er of Curb Opening Inlet Units No (sis (Calculated) In Discharge on the Street (from Street Hy) Q0 r Depth for Design Condition Yd 27: inches Length of Curb Opening Inlet L ft r Flow to Design Flow Ratio (from Street Hy) .................... E0 alent Slope S, S. X. ­01. 027 ft/ft ired Length LT to Have 100% Interception LT 09 ft ling Coefficient Coef ling Factor for Multiple -unit Curb Opening Inlet five (Unclogged) Length L. r No -Clogging Condition eption Capacity r Clogging Condition it Interception Capacity rover How = Q0 - Q, = ire Percentage for this Inlet = Q, / Q, Q, = ':;.: . me� cfs . . ......... . .... pvhSTINC1.xls, Curb-G 1/30/2004,10:08 AM Area Inlet Design - Sump Condition I Area Inlet for Design Point 109 (STIN-C-3) Project No. 702-100 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Qwell = CLH z where: H = head above weir Orifice Equation: Qonfe. = Co A. 2- H where: H= h z- h r ' Grate: CDOT Type D Area Inlet Weir: Orifice: Cw,a = 3.20 C.nft. = 0.65 ' L=„, = 11.74 ft. (1) A.,. = 7.97 ftz Logging Factor = 0.30 Number of Inlets = 2 Flowline elevation of grate = 4944.00 t 100 year Design Flow (cfs) = 72.35 100 year WSEL (72.35) = 4945.65 Head (ft.) Q..: Qwaee. QCOM01 WSEL 0.00 0.00 0.00 0.00 4944.00 0.50 18.60 41.13 18.60 4944.50 1.00 52.60 58.17 52.60 4945.00 1.50 96.62 71.24 71.24 4945.50 2.00 148.76 82.27 82.27 4946.00 2.50 207.90 91.98 91.98 4946.50 3.00 273.29 100.76 ' 100.76 4947.00 3.50 344.39 108.83 108.83 4947.50 4.00 420.76 116.34 116.34 4948.00 4.50 502.07 123.40 123.40 4948.50 5.00 588.03. 130.07 130.07 4949.00 Notes: ' 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. ' The Sear -Brown Group Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ft. Effective Grate Length = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth = 3.74 ft. 12:15 PM 1/30/2004 1 GtJT.T.— bNVEYANG;E CAPACITY;; ' Project = PVH Inlet ID = :8 CIN.C!»1 ' H ' Street Georr Design Discharge in the Gutter Gutter Width (Cannot Be Less Than Any Grate Width) ' Gutter Depression, if Composite Gutter Street Transverse Slope Street Longitudinal Slope Warning 01 Manning's Roughness T Top of Curb or W Tx Allowable Depth Gutter Conveyance Geometr Gutter Cross Slope Water Spread Width 'Water Depth without Gutter Depression ater Depth with a Gutter Depression ' Gutter Conveyance Calculations by HEC-22 Method Spread for Side Flow on the Street (T - W) - Discharge outside the Gutter Section W, carried in Section Tx ' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge within the Gutter Section W Total Flow Rate by HEC-22 Method iEquivalent Street Transverse Slope Flow Area ' Flow Velocity ,'d product ' Warning 01: E;-yalue does nal rseot the USDC'ti,1 mcorfunEended cr7'£e?rii3. NOTE: Vs`d product should be less than 6.0 for minor event and less than 8.0 for major event. 1 1 ' pvhSTINC2.xls, Street Hy Street Crown i I i i Qo 20 6 cfs W 2.00.ft a 2;Q; inches Sx 0 0200: ft/ft So-::;:;;:::t);0126.. ft/ft ....................... n II 0T3 Sw=;;;;„< > ; 0,1,'033 Rift y 4 6 inches cl E B inches T. 171':' ft Qx= < ..... E, Qw-::;;;: a:;: ;[! :::::ZZ cfs Qr : .;;20:5 cfs S. :...:. fS:II.4.4 ft/ft A, 38'soft Vs $k€fps Vs-d ='aftZ/s 1/30/2004, 10:09 AM i ' Project Inlet ID=s.STt.N..-p«1;:.;;;> 1 1 1 WP Lu WP -><-----><---� Gutter H Yd Pan Design Information (Input) Length of a Unit Inlet Local Depression, if any (not part of upstream Composite Gutter) Height of Curb Opening in Inches Side Width for Depression Pan Clogging Factor for a Single Unit (typical value = 0.1) Angle of Throat (see USDCM Figure ST-5) Orifice Coefficient (see USDCM Table ST-7) reir Coefficient (see USDCM Table ST-7) Total Number of Units in the Curb Opening Inlet water Flow Direction LU ...........::..5id0ft ai,�ai = i):0 inches .....::... 0 H = 6OOinches WP = 300 ft Theta = ;830;: degrees Cd = C„No ':0; 30 -.. ». a Weir sign Discharge on the Street (from Street Hy) Q° cfs ter Depth for the Design Condition Yd = 65$ inches al Length of Curb Opening Inlet L = . .,.....1OOft )acity as a Weir without Clogging Q,„i = 24 : cfs gging Coefficient for Multiple Units Coef gging Factor for Multiple Units Clog )acity as a Weir with Clogging QM = zA ;cfs an Orifice )acity as an Orifice without Clogging Q°i =,;; .,,,;; :..:,,, 23 0' cfs )acity as an Orifice with Clogging Q°a = 22 2i cfs Dacity for Design with Clopping Q. = ?>22 Zcfs Aure Percentage for this Inlet = Qa / Q° = C% _ ': .......................... ; NO* % ' Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. 1 ( �J ' pvhSTINC2.xls, Curb-S 1 /30/2004, 10:10 AM Project= Inlet ID= Warning —T Street Top of Curb or W —Tx Allowable Depth Crown nDischarge intheGuue Q.10 6. cts Width (Cannot ReLess Than Any Grate Width) VV= � oepsosion.ifcompnsuGutter a= inches Transverse Slope S. U200 ft/ft Longitudinal Slope S. ft/ft ig'sRoughneos n= | utter Cross Slope S,= ft/ft FaterSpread Width T= ft fmerDe�hwuhmt Gutter Depression y= inch es 'aterDepth with aGutter Depression d inches utter Conveyance Calculations hyMso-2nMethod 3eaufor Side Flow onthe Street (T'm4- Tx= ft �scharQeoutside the Gutter Section vv,carried inSection T, O,= ufs utter Flow mDesign Flow Ratio uypxvvaxso-22method (sq.sT'7) E. schargewithin the Gutter Section VV O°= cfs )tu|Flow Rate my0Eo^22 Method mT=' ofs luiva|ent Street Transverse Slope o^= 56 M/ft ow Area A,= sqft ow Velocity V, fps Waming0tM.moixg'-&o+vaftm does mdrseotUmUSE)CMm*ornmadcriteria, NOTE: Vs*d product should be less than 9.0 for minor event and less than 8.0 for major event. � pvhSTIND1.xls,Street Hy I I I I I I I I I .. ............ ..... . ... CURB; R .INLET ;tN A SUMP . ............ Project = :PVH Inlet ID = STIRM.D ' 4: ........................................ WP Lu WP wateir Yd :1 Flow Direction H Pan Flo Gutter Design Information (input) Length of a Unit Inlet ............ Local Depression, if any (not part of upstream Composite Gutter) alocal :.X inches Height of Curb Opening in Inches H inches Side Width for Depression Pan WP Clogging Factor for a Single Unit (typical value = 0.1) C Angle of Throat (see USDCM Figure ST-5) Theta = 63,Q degrees Orifice Coefficient (see USDCM Table ST-7) Cd = 0..6 Weir Coefficient (see USDCM Table ST-7) ............ C W =.... 3. 00 Total Number of Units in the Curb Opening Inlet No a Weir sign Discharge on the Street (from Street Hy) Q. --:i*i.0¢_ cfs iter Depth for the Design Condition Yd ........ . . 44.:inches al Length of Curb Opening Inlet L .. .. 1GX.......... U� It :)acity as a Weir without Clogging QW1 = 141 cfs gging Coefficient for Multiple Units Coef gging Factor for Multiple Units clog= Dacity as a Weir with Clogging QM cfs an Orifice Dacity as an Orifice without Clogging Q.i )acity as an Orifice with Clogging Qoa pacity for Design with Clogging Qa cfs pture Percentage for this Inlet = Q, I Q, = C% 0 _X rw Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. IpvhSTIND1.xis, Curb-S 1/30/2004, 10:11 AM .......... N E RA Project x pp ps� Inlet ID --xxx Wamimg Top of Curb or W -T - Tx Street Allowable Depth Crown V 1//IQ x H Y d a Discharge in the Gutter ... ..... .. cfs Width (Cannot Be Less Than Any Grate Width) W -200. ft Depression, if Composite Gutter a inches Transverse Slope S. . .. ... ft/ft Longitudinal Slope S. . ...... ig's Roughness n ;utter Cross Slope ............ Vater Spread Width T 13;R. ft Vater Depth without Gutter Depression y 3 3 inches Vater Depth with a Gutter Depression d ........ 3 inches iutter Conveyance Calculations by HEC-22 Method pread for Side Flow on the Street (T - W)- T. 1"I ft ischarge outside the Gutter Section W, carried in Section T, 0, cis ;utter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E. 045 ischarge within the Gutter Section W Qw : 2.9, cfs otal Flow Rate by HEC-22 Method QT cfs quivalent Street Transverse Slope S. =:.:.%:�X. ............. ............ .. . full: low Area A, sci ft low Velocity Vs ........... fps *d product V,-d .............. ft2/s Waroing 01: Manning's n-I does nal rmm- I the USDCM recorntrendEws criteria, NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTIND2.xls, Street Hy 1/30/2004, 10:11 AM CIJRF�'PENIING INLET (N A; SUMP Protect ,PVH Inlet ID STIN E•t W Lu WP P- iE-- - � tivate r Yd f Flow Direction Pan Gutter gn Information (Input) th of a Unit Inlet L 5'UO:ft I Depression, if any (not part of upstream Composite Gutter) al°cal inches it of Curb Opening in Inches H = 6.O.O inches Width for Depression Pan WP 3 00:'ft Sing Factor for a Single Unit (typical value = 0.1) Co :g=.;4.0$;' of Throat (see USDCM Figure ST-5) Theta = 83,Oidegrees e Coefficient (see USDCM Table ST-7) C° 0'67 Coefficient (see USDCM Table ST-7) Cw -: ... Number of Units in the Curb Opening Inlet No = 2 a Weir sign Discharge on the Street (from Street Hy) Q° _: £r;Sicfs ter Depth for the Design Condition Yd 5;34:incl al Length of Curb Opening Inlet L.� 1QOG. ft :)acity as a Weir without Clogging Qw, _ _. 1;3 cfs gging Coefficient for Multiple Units Coef 1,5; gging Factor for Multiple Units Clog Dacity as a Weir with Clogging Qwa 133cfs an Orifice Dacity as an Orifice without Clogging Q°, 2 icfs Dacity as an Orifice with Clogging Q°a 12 4cfs pacity for Design with Clogging Qa = i< €>`i ....R, cfs pture Percentage for this Inlet = Qa I Q° = C°/, _iDflsf0' Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. pvhSTIND2.xls, Curb-S . o 1/30/2004, 10:11 AM GUTTER-0oO1N.':.-.. .._.,ANQCA Project X .... ........... . . ........... Inlet ID xxx' ... . ... ....... I - — T Top of Curb or W —T)F Allowable Depth Street Crown Design Discharge in the Gutter Q. ..... ...... 5,6 cfs Gutter Width (Cannot Be Less Than Any Grate Width) W .....:ZOD: ft Gutter Depression, if Composite Gutter a inches Street Transverse Slope S. ft/ft Street Longitudinal Slope S. 05 . 0 . ft/ft Warning 011IManning's Roughness n=. .01 3: utter Cross Slope S, ............ fater Spread Width T 1, 3 ft fater Depth without Gutter Depression y inches fater Depth with a Gutter Depression d ................. inches utter Conveyance Calculations by HEC-22 Method Dread for Side Flow on the Street (T - W) Tx ....... ... ....... 13 ft scharge outside the Gutter Section W, carried in Section Tx Qx= ......... cfs utter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E0 Q,4 scharge within the Gutter Section W , 2cfs Dial Flow Rate by HEC-22 Method 77 .......... QT cfs luivalent Street Transverse Slope S. ft/ft ow Area A, ........... 2 0 scl ft ow Velocity Vs fps *d product Vol ftts Warning 01: n-value? door nal rtmet the USDCM recorsunendpil criter'M' NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTINE1.xls, Street Hy 1/30/2004,10:12 AM Project = Inlet ID = Lu WP P 'lam'--3► Yd H ,;, ro" I Gutter sign Information (Input) igth of a Unit Inlet :al Depression, if any (not part of upstream Composite Gutter) ght of Curb Opening in Inches e Width for Depression Pan gging Factor for a Single Unit (typical value = 0.1) Ile of Throat (see USDCM Figure ST-5) ice Coefficient (see USDCM Table ST-7) it Coefficient (see USDCM Table ST-7) al Number of Units in the Curb Opening Inlet a Weir sign Discharge on the Street (from Street Hy) iter Depth for the Design Condition al Length of Curb Opening Inlet oacity as a Weir without Clogging gging Coefficient for Multiple Units gging Factor for Multiple Units oacity as a Weir with Clogging an Orifice oacity as an Orifice without Clogging :)acity as an Orifice with Clogging Percentage for this Inlet = Qa / Q° = water Flow Direction Lu amoai = ..........._;0Q0_ inches H=.:.:.:..::.::.::.fii00 inches WP = 3;OO;ft Co CX8: Theta = 63 0 degrees Cd C„,No ....................... Q. cfs Ytl = 5i20 inches L = ........................ � .500. ft Q„n= cfs Coef = 400: Clog QM.a= '86`cfs Q°! _ ..:.:::::..:..:><:;6 cfs Q°a = 5 Z;=cfs Qa=5:�Ccfs Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. Jp f t,T 1� )0 Py2cuuSe o f 2 `x 4 �� pvhSTINE1.xls, Curb-S 1 /30/2004, 10:12 AM CONVEYANCE ... . .. . ..... 0.1e. CY .. ... Pr oject= 09 .......... . Inlet ID X 'X%;. X. Top of Curb or —T Street W Tx Allowable Depth — Crown Y Q. 'vv Q x Y H Sx d a Design Discharge in the Gutter Q0 a cfs Gutter Width (Cann6t Be Less Than Any Grate Width) W 2,00: ft Gutter Depression, if Composite Gutter a inches Street Transverse Slope S, .0" 02090. ft/ft Street Longitudinal Slope S.= G.005U ft/ft 9---- .. ............ Warning 01 IManning's Roughness n :QQ113: ,r Cross Slope �r Spread Width !r Depth without Gutter Depression !r Depth with a Gutter Depression er Conveyance Calculations by HEC-22 Method ad for Side Flow on the Street (T - W). iarge outside the Gutter Section W, carried in Section T, 3r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) iarge within the Gutter Section W I Flow Rate by HEC-22 Method talent Street Transverse Slope Area Velocity product Waraing 01: Kmnino"& r3-vi3lue does nal rseot thE? UsocM recontmended vriteri<L NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. ....................... S, S. ft/ft T ............ It ...... inches d ... ....... inches T. 8.0 ft cfs E. Q" :1: Z: cfs ...................... QT C fS S. A, so it V, fps Vs*d = 4 ft2/S pvhSTINE2.xls, Street Hy 1/30/2004, 10:13 AM t CURBOPENING INLETIN A:SUMP Project Inlet ID =:STIN•F»1 . P Lu wP +C--- -----><-- x Gutter Yd Pan esign Information (Input) angth of a Unit Inlet 3cal Depression, if any (not part of upstream Composite Gutter) eight of Curb Opening in Inches de Width for Depression Pan logging Factor for a Single Unit (typical value = 0.1) igle of Throat (see USDCM Figure ST-5) rifice Coefficient (see USDCM Table ST-7) ieir Coefficient (see USDCM Table ST-7) )tal Number of Units in the Curb Opening Inlet ,s a Weir lesign Discharge on the Street (from Street Hy) Dater Depth for the Design Condition otal Length of Curb Opening Inlet apacity as a Weir without Clogging dogging Coefficient for Multiple Units logging Factor for Multiple Units apacity as a Weir with Clogging s an Orifice . Capacity as an Orifice without Clogging Capacity as an Orifice with Clogging ' CaDacitv for Design with Clogging Capture Percentage for this Inlet = Qa / Q, _ water L° = alocal_= H= WP= C. _ Theta = Cd = Cw = No = F1mv Direction ft k. inches degrees Q, cfs Yd= 490inches Qwl = 6 $ cfs Coef Clog = OO8i QM cfs Qol = 5 1>cfS Qoa = ........... . 7, CfS Qa =. 4 7 cfs ' Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for -additional inlet units. 1 1 ' pvhSTINE2.xls, Curb-S 1 /30/2004. 10:13 AM L"d�FRFng 1 1 TJ n Discharge in the Gutter Width (Cannot Be Less Than Any Grate Width) Depression, if Composite Gutter Transverse Slope Longitudinal Slope ig's Roughness utter Cross Slope ✓ater Spread Width ✓ater Depth without Gutter Depression ✓ater Depth with a Gutter Depression utter Conveyance Calculations by HEC-22 Method pread for Side Flow on the Street (T - W) ischarge outside the Gutter Section W, carried in Section T, 'utter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) ischarge within the Gutter Section W otal Flow Rate by HEC-22 Method quivalent Street Transverse Slope low Area low Velocity d product ' Warning 01: tr?anniag's n-value does no3 meal 11w t1Sf3CM recommended criteria, NOTE: VS'd product should be less than 6.0 for minor event and less than 8.0 for major event. 1r pvhSTINF1As, Street Hy Street Crown Qo 3 2; cfs W 2.00 It a 2.0 inches S. :a 0200: ft/ft So 0 0050. tuft S„ D,103' ft/ft 4ft y 2 5! inches d- ;.:.:::::1:::::4:5`: inches T. S 4. ft ...................... Q. ....` . cfs E. 059 Q„. t.9 cfs Q7 3:2! cfs S. OMI ft/ft A, t.3 so ft V, 2;6fps V; d ='[ li9i ttr/s 1/30/2004, 10:14 AM I I I I I I I C, 'v 0 I I I Project = Inlet ID = WP Lu WP : Yd H "I Cutter Pan ovate r Flo%v Direction Design Information (input) Length of a Unit Inlet ....................... ............ Local Depression, if any (not part of upstream Composite Gutter) a,..., inches Height of Curb Opening in Inches ............ H = - 6�00.;Jnches Side Width for Depression Pan ............... ............. WP ft Clogging Factor for a Single Unit (typical value = 0.1) Co Angie of Throat (see USDCM Figure ST-5) Theta degrees Orifice Coefficient (see USDCM Table ST-7) Cd 67: Weir Coefficient (see USDCM Table ST-7) CW .......... 3. OU Total Number of Units in the Curb Opening Inlet No ....... .. . a Weir sign Discharge on the Street (from Street Hy) Q. iter Depth for the Design Condition Yd inches :al Length of Curb Opening Inlet L pacity as a Weir without Clogging Q., egging Coefficient for Multiple Units Coef igging Factor for Multiple Units Clog pacity as a Weir with Clogging Q ;.::6R cfs an Orifice padty as an Orifice without Clogging Q., cfs pacity as an Orifice with Clogging Q0a = A 8<cfs pacify for Design with Clogging cla . ............. cfs pture Percentage for this Inlet = Q, I Q, C%= % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. T -C8' Iv' 24 x 31 pvhSTINF1.xis, Curb-S 1/30/2004,10:14 AM Project = Inlet ID = W4 arning Top of Curb or A lin ... nklm r)nnth T -T- x Street Crown Geometry (input) n Discharge in the Gutter ................. cis Width (Cannot Be Less Than Any Grate Width) W Z 00 ft Depression, if Composite Gutter a 2.0: inches Transverse Slope S. ....... 0 200: ft/ft Longitudinal Slope ............. S. ;.*. 0 0054 ft/ft rig's Roughness n 0.013.: it Cross Slope S„, 01 Ma, ft/ft ir Spread Width .......... T . ....... . 11,0 ft ir Depth without Gutter Depression ........... y .: X - I... . * . 2 inches :.X1,::.:_ ,r Depth with a Gutter Depression d ........ .. 4.7 inches er Conveyance Calculations by HEC-22 Method ad for Side Flow on the Street (T - W) T. or g.t f iarge outside the Gutter Section W, carried in Section T, it Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E. 056 iarge within the Gutter Section W cfs I Flow Rate by HEC-22 Method QT CfS Went Street Transverse Slope .......... S. ;0.6669 ft/ft Area A, 1,4 so. ft Velocity V, = ZT fps product V,*d 1 1 ftl/s vjarning 01: M.xaliag,& el-vahze does nol rneet lhe USOCNI fecorntnend(A Criteria, NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTINF2.xls, Street Hy 1/30/2004,10:15 AM Project = Inlet ID = Lu WP ,%vate r Yd Flow Direction Pan Gutter gn Information (input) th of a Unit Inlet Lu 16 5.0U.ft I Depression, if any (not part of upstream Composite Gutter) alocal 0.00:,mches it of Curb Opening in Inches H inches Width for Depression Pan WP 3 00 fit ging Factor for a Single Unit (typical value = 0.1) C. of Throat (see USDCM Figure ST-5) Theta :..iZ10 i degrees ;e Coefficient (see USDCM Table ST-7) Cd Coefficient (see USDCM Table ST-7) Cw = 1 3 00 1 Number of Units in the Curb Opening Inlet No ................ . a Weir sign Discharge on the Street (from Street Hy) Q. _ '34i cfs iter Depth for the Design Condition Yd inches al Length of Curb Opening Inlet L pacity as a Weir without Clogging Q'I gging Coefficient for Multiple Units Coef gging Factor for Multiple Units Clog :)acity as a Weir with Clogging Q„a lai cfs an Orifice :)acity as an Orifice without Clogging Q., cfs :)acity as an Orifice with Clogging Q0a , 5or Cf S pacity for Design with Clogging Q. .. .... . cfs pture Percentage for this Inlet = Q, 1 Q, = C% 00% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture . percentage of less than 100% in a sump may indicate the need for additional inlet units. 4 Tv, I o 4- is 16' 6ec cutse of Z ')c 6 ' N pvhSTINF2.xls, Curb-S 1/30/2004, 10:15 AM F GuTTERIC0N EYANOE CAPACITY; ..... ... .... ........... ......... . ....................... Project=:. . ... ... ... . . .. ... .... .. .. .. . . ... ... inlet ID .... ...... .. . . .. .. . I .. . . .. . . Warning 01 I - —T Top of Curb or W- Allowable Depth 1 Qw '1106 X-I H Y S d I, a 41 Street Crown n Discharge in the Gutter Q, *Oi cis Width (Cannot Be Less Than Any Grate Width) W .. ......... 2.00 It Depression, if Composite Gutter a inches Transverse Slope S. 0.0200 ft/ft Longitudinal Slope S. -`:.0.0051::: ft/ft ng's Roughness n Gutter Cross Slope Sw 01033. ft/ft Water Spread Width T R Water Depth without Gutter Depression y .......... ..... inches h es Water Depth with a Gutter Depression d h 4A. inches Gutter Conveyance Calculations by HEC-22 Method Spread for Side Flow on the Street (T - W) T. 95 it Discharge outside the Gutter Section W, carried in Section T. f C S Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E. Discharge within the Gutter Section W Ow ...... . 2 2cfs : Total Flow Rate by HEC-22 Method QT ;:: 46cfs Equivalent Street Transverse Slope S. 0 0651 ft/ft Flow Area sqft Flow Velocity V, ....... 27 fps V,*d product V.*d = 1 T ft'/S ViJaming 01: Manning's n-valtie does nal rneet thi! USUC.M Tecommended crit;MWI NOTE: V,*d product should be less than 6.0 for minor event and less than 8.0 for major event. pvhSTING1.xis, Street Hy 1/30/2004, 10:15 AM Project = Inlet ID = Lu NVP W- -~ "^ f%v Direction th ofaUnit Inlet �= | Depression, ifany (not part nfupstream Composite Gutter) ewm =0�00�� inches itofCurb Opening inInches H= inches VVi�bfor DwpmssionPan VVv= 1 ]ingFactor for mSingle Unit (typical value =0.1) Co= �ufThroat (see U8DOMFigure ST^5) Theta = deQroe eCoefficient (see USDCMTable ST-7) Co= Coefficient (see USDCMTable ST-7) C~=* Number ofUnits inthe Curb Opening Inlet No=�������� sign Discharge on the Street (from Street Hy) Q. cfs; derDepth for the Design Condition Yu= inches :al Length nfCurb Opening Inlet L= It padtymaaWeir without Clogging Q�i= ds .QgingCoefficient for Multiple Units Coef= .ggingFactor for. Multiple Units Clog� podtyasmWeir with Clogging Oxm= d� an Orifice pochyasnnOhficawbhuutC|oQQ�g � Qm= ds pac�yaaunOr�cew�hClogging �m= ds pacity for Design with Clogging Q. ofs ptmrePercentage for this Inlet =O,/Qp= C%=�������!��!��������� Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. 1/30/2084.10:27AM 1 1 1 1 Project = Inlet ID = L"darning 0 Top of Curb or Allowable DeD' H1 I _1_----1_ a T W _+— Tx Street Crown n Discharge in the Gutter Q. 4.4.; cfs Width (Cannot Be Less Than Any Grate Width) W 2.00 ft Depression, if Composite Gutter a 2.0` inches Transverse Slope Sx 0.0200; ft/ft Longitudinal Slope So 0 D148 fVft ig's Roughness n 0.013 utter Cross Slope 'ater Spread Width 'ater Depth without Gutter Depression, 'ater Depth with a Gutter Depression utter Conveyance Calculations by HEC-22 Method mead for Side Flow on the Street (T - W) scharge outside the Gutter Section W, carried in Section Tx utter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) scharge within the Gutter Section W )tal Flow Rate by HEC-22 Method luivalent Street Transverse Slope )w Area )w Velocity •d product Warning 01: M.'anniag"s n-vai w- does nt9 meet fhe USOC:'S1 lEC:OiYtn1E>nd£EeE tcriteffill NOTE: Va d product should be less than 6.0 for minor event and less than 8.0 for major event. Sw - 033 ft/ft T _ .:....... 3: ft y =.. 22; inches d = inches Tx 7 3 ft Q. .......:::..:�;f6i cfs Eo 065. Q„ 2 9 cfs Qr-,:::;! 4.4` cfs S. l? D739 fUft As :.. .;;.t:.0 sq it Vs <....4.3' fps pvhSTING2.xls, Street Hy 1 /30/2004, 10:16 AM Witter kf of Grate Type -.:i Vane Grate :h of a Single Unit Grate500;R i of a Unit Grate (cannot be greater than W from Street Hy) W. ling Factor for a Single Unit Grate (typical value = 0.5) C0 G ling Factor for a Single Unit Curb Opening (typical value = 0.1) C0 C Depression, if any (not part of upstream Composite Gutter) a,., :6 0: inches Number of Units in the Combination Inlet No 1n Discharge on the Street (from Street Hy) - q0 44.; cfs r Depth for Design Condition Yd 4 2 inches Length of Inlet Grate & Curb Opening L 1©00R of Grate Flow to Design Flow E0 E0 Velocity Vs (from Street Hy) Vs -.! 4'.27fps i-over Velocity V0: Check Against Flow Velocity V. V0 is greater than.. s? :r No -Clogging Condition :option Rate of Gutter Flow Rr '; ;00 eption Rate of Side Flow Rx (from Street Hy) R„ eption Capacity Q,4 2> cfs r Clogging Condition ling Coefficient for Multiple -unit Grate Inlet Coot 1i56' ling Factor for Multiple -unit Grate Inlet Clog :ive (unclogged) Length of Multiple -unit Grate Inlet L, option Rate of Side Flow Rx (from Street Hy) R„ it Interception Capacity Q. Z. cfs Aver Flow = Q.-Q. (to be applied to curb opening)0_3.i .............................. .............................. cfs Equivalent Slope S. (based on grate carry-over) Se „ (l,p7.39ft/ft Required Length LT to Have 100% Interception LT ,. .;,5j75ft Clogging Coefficient Coef Clogging Factor for Multiple -unit Curb Opening Inlet Clog Effective (Unclogged) Length Le 5s75:R Under No -Clogging Condition Effective Length of Curb Opening Inlet (must be < LT) L 575�ft Interception Capacity Q,;01[cfs Under Clogging Condition Actual Interception Capacity cfs Carry -Over Flow = Q°urb-Q, = Qb = ; <' >z >`:'>» tf!1 cfs Capture Percentage =QO/Q0= ' pvhSTING2.xls, Combo-G 1/30/2004, 10:19 AM Table Rating Table for Trapezoidal Channel Project Description Worksheet Trapezoidal Channi Flow Element Trapezoidal Channf Method Manning's Formula Solve For Channel Depth ' Input Data ' Mannings Coeffic Channel Slope 0.029 005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft Attribute Minimum Maximum Increment Discharge (cfs) 153.40 280.00 20.00 Discharge (cfs) Depth (ft) Velocity (ft/s) Flow Area (ft') Wetted Perimeter (ft) Top Width (ft) 153.40 2.36 4.51 34.0 24.43 23.85 173.40 2.49 4.66 37.2 25.52 24.91 193.40 2.61 4.79 40.4 26.54 25.90 213.40 2.73 4.91 43.4 27.50 26.83 233.40 2.84 5.03 46.4 28.41 27.71 253.40 2.94 5.13 49.4 29.27 28.54 273.401 3.041 5,231 52.21 30.09 29.34 1 1 J Project Engineer: Alicia Forward ' c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 (7.0005] 01/27/04 12:32:21 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Project Description Worksheet Flow Element East Swale Trapezoidal Cha Method Manning's Formi Solve For Channel Depth ' Input Data Mannings Coeffic 0.029 ' Channel Slope 005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft Discharge 96.22 cfs Results Depth 1.91 ft Flow Area 24.0 ft' Wetted Perim, 20,71 ft Top Width 20.24 ft Critical Depth 1.53 ft Critical Slope 0.012663 ft/ft Velocity 4.00 ft/s Velocity Head 0.25 ft Specific Enerc 2.15 ft Froude Numb, 0,65 Flow Type Subcritical 1 East Swale Worksheet for Trapezoidal Channel Project Engineer: Alicia Forward ' c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/30/04 11:22:49 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Project Description Worksheet East Swale Flow Element Trapezoidal Cha Method Manning's Formi Solve For Channel Depth ' Section Data Mannings Coeffic 0,029 ' Channel Slope 005000 ft/ft Depth 1.91 ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft Discharge 96.22 cfs J Cross Section Cross Section for Trapezoidal Channel ft V:1� H:1 NTS Project Engineer: Alicia Forward ' c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/30/04 11,23:16 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 1 Project Description Worksheet East Swale 1 Flow Element Trapezoidal Cha Method Manning's Formi Solve For Channel Depth 1 Input Data Mannings Coeffic 0.029 1 Channel Slope 005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft Table Rating Table for Trapezoidal Channel 1 Attribute Minimum Maximum Increment ' Discharge (cfs) 72.35 100.00 5.00 Discharge (cfs) Depth (ft) Velocity (ft/s) Flow Area (ft') Wetted Perimeter (ft) Top Width (ft) 72.35 1.67 3.72 19.5 18.76 18.35 77.35 1.72 3.78 20.5 19.19 18.77 82.35 1.77 3.84 21.4 19.62 19.18 87.35 1.82 3.90 22.4 20.02 19.57 92.35 1.87 3.96 23.3 20.41 19.95 97.351 1.9214.01 124.31 20.791 20.32 1 1 1 1 1 Project Engineer: Alicia Forward ' c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/30/04 11:22:29 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ' Worksheet Worksheet for Triangular Channel ' ^� Project Description " Worksheet Outfall Swale Flow Element Triangular Char Method Manning's Forrr ' Solve For Channel Depth Input Data Mannings Coeffic 0.029 Channel Slope 010000 ft/ft Left Side Slope 5.00 H : V Right Side Slope 5,00 H : V Discharge 51.90 cfs Results � rr II �n vjc w d ep4 ' Depth 1.56 ft i T�tk ,,-I . Flow Area Wetted Perim( 12.1 ft2 15.88 ft L> ,W Elm 6wt31-Z & Top Width 15.57 ft ' Critical Depth 1.46 ft ---' Critical Slope 0.013962 ft/ft Velocity 4,28 ft/s ' Velocity Head 0.28 ft Specific Enerc 1.84 ft Froude Numb- 0.86 Flow Type Subcritical ' 1 Project Engineer: Alicia Forward c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 02/04/04 01:34:18 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ' Basin 101 Swale Worksheet for Triangular Channel Project Description Worksheet Basin 101 Swal Flow Element Triangular Char Method Manning's Fora ' Solve For Channel Depth Input Data Mannings Coeffic 0.029 ' Channel Slope 005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope Discharge 4.00 H : V I3 3 / +f 41.71 X � Z cfs --j Go ( Results Depth 1.78 ft Flow Area 12.7 ft' Wetted Perim( 14.69 It Top Width 14.25 ft ' Critical Depth 1.47 ft Critical Slope 0.014145 ft/ft Velocity 3.29 ft/s ' Velocity Head 0.17 ft Specific Enerc 1.95 ft Froude Numbi 0.61 ' Flow Type Subcritical 1 1 t r 1 _i dvzjel 6J 2- �� 3 ,'e a..�kdlc e f basa�. Project Engineer: Alicia Forward ' c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 04/05/04 09:04:01 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ' Basin 102 Swale Worksheet for Triangular Channel 1 Project Description Worksheet Basin 102 Swal ' Flow Element Triangular Char Method Manning's Fom ' Solve For Channel Depth Input Data Mannings Coeffic 0.029 ' Channel Slope 005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V 406 X I'33 /Z Discharge 26.44 cfs Results Depth 1.50 ft Flow Area 9.0 ft' Wetted Perimi 12.38 ft Top Width 12.01 ft ' Critical Depth 1.22 ft Critical Slope 0.015039 ft/ft Velocity 2.93 ft/s ' Velocity Head 0.13 ft Specific Enerc 1.63 ft Froude Numb- 0.60 Flow Type Subcritical 1 1 Project Engineer: Alicia Forward ' c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.00051 04/05/04 09:03:32 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Stec rJVW Is dw%g(ej 65 Z- InncalKu Pr 4's k wal a bash . SWALE SIZING & RIPRAP CALCULATIONS PVH: South Swale Design Worksheet for Trapezoidal Channel Project Description Worksheet Trapezoidal Channf ' Flow Element Trapezoidal Channr Method Manning's Formula Solve For Channel Depth Input Data Mannings Coeffic 0,029 ' Channel Slope 005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V _ Bottom Width 5.00 ft Discharge 262.14 cfs Results Depth 2.99 ft Flow Area 50.6 ft' Wetted Perim, 29.63 ft Top Width 28.90 ft Critical Depth 2.51 It Critical Slope 0.011050 ft/ft Velocity 5.18 f /S Velocity Head 0.42 ft Specific Enerc 3.40 ft Froude Numb, 0,69 Flow Type Subcritical 1 J , Project Engineer: Alicia Forward ' c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/27/04 02:39:16 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Design PVH: South Swale Worksheet for Trapezoidal Channel Project Description Worksheet Trapezoidal Chann( Flow Element Trapezoidal Channr Method Manning's Formula Solve For Channel Depth Input Data ' Mannings Coeffic 0.029 Channel Slope 005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft Discharge 197.10 cfs Results ' Depth 2.63 ft Flow Area 40.9 ft' Wetted Perimi 26.73 ft Top Width 26.08 ft Critical Depth 2.19 ft Critical Slope 0.011483 ft/ft Velocity 4.81 f /s ' Velocity Head 0.36 ft Specific Enerc 2.99 ft Froude Numb. 0.68 Flow Type Subcritical 1 Project Engineer: Alicia Forward c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 02/02/04 02:58:11 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Project Description Worksheet Flow Element Trapezoidal Channr Trapezoidal Channr Method Manning's Formula Solve For Channel Depth Input Data Mannings Coeffic 0.029 ' Channel Slope 005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft ' Discharge 92.59 cfs 1.87 ft Results Depth Flow Area 23.4 ft' Wetted Perim, 20,43 ft ' Top Width 19.97 ft Critical Depth 1.50 ft Critical Slope 0.012730 ft/ft Velocity 3.96 ft/s Velocity Head 0.24 ft Specific Enerc 2.12 ft Froude Numb, 0.65 Flow Type Subcritical 1 1 1 J PVH: South Swale Design Worksheet for Trapezoidal Channel Project Engineer: Alicia Forward c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7,0005] 01/27/04 02:03:47 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ' Cross Section Cross Section for Trapezoidal Channel 1 Project Description Worksheet Trapezoidal Channr ' Flow Element Trapezoidal Chanrn Method Manning's Formula Solve For Channel Depth Section Data Mannings Coeffic 0.029 ' Channel Slope 005000 ft/ft Depth 1.87 ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft Discharge 92.59 cfs 1, 1 1 1 1 1 J ft V:1 H:1 NTS Project Engineer: Alicia Forward 1 c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005j 01/27/04 02:25:07 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 1 Project Description Worksheet Trapezoidal Chanm Flow Element Trapezoidal Chanm Method Manning's Formula Solve For Channel Depth ' Input Data Mannings Coeffic 0.029 ' Channel Slope 005000 fUft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft Discharge 153.40 cfs Results ' Depth 2.36 ft Flow Area 34.0 ft' Wetted Perim, 24,43 ft Top Width 23.85 ft Critical Depth 1.94 ft Critical Slope 0.011876 ft/ft Velocity 4.51 ft/s ' Velocity Head 0.32 ft Specific Enerc 2.67 ft Froude Numb 0,67 ' Flow Type Subcritical 1 ' J PVH: South Swale Design Worksheet for Trapezoidal Channel Project Engineer: Alicia Forward ' c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/27/04 02:03:29 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 1 - Project Description Cross Section Cross Section for Trapezoidal Channel Worksheet Trapezoidal Chann( ' Flow Element Trapezoidal Channr Method Manning's Formula Solve For Channel Depth ' Section Data ' Mannings Coeffic Channel Slope 0.029 005000 ft/ft Depth 2.36 ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft Discharge 153.40 cfs ft V:1 H:1 NTS Project Engineer: Alicia Forward c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/27/04 02:24:42 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ' Project Description ' Worksheet Flow Element Method Solve For Cross Section Cross Section for Trapezoidal Channel Trapezoidal Channr Trapezoidal Chann( Manning's Formula Channel Depth Section Data Mannings Coeffic 0.029 ' Channel Slope 005000 ft/ft Depth 2.99 ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V ' Bottom Width 5.00 ft Discharge 262.14 cfs ft V:1 L H:1 NTS Project Engineer: Alicia Forward c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowM aster v7.0 [7.0005] 01/27/04 12:32:40 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ' Table Rating Table for Trapezoidal Channel .� Project Description Worksheet Flow Element Trapezoidal Channf Trapezoidal Channf Method Manning's Formula Solve For Channel Depth Input Data ' Mannings Coeffic Channel Slope 005000 0.029 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft Attribute Minimum Maximum Increment ■ Discharge (cfs) 92.59 280.00 20.00 Discharge (cfs) Depth (ft) Velocity (ft/s) Flow Area (ft') Wetted Perimeter (ft) Top Width (ft) 92.59 1.87 3.96 23.4 20.43 19.97 112.59 2.05 4.17 27.0 21.89 21.38 132.59 2.21 4.35 30.5 23.19 22.65 152.59 2.35 4.51 33.8 24.38 23.80 172.59 2.48 4.65 37.1 25.48 24.87 192.59 2.61 4.79 40.2 26.50 25.86 212.59 2.72 4.91 43.3 27.47 26.79 232.59 2.83 5.02 46.3 28.37 27.67 252.59 2.94 5.13 49.2 29.24 28.51 272.59 3.04 5.23 52.1 30.06 29.31 1 1 J Project Engineer: Alicia Forward ' c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/27/04 02:00:45 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ' pvhSTIN11.xls, Street Hy 1/30/2004, 10:20 AM I COMB INATIQN fNLET ON q�wo►tE Project p.:..VH ; Inlet ID $T)N.I 2. L Wp W ]P ><- - Flow Direction cult H ice. �titey ��`b ' Design Information (Input) ........................... Type of Grate .............................. .............................. TypeGigte,. a Length of a Single Unit Grate L, 5;00:ft Width of a Unit Grate (cannot be greater than W from Street Hy) W. 2...... Clogging Factor for a Single Unit Grate (typical value= 0.5) C; G :0t3:; Clogging Factor for a Single Unit Curb Opening (Typical value = 0.1) Local Depression, if any (not part of upstream Composite Gutter) Co C aio„ i 0.08: inches Total Number of Units in the Combination Inlet No 2� Design Discharge on the Street (from Street Hy) Q, :4Q. cfs Water Depth for Design Condition Y4:4 B' inches Total Length of Inlet Grate & Curb Opening L J€ 1Q;OQ>ft Ratio of Grate Flow to Design Flow E. E. t .--� Flow Velocity Vs (from Street Hy) V. A4....... .. fps Spash-over Velocity V,: Check Against Flow Velocity V, V, is greater fihanVs:: Under No -Clogging Condition Interception Rate of Gutter Flow Rf . Interception Rate of Side Flow Rx (from Street Hy) R, 0:86 Interception Capacity Qi cfs 1 Under Clogging Condition Clogging Coefficient for Multiple -unit Grate Inlet Coef . Clogging Factor for Multiple -unit Grate Inlet Clog Effective (unclogged) Length of Multiple -unit Grate Inlet L, .< 3.4Q:;ft Interception Rate of Side Flow Rx (from Street Hy) R,�Q.84':' Actual Interception Capacity Q. cfs Carry -Over Flow = Q,-Q, (to be applied to curb opening) Q U, :Q4<cfs ' Curb Opening Analysis (Calculated) Equivalent Slope S. (based on grate carryover) S. ;Q.(167ifft/ft Required Length LT to Have 100% Interception LT Clogging Coefficient Coef YY,25 Clogging Factor for Multiple -unit Curb Opening Inlet Clog Effective (Unclogged) Length L. 7.:92ft ' Under No -Clogging Condition Effective Length of Curb Opening Inlet (must be < LT) L ;; 792ft Interception Capacity Qi :i02:cfs Under Clogging Condition ' Actual Interception Capacity Q. .._ . <9.2:cfs Carry -Over Flow = QcU'-Q. = Qp = ; :: 2"+.:: ::"�::::::' ��::Qi:L:: cfs ' ,✓ Capture Percentage = QdQ, = C°/, �.....:........,. ' pvhSTINl1.xls, Combo-G 1/30/2004, 10:20 AM Project= Inlet ID = LNaming I Top mfCurb o, Street Cnnvvn n0iscMmrge imthe Gutter c.= cf s Width (Cannot BeLess Than Any Grate Width) W= ft Depression, if Composite Gutter a= inches Transverse Slope s,= ft/ft Longitudinal Slope S. ft/ft ig'sRougoness n= ------- | | utter Cross Slope S�= ft/ft ��rspaadVV�m T= u }marDepth without Gutter Depression y= inches 'atarDepth with aGutter Depression u=��4��inches utter Conveyance Calculations hyMEC`22 Method )read for Side Flow onthe Street (T^VV) T,='` � M schargeoutside the Gutter Section VV.carried inSection T, ox= ofs utter Flow toDesign Flow Ratio uyF*mmxEo'22method (Eq.8T'7) s,= sohargewithin the Gutter Section VV Q°= ofs �m|F�mw�a��y�G�'ue�e��nm ��= c,n luiva|entste�Transverse o|npe emu s^= owArea A,= sqM ow Velocity V"='`' fps #amin8st &onoixg'y**nksdn^snonme deUSDC.Mw*ommvn�s xrh�ha NOTE: V,*dproduct should be less than 6.0for minor event and less than o.0for major event. pvhSTIN12.xls, Street Hy I Project: Inlet ID: W L WP Curb H r_� Flaw Direction �fffey �� Type of Grate Type =-'? Vane Grate -. . Length of a Single Unit Grate L. . ; 5;0p'.ft Width of a Unit Grate (cannot be greater than W from Street Hy) W. 200ft Clogging Factor for a Single Unit Grate (typical value = 0.5) C° G Clogging Factor for a Single Unit Curb Opening (typical value = 0.1) C; C Local Depression, if any (not part of upstream Composite Gutter) ai°,°i p 0 inches Total Number of Units in the Combination Inlet No :' 3 Grate Analysis (Calculated) Design Discharge on the Street (from Street Hy) Q. 78.: cfs Water Depth for Design Condition Yd .. _.4 8; inches Total Length of Inlet Grate & Curb Opening L ft Ratio of Grate Flow to Design Flow E. E. 052" Flow Velocity Vs (from Street Hy) V, .. 4sP7Efps Spash-over Velocity V.: Check Against Flow Velocity V, V° is greater than. V51 Under No -Clogging Condition Interception Rate of Gutter Flow Rr XX 1D0 Interception Rate of Side Flow Rx (from Street Hy) R, 093 Interception Capacity Q,7 fi<cfs Under Clogging Condition Clogging Coefficient for Multiple -unit Grate Inlet Coef 1si75; Clogging Factor for Multiple -unit Grate Inlet Clog Effective (unclogged) Length of Multiple -unit Grate Inlet L. ....dk'3f3'ft Interception Rate of Side Flow Rx (from Street Hy) Rx 2 Actual Interception Capacity Q. Carry -Over Flow = Qa-Q, (to be applied to curb opening) .............................. Q. _ .............................. ;;' > ; ;> ; ':; ; 'tt3' cfs Curb Opening Analysis (Calculated) Equivalent Slope S. (based on grate carry-over) S. Is' .0.<0630ift/ft Required Length LT to Have 100% Interception LT .:.,..Z?.4 ft Clogging Coefficient Coef .....4s31> Clogging Factor for Multiple -unit Curb Opening Inlet Clog Effective (Unclogged) Length L° T1,9 ft Under No -Clogging Condition Effective Length of Curb Opening Inlet (must be < LT) L 7 39,�ft Interception Capacity Qi cfs Under Clogging Condition Actual Interception Capacity Q. ['; :::: ri [ cfs Carry -Over Flow = Q,u,-Q, = Qp Capture Percentage = Q./Q. = C% ' pvhSTIN12.xls, Combo-G 1/30/2004, 10:22 AM Project = Inlet ID = L41aming Top of Curb or Allowable Depth I I Y dl T W Tx n Discharge in the Gutter Width (Cannot Be Less Than Any Grate Width) Depression, if Composite Gutter Transverse Slope Longitudinal Slope ig's Roughness Cross Slope Spread Width Depth without Gutter Depression Depth with a Gutter Depression r Conveyance Calculations by HEC-22 Method d for Side Flow on the Street (T - W) arge outside the Gutter Section W, carried in Section Tx Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) arge within the Gutter Section W Flow Rate by HEC-22 Method auivalent Street Transverse Slope ow Area ow Velocity ;'d product ' WarF ing 01: i` imning"<; n-tiaEiw dooe i nol-meet fl Fw USDC:':'t Fe::ilrftFr:QlndE:d criteria, NOTE: V,'d product should be less than 6.0 for minor event and less than 8.0 for major event. Street Crown Qa 7 4'; cfs W 20t1ft a=<>t><'>"2'!Q inches Sx 0l0XID ft/ft So 00154: ft/ft n OMI3 S„ ::..., :-fl:1;03 ft/ft y 2 8: inches d 0 inches Tx .:: ..-::9-i5 ft cfs E. ........ OSA Q,H 3 8 cfs QT ,.: F...7 0 cfs Se 0;0651.: ft/ft A, t: 5. sq ft V, .;. 4..7: fps ' pvhSTINJ1.xls, Street Hy 1/30/2004, 10:22 AM i ' Project: Inlet ID: I W L WP P Curb H F1mv Direction S •�}7(�er G^�k •�'I Design Information (Input) .......................... Type of Grate .............................. Type .............................. VOfte Gt'sta' ... Length of a Single Unit Grate L. 500'ft ' Width of a Unit Grate (cannot be greater than W from Street Hy) W, 2sb©:ft - Clogging Factor for a Single Unit Grate (typical value = 0.5) Co G = ::;::>:;::<;;:;;>;OIi08 Clogging Factor for a Single Unit Curb Opening (typical value = 0.1) C° C t Local Depression, if any (not part of upstream Composite Gutter) ai°°,i (jfl; inches Total Number of Units in the Combination Inlet No 3< Grate Analysis (Calculated) Design Discharge on the Street (from Street Hy) (10cfs ' Water Depth for Design Condition Ya :'4 8 inches Total Length of Inlet Grate & Curb Opening L 0>ft Ratio of Grate Flow to Design Flow E. E. 054 Flow Velocity Vs (from Street Hy) V. - 4'68fps Spash-over Velocity V°: Check Against Flow Velocity V, V. is ,greater #haw -.W Under No -Clogging Condition Interception Rate of Gutter Flow Rr Interception Rate of Side Flow Rx (from Street Hy) R. Interception Capacity .......................:....:: Q, -: .::::i6;8cfs ' Under Clogging Condition ° • Clogging Coefficient for Multiple -unit Grate Inlet Coef . 1:75; Clogging Factor for Multiple -unit Grate Inlet Clog QOS Effective (unclogged) Length of Multiple -unit Grate Inlet L. _ 1430�ft Interception Rate of Side Flow Rx (from Street Hy) R, Actual Interception Capacity Q. �: fi 7: cfs ' Carry -Over Flow = Q.-Q. (to be applied to curb opening) Curb Opening Analysis (Calculated) .............................. .............................. Q°„� 532' cfs Equivalent Slope S. (based on grate carry-over) S. 0:0651:.ft/ft Required Length LT to Have 100% Interception LT � 1559. ft Clogging Coefficient Coef Clogging Factor for Multiple -unit Curb Opening Inlet Clog Effective (Unclogged) Length L. 65.9. ft ' Under No -Clogging Condition _ Effective Length of Curb Opening Inlet (must be < LT) L . ,6.:;59€ft Interception Capacity Q, cis Under Clogging Condition......:... ' Actual Interception Capacity Q. ..... ......:.: _;;;;;;;;;<;;(};.;1,cfs Carry -Over Flow = Q°„ro-Q° = Qn="::'>`">i�r�>c''iQ=l of Capture Percentage = Q./Q. ' pvhSTINJ1.xls, Combo-G 1/30/2004, 10:22 AM Project Description J Worksheet Basin 103 Swal ' Flow Element Triangular Char Method Manning's Forrr ' Solve For Channel Depth Input Data Basin 103 Swale Worksheet for Triangular Channel ' Mannings Coeffic 0.029 Channel Slope 005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Discharge 82.18 cfs —!j Results ' Depth 2.30 ft Flow Area 21.1 ft' Wetted Perimi 18.94 ft Top Width 18.38 ft ' Critical Depth 1.92 ft Critical Slope 0.012932 ft/ft Velocity 3.89 ft/s ' Velocity Head 0.24 ft Specific Enerc 2.53 ft Froude Numb- 0.64 Flow Type Subcritical ' 1 1 1 Project Engineer: Alicia Forward c:\program files\haestad\fmw\pvh storm check.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 04/12/04 11:57:00 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 s0je- Fri N d.V:Jd 65 z %tcvmu P %s ;k ' SEAR -BROWN PVHS By: AGW 702100 Rundown for Circular Conduit at DP 53 Checked: 'Riprap Updated: 2-Feb-04 Pipe Diameter: D . 24 in Erosion Resistant Soil (Clay) t` Discharge: Q: .29.42" cfs lPoilType: IMaxVelocity: V 7.7 ft/sec Tailwater': 0.8 ft unknown ' Assume that y=OA*D if tailwater conditions are unknown ' 1. Required riprap type: Q/D2.e = 5.20 < 6 --> use design charts D = 2.00 ft Yt/D = 0.40 Q/D^1.5 = 10.40 ' d50 = 8.62 in -------> 9 in ----> Use Type L (Class 9) riprap ' 2. Expansion Factor: 1/2tan0= 2.29 ' 3. Riprap Length: ' At = QN = 3.82 ft2 L = 1 /2tan0 ' (At/Yt - D) = 6 ft 4. Governing Limits: L>3D 6 ft <=6ft-->OK ' L<10D 20 ft =>6ft-->OK 5. Maximum Depth: ' Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (24 in /12) = 6 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type L (Class 9) riprap Length = 6 ft Depth = 1.5 ft Width = 6 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 L:UOBS\702100\DATA\DRAINAGE\RIPRAP\DP 53 RIPRAP FOR CIRCULAR CONDUITSI.XLS ' SEAR -BROWN PVHS By: AGW 702100 Riprap Rundown for Circular Conduit at DID 45 STEM Checked: Updated: 2-Feb-04 Diameter: D 24. in JSollType: Erosion Resistant Soil (Clay) 'Pipe Discharge: Q 24.85 cfs JMax Velocity: v 7.7 ft/sec Taiwwater*: y 0.8 ' ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: ' Q/D2.1 = 4.39 < 6 --> use design charts D = 2.00 ft Yt/D = 0.40 Q/D^1.5 = 8.79 d50 = 7.28 in -------> 9 in ----> Use Type L (Class 9) riprap ' 2. Expansion Factor: 1/2tan0= 3.08 3. Riprap Length: At = Q/V = 3.23 ft2 L = 1/2tanO * (At/Yt - D) = 6 ft 4. Governing Limits: L>3D 6 ft <=6ft-->OK ' L<10D 20 ft =>6ft >OK 5. Maximum Depth: ' Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width: Width = 3D = 3 (24 in /12) = 6 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type L (Class 9) riprap Length = 6 ft ' Depth = 1.5 ft Width = 6 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 ' L:\JOBS\702100\DATA\DRAINAGE\RIPRAP\DP45 RIPRAP FOR CIRCULAR CONDUITSI.XLS SEAR -BROWN PVHS Riprap Rundown for Circular Conduit at DP 47 Updated: 2-Feb-04 sTi2,M L Pipe Diameter: D 30. in ' Discharge: Q 70.6.5 cfs ITailwater*: v 1.0 ft(unknown) ' " Assume that y=0.4*D if tailwater conditions are unknown 1 1. Required riprap type: 2. Expansion Factor: 3. Riprap Length: By: AGW 72100 Checked: Soil Type: Very Erodible Soil (Sand) Max Velocity: V 5.5 ft/sec Q/D25 = 7.15 SUPERCRITICAL DESIGN --use equiv. Da Da = 1.25 ft Yn = ft Yt/Da = 0.80 VERIFY PIPE FLOW DEPTH Q/D^1.5 = 50.55 d50 = 18.24 in -------> 24 in ----> Use Type VH (Class 24) riprap 1/2tan0 = . 6' �6 At = QN = 12.85 ft2 L = 1/2tanO * (At/Yt - D) = (,9 ft 4. Governing Limits: y L>3D 8 ft ok ' L<10D 26 ftL 7aFT 5. Maximum Depth: ' Depth = 2d50 = 2 (24 in / 12) = 4 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (30 in /12) = 8 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type VH (Class 24) riprap Length =eft ' Depth = 4 ft Width = 8 ft Reference: UDFCD USDCM, Vol, 1, Major Drainage, Page MD-105 ' L:\JOBS\702100\DATA\DRAINAGE\RIPRAP\DP47 RIPRAP FOR CIRCULAR CONDUITStXLS ' SEAR -BROWN PVHS By: AGW . 702100 'Riprap Rundown for Circular Conduit at DP 3 Checked: Updated: 2-Feb-04 ._. Pipe Diameter: D 30: in JSoil Type: Erosion Resistant Soil (Clay) ' Discharge: Q <'' 2 7. 03 cfs IMax Velocity: V 7.7 ft/sec Tailwater*: y .1.0 ft (unknown) ' * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: CID 2 5 = 2.74 < 6 --> use design charts D = 2.50 ft Yt/D = 0.40 ' Q/D^1.5 = 6.84 d50 = 5.67 in -------> 6 in ----> Use Type VL (Class 6) riprap ' 2. Expansion Factor: 1/2tan0= 4.77 ' 3. Riprap Length: ' At = Q/V = 3.51 ft2 L = 1/2tan0 * (At/Yt - D) = 5 ft 4. Governing Limits: L> 3D 8 ft increase length to 8 ft L<10D 25 ft =>5ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (30 in /12) = 8 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type VL (Class 6) riprap Length = 8 ft ' Depth = 1 ft Width = 8 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 ' L:UOBS\702100\DATA\DRAINAGE\RIPRAP\DP3-RIPRAP FOR CIRCULAR CONDUITSI ALS ' SEAR -BROWN PVHS By: AGW 702100 Riprap Rundown for Rectangular Conduit at DP 31 "-*-Checked: Updated: 2-Feb-04 1 Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec unknown 1. Required riprap type: Q/WH^1.5 = 6.15 < 8 > use design charts H = 2.00 ft YUH = 0.40 ' Q/WH^0.5 = 12.31 d50 = 5.17 in --> 6 in ----> Use Type VL (Class 6) riprap 2. Expansion Factor: ' 1/2tanO = 1.28 3. Riprap Length: ' At = Q/V = 9 ft2 L = 1/(2tanO) * (At/Yt - W) = 9 ft Governing Limits: ' L>3H 6 ft <=9ft >OK L<10H= 20 ft =>9ft-->0K 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft ' 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width (minimum): Width = 2H = 2 (2 ft) = 4 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type VL Class 6 riprap Length = 9 ft ' Depth = 1 ft Width = A� ft Reference:.UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 ' L:\JOBS\702100\DATA\DRAINAGE\RIPRAP\DP31 RIPRAP FOR RECTANGULAR CONDUITSI.XLS JE /Ak-bRUVV IV PVHS By: AGW Riprap Rundown for Rectangular Conduit at DP35 c>TL-q-!`I-►= Checked: Updated: 2-Feb-04 )x Height: H 2 ft scharge: Q .42.57 `. cfs iilwater': y 0:8 '" ` ft unknown >ssume that v=0.4`H if tailwater conditions are unknown 1. Required riprap type: 702100 Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec Q/WH^1.5 = 5.02 < 8 --> use design charts H = 2.00 ft YUH = 0.40 Q/WH^0.5 = 10.03 d50 = 4.21 in -> 6 in ----> Use Type VL (Class 6) riprap 2. Expansion Factor: 1/2tan0= 1.64 1 3. Riprap Length: ' At = QN = 6 ftZ L = 1/(2tan0)' (At/Yt - W) = 6 ft ' C Governing Limits: 5. Maximum Depth: L>3H 6 ft <=6ft-->OK L<10H= 20 ft =>6ft-->.OK ' Depth = 2d50 = 2 (6 in / 12) = 1 ft ' 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width (minimum): Width = 2H = 2 (2 ft) = 4 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type VL Class 6 riprap Length = 6 ft ' Depth = Width = 1 ft ft 1. Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 L:\JOBS\702100\DATA\DRAINAGE\RIPRAP\DP39 RIPRAP FOR RECTANGULAR CONDUITSI.XLS SEAR -BROWN PVHS By: AGW 702100 Riprap Rundown for Rectangular Conduit at DP39 S-t'R.1A-W (a - Checked: Updated: 2-Feb-04 °• pox Width: W 6 : ft Soil Type: Erosion Resistant Soil (Clay) ' Box Height: H 2 ':' : ft JMax Velocity: v 7.7 ft/sec Discharge: Q 125.25 . cfs Tailwater•: v 0.8 ft (unknown) ' Assume that y=0.4'H if tailwater conditions are unknown 1. Required riprap type: ' Q/WH^1.5 = 7.38 < 8 --> use design charts H = 2.00 ft YUH = 0.40 ' Q/WH^0.5 = 14.76 d50 = 6.20 in --> 9 in ' ----> Use Type L (Class 9) riprap 2. Expansion Factor: ' 1/2tan0= 1.08 3. Riprap Length: ' At = Q/V = 16 ft2 L = 1/(2tanO) " (At/Yt - W) = 16 ft Governing Limits: ' L>3H L<1OH= 6 20 ft <=16ft-->OK ft =>16ft-->OK 5. Maximum Depth: ' Depth = 2d50 = 2 (9 in / 12) = 1.5 ft ' 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width (minimum): Summary: Width = 2H = 2 (2 ft) = 4 ft (Extend riprap to minimum of culvert height or normal channel depth.) Type L (Class 9) riprap Length = 16 ft Depth = 1.5 ft Width = 4- ft dv Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 L:WOBS\702100\DATA\DRAINAGE\RIPRAP\DP 39 RIPRAP FOR RECTANGULAR CONDUITSI.XLS ' SEAR -BROWN PVHS By: AGW 702100 'Riprap Rundown for Rectangular Conduit at DP 42 Checked: Updated: 2-Feb-04 C,rvwu-0 1141 1 1 Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec unknown 1. Required riprap type: ' Q/WH^1.5 = 5.81 < 8 --> use design charts H = 2.00 ft Yt/H = 0.40 ' Q/WH^0.5 = 11.61 d50 = 4.88 in --> 6 in ----> Use Type VL (Class 6) riprap 2. Expansion Factor: ' 1/2tan0= 1.38 3. Riprap Length: At = Q/V = 26 ftZ L = 1/(2tanO) " (At/Yt - W) = 28 ft ' �.,... Governing Limits: ' L > 3H L < 1 OH = 6 20 ft <= 28 ft --> OK ft decrease length to 20 ft 5. Maximum Depth: ' Depth = 2d50 = 2 (6 in / 12) = 1 ft ' 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width (minimum): Width = 2H = 2 (2 ft) = 4 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type VL Class 6) riprap Length = 20 ft ' Depth = 1 ft Width = A4 ((, ft Reference: UDFCD USDCM, Vol. 1, Major.Drainage, Page MD-105 ' L:\JOBS\702100\DATA\DRAINAGE\RIPRAP\DP 42RIPRAP FOR RECTANGULAR CONDUITSI.XLS ' SEAR -BROWN PVHS By: AGW 702100 Riprap Rundown for Circular Conduit at DP 41 Checked: Updated: 2-Feb-04 Pipe Diameter: D 15 in Soil Type: Very Erodible Soil (Sand) Discharge: Q 10.09 cfS Max velocity. v 5.5 ft/sec Taiwwater*: y 0:5 ft unknown ' * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: ' Q/D"5 = 5.78 < 6 --> use design charts D = 1.25 ft YUD = 0.40 ' - Q/D111.5 = 7.22 d50 = 5.98 in -------> 6 in > Use Type VL (Class 6) riprap 2. Expansion Factor: ' 1/2tan0 = 1.97 3. Riprap Length: ' At = Q/V = 1.83 ft2 L = 1/2tane * (At/Yt - D) = 5 ft '-4. Governing Limits: J L>31D 4 ft <=5ft-->OK ' L<10D 13 ft =>5ft-->OK 5. Maximum Depth: ' Depth = 2d50 = 2 (6 in / 12) = 1 ft ' 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width: Width = 3D = 3 (15 in /12) = 4 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type VL (Class 6) riprap Length = 5 ft Depth = 1 ft Width = 4 ft 1 J Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 L:\JOBS\702100\DATA\DRAINAGE\RIPRAP\DP 41 RIPRAP FOR CIRCULAR CONDUITSI.XLS ' SEAR -BROWN PVHS By: AGW 702100 ' Riprap Rundown for Circular Conduit at DP 49 Checked: Updated: 2-Feb-04 ' Pipe Diameter: D 24 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 14.12 cfs Max Velocity: V 7.7 ft/sec Tailwater`: 0:8 ft unknown) ' ' Assume that y=0.4'D if tailwater conditions are unknown 1. Required riprap type: ' Q/D2.5 = 2.50 < 6 --> use design charts D = 2.00 ft YUD = 0.40 ' - Q/D^1.5 = 4.99 d50 = 4.14 in -------> 6 in ---> Use Type VL (Class 6) riprap 2. Expansion Factor: ' 1/2tan0= 5.06 3. Riprap Length: ' At = QN = 1.83 ft2 L = 1 /2tanO " (At/Yt - D) = 1 ft ' -4. Governing Limits: L> 3D 6 ft increase length to E ft ' L<10D 20 ft =>1ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width: Width = 3D = 3 (24 in /12) = 6 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type VL (Class 6) riprap ' Length = 6 ft Depth = 1 ft 1 Width = 6 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 ' L:\JOBS\702100\DATA\DRAINAGE\RIPRAP\DP49 RIPRAP FOR CIRCULAR CONDUITSI.XLS U SEAR -BROWN PVHS By: AGW 702100 Riprap Rundown for Circular Conduit at Pond Outfall Checked: ,—,Updated: 4-Feb-04 STt nab—L Pipe Diameter: D 30 in Soil Type: Erosion Resistant Soil (Clay) ' Discharge: Q 519 cfs Max Velocity: v 7.7 ft/sec Tailwater. 1`.6 ft known 1. Required riprap type: ' Q/D2.1 = 5.25 < 6 --> use design charts D = 2.50 ft Yt/D = 0.62 Q/D^1.5 = 13.13 d50 = 6.38 in -------> 9 in ----> Use Type L Klass 9) riprap ' 2. Expansion Factor: ' 1/2tan0= 4.34 3. Riprap Length: At = QN = 6.74 ft2 L = 1/2tan0 * (At/Yt - D) = 8 ft 1. Governing Limits: L>3D 8 ft <=8ft-->OK L<10D 25 ft =>8ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width: Width = 3D = 3 (30 in /12) = 8 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type L (Class 9) riprap ' ' Length = 8 ft Depth = 1.5 ft Width = 8 ft ' . J Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 L:\JOBS\702100\DATA\DRAINAGE\RIPRAP\SOUTH SWALE OUTFALL FROM POND RIPRAP FOR CIRCULAR CONDUITSI.XLS EROSION CONTROL CALCULATIONS 1 1 r 702100 1 1 1 1 1 1 1� 1 1 1 1 RAINFALL PERFORMANCE STANDARD EVALUATION Project• PVH Infrastructure STANDARD FORA; A Calculated By: JRG Date: 6/,12/2004 : DEVELOPED ERODIBILITY.,, Asb : - Lab •. - Ssb Lb - Sb `PS SUBBASIN - -..ZONE . ,; - (ac)... .(ft) .. --(.%) � (ft) ^1l°�1- .: lY•1 2 Moderate 0.15 60 2.00 0.8 0.03 42 Moderate 0.06 50 0.50 0.3 0.00 43 Moderate 3.14 720 0.50 193.4 0.13 44 Moderate 0.37 440 0.71 13.9 0.02 46 Moderate 0.39 440 0.71 14.7 0.02 46 Moderate 0.06 60 0.52 0.3 0.00 47 Moderate 0.06 60 0.52 0.3 0.00 48 Moderate 0.85 800 1.50 58.2 0.11 49 Moderate 0.73 700 1.50 43.7 0.09 60 Moderate 0.48 250 1.60 10.3 0.07 61 Moderate 0.62 250 1.60 13.3 0.08 62 Moderate 0.41 350 1.00 12.3 0.04 63 Moderate 0.22 350 1.00 6.6 0.02 104 Moderate 0.06 100 2.00 0.5 0.01 106 Moderate 0.30 580 2.00 14.9 0.05 106 Moderate 0.13 140 2.00 1.6 0.02 107 Moderate 0.34 350 2.00 10.2 0.06 108 Moderate 0.03 450 2.00 -1.2 0.01 ' 109 Moderate 0.38 450 2.00 14.6 0.07 110 Moderate 2.04 350 2.00 61.1 0.35 111 Moderate 0.87 750 2.00 55.8 0.15 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0,00 0.0 0.00 . • 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 0.00 0 0.00 0.0 0.00 0 Moderate 1 0.00 0 0.00 1 0.0 0.00 11.69 . _; • - ' '. - �.: 527.72 ,?.':1.33 ' 3': 478.67 r :.... i EQUATIONS _ 1 Lb = sum(AiLi)/sum(Ai) 527.7 It Sb = sum(AiSi)/sum(Ai) 1 = 1.33 % 1 J PS(duringeonstrucGon) 78.6 -(from Table 8A) PS:(after eoristriictron) , 78.6 10.85 1 11 1.� i EFFECTIVENESS CALCULATIONS 1 702100 1 I- I 1 1 1 1 1 1 I I Protect: PVH Infrastructure SFANOgRD FORM B Calculated B ; JRG Date: 5'J=0U Erosion Control. C-Factor, P-Factor Comment - ".Number Method.Value. :.Value 3 Bare Soil - Rough Irregular Surface 1 0.9 6 Gravel Filter 1 0.8 5 Straw Bale Barrier 1 0.8 6 Gravel Filter 1 0.8 8 Silt Fence Barrier 1 0.5 38 Gravel Mulch 0.05 1 39 Hay or Straw Dry Mulch (1-5% slope) 0.06 1 '1 SUB: :.'PS .. .AREA..... BASIN..' (%) .(ac) .' 1Site�j 78.61 11.69 SUB_ BASIN4'.AREA - - "SUB AREA, ' Practice C A P A Remarks - DURING CONSTRUCTION 2 Impervious 0.13 39 0.01 0.13 Hay or Straw Dry Mulch (1-5% slope) 2 Pervious 0.02 39 0.00 0.02 Hay or Straw Dry Mulch (1-5% slope) 42 Impervious 0.00 39 0.00 . 0.00 Hay or Straw Dry Mulch (1-5% slope) 42 Pervious 0.06 39 0.00 0.06 Hay or Straw Dry Mulch (1-5% slope) 43 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 43 Pervious 3.14 39 0.19 3.14 Hay or Straw Dry Mulch (1-5% slope) 44 Impervious 0.35 38 0.02 0.35 Gravel Mulch 44 Pervious 0.02 39 0.00 0.02 Hay or Straw Dry Mulch (1-5% slope) 45 Impervious 0.37 38 0.02 0.37 Gravel Mulch I 45 Pervious 0.02 39 0.00 0.02 Hay or Straw Dry Mulch (1-5% slope) 46 Impervious 0.06 38 0.00 0.06 Gravel Mulch 46 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 47 Impervious 0.01 38 0.00 0.01 Gravel Mulch I 47 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 48 Impervious 0.81 38 0.04 0.81 Gravel Mulch I 48 Pervious 0.04 39 0.00 0.04 Hay or Straw Dry Mulch (1-5% slope) 49 Impervious 0.69 38 0.03 0.69 Gravel Mulch I 49 Pervious 0.04 39 0.00 0.04 Hay or Straw Dry Mulch (1-5% slope) 50 Impervious 0.46 38 0.02 0.46 Gravel Mulch 50 Pervious 0.02 39 0.00 0.02 Hay or Straw Dry Mulch (1-5% slope) 51 Impervious 0.59 38 0.03 0.59 Gravel Mulch I 51 Pervious 0.03 39 0.00 0.03 Hay or Straw Dry Mulch (1-5% slope) 52 Impervious 0.39 38 0.02 0.39 Gravel Mulch I 52 Pervious 0.02 39 0.00 0.02 Hay or Straw Dry Mulch (1-5% slope) 53 _ Impervious 0.21 - 38 0.01 0.21 . - Gravel Mulch 53 Pervious 0.01 39 0.00 0.01 Hay or Straw Dry Mulch (1-5% slope) 104 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 104 Pervious 0.06 39 0.00 0.06 Hay or Straw Dry Mulch (1-5% slope) 105 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 105 Pervious 0.03 39 0.00 0.03 Hay or Straw Dry Mulch (1-5% slope) 1 SUB ' SUB .:AREA- - AREA 7T-Practice _ .(ac) ^C A P'A '- 'Remarks' - - 106 Impervious 0.12 39 0.01 0.12 Hay or Straw Dry Mulch (1-5% slope) 106 Pervious 0.01 39 0.00 0.01 Hay or Straw Dry Mulch (1-5% slope) 107 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 107 Pervious 0.34 39 0.02 0.34 Hay or Straw Dry Mulch (1-5% slope) 108 Impervious 0.03 39 0.00 0.03 Hay or Straw Dry Mulch (1-5% slope) 108 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 109 Impervious 0.34 39 0.02 0.34 Hay or Straw Dry Mulch (1-5% slope) 109 Pervious 0.04 39 0.00 0.04 Hay or Straw Dry Mulch (1-5% slope) 110 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 110 Pervious 2.04 39 0.12 2.04 Hay or Straw Dry Mulch (1-5% slope) 111 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 111 Pervious 0.87 39 0.05 0.87 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 . 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00, 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 01.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 6.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1.5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 _ .,---Impervious - 0.00 - 39 0.00 0.00 - Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) Cnet = 0.05 Pnet = 0.778055 EFF = (1-C-P)100 EFF >.. _ 7, .,_-95.7_ji > 78.6 PS Before I 1 0 I �I EFFECTIVENESS CALCULATIONS '- ,Erosion Control. ' ;' - Number -. Method . C-Factor Value P-Factor _ ; . Comment .Value • "' . 9 Asphalt/Concrete P Asphalt/Concrete Pavement 0.01 1 12 Established Grass Ground Cover- 30% 0.15 1 14 Established Grass Ground Cover - 50% 0.08 1 16 Established Grass Ground Cover - 70% 0.04 1 18 Established Grass Ground Cover - 90% 0.025 1 SUB . BASIN. PS' :. (%) ., AREA; •.:`(ac)� . Site 92.48 11.69 SUB '. BASIN SUB. I . ',AREA I ...AREA . • -, :....(act... I Practice 2 Impervious 0.130 9 2 Pervious 0.020 16 42 Impervious 0.000 9 42 Pervious 0.060 16 43 Impervious 0.000 9 43 Pervious 3.140 16 44 Impervious 0.350 9 44 Pervious 0.019 16 45 Impervious 0.370 9 45 Pervious 0.020 16 46 Impervious 0.057 9 46 Pervious 0.003 16 47 Impervious 0.006 9 47 Pervious 0.003 16 48 Impervious 0.810 9 48 Pervious 0.040 16 49 Impervious 0.690 9 49 Pervious 0.042 16 50 Impervious 0.460 9 50 Pervious 0.020 16 51 Impervious 0.590 9 51 Pervious 0.030 16 52 Impervious 0.390 9 52 Pervious 0.020 16 53 Impervious 0.210 9 53 Pervious 0.010 16 104 Impervious _ 0.000 _ 39 104 Pervious 0.060 39 105 Impervious 0.000 9 105 Pervious 0.030 16 106 Impervious 0.120 9 106 Pervious 0.010 16 107 Impervious 0.000 39 107 Pervious 0.340 39 108 Impervious 0.030 9 C • A. - P • A Remarks AFTER CONSTRUCTION 0.0013 0.13 Asphalt/Concrete Pavement 0.0008 0.02 Established Grass Ground Cover - 70% 0 0' Asphalt/Concrete Pavement 0.0024 0.06 Established Grass Ground Cover - 70% 0 0 Asphalt/Concrete Pavement 0.1256 3.14 Established Grass Ground Cover - 70% 0.0035 0.35 Asphalt/Concrete Pavement 0.00074 0.0185 Established Grass Ground Cover - 70% 0.0037 0.37 AsphalUConcrete Pavement 0.0008 0.02 Established Grass Ground Cover- 70% 0.00057 0.057 Asphalt/Concrete Pavement 0.00012 0.003 Established Grass Ground Cover - 70% 0.000057 0.0057 Asphalt/Concrete Pavement 0.00012 0.003 Established Grass Ground Cover - 70% 0.0081 0.81 Asphalt/Concrete Pavement 0.0016 0.04 Established Grass Ground Cover - 70% 0.0069 0.69 Asphalt/Concrete Pavement 0.001685 0.04213 Established Grass Ground Cover - 70% 0.0046 0.46 Asphalt/Concrete Pavement 0.0008 0.02 Established Grass Ground Cover - 70% 0.0059 0.59 Asphalt/Concrete Pavement 0.0012 0.03 Established Grass Ground Cover - 70% 0.0039 0.39 Asphalt/Concrete Pavement 0.0008 0.02 Established Grass Ground Cover- 70% 0.0021 0.21 Asphalt/Concrete Pavement 0.0004 0.01 Established Grass Ground Cover - 70% 0 0 - - Established Grass Ground Cover - 90% 0.0015 0.06 Established Grass Ground Cover - 90% 0 0 Asphalt/Concrete Pavement 0.0012 0.03 Established Grass Ground Cover - 70% 0.0012 0.12 Asphalt/Concrete Pavement 0.0004 0.01 Established Grass Ground Cover - 70% 0 0 Established Grass Ground Cover - 90% 0.0085 0.34 Established Grass Ground Cover - 90% 0.0003 0.03 Asphalt/Concrete Pavement I u 1 1 D 1 1 1 1 • SUB` '•BASIN. SUB.-' - AREA AREA Practice °"C .A' P•A 'Remarks 108 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 109 Impervious 0.340 9 0.0034 0.34 Asphalt/Concrete Pavement 109 Pervious 0.040 16 0.0016 0.04 Established Grass Ground Cover - 70% 110 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 110 Pervious 2.040 16 0.0816 2.04 Established Grass Ground Cover - 70% 111 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 111 Pervious 0.870 16 0.0348 0.87 Established Grass Ground Cover - 70% 0 Pervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Impervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Pervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Impervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 AsphaltConcrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 AsphalUConcrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover- 70% 0 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement- 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 AsphalUConcrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 AsphalUConcrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% • Cnet 0.0267059 Pnet :FF 0.97 - (1-C-P)100 > 92.5 PS After EROSION CONTROL CONSTRUCTION SEQUENCE PVH Infrastructure SEQUENCE FOR 2003 ONLY Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. YEAR 2004 2005 MONTH J J A S O N D J F M A M OVERLOTGRADING WIND EROSION CONTROL Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Sill Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation Neltings/MatslBlankels Other STRUCTURES: INSTALLED BY VEGETATION/MULCHING CONTRACTOR DATE SUBMITTED MAINTAINED BY APPROVED BY CITY OF FORT COLLINS ON EROSION CONTROL COST ESTIMATE Project: PVH Infrastructure 70122100 Prepared By: JRG Ua_te: 12_0 CITY RESEEDING COST Unit Total.., Method Quantity.` , Unit Cost Cost Notes Reseed/mulch 11.69 ac $723 $8,451.87 Subtotal $8,452 Contingency 50% $4,226 Total $12,678 Notes: 1. A<=5 ac=$655/ac; A>5 ac=$615/ac. EROSION CONTROL MEASURES' , Unit Total Number Method Quantity- Unit Cost Cost' ' Notes" " Vehicle Tracking Mat 18.5 CY $30 $555 6 Gravel Filter 6 ea $300 $1,800 6 Straw Bale Barrier 1 ea $150 $150 8 Silt Fence Barrier 2684 LF $3 $8,052 38 Gravel Mulch 3.94 ac $1,350 $5,319 39 Hay or Straw Dry Mulch (1-5% slope) 7.39 ac $500 $3,695 Subtotal $19,571 Contingency 50% $9,786 Total $29 357 29, 1 O m m 0 w 0 owww 0 m 0 0 m LO 0 o W 0 o Go V ' o w m m m 0 0{ m m m m m m m w 0 0O m aD a40 C a40 c0 a400 w w w M w 00 w w cc W co co a0 co� � W N o e M v w w w w w n n r n n n r r r r n r w w w w w w w m Vw Vw Vw Vw m m w `tm w m Vw ' - _o o w (V ado M V ww w w tow w w w ccoo w w I,- M m w r- m n owo w w w w � WcoD w cocod0mmc co w w 0 0 m m mOi m O w v N M V V N w w 10 w w w 10 w w w w *10 w n r r r r n o v m M M v V c V Ln 0 LO 0 w in w N 0 w w w w 00 n ' w Iq m m ccoo co m m w m w m coo w m coo coo coo M O 4 N w n w m V V � — — N N N N N M M M M M V V V V V O iCi N M M lh 6 M w w V V V V V V V V V V V V V V V V w w w w w w w w w w w w w w w w w w w w w w ' O w M V w w w w n n n w w w w w w 0 m m V V V 3 V N N M M M M M M M M M M M M M M M M M M M w w w w V w w w w w w w w w w w w w w w w w w w w w w w w f0 r n n r w w w m m O N N w M C-i M M vi 6 M M M M M M M M 6 ci 6 M ti M M M ' - V w w w w w w w w w w w w w w w w w w w w w w w w w Q O w r w M M N N M M M V V V V V t0 w w w w w r r OO N N N N N w w M M ch M M M M M M 6 th t7 6 fh to M M M M M w w w w w w w w w w w w w w w w w w w w w w w w ' O O M o N w w m N w N N M M N N N N N M V V N N N N V N V V N N U'1 N t0 N w N 0 N w N w N w w N N M w w w w w w w w w w w w w w w w w w w w w w w w w O N l0 m N M V r0 w n r r w w w m m m m m m N N N N N N w m O O w w w w w w O M w w w w m N N N N M M Cl) M M M O 00 O) w 0 0 0 0 0 0 w w w N n r w w w w w w w w w w w w w w w w w w w w O_ w_ N CO .--- V LO r r CO m m 0 .O .- —— ",N-" M M CO M M u9 w w w m m m m m m m m w w O O O O O O O O O O O O O ' r n n n n n n n r r r w w w w w w w w w w w w w O w M r V r 0 w .- N M M V V w w w w w w (D w r r w w w R v m r r; r-� i-.: r rb ro ro ao co ao a6 eo co m ro co ao rb ao ao m ro ao rr n r n r r n rr n n n r n n r r O 0 0 m N n V w r w w n n r w 0 to w V V M M N N m w V m w a 0 o O r N r N r N r N n N N N N N n n r r n N N N r r r N r N r N N n r N n N n r n O O n n U) O O O O O O O O O O O O O O O O O O O O O O O O O 0 J o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 oo6o6000000000000000004000 ' J O 0 N O M 0 V 0 w 0 w O 0 0 0 0 r w m 0 0 O O N M V 0 w 0 w O O n w O M 0 O 0 0 0 0 0 3 — — — — — — — — O LL 1 I i "TABLE 813" Erosion Control Methods and Costs Unit # Method C-Factor P-Factor Unit Cost Comment 1 Bare Soil - Packed and smooth 1 1 2 Bare Soil - Freshly disked 1 0.9 3 Bare Soil - Rough Irregular Surface 1 0.9 4 Sediment/Basin Trap 1 0.5. -Must be constructed as the first step in overlot grading. 5 Straw Bale Barrier 1 0.8 ea $150 6 Gravel Filter 1 0.8 ea $300 7 Sand Bag 1 0.8 8 Silt Fence Barrier 1 0.5 LF $3 9 Asphalt/Concrete Pavement 0.01 1 10 Established Grass Ground Cover- 10% 0.31 1 ac 11 Established Grass Ground Cover - 20% 0.22 1 ac 12 Established Grass Ground Cover -30% 0.15 1 ac 13 Established Grass Ground Cover - 40% 0.11 1 ac 14 Established Grass Ground Cover - 50% 0.08 1 ac • 15 Established Grass Ground Cover - 60% 0.06 1 ac 16 Established Grass Ground Cover - 70% 0.04 1 ac 17 Established Grass Ground Cover - 80% 0.03 1 ac 18 Established Grass Ground Cover - 90% 0.025 1 ac 19 Established Grass Ground Cover- 100% 0.02 1 ac - 20 Sod Grass 0.01 1 ac , 21 Temporary Vegetation 0.45 1 ac Assumes planting dates listed below, thus dry or hydraulic mulches are not required. 22 Cover Crops 0.45 1 ac Assumes planting dates listed below, thus dry or hydraulic mulches are not required. 23 Hydraulic Mulch @ 2 tons/acre 0.1 1 ac Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. 24 Soil Sealant 0.01 1 Value used must be substantiated by documentation. 25 Soil Sealant 0.05 1 Value used must be substantiated by documentation. 26 Soil Sealant ._ - 0.1 .. 1 --Value used must_be substantiated by documentation. 27 Soil Sealant 0.15 1 Value used must be substantiated by documentation. 28 Soil Sealant 0.2 1 Value used must be substantiated by documentation. 29 Soil Sealant 0.25 1 Value used must be substantiated by documentation. 30 Soil Sealant 0.3 1 Value used must be substantiated by documentation. 31 Soil Sealant 0.35 1 Value used must be substantiated by documentation. 32 Soil Sealant 0.4 1 Value used must be substantiated by documentation. 33 Soil Sealant 0.45 1 Value used must be substantiated by documentation. 34 Soil Sealant 0.5 1 Value used must be substantiated by documentation. 35 Soil Sealant 0.55 1 Value used must be substantiated by documentation. 36 Soil Sealant 0.6 1 Value used must be substantiated by documentation. 37 Erosion Control Mats/Blankets 0.1 1 38 Gravel Mulch 0.05 1 ac $1,350 Mulch shall consist of gravel having a diameter of approximately 1/4" to 1 1/2" and applied at a rate of at least 135 tons/acre. ' 39 Hay or Straw Dry Mulch (1-5% slope) 0.06 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tonsiacre (minimum) and adequately anchor, tack or crimp material into the soil. 40 Hay or Straw Dry Mulch (6-10% slope) 0.06 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tonstacre (minimum) and adequately anchor, tack or crimp material into the soil. 41 Hay or Straw Dry Mulch (11-15% slope) 0.07 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tans/acre (minimum) and adequately anchor, tack or crimp material into the soil. 42 Hay or Straw Dry Mulch (16-20% slope) 0.11 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil. 43 Hay or Strew Dry Mulch (21-25% slope) 0.14 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil. 44 Hay or Strew Dry Mulch (25-33% slope) 0.17 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tonslacre (minimum) and adequately anchor, tack or crimp material into the soil. ' 45 Hay or Straw Dry Mulch (>33% slope) 0.2 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tonslacre (minimum) and adequately anchor, tack or crimp material into the soil. ' 46 Contoured Furrow Surface (1-2% basin slope) 1 0.6 ac Maximum length = 400'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 47 Contoured Furrow Surface (3-5% basin slope) 1 0.5 ac Maximum length = 300'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. ' 48 Contoured Furrow Surface (6-8% basin slope) 49 Contoured Furrow Surface (9-12% basin slope) 1 1 0.5 0.6 ac ac Maximum length = 200'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. Maximum length = 120'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 50 Contoured Furrow Surface (13-16% basin slope) 1 0.7 ac Maximum length = 80'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 51 Contoured Furrow Surface (17-20% basin slope) 1 0.8 ac Maximum length = 60. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. �52 Contoured Furrow Surface (>20% basin slope) 1 0.9 ac Maximum length = 50'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 53 Terracing (1-2% basin slope) 1 0.12 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 54 Terracing (3-8% basin slope) 1 0.1 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 55 Terracing (9-12% basin slope) 1 0.12 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. ' 56 Terracing (13-16% basin slope) 1 0.14 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 57 Terracing (17-20% basin slope) 1 0.16 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 58 Terracing (>20% basin slope) 1 0.18 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 59 Seeding (Native) ac $305 CDOT - 1994 60 Seeding (Lawn) ac CDOT - 1994 61 Seeding (Shrub) lb $52 CDOT - 1994 ' 62 Seeding (Wetlands) ac $696 CDOT - 1994 , 63 Mulching ac $334 _ CDOT - 1994 L I 1 DRAINAGE & EROSION CONTROL 1 PLAN DRAWINGS & DETAILS 1 1 1 1 1 i 1 1 1 1 1 p -- ---- - �-� - - ------------- - --_-- -1177 - 9FOR � ya gY DRAI in REVI ONAGE "_azs'+" ___ _ -ts9' - ,O6 - g>1� NOTFOR I - _NLY _ TT r-Ti'1�� r 0.16 0.63 A � - �•'--- � y - I.0 ' r -/ = —_ CONSTRUCTION / ♦ - - - 1.Q ' Q n11 LT/' I VEHIClE TR1.CKING ♦ b _ 'I'/'�/-=`-_}_� ` PAID \� 7- 512 LF. SILT FEND III I m 7 - 6TB t' 1a I) �\ an/ II / /i``\` `\ I 50 51 EMENTS TO k n6y t'IA 1.IU rw / �w�GRA \ LET I \ 1\ 1 I 104 \�\\\\ I / _ 20 20 �� LTER �� \11\ 0 R3n 11111 CONSTRUCTION OF 105 PHASE A% k it 10 0.� 19 _ _ / VEHICLE GRAVEL INLET A5/ 1 b h a n ry o ♦ 17 / /I PAD , i _ ^,ry /� I FILTER F E E II•I I I '; 6 µ..o.. II .(,• asTAa Is / _ --�-- __`\. \�\�`\ J 49 �� SILT FENCE 1 z1oL s ,f(�� g 4ao \iu iI \> q/ RIP / k 8$ # 54pE ♦ P ♦ �+n� /I _ \ \ \\11 III II! 4E5 L.F. SILT FENCE � I / g� 1# II # k 1 ��� T \♦ _// / 1 \ \ \\ `\\\\ n/ /// \ --_/ / �F.a: #kx41 107 II I I I \ ! _�B Gy Q `tJ' �� // I / /.-• l 4—=�����_�#��i/i�f �` � � _ xBD � � 1105 L.F. SILT o w c oZw m 1wo wj Sa '�;'c_ _ / //���� I ♦ \ / /-- 1 III I / ' ' cf {3> --j ; I //CONSTRUCT ' —x °�� Etil \ EXAE gNOW MESA /WIDE ASPHALT / CONSTRUCT D6 - SIDEWi IN PHASE 1 126 C ION UCT3VWllE--- -., 108 / 1` RIM ROA2SEET•• 2]5 /CONtiiRU I IN PHASE2'ISEE ROAD-__'� yl, / / _ _��` \ �� \-\ `a _\ _ I I ll \ BECTIgN•A• THR / SWGT'(=NTIRE7 FIF/ IN PHASE 2 ST BIBLE >A,1NLETFILTER � __� ;1 � _-__ \ /III I II \ / / ♦_ � INTERIM ROAD SECTION �1- _ __ MVMIC?-(SEE R ISECTION OAD VEHI 1 II\ // Ill ' / I\ 1_ �__` - TH�- I\ / 51ry 1EE� V Z ESA W II TIT II I I �"� \I /// 1\y//// Ip \ �/11 d1 �'- n _ �•_ ��— _46 L s0S' 'R'� D:�O`�m$ f ysaa'^ SYSTEMINIII-M - a06 wu u 110 Ill 11 W \ I I�vr \l/\\ CONSTRUCT TEMPORnRY .�' Ay \ - 1 III \\• \ \ // t� -i'l "-.. ' / 1 ( 0 ALE IN PHAS 200B A 1II \\\\ \� =— REPLACEDBYI+�MIWENf/ LE IN P SWAHASFF�� 3 TTRR:KLE D IOU mD 500 42 .SILTF S9 C II j 1 30 \\\:�C`` ,wn� _G - _ — — - 9 a95 \ 1 4 .. / sr• =Ix FEET p CNLUTRO 00UCRA0O L�i_ CENTER OF COLORADO k - - - - --- - -- _ -= JB Q 5_ - - - - --- - - - 1-800-922-1987 4 - _ ___ _- _ _ - _ _ ` - B:gY r y NEW - i - °r /�� I � nZ 4` `/• / 6 J ru' rEueEn�rr�ns. W K `�,_/� f . JIUAn/ D zz 'i i� I r1 P; �� IMr� \ '��% /I 11A - \' 1� /� 'I Lei 0 NI,` II z LEGEND I NOTES ROAD SECTION ROAD SECTIDI ENN 0 NKyIT-rc-w"r xacv WAru wa'Aa �. ALL ENosION CONTROL MEASURES SHOWN ON THIS PLAN WILL BE FUTURE PAVEMENT WIDTH LL w PSISSES PAPFRTY ONE Iw MI WATER IVA NA SV INSTMLED AS PART OF TH E PHASE 3 IMPROVEMENTS TO BE INSTALLED WITH z W RIPRAs 38' WIDE N' WIDE O LATE OF GMSTYKTNN x.PONOSOWILLBECUNSTRUCTEDINNOYORE 2PHASEs PHI ASPHALT PHASE 3. p$pHpLT City of FOR Collins, CoI 3 K 0i WRE W1oVIDE CONSTRUCTION OF VTS OF THE POND, THE REMAINING FUTURE CURB S GUTTER THESE I INK BEEN REVIEWED BY TIE IY ---- PROPOSED 0.bM1NE ® BRYANONI...+FAY6C PORTION OF THE POND WILL BE CONSTRUCTED IN PHASE I THE FUTURE CURB BGUTTER UTILIT/PLAN APPRCVI f TO BE INSTALLED WITH LOCAL ENTITY FOR CONCEPT ONLY. ME --49IX--NEW AM CMTWRS CRAWL IWIT'�•..F CONSTRUCTION PHASING OF THE POND IS BASED ONSWMYNWELING TO BE INSTALLED WITH VPROW REVIEW D06 NOT IMPLY RE5PON51BILM BY oZ (SEE DRAINAGE REPORT). PHASE 3ITYP). PHASE 3ITYP). my Engineer Dole THE REVIEWING DEPARTMENT, THE LOCAL -+9Y1 NEW xTERYmIATE mxTw.Ws Ams� STRAW BAIL aEEM DAY E, W W --R9T1-EMISTNO CONMRS I 3. PHASING FOR THE CONSTRUCTION OF THE STREET INFRASTRUCTURE T_•j L_ __ CHECKED BY: ENTITY ENGINEER, OR ME LOCAL ENTITY FOR 3 2 WILL BE DETERMINED BY THE CITY OF FORT COaTNS WON EACH Wclerk Wwtewfer WIty Date ACCURMY AND CORRECTNESS OF ME a F�O �G— STRAW Bµ£ INLET ALlF NEW STOiY NtMN WIN YMUIGVF Q DEVELOPMENT SUeMITTK.PNOIS INCLUDED IN SHEETS CST16T@. PAVERMINED YGE TIE BE SEES HOT IMP Y TMERMORE, ME REVIEW CHECKED BY: DETERMINED BYG PREPARATION Sonar wr UUfty DaY ODES NOT INS THAT E FINIL O OF ITEMS PRDJEC! xo. -� ENmxE STORY Dnxx 4, THE NEWPHIRE OF 00CNmOLPUN WTILBEUPDATED IN NPENDHAS WITH EACH PAVERMINEDCTIONTOBE ENGINEER W/PR TOP OFKIN OF ON ME PLANS ARE THE FNLLOUANTRIE$ - ---PRDPr®swN-C 5.ANEWEROSIONONTRO-n,NABPTAS LEBENOTEDIEDWITHz. DETERMINEDBYGARATIONIOF SUBBELOW OWFISET TOPADEOFALT CIECKFDBY: ROOSTED. THERUN SHALLNOT E %02100 VEHICLE OF WALKING S.ANEw EROSION CONTR0. PLAN ABLE BE SUBMITTED WITH PHASE53 ENGINESUBGRJER Wi E.SET OPOFONOF ROAD, WFNSHFD GRADE OF PSMkReerwlwn Dx4 CONSTRUED INANTNFASON AS ACCEPTANCE AfOA SUB LOWFISETTOP GRADE ROAD. CHECKED BY: OF Fl FOR RESPONSIBILITY BY ME LOCAL DRAWING xo. ® vouaE TN"°°xC PAo 2'BELOW FINSHED GRADE OF ironic Engineer p'a4e ENTRY FOR PDomONA1 OUANTTE$ OF ITEMS Gx5200 _x— SILT FENCE ROAD. CHECKED BY: SHOWN THAT MAY BE REQUIRED DURING ME CONSfRUCT10N PHME. $Ii EET t 2 DF ® DEDTEMnN uxw Date ---- - ------ I 1 �5 ! ae— t � of \ q\\\ \ JAYS 14 IF `•AVIF 11 ,/ Y1j1II �11 NON -- Id // / I II 'id, IF IF, ILNd — Q`I> ! li/--��_15JIM 13 NUE. n3 %t i W )I / / _III 1 I I � f 41 1 I \ — 0. 105 ♦.S4 � 111 I III 5m W FF old i 109 j-T 108 25B jc 2.B5 i RCP rCDOT_ TYPE 13 INLET TYPE.D�LEiS -- IQ TYPE W 'x � ZC RCP ` —COOL TYPE D u r yYLESS tt r wdid /O� � I Or ON !�i iOII ddd-24- SO ON It a ��tle4I11i1'Nr1j� Call i SWALE SLOPE�DAOx A \ SxriE'A fi 0aux' — B I CS \ Im oa OF IV go on \ /IN an as to as am l TF➢WNO NCHE TH.W 3PIMSES. PHASEY PONDSUMMPAY In Do am JF ]A50F THE POND. ME REIMINWG Pg1p 5B3 WATFA WNITY `-i UNE •tlNGE VOLUME®1D YRSTCHM 61CPAGEV0.WEAT 1fOYR5TCNMm am Am CONSTRUCTED IN PHASE 3. THE 3.41 AG£I >31 M1GFT HIM AlWMM MCOELING CONSTRUCTKMI PHASING DOE I HE POND IS BASED ON3 Wi Etfl ]MSTORM EIEV. 1MYRSTCHMEI£/_ a as on (SEE IXUINAGE NEPIXiT) lBW.83 4B3 1847 b 31 am FOR THE CONSTRUCTION OF ME STREET INFRASTRUCTURE ]. PHASING WILL BE DETERMINED BY THE CITY OF FCd COLLINS lad EACH m am DEVELOPMENT SUBMITTAL. AND IS INCLUDED IN SHEETS CS70S7N.on A am NO am am LEGEND 0 am am 00 on DRAINAGE BASIN BOUNDARY LINE PLda agi Al Saili A am am G 1 100 to WATLR VAIEA WWAU Am 102 BASIN So �. MAfiS RIPRAPgo on on am ON Am ® pRANFpE DESMi1 POINT m FOR DRAINAGE REVIEW ONLY NOTFOR CONSTRUCTION A Cal I ON, e IYPICK SWKE L0.p555ELTION Rai 0 Iy-_I D $ _n TYPIC/ASW.YE CRMSSECTIpI �r l g LIFF OB 2$N C 47 dIN I RCp WU=+w D too aro Boo $GIE IH FEET Ito Oi NCO w• RCP ME UTILITY CADON CENIEA OFNCOLFIOMDO -- 24' EMSEE D Y L SHEET 1-800-922-1987 EE DETAIL BREET GIR ` OUTLET STRUCTURE SEE DETAIL `MEET CSECSIN ld CA No no rmEnunrtWs. K lot 2,515) In No No 143 Id lit No no am IV" lu No no 237 Ill in on no F im N aM In No MGON IlJx IN i No CA CA Id an L11 Iij, In UD CA CA City of Fort Collin .,ralUTILITY PLAT. 'd r'HOVAL THRE PUNB H4YE BEEN RENEWED BY THELOG- ENMY FOR CONCEPT ONLY. MEMPROMED:RENEW DOES NOT IMPLY RESPONSIBILITY BY Oh E.gineer DateTHE REVEWING DEPARTMENT, THE LOCAL(DECKED Br: EN11TY ENGINEER, OR THE LOCAL ENTITY FORWaer R WaeleMer U41Ry Dole ACCURACY AND CORRECTNESS OF ME CALCULATIONS. FURTHERMORE, THE RENEW go CODE CA no No a" 15,01 in all NJ CHECKED BY: -- am 414 am 100 MA DOES NOT INTACT THAT QUANTITIES OF ITEMS in Ism J,4 Do mSIaImWNer milky Uote ON ME PIANS ME ME FINAL QUANTITIES [02 Cr No.CA 13W all NOCHECKEDBY REQUIRED. THE RENEW SHALL. NOT BE an SN am ago zu? Pd k Recreation Date CONSTRUED IN MY REASON M ACCEPTMCEON goll)a FNANCIAL RESPONSIBIILRY BY THE LOCAL a �'am goomCHECKED Bt: TrM( Engineer Dote ENTRY FOR ADDINONLL OEMETIES OF ITEMS ZZOON loan on MA No add 21M am No NoSHOWN TINT MAY BE REQUIRED DURING MEOil 14,20 a" no ma CHECKED BY: DaNCONSTRUCTION PHASE EET 13 STRAW dAl ,e HIGHERMI TAND STAKES PER BALE �NE PUNT A �I 91=Y osc- II=1 THAN I1.11=n=1111=11=-I SECTIONAI g GENERAL NOTES: COMPACBACKRL� l 1. INSPECT, REPAIR, AND REPLACE, (IF NECESSARY. THE FILTERS AFTER EACH STORM NT 2. ALL BALES MUST BE REPLACED AFTER 12 MONTHS UNLESS APPROVAL 15 GRANTED BY THE ENGINEERING DIVISION FOR LONGER USE. PROFILE VIEW EROSION B TG CHECK DAM_ SEEDING CHART_ Table 11.2. pea mead asistance d Cow r seeds nd/oir MC Tem pororY an Crops. Species Saasan(1) Drilled Poundsil Annual Civi n Cool 20 Costs Cool 20 Cereal Rye Cool 40 Meet - Winter Cool 40 Meet - Spring Cool 60 Barley Cool 50 Millet Worm 30 Hybrid Sudan Worm 15 Sorghum Warm 10 Cool season grasses make their map growth in the spring. Warm weapon grasses make their map growth In late spring and summer. Table 11.4 identifies planting dotes for perenntal and temporary/cove crop grasses. Table 11.4. Planting Dales for Perennial and Temporary/Cover Crop Grosses, PERENNIAL TEMPORARY/COVER DAIS GRASSES CROP GRASSES Warm Cool Worm Cool Use 01 - Feb 28 Yes Yee No No Mar 01 - May 15 Yee Yes No Yes May 16 - May 31 Yes No Yes No Jun 01 - Jul 31 No No Yes No Aug 01 - Aug 31 No Yes No Yes Sap 01 - Sep 30 No No No Yes Oct 01 - Dec 31 Yes Yes No No Mulching shall be used to assist In establishment of vogelattan. One or more of the following mulches shall be used with a perenntal drytand grass mad mixture, R a temporary vegetation or cave crop. Mulch Acceptable Appllcat an Rate Ootea of use Straw Or Hay Jon 01 - Dec 31 2 tons/ocre Hydraulic (Whood or paper) Mar IS - May 15 2 tors/ecre Erasion central (mate or blankets) An 01 - Dec 31 Not ap4ncoble Hay or straw mulch shall be free of noxious weeds and at least 50E of the /bar shall be 10 Inches or more in length. When seeding with nolive grosses hay ham native grass is a suggested mulch ng material, If available. If Irrigation is used, hydraulic mulches may be applied Pram March 15 throng September W. Hay or Straw Mulch 1. Hay or straw mulch will be anchored to the soft by one of the fallowing methods: (a) A crimper which will crimp the fiber four inches or re Into the SOIL Al least 50% of the fiber Mall be 10 Inches or more In length. (D) Manufactured mulch netting instilled over the hay or straw according to manufacturers' instructions. (a) Tockifl" sprayed on the mulch to Me manufacturer's recommendation. 2. All straw or hay must be free of noxious weeds. OWRLO WIND Er Son R Perim April Vogel Son 5 Other RAINFAI STRUC Sod Intel Start Slit San Bari Con Tarr Asp OUR VEGET Pert Gm Hey Sod Erin Out CONSTRUCTION SEQUENCE YEAR 4 20 MONTH M A M AtI AlA S 0 N D J FS M GRADING OSON CONTRA ghaning ter Bomar heal Barriers tiro Methods talent EROSION CONTROL NRAL Hart Trap/Basin Filters w Barriers Tence Barriers SCgs Soil Preparation Car Furrows !DOD iyyConcrsle Paving r-Gravel Mulch HTVE'. nant Seed Planting (Pond) d Mulch of Straw Dry Mulch Installation - - lon cant fabOcurD auto STRUCTURES: INSTALLED BY.MAINTAIINED BY VEGETATION/Mbi-CHING CONTRACTOR DAM SUSM1nED— APPROVED BY CITY OF FORT COLLINS ON Site 1 0. Be 0' MIN 3. Not 314- FILTER LAVER ..tik TEMPORARY VEHICLE TRACKING CONTROL PAD SILT I�mro u�Rem Law Vox aLTMoo te4 NH None H .�'AIItss e F OA (M. DErAL Ml .eon u A V `..ra�ur No more � b w SECTIM! �. ELEVATION soils Or tie I ey �nMm ipe:s® 0 T e It w i MI®11"NIR�rnE SEDIMENT CONTROL FENCE it —NS.s. 1 NPDES PERMIT NOTES: 1 SlE OESCPIPPM'. 1 aMP'S1 S1MMt. iER PtlL M PREANTaN: a. alwutelty wlW etbl tM conselorm a CA, iwn L A! Notes end Sequence Table (this I" p'pamb helm, en D he mMe states, we p.... d N the IW mote oO D. Nat . tlm g mid soil Pnmtim: Brice el In tallattl pormnml Mrs w wleula d: unMiw o cmtml building tmuses n:mmlon a Ing euvttim. Hie a a d M �.�li: ee Cal whin. And C. me ere tonne ON; ..l1 atwwy n ......Whet All soy. e w As I" + w4wroo dwmq, a .wean gnadnmq. q Me thutmem Pond. VICh ulem.HNy All a piston° R oft mte. DUXdrq malerlde, Sete d. Re,md -0-. 025 her emet Cli . Raimal -G an,flesh D: uCto Mould o Petri Into meem- O01 after cone <l Ai ate Ilea with are Mmarab , Mkm ,: ✓m ... a Col they After Me X admaq zone and aw Redd EtMduity Zone pro In Me event If a M p me Cry of Fort China . MOPS Me °e. sit, 1 e Mon -sit. c Ion .ewer Mating site owes If a ro.P000eoyoZZoe, me mmiml ippc awe meawm N.uldi0e undwitoLore eN Io'wemmt. be eaebnM a Wield. i aw Me eamea Total d eAfl ere e. Predetelapment property y eLsts of felon laland, . ANAL .deal U LONG -TERt STCRWAT£R MANAGEM6Ri nu hall g..e. weetatesd o. ee oavm C.. VolIw 5 a whadolm I,d Pa atom. m amn.m.. di.Mmga I. othm palmlkl polutim w.cea ore looted nor. Me Mere 5. CONTROLS:a a1XER d be a en to waste q. downstream nultlnq w<w b Ns MCLIHImdI D.amoge BASIN pmdde anddisposea onb Wo o - Slmn a Hall M1wn the dwri pot lm of Ili d be.pThaitwo" d.Amle MR .M-YM ill.We XI M Vindi tat Oil detmlim Na .Mond haw. .II eadingao vd debris from Mkil aA k putt", east@. storm PWa, .n ... 6d store the ale M and den It Ed Orc W .ne roowap anduallmd to enter non- lwbd 2. SITE Ml 4"Ra op. a. Sm pMNAN, AT EoeM CmW Plan. 6, INSPECTIW AND MAINTENANCE'. Ord Maintenance Mwld he undeddkm OFw I . aed bavie a In secnm 6 .f use T"me and Conalime of the Cass GAfmdl Pmmll. order moo 0FILTER �L7mm� FILM WAl SECTOR A -A PLARMEW GENERAL NOTES: INSPECT AND APAA FXTEK Moro E 5T EVENT. More Sing 7Cop ME NAMOr THE ELW DEPTH NA5 B Hum. 4lgTE0 =NEW 5NN1 BE DEPOSTEO w AN MFA MWT NTFI511Rg T made M OH FlLexhatRE OM FRAM TRAVELED SAY K Rates. AREA INLET GRAVEL FILTER STANDARD EROSION AND SEDIMEWMNTROL CONSTRUCTION PLAN NOTES September, 2003 (1.) The erosion control inspector must be nonBed at least twenty -bur (24) hours puar to any Corley am an dds site. (2.)There shall be no earth -disturbing activity outside the limits designated on the accepted plans. (3.)All required perimeter silt and construction fencing shall be installatl prior to any land disturbing activity (stockpiling. stripping, grading, etc). All other required erosion control measures shall be installed at the appropriate time in Me calstmcteon sequences as indicated in the approved prolecl snedule, construction plans, and erosion control report. (4.) At all times during construction, the Developer shall be responsible for preventing and conto ling orthsier erosion including kmpng Me property sufficiently watered so as to minimize wind blown sediment. The Developer shall also be responsible fir installing and maintaining all erosion control facilities shown herein. IS) Pre -disturbance vegetation shall be protected and retained wherever possible. Removal or disturbance of sxiating vegetation shall be limited t0 the shall required for Immediate Construction Operations, and far May slip t praetical peace of Dme. (B.)All soils exposed during land disturbing activity (stripping, grading, utility installations, stockpiling, filling, etc.) shall be kept in a mughoned condition by ripping or disking along land contours until mulch, vegetation, or other permanent erosion control BMPl are insWIIW. No sills In areas outside project street tights -of -way shall remain exposed by land disturbing activity Ter more Man thirty(W)days before hundred temporary or permanent erosion control (e.g. se mmunch. landscaping, etc.) is instance, unless otherwise approved by Me City, layunty. IT.)In order to minimize erosion potential, all temporary(structural) erosion coneGl measures shall: (a.) Be inspected at a minimum of once every two (2) weeks and after each significant storm event and repaired or re ms"UW as necessary in order to ensure the conbnusd poHormance of Neer intended function. (b.) Remain in place until such time as all the surrounding disturbed areas are suf au try stabilized as Consensual by Me erosion Corarol inspector. (0)Be removed after the site has been sufficiently stabilized as determined by Me erosion eatlrol inspector. (B.) When temporary erosion control measures are removed, the Developer shall be responsible for the clean up and removal of all sediment and debris from all drainage infrastructure and athor mom facilities. Ie.) The cantractor shall immediately clean up any construction matenals madvertendy deposited on existing streets, sidewalks, or other public rights of way, and make sure streets and walkways are cleaned at Me end 0 each w ng day, (10.) All retained sediments, particularly those on paved roadway surfaces, shall be removed and despused of in a manner and IOCation so Be not to Cause their release Into any waters of Me UnitBd States. (11.) No soil stockpile shall exceed ten IT 0) feet in height. All soil stockpiles shall be protected from setliment Manse rt by surface roughening, watering, and perimeter sett fencing. Any sell stockpile remaining after MMy (30) days shall be seeded and mub W. (12.) The stonnwater volume capacity of detention ponds Will be resbred and storm sewer lines will be cleaned upon completion of the project and before turning the maintenance over to the City/County or Harneownem Assoceat)on (H04). (13.) City Ordinance and Colorado Discharge Permit System (COPS) requirements make it m1mvWl to discharge or allow the discharges Of any pollutant or contaminated water from constructon alias. Polwante include. but are net limelad to discarded building matenals,C retsbuct washout, chemicals, oil and gas products, lifter, and sanitary v. safe. The developer shall at an times take whatever measures are necessary to assure Me proper Containment and disposal of pollutants on the site in accordance with any and all applicable local, state, and federal regulations. (14.) A designated area shall OR provided on site for concrete i'.Ick chute washout. The area shall be constructed seas to centain washout material and located at least fifty (50) feet away from any wet V turning construction. Upon completion of cpnsmuctian acbvft a Me concrete washout material will be removed and properly dispose fpri WMeareabeingresWO, Conditions in Me field may warrant erosion control measures in al 1 to what Is shown on these pans. The Developer shall implement whatever measures are determined necessary, as directed by the Cory anry. CURB INLET O GRAVEL FILTER — (APPROK 3/4" of/ thd..,cM4,"d" WRY SCREEN FtttliM�� CQVCRETE (AG RO%. I/2" MESH) BLOCK IP ,moo STUD OV£R m t WATER RUNOFF k2mX4 VARE SCREENB INLET VEL FILTER;REEIN PLAN VIEW SECTION A GENERAL JTES: A I. INS T AND REPAIR FI LTERS AFTER EACH STORM EVENT. REM IE SEDIMENT KEEN ONE HALF DIME T THE FILTER DEPTH POSIT HAS i AREA FILLED. RIREMOVED SEDIMENT SHALL BE DEPOSITED FI TE AREA TRIBUTARY TO A SEDIMENT BASIN OR OTHER FILTI i<ING MEASURE. 2. SEDIMENT AND GRAVEL SHALL BE IMMEDIATELY REMOVED FROM TRAVELED WAY OF ROADS. EROSION CONTROL CURB INLET GRAVEL FILTER a CALL UTILITY NOTIFICATION CENTER OF cOLORADO 1-800-922-1987 YWolcaiRACE C REDSul AM THE M�NG OF LONOULGROUND City of Fort Collins, Colorado UTILITY PLAN APPROVAL City fantasy OIEO(Ed BT WSW k Ieeles UMMY ARCED ED of: mormwak Ul 01ECRED BY: Pero k Beerestba OQDEED BY: TreBM oglewr CHEIGED Bib iE PLANS HAVE BEEN RENEWED BY THE OF FORT COLLINS FORCONCEPT ONLY. THE EW DOES NOT IMPLY RESPONSIBILITY BY REMEWMG DEPARTMENT, THE Ott W FORT THIS ENGINEER, OR THE CITY OF FORT INS FOR ACCURACY AND CORRECTNESS OP FINANCIAL RESPONSIBILITY BY THE CITY OF IT COLLINS FOR ADDITIONAL OUANIIIIES OF ES SHOWN THAT MAY BE REQUIRED DURING CONSTRUCTION PHASE. FDA AM GBu qfi 5 a" 3 Nan moth Co Au 4 Aw Z 5 OIL —1 0 Do LY Of F Z 0 yQU O R O LL Of W Of1 1- 0 4 oot N 0- � F� DRAWING Na. CS 221 SHEET 14 OF