Loading...
HomeMy WebLinkAboutDrainage Reports - 05/28/2008Final Drainage and Erosion Control Study for Harmony Technology Park Third Filing Fort Collins, Colorado Stantec 1 1 1 1 1 1 1 1 1 CRY. of Ft. CoNir�Approval Plans Approved By I�, /-wyj—� �--- sJ�c t I og Final Drainage and Erosion Control Study for Harmony Technology Park Third Filing Fort Collins, Colorado Prepared for: MAV Development 303 Detroit Street, Suite 301 Ann Arbor, Michigan 48104 Prepared by: Stantec Consulting, Inc. 209 South Meldrum Fort Collins, Colorado 80521 (970) 482-5922 Stantec Final Drainage and Erosion Control Study Harmony Technology Park Third Filing Fort Collins, Colorado May 19, 2008 ' Stantec Consulting Inc 209 South Meldrum Street ' Fort Collins CO 80521-2603 Tel: (970) 482-5922 Fax: (970) 482-6368 stantec.com Stantec May 19, 2008 ' Mr. Basil Harridan City of Fort Collins ' Water Utilities— Stormwater 700 Wood Street Fort Collins, Colorado 80521 ' RE: Final Drainage and Erosion Control Study for Harmony Technology Park Third Filing ' Dear Basil: We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion ' Control Study for Harmony Technology Park Third Filing. All computations within this study have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, Stantec Prepared by: Brad Kugler Project Engineer Anthony G. Willkomm, P.E. Project Manager 11 TABLE OF CONTENTS DESCRIPTION I. GENERAL LOCATION AND DESCRIPTION A. LOCATION B. DESCRIPTION OF PROPERTY II. DRAINAGE BASINS A. MAJOR BASIN DESCRIPTION B. SUB -BASIN DESCRIPTION III. DRAINAGE DESIGN CRITERIA PAGE 1 1 A. REGULATIONS 2 B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 2 C. HYDROLOGICAL CRITERIA 2 D. HYDRAULIC CRITERIA 2 IV. DRAINAGE FACILITY DESIGN A. GENERAL CONCEPT 3 B. SPECIFIC DETAILS . 3-4 V. STORM WATER QUALITY A. GENERAL CONCEPT 5 B. SPECIFIC DETAILS 5 VI. EROSION CONTROL . A. GENERAL CONCEPT 5 VII. CONCLUSIONS A. COMPLIANCE WITH STANDARDS 5 B. DRAINAGE CONCEPT 6 C. STORM WATER QUALITY 6 D. EROSION CONTROL CONCEPT 6 REFERENCES 7 APPENDIX PAGE VICINITY MAP A RATIONAL METHOD HYDROLOGY B STORM DRAIN, INLET, SWALE, AND WEIR SIZING C EROSION CONTROL CALCULATIONS D DRAINAGE & EROSION CONTROL PLAN DRAWINGS & DETAILS E 11 1 1 H 11 FINAL DRAINAGE AND EROSION CONTROL STUDY FOR HARMONY TECHNOLOGY PARK 3RD FILING FORT COLLINS, COLORADO I. GENERAL LOCATION AND DESCRIPTION A. Location The Harmony Technology Park 3`d Filing site is located south of Harmony Road and east of Ziegler Road in southeastern Fort Collins, Colorado. The site is shown on the Vicinity Map in Appendix A. More particularly, the site is situated in the northwest quarter of Section 4, Township 6 North, Range 68 West of the Sixth P.M., City of Fort Collins, Larimer County, Colorado. B. Description of Property Harmony Technology Park (HTP), Third Filing consists of four lots, one drainage tract and two roads. The lots range in size from 1.93 acres to 4.92 acres. The development will consist mostly of light industrial and commercial buildings. The majority of the property currently consists of fallow farmland with tall grass vegetation. The site generally slopes in.a southeasterly direction at approximately 0.5%-1.0%. II. DRAINAGE BASINS A. Maior Basin Description The HTP Third Filing site lies within the McClellands Basin. The project drainage is modeled in the East Harmony Portion of McClellands Creek Master Drainage Plan (August 1999). The HTP Third Filing site also lies within the Harmony Technology Park Site Master Plan (HTPSMP). HTP Third Filing will comply with guidelines set in HTPSMP. ' B. Existing Sub -Basin Description ' Historic drainage patterns on the subject site are in a southeasterly direction. The anticipated off -site runoff from properties surrounding the HTP Third Filing will be a portion of existing overland flow from HTP Second Filing (Approximately 10 ' acres) and from the unplatted parcel to the west of the site (Approximately 2 acres) which encompasses sub -basin 180. Existing overland flow from sub -basin 501 will n 'L, ' be diverted to Design Point 501 and released through a temporary area inlet. Runoff from the north half of Rock Creek Drive and undeveloped land will drain to Pond ' 110 be treated and released. III. DRAINAGE BASIN CRITERIA ' A. Regulations The City of Fort Collins Storm Drainage Design Criteria is being used for the subject ' site. B. Development Criteria Reference and Constraints The criteria and constraints from The East Harmony Portion of McClellands Basin 100-Year Master Plan dated August 1999 by Icon Engineering will be utilized in this ' Drainage Study. The criteria and constraints from the Harmony Technology Park Master Plan will also be utilized in this drainage study. The Harmony Technology Park Third Filing site is currently being utilized as fallow agricultural land. ' C. Hydrologic Criteria ' The Rational Method was used for determining surface runoff for the project site. The 10-year and 100-year storm event criteria, obtained by the City of Fort Collins, ' were used in calculating runoff values. These calculations and criteria are included in Appendix B of this study. The City of Fort Collins Storm Drainage Criteria requires detention of the 100-year ' design storm event, with a 10-year historic release rate for this site. The allowable release rate from the on -site detention ponds is 0.5 cfs/acre for the I00-year event and ' 0.2 cfs/acre for the 10-year storm event, in accordance with the McClellands Master Drainage Plan. The ponds were sized utilizing S WMM and the input and output data are included in Harmony Technology Park Site Master Plan. The hydrologic analysis was conducted for developed flows. D. Hydraulic Criteria ' All calculations within this study have been prepared in accordance with the City of Fort Collins Storm Drainage Criteria and are included in the appendices. 1 2 IV. DRAINAGE FACILITY DESIGN ' A. General Concept The purpose of this study is to present general drainage concepts for HTP Third Filing, for use when future development of the site is reviewed. It is important to note that all storm infrastructure was designed for the 100-year storm. ' Harmony Technology Park Third Filing has been divided into 17 basins, (see Drainage Exhibit in back pocket of this study for locations). Runoff from these ' basins will be routed via curb and gutter, swales and storm drains to the proposed detention facility. The detention pond outlet structures will limit the discharge of collected stormwater and were sized in HTPSMP. B. Specific Details ' Basin 180 Basin 180 conveys storm runoff east in its existing condition and is intercepted by a temporary swale, brought to design point 180, and routed to Pond 110 via storm pipe. ' Basin 160,170 Basins 160 & 170 convey storm runoff east on Precision Drive via gutter flow then captured in 3 Type 13 Combination Inlets and routed to Pond 110 via storm pipe. Carryover of approximately 1.5 cfs is captured by the 15' Type R Inlet in Lady Moon ' Drive (Design Point OS-1) and directly routed east. This carryover flow is accounted for in the HTP Second Filing. ' Basins OS1, OS2 Basins OS1, OS2_ convey storm flow from a small portion of the north side of Rock Creek Drive and the east and west sides of Lady Moon Drive. Flow is conveyed via gutter and is captured by two existing Type R Inlets and released into the ditch on the ' east side of Lady Moon Drive. ' Basins 120, 140, 150 Basins 120, 140, and 150 all will drain to the detention Pond 110. The flows from these basins will sheet flow and be routed with swales into the detention pond until ' the lots are developed. Once developed, these lots will have to comply with the release rate provided in the Rational Method Calculation. ' Basins 130-133 Basins 130, 132, 133 convey runoff via overland, gutter and grass swale to a 200' leveling bed. Flow will discharge over a weir and sheet flow drainage into Pond 110. Basin 131 will flow into a trench drain and piped to Pond 110 storm pipe. . c �J 11 i I� I 11 Basins 502, 503 Basins 502, 503 convey south on Technology Parkway via curb and gutter flow, then is captured in two Type R Inlets in a sump condition and released in Pond 110. Basin 110 Basin 110 containing Pond 110 will sheet flow to an outlet structure at the southeast corner. Wetland type plantings will be incorporated in the pond landscaping instead of a concrete drainage pan. Detention Pond 110 Pond 110 will capture flow from 33.16 acres of the site and provides 7.74 acre/feet of storage including water quality. (The amount of land flowing to Pond 110 is larger than the SWMM Model because of existing conditions. The combined `C' value for the flow entering Pond 110 is 0.56 and in the SWMM Model the `C' value for flow entering Pond 110 is 0.81, thus the flow coming into Pond 110 with the construction of HTP Third Filing will be much smaller than the developed flows for the future). The controlled release rate out of the pond will be 15 cfs into a 24" pipe that will be routed into the existing 36" storm pipe in Lady Moon Drive. An overflow spillway will be constructed to spill above the 100-year water surface elevation. Basin 501 Basin 501 conveys runoff southeast in its existing condition and is intercepted by a temporary swale running south along Technology Parkway into Pond 501. Flow is routed through an 18" storm pipe into a 30" storm pipe in Technology Parkway and then east in Rock Creek Drive. NOTE Tailwater elevation for the proposed pond was found by taking the time of concentration for,the entire area draining to the pond and getting the storage at that time from the hydrographs in the SWMM Model in the HTPSMP. From there that storage is inserted in the pond and a water elevation is found and used as the tailwater elevation. SWMM Model Detention is required and will be provided for the Harmony Technology Park site. The HTP Site encompasses Harmony Technology Park Second and Third Filings, the unplatted 40 acres to the west of HTP Third Filing, and portions of Harmony Road, Lady Moon Drive, and Rock Creek Drive. The detention for the site is a comprehensive plan that relays storm water to six detention ponds. The coefficient used for the entire site is 0.80. The detention ponds were sized using MODSWMM model. The SWMM models and data are located in Harmony Technology Park Site Master Plan. (Stantec, May 2008) 4 I 1] V. STORM WATER QUALITY A. General Concept The State of Colorado requires Stormwater Management Plans as part of their permit process. The Harmony Technology Park Third Filing site development is anticipating construction beginning in May of 2008. Therefore this study has sought to find various Best Management Practices for the treatment of storm water runoff that could be implemented in the construction phase of the project. B. Specific Details Best Management Practices (BMP) for the treatment of storm water runoff has been incorporated into the design for this project. This includes extended detention and grass lined swales. Also, best management practices will be used during construction. VI. EROSION CONTROL A. General Concept Erosion and sedimentation will be controlled on -site by use of wattles, silt fences, straw bale check dams, and wetland vegetation. Rip -Rap will be used in ponds and will be designed to withstand fully developed flows. The measures are designed to limit the overall sodiment yield increase due to construction as required by the City of Fort Collins. The Harmony Technology Park Third Filing site lies within the Moderate Rainfall Erodibility Zone and the Moderate Wind Erodibility Zone per the City of Fort Collins zone maps. The potential exists for erosion problems during construction, and after construction until the disturbed ground is re -vegetated or paved. VII. CONCLUSIONS A. Compliance with Standards ' All computations within this study have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. The City of Fort Collins Stormwater Utility will not maintain the on -site storm drainage facilities within the Harmony ' Technology Park Third Filing site. The Drainage Tract A will be maintained by HTP LLC. (See Plat) 1 5 C. I10 I I 1 I 1 Drainage Concept The proposed drainage concepts presented in this study and shown on the final utility plans adequately provide for the transmission of developed on -site runoff to the proposed detention ponds. The combination of on -site street capacities and the on - site storm sewer system will provide for the developed flows to reach the proposed detention ponds. The sizes, locations and release rates of these ponds will allow the Harmony Technology Park Third Filing site to develop in conformance with The Harmony Technology Park Site Master Plan and the McClellands Basin Drainage Master Planning concepts accepted by the City of Fort Collins and The Harmony Technology Park Site Master Plan. If groundwater is encountered at the time of construction, a Colorado Department of Health Construction Dewatering Permit will be required. Storm Water Quality Sediment basin traps will be provided within the on -site detention ponds. These traps will allow stormwater pollutants an opportunity to be filtered out of the storm water as the storm water carries the pollutants across the site. Periodic maintenance may be required to remove sediment deposits as they accumulate in the on -site detention pond. Erosion Control Concept The proposed erosion control concepts adequately provide for the control of wind and rainfall erosion from Harmony Technology Park Third Filing. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance statidards will be met. The proposed erosion control concepts presented in this study and shown on the erosion control plan are in compliance with the City of Fort Collins Erosion Control \Criteria. 2 REFERENCES 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, Revised January 1997. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991, Revised January 1997. 3. East Harmony Portion of McClellands Basin 100-Year Master Plan, by Icon Inc., Fort Collins, Colorado, August 1999. 4. Final Drainage and Erosion Control Report, Harmony Technology Park 2"d Filing, Prepared by JR Engineering, June 20, 2001. 5. 2004 High School Final Drainage and Erosion Control Study, Poudre School District R-1, Prepared by Nolte Associates, Inc., June 24, 2002 6. Final Drainage and Erosion Control Report, Harmony Technology Site Master Plan, Prepared by Stantec Consulting, May 19, 2008. 7 i 1 1 I 1 1 1 1 1 I 1 1 1 I 1 1 I APPENDIX A 11 I 1 I I 1 1 a 1 i 1 I 1 1 1 1 1 VICINITY MAP i VICINITY MAP ��1'iraVuM.�i IT WbA TN OR 5 STONEHAVEN OR- M;SA VEA OE ST' UE 9UNSTONEDR PL I ?ABO WGTUN RU ARE9 1 P Ll.Chi PROJECT LOCATION HP HCC N rn _ .--HARRONY ROAD - - - f_ xc T P. ALIT 4F T 1MBER WOW OA ri / MR0 A vEwACL oR�u�m s n 9 c S � y COUNT Y FAIR LN tl i A A MARA);LN ROCK CREEK 3 U GAuLw DR ¢ iVATORYOk '4y f DOPER CR SCALE: 1" = 1500' I J i 1 11 1 1 1 i i r I 11 1 1 1 E1 1 APPENDIX B 1 I 11 1 1 1 1 1 i 1 1 1 1 I 1 1 1 1 1 RATIONAL METHOD HYDROLOGY ld 1 1 1 1 1 1 1 Developed Weighted Runoff Coefficients Harmony Technology Park 3rd Filing 187710640 This sheet calculates the composite "C" values for the Rational Method. 1 acre = 43,560 ft` - - m.... 110 0.95 0.25 197,999 4.55 19,800 0.45 10 90 0.32 120 0.95 0.25 214,213 4.92 171,370 3.93 80 20 0.81 130 0.95 0.25 29,046 0.67 13,071 0.30 45 55 0.57 131 0.95 0.25 10.311 0.24 9,074 0.21 88 12 0.87 132 0.95 0.25 40,171 0.92 29,325 0.67 73 27 0.76 133 0.95 0.25 38,048 0.87 28,536 0.66 75 25 0.78 140 0.95 0.25 87,207 2.00 69,766 1.60 80 20 0.81 150 0.95 0.25 84,017 1.93 67,213 1.54 80 20 0.81 160 0.95 0.25 46,169 1.06 34,627 0.79 75 25 0.78 170 0.95 0.25 31,006 0.71 24,805 0.57 80 20 0.81 180 0.95 0.25 524,374 12.04 52,437 1.20 10 90 0.32 190 0.95 0.25 142,035 3.26 120,729 2.77 85 15 0.85 501 0.95 0.25 690,409 15.85 69,041 1.58 10 90 0.32 502 0.95 0.25 27,832 0.64 22,266 0.51 80 20 0.81 503 0.95 0.25 27,898 0.64 22,319 0.51 80 20 0.81 OS-1 0.95 0.25 70,385 1.62 59,827 1.37 85 15 0.85 OS-2 0.95 0.25 37,180 0.85 31,603 0.73 85 15 0.85 SITEa , ?. -0.95 "' -• „a ,0.25L ` v! 2,298;300-,', Y 52o76aw 845,809.,a�?: '.; 19 42,+'.ta, :,,.;36 8.;a7:% '• fi3.2f" ,z;F:,;;�,:.0151 ;i 744 AM 1/2 The Sear -Brown Group 4/1 /200808 TIME OF CONCENTRATION 10 year design storm Harmony Technology Park 3rd Filing 187710640 1.87(l.1-CCf)-�D h = So.u3 tc= Ir+tL Cr = 1.00 SUB -BASIN DATA INITIAUOVERLAND TIME TRAVEL TIME FINAL REMARKS BASIN AREA C LENGTH SLOPE t; LENGTH CHANNEL SLOPE VELOCITY tL 1, NO. (ac) (ft) M (min) (ft) TYPE(a) M (fUs) (min) (min) 1 2 3 4 5 6 7 8 10 12 13 110 4.55 0.32 120 2 12.7 820 PA 0.5 1.34 10.2 22.9 120 4.92 0.81 200 2 6.1 500 GW 0.5 1.09 7.7 13.7 130 0.67 0.57 115 2 8.5 1 PA 2 2.72 0.0 8.5 131 0.24 0.87 110 2 3.6 40 PA 0.5 1.34 0.5 5.0 132 0.92 0.76 90 2 4.8 250 PA 0.5 1.34 3.1 7.9 133 0.87 0.78 40 2 3.1 230 PA 0.5 1.34 2.9 5.9 140 2.00 0.81 340 2 7.9 1 PA 0.5 1.34 0.0 8.0 150 1.93 0.81 380 2 8.4 1 PA 0.5 1.34 0.0 8.4 160 1.06 0.78 30 2 2.6 980 PA 0.8 1.70 9.6 12.3 170 0.71 0.81 30 2 2.4 980 PA 0.8 1.70 9.6 12.0 180 12.04 0.32 500 1 32.6 1200 GW 1 1.54 13.0 45.6 190 3.26 0.85 80 2 3.4 2500 PA 0.6 1.47 28.4 31.8 501 15.85 0.32 500 1 32.6 750 PA 1 1.91 6.6 39.2 502 0.64 0.81 45 2 2.9 500 PA 0.6 1.47 5.7 8.6 503 0.64 0.81 45 2 2.9 500 PA 0.6 1.47 5.7 8.6 OS-1 1.62 0.85 25 2 1.9 650 PA 0.6 1.47 7.4 9.3 OS-2 0.85 0.85 25 2 1.9 640 PA 0.6 1.47 7.3 2 92 EPM s, riQy_ � Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway I The Sear -Brown Group 7:44 AM 4/1/2008 TIME OF CONCENTRATION 100 year design storm Harmony Technology Park 3rd Filing 187710640 1.87(I.I - CCJ )� t = So.3u t, = lj+tL Ct = 1.25 SUB -BASIN DATA INITIALIOVERLAND TIME TRAVEL TIME FINAL REMARKS BASIN AREA C LENGTH SLOPE 4 LENGTH CHANNEL SLOPE VELOCITY tL t� NO. (ac) (ft) N (min) (ft) TYPE(a) M (ft/s) (min) (min) 1 2 �3 4 5 6 7 8 10 12 13 110 4.55 0.32 120 2.0 11.4 820 PA 0.5 1.34 10.2 21.6 120 4.92 0.81 200 2.0 2.1 500 PA 0.5 1.34 6.2 8.3 130 0.67 0.57 115 2.0 6.3 1 PA 2.0 2.72 0.0 6.3 131 0.24 0.87 110 2.0 1.6 40 PA 0.5 1.34 0.5 5.0 132 0.92 0.76 90 2.0 2.1 250 PA 0.5 1.34 3.1 5.2 . 133 0.87 0.78 40 2.0 1.2 230 PA 0.5 1.34 2.9 5.0 140 2.00 0.81 340 2.0 2.7 1 PA 0.5 1.34 0.0 5.0 150 1.93 0.81 380 2.0 2.9 1 PA 0.5 1.34 0.0 5.0 160 1.06 0.78 30 2.0 1.1 980 PA 0.8 1.70 9.6 10.7 170 0.71 0.81 30 2.0 0.8 980 PA 0.8 1.70 9.6 10.4 180 12.04 0.32 500 1.0 29.3 1200 GW 1.0 1.54 13.0 42.3 190 3.26 0.85 80 2.0 1.3 2500 PA 0.6 1.47 28.4 29.7 501 15.85 0.32 500 1.0 29.3 750 PA 1.0 1.91 6.6 35.8 502 0.64 0.81 45 2.0 1.0 500 PA 0.6 1.47 5.7 6.7 503 0.64 0.81 45 2.0 1.0 500 PA 0.6 1.47 5.7 6.7 OS-1 1.62 0.85 25 2.0 0.7 650 PA 0.6 1.47 7.4 8.1 OS-2 0.85 0.85 25 2.0 0.7 640 PA 0.6 1.47 7.3 .y.'. �ijq ' ".�k':. Note: . a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture 8 Lawns, GW = Grassed Waterway The Sear -Brown Group 7:45 AM 41112008 Rational Method 10 Year Design Storm Harmony Technology park 3rd Filing 187710640 a Routing Flow Time (tJ Runoff Street pipe Design Point Basins t° Length Type Slope Velocity Travel Pipe Travel to C Intensity Area irec Runoff er Runoff o a Runoff Capacity Design Velocity Slope Manning's Roughness Size apaceLiesign Flow Depth Capacity Flow Normal Flow Depth -Ave-rage Velocity Location (min) (ft) (a) (%) (Ws) (min) (min) (min) (in/hr) (ac) (cfs) (cfs) (cfs) (cfs) (fUs) (ft/s) (%) "n" 110 110 22.9 0.0 ., 22.9 0.32 2.55 4.55 3.71 0.00 3.71 (in) (in) (cfs) (cfs) (in) (ft/s) Remarks 120 120 13.7 - 0.0 13.7 0.81 3.31 4.92 13.19 0.00 13.19 0.00 0.00 0.00 130 130 8.5 0.0 8.5 0.57 4.03 0,67 1.52 0.00 1.52 0.00 0.00 0.00 131 131 5.0 - 0.0 5.0 0.87 4.87 0.24 1.00 0.00 1.00 0.00 0.00 0.00 132 132 7.9 0.0 7.9 0.76 4.16 0.92 2.92 0.00 2.92 0.00 0.00 0.00 133 133 5.9 0.0 5.9 0.78 4.62 0.87 3.12 0.00 3.12 0.00 0.00 0.00 140 140 8.0 - 0.0 8.0 0.81 4.15 2.00 6.72 0.00 6.72 0.00 0.00 0.00 150 150 8.4 0.0 8.4 0.81 4.06 1.93 6.34 0.00 6.34 0.00 0.00 0.00 160 160 12.3 0.0 12.3 0.78 3.47 1.06 2.85 0.00 2.85 0.00 0.00 0.00 170 170 12.0 0.0 12.0 0.81 3.51 0.71 2.02 0.00 2.02 0.00 0.00 0.00 180 180 45.6 0.0 45.6 0.32 1.68 12.04 6.45 0.00 6.45 0.00 0.00 0.00 190 190 31.8 - 0.0 31.8 0.85 2.13 3.26 5.87 0.00 5.87 0.00 0.00 0.00 501 501 39.2 0.0 39.2 0.32 1.86 15.85 9.41 0.00 9.41 0.00 0.00 0.00 502 502 8.6 0.0 8.6 0.81 4.03 0.64 2.08 0.00 2.08 0.00 0.00 0.00 503 503 8.6 - 0.0 8.6 0.81 4.03 0.64 2.09 0.00 2.09 0.00 0.00 0.00 OS-1 OS-1 9.3 - 0.0 9.3 0.85 3.90 1.62 5.32 0.00 5.32 0.00 0.00 0.00 OS-2 OS-2 9.2 0.0 9.2 0.85 3.92 0.85 2.83 0.00 2.83 0.00 0.00 0.00 0.00 0.00 0.00 Routing 0.00 0.00 0.00 180 180 0.0 0.0 PA 0.5 1.3 0.0 45.6 0.32 1.68 12.04 6.45 0.00 6.45 0.00 0.00 0.00 170 180,170 45.6 38.0 PA 0.5 1.3 0.5 46.1 0.35 1.66 15.30 8.84 0.00 8.84 0.00 0.00 0.00 160 180,170.160 46.1 48.0 PA 0.2 0.8 1.0 47.0 0.38 1.64 16.36 10.22 0.00 10.22 0.00 0.00 0.00 Pond 110 180,170,160 47.0 365.0 PA 0.2 0.8 7.3 54.3 0.38 1.49 16.36 9.28 0.00 9.28 0.00 0.00 0.00 0.00 0.00 0.00 502 502 0.0 0.0 PA 0.5 1.3 0.0 8.6 0.81 4.03 0.64 2.08 0.00 2.08 503 502,503 8.6 53.3 PA 0.4 1.2 0.7 9.3 0.81 3.89 1.28 4.03 0.00 4.03 Pond 110 502,503 9.3 520.0 PA 0.4 1.2 7.3 16.6 0.81 3.03 1.28 3.14 0.00 3.14 Pond 110 120 190,502 503 54 3 1.0 PA 0 2 0.8 0 0 54.3 10.561 1.49 27.92 0.00 27.92 {?fi'.- Y"" cx,'3;ti"S �,. T�`�"�s .k ���` �. W< . ..^.r�. RS„'�',� -.. ..... ,ram-�'�-dP� .rl .� ✓:•.r..-.rt � f _ 133.16 -+-�.�.rF- C'v. c 4T._e n"v, . �`.,1LY.{ my-F-- 1 -s.. 1 r �.t•,� � 4��.. _ '!",,Rr_ '��3 . a�=-"t"a�- '_.a.J"'a L"t",y�°•""�+' .S � �"-Y" '91'i� 0.00 0.00 �,..._ 0.00 *m'�.�'v,FR^z Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway u The Sear -Brown Group 10:49 AM 5/12/2008 Rational Method 100 Year Design Storm Harmony Technology Park 3rd Filing 187710640 Routing Flow Time (tj Runoff Street Pipe Design Point Basins t, Length Type Slope Velocity Travel ipe Travel to C C'Cr Intensity Area irec Runoff Other Runoff o a Runoff Capacity Design Velocity Slope Manning's Roughness Size apace Flow Depth esign Flow NormalAverage Flow Depth Velocity Location (min) (ft) (a) (%) (fUs) (min) (min) (min) (in/hr) (ac) (cfs) (cfs) (cfs) (cfs) MIS) (ft/s) N ..n., (in) (in) Capacity (cfs) (cfs) Remarks 110 110 21.6 0.0 21.6 0.32 0.40 5.37 4.55 9.77 0.00 9.77 (in) (ft/s) 120 120 8.3 0.0 8.3 0.81 1.00 8.31 4.92 40.87 0.00 40.87 130 130 6.3 0.0 6.3 0.57 0.71 9.24 0.67 4.35 0.00 4.35 131 131 5.0 0.0 5.0 0.87 1.00 9.95 0.24 2.36 0.00 2.36 132 132 5.2 0.0 5.2 0.76 0.95 9.82 0.92 8.62 0.00 8.62 133 133 5.0 - 0.0 5.0 0.78 0.97 9.95 0.87 8.42 0.00 8.42 140 140 5.0 - 0.0 5.0 0.81 1.00 9.95 2.00 19.92 0.00 19.92 150 150 5.0 0.0 5.0 0.81 1.00 9.95 1.93 19.19 0.00 19.19 160 160 10.7 - 0.0 10.7 0.78 0.97 7.51 1.06 7.72 0.00 7.72 170 170 10.4 - 0.0 10.4 0.81 1.00 7.59 0.71 5.40 0.00 5.40 180 180 42.3 0.0 42.3 0.32 0.40 3.61 12.04 17.37 0.00 17.37 190 190 29.7 0.0 29.7 0.81 1.00 4.54 3.26 14.81 0.00 14.81 501 501 35.8 - 0.0 35.8 0.32 0.40 4.02 15.85 25.47 0.00 25.47 502 502 6.7 - 0.0 6.7 0.81 1.00 9.04 0.64 5.78 0.00 5.78 503 503 6.7 - 0.0 6.7 0.81 1.00 9.04 0.64 5.79 0.00 5.79 OS-1 OS-1 8.1 0.0 8.1 0.85 1.00 8.39 1.62 13.56 0.00 13.56 OS-2 OS-2 8.0 0.0 8.0 0.85 1.00 8.44 0.85 7.20 0.00 7.20 Routing 180 180 0.0 0.0 PA 0.5 1.3 0.0 42.3 0.32 0.40 3.61 12.04 17.37 0.00 17.37 170 180,170 42.3 38.0 PA 0.5 1.3 0.5 42.7 0.35 0.43 3.58 15.30 23.78 0.00 23.78 160 180,170,160 42.7 48.0 . PA 0.2 0.8 1.0 43.7 0.38 0.48 3.53 16.36 27.43 0.00 27.43 Pond 110 180,170,160 43.7 365.0 PA 0.2 0.8 7.3 51.0 0.38 0.48 3.19 16.36 24.79 0.00 24.79 502 502 0.0 0.0 PA 0.5 1.3 0.0 6.7 0.81 1.00 9.04 0.64 5.78 0.00 5.78 503 502,503 6.7 53.3 PA 0.4 1.2 0.7 7.4 0.81 1.00 8.69 1.28 11.12 0.00 11.12 Pond 110 502,503 7.4 520.0 PA 0.4 1.2 7.3 14.7 0.81 1.00 6.58 1.28 8.42 0.00 8.42 Pond 110 1 120 190 502 503 0 0 1.0 PA 0.2 0.8 0.0 51.010.56 0.711 3.19 33.16 74.57 0.00 74.57 . ♦ - f , � 4. h .�'. .�.,' 7..-}�i{ i i�Y Y�.r .i l r '--'�i'v .-r .._ 4 1., .-': �F: y �T�-'w4f`"f1r .. .1:.. -. l,Yi.,��.•C`.'Sf.L �vt ?.. i La i 1 G..- ti•i� �±�^.- t.�.r.}�Cfa. ' �. .�-k�`rte %%"K.�\'�^�•1 .�-.F S .(...... f�$Y' YS�. T _ '7�Y,� w. . .F 3 Y. -� •' F.. �..� 1.}lF'-Fe(i� [...�..'i .- ni' S X? v! .':!Y.N+ .'-•. S:w .�: � it ��: i{, h 1 t�SG Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway The Sear -Brown Group 10:49 AM 5/12/2008 I 1 1 11 1 1 1 1 1 1 1 i Ll' 1 11 APPENDIX C 1 I 11 1 1 1 1 STORM DRAIN, INLET, SWALE, AND 1 WEIR SIZING 1 1 1 1 1 1 1 1 1 1 i 1 re STRM_ Pt 0 NeoUDS Results Summary ' Project Title: Harmony Technology Park 3d Filing Project Description: STRM-A Output Created On: 4/8/2008 at 8:36:16 AM ' Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Summary of Manhole Hydraulics Manhole ID # Contributing Area * C Rainfall Duration (Minutes)(Inch/Hour) Rainfall Intensity Design[Ee Peak FlowFeet) (CFS) round vationElevation Water (Feet) Comments F 1 �F— F—F— 15.0 4905.59 4897.10 — � 2 _._ . L....._..... 15.0. I .8 4 905.8 ...... 4898.74 I _._.... . 1 r_..._._._.3_....._..�__....._...._.__..._.__..._._.._....I �._........_......_....._..._._I15.OI--4900.80I---4899.42T......._..._._..._..._._._ Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. ---. Manhole ID Num4cr �V Calculated Suggested Existing 1 Diar-- meter Diameter Diameter (--- Sewer: ID # Upstream Downstream Sewer; Shape (Rise) s (Rise) (Inches) (Inches) (Rise) (Inches) Width (FT) (FT) (FT) (FT) _.1 .. �Round.r..._. - 19.9 211 24 (..__...N/A 2� I W_ -3 I 2 Round 19.9 ! 21 � � 24 N/A ' Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. ' If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. 11 I I I Sewer Design Full Normal Normal Critical Critical Full Froude ID Flow ;Flow Depth Velocity Depth Velocity ;Velocity Comment (CFS) WFS) (Feet) (FPS) (Feet) ! (FPS) (FPS) Number Fi-r 15.01 24.7 F 1. 121 8.31 1.42 6.3 8 1.52 2- 15.0�24.7 1.12� 8.3 1.42� 6.3 4.8 1.521-T A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information F-F-1 Invert Elevation �I Buried Depth [Sewer ID Slope Upstream Downstream Up rst eam Downstream Comment (Feet) (Feet) (Feet) (Feet)--- 1 1 1.191 4897.321 4895.951 6.561 7.641 2 1.19 j 4898.00 4897.33 80 Sewer Too Shallow Summary of Hydraulic Grade Line F-F-1 Invert Elevation Water Elevation �---- -- Sewer Surcharged Sewer JUpstream ID # Length Length (Feet) (Feet) (Feet) DownstreamF(Feet)ream (Feet) Downstream (Feet) 'Condition �- 1 F1-15.391 61 4897.32 4895.95 4898.74 4897.101 Jump 2 56.68 i 0 4898.00 F 4897.33 4899.42 4898.74 F Jump Summary of Energy Grade Line Upstream Downstream Manhole Juncture Losses Manhole _ Energy Sewer Bend Lateral Energy Sewer Manhole l Bend K I Lateral K Manhole 'Elevation Friction Loss Loss !Elevation ID # ID # Coefficient Coefficient ID # (Feet) (Feet) (Feet) (Feet) (Feet) j 1 �2 4899.35 2.25 0.05 �0.00 0.00 r 0.00 1 4897.10 2 3 ( 4900.03 0.63 ( 0.15 i 0.05 �..--.. 0.00 0.00 2 4899.35 1 ' Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. I I 1 in I 10 C Mt&µ b`t 1 i STRM - g I INS NeoUDS Results Summary ' Project Title: Harmony Technology Park P Filing Project Description: STRM-B Output Created On: 4/8/2008 at 8:29:07 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Summary of Manhole Hydraulics Manhole Contributing Rainfall _ Rainfall Design Peak Ground Water ID # Area * C Duration Intensity Flow Elevation Elevation Comments I(Minutes) (Inch/Hour) (Feet) (Feet) — jSurface . 1 23.8 4903.28 4904.17 Water jPresent 2 F—F— -F— 2-6.11 4906.311 4904.221-- —�- 3 I--�F--F— 22.6 4906.66 4904.26 j 22.6 4906.3114904.1711 5 17 . .�.aSu ce 'Water Present 6 F. F 0.1 4908.17I 4904.36 I 7 I--- --F— 0.1 4909.09 4904.361. (_T..8 . . 4904.49— 79—� F � 01 . r 4909.14 F4904.36 � f 10 L0.1.L.......4912.00 4904.76 ........ 1 11 I 0 1 1 I 1 1 Summary of Sewer Hydraulics Note: The given depth,to flow ratio is 0.9. I Sewer ID # �1 F-2-- 3 I1mo`' _ Imo�5 o0 I'_ Imo �- Manhole ID Number (� - Calculated Suggested I Existing Upstream Downstream Sewer: Shape Diameter (Rise) Diameter (Rise) Diameter i (Rise) Width (Inches) (Inches) (Inches) (FT) (FT) (FT) (FT) F- 2 - --( Round F 34.3 �- 36 48 N/A r-- 3----(-- -2 ----(Round L.. ._..._..-.-..__._..32.5 r--------33 (---- -- 48 [-N/A ........... _ .. 4 3 1Round, 27.3j 301 N/A I- 5 --F 4---rRound.F 24.81 2711 36 N/A 6 - ----3 - Round 3.6 18 30 F N/A -7 -F -�-6 - Round 1 3.61 18 F 30 N/A 8 r -7FRound:F 3.31 18 24 F N/A 9 7 R ud 18 24 N/A 10 8-iRourid1 3.11 181, 24 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. ! 'Sewer rF Full Flow Normal Depth Normal Velocity Cr� Critical j !VelocityiVelocity; Full - !Froude iID Depth Comment Number �(CFS) (Feet) (FPS) (Feet) (FPS) I (FPS) F 1 26.11 64.41 1.77F 4.9 1.58 j 5.71 2.11 0.74- 211�F22.6 64.4 1.64 F 4.7 1.441 5.61 0.741 j 3 22.6 47.3-1.46 �6.6 I 1.56 6 11 -3.2 �1.09 j mm-- '- 4 17.4 ( 47.3 1.26 6.2 1.34 I 5.7 I 2.5 1.12- ..................... 5 ..... 0.1 29.1) 0.11� 1.4 0.211 0.- . 1....-...-......._..........-......... ............ .......... ........_................ ... eloc itv 0.0 0.91 VlsIo- 6 0.1 (( 29.1 0.11 1.4 0.21 i 0.5 Velocity 0.0 0.91 Is Low Velocitv 0.1 19.6 0.101 1.61 0.18 0.7 1 0.0 1.1 Is Low 1 1 1 1 1 1 1 1 1 1 i i 1 1 1 1 1 1 1 8 0.1 22.7 0.10 1.8 1 0.181 0.7 , 0.0 1.26 Velocit; Is LOG 9 - --- 0.1 � 22.7 0.101 �- 1.8 0.18 veloclt' 0.71 0.0 21 6, Is LoG A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation I Buried Depth - [Sewer ID Slff�stream Feet stream Downstream r(Feet) FeetFeet Downstream Comment 1 0.20 4900.001 4899.29 2.31 0.01 Sewer Too Shallow ------20.20 1-4900.08 �.--- 4900.01 � 2.58 r-.-.....-_..2.30 I------________--- 3 ( 0.50 4900.14 I 4 - 0.50 4900.33 4900.19F0.00 3.12 Sewer Too Shallow 5 - 0.50 F 4901.20 �4900.08) 4.47 F 4.08 F_---- I 6 -I 0.50I-4901.78°r 4901.20 4.81 4.47 -7F-O.751 4904.31 4...... 5.58 5.31 8 L...1.00I._...._4.902.. 4901.78I.... 5.14I 5.31 . ._9 I.........1.001 ....4904.58 J. ---4904.3 ..�._. 5.421 ....._... 5.581 Summary of Hydraulic Grade Line II-F-i Invert Elevation Water Elevation Sewer Sewer Length Surcharged !Upstream (Downstream Length Upstream Downstream Condition ID # (Feet) (Feet) i (Feet) i (Feet) (Feet) (Feet) I -,[357.161 357.161 4900.001 4899.29F 4904.221- 4904.17 FPressured F ( 35.21 ( 35.21 4900.08 -IF f 4904.26 I 4904.22 Pressured I^3 10.14 10.14 4900.14 4900.09 4904.17 I- 4904.26 Pressured I 4 I 28.49 I 28.49E 4900 33 ! 4900.19 I 4904.28 ( 4904.17 I Pressured 5 224.67 _............................................................................ 224.67 4901.20 4900.08 4904.36 4904.26 Pressured 16 F116.39 I- 116.39 j 4 0 719 8 F 4901.20I- 4904.36 4904.36 Pressured r..-7 __ rn7.28 ` _...___.-. 77.15 4904.31 --- 4901.78 I_-4904.49 I- -- 4904.36 r vJump .1 ' 22.01 22.O1 j 4902.00 F-4901.78.F 4904.36 4904.36 Pressured F 9 27.41 ] 61 4%4.58 4904.31 4964.76 4964.49 Jump ' Summary of Energy Grade Line 1 H 1 1 --Upstream----[ Manhole Juncture Losses Downstream Manhole Sewer ID # (. .. i ._....... 1..-..2..---I i Energy Manhole' Elevation ID # (Feet) _:_........ 2_................I...... 4904.29 - 3---- L. 4904.31 Sewer FrictionFBend (Feet) (._...._....0.12 �._....__.0.01.�.....- K efficient .......:....._....._.._._...0.OS.I........O.00 - 0.25'r Bend Loss (Feet) 0.O1 Lateral Lateral K Loss Coefficient (Feet) I._..__.....:............._0.00 I...._..__ 0.00J....._.__.._....1 (--- 0.00 I - -0.00 Energy Manhole (Elevation ID # ( (Feet) -- 2 -- 4904.29 r 3 --1 4 I 4904.33 ( 0.01 F- 0.05 0.01i 0.00 0.00 I 3 - 4904.31 4 r 5 -- 4904.37 0.02 �� 0.25 I 0.02;I - 0.00 0.00 4 r 496.4 -5--� 6 --- 4904.36 0.00 1.32 0.00 0.25 0.05 � 3 -j 4964 13 6 [ 7 F4904.36 0.00 0.06. 0.00 0.00 0.00 F 6-i 4904.361 ��� 4904.50 0.14 0.05 0.00'� 0.25 0.00 7 4904.36 �8 -F 9 - L.. 9_. .f 10 ....�...4904.77.� 4904.36 0.00 1.32.�0.00:� 0.27 0.94.1.......0.001......... 0.00 ..0.00 �0.00 (... *- -I 7'4904.36. 8 4904. * ' Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. ' A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer'invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. ' A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 0 1 1l 0 5 c 5TKr - G ST µ" , C. � i C 11 1 NeoUDS Results Summary Project Title: Harmony Technology Park P Filing Project Description: STRM-C Output Created On: 5/15/2008 at 2:59:47 PM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Summary of Manhole Hydraulics Manhole Contributing Rainfall . Rainfall Duration Intensity Design........_._.. Peak ..... .._........... Ground Water Elevation'Elevation ..... ..... .._... ...... .._......... ..... _.._.... Comments ID # Area * C (Minutes) I(Inch/Hour) Flow (CFS) (Feet) , (Feet) i ��-i ) 7.5 4912.84 4900.77� 2 �� -�� ^�7.5 4913.08 4900.88 _J F ! -�- ----- -..- j ---_-._- O.l r 4913.261-4901.12 �� 4914.50--4902.324 I _._ .-----..._.. _._._ _.. I (0. 2554911.50 4I 906.805 - - Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. �— Manhole ID Number J I Calculated ;Suggested Existing 1, Diameter Diameter Diameter ,Sewer ;Sewer ID # Upstream (Rise) (Rise) (Rise) Downstream ;Shape I (Inches) j (Inches) (Inches) Width (FT) 1 -- - 2- (FT) (FT) (FT) ------------ 1 ;Round (--------------19.4 1------- --- 21-------------- 30 1--N/A 2 .... 3 . --------------...-..._...,-_._....._.._.-- - ._._... - ....... - 2 'Round] 3.9; 18 30I - - - N/A 3 4 'Round 3 Round 18 - --- - _30 3.9 N/A �4 -- 5 —1-- 2 -;Round 1 22.7 24 18 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. 1 01 Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. ' Sewer ID 1 Design Full Flow Flow (CFS) �(CFS) 7.5 24.0 Normal Depth (Feet) 0.96 Normal iCritical Critical Velocity Depth Velocity (FPS) (Feet) (FPS) r._._.......---4.3 I 0.92 ( 4.5 --0.5�-- Full [Fronde Velocity Number (FPS) 1.5 (._......._.._......_..0.9 _I --0.0�- --0.75 2 3 ( 0.11 23.6 0.1 23.6( 0.12I 0.12� 1.2 0.21�- 1.2I 0.21i 0.5� 0.0 0.75 ' I 25.5 ( 13.8 14.4 1.47 14.5 14.4 N/A 4 1.50 ' A Froude number = 0 indicated that a pressured flow occurs. [1 Summary of Sewer Design Information Invert Elevation j Buried Depth-- (�� Sewl- er ID Slope Upst aer m Downstream Upstream Downstream / o (Feet) (Feet) (Feet) (Feet) Comment 1 - 0.34 F 48 99.91 4899.77 0 10.571 2 - 0.33 4900.97 (- 4899.91 j 9.79 �- 10.67 �- 3 L...._.......__..4.................._r...1..72 0.33 4902.201 j........4902.20 4900.97 9 80 L........................_4900.9.1..i............_.._...._..7.80 �- - 9.79 L............_....._._......_-10.67. �- ......._......_...._......_.._..........._ ' Summary of Hydraulic Grade Line F�- Invert Elevation Water Elevation Sewer Surchar ed Sewer g jUpstream iDownstream Upstream Downstream Length Length ID # (Feet) (Feet) (Feet) i (Feet) (Feet) (Feet) ' I 1-1 41.821 0 r 4899.91 , 4899.77 4900.88 4900.77 52 8 .901.12i23204 9008 3 - 372.57 0 4902.20.E4900.971 4902.32 4901.12 4 F75.17 ( 75.17 4902.20 i 4900.91 ( 4906.80 4900.88 Velocity Is I.ow Velocity Is Low ubcritical ubcritical Pressured H Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream` Manhole Energy Sewer ;Bend Lateral Sewer Manhole [Elevation Friction Bend K i Loss Lateral K Loss ID # ID # !Coefficient. Coefficient � !Energy Manhole !Elevation ID # Feet Feet i(Feet)Feet ( ) ( ) (Feet) ' ...1 2 1.......4901.16 0.39 0 05.�..... 0.00 �........ 0...00 ( 0.00 ( ......1 4900.77 r 2_ .... - 3 - �- 4901.15 0.001 —0.03--0.00.� - 0.25 [— 0.-4.1--._--- —---- ---- i- 4901.16 - 3 4- ._. -� 4902.341.....- 1.19 - - O.OSy -0.00! 0.00 -- 0.00 -..3_ 4901.15 j 4 r 5 4910.03 [6.44 0.75; 2.42 0.00 0.00 2 4901.16 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. I w ST Ku- o1 .N4'k 5-(M H - 01 1 NeoUDS Results Summary I Project Title: Harmony Technology Park 3`d Filing ' Project Description: STRM-D Output Created On: 5/15/2008 at 1:03:48 PM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. ' Summary of Manhole Hydraulics 11 L� -- Manhole ---- ContributingFDa * fall tion -----Design Rainfall Intensity peak Ground Elevation Water Elevation i Comments ID # Area C Flowutes)' (Inch/Hour) (CFS) (Feet) (Feet) -......1�� r 8.4 4906.75I 4904.17 2 L .... _ .. _..... I ..... 9.0. 1 ......-4911.00 4906.68 i . 4 ) i I 10.0 l 40 4908 21 - I_._. _.__ .- ...- -11.0 -4913 4913.10 4909 17 - --- 5 ---I ... ... 11.1 4912.48 --4909.44 .... - .- F—F-F— 5:8 4912.42 F4909.87 !-� ' Summary of Sewer Hydraulics [1 Note: The given depth to flow ratio is 0.9. ....... Manhole ID Number- Calculated_ _..._...._.......... .__....__...._._._............ --........... .......... _... ..... ... Suggested ..-........_-_....._._.._.-...-........- Existing _..._.-.-.._..-..............--..._...--- Diameter Diameter Diameter (Sewer ID # Upstream Downstream ;Sewer (Rise) Shape (Inches) (Rise) (Inches) (Rise) Width (Inches) (FT) (FT) . (FT) (FT) -[ 2 1 1 Round 19.3 21 24 N/A 2 3--;Round -1 20.1 2� 21 24 N/A 3 4 -� 3 ;Round 20.9 21 F N/A F —4F 5 1 4 ;Round 20.9I 21 F— 24 N/A 5 6 5 :Round; 16.4 18 18 N/A C I I 1 11 Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. �S r Design Full Normal No mr al Cr cal !Critical IFull - Fr! Dude ID Fri Flow Depth ;Velocity Depth. ]Velocity Velocity.Number (CFS) ,(CFS) (Feet) (FPS) 1 (Feet) (FPS) ! (FPS) j 1-� 1---9.01 16.0f-... 1.07i.. -5.31 1.08 5.21 2.91 1 l...-....2-..r.._...10.0 i------- II------ 1.14 _-5.4 L. 1.13.'._......- -5.5' - -- 3.2. - 0.98 r 3-I 11.01 61 0 1.221 5.51 1.191 5.71 3.5 j 0.96 4 11.1 j 16.0 1.22 5.5 1.19 5.7 7-3.5 6.96 j 5- (- 5.8 7.4 r0.99 4.7 j 0.92 T5.1 3.3,� 0.88 A Froude number - 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation; Buried Depth Sewer ID ��� sU Slope pstream-Downstream'Upstream iDownstream Comment % I (Feet) (Feet) (Feet) (Feet) 1 0.50 1 4905. 0'F 4905.28 3.4011 -0.53 Sewer Too Shallow 2 0.50 4907.04F 4905.59 ; 4.361 3.41 1_ 3_ 10.50 4907.71 4907.041 3.39 _ _ 4.36 F 1-4 �0.50 I 4907.85 4907.721 2.631 3.381_ i 5 ......0.5O _ L...- 4908.13 .......... . 4907.86 2.791 3.12 F L I I 7 j Summary of Hydraulic Grade Line F-F-F Invert Elevation Water Elevation - Fee Sewer Length (Feet) Surcharged Upstream Downstream Upstream Downstream Length (Feet) (Feet) (Feet) (Feet) (Feet) [Condition r1 -63.38 0� 4905.60.� 4905.28 4906.68 ( 4904.17 rSubcritical �2 - 289.341 01 4907.04 �� 4905.59 49 88.21 4906.68 ISubcritical I ' - 134.51 0 4907.71 9907.04 4909.17 4908.21 Subcritical 26.83I 0 F4907.85F 4907.72T 4909.44F 4909.17 Subcritical F 5-_ 53.33 53.33 F 4908.13 F 4907.86F4909.87F 4909.44I Pressured Summary of Energy Grade Line ,Upstream Downstream Manhole �� Juncture Losses Manhole Fe Manhole ID # Energy Elevation (Feet) Sewer -� Bend Bend K Friction Coefficient i Loss (Feet) 4 (Feet): Lateral Lateral K Coefficient Loss (Feet) ! Energy Manhole J ID # iElevation (Feet) l i t 2 4907.10 J� 2.93 j 0.05 0.00 0.00 r 0.001 1 4904.17 F .2--T-- 3 -T� 9-68.67 I---1.53 1' ----- 0.20 0.03 --- 0.00 0.00 2 �� 4907.10 3 4 4909.65 . 0.73 1.32 0.25.1 0.00 0.00 F 3 49 F 4 4909.84 0.00 r 1.32 i 0.26 O.00F 0.00 F 4 4909.65 �5 6 ( 4910.04�- 0.161 _ 0.25 0.04 0.00 0.00 5 4 8909 4 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 11 DESIGN PEAK FLOW FOR ONE-HALF OF STREET. BY THE RATIONAL METHOD II Harmony Technology Park 3rd Filing STIN B1 Design Flow = Gutter Flow + Carry-over Flow �OVFROLWND y STSIDE REET OVERLAND ® F GUTTER FLOW PLUS CARRY-OVER FLOW F ® F GUTTER FLOW INLET INLET 1/2 OF STREET (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): . If you entered a value here, skip the rest of this sheet and proceed to sheet Geographic Information: (Enter data in the blue cells): Site: (Check One Box ON ) Site is Urban: X Site Is Non -Urban: Minor Storm Major Storm •Q =1 2.851 7.721 cfs Snt Imperviousness Area =Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Slope (ft/ft) Length (ft) Overland Flow = Gutter Flow = 7=L1"fit/1L2+ ic)"Ls Design Storm Return Period, T, .. Return Period One -Hour Precipitation, P, C, C2 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs Bypass (Carry -Over) Flow from upstream Subcatchments, Qb w Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo Gutter Flow Velocity, VG Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, Tc : Time of Concentration by Regional Formula, Tc : Recommended Tc Time of Concentration Selected by User, Tc Design Rainfall Intensity, I Calculated Local Peak Flow, Q': Total Design Peak Flow, Q: Minnr Stnrm Mninr Stnrm NIA N/A N/A N/A N/A N/A NIA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A NIA NIA NIA N/A N/A NIA 2.85 7.72 ps ps ninutes ninutes ninutes ninutes ninutes ninutes nch/hr ;fs :fs STIN B1 UD-Inlet.xls, Q-Peak 4/2/2008, 12:50 PM INLET ON A CONTINUOUS GRADE Project:. Harmony Technology Park 3rd Filing Inlet ID: STIN B1 ' Lo (C),� H-Curb H-Vert Wo WP W Lo (G) 1 U I I I I I 11 of Inlet Depression (additional to continuous gutter depression 'a' from'0-Allow) Number of Units in the Inlet (Grate or Curb Opening) h of a Single Unit Inlet (Grate or Curb Opening) , of a Unit Grate (cannot be greater than W from O-Allow) ling Factor for a Single Unit Grate (typical min. value = 0.5) ling Factor for a Single Unit Curb Opening (typical min. value = 0.1) t Hydraulics: OK - Q < maximum allowable from sheet'Q-Allow in Discharge for Half of Street (from Sheet Q-Peak) r Spread Width ' r Depth at Flowline (outside of local depression) r Depth at Street Crown (or at T,.) of Gutter Flow to Design Flow arge outside the Gutter Section W, carried in Section T. arge within the Gutter Section W arge Behind the Cum Face t Flow Area t Flow Velocity r Depth for Design Condition , Analysis (Calculated) Length of Inlet Grate Opening of Grate Flow to Design Flow r No -Clogging Condition ,um Velocity Where Grate Spash-Over Begins eption Rate of Frontal Flow eption Rate of Side Flow ig Coefficient for Multiple -unit Grate Inlet ig Factor for Multiple -unit Grate Inlet e (unclogged) Length of Multiple -unit Grate Inlet m Velocity Where Grate Spash-Over Begins )lion Rate of Frontal Flow )lion Rate of Side Flow Interception Capacity ant Slope S. (based on grate carry-over) td Length LT to Have 100% Interception No -Clogging Condition e Length of Curb Opening or Slotted Inlet (minimum of L, L,) Jtion Capacity Clogging Condition Ig Coefficient Ig Factor for Multiple -unit Curb Opening or Slotted Inlet e (Unclogged) Length Interception Capacity )ver Flow = Inlet Interception Capacity Inlet Carry -Over Flow (flow bypassing Inlet) ire Percentage - Q"IQ, Type = aLocAL = No= L. = W"= C,G = r_r.= MINOR MAJOR CDOT/Denver 13 Combinatir 2.0 3 3.00 1.73 0.50 nin Q,= 2.86 7.72 cfs T= 10.4 16.2 ft d=.` inch _ 4.5 5.9 dCao„,„= 0.0 0.0 incr Eo = - " 0.592 0.390 cfs 4.71 Qw= 1.69 3.01 cfs DIM cfs 0.00 0.00 z _ sq f 1.25 2.79 - 2.29 2.77 V. _ fps dLocAl= 6.51 7.9 Ind MINOR MAJOR L = - gml 9.00 ft E> RATE = 0.548 ' 0.355 MINOR MAJOR V. = 15.41 15.41 fps R, = R, _ 0.82 0 .77 Q = 2.64 %= 0.21 ' STIN Bf UD-Inlet.xls, Inlet On Grade 4/2/2008, 12:50 PM I I 1 F I 20 19 ------...--- ---- — T 18 17 �� Illli i 1e 10 I I I I I I .O c .2 II l 13 12 Y ~ I I I I O 9 n 5 i e 4 3 2 � I I _✓� � I I o eaa°tea 0 1 2 3 4 5 .0 6 7 8 9 10 11 12 13 14 15 16 17 ,8 19 20 0 for 112 Street (cfs) —0-0 Intercepted (cis) —9-0 Bypassed (cis) —6--Spread T (it). LlmNee by T-CROWN -0— Spread T (8), Not limited by —X Flaw Depth d (inches) T-CROWN ISTIN B1 UD-Inlet.xls, Inlet On Grade 41212008, 12:50 PM O for 112 Street (cfs) O Intercepted (cfs) O Bypassed (cfs) Spread T (ft), Limited byT-CROWN Spread T (ft), Not Limited by T-CROWN Flow Depth d (inches) 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00 2.21 2.21 2.53 1.00 0.97 0.03 5.75 5.75 3.38 1.50 1.44 0.06 7.44 7.44 3.79 2.001 1.89 0.11 8.721 8.72 4.09 2.50 2.33 0.17 9.76 9.76 4.34 3.00 2.78 0.22 10.67 10.67 4.56 3.50 3.21 0.29 11.47 11.47 4.75 4.00 3.64 0.36 12.19 12.19 4.93 4.50 4.07 0.43 12.85 12.85 5.08 5.00 4.49 - 0.51 .13.46 13.46 5.23 5.50 4.91 0.59 14.03 14.03. - 5.37 6.001 5.32 0.68'. 14.561 14.56 5.49 6.50 5.74 0.76 15.07 15.07 5.62 7.00 6.15 - 0.85 15.55 15.55 5.73 . 7.50 6.55 0.95 16.00 16,00 5.84 8.00 6.95 - 1.05 16.44 16.44 - - 5.95 8.50 7.34 1.16 16.86 16.86 6.05 9.00 7.72 1.28 17.26 17.26 6.14 9.50 8.09 1.41 17.65 17.65 6.24 10.001 8.45 1.55 - 18.021 18.02 6.33 10.50 6.81 1.69 18.38 18.38 6.41 - 11.00 9.17 1.83 -18.73 - 18.73 6.50 11.50 9.52 1.98 19.07 19.07 6.68 12,00 9.85 2.15 19.39 19.39 6.65 12.50 10.19 2.31 19.71 19.71 6.73 13.00 10.52 2.48 - 20.02 - 20.02 6.81 13.50 10.85 2.65 20.32 20.32 6.88 14.001 11.16 2.84 20.611 20.61 6.95 14.50 11.47 3.03 20.89 20.89 7.01 15.00 11.78 3.22 21.17 - 21.17 7.08 15.50 12.09. 3.41 21.44 21.44 7.15 16.00 12.38 3.62 - 21.70 21.70 7.21 16.50 12.68 3,82 21.96 21.96 7.27 17.00 12.97 4.03 22.00 22.21 7.33 17.50 13.26 4.24 22.00 22.46 .7.39 18.00 13.54 4.46 22.00 22.70 7.45 78.50 13.82 4.68 22.00 22.94 7.51 19.00 14.09 4.91 22.00123.17 7.56 19.50 14.36 - 5.14 22.00 23.40 7.62 20.00 14.631 5.371 22.001 23.631 7.67 STIN B1 UD-Inlet.xls, Inlet On Grade 4/2/2008, 12:50 PM I DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Harmony Technology Park 3rd Filing STIN B1-1 II II Design Flow = Gutter Flow + Carry-over Flow OVERLAND I y.y STREET OVERLAND FLOW FLOWT`Y ® F GUTTER FLOW PLUS CARRY-OVER FLOW e ® E— GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: Minor Storm (local peak Flow for 1/2 of street, plus Flow bypassing upstream subcatchments): *Q = _ 2.02 *If you entered a value here, skip the rest of this sheet and roceed to sheet O-Allow Major Storm 5.401 cfs Geographic Information: (Enter data in the blue cells): Area Percent Imperviousness = Snt Imperviousness - NRCS Soil Type = Site: (Check One Box Onl Slope (ft/ft) Site is Urban: X Overland Flow = Site Is Non -Urban: Gutter Flow = =Acres A, 8, C, or D Length (ft) Rainfall Information: Intensity I (inch/hr) = C, " PI / ( Cz + T, ) A C3 Design Storm Return Period, Tr = Return Period One -Hour Precipitation, P, _ C = C2= C3_ User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Qb = .. Minor Storm Major Storm years inches cfs ' 0.00 0.00 Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, Tc _ Time of Concentration by Regional Formula, T. _ Recommended Tc _ Time of Concentration Selected by User, T, _ Design Rainfall Intensity, I = Calculated Local Peak Flow, Qo = Total Design Peak Flow, Q = N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 2.02 5.40 fps fps minutes minutes minutes minutes minutes minutes inch/hr cfs cfs STIN B1-1 UD-Inlet.xls, Q-Peak 4/2/2008, 12:50 PM INLET ON A CONTINUOUS GRADE ' Project: Harmony, Technology Park 3td Filing Inlet ID: STIN B1A {Lo (G)r H-C udo H-Vert Wo Wp W Dead. Information flnoutl MINOR MAJOR ' Type of Inlet Type = CDOTIOenver 13 CombtneEms _ Local Depreasipn(a4dltional to continuous Aunertlepression'a'from 'PAllow) arov.L= 20 Total Numbe! of Units in the Inlet (Grate or Curb Opening) No- KR: 3 _ ' Length of a Single Unit Inlet (Grate or Curb Opening) Lo = vi of a Unit Grate (cannot be greater than W from O-Allow) We = 300 'L' 3 an n 1 73 1.73 f1 Clogging Factor fora Single Unit Grate (typical min. value = 05) CrG = 050 0.60 1 Discharge for Half of Street (from Sheet 0-Peak l Spread Widm Depth at Rmline (outside of local depression) Depth at Street Crown (or at Tess) A Gutter Flow to Design Flow Me outside fne Gutter Section Al tamed in Section T. Me within the Gutter Section W Me Behind the Curb Face Flow Area Flow Veloaly Total Length of Inlet Grate Opening ' Ratio of Grata Flow to Design Flow Under No -Clogging Condition Minimum Velocity More Grate Spash-Over Begins Interception Rate of Frontal Flow ' Interception Rate of Side Flow Interception Capacity Under Clogging Condition Clogging Coefficient for Multiple -unit Grate Inlet ' Clogging Factor for Multiple -unit Grate Inlet . EffeclNe (undogged) Length of Multiple -unit Grate Inlet Minimum Velocity Where Grate Spash-Over Begins Interception Rate of Frontal Flow ' Interception Rate of Side Flow Actual Interception Capacity Carry -Over Flow is 4-0, (to he applied to curb opening or next die Curb or Slotted Inlet enl al i (Calculated ' Equivalent Slope S, (based on grate carry-over( Required Length LT to Have 100% Interception Under No -Clogging Condition ' Effective Length of Curb Opening or Slotted Inlet (minimum of L. LT) Interception Capacity Under Clogging Condition Clogging: Coefficient t Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet Ellective(Undogged) Length Actual Interception Capacity Carry -Over Flow • DHcuTe -Oa summat t Total Inlet Interception Capacity Total Inlet Carry -Over Flow (flow bypassing inlet) Capture percentage = (i • 1 d = dcr.,i= Ea= Q. = O_ = inches n&os of, ch. < t 5.3 0Q 00 0678 0454 065 . 295 1 37 2,Z OsAc.= 0W 000 cis A. 0 231 n V. 2.17 257 1ps tlra„u= 8.1 13 inchi MINOR MAJOR L= 900 9.I)Ufl EocsATs= 0:833 0416 MINOR MAJOR V.-I R,-1 R. = 0,= GrateCoei= GrateClog= L. = Vo= R,= R. = Q. • 1541 1541 fps cis It fps cfs 1 W 100 0.84 0 79 1.90 4]5 MINOR MAJOR 175 175 029 029 6.37 6.37 10.50 low 100 103 070 063 1.80 4.24 MINOR MAJOR S, = 01331 0.0967 M LT= 276 672 it MINOR MAJOR L-1 2751 571 fl Q, =1 0111 0 581 cis MINOR MAJOR CurbC.f= 1 311 1.31 CUmGlog= 004 0.01 L,=1 2 751 671 It Q.-I 0.111 0.58 cfa C I' STIN 81'-1JD-lnlel.xls, Inlet On Grade 402008, 12:50 PM u 1 I -- u 15 'S 15 O 14 O,. G L o Q 12 {% a5 1t 1- i0 10 'i ©I n O 9 1 I 42 9 I ! I T A m 9 ! e-I- —�c —- - eE 5 4 11 2 AT I 111 1 1 al I I ! 0 _ _1 --p-6-�-� 0 1 2 3 4 5 -s e 7 a 9 10 11 12 13 14 15 19 17 19 19 20 Q for 112 Street (cfs) -0- O Intercepted (cfs) 13 0 Bypassed (cfs) --6- Spread T (11)• Limited by T-CROWN -0 spread T (ft), Not Limited by —X Flow Depth d (Inches) T-CROWN ' STIN B1-1 UD-Inlet.xls, Inlet On Grade 4/212008, 12:50 PM 0 for 112 Street (cfs) 0 Intercepted (ds) 0 Bypassed (cfs) Spread T (ft), Limited by T'caowH Spread T (ft), Not Limited by T-CROWN ' Flow Depth d (inches) 0.00 0.00 0.00 0.00 0.00 - 0.00 0.50 0.50 0.00 2.21 2.21 2.53 1.00 0.97 0.03 5.75 5.75 3.38 1.50 1.44 0.06 7.44 7.44 3.79 2.00 1.89 0.11 8.721 8.72 4.09 2.50 2.33 0.17 9.76 9.76 4.34 3.00 2.78 0.22 10.67 10.67 4.56 3.501 3.21 0.29 11.47 11.47 4.75 4.00 3.64 0.36 12.19 12.19 4.93 4.50 4.07 0.43 12.85 12.85 5.08 5.00 4.49 0.51 13.46 " 13.46 5.23 5.50 4.91 0.59 14.03 14.03 5.37 6.00 5.32 0.68 14.56 14.56 5.49 6.50 5.74 0.76 15.07 15.07 5.62 7.00 6.15 0.85 15.55 15.55 5.73 7.501 6.55 0.95 10.00 16.00 5.84 8.00 . 6.95 1.05 16.44 16.44 5.95 8.50 7.34 1.16 16.86 16.86 6.05 9.00 7.72 1.28 17.26 17.26 6.14 9.50 8.10 1.40 17.65 17.65 6.24 10.00 8.46 1.54 18.02 18.02 - 6.33 10.50 8.82 1.68 18.38 18.38 - 6.41 11.00 9.17 1.83 18.73 -18.73 :.: .. - 6.50 11.501 9.52 1.98 19.07 19.07,, -:' -; ' 6.58 12.00 9.86 2.14 19.39 - 19.39 "' - 0.65 12.50 10.20 2.30 19.71 19.71 6.73 13.00 10.53 2.47 20.02 20.02 ' , 6.81 13.50 10.85 2.65 20.32 20.32 6.88 14.00 11.17 2.83 20.67 20.61 6.95 14.50 11.48 3.02 20.89 20.89 7.01 15.00 11.79 3.21 21.17 21.17 7.08 15.501 12.10. 3.40 21.44 21.44 7.15 12.39 3.61 21.70 21.70 7.21 12.69 3.81 21.96 - 21.96 7.27 12.98 4.02 22.00 22.21 7.33 13.27 4.23 - 22.00 22.46 7.39 Eu 13.55 4.45 22.00 22.70 7.45 13.83 4.67 22.00 22.94 7.51 14.10 - 4.90 22.00 23.17 Z56 14.37 5.13 22.00 23.40 7.62 14.64 5.36 22.00 23.63 7.67 STIN Bi-1 UD-Inlet.xls, Inlet On Grade 412/2008, 12:50 PM r 11 1 k 1 1 11 DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Harmony Technology Park 3rd Filing STIN D1 II .1 MDesign Flow = Gutter Flow + Carry-over Flow �DVFLOWNDSIDE OVERLAND y I STREET I �FLOW I ® F GUTTER FLOW PLUS CARRY-OVER FLOW F ® F GUTTER FLOW INLET INLET 1/2 OF STREET (local peak flow for 1 /2 of street, plus flow bypassing upstream subcatchments): data in the blue Site: (Check One Box Only) Site is Urban: X Site Is Non -Urban: =Ct-Pt/(C2+Tc «Q cfs SntImp Imperviousness Area =Acres Percentlmpervlousness= NRCS Soil Type = A, B, C, or D Slope ft/ft Length ft Overland Flow = Gutter Flow = Design Storm Return Period, Return Period One -Hour Precipitation, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Bypass (Carry -Over) Flow from upstream Subcatchments, I for a Catchment: Calculated Design Storm Runoff Coefficient, C : Calculated 5-yr. Runoff Coefficient, C5: Overland Flow Velocity, Vc: Gutter Flow Velocity, VG Overland Flow Time, to: Gutter Flow Time, to Calculated Time of Concentration, T° : Time of Concentration by Regional Formula, T, : Recommended T° : Time of Concentration Selected by User, T° : Design Rainfall Intensity, I Calculated Local Peak Flow, 0° , Total Design Peak Flow, Q ; N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A NIA N/A N/A N/A NIA NIA N/A N/A N/A NIA 2.09 5.79 ps Ps ninutes ninutes ninutes ninutes ninutes ninutes nch/hr ,is :fs ' STIN D1-1 UD-Inlet.xls, Q-Peak 4/2/2008, 12:50 PM LJ �I J 11 1 INLET IN A SUMP OR SAG LOCATION Project= Harmony Technology Park 3rd Filing Inlet ID = STIN D1 ' Lo (C)� H-Curb H-Vert w W WP Lo (G) of Inlet Type = I Depression (additional to continuous gutter depression's' from'Q-Allow) a� _ bar of Unit Inlets (Grate or Curb Opening) No = a Information th of a Unit Grate L. (G) = 1 of a Unit Grate W. = Opening Ratio for a Grate (typical values 0.15-0,90) A„u,= Sing Factor for a Single Grate (typical value 0.50 - 0.70) C, (G) = i Weir Coefficient (typical value 3.00) C., (G) = e Orifice Coefficient (typical value 0,67) C. (G) = Opening Information th of a Unit Curb Opening L. (C) = it of Vertical Curb Opening in Inches H,.== it of Curb Orifice Throat in Inches H� = s of Throat (see USDCM Figure ST-5) Theta = Width for Depression Pan (Typically the gutter width of 2 feet) M = sing Factor for a Single Curb Opening (typical value 0.10) C, (C) _ Opening Weir Coefficient (typical value 2.30-3.00) C. (C) _ ODenine Onfice Coefficient (typical value 0.67) C. (C) _ Sing Coefficient for Multiple Units ging Factor for Multiple Units e as a Weir Depth at Local Depression without Clogging (0 cfs grate, 2.09 cfs curb) Row Used for Combination Inlets Only Depth at Local Depression with Clogging (0 cfs grate, 2.09 cis cum) Row Used for Combination Inlets Only e as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 2.09 cfs cum) Depth at Local Depression with Clogging (0 cis grate, 2.09 offs cam) nting Gutter Flow Depth Outside of Local Depression ling Coefficient for Multiple Units ling Factor for Multiple Units as a Weir, Grate as an Ortfice Depth at Local Depression without Clogging (0 cis grate, 2.09 cfs cum) Depth at Local Depression with Clogging (0 cfs grate, 2.09 cfs cum) as an Orifice, Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 2.09 cfs cum) Depth at Local Depression with Clogging (0 cfs grate, 2.09 cis cam) Inlet Length Inlet Interception Capacity (Design Discharge from Q-Peak) Itant Gutter Flow Depth (based on sheet Q•Allow geometry) Itant Street Flow Spread (based on sheet Q-Allow geometry) Itant Flow Depth at Street Crown MINOR MAJOR CDOT Type R Curb Opening 2.00 2.00 inches 1 1 MINOR MAJOR N/A WA N/A WA N/A N/A N/A WA N/A N/A N/A N/A 0. MINOR MAJOR Coef = N/A I N/A Clog = N/A N/A N/A WA IN/A NIA N/A feet feet inches inches inches inches cl = N/A N/A inches dm= N/A N/A inches d.or.n=I N/A N/A Inches MINOR MAJOR Coef= 1.00 1.00 Clog= 0.10 0.10 MINOR MAJOR d.= 3.14 6.19 inches d— 3.30 6.51 inches dq= 2.64 5.48 inches de. = _ 2.741 6.25 inches L= Q. _ d= ' STIN Di-1 UD-Inlet.zls, Inlet In Sump 4/212008, 12:50 PM 39- 36 I I I I I 37 36 I 35 34 33 1 32 31 30 I 29 L ! 28 I I I I I I 27 26 I I I 25 24 I I 1 .� m23U. I I 22 d 0 21 N_ I �20 I I I I "19 c 18 I I I I a 17 p I i 18 14 I' 13 I ! 12 I 11 '9 I 8 6 •I I I I I 5 IgIT 4 I 3 I I . 2 I D l 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q for 112 Street (cfs) —d—curb weir --0 Curb brit. - 8 Not Used —O—Not Used • Reported Design —Xr Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Flow Spread (ft.) STIN D1-1 UD-Inlet.xls, Inlet In Sump 412/2008, 12:50 PM 0 1 Q Intercepted (cfs) Curb Weir a Flow Depth (in.) Curb Odf. Flow Depth (in.) Not Used Not Used Reported Design QFIOW Depth (in.) Reported Designr Flow Spread (ft.) . 0.00 0.00 0.21 0.21 0.17 1.00 0.02 0.33 0.33 0.27 2.00 1.20 0.69 1.20 0.97 3.00 2.20 1.30 2.20 1.77 4.00 3.09 2.14 3.09 4.54 5.00 3.90 3.22 3.90 7.92 6.00 4.67 4.55 4.67 11.12 7.00 5.39 6.12 6.12 17.00 8.00 6.08 7.92 7.92 17.00 9.00 6.74 9.97 9.97 17.00 10.00 7.37 12.26 12.26 17.00 11.00 7.99 14.79 14.79 17.00 12.00 8.58 17.56 17.56 17.00 13.00 9.16 20.57 20.57 17.00 14.00 9.73 - 23.82 23.82 17.00 15.00 10.28 27.32 27.32 17.00 16.00 10.82 31.05 31.05 17.00 17.00 11.35 35.03 35.03 17.00 18.00 11.87 39.24 39.24 17.00 19.00 12.38 43.70 43.70 17.00 20.00 12.88 48.40 48.40 17.00 21.00 13.37 53.34 53.34 17.00 22.00 13.85 58.52 58.52 17.00 23.00 14.33 63.94 63.94 17.00 24.00 14.80 69.60 69.60 17.00 25.00 15.26 75.50 75.50 17.00 26.00 15.72 81.65 81.65 17.00 27.00 .16.17 88.03 88.03 17.00 28.00 16.62 94.66 94.66 17.00 29.00 17.06 101.52 101.52 17.00 30.00 17.49 108.63 108.63. 17.00 31.00 17.92 115.98 115.98 17.00 32.00 18.35 123.57 123.57 17.00 33.00 18.77 1 131.40 131.40 1 17.00 34.00 19.19 139.47 139.47 17.00 35.00 19.60 147.78 147.78 17.00 36.00 20.01 156.34 156.34 17.00 37.00 20.42 165.13 165.13 17.00 38.00 20.82 174.17 174.17 17.00 39.00 21.22 183.44 183.44 17.00 40.00 21.61 192.96 192.96 17.00 ' STIN 01-1 UD-Inlet.xls, Inlet In Sump 4/2/2008, 12:50 PM H 1 u DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Harmony Technology Park 3rd Filing STIN D1 II I Design Flow = Gutter Flow + Carry-over Flow LOVERLANDSIDE yFLOW y STREET I I FLOWND ® E— GUTTER FLOW PLUS CARRY-OVER FLOW F t E— GUTTER FLOW INLET INLET - 1/2 OF STREET Design Flow: ONLY if already determined through other methods: Minor Storm a'or Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): `Q = 2.081 5.781 cfe data in the blue Site: (Check One Box Only Site is Urban: 1 X Site Is Non -Urban: rmation: Intensity I (inch/hr) = C, ' P, / ( Cz + T, Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, B, C, or D Slope (fUff Len th(it) Overland Flow - Gutter Flow = Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, Cz User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Qb w Time (Time of Concentration) for a Catchment: •� Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo Gutter Flow Velocity, VG Overland Flow Time, to Gutter Flow Time, to : Calculated Time of Concentration, T.: Time of Concentration by Regional Formula, T. : Recommended T. : Time of Concentration Selected by User, T. Design Rainfall Intensity, I Calculated Local Peak Flow, Qp : Total Design Peak Flow, Q : N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A NIA NIA NIA N/A N/A N/A 2.08 5.78 ps ps ninutes ninutes ninutes ninutes ninutes ninutes nch/hr :fs -is STIN D1 UD-Inlet.xls, Q-Peak 4/2/2008, 12:51 PM INLET IN A SUMP OR SAG LOCATION t 1 I I 1 Project = Harmony Technology Park 3rd Filing Inlet ID = STIN D7 Lo(C) H-Curb H-Vert W IN Lo lG) on Information Ilnnutl MINOR MAJOR of Inlet Type=1 CDOT Type R Curb Opening I Depression (additional to continuous gutter depression'a' from'Q-Allow) a. = 2.00 2.00 inches bar of Unit Inlets (Grate or Curb Opening) No = 1 1 a Information MINOR MAJOR th of a Unit Grate L. A = N/A N/A feet 1 of a Unit Grate W. = N/A N/A feet Opening Ratio for a Grate (typical values 0.15-0.90) A,.pp = N/A N/A Ding Factor for a Single Grate (typical value 0.50 - 0.70) Cr (G) = N/A N/A i Weir Coefficient (typical value 3.00) C„ (G) = N/A N/A i Orifice Coefficient (typical value 0.67) Co (G) = N/A N/A Opening Information MINOR MAJOR th of a Unit Cum Opening Lp (C) = 5.00 5.00 feet it of Vertical Curb Opening in Inches ll � = 5.00 5.00 inches it of Curb Orifice Throat in Inches Hp.p.i = 4.95 4.95 inches s of Throat (see USDCM Figure ST-5) Theta = 63.4 03.4 degrees Width for Depression Pan (typically the gutter width of 2 feet) Wp = 1.00 1.00 feet Ding Factor for a Single Cum Opening (typical value 0.10) Ci (C) = 0.10 0.10 Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) = 2.30 2.30 Ding Coefficient for Multiple Units ging Factor for Multiple Units e as a Weir Depth at Local Depression without Clogging (0 cfs grate, 2.08 cfs curb) Row Used for Combination Inlets Only Depth at Local Depression with Clogging (0 cis grate, 2.08 cfs curb) Row Used for Combination Inlets Only r a as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 2.08 cfs cum) Depth at Local Depression with Clogging (0 A grate, 2.08 cfs cum) dtina Gutter Flow Depth Outside of Local Depression ling Coefficient for Multiple Units ling Factor for Multiple Units as a Weir, Grate as an Orifice Depth at Local Depression without Clogging (0 ds grate, 2.08 cis cum) Depth at Local Depression with Clogging (0 ds grate, 2.08 cfs cum) as an Orifice, Grate as an Orifice Depth at Local Depression without Clogging (0 cis grate, 2.08 cis cum) Depth at Local Depression with Clogging (0 cis grate, 2.08 cis cum) rltina Gutter Flow Depth Outside of Local Depression Inlet Length Inlet Interception Capacity (Design Discharge from Q-Peak) Itant Gutter Flow Depth (based on sheet Q-Allow geometry) Itant Street Flow Spread (based on sheet 0-Allow geometry) Itant Flow Depth at Street Crown MINOR MAJOR Coef= WA N/A Clog = N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A cl . inches inches inches inches MINOR MAJOR Coef = 1.00 1.00 Clog = 0.10 0.10 MINOR MAJOR d. = 3.13 6.18 inches d„.= 3.29 6.50 inches L Q. d T inches inches ' STIN D1 UD-Inlet.xls, Inlet In Sump 4/2/2008, 12:51 PM I 1 u 0 u 1 1 40 - - - -- - - - - t-- - 3s ---I 38 I-T-F-I 37 1 It 36 l 35 34 33 32 i 31 30 I I 29 28 27 1 26 25 24 .-. 23 LL 22 I m 21 C rn 20 t,9 I I I I i t ja„ I , o 16 i l I 15 13 12 I 11 I 10 9 I 6 I a 7 6 5 4 I 3 2 1 I i I I I I 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q for 112 Street (cfs) —A Curb Weir —0 Curb Onl. —E Not Used —0—Not Used • Reported Design —X Reported Design Flow Depth (in.) Flow Depth (in.) Flaw Depth (in.) Flow Spread (ft.) ' STIN D, UD-InletAs, Inlet In Sump 4/2/2008, 12:51 PM O Intercepted (cfs) Curb Weir a Flow Depth (in.) Curb Onf. Flow Depth (in.) Not Used Not Used Reported Design OFlow Depth (in.) Reported Designr Flow Spread (ft.) 0.00 0.00 0.21 0.21 0.17 1.00 0.02 0.33 0.33 0.27 2.00 1.20 0.69 1.20 0.97 3.00 2.20 1.30 2.20 1.77 4.00 3.09 2.14 3.09 4.54 5.00 3.90 3.22 3.90 7.92 6.00 4.67 4.55 4.67 11.12 7.00 5.39 6.12 6.12 17.00 8.00 6.08 7.92 7.92 17.00 9.00 1 6.74 9.97 9.97 17.00 10.00 7.37 12.26 12.26 17.00 11.00 7.99 14.79 14.79 17.00 12.00 8.58 17.58 17.56 - 17.00 13.00 - 9.16 20.57 20.57 17.00 14.00 9.73 23.82 23.82 17.00 15.00 10.28 27.32 27.32 17.00 16.00 10.82 31.05 31.06 17.00 17.00 11.35 1 35.03 35.03 17.00 18.00 11.87 39.24 39.24 17.00 19.00 12.38 43.70 43.70 17.00 20.00 12.88 48.40 48.40 17.00 21.00 13.37 53.34 53.34 17.00 22.00 13.85 58.52 58.52 17.00 23.00 14.33 63.94 63.94 17.00 24.00 14.80 69.60 - 69.60 17.00 25.00 15.26 75.50 75.50 17.00 26.00 15.72 81.65 81.65 17.00 27.00 -16.17 88.03 88.03 -17.00 28.00 16.62 94.66 94.66 17.00 29.00 17.06 101.52 101.52 17.00 30.00 17.49 108.63 108.63 17.00 31.00 17.92 115.98 115.98 17.00 32.00 18.35 123.57 123.57 - 17.00 33.00 18.77 131.40 131.40 17.00 34.00 19.19 1 139.47 139.47 17.00 35.00 19.60 147.78 147.78 17.00 36.00 20.01 156.34 - 156.34 17.00 37.00 20.42 165.13 165.13 17.00 38.00 20.82 174.17 174.17 17.00 39.00 21.22 183.44 183.44 17.00 40.00 21.61 192.96 192.96 17.00 c STIN D7 UD-Inlet.xls, Inlet In Sump 4l2/2008, 12:51 PM Area Inlet Design - Sump Condition Area Inlet for Design Paint 501 (STIN-CI-1) Project No. 1877GO640 This sheet computes the controlling area inlet flow condition. Control 9.... = CLH where. H = head above wer Onfice Equation: 2,n... = C,. A. -f2SH where: H =h2 -h, Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C- = 320 Ca,r.. = 0.65 4� = 8.42 It (1) A„r<. = 4.27 fir LI Fans= 0.20 Number of Inlets = 1 Flowline elevation of grate = 4911.50 100 year Design Flow (cfs) = 25.47 100 year WSEL(25.47)= 49113.54 Head (ft) Q_ Q.. Qiwly WSEL 0,00 0.00 0 00 0.00 4911.50 0.50 7.62 12,60 7.62 4912.00 1,00 21.55 17 81 17.81 4912.50 150 39.58 2182 21,82 491300 200 60.94 25.19 25. 19 4913.50 250 85.17 28. 17 28. 17 4914.00 3,00 111.96 3085 30.85 4914.50 350 141.09 33.33 33.33 4915.00 4.00 172.37 35,63 35.63 4915.50 4.50 205.68 31779 3779 4916.00 5.00 240.90 39,83 39.83 4916.50 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. 300 250 200 o 3 150 100 50 0 0.00 Weir Orifice Control 1,00 2.00 3.00 4.00 5.00 6.00 now 0.0M ift.l Space width- 0:0417 ft. Bar width= 00208 @. Number of bars= 42 Number of spaces= 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars= 9 Number of spaces= 8 Grate Width= 2.69 ft. Effective GrateWidth 2 2.50 ft. 1:59 PM Stantec Consulting Inc. 511612008 Project Description Friction Method Solve For Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 418/2008 10:18:36 AM Basin 120 Swale Manning Formula Normal Depth Subcritical 0.030 0.00500 ft/ft 4.00 Wit (H:V) 4,00 ft/ft (H:V) 8,58 ft-/s 1.00 ft 3.98 W 8,22 ft 7,98 ft 0.78 ft 0.01.870 ft/ft 2.16 ft/s 0.07 It 1.07 It 0.54 000 ft 0.00 It 0 0.00 ft 0,00 ft Infinity fUs Infinity ft/s 1.00 It 0.78 It 0.00500 ft/ft 0.01870 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.068.00] 27 Siemons Company Drlve Suite 200 W Watertown, CT 06795 USA +1-203.755-1666 Page 1 of 1 Basin 180 West Swale Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.030 Channel Slope 0.00800 ft/ft Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 4.00 fUft (H:V) Discharge 10.28 ft'/s Results Normal Depth o.98 ft Flow Area 3.82 ft- Wetted Perimeter 8.06 ft Top Width 7.82 ft Critical Depth 0.84 ft Critical Slope 0.01826 fUft Velocity 2.69 ft/s Velocity Head o.11 ft Specific Energy 1.09 ft Froude Number 0.68 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity Ns Normal Depth 0.98 ft Critical Depth 0.84 ft Channel Slope 0.00800 ft/ft Critical Slope 0.01826 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.068.00] 4/8/2008 10:18:11 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA t1-203-755-1666 Page 1 of 1 Project Description Friction Method Solve For Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope Basin 180 East Swale Manning formula Normal Depth Subcritical 0.030 0.01.200 ft/ft 4.00 ft/ft (H:V) 4.00 ft/ft (H:V) 8.17 ft-Is 0.83 ft 2.76 ft- 6S5 ft 6.65 ft 0.76 ft 0.01882 ft/ft 2.96 Ws 0.14 ft 0.97 ft 0.81 0.00 ft 0.00 ft 0 0.00 ft 0,00 ft Infinity ft/s Infinity ft/s 0.83 ft 0.76 ft 0,01200 ft/ft 0,01882 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.068.00] 41812008 10:18:25 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA *1.203-755-1666 Page 1 of 1 1 1 1 t 1 Project Description Friction Method Solve For Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge Results Normal Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope Basin 501 Swale Manning Formula Normal Depth. Subcritical 0.030 0.00500 ft/ft 4.00 ft/ft (H:V) 4.00 ft/ft (H:V) 15.60 ft3/s 1.25 ft 6.23 ft- 10.29 ft 9.98 ft 0.99 ft 0,01727 ft/ft 2.51 ft/s 0.10 ft 1.35 ft 0.56 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.25 ft 0.99 ft 0.00500 ft/ft 0.01727 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.068.00] 4/812008 10:17:53 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1-203-755-1666 Page 1 of 1 Leveling Weir for Custom Blending Project Description Solve For Headwater Elevation Input Data Discharge 21.39 ft'/s Crest Elevation 4908.16 ft Tailwater Elevation - 4904.50 ft Crest Surface Type Gravel Crest Breadth. 1.00 ft Crest Length 200.00 ft Results Headwater Elevation 4908.28 ft Headwater Height Above Crest 0.12 ft Tailwater Height Above Crest -3.66 ft Weir Coefficient 2.55 US Submergence Factor 1.00 Adjusted Weir Coefficient 2.55 US Flow Area 24,12 ft' Velocity 0.89 ft/s Wetted Perimeter 200.24 ft Top Width 200,00 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster (08.01.068.00] 4/8/2008 10:08:36 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1-203-755-1666 Page 1 of 1 Project Description Solve For Input Data Discharge Crest Elevation Tailwater Elevation Crest Surface Type Crest Breadth Crest Length Results Headwater Elevation Headwater Height Above Crest Tailwater Height Above Crest Weir Coefficient Submergence Factor Adjusted Weir Coefficient Flow Area Velocity Wetted Perimeter Top Width Overflow Weir Pond 110 Headwater Elevation Paved s 74.57 ft'/s 4914.00 ft 4914.00 ft 2.00 ft 50.00 It 4914.62 ft 0.62 ft 0.00 ft 3.09 US 1.00 3.09 US 30.77 ft' 2.42 ft/s 51.23 ft 50.00 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.068.00] 5/1912008 3:53:48 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1666 Page 1 of 1 I 1 i 7 1 1 1 1 1 ILI 1 1 1 1 1 1 APPENDIX D 1 I 1 1 i i C� 1 1 1 1 C� 1 1 1 1 r 1 EROSION CONTROL CALCULATIONS 1 RAINFALL PERFORMANCE STANDARD EVALUATION I R»r nsdn Technology Park Projecet { o' STANDARD FORMA s 4m yi4NvHarmony Calculated t BY•�L. .. +..,_�... ....r '� �!•: MBK.. ;;:'. � . -� ., a._.-. _ • .:Date • ,-.--311812008 :1 DEVELOPED ERODIBILITY Asb Lsb Ssb Lb Sb PS SUBBASIN ZONE (ac) (ft) (%) (ft) (%) (%) 110 Moderate 4.55 940 0.69 223.3 0.16 120 Moderate 4.92 700 0.93 179.8 0.24 130 Moderate 0.67 115 2.00 4.0 0.07 131 Moderate 0.24 150 1.60 1.9 0.02 132 Moderate 0.92 340 0.90 16.3 0.04 133 Moderate 0.87 270 0.72 12.3 0.03 140 Moderate 2.00 340 2.00 35.5 0.21 150 Moderate 1.93 380 2.00 38.3 0.20 160 Moderate 1.06 1010 0.84 55.9 0.05 170 Moderate 0.71 1010 0.84 37.4 0.03 602 Moderate 0.64 545 0.72 18.2 0.02 503 Moderate 0.64 1 545 1 0.72 18.2 0.02 Total I. 1 19.15 1 1 1 641.28 1.11 78.3 EQUATIONS Lb = sum(AiLi)/sum(Ai) Sb = sum(AiSi)/sum(Ai) 641.3 ft PS (during construction) _ 78.3 (from Table 8A) PS (after construction). _ - 78.3 10.85 = 92.2 0 EFFECTIVENESS CALCULATIONS 187710640 � rs�Pro ect i*''�bHarmon ;Techno/o 'Park ;fi{ F,�c' " `-'"� .� �' �; � ;:t; _ .9Y ,� r- > ..a A.. ,�.L ." V-�F'. iulated`B iMBK-,r_' �... °A_. Date:; - ..-ems-+� Erosion Control C-Factor P-Factori Comment Number Method Value Value 3 Bare Soil - Rough Irregular Surface 1 0.9 6 Gravel Filter 1 0.8 5 Straw Bale Barrier 1 0.8 6 Gravel Filter 1 0.8 8 Silt Fence Barrier 1 0.5 38 Gravel Mulch 0.05 1 39 lHay or Straw Dry Mulch (1-5% slope) 1 0.06 1 SUB PS AREA BASIN (%) (ac) Site1 78.33 19.15 SUB SUB AREA Practice C • A P' A Remarks BASIN AREA (ac) DURING CONSTRUCTION 39 0.27 4.55 Hay or Straw Dry Mulch (1-5% slope) 110 Pervious 4.55 120 Pervious 4.92 39 0.30 4.92 Hay or Straw Dry Mulch (1-5% slope) 130 Impervious 0.30 38 0.02 0.30 Gravel Mulch I 130 Pervious 0.37 39 0.02 0.37 Hay or Straw Dry Mulch (1-5% slope) 131 Impervious 0.21 38 0.01 0.21 Gravel Mulch I 131 Pervious 0.03 39 0.00 0.03 Hay or Straw Dry Mulch (1-5% slope) 132 Impervious 0.67 38 0.03 0.67 Gravel Mulch I 132 Pervious 0.25 39 0.02 0.25 Hay or Straw Dry Mulch (1-5% slope) 133 Impervious 0.66 38 0.03 0.66 Gravel Mulch I 133 Pervious 0.21 39 0.01 0.21 Hay or Straw Dry Mulch (1-5% slope) 140 Pervious 2.00 39 0.12 2.00 Hay or Straw Dry Mulch (1-5% slope) 150 Pervious 1.93 39 0.12 1.93 Hay or Straw Dry Mulch (1-5% slope) 160 Impervious 0.79�'. 38 0.04 0.79 Gravel Mulch I 160 Pervious 0.27 39 0.02 0.27 Hay or Straw Dry Mulch (1-5% slope) 170 Impervious 0.57 38 0.03 0.57 Gravel Mulch I 170 Pervious 0.14 39 0.01 0.14 Hay or Straw Dry Mulch (1-5% slope) 502 Impervious 0.51 38 0.03 0.51 Gravel Mulch 502 Pervious 0.13 39 0.01 0.13 Hay or Straw Dry Mulch (1-5% slope) 503 Impervious 0.51 38 0.03 0.51 Gravel Mulch I 503 Pervious 0.13 39 0.01 0.13 Hay or Straw Dry Mulch (1-5% slope) Cnet 0.06 Pnet 0.8 :FF = (1-C'P)100 EFF _ 95.4 78.3 PS Before I 1 0 0 EFFECTIVENESS CALCULATIONS 187010500 ProJec¢�'c,xs �Tt ha- kHarmo�nyechno/ogyParke' ) ?�+v F..�'+`"rj;``STANDARDNFORM B,$,. Calculated B g> 1? MBK_' - 5. _ ;. , a x _, fi.� i:v, ,•- v =- H° t�. Date `� .� 3/18/2008 Erosion Control C-Factor P-Factor Comment Number Method Value I Value 9Asphalt/Concrete P Asphalt/Concrete Pavement 0.01 1 12 Established Grass Ground Cover - 30% 0.15 1 14 Established Grass Ground Cover - 50% 0.08 1 16 Established Grass Ground Cover - 70% 0.04 1 18 Established Grass Ground Cover - 90% 0.025 1 SUB PS AREA BASIN %) I (ac) Site 1 92.16 1 19.15 SUB BASIN SUB AREA AREA (ac) Practice C . A P • A Remarks AFTER CONSTRUCTION 110 Pervious 4.55 18 0.11375 4.55 Established Grass Ground Cover - 90% 120 Pervious 4.92 18 0.123 4.92 Established Grass Ground Cover - 90% 130 Impervious 0.30 9 0.003 0.3 Asphalt/Concrete Pavement 130 Pervious 0.37 18 0.00925 0.37 Established Grass Ground Cover - 90% 131 Impervious 0.21 9 0.0021 0.21 Asphalt/Concrete Pavement 131 Pervious 0.03 18 0.00075 0.03 Established Grass Ground Cover - 90% 132 Impervious 0.67 9 0.0067 0.67 Asphalt/Concrete Pavement 132 Pervious 0.25 18 0.00625 0.25 Established Grass Ground Cover - 90% 133 Impervious 0.66 9 0.0066 0.66 AsphalUConcrete Pavement 133 Pervious 0.21 18 0.00525 0.21 Established Grass Ground Cover - 90% 140 Pervious 2.00 18 0.05 2 Established Grass Ground Cover - 90% 150 Pervious 1.93 18 0.04825 1.93 Established Grass Ground Cover - 90% 160 Impervious 0.79 9 0.0079 0.79 Asphalt/Concrete Pavement 160 Pervious 0.27 18 0.00675 0.27 Established Grass Ground Cover - 90% 170 Impervious 0.57 9 0.0057 0.57 Asphalt/Concrete Pavement 170 Pervious 0.14 18 0.0035 0.14 Established Grass Ground Cover - 90% 502 Impervious 0.51 9 0.0051 0.51 Asphalt/Concrete Pavement 502 Pervious 0.13 18 0.00325 0.13 Established Grass Ground Cover - 90% 503 Impervious 0.51 9 0.0051 0.51 Asphalt/Concrete Pavement 503 Pervious 0.13 18 0.00325 0.13 Established Grass Ground Cover - 90% CnetT 0.0212585 Pnet 0.97 EFF = 97.9 > 92.2 PS After EROSION CONTROL CONSTRUCTION SEQUENCE Pmjecf: Harmony Technc/Wj, Park STANDARDFORMC C. WafedB : MBK Data: Y182008 SEQUENCE FOR 2008 & 2009 ONLY Indicate by uu of a bar Me or symbols when erosion contrd measues w0 be Installed, Major modifications to an approved achedde may regWe submoting a new schedule to approval by the City Engineer. YEAR 2008 2009 MONTH J J I A S 0 N D J F M A M J J OVERLOTGRADING 4aa tij� 4 �; •:.^z WIND EROSION CONTROL Sol Roughening Perimeter Berrler AEdidonal Barriers Vegetative Medrotla Soi Sealant Oder RAINFALL EROSION CONTROL STRUCTURAL: Sediment TreplBasin� Inlet Filterstii Strew Barden SIR Fence Barriers LI rJf t Y'3 f .,�N�^ ,n11�� F}J y%F7 sT, t� .ilf.'R Ftr1 Sand Bags Bare Sol Preparation Colour Furrewa Terracing heX/Concrete P Asp avYp Other VEGETATvrE: Permanent Seed Planting MWCM1inI✓$ealeM X-34a.w �.,i„tt�,�• �+, x.�-�y.:?>r�`�' Temporary Seed Planting Sod Installation NetiingslMaaYBlenkets Other STRUCTURES: INSTALLED BY VEGETATIONIMULCHING CONTR DATE SUBMITTED a MAINTAINED BY eAPPROVED BY CITY OF FORT COLLINS ON j 17 1 1 I I 1 EROSION CONTROL COST ESTIMATE HARMONl! TECHNOLOGY PARK 3RD FILING R 1 n18T7oo -r By. r4 c.t.w� ,„ at r + s" ia�ar<<, '<' � Date ,. v4H/2U0 Piepared ,?MBK 'a — . CITY RESEEDING COST Unit Total Method Quantity Unit Cost Cost Notes Reseed/mulch 21.18 ac $723 $15,313.14 Subtotal $15,313 Contingency 50% $7,657 Total $22,970 Notes: 1. A<=5 ac=$655/ac; A>5 ac=$615/ac. EROSION CONTROL MEASURES Unit Total Number Method Quantity Unit Cost Cost Notes Wattfe 5 ea $300 $1,500 5 Straw Bale Barrier 5 ea $150 $750 8 Silt Fence Barrier 1320 LF $3 $3,960 39 Hay or Straw Dry Mulch (1-5% slope) 14.93 ac $500 $7,465 38 Gravel Mulch 4.22 ac $1,350 $5,697 Subtotal $19,372 Contingency 50% $9,686 Total $29,058 LA I V) M U a m c m o m ° m cc a m Ul N c O C 'O O CL CL D 0 al w J N N UU W t0 Q O C "� o O O t cO N u .6 06 Q i r QLA x N n .. .. W 0 C C Q 0 v 0 V O J N m m N @ r m Q C O O U N C C f0 m F- F O n C � N ::D e c o CL o 0 z n LLJ O a U m (D Oc n oa C m a�u d C 0 J 0 O V U n SEAR -BROWN I Harmony Technology Park 3rd Filing Riprap Rundown at Basin 190 Outlet Updated: 8-Apr-08 Pipe Diameter: D 24 in Discharge: Q 14.81 cfs Taiwwater': y 0.8 ft (unknown) Assume that y=0.4'D if tailwater conditions are unknown 1. Required riprap type: By: MBK 187700640 Checked: AGW N Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec ' Q/D2.5 = 2.62 < 6 --> use design charts D = 2.00 ft YUD = 0.40 Q/D^1.5 = 5.24 d50 = 4.34 in -------> 6 in ----> Use Type VL (Class 6) riprap ' 2. Expansion Factor: 1/2tan0= 4.91 3. Riprap Length: ' At = QN = 1.92 ft2 L = 1/2tanO (At/Yt - D) = 2 ft 4. Governing Limits: L> 3D 6 ft increase length to 6 ft L<10D 20 ft=>2ft-->OK 5. Maximum Depth: �' ' Depth = 2d50 = 2 (6 in / 12) _ 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width: Width = 3D = 3 (24 in /12) = 6 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: tType VL (Class 6) riprap ' Length = 6 ft Depth = 1 ft Width = 6 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52877F\ACTIVE\187710640\CIVIL\DESIGN\REPORTS\DRAINAGE\3RD FILING\RIP-RAP CALCS\BASIN 190-OUTLETALS SEAR -BROWN Harmony Technology Park 3rd Filing Riprap Rundown at STRM-D Outlet Updated: 15-May-08 Pipe Diameter: D 18 in Discharge: Q 11.12 cfs Tailwater: y 0.8 ft (known) 1. Required riprap type: I 2. Expansion Factor: 3. Riprap Length: By: MBK 187700640 Checked: AGW Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec Q/D2.5 = 4.04 < 6 --> use design charts D = 1.50 ft Yt/D = 0.53 Q/D^1.5 = 6.05 d50 = 3.55 in -------> 6 in -> Use Type VL (Class 6) riprap 1/2tanO= 5.21 At = Q/V = 1.44 ft2 L = 1/2tanO " (At/Yt - D) = 2 ft 4. Governing Limits: . L>3D 5 ft L < 1OD 15 ft 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) _ 1 ft 6. Bedding: increase length to 5 ft => 2 ft --> OK Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type VL (Class 6) riprap Length = 5 ft Depth = 1 ft Width = 5 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52877FWCTIVE\187710640\CIVIL\DESIGN\REPORTS\DRAINAGE\3RD FILING\RIP-RAP CALCS\STRM-D-OUTLET.XLS II I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J 1 APPENDIX E 1 I 1 1 1 1 DRAINAGE & EROSION CONTROL 1 PLAN DRAWINGS & DETAILS 1 1 1 1 1 1 1 1 1 L i 1 4 :is„ 1 ?lP S T.-ij ©®"" M®Mmm HYDROLOGY TABLE Duipn ROIM B441Dp) pen) CanpwlY - 01N14b) DIq)M) 110 110 4.55 0.32 3.]1 9.7] 120 120 4.92 0.81 13.19 40.87 130 IN OA7 0.57 1.52 4.35 131 131 0.24 0.67 tA0 2.38 132 132 0.0 0.n 2.0 8.62 133 133 0.87 0.79 3.1 8.42 140 140 2.00 0.81 6.72 19.92 IN 150 1.93 0.81 6.34 19AD 180 IN 1.06 0.79 2.85 7.72 170 170 0.71 0.81 2.02 5.40 IN IN 12.04 0.32 6A5 17.37 IN 190 325 0.85 5.8] 14.81 501 W i 15.85 0.32 9.41 25.47 002 502 0.84 081 2.08 578 5D3 503 1 084 O81 309 579 1 OS-1 162 0.85 5J2 1356 _ I09-2I 0% 0.85 2A3 ]20 o IN, IN m I:Iw • M&%= =m9 LEGEND -494 PN OSEDINDEXCONIWR-SFf INTERVAL -4939 P@F^ OSED INTERMEDIATE CIXRd1R-1 Ff INTE(IVA -(4915)- EXISTING INDEX COMOUR-5 FT INERVAL --(4o19)- - EXISTING INTERMEDATE CONTOUR - I FT MTEWAL DMINAGE BASIN BOUNDARY LINE 102 - BASIN ID sp�p� BB' � AL I} Y (0 K Z Q O T dZ U 00 Z N E U o �Y -y Yz o U > Z z ED > R LL U Mm LL lRM PmnlSael ISTINGST)(BT LI `Tl A STORM EXHIBIT )RAI NOT FOR CONSTRUC➢ON w y`E Y I N,;.n W�..: 1en1as4D M1 IYni }J 1i10 Ra14eLF��MLN-11-W l0. M WF 63JIL63 pAy W T4 DmMng No. RATIONAL mra am -.W o ! RBNsion STael 1M1 r,Me \ \ \ \ , / I I , I ' I \ / \�R I IF e I I V L9A L ---_// _ / --_491 / / ' i,/ TEMPORARY SYSI PC / / ' a / O I I S I / I / I / I / / I / I / I / I I I MERIGM GREENORTN GREEN P575 S]5 GEO I SHEU FUSE SEE DETAL SHEET GIU I I / I / AREA INLET SEE DEFAIL SHEET C60!5 4 / MVLCX � / I \ I I I IV I / / LOT 1 4.92 AC. 3 _ I SCOUR STOP s' LONO za"MOE INSTALL PER MANUFACTURERS RECOMMENDATIONS SEE NOTE 5 THIS SHEET ALLOW / c l r , _ PROPOSED — 5WALE 10x MT GREEN AN GREEN AMERIC VEHICLE I C3SD ICE AL SHE"SHEET c141 TMCY.INO SEE DUAL I PAD I i I %iCpOEFD Rbli-CF-wnv ----- PRCVDSEU RGMIXE —M10— BOW INDEX CWTWRS t — 5111 HOW INTERI OMRAIRS • <4570l— "S9NG CONTOURS __---M971r---- - PROPOSED STORM PIPE WTR MANHOLE EVSTNG STMM PIPE --- I PRWDSEO SWALE ® \SHILL£ TRACKING PAD —e—e—�— 4LT FENM SO RIMM NAY OR STRAW DRY MVLM STRAW BALE MEM DAL (1- WATTLE WATTLE IMLT nLTER (WRD wl£T) .SEDIMENT TRAP STAW RAZE CUTLET PROTECTd ® EROSION CMIHW FABRIC DIRECTOR OF FLOW I t I D Sr gym'/ Im' :D / � ���' 1♦0 II Y� ,'� TEMPORARY BWKE � H \ PRECISION DRIVE � e 1 / I > Z&W � I VEHICLE \1 1 j / 1 I TRACKING I I I I I 1 ID$ 1� wLw I I PAD I III I n 1 I / 'IIII I 0. I UCH g LOT 2 / / LOT 3 I LOT 4 IIII 3.00 AC. 2.00 AC. I I 1.93 �C. IIII I I SCOUR STOP I \ III ' 1 INSTALL xE WIDEINSTALL \ 1 I 1 lI A\ MANUFACTURERS RECOMMENDATIONS SEE NOTE 5 THIS SHEET I \ I I I n / I sII AN P O0UG WIDE SILT FENCE AB01 �\�` I I\\ I NSTALL PER MUFACTURERS --. ----- JY�/ RECOMMENWTIONS I \ 1 I \ ISEE NOTE 5 THIS SHEET STORM WATER I OUTLETS TRUCTURE — QT \ 4RL'0 ' SEE DETAIL 9HEET LSo5��AIDS \ III+ \ u 4901 \ �/ I SEE EAIL SHE RSRAR i —DRAINAGE &UTILI�Y 9z rASSABEDDINGE I TRACT --LL >rcLAssABEDOINCLL I� 4.55 AC. \ I A0°° ALL LL \ 1 1 \\ I LLLLLL LLI � r Howe A\�A —ST. G OVER EXCAVATE PONDTS CIIBICY •B'RIPRM —" / SERVERS BE REMENTTRM. SEDIMENTS ST 1l LONG X V DEPTHX S' V \ --�/ \// DEPTH REACHED EREM IVE �RPCWTCU33ABEDOING OEPTX IS REACHED PLAE SFEMOVED _ _ SEDIMENT WITHIN THE SRE L-,jl ]QN ROCK CREEK DRIVE (EXIST EI (FISTROWVMES) I I I I I 1 I I NOTES 1. AL DISTURBED AREAS ARE TO BE SEEDED AND MULCHED, INCLUDING REGRADED LOTS AND PG-0 AREAS. 2, CONTRACTOR SHALL PRWIOE TEMPORARY IRRIGATION IN NOWFIRIGATED GRASS SEED AREAS FDA ESTABLISHMENT OF GRASSES. ]. STOCK PILES HOT TO FY.CEED IT HIGH SOIL. I ALLCFFSRE AREM DISTURBED WRING CONSTRUCTION ME TO BE RE -VEGETATED AND RETURNED TO A SIMILAR CONDITION AS PRIOR TO CONSTRUCTION. 5. EROSION TECH INC. (SCOUR STOP) 2501 SE TOMES DRIVE, SUITE 53D ANKENY, 10WA W021 IdT]-99-SCOUR CALL UTILITY NOTIFICATION CENTER OF COLORAUO 1 W800-922=1987 City of Fort Collins, Colorado UTILITY PLAN APPROVAL THESE PANS HAVE BEEN REVIEWED BY THE LOCAL ENTII1Y FOR CONCEPT ONLY. ME MPRONEU: REVIEW DOES NOT IMPLY RESPONSIBILITY BY Oily Engineer Date ME REVIEWING DEPARTMENT, ME LOCAL ENTITY ENGINEER, OR ME LOCAL ENTITY FOR CHECKED M: Water 9 Wwsmter Utility OWe ACCURACY AND CORRECTNESS OF ME CALCUI-W*NS. FURTHERMORE, THE REVIEW CHECKED BY: DOES NOT IMPLY THAT OUMTIRES OF ITEMS Stormwater Utility Date ON ME PLANS ME THE FINAL QUANTUM CHECKED BY: REQUIRED. ME REVIEW SHALL NOT BE Purb B Recreation Date CONSTRUED IN PITY REASON AS ACCEPTANCE OF nNWCML RESPONSIBILITY BY ME LOCAL CHECKED BY: QUANTITIES ENTITY FOR ADDRIONAL QUITIES OF TEMS Engineer Dote SHOWN THAT MY BE REQUIRED DURING ME CHECKED BY: CONSTRUCTION PHASE. Dal I a w Z 5 C, E OJ m c� x N E w j O o o U d o Z m Z OZ m p rpL y QQ o LL �w PanlliSeal OQ-��oLYOG MO'Slf. p �3^ 'Vq� 7 33JJA E' MAY 19, POOB P,gla Nerd: 1 1 M AVIV 10111k-HOW: B ANDim � OWN, WLM00 Dramm NO. C-140 Rarisbn Small 0 7daa CONSTRUCTION SEQUENCE INDICATE BY USE OF A BAR ONE OR SyMBpS MI EAOSCN CONTROL MEASURES WILL BE ISTALLED. MAJOR MODIFICATIONS TO M OPPRShD SCHEOUE MAY REWIRE SUBMITTING A NEW SONEWNE FOR ANNI BY ME CITY ENMELR. WAR 2003 2Wq Jan Fat Mw Ap Mar Mil Al lMglS Ga Nou Our, Any FM New Am MONTH OKALOT MADINC SoMMMMMI WIND EBOSW CONTROL SM Rogh ning perimeter Be r AdWI Amor; Vegetation MethodsSON Social Other RAINFAU- EROSION CMTia STRUCTURAL Seal ant TnaRaan last ere Stan Bello Sit Fw[s Smlo SaoSao Sol Reparation Cmtm Fmwe Tmu[my A, adt/Cmow vat. Other -Waal Mulch VEGETATVE parnment Sad printing Muain Tenpwvy Stl Rant" U lw 4AmVAwleb Ij STRAW BALES STAKED WIN TWO STAKES PER BALE of TWINE POINT A MUST BE HIGHER THAN A POINT B A B SECTION A PLAN VIEW A GENERAL NOTES: COMPACTED BACKRLL FLOW I. INSPECT, REPAIR, AND REPLACE, (IF NECESSARY), THE FILTERS AFTER EACH STORM EVENT. 2, ALL BALES MUST BE REPLACED AFTER 12 MONTHS UNLESS APPROVAL IS GRANTED BY PROFILE VIEW THE ENGINEERING DIVISION FOR LONGER USE. EROSION BAD LE HII DAM STANDARD EROSION CONTROL CONSTRUCTION PLAN NOTES, The City of FM Wince Stamw\F UMlly xwlm cal Ingecb mart G mfiM at least 24 more arm to my cmstrvctt an AM atn. AN maned aw amb0. ler at Would eta las Fela.e L� to my lobe dMlr bg towney (o wbi lF woll ale), All otma rsyYM emblem ot[a meadows ads the, laud at me gprcpbto time F Ma w Mwclbn e4Mnw any F tw A we gpawd AmOwt swo l.. m tinwim plme, and wW contra rot. Pre-dl[WrWms noptallm WAR M pMcted ad rseasonal eiwew pmxa. Rangy w dlslurtmw W wM wpelatm until M IMRM of As aw rayYM b MnMox construction Saar lm4 and for the haM1wt mbwa pol of two AN aids w ose l MAY; Imd disturbing a[UMNY (yrbpFg, wading unity Fs{tlbt4n4 iln S eh. Mul to t A a w men mNtim t w deem am one' 9 kp ) IW y Nn minA Y • 9 9 Imd [mw,w unit maim. street, w oua .a wmmw ere No eats F forOlsonn Made PRISON 30) d b of .a Yoe rnemmy or p t Iona dbw p M rlpm rpawd Y rtl^p Pon" for oboe / m dip (So) Craw ate rswYx tmww 't o pwmmml wait Simm ma UI, Wtility, . ImdecgYq..t[.l 1, mmled. unlm rexsax cpwrewd by lma m C�I:l d-<wwwtv�wdd w M Al lane Mturbinq ¢wWIM wtll pe ten Wy 1W w as Aammued arm bglRw met ImawM moment wgatlx ree adamAW by the ay a Fort Cabe Engineering Department. MI Impwwr (eAuctwtl) air r w aw al rAOee AI Mwwxd A rwenval as wasteful after vmn runoff went F wmr to wnw, mmued perfammw of then FIwdW 1 (unction. Al Maned eeainmt4 ;aAkamY Now an paas0 ry y swkwrelxSunni uun Fliba mm and agoxd of Ina mmlw end location so an not to Dow than ear drakwupway. Nban o sa owhal sa w ittMAmyM re W rfel Draughwilg, wo F% and Arbi nit tmang. 1 My di xMple rmaFFg aRa 3O mN unn W eeelea and mama my 4JSww pi Its de IN hmh O hg. w d mg W w4 w may ~ meYtl lm,m.wmwr ray the'wetrwtm - r r roe. ma era a amen 1W stream Water'11 W pompon wwM As comuctt of be mmM b IW lows SOD feet of al wan.wmm. AS unstata0 was until be nee and nvalmea Ceramic, anal monde t4npway Mgolt F rem-iagala grow aeed me M Mewwmwt of wtM graea SIONE LE9pMIKK1 11W1 TIC OPEN ON KVDS) Olun[S) CUM 6- Al - Ion W 60 - M AS 25 - 50 10 6 2- 10 a CLASS 12 10 - ISO 440 NO - TO 275 25 - sO as 12 2 - 10 3 CIAO IS ISO I21s sD - 70 as 25 - 50 2yS IB 2 - 10 10 W$ 24 ISO 1`qp SO - TI IRS 25- SO ax 24 2 - 10 x my newel sawly ma el Dow SECTION A -Ana• F NIET PROTECTIOaw A A PLAN VIE amn.... a.mleewaeTrmecawwamx,.n.Mnanrara..nAa..«ml....n^a.Vmm,nnl.m STRAW BALE STRUCTURES SLOPE 2011 M MOMS'. D = air = STATE C V SSW CATN IN FOR NOMINAL STONE SITE, ALL EDGES WILL BE ROEW INTO ABOVE OIMENSW. IF RIP~ TO BE GROATEb. GROUT SHALL BE IN ACCORDANCE TO ASTM:C1102UlEST REVISM GROUT SM BE VIBRATED IN OUNCE. TOPS OF E%POSED RIP~ Vi ftLL BE WIT BRUSHED AND CLEMED OF GROI1 TO EXPOSE RIPRAP COUCIR OIMEWO S GNEN ON PLANS ARE MINIMUM DMENSKAS. R IPRPP SRMIB STARET 2 FEET BEHIND THE RES AND EXTENED THE MINIMUM LENGTI RUS 2 FEET THE CONCRETE PAN CAR BE INCLUDED IN THE WOTI OF THE RIPWJ PAD. THE RAW MEN SHOULD EXTEND A MINIMUM OF A Poor ON EITHER SIDE OF THE CONCRETE PAN IN SON DIRECNONS. RIP RAP DRAWIN /2 - 3/4- ROM 6' MN, 1. SGE DESCRIPTION hueWclva ma Caanw[M cm muccUm eNM anYxa of .Mal ge]Fq, DAIRY.ak rw6eay mnmUnctbn and the wwwctim of a w\mum/anmN m pmn F 1M man^ a[11MUw we pd wd F Na N hg a w": owning as B Mg nxmay M peninsular cautious 2. Maalow, W paimla mW. D�WNm of wal elowl q Including Ianpawy dowton wax 5. Oaa19 W blwl M lt1 a. Utility meWaM - FtludFg .team 7 Anyway mneW[\kn 0. S\WIeaIM. bdu wa6r9 B. RmuW of mina mmnq As aaMga aw to the tie mldne 5z713 ma. 2116 mere of Are its we expected to unG dmFg And/or IRoa dy a, Rowed -C - 0..32 hale. cawUncWn, Ralta'C' . 0By uXa meFudt, AS sto 1W WAN At Moderate III Fxdanr zone ma Loa Mina D lity zone pea the City of FM CtlIFe aw many Man 1M whiny Alta timer of maa tWy DSR to I; A, nee Rnprawmwts .N der aAMaa to both eM and hil mnew, a. As wmeMmmw\ prcpa\y cwWN of due upwaWmi land Belaa construction. At WA mWltl W fern land aln nmw w®S ad ends f Able we no mtk"W ANI snowy maa eN W no Mlolw storage for a " m OR A" aI W no m W Rwuga an My, q. A" ell We mUcllalM rem-slameola components of pwnwge. h. no do a relnq maw b the Fwa Ptl Oalroq GARY noon w1er nmN tare Me dM met a Are We aN W Fmyw\M to an m-ms Mmtt wood by curb a: quits, pbx ch meh, and o ohs aaa Am, 2 SIDE MAP' I Sea 6egMga ! Mxbl M Rob. 3. Wan FOR STON'MI KUUIION MEN2aT : o E.wt and sanest CmAa. Sw Erect Combat Notes and Samww Tm (NM Weep, B. MaMMa Hand" and AS na.wtt: waves end/d W maatam to antra bolmnq materWe ad wn4 and alyctl of acm aywnm a mow to ensure Me matWaa do not Ise"the e Alta Na Mt aneat iw Mutation aaar mthate IN FodwCook. A dt cmau waa. lcFg ma1wM4 swt4 air apwp byRamaa should not W aMmwgw Into the on-wo ,seer gsls na wouldAbortAbortion,re ld A" mAr Na ON bon tW6 In Na indent off a Mailfromrem a mthe Site Dow Fob a nwm weer ew\m. yprawbto manage should W andertmw anceab\iy to mmoM the M ma s ma marvel Man "Me Am ome-bug. • FINS sanutu}AMx .ODD Ib1FIFRM ST WA1 MNUGE T frwkn (MAN NotedN4 t omInshoot Ion Ad aabglaalmeasures to ba adutma almx\er aemw S ONES CATROS Yawrw should W unas\am to rernow allows exec wam[la Iran As into and dingo. of Itheem grata mWFRY. oR amw maOw te F an app<gbla mn , r mm eyn umd W unto uN-aw eel b 9 of mud and cean yRuga Fm xMMw arearg Ne NO, Wit and w should not W AwhW acng radewe and moved to Dols, non-pro1MW 6aFags mays ant dM w" ewduay Into May Cara Co P RM. 6. INSFEC Ol AND MMNTENMOE: 0. Fyoul as malaau mw lwshW andanim an , rawlw b e an Outlined A Section 6 of the Tsmn and Cmditims of Na CIIRS Pglera Ps,mlt SEEDING CFIART TWe Mi. R✓ n minutes Spectre oM Applkary, Rnly of Setle br Txrpaor V tQtim ma/a Coyest Crop., songs Dmled Ponea/Ane ArmuData a RYmow Cod 20 Caw TO Cad Rho GOP w Wheat - aftera Co Meal - Wng COO! 60 Ro1ey Caa 60 YRa ft SO N1bM Sudw Yam 15 aghm BA 10 Can mere their ono q eN In ns i Wam eamr 9ra max map onF late Mobil ammo. Lti11 • dnllMpmllnq Art" AS wna and Imar/mAro waa.ee. TWO 11A. Phil Wlw for Pa MM and Tmwy/C^wr Dap Paww. DATE PERENNIAL DOOPMMY/oWtu CRASSES CROP GRASSES Wam GOP Wwm CM Job 01 - Fet 25 Yen Yen No No Ma On - May 15 Yen yen No Yen Noy I6 - May 31 Yw No Yw No An 01 - M 31 he No Yen No Aug 01-NOR 31 An Yen No YYen e sup 01 - sup he No No Get 01 - Dec 33111 Yen Yen No No Mulching anal be wW to .Mel b wlWlunmml of wgalalt, One or man of the yTa aew but d SIN 0 AWW WO bm Nd grow esse mixtux a a pwory wgetouw a[p. mI mle Oates W use Mplkatt Rots Hydraulic eawU a pye A t05 _ Dw 31 1 1/2-2 Ime/won Guam mka (mate w Nae.l.) Jay a - Door i3 Not ma a l%a[w Hay10 show mulch "lengtht�1 of era* We,ae and at least 50% of As Rea eyes wave In a agemannt" ma m, g shin na1M w® hay from a na\M q mo1W0. If decade. N Yrgatt Is usedhldrmuc mulmw may as gaol man MI Is Sawn 6y SO, Nay a Stge nut 1. Hoy a oboe mulch SHE be moral Io M, N by m, of the fao,ing method.: (a) A buyer MM 11 wimp the flow bur Awn a era Mo N, eel Al lei BOX of the ISer 0011 W 10 bona or man M larch, (0) Ma,fwWwd mulch ne\AFoaled ow Ne hey a .man mnang to m wwWwa mamanim (o) Academe pa m the mulch to The anamus's Croft. z uI eta.or . mary ,+ICI W n« or m. w....ea. Yi 6'.�aws t vim. v'vwi. + ee se.emn....e veeee.�. .oun. our U Flo I wolrww :DowOuchatos - eee.e...«.«�..,.. er..wwa.._raa.,l opecom on tip EROSION CONTROL BLANKETDETA/L FOR CHANNEL INSTALLATION A NOTE: B wzoffeN MxSBtPAexoYaaoM:MTD®M CINMmoTeLW^iwMeEL�cuMRWwoicW ^RIIICAL DINTS �pp�E�CO➢�obM xLWY�CGMNMTIE N�bnlwv� L^ ra®ewYroaRar6w.Aym Tw aAawha. MAIN ^N - reeAA yyR. �w ;;7 ¢ a c r o n.ws 01 V maw v 00 E my BE AMER a ctia SOO �, ® WA,nF,... v 0 N. e > o z¢ ^ O GOpz n IT � 0O S NO at 2 PWRASwI CALL CENTER CCLOFNyU00 CENTER OF CCLORAOO 7.800.922.1987 � QPpO RfC/ft o .Mg1n� MEMBERm,MERS City of Fort Collhs, Colorado UTILITY PLAN APPROVAL THESE PLANS HAVE BEEN REVIEWED BY THE LOCAL ENTITY FOR CONCEPT ONLY THE APPBOMED: REVIEW DOES NOT IMPLY RESPONSIBILITY BY City FrAreer Date THE REVIEWING DEPIV MERE, ME LDGL CHECKED W, TITY ENENGINEER, OR THE LOCAL ENTITY FOR MAY 19. 20D8 Writer h WCAeWoter VARY Date ACCURACY AND CORRECTNESS OF THE CALCULATIONS. FURTHERMORE. THE REVIEW Frob mmb.. 181710610 CHECKED W, DOES NOT IMPLY THAT QUANROES OF ITEMS m StoWaer Utility Date ON THE PLANS ARE THE FINAL QUNNIITIES AN Kanl4loefa-141W CHECKED BY REQUIRED. THE REVIEW SHALL NOT BE Rd" k Rarmtion Date CONSTRUED IN ANY REASON AS ACCEPTANCE .Y a M OF FINANCIAL RESPONSIBILPY BY THE LOCAL m. Noy mn Myron CHECKED BY: Traffic Erxinew write ENRTY FOR ADDITIONAL QUANTIFIES OF ITEMS DnWYBNDE C-141 SHOWN THAT MY BE REQUIRED DURING THE Re NOW $1Md CHECKED W. CONSTRUCTION PHASE. Cote 0 Bd30