Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 09/24/1990
f MASTER DRAINAGE STUDY FOR THE OAKRIDGE BUSINESS PARK FORT COLLINS, COLORADO iNc Engineering C•onsultants 1 G ■ T:§DNc Engineering Consultants ' 2900 South College Avenue Fort Collins, Colorado 80525 (303) 226-4955 .1 1 1 1 1 1 1 Ms. Susan Duba Hayes Stormwater Utility Dept. City of Fort Collins P.O. Box 580 Fort Collins, Co. 80522 September 24, 1990 RE: OAKRIDGE BUSINESS PARK MASTER DRAINAGE STUDY Dear Susan: RBD Inc. is pleased to submit to you the Master Drainage Study for the Oakridge Business Park. We have addressed your most recent set of review comments and now submit this final version for your approval. Your redlined review comments are attached. Most of these comments have been addressed through meetings and discussions. Some of the comments are addressed directly on your redlines. One remaining. comment concerns the need for a new basin map for the 10 year model. The 10 year schematic illustrates the elements changes required to illustrate the internal routing elements which are needed to develop the 10 year hydrographs. The 100 year model does not require internal routing elements. Based on this explanation and the fact that this report clearly verifies that the staged release rate is not required, RBD does not feel another 10 year basin map is required. We thank the Stormwater Utility for their input in this project and look forward to a timely written confirmation of the approval of the report as presented. Sincerely, Stan A. Myers P.E. :c•',�`'"°`"«"-�' ,t,:.:•*`;i:e.:s::,'c�s;;, Peter Swift P.E. cc: Stan Everitt, ; "-.' t- Compaii`• es 035-096 022 1028. Q� e ee Other Offices: Vail, Colorado (303) 476-6340 • Colorado Springs, Colorado (719) 598-4107 • Longmont, MASTER DRAINAGE REPORT FOR THE O A K R I D G E B U S I N E S S P A R K FORT COLLINS, COLORADO September 24, 1990 PREPARED FOR: EVERITT COMPANIES 3000 SOUTH COLLEGE AVENUE FORT COLLINS, COLORADO 80525 PREPARED BY: RBD, INC. ENGINEERING CONSULTANTS 2900 SOUTH COLLEGE AVENUE FORT COLLINS, COLORADO 80525 ■ TABLE OF CONTENTS ' I Introduction 1.1 Purpose. . . . . . . . . . . . . 1 1.2 Basin Characteristics ' 1.2.1 Existing Description . . . . . . . . . . 1 1.2.2 Proposed Development 2 1.3 Previous Reports and Criteria. . . . . . . . 2 II Hydraulic and Hydrologic Summary 2.1 Event Simulation Computer Models . . . . . . 3 2.1.1 SWMM Model Description . . . . . . . 3 t 2.1.2 Hydrology . . . . . . 4 2.1.3 Routing Techniques. . . . • . • . • 5 2.2 Hydraulic Output Summary . . . . . . . . . . 7 ' 2.2.1 Allowable Discharge Criteria. . . . . 7 2.2.2 Flow Characteristics. . 8 2.2.3 Routing and Downstream Impact . . . .10 IIIConclusions . . . . . . . . . . . . . . . . . . . . . .10 ' IV References . . . . . . . . . . . . . . . . . . . . . .11 ' Appendix A Various Data, numbered pages ' Appendix B 10 Year and 100 Year SWMM Output Figures: ' l..Vicinity Map 2..FAA Mass Balance Method (2 Charts) 3..IDF Rainfall Curve Regression ' 4..Pond Stage -Storage -Discharge Curves 5..Culvert Hydraulic Rating Calculations 6..Schematic of Hydraulics, Elements 41 to 42 7..Gutter Flow Calculations 8..100 Year Storm Hydrographs 9..SWMM Flow Diagram, 100 Year 10.SWMM Flow Diagram, 10 Year Enclosures Basin Map 1 1 ■ I INTRODUCTION 1 The results of a Master Drainage Plan for the Oakridge Business Park are presented in this report. A comprehensive plan for the ' control of storm water is proposed for the use in planning future development. This type of management approach is outlined by the City of Fort Collins. The Oakridge Business Park and Oakridge Villages are located in South Fort Collins, Colorado. The site is bounded on the north by Harmony Road, the west by Lemay Avenue, the east by Union Pacific ' Rail Road and the south by Southridge Greens. The Business Park portion occupies approximately 'half of the total 263 acre site. ' 1.1 Purpose This Master Plan has been developed for the following reasons: ' 1. Suggest specific detention release rates for individual sites during the modeled 10 and 100 year storm events in ' conformance with the intent of previous studies, the City of Fort Collins criteria, and, generally, for the mitigation of downstream impacts, ' 2. Provide documentation for the enforcement of a mutually agreed upon approach to the control of storm water, ' 3. Act as a tool for possible minor revisions of subsequent development, 4. Analyze the effects of upstream flows as they enter the ' property and flow to the Pond 1, Search and Replace: Search for "POND 111; replace with "Oakridge Development Pond", ' 5. Evaluate the impact of the discharge from the Pond 1 to the downstream portion of McLellands Basin, ' 6. Evaluate individual design points within the subdivision for their individual hydraulic performance. Figures in this report are found at the end of the Appendices at ' the back of the report. Further, and to avoid confusion, the reader should be aware that the 100 year numbering scheme in the Flow Diagram (Figure 9) is not exactly the same as the 10 year ' Diagram (Figure 10). When reviewing the SWMM output, please refer to the associated Flow Diagram. Also, all references to "Pond 1" are associated with the large detention facility located at the south east corner of the property. Pond 1 is the combined tElements 1 and 2 in the SWMM Model ' City of Fort Collins, Storm Drainage Desian Criteria and Construction Standards, May, 1984, Section 1.2.2 l 1.2 Basin Characteristics 1 1.2.1 Existing Description At the time of this report the.Oakridge Business Park consists of office buildings separated by areas of undeveloped land. The existing development of the site can be seen on the "Overall ' Master Drainage Plan" in the pocket of this report. An offsite drainage way enters the site at the north west corner. The runoff originates from land north of Harmony Road and west of Lemay Avenue, and from a portion of Harmony Road itself. The ' second offsite drainageway enters the site through three 36" RCP's under Lemay Avenue on the west side of the property, approximately 3000 feet south of Harmony. ' Currently about half of the Oakridge site is slated for commercial development. The residential portion is almost completely built, while about 50% of the business area remains to ' be developed. The undeveloped areas are covered with natural grasses and slope to the southeast at about one percent. 1.2.2 Proposed Development As mentioned above, the commercial area remains to be built out. The development of the SWMM model for this portion of the site is t timely because this area will be relatively impervious and will account for a significant portion of the site generated runoff volumes. ' 1.3 Previous Reports and Criteria The first Master Planning effort for a portion of McClellands ' Basin occurred in 1980 and was done by Cornell Consulting Company. It included the area from the upper basin limits downstream to Timberline Road. Figure 1 (see Figure packet at end ' of this report) shows the extent of McClellands Basin as well as the location of the Oakridge Business Park within the basin. ' In 1986 Greenhorne and O'Mara, Inc.z expanded the Cornell report to include all of the basin to the confluence with the Fossil Creek Reservoir Inlet Ditch. ' The construction of the street infrastructure and the Comlinear development was completed prior to 1986. The southerly, or Oakridge Village, portion of the development began construction ' in 1986 and is near full build out at the time of this report. There were several drainage reports filed with the City of Fort Collins during the course of development and are listed below in the "Reference" section. 1 ' z Greenhorn and O'Mara, Inc, McClellands Basin Master Drainage Plan, June 20, 1986, Fort Collins .1 ■ 1 1 1 1 1 1 The above mentioned reports discuss criteria specific to the Oakridge project, as does the Greenhorne report. Release rate criteria is specified3 and is based on generalized parameters relating to allowable discharge in units of cfs per acre. This approach is discussed in section 2.2.1, below. Generally, however, the recommendations were to control the 10 and 100 year events by restricting outflow rates to 0.2 and 0.5 cfs per acre, respectively. The developer chose to install a large capacity detention pond (Pond 1) near the south east corner of the site suplementing several upstream site specific detention ponds. II HYDRAULIC AND HYDROLOGIC SUMMARY 2.1 Event Simulation Computer Models The model chosen for this report is the UDSWM2-PC as revised by several entities. This computer program is described in more detail, below, but is classified as an event simulation model. It is important to use this type of model, instead of one that evaluates many different storms, because two very specific types of storms are being evaluated in conformance with the City of Fort Collins regulations. These storms have a 10% and 1% chance of occurring in any year and are called the 10 and 100 year events. 2.1.1 SWMM Model Description This computer model had its origins with the U.S. Environmental Protection Agency (EPA) and originally contained both runoff and water quality blocks. The model has undergone several modifications, including deletion of the water quality block, with the latest revision performed by Boyle Engineering4 for the Urban Drainage and Flood Control District, Denver, Colorado. The SWMM model (= UDSWM2PC) is a physically based single event simulation digital computer model. It mathematically evaluates various physical phenomenon involved in the hydrologic process and generates hydrographs of excess, or surface, storm water flow. 3 Greenhorne..., Ibid., page 3 4 Urban Drainage and Flood Control District, Users Manual, Urban Drainage Storm Water Management Model - PC Version (UDSWM2 PC), March, 1985. Software Support by Boyle Engineering, Denver Colorado. Further details of operation and additional software support by Dr. James Guo, Univ. of Colo. @ Denver, Short Course on Colorado Urban Hydrograph Procedures, January 8-10, 1986, Section entitled "Introduction to Modified SWMM". ■ 1 1 1 1 1 1 1 There is one characteristic of the model that differs slightly from other similar computer models and relates to the establishment of Mannings n values to channel and overland flows. In relation to channels n = 0.393(S)0.38(R)-o.16. This requires an iterative process for proper determination. For the Oakridge model, however, a generalized value of 0.035 was used. This judgement is made in light of the fact that most of the routing control in the channels is determined by the backwater effects and structure caused attenuation in the 100 year event, not the channel friction. The value of 0.035 is slightly conservative considering that the channels will be maintained quite well and the actual values should be closer to 0.0306. The overland flow n value used is 0.25 and is recommended by the sources cited in note 5 and 6, below. In fact, this is the default value built into the model by its authors. The asphalt or concrete surfaces should be about 25% greater than normal values, or 0.016 for average conditions. 2.1.2 Hydrology For the basins that have free undetained release to the conveyance systems, the SWMM model makes a step by step accounting of the development of the designated storm for the construction of hydrographs.7 The infiltration parameters, or absorbtion rate of the soil, are abstracted through the use of the Phi Index Method as recommended by the Greenhorne study. This method assumes a constant infiltration rate of 0.5" per hour and further assumes a relatively saturated antecedent condition. The individual hydrographs are lagged and summed and appear in a matrix in the swmm output. Summary output appears on pages 1 and 2 of Appendix A. The basins that include detention ponds have been routed through the use of a modified FAA Mass Balance Method as described in Section 2.1.3, below. The rainfall hyetographs for the 100 and 10 year events were taken from the Greenhorne study and provided by the City of Fort Collins, respectively. s Op. Cit., UDFCD page 16; and also Op. Cit., Gyo, page 12 ■ ' 2.1.3 Routing Techniques The SWMM Model allows two types of routing$. The first is for subcatchments (overland) and the second is for conveyance routing ' (pipes, channels, etc.). Both are calculated using Kinematic wave theory. ' For the basins that contain detention facilities a modified version of the FAA Mass Balance method is used9. The modification to the Mass Balance method was simply to have the outflow from the pond begin at the time of concentration. This ' aproach was deemed acceptable by City Staff. Figure 2 graphically depicts 1) the developed triangular hydrograph construction from information provided on 2) the mass diagram. The development of ' the outflow hydrograph is described as follows; 1. Gather pertinent data about the basin including ■ Runoff coeff. 'C' (C) ' ■ Area (acres) (A) ■ Longest travel distance (L) ■ Outflow peak discharge = Qout peak = 0.5*Acres ' (max 0.5 cfs per acre) 2. Apply the 100 and 10 year storm Intensity -Duration - Frequency data to a least squares regression and derive the best fit formula. See Figure 3 for the results. 3. Calculate the Time of concentration, Tc, by the formula ' Tc = (L/180)+10 (1) ' This formula assumes that a flow velocity of 3 feet per second exists for overland and conveyance flow. It is somewhat conservative and will reveal slightly higher rainfall intensities. ' 4. Lag the beginning of the outflow by the Tc (see Figure 2) . 5. Calculate storage volumes for five minute increments (see Appendix A, pages 3 through 7 for detailed output). This is accomplished by subtracting the ' outflow volume from the inflow volume. Observe the time at which the peak outflow occurs. This is the Time to Peak (Tl, Fig. 2) of the outflow hydrograph. 6 Chow, Ven T., Open Channel Hydraulics, McGraw Hill, 1959, ' page 112, C.b.2, page 120 (13). 7 Op. Cit., UDFCD, page 3 ' 8 UDFCD, op. cit., page 4 ■ 1 ' 6. The ascending limb of the inflow hydrograph (triangular assumption) begins at time 0 and ends at the coordinates for the Qpeak (inflow) at its Time of Concentration (Tc, and is T1/2 ±, Fig. 2). The ' recession limb descends from that point to intersect with Qpeak (outflow) and Tl. The integrated area within the described 5 points (0,0; Qin,Tc; Qout,TI; 0,Tc; ' 0,0) is equal to the outflow volume under the recession limb (Vs) of the outflow hydrograph. The time for the outflow hydrograph, from beginning to end, may now be calculated as T2 = Vs/((Qpeak outflow)/30). ' 7. Introduce the coordinates for beginning, peak and end of the outflow hydrograph to the SWMM model. ' The SWMM model lags and sums all upstream hydrographs at Pond 1 (Element 17, see Figure 9 for 100 year diagram). This is known as a "dummy" conveyance element and is used simply to combine the ' upstream hydrographs for routing at Pond 1. Similar in nature to Element 17 is Element 3 which is the calculated resultant outflow hydrograph at a point immediately to the east of the rail road ' tracks. Element 17 is not input as a channel leading through the Pond 1 ' pond simply because it will not act as a channel experiencing steady uniform flow. The bottom of the pond will be covered with water about 40 minutes after the storm begins. This determination is made by observing that; ' 1. Most of The surface area of the pond is covered with storm water at elevation 4950± ' 2. This elevation corresponds to 45 cfs, approximately, on Figure 4. The outflow hydrograph from the SWMM output indicates that 45 cfs occurs about 40 minutes after the storm begins. At that early point in the storm event the channel area will be ' inundated. This is a conservative approach because no lag is calculated to the outlet works. 2.2 Hydraulic Output summary ' 2.2.1 Allowable Discharge Criteria ' The Greenhorne study recommends that no more than 0.5 cfs per acre be allowed during the 100 year storm event10 and 0.2 cfs/acre for the 10 year event. The rationale used was that the resulting detained flow approximately equals the 100 year ' historic flow rate. This, obviously, is arrived at by dividing the historic flow rate into the total acreage for the basin. ' 10 Greenhorne..., Op. Cit., pages 3 and 5 7 Ni ■ The output from the current Oakridge SWMM model suggests that an alteration of the previously mentioned release rates is appropriate. The overall scheme for future planning in the neighborhood must naturally evolve from the specific detail of ' offsite, onsite and downstream conditions. The offsite flows accepted by Oakridge Subdivision enter the property at two locations. ' The first is located at the triple 36" culverts passing under Lamay Avenue approximately 3000 feet south of Harmony Road. The contributory area is 238 acres with a planned 100 year developed ' release rate of 0.5 cfs/acre or 119 cfs. The second is located at the north west corner of the subject ' property and is designated as Design Point 86 in the Greenhorne study. The peak flow is specified as 59 cfs". The area contains 118 acres ± of mixed use land. ' The total offsite area is, therefore, 238 + 118 or 356 acres. Total future fully developed 100 year offsite contribution is 178 cfs. ' The watershed area for all of Oakridge Subdivision is about 263 acres. The total upstream area contributing to Element 17, therefore, is 619 acres. Conforming to the Greenhorne study ' release criteria and comparing to the Oakridge SWMM results we find the following results at Pond 1; ' Allowable Actual SWMM Amt. < 10 Year Storm12 123.8 cfs 83 cfs -40.8 ' (33%) 100 Year Storm 309.5 cfs 203 cfs -106.5 (34%) ' These results were obtained by allowing free undetained release from several basins in the Oakridge Subdivision for the 100 year storm and did not include any site specific detention for the 10 ' year storm. Following is a list of the basins in the northern portion of the onsite area (except offsite basin 300) and include all of Oakridge Business Park. Those that will require detention of the 100 year storm will have a maximum discharge rate of 0.5 ' cfs/acre. See the enclosed Drainage Plan for locations of the Basins. ' 11 Greenhorne, Op. Cit., Table 4 lists SWMM point 86, future conditions as 65 cfs (100 year). The author understands, however, that the outflow hydrograph was provided by Greenhorn... and ' indeed indicates a Q100 peak of 59 cfs. 12 By accident the offsite flows were left at 0.5 cfs per ' acre for the 10 year model. This will remain unchanged, however, to allow for a downstream factor of safety. 7- L ■ 1 ' 100 YEAR 10 YEAR BASIN # CONTROL CONTROL REMARKS 340 YES NONE 330 NO of Possible, if onsite problems exist ' 320 NO If Cemetary 310 YES If Offsite from north of Harmony 300 YES if Offsite from west to Lemay ' 290 YES of Existing 280 NO it Street 270 YES it 260 YES " ' 250 YES _" Existing 240 NO " Downstream street capacity is OK 230 YES " 220 YES " ' 210 NO " From sump in Innovation to channel 200 NO " Possible YES*; Direct to Pond 160 NO " Internal street system13 ' 120 NO " Possible YES*; Includes Comlinear 110 NO " Internal street system14 ' The 10 year storm model did not include any site specific detention for the Oakridge site. The above results indicate that control at Pond 1 is adequate to bring the 10 year release rate below the allowable 0.2 cfs per acre discharge. This includes ' offsite Basin 300. * There may be a need for local detention due to certain physical ' site constraints. As an example there may be flat topography that restricts longitudinal street grade. ' 2.2.2 Flow Characteristics STREET SYSTEM FLOW DEPTH Page 8 of Appendix A is a sorted list of all the basins and conveyance elements with their respective flow depths. The internal street system was evaluated according to allowable flow ' depth. The City of Fort Collins criteria states thatt5 both local and collector streets may have an 18" depth of runoff in the gutter for the major (100 year) storm event and arterial streets are only allowed a depth of 0.5' above the crown. There are no arterial streets internal to the Oakridge site. For comparative purposes only, the above mentioned evaluation is based on the arterial standard. 1 Ridge13 . West half of Harmony, Wheaton and a small portion of Oak 14 East half of Harmony, Innovative, McMurry and about half of the easterly portion of Oak Ridge. 15 City of Fort Collins, Op. Cit., Table 4-4, page 4-6. ' Use 1 1 There are only three streets that exceed 0.51in crown depth and are located at the downstream end of the basin (see enclosed Drainage Plan). This exceedance is only 0.04 feet in each case. They are Elements 21 (Innovation Drive), 12 (internal future street near Comlinear) and 7 (Wheaton Drive). Innovation Drive and Wheaton Drive have been built. All the internal streets have 100 year water surface levels below the allowed 18" standard and present no hinderance to the passage of emergency vehicles. Element 12 is associated with Basin 120 (Comlinear) and was evaluated at a minimum grade of 0.6% slope. Following is an evaluation of Elements 18 (McMurry Drive) and 11 (internal street system leading to, and including, Keenland Drive). These Elements are not combined in the model. Flow depth is calculated as follows; From the Ft. Collins criteria formula 4.2.2.2; Z = 50 Q = 14 + 9 (see SWMM output, last page) S = 0.006 ft/ft n = 0.016 Q/2 to evaluate 1/2 street depth; [Qn/(Z*0.56*S•5)]0.38,_ Y = 0.39' OK Also see Figure 7 The onsite street systems are adequate for the conveyance of the 100 year storm. CULVERTS AND CROSSINGS Elements 41, 42 and 43 exist within the "drainage channel" truncating the site from north-west to south-east. Each element contains culverts that flow beneath oakridge, Wheaton and McMu2zry, respectively, under various hydraulic conditions during the 100 year event. Figure 5 refers to the hand calculation of Element #43 (McMurry at Pond 1) for both tailwater rating curve and culvert hydraulics. The maximum flow rate is 232 cfs and the culvert operates under Inlet control flowing at about 87% full. These two 42" culverts are not pressurized. Element 42 also contains two 42" RCP culverts and, except for the flow rate, operate under the same conditions as Element 41. The above stated Figure 5 for Element 43 applies also to Element.41. That is to say, the culverts have similar head/tail water conditions, operate under inlet control and have adequate capacity to handle the 100 year storm. A series of elements are next evaluated within Basin 270 and at Oak Ridge Drive. This area is somewhat hydraulically complex and has been dealt with, aside from the SWMM model, as illustrated in Figure 6 and as follows; ■ ' The assumption that head water conditions prevail is substantiated by the use of the following; 29(n)2(L) z H = (Ke + Ko + -- R1.33 -- ) V /2g Appendix A, page 9 shows the results of the evaluation ' of required headwater elevations and Figure 6 graphically displays the schematic view. The local detention pond depths do not control the hydraulics of this system. The tailwater depth does not reach the crown of the culvert. The depth above inside crown (Hp on Figure 6) at the upstream end of the 42" culvert is 0.9 feet. The grading plan for this property (Filing ' 10) that there is adequate head available and that no spill will occur toward the detention pond area. ' The head above inside crown for the 36" culverts (Ho on Figure 6) is 1.38 feet. ' There is a sump, or low area, in the southerly portion of Innovation Drive (Basin 210). A concrete channel (Element 44) was ' introduced at this location to convey peak flows south to Pond 1. TABLE 2 Element Location Q100 Flow 010 Pressurized ? ' 41 Oakridge 70 89 YES 42 Wheaton 79 147 " ' 43 MacMurry 159 232 " The 10 year flow rates are greater than the 100 year because the offsite flow rates entering the site were not changed from the ' 100 year data and the 10 year storm is not detained, but the 100 year event is detained for several basins that affect the above listed elements. ' 2.2.3 Routing and Downstream Impact ' The attenuation of the resultant 100 year hydrograph to downstream properties will clearly mitigate future flood events. The recession limb of the hydrograph will extend flow in the channel longer than the historic conditions, but the peak flow is ' truncated to a rate less than historic16. The soil type or other aspects of the channels morphology is not known at this time; 16 This observation is made in light of the Greenhorn study statement that 0.5 cfs per acre discharge reflects historic conditions, and the regional pond discharges 100 year and 10 year flows at about 30% less than that rate. See text, above. ■ 1 1 1 1 1 however, the sustained rate of recession flow is not expected to alter the downstream cross sectional geometry. III CONCLUSIONS It is the finding of this report that the existing conditions and proposed design for the Oakridge Basin is appropriate and will mitigate downstream flooding for the 10 and 100 year event to a rate less then that specified in the Greenhorne and O'Mara study (see note 15). There are several site specific recommendations and are listed below for convenient reference; 1. Overlot grading and street design in Basin 270 (extreme north west corner of the site) should be sensitive to the headwater conditions experienced at Element 41 (Oak Ridge Drive). The headwater elevation is calculated to be 75.78 in the 100 year event. Grading adjacent to the channel should accomodate this high water elevation. 2. The channel leading from the north west corner of the property to Pond 1 should be maintained in a clean condition with the grass mowed to allow optimum hydraulic efficiency. 3. 10 year control at 0.2 cfs per acre is not necessary for the onsite Basins or offsite land to the west of Lemay (Basin 300). The flow is controlled at Pond 1. Staged'release, therefore, will not be used. 4. Although Basins 330 (Innovation Dr.), 120 (Comlinear) and upper 200 (north east corner of the site) do not need detention ponds to control discharge to Pond 1, the developer may elect to add detention to these sites simply to control onsite runoff or mitigate expected local hydraulic problems. Overall, the subdivision is a capable hydraulic system that manages major flood events well and reduces downstream impact. IV REFERENCES 1. City of Fort Collins, Storm Drainage Design and Construction Standards, May, 1984 2. Greenhorne and O'Mara, Inc., McLellands Basin Master Drainage Plan, June 20, 1986, Fort Collins 3. Urban Drainage and flood Control District, Users Manual, Urban Drainage Storm Water Management Model - PC Version (UDSWM2-PC), March, 1985 4. Guo, Dr. James, U of Co. at Denver, Short Course on Colorado Urban Hydrograph Procedures, January, 1986 5. Chow, Ven T., Open Channel Hydraulics, McGraw Hill, 1959 ■ 6. Viessman et. al, Introduction to Hydrology, Harper and Row, 1977 7. Wright McLaughlin Engineers, Urban Storm Drainage Criteria Manual, Urban drainage and Flood Control District, 1969 and ' 1983 Project Reuse revision ' 8. Final Drainage Report for Oakridge Village P U D Filing No. 2, Revised July 16, 1986, by RBD, Inc. Engineering Consultants. 9. Drainage Report for the Oakridge Village P U D Filings 3 ' 4 and 5, April 26, 1987, by RBD, Inc., Engineering Consultants. ' 10. Draft Drainage Investigation for Oakridge Business Park, May 17, 1987 by James H. Stewart and Associates Inc. ' 11. Final Drainage Report for the Oakridge Business Park, Tenth Filing, November 10, 1987, by RBD, Inc. Engineering ' Consultants. 12. Final Drainage Report for the Seventh Filing of Oakridge Village P.U.D, Revised September 9, 1988, by RBD, Inc., ' Engineering Consultants. J i JI 1 1 1 END OF REPORT ■ 1 1 1 1 I I 1] I I I APPENDIX A r i ORYRIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT 100 YEAR G„R DEVELOPED GYGLOPED ( TOTAL DEVELOPED BUILDOUT:MODEL OAY,100.DAT) M*M PEAK, FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS ' CONVEYANCE PEAK, STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) ' 300 130. (DIRECT FLOW) 0 30. 310 58. (DIRECT FLOW) 0 40. 33 33. .6 0 40 ' 290 3. (DIRECT FLOW) 0 15. 230 8. (DIRECT FLOW) 0 E0. 24 27. .6 0 40 ' 30 130. (DIRECT FLOW) 0 30. 15 6. .4 0 45. 5 7. • 4 0 55. 31 58. (DIRECT FLOW) 0 40. ' 28 10. .4 1 5. 270 6. (DIRECT FLOW) 0 15. 21 68. .9 0 40. ' 29 3. 1.0 .0 1 0. 23 7. .4 0 45. 340 2. (DIRECT FLOW) 0. 15. ' 7 I11. .9 0 40. 4 125. 3.0 0 45. 27 10. .9 1 10. 44 63. 1.0 0 45. ' 20 99• 2.6 0 45. 19 10. .2 0 35. 18 9. .4 0 55. ' 9 9. .5 0 45. 10 36. .7 0 40. it 14. .5 1 55. 13 39. .7 0 45. ' 8 143. 3.3 0 40. 6 243. 4.0 0 45. 41 70. 2.8 1 10. ' 260 12. (DIRECT FLOW) 0 15. 17 641. 3.1 0 45. 26 79. 4.2 1 10. 250 0. (DIRECT FLOW) p 5. ' 2 206. .1 31.3 1 45. 42 79. 2.4 1 10. 25 0. .2 0 35. ' 220 12. (DIRECT FLOW) 0 20. 12 83. .9 0 40. 1 206. .1 .5 1 50. 22 144. 2.9 0 50. ' 3 206. (DIRECT FLOW) 1 50. 43 146. .1 .0 0 50. ■ 2 OAKRIDGE OVERALL DRAINAGE MODEL FOR A 10 YEAR STORM EVENT ' B-20-90; 3:10P ( TOTAL DEVELOPED BUILDOUT:MODEL OAK,10riew.DAT) PEAK, FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS CONVEYANCE PEAK, STAGE STORAGE TIME ' ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 300 130. (DIRECT FLOW) 0 30. 310 58. (DIRECT FLOW) 0 40. ' 36 19. .4 0 40. 290 3. (DIRECT FLOW) 0 15. 24 15. .4 0 40. ' 30 130. (DIREC'T FLOW). 0 30. 15 3. .3 0 45. 3. • 3 1 0. 31 58. (DIRECT FLOW) 0 40. ' 28 4. .8 1 20. 33 36. 1.3 0 40. 21 36. 7 0 40. ' 29 3• 1.0 .0 1 0. 23 37, .7 0 40. 35 12. '1 7 J8 7 0 40. ' 4 119. 2.9 0 40. 0 .35 27 89. .9 0 45.. 44 34. .8 0 45. ' 19 48. 2.0 0 45 19 5. 18 35 2 0 35. 6 0 45. 9 4. .3 0 40. 10 18. 5 0 40. it 8. .4 1 55. 13 19. .5 0 45. ' 8 71. 2.5 0 40. 6 179. 3.6 0 45. 41 89. 1.0 .0 0 45. ' 34 71. .9 0 40. 17 404. 2.5 0 45. 26 138. 5.0 .1 0 45. 2 87. .1 28.6 3 5. '42 147. 3.4 0 45. 25 S. 1.3 .0 0 40. 14 56. .8 0 40. 12 57. 1.6 0 40. 1 87. .1 .2 3 S. 22 225. 3.4 0 45. 3 87. (DIRECT FLOW) 3 5. 43 225. .1 .1 0 50. FINAL 10 .YEAR AKRIDG't SUBDIVISION LTD = 700 Tc: = 13.89 ONSITE DETENTION AA MASS BALANCE METHOD C = 0.8 Max. Vol= 23147 CALCULATIONS, BASIN 340 A = 3.82 TIME = 55 100 YEAR INFLOW OUTFLOW DIFF 100 YEAR STORM 'iME ruin) INTENSITY VOLUME VOLUME IN VOLUME OUTFLOW HYDROGRAPH: 0 11.49 0 0 0 T2 = 403.97 Min. ' J 8.93 81186 0 8,186 6.73 Hours 10 7.30 137384 0 13,384 T total = 417.8J Min 1J 6.17 16,978 127 16,850 6.96 Hours 20 5.35 19,611 700 18,910 ' 25 4.72 21,623 1,273 20,349 SWMM Output: 30 4.22 23,210 11846 21,364 0,00 0.00 0.23 1.191 6.96 0 ' 3J 40 3.82 3.48 24,495 25,555 21419 2,992 22,075 22,J63 45 3.21 26,446 3,561 22,881 JO 2.97 27,205 4,138 23,066 55 2.76 27,859 41711 23,147 ' 60 2.J8 28,428 51284 23,144 65 2.43 28,928 51857 23,071 ' 70 7J 2.29 2.16 29,371 29,766 67 430 71003 22,941 22,763 80 2.05 30,121 71576 22,544 85 1.95 30,441 8,149 227291 '90 1.86 30,731 89722 22,008 95 1.78 30,995 91295 21,700 100 1.70 31,237 91868 21,368 0 Y,RIDGE kA SUBDIVISION LTD = 770 Tc = 14.28 MASS BALANCE METHOD C = 0.8 Max. V01= 71J18 BASIN 270 A = 11.78 TIME J5 [in) 100 YEAR: INFLOW OUTFLOW DIFF in) INTENSITY VOLUME VOLUME IN VOLUME OUTFLOW HYDROGRAPH: 0 11.49 0 0 0 T2 = 404.74 Min ' 5 8.93 25,243 0 25,243 6.75 Hours 10 7.30 41,273 0 41,273 T total = 419.02 Min '15 20 6.17 5.31 52,356 60,475 2J5 2,022 52,100 J81453 6.98 Hours 25 4.72 66,679 31789 62,890 SWMM Output: 30 4.22 71,J75 5,5J6 66,018 0.00 0.00 0.24 5.89 6.98 0 35 3.82 75,536 71323 68,213 40 3.48 79,807 9,090 69,717 45 3.21 811J54 10,857 70,697 '50 55 2.97 2.76 83,893 8J,909 12,624 14,391 71,269 711J18 60 2.58 87,665 16,158 71,507 65 2.43 89,208 17,925 71,283 2.29 90,574 19,692 70,882 t70 75 2.16 91,792 215459 70,333 80 2.05 92,885 231226 69,659 '85 90 1.9J 1.86 931872 94,766 24,993 26,760 68,879, 68,006 95 1,78 95,581 28,J27 67,054 100 1.70 96,327 30,294 66,033 '105 1.63 '47,012 321061 64,951 110 1.57 97,643 33,828 637814 1151 1.51 '18,22E 35,595 601631. ■ 'OAKRIDGE SUBDIVISION FAA MASS BALANCE METHOD BASIN 230 ✓ T'MF, 100 YEAR; INFLOW eili) I11TENST.TY VOLUME 0 11.49 i; 30,900 10 ?.3U 50,52s 15 6.17 64,089 20 5.35 74,028 25 4.72 81,623 30 4.22 87,615 35 40 3.82 3.48 921464 96,468 45 3.21 99,831 50 2.97 102,694 55 2.76 105,162 ' 60 2.58 1071312 65 2.43 109,200 ' 70 75 2.29 2.1G 110,872 '12,364 80 2.05 113,702 85 1.95 114,909 ' 90 1.,86 116,004 95 1.78 117,002 100,E 1.70 1177915 1AKRIDGE SUBDIVISION FAA MASS BALANCE METHOD �ASIN 220 IME 100 YEAR INFLOW (min) INTENSITY VOLUME 0' 11.49 (1 ., 8.93 30,w0 10 7.30 501523 15 6.i7 641089 20 5.35 74,028 25 4.72 81,623 ' 30 4.22 87,G15 35 3.82 92,464 1 LTD = 1400 Tc C = 0.8 Max. Vol= 89060 A = 14.42 TIME 55 OUTFLOW DIFF VOLUME iN VOLUME OUTFLOW HYDROGRAPH: 0 0 T2 = 411.74 M;.n 0 30000 6.86 Hours 0 50,523 T total = 429.52 Min 0 64,089 7.16 Hours 961 73,066 31124 78,498 SWMM Output: 5,287 82,328 0.00 0.00 0.30 71450 85,014 91613 8G,855 11,776 88,054 13,939 88,755 16,102 89,060 18,265 89,046 20,428 88,772 22,591 88,281 241754 87,609 26,917 869785 29,080 85,829 31,243 84,761 33,406 831596 35,569 827345 0 ONSITE DETENTION CALCULATIONS, 100 YEAR STORM 7.21 7.16 LTD = 1700 Tc = 19.44 C = 0.8 Max. Vol= 80642 A = 23.74 TIME = 40 OUTFLOW DIFF VOLUME IN VOLUME OUTFLOW HYDROGRAPH: 0 0 T2 = 226.46 Min 0 301900 3.77 Hours 0 50,523 T total = 245.90 Min 0 64,089 4.10 Hours 1,583 72,445 51144 76,479 SWMM Output; 81705 78,911 0.00 0.00 0.32 11.87 12,266 80,198 40 3.48 96,468 151827 80,642 45 3.21 995831 19,388 80,443 50 2.97 102.694 22,949 79,746 55 2.76 105,162 26,510 78,653 60 2.58 107,312 30,071 77,241 GS 2.43 109,200 331632 75,568 70 2.29 1109872 37,193 739680 75 2.16 11.2,364 401754 71,610 80 2.05 113,702 44,.315 69,387 85 1.95 114,909 47,876 67,034 90 1.86 116,004 51,437 64,568 95 1.78 117,002 54,998 62,004 1 r, 1, c. '•',35b p 4.10 0 0 ■ OAKRIDGE SUBDIVISION LTD = 1150 Tc = 16.39 FAA MASS BALANCE METHOD C = 0.8 Max. Vol= 109132 BASIN 120 A = 17.79 TIME = 60 TIME 100 YEAR INFLOW OUTFLOW RIFF un) ifdTENSITY' VOLUME VOLUME TN VOLUME OUTFLOW HYDROGRAPH: 0 11.49 0 0 0 T2 = 408.97 Min ' S 8.93 381121 0 38,i21 6.82 Hours 10 7.30 62,330 0 621330 T total = 425.35 Min 15 6.17 791OG7 0 79,067 7.09 Hours ' 20 5.35 91,328 11927 89,401 25 4.72 100,698 41596 96,102 SWMM Output: 30 4.22 108,091 71264 100,827 0.00 0.00 0.27 35 3.82 1141073 9,933 104,141 40 3.48 119,013 12,601 106,412 45 3.21 123,162 157270 107,892 50 2.97 126,694 17,938 10817% ' 55 2.76 129,739 20,607 1091132 60 2.58 132,391 23,275 109,115 65 2.43 134,720 25,944 108,777 ' 70 2.29 136,784 28,612 108,171 75 2.16 138,623 31,281 107,343 80 2.05 140,274 335949 106,325 85 1.95 141,764 36,618 105,146 ' 90 1.86 143,115 39,286 1037829 95 1,70 144,346 41,955 102,391 100 1.70 145,472 44,623 100,849 0 1AKRIDGE SUBDIVISION LTD = 600 Tc = 13.33 FAA MASS BALANCE METHOD C = 0.8 Max. Vol= 125946 ASIN 210 A = 7.51 TIME = 95 IME 100 YEAR INFLOW OUTFLOW DIFF (min) INTENSITY VOLUME VOLUME IN VOLUME ' OUTFLOW HYDROGRAPH: 0 11.49 0 0 0 T2 = 1118.03 Min 5 6.93 38,121 0 38,121 18.63 Hours 10 7.30 62,330 0 62,330 T total = 1131.37 Min ■ ■ 15 6.17 791067 375 78,691 18.86 Hours ' 20 5.35 91,328 11502 89,826 25 4.72 1001698 2,629 98,070 SWMM Output: 30 4.22 109,091 3,755 104,336 0.00 0.00 0.22 ' 35 3.82 1141073 41882 109,192 40 3.48 119,013 6,008 113,005 45 3.21 123,162 71135 116,027 50 2.97 126,694 81261 118,433 '55 2.76 129,739 91388 120,352 60 2.58 132,391 10,514 121,877 65 2.43 1341720 11,641 123,080 '70 2.29 136,784 12,767 1249017 ?5 2.1E. 138,623 131894 124,730 80 2.05 140,274 15,020 125,254 ' tl5 1.95 141,764 16,147 125,618 99 1.86 1435115 17,273 125,842 95 1.78 144,346 18,400 125,946 1;I J ... 7i? 1�f5, •1/� 19, _'26 1 C5, 99ii ONSITE DETENTION CALCULATIONS, 100 YEAR _STORM 8.90 7.09 3.76 18.86 0 0 5 ■ 1 1 1 1 ski v nu'1;' S1UH LU! avU I. 14.44 FAA MASS BALANCE hI7'' C = 0.8 Max. Vol= 13J984 lASIt+; 266 A = 22.38 TIME = 55 IME 160 YEAR INFLOW OUTFLOW DIFF oun) 1NTENS ITY VOLUME VOLUME Ito VOLUME ' 0 11..1 U G 5 8.'.1 4'1 i1 10 7.30 78,412 0 ' 1J 6.17 9'.1,467 313 24 5.35 114,8'?2 3,730 25 4.72 126,679 71087 30 4.22 135,980 10,444 ' 35 3.62 143,505 13,801 40 3.48 149,720 17,158 45 3.21 154,9318 20,515 ' 50 2.97 159,383 23,872 55 2.76 16."t, 213 27,229 60 2.56 166,549 30,586 6J 2.43 169,480 33,943 ' 70 2.29 1721075 37,300 Ti 2.16 174,390 40,657 90 2.05 176,467 449014 ' 85 1.95 178,341 41,371 ?0 1.86 180,040 J01728 95 1.78 181,589 54,085 ' 100 1.70 183,OOJ 57,442 OAKRIDGE SUBDIVISION A MASS BALANCE METHOD SIP; 290V TIME 100 YEAR INFLOW ill,' INTENSITY VOLUME 0 47,957 78,412 991467 114, 8'92 126,1679 13J,980 143,50J 1491720 C 3 8 J 1, ' 159,383 163,213 166,J49 169,480 172,07J 174,390 176,467 i78, 341 180,040 181,589 183,005 184;'06 185,50J 186,613 187,640 188,J9F, 189,486 190,318 0 5 _ 10 1 J� 20 25 30 3J 40 45 50 J.1 60 61; 70 75 80 05 90 95 100 IOF) 110 li5 120 14') ).4 �. 11.4. 8.93 7.30 6.17 J.35 4.12 4.22 3.82 3.48 3.21 _.97 2.76 1.86 1.78 1.70 1.63 1.57 1.46 1.40 1.36 0 OUTFLOW HYDROGRAP4: 0 T2 405.08 Min. 41,9J7 6.7J Hours 781412 T total = 419.52 I,in 99,094 6.99 Hours II1,162 119,592 JWMM Output: 125,J36 0.00 0.00 129,704 132,562 1311,423 135,511 135,984 135,963 135,537 134,775 133,733 132,4J3 130,970 129,:512 1.27,504 125,563 0.24 11.19 LTD = GOO Tr. = 13.33 C = 0.8 Max. Vol= 168094 A 6.12 TIME = 125 OUTFLOW RIFF VOLUME IN VOLUME OUTFLOW HYDROGRAPH. 0 0 T2 = 1831.08 Min 0 47,957 30.2 Hours 0 78,412 T total = 1844.4E Min 306, 99,161 30.74 Hours 1,224 1131668 2,142 124,517 SWIMM Output: 3,060 132,920 0.00 0.00 0.22 3,978 139,527 4,896 144,824 J,814 149,124 61732 iJ2,651 7,650 155 563 8,568 157,981 9,486 159,994 10,404 161,671 11,322 1631068 12,240 164,227 131158 1651183 141076 lG5,9G4 14,994 166,595 15,912 167,093 161830 167,476 1,1748 1671757 6.66 167, 947 192584 16890J6 20,J02 168,o9"1 21,420 168,066 22,338 167,980 23,256 167,841. 29,1r4 467,t55 3.06 ONSITE DETENTION CALCULATIONS, 100 YEAR STORM 6.99 30.74 ■ 10MR! HE SIiB➢MS][IN LTD = 3200 Tc = 27.78 Fr;A MPTc I'•9LAtdD" MFIH:)I) : - i1,62 Mo. Vol- 1164G2`i e'A` T`i ; h YEAR 'it1Ft. k LuIlFLOW 0'1FF "N`" T y n t ' V(1Ll rE IN VOLUME OUTFLOW HYDROORAPH: ' 0 11.49 0 0 0 T2 = 323.51 Min J 8.93 398 571. 398 571 <' { f • f 5.,,i i Ours 10 7.30 651,679 0 0511679 T total = 351.29 Min 11) 6.17 8261667 0 826,GG7 J.8J Hours 20 `,.35 954,866 0 954,866 25 4.72 1,052180-0 0 11 052, 830 SWMM Output: ONSITE DETENTION CALCULATIONS, 100 YEAR . STORM 30 4.c2 1, 130, IN 16,000 1,114,127 0.00 0.00 0.46 120.00 J.85 3.82 1,192,672 -21000 15140,672 40 3.48 11244,321 88,000 11156,321 45 3.21 1,287,G92 124,000 1,101692 ' u 55 2.97 2.76 113241629 17 356,464 160,000 196,000 11164,629 1,160,464 60 2..=18 1,384,186 232,000 1,152,18E 65 2.43 114081J44 268,000 11140IJ44 ' 70 2.29 1,430,114 304,000 1,12G,114 75) 2.16 1,449,351 340,000 1,1091351 80 2.03 1146G1612 376,000 11090,612 P,5 90 1.95 1.86 1,1182,188 1,496,313 4121000 448,000 1,070,188 110481313 95 1.78 1,509,181 484,000 15025,181 100 1.70 11520,954 520,000 1,000,954 0 0 7 ■ 'OAKRIDGE SWMM FINAL 100 YEAR DATA FILE OAK 270.OUT FLOW DEPTH BASIN Cfs (ftl 1 340 2 310 58 ' 300 130 290 3 270 6 ' 20 12 250 0 230 8 220 12 ' 44 63 43 146 42 79 ' 70 34 2 33 33 31 58 ' 30 130 29 3 28 10 ' 27 70 26 79 25 0 0 24 27 ' 23 7 0 22 144 2 21 68 0 20 99 2 19 10 0 18 9 0 17 640 3 ' 15 6 0 13 39 0 12 83 0 ' 11 14 0 10 36 0 9 9 0 ' 8 13 7 111 11 0 6 243 5 7 0 ' 4 125 3 206 2 205 0 1 206 0 34 2 DEPTH (ft) 0 DIRECT FLOW 0 DIRECT FLOW 0 DIRECT FLOW 0 DIRECT FLOW 0 DIRECT FLOW 0 DIRECT FLOW 0 DIRECT FLOW 0 DIRECT FLOW 0 DIRECT FLOW I 1 SWALE 0.1 0.1 CULVERTS 2.4 2.4 CULVERTS .8 2.8 CULVERTS 0.2 0.2 STREET 0.6 0.6 STREET 0 DIRECT FLOW 0 DIRECT FLOW 1 1 CULVERTS 0.4 0.4 STREET 0.9 0.9 STREET 4.2 4.2 CULVERTS .2 0.2 PIPE 0.6 0.6 PIPE .4 0.4 STREET .9 2.9 CHANNEL .9 0.9 STREET .6 2.6 CHANNEL .2 0.2 STREET .4 0.4 STREET .1 3.1 POND .4 0.4 STREET .7 0.7 STREET .9 0.9 STREET .5 0.5 STREET .7 0.7 STREET .5 0.5 STREET .3 3.3 CHANNEL .9 0.9 CHANNEL 4 4 CHANNEL .4 0.4 STREET 3 3 CHANNEL 1 1 POND .1 0.1 POND 1 0.1 POND IF STREET: TYPE OF STREET DEPTH OVER. ELEMENT WIDTH CROWN 36 -0.16 36 0.24 36 0.04 36 0.54 > .5' by 0.04 36 0.04 36 0.54 > .5' by 0.04, 36 -0.16 36 0.04 36 0.04 36 0.34 36 0.54 > .5' by 0.04 36 0.14 36 0.34 36 0.14 36 0.04 OAKR CE pROJECT 36' AT BASIN 260 (OAKRIDGE DRIVE) ' CIRCULAR, CULVERT` Enter in the Following Data: Inverrt Out Invert in = Head water elev = Trail Water elev = Diam. of Pipe = Mannings :n ' Length of Pipe Entrance Los (K0 = H.!,mbe'r of Culverts:: ' 0 U T P U T-------- Area. of Culvert = ' Wetted Peririter = Hydraulic Radius = R"1.333 29 n"2 L ' V"2/2q Velocity Flow in one pipe = 1 1 71.19 71.40 75.78 to. head= 4.38 75. -',9 H = 0. 39 36 inches = 3 0.013 100 feet 0.5 3 7.069 ft,"2 9.425 feet 0.750 feet 0.681 0,490 0.17E 3,364 23.78 efs = 71.34 OAKRIDGE PROJECT 9 INLET TO 42" AT BASI42" AT BASIN 2E0 (SOUTH OF OAKRIDGE DRIVE) CIRCULAR CIJL'JERTS Enter in the Following Data: Invert; Out E6.19 Invert in = 71.19 Head water elev = 75.39 to. head= Tail Water elev = E8.60 H = Diam. of Pipe = 42 inches = Mannings n = 0.013 Length of Pipe = 800 feet Entrance Loss (Ke)= 0.5 Number of Culverts= 1 O U T P U T-------- Area of Culvert = 9.621 ft.`2 Wetted Perimiter = 10.':19E feet Hydraulic Radius = 0.875 feet R".1.333 0.8";7 29 n"2 L = 3.921 V"2/2p = 1.098 Velocity - 8.408 Flow in one pipe = 80.90 efs = 4.2 feet 6.79 3.5 feet 80.90 Total q I 1 1 1 1 1 1 1 1 C 1 1 1 APPENDIX B. 1 1 1 1 1 1 ' ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MA14AGEMENT MODEL - VERSION PC.1 ' DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA ' WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) __ 10 YEAR ' UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS ' MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMRER 1974) � APE OR DISK ASSIGNMENTS BOYLE ENGINEERING CORPORATION (MARCH 19859 JULY 1985) ' JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 ' JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 N11RAT(1) NS11AT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 1 3 4 0 0 0 WATERSHED PR06RAN CALLED ENTRY MADE TO RUNOFF MODEL OAKRIDGE OVERALL DRAINAGE MODEL FOR A 10 YEAR STORM EVENT 8-20-90; 3:10p ( TOTAL DEVELOPED BUILDOUT:MODEL OAK 10.DAT) IUMBER OF TIME STEPS 50 NTEGRATION TIME INTERVAL (MINUTES) 5.00 1 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR ' .48 .60 .72 .96 2.16 3.12 5.64 2.28 1.12 .84 .72 .60 .60 .48 .36 .36 .24 .24 .24 .24 ' .12 .12 .00 .00 .00 ' OAKRIDGI- uVERAil DRAINAGE MODEL FOR A 10 YEAR STORM EVENT SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. DERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 0. .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 80 8 3130. 57.1 40.0 .0100 1016 .250 .100 .500 .50 .50 .00180 1 60 6 1150. 8.9 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 70 130 1 13 1350, 675. 29.4 24.7 40.0 40.0 .0100 .0100 .016 .016 .250 .100 .500 .50 .50 .00180 1 100 10 850. 13.2 40.0 .0100 .016 .250 .250 .100 .100 .500 .500 .50 .50 .50 .50 .00180 .00180 1 1 50 5 50. 3.6 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 160 16 3500. 4.0 84.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 150 15 50. 1.8 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 110 11 34. 9.6 84.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 120 90 12 9 1100, 400. 17.8 13.1 80.0 10.0 .0200 .0100 .016 .250 .100 .500 .50 .50 .00180 1 .016 .250 .100 .500 .50 .50 .00180 1 190 19 250. 1.4 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 200 20 700. 31.3 80.0 .0100 .016 .250 1100 .500 .50 .50 .00180 1 210 21 500. 7.5 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 220 14 700. 23.7 8010 .0100 .016 .250 .100 .500 .50 .50 .00180 1 230 23 800. 14.4 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 240 250 24 25 300, 500. 5.0 1.6 80.0 80.0 .0100 .0100 .016 .250 250 .100 .500 .50 50 .00180 1 .01E .100 .500 .50 .50 .00180 1 260 34 1600. 22.4 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 270 33 GOO, 11.8 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 280 28 50. 6.9 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 330 36 900. 5.6 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 340 35 600. 3.8 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENT'S, 23 TOTAL TRIBUTARY AREA (ACRES), 318.72 OAK,RIDGE OVERALL DRAINAGE MODEL FOR A 10 YEAR STORM EVENT 8-20-90; 3:10p ( TOTAL DEVELOPED BUILDOUT:MODEL OAK, 10.DAT) I *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL# 1 WATERSHED AREA (ACRES) 318.720 ITOTAL RAINFALL (INCHES) 1.853 TOTAL INFILTRATION (INCHES) .315 TOTAL WATERSHED OUTFLOW (INCHES) 1.215 TOTAL TOTAL SURFACE STORAGE AT END OF STOOM (INCHES) .323 i IN CONTINUITY, PERCENTAGE OF RAINFALL 008 OAKRIDGE OVERALL DRAINAGE MODEL FOR A 10 YEAR STORM EVENT 8-20-90; 3:10p ( TOTAL DEVELOPED BUILDOUT:MODEL OAK, IO.DAT) WIDTH INVERT UTTER GUTTER NDP NP OR DIAM LENGTH SLOPE NUMBER CONNECTION (FT) (FT) (FT/FT) i SIDE SLOPES OVERBANK/SURCHARGE HORIZ TO VERT MANNING DEPTH JK. L R P! (FT) i.J 4 0 1 CHANNEL .0 1600. '7 4 6 6 0 0 1 1 CHANNEL CHANNEL .0 .0 800. 1400. 6 17 0 1 CHANNEL .0 1200. 8 17 0 1 CHANNEL .0 1800. 17 0 1 CHANNEL .0 3600. '13 12 22 0 1 CHANNEL .0 1300. 16 22 0 1 CHANNEL .0 3500. 'it 10 17 17 0 0 1 1 CHANNEL CHANNEL .0 .0 8350. 1600. 9 17 0 1 CHANNEL 5.0 1000. 18 17 0 1 CHANNEL .0 1100. 19 17 0 1 CHANNEL .0 200. 20 17 0 1 CHANNEL .0 2100. 14 22 0 1 CHANNEL .5 900. '21 44 44 17 0 0 1 1 CHANNEL CHANNEL .0 3.0 1200. 800. 22 43 0 1 CHANNEL .0 1600. 43 17 4 2 PIPE .1 1. ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 133.0 .0 140.0 23 18 0 1 CHANNEL .0 1300. '24 25 7 22 0 0 1 2 CHANNEL PIPE .0 1.3 700. 500. 35 11 0 1 CHANNEL 10.0 850. 34 26 O 1 CHANNEL .5 800. '36 21 0 1 CHANNEL .0 800. "c6 42 0 5 PIPE 3.5 800. OVERFLOW 10.0 800. 22 0 2 PIPE 6.0 1. '42 33 27 0 1 CHANNEL .0 800. 27 41 0 1 CHANNEL .0 800. 41 26 0 5 PIPE 4.0 100. OVERFLOW 10.0 100. 28 27 0 1 CHANNEL .0 5000. 290 29 3 3 .0 1. TIME IN HRS VS INFLOW IN CFS .0 .0 .2 3.1 7.0 .0 29 18 0 2 PIPE 1.0 500. 300 30 3 3 TIME IN HRS VS INFLOW IN CFS .0 1. .0 .0 .5 120.0 J.8 .0 30 4 0 3 .0 1. 310 31 11 3 .0 1. ' TIME 1N HRS VS INFLOW IN CFS .0 .0 .1 .0 .2 .0 '31 27 .5 0 38.0 3 .6 53.0 .7 .0 59.0 1. 17 2 0 1 CHANNEL 10.0 500. 2 1 10 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 13.0 1.3 25.0 23.5 60.0 28.0 62.0 33.1 289.0 t 1 3 7 RESERVOIR 2 PIPE .1 1. STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 6.0 .2 93.0 .0 .0 'TOTAL NUMBER OF GUTTERS/PIPES, 41 ' OAKRIDGE OVERALL DRAINAGE MODEL FOR A 10 YEAR STORM EVENT 8-20-90; 3:10p ( TOTAL DEVELOPED BUILDOUT:MODEL OAK 10.DAT) .0040 50.0 .0 .016 1.50 0 .0044 4.0 4.0 .031 5.00 0 .0100 .0 50.0 .016 1.50 0 .0032 4.0 4.0 .035 5.00 0 .0033 4.0 4.0 .035 5.00 0 .0060 50.0 .0 .016 1.J0 0 .0060 JO.0 .0 .016 2.J0 0 .0060 JO.0 50.0 .01E 2.00 0 .0060 JO.0 .0 .016 1.50 0 .0060 10.0 .0 .016 1.J0 0 .0060 15.0 15.0 .035 5.00 0 .0060 JO.0 .0 .016 1.50 0 .0050 100.0 100.0 .016 1.J0 0 .0050 4.0 4.0 .035 5.00 10 .0050 2J.0 25.0 .016 I.JO 0 .00JO 50.0 .0 .016 1.50 0 .00J0 10.0 10.0 .035 2.00 0 .0070 4.0 4.0 .035 J.00 0 .0010 .0 .0 .016 i0 0 .0 150.0 .0050 50.0 .0 .016 1.50 0 .0080 50.0 .0 .016 1.J0 0 .0050 .0 .0 .013 1.25 0 .0050 50.0 50.0 .016 2.00 0 .0050 JO.0 .0 .016 1.50 0 .0050 50.0 50.0 .016 2.00 0 .0050 .0 .0 .016 3.50 0 .0050 4.0 4.0 .035 5.00 .0050 .0 .0 .016 6.00 0 .0050 4.0 4.0 .016 1.50 0 .0050 50.0 .0 .016 1.50 0 .00J0 .0 .0 .016 4.00 0 .0050 50.0 50.0 .016 1.00 .0050 4.0 4.0 .035 5.00 0 .0010 .0 `.0 .001 10.00 -1 .0050 .0 .0 .013 1.00 0 .0010 .0 .0 .001 10.00 -1 .0010 .0 .0 .001 10.00 0 .0010 .0 .0 .001 10.00 -1 .3 2.0 .3 10.0 .4 2J.0 .8 5J.0 5.0 504.0 .0010 .0 .0 .001 10.00 0 .0050 15.0 15.0 .040 J.00 0 .0001 .0 .0 5.000 .10 0 4.4 37.0 10.1 47.0 18.2 55.0 38.2 636.0 .0001 .0 .0 5.000 .10 0 .5 247.0 .9 380.0 1.2 434.0 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES ' GUTTER TRIBUTARY GUTTER/PIPE 1 2 0 0 0 0 0 0 0 0 0 ' 2 17 0 0 0 0 0 0 0 0 0 1 4 5 15 30 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 6 4 7 0 0 0 0 0 0 0 0 7 24 0 0 0 0 0 0 0 0 0 ' 8 0 0 0 0 o o o o o o 9 0 0 0 0 0 0 0 0 0 0 ' 10 0 0 0 0 0 0 0 0 0 0 11 35 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 o 0 14 0 0 0 0 0 0 0 0 0 0 ' 15 0 0 0 0. 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 ' 17 6 8 13 11 10 9 18 19 20 44 ' 18 23 29 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 ' 20. 0 0 0 0 0 0 0 0 0 0 21 36 0 0 0 0 0 0 0 0 0 ' 22 12 16 14 25 42 0 0 0 0 0 ' 23 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 ' 25 0 0 0 0 0 0 0 0 0 o 26 34 41 0 0 0 0 0 0 0 0 ' 27 33 28 31 0 0 0 0 0 0 0 28 10 0 0 0 0 0 0 0 0 0 ' 29 290 0 0 0 0 0 0 0 0 0 30 300 0 0 0 0 0 0 0 0 0 31 310 0 0 0 0 0 0 0 0 0 33 TRIBUTARY SUBAREA D.A.(AC) 0 0 0 0 0 0 0 0 0 0 230.5 0 0 0 0 0 0 0 0 0 0 230.5 0 0 0 0 0 0 0 0 0 0 5.4 50 0 0 0 0 0 0 0 0 0 3.6 60 0 0 0 0 0 0 0 0 0 48.7 70 0 0 0 0 0 0 0 0 0 34.4 80 0 0 0 0 0 0 0 0 0 57.1 90 0 0 0 0 0 0 0 0 0 13.1 100 0 0 0 0 0 0 0 0 0 13.2 110 0 0 0 0 0 0 0 0 0 13.4 120 0 0 0 0 0 0 0 0 0 17.8 130 0 0 0 0 0 0 0 0 0 24.7 220 0 0 0 0 0 0 0 0 0 23.7 150 0 0 0 0 0 0 0 0 0 1.8 160 0 0 0 0 -0 0 0 0 0 4.0 0 0 0 0 0 0 0 0 0 0 230.5 0 0 0 0 0 0 0 0 0 0 14.4 190 0 0 0 0 0 o 0 0 0 1.4 200 0 0 0 0 0 0 0 0 0 31.3 210 0 0 0 0 0 0 0 0 0 13.1 0 0 0 0 0 0 0 0 0 0 88.2 230 0 0 0 0 0 0 0 0 0 14.4 240 0 0 0 0 0 0 0 0 0 5.0 250 0 0 0 0 0 0 0 0 0 1.6 0 0 0 0 0 0 0 0 0 0 41.1 0 0 0 0 0 0 0 0 0 0 18.7 280 0 0 0 0 0 0 0 0 0 6.9 0 0 0 0 0 o 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 �_'741 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0) 0 0 260 0 0 0 0 0 0 0 0 0 22.4 ' 35 0 0 0 0 0 0 0 0 0 0 340 0 0 0 0 0 0 0 0 0 3.8 36 0 0 0 U 0 0 0 0 0 0 330 0 0 0 0 0 0 U 0 0 5.6 ' 41 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 18.7 42 43 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41.1 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88.2 ' 44 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13.1 290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 ' 300 0 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 0 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 OAY,RIDGE 8-20-90; OVERRLL DRAINAGE MODEL FOR A 10 YEAR STORM 3.1op ( TOTAL DEVELOPED BUILDOUT:MODEL OAK, EVENT 10.DAT) IYDROGRAPHS ARE LISTED FOR THE FOLLOWING 46 CONVEYANCE ELEMENTS ' THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET ' (S) DENOTES STORAGE IN AC -FT FOR DETENSIDN DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER RIME(HR/MIN) (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER 1 2 3 4 5 6 7 8 9 10 11 23 12 13 15 17 24 25 26 27 18 28 19 29 20 30 21 31 22 230 250 260 27 290 300 310 41 42 43 44 14 34 35 36 330 16 ' 0 5. 0. 0. 0. 5. U. 4.. 0. 0. 0. 0. .0(S) O(S) .0( .9( .0( 4.O .0( .0( .0( .0( ) ' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( .0O .0( .0( .0( .0( .0( .0( .0( .0( ) 0. 0. 0. 0. 0. 0. D. 22. 0. 0. ' .0( .UO .0( .0( .0( .0( .3( .0( .00 .0( ) ' 0. .00 0. 0. 1. 22. 1.2(I) 21.7(I) 0. 0. 0. 0. 0. .0( .0( .0(I) .GO .0O 0(S) .0( ) 0. D. 0. 0. 0. 0. .O(i .0( .0( .Ot) .0( .0( ) 0 10. 0. 0. U. 24. 0. 5. 0. 0. 0. 0. ' .U(S) 0(S) Ot i 1.6(i .0( 9O .0( .0O .UO .0( ) 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. .0(i Ot) Oti 0O 1O 1O 0O O(i 0O U(i .0( .0( .0O .0O .0(i ol) .6c) .0( .0O 0c ) 0. 0. 0. 2. 43. 0. 0. 0. 0. 0. .0( .0O .0( 2.3(I) 43.5(I) O(I) .0( .0( O(S) .0( ) 0. 0. 0. 0. 0. 0. ' .0( .0( .0( ( .00( .0( ) . ) ' 0 15, 1, .O(S) 1, O(S) 1, 41, 2.1( 0, 0O 19. 0. 0. 0. 0. .0(r 1.5( 1c r .2( .0( .0( ) 0. 0. 0. 0. 8. 1. 0. 0. 0. 0. .0( .1() .0( .0( .4( .2( .0() .1( .0( .1() 0. 0. 0. 0. 0. 0. 3. 65. 2. 0. ' .0( .0( •1O .1( ) .1( .0( .0(0) .0( .0( .0( ) 0. 0. 0. 3. 65. 2. 0. 0. 0. 0. .0( .0O .1( 3.0(I) 65.2(I) 2.0(Ir .1( iO O(S) ) ' .0( 0. 0. 0. 0. 0. 0. .0( .1( .0( .0( .0( .0( ' 0 20. 3. 6. 3. 72. 0. 42. 1. 1. 0. 0. .O(S) .1(6) .0( 2.4( .0( 2.1( .2(> .5( .0( .1( ) 0. 1. 0. 0. 27. 2. 0. 0. 0. 0. .0() .2() .1( .0( .8( .2( .1l) .3( .1( .3( ' 0. .1(} 0. .1( 1. 2. 4. 0. 3. 87. 10. 0. .3O .4( .3( .1( .0(0) .0( .0(f .0( 0. 0. 4. 3. 87. 10. 3. 2. 0. 0. ' .0( .0( .3( IND 87.0(I) 10.6(I) .5( .4( O(S) .0( ) 1. 2. 0. 1. 0. 0. ' .1( .2( .0( .1( .0O .1( ) 0 25. 10. 14. 10. 95. 0. 72. 6. 6. 0. 2. ' .O(S) .4(S) .0( 2.7( .1( 2.6( .3( 1.0( .1( .2( ) 0• 6• 1. 0. 61. 3. 1. 1. 2. 5. IO 3O 2O lt) 1.1O 3(7 .1O .5( .2( .8( ) 3. 2. 2. 14. 15. 0. 3. 109, 25. 0. .3( .2( .6( 1.2O 5O .ii) .0(0) .0( .0( .0( ) t0. 0. 15. 3. 109. 25. 14. 14. 5. 0. .0(> .0O .5( 3.0(I) 108.7(D 24.4(U 1.1( 1.0( O(S) .1( ) ' 4. 9. 2. 3. 0. 1. .3( .4O .1( .2() .0() .1() ' 0 30, 19, 20. 19. 118. 0. 109. 18, 20. 1. 5. .1(S) .9(S) .0( 2.9( 1O IN .5( 1.6( .2( .3( ) 0. 17, 3. O. 119._ 6, 3. 6. 9. 29. ' .1() 5( ) 3O .1( 1.5( .3( .2( .9( .4( 1.6( ) 10. 5. 4. 47. '26. 0. 3. 130. 38. 0. ' .4O .3( .9( 2.4( .7O .2( .0(0) .0( .0( .Ot ) 0. 0. 36. 3. 130. 38. 35. 47, 29. 2. .0O 5O 6O .2( .3(> .0O 2( ) ' 0 35. 25. 27. 25. 119. 1. 148. 43. 48. 3. 13. .1(S) 1.8(S) .0( 2.9( .2( 3.3( .6O 2.2( .3( .4( ) 1. 40. 9. 1. 216. 15. 5. 20. 23. 87. .2( .7( .4( .2O 1.9( .5( .2( 1.51) .6( 2.4( 25, 12, 5, 78, 64, 1. 3. 106. 54. 0. ' .6( .4( .0(0) 4.1( .8( .4( .0(0) .0( .0O .0( ) 0. 0. 64. 3. 106. 54. 63. 78. 87. 9. .0( .0( .8( 2.9(D 117.3(D 53.2(I) 2.6( 2.3( O(S) ,6( ) 37. 58. 10. 16. 0. 5. ' .7( .8(7 .2( .4( .0O .2( 0 40. 32. 34. 32. 119. 2. 176. 58. 71. 4. 18. .1(S) 3.5(S) .0( 2.9( .2( 3.6( .7( 2.5( .3O .5( ) 2. 53, 16. 2. 336. 28. 5. 39. 35. 171. .2( .8( .5( .3( 2.3( .6O .2( 1.9( .7( 3.0( ' 37. 15. 5. 129. 89. 1. 3. 127. 58. 0. .7t) ,4O .0(0) 4.9( .9( .5( .0(0) .0( .0( .0( ) ' 0. 0. 89, 2. 127. 58. 88. 128. 161, 21. .0O .0( .9( 2.9(I) 115.4(I) 58.8(D 3.6( ) 3.1( O(S) .9( ) 56. 71. 12. 19. 0. 6. ' .8( .9( .3( .4( .0( .3( ) 0 45. 38. 40. 38. 119. 3. 179, 47. 65. 4. 16. 1(S) 5.8(S) .0( 2.9( .3( 3.6( .7( ) 2.4( .3( .5( ) 3. 41. 19. 3. 398. 35. 2. 48. 33. 229. .3( .7( .5( .3( 2.5( .6( .1( 2.0( .7( 3.4( 33. 11. 5. 138. 89. 2. 3. 102. 56. 0. ' .7( .4( .0(0) .1(0) .9( .6( .0(0) .0( ,0O .0( ) 0. 0. 89. 3. 102. 56. 89. 147. 221. 30. .0(> .0O .9( 2.8(I) 113.5(I) 55.0(I) .0(0) 3.4( 1(S) 1.0( ) 49. 48. 9. 12. 0. 6.. .7O .7(> .2( .3( .0( ) .3( ) ' 0 50. 42. 44. 42. 118. 3. 170. 35. 54. 3. 13. .1(S) 8.2(6) .0( 2.9( .3( ) 3.5( ) 6( ) 2.3( .3( .4( ) ' 5. 29. 19. 3. 387. 33. 2. 48. 25. 227. .3( AO .5( .3( 2.5() A( ) .1() 2.0( .6( 3.4( 25. .6( 8. 3. 138. 78. 3. 3. 123, 54. 0. .3( .8(> .0(0) .9( .7( .0(0) .0( .0( .0( ) 0. 0. 78. 2. 123. 54. 84. 129. 232. 29. ' .0( .0( .9( 2.8(D 111.7(I) 55.0(D 3.4( 3.1( AM 1.0( ) 39. 33. 6. 8. 0. 6. ' 0 7O .6( .2( .3( .0( .2( 55. 46. 47. 46. 117. 3. 158. 27. 45. 3. 10. .1(S) 10.5(S) .0O 2.9{) 3i r 3.4O 5{) 2.1{) 3O 4t ) .3O .5(1 .5O .3O 2.4O .6O .1O 2.0( 5(l 3.3( ' 20. 6. 1. 123. 73, 3. 3. 99. 56. 0. 5O .3O .4( 4.8( .9( ) .7( ) .0(0) .0( .0( M ) 0. 0. 73. 3. 99. 56. 69. 132. 208. 24. ' .0( .0( .9( 2.7(I) 109.8(I) 55.0(D 2.8( 3.2( 1(S) 1.0( ) 31. .6( 25, .6( 4, .2( 6, .3( 0. M J. 2( ) 1 0. 49. 49. 49. 115. 3. 149. 22. 38. 3. 9. ' .I(S) 12.4(S) .0O 2.9( .3( 3.3(> .5( 2.0( .3( .4( ) 6. 17. 16. 2. 315. 22. 1. 40. 14. 175. ' .3( .5( 5O .3( 2.3( .5( .1( 1.9( .5( 3.1( 16. 5. 1. 99. 71. 4. 3. 119. 54. 0. .5( .3( AO 4.5( AO .8( .0(0) .0( .0( .0( ) ' 0. 0. 71. 2. 119. 54. 75. 89. 181. 19. .0O .0( .9( 2.7(D 108.0(I) 55.0(D IN 2.5( 1(S) .9( ) ' 25. 20. 3. S. 0. 5. A( ) .5( .1( .2( .0( .2( ' 1 5. 50. 51. 50. 113. 3. 141. 18. 32. 3. 7. 1(S) 14.1(S) .0( 2.8( .3( 3.3( ) .5( 1.9( .3( A( ) 6.. 14. 15. 2. 285. 19. 1. 35. 12. 149. ' .3( .5( .5( .2( 2.2( .5() .1( 1.8( .4( 2.9( 13, 4, 1, 90, 69, 4. 3, 95, 56, 0. ' .5( .3( .4( 4.4( .9( .8( ) .0(0) .0( .0( .0( ) 0. 0. 69. 3. 95. 56. 65. 100. 155. 15. ' .0( .0( .9( 2.7(I) 106.1(I) 55.0(D 2.7( 2.7( O(S) .8( ) 22. 17. 3. 4. 0. 4. .5(r .5( .1( .2( M ) 1 .2( 10. 52. 52. 52. 111. 3. 136., 16. 28. 2. 6. .1(S) 15.7(S) .0( 2.8( .3( 3.2( .4( 1.8( 3O .3( ) ' 7. 12. 13. 2. 262. 16. 1. 31. 10. 132. .3( .4( .4( .2( 2.1O .5( .1( 1.7( AO 2.8( ) ' 11. 3. 1. 85. 68. 4. . 3. 116. 54. 0. .4(r .3( AO 4.3( .9O .8( .0(0) .0( .0( .0( ) ' 0. 0. 68. 2. 116. 54. 71. 76, 138. 13. .0( .0( .9( 2.6(I) 104.3(D 55.0(I) 2.9O 2.3O O(S) .7( ) ' 19. .5( 14. .5( 2. .1( 3. .2( 0. .0( 4. .2( ) i 15. 53. 54. 53. 108. 3. 130. 14. 25. 2. 6. ' l(S) 17.0(S) .0( 2.8( .3(Y 3.2(Y .4( 1.7(r AO .3( ) 7. 10. 12. 2. 242. 14. 1. 27. 8. 121. ' AO .4( .4( .2( 2.0( .5( .1( 1.6O .4( 2.7( 9. 3. 1. 82. 67. 4. 3. 91. 56. 0. A(r .2( '1 .3( 4.2(i .9(i .8( .0(0) .0(} Qt i .ii(} 7 .0( 0(f .9( 2.6(D 102,4(D 55.0(D 2.6( 2.5O .0(S) .7( ) ' 1G. 12. 2. 3. 0. 3. .5O AO .1( ,2O .0( .2( ) 20. 55. 55. 55. 106. 3. 126. 13. 22. 2. 5. AM 18.3(S) .0( 2.8( ,3O 3.1(1 AO 1.6( ,2O .3( ) ' 7. AO 9. A(1 11. .4( 1. .2( 225. 210O 12. AO 1. .1( 24. 1.5( 7. AO 112. 2.6( 1 8. 2. 1. 79. 66. 4. 3. 112. 54. 0. ' AO .2(} .3( 4.2( .8( .8(} .0(0) .0( .0( .0( ) 0. 0. 66. 2. 112. 54. 68. 69. 107. 9, ' .0( .0( .8(1 2.6(I) 100.6(I) 55.0(D 2.8( 2.2( O(S) .6( ) 14. 10. 2. 2. 0. 3. .5( AO .1( .2() .0( .2( 25. 56. 56. 56. 104. 3. 121. 11, 20. 2. 4. .1(S) 19.4(S) .0( 2.8( .3( 3.1O .4( 1.6( .2( .3( ) ' 7. 8. 10. 1. 210. 11. 0. 21. 6. 105. .4( AO .4( .2( 1.9( .4( .1( 1.5( .3( 2.5( ' 7. 2. 0. 76. 65. 4. 3. 87. 56. 0. ,4O .2(} .3( 4.1( A(> .8( .0(0) M l 0O .0( ) 0. 0. 65. 3. 87. 56. G3. 85. 111. 8. ' .0( .0( .8( 2,5(I) 98,7(I) 55,0(D 2.6( 2.5( O(S) .6( ) 12. 9. 1. 2. 0. 3. ' .4( .4( .1( .2( .0O .2( 1 30. W. 57. 57. 102. 3. 117. 10. 18. 2. 4. .1(S) 20.4(S) .0( 2.7( .3( 3.1( .4( 1.5( .2( 3( ) 7. 6. 9. 1. 197. 10. 0. 18.O 5. 99. A .3( .4( .2( 1.9(1 .4(} .1(} 1.4(} .3( 2.5( ) 6. 2. 0. 74. 64. 4. 3. 108. 54. 0. .3( .2( .2( 4.01) .8(> .8( .0(0) .0( .0( .0( ) 0. 0. 64. 2. 108. 54. 66. 65. 93. 7. .0( .0( .8( 2.5(D 96,8(D 55.0(D 2.7( 2,1( O(S) .5( ) ' 11. 8. 1. 2. 0. 2. .4( A(1 .1(1 .2( ) .0( .2( ) 35. 58. 58. 58. 100. 2. 114. 9. 16. 2. 4, 1(S) 21.3(5) ,0O 2.7( .3( 3.0(1 .4( 1.4( .2( .3( ) ' 7, .4( G. .3( 8. AO 1. 18G. 1.8( 9. 0. 16. 5. 94. .2( ,4O .1( 1.3( .3(1 2.4( 5. 2. 0. 72. 63. 4. 3. 84. 56. 0. ' .3( .2( .2( 4.0( .8( .8( .0(0) .0( .0( ,0( ) 0, 0. 63. 3. 84. 56. 62. 81. 100. 6. ' .0( .0O .8( 2.4(D 95,0(D 55.0(D 2,6O 2.4( O(S) .5( ) 9. 7. 1. 2. 0. 2. .4(} .4( .1( .2( IN } -T .1(S) 22.2(S) .0( ) 2.7( ) .2O 3.0( ) s( ) 1.4( ) .2( ) 3( ) ' 7, 5. 7. 1. 176. 8. 0. 15. 4. 90. .4( .3O .4O .2( 1.8( ) ,4( ) .1O 1.3( ) 3f ) 2.4( ) 5. 1. 0. 70. 63. 4. 3. 104. 54. 0. .3() .2() .2() 3.9() .8() .8() .0(0) .0() .0() .0() ' 0. .0( } 0. .0O 63. 2. 2.4(D 104. 93.1(I) 54. 55.0(I) 64. 2.6( 61. 84. 5. .8O ) 2.1( AM .5( ) 8. 6. 1. 1. 0. 2. .4O .3O .1O .2O .0O .2l ) 1 45. 59. 59. 59. 95. 2. 107. 7. 13. 2. 3. ' 1(5) D.O(S) U( ) 2.7( ) 2( ) 3.0( ) 3( ) 1.3( .2O .3( 1 7. 4. 7. 1. 167. 8. 0. 13. 4. 86. 3( ) .3O .3O .2O 1.7( .4O .1O 1.2( .3O 2.4( ) ' 4. 1. 0. 69. 62. 4. 3. 80. 56. 0. 3( ) .2O .2O 3.9( .8O .8O .0(0) .0O .0O .0( ) ' 0. 0. 62. 3. 80. 56. 61. 78. 92. 4. .0( .0( .8( 2.4(I) 91,3(D 55.0(D 2.6( 2.3( 0(S) .5( ) ' 7. 5. 1. 1. 0. 2. .4O .3O .1( 1( ) .0O .2O 1 50. 60. 60. 60. 93. 2. 104. 7. 12. 2. 3. ' 1(S) 23.7(S) .0( ) 2.6( .2O 2.9( .3( 1.3( .2O .2( ) 7, 4, 6, 1, 159, 7, 0, 12, 3, 83. ' .3( ) .3( ) ,3( ) .2O 1.7( .4O .1O 1.2( .3O 2.3( ) 4. 1. 0. 68. 62. 4. 3. 101. 54. 0. ' .3O .2O .2O 3.9( .8( ) .8( ) .0(0) .0O .0O .0( } 0. 0. 62. 2. 101. 54. 63. 59. 78. 4. ' .0( ) .0O .8O 2.3(D 89.4(D 55.0(I) 2.6( > 2.0( O(S) .4( ) 7. 5. 1. 1. 0. 2. .3O .3O .1( 1( ) .O( ) .2O 1 55. 60. 60. 60. 91. 2. 101. 6. 11. 1. 2. .1(S) 24.3(S) .0( 2.6( .2( 1 2.9( .3( 1.2( .2O .2( ) ' 6. 3. 5. 1. 152. 6. 0. 10. 3. 80. .3O .3O .3O .2O 1.7( .3O .1O 1.1( ) .3O 2.3( ) ' 3. 1. 0. 67. 61. 4. 3. 76. 56. 0. .3( i .2O .2O 3.8( .8O .8O .8O .0O .0O .O( ) ' 0. .0O 0. .0O 61. 3. 2.3(D 76. 87.6(I) 56. 55.0(D 60. 76, 86. 3. .8O 2.5( > 2.3( .0(S) .4( ) 6. 4. 1. 1. 0. 1. ' .3( .3O .1O .1( Of ) .I( ) 2 0. 61. 61. 61. 89. 2. 98. S. 9. 1. 2. ' .I(S) 24.9(S) Of ) 2.6( ) 2( 1 2.9( ) 3( ) 1.2( .2( ) .2( ) G. 3. 5. 1. 144, 6. 0. 9. 2. 78. 3( ) .2( } 3( } 1( ) 1.6( .3O .0O 1.1( i .2( 3O 1O 1O 3.8O bO .7( 7O .0( 0O .0( ) ' 0. 0. 61. 2. 97. 54. 61. 56. 72. 3. .0(> .0( .8( 2.3(D 85.7(I) 55.0(I) 2.6( 2.0( O(S) .4( > 5. 3. 0. i. 0. 1.. ' .3( .3( .0( 1O .0( ) i( ) 2 5. ' 61. AM 61. 25.5(S) 61. 87. 2.6( 1. 95. 2.8.O 4. B. 1. 2. .0( .2( .3O 1.1( .2( .2( ) 6. 2. 4. 0. 136. 5. 0. 8. 2. 75. ' .3( .2( .3( .1( 1.6( .3( .0( 1.0( .2( 2.2( 2. 1. 0. 64. 60. 3. 2. 73. 56. 0. .2( .1( .1(> 3.7( .8( .7O .7( .0( .0( .0( ) 0. 0. 60. 3. 73. 56. 59. 73. 80. 3. .0( .0( .8( 2.2(I) 83.9(I) 55.0(I) 2.5( 2.3( O(S) .4( ) ' 4. 3. 0. 0. 0. 1. .3( .2( .0( .1( .0( .1( 2 10. 61. 61. 61. 85. 1. 92. 4. 7. 1. 2. .2(S) 26.0(S) .0( 2.6( .2( 2.8( .3( 1.1( .2( .2( ' 6. 2. 4. 0. 129. 5. 0. 7. 2. 72. .3( .2( .3( .1( 1.6( .3O .0( 1.0( .2( 2.2( ' 2. .2( 1. .1( 0. 63. 3.6( 59. 3. 2. 93. 54. 0. .1( .8( .7( .7( ) .0( .0O .0( 0. i). 59. 2. 93. 54. 60. 54. 66. 2. ' .0( ') .0O .8( 2.2(I) 82.0(I) 55.0(I) 2.5( 1.9( O(S) .3( ) 4. 2. 0. 0. 0. 1. .3( .2( .0( .1O .0( ) .1( ) 61. 61. 61. 83. 1. 89.. 3. 7. 1. 1. 1 .2(S) 5. 26.4(S) .0( 2.5( .2(1 2.8( .2( 1.0(1 .2( .2( ) 1. 4. 0. 123. 4. 0. 6. 1. 70. .3( .2( .3( .1( 1.5O ..3O .0( .9( .2( 2.2( ) ' 2. 0. 0. 63. 59. 3. 2. 69. 56. 0. .2( .1( .1( 3.6( .8( .7( .71% ) .0( .0( .0( ' 0. 0. 59. 3. 69. 56. 59. 72. 76. 2. .0( .0( .8( 2.1(I) 80.1(I) 55.0(I) 2.5( 2.2( O(S) .3( ) 3. 2. 0. 0. 0. 1. ' .3O .2( .0( .1( .0() .1() ' 2 20. 61. .2(S) 61. 26.8(S) 61. 81. 2.5( 1. 87. 2.7( 3. 6. 1. 1. .0( .2( .2( 1.0(1 .2( .2( } J. 1. 3. 0. 117. 4. 0. 5. 1. 68. ' .3( .2( .3( .1( 1.5( .3( .0(> .9( .2( 2.2( 1. 0. 0. 62. 59. 3. 2. 90. 54. 0. ' .2( .1( .1( 3.5( .8( .7( .7( .0( .0( IN ) 0. 0. 59. 2. 90. 54, 59. 53. 63. 2. .0( .0O .8(i 2.1(Ii 78.3(I) 55.0(I) J. 1.9O 0(S) 3( i .2(r 2O OO 1O OO 1(} ' 2 25. 62. 62. 62. 79. 1. 85. 3. 5. 1. 1. .2(S) 27.2(S) .0O 2.5O .2O 2.7O .2O 1.0( .2O ,2( ) S. 1. 3. 0. 112. 4. U. 5.. 1. 67. ' .3O .2O .3(> .1(> 1.5( .3O .0( 9O .2O 2.1( ) ' 1. .2O U. .1( 0. .1O E1. 3.1( 58. .8O 3. .7( 2. .7O 65. .0O 56. .0O 0. .0( 0. 0. 58. 2. 65. 56. 58. 70. 72. 1. ' .0( .0(1 .8( 2.1(I) 76.4(I) 55.0(I) 2.5 O 2.2( O(S) .3( r 2. 1. 0. 0. 0. 1. '.2O .2O .0O .1O .0( I( ) 2 30. 62. 62. 62. 77. 1. 82. 2. 5. .2(S) 27.5(S) ,0O 2.5( .2O 2.7( .2O .9O .2O .2( ) ' S. 1. 3. 0. 108. 3. 0. 4. 1. 65. .3O 2O 3O 1O 1.4O .3O .0O .8( 2O 2.1( 1. 0. 0. 59. 58. 2. 2. 86. 54. 0. .2O .1O .1O 3.0( .8O .7O .7( .0O .0O .0l ) ' 0. 0. 58. 2. 86. 54. 58. 50. 59. 1. .0O .0( .8( 2.0(U 74.6(D 55.0(U 2.5( 1.9( 0(S) .2( ) ' 2. 1. 0. 0. 1O 0. 1. .2O .2l) .0( .0( 1( ) 2 35. 62. 62. 62. 75. 1. 80. 2. 4. 1. 1. ' .2(S) 27.8(6) .0O 2.4( ,2O 2.7( .2O .9(> .2O .2( ) 4. 1. 3. 0. 103. 3. 0. 4. 1. 63. ' .3O .1O .2O .1(> 1.4( .3O .0O .8O .1O 2.1( 1. 0. 0. 59. 58. 2. 2. 61. 56. 0. .2O .1O .0O 2.9( .8(} .6O .7O .0O .0O .0O 0. 0. 58. 2. 61. 56. 58. 68. 69. 1. .0O .0O .8O 2.0(I) 72.7(I) 55.0(I} 2.5( 2.2( 0(S) .2( ) 2. 1. 0. 0. 0. 1. .2( 2O .0O .1( ) .0( 1( ) 2 40. 63. 64. 63. 73. 1. 78. 2. 4. 1. 1. .2(S) 28.1(S) .0O 2.4(1 .2O 2.6(r .2( .9O .2O .2( ) ' 4. 1. 2. 0. 99. 3. 0. 3. 1. 62. .3O .1O .2O .1O 1.4( .3O .0O .8O .1O 2.1( ' 1. .2O 0. .1( 0. 59. 2.9( 58. 2. 6O 2. 82. N. 0. .0O .8( .7O .0O .0O .0O 0. 0. 58. 2. 82. 54. 58. 50. 57. 1. ' .0O .0( .8O 2.0(D 70.9(I) 55.0(I) 2.5( 1.8( .0(S) .2( ) 2. 1. 0. 0. 0. 0. ' 2 .2( .1O .0( 1O .0(7 1( ) 45. 69. 73. 69. 71. 1. 76. 2. 4. 1. 1. .2(S) 28.3(SY .0O 2.4( .2O 2.6(Y .2( 8(Y 2i 1 . .2(Y .2O 1O 1.4O+ .3( .0( .7O 1O� 2.1O 0. 0. 58. 57. 2. 2. 58. 56. 0. 1O .1O .0O 2.9( .8O .6(> .7O .0O .0O .0( ) 0. 0, 57, 2. 58. 56. 57. 67. 67. 1. ' .0O .0(> .8O 1,9(I) 69.0(I) 55.0(U 2.5( 2.2( O(S) .2( ) 1. 1. 0. 0. 0. 0, ' .2( lO .0( ,1( ) ,O( ) .1( ) 2 50. 77. 78. 77. 69. 1. 73. 2. 3. 1. 1. ' .2(S) 28.4(S) .0O 2.4( .2( 2.6( .2O .8O .1O .2( ) 4. 0. 2, 0. 92. 3. 0. 3. 0. 61. .3( .1O .2(> .1O 1.3( .2O .0O .7O .1O 2.1( 1. 0. 0. 58. 57. 2. 2. 78. 54. 0. .1O ,1O .0O 2.9( .6O .6O .6O .0O .0O .0( > ' 0. 0. 57. 1. 78, 54. 57. 49. 55. 1, .00 .0O .8O 1,9(I) 67.2(I) 55.0(I) 2.51) 1.8O O(S) .2( ) 1. 1. 0. 0. 0. 0. .2O .1O .0O .0O .0O .1O ' 2 5J. 81. 82. 81. 67. 1. 71. 2. 3. 1. 1. .2(S) 28.5(6) .0O 2.3( .1O 2.5(1 .2(> .8O .1O .1( ) ' 4. .3O 0, 2. 0. 89, 1.3( 3. 0. 3. 0. 60, .1O .2O .1O .2O .0( .7O ,1O 2.1( G. 0. 0. 58. 57. 2. 2. 54. 56. 0. t.1O .IO .0O 2.9( .8O .6O .6O .0O .0O .0( > 0. 0. 57. 2. 54. 56. 51. 67. 66. 1. ' .0O .0O .8O 1.8(I) 65.3(I) J5.0(I) 2.4( 2.1( O(S) .2( ) 1. 0. 0. 0. 0. 0. .2O .1(> .0O .0O .0( i( > 3 G. 83, 83. 83. 65. 1. 69. 2. 3. 1. 1. .2(S) 28.5(S) .0O 2.3( 1O 2.5( .2O .8O .1O .1( 7 3. 0. 2. 0. 86. 2. 0. 2. 0. 60, .3O .1( .2O .1O 1.3( .2O .0O .6O .1O 2.1( ) ' 0. 0. 0. 57. 57. 2. 2. 75. J4. 0. .1O .1O .0O 2.9( ) ,8O 6(i .6( ) .0O .0O .0( ) 0. 0. J7. 1. 75. 54. 57. 49. J4. 0. ' .0O .0( .8( 1.8(I) 63.5(I) J5.0(I) 2,4( 1.8( O(S) .1( ) 1, .2O 0. .1O 0. .0O 0. .O( ) 0. .0O G. .1O 3 5. 83. 83. 83. 63. 0. 67. 1. ' .2(S) 28.J(9) .0O 2,3O .1O 2.5( ,2O 7O .1( 1( 3. 0. 2. 0. 83. 2. 0. 2, 0, 59, ' .3O .1(1 .2( .1O 1.3( .2( .0O A(> .1O 2.0( ) 0. 0. 0. 57. P. 2. 2. 50. 56. 0. 1( 1O G!) 2,81 ! 81 F,(} .0( .0( .8( 1.8(I) 61.6(U 55.0(I) 2.4( 2.1( O(S)� .1( ) ' 1. 0. 0. 0. 0. 0. .2( .1( .0( .0( .0( 1( ) 3 10. 83. 83. 83. 62. 0. 65.. 1. 3. 1. 1. .2(S) 28.5(S) .0( 2.3( .1( 2.5( .2( .7( .1( .1( ) ' 3. .3( 0, .1( 2, .2( 0, .1O 10, 1.3( 2, .2( 0. .0( 2. .6l ) 0. .1O 59. 2.0( 0. 0. 0. 57. 57. 1. 2. 71. 54. 0. ' .1( ) .1( .O( ) 2.8( .8( .5( ) .6l ) .0( .0( .0( 0. O. 57. 1. 71. 54. 57. 48. 53. 0. ' .0( .0( .8( 1.7(I) 59.7(I) 55.0(D 2.4( 1.8( 0(S) .1( ) 1. 0. 0. 0. 0. 0. .2() .1( ) .0() .0() .0() .1( ) ' 3 15. 82. 82. 82. 60. 0. 63. 1. 2. 1. 1. .2(S) 28.5(S) .0( 2.2( .1l ) 2.4( .2( .7( .1( .1l ) ' 3. 0. 1. 0. 77. 2. 0. 2. 0. 59. .3( .1( .2( .1O 1.2( 2( ) .0( .6( .1( 2.0( ' 0. 0. 0. 57. 57. 1. 2. 47. 56. 0. .1( .1( .0O 2.8( .8O .5( .6( .0( .0O .0( ' 0. .0( 0. 57. 2. 1.7(U 47. 57.9(l) 56. 55.0(I) 57. 66. 64. 0. .0( .8( 2.4( 2.1( O(S) .1( ) 1. 0. 0. 0. 0. 0. ' .2( .1( •0( ) .0O .0( > 1( ) 3 20. 81. 80. 81. 58. 0. 61. 1. 2. 1. 0. ' .20 28.5(S) .0l ) 2.2( .1( ) 2.4( .2O .7( .1( .1l ) 3. 0. 1. 0. 74. 2. 0. 2. 0. 58. ' .3( .1( .2( .1( 1.2( .2( .0( .6l ) .1O 2.0( 0. 0. 0. 57. 57. 1. 2. 67. 54. 0. .1( .1( .0( 2.8( .8O .5( .6( .0( > .0( .0( ) ' 0. 0. 57. 1. 67. 54. 57. 48. 53. 0. .0( .0( .8( 1.7(I) 56.0(I) 55.0(I) 2.4( 1.8( 0(S) .1( ) 1. 0. 0. 0. 0. 0. .1( .1( .0( .0( .0O .1() 3 25. 79. 78. 79. 56. 0. 59. 1. 2. 1. 0. ' .2(S) HAM .0( 2.2( .1O 2.4( .2( .7( .1( .1( ) 3. .2( 0. 1. 0. 72. 1.2( 2. 0. 2. 0. 58. .1( .2( .1( .2O .0( .5( 1( ) 2.0( 0. 0. 0. 57. 56. 1. 2. 43• 56. 0. ' .1( .1( .0( 2.8( .8( .5( .6( .0( > .0( .0( 0. 0. 56. 2. 43. 56. 56. 65. 64. 0. ' .0( ) .0( ) .8( 1.6(I) 54.2(I) 55.0(I) 2.4( ) 2.1( 0(S) .1( ) 1. 0. 0. 0. 0• 0• .i( .11 i 4( ) .0( .2(S) 28.4(S) .0O 2.2( ,1(> 2.3( .2O .7( ' 3. 0. 1. 0. 69. 2. 0. 1. 0. J8. .2l) .1O .2(1 .1O 1.2( .2O .0O .5O .1O 2.0( 1 0. 0. 0. 57. 56, 1. 2. 64. 54. 0. .1() .1() .0() 2.8() .8() .5() .6() .0() .0() .0() ' 0. .0( 0, .0O J6, .8( 1, 1.6(I) 64, 52.3(I) 54, 55.0(U 56, 2.4( 11, 1.8( 52. 0(S) 0. i( ) 1. 0. 0. 0. 0. 0. . ' 1O .1( .0( .0O .0( ) .1O 3 35. 75. 74. 75. 52. 0. 55. 1. 2. 1. 0. .2(S) 28.3(S) .0O 2.1( .1O 2.3( .2( .7(} .1O .1( ) 2. 0. 1. 0. 67. 2. 0. 1. 0. 58. .2O .1(1 .2O .1O 1.21 1 .2(1 .0( JO .1O 2.0( t0. 0. 0. 56. 56. 1. 2. 39. 56. 0. .1(> .1O .0(> 2.8( .8O .5( .6O .0O .0O .0( ) ' 0. 0. 56. 2. 39. 56. 56. 65. 63. 0. .0( .0( .8( 1.5(I) 50.5(I) 55.0(1) 2.4( 2.1( O(S) .1( ) 1. 0. 0. 0. 0. 0. t .1O .1(1 .0O .0O .0O .1( ) ' 3 40. 73. .2(S) 72. 28.3(S) 73, 50. 2.1( 0. 54. 2.3( 1. 2. 1. 0. .0O .1O .2(> .6O .1O .1( ) 2. 0. 1. 0. 64. 2. 0. 1. 0. 57. ' .2O .1(i .2( 1(} 1.1( .2O .0(1 .5O .1O 2.0( ) 0. 0. 0. 56. 56. 1. 2. 60. J4. 0. ' .1O .1( .0O 2.8( .8O .5O .6( .0( 0O .0( ) 0. 0. 56. 1. 60, 54. 56. 48. 52. 0. .0O .00 .8( 1.5(I) 48.6(I) 55.0(I) 2.4( 1.8( O(S) ) ' .1( 1. 0. 0. 0. 0. 0. .1(l .l() 0() .O() .0(1 .1() ' 3 45. 70. 69. 70. 48. 0. 52. 1. 2. 1. 0. .2(S) 28.2(S) .00 2.1( .1O 2.3( .1O 6(1 .1( ) i( ) ' 2. 0. 1. 0. 62. 2. 0. 1. 0. 57. .2O .1O .2O .1O 1.1O .2(> .0O .5O .1O 2.0( 0. 0. 0. 56. 56. 1. 1. 35. 56. 0. ' .1( 1O .00 2.8( .8O .5( GO .0O .0(1 .0( i ' 0. .0(} 0, .0O 56, 2. 1.5(I) 35, 46.8(I) J6, 55.0(I) 56. 65. 63. 0. .8O 2.4O 2.1O 0(S) .1( ? 0. 0. 0. 0. 0. 0. ' .1O .1O .0( .0O .0O .1O 3 50. 68. 67. 68. 47. 0. 50: 1. 2. 1. 0. .2(S) 28.2(S) .0(i 2.0( .1O 2.2( .1O .6O .1( ) .1( ) 2. 0. 1. 0. 60. 2. 0. 1. 0. 57. .2() .1() .2( .1() 1.1() .2() .0() (} .1(} 2.0! 7 .1O Ol) .0( 2.8( .8O .5( .5( 0O .0O 0i > ' 0. 0. 56. 1. 56. 54. 56. 47. 51. 0. .0( .0( .8( 1.4(D 44.9(D 55.0(D 2.4( 1.8( 0(S) .1( ) 0. 0. 0. 0. 0. 0. ' .1l) .1( .0( .0( .0() .1() ' 3 55. 66. .2(S) 65. 28.1(S) 66. .0( 45. 2.0( 0. 1O 48. 2.2( 1. .1( 2. .6( 1. .1( 0. .1( ) 2. 0. 1. 0. W. 2. 0. 1. 0. 57. ' .2( .1( .2i) .1( 1.1( .2( M .5( .1( 2.0( 0. 0. 0. 56. 56. 1. 1. 32. 56. 0. ' .1( .0( .0( 2.8( .8( .4O .5( .0( .0( .0( 0. 0. 56. 2. 32. 56. 56. 65. 63. 0. .0( .0( .8( 1.4(D 43.0(D 55.0(D 2.4( 2.1( 0(S) .1( ) ' 0. 0. 0. 0. 0. 0. .1( .1( .0( .0( OO 1( ) ' 4 0. 63. 63. 63. 43. 0. 46. 1. 1. 1. 0. .2(6) 28.1(S) .0( 2.0( .1( 2.2( .1( .6( .1( .1( ) ' 2. 0. 1. 0. 55. 2. 0. 1. 0. 57. .2( 1O .2( .1(> 1.1( .2( .0( .5( .1( 2.0( ' 0. .1( 0. .0( 0. 56. 2.8( 56. 1. 1. 53. 54. 0. .0( .8( .4(> .5( .0( .0(> .0( 0. 0. 56. 1. 53. 54. 56. 47. 51. 0. ' .0( .0( .8( 1.3(I) 41.2(I) 55.0(I) 2.4( 1.8( 0(S) .1( ) 0. 0. 0. 0. 0, 0. ' .1( 1O .0( .0( .0O .1( ) 4 5. 62. 62. 62. 41. 0. 44. 1. i. 1. 0. .2(S) 2. 28.0(S) .0( 1.9( .1( 2.1( 1O .6( .1( .1( ) 0. 1. 0. 53. 2. 0. 1. 0. 57. .2( .1( .2( .1( IM .2( .0( .4( .1( 2.0( ) 0. 0. 0. 56. 56. 1. 1. 28. 56. 0. .1( .0( .0( 2.8( .8O .4O 5O .0( .0( .0( ' 0. 0. 56. 2. 28. 56. 56. 65. 62. 0. .0( .0( .8( 1.3(I) 39.3(I) 55.0(D 2.4( 2.1( 0(S) .1l ) 0. 0. 0. 0. 0. 0. ' .1O .1O .0O .0O .0O .1O ' 4 10, 62, .2(S) 62, 27.9(S) 62, 39, 1.9( 0. 42. 1. 1. 1. 0. .0( .lO 2.1( .1( .6( .1O .1( ) 2. 0. 1. 0. 51. 1. 0. 1. 0. 57. .2( .1( ) .2( .1( 1.0( .2( .0( .4( .1( 2.0( ) 0. 0. 0. 56. 56, 1. 1. 49. 54. 0. ' .1( .0( .0( 2.8( .8( .4( .5( .0( .0( .0( 0. 0. 56. 1. 49. 54. 56. 47. 51. 0. 0O U( ) .8( 1.3(D 37.5(D 55.0(D, 2.4( 1.8( 0(S) ) .1( .0O OO OO 1O OAKRIDGE OVERALL DRAINAGE MODEL FOR A 10 YEAR STORM EVENT ' 8-20-90; 3:10p ( TOTAL DEVELOPED BUILDOUT:MODEL OAK, 10.DAT) * PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS* CONVEYANCE PEAK, STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) ' 300 310 130. 58. (DIRECT (DIRECT FLOW) FLOW) 0 0 30. 40. 36 19. .4 0 40. 290 3. (DIRECT FLOW) 0 15. 24 15. .4 0 40. t 30 130. (DIRECT FLOW) 0 30. 15 3. .3 0 45. ' S 31 3. 58. (DIRECT RECT FLOW) 1 0 0. 40. 28 4. .8 1 20. 33 36. 1.3 0 40. ' 21 35. .7 0 40. 29 3. 1.0 .0 1 0. 23 37. .7 0 40. 35 12. .3 0 40. ' 7 58. .1 0 40. 4 119. 2.9 0 35, 27 89. .9 0 45. 44 30. 1.0 0 45. 20 48. 2.0 0 45, 19 5. .2 0 35. 18 35. .6 0 45. ' 9 4. .3 0 40. 10 18. 5 0 40. 11 7. .4 1 25. ' 13 19. .5 0 45. 8 71. 2.5 0 40. 6 179. 3.6 0 45. 41 89. 1.0 .0 0 45. 34 71. .9 0 40. 17 398. 2.5 0 45. ' 26 2 138. 83. 5.0 .1 .1 28.5 0 3 45. 5. 42 147. 3.4 0 45. 25 5. 1.3 .0 0 40. 14 56. .8 0 40. ' 16 6. .3 0 40. 12 53. .8 0 40. ' 1 22 83. 229. .1 3.4 .2 3 0 5. 45. 3 83. (DIRECT FLOW) 3 5. 43 232. .1 .1 0 50. IDPROGRAM PROGRAM CALLED 1 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY ,APE OR DISK ASSIGNMENTS UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMDER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) 100 YEAR JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIM(7) JIN(8) JIN(9) JIN (jO) 2 1 0 0 0 0 0 0 0 0 ' JOUT(1) JOUT(2) JOUT(3) JOUT(4) 1 2 0 0 JOUT(5) JOUT(6) 0 0 JOUT(7) JOUT(8) JOUT(9) JOUT(10) 0 0 0 0 NSCRAT(II 11111T11) 11111T(3) NSCRATIII 11CRAT(5) 3 4 0 0 0 WATERSHED PROGRAM CALLED * ENTRY MADE TO RUNOFF MODEL* 1 OAK,RIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL OAY,l00.DAT) UMBER OF TIME STEPS 50 U TEGRATION TIME INTERVAL (MINUTES) 5.00 ,1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH R 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR ' 1.44 .60 .96 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 '.24 .12 .12 .00 .00 .00 1 ' OAY,RIDGE OVERALL DRAINFUE MODL1 FOR A 100 YEAR STORM EVENT ■ lUBAREA GUTTER WIDTH AREA PERCENT NUMBER OR MANHOLE (FT) (AC) IMPERV. 2 0 0. .0 .0 80 8 3130. 57.1 40.0 60 6 1150. 8.9 40.0 70 7 1350. 29.4 40.0 130 13 675. 24.7 40.0 100 10 850, 13.2 40.0 JO 5 50. 3.6 80.0 15 50. 1.8 80.0 ,IJO 1GO 16 3500. 4.0 84.0 110 li 34. 9.6 84.0 120 12 500. 17.8 80.0 '90 9 400. 13.1 10.0 190 19 250. 1.4 80.0 200 20 700. 31.3 80.0 210 21 400. 7.5 80.0 240 24 300. 5.0 80.0 280 28 50. 6.9 80.0 33 110, 5.1 80.0 1330 OTAL NUMBER OF SUBCATCHMENTS, 17 OTAL TRIBUTARY AREA (ACRES), 240.97 i SLOPE (FT/FT) .0300 .0100 .0100 .0100 .0100 .0100 .0200 .0200 .0200 .0200 .0200 .0100 .0100 .0100 .0100 .0100 .0200 .0100 RESISTANCE FACTOR SURFACE STORAGE(IN) IMPERV. DERV. IMPERV. DERV. .016 .250 .100 JOO .016 .2JO iOO .500 .016 .250 .100 .500 .O1G .250 .100 .JOO .016 .250 .100 .100 .016 .250 .100 JOO .01E .80 .100 .500 .016 .250 .100 .500 .016 ..250 .100 JOO .O1G .250 .100 .500 .016 .250 .100 .500 .016 .250 .100 JOO .016 .250 .100 .500 .016 .250 .100 .500 .016 .2JO .100 .500 .016 .250 .100 .500 .01E .2J0 .100 .500 .016 .250 1100 .500 OAKRIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ' ( TOTAL DEVELOPED BUILDOUT:MODEL OAK100.DAT) I* CONTINUITY CHECK, FOR SUDCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** tTERSHED AREA (ACRES) TAL RAINFALL (INCHES) ITAL INFILTRATION (INCHES) TOTAL WATERSHED OUTFLOW (INCHES) 'OTAL SURFACE STORAGE AT END OF STRRM (INCHES) ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL GUTTER �MBER 5 J 1 14 4 7 0 I 240.970 2.850 .366 2.073 .411 .006 INFILTRATION RATE(IN/HR) GAGE MAXIMUM MINIMUM DECAY RATE NO .50 .50 .00180 .50 .50 .00180 1 .50 JO .00180 1 .50 .50 .00180 1 .50 .50 .00180 1 .50 .50 .00160 1 JO 50 .00180 1 .50 .50 .00180 1 .50 .50 .00180 1 .50 .50 .00180 1 .50 .50 .00180 1 .50 .50 .00180 1 .50 .50 .00180 1 .50 .50 .00180 1 .50 JO .00180 1 .50 .50 .00180 1 .50 .50 .00180 1 .50 .50 .00180 1 OAK,RIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL OAKIOO.DAT) WIDTH INVERT SIDE SLOPES OVERBANK,/SURCHAR.GE GUTTER HOP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK, CONNECTION (FT) (FT) (FT/FT) L R N (FT) 4 0 1 CHANNEL .0 3100. .0040 .0 50.0 .016 1.50 0 4 0 1 CHANNEL .0 1600. .0040 50.0 .0 .016 1.50 0 6 0 1 CHANNEL .0 800. .0044 4.0 4.0 .035 5.00 0 6 0 1 CHANNEL .0 1400. .0100 .0 JO.0 .016 1.J0 0 17 0 1 CHANNEL 0 i200. .00312 4,+ ..� 4.? 035 5.00 0 ICHANNEL ,:} o-0 1vt 1. f _ ..: J,S.': +' S. 4. 0 3J r :5. OrJ J -r12 22 0 1 CHANNEL .O 1300. 16 22 0 1 CHANNEL .0 3500. '11 17 0 1 CHANNEL .0 8350. 10 17 0 1 CHANNEL .0 1600. 9 17 0 1 CHANNEL 5.0 1000. 18 17 0 1 CHANNEL .0 1100. 19 17 0 1 CHANNEL .O 200, 20 17 0 1 CHANNEL .0 2100. 21 44 0 1 CHANNEL .0 1200. '44 17 0 1 CHANNEL 3.0 800. 220 22 3 3 .0 1. TINE IN HRS VS INFLOW IN CFS .0 .0 .3 11.9 4.1 .0 22 43 0 1 CHANNEL .0 1600, 43 17 4 2 PIPE .1 1. RESERVOIR STORAGE .0 IN .0 ACRE-FEET VS SPILLWAY .0 133.0 OUTFLOW .0 140.0 230 23 3 3 .0 1. TINE IN HRS VS INFLOW IN CFS .0 .0 .3 7.2 7.2 .0 23 18 0 1 CHANNEL .0 1300. 24 7 0 1 CHANNEL .0 700. ' 250 25 3 TINE IN HRS 3 VS INFLOW IN CFS .0 1. .0 ,0 .1 .3 5.0 .3 25 22 0 2 PIPE 1.3 500. 260 26 3 3 .0 1. TIME IN HRS VS INFLOW IN CFS .0 .0 .2 11.2 7.0 10 26 42 0 5 PIPE 3.5 800. OVERFLOW 10.0 800. 42 22 0 2 PIPE 6.0 1. 340 11 3 3 .0 1. ' TIME IN HRS VS INFLOW IN CFS .0 .0 .2 1.9 7.0 .0 270 27 3 3 .0 1. TIME IN HRS VS INFLOW IN CFS .0 .0 .2 5.9 7.0 .0 27 41 0 1 CHANNEL .0 800. 41 26 0 5 PIPE 4.0 100. OVERFLOW 10.0 100. 28 27 0 1 CHANNEL .0 5000. 290 29 3 3 .0 1. TIME IN HRS VS INFLOW IN CFS .0 .0 .2 3.1 7.0 .0 29 18 0 2 PIPE 1.0 500. 300 30 3 3 .0 1. ' TIME IN HRS VS INFLOW IN CFS 0 .0 .5 120.0 5.8 .0 30 4 0 3 .0 1. 21 0 1 CHANNEL .0 700. �33 510 31 11 3 ,0 1. TIME IN HRS VS INFLOW IN CFS .0 .0 .1 .0 .2 .0 .5 36.0 .6 53.0 ,7 59.0 31 27 0 3 .0 1. 17 2 0 1 CHANNEL 10.0 500. ' 2 1 10 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 13.0 1.3 25.0 '23.5 1 7 60.0 2 28.0 62.0 PIPE 311 .1 289.0 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .0 6.v .0060 50.0 .0 .016 2.50 0 .0060 50.0 50.0 .016 2.00 0 .0060 50.0 .0 .016 1.50 0 .0060 50.0 .0 .016 1.50 0 .0060 15.0 15.0 .035 5.00 0 .0060 50.0 .0 .016 1.50 0 .0050 100.0 100.0 .016 1.50 0 .0050 4.0 4.0 .035 5.00 0 .0050 50.0 .0 .016 1.50 0 .0050 10.0 10.0 .035 2.00 0 .0010 .0 .0 .001 10.00 -1 .0070 4.0 4.0 .035 5.00 0 .0010 .0 .0 .016 .10 0 0 150.0 .0010 .0 .0 .001 10.00 -1 .0050 50.0 .0 .016 1,50 0 .0080 50.0 .0 .016 1.50 0 .0010 .0 .0 .001 10.00 -1 .0050 .0 .0 .013 1.25 0 .0010 .0 .0 .001 10.00 -1 .0050 .0 .0 .016 3.50 0 .0050 4.0 4.0 .035 5.00 .0050 .0 .0 .016 6.00 0 .0010 .0 .0 .001 10.00 -1 .0010 .0 .0 .001 10.00 -1 .0050 50.0 .0 .016 1.50 0 .0050 .0 .0 .016 4.00 0 .0050 50.0 50.0 .016 1.00 .0050 .0 50.0 .016 1.50 0 .0010 .0 .0 .001 10.00 -1 .0050 .0 .0 .013 1.00 0 .0010 .0 .0 .001 10.00 -1 .0010 .0 .0 .001 10.00 0 .0080 50.0 .0 .016 1.50 0 .0010 .0 .0 .001 10.00 -1 .3 2.0 .3 10.0 .4 25.0 .8 55.0 5.0 55.0 .0010 .0 .0 .001 10.00 0 .0050 13.0 15.0 .040 5.00 0 .0001 .0 .0 5.000 .10 0 4.4 37.0 10.1 47.0 18.2 55.0 38.2 636.0 .0001 .0 .0 5.000 10 0 OAKRIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL OAK100.DAT) OF SUBCATCNMENTS AND GUTTERS/PIPES 'ARRANGEMENT GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 212.3 2 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 U 212.3 4 5 15 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.4 5 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 U U 0 0 0 3.6 ' 6 4 7 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 48.7 7 24 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 34.4 8 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 57.1 ' 9 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 13.1 10 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 13.2 ' 11 340 0 0 0 0 0 0 0 0 0 110 0 0 0 0 0 U d 0 d 9.6 ' 12 13 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 17.8 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0 0 0 0 0 24.7 ' 15 0 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 1.8 16 0 0 0 U 0 0 0 0 0 0 160 0 0 0 0 d 0 0 0 0 4.0 ' 17 6 8 13 11 10 9 18 19 20 44 0 0 0 0 0 0 0 0 0 0 212.3 18 23 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 0 t19 0 0 0 0 0 0 0 0 0 0 190 0 0 0 0 0 0 0 0 0 1.4 20 0 0 0 0 0 0 0 0 0 0 200 U 0 0 0 0 0 0 U 0 31.3 21 33 0 0 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 13.1 ' 22 12 16 220 25 42 0 0 0 0 U 0 U 0 0 0 0 U 0 0 0 28.7 23 230 0 0 0 0 0 0 0 0 0 0 0 0 U 0 0 U 0 0 0 0 24 0 0 0 d 0 0 0 0 0 0 240 U 0 0 0 0 0 0 0 0 5.0 25 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d U 0 ' 26 `261 `411 0 0 0 0 0 0 0 0 0 0 0 ' 27 270 28 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 d 0 0 U 0 0 280 0 0 0 U 0 0 0 0 0 6.9 ' 29 290 0 l 0 _ 0 0 0 0 0 0 0 0 , d (i d T 30 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 ' 31 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 33 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 5.6 41 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 0 6.9 42 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.9 43 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 0 0 0 0 28.7 ' 44 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13.1 220 0 0 0 0 0 0 U 0 U 0 0 0 0 0 0 0 0 ' 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 270 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U ' 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' OAYRIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL OAK100.DAT) HYDROGRAPHS ARE LISTED FOR THE FOLLOWINGG 44 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS ' THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (5) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH ' (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER �IME(HR/MIN) 1 2 3 4 5 67 8 9 10 11 12 13 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 220 ' 230 250 260 270 290 300 310 41 42 43 44 33 16 160 U 5. G. 0. 0. 5. 0. 0. 0. U. 0. 0. ' 0(S) o(S) .0( .9O .0( .4( .0( .0( .0( .U( 1 0. 0. 0. 0. 0. 0. U. 0. 0. 0. ' .0( .0(1 .0:) ( ( ( O ( ( .0.0.1.0.0.0.3( ) 0. 0. 0. 1. 0. 0. 0. 22. U. 3, iO .0( .1( .4( .1(1 .0O .3O 1 2.0(D AM 3.9(D 2.0(D 1.2(I) 21.7(D O(D .1( ) .3( ) O(S) ' 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 0 10. 0. 0. 0. 24. 0. 5. 0. 0. G. 0. ' O(S) .0(S) .0( ) 1.6( ) .0( ) .9( ) .0( ) .1( ) .0( ) .0( ) ' 0, .0( ) 0, .0( ) 0, .0( ) 0, .0( ) .1( ) .1( ) .0( ) 0. .0( ) 0. .0( 1 3. .7( ) 1. 0. 0. 6. 2. 0. 2. 43. 0. 6. ' .2( ) .0( ) .2( ) .8( ) .2( ) .0( ) .E( ) .0( ) .0( ) 6.2(I) 4. 0. 8. 4. 2. 43. G. 1. 6. 3. ' 4.0(I) AM 7.8(I) 4.1(I) 2.3(I) 43.5(D O(I) .4( ) .7( ) O(S) 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) ' 0 15. 1. 2. 1. 48. 0. 20. 1. 1. 0. 0. .0(S) O(S) .0( ) 2.1( ) .0( > 1.6( ) .2( ) .5( ) .0( ) .1( ) ' G. 0. 0. 0. 9. 2. G. 0. 0. 9. .1() .1() .I( ) .0( ) .4( .2( .1( .2( .1( 1.0( 2. 0. 0. 13. 4. 0. 3. 65. 2. 9. .2( ) .1( ) .2( ) 1.1( ) 13( ) .0( ) .0(0) .0( ) .0( ) 9.3(I) ' 6. 6.0(I) 0. AM 12. 11.2(I) G. 5.9(D 3. 3.0(D 65. 65.2(I) 2. 4. 13. 9. 2.0(D .6( ) .9( ) O(S) 0. 1. 0. 0. ' .0( ) .1( ) .1( ) .0( ) 0 20. 4. 8. 4. 72. 0. 46. 6. E. 0. 2. ' .0(S) .2(S) .0( ) 2.4( ) .1( } 2.2( ) .3( ) 1.0( ) .1( ) .2( ) 0. :. 1. 0. 36. 4. 1. 1. 2. 18. .1O .2O .2O .1O .9(} .3O 1(1 .5O 1.3( ' 4. .2O 2. 0. 18. 10. 0. 3. 87. 10. 12. .3( ) .2( ) .2( ) 1.4( ) .4( 1 .0( ) .0(0) .0( ) .0( ) 11.8(I) ' B. 0. 11. 6. 3. 87, 10. 9. 18. 18. 7.2(D AM 11.0(D JAM 3.0(D 87.0(I) 10.6(D .9( ) 1.1( ) O(S) ' 0. s. 1. 0. .1( .3() .1() .0( 0 2J. 12. 16. 12. 95, 0. 81. lE. 18. 1, J. ' O(S) J(S) .0( ) 2.7( ) .1( ) 2.7( ) .4( ) 1.5( ) .2( ) .3( ) 0. 9. .4( 3. 2( ) 0. .1( 88. 1.3( 6. .3( 2. .1( 6. .9( B. .4( 30. 1.6( 6. 5. 0. 27. 20. 0. 3. 109. 25. 11. ' 3( ) .3( ) .2( ) 1.7( ) .5( ) .1( ) .0(0) .0( ) .0( ) 11.6(I) 6. 0. 11. 6. 3. 109. 25. 20. 27. 30. ' 7.1(I) .3(I) 10.9(I) 5.7(D 3.0(D 108.7(I) 24.4(D 1.3( ) 1.3( ) O(S) 2. 8. 2. 0, 3(i 3l) 2O 0O 2.9( .2( } 3.2( .6( 2.1( ) .3( ) .4( ) 24. 8. 1, 178. 8. 5. 18. 21. 50. 1( ) 6( ) .4( ) .2( ) 1.8( ) .4( ) .2( ) 1.4( f .6( > 1.9( ) 0. 40. 35. 1. 3. 130. 38. 12. .4( > .4( ) .2( ) 2.1( ) .7( ) .1( ) .0(0) .0( ) ,0( ) 11.3(I) t 7.0(D AM 10.8(D 5,7(I) 2.9(I) 119.1(D 38. 38.0(I) 34. 1.8( ) 40. 1.6( 50. ) O(S) 8. 16. 4. 0. ' A( ) .5( ) .2( ) .0( ) 0 35. 29. 31. 29. 122. 2. 190. 86. 102. 6. 27. ' .1(S) 2.9(S) .0( ) 2.9( ) .2( ) 3.7( ) .8( ) 2.9( ) .4( ) .6( ) 1. 59. 21, 3. 349. 9. 10. 50. 49. 86. .2( ) .8( ) .5( ) .3( ) 2.4( ) .4( ) ,2( ) 2.1( ) .8( ) 2.4( ) 7. 23. 0. 55. 51. 2. 3. 106. 54. 11. .4( ) .5( ) .2( > 2.7( ) .8( ) .2( ) .0(0) ,0( ) .0( ) 11.0(I) 6. 0. 11. 6. 3. 106. 54. 50. 55. 86, 6.9(I) .3(D 10.6(I) 5.6(D 2.9(I) 117.3(D 53.2(I) 2.3( ) 1.9( ) O(S) 25. 33. 10. 0, ' I,0( ) .6( } ,3( ) .0( ) ' 0 40. 37. .1(S) 39. 5.8(S) 37. } 124. 2.9( ) 4. ) 238. 4.0( Ill. 143. 9. 36. .0( .3( ) .9( ) 3.3( ) .5( } ,7( ) 3. 83. 35. 5. 557. 9. 8. 89. 68. 131. ' .2( .9( .6( } .3( 2.9( .4() .2( 2.5( .9( 2.8( 7. 27. 4. 63. 64. 4. 3. 127. 58. I1, .4( ) .6( 7 .2( ) 3.6( ) .8( ) .3( ) .0(0) .4( ) .0( ) 10.8(I) 8. 0. 10. 5. 2. 127. 58. 63. 63. 131. ' 6,8(D ,3(I) 14,5(I) 5,5(I) 2,9(I) 115,1(I) 58,8(D 2.6( ) 2.1( ) O(S) 49. 33, 12. 0. 1.3() .6() .3() .0() ' 0 45. 44. 46. 44. 125. 6. 243. 86. 129. 9. 31. .1(S) 9.6(S) .0( ) IN ,4( ) 4.0( } .8( ) IN i .5( ) ,6( ' 4. 70. 39. 6. 635. 9. 3. 99. 57. 155. .3( .8( ,7( ) .4( 3.1( .4( .2( 2.6() .8() 2.9( 7. 18. 0. 70. 67, 6, 3. 102. 56, 10. ' .4( ) .5( ) .2( ) 3.9( } .9( ) .3( ) 0(0) .0( ) ,0( ) 10.5(D ' 6. 6.7(D 0. ,3(D 11. 10.3(D 6. 5.4(I) 3. 2.8(D 102. 113.5(I) 56. 67. 70. 150. 55.0(I) 2.7( ) 2.2( ) O(S) 59. 18. 11. 0. ' 1.4( ) .5( ) .3( ) .0( ) 0 54, 49. 50. 49. 1125. 7. 224. 66. 109. 9. 26. ,I(S) 13.5(S) .0( ) IN ) .4( ) 3.9( ) .7( ) 3.0( ) .5( ) .6( ) 5. 53. 38. 5. 590. 9, 3. 93. 41. 155. 3t ) .8( .7( i .3( 3.0( ) .4( } .2( i 2.6( } .7( 2.9{ i .4( ) .4( ) 2( ) 4.1( ) 9( ) .4( .0(0) .0( ) .0( ) 10.3(D ' 7. 0. 10. 5. 2. 123. 54. 67. 75. 159. 6.6(D AM 10.2(D 5.4(D 2.8(I) 111.7(D 55.0(I) 2.7( ) 2.3( ) O(S) 51. 13. 10. 0. 1.3( .4( .3l ) .0( 0 ' 55. 53. .1(S) 54. 16.9(S) 53. .0( ) 123. 2.9( ) 7. .4( ) 204. 3.8( ) 53. .7( ) 93. 2.8( ) 9. .5( ) 22. .5( ) 7. 41. 36. 5. 525. 9. 2. 82. 30. 147. ' 3( ) 7( ) 7( ) 3( ) 2.8( ) .4( ) .1( 2.5( .6( 2.9( 7. 10. 0. 77. 69. 9. 3. 99. 56. 9. 1 .4( ) .4( ) .2( ) 4.1( ) .9( ) .4( ) .0(0) .0( ) .0( ) 10.0(I) 6. 0. 11. 6. 3. 99. 56. 69. 77. 147. 6.6(D .3(I) 10.1(I) 5.3(I) 2.7(D 109.8(I) 55.0(D 2.8( ) 2.3( ) O(S) ' 39. 10. 9. 0. 1.2( ) .4( ) .3( ) .0( ) ' 1 0. 56. 57. 56. 121. 7. 187, 44. 79. 8. 18. .1(S) 20.0(S) .0( ) 2.9( ) .4( ) 3.6( ) .6( ) 2.6( ) .5( > .5( ) ' B. 32. 32. 4. 464. 9. 2. 69. 23. 137. .4( > .6( ) .6( ) .3( ) 2.7( ) .4( ) .1( ) 2.3( ) .6( ) 2.8( ) ' 7. A( ) B. ) 0. 2( ) 78. 4.2( ) 69. ) 10. A( 3. 119. 54. 10. .3( .9( ) ,0(0) .0( ) .0( ) 9.7(I) 7. D. 9. 5. 2. 119. 54. 69. 78. 139. 6.5(I) .3(I) 9.9(D 5.2(I) 2.7(D 108.0(D 55.0(D 2.8( l 2.3( ) O(S) 30. 7. 8. 0. 1.1( ) .3( ) .3( ) .0( ) 58. 59. 58. 118. 7. 173. 36. 67. 8. 16. .i(S) 22.66) 0( ) 2.9( ) 4( ) 1,51 ) 6( ) 2.5( ) 5( ) 51 ) 9. 26. 29. 4. 412. 9. 1. 58. 18. 129. A( ) .6( .6( .3( 2.6() .4() .1() 2.2( .5( 2.7( ' 7• 6• 0. 79. 70. 10. 3. 95. 56. 9. .4( ) .3( ) .2( ) 4.2( ) A( ) .4( ) .0(0) .0( .0( ) 9.5(I) ' 6. 6.4(D 0. 10. 5. 3. 95. 56. 70. 79. 133. .3(D 9.8(I) 5.2(I) 2.7(I) 106.1(D 55.0(D 2.8( ) 2.4( ) O(S) 23. 5. 7. 0. ' .9( ) .3( ) 3( ) O( ) ' 1 10. 60. .1(S) 61. NAM 60. ) 115. 2.9( ) 6. ) 162. 3.5( 30. 57. 7. 13. .0( .4( ) .6( ) 2.3( ) .4( ) A( ) 9. 20. 26. 3. 367. 9. 1. 48. 14. 122. ' .4( ) .5( .6( .3() 2.4() .4( ) .1( 2.0( .5( ) 2.7( 6. 5. 0. 79. 70. 10. 3. 116. 54. 10. ' .4( ) .3( ) .2( ) 4.2( ) A( ) .4( ) .0(0) .0( ) .0( ) 9.2(D 7. 0. 9. 5. 2. 116. 54. 70. 79. 125. 6.3(I) 3(1) 9.7(I) 5.1(I) 2.6(I) 104.3(I) 55.0(1) 2.8( ) 2.4( ) 0lS) 15. 61. 61: 61. 112. 6. 152. 26. 49. 7. it. .2(S) 26.8(S) O( ) 2.8( ) .3( ) 3.4( ) .5( ) 2.2( ) A( > A( } 10. 17. 23. 2. 330. 9. 1. 40. 11. 116. ' A( ) .5( .5( .3( 2.3() A( l .1( 1.9( A( ) 2.6( 6, 4. 0, 19, 70. 9, 3. 91. 56. 8. ' .4( ) .3( ) .2( ) 4.2( ) J( ) A( ) AM .0( ) Of > 8.9(I) 5. 0. 10, 5. 3. 91.. 56. 70. 79. 112. ' 6.2(I) .3(D 9.5(1) 5.0(1) 2.6(I) 102.4(I) 55.O(I} 2.8( ) 2.4( ) O(S) 15. 3. 5. 0. .8( ) .3( ) .2( ) 0( ) ' 1 20. 74. 82. 74. 109. 5. 143. 22. 43. 7. 10. .2(S) 28.5(S) .0( ) 2.8( ) .3( ) 3.3( ) .5( ) 2.1( ) .4l ) .4( ) ' 10. 14. 20. 2. 299. 9. 1. 34. 9. 110. .4O 5O .5O .2O 2.2O A(} .1O 1.8O AO 2.6(} 6. 3. 0. 79. 69. 9. 3. 112. 54. 9. .4( ) .2( ) .2( ) 4.2( ) .9( ) .4( Y .0(0) .0( ) .0( ) 8.7(1) ' 7. 0. 9. 5. 2. 112. 54. 69. 79. 114. 6.1(I) .3(I) 9.4(D 4.9(D 2.6(1) 100.6(D 55.0(I) 2.8( ) 2.4( ) O(S) 12. .7O 3. .2() 4. .2O 0. .00 1 25. 118. 137. 118. 107. 5. 136. 20. 37. 6. 8. ' .3(S) 29.7(S) .U( ) 2.8( ) .3( ) 3.2( ) .5( ) 2.0( ) .4( ) .4( i 10. 11. 18. 2. 273. 9. 0. 29, 7. 106. ' A( l A( ) .5( ) .2( ) 2.2( ) A( ) .1( ) 1.7( ) .4( ) 2.5( ) 6. 3. 0. 78. 69. 9... 3. 87. 56. 8. .3( ) .2( ) .2( ) 4.2( ) A( ) .4( ) 0(0) .O( ) 0( ) 8.4(I) ' 5. 0. 10. 5. 3. 87. 56. 69. 78. 103. 6.0111 .3(I) 9.2(D 4.9(D 2.5(D 98.7(1) 55.0(D 2.8( ) 2.3( ) O(S) ' 10. 2. 4. 0. A( ) .2( .2( .0( ' 1 30. 162. 170. 162. 104. 4. 130. 17. 33. 6. 7. .4(S) 30.5(S) ,0( ) 2.8( ) A( ) 3.2( ) .5( ) 1.9( ) .4( Y .4( } 10. 10. 16. 2. 252. 9. 0. 25. 6. 103. ' .4( A( ) .5( .2( 2.1( .4( .1( 1.6( .3( 2.5( 6. .3( > 2. .2( ) 0. .2( ) 78. 4.1( ) 68. .9( ) 8. .4( ) 3. .0(0) 108. .0( ) 54. .0( ) 9. 8.2(1) 7. 0. 9. 5. 2. 108. 54. 68. 78. 106. ' 5.9(I) .3(I) 9.1(I) 4.8(I) 2.5(I) 96.8(Il 55.0(1) 2.8( ) 2,3( ) O(S) 8. 2. 3. 0. .6( ) .2( ) .2( ) .0( ) i 35. 185. 190. 185. 101. 4. 124. 15. 29. 5. 7. 1 3.1( ) A( -r A( ) .4( ) .5( ) 2( ) 2.0( ` .:,,..4( ) .1( ) 1.5( ) .3( ) 2.5( ) 6. 2. 0. 77. 68. 7. 3. 84. 56. 7. .3( ) .2( ) .2( ) 4.1( ) .9( ) A( ) .0(0) .0( ) .0( ) 7.9(D 5. 0. 9. 5. 3. 84. . 56. 68. 77. 96. 5.9(I) .3(I) 9.0(D 4.7(D 2.4(I) 95.0(1) 5J.0(D 2.8( ) 2.3( ) O(S) 7. 2, 3. 0. ' .5( ) .2( ) .2( ) .0( ) 1 40. 197. 200. 197. 99. 3. 120. 14. 26. 5. 6. ' A(S) 31.1(S) .0( 2.7( .3( 3.1( .4( 1.7( .4( .3() 10. 7. 13. 1. 220. 9. 0. 19. 4. 97. ' .4( ) .4( ) .4( ) .2( ) 2.0( ) .4( ) .1( ) 1.4( ) .3( ) 2.5( ) G. 2. 0. 76. 67. 7. 3. 104, 54. 8. .3( ) .2( ) .2( ) 4.1( ) .9( ) .4( ) AM .0( ) .0( ) 7.6(I) ' 7. 0. 8. 4. 2. 104. 54. 67. 76. 100, 5.8(I) 3(D 8.8(D 4.6(D 2.4(D 93.1(D 55.0(D 2.7( ) 2.3( ) O(S) ' 6. 1. 3. 0. .5( .2() .2() .0( ' 1 45. 203. 203. 203. 97. 3. IIJ. 13, 24. 5. 5. .4(S) 31.2(S) .0( ) 2.7( ) .3( ) 3.0( ) .4( ) 1.7( ) A( ) .3( ) ' 10. .4( ) 6. ) 12. ) 1. ) 207. 1.9( ) 9. 0. 16. 4. 94. .3( .4( .2( A( ) .1( 1 1.3( ) .3( ) 2.4( ) 6. 1, 0, 76, 16. 6, 3. 80. 56. 7. .3( ) .2( ) .2( ) 4.1( ) .9( ) A( ) .0(0) .0( ) .0( ) 7.4(I) 5. 0. 9. 5. 3. 80. 56. 66. 76. 91. ' 5.7(I) .3(I) 8.7(I) 4.6(I) 2.4(D 91.3(I) 55.0(D 2.7( ) 2.3( ) O(S) 5. 1. 2. 0. J( ) 2( ) 2( ) 0( ) 1 50. 203. 203. 203. 94. 3. I11. 11. 22. 5. 5. .4(S) 31.2(S) .0( ) 2.7( ) A( ) 3.0( ) .4( ) 1.G( ) A( ) .3( ) 9. 6. 11. 1. 195. 9. 0. 15. 3. 92. .4( > .3( .4( .2( 1.9( ) .4( .1( 1.3( .3( 2.4( ' 6. 1. 0. 75. 66. 6. 3. 101. 54. B. .3( ) .2( ) .2( ) 4.1( ) .8( ) .3( ) .0(0) .0( ) .0( ) 7.1(I) 6. 0. 8. 4. 2. 101. 54. 66. 75. 96. ' J.G(D .3(D 8.5(I) 4.5(D 2.3(I) 89.4(D 55.0(D 2.7( ) 2.3( ) AM) ' 4. 1, 2. 0, 1 J5. 201. 199. 201. 92. 2. 108. 10. 19. 4. 4. 4(S) 31.1(S) .0( ) 2.6( ) .3( ) 3.0( ) .4( ) 1.5( ) .3( ) .3( ) 9. J. 10. 1. 185. 8. 0. 13. 3. 90. ' A( ) .3( .4( .2( 1.8( .4( .1( 1.2( .3( 2.4( G. 1. 0. 74. 65. 6. 3. 76. 56, 6. 3l ) 2( ) 2( ) 4.1( -� 5.5(I) .3(I) 8.4(D 4A (D 2.3(D 87.6(I) 55.0(I) 2.7( ) 2.3( ) O(S) ' 4. 1. 2. 0. .4( ) .2( ) .2( ) .0( ) 2 0. 196. 194. 196. 90. 2. 104. 9. 17. 4. 4. ,4(S) 31.0(S) .0( ) 2.6( ) .2( ) 2.9( ) A( ) 1.5( ) .3( > .3( > 9• .4( ) 4• .3( ) 9. A( ) 1. .2( ) 174. 1.8( ) 8. .4( ) 0. .0( ) 11. 1.2( ) 2. .2( ) 88. 2.4( ) 6. 1. 0. 74. 65. 5. 2. 97. 54. 7. .3( ) .2( ) .2( ) 4.0( ) .8( ) A( ) .7( ) .0( ) .0( ) 6.6(D 6. 0. 8. 4. 2. 97. 54. 65. 74. 92. ' 5.4(D .3(1) 8.3(D 4.4(I) 2.3(I) 85.7(I) 55.0(I) 2.7( ) 2.3( ) AM 3. 1. 2. 0. .4( .1() .2( M ) ' 2 5. 189. 187. 189. 88. 2. 100. 8. 15. 4. 3. .4(S) 30.9(S) .0( ) 2.6( ) .2( ) 2.9( ) .3( ) 1.4( ) .3( ) .3( ) ' 9. 3: 8. 1. 165. 8. 0. 10. 2. 86. .4( .3( A( ) .1( ) 1.7( A( ) .0( 1.1( .2( 2.4( ' 5. 1. 0. 73. 64. 5. 2. 73. 56. 6, .3( ) .1( ) .2( ) 4.0( ) .8( ) .3( ) .7( ) .0( ) .0( ) 6.3(I) ' 4. 5.3(D 0. 9. 8.1(D 5. 4.3(I) 3. 2.2(I) 73. 56. 64. 73. 83. .3(I) 83.9(D 55.0(D 2.7( ) 2.3( ) .0(S) 3. 1. 1. 0. ' 4( ) .1() .1() .0( 2 10. 182. 180. 182. 86. 2. 97. 7. 14. 4. 3. ' 4(S) 30.7(S) .0( ) 2.6( ) .2( ) 2.8( ) .3( ) 1.4( ) .3( ) .3( ) 8. 3. 8. 0. 156. 8. 0. 9. 2. 85, 4( ) 5. 3( ) ,4( ) 1( ) 1.7( ) .4( > .0( ) 1.1( ) .2( ) 2.3( ) 1. 0. 72. 64. 4. 2. 93. 54. 7. .3( ) .1( ) .2( ) 4.0( ) .8( ) .3( ) .7( ) .0( ) .0( ) 6.1(I) ' 6. 0. 8. 4. 2. 93. 54. 64. 72. 88. 5.2(D AM 8.0(D 4.2(I) 2.2(I) 82.0(D 55.0(D 2.6( ) 2.2( ) O(S) ' 2. 0. 1. 0. .3() .1() .1() .0( ) 2 15. 175. 173. 175. 83. 2. 94. 6. 12. 4. 3. .4(S) 30.5(S) .0( ) 2.5( ) .2( ) 2.8( ) .3( ) 1.3( ) .3( ) .2( ) ' 8. A( ) 2. .2( 7. 0. 148. 1.7( B. 0. 7. 1. 83. .4( .1( A( ) ,0( ) 1.0( ) .2() 2.3( 5. 0. 0. 72. 63. 4. 2. 69. 56. 5, ' 3( ) .1( ) .2( ) 4.0( ) .8( ) .3( ) .7( ) .0( ) .0( ) 5.8(D 4. 0. 8. 4. 3. 69. 56. 63. 72. 79. ' 5.2(I) .3(I) 7.9(i) 4.1(D 2.1(D 80.1(I) 55.0(D 2.6( ) 2.2( ) .0(S) 2. 0. 1. 0. .0( -r .4(S) 30.4(S) .0( 1 2.5( ) .2( ) 2.8( ) .3( ) 1.3( ) .3( ) .2( ) 2. 7. 0. 141. 7. 0. 7. 1. 82. .4( ) .2( ) .3( ) .1( ) 1.6( ) .4( 1 .0( ) 1.0( ) .2( ) 2.3( ) 5. 0. 0. 71. 63. 4. 2. 90. 54. 6. ' .3( ) .1( ) .2( ) 4.0( ) .8( ) 3( ) .7( ) .0( ) .0( ) 5.5(I) 6, 0, 1, 4, 2, 10. 54. 63. 71. 85. 5.1(I) .3(D 7.7(D 4.1(I) 2.1(I) 78.3(D 55.0(D 2.6( 1 2.2( ) O(S) 2. 0. 1. 0. .3() .1() .1() .0( 2 25. 160. 158. 160. 79. 1. 88. 5. 10. 3. 2. 1 .4(S) 30.2(S) .0( ) 2.5( ) .2l ) 2.7( ) .3( ) 1.2( ) .3( ) .2( ) 7. 2. 6. 0. 134. 7. 0. 6. 1. 80. .4( .2( .3( .1( 1.6( .4( 1 .0( .9( .2( 2.3( ' 5. 0. 0. 71. 63. 3. 2. 65. 56. 5. .3O .1O .2O 4.0O ..81) .3O .7O .0O .0O 5.3(D ' 4. 0. 8. 4. 2. 65, 56. 63. 71. 77. 5.0(D .3(I) 7.6(D 4.0(D 2.1(D 76.4(D 55.0(D 2.6( ) 2.2( > O(S) 1. 0. 1. 0. ' .3() .1() .1() .0( ' 2 30, 153. .3(S) 151, NAM 153. ) 77. 2.5( ) 1. ) 85. 2.7( 5. 9. 3. 2. .0( .2( ) .3( ) 1.2( ) .3( ) .2( ) 7. 2. 6. 0. 129. 7. 0. 5. 1. 79. ' .4( ) .2( ) .3( ) .1( ) 1.6( ) .4( ) .0( ) .9( ) .2( ) 2.3( ) 5. 0. 0. 70. 62. 3. 2. 86. 54. 6. ' .3( ) .1( ) .2( ) 3.9( ) .8( ) .3( ) .7( ) .0( ) .0( ) 5.0(D 6. 0. 7. 4. 2. 86. 54. 62. 70. 83. 4.9(D .3(I) 7.4(I) 3.9(D 2.0(D 74.6(I) 55.0(D 2.6( ) 2.2( ) O(S) ' 1. 0. 1. 0. .2( .1( ) .1( .0( ' 2 35. 146. 144. 146. 75. 1. 83, 4. 8. 3. 2. .3(S) 29.9(S) .0( ) 2.4( ) .2( ) 2.7( ) .3( ) 1.1( ) .3( ) .2( ) ' 7. 1. 5. 0. 123. 7. 0. 5. 1. 78. .3O .2(> .3O .1O 1.5( ) .4O .0O .8O .2O 2.3( ' 5. .3( ) 0. ) 0. ) 70. 3.9( ) 62, ) 3. 2. 61. 56. 4. .1( .2( .8( .3( ) .7( ) .0( ) .0( ) 4.8(I) 4, 0, 8, 4, 2, 11, 56, 62, 70. 74. ' 4.8(1) .3(I) 7.3(D 3.8(I) 2.0(D 72.7(I) 55.0(I) 2.6( ) 2.2( ) O(S) 1. 0. 1. 0. '2 2( ) .1() .1() .0() 40. 140. 138. 140. 73. 1. 80. 4. 8. 3. 2. .3(S) 6. 29.7(S) .0( ) 2.4( ) .2( ) 2.7( ) .3( ) 1.1( ) .3( ) .2( ) 1. 5. 0. 118. 7. 0. 4. 1. 77. J. '.6��: iii Ii J. �fl U. I_ !'1 -r .3(S) 138. 29.7(S) 140. ) 73. 2.4( ) 1. ) 80.. 2.7( 4. 8, 3, 2. .0( .2( ) .3( ) 1.1( ) .3( ) .2( ) 6. 1. 5. 0. 118. 7. 0. 4. 1. 77. ' .3( .2() .3( .1( 1.5( .4( .0( ) .8() .1( 2.3( 5. 0. 0. 69. 62. 3. 2. 82. 54. 5. ' .3( ) .1( ) .2( > 3.9( ) .8( ) .3( ) .7( ) .0( ) .0( ) 4.5(D 6. 0. 7. 4. 2. 82. 54. 62. 69. 81. 4.7(D .3(I) 7.2(D 3.8(I) 2.0(D 70.9(D 55.0(I) 2.6( ) 2.2( ) O(S) ' 1. 0. 1. 0. .2( 1( ) 1( ) .0( ' 2 45. 134. 132. 134. 71. 1. 78. 4. 7. 3. 1. .3(S) 29.6(S) .0( > 2.4( ) .2( ) 2.6( ) .3( ) 1.1( ) .3( ) .2( ) ' G. 1. 5. 0. 114. 7. 0. 4. 0. 76. .3( > .2( .3( .1( 1.5( ,4( ) .0( .8( > .1() 2.2( ' 5. .3( ) 0. ) 0. ) 69. 3.9( ) 61. ) 2. 2. 58. 56. 4. .1( .2( .8( .2( ) .7( ) .0( ) .0( ) 4.2(I) 4. 0. 8. 4. 2. 58. 56. 61. 69. 72. 4.6(I) .3(I) 7.0(D 3.7(I) 1.9(I1 69.0(D 55.0(I) 2.6( ) 2.2( ) O(S) 1. 0. 0. 0. ' 2 .2() .1() .1() .0( 50. 128. 127. 128. 69. 1. 76. 4. 7. 3. 1. .3(S) 29.5(S) .0( ) 2.4( ) .2( ) 2.6( ) .2( ) 1.0( ) .3( ) ) ' G. .2( 1. 4. 0. 109. 7. 0. 3. 0. 75. .3O .2O .3O .1O 1.5O .3O .0O .7O .1(> 2.2( ' S. 0. 0. 68. 61. 2. 2. 78. 54. 5. .3( ) .1( > .2( ) 3.9( ) .8( ) .2( ) 6( ) .0( ) .0( ) 4.0(D ' S• 0• G. 3. 1. 78. 54. 61. 68. 79. 4.5(I) .3(I) 6.9(D 3.6(I) 1.9(D 67.2(D 55.0(D 2.6( ) 2.2( ) O(S) 1. 0. 0. 0. ' .2() .1() .1() .0() 2 55. 123. 121. 123. 67. 1. 73. 3. 6. 2. 1. ' .3(S) HAM .0( ) 2.3( ) .2( ) 2.6( ) .2( ) 1.0( ) 3( ) .2( ) 6. 1. 4. 0. 105. 7. 0. 3. 0. 74. 3( ) .2( ) .3( ) .1( ) 1.4( ) .3( 1 .0( ) .7( ) .1( ) 2.2( ) J. 0. 0. 68. 61. 2. 2. 54. 56. 3. ' 3( > 1( ) 2( ) 3.9( ) 81 ) ,2( ) .6( ) .0( ) .0( ) 3.7(D 4. 0. 7. 4. 2. 54. 56. 61. 68. 71. 4.5(D .3(I) 6.8(D 3.6(I) 1.8(D 65.3(D 55.0(D 2.6( ) 2.2( ) O(S) ' 1. 0. 0. 0. .2( IN ) ' 3 0. 118. 117. 118. 66. 1. 71. 3. 6. 2. 1, .3(S) 29.3(S) .0( ) 2.3( ) .2( ) 2.5( ) .2( ? 1.0( ) ? .3(5. 2( ) ' .3( ) 1( ) 2( ) 3.9( ) .8( > .2( ) 2. .6( ) 75. .0( ) 54. .0( ) 4. 3.5(D 5. 0. 6. 3. 1. 75. 54. 61. 68. 77. ' 4.4(D .3(I) 6.6(I) 3.5(D 1.8(D 63.5(I) 55.0(I) 2.5( ) 2.2( ) O(S) 0. 0. 0. 0. .2( ) 1( ) 1( ) .0( ) 1 3 5. 114. 112. 114. 64. 1. 69.. 3. 5. 2 1 .3(S) 29.2(S) .0( ) 2.3( ) .2( ) 2.5( ) .2( ) 1.0( ) .3( ) .2( ) ' 5. 1. 4. 0. 98. 6. 0. 3. 0. 73. .3O .1O .3O .1O 1.4O .3O .0O .7O .1O 2.2( ' 4. 0. 0. 67. 60. 2. 2. 50. 56. 3. .3( ) .1( ) .2( ) 3.8( ) .8( ) .2( ) .6( ) .0( ) .0( ) 3.2(D ' 3. 0. 7. 4. 2. 50. 56. 60. 67. 69. 4.3(D .3(I) 6.5(D 3.4(I) 1.8(D 61.6(D 55.0(D 2.5( ) 2.2( ) O(S) ' 0. U. 0. 0. 3 10. 109. 108. 109. 62. 1. 67. 3. 5. 2. 1. ' .3(S) 29.1(S) .0( Y 2.3( ) .1( ) 2.5( ) .2( ) .9( ) .2( ) .2( ) 5. 1. 3. 0. 94. 6. 0. 2, 0, 72. .3( ) .1( ) .3( ) .1( ) 1.4( ) .3( ) .0( ) .6( ) .1( ) 2.2( ) 4. 0, 0. 67. 60. 2. 2, 71. 54. 3. .3( ) .1( ) .2( ) 3.8( ) ,8( >• .2( ) .6( ) .0( ) ) 2.9(I) ' S. 0. .0( 6. 3. 1. 71. 54. 60. 67. 76. 4.2(I) .3(D 6.3(I) 3.3(I) 1.7(D 59.7(D 55.0(I) 2.5( ) 2.2( ) O(S) ' 0. 0. 0. 0. .1( 1( ) 1( ) .0( ' 3 15. 105. 104. 105. 60. 1. 65. 3. 5. 2. 1. 2(S) 29.0(S) .0( ) 2.2( ) .1( ) 2.5( } .2( ) 9( ) .2( ) .2t ) 1. 3. 0. 91. 6. 0. 2. 0. 71. 3( ) .1( ) ,3( ) .1( ) 1.3( ) .3( ) .0( ) .6( ) .1( } 2.2( ) ' 4. .3( ) 0. .1•( ) 0. .2( ) 67. 3.8( ) 60. .8( ) 2. .2( ) 2. .6( ) 47. .0( ) 56. .0( ) 2. 2.7(D 31 0. 7. 4. 2. 47. 56. 60. 67. 68. ' 4.1(D AM 6.2(I) 3.3(D 1.7(I) 57.9(I) 55.0(I) 2.5( ) 2.1( ) O(S) 0. 0. 0. 0. 3 IO .OiY li) 0( 20. 101. 100. 101. 58. U. 63. 2. 4. 2. 1. .2(S) 28.9(S) .0( ) 2.2( ) .1( ) 2.4( ) .2( ] .9( ) .2( > .2( ) ' 5. 1. 3. 0. 88. 6. 0. 2. 0. 71. .3( .1( > 1.3( ) .3( ) .0( ) .6t ) .1( ) 2.2( > ' 4. 0. U. 66. 60. 2. 2. 67. 54. 3. .3( > 1( f .2( ) 3.8( ) .8( ) .2( ) .6( ) .0( ) IN ) 2.4(I) ' =• E. 67. 54. 60 66. 74. o. 0. 0. 0. .0() .1() .0( 3 25. 97. 96. 97. 56. 0. 61: 2. 4. 2. 1. ' .2(S) 28.8(S) .0( } 2.2( ) ,I( ) 2.4( ) .2( i .9( ) ,2( ) .2( ) 4. 0. 3. 0. 85. 6. 0. 2. 0. 70. .1( .3( .1( 1.3( .3( .0( .6( .1( 2.2( 4. 0. 0. 66. 60. 1. 2. 43. 56. 2. 3! ) .1( ) .2( ) 3.8( ) .8( ) .2( ) A( ) .0( ) .0( ) 2.1(D ' 3. 0. 6. 3. 2. 43. 56. 60. 66. 66. 3.9(I) .3(D 5,9(D 3.1(D 1.6(D 54.2(D 55.0(D 2.5( ) 2.1( ) .0(S) ' 0. 0. 0. 0. .1( ,0( ) .1( .0( ' 3 30. 94. 93. 94. 54. 0. 59. 2. 4. 2 1. .2(S) 28.7(S) .0( ) 2.2( ) .1( ) 2.4( ) .2( ) 18( ) .2( ) .2( ) ' 4. 3( ) 0. .1( 3. 0. 82. 1.3( 6. 0. 2. 0. 69. .2( .1( 3( ) .0( .6( .1( 2.2( 4. 0. 0. 66. 59. 1. 2. 64. 54. 2. ' .3( ) .1( } .2( ) 3.8( ) 8( ) ,2( ) .6( ) .0( ) .0( ) 1.9(I) 5, 0. 5. 3. 1. 64. 54. 59. 66. 73. ' 3.8(I) .3(I) 5,8(D 3.0(I) L OD 52.3(I) 55.0(I) 2.5( ) 2.1( ) O(S) 0. 0. 0. 0. .1() .0( ) .1() .0() ' 3 35, 90. 89. 90. 52. 0. 57. 2, 4, 2 1 .20 28.7(S) ,0( > 2.1( ) .1( ) 2.3( ) .2( ) .8( ) .2( ) .2( ) ' 4. 0. 3. 0. 79. 6. 0. 2. 0. 69. 3( ) .1( ) .2( ) .1( ) 1.3( ) .3( ) .0( ) .6( ) .1( ) 2.2( ) ' 4. 0, 0. 65. 59. 1. 2. 39. 56. 1. .3( ) .1( ) .2( ) 3.8( ) .8( ) .2( ) .6( ) .0( ) .0( } 1.6(I) 3. 0. 6. 3. 2, 39. 56. 59. 65. 65. ' 3.8(I) .3(I) 5.6(I) 3.0(D 1.5(D 50.5(I) 55.0(D 2.5( ) 2.1( ) .0(S) 0, 0, 0. 0, ' .1( .0( I( ) .0( 3 40. 87. 66. 87. 50. 0. 55. 2, 3. 2. 1. ' 2(S) 28.6(S) .0( ) 2.1( ) .1( ) 2.3( ) .2( ) .8( ) .2( ) 1( ) 4. 0. 3. 0. 76. 6. 0. 1. 0. 68. .5( .1( 2,2( ) 4. 0. 0. 65. 59. 1. 2. 60. 54. 2. .3( ) .1( } .2( ) 3.7( ) .8( ) .2( ) .6( ) .0( ) .0( ) 1,4(D 5• 0• S. 3. 1. 60. 54. 59. 65. 72. 3.7(I) .3(D 5.5(D 2.9(D 1.5(I) 48.6(I) 55.0(D 2.5( ) 2.1( ) O(S) 0. 0. 0. 0. ) .0( ) .1( ) .0( ) t {CI. /.1( V'i• u lIJ• +4 �{. 4V• .�• J.J• 2. J• �/ L• j• ■ 4. .3() 0. .1() 2. .2() 0. .1() 73. 1.2() 5. .3() 0. .0() 1. .5() 0. .1() 67. 2.1() 4. 0. 0. 65. 59. 1. 1. 35. 56. 1. .3( ) .1( ) .2( ) IN ) .8( ) .2( ) .6( ) .O( ) .0( ) 1.1(D 3. 0. G. 3. 2. 35. 56. 59. 65. 64. 3.6(I) .3(I) 5.4(I) 2.8(I) 1.5(I) 46.8(I) 55.0(I) 2.5( ) 2.1( ) .0(S) 0. 0. 0. 0. .1O .0l ) .1O .0O 3 50. 81. 80. 81. 47. 0. 51. 2. 3. 2. 1. .2(S) 28.4(S) .0( > 2.0( ) .1( ) 2.2( ) .2( ) .8( ) .2( ) .1( ) 4. 0. 2. 0. 70. 5. 0. 1. 0. 67. .3() .1() .2( 1 .1( 1.2( .3( .0( .5( .1( 2.1( 4. 0. G. 65. 59. 1. 1. 56. 54. 1. .3( ) .1( ) .2( ) 3.7( ) .8( ) .2( ) .5( ) .0( ) .0( ) AM 4. 3.5(I) 0. .3(1) 5. 5.2(I) 2. 2.7(D 1. 1.4(I) 56. 54. 59. 65. 70. 44.9(I) 55.0(D 2.5( ) 2.1( ) O(S) G. 0. 0. 0. .1() .0() .1() .0( 3 55. 78. 77. 78. 45. 0. 49. 2. 3. 2. 1. .2(S) 28.4(S) .0( ) 2.0( ) .1( ) 2.2( ) .2( ) .8( ) .2( ) .1( ) 3. 0. 2. 0. 67. 5. 0. 1. 0. 66. .3( > 4. .1() 0. .2( .1( 1.2( 3( ) 0( ) .5( .1() 2.1( 0. 64. 59. 1. 1. 32. 56. 0. .3( ) .0( ) .2( ) 3.7( ) .8( ) .2( ) .5( ) .0( ) .0( ) .6(D 3. 0. 6. 3. 2. 32. 56. 59. 64. 63. 3.4(I) AM 5.1(I) 2.7(D 1.4(D 43.0(D 55.0(D 2.5( ) 2.1( ) O(S) 0. 0. 0. 0. .1() .0() .1( .0( 4 0. 75. 74. 75. 43. 0. 47. 1. J 2. 1. 2(S) 28.3(S) .0( ) 2.0( ) .1( 1 2.2( ) .2( ) .7( f .2( ) .1( ) 3. .3( 0. .1( ] 2. .2(. 0. .1( i 65. 1.1( ] 5. .3( ] 0. .0( 1. .5( 0. 1( 66. 2.1( i 3. 0. 0. 64. 59. 1. 1. 53. 54. 1. 3( ) .0( > .2( ) 3.7( 1 .8( ) .2( ) .5( ) .0( ) 0( ) .3(I) 4. 0. 4. 2. 1. 53. 54. 59. 64. 69. 3.3(I) .3(I) 5.0(D 2.6(D 1.3(D 41.2(D 55.0(I) 2.5( ) 2.1( ) O(S) 0. 0. 0. 0. .Il 1 .0( ) 1( ) .0( ) 4 5. 72. 71. 72. 41. 0. 45. 1.1 J.7( 1. G. .2(S) 26.3(S) .0O _ 1.9( ) 1l ) 2.1( ) .2( ) ) .2( ) .1( ) 3. 0. 2. 0. 62. 5. 0. 1. 0. 65. .3( ) 1( i .2( ) .1( ) 1.1( 1 .3( ) .0( ) .5( ) .1( > 2.1( ) 3. 0. G. 64. 58. 1. 28. 56. 0. ' 2. 3.2(I) 0. .3(D 5. 4.8(I) 3. 2.5(I) 2. 1.3(I) 28. 39.3(I) 56. 55.0(I) 58. 2.5( ) 64. 2.1( ) 61. 0(S) 0. 0. 0. 0. ' 4 10. 69. 68. 69. 39. 0. 43. 1. 2. 1. 0. ' .2(S) 28.2(S) .0( ) 1.9( ) .1( ) 2.1( ) .2( ) .7( ) .2( ) .1( ) 3. 0. 2. 0. 60. 5. 0. 1. 0. 65. .3( .1( .2( .1( 1.1( ) 3( ) .0( .5( .1( 2.11 ) 3. 0. 0. 64. 58. 1. 1. 49. 54. 0. .3( ) .0( ) .2( ) 3.7( > .8( ) .2( ) .2 ) .0( ) .0( ) .0(I) ' 4• 0. 4• 2. 1. 49. 54. 58. 64. 68. 3.1(1) .3Q) 4.7(I) 2.5(I) 1.3(I) 37.5(I) 55.0(U 2.5( ) 2.1( ) 0(S) 0. 0. 0. 0. ' .1( 0( ) 1( ) .0( i OAKRIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ' ( TOTAL DEVELOPED BUILDOUT:MODEL OAK1003AT) ' PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS +* CONVEYANCE PEAK STAGE STORAGE TIME ' ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 300 130. (DIRECT FLOW) 0 30. 310 58. (DIRECT FLOW) 0 40. ' 33 33. .6 0 40. 290 3. (DIRECT FLOW) 0 15. 230 8. (DIRECT FLOW) 0 20. 24 27. .6 0 40. 30 130. (DIRECT FLOW) 0 30. 15 6. .4 0 45. 7. .4 0 55. 'S 31 58. (DIRECT FLOW) 0 40. 28 10. .4 1 5. 270 6. (DIRECT FLOW) 0 15. '21 68. .9 0 40. 29 3. 1.0 .0 1 0. 23 7• •4 0 45. 340 2. (DIRECT FLOW) 0 15. ' 7 111. .9 0 40. 4 125. 3.0 0 45. '27 44 11, 59. 9 1.4 1 10. 0 45. 20 99• 2.6 0 45. 19 10. .2 0 35. 18 9. .4 0 55. ' 9 9• .5 0 45. 10 36. .7 0 40. '11 13 11, 39. 4 .7 1 30. 0 45. 8 143. 3.3 0 40. 6 243. 4.0 0 45. vl 7(). 17 635. 3.1 0 45. ' 26 79. 4.2 1 10. 1 250 0. (DIRECT FLOW) 0 5. 2 203. .1 31.2 1 45. 42 79. 2.4 1 10. 25 0. .2 0 35. 1 220 12. (DIRECT FLOW) 0 20. 16 12. .3 0 40. 1 12 1 83, 203. 9 .1 .4 0 1 40. 50. 22 155. 2.9 0 45. 3 203. (DIRECT FLOW) 1 50. 1 43 159. .1 .0 0 50. 1 ENDPROGRAN PROGRAM CALLED 1 1 1 E 1 J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FIGURES 1 1 1 1 1 1 1 it uwj TZ, > IF "n 0 U) t I I A kt;M 1 0 it HORSETQOTH ...ROAD .............. ...... ...... .. ..... Warren ... ............... Lake cc uj eel HARMONY I ROAD -OAKRIDGE AREA MCCLELLANDS BASIN COUNTY ROAD 36 . . ....... ... I ZI 01 - zi1 z 0 T I V ROAD C.) 0 Fossil Creek. Reservoir',, VICINITY MAP Engineering Consullmm, FIGURE 1 1 1 1 1 1 1 1 1 1 1 FAA Mass Balance Method T Illustration of Time -Volume Calculation 120 cnLcutAnoNs: V.s12(Go)3 100 72-V./oo(30) Areas of Equal Volume 80 Determined by Pu McWod: VS: n 60 Giv= Q Go-0.5(Aa ) 40 20 0 0 00 1 00 2.00 3.00 4.00 5.00 6.00 7.0 0.60 1.50 2.50 3.50 4.50 5.50 6.50 Time (Hours) T1 n Inflow Hyd. ! Outflow Hyd. Modified FAA Mass Balance Method Oakridge Subdivision; Basins 270 & 200 140 120 ig 100 U c 80 U U j 0 60 > 40 20 0 0 25 Tc Lag Inflow Basin 2.00 l Outflow Basin 270 50 75 100 Time (Min) Ili ' OAKRIDGE SUBDIVISION: IDF DATA AND REGRESSION FORT COLLINS DATA Units: Time = Minutes; 100 & 10 Year data = inches per hour 10 20 30 40 50 60 tTIME 100 YEA 73 5.2 4.2 3.5 3 2.6 YEAR 4.4 3.25 2.6 2.2 1.85 1.62 �1'0 ■calculated 100 year A= 0.087 R B= 0.005 ■ 7.30 5.35 4.22 3.48 2.97 2.58 ;Mated 0 Year A= 11.7034 ooeff. B= 0.9944 C= -0.3954 4.45 3.20 2.58 Z17 1.88 1.66 I� City of Fort Collins Least Squares Regression of IDF Data ,u au 110 ' Time (min) - 100 Year Act --• 100 Year Cal - 10 Year Actu -•-•-•-• 10 Year Calc r ^ 2 values for the 100 and 10 year storm are 199 and 0.96, respectivly. formulas used are as follows; year. Y = 1/(A+BX) 10 Year: Y = A(B ^ X)(X ^ C) Lcoefficients apear above. 1 70 80 2.29 2.05 1.47 1.32 90 1.85 1.2 1.86 1.19 1 1 1 1 1 1 70 w Rio] 40 30 Q0] M] v10 100 Q out (cfs) Storage (ac.ft.) T Stage (el. in feet) NOTE. Elevation (stage) determined by etraight line Interpolation. 1000 STANDARD FORM SF-10 CULVERT RATING PROJECT LOCATIONt STATION:3 LOW POINT 1 os. ,__� ELEV.CULVERT DATA TYPEQC-P A,' J. Jia �.��. INLET G+P� Q Full: CT,... c.,�✓c..- H� H K. VFULL° _ S•3 ins �-► TI -Tly- OUTLET CONTROL EQUATIONS ho T. (I) Hr°Hthe'LSe So �• (2) For T, . D; ho • d`+D or T„ (whichever is 2 LEV. 1 z L 100 LELEV. ipe T - D; he • T greater) S°L oS' (3) For Box Culvert' de-0.315(0/B) OUTLET CON2/3 TROL D O zA"'�ao H T"d rh• CONT. CO ELEV. `ho d ho H H� 4 56 � B USZu,, 9 109J jCON �✓J 7� o.2 e. __.:c 4u •!o 0,.;.� BOULDER COUNTY STORM DRAINAGE CRITERIA MANUAL. _j "-n =NWINtt RING a^e� 3,14 $ClO:e NOTE: Values for all the culvert crossings remain constant. OAKRIDGE ELEMENT 43 PERFORMANCE DATA Flow Inc ,I' of Pipn 42" CULVERT 5 ds 2 MANNINGS OUTLET IN PIPE CHANNEL Depth of One Pipe Total CONTR Flow Flow Flow Depth (ft) (efs) (cfs) (ft) PIPE 1.12 30 20 1.45 CHANN 1.29 IS 30 1.69 CHANN IA5 20 40 1.88 CHANN 1.61 25 5o 2.05 CHANN 1.76 30 60 2.19 CHANN 1.91. 35 70 2.32 CHANN 2.06 40 80 2.44 PIPE 2.22 45 90 2.55 PIPE 239 5o 100 2.65 PIPE 2S6 55 110, 2.75 PIPE 2.74 60 120 2.84 PIPE 293 65 130 2.93 PIPE 3.13 70 140 3.01 PIPE 334 75 150 3.09 PIPE 3.57 80 160 3.16 PIPE 3.81 85 170 3.23 PIPE 4.07 90 180 3.30 PIPE 435 95 190 3.37 PIPE 4.66 100 zoo 3.44 PIPE 4.99 105 210 3.50 PIPE 5.36' 110 220 3.56 PIPE 5.76 115 230 3.62 PIPE 621 120 240 3.68 1 1 1 1 m � N N � m m _ = V m w i O j CO) 0 L. .V a) -' cy) C O co a N � a m • w a 0cm �- o co c a) CD E E L- a) CD � m m � w 0 P A C TV�T 1 0.31 0.3( � I 0.3 0.3'c 0.< 1 0.2E 0.2E 0.24 0.a 0.2 1 1 i 1 1 1 1 1 1 1 1 1 Gutter Flow Calculations Various Street Slopes I I Crown at Gutter Flow line + 0.38' �- 2 4 Half Total Flow (q), cfs 4 8 12 16 20 24 Total flow (Q), cfs Cl 9 f- Street Slope = 0.5% --- ------- Street Slope = 0.6% - Street Slope = 0.7% M rr'M V! A n A nrn.... vw L LlUna OAKRIDGE SUDDMSION FORMULA 1 Storm Drainage Criteria Z Formula 4.2.2.2 Q= 0.56-S^.5 Y^8/3 n Solving for depth (Y); Y = (Qn/(0.56•S ^.5.2)^ 3/8 INPUT; NOTE: The number following the "^" symbol is an exponent. STREET SIDE SLOPE (FIV 0.02 MANNINGS n 0.015 INCREMENT Q (INTERVA 1 cfs STREET LONG. SLOPE 0.005 ft/ft FLOWL.INETOCROWN DE 0.38 feet OUTPUT: Recip. of cross slope (Z) SO Zn 3333.333 Total flow in street (cfs) cfs Depth in Flow/2 one gutter Depth for S=0.6% 0.7% 5 6 2.S 0.23 0.22 0.21 3 0.24 0.23 0.23 7 8 3.5 0.26 0.25 0.24. 9 4 0.27 0.26 0.7.5 10 4.5 0.28 0.27 0.26 11 5 0.29 0.28 0.28 12 5.5 0.30 0.29 0.29 13 6 6.5 031 0.30 0.29 14 0.32 0.31 030 15 7 7.5 0.33 0.34 032 0.33 031 032 16 17 8 0.35 0.34 0.33 19 8.5 n 0.36 new 0.35 ....1 0.34 - • :vu: 1 1 i 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 co CDa 2 m L L 0 w a a cz 0 L y cz 0 o - T V 3 0 U. 4c 0 O U) N O N O O to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ih. CO to d CM � rol . y— v c 0 a p 00 f.L uj fr 0 O 0 //F/—� T VJ aj N 'I- b b � W Om Y E E m o m c Uw J c D U > m m C co Um w 1 `. M ` r Cl) `) a U O C O O- D m c 0 (L co� O O > _ m QZ c p CO b =3 m L co c m O W > m ? D _ O cr M / 1 1 1 1 u 1 I 1 U CJ T C N N L N (1) tvc o13 UWxk 41) _5a to GOWD4 U N O M M O M O O CO c0 N M N � C Q� 4 a ill Q �ll U r uj [R (J) w u •- — m N U > C:L U -> CO C? LH (O ' co m d 1 O O .0 O O. Oj O col- '0 `O CL C v p m �.„W Q -L)>4 tU C I W =1 AREA 280 j LARIMER NO. 2 CANAL O90 II$ 31 NOTE OAhIN %10 10 a NORTH OF HARMONN' ROAD EVANGELICAL COVENANT CHURCH 0 _ a,23 Is h21"no il �12 25 ��� ;o , _Ia 12 It it ARE_Aoo ^ate ad Pond 2 If r LEGEND I 10 YEAR Fl STORM JET, L 7 —� HEALTHCARE 501 INTERNATIONAL 3$L/ O L — �Oil `L —se NI 84 26 .:_ r300 �� POntl1 LEGEND I 100 YEAR 0. ..:..• eom Ell"" STORM 0I I m Po 0 l \�HKAgolpin'FRO m iee.v0 Ootemio. OWN 0"11010 Fiemem Element ROUTING SCHEMATICS -.a.. N,. HARMONY ROAD 41EA MARCH CUwea/ 16D ILO EXISTING a.00 q.60 CEMETERY 330 214 LE I 7� OAKRIOGE' A� BUSINESS PARK Z30 11TH FILING - 1 ` 0q/• .'EIUSTING O DETIENTION PON09(2) �I OGE \ 2 OAK T OAKRIDGE BUSINESS PARK OAKRIDGE 1GTH FILING — I BUSINESS PARK OAKRIDGE BUSINESS All I TTH FILING PARK 4TH FILING 220 � - - OAKRIDGE 1 OP 23 ]4 BUSINESS PARK " —III l STH FILING 4" 4— C �P E 240 aEn BUSINESS �\ Off, 500 BUSINESS PARK 12p ^� 2ND FILING 90 (COMLINEAR) \ 1� OAKfl DOE VILLAG / q` In Igp _STK FILING__, - 38 -- / OAKRIDGE VILLAGE J`v/ 8TH FILING OQ� QP � e F --�— —-- - F OAKRIDGE OAKRIDGE VILLAGE + VILLAGE 3RO FILING ]TH FILING 1 EVIL�PGe µ1310G Iijill pEll ,,I%xGE CHANNEL . Of HO DRIVE �. '\\ ,NEEaj�DRPINAOE CHANNELS—, IN 'I �V SO�t 5712 OAKRID(,L / C OAKRIDGE VILLAGE VILLAGE 4TH FILING 2ND FILING H 1EE, E L� OAKRIDGE VILLAGE IST FILING E] Intil SOUTHRIDGE GREENS GOLF COURSE \ OAKRIDGE BUSINESS PARK > 9TH FILING 1 0 I> / 'I a 1110 I OAKRIDGE DEVELOPMENT/ POND I 1 11 Ili CIA C=RCP p I on EXISTING DRAINAGEWAY LEGEND MANHOLE FLARED END SECTION -STORM DRAIN PIPE SUB - BASIN LINE FLOW DIRECTION jpp BASIN DESIGNATION 2$.32 BASIN AREA IN ACRES OIOOYR CONVEYANCE ELEMENT NOTES: LTNE PIPE SIZES OHTA'N ON This PLAN WERE TAKEN FROM DESIGN PLANS. _a°o $CH00 IP 1• - _400 SEP 2 / 1470 ION D[L,( PIT IION BB. ` Englneenng Consultants o, OAKRIDGE BUSINESS PARK MASTER DRAINAGE STUDY OVERALL MASTER DRAINAGE PLAN 1 I 1