Loading...
HomeMy WebLinkAboutDrainage Reports - 09/01/1995ADDENDUM NO. 2 FINAL DRAINAGE AND EROSION CONTROL REPORT HUNTINGTON HILLS FILING 2 Prepared for MSP Companies, Inc. Submitted to City of Fort Collins 256 West Mountain Avenue Fort Collins, Colorado 80521 INMOS ASSOCIATES formerly Resource Consultants & Engineers P.O. Box 270460 Fort Collins, Colorado 80527 (970) 223-5556, FAX (970) 223-5578 Ayres Project No. 93-0167.00 HUNT-9.TXT September 1995 I 1 I [1 1 I 1 1 1. INTRODUCTION This report is Addendum No. 2 to the approved "Final Drainage and Erosion Control Report for Huntington Hills Filing 2" prepared by TST, Inc. on June 1, 1992 (TST, 1992). Addendum No. 2 describes the hydrologic and hydraulic analysis used in the design of additional culverts for the detention pond located along Skyway Drive, approximately 1,800 feet east of College Avenue (Figure 1.1). Additional culverts in Skyway Drive are proposed instead of constructing the spillway along the eastern side of the detention pond. The spillway would have discharged water into Huntington Hills Filing 5 where it would ultimately be required to pass the drainage water under Skyway Drive. By constructing the culverts at the detention pond, the spillway would not be required, additional development could occur in Huntington Hills Filing 5, and the drainage water is passed under Skyway Drive. 2. RUNOFF MODEL The Urban Drainage Storm Water Management Model (SWMM)' was used to compute the runoff from the contributing basin and route, the flows through the detention pond. The hydrologic analysis was performed assuming full development of the basin. Figure 2.1 shows the subbasin delineation used in the model. The delineation was developed based on existing development (mostly in the western half of the basin), currently approved development (in the central portion of the basin), and a preliminary design for proposed development (mostly in the eastern portion of the basin). Figure 2.2 shows a schematic of the model -routing network. 'Urban Drainage Storm Water Management Model -PC Version (UDSWM2-PC), March 1985. Ayres Associates, formerly Resource Consultants & Engineers 11 1 TEE .,3y 0 C 19911s uoSipoyy m e o O u c ' m _ o yawls UOSipory JN e` Z0 � y o � O o n j � T O V Q O N W c J c c 0 y V Q o c U N U� WA = u a 0 yaa�iS �91a0 � n anua;v a6ajjoZ) C 0 ..p cc U 0 a+ U Qi .^^O CL a� rn LL Resource Consultants & Engineers 2 A Division of Ayres Associates I 11 11 1 1 I I %:-Figure 2.1. Subbasin delineation:;.; i Z s z w _ Q ? ^ � w m3 � o w w O uW w 2 U z i Q zo z Q W h Q r W N Z O N m > W > W K n z Q ZLLI N N. W ;�O LLJ J O J M1 M N N N N I LLB N N 0 00 N N Q V I O M v N O z H 3 a N Y I— Or Q O C O a N Q G WU) N v L 2 r v y U^^ Q N p U) I C r = w � M N rn G O W W0U 30u O n OWM O w» . O M '^ v' 300 N N N FA I N N N m 3 w I e N Q u w J J O N N Y O C D1 C 0 a� O E d t M� O U Y M a) L U CO N N m 7 CD M Ayres Associates, formerly Resource Consultants & Engineers 4 The City's standard 2-hour, 100-year rainfall hyetograph was used in the model. This storm has a total rainfall depth of 2.89 inches and a peak 5-minute intensity of 9.0 . ' in/hr. The model was also run for the 2-hour, 2-year storm to aid in the design of inlets on Skyway Drive adjacent to the pond. The 2-year storm has a total depth of 1.06 inches and a peak 5-minute intensity of 3.24 in/hr. ' Subbasin runoff parameters were developed following standard procedures used in the City. Geometric data and land use (percent impervious) were determined from aerial photographs and topographic maps. These data are summarized for each subbasin in Table 2.1. The percent impervious values reflect the assumed fully ' developed condition of the basin. Table 2.2 summarizes values for basin parameters that were assumed constant for all the subbasins. These values are commonly used for ' similar situations in other stormwater studies in the City. Table 2.3 lists the length, slope, and type of each conveyance element in the model. Constant shape and roughness values were assigned to each conveyance element type based on field inspection and measurements taken from the maps. These values are summarized in Table 2.4. The values for streets reflect values commonly ' used in other City studies. Storage -elevation data for the detention pond at the basin outlet were developed by digitizing topographic the Elevation data developed a map of pond. -discharge were using the final design configuration for the pond outlet which consists of three pipes. ' One pipe will be a new 30-inch pipe at a flowline elevation of 4936.0 feet MSL that will replace the existing 30-inch pipe. The other two pipes will be new 36-inch pipes with a ' flowline elevation of 4937.0 feet MSL. A concrete weir with a crest elevation of 4938.0 feet MSL will prevent flow from entering the 36-inch pipes until flow overtops ' the weir. This will store water in the detention pond and help sustain the wetland vegetation during low -flow events. Hydraulic design calculations were performed to develop the elevation -discharge relationships for the individual pipes. Critical depth was used to define tailwater elevations since this was above potential backwater from downstream. The relationships for the two 36-inch pipes reflect reduced capacity ' Ayres Associates, formerly Resource Consultants & Engineers 5 Table 2.1. Subbasin Parameters. ........... ... ......... 'SUbb*a§in: .... .......... .... ...... .. . .......... reaX .. . ..... .. . . Tributary Wtdth:$top ...... ft .......... .......... ........ Percent ry us ... . .. . .... .............. 1 1.8 950 0.029 40 2 2.1 430 0.071 30 3 2.8 320 0.033 80 4 5.6 570 0.047 80 5 3.6 400 0.027 90 6 3.7 280 0.048 90 7 2.2 860 0.112 15 8 2.5 710 0.060 40 9 2.5 730 0.028 40 10 2.7 660 0.061 40 11 2.1 400 0.057 40 12 1.1 650 0.044 80 13 1.8 480 0.084 20 14 2.1 480 0.044 40 15 2.6 440 0.083 40 16 1.4 350 0.054 .40 17 1.7 210 0.067 70 18 1.7 840 0.076 40 19 0.6 270 0.038 40 20 1.0 250 0.077 40 21 3.5 400 0.059 50 25 0.9 450 0.020 100 26 0.2 380 0.020 .100 27 0.4 795 0.020 100 31 2.1 550 .020 40 32 1.7 460 .036 40 33 1.7 720 .020 40 34 3.7 600 .053 40 35 2.1 700 .032 40 40 1.0 1940 0.025 100 41 0.6 920 0.035 100 Ayres Associates, formerly Resource Consultants & Engineers 0 I Table 2.1. Subbasin Parameters Area ........... . ......... Percetat Impervious....... .. ... .......................................... .. acres}. ft . ... .. 42 2.5 50 0.040 100 43 0.5 50 0.040 100 44 0.4 50 0.040 100 45 0.4 50 0.040 100 46 0.5 50 0.040 100 47 0.8 50 0.040 100 11 - Table 2.2. Subbasin Constants. 11 Manning's n for impervious surfaces 0.016 Manning's n for pervious surfaces 0.25 Surface retention storage for impervious surfaces 0.1 in Surface retention storage for pervious surfaces 0.3 in Maximum infiltration rate 3.0 in/hr Minimum infiltration rate 0.5 in/hr Decay rate of infiltration 0.0018 sec'' Ayres Associates, formerly Resource Consultants & Engineers 7 I Table 2.3. Conveyance Element Parameters. Conveyance Length ........... ... ... ...... 101 1050 0.008 ST 102 430 0.028 ST 103 179 0.022 ST 104 360 0.011 ST 105 400 0.030 CH 106 300 0.043 SW 107 430 0.019 CH 108 350 0.014 ST 109 410 0.008 ST 110 330 0.047 SW ill 400 0.051 CH 112 650 0.051 ST 113 480 0.021 CH 115 440 0.055 ST 116 350 0.025 ST 118 840 0.018 ST 119 270 0.038 ST 120 250 0.024 ST 125 450 0.029 ST 126 380 0.033 ST 127 795 0.042 ST 131 550 0.015 ST 132 310 0.004 ST 133 450 0.037 ST 134 600 0.015 ST 135 730 0.004 ST 136 2145 0.002 ST 137 660 0.002 ST 138 315 0.011 ST 1.1 Ayres Associates, formerly Resource Consultants & Engineers Table 2.3. Conveyance Element Parameters. ... ..... ...... ....... ...... XType*' ...... ... demeit ... .. 139 255 0.028 ST 140 1838 0.020 ST 141 920 0.004 ST 142 179 0.028 ST 201 370 0.044 CH 202 430 0.038 ST 203 280 0.034 ST 204 270 0.056 SW ST - Street SW - Swale CH - Channel Table 2.4. Conveyance Element Constants. ........................... .T... ....... -1: : .. ..... ..... .. ..I . ... ....V..:.... ... ....M. nnirt ..a.'. 9W ..... . .. .o...n...v......eh'yt­­.y.:�:.:'i.q:­.......... ....I...-... .... ............... ... ..... .. .............................. F., ....... ......... ..... ...., .................. ......................... ... ... .... Street 2.0 30 0.020 Swale 0.0 20 0.050 Channel 1 5.0 1 8 0.050 caused by flow that is directed into the pipes from inlets on Skyway Drive. The calculations are provided in Appendix B. The elevation -discharge relationships for the individual pipes were added together and combined with the storage -elevation data to form a single storage -discharge relationship for the pond. The resulting relationship is listed in Table 2.5. The 42-inch culvert under Colby Drive does not fully pass the 1 00-year storm runoff, resulting in backwater and detention above the road. An attempt was made to include this detention in the model, but was abandoned due to numerical problems in simulating the effect of flow over the road. The detention is small and can safely be neglected to give slightly conservative results. Ayres Associates, formerly Resource Consultants & Engineers I 1 1 Runoff from the west side of College Avenue flows to a low point at an existing 5-foot inlet that drains south along College Avenue to Stone Creek (inlet #7, station 248+00). Storm drainage facilities on the east half of College include a 5-foot inlet located across from the west inlet (#7A). We modeled the east and west halves of College Avenue the inlets detention detention at as areas; storage volumes were computed using current survey data provided by JR Engineering. The storage elevation ' outflow relationships are included in the Appendix. During the 100-year event, water on the east side of College will pond over the curb height, spilling into the channel to the northeast (conveyance element 201). Element 201 runs to the detention pond on Huntington Hills Filing 2. 1 During the 2-year storm, water ponds on College Avenue and exits via the inlets ' found on either side. Water does not overtop the crown of College Avenue nor the east curb. On the east side of College, ponding reaches an elevation of 5000.65. As shown on JR Engineering's final design of the Skyway Drive -College Avenue intersection, the flowline elevation at the north curb return on College Avenue is ' 5000.74; therefore, during the 2-year event, water will not flow down Skyway as a result of ponding on College Avenue: 1 Ayres Associates, formerly Resource Consultants & Engineers M 1 10 J 1 1 H 1 I I 1 Ponding attains an elevation of 5001.04 feet on the east side of College Avenue during the 100-year event and some water will flow down Skyway Drive during that event; however, since Skyway Drive is "perched" at the low point near the Huntington Hills Filing 2 detention pond, water can overtop the sidewalks on either side of the street and flow into Stone Creek or the detention pond. Street flows will never reach the allowed 18-inch depth at the flowlines. The 100-year subbasin delineation and SWMM schematic are shown in Figures 2.1 and 2.2, respectively. The 2-year subbasin delineation and SWMM schematic are shown in Appendix A. Runoff from the parking lot to the south of the building on the northeast corner of College Avenue and Skyway Drive was assumed to be directed east by a gutter on the north side of Skyway Drive (a gutter will exist along the north side of Skyway Drive under developed conditions). The northern drainage divide for this parking lot was assumed to be coincident with the middle of the building. Proposed inlets on the east and west side of Madison Road at its intersection with Skyway Drive (Huntington Hills Filing 5) just east of the detention pond will divert a portion of the flow on the north side of Skyway Drive out of the basin to the south. A diversion was included in the model account for the flow diverted by the inlets and was based on information provided in the Preliminary Drainage report for Huntington Hills PUD Filing 5. Final design and sizing of the inlets will be completed as part of Huntington Hills PUD Filing 5 Final Design. We note that the diversion off of Skyway Drive via these inlets must be equal to or greater than the diversion documented in this analysis. The remaining flow will continue west down the north side of Skyway Drive to the low point on the road at the detention pond outlet. Flow from both the east and west at this location will be picked up by an inlet connected to the new 36-inch outlet pipes for the pond. Flow on the south side of Skyway Drive will also be picked up by an inlet connected to the new 36-inch outlet pipes. Flow greater than the combined capacity of the inlets will overtop the north Skyway Drive curb and flow into the detention pond. A diversion was included in the model to account for the flow that enters the inlets and leaves the basin to the south through the pipes. The remaining Ayres Associates, formerly Resource Consultants & Engineers III 11 11 iwas developed from separated rating curves computed for the two inlets and for flow that enters the pond over the curb. 3. HYDROLOGIC RESULTS Table 3.1 summarizes the modeling results for both the 2- and 100-year events ' at selected locations in the basin. Complete output listings are given in Appendix A. The performance of the detention pond under the 100-year event is summarized in ' Table 3.2. The results indicate that the detention pond performs adequately under the 100-year event, with a peak outflow rate of 124 cfs and a peak water surface elevation ' of 4941.0 feet MSL. The peak water surface elevation is approximately 1.1 feet below the top of the detention pond embankment (top of curb, north side of Skyway Drive). ' The maximum flow in the 30-inch outlet pipe is 45 cfs. The maximum flow in each of the 36-inch pipes, including flow off of Skyway Drive, is 52 cfs. ' 4. HYDRAULIC ANALYSIS ' The north side of Skyway Drive receives storm runoff from the west as far as College Avenue and from Huntington Hills Filing 5 to the east. A low area was created ' at the culvert crossing of the detention pond. During the 2-year storm, 5 cfs comes from the west and 0.3 cfs from the east. To contain this runoff in the allowable gutter capacity, the north cross slope of Skyway Drive was set to 4.0 percent, yielding an allowable capacity of 6.4 cfs at a minimum street slope of 0.8 percent. The allowable ' capacity east of the low point is 4.7 cfs at a minimum street slope of 0.55 percent. Allowable gutter capacities were determined using a 36 foot wide collector status ' street, vertical curb, a 12-foot wide dry lane in the middle, and no overtopping of the curb. A 9-foot Type R curb inlet, having a 2-year capacity of 7.6 cfs, was placed at the low point. The inlet is connected to the two 36-inch detention pond outlet pipes, thereby draining water off of Skyway Drive and into Stone Creek. 1 ' Ayres Associates, formerly Resource Consultants & Engineers 12 Table 3.1. Computed Peak Flows at Selected Locations Throughout the Basin. Location Peak D.j arge {cfs) (conveyance element] 2 Year i00 Year 201 0 57 111 16 109 113 22 154 127 5 22 140 1 5 141 1 3 205 10 54 210 7 69 223 7 29 301 33 246 302 27 124 399 33 145 104 20 79 136 1 6 137 2 7 138 1 3 303 1 65 304 0 -- Table 3.2. Summary of 100-Year Results at the Detention Pond. Peak Inflow (cfs) 246 Peak Outflow (cfs) 124 Maximum Storage (ac-ft) 2.8 Maximum Water Surface Elevation (ft/msl) 4941.0 Ayres Associates, formerly Resource Consultants & Engineers 13 II I 1 H 1 1 The south side low point of Skyway Drive receives storm runoff only from the street and walk area running from College Avenue to Filing 5. The 2-year runoff is 2 cfs. During the 2-year storm, 1 cfs comes from west of the low point, and 1 cfs flows from the east. To contain this runoff, the south cross slope was set to 3.5 percent, yielding an allowable capacity of 4.1 cfs at a minimum street slope of 0.50 percent. The allowable capacity east of the low point is 4.0 cfs at a minimum street slope of 0.60 percent. A 9-foot Type R curb inlet was also placed on the south side of Skyway Drive. The inlet has a 2-year capacity of 6.1 cfs and is connected to the two 36-inch detention pond outlet pipes. During the 100-year storm, 61 cfs flows to the low point on the north side of Skyway Drive and 8 cfs to the low point on the south side, making a combined total of 69 cfs. The 100-year street capacity is 165.14 cfs. At the street's low point, this creates a depth of 0.20 foot over the crown, 0.92 foot in the north gutter, and 0.85 foot in the south gutter. With this head, 15.12 and 14.40 cfs will flow through the north and south inlets, respectively. The sidewalk will be raised 0.5 foot above the curb on the south side to prevent water from flowing off the street and causing potential erosion problems. The sidewalk on the north side of the street will be lowered 0.1 foot, creating an overflow weir back into the detention pond. The sidewalk depression must be 132 feet long and will convey 39 cfs into the pond. Water overtopping the curb from 20 feet west of the low point to 24 feet east of the low point will exceed 5 feet per second on the embankment between the sidewalk and the detention pond. The upper velocity limit of 5 feet per second is taken from Table 7.3 of the Fort Collins Storm Drainage Design Criteria Manual for grassed, erosion resistant slopes exceeding 10 percent. The soils in question consist primarily of clays and resist erosion. To eliminate erosion, 6-inch diameter riprap (buried) will be placed on the embankment from the back edge of the sidewalk to the bottom of the pond. The width of. the riprap section will be 44 feet. Beyond the riprap limits (20 feet west and 24 feet east), flow velocities will be less than 5 feet per second and therefore riprap is not required. Ayres Associates, formerly Resource Consultants & Engineers H 14 G 11 [1 1 H 1] Downstream of the culverts is an existing large wetland which was recently purchased by the City of Fort Collins. The intent of the design is. to minimize the disturbance to the wetland and prevent erosion downstream of the culverts. To achieve these goals, riprap basins are proposed to dampen the energy of the water from the culverts and spread the flow of water to a nonerosive velocity. Water discharged from the basin will spread out and flow into the wetland and ultimately into Stone Creek. The runoff from these culverts are a part of the Stone Creek watershed which was analyzed by a Simons, Li & Associates study for the Southside Service Center Drainage Study conducted in 1982. The developed design flows from this study were used in the design of Huntington Hills, Filing 4 drainage improvements. The riprap basins were designed per the Denver Regional Council of Governments Urban Storm Drainage Criteria Manual (1969) criteria. The basin for the twin 36-inch culverts is 30 feet in length and has a trapezoidal cross section. The channel section transitions from a 9-foot bottom width at the culverts to 25 feet at the south end. The sides have 3H:1 V slopes. Riprap having a D50 of 12 inches will be used in the basin and will be covered with 6 inches of topsoil. The riprap basin for the singular 30-inch RCP is of the same basic design. Its total length is 17 feet with a width ranging from 4 feet at the culvert to 18 feet at the south end. Riprap having a D50 of 18 inches will be used throughout the basin. Specific details can be found on the design plans. A backwater analysis (HEC-2) was used to model backwater conditions up through the twin 36-inch culvert riprap basin and to determine the tailwater conditions at'the outlet of the culverts. We note that the effective flow area in the expansion zone downstream of the culvert outlets (within the riprap basin) is smaller than the riprap basin, and the HEC-2 modeling reflects this. The standard flow expansion of 4:1 as specified in the HEC-2 Users Manual was used to accurately model effective flow area downstream of the culverts. The tailwater depth at the culvert outlet is 1.76 feet; the average velocity of flow leaving the riprap basin is 4.36 feet per second. Ayres Associates, formerly Resource Consultants & Engineers 15 11 APPENDIX A SWMM Output Listings A.1 SWMM Model for the 2-Year Event A.2. SWMM Model for the 100-Year Event L IL A.1 SWMM Model for the 2-Year Event 0 1 u 1 1 0 O \— — — — — — — I 43 1 I I O a KELMAR STRIP HUNTINGTON HILLS FILING 1 HUNTINGTON HILLS FILING 2 SATURN DRIVE 200 100 0 200 HUNTINGTON HILLS FILING 3 ------------------ 45 I I i ~ --- --- I\ O I W \ III —_— i O o \�\ \�•\ R(/� I N 1 12 \ IS \ 20DO / \ �� O I \ \�� us \ OR\ \ Is / / Z201.I U II \ �j I I �--�_03 _107 1 \ =(ter', QQ ,I \ C. ' 201 - 0 152 a' I O I Oi 10 I• � II � wl — -- ---f , } 25 I 203 L 126 26 \ I 302 \\\ \\ 302 \ 127 -------- --- ---------------- --- SKYWAY DRIVE 399 LEGEND BASIN BOUNDARY STREET r-----1 SUBBASIN I-_O - I 101 CONVEYANCE ELEMENT DIVERSION OR FLOW DIRECTION AT END OF CONVEYANCE ELEMENT r I 302 DETENTION POND NON CONTRIBUTING AREA HUNTINGTON HILLS FILING 5 31 ' II l/ PD 32 132 ANDREWS C I DRIVE -------- M i I 0 i o / BUCHANAN 134 COURT <— — — — — — — 35 --- --- --/ I 0_—__—__—__ 135 222 SWMM SCHEMATIC 2-YEAR STORM LEGEND SUBBASIN CONVEYANCE ELEMENT 222 DIVERSION ' DETENTION GRAPH COMBINATION DIRECT FLOW) m 1 I ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) OTAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) J0UT(2) JOUT(3) JOUT(4) J0UT(5) J0UT(6) J0UT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) _ NSCRAT(4) NSCRAT(5) 3 4 0 0 0 1 WATERSHED PROGRAM CALLED F '*' ENTRY MADE TO RUNOFF MODEL **' HUNTINGTON HILLS FUTURE CONDITION, 2-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES + NEW 30" PIPE ONUMBER OF TIME STEPS 36 OINTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OFOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .12 .36 .48 .60 .84 1.80 3.24 1.08 .84 .48 .36 .36 .36 .24 .24 .24 .24 .12 .12 .12 .12 .12 .12 .12 1 HUNTINGTON HILLS FUTURE CONDITION, 2-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES + NEW 30" PIPE SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. DERV. MAXIMUM MINIMUM DECAY RATE NO 1 101 950. 1.8 40.0 .0290 .016 .250 .100 .300 3.00 .50 .00180 1 2 102 430. 2.1 30.0 .0710 .016 .250 .100 .300 3.00 .50 .00180 1 3 142 320. 2.8 80.0 .0330 .016 .250 .100 .300 3.00 .50 .00180 1 4 104 570. 5.6 80.0 .0470 .016 .250 .100 .300 3.00 .50 .00180 1 5 105 400. 3.6 90.0 .0270 .016 .250 .100 .300 3.00 .50 .00180 1 6 106 280. 3.7 90.0 .0480 .016 .250 .100 .300 3.00 .50 .00180 1 7 107 860. 2.2 15.0 .1120 .016 .250 .100 .300 3.00 .50 .00180 1 8 108 710. 2.5 40.0 :0600 .016 .250 .100 .300 3.00 .50 .00180 1 l 9 109 730. 2.5 40.0 .0280 .016 .250 .100 .300 3.00 .50 .00180 1 30 110 660. 2.7 40.0 .0610 .016 .250 .100 .300 3.00 .50 .00180 1 11 111 400. 2.1 40.0 .0570 .016 .250 .100 .300 3.00 .50 .00180 1 12 112 650. 1.1 80.0 .0440 .016 .250 .100 .300 3.00 .50 .00180 1 13 113 480. 1.8 20.0 .0840 .016 .250 .100 .300 3.00 .50 .00180 1 14 113 480. 2.1 40.0 .0440 .016 .250 .100 .300 3.00 .50 .00180 1 15 115 440. 2.6 40.0 .0830 .016 .250 .100 .300 3.00 .50 .00180 1 16 116 350. 1.4 40.0 .0540 .016 .250 .100 .300 3.00 .50 .00180 1 17 301 210. 1.7 70.0 .0670 .016 .250 .100 .300 3.00 .50 .00180 1 18 118 840. 1.7 40.0 .0760 .016 .250 .100 .300 3.00 .50 .00180 1 19 119 270. .6 40.0 .03BO .016 .250 .100 .300 3.00 .50 .00180 1 20 120 250. 1.0 40.0 .0770 .016 .250 .100 .300 3.00 .50 .00180 1 21 301 400. 3.5 50.0 .0590 .016 .250 .100 .300 3.00 .50 .00180 1 25 125 450. .9 99.9 .0200 .016 .250 .100 .300 3.00 .50 .00180 1 26 126 380. .2 99.9 .0200 .016 .250 .100 .300 3.00 .50 .00180 1 27 127 795. .4 99.9 .0200 .016 .250 .100 .300 3.00 .50 .00180 1 31 131 550. 2.1 40.0 .0200 .016 .250 .100 .300 3.00 .50 .00180 1 32 132 460. 1.7 40.0 .0360 .016 .250 .100 .300 3.00 .50 .00180 1 33 133 720. 1.7 40.0 .0200 .016 .250 .100 '. 300 3.00 .50 .00180 1 34 134 600. 3.7 40.0 .0530 .016 .250 .100 .300 3.00 .50 .00180 1 35 135 700. 2.1 40.0 .0320 .016 .250 .100 - .300 3.00 .50 .00180 1 40 140 1940. 1.0 99.9 .0250 .016 .250 .100 .300 3.00 .50 .00180 1 41 141 920. .6 99.9 .0350 .016 .250 .100 .300 3.00 .50 .00180 1 42 136 50. 2.5 99.9 .0400 .016 .250 .100 .300 3.00 .50 .00180 1 43 104 50. .5 99.9 .0400 .016 .250 .100 .300 3.00 .50 .00180 1 44 103 50, .4 99.9 .0400 .016 .250 .100 .300 3.00 .50 .00180 1 45 139 50. .4 99.9 .0400 .016 .250 .100 .300 3.00 .50 .00180 1 46 137 50. .5 99.9 .0400 .016 .250 .100 .300 3.00 .50 .00180 1 47 137 50. .8 99.9 .0400 .016 .250 .100 .300 3.00 .50 .00180 1 OTOTAL NUMBER OF SUBCATCHMENTS, 37 OTOTAL TRIBUTARY AREA (ACRES), 68.58 1 • HUNTINGTON HILLS FUTURE CONDITION, 2-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES + NEW 30" PIPE HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS TIME(HR/MIN) 1 2 3 0 5. 0. 0. 0. 1 HUNTINGTON HILLS FUTURE CONDITION, 2-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36' PIPES + NEW 30" PIPE •'• CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL WATERSHED AREA (ACRES) 68.580 TOTAL RAINFALL (INCHES) 1.060 TOTAL INFILTRATION (INCHES) .290 TOTAL WATERSHED OUTFLOW (INCHES) .585 TOTAL SURFACE STORAGE AT END OF STRRM (INCHES) .185 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .003 1 HUNTINGTON HILLS FUTURE CONDITION, 2-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36' PIPES + NEW 30" PIPE WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER SUP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH SK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) m = m = = = m = m m 18 19 0 20 21000.0 25000260."""•*"""*'•******'• 35000.000 40000410.00 17 OVERFLOW 47.0 0. .0010 .0 .0 .001 .00 101 102 0 1 CHANNEL 2.0 1050. .0080 30.0 30.0 .020 20.00 1 102 103 0 1 CHANNEL 2.0 430. .0280 30.0 30.0 .020 20.00 1 103 142 5 1 CHANNEL 2.0 179. .0220 30.0 30.0 .020 20.00 201 DIVERSION TO GUTTER NUMBER 201 - TOTAL Q VS DIVERTED Q IN CFS .0 .0 2.0 .3 40 .5 21.0 2.1 30.0 30 142 104 0 1 CHANNEL 2.6 179. .0280 30.0 30.0 .620 20.00 1 104 150 0 1 CHANNEL 2.0 360. .0110 30.0 30.0 .020 20.00 1 136 150 0 1 CHANNEL 2.0 2145. .0020 30.0 30.0 .020 20.00 1 150 303 6 3 2.0 1. .0010 30.0 30.0 .020 20.00 151 DIVERSION TO GUTTER NUMBER 151 - TOTAL Q VS DIVERTED Q IN CFS .0 .0 5.0 3.4 20.0 8.4 40.0 10.0 60.0 10.9 85.0 11.6 151 154 0 3 .1 1. .0010 .0 .0 .001 10.00 0 303 152 30 2 PIPE .1 1. .0010 .0 ..0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .0 .0 .1 .0 .2 .0 .3 1.7 .4 9.0 :4 15.6 .4 24.2 .5 48.5 .6 82.9 137 152 0 1 CHANNEL 2.0 660. .0020 30.0 30.0 .020 20.00 1 139 138 5 1 CHANNEL 2.0 255. .0280 30.0 30.0 .020 20.00 201 DIVERSION TO GUTTER NUMBER 201 - TOTAL 0 VS DIVERTED Q IN CFS .0 .0 2.0 .3 4.0 .5 21.0 2.1 30.0 3.0 138 152 0 1 CHANNEL 2.0 315. .0110 30.0 30.0 .020 20.00 1 152 304 6 3 2.0 1. .0010 30.0 30.0 .020 20.00 153 DIVERSION TO GUTTER NUMBER 153 - TOTAL Q VS DIVERTED Q IN CFS .0 .0 5.0 3.4 20.0 8.4 40.0 10.0 60.0 10.9 85.0 11.6 153 155 0 3 .1 1. .0010 .0 .0 .001 10.00 0 304 201 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .1 .0 .1 2.6 .1 11.8 .1 39.9 .2 73.2 .2 147.3 201 107 0 1 CHANNEL 5.0 370. .0440 8.0 8.0 .050 20.00 1 105 107 0 1 CHANNEL 5.0 400. .0300 8.0 8.0 .050 20.00 1 106 107 0 1 CHANNEL .0 300. .0430 20.0 20.0 .050 20.00 1 107 111 0 1 CHANNEL 5.0 430. .0190 8.0 8.0 .050 20.00 1 111 113 0 1 CHANNEL 5.0 400. .0510 8.0 8.0 .050 20.00 1 108 202 0 1 CHANNEL 2.0 350. .0140 30.0 30.0 .020 20.00 1 202 113 0 1 CHANNEL 2.0 430. .0380 30.0 30.0 .020 20.00 1 109 126 0 1 CHANNEL 2.0 410. .0080 30.0 30.0 .020 20.00 1 125 203 0 1 CHANNEL 2.0 450. .0290 30.0 30.0 .020 20.00 1 203 126 0 1 CHANNEL 2.0 280. .0340 30.0 30.0 .020 20.00 1 126 127 0 1 CHANNEL 2.0 380. .0330 30.0 30.0 .020 20.00 1 127 210 0 1 CHANNEL 2.0 795. .0420 30.0 30.0 .020 20.00 1 110 113 0 1 CHANNEL .0 330. .0470 20.0 20.0 .050 20.00 1 112 113 0 1 CHANNEL 2.0 650. .0510 30.0 30.0 .020 20.00 1 113 301 0 1 CHANNEL 5.0 480. .0210 8.0 8.0 .050 20.00 1 115 116 0 1 CHANNEL 2.0 440. .0550 30.0 30.0 .020 20.00 1 116 301 0 1 CHANNEL 2.0 350. .0250 30.0 30.0 .020 20.00 1 118 119 0 1 CHANNEL 2.0 840. .0180 30.0 30.0 .020 20.00 1 119 120 0 1 CHANNEL 2.0 270. .0380 30.0 30.0 .020 20.00 1 120 204 0 1 CHANNEL 2.0 250. .0240 30.0 30.0 .020 20.00 1 204 301 0 1 CHANNEL .0 270. .0560 20.0 20.0 .050 20.00 1 131 133 0 1 CHANNEL 2.0 550. .0150 30.0 30.0 .020 20.00 1 132 133 0 1 CHANNEL 2.0 310. .0040 30.0 30.0 .020 20.00 1 133 205 0 1 CHANNEL 2.0 450. .0370 30.0 30.0 .020 20.00 1 134 205 0 1 CHANNEL 2.0 600. .0150 30.0 30.0 .020 20.00 1 135 205 0 1 CHANNEL 2.0 730. .0040 30.0 30.0 .020 20.00 -1 205 210 4 3 2.0 .1. .0120 30.0 30.0 .020 20.00 222 DIVERSION TO GUTTER NUMBER 222 - TOTAL Q VS DIVERTED Q IN CFS .0 .0 11.0 11.0 65.0 16.0 200.0 16.0 140 210 0 1 CHANNEL 2.0 . 1838. .0200 30.0 30.0 .020 20.00 1 141 210 0 1 CHANNEL 2.0 920. .0040 30.0 30.0 .020 20.00 1 210 301 5 3 5.0 1. .0210 8.0 8.0 .050 20.00 223 DIVERSION TO GUTTER NUMBER 223 - TOTAL 0 VS DIVERTED Q IN CFS .0 .0 14.0 14.0 36.0 24.0 92.0 32.0 181.0 38.0 223 399 0 3 5.0 1. .0210 .0 .0 .050 .00 0 301 302 0 3 5.0 1. .0210 8.0 8.0 .050 20.00 0 302 399 7 2 PIPE .0 1. .0210 .0 .0 .050 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 7.0 .1 16.0 .4 54.0 1.5 100.0 2.9 127.0 4.6 153.0 OTOTAL NUMBER OF GUTTERS/PIPES, 49 1 HUNTINGTON HILLS FUTURE CONDITION, 2-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES + NEW 30" PIPE ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE 18 0 0 0 0 0 0 0 0 0 0 101 0 0 0 0 0 0 0 0 0 0 102 101 0 0 0 0 0 0 0 0 0 103 102 0 0 0 0 0 0 0 0 0 104 142 0 0 0 0 0 0 0 0 0 105 0 0 0 0 0 0 0 0 0 0 106 0 0 0 0 0 0 0 0 0 0 107 201 105 106 0 0 0 0 0 0 0 108 0 0 0 0 0 0 0 0 0 0 109 0 0 0 0 0 0 0 0 0 0 110 0 0 0 0 0 0 0 0 0 0 111 107 0 0 0 0 0 0 0 0 0 112 0 0 0 0 0 0 0 0 0 0 113 111 202 110 112 0 0 0 0 0 0 115 0 0 0 0 0 0 0 0 0 0 116 115 0 0 0 0 0 0 0 0 0 118 0 0 0 0 0 0 0 0 0 0 119 118 0 0 0 0 0 0 0 0 0 120 119 0 0 0 0 0 0 0 0 0 125 0 0 0 0 0 0 0 0 0 0 126 109 203 0 0 0 0 0 0 0 0 121 126 0 0 0 0 0 0 0 0 0 131 0 0 0 0 0 0 0 0 0 0 132 0 0 0 0 0 0 0 0 0 0 133 131 132 0 0 0 0 0 0 0 0 134 0 0 0 0 0 0 0 0 0 0 135 0 0 0 0 0 0 0 0 0 0 136 0 0 0 0 0 0 0 0 0 0 137 0 0 0 0 0 0 0 0 0 0 13B 139 0 0 0 0 0 0 0 0 0 139 0 0 0 0 0 0 0 0 0 0 140 0 00 0 0 0 0 0 0 0 141 0 0 0 0 0 0 0 0 0 0 142 103 0 0 0 0 0 0 0 0 0 150 104 136 0 0 0 0 0 0 0 0 151 0 0 0 0 0 0 0 0 0 0 TRIBUTARY SUBAREA D.A.(AC( 0 0 0 0 0 0 0 0 0 0 .0 1 0 0 0 0 0 0 0 U 0 1.8 2 0 0 0 0 0 0 0 0 0 3.9 44 0 0 0 0 0 0 0 0 0 4.3 4 43 0 0 0 0 0 0 0 0 13.2 5 0 0 0 0 0 0 0 0 0 3.6 6 0 0 0 0 0 0 0 0 0 3.7 7 0 0 0 0 0 0 0 0 0 26.9 8 0 0 0 0 0 0 0 0 0 2.5 9 0 0 0 0 0 0 0 0 0 2.5 10 0 0 0 0 0 0 0 0 0 2.7 11 0 0 0 0 0 0 0 0 0 29.0 12 0 0 0 0 0 0 0 0 0 1.1 13 14 0 0 0 0 0 0 0 0 39.2 15 0 0 0 0 0 0 0 0 0 2.6 16 0 0 0 0 0 0 0 0 0 4.0 18 0 0 0 0 0 0 0 0 0 1.7 19 0 0 0 0 0 0 0 0 0 2.3 20 0 0 0 0 0 0 0 0 0 3.3 25 0 0 0 0 0 0 0 0 0 .9 26 0 0 0 0 0 0 0 0 0 3.6 27 0 0 0 0 0 0 0 0 0 4.0 31 0 0 0 0 0 0 0 0 0 2.1 32 0 0 0 0 0 0 0 0 0 1.7 33 0 0 0 0 0 0 0 0 0 5.5 34 0 0 0 0 0 0 0 0 0 3.7 35 0 0 0 0 0 0 0 0 0 2.1 42 0 0 0 0 0 0 0 0 0 2.5 46 ' 47 0 0 0 0 0 0 0 0 1.3 0 0 0 0 0 0 0 0 0 0 .4 45 0 0 0 0 0 0 0 0 0 .4 40 0 0 0 0 0 0 0 0 0 1.0 41 0 0 0 0 0 0 0 0 0 .6 3 0 0 0 0 0 0 0 0 0 7.1 0 0 0 0 0 0 0 0 0 0 15.7 0 0 0 0 0 0 0 0 0 0 .0 152 303 137 138 0 0 0 0 0 0 0 153 0 0 0 0 0 0 0 0 0 0 201 304 0 0 0 0 0 0 0 0 0 202 108 0 0 0 0 0 0 0 0 0 203 125 0 0 0 0 0 0 0 0 0 204 120 0 0 0 0 0 0 0 0 0 205 133 134 135 0 0 0 0 0 0 0 210 127 205 140 141 0 0 0 0 0 0 223 0 0 0 0 0 0 0 0 0 0 301 113 116 204 210 0 0 0 0 0 0 302 301 0 0 0 0 0 0 0 0 0 303 ISO 0 0 0 0 0 0 0 0 0 304 152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.4 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 17.4 0 0 0 0 0 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 .9 0 0 0 0 0 0 0 0 0 0 3.3 0 0 0 0 0 0 0 0 0 0 11.3 0 0 0 0 0 0 0 0 0 0 16.9 0 0 0 0 0 0 0 0 0 0 .0 17 21 0 0 0 0 0 0 0 0 68.6 0 0 0 0 0 0 0 0 0 0 68.6 0 0 0 0 0 0 0 0 0 0 15.7 0 0 0 0 0 0 0 0 0 0 17.4 1 HUNTINGTON HILLS FUTURE CONDITION, 2-YR STORM SWMH MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36• PIPES + NEW 30" PIPE HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 29 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CPS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH . (D) DENOTES DISCHARGE IN CPS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 103 142 104 136 150 151 303 139 138 137 152 153 304 201 107 111 113 125 203 126 127 140 141 210 222 204 302 223 399 0 S. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .0( ) .0( ) .O(D) .0( ) .0(S) .0(D) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .0(S) .0( ) -.0( ) .0( ) .0( ) .0( ) .0( ) .O( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0(D) .0( ) .. .0( ) .O(S) .0( ) .0( ) 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .0( ) .0( ) .0(D) .0( ) .0(S) .0(D) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .0(S) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( 1 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0(D) .0( ) .0( ) .0(S) .0( ) .0( ) 0 15. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .0( 1 .0( ) .0(D) .0( ) .0(S) .O(D) .0( I .0( ) 0. 0. 0. 0. 0. 0. 0. 0.. 0. 0. .0(D) .0( ) .0(S) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( 1 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0(D) .0( ) .0( ) .0(S) .0( ) .0( ) 0 20. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .0( ) .0( ) .0(D) .0( ) .0(S) .0(D) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .O(S) .0( ) .0( ) .0( ) .0( ) .0( )- .0( 1 .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .O(D) .0( ) .0( ) .O(S) .0( ) .0( ) 0 25. 0. 1. 2. 0. 2. 1. 0. 0. 0. 0. .1(D) .1( ) .2( ) .0( ) 1.1(D) .0( ) .O(S) .O(D) .0( ) .0( 1 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. .1(D) .0( ) .O(S) .0( > .1( ) .1( > .1( ) .1( t .0( ) .1( ) 0. 0. 0. 0. 0. 0. 3. 0. 4. .O( ) .0( ) .0( ) .5(D) .0( ) .1( ) .O(S) .0( 1 .0( ) 0 30. 1. 4. B. 0. 8. 4. 0. 0. 0. 0. .2(D) .2( ) .3( ) .0( ) 4.3(D) .0( ) .O(S) .1(D) .0( 1 .1( ) 0. 0. 0. 0. 3. 3. 5. 1. 1. 2. AM .0( ) .O IS) .0( ) .3( ) .2( ) .3( ) .1( ) .1( ) .1( ) 1. 0. 0. 2. 0. 1. 9. 2. 11. .1( ) .1( 1 .1( ) 1.9(D) .0( 1 .2( ) .O(S) .0( ) .0( ) 0 35. 4. 9. 20. 0. 20. 8. 0. 1. 1. 1. .5(D) .3( 1 A( ) .1( ) 8.4(D) .0( ) .1(S) .2(D) .1( ) .2( 1 2. 1. 0. 0. 10. 10. 15. 2. 2. 4. 1.0(D) .0( ) .O(S) .0( 1 .5( ) .4( ) .6( ) .2( ) .1( 1 .2( ) 4. 1. 1. 6. 0. 2. 18, 6. 23. .2( ) .1( ) .1( ) 5.8(D) .0( ) .3( ) .1(S) .0( ) .0( ) 0 40. 3. 7. 19. 1. 19. 8. 0. 1. 1. 2. .5(D) .2( ) .4( ) .1( 1 8.2(D) .O( ) .1(S) .2(D) .1( ) .2( 1 2. 2. 0. 0. 15. 16. 22. 2. 2. 5. 1.7(D) .0( ) .O(S) .0( 1 .6( ) .5( ) .8( ) .1( ) .1( ) .2( ) 5. 1. 1. 7. 0. 3. 25. 7. 32. .2( I .1( ) .1( 1 7.4(D) .0( ) .3( ) .2(S) .0( ) .0( ) 0 45. 2. 4. 10. 1. 10. 5. 0. 0. 1. 2. .3(D) .2( ) .3( ) .2( ) 5.2(D) .0( ) .2(S) .1(D) .1( ) .2( ) 2. 2. 0. 0. 12. 14. 20. 1. 1. 3. 1.6(D) .0( ) .O(S) .0( ) .6( ) .5( ) .7( ) .1( ) .1( ) .2( ) 4. .1. 1. 6. 0. 2. 27. 6. 33. .2( ) .1( ) .1( 1 6.1(D) .0( ) .2( ) .2(S) .0( ) .0( ) 0 50. 2. 3. 7. 1. 8. 4. 0. 0. 0. 1. .3(D) .2( ) .3( ) .2( ) 4.5(D) .0( ) .2(S) .1(D) .1( ) .2( ) 2. 1. 0. 0. 7. 9. 15. 1. 1. 2. 1.3(D) .0( ) .O(S) .0( ) .5( ) A( ) .6( ) .1( ) .1( ) .1( ) 3. 1. 1. 4. 0. 2. 25. 4. 30. .1( ) .1( ) .1( ) 4.4(D) .0( ) .2( ) .2(S) .0( ) .0( ) 0 55. 1. 2. 5. 1. 7. 4. 1. 0. 0. 1. .2(D) .1( ) .3( ) .2( ) 3.9(D) .0( ) .3(S) .O(D) .1( ) .2( ) 2. 1. 0. 0. 5. 6. 11. 0. 0. 1. 1.4(D) .0( ) .O(S) .O( ) .4( 1 .3( ) .5( ) .1( ) .1( ) .1( ) 2. 1. 0. 3. 0. 1. 21. 3. 24. .1( ) .1( ) .1( ) 3.2(D) .0( ) .2( ) .1(S) .0( ) .0( ) 1 0. 1. 2. 4. 1. 6. 4. 1. 0.- 0. 1. .2(D) .1( ) .2( ) .2( ) 3.6(D) .0( ) .3(S) .O(D) .1( ) .2( ) 2. 1. 0. 0. 4. S. 8. 0. 0. 1. . LAM .0( ) .O(S) .0( ) .3( ) .3( ) .5( ) .1( ) .1( ) .1( ) 1. 1. 0. 3. 0. 1. 17. 3. 19. .1( ) .1( ) .1( ) 2.5(D) .0( ) .2( ) .1(S) .0( ) .0( ) m m m m 1 5. 1. 2. 4. 1. 5. 3. 1. 0. 0. 1. .2(D) .1( ) .2( ) .2( ) 3.4(D) .0( ) .3(S) .0(D) .1( ) .2( ) 2. 1. 0. 0. 3. 4. 7. 0. 0. 1. 1.4(D) .0( ) .O(S) .0( ) .3( ) .3( ) .4( ) .1( ) .1( ) .1( 1 1. 1. 0. 2. 0. 1. 13. 2. 15. .1( ) .1( ) .1( ) 2.1(D) .0( ) .2( I .O(S) .0( ) .0( ) 1 10. 1. 2. 3. 1. 5. 3. 1. 0. 0. 1. .2(D) .1( ) .2( ) .2( ) 3.2(D) .0( ) .3(S) .O(D) .0( ) .2( ) 2. 1. 0. 0. 3. 3. 6. 0. 0. 1. 1.3(D) .0( ) .O(S) .0( ) .3( ) .2( 1 .4( ) .1( ) .1( ) .1( ) 1. 0. 0. 2. 0. 1. 10. 2. 12. .1( ) .1( ) .1( ) 1.8(0) .0( ) .2( ) .O(S) .0( ) .0( ) 1 15. 1. 1. 3. 1. 4. 3. 1. 0. 0. 1. .1(D) .1( ) .2( ) .2( 1 2.B(D) .0( 1 .3(S) .O(D) .0( ) .1( ) 2. 1. 0. 0. 3. 3. 5. 0. 0. 1. ' 1.3(D) .0( ) .O(S) .0( ) .3( ) .2( ) .4( ) .1( ) .1( ) .1( ) 1. 0. 0. 2. 0. 1. 8. 2. 10. .1( 1 .1( ) .1( ) 1.6(D) .0( ) .2( 1 .O(S) .0( ) .0( ) 1 20. 1. 1. 3. 1. 4. 3. 1. 0. 0. 1. .1(D) .1( ) .2( ) .2( ) 2.6(D) .0( 1 .3(S) .O(D) .0( ) .1( ) 2. 1. 0. 0. 2. 3. 4. 0. 0. 1. 1.2(D) .0( ) .O(S) .0( ) .2( ) .2( 1 .3( ) .0( ) .0( ) .1( ) 1. 0. 0. 1. 0. 0. 7. 1. 8. .1( ) .1( ) .1( ) 1.4(D) .0( ) .1( ) .O(S) .0( ) .0( ) 1 25. 1. 1. 2. 1. 4. 2. 1. 0. 0. 0. .1(D) .1( ) .2( ) .2( 1 2.4(D) .0( ) .3(S) .O(D) .0( ) .1( 1 2. 1. 0. 0. 2. 2. 4. 0. 0. 1. 1.2(D) .0( ) .O(S) .O( 1 .2( ) .2( ) .3( ) .0( ) .0( ) .1( ) 1. 0. 0. 1. 0. 0. 5. 1. 6. .1( ) .1( ) .1( ) 1.3(D) .0( ) .1( ) .O(S) .0( ) .0( ) 1 30. 1. 1. 2. 1. 3. 2. 1. 0. 0. 0. .1(D) .1( ) .2( ) .2( ) 2.2(D) .0( ) .3(S) .O(D) .O( ) .1( ) 2. 1. 0. 0. 2. 2. 3. 0. 0. 1. 1.1(D) .0( ) .O(S) .0( ) .2( ) .2( ) .3( ) .0( ) .0( ) .1( 1 1. 0. 0. 1. 0. 0. 5. 1. 6. .1( ) .1( ) .1( ) 1.I(D) .0( ) .1( ) .O(S) .0( ) .0( ) 1 35. 0. 1. 2. 1. 3. 2. 1. 0. 0. 0. .1(D) .1( ) .2( ) .2( ) 1.9(D) .0( ) .3(S) .O(D) .0( ) .1( ) 2. 1. 0. 0. 2. 2. 3. 0. 0. 0. 1.1(D) .0( ) AM .0( ) .2( ) .2( ) .3( ) .0( ) .0( ) .1( ) 1. 0. 0. 1. 0. 0. 4. 1. S. .1( ) .1( ) .1( ) 1.0(D) .0( 1 .1( ) .O(S) .0( ) .0( ) 1 40. 0. 1. 1. 1. 2. 2. 1. 0. 0. 0. .1(D) .1( ) .1( ) .2( ) 1.7(D) .0( ) .3(S) .O(D) .0( 1 .1( ) 1. 1. 0. 0. 1. 2. 3. 0. 0. 0. 1.O(D) .04 ) .1(S) .0( ) .2( ) .2( ) .3( ) .0( ) .0( ) .1( 1 0. 0. 0. 1. 0. 0. 4. 1.. 5. .1( ) .1( ) .1( ) .9(0) .0( ) .1( ) .O(S) .0( ) .0( ) 1 45. 0. 1. 1. 1. 2. 2. 1. 0. 0. 0. .1(D) .1( ) .1( ) .2( ) 1.6(D) .0( ) .3(S) .O(D) .0( ) .1( ) 1. 1. 0. 0. 1. 1. 2. 0. 0. 0. .9(D) .0( ) .1(5) .0( ) .2( ) .1( ) .2( ) .0( ) .01 ) .1( ) m 0. 0. 0. 1. 0. 0. 3. 1. 4. .1( ) .1( ) .1( ) .8(D) .0( ) .1( ) .O(S) .0( ) .0( ) 1 50. 0. 1. 1. 1. 2. 1. 1. 0. 0. 0. .1(D) .1( ) .1( ) .2( 1 1.5(D) .0( ) .3(S) .0(D) .0( ) .1( 1 1. 1. 0. 0. 1. 1. 2. 0. 0. 0. .9(D) .0( ) .1(S) .1( ) .2( 1 .1( ) .2( 1 .0( ) .0( ) .1( ) 0. 0. 0. 1. 0. 0. 3. 1. 4. .1( ) .0( ) .1( ) .7(D) .0( ) .1( ) .O(S) .0( ) .0( ) 1 55. 0. 1. 1. 1. 2. 1. 1. 0. 0. 0. .1(D) .1( ) .1( ) .2( ) 1.4(D) .0( ) .3(S) .0(D) .O( ) .1( ) 1. 1. 0. 0. 1. 1. 2. 0. 0. 0. .8(D) .0( ) .1(S) .1( ) .2( ) .1( ) .2( 1 .0( ) .0( ) .1( ) 0. 0. 0. 1. 0. 0. 3. 1. 4. .1( ) .0( ) .1( 1 .6(D) .0( ) .1( ) .O(S) .0( 1 .0( ) 2 0. 0. 1. 1. 1. 2. 1. 1. 0. 0. 0. .O(D) .1( ) .1( ) .2( ) 1.3(D) .0( ) AM .0(D) .0( ) .1( ) 1. 1. 0. 0. 1. 1. 2. 0. 0. 0. .8(D) .0( ) .1(S) .1( ) .2( ) .1( ) .2( ) .0( ) .0( ) .1( 1 0. 0. 0. 1. 0. 0. 3. 1. 3. .1( ) .0( ) .1( ) .6(D) .0( ) .1( 1 .O(S) .0( ) .0( ) 2 5. 0. 0. 1. 1. 2. 1. 1. 0. 0. 0. .O(D) .1( ) .1( ) .2( ) 1.2(D) .0( ) .3(S) .0(D) .0( ) .1( ) 1. 1. 0. 0. 1. 1. 2. 0. 0. 0. .7(D) .0( ) .1(S) .1( I .2( I .1( ) .2( ) .0( ) .0( ) .1( ) 0. 0. 0. 1. 0. 0. 3. 1. 3. .1( ) .0( ) .0( ) .5(D) .0( ) .1( ) .O(S) .O( ) .0( ) 2 10. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. AM .1( ) .1( ) .2( ) 1.0(D) .0( ) .3(S) .0(D) .0( ) .1( ) 1. 1. 0. 0. 1. 1. 2. 0. 0. 0. .7(D) .O( ) .1(S) .1( ) .2( I .1( ) .2( ) .0( I .0( ) .0( ) 0. 0. 0. 0. 0. 0. 2. 0. 3. .0( ) .0( ) .0( ) .4(D) .0( ) .1( ) .O(S) .0( ) .0( ) 2 15. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. .O(D) .0( ) .1( ) .1( ) .S(D) .0( ) .3(S) .0(D) .0( ) .1( ) 1. 1. 0. 0. 1. 1. 1. 0. 0. 0. .6(D) .0( 1 .1(S) .1( ) .1( ) .1( ) .2( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 2. 0. 2. .0( ) .O( ) .0( ) .4(D) .O( ) .1( ) .O(S) .0( ) .0( ) 2 20. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. .O(D) .0( ) .1( ) .1( ) .7(D) .0( ) .3(S) .0(0) .0( ) .1( ) 1. 1. 0. _ 0. 1. 1. 1. 0. 0. 0. .5(D) .0( 1 .1(S) .1( ) .1( ) .1( ) .2( 1 .0( 1 .0( ) .0( ) 0. 0. 0. 0. 0. 0. 1. 0. 2. .O( ) .O( ) .0( ) .3(D) .0( ) .1( ) .O(S) .0( ) .0( ) 2 25. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. .O(D) .0( 1 .1( ) .1( ) .6(D) .0( ) A(S) .0(D) .0( ) .1( ) 1. 0. 0. 0. 1. 1. 1. 0. 0. 0. .5(D) .0( I AM .1( ) .1( ) .1( ) .1( ) .0( ) .0( ) .0( 1 0. 0. 0. 0. 0. 0. 1. 0. 1. .0( ) .0( ) .0( ) .2(D) .0( ) .1( ) .O(S) .O( ) .0( ) 2 30. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. .O(D) .0( ) .1( ) .1( ) .5(0) .0( ) .3(S) .0(D) .0( ) .1( ) 1. 0. 0. 0. 1. 1. 1. 0. 0. 0. .4(D) .0( ) .1(S) .1( 1 .1( ) .1( ) .1( ) .0( ) .0( ) .O( 1 0. 0. 0. 0. 0. 0. 1. 0. 1. .0( ) .0( I .0( ) .2(D) .O( ) .1( ) .0(S) .0( I .0( ) 2 35. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. .0(D) .0( ) .1( ) .1( 1 ,.4(D) .0( I .2(S) .O(D) .0( ) .1( I 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. .4(D) .0( ) .1(S) .1( ) .1( ) .1( ) .1( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 1. 0. 1. .0( ) .0( ) .0( ) .1(D) .0( ) .1( ) .o(S) .0( ) .0( ) 2 40. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. .0(D) .0( ) .1( ) .1( ) .4(D) .0( ) .2(S) .0(D) .0( ) ,.1( ) 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. .3(D) .0( ) .1(S) .0( ) .1( ) .1( ) .1( 1 .0( ) .0( ) .O( ) 0. 0. 0. 0. 0. 0. 1. 0. 1. .O( 1 .0( ) .0( ) .1(D) .0( ) .0( ) .0(S) .0( ) .0( ) 2 45. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. .0(0) .0( ) .0( ) .1( ) .3(D) .0( ) .2(S) .0(D) .0( 1 .0( ) 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. .3(D) .0( ) .1(S) .0( ) .1( 1 .1( ) .1( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. o. 1. 0. 1. .0( ) .0( ) .0( ) .1(D) .01 ) .0( ) .0(S) .0( ) .0( ) 2 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .0( ) .1( ) .3(D) .0( 1 .2(S) .0(0) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .3(D) .0( ) .1(S) .0( ) .1( ) .1( 1 .1( 1 .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 1. .0( ) .0( ) .0( ) .1(D) .0( ) .0( ) .0(S) .0( ) .0( ) 2 55. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .0( ) .1( ) .3(D) .0( ) .2(S) .0(D) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .3(D) .0( ) .1(S) .0( ) .1( 1 .11 ) .1( ) .0( ) .0( 1 .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .1(D) .O( ) .0( ) .0(S) .0( ) .0( ) 3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .O(D) .0( ) .0( ) .1( ) .3(D) .0( ) .2(S) .0(D) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .2(D) .0( ) .1(S) .0( ) .1( 1 .1( ) - .1( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( I .0( ) .1(D) .0( I .0( 1 .0(S) .0( ) .0( ) 1 HUNTINGTON HILLS FUTURE CONDITION, 2-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES + NEW 30" PIPE -'* PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DFTENSION DAMS ••• CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 101 1. .1 0 40. 102 3. .2 0 35. 103 4. .2 0 35. 142 9. .3 0 35. 136 1. .2 1 ] 104 20. .4 0 : 139 1. .1 0 ; 150 20. (DIRECT FLOW) 0 ; 138 1. .1 0 4 137 2. .2 0 4 303 1. .1 .3 1 152 2. (DIRECT FLOW) 0 4 125 2. .2 0 ; 304 0. .1 .1 1 132 2. .2 0 131 2. .2 0 : 203 2. .1 0 4 109 3. .2 0 _ 118 1. .1 0 106 7. .4 0 105 7. .4 0 4 201 0. .1 2 135 1. .2 0 4 134 4. .2 0 133 5. .2 0 126 S. .2 0 4 119 2. .1 0 108 3. .2 0 107 15. .6 0 4 141 1. .1 0 4 140 1. .1 0 4 205 10. (DIRECT FLOW) 0 127 5. .2 0 4 120 3. .2 0 : 115 3. .1 0 : 112 3. .1 0 ; 110 3. .3 0 ; 202 2. .1 0 4 111 16. .5 0 4 210 7. (DIRECT FLOW) 0 4 204 3. .3 0 4 116 5. .2 0 113 22. .8 0 ! 301 33. (DIRECT FLOW) 0 302 27. .0 .2 0 223 7. (DIRECT FLOW) 0 153 2. (DIRECT FLOW) 0 ! 151 8. (DIRECT FLOW) 0 18 0. .0 0 399 33. (DIRECT FLOW) 0 155 2. (DIRECT FLOW) 0 154 8. (DIRECT FLOW) 0 ; 19 0. (DIRECT FLOW) 0 1 ENDPROGRAM PROGRAM CALLED m- m m m == = = ! = i m m m i m I r C 1 L 11 t u 1 A.2. SWMM Model for the 100-Year Event 1 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, DULY 1985) OTAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 1 WATERSHED PROGRAM CALLED '*' ENTRY MADE TO RUNOFF MODEL *'* HUNTINGTON HILLS FUTURE CONDITION, 100-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES + NEW 30" PIPE ONOMEER OF TIME STEPS 36 OINTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OFOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 1 HUNTINGTON HILLS FUTURE CONDITION, 100-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND --2 36" PIPES + NEW 30" PIPE SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. DERV. MAXIMUM MINIMUM DECAY RATE NO 1 101 950. 1.8 40.0 .0290 .016 .250 .100 .300 3.00 .50 .00190 1 2 102 430. 2.1 30.0 .0710 .016 .250 .100 .300 3.00 .50 .00180 1 3 142 320. 2.8 80.0 .0330 .016 .250 .100 .300 3.00 .50 .00180 1 4 104 570. 5.6 80.0 .0470 .016 .250 .300 .300 3.00 .50 .00180 1 5 105 400. 3.6 90.0 .0270 .016 .250 .100 .300 3.00 .50 .00180 1 6 106 280. 3.7 90.0 .0480 .016 .250 .100 .300 3.00 .50 .00180 1 7 107 860. 2.2 15.0 .1120 .016 .250 .100 .300 3.00 .50 .00180 1 , 8 108 710. 2.5 40.0 .0600 .016 .250 .100 .300 3.00 .50 .00180 - 1 9 109 730. 2.5 40.0 .0280 .016 .250 .100 10 110 660. 2.7 40.0 .0610 .016 .250 .100 11 111 400. 2.1 40.0 .0570 .016 .250 .100 12 112 650. 1.1 80.0 .0440 .016 .250 .100 13 113 480. 1.8 20.0 .0840 .016 .250 .100 14 113 480. 2.1 40.0 .0440 .016 .250 .100 15 115 440. 2.6 40.0 .0830 .016 .250 .100 16 116 350. 1.4 40.0 .0540 .016 .250 .100 17 301 210. 1.7 70.0 .0670 .016 .250 .100 18 118 840. 1.7 40.0 .0760 .016 .250 .100 19 119 270. .6 40.0 .0380 .016 .250 .100 20 120 250. 1.0 40.0 .0770 .016 .250 .100 21 301 400. 3.5 50.0 .0590 .016 .250 .100 25 125 450. .9 99.9 .0200 .016 .250 .100 26 126 380. .2 99.9 .0200 .016 .250 .100 27 127 795. .4 99.9 .0200 .016 .250 .100 31 131 550. 2.1 40.0 .0200 .016 .250 .100 32 132 460. 1.7 40.0 .0360 .016 .250 .100 33 133 720. 1.7 40.0 .0200 .016 .250 .100 34 134 600. 3.7 40.0 .0530 .016 .250 .100 35 135 700. 2.1 40.0 .0320 .016 .250 .100 40 140 1940. 1.0 99.9 .0250 .016 .250 .100 41 141 920. .6 99.9 .0350 .016 .250 .100 42 136 50. 2.5 99.9 .0400 .016 .250 .100 43 104 50. .5 99.9 .0400 .016 .250 .100 44 103 50. .4 99.9 .0400 .016 .250 .100 45 139 50. .4 99.9 .0400 .016 .250 .100 46 137 50. .5 99.9 .0400 .016 .250 .100 47 137 50. .8 99.9 .0400 .016 .250 .100 OTOTAL NUMBER OF SUBCATCHMENTS, 37 OTOTAL TRIBUTARY AREA (ACRES), 68.58 1 HUNTINGTON HILLS FUTURE) CONDITION, 100-YR STORM - SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36• PIPES + NEW 30^ PIPE .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00- .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00190 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .5p .00190 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00190 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 .300 3.00 .50 .00180 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS TIME(HR/MIN) 1 2 3 0 5. 0. 0. 0. 1 HUNTINGTON HILLS FUTURE CONDITION, 100-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES + NEW 30^ PIPE ••. CONTINUITY CHECK FOR SUBCATCHME14T ROUTING IN UDSWM2-PC MODEL ••. WATERSHED AREA (ACRES) 68.580 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .416 TOTAL WATERSHED OUTFLOW (INCHES) 2.285 TOTAL SURFACE STORAGE AT END OF STRRM (INCHES) .189 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .002 1 HUNTINGTON HILLS FUTURE CONDITION, 100-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES + NEW 30" PIPE WIDTH INVERT SIDE SLOPES OVERRANK/SURCHARGE GUTTER GUTTER MOP NP OR DIAM LENGTH SLOPE HORI2 TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L A N (FT) 18 19 0 20 21000.0 25000260...................... •••• 35000.000 40000410.00 17 ' OVERFLOW 47.0 0. .0010 .0 .0 .001 .00 101 102 0 1 CHANNEL 2.0 1050. .0080 30.0 30.0 .020 20.00 1 102 103 0 1 CHANNEL 2.0 430. .0280 30.0 30.0 .020 20.00 1 103 142 5 1 CHANNEL 2.0 179. .0220 30.0 30.0 .020 20.00 201 DIVERSION TO GUTTER NUMBER 201 - TOTAL 0 VS DIVERTED 0 IN CPS .0 .0 2.0 .3 4.0 .5 21.0 2.1 30.0 3.0 142 104 0 1 CHANNEL 2.0 179. .0280 30.0 30.0 .020 20.00 1 104 150 0 1 CHANNEL 2.0 360. .0110 30.0 30.0 .020 20.00 1 136 ISO 0 1 CHANNEL 2.0 2145. .0020 30.0 30.0 .020 20.00 1 137 ISO 0 1 CHANNEL 2.0 660. .0020 30.0 30.0 .020 20.00 1 139 138 5 1 CHANNEL 2.0 255. .0280 30.0 30.0 .020 20.00 201 DIVERSION TO GUTTER NUMBER 201 - TOTAL 0 VS DIVERTED 0 IN CPS .0 .0 2.0 .3 4.0 .5 21.0 2.1 30.0 3.0 138 150 0 1 CHANNEL 2.0 315. .0110 30.0 30.0 .020 20.00 1 150 303 6 3 2.0 1. .0010 30.0 30.0 .020 20.00 151 DIVERSION TO GUTTER NUMBER 151 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 5.0 6.8 20.0 16.8 40.0 20.0 60.0 21.8 100.0 23.2 151 152 0 3 .1 1. .0010 .0 .0 .001 10.00 0 303 201 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .1 .0 .1 .0 .2 2.6 .3 11.8 .4 39.9 :5 73.2 .6 147.3 201 107 0 1 CHANNEL 5.0 370. .0440 8.0 8.0 .050 20.00 1 105 107 0 1 CHANNEL 5.0 400. .0300 8.0 8.0 .050 20.00 1 106 107 0 1 CHANNEL .0 300. .0430 20.0 20.0 .050 20.00 1 107 111 0 1 CHANNEL 5.0 430. .0190 8.0 8.0 .050 20.00 1 ill 113 0 1 CHANNEL 5.0 400. .0510 8.0 8.0 .050 20.00 1 108 202 0 1 CHANNEL 2.0 350. .0140 30.0 30.0 .020 20.00 1 202 113 0 1 CHANNEL 2.0 430. .0380 30.0 30.0 .020 20.00 1 109 126 0 1 CHANNEL 2.0 410. .0080 30.0 30.0 .020 20.00 1 125 203 0 1 CHANNEL 2.0 450. .0290 30.0 30.0 .020 20.00 1 203 126 0 1 CHANNEL 2.0 280. .0340 30.0 30.0 .020 20.00 1 126 127 0 1 CHANNEL 2.0 380. .0330 30.0 30.0 .020 20.00 1 127 210 0 1 CHANNEL 2.0 795. .0420 30.0 30.0 .020 20.00 1 110 113 0 1 CHANNEL .0 330. .0470 20.0, 20.0 .050 20.00 1 112 113 0 1 CHANNEL 2.0 650. .0510 30.0 30.0 .020 20.00 1 113 301 0 1 CHANNEL 5.0 480. .0210 8.0 8.0 .050 20.00 1 115 116 0 1 CHANNEL 2.0 440. .0550 30.0 30.0 .020 20.00 1 116 301 0 1 CHANNEL 2.0 350. .0250 30.0 30.0 .020 20.00 1 118 119 0 1 CHANNEL 2.0 840. .0180 30.0 30.0 .020 20.00 1 119 120 0 1 CHANNEL 2.0 270. .0380 30.0 30.0 .020 20.00 1 120 204 0 1 CHANNEL 2.0 250. .0240 30.0 30.0 .020 20.00 1 204 301 0 1 CHANNEL .0 270. .0560 20.0 20.0 .050 20.00 1 131 133 0 1 CHANNEL 2.0 550. .0150 30.0 30.0 .020 20.00 1 132 133 0 1 CHANNEL 2.0 310. .0040 30.0 30.0 .020 20.00 1 133 205 0 1 CHANNEL 2.0 450. .0370 30.0 30.0 .020 20.00 1 134 205 0 1 CHANNEL 2.0 600. .0150 30.0 30.0 .020 20.00 1 135 205 0 1 CHANNEL 2.0 730. .0040 30.0 30.0 .020 20.00 1 205 210 4 3 2.0 1. .0120 30.0 30.0 .020 20.00 222 DIVERSION TO GUTTER NUMBER 222 - TOTAL 0 VS DIVERTED 0 IN CPS .0 .0 11.0 11.0 65.0 16.0 200.0 16.0 140 210 0 1 CHANNEL 2.0 1838. .0200 30.0 30.0 .020 20.00 1 141 210 0 1 CHANNEL 2.0 920. .0040 30.0 30.0 .020 20.00 1 210 301 5 3 5.0 1. .0210 8.0 8.0 .050 20.00 223 DIVERSION TO GUTTER NUMBER 223 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 14.0 14.0 36.0 24.0 92.0 32.0 181.0 38.0 223 399 0 3 5.0 1. .0210 .0 .0 .050 .00 0 301 302 0 3 5.0 1. .0210 8.0 8.0 .050 20.00 0 302 399 7 2 PIPE .0 1. .0210 .0 .0 .050 _ .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 7.0 .1 16.0 .4 54.0 1.5 100.0 2.9 127.0 4.6 153.0 OTOTAL NUMBER OF GUTTERS/PIPES, 46 1 HUNTINGTON HILLS FUTURE CONDITION, 100-YR STORM SWM4 MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES NEW 30" PIPE ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 101 0 0 0 0 0 0 0 0 0 0 102 101 0 0 0 0 0 0 0 0 0 103 102 0 0 0 0 0 0 0 0 0 104 142 0 0 0 0 0 0 0 0 0 105 0 0 0 0 0 0 0 0 0 0 106 0 0 0 0 0 0 0 0 0 0 107 201 105 106 0 0 0 0 0 0 0 108 0 0 0 0 0 0 0 0 0 0 109 0 0 0 0 0 0 0 0 0 0 110 0 0 0 0 0 0 0 0 0 0 111 107 0 0 0 0 0 0 0 0 0 112 0 0 0 0 0 0 0 0 0 0 113 111 202 110 112 0 0 0 0 0 0 115 0 0 0 0 0 0 0 0 0 0 116 115 0 0 0 0 0 0 0 0 0 118 0 0 0 0 0 0 0 0 0 0 119 118 0 0 0 0 0 0 0 0 0 120 119 0 0 0 0 0 0 0 0 0 125 0 0 0 0 0 0 0 0 0 0 126 109 203 0 0 0 0 0 0 0 0 127 126 0 0 0 0 0 0 0 0 0 131 0 0 0 0 0 0 0 0 0 0 132 0 0 0 0 0 0 0 0 0 0 133 131 132 0 0 0 0 0 0 0 0 134 0 0 0 0 0 0 0 0 0 0 135 0 0 0 0 0 0 0 0 0 0 136 0 0 0 0 0 0 0 0 0 0 137 0 0 0 0 0 0 0 0 0 0 138 139 0 0 0 0 0 0 0 0 0 139 0 0 0 0 0 0 0 0 0 0 140 0 0 0 0 0 0 0 0 0 0 141 0 0 0 0 0 0 0 0 0 0 142 103 0 0 0 0 0 0 0 0 0 150 104 136 137 138 0 0 0 0 0 0 151 0 0 0 0 0 0 0 0 0 0 201 303 0 0 0 0 0 0 0 0 0 202 108 0 0 0 0 0 0 0 0 0 203 125 0 0 0 0 0 0 0 0 0 204 120 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1.8 2 0 0 0 0 0 0 0 0 0 3.9 44 0 0 0 0 0 0 0 0 0 4.3 4 43 0 0 0 0 0 0 0 0 13.2 5 0 0 0 0 0 0 0 0 0 3.6 6 0 0 0 0 0 0 0 0 0 3.7 7 0 0 0 0 0 .0 0 0 0 26.9 8 0 0 0 0 0 0 0 0 0 2.5 9 0 0 0 0 0 0 0 0 0 2.5 10 0 0 0 0 0 0 0 0 0 2.7 11 0 0 0 0 0 0 0 0 0 29.0 12 0 0 0 0 0 0 0 0 0 1.1 13. 14 0 0 0 0 0 0 0 0 _39.2 15 0 0 0 0 0 0 0 0 0 2.6 16 0 0 0 0 0 0 0 0 0 4.0 18 0 0 0 0 0 0 0 0 0 1.7 19 0 0 0 0 0 0 0 0 0 2.3 20 0 0 0 0 0 0 0 0 0 3.3 25 0 0 0 0 0 0 0 0 0 .9 26 0 0 0 0 0 0 0 0 0 3.6 27 0 0 0 0 0 0 0 0 0 4.0 31 0 0 0 0 0 0 0 0 0 2.1 32 0 0 0 0 0 0 0 0 0 1.7 33 0 0 0 0 0 0 0 0 0 5.5 34 0 0 0 0 0 0 0 0 0 3.7 35 0 0 0 0 0 0 0 0 0 2.1 42 0 0 0 0 0 0 0 0 0 2.5 46 47 0 0 0 0 0 0 0 0 1.3 0 0 0 0 0 0 0 0 0 0 .4 45 0 0 0 0 0 0 0 0 0 .4 40 0 0 0 0 0 0 0 0 0 1.0 41 0 0 0 0 0 0 0 0 0 .6 3 0 0 0 0 0 0 0 0 0 7.1 0 0 0 0 0 0 0 0 0 0 17.4 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 ''0 0 17.4 0 0 0 0 0 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 .9 0 0 0 0 0 0 0 0 0 0 3.3 205 133 134 135 0 0 0 0 0 0 0 210 127 205 140 141 0 0 0 0 0 0 223 0 0 0 0 0 0 0 0 0 0 301 113 116 204 210 0 0 0 0 0 0 302 301 0 0 0 0 0 0 0 0 0 303 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.3 0 0 0 0 0 0 0 0 0 0 16.9 0 0 0 0 0 0 0 0 0 0 '.0 17 21 0 0 0 0 0 0 0 0 68.6 0 0 0 0 0 0 0 0 0 0 68.6 0 0 0 0 0 0 0 0 0 0 17.4 3 HUNTINGTON HILLS FUTURE CONDITION, 100-YR STORM SWM4 MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36" PIPES + NEW 30" PIPE HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 26 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (9) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CPS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CPS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 103 142 104 136 139 138 137 ISO 151 303 201 107 111 113 125 203 126 127 140 141 210 222 204 302 223 399 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(D) .0( ) .0( ) .0( ) .0(D) .0( ) .0( ) .0(D) .0( ) .0(S) 0. 0. 0. 0. 0. 0. U. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( 1 .0( ) .0( 1 .0( 1 .0( ) .0( 1 0. 0. 0. 0. 0. 0. .0(D) .0( ) .O( ) .0(S) .0( ) .0( I 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .O(D) .0( ) .0( ) .0( ) .0(D) .0( ) .0( ) .0(D) .0( ) .0(S) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. .O(D) .0( ) .0( ) .0(S) .0( ) .0( ) 0 15. 1. 2. 3. 0. 0. 0. 0. 3. 4. 0. .1(D) .1( ) .2( ) .0( ) .0(D) .0( ) .1( ) 3.9(D) .0( ) .O(S) 0. 1. 1. 2. 1. 0. 1. 0. 0. 0. .0( ) .1( ) .1( ) .2( ) .1( ) .0( ) .1( ) .1( 1. 0. 0. 6. 1. 7. .S(D) .0( ) .1( ) .0(S) .0( ) .0( ) 0 20. 2. 5. 10. 0. 1. 0. 0. 11. 11. 0. .3(D) .2( ) .3( ) .0( ) .l(D) .1( ) .1( ) 10.9(D) .0( ) .O(S) 0. 4. 4. 7. 1. 1. 2. 2. 1. 0. .0( ) .3( ) .2( ) .4( 1 .11 ) •11 ) .1( I .1( ) .1( ) .1( ) 3. 0. 1. 10. 3. 13. 2.6(D) .0( 1 .2( ) .0(S) .0( ) .0( ) 0 25. 3. B. 19. 0. 1. 1. 1. 21. 17. 0. .4(D) .3( ) .4( ) .1( ) .2(D) .1( ) .2( ) 17.0(D) .0( 1 .0(S) 0. 11. 11. 16. 2. 2. 4. 4. 1. 1. .0( ) .6( ) .4( ) A( ) .1( ) .1( ) .2( 1 .2( ) .1( 1 .1( ) 6. 0. 2. 19. 6. 25. 6.0(D) .0( 1 .3( ) .1(S) .0( ) .0( I 0 30. 7. 17. 37. 1. 2. 1. 3. 42. 20. 0. .8(D) .3l 1 .6( ) .2( ) .3(D) .1( ) .3( ) 20.2(D) .0( ) .1(5) 0. 24. 25. 38. 4. 4. 8. 8. 3. 2. .0( ) .8( ) .7( ) 1.0( ) .2( 1 .2( ) .2( ) .2( ) .2() .2( ) 20. 0. 5. 36. 17. 52. 16.B(D) .0( 1 .3( 1 .3(S) .0( ) .0( ) 0 35. 18. 38. 79. 2. 4. 2. 6. 90. 23. 26. 1.8(D) .5( ) .8( 1 .3( 1 .5(D) .2( ) A( 1 22.8(D) .0( ) .3(S) 15. 66. 67. 102. B. 7. 1B. 17. S. 3. .5( ) 1.3( ) 1.0( ) 1.51 1 .2( ) .2( ) .3( ) .3( ) .2( ) .3( ) 61. 0. 14. 73. 28. 101. 27.6(D) .0( ) .5( ) .9(S) .0( ) .0( ) 0 40. 21. 31. 68. 4. 2. 3. 7. 82. 23. 65. 2.1(D) A( ) .7( 1 .3( ) .4(D) .2( ) A( ) 22.6(D) .0( ) .4(S) 57. 105. 109. 154. S. 6. 20. 22. 5. 3. 1.0( ) 1.6( ) 1.3( ) 1.8( ) .2( ) .2( ) A( ) .3( ) .2( ) .2( ) 69. 0. 19. 107. 29. 135. 28.7(D) .0( ) A( ) 1.B(S) .0( ) .0( ) 0 45. 13. 18. 33. S. 1. 1. 6. 45. 20. 39. 1.4(D) .3( ) .5( ) A( ) .2(D) .1( ) A( ) 20.5(D) .0( ) .4(S) 50. 87. 98. 135. 2. 2. 11. 16. 4. 2. .9( 1 1.4( ) 1.2( ) 1.7( ) .1( ) .1( 1 .3( 1 .3( ) .2( ) .2( I 42. 0. 12. 120. 25. 145. 24.9(D) .0( ) .5( ) 2.5(S) .0( ) .0( ) 0 50. 11. 15. 27.' 6. 1. 1. 4. 38. 20. 23. 1.1(D) .3( ) .5( ) A( ) .1(D) .1( ) .3( 1 19.7(D) .0( ) .3(S) 24. 51. 62. 94. 2. 1. 7. 10. 3. 2. .7( ) 1.1( ) 1.0( ) 1.5( ) .1( ) .1( ) .2( 1 .2( 1 .2( ) .2( 1 28. 0. 7. 124. 20. 144. 20.2(D) .0( ) A( ) 2.8(3) .0( ) .0( 1 0 55. 8. 11. 20. S. 1. 1. 3. 30. 18. 16. .9(D) .3( ) A( ) A( ) .1(D) .1( ) .3( ) 18.4(D) .0( ) .3(S) 18. 34. 39. 61. 1. 1. 6. 7. 2. 1. .6( 1 .9( ) .8( 1 1.2( ) .1( 1 .1l ') .2( 1 .2( ) .2( ) .2( ) 18. 0. 6. 122. 16. 137. 15.7(D) .0( ) A( ) 2.6(S) .0( ) .0( ) 1 0. 6. 8. 15. S. 0. 0. 2. 23. 17. 10. .7(D) .3( ) A( ) A( ) .1(D) .1( ) .3( 1 17.3(0) .0( ) .2(S) 12. 25. 29. 44. 1. 1. 4. 6. 2. 1. .5( ) .8( ) .7( 1 1.0( ) .1( ) .1( ) .2( ) .2( 1 .1( 1 .2l 1 11. 0. 4. 115. 11. 127. 11.2(D) .0( ) .3( ) 2.3(8) .0( ) .0( ) 1 S. 4. 6. 11. 5. 0. 0. . 2. 19. 16. 7. .5(D) .2( ) .3( ) A( ) .1(D) .1( .2( ) 15.8(D) .Ol ) .2(S) 8. 17. 21. 32. 1. 1. 3. 4. 1. 1. A( ) .7( 1 .6( ) .9( ) A( ) .1(.) .2( ) .2( ) .1( ) .1( ) 6. 0. 3. 108. 6. 114. 6.3(D) .0( ) .3( ) 1.9(S) .0( ) .0( ) 1 10. 3. 4. 8. 5. 0. 0. 2. 15. 13. 4. .4(D) .2( ) .3( ) .3( ) .O(D) .1( ) .2l ) 13.3(D) .0l 1 .2(S) 5. 12. 15. 23. 1. 1. 2. 3. 1. 1. .3( ) .6( ) .5( ) .8( ) .1( ) .1( ) .1( ) .2( ) .1( ) .1( ) 5. 0. 2. 98. S. 103. 4.8(D) .0( ) .2( ) 1.4(S) .0( ) .0( ) 1 15. 2. 3. 6. 4. 0. 0. 1. 12. 11. 2. .4(D) .2( ) .3( ) .3( ) .O(D) .1( I .2( ) 11.4(D) .0( ) .2(S) 3. 9. 10. 17. 0. 0. 2. 2. 1. 1. '.2( ) .5( ) .4( ) .7( ) .1( ) .1( ) .1( ) .1( ) .1( ) .1( ) 4. 0. 1. 78. 4. 82. 3.8(D) .0( ) .2( ) 1.O(S) .0( ) .0( ) 1 20. 2. 3. S. 4. 0. 0. 1. 10. 10. 2. .3(D) .2( ) .3( ) .3( ) AM .1( ) .2( 1 10.1(D) .0( ) .2(S) 2. 6. 8. 12. 0. 0. 1. 2. 1. 0. .2( ) .4( ) A( ) .6( 1 .1( ) .1( ) .1( ) .1( 1 .1( ) .1( ) 3. 0. 1. 62. 3. 65. 3.0(D) .0( ) .2( ) .6(S) .0( ) .0( ) 1 25. 1. 2. 4. 3. 0. 0. 1. 8. 9. 1. .2(D) .1( I .2( ) .3( ) .O(D) .1( ) .2( ) 9.1(D) .0( I .2(S) 2. 5. 6. 10. 0. 0. 1. 1. 1. 0. .2( ) .4( ) .3( ) .5( ) .1( ) .1( ) .1( ) .1( ) .1( ) .1( ) 2. 0. 1. 45. 2. 48. 2.4(D) .0( ) .2( ) .4(S) .0( ) .0( ) 1 30. 1. 2. 3. 3. 0. 0. 1. 7. 8. 1. .2(D), .1( ) .2( ) .3( ) .O(D) .0( ) .2( ) 8.3(D) .0( ) .1(S) 1. 4. S. S. 0. 0. 1. 1. 0. 0. .1( ) .3( 1 .3( ) .4( ) .1( ) .1( 1 .1( ) .1( ) .1( ) .1( ) 2. 0. 1. 28. 2. 30. 2.0(D) .0( ) .2( 1 .2(S) .0( 1 .0( ) 1 35. 1. 1. 3. 3. 0. 0. 1. 6. 8. 0. .2(D) .1( ) .2( ) .3( ) .O(D) .0( ) .1( ) 7.7(D) .0( ) .1(s) 1. 3. 4. 6. 0. 0. 1. 1. 0. 0. .1( ) .3( ) .2( ) .4( l .0( ) .0( ) .1( ) .1( ) .1( ) .1( ) 2. 0. 1. 19. 2. 20. 1.7(D) .0( ) .2( ) .1(S) .0( ) .0( ) 1 40. 1. 1. 3. 2. 0. 0. 0. 6. 7. 0. .1(D) .1( ) .2( ) .3( ) AM .0( ) .1( ) 7.3(D) .0( ) .1(S) 0. 3. 3. S. 0. 0. 1. 1. 0. 0. .1( ) .3( ) .2( ) A( ) .0( ) .0( ) .1( ) .1( ) .1( ) .1( ) 2. 0. 1. 12. 2. 14. 1.5(D) .0( ) .1( ) .O(S) .0( ) .0( ) 1 45. 1. 1. 3. 2. 0. 0. 0. 5. 7. 0. .1(D) .1( ) .2( ) .3( 1 .O(D) .0( ) .1( ) 7.0(D) .0( ) .1(S) 0. 2. 3. S. 0. 0. 1. 1. 0. 0. .0( ) .2( ) .2( ) .3( ) .0( ) .0( ) .1( ) .1( ) .1( ) .1( ) 1. 0. 0. 9. 1. 10. 1.4(D) .0( ) .1( ) .O(S) .0( ) .0( ) 1 50. 1. 1. 2. 2. 0. 0. 0. S. 7. 0. .1(D) .1( ) .2( ) .2( ) .O(D) .0( ) .1( ) 6.7(D) .0( ) .1(S) 0. 2. 2. 4. 0. 0. 1. 1. 0. 0. .0( ) .2( ) .2( ) .3( ) .0( ) .O( ) .1( ) .1( ) .1( ) .1( ) 1. 0. 0. 7. 1. 8. 1.3(D) .0( ) .1( ) .O(S) .0( ) .0( ) 1 55. 1. 1. 2. 2. 0. 0. 0. 4. 6. 0. .1(DI .1( ) .2( ) .2( ) .O(D) .O( 1 .1( ) 6.0(D) .0( ) .1(S) 0., 2. 2. 4. 0. 0. 1. 1. 0. 0. .0( ) .2( ) .2( ) .3( ) .0( ) .0( 1 .1( ) .1( ) .1( ) .1( ) 1. 0. 0. 5. 1. 6. 1.2(D) .0( ) .1( ) .O(S) .0( 1 .0( ) 2 0. 1. 1. 2. 2. 0. 0. 0. 4. 5. 0. .1(D) .1( ) .2( I .2( ) .O(D) .0( ) .1( I 5.2(D) .0( ) .1(S) 0. 2. 2. 3. 0. 0. 0. 1. 0. 0. .0( ) .2( ) .2( ) .3( ) .0( ) .0( ) .1( ) .1( ) .1( 1 .1( ) 1. 0. 0. 5. 1. 6. 1.0(D) .0( ) .1( ) .O(S) .0( ) .0( ) 2 5. 0. 1. 1. 1. 0. 0. 0. 3. 4. 0. .1(D) .1( ) .1( ) .2( ) .O(D) .0( ) .1( ) 4.3(D) .0( ) .1(S) 0. 1. 2. 3. 0. 0. 0. 1. 0. 0. .0( 1 .2( ) .2( ) .3( ) .0( ) .0( ) .1( ) .1( ) .1( ) .1( ) 1. 0. 0. 3. 1. 4. .8(D) .0( ) .1( ) .O(S) .0( ) .0( ) 2 10. 0. 0. 1. 1. 0. 0. 0. 3. 3. 0. .1(D) .1( ) .1( ) .2( ) .O(D) .0( ) .1( ) 3.5(D) .0( 1 .1(5) 0. 1. 1. 2. 0. 0. 0. 0. 0. 0. .0( ) .2( ) .1( 1 .2( ) .0( ) .0( 1 .1( ) .1( ) .0( ) .1( ) 1. 0. 0. 3. 1. 4. .i(D) ` .0( ) .1( 1 .O(S) .0( I .0( ) 2 15. 0. 0. 1. 1. 0. 0. 0. 2. 3. 0. .O(D) .1( ) .1( 1 .2( ) .O(D) .0( 1 .1( ) 2.8(D) .0( ) .1(S) 0. 1. 1. 2. 0. 0. 0. 0. 0. 0. .0( ) .1( ) .1( 1 .2( ) .0( ) .0( 1 .0( ) .1( ) .0( ) .0( ) 1. 0. 0. 2. 1. 3. .5(D) .0( ) .1( ) .O(S) .0( ) .0( 1 2 20. 0. 0. 1. 1. 0. 0. 0. 2. 2. 0. 1 .0(0) .1( ) .1( ) .2( ) .O(D) .0( ) .1( ) 2.4(D) .0( ) .1(S) 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. .0( ) .1( ) .1( ) .2( ) .0( ) .0( ) .0( 1 .0( ) .0( ) .0( ) 0. 0. 0. 2. 0. 2. .4(D) .0( ) .1( 1 .O(S) .0( ) .O( 1 2 25. 0. 0. 0. 1. 0. 0. 0. 1. 2. 0. .O(D) .0( ) .1( 1 .2( ) .O(D) .0( ) .1( ) 2.0(D) .0( ) .O(S) 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. .0( ) .1( ) .1( ) .1( ) .0( ) .0( ) .O( ) .0( 1 .0( ) .0( 1 0. 0. 0. 1. 0. 2. .3(D) .0( ) .1( ) .O(S) .0( ) .0( ) 2 30. 0. 0. 0. 1. 0. 0. 0. 1. 2. 0. _ .O(D) .0( ) .1( ) .2( ) .O(D) .0( ) .1( ) 1.8(D) .0( ) .O(S) 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. .0( ) .1( ) .1( ) .1( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 1. 0. 1. .2(D) .0( 1 .1( ) .O(S) .0( ) .0( ) 2 35. 0. 0. 0. 1. 0. 0. 0. 1. 2. 0. .O(D) .0( ) .1( ) .2( ) .O(D) .0( ) .1( ) 1.5(D) .0( ) .O(S) 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. .0( 1 .1( 1 .1( ) .1( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 1. 0. 1. m = = m = m = m m = r m m m m m m m m .2(D) .0( ) .1( ) .O(S) .0( ) .0( ) 2 40. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. .O(D) .0( ) .1( ) .2( ) .O(D) .0( ) .1( 1 1.3(D) .0( ) .0(S) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .1( ) .1( ) .1( ) .0( ) .0( ) .O( ) .0( 1 .0(. ) .0( ) 0. 0. 0. 1. 0. 1. .2(D) .0( ) .1( 1 .O(S) .0( ) .0( ) 2 45. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. .O(D) .0( ) .1( ) .1( ) .O(D) .0( ) .1( ) 1.2(D) .0( ) .O(S) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .1( ) .1( ) .1( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 1. 0. 1. .1(D) .0( ) .0( ) .O(S) .0( ) .0( ) 2 50. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. .O(D) .0( ) .0( ) .1( 1 .O(D) .0( ) .0( 1 1.0(D) .0( ) .O(S) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .1( ) .0( > .1( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 1. .1(D) .0( ) .0( 1 .O(S) .0( ) .0( ) 2 55. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. .O(D) .0( ) .0( ) .1( ) .O(D) .0( 1 .0( ) .9(D) .0( ) .O(S) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .1( ) .0( ) .1( ) .0( ) .0( ) .0( ) .0( ) .0( 1 .0( 1 0. , 0. 0. 0. 0. 0. ' .1(D) .0( ) .0( 1 .O(S) .0( 1 .0( ) 3 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. .O(D) .0( ) .0( 1 .1( ) .O(D) .0( ) .0( ) .S(D) .0( ) .0(S) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( 1 .1( ) .0( 1 .0( ) .0( 1 .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. .1(D) .0( ) .0( 1 .O(S) .0( 1 .0( ) 1 HUNTINGTON HILLS FUTURE CONDITION, 100-YR STORM SWMM MODEL TO EVALUATE SKYWAY DRIVE DETENTION POND - 2 36- PIPES + NEW 30" PIPE ••• PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS ••- CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CPS) (FT) (AC -FT) (HR/MIN) 101 8. .3 0 40. 102 18. .3 0 40. 103 21. .4 0 40. 139 4. .2 0 35. 142 38. .5 0 35. 138 3. .2 0 40. 137 7. .4 0 40. 136 6. .4 0 50. 104 79. .8 0 35. 150 90. ,(DIRECT FLOW) 0 35. 125 B. .2 0 35. 303 65. .1 .4 0 40. 132 9. .4 0 35. 131 10. .3 0 40. 203 7. .2 0 35. 109 13. .4 0 35. 118 9. .3 0 35. 106 28. .7 0 35. 1 105 27. .8 0 35. 201 57. 1.0 0 40. 135 9. .4 0 40. 134 17. '.4 0 35. 133 27. .4 0 40. 126 20. .4 0 40. 119 12. .3 0 40. 108 16. .4 0 35. 107 105. 1.6 0 40. 141 3. .3 0 35. 140 S. .2 0 35. 205 54. (DIRECT FLOW) 0 40. 127 22. .3 0 40. 120 18. .4 0 40. 115 16. .3 0 35. 112 9. .2 0 35. 110 16. .5 0 35. 202 14. .3 0 40. 111 109. 1.3 0 40. 210 69. (DIRECT FLOW) 0 40. 204 19. .6 0 40. 116 22. .4 0 35. 113 154. 1.8 0 40. 301 246. (DIRECT FLOW) 0 40. 302 124. .0 2.8 0 50. 223 29. (DIRECT FLOW) 0 40. 151 23. (DIRECT FLOW) 0 35. 18 0. .0 0 0. 399 145. (DIRECT FLOW) 0 45. 152 23. (DIRECT FLOW) 0 35. 19 0. (DIRECT FLOW) 0 0. ENDPROGRAM PROGRAM CALLED I I Ci ' APPENDIX B ' Detailed Calculations 11 I t 1 1 I /BYRES ASSOCIATES DESIGN COMPUTATIONS 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 LT� �. '�- 4 } 1. -7 i � t �-i :- �+-•-�-L I I I I J !.-. � � t �_J__� __.._�_ _. Y �� `\I ,VRr' - --� -, LI IT �� - t � � h- r .Cq:'�c7G��4 fi.o.►-� 1 (Ye� GC��/>�>P n�..i i�� "; i I � J. 1- , I i 1 �_f { lI?t I I t I I I + 14 -l-_� I — - ! , r 1. , L.. 1 II r- __ - Ii _ _ I I _ } r - I L 1 .._ I i I Y f I 'f I i L , r _1 i - _ Project No. c�3_D/bT, oe Remarks Computation by /6w C Date 5� j_9r Project Name llu� �.� / ^ Checked by Date Tale/Item Skyway . �i^ Sheet of AVRES ASSOCIATES DESIGN COMPUTATIONS 1 9 FI ' Q h etai,'n�+cc„� eP� 7wera�. H!o„ryy�wro,.r/eif ffW O 310,0 — — 0 36.E 3G,a 20 38 3 /.S 37,0 0.10 ?7. fo 38.3 ?0 3ra /.85 3z4 l.4 ?8,8 39,a ' uo S� 40.3 4l. 8 a.ts 37.7 3 z e z, g 40, r 3. $ 4r. t. 40,3 41. 8 [o0 law P.s 38.0 SS 13.5 43.10 1 1 1 1 Ar FHw Caw. f l - Sy er< c. r c✓: /i •kw!/; I f w = 36, 0 + ! �/q x A 1rX Rc.- Cr: f;c�/ .��o F�� uN�To. %4Js/�✓. fj.�q' Ff/u,} c%...d' �. �r FHwa Cl .mot s ; ke , o, 5 (space R c. f .z q% ha�ac..11� ec No+e 8q<k4v4+eA -iroww R"A 4ro.ti Pe40f ((+�'re�2). 1LCo -{'row. CA;fiee/ e&,A04 7re✓P"&r. 4t �,r„Q J? 4=C4A [ b 3o✓et.t oVoo agt;,s .4y sf, p�*r(. Project No. q,? _ /4,7 oo Remarks I Computation by C6,j Date Project Name H �.`!S �. a Checked by Date Title/hem Sk4w•Y ��✓� l+ �uQ^ Sheet of CHART 10 190 . 10,000 168. 8,000 EXAMPLE 6. 156 6000 0.42 inehn (3.5 fast) 6. 144 5,000 - a•Izo ere S 4,000. Al 0 ttr 6. S. 132 3•� D tact S.4. —4. 2'000 (3) -. 2.2 7.7 4. 3. 108 no is fast .3. 96 1,000 3. Boo --� -- = 84 6002- 500 / .. ` 72 400 _ - 30o E�j i -- 1.5 1.5 O Z Uf 0: 60 V 200 / H I.S Z Z W ' Z4 W 100 .> 48 '1-," ¢ 8 - -j o /2 a x (L UU 1.0 1.0 LL S HW ENTRANCE �SGALE 1.0 0 40 TYPE cc W 9 f- 36 0 (1) Square edge .with ~ 3 . 9 3 head a .9 Q (2) Groove and with Q W - C headwall .. x •6 .8 .. (3) - Groove end 'e 27 . .. ptojectlag 10 7 T 24 8 .7 6 To use Beals or (3) project 21 S - horizontally to sea then 4 use straight Inclined line t . . p. and a sealu, or rover so all •6 .6 . _ 3 illustrated. 6 _ . 18 2 IS S S .S 1.0 12 HEADWATER. DEPTH. FOR . CONCRETE PIPE CULVERTS HEADWATER SCALES 283 WITH INLET CONTROL REVISED MAY1964 BUREAU OF PUBLIC ROADS JArl 1963 181 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O CHART 4 31 F 2 0 gO 50 6O 70 BO 9O 100 DISCHARGE-C-CFS 6 S H W W U. 4 v S F a 3 W 0 J Q V f. 2` ivv cvv avv 40O 300 600 700 60O 900 10000 DISCHARGE-C-CFS c� u i- I ■■■■■■■■■■■®■■■■:��� MEMOMMEMEMEN ■■■����/�■ ■■■■■■■■■■��/�■®■■ iii■■s■e■��■■■■■■■■■s .m■■■■■■■■■■■■ ■■■■mmu■■■■■■■■■■■■■ INVA ■sip■■■■■■■ ■ ... 2000 moo DISCHARGE-O-CFS BUREAU OF PUBLIC ROADS J"""'964 CRITICAL DEPTH CIRCULAR PIPE 184 CHART 5 ' F- 2000 — — M ' MW a he u Stops So- ... .4 1000 ; J SUGMERGEO OUTLET CULVERT FLOWING FULL S 60p 120 F•r "flOf Cowl •p1 NIbmera.•, C ,Iquis MW by .6 ' op MLAOA• O•rie•A in RW CHign pme4wp � 600 106 .6 500 96 400 H. j 1.0 ' B4 / 300 72 66 ' N �O U. y, v 34 O 40 - 48 —/ 42 7o w UJIIOOo•to /= Epp too 4 60% i a 36 'p0 Apo 4o S rn 0 . 3 3 Epp 6 S 0 FW- Apo 40 W a 30 top f 6 g 21 : .• ' 30 24 J N 10 20 21 16 20 10 13 6 [12 ' 6 s 4 HEAD FOR ' CONCRETE 'PIPE CULVERTS FLOWING FULL GUREAU Of PU6LC ROADS JAM. 1963 n O 0.0 12 ' 185 /BYRES ASSOCIATES DESIGN COMPUTATIONS Two New 3loi` put /ef ldi LQS QiM4'Fs. 'J T, in I- = 73 Qin/c+i ° a9cfs = l5 cGs l r;ra of p"IT, (:5w 1-hm a/<wk,f - /jecause o'� f/ia. fiMi�y o: �L>�.,s �' ./tie StiteY SWM*7 i[CHS -'4d /it' ✓<L Stir fJ �/7 f%c S4 . ( g- M:-7 m , '{ea - - %J.. 01V S tiawt ), 74 rl he,4 ey pq�%SC�rye- ^t/w4JS4mi+3 fhe 7�.x o- ,j'h c/c is P�o�. fie ✓ 'fa ,-A -i l<. 50�o ur l� G �iP� n/.f� A-} /25 C'FS � I/� ih%f�:•/ �'o �1 �Hr`+a( e&71 of t Project No. r3,_01b7 Cc, Remarks Computation by 6W Date 5-3-957- Project Name i /fin f� Checked by Date Title/item 3�4 e�,-f (e f pipes, Sheet of /MIRES ASSOCIATES DESIGN COMPUTATIONS Qpo^@ O1n4i-, * O Pipe OF HW4,(i-,L4) grc dc. 7Wej *fie H(, IL-q kC e/ (a tlrf� E/4J 6 O o 37.0 25 Co /to 38,` 1,35 3t.4 — -- 38.0 50 /a 3 / 39. 4 1, 8 31.9 0.(0 39.4 391¢ 75' /7 a 12..'L 34.7 1.35 ¢O,(c /00 23 G a ¢/, O 12.5, 3v.s 2.4 41,9 /:25 29 77 ¢2, I D.8 39.8 3. 0. /50 Z)Ct q0 43. S 3.0 qo,o S 1 45. a FS $ -X DP;pe = (4!: „ {- (S?ol ls) (a_ qp -K4 FHwH cA*^t- i , sy44^L C4i Yweleu - 37 o f H` 10 r D 301, kit s Cr; I �Qi�, USa,l 7W / -Pro") F//cl t C.'!•.q^t 7- 4s;,y Oprpc Nofa: Tuve/ isis 46avG d/1 btQ k c -*eA vk ao,4Z cif 4pwk Cane tF«-2l gfa(1 {� f w,� V;m *fJ(` FIA41,/+ Ck-,f- 5; k<. - Aed ue.t C-/eL/4t c, -. Q /`ti4 lion S%+i� 7i Cl¢vat%oh QeulJeri-s 0,.+<Or Qeo.tVr,Y�y, 37.0 0 0 0 q>To /St o 0 �/.0 83,7 f35, to b'2.7 K TtitcrPali f'� `Y^�w'46�J1C z; Fra Nt Saf+c.rft ca%5 C Project No.93 llo� cu Remarks Computation by C6W Date c✓-, 3 9S Project Name Checked by Date Title/Rem Sk�.w4y �J.;vL 1 �/r,crl� Sheet 2 of 1 1 CHART 10 180 10,000 168 8,000 EXAMPLE (1) (2) (3) 1 6. 156 0•42 inches (3.5 toot) S. 1aa 5:006 (1.120 cta S 4,000 • rrtr 8. S. 1 132 3.� 0 toot S. 4. 11) t.a 8.6 4. 120 1 2.000 (3) 2.2 7.7 4• 3' 108 so is fee 3' 1 96 1,000 3. 800 — 84 600 2. 2- 500 // 2. 72 400 3 � = 300 1.5 1.5 1 Z 60 N U. 200 10 1.5 z c 34 a o 1 W 100 z too _ J 48 0 e 60.,p, 1- �, n.. I.0 1.0 U. 2 N 0 H W _ES RANCE— T.YPE W L0 . CC r 30 (q seuon edge with i 9 .9 �. hood■ell C •9 Q 33 - 20 . 4 a �So Groove aed.m W o 30 x 8 8 8 1 (3) Groove and 27 Propetlq 7 r 1 24 e •T 6 To as cols (2) or (3) Pro)est 21 3 her lioeta I to osels (1), then see Straight II c insd line through 4 0 cod 0 scales, esens e4 .6 B . 3 ;. IlluatratN, p es 1 2 IS S 1 GO .S .S 12 HEADWATER DEPTH FOR 1 CONCRETE PIPE CULVERTS HEADWATER SCALES 253 WITH INLET . CONTROL REVISED MAY1964 BUREAU or PUBLIC a0Ao3 JAta It" 1 181 1 1 1 O CHART 4 1 1 e S 1 L W W �'A' 4 a 1 H a 3 W 1 0 J Q U 2 R:._!,-w,- +v ov ev /O 60 90 100 OISCHARGE-0-CFS e 7 J Q v rvv zvv ovv a00 500. 600 700 800 900 1000 U DISCHARGE-0 -CFS �- 1 14 1 12 1 I0 1 B 1 6 1 4 1 1 MENEM■■■■ ■■■■■■■■■■■mmmmi ■■■■■■■■■NERD/E■ :■■■■■■■■■NE/S/O■■■■ m■oom■■■momCA■■■■■■■ ■■mums■■■■■■■■■ ■■■■EWAN■■■■■■■■■■■■■ ■■■■P■■■■■■ .. _ ■ ■■■M■■■■■■■ ■ W.AmE■■■■■■■■■■■■■■■■ DISCHARGE-0 -CFS BUREAU OF PUBLIC ROADS JAN. 1964 184 0 CRITICAL DEPTH CIRCULAR PIPE _ O ' CHART 5 ' F7 2000 _ m RW MOW 0 W SIOF4 St. 4 ' 1000 j SUBYEROED OUTLET CULVERT FIOWIr1O FULL S Soo 120 Ftr Oullol tn.R "t RdworyN, t quN MW by •6 RM 1"dl dw ria0 in W4 GMiyR Frt ed1 600 106 c S00 96 400 N.j IA 64 300 72 /e -66 �Fq 200 80 E�0 W 2 -54 /___4'IIO _ W 48 D.4B p R.pp %y = 3 �_ a2 oo . Sp W ti a ' eo' _ ./ 0 38 Soo •oo Lt-9v S y 60 cc 33 hp0 yp0 6 S 0 FW- W 30 40 < - _ too s 6 - 0 27 �• 24 20 21 I6 20 . ' 10 IS 9 . 1 6 L12 S HEAD FOR ' CONCRETE PIPE CULVERTS FLOWING FULL • BUREAU OF "t-C RO4OS J4K 1963 n = 0.0 12 185 AVRES ASSOCIATES DESIGN COMPUTATIONS ItJPw ups 36" C�ku S FI.38 d 12tr �71oc,-,) I 5 Q= C L H Ilse cc= 2,9 L=9' �-LeL) 1 t- Project No. Remarks Computation by Date Project Name Checked by Date Title/hem Sheet of AVRES ASSOCIATES DESIGN COMPUTATIONS S-to�Q;�P- - //%5C4cr,5.0- C2/47rIOn S %g cie u-/-;o� s�.��/�.�rJ R Ole (c{3) 4, 3 cctij Quref (0J) 36.0 0 o O o 3-7 o , Dorn &.7 p 3a.o afcs l/c•3 0 /ln 39,o 114C1 27,9 'a&,I 5q ¢o,0 41157 373 Q2.5' joo f-z.a ¢,59.3 5/.l 101.7 /53 Project No. 93 0/67 c� Remarks Computation by �G w Date Project Name r/4,�f�)�6�/'�3 7 Checked by Date Title/Item Sheet j of / /. vms ASSOCIATES DESIGN COMPUTATIONS G E L 1 Co ICI r.r Q.rod EL �• �n Z� C J r4 // �,•O5- ✓.JI 00 IF. yv y0 )0 io.00 �01 7(c 10.4g 7keo. Cap. {­cc:-,cf �.'. )v). C,.D-�-r'_, 0.� �s 0. I12y cis ''71I a. I pis Por Ic+s w S : L=S � �x = 0.0�5 �.8/ % Q T Q� 0 - - - - o �d •S' 0 0.10 0.16'y 0.3a H ID.0 0.3�) 0-is " o.JaLl O,so o. 33 0.1 Project No. c v _ G I % P*marks Computation by /'� r� Date Project Name Checked by Date Title/Item __L_ n l2 / Sheet of ' POND ROUTING G O IFI PULS METHOD EAST CURB INLET ' PROJECT: HUNTINGTON HILLS PUD DATE: 01-Aug-95 SUBJECT: COLLEGE AVE. & SKYWAY DR. STORM WATER RUNOFF PAGE: 1 FLOWS CONTRIBUTING TO SKYWAY DR. PEAK ELEVATION= TAIL MAX. OUTFLOW= MAX. WEIR FLOW= STORAGE= 7" M WON STAGE STORAGE '`t �� ft acre fr 5000.66 ft. dTime= 6.20 cfs. dDepth= 0.00 cfs. 0.05 acre ft. VAY DR. )-OUT TIME 4INFLOW cfs. min. , cfs.:. 5000.20 0.00 0.14 5000.25 0.00 0.40 5000.30 0.00 0.74 5000.35 0.01 1.15 5000.46 0.01 1.60 5000.45 0.02 2.10 ^� 5000.50 0.020,�Lz 2.65 5000,55 0.03 3.24 5000.60 0.04 3.87 5000.65 0.05 r 5000.70 0.06 - __6.81 " -- 7.14 5000.75 0.07 7.46 5000.80 0.08 �Q' 5 7.89 5000.85 0.10 8.41 ' 5000.90 0.11 8.99 5000.95 0.13 9.97 ' 5001.00 5001,05 .: 0.14 0.16 11.66 14.22 5001.10 0.18 16.74 5001.15 0.20 22.05 ' 5001:20 0.22. 28.64 5001.25 0.24 36.60 5001.30 .0..26 46.03 5001.35 0.29 57.03 ' 5001.40 q.31 69.66 5a'o.9.7 4t :. j kau tl ��r��, nr ' ► c,1U, U, Dr iv- �({�.^S�°'^.1 2.5 mina 0.05 ft. 2S/t-O 2S/t+O 2.5 0.9 0.9 0.9 5.0 1.7 3.0 3.5 7.5 2.6 5.4 7.4 10.0 2.0 :_' 7.0 10.0 12.5 1.5 7.2 10.5 15.0 0.9 6.8 9.6 17.5 0.3 5.9 7.9 20.0 0.0 4.2 6.2 22.5 0.5 3.0 4.7 25.0 2.5 4.0 6.0 27,5 5:1 7.8 11.6 30.0 6.7 14.2 19.6 32.5 7.5 ' . 21.4 28.4 INFLOW Basins: " 1,2,3,4,42,43,44,4s,46 Ponds: NONE l " AYRES ASSOC. ADD. 2, RHILLS FILING 2 SKYWAY DR TOTAL Qo ELEV. WEIR FLOW cfs. M cfs. O 0.0 5000.15 0.00 o Z 0.0 5000.24 0.00 Q1 LL 0.2 5000.31 0.00 U a y 1.0 5000.39 0.00 1.5 5000.43 0.00 1.6 5000.43 0.00 J 1.4 5000.42 0.00 11 W p 1.0 5000.40 0.00 l 1.0 0.9 5000.37' 5000.34 0.00 0.00_ X b 1.0 5000.37 0.00 U t _ 1.9 5000.44 0.00 2.7 5000.54 0.00 Z .0 3.5 5000.61 0.00 v r6-21 snnn as un An 1 37:5 3.7 23.1 35.2 6.0 5000.65 0.00 40.0 6.3 22.5 33.1 5.3 5000.64 0.00 42.5 5.3 22.8 34.1 5.7 5000.64 0.00 45.0 4.2 22.3 32.3 5.0 5000.63 0.00 47.5. 3.2 21.7 29.7 4.0 -5000.62 0.00 50.0 2.3 21.0 27.1 3.1 5000.60 0.00. 52.5 1.4 18.7 24.7 3.0 5000.58 0.00 55.0 0.8 15.0' 20.9 3.0 5000.55 0.00 57.5 0.3 12.0 16.1 2.0 5000.50 0.00 60.0 0.0 8.3 12.3 2.0 5000.45 0.00 62.5 0.0 6.2 8.3 1.1 5009.40 0.00 65.0 0.0 4.2 6.2 1.0 5000.37 0.00 67.5 0.0 3.0 4.2 . 0.6 5000.33 0.00 70.0 0.0 3.0 3.0 0.0 5000.30 0.06 72.5 0.0 3.0 3.0 0.0 5000.30 0.00 75.0 0.0 3.0 3.0 0.0 5000.30 0.00 77.5 0.0 3.0 3.0 0.0 5000.30 0.00 80.0 0.0 3.0 3.0 0.0 5000.30 0.00 82.5 0.0 3.0 3.0 0.0 5000.30 0.00 85.0 ;. 0.0 t 3.0 3.0 0.0 5000.30 0.00 87.5 0.0 3.0 3.0 0.0 5000.30 0.00 90.0 6.0 3.0 3.0 0.0 5000.30 .0.00 92.5 0.0 3.0 3.0 0.0 5000.30 0.00 95.0 0.0 3.0 3.0 0.0 5000.30 0.00 97.5 0.0 3.0 3.0 0.0 5000.30 0.00 100.0 0.0 3.0 3.0 0.0 5000.30 0.00 102.5 0.0 3.0 3.0 0.0 5000.30 0.00 105.0 0.0 3.0. 3.0 0.0 5000.30 0.00 107.5 0.0 3.0 3.0 0.0 5000.30 0.00 110.0 0.0 3.0 3.0 0.0 5000.30 0.00 112.5 0.0 3.0 3.0 0.0 5000.30 0.00 ' POND ROUTING U O ' PULS METHOD WEST CURB INLET ' PROJECT: HUNTINGTON HILLS PUD DATE: 01-Aug-95 SUBJECT: COLLEGE AVE. & SKYWAY DR. STORM WATER RUNOFF PAGE:. 2 FLOWS CONTRIBUTING TO SKYWAY DR. lJ [1 17 PEAK ELEVATION= TAL MAX. OUTFLOW= " MAX. WEIR FLOW= " Q,,COLL0051E AVE. 5001.06 ft. 15.63 cfs. 7.5 cfs. 0.26 acre ft. STAGE STORAGE Q-OUT ft acre ft cfs. 5000.25 5000.30 . 5000.35 5000.40 5000.45 5000.50 5000.55 5000.60 5000.65 5000.70 5000.75 5000.80 5000.85 5006.90 5000.95 5001.00 5001.05 5001.10 5001.15 5001.20 5001.25 5001.30 5001.35 5001.40 5001.45 5001.50 5001.55 5001.60 5001.65 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.07 0.09 0.11 0.13 0.15 0.17 0.20 0.22 0.25 0.26 0.32 0.35 0.39 0.42 0.46 0.50 0.55 0.59 0.64 0.69 0.74 0.14 0.40 0.74 1.15 1.60 2.10 2.65 3.24 3.87 6.81 7.14 7.46 7.76 8.44 9.87 12.28 15.84 20.70 25.94 34.40 44.58 70.50 86.44 104.49 124.74 147.27 172.17 199.51 c TIME min. 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 dTime= 2.5 min. dDepth= 0.05 ft. INFLOW cfs: 2.0 4.1 6.1 8.1: 10.2 12.2 14.2 16.3 18.3 20.3 19.0 17.6.. 2S/t-O cfs. 0.0 2.0 6.6 . 13.8 23.8 36.1 46.2 58.6 75.1 93.4 111.3 124.0 131.0 Basins: Ponds: 2S/t+O TOTAL Qo cfs. cfs. 2.0 0.0 5000.25 0.00 8.1 0.8 5000.39 0.00 16.7 1.5 5000.47 0.00 28.0 2.1. ..:5000.56 0.00 42.1 3.0 0000.64 0.00 58.4 6.1 5000.71 0.00 72.6 7.0 5000.77 0.00 89.1 7.0 5000.83 0.00 109.6 8.1 5000.90 0.49 132.0 10.3 5000.97 2.48 150.6 13.3 5001.02 5.09 160.6 14.8 .5001.05 6.73 35.0 14.9 133.6 164.8 15.6 5001.06 7.52 37.5 13.5 132.0 162.0 15.0 5001.00 3.67 40.0 12.2. 129.0 157.8 14.4 5001.04 6.26 42.5 10.8 125.0 152.1 13.5 5001.03 5.33 45.0 9.5 120.4 145.4 12.5 .5001.01 4.22 47.5 8.1 115.3 138.0 11.3 5000.99 3.19 50.0 6.8 110.1 130.2 10.0 5000.97 2.27 52.5 5.4 104.5 122.3 8.9 5000.94 1.41 55.0 4.1 97.3 114.0 8.4 5000.92 0.81 57.5 2.7 88.6 104.0 7.7 5000.89 0.28 60.0 1.4 _ 78.6 92.6 7.0 5000.85 0.00 62.5 0.0. 66.0 80.0 7.0 5000.80 0.00 65.0 0.0 52.4 66.0 6.8 5000.74 0.00 67.5 0.0- 42.7 52.4 4.8 5000.68 0.00 70.0 0.0 36.7 42.7 3.0 5000.64 0.00 72.5 0.0 30.7 36.7 3.0 5000.61 0.00 75.0 0.0 25.8 30.7 2.5 5000.57 0.00 77.5 0.0 21.8 25.8 2.0 5000.54 0.00 80.0 0.0 " 17.8 21.8 2.0 5b00.51 0.00 82.5 0.0 14.5 17.8 1.6 5000.48 0.00 85.0 0.0 12.3 14.5 1.1 5000.45 0.00 87.5 0.0 10.3 12.3 1.0 5000.43 0.00 90.0 0.6 8.3 10.3 1.0 5000.41 0.00 925 00 67 INFLOW " 1,2,3,4,42,43,44 NONE AYRES ASSOC. ADD. 2, H.HILS FILING 2 CL. COLLEGE ELEV. WEIR FLOW = ft. cfs. N �N 4. J J � 95.0 0.0 5.8 8.3 6.7 0.8 0.4 5000.39 5000.37 0.00 0.00 e.^, � ��_j_. � 1 `j o 97.5 100.0 0.0 0.0 5.4 5.2 5.8 5.4 0.2 0.1 5000.36 5000.36 0.00 0.00 Ir� P -5 4- �15 Pori" 6� JR �1AWj {� Z/ 199j� 102.5 105.0 107.5 110.0 0.0 0.0 0.0 0.0 5.1 5.1 5.0 5.0 5.2 5.1 5.1 5.0 0.1 0.0 0.0 0.0 5000.35 5000.35 5000.35 5000.30 0.00 0.00 0.00 0.00 FA C A,SI-�SOnCIATES/DESIGN COMPUTATIONS s'�w R0.-inq Cv.rJQ,S v Ea�1- S�a� — •Glow oJer �,,sb 1/J` L olw� Q el '�pjwnr1s 5f.) �000• IS G.000 o O O.Sa O.o;;>y p Q.E 010sq 0 rA o,�7 0,0r7q CD, 0.l4a 0?g 7 o. 1 0y lt, r79 0 r.) I, O. O, I1.I1a 9,9q 0.3g0 I. I D 0.16g r73".a7Z o.y6q 1. a-7 0.D40 IL+;. a-7 0. GOO Oe,!z+ !;J- - o lLr- CoNee, AJC Ctn+er f f1Q �SEL VOIumCCuc.-Pr) Cc -. an p 0 o. sa O.o3y o p , 6 -7 0.8i d, �58 I,©a O.a3a p I.1 a o,aq� 1,GG t, a a 0. 366 S• �8 �, a� 0•40� Is.s� �.3a ©•y36 Q,1.aq f.�Ia o.sae ye.y9 Project No. q - Remarks Computation by Date g _ - `T Project Name ku 1 r' ✓� Checked by Date Title/ttem ciord',e.v _,-.,�'n:._roc-. (('' Kn,'�.n_?_ `k�-./ey 4cr CAllgv-v AJt. sheet of AVRES ASSOCIATES DESIGN COMPUTATIONS L24CL,r\ea \MTV-m2 on PASt c oErz o CoI vE 4✓e. _ Qrelease ' C), J s (o vA ,� f- c,b) Qinl+(,4 = a C-. (ox+ 4,hro.,6k ',r)k{ 44-7A� W;4h W = 0- I tac.--P+, and Q = 0cJs, -Fl1 max "EL. = 20G.GS 1 \'ta* po;r\+ in *E b2Are Or. is -50W. %cif so rc Wa4er ep'llS down cl Vr,ni 'fine) m7z�ea.r SfDrn-7 �rrIQQ.;� s loS ff�fis,, V (oljer- c,.rb1� r 74r7/1 �nle.✓•�4 �� Ct-S `JY.1.O'I" 4:C7.�.tf� IhPOIn[Ih Ir,IQ,'�� -,i I GnOt G ' R291ona� �4.�Qn`i'ion T'orc� ' a-�r Q ow+ = a�j cis = a, 8 ac-�'f Q,w T Ids c.�s Project No. I? I L% Remarks Computation by Data Project Name L Checked by Date Title/ttem /� n Sheet of AVRES ASSOCIATES DESIGN COMPUTATIONS Sir mm'7 of Y40/y7#7 /esc, /fs J ia7G4 ca, (n 4,,-t lL f /co-yaao ¢ue,af t Q ;, (•n4x) = a(�3 QJ5 Qa.+ (. -Y) = is 7 cfs Q pip<s /^.x/ = W cfs, m4x = a, 9 e-v�.;t. ( NoEbz 30l) NoA 3a ) IJodte 3gf4) �/ P; nJ 4 Slow NoBt 702.) mcm WS2. Ro�2 Crewy � ¢d:37 ` .�. IXXRyKo PC Jr 36" < ^ D f5 cfs +— Q� = Ig7 ( ) C/53- i27) Q = Ny - `/5= /03 cfr S-f. J c42 (4-c -ia-9s Protect No, y3_ ao Remarks Computation by CIGw Date Project Name Checked by late Title/hero S(� Sheet / of / /BYRES ASSOCIATES DESIGN COMPUTATIONS s ky Woy �rw� �jwi��N 0.f C 44 o ;`Ja t V f =1Z <=z' Xz �yf =7SO �byz -yam Qa,= Qa - aQt OT=Qa,�aw MivoP oad To�Ul�dit W, MO.Nwys 0.60 9,7' 6,o1(p .60 N E 25 0.0065 10,3 D,50 9,7 0,0110 '7,3 j a8,b o.00so 9,15 O,Sd (� 0,01(0 65 S E 28,(n o,00yq I q15 6,So (D15 0,01lo -�'>4 * N y-uX tu'Ati, r aoI t 4, 1/L t4e SbeA vu�21" !b/n Q0. �y _Q0., �j (X rt�1.IX.J (iCTURI� N vl I-Slo3 �.o 2>0 4,Q `�,b (D, 4 15.0 t N 4A -'2� 1,(5 Zra 3,G 'Z. S nee 4,3 I,5 2.8 3,5 b,3 14,p I,O Project No. / �� Remarks Computabon by pg,3 VV Date Project Name fl- - Checked by Date Title/ttem l — .! Fy - — — Sheet I of -f = = m = m = = m m m = = m = = = = = m I 00-Year Street Capacity AWN ..... ... . . I .. . . ... .... a...... ... .. .. . . . ... .. . . . ... . . . ...... .... ..... . 7 Skyway Dr. Collector 0.20 0.5 36 0.04 0.036 0.0080 0.016 0.33 18 0.72 0.65 19.51 Skyway Dr. Collector 0.50 0.5 36 0.04 0.035 0.0049 0.016 0.33 18 0.72 0.63 30.15 ..... ..... . . 161 140 m ... NA. . �. .... .... .. I. ................ . .. ... ... ......... ............ W, . ... .... NERR . . . ... . ... 10.63 .......... ..... ...... Skyway Dr. 0.42 3.38 0.35 2.73 0.33 0.33 0.26 0.20 26.15 24.00 23.78 0.55 145.30 Skyway Dr. 0.72 6.08 0.63 5.27 1.20 0.54 0.88 43.58 24.91 24.64 0.88 260.06 Skyway Dr. 0.92 0.85 116.24 Skyway Dr. 1 1.22 1.13 165.14 AVRES ASSOCIATES DESIGN COMPUTATIONS u O.yg, h: O.Sr aqc ' ThCort+ic� CaPaCi+� I os C-(V4 Allo�0.ble C0.��, _ K/.os)('0MoD = O, 2Y L- s.3a/Iq /.33^ --> use /9'-1 cjAC Dub rrih -�D 4ive �d,�iancX CG-f9aC'i,G� Gta�,'ng /DD �Ec+r s���m 7. 56 Qa 1 �//�b,n w2s+ = S ova C oM SWO?47) e Qa +f cQ.lan eas4 = a� c4 (i1.-v Ag4iontC /t%'fnofl, 4o44 = S 3 c-,Cs / 6q C4S Project No. Remarks Computation by / Project Name IKn{,r^ it7 N; I G _ a �r,�E H Checked by Date Title/hem Sheet of AVRES ASSOCIATES DESIGN COMPUTATIONS q--+-ee+ capo.648 = q. f .3 ! oc-4e r• in zJer JN.r ' he;nk-V o-17 Open; (A Z: 0.5' = 0. 31/0.5 = O. 712 1 11 1 11 i 1 1 1 11 1 1 I 1 1 Q-fs ✓ ok nq '�-,y Siortn L= a /o•6r = 3. 3 � � use %' C 5 (G t roM (��Q,JiOwS S�eF,'i �• � � CF'�-�f io reJ>-: Thee k Cc b , ✓DK The,ore+;cJ 3,10 crs/xf Allo,aa We Cap. _ (2.10XB0-20� : (, 68 c 5lr6 Csow+�, s deb = C.$s' �, ors// 70 Tneore- iieJ Call, 0 04/re A11ow4b/e o.Z'&76 /.60 C4/oct Qwr n� 100- e 5torr�_� 6 Q Cis �fo+al) enders +ke, low po;n-t- On,'Skw . a4- +4,p,-wo ;nlef5. as +1 Q. in Corn no, 471ow eX Cee-ds +die- inlet Q cLpar-,4jeS) i 4- w; 11 p�,I _ 3cp+k ouer -Fhri IJor+11 ,�fQ! i/]L Waivy w II %e ,n Fo SQ l C%J (+ 4ke go,4kILzc,41;' ."tvx4o +ke, dQ+en+;on pond. A4 ©.%�)r J42 • k ;+ 01,11 s(]ill cvtr +4,e' -e:1-�ec+ C-rowo-4Oward 4e Sow+v1 in -I e,+. n% 6k'(rn�rn wcde-r 5w--c.c- el eu�-+i on 1-z, q d. q g. They si4eo&V, on 4'e. Sot,41� sae is O.5' abode. +I,e 40 of owrb ar-A 1.0' aboJe 44 g,4pr -Iool:ne-� �o no rwno}y- ,,,)ill9P�fi ou2r- +4,e SokJl w0.1k. Project No. Remarks Computation by a ,� Date Project Name Checked by Date Title/Rem sheet of /MIRES ASSOCIATES DESIGN COMPUTATIONS l.�a-�e.r sP�ll�n� o�e� Nprf� walk �n-Fo c�e-l-En-F;or �;o�G �Qlk c cIs a� a �e 7 r r duk-� iC O�e brEak nko 'rlCf �rrl�nTc� 1 (ou �" ' o 4\e �2 �+ aril ea--F of' 4h,c eoli�wnQ;aye for sir �lo C�i�U�ar on PT �1 LlN.Oc, �o.Ll 2 C( �rl is Curb. Tura 3 ?. �� � 21�-: n2c� ✓2,0�, ' 05/o 4-Con-) %�%lam ,�Ou n In4p O. CCO dF in - O. /�wc veloc a S Secr or7 6, qS > SOG� Dote : Ih� +oQ o curb is O.f -the, walk and Con4r-ols +ke -rloo. Project No. 0✓ Remarks Computation by : 1 .ti Date-, _ ,� 7 ✓ — Project Name / /. , C v Checked by Date Title/Hem v �-' Sheet of 1 1 1 Skyway Drive: Flow Over Top of Curb Into Detention Pond North of Inlet Slope Distance FL Elev. Depth Delta-D Q Cum. Q from C-L ft ft) (cfs) (cfs 0.008 5 41.56 0.42 5 3.45 3.45 0.009 7 41.58 0.41 2 1.30 4.75 9 41.59 0.39 2 1.23 5.98 11 41.61 0.38 2 1.15 7.13 13 41.62 0.36 2 1.08 8.21 15 17 19 41.64 41.66 41.68 0.34 0.33 0.31 2 2 2 1.01 0.93 0.85 9.22 10.15 11.01 WSEL 42.48 22 41.70 0.28 3 1.12 12.13 25 41.73 0.25 3 0.96 13.09 30 41.78 0.21 5 1.19 14.28 35 41.82 0.16 5 0.83 15.11 40 41.87 0.12 5 0.51 15.62 45 41.91 0.07 5 0.25 15.87 52 1 41.97 1 0.01 1 7 1 0.02 1 15.89 South of Inlet Slope Distance FL Elev. Depth Delta-D Q Cum. Q from C-L ft ft) (cfs) (cfs 0.0055 5 41.56 0.42 5 3.45 3.45 7 9 11 41.57 41.58 41.59 0.41 0.40 0.39 2 2 2 1.33 1.27 1.22 4.78 6.05 7.28 WSEL 42.48 13 41.60 0.38 2 1.17 8.45 15 41.62 0.37 2 1.12 9.57 17 41.63 0.36 2 1.07 10.64 20 41.64 0.34 3 1.50 12.13 25 41.67 0.31 5 2.20 14.33 30 41.70 0.29 5 1.92 16.25 35 41.73 0.26 5 1.65 17.90 40 41.75 0.23 5 1.39 19.29 45 41.78 0.20 5 1.15 20.44 50 41.81 0.18 5 0.93 21.37 55 41.84 0.15 5 0.72 22.09 60 41.86 0.12 5 0.53 22.62 65 41.89 0.09 5 0.36 22.98 70 41.92 0.07 5 0.21 23.19 75 41.95 0.04 5 0.10 23.29 80 1 41.97 1 0.01 1 5 0.02 1 23.30 Total Weir Flow Total Width Cum Q 10 6.90 14 9.53 18 12.03 22 14.41 26 16.66 30 18.79 34 20.79 39 23.14 47 26.46 55 29.34 65 32.18 75 34.40 85 36.07 95 37.24 107 37.98 112 38.51 117 38.87 122 39.09 127 39.18 132 1 39.20 I 1 t Skyway Drive Hyraulic Rating Curve Water Surface North Inlet South Inlet North Walk Total Discharge Flowline Depth Discharge Flowline Depth Discharge Max Depth Discharge Elevation ft) (cfs) (ft) (cfs) (ft) (cfs) (cfs 41.56 41.56 0.00 0.00 41.63 -0.07 0.00 -0.50 0 0 41.81 0.25 2.74 0.18 1.66 -0.25 0 4 42.06 0.50 8.14 0.43 6.26 0.00 0 14 42.31 0.75 12.60 0.68 10.80 0.25 10 33 42.48 0.92 15.12 0.85 14.40 0.42 39 69 AVRES ASSOCIATES DESIGN COMPUTATIONS ,WAX 4'v`Gr - (2*M(WAJ' ^d� 'I,, `f,V � pf14P,' o N`Q�c eaSi r W�04 JA Ift fe....eJS ie eaw.i� �P� �r C l crew 5�c e r�; nto c ��ie ve(Dp¢'les V� a 1GPYn l kJ{S L.0-r 15er.S l� C2l Dls%a I.nuJ point Iv0re65f 5i 0 �mw. ia51 S p � p,� �' 40A k5W`� 0 6.43 O N/!a 5' we 3.52 Q. 4 3 5 5 84— Deed RtfK*f 7' W 1,3� p. d-2 V 0 1,31 0<44 Z 5. 14'w-Zo'� 201w - 25rvj 2 n 29 19 �E- 24' E 2 35 p, 33 5 ,c;,Gb eon �'wt (ZR '�`'tOr �e1"�CWl.2 'ED G�iriS ia.�t.t g,,t� Project No.93-0((��' Remarks Computation by Date (Z (� Project Name U) Checked by Date Title/Hem T : yaD `'S � Sheet of 2' - 1 AVRES ASSOCIATES / DESIGN COMPUTATIONS 1 1 1 i i 1 1 1 v5, '"'/TaJAc S,z (Smc, �ecaJge I� ©ti(, G���tt5 W�tr, F4 P.8 -v. Ovrs raac a rAm-� �e I O/ p, ���tap �sl v, nne�lno�olc�� �vo dra)lic, e-✓. o- ;7(�� vt�S� j J v�� 1991 e5ize r-i raf 6v, equaJleti ftov., (. w Lr-/- C-1,z f�r low t d.(e,u- f6) f' sole �� I 62.4� p cover-q 5� IJ zc ) of LDuJ �� lou.� Project No. 9 ,p16 Remarks Computation by Date 9 Project Name I� v Checked by Date Title/Rem ` J Sheet 21 of 3 - AVRES ASSOCIATES DESIGN COMPUTATIONS Y �c Ce f �r c 1 rom �aC� 0 v -/r;fo C-icr ion doe 597 5/P2 - - 6n - ..�jvr� W�a-hA+Or�O,� .Gnd S22C1 boom act o 1J-T -S Project No. Remarks Computation by Date Project Name? r ve— Checked by Date Title/Hem Sheet � of� AVRES ASSOCIATES DESIGN COMPUTATIONS �r Z 0_ 0 W r- Project No.�7, � Remarks Computation by 'I Date Project Name _ / ! - Checked by Date Title/Ham Sheet of AVRES ASSOCIATES DESIGN COMPUTATIONS Lx�,0.j � Cu��2rt �ufi�e� Onotecto,-� �✓1S',n ur'i�an S'i-orm L LE = o: s Lra;naae, Cr ier YY")ant,,4 rne4hoJ G Culverfs dQP4) n P � pe- Q P, p� Q-fi/a - Csl+i c ��p.c( / \ / =5-7'�cG J5/.q > 63 C)5 Q� Qc c SulI p:pe f louo Project No. CL5 6 Remarks Computation by CC Date, -- �J Project Name/ /,N a /, a K Checked by Date Title/item Sheet of AVRES ASSOCIATES DESIGN COMPUTATIONS 9a d — _ - / � 1 L 'I.. :T.� �N'iiid �:�1h. /1� �C�C�r-'�G-�•�'-ice ji: OaIC�i�te .ji� lhPu�,vG.'�r� f occn �;�r �ond,n� } \ 10� ,,.SIC„ �>) ��/ N - I•� �3 = O. S9 e- Q f 10 - aO Ike �e I/,D `6.00> 13�t�a Project No. -. - - Remarks Computation by i Date -. Project Name Checked by Date Title/item.. ,.. - .. -. / _ Sheet of - ASSOCIATES DESIGN COMPUTATIONS r �so G rcikl VIC Calc�1�+� �r,��,� _,� ;,,4-e c ' o L n,ay, = 10 E = 10 P-X� w�ckr w d-'r C�i cn rer, ',rad tc �u��her red�`E deice+ . Project No. /) �.. I �r-.% I Remarks Computation by Date%S- � Project Name I Checked by Date Title/Rem Sheet of No Text 1 1 1 1 1 1 i 1 i� 1 1 1� 1 1 i 1 1 DRAINAGE CRITERIA MANUAL. STORM SEWERS Values of and n (full n full 1.0 1.2 1.4 1.6 1.8 20 2.2 2.4 2.6 2.8 3.0 3.2 1. 0 A v C.. E n u v o OA 0.1 -0.2 0 3.4 3.6 ►WENEMME.E.E. OMEN : .MMiin EEE ..EME EEM.�.MaM.O i.� i AR EIOi�. .1�i......■...... PAP /41��/,i./I.II. Mai \ ME OMEN PA90111i11111 Mal M► .......oi%ON►IIFM.M�IM. - M�� . .iOE..riM1l.ONo EEMMM 1119111111 0, ME PAN loom E■I,1E/�! M.N. /I.OetiM.�OMN■ 00 115 MR M.Mri MOM M .Nr.!M!�0 MOMO��r�E..1IN.M.mom Mr No .=�aPr, OMEN WIN No FORM 0 ME No Mi;1!.ON.In MEMO ANCE220 mom EN HE EMO !/5911E..NON.E..mom WI&=MOM V.. V.j tr.0 U./ . U.6 0.9- qa 1.0 . 1.1 1.2 1.3 Hydraulic elements u . ; and n Vull tun full Rtull . V = Actual velocity of flow (tps) A = Area occupied by flow (ftl V full = Velocity flowing full (fps) Afull. = Area of pipe (ft2) q = Actual quantity.of flow (cfs) r = Actual hydraulic radius (ft.). 0 full = Capacity flowing full (cfs) Rfull = Hydraulic radius of full pipe(ft.) FIGURE 8-1. HYDRAULIC ELEMENTS OF CIRCULAR CONDUITS (2) 1-15-69 Denver Regional Council of Governments 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 DRAINAGE CRITERIA MANUAL i0 - ._.. 240 RAN RIPRAP Yt/H Use Ho instead of H whenever culvert has supercritical flow in the barrel. *-*Use Type L for a distance of 3H downstream. FIGURE.5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR CONDUIT. OUTLET. 11-15 -82 URBAN DRAINAGES FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL RIPRAP A = Expansion Angle.. v .� .L .J .T .J .��V .I .O .`J I.V •• TAILWATER DEPTH/ CONDUIT HEIGHT—Yt/H. FIGURE 5-10. EXPANSION FACTOR FOR RECTANGULAR CONDUITS 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT 1 1 I 4 938 i 4940 4942 18+00 0 1917-7 �- - - ' 4942 4942 4940 4940 4938 ' 4936 5 � N " = y0, rr H * HEC-2 WATER SURFACE PROFILES * * U.S. ARMY CORPS OF ENGINEERS ' * • * HYDROLOGIC ENGINEERING CENTER ' * Version 4.6.2; May 1991 * * 609 SECOND STREET, SUITE D ' * * * DAVIS, CALIFORNIA 95616-4687 * RUN DATE 1OJUL95 TIME 15:34:48 • * (916) 756-1104 - X X XXXXXXX XXXXX XXXXX X X X X X X X X X X X X XXXXXXX XXXX X XXXXX XXXXX X X X X X X X X X X X X X XXXXXXX XXXXX XXXXXXX 1 10JUL95 15:34:48 PAGE 1 15:34:48 HEC-2 WATER SURFACE PROFILES Version 4.6.2; May 1991 T1 HUNTINGTON HILLS FILLING2 T2 SKYWAY CULVERTS -- DOWNSTREAM CONDITIONS T3 SKYWAY CULVERTS J1 ICHECK INQ NINV IDIR STRT METRIC HVINS Q 0 2 0 0 .005 0 0 0 J2 NPROF. IPLOT PRFVS XSECV XSECH FN ALLDC IBW 1 0 -1 J3 VARIABLE CODES FOR SUMMARY PRINTOUT 38 1 3 26 8 4 25 NC 0.040 0.040 0.040 QT 1 151 X1 1 8 0 140 0 0 0 GR 35 0 34.9 12 35 19 35.2 50 GR 34.8 70 35 105 35 140 X1 2 4 0 95 47 47 47 GR 36 0 35.6 25 35.6 80 36 QT 1 106 X1 3 6 0 100 25 25 25 GR 36.4 0 36 15 36 22 36 63 GR 37.5 100 XS 4 7 0 76 31 31 31 GR 39 0 38 3 37 6 36.2 38 GR 37 41 38 '76 NC 0.035 0.035 0.035 .3 .5 X1 5 6 0 41 22 22 22 X3 0 0 0 9 0 32 0 GR 39 0 37 6 36.3 8 36.3 35 THIS RUN EXECUTED 10JUL95 WSEL FQ 35.1 CHNIM ITRACE 42 43 39 34 35 95 47 37 13 36.2 0 0 33 37 GR 39 41 X1 6 6 0 33 15 X3 0 0 0 9 0 GR 39 0 37 6 36.4 27 GR 39 33 1 1OJUL95 15:34:48 PAGE 2 X1 7 9 8 18 15 X3 9 GR 39 0 37 6 36.5 17 GR 36.5 17 36.5 18 37 1 1OJUL95 15:34:48 PAGE 3 SECNO DEPTH CWSEL CRIWS WSELK EG Q QLOB QCH QROB ALOB ACH TIME VLOB VCH VROB XNL XNCH SLOPE XLOBL XLCH XLOBR ITRIAL IDC *PROF 1 *SECNO 1.000 3280 CROSS SECTION 1.00 EXTENDED .56 FEET 1.000 .76 35.56 .00 35.10 35.62 151.0 .0 151.0 .0 .0 82.1 .00 .00 1.84 .00 .000 .040 .005041 0. 0. 0. 0 0 *SECNO 2.000 3280 CROSS SECTION 2.00 EXTENDED .11 FEET 3685 20 TRIALS ATTEMPTED WSEL,CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 2.000 .51 36.11 36.11 .00 36.33 151.0 .0 151.0 .0 .0 40.5 .00 .00 3.73 .00 .000 .040 .031485 47. 47. 47. 20 14 *SECNO 3.000 3280 CROSS SECTION 3.00 EXTENDED .31 FEET 3.000 .72 36.72 .00 .00 36.86 106.0 .0 106.0 .0 .0 34.6 .01 .00 3.06 .00 .000 .040 .013773 25. 25. 25. 2 0 *SECNO 4.000 4.000 .90 37.10 .00 .00 37.32 106.0 .0 106.0 .0 .0 28.1 .01 .00 3.77 .00 .000 .040 .016121 31. 31. 31. 2 0 CCHV= .300 CEHV= .500 *SECNO 5.000 3470 ENCROACHMENT STATIONS= 9.0 32.0 TYPE= 1 1OJUL95 15:34:48 PAGE 4 SECNO DEPTH CWSEL CRIWS WSELK EG 15 15 24 0 0 0 8 36.4 25 37 15 15 17 8 36.5 9 36.5 20 39 26 HV HL OLOSS L-BANK ELEV AROB VOL TWA R-BANK ELEV XNR WTN ELMIN SSTA ICONT CORAR TOPWID ENDST .05 .00 .00 35.00 .0 .0 .0 35.00 000 .000 34.80 .00 6 .00 140.00 140.00 .22 .48 .00 36.00 .0 .1 .1 36.00 .000 .000 35.60 .00 0 .00 95.00 95.00 .15 .54 .00 36.40 .0 .1 .2 37.50 .000 .000 36.00 .00 0 .00 58.41 58.41 .22 .46 .00 39.00 .0 .1 .2 38.00 .000 .000 36.20 5.67 0 .00 39.23 44.90 1 TARGET= 23.000 HV HL OLOSS L-HANK ELEV Q QLOB QCH QROB TIME VLOB VCH VROB SLOPE XLOBL XLCH XLOBR 5.000 1.06 37.36 .00 106.0 .0 106.0 .0 .01 .00 4.36 .00 .011024 22. 22. 22. *SECNO 6.000 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 3470 ENCROACHMENT STATIONS= 9.0 6.000 1.15 37.55 37.55 106.0 .0 106.0 .0 .01 .00 6.12 .00 .020795 15. 15. 15. *SECNO 7.000 3685 20 TRIALS ATTEMPTED WSEL,CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 3470 ENCROACHMENT STATIONS= 9.0 7.000 1.76 38.26 38.26 106.0 .0 106.0 .0 .01 .00 7.53 .00 .024039 15. 15. 15. 1 1OJUL95 15:34:48 PAGE 5 ALOB ACH AROB VOL TWA R-BANK ELEV XNL XNCH XNR WTN ELMIN SSTA ITRIAL IDC ICONT CORAR TOPWID ENDST .00 37.65 .30 .29 .04 100000.00 .0 24.3 .0 .1 .2 100000.00 .000 .035 .000 .000 36.30 9.00 2 0 0 .00 23.00 32.00 - 24.0 TYPE= 1 TARGET= .00 38.14 .58 .0 17.3 .0 .000 .035 .000 3 8 0 17.0 TYPE= 1 TARGET= .00 39.14 .88 .0 14.1 .0 .000 .035 .000 20 11 0 15.000 .22 .14 100000.00 .1 .2 100000.00 000 36.40 9.00 .00 15.00 24.00 8.000 .33 .15 100000.00 .1 .2 100000.00 000 36.50 9.00 .00 8.00 17.00 THIS RUN EXECUTED 10JUL95 15:34:49 HEC-2 WATER SURFACE PROFILES - Version 4.6.2; May 1991 NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST 1 " AVRES ASSOCIATES DESIGN COMPUTATIONS 1 r' JAY 1 Wv, 4935.5 1 ln� P iY� 'fe5ul�5 0� SvVVutN1 � •ts o^-� ra�in� 1 t Qr 1 12:?� 45 153 51 f Is 128 ct5 1 Q C 1 v IUD` iU'l.� TP✓ ��►��i�A�nS 1✓l�tC�eS Inge'} CA�oI- 1 1, �u61 i QLi (F/ 11 9)112 aA,6 14Z. )4.91Z 1 v=- 49' 1 1 1 Project No. p 1(�2 Remarks Computation by Date' 1 Project Name , • 1 e r V `+J Checked by Date _ •I A Tide/item 1'2i 4, 9�," CD u Sheet of 1 AVRES ASSOCIATES DESIGN COMPUTATIONS 1 , �c r�i7rah 1 51� VSI1� l/r6L�,n SiDrw� lXa�---v 1 cr,kTto, fKoy,(oJ ,Vol 2. 19&9 / —2s 1 � . 1 4s2.s ; A55 15�- (o ck-/ cavefiy vram 57 2.5 ioer Ycc. e-Z. 1 -fl `ems "*I 4,-kct# -tor ripraf "JLO-ti 1 --� 1 0t� io use l fvl (Tre �ix51n ff �j�UrZ 5.6 65GG 5� 4') 1 1 1 1 1 1 1 1 1 ftv culJe+ Pail k- fba) ater, Project No� _owq.od Remarks Computation by Date I' Project Name V y� ri J Checked by Date Title/Item K( i j n r �i Sheet n of DRAINAGE CRITERIA MANUAL RIPRAP 1 4 .5 2.5 1 1 X0 a 4C o, rza GO\�QP��� QG{ 0 - 41 .GYP 00 L YD .b Ef Qt�lilNkJ ego 2A' Use Do instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. ' 11-15-82 URBAN DRAINAGES FLOOD CONTROL DISTRICT ��.OcD 6 i I fA&I1 95 0/ 7 DRAINAGE CRITERIA MANUAL - N. y N L C s z M O N O Q J 5;• U L V y„ Q nc o c v ISE � O �' 1 aci E ' . 11-15-82 URBAN DRAINAGES FLOOD CONTROL DISTRICt �5kkvAj jv, d{f 61 , 95 /75-. DRAINAGE CRITERIA MANUAL G = Expansion Angle RIPRAP TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D Y+ . b.ZA� . 00 46 FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE ® FLOOD CONTROL DISTRICT 4�5 AVRES ASSOCIATES DESIGN COMPUTATIONS t✓ � S� CV'ee-�� I s vow fbuj r�0 I fIVLo o k��6�`1/" ►s r b�l cc 6 -s" V� & 'soA 5s 4 �CrVlCe ( � I�V�tJv S GSL / 1982�, s e 551t OQ-4- -6r �6 goal Der s is d" 7 1"- -� r "VIAC6A [WPub , Tnk -ft � 11iI Project No. Remarks computation by Date Project Name Checked by Date Title/hem Sheet of