Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 08/08/2003 (2)
1 i 1 1 1, 1 Final roved Re � aFe MAY 1 g 2W3 FINAL DRAINAGE REPORT FOR MAPLE HILL .. SWfl, %A•.tted to: CITY OF FORT COLLINS Marck,. 26, 2003 dp n FILE NAME: NWC of Maple Hill Road & Bar Harbor Drive DESCRIPTION: 7th Filing of Maple Hill Subdivision - 101 single family and 4 duplex units LOCATION: NWC of Maple Hill Road and Bar Harbor Drive DATE OF REVIEW: 01-25-2010 APPLICNAME: Linda Ripley PHONE NUMBER: (970) 224-5828 PLANNER'S NAME: Ted Shepard INVID: 12C Stormwater comments: 1. The drainage design for this site is included in the overall drainage plan for Maple Hill. The drainage and detention system has been installed per the approved plans. There was a revision in 2007 that designed a Swale around the recreation center. It runs north - south and is located in the general vicinity of lots 64 - 83 as shown on the phase 7 sketch plan that was submitted for this conceptual review. That outfall system will need to be modified with this project if the sketch plan is to be followed. The detailed lot grading plan may also need to be updated. 2. The city wide development fee (PIF) is $6,313.00/acre ($0.1449/sq.ft.) for new impervious area over 350 sq.-ft. and there is a $1,045.00/acre ($0.024/sq. —ft.) review fee. No fee is charged for existing impervious area. These fees are to be paid at the time each building permit is issued. Information on fees can be found on the City's web site at http://www.fcgov.com/utilities/builders-fees.php or contact Jean Pakech at 221- 6375 for questions on fees. 3. The design of this site must conform to the drainage basin design of the Boxelder/Cooper Slough Master Drainage Plan as well the City's Design Criteria and Construction standards. Water/Wastewater comments: 1. Water and wastewater service in this area is provided by the ELCO Water District and the Boxelder Sanitation District. March 26, 2003 ' Mr. Basil Hamden City of Fort Collins Storm Water Division ' P.O. Box 580 Fort Collins, CO 80522 Re: Maple Hill Project No. 0953-003 Dear Mr. Hamden: ' We are pleased to resubmit to you, this Final Drainage Report for Maple Hill. This report was prepared based on Urban Storm Drainage Criteria and City of Fort Collins criteria. We believe it satisfies all criteria for a final report. This report also includes ' discussion of erosion and sediment control measures that will be utilized during and after construction. [1 1 L� We look forward to your review and approval and will gladly answer any questions you may have. Sincerely, T INC. NSULTING ENGINEERS o arsono SD/sjk Enclosures ' TST, INC. 748 Whalers Way - Building D Consulting Engineers Fort Collins, CO 80525 (970)226-0557 Metro (303) 595-9103 Fax(970) 226-0204 Email info@tstinc.com www.tstine.com TABLE OF CONTENTS page ' 1.0 Introduction 1.1 Scope and Purpose....................................................................................................................1 1.2 Project Location and Description...............................................................................................1 2.0 Historic Conditions............................................................................................................................3 ' 3.0 Developed Conditions Plan 3.1 Design Criteria...........................................................................................................................6 3.2 Drainage Plan Development......................................................................................................7 ' 3.2.1 Street Capacity............................................................................................................14 3.2.2 Inlet Design.................................................................................................................14 3.2.3 Storm Sewer Design...................................................................................................19 ' 3.2.4 Swale Design..............................................................................................................19 3.2.5 Riprap Design.............................................................................................................19 3.2.6 Detention Pond Design...............................................................................................24 3.3 Erosion/Sediment Control Plan................................................................................................25 ' 3.4 Boxelder/Cooper Slough Master Plan Drainage Alternatives..................................................25 3.5 Variance Request.....................................................................................................................27 ' Figures Figure1 - Vicinity Map...................................................................................................................................2 Figure2 - Historic Drainage Map...................................................................................................................4 ' Figure 3 — Lind Property Historic Drainage Map............................................................................................5 Tables ' Table 1 — Hydrologic Calculations Worksheet..........................................................................................8-11 Table 2 — Summary of Attenuated Runoff..............................................................................................12-13 Table 3 - Summary of Street Capacity Analysis....................................................................................15-16 ' Table 4 — Summary of Inlet Analysis and Design...................................................................................17-18 Table 5 — Summary of Storm Sewer Design..........................................................................................20-22 Table 6 — Summary of Riprap Design.........................................................................................................23 Exhibits Detention Pond Outlet Scenarios...........................................................................................................................26 ' Technical Appendices Appendix A — Rational Method Analysis Appendix B — UDSW M Model and Detention Pond Analysis Appendix C — Street Capacity and Inlet Analysis Design Appendix D — Storm Sewer and Riprap Design ' Appendix E — Swale Design Appendix F — Erosion Control Sheets Rational Drainage Plan................................................................................................................ Sheet 1 of 1 UDSWM Drainage Plan............................................................................................................... Sheet 1 of 1 IJ 1 160 Introduction ' 1.1 Scope acid Purpose This report presents the results of a Final Drainage Evaluation for Maple Hill. In accordance ' with the requirements of the Fort Collins Storm Drainage Design Criteria and Construction Standards Manual (SDDC), the purpose of this report is to present a storm drainage plan that ' identifies peak runoff conditions and provides a means by which to safely collect and convey runoff across the site. This report will evaluate hydrologic conditions for the proposed development to determine the location and magnitude of the storm runoff, and will use that ' information for hydraulic analysis of the proposed streets and conveyance facilities. 1.2 Project Location and Description ' Maple Hill is a proposed 451 single family, 76 duplex dwelling unit and 25 building (8-plex), 200 multi -family dwelling unit development located in the Northwest Quarter of Section 32, Township 8 North, Range 68 West of the 6t' P.M., City of Fort Collins, State of Colorado. The ' site is bounded on the west by County Road 11, the south by existing agricultural land, the east by the Larimer/Weld No. 8 Irrigation Ditch (No. 8) and the north by County Road 52. A vicinity map illustrating the project location is provided in Figure 1. ' This project is located entirely within the Cooper Slough/Boxelder Drainage Basin. A master drainage study currently does not exist for this portion of the basin. However, the existing ' topography indicates that the proposed site drains to the No. 8 ditch and conveyed south. 1 TST, Inc. 1 November 18, 2002 0953-003 a FIGURE I VICIN17Y MAP 10 .. ......... , 4 . . ............... MEAN ORT 01 itt I A ..,U73, Sccle I" = 2000' H 1 2. o ' Historic Conditions 1 The proposed site has historically been agricultural in nature and drains in a southeasterly ' direction at slopes ranging from 0.6 to under 2 percent. It is currently undeveloped, with existing vegetation consisting of an agricultural use. The Larimer/Weld No. 8 Irrigation Ditch eventually receives all drainage from this site. 11 J L There are two (2) off -site basins that drain onto our site. The Fort Collins Country Club golf course drains from west to the east across County Road 11, and a portion of the proposed Lind Farm drains from the north to the south across existing County Road 52. The drainage from these sites have been accounted for in our drainage analysis at the historic rates. The golf course information was obtained from numerous site visits and USGS topography (including City of Fort Collins 2-foot contours from 1999), and the Lind Farm information was provided from our meeting with you on September 17, 2002, and from Sear Brown who is designing Lind Farm. The golf course storm water has been accounted for in all of the Maple Hill conveyance facilities and will be detained on site, and released at the agreed upon release rate. However, per our September 17, 2002 meeting, Maple Hill has designed the conveyance facilities for Lind Farm only, to the Larimer/Weld No.8 Irrigation Ditch and will not detain any storm water flows onsite. It was agreed upon that Lind Farm will have to detain storm water generated from their project onsite. In addition, Lind Farm is responsible for all/any agreements for the construction and discharging of their storm water with the Windsor Reservoir Company, and it is not the responsibility of this development. TST, Inc. 3 November 18, 2002 1 0953-003 a I I L I 11 I I I I I p I 106 4.70 107 93T53 108 OOT53 A2 mpt �xlt me pro, "d .3 Sew are.0, M,Cn1 In we 3 of thle Find fta" Dort I" GVteo* For", pond by TST, Me. Bush A2 nwAtina EnainsoM =4dot* 00--)stom W DtOr w 15, zmz 1.54 ate :19 W CIS 13: A�l COUNTY ROAD 0 52 9 A= x 2 At ib Sat —1 1 F71 h J ry 11 i 1 1 }y \\ l 1 I I I I I I I 1 \, \ _ - \� \ HYDROLOGY TABLE DESIGN BASIN AREA (ACRES) COMPOSITE'C' 02 (CFS) Q iu9 (CFS) POINT ,. A, Al 44.5 0.20 6.78 30.50 A2 A2 66.3 i 0.20 7.83 36.54 l42 Al AND A2 110.80 0.20 13.08 60.74 I } \\ It\I,t} ylyl }}Il I II I t + / / / / / / ��'.:�.~� _ —''� �"♦ \ \ \\�,, \\ \\} II , 111111 Ills •' /JII lIl+ 1111 III II i}II Il l t l / ! I / !/ / 17/ �� ��`~`����` ` 1+ ',°� -�1 GILLESPIE PROPERTY SCALE IN FEET CR 52 9 co 0 $ CD " 4 Z 00 Q: m C W N 0 i- ME ww �a aQ E s mo CMG N yavw �n Cl NLLvLL 1 1 3.0 1 11 1 1 1 1 1 1 11 1 1 �I 1 1 Developed Conditions Plan 3.1 Design Criteria The drainage system presented in this report has been developed in accordance with the criteria established by the City of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual (SDDC) dated May 1984 and revised in January 1997. Where applicable, design guidelines and information were also obtained from the Denver Regional Council of Government Urban Storm Drainage Criteria Manual (USDCM). Developed condition hydrology was evaluated based on the 2-year and 100-year storm frequencies as dictated by Table 3-1 of the SDDC manual. Because of the limited size of the subbasins on the site, the Rational Method was selected to calculate runoff. However, the detention pond was analyzed and designed using UDSWM, which will be discussed in Section 3.2.5. The Rational Method utilizes the SDDC manual equation: Q = CCflA where Q is the flow in cfs, C is the runoff coefficient, Cf is the storm frequency coefficient, I is the rainfall intensity in inches per hour, and A is the total area of the basin in acres. The runoff coefficient, C. was calculated from Table 3-3 of the SDDC manual based on the proposed developed condition land use. A composite runoff coefficient was calculated for each sub -basin based on the percentage of impervious surface (C = 0.95) and pervious surface (C = 0.25). Cf was taken from Table 3-4 of the SDDC manual and was determined to be 1.0 for the 2-year storm and 1.25 for the 100-year storm. The appropriate rainfall intensity was interpolated from the rainfall intensity duration table in Figure 3-1 of the SDDC manual dated 1999. To obtain the rainfall intensity, the time of concentration had to be determined. The following equation was utilized to determine the time of concentration: tc = ti + t<i where tc is the time of concentration in minutes, ti is the initial or overland flow time in minutes, and 4 is the travel time in the gutter in minutes. The initial or overland flow time was calculated with the SDDC manual equation: ti = [1.87(1.1 - CCf)Lo.)/(S)0.33 where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the average basin slope in percent, C is the composite runoff coefficient, and Cf is the storm frequency coefficient. The formula limits the product of CCf to 1.0 and when the product 1 TST, Inc. 6 November 18, 2002 0953-003 ' exceeds this value 1.0 is used in its place. Gutter (or channel) travel times were determined by utilizing Figure 3-3 for the flow velocity within the conveyance element. The travel time was ' then determined by dividing the gutter flow length by the velocity. This procedure for computing time of concentration allows for overland flow as well as travel time for runoff collected in streets, gutters, channels, or ditches. After the peak runoff was calculated, attenuated runoff ' was calculated. This was done by combining all contributing areas upstream of a given design point. The time of concentration for the design point was taken as the greatest time of all the contributing subbasins. ' 3.2 Drainage Plan Development The proposed drainage plan consists of a combination of overland flow and gutter flow. The ' runoff will sheet flow across landscaped yards and common areas, then concentrate at proposed streets. Gutter flow in streets will be collected at low points via curb inlets or area inlets and then conveyed via a storm sewer system or drainage pans to the detention ponds. ' Subbasins were delineated based on the proposed grading. Final grading and basin delineation is shown on the Rational Drainage Plan Sheet, which can be found in the back of this report. 1 1 t The site has been graded to accommodate two (2) detention ponds, however, they have been hydraulically linked to function as one detention pond. Most of the site runoff will be directed through this pond prior to discharge to the Larimer/Weld No.8 Ditch (No.8). The development has been restricted to a 10 cfs release rate, except at the northeast corner of the site where the Lind Farm property will discharge into the ditch through a series of swales and storm sewer pipe. Basin A encompasses the western portion of the site. Basin B encompasses the middle/right portion of the site. This includes the proposed multi- family area and the neighborhood park. Basin C encompasses the southwest part of the site. Basin D encompasses the northeast portion of the site. Basin E encompasses the southeast portion of the site. Runoff from each of the basins will be collected by a storm sewer system and directed to the proposed detention pond. TST, Inc. 7 November 18, 2002 0953-003 (§§E k�}_! 6 'S.6§!`55!!!!5]§! !!!5|5B5§55!!#! !!!!S!!3® \ ~ )�!� Sf5!)§7!§5£5!!m§§§3 S§S!@!I5d!-§5! !!5!!§q|� 77\/ !64!!!�446|5§E!!41;n! q!!|i!i !®!5!! !9§44 44 |§§E Gl,.n§=,§eeaR,mm2�; ,■^■m§l�;;;,§;; ,;,n!l,,, B8§---------------- B§5555e§------- ---- At; !!!!!!!!!§!!!!!------------- --------------- 2B� 6666!065!l55500l55B 606!665!!!0160!! 15!!!!|m0 mmm „ ; m;;,=;;„ §§ ;;,�;=k=■l;;;;2l;;; ;2;a;;2;■|;2;l2 ou&oJcnon k= �§§ k§§ w O � w a p g o o a o p 0 q 0 0 0 g 0 0 p o o e& <0 CE C.`g '��' rf. �n �: pj rJd HiN`I �•i ^NI�H HYi't —--�V.}c�%� �co a -----------------------$ {4 N r .............. o c o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 mu o ���' �Cjffi^a mown„=vNi o�$bjm$v$ne"d,�sn y — O O r OO VN � OO N PI r Cj r O n O N O r � pO y< VN' f d N tY N N ry INV N N rOl N nl N �N'1 m WO p%%j ti uu 0003c�oo$oa000000co u o m m. b T N n n O N O ^ O^ f WPPN _ h O P N P D Or r N m V 16 P N !i n N N 11 b P r r A 9888 o^q 5ge"O$ I ci 4 4A — - a a-2 S T $ O O O O h N N I Y- s S O 8 b b b m b m N H N N "—" -- - h — ^----- I S$SS S$$$ $8888$I '� vaj�m e o 0 o � � rNjm d o 0G o m;rymry�ry cq o 0 0pp 0! 0 W T S R P O w a x r ryry ee'�11 W W W W O y O O --- r 12 LL w w 4 m w 0 w 0000 0000 0 0 W o 0 0 ha v U w .1 1 I m ^0y] N O `� OO V 6 r N ni nI [m r 6 b O r 1� r C4 ry r n f r r r h O fV P r m O q 1C r 0 `O V r� r fy YY G x y C q q P P m b m P P P r r g P a0 r O1 N O�r Oi b P mro P a q aO P W g m r ~ Nq m^+ r a a0 O O tS C ll`V� N f: N fl f4 r {�j r4 j ry ^j p( Cj ry CI N CI N I`{ 4 N M1I ri N N — N IV n ^I CI N N n n CI N n x F A e $e eo.�^ISSo o-m SS �a8S8 S'O •1 �nSm`^r$^�g h ry.� 13 S'8 qv� 8 Y N qri N O1 tiO W N N r N V� V l� N r N P T z 0 u wy p V i� q� �p QQ p ^ O e c� S "I ry S am0 ci ^ g S O q R P S S ♦ I� t„V pp P v) •r^ V^ a p P Q ry ry �y S S O? S t V 1� 11; m mFmN^ N n ry6a6.d er( nri=e ri Noo o wi F� WWW�W3 VO ,., m m r4nggg nmbPP n N n m-9 Igrmbrm� b a s r too 'O O O� O T f�I � N � ry� OO m fJ a rye orgm rya 1�1 Y O T nl ry �'I n fl i .] ry e y r O �y a N N V1 G fl Al N CI N P-- N f n m r CN O U V m w <>< 10 x m 1 11 I 1 3 P ObOtl r N yey �O O n O N e T b^ O n g h m N t0 m O Y m VI O < N S n N M C d y ^ v r P N� b�� N �� n� �� n ry N� N� •O N ?� a� m r `� n N b M n P n u N Q Y b = � r m O O - 0• M AS v CI IV O �+ CI N lJ - tf 4 0• 4 �� CI r'1 `n 0• O N-Z ;q A) 0 0 ai S� S m °S, O P T a V N O n V V O tm'j Y m `bO, ry C P n m aANjr vYi wIV o14 ry ��% maav �a o��ry N�4N m CgINry^IN.gj�ANNj� N OO N N `O 0 O 0�� M I � d 8 F a O O o ry .n-•. -4 C4 b F �O P b M P F F N � N V r^ `O r M N •.., - Y z u _ R V C1 Y P CA N O n m. V .+ r m Y .Mi O r •O Y o O O; Vt wI O C nI vI < b lT T 01 vl eVr� O1 CI m N O me: r (+ O M n O r � Y n P A� v� A' y 1M1 mtl r Y n n m N Y P A' 1.1 .+ r f� r r � � G r Y= T Y .� .+ F a O O OO C .: CI Y �+ N h O N +p N a$ a�voinm n vojhn�� a ry� n�voih oh og vojn�g�$ oee000 o r0000=oc cco a Af .= 00000e u > e M M M N Y Y Y Y S Y v� b b b r b m O P O r r N N N M Y Y N N N N N N N N A\ N M M M M M M M M M N b p d Y V Y N N rb1 N N N N P Y M NI M Al yq RYIf O Q d m I 11 1 t MCI V a� e4.1=mq�ha o.n$o N_ QrF�i. q .loom n{nva� a' ,in n�o �vni F�• �mv".vmeo�.�0't�.N'1 'P^.n �o °NO �P`I ^YI? F p4� O 1y .W1 P Y `O N N .'1 ^^ N m b_ S N_ O ry .•1 r:N n .•f F N_' r N N p N F .•1 N eN.l b P FP'1 b N P r 10`I b 4 N F N N N P N M' - •. .. - F 1.1 P- b e•. 11 P Gv N - l� b In F 1' 1.1 m b N h N nl P •O N O. C. O T F WIO N�(y m N� N V Ov: N� N F b � P 4 N .p b r.. O VI 01 Q N O 1+1 O N ./l N m P b In N� IT b N N T�- b � - P � h r W� . N � m ii N •+ Q r M ry 4 M1 N^ N n^ �1 b N IV Y O^ r r ..1 r (.1: � P .G P N r M1 .p M1 Ivl m n nl P� hl Y r•1 .•1 m N-�� P m� ' 5 ' I /q T b O N (� b m I•I O1 b r1 b F F m m Q O1 r O m F m .O Ivl F m m .O 'OI O P M1 F.b 1I! m f•I m m' vC Q Q. F VI M1 F N M1 .II .� N m (y b .O W W �p T O b Ov .p d � b .O b vD m m .O b N 4 N N r1 N p 4^ m Z' j� .•1 Oi G. r b b N m m N N M1 F N O. m m a q m F m F FI P N N F F F b .•1 N1 F N N .O M1 H1 In b N b .O AI O� O. m a0 OO F v 1: I ... — N N O r N N V F M1 m F W N 0 N Cl 0 Of O I`{ M1 Wl;.yl F Y P fl P P Q gpI q OI Ov; M1 b N N N N O N O 'O O O m. ITS F F O S T `O I� F P Y Y O 6f4,4 N r �• Q r CI (•I O N (V P4 IV 1'il,4 r - - �i tV - IV N ^ r N r r OO (V CI fI CI c4 (V i)'•:: _ a Q S IY ^I O V m N P N ./2 W P O - Fi N O q N- YR m VI OI N h O. GO '.•[L) h N N T .4-. N .O 00 i OQ d. N 00 m N VN F O y' O G_' N H H G Oi V m N T O_ i N_ a NP N _P P P N N m F OO 01 u. ......M_ f O M1 ^• - O1 T O Q P b Q F t� O� N O O O V T In N r .. F m m b r M1 O N F F O m m P W O Vf {F �^y' A .. N S O1 r O O y So W �r1 Y W S P O 4 .� •� V .•I .V Ov Oi N P OO OO T OO p ry O O CI O F O O I.1 I'I I,: N m-- N In IJ T N T IOv1) P t.l pr .+ Cl fbV 'O VI Vl S O b V 4 I'! .:.(h..'"i 1'�.'.J' iE3t....�...... tY N CF r r N N �• •" P �• ^ F .m. y N r r N I.1 m r Y :yO::: )... 't� my �.� IV ^�.h• '�• .�'h' N rylhl ry �Y r r r r r r -- ------ -ry--- r .7S�d a; 88'oOS8'o888'o8S�eS�o$88885888� 88888S�O,gg88S88$888588 8`o,S8888 '<`t? N N N N N N N b r V N IW�I m p O m F O O O O b O W m INO OO O O IR 1N/I O O nI OO O m O O VQI O m m O O W W O O W ./Ol O O OO m O O IO O IO M1 C G O 'O O G 'O OO O .O OO OO b m C OO F O O [WI .O O O b b O O O O m m O O P b OO C b C O Y I/1 OI VI 4 O O Q I b N q b [•I b ry F Y V r•I Q P O F F g V m N b •O O I•1 IO F N a wI N IO (y Q CI F [y O ry F r r O Q= N t.1 N S v b IO y1 m Q` CI O 1i 4 F IO IO b IIr �i N + O G In P F - r C IV P v r I.1 r r ^i O O G G d �+ r wi C N �p I.1 I•i m N I.t .o r N N M1 •� 6 O G N N O b r n r IQ IA _ e�ik':y'jL' W N y..aa x- 7"'' pIII •� N 4 '�< Im N.d [••{ 2 �a0 om am aN �hOa a^ m wo Ue{C�V�pI ::. },�i,FaR V«<<OI Y< aI<O 0.G• N0.0 •a aN0. 0.O NW < N<N N l' F_<F^ (II b x m IM1.1 Q w m 0 GFM Y O I..r OU14U N yW !•} IO V M O hP1 O qq O O P. O �q M 0 0 O iO .m+ VI O IWI IP•1 0. O O O ..._. .. Q I N ��T¢y/vj. •It. [t 6 .•1 x 3 P `�' 3 W •y IO • F � m P x O W � N �� �_ N_i a � b '}' w� 3 x m z .x W . •3 O N . N N N x 3 IO NI .. m W F W e:l I1 T O II d ('� C r N 4 4 41 N N b O f^ 1 b '• F F F_ m W ^ Q O N N N .rI N� ^ m 1 Li _ I 0 tr7 �' .o N a o n o nN=b aa- nnQm N—bQ�f a fy V: C Q N ,00 omb r f Yd a0 Q M O .O a ro Y fl OO m :rj 11 IV b r r b OO r 4 fV ti e d a.•��' a m O Q. b b- m n1 m V b r m r f- M N M Q d N d n b O Q Q Q :O S Q rl � r O f S 43%i 71T- n r n m a W W n M M v� 17 n o f M n M f r-� IT m p m W n r n n W r m O r b O V M `O h Q g .O Q Q n 4 m N P r m (y 1� Yf b--1`I N ep4� t IV ^I N --- N .� - fV r ( yyyyyyf :p .O pe m M a M_ a O m O N N N N v� .O b M O b O b r O b^ m W N ��yy N N m a a n b b W q Q Q OO Q OO b N Y:H P N^ P-- v1 N T - N N b- rya ry N T N M a� r b' 1� O M N a r mN �OyY M p O OO vh VN Oi M P C ~ry O r m e0 Y Ni O OO O Oi Oi .n ry N r tV N IV tV m a N ` ,'(yy .��a•:. ,'�, N v� N N N v� v� N v� v� N N N - - v� v� N v� N NH - r - - - - - - $$88888888 888$8888gC!go8�S8$888$888 ��� 8888888 V b :O b W N aO M O 'd n,�Yb M� rNra�'a' N - O- f r Q f abn�o N r r M N nr--aY b O fV n- ma�bm�obr N Vi :G a r ell N AI r a P vl M O N- n N Q.� m N Q Q n `O r r N a a n ,ya�N14 O O n N O N M m an + N OO .... i:).P.2). is(a 4. aY, b .' � ^ m N ❑ Q � � a ee W � y T im ^q' Z Y CI o r N pvp !ri ❑ m C1 D I �" ❑ .. 0. Q a 0❑ o a^ , j Y O �Uq FaC'm`� V qO 4 (� r {y V w❑ O N Q M C � Q�v Qy 4 d C a O N N 4 0 N_ W N p G O M M 4 {ll N yN f'1 4 {bY r N 4 4 rl N h W 4 Oni (y C) N G a V• anM,4U r f V y 4� n❑ 4❑4ry N 44p�pa ry trj _ ggrvp^, 4 p^, a' a p❑ 4❑f po �n, 4 OOO Op0 o rL g� p �q p ❑ IMPri d eiop0 p Q vt 4opa ❑___ 4 oppQ4i+ p • ❑ p�____._.4-_. ❑ O _.-_._. __ o ❑ N __.. :. o n 4 ❑ F_..y�4e,;.. i4YY :Q d Q d N N N N N N N M M M M M n ly 1 ' 3.2.1 Street Capacity Two street sections will be used for the internal streets: 1.) A local street section with 30-foot FL to FL width with rollover curb and gutter and a detached walk, 2.) A minor collector street ' section with 50-foot FL to FL width with vertical curb and gutter and a detached walk. Street encroachment criteria for the streets was taken from Table 4-1 (minor storm) and Table 4-2 (major storm) of the SDDC. The minor event (2-yr) criteria allows no curb overtopping and ' flow may spread to the crown. The major event (100-yr) criteria allows for flow depths of 6 inches over the crown. For this event, the width of flow was limited to back of walk for most of the sections. ' All of the streets meet these requirements and will function below the allowable capacities. The results of the Street Capacity Analysis can be found in Table 3 with supporting calculations presented in Appendix C. 3.2.2 Inlet Design ' CDOT Type "R" curb sump and on -grade inlets were used to collect the 2-yr and 100-yr. runoff from low points in the local and collector streets. Ponding depths for all inlets in the streets were set such that flow would spread to the R.O.W. (back of walk) in the 100-yr storm. In instances where the 100-yr. runoff was sufficient to overtop "the crown (before factoring in the ponding depth at the inlets), the 100-yr. runoff was balanced between all inlets at that location. ' The inlets are connected to storm sewer systems that convey the runoff to the detention ponds. Type "C" inlets were designed for use in the park and the swales. The inlets were sized using a ponding depth of 0.8 feet, or a minimum of 1 foot of freeboard in the swale. The results of the Inlet Analysis and Design can be found in Table 4a and 4b with supporting calculations presented in Appendix C. 1 TST, Inc. 14 November 18, 2002 ' 0953-003 [J u U y W Q 1 1 Ir { yy •{Q :•ii.:T.•[� rip;�i'.JY iPINIgI01 F N�N q�Olb g PIP' M NjM.N;P n N�q�bIM N b�Ol �miq P N M„ N�WIM N N O P N FIM'r F O q Mirtbl„ b�M P b .'L'.•.'=i. y P V PIP.+�'I h r wnf r P tP`Ibj0 ` :.......... m 0• Ci rIM F fJ N ^ .6 N 1,4 O N O P N `CIM r n I P nIN11 :'•:::•••.yy:'••:• F'q N N O P�F�mlm 1 N O + b b) M M W m a V f�• �{ b PI IP riq g rlr N p M V b q GGG ..':...'�'.:. p I„ M- [•� P M tV r -^ (� b m N r ri r C P F� P M P fV �+ M V b N N pO F N r r1 N N r -• N r O tIl NIrIM r M„ m' ri P n a N bP b R� N 1� V P P Y n .612 'Ii .'...........'.. py qy' l momm w N r M N N N N m r N •••,•S;, o 0 rr +r0 0 0 0 0 +M� 0 0 r 0 9 0 0 rr ++M o M e rP o .- P M —m M I h P� r mm e o m W 0 o mm c o Vi 0 „h 0l! m 0 m m o d m m o 0 mo o c o o c o of 0 T '�yy�ppyf••�••• '�.'.,'¢S�oj[.. .. • t^y rO g1•f r- rO �Oe $O rOO r bjj.6 r I? P o o IF virrrjj„ „lrryOCOO o0 M �i rI r Pip H f.F v F r to i.. m V r „ {4 P w NIP N V U„ m U U G y � • m NI q O_ m- q � p m y r :•::.n:.�n o S o p o ::.,~ I•Z—�m•3I2 a �13 �I� z y 3 z z N •^I� �n (Zol3 � w{z�P z W o nl� I M 61 I IO IJ. �.y d b4N PIO: b�n NI MI NIN Ia b nl IN O:0 O r P a NIMIN�N aI01 �P�ai NI�O V� Ci Q T P N W .I m ryal� NIN n .. N NIF1 NIIP.N SIN IN nIP ...... ;�.':: �•':.�::• .�•f�js Y m= N yry� Im I f�Y' � • T 2 IV M r OIL I v �p � MIfV MfV blm n �• Qi� r1 b O NIO N O�IO m M b Vl :'II dIN V p `O) f T Oi I�If•Ij 1 i l •:'•••' .'.•:.'$.':.'. ib �ryry b N �I Ola a QIP N b Y T N ." NI:O MIN n N N P r r.. Q Val b NIr rIr N m n Nl N- T d NI aI mI r� �iN N NI bin NI -IN ,Q•; y:v y} ':.1.�'�:.v W$ O S O N b O O aa Y b r n b PI � Ia N O O m m ryry O N N O .� n a� Q n N!r OIN NjeO n Q t� O O O Q 1� r• � n •e n Y P '::: nL :O � N♦ i T t ♦ + yQ{ O,- i y}O� ,r0 O� N tm l P •".:1+: y�yy:� :•...'jjSyy:y�Yf C} b d N S# M r� Qx N I r sx N $X Qy r Qj N N N yx r r s} N N N ♦ .,,.3. m vn m n N W m W m Iq 1-4mm� O O O O O C O O C O OIO O O O C O 11 n N O N O N O O N_ O n In O n M O n a a O N b bIN O N O$ T ':::.0:.....:.... i Q y I b< < a G' N m T W w N W M U N U W "' U V < •� :..•� PIP �I �� U I I U ':.' Ai, :.y 7^' N C n O Di N ♦ I I Q r .p�.pl Qlq N Q T d :;....�.:'�ozi�c7�Gg'Cg,naU U Q T 16 n q b Or N P N N O•{ z (] W N n w b y�ayp�+0a'rvAwlniM• ::... w r m z a z 3 z N�MId I I zl3 z 3 z 3a I x 31z iN r Q M N Q n Q .;.T} i .I I ell I i I ri w FSut� �h x � oo r a t� o vi ,� en o o •n v o v � o � a O .-. � � .-i .-• ..-i �O O" � O O O a� ~ " N N N N N N N N N x IiIIII 'IIII CD NmN6;.6 ; �C'iCCN0C�_IIt 4 I II I CI IInI �I d'IoI 0I 0I 0I2I vi NI MINIkINI INl lml 'I tI�INl�l�l IeI*I1IC% Cl) laloIoIoloIalol lolalolol lol - lol • I • IoloIEI • I ICIol�IoI!I to .� It It lo: .-•Ol"I.r I. NI^'I^ It . I^I.I.I^I I� Iq -n -I�I4n OI"-•I—I I"'I.cn I�ImlOI m l� �I"'I0"1001 0NI0 0 0 'I�IeI0Ci I0NI0 N 0IOIOI IOI-IGI'I-IOIOlOI I IOIOI,IOIOI IOIO C V1 !A W V1 W V1 VI V) V1 V1 fA z y z x (AVl W z V) &n z V1 91 fn 0 O 00 O O u �p O a aaeaaaa aaaa C4 W. as a aa04 as w wwww M"w'N wwww wwwwwwwww wwwww ww ,nl%olr-lwlsl= a M IItlM�"INI��I� IN ��N I�INI�IOIN N N IN Cr— MjCDI INI�IIOINI INI�I.IMI I�I ICI I I�I�IMI I I�INI o� v o 114, NNO+ T x oOI�I�I�I 1I NI CD Im %n -I-t ICI , IIn ^I , I , I�ioOIfVIVII IAII MI ' I$IMI INIV ololololo N rl O O aaaaoeap W W W W W W P d olololol lal Ioi - I - IaloIoI - I I�IEDIr1oi!I I�i! NI^IryI INIVIINI�ICIR oq OI ' I IOINI 1INI^I INIry In In Inolol IOI ICE -I IOIOIOI I Iolol lIn Inolol IoIO 9 W w ii..11 (ppQaQa��G cn Ln O O O O �I aaa aoeaoeaaaaa a�eaaa as w m � O M {ci W y O N qt N N N' b O V v1 N c+l n7 � 3.2.3 Storm Sewer Design The storm sewer lines were analyzed with Neo UDSEWER. The pipes were sized such that the hydraulic grade remains below the flow line of the proposed inlets. Storm Sewer Line ST-1 conveys detained runoff to the Larmer/Weld No.8 Irrigation ditch. ST-2 conveys runoff from Basin D via a pair of inlets to the detention pond. ST-3 conveys runoff from Basin C through a series of inlets to the detention pond. ST-4 conveys runoff from Basins A and B (including the multi -family area) through a series of inlets to the detention pond. ST-5 conveys runoff from Basin D through a series of inlets to the detention pond. ST-6 hydraulically links the two (2) detention ponds into one (1) pond. ST-7 conveys the Lind Farm detained storm water directly to the Larimer/Weld No.8 Irrigation ditch. ST-8 conveys runoff from the proposed Country Club Road to the ST-3 network and to the detention pond. ST-9 culvert conveys storm water via a swale and eventually the detention pond. ST-10 conveys storm water from the intersection of CR11 and Country Club Road through our site and eventually to the detention facility. The results of the Storm Sewer Design can be found in Table 5 with supporting Neo UDSEWER results presented in Appendix D. 3.2.4 Swale Design Six drainage swales have been sized to carry the 100-year storm plus 1 foot of freeboard using normal depth calculations and HEC-RAS. The swale shown in the proposed future multi -family site (Basin B) is temporary, and will be replaced with inlets and the future streets. Swale A, located on the northeastern portion of site, has been sized to convey 60 cfs from the Lind property to the No. 8 ditch. The results of the swale design with supporting documentation can be found in Appendix E. 3.2.5 Riprap Design All of the channel, swales and storm sewer outlets will require riprap to prevent channel bank and bed erosion. Our calculations indicate that Type L riprap will accommodate each of the applicable pipe outlet conditions. The Type L riprap will be buried as specified by criteria. The results of the Riprap Design can be found in Table 6 with supporting documentation in Appendix D. TST, Inc. 19 November 18, 2002 ' 0953-003 TABLE 5. SUMMARY OF STORM SEWER DESIGN ................. ST-1 Pond MANHOLEIA 10.00 21 RCP MANHOLE IA MANHOLE 2A 10.00 21 RCP MANHOLE 2A Outlet 10.00 21 RCP ST-2 DETENTION POND MANHOLE 2A 58.95 48 RCP MANHOLE 2A MANHOLE 2B 58.95 48 RCP MANHOLE 2B INLET 2A 58.95 48 RCP INLET 2A MANHOLE2C 58.95 48 RCP MANHOLE 2C INLET 2B 21.01 36 RCP INLET 2B INLET2C 8.00 21 RCP ST-3 DETENTION POND INLET 3A 105.00 54" RCP INLET 3A MANHOLE 3A 105.00 54" RCP MANHOLE 3A INLET 3B 7.40 21 RCP MANHOLE 3A MANHOLE 3B 100.70 5411 RCP MANHOLE 3B MANHOLE 3C 100.70 43"X68" ELLIP RCP MANHOLE 3C MANHOLE 3C-1 8.70 24" RCP MANHOLE 3C-1 INLET 3C 8.70 24" RCP MANHOLE 3C-1 INLET 3D 8.70 24" RCP MANHOLE 3C MANHOLE 3C-2 23.70 2411 RCP MANHOLE 3C-2 INLET 3C-2 23.70 24" RCP MANHOLE 3C MANHOLE 3D 67.80 42" RCP MANHOLE 3D INLET 3E 11.80 2711 RCP MANHOLE 3D INLET 3P 11.80 27" RCP MANHOLE 3D MANHOLE 3E 56.90 3011 RCP MANHOLE 3E INLET 3G 28.50 33" RCP MANHOLE 3E INLET 3H 28.50 33" RCP TST, INC. CONSULTING 2/3/03 ENGINEERS Page 1 of 3 Storm.xis ITABLE 5. SUMMARY OF STORM SEWER DESIGN I I ST-4 DETENTION POND MANHOLE 4A 292.60 78" RCP MANHOLE 4A MANHOLE 4A-1 48.40 34"X53" ELLIP RCP MANHOLE 4A-1 INLET 4A 24.20 30" RCP MANHOLE 4A-2 INLET 4B 24.20 271, RCP MANHOLE 4A INLET 4A-2 15.00 21" RCP MANHOLE 4A MANHOLE Q 260.90 58"X91" ELLIP RCP MANHOLE4B INLET 4C 10.50 24" RCP MANHOLE Q INLET41) 10.50 24" RCP MANHOLE Q MANHOLE 4C 254.30 58"X911, ELLIP RCP MANHOLE 4C MANHOLE 4C-1 MANHOLE 4C-1 INLET 4E 144.00 13.80 53"X83" 24" ELLIP RCP RCP MANHOLE 4C-1 INLET 4F 13.80 2411 RCP MANHOLE 4C-1 MANHOLE 4C-2 115.20 48"X76" ELLIP RCP MANHOLE 4C-2 INLET 4C-2 66.30 48" RCP MANHOLE 4C-2 MANHOLE 4C-3 77.50 38"X60" ELLIP RCP MANHOLE 4C-3 INLET 4G 18.70 27" RCP MANHOLE 4C-3 INLET 4H 18.70 2711 RCP MANHOLE 4C-3 MANHOLE 4C-4 54.90 42" RCP MANHOLE 4C-4 INLET 4C-4 54.90 42" RCP MANHOLE 4C MANHOLE41) 155.90 4211 RCP MANHOLE 4D MANHOLE 4E 155.90 42" RCP MANHOLE 4E MANHOLE 4E-1 14.50 2711 RCP MANHOLE 4E-1 INLET 41 14.50 2711 RCP MANHOLE 4E-I INLET Q 7.20 2411 RCP MANHOLE 4E MANHOLE 4E-2 53.20 38"X60" ELLIP RCP MANHOLE 4E-2 INLET 4K 18.00 2711 RCP MANHOLE 4E-2 INLET41, 9.00 2111 RCP MANHOLE 4E-2 MANHOLE 4E-3 MANHOLE 4E-3 INLET 4M 35.90 35.90 3611 36" RCP RCP MANHOLE 4E-3 INLET 4N 17.90 27" RCP MANHOLE 4E MANHOLE 4F 99.70 3611 RCP MANHOLE V MANHOLE 4F-1 17.30 2711 RCP MANHOLE 4F-I INLET 40 17.30 2711 RCP MANHOLE 417-1 INLET 4P 8.60 2111 RCP MANHOLE 4F MANHOLE 0-2 12.80 24" RCP MANHOLE 4F-2 INLET 4Q 12.80 2411 RCP MANHOLE 4F-2 INLET 4R 6.40 180 RCP MANHOLE 4F MANHOLE 4G 70.90 30" RCP MANHOLE 4G MANHOLE 4G-I 3.60 1811 RCP MANHOLE 4G-1 MANHOLE 4G-2 3.60 18" RCP MANHOLE 4G-2 INLET 4S 3.60 18" RCP -MANHOLE 4G ---------------- INLET-4T--1 5.-10---27" --RCP- MANHOLE 4G MANHOLE 40-3 57.70 4211 RCP MANHOLE 4G-3 MANHOLE 40-4 57.70 42-1 RCP MANHOLE4G4 INLET 4IJ 28.80 2711 RCP TST, INC. CONSULTING 2/3103 ENGINEERS Page 2 of 3 Storm.xis TABLE 5. SUMMARY OF STORM SEWER DESIGN ST-5 ST-6 ST-7 ST-8 ST-9 ST-10 DETENTION POND MANHOLESA MANHOLESB MANHOLE SC MANHOLE 5C-1 MANHOLE 5C-1 MANHOLE 5C MANHOLE SD MANHOLESD MANHOLE SD MANHOLE SE MANHOLE 5E MANHOLE 5E MANHOLE SF MANHOLE SG MANHOLESH MANHOLESH UPPER DETENTION POND DITCH MANHOLESA MANHOLE7B SWALE WEST SWALE SWALE INLET l0A MANHOLE 10A MANHOLE 10A MANHOLE 10A-1 MANHOLE 10A-1 TST, INC. CONSULTING ENGINEERS MANHOLESA MANHOLESB MANHOLE SC MANHOLE 5C-1 INLET 5A INLET 5B MANHOLESD INLET 5C INLET 5D MANHOLE SE INLET 5E INLET 5F MANHOLE SF MANHOLESG MANHOLESH INLET 5G INLET 5H LOWER DETENTION POND MANHOLE7A MANHOLESB SWALE INLET 8A EAST SWALE INLET l0A MANHOLE 10A INLET IOB MANHOLE 10A-1 INLET IOC INLET IOD Page 3 of 3 93.80 93.80 93.80 39.00 15.30 19.00 73.80 28.90 25.70 45.70 8.40 26.20 22.40 22.40 22.40 11.20 11.20 105.00 66.63 66.63 62.24 9.00 32.00 31.47 31.47 13.04 5.40 5.40 5.40 48"X76" 43"X68" 43"X68" 29"X45" 19"X30" 19"X30" 34"X53" 24"X38" 19"X30" 34"X53" 24"X38" 24"X38" 30" 30" 30" 18" 18" 4'X8' 36" 42" 42" 24" 30" 21" 21" 18" 18" 18" 18" ELLIP RCP ELLIP RCP ELLIP RCP ELLIP RCP ELLIP RCP ELLIP RCP ELLIP RCP ELLIP RCP ELLIP RCP ELLIP RCP ELLIP RCP ELLIP RCP RCP RCP RCP RCP RCP RCB RCP RCP RCP RCP RCP RCP RCP RCP RCP RCP RCP 213103 Storm.xls 1 1 3.2.6 Detention Pond Design A water quality and detention pond was provided before discharge of site runoff. This pond is sized based on SDDC and Urban Drainage criteria and the total release rate of the site (10 cfs). The pond was designed with an orifice plate with multiple orifices to provide for an extended drainage time. The water quality volume was based on the 2-yr. storm, with the 100-yr storm overtopping the control structure and entering the discharge pipe. The pond was provided with ' an orifice plate on the discharge pipe to control the 100-yr discharge from the pond. If the pond were to overtop, it will spill in a historic south easterly direction and into the No. 8 ' Ditch. No structures will be inundated if overtopping occurs. A spillway will be sized to convey any overtopping without jeopardizing the integrity of the pond. The required volume for the 100-year storm and the 2-year water quality storm in the detention pond is 45.04 ac-ft. The site was analyzed using UDSWM. The basin widths were obtained by taking the area of the basin, and dividing it by the length of the flow path. The supporting documentation for the Detention Pond Design can be found in Appendix B. C 1 1 L 1 TST, Inc. 24 November 18, 2002 ' 0953-003 ' 3.3 Erosion Control The grading of Maple Hill will be consistent with the approved SDDM criteria, therefore minimal erosion control efforts will be necessary during the construction of the project. A concern regarding sediment transport from the site is the existing No. 8 Irrigation ditch to the east of the site. During construction, this concern will be mitigated primarily by temporary structural measures of silt fence adjacent to areas that drain offsite. Additional measures will be used upstream in the basins by installing gravel filters over all of the inlets and curb openings and ' straw bale check dams will be installed in the swales were required. Upon completion of the utility work, the roads will be paved and the entire disturbed area of the site will be reseeded and mulched to provide soil stabilization until build out. Elimination of bare ' soils by pavement, riprap, or established vegetation will help eliminate the potential of soil erosion caused by storm runoff. Since it will take at least one growing season for the vegetation to establish itself, it will be necessary to leave the structural measures used during ' construction in place for some time. The developer will be responsible for periodic maintenance of the erosion control facilities during construction and the warranty period. At the end of the warranty period, and with the approval of the city, the developer will be responsible for removing ' all of the filters and silt fence. It may also be necessary to flush and remove any sediment that may have built up in the storm sewers. ' The Drainage Plan sheets, located at the end of the report, show the location of the proposed temporary and permanent erosion control measures. These measures are also shown the Grading & Erosion Control Plan sheets in the utility plan set. 3.4 Boxelder/Cooper Slough Master Plan Drainage Alternatives This section is regarding the Boxelder/Cooper Slough Master Drainage Plan alternatives. The ' Gillespie Farm Development Company (GFDC) met with Mr. Matt Fader, City of Fort Collins Drainage Master Planning. Mr. Fader requested GFDC to look at potential alternatives for the proposed Maple Hill detention facility to be able to discharge into future City of Fort Collins ' master drainage plan facilities in this Boxelder/Cooper Slough basin. The city specifically stated to look at discharge alternatives that would be located on the east side of the existing No. 8.ditch. The following exhibit, "Drainage Exhibit for Maple Hill", depicts two (2) potential retrofit discharge scenarios for the proposed Maple Hill detention facility. The first alternative is having ' a suspended pipe across the No. 8 ditch discharging into a future drainage swale. This alternative allows the normal irrigation flows (150 cfs) to pass under the suspended pipe unobstructed. However, if irrigation flows and a 100-year storm event occur simultaneously the 100-year water surface elevation will be above the drainage pipe. The second alternative is a siphon. This potential retrofit design from a conceptual standpoint ' appears to be the least conflicting with the existing ditch operation. Either alternative can be used at a future time once the cities master plan improvements are in place. As always, coordination between properly owners and securing mutually beneficial ' easements will be necessary for any redesign of the detention facility. TST, Inc. 25 November 18, 2002 ' 01153-003 11 Ic ol 0, v Z5 co ol LO Iq rA 0 LO Ct) {{ Lq C� C) r--: C� LO ol o'4 ( , I 00 0, r �# # ti W [ on ol CD Ln � \) 10 42 u ca 10 ol ol -BE � � � \�\ ) \ 0 > 0 R C14 C'q ' 3.5 Variance Request ' The variance request is in regards to storm sewer pipe slope from the minimum standard of 0.4%, to a minimum pipe slope of 0.2%. Per our meeting on January 9, 2003 we have approximately 105-feet of 48" x 76" ERCP and 40-feet of 34" X 53" ERCP, Class III, storm sewer pipe located within the ROW that is designed at a 0.2% slope. In addition, we have 150' of 48" x 76" ERCP, Class III, storm sewer pipe located outside of the proposed street going into the NE corner of the detention facility that is designed at a 0.2% slope. Therefore, approximately 295-feet of storm sewer line ST-5, located on Sheet 67 of the Maple Hill t construction drawings, will be at a 0.2% slope. As stated in our meeting, you felt that due to the minimal amount of lineal feet of storm sewer and due to elevation site constraints of the detention pond, you will support this variance request. 1 TST, Inc. 27 November 18, 2002 ' 0953-003 I 0 0 H 1 1 APPENDIX A RATIONAL METHOD ANALYSIS 0 7 L 1 1 u 1 I 1 1 Hydrologic Calculations Methodology: Rational Method Peak Runoff: Q = C CfIA where: Q = Peak Runoff (CFS) C = Runoff Coefficient (Table 3-3 SDDC) Cf = Frequency Coefficient (Table 3-4 SDDC) I = Rainfall Intensity (Fig 3-1 SDDC) A = Basin Area (Acres) Runoff Coefficient (C): Composite runoff coefficients were calculated for each subbasin based on the proposed development. Impervious areas were given a value of 0.95, and pervious areas a value of 0.25 (Lawns, 2-7%) as dictated by Table 3-3 of the SDDC Manual. Calculations for each subbasin are provided in this Appendix. Frequency Coefficient (Cf): 2-year = 1.00 100-year = 1.25 Note: CCf shall not exceed 1.00 Subbasin Area (A): Subbasins were delineated based on the final grading plan. The areas were calculated using the AutoCad area command. Overland Travel Time (Ti): The length of overland runoff was measured to best represent the subbasin. In some cases this was an average length, in others it was the longest. The average overland slope represents the total fall across the basin measured along the overland flow length. T, = 1.87 (1.1 - CCf)D12 (SlIT13 where: Ti = Overland flow time of conc. (min) C = Runoff Coefficient Cf = Frequency Coefficient D = Length of Overland flow (500'max) S = Slope N Channel/Gutter Flow: Gutter flow will be defined as flow in streets or channels: Figure 3-2 from the Urban Storm Drainage Criteria Manual (USDCM) was used to calculate the velocities in gutters and channels. Gutter Travel Time (T,) will be calculated as a function of the theoretical capacity by Tt = LN where: L = Gutter length V = Velocity by Fig 3-2 USDCM 11 L 1 77 n N N b O N O O N N r N t� p Ii a N N n Y ry H1 N m y�y _ 1'• O� ryry r� yy y yy pp pp�� a O m O O r m 1� O N ry V b p O N n N O O O m nl V1 P N N �p vl N N O P� O C O p v1 p N ry n r QOQ? fo�opp p ,• ry e N vl W �o o v� o n ry n r^ m r_ r r a n b v� m W a$ W ry S 8. > y V m m < > p O O y v d N ry ry ry CI (y N.. N N ry N N N N. N fN`I CNI N N N. N N N N N. (y N N ry N ry ry ry ry - .-. - - r V of a a V M p O O S S S S S S S O O O O O O O O S O S O S O O S S S S S O O O O O p O S S O S S O O S N b h b b vb1 N Q p� V O O OO OO C O O O O O O O O O O O O O O O O O O C O O O O O O OO O O O O O O O O O O O < goo, m fv �.oi a N v pp p �p P ry v e P r m n b m b n n o vbi n o v P r$ n m na b U� p p 4 Z 3 F N �j Z v N N P N N w p r ry P fV O P P b N N N P N ^1 vn1 �Oi1 o a T C N O� n„ (V ImV P U 0 m O N r YN1�O r P r N N N N N N P b n pp O v< w 8 n 2o 0 o w o o o P V Q P d O h P� N Q• m� P ry^ O yWj S a I m r0,' O O ry O 101 lOJ P N V� m ry P n b O O O O I w0 V a ry ry ry ry ry ry ry - - - - - - ^ - - - - - - - U z a �U�Esagos sssosso$$oss000Ssoo soon 000s oogso$ N ^ R 4 07 O O O O O O O O O O C O O O O O O O OO O O O O O O O a US yy N N N N N N N ry N M N w O O a' y u u u u o o a c g o 0 0 0 0 0 0 0 o o 0 0 m a z � V 0 m 'O N b W O O G O O O O O O O O O OO O Q Q Q P Q N N M m N O m Y P o o rry n q w w w Qw n a O O O O O O O O O O W N O 0 Gd O y I „ 1` N P m- N YI 'O 0. P V Q' P O Q m N m - N r ,N^. rW M rail N O fn`i S r W ry G N 0„ m iV a ti a EI N r n r b V O n n n W r n m 4 n n r r VN1 Q N g r W O P q n m b b rNl n N Q V n r O PI T q g P W b W q q P 1� r q P W r a Q q q n Oq b t� q n r W W N P b q (O Q q q W' NW ^ T n m WN Iq r n O� O qoqo N N r 4 b NI .� N IPV N Q VNi N n O qo <^N� m o � k p. do pO_ p p pp p N O O O O m O M O m CI ^ P O O? O 4 S S a m N n1 g O Q 4 N N O O Q 4. S V 4 ti^ N W ti^ N N F N Ny O] N- ^ q 0 H N �C Q W O W n W, ^- N w N. ry - .. V^ O b,- r b N W m N N q O N 4 b n b b n GG r P b N ry .-. O O N r .+ N �p r N- O y O P g b O O b t� 4 OO O- O 16 0. N' i N N e.l p� S^ ry O b N b S b �O V O q O N O= N y eh Q r O `O fV NI n N O Q O 'f N1 N rl 1Y e a 4 m o nova - O O o o r r n ==ri ni o o-: N-.� c o rivo o.riv ri O ri- o oo..o ci N-�.io - v v rv..�ri ri ry < 0 V W (y T wMY ry d^ b N v� b m n O vnl 0 vbl N O m Q y d n YN1 ( r I N N r r r1 0 0 Ci '••' T d N N b N N m O O� M q 0 m .N O N Y1 . O M br b N YI C z� pp p p W z 0 a O ciP a€ c u r b N P m ry N N r m m r ry b g yy .. N r r m U F a � - r r --- V �a a� 0 i o g n v1 b q d b Q n r N n GO �p d N d < U U^y NI NI N d d V� b b V O] m P r01 rrvrl ry N YI m W 0 d d d d O N N N N fV N N N nl N N M G a G O�� d d m vbi Q ry IOV �^ N M N m O N Q N N N O n VQI Q O O N n ^ O O O O r OO b N Q m V P n N1 P r n N N m Q g p O O O n N o n n n^ a w n o N o wi o I n ^ d y O q q g O b p j N r q d O m N ry n1 q � I� HI b H ry� d N a ry Nry O N� v01 V01 N O N O N N n d V O O N ry d O d d d Voi N rbl b y u 9 I rNl M YI NI O O m O O w p Nmy a. PIn.QrIm Q N n N N N r g N hlA1 q r r .N N N 4 Wi - N N1 r INI N g O b r1IN N m V m Or m „ N Q Q N V I g O N P� O li Ib q In O � N m .N-. y` .N+ N m �i10�1 � � N Nf 1�•N 1� ery � � r O O�IQ nl rIW nIm �O -' P COIN b ... O OI�O O NI N � m � < N Q i y I I y r' - n N b N1 4 g r b M h b Nlery P g q q„ O W pp Iq. �{ N h b b„ OIO � Q N m� N n b Nlrlir b Q�NIm N ry ql� ZA <� `J. `� � P P r 4 1�1 N N h NI YI m h N b ry O hN N �O yp N• y0 P P N b O� O N N b g M Q N- Q r N r m W 'f F^ Q N m, N W W O y0 b P- yO b W b b b Q r•1 I1 N P r m N ;�� q b y0 m ray m 4 n n m W- O m b W m b yp O P m m m yp n n n b b b n1 r g n r- N W W yp N N N P O N n q yD b 4 fyl 1+1 q q W n Al n- r h b N N Q 4 n N zz 1 PO O h nN n 4 q qi h N N O n n b b eh O ry h n N N N q- Q z P O yp b n e1 r r O OW O m V O O m q Oy b ^ n n q q. N N O m ry g q q O N rI O O q o n ^.^.^-rh�m ohno o N a S h am, -Hamm Y�[ y. N N VI q .P-. N m m h n q y N W m v1 NIh O m N N N-- q --- -- Q O lJ Q 4 f�1 N P P d N N W 00 q �qm m W P 4 Oy N g q y N O N n O O q r� h m r py p: q N ^ r N1 V O Y 4 fV N T O O p O OO m m_ ' r N r .r r N r r N N �+ r O �+ -+ r n- r M1r N N N N N N N N N N "1 IN N N N N === N N N= NIN N N ty NI ry= N= ry N N N N N N N N N N N _ir _ _I - -- N N N-- N N N N y I .d Y G p p p p p p p p p p p p p p p p p p Ip p p p p p p p p p p p p p p p p p p T p p p p p O O O O - O-- O-- O O-- O-- p p O p O,O O O- Oy O G O G O C C O p --- p- p -- {� � � O G p p O O O G O O G O G G p G p Q CL m r r m P W P m W V V N N NI m N N W W y m W m y0/1 N m Vnf b b n N b b 1p b �p m b n N b b b P m m 4 b b N W m n N N b p d o 0 o d d o o d d c o o d o o d d d d d o oI d o o d d o o d d d d d d o 0 o d d d d d o d d d d d x� zI ry Q ��pp N 1b0 O b-Ib�iem1I C NgV m ON Oq 12 N- W 6 G Q 3 a f] �P � 6<< `21N< r W r14, < bI Q� O n 3 N NO r< o P a< o< a o <I w Z m O p O o v- < c: < la 04 O <1 0 < N ;� I 00 n Z 4 z3�+Xb nmgXo W -;N A14 '•�, N �IW QI x01N N N 0 F J �zWl � n PI01 1--1 1 1 1.IgIP -Imlnl$InInININI-IN �I�I�IN�'P" IN��I NINIenI NITl4'IM F IF[ T N Vl Vl N N N b V1 N V1 N V1 N Vl N b {sj N N N- N N- N N N N- N N n-- N n N N N N N yl b N N Vl N N N N N N N- N N N V1 V1 N N N Vl N N N N N N N N N VI N N VI V1 N �} O r _ r _ _ _ - .-. .. .� ry N _ _ _ i y $$$ -- - CR - - IR - - $ -.: ..: $$$po,o - - -.J o'o r r- $$$$$8$$$ r o$80$080 $o8 'o 'o,o g8 oS Q„ O P 4 N P w N w It` O I� N N r r Vl b 1p O 1p 1p O t` b r1 l0 .+ N b b O rl 1p 1p N p b 1p N Al b b w !` b b b r 4 b 1p 1p b w N w l+1 N 4 N P a o 0 0 0 0 0 o c o 0 0 0 0 o c o 6 0 6 0 6 0 6 0 0 666666666 o 0 0 0 0 0 0 0 0 0 p� Al b r1 w w r„ r l� 4 N 4 w 1p N N N N1 O N 1�1 N N b t/1 w 4 P g lY b N 4 N P P O O N N r b P Yl rl N N w b w O QIOIQIOIQIOl4lelb QIP�r N INI NINININININININII MIminll3 TST, INC. Consulting Engln6ere RATIONAL ANALYSIS for Sub -Basin Al Data Basin Area: A = 1.60acre Runoff Coeff.: C = 0.81 Frequency Coeff. for 100-year : C f = 1.25 Overland flow length: D = 57.4ft Average overland slope : S = 5.2•% Overland Travel time: T; _ 1.87•(1.1 — C.0 f)'D0.5 min .— (S•100)0.33333 ft0.5 Ti = 0.72 min Gutter flow length : Lg = 664ft Average gutter slope: S = 1.4% PROJECT M .........953 - 003 ... Gutter Travel time (see Fig. 3-3) Vg = 2.366432 ft sec g Gutter travel time: Tt = LTt = 4.68min g Time of Concentration: Tc = Ti + Tt Tc = 5.39 min From Fig.3-1 rainfall intensity 1100 = 9.55. in hr ft3 Q100 = C-Cf'1100'A Q100= 15.6— sec 11 1 7 L✓ t TST, INC Consulting Engineer, 748 Whalers Way - Building D Fort Collins, CO 80525 Phone: (970) 226 0557 Fax: (970) 226-0204 COMPOSITE RUNOFF COEFFICIENT: (Based on values from Table 3-3 SDDC) % Impervious/Pervious based on proposed layout with areas determined by Autocad. C = [(%PERV)(COEF PERV)+(%rMP)(COEF IMP)]/1 SUBBASIN PERVIOUS AREA IMPERVIOUS AREA COMP. C SUBBASIN PERVIOUS AREA IMPERVIOUS AREA COMP. C % COEF. % COEF. % COEF. % COEF. At 20 0.25 80 0.95 0.81 Bl 20 0.25 80 0.95 0.81 A2 20 0.25 80 0.95 0.81 B2 59 0.25 41 0.95 0.54 A3 20 0.25 80 0.95 0.81 B3 36 0.25 64 0.95 0.70 A4 20 0.25 80 0.95 0.81 B4 36 0.25 64 0.95 0.70 A5 44 0.25 56 0.95 0.64 B5 50 0.25 50 0.95 0.60 A6 58 0.25 42 0.95 0.54 B6 30 0.25 70 0.95 0.74 A7 49 0.25 51 0.95 0.61 B7 51 0.25 49 0.95 0.59 A8 20 0.25 80 0.95 0.81 B8 53 0.25 47 0.95 0.58 A9 20 0.25 80 0.95 0.81 B9 45 0.25 55 0.95 0.64 A10 20 0.25 80 0.95 0.81 B10 53 0.25 47 0.95 0.58 All 55 0.25 45 0.95 0.57 B11 36 0.25 64 0.95 0.70 Al2 61 0.25 39 0.95 0.52 B12 20 0.25 80 0.95 0.81 A13 20 0.25 80 0.95 0.81 B13 96 0.25 4 0.95 0.28 A14 20 0.25 80 0.95 0.81 B14 44 0.25 56 0.95 0.64 A15 52 0.25 48 0.95 0.59 B15 51 0.25 49 0.95 0.59 A16 64 0.25 36 0.95 0.50 A17 20 0.25 80 0.95 0.81 A18 20 0.25 80 0.95 0.81 A19 20 0.25 80 0.95 0.81 Basin B % Imp = 48 Basin A % Imp = 53 JOB NO: 0953-003 ' PROJECT: SHEET:1 OF3 CALCULATION FOR: RUNOFF COEFFICIENT DATE:U 2V03 MADE BY: SD FILE: Hydmm®..ts I 1 TST, INC Consulting Engineer. 748 Whalers Way - Building D Fort Collins, CO 80525 Phone: (970) 226 0557 Fax: (970)226-0204 COMPOSITE RUNOFF COEFFICIENT: (Based on values from Table 3-3 SDDC) % Impervious/Pervious based on proposed layout with areas determined by Autocad. C = [(%PERV)(COEF PERV)+(%IMP)(COEF IMP)]/1 ' SUBBASIN PERVIOUS AREA % COEF. CI 20 0.25 ' C2 20 0.25 C2-1 96 0.25 C3 50 0.25 ' C4 59 0.25 C5 49 0.25 ' C6 C7 42 56 0.25 0.25 C8 59 0.25 C9 46 0.25 C9-1 46 0.25 C9-2 96 0.25 ' C10 31 0.25 C11 51 0.25 0 IMPERVIOUS AREA % COEF. 80 0.95 80 0.95 4 0.95 50 0.95 41 0.95 51 0.95 58 0.95 44 0.95 41 0.95 54 0.95 54 0.95 4 0.95 69 0.95 49 0.95 Basin C % Imp = 45 SUBBASE) PERVIOUS AREA ' % COEF. 106 (OSI) 87 0.25 107(OS2) 87 0.25 ' 108(OS3) 86 0.25 109(OS4) 20 0.25 Basin OS % Imp = [1 IMPERVIOUS AREA % COEF. 13 0.95 13 0.95 14 0.95 80 0.95 13 COMP. C SUBBASIN PERVIOUS AREA IMPERVIOUS AREA COMP. C % CIDER % COEF. 0.81 D1 42 0.25 58 0.95 0.66 0.81 D2 61 0.25 39 0.95 0.52 0.28 D3 35 0.25 65 0.95 0.71 0.60 D4 35 0.25 65 0.95 0.71 0.54 D5 55 0.25 45 0.95 0.57 0.61 D6 47 0.25 53 0.95 0.62 0.66 D7 56 0.25 44 0.95 0.56 0.56 D8 56 0.25 44 0.95 0.56 0.54 D9 55 0.25 45 0.95 0.57 0.63 D10 48 0.25 52 0.95 0.61 0.63 D11 36 0.25 64 0.95 0.70 0.28 D12 45 0.25 55 0.95 0.64 0.73 D13 37 0.25 63 0.95 0.69 0.59 D14 45 0.25 55 0.95 0.64 D15 39 0.25 61 0.95 0.68 D16 36 0.25 64 0.95 0.70 D17 70 0.25 30 0.95 0.46 D18 70 0.25 30 0.95 0.46 D19 70 0.25 30 0.95 0.46 COMP. C 0.34 0.34 0.35 0.81 Basin D % Imp = 49 JOB NO: 0953-003 ' PROJECT: SHEET:2 OF3 CALCULATION FOR: RUNOFF COEFFICIENT DATE:Ing/03 MADE BY: SD FILE: Hydromas.xls TST, INC Consulting Engineer 748 Whalers Way • Building D Fort Collins, CO 80525 Phone: (970) 226 0557 Fax: (970) 226-0204 COMPOSITE RUNOFF COEFFICIENT. (Based on values from Table 3-3 SDDC) % Impervious/Pervious based on proposed layout with areas determined by Autocad. C = ((%PERV)(COEF PERV)+(%IMP)(COEF IMP)]/1 SUBBASIN PERVIOUS AREA IMPERVIOUS AREA COMP. C SUBBASIN PERVIOUS AREA• IMPERVIOUS AREA COMP. C % COEF. % COEF. % COEF. % COEF. E1 47 0.25 53 0.95 0.62 OFl-1 20 0.25 80 0.95 0.81 E2 51 0.25 49 0.95 0.59 OF 1-2 95 0.25 5 0.95 0.29 E3 42 0.25 58 0.95 0.66 OF1-3 20 0.25 80 0.95 0.81 E4 21 0.25 79 0.95 0.80 OF1-4 95 0.25 5 0.95 0.29 OF2 70 0.25 30 0.95 0.46 OF3 95 0.25 5 0.95 0.29 Basin E % Imp = 58 JOB NO: 0953-003 PROJECT: SHEET: 3 OF3 CALCULATION FOR: RUNOFF COEFFICIENT DATE:1/29103 MADE BY: SO FILE: Hyftm ..Is DRAINAGE CRITERIA MANUAL (V. 1) 50 30 ►- 20 3: 1 5 .1 RUNOFF Mon 0 FA M1 ON I IN ■oI�1� � FAME / _ �'■■� �IIIIII ��mm No .I •I • / I 2 .3 .5 1 2 3 5 10 20 VELOCITY IN FEET PER SECOND FIGURE RO-1 Estimate of Average Overland Flow Velocity for Use With the Rational Formula 06/2001 Urban Drainage and Flood Control District RO-13 . . . . . I . . rl q ...... Ij All It q I 11 1 City of Fort Collins Rainfall Intensity.Duration-Frequency Table for using the national Method (5 minutes - 30 minutes) Figure 3-1a puration (minutes) 2-year Intensity O nthr 10=year intensity inmc 100-year intensity nlhr 6.00' Z85: 4.87 -9.95 6.00 2:67 4.56 9.31 . 7.00 2.62 4.31 8.80. 240... 4J67 ICU 9:00 2.30 3:93 8.03 10i00 2.21 3.78 1.72 11:.00 . 213': 3.63 ° 7.42 12.00 2.05 3.50 7.16 ISM 10 3.39 6.02 14.00 1.92 . - 3.29 6.71 1 :00 1.87 . 31,19 6 52 15 00 1:81 - _ _ 3.08 6.30 17:00 1.75 2.99 ' 6:10 18.00 1.70 2.-90 5.92 19.00: 1.6&.: 2:82 5:75 20.00 :... 1.61 2.74 5.60 2140 1.56. 2.67 5`.46 22.00 153. 2:61 5.32 23.00 1.49` : 2.55 .6.20 24.00 1:46 2.49 5.09 25.00 1.43 2.44 4.98. 26.00 140 2.39 4.87 27.00 1 1y.�3y�7 1 29�..34 4.78 29.00 1.32 1 2.25 4.60 30.00 1.30. 1 2.21 4.52 L= 1 J 1 11 LJ IF-7 F1 I' City of Fort Collins Rainfall Intensity -Duration -Frequency Table for using the Rational Method (31 minutes - 60 minutes) Figure 3-1 b Duration (minutes) 2-year Intensity in/hr 10-year Intensity inmr 100-year Intensity in/hr 31.00` 1.27 2.16 4.42 32.00 1.24 2.12 4.33 33.00 1.22 2.08 4.24 .34.00. 1.19 2.04 4.1.6 35'i00 1.17 2.00 4.08 36.00 1.15 1.96 4.0.1 3700 1.13 1.93. 3.93 38.00 1.11 1.89 3.87 39.00 1.09 1.86 3.80 -.40.00 1.07 1.83 3.74 :41.00 1.05 . 1.80 3.68 42.00` 1.04 1.77 3.62 43.00 1.02 .1.74 3.56 . 44.00 1.01 1.72 '3.51 45.00 0.99 1.69 3.46 46.00 .0.98 .1.67 3.41 47:00 .0.96 1.64 3.36 48 00. 0.95 1.62 3.31 49.00 094 1.60 3.27 50.00 , 0.92 1.58 3.23 51.00 91. 1.56 3.18 52.00 0.90 1.54 3.14 53.00 0.89 1.52 3.10 , 4, 00 ... 0 86 _ :, 1.50'- ' 3:07 . . 55.00 0.87 1.48 3.03 56.00 0.86 1.47 2.99 57.00 0.85 1.45 2.96 58.00 0.84 1.43 2.92 59.00 0.83 1.42 2.89 60.00 0.82 1.40 1 2.86 I 1 i 1 11 1 1 1 APPENDIX B 1 UDSWM MODEL AND DETENTION POND ANALYSIS 0 1 1 1 1 1 1 1 0 1 I I I I I I I I I I I I I 0 F Z11 .I IV 1, Design Information (input): From the pond site grading plan, enter water surface elevations and measured contour areas in ascending order. Water Eq-elev. Volume Surface Contour above Elevation Area Datum It acres acre-ft (input) (input) (output) 4996.00 0 00 1-1!1 4:997.00 6.30 4998.00 4999.00 31.Q6 5000:00 5A6 50011.001 7.06 506200 8.40 111-4b 50&"00 -52 500151 8.75 ;R 95 IUD-Detention v1.00—big.xis, Irregular 11/14/2002, 9:59 AM I i I I I n 1 1 1 7 L ST�A"GE S� �ORAGE�FO.Rw�IRREGU�►RfGEOME�TRY Design Information (input): From the pond site grading plan, enter water surface elevations and measured contour areas in ascending order. Water Surface Elevation It (input) Eq-elev. Contour Area acres (input) Volume above Datum acre-ft (output) 4998.20 0:00 0:00 4999.00 0:25 .::_,,. 0.10 5000.00 1.07 0.76 5001.00 1.68 1',:, "5002:00 1`.80 f,;, 1388 ;50Q3.00 1: 92 Urll c, 6i74 -?5003.51 I'i98 M tfl# ;"1f16 73 , L - I ha ..ilwt rlf - ' UD-Detention v1.00_small.xls, Irregular 11/14/2002, 9:59 AM a S I 1 1 J 1 1 O c ou u •c 0 r .. w W d E m n E f h 1 w ^ }00000 Q O 0 F w w o 0 a 0 0 a 0 a 2 o w z N N N N 0 p Z o 0 0 0 0 r- J Z � C w wM M N N N W OO OO O• OO O 0 a F- N w 0 0 0 0 0 0 O% N N N N N N N N N N U < W a 0 0 0 0 0 W z t0 N t0 t0 t0 N a o 0 0 0 0 0 0 0 0 0 w - a z m w m 0 0 0 a 0 0 � J W w 0a� O O M O w a - Qv Z � N — _ O N r N n m m � 3 z U W O n N N N O z Lw w �Q000000$o w w o 0 0 0 0 0 0 0 w - - Z2 N N N N N N t0 t0 p Z 0 0 0 0 a 0 0 0 J F Z � N N N 23 c W o W a OO OO O OO OO O OO OO co a a o 0 0 6 6 0 0 0 K O 7 N N N N N N N N N N N N N N N N U < W a 0 0 0 0 0 0 0 0 W z t0 N cp N N c0 N f0 a o 0 0 0 0 0 0 0 U) w - z m w 0 0 0 0 0 0 0 0 N J N W W N N N N M M? ifa w IL - M N N Q¢ N r�pp9 O N CM'1 N N r Z V N mS N� tp N� ep O N m � � 3 N z F Z N M apap{{ N t0 N a W O N N N N N N N N 0 z w j .1 INC Consulting Engineers 748 W 748 Whalers Way Bldg D ' Fort Collins, CO 80525-4872 Phone: (970) 226 0557 2 1 1 2 3 4 WATERSHED 0 Gillespie Farm Dninsgn PI.- "m 8: 953-003 10 YF R Esining Condition - October 2002. 7ST Inc. Co uuldng Enginttn ' 240 0000 5.0 1 1 24 5 IAO 1.14 1.33 0,11 000.95 0.91 0.87 0.94 1.73 1.71 1.690.67 0.910.81 0.84 091 0.78 0.75 0.78 0.75 0.1J 0.71 0.69 0.67 1401 70 11563.110.40.0.0:40, 0160.25 0.1 0.30.31 0.S 0.0018 10.0.0:40,016 0.25 0.1 0.3 0.31 0.S 0.0018 927. 4.8 10 4027025 1402 702927. 54.8 10.0.010.0160.25 0.1 0.30.51 0.5 0.0018 1106 2:6978. 24.7 13.0.0130.0160.25 0.1 0.54.30 0.6 0.0018 1 107 25 720. 17.9 13.0,0110.016 0.25 0.1 0.5 4.50 0.6 0.0019 1 108 214472. 11.0 14.0.0220.0160.25 0.1 0.54.50 0.6 0.0019 C 0 2 401 402 0 703 900 3 1. 0 703 1 15. 672. 0.005 /. /. 0.035 10. 216 0 215 703 1 IS. 0.011 4. 4. 0.035 10. 2923. 0 214 703 1 IS. 2677. 0.027 4. 4. 0.035 10. 0 211 703 I IS. 26]]. 0.021 9. 0. 0.035 10. 0 702 703 3 1. ' 0 3 701 702 703 ENDPROGRAM 1 1 .1 UD.SfYbf Model for 100 year Existing condition I of 17 1 1 I I 11 1 I OmTST7INC Consulting Engineers 748 Wheless Way Bldg D Fort Collins, CO 805254872 Phone: (970) 226 0557 AGENCY -STORM WATER MANAGEMENT MODEL- VERSION PCA DEVELOPED BY METCALF+EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGDIEEERS, MC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA(JUNE IW3) HYDROLOGIC ENGINEERING CENTER CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CHIPS OF ENGINEERS (SEPTEMBER 19741 BOYLE ENGINEERING CORPORATION (MARCH 1985. JULY 1985) Modified to Ton MODSWMM inpm Rles .IIh mmmem statemem and up to 999 elemesu, 200 diversion up In 50 pain of hydmgnpb, stomgc Tooling or divmdon daft Septcmber 2000 by Aym Assmiatm OTAPE OR DISK ASSIGNMENTS JIN(U IIN(2) HN(3) IIN(4) JIN(5) JIN(6) IIN(7) ARID IIN(9) JN(10) 2 1 0 0 0 0 0 0 0 0 JOLTO) IOUT(2) JOUT(3) JOUT(4) IOUT(5) JOUT(6) JOUT(1) JOUr(3) IOUT(9) JOUTHO) 1 2 0 0 0 0 0 0 0 0 NSCRAT(I) NSCKAT(1) NSCRAT(n NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED PROGRAMCALLED "' ENTRY MADE TO RUNOFF MODEL •" Gillespie Farm Dminap Plan- Pmjem 8: 953403 100-YEAR Existing Condition - Oetobm 2002 -TSr lee. Conwlling En3lomm ONUMBER OF TIME STEPS 240 OINTEGRATION TIME INTERVAL(MINUTES) 5.00 25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OFOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5AOMINUTES OFOR RANGAGE NUMBER I RAT"' •-'+'STORY IN INCHES PER HOUR �- r I.00 1.14 1.33 2.23 2.94 5.49 9.95 4.12 2AS 1.43 1.22 L06 1.00 0.95 0.91 0.97 0.94 0.81 0.78 0.75 0.73 0.71 0.69 0.67 1 Gillespie Fmm Dmimge Plan- Pmjcm 8: 953-003 100-YEAR Existing Condition -Oc(ober 2002 -TST W. Cmoullin3 Engllsms SUBAREA CURER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGEHN) INFILTRATION RATEONRIR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/F) IMPERV. PERV. IMPERV- PERV. MAXIMUM MINIMUM DECAY RATE NO 401 701 1563. 110.4 10.0 0.0140 0.016 0.250 0.100 0.300 0.51 0.50 0.00190 1 402 702 927. 54.9 10.0 0.0110 0.016 0.250 0.100 0.300 0.51 0.50 0.o01g0 I 106 216 978. 24.7 13.0 0.0130 0.016 0.250 0.100 0.500 4.50 0.60 0.00180 1 107 215 720. 17.9 13.0 0.0170 0.016 0.250 0.100 0.500 4.50 0.60 0,00190 1 108 214 472. 11.0 14.0 0.0220 0.016 0.250 0.100 0.500 4,50 0.60 0,00180 1 OTOTAL NUMBER OF SUBCATCHMENTS, 5 OrOTALTRIBUTARY AREA(ACRESL 219.80 UD.SWM Model for 100-year Existing condition 2 of 17 TST, INC Consulting Engineers 748 Whalers Wayay Bldg D Fort Collins, CO 80525A872 Phone: (970) 226 0557 Gillespic Fmrr DrWmge Pin - Pmjw 8: 953-003 IO YEAR Exiting Cmdidm- Oclobcr 2002- TST Im. Cominhing Engioan HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 2 SUBCATCHMENTS -AVERAGE VALUES WITHIN TIME MTERVALS TIME(313VMM) 401 402 0 S. 0. 0. 0 10. 2. I. 0 is. 7. 4. 0 20. 15. 8. 0 25. 25. 13. 0 30. 47. 24. 0 35. 102. 52. 0 40. 113. 37. 0 45. 82. 42. 0 50, 72. 37. 0 55. 66. 34. 1 0. 63. 32. 1 5. 61. 32. 1 10. 60. 31. 1 15. 59. 31. 1 20. 59. 30. 1 25, 53. 30. 1 30. 57. 29. 1 35. 56. 29. 1 40. 55. 23. 1 45. 54. 27. 1 50. 33. 27. 1 55. 52. 26, 2 0. 51. 26. 2 5. 47. 24. 2 10. 43. 22. 2 15. 40. 21. 2 20. 38. 20. 2 25. 37. 19. 2 30. 35. 18. 2 35. U. 17. 2 40. 33, 17. 2 45. 32. 16. 2 50. 31. 15. 2 55. 30. 15. 3 0. 29. 14. 3 5. 28. 14. 3 10. 27. 13. 3 15. 26. 13. 3 20. 25. 13. 3 25. 25. 12. 3 30. 24. 12. UDSWM Model for 100 year Existing condition 3 of 17 INC Consulting Engineers 748 W 748 Whalers Way Bldg D ' Fort Collins, CO 805254872 Phone: (970) 226 0557 3 35. 23. 11. 7 40. 22. 11. l 4S. 23. I1. 3 50, 21. 10. 3 55. 20. to 4 0. 20. 10. nl 4 S. 19. 10. .. !' 4 10. 19. 9. 4 Is. 11. 9. 1 20. 18. 9. 4 25. 17. 9. 4 3. ❑. S. ' 1 35. 16. 8. 4 40. 16. 8. 4 45. 15. 8. ' 1 S0. I3. 7. 4 s3. Is. 7. S 0. 14. 7. s S. 14. 7. ' s 10. u. 14 7. 5 IS. 13. 6. 3 2. 11 S 235. 13, 6. 6 5 30. IL 6. 5 35. 12. 6. 5 40. 12. 6. ' t 5 45. It. 6. 5 50. 11. S. -' IL 6 0. 6 0. 11. 5. . 6 S. 10. 3. 6 10. 10. S. i 6 I5. 10. 5. 6 20. 10. S. 6 23. 9. S. 6 JS. 9. I. 6 40. 9. 4. 6 45. 9. 4. 6 50. S. 4. 55. S. 4. j`. 7 0. S. 4. 7 10. S. 1. 7 IS. 7. 4. 7 20. 7, 3. UDSIVM Model for 100-year Existing condition 4 of 17 INC Consulting Engineers 748 W 748 Whalers Way Bldg D Fort Collins, CO 805254872 Phone: (970) 226 0557 7 25. 7. 3. 7 3. 7. 3. ' 7 35. 7. J. 7 40. 7. 3. ' 7 45. 6. 7 50. 6. 3. 3. 7 55. 6. 3. 8 0. 6. 3. 8 S. 6. 3. ' 10 8 10. 6. 1. 8 15. 6. 3. a 2. 6. 8 255. 3. 3. 7. 8 30. 5. 3. 8 73. S. 2. ' 8 40. S. 2. 8 45. S. 2. 8 50. 5. 2. 8 SS. S. 2 ' 9 0. S. 2.. 9 S. 5. 2. ' 9 10. 4. 9 I S. 4. 2. 2. 9 20. 4. 2. 9 25. 4. 2. 9 4. 2. ' 35. 9 35. 4. 2. 9 40. 4. 2. 9 . 4. 2. ' 9 S0. {. 50 2. 9 35. 4. 2. 10 0. 4. 2. ' 0 5. 3. 2. 10 10. 3. 2. 10 15. 3. 7. l0 2. 3. 3. ' 10 25. 3. 1. 10 30. 3. 1. 10 35. 3. 10 40. 7. 1. 1. 10 45. 3. I. 10 50. 3. I. II 10. 3. I. UDSWM Mode! jar 100-year Existing condition 5 of 17 t I [1 11 1 INC Consulting Engineers 748 Whalen halcrs Way Bldg D Fort Collins, CO 80525A872 Phone: (970)2260557 11 15. 3. 1. 11 20. 3. 1. 25. 2. 1. 11 30. 2. 1. 11 45. 2. 1. 11 50, 2. 1. 11 55. 2. 1. 2 0. 2. 1. 12 5. 2. 1. 2 10. 2. 1. 2 I5. 2. 1. 12 20. 2. 1. 12 2s. 2. 1. 12 30. 2 1. 12 35. 2. 1. 12 40. 2. 1. 2 45. 2. 1. 12 50. 2. 1. 12 55. 2. 1. U 0, 2. I. U s. 2. I. 13 10. 2. 1. 13 15. 1. 1. 3 20. U 23. 13 30. 1. 1. 13 35. U 40. 13 45. 1. 1. U so. 1. 1. 13 55. 1. 1. 14 0. 1. I. 14 S. 1. 1. l4 10. I, 0. 4 I5. 1. 0. 14 20. 1. 0. 4 25. 1. 0. 14 30. 1. 0. 14 35. 1. 0. 4 40. I. 0. 14 43. I. 0. 14 50. 1. 0. 14 55. 1. 0. Is 0. 1. 0. UDSWM Model for 100 year Existing condition 6 of 17 I I1 I i 77 L 1 INC Consulting Engineers 748 W 748 Whalers Way Bldg D Fort Collins, CO 80525-0872 Phone: (970) 226 0557 15 S. 1. 0. 55 20. 1. 0. U 25. 1. 0. s 30. 1. 0. Is 35. 1. 0. u 40. 1. 0. 5 45. I. 0. Is so. 1. 0. Is 55. I. 0. 16 0. I, 0. 16 3. I. 0. 16 10, I. 0. 6 20. 16 25. 0. Q. 16 30. 0. 0. 6 35. 0. 0. 6 40. 0. 0. 16 45. 0. 0. 17 0. 0. 0. 17 5. 0. 0. 17 10. 0. 0. 17 15. 0. 0. 17 20. 0. 0. 17 25. 0. 0. 17 30. 0. 0. 17 35. 0. 0. 17 40. 0. 0. 17 45. 0. 0. 17 50. 0. 0. 17 55. 0. 0. 1 0. 0, 0. IB 5. 0. 0. 19 10. 0. 0. e Is. 0. 0. 5 20. 0. 0. 16 25. 0. 0. 6 30. 0. 0. B 35. 0. 0. 11 40. 0. 0. Is 45. 0. 0. is 50. 0. 0. VDSiVM Model for 100-year Existing condition 7 of 17 TST, INC Consulting Engineers WhalenWay D For CO Fort Collins, CO 80525-4872 Phone: (970)226 0557 H 35. 0. 0. 9 0. 0. 0. 19 S. 0. 0. • 19 10. 0. 0. 19 . 0. 0. 19 20. 20 19 75. 0. 0. 9 30. 0. 0. 19 35. 0. 0. 19 60. 0. 0. 19 e3. 0. 0. 19 50. 0. 0. 19 55. 0. 0. 20 0. 0. 0. 1 GRIcspic FannREx DngPlan- Pniec18: 953-003 00.YEYE C 1AR Ealaing ond'0bn-Ocleber 2002-TST Ins Comulting Eoglncrn ••. CONTINUITY CHECK FOR SU13CATCHMEMT ROUTING IN UDSWM2-PC MODEL "• WATERSHED AREA (ACRES) 218.800 TOTAL RAINFALL (INCHES) 3.671 ' TOTAL INFILTRATION (INCHES) 1.411 TOTAL WATERSHED OUTFLOW (INCHES) 1.992 TOTAL SURFACE STORAGE AT END OF STROM(INCHES) 1269 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL QoDD I Gillnpie I" Drafruge Plan-R Jac18: 953-003 100-YEAR Ex6 ing Condition. October 2002-TST Inc. Canudling Enemas WIDTH INVERT SIDESLOPES OVERBANiUSURCIIARGE GUTTER GUrrER HOP NP ORDIAM LENGTH SLOPE HORIZTOVERT MANNING DEPTH IK NUMBER CONNECTION (FT) (FT) (FTIFT) L R N (FT) 703 900 0 3 0.0 1. 0.0010 0.0 0.0 0.001 10.00 0 701 703 0 1 CHANNEL is .0 672. 0.0050 6.0 4.0 0.035 10.00 0 216 703 0 1 CHANNEL 15.0 3345. 0.0120 4.0 6.0 0.035 10.00 0 215 703 0 1 CHANNEL 15.0 2923. 0.0180 4.0 e.0 0.035 [am 0 214 703 0 I CHANNEL 13.0 2677. 0.0270 e.0 e.0 0.035 10.00 0 702 703 0 3 0.0 1. 0.0010 0.0 0.0 0.001 10.00 0 OTOTAL NUMBER OF GUiTERS(PIPES, 6 1 UDSWM Model for 100-year Existing condition 8 of 17 TST, INC Consulting Engineers 748 Whalers Way Bldg D Fort Collins, CO 80525A872 Phone: (970) 226 0557 Gillespie Fenn Dmimge PI" - Project 0: 953-003 100-YEAR foisting Condition-Oetaber 2002-TST Ins. Consulting Engines. ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTERIPIPE TRIBUTARYSUBAREA D.A.(AC) z11 0 0 0 0 0 0 0 0 0 0 toe 0 0 0 0 0 0 a 0 0 11.0 215 0 0 0 0 0 0 0 0 0 0 lo] 0 0 0 0 0 0 0 0 0 17.9 716 0 0 0 0 0 0 0 0 0 0 106 0 0 0 0 0 0 0 0 0 24.7 701 0 0 0 0 0 0 0 0 0 0 401 0 0 0 0 0 0 0 0 0 110.4 702 0 0 0 0 0 0 0 0 0 0 402 0 0 0 0 0 0 0 0 0 54.3 703 701 216 215 214 702 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 219.9 Gillmpic Fiona Oni., Pba- Pmjact e: 9534103 100-YEAR Existing Candilien-Oceober 2002 -TST Ins. Committing Eneineca HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOW ER NUMBER IS ONE OF THE FOLLOWING CASES! () DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN Ar FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CIS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CIS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HIUMIN) 701 702 703 0 S. 0. 0. 0. 0.00 0.00 0.00 0 10. 0. L 2. 0.10 0.00 0.00 0 15. 3. 6, 10. 0.20 0.00 0.00 0 20. It. 10. 22. 0.40 0.00 0.00 0 25. 22. 16. 41. 0.6() 0.0(1 0.0() 0 30. 44. 32. 84. 0.90 0.00 0.00 0 35. 101. 72. 196. I.50 0.00 0.00 0 40. 114. 43. 195. I.6() 0.00 OA ) 0 45. 91. 40. 165. Lau 0.00 0.0() 0 50. 72. 33. 150. 1-20 0.00 0.00 0 5S. 66. 35. 146. 1.20 0.00 0.00 1 0. 63. 30. 138. LIu 0.0O 0.00 1 3. 61. 33. 138. 1.IU 0.00 0.00 1 10. 60. 29. 132. t.q) o.o() 0.00 1 15. 60. 32. 132. I.10 0.0O 0.00 1 20. 59. 28. 126. I.Iu 0.00 0.00 1 25. 58. 31. In. LIU 0.00 0.00 UDSWM Model jar 100-year Existing condition 9 of 17 I 1 r 748 W INC ay Bldg Engineers 748 Whalers Way Bldg D Fort Collins, CO 80525-4872 Phone: (970) 226 0557 1 10. 57. 27. 120. I.6O 0.00 0.00 1 35. 56. 30. 121. 1.10 0.00 0.00 1 40. 53. 26. 114. I.I(1 000 ago 1 45. 54. 29. 114. 1.00 0.00 0.00 I so. 53. 25. 108. 1.00 0.00 0.00 1 55. 52. 29. 109. 1.00 0.00 0.00 2 0. 51. 24. 102. Lot) 0.00 0.00 2 S. 47. 24. 97. 1.00 0.00 0.00 2 10. 43. 20. 87. 0.9O 0.00 0.00 2 15. 41. 21. 84. 0.90 0.00 0.0( ) 2 20. 39. Is. 76. 0.90 CIA 0.01) 2 25. 37. 20. 75. 0.60 0.00 0.00 2 30. 36. 16. 69. aa() 0.00 0.0( ) 2 35. 34. 1a. 69. 0.90 0.00 0.00 2 40. 33. 15. 63. 0.80 0.00 0.00 2 45. 32. 17. 63, 0.00 0.00 0.00 2 SO. 31. 14. 58. 0.50 0.00 0.00 2 55. 30. 16. Is. 0.70 0.0O 0.00 3 0. 29. 13. 53. 0.70 0.00 0.0() 3 S. 28. 15. 54. 0.7() 0.00 0.00 3 10. 27. 12. 49. 0.70 0.00 0.00 3 15. 26. 14. 50. 0.7O 0.00 0.00 3 20. 25. It. 46. 0.70 0.00 0.00 3 25. 25. 14. 47. 0.70 aoO aot ) 3 30. 24; 10. 42. 0.70 0.00 0.00 3 35. 23. U. 44. 0.6() 0.0() 0.0() 3 40. 23. 9. 39. 0.6() 0.0() 0.0() 3 45. 22. 12. 41. 0.60 0.00 0.00 3 50. 21. 9. 37. 0.60 0.0() 0.0() 3 55. 21. 12. 39. 0.60 0.00 0.00 4 Q. 20. B. 34. 0.6() 0.00 0.0() UUSIVM Mode! for,100-year Extsting condition 10 of 17 G I I I I TST7INC ayBldConsultingEngineers 748 Whalers Way Bldg D Fort Collins, CO 805254872 Phone: (970)226 0557 4 S. 19. 11. 36. 0.60 0.0() 0.00 4 10. 19. S. 32. 0.60 0.00 0.00 4 15. 15. 10. 34. 0.6() 0.00 0.00 4 20. 18. 7. 10. 0.60 0.00 0.00 4 25. 17. 10. 32. 0.X) 0.0( ) 0.00 4 30. 17. 7. 28. 0.50 0.00 0.0O 4 15. 16. 9. 30. 1 0 0.X .00 0.00 4 40. 16. 6. 27. ) 0 0.X.00 0.00 4 45. 16. 9. 29. 0.50 0.00 0.00 4 50. I5. 6. 23. O.X) 0.00 0.00 4 55. 15. 9. 27. 10 0.X .00 0.00 5 0. 14. S. 23. 0.X ) 0.00 0.00 5 S. 14. a. 26. 0.SO 0.00 0.00 5 10. 14. 5. 22. 0.50 0.00 0.00 5 15. 13. a. 24. 0.5() 0.00 0.00 5 20. 13. S. 21. () 0 0s.00 0.00 5 25. 13. a. 23. 0.5() 0.00 0.00 5 30. 12. 4. 20. 0.40 0.00 0.00 5 35. 12. 7. 22. 0.40 0.01) 0.00 5 40. 12. 4. 19. 0.4O 0.00 0.0O 5 45. 11. 7. 21. 0.4O 0.00 0.0( ) 5 50. It. 4. 17. 0.4O 0.0O 0.00 5 55. 11. 7. 20. 0.4() 0.0() 0.0() 6 U. 11. 4. 16. 0.4() 0.X) 0.00 6 S. 10. 6. 19. 0.40 0.00 0.00 6 to. 10. 3. 15. 0.40 0.00 0.00 6 15. 10. 6. 18. OAU 0.00 o0O 6 20. 10. 3. 15, 0.4() 0.0() 0.0() 6 25. 9. 6. 17. 0.4O 0.0() 0.0() 6 30. 9. 3. 14. 0.4O 0.0O 0.0( ) 6 35. 9. 6. 16. UDSWM Model for 100-year Existing condition 11 of 17 INC Consulting Engineers 748 748 Whalen Way Bldg D ' Fort Collins, CO 805254872 Phone: (970) 226 0557 0.4( ) o.a) 0.a ) 6 40. 9. 3. 13. 0.4() o.a) 0.0() 6 45. 9. 6. 16. 0.4() o.a) 0.0() 6 50. S. 2. 12. 6 55. 0.4() 0.0() 0.0() 8. S. 13. 0.4() o.a) o.a ) 7 0. 8. 2. 12. 0.1O 0.0() 0.0() 7 S. 8. S. 14. o,3aO o.a) 0.0() 7 10. 8. 2. 11. 0JO o.a) 0.00 7 Is. 7. S. 14. 1 0.30 o.a l 000 7 20. 7. 2. 10. 0.3() 0.0( ) OA( ) 7 25. 7. 5. 13. 0.3O 0.0O o.a) ' 7 30. 7. 2. 10. 0.30 0.00 0.00 7 35. 7. S. 13. 0.3() 0.0() 0.0() ' 7 00. 7. 2. 9. 030 0-00 o�a ) 7 45. 7. S. 12. 0.3() 0.0() 0.0() 7 30. 6. 1. 9. ' 0.3() 0.0() O.a) 7 SS. 6. 4. 12 0.3() o.a) 0.0(1 A 0. 6. I. 8. 0.0.3()O.a) 0.00 I A s. 6. 4. 11. 0.30 o.a) 0.00 8 10. 6. 1. 8. 0.3() 0.0() 0.0() t 8 15. 6. 4. U. 0.3O 0.0O 0.0() 8 20. 6. I. 7. 0.3() o.a) 0.0() 8 25. S. 4. 10. 0.3() o.al 000 8 30. S. 1. 7. 0.3()o.a ) 0.0l 8 35. S. 4. 1 ' 0.30 o.a l 0.0() .al 8 40. S. 1. 7. 0.3()o.a) 0.01 8 45. S. 4. 9. 0.3() o.a) 0.0() 8 so. S. 1. 6. 0.3() O.a) 0.00 8 Si. S. 4. 9. 9 0. 0O.0.0()a ) O. 5.) s. 0.3() o.a) o.al 9 S. S. 4. 9. - - - -- - -- - -- - - - - -0d0-OnO -0.0() - -- - - - =-- -- - - - _ - - - - --- - --- UDSWMModet for 100-year Existing condition 12 of 17 7 U INC Consulting Engineers 748 W 748 Whalers Way Bldg D ' Fort Collins, CO 805254872 Phone: (970) 226 0557 9 10. 4. 1. 5. 0.20 O.a) 0.0O ' 9 15. 4. 0. 8. 0.1() O.IX) O.IX) 9 20. 4. 0. 5. 0.20 0.00 0.00 `j 9 25. 4. 3. S. - OX) o.a) 0.00 9 30. 4. 0. 5. 0.20 0.00 0.00 9 35. 4. 3. 8. 0.2O 000 000 9 40. 4. 0. 5. 0.2( 0.00 o.a r P 9 45. 4. 3. 7. Olt) 0.0O O.a) 9 50. 4. 0. 4. L' o.x( ) Otto 0.0) w 9 55. 1. 3. 7. 0.20 0.0(r 0.0() 10 0. 4. 0. 4. 0.20 000 0.0() 10 S. 4. 3. 7. 0.20 0.0() 0.IX) 10 10. 3. o. 4. ' 0.2O o.IX) o.a) 10 15. 3. 3. 7. 0.20 0.00 0.0() 10 20. 3. o. 4. 0.2O 0.00 0.0O 10 23. ]. .D 6. a.zO o.IX) o.oD 10 30. 3. 0. 3. 0.20 0.IX0 0.00 10 33. 1. .0 6. 0.2(1 o.a() o.o( ) i 10 40. 3. 0. 3. 0.20 0.0( ) 0.0() 10 45. 3. 3. 6. ' o.zO 0.00 0.00 10 so. 3. 0. 3. 0.20 0.00 0.0() (10 55. 3. 3. 6. 0.20 0.IX0 0.00 II 0. 3. 0. 3. - 0.20 0.IX 1 0.0) 11 S. 3. 2. 6. 0.40 0.0() o.IX) 11 10. 3. 0. 2. 0.20 oa) o.al I 15. 3. 2. 5. it 0.20 0.00 0.IX) r' 11 10. ]. 0. 2. 0 .2() o.a) 000 11 25. 3. 2. S. 0.20 o.IX) 0.00 11 30. 1 0. 2. 0.20 0.00 000 }., 11 35. i 2. 5. 0.20 0.00 o.a ) --11-40. '2. 0: -9.'" o o.zO .al 0.a1 UDSWM Model for 100-year Existing condition 13 of 17 I I t I 1 L 748 W INC ay BldgHng Engineers 748 Whalers Way BldgD Fort Collins, CO 80525-4872 Phone: (970) 226 0557 II 43. 2. 2. 3. 0.2() 0.IX) 0.0() 11 30. 2. 0. 2. 0.20 0.IX0 0.00 II 33. 2. 2. S. 0.2() 0.0() 0.IX) 12 0. 2. 0. 2. 0.2() CIA) 0.0() 12 S. 2. 2. S. 0.20 0.00 0.0() 12 10. 2. 0. 2. 0.20 0.00 0.0() 12 15. 2. 2. 4, 0.2() 0.0( ) 0.0() 12 20. 2. 0. 1. 0.20 0.00 0.0() 12 23. 2. 2. 4. 0.10 0.00 0.00 12 30. 2. O. 1. 0.10 0.00 0.00 12 33. 2. 2. 4. 0.14) 0.00 0.00 12 40. 2. 0. 1. 0.10 0.IX0 0.00 12 45. 2. 2. 4. 0.10 0.00 0.00 12 30. 2. 0. 1. 0.10 0.00 0.IX) 12 33. 2. 1. 4. 0.10 0.00 0.0 ) 13 0. 2. 0. I. 0.10 0.00 0.0O 13 S. 2. I. 4. 0.104) 0.00 13 10. 2. 0. 1. 0.10 0.00 0.00 13 Is. 2. 1. 4. 0.10 0.00 0.00 13 20. 1. 0. I. 0.10 0.00 0.00 13 23. 1. 1, 4, 0.1() 0.0( ) 0.00 13 30. 1. 0. 1. 0.10 0.00 0.00 13 33. 1. 1. 4. 0.10 0.00 o.IX ) 13 40. 1. 0,0. CIA) 0.00 0.00 13 43. 1. 1. 3. 0.10 0.00 0.00 13 30. 1. 0. 0. 0.10 0.IX ) 0.IX ) 13 35. 1. 1. 3. 0.1() 0.00 0.00 14 0. 1. 0. 0. 0.41 o.oO o.IX) 14 S. 1.) 1. 1 o.q0.00 0.00 14 10. 1. 0. 0. 0.10 0.IX0 0.00 14 13 1. 1. 3. UD.SWM Mode! for 100 year Existing condition 14 of 17 I INC Engineers 748 Whalers Way Bldg D 748 W ay Bldg D �. Fort Collins, CO 805254872 Phone: (970) 226 0557 0.10 o.al o.IXI 10 20. 1. 0,0. 0.10 0.00 0.IX ) IC 25. 1. 1. 0. 0.110.00 10 30. 1. 0. 0. 0.10 0.a) 0.a) 14 75. 1. 1.0 s. 0.10 o.IX) o.a 1 IC 40. 1. 0. 0. 0.I0 0.IX1 0.01 11 45. I. I. s. 0.100o.IX ) 14 so. 1. 0. 0. 50. 0.IO Oa) 0•0 1 N ss. 1. 1. s. o.[I) o.a l o.IX 1 1. 0. 0. o.lU o.IX) o.IX ) 15 s. 1. 1. s. 0.11 l 0.0.1 ) Is 0. lo. 1. o. o. 0.10 0.01 0A) 13 IS. 1. I. 2. 0.10 0.00 0.IX1 ' Is 20. 1. o. -0.0 0.10 o.a) o.IX ) IS 25. 1. 1. 2. 0.1() 0.a) 0.00 IS 30. 1. 0. 0. 0.10 o.IX l o.IX l Is 35. 1. 1. 2. 0.10 0.00 o.al IS w. 1. 0. 0. 0.10 000 1.00 Is CS. I. I. 2. 0.10 0.00 0.IX0 15 so. I. D. 0. 0.10 0.IX0 0.IX) Is 55. 1. 1. 2. 0.10 0.00 o.a) 16 0. I. 0. 0. O.IO 0.0(1 000 t 16 S. 1. 0.O.a) '0 O.IO O.a) 16 10. 1. 0. 0. 0.10 0.00 0.IX1 16 IS. 1. 0. 2. ' 0.10 0.IX1 000 16 20. 1. 0. 0. 0.10 000 o.IX ) Ib 25. 1. .0 2. 0.10 o.IX) o.IX) ' 16 30. 1. 0. 0. 0.10 0.00 000 16 )S. 0. 0. 1. 0.10 0.00 0.00 ' 16 40. 0. o. 0. 0.10 0.00 o.IXl 16 65. 0. 0. 1. _ 0.1()..00()aIXl__.. UDSWM Mode! for 10&yeor F. ting condition 15 of 17 I 11 I 1 I n I t FI 1 7 TST, INC Consulting Engineers 748 Whalers way Bldg D Fort Collins, CO 805254872 Phone: (970) 226 0557 16 50. 0. 0. o. 0.10 0.00 0.a) 16 55. 0. 0. 1. 0.10 0.00 0.a) 17 0. 0. 0. 0. 0.10 O.a) 0.00 17 5. 0. 0. I. 0.10 0.00 o.a ) 17 10. 0. 0. 0. 0.1() 0.01 0.00 17 15. 0. 0. I. 0.1( 1 0.00 0.00 17 20. 0. 0. 0. 0.10 000 0.00 17 25. 0. 0. 1. 0.10 0.01) O.a ) 17 50. 0. 0. 0. 0.10 0.00 0.0( ) 17 55. 0. 0. I. a'()o.a) 0.a) 17 40. 0. 0. 0. 0.10 o.a) 0.a) 17 45. 0. 0. 1 0.00 o.o(1 not ) 17 50. 0. 0. 0. 0.00 on() o.a ) 17 55. 0. 0. 1. 0.00 0.00 o.a) I8 0. 0. 0. 0. 0.00 0.00 0.00 I8 5. 0. 0. 1. 0.00 0.00 0.00 IB 10. 0. 0. 0. 0.00 0.0l 0.00 I8 15. 0. 0. 1. Ono Goo Got) I8 20. 0. 0. 0. 0.a) 0.a) 0-a) 18 ls. 0. 0. 1. 0.0(1 0.00 0.00 IS 50. 0. 0. 0. 0.00 0.a ) 0.00 19 55. U. 0. 0. 0.00 0.00 o.a ) 18 40. 0. 0. 0. 0.0() o.al o.a) 19 45. 0. 0. 0. 0) o .a.a) 000 18 50. 0. 0. 0. 0.01 0.00 0.00 I8 55. 0. 0. 0. o.a) 0.a) o.a) 19 0. 0. 0. 0. 0.00 o.a) 0.00 19 5. 0. 0. 0. 0.00 O.a) 0.01 19 10. 0. 0. 0. 0.00 0.00 0.00 19 Is. 0, 0. 0. 0.00 0.00 0.00 0.00 0.00 0.00 UDSWM Model for 100-year Existing eondidon 16 of 17 TST, INC Consulting Engineers 748 Whalers Way Bldg D Fort Collins, CO 80525-4872 Phone: (970) 226 0557 19 25. 0. 0. 0. () 0 0.0.a) o.a) 19 50. o. o . ' .0.0 o.a) aa) o.a) 19 53. 0. 0. 0. 0.00 0.00 0.00 19 10. 0. 0.10 0. 0.00 g.a) o.a ) 19 45. 0. 0. 0. 0.00 0.0( 1 0.01 19 so. 0. 0. 0. 0.00 0.00 0.00 19 $5. 0. 0. 0. 0.06 0.01 o.a) 20 0. o. 0. 0, 1 0.00 0.00 0.00 1 Gillespie Funs Dniugo Plan - Project 0: 955-001 IW-YEAR Existing Condition -October 2002 -TST Inc. Consulting Engineer, ' ... PEAK FLOWS, STAGES AND STORAGES OF GVTTERS AND DETENSION DAMS ^• CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CPS) (FT) (AGFT) (NRAUN) 702 71.7 (DIRECT FLOW) 0 35. ' 214 11.2 0.26 0 so. 21$ 15.7 0.55 0 50. 216 19.0 0.45 0 55. 701 113.9 1.52 0 40. 705 195.5 (DIRECT FLOW) 055. 900 1953 (DIRECT FLOW) 055. I ENDPROGRAM PROGRAM CALLED UDSIVM Modelfor 100-year Existing condition 17 of 17 1 I I 1 1 OMTST, INC Consulting Engineers 748 Whalers Way Bldg D Fort Collins, CO 8052SA872 Phone: (970) 226 0557 a 1 1 2 3 6 WATERSHED a Gil leapie PamDrainage Plan - Project 1: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers 260 0000 5.0 1 26 5 1.00 1.16 1.33 2.33 2.06 5.69 9.95 6.12 2.60 1.61 1.2E 1.06 1.00 0.95 0.91 0.67 0.06 0.01 0.70 0.15 0.73 0.71 0.69 0.67 1 lol 201 505. 26.3 53.0.0120.016 0.25 0.1 0.3 0.51 0.5 0.0016 1 102 2021068. 60.9 50.0.0160.016 0.25 0.1 0.3 0.51 0.5 0.001e 1 103 203 666. 23.5 53.0.0270.016 0.25 0.1 0.3 0.51 0.5 0.0010 1 lee 2041025. 33.5 50.0.0000.016 0.25 0.1 0.3 0.51 0.5 0.0010 1 1D5 2051154. 26.7 56.0.0060.016 0.25 0.1 0.3 0.51 0.5 0.0015 1 106 216 910. 26.1 13.0.0130.016 0.25 0.1 0.5 6.50 0.6 0.0010 1 107 215 720. 17.9 13.0.0170.016 0.25 0.1 0.5 6.50 0.6 0.0011 1 100 216 671. 11 .0 14.0.022 .016 0.25 0.1 0.5 6.50 0.6 0.0010 6 1001 0 106 305 106 107 300 0 0 201 3 3011 0 6 0. 526. 0.020 10. 526. 0.030 0 206 306 0 6 0. 600. 0.010 ]. 600. 0.020 0 302 301 0 9 a . 550. 0.020 ]0. 0.0 20 0 207 307 0 6 0. 367. ]61. 0.00101 l0. I"- 0.001 0 200 306 0 9 0. 236. O.Oal 30. 116. 0.001 0 203 303 0 6 0. ]67. 0.0a1 30. 267. 0.001 0 219 312 0 6 0. 617. 0.002 30. fill. 1.101 0 213 313 0 6 0. le6. 0.003 30. 186. 0.002 0 216 316 0 6 0. 1]20. 0-"'20. 1120. o.a03 0 210 310 0 6 0. 266. 0.002 30. 266. a 002 0 206 306 0 6 0. 536. 0.002 10. 53fi. 0.002 0 209 309 0 6 0. ]90. 0.00] 20. 290. 0.002 0 205 305 0 9 0. 659. 0.003 30. 659. 0.00] 0 215 315 0 6 0. 631. 0.001 30. 132. 0.001 0 216 316 0 6 0. 606. 0.00] 30. 696. 0. 002 0 217 317 0 9 0. 500. 0.006 3a. 500. 0.006 0 301 106 0 3 1. 0 306 207 0 3 1. 0 307 20e 0 3 1. 0 301 207 0 3 1. 0 306 600 0 3 1. 0 306 209 0 1 1. 0 309 600 0 3 1. 0 303 212 0 3 1. 0 310 400 0 3 1. 0 305 600 0 3 1. 0 311 700 0 3 1. 0 312 210 0 3 1. 0 313 212 0 3 1. 0 316 213 0 3 1. 0 315 216 0 3 1. 0 316 211 0 3 1. 0 317 206 0 3 1. 0 600 311 l 2 1. a.0 a.0 0.2 0.0 36.3 0.7 67.0 10.0 0 6 305 306 309 310 ENDPROGRAn 0 0 a 0 0 0 50. 50. 0.016 0.6 10. 3a 0.01 50. 50. 0.016 0.0 .6 11. 11. 0.02 5.0 50. 50. 0.016 0.6 10. 10. 0.02 5.0 50. 50. 0.016 0.6 10. 10. 0.02 5.0 50. 50. 0.016 0.6 10. 10. 0.0] s.0 50. 50. 0.016 0.6 10. 10. 0.02 5.0 50. 50. 0.016 0.6 30. 30. 0.02 5.0 50. 50. O.Olc 0.6 Ia. la. 0.02 5.0 50. 50. 0.011 0.6 10. 10. 0.02 5.0 So. 50. a 016 0.6 10. 10. 0.02 5.0 50. 50. 0.016 0.6 10. 10. 0.02 5.0 5a. 50. 1.016 0.6 10. 10. 0.02 5.0 50. 50. 0.016 0.6 10. Ia. 0.02 5.0 so. So. 0.016 0.6 10. Ia. 0.021 5.0 50. 50. 0.016 0.6 10. 10. 0. 020 5.0 50. 50. 0.016 0.6 10. 10. 0.020 5.0 1 16.2 5.D 25.9 7.1 69.7 10.3 UDSIVM Mode! for 100-year Proposed condition 1 of 19 TST, INC Consulting Engineers 748 Whalers Way Bldg D tFort Collins, CO 805254872 Phone: (970) 226 0557 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MRAMEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF P HOOT, INC. ' UNIVERSITY OF FLORIDA WATER RESOURCES BNOINBBER.9, INC. (SEPTEMBER 1970) UPDATED RY UNIVERSITY OF FLORIDA (JUNK 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 19851 ' Modified to run MOUSgO input file. With coacent statavanta and up to 999 element., 200 diver.tona up to 50 palm of hydrograph., Storage routing or diver.ion data Sep[enibv[ 200E by Ayrva Aoeoclatee OTAPE 00. O[SR ASSIGNMENTS JIN(1) JIN(2) JIN(1) JIM(4) JIH(5) JIN(61 JIN01 JIN(0) JIN(91 JIM(10) 2 1 0 0 0 D 0 0 0 0 ' JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUr(S) JOUT161 JOUT 171 J04117(0) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 HSCRATM NSCMT(2) NSCMT(31 NSCMT(4) NSCRAT(5) 3 4 0 0 1 0 WATERSHED PROGRAM CALLED 1 ... ENTRY MADE TO RUNOFF MODEL •.. Gillespie Paris Drainage Plan - Project E: 953-003 ' 300-YEAR Developed Condition - October 2003 - TIT Inc. Consulting Engineer. ONUMEHR OF TIME STEPS 240 OINTEORATION TIME INTERVAL (MINUTES) 5.00 25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OFOR 24 RAINFALL, STEPS, THE TIME INTERVAL IS 5.00 MINUTES ' ODOR MINGAGS NUMBER 1 RAINPALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.64 5.49 9.95 4.12 3.48 1.4E 1.22 1.06 1.00 0.95 0.91 0.67 0.84 0.81 0.70 0.75 0.73 0.71 0.69 0.67 1 Gillespie Farm pl e Plan - October 953.001 300-YEAR Developeded2 0 Condition - October G01 - TBT Inc. Conevlting Engineers SUMMER GUTTER WIDTH ARM PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAOE(IM) INFILTRATION RAT8(IN/HR) GROW ' NUMBER OR MANHOLE (FT) (ACT IMPERV. (PT/PT) IMPERV. PGRV. IMPERV. PERV. MAXIMUM MINIMUM DECAY MTN NO 101 201 585. 26.1 53.0 0.0120 0.016 0.250 0.100 0.300 0.51 0.50 0.00180 1 102 202 1068. 40.E 50.0 0.018E 0.016 0.250 0.100 0.300 0.51 0.50 0.00180 1 103 203 666. 23.5 53.0 0.0270 0.016 0.250 0.100 0.300 0.51 0.50 0.00100 1 104 204 1025. 33.5 50.0 0.0080 0.016 0.250 0.100 0.300 C.51 0.50 0.0010E 1 105 205 1154. 26.7 56.0 0.0060 0.016 0.25E 0.100 0.300 0.51 0.50 0.00100 1 ' 106 216 978. 24.7 13.0 0.0130 0.016 0.250 0.100 0.500 4.50 0.60 0.00180 1 107 215 720. 17.9 13.0 0.0170 0.016 0.250 0.100 0.500 4.50 0.60 0.00180 1 IDS 214 472. 11.0 14.0 0.0220 0.016 0.250 0.100 0.500 4.50 0.60 0.00140 1 OTOTAL Numommt OP SUSIATcauum TB, 8 OTOTAL TRIBUTARY ARM 1ACRES), 212.40 1 UDSWM Mode! for 700-year Proposed condition 2 of 19 11 1 1 1 1 1 INC Consulting Engineers 748 W 748 Whalers Way Bldg D Fort Collins, CO 80525-4872 Phone: (970)2260557 Oilleepie Palm Orainaga Plan - Project 0: 951-003 100-YEAR OeVeloped Condition - October 2002 - TIT Inc. Coneulting Engineers HYI1R00RApH5 ARE LISTED MR THE POILOK a 8 SUBGTOGOGE - AVERAGE VALUES MITNIN TINE INTERVALS TIMEIHR/MINI 101 102 103 104 105 106 107 Ice 0. 0. 0 I5. 4. a. S. 5. S. 3. 2. 2. 0 30. 9. 20. 13. 13. 12. S. 4. 3. 0 25. 19. 3B. ]]. 25. 24. a. 6. 4. 0 30. 3B. l4. 44. 49. 46. 14. 30. 7. 0 35. 81. 150. 93. 105, 99. 31. 23. 16. 0 40, 101. 190. 106. 128. 119. 32. 34. 17. 0 45. 77. 1]9. ]1. 95. 67. 23. 1B. 12. 0 50. So. 103. 53. 71. 64. 22. 17. 12. 0 55. 46. at. 41. 56. 49. 20. 16. it. 1 0. 30. 68. 35. 47. 41. 19. 15. 10. 1 5. 33. 60. 30. 41. 35. 18. 14. 9. 1 10. 30. 54. 27. 37. 32. 17. it. 9. 1 15. 37. 50. 25. 34. 29. 17. 13. 9. 1 20. 26. 47. 23. ]]. 27. 16. 12. a. 1 25. 24. 45. 22. 30. 25. 15. 12. a. 1 30. 23. 42. 21. 29. 24. 25. It. 7. 1 35. 22. 40. 19. 21. 22. 14. 11. 7. 1 40. 21. ]a. la. 26. 21. 13. 10. 6. 1 45. 20. 36. 17. 25. 20. 13. 10. 6. 1 50. 19. 35. 17. ]4. 19. 12. 9. 6. 1 55. Sa. 33. 16. 2l. 19. 12. 9. S. 2 0. Is. 32. 15. 22. Is. it. a. S. 2 S. 15. 20. 13. 19. 15. Ia. 1. 4. 2 10. 12. 22. 9. 15. 12. 8. 6. 4. 2 15. 10. 19. ]. 13. 9, e. 6. ]. 2 20. 9. 16. 6. it. 0. 7. S. 3. 2 25. a. 14. S. Ia. 1. 7. S. 3. 2 30. 7. 12. 5. 9. 6. 6. 4. 3. 2 35. G. it. 4. S. S. 6. 4. 2. 2 40. 6. 10. 4. 7. S. 5. 4. 2. 2 45. 5. 9. 3. 7. 4. 5. 4. 2. 2 50. S. 9. 3. 6. 4. S. 3. ]. 2 55. 4. B. ]. 6. ]. S. 3. 2. 3 0. 4. 7. 2. 5. 3. 4. 3. 2. 3 5. 4. 7. 2. 5. 3. 4. 3. 2. 3 10. 4. 6. 2. 5. 3. 4. 3. 1. 3 15. 3. 6. 2. 4. 2. 4. 3. 1. 3 20. 3. 6. 2. 4. 2. 4. 2. 1. ] 25. ]. S. 2. 4. 2. 3. 2. 1. UDSWM Model for l00 year Proposed condition 3 of 19 INC Consulting Engineers 748 W 748 Whalers Wayay Bldg D Fort Collins, CO 805254872 Phone: (970) 226 0557 3 35. 3. 5. 1. 3. ]. 3. 1. 1. l +0. ]. +. 1. 3. 1. ]. ]. 1. ] +5. ]. +. 1. 3. 1. ]. 3. 1. 3 50. 1. +. 1. 3. 1. 3. 1. 1. 3 55. 1. +. 1. 3. 1. ]. 1. 1. + 0. ]. 1. 1. ]. 1. ]. 1. 1. + 5. 3. 3. 1. 1. 1. ]. 1. 1. 4 10. 1. 3. 1. ]. 1. 1. 1. 1. + 15. 1. 3. 1. 1. 1. 1. 1. 1. + 10. ]. 3. 1. 1. 1. 3. 1. 1. + 15. 1. 3. 1. 1. 1. 1. 1. 1. + 30. 1. 1. 1. 1. 1. 3. 1. 1. + 35. 1. 3. 1. 3. 1. 1. 1. 1. + +0. 1. ]. 1. ]. 1. ]. 1. 1. + +5. 1. 1. 1. 1. 1. ]. 1. 0. + 50. 1. 1. 1. ]. 1. ]. 1. 0. + 55. 1. 1. 1. 1. 1. 1. 1. 0. 5 0. 1. 1. 0. 1. 1. 1. 1. 0. 5 S. 1. 1. 0. 5 30. 1. 1. 5 15. 5 10. 1. 1. 1. 3. 5 35. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 5 30. 1. 1. 0. 1. 0. 1. 1. 0. 5 35. 1. 1. 0. 1. 0. 1. 1. 0. 5 +0. 1. 1. 0. 1. 0. - 1. 1. 0. 5 +s. 1. 1. 0. 1. 0. 1. 1. 0. 5 50. 1. 1. 0. 1. 0. 5 55. 1. 1. a. 1. 0. 1. 6 5. 1. 1. 0. 1. 0. 1. 0. 0. 6 30. 1. 1. 0. 1. 0. 1. 0. 0. 6 15. 1. 1. 0. 1. 0. 1. 0. 0. 6 20. 1. 1. 0. 1. 0. 1. 0. 0. 6 25. 1. 1. 0. 1. 0. 1. 0. 0. 6 30. 1. 1. 0. 1. 0. 1. 0. 0. 6 35. 1. 1. 0. 1. 0. 1. G. 0. 6 +0. 0. 1. 0. 1. 0. 1. 0. a. 6 +5. 0. 1. 0. 1. 0. 1. 0. 0. 6 50. 0. 1. 0. 1. 0. 1. 0. 0. 6 55. 0. 1. 0. 1. 0. 0. 0. 0. 1 0. 0. 1. 0. 1. 0. 0. 0. 0. 0 S. 0. 1. 0. 0. 0. 0. 0. 0. 7 10. 0. 1. 0. 0. 0. 0. 0. 0. l 15. 0. 1. 0. 0. 0. 0. 0. 0. 0 20. - 0. 1. 0. 0. 0. 0. 0. 0. V 25. 0. 1. 0. 0. 0. 0. 0. 0. UDSWM Mode! far 100-year Proposed condition 4 of 19 INC Consulting Engineers 748 W 748 Whalers Way Bldg Fort Collins, CO 80525-1872 Phone: (970) 226 0557 7 30. 0. 1. 0. 0. 0. 0. 0. 0. 7 35. 0. 0. 0. 0. 0. 0. 0. 0. ' 7 40. 0. 0. 0. 0. 0. 0. 0. 0. 7 Os. 0. 0. 0. 0. 0. 0. 0. 0. 7 50. 0. 0. 0. 0. 0. 0. 0. 0. ' 7 55. 0. 0. 0. 0. 0. 0. 0. 0. a 0. 0. 0. 0. 0. 0. 0. 0. 0. a S. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. a 20. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. a 35. 0. 0. 0. 0. 0. 0. 0. 0. 9 00. 0. 0. 0. a. 0. 0. 0. 0. a Os. 0. 0. 0. 0. 0. 0. 0. 0. a 50. 0. 0. 0. 0. o. 0. 0. 0. a ss. 0. 0. 0. 0. 0. 0. 0. a. 9 10. 0. 0. 0. 0. 0. o. 0. 0. 9 15. 0. 0. 0. 0. 0. 0. 0. 0. 9 20. 0. 0. a. 0. 0. 0. 0. 0. 9 25. 0. 0. 0. 0. 0. 0. 0. o. 9 30. 0. 0. 0. 0. 0. 0. 0. 0. ' 9 9 35. 00. 9 45. 0. 0. 0. 0. 0. 0. 0. 0. 9 50. 0. o. 0. 0. 0. 0. 0. 0. 9 55. 10 0. 10 5. 0. 0. 0. 0. 0. 0. 0. 0. ' . 10 30 10. 15. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10 20. 0. 0. 0. 0. 0. a. 0. 0. 10 25, 0. 0. 0. 0, 0. 0. 0. 0. ' 30 30. 0. 0. 0. 0. 0. 0. 0. 0. 10 35. 0. o. 0. 0. 0. 0. 0. 0. 10 00. 0. 0. 0. 0. 0. 0. 0. 0. ao 5 a. 0. o. 0. 10 50 0. 0. 0. 0. 0. 0. 0. 0. 10 55. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. o. 0. 11 10. 0. 0. 0. 0. 0. 0. 0. 0. UDSWM Model for 100 year Proposed condition 5 of 19 V INC Consulting Engineers 748 W 748 Whalers Way Bldg D Fort Collins, CO 80525-4872 Phone: (970) 226 0557 11 20. 0. 0. 0. 0. 0. 0. 0. 0. 11 25. 0. 0. 0. 0. 0. 0. 0. 0. 11 30. 0. 0. 0. 0. 0. 0. 0. 0. 11 35. o. 0. 0. 0. o. 0. 0. 0. 11 +0. 0. 0. 0. 0. 0. 0. 0. 0. 11 +5. 11 50. 11 55. 0. 0. 0. 0. 0. 0. 0. 0. 31 0. 0. 0. 0. 0. 0. 0. 0. 0. 13 5. 0. 0. 0. 0. 0. 0. 0. 0. 11 10. 0. 0. 0. 0. 0. 0. 0. 0. 12 I5. 0. 0. 0. 0. 0. 0. 0. 0. 12 30, 12 ]5. 0. 0. 0. 0. 0. 0. 0. 0. 12 30. 0. 0. 0. 0. 0. 0. 0. 0. 12 35. 12 +0. 31 +5. 0. 0. 0. 0. 0. 0. 0. 0. 12 50. 0. 0. 0. 0. 0. 0. 0. 0. 12 55. 0. 0. 0. 0. 0. 0. 0. 0. 13 0. 0. 0. 0. 0. 0. 0. 0. 0. 13 S. 0. 0. 0. 0. 0. 0. 0. 0. v 10. 0. 0. 13 15. D. 0. 0. 0. 0. 0. 0. 0. 13 20. 0. 0. 0. 0. 0. 0. 0. 0. 13 25. G. 0. 0. 0. 0. 0. a. 0. 13 ]0. 0. 0. 0. 0. 0. 0. 0. 0. 13 35. 0. 0. 0. 0. 0. 0. 0. 0. 13 +0. 0. 0. 0. 0. 0. 0. 0. 0. 13 +5. 0. 0. 0. 0. 0. 0. 0. 0. 13 50. 0. 0. 0. 0. 0. 0. 0. 0. 13 55. 0. 0. 0. 0. 0. 0. 0. 0. 1+ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1+ 5. 0. 0. 0. 0. 0. 0. 1+ 10. 0. 0. 0. 0. 0. 0. 1+ 15. 0. 0. 0. 0. 0. 0. 0. 0. 1+ 10, 0. 0. 0, 0, 0. 0, 1+ 25. 0. 0. 0. 0. 0. 0. 1+ ]a. 0. a. 0. 0. 0. 0. 0. 0. 1+ 35. 0. 0. 0. 0. 0. 0. 0. 0. 1+ +0. 0. 0. 0. 0. 0. 0. 0. 0. 1+ +s. 0. 0. 0. 0. 0. 0. 0. 0. 1+ 50. 0. 0. 0. 0. 0. 0. 0. 0. 1+ 55, 0, 0, 0. 0. 15 0. 0. 0. 0. 0. 0. 0. 0. 0. is S. 0. 0. 0. 0. 0. 0. 0. 0. is 20. 0. 0. 0. 0. 0. 0. 0. 0. UDS IYMModel for l o0-year Proposed condition 6 of 19 INC Consulting Engineers ' 748 For Whalers Bldg D Fort Collins,CO C080525-4872 Phone: (970) 226 0557 is 15. 0. 0. 0. 0. 0. 0. 0. 0. is 20. 0. 0. 0. 0. 0. 0. 0. 0- ' is 25. o. 0. 0. 0. 0. 0. 0. 0. 1s 30. 0. 0. 0. o. 0. 0. 0. 0. ' is is 35. 60. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 15 45. 0. 0. 0. 0. 0. 0. 0. 0. is 50. 0. 0. 0. 0. 0. 0. 0. 0. 16 0. 0. 0. 0. 0. 0. 0. 0. 0, 16 S. 0. 0. 0. 0. 0. 0. 0. 0. 16 20. 0. 0. 0, 0. 0, 0, 0. 0. 16 25. 0. 0. 0. 0. 0. 0. 0. 0. 16 30. 0. 0, 0, 16 ]s. 0. 0. 0. 0. 0. 0. 0. 0. 16 60. 0. 0. 0. 0. 0, 0. 0. 0. 16 65. 16 50. 16 55. 0. 0. 0. 0. 0. 0. 0. 0. 17 0. 0. 0. 0. 0. 0. ' 17 s. 0. 0. 0. a. 0. 17 10. 0. 0. 0. 0. 0. 0. 0. 0. 17 15. 0. 0. 0. 0. 0. 0. 0. 0. 17 20, 0. 0. 0. 0. 0. 0. 0. 0. 17 ]5. 0. 0. 0. a. 0. 0. 0. 0. 11 30. 0. 0. 0. o. 0. 0. 0. 0. 17 17 ]5. 60. 17 65. 0. o. 0. 0. 0. 0. 0. 0. 17 SO. 0. 0. 0. 0. 0. 0. 0. 0. 17 55, i6 0. 16 s. 0. 0. 0. 0. 0. 0. 0. 0. ' 1a 16 1510. , o. o0,. 0. 0. 0. 0. 0. 00. . o. 0. 16 20. 0. 0. 0. 0. 0. 0. 0. 0. la 25. 0. o. 0. 0. 0. o. 0. 0. la 60. 0. 0. 0. 0. 0. 0. 0. 0. 19 65, 10 50. la 55. 0. 0. 0. 0. 0. 0. 0. 0. y---- -- 19-0. 0. G 0, 0. 0. 0. 0. 0. UDSff MModef for 700-year Proposed condition 7 of 19 INC Consulting Engineers 748 W hales, Way Bldg D W ' For Fort Collins, CO 8052541672 Phone: (970) 226 0557 19 S. 0. 0. 0. 0. 0. 0. 0. 0. 19 10,0. 0, 19 15. 0. 0. 0. 0. 0. 0. 0. 0. 19 20. 0. 0. 0. 0. 0. 0. 0. 0. 19 25. 0. 0. 0. 0. 0. 0. 0. 0. 119 3J00. 0. 00. ' 19 5. 0. 0. . 0. . 0. 0. 0. 19 40. 0. 0. 0. 0. 0. 0. 0. 0. ' 19 65. 0. 0. 0. 0. 0. 19 so. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 19 55. 0. 0. 0. a. 0. 0. 0. 0. 20 0. 0. 0. 0. 0. 0. 0. 0. 0. GLlleapie Pam Drainage Plan - 0: 951-003 OProjectctober nd 100-YEAR Developed Condition - October ]00] - TfiT Inc. Caeeulting Engineers •.. CONTINUITY CHECK MR SUECATCHNQlI ROOTING IN UOSWN2-LC MODEL ••• WATERSHED AREA (ACRES) 212.400 TOTAL RAINFALL (INCHES) 3.671 TOTAL INFILTRATION (INCHES) 0.955 TOTAL WATINRIED OOTPLOW (INCHRSI 2.606 TOTAL SURFACE STORAGE AT END OF STRON (INCHES) 0.109 ERROR IN CONTINUITY, PBRCENTAOS Or RAINFALL 0.002 ' 1 Gilleepie Palm Drainage Plan - Protest 6: 953-003 100-YEAR Developed Cowlition - October 3002 - ITT Inc. Consulting Engineers WIDTH INVERT SIDE SLOPES OVBRBANK/SURCHARGE GOITER GOITER HOP NP OR DIM LENGTH SLOPE HORIE TO VERT MANNING DEPTH SK HUNGER CONNECTION ("I IFT) (FT/PT) L R N (TT) 201 301 0 4 CHANNEL 0.0 524. 0.0200 50.0 50.0 0.016 0.60 0 OVERFLOW 30.0 524. 0.03200 10.0 10.0 0.020 5.00 206 l06 0 ♦ CHANNEL a.0 400. 0.0300 50.0 50.0 0.016 0.10 0 OVERFLOW 30.0 400. 0.0300 10.0 10.0 0.020 5.00 - 202 302 0 ♦ CAN HNEL a.0 550. 0.0200 50.0 50.0 0.016 0.60 0 GVERPI.OW 30.0 550. 0.0200 10.0 10.0 0.020 5.00 207 307 G 4 CHANNEL 0.0 367. 0.0010 50.0 50.0 0.016 0.40 0 OVERPLON 30.0 361. O.a010 10.0 10.0 0.020 1.00 ' 20E 30E 0 ♦ CHANNEL 0.0 234. 0.0010 so.0 50.0 a.016 0.10 0 OVERFLOW 30.0 234. 0.0010 10.0 10.0 0.020 5.00 203 30] 0 4 CNANNRL 0.0 267. 0.0010 50.0 50.0 0.016 0.40 0 OVERFLOW 20.0 267. 0.0010 10.0 10.0 0.020 5.00 212 312 0 4 CHANNEL 0.0 417. 0.0020 50.0 50.0 0.016 0.60 0 OVERFLOW 213 313 0 ♦ CHANNEL 30.0 a.0 417. 186. 0.0020 O.aO]0 10.0 50.0 10.0 50.0 0.020 0.016 5.00 0.N0 0 OVERFLOW 30.0 1E 6. 0.00]0 10.0 10.0 0.020 5.00 214 314 0 4 CHANNEL 0.0 1330. 0.0030 50.0 50.0 0.016 0.60 0 0VERY10W 30.0 1120. 1.1011 10.0 10.0 a.010 5.00 210 310 0 ♦ CHANNEL 0.0 I6♦. 0.0020 50.0 50.0 0. 016 0.♦0 0 OVERFLOW 10.0 2♦6. 0.0020 10.0 10.E 0.020 5.00 204 304 a ♦ CIDUIEL OVERFLOW 00 10..0 516. 536. 0.0020 0.0020 5G.a lo.a 50.E 10.0 0.a16 G.020 0.40 5.00 0 209 309 0 4 CHANNEL 0.0 298. 0.0030 50.0 50.0 0.016 0.40 0 OVERFLOW 30.0 290. 0.0020 10.0 10.0 0.020 5.00 ]OS 305 0 4 CHANN8L 0.0 656. 0.0020 50.0 50.0 0.016 0.60 0 GVERPIAW 30.0 656. 0.0020 10.0 10.0 0.020 5.00 215 315 0 4 CHANNEL 0.0 632. 0.0010 50.0 50.0 0.016 0.40 0 OVERPLOW 30.0 632. 0.0010 10.0 10.0 0.020 5.00 216 311 0 4 CI 16 0.0 686. 0.0020 50.0 50.0 0.016 0.40 0 OVERFIaN 10.0 656. 0.0020 10.0 10.0 0.020 1.01 217 31, 0 ♦ CHNNRL 0.0 SOE. 0.0040 50.0 50.0 0.416 0.00 0 OVERFWW 10.0 508. 0.0060 10.0 10.0 0.020 5.00 301 206 0 ] 0.0 1. 0.0010 a.0 G.0 0.001 Io.GO 0 -- - - 306 -207 0 -3- 0.0 -1-. -0.0010 0,0-C.0--0.G01 10,00 0- ' 307 200 a 3 0.0 1. 0.001E a.0 0.0 0.001 10.a0 0 UDSWMModef for 100 year Proposed condition 8 of 19 v �J 1 1 TST, INC Consulting Engineers 748 Whalen Way Bldg D Fart Collins, CO 805254872 Phone: (970) 226 0557 302 207 0 3 0.0 1. 0.0010 0.0 0.0 0.001 10.00 a in 600 0 ] 0.0 1. 0.0010 0.0 0.0 0. 111 10.00 0 306 209 0 l 0.0 1. 0. onto 0.0 0.0 a.001 10.0o 0 309 600 0 3 00 1. 0. 0010 0.0 0.0 D.OD1 10.a0 a 30l 212 0 3 0..0 1. 0.0010 0.0 0.0 0.001 10.00 0 310 600 0 3 0.0 1. a.0010 0.0 0.0 0.001 10.00 0 305 600 0 1 0.0 1. 0..0t0 0.0 0.0 O. D01 10.00 a 311 'no 0 3 O.o 1. 0.0010 0.0 0.0 0.001 10.00 a 312 210 0 3 0.0 1. 0. 0010 0'0 0.0 0.001 10.00 0 113 212 0 3 0.0 1. 0.0010 0.0 0.0 0.001 10.00 0 11. 213 0 3 0.0 1. 0.001. 0.0 0.a 0.001 I0.00 0 315 216 a 3 0.0 1. 0.0010 0.0 o.0 0. 001 10.00 0 316 211 0 3 0.0 1. 0.0010 0.0 0.0 0.001 10.00 0 311 206 0 3 0.0 1. 0.0010 0.0 0.0 0.001 10.a0 a 600 311 7 ] PIPE 1.0 1. 1.1010 1.0 0.1 0.101 0.00 0 RESERVOIR STORAGE IN ACRE -Pear Vs spl1U.RAY OUTPDOM 0.0 0.0 0.2 0.0 16.2 5.0 25.9 7.1 36.3 6.1 67.0 10.0 69.7 20.3 O'IIYrAL NUMBER OP GOITERS/PIPES. 36 1 Gllleapia Pere Drainage Plan - Project h 951-003 100-YEAR Developed Condition - October 2002 - TST Inc. Conaulting Engineer. ARPANGEMENT OF SUBCATCMMEWS AND GUTTEAB/PIPES GOITER TRIBUTARY GO77VRR/PIPE 201 0 0 0 0 0 0 o a a a 202 0 0 a 0 D 0 0 0 0 0 203 0 0 a 0 0 0 0 0 0 0 206 0 a D 0 a o 0 o a 0 ' 205 0 0 0 0 0 0 0 0 0 0 206 301 317 0 0 0 0 0 0 0 0 207 306 302 0 0 0 0 0 0 0 0 208 307 0 0 0 0 0 0 0 0 0 2a5 306 a o o a o o a o 0 210 312 a a 0 0 0 0 0 a a 212 303 313 D o a 0 o a o a 213 316 0 0 0 0 0 0 0 0 0 216 0 D 0 0 0 0 D a 0 0 215 0 o a a o 0 0 0 0 0 216 J35 0 0 0 0 0 0 0 0 0 217 336 a 0 0 a 0 a a 0 0 301 201 0 0 0 0 0 0 0 0 0 302 202 0 o a o 0 0 0 0 0 303 203 a o 0 o a a o 0 0 306 206 0 0 a 0 a 0 0 0 0 305 205 0 0 0 D 0 a 0 0 a 306 206 0 0 0 D 0 a 0 0 0 307 207 0 0 0 0 0 a 0 0 0 308 200 a 0 0 0 0 0 a 0 0 309 209 0 0 0 0 0 0 0 0 0 ]10 230 0 0 a 0 0 0 0 a 0 311 600 0 0 0 0 0 a 0 0 0 312 212 0 0 0 0 0 0 0 0 a )13 213 0 0 0 0 0 0 0 0 0 316 216 0 0 0 a 0 0 0 0 0 TRIBUTARY SUBAREA D.A.(AC) 101 a o 0 0 0 0 0 0 o x6.3 102 0 0 0 0 0 0 0 0 0 68.8 103 0 0 0 0 a 0 0 0 0 23.5 106 0 0 0 0 0 0 0 0 0 33.5 105 a 0 a 0 0 0 D 0 D 26.7 0 0 0 0 0 0 0 0 0 0 68.9 0 0 0 0 0 0 0 0 0 0 117.7 a 0 a 0 0 0 0 0 0 0 117.7 0 0 0 0 0 0 0 0 0 0 13.5 0 0 0 0 0 0 0 0 0 0 36.5 D 0 0 0 0 0 0 0 a 0 36.5 0 0 0 0 a 0 0 0 0 0 11.0 IN 0 0 0 0 a 0 0 0 0 11.0 307 a 0 0 0 0 a 0 0 0 17.9 306 0 0 0 0 0 0 0 0 0 62.E 0 0 0 0 0 a 0 0 a a 62.6 0 0 0 0 0 0 0 0 0 0 26.3 0 0 0 0 0 0 a o 0 0 6E.e a o o D o 0 0 0 0 o a3.s a 0 0 0 0 0 a 0 0 0 33.5 0 0 0 0 a o 0 0 0 a 26.7 a 0 0 0 0 0 0 0 0 0 6E.9 0 D 0 0 a 0 a 0 0 0 117.1 a a 0 0 0 0 0 0 a 0 111.7 0 0 0 0 0 0 0 a 0 0 3].5 0 0 0 0 0 0 0 0 0 0 l6. 5 0 0 0 0 0 0 0 0 0 0 212.E a 0 0 0 0 0 0 a 0 0 36.5 0 a 0 0 0 0 0 0 0 0 11.0 0 0 0 0 0 0 0 a 0 0 11.0 UDSWM Mode! for I Myeer Proposed condition 9 of 19 TST, INC Consulting Engineer 748 Whalers Way Bldg D Fort Collins, CO 805254872 Phone: (970) 226 0557 ]16 216 a 0 0 0 0 a 0 0 0 0 0 a 0 0 0 O o 0 0 42.6 317 217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42.4 400 306 309 310 305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 212.4 1 Gillespie Porn Drainage Plan - Project a: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 4 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CPS TNB LONER NUMBER IS ONE OF THE FOLLOWING CASFSt 1 ) DENOTES DEPTH AaOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -PT FOR OBTRUSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CPS FROM SPECIFIED INFLOW HYOROGRAPH (D) DENOTES DISCHARGE IN CPS DIVERTED PROM THIS OULTER (0) DENOTES STORAGE IN AC -FT MR SURCHARGED G=ER TIME(HR/MIN) 305 308 309 210 0 S. 0. 0. 0. 0. 0.0( 1 0.01 1 0.0( 1 0.0( 1 0 10. 0. 0. 0. 0. 0.01 1 0.0( ) 0.0( 1 0.0( ) 0 15. ]. 1. 1. 0. 0.0( ) 0.0( ) 0.0( 1 0.0( ) 0 20. 7. 7. S. 3. 0.01 1 o.O( 1 0.0( 1 0.04 1 0 25. 16]a. 14. 10. 0.. 0( 1 0.0( 1 0.01 1 0.0( 1 0 30. 37. 78. Is. 25. 0.0( 1 0.0( 1 0.0( 1 O.OI ) 0 35. 90. 193. 07. 67. 0.01 ) 0.01 1 0.0( ) a.0( 1 O 40. lie. 320. 130. 113. 0.0( 1 0.01 1 0.0( 1 a.O( 1 0 45. 6a. 291. 104. 101. 0.0( ) a.ol 1 O.a( 1 a.O( ) a So. 66. I09. 73. 70. 0.0( ) 0.0( 1 0.04 ) 0.0( ) 0 55. 52. 178. 60. 58. 0.0(1 0.0(1 0.0( ) 0.01) 1 0. 43. 153. 49. 50. 0.0( 1 0.0( 1 0.01 1 0.0( ) 1 5. 37. 134. 43. 44. 0.0( ) 0.0( ) O.a( 1 0.0( ) 1 10. 3]. 1]l. l9. 40. 0.01 1 0.01 1 o.a( 1 0.0( ) 1 1S. 30. 113. 36. 37. O.o( ) O.o( 1 0.0( 1 0.0( ) 1 20. 2a. 107. 33. 34. 0.0( ) 0.01 1 0.0( 1 0.0( 1 1 25. 26. 101. 31. 32. 0.04 ) D.01 1 0.0( 1 0.01 1 1 30. 24. 96. 30. 30. 0.01 I 0.0( 1 6.01 1 0.01 ) 1 35. 23. 92. 26. 29. 0.0( 1 0.0( 1 0.0( 1 0.0( ) 1 40. 22. a7. 27. 27. 0.0( 1 0.01 1 0.0( 1 0.0( ) 1 45. 21. 84. ]6. ]f. 0.0( 1 0.01 1 0.0( ) 0.0( ) I SO. 20. 80. 25. 24. 0.0( ) 0.0( 1 0.01 1 0.0( ) 1 55. 19. 76. 24. 23. UDSWM Mode! for 100-year Proposed condition 10 of 19 TST, INC Consulting Engineers For Whalers Way Bldg D Fort Collins, CO 805254672 Phone: (970) 226 0557 0.0( 1 0.0( 1 0.0( 1 0.01 1 0.0( I 71. 0.0( 1 ]l. 0.01 ) ]]. 0.01 1 a S. 16. 69. 21. 21. 0.0( 1 0.01 1 0.0( 1 0.0( 1 ] 10. 16. 61. 15. 10. ' ] 15. 0.0( 7 1]. 0.01 I Sa. 0.0( 1 15. 0.01 1 16. 0.01 1 0.01 1 0.0( 1 0.01 1 ] 20. 9. 65. 13. 13. 0.0( 1 0.0( 1 0.0( 1 0.0( 1 ] ]s. 6. 00. 11 11. ' 0.01 I 0.01 1 0.. 01 I .01 1 a 30. 1. 36. 10. 10. 0.09 1 0.0( 1 0.0( 1 0.01 1 ' 2 35. 6. 0.01 1 ]]. 0.0( ) 9. 0.0( I 0. 0.0( 1 1 00. S. 30. 6. 0. 0.0( 1 0.0( I 0.0( 1 0.0( 1 a 05. S. 27. 7. 1. 0.01 1 0.0( 1 0.01 1 0.0( 1 ] 50. 6. 25. 7. 6. 0.0( 1 0.01 1 0.01 1 0.0( 1 ] 55. 0. 20. G. 6. 0.0( 1 0.01 1 0.01 I 0.01 1 l 0. 0. 21. 6. S. 0.0( 1 0.01 1 0.01 1 0.01 1 ] 5. ]. 10. S. S. 0.0( 1 0.01 1 0.0( 1 0.0( 1 ] 10. 3. 1a. 5. 0, 0.01 1 0.0( 1 0.0( 1 0.0( ) 3 15. 3. 19. S. 1. 0.0( 1 0.0( 1 0.0( ) 0.0( 1 3 20. 3. 17. 6. 0. 0.0( 1 0.01 1 0.0( ) 0.01 1 l 25. ]. 16. 6. 3. 0.01 1 0.0( 1 0.0( 1 0.0( ) 3 30. ]. 15. 6. 3. 0.0( 1 0.0( 1 0.01 1 0.0( ) ] 35. ]. 16. 6. 1. o.o( 1 0.0( 1 0.01 1 0.01 1 3 60. ]. 10. 3. 3. 0.01 1 0.0( ) 0.01 1 0.o( 1 3 65. ]. 13. ]. 3. 0.0( 1 .01 1 .01 1 0.0( 1 ] 50. a. 12. 3. 1. 0.0( ) 0.0( 1 0.0( 1 0.0( 1 ] 55. 0. 0.01 1 10. 0.0( 1 3. 0.01 1 3. 0.0( 1 6 0. 1. 11. 3. 3. 0.0( 1 0.0( ) 0.0( 1 0.0( 1 6 S. 1. 11. 3. 1. ' 6 10. 0.01 1 1. 0.01 1 10. 0.01 1 ]. 0.01 1 2. 0.0( 1 0.0( 1 0.0( 1 0.0( 1 0 15. 1. 10. ]. ]. 0.01 1 0.01 1 0.0( 1 0.0( 1 6 20. 1. 9. a. ]. ' 0.01 1 0.01 1 0.01 I 0.01 1 6 25. 1. 9. ]. a. 0.0( 1 0.0( 1 0.01 1 0.0( 1 ........ ... ' 0 30. 1. e. ]. a. UU.SIVM Made(jor f00.year Proposed condition 11 of 19 INC Consulting Engineers 748 W 748 Whalers Way Bldg D Fort Collins, CO 805254872 Phone: (970) 226 0557 0.0() 0.0( 1 0.0() 0.01 1 6 15. 1. 0. 2. ]. 0.01 1 0.0( ) 0.01 1 0.0( 1 6 60. 1. 1. ]. 1. 0.0( 1 0.01 1 0.0( 1 0.0( 1 6 65. 1. 1. ]. 1. 0.0( 1 0.0( 1 0.01 1 0.0( 1 6 50. 1. 0. ]. 1. o.o( 1 0.01 1 0.011 0.0( 1 6 55. 1. 6. 1. 1. 0.0( 1 0.0( 1 0.04 1 0.0( 1 5 0. 1. 6. ]. 1. 0.01 1 0.0( 1 0.0( 1 0.0( 1 5 S. 1. 6. 1. 1. 0.0( 1 0.01 1 0.0( ) 0.0( i 5 10. 1. 6. 1. 1. 0.01 1 0.01 1 0.01 1 0.0( 1 S 15. 1. 5. 1. 1. 0.01 1 0.0( ) 0.01 1 0.0( 1 S 20. 1. S. 1. 1. 0.0( I 0.0( 1 0.0( 1 0.0( ) 5 25. 1. 5. 1. 1. 0.01 1 O.ol 1 0.0( 1 0.0( 1 5 30. 1. S. 1. 1. 0.01 1 0.0( ) 0.0( ) 0.0( 1 5 35. 1. 5. 1. 1. 0.0( 1 0.01 1 O.o( 1 0.0( 1 5 40. 0. 6. 1. 1. 0.0( ) 0.0( 1 D.0( ) 0.0( 1 5 65. 0. 6. 1. 1. 0.0( ) 0.0( ) 0.0( 1 0.01 1 5 50. 0. 0. 1. 1. 0.0( 1 0.0( 1 0.0( 1 O.o( 1 5 55. 0. 6. 1. 1. 0.01 ) 0.0( 1 0.0( 1 0.0( ) 6 0. 0. 6. 1. 1. 0.01 1 0.0( 1 o.o( 1 0.01 1 6 5. 0. 6, 1. 1. 0.01 1 0.01 1 0.0( 1 0.0( 1 6 10. 0. 1. 1. 1. 0.01 1 0.0( 1 0.0( ) 0.0( 1 6 15. 0. 3. 1. 1. 0.0( 1 0.01 1 0.01 1 0.0( 1 6 20. 0. ]. 1. 1. 0.0( ) 0.01 1 0.0( 1 0.0( 1 6 25. 0. 1. 1. 0. 0.01 ) 0.01 1 0.0( ) 0.0( 1 6 30. 0. 1. 1. 0. 0.0( ) 0.0( 1 0.0( ) 0.0( 1 6 35. 0. 3. 1. 0. 0.01 1 0.0( 1 0.0( 1 0.0( 1 6 40. 0. 1. 1. 0. 0.0( 1 0.0( 1 0.01 1 0.01 1 6 65. 0. ]. 1. 0. 0.01 1 0.04 1 0.0( ) O.0( ) 6 50. 0. ]. 1. 0. 0.O( ) 0.0( ) 0.01 1 0.0( ) 6 55. 0. ]. 1. 0, 0.01 1 0.01 1 0.01 1 0.0( 1 0 0. 0. 1. 1 0 D.o( 1 0.0( 1 0.. 0( 1 0.. 0( 1 l S. 0. ]. 1. 0. UDSWM Model for 100-year Proposed condition 12 of 19 INC Consulting Engineers 748 W 748 Whalers Way Bldg D Fort Collins, CO 80525AS72 Phone: (970) 226 0557 0.01 1 O.ol 1 0.0( 1 0.0( 1 10. 0. 2. 1. 0. 0.01 1 0.01 1 0.0( 1 0.0( 1 7 15. 0. ]. 1. 0. 0.01 1 0.0( 1 0.01 ) 0.0( 1 1 20. 0. ]. 0. 0. 0.0( 1 0.01 1 0.01 1 0.0( 1 7 25. 0. ]. 0. 0. o.ol ) 0.01 1 0.01 1 0.a( 1 30. 0. ]. 0. 0. 0.01 1 0.04 1 0.04 1 0.01 1 7 35. 0. ]. 0. 0. 0.01 1 0.0( 1 0.01 1 0.0( 1 7 e0. 0. ]. 0. 0. 0.0( 1 0.01 1 0.01 ) 0.04 1 7 e5. 0. ] 0. a. 0.01 1 0.. 0( 1 0.'01 ) 0.0( 1 7 50. 0. 1. 0. 0. 0.0( ) 0.01 1 0.01 1 0.01 1 7 ss. 0. 1. 0. 0. 0.01 1 0.0( 1 0.0( 1 0.0( 1 e 0. 0. 1. 0. 0. 0.01 1 0.0( 1 0.01 1 0.01 1 0 5. 0. 1. 0. 0. OM 1 0.0( 1 0.01 1 0.01 ) a 10. a. 1. 0. 0. 0.0( 1 0.0( ) 0.O( 1 0.0( 1 0 is. 0. 1. 0. 0. 0.01 1 0.0( 1 0.0( 1 0.0( 1 0 20. 0. 1. 10:0 0. 0. 0.01 1 1 0.01 1 0.0( 1 a 25. 0. 1. 0. 0. 0.0( 1 0.0( 1 a.0( ) 0.0( 1 9 30. 0. 1. 0. 0. 0.01 1 0.0( 1 0.0( 1 0.0( 1 9 35. 0. 1. 0. 0. O.0( 1 0.0( 1 0.0( ) 0.01 1 a e0. 0. 1. 0. 0. 0.0( ) 0.0( 1 OM ) 0.0( ) 8 05. 0. 1. 0. 0. a.a( 1 0.01 1 0.0( 1 O.0( 1 0 50. 0. 1. 0. 0. 0.01 1 0.01 1 0.01 1 0.0( 1 9 s5. a. 1. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.a( 1 9 0. 0. 1. 0. 0. 0.01 1 0.04 1 0.0( 1 0.01 1 9 S. 0. 1 0. 0 0.a( 1 0.. 01 1 0.0( 1 0.. a 1 9 10. 0. 1. 0. 0. 0.0( 1 0.01 1 0.0( 1 0.0( 1 9 15. 0. 1. 0. 0. 0.01 1 0.01 1 0.0( 1 OM1 9 20. 0. 1. O. 0. 0.0( 1 0.01 1 0.0( I O.0( 1 9 25. 0. 1. 0. 0. 0.0( ) 0.01 1 0.01 1 0.01 1 9 30. 0. 1. 0. 0, 0.a( 1 0.0( 1 0.0( 1 0.0( 1 9 35. 0. 1. C. a. 0.0( 1 0.0( 1 0.0( ) 0.01 I 9 40. 0. 0. 0. 0. UDSIpM Mode! for 100-year Proposed condition 13 of 19 INC Consulting Engineers 748 Whalers Way Bldg D 748 W Fort Collins, CO 805254872 Phone: (970) 226 0557 0.0( 1 0.0( 1 0.0( 1 0.0( 1 9 45. 0. 0. 0. 0. o.o( 1 0.0( I o.ol 1 oM I ' 9 50. 0. 0. 0. 0. 0.0( ) 0.0( 1 0.0( 1 0.0( 1 9 55. 0. 0. 0. 0. 0.0f 1 0.0( 1 0.a( I of I 10 0. 0. 0. 0. 0. 0.01 ) 0.0( 1 0.01 1 0.01 1 30 S. 0. 0. 0. 0. 0.0( 1 OM 1 0.0( 1 0.0( 1 la 30. 0. 0. 0, 0. 0.01 I 0.a1 1 a.01 1 0.01 1 10 is. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.0( 1 0.0( 1 10 20. 0. 0. 0. 0. ,.Of 1 0.0( 1 0.01 1 0.0( 1 10 25. a. 0. 0. 0. 0.0( 1 0.0f 1 0.0( 1 0.0( 1 10 30. 0. 0. 0. 0. a .0( 1 0.0( 1 o.a( ) 0.01 1 30 15. 0. 0. 0. 0. 0.0( 1 0.a1 1 0.01 1 0.0( 1 10 40. 0. 0. 0. 0. 0.0( 1 0.0(I 0.0( ) 0.01) 10 45. 0. a0. 0. 0. 0.0( 1 .0( 1 0.01 10 50. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.0( 1 10 55. 0. 0.0( 1 0 0.. 01 1 0. 0.01 1 0. 0.01 l ' 11 0. 0. 0. 0. 0. 0.0( 1 0.01 ) 0.0( 1 0.01 1 11 5. 0. 0. 0. 0. ' 11 10. 0.0( 1 0. 0.0( 1 0. 0.0( ) 0. 0.0( 1 0. 0.0( 7 0.0( 1 0.0( ) 0.0( ) 11 15. 0. 0. 0. 0. 0.0( ) 0.0( 1 0.0( ) O.a( ) u 20. 0. 0. 0. 0. o.o( 1 O.o( 1 0.0( ) 0.0( ) 11 25. 0. 0. 0. 0. 0.0( ) O.Of 1 OM ) 0.0( 1 13 30. 0. 0. a0. 0. ' 0.0( 1 0.0( 1 .01 1 a.01 1 11 35. 0. 0. 0. 0. o.o( 1 0.O( I O.Of 1 0.0( 1 11 40. 0. 0. 0. 0. 0.0( ) o.o( ) 0.0( 1 0.0( 1 ' 11 45. a 0. a. 0. a.. 0( 1 0.0( ) 0.0( 1 0.0( ) 11 50. 0. 0. 0. 0. 0.0( 1 0.0( ) OM 1 0.0( ) 11 55, 0. 0. 0. 0. ' 0.0( 1 0.0( ) 0.0( 1 0.0( ) 12 0. 0. 0. 0. 0. 0.0( ) O.Of ) 0.0( 1 O.Of ) 12 S. 0. 0. 0. 0. 0.01 1 0.0( I .0( I 0.01 1 12 10. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.0( I 0.0( 1 v as. o. o. o. o. 1 F 4 UUSfVM Modet for 100-year Proposed condition 14 of 19 I TSTIINC Consulting 748 Whalers Way Bldg D Fort Collins, CO 805254872 Phone: (970) 226 0557 0.0( 1 0.0( 1 0.0( 1 0.0( 1 12 20. 0. 0. 0. 0. 0.01 1 0.0( 1 0.0( 1 0.0( 1 12 25. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.0( ) 0.0( 1 12 30. 0. 0. 0. 0. 0.04 1 0.0( 1 0.01 1 0.0( 1 0. 0. O.o( 1 a.01 1 o.a( 1 0.01 1 12 40. 0. 0. 0. 0. 0.0( ) 0.0( 1 0.0( ) 0.01 1 12 45. 0. a. 0. a. 0.0( ) 0.0( 1 0.0( ) 0.0( 1 1] 50. 0. 0. 0. 0. 0.0( ) 0.0( 1 0.0( 1 0.0( 1 12 55. a. 0. 0. 0. 0.0( 1 0.0( 1 0.o( ) 0.01 1 11 0. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.01 1 0.0( 1 11 S. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.01 1 0.0( 1 11 10. 0. 0. 0. a. 0.01 I 0.0( ) 0.0( ) 0.0( 1 13 15. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.01 ) 0.0( 1 13 20. 0. 0. 0 0. 0.a( I 0.0( ) 0.. a1 1 0.0( 1 11 25. 0. 0. 0. 0. 0.0( 1 0.01 1 0.0( 1 0.0( ) 11 10. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.0( 1 0.0( 1 11 35. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.0( ) 0.01 1 11 40. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.0( ) 11 45. 0. 0. 0. 0. 0.0( 1 0.0( I 0.0( 1 0.0( 1 11 50. 0. 0. 0. 0. 0.0( 1 0.01 1 0.0( 1 0.0( 1 11 55. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.0( ) 14 0. 0. 0. 0. 0. 0.0( 1 0.01 1 0.0( ) 0.0( ) 14 5. 0. 0. a. 0. 0.0( ) 0.0( ) 0.01 ) 0.0( I 14 10. 0. 0. 0. 0. 0.0( 1 0.01 1 0.0( 1 0.01 1 14 15. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.0( 1 0.0( ) 14 20. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.0( I 0.0( I 14 25. 0. 0. 0. 0. 0.0( 1 0.04 i o.0( 1 0.0( 1 15 30. 0. 0. 0. 0. 0.0( ) 0.0( 1 0.01 1 0.0( 1 15 35. 0. 0. 0. 0. o.o( 1 0.0( 1 0.0( 1 0.0( I 14 40. a. 0. 0. 0 0.0( 1 0.01 1 o.0( 1 0.. a( I 15 45. a. 0. 0. 0. 0.01 1 0.0( 1 0.0( 1 0.0( 1 14 50. 0. 0. 0. 0. UUSWM Mode! for 100-year Proposed condition 15 of 19 INC Consulting Engineers Om 748 W 748 Whalers Way Bldg D Fort Collins, CO 805254872 Phone: (970) 226 0557 0.0(1 a.0( 1 0.0( 1 0.0( 1 16 55. 0. 0. a. a. 0.0( 1 0.0( 1 0.01 1 0.0( ) 15 0. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.0( 1 is S. 0. 0. 0. 0. 0.0( 1 0.01 1 0.0( 1 0.01 1 is 10. 0. 0. 0. 0. 0.01 1 O.a( 1 0.0( 1 0.0( ) 1s 15. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.0( 1 0.0( ) 15 20. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.01 1 15 15. 0. 0. 0. 0. 0.01 1 0.0( 1 0.0( 1 0.0( ) is 10. 0. 0. 0. a. ,.of 1 0.0( 1 0.01 1 0.0( ) 1s 35. 0. 0. 0. 0. 0.0( 1 0.01 1 0.01 1 0.0( ) 15 60. 0. 0. 0. 0. 0.0( 1 0.0( 1 o.a( 1 0.01 1 15 65. 0. 0. 0. 0. 0.0( 1 0.01 1 0.0( 1 0.0( 1 15 50. 0. 0. 0. 0. 0.0( 1 0.01 ) 0.01 1 0.0( 1 15 55. 0. 0. 0. 0. 0.01 1 0.0( 1 a.o( 1 0.0( 1 16 0. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.0( 1 16 S. 0. a. 0. 0. 0.0( 1 0.0( 1 0.0( 1 0.0( ) 16 30. 0. 0. 0. 0 0.0( 1 0.0( 1 a.0( 1 0.. 0( 1 16 15. 0 0 0 0. 0.. 0( ) 0.. n( 1 0.. 0( ) 0.0( 1 16 20. 0. 0. 0. 0. 0.01 1 0.0( ) 0.0( 1 0.0( 1 16 15. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.0( 1 0.0( 1 16 10. 0. 0. a. 0 0.0( 1 0.0( 1 a.0( 1 0.. 0( 1 16 15. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.0( 1 0.0( 1. 16 60. 0. 0. 0. 0. 0.0( 1 0.o( ) 0.0( 1 0.0( 1 16 65. 0. 0. 0. 0. 0.01 1 0.0( ) 0.0( 1 0.0( 1 16 50. 0. 0 0 .a( 0. 0.0( ) a.. ) 0.0( 1 a.0( 1 16 5s. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.0( 1 0.0( 1 17 0. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.0( 1 0.0( 1 17 5. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.0( 1 o.a( 1 17 10. 0. 0. 0. 0. 0.0( 1 0.01 ) 0.0( 1 0.0( 17 15. 0. 0. 0. 0. 0.a( 1 1.0( 1 0.0( 1 0.0( 1 17 20. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.0( 1 0.01 1 . _ 17 15. 0. _ _0. _ 0 _ 0 UDS IVM Model far 100-year Proposed condition 16 of 19 i I tJ I 1 1 1 1 TST, INC Consulting Engineers 748 Whalers Way Bldg D Fort Collins. CO 80525A872 Phone: (970) 226 0557 0.0( 1 0.0( 1 0.0( 1 0.01 1 17 30. 0. 0. 0. 0. 0.01 1 0.0( 1 1.01 1 0.01 1 11 35. 0. 0. 0. 0. o.o( 1 0.01 1 0.0( 1 0.0( 1 17 40. 0. 0. 0. 0. 0.01 1 0.01 1 0.0( 1 0.01 ) 17 45. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.01 1 11 SO. 0. 0. 0. 0. 0.0( 1 0.01 1 0.0( 1 0.0( 1 17 55. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.04 1 0.0( 1 10 0. 0. 0. 0. 0. 0.01 1 0.01 1 0.0( 1 0.01 1 10 5. 0. 0. a. 0. 0.01 1 0.01 1 0.0( 1 0.01 1 19 10. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.0( 1 19 15. 0. 0. 0. 0. . 0.0( 1 0.04 1 0.0( ) 0.0( 1 30 30. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.01 ) 0.01 1 19 35. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.01 1 0.01 1 le 30. 0. 0. 0. 0. 0.0( 1 0.04 ) 0.0( 1 0.01 1 10 35. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.01 1 0.0( 1 10 40. 0. 0. 0. 0. 0.0O 0.0() 0.0O 0.0( 1 19 55. 0. 0. 0. 0. 0.01 1 0.01 ) 0.01 ) 0.0( ) 30 50. 0. 0. 0. 0. 0.01 1 0.0( 1 0.01 I 0.0( 1 10 55. 0. 0. 0. 0. 0.0( I 0.0( ) 0.0( ) 0.0( 1 19 0. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.0( ) 0.01 1 19 S. 0. 0. 0. 0. 0.0( ) 0.0( ) 0.0( ) 0.0( 1 19 10. 0. 0. 0. 0. 0.01 1 0.0( 1 0.01 ) 0.0( 1 19 15. 0. 0. 0. 0. 0.01 1 0.0( 1 0.0( ) 0.01 1 19 30. 0. 0. 0. 0. 0.0( 1 0.01 1 0.0( ) 0.0( 1 19 35. 0. 0, 0. 0. 0.0( 1 0.0( 1 0.01 1 0.0( 1 19 30. 0. 0. 0. 0. 0.0( 1 0.0( ) 0.0( 1 0.0( 1 19 35. 0. 0. 0. 0. 0.e( 1 0.0( ) 0.0( 1 0.0( I 19 40. 0. 0. 0. 0. 0.0( 1 0.01 ) 0.01 1 0.0( 1 19 55. 0. 0. 0. 0. 0.0( 1 0.0( 1 0.01 1 0.0( 1 19 50. 0. 0. 0. 0. 0.0( I 0.0( 1 0.0( 1 0.0( 1 19 55. 0. 0. 0. 0. 0.01 1 0.0( 1 0.0( 1 0.0( 1 30 0. 0. 0. 0. _0 UDSWM Model for /00-year Proposed condition 17 of 19 1 TST, INC Consulting Engineers For Whalen Bldg D Fort Collins, CO CO 805254872 Phone: (910) 226 0557 0.0( ) 0.01 1 0.04 1 0.0: 1 1 Oillaeple Faun OraLnage Plan - Project R: 9S1-001 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers ••• PM PLOln, STAGES AND STORAOES OF GUTTERS AND ORTENSIOW DAMS ••• ' CONVEYANCE PEAK STAGE STORA06 TIME ELEMENT (CPS) IPT) (AC -PT) (HR/MIN) 215 19.6 0.52 0 40. 316 19.6 R6.5 (DIREDT PLDN) 0.61 0 60. 0 316 P✓3M1 40. 0 216 11.6 11.5 .DIRECT 0.37 50. 0 50. 217 201 62.5 0.55 0 •0. 201 111.7 0.55 0 317 11.5 (DIRECT PI11W) 50. 0 50. 301 52.5 111.5 (DIRECT FI,OW) (DIRER PIAX) 0 65. 0 40. ' 313 11.6 0.97 0 50. 203 202 190.0 0.68 0 60. ]0] 190.0 0.68 0 60. 211 162.E 0.57 0 60. 111 11.6 (DIRECT PLOW( 0 50. 303 'al (DIRECT PLOW) 0 40. 302 19.0 (DIIIBCf PLOXI 0 60. 301 162.E (DIRECT PI/3W) 0 60. ]12 117.9 0.88 0 60. 204 120.E 0.99 0 60. 201 332.6 1.63 0 60. 312 117.9 IDIRECT PLON) 0 40. 30 330.6 (RECT OIRBCT FLOW; 0 60 . 307 332.E PLO (DIW) 0 S0. 20S 117.6 0.68 0 60. 210 112.9 0.86 0 40. 209 130.2 0.91 0 60. 20B 119.E 1.60 0 40. ]OS 117.6 (DIRECT PLOW) 0 4a 310 112.9 :DIRECT PLOW) 0 60. 109 130.2 (DIRECT PLOW) 0 ♦0. 1c)vyf -� / V'q(1v1 � 20E ]31.8 9.6 DI eCT PAN) 0.00 61.11 D 40. 5 5. 311 9.6 (DIRECT PLOW) 5 0. l00 700 9.6 (DIRECT PLON) 5 0. 1 6NDPROOR2W PROGRAM CALLED I UDSWM Model far 100-year Proposed condition 18 of 19 I i 1 INC Consulting Engineers 748 W 748 Whalers Way Bldg D Fort Collins, CO 805254872 Phone: (970) 226 0557 Outflow Hydrograph eoo 700 1 I 4 II 600 II I II I I II II 500 II I -• -Design point 305 II I' • •Design point 308 H I' V I' — — Design point 309 3 400 O II LL I — —Design point310 I I V 1 — — — Gillespie basin 100-year 300 i flow I:' 1 I:� I I• 200 I; 11 100 I•il 1 ej 1 0 -- O O O O O O O O O O O O O O O O O O O O O a1 O u) O N O N O a) O h O a) O a) O WI O N O O N N th m V V V No W W n t• a) a) Oi TIME (Hours) UDSWMModd for 100-year Proposed condition 19 of 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PROJECT #:.953 - 003 Name of Basin: Gillespie Farm Name of pond: Gilespie Detention Pond ft, Design Flow: Q:= 10— sec Max. 100-yr water surface elev. EI100:= 5003.51 ft Max. tail water elev. Eltail:= 5000ft The outlet control will govern the analysis Pipe diameter. D:= 24in AP:= X •D2 PP := n•D 4 Pipe length: L:= 498ft R AP Slope of pipe: S 0.008 P P P' P Manning Coef: n := 0.013 sec ft(3I I ) (0.453Q2 n2 Head -losses due to friction : Hf:= L. Hf = 0.973 ft 4 2. �RP�3 AP Q 2 Exit Losses : I -le:= 1.0 AP 2.g He = 0.157 ft Total energy loss: Htot EI 100- Eltail Htot = 3.51 ft Inlet Losses: Hinlet:= Htot - Hf - He Hinlet = 2.379 ft Losses due to orifice = H Inlet Velocity in the orifice: Vo:= 2• g Hinlet Designed by: Checked by: 1 of 2 Vo = 17.498 It sec outlet.mcd K:\953\003\Drainage\UDSWM\outlet.mcd 11/4/02 PROJECT M .953 - 003 Orifice area : Ao := Q 0 F-Ln Diameter of orifice: DO:= Water Quality and outlet Design Ao = 0.571 R2 Do= 10in 1. Smin Stwapa Volume 1. a 40.00 % A) Tributary Ma's Impervbusnese Ratio (1- 41100) 1 • 0.40 a) Co vasuwv wow~ Ama was) Aram 15S.74 acres C) Water Quality CaPlum Volume(WOCV) WOCV= .'-O.IB .... walmshad Inches (WOCv.1.0•(0,91 •P-1.19•e. 0.79•Q) 0) Design Volane: Val • (WOCV f 12) • Am - 1.2 Vol • . 3.34d...aorefeel 2. Outlet works A) Outlet Type (Check One) x duke Pale Perforated Riser Pipe Baer. H- 3.00 feet S) DePm at Outlet Abose Lowest Poi-bratlon(H) C) Required Maximum 0" Arm per Raw. (A.) A. •'-,�4:11 f,•t'.spuwa inches 0) Perforation Dimensions (ends, we only): Q Cbratlar Peraretlm Diameter OR 0- 1.500 inches, OR 1)2• Haight Rectangular Perforation Wnllh W s Inches EI Number of Column, Inc, Sm Table Ba-1 For Maximum) no • ' 2'� -:number F) Act" Dinupn Outlet Ams Per Row (N A.- 3,53. square Inches O) Numbw of Rmn(rlM er=. .8:: 'number H) Total Oullet Mt(Aj A.•'-131Ai squarelrohes 3. Trash Rack A) Needed Open Ma: A, -0.5 a (Figum 7 Value) • A. A.— ':1,017' square Inches S) Type of Ot" Opening (CherA Oro) ... %.:.. ; <2' Dlanwdsr Round "- 2• High R.M.oular OVMr. C) For 2', or Smaller, Round Ooenina (Ref.: FIgura 5a): Q Width of Trash Rack end Cwxrele Openbq (W_) ham Table Sa-i W_.. 30: iarhea 2) Helghl of TreMr Rack Screen(Hra Hm^'-fill 'Inchm Designed by: Checked by: oudet.mcd 2 of 2 K:\953\003\Dminage\UDSWWoutletmcd 1 I/4/02 [1 1 I r [1 Orifice Perforation Details A--*--Vo— Formed ` WPlate = Wconc + 6 inches (minimum) Structural Steel Channel I4 —� 1Into Concrete, ToI Y WConc. (see below) Span Width Of Structure. I �I See Figures 6—a, 6—b O 0 r�O_ a OI O IO 4" HKv B 6 of a0 la Permanent Water Surface O—I OI I 12" 2'-4" L— __j Max. Minimum 4" O o 1 1 A — Circular Openings: Wcona.Obtained From Table 6o-1 Rectangular Openings: Wconc. = (Width of Rectangular Perforation W) + 12" Rectangular Openings: Wopening (see Figure 6—b) Obtained From Table 6b-1 Sa , see 5,, see W figure 5 Figure 5 0 o a o 0 o o o O O 0 O O O 000 o O o 0 0 0 0 00000 0 0 0 O O O 000 -000 O O O 000 0 0 0 0 °0 °000o o o O O O 000 O O O 000 0 0 Example Perforation Patterns Note: The goal in designing the outlet is to minimize the number of columns of perforations that will drain the WQCV in the desired time. Do not, however, increase the diameter of circular perforations or the height of the rectangular perforations beyond 2 inches. Use the allowed perforation shapes and configurations shown above along with Figure 5 to determine the pattern that provides an area per row closest to that required without exceeding it. Urban Drainage and Figure 4 Flood Control District Orifice Details for Drainage Criteria Manual (V.3) Draining WQCV File: DataAs.dwg Orifice Plate Perforation Sizing Circular Perforation Sizing Chart may be applied to orifice plate or vertical pipe outlet. Hole Dia (In) • Hole Dia (in) Min. Sc (in) Area per Row (sq in) n-1 n-2 n-3 1 4 0.250 1 0.05 0.10 0.15 5 16 0.313 2 0.08 0.15 0.23 3 B 0.375 2 0.11 0.22 0.33 7 16 0.438 2 0.15 0.30 0.45 1/2 0.500 2 0.20 0.39 0.59 9 16 0.563 3 0.25 0.50 0.75 5 8 0.625 3 0.31 0,61 0.92 11 16 0.688 3 0.37 0.74 1.11 3 4 0.750 3 0.44 0.88 1.33 13 16 0.813 3 0.52 1.04 1.56 7 8 0.875 3 0.60 1.20 1.80 15 16 0.938 3 0.69 1.38 2,07 1 1.000 4 0.79 1.57 2.36 1 1 16 1.063 4 0.89 1.77 2.66 1 1 8 1.125 4 0.99 1.99 2.98 1 3 i6 1 1.188 1 4 1.11 2.22 3.32 1 1 4 1.250 4 1.23 2.45 3.68 1 5 16 1.313 4 1.35 2.71 4.06 1 3 8 1.375 4 1.48 2.97 4.45 1 7 16 1,438 4 1.62 3.25 4.87 1 1 2 1.500 4 1.77 3.53 5.30 1 9 16 1.563 4 1.92 3.83 5.75 1 5 8 1.625 4 2.07 4.15 6.22 1 11 16 1.688 4 2.24 4.47 6.71 1 3 4 1.750 4 2.41 4.81 7.22 1 13 16 1.813 4 2.58 5.16 7.74 1 7 8 1.875 4 2.76 5.52 8.28 1 15 16 1,938 4 2.95 5.90 8.84 2 2.000 4 3.14 6.28 9.42 n - Number of columns of perforations Minimum steel plate thickness 1/4 5/16 • Designer may Interpolate to the nearest 32nd Inch to better match the required area, if desired. Rectangular Perforation Sizing Only one column of rectangular perforations allowed. Rectangular Height = 2 inches Rectangular Width (inches) = Required Area per Row (sq in) 2" Urban Drainage and Flood Control District Drainage Criteria Manual (V.3) Fee: Detads.dwg Rectangular Hole Width Min. Steel Thickness 5" 1 4 6" 1 4 7" 5/32 " 8" 5/16 g" 11 /32 " 10.1 3/8 " >10" 1 /2 Figure 5 WQCV Outlet Orifice Perforation Sizing I J 1 I Note: Vertical WQCV Trash Racks are shown in Figures 6, 6—a, and 6—b for suggested standardized outlet design. Adverse —Slope Trash Rack design may be used for non —standardized designs, but must meet minimum design criteria. Structural Steel Channel Formed Into Concrete. See Figures 6 Stainless Steel Bolts for Intermittant Welds, SFi ures 6—a, 6—b ee ,,• Varies to Illllllllll�llllllrllllll��illllllllll M• M � IIIIIIIIIIIIIIIIIIIIIIIIil�IIIIIIIIII Illllllllllillllllillllliilllllllllll IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 11111IIIIIIIIIIIIIi�11111lllll III III Ili • 1�1 � A� WQCV Trash Racks: Elevation 2'-0.1 -0. um) } 1. Well —screen trash racks shall be stainless steel and shall be attached by intermittant welds along the edge of the mounting frame. 2. Bar grate trash racks shall be aluminum and shall be bolted using stainless steel hardware. 3. Trash Rack widths are for specified trash rack material. Finer well —screen or mesh size than specified is acceptable, however, trash rack dimensions need to be adjusted for materials having a different open area/gross area ratio (R value) 4. Structural design of trash rack shall be based on full hydrostatic head with zero head downstream of the rack. Overflow Trash Racks: 1. All trash racks shall be mounted using stainless steel hardware and provided with hinged and lockable or boltable access panels. 2. Trash racks shall be stainless steel, aluminum, or steel. Steel trash racks shall be hot dip galvanized and may be hot powder painted after galvanizing. 3. Trash Racks shall be designed such that the diagonal dimension of each opening Is smaller than the diameter of the outlet pipe. 4. Structural design of trash rack shall be based on full hydrostatic head with zero head downstream of the rack. Urban Drainage and Flood Control District Drainage Criteria Manual (V.3) nle: Detufl&dwg Figure 6 Suggested WQCV Outlet Standardized Trash Rack Design 8„ 4'-0" 8" Bolt Down or I cax18.75 American Standard Lock Down _ Structural Steel Channel. - Trash Rack Attached By Welding Rack Swivel Hinge Tubular Trash Rack - V Levell On 6"' 4„ Centers - - 3or4 1� _ Optional H _ Flow Control Varies C C '' Orifice Plate 2'-0" U.S. Filter* Stainless Steel Perforated to Steel Well —Screen (--Flow Control- < 6'-0" (or equal) Per Tables Plate 6o-1, 6o-2 — — — Micro Pool W.S. 3" Minimum Outlet Pipe 18"n C808.75 American Standard Structural - 2'-4" Steel Channel Formed Minimum into Concrete Bottom And Sides Of VV((,,,_, Trash Rack AttacTed By Intermittant Welds. 4. ._ Section A—ni \ From Figure 6, Circular Openings Only Well —Screen Frame Attached To Channel By Intermittant Welds _ -- Steel Perforated Flow Control Plate Flow Trash Rack Attached +� By Intermittant Welding All Around 6 Min. Section B—B — Plan View From Figure 6, Circular Openings Only Limits for this Standardized Design: 1. All outlet plate openings are circular. 2. Maximum diameter of opening = 2 inches. *U.S. Filter, St. Paul, Minnesota, USA Urban Drainage and Flood Control District Drainage Criteria Manual (V.3) File: 0etafle.dwg Stainless Steel Support Bars No. 93 Stainless Steel (U.S. Filter* or Equal) Wires I II II FI )W 0.139" 0.090" Section C—C From Figure 6, Circular Openings Only R Value = (net open area)/(gross rack area) = 0.60 Figure 6—o Suggested Standardardized Trash Rack and Outlet Design For WOCV Outlets With Circular Openings I 1 1 1 d 1 1 1 APPENDIX C 1 STREET CAPACITY AND INLET ANALYSIS DESIGN 1 1 1 1 [1 1 _1 I-1 j I I I L7 I I I 0 aN GA 11 1� I I I .......... ... ....... .... rz C�; Hl .......... H Hi i -t ............ FFI ............. .......... JJ 5t + 21 DRIP ....... ... I 1 181 NIiof !�!j 1 am R1 .61 T 1 nj C;lm ....... 0-� i6 ii <5 In, i z Z 5� ;j J3l ;Q1 .......... ............ �1 L I 1 17 L I I 1 1 1 1�Ill�IMINI VtIM rl /V l 17�IN VI..IMI Id'I I^I 'I 'MINIM 1I I� NI 1 MINI INI� ....................aaaaaa&a -e4 , = = = = = - = aaa a as "`�.I `:::::�,.ty: (wr�prwpw.ww�pw�pw+w F. pwr�pwpwrw pwr�pw�pw+prww�pwp�w�pww ILI wwwww y11,� ww l-•� H F FF E+ F-� F-! H l•-� H !'� F-� F F-� F H t3:'3w M N N O _3 E N V Vt N N N ���� a V d' d' �n N O O M M C V i .... Q W U A W 2-0 w U N .e b 0 0 w n U U o40 U w O W �'y z W z� y F uw J 1 I� 0 1 I 7 L I 1. C� U�� 4d Hzc� F uU W .3 IPA�VMMMMMMMMM 'CNN►, 0 2 4 5 8 10 12 14 SLOPE OF GUTTER Ma) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slopeto the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Loads, 1965) PROJECT #:........ 953-003...... Name of Street: .......Street 6 ........... Name of sub basin:........ C ........... Type of Street:...... Local Street Roadway: Rw:= 30•ft Design Point: ....... 40W* ...... Stations:... 3+00 - 5+00.... Street cross slope: Sx:= 0.02 ROW:= 53•ft Data: Reduction factor: it = 0.50 Gutter width: w := 1.17-ft Longitudinal Slope: SL:= 3.92% Curb width: wl := 1.42,ft Curb height: H:= 0.39ft Ds Gutter depression: Ds:= 0.11•ft Gutter cross slope; Sw:= Sx+ — w Buffer width: w2 := 0.5(ROW - Rw — 2•wl) w2 = 10.08 ft Buffer height: Hl SX w2 + H HI = 0.59 ft Tr := 1 Rw - w Tr = 13.83 ft 2 Manning Coef.: n = 0.016 sec 1 ft3 Designed by: Checked by: (H Tw S x T := Tr + w Tw = 14.00 ft T = 15.0011 streetA-40.mcd K:\953\003\Drainage\Guter\Basin- c\streetA-40.mcd 11/13/02 PROJECT M ........ 953-003...... Return period: 2 -Years At :_ 2 •H•wl A2:= I (2•H — Ds)•w 2 Pl:= H2 + w12 P2:= w2 + Ds A2year Al + A2 + A3 A2year = 2.61 ft' A3 := 1 •(H — Ds)•Tr 2 2 P3 := 4Tr + (H — Ds — Tr- Sx) P2year:= PI + P2 + P3 P2year = 16.48 ft 2 1 1.49 3 2 QALL2year = —'R2year 'SL 'A2yeaeTl n 3 Peak flow for half section of street: QALL2year = 7.02 ft sec A2year R2year :_ P2year R2year = 0.16 ft 3 QPeak2year= 5.04• ft sec QALL2year ft Velocity := Velocity = 2.70 — A2year sec Guess Values: The flow depth at the curb for 2-year Peak flow: -> y := 0.352ft (adjust value of y --> Q2year = QPeak2year D T := y s T = 12.1Oft xl := wt. Y xl = 1.28 ft y Sx Y H Al2 :_ [(0.5•yxl) + [0.5.(2•y — Ds)•w] + [0.5•(2y — 2Ds — TY'Sx)'TY]] P12 :_ [ y2 + x12 + w2 + (Ds + SX w)2 + Ty2 + (y — Ds — TySx)21 2 1 J 3 — 3 Q2year= l49 (P12) •SL2•Al2•rl Q2year=5.05 Sec t Velocity := QPeak2year Velocity = 2.47 ft A 12 sec Designed by: streetA-40.mcd 2 K:\953\003\Drainage\Guter\Basin- Checked by: c\streetA-40.mcd 11/13/02 PROJECT M ........ 953-003...... Return Period. 100 - Years Dh:=HI —H Awl :=wl+w+Tr Awl + Aw2) 2-2 Aq := 2 •Dh Pq := fDh + w2 Al00year = A2year + A4 2 AI OOyear = 6.93 ft 2 1 QALL100year =1.49 3 2 —'Rl00year 'SL 'Al00year'TI n 3 Peak flow for half section of street: QALL100year = 26.10 ft sec QALL100year ft Velocity := Velocity = 3.76— A100year sec Awl := w2 + Awl P100year:= P2year + P4 Al00year RIOOyear:= P100year ft3 QPeak100year:= 24.07•— sec Guess Values: The flow depth at the curb for 100-year peak flow: --> y]00:= (0.5715ft) (adjust value of y —> Q100year = QPeak100year ) Dhl := y100 — H w21 := Dhl Awl := wl + w + Tr Aw2:= w21 + Awl SX Al too := L(0.5•H•wl) + [0.5•[2•H - (Ds)]•w] + [0.5•[H — (Ds)]•Tr� + (Awi 2 Aw2) •Dhll r2 P1100 := l H2 + w 12 + w2 + Ds2 + IT + �H — Ds�2 + LFDh2+ (Dhl) J SX 2 3 1 kn 2 ft3Q100 =(A 1100 P1100) SL 'A1100'i1 '1 QI00=24.05— sec Designed by: , Checked by: QPeak100year ft Velocity := Velocity = 3.70— At l00 see streetA-40.mcd 3 K:\953\003\Drainage\Guter\Basin- c\streetA-40.mcd 11/13/02 PROJECT M ........953-003 Curb Inlet on Grade For the purpose of inlet calculation assumed 100-year Gutter flowdepth: Yg:= H Yg • s Ty. S x Al := I (2•Yg — Ds)•w 2 2 PI := w + Ds + Yg Ainlet:= Al + A2 Ainlet = 2.35 ft2 2 1 1.49 3 2 Q:= —'Rinlet -SL .AinleTtl n Pinlet:= PI + P2 Pinlet = 15.57 ft 2 1 1.49 3 2 Qw:= —.R1 .SL .Al'rl n 3 Qw = 1.44 ft (Qw) see Eo:= Q Designed by: Checked by: A2 := 2 .(Y9 — Ds).Ty P2 := f y 2 + (Yg — Ds)2 Ainlet Rinlet:= — Pinlet Rinlet = 0.15 ft ft3 Q=6.15— see Velocity := Q Ainlet Eo = 0.23 Al RI. Pi Velocity = 2.62 S sec streetA-40.mcd 4 K:\953\003\Drainage\GuterCBasin- c\streetA-40.mcd 11/13/02 1 1 1 1 Designed by: Checked by: PROJECT M ........ 953-003...... Total Inlet depression (a) : a:= 2-in 0.42 0.3 1 )0.6 secl'02 Se:= SX+ a 'E0 LT:= 0.6•Q •SL w n-Se ft.46 Se = 0.05 Proposed length of inlet: L:= 20•ft L 1.8 Capture efficiency: E:= I - C1 - L / l TJ The flow intercepted: Qi:= E•Q Lj• = 33.82 ft Curb operning inlet on grade -- Nomograph Ti := Ty + w Ti = 15.17 ft dW := SX•(Ti — w) SL = 0.0392 Se = 0.05 E = 0.80 ft3 Qi = 4.92 — sec dW = 0.28 ft LT:= 22•ft Proposed length of inlet: L:= 2Gft Egraph:= 0.95 ft3 The flow intercepted: Qi:= Egmph Q Qi = 5.— — sec streetA-40.mcd 5 K:\953\003\Drainage\Guter\Basin- c\streetA-40.mcd 11/13/02 No Text PROJECT #: ......... 953-300 ... Name of Street:... Street C ............ Name of sub basin:........ D ........... Type of Street: ..Minor Collector ......... Roadway: Rw = 50•ft ROW = 76•ft Data: Reduction factor: rl = 0.80 Longitudinal Slope: SL = 0.75% Gutter depression: D. = 0.17•ft Buffer width: wl = 0.5•(ROW - Rw) Buffer height: HI = SX wl + H Tr = 1ZRw-w Tr=23ft Manning Coef.: n = 0.016 sec I ft3 Designed by: Checked by: Design Point:....... 30W'....... Stations: .... 19+00 - 21+00 ... Street cross slope: Sx = 2•% Gutterwidth: w = 2.Gft Curb height: H = 0.50ft Ds Gutter cross slope; Sw = Sx + — w �H - DS� w1=13ft T= S T=16.5ft x H1=0.76ft Tw=T+w Tw=18.5ft Hcrown = TT-Sx + Ds Hcrown = 0.63 ft SteertC-30W.mcd 1 of 7 K:\953\003\Drainage\Guter\BASIN- D\SteertC-30W.mcd 11/13/02 PROJECT #: ......... 953-300... Return period: 2 -Years Al = 2 (2•H - Ds)•w A2 = •(H - D,).T A2year = At + A2 A2year = 3.55 ft 2 P2year = P1 + P2 R2year = A2year R2year = 0.19 ft P2year 2 1 1.49 3 2 QALL2year = —'R2year .SL .A2yearrl n P 1 = H + w2 + Ds2 P2 = fT2 + (H - Ds2 P2year = 19.01 ft ft3 Gutter / street capacity for half section of the street: QALL2year = 7.49— sec Velocity = QALL2year Velocity = 2.11 ft A2year sec ft, 2-year peak flow from rational analysis: QPeak2year = 3.21- sec Guess Value: The flow depth at the curb for 2-year peak flow: -> y = 0.3938 ft (adjust value of y --> Q2year = QPeak2year Criteria for INITIAL STORM -> No curb -overtopping and one half of roadway free Ty `y - Ds) in Tr = 23 ft Sx Al2 = [0.5•(2y - Ds)•w] + [0.5•(y - Ds) -Ty] Designed by: Checked by: P12 = [y + w2 + Ds2 + ITY2 + (y - DX] SteertC-30W.mcd 2 of 7 K:\953\003\Drainage\Guter\BASIN- D\SteertC-30W.mcd 11/13/02 PROJECT M .........953 - 300 ... Designed by: Checked by: 2 — I 1.49 Al2 3 2 Q2year = 11 n (P12) Sl •Al2•r1 Velocity = QPeak2year Velocity = 1.72 ft Al2 see ft3 Q2year = 3.2. — sec SteertC-30W.mcd 3 of 7 K:\953\003\Drainage\Guter\BAS111- D\SteertC-30W.mcd 11/13/02 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 Return period: 100 - Years Dh= (HI -H) Dx1=0.5•Rw,-T-w Dh=0.26ft Dx1=6.5ft PROJECT M .........953 - 300 ... Dyl = Dxl'Sx Dyl = 0.13 ft Awl = 0.5•[wl-(Dh)] Awl = TW Dh Aw3 = Dxl-(2•Dh - Dyl)•0.5 PI = H + w2 + Ds2 P3 = DR + w12 A3 = Awl + Aw2 + Aw3) Pb2 = Dx12 + Dyl2 At00year = A2year+ A3 P100year = 3 8.5 1 ft AI00year = 11.32 ft2 R100year = 0.29 ft 2 1 1.49 3 2 QALL100year = —'R100year .SL .AI00year-71'1 n Pat = (T)2 + (H - Ds)2 P100year = PI + Pa2 + Pb2 + P3 A100year RIOOyear = P100year Gutter / street capacity for half section of the street: QALLI00year = 32.29 ft 3 sec Velocity = QALL100year Velocity = 2.85 11 A100year sec ft 3 Peak flow for half section of the street from rational: QPeak100year = 15.21- sec Designed by: Checked by: SteertC-30W.mcd 4 of 7 K:\953\003\Drainage\Gnter\BASfN- D\SteertC-30W.mcd 11/13/02 PROJECT M .........953 - 300 ... r 1 1 1 1 For MAJOR STORM --> max 1.5ft over the Gutter Flow Line The flow depth at the curb for 100-year peak flow: ----> y100 = 0.6255ft (adjust value of y --> Q100year = QPeak100year ) (y100 — H) wll = w12 = 0•ft Sx y100 — Ds wl = if(y100 5 H,wl2,wll) wl = 6.27 ft T100 = Sx (HI — Ds) THl = S x Dy2 = y100 — H Dh100 = (y100 — H) Dxl = T100 — T Dy2 = 0.13 ft Dx2 = THI — T Dr = Tr—T Dy12 = y100—[Ds+ (0.5•Rw—w)•Sx] Dyl = if(Dxl—DrADy12) For MAJOR STORM —> max 0.5 ft over the Crown ID0'ftt tv:_'9N Awl = 0.5•[wll•(Dy2)] Awl = Tµ Dy2 Aw3 = Dy2 + Dyl)•0.5•Dr A3 = Awl + Aw2 + Aw3 A100 = A2year + A3 A100 = 6.68 ft2 Pl = H + w2 + Ds2 P2 = T2 + �H — Ds)2 P3 = IDy22 + w112 Pa3 = J(Dr)2 + ((Dy2 — Dy1))2 P100 = PI + Pa3 + P3 + P2 P100 = 31.79 ft 2 1 R = A100 R100 = 0.21 ft Q100 = 1.49 32 R100'SL 100 'A100-11-1 P100 n 3 Velocity = Q100 Velocity = 2.28 8 Ql0U = 15.22 ft A100 sec sec Designed by: SteertC-30W-.mcd — --- 5 of 7 K:\953\003\Drainage\Guter\BASIN- Checked by: D\SteertC-30W.mcd 11/13/02 PROJECT M ......... 953 - 300 Curb Inlet on Grade For the purpose of inlet calculation assumed 100-year Gutter flowdepth: Yg = H x I Yg - —s Ty = SX Al = 2 (2•Yg — Ds)•w PI = w2 + Ds2 + Yg Ainlet = Al + A2 Ainlet = 3.55 ft2 2 1 1.49 3 2 Q = —'Ainlet 'SL .Ainlerll n A2 = 2 •(Yg — Ds) -Ty P2 = Ty2 + (Yg — Ds� Pinlet = PI + P2 Pinlet = 19.01 ft ft3 Q = 7.49 — sec Ainlet Rinlet = Pinlet Rinlet = 0.19 ft Al RI = PI 2 1 ft Qw — 1.49 Rl 3Sr 2 Alm Velocity = Q Velocity = 2.11— — — n inlet sec 3 Qw = 2.56 8 (Qw) sec Eo = Q Designed by: Checked by: Eo = 0.34 SteertC-30W.mcd 6 of 7 K:\953\003\Drainage\Guter\BASrN- D\SteertC-30W.mcd 11/13/02 PROJECT M ......... 953 - 300 ... Total Inlet depression (a) : a = 2-in a = 2 in a 0.42 0.3 1 0.6 sec1.02 Se = SX + a .En LT = 0.6•Q Q. W n Se ft 46 Se = 0.05 Proposed length of inlet: L = 20•ft L 1.8 Capture efficiency: E = 1 - Cl - L J l TJ The flow intercepted: Qi = E•Q LT = 23.66 ft Curb operning inlet on grade -- Nomograph Ti = Ty + W Ti = 18.5 ft dw = SX (Ti - W) SL = 0.0075 Se = 0.05 Proposed length of inlet: L = 20•ft Egraph = 0.85 E = 0.97 ft3 - Sec dw 0.33 ft LT = 30•ft 3 The flow intercepted: Qi = EgraplYQ Qi = 6.37 n sec Designed by: Checked by: 7 of 7 SteertC-30W.mcd K:\953\003\Drainage\Guter\BASFN- D\SteertC-30W.mcd 11/13/02 No Text Name of Street: Country Club Road .. Name of sub basin:........ C ........... Type of Street: ..Major Collector Street.. Roadway: Rw = 40-ft ROW = 66•ft Data: Reduction factor: rl = 0.80 Longitudinal Slope: SL = 0.61•% Gutter depression: Ds = 0.17•ft Buffer width: wl = 0.5•(ROW — Rw) Buffer height: Hl = SX wl + H Tr= IRw—w Tr=18ft Manning Coef.: n = 0.016 sec 1 ft3 Designed by: Checked by: PROJECT #: ......... 953-300 ... Design Point: ....... 52N*...... Stations: ... 0+00-5+00 ..... Street cross slope: Sx = 2•% Gutter width: w = 2.Gft Curb height: H = 0.50ft D Gutter cross slope; Sw = Sx + s w w1=13ft HI = 0.76 ft TSHDs� = —S T=16.5ft x Tw=T+w Tw=18.5ft Hcrown = Tr-Sx + Ds Hcrown = 0.53 ft SteertSC-52.mcd 1 K:\953\003\Drainage\Guter\Basin- c\SteertSC-52.mcd 11/13/02 PROJECT #:.........953 - 300 ... Return period: 2 - Years Al = 2 (2•H — Ds)•w A2 = 2 (H — Ds)•T A2year = Al + A2 2 A2year = 3.55 ft P2year = PI + P2 A2year = A2year A2year = 0.19 ft P2year 2 1 1.49 3 2 QALL2year =—•R2year . SL •A2year rI n P l = H + Kw2 + Ds2 P2 = fT2 + (H — Ds� P2year = 19.01 ft Gutter / street capacity for half section of the street: QALL2year = 6.76 ft 3 sec QALL2year ft Velocity = Velocity = 1.9— A2year sec Designed by: Checked by: SteertSC-52.mcd 2 K:\953\003\Drainage\Guter\Basin- c\SteertSC-52.mcd 11/13/02 PROJECT M ......... 953 - 300 Return period: 100 -Years Dh=(HI—H) Dx1=0.5•Rw—T—w Dh = 0.26 ft Dx l = 1.5 ft Dyl.= Dxl'Sx Dyl = 0.03 Il Awl = 0.5•[wl'(Dh)] Aw2 = TH Dh Aw3 = Dxl'(2•Dh — Dyl)•0.5 PI = H + w2 + Ds2 P3 = fDh2 + wl2 A3 = Awl + Aw2 + Aw3) Pb2 = FDx12 + DYI2 Al00year = A2year+ A3 A100year = 10.42 ft2 PI00year = 33.51 ft A100year R100year = P100year 2 1 1.49 3 2 QALL100year =—11100year 'SL 'Al00year'rl' I n Pat = (T)2 + lH — Ds� P100year = Pt + Pa2 + Pb2 + P3 R100year = 0.31 ft ft3 Gutter / street capacity for half section of the street: QALLI00year = 27.83— sec Velocity = QALL100year Velocity = 2.67 8 A100year sec ft3 Peak flow for half section of the street from rational: QPeak100year = 22.89— sec Designed by: Checked by: SteertSC-52.mcd 3 K:\953\003\Drainage\Guter\Basin- c\SteertSC-52.med 11/13/02 PROJECT M .........953 - 300 ... Curb Inlet on Grade For the purpose of inlet calculation assumed 100-year Gutter flow depth: -Yg = H Y T = g 5 y S x At = 1 (2•Yg — Ds)•w PI = Kw2 + Ds2 + Yg Ainlet = At + A2 Ainlet = 3.55 ft2 2 l 1.49 3 2 Q = —'Rinlet 'SL 'Ainlet'tl n 2 I 1.49 3 2 Qw = —'RI 'SL 'Al'TI n Pinlet = Pl + P2 Pinlet= 19.01 ft 3 Qw = 2.31 ft (Qw) sec Eo = Q Designed by: Checked by: A2 = 2 •(Yg — Ds) -Ty P2 = Tye + (Yg — Ds) Ainlet Rinlet = — Pinlet Rinlet = 0.19 ft Q = 6.76 8 3 sec Velocity = Q Ainlet Eo = 0.34 At RI = PI Velocity = 1.9 ft sec SteertSC-52.mcd 4 K:\953\003\Drainage\Guter\Basin- c\SteertSC-52.mcd 11/13/02 PROJECT M .........953 - 300 ... Designed by: Checked by: Total Inlet depression (a) : a = 2- in a 0 42 0.3 r 1 Se )n.0.6 sec 1.02 Se = SX + —•E0 LT = 0.6-Q - •SL Il ft.46 Se = 0.05 Proposed length of inlet: L = 20•ft 1.8 Capture efficiency: E = t - 1 — L LT The flow intercepted: Qi = E•Q LT = 21.3 ft E = 0.99 ft3 Qi = 6.71 — sec Curb opening inlet on grade -- Nomograph Ti =Ty+w Ti=18.5ft dW = SX(Ti —w) day=0.33ft SL = 0.0061 Se = 0.05 LT = 35•ft Proposed length of inlet: L = 20•ft Egraph = 0.83 3 The flow intercepted: Qi = Egraph• Q Qi = 5.61 8 sec SteertSC-52.mcd 5 K:\953\003\Drainage\Guter\Basin- c\SteertSC-52.mcd 11/13/02 No Text PROJECT #: ......... 953-300 ... Name of Street: County Road 11....... Name of sub basin:........ A ........... Type of Street:..2 Lane Arterial Street. Roadway; Rw = 52•ft ROW = 84•ft Data: Reduction factor: rl = 0.80 Longitudinal Slope: SL = 1.26% Gutter depression: Ds = 0.17•ft Buffer width: wl = 0.5S(ROW - RW) Buffer height: HI = S,.wl + H Tr= 1ZRw-w Tr=24ft Manning Coef.: n = 0.016 sec 1 ft3 Designed by: Checked by: Design Point: ......... IN* ....... Stations:.. 20+00 - 26+00 ... Street cross slope: Sx = 2•% Gutter width: w = 2.0 ft Curb height: H = 0.50ft D Gutter cross slope; Sw = Sx + s w - w1=16ft T(H Ds)= T=16.Sft Sx HI=0.82ft TW=T+w TW=18.5ft Hcrown = Tr-Sx + Ds Hcrown = 0.65 ft CR-11-1N.mcd 1 of 3 K:\953\003\Drainage\Guter\BASIN- A\CR-11-IN.mcd 11/13/02 PROJECT M .........953 - 300 ... Return period: 2 -Years At = 2(2•H—D,).w A2 = z•(H—Ds)-T A2year = Al + A2 2 A2year = 3.55 ft P2year = Pt + P2 A2year A2year = 112year = 0.19 ft P2year 2 I 1.49 3 2 QALL2year = —'A2year .SL .A2yearrl n Pt = H + w2 + Ds2 P2 = T2 + (H — Ds� P2year = 19.01 ft 3 Gutter / street capacity for half section of the street: QALL2year = 9.71 ft sec Velocity = QALL2year Velocity = 2.73 ft A2year sec ft3 2-year peak flow from rational analysis: QPeak2year = 8.41•— sec Designed by: Checked by: CR-11-1N.mcd 2 of 3 K:\953\003\Drainage\Guter\BASIN- A\CR-II-IN.mcd 11/13/02 PROJECT M ......... 953 - 300 ... Return period: 100 -Years Dh = (HI — H) D.I = 0.5•RR, — T — w Dh=0.32ft Dxl=7.5ft Dyl = Dxl'Sx Dyl = 0.15 ft Awl = 0.5•[wl•(Dh)] Awl = TW Dh Aw3 = Dxl•(2.Dh — Dyl)•0.5 PI = H + KW2 + Ds2 P3 = TDh2 + w12 Pat = (T)2 + lH — Ds� A3 = (AwI + Aw2 + Aw3) Pb2 = Dx12 + DyI2 P100year = PI + Pa2 + Pb2 + P3 A A + A P 42.52ft R A100year 100year = 2year 3 P100year = IOOyear = P100year A100year = 13.87ft2 R100year = 0.33 ft 2 1 1.49 3 2 QALL100year = —'R100year 'SL 'Al00year'rl'I n 3 Gutter / street capacity for half section of the street: QALLI00year = 54.97 ft sec QALL100year ft Velocity = Velocity = 3.96— A100year sec 3 Peak flow for half section of the street from rational: QPeakl00year = 38.24ft sec Designed by: Checked by: CR-1 l-IN.mcd 3 of 3 K:\953\003\Drainage\Guter\BASIN- A\CR-11-IN.mcd 11/13/02 1.0 12 5 9 11 10 4 B 10 6 3 LL 9 _H 00 4 LL .7 LL 8 a � ? 1.5 � 2c 7 Eimer z T h = 0.5ft .5-'KQMjre, P� c t u �(yJh) = 0.50/0.5 = I.0 5.5 0 .6 w 5 = z (y./h) = 0.39/0.5 = 0.78 LL .4 z z _4 F 4.5 z 0 3 6 w .c U. _ Y 0 0 .5 c� 4 = 2 r- z z P O w .3 3.5 w w " .4 a rl —1 O 0 w 0 0 0 .08 F 25 3 _ = 0 .06 (D .3 o o z w _ = i w .04 ¢ 25 2.5 w w 2 a .03 a } 3 t- .02 u_ 2 a o a _ 2 U F w .15 01 .15 L U. 0 O O YO C 0=2 h .10 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS. DEPRESSION DEPTH 2' Adapted from Bureau of Public Roads Nomograph MAY 1964 $-10 DESIGN CRrrERIA Theoretical Capacity for - 2 year 1.0 12 5 9 II 10 4 8 (y,/h) = 0.76/0.5 = 1.52 10 6 3 u 9 0 4 fZ (y /h),= 0.65/0.5 = 1.30 .7 ¢ 3 u_ 8 a .6 (yjh) = 0.59/0.5 = 1.18 h = 0.5ft .5 �m�i' Por a 1.5Z 9 .S._• 41 (y,/h = 0.50/0.5 = 1.00 5.5\ a 0 .8 r w U) \ .6 u w o w 5 x \ z 0 (y /h) = 0.40/0.5 = 0.80 .4 Z \ z 4 z 4.5 6 o w 4 y o \ 0 .5 r, _ .2 \ r Z Z z _3 z o w 3.5 W w 4 a.0 a U. o .t w 0 U. .08 0 F (y,/h) = 0.20/0.5 = 0.40 r .25 3 r r _ = O .06 .3 c� c� 0 z eL w w D: .04 = 2.5 x wa w .25 .2 } .03 ► a r � a .02 0 2 2 a x U r • a_ LU IS of a IS L U. 0 0 Yo a l.5 � a=2" h 30 I 1.2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph MAY 1954 5-10 DESIGN CRrrERIA Theoretical Capacity for -100 year u 1 1 I I APPENDIX D STORM SEWER AND RIPRAP DESIGN L' ' Nmm -n1pqpO���wAYo1YA oY b m -YOYi rOOil�ppNimOYi amO y bimi vppi �oS mbmnb NN NN VJmpopropll m .Ympp m"p mm1-g a O m I I 2 5 5 5 wy � OImNN 2ITNp� ai mNmOh y O d YY <1f1�NM0 � fmON r0O p r0 PO m W RaR�jj SOS OI d YIN b N O m NN N N �~NIMp m9 _8 1� m bNNN ~IS NN IQ ViI�Y�m in N ry � O N y aa pp pp pp d o 0 o p p p p p p p nn 1~O rnn� NHC1N LNION {-NN S. Nrn S. fV N NNNOYINN _ NbmtO C't70! n N 00 t7m 888 mClm 00 mm mm 3 3 3 I I 1 1 °1 501<��rym 001¢mw 2 km i,cc cc c FIW Q Cm�QO ?ONNyyCC N2 �uw ZII I I I I I C I 1 1 I i ,I b N rt0 N m 0 0 <N 0{0 mN N{(1 r NN m 0 HNI ON QN N O Nyy Cf N 0! (QN N rpm O 0N N' NN ON ON Ob ON NN r10 "mp 000ry0000 WN 0000 C�N6 UE NNpyN N 9 0pN0 NV N N O NN N NmON N t mm m m m �m of m N •"' 6 � ,:;�? c e �L�v e � .�.v v x�'Y� a�a tirf v.� a i ? Y ��' v�' av aa'� 0 K O O O YI mry� w n N N wpgN at w ry oPP vryn aN N mN ryry N 3 n d V N N ryvi Y m r n V V N N N fV N N N {Q q N IV N N m N N N IV !1 N N fV N N N IV IV N N Y N N N N N U s i�i o 0 0 0 0 0 0 0 0 0 0 0 o m o 0 0 0 0 0 .... o m m m m m m m m m m m 0.0 2.51 J O O O O O O O N O O YI O O O O O O O O O O O O O O OOO O OO OOO OOO OOO Nb O � � O �O�` �"O D B rc 'c =� mom.w- yr 7 m {uNa �ri ra si vi M M PY mN 5 O o on Ne M d. P m O i�ry P P nm �noo N N N ry N m ww P n N.-.- N N N Mo m O P Mo N & 0 wIM Y nn� N V N YI ory.-ryNm (7 M N r f0 m P.a MIN Y CI in O1 f'! Y N O1 !1 O q' A N M 1'1 m 1�! {'! 17 M IV N M Ii t'1 17 N M N N N {C d 01 N M1 r O U a 0 0 H M o 0 o n n n c; O1 O a$000000 00 �O O f O O�Op ppN MY mN N nO mp N Om r0mw$0g0O NONO mp fir£ ON N 0 m 0n6 0 OR 0 NO yO PO 0O MON 1OOp OO NO NO O7 m tA0 OQ Od O O OOOO OO Ni O o Oa pO O tlLLm0 O N O Np NOoO NNN NNN 0 N NNNNNNY 7 � a�i SE p OOONI(1 pp OON O r N pp O�IIONNry QQ Oh NN A p N Nn OON NN It OOO ppp N N� oo YIN I-. N m n nd d dMM M(7 t7 N NN r N 00 rM M(O NN MM d d MM N N (7N ddM OlN Ni MM N NNN d Y(7 3 yy` nag 9_q 099.0n 999 999 999 999 uWUMODUU uU uUU 00L) u06 uuu d U wWu UU 17 U W lw UUUU0 tj NmPmN{y �pOO ddA %'-0 df�'4 rrNN nn 41AH-1 NNNN N ty0 YN a m OfYN V mm OWN�A�my y m NMCp��p1IQy�pi N 00 N 00 P O^NO00 `O yyyyyy tQ NI [�1 t+! t7 p t7 t0'I y�uN� CI C1d PI gg �O NO IOO� $0000S, RO�$0000 �$$ 000000 O OHO $O$ W M d O d npm� M G r Np� M m Am m n � m 0 N 0It d O M N m N y MM drO n 0 d nN 0 N ON 0 000 000 1. ,0 N hM {��O 0 dN W 0It O O N A 00 m O N 0 m ON 1tm ONmOp m O oogcsggm0y 0.9 O O O O O O O O NqY O O O O O O O 0.0 pd 0 p O O ID pQ p ry O pry�SM 0 O O O O N CJ 0N0 O O O O N N O N O O O N N 0 N 0 N N N N N O N 0 N N N N 0 N N 0 W m ESp M d p ��pp M G M Y d r A 6 M p N N O y y 0 NN 0 0 OO N M 0 y� M 0 r AN O r Nmmd M 0 m tmO �- O Np r M � O q N Mn GOON O O W Hl rN�- VI O O N yy O ya O No Q�j g �.-M ONIV O O pp O O mn g0 rNYd NOOOOM S 00 O O O .OmN NNN O p O N NN p O NAS O O O O t�!(� yN Cm'1 00 p A%M O O mO O O � mO pA YN O ��$ p p pO N N p O O p NNN N N 0 NNN N 0- N 0 N N {00 0 N N N - _ - d m�N N O(�pO 0N0N 00 NO �mnON ON OOCO,I Oay OOOON 0N001(l 09 0N O NO OM,00Oq 5 m 21!NI 00t`p: O 0N0N G OONO yb J IOV M d d NN '�x��arzx xx eve egxg gxxxggxxgg eve gggggg eve eve Axe eve 2ry umi,n aaa oao a9i3O$v�ooa� o;�a �e��ea nod,o m�a muoi.w n4,g n? a 6"O i O N O O O m •' .. �O Q 4, Q(0 d d£ } W LL d d U2 � V a (�jj lar !4 .. a Jrt p� YJ d Y f Q Oa { Y d C/K Q. d { fn -d { 'J '� C i 2 s t �f 3{ y [[qq { m .?' )}j� m •' I � c .p if (Y] W i W 4 �' W �N li p� LL � �£l� N (IJ �. � ` � i;. •• �R4 5 Y •^.i V."G (� � V I �Y .4� ": L�' 2 Y t Q Q i d k d o : V Q d���' U Z K J W W 2 r o z U u n 0 M m a 0 Z N J W W �y2 F Z z U W I I Ll i 'I I I I I L' 1 1 1 1 4 2 E 1 1 [\.'-.0 t E LE :-do-moo -- NeoUDS Results Summary 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NeoUDS Results Summary Project Title: Gillespie Farm Project Description: ST-1 Output Created On: 2/4/03 at 8:05:29 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Manhole Basin COverland ID # A Time of Concentration Gutter Basin Rain I (Minutes) (Minutes) (Minutes) (Inch/Hour) Peak Flow (CFS) 1� 75.00 5.0 0.0 0.0 0.13 10.0 0 75.00 5.0 0.0 0.0 0.13 10.0 0 75.00 5.0 0.0 0.0 0.13 10.0 ® 75.00 5.0 0.0 0.0 0.13 10.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing " Rainfall Duration Rainfall Intensity Peak Ground Elevation Water Elevation Comments ID # Area * C (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) �1 0 0.0 0.00 10.0 5000.00 5000.00 0 150 5.0 0.07 10.0 5003.83 5001.41 ® 75 5.0 0.13 10.0 5003.51 5001.65 Summary of Sewer Hydraulics 1 file:HC:\Progratn%20Files\NeoUDSewer\reports\3253507529.htm 2/4/03 NeoUDS Results Summary rase L ct ■ Note: The given depth to flow ratio is 1. Manhole ID Number Calculated Suggested Existing11 Sewer Sewer Diameter (Rise) Diameter (Rise) Diameter (Rise) Width ID # Upstream Downstream Sha a (Inches) (FT) (Inches) (FT) (Inches) (FT) (FT) Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Fronde Number Comment (CFS) (CFS) (Feet) FPS) (Feet) (FPS) (FPS) �1 10.0 15.3 1.03 6.8 1.18 5.8 4.2 1.29 0 10.0 14.2 1.08 6.4 1.18 5.8 4.2 1.18 0 10.0 14.2 1.08 6.4 1.18 5.8 4.2 1.18 A Fronde number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth Slope Upstream Downstream Sewer lD /o (Feet) IDownstreaml,Upstream (Feet) (Feet) (Feet) Comment 0.93 4993.28 4991.99 6.42 6.26 I1 2LQNJ 4995.541 4993.281 6.541 6.42�1 F 3 .801F4996.001F 4995.541F 5.761F 6.54 F Summary of Hydraulic Grade Line I Invert Elevation it Water Elevation Sewer Surcharged Sewer Length Length Upstream Downstream Upstream Downstream Condition ID # (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) 1 138.38 138.38 4993.28 4991,99]F 5000.28 5000.00 Pressured ' file://C:\Program%20Files\NeoUDSewer\reports\3253507529.htm 2/4/03 NeoUDS Results Summary 0� 281.92 281.92 4995.54 4993.28 5001.41 5000.28 Pressured L ' J 57.64 57.64 4996.00 4995.54 5001.65 5001.41 Pressured Summary of Energy Grade Line Upstream Manhole Juncture Losses IF Downstream Manhole Energy Sewer Bend Lateral Energy Sewer ID # Manhole Elevation ID # Friction Bend K Lateral K Loss Loss Coefficient Coefficient Manhole Elevation ID # (Feet) (Feet) (Feet) (Feet) eet) �� 5000.55 0.55 0.05 0.00 0.00 0.00 5000.00 F2 0.01 0.00 0.00 �� 5000.55 F-3—]® 5001.92 0.23 0.05Eo.611E 0.00 0.00 0 5001.68 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. file:HC:\Program%20Files\NeoUDS ewer\reports\3253 507529.htm 2/4/03 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Ti Travel Time I nnnfh /ff1 Qlnna IN-1 Pipe Attenuation for ST-2 45' .5C2,.5C10,.5E1 2.41 Ti = (1.87'(1.1-C'C f)'D1/2)/S113 Maximum of 500 feet . 0.00 Channel (thnrnrfariefire ST'-Z_ 0.00 0.00 Time Valnrifv Ift/sl (Minl 235 5:0 Paved Area, Gutter Flow 4.777 0.82 280 3.3 Paved Area, Gutter Flow. 3.686 1.27 350 1:0 PavedArea, Gutter Flow 2:425 2.74 1150 0.63 Paved Area, Gutter Flow 1.627 11.78 None 0.00 Norie . 0.00 .. I utal I Inge —1 19.9.1 1 2 1, 0-yr 100-yr Actual Time of Concentration = 16.61 Intensities Discharge NOTE: " This is the flow the contributes only to the inlet in the south side of the road. TST, INC. CONSULTING ENGINEERS Page 55 of 59 11 /12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac) = Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = 1 Travel Time 1 cnnth /ff1 Clnnn 1041 Pipe Attenuation for ST-2 45. .5C2,.5C10,E1 3.65 Ti = (1.87*(1.1-C*C/)*D1/2)/Sl/3 of 500 feet 0.00 Channel /thnrnrtorictirc 0.00 0.00 Time VP106ty Iff/sl IMinl 2351 5.0 Paved Area,'Gutter Flow 4.777 0.82 280 3:3. Paved :Area, Gutter Flow 3.686 1.27 350 . 1%0 Paved i9rea; Gutter Flow 2.-25 2.74 1150 OM Paved.ke61-Gutter Flow 11627:. 11.78 None...: 0.00 None ----0.00 Intensities Discharge NOTE: * This is the total flow to DP-45. TST, INC. CONSULTING ENGINEERS 1 Uldl l HIM -1 1 V.V 1 1 2 1, 0-yr 100-vr Actual Time of Concentration = 16.61 16.61 Page 56 of 59 11 /12/02 Pipe Attenuation.xis Pipe Attenuation for ST-2 Design Point = 46,*.: .. Contributing Basins = .5E1 E2,E3 Contributing Area (ac)= 7.20 Runoff Coefficient's 2-yr Overland Flow Time T; _ (1.87*(1.1-C*Cf)*D1/2)/St/3 Length (ft) = Eq Maximum of 500 feet Slope (%) = 22-vr 5.14'_. Travel Time Channel "5 14 3.54 Time Length ft Sloe % Characteristics Velocity tvs Min 1050 0.63 w Paved Area, Gutter Flow 1.627 10.76 200 0:5T .. Paved Area, Gutter El ow : ' - 1-.488 .24 224 None... 0.00 None .. 0.00 None .: 0.00 None : .. 0:00 Total Time =1 13.00 2,1 0-yr 100-yr Actual Time of Concentration = 18:14 1 16.54 Intensities Discharge NOTE: * This denotes only surface water contribution to the design point. TST, INC. CONSULTING ENGINEERS Page 57 of 59 11/12/02 Pipe Attenuation.xls 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time I annfh IM Clnna fo/ 1 Pipe Attenuation for ST-2 47* _ DP-46*,E4 9.56 T; = (1.87*(1.1-C*Cf)*DIn)ISlf' of 500 feet . 4.62 Channel f .hararfaricfirc 4.62 2.89 Time Valnrity Ift/c) (Min) 1050 ;0:63 Paved Area, Gutter Flow ' 1.627 10.76 200 0:57 'Paved Area, Gutter Flow .. 1.488 2.24 205 0.57 Paved Area, Gutter Flow 1.488 2.30 None .0.00 - None 0.00 None 0.00. I oral I Ime =1 i o.za i 2 1, 0-vr 100-yr Actual Time of Concentration = 19.91; 18.18 Intensities Discharge NOTE: * This denotes only surface water contribution to the design point. NOTE: The 100-yr flow is divided in half with the east and west inlets. TST, INC. CONSULTING ENGINEERS Page 58 of 59 11112/02 Pipe Attenuation.xls Pipe Attenuation for ST-2 Design Point = 4Z Contributing Basins = DP-45',DP47` Contributing Area (ac)= 13.21 Runoff Coefficient's 2-yr Overland Flow Time T; = (1.87'(1.1-C'Cf)`D1n)/Sin Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-vr 4.51: Travel Time Channel 4.51 2.76 Time Length tt Sloe % charactenstics velocn Tus mmn 1050 0 63 Paved`Area, Gutter Flow 1.627 10.76 200 0:57 Paved Area, Gutter Flow. 1.488, ' .... 2.24 205 1.Z''.Oc57 ~ PaVed'.Area Gutter, Flow . 1:488 230 0.00... -' None :. 0.00 None . ;. :.. 0.00 Total Time = 15.29 2 1, 0-vr 100-yr Actual Time of Concentration = 19.81 1805 Intensities Discharge NOTE: This is the total 100-yr flow that contributes to the pond. TST, INC. CONSULTING ENGINEERS Page 59 of 59 11/12/02 Pipe Attenuation.xls I 1 1 1 1 1 1 1 1 l- i 1 1 1 1 1 1 1 :5�-- LO5 L-s- 5ckf�3. 5 NeoUDS Results Summary 11 r1 i u1. ' NeoUDS Results Summary H I Project Title: Gillespie Farm Project Description: ST-2 Output Created On: 2/4/03 at 8:10:19 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information JN[anholel Basin ID # Area * Cl Time of Concentration Peak Flow (CFS) Overland (Minutes) Gutter (Minutes) Basin (Minutes) Ram I (Inch/Hour) �0 11.10 5.0 0.0 0.0 5.31 59.0 11.10 5.0 0.0 0.0 5.31 59.0 0 11.10 5.0 0.0 0.0 5.31 59.0 11.10 5.0 0.0 0.0 5.31 59.0 F7775.30 21.0 1.58 5.0 0.0 0.0 5.05 8.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always =>i10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (10+Total Length/180) in minutes. ' When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. ' Summary of Manhole Hydraulics 1 Design Manhole Contributing Rainfall Rainfall Peak Ground Water H) # Area * C Duration Intensity Flow Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) �0 0 0.0 0.00 59.0 5003.51 5003.51 Surface 1 38.84 5.0 1.52 59.0 5002.72 5003.23 Water Present 0 27.74 5.0 2.12 59.0 5003.83 5003.37 0 16.65 5.0 3.54 59.0 5004.10 5003.54 1 file://C:\Program%20Files\NeoUDSewer\reports\3253501818.htm 2/4/03 NeoUDS Results Summary ca8u .G Ut _t 1 4 5.551 5.01 3.791 21.01 5004.101 5004.051 5� 1.58 5.0 5.05 8.0 5004.61 5004.32 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 1. Manhole ID Number Calculated Suggested Existing Sewer 7T�F Sewer Diameter (Rise) Diameter (Rise) Diameter (Rise) Width ID # u�"" '".. """"`� Sha e j (Inches) (FT) l (Inches) (FT) 11 (Inches) (Vr) Jl(FTJ 1 40.811 U21 381F-6-oll 12 Arch 42 38 F 60 23 42 �- 42 N/A 34 11 4 1 3 1 Arch j 27.711 391 2AJ 4511 45 5 Round 19312111 21 N/X11 Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Fu11 Normal Normal Critical Critical Full Sewer � Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment (CFS) (CFS) (Feet) (FPS) (Feet) (FPS) (FpS) 1� 59.0 96.2 2.31 7.7 2.30 7.8 4.5 0.99 12 59.0 96.2 2.31 7.7 2.30 7.8 4.5 0.99 23 59.0 63.8 2.66 7.5 2.48 8.1 6.1 0.E 34 21.0 45.5 1.47 6.0 1.51 5.8 2.8 0.98 45 8.0 10.0 1.18 4.6 1.05 5.3 3.3 0.8 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation 11 Buried De th Sewer 1D t Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream (Feet) Comment 4996.23 4996.14 3.32 4.20 file://C:\Program%20Files\NeoUDSewer\reports\3253507818.htm 2/4/03 NeoUDS Results Summary Page � of 3 1 1 1 1 1 1 12 -]L0Al 4996.571 4996.231 4.091 3.32 L� 23 0.40 4997.04 4996.57 3.56 3.76 34 0.40 4997.24 4997.04 4.44 4.64 45 0.40 4997.74 4997.24 5.12 5.1 1. Summary of Hydraulic Grade Line Invert Elevation 11 Water Elevation Sewer Surcharged Sewer Upstream Downstream Upstream Downstream Length Length (Feet) (Feet) (Feet) (Feet) Condition ID # (Feet) (Feet) 1� 22.61 22.61 4996.23 4996.14 5003.231 03.51 Pressured 12 85.01 85.01 4996.57 4996.23 5003.37F 5003,23 Pressured 23 118.25 118.25 4997.04 4996.57 5003.54 5003.37 Pressured 34 501 50 4997.24 4997.04 5004.05 5003.54 Pressured 45 124.29l 124.29 4997.74 4997.24 5004.32 5004.05 Pressured Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole Sewer Manhole Energy Sewer Bend K Bend Lateral K Lateral Manhole Energy ID # ID # Elevation (Feet) Friction (Feet) Loss Loss Coefficient (Feet) Coefficient (Feet) Elevation ID # (Feet) �1 �1 5003.54 0.03 0.05 F 0.00 0.00 0.00 F0 5003.51 12 5003.69 0.13 0.05F 0.02 0.00 0.00 1� 5003.54 23 3� 5004.12 0.40 0.05 0.03 0.00 0.00 0 5003.69 34 I® 5004.17 0.04 0.05F 0.01 0.00 0.00 0 5004.12 45 5� 5004.49 0.31 0.05 0.01 0.00 0.00 ® 5004.17 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. file: //C:\Program%20Files\NeoUDSewer\reports\3253 5 07818.htm 2/4/03 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time I annth /ffl Pipe Attenuation for Sub -Basin C 50 OF4 0.60 T; _ (1.87*(1.1-C*C f)*D1/2)/S'" S i -3 Channel Time Glnna /0/ 1 Chnrnrtaricfirc VAnnitV /ft/cl (Mini 500 0.6 Paved Area,.Gutter Flow 1.627 5.12 None . 0.00 None 0.00 None 0.00 None 0.00 None 0.00 i otal I Ime a.iz 2 1, 0-vr 100-vr Actual Time of Concentration = 512 5.12 Intensities Discharge NOTE: * Each inlet will be sized to allow for the 100-yr storm of 5.40 cfs. TST, INC. CONSULTING ENGINEERS Page 26 of 59 11112/02 Pipe Attenuation.xls 1 1 1 1 Pipe Attenuation for Sub -Basin C Design Point Contributing Basins = DP-50;0S108,C1 Contributing Area (ac)= 1.83 Runoff Coefficient's 2-vr Overland Flow Time T; = (1.87*(1.1-C*Cr)*D112)/Sl" Length (ft) = Maximum of 500 feet Slope (%) = 2-vr 10-yr 100-y EEq 0.00 0.00 0.00 Travel Time Channel Time Length ttSloe % Characteristics Velocity tVs Min 500 0.60 Pave&Area,.Gutter Flow 1.627 5:12 . . None.... .0.00 None 0:00 .. . 1100 . Nonew 0:00 Total Time = 5.12 21, 0-yr 100-yr Actual Time of Concentration = 5.12 5.12 Intensities Discharge NOTE: * Add additional 15 cfs from contributing off -site area to 100-yr flow. Swale must be sized for approximately 32 cfs. TST, INC. CONSULTING ENGINEERS Total 100-yr flow is 32.0 cfs. Page 27 of 59 11 /12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basin C Design Point = . 42*. . Contributing Basins = C2,C10 Contributing Area (ac)= 2.35 Runoff Coefficient's 2-yr Overland Flow Time TI = (1.87*(1.1-C*Ci)*DWysl" Length (ft) = 100 Maximum of 500 feet Slope (%) = 4.0_ . 2-vr T = . , ..... 4.01 Travel Time I nnnth rftl Sinner 10M Channel rharartaristincz Time Velocity (ft/s) (Min) 300 4.0. Paved Area, Gutter Flow 4.265 1.17 235 510' PavetlArea,.Gutter,Flow 4.777 0.82 260 '3':3 "PaVed'Area Gutter'Flow - ;, 3:686 1.27 350 ,1 0 Paved Area; Gutter Flow 2.125 2.74 . None :.. 0.00 None 0.00 !me of Concentration = Intensities Discharge I otal I Ime = I o.vv 2 1, 0-yr 100-yr 10:01 7.77 NOTE: Only half of 100-yr flow contributes to the Inlet on the north side of the road. The rest of the flow continues east towards the southeast end of the site. NOTE: *The 100-yr flow to the inlet at DP-42 is only surface water contributions. TST, INC. CONSULTING ENGINEERS Page 28 of 59 11 /12102 Pipe Attenuation.xls Pipe Attenuation for Sub -Basin C Design Point = 42 Contributing Basins = C1,C21'C10 Contributing Area (ac)= 3.58 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87'(1.1-C"Cf)*D"')/S1/3 Length (ft) E= 40 Maximum of 500 feet Slope (%) = 10 .. 2-yr T, = 1.76 . Travel Time Channel I Pnnth (ft) Slnnp (%l rhararterictirs 1.76 0.69 Time VPlnrity (ft/sl (Min) 420 071 ': Paved Area„Gutter Flow 1.764 . 3.97 350 0.5 ... Pad;'kei a;°Gdit&, low ve 1.488 5:92 950 _ - 1.58 - - Grassed Watervva s 1.590 9.96 None 0.00 ,None_. 0.00 . 0.00 Total Time = 17:85 ime of Concentration = Intensities Discharge r 2 1, 0-yr 100-yr NOTE: Only half of the 100-yr flow enters the storm system, the rest continues east. NOTE: The above discharge is a combination of surface flow and flow through the storm sewer system and swale. TST, INC. CONSULTING ENGINEERS Page 29 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basin C Design Point = 40 Contributing Basins = C3-C7 Contributing Area (ac)= 10:99 Runoff Coefficient's 2-yr Overland Flow Time T; _ (1.87'(1.1-C'C f)'D1n)/Sl" Length (ft) =EqT Maximum of 500 feet Slope (%) = 2-vr 10.33 Travel Time Channel 10.33 7.35 Time Len ton sloe io cnaractenstics veiocit tus(min) 2.10 2.38 : Paved Area, Gutter Flow 1011 1.16 265: 4.00 Paved. Area, Gutter Flow, .' 4:265 1.04 225 `. ' 3:92 : Paved Area; Gutter Flow 3.933 0.95 None.. - :.. 0.00 - Norie.C: 0.00. 0.00 . Total Time [me of Concentration = Intensities Discharge NOTE: 100-yr flow is divided by north and south inlets at DP-40. TST, INC. CONSULTING ENGINEERS Page 30 of 59 2,1 0-yr 100-yr 13:49 10.50 11/12102 Pipe Attenuation.xls 1 1 1 1 1 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = C Travel Time Pipe Attenuation for Sub -Basin C C8; 5C9 4.68 T; _ (1.87*(1.1-C*Cr)*Dln)/SW um of 500 feet 10.23 710:23 . 7.48 Channel Time Len ton sio a io cnaractenstics veiocit tvs min 250 I554' Paved,Area, Gutter. Flow 2.125 1.96 60 2'.7.7.; : Paved Area,:Gutter Flow 3.011 0.33 None 0.00 None 0.00. None;.: ...... 4 .'.: 0.00 None' . OM Total Time = 2.29 ime of Concentration = Intensities Discharge NOTE: * The 100-yr flow is only surface water contributions at this design point. NOTE: 100-yr flow is divided by north and south inlets at DP-41. TST, INC. CONSULTING ENGINEERS Page 31 of 59 2 1, 0-vr 100-vr 12.52 9.77 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time Lennth (ftl W SlnnP /%) Pipe Attenuation for Sub -Basin C 41 DP=40,DP-41' 15.67 T; = (1.87'(1.1-C'Cr).D112)/Sv3 of 500 feet 10.54 Channel Characteristics 10.54 7.60 Time Velnrity (ft/s) (Min) 210 2.38, Paved Area, Gutter Flow 3.011 1.16 265 4'`00 '. ,:... Paved Area, Griller. Flow 4:265 1.04 225. 3.92 Paved Area, Gutter Flow 3.933 0.95 340 0.5 Paved Area, .Gutter Flow 1.488 3.81 None 0.00 None 0.00 ime of Concentration = Intensities Discharge i otai i ime = o.ao I 2 1, 0-yr 100-yr r .17:5,0. 14.56 NOTE: The above flow is the combined surface and storm sewer contribution to DP-41. TST, INC. CONSULTING ENGINEERS Page 32 of 59 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time Pipe Attenuation for Sub -Basin C 43* :5C9 1.50 T; = (1.87*(1.1-C*Cr)*D12)/Sl" Maximum of 500 feet 2-yr 10.18 Channel 10) Characteristics 10.18 6.77 Time 100 0:63 Paved'Area;:Gutter, Flow 1.627 1.02 50 ;0.82 ' Pav66keb;"Gutter'Flow 1.882. 0.44 Noneir, ` 0.00 None: .0.00. None::: 0:00 None.. 0'.00.. Total Time 1 1.47'. !me of Concentration = Intensities Discharge NOTE: * The 100-yr flow is only surface water contributions at this design point. TST, INC. CONSULTING ENGINEERS Page 33 of 59 2 1, 0-vr 100-yr 11.65 18.24 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time Length (ft) Pipe Attenuation for Sub -Basin C 43S DP-41,DP-42,DP-43* 20.75 T; _ (1.87'(1.1-C"Cr)'DM)/S[" 40 Maximum of 500 feet 10,0„ 2-yr 10-yr 100-y1 T' _ 2.64 2:64 1.79 Channel Time Slnpe (%) ('hnrnrteristics velncity fts) (Min) 420 0.71 Paved Area, Gutter Flow 1.764 3.97 350 0.5 ,Paved Area; Gutter Flow 1.488 3.92. 950 :1.58 Paveii'°Area; Gutter Flow 2.125 7.45 150 0.5 Paved; Area; Gutter Flow 1.488 1.68 None .0.00 None 0.00 ime of Concentration = Intensities Discharge Total Time = 17.02 2 1, 0-yr 100-yr 19.66 18.80 NOTE: An additional 15 cfs must be added to the given 100-yr flow, this is contribution from basin OS108. TST, INC. CONSULTING ENGINEERS Page 34 of 59 11 /12102 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Pipe Attenuation for Sub -Basin C `44* C11 2.58 Overland Flow Time T; _ (1.87*(1.1-C*Ct)*D1/2)/S1° Length (ft) = E3.q Maximum of 500 feet Slope (%) = 2-vr 8.46 Travel Time Channel Time Length ft Sloe % Characteristics Velocity fVs Min 150 0.56 Paved Area, Gutter' Flow 1.488 1.68 None 'A:,; :, ., .... 0.00 ..- .None..:::' .:... 0.00 None, 0.00 None = 0.00 None . 0.00 ime of Concentration = Intensities Discharge 2 1, 0-yr 100-yr 10.14- 7.70 1 2:52 V 4:38 . I . 7.79 1 NOTE: * Denotes only surface contribution to the design point. NOTE: 100-yr flow is divided by east and west inlets at DP-44. TST, INC. CONSULTING ENGINEERS Page 35 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basin C Design Point = 44 Contributing Basins = DP-43S,DP-44- Contributing Area (ac)= 23.33 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87"(1.1-C'Cf)'D1n)/S1" Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-vr 2.64 Travel Time Channel Lenoth (ft) Slnne MI Chsrarteristirs 2.64 1.79 Time Valnrity (ft/c) (Mini 420 0.71 Paved Area, Gutter Flow 1.764 3.97 350 0.50 Paved:Area :Gutter',Flow 1.488 3.92 950 ;1`58 Paved Area„Gutter`Flow, 2125 7.45 150 0' 50 ' Paved: Area,=GutterFlow. ; . 1.488' ' 1.68 400,_ 100, Paved?Area,.Gutter Flow>_ 2 ,125„ . -i 3.14, None: , ::. 0.00:, [me of Concentration = Intensities Discharge i otai i ime = I zu;10 1 2 1, 0-vr 100-vr 22.79 21.94. NOTE: An additional 15 cfs must be added to the given 100-yr flow, this is NOTE: The above flow Is the combined surface and storm sewer contribution to DP-44. TST, INC. CONSULTING ENGINEERS Page 36 of 59 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time I Pnnth (ft) Pipe Attenuation for Sub -Basin C C DP-43S,DP-44- 23.33 Ti = (1.87•(1.1-C"Cr)"Din)/S1 /3 Channel Time SInnP 10M r:hnrnnfnricfine \/nlnni}„ /K/r•\ /RA{..\ 420 0.7:1 PavedArea, Gutter Flow 1.764 3.97 350 0.50 Paved Area, Gutter Flow 1.488 3.92 950 1.58 . Paved'Area, Gutter..Flow 2.125 7.45 150 0.50 . Paved Area Gutter Flow 1.488 1.68. 400. . 1.00- Paved.Area,.,Gutter Flow,_. 2.125 3.14 .. :. ' Norie 0.00 ime of Concentration = Intensities Discharge i orai i ime = ZU.1b 2 1, 0-yr 100-yr 2279 21.94 NOTE: An additional 15 cfs must be added to the given 100-yr flow, this is NOTE: The above flow is the combined surface and storm sewer contribution to DP-44. TST, INC. CONSULTING ENGINEERS Page 37 of 59 11/12/02 Pipe Attenuation.xls I 11 I M I 11 11 I I V 0m m O pOoN moo m mNOdOmoNmmp � O mm UC NmS pNoON N N 00 N Q m m UO W LL (7S m m Q !L U O W m N C — C'1 t'1 Cf fIl CI N1 J d th t7 1'1 17 m W V N m U O m d N C C N C d C N C N C K 000��0NNb mmmm mm m0� m S AA � rp b m V p 88 �NNNNN CI N N Ni NN Ci t7 NN U F OJ S 0 m m 0 m 00 O O o m m M o bb O O O 000 C C - O 00 00 O Il OIO b O r moa`d:: a V. 8o o.yi� nln 4P Nmomt+l d til OlN d01 O1 VO NN >� O U LL O pg N pa0000 N 0 N b0 10 b O 1- O NyN N(7m n m bm mm m W N 00000000 N0b 0ap tG 0 00 co N Nb co boO`o 0b920b8 pcc b b c mow c�bb b 0. 0 m N m m 0 0 0 0 N 00 O O O O O b m N N tUmm1U N O m m dt+l N [0 n N O O t0 OM O mMm O O O t7[i O n n 'iN 3 9e ..Wm MA 9-4 ue u'e a ouumu$u uuu�uu� 5 u uu uiSu 00 �� do uu m dMtO+l NN NNN NN Nt+l mbm pKj N m N m o �0. �w dp0 t'I tO0ONm t0 1-1 (aaad p NrNSpp0 o.m 10 V01 i d E d b m N N O d m m m m d O B op`po �p� Sn ao gyp$ N po po m m N m N N po N Qo N 1(l po b N m N N pm_a N m 6 J obi w E noNob�b ��myy m bm Hmb �n mm ryry pmp��am 0 0 N m m O 0 O 0 O O pry p N pp Sa N pa pd ow 0 m m m b m N i00 b � mm NmmION �bN p S 00 m o m Nia goo h m hm N NCI N J �;e aR ae Xae aR 00 x� oogg$N O d g o p voioo 00 as So 00000-N O [7- N- 00 (�l M Ul a Q U O W LL (7 S O m ONM Q m W N fiN C �mm UdN Nt7 rlm a mm17oM W c mU 1° cc Nd c c dN cc SOc 13 15 615 616 16 513 5T%-.3 514 JM 14 23 14L- ul t 9 48 i r_ti—,id n 3 411 11 Q 5 E UEV = 5003.5 I NeoUDS Results Summary Page 1 of D I I I I I 11 r 1 I I I r NeoUDS Results Summary Project Title: Gillespie Farm Project Description: ST-3 Output Created On: 2/4/03 at 8:13:38 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Time of Concentration Manhole Basin Overland Gutter Basin Rain I Peak Flow ID # Area C (Minutes) (Minutes) (Minutes) (Inch/Hour) (CFS) �0 18.20 5.0 0.0 0.0 5.77 105.0 �1 18.20 5.0 0.0 0.0 5.77 105.0 0 18.20 5.0 0.0 0.0 5.77 105.0 0 16.18 5.0 0.0 0.0 6.22 100.7 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (lO+Total Length/l80) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. file://C:\Program%20Files\NeoUDSewer\reports\3253508017.htm 2/4/03 NeoUDS Results Summary Page 2 of 5 Summary of Manhole Hydraulics Manhole ID # Contributing Area * C Rainfall Duration (Minutes) Rainfall Intensity (Inch/Hour) Design Peak (CFS) Grouud Elevation (Feet) Water Elevation (Feet) Comments �0 0 0.0 0.00 105.0 5003.51 5003.51 1� 108.77 5.0 0.97 105.0 5008.33 5003.77 Q 0 90.57 5.0 1.16 105.0 5008.56 5003.86 0 71.42 5.0 1.41 100.7 5009.53 5004.22 ® 55.23 5.0 1.82 100.7 5009.64 5005.19 5� 31.03 5.0 2.18 67.8 5011.49 5007.09 © 16.27 5.0 3.50 56.9 5020.54 5015.61 7� 0.95F 5.0 7.76 7.4F 5008.33 5006.82 ® 3.56 5.0 2.46 8.7 5009.75 5006.32 9� 1.19 5.0 7.38 8.7 5009.20 5006.38 �' 10 1.19 5.0 7.38 8.7 5009.20 5006.35 11 12 4.46 2.23 5.0 5.0 5.31 10.62 23.7 23.7 5011.66 5007.00 5008.14 5008.71 0 Surface Water Present 13 1.66 5.0 7.13 11.8 5011.17 5008.18 0 14 1.66 5.0 7.13 11.8 5011.63 5008.13 0 16 4.06 5.0 7.00 28.5 5019.93 5017.49 15 4.07 5.0 6.99 28.5 5019.93 5017.49 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 1. Manhole ID Number Calculated Suggested Existing Sewer Sewer Diameter (Rise) Diameter (Rise) Diameter (Rise) Width ID # Upstream �� Downstream Shape (Inches) (FT) (Inches) (FT) (Inches) (FT) (FT) �1 �1 �0 Round 50.7 1541 54 N/All 12 00 Round 50.711 5411 54 N/All 23 34 311 2 Round I 49.911 541 5411 N/ 4 --lF-- 37--TArch 49.9 5411 43 F 45 0®Kundj 36.2 421 4]2FN/A]l 56 =2�8.6]1 301 301F.N/A 27 7 1 2 2�1 18.d 211L 2111 N/AlI file: HC:\Program%20Files\NeoUD Sewer\reports\3253 5 08017.htm 2/4/03 NeoUDS Results Summary Page i of j 48 11 8 11 4 Round I 14.211 1M 241N/A 89®Round 16.8 18 24 N/A 8�F--i-o---�F---8----IRoundl16.811 1 81F A 411 11 ® Round 19.9 21 24 N/A 1112 12 11 Round 23.6 241 24 N/A 513 13 0 Round 22.41I 2411 _ 24 N/A 514 14 0 FRound]j 22.4 24]1 24 N/A 616 16 © FRound]l 241 33 N/A 615 15 © Round 21.3 2:4]1 33 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. 12 105.0 124.7 3.16 8.8 3.01 9.3 6.6 0.91 �I 23 100.7 124.7 3.07 8.7 2.94 9.1 6.3 0.93 �1 34 11 100.711 134.211 2.9911 8.811 2.9211 9.011 6.011 0.9611 11 45 67.8 100.9 2.10 11.2 2.58 8.9 7.0 1.5 �I 56 56.9 65.0 1.81 14.9 2.33 11.9 11.6 2.02 A Froude number = 0 indicated that a pressured flow occurs. file:HC:\Program%20Files\NeoLfD Sewer\reports\325 3508017.htm 2/4/03 NeoUDS Results Summary vage4ot--� 1 1 1 1 Summary of Sewer Design Information Invert Elevation 11 Buried Depth Sewer ID Slope Upstream Downstream Upstream Downstream Comment (Feet) (Feet) (Feet) (Feet) 1�F 0.40 ISewer Too Sliallow 12 0.40 5000.52 5000.40 3.54 3.43 23 Lk4qj 5001.101 5000.521 3.931 3.54I1 34 ,F 0.40 5002.15 5001.10 3.91 4.85 45F 1 AO 5004.51 5002.15 3.48 3.99 56 2.50 5013.28 5004.51 4.76 4.48 27F 6.40 5003.21 5003.19 3.37 3.62 48 2.50 5003.46 5002.15 4.29 5.49 89 1.00 5003.81 5003.46 3.39 4.29 810 1 AO 5003.61 5003.46 3.59 4.29 411 3.00 5006.43 5002.15 3.23 5.49 1112F 1.19 ISewer Too Shallow 513 0.40 5004.61 5004.51 4.56 4.98 514 0.40 5004.53 5004.51 5.10 4.98 616 3.00 5013.43 5013.28 3.75 4.51� 615 3.00 5014.03 5013.28 3.15 4.51 Summary of Hydraulic Grade Line Invert Elevation Sewer Surcharged Sewer Upstream Downstream Length Length ID # (Feet)((Feet) (Feet) (Feet) Water Elevation Upstream Downstream Condition (Feet) (Feet) �l 132.98 0 5000.40 4999.87 5003.77 5003.51 Subcritical 12 29.5 0 5000.52 5000.40 5003.86 5003.77 Subcritical 23 145.26 �10 5001.10 5000.52 5004.22 5003.86 Subcritical 34 261.44 0 5002.15 5001.10 5005.19 5004.22 Subcritical 45 236.08 0 5004.51 5002.15 5007.09 5005.19 Jump 56 350.92 -0.03 5013.28 5004.51 5015.61 5007.09 Jump 27 01 vl 5003.21 5003.19 5006.82 5003.86 Subcritical 48 52.5 52.5 5003.46 5002.15 500632 5005.19 Pressured 89 35 35 5003.81 5003.46F 5006,38 500632 Pressured 15 5003.61 5003.46 5006.35 5006.32 Pressured file:HC:\Program%20Files\NeoUDSewer\reports\325 3 508017.htm 2/4/03 NeoUDS Results Summary Page 5 of C 411 1 142.741 71.871 _5006.4311 5002.1511 5008.141 5005.19 Jump 1112 48 0 5007.00 5006.43 5008.71 5008.14 Jump 513 25 25 5004.61 5004.51 5008.18 5007.09 Pressured 514 0�75 5004.53 5004.51 5008.13 5007.09 Pressured 616 0 0 5013.43 5013.28 5017.49 5015.61 Jump 615 25 0 5014.03 5013.28 5017.49 5015.61 Jump ' Summary of Energy Grade Line I LJ ' Bend loss = Bend K * Flowing full vhead in sewer. ' Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. ' Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 11 Sewer 1D # Upstream Manhole Sewer Friction (Feet) Juncture Losses Downstream Manhole Manhole ID # rgy tion R(Feet) Bend K Coefficient Bend Loss (Feet) Lateral K Coefficient Lateral Loss (Feet) Manhole # Energy Elevation (Feet) �1 5004.83 1.32 0.05 0.00 0.00 0.00 �0 5003.51 12 0 5004.96 0.10 0.05 0.03 0.00 0.00 �1 5004.83 23 0 5005.40 0.40 0.05 0.03 0.00 0.00 0 5004.96 34 ® 5006.36 0.93 0.05 0.03 0.00 0.00 0 5005.40 45 5008.32 1.93 0.05 0.04 0.00 0.00 ® 5006.36 56 © 5017.83 9.40 0.05F 0.10 0.00 0.00 �5 5008.32 27 �7 5006.97 2.00 0.05 0.01 0.00 0.00 0 5004.96' 48 ® 5006.44 0.08 0.05F 0.01 0.00 0.00 ® 5006.36 89 0.01 0.00 0.00 ® 5006.44 810 1 0.01 0.00 0.00 ® 5006.44 411 11 5009.21 2.80 0.05F 0.04 0.00 0.00 ® 5006.36 1112 12 5009.78 .0.53 0.05F 0.04 0.00 0.00 11 5009.21 513 13 5008.40 0.07 0.05 0.01 0.00 0.00 0 5008.32 514 14 5008.35 0.01 0.05 0.01 0.00 0.00 0 5008.32 616 16 5017.84 0.00 0.05 0.02 0.00 0.00 © 5017.83 615 15 5017.84 0.00 0.05 0.02 0.00 0.00 © 5017.83 file:HC:\Program%20Files\NeoUDSewer\reports\3253508017.htm 2/4/03 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time Pipe Attenuation for Sub -Basins A and B 1 .5A1,.5A2 1.21 T; = (1.87*(1.1-C*Cr)*D1"2)/S'" 5 I s q Channel Time Lengin rt sio a ro cnaractensncs veiocit rus min 5 Paved Area, Gutter Flow 700 0.900 12.96 - "'None^ 9t00' =. None 000 ,None . 0.00 0.00 None 0.00 Total Time =1 12.96 2,1 0-yr 100-vr Actual Time of Concentration = 12.96 12.96 Intensities Discharge NOTE: * Add additional 50 cfs from contributing off -site area to 100-yr flow. TST, INC. CONSULTING ENGINEERS Page 1 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point = 11 Contributing Basins = .5A17 Contributing Area (ac)= 0.40 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87*(1.1-C*C f)*D112)/St/3 Length (ft) = 50 Maximum of 500 feet Slope (%) = 4.5 2-vr T; = 2.32 Travel Time Channel unaractensucs d Arpq r i ittpr Time None 0.00 None 0.00 None 0.00 None. 000 None. 0'00 Total Time = 1.33 Intensities Discharge TST, INC. CONSULTING ENGINEERS 2 1, 0-yr 100-yr Actual Time of Concentration = 5.00 15.00 Page 2 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point Contributing Basins = A9;A10 . Contributing Area (ac)= 1.68 Runoff Coefficient's 2-Vr Overland Flow Time T; _ (1.87`(1.1-C'Cr)'D1n)/St/3 Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-vr 2.32. Travel Time Channel •r: Time Len to tt Sio a -/o) cnaracteristics veioci tus min 300 0:5 Paved Area, Gutter' Flow 1.488 3.36 None 0.00 None. 0:00 - one;,, Non6r,, 00 None 000 Intensities Discharge TST, INC. CONSULTING ENGINEERS 21, 0-vr 100-yr Actual Time of Concentration = 5.68. 500 Page 3 of 59 11 /12102 Pipe Attenuation.xls [1 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time I Pnnth (ft) Pipe Attenuation for Sub -Basins A and B 8 DP-1,DP-11,DP-8E 3.29 T; = (1.87*(1.1-C*Cf)*D'/2)/Sl" Channel Time RInnP (%1 C:hnrnrtP.rictirc VAnritV (ft/c1 Winl 700 1.15 . Paved 'Area, Gutter.Flow 2.125 5.49 650 0:50 Paved Area; Gutter Flow 1.488 7.28 None:; .0.00 None 0.00 None 0,00 None I oral I ime =l i z. t f 2 ], 0-vr 100-yr Actual Time of Concentration = 12.77. 12.77 Intensities Discharge NOTE: * Add additional 50 cfs from contributing off -site area to 100-yr flow. TST, INC. CONSULTING ENGINEERS Page 4 of 59 11 /12102 Pipe Attenuation.xls 1 1 1 1 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Pipe Attenuation for Sub -Basins A and B 7 Al2 3:29 T; _ (1.87*(1.1-C*Cr)*D"')/S1 /3 Travel Time Channel Time Length ft Sloe % Characteristics Velocity ft/s Min 175 .0.71 Paved'Area, G'utterFlow 1:764 1.65 275 0.5 Paved'.Area, Gutt'0 Flow 1.488 3.08 -. 0.00 None: 0.00 :.:.' None: 0.00 None 0:00 Intensities Discharge TST, INC. CONSULTING ENGINEERS 2 1, 0-yr 100-vr Actual Time of Concentration = 16.78 114.08 Page 5 of 59 11/12/02 Pipe Attenuation.xis Pipe Attenuation for Sub -Basins A and B Design Point = 10 Contributing Basins = A15 Contributing Area (ac)= 3.34 Runoff Coefficient's 2-vr Overland Flow Time Length (ft) =Eq Slope (%) = Travel Time Length ft Sloe % Ti = (1.87'(1.1-C*C f)'D1/Z)/SI/3 Maximum of 500 feet 2-yr 8.50 Channel Characteristics 10-yr 8.50 Velocity ft/s 100-vr 6.04 Time Min 230 0.64 Paved Area, Gutter Flow 1.627 2:36 225 0'.5 Pa%(d Area,; Gutter: Flow° `1.488 2.52 ':,,.-None . .. 000 None .; 0.00. None. 1 : 0.00 None... 0.00 .. . Tn}al Timn A AAA Intensities Discharge TST, INC. CONSULTING ENGINEERS 2 1. 0-vr 100-vr Actual Time of Concentration = 1338 10.92 Page 6 of 59 11 /12102 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time Length (ft) Pipe Attenuation for Sub -Basins A and B 9 DP-8,Al2,A13,A15 10.34 T; _ (1.87*(1.1-C*Cr)*D1n)/Sin Channel Time Slone (0/.1 Chararteristirs Velocity (ft/s) (Mint 700 1;.15' P6ved.Ar66j'G6ft&r Flow 2.125 5.49 650 .0:50,,... Paved Area;;Giittbr:Flow 1.488 7.28 250 Os'50 .•; ,,, Paved.Area, GutterFlow 1.488 2.80 None 0.00 None . 0.00 None 0.00... . Intensities Discharge i oiai i ime i o.zn t 2 1, 0-yr 100-yr Actual Time of Concentration = 1557 45.57 0 NOTE: * Add additional 50 cfs from contributing off -site area to 100-yr flow. TST, INC. CONSULTING ENGINEERS Page 7 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point = 5 Contributing Basins = .5A1,.5A3,A4-7,.5A8 Contributing Area (ac)= 7.75 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87'(1.1-C'Cr)'D1n)/Si" Length (ft) =Elq Maximum of 500 feet Slope (%) = 2-vr 8.56 Travel Time Channel I Pnnth Iftl Slnnp (O 1 f.hnrartarictirc 5. Time VPlnrity (ft/cl (Mini 230 ..:0.6 Paved Area, Gutter, Flow 1.627 2.36 250. 0'.62 Paved,Area, Gutter Flow 1.627 2.56 200 2'. 4 "�P8ved,`k66, Gutter'Flovr 3.01-1 1.11 245 0.69 Pave&Area, Gutter Flow 1.627 2.51 None 0:00 None . 0.00 Intensities Discharge TST, INC. CONSULTING ENGINEERS I oral i Ime =1 u.a4 2 1, 0-vr 100-vr Actual Time of Concentration = 17.09 14.32 Page 8 of 59 11/12/02 Pipe Attenuation.xls 1 1 1 1 1 1 1 1 1 Pipe Attenuation for Sub -Basins A and B Design Point Contributing Basins = .5A2,.5A3,.5A8,A11 Contributing Area (ac)= 3.82 Runoff Coefficient's 2-vr Overland Flow Time T; = (1.87*(1.1-C*Cf)*D'/2)/S'" Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-yr 10-yr 100_yi 8,48 8.48 5.80 Travel Time Channel Time Length ft Sloe % Characteristics Velocity ft/s Min 300 0.8 _Paved Area, Gutter Flow 1.882 2.66 225 197.:.1 Paved; Area, Gutter F16w 3.933 0:95 225 4 0 " ` ". "Pavedi*6ei Gutter Flow '' 4-.265 0:88 320 :. <; . 0:74 Paved Area;°Gutter,Fl6w-;, 1.764, 3:02 one . r 0.00 None ` 0:00 Total Time = T51„ 2 1, 0-yr 100-yr Actual Time of Concentration = 15.99. 13.31 Intensities Discharge NOTE: * Denotes only surface contribution to the design point. TST, INC. CONSULTING ENGINEERS Page 9 of 59 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time Lenath (ft) Slone (%1 Pipe Attenuation for Sub -Basins A and B 6 D P-5,.5A2,.5A3,.5A8,A11 11.57 T; _ (1.87'(1.1-C"Cf)'D112)/St/3 Channel Characteristics Time Velocitv (ft/s) (Mini 230 0 6 Payed Are6,:G'6tter.Fl6w 1.627 2.36 250 . 0.62 Pa)iei7Area,,Gutter Flow. 1.627 . 2.56 200 2.54" Paved'Area,'Guttec Ftow 3.611 1.11. 245 . 0.69 .Paved Area, Gutter. Flow . 1.627 2.51 n " ;None: 0.00 None.: 0.01D... Total Time = 8.54 Intensities Discharge TST, INC. CONSULTING ENGINEERS 21. 0-vr 100-yr Actual Time of Concentration = 17.12 14.38 Page 10 of 59 11/12/02 Pipe Aftenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Pipe Attenuation for Sub -Basins A and B 15 A16 3.30 T; _ (1.87*(1.1-C*Cf)*D1/2)/S'" of 500 feet T; 11.18 Travel Time Channel Length ft Sloe % Characteristics 11.18 8.85 Time Velocity ft/s Min 200. 0.63 Paved Area, Gutter Flow 1.627 2.05 None 0.00 _... None:..._ ` . 0.00 None 0.00 None-,.. 0.00 None . 000 . Intensities Discharge TST, INC. CONSULTING ENGINEERS TotalTime=1 2.05 2 1, 0-yr 100-yr Actual Time of Concentration = 13 23 , 10 90 . Page 11 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point = 14 Contributing Basins = DP-6,DP-9,DP-15,A14 Contributing Area (ac)= 25.63 Runoff Coefficient's 2-yr Overland Flow Time T; _ (1.87*(1.1-C*Cf)*D1n)/Si" Length (ft) = Maximum of 500 feet Slope (%) = E2-yr T; = 0.00 Travel Time Channel Length (ft) Slnna (%1 rharartPrictirc Time VPlnrity (ft/c) (Min) 700 1'50 Paved Area, Gutter Flow 2.125 5A9 .650 0 Paved Area,.Gutter Flow 11.488 7:28 250 "O:W0 . PaVed'Area,:Gutter Flow 1.488. 2.80 . 250 0:50 ; Paved Area,.Gutter.Flow 1.488 2 80 r None`... __ .... _ 0:00 Total Time = 18.37 21, 0-vr 100-yr Actual Time of Concentration = 18.37 18.37 Intensities Discharge NOTE: * Add additional 50 cfs from contributing off -site area to 100-yr flow. TST, INC. CONSULTING ENGINEERS Page 12 of 59 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time Pipe Attenuation for Sub -Basins A and B 18N 64 8.48 T; _ (1.87*(1.1-C*CF)*D1n)/S'" Channel Time Lengin « sio a io cnaracrensucs veiocn rus nmin 250 3.0 Grassed.Waterwa s 2.749 1.52 None : 0.00 None 0.00 None 0.00 None 0.0O None 0.00 Intensities Discharge TST, INC. CONSULTING ENGINEERS Total Time =1 1.52 2 1, 0-yr 100-yr Actual Time of Concentration = 1312 8.04 Page 13 of 59 11/12/02 Pipe Attenuation.xis Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's ' Overland Flow Time Length (it) = 400 Slope (%) = 5.0 T; _ Travel Time Length ft Sloe Pipe Attenuation for Sub -Basins A and B 18 61,62,B3,B5,66,B7 9.39 T; _ (1.87*(1.1-C*Cf)*D12)/S'" of 500 feet 10.74 Channel Chnrsrteristirs 10.74 7.41 Time Velnrity MW IMinl 775 3.0 Paved Area; Gutter Flow 3.686 3.50 200 ' _0.59 - Paved Aiea; Gutter Flow 1.488 2.24 300 14 .9%1 " Paved.Area; Gutter Flow 1.627 3.07 300 0':53 Paved Area, Gutter Flow 1.488 3.36 None 0.00 None 0.00 i otai i ime =I iz.its 2 1. 0-vr 100-vr Actual Time of Concentration = 22.92 19.59 Intensities Discharge NOTE: * Denotes only surface contribution to the design point. ' TST, INC. CONSULTING ENGINEERS 11112/02 Page 14 of 59 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point Contributing Basins = 61-67 Contributing Area (ac)= 17.87 ' Runoff Coefficient's 2-yr 0.65 10-yr 0.65 100-vr 0.81 ' Overland Flow Time Length (ft) =Eq T; _ (1.87*(1.1-C*Cr)*D12)/Sl/3 Maximum of 500 feet Slope (%) = 2-yr 10-yr 100-vr 9.83 9.83 6.26 Travel Time Channel Time Length ft Sloe % Characteristics Velocity ft/s Min 775 10 Paved Area, Gutter Flow 3.686 3.50 200, 0:59 `.. Paved Area; Gutter Flow 1; 488 2.24 300 0.61 Paved"Area;'•GUtter.F16W 1'i627 3:07. ' 300 0.53 Paved Area', Gutter: Flow. 1.488 3.36 None' ..,: _ 000 ' None 0-00 Total Time = 12:18 2 1, 0-yr 100-yr Actual Time of Concentration = 22:00 . 18.44 Intensities 2-vr 10-yr 100-yr ' 1,71 104' . 5:33 . Discharge 2-3r 10-yr 100-yr 19'.88.:. .:,. , TST, INC. t CONSULTING 11112/02 ENGINEERS Page 15 of 59 Pipe Attenuation.xls 1 1 1 1 i 1 1 1 1 1 t 1 1 1 1 1 Pipe Attenuation for Sub -Basins A and B Design Point = 20N. Contributing Basins = 611 Contributing Area (ac)= 10.25 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87*(1.1-C*Cf)*Din)/Sl" Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-vr : 11.60 Travel Time Channel .60 6.53 Time Length ft Sloe % Characteristics velocity rus Min 250 3:0 Grassed Waterways 2.749 .1.52 None 0.00 None .. 0:00 None 0.00 None 0.00 0.00 Total Time = 1.52 Intensities Discharge TST, INC. CONSULTING ENGINEERS 2 1, 0-yr 100-yr Actual Time of Concentration = .13.12 8.0.4 Page 16 of 59 11112/02 Pipe Attenuation.xls 1 1 1 1 1 1 1 1 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time Lennth Ift) Slnne IaL,I Pipe Attenuation for Sub -Basins A and B 20NE DPA 8,B11 26.35 T; _ (1.87*(1.1-C*Cf)*D1n)/S1" Channel rharnrterictirs Time Velnrity Ift/sl (Min) 775 , 3.0.. Paved Area, Gutter Flow 3.686 3.50 20W 0'59. Paved Area; Gutter Flow 1.488 2i24 300 061 Paved Area, Gutter: Flow 1.627 3.07 300 0.53 Paved Area; Gutter flow. 1.488 3.36 150 !. ,,;. 0:5 Paved Area, -Gutter Flow- 1.488 1.68 None 0.00 Intensities Discharge TST, INC. CONSULTING ENGINEERS i oiai i ime = I 2 1, 0-vr 100-vr Actual Time of Concentration = 23:27 19.60 Page 17 of 59 11/12/02 Pipe Attenuation.xis Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time 1 ennth (ftl Pipe Attenuation for Sub -Basins A and B 20* .5A9,.5A13,.5A14,B8,.25B9, B10,.5B12 4.53 T; _ (1.87*(1.1-C*Cr)*DIn)/Sl" Channel Time SlnnP IOU Chnrartaristirs velnrity (ftlsl (Min) 300 0.67. Paved Area, Gutter flow 1.627 3.07 250, 4.113. . Paved `Area, Gutte[ Flow ::. ..: 4.265 0.98 250 3`.94 Paved'W66, Gutter Flow 3.933 1.06 340 :3:81.' : Paved.,Area; Gutt& Flow 3.933 1.44 450 : 3.2 .. Paved Area,;Gutter Flow 3.686 2:03 - . Ndhe 0.00 l otal 1 ime = ts.aa 2 1, 0-yr 100-yr Actual Time of Concentration =1, 8.59 7771 Intensities Discharge NOTE: * Denotes only surface contribution to the design point. TST, INC. CONSULTING ENGINEERS Page 18 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point = 20 : . Contributing Basins = DP-18,DP=20N,DP-20" Contributing Area (ac)= 32.65 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87`(1.1-C'Cf)'D1n)/SI" Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-vr 9:1.9. Travel Time Channel I annih /ft1 Rlnna /°/ 1 Chnrarfaricfirc Es]iF:l Time \/alnrity /ft/0 Winl 775 10 Paved Area,'Gutter Flow 3.686 3.50 200, 059 : Paved.Area, Gutter• Flow . 1,.488 2.24 300 061 : -Paved Area, Gutter Flow _ 1.627 3.07 300 0:53 Paved Areaf:Gutter:Flow,, 1.488 136 290 0.79 .: ;, Paved; Area; Gutter, Flow._ 1.764. 2.7.4 =, None` . 0:00 I Dial I Ime = 1 14.JL 1 2 1, 0-vr 100-vr Actual Time of Concentration = 24.11 20:39 Intensities Discharge TST, INC. CONSULTING ENGINEERS Page 19 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point = 20S Contributing Basins = DP-14,DP-20 Contributing Area (ac)= 58.28 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87'(1.1-C`Cf)`D1/2)/Si" Length (ft) = Maximum of 500 feet Slope (%) = 2-yr EEJ 0.00 Travel Time Channel 1 nnnth lffl Slnna /0M rhnrarfaricfirc 0.00 0.00 Time vPln(,ity fft/sl Win) 700 115 Paved Area, Gutter Flow - 2.125 5.49 650 ... 050 Paved Area; Gutter Flow.. 1.488 7.28 250 0c'50 .. .. Paved Area, Gutter Flow. 1.488 2.80 250 0.50 Paved Area,: Gutter Flow 1.488 2.80 825 0.50 Paved Area, -Gutter Flow 1.488 9.24 None 0.00 I otai I Ime = Z1,01 2 1, 0-yr 100-yr Actual Time of Concentration = 27.61 27.61 Intensities Discharge NOTE: • Add additional 50 cfs from contributing off -site area to 100-yr flow. TST, INC. CONSULTING ENGINEERS Page 20 of 59 11/12/02 Pipe Attenuatlon.xls 1 1 1 1 1 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time Intensities Discharge Pipe Attenuation for Sub -Basins A and B 2V .5A10,.5A13,.5A14,.75B9,.5B 12 3.27 T; = (1.87*(1.1-C*Cf)*D112)/St/3 Channel Time lope % Characteristics velocity ttis Min 0.75 Paved.Area, Gutter Flow .:1.764 378 4131. Paved;Area,',Gi tter, Flow 4.265 . 0.98 3.94 'Paved Area; Gutter; Flow 3:933 1.06 Paved ;Area; ,Gutter Flow„ 3.933 144 ' u_3.686, 2.03 . None; :' 0.OQ Total Time = 929 2 1, 0-vr 100-vr Actual Time of Concentration = 9:29 9.29 NOTE: * Denotes only surface contribution to the design point. TST, INC. CONSULTING ENGINEERS Page 21 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point = 21 Contributing Basins = ' DP-20S,DP-21 * Contributing Area (ac)= 60.81 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87*(1.1-C*Cf)*D1n)/St/3 Length (ft) = Maximum of 500 feet Slope (%) = 2-yr Travel Time Channel I annth (ftl SlnnP (%1 Chnrartaristirs Time VP.lnrltV (ft/s) (Minl 700 1.15 Paved Area, Gutter Flow 2A25 5.49 650 0.50 Paved Area,,GotterFlow 1.488 7.28 250 0.50 Paved Area, Gutter:Flow.. 1:488 2.80 250 0:50 Paved Area, Gutter"Flow 1A88 2.80 825 0:50... Paved. Area„Gutfer.Flow:, 1.488. 9.24 40 0:50 : Paved Area, Gutter Flow 1 A88 0.45 i otai i ime = I 40:uo t 2 1, 0-vr 100-yr Actual Time of Concentration = 28.06' . 28.06 Intensities Discharge NOTE: * Add additional 50 cfs from contributing off -site area to 100-yr flow. TST, INC. CONSULTING ENGINEERS Page 22 of 59 11 /12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = a Travel Time Length (ftl Slone (%,) Pipe Attenuation for Sub -Basins A and B 23 . .5A 17,A18,A19113114,1315 7.18 T; = (1.87*(1.1-C'Cr)'D112)/St" Maximum of 500 feet . 0.00 Channel Characteristics 0.00 0.00 Time VelocitV (ft/sl (Min) 175 1, 14 Paved Area, Gutter"Flow 2.125 1.37 230: 4.00 Paved Area, Gutter Flow 4.265 0:90 250 4.00 PaV6&Area; Gutter'Flow 4.265 . 0.98 250 .3.92 Paved 4Area,. Gutter, Flow 3.933 1.06 290 3:85 , .. Favetl Area; .Gutter, Flaw, . 3.933 1.23. 300 3:00 Paved`Area, Gutt&Flow .. 3.686 1.36 Intensities Discharge TST, INC. CONSULTING ENGINEERS I otal I Ime = I ti.bq . 2 1, 0-yr 100-yr Actual Time of Concentration = 6.89 :.. 689 Page 23 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point = 22 Contributing Basins = B13 Contributing Area (ac)= 8.26 Runoff Coefficient's 2-yr Overland Flow Time T; _ (1.87*(1.1-C*Cf)*D1/2)/S113 Length (ft) =MT Maximum of 500 feet Slope (%) = 2-vr 20.93 Travel Time Channel Time Length ft Sloe % Characteristics Velocity tt/s Min 200 2.00 Grassed'Waterwa s .. 2.248 1.48 ° None 0.00: None,... .. ,.. 0:00 Norie; .:i ,:;. ,. OcQo None ;; 0.00 ..:. j ....-. -. .. ... ... None'.` 0.00 Total Time = 1.48. Intensities Discharge TST, INC. CONSULTING ENGINEERS 2 1, 0-yr 100-yr Actual Time of Concentration = 22.42 1.20.63 Page 24 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basins A and B Design Point = AB Contributing Basins = DP=21";DP-22,DP-23 Contributing Area (ac)= 76.25 Runoff Coefficient's 2-yr Overland Flow Time T; _ (1.87*(1.1-C*Cf)*D1n)/Si" Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-yr 0:00 . Travel Time Channel I annth (ftl Slnna (%l Chnrartaristirs MY Time Velnrity (ft1s) (Min) 700 115 Paved_Area, Gutter Flow 2.125 5.49 650. 0.50;: Paved kea,:Gutter Flow 1.488 7.28 250 050 Paved Area;'Gutter'Flow 1.488 2i80 250 0.50 Paved Area; Gutter Flow 1.488 2 80 825. 0:50 ..Paved Area, Gutter.Flow 1.488 9:24 200 0.50: PaVed Area, Gutter Flow . 1.488 . 224. I mal I ime = I /a.ou 2 1, 0-vr 100-yr Actual Time of Concentration = 29.85 29.85 Intensities Discharge NOTE: * Add additional 50 cfs from contributing off -site area to 100-yr flow. TST, INC. CONSULTING ENGINEERS Page 25 of 59 11/12/02 Pipe Attenuation.xls I I 1 EjmNnIDN NImO, nmm SpO OpV aN b m O OOd It m 0!0 O 1� MNNCI, N ON S O O ONNNO pN pQp pN NNN p O NppQONN N N O 0 O QmU❑ W LL('J UQF aad Qm .-aa y � �ddN W LL d C(?adv (�i m C �d� NdO[7aa YJ M2 OLL add ow Ndd ""LL N a 'y mv yy P P d a a a d P N m d Qd d 0 acc a'c c`� E _E cc li a c m y c LL N 'Q2'c d �)('J as c (1 aa� fJ m t ccc ccP cc �`TccdU EO OOSNmNN� N mmN Omm n1� n O A[n�lm Y p V nNrm ryry V N� C ��mt�M yy�� mm <N(N1 Y NN mmN NNm s r V N N d m r n d a N N N N a N N N N g N N N N M N N N N Ni N N N N N N N N N C! a Ni N N N N U C O O N S O O 00 8.p S O 00 O O O O " N N p N N N TIT Till la O O O O 000006 060 .00 O B rc 'F 7mam m O roni 6.6 rm m 4 m N Ic 6 le ui 5 O SN �NNm [p 20 O A n rIepOn <N rt�l m�mn m W m00NN m BM a m nbr d N m M6 NNa mMma m mm a IT M m m m M m mN m�M� MMNmm b ma O0 U 5q p W m N nyy N OC1 O n O p m m mO^. S pm O�pN tpn+l pN Op 0 f1 pS N {?y N gN s pO pO NNNNNN N N pO b N N N N N N O H N O N NmN d N m 0 d OHO P OI N dNNr n m N O m N�YI 1� 0m m mb N m m N m N o m b N N N m p 2 N N m m N m N a N m O N LL O OM N BN N Q 000 MN ((yy mNmNptI OM MN a p a0py p NN(I p$my p O NN QNH NN Nb pN pNNNSbOOwN Np pM Nm Nm Np"p N�} 2 NY NN NN NN NN O N N N N N o O N Or Nr O S S N S N N N0N N N N AOON N N r O S N 0.2 Np 530. N Ft bnd P MN N N P d M M m N M N N N N N a d M 3 L°ii 89�=�59 �93 899� 8.99�i^��939 9A9 i9939�� �IDi`a =a�� SOn 3!^9 UU uUV uuu065 a UwUUUU �UU Moo wwUVVU 0 u wUUUU UU �tl N mr QQ O d m po N N N mO m m m N roN N (p pmn N N V V N N N m N N M M N N N N N N m m m m d P N �'j TTII m N t0 CI p CI N N N m a d p� m CI d m NpmN VNgimp»N (p mN O Cpmpl �p�nNN mON mmN mpRi 1�N`$Vpp m�Nm�O O�N a�O N�NN�NNNNO N m� {y OR Oya ONm NNNmm mNNy 1�"�E mN_N mGqVi NOpNi mNNN WvJ mya mNOlp mNp 0-1 pNNN pN p pJ;i N N N N Ng$P{{N<rr�� NNON NmN N�bN �mN �Nul �bO h N O, ♦ NIa 1`O nN mm 0�}}(yy1 002 Y� N rr 1: 41 {� d V N m tmmDNN WON mmm rp0 ry m E t7r S 6 S O p� nNp� O N t7g O S O N O N O 0 0 0 N 0 M 0 8 0 0 N N N N N N N N M [� m o 0 M M N pi M V N N (OpNmS P V V NNNNNNN n NNNN$N NNN2NNNNNN NNN NNNNNN NNN NNN NNN NNN i lam{�a E bm.-M ado rnm oNNoaadac0N NNOOy m I pp NN MNon nnN N Y m "p Np mo no MmN ww n.-m ON m{71� Man 0Mn Nyy p� I�rN S 0 0 0 S O QO pO O S 0 0 0 0 N N (mY pN N Np N N t7 c� mm m yN pbpJJ 17 Cl m sa V N Ag N N pS N N N N N N N N N N N N N V NNNNNN N N N N N N N N N N N VO N N N N 800 N m O p P m n m N N O OOMm•-OVC1 mOnmN a O OOOO SO O O Nm MN SN S Ogg O O N � m �mmN0m � OO CON O NS SOHNI m� p O no, N J mNONtpp N "N 101010 NM- K XX T'XXOXX XpXX XXXyXX XXpXX XXX XXXXX XX XX X XXX XXX B M N S m N N h d d 0 yXXX a S S O P N N 3 pX P a S Cl a O a 0 0 q 0 a Y N It p P a pX d 1� pX P P O p d a 0. N n d S e a000mmm Ooo o_�N o'.-oomNNoo moo 000000 mo 00 ooN a '`m .-aa c�aemd a �Oa a ry0a v N< MYe '�eoa�aaa m� m ma ti a m� U m uUd W w m w w LL w m LL w m c1U a c1 (7y d c c 400,10 c c c c d c c a c c a P a a p sr-q 23 'E, j 2223 ' • 22 722 W69 �IW76 7-- 719 ' 19 1 1920 20 618 617 1516 39 515 514 35 21 541U) 47 444D 43 OS E LE V = S003 , 51 1011 10 910 ®-51j 95h ♦�5® 53 39 '— 3 23 9-6QAra-26 Ea -m<F6gb 62 12 18 58 67 NeoUDS Results Summary cage 1 of 11 NeoUDS Results Summary Project Title: Gillespie Farm Project Description: ST-4 Output Created On: 2/4/03 at 8:41:21 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Manhole Basin loverland ID # Area * C Time of Concentration Peak Flow (CFS) (Minutes Gutter (Minutes) Basin (Minutes) Rain I (Inch/Hour) �0 58.71 5.0 0.0 0.0 4.98 292.6 �1 58.71 5.0 0.0 0.0 4.98 292.6 0 50.47 5.0 0.0 0.0 5.17 260.9 47.79 5.0 0.0 0.0 5.32 254.3 ®F 0.00 0.0 0.0 0.0 0.00 155.9 19.99 5.0 0.0 0.0 7.80 155.9 © 8.38 5.0 0.0 0.0 11.91 99.7 3.29 5.0 0.0 0.0 21.55 70.9 ® 5.82 5.0 0.0 0.0 8.33 48.4 27.75 5.0 .0.0 0.0 5.19 144.0 10 22.13 5.0 0.0 0.0 5.20 115.2 11 14.47 5.0 0.0 0.0 5.35 77.5 12 7.46 5.0 0.0F7770 7.35 54.9 13F 7.46 5.0 0.0 0.0 7.35 54.9 14 2.08 5.0 0.0 0.0 6.96 14.5 15 8.91 5.0 0.0 0.0 5.97 53.2 16 6.04 5.0 0.0 0.0 5.93 35.9 17 2.47 5.0 0.0 0.0 7.00 17.3 19 0.00 0.0 0.0 0.0 0.00 3.6 20 0.40 5.0 0.0 0.0 8.90 3.6 22 0.00 0.0 0.0 0.0 0.00 57.7 23 1.21 5.0 0.0 0.0 47.67 57.7 27 0.00 0.0 0.0 0.0 0.00 28.8 u file://C :\Program%20Files\NeoUD Sewer\reports\3253509681.htm 2/4/03 NeoUDS Results Summary Va8u L ui i i 29 1 0.001 0.0I 0.01 0.01 0.00�1 3.6�1 33 �F--6. —ool F-----o--.ol F---o--. W6T. 1F-----o.00I17.3 ® 111 11 11 11 111 :. ® 111 11 11 11 111 111 11 11 11 111 � 111 11 11 11 111� 111 11 11 11 111® 111 11 11 11 111 1 111 11 11 11 111 `1 �' 111 11 11 11 111�. ® 111 11 11 11 111 ® 111 11 11 11 111� .• 11 11 11 111.7 111 11 11 11 111� '® 111 11 11 11 111� •� :' � 1 1 1 1 �� '� 111 11 11 11 111 � 1 '� 111 11 11 11 111 � 1, •' 111 11 11 11 111® ® 111 11 11 11 111� The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/l80) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall Peak Ground Water ID # Area * C Duration Intensity Flow Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) �0 0 0.0 0.00 292.6 5003.51 5003.51 1� 310.39 5.0 0.94 292.6 5012.61 5005.38 file://C:\Program%20Files\NeoUDSewer\reports\325350968 Lhtm 2/4/03 NeoUDS Results Summary 11age : 01 11 II 2 11 242.9711 5.011 1.0711 260.911 5009.2011 5007.1011 11 0 191.01 5.0F 1.33 254.3 5009.58 5007.33 �I ® 54.91 5.0 2.84 155.9 5021.42 5014.37 511 54.911 5.01 2.841 155.91 5036.871 5029.071 17.89 5.0 5.59 100.0 5046.36 5037.35 4.9 5.0 14.47 70.9 5055.18 5046.53 C 5.82 5.0 8.33 48.4F 5008,47 5007.40 C 88.31 5.0 1.63 144.0 5009.20 5008.04 10 60.55 5.0 1.90 115.2 5011.17 5008.56 11 29.4 5.0 2.64 77.5 5010.38 5008.92 C 12 14.92 5.0 3.68 54.9 5011.71 5009.71 Surface 13 7.46 5.0 7.35 54.9 5005.00 5009.98 Water Present 14 2.08 5.0 6.96 14.5 5034.89 5033.59 15 14.95 5.0 3.56 53.2 5034.45 5033.40 16 6.04 5.0 5.93 35.9 5036.15 5034.61 17 2.47 5.0F 7.00 17.3 5044.52F 5041,04] 2.14 5.0 5.96 12.8 5044.22 5041.32I 19 0.4 5.0 8.90 3.6 5057.02 5050.06 �- 20 0.4 5.0 8.90 3.6 5056.81 5051.48I 22 1.21 5.0 47.67 57.7 5056.62 5050.141 23 1.21 5.0 47.67 57.7 5055.16 5051.46 27 0 0.0 0.00 28.8 5054.66 5051.36 29 0 0.0 0.00 3.6 5056.30 5051.56 C 33 0 0.0 0.00 17.3 5044.33 5041.07 �- 35 0 0.0 0.00 8.6 5044.33 5041.22 �- 37 0 0.0 0.00 12.8 5044.03 5041.34 C 39 0 0.0 0.00 6.4 5044.03 5041.47 �- 41 0 0.0 0.00 14.5 5034.65 5033.61I 43 0 0.0 0.00 7.2 5034.65 5033.72 C 45 0 0.0 0.00 18.0 5034.24 5033.37 C 49 0 0.0 0.00 35.9 5035.95 5034.65 51 0 0.0 0.00 13.8 5008.94 5008.31 C 53 0 0.0 0.00 13.8 5008.94 5008.41 ����F11 1�Surface 2 5.0 7.35 66.5005.00 5008.80 Water file:HC:\Program%20Files\NeoUDSewer\reports\325 3 509681.htm 2/4/03 NeoUDS Results Summary fage 4of11 56 1 01 0.01 0.001 18.71 5009.981. 5009.18 1 58 0 0.0 0.00 18.7 5009.98 5009.28 0 60 1.49 5.0 7.04 10.5 5008.99 5008.12 62 0 0.0 0.00 10.5 5008.99 5008.18 0 64 2.89 5.0 5.19 15.0 5008.49 5006.98 0 65 0 0.0 0.00 24.0 5008.05 5006.55 67 0 0.0 0.00 24.0 5008.05 5006.99 69 0 0.0 0.00 15.1 5055.18 5050.03 Q 21 0 0.0 0.00 17.9 5035.95 5034.80 Summary of Sewer Hydraulics Nnte- The given denth to flow ratio is 1 _ Sewer ID # Manhole ID Number I CalculatedI Suggested 11 Existing Sewer Diameter (Rise) Diameter (Rise) Diameter (Rise) Width Upstream Downstream Sha a (Inches) (FT) (Inches) (Fr) (Inches) (FT) (FT) 1��1 �0 Round 78.1 84 78 N/A 12 Arch 81.2 �- 841 581 1 23 00 Arch 70.6 72 58 91 34 ®0 Round 51.7 54 42 N/A 45 Round 39.71 42]1 42 N/A 56 ©0 Round 33,111 36 1 36 N/A Roud 30 30N67© A 18 ®0FArch]l1 421 341F.53 39 Arch 54.7 6011 53 83 910 1 FArch 51.51 5]41 481F.76 1-0 1-11 FVch]l45.21 4811 38F 60 514 14 0 Round 19.1 21 27 N/A 515 15 0FArch]l 36.4 1 42 3]8F 60 617 17 © Round 19.5 21 27 N/A Fl 618 18 © Round 18.31 2117 24 N/A � tund IF 3-1, 91'1 3611 3611�fA 719 19 0 Ro und 10.6 18 18 N/A 1920 20 19 Round 13.71 18 18 N/A 722 22 Round 36.0 1 36 42 N/A 2223 23 22 Round 40.5 42]1 42 N/A 164 64 0 Round 18.1 21 21 N/A file://C:\Program%20Files\NeoUDSewer\reports\3253509681.htm 2/4/03 NeoUDS Results Summary jl'abe .-) of 1 i 865 65 1 8 RouA 24. J 2711 21 � N/A 867 67 ® Round 24.5 27 18 N/A 260 60 Round 21.4 24 24 N/A 262 62 0 Round 21.41124 24 N/A 953 53 0 Round 18.51 21]1 24 N/A 951 51 0 FRound]l 1 211 24 N/A 1055 55 10 Round 42.7 4811 48 N/Al. 1156 56 11 Round 19.dl 2111 27 N/A 1158 58 11 Round 19.6 21 27 N/A 1112 F 12 11 Kujdj 39.71 4211 42 F N/A 1213 13 12 Round 39.711 4211 42 N/A 1441 41 14 Round 24.1 2711 27 N/A 1443 43 14 Round 18.6]1 211 21 N/A 1545 45 15 Round 26.11 2711 27 F N/A 1547 47 15 Round 20.2 21 21 N/A 1649 49 16 Round 33.9 36]1 36 N/A 1837 37 18 Round 23.011 241 24 N/A 1733 33 17 Round 25.8 271 27 N/A 1735 35 17 Round 19.9 1 21 21 N/A 2029 29 20 Round 13.7 18 18 N/A 769 69 0 Round 24.5 27 27 N/A 2327 27 23 FRounjdj 21.4 24 27 N/A 1839 39 18 Round 17.7 1 18 18 N/A 1621 21 16 Round 26.1 27 27 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical Full Sewer ID- Flow Flow Depth Velocity Depth Velocity Velocity Froude NumbEr_ Comment (CFS) ZCFS) eet) (FPS) �Fee� (FPS) (FPS} F1 292.6 292.7 6.50 8.8 4.60 11.6 8.8 0.02 12 I260.9 208.0 6.21 8.6 4.40 11.4 8.6 N/A 23 254.3 294.2 4.46 10.9 4.40 11.1 8.4 0.95 �� 34 I155.9 89.7 3.50 16.2 3.35 16.5 16.2 N/A 45 155.9 181.9 F 2.49 F 21.2 F 3.35 F 16.5 16.2 F 2.46 Velocity Is file:HC:\Program%20Files\NeoUDSewer\reports\325 3 509681.htm 2/4/03 NeoUDS Results Summary rage 6 01 1 i 1 I I r] 1 1 H I ri 1 I 11 uuuuuuuu� High, 56 67 100.0 125.1 2.03 19.7 2.85 70.9 79.6 1.84 18.3 2.40 14.4 14.1 2.58 Velocity Is High 14.6 14.4 2.44 Velocity l si 18 48.4F 73.5 2.15 7.6 2.14 7.6 4.7 �1 39 144.0 257.8 3.03 10.5 3.31 9.4 5.7 1.19 910 115.2 189.1 2.91 9.5 3.03 9.0 5.5 1.08 1011 77.5F 96.2 2.78 8.2 2.64 8.6 5.9 0.91 514 14.5F 36.7 0.98 8.7 1.32 6.0 3.6 1.77 515 53.2 117.9 1.92 8.8 2.19 7.4 4.1 1.27 0 617 17.3 41.1 1.02 9.9 1.45 6.4 4.3 1.97 618 12.8F 26.4 0.98 8.3 1.28 6.0 4.1 1.67 1516 35.9F 42.3 2.12 6.7 1.94 7.4 5.1 0.85 719 3.6F 14.5 0.51 6.8 0.74 4.1F 2.0 1.97 1920 3.6 7.4 0.73 4.2 0.74 4.1 2.0 0.97 722 57.7F 87.4 2.08 9.7 2.38 8.3 6.0 1.3 2223 57.7 63.8 2.61 7.5 2.38 8.3 6.0 0.83 164 22.5 1.05 10.0 1.43 7.1 6.2 1.89 865 24.0F 15.9 1.75 10.0 1.64 10.3 10.0 N/A 867 24.0F 1-0.51 1.50 13.6 1.47 13.7 13.6 N/A 260 10.5F 14.3 1.27 5.0 1.16 5.6 3.3 0.84 2 22 10.5F 14.3 1.27 5.0 1.16 5.6 3.3 0.84 F9531F27.8]F 1.00 8.8 1.34 6.2 4.4 1.76 951 13.8 27.8 1.00 8.8 1.34 6.2 4.4 1.76 1055 66.3F 91.1 2.53 7.9 2.45 8.2F 5.3 0.95 5-1561 43.9 1.02 10.6 1.51 6.6 4.7 2.11 1158 18-7F 43.9 1.02 10.6 1.51 6.6 4.7 2.11 1112 54.9F 63.8 2.50 7.5 2.31 8.1 5.7 0.86 1213 54.9 63.8 2.50 7.5 2.31 8.1 5.7 0.86 1441 14.5F 19.6 1.44 5.4 1.32F 6.0 3.6 0.86 1443 7.2 10.0 1.10 4.5 1.00 5.1 3.0 0.83 1547 9.0F 10.0 1.29 4.7F 1.11 5.6 3.7 0.75 1649 35.9 42.3 2.12 6.7 1.94 7.4 5.1 0.85 1837 12.8 14.3 1.47 5.2 1.28 6.0 4.1 0.77 Fl-7331F 19.6 1.64 5.6 1.45 6.4 4.3 0.79 1735 8.6F 10.0 1.25 4.7 1.09 5.5 3.6 0.77 file://C:\Program%20Files\NeoUDSewer\reports\3253509681.htm 2/4/03 NeoUDS Results Summary Page./ of 1 I 12029 11 3.611 7.411 0.7311 4.211 0.7411 4.111 2.011 0.9711 11 769 15.1F 19.6 1.48 5.4 1.35 6.1 3.8 0.84 F23271F 53.8 1.17 13.8 1.86 8.2 7.3 2.51 1839 6.4F 6.7 1.18 4.3 0.97 5.3 3.6 0.69 1621 17.9 19.6 1.69 5.6 1.48 6.5 4.5 0.77 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth Slope Upstream ownstreapstream Dm U Downstream Sewer ID (Feet)(Feet) 11 (Feet) Feet) Comment 0.31 5000.311 4999.79 5.80 -2.78 Sewer Too Shal 12 0.20 5000.90 5000.48 3.47 7.30 23 0.40 5001.05 5000.89 3.70 3.47 34 15.791 5004.13 5000.88 13.79 5.20 45 3.25 5025.72 5012.35 7.65 5.57 56 3.50 5034.51 5025.72F 8.85 8.15 67 3.75 5044.13 5034.51 8.55 9.35 18 0.44 5002.17F 5000,32 3.47 9.45 39 0.50 5001.20 5000.89 3.58 4.27 916 6.44 5002.43 5001.19 4.74 4.01 loll 0.40 5003.04 5002.42 4.17 5.58 514 1.40 5029.05 5025.72 3.59 8.90 515 0.60 5027.57 5025.73 3.71 7.98 617 1.75 5038.67 5034.50 3.60 9.60 618 IF 1.35 5038.67 5034.51 3.55 9.85 1516 0.40 5029.43 5027.57 3.72 3.88 719 IF 1.90 5048.88 5044.13 6.64 9.55 1920 0.50 5050.75 5048.88 4.56 6.64 a�-Oa5 5046:01 5044:1-3 7-ll �55� 2223 0.40 5047.58 5046.01 4.08 7.11 164 2.00 5001.89 5000.47 4.85 10.39 865 F 1.00 5002.31 5002.19 3.99 4.53 867F 1.00 5002.57 5002.19 3.98 4.78 260 0A 5000.94 5000.89 6.05 6.31 F file://C:\Program%20Files\NeoUDSewer\reports\325 3 5 09681.htm 2/4 03 1 1 1 1 1 1 1 1 1 1 NeoUDS Results Summary 262 LQ.N1 5001.051 5000.901 5.941 6.30I1 I �� 1.50 5003.32 5002.75 3.62 4.45 F 951F 1.50 5002.93 5002.75 4.01 4.45 1055 0.40 ISewer Too Shallow 1156 2.00 5003.74 5003.50 3.99 4.63 1158 2.00 5004.26 5003.50 3.47 4.63771 1112 0.40 5004.03 5003.04 4.18 3.83 1213 0.40 ISewer Too Shallow 1441 0.40 5029.08 5029.06 3.32 3.58I-� 1443 0.40 5029.65 5029.55 3.25 3.59� 1545 0.40 5028.77 5028.75 3.22 3.45-� 1547F 0.40 5029.30 5029.20 3.19 3.50--� 1649F 0.40 5029.45 5029.43 3.50 3.72 1837 0.40 5038.69 5038.67 3.34 3.55 1733F 0.40 5038.70 5038.68 3.38 3.59 1735 0.40 5039.20 5039.10 3.38 3.67 2029F 6.50 5050.82 5050.75 3.98 4.56 � 769 0.40 5048.57 5048.50 4.36 4.43� 2327 3.00 5048.00 5047.58 4.41 5.33 1839 0.40 5039.20 5039.10 3.33 3.62 1621 0.40 5030.28 5030.18 3.42 3.72 Summary of Hydraulic Grade Line Water Elev Invert Elevation ation Magi: o of i 1 Sewer Surcharged Sewer Length Length Upstream Downstream Upstream Downstream Condition ID # (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) F1 169.41 Subcritical 12 208.83 208.83 5000.90 5000.48 5007.10 5005.38 Pressured 23 38.17 �38.17 5001.05 5000.89 5007.33 5007.10 Pressured 34- 41 L-25 - 4-11-.25 -5004 1-3 5000.88 --5014-37 --5007-33 -Pressured file://C:\Program%20Files\NeoUDSewer\reports\3253509681.htm 2/4/03 NeoUDS Results Summary Page 9 of 11 910 1 281.061 281.0611 5002.431 5001.195008.56 1 5008.041 Pressured 1011 1561 156 5003.04 5002.42 5008.92 5008.56 Pressured 514 238 238 5629.65 5625.72 5033.59 5029.07 Pressured 515 308 308 5027.57 5025.73 5033.40 5029.07 Pressured 617 238 238 5038.67 5034.50 5041.04F 5037.35 Pressured 618 308 308 5038.67 5034.51 5041.32 5037.35 Pressured 1516 464 464 5029.43 5027,57 5034.61 5033.40 Pressured 719 250 233.27 5048.88 5044.13 5050.06 5046.53 Jump 1920 373.55 0 5050.75 5048.88 5051.48 5050.06 Subcritical 722 250 250 5046.01 5044.13 5050.14 5046.53 Pressured 2223 393.32 393.32 5047.58 5046.01 5051.46 5050.14 Pressured 164 70.86 70.86 5001.89 5000.47 5006.98 5005.38 Pressured 865 12 12 5002.31 5002.19 5006.55 5007.40 Pressured 867 38 38 5002.57 5002.19 5006.99 5007.40 Pressured 260 12F 12 5000.94 5000.89 5008.12 5007.10 Pressured 262 38 38 5001.05 5000.90 5008.18 5007.10 Pressured 953 38 38 5003.32 5002.75 5008.41 5008.04 Pressured 951 12 12 5002.93 5002.75 5008.31 5008.04 Pressured 1055 82 82 5002.75F 5002,42 5008.80 5008.56 Pressured 1156 12 12 5003.74 5003.50 5009.18 5008.92 Pressured 1158 38 38 5004.26 5003.50 5009.28 5008.92 Pressured 1112 246.27 246.27 5004.03 5003.04 5009.71 5008.92 Pressured 1213 82 82 5004.36 5004.03 5009.98 5009.71 Pressured 1441 0 5 5029.08 5029.06 5033.61 5033.59 Pressured 1443 25 25 5029.65 5029.55 5033.72 5033.59 Pressured 1545 0 5 5028.77 5028.75 5033.37 5033.40 Pressured 1547 25 25 5029.30 5029.20 5033.53 5033.40 Pressured 1649 0 5 5029.45 5029.43 5034.65 5034.61 Pressured 1837 0 S 5038.69 5038.67 5041.34 5041.32 Pressured 1733 0 5 5038.70 5038.68 5041.07 5041.04 Pressured 1735 25 25 5039.20 5039.10 5041.22 5041.04 Pressured 2029 14 17.29 1411 0 0 14 5050.82 5050.75 5051.56 5051.48 Subcritical 769 5048.57 5048.00 5048.50 5047.58 5050.03 5051.36 5046.53 5051.46 Subcritical Pressured 23271 1839 25 25 5039.20 5039.10 5041.47 5041.32 Pressured 1621 25 j- 25 5030.28 5030.18 5034.80 5034.61 Pressured file://C:\Program%2OFiles\NeoUDSewer\reports\3253509681.htm 2/4/03 NeoUDS Results Summary zags; cif 01 11 I 7- L �I 7 1 L 1 Summary of Energy Grade Line Sewer ID # Upstream Manhole Juncture Losses Downstream Manhole Manhole ID # Energy Elevation (Feet) Sewer Friction (Feet) Bend K Coefficient Bend Loss (Feet) Lateral K Coefficient Lateral Loss (Feet) Manhole ID # Energy Elevation (Feet) �1 1� 5006.93 3.42 0.05 0.00 0.00 0.00 �0 5003.51 12 0 5008.26 1.27 0.05F 0.06 5006.93 23 0 5008.43 0.11 0.05F 0.05 0.00 0.00 0 5008.26 34 ® 5018.44 9.81 0.05 0.20 0.00 0.00 3� 5008.43 45 �5 5033.27 14.62 0.05 0.20 0.00 0.00 ® 5018.44 56 © 5040.59 7.16 0.05FO.161F 0.00 0.00 5� 5033.27 67 0.16 0.00 0.00 © 5040.59 18 ® 5007.74 0.80 0.05 0.02 0.00 0.00 �1 5006.93 39 0.03 0.00 0.00 F3 5008.43 910 10 5009.03 0.46 0.05 6.02 5008.55 F1-6-1-11 0.05 0.03 0.00 0.00 10 5009.03 514 14 5033.80 0.52 0.05 0.01 0.00 0.00 5� 5033.27 515 15 5033.66 0.38 0.05F o.o]T7776q 50. 617 17 5041.34 0.74 0.05 0.01 5040.591 618 18 5041.57 0.97 0.05 0.01 0.00 0.00 © 5040.59 1516 16 5035.01 1.33 0.05 0.02 0.00 0.00 15 5033.66 719 19 5050.12 0.27 0.05 0.00 0.00 0.00 7� 5050.12 1920 20 5051.75 1.63 0.05 0.00 0.00 0.00 19 50. 722 22 5050.70 0.82 0.05F 6.03 0.00 0.00 7� 5049.86 2223 23 5052.01 1.29 0.05 0.03 0.00 0.00 22 5050.70 164 64 5007.59 0.63 0.05F 0.03 0.00 0.00 1� 5006.93 865 65 5008.09 0.27 0.05F 0.08 0.00 0.00 ® 5007.74 867 67 5009.86 1.97 0.05 0.14 0.00 0.00 ® 5007.74 260 60 5008.29 0.03 0.05 0.01 0.00 0.00 5008.26 262 62 5008.35 0.08 0.05F 0.01 0.00 0.00 0 5008.26 953 53 5008.71 0.14 0.05 0.01 0.00 0.00 0 5008.55 951 51 5008. 1 0.05 D0.04 0.01 0.00 0.00 0 5008.55 1055 55 5009.23 0.17 0.05F 0.02 0.00 0.00 10 5009.03 1156 56 5009.52 0.04 0.05 0.02 0.00 0.00 11 5009.46 1158 58 5009.62 0.14 0.05 0.02 0.00 0.00 11 5009.46 1112 12 5010.22 0.73 0.05 0.03 0.00 0.00 11 5009.46 1213 13 5010.49 0.24 0.05 0.03 0.00 0.00 12 5010.22 1 file:HC:\Program%20Files\NeoUDSewer\reports\3253509681.htm 2/4/03 NeoUDS Results Summary Vage 11 0111 1L1jjL]1 41 11 5033.82 0.0III 0.0511 0.0111 0.0011 0.0011 14 11 5 03 3.8011 1443 43 5033.86 0.05 0.05 0.01 0.00 0.00 14 5033.80I 1545 45 5033.69 0.02 0.05 0.02 0.00 0.00 15 5033.66 1547 47 5033.75 0.08 0.05 0.01 0.00 0.00 15 5033.66 1649 49 5035.05 0.01 0.05 0.02 0.00 0.00 16 5035.01 =1 37 1 5041.601 0.021 0.05 [__2A1 0.001 0.001 18 5041.57 1733 33 5041.37 0.02 0.05 0.01 0.00 0.00 17 5041.34 1735 35 5041.42 0.07 0.05F 0.01 0.00 0.00 17 5041.34 2029 29 5051.82 0.07 0.05 0.00 0.00 0.00 20 5051.75 769 69 5050.51 0.64 0.05 0.01 0.00 0.00 7� 5049.86 2327 27 5052.18 0.12 0.05F 0.04 0.00 0.00 23 5052.01 1839 39 5041.67 0.09 0.05 0.01 0.00 0.00 18 5041.57 1621 21 5035.11 0.08 0.05 0.02 0.00 0.00 16 5035.01 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. file:HC:\Program%20Files\NeoUDSewer\reports\325350968 Lhtm 2/4/03 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) = r Slope (%) = r Travel Time 1 annth (M Pipe Attenuation for r.5 Sub -Basin D I 25 D1,D2,0.7D3D7,OF1-1 5.42 T; _ (1.87"(1.1-C'Cf)'D1n)/St" of 500 feet ►; _� 8.42 8.42 5.69 Channel Time Slnna 10M Chnrnrfariefire Volnr;h/ fff/el Mint 160 0.67. Paved Area, .Gutter Flow 1.627 1.64 500 0,54 Paved Area;,Gutter Flow 1.488. 5.60 Norie :: ":: 0.00 _. None 0.00 None ` 0.00 .:None .. .0.00 Intensities Discharge TST, INC. CONSULTING ENGINEERS I Dial I Ime = i� Z•aJ 2 1, 0-yr 100-31 Actual Time of Concentration = 21,35 18.62 Page 38 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basin D Design Point = 30N._..._ ......._;.... . Contributing Basins =.3D3,D4,D5,.5D6,.5D8,.5D9,.7D10,.51)11 Contributing Area (ac)= 10.05 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87*(1.1-C*Cf)*D1n)/Sti3 Length (ft) Maximum of 500 feet Slope (%) = 2.0 2-vr 10-vr, 100-y► Ti = 13.91 13.91 1 10.58 Travel Time Channel Characteristics Time oZZ U:oa ,.... ravea fuea, vutter riow 1.0cf o.30 ..: Nona: 0.100 :-,None ;< 0:00 None,..: 0:00 None :: 0:00 Intensities Discharge TST, INC. CONSULTING ENGINEERS Total Time = 22.40 2 1, 0-yr 100-vr Actual Time of Concentration = 36.31 32.98 Page 39 of 59 11112/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time Pipe Attenuation for Sub -Basin D 30S .3D10,.5D11 1.15 T; = (1.87*(1.1-C*Cf)*D1n)/S1" Channel Time 250 1.53 Paved_ Area,. Gutter Flow .2.125' 1.96 230 0.75 Paved`Area, Gutter.Flow 1.764 . 2.17 . 0.00 None 0.00 None 0.00 Intensities Discharge TST, INC. CONSULTING ENGINEERS ::.No'rie . 0 00 .. Total Time = 4.13 2 1, 0-yr 100-vr Actual Time of Concentration = 5.00 5.00 Page 40 of 59 11/12/02 Pipe Attenuation.xls 1 1 1 1 Pipe Attenuation for Sub -Basin D Design Point = 30 Contributing Basins = DP-25 + DP-30N + DP-30S Contributing Area (ac)= 16.33 Runoff Coefficient's 2-vr Overland Flow Time T; = (1.87*(1.1-C*CT).D1n)/St" Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-vr 13.27 Travel Time Channel 3.27 9.78 Time Len inn awe -/o) 1:naraclensucs veioca Tus Min 575. 057 Paved Area; Gutter. Flow 1488 6.44 525 0:69 Paved Area; Gutter`Flow 1,.627 5:38 None... 0:00 None 0:00 None 000 None -'. _ . .. 0.00 Intensities Discharge TST, INC. CONSULTING ENGINEERS Total Time =1 21.60 2 1, 0-yr 100-vr Actual Time of Concentration = 34.86 31.37 Page 41 of 59 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time I Pnnfh M Pipe Attenuation for Sub -Basin D :_ 32N_. .5D6,.5D8,.5D9,.5D12, D 13,.5D 14,.5D 15 7.91 Ti = (1.87*(1.1-C*Ct)*D12)/Si/3 Channel Time SlnnP 10 1 (:hnrnrfnriefire \/ulnrifu /ff/el /KAin% 100 0.85 Paved Area, Gutter Flow 1.882 0.89 525 0.57 Paved Area, Gutter Flow 1.488 5.88 250 0.56 Paved Area; Gutter Flow 1.488 2.80, 530 0.62 Paved Area; Gutter Flow , _ _1.627. .:. 5.43... . 000 None` 0.00 Intensities Discharge TST, INC. CONSULTING ENGINEERS 1 otal 1 Ime = zl 1.4b 1 2,1 0-yr 100-yr Actual Time of Concentration = 31.26. 28.13� Page 42 of 59 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ M Travel Time I Pnnth M Rinnp 10 1 Pipe Attenuation for Sub -Basin D 3.2.5 .5D6,.5D8,.5D9,.5D12,D13,.5D14,.51)15,.5D 16 9.05 Ti = (1.87*(1.1-C*Cf)*D112)/Si" um of 500 feet 9.70 Channel (:hararfariefirc 9.70 Time Vnlnnifv MCI fkAinl 100 0'85 Paved Area, Gutter Flow : 1.882 0,89 525 t)`67 .:, Paved Area;.Gutter Flow 1.48.8! 5:88. 250 056 " Paved Area; Gutt'e- Flow .' 1` 488 280 530 0:62 Paved Area, Gutter Flow.. 1:627, ..._ _ 5:43. . 100 0:5 Paved A, rea;,Gutter-Flow . 1 A88" 1.12 Whe 0.00 Intensities Discharge TST, INC. CONSULTING ENGINEERS I oral I ime = zl z.tin 2 1. 0-vr 100-vr Actual Time of Concentration = 32.38 29.25 Page 43 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basin D Design Point = 32 Contributing Basins = 0P-30,DP-32N,.,5D15,.51)16 Contributing Area (ac)= 25.38 Runoff Coefficient's 2-yr Overland Flow Time T; _ (1.87*(1.1-C`Cf)'D112)/Sl" Length (ft) =E!q Maximum of 500 feet Slope (%) = 2-yr 12.38 Travel Time Channel I Pnnth (ftl Rinnp 10 1 Charactarictirc 12.38 8.66 Time VnIncity tft/cl Winl 575 0.57 Paved Area, Gutter Flow, 1.488 6.44 525 069 Paved Area; Gutter;Flow 1.627 5.38 300 U51 Paved Area; Gutter Flow ` 1.488 3.36 None' 0.00 None 0.00 None 0.00 Intensities Discharge TST, INC. CONSULTING ENGINEERS I otai I Ime zs.tK 2 1. 0-vr 100-vr Actual Time of Concentration = 36.22 32.50 Page 44 of 59 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Pipe Attenuation for Sub -Basin D .5D12,.5D14,D17,D18 5.78 Overland Flow Time T; = (1.87*(1.1-C*Cf)*DVn)/Sli3 Length (ft) = Maximum of 500 feet Slope (%) = 3 q 2-vr 10-yr 100-yr 8.22 8:22 6.20 Travel Time Channel Time Length ft Sloe % Characteristics Velocity ft/s Min 950 Flow 1.764. 8.98 0155, Paved Area;•Gutter ea; -..Gutter Flow 1-488 1.29 0.00 None_ None.. 0.00 _ None.:. 0.00 Total Time = 16.47 2 1, 0-yr 100-yr Actual Time of Concentration - 24 69 : 22:67 Intensities Discharge TST, INC. CONSULTING ENGINEERS Page 45 of 59 11/12/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basin D Design Point = 34S Contributing Basins = DP-34N,.5D16 Contributing Area (ac)= 3.61 Runoff Coefficient's 2-vr Overland Flow Time T; _ (1.87*(1.1-C*Cf)*D1/2)/Si" Length (ft) = Maximum of 500 feet Slope (%) = q 2-yr 10-yr 100-yr 7.41 7.41 5.18 Travel Time Channel Time Length ft Sloe % Characteristics Velocity ft/s Min 950 0.75 Paved.Area, Gutter Flow 1.764 8.98 115 0:55 - Paved,Area,:Gutt& Flow .. '. 1.488 1.29 100 0;5 Paved.Area, Gutter Flow. 1.488 1.12 None None a r 0.00 None 0.00 Total Time 2 1, 0-yr 100-vr Actual Time of Concentration = 18:791 16.57 Intensities Discharge TST, INC. CONSULTING ENGINEERS Page 46 of 59 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time I_ennth fff1 M� M SlnnP 10 1 Pipe Attenuation for Sub -Basin D _ , 34,... . 5 D P-32 N, D P-34 N, D P-34 S 10.46 Ti = (1.87*(1.1-C*Cf)*Dln)/SI" of 500 feet 7.41 Channel (:hnrnrfcricfire 7.41, .5.18 Time Vclnrifv fft/0% /hAin% 950 0.75 Paved'Area,:Gutter Flow 1.764 8.98 .115 0.55 Paved Area;;,Gotter Flow 1.488 1.29 100 0:50 PaVed'Ar'ea,.Gutter FIOw 1.488 1.12 None , _.. 0.00.... None.. 0.00 None:- 0.00 . . Total Time = : 1657 Intensities Discharge TST, INC. CONSULTING ENGINEERS 2 1, 0-yr 100-yr Actual Time of Concentration = 23M& 21,.7.5 Page 47 of 59 11/12/02 Pipe Attenuation.xls 1 1 1 1 1 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) _ Travel Time Length (ft) Pipe Attenuation for Sub -Basin D D D P-2 6, D P-30 , D P-32 , D P-34 32.75 T; _ (1.87*(1.1-C'Cr)`DMysl" Channel Time Slone (%) Characteristics Velocity (ft/s) (Min) 575 .0ZT Paved Area, Gutter Flow 1.488 6.44 525 069 . Paved Area; Gutter. Flow 1.627. 5.38 300 0:50 Paved Area; Gutter Flow 1.488 3.36 100 0.50 Paved Area,:Gutter Flow 1 A88 1.12 ;None 0:00 `:None 0:00 Intensities Discharge TST, INC. CONSULTING ENGINEERS I otal I lme = 2� 4.9U 2 1, 0-yr 100-vr Actual Time of Concentration = 3723 33.50 Page 48 of 59 11 /12/02 Pipe Attenuation.xls I I i 11 I t I 1 Ox IO N O m m o m NO m m I m m m@ m w mO U N EN9;NO pNNNpONOpOH N m OO OO pNN O OS NQ lsa b bm O0 m b 0 U � QCIU OW LL(�2 yam^ N �N �N = U b m b b b b b b E N 0 O I� b N N N N N N N N N Ol N N N U z a T�i000 oomm o0o oOaSSoomo mo 00o SS Noo do v B K c �-'NOmmmObN y m p O V 5 y > Oy N N N N 01 t7 [�1 �l M OI m CI t7 Y M CI N y ION VNl N�NS {{yy W _p LL 000 O F oo NNN OSO poo p$op I(lb O On "i n Vy O mp c�Vy Np Np .per- m O pm p0 ppA O bb bmNNb Y1 IObN b b bN bm H O p O N0000 O O O O N O O VIb p b p b 111NN N b b 1� N b t`r b p p bl(l �ul mIU IN VI OI OI CI CI Ymt7 CI Cf mm NlV 3 �66666p��� 666 66 66 ��^ wwal ww Sul ww 0(3 mPm m m mN% -1 Z- yy 11o9OO mm014 l01 oN l mm a > O V O W OmmN w n{ V a ANN NN KI tN+), OS v .ao�.08 �p E $00 S pm pro o'pS m poo 00 a Y b b b N m I(l b Ill b b b b b b b >a m m m�s Sgwaq �EPma2,8008$ a as a aa bo i ` SR % n Ibn mmaaaao � mam 9 am a�amSaa m P b _______________ __. 0 0 m O N ��yy N b N N a 2 S S S S m S O S OI y J W mFNI� N��aN W9 A"A CI NY11A m �-t7 1 m bIN �m Ob mN �KfXXX{X�p�X XpK Vt9 p N N N N N m l0 Y p��� Y O O S 19 pX O O d O OOOOOOOOGO O� 00 00 b d b IO b Inb bm O a 2 W.b Vl UO WLL o bm w S d_I yg N N y`y f-� 16 I i 1 I I [_ i I I i 1 I 1 1 S I -S i11 911 10 NeoUDS Results Summary f age 1 of 6 NeoUDS Results Summary ' Project Title: Gillespie Farm Project Description: ST-5 Output Created On: 2/4/03 at 8:45:45 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. 1 Sub Basin Information r Time of Concentration Manhole Basin Overland Gutter Basin Rain I Peak Flow ID # Area * C (Minutes) (Minutes (Minutes) (Inch/Hour) (CFS) �0 24.56 5.0 0.0 0.0 3.82 93.8 �1 0.00 0.0 0.0 0.0 0.00 93.8 737724.56W 5.61F 6.61F07F 3.821F 93.91 I u 1] cl r r r r I® 19.03 5.0 0.0 0.0 3.88 5� 11.59 5.0 0.0 0.0 3.94 45.7 I The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc phis the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. 1 file:HC:\Program%20Files\NeoLTDSewer\reports\3253509945.htm 2/4/03 NeoUDS Results Summary -Page 2 of 6 1 1 1 1 I 1 1 1 1 1 1 Summary of Manhole Hydraulics Manhole ID # Contributing Area * C Rainfall Duration (Minutes) Rainfall Intensity (Inch/Hour) Design Peak Flow (CFS) Ground Elevation (Feet) Water Elevation (Feet) Comments 00 0.0 0.00 93.8 5003.51 5003.51 �1 67.26 S.0 1.39 93.8 5005.27 5003.33 0 67.26 5.0 1.39 93.8 5004.79 5003.74 ® 34.86 S.0 2.12 73.8 5004.70 5003.65 5� 15.82 5.0 2.89 45.7 5006.18 5004.65 © 4.23 5.0 5.30 22.4 5007.76 5005.38 7 4.23 5.0 5.30 22.4 5009.22 5006.27 ® 4.23 5.0 5.30 22.4 5010.52 5007.15 9� 7.85 5.0 4.98 39.0 5004.73 5004.00 10 0 0.0 0.00 17.3 5004.25 5004.09 11 0 0.0 0.00 19.0 5004.25 5004.15 12 0 0.0 0.00 28.9 5004.25 5004.06 14 0 0.0 0.00 8.4 5005.81 5004.92 15 0 0.0 0.00 26.2 5005.32 5004.70 17 0 0.0 0.00 11.2 5010.00 5006.94 13 0 0.0 0.00 25.7 5004.25 5003.94 16 0 0.0 0.00 11.2 5010.00 5007.16 0 67.26 5.0 1.39 93.8 5005.40 5003.45 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 1. Manhole ID Number I Calculate-d7l Suggested -Existing Sewer ID # Upstream Downstream Sewer Diameter (Rise) Diameter (Rise) Diameter (Rise) Width Sha a (Inches) (FT) (Inches) (FT) (Inches) (FT) (FT) "I 1 L 0 1 Arch ( 55.4 6011 4811 7 334 Arch I 1 54 34 C 445 ® Arch 42.3 �- 48 34 C 56 Round 24.81 271 30I.F N/. 67 �© Round 26.3 27 30 N/. 78 8 7 Round 28.41 3O1F N/. file:HC:\Program%20Files\NeoUDSewer\reports\3253 509945.htm 2/4/03 i i 1 1 1 1 1 1 1 1 1 1 1 NeoUDS Results Summary Page 3 of 6 13 ® Arch 23.3 24 19 30I I413 F514 14 0 Arch 19.7 21 24 3 8 515 11 15 1 5 1 Arch ] 30. j 3311 21 38 817 17 ®Round 21.9 24 18 N/A 816 16 ® Round 21.9 24 18 N/A 23 00 Arch 55.3 r60I 43 68 12 �� Arch 55.3 60 43 C Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer ID Design Flow (CFS) Full Flow (CFS) Normal Depth (Feet) Normal Velocity (FPS) Critical Depth (Feet) Critical Velocity (FPS Full Velocity (FPS) Froude Number Comment 93.8 34 73.8 127.5 49.5 3.29 6.6 3.62 7.2 2.75 2.67 8.3 9.1 4.5 0.7 7.2 N/A 45 45.7F 49.5 2.75F 5.4 2.08 7.4 4.4 0.58 56 22.4 37.5 1.39 8.0 1.61 6.7 4.6 1.32 67 22.4 31.9 1.55 7.0 1.61 6.7 4.6 1.08 78 22.4F 26.0 1.79 6.0 1.61 6.7 4.6 0.81 39 39.0F 45.5 2.20 6.9 2.01 7.6 5.2 0.84 910 I 911 412 413 514 19.0 28.9 25.7 8.4 24.0 24.0 44.9 29.4 28.4 1.29 1.37 1.51 1.48 0.96 8.0 8.1 9.1 10.1 4.7 1.49 1.56 1.83 _ 1.77 1.01 6.8 7.1 7.3 - 8.5 4.4 5.3 5.8 5.5 7:9 1.6 1.34 1.3 1.44 1.51 0.98 Velocity High Velocity Is High Velocity Is s 515 26.2 28.4 8 77 11.2 6.7 1.50 6.3 1.27 7.0 6.3 N!A 8- 6.7 23 93.8 94.9 3.75 6.4 2.81 8.8 5.6 0.57 file://C:\Program%2OFiles\NeoUDSewer\reports\3253509945.htm 2/4/03 NeoUDS Results Summary !-age 4 & o IL-12-1 93.8 94.9 3.75 6.4 2.81 8.8 5.6 0.57 ul A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation 11 Buried Depth Sewer 1D Slope Upstream Downstream Upstream Downstream Comment % (Feet) (Feet) (Feet (Feet) Summary of Hydraulic Grade Line Invert Elevation Water Elevation Sewer ID # Sewer - Length ) -Surcharged g Length ) Upstream (Feet) - - - - Downstream (Feet) Upstream (Feet) Downstream (Feet) Condition 29.54 29.54 4998.16 4998.10 5003.33 5003.51 Pressured 34 42.5 42.5 4998.80 4998.71 5003.65 5003.74 Pressured 45 287.29 287.29 4999.37 4998.79 5004.65 5003.65 Pressured 56 �r 24 248.52 5001.43 4999.37 5005.38 5004.65 Pressured file://C:\Program%20Files\NeoUDSewer\reports\325 3509945.htm 2/4/03 NeoUDS Results Summary Page 5 of 6 67 11 292.2811 292.2811 5003.1911 5001.4411 5006.271 5005.3811 Pressuredll 78 292.28 292.28 5004.35 5003.18 5007.15 5006.27 Pressured 39 62.5 62.5 4998.95 4998.70 5004.00 5003.74 Pressured Summary of Energy Grade Line Sewer ID # Upstream Manhole Sewer Friction eet) Juncture Losses Downstream Manhole Manhole ID # Energy Elevation (Feet) Bend K Coefficient Bend Loss (Feet) Lateral K Coefficient Lateral Loss (Feet) Manhole ID # Energy Elevation (Feet) �� 5003.64 0.13 1.00F 0.00 0.00 0.00 5003.51 34 ® 5004.45 0.19 0.05 0.04 0.00 0.00 0 5004.22 45 5004.95 0.49 0.05 0.02 0.00 0.00 ® 5004.45 56 I© 5005.71 0.74 0.05F 6.02 0.00 0.00 5004.95 67 5006.59 0.87 0.05F 6.02 0.00 0.00 © 5005.71 78 ® 5007.47 0.87 0.05 0.02 0.00 0.00 5006.59 39 5004.43 0.18 0.05 0.02 0.00 0.00 5004.22 910 10 5004.53 0.08 0.05 0.02 0.00 0.00 0 5004.43 911 I11 5004.67 0.22 0.05 0.03 0.00 0.00 �_� 5004.43 412 12 5004.53 0.06 0.05 0.02 0.00 0.00 ® 5004.45 _ 413_. _ ._13 . _. . _5004.90 0.40 _ _ . -0.05 _0.45 0.00 0.00 -5004.45 514 14 5004.96 0.01 0.05 0.00 0.00 0.00 5004.95 515 15 5005.09 0.12 0.05 0.02 0.00 0.00 5004.95 817 17 5007.56 0.06 0.05 6.03 0.00 0.00 ® 5007.47 816 16 5007.79 0.28 0.05 0.03 0.00 0.00 ® 5007.47 23 3� 5004.22 0.27 0.05F 0.02 0.00 0.00 0 5003.93 file://C:\Program%20Files\NeoUDSewer\reports\3253509945.htm 2/4/03 NeoUDS Results Summary edge 0of0 12 11 2 5003.931 0.271 0.05 L2AJ 0.001 0.001 1 5003.64 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. file://C:\Program%20Files\NeoUDSewer\reports\3253509945.htm 2/4/03 CURRENT DATE: 11-04-2002 CURRENT TIME: 15:41:49 -------------------------- -------------------------- -------------------------- ------------------------- C I SITE DATA UI --------------------- ST-6.PRN 1 FILE DATE: 11/4/02 FILE NAME: ST-6 --------------------------------------------------- FHWA CULVERT ANALYSIS -------------------------- HY-8, VERSION 4.0 -------------------------- --------------------------------------------------- CULVERT SHAPE, MATERIAL, INLET -- ----------------------------------------------- L INLET OUT CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET # (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 2 3 4 I.5_. 6 --------------------------------- ---------------------------- 4998.10 4997.75 125.00 1 RCB 8.00 4.00 .013 CONVENTIONAL -------------------------------------------------------------------------------- FILE: ST-6 CULVERT HEADWATER ELEVATION (FT) DATE: 11/4/02 DISCHARGE 1 2 3 4 5 6 ROADWAY 0 5003.51 0.00 0.00 0.00 0.00 0.00 5005.25 13 5003.51 0.00 0.00 0.00 0.00 0.00 5005.33 25 5003.53 0.00 0.00 0.00 0.00 0.00 5005.38 ' 38 5003.55 0.00 0.00 0.00 0.00 0.00 5005.42 50 5003.58 0.00 0.00 0.00 0.00 0.00 5005.46 63 5003.62 0.00 0.00 0.00 0.00 0.00 5005.49 75 5003.67 0.00 0.00 0.00 0.00 0.00 5005.52 88 5003.73 0.00 0.00 0.00 0.00 0.00 5005.55 100 5003.80 0.00 0.00 0.00 0.00 0.00 5005.58 105 5003.83 0.00 0.00 0.00 0.00 0.00 5005.59 125 5003.96 0.00 0.00 0.00 0.00 0.00 5005.63 275 5005.71 0.00 0.00 0.00 0.00 0.00 0.00 ' The above Q and HW are for a point above the roadway. --- ------------------------------------------------------------------------- 0 2 11 CURRENT DATE: 11-04-2002 FILE DATE: 11/4/02 CURRENT TIME: 15:41:49-------FILE-NAME: ST-6 ------------------------------------------------- ---------------- PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 8 BY 4 ) RCB -------------------------------------------------------------------------------- DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) -------------------------------------------------------------------------------- 0 5003.51 0.00 5.41 0-NF 0.00 0.00 0.00 0.00 0.00 5.76 13 5003.51 0.73 5.41 4-FFt 0.45 0.42 0.39 4.00 0.00 5.76 25 5003.53 1.16 5.43 4-FFt 0.71 0.67 0.78 4.00 0.00 5.76 38 5003.55 1.51 5.45 4-FFt 0.92 0.88 1.17 4.00 0.00 5.76 50 5003.58 1.83 5.48 4-FFt 1.12 1.07 1.56 4.00 0.00 5.76 63 5003.62 2.12 5.52 4-FFt 1.30 1.24 1.95 4.00 0.00 5.76 75 5003.67 2.38 5.57 4-FFt 1.47 1.40 2.34 4.00 0.00 5.76 88 5003.73 2.63 5.63 4-FFt 1.63 1.55 2.73 4.00 0.00 5.76 100 5003.80 2.87 5.70 4-FFt 1.79 1.70 3.13 4.00 0.00 5.76 yjL��125 5003.96 3.32 5.86 4-FFt 2.09 1.97 3.91 4.00 0.00 5.76 ------------------ ------- ------------------------------------------------------- E1, inlet face invert 4998.10 ft El. outlet invert 4997.75 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft -------------------------------- ------------------------- ------------ ------------ ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 125.00 INLET ELEVATION (FT) 4998.10 OUTLET STATION (FT) 0.00 OUTLET ELEVATION (FT) 4997.75 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0028 CULVERT LENGTH ALONG SLOPE (FT) 125.00 Page 1 ST-6.PRN ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE BOX BARREL SPAN 8.00 FT BARREL RISE 4.00 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE (90-45 DEG.) INLET DEPRESSION NONE ------------------------- 0 3 CURRENT DATE: 11-04-2002 FILE DATE: 11/4/02 CURRENT TIME: 15:41:49 FILE NAME: ST-6 -------------------------------------------------------------------------------- -------------------------- TAILWATER -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- CONSTANT WATER SURFACE ELEVATION 5003.51 -------------------------------------------------------------------------------- ---------------=---------- ROADWAY OVERTOPPING DATA -------------------------- -------------------------------------------------------------------------------- ROADWAY SURFACE GRAVEL EMBANKMENT TOP WIDTH (FT) 30.00 CREST LENGTH (FT) 200.00 OVERTOPPING CREST ELEVATION (FT) 5005.25 0 Page 2 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Pipe Attenuation for C t Sub -Basin OF1 J 35b OF1-2 0.93 Overland Flow Time T; = (1.87*(1.1-C*Cf)*D1/2)/St" Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-yr 10-yr 100-yr 6.65 6.65 6.05 Travel Time Channel Time Length ft Sloe % Characteristics Velocity ft/s Min 375 0.53. Grassed Waterways 1.116 5.60 None' 0.00 . Nohe 0.00. None _: , 0.00 0.00. None.. 0.00 2,1 0-yr 100-vr Actual Time of Concentration = 12.25 11.65 Intensities Discharge NOTE: * An additional 60 cfs must be added to DP 35b from contributing off -site flow from the north. NOTE: Swale must be sized for approximately 67 cfs. TST, INC. CONSULTING ENGINEERS Page 49 of 59 11/12/02 Pipe Attenuation.xls Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) = I 70... Slope (%) = 1 2.0 Pipe Attenuation for Sub -Basin OF1 OF1-3;0F1-4 1.29 T; = (1.87'(1.1-C'Cr)'DIn)/S1/3 of 500 feet T; _� .. 9.19 9.19 8.07 Travel Time Channel Time Length ftSloe % Characteristics Velocity f /s Min 215 1.86 Paved Area, GutterFlow 2.125 1.69 60 6A0 :. Nearl Bare Ground 2.496 0.40 • , _ ,, None ,. : _. _ 0.00 None ;.. 0.00 ;.: None; • ; :' . 0.00 None 0:00 Total Time = 2.09 23 0-yr 100-yr Actual Time of Concentration = 11.28 10.16 Intensities Discharge NOTE: "The 100-yr flow to the area inlet at DP-35d is only surface water contributions. NOTE: ' An additional 60 cfs must be added to DP 35b from contributing off -site flow from the north. NOTE: Swale must be sized for approximately 67 cfs. TST, INC. CONSULTING ENGINEERS Page 50 of 59 11/12/02 Pipe Attenuation.xls 1 1 1 1 Pipe Attenuation for Sub -Basin OF1 Design Point = _ ,,.35d„_ Contributing Basins = OF1-2,OF1-3,OF1-4 Contributing Area (ac)= 2.22 Runoff Coefficient's 2-yr Overland Flow Time T; = (1.87*(1.1-C*Cf)*Dlr2)IS111 Length (ft) =Eq Maximum of 500 feet Slope (%) = 2-yr 6.07 Travel Time Channel I Pnnth (ftl SInnP (°7..1 Characteristics 6.07 1 5.33 Time Velocity (ft/s) (Minl 375 0.53 Paved Area, Gutter Flow 1'.488 4.20 305. 1?8 Paved Area, Gutter Flow. 2.125 2.39 'Nohe 0.00 '"None 0.60 None 0.00 None 0.00 Total Time = 6.59 2 1. 0-vr 100-vr Actual Time of Concentration = 12.67 . 11.93 Intensities Discharge NOTE: The above discharge is a combination of surface flow and flow through the storm sewer system and swale. NOTE: * An additional 60 cis must be added to DP 35b from contributing off -site flow from the north. NOTE: Swale must be sized for approximately 67 cfs. TST, INC. CONSULTING ENGINEERS Page 51 of 59 11112/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basin OF1 Design Point = ...._�:...... . Contributing Basins = 0F1-2,OF17-3,OF1-4 Contributing Area (ac)= 2.22 Runoff Coefficient's 2-vr Overland Flow Time T; = (1.87'(1.1-C'Cr)*D1/2)/Si" Length (ft) = Maximum of 500 feet Slope (%) = 72-vr q 10-Vr 100-yr 6.07 6.07 5.33 Travel Time Channel Time Length ft Sloe % Characteristics Velocity fUs Min 375 0.53 i Paled Area, Gutter Flow 1.488 4.20 305 ti:8 .:.. ;Paved Area, Gutter•Flow 2.125 . 2.39 r None : 0.00 ;:None :. . None:. 0;00 Total Time 6.59 2 1, 0-yr 100_yr Actual Time of Concentration = 12.67 1.1.93 Intensities I Discharge NOTE: The above discharge is a combination of surface flow and flow through the storm sewer system and swale. NOTE: ' An additional 60 cfs must be added to DP 35b from contributing off -site flow from the north. NOTE: Swale must be sized for approximately 67 cfs. TST, INC. CONSULTING ENGINEERS Page 52 of 59 11/12/02 Pipe Attenuation.xls r t t S ELEU = 5 Co®, o® 1 1 NeoUDS Results Summary Page 1 of 3 I I I II NeoUDS Results Summary Project Title: Gillespie Farm Project Description: ST-7 Output Created On: 2/4/03 at 8:47:55 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information anhole Basin 1111)# Area * Ci(Minutes)lMinutes Time of Concentration Peak Flow CFS Overland Gutter (Minutes) Rain I ) (I nch/Hour 1.00 5.0 0.0 0.0 66.70 66.6 1.00 5.0 0.0 0.0 66.70 66.6 1.00 5.0 0.0 0.0 66.70 66.6 0.33 5.0 0.0 0.0 185.90 62.2 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall Peak Ground Water ID # Area * C Duration Intensity Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) �0 0 0.0 0.00 66.6 5000.00 5000.00 0 233 5.0 28.561 4999.99 F 0 1.33 5.0 49.96 66.6 5014.11 5010.26 Surface 3 0.dD[:: 185.90 62.2 5009.73 [:j2.21 Water Present file:HC:\Program%20Files\NeoLTDS ewer\reports\3253 510075.htm 2/4/03 NeoUDS Results Summary Page 2 of 3 Summary of Sewer Hydraulics Nnte• The viven Aenth to flnw rnfin is 1 Manhole ID Number Sewer ID # Upstream Downstream Calculated Sewer Diameter (Rise) Sha a (Inches) (FT) Suggested Existin Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) FT) Width (FT) �I Ro und 3.4 36 �- 36 N/A 12 � Round 39.21 42JI 42 N/A 23 00 Round 38.6 1 42 42 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment (CFS) (CFS) (Feet) (FPS) (Feet) (FPS) (FPS) �1 66.6 81.9 2.05 12.9 2.59 10.3 9.4 1.67 12 66.6 80.1 2.44 9.3 2.48 9.1F77q 1.1 23 62.2 78.1 2.36 9.0 2.48 8.5 6.5 1.1 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Sewer ID Slope %(Feet) Invert ElevationI Buried Depth Upstream Downstream Comment (Feet) (Feet) Upstream Downstream (Feet) 0 1.50 Isewer Too Shallow 12 0.63 5007.78 5004.98 2.83 11.42 23 0.60 5009.73 5007.78 -3.50 2.83 Sewer Too Shallow Summary of Hydraulic Grade Line Invert Elevation Sewer Surcharged Sewer 11 Length 11 Length Water Elevation file:HC:\Program%20Files\NeoUD Sewer\reports\3253 510075.htm 2/4/03 ' NeoUDS Results Summary Page 3 of 3 I 1 lI I 1 ID # (Feet) I (Feet) I (Feet) (Feet) (Feet) (Feet) �1 93.6 0.03 4997.40 4996.00 4999.99 5000.00 Jump 12 444.65 0 5007.78 5004.98 5010.26 4999.99 Jump 23 324.9 vl 5009.73 5007.78 5012.21 5010.26 Jump Summary of Energy Grade Line �� 5001.63 1.63 0.05F -0--0 0 5000.00 12 0 5011.56 9.89 0.05F 6.04 0.00 0.00 �1 5001.63 23 0 5013.34 1.75 0.05 0.03 0.00 0.00 0 5011.56 ' Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. I I I I I I I file:HC:\Progratn%20Files\NeoUDSewer\reports\3253510075.htm 2/4/03 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time l enoth M Pipe Attenuation for Sub -Basin C 5 1 42* C2,C10 2.35 T; = (1.87*(1.1-C*C`)*DMysl" Channel Time Slone (%) Characteristics Velocitv (ft/s) (Min) 300 4.0 Paved`Area, Gutter Flow 4.265 1.17 235 5.0 Paved Area; Gutter` Flow .. 4.777 0.82 280 3.3 Paved Area, Gutter Flow ; 1 86 1.27 350 1;0 Paved,Area Gutter,Flow . .. 2.125 2.74 None 0.00 I None .0.00. . !me of Concentration = Intensities Discharge i oiai i ime = o.uu 2 1, 0-vr 100-yr 10.01 7.77 NOTE: Only half of 100-yr flow contributes to the inlet on the north side of the road. The rest of the flow continues east towards the southeast end of the site. NOTE: * The 100-yr flow to the Inlet at DP-42 Is only surface water contributions. TST, INC. CONSULTING ENGINEERS Page 28 of 59 11 /12/02 Pipe Attenuation.xis I :1 I I 1 11 I 1 I I 1 I 1 u i 1 1 LI 1 7 1 i 1 i 1 1 1 1 NeOUDS Results Summary P'18C 1 01 s I I 1 1 1 F 1 1 1 1 NeoUDS Results Summary Project Title: Gillespie Farm Project Description: ST-8 Output Created On: 2/4/03 at 8:49:19 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Manhole Basin 'Overlandl ID # Area * C Time of Concentration Peak Flow (CFS) (Minutes) Gutte (Minutes) I Basin (Minutes) Rain I 0� 1.12 5.0 0.0 0.0 8.03 9.0 1� 1.12 5.0 0.0 0.0 8.03 9.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment,Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Desi n g Manhole Contributing Rainfall Rainfall Peak Ground Water ID # Area * C Duration Intensity Flow Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) �0 0 0.0 0.00 9.0 5008.71 5008.71 �1 1.12 5.0 8.03 9.0 5012.99 5008.73 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 1. Manhole ID Number Calculated Suggested Existing Sewer ID # Upstream Downstream Sewer Diameter (Rise) IDiameter (Rise) Diameter (Rise) Width Sha a (Inches) (FT) (Inches) (FT) (Inches) (FT) (FT) file://C:\Program%20Files\NeoUDSewer\reports\3253510159.htm 2/4/03 ' NeoUDS Results Summary fage2of3 ' I 1��1 �0 Round 20.2 21 24 N/A Round and arch sewers are measured in inches. ' Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size ' All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. I I i 1 Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment (CFS) (CFS) (Feet) (FPS) (Feet) (FPS) (FPS) �1 9.0 14.3 1.15 4.8 1.08 5.2 2.9 0.88 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation 11 Buried Depth Sewer ID St Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream Feet) Comment 0 5007.31 5007.16 3.68 -0.45 Sewer Too Shallow Summary of Hydraulic Grade Line Invert Elevation Water Elevation Sewer Sewer Length Surcharged Length Upstream Downstream Upstream Downstream Condition ID # (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) 37.18 0 5007.31 5007.16 5008.73 5008.71 Subcritical Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole Sewer Manhole Energy Sewer Bend K Bend Lateral K Lateral Manhole Energy ID # 1D # Elevation Friction Coefficient Loss Coefficient Loss ID # Elevation (F ) eet Feet ( ) Feet ( ) (Feet) (Feet) [1 =1 5008.96 0 0.05 0.00 0.00 0.00 E0 5008.71 file://C:\Program%20Files\NeoUDSewer\reports\3253510159.htm 2/4/03 NeoUDS Results Summary cage 3 of .i ' Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. ' Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 1 1 1 1 file://C:\Program%20Files\NeoUDSewer\reports\3253510159.htm 2/4/03 1 1 1 1 1 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Pipe Attenuation for Sub -Basin C 5 T- - 9 36' DP-50,0S108,C1 1.83 T; = (1.87*(1.1-C*Cf)*D1n)/St" Travel Time Channel Time Length ftSloe % Characteristics Velocity ft/s Min 500 0.60 Paved Area, Gutter Flow 1.627 5.12 -None, 0.00 'None,ii'.: 0.00 None; .. 0.00 a,r None, E '` 0.00 None , 0.00 Total Time = .. 5.12 2 1, 0-yr 100-yr Actual Time of Concentration = 5.12 5.12 Intensities Discharge NOTE: *Add additional 15 cfs from contributing off -site area to 100-yr flow. Swale must be sized for approximately 32 cfs. TST, INC. CONSULTING ENGINEERS Total 100-yr flow is 32.0 cfs. Page 27 of 59 11/12/02 Pipe Attenuation.xis I 1 t 11 p 11 1 S T-0� 05 LLEU=5o1S,IR 0 n 0 NeoUDS Results Summary 1 I - NeoUDS Results Summary ' Project Title: Gillespie Farm Project Description: ST-9 Output Created On: 11/12/02 at 2:15:53 PM ' Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information 11 1 I �J 7 �I Manhole Basin ID # Area * C Time of Concentration Peak Flow (CFS) Overland inutes) Gutter inutes) Basin (Minutes) Rain I (Inch/Hour) �0 1.23 5.0 0.0 0.0 26.02 32.0 1� 1.23 5.0 0.0 0.0 26.02 32.0 Page 1 of 2 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall Peak Ground Water ID # Area * C Duration Intensity Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) �0 � 0.0 0.00 32.0 5015.19 5015.19 �1 1.23 5.0 26.02 32.0 5017.50 5016.93 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 1. Sewer # Manhole ID Number Sewer 5ha a Calculated Diameter (Rise) nches (I ) (FT) Suggested Existing Diameter (Rise) Diameter (Rise) [Width (Inches) (FT) (Inches) (FT) (FT) Upstream Downstream file://C:\Program%20Files\NeoUDSewer\reports\3246272153.htm 11/12/02 NeoUDS Results Summary rage L of l l�l �1 �0 Round 27.31 30 30 N/A Round and arch sewers are measured in inches. ' Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size ' All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. I 11 I 1 Design Full Normal Normal Critical Critical Full Sewer � Flow Flow Depth Velocity Depth Velocity Velocity Fronde Number Comment (CFS) (CFS) (Feet) (FPS) eet) (FPS) (FPS) �1 32.0 41.1 1.66 9.3 1.93 7.9 6.5 1.35 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert EIey7a7t7io7n7jj Buried Depth Sewer 1D Slope Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream (Feet) Comment 1.00 5015.00 5014.00 0.00 -1.31 Sewer Too Shallow Summary of Hydraulic Grade Line Invert Elevation Water Elevation Sewer Sewer Length Surcharged Length Upstream Downstream Upstream Downstream Condition # (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) 100 C—=o 5015.00 5014.00 5016.93 5015.19 Jump Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole Sewer Manhole Energy Sewer Bend K Bend Lateral K Lateral Manhole Energy ID # TD # Elevation Friction Coefficient Loss Coefficient Loss ID # Elevation (Feet) (Feet) (Feet) (Feet) (Feet) ��1 5017.89 2.70 0.05 0.00 0.00 0.00 �0 5015.19 1 file:HC:\Program%20Files\NeoLJDSewer\reports\3246272153.htm 11/12/02 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = Travel Time Pipe Attenuation for Sub -Basin OF4 50 OF4 0.60 T; = (1.87*(1.1-C*Cf)*D1n)/Si" Channel Time Length ttSloe "/o Characteristics Velocity rus Min 500 0.6 Paved Area; "Gutter Flow.1.627. 5.12 None. 0.00 Nohe .. 0.00 None 0.00 ' .-;-None: 0.00 0.00 Total Time =1 5.12 2 1, 0-yr 100-yr Actual Time of Concentration =t 5.12 1 5.12 , Intensities Discharge NOTE: *Each inlet will be sized to allow for the 100-yr storm of 5.40 cfs. TST, INC. CONSULTING ENGINEERS Page 53 of 59 11112/02 Pipe Attenuation.xls Pipe Attenuation for Sub -Basin OF4 Design Point = . 36. _ Contributing Basins = DP-50,OS108,C1 Contributing Area (ac)= 1.83 Runoff Coefficient's 2-vr Overland Flow Time T; = (1.87*(1.1-C*Cf)*D1/2)/Sl/3 Length (ft) = Maximum of 500 feet Slope (%) = 2-vr EE = 0.00 Travel Time Channel MOM Time t.en inn 5io a i° cnaractensucs veiocrt ws) tmin 500 0'60 Paved Area, Gutter Flow . 1.627 5.12 None . 0.00 None 0.00 None 0.00 . None 0.00 None .0.00 Total Time =1 5.12 2 1, 0-yr 100-yr Actual Time of Concentration = 5.12 5.12 Intensities Discharge NOTE: *Add additional 15 cfs from contributing off -site are to 100-yr flow. TST, INC. CONSULTING ENGINEERS Page 54 of 59 11/12/02 Pipe Attenuation.xis d L_1 ll L-- V) I 3 nr: 23 KAw\2 24 12 nevi\1 1 ' NeoUDS Results Summary Page 1 of 4 I [1 I I 11 r NeoUDS Results Summary Project Title: Gillespie Farm Project Description: ST-10 Output Created On: 2/4/03 at 8:52:41 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information I�1 1.83 5.0 0.0 0.0 17.20 31.5 0 1.83 5.0 0.0 0.0 17.20 31.5 �1 5I0.60 F 5.01F 0.0 6.0 9.00 5.4 ® 0.601 5.4 © 0.60 5.0 0.0 0.0 9.00 5.4 1.23 5.0 0.0 0.0 10.60 13.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design Manhole_ Contributing Rainfall Rainfall Peak Ground Water ID # Area * C . _ Duration Intensity . Flow -Elevation- 'Elevation' Comments (M�nutes) (Inch/Hour) (CFS) (Feet) (Feet) 5034.60 00 0.0 0.00 31.5 5034.60 1� 6.69 5.0 4.70 31.5 5053.71 5048.53 0 4.86 5.0 6.48 31.5 5054.15 5050.12 5� 0.6 5.0 9.00 5.4 5053.73 5052.96 file://C:\Program%20Files\NeoUDSewer\reports\3253 510361.htm 2/4/03 INeoUDS Results Summary Page 2 01 .l. 1 I I I I I �4 1.81 5.01 3.001 5.41 5054.101 5052.911 © 0.6 5.0 9,00 5.4 5053.16 5053.04 5052.22 0 1.23 5.0 10.60 13.0 5053.54 Summary of Sewer Hydraulics T�TMA• Tha niuPn rlPnth to 41mv ratin ie 1 Sewer ID # Manhole ID Number Upstream Downstream Sewer Sha a Calcutated Diameter (Rise) (Inches) FT) SuggestedI Diameter (Rise) (Inches) (FT) Existing Diameter (Rise) Width I (Inches) (FT) (FT) �1 0U Round 20.9 2-1]1 211F.N/A 12 Round 27.2 �- 3 O]j 21 N/A 23 00 Round 15.9 18 �_ 18 N/A 45 �5 ® Round 16.7 18 18 N/A 46 ©®FRound]l 16.711 18 18 N/A 24 ®� Round 16.71 18 18 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical Full Sewer � Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment (CFS) (CFS) (Feet) (FPS) (Feet) (FPS) (FPS) 31.5 31.8 1.42 15.1 1.70 13.2 13.1 2.15 12 31.5 15.9 1.75 13.1 1.70 13.2 13.1 N/A 23 13.0 18.2 0.94 11.2 1.33 7.9 7.4 2.21 45 5.4 6.7 1.02 4.2 0.89 4.9 3.1 0.77 46 5.4 6.7 1.02 4.2 0.89 4.9 3.1 0.77 24 5.4 6.7 1.02 4.2 0.89 4.9 3.1 0.77 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth file://C:\Program%20Files\NeoUDSewer\reports\3253510361.htm 2/4/03 NeoU]DS Results Summary Page 3 of 4 Sewer 1D Slope U stream Downstream jUpstreaml Downstream Comment % (Feet) (Feet) (Feet) (Feet) 4.00 5046.83 5033.62 5.13 -0.77 Sewer Too Shallow Summary of Hydraulic Grade Line Sewer Sewer Surcharged Length Length ID # (Feet) (Feet) Invert Elevation Water Elevation Condition Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream (Feet) �1 330.3 0 5046.83 5033.62 5048.53 5034.60 Jump 12 36 36 5047.19 5046.83 5050.12 5048.53 Pressured 23 16 16 5047.67 5047.19 5052.22 5050.12 Pressured 45 17.27 17.27 5047.67 5047.60 5052.96 5052.91 Pressured 46 48 48 5047.80 5047.61 5053.04 5052.91 Pressured 24 103.17 103.17 5047.60 5047.19 5052.91 5050.12 Pressured Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole Energy SewerL Bend Lateral Energy Sewer Manhole K Lateral KManholeLoss Loss ent (Feet) Coefficient (Feet) ID # (Feet) �I 1 11 1 11 5051.2311 16.6311 0.0511 0.0011 0.0011 0.0011 0 11 5034.6011 12 0 5052.78 1.41 0.05 0.13 0.00 0.00 �1 5051.23 23 0 5053.07 0.25 -6.65F754 0.00 0.00 0 0052,78 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. file:HC:\Program%20Files\NeoUDSewer\reports\3253 510361.htm 2/4/03 NeoUDS Results Summary Vage 4 of 4 A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. file://C:\Program%20Files\NeoUDSewer\reports\3253510361.htm 2/4/03 wwwwwwwwww � O0 "IN MIT OIknOO'+OIOI0000 CI-mI�.I�IMICNIII� � " It L—IoollltI1I%0 aIMINI OM IN OODOIW �OOI�I�ODIN O I�I�INIC3" OI�p �IIM FFFFFFF FFF" W W W W W W W W W W 0000000000 --N M 'q' Vl �o n 00 C1 O F F F F F F F F F F aaaaaaaaa� IIIIIIIIIIII 1 1 1 1 1 1 1 CLIENT: Gillespie Farm Development Company PROJECT: Gillespie Farm MADE BY: KGS DATE: 11 / 18/02 EXTENTS OF RIPRAP PROTECTION: (Per Urban Drainage Criteria) 0953-003 CALCULATIONS FOR: Rlprap SHEET: 1 OF 1 L=(1/2Tan0)(At/Yt-w) (EQ 5-9, USDCM) where: L = Length of Riprap Protection (3D <_L <_10D) At = QN for V=5.5 fps for erosive soil Yt = Tailwater Depth (ft) w = Pipe Diam (ft) 1/2TanB = Expansion factor from Fig 5-9 USDCM 100-yr PIPE DESIGN 100-yr *RIPRAP LINE DIAM FLOW VELOCITY Yt DESIGN CONTROLS L (Eq 5-9) Req. L in (Cfs) (fps) ft YUD Q/Dz-5 1/2TanB ft ft ST-1 21 10 6.8 1.03 0.59 2.47 6.75 0.10 5.25 ST-2 48 59 5.8 3.01 0.75 1.84 6.75 -2.94 12 ST-3 54 90 6.6 4.5 1.00 2.10 6.75 -5.83 13.5 ST-4 78 292.6 6.5 8.8 1.35 2.72 6.75 -3.07 19.5 ST-5 60 93.8 6.6 3.39 0.68 1.68 6.75 0.21 15 ST-6 96 105 3.3 4 0.50 1.16 6.75 -21.78 24 ST-7 36 66.6 12.9 2.05 0.68 4.27 6.75 19.62 9 ST-8 24 10.1 3.6 1.47 0.74 1.79 6.75 -5.07 6 ST-9 30 41.1 9.3 1.66 0.66 4.16 6.5 13.01 7.5 ST-10 24 31.5 11.6 1.61 0.81 5.57 6.75 10.51 6 For any calculated length less than the ** requirements setforth in Fig. 5-7 (UDFCD Manual) use 3*Pipe Dia. Length of Pad is 2*D DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-1 ;6f! P GRAD�no,.) C4ASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap % Smaller Than Intermediate Rock d50* Designation Given Size Dimension By -Weight (Inches) Inches Type VL 70-100 12 50-70 9 35-50 6 6** 2-10 2 Type L 70-100 15 50-70 12 35-50 9 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 .50-70 24 35-50 18 .18 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 9 *d50 = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock' Wire enclosed rock refers to'rocks that are bound together in a wire basket so that they act as a single unit. One of the major advantages of wire enclosed rock is that it provides an alternative in situations where available rock sizes are too small for ordinary riprap: Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be fashioned into almost any shape that can be 11-15-82 Table 8-1• lists several gradations of riprap. The minimum average size designation for loose riprap shall be 12 inches. Smaller sizes of dprap shall be either buried on slopes which can be easily maintained (4to 1 minimum side slopes) or grouted if slopes are steeper. Grouted dprap should meet all the requirements for regular riprap except that the smallest rock fraction (smaller than the 10 per- cent size) should be eliminated from the gradation. A reduction of dprap size by one size designation (from 18 inches to 12 inches or from 24 Inches to 18 inches) is permitted for grouted riprap. Table 8-1 *'Rf �u�Ns • �iPR�a CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP R�} r1A ra a smsler0urift stotreSixe dwt rwerlsbee (inpmvWs) (nd") 70-100 a5 Class 6 tt 50-70 35 35-50 10 6 2-10 <1 70-100 440 Class 12 50.70 275 3s3o as 12 2-10 3 100 1275 Class 18 SD-70 655 3550 275 18 2-10 10 100 3500 Class 24 50.70 1700 3550 655. 24 2-10 . 35 t dso o Mean Parkle Size. At least So percent oohs mass stud beg', Poequal tc ar bMerthan ttda dine wim tt BLffy an 410 1 side sicM a gmut rock C olgm are steeper. Table 8-2 summarizes dprap requirements for a stable channel lining based on the following relationship: VS0.17 W 5.8 (dso) (Ss 1) In which, V = Mean charnel velocity In feet per second S= Longitudinal channel slope In feet perfoot Ss R��mckdinimurnce�)o�odcze in feet graft for which 50 peritofthe riPreP by weight is smaller. The rock sizing requirements in Table 8.2 are based on the rods having a specific gravity of 2.5 or more. Also, the rock size does not need to be increased for steeper channel side slopes; provided the side slopes are no steeper than 2h:1v. Rock.lined side slopes ecommended. steeper than 2h:1v are not r Table 8.2 RIPRAP REQUIREMENTS FOR CHANT. LININGS VS0-17 SevLot RO&Tveei Oto1.4 1.5to4.0 4.1 to 5.8 54 to 7.1 72to82 Class b Riprap Class 12 Riprap Class 18 Riprap Class 24 Riprap t Use S, m 25 unless the source of rock and its demiyes am known at the Erne of design. 1t Table valid only for Froude number of 0.8 or less and side slopes no steeper Bran 2h.1v. MAY19S4 8-18 DESIGN CRITERIA DRAINAGE CRITERIA MANUAL h c 0 RIPRAP �/ Yt/D (N TT�D shy /� �`l®R��te 5iA,VK Use Do instead of D whenever flow is supercritical in the Carrel. **Use Type L for a distance ' of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGES FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL 7 RIPRAP G = Expansion Angle MONSOON@ PA I A WOMAN AA MUMENNEW lil El VA FA PAR SEEN a O .1 .2 z A .5 b J .0 TAILWATER DEPTH/ CONDUIT HEIGHT,. Yt/D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 0 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT MAJOR DRAINAGE n 0 0 --0 E DRAINAGE CRITERIA MANUAL (V. 1) or, r 0 2 .4 .6 .8 1.0 Yt/H Use H-a instead of H whenever culvert has supercritical flow in the barrel.. **Use Type L for a distance of 3H downstream. FIGURE MD-22 Riprap Erosion Protection at Rectangular Conduit Outlet Valid for QI W" 5 8.0 MD-110 06/2001 MAJOR DRAINAGE DRAINAGE CRITERIA MANUAL (V. 1) e = Expansion Angle 0 1 2 .3 .4 b .6 .7 Al to Iu TAILWATER DEPTH/ CONDUIT HEIGHT-Yt/H FIGURE MD-24 Expansion Factor for Rectangular Conduits MD-112 0612001 Urban Drainage and Flood Control District I 1 �l 1 1 1 1 1 1 1 i i 1 1 J 1 Ll 1 APPENDIX E SWALE DESIGN 1 I 1 1 1 1 1 I i 1 i 1 1 1 1 1 1 1 r 0 M Z. 1 TST, INC Consulting Engineers 748 whalers way Bldg D Fort Collins, CO 80525-4812 Phone: (970) 226 0557 ❑— d,� — of fi — iaio nrwa — W 1 A Al Profile of Swale-B culvert and Inlet. HEC-RAS model for down -stream culvert of Swale B HEC-RAS model for up -stream culvert of swale B LO CV Swale Design 7 of 2 No Text 1 1 1 1 1 1 1 _t 1 1 Discharge = 13.25 cfs Bottom Width = 3 ft Side Slope = 50 H:V Longitudinal (channel) slope = .004 V:H Roughness(n) _ .035 Normal Depth - .4696776 ft Critical Depth = .3088866 ft Wetted Perimeter = 49.97471 ft Hydraulic Radius = .2488792 ft Flow Area = 12.43767 ft"2 Average Velocity = 1.065312 ft/sec 2 0 3 TW' 1 1 TST, INC. Consulting Engineers Name of Project: ....Maple Hill ................... Name of sub basin: ...... OF 2 & D19 ....... Type of Calc.: ......... Swale Design ............. 1.01 —I Input Data PROJECT #: ......... 953-003 ... Design Point: ..... 47-1 & 34.. Stations: ............................ ft3 Discharge Qloo = 7.8•— Bottom width B = 0.0•ft Side slope z = 4 zl = 3 sec sec (( Manning n = 0.013• sec Slope S = 0.004 TW = 2-ft nl = 0.035•— l ft`3� ft3 water depth h = 0.1•ft ht = 0.7•ft Area = 0.5•h•(TW) P = 2•[ (0.5•TW)2 + h2] TW 1 = TW + zl •hl + z•hl P = 2.01 ft R = Area Area = 0.1 ft2 P 2 1 Capasity of Crosspand: Qtric = 1.49 R3•S2•Area n 3 Qtric = 0.098 ft sec Areal=0.5•hl•(TW1+TW) P1 =[ �z•hl�2+h12+ lzlh1 +It Areal TW 1 = 69 ft P1 =5.1ft Rl = P1 2 1 - - - Qtot-=-1-49 :R13 •S�_Areal _+-Qtric - - - - - - nl ft3 Qtot = 6.136— sec Designed by: Checked by: Swale DP471.mcd 1 of 1 K:\953\003\Drainage\swale\Swale DP471.mcd 1 /27/03 I 1 1 1 1 1 [1 11 1 1 I 1 1 1 1 7 APPENDIX F EROSION CONTROL L t I I 1 I I 1• [J I O CA q 0 LO Lo 00 00 19 c0 111 co mCnCAmOO000O dd d d lO 10 W) Lo In IO V.O. w w w 00 w w w w w w � 00 Gowddddddw Cn 0) 0 0) 0 m m m 0) O) CD dw O O IO 0 c0 Go w w w w w w w w co w w w w w n ad 00 w o IP In O) O) O) Cl) m 0) O) Cn O) w CA Q) m N w w V'd�ddd'�dddddd�dd�td w w w w w w w w w w w w 00 w w 00 c0 o vInwcococonrnnnInhl�rnnnl�l�wwwcococo coo co C ago coo ago cdo ado ado ado ado ado cdo ado ado cdo ado ado ccoo coo coo ccoo ccoo w N M to to to CO CO (O CO (O CO h h t` r� n � ll n m Cb Co. O W co co co co co w w w w w w w w w 0 w I I w W��� w O N M d� to t0 cc') 4 CO 0 0 c0 f0 f0 w 0 w 0 n n h� ti t` d m r N fh M{ V V 10 m IO m t0 t0 Ln 0 Ul) f0 f0 0 w 0 co I� n M w M w d w d w d w 00 Od0 Od0 Od0 OdD Od0 co co co Od0 co co co Od0 co Go co O w w O r r N N Ch M M CO sf V V d d a d; 0 to N ui (0 CO w co co w m co co co 00 co co co co co 00 00 co 00 00 00 co OD ° w N IO n CC) CAOOrrrNNNNNM MMMMa�d'7� dCL w N w w M w w 0 w M w V 00 040040 040 00 coco 00 cocd0 O00 0000 000 co co O Cn O r cK)r M �10 CO COW r n n 00 c0 CC)OD0000 m O O O O O 0O d NNMMMMMMMMMM w w 00 w w w 00 00 w w c0 w Mcom c0 c0 w co 00 co 00 MM w w ch w MItddd co w w w w V w colnworNMdd 0M000comcow nnnrnw=MOM d rNN wwww0wwwwwwwwwwco00 M M M vi M M cli M M CM MMMM MMMMMM CC) 00cocococo00coco C6 MM w r r M n w O O r N N M M q� v 1* d, M l0 M M c0 w CD npl: M r w N w N w N w N w M w M w M w M w M w M w M w M w M w M w cM w M w M 0 M w M w M w ch w M w M w M w M w M N(000 NN M M M d d dd dd tO 0 CO O CO CO c00 w Cmnnn w �0n0 w �00 w �0p w �w w Nw w Nw w Nw CV w w Nw w Nw w Nw w Nw w Nw CV w w Nw w Nw CV w w Nw w Nrnw w Nw w Now w Now w w NoNw N w wwnrnNMvOcgrnnr�cococornc (rn oNw 0cw Nrr 0 0 rrr rr N N N Nw d c0 O M N M M M M M N co I-- Cn n 0 w 0 w 0 w 0 w 000r w w w w w w w w w w r w r w w w w rr w w w w ww N wrd w n n w 0) C) O OrN N N M M M M (MrVI nn nn nco00co00coc00coco00000000 cococo cccaoconP,�°n°°i�co0co CO M9 P- mqq N MMM d 0 0 c0 c0 w w w c0 n n w w c0 d w n n n n P.- I-- n n w I-- w n w n w n w n w n w n w n w n w I-- w n w I-- w n w n w n w n w n w n w 1- nM w w CAOdt0 n00wnn n co c0 to w vdMMNNCnw'ITr 0)(0 CDCJ n N n N n N n N n N n CV n N n N n N n N n N n N n N n N n N n N n CV n CV rn N n r In r r r r r r O r O r L m y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J 0 r 0 N 0 M 0 d10 0 0 wn 0 0 0 0 aOrN 0 0 0 0 M 0 d10 0 0 0n 0 0 w000CD 0 0 0 0 0 0OmCO 0 0 0 r r r r r r r r r r N N M M d d c0 O LL O C T Z w J W Li W 09 Z U F- U w II I Performance and Effectiveness Calculations PROJECT: Gillespie Farm STANDARD FORM A COMPLETED BY: David Huwa DATE: 11/13/02 Phase 1 SUBBASIN ERODIBILrrY ZONE A,b (ac) Lb (ft) S,b (%) Lb'A,b A,b'Sb PS (%) Undeveloped (Phase 2+3+4+5+6+7) moderate 133.09 1200.00 2.00 159708.00 266.18 C2 moderate 0.94 758 4.37 712.52 4.11 C2-1 moderate 0.95 447 5.17 424.65 4.91 C3 moderate 3.67 6261 3.07 2297.42 11.27 C4 moderate 0.64 328 3.9 209.92 2.50 C5 moderate 2.33 558 3.24 1300.14 7.55 A13 moderate 0.42 259 3.07 108.78 1.29 A14 moderate 0.42 228 3.94 95.76 1.65 A15 moderate 3.34 509 2.56 7700.06 8.55 A16 moderate 3.30 504 2.01 1663.20 6.63 A18 moderate 0.27 203 3.88 54.81 1.05 A19 moderate 0.32 239 3.79 76.48 1.21 Subtotal Phase 1 Developed 16.60 423.55 3.55 520.71 3.06 1 99. 9 1124.67 2.12 l7 PS (after construction)= 0.9549 Phase 2 SUBBAS[N ERODBILITY ZONE A,b (ac) L,b (ft) S,b (%) Lt*A,b A,b'Sb PS (%) Undeveloped (Phase 3+4+5+6+7) moderate 107.69 600.00 2.00 64614.00 215.38 Subtotal Phase 1 Developed moderate 16.60 423.55 3.551 8643.74 50.72 C6 moderate 0.86 340.00 2.521 292.40 2.17 C7 moderate 2.53 586.00 3.231 1492.58 8.17 C8 moderate 3.18 560.00 2.87 1780.80 9.13 C9 moderate 1.70 306.00 1.00 520.20 1.70 C9-1 moderate 1.43 368.00 1.24 526.24 1.77 C9-2 moderate 0.57 471.00 2.50 268.47 1.43 C10 moderate 0.68 623.00 1.21 423.64 0.82 B13 moderate 8.26 730.00 3.26 6029.80 26.93 B14 moderate 4.271 807.001 3.61 3445.891 13.41 B15 moderate 1.92 418.00 1.92 802.56 3.69 ESEubtotale 1+ 2 Developed moderate 42.00 512.05 2.451 576.58 2.90 149.69 1 593 2.25 0.8041 PS (after construction)-- 0.9459 TST, INC. CONSULTING 5/6/2003 ENGINEERS Page Elnfs3on Control Effectiveness_ phase breakdown.xls 1 1 1 1 I I Performance and Effectiveness Calculations Phase 3 SUBBASIN ERODD31LITY ZONE A,b (ac) Lb (ft) S,b (%) Lb•A,b A,b•Sb PS (%) Undeveloped (Phase 4+5+6+7) moderate 83.80 1000.00 2.00 83800.00 167.60 Subtotal Phase 1+2 Developed moderate 42.00 512.05 2.45 24216.32 121.93 El moderate 2.69 977.00 0.64 2628.13 1.72 E2 moderate 3.96 884.00 0.91 3500.64 - 3.60 E3 moderate 2.00 404.00 0.75 808.00 1.50 E4 moderate 2.36 594.00 0.70 1401.84 1.65 OF2 moderate 2.60 617.00 1.28 1604.20 3.33 B9 moderate 2.21 329.00 1.51 727.09 3.34 B 12 moderate 1.35 809.00 3.31 1092.15 4.47 D11 moderate 0.98 414.00 1.28 405.72 1.25 D15 moderate 0.84 348.00 1.46 292.32 1.23 D16 moderate 1.43 376.00 0.92 537.68 1.32 D19 moderate 0.89 321.00 1.16 285.69 1.03 C11 moderate 2.58 317.00 1.28 817.86 3.30 Subtotal Phase 1, 2 + 3 Developed moderate 65.89 530.93 1.36 581.54 2.27 149.69 1 816 2.12 0.8101 PS (after construction)= 0.9530 Phase 4 SUBBASIN ERODIBILITY ZONE A,b (ac) Lb (t't) S,b M Lb"A,b A,b•Sb PS (%) Undeveloped (Phase 5+6+7) moderate 46.30 600.00 2.00 27780.00 92.60 Subtotal Phase 1+2+3 Developed moderate 65.89 530.93 1.36 38317.64 149.68 OF1-3 moderate 0.33 348 0.58 114.84 0.19 OF14 moderate 0.96 295 0.5 283.20 0.48 DI moderate 0.85 200.00 1.53 170.00 1.30 D2 moderate 2.39 621.00 1.36 1484.19 3.25 D3 moderate 1.95 872.00 0.97 1700.40 1.89 D4 moderate 0.71 357.00 1.29 253.47 0.92 D5 moderate 2.55 587.00 0.89 1496.85 2.27 D6 moderate 2.15 377.00 0.43 810.55 0.92 D7 moderate 1.52 636.00 0.86 966.72 1.31 D8 moderate 2.91 608.00 0.81 1769.28 2.36 D9 moderate 2.69 609.00 0.93 1638.21 2.50 DIO moderate 2.21 767.00 1.05 1695.07 2.32 D12 moderate 3.65 658.00 1.70 2401.70 6.21 D13 moderate 0.68 380.00 1.29 258.40 0.88 D14 moderate 2.64 591.00 1.14 1560.24 3.01 D17 moderate 1.87 655.00 1.76 1224.85 3.29 D18 moderate 1.33 631.00 0.77 839.23 1.02 Al moderate 1.60 721.00 1.70 1153.60 2.72 A2 moderate 0.81 350.00 0.85 283.50 0.69 A9 moderate 0.64 270.00 1.10 172.80 0.70 A10 moderate 1.04 429.00 0.91 446.16 0.95 A17 moderate 0.79 200.00 1.48 158.00 1.17 Cl moderate 1.23 38.00 1.08 784.74 1.33 Subtotal Phase I, 2 + 3 + 4 Developed moderate 103.39]!513.79 1.10 580.17 1.85 149.69 586 1.90 0.8036 PS (after constructions 0.9132 TST, INC. CONSULTING 5/6/2003 ENGINEERS Page Egdsion Control Effectiveness_ phase breakdown.xls Performance and Effectiveness Calculations Phase 5 SUBBASIN ERODIBILMY ZONE A,b (ac) Lib (ft) Ssb (%) Lb•Asb Alb"Sb PS (%) Undeveloped (Phase 6+7) moderate 38.11 1000.00 2.00 38110.00 76.22 Subtotal Phase1+2+3+4 Developed moderate 103.39 513.79 1.10 59983.64 191.35 OF1-1 moderate 0.29 520 0.47 150.80 0.14 OFI-2 moderate 0.93 4501 0.67 418.50 0.62 B3 moderate 1.06 348.00 1.43 368.88 1.52 B5 moderate 1.47 598.00 1.41 879.06 2.07 B6 moderate 0.62 340.00 1.99 210.80 1.23 B7 moderate 1.26 531.00 0.94 669.06 1.18 B8 moderate 1.22 581.00 0.66 708.82 0.81 B10 moderate 1.34 392.00 1.02 525.28 1.37 Subtotal Phase l+ 2+3+4+5 Developed moderate 111.58 474.87 1.08 572.821 1.80 149.69 6821 1.851 0.7906 PS (after constructions 0.9302 Phase 6 SUBBASIN ERODIBILITY ZONE Asb (ac) Lsb (ft) Ssb M) Lb'A,b A,b•Sb PS (%) Undeveloped (Phase 7) moderate 18.54 750.00 2.00 572.82 37.08 Subtotal Phase 1+2+3+4+5 Developed moderate 111.58 474.87 1.08 52985.49 120.10 BI moderate 0.76 793.00 3.90 602.68 2.96 B2 moderate 4.22 839.00 3.84 3540.58 16.20 A4 moderate 0.50 475.00 3.79 237.50 1.90 OF3 moderate 0.75 184.00 10.00 138.00 7.50 AS moderate 3.50 819.00 1.14 2866.50 3.99 A6 moderate 2.20 466.00 1.98 1025.20 4.36 A7 moderate 0.31 261.00 3.45 80.91 1.07 A8 moderate 0.64 270.00 1.10 172.80 0.70 A3 moderate 0.28 197.00 3.52 55.16 0.99 All moderate 3.12 454.00 2.20 1416.48 6.86 Al2 moderate 3.29 446.00 2.44 1467.34 8.03 Subtotal Phase l+ 2+3+4+5 Developed moderate 131.15 516.26 3.49 492.48 1.33 149.69 1 435 1.41 0.7761 PS (after construction)= 0.9131 Phase 7 SUBBASIN ERODIBILITY ZONE Asb (ac) 1,b (ft) Ssb (%) Lb'Asb Asb*Sb PS (%) Subtotal Phase 1+2+3+4+5+6 Developed moderate 131.15 516.26 3.49 64588.63 174.66 B4 moderate 8.48 958.00 3.62 8123.84 30.70 Bll moderate 10.25 1003.00 2.63 10280.75 26.96 Subtotal Phase 1+ 2+3+4+5+6Developed moderate 149.88 825.75 3.25 553.73 1.55 53 PS (after construction)= 0.9296 TST, INC. CONSULTING 51612003 ENGINEERS Page Mads3on Control Effectiveness_ phase breakdown.xis I Effectiveness Calculations i 11 I r, I I, I I I I I� PROJECT: Gillespie Farm STANDARD FORM B COMPLETED BY: DH DATE: 11/13/02 Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 0.06 reseed C2 0.94 0.00 sod grass 0.88 pavement Structural Methods: 0.5 silt fence Phase 1 95.49% 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.50 1 no structure EFF= 99.34% 0.93 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 0.81 reseed C2.1 0.95 0.00 sod grass 0.14 pavement Structural Methods: 0.8 straw bale 1 no structure C-FACTOR= 0.05 1 no structure P-FACTOR= 0.80 1 no structure EFF= 95.79% 0.91 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 2.86 reseed C3 3.67 0.00 sod grass 0.81 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.05 1 no structure P-FACTOR= 1.00 1 no structure EFF= 95.10% 3.49 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 0.31 reseed C4 0.64 0.00 sod grass 0.331 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.03 1 no structure P-FACTOR= 1.00 1 no structure EFF= 96.59% 0.62 = EFF•A,b 1 no structure Soil Treatment Methods: 0 bare soil 1.48 reseed C5 2.33 0.00 sod grass 0.85 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 1.00 1 no structure EFF= 95.82% 2.23 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 0.14 reseed A13 0.42 0.00 sod grass 0.281 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.03 1 no structure P-FACTOR= 1.00 1 no structure EFF= 97.35% 0.41 = EFF'A,b 1 n0 structure Soil Treatment Methods: 0 bare soil 0.14 reseed A14 0.42 0.00 sod grass 0.281 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.03 1 no structure P-FACTOR= 1.00 1 no structure EFF= 97.35% 0.4 = EFF'A,b 1 no structure TST, INC. CONSULTING 5/6/2003 ENGINEERS Page 1 of 19 Erosion Control Effectiveness_ phase breakdown.xls I 11 I I I Effectiveness Calculations PROJECT: Gillespie Farm STANDARD FORM B COMPLETED BY: DH DATE: 11113/02 Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil - 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 2.60 reseed A15 3.34 0.00 sod grass 0.745 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.05 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.09% 3.2 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 2.12 reseed A16 3.30 0.00 sod grass 1.18 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.63% 3.2 = EFF'A, 1 no structure Soil Treatment Methods: 0 bare soil 0.12 reseed A18 0.27 0.00 sod grass 0.151 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.03 1 no structure P-FACTOR= 1.00 1 no structure EFF= 96.80% 0.3 = EFF°A,b 1 no structure Soil Treatment Methods: 0 bare soil 0.14 reseed A19 0.32 0.00 sod grass 0.179 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.03 1 no structure P-FACTOR= 0.80 1 no structure EFF= 97.44% 0.3 = EFF'A,b 1 no structure Soil Treatment Methods: 0.00 bare soil 133.09 reseed Undeveloped 133.09 0.00 sod grass 0 pavement Structural Methods: 0.5 silt fence 0.5 sediment trap C-FACTOR= 0.06 1 no structure P-FACTOR= 0.25 1 no structure EFF= 98.50% 131.1 = EFF'Alb 1 no structure Area = 149.69 Sum (A,ti EFF,b) ° 146.76 EFF = 98.0% Performance = r 95.50/6Design Works ' TST, INC. CONSULTING 5/6/2003 ENGINEERS Page 2 of 19 Erosion Control Effectiveness_ phase breakdown.xis 1 1 1 I 1 I I I I H I PROJECT: Gillespie Farm STANDARD FORM B COMPLETED 1 DH DATE: 11/13/02 Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 0.58 reseed C6 0.86 0.00 sod grass 0.28 pavement Structural Methods: 0.8 gravel filter Phase 2 94.59% 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.50% 0.83 = EFF'Asb 1 no structure Soil Treatment Methods: 0 bare soil 1.67 reseed C7 2.53 0.00 sod grass 0.86 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 1.00 1 no structure EFF= 95.70% 2.42 = EFF'Asb 1 no structure Soil Treatment Methods: 0 bare soil 2.32 reseed C8 3.18 0.00 sod grass 0.86 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.05 1 no structure P-FACTOR= 1.00 1 no structure EFF= 95.35% 3.03 = EFF'Asb 1 no structure Soil Treatment Methods: 0 bare soil 0.92 reseed C9 1.70 0.00 sod grass 0.78 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 97.04% 1.65 = EFF'Asb 1 no structure Soil Treatment Methods: 0 bare soil 0.90 reseed C9-1 1.43 0.00 sod grass 0.53 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.68% 1.38 = EFF'Asb 1 no structure Soil Treatment Methods: 0 bare soil 0.57 reseed C9-2 0.57 0.00 sod grass 0 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.06 1 no structure P-FACTOR= 0.80 1 no structure EFF= 95.20% 0.54 = EFF'Asb 1 no structure Soil Treatment Methods: 0 bare sail 0.03 reseed C10 0.68 0.00 sod grass 0.65 pavement Structural Methods: 0.8 gravel filter 0.5 silt fence C-FACTOR= 0.01 1 no structure P-FACTOR= 0.40 1 no structure EFF= 99.51% 0.7 = EFF`Asb 1 no structure I I I I I 1 I 11 I PROJECT: Gillespie Farm STANDARD FORM B COMPLETED 1 DH DATE: 11/13/02 Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 7.72 reseed B13 8.26 0.00 sod grass 0.54 pavement Structural Methods: 0.8 gravel filter 0.5 sediment tra C-FACTOR= 0.06 1 no structure P-FACTOR= 0.40 1 no structure EFF= 97.73% 8.1 = EFF'Asb 1 no structure Soil Treatment Methods: 0 bare soil 2.66 reseed B14 4.27 0.00 sod grass 1.61 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.71% 4.1 = EFF'Asb 1 no structure Soil Treatment Methods: 0 bare soil 1.14 reseed B15 1.92 0.00 sod grass 0.78 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.83% 1.9 = EFF`Asb 1 no structure Soil Treatment Methods: 0 bare soil 107.69 reseed Undeveloped 107.69 0.00 sod grass 0 pavement Structural Methods: 0.5 silt fence 0.5 sediment trap C-FACTOR= 0.06 1 no structure P-FACTOR= 0.25 1 no structure EFF= 98.50% 106.1 = EFF'Asb 1 no structure Area = 133.09 Sum (Asb'EFFsb 130.67 EFF = 98.2% Performance = 94.6% Design Works PROJECT: Gillespie Farm STANDARD FORM B COMPLETEE DH DATE: 11 /13/02 rosion Contrc C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 1.37 reseed E1 2.69 0.00 sod grass 1.32 pavement Structural Methods: 0.8 gravel filter Phase 3 95.30% 0.5 silt fence C-FACTOR= 0.04 1 no structure P-FACTOR= 0.40 1 no structure EFF= 98.58% 2.65 = EFF'A°b 1 no structure Soil Treatment Methods: 0 bare soil 2.66 reseed E2 3.96 0.00 sod grass 1.30 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 1.00 1 no structure EFF= 95.64% 3.79 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 1.46 reseed E3 2.00 0.00 sod grass 0.54 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.05 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.28% 1.93 = EFF'A°b 1 no structure Soil Treatment Methods: 0 bare soil 1.32 reseed E4 2.36 0.00 sod grass 1.04 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.96% 2.29 = EFF•A,b 1 no structure OJECT: Gillespie Farm IMPLETEC DH >ion Contrc C-Factor P-Factor Method Value Value If Treatment Methods ,e soil 1.00 1.00 eed 0.06 1.00 i grass 0.01 1.00 cement 0.01 1.00 •uctural Treatment Methods structure 1.00 1.00 rvel filter 1.00 0.80 aw bale 1.00 0.80 fence 1.00 0.50 iiment trap 1.00 0.50 OF2 B9 2.60 2.21 B12 1 1.35 D11 1 0.98 D15 1 0.84 STANDARD FORM B DATE: 11 /13/02 Comment Treatment Methods: 0 bare soil 2.38 reseed 0.00 sod grass 0.22 pavement ictural Methods: 0.8 straw bale 0.5 silt fence ACTOR= 0.06 1 no structure ACTOR= 0.40 1 no structure EFF= 97.77% 2.54 = EFF'A,b 1 no structure Treatment Methods: 0 bare soil 1.35 reseed 0.00 sod grass 0.86 pavement ictural Methods: 0.8 gravel filter 1 no structure ACTOR= 0.04 1 no structure ACTOR= 0.80 1 no structure EFF= 96.76% 2.14 = EFF'AIb 1 no structure I Treatment Methods: 0 bare soil 0.41 reseed 0.00 sod grass 0.94 pavement ictural Methods: 1 no structure 1 no structure ACTOR= 0.03 1 no structure ACTOR= 1.00 1 no structure EFF= 97.48% 1.3 = EFF'A,b 1 no structure I Treatment Methods: 0 bare soil 0.54 reseed 0.00 sod grass 0.44 pavement ictural Methods: 0.8 gravel filter 1 no structure ACTOR= 0.04 1 no structure ACTOR= 0.80 1 no structure EFF= 97.00% 1.0 = EFF*Nb 1 no structure I Treatment Methods: 0 bare soil 0.47 reseed 0.00 sod grass 0.37 pavement ictural Methods: 0.8 gravel filter 1 no structure ACTOR= 0.04 1 no structure ACTOR= 0.80 1 no structure EFF= 96.96% 0.8 = EFF*Nb 1 no structure I 7 1 t PROJECT: Gillespie Farm STANDARD FORM B COMPLETH DH DATE: 11/13/02 rosion Contrc C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Soil Treatment Methods: 0 bare soil 0.84 reseed D16 1.43 0.00 sod grass 0.59 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.85% 1.4 = EFF•A°b 1 no structure Soil Treatment Methods: 0 bare soil 0.78 reseed D19 0.89 0.00 sod grass 0.11 pavement Structural Methods: 0.5 silt fence 1 no structure C-FACTOR= 0.05 1 no structure P-FACTOR= 0.50 1 no structure EFF= 97.31% 0.9 = EFF'A°b 1 no structure Soil Treatment Methods: 0 bare soil 1.66 reseed C11 2.58 0.00 sod grass 0.92 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.63% 2.5 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 83.80 reseed Undeveloped 83.80 0.00 sod grass 0 pavement Structural Methods: 0.5 silt fence 0.5 sediment trap C-FACTOR= 0.06 1 no structure P-FACTOR= 0.25 1 no structure EFF= 98.50% 82.5 = EFF'A°b 1 no structure Area = 107.69 Sum (Abb'EFf 105.70 EFF = 98.2% Pen`ormance = 95.3% Design Works PROJECT: Gillespie Farm :OMPLETEC DH msion Contrc C-Factor P-Factor Method Value Value foil Treatment Methods )are soil 1.00 1.00 weed 0.06 1.00 ;ad grass 0.01 1.00 )avement 0.01 1.00 Structural Treatment Methods io structure 1.00 1.00 Iravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basing PS (%) 1 Sub -Basin 1 Area Phase 4 1 91.32% OFt-3 1 0.33 OF1-4 1 0.96 D1 1 0.85 D2 1 2.39 D3 1 1.95 STANDARD FORM B DATE: 11/13/02 Comment Calculations Treatment Methods: 0 bare soil 0.00 sod grass 0.33 pavement ctural Methods: 1CTOR= 0.01 kCTOR= 1.00 EFF= 99.00% 0.33 = EFF'A,h Treatment Methods: 0 bare soil 0.00 sod grass 0.03 pavement ctural Methods: kCTOR= 0.06 kCTOR= 0.80 EFF= 95.33% 0.92 = EFF`A,t Treatment Methods: 0 bare soil 0.00 sod grass 0.36 pavement ctural Methods: ACTOR= 0.04 kCTOR= 1.00 EFF= 96.12% 0.82 = EFF'A,i Treatment Methods: 0 bare soil 0.00 sod grass 0.46 pavement ictural Methods: ACTOR= 0.05 ACTOR= 0.80 EFF= 95.97% 2.29 = EFF•A,i Treatment Methods: 0 bare soil 0.00 sod grass 0.72 pavement ictural Methods: ACTOR= 0.04 ACTOR= 1.00 EFF= 95.85% 1.87 = EFF'A„ 0.00 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 0.93 reseed 0.8 straw bale 1 no structure 1 no structure 1 no structure 1 no structure 0.49 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 1.93 reseed 0.8 gravel filter 1 no structure 1 no structure 1 no structure 1 no structure 1.23 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure PROJECT: Gillespie Farm STANDARD FORM B COMPLETE[ DH DATE: 11/13/02 rosion Contrc C-Factor P-Factor ' Method Value Value Comment Soil Treatment Methods are soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods ' no structure 1.00 1.00 ravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Sol] Treatment Methods: 0 bare soil 0.44 reseed ' D4 0.71 0.00 sod grass 0.27 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 1.00 1 no structure EFF= 95.90% 0.68 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 1.39 reseed D5 2.55 0.00 sod grass 1.16 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.04 1 no structure ' P-FACTOR= 1.00 1 no structure EFF= 96.27% 2.46 = EFF'A,b 1 no structure 06 2.15 Soil Treatment Methods: 0 bare soil 1.38 reseed 0.00 sod grass 0.77 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.04 1 no structure ' P-FACTOR= 1.00 1 no structure EFF= 95.79% 2.06 = EFF'A,b 1 no structure ' 07 1.52 oil Treatment Methods: 0 bare soil 0 reseed 0.00 sod grass 0.89 pavement Structural Methods: 0.8 gravel filter 1 no structure ' C-FACTOR= 0.01 1 no structure P-FACTOR= 0.80 1 no structure EFF= 99.53% 1.5 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 2.04 reseed ' D8 2.91 0.00 sod grass 0.87 pavement Structural Methods: 1 no structure ___`_ 1_no_structure_ _- C-FACTOR= 0.05 1 no structure P-FACTOR= 1.00 1 no structure EFF= 95.49% 2.8 = EFF'A,b 1 no structure .OJECT: Gillespie Farm IMPLETEC DH ;ion Contrc C-Factor P-Factor Method Value Value II Treatment Methods ,e soil 1.00 1.00 seed 0.06 1.00 1 grass 0.01 1.00 Dement 0.01 1.00 •uctural Treatment Methods structure 1.00 1.00 rvel filter 1.00 0.80 aw bale 1.00 0.80 fence 1.00 0.50 iiment trap 1.00 0.50 09 D10 2.69 2.21 D12 1 3.65 D13 1 0.68 D14 1 2.64 Comment Treatment Methods: 0.00 sod grass ctural Methods: ACTOR= 0.04 ACTOR= 1.00 EFF= 95.62% Treatment Methods: 0.00 sod grass ctural Methods: kCTOR= 0.04 ACTOR= 1.00 EFF= 96.06% Treatment 0.00 sod grass ctural Methods: 1CTOR= 0.04 ACTOR= 1.00 EFF= 95.68% Treatment 0.00 sod grass ctural Methods: \CTOR= 0.04 tCTOR= 1.00 EFF= 95.91% Treatment 0.00 sod grass ctural Methods: \CTOR= 0.04 \CTOR= 0.80 EFF= 96.76% STANDARD FORM B DATE: 11/13/02 0 bare soil 0.87 pavement 2.6 = EFF'A, 0 bare soil 0.91 pavement 2.1 = EFF'A, 0 bare soil 1.23 pavement 3.5 = EFF'As, 0.26 pavement 0.7 = EFF'Asy 0 bare soil 1.03 pavement 2.6 = 1.82 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 1.30 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 2.42 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 0.42 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 1.61 reseed 0.8 gravel filter 1-no-structure 1 no structure 1 no structure 1 no structure OJECT: Gillespie Farm IMPLETEC DH ,ion Contrc C-Factor P-Factor Method Value Value it Treatment Methods *e soil 1.00 1.00 eed 0.06 1.00 i grass 0.01 1.00 cement 0.01 1.00 uctural Treatment Methods structure 1.00 1.00 rvel filter 1.00 0.80 aw bale 1.00 0.80 fence 1.00 0.50 D17 1.87 D18 1 1.33 Al 1 1.60 A2 1 0.81 A9 1 0.64 STANDARD FORM B Comment Treatment Methods: 0 bare soil 1.59 reseed 0.00 sod grass 0.281 pavement ctural Methods: 1 no structure 1 no structure kCTOR= 0.05 1 no structure kCTOR= 1.00 1 no structure EFF= 94.75% 1.8 = EFF'Ab 1 no structure Treatment Methods: 0 bare soil 1.13 reseed 0.00 sod grass 0.2 pavement ctural Methods: 0.8 gravel filter 0.5 silt fence kCTOR= 0.05 1 no structure kCTOR= 0.40 1 no structure EFF= 97.90% 1.3 = EFF'Ab 1 no structure Treatment Methods: 0 bare soil 0.70 reseed 0.00 sod grass 0.9 pavement ctural Methods: 0.8 gravel filter 1 no structure kCTOR= 0.03 1 no structure kCTOR= 0.80 1 no structure EFF= 97.45% 1.6 = EFF'A b 1 no structure Treatment Methods: 0 bare soil 0.44 reseed 0.00 sod grass 0.37 pavement ictural Methods: 1 no structure 1 no structure 4CTOR= 0.04 1 no structure kCTOR= 1.00 1 no structure EFF= 96.28% 0.8 = EFF'Ab 1 no structure Treatment Methods: 0 bare soil 0.26 reseed 0.00 sod grass 0.377 pavement ictural Methods: 0.8 gravel filter ---.-----.----------------1-nostructure 4CTOR= 0.03 1 no structure 4CTOR= 0.80 1 no structure EFF= 97.56% 0.6 = EFF`A,y 1 no structure 11 11 PROJECT: Gillespie Farm STANDARD FORM 8 COMPLETES DH DATE: 11/13/02 rosion Contrc C-Factor P-Factor Method Value Value Comment Sol] Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 ravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Soil Treatment Methods: 0 bare soil 0.50 reseed A10 1.04 0.00 sod grass 0.536 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.03 1 no structure P-FACTOR= 1.00 1 no structure EFF= 96.58% 1.0 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 0.52 reseed A17 0.79 0.00 sod grass 0.268 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.56% 0.8 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 0.32 reseed C1 1.23 0.00 sod grass 0.91 pavement Structural Methods: 0.8 gravel filter 0.5 silt fence C-FACTOR= 0.02 1 no structure P-FACTOR= 0.40 1 no structure EFF= 99.08% 1.2 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 46.30 reseed Undeveloped 46.30 0.00 sod grass 0 pavement Structural Methods: 0.5 sediment trap 0.5 silt fence C-FACTOR= 0.06 1 no structure P-FACTOR= 0.25 1 no structure EFF= 98.50% 45.6 = EFF'A,b 1 no structure Area = 83_80 Sum (A,b'EFF 80.10 EFF = 95.6b/a -------------------------------Performance= ---91.3%-Design W orks- I OJECT: Gillespie Farm IMPLETEC DH ;ion Contrc C-Factor P-Factor Method Value Value it Treatment Methods ,e soil 1.00 1.00 seed 0.06 1.00 i grass 0.01 1.00 Bement 0.01 1.00 •uctural Treatment Methods structure 1.00 1.00 Ivel filter 1.00 0.80 aw bale 1.00 0.80 fence 1.00 0.50 iiment trap 1.00 0.50 ajor Basinj PS (%) I Sub -Basin Phase 5 1 93.02% Area OF1-1 1 0.29 OF1-2 1 0.93 B3 1 1.06 B5 1 1.47 B6 I 0.62 STANDARD FORM B DATE: 11/13/02 Comment Calculations Treatment Methods: 0 bare soil 0.00 reseed 0.00 sod grass 0.29 pavement ctural Methods: 1 no structure 1 no structure kCTOR= 0.01 1 no structure ACTOR= 1.00 1 no structure EFF= 99.00% 0.29 = EFF'A,b 1 no structure Treatment Methods: 0 bare soil 0.90 reseed 0.00 sod grass 0.03 pavement ctural Methods: 1 no structure 1 no structure kCTOR= 0.06 1 no structure kCTOR= 1.00 1 no structure EFF= 94.16% 0.88 = EFF'Asb 1 no structure Treatment Methods: 0 bare soil 0.55 reseed 0.00 sod grass 0.51 pavement ctural Methods: 1 no structure 1 no structure kCTOR= 0.04 1 no structure kCTOR= 1.00 1 no structure EFF= 96.41% 1.02 = EFF*Nb 1 no structure Treatment Methods: 0 bare soil 0.90 reseed 0.00 sod grass 0.57 pavement ctural Methods: 1 no structure 1 no structure kCTOR= 0.04 1 no structure kCTOR= 1.00 1 no structure EFF= 95.94% 1.41 = EFF'A,b 1 no structure Treatment Methods:. _ .. .. .0.bare soil ... _ _ .. _ .0.37.reseed 0.00 sod grass 0.25 pavement (ctural Methods: 1 no structure 1 no structure ACTOR= 0.04 1 no structure 4CTOR= 1.00 1 no structure EFF= 96.02% 0.60 = EFF*kh 1 no structure B7 B8 B10 1.26 1.22 1.34 RVIS Area = 46_30 Treatment Methods: 0 bare soil 0.79 reseed 0.00 sod grass 0.47 pavement ctural Methods: 1 no structure 1 no structure ACTOR= 0.04 1 no structure ACTOR= 1.00 1 no structure EFF= 95.87% 1.21 = EFF'A,b 1 no structure Treatment Methods: 0 bare soil 0.77 reseed 0.00 sod grass 0.45 pavement ctural Methods: 1 no structure 1 no structure ACTOR= 0.04 1 no structure kCTOR= 1.00 1 no structure EFF= 95.84% 1.17 = EFF'A,b 1 no structure Treatment Methods: 0 bare soil 0.77 reseed 0.00 sod grass 0.57 pavement ctural Methods: 0.8 gravel filter 1 no structure kCTOR= 0.04 1 no structure ACTOR= 0.80 1 no structure EFF= 96.90% 1.30 = EFF'A,b 1 no structure Treatment Methods: 0 bare soil 38.11 reseed 0.00 sod grass 0 pavement ctural Methods: 0.5 silt fence 0.5 sediment trap kCTOR= 0.06 1 no structure kCTOR= 0.25 1 no structure EFF= 98.50% - 37.54 = EFF'A,b 1 no structure Sum (A,e'EFF 45.40 EFF= 98.1% Performance = 93.0% Desian Works PROJECT: Gillespie Farm :OMPLETED DH rosion Contrc C-Factor P-Factor Method Value Value Soil Treatment Methods )are soil 1.00 1.00 'eseed 0.06 1.00 sod grass 0.01 1.00 )avement 0.01 1.00 Structural Treatment Methods io structure 1.00 1.00 ]ravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basing PS (%) 1 Sub -Basin 1 Area Phase 6 1 91.31% B1 1 0.76 B2 1 4.22 A4 1 0.50 OF3 1 0.75 A5 1 0.45 STANDARD FORM B DATE: 11/13/02 Comment Calculations Treatment Methods: 0 bare soil 0.00 sod grass 0.55 pavement ctural Methods: 1CTOR= 0.02 kCTOR= 1.00 EFF= 97.62% 0.74 = EFF'Asb Treatment Methods: 0 bare soil 0.00 sod grass 1.15 pavement ctural Methods: kCTOR= 0.05 kCTOR= 1.00 EFF= 95.36% 4.02 = EFF'Aab Treatment Methods: 0 bare soil 0.00 sod grass 0.33 pavement ctural Methods: kCTOR= 0.03 kCTOR= 1.00 EFF= 97.31% 0.49 = EFF'Agb Treatment Methods: 0 bare soil 0.00 sod grass 0.37 pavement ctural Methods: 4CTOR= 0.04 kCTOR= 1.00 EFF= 96.43% 0.72 = EFF'A,b Treatment Methods: 0 bare soil 0.00 sod grass 0.17 pavement ictural Methods: 4CTOR= 0.04 4CTOR= 1.00 EFF= 95.90% 0.43 = EFF'A.,, 0.21 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 3.07 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 0.17 reseed 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 0.39 reseed� 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 0.28reseed � 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure Soil Treatment Methods: 0 bare soil 2.58 reseed A6 3.50 0.00 sod grass 0.917 pavement IC Structural Methods: 1 no structure 1 no structure -FACTOR= 0.05 1 no structure P-FACTOR= 1.00 1 no structure EFF= 95.31% 3.34 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 1.35 reseed A7 2.20 0.00 sod grass 0.851 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.75% 2.13 = EFF'A°b 1 no structure Soil Treatment Methods: 0 bare soil 0.13 reseed A8 0.31 0.00 sod grass 0.179 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.03 1 no structure P-FACTOR= 1.00 1 no structure EFF= 96.89% 0.30 = EFF•A°b 1 no structure Soil Treatment Methods: 0 bare soil 0 reseed A3 0.28 0.00 sod grass 0.15 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 1.00 1 no structure EFF= 99.46% 0.3 = EFF'A°b 1 no structure Soil Treatment Methods: 0 bare soil 1.93 reseed All 3.12 0.00 sod grass 1.19 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.04 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.73% 3.0 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 2.54 reseed Al2 3.29 0.00 sod grass 0.747 pavement Structural Methods: 0.8 gravel filter 1 no structure C-FACTOR= 0.05 1 no structure P-FACTOR= 0.80 1 no structure EFF= 96.11% 3.2 = EFF'A°b 1 no structure Soil Treatment Methods: 0 bare soil 18.54 reseed Undeveloped 18.54 0.00 sod grass 0 pavement Structural Methods: 0.5 silt fence 0.5 sediment trap -FACTOR= ' 0.06 0.8 straw bale P-FACTOR= 0.20 1 no structure EFF= 98.80% 18.3 = EFF'A,b 1 no structure Area = 37_92 Sum (A,b'EFF 36_95 EFF = 97.4% Performance = 91.3% Design Works PROJECT: Gillespie Farm STANDARD FORM B COMPLETEC DH DATE: 11 /13/02 rosion Contrc C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 8.15 reseed B4 8.48 0.00 sod grass 0.33 pavement Structural Methods: 1 no structure Phase 7 92.96% 1 no structure C-FACTOR= 0.06 1 no structure P-FACTOR= 1.00 1 no structure EFF= 94.19% 7.99 = EFF'A,e 1 no structure Soil Treatment Methods: 0 bare soil 9.99 reseed B11 10.25 0.00 sod grass 0.26 pavement Structural Methods: 0.8 gravel filter 0.8 straw bale C-FACTOR= 0.06 0.5 sediment trap P-FACTOR= 0.32 1 no structure EFF= 98.12% 10.06 = EFF'A,p 1 no structure Area = 18_73 Sum (A,ti EFF 18.05 EFF =1 96.3% Performance = 1 93.0%1 Design Works W u A y o o0 o 0 0 0 c c a b o o b N o0 O O N N M - 69 64 6% GIs 0 E-� M O O M p� o 0 � o Ln v, o 0 0 y O N O O O O U M "� tov 000 000 zy � 61�1 6-S o ti w C.-kn N W) 7 in R7 a V Y V V a o a o tn e°, >w3� O u^. a N y w c��8n LI w a u CI y L z N V a 0 a i 1 \ \1 - - / \ I _ I It Ir .4444 �o v 1 v=r ♦ P a I! I r! d I t 01, /] I� v- It %A It / 1 ' y FLOW GKaIIVI µC . , m9W t JG�Y qN SICEW/LI( It N $XMM $EWER E1J%34N GELINUTOR � R © OE4GX PI ggP05E0 TOP 4945,0 FIXISNFO FLWR FUDVATIGX Bt901 zoo G a90 eoo Fry f-Y(p' f"I City of Ft. Collins, Colorado UTILITY PLAN APPROVAL APPROVED: City E"DIIeer Data CHECKED BY: Weter k WaKeweter Utility Dole CHECKED BY: Stormwater Utility Date CHECKED BY: Puka k Recreetloa Data CHECKED BY: WatRe Dn9iveer Date CHECKED BY: NaI Reriumes Date J J 2 W J a Q 0� FW K=5 FW swvv z Q J a W 0 Q z Q 0 z U) Q m J Q z O Er - Q 9S %ij 1 OF 1 1 =-=- oo _o 0 ,(a I 106 4.70 13 V C O O a \o q Z O O ° / O g \ �e 215 fl0°O 95 1 0 0 0 \ 1J.95 13 008 /) O O =�6L O roq Sri 0 O 0 0 '. 3o 0 0f o O o Ca 0 ° (Q 108 o8_ 0 �( 11.00 14 O so I o �A> 9 le T to to 9 -`vt rz I ;s rz € ° 102 +v 216 4B.77 49 Oc •' ,a 101 26,34 53 III a r, Ill I 201If o sr at 11 �s I 317, IUI a °JI a hyl 101111011i III® t A — , r = :4 j - r- _ . Gr a to or 11 sr- j L e g F go Ar. - .a..r... - .--..... .. 20 - POND 100YR 1 51 IETENDON ETENTION VOLUME = 4504 Ac—lt F 00551 PILL WAY FILE✓A DON = 530 )I .: Emm FLOW DIRECTION �_ I' CONI P4N PROPOSED a {� STORM SEWER 3' METAL $IpEWPL% CULVERT EXISTING STORM SEWER � BASIN DELINEATOR - PROPOSED CONTOUR DESIGN MINT EXISTING CONTOUR ® COArAc CE ELEMENT PROPOSED TOF 4945 0 I'MrSH D FLOOR _ ELEVA_ BASIN C City of Ft. Collins, Colorado UTILITY PLAN APPROVAL APPROVED: City Engineer Dale CHECKED BY: Meter k Wastewater Utility Dale CHECKED BY: Smrmwater Utility Dote CHECKED BY: Parke k Recreation Date CHECKED BY: Traffic Engineer Dale CHECKED BY: Natural Resources Date W FIT D 1 b 1 OF 1 COUNTY ROAD 52 v„ p �_ I A 106 �IvI I fir' i �Il l / i / (At �, r _r 4.70 13 V01 - P cc 4 70 I 211 'we IF / �✓/y1r{�' I i/,�tiv kill >v<��'/ v ��Vv' /A I I I -I 1 'V I � � �� 01y.9513 D41 a1 \a III IIIII ;'/IIII/l \II ,1\\ 11 111 O 0\ v OI�Q' III j I I _ I I ( �vA �\ / 1 i i Ot7 ` a o I D / k 11 1 I / / / I / vv _ v v 1 1 b 108 A 11 1 I 1� VAAVA 11.00 Is -0. IIY/jj11 tll 1 / / I y V lI zl 1 IIII III A IV II , II � l I I I 1 AI l 214 I , I I! IIIA vA tl v 1 v ♦ J / / l.. EliffillilDIACP Ell X1JNEnt0R OCEMN MW cNlmNc — maRu gw(R LIXIIWR OWW — 1= NO gNSIN 6 City of Ft. Collins, Colorado UTILITY PLAN APPROVAL Al City Engineer Date CHECKED BY: lfeler k Ileelewe[er UUILLy Delta CHECKED BY: 9brmweler ULNty Dete CHECKED BY: PVYe h RecreeHon Date CHECKED BY: Traffic Engineer Date CHECKED BY: Natural Rescull Dale LLI 0 Q Z Q cc 0 C ConaultE �mTg�nglneers 70 Mewl aq. all D 1 OF 1