Loading...
HomeMy WebLinkAboutDrainage Reports - 08/23/2002v! , 4 11 1ANA * Final Drainage and Erosion Control Report For PINNACLE TOWNHOMES P.D.P. (Project Development Plan) Fort Collins, Colorado Prepared for: Pinnacle FTC, LLC 1083 Wild Cherry Lane Ft. Collins, Colorado 80521 Prepared by: SHEAR ENGINEERING CORPORATION Project No: 1555-02-00 Date: July, 2002 4836 S. College, Suite 12 Ft. Collins, CO 80525 (970) 226-5334 Fax (970) 282-0311 www.shearengineering.com Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado TABLE OF CONTENTS I. INTRODUCTION II. GENERAL LOCATION AND DESCRIPTION A. Project Location B. -Description of The Project III. DRAINAGE BASINS AND SUB -BASINS 2 A. Major Basin Description 2 B. Sub -Basin Description 3 C. Historic Conditions 3 D. Developed Conditions 3 IV. DRAINAGE DESIGN CRITERIA 4 A. Regulations 4 B. Development Criteria Reference and Constraints 4 C. Hydrologic Criteria 5 D. Hydraulic Criteria 5 V. DRAINAGE FACILITY DESIGN 6 A. General Concept 6 B. Specific Details — Detention 6 C. Specific Details — Street Capacities 6 D. Specific Details — Swale Capacities 7 E. Specific Details — Inlet and Storm Sewer 7 VI. FLOODPLAIN DESIGN AND PROTECTION 8 A. General Concept 8 B. Specific Details 8 VH. WATER QUALITY 10 A. General Concept 10 B. Specific Details 10 VIII. EROSION CONTROL 11 A. General Concept 11 B. Performance and Effectiveness Requirements 12 IX. VARIANCE FROM CITY STANDARDS 13 A. Variance From City of Fort Collins Requirements 13 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado X. CONCLUSIONS 13 A. Compliance With Standards 13 B. Drainage Concept 13 XI. REFERENCES 13 APPENDIX I Drainage Calculations APPENDIX II Erosion Control Calculations Erosion Control Cost Estimate APPENDIX III Floodplain Documents APPENDIX IV Charts and Figures APPENDIX V Stuffer Envelope Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado I. INTRODUCTION: 1. This report presents the pertinent data, methods, assumptions, references and calculations used in analyzing and preparing the final drainage, erosion control and water quality (WQ) design for the Pinnacle Townhomes site. H. GENERAL LOCATION AND DESCRIPTION A. Project Location 1. Pinnacle Townhomes is located in the northwest one quarter (1/4) of Section 24, T7N, R68W of the 6th P.M., Larimer County (Ft. Collins), Colorado. 2. More specifically, the Pinnacle Townhomes site is located approximately 1,250 feet west of the intersection of East Prospect Road and Lemay Avenue on the south side of East Prospect Road. The site is directly south of the intersection of East Prospect Road and Robertson Street. 3. The site is bounded by East Prospect Road on the north, by Spring Creek on the south, and by unplatted properties to the east and to the west. 4. The site includes two (2) parcels including the previously platted "Pinnacle P.U.D." parcel and the parcel to the west of the "Pinnacle P.U.D." parcel identified as 813 Prospect Road. a. The Pinnacle P.U.D. plat was recorded in 1986. B. Description of Project 1. Pinnacle Townhomes is a proposed residential subdivision in Fort Collins, Colorado. The overall subdivision consists of 50 Townhome units and three (3) single-family homes for a total of 53 units. a. There is an existing single family home located in the extreme northwest corner of the site (Lot 17). This single family home will remain as part of this development. 2. Pinnacle Townhomes has a platted area of approximately 6.739 acres. 3. The site is currently vacant and mainly covered by native vegetation. Page 1 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado 4. A small part of the site is delineated as wetlands. This area is located in the south-central portion of the site. Delineation of the wetland is presented on the Overall Master Drainage and Erosion Control Plan. 5. There are two (2) major trunk sanitary sewer mains located on the southern portion of the project site. These mains are situated north of Spring Creek. 6. There is an existing public bike/pedestrian path — Spring Creek Trail — located on the southern portion of the project site near Spring Creek. III. DRAINAGE BASINS AND SUB -BASINS A. Major Basin Description 1. This site is located in the Spring Creek Basin as delineated on the City of Fort Collins Stormwater Basin Map. All runoff from the site will be conveyed to Spring Creek. 2. This portion of the Spring Creek Basin is primarily developed with single family and multi -family developments. 3. A portion of the site is located within the Spring Creek floodplain as delineated on Sheet 4 of 25 of the Spring_ Creek Flood Insurance Study, prepared by Greenhorne & O'Mara. 4. Modifications to the Spring Creek 100-year water surface elevations are presented in Floodplain Modeling Report for Pinnacle P.D.P., prepared by Northern Engineering Services, Inc. a. The floodplain modeling report considered higher rainfall standards recently adopted by the City of Fort Collins. b. Spring Creek 100-year floodplain elevations were slightly modified based on the amended rainfall. c. Northern's report may be found in Appendix III for immediate reference. 5. The Spring Creek floodplain and floodway are represented on the Flood Insurance Rate Map, community panel 0801020012C. a. This sheet is included in Appendix V for immediate reference. Page 2 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomcs; Ft. Collins, Colorado b. All of the Pinnacle Townhome structures are out of the FEMA 100-year floodplain as defined on the Flood Insurance Rate Man, community panel 0801020012C. B. Sub -Basin Description 1. The site generally slopes from north to south towards Spring Creek. Relief across the site ranges from five feet (5') to fifteen feet (15'). C. Historic Conditions The overall site is currently undeveloped. One (1) existing single-family structure is on the site. 2. The undeveloped site consists of one major basin (Site) with the following properties: Design Point Minor Basin Area ac C2 C100 Q2 cfs Q100 cfs 5 Site 6.3 0.25 0.31 3.12 13.62 Additional technical information can be found in Appendix I of this report. 3. There are existing wetlands on the south-central portion of the site. This area will remain undisturbed by the development. D. Developed Conditions 1. Development of the site will create three distinct sub -basins (A, B, and C) with five minor -basins (Al, A2, B1, B2, and C) making up the three sub - basins, all of which are within the limits of the site. All three sub -basins will contribute runoff to the proposed water quality pond. 2. It should be noted that the floodplain and floodway determined for and presented within this report apply only to the Pinnacle Townhomes P.D.P. Property owners wanting to know floodplain and floodway data for this area should contact the City of Fort Collins. Page 3 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado IV. DRAINAGE DESIGN CRITERIA A. Regulations 1. This report was prepared in accordance with the requirements of the current storm drainage design criteria from the City of Fort Collins Drainage Criteria Manual. 2. All floodplain protection requirements were implemented based on the Spring Creek Flood Insurance Study, and the Floodplain Modeling Report for Pinnacle P.D.P. B. Development Criteria Reference and Constraints 1. Grading along East Prospect Road will match existing street grades for the existing curb and gutter. 2. All grading at the east and west property line will match existing grades. 3. All grading near the south portion of the site will be minimal due to the proximity of Spring Creek, Spring Creek Trail, and the two (2) City of Fort Collins sanitary sewer trunk mains previously mentioned. 4. Portions of the site lie within the current 100-year floodplain of Spring Creek. Any structure located within the limits of the 100-year floodplain will have its lowest floor elevation (including basement or crawl space) defined at 18" above the 100-year water surface elevation. No basements are allowed in areas located within the limits of the floodplain. 5. No detention for site runoff is required for this project. As stated in Spring Creek 100-year Hydrograph for Pinnacle PDP, prepared by Northern Engineering Services, Inc., regarding Spring Creek: The hydrograph for conveyance element 425 has a maximum peak of 3275.5 cfs occurring at approximately 3 hours 5 minutes after the beginning of a 100 year storm. Comparison of the developed condition runoff time of concentration to the hydrograph's time to peak should show that Pinnacle P.D.P in its developed condition beats the peak of Spring Creek, and should not be required to provide detention of developed storm water. a. The maximum developed time of concentration for the 100-year storm for the project is 12.5 minutes. Page 4 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado b. Since the maximum developed time of concentration is 12.5 minutes, which is less than the time to maximum peak for the 100-year storm on Spring Creek, no quantity detention is included in the design. c. A copy of Northern Engineering Services, Inc.'s report is available for immediate review in Appendix III. C. Hydrologic Criteria Runoff calculations at various design points have been based on the "Rational" Method. The 2-year and 100-year storms have been analyzed. All runoff calculations have been performed using the current City of Fort Collins rainfall IDF curves from Figure 3-1. a. The following table summarizes developed conditions: Design Point Minor Basin Area ac C2 C100 Q2 cfs Q100 cfs 1 Al 1.76 0.65 0.82 2.50 11.33 2 A2 0.80 0.86 1.00 2.74 8.80 3 131 1.09 0.58 0.73 1.38 6.13 4 132 1.00 0.51 0.64 2.04 7.02 5 C 1 1.65 1 0.34 0.42 2.23 7.67 Design Point Sub- Basin Area ac C2 C100 Q2 cfs Q100 cfs 2 A 2.56. 0.72 0.90 3.70 16.42 4 B 2.09 0.55 0.69 2.49 11.05 5 C 6.3 0.56 0.70 7.01 31.14 Additional technical information can be found in Appendix 1 of this report. D. Hydraulic Criteria All internal subdivision streets have been designated as "Residential Local" with a 30' wide street (flowline to flowline) in a 51' right-of- way. a. Street capacities have been based on the Manning's equation. Manning's coefficients have been followed as suggested in the City of Fort Collins Drainage Criteria Manual. Page 5 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado V. DRAINAGE FACILITY DESIGN A. General Concept Streets will convey all stormwater runoff to the WQ pond and ultimately to Spring Creek. 2. Water "quantity" detention will not be provided due to the site's proximity to Spring Creek and the project maximum time of concentration relative to the time to peak for Spring Creek. Refer to item IV.13.5. above. 3. Water Quality measures have been provided. B. Specific Details - Detention Stormwater quantity detention was not provided for this project. Please refer to the discussion in section IV.B.5. of this report. C. Specific Details - Street Capacities Street capacities have been determined for all internal "Local" streets and alleys for the minor and major storms according to City of Fort Collins criteria. The internal streets will convey stormwater runoff to the WQ pond. The capacities were reduced by the appropriate reduction factor from Figure 4-2 to obtain the allowable capacities. The slopes of the streets in the subdivision range from 0.5% - 3.9%. a. The 2-year capacity of the "local" street with varying slopes is as follows: Initial Storm 30' Street Reduced Street Gutter Slope Discharge Capacities ft/ft) (cfs) (cfs 0.005 8.21 6.57 0.010 11.61 9.29 0.015 14.22 11.38 0.020 16.43 13.14 0.025 18.36 14.69 0.030 20.12 16.10 0.035 21.73 17.38 0.040 23.23 18.58 Page 6 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado The 2-year capacity of the "local" street is based on "no curb overtopping" according to Table 4-1 and Figure 4-2. Street capacities were calculated using Haestads FlowMaster program. b. The 100-year capacity of the "local" street with varying slopes is as follows: Major Storm 30' Street Reduced Street Gutter Slope Discharge Ca acities ft/it) (cfs) (cfs 0.005 53.49 42.79 0.010 75.64 60.51 0.015 92.64 74.11 0.020 106.98 85.58 0.025 119.60 95.68 0.030 131.02 104.82 0.035 141.52 113.22 0.040 151.29 121.03 The 100-year capacity of the "local" street is based on the depth of water not exceeding 6" over the crown according to Table 4-2 and Figure 4-2. Street capacities were calculated using Haestads FlowMaster program. C. The highest peak flow at any concentration point, concentration point five (5), is 31.14 cfs. D. Specific Details — Swale Capacities 1. Swale cross -sections are provided according to swale capacity requirements for the peak 100-year storm flows. a. All swales are designed to be triangular in shape with 4:1 side slopes and a V-shaped pan. b. A "Grass Lined Swale Summary" table is presented on the Overall Master Drainage and Erosion Control Plan. This table presents design points, swale sections, and swale configurations. Flow depth and freeboard for both 2 and 100-year events are included. E. Specific Details — Inlet and Storm Sewer Storm sewers have been designed to pass the 100-year flow. Page Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado 2. Several storm sewer culverts have been designed which are sized according with the following schedule: Culvert ID Diameter inQuantity A 18 1 B 24 2 C 18 2 D 18 2 E 24 1 3. Storm sewer culverts B and C are to be located beneath the Spring Creek Trail. Cover over these storm sewer culverts include 6" of fill then the concrete trail. Installation of these two culverts will require demolition of portions of the existing trail, culverts placed, appropriately backfilled, and the concrete trail surface be reconstructed. VI. FLOODPLAIN DESIGN AND PROTECTION A. General Concept Structures located within the limits of the Spring Creek 100-year floodplain will have its lowest floor elevation defined at 18" above the 100-year water surface elevation. The lowest floor elevation is defined as: a. The bottom of the crawlspace, and b. The elevation of the finished floor if the building is constructed as a slab on grade structure. 2. 100-year Floodplain Water Surface Elevations a. Cross sections defined with the original Spring Creek Flood Insurance Study are noted on the floodplain exhibit. b. Revised 100-year water surface elevations including additional cross sections as determined and provided in Floodplain Modeling Report for Pinnacle P.D.P., are noted on the floodplain exhibit. B. Specific Details Two (2) structures are partially located within the limits of the revised Spring Creek 100-year floodplain. Page 8 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado a. One single-family residence located in the extreme southeast corner of the site (Lot 52). i. The highest 100-year water surface elevation at Lot 52 is 4952.16. ii. The flood protection elevation at Lot 52 is 4953.66. iii. The actual finished floor elevation for Lot 52 is set at 4956.00. b. The four plex townhome unit (Lots 48-51) i. The highest 100-year water surface elevation at the four plex townhome unit (Lots 48-51) is 4952.80. ii. The flood protection elevation at the four plex townhome unit (Lots 48-51) is 4954.30. iii. The actual finished floor elevation of the four plex townhome unit (Lots 48-51) is 4956.00. 2. The following table summarizes the 100-year water surface and flood protection elevations, and actual finished floor elevations for all lots. Pinnacle Townhomes Base Flood Elevation vs. Minimum Opening Elevation Buildin # Base Flood Elevation T Min. Allowable Finished Grade Elevation (FT) Min. Allowable Top of Wall Elevation (FT) Design (Actual) Top of Wall Elevation F 8 Plex w/ Units 1-8 4952.80 4956.30 4956.80 4958.60 8 Plex w/ Units 9-16 4952.80 4956.30 4956.80 4960.57 17 4954.02 4957.52 4958.02 - 18 4954.02 4957.52 4958.02 4962.07 19 4953.82 4957.32 4957.82 4992.07 20 4953.82 4957.32 4957.82 4962.07 21 4953.64 4957.14 4957.64 4962.07 22 4953.64 4957.14 4957.64 4962.07 23 4953.12 4956.62 4957.12 4961.43 24 4953.12 4956.62 4957.12 4961.43 25 4953.12 4956.62 4957.12 4961.43 26 4953.12 4956.62 4957.12 4961.43 27 4953.12 4956.62 4957.12 4961.43 Page 9 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado Pinnacle Townhomes Base Flood Elevation vs. Minimum Opening Elevation Building # Base Flood Elevation (FT) Min. Allowable Finished Grade Elevation (FT) Min. Allowable Top of Wall Elevation T) Design (Actual) Top of Wall Elevation FT 28 4953.96 4957.46 4957.96 4959.90 29 4953.96 4957.46 4957.96 4959.90 30 4953.73 4957.23 4957.73 4959.90 31 4953.73 4957.23 4957.73 4959.90 32 4953.41 4956.91 4957.41 4959.50 33 4953.41 4956.91 4957.41 4959.50 34 4953.18 4956.68 4957.18 4959.20 35 4953.18 4956.68 4957.18 4959.20 36 4953.75 4957.25 4957.75 4957.80 37 4953.75 4957.25 4957.75 4957.80 38 4953.75 4957.25 4957.75 4957.80 39 4953.75 4957.25 4957.75 4957.80 40 4952.80 4956.30 4956.80 4959.30 41 4952.80 4956.30 4956.80 4959.30 42 4952.80 4956.30 4956.80 4959.30 43 4952.80 4956.30 4956.80 4959.30 44 4952.80 4956.30 4956.80 4958.70 45 4952.80 4956.30 4956.80 4958.70 46 4952.50 4956.00 4956.50 4958.30 47 4952.50 4956.00 4956.50 4958.30 48 4952.80 4953.80 4954.30 4956.00 49 4952.80 4953.80 4954.30 4956.00 50 4952.80 4953.80 4954.30 4956.00 51 4952.80 4953.80 4954.30 4956.00 52 4952.16 4953.16 4953.66 4956.00 53 4954.46 4957.96 4958.46 4959.17 3. Due to site constraints, the placing storm drainage structures within the floodway was unavoidable. This necessitated placing fill (approximately 150 cubic feet) within the floodway to raise the existing sidewalks. This fill is balanced by the cut (approximately 350 cubic feet) required to construct the swale between storm sewers C and D. VII. WATER QUALITY A. General Concept Water quality measures have been. provided in accordance with generally accepted water quality and Best Management practices. Page 10 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado B. Specific Details 1. Water quality detention storage requirements have been determined. Approximately 5,531 cubic feet of storage is required based on the total percent impervious of the site. 2. The WQ pond and related discharge structures have been designed and detailed, and are presented in the utility plans. 3. WQ Berm and Emergency Release Structure a. All site drainage will be conveyed through the WQ pond, including the 100-year storm. The WQ WSEL and the corresponding emergency overflow weir elevation is 4952.00 feet. ii. The water quality capture volume (WQCV) is required to be released over a period of 40 hours. An orifice plate with four holes of 9/16" in diameter has been designed. This plate is located at the base of a 4' x 4' water quality outlet structure. This design follows criteria as per Urban Storm Drainage Criteria Manual (Best Management Practices). iii. The 4' x 4' water quality outlet structure is designed to pass the 100-year storm. iv. In the event of the water quality outlet structure and outlet pipe becoming completely blocked, a 35' emergency overflow weir, centered above the outlet pipe, is provided. To direct this flow, a portion of the berm has been raised '/2 foot to a top -of -bank elevation of 4952.5. VIII. EROSION CONTROL A. General Concept 1. Erosion Control measures are specified on, the Final Drainage and Erosion Control Plan. These measures will minimize the amount of erosion that occurs during development of the site. These measures will include the following: a. Haybales in all swales. Page I Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado b. Silt fence on entire east and west side of property as well as on the south side of the property, located slightly north of the Spring Creek Channel. C. Wheel cleaning station at the project construction entrance/ exit. 2. Maintenance of all erosion control devices will remain the responsibility of the contractor and the owner until the project is complete. 3. Riprap Sizing a. Calculations for riprap sizing are included in Appendix I. b. Class 6 riprap is provided at the outlet of the 18" diameter WQCV pipe. C. Dimensions of riprap aprons are based on standard criteria: Length is a product of 3 times pipe diameter, width is 2 times pipe diameter, and depth of riprap shall be ,placed at 1.5 times its D50. For channels with two culverts, riprap apron widths shall extend to both ends of flared end section. B. Performance and Effectiveness Requirements I. Performance standards and effectiveness calculations have been completed and are available for review in Appendix II. a. The basins used performance and effectiveness calculations are the same as those used for drainage. For basin areas, see the Drainage and Erosion Control Plan. b. Temporary erosion control measures which affect effectiveness calculations and are to be installed on the site during construction include a silt fence along the west, south, and east property lines. 2. According to page 22 of the Erosion Control Reference Manual of the City of Fort Collins Storm Drainage Design Criteria Manual, the overall effectiveness for a site must be greater than the overall performance standard for that site. a. The performance standard for Pinnacle Townhomes is 79.74%. b. The overall effectiveness for Pinnacle Townhomes is 92.06%. Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado C. Because the overall effectiveness is greater than the performance standard, Pinnacle Townhomes meets performance and effectiveness standards. IX. VARIANCE FROM CITY STANDARDS: A. Variance From City of Fort Collins Requirements The east and west swales located at the south end of the property which release flow into the water quality pond are required to release 11.05 cfs and 16.42 cfs respectively. A variance is requested to disregard the minimum 1.0 foot of freeboard required for swales, according to section 7.2 of the City of Fort Collins Storm Drainage Design Criteria and Construction Standards. This variance is requested since both swales are .located above existing sewer lines, which would result in undesirable excavation in these locations. X. CONCLUSIONS: A. Compliance With Standards 1. The grading and drainage design for Pinnacle Townhomes complies with the City of Fort Collins Storm Drainage Design Criteria and Construction Standards; and Fort Collins Municipal Code, Article II, Chapter 10, Sections 10-51, 10-52, 10-53, and 10-5. 2. All erosion control measures comply with the City of Fort Collins Erosion Control Reference Manual and generally accepted erosion control practices. 3. All water quality measures comply with City of Fort Collins water quality standards and generally accepted water quality practices. B. Drainage Concept 1. The proposed drainage design for Pinnacle Townhomes is effective for the control of storm runoff. Page 13 Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomcs; Ft. Collins, Colorado XI. REFERENCES Urban Storm Drainage Criteria Manual Vol. - 3 Best Management Practices. Urban Drainage and Flood Control District; CH2M Hill, Denver, CO.; September 1999 City of Fort Collins Municipal Code Chapter 10 — Flood Protection and Prevention; Fort Collins, CO: Colorado Code Publishing Company, Fort Collins, CO: Updated 10/29/01 City of Fort Collins Storm Drainage Design Criteria and Construction Standards; Fort Collins, CO: May 1984; Revised May 1997 City of Fort Collins Erosion Control Reference Manual; City of Fort Collins, CO: January 1991. Floodplain Modeling Report for Pinnacle P.D.P Fort Collins. Colorado; Northern Engineering Services, Inc., Ft. Collins, CO.; October 31, 2001; Northern Project No: PIN; 01-026.00 Memorandum: Spring Creek 100-year Hydrograph for Pinnacle PDP, Fort Collins, Colorado; Northern Engineering Services, Inc., Ft. Collins, CO.; September 21, 2001 Flood Insurance Rate Map (FIRM) City of Fort Collins Colorado, Larimer County Community -Panel Number 080102 0012 C; Revised March 18, 1996, Federal Emergency Management Agency National Flood Insurance Program Spring Creek Flood Insurance Study. Sheet 4 of 25 dated July, 1993; Greenhorne & O'Mara, Inc.; Aurora, CO.; Project No: 4126-000-415 Geotechnical Engineering Resort Proposed Pinnacle Townhomes. South of Prospect Road North of Spring Creek and West of Lemay Avenue Fort Collins. Colorado; October 10, 2001; Terracon, Ft. Collins, CO; Terracon Project No. 20015202 Urban Storm Drainage Criteria Manual. Vols. 1 and 2. Urban Drainage and Flood Control District; March, 1969; Wright — McLaughlin Engineers, Denver, CO. Page 14 Project No: 1555-02-00 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado APPENDIX I Drainage Calculations July, 2002 Project No: 1555-02-00 Shear Engineering Corporation Pinnacle Townhomes runoff By: DAH Pinnacle Townhomes 06/13/02 Runoff N O Q co co 6i V O i co 0 0 o U t CD 3 C 0 N F c CM cca C C W c @ 'a N 'L^ vI O O N O = LO Q LO p LO o c z rn M to N 7 0 Q^ C)O M 00 - CD O Q O a — --rn N O Q o0 Q rn O C\ - Vl r M O N r Q 0 a M N N N N M N rl. U nl A O N O O 1.0 N Q p C\ = O [- O O w O (, C. O N n 00 C% C) C) 0—ON N G N Q N V V N N ^ H u CD W) 0 C. 0 0 0 O F OO r1 C\ N O N N f i O N H C) 00 O O 00 CD OD O C) cUs H C M O N O N N NC 16; o 0 0 0 0 0 L _NMUC) 0 0 0 0E65 [14 0100CN C) MONO� r _C n 00 0 0 V v1 O M 0¢ O C:) N N V Cz. C c U rh Q Wl N Q Vl o to C n CL a Q fJ N y a1 a N 0 CD m m d O C 7 W O E O L C 3 0 F � 0 U co coE c E C =3 a cn Job No. 1555-02-00 Shear Engineering Corporation 06/13/02 Designer: dah Pinnacle Townhomes 9:44 AM Existing Site Breakdown Design Area C2,10 Point Basin acres 5 1 6.30 0.25 Developed Site Breakdown Design Minor Area C2,10 Point Basin acres 1 Al 1.76 0.65 2 A2 0.80 0.86 3 B1 1.09 0.58 4 B2 1.00 .0.51 5 C 1.65 0.34 Total 6.30 0.56 Design Sub Point Basin 2 A 2.56 0.72 4 B 2.09 0.55 5 A,B,C 6.30 0.56 C100Asphalt Lawn Undev. Check 0.95 0.30 0.25 0.31 0.00 0.00 6.30 6.30 C100 Asphalt Gravel Concrete Lawn Roof Check 0.95 0.50 0.95 0.20 0.95 0.82 0.40 0.00 0.20 0.70 0.46 1.76 1.00 0.28 0.00 0.05 0.10 0.37 0.80 0.73 0.29 0.00 0.11 0.53. 0.16 1.09 0.64 0.16 0.00 0.09 0.58 0.17 1.00 0.42 0..07 0.00 0.09 1.35 0.14 1.65 0.70 1.21 0.00 0.54 3.26 1.29 6.30 0.90 0.69 0.70 Notes Developed sub -basins A, B, and C contribute runoff to the water quality pond. Pinnacle Townhomes runoff Coefficient Page 2 of 2 Project No: 1555-02-00 Shear Engineering Corporation 06/13/02 By: DAH Pinnacle Townhomes 9:44 AM Historic Flow to Design Point From Minor -basin AREA (A) 6.300 ACRES RUNOFF COEF. (C) 2 YEAR 10 YEAR100 YEAR C 0.25 0.25 0.31 5 Site TIME OF CONCENTRATION (Tc) OVERLAND TRAVEL TIME(Ti;(1.87*(1.1-C*Cf)*L�0.5)/S"0.33 LENGTH 600.00 FEET SLOPE 2.50 2 YEAR 10 YEAR100 YEAR C 0.25 0.25 0.31 Ti (min) 28.78 28.78 26.66 TRAVEL TIME (TO=L/(60*V ALL VELOCITIES TAKEN FROM FIGURE 3-2 Length Slope Flow Typ Velocity Gutter 0.00 0.00 TOTAL TRAVEL TIME (min) 0.00 LENGTH = 600.00 L/180+10 = 13.33 < 26.66 Tc=Ti+TOTAL TRAVEL TIME 2 YEAR 10 YEAR100 YEAR Tc (min) 13.33 13.33 13.33 USE Tc = 13.00 13.00 13.00 INTENSITY (I) (i-INTENSITIES TAKEN FROM FIGURE 3-1 2 YEAR 10' YEAR 100 YEAR I 1.98 3.39 6.92 RUNOFF (Q= CIA) (cfs) 2 YEAR 10 YEAR100 YEAR Q 3.12 5.34 13.62 [�Li]�L�F�1i1N� Pinnacle Townhomes runoff Historic Page 1 of 1 Job No. 1555-02-00 Shear Engineering Corporation 06/13/02 Designer: dah Pinnacle Townhomes 9:45 AM Developed Conditions Flow to Design Point From Minor -basin AREA (A)= 1.760 ACRES RUNOFF COEF. (C) 2 YEAR C = 0.65 10 YEAR 100 YEAR 0.65 0.82 1 Al TIME OF CONCENTRATION (Tc) OVERLAND TRAVEL TIME (Ti) (1.87*(1.1-C*Cf)*LA0.5)/S"0.33 LENGTH = 90.00 FEET SLOPE 6.40 2 YEAR 10 YEAR 100 YEAR C 0.30 0.30 0.38 Ti (min)= 7.69 7.69 6.97 TRAVEL TIME (Tt)=L/(60*V)ALL VELOCITIES TAKEN FROM FIGURE 3-2 Length Slope Flow Type Velocity 335.00 0.93 Gutter 1.88 2.97 TOTAL TRAVEL TIME (min) - 2.97 LENGTH = 425.00 L/180+10 = 12.36 > 9.94 Tc =Ti+TOTAL TRAVEL TIME 2 YEAR 10 YEAR 100 YEAR Tc (min)= 10.66 10.66 9.94 USE Tc = 10.50 10.50 9.50 INTENSITY (I) (ipiINTENSITIES TAKEN FROM FIGURE 3-1 2 YEAR 10 YEAR 100 YEAR I = 2.17 3.71 7.88 RUNOFF (Q= CIA) (Cfs) 2 YEAR 10 YEAR 100 YEAR Q = 2.50 4.26 11.33 CONCLUDE: Pinnacle Townhomes runoff Developed Page 1 of 8 Job No. 1555-02-00 Shear Engineering Corporation 06/13/02 Designer: dah Pinnacle Townhomes 9:45 AM Developed Conditions Flow to Design Point From Minor -basin AREA (A)= 0.800 ACRES RUNOFF COEF. (C) 2 YEAR 10 YEAR 100 YEAR C 0.86 0.86 1.00 2 A2 TIME OF CONCENTRATION (Tc) OVERLAND TRAVEL TIME (Ti) (1.87*(1.1-C*Cf)*L-0.5)/S-0.33 LENGTH = 0.00 FEET SLOPE = 1.00 % 2 YEAR 10 YEAR 100 YEAR C z 0.20 0.20 0.25 Ti (min)= 0.00 0.00 0.00 TRAVEL TIME (Tt)=L/(60*V)ALL VELOCITIES TAKEN FROM FIGURE 3-2 Length Slope Flow Type Velocity 320.00 1.78 Gutter 2.36 2.26 TOTAL TRAVEL TIME (min) - 2.26 LENGTH = 320.00 L/180+10 = 11.78 > 2.26 Tc=Ti+TOTAL TRAVEL TIME 2 YEAR 10 YEAR 100 YEAR Tc (min)= 2.26 2.26 2.26 USE Tc = 2.00 2.00 2.00 INTENSITY (I) (ipkINTENSITIES TAKEN FROM FIGURE 3-1 2 YEAR 10 YEAR 100 YEAR I = 4.00 6.50 11.00 RUNOFF (Q= CIA) (cfs) 2 YEAR 10 YEAR 100 YEAR Q 2.74 4.45 8.80 X-Oluelli )f -91bg Pinnacle Townhomes runoff Developed Page 2 of 8 Job No. 1555-02-00 Shear Engineering Corporation 06/13/02 Designer: dah Pinnacle Townhomes 9:45 AM Developed Conditions Flow to Design Point 3 From Minor -basin B1 AREA (A)= 1.090 ACRES RUNOFF COEF. (C) 2 YEAR 10 YEAR 100 YEAR C 0.58 0.58 0.73 TIME OF CONCENTRATION (Tc) OVERLAND TRAVEL TIME (Ti) (1.87*(1.1-C*Cf)*L�0.5)/S"0.33 LENGTH = 50.00 FEET SLOPE 2.00 % 2 YEAR 10 YEAR 100 YEAR C 0.30 0.30 0.38 Ti (min)= 8.42 8.42 7.63 TRAVEL TIME (Tt) =L/(60*V)ALL VELOCITIES TAKEN FROM FIGURE 3-2 Length Slope Flow Type Velocity 295.00 1.43 gutter 2.00 2.46 gutter 0.00 0.00 Lawn 0.00 0.00 none 0.00 0.00 none 0.00 0.00 TOTAL TRAVEL TIME (min) = 2.46 LENGTH = 345.00 L/180+10 = 11.92 > 10.08 Tc=Ti+TOTAL TRAVEL TIME 2 YEAR 10 YEAR 100 YEAR Tc (min)= 10.87 10.87 10.08 USE Tc = 10.50 10.50 10.00 INTENSITY (I) (ipkINTENSITIES TAKEN FROM FIGURE 3-1 2 YEAR 10 YEAR 100 YEAR I = 2.17 3.71 7.72 RUNOFF (Q= CIA) (cfs) 2 YEAR 10 YEAR 100 YEAR. Q = 1.38 2.35 6.13 CONCLUDE: Pinnacle Townhomes runoff Developed Page 3 of 8 Job No. 1555-02-00 Shear Engineering Corporation 06/13/02 Designer: dah Pinnacle Townhomes 9:45 AM Developed Conditions Flow to Design Point From Minor -basin AREA (A)= 1.000 ACRES RUNOFF COEF. (C) 2 YEAR 10 YEAR 100 YEAR C = 0.51 0.51 0.64 4 B2 TIME OF CONCENTRATION (Tc) OVERLAND TRAVEL TIME (Ti) (1.87*(1.1-C*Cf)*L�0.5)/S�0.33 LENGTH = 0.00 FEET SLOPE = 1.00 % 2 YEAR 10 YEAR 100 YEAR C = 0.20 0.20 0.25 Ti (min)= 0.00 0.00 0.00 TRAVEL TIME (Tt)=L/(60*V)ALL VELOCITIES TAKEN FROM FIGURE 3-22 Length Slope Flow Type Velocity 250.00 0.63 Gutter 1.61 2.59 90.00 0.50 Swale 1.11 1.35 TOTAL TRAVEL TIME (min) = 2.59 LENGTH = 340.00 L/180+10 = 11.89 > 2.59 Tc =Ti+TOTAL TRAVEL TIME 2 YEAR 10 YEAR 100 YEAR Tc (min) 2.59 2.59 2.59 USE Tc = 2.50 2.50 2.50 INTENSITY (I) (iptINTENSITIES TAKEN FROM FIGURE 3-1 2 YEAR 10 YEAR 100 YEAR I = 4.00 6.50 11.00 RUNOFF (Q= CIA) (cfs) 2 YEAR 10 YEAR 100 YEAR Q = 2.04 3.32 ' 7.02 CONCLUDE: U Pinnacle Townhomes runoff Developed Page 4 of 8 Job No. 1555-02-00 Shear Engineering Corporation 06/13/02 Designer: dah Pinnacle Townhomes 9:45 AM Developed Conditions Flow to Design Point From Minor -basin AREA (A)= 1.650 ACRES RUNOFF COEF. (C) 2 YEAR 10 YEAR 100 YEAR C 0.34 0.34 0.42 5 C TIME OF CONCENTRATION (TO OVERLAND TRAVEL TIME (Ti) (1.87*(1.1-C*Cf)*L�0.5)/S"0.33 LENGTH = 0.00 FEET SLOPE = 1.00 % 2. YEAR 10 YEAR 100 YEAR C = 0.20 0.20 0.25 Ti (min)= 0.00 0.00 0.00 TRAVEL TIME (Tt)=L/(60*V)ALL VELOCITIES TAKEN FROM FIGURE 3-2 Length Slope Flow Type Velocity 190.00 1.25 Swale 1.58 2.00 TOTAL TRAVEL TIME (min) - 2.00 LENGTH = 190.00 L/180+10 = 11.06 > 2.00 Tc =Ti+TOTAL TRAVEL TIME 2 YEAR 10 YEAR 100 YEAR Tc (min) 2.00 2.00 2.00 USE Tc = 2.00 2.00 2.00 INTENSITY (I) (ipkINTENSITIES TAKEN FROM FIGURE 3-1 2 YEAR 10 YEAR 100 YEAR I 4.00 6.50 11.00 RUNOFF (Q= CIA) (cfs) 2 YEAR 10 YEAR 100 YEAR Q = 2.23 3.63 7.67 CONCLUDE: Pinnacle Townhomes runoff Developed Page 5 of 8 Job No. 1555-02-00 Shear Engineering Corporation 06/13/02 Designer: dah Pinnacle Townhomes 9:45 AM Developed Conditions Flow to Design Point From Sub Basin AREA (A)= 2.560 ACRES RUNOFF COEF. (C) 2 YEAR 10 YEAR 100 YEAR C 0.72 0.72 0.90 2 A TIME OF CONCENTRATION (TC) OVERLAND TRAVEL TIME (Ti) (1.87*(1.1-C*Cf)*L"0.5)/S�0.33 LENGTH 90.00 FEET SLOPE 6.40 % 2 YEAR 10 YEAR 100 YEAR C = 0.30 0.30 0.38 Ti (min)= 7.69 7.69 6.97 TRAVEL TIME (TO=L/(60*V)ALL VELOCITIES TAKEN FROM FIGURE 3-2 Length Slope Flow Type Velocity 335.00 0.93 Gutter 1.88 2.97 320.00 1.78 gutter 2.36 2.26 TOTAL TRAVEL TIME (min) = 5.23 LENGTH = 745.00 L/180+10 = 14.14 > 12.20 Tc=Ti+TOTAL TRAVEL TIME 2 YEAR 10 YEAR 100 YEAR Tc (min) 12.92 12.92 12.20 USE Tc = 12.50 12.50 12.00 INTENSITY (I) (ipiIntensities from Fig. 3-1 2 YEAR 10 YEAR 100 YEAR I = 2.02 3.45 7.16 RUNOFF (Q= CIA) (cfs) 2 YEAR 10 YEAR 100 YEAR Q = 3.70 6.32 16.42 CONCLUDE: Pinnacle Townhomes runoff Developed Page 6 of 8 Job No. 1555-02-00 Shear Engineering Corporation 06/13/02 Designer: dah Pinnacle Townhomes 9:45 AM Developed Conditions Flow to Design Point From Minor.Basin AREA (A)= 2.090 ACRES RUNOFF COEF. (C) 2 YEAR 10 YEAR 100 YEAR C = 0.55 0.55 0.69 4 B TIME OF CONCENTRATION (TC) OVERLAND TRAVEL TIME (Ti) (1.87*(1.1-C*Cf)*L�0.5)/S"0.33 LENGTH = 50.00 FEET SLOPE 2.00 2 YEAR 10 YEAR 100 YEAR C = 0.30 0.30 0.38 Ti (min)= 8.42 8.42 7.63 TRAVEL TIME (Tt)=L/(60*V)ALL VELOCITIES TAKEN FROM FIGURE 3-2 Length Slope Flow Type Velocity 295.00 1.43 gutter 2.00 2.46 250.00 0.63 gutter 1.61 2.59 90.00 0.50 Swale 1.11 1.35 TOTAL TRAVEL TIME (min) 2.46 LENGTH = 685.00 L/180+10 = 13.81 > 10.08 Tc =Ti+TOTAL TRAVEL TIME 2 YEAR 10 YEAR 100 YEAR Tc (min) 10.87 10.87 10.08 USE Tc = 10.50 10.50 10.00 INTENSITY (I) (ipkINTENSITIES TAKEN FROM FIGURE 3-1 2 YEAR 10 YEAR 100 YEAR I = 2.17 3.71 7.72 RUNOFF (Q= CIA) (cfs) 2 YEAR 10 YEAR 100 YEAR Q = 2.49 4.24 11.05 CONCLUDE: Pinnacle Townhomes runoff Developed Page 7 of 8 Job No. 1555-02-00 Shear Engineering Corporation 06/13/02 Designer: dah Pinnacle Townhomes 9:45 AM Developed Conditions Flow to Design Point From Minor Basin 5 A,B,C AREA (A)= 6.300 ACRES RUNOFF COEF. (C) 2 YEAR 10 YEAR 100 YEAR C 0.56 0.56 0.70 TIME OF CONCENTRATION (Tc) OVERLAND TRAVEL TIME (Ti) (1.87*(1.1-C*Cf)*L% .5)/S% .33 LENGTH 50.00 FEET SLOPE = 2.00 2 YEAR 10 YEAR 100 YEAR C 0.30 0.30 0.38 Ti (min)= 8.42 8.42, 7.63 TRAVEL TIME (Tt)=L/(60*V)ALL VELOCITIES TAKEN FROM FIGURE 3-2 Length Slope Flow TypeVelocity 295.00 1.43 gutter 2.00 2.46 250.00 0.63 gutter 1.61 2.59 90.00 0.50 Swale 1.11 1.35 190.00 1.25 swale 1.58 2.00 TOTAL TRAVEL TIME (min) = 5.05 LENGTH = 875.00 L/180+10 = 14.86 > 12.67 Tc =Ti+TOTAL TRAVEL TIME 2 YEAR 10 YEAR 100 YEAR Tc (min) 13.46 13.46 12.67 USE Tc = 13.00 13.00 12.50 INTENSITY (I) (iptINTENSITIES TAKEN FROM FIGURE 3-1 2 YEAR 10 YEAR 100 YEAR I = 1.98 3.39 7.04 RUNOFF (Q= CIA) (cfs) 2 YEAR 10 YEAR 100 YEAR Q = 7.01 11.99 31.14 Pinnacle Townhomes runoff Developed Page 8 of 8 Project No: 1555-02-00 Shear Engineering Corporation Pinnacle Townhomes runoff By: DAH Pinnacle Townhomes 06/13/02 Water Quality Worksheet Worksheet for Circular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet South Culverts 18" (Storm A) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Diameter 18.00 in Discharge 0.04 cfs Results DepthA08 ft Flow Area 0.03 ft2 Wetted Perimeter 0.69 ft Top Width 0.66 ft Critical Depth 0.07 ft Percent Full 5.18 Critical Slope 0.007065 ft/ft Velocity 1.10 ft/s Velocity Head 0.02 ft Specific Energy 0.10 ft Froude Number 0.85 Maximum Discharge 7.99 cfs Full Flow Capacity 7.43 cfs Full Flow Slope 0.133651 a-6 ft/ft Flow is subcritical. Notes: There is a single 18" culvert designed to pass the detention volume of 5531 cf over 40 hours (.0384 cfs). An 18" pipe is the minimum allowed. 06/13/02 FlowMaster v5.13 12:37:34 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708, (203) 755-1666 Page 1 of 1 Table Rating Table for Circular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet South Culverts 18" (Storm A) Flow Element Circular Channel Method . Manning's Formula Solve For Channel Depth Constant Data Mannings Coefficient 0.013 Diameter 18.00 in Discharge 0.04 cfs Input Data Minimum Maximum Increment Channel Slope 0.005000 0.050000 0.002500 ft/ft Rating Table Channel Wetted Slope Depth Flow Area Top Width Perimeter Velocity (ft/ft) (ft) (ft') (ft) (ft) (ft/s) 0.005000 0.08 0.03 0.66 0.69 1.10 0.007500 0.07 0.03 0.64 0.66 1.27 0.010000 0.07 0.03 0.62 0.63 1.41 0.012500 0.06 0.03 0.60 0.62 1.52 0.015000 0.06 0.02 0.59 0.60 1.62 0.017500 0.06 0.02 0.58 0.59 1.71 0.020000 0.06 0.02 0.57 0.58 1.79 0.022500 0.05 0.02 0.56 0.58 1.86 0.025000 0.05 0.02 0.56 0.57 1.93 0.027500 0.05 0.02 0.55 0.56 2.00 0.030000 0.05 0.02 0.54 0.56 2.06 0.032500 0.05 0.02 0.54 0.55 2.12 0.035000 0.05 0.02 0.53 0.55 2.17 0.037500 0.05 0.02 0.53 0.54 2.22 0.040000 0.05 0.02 0.53 0.54 2.27 0.042500 0.05 0.02 0.52 0.53 2.32 0.045000 0.05 0.02 0.52 0.53 2.37 0.047500 0.05 0.02 0.52 0.53 2.41 0.050000 0.05 0.02 0.51 0.52 2.46 06/13/02 FlowMaster v5.13 12:42:35 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet South Culverts 24" (Storm B) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Diameter 24.00 in Discharge 15.57 cfs Results Depth 1.59 ft Flow Area 2.68 ft' Wetted Perimeter 4.41 ft Top Width 1.61 ft Critical Depth 1.42 ft Percent Full 79.66 Critical Slope 0.006483 ft/ft Velocity 5.80 ft/s Velocity Head 0.52 ft Specific Energy 2.12 ft . Froude Number 0.79 Maximum Discharge 17.21 cfs Full Flow Capacity 16.00 cfs Full Flow Slope 0.004737 ft/ft Flow is subcritical. Notes: There are two parallel culverts, each passing one half of the design flow of 31.14 cfs. 06/13/02 FlowMaster v5.13 12:42:56 PM Haostad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Table Rating Table for Circular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet South Culverts 24" (Storm 6) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Constant Data Mannings Coefficient 0.013 Diameter 24.00 in Discharge 15.57 cfs Input Data Minimum Maximum Increment Channel Slope 0.005000 0.050000 0.002500 ft/ft Rating Table Channel Wetted Slope Depth Flow Area Top Width Perimeter Velocity (fuft) (ft) (ft') (ft) (ft) Qvs) 0.005000 0.007500 0.010000 0.012500 0.015000 0.017500 0.020000 0.022500 0.025000 0.027500 0.030000 0.032500 0.035000 0.037500 0.040000 0.042500 0.045000 0.047500 0.050000 1.59 1.35 1.22 1.13 1.07 1.02 0.98 0.95 0.92 0.90 0.88 0.86 0.84 0.82 0.81 2.68 2.25 2.01 1.84 1.72 1.62 1.54 1.47 1.42 1.37 1.32 1.29 1.25 1.22 1.19 1.61 1.88 1.95 1.98 1.99 2.00 2.00 2.00 1.99 1.99 1.98 1.98 1.97 1.97 1.96 0.80 1.17 1.96 0.78 1.14 1.95 0.77 1.12 1.95 0.76 1.10 1.94 4.41 3.85 3.58 3.41 3.29 3.19 3.11 3.04 2.99 2.94 2.89 2.85 2.82 2.79 2.76 2.73 2.71 2.68 2.66 5.80 6.92 7.76 8.47 9.08 9.62 10.11 10.57 10.99 11.39 11.76 12.11 12.44 12.76 13.07 13.36 13.64 13.91 14.17 06/13/02 FlowMaster v5.13 12:43:10 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Culverts @ South End of Site Worksheet for Circular Channel Project Description Project File d:lhaestadlfmwlpinnacle.fm2 Worksheet South Culverts 18" (Storm C and D) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Diameter 18.00 in Discharge 5.53 cfs Results Depth 0.96 ft Flow Area 1.20 ftz Wetted Perimeter 2.79 ft Top Width 1.44 ft Critical Depth 0.91 ft Percent Full 64.25 Critical Slope 0.005998 ft/ft Velocity 4.61 ft/s Velocity Head 0.33 ft Specific Energy 1.29 ft Froude Number 0.89 Maximum Discharge 7.99 cfs Full Flow Capacity 7.43 cfs Full Flow Slope 0.002767 ft/ft Flow is subcritical. Notes: There are two parallel 18" culverts, each passing one half of the design flow of 11.05 cfs. 06/13/02 FlowMaster v5.13 12:43:22 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Table Rating Table for Circular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet South Culverts 18" (Storm C and D) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Constant Data Mannings Coefficient 0.013 Diameter 18.00 in Discharge 5.53 cfs Input Data Minimum Maximum Increment Channel Slope 0.005000 0.050000 0.002500 ft/ft ; Rating Table Channel Wetted Slope Depth Flow Area Top Width Perimeter Velocity (ft/ft) (ft) (ftz) (ft) (ft) (ft/s) 0.005000 0.96 1.20 1.44 2.79 4.61 0.007500 0.84 1.02 1.49 2.54 5.40 0.010000 0.77 0.92 1.50 2.40 6.02 0.012500 0.72 0.84 1.50 2.30 6.54 0.015000 0.69 0.79 1.49 2.23 7.00 0.017500 0.66 0.75 1.49 2.17 7.41 0.020000 0.63 0.71 1.48 2.12 7.79 0.022500 0.61 0.68 1.47 2.08 8.13 0.025000 0.60 0.65 1.47 2.05 8.45 0.027500 0.58 0.63 1.46 2.01 8.75 0.030000 0.57 0.61 1.45 1.99 9.03 0.032500 0.55 0.59 1.45 1.96 9.30 0.035000 0.54 0.58 1.44 1.94 9.55 0.037500 0.53 0.56 1.44 1.92 9.79 0.040000 0.53 0.55 1.43 1.90 10.02 0.042500 0.52 0.54 1.43 1.88 10.24 0.045000 0.51 0.53 1.42 1.87 10.46 0.047500 0.50 0.52 1.42 1.85 10.66 0.050000 0.50 0.51 1.41 1.84 10.86 06/13/02 FlowMaster v5.13 12:43:33 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755.1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet South Culverts 24" (Storm E) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Diameter 24.00 in Discharge 16.42 cfs Results Depth 1.69 ft Flow Area 2.83 ftz Wetted Perimeter 4.67 ft Top Width 1.44 ft Critical Depth 1.46 ft Percent Full 84.57 Critical Slope 0.006746 ft/ft Velocity 5.79 ft/s Velocity Head 0.52 ft Specific Energy 2.21 ft Froude Number 0.73 Maximum Discharge 17.21 . cfs Full Flow Capacity 16.00 cfs Full Flow Slope 0.005269 ft/ft Flow is subcritical. Notes: Storm E is a single culvert passing the design flow of 16.42 cfs. 06/13/02 FlowMaster v5.13 12:43:49 PM Haestad Methods. Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 Table Rating Table for Circular Channel Project Description Project File d:\haestad\fmvApinnacle.fm2 Worksheet South Culverts 24" (Storm E) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Constant Data Mannings Coefficient 0.013 Diameter 24.00 in Discharge 16.42 cfs Data Minimum Maximum Increment Channel Slope 0.005000 0.050000 0.002500 ft/ft Rating Table Channel Wetted Slope Depth Flow Area Top Width Perimeter Velocity (ft/ft) (ft) ff) (ft) (ft) (fus) 0.005000 1.69 2.83 1.44 4.67 5.79 0.007500 1.40 2.35 1.83 3.97 6.98 0.010000 1.26 2.09 1.93 3.67 7.85 0.012500 1.17 1.92 1.97 3.49 8.57 0.015000 1.11 1.79 1.99 3.36 9.19 0.017500 1.06 1.68 2.00 3.26 9.75 0.020000 1.02 1.60 2.00 3.17 10.25 0.022500 0.98 1.53 2.00 3.10 10.71 0.025000 0.95 1.47 2.00 3.04 11.14 0.027500 0.93 1.42 1.99 2.99 11.54 0.030000 0.90 1.38 1.99 2.95 11.92 0.032500 0.88 1.34 1.99 2.91 12.28 0.035000 0.86 1.30 1.98 2.87 12.62 0.037500 0.85 1.27 1.98 2.84 12.94 0.040000 0.83 1.24 1.97 2.81 13.25 0.042500 0.82 1.21 1.97 2.78 13.55 0.045000 0.81 1.19 1.96 2.75 13.84 0.047500 0.79 1.16 1.96 2.73 14.11 0.050000 0.78 1.14 1.95 2.71 14.38 06/13/02 FlowMaster v5.13 12:43:59 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755.1666 Page 1 of 1 Project No: 1555-02-00 Shear Engineering Corporation Pinnacle Townhomes runoff By: DAH Pinnacle Townhomes 06/13/02 Riprap Summary Project No: 1555-02-00 Shear Engineering Corporation 06/13/02 By: dah Pinnacle Townhomes 4:51 PM Riprap Calculations V(S40.17) =5.8 ((d50) .5)(Ss-1) .66 V: Mean channel velocity in feet per second S: Longitudinal channel slpe in feet per foot Ss:Specific Gravity of rock (minimum Ss=2.5) d50: Rock size in feet for which 50% of the riprap by weight is smaller V: ,.A.: 0."oft/s for 0.5°s slope S: 0..50:. Percent Ss: ...2.50 s: 17 17 VS' Rock Type VS = 2:86:::::.:: (Ss- W .66 (Ss-1)".66 0 to 1.4 No Riprap Required 1.5 to34.0 Class 6 Riprap 4.1 to 5.8 Class 12 Riprap 5.9 to 7.1 Class 18 Riprap 7.2 to 8.2 Class 24 Riprap Conclusion: Use Class 6 Riprap Pinnacle Townhomes runoff RipRap Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Project File g:\clients\a-clients\anchor development\pinnacle townhomes\documents\drainage\final Worksheet WQCV Pipe Flow Element Circular Channel Method Manning's Formula Solve For Full Flow Capacity Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Diameter 18.00 in Results Depth 1.50 ft Discharge 7.43 cfs Flow Area 1.77 ft2 Wetted Perimeter 4.71 ft Top Width 0.00 ft Critical Depth 1.06 ft Percent Full 100.00 Critical Slope 0.007032 ft/ft Velocity 4.20 ft/s Velocity Head 0.27 ft Specific Energy FULL ft Froude Number FULL Maximum Discharge 7.99 cfs Full Flow Capacity 7.43 cfs Full Flow Slope 0.005000 ft/ft Notes: Riprap sized for pipe flowing full. 06113/02 FlowMaster v5.13 04:49:38 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755.1666 Page 1 of 1 Project No: 1555-02-00 By: DAH Shear Engineering Corporation Pinnacle Townhomes Pinnacle Townhomes runoff 06/13/02 Street Capacities Initial Storm 30' Street Worksheet for Irregular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet Initial Storm 30' Street Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope Water Surface Elevation Elevation range: 0.00 ft to 1.88 ft. Station (ft) Elevation (ft) -4.00 1.88 0.00 0.88 9.00 0.70 13.50 0.62 19.50 0.50 20.00 0.50 20.00 0.00 22.00 0.17 35.00 0.43 0.005000 ft/ft 0.50 ft Start Station End Station Roughness -4.00 35.00 0.016 Results Wtd. Mannings Coefficient, 0.016 Discharge 8.21 cfs Flow Area 3.43 ftz Wetted Perimeter 15.58 ft Top Width 15.00 ft Height 0.50 ft Critical Depth 0.48 ft Critical Slope 0.006576 ft/ft Velocity 2.39 ft/s Velocity Head 0.09 ft Specific Energy 0.59 ft Froude Number 0.88 Flow is subcritical. Water elevation exceeds lowest end station by 0.07 ft. 06/13/02 FlowMaster v5.13 10:13:13 AM Haestad Methods. Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 Table Rating Table for Irregular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet Initial Storm 30' Street Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Constant Data Water Surface Elevation 0.50 It Data Minimum Maximum Increment Channel Slope 0.005000 0.040000 0.005000 ft/ft Rating Table Channel Wetted Slope Wtd. Mannings Discharge Flow Area Top Width Perimeter Velocity (ft/ft) Coefficient (cfs) (ft') (ft) (ft) (ft/s) 0.005000 0.016 8.21 3.43 15.00 15.58 2.39 0.010000 0.016 11.61 3.43 15.00 15.58 3.39 0.015000 0.016 14.22 3.43 15.00 15.58 4.15 0.020000 0.016 16.43 3.43 15.00 15.58 4.79 0.025000 0.016 18.36 3.43 15.00 15.58 5.35 0.030000 0.016 20.12 3.43 15.00 15.58 5.86 0.035000 0.016 21.73 3.43 15.00 15.58 6.33 0.040000 0.016 23.23 3.43 15.00 15.58 6.77 06/13/02 FlowMaster v5.13 10:14:27 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755.1666 Page 1 of 1 Major Storm 30' Street Worksheet for Irregular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet Major Storm 30' Street Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.024000 ft/ft Water Surface Elevation 0.93 ft Elevation range: 0.00 ft to 0.93 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 0.93 0.00 35.00 0.016 9.00 0.75 13.50 0.62 20.00 0.50 20.00 0.00 22.00 0.17 35.00 0.43 Results Wtd. Mannings Coefficient 0.016 Discharge 109.82 cfs Flow Area 14.20 ft2 Wetted Perimeter 36.01 ft Top Width 35.00 ft Height 0.93 ft Critical Depth 1.20 ft Critical Slope 0.004508 ft/ft Velocity 7.74 ft/s Velocity Head 0.93 ft Specific Energy 1.86 ft Froude Number 2.14 Flow is supercritical. Water elevation exceeds lowest end station by 0.50 ft. 06/13/02 FlowMaster v5.13 10:15:36 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Table Rating Table for Irregular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet Major Storm 30' Street Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Constant Data Water Surface Elevation 0.93 ft Input Data Minimum Maximum Increment Channel Slope 0.005000 0.040000 0.005000 ft/ft Rating Table Channel Wetted Slope Wtd. Mannings Discharge Flow Area Top Width Perimeter Velocity (tuft) Coefficient (cfs) (ft7) (ft) (ft) (ftls) 0.005000 0.016 50.13 14.20 35.00 36.01 3.53 0.010000 0.016 70.89 14.20 35.00 36.01 4.99 0.015000 0.016 86.82 14.20 35.00 36.01 6.12 0.020000 0.016 100.25 14.20 35.00 36.01 7.06 0.025000 0.016 112.08 14.20 35.00 36.01 7.89 0.030000 0.016 122.78 14.20 35.00 36.01 8.65 0.035000 0.016 132.62 14.20 35.00 36.01 9.34 0.040000 0.016 141.78 14.20 35.00 36.01 9.99 06113/02 FlowMasler v5.13 10:15:41 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of Initial Storm Alleys Worksheet for Irregular Channel Project Description Project File d:\haestad\fmw\pinnacle.fm2 Worksheet Initial Storm Alleys Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.024000 ft/ft Water Surface Elevation 0.38 ft Elevation range: 0.00 ft to 0.38 ft. Station (ft) Elevation (ft) Start Station 0.00 0.38 0.00 1.00 0.36 17.42 0.03 18.58 0.00 18.94 0.06 19.29 0.16 19.65 0.25 20.00 0.31 Results Wtd. Mannings Coefficient 0.016 Discharge 17.84 cfs Flow Area 3.78 ft2 Wetted Perimeter 20.11 ft Top Width 20.00 ft Height 0.38 ft Critical Depth 0.48 ft Critical Slope 0.005745 ft/ft Velocity 4.72 ft/s Velocity Head 0.35 ft Specific Energy 0.73 ft Froude Number 1.91 Flow is supercritical. Water elevation exceeds lowest end station by 0.07 ft. End Station Roughness 20.00 0.016 06/13/02 FlowMaster v5.13 10:18:35 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Project No: 1555-02-00 July, 2002 Re: . Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado APPENDIX II Erosion Control Calculations Erosion Control Cost Estimate r ►E2 Zvi: H U W O oil I J [i1 a 0 v1 �o N M O O l� O 00 O M O U7 �. 00 O l— kn M p +' N O\ vl V' N N M C1 N O d' O M O M O O O N CV O 'y Q0 O O O vl O vOpC\tn M M M CV N � w �Ornp�n t� 00 0 (D �n .O C ) cl W W W W W W Q W O O O O O N R'O W N U 0 O ti Q O� --N'-N Q ro O a a N 01 N 0 M T 7 C � p O N Vl � O 00 cu 'D ca U U cOd 0 i W O CD N r t-. O� ¢ p un N ao 00 00 Oq H Q/ W �� �' U U o N z a O N C\ O cq N UW W W W :a EFFECTIVENESS CALCULATIONS STANDARD FORM B Project Pinnacle Townhomes P.D.P Project 1555-02-00 DATE: 07/15/02 By: John Kienholz EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE Roughened Ground 1.00 0.90 Haybales 1.00 0.80 Silt Fence 1.00 0.50 Asphalt concrete 0.01 1.00 Sod 0.01 1.00 MAJOR PS SUB AREA CALCULATIONS BASIN % BASIN acre AREA C P ALL : i79:74% Al _:: ;1.76;;;;'; ROOF 0.3113 AC 1.00 0.90 SOD 0.6093 AC 0.01 1.00 ASPHALT 0.8394 AC 0.01 1.00 Silt Fence Yes 0.50 Bale/Gravel Filter No 0.80 CHECK 1.76 C = 0.1851 P = 0.4912 EFF 90.91% A2 ROOF 0.1109 AC 1.00 0.90 SOD 0.2542 AC 0.01 1.00 ASPHALT 0.4350 AC 0.01 1.00 Silt Fence Yes 0.50 Bale/Gravel Filter No 0.80 CHECK 0.800 C = 0.1471 P = 0.4931 EFF 92.75% Bl 1.091. ROOF 0.2082 AC 1.00 0.90 SOD 0.3627 AC 0.01 1.00 ASPHALT 0.5191 AC 0.01 1.00 Silt Fence Yes 0.50 Bale/Gravel Filter No 0.80 CHECK 1.090 C = 0.1991 P = 0.4905 EFF 90.24% B2 '1.00 ii S'i ROOF 0.1791 AC 1.00 0.90 SOD 0.4641 AC 0.01 1.00 ASPHALT 0.3568 AC 0.01 1.00 Silt Fence Yes 0.50 Bale/Gravel Filter No 0.80 CHECK 1.000 C = 0.1873 P = 0.4910 EFF 90.80% C ROOF 0.1548 AC 1.00 0.90 SOD 1.2941 AC 0.01 1.00 ASPHALT 0.2011 AC 0.01 1.00 Silt Fence Yes 0.50 EQUATIONS Bale/Gravel Filter No 0.80 C = WEIGHTED AVG OF C X AREA CHECK 1.650 P= (WEIGHTED AVG OF P X AREA) X P C= 0.1029 EFF =(1-PX C)X 100 P= 0.4953 EFF 94.90% TOTAL AREA = �ACRES OVERALL EFFECTIVENESS= ; 92.06% > .i:79;74% Conclude: Erosion Control Plan is effective 451 !L O rn rn 0 0 0 o v v Lo LoLf) O w w w w 00 0 ma)rnrn000000 O V V V v Ui Ui Ui ui L6 V) v w w w w w w w w co w 0 00rnrna�a� Cl? rnrnrn rn0 rn0 o o V v v v v v v v v v v v ((i Ui (Ci M w w w w w w w w N w w w w w w O nwcONOOmOmmOmOmma)mmmm O v V' V' 'ITV' V V v '7 V V V' V' V' V v V V V' V N wwwwcowwwwwwwwwwwwwc0c0 O O M V; O (OPo (O (O h h n n n n n n n n n f.- co m w c0 O co O wNM�OOO(o(D(D(D(D(D n n n n n n nn n n co c0 c0 m M V v v 4 V v 4 v v V v v V' v V v v 4 V V V V v 4 4 00 00 w w 00 w w w w co w w 00 w 00 w w w w w c0 w w w w w O (D O N M V; V O O O O O (D co O O (O O (D (O (0 n n n n n I� ai M V v V 4.4 V' 4 4 4 V V' V v V' v v v V' v V' V v V V V' w 00 c0 c0 w w w w w c0 w w w 00 w 00 w 00 w 00 w c0 w w w w O V m r r N - M M v v V V V) O O O O O O O co(D (o (0 (o (O n n M cM 00 v v v V- V v O 0 O O O O O O 00 00 v V' . v w w w 00 w w w w w co w w w w w w w w w w w 00 w w w w w 00 w w 0 e 0 O co M w O r r N 4 N co M V M V" V' V' v V' V' v V' V O O O O co (O (p CO w w co w v w V' w v w w V' w V' w w V' w V' w V w v w V' w v w v w V w v OD 4 w V' N 414 w w v w 4 w v w W a Q O O N O n w m O O r r r N N N N N co co co M co v V V v v J O N M M M M M V v v v v V 4 4 V' V' v v v V 4 V V V' v v (n c0 w 00 00 w 00 w w 00 w w w w 00 w 00 00 w c0 00 00 w w w 00 co O r00 rM V' O O w CO n n n w c0 w 00 v w m m m O O O O O 00 MCA m m co co MW ONO ONO w w w 00 w 00 w w co 00 co w w w 00 W 0000 0000 W O (D O w O r N M V' V O O O co CD (D CD CD n n n n w w co m m V' r N N M M co CM co M M 00 M M M M M c0 c0 co co M M M M M w w w w w w w w w w w w w w 00 w w w w w w w w w w w w O r r O O O r N N M M co V V V' V v O O O (O co CO n n M c- N N 1":Ico N N co M M M co co co M M CM M co M M M M M co, M M co w 00 w w c0 w w w c0 w w w w co w w w w 00 w 00 00 c0 w w w o M N (O w m o r N N M M co V V v V' v v O O O O CD OM O r r r r N N N N N N N N N N N N N N N N N N N c0w00 c0 c0 00 w w w w c0 00 00 00 00 w w c0 w 00 c0 w P P w w O O (n m N c') v O co n n n w w 00 m m m m m m 0 0 0 0 0 0 N m O O r r r r r r r r r r r r r r r r r N N N N N N n w w w w w w w w w w w w w w w w w w w w w w w w w O VP OPlu') (O N w m 0 0 0N cl M C•) M M MN W o O O O O O w w w w w w w w w w w w w w w w w w w w w w w In w N w r v O n n w m m O O r r r r r N N N M M M M M r (O w c0 m m m m m m m m 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 0 n n n n n n n n n n n w c0 w w w w w w w w w w w w w O (D co O V n m O r N M M "t V O O O O CO (O (D O n n (D (D (D r v(6nnnn(6coc6c6 m mcocowmmc6c6wc6c6mc66o6 I n n n n n n n n n n I,- n n n n n n n n n n n n n n n O m O v (O n w OR n n n n n n O V' v M M N N m (D v— m CO L O O N N N N N N N N N N N N N N N N N N N r r r r 0 0 � n n I.- I,- n n n n n n n n n n n n n n n n n n n n n n c a) J o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 r N M v O CO n w m O r N M V O CO n w m O O 0 O O O O f- � r r r r r r r r r r N N CO M V V' O LL June 13, 2001 Project No: 1555-02-00 City of Fort Collins Stormwater Utility P.O. Box 580 Ft. Collins, Colorado 80522 Attn: Bob Zackely Re: Erosion Control Estimate Pinnacle Townhomes; Ft Collins, Colorado Dear Bob, Estimated erosion control costs for Pinnacle Townhomes is presented below. According to current City of Fort Collins policy, a project's erosion control security deposit is based on the larger of: • 1.5 times the estimated cost of installing the approved erosion control measures, or • 1.5 times the cost to re -vegetate the anticipated area to be disturbed by construction activity. INSTALLATION OF APPROVED EROSION CONTROL MEASURES ITEM QUANTITY UNIT PRICE TOTAL Vehicle Tracking Pad 41 ton $ 30.00 $ 1,230.00 Silt Fence 16921f $ 1.65 $ 2,791.80 Gravel Inlet Filter 6 If $ 12.00 $ 72.00 "Georidge" or Ha bale 1 Is $ 300.00 $ 300.00 SUBTOTAL $ 4393.80 SUBTOTAL TIMES 1.5 590 70 Unit prices from local contractor 06/01. REVEGETATION OF DISTURBED AREA ITEM QUANTITY UNIT PRICE TOTAL Straw Mulching 6.739 ac $ 900.00 $ 6,065.01 SUBTOTAL TIMES 1.5 19 Unit pfices from local contractor 06/01. PAGE 2 June 13, 2002 Project No: 1555-02-00 Re: Erosion Control Estimate Pinnacle Townhomes; Ft Collins, Colorado An erosion control security deposit is required in accordance with City of Fort Collins Stormwater Utility policy. In no instance shall the amount of the security be less than $1000.00. 1. According to current City of Fort Collins policy, the erosion control security deposit is figured based on the larger amount of 1.5 times the estimated cost of installing the approved erosion control measures or 1.5 times the cost to re -vegetate the anticipated area to be disturbed by constriction activity. a. Based on current unit price data provided by a local erosion control company, the cost to install the proposed erosion control measures is approximately $4393.80. As per City requirements, 1.5 times the cost to install the erosion control measures is $ 6,590.70. b. Based on current unit price data provided by a local erosion control company, and based on an actual anticipated net affected area which will be disturbed by construction activity (approximately 6.739 acres), we estimate that the cost to re - vegetate the disturbed area will be $6,065.01 ($900.000 per acre x 6.739 acres). As per City requirements, 1.5 times the cost to revegetate the disturbed area is $9,097.52. CONCLUSION: The erosion control security deposit amount required for Pinnacle Townhomes shall be $9,097.52. If you have any questions, please contact me at 226-5334. b Shear Engineering C ti � � •gin\��� �C , e ntl�� ion '<��08 A x��•``�• cc: Russ Wells; Pinnacle FTC, LLC Project No: 1555-02-00 Re: Final Drainage and Erosion Control Report Pinnacle Townhomcs; Ft. Collins, Colorado APPENDIX III Floodplain July, 2002 Floodplain Modeling Report for Pinnacle P.D.P. Fort Collins, Colorado. Northern Engineering Services, Inc. Spring Creek 100-yr Hydrograph for Pinnacle PDP, Fort Collins, Colorado. Northern. Engineering Services, Inc. Floodplain ;Modeling Report for Pinnacle P.D.P. Fort Collins, Colorado October 31, 2001 Prepared For: Russ Wells Anchor Dcvelopment Corp. 1803 Wild Cherry Lane Fort Collins, Colorado 80521 Prepared By: Ncr;h.fn E,-prt.finq $..vi: et. Inc A'a $. Ha.ef, S:it, 2G2 ro•t Cot'7nc, C:t"Idt E0521 Pnan.: (97�)221—:I5a Project Number: PIN; 01-026.00 October 3 l . 2001 Nis. Marsha Hilmes-Robinson City of Fort Collins Stormwater Utility 700 Wood St, Fort Collins. Colorado 80521 RE: Pinnacle P.D.P. Fort Collins, Colorado Project [dumber: PIN; 01-026.00 Dear Marsha: Northern Engineering is pleased to submit this Floodplain Modeling Report for Pinnacle P.D.P. fur your review. This report was prepared in compliance with criteria set forth in "Guidelines for Submitting Floodplain Modeling Reports To the City of Fort Collins". If you should have any questions or comments as you review this report, please feel free to contact me at your convenience. Sincerely, NORTHERN ENGINEERING SERVICES, INC. Aaron Cvar, Project Engineer Reviewed by: Roger A. Curtiss, P.E. ,/-�. VICINITY MAP 1 "='4000' Table of Contents Chapter1-Background.............................................................................................Pages 1-2 Chapter2-Analysis........................................................................................................Pages 2-4 Chapter 3 - Resuhs/Discussion....................................................................................Pages 5-8 References.........................................................................................................: ...Page 9 Appendix A Condensed Duplicate Effective HEC-2 Model Input/Output Appendix BA Spring Creek Basin Updated S14`lYQ*,1 Model Exhibit and Output Appendix B.2 Corrected Effective Floodplain Model Input/Output Appendix B.2.1 Flood Profiles - Corrected Effective 100-Year Profile, Duplicate Effective 100-Year Profile Appendix B.3 Corrected Effective Floodway Model Input/Output fwv�:.ir. %14d ling Rq v iimuzk POP Nvnhe Hnsin.vinK S<rvi.x" Inc Floodplain Modeling Report For Pinnacle P.D.P. Fort Colllins, Colorado October 31, 2001 Chapter 1 -• Background Project Description Pinnacle P.D.P is located just south of the intersection of East Prospect Road and Robertson Street (please see vicinity map). The project area extends into the IC0- year floodplain and half -foot floodway of Spring Creek. The Spring Creek- floodplain and floodway as related to the proposed project are shown on FIRM panel 080102 0012C dated March 18, 1996. The proposed proiect is located in the Spring Creek Basin, Hydrology for this basin has recently been updated in the report Spring Creek Basin Hydrologic Model Update (Reference 2). The purpose of the present study is to utilizethe updated hydrology for the Spring Creek Basin and revise the I00-year floodplain boundary and half -foot floodway boundary for Spring Creek in the vicinity of the proposed project. This study is to be used only for Pinnacle P.D.P. Properties in the area desiring to find floodplain and floodway information should contact the City of Fort Collins floodplain administrator. Il. Flooding History Spring Creek has an extensive historical record of flooding. Documented floods have occurred in 1902, 1904, 1938, 1949, 1951, 1975, 1977, 1983, and 1997. The construction of Horsetooth Reservoir in the 1950's helped reduce flooding by reducing the area of the watershed draining to Spring Creek, Ill. Previous Studies The present report references the following studies: 1) Flood Insurance Study. City of Fort Collins. Larimer County, Federal Emergency Management Agency, March 181 1996 2) Spring Creek Basin Hydrologic Model Update; Anderson Consulting Engineers, Inc.; February 26, 1999. The flood insurance study listed in reference I is currently the basis for the IT -MA regulatory floodplain and floodway for Spring Creek. This study is based on old hydro!ogy for the Creek. Reference 2 is the most recent hydrologic study orthe BE FwIiDlain Re^ t F:nna:l• rp? \' x,hcm Fngin.• ring S.rv:vi. In. Spring Creek Basin and has been used to determine updated flows in the rea•:h of Spring Creek which the proposed project is located in. IV. Project Description The proposed development will include the construction of 2 single family homes, 6 four-plex units, 2 five-plex units, and 2 eight-plex units. One of the single family homes and one four -plea unit is located within the 100-year floodplain at the southeast comer of the property. CHAPTER 2 — ANALYSIS I. Purpose and Scope The purpose and scope of the present study is to take the FEMA regulatory hydraulic model and update the 100-year floodplain and half -foot floodway using updated hydrology lo- the Spring Creek Basin. Corrected effective floodplain and floodway HEC-2 models have been constructed to accomplish this. 11. Methods and Approach A duplicate effective model for Spring Creek was ran on the computer program HEC- .2, version 4.6.2 by the U.S. Army Corps of Engineers Hydraulic Engineering Center. The duplicate effective model (PIN-DE.DAT) is provided on the disk included with the present report. This model uses the exact parameters that are included in the FEMA regulatory hydraulic model. Input and output from this model are in Appendix A. The output from this model has been condensed due to the large size of the model output. Only the echo of model input and the f IEC-2 summary tables are included in Appendix A. The corrected effective floodplain model (PfNl00.DAT) has been constructed by taking the duplicate effective model and first truncating it at cross -sections 7100 and 11471. The model was truncated at cross-section 7100 because it was det_rrnined that this section is far enough downstream (approximately 3000 feet) Gorr. the project such that backwater effects from any significant change in water surface elevation at section 7100 will not be felt at the project location. Updated 100-year hydrology was input at locations along Spring Creek according to the report Spring Creek Basin Hydrologic Model update (Reference 2). '.No other changes were made to the duplicate effective model. The corrected effective floodplain model uses the 500-year water surface elevation at cross-section 7100 of thee ffective model as a starting water surface elevation. Per conversation with City of Fort Collins Stormwater Master Planning staff, the 500- year water surface elevations generated by the FIS model are a good approximation of 100-year water surface elevations with the updated hydrology. 1WM M,X); I. En .11,.delin; Rrp. P61G..1: Pt>" Mnth< Eng in Bering 4niaca, In_ 10882 425 3275 US of Stover St 10968 425 3275 I D.S of Stover St 11200 _ 425 3275 D.S. of Stover St L 11471 _ 425 3275 D.S or Stover St Table 1 V. Discharges and Modeled Frequencies Table 2 Summarizes discharges used in the FEMIA regulatory model and the corrected effective model completed for the present study. Only the 100-year discharge was modeled since the proposed project is concerned only with the 100- year floodplain and half -foot floodway. HEC-2 Section _ Effective Model I00-Year I Discharge CFS I Corrected Eftective Model 100-Year Discharge (CFS) 7100 1 1845 ! 3664 7453 1945 3664 7633 1845 3664 7683 1845 _ 3664 7725 1720 3528 7910 1720 3528 8396 I720 3466 _ 8955 ! 1720 3466 9165 i 1720 3466 9245 1720 _ 3466 9290 1528 3275 t 9435 I 1528 3275 9462 1528 3275 9783 j 1528 3275 10128 _1_528 3275 _10375 10882 ! ]528 3275 — 3275 1528 10968 _ 1528 3275 --- 11200 -- 1528 11471 1528 _3275 _ 3275 Table 2 -4- Floo4lkLl M1.lthro Rc;*r Piw.alc PDP Northam Faa.rarint S.niu♦ Inc M r- L I N— oc0000 O O N ellf1 �O I v'1 ooco`oo�ooc O O [� N N N N I~ 3�C1 of � L.1 a. n k; e. LV N to N f^ %O 10 M M C1 f 1 C` n O -'Y -- I �t f`i ..i 7 V h C C o0 'Cr 0 tn - N me rnao c\a Coo a.o aaaac�c as !S C V V r IV - C A ~ C-D oo N h h N C` N - mm 'O 'O m %O N fh m C%-^ mC .--• CV •T vi v1 h 00 1\�� O -- a V a V am C C Q � V. C% a C 0\ C% C C% C � V V Q. vt vt v; �. V'1 vAl V. I C r r r C V v C C I V V Q 'cr ^T C C p. +�+ N O .O O� t� vi n f'1 h O C 00 rI TO I O ! p > en r r� vi tf, O: v h — .n r 1 h �o r1 e N N C In N N < N r, v1 V 00 h O C+ 0 I- h h N h N N Q1 .-.• O �O I v1 V1 .•-. G1 N U' ` O OC i r1 �ONNrr O r'1 v N N M—, r-, N 00 N N c N: h N O \0 C vl V1 h C N -•� 00 CD V v'. �0 N M a S N C M h nv rnvn- Gococ wv- a _ .,,- 00 8 h oocc:000 'C. N N oo�000C> h N -- ci N N N CD CD o V An v haN Q h oo N vl vi %6 06 O •-. i ^-' N Q 13 N Q, N' 0% to 0, rn 01 cn C% en Ch 'IT en 01 r: Cm C 01. i'C 01 , C U r G1 V' 01 V a. 'ct rn v1 01 %n C1 W1 01 01 '1 vclvv� vrrj 'IT rcvvvv vvcr 00 f`I I O C 00 Co -- O v, • b vl ..• 00 .-• .- N 4 x ;5 N 'S' N C"a\a,aarna.a.rncNarnrnrna,rn0\Ch rn rn Cl M Cl V 'fi g vi V: I vi In y1 c c r r .r "IT 'IT Na' v r r r v v v rev v v r �II 4n In �0 I f� oo Q, O O \9 a! r v, ram, �p"T" m �o O• - .-: r1 '7vj d�z '•O r'i0 C N; rn C O (- h N -• -- ✓ OO� rnx' h r (V Nm ^ m" � 00 oo N fn N OC1 v1 r N — x O V' v1 � N CN'1f�'1 N.-. 07 h 1r Cl fn V, oMo N G�i ��. flCa ^'10 CK vl • N W Q .-. h10 h a h h r• ; U 01C oo, 11 v a1 h 01 O Och - S - Flo•aviair Mt Ielirs keen Pierrde POP Freiaee 6g szrvitea. toc CUAPTER 3 - RESULTSIDISCUSSION 1. Effective vs. Duplicate Effective Condition Table 3 compares the output of the effective model to that of the duplicate effective model. No differences were seen in 100-year water surface elevations, floodway elevations, or channel velocity. D Duplicate Effective vs. Corrected Effective Condition Table 4 compares the output from the duplicate effective model to the corrected effective floodway model." Table 5 compares 100-year water surface elevations from the duplicate effective model and the corrected effective floodplain model. The differences water surface elevation, floodway, and velocity are due to revisions in 100-year discharges in the corrected effective model. Ill. Floodway The corrected effective model completed for the present study modifies the regulatory FEMA floodway and 100-year floodplain. The corrected floodway is based on City of Fort Collins criteria for Spring Creek. City criteria mandates a floodway based on no greater than 0.5 foot of rise. The corrected effective floodway and 100-year floodplain are shown on the maps provided in the back map poczet of this report. IV. Compliance with Criteria Pinnacle P.D.P. will be designed in accordance with all applicable City of Fort Collins Criteria for development within the Spring Creek Floodplain and special requirements for this development dictated by the City of Fort Collins Floodplain Administrator. No fill will be allowed within the corrected effective halt' foot floodway developed in the present study. All structures located within the corrected effective 100-year floodplain delineated in the present study must have finished floor elevations set at a minimum of 18-inches above the corrected effective 100-year flood elevations. Structures within the corrected effective 100-year floodplain will not be allowed to have basements. -6- Floodphin hiodd&-m. ¥uuzl I PDP x__EnSwming,crim a �� E \f9enf4 ,ki § \�n 3\|\Qf� 'wWQ§7e��W �\§3cE$*,TV, Rn7�n\ k�ƒ\i\\\\\\ Q%��cEll „ �C4wn§ LQ \} —��w6¥� \ \f/\/§\\/ §w a k ® &00 "J \ . c_ezBt N �§ t§>� oC; (7'«\/� { \\,$ S \ ���\{ � I��� ° \ ± � \& %C-\W, *� I 3} i& \/ƒe \\\\�f w � oi« * \ ± G»«�e»2\\ / ) « q|G 7 {) Q )� @Cc>iF � � � -7- Flr,-k!sin Modc:inj KYL(: PunAdc PDP \ort:i<rn Knjineain; 5<nt::e, htr 1-iEC-2 Section Duplicate Effective Model 100-Year Water Surface Elevation FT Corrected Effective 100-Year Water Surface Elevation (FT) Difference (FT) 7100 4927.9 4928.6 .7 4928.5 4929.9 1.4� _7453 7633 j 4931.0 j 4933.6 2.6 7683 4936.4 4937.7 j 1.3 -1 _ 7725 _ ^_ 4936.6 _ 4938.0 r1.4 7910 4936,6 4937.9 1,3 8396 4936.8 14938.3 1.5 8955 4939.1 4940.3 1.2 9165 4940.9 4942.2 1.3 9245 4941.1. 14942.7 1.6 9290 4942.5 4945.5 _ 9435 4945.1 4946.5 1.4 9462 9783 4945.4 4946.4 4946.6 4947.4 1.2 1,0 10128 4948.3 4949.6 _ 1.3 10375 4950.1 4951.4 _ _ 1.3 10882 i 4951.4 4952.8 _ 1.4 10968 i 4951.5 4952.8 1.4 -- 11200 -- 11471 --4952.9 4954.2 1 4954.1 .1.955.9 1.2 1.7 Table 5 fWdpldn Modcliny kcr vi pinnacle ?D? Kanhem Engine tiny Se %ic", tn. References 1) Flood Insurance Study, City of Fort Collins. Larimer Countv; Federal Emergency Management Agency; March 18, 1996 2) Sing Creek Basin Hydrologic Model pdate; Anderson Consulting Engineers, Inc.; February 26, 1999. Memorandum To: Mr. Brian Shear Shear Engineering Corporation 4836 South College Avenue Fort Collins, Colorado 80525 From: Aaron Cvar Northern Engineering Services, Inc Date: September 21, 2001 Subject: Spring Creek 100-year Hydrograph for Pinnacle PDP Fort Collins, Colorado Mr. Shear N0RTRERN� :JWG14EERIU. .� �;�-S: E�R� Y-.L•.C�E. S 1 N' As you requested, we have obtained the updated SWMMi Model for Spring Creek (model SCDEV 100 by Anderson Consulting Engineers, July 1999) from Matt Fater, City of Fort Collins Storm Water Master Planning. Using this model, the 100-year hydrograph.for Spring Creek in the vicinity of the proposed project, Pinnacle P.D.P. has been generated. Enclosed are a tabular and graphical representation of the 100-year hydrograph for SWMM conveyance element 425, and SWMM model output. Correlation of SWMM conveyance elements and the location of the proposed project is discussed in "Floodplain Modeling Report for Pinnacle P.D.P." by Northern Engineering Services, in concurrent review with your drainage report for Pinnacle P.D.P. The hydrograph for conveyance element 425 has a maximum peak of' 275.5 CFS occurring at approximately 3 hours 5 minutes after the beginning of a 100-year storm. Comparison of the developed condition runoff time of concentration to the hydrograph's time to peak should show that Pinnacle P.D.P. in its developed condition beats the peak of Spring Creek, and should not be required to provide detention of developed storm water. Sincerely, NORTHERN ENGINEERING SERVICES, INC. Aaron Cvar ti : Project Engineer 420 SOUTH HOWES, SUITE 202, FORT (OLMIS, (OIORADO 80521, (970) 221.4158, FAX (970) 221.4159 PINNACLE P.D.P SWMM HYDROGRAPH FOR CONVEYANCE ELEMENT 425 NORTHERN ENGINEERING SERVICES, INC. SEPTEMBER 21, 2001 HYDROGRAPH BASED ON SPRING CREEK SWMM MODEL UPDATE BY ANDERSON CONSULTING ENGINEERS, JULY 1999, FILE: SCDEV100 TIME (MIN) CONVEYANCE ELEMENT 425 FLOW (CFS) 0 0 5 0 10 1.2 15 14.4 20 60.2 25 193.6 30 564.5 35 1388.9 40 2129.5 45 2384.2 50 2262.8 55 2041.7 60 1844.2 65 1701.4 70 1620.7 75 1594.5 80 1593.8 85 1605.1 90 1636.3 95 1701.6 100 1786.9 105 1874.2 110 1951.1 115 2013.2 120 2070.2 125 2124.3 130 2171.8 135 1 1 22164 2305.7 2427.8 M 2585.7 2772.4 2909.9 165 3054.3 170 3166.3 175 3230.1 180 3270.3 185 ti 3273.2 190 3248.4 195 3199.6 200 3134.2 205 3056.6 210 2969.9 225 2672.2 240 2455.7 255 2319.6 270 2185• 285 2082 300 2028. 315 1976.2 330 1923.4 345 1873.1 360 1824.3 375 1776.4 390 1732.3 405 1684.5 420 1626.5 435 1569.8 450 1513.5 465 1450.1 480 1386.6 495 1325.9 510 1275.5 525 1242.3 540 1209.6 555 1170.5 570 1124.5 585 1080.1 600 1018.6 615 943.9 630 884.3 645 830.5 660 781 675 720.6 690 654.8 705 599.6 720 1 545.2 i LO 0 0 ca O - LO O O LO LO N LO i co LO M CL 0 M (� L M LC) � co 0 I OO co i1 LO N LO O � W - CD Y W LO Q W uoi Z Z � _ Y M a i ' - o C4 I to O U � � rn r- O o LO O co LO - Y - O 1 1 1 1 1 O O O O O O O L0 O O O O O O O co cM N 04 ^ 1• \S�J/ MOIJ M,1NDINT13 3ONVAgANOO SPRItIG CREEK S.MI MODEL UPDATE BY )QfDERSON COIISULTING E1.40111M LS, JULY 1999, FILE: SCOEV1O0 MODEL RU2I WITH DULY HYDROG?A%2HS FOR CONVEYANCE ELE:BItTS 425 AND 525 REQUESTED NORTHERN EtIGIVEERING SERVICES, It(C., SEPTEMBER 21, 2001 [:fI[ROIC6E:ITAL PROTECT[ON AGEI :- STORM WATR MAAIME;IL OIL - YRJ[OPC.1[ M CE'/E L07E0 B'/ METCALF I ECOY, I.N•:. U:I:VE75ITY OF FLORIDA WATER AISCUk-ES E:IGIHIEERS, NC. (SEPTL`3-ed 11701 UPDATED B': U:IIV"UtTY Of FLORIDA (JUNE t9731 HYDROLOGIC ENOINEERI,VC CENT -ER, COPL?S OF EYOINEERS MISSCURt RIVER DIVISION, CORPS OF ESCENEERS (SEPTEMBER 197%) BOYLE VIGINTUNG CORNRATION (MARCH 1935, JULY 1985) TAPE 'OR DISK ASSIC."EHTS J IN(l) JIN(2) JIN(3) JIN(t) 1W(5)' JI14(6) JIN(7) JIN(3) JIN(9) JIH(l0)' 2 1 0 0 0 0 0 0 0 0 JOUT(I) JOUT(2) JCUT(3) JOUT(1) JOUT(5) JOUT(6) JOUT(7) JOUT 19) JOUT(9) JOUT(IO) 1 2 0 0 0 0 0 0 0 0 NSCRAT 11) 3 WATERSHED PROGRAM CALLED IISC7AT(2) NSCR\T(3) NSCRAT(t) NSCRAT(5) 9 0 0 0 ••• ENTRY MADE TO RUNOFF YODEL ••- S?RI:7G CREEL HYDROLOGIC Y.00EL UPDATE -- 100-YEAR, 3.67-IN0H DEVELOPED CONDtTION A:IDERiOH CONSULTING ENGINEERS, INC. - JULY 1939 - FILE:SCOEVL00 - PRO3:COFC9312 l7J:3ER OF TIME STEPS 720 INTIO?ATION TIME INTERVAL (MINUTES) 1.00 1.0 PERCENT OF IM?ER'/IOUS AREA HAS ZERO DSTENTIO:1 DEPTH FOR 23 PAIN?ALL STEPS, THE TIRE INTERVAL IS 5.00 M:.lJT-eS FOR RAINGAGE MJ:3ER I PL\NFALL HLS:JA't III INCHSS PER HOUR 1.03 1.14 1.33 2.23 2.84 5./9 9.95 4.12 2./8 1./6 1.22 1.06 1.00 .95 .91 .87 .84 .81 .7a .75 .73 .71 .69 .67 S?RING CREEK H'!DP.OLOCIC YODEL UPDATE -- 100-YEAR, 3.67-1NCH DEVELOPED CONDITION A::O27.S021 CONSULTING ENGINEERS, INC. - dj.Y 1911 - FILE:SCDEV100 - PROJ:COFC93t2 SUELAREA GUTTEP. WIDTH AREA PERCENT SLO?E RESISTANCE FACTOR SURFACE STORACE(IN) %-,3ER 07. MA:+HOLE (FT) (AC) I.? -AV. (FT/F:) IM?ERV. PZail. 3YT ER'I. PER'/. 0 .0 .0 .0 .0300 .016 .250 .I00 .300 313 217 7000.0 72.2 12.0 .0620 .016 .250 .100 .300 170 357 3500.0 37.3 45.0 .0140 .016 .ZsO .100 .300 13) 237 4900.0 51.7 11.0 .0300 .016 .250 .100 .300 133 360 3300.0 20.5 43.0 .OI50 .016 .250 .100 .300 l91 351 1100.0 4.0 25.0 .0140 .016 .250 .100 .300 II6 353 1900.0 $1.4 10.0 .0750 .016 .250 .100 .300 10 237 3350.0 50.5 28.0 .0130 .016 .250 .100 .300 169 355 3700.0 25.9 65.0 .0130 .016 .250 .100 .300 I67 356 2800.0 19.6 I5.0 .90)0 .016 .250 .100 .300 171 359 2800.0 14.7 45.0 .OLo9 .016 .250 .100 .300 111 214 5300.0 16.3 30.0 .0130 .CL6 .250 .100 .300 1;$ 239 2200.0 0.3 10.0 .0700 .016 .250 .100 .300 111 239 3100.0 125.6 10.0 .0400 .016 .250 .100 .300 113 310 1735C.0 4O2.7 21.0 .ZL90 .016 .250 .100 .300 l)) 3.) 8000.0 56.1 45.0 .O100 .O16 .250 .100 .300 150 211 6000.0 9$.5 20.0 .0700 .016 .250 .100 .300 152 232 4800.0 81.1 13.0 .1230 .ot6 .250 .100 .300 153 553 8000.0 205.2 15.0 .1280 .016 .250 .100 .300 154 7.3 10000.0 139.5 19.0 .0930 .016 .250 .100 .300 1 215 3900.0 27.8 40.0 .0160 .016 .250 .100 .300 INTILT7A710:1 PATE(IN/HA) CAGE MALIMUM Y.: N:: A151 DECAY RATE HO .51 .57 .00180 .51 .50 .00190 1 .51 .$o .00190 1 .51 .50 .00100 1 .51 .51 .00180 1 .$1 .50 .00189 1 .51 .51 .00180 1 .51 .51 .00133 1 .51 .50 .00190 1 .51 .51 OoLao 1 .51 .57 ooiao 1 .51 .59 .00139 1 .51 .53 .00180 1 .sl .50 .013180 1 .51 .50 .00150 1 .51 .50 .00180 1 .51 .50 .00190 1 .51 .50 .00190 1 .51 .50 .00180 1 .51 .53 .00180 1 .51 .50 .00150 1 241 All 5600.0 $3.5 $1.0 212 692 1250.1 9.3 90.0 211 6 11 5001.0 34.1 5$.O 261 710 2300.1) 25.1 $1.0 215 Ali 2314.0 2-1.2 72.0 266 Ali 6300.0 61.7 52.0 217 617 3301.0 10.2 60.0 213 St3 3000.0 31.3 73.0 231 61) 5109.0 35.5 57.0 251 65) 2500.0 15.5 47.0 25t 651 65111.0 40.9 62.0 252 35'- 2500.0 21.0 90.0 253 Gil 8000.0 93.7 65.0 25t 554 3500.0 23.3 45.0 255 655 3200.0 25.5 9•1.0 TOTAL HU.-MIR OF SUBCATr M47S, 130 TOTAL TACBUTAA'( AREA (ACA-S). 5610.50 .0230 .0t6 .Z50 .t00 .100 It .51 .Ootil I .020•) .0L6 .250 .110 .3•H .it .tl ,44131 1 .0111 .016 .250 .t11 .110 It .1) .00133 t .O131 .Ot6 .250 .I00 .301 .51. .51 .11111 1 .0050 .0ti .250 .100 .110 it .53 .41130 I .4011 .0li .250 .100 .101 .51 .5) ,0;130 1 .OL4 .2511 .104 .100 .51 .$I .M3) I .0070 .016 .. 254 .100 .34A .it .53 .04130 1 .0 t00 .Oti .25A .190 .3170 .51 .5: .00131 1 .0030 .016 .254 .III .330 .51 ?: .1ILI.) 1 .0110 .Old .250 .100 .300 .it .57 .0003 1 ,0130 .016 .251) .100 .300 .it .51 .01130 I .000 .Oti .250 .170 .100 .it .53 ,01134 1 .Ot30 .Oti .251 .100 .110 .51 .5) .00131 1 .0100 .Oti .250 .100 .301 .it .51 .00t30 t SPA:NG CREEK HYDROLOGIC MOOTL UPDATE -- 100-YEAR, 3.67-I4CH D_IVOPED CONDITION ANDERSON CONSULTING ENGINEERS, INC. - JULY 11)) - FILE:SCDEVI00 - PAOJ:COFC9312 ••• CONTENUIT'T CHECK FOR SU3CATCH74E:lT ROUTING IN UDSW7(2-PC HAOEL ••• WATERSHED ARIA (ACRES) 5610.500 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .701 TOTAL WATERSHED OUTFLOW (INCHES) 2.813 TOTAL SURFACE STORAGE AT E:(D OF STROH (l NCHEiI .1 It ERROR IN CONTINUITY, PERrENTAGE Or RAINFALL .006 SPRING CREEK HYDROLOGIC HOOSL UPDATE -- 100-YFAP.. 3.67-INCH DE'r LOPED CONDITION ANOERSON CONSULTING ENGINEERS, INC. - JULY 19)9 - FILE:SCAEVI00 - PRCJ:COFC9312 WIDTH INVERT GUTTER CUTTER HOP N? OR DIA.Y LENGTH SLOPE NU53 EA CONNECTION (FT) (FT) (FT/FT) 263 232 0 6 C1.L'1:IEL 0.0 2200. .0130 OVERFLOW 63.0 2200. .0130 232 231 0 6 CY.%4!1-L 6.0 1350. .0140 0'/ER7LOW 123.0 1350. .0130 953 231 0 1 CHAIN EL .0 1100. .0410 241 911 0 1 CRANNEL 8.0 1703. .0010 OVERFLOW 123.0 1709. .00)0 349 9t1 12 2 PIPE .1 1. .0010 R.ESEX70M STORAGE IN ACP_ F--T VS SPILLWAY OUTFLOW .0 .0 .5 3.0 3.5 6.0 5.9 6.7 18.0 7.0 21.0 7.3 30.0 7.7 941 239 0 6 CRAN:I EL 8.0 1750. .00)0 OVERFLOW 123.0 1750. .00)0 237 333 0 6 Cr?:::37L 8.0 2350. .0070 O'/EAFLGW 228.0 2350. .0070 353 355 13 2 ?1?- .1 1. .O100 R.ISER'/OiP. STOPAGE IN ACAS -FEES VS SPILLWAY OUTFLOW .0 .0 .6 2.0 1.9 2.8 2.1 2.7 60.0 2.9 60.0 3.1 80.0 3.3 6.0 200.0 237 937 0 1 CHMNEL 10.0 1600. .0130 947 355 0 1 CY.IV4EL 10.0 650. .0120 355 333 0 3 .1 1. .OLOO 356 333 0 3 .1 1. .0100 333 233 0 3 .1 1. .0100 233 933 0 6 CHAOSL 8.0 600. .0100 OVERFLU.1 116.0 601. .0100 939 237 0 6 CIRA:CIEL 8.0 600. .0070 OVERFLOW 118.0 600. .0070 340 210 IS 2 PI?` .1 1. .0100 P.ESER':7LA STO?AG--. I:: RCP.- Fc-T VS 5?ILLWA': OUTFLOW .0 .0 11.2 5.0 22.7 10.0 27.7 37.6 39.0 43.1 60.0 33.1 50.0 52.6 76.0 120.0 06.3 150.0 100.3 200.0 230 357 0 1 CPA:I:I EL 5.0 3500. .OlAO 351 930 16 2 PL?E .1 1. .0100 RESERVOIR STORAGE IN ACRE-FEET VS S?ILLWA'I OUTFLOW .0 .0 .3 3.0 .6 8.0 1.6 5.5 18.7 6.6 40.0 7.1 60.0 7.5 8.6 200.0 8 .7 264.0 0.9 330.0 9.1 360 933 7 2 PI?- .1 1. .0100 P.ESERVOLP. STOPAGE 1:1 ACRE-FEET VS S?ILLWAY OUTFLOW .0 .0 .1 2.7 .3 6.2 .7 2.6 32.6 SIDE SLOPES OVERBA.NK/SURCHARGE HORIL TO VERT Y.7,NNING DEPTH JK 1 A N (FT) 5.0 5.0 .011 6.00 0 15.0 15.0 .0.1 50.00 10.0 10.0 .00 6.00 0 20.0 20.0 .011 50.00 10.0 10.0 .010 100.00 0 10.0 10.0 .0t0 6.00 0 20.0 21.0 .110 50.00 .0 .0 .01 .10 0 7.0 6.1 5.0 6.6 12.0 60.0 8.0 57.0 6.3 63.0 10.0 10.0 .G:1 6.00 0 21.0 20.0 .0.0 50.00 10.0 10.0 .G:J 6.00 0 20.0 20.0 .C;l SO M4 .0 .0 .131 .10 0 7.0 2.3 I5.0 2.6 20.0 100.0 3.6 1t).0 3.9 130.0 6.0 6.0 .C:1 100.00 0 6.0 6.0 .041 100.00 0 .0 .0 .13•) .10 0 .0 .0 .130 .10 0 .0 .0 .130 .10 0 9.0 S.0 .0:1 6.00 0 100.0 100.0 .Ot0 50.00 9.0 9.0 .1;0 6.00 0 100.0 100.0 .GI.3 50.00 .0 .0 .133 .10 0 15.0 31.5 20.0 34.3 25.0 60.0 6t.5 05.0 63.2 100.0 5.0 5.0 .CIS 50.00 0 .0 .0 .130 .10 0 12.0 3.6 13.0 5.0 13.0 00.0 8.0 1i3.0 8.3 160.0 600.0 .0 .0 .130 .10 0 5.4 1.5 6.3 2.1 6.7 34t 237 7 2 7:?E .t 1. .0 too .0 .0 .... .t') 0 R-a3ERVOIR STO7.AGE V4 ACAS -FEE: VE S7GG+Af CUT?LCW .9 IL2 241 237 0 1 CHANNEL .0 Zoo.) .0 W) 14.0 11.0 .0:; 4.01 0 237 917 0 4 CHAtaEL 6.1 900. .0040 %.0 ).0 It) 6001 0 G'/ERi LCW 114.0 900. .0140 101.4 100.0 .0:) 50,01) L25 925 20 1 .l t. .0'):0 .O .0 .. .1 to.CO , T IYE Ie HAS VS INFLCW I( CFS .0 ,0 .1 .3 .5 7.6 .9 71.3 .9 t3;.5 .9 122.9 1.0 13s.0 1.1 143.5 1.3 143.2 1.4 146.1 2.0 121.1 2.2 115.7 2.S 94.3 3.9 80.: 3.1 6i.0 3.7 47.7 4.3 41.5 5.8 23.0 0.2 19.5 12.0 to.9 647 231 17 3 .I 1. .0000 .0 .0 ,0:: 10.01 .1 T IY.S 1.4 HPS VS 1SFLOW'I:( CPS .0 .0 .1 1.0 .4 MR .S 50.t .6 7).1 ,7 91.3 .8 112.0 .9 93.2 1.1 76.8 1.2 MG I.5 51.2 1.7 45.0 2.0 33.8 2.2 22.7 2.5 9.1 3.0 3.5 4.0 .0 ' 533 233 17 3 •.1 1. .0010 .0 .0 ..., 10.03 -1 T:MT I:1 H?S ':S INFLOW IN CFS .0 .0 .1 3.9 .4 12.6 .5 .19.0 .6 22.4 .7 21.3 .8 23.6 l.1 23.0 2.4 21.0 4.1 20.1 4.9 1; .5 5.4 to.: 5.9 7.7 6.3 5.0 6.5 3.4 7.1 1.4 11.4 .0 532 332 20 3 .l 1. .04to .0 .0 .CC; I0.00 -1 T IHE 1:9 HAS VS 14FLCW 14 CFS .0 .0 .t .0 .3 16.3 .5 76.8 .7 211.2 .9 4t0.2 1.L 450.4 1.3 45).6 1.4 454.6 1.7 422.1 2.0 3i3.] 2.4 317.0 3.2 203.3 3.6 lld.7 4.0 15).9 4.6 147.2 5.5 1]).0 9.2 124.1 10.5 108.1 12.0 94.3 ' 925 937 0 3 .1 1. .000 .0 .0 ,01.: 11.00 0 245 945 0 1 CHMNEL .0 1000. .OL20 10.0 10.0 .0:1 4.00 0 945 236 0 1 MWI:3EL .0 1100. .0290 10.0 10.0 .071 4.00 0 917 236 0 4 CRA: NEL 8.0 6130. .0070 6.0 6.0 .at) 4.00 0 O'/EAFLC'W 5s.0 400. .1070 30.0 30.0 .Otl 50.00 236 304 0 4 CHA.44SL 6.0 700. .0110 6.0 4.0 ,at) 4.00 0 O'/EAFLCW 54.0 70.3. .0110 30.0 30.0 .041 50.00 304 934 10 2 Pt7E .1 1000. .0010 .0 .0 .113 .10 0 RESERVOIR STORAGE I3 A:RE-FEET VS SPILLWAY OUTFLOW .0 .0- 1.0 100.0 2.7 Z00.0 22.9 300.0 25.9 301.0 22.0 400.G 32.2 700.0 3).2 1)75.0 43.7 2935.0 43.t 4150.0 233 934 0 2 PIPE 6.0 1150. .Otlo =.0 .0 .013 6.00 0 934 23S 0 4 CIAM4EL 8.0 700. .0070 2.0 2.0 .00 6.0•3 0 0'/E 0.F CGW 15.0 700. .0070 30.0 34.0 all 50.00 235 231 0 4 CVINEL 8.0 700. .0070 2.0 2.0 .011 6.01 0 ' OVERFLOW 15.0 710. .0070 30.0 30.0 .041 50.00 23t 335 0 4 C*,Lx4NEL 8.0 $30. .0100 2.0 2.0 .011 2.00 0 O'/ERF LOW 16.0 800. .0100 30.0 30.0 .03) 50.00 232 332 0 4 CRUNEL 0.0 2640. .0069 2.0 2.0 .0:7 5.00 0 OVERFLEW .0 2640. .0069 35.0 35.0 .013 50.00 335 232 0 3 .1 1. .0010 .0 .0 .C% 10.00 0 336 736 11 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESER'+tlIR STORAGE I4 ACRE-FEET VS SPILL•AY WTFLOW .0 .0 .1 45.0 .2 51.0 1.1 55.0 2.7 61.0 3.6 63.0 4.1 94.0 4.3 124.0 4.4 155.0 4.5 155.0 4.1 233.0 136 836 7 3 .1 1. .0010 .0 .0 .1)1. 10.00 936 DLVERSION TO GUTTER IN 3ER 936 - TOTAL Q VS DIVERTED Q IN CFS .0 .0 63.0 .0 $;.0 30.0 124.0 60.0 155.0 9).0 105.0 120.0 230.0 165.0 836 211 0 3 .l 1. .0010 .0 .0 .GC: 10.00 0 936 332 0 3 .1 1. .Colo .0 .0 t;i 1G.G0 0 337 335 0 3 .1 1. .0010 .0 .0 .0% 10.Oo 0 332 231 0 3 .1 1. .0010 .0 .0 .011 10.09 0 lot 233 0 4 CPRINEL 7.0 750. .Otis .0 .0 .0:6 4.00 0 OVE AFLCW 10.0 750. .O146 4.0 4.0 .1115 100.00 319 its 2 2 PIPE .1 1. .Coto .0 .0 .C;: .10 0 RTSER•fOIR STORAGE I4 A:RE-FEET VS S?ILLWAY OUTFLCW .0 .0 0.6 11.4 Ito lot 0 1 CKk;NEL 9.0 570. .0100 4.0 4.0 .035 4.00 0 119 Its 0 1 CPA:1:I-L 4.0 72). .0110 4.0 4.0 .C)5 5.00 0 102 120 0 5 PIPE 2.0 3100. .ClCo .0 .0 ,Ol3 2.03 0 OVERFLOW 1.0 3000. .O100 33.0 33.0 ,C;i 100.00 304 103 0 5 ?IPE 4.0 1700. .0144 .0 .0 .0:3 4.00 0 OVERFLOW 1.0 1300. .0044 33.0 31.0 ,Oii 100.Co 113 119 9 2 P1?E .1 1000. .0001 .0 .0 .iG) .10 0 RESERVOIR STORAGE 1:t A:7.E-FEET VS SPILLWAY OUTFLOW .0 .0 .1 10.0 4.4 20.0 16.1 30.0 11.1 41.0 23.4 50.0 27.4 60.0 2).6 65.0 31.3 80.0 120 119 0 1 0LA2a:tEL 2.5 650. .0165 4.0 4.0 .C35 4.50 0 124 123 0 1 CILMNEL 2.0 901. .0060 4.0 4.0 .035 4.50 0 115 104 0 5 PIY_ 2.0 2I00. .0050 .0 .0 .C!3 2.CO 0 0'/FRF LOW 1.0 2100. .0050 33.0 31.0 .CIi 300.00 106 103 0 5 ME 3.5 1750. .0100 .0 .0 ,C!3 3.50 0 O': EAF LCW 1.0 1750. .0100 33.0 33.0 .G li 100.00 124 124 0 1 CAI; FL 2.0 1140. .0060 4.0 4.0 .G35 4.51 0 103 124 8 2 PL?E .1 1. .0010 .0 .0 ,G)! .10 0 RESERVOIR STORAGE IN AC73-FEET VS S?ILVdA'f OUTFLCW .0 .0 .5 4.2 2.3 7.6 3.9 9.1 6.3 it.,. 6.5 43.0 6.1 116.0 6.6 201.0 IV 126 0 5 PIPE 1.5 165. .0160 .0 .0 .C;i 3.00 0 OYE7.F LC'.' 1.0 166. .0160 33.0 33.0 ,0L6 100.CO 109 126 2 2 PIPE .1 1. .0010 .0 .0 .GO1 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SMIMAY OUTFLOW .0 .0 1.3 1.1 107 123 0 5 ?1?- 1.8 fill. .0020 .0 .0 .013 1.80 0 OVERFLOW 1.0 fill. .0020 31.0 33.0 ,C:6 100.00 121 IM 0 1 CNA443L 4.0 1301. .0350 4.0 4.1 .015 4.50 0 it0 l03 0 5 7i7i 2.1 8). .n 151 .n .0 .oil 2.01 0 O'l;Rf V.v 1.0 al. .0151 33.0 31.4 .011 111.00 111 L27 0 4 CRL'Ip1ZL 2.0 all. .nz4.7 .I .I .Ctl 1.51 0 C'l ERPLOW 4.0 all. .020n 4.0 4.0 .1.15 tn0.no 1Lz 121 s 2 P:tI .1 1. .0010 .0 .0 .0 :; .11 0 RESERVOIR STORAG-a 1:1 AC7.E •i EEL Vi SPILLWAY OUT7 LCW .0 .0 2.1 5.6 2.9 12.2 3.0 24.2 3.0 3).9 129 1!7 0 I CFA.':%--L IA 1190. .0.731 5.0 5.0 Ci) 3.Oo 0 114 t29 0 l CRA::4EL 1.1 1201. .9I00 5.1 5.0 ,141 6.90 G 129 111 0 t CWA:I:IiL 2.0 M. .0041 1.0 3.0 .015 4.00 0 21L 311 0 4 CB:..•19--L 11.0 I5o0. .0120 2.0 2.0 .1:7 3.90 0 011i Ri LOW 22.0 ISOo. .0124 11.0 11.0 .04) 10.00 Sal 331 24 3 .1 1. .0019 .0 .0 .Ili 19.00 TIME IN NRS VS I4FLOW V1 CFS .0 .0 2 6.6 .3 30.2 .s 72.9 .8 232.4 1.0 342.6 1.2 330.2 1.5 3)3.4 2.0 370.1 2.1 379.6 2.4 317,E 2.9 297.9 3.4 240.9 3.7 22).7 4.4 216.5 5.2 203.7 6.1 2')I.9 0.2 173.1 0.7 154.6 9.2 141.9 9.8 103.9 10.3 83.5 ll.1 61.5 32.0 47.7 311 93L 0. 3 .1 1. .00I0 .0 .0 M. 10.00 0 313 931 4 2 2:7-- .1 1. .Colo .0 .0 .031 .10 0 RESERVOIR STORAGE I:t ACRE-f--iT VS STILLWA'C OUTiIGW .0 .0 2.1 5.6 3.9 6.1 5.0 6.4 334 921 4 2 TITS .1 1. .0010 .0 .0 .011 .10 0 RESZ04'10tR STORAGE IN Ar,Ri.FEET VS STILLWXY OUTFLOW .0 .0 2.0 4.0 3.5 5.7 4.9 6.1 all 233 0 4 C''4:1 iL 10.0 700. .0030 2.0 2.0 .C41 3.09 0 OVERFLOW 22.0 700. .0030 13.0 11.0 .010 10.00 210 229 0 4 CFA4:t-1 19.0 830. .4010 2.0 2.0 .010 3.00 0 O'lEA. LOW 22.0 8,10. .0030 13.0 11.0 .oil 10.00 131 330 0 5 P17E 2.5 900. .0950 .0 .0 .01.) 2.50 0 VIERi LOW .0 901. .0050 51.0 50.0 .01.6 5.09 329 229 11 3 .1 1. .0010 .0 .0 .00; 10.04 -1 TIME IN HRS VS INFLOW Ie CPS .0 .0 .1 .0 .) 11.2 .4 16.3 .5 11.7 .6 20.0 .7 20.2 .9 20.1 1.9 20.0 2.2 15.8 3.5 11.2 3.6 6.3 3.7 2.5 3.0 1.0 4.0 .4 4.3 .t 5.0 .0 229 330 0 1 CH>.44iL 40.0 1200. .0060 4.0 4.0 .010 10.00 0 319 223 0 3 .1 1. .00LO .0 .0 .001 10.00 0 228 321 0 1 C'rhf:;-L 10.0 1200. .0330 4.0 4.0 .043 14.00 0 3z8 227 0 3 .1 1. .0010 .0 .0 .0.1 10.00 0 527 227 22 3 .1 1. .Calo .0 .0 .001 10.00 -1 TIME I4 HRS VS I4f LCW I4 C25 .0 .0 .1 .0 .3 19.6 .4 57.6 .B 521.4 .8 $50.3 1.1 524.2 1.) 539.5 1.5 51).7 1.8 566.0 2.1 625.9 2.3 415.2 2.6 52a.4 3.2 Za7.8 3.7 210.5 4.3 149.8 5.0 116.7 6.4 81.6 0.3 50.5 9.4 22.0 10.6 10.3 1Z.0 7.1 227 327 0 1 CFA:13ZL 150.0 1600. .0030 4.0 4.0 .040 10.00 0 130 327 0 1 C14A.VNEL 30.0 17$9. .0050 4.0 4.0 .040 5.00 0 327 226 0 3 .1 1. .0010 .0 .0 .011 10.00 0 226 727 0 4 CHANNEL 0.0 1100. .0030 2.0 2.0 .040 4.00 0 OwRFLOw 24.0 1100. .0010 100.0 200.0 .0.0 50.00 287 187 4 2 PIP-- .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRi.FE--T VS SPILLWAY OUTFLOW .0 .0 S.3 11.3 11.2 11.9 12.1 120.0 137 137 0 5 PITS 3.5 1330. .0100 .0 .0 .013 3.50 0 O'l--RFLOW .0 1800. .0100 50.0 50.0 .016 5.00 Za3 139 2 2 P17E .l 1. .0010 .0 .0 .011 .10 0 RESERVOIR STORAGE 14 ACRz-mr VS SPILLWAY OUTFLOW .0 .0 4.6 2.7 29) 240 2 2 P:7-- .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IS ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 6.7 1.5 180 726 0 5 P1T-- 3.0 1201. .0400 .0 .0 .C13 3.00 0 O'/EP.FLCW .0 1200. .0400 $0.0 $1.0 CIa 5.00 370 170 8 2 - PIPE .0 1. .0010 .0 .0 .GGI .00 0 RESERVOIR STORAGE IN A•:P.---F--ET VS SPILLWAY OUTFLOW .0 .0 .1 1.4 .5 2.0 1.1 2.5 1.3 2.4 1.7 6.1 1.7 22.9 1.8 53.0 170 371 0 5 P:TE 1.5 1620. .0070 .0 .0 .011 1.50 0 O`.:RFLOW 50.0 1629. .0070 5.0 5.0 .025 2.09 371 271 18 2 Pi7E .0 1. .Coto .0 .0 .001 .04 0 RESERVOIR STORAGE I:: ACR.---F--ET VS 57ILLWAY CUTFLO'W .0 .0 .2 2.0 .2 4.0 .1 6.0 .4 0.0 .6 11.0 .9 12.0 1.3 14.0 1.9 16.0 2.6 13.0 3.6 20.0 3.9 20.4 4.0 30.0 4.1 40.0 4.2 $0.0 4.3 60.0 4.3 10.0 4.5 1Z1.0' 271 272 6 3 .0 1. .0010 .0 .0 ,COI 10.00 273 DIVERSION TO CUTTER NL73ER 273 - TOTAL O VS DIVERTED 0 1.4 CFS .0 .0 20.4 .0 33.0 9.2 49.0 17.0 50.0 23.9 60.0 33.7 70.0 43.6 121.0 91.6 272 171 0 3 .0 1. .0010 .0 .0 .0.31 10.00 0 273 974 0 3 .0 1. .0010 .0 .0 .001 10.00 0 171 372 0 5 Fin 1:5 951. .0031 .0 .0 .013 1.50 0 OVERFLOW 50.0 95C. .0130 5.0 5.0 .025 2.01 372 173 14 2 PIPE .0 1. .0010 .0 .0 .001 .01 0 R.--SZW.OlR STORAGE IS ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 .1 4.0 .3 4.0 .5 0.0 .9 10.0 1.6 12.0 Z.5 11.0 4.4 16.0 12.4 13.0 11.2 13.4 13.5 34.0 13.6 45.0 11.8 90.0 173 175 0 5 PI2-- 2.0 3071. .0G70 .0 .0 .013 2.00 0 O'IERf LCW 50.0 1010. .0070 5.0 5.0 .025 3.00 314 174 2 z PIPE .0 1. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACR7-FccT VS SPILLWAY OUTFLOW .0 .0 2.0 4.8 174 373 0 1 C:vi14 --L 1.0 1200. .0050 50.0 50.0 .016 .50 0 373 l75 3 2 P:?I .n 1. .04 to .0 .0 .,, ,. .01 o R?3-s A'M:A STOPAOE IN A:A_-FEEC VS 17lLLWA'( CUTFtl.W .0 .0 5.l 7.0 5.3 10-1.0 175 277 0 5 P:?I 2.5 950. .0070 .0 .0 .1:1 2.51 0 C': ER?LOW 51.n 13n. .0071 5.0 S.n .C2i 3.53 277 177 0 ) 0 1. .011.1 .0 .0 .C:' 11.40 0 t77 171 0 5 P:7I 3.5 t55n. .10)0 .0 .0 .ltl 3.5•1 0 O'.'EAFLou 50.0 1510. .a0)0 5.0 5.0 .a:$ 4.50 11) 171 0 5 P:7E 3.1 '1110. .0090 .0 .0 .0;1 3.01 0 50.0 Ill•7. .1411 5.0 5.n .0 2i 4.00 173 5L 0 5 PM 5.0 920. .9070 .0 .0 .9:3 5.00 0 C'; EAi LOW 50.0 9:0. .0170 5.0 5.0 .0:5 1.00 51 131 11 2 P:?E .0 1. Aoto .0 .0 ,t 11i .00 0 RESEA'/O:R STOPAGE IN ACRE-FE-s: V3 S?LLLWA'I OUTFLOW .0 .a 20.0 .2 41.6 .3 61.0 .s ea.c a ta1.6 ' 1.1 120.0 1.5 140.0 2.0 163.0 2.6 133.0 3.0 239.0 S.9 220.0 9.4 241.0 12.5 260.0 ti.0 262.0 14.3 271.0 15.0 333.0 15.7 44).0 t3.6 65.1.0 330 110 2 2 PIP .0 1. .COLO .0 ,0 .001 .00 0 RESERVOCA S-0?AG-- IN ACAE-FEET VS SPILLWAY OUTFLOW .0 .0 1.3 13.4 ' 140 191 0 5 P:7E 1.8 2470, .0071 .0 .0 .Otl 1.15 0 0'•3A-LC.V $1.0 2470. .0070 5.0 5.0 .025 - 2.53 363 131 4 2 PIPE .0 1. .0010 .0 .0 .011 ,00 0 RESERVOIR STORAGE IN ACRE-FIET VS S?ILLWA'( OUTFLOW .0 .0 3.1 4.7 5.1 5.0 5.9 87.4 364 131 4 2 PI?E .0 t. .00t0 .0 .0 .001 .00 0 RISER'.OIA STORAGE Ie ACAS-FIET VS SPILLWAY OUTFLOW ' .0 .0 2.9 2.9 3.5 3.0 3.8 30.0 let 50 0 5 ?1?I 5.0 1340. .0110 .0 .0 .0:3 5.01 0 V,'ER?LOW $0.0 1391). .Otto 5.0 5.0 .025 6.00 153 156 0 4 CHA:I:IEL .5 750. .0051 12.0 12.0 .016 .50 0 C'/ER?LCW 12.0 750. .00SS 20.0 20.0 .02) 2.00 156 232 0 3 .0 1. .0010 .0 .0 .001 10.00 0 282 274 14 2 PIPE .0 1. .0010 .0 .0 .001 .00 0 1tiSERV/OIR STORAGE 14 ACAE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 3.4 .0 6.7 .1 14.0 2 24.9 .6 31.5 1.0 34.4 2.3 36.0 3.3 34.5 3.6 33.1 3.9 43.3 4.2 45.9 4.5 53.1 5.2 8L.4 274 275 7 3 .0 1. .0010 .0 .0 .COL 10.00 274 DIVEPSIO4 TO GUTT-eA hT.73EA 274 - TOTAL O VS DIVEATEO 0 14 CPS .0 .0 36.5 .0 33.7 2.0 40.0 4.0 45.9 9.0 53.1 16.0 8L.1 44.0 275 50 0 3 .0 1. .00LO .0 .0 .071 10.00 0 276 213 0 3 .0 1. .00IO .0 .0 .031 10.00 0 273 271 0 1 CHAMiZL :20.0 1000. .0004 2.0 2.0 .015 4.00 0 279 SO 0 4 CHANNEL .5 1000. .0050 $0.0 50.0 .Ols .50 0 0•fSAT•LCW 50.0 1000. .0050 10.0 10.0 .035 2.00 362 50 2 2 PIPE .0 1. .0010 .0 .0 .031 .00 0 RESERVOIR STORAGE 14 ACRE-EE VS SPILLWAY OUTFLOW .0 .0 1.4 1.5 50 160 12 2 PIPE .0 1. .0010 .0 .0 -Col .00 0 RESERVOIR STORAGE 24 ACP3-FEET VS SPILLWAY OUTFLOW .0 .0 1.6 2.0 2.3 5.0 2.7 0.0 3.4 10.0 4.7 33.0 6.0 55.0 7.4 79.0 10.4 130.0 14.0 326.0 11.1 413.0 21.6 528.0 ISO 260 0 1 CY,R:N L 10.0 1360. .0040 4.0 4.0 .041 5.00 0 260 161 0 3 .0 1. .0010 .0 .0 .001 10.00 0 ISE 261 0 1 C)Ii,::tEL 10.0 1400. .0230 4.0 4.0 ,00 5.00 0 26l 726 0 3 .0 1. .0010 .0 .0 ,001 10.00 0 2)5 375 16 3 .0 1. .COLO .0 .0 .a JI 10.00 -1 TIME IN HPS VS INFLOW I:I CFS ' .0 .0 .6 21.3 .8 13.0 1.8 10.9 1.9 13t.1 2.0 253.4 2.3 322.6 2.4 353.2 2.6 362.7 2.9 353.3 4.3 1)).4 5.3 97.6 6.0 63.2 7.7 3L.1 9.4 12.0 12.0 10.0 315 396 13 3 .1 1. .00I0 .0 .0 .0"I Moo 675 DIVERSION TO G3TT-ER. NU-3ER 605 - TOTAL O VS DIVERTED 0 14 CFS .0 .0 3.7 ,0 4.4 .3 6.7 1.0 10.0 2.7 12.1 3.9 15.5 5.7 1).6 7.9 25.3 10.9 i12.6 53.4 213.6 103.4 314.5 158.9 414.9 203.4 376 726 0 3 .1 1. .0010 .0 .0 .0:1 10.00 0 05 515 0 3 .1 1. .00I0 .0 .0 .011 10.03 0 2)6 726 IS 3 .0 1. .0010 .0 .0 .011 10.00 -1 TIME IN HAS VS INFLOW IC CFS .0 .0 .2 .2 .3 .7 .4 2.3 .5 5.3 .6 21.9 .7 22.9 .9 21.7 1.0 20.9 1.4 20.7 2.0 7.3 2.3 3.9 2.6 1.1 3.1 .4 5.2 .0 277 126 to 3 .0 1. .0010 .0 .0 .001 10.00 =1 TIME I4 HRS VS 14, LOW 14 CF3 .0 .0 .) 41.0 5.0 41.0 5.4 34.1 5.7 31.3 6.7 30.3 8.3 30.1 8.9 4.9 6.9 2.6 12.0 1.3 298 727 12 3 .0 1. .0010 .0 .0 .011 10.00 -1 TIMS I:1 HAS VS INFLOW IN CFS .0 .0 .0 12.1 .1 61.2 .3 60.3 .4 63.3 .5 100.0 6.3 100.0 1.1 73.3 8.1 67.0 5.5 61.9 8.1 60.3 12.0 60.3 273 127 21 3 .0 1. .0010 .0 .0 .C':l 10.00 -1 TIME t4 HIS VS INFLOW I4 CFS .0 .0 .0 2.1 .1 15.8 .2 17.2 .3 33.1 .5 46.0 2.1 46.0 2.4 3).5 2.9 35.3 3.6 33.1 3.8 32.5 3.9 21.4 4.3 13.0 4.7 15.5 5.1 10.0 6.7 9.4 8.6 S.1 9.0 4.0 5.1 2.0 5.4 .6 12.0 .0 127 703 0 3 .1 1. .0010 .0 .0 .0•11 10.00 0 126 703 0 3 .1 1. .0010 .0 ,0 .Cll 10.00 0 703 303 0 3 .1 1. .0010 .0 .0 ,031 10.00 0 303 2t3 13 2 PL?E .l 31. .1000 .0 .0 .030 .10 0 P.ESER'lOIA STORAGE IN ACAE-FEET VS S?ILIWAY OUTFLOW il3 221 321 452 752 852 552 952 652 ASS 155 95S 655 ass 555 $54 453 451 450 553 446 646 447 449 149 049 94) $12 54a 443 543 415 642 1:1 321 22? 752 852 SS2 41) 652 ASS 75S ass 655 221 555 554 4S3 553 450 553 447 646 417 140 149 049 0 549 SIa 443 5.3 140 740 740 411 611 611 740 740 640 640 540 $to 51] 222 433 595 436 416 516 617 537 537 5] 516 7] 735 el 4 .0 .0 9.0 .9 30.0 .1 125.0 2.2 313.1 6.4 519.0 24.1 750.0 54 .1 917,0 67.1 10 SJ A 1:i.9 3191.0 134.7 125).3 L34.1 14 17 .1 212.0 1671.0 2)1.4 1911.0 3Si.9 2111.0 375.5 2326.0 411.0 2S)S.0 A34.1 3147.0 0 4 CNA9IIEL 11.0 610. .0160 2.0 2.0 .011 3.00 0 GVERFLCu 22.0 600. .111 it 10.0 11.0 .511 10.00 a 5 P:PI 4.0 1750. .0250 .0 .0 .017 4.01 a O'/EAlLGW .0 17$1. .0250 50.0 5.7.0 .016 5.00 0 3 .1 1. Alto .0 .0 A% 10.00 0 0 1 CA`I;IEL .0 631. .0021 .0 50.0 ".:i .70 0 Olf-AFLW 35.0 600. .sob3 1V1.0 .0 CIS 2.00 ] .1 1. '.0010 .0 .0 .Ili 10.01 952 DCV-ssRS::N TO GUTTER ti.: 3:i 9i? - TOTAL (2Vi DIVSATEO Q I:1 CFS .0 .0 1..? .0 514.2 500.9 a 3 .1 1. .0010 .0 ,0 .Olt 10.00 0 0 2 PI4E 3.0 1600,. .0100 .0 • .0 Ail 3.00 0 0 3 .1 1. .G0lo .0 .0 .Cl: 10.00 0 0 4 C:AN:IEL .0 701. .0050 .0 $0.0 .016 .70 0 G'lERFLOu 35.0 700. .0050 10.0 .0 .035 2.00 0 4 CAA::N EL .0 BSC. .0050 .0 '51.0 .016 .70 0 O'EAFLOW 35.0 851. .0050 10.0 .0 .Ili 2.00 3 3 .1 1. .00LO .0 .0 .al: 10.00 955 DIVERSION TO GUTTER. M73EA 955 - TOTAL Q VS DIVERTEO Q IS CFS .0 .0 41.0 .0 $41.0 500.0 0 3 .1 1. .0010 .0 .0 .011 10.00 0 0 4 CNAN7IEC .0 1050. .0050 .0 50.0 .016 .70 0 CVERILGW 35.0 MO. .0154 10.0 .0 .025 2.00 0 3 .1 1. .00LO .0 .0 ,0:i 10.00 0 a 5 PIPE 2.5 tool. .0110 .0 .0 .0u 2.50 0 OVERFLOW .0 1000. .0130 50.0 50.0 .a:i 7.00 0 5 PIPE 3.0 Ina. .0100 .a .0 .013 3.00 0 OVERFLOW .0. 1200. .O100 50.0 $0.0 .0.6 1.00 0 5 PIPE 4.0 1301. .0030 .0 .0 .024 4.00 0 OVERFLOW .0 1300. AM 50.0 53.0 .0:6 1.00 0 4 CNA:I:IrL .0 1400. .0050 50.0 50.0 .Oil .40 0 OVERFLOW 43.0 1401. .0050 10.0 10.0 .015 2.00 0 4 CKA!1N-cL .0 950. .0040 50.0 50.0 .016 .70 0 0v-X-LOW 70.0 954. .0090 10.0 30.0 .03s 2.00 0 5 PIPE S.S 1300. .0 M .0 .0 .013 5.50 0 G'r_RFLGW .0 1303. .0190 50.0 50.0 Ail ; 1.00 o A cvA Lr_L .0 1200. .0040 50.0 50.0 .4,.;' .40 0 OVERFLOW 40.0 1200. .0040 10.0 10.0 .035 2.00 9 2 PIPE .1 1. .0010 .0 .0 .ell. .10 0 RESERVOIR STORAGE IN ACRE-FEET VS S?ILLWX! OUTFLOW .0 .0 .9 3.0 1.2 10.0 2.1 20.0 3.0 24.0 4.0 27.0 4.7 28.9 4.8 50.0 4.9 65.0 0 5 PIPE 5.5 1300. .0010 .0 .0 .01.3 5.50 0 OVER; -LOW .0 1300. .0070 50.0 50.0 .015 7.00 0 5 ?1?- 2.5 1250. .0090 .0 .0 .013' 2.50 0 01ERFLOW .0 1250. .0090 50.0 50.0 .01.6 7.00 3 3 .1 1. .00LO .0 .0 .001 10.00 949 DIVERSION TO CUTTER 61U7G-R 919 - TOTAL Q VS DIVERTEO Q IN CFS .0 .0 1..2 .0 514.2 500.0 0 3 .1 1. .0010 .0 .0 .Olt 10.00 0 a 3 .1 1. .0010 .0 .0 .OIL 30.00 0 0 / C,Lk"SL .0 750. .0050 .0 50.0 e16 .50 0 OVE.P.FIGW 25.0 150. .0050 10.0 .0 .035 2.00 0 4 CAAN;I EL .0 1200. .00so 50.0 $0.0 C16 .50 0 OVERFLOW 59.0 1200. .OG60 10.0 10.0 .C35 2.00 0 4 CYANJEL .0 1400. .0050 50.0 50.0 .01i .50 0 OVERFLOW 5l.0 14" . .0050 10.0 10.0 .C35 2.00 0 4 CKkINEL .0 950. .0030 50.0 50.0 oil .70 0 OVERFLOW 70.0 950. .0090 10.0 10.0 .C35 2.00 0 1 CFk;:IEL .0 71I0. .0040 50.0 50.0 .oil 1.00 0 3 2 ?:?E .1 1. .0010 .0 - .0 .001 .10 � 0 RESER'/OIB STOP.AGS IS ACF.E-FE-I VS SPILLWAY OUTFLOW .0 .0 2.S 1.6 4.3 44.0 0 4 CPA7:(EL .0 1200. .0150 $0.0 50.0 .016 .50 0 OVERFLOW 51.0 1201. .0050 10.0 10.0 .035 2.00 4 2 PIPE .1 1. .0010 .0 .0 .ell .10 0 P.73-7',OI?. STORAGE IN EET VS SPILLWAY OUTFLOW .0 .0 6.5 4.4 1.2 B.8 7.7 159.9 0 3 .1 1. .0010 .0 .0 .031 10.00 0 1 2 PIPE .1 1. .0010 .0 .0 .111 .10 0 RESERVOIR STO?AGE I:1 A^.RE-rEET Va' SPILLWAY OUTFLOW .0 .0 8.8 1.0 15.0 2.0 21.4 3.0 51.7 4.0 75.0 4.3 131.4 4.9 0 2 PIPE 1.5 5300. .0050 .0 .0 .113 1.50 0 0 4 C. L`INEL 8.0 450. .0070 7.0 3.0 All) 8.00 0 OV-P.FLOW 8.0 450. .0070 100.0 100.0 ,010 SI.CO 0 1 CNA:;NEL .0 450. .0050 $0.0 $0.0 .016 2.00 0 0 5 PI?- 4.0 550. .0040 .0 .0 .01.3 4.00 0 0'•-RFLW .0 550. .00.0 50.0 $0.0 .016 7.00 3 2 PITS .1 1. .0010 .0 .0 .COI .I0 a P.iSERVOIP. STORAGE IS ACRE-FEET VS SPILLWAY OUTFLOW 6 5 i .0 .0 .3 3.3 11.9 3.3 0 2 RIPE 1.3 525. .0040 .0 .0 0 5 PIPE 4.0 600. .0010 .0 .0 OVERFLOW .0 6V:o, 10040 50.0 50.0 3 3 .1 1. .0010 .0 .0 DIVERSIO:I TO CCJTr-?. n rE?. 935 - TOTAL Q VS DIVZRT'-1 c IN CPS .0 .0 111.0 .0 $11.0 400.0 935 535 0 3 .1 1. .0010 .0 .0 5]i i23 0 4 CKKINEL .0 2300. .0060 50.0 50.0 OVERFLOW 50.0 2100. .0060 10.0 10.0 835 435 0 3 .1 1. .0010 .0 .0 a .e13 1.25 0 .013 4.00 0 .01.6 1.00 .001 10.01 935 .all 10.00 0 .010 .51 0 .035 2.00 .001 10.00 a OCVERStON TO CUTT SR NTJ 3-aA 910 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 1613.0 .1 1751.0 51.0 245).0 501.0 4415.0 INS.: %to 0 0 3 .l 1. .011.1 .0 .0 Mal 0 all1a o 3 .t 1. .1o.n .n .0 Moo 0 $to 4 SI0 lag 0 t CNA.vNIL 10.0 I600. .0416 3.0 3.0 2. n0 0 CVEAFLCW 144.0 1401. .0014 4.0 4.0 51.01 403 704 0 4 CtlANYIL .0 1150. .0130 $1.0 51.0 C:i .40 0 OVSAFLOW 40.0) lane. .0:33 10.0 to.0 ::5 2.00 4a7 703 0 4 OWMIL .0 050. .0060 50.0 .0 .7) 0 CVIAF LCW 35.0 D50. 1i'7 .0 13.0 2.00 709 531 0 3 .1 1. .0010 .0 .0 10.00 0 S0S 707 0 1 C•M:I:IIL 11.0 700. .0.140 4.0 4.0 4.a0 0 407 707 0 1 C1U:1:1IL 2n.0 1510. .0041 10.0 10.0 1.n0 0 707 Ili 0 3 .1 I. .011.1 .0 .a 1').na 0 406 Ili 0 4 CRASS IL .0 1151. .Olio 50.0 $0.0 0:i .40 0 OV/IAFLGW 40.0 1050. .0060 11.0 10.0 2.00 704 604 0 3 .1 1. .0.110 .0 .0 10.60 0 604 603 it 2 PIPE .l 1. .0010 .0 .0 .10 0 RESERWCR STORAGE IN ACRE -FEU, VS SPILLWAY OUTFLOW .0 .0 1.2 3.0 2.5 8.4 3.7 15.5 6.l 1:.1 6.6 54.7 10.0 60.0 17.9 00.0 2a.3 100.0 41.1 120.0 57.4 141.c 605 0 2 2 PIPE .1 1. .0010 .0 .0 .10 0 RESEA'/OIR STORAGE IN ACRI-FEE*. VS SPILLWAY CUTFLCW .0 .0 100.0 .0 603 402 12 2 PIPE .1 1. .0010 .0 .0 .C:: .10 0 RESERVOIR STORAGE IS ACRE-FEET VS SPILLVAY C(JTi LCW .0 .0 5.9 .3 9.5 .4 11.7 .5 14.1 5.1. I5.5 11.6 21.1 72.0 23:0 128.0 24.3 182.0 26.3 2)1.0 27.8 3i3.0 29.1 495.0 402 702 0 4 CHAVNIL 10.0 1600. .0034 3.0 3.0 .C;: 2.00 0 OVERFLOW 160.0 1600. .0036 4.0 4.0 .C4: 50.00 702 0 0 3 .1 1. .0010 .0 .0 10.00 0 TOTAL NUMBER OP GUTTERS/PIPES, 251 SPRING CREEK HYDROLOGIC MODEL UPDATE -- 100-YEAS, 3.67-INCH DEVELOPED CONOCTIO14 ACIDERSON CONSULTING ENGINEERS. INC. - JULY 193) - FILE:SCOEVL00 - PROJ:COFC9312 AAAA-4OLTCENT OF SU3CATC7CtENTS AND CUTTERS/PIPES CUTTER TRIBUTARY CUTTER/PI?E TRIBUTARY SUBAREA D.A.(AC) SO 13L 275 279 362 0 0 0 0 0 0 6L 65 66 0 0 0 0 0 0 0 572.0 51 173 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 404.2 101 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 401.3 102 0 0 0 0 0 O 0 0 0 0 2 0 0 0 0 0 0 0 0 0 32.1 103 104 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 136.0 104 105 106 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 126.1 105 0 0 0 0 a 0 0 0 0 a 5 0 0 0 0 0 0 0 0 0 39.6 4 106 110 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 67.2 107 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 27.6 303 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 50.4 109 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 6.4 110 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 a 0 0 0 20.0 111 129 0 a 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 ME 112 0 0 0 0 0 0 0 0 0 0 12 0 a 0 0 a 0 0 0 0 13.9 Ili 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 a 0 0 0 42.3 Ila 318 119 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 401.3 119 103 120. 0 0 0 o a 0 0 0 0 a 0 0 0 a 0 0 0 0 337.4 IN 102 121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220.6 123 124 107 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 3a3.5 124 126 103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 160.9 l25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a C 0 0 0 0 .0 126 127 10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110.5 I" Ill 123: 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 !04.1 123 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.9 129 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 42.0 130 0 0 0 0 0 0 0 0 0 0 130 0 0 0 0 c 0 0 0 0 99.3 131 0 0 0 0 0 0 0 0 0 0 131 0 0 a 0 C 0 0 0 0 17.0 153 0 0 0 '0 0 0 0 0 a 0 51 0 0 0 0 C 0 0 0 0 44.6 156 153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44.6 lio 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 572.0 161 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 633.1 170 370 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.0 111 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56.1 173 372 0 0 0 0 0 0 0 0 0 73 0 0 0 0 0 0 0 0 0 157.3 174 374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 8.7 175 173 373 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 200.9 177 277 0 0 0 0 0 0 0 0 a 0 0 0 0 0 c 0 0 0 0 245.9 178 177 17) 0 0 0 0 0 0 0 a 78 0 0 0 0 c 0 0 0 0 404.2 17) 0 0 0 0 0 0 0 0 0 0 79 0 0 0 0 c 0 0 0 0 49.2 too 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 9.3 let 51 130 3i3 361 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 446.0 187 2a7 0 0 0 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 0 64.1 137 197 283 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 81.9 218 303 0 0 0 0 0 0 0 0 0 0 0 0 a 0 C 0 0 0 0 3577.0 221 655 0 0 0 0 0 0 0 0 0 121 0 0 0 0 C 0 a 0 0 62.4 222 321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 3656.0 226 327 0 0 0 0 a 0 0 0 a 0 0 0 0 0 C 0 0 0 0 2720.0 227 32a 527 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2589.0 223 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 2563.1 22) 230 329 0 0 0 0 0 0 0 0 0 0 0 0 0 t 0 0 0 0 2516.4 230 931 0 0 0 0 0 0 0 0 0 134 0 0 0 0 C 0 0 0 0 2516.1 2)1 836 332 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 2392.8 R 212 335 0 0 0 0 0 0 0 0 0 213 407 523 0 0 0 0 0 a 0 0 214 23% lot a 0 0 0 a 0 0 0 zls 211 0 0 0 0 0 a 4 0 0 215 9%S 917 a 0 0 0 0 0 0 a 217 211 3it 241 0 0 0 0 0 0 0 231 333 0 0 0 0 0 0 0 0 0 277 94l 0 0 0 0 a 0 O a 0 241 340 0 0 0 0 0 0 0 0 0 21'. 2ZZ 953 0 0 a c a 0 a 0 212 243 0 a a 0 a 0 0 0 0 243 0 0 0 0 0 0 0 0 0 0 244 0 0 0 0 0 0 0 0 0 0 245 0 a 0 0 0 0 0 0 0 0 247 0 0 0 0 0 0 0 0 0 0 260 239 li0 0 0 0 ' 0 0 0 0 0 261 161 0 0' a 0 0 0 0 0 0 271 371 0 0 0 0 0 0 0 O 0 272 271 0 0 0 0 0 0 0 0 0 273 0 0 0 0 0 0 0 0 0 0 274 242 0 0 0 0 0 0 0 0 0 275 274 0 0 0 0 0 0 0 0 0 276 0 0 0 0 0 0 0 O 0 0 217 175 0 0 0 0 0 0 0 0 0 278 276 0 0 0 0 0 0 0 0 0 277 273 0 0 0 0 0 0 0 0 0 232 156 0 0 0 0 0 0 0 0 0 237 0 0 0 0 0 0 0 0 0 0 289 0 0 0 0 0 0 0 0 0 0 239 0 0 ' 0 0 0 O a 0 0 0 2)s o 0 0 0 0 a 0 0 0 .0 29i 0 0 0 0 0 0 0 0 0 a 297 0 0 0 0 0 0 0 0 0 0 298 0 0 0 0 0 0 0 0 0 0 29) 0 0 0 0 0 0 a 0 0 a 303 701 0 a 0 0 0 0 0 0 0 301 236 0 0 0 0 0 0 0 0 0 318 0 0 0 0 0 0 0 0 0 0 32t 2l9 221 0 0 0 a 0 0 0 0 327 227 130 0 0 0 0 0 0 0 0 328 228 0 0 0 0 0 0 0 0 0 329 0 0 0 0 0 0 0 0 0 0 330 131 229 0 0 0 0 0 0 0 0 331 231 $31 0 0 0 0 0 0 0 0 332 532 232 916 0 0. 0 0 0 0 0 333 0 0 0 0 0 0 0 0 0 0 331 0 0 0 0 0 0 0 0 0 0 335 234 337 0 0 0 0 0 0 0 0 336 0 0 0 0 O 0 0 0 0 0 337 0 0 0 0 0 0 0 0 0 0 333 239 355 156 0 0 0 0 0 0 0 340 0 0 0 0 O 0 0 0 0 0 349 0 0 0 0 0 0 0 0 0 0 355 358 947 0 0 0 0 0 0 0 0 354 0 0 0 0 0 0 0 0 0 0 357 240 0 0 0 0 0 0 0 0 a 359 0 0 0 0 0 0 0 0 0 0 3io 0 0 0 0 0 0 0 0 a 0 361 0 0 0 0 0 0 0 O 0 0 362 0 0 0 0 0 0 0 0 0 0 363 0 0 0 0 0 0 0 0 0 0 3i4 0 0 0 0 0 0 0 0 0 0 370 0 0 0 0 0 0 a 0 0 0 371 170 0 0 0 0 0 0 0 0 0 372 171 0 0 0 0 0 0 0 0 0 373 174 0 0 0 0 0 0 0 0 0 374 0 0 0 0 0 0 0 0 0 4 390 0 a 0 0 0 0 0 0 0 0 3)5 215 0 0 0 O 0 0 0 0 0 376 395 0 0 0 0 0 0 0 0 0 402 $10 603 0 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 0 0 0 407 0 0 0 0 0 0 0 0 0 a 403 0 0 0 0 0 0 0 0 0 0 419 0 0 0 0 0 0 0 0 0 0 4l0 412 411 0 0 0 0 0 0 0 0 4 11 0 0 0 0 0 0 a 0 0 0 412 $14 511 0 0 0 0 0 0 0 0 413 519 $is 0 0 0 0 0 0 0 0 4is 616 0 0 0 0 0 0 0 0 0 417 0 0 0 0 0 0 0 0 0 0 419 520 0 0 0 0 0 0 0 0 0 4ZO $25 0 0 0 0 0 0 0 0 0 421 0 0 0 0 0 0 0 0 0 0 422 0 0 0 0 0 0 0 0 0 0 423 930 0 0 0 0 0 0 0 0 0 424 0 0 0 0 0 c 0 0 0 0 425 521 0 0 0 0 0 0 0 0 0 427 523 0 0 0 0 0 0 0 0 0 42a 0 a 0 0 0 0 0 0 0 0 429 535 432 0 0 0 0 0 0 0 a 430 0 0 0 0 0 0 0 0 0 0 432 $13 0 0 0 0 0 0 0 0 0 433 222 435 0 0 0 0 0 0 0 0 431 0 0 0 0 0 0 0 0 0 0 137 0 0 0 0 0 0 0 0 0 211: 73 0 0 0 0 0 0 0 0 1).1 0 0 0 0 0 0 0 0 0 0 22d2.3 I 11) 0 0 0 0 0 0 0 0 NOLR 112 0 a 0 a 0 0 a 0 r. 171.i.l 111 0 0 a 0 O 0 0 a 0 1i7:.1 0 a 0 0 0 0 0 0 c 0 91).4 145 it? 0 0 0 0 c 0 0 0 776.1 113 0 0 0 0 0 0 0 0 c 474.7 t51 0 0 0 0 a c 0 0 c 5:5.7 l52 0 0 0 0 0 a 0 0 c 221.2 t51 0 0 0 0 0 a 0 0 0 137.5 t4l 0 0 0 0 0 0 0 0 0 76.3 14t a 0 0 0 c 0 0 c 0 4 7. 4 187 0 0 0 a 0 0 0 0 c $1.9 67 63 0 0 0 0 0 0 0 0 613.1 12i 0 0 0 0 0 0 0 0 0 640.7 0 0 .0 0 0 0 a 0 0 0 55.1 0 a 0 0 0 0 c 0 0 0 $4. 1' 0 0 0 0 0 0 c 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 44.6 0 0 .0 0 0 0 0 0 0 0 44.6 0 0 0 0 a 0 0 0 0 0 .0 76 77 0 0 0 0 0 0 0 0 245.9 a 0 a 0 0 a 0 0 0 0 .0 69 0 0 0 0 0 0 0 0 0 30.9 0 0 0 0 0 0 0 0 0 0 44.6 87 0 0 0 0 0 0 0 0 0 51.7 al 0 0 0 0 0 0 0 0 0 17.0 8) 0 0 0 0 c 0 0 0 0 25.4 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 O a 0 a 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 00 0 0 0 0 0 .0 0 0 0 0 O 0 0 0 0 0 3577.0 0 0 0 0 0 0 0 a 0 0 1716.1 100 0 0 0 0 a a 0 0 0 43.9 122 0 0 0 O 0 0 0 0 0 3656.0 123 0 0 0 0 0 0 0 0 0 27ZO.0 12) 0 0 0 0 0 0 0 0 0 2583.0 0 0 0 0 0 0 0 0 0 0 .0 133 0 0 0 0 0 0 0 0 0 2563.1 37 0 0 0 0 0 0 0 0 0 2400.9 0 0 0 0 O 0 0 O 0 0 2331.9 112 0 0 0 0 0 0 0 0 0 22.1 135 0 . 0 G. 0 0 0 0 0 0 22.6 0 0 0 0 0 a 0 0 0 0 2273.5 136 0 0 0 0 0 0 0 0 0 60.9 153 0 O 0 O 0 0 0 0 0 10.6 0 0 0 0 0 0 0 0 0 0 939.4 143 0 0 0 0 0 0 0 0 0 402.7 149 0 0 0 0 0 0. 0 0 0 56.1 163 0 0 0 0 0 0 0 0 0 142.9 16) 0 0 0 0 0 0 0 0 0 19.6 170 0 0 0 0 0 0 0 0 0 5t2.2 14i 171 0 0 0 0 0 0 0 0 66.1 132 0 0 0 0 0 0 0 0 0 20.5 134 0 0 0 0 0 0 0 0 0 4.0 62 0 0 0 0 0 c 0 0 0 5.9 61 0 0 0 0 0 0 0 0 0 28.3 64 0 0 0 0 0 0 0 0 c 14.2 70 0 0 0 0 0 0 0 0 0 14.0 71 0 0 0 0 0 c 0 0 0 Si.1 71 0 0 0 0 0 0 0 0 0 132.4 75 0 0 0 0 0 0 0 0 0 43.6 74 0 0 0 0 0 0 0 0 0 8.7 60 0 0 0 0 0 0 0 0 0 9.3 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 A 202 0 0 0 0 0 0 0 0 0 $534.5 206 0 0 0 0 0 0 0 0 0 21.5 207 0 0 0 0 0 0 0 0 0 37.6 203 0 0 0 0 0 0 0 0 0 40.5 209 0 0 0 0 0 0 0 0 0 69.2 210 0 0 0 0 0 0 0 0 0 5260.2 211 0 0 0 0 0 0 0 0 0 26.0 212 0 0 0 0 0 0 0 a 0 513a.4 214 0 0 0 0 0 0 0 0 0 4535.1 215 0 0 0 0 0 0 0 0 0 76.0 217 0 0 0 0 0 0 0 0 0 $7.5 219 0 0 0 0 0 0 0 0 0 4411.2 220 0 0 0 0 0 0 0 0 0 4159.3 2Zl 0 0 0 0 0 0 0 0 0 40.3 222 0 0 0 0 0 0 0 0 0 59.5 0 0 0 0 0 a 0 0 0 0 .0 224 0 0 0 0 c 0 0 0 0 37.4 225 226 0 0 0 0 0 0 0 0 4t26.6 2Z7 0 0 0 0 0 0 0 0 0 73.0 223 0 0 0 0 0 0 0 0 0 24.5 229 0 0 0 0 0 0 0 0 0 3330.7 230 0 0 0 0 0 0 0 0 0 110.2 232 0 0 0 0 0 0 0 0 0 3322.3 273 0 0 0 0 0 0 0 0 0 3755.7 234 0 0 0 0 0 0 0 0 0 29.7 41S Ill 0 2 i;?E 5.1 1151. .014) .0 .0 S:l 'S.04 0 Ili Sit 0 4 Cr 4c; EL 4.0 Soo. .0371 7.4 3.1 .1:: 9.11 0 C."a; LZW $1.0 Soo. .017; 113.0 111.0 .C:1 51.00 424 $34 0 / f I:V!11L .0 85o. .0:50 50.6 51.0 ^.:1 •I;i .51 a OVER?LCW S1.0 850. .0:51 10.1 10.4 2.01 $24 Sit 0 t Cx MN.L .0 801. .027) 51.0 ".0 .Cii .51 0 .?RF L.7V Sim oil. .4271 11.0 10.0 ^i5 2.00 Sll 432 0 1 Ca.3saL 6.4 600. .0011 3.0 3.0 1.25 0 CVZRFLI;W 20.0 Sol. .001) 8.0 8.0 .0!L 51.00 U2 42) 0 { C:=.::a 3L 8.0 ill. .003] 3.0 3.0 i:1 1.25 0 C'/SRFLOW 20.0 6.10. .lot) 8.0 0.0 -o1S 51.0.1 421 729 0 4 C::::IEL 8.0 701. 11:0 3.0 3.0 t;) 1.25 0 C':E71,174 20.0 701. .0017 8.0 8.0 .115 50.00 729 S!) 0 3 .l 1. .0.311 .0 ,4 .0;: 10.00 0 410 730 0 4 C?1:1:;E1 .0 1114. .OG51 $1.0 $3.0 G!i .SO 0 ' l•IERFLyW 50.0 1100. .roil 10.0 10.0 ,Cii 2.40 730 830 ) 3 .l 1. ."to .0 ,0 .0% 10.00 930 DIVERSEON TO GUTT2A K.'.I3E?. 913 - TOTAL 0 VS Dcv1).:E3 0 I:1 CF3 .0 .0 $.3 .0 $05.0 $01.0 93.3 423 0 3 .1 1. .Colo .0 .0 .C:. 10.00 a 831 530 0 3 .1 1. .0011 .0 .0 .C:: 10.00 0 530 729 0 2 F:?1 2.0 2500. .0-070 .0 ,0 .0:7 2.00 0 421 S23 0 4 C_::CIEL .0 SISO. .0!00 53.0 $0.0 .0!1 .41 0 C'IERFLCW 4-3A 3150. .0100 11.0 10.0 ,035 2.00 $29 427 0 4 0J9N2L .0 810. ,000 50.0 50.0 .Oii .SO 0 C'lTRFLOW 50.0 Boo. .0110 10.0 10.0 .035 2.00 427 729 0 4 C':LV:12L .0 800. .0141 50.0 $0.0 .Oii .50 0 OVEL LCW $0.0 80/. .0160 10.0 10.0 .CIS 2.00 52) 42S 0 4 CtikC1E! 23.0 1000. .0170 6.09.0 .ell 4.00 0 C,,ERFLGW 110.0 1000. .0071 65.0 90.0 .el) 50.00 425 525 0 4 CHUq!1SL 20.0 1000. .0070 6.0 9.0 ,oil 6.00 0 OV-;L:LCW 110.0 l0O'). .0370 65.0 91.0 ,oil 50.00 $25 420 0 4 C7!A:INEL 4.0 SSO. .0030 2.0 2.0 .0. 3.00 0 O'/2AFLOW 20.0 SSO. .0030 150.0 30.0 .011 50.00 420 720 0 4 C'Ax:rL 6.0 6.10. .0430 2.0 2.0 .047 3.00 0 O'rRFLOW 23.0 600. .008a ISO.O 30.0 .033 50.00 421 523 0 4 C -:;N EL .0 1100. .0070 50.0 SJ.O .01.6 .50 0 0':ERF LOW 50.0 1100. .0070 10.0 10.0 .035 2.00 523 522 0 4 MVNEL .0 1100. .0040 50.0 50.0 .01.4 .50 0 G'IE RSLCW $0.0 1300. .Coto 10.0 10.0 .035 2.01 422 522 0 4 CeA:INEL .0 1301). .0043 50.0 50,0 .016 .10 0 10.0 1300. .0.740 10.0 1 C 0 .035 2.00 522 524 0 4 C;LX.-W7L .0 900. .0110 50.0 50.0 ,01.4 .70 0 GV-AFLCW 70.0 900. .01.70 30.0 10.0 .035 2.00 424 524 .0 4 CRMIEL .0' 1500. .0031 .0 50.0 .016 .70 0 VrE FLOW 35.0 1600. .0030 10.0 .0 .035 2.00 524 720 0 / C?wI:IEL .0 700. .0060 50.0 50.0 ,Oii .70 0 O'rRFLCW 10.0 700. .00io 10.0 10.0 .035 2.00 421 521 0 4 CXX;:; EL .0 1250. .0040 .0 50.0 .016 .70 0 G'IERFLOW 35.0 1250. .0010 Me .0 .015 2.00 $21 720 0 / "CAMEL .0 600. .0110 .0 50.0 .01.6 .70 0 O'rAF LCW 35.0 600. .0410 30.0 .0 .015 2.00 120 520 0 3 .1 1. .0010 .0 ,0 .011 10.00 0 520 419 0 4 CFJ:;47L 0.0 8o0. .0090 2.0 2.0 .040 3.00 0 OVERFLOW 20.0 600. .0010 10.0 10.0 .0;1 50.00 419 519 0 / C}(A.'14EL 9.0 830. .0090 2.0 2.0 .C;1 3.00 a 011S2FLOW 20.0 800. .0390 30.0 10.0 .oil 50.00 417 517 0 4 CF. EL .0 1000. .0139 50.0 50.0 .011i .40 0 01.'3 AT LOV 40.0 1000. .0130 10.0 10.0 ,135 2.00 517 519 0 5 ?:?E 3.0 400. .0130 .0 .0 .C24 3.00 0 C'/ERE LOW .0 4Jo. .0080 50.0 50.0 .016 7.00 $to 414 0 4 CFr;:.;EL 8.0 Sol. .roll 2.0 2.0 .e41 3.00 0 0'/ER-LOW 20.0 Silo .0191 10.0 10.0 ell 50.00 6LB 518 2 2 FI?2 .1 1. .011o .0 .0 .07: .lo 0 PSSERVOIR STO'IL1CiE IF A:?.E-FEET VS S?ILCWA'( OUTFLOW .0 .0 4.1 10.7 51B 414 0 2 Fi?E 2.0 2600. .01.00 .0 .0 .013 2.00 0 41.4 Sl4 0 4 L 6.0 800. .0030 2.0 :2.0 ,ell 3.00 0 OVERFLOW 20.0 Boo. .0031 10.0 10.0 .0:0 50.00 616 415 5 2 .1 1. .0010 .0 .0 .011 .10 0 RESERVOIR STORAGE IN ACRE-FEET V3 S?ILLWAY OUTFLOW .0 .0 :.8 1.7 2.9 4.2 3.2 29.8 3.9 105.2 /15 SIS 0 4 CF..ISEL .0 600. .0120 $0.0 50.0 I:i ,SO 0 01/F aFLOW 50.0 600. .01.2o 10.0 tool .035 2A0 SIS $14 0 4 C';NSTL .0 1250. .02:0 50.0 50.0 .OLS .40 0 OVE?FLOW 40.0 1251. .0210 10.0 10.0 .G35 2.00 Sit 412 0 4 Cl?:::DEL 0.0 750. .0031 2.0 2.0 .041 3.00 0 O'/ERFLOW 20.0 750. .logo loot) 10.0 ,c;o $0.00 6!3 513 14 2 FI?E .1 1. .0010 .0 .0 ,G)i .10 0 RESEA'IOIft STORAGE I:: A...- EEL VS S?ILLWAY OUTFLOW .O .0 .0 6.0 .0 12.0 .1 18.0 .2 2;.0 .6 30.0 .8 32.0 1.3 31.0 2.2 35.0 3.1 33.0 3.6 33.9 3.9 42.0 4.1 46.0 4.1 $0.0 513 412 0 5 ?i?E 2.0 957. .0200 .0 .0 .G;] 2.00 0 C'IERFLCW S.0 950. .O 2C0 50.0 3.0 .035 5.00 412 410 0 4 0.0 Boo. .0030 2.0 2.0 G;o 3.00 0 C''i ERFLO'W 20.0 000. .0030 10.0 10.0 0;9 50.o0 411 410 0 4 CF--k:;:1 EL .0 1100. .02I0 .0 50.0 .OLi .70 0 CVER?LOW 35.0 1100. .0710 10.0 .0 .u1 2.00 41.0 610 0 3 .1 1. .COLD .0 .0 c I. i 10.00 0 610 '110 11 2 ?:?E .1 32. .0050 .0 .0 .045 .10 0 RESERVOIR STORAGE IF AC?.E-FEET VS S?ILLWAY OUTFLOW .0 .0 .0 61.0 .3 223.0 1.1 494.0 3.0 761..0 6.5 1162.0 17.3 1411.0 3i.5 1.13.0 45.3 1951.0 67.7 3659.0 91.2 66!5.0 110 010 5 3 .1 1. .0010 .0 .0 .G71 10.00 910 917 217 9Z$933 p 94L ill ]37 1�p 0 0 0 0 0 0 0 0 0 0 0 0 091- ] 917 247 p 0 0 0 0 0 0 p 0 0 0 0 0 0 0 0 0 1t72.1 9S2 O 0 O 0 ° 0 0 0 0 0 ° ° 0 0 0 0 0 ° 0 0 543.4 9S5 151 0 n 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 50.1 ° 0 0 0 0 0 0 0 0 153 0- 0 0 0 0 0 ° 0 0 .0 0 0 0 0 0 0 O ` 0 0 0 215.2 0 .0 Al(0 -n ASOH CONSULT L:(G E SPAIVc CREEK lf:OEOLOGIC ). 0- U?OATS -- 100-'(EAE, 3.47.INQH Di,IELoP20 CO!:OCT20!1 :lGLV££A3 [,y �, - NLY 1))3 - FILi:SCO i'/L07 - PbJJ: GiC4312 HYORCOAA7XS ARE LCSTao FOR THE FOLLOw(VO 2 COSYEYAIICE ELEV i4;5 T43 U7PEa HUlo EA IS OCSCHAAOL IN CFS THE LOWERM.^.q iA IS OVE OF THE FOLLC'dBG CASES: ( ) DZV07ZS DEPTH A30S/E IS'r;: 2V F£ET ISI DEVOTES CUTTERi I4 AC -I: FOA DSTEHTIOH DAM. OCSCF.13Oi INCLUDES 57I LCwAY OU (f) DEVOTi4 CUTTER SVFLGw IN CFS FROM SPECIFIED I"SCw HYDACOCLUD f0) DENO: IS OCSCXAEcE TFLOw. (0) DENOTES St0 IH C23 DIVT_ETED FROM THIS CUTTER 4L4GE IN AC -it FOR SURCXAAOEO CUTTER T IME(XR/MLV) 425 $25 0 1• 0 0 ° 2 .001 1 .00f I .a 0 ] .on( ) .00E ) .0 0 { .0n 0( ) .00( I ° S .0:000t 1 .00( ) 0 0 6 .00( ) .00E ) 0 0 7. .00( 1 .00( 1 0 0 6 .ot( ) .00( ) 1 ,0 0 .02( ) .00( ) 9. .4 .0 0 10. 1. 25( ) .00( ) 0 0 11. .09( ) .02E ) 2.5 .1 .15E ) .04( ) 0 t2. l.6 .4 0 1321( . .> OBE ) 7.3 1..1 0 14. 30.67( 5( ) 2.5) 0 15. .34( I .24( ) 1 i.4 4.6 O 16. .40( ) .34E I 19.6 7.7 0 17. 26.891 1 .47f ) 12.2 O 19. .57( ) .6" 1 75.9 13.3 0 19. .68( ) .77( ) /7.0 76.4 . 0 20. 60.23E ) .9Cf ) 76.6 0 2l. 7e.90( 1 1.15( ) 47.7 0 1'.. I.03( ) 1.76( ) 91.1 65.1 1.18( ) 1.59( ) 0 23. 124.4 06.9 1.34( ) 1.85( ) 0 24. 156.1 112.7 0 35. 1.51( ) 2.13( 1 393.6 13:.3 0 26. 242.)9( 1 2.42( 1 131.5 1.69( ) 2.74( ) 0 27. 316.3 223.7 2.13( ) 3.OS( ) 0 22. 332.3 265.8 0 2.37( ) 3.22( ) 21. 468.7 313.3 2.62( ) 3.38( ) 0 30. 564.5 373.7 2.87E ) 3.57E ) 0 J1• 69Z.9 450.0 0 72. ].15( 1 3.69( ) e32.2 $17.6 0 33• 100].45( ) 3.65( ) 1.8 670.1 i 3.77( 1 4.01( 1 0 34. I1S7.1 017.5 4.03( 1 4.17( ) a 3S. III].,) 994.1 4.31( 1 4.11( 1 0 24. t575.7 1174.4 4.64( 1 4.49( 1 a 37. 1735.4 U4_.1 4.95( 1 4.6t( 1 6 13. MIA 1541.3 5.03( 1 4.73( 1 0 3). 200.) 1703.1 S.ta( 1 4.82( 1 a 41. 212).5 lain.$ S.3t( ) 4.91( ) 0 411. ZZZ3.3 1995.1 S./1( ) 4.99f 1 0 42. 22)2.1 2103.4 5.47( 1 5.03( ) 0 43. 234..4 2193.9 S.St( I S.081 ) 0 44. 2370.) 2267.5 5.S7( ) 5.11( ) 0 45. 2331.2 2315.9 s.sa( I 5.11( I 0 46. 233..E 2345.6 5.51( ) 5.14( ) 0 47. 2143.9 2357.6 5.56( ) 5.15( ) 0 43. 2334.1 2314.3 5.53( ) $.I.S( t 0 49. 2301.8 2333.1 5.50( ) 5.14( ) 0 $0. 2242.0 2313.7 5.46( ) 5.13( ) 0 51. 2ZZ0.4 2231.9 5.41( I 5.11( ) 0 $2. 2175.9 2245.0 5.36( ) 5.10( 1 0 53. 200.E 2204.8 5.31( t 5.08( ) 0 54. 2055.7 2142.6 _ 5.26( ) 5.06( ) 0 55. 204I.7 2119.5 5.21( I 5.04() 0 $6. 1973.7 2076.5 5.16( ) 5.02( ) 0 57. 1959.9 2033.9 5.11( ) 5.00( ) 0 53. 1917.0 1992.2 5.07( 1 4.98( 1 0 59. 1979.4 1952.0 5.02( ) 4.95( ) 1 0. 1341.2 190.5 4.98( ) 4.93( ) 1 1. 1311.2 1871.1 4.94( ) 4.92( ) 1 2. 1739.5 latz.8 4.90( ) 4.90( ) 1 1. 1751.9 1310.5 4.87( ) 4.88( ) 1 4. 1725.5 1780.4 4.93( ) 4.86( J 1 S. 170I.4 1752.4 4.80( ) 4.85( ) 1 6. 1679.0 1726.6 4.77( ) 4.83( 1 1 7. 1660.8 1703.2 4.75( 1 4.82( ) I 8. 1641.7 1932.3 4.73( ) 4.81( ) 1 9. 1631.4 1641.0 4.71( ) 4.80( I 1 10. 1620.7 144a.3 4.70( ) 4.79( I 1 it. 1612.3 1635.2 6.69( 1 4.18( 1 1 12. 1605.7 1624.4 4.63( 1 4.78( ) 1 13. 1600.E 1615.7 4.67( 1 4.17( ) 1 it. 1577.0 1603.7 4.67( ) 4.77( ) 1 15. 1594.5 1613.4 4.66( ) 4.76( ) 1 16. IS92.9 1599.4 4.66( 1 4.76( I 1 17. 1592.2- 1596.6 C.66( 1 4.76( ) 1 13. 159z.1 1i94.8 4.66( ) 4.16( 1 1 19. 1592.7 1573.8 4.64( ) 4.76( ) 1 20. 1573.8 1593.6 4.66( ) 4.76( ) i 2l. 1515.2 1571.9 6.4i( 1 ).76( 1 i 2Z. 1517.1 IS71.9 1.61( 1 4.76( 1 l 23. 157).] IS15.2 1.67( ) 3.76( 1 1 24. 1601.9 1S)1.0 7.67( 1 4.76( 1 l 2S. 1605.1 1a77.3 t.61( 1 7.7a( 1 1 26. 163).l 1613.1 1.61( ) 4.73f 1 l 27. li11.0 Ii0i.5 4.6)( 1 4.7if 1 1 23. 1620.0 ti10.8 9.70( 1 4.77( 1 1 2). 16>_7.4 1616.1 i.11( 1 1.77( 1 I 30. 1636.3 1621.6 3.72( ) 4.17( ) 1 3l. 1646.7 I631.6 6.73( 1 1.78( ) 1 32. la53.5 1637.5 /.15( ) 6.13( 1 1 33. 1671.7 1650.1 6.76( 1 6.79( ) 1 34. 1636.t 1662.0 6.78( ) 6.80( 1 1 35. 1701.6 1675.2 /.81( 1 6.60f ) 1 36. 1717.9 1631.5 3.92( > 3.e1( ) 1 37. 1734.7 170t.7 6.04( ) 6.82( I 1 3a. 1751.8 1720.7 4.87( > 4.81( ) 1 3). 170.3 1737.3 6.8)( ) 6.84( ) 1 60. 1786.9 1751.3 6.91f ) /.95( 1 1 At. 1304.6 1771.7 1.93( ) /.86( ) 1 62. 1322.2 17a).1 6.95( ) 6.87( ) 1 63. 1339.1 1306.7 6.97( ) 6.88( ) 1 64. 18S7.1 1823.3 5.00( ) 6.89( ) 1 65. 1874.2 1811.7 5.02( I 6.90( ) 1 66. 1890.6 1359.0 5.0(( ) 6.91( ) 1 47. 1906.9 1375.8 5.06( ) 6.91( ) 1 43. 1922.3 1812.3 5.07( ) 6.92( ) 1 39. 1937.0 1999.1 5.09f ) 6.93( ) 1 50. 1951.1 1923.E 5.11( 1 5.9(( ) 1 51. 1)57.5 1133.0 5.12( ) 3.95( ) 1 52. 1977.3 1952.1 5.11( 1 3.95( ) 1 53. 1739.6 1955.5 S.IS( 1 6.96( ) 1 54. 2001.6 1773.4 S.t7( ) 3.97( ) 1 55. 2013.2 1)90.8 5.19( I /.97( ) 1 56. 2014.6 2002.9 5.19( ) 1.95( ) 1 $7. 2035.8 2013.6 5.21( ) 5.99( ) 1 53. 2077.0 2026.1 5.22( ) 1.9)( 1 1 5?. 2059.3 2037.5 5.23( 1 5.00( ) 2 0. 2070.2 20:7.1 5.23( 1 5.00( ) 2 1. 20al.5 2060.6 5.26( ) 5.011 ) 2 2. 2092.0 2071.9 5.27( ) 5.01( I 2 1. 2102.6 2032.9 5.21( ) 5.02( ) 2 1. 21I3.4 2093.8 5.29( ) 5.03( ) 2 S. 2t21.1 2104.7 5.11( ) 5.03( ) 2 6. 2135.1 2115.5 5.32( ) 5.03( ) 2 7. 214S.$ 2126.3 5.33( ) 5.0]( I 2 8. 2155.1 213i.1 3.14( 1 5.05( ) 2 7. 2163.4 2116.E S.]il 1 S.n3( 1 In. 2I7L9 2IS5.9 2 1.. 2171.3 2144.1 5.37( 1 S.06( ) 12. 213i.9 2172.5 5.17( 1 S.OS( ) 2 13. 2195.2 215,.E 5.73( 1 5.07( ) 2 17. 220t.8 21S7.1 5.17( 1 5.07( 1 2 15. 221i.1 203.5 5.11( t 5.03( ) li. 2211.2 2209.1 5.72( ) 5.03( ) 2 17. 2213.2 2222.0 5.4:( ! 5.01( 1 2 13. 2261.3 223i.6 5.14( ) 5.0)( ) 2 1), 2287.3 2253.t S.W 1 5.10( > 2 20. 2105.1 2271.6 5.50( 1 5.11( I 2 21. 2323.4 2291.E 5.51( 1 5.12( 1 2 22. 2351.5 2313.0 5.55( ) S.t3( ) 2 23. 2376.2 2335.6 5.53( 1 5.11( 1 2 29. 2401.4 2359.2 5.60( ) 5.15( 1 2 25. 2127.8 2331.0 5.63( 1 5.16( ) 2 23. 215S.6 2309.6 5.66( I 5.17( ) 2 27. 2335.7 2736.9 5.69( ) 5.13( 2 23. 2Sll.i 2465.1 5.72( 1 5.20( ) 2 29. 2550.E 2796.4 5.75( I 5.21( 1 2 30. 258S.7 2528.7 5.79( 1 5.22( ) 2 31. 2621.9 2562.5 5.82( 1 5.23( ) 2 32. 2652.1 2517.0 5.86( ) 5.25( ) 2 33. 2697.2 2637.2 5.90( ) 5.21( ) 2 37. 2735.9 2671.6 .5.93( I 5.28( ) 2 35. 2772./ 2709.2 5.97( ) 5.30( ) 2 36. 280S.2 2735.6 6.00( ) 5.31( ) 2 37. 2327.3 2773.0 6.02( ) 5.37( ) 2 33. 2352.9 2306.5 6.0t( 1 5.37( ) 2 37. 2810.7 237t.2 6.06( 1 S.35( ) 2 l0. 2909.9 2362.3 6.C3( 1 5.36( I 2 41. 2739.1 2051.2 - 6.10( ) 5.37( ) 2 32. 2967.5 2)20.5 6.12( I 5.33( 1 2 33. 2913.8 2750.0 6.131 ) 5.39( ) 2 /7. 3027.2 297).3 6.15( 1 5./1( 1 2 45. 3054.3 3037.9 6.17( 1 5.12( 1 2 li. 3030.1 3135.5 6.17( ) 5.13( ) 2 47. 310 t.3 306?.0 6.20( ) 5.14( ) 2 43. 312i.7 3331.0 6.22( t 5.45( ) 2 t^s. 3147.4 3110.4 6.23( 1 5.15( ) 2 $1. 3166.3 3132.2 6.2;( i 5.36( ) 2 51. 3183.5 3152.3 6.25( I 5.37( ) 2 5?. 3199.0 3170.6 6.2i( ) 5./3( 1 2 53. 3212.9 3107.2 6.21( ) 5./8( ) 2 St. 3?25.2 3?02.2 6.23( ) 5.19( ) 2 55. 3?15.1 321S.6 6.29( 1 5.19( ) 2 36. )213.6 3221.6 6.2)( ) S.SO( ) 2 51. 1253.9 3233.0 6.31( 1 S.SO( ) 2 59. 326.1.E 3237.t 4.11C 1 5.50( 1 3266.1 32S9.7 AD 6.34 )0( 1 S.SI( 1 0. 3210.3 3261_.l 6.3:( 1 S.St( ) I 1. J2T1.2 ]206,1 3 2. 3275.0 3:0.9 6.31( ) 5.51( ) 3 3. 3275.5 3272.9 6.11( 1 3 6. 3271.9 3273,E 6.)t( 1 S.St( 1 3 S. 3273.2 3273.9 6.3t( ) S.SI( 1 3 S. 3270.E 3272.9 6.11( ) 5.51( ) 3 1. 3266.5 3270.8 6.30( ) S.St( 1 3 8. 3261.S 3267,E 6.30( ) S.St( ) 3. 9. 3255.S 3263.3 6.30( ) S.SI( ) 3 11. 3273.2 32S7.9 6.29( 1 5.51( 1 3 It. 3240.3 3251.5 6.29( I 5.51( ) 3 12. 3231.1 3249.1 6.23( ) S.SO( ) 3 13. 3221.5 3215.7 6.23( ) 5.50( ) 3 19. 3210.9 3226.5 6.27( 1 5.50( ) 3 15. 319).6 32la,l 6.26( 1 SAM 1 3 16. 3137.6 3205.7 6.26( ) 5.69( ) 3 17. 3175.1 3193.2 6.25( ) 5.63( ) 3 13. 3162.0 3132.1 6.26( ) 5.69( ) 3 19. 3168.3 310.6 6.23( ) 5.68( ) 3 20. 3136.2 3156.2 6.22( ) 5.67( ) 3 21. 3119.6 3192.E 6.21( ) 5.67( ) 3 22. 3303.5 3123.1 6.20( ) 5.66( ) 3 23. 3033.9 3113.E 6.19( ) 5.66( ) 3 24. 3073.0 3018.2 6.33( 1 5.65( ) 3 25. 3356.6 3032.6 6.17( ) 5,63( ) 3 26. 3039.9 3366.5 6.16( 1 5.63( ) - 3 27. )0ZZ.9 3050.1 6.15( ) 5.6)( ) 3 23. 3005.5 3033.3 6.13( 1 5.61( ) 3 2). 2937.9 30110,3 6.13( ) S.92( ) 3 30. 2960.9 2)33.9 6.12( ) 5.(1( I 3 31. 2951.9 2)31.2 6.10( ) 5,(1( ) 3 32. 2933.E 2)53.2 6.0?( 1 5.(0( ) 3 33. 2217.8 2145.1 6.09( ) 5.3)( ) 3 37. 29)6.2 2)26.7 6.07( ) 5.33( ) 3 35. 2877.5 2)03.3 6.05( ) 5.39( ) 3 36. 2859.0 233).8 6.07( ) 5.37( ) 3 37. 2339.8 2311.1 6.03( ) 5.36( ) 3 33. 2619.E 2352.0 6.01( ) 5.36( ) 3 3). 2796.t 2331.1 5.94( 1 5.35( ) 3 40. 2763.( 2309.0 5.97( ) 5.3t( 1 3 31. 2745.2 2735.1 5.93( ) 5.33( ) 3 42. 272t.S 2762.1 5.92( 1 5.32( ) 3 (]. 2706.2 2770.9 S.Y.( I S. 3t( 1 3 68. 2633.0 2721.1 5.8)( ) 5.37( ) 3 35. 2i72.2 2702.E 5.37( ) 5.10( 1 3 65. 26S5.8 Si35.0 5.541 ) 5.29( ) 3 37. 2637.E 2i6i.0 5.91( 1 5.26( 1 3 43. 2i23.5 26SI.3 5.91( 1 5.29( ) 3 Al. 2677.5 2i35.1 5.61( 1 5.27( I 3 S0. 2571.5 2610.0 5.7)( 1 5.26( 1 3 St. 2575.6 2601.0 5.73( 1 S.25( 1 3 52. 2559.9 2$37.0 5.76( ) 5.25( ) 3 51. 2331.4 2571.) 5.75( 1 5.29( 1 3 54. 2S29.5 255S.6 5.71( ) 5.21( ) 3 55. 2515.2 2S10.7 5.72( ) 5.23( ) 3 58. 2501.7 252i.2 5.71( I 5.22( 1 3 57. 2339.1 2512.3 5.69( 1 S.22( ) 3 $3. 2377.1 2499.3 5.65( ) 5.21( 1 3 5). 2366.2 2399.9 5.67( ) $.21( ) 6 0. 21s5.7 2375.3 5.66( 1 5.20( t 3 1. 2115.1 2363.3 5.65( 1 5.20( t 3 2. 2436.1 2151.E 5.61( ) 5.19() 6 3. 2426.1 2143.8 5.63( ) 5.19( ) 6 6. 2417.5 2433.1 S.62( ) 5.18( ) 3 S. 2403.3 2324.7 5.61( I 5.18( ) 6 6. 2399.3 2315.E 5.60( ) 5.17( ) 6 7. 2390.5 2306.3 5.59( ) 5.17( t 6 8. 2331.6 2377.3 5.53( ) 5.17( ) 6 9. 2372.6 2338.E 5.51( ) 5.16( ) 3 10. 2361.9 2379.4 5.56( ) 5.16( ) 5 it. 2355.0 2310.6 5.55( ) 5.15( ) 6 12. 2336.2 2361.1 5.55( ) 5.15( ) l 13. 2317.3 2152.9 5.53( 1 5.15( ) 3 19. 2323.5 2311.0 5.53( ) 5.13( ) 1 15. 2319.6 2335.2 5.52( } 5.13( ) 3 16. 2310.6 2326.3 5.51( ) 5.13( 3 17. 2302.0 2317.5 5.50( ) 5.13( ) 1 13. 2213.1 2303.7 5.37( ) 5.13( ) 3 19. 2231.2 2297.9 5.31( ) 5.12( ) t 20. 2275.3 2271.0 5.17( ) 5.12( ) 3 21. 2266.3 2282.1 5.16( ) 5.11( ) 3 22. 2257.4 2273.2 5.35( ) 5.11( ) 3 23. 2219.E 2264.3 5.41( 1 5.11( ) 3 24. 22)9.3 2255.3 5.33( ) 5.10( I 3 25. 2230.3 2246.3 5.12( 1 5.10( ) 3 26. 2221.2 2237.3 5.31( ) 5.09( ) 3 27. 2212.1 222a.2 5-3( ) 5.0)( I 3 28. 2203.1 2211.2 5.3)( ) 5.0)( ) 3 2i. 2191.1 2210.2 5.39( ) 5.03( 1 ( 30. 21a5.0 2201.1 5.31( 1 5.08( ) 1 Jl. 217i.0 2IJ 2.1 5.741 1 5.67( ] 4 32. 2147.1 2181.1 5.15( 1 5.17( ) 4 31. 2L S9.2 2I 74.2 1 3l. 2l1 ).i 21e5.1 5.11( 1 5.60( 1 4 35. 2141.2 215i.6 5.13( ) 5.04( ) 4 34. 2113.E 21,43.2 5.3?( ) 5.05( ) 4 37. ?L25.7 2I40.0 5.31( ) 5.05( 1 4 33. 2113.7 2132.1 5.30( ) S.04( ) 4 3). Z1LZ.3 1I25.0 5.2)( 1 S.04( ] 4 41. 210a.4 2L1e.2 5.27( ) 5.04( ) 4 At. 2110.9 2I11.9 $.-a( ) 5.03( ) 4 42. 2195.9 2LOi.0 5.27( ) 5.03( ) 4 43. 209L.2 2100.6 S.27( ) 5.01( I 4 4%. 2084.0 2095.E 5.2i( 1 5.01( 1 4 45. 209?.7 2090.9 S.2i( ) 5.02( ) 4 46. 2078.7 2036.5 5.25( ) 5.02( ) 4 47. 2074.9 2082.3 5.25( ) 5.02( ) 4 43. 2071.2 2078.3 5.25( 1 5.02( ) 4 49. 2067.5 2074.4 5.24( 1 5.02( ) 4 50. 20i3.9 2070.6 5.24( 1 5.01( ) 4 St. 20iO.3 2067.0 S.23( ) S.OI( ) 4 52. 2056.8 2043.3 5.21( ) 5.01( 1 4 51. 2053.3 2059.8 5.23( ) 5.OL( 1 4 St. 2049.E 2056.2 S.ZZ( ) S.01c ) 4 55. 204i.] 2052.7 5.22( ) S.OL( ) 4 56. 2042.0 2049.2 5.21( ) 5.00( ) 4 57. 2019.3 2045.7 S.21( ) 5.00( ) 4 58. 2035.9 2042.2 5.21( ) S.00( ) 4 59. 203?.3 2038.7 5.20( ) 5.00( ) 5 0. 2018.9 2035.2 5.20( ) 5.00( ) 5 1. 2025.3 2011.7 5.19( ) 4.9)( ) 5 2. 2021.8 202a.2 5.1)( ) 4.9)( ) 5 3. 2013.3 2024.7 5.19( ) 4.9)( ) 5 4. ZOl:.B 20Z1.2 5.19( ) 4.9)( ) 5 S. 2011.3 2017.7 5.18( ) 4.99( ) 5 6. 2007.8 2014.2 5.17( ) 4.9)( ) 5 7. 2004.3 20LO.7 5.17( ) 4.93( ) 5 8. 2000.8 2007.2 5.17( ) 4.93( ) 5 9. 19)7.3 2003.7 5.16( ) 4.98( ) 5 10. 1993.8 2000.E 5.14( ) 4.93( ) 5 it. 1991.3 19)4.7 5.15( ) 4.93( 1 5 12. 19a4.9 1993.2 5.151 ) 4.93( ) 5 13. 1933.3 1937.7 5.15( ) 4.97( ) 5 14. 1979.1 1996.2 5.14( ) 4.97( ) 5 l5. 1976.E 1992.7 5.14( ) 4.97( ) S 16. 1972.7 1979.1 5.13( 1 4.97( ) 5 17. 1961.2 1975.6 5.11( 1 4.97( ) 5 19. 1)i5.6 1372.1 5.12( ) (.96( ) 5 17. I)62.1 1169.E S.12( 1 (.99( 1 5 20. 1759.E 1i 95.1 5.12( 1 (.19( 1 5 21. t)SS.I 116L.5 (.99( 1 5 l)St.S 1153.0 S.lt( 1 (.96( 1 5 21. t)I 1.0 list 5. t J( ) (.96( 1 y 24. 011.5 ti51.0 (.95( ) 5 25. 1311.0 1117.5 S.tO( ) (.95( ) ' 5 26. 1917.4 1941.9 .5.01( 1 (.95( ) 5 27. 1931.9 1910.4 5.09( I (.95( ) 5 23. 1930.4 1936.9 5.08( 1 (.95( ) 5 Z9. 1926.9 1913.4 5.09( 1 (.94( ) 5 30. 1921.4 1925.9 5.07( ) 4.94( ) 5 31. 19 t9.9 1926.4 5.07( 1 (.91( 1 5 32. 1916.E 1922.9 5.07( ) (.91( I 5 33. 1913.0 1919.E 5.06( 1 (.91( ) 5 34. 1909.E 1)IS.9 5.06( ) (.91( ) 5 35. 1906.2 1512.5 5.05( ) (.93( ) 5 36. 1902.0 11009.1 5.05( ) (.91( ) 5 37. 1919.5 1905.1 S.OS( 1 (.91( ) 5 33. 18)6.1 1)02.( 5.09( ) 6.93( ) 5 3). 1892.0 3899.0 5.01( ) (.93( ) , 5 40. 188).5 1995.7 5.03( ) (.93( ) 5 41. 1886.2 1892.E 5.03( 1 (.92( ) 5 42. 1892.9 1889.1 5.03( ) (.92( ) 5 43. 1879.7 1985.9 5.02( ) (.92( ) 5 (t. 1876.E 1932.S 5.02( ) (.92( ) 5 45. 1373.1 1979.2 5.02( ) (.92( ) 5 46. 1869.0 1975.9 5.01( 1 (.91( ) S 47. 1066.6 1372.7 S.O1( ) (.91( ) S 49. 1963.3 183).( 5.09( ) (.91( I 5 4). 1960.1 1356.1 5.00( ) 6.91( 1 5 50. 1956.8 136Z.9 5.00( ) (.%1( j 5 3t. 1853.5 1957.6 4.9)( ) (.9l( ) 5 52. 1950.3 1956.4 (.91( ) (.90( 1 5 5). 1947.0 1153.1 (.93( ) (.91( ) 5 51. 1811.8 1919.0 (.93( 1 (.90( ) 5 55. 1841.5 1936.6 (.93( 1 9.9)( 1 5 56. 1537.1 1943.4 1.97( 1 (.90( 1 5 57. 1831.0 1310.1 (.97( ) (.90( ) 5 53. 1930.8 1916.5 (.96( 1 (.8)( ) 5 $9. 1927.6 1333.6 _ (.96( ) 4.8)( 1 6 0. 132- 3 1130.4 (.96( 1 (.99( ) 6 1. 1621.1 1827.1 (.95( ) (.89( 1 6 2. 1817.8 1323.9 (.95( ) 1.8)( ) 6 ). 1914.6 1330.1 (.91( ) 4.9)( ) 6 (. I9I1.1 18I7.4 4.9(( ) 1.93( ) 6 S. 1808.1 1311.2 4.94( 1 (.93( 1 6 6. 11-11.4 1111.0 4.93( ) 4.93( ) 6 7. 1301.7 I107.9 4.91( 1 4.93( ) 6 8. ll)3.5 13J 3.5 6 9. lT)5.1 130[ J 4 .92( ) 4.93( 1 6 19. 1702.1 17)1.l 6 11. IT33.9 I7)1.9 4.91( 1 4.97( 1 6 12. 1735.8 1731.7 4.91( ) 4.87( ) 6 13. 1732.6 1733,E 4.90( 1 4.97( 1 6 14, 1779.5- 1735.4 4.10( 1 4.87( 1 6 15. 1776.4 1732.3 4.90( 1 4.86( ) 6 16. 1771.4 177).E 4.89( ) 4.86( ) 6 17. 1770.) 1776.1 4.6)( ) 4.86( ) 6 19. 1767.3 1773.1 4.8)( ) 4.86( ) 6 19, 1741.4 1770.0 4.83( ) 4.86( ) 6 20. 1T61.4 1747.0 4.88( ) 4.86( ) 6 21. 17S3.4 1764.1 4.87( ) 4.95( ) 6 22. 1755.5 1761.1 4.87( ) 4.85( ) 6 23. 1152.6 1753.1 4.67( 1 4.85( ) 6 24. 170.6 1755.2 4.66( ) 4.85( 1 6 25. 1746.7 1752.3 4.86( ) 4,BS( ) 6 26. 1743.0 1749.4 4.86( ) 4.85( ) 6 27. 1740.9 1746.4 4.85( ) 4.84( ) 6 23. 1738.0 1743.5 4.95( ) 4.84( ) 6 29. 1735.E 1740.6 4.85( ) 4.84( ) 6 31. 1732.1 1737.8 4.84( ) 4,84( ) 6 31. 1729.4 1734.9 4.84( ) 4.84( ) 6 32. 1726.5 1732.0 4.83( ) 4.84( ) 6 33. 1721.7 1729.1 4.83( ) 4.84( I 6 34. 1720.8 1726.2 4.83( ) 4.63( ) 6 35. 1717.9 1723.4 4.82( ) 4.83( ) 6 36. 1715.0 1720.5 4.62( ) 4.83( ) 6 37. 1712.0 1717.6 4.82( 1 4.63( ) 6 33. 1703.9 1714.6 4.81( ) 4.83( ) 6 3). 1705.8 1711.6 4.91( ) 4.83( ) 6 40. 1702.5 1708.5 4.8)( ) 4.82( ) 6 41. I6)).1 1705.3 4.80( ) 4.82( ) 6 42. 1675.6 1702.0 4.80( ) 4.82( ) 6 43. 1612.0 1618.6 4.79( 1 4.82( ) 6 4:. 1698.3 1695.1 4.79( ) 4.92( ) 6 45. 1684.5 1691.5 4.78( ) 4.81( ) 6 46. 1630.1 1637.9 4.79( ) 4.81( ) 6 47. 1676,9 1634.1 - 4.77( 1 4.81( ) 6 43. 1673.0 1630.3 4.77( ) 4.81( ) 6 43. 1669.2 1676.5 4.76( ) 4.91( 1 6 51. 1665.3 1672.7 4.76( ) 4.80( ) 6 51. 1661.4 1663.9 4.75( ) 4.80( ) 6 52. 1657.5 1664.9 4.75( ) 4.60( ) 6 53. 1651.6 1661.0 4.77t 1 7.80( 1 6 37. 16t).7 1657.1 7.77( 1 4.7)( 1 6 35. 161S.9 t653.3 1.71( 1 4.7)( 1 6 56. 161.0 lit).7 4.73( 1 4.7)( I 6 57. lili.t Iit5.5 7.721 6 39. IiIi.2 I6tt.6 7,72( 1 4.7)( 1 6 5). In ),3.3 Ii17.8 7.7t( 1 &.7a( ) 7 0. 162i.S 1533.9 • 4.7t( 1 4.78t 1 7 1. 1622.7 li30.1 4.70( ) 4.78( 1 7 2. 16t3.8 162i.2 4.70( ) 4.73( 1 7 3. lit5.0 li22.t 7.63( 1 7.77( ) 7 t. 1611.2 1619.6 4.67( ) 4.77( I 7 S. 1607.7 1617.8 4.63( ) 4.77( ) 7 6. 1603.E 1611.0 4.63( ) 4.77( ) 7 7. 1S19.8 1907.2 4.67( ) 1.77( ) 7 8. 1S26.1 1603.4 4.67( 1 4.76( 1 7 9. 1532.3 159).6 4.66( ) 4.76( ) 7 10. IM.5 1595.0 4.66( ) 4.76( ) 7 it. IS81.8 1592.1 1.65( ) 1.76( 1 7 12. 153t.0 1533.3 4.55( ) 4.7S( ) 7 13. 1577.3 153(.6 4.61( 1 /.75( 1 7 14. 1573.5 1530.E 7.67( ) 4.75( ) : 7 15. 1569.6 1577.1 4.63( ) 6.7S( ) 7 le. 1566.1 1573.3 4.63( ) 4.74( ) 1 17. 1562.3 156).6 4.62( ) 4.77( ) 7 13. 1558.E 1565.9 4.62( ) 4.77( ) 7 1%. 1557.9 1562.2 4.61( ) 4.77( ) 7 20. 1551.2 1553.4 4.61( ) 4.77( ) 7 2t. 1577.5 1557.7 4.60( 1 /.73( ) 7 22. 150.7 155t.0 7.60( ) 4.73( ) 7 23. 1530.0 15.7.3 4.59( ) 4.73( ) 7 21. 153i.3 1513.6 4.59( ) 4.73( ) 7 25. 1532.6 1531.9 4.53( 1 4.72( ) 7 26. 1523.8 IS36.1 t.sa( 1 4.72( ) 7 27. 1525.1 1S32.7 4.57( 1 4.72( I 7 28. 1521.3 152aJ 4.57( ) 7.72( 1 7 2). 1517.7 1524.9 4.56( ) 4.721 I 7 30. 1513.5 1521.0 4.55( ) 7.71( 1 7 31. 150).5 1517.2 7.55( ) 4.71( ) 7 32. 1505.4 150.2 4.53( ) 7.71( I 7 33. 1501.3 150).2 4.5t( ) 4.71( ) 7 J:. 1137.2 1505.2 4.53( 1 7.10( I 7 35. 1793.0 1511.1 4.53( ) 4.70( ) 7 36. 1(33.7 1396.9 6.52( 1 7.70( ) 7 37. 1181.5 1792.9 7.51.( 1 7.70( ) 7 33. 1330.2 it 33.6 7.511 ) 4.69( 1 7 39. 1475.9 1437.3 7.50( ) 4.6)( ) 7 40. 1171.6 1131.1 4.50( 1 4.6)( ) 1 41. It i7.3 1175.9 4.1)1 1 1.aa1 ) 7 42. 11i3.0 1171.S 4.13( 1 4.69f ) 7 /1. t153.7 1157.2 i.t 31 1 1. 61( 1 7 It, t151.4 1462.9 1.371 1 1.63( 1 7 /5. 145.1 t I&S9.6 1 .47( ) /.67( ) 7 Ii. 1115.8 1151.1 3.7 if ) 1. 67( ) 7 47. It 11.5 1450.0 1.35( ) 4.671 ) 7 43. 1137.Z 1315.8 I .15( 1 4.67( ) 1 4). 1412.9 114 1.5 t.l t( 1 4.66( 1 7 $0. 1123.7 1337.E 1.1 l( I 1.66( ) 7 51. 1tZ1.4 17)2.9 t .I]( 1 1. 66( ) 7 52. !i t').2 3323.1 i .Itl 1 3. 65( ) 7 53. lt15.9 1723.4 4.421 1 1. 65( ) 1 51. 1111.7 1320.2 4.3 if 1 3.65( ) ' 7 55. 1117.5 I115.9 4.61( 1 4.65( ) 7 56. 1403.3 1711.7 /.40( ) /.61( ) 7 57. 13)).1 1407.5 4.39( ) 4.61( ) 7 $3. 139%.9 1701.3 3.39( I 1.63( ) 1 51. 1370.8 139).1 1.39( 1 /.63( I a 0. 1316.6 I3)5.0 1.39( ) /.63( ) 8 1. 1332.5 1390.6 /.37( 1 /.63( ) 8 2. 137a.3 1236.7 1.36( I 6.63( ) 8 3. 1174.2 1362.5 /.36( ) /.62( I 8 /. 1370.1 137a.1 /.35( I /.62( ) 8 S. 1366.1 1373.3 /.35( 1 /.52( ) 8 6. 1362.0 2370.2 1.31( ) 1.62( ) 8 7. 1357.9 1366.2 1.34( ) /.61( 1 8 8. 1353.9 1362.1 /.33( 1 1.61( ) 6 9. 1349.9 1359.0 /.32( ) /.61( ) 8 10. 13.5.8 1353.0 1.32( ) /.61( 1 8 it. 1341.8 1350.0 3.31( ) 4.60( ) 6 12. I337.9 1316.0 3.31( ) 1.60( ) 8 13. 133).9 1332.0 3.30( ) /.60( ) 8 11. 1129.9 1333.0 1.29( ) 3.5)( 1 8 15. 1125.9 1334.0 6.29( 1 /.59( ) 8 16. 13ZZ.0 1330.0 6.28( ) /.59( 1 8 17. 1318.1 1326.1 1.2a( ) 1.5)( ) 8 13. 1314.2 1322.2 3.271 1 3.53( ) 8 19. 1310.3 1318.2 /.26( ) 1.59( ) 8 20. 130i.5 1314.4 1.26( 1 3.53( ) 8 21. 1302.7 1310.5 /.25( 1 t.59( ) 8 22. 1299.1 1306.1 1.25( ) 1.57( ) 8 23. 1295.6 1333.1 3.21( 1 1.S7( 1 a 2t. 1232.3 1297.5 1.2:( 1 1.57( ) 8 25. 1239.1 12)6.0 1.23( ) 4.57( ) 8 26. 1296.1 1212.7 3.23( 1 1.56( 1 8 27. 1?33.3 1239.6 1.22( 1 1.56( ) 8 28. 1250.6 1260.6 4.22( 1 4.54( 1 8 x). 1273.0 1233.7 4.22( ) 1.S4( ) 8 )0. 127S.5 123t.0 4 .21( 1 4.54( 1 8 )t. 1271.1 1273.4 4.2t( ) 4.55( ) 8 32. 1270.9 1275.9 4.21( I 4.55( 1 8 31. 1263.5 1213.4 4.20( ) 4.55( ) 8 34. 1244.2 1271.1 4.20( ) 4.SS( ) 8 35. 1261.0 1253.7 4.20( 1 4.55( ) 8 36. 1241.8 1266.5 t.tll 1 4.55( ) 8 37. 1259.E 1264.2 4.19( 1 4.51( 1 B 33. 1257.4 1242.0 4.19( 1 4.54( 1 8 39. 12S5.3 1259.3 4.19( ) 4.5t( 1 8 40. 1253.1 1257.6 4.13( 1 4.51( 1 8 41. 1250.9 1255.4 4.18( ) 4.St( ) 8 42. 1249.E 1253.1 4.17( ) 4.51( ) 8 41. 1246.6 1251.1 4.17( ) 4.53( 1 8 44. 1241.4 1249.9 4.17( I 4.53( ) 8 45. 1242.3 1246.0 4.16( ) 4.53( ) 6 46. 1240.1 1244.6 4.16( 1 4.S1( ) 8 47. 1237.9 1242.4 C. 14( 1 4.53( ) 8 49. 1235.6 1240.3 4.15( ) 4.S)( ) 6 49. 1233.6 1233.1 4.15( ) 4.S3( ) 8 50. 1231.4 1235.9 4.15( ) 4.52( ) 8 St. 1229.2 1233.8 4.14( ) 4.52( ) 8 52. 1227.1 1231.6 4.14( ) 4.52( 1 8 53. 1224.9 1229.4 4.13( ) 4.52( ) 8 54. 1222.7 1227.2 4.13f ) 4.52( ) 8 55. 1220.5 122S.1 4.13( ) 4.52( ) 8 Si. 1218.4 1Z22.9 4.12( ) 4.51( ) 8 $7. 1216.2 1220.7 4.12( 1 4.51( 1 8 59. 1214.0 1218.5 4.12( ) 4.51( ) 8 59. 1211.8 12I6.4 4.11( 1 4.51( ) 9 0. 1201.6 1214.2 4.11( ) 4.51( I 9 1. 1207.4 12I2.0 4.11( 1 4.51( ) 9 1205.2 1207.8 4.10( ) 4.50( ) 9 ). 1203.0 1207.6 4.10( ) 4.50( ) 9 4. 1200.1 3205.4 4.10( ) 4.50( 1 9 5. 1193.3 1203.1 4.07( 1 4.50( ) 9 6. 1195.9 1290.9 4.09( I 4.50( ) 9 7. 1193.4 1193.4 4.0)( 1 4.50( ) 9 8. 1190.8 1196.0 4.03( ) 4.49( ) 9 9. 1183.1 1193.5 4.03( 1 4.4)( ) 9 10. 119i.3 1190.9 4.07( 1 4.49( ) 9 11. 1182.4 1133.2 4.07( ) 4.4)( ) 9 12. 1119.5 119S.4 4.06( 1 4.4-9( 1 9 13. 1176.5 1162.E 4.06( 1 4.431 ) 9 14. 1171.5 117).7 4.05( ) 4.49( ) 9 15. 1170.5 1174.7 4.05( ) 4.43( ) 9 In. 1lS],1 ll]].9 9 17. ILS1.1 1170.7 4.0[( 1 /.13(1 0 13. 1161.3 I167.7 1.0]f 1 3.17( 1 9 17. 1I53.2 I164.7 1.17( I 9 20. liSS.l LISL.6 1.021 1 /.17( 1 9 21. i152.0 lI51.5 1.02( 1 1.I7f 1 9 1141.9 ILS5.5 1.0;( 1 /./6( 1 9 21. 1145.9 1152./ 1.01( 1 . 1.76( 1 9 27. 1172.E ItO.3 '1.00( ) 4.461 1 9 25. 113).7 Llid.2 /.00( 1 1.16( ) 9 2a. 1136.7 11i3.2 .3.90( ) 3.15( I 9 27. 1133.6 1L40.1 3.93( ) /./5( ) 9 23. 100.5 1137.0 3.9a( I /./S( ) 9 29. 1I27.5 1134.0 3.93( ) S.IS( ) 9 30. 1124.5 I130.9 3.93( ) /.15( ) 9 31. 1121.4 1127.9 3.97( ) I./i( ) 9 32. 1LI8.7 112i.9 3.97( ) /./i( ) 9 33. 1115.3 1121.8 3.96( ) /./i( 1 9 37. 1112.1 MIA 3.96( ) /.li( ) 9 35. 1109.1 1115.8 3.95( 1 1./3( ) 9 36. 1109.4 1112.E 3.95( ) /./3( 1 9 37. 1101.5 1109.8 3.95( 1 /./3( ) 9 33. 1100.S ILOd.9 3.9]( ) ' /.13( ) 9 39. 1027.5 1103.9 3.93( ) 1.12( ) 9 40. 1093.6 1100.9 3.93( ) 1./2( ) 9 41. 1091.7 1098.0 3.92( ) /.42( ) 9 42. 108a.9 1035.1 3.92( ) 1./2( ) 9 43. 1085.9 1192.1 3.91( ) 4./1( ) 9 /i. 1083.0 1031.2 3.91( ) I.41( ) 9 45. 1080.1 103d.3 3.93( I /./L( ) 9 46. 1077.2 1031.4 3.90( ) i.tl( ) 9 47. 1074.2 1030.5 3.80( 1 /./1( ) 9 49. 1071.2 1077.6 3.89( ) /.30( 1 9 N. 1069.0 1074.6 3.83( ) /.30( ) 9 50. lod).6 1071.4 3.83( ) /.30( ) 9 St. 1060.9 lO6a.2 3.87( 1 /./0( ) 9 $2. 1057.0 1061.7 3.86( 1 1.33( ) 9 S). 1052.9 1061.1 3.86( ) 1.37( 1 9 51. 1049.5 1057.2 3.85( ) 1.3)( 1 9 55. 1043.9 1053.0 3.81( 1 1.33( ) 9 $6. 1039.1 30(9.7 3.83( 1 /.33( 1 9 $7. 3031.1 1943.2 3.82( 1 1.3a( ) 9 53. 1025.0 1037.1 3.81( 1 4.37( ) 9 55. I023.8 1031.6 3.81( ) 1.37( ) 10 0. 1018.6 1029.6 3.03( ) 4.3d( ) 10 1. 1013.3 1021.5 3.79( ) 1.36( 1 10 2. 1003.0 1019.3 3.7a( ) 4.36( ) 10 3. 1002.1 1013.1 3.77( ) /.35( 1 10 /. 9)7.1 1008.9 3.76( ) 3.35( ) l0 S. 9)2.1 1003.7 3.75( 1 /.33( 1 I0 6. 993.9 9)3.1 3.71( 1 1.31( 1 IO 7. 93:.7 971.2 3.71( 1 4.33( 1 10 8. 970.6 533.0 3. 721 1 3.31( ) l0 9. 971_.7 932.9 3. 711 1 3. 32( ) 10 l0. 96 a.9 977.8 3.71( 1 /. 12( ) 10 it. 9a2.0 972.9 3.70( ) 3.32( ) !0 12. 957.3 9a3.0 3.6)( ) /.31( 1 10 13. 952.7 963.2 3.68( ) 1.31( 1 10 14. 943.3 953.6 3.67( ) /.30( 1 10 15. 913.9 953.0 3.66( ) 1.30( I 10 la. 93).6 919.5 3.63( 1 /.29( ) 10 17. 935.4 945.1 3.65( ) /.2)( 1 10 la. 931.2 940.8 3.61( ) /.29f ) 10 19. 927.1 916.5 3.61( ) /.2a( ) 10 20. 923.1 932.1 3.63( ) /.28( ) 10 2l. 919.1 923.3 3.62( 1 /.28( )' 30 22. 915.1 923.2 3.61( ) /.27( ) 30 23. 911.2 920.2 3.60( ) /.27( ) 10 24. 907.2 916.2 3.60( ) /.26( ) 10 25. 903.4 912.2 3.59( ) /.25( ) 10. 26. 092.5 903.3 3.58( I 1.26( ) 10 27. 895.7 903.4 3.53( ) /.25( ) 10 28. 891.9 930.6 3.57( ) /.25( 1 10 2). B89.1 896.7 3.56( ) /.25( ) 10 30. 633.3 8)2.9 3.55( ) 1.23( ) 10 31. 830.6 839.1 3.55( ) /.23( ) 10 32. 876.9 eas./ 3.54( 1 3.23( ) 10 31. 073.2 831.7 3.53( I 3.23( ) 10 34. 80.5 877.9 3.S3( ) /.23( ) 10 35. Ba5.9 814.2 3.52( ) 1.23( ) 10 34. 862.2 670.6 3.51( ) /.22( 1 30 37. 859.6 8a6.9 3.51( 1 1.22( 1 10 33. 855.0 861.3 3.50( ) /.22( 1 10 37. 051.5 859.1 3.3)( ) 1.21( 1 30 41. 847.9 8$6.1 3./3( ) 3.21( 1 10 1l. 014.4 85?.S 3.19( 1 /.20( ) 10 42. 81'v.9 619.0 3.37( 1 3.20( 1 10 U. 837.E 845.5 3.(6( ) 1.20( ) 10 41. 833.9 812.0 3./>( ) 3.19( ) 10 45. B30.5 $33.5 3./5( ) /.19( ) 10 16. 627.0 635.0 3./1( 1 3.19( ) 30 47. 823.6 031.6 3.31( ) 3.18( 1 10 43. 820.2 628.1 3./3( 1 /.18( ) 10. 49. 016.9 821.1 3.1?( 1 3.18( 1 10 50. B13.5 821.3 3.12( ) 1.17( 1 19 St. ato. 2 819.E 3.41( 1 4.17( ) 804.1 C4_.4 3.49( 1 4.17( t 10 51. 873.4 8tt.3 3.40( 1 4.141 > 11 St. 890.1 493.o 3.19( I 4.14( 1 t9 Si. 7)7.9 311.1 3.331 1 4.16( 1 to 54. 713.6 80 I.4 3.33( ) 4.15( ) 10 57. 191.6 773.2 3.37( 1 1.15( ) 10 53. 737.4 7)t.9 3.37( 1 4.15( ) 1) 5). 731.2 771.7 3.36( ) 4.11( I It 0. 781.0 788.5 3.35( 1 4.14( 1 11 1. 777.8 '195.3 3.35( ) 4.14( ) 11 2. 774.S 702.1 3.34( > 4.13( ) 1l 3. 171.1 779.9 3.33( ) 4.13( ) It 4. 167.6 775.5 3.33( f 4.13( ) It S. 764.0 172.1 3.32( 1 4.12( ) It 6. 760.2 76a.6 3.31f > 4.12f > 11 7. 156.2 764.9 3.30( ) 4.12( ) It 8. 152.1 7at.2 3.29( ) 4.11( ) 11 9. 747.8 157.3 3.28( 1 4.11( ) It 10. 7$1.5 753.2 3.2a( ) 4.10( I It 11. 739.0 749.1 3.27f ) 4.10( ) 1t 12. 734.5 714.9 3.26( ) 4.09( ) 11 13. 729.9 740.4 3.25( ) 4.09( ) 11 14. 725.3 736.0 3.24( ) 4.08( ) 11 IS. 720.6 731.5 3.23f 1 4.08( I 1t 16. 716.0 729.9 3.22( ) 4.07( ) 11 17. 711.3 722.3 3.21( ) 4.07( ) It 13. 706.7 717.0 3.20( ) 4.06( ) 11 19. 702.2 70.2 3.19( ) 4.06( ) It 20. 697.6 703.6 3.19( ) 4.05( ) 1t 21. 03.1 704.1 3.11( ) 4.05( ) II 22. 633.7 607.6 3.16( ) 4.04( ) It 23. 634.3 695.1 3.15( J 4.04( ) 11 24. 679.9 610.6 3.14( 1 4.03( ) It 25. 675.6 636.3 3.13( 1 4.03( 1 11 26. 671.4 631.9 3.12( 1 4.02( 1 11 27. 667.1 677.6 3.11( ) 4.02( 1 it 24. 663.0 673.3 3.10( ) 4.01( ) 11 27. .653.9 665.1 3.0)( ) 4.01( t It 30. 654.9 665.0 3.03( 1 4.00( I 11 31. 650.8 660.9 3.07( ) 4.00( ) 11 32. 646.9 6S6.8 3.01( )- 3.9)( ) 11 33. 643.0 652.8 3.06( ) 3.99( ) Il 34. 63).1 648.9 3.05( ) 3.99( ) 11 35. 635.3 6.1.9 3.01( ) 3.93( ) 11 36. 631.5 641.1 3.03( t 3.97( ) it 37. 627.8 637.2 3.02( ) 3.97( ) 11 33. 624.1 633.5 3.01( 1 3.95( 1 6:1.5 621.7 3.00( ) 3.96( 1 it 41.- 6.4.9 626.1 1.00E 1 3.95( 1 It 41. 61).4 6:2.4 2.9)( ) 1.95( 1 11 4:. 6•1).5 611.6 2.93! 1 3.94f 1 11 tl. 696.1 6IS.l 2.97( 1 3.91( ) It 11. 6J3.0 6; 1.8 2.96( 1 3.9)( I IL 15. 59).S 613.1 2.96( 1 3.93( 1 11 46. 5)6.3 604.9 2.95( 1 3.91( 1 IL 47. 5)3.0 41L.5 2.91( ) 3.92( 1 11 43. 53).7 513.1 2.93( 1 3.92( 1 IL 47. 536.5 571.8 2.92( 1 3.9L( I IL 53. 533.3 59L.6 2.92( 1 3.91( 1 it St. 530.2 533.3 2.91( ) ' 3.90( ) It 52. 577.0 535.1 2.90( ) 3.90( ) 11 $3. $73.9 532.0 2.8)( 1 3.99( ) 11 54. 570.7 $73.8 2.69( ) 3.99( ) 11 55. 567.3 575.6 2.83( 1 3.89( 1 11 Si. 563.1 572.3 2.87( ) 3.S3( ) 11 57. 551.7 S63.8 2.86( I 3.031 ) it 53. 555.3 545.1 2.65( ) 3.87( ) 11 59. $50.5 561.1 2.84( ) 3.86( ) 12 0. $45.2 556.8 2.82( 1 3.86( ) THE FOLLCWING CO.rn:YANCE ELE.YE4TS KWE MA:=RICAL STABILITY PROSLEMS THAT LEAD TO )FIDMLIC OSCILLLATIONS CURING THE SrMULATION. 112 2B7 331 349 635 910 616 637 SPRING CREEK HYO?.OLOGIC MODEL UPDATE -- 100-YEAR, 3.67-INCH DVELOPED C0401TION XtDEP.iON CONSULTING ENGINEERS, 14C. - JULY 1973 - FILE:SCOEYl00 - PROJ:COFC9612 •.. PEMO FLOWS, STAGES A:9 STOPJOE5 OF CUTTERS A:CJ DETENTION DAMS ••• ••• NOTE :S I:1?LIES A S'J?'.:KARGED ELEMENT Pd:D :D IMPLIES A SURCHARGED DETENTION FACILITY CONITYA::C-e P--A:< STALE STOPAG: TIME ELEMENT :TYPE (CFS) (FT) (AC -FT) (HR/N.t Z11 50:2 512.4 .0 21.0:0 1 18. 51:2 536.7 .0 16.0:0 0 $6. 101:4 563.9 4.4 0 51. 102:5 103.6 2.7 0 41. 103:2 50.5 .1 23.6:D 2 9. 304:5 461.0 5.5 0 42. 105:5 117.9 3.0 0 40. 106:5 27).8 4.4 0 37. 107:5 106.6 2.8 0 36. 103:2 83.0 .1 6.6:D 0 S3. 10):2 1.7 .1 1.3:0 2 5. 110:5 119.6 2.9 0 35. 111�•4 405.9 5.8 0 37. 1I2:2 21.5 .1 3.0:0 1 6. 114:1 211.6 3.4 0 39. 119:1 S65.5 3.6 0 50. 119:1 560.9 3.9 0 49. 120:1 53).9 3.1 0 47. 123:1 441.5 4.0 0 47. 124:1 377.9 4.0 0 44. 125:3 143.1 (DIRECT FLOW) 1 16. 126:1 37).9 4.0 0 42. 117:5 437.5 4.2 0 37. 123:1 16.1 1.3 1 21. 12i:1 2)5.0 3.7 0 40. 130:1 453.0 2.6 0 37. 131:5 116.4 3.2 0 36. 153:4 303.9 1.6 0 35. 156:3 301.9 (O!AECT FLOW) 0 35. 160:1 SI0.0 4.3 1 21. 16L:1 551.3 2.9 1 23. 170:5 16.6 1.6 1 6. 171:5 21.3 1.4 1 15. 177:5 lit.$ 2.7 0 3i. 174:1 4.1 .2 2 3. 175:5 193.E 3.2 0 47. 177:5 241.0 4.2 0 44. 173:5 870.7 6.7 0 37. 179:S ZZ3.? 3.7 0 3i. 131:5 15.3 1.4 1 14. 131:S 510.4 5.9 1 0. 147:S IOL.S 2.9 0 3i. 189:5 100.0 1.9 0 15. 2L3:4 3015.1 7.S z 52. 22 L•s S11.7 4.3 0 33. 3087.0 7.9 2 53. 226:1 4541.0 7.4 t 13. Z27:1 4512.3 4.9 1 ]i. 223:1 3)9Z.1 d.7 1 3d. 229:1 3973.3 7.0 L 27. 210:4 3)d3.7 9.2 1 25. 231:4 3505.1 6.9 L 22. 232:t 2925.3 8.0 1 20. 233:2 404.9 4.5 0 35. 214:4 3083.9 5.4 1 12. 235:4 2703.8 8.4 I 11. 216:4 2444.4 5.5 1 2. 237:1 2315.8 6.0 0 59. 219:4 I76z.1 5.0 0 57. 219:4 1571.9 4.8 0 57. 240:1 222.5 2.3 0 47. 241:4 13S0.9 4.3 0 41. 242:4 645.0 3.0 0 43. 243:1 453.5 3.1 0 41. 244:1 199.9 2.2 0 41. 245:1 176.1 2.1 0 36. 217:1 191.9 2.0 0 37. 2B0:3 $52.2 (DIRECT FLOW) 1 2L. Zdl:3 $70.2 (DIRECT FLOW) 1 2Z. 27L:3 106.3 (DIRECT FLCW) 0 47. 272:3 21.4 (DIRECT FLOW) 0 45. 273:3 84.9 (OCRECT FLOW) 0 47. 274:3 12.7 (DIRECT FLOG) 0 55. 275:3 37.3 (DIRECT FLAW) 0 55. 276:3 35.4 (DIRECT FLOW) 0 56. 277:3 289.0 (OI0.ECT FLOW) 0 36. 278:1 23.7 1.2 1 it. 27):4 174.2 .9 0 36. 282:2 72.7 .0 5.0:0 0 55. 237:2 45.6 .1 11.5:0 1 21. 299:2 2.7 .1 4.6:D 2 11. 23):2 4.5 .1 6.6:0 2 11. 2)5:3 362.4 (DIRECT FLOW) 2 39. 296:3 22.0 (DIRECT FLOW) 0 41. 297:3 41.0 (OIRECT FLOW) 0 IS. 233:3 300.0 (DIRECT FLOW) 0 30. 2)):3 46.0 (DIRECT FLOW) 0 28. 301:2 3036.0 .1 431.5:0 2 51. 304:2 2559.9 .1 41.9:D 1 7. 318:2 ILA .1 8.5:0 2 6. 321:3 3097.3 (DIRECT FLOWI 2 52. 327:3 4637.3 (OI R2CT FLOW) 1 33. 328:3 4006.7 (DIRECT FLOW) 1 30. 3?7:3 20.2 (01 RECT FLOW) 0 43. 330:3 4410.6 (OI 7.ECT FLOW) 1 27. 331:3 3716.6 (OIF.ECT FLOW) 1 22. 332:3 3159.4 (DIRECT FLOW) 1 19. 331:2 6.4 .1 5.^.:D 2 3. 333:2 6.1 .1 4.9:0 2 2. 335:1 3155.9 (DI F.ECT FLOW) 1 12. 32i:2 151.6 .1 4.4:D 0 47. 337:3 407.3 to I P.ECT FLOW) 0 35. ]]d:] 1070.7 (J(C.6C7 FLOW) 0 55. 340:2 10).7 .1 72.0:0 2 S. 311:2 55.6 .1 8.2:0 1 13. 355:3 372.5 (DIRECT FLOW) 0 41. 355 3 117.3 (0:2 CT FLOWI 0 35. 357:2 246.3 .1 6.7:D 0 55, 3 5 9 : 2 126.0 .1 3.5:0 0 49. 3i0:2 27.0 .1 2.5:0 0 $9. 36L:2 2.3 .1 .7:0 1 30. 362:2 1.5 .0 1.4:0 2 6. 363:2 4.8 .0 4.4:D 2 6. 351:2 7.5 .0 3.5:D 2 2. 370:2 27.7 .0 1.1:0 0 51. 371:2 10i.3 .0 4.4:D 0 47. 37Z:2 77.9 .0 13.5:0 1 32. 373:2 100.0 .0 5.3:0 0 46. 374:? 4.2 .0 1.7:0 2 0. 330:2 19.6 .0 1.3:D 0 49. 375:3 3d2.4 (DIRECT now: 3). 31i:3 179.9 (D:R-CT FLOW) 2 3). 432:4 29t3.6 5.1 3 31. 406:4 154.2 .8 0 35. 417:1 230.1 1.9 0 37. 403:4 23L.9 .8 0 36. 439:4 311.4 1.4 0 33. 110:3 4t12.2 (O[RSCT FLOW) 0 51. tll:l tl:.L .9 0 3i. 4t2:1 41S2.3 8.0 0 St. Itl:l 370.1 7.1, 0 32. 4ti:t 297.E .1 0 t17:4 31 5 0 . M3i9.t M. 119:1 7529.1 7,5 0 420:4 3272.1 5.5 3 6. 12L:4 ti?.t 1.2 122:1 265.7 1. 0 0 37, 31.0 123:4 151.0 1.22 Il. 199.E l.1 0 37. 4252:1 :7 3275.5 6.1 427:1 357.3 J 33 . t 2a:i I04.9 .9 0 ]. 423:4 3272.0 .d 7.1 0 2 ]7, 53. 430:1 $24.5 l.i /32:1 3200.2 7.1 433:4 3.97.7 8.0 Si. 417:t 152.3 2 Si. 435:2 It9.3 .7 3.2 0 0 li. 33. I3i:5 192.1 4.7 2 42. till 221.7 2.1 0 37. 443:4 /13.9 1.2 0 11. It5:1 111.3 .9 0 3i. 11i:1 132.6 .9 0 37. /17:5 845.9 6.0 0 /t. /19:5 211.9 3.3 0 36. 450:4 277.2 1.0 0 39. /61:t 2L2.7 1.0 0 37. 452:4 154.7 1.3 0 35. 453:5 511.0 5.2 0 37. 455:4 265.2 1.3 0 33. SOa:l 542.6 3.5 0 39. 510:4 281a.0 5.0 3 V. 513:5 40.6 2.3 1 2Z. S11:1 3927.1 7.9 0 53. 515:4 2i2.2 .8 0 41. 517:5 307,1 4.0 0 37. 519:2 9.0 .9 2 S. St9:4 3665.2 7.6 0 50. 520:4 3467.2 7.4 0 43. 521:4 164.7 .0 0 39. S22:1 894.9 1.3 0 /l. 527:1 659.7 1.9 0 42. S21:/ 1046.1 2.7 0 43. 525:1 3273.9 5.5 3 5. 527:3 625.2 (DIRECT FLAN) 2 8. 520:4 96.0 .6 0 41. 529:7 3279.1 6.1 3 0. 530:2 5.8 .8 3 15. 531:3 393.3 (DIRECT FLOW) 1 2a. 532:3 459.2 (DIRECT FLOW) 1 17. 533:4 319a.0 1.1 2 55. 534:4 131.1 .6 0 33. $35:4 00.1 .6 0 41. 53i:5 13S./ 4.8 2 44. $37:2 3.3 ,8 2 11. 533:3 23.6 (OIRXT FLOW) 0 ti, 540:2 4.8 .9 10 2i. 543:4 401.7 1.1 0 45. 543:4 307.5 1.0 0 41. 519:3 la2.0 1.2 0 40. 55::2 11.2 .9 1 45. 553:5 '151.3 6.6 0 42. 551:5 176.3 3.7 0 36. 555:5 I1.0 1.6 1 7 575:1 192.3 1.0 2 40. 603:2 100.2 .1 22.1:D 3 29. 604:2 I11.6 .1 37.6:0 2 3. 60$:2 .0 .1 1I.S:D t 46. 607:3 ILO.6 (OIRECT FLOW) 0 46. 610:2 327i.6 .1 62.7:D 1 7. 613:2 37.6 .1 2.9:0 0 54. 616:2 9i.S .1 3.8:D 0 45. 618:2 9.1 .1 3.9:0 2 1. 637:2 3.3 .1 6.2:0 2 13. 640:2 4.8 .1 '121.9:0 10 10. 641:2 108.5 .1 7.5:0 0 57. 642:2 5.8 .1 1.9:0 2 0. 646:2 59.9 .1 /.9:0- 1 S. 652:: 120.9 1.0 0 3). 655:4 200.9 1.2 0 Il 675:3 192.5 (OLR T FLOWI 2 3). 702:3 2913.6 (DIRECT FLOW) 3 31. 703:3 $136.4 (OLRECT FLOW) 1 37. 706:3 518.0 (DIRECT FLOW) 0 39. 707:3 771.2 (DIRECT FLOW) 0 33. 703:3 Si2.9 (DIRECT FLCW) 0 37. 7I0:3 327i.6 (OL).ECT ELM 1 7. 720:3 3183.4 (3I2ICT FLOW) 0 47. 726:3 811.5 (DIRECT FLOW) 0 35. 727:3 4723.S (DIRECT FLOW) 1 38. 72):3 3232.3 (DIRECT FLOW) 1 53. 7 3 0 : 3 524.5 (O[RECT FLOW) 0 37. 7IS: 3 241.6 (D I ASSIT FLCW) 0 3S. 134:3 Ist.6 (DIRECT ►LOW) 0 47. 719:3 11-35.6 (DCR:CT FLOW) 0 1:. 7 t):1 211.) (DIRECT ILOW) 0 3i. 7s::3 IS1.1 (DIRECT FLOW) a 35. 7$S:1 2iS.2 (D: REC: FLGW1 0 31. 810:3 214:.6 (OCR£CT FLOW) 1 7. 81):1 S.9 (DIRECT FLOW) 0 29. IIS:3 111.0 (3(R2CT FLOWI 0 32: a 34:1 64.9 (D(RECT ILCW) 0 47. 00:3 14.2 ( 3 1 AECT FLcv; 0 21. ss::3 11.E (D 1AECT FLCWI 0 33. ass:3 11.a (0:R2CT FLCW) a 21. 910:3 111.0 (DIRECT FLCWI 1 7. 525:3 144.1 to CR2CT FLCWI 1 li. 930:3 S13.7 to C R£CT FLOW) 0 37. 931:5 3)19.3 9.2 1 24. 931:4 267i.5 9.1 1 9. 935:3 IS3.6 (DIRECT FLo4I 0 35. 93i:3 Bi.7 (DIRECT FLoWI 0 61. 937:4 2476.5 5.8 1 1. $33:3 2147.7 5.6 0 911:1 1349.8 6.3 0 52. 915:1 1S1.3 1.7 0 41. 917:1 117.9 2.0 0 60. 91):3 1)7.1 (DIRECT FLOW) 0 37. 95::3 110.5 (D(REC( FLOW) 0 37. 953:1 .690.5 2.4 0 65. 9$5:3 224.2 (DIRECT FLCWI 0 3). 973:3 84.9 (DIRECT FLCWI 0 67. PROGAT.Y CALLED COP-%-'T CNA3(E NOT FOUND Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado APPENDIX IV Charts & Figures City of Fort Collins, Colorado, Rainfall Intensity -Duration -Frequency Curve, Figure 3-1 Overland Time of Flow Curves, Figure 3-2 Rational Method Minor Storm Runoff Coefficients for Zoning Classifications, Table 3-2 Initial Storm — Street Runoff Encroachment, Table 4-1 Reduction Factor For Allowable Gutter Capacity, Figure 4-2 Major Storm — Street Runoff Encroachment, Table 4-2 Minimum Roughness Coefficients For Lined Open Channels, Table 7-2 TIT,_: 3. _.j.►;1;,1 �' 11T1: •r ll Xi _ ` l =rj_ ilr r ' ti`:�-^I' f�, 1. t�_�,�%i_�f�=�1'�'���'l l���.SI�I: ?'ik:i,�l:llr�- ,��i i �•. 2'a. i �1 � ��� ��I�-'17 �!'. -. :. f,".1• <I' _�I �{I}�[, i.�- � c ; ; i` � a' �. � j � T��`�';;77f�' _<:-I?1h'�_'�•'�' 11l � _��a;1:- �._.' .i ° t. ' i t ; i 3 �• +{,,a'aii� i�� � f ' > ai :�' - 5 �� -' �' > '.�: 1►3. i i .•u!� �,�;. - r S � � •1 :I` •? 4 Y' � i t� 3 •`.�i IT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 of of ri .— r ,— • 1 0 N (Jti/ui) f;isuaaUi NO 4OU 09 =** cl Ficiure 3-2 OVERI�'ND TIME OF FLO`i•! CURVES ), 19054 3-13 D.--SiGN CRITERIA The runoff coefficients to be used with the Rational eth _ referred to in Section 3.2 "Analysis Methodology" can be detenni.^.ed based on zoning classifications if the character of the surface is unknown. Hzwever, the final drainage study must calculate a composite coefficient using Table 3-3. Table 3-2 lists the runoff coefficients for the various types of zoning along with the zoning definitions. Table 3-3 lists coefficients for the different kinds of surfaces. Since the Land Development Guidance System for Fart Collins allows land develoonent to occur which may vary the zoning require -.eats and produce runoff coefficients different from those specified in Table 3-2, the runoff coefficients should not be based solely on the zoning classifications. The runoff coefficient used for design should be based on the actual conditions of the proposed development. • The Composite Runoff Coefficient shall be calculated using the following formula: n C = (CiAi) l At i=l Where C = Conposite Runoff Coefficient CL= Runoff Coefficient for specific area AL AL- Areas of surface with runoff.coefficient of CL n - Number of different surfaces to be considered A,= Total area over which C is applicable; the sum of all P.L's is equal to A, Table 3-2 RATION.aI, METHOD N.INOR STORK RUNOFF COEFFICIENTS FOR ZONING CLASSIFICATIONS Description'of=Area or Zoning Coefficient Business: BP,BL..................................... 0.85 Business: BG,HB,C................................... 0.95 Industrial: IL,IP................................... 0.85 Industrial: IG...................................... 0.95 Residential: RE,RLP............................ '...... 0.45 Residential: RL,ML,R? ............................... 0.50 Residential: RLM,R`•t?.................................0.60 Residential: PUM,M_M .................................. 0.65 Residential: RH..................................... 0.70 Parks, Cemeteries .................................. 0.25 Playgrounds ........................................ 0.35 Railroad Yard Areas ........................ I....... 0.40 Unimproved Areas....................................0.20 Zoning Definitions R-E Estate Residential District - a low density residential area primarily in outlying areas with a minimum lot area of 9,000 square feet. R-L Low Density Residential District - low density residential areas located throughout the City with a minimum lot area of 6,000 square feet. R-M Medium Density Residential District - both low and medium density residential areas with a minimum lot area of 6,000 scuare feet for one - fa -roily or two-family dwellings and 9,000 square feet for a multiple family dwelling. R-H high Density Residential District - high density residential areas with a mininum lot area of 6,000 square feet for one-fe.:7ily or two-family dwellings, 9,000 square feet for a multiple family dwelling, and 12,000 square feet for other specified uses. R-P Planned Residential District - .d signation of areas planned as a unit (P(JD) to provide a variation in use and building placements with a minimum lot area of 6,000 square feet. May 1984 Design Criteria Revised January 1997 3-3 The determination of the street runoff carrying capacity shall be based or, the following procedure: • Compute the theoretical flow conditions for pavement encroachment. • Apply a reduction factor to the theoretical flow rate to take into account field conditions (See Section 4.2.2.3 "Allowable Gutter Flow") 4.2.2.1 Street Encroachment The encroachment of gutter flow on the street for the initial storm runoff shall not exceed the specifications set forth in Table 4-1. A storm drainage.system shall begin where the encroachment reaches the limits found'in this table. Table 4-1 INITIAL STOR.4 -- STREET RUNOFF EVCROACF:— NT Street Classification Maximum Encroachment Local (includes places, alleys, marginal access) Collector No curb -topping.. HFlow may soread to crown of street No curb -topping. HFlow spread must leave at least one lane width free of water Major Arterial No curb -topping. H?low spread must leave at least one-half (1/2) of roadway width free of water in each direction tWhere no curbing exists, encroachment shall not extend over property lines. 4.2.2.2 Theoretical Capacity Once the allowable pavement encroachment has been established, theoretical gutter capacity shall be computed using the following revised Nanning's equation for flow in shallow triangular channels: O = 0.56 Z Srii ysi) n Where Q = Theoretical Gutter Capacity, cfs y Depth of Flow at Face of Gutter, feet n Roughness Coefficient S = Channel Slope, feet/feet Z = Reciprocal of Cross Slope, feet/feet A nomograph based on the previous equation has been developed and is included in Figure 4-1. The graph is applicable for all gutter configurations. An "n" value_ of 0.016 shall be used for all calculations involving street runoff. 4.2.2.3 Allowable Gutter Flow In order to 'calculate the actual flow rate allowable, the theoretical. capacity .shall be multiolied by a reduction factor. These factors are determined by the curve in Figure 4-2 entitled "Reduction Factors for Allowable Gutter Capacity". The allowable gutter flow calculated thusly is the value to be used in the drainage system calculations. May 1984 Revised January 1997 4-2 Design Criteria UE 9 0 7 LL 0 .6 U a Z .5 0 U LJ C .4 .3 2 rF'0a e/ $ -0.4% F:0.5 I I I fill I I BELOW ALLOWABLE STREET I MIN GRADE MUM I l I 2 4 6 a 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) MAY 19a4 4.4 DESIGN CRITERIA The determination of the allowable s:ree_ flol due to the na -- sto — shall be based on the following criteria: Theoretical capacity based on allowable depth and inunda:e:� area. Reduced allowable flow due to velocity conditions. 4.2.3.1 Street Encroachment Table 4-2 sets forth the allowable street inundation for the major storm runoff. Table 4-2 14A0OR STO:L.f - SL ZE-T RUNOFFB ENCROACKC-NT Street Classification Maxiaua Encroachment Local (includes places, P.esidential dwellings, public, alleys,'marginal commercial, and industrial buildings access 6 collector) shall not be inundated at the ground lire unless buildings are flood proofed. The depth of water over the crown shall not exceed 6 inches. Arterial Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line unless buildings are flood proofed. Depth of water at the street crown shall not exceed 6 inches to allow operation of emergency vehicles. The depth of water over the gutter flowline shall not exceed 18 inches. . In some cases, the 18 inch depth over the gutter flowline is more restrictive than the 6 inch depth over the street crown. For these conditions, the' most restrictive of the two criterial shall govern. Major Arterial Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line unless buildings are flood proofed. The street flow shall not overtop the crown to allow operation of emergency vehicles. The depth of water over the gutter flowline shall not exceed 18 inches. In som-2 cases, the 18 inch depth over the gutter flowline is more restrictive than no overtopping of the crown. For these conditions, the most restrictive of the two criteria shall govern. May 1984 Design Criteria Revised January 1997 4-5 When lined channels with high velocity flows enter unlined channels with subcritical flow, a structure for the purpose of dissipating energy shall be re _ire3. A combination of channel stabilization measures may be utilized if acceptable hydraulic conditions exist, subject to approval by the City En;?veer. Concrete, gabions, slope mattresses, riorap, and other approved measures can to used. Gabions, slope mattresses, and riorap smaller than 12 inches shall either be buried on maintainable slopes (4 to 1) or grouted to prevent vandalism. Flow computations shall assume uniform flow and utilize the following Manning's equation:. .�, nl r 1.49 Q = — R' S A. ( "" n Where Q = Flow quantity, cfs n = Roughness Coefficient R = Hydraulic radius S = Channel bottom slope, ft/ft A = Cross -sectional area, ft.2 Table 7-2 lists the minimum roughness coefficients to be used for lined open channels. Table 7-2 MINn4U%( ROUGFENESS COEFFICIENTS FOR LINED OPEN CHTNNBLS Lining Roughness Coefficient HRiprap............................................... 0.0395 (dsa)": Grouted riprao...................................... 0.023 to 0.030 Wireenclosed rock ........................ ..... 0.035 Concrete ..Trowel finish ....................................... 0.013 Float finish ........................................ 0.015 Unfinished .......................................... 0.017 Concrete bottom with sides of Grouted riorap....................................... 0.020 Riorao............................................... 0.030 HEauation obtained from the Urban Storm Drainage Criteria Manual. Does not apply to very shallow flow (hydraulic radius is less than or equal to 2 times the maximum rock size) where the coefficient will be greater than indicated by the formula. dso=the mean stone size in feet. 7.2 Unlined Channels and Swales Unlined channels shall be used when hydraulics, topography, and right of way limitations so permit.. Channel side slopes shall be a maxir,,= of 4:1 on all improvements subject to future maintenance by the City. Any slopes steeper than 4:1 are not permitted unless stabilization is used, which is subject to approval. The maximum channel depth of flow shall be determined for both the najor and initial flows do not occur. The minimum amount of capacity for 1/3 of the design flow. May 1984 Revised January 1997 7-2 4.0 feet. The critical depth shall be storms in order to insure supercritical freeboard shall be 1.0 foot or additional Design Criteria Project No: 1555-02-00 July, 2002 Re: Final Drainage and Erosion Control Report Pinnacle Townhomes; Ft. Collins, Colorado APPENDIX V Stuffer Envelope Overall Master Drainage and Erosion Control Plan Overall Master Grading Plan Flood Insurance Rate Map, Community Panel Number 0801020012C Spring Creek Flood Insurance Study, Sheet 4 of 25 ... __ r 13• i.i�. �. � T .� �. a '10 :T' �!'.. \. .: I dr _ in �. - Imo• � .•.. �I ly _ Ft OF 1 1 AI F,/ ; a .•" 3�� S n - f i' �• y do rot F AL, IM FA OF � ` _y ...�, �_:• � , � • tl. � ►:fir 1 A 11 i �� ,/e�'OMN[AE -:4A99 _ \ �II I11 1 [ A ri w IIII�II r'1 i i yy II\ xMVVI _ Mo . _ E�9� i I • F ^' A xx ✓ry [LCODvnrnfus NZ�e.n... YY ary 11 RM9 • 5P, NE;A 4 SET V w O wRPLRRDAAus if ��'ZONE AE w S 14.,J. �[ _?J — z LISP IF Soon! .11h .1noll "I'll I INS low. UMEGAPOVORER[VEA O O9xEf AREAS CWT:€ ZOME NAZONE a ME �i 4 L b 0� 5 IndIlIrnkod SE zoPN.D... e.P Vl R r O yf i DIRE ..,all nooaxU E[[[rn FMDM 1.� wb.. Raa. No ..n rMm _ r L ....,.... w...�... R.MA9. y . . cmxEurowR[ � RI/ M, a .x� •_i-fJ LM �_..� © of DPRI1111 Sold x U 8 y b o 3 b b AAllE0 I F� Cloo �� LIM a w v° —w—SPIN ritimad Lin. Ell [ f `� w�_ ^�\\ ¢ .Ymuu a'Nxna lipf FISSION,MnS Y OI II �� NOTES G o ZONE al ill So. - —� —eww!_ EaMT_--•i �� �� 1 ' - _ y\ o m u a,.ftw. in OR RIM—, MAP REPOSITORY al„_ \ \ INITIAL DISMISS,rl Ilr IARKN000 � m[venMMwE GKE FLUOR HAZARDw NDARr MAP DIVISIONS ✓�/ I FLDDD INSURANCE RATE MAP EFFE[n V[ ZRJL FLORDIxSVR X[.is" [fnTE Mev f[Vlslaxs. a...M..Px.._...P. _xIc LAKEOR Nxw.19.A:0. MJ SHERWOOD All `El. IR1 n-inl_I NU.. Mo— =1su€W R RATIONAL FLOOR INSURANCE PROGRAM �� >l IF FIRM f/ I � I FLOOD INSURANCE RATE MAP CITY OR FORT COLLINS, IF COLORADO I `III1I1] ELEVATION REFERENCE MARKS REFemiRMARRC[ I"NOVELEVATIOODN 0[ECRITOM OF LOCATION Am 4919.19 &m IS, n m nreaev"oTRIPS 9e T em PeM. FREE Now, mnRMPR Pwm Of PRINTER OF 5 IIIuIII L.iw. YRb � � 0 t. J V u COMMUNITY -PANEL NUMBER D i 060102 0012 C MAP REVISED: MARCH 18, 1996 9 � WARREN LAKE � _- Fedi EmingurcY Menapmen9 APenry as etoll :nl lu.. •a .. ,.v®.,.... FPa 2I II-06.9 UNIWRSITT ACRES 2N0 SUB TRACT W CITY OF FORT COLLINS � ONED�RL ar ,P, nRST BAPTIST CHURCH ~ -0 \ I� I. aI `£ 16 1 19 120 Pe � 2J Y 9 25 '1 n — r �n I � I � v 28 3O 31 32 3J Ja J•.�y L I •1• 37 a <po I 4�C,' •i RESIDENCE SrRUCTURF I F1 OODPLJ� /I N96 J9 / .mt r _ I a..wu wx w rtom.w .pm / fe�1 1, 4ON r�+NnrbV xu•1 wxa ,.,. FF _r B.F.E�19J41 NW• flow 41 64 A B 9 ....� IJ9! PR09PiCl ROM _•_ a.. -.•. 1 _ _ - - I t 2 J 4 B I a 5 1 plwfflmmwaffi�LAA on •. - . .�Yw�+ wswa�malerw�eAll, %Y�Ad7�1� Gr.Y�2�X� '• 6•�9��•6�9 Imo^ �•^ 1W MARVIN jrj(j FAIt jl , �E �riiniiiy �� . �- 611lmMlll1111s1RAmORIWCWA'AIXa �ONNIk•dNNR W61 6w 11YBtwn M AICONY 11Wa1OmYbONY a. AaYr iyIWY B.yn LaXn vtll i^tlNI6Yt4i I Wlli la wxm wlm 10m wIb I tl.ilW wtm ONES wlm MICA R wla wIa wlm . ^ wIm MAID wl@ wlm ^ m ImII es wrs wlm xl wIa wrs wra Wnm m wxM IW.11 wI.N wtm wxN wr.0 tINN INCm a IISIx wla W 12 wlq xl wlp wi.tx wlq a W1x amn wla In.a m llti itII W Q wla n mp.lx wIa wr. U W wla a d •ma mP.W wm II wu wTLm wxa wue • •mn Iaa wrn am m en wrm wr.n •mat II wxA1 w1AI wiA1 ONES A wx11 ONUS wx wl9 x1 ImW ONUS ONIisIC wxm s wxn waa wrn as x1 wfn WA in ONlm II •RCA IIAa ONIn win ,W wra wLn WA N mn wxn wra wrn wxm y IONm y yIIm w61 am Ieln Ilmm IFIs �m IS wxm wlm wLn wtW y wu Z Ilmn Ism wuo y y MUO ollm am am y 4NOUR wu Iksm am wlm am Ism 11 gW wIm •mm Ilmm 11 • wL^ wxm wIn wlm m wm 40Ra wxm wm wIa wm ma N ON?D ma wLm M^m a ONLW Ifim ONxm MAX A wlm ONia !dy wU11 GI VE 1'Iar 1 � �•w��aw1� I r�u Qrr' 1 I r 41�Rk' ili�FKA4i�! 'I ~ `=W �b�,��liajL�i►f it `�i jC I�® 0- IIN nv ,� b1I at `w1.k see, ....,. :.::`_ i• ' I I I ( CORRECTED BSFEo1nE \ \ .. ��... le,�/ \ +FZ• l HAIf-FWI nw(WAr \ \ rer. r w�.wr Ill r 11471 -Till I BF.E.M9J3.9 / 5--- ------ - ----.. "'•^ <q f QdVK volo „a95p A_ � _ — � �• _ _ _w CORRECTED EFFELTY£ i / 100-YR FLOODPUIN BOUNDARY REflVYk a N m6s D.n. uutr. xoo: 8,,,,, a.aE. cs.P • mm SHEAR ENGINEERING CORPORATION or i,_ r Fmk Book CAxIaA—BWi PINNACLE FTC, LLC N 6 SO. COLLEGE AYE. SLATE 12, FORT COWNS. COLgG00 W525 ow a says.. Scok 1' . W' /apYk1 0.W.5' %NINE: 070 225-53U 9T0) 226-a l FAX: tal0 252-0311 PINNACLE TOIPNHOMES P.D.P. FORT COUINS, COLORADO ■■,1n�11I I'\ GRAPHIC SCALE W 4 m N a t ten. Nn. City o1 Vert Colhu, Cobredo OFRM PLAN APPMAL .knaoWn m.thcoloppot wME a6ncm n' _m, wME_m N.n. oM CKM A mm tMCItN A' .•na xo.mwox CAME O6QRJ A' n,rnc .m, I m a6nGB n' me XY, ION Y�n•Ya••OtStl R.er k. nlw•I A�Y� R� tl M o�'+.+Wv M r StM1I eA�R�q�I �.I�tl :N11111 M.w Yl� R Ns ,. R Yi ^YY Y L Nee lf�,rlurr .1 Y• � IYl CRY w nNN 1.4 O• a4aIR Ns LEGEND yn - Eu57114C IMITUM --_- EMSMG T 00,111M -Yh WOPOM01 MNDYJR ulo mmoMD B C rouR — BASIN BMNORRY sue BA9N BOUNDARY p p. NNM BA4N BWNOARY PaR� C A COErt<EN a AN TS (00 M EVD410 Qp 0 - OF904 PONT [E9yATPl m71W BNIMED 900R ELEVAMN 9L1 FENCE STRAW BmE ONES AMA1 IMIET FILTER W,W N1EEL MAMNB STATIM 11-RAi Amyl nn DMCCnw ARRONs Imo DSTWA 9:aER Cry Yw M y 1k Nn Y � Y � rrrY 41Y M IIr IEIL qR IrRR Y rrr 0 1 kl rbP 1YRr arR PR rN P Fm 11471 B.E.E.-4953.9 B.NrT_..rrun M�mc �BNrPmmy mN nwA PP.yw m sF_.._r. .r r r-.rwrr w+�a w i-r MY ananN. •r. we F w.aa F Nr ur P' RP PrR 5 U . E l a mQuawmallIM w - mow " _ _ _ rarNmn Prr NM rt. All oRo PR asra. imm �6i1�916Jii 999999 �Wv t19i9�fSa{'A APHI SCALE o A6 IS 1WL NM1 El 1001 pe MMumm O jfrea��l AiIIFl1 26 1 29 1 30 131 I IN 32 DNk JULY. 2002 OraRn C G i /DAN. ` RN6 PkN M* C e.y5 PINNACLE FTC, LLC Say 1• - tl' APrrPaA 9y. RA9T PR \41v �r6\� oIYELYY. rl��v WAS %Y�RL"1�6R����jjjjaaaa^AYii GI r6R961rl911PIIPa�R�a�r Im"mo mm a N82 1005 5 B.E.E.-6931.a r�u IS ,I Wko C a ------- ------ CORRECTED EFFECTNE 100-YN ELCODPINH BOUNORRr SHEAR ENGINEERING CORPORATION A636 SO. COLLEGE AVE. SUM 12. FORT COWNS. COEOINDO M25 PR E: (970) 2R6-5334 (920) 226-a191 EAR: (970) 262-0311 fRJ9d cmmc CIXISINIILTM Rm NOTS: r. it bwbn Ir"•21 Wm.ranw'ie'an u�i pG"•'rwsw Jmenmane..P"•ia sw'sue 0. Man w w Nnwe u nrrru� ,rY�� . Oti M�u�wv m4u1Mn MH wM N•en+"r yE A wiy.o w g rbi rw"F.B.rlwswie. I 4 a a10: wMPwi .rnrr.r F�rL rN•9e MF I ar Y ti rna F Na Yrrp A vRwa�YY�AY U�+ YAanr—r.rn eeP.IN Yas4 1N.rr1..WryFPY frir Fan vm*F a MW F a Nan bM s.FaW e011Y n dnu r '� •r'' fsNN uau. M b w4 "gaYnm.nu ea mr rn In Ew fMirp qnd r�wwr'wbwr ar M..Y F r, seeF vbnue •Y.W VY ai 49 4rr.nFyYyyYaF�1�-w1 arlaaN 0 PA�wiYr--Mie m_ns ^Y.�akr;Irr 1 R.r rr r1r6 Y1 bayLYr YYbYbrrrs ar. Yrrs.ry nrrpsr N nT Nk.a ffa� bFYMeran..n.wrb ea.F r-aNrFYswrb. l M YrY ss FMe w.wgB, wn w nuNr nn � M mN. v m rpr r¢ FOR Q'eR1rM M/P2NR orve BaP2 MA NPN/M u eaa 70 M M -� am 15 la +. b IY II. r[AllwN arPIWwY/ wP A SMS Fx rBEPIPn� M.na aqP M P-Y A P-%D q P P-Y a Y+IrFrF rinwrwnara Mnm a.n �... m.n. FINEN nrer"IR.F-a�w ^nrwPr,M r.e rma m-,q. snl.ra eo aovuiuNOARv b,. sw w.A kr-b,.abb.n.rr _ PINNACLE TOWNHOMES P.D.P. FORT COLLINS. COLORADO � o H 8 a CAAOC I INPn CWAI F City of Port Collins, Colorado UMXN PLAN APPROVAL AAr9nm �N I.P.PI P.M CHISEXED mm Mw DIEdID n' ..eR r aarAno. NM aRcxm n ,..� rm NM aRL1Im n� mR. rs.N P.F sr Y. ryr q•YL6rr Ry6raY &mw�YY♦cA wvm Ea Yq•M Or 9rYre.ab 6r r al �ra� Y damn al Y raLa w�i 9Mr a Y III w Y YI Pia rR�RL Y aRr Y e�P�Y y�YYgr� �r�1Ya�YrRy- i a� b RAW Y nI YFrR frrAw,Y Now VMJECT W. SNER w SMRTS 1555-02-00 21128