Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 05/21/2008 (3)1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
City of Ft. Collins Appro d Plans
Approved By
Date 5/2+1a 8
Final Drainage and Erosion Control
Study for
Harmony Technology Park
Site Master Plan
Fort Collins, Colorado
Prepared for:
MAV Development
303 Detroit Street, Suite 301
Ann Arbor, Michigan 48104
Prepared by
Stantec Consulting, Inc.
209 South Meldrum
Fort Collins, Colorado 80521
(970) 482-5922
Gam.
Sta11teC
Final
Drainage and Erosion Control Study
Harmony Technology Park
Site Master Plan
Fort Collins, Colorado
0
May 19, 2008
'
Stantec Consulting Inc
209 South Meldrum Street
'
Fort Collins CO 80521.2603
Tel: (970) 482-5922 Fax: (970) 482-6368
stantec.com
Stantec
May 19, 2008
t Mr. Basil Hamdan
City of Fort Collins
Water Utilities--Stormwater
700 Wood Street
Fort Collins, Colorado 80521
IRE: Final Drainage and Erosion Control Study for Harmony Technology Park Site Master
Plan
' Dear Basil:
We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion
Control Study for Harmony Technology Park Site Master Plan. All computations within this study
have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria.
We appreciate your time and consideration in reviewing this submittal. Please call if you have any
questions.
' Respectfully,
Stantec
' Prepared by:
' Brad Kugle Anthony G. Willkomm, P.E.
Project Engineer Project Manager
TABLE OF CONTENTS
DESCRIPTION
PAGE
I.
GENERAL LOCATION AND DESCRIPTION
A. LOCATION
I
B. DESCRIPTION OF PROPERTY
1
II.
DRAINAGE BASINS
A. MAJOR BASIN DESCRIPTION
1
B. SUB -BASIN DESCRIPTION
1-2
III.
DRAINAGE DESIGN CRITERIA
A. REGULATIONS -
12
B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS
2
C. HYDROLOGICAL CRITERIA
2
D. HYDRAULIC CRITERIA
2
IV.
DRAINAGE FACILITY DESIGN
A. GENERAL CONCEPT
3
B. EXISTING SPECIFIC.DETAILS
3-4
C. PROPOSED SPECIFIC DETAILS
4-5
V.
STORM WATER QUALITY
A. GENERAL CONCEPT
6
B. SPECIFIC DETAILS
6
VI.
EROSION CONTROL ,
A. GENERAL CONCEPT
6
VII.
CONCLUSIONS
A. COMPLIANCE WITH STANDARDS
6
B. DRAINAGE CONCEPT
7
C. STORM WATER QUALITY
7
D. EROSION CONTROL CONCEPT
7
REFERENCES
8
APPENDIX
PAGE
VICINITY MAP A
RATIONAL METHOD HYDROLOGY B
SWMM POND SIZING AND EPA SWMM C
POND SIZING CALCULATIONS: RATING CURVES, WQCV D
SWMM AND RATIONAL EXHIBITS E
PRELIMINARY DRAINAGE AND EROSION CONTROL STUDY
FOR HARMONY TECHNOLOGY PARK SITE MASTER PLAN
' FORT COLLINS, COLORADO
GENERAL LOCATION AND DESCRIPTION
A. Location
The Harmony Technology Park is located south of Harmony Road and east of Ziegler
Road in southeastern Fort Collins, Colorado. The site is shown on the Vicinity Map
' in Appendix A. More particularly, the site is situated in the northwest quarter of
Section 4, Township 6 North, Range 68 West of the Sixth P.M., City of Fort Collins,
Larimer County, Colorado.
' B. Description of Property
Harmony Technology Park Site Master Plan (HTPSMP) consists approximately of
120 acres. The development will consist mostly of office, light industrial and
commercial buildings.. The majority of the property currently consists of fallow
' farmland with tall grass vegetation. The site generally slopes in a southeasterly
direction at approximately 0.5%4.0%.
' II. DRAINAGE BASINS _.
' A. Ma *or Basin Description
' The HTPSMP lies within the McClellands Basin. The project drainage is modeled in
the East Harmony Portion of McClellands Creek Master Drainage Plan (August
1999).
' B. Existing Sub -Basin Description
' Historic drainage patterns on the subject site are in a southeasterly direction.
Existing flows from the site flow overland to Lady Moon Drive, where there is a
series of small detention ponds and outlet pipes into a main storm line, 24" to 36",
' that runs south down Lady Moon drive. Flow is then routed into a 53" x 83"
elliptical pipe and piped east down Rock Creek Drive. Flows are eventually released
into the Fossil Creek Inlet Ditch.
1
The anticipated off -site runoff from the adjacent property and roadways surrounding
the HTPSMP will be outflow from the existing Intel Pond A. HTP First Filing and
existing overland and gutter flows from Harmony Road, Lady Moon Drive and Rock
Creek Drive. Currently the 100-year overflow of 4.9 cfs from Intel discharges into an
' open swale and flows west to east toward Lady Moon Drive. Flow is routed south
through a open ditch to an existing detention pond and released through an existing
15" pipe into the existing 24" pipe running south down Lady Moon Drive.
' Additional details on existing conditions are provided in section IV. B.
DRAINAGE BASIN CRITERIA
A. Regulations
' The City of Fort Collins Storm Drainage Design Criteria is being used for the subject
site.
B. Development Criteria Reference and Constraints
' The criteria and constraints from The East Harmony Portion of McClellands Basin
100-Year Master Plan dated August 1999 by Icon Engineering will be utilized in this
Drainage Study. The Harmony Technology Park Site Master Plan is currently being
' utilized as fallow agricultural land.
C. Hydrologic Criteria
' The Rational Method was used for determining surface runoff for the existing project
site. The 10-year and 100-year storm event criteria, obtained by the City of Fort
Collins, were used in calculating runoff values. These calculations and criteria are
included in Appendix B of this study.
' The City of Fort Collins Storm Drainage Criteria requires water quality and detention
of the 100-year design storm event, with a 10-year historic release rate for this site.
' The allowable release rate from the on -site detention ponds is 0.5 cfs/acre for the
100-year event and 0.2 cfs/acre for the 10-year storm event, in accordance with the
McClellands Master Drainage Plan. The proposed ponds have been sized utilizing
' EPA SWMM and ModSWMM. The input and output data are included in
Appendix C.
D. Hydraulic Criteria
' All calculations within this study have been prepared in accordance with the City of
Fort Collins Storm Drainage Criteria and are included in the appendices.
' 2
I
IV. DRAINAGE FACILITY DESIGN
A. General Concept
The purpose of this study is to size the proposed detention ponds and present general
drainage concepts for HTPSMP, for use when future development of the site is
reviewed. It is important to note that all storm infrastructure was designed for the
100-year storm, with an 80% impervious value being used for all basins in the
SWMM model analysis.
HTPSMP has been divided into six SWMM basins, (see SWMM Drainage Exhibit in
back pocket of this study for locations). Runoff from these basins will be routed via
curb and gutter, swales and storm drains to the proposed detention facilities in the
future.
' The proposed ponds have been sized to provide water quality and extended detention
for the site, while also providing controlled releases into the storm drain system.
Flows are conveyed to the southeast corner of the site. The site area is approximately
120 acres. At 0.5 cfs per acre the site can release 60 cfs at the final discharge point in
Rock Creek Drive. All ponds are design with one foot of freeboard.
'
B. Existing Specific Details
The flows from the entire site have been calculated as an existing condition with the
rational method.
'
Basins OS1, OS2
Basins OS 1, OS2. convey storm flow from a small portion of the north side of Rock
Creek Drive and the east and west sides of Lady Moon Drive. Flow is conveyed via
curb and gutter and is captured by two existing Type R Inlets and released into the
ditch on the east side of Lady Moon Drive.
Basin EX-1
Basin EX-1 conveys its flows southeast towards design point EX-1 in its existing
overland flow condition, where flow is treated and released to existing storm pipe in
Lady Moon Drive.
Basins EX-2, EX-3
'
Basins EX-2, EX-3, convey flow from the east and west sides of Lady Moon Drive
and is captured in Combination Type 13 on grade Inlets. From there is discharged
into an existing detention pond and released at Design Point EX-1.
3
Basin EX-4
Basin EX-4 conveys its flows southeast towards design point EX-4 in its existing
overland flow condition. Flow from a road side ditch is also routed east to an
existing inlet and discharged into the existing detention pond. Here flow is treated
' and release into existing pipe in Lady Moon Drive.
'
Basins EX-5, EX-6
Basins EX-5, EX-6, convey flow from the east and west sides of Lady Moon Drive
and is captured in Type R Inlets. From there is discharged into an existing detention
'
pond and released at Design Point EX-4.
Basin EX-7
Basin EX-7 conveys its flows southeast towards design point EX-7 in its existing
'
overland flow condition, where flow is treated and release to existing storm pipe in
Lady Moon Drive.
'
Basin EX-8
Basin EX-8 conveys its flow from a high point in Ziegler Road, south to Rock
Creek Drive. Flow travels east via curb and gutter to an existing 15' Type R Inlet
at EX-8 and discharges to EX-7.
'
C. Proposed Specific Details
Water quality and detention is required and will be provided for the Harmony
Technology Park site. The detention for the site is a comprehensive plan that
relays storm water to six proposed detention ponds. The entire site was
'
modeled as being 80% impervious and detention ponds sized using
MODSWMM EPASWMM.
an'd
' Pond 110
Pond 110 will capture flow from 32.9 acres of the site and provides 8.08
acre/feet of storage including water quality. The controlled release rate out of
' the pond will be 15 cfs into a 24" pipe that will be routed into the existing 36"
storm pipe in Lady Moon Drive.
Pond 101
Pond 101 will capture flow from 6.9 acres of the site and provides 1..53
acre/feet of storage including water quality. The controlled release rate out of
the pond will be 5 cfs into a 18" pipe that will be routed to a proposed 30" pipe
in Technology Parkway. Here, flows will combine with the existing 100-yr
outlet flow from Pond A on the Intel Site.
4
Pond 201
Pond 201 will capture flow from 23.0 acres of the site and provides 5.76
acre/feet of storage including water quality. The controlled release rate out of
the pond will be 10 cfs into a 18" pipe that will be routed to a proposed 30"
' pipe in Technology Parkway. Here flows will combine with outflow from Pond
101 and the existing 100-yr outlet flow from Pond A on.the Intel Site.
'
Pond 501
Pond 501 will capture flow from 16.5 acres of the site and provides 4.14
acre/feet of storage including water quality. The controlled release rate out of
the pond will be 7.5 cfs into a 18" pipe that will be routed to a proposed 30"
'
pipe in Technology Parkway. Here flows will combine with outflow from Pond
201, Pond 101 and the existing 100-yr outlet flow from Pond A on the Intel
Site. The combined flows will be diverted east in the existing 30" storm in
Rock Creek Drive.
'
Pond 600
Pond 600 will capture flow from 12.4 acres of the site and provides 2.61
acre/feet of storage including water quality. The controlled release rate out of
the pond will be 10 cfs into a proposed 18" pipe that will be routed to Pond
301. The release rate and storage for this pond was achieved by running
EPASWMM for Ponds 600 and 301 in series.
Pond 301
Pond 301 will capture flow from 29.0 acres of the site and provides 8.65
acre/feet of storage including water quality. The controlled release rate out of
the pond will be T2 cfs into a proposed 24" pipe that will be routed to an
existing 24" pipe in Lady Moon Drive. The release rate and storage for this
pond was achieved by running EPASWMM for Ponds 600 and 301 in series.
The combined outflow from Ponds 600 and 301 will be conveyed south in the
'
existing 30" storm in Lady Moon Drive.
The SWMM models and data are located in Appendix C. Mapping is shown in
'
Appendix E.
NOTE:
'
Per discussion with City of Fort Collins Stormwater Department, any lot
development that requires detention and water quality will facilitate construction of
'
the entire pond for that basin, as shown in the SWMM exhibit and per required
SWMM model volumes. No partial ponds will be built unless approved by City of
Fort Collins Stormwater Department. The purpose of this is to mitigate continued
regrading and continued disturbance of erosion control measures and
seeding/landscaping of the ponds, as new phases of development occur.
I
E
I
V. STORM WATER QUALITY
A. General Concept
' The State of Colorado requires Stormwater Management Plans as part of their permit
process. The Harmony Technology Park site development is anticipating
' construction beginning in June of 2008. Therefore this study has sought to find
various Best Management Practices for the treatment of storm water runoff that could
be implemented in the construction phase of the project.
B. Specific Details
' Best Management Practices (BMP) for the treatment of storm water runoff has
been incorporated into the design for this project. This includes extended
' detention and grass lined swales. Best management practices shall be provided
with each phase of development or as sites develop within the Master Plan.
VI. EROSION CONTROL
' A. General Concept
The Harmony Technology Park site lies within the Moderate Rainfall Erodibility
Zone and the Moderate Wind Erodibility Zone per the City of Fort Collins zone
maps.. The potential exists for erosion problems during construction, and after
construction until the disturbed ground is re -vegetated or paved.
Erosion Control devices shall be used in the construction of each phase that will be
completed to make up the Harmony Technology Park. Erosion Control Performance
Standards shall also be completed with each construction phase along with a
construction schedule showing the overall time frame for construction activities.
VII. CONCLUSIONS
A. Compliance with Standards
' All computations within this study have been completed in compliance with the City
of Fort Collins Storm Drainage Design Criteria. The City of Fort Collins Stormwater
Utility will not maintain the on -site storm drainage facilities within the Harmony
' Technology Park Site. The owners of the Harmony Technology Park Site will
maintain their on -site storm drainage facilities on a regular basis.
0
[1
1
1
1
1
r-,
J
1
1
1
I
1
11,
J
LIB
i
u
1
1
B.
C.
LO
Drainage Concept
The proposed drainage concepts presented in this study and shown on the final utility
plans adequately provide for the transmission of developed on -site runoff to the
proposed detention ponds. As site develops the combination of on -site street
capacities and the on -site storm sewer system will provide for the developed flows to
reach the proposed detention ponds. The sizes, locations and release rates of these
ponds will allow the Harmony Technology Park to develop in conformance with the
McClellands Basin Drainage Master Planning concepts accepted by the City of Fort
Collins.
If groundwater is encountered at the time of construction, a Colorado Department of
Health Construction Dewatering Permit will be required.
Storm Water Ouality
Sediment basin traps will be provided within the on -site detention ponds in each
phase of construction. These traps will allow storm water pollutants an opportunity
to be filtered out of the storm water as the storm water carries the pollutants across
the site. Periodic maintenance may be required to remove sediment deposits as they
accumulate in the on -site detention ponds.
Erosion Control Concept
Erosion control concepts will need to adequately provide for the control of wind
and rainfall erosion from Harmony Technology Park Site. Through the
construction of the proposed phases performance standards will be met per the City
of Fort Collins Regulations.
7
r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
REFERENCES
1. Storm Drainage Design Criteria and Construction Standards -by the City of Fort
Collins, Colorado, May 1984, Revised January 1997.
2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins,
Colorado, January 1991, Revised January 1997.
3. East Harmony Portion of McClellands Basin 100-Year Master Plan, by Icon Inc.,
Fort Collins, Colorado, August 1999.
4. Final Drainage and Erosion Control Report, Harmony Technology Park 2"d Filing,
Prepared by JR Engineering, June 20, 2001.
5. 2004 High School Final Drainage and Erosion Control Study, Poudre School District
R-1, Prepared by Nolte Associates, Inc., June 24, 2002
6. Final Drainage and Project Development Report for Harmony Technology Park First
Filing, Prepared by Sear -Brown, January 23, 1998.
7. The Urban Storm Drainage Criteria Manual (published by the Urban Drainage and
Flood Control District — Denver, Colorado — June 2001).
E.3
I
1
I
1
I
I
I
1
I
I
i
1
II
1
1
I
n
APPENDIX A
1
I
I
I
I
I
7
I
I
I
I
I
I
1
I
VICINITY MAP
VICINITY MAP
t:NGUSHR ITWOATH LP,
—INT TAR><
"I
cls INS, I l)N c l R
RL
FAA 0 ?Nt,T ON RD
TOPMWATER Aq
Swmm-
•
BASIN
PROJECT
LOCATION
HCC
m
G)
--HARMONY ROAD___-_ -
I
Ili A p v
m
RIC
TRAILJT LEDGE
HARMON
TECAOLC
PARK
Tk DRIVE
'-AnLErd D R.
7
VAT OR V OR
JA L4
=PPER C R
SCALE: 1" = 1500'
i
1
1
1
1
i
1
1
1
1
1
1
1
0
1
1
APPENDIX B
1
H
L
1
1
L
1
1
1
1
1
1
1
1
1
1
1
1
RATIONAL
METHODHYDROLOGY
8
1
Existing Weighted Runoff Coefficients
Harmony Technology Park Site
187710640
This sheet calculates the composite "C" values for the Rational Method.
EX-1
0,95
0.25
2,486,501
57.08
248,650
5.71
10
90
0.32
EX-2
0.95
0.25
24,158
0.55
20,534
0.47
85
15
0,85
EX-3
0.95
0.25
36,795
0.84
31,275
0.72
85
15
0.85
EX-4
0,95
0.25
478,575
10.99
47,858
1.10
10
90
0.32
EX-5
0.95
0.25
23,637
0.54
20,092
0.46
85
15
0.85
EX-6
0.95
Us
42,065
0.97
35.755
0.82
85
15
0.85
EX-7
0.95
0.25
2,074,707
47.63
207,471
4.76
10
90
0.32
EX-8
0,95
0.25
141.438
3,25
120,222
2.76
85
15
0.85
OS-1
0.95
0.25
64,326
1.48
54,677
1.26
85
15
0.85
OS-2
0.95
0,25
44.688
1.03
37.985
0.87
85
15
0.85
SITE
0.95
0.29
5.416.889
124
824 51T
19
152
85 � . `°
wm
338 PM
The SearSrown Group 3113/2008
11
TIME OF CONCENTRATION
10 year design storm
Harmony Technology Park Site
187710640
1.87(1.I - CCr ),�
tt - 5.0.333
tc = tr+tL
Cr = 1.00
SUB -BASIN DATA
INITIAL/OVERLAND TIME
TRAVEL TIME
FINAL
REMARKS
BASIN
AREA, C
LENGTH
SLOPE
t;
LENGTH CHANNEL
SLOPE
VELOCITY
tL
I.
NO.
(ac)
(ft)
N
(min)
(ft)
TYPE(a)
N
(ft/s)
(min)
(min)
1
2 3
4
5
6
7
8
10
12
13
EX-1
57.08 0.32
500
1
32.6
2000
GW
1
1.54
21.7
54.3
EX-2
0.55 0.85
50
2
2.7
810
PA
0.6
1.47
9.2
11.9
EX-3
0.84 0.85
50
2
2.7
- 810
PA
0.6
1.47
9.2
11.9
EX-4
10.99 0.32
500
1
32.6
1000
GW
1
1.54
10.8
43.4
EX-5
0.54 0.85
50
2
2.7
460
PA
0.6
1.47
5.2
7.9
EX-6
0.97 0.85
50
2
2.7
460
PA
0.6
1.47
5.2
7.9
EX-7
47.63 0.32
500
1
32.6-
2150
GW
1
1.54
23.3
55.9
EX-8
3.25 0.85
80
2
3.4
2500
PA
0.6
1.47
28.4
31.8
OS-1
1.48 0.85
25
2
1.9
650
PA
0.6
1.47
7.4
9.3
OS
0.85
25
2
1.9
640
PA
0.6
1.47
7.3
S-21..03
_9.2
A�
� 3J
Sj'.1iRil nf TiY`4'Y.'`I
Note:
a) Codes the channel type for velocity calculations.
PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway
The Sear -Brown Group
R
3:38 PM
3/13/2008
1
TIME OF CONCENTRATION
100 year design storm
Harmony Technology Park Site
187710640
1.87(L1-CCf).�D
t; = Su.w
tc= t;+t'
Cr = 1.25
SUB -BASIN DATA
INITIALIOVERLAND TIME
TRAVEL TIME
FINAL
REMARKS
BASIN AREA C
LENGTH
SLOPE
ti
LENGTH CHANNEL
SLOPE
VELOCITY
tL
I.
NO.
(ac)
(ft)
M
(min)
(ft)
TYPE(a)
M
(fUs)
(min)
(min)
1
2 3
4
5
6
7
8
10
12
13
EX-1
57.08 0.32
500
1.0
29.3
2000
GW
1.0
1.54
21.7
50.9
EX-2
0.55 0.85
50
2.0
1.0
810
PA
0.6
1.47
9.2
10.3
EX-3
0.84 0.85
50
2.0
1.0
810
PA
0.6
1.47
9.2
10.3
EX-4
10.99 0.32
500
1.0
29.3
1000
GW
1.0
1.54
10.8
40.1
EX-5
0,54 0.85
50
2.0
1.0
460
PA
0.6
1,47
5.2
6.3
EX-6
0.97 0.85
50
2.0
1.0
460
PA
0.6
1.47
5.2
6.3
EX-7
47.63 0.32
500
1.0
29.3
2150
GW
1.0
1.54
23.3
52.5
EX-8
3.25 0.85
80
2.0
1.3
2500
PA
0.6
1.47
28.4
29.7
OS-1
1.48 0.85
25
2.0
0.7
650
PA
0.6
1.47
7.4
8.1
OS-2
1.03 0.85
25
2.0
0.7
1 640
PA
0.6
1.47
7.3
.�
,8.0
.,n,tc'
Note:
a) Codes the channel type for velocity calculations.
PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway
The Sear -Brown Group
3:38 PM
W13/2008
Rational Method
10 Year Design Storm
Harmony Technology park Site
187710640
Routing Flow Time (tJ
Runoff
Street
Pipe
Design Point Basins
t°
Length Type Slope Velocity Travel
pe
Travel
t°:
C
Intensity
Area
Ulrect
Runoff
Uther
Runoff
Total
Runoff
Capacity Design Velocity
Slope
Manning's Roughness
Size Flow Depth Capacity
Design
Flow
Normalverage
Flow Depth Velocity
Location
(min)
(ft) (a) (%) (f/s) (min)
(min)
(min)
(in/hr)
(ac)
(cfs)
(cfs)
(cfs)
(cfs) (ft/s (ft/s)
°
(/o)
"n"
(in) (in) (cfs)
(cfs)
(in) (ft/s)
Remarks
EX-1
EX-1
54.3
0.0
54.3
0.32
1.49
57.08
27.28
0.00
27.28
EX-2
EX-2
11.9
0.0
11.9
0.85
3.52
0.55
1.65
0.00
1.65
EX-3
EX-3
11.9
- 0.0
11.9
0.85
3.52
0.84
2.51
0.00
2.51
EX-4
EX-4
43.4
- 0.0
43.4
0.32
1.73
10.99
6.08
0.00
6.08
EX-5
EX-5
7.9
- 0.0
7.9
0.85
4.16
0.54
1.91
0.00
1.91
EX-6
EX-6
7.9
- 0.0
7.9
0.85
4.16
0.97
3:39
0.00
3.39
EX-7
EX-7
55.9
- 0.0
55.9
0.32
1.46
47.63
22.33
0.00
22.33
EX-8
EX-8
31.8
- 0.0
31.8
0.85
2.13
3.25
5.85
0.00
5.85
OS-1
OS-1
9.3
- 0.0
9.3
0.85
3.90
1.48
4.86
0.00
1
4.86
OS-2
OS-2
9.2
- 0.0
9.2
0.85
3.92
1.03
3.40
0.00
3.40
Note:
a) Codes the channel type for velocity calculations.
PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway
c
The Sear-arown Group
A
3:40 PM
3/13/2008
Rational Method
100 Year Design Storm
Harmony Technology Park Site
187710640
Routing Flow Time (tJ
Runoff
Street
-D-es-ig-n--1TO-rM-aT Average
Flow Flow Depth Velocity
Design Point Basins t°
Length Type Slope Velocity Travel
ipe
Travel
Direct u1ner I ota-F
1<. C C•Cr Intensity Area Runoff Runoff Runoff
Capacity Design Velocity
Pipe
Capacity
Slope Manning's Roughness Size Flow Depth Capacity
Location
(min)
(ft) (a) (%) (ft/s) (min)
(min)
(min)
(in/hr)
(ac)
(cfs)
(cfs)
(cfs)
(cfs)
(ft/s) (ft/s)
(%) "n"
(in) (in) (cfs)
(cfs)
Remarks
EX-1
EX-1
50.9
0.0
50.9
0.32
0.40
3.19
57.08
72.86
0.00
72.86
(in) (ft/s)
EX-2
EX-2
10.3
0.0
10.3
0.85
1.00
7.64
0.55
4.24
0.00
.4.24
EX-3
EX-3
10.3
0.0
10.3
0.85
1.00
7.64
0.84
6.45
0.00
6.45
EX-4
EX-4
40.1
0.0
40.1
0.32
0.40
3.73
10.99
16.41
0.00
16.41
EX-5
EX-5
6.3
0.0
6.3
0.85
1.00
9.24
0.54
5.01
0.00
5.01
EX-6
EX-6
6.3
0.0
6.3
0.85
1.00
9.24
0.97
8.92
0.00
8.92
EX-7
EX-7
52.5
0.0
52.5
0.32
0.40
3.12
47.63
59.53
0.00
59.53
EX-8
EX-8
29.7
0.0
29.7
0.85
1.00
4.54
3.25
14.75
0.00
14.75
OS-1
OS-1
8.1
0.0
8.1
0.85
1.00
8.39
1.48
12.40
0.00
12.40
OS-2
OS-2
8.0
0.0
8.0
0.85
1.00
8.44
1.03
8.66
0.00
8.66
� Ril".,yST,"�,
Note:
a) Codes the channel type for velocity calculations.
PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway
' The Sear -Brown Group
3:38 PM
3/13/2008
i
1
i
1
1
1
0
1
1
1
1
1
1
1
1
1
1
APPENDIX C
1
I
1
1
1
1
1 SWMM POND SIZING AND
1
1
1
L
1
1
L
1
1
1
1
EPA SWMM
1
I
Stantec
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
*** ENTRY MADE TO RUNOFF MODEL ***
0
CASVVMMU-ITPMasterFina1100 revised5-16-OB.out
c
1
Printed: 5/16/2008
Stantec
HARMONY TECHNOLOGY PARK
100-YEAR EVENT FILE: HTPMasterFina1100.IN STANTEC; 3/6/08
NUMBER OF TIME STEPS 720
INTEGRATION TIME INTERVAL (MINUTES) 1.00
1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
1.00 1.14 1.33 2.23 2.84 5.49
1.22 1.06 1.00 .95 .91 .87
.73 .71 .69 , .67
9.95 4.12 2.48 1.46
.84 .81 .78 .75
9
' C:\SWMM\HTPMasterFina1100 revised5-16-08.out 2
Printed: 5/16/2008
Stantec
HARMONY TECHNOLOGY PARK
100-YEAR EVENT FILE: HTPMasterFinal100.IN STANTEC; 3/6/08
I
SUBAREA
GUTTER WIDTH
AREA
PERCENT
GAGE
NUMBER
OR MANHOLE (FT)
(AC)
IMPERV.
NO
-2
0
.0
.0
.0
100
100
4591.0
32.9
80.0
1
401
101
1502.0
6.9
80.0
1
501
201-
3343.0
23.0
80.0
1
600
600
2568.0
12.4
80.0
1
601
301
4210.0
29.0
80.0
1
801
501
2585.0
16.5
80.0
1
903
208
300.0
10.0
80.0
1
TOTAL NUMBER
OF
SUBCATCHMENTS,
7
TOTAL TRIBUTARY
AREA (ACRES),
130.72
SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN)
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
.0300
.016
.250
.100
.300
.0200
.016
.250
.100
.300
.0200
.016
.250
.100
.300
.0200
.016
.250
.100
.300
.0200
.016
.250
.100
.300
.0200
.016
.250
.100
.300
.0200
.016
.250
.100
.300
.0200
.016
.250
.100
.300
' HARMONY TECHNOLOGY PARK
100-YEAR EVENT FILE: HTPMasterFinal100.IN STANTEC; 3/6/08
INFILTRATION RATE(IN/HR)
MAXIMUM
MINIMUM
DECAY RATE
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
'
HYOROGRAPHS ARE LISTED
FOR THE FOLLOWING 2 SUBCATCHMENTS AVERAGE VALUES WITHIN TIME INTERVALS
TIME(HR/MIN) 600
601
0 1. .0
.0 .
0 2. .0
.0
0 3. .0
.0
0 4. .0
.1
0 5. .0
.1
0 6. .1
.1
0 7. .4
.7
'
0 8. 1.5
2.6
0 9. 3.0
5.3
0 10. 4.6
8.2
0 11. 6.2
11.5
0 1. .
15.
'
0 139
. .2
18.1
0 14. 10.3
20.7
0 15. 11.1
22.9
0 1. 13..1
'
0 17. 15.7
3333.1
0 18. 17.8
37.9
0 19. 19.2
41.6
0 20. 20.2
44.5
0 2. 2..
'
0 22. 24.6
5454.3
0 23. 26.4
58.7
0 24. 27.8
62.2
0 25. 28.9
64.9
0 2. 35.3
.7
'
0 27. 45.6
98.7
98
0 28. 52.6
114.4
0 29. 57.2
125.6
0 30. 60.1
133.6
'
0 3. .5
0 3294
. 94.
205.
205.5
0 33. 106.3
234.1
0 34. 112.9
252.1
0 35. 116.6
263.5
0 36. 101.2
0 37. 77.9
236.1
189.2
'
0 38. 66.5
163.3
0 39. 60.3
147.9
0 40. 56.7
138.3
0 41, 50.7
0 42. 43.3
124.3
107.8
0 43. 38.9
97.1
0 44. 36.1
89.8
0 45. 34.3
84.7
0 4. .7.
0 4726
. 26.9
67.7
'
0 48. 24.2
61.1
0 49. 22.3
56.4
0 50. 21.0
52.9
'
0 51, 19.7
49.4
CASVVMM\HTPMasterFina1100 revised5-16-08.out 3
Printed: 5/16/2008
Stantec
1_1
1
1
1
0
52.
18.3
46.0
0
53.
17.3
43.4
0
54.
16.6
41.4
0
55.
16.1
39.9
0
56.
15.4
38.2
0
57.
14.7
36.3
0
58.
14.1
34.9
0
59.
13.7
33.7
1
0.
13.4
32.8
1
1.
13.0
31.9
1
2.
12.7
31.0
1
3.
12.4
30.3
1
4.
12.2
29.7
1
5.
12.0
29.2
1
6.
11.8
28.6
1
7.
11.6
28.1
1
8.
11.4
27.6
1
9.
11.3
27.2
1
10.
11.2
26.9
1
11.
11.0
26.5
1
12.
10.9
26.1
1
13.
10.7
25.7
1
14.
10.6
25.5
1
15.
10.5
25.2
1
16.
10.4
24.9
1
17.
10.3
24.6
1
18.
10.2
24.3
1
19.
10.1
24.0
1
20.
10.0
23.8
1
21.
9.9
23.6
1
22.
9.8
23.3
1
23.
9.7
23.1
1
24.
9.6
22.9
1
25.
9.5
22.7
1
26.
9.5
22.5
1
27.
9.4
22.2
1
28.
9.3
22.0
1
29.
9.2
21.9
1
30.
9.1
21.7 .
1
31.
9.1
21.5
1
32.
9.0
21.3
1
33.
8.9
21.1
1
34.
8.8
20.9
1
35.
8.8
20.8
1
36.
8.7
20.6
1
37.
8.6
20.4
1
38.
8.5
20.2
1
39.
8.4
20.0
1
40.
8.4
19.9
1
41.
8.3
19.7
1
42.
8.2
19.5
1
43.
8.2
19.4
1
44.
8.1
19.3
1
45.
8.1
19.2
1
46.
8.0
19.0
1
47.
8.0
18.9
1
48.
7.9
18.7
1
49.
7.9
18.6
1
50.
7.8
18.5
1
51.
7.8
18.4
1
52.
7.7
18.2
1
53.
7.6
18.1
1
54.
7.6
18.0
1
55.
7.6
17.9
1
56.
7.5
17.8
1
57.
7.5
17.6
1
58.
7.4
17.5
1
59.
7.4
17.4
2
0.
7.3
17.3
2
1.
6.5
15.7
2
2.
5.2
13.1
2
3.
4.3
11.1
2
4.
3.5
9.5
2
5.
3.0
8.2
2
6.
2.5
7.1
2
7.
2.2
6.3
2
8.
1.9
5.5
2
9.
1.7
4.9
2
10.
1.5
4.4
2
11.
1.3
4.0
2
12.
1.2
3.6
2
13.
1.1
3.3
2
14.
1.0
3.0
2
15.
.9
2.7
2
16.
.8
2.5
2
17.
.7
2.3
2
18.
.7
2.2
2
19.
.6
2.0
2
20.
.6
1.9
2
21.
.5
1.7
0
C:\SWMM\HTPMasterFina1100 revised5-16-08.out 4
Printed: 5/16/2008
Stantec
2
22.
.5
1.6
2
23.
.5
1.5
2
24.
.4
1.4
2
25.
.4
1.3
2
26.
.4
1.2
2
27.
.3
1.2
2
28.
.3
1.1
2
29.
.3
1.0
2
30.
.3
1.0
2
31.
.3
.9
2
32.
.2
.9
2
33.
.2
.8
2
34.
.2
.8
2
35.
.2
.7
2
36.
.2
.7
2
37.
.2
.7
2
38.
.2
.6
2
39.
.2
.6
2
40.
.2
.6
2
41.
1
.5
2
42.
l
.5
2
43.
1
.5
2
44.
1
.5
2
45.
1
.5
2
46.
1
.4
2
47.
1
.4
2
48.
1
.4
2
49.
1
.4
2
50.
1
.4
2
51.
1
.3
2
52.
1
.3
2
53.
1
.3
2
54.
1
.3
2
55.
1
.3
2
56.
1
.3
2
57.
1
.3
2
58.
l
.3
2
59.
1
.2
3
0.
1
.2 .
3
1.
1
.2
3
2.
1
.2
3
3.
.0
.2
3
4.
.0
.2
3
5.
.0
.2
3
6.
.0
.2
3
7.
.0
.2
3
8.
.0
.2
3
9.
.0
.2
3
10.
.0
.2
3
11.
.0
.2
3
12.
.0
.1
3
13.
.0
.1
3
14.
.0
.1
3
15.
.0
.1
3
16.
.0
.1
3
17.
.0
.1
3
18.
.0
.1
3
19.
.0
.1
3
20.
.0
.1
3
21.
.0
.1
3
22.
.0
.1
3
23.
.0
.1
3
24.
.0
.1
3
25.
.0
.1
3
26.
.0
.1 _
3
27.
.0
.1
3
28.
.0
.1
3
29.
.0
.1
3
30.
.0
.1
3
31.
.0
.1
3
32.
.0
.1
3
33.
.0
.1
3
34.
.0
.1
3
35.
.0
.1
3
36.
.0
.1
3
37.
.0
.1
3
38.
.0
.1
3
39.
.0
.1
3
40.
.0
.1
3
41.
.0
.1
3
42.
.0
.1
3
43.
.0
l
3
44.
.0
.1
3
45.
.0
.1
3
46.
.0
.1
3
47.
.0
.1
3
48.
.0
.1
3
49.
.0
.0
3
50.
.0
.0
3
51.
.0
.0
C:\SWMM\HTPMasterFina1100 revised5-16-08.out 5
Printed: 5/16/2008
Stantec
3 52. .0 .0
3 53. .0 .0
3 54. .0 .0
3 55. .0 .0
3 56. .0 .0
3 57. .0 .0
3 58. .0 .0
3 59. .0 .0
4 0. .0 .0
4 1. .0 .0
4 2. .0 .0
4 3. .0 .0
4 4. .0 .0 -
4 5. .0 .0
4 6. .0 .0
4 7. .0 .0
4 8. .0 .0
4 9. .0 .0
4 10. .0 .0
4 11. .0 .0
4 12. .0 .0
4 13. .0 .0
4 14. .0 .0
4 15. .0 .0
4 16. .0 .0
4 17. .0 .0
4 18. .0 .0
4 19. .0 .0
4 20. .0 .0
4 21. .0 .0
4 22. .0 .0
4 23. .0 .0
4 24. .0 .0
4 25. .0 .0
4 26. .0 .0
4 27. .0 .0
4 28. .0 .0
4 29. .0 .0
4 30. .0 .0
4 31. .0 .0
4 32. .0 .0
4 33. .0 .0
4 34. .0 .0
4 35. .0 .0
4 36. .0 .0
4 37. .0 .0
4 38. .0 .0
4 39. .0 .0
4 40. .0 .0
4 41. .0 .0
4 42. .0 .0
4 43. .0 .0
4 44. .0 .0
4 45. .0 .0
4 46. .0 .0
4 47. .0 .0
4 48. .0 .0
4 49. .0 .0
4 50. .0 .0
4 51. .0 .0
4 52. .0 .0
4 53. .0 .0
4 54. .0 .0
4 55. .0 .0
4 56. .0 .0
4 57. .0 .0
4 58. .0 .0
4 59. .0 .0
5 0. .0 .0
5 1. .0 .0
5 2. .0 .0
5 3. .0 .0
5 4. .0 .0
5 5. .0 .0
5 6. .0 .0
5 7. .0 .0
5 8. .0 .0
5 9. .0 .0
5 10. .0 .0
5 11. .0 .0
5 12. .0 .0
5 13. .0 .0
5 14. .0 .0
5 15. .0 .0
5 16. .0 .0
5 17. .0 .0
5 18. .0 .0
5 19. .0 .0
5 20. .0 .0
C:\SWMM\HTPMasterFina1100 revised5-16-08.out 6
Printed: 5/16/2008
Stantec
C:\SWMM\HTPMasterFina1100 revised5-16-08.out
VA
Printed: 5/16/2008
Stantec
C:\SWMM\HTPMasterFina1100 revised5-16-08.out 8 Printed: 5/16/2008
Stantec
8 21. .0 .0
8 22. .0 .0
8 23. .0 .0
8 24. .0 .0
8 25. .0 .0
8 26. .0 .0
8 27. .0 .0
8 28. .0 .0
8 29. .0 .0
8 30. .0 .0
8 31. .0 .0
8 32. .0 .0
8 33. .0 .0
8 34. .0 .0
8 35. .0 .0
8 36. .0 .0
8 37. .0 .0
8 38. .0 .0
8 39. .0 .0
8 40. .0 .0
8 41. .0 .0
8 42. .0 .0
8 43. .0 .0
8 44. .0 .0
8 45. .0 .0
8 46. .0 .0
8 47. .0 .0
8 48. .0 .0
8 49. .0 .0
8 50. .0 .0
8 51. .0 .0
8 52. .0 .0
8 53. .0 .0
8 54. .0 .0
8 55. .0 .0
8 56. .0 .0
8 57. .0 .0
8 58. .0 .0 .
8 59. .0 .0
9 0. .0 .0
9 1. .0 .0
9 2. .0 .0
9 3. .0 .0
9 4. .0 .0
9 5. .0 .0
9 6. .0 .0
9 7. .0 .0
9 8. .0 .0
9 9. .0 .0
9 10. .0 .0
9 11. .0 .0
9 12. .0 .0
9 13. .0 .0
9 14. .0 .0
9 15. .0 .0 ,
9 16. .0 .0
9 17. .0 .0
9 18. .0 .0
9 19. .0 .0
9 20. .0 .0
9 21. .0 .0
9 22. .0 .0
9 23. .0 .0
9 24. .0 .0
9 25. .0 .0
9 26. .0 .0
9 27. .0 .0
9 28. .0 .0
9 29. .0 .0
9 30. .0 .0
9 31. .0 .0
9 32. .0 .0
9 33. .0 .0
9 34. .0 .0
9 35. .0 .0
9 36. .0 .0
9 37. .0 .0
9 38. .0 .0
9 39. .0 .0
9 40. .0 .0
9 41. .0 .0
9 42. .0 .0
9 43. .0 .0
9 44. .0 .0
9 45. .0 .0
9 46. .0 .0
9 47. .0 .0
9 48. .0 .0
9 49. .0 .0
C:\SWMM\HTPMasterFina1100 revised5-16-08.out 9
Printed: 5/16/2008
'
9
50.
.0
Stantec
.0
9
51.
.0
.0
9
52.
.0
.0
9
9
5.
54.
.0
.0
.0
.0
'
9
55.
.0
.0
9
56.
.0
.0
9
57.
.0
.0.
9
9
58.
59.
.0
.0
.0
.0
10
0.
.0
.0
10
1.
.0
.0
10
2.
.0
.0
10
10
3.
4.
.0
.0
.0
.0
10
5.
.0
.0
10
6.
.0
.0
10
7.
.0
.0
10
8.
.0
.0
10
9.
.0
.0
10
10.
.0
.0
10
11.
.0
.0
10
12.
.0
.0
10
13.
.0
.0
10
14.
.0
.0
10
15.
.0
.0
10
16.
.0
.0
10
17.
.0
.0
10
18.
.0
.0
10
.
.0
.0
10
20.
20
.0
.0
10
21.
.0
.0
10
22.
.0
.0
10
23.
.0
.0
10
24.
.0
.0
'
10
25.
.0
.0
10
26.
.0
.0
10
27.
.0
.0
10
28.
.0
.0 .
10 . .0 .0
30
10 30. .0 .0
10 31. .0 .0
10 32. .0 .0
10 33. .0 .0
10 34. .0 .0
10 35. .0 .0
10 36. .0 .0
10 37. .0 .0
10 38. .0 .0
' 10 . .0 .0
40
10 40. .0 .0
10 41. .0 .0
10 42. .0 .0
10 43. .0 .0
10 44. .0 .0
10 45. .0 .0 ,
10 46. .0 .0
10 47. .0 .0
10 48. .0 .0
' 10 5. .0 .0
0
10 51. .0 .0
10 51. .0 .0
10 52. .0 .0
10 53. .0 .0
' 10 54. .0 .0
10 55. .0 .0
10 56. .0 .0
10 57. .0 .0
10 58. .0 .0
10 5. .0 .0
0
11 0. .0 .0
11 1. .0 .0
11 2. .0 .0
11 3. .0 .0
11 4. .0 .0
11 5. .0 .0
11 6. .0 .0
11 7. .0 .0
11 8. .0 .0
11
11 10. .0 .0
11 11. .0 .0
11 12. .0 .0
11 13. .0 .0
' 11 14. .0 .0
11 15. .0 .0
11 16. .0 .0
11 17. .0 .0
11 18. .0 .0
' 11 19. .0 .0
C:\SWMM\HTPMasterFina1100 revised5-16-08.out 10
Printed: 5/16/2008
Stantec
I
C:\SWMM\HTPMasterFina1100 revised5-16-08.out
11
Printed: 5/16/2008
Stantec
HARMONY TECHNOLOGY PARK
100-YEAR EVENT FILE: HTPMasterFinaI100.IN STANTEC; 3/6/08
I
*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
WATERSHED AREA (ACRES) 130.720
TOTAL RAINFALL (INCHES) 3.669
TOTAL INFILTRATION (INCHES) .250
TOTAL WATERSHED OUTFLOW (INCHES) 3.321
TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .098
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000
m
CASVVMMU-ITPMasterFina1100 revised5-16-08.out
IN
Printed: 5/16/2008
Stantec
HARMONY TECHNOLOGY PARK
100-YEAR EVENT FILE: HTPMasterFinal100.IN STANTEC; 3/6/08
WIDTH
INVERT
SIDE
SLOPES
OVERBANK/SURCHARGE
GUTTER
GUTTER
NDP
NP
OR DIAM LENGTH
SLOPE
HORIZ
TO VERT
MANNING
DEPTH
JK
NUMBER
CONNECTION
(FT) (FT)
(FT/FT)
L
R
N
(FT)
210
205
0
2
PIPE
2.0 600.
.0030
.0
.0
.013
2.00
1
205
206
0
2
PIPE
2.5 1330.
.0030
.0
.0
.013
2.50
1
206
207
0
2
PIPE
2.5 1300.
.0030
.0
.0
.013
2.50
1
208
207
0
3
.1 1.
.0010
.0
.0
.001
10.00
1
207
511
0
3
.1 1.
.0010
.0
.0
.001
10.00
1
110
510
9
2
PIPE
.0 0.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS
SPILLWAY OUTFLOW
.0
.0
.1
6.0
.2 8.5
1.9
10.4
3.4
12.1
5.2
13.5
7.4
14.8
10.0
15.9
12.9 17.0
600
301
6
2
PIPE
.0 0.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS
SPILLWAY OUTFLOW
.0
.0
.1
4.5
.5 6.3
1.2
7.8
1.9
8.9
2.6
10.0
211
510
0
2
PIPE
2.5 1140.
.0030
.0
.0
.013
2.50
1
510
511
0
3
.1 1.
.0010
.0
.0
.001
10.00
1
100
110
0
3
.1 1.
.0010
.0
.0
.001
10.00
1
101
210
5
2
PIPE
.0 0.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS
SPILLWAY OUTFLOW
0
.0
1
2.5
4 3.5
1.0
4.3
1.6
5.0
201
205
9
2
PIPE
.0 0.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS
SPILLWAY OUTFLOW
.0
.0
.0
2.6
.2 4.5
.8
5.8
1.7
6.8
2.7
7.8
3.8
8.6
5.0
9.3
6.4 10.0
301
211
8
2
PIPE
.0 0.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS
SPILLWAY OUTFLOW
.0
.0
.1
4.5
.7 6.4
1.9
7.9
3.4
9.1
5.0
10.1
6.8
11.1
8.7
12.0
501
206
9
2
PIPE
.0 0.
.0010
.0
.0
.001
.00
0
1
RESERVOIR
STORAGE IN
ACRE-FEET
VS
SPILLWAY OUTFLOW
.0
.0
.1
2.6
.3 3.8
.8
4.6
1.4
5.3
2.1
5.9
3.0
6.5
3.9
7.0
4.9 7.5
TOTAL NUMBER OF GUTTERS/PIPES.
14
7
C:\SWMM\HTPMasterFina1100 revised5-16-08.out
13
Printed: 5/16/2008
Stantec
HARMONY TECHNOLOGY PARK
100-YEAR EVENT FILE: HTPMasterfina1100.IN STANTEC; 3/6/08
ARRANGEMENT OF
SUBCATCHMENTS AND
GUTTERS/PIPES
GUTTER
TRIBUTARY
GUTTER/PIPE
TRIBUTARY
SUBAREA
D.A.(AC)
100
0 0
0
0 0
0
0
0
0
0
100
0
0 0
0
0
0
0
0 0
32.9
205
210 201
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
29.9
206
205 501
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
46.4
207
206 208
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
56.4
208
0 0
0
0 0
0
0
0
0
0
903
0
0 0
0
0
0
0
0 0
10.0
210
101 0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
6.9
211
301 0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
41.4
510
110 211
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
74.3
u
GASWMM\HTPMasterFina1100 revised5-16-08.out 14 Printed: 5/16/2008
I
Stantec
HARMONY TECHNOLOGY PARK
100-YEAR EVENT FILE: HTPMasterFinal100.IN STANTEC; 3/6/08
1
1
1
0
u
n
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 6 CONVEYANCE ELEMENTS
THE
UPPER NUMBER
IS
DISCHARGE IN CFS
THE
LOWER NUMBER
IS
ONE OF
THE FOLLOWING
CASES:
( ) DENOTES DEPTH
ABOVE INVERT
IN FEET
(S) DENOTES STORAGE IN AC -FT
FOR
DETENTION
DAM. DISCHARGE
INCLUDES SPILLWAY OUTFLOW.
(I) DENOTES GUTTER
INFLOW IN
CFS
FROM
SPECIFIED INFLOW
HYDROGRAPH
(D) DENOTES DISCHARGE IN CFS
DIVERTED
FROM THIS GUTTER
(0) DENOTES STORAGE IN AC -FT
FOR
SURCHARGED GUTTER
TIME(HR/MIN)
101
110
201
301
501
600
0
1.
.0
.0
.0
.0
.0
.0
.00( )
.00(S)
.00(S)
.00(S)
.00(S)
.00(S)
0
6.
.0
.0
.0
.0
.0
.0
.00(S)
.00(S)
.00(S)
.00(S)
.00(S)
.00(S)
0
11.
.3
2.0
2.6
1.3
.8
.9
.01(S)
.04(S)
.02(S)
.04(S)
.02(S)
.02(S)
0
16.
1.3
8.3
3.4
4.7
2.7
3.4
.05(S)
.17(S)
.12(S)
.17(S)
.09(S)
.08(S)
0
21.
2.5
8.8
4.6
5.5
3.3
4.8
.11(S)
.42(S)
.31(S)
.45(S)
.24(S)
.18(S)
0
26.
2.8
9.3
5.3
6.6
3.9
5.5
.20(S)
.86(S)
.63(S)
.88(S)
.46(S)
.34(S)
0
31.
3.4
10.3
6.3
7.7
4.7
6.7
.40(S)
1.77(S)
1.28(S)
1.75(S)
.94(S)
.69(S)
0
36.
4.1
12.2
7.6
9.1
5.7
8.1
.79(S)
3.55(S)
2.54(S)
3.38(S)
1.85(S)
1.38(S)
0
41.
4.4
13.0
8.2
9.8
6.1
8.7
.99(S)
4.66(S)
3.31(S)
4.43(S)
2.40(S)
1.75(S)
0
46.
4.5
13.5
8.5
10.2
6.3
9.0
1.10(S)
5.29(S)
3.76(S)
5.05(S)
2.71(S)
1.94(S)
0
51.
4.6
13.7
8.7
10.4
6.4
9.2
1.16(S)
5.65(S)
4.01(S)
5.44(S)
2.89(S)
2.03(S)
0
56.
4.6
13.9
8.8
10.5
6.5
9.2
1.19(S)
5.88(S)
4.18(S)
5.72(S)
3.00(S)
2.09(S)
1
1.
4.6
14.0
8.9
10.7
6.6
9.3
1.21(S)
6.05(S)
4.30(S)
5.94(S)
3.09(S)
2.12(S)
1
6.
4.6
14.0
8.9
10.8
6.6
9.3
1.23(S)
6.19(S)
4.41(S)
6.14(S)
3.16(S)
2.14(S)
1
11.
4.6
14.1
9.0
10.9
6.6
9.3
1.24(S)
6.30(S)
4.49(S)
6.31(S)
3.22(S)
2.15(S)
1
16.
4.7
14.2
9.0
11.0
6.7
9.3
1.25(S)
6.41(S)
4.57(S)
6.48(S)
3.27(S)
2.16(S)
1
21.
4.7
14.2
9.1
11.0
6.7
9.3
1.25(S)
6.50(S)
4.6.4(S)
6.63(S)
3.32(S)
2.16(S)
1
26.
4.7
14.3
9.1
11.1
6.7
9.3
1.26(S)
6.58(S)
4.70(S)
6.78(S)
3.36(S)
2.17(S)
1
31.
4.7
14.3
9.1
11.2
6.8
9.3
1.26(S)
6.65(S)
4.76(S)
6.92(S)
3.40(S)
2.17(S)
1
36.
4.7
14.4
9.2
11.2
6.8
9.3
1.26(S)
6.72(S)
4.81(S)
7.05(S)
3.44(S)
2.16(S)
1
41.
4.7
14.4
9.2
11.3
6.8
9.3
1.26(S)
6.77(S)
4.86(S)
7.17(S)
3.47(S)
2.16(S)
1
46.
4.7
14.4
9.2
11.4
6.8
9.3
1.26(S)
6.83(S)
4.90(S)
7.29(S)
3.50(S)
2.15(S)
1
51.
4.7
14.5
9.2
11.4
6.8
9.3
1.26(S)
6.87(S)
4.94(S)
7.41(S)
3.52(S)
2.14(S)
1
56.
4.7
14.5
9.3
11.5
6.8
9.3
1.26(S)
6.91(S)
4.97(S)
7.52(S)
3.55(S)
2.13(S)
2
1.
4.7
14.5
9.3
11.5
6.8
9.3
1.25(S)
6.95(S)
5.00(S)
7.62(S)
3.57(S)
2.11(S)
2
6.
4.6
14.5
9.3
11.5
6.8
9.2
1.23(S)
6.93(S)
4.99(S)
7.67(S)
3.56(S)
2.07(S)
2
11.
4.6
14.5
9.3
11.5
6.8
9.1
1.21(S)
6.87(S)
4.95(S)
7.69(S)
3.53(S)
2.02(S)
2
16.
4.6
14.4
9.2
11.5
6.8
9.1
1.18(S)
6.79(S)
4.91(S)
7.69(S)
3.49(S)
1.97(S)
2
21.
4.5
14.4
9.2
11.5
6.8
9.0
1.15(S)
6.71(S)
4.85(S)
7.69(S)
3.45(S)
1.91(S)
2
26.
4.5
14.3
9.2
11.5
6.8
8.9
1.12(S)
6.62(S)
4.80(S)
7.68(S)
3.41(S)
1.85(S)
2
31.
4.5
14.3
9.1
11.5
6.7
8.8
1.09(S)
6.53(S)
4.74(S)
7.67(S)
3.37(S)
1.79(S)
2
36.
4.4
14.2
9.1
11.5
6.7
8.7
1.06(S)
6.44(S)
4.68(S)
7.66(S)
3.33(S)
1.73(S)
2
41.
4.4
14.1
9.1
11.5
6.7
8.6
1.03(S)
6.35(S)•
4.62(S)
7.64(S)
3.28(S)
1.67(S)
2
46.
4.4
14.1•
9.0
11.5
6.7
8.5
1.00(S)
6.25(S)
4.56(S)
7.62(S)
3.24(S)
1.61(S) .
2
51.
4.3
14.0
9.0
11.5
6.6
8.4
.97(S)
6.16(S)
4.50(S)
7.61(S)
3.19(S)
1.56(S)
2
56.
4.3
14.0
8.9
11.5
6.6
8.3
CASVVMM\HTPMasterFinaIlO0 revised5-16-OB.out
15
Printed: 5/16/2008
J
1
1
Stantec
.94(S)
6.07(S)
4.44(S)
7.59(S)
3.15(S)
1.50(S)
3 1.
4.3
13.9
8.9
11.5
6.6
8.2
.91(S)
5.97(S)
4.38(S)
7.57(S)
3.10(S)
1.44(S)
3 6.
4.2
13.9
8.9
11.5
6.6
8.1
.89(S)
5.88(S)
4.32(S)
7.54(S)
3.06(S)
1.39(S)
3 11.
4.2
13.8
8.8
11.5
6.5
8.0
.86(S)
5.78(S)
4.26(S)
7.52(S)
3.02(S)
1.33(S)
3 16.
4.1
13.8
8.8
11.4
6.5
7.9
.83(S)
5.69(S)
4.20(S)
7.50(S)
2.97(S)
1.28(S)
3 21.
4.1
13.7
8.8
11.4
6.5
7.9
.80(S)
5.60(S)
4.14(S)
7.48(S)
2.93(S)
1.22(S)
3 26.
4.0
13.6
8.7
11.4
6.4
7.8
.77(S)
5.50(S)
4.08(S)
7.45(S)
2.88(S)
1.17(S)
3 31.
4.0
13.6
8.7
11.4
6.4
7.7
.74(S)
5.41(S)
4.03(S)
7.43(S)
2.84(S)
1.12(S)
3 36.
4.0
13.5
8.7
11.4
6.4
7.5
.72(S)
5.32(S)
3.97(S)
7.40(S)
2.79(S)
1.06(S)
3 41.
3.9
13.5
8.6
11.4
6.4
7.4
.69(S)
5.23(S)
3.91(S)
7.37(S)
2.75(S)
1.01(S)
3 46.
3.9
13.4
8.6
11.4
6.3
7.3
.66(S)
5.13(S)
3.85(S)
7.35(S)
2.71(S)
.96(S)
3 51.
3.8
13.3
8.5
11.4
6.3
7.2
.64(S)
5.04(S)
3.79(S)
7.32(S)
2.66(S)
.91(S)
3 56.
3.8
13.3
8.5
11.4
6.3
7.1
.61(S)
4.95(S)
3.73(S)
7.29(S)
2.62(S)
.86(S)
4 1.
3.8
13.2
8.5
11.3
6.2
7.0
.58(S)
4.86(S)
3.67(S)
7.26(S)
2.58(S)
.81(S)
4 6.
3.7
13.1
8.4
11.3
6.2
6.9
.56(S)
4.77(S)
3.61(S)
7.23(S)
2.54(S)
.77(S)
4 11.
3.7
13.1
8.4
11.3
6.2
6.8
.53(S)
4.68(S)
3.56(S)
7.20(S)
2.49(S)
.72(S)
4 16.
3.6
13.0
8.3
11.3
6.1
6.7
.51(S)
4.59(S)
3.50(S)
7.17(S)
2.45(S)
.67(S)
4 21.
3.6
12.9
8.3
11.3
6.1
6.6
.48(S)
4.50(S)
3.44(S)
7.14(S)
2.41(S)
.63(S)
4 26.
3.6
12.8
8.3
11.3
6.1
6.5
.46(S)
4.41(S)
3.39(S)
7.10(S)
2.37(S)
.58(S)
4 31.
3.5
12.8
8.2
11.2
6.1
6.4
.43(S)
4.32(S)
3.33(S)
7.07(S)
2.33(S)
.54(S)
4 36.
3.5
12.7
8.2
11.2
6.0
6.2
.41(S)
4.24(S)
3.27(S)
7.04(S)
2.28(S)
.50(S)
4 41.
3.4
12.6
8.1
11.2
6.0
6.0
.39(S)
4.15(S)
3.22(S)
7.00(S)
2.24(S)
.45(S)
4 46.
3.3
12.6
8.1
.11.2
6.0
5.9
.36(S)
4.06(S)
3.16(S)
6.97(S)
2.20(S)
.41(S)
4 51.
3.2
12.5
8.1
11.2
5.9
5.7
.34(S)
3.98(S)
3.11(S)
6.93(S)
2.16(S)
.37(S)
4 56.
3.2
12.4
8.0
11.2
5.9
5.5
.32(S)
3.89(S)
3.05(S)
6.89(S)
2.12(S)
.34(S)
5 1.
3.1
12.4
8.0
11.1
5.9
5.3
.30(S)
3.81(S)
3.00(S)
6.85(S)
2.08(S)
.30(S)
5 6.
3.1
12.3
7.9
11.1
5.8
5.2
.28(S)
3.72(S)
2.94(S)
6.81(S)
2.04(S)
.26(S)
5 11.
3.0
12.2
7.9
11.1
5.8
5.0
.26(S)
3.64(S)
2.89(S)
6.77(S)
2.00(S)
.23(S)
5 16.
2.9
12.2
7.9
11.1
5.8
4.9
.23(S)
3.55(S)
2.83(S)
6.73(S)
1.96(S)
.19(S)
5 21.
2.9
12.1
7.8
11.1
5.7
4.7
.21(S)
3.47(S)
2.78(S)
6.68(S)
1.92(S)
.16(S)
5 26.
2.8
12.0
7.8
11.0
5.7
4.6
.20(S)
3.39(S)
2.72(S)
6.64(S)
1.88(S)
.13(S)
5 31.
2.8
11.9
7.7
11.0
5.7
4.3
.18(S)
3.30(S)
2.67(S)
6.59(S)
1.84(S)
.10(S)
5 36.
2.7
11.8
7.7
11.0
5.6
3.2
.16(S)
3.22(S)
2.62(S)
6.54(S)
1.80(S)
.07(S)
5 41.
2.6
11.8
7.6
11.0
5.6
2.3
.14(S)
3.14(S)
2.57(S)
6.49(S)
1.76(S)
.05(S)
5 46.
2.6
11.7
7.6
10.9
5.6
1.7
.12(S)
3.06(S)
2.51(S)
6.43(S)
1.73(S)
.04(S)
5 51.
2.5
11.6
7.5
10.9
5.5
1.3
.10(S)
2.98(S)
2.46(S)
6.36(S)
1.69(S)
.03(S)
5 56.
2.4
11.5
7.5
10.8
5.5
.9
.09(S)
2.90(S)
2.41(S)
6.29(S)
1.65(S)
.02(S)
6 1.
2.0
11.4
7.4
10.8
5.5
.7
.07(S)
2.82(S)
2.36(S)
6.23(S)
1.61(S)
.02(S)
6 6.
1.6
11.3
7.4
10.8
5.4
.5
.06(S)
2.74(S)
2.31(S)
6.15(S)
1.57(S)
.01(S)
6 11.
1.3
11.2
7.4
10.7
5.4
.4
.05(S)
2.67(S)
2.26(S)
6.08(S)
1.54(S)
.01(S)
6 16.
1.1
11.2
7.3
10.7
5.4
.3
.04(S)
2.59(S)
2.21(S)
6.01(S)
1.50(S)
.01(S)
6 21.
.9
11.1
7.3
10.7
5.3
.2
.03(S)
2.51(S)
2.16(S)
5.94(S)
1.46(S)
.00(S)
6 26.
.8
11.0
7.2
10.6
5.3
.1
.03(S)
2.44(S)
2.11(S)
5.87(S)
1.43(S)
.00(S)
6 31.
.6
10.9
7.2
10.6
5.2
.1
.02(S)
2.36(S)
2.06(S)
5.80(S)
1.39(S)
.00(S)
6 36.
.5
10.8
7.1
10.5
5.2
.1
.02(S)
2.29(S)
2.01(S)
5.72(S)
1.36(S)
.00(S)
6 41.
.4
10.7
7.1
10.5
5.2
.1
C:\SWMM\HTPMasterFina1100 revised5-16-OB.out
16
Printed: 5/16/2008
11
C
1
I
u
u
Stantec
.02(S)
2.21(S)
1.96(S)
5.65(S)
1.32(S)
.00(S)
6 46.
.4
10.7
7.0
10.5
5.1
.0
.01(S)
2.14(S)
1.91(S)
5.58(S)
1.28(S)
.00(S)
6 51.
.3
10.6
7.0
10.4
5.1
.0
.01(S)
2.07(S)
1.86(S)
5.51(S)
1.25(S)
.00(S)
6 56.
.2
10.5
7.0
10.4
5.0
.0
.01(S)
1.99(S)
1.81(S)
5.44(S)
1.21(S)
.00(S)
7 1.
.2
10.4
6.9
10.3
5.0
.0
.01(S)
1.92(S)
1.77(S)
5.37(S)
1.18(S)
.00(S)
7 6.
.2
10.3
6.9
10.3
5.0
.0
.01(S)
1.85(S)
1.72(S)
5.30(S)
1.15(S)
.00(S)
7 11.
.1 ,
10.3
6.8
10.3
4.9
.0
.00(S)
1.78(S)
1.67(S)
5.22(S)
1.11(S)
.00(S)
7 16.
.1
10.2
6.8
10.2
4.9
.0
.00(S)
1.71(S)
1.62(S)
5.15(S)
1.08(S)
.00(S)
7 21,
.1
10.1
6.7
10.2
4.8
.0
.00(S)
1.64(S)
1.58(S)
5.08(S)
1.04(S)
.00(S)
7 26.
.l
10.0
6.6
10.1
4.8
.0
.00(S)
1.57(S)
1.53(S)
5.01(S)
1.01(S)
.00(S)
7 31.
.1
10.0
6.6
10.1
4.8
.0
.00(S)
1.50(S)
1.49(S)
4.94(S)
.98(S)
.00(S)
7 36.
.1
9.9
6.5
10.1
4.7
.0
.00(S)
1.43(S)
1.44(S)
4.88(S)
.95(S)
.00(S)
7 41.
.0
9.8
6.5
10.0
4.7
.0
.00(S)
1.36(S)
1.40(S)
4.81(S)
.91(S)
.00(S)
7 46.
.0
9.7
6.4
10.0
4.6
.0
.00(S)
1.30(S)
1.35(S)
4.74(S)
.88(S)
.00(S)
7 51.
.0
9.7
6.4
9.9
4.6
.0
.00(S)
1.23(S)
1.31(S)
4.67(S)
.85(S)
.00(S)
7 56.
.0
9.6
6.3
9.9
4.6
.0
.00(S)
1.16(S)
1.26(S)
4.60(S)
.82(S)
.00(S)
8 1.
.0
9.5
6.3
9.8
4.5
.0
.00(S)
1.10(S)
1.22(S)
4.53(S)
.79(S)
.00(S)
8 6.
.0
9.5
6.2
9.8
4.5
.0
.00(S)
1.03(S)
1.18(S)
4.47(S)
.76(S)
.00(S)
8 11.
.0
9.4
6.2
9.7
4.4
.0
.00(S)
.97(S)
1.14(S)
4.40(S)
.72(S)
.00(S)
8 16.
.0
9.3
6.1
9.7
4.4
.0
.00(S)
.90(S)
1.09(S)
4.33(S)
.69(S)
.00(S)
8 21.
.0
9.2
6.1
9.7
4.3
.0
.00(S)
.84(S)
1.05(S)
4.26(S)
.66(S)
.00(S)
8 26.
.0
9.2
6.0
9.6
4.2
.0
.00(S)
.78(S)
1.01(S)
4.20(S)
.64(S)
.00(S)
8 31.
.0
9.1
6.0
9.6
4.2
.0
.00(S)
.71(S)
.97(S)
4.13(S)
.61(S)
.00(S)
8 36.
.0
9.0
5.9
9.5
4.1
.0
.00(S)
.65(S)
.93(S)
4.07(S)
.58(S)
.00(S)
8 41.
.0
9.0
5.9
9.5
4.1
.0
.00(S)
.59(S)
.89(S)
4.00(S)
.55(S)
.00(S)
8 46.
.0
8.9
5.8
9.4
4.0
.0
.00(S)
.53(S)
.85(S)
3.94(S)
.52(S)
.00(S)
8 51.
.0
8.8
5.7
9.4
4.0
.0
.00(S)
.47(S)
AW S)
3.87(S)
.49(S)
.00(S)
8 56.
.0
8.8
5.7
9.4
4.0
.0
.00(S)
.41(S)
.77(S)
3.81(S)
.47(S)
.00(S)
9 1.
.0
8.7
5.6
9.3
3.9
.0
.00(S)
.35(S)
.73(S)
3.74(S)
.44(S)
.00(S)
9 6.
.0
8.6
5.5
9.3
3.9
.0
.00(S)
.29(S)
.69(S)
3.68(S)
.41(S)
.00(S)
9 11.
.0
8.6
5.4
9.2
3.8
.0
.00(S)
.23(S)
.65(S)
3.61(S)
.39(S)
.00(S)
9 16.
.0
8.4
5.3
9.2
3.8
.0
.00(S)
.17(S)
.62(S)
3.55(S)
.36(S)
.00(S)
9 21.
.0
6.0
5.2
9.2
3.7
.0
.00(S)
.12(S)
.58(S)
3.49(S)
.33(S)
.00(S)
9 26.
.0
4.2
5.2
9.1
3.6
.0
.00(S)
.08(S)
.54(S)
3.42(S)
.31(S)
.00(S)
9 31.
.0
3.0
5.1
9.1
3.5
.0
.00(S)
.06(S)
.51(S)
3.36(S)
.28(S)
.00(S)
9 36.
.0
2.1
5.0
9.0
3.4
A
.00(S)
.04(S)
.48(S)
3.30(S)
.26(S)
.00(S)
9 41.
.0
1.5
4:9
9.0
3.3
.0
.00(S)
.03(S)
.44(S)
3.24(S)
.24(S)
.00(S)
9 46.
.0
1.1
4.8
8.9
3.2
.0
.00(S)
.02(S)
.41(S)
3.18(S)
.22(S)
.00(S)
9 51.
.0
.8
4.8
8.9
3.1
.0
.00(S)
.01(S)
.37(S)
3.11(S)
.19(S)
.00(S)
9 56.
.0
.5
4.7
8.8
3.1
.0
.00(S)
.01(S)
.34(S)
3.05(S)
.17(S)
.00(S)
10 1.
.0
.4
4.6
8.8
3.0
.0
.00(S)
.01(S)
.31(S)
2.99(S)
.15(S)
.00(S)
10 6.
.0
.3
4.6
8.7
2.9
.0
.00(S)
.01(S)
.28(S)
2.93(S)
.13(S)
.00(S)
10 11.
.0
.2
4.5
8.7
2.8
.0
.00(S)
.00(S)
.25(S)
2.87(S)
.11(S)
.00(S)
10 16.
.0
.1
4.3
8.6
2.7
.0
.00(S)
.00(S)
.22(S)
2.81(S)
.09(S)
.00(S)
10 21.
.0
.1
4.0
8.6
2.7
.0
.00(S)
.00(S)
.19(S)
2.75(S)
.07(S)
.00(S)
10 26.
.0
.1
3.8
8.5
2.2
.0
C:\SWMM\HTPMasterFina1100 revised5-16-08.out
17
Printed: 5/16/2008
Stantec
[1
.00(S)
.00(S)
.16(S)
2.69(S)
10 31.
.0
.0
3.6
8.5
.00(S)
.00(S)
.14(S)
2.64(S)
10 36.
.0
.0
3.4
8.4
.00(S)
.00(S)
.11(S)
2.58(S)
10 41.
.0
.0
3.2
8.4
.00(S)
.00(S)
.09(S)
2.52(S)
10 46.
.0
.0
3.0
8.3
.00(S)
.00(S)
.07(S)
2.46(S)
10 51.
.0
.0
2.8
8.3
.00(S)
.00(S)
.05(S)
2.40(S)
10 56.
.0
.0
2.7
8.3
.00(S)
.00(S)
.03(S)
2.35(S)
11 1.
.0
.0
1.7
8.2
.00(S)
.00(S)
.01(S)
2.29(S)
11 6.
.0
.0
.7
8.2
.00(S)
.00(S)
.01(S)
2.23(S)
11 11.
.0
.0
.3
8.1
.00(S)
.00(S)
.00(S)
2.18(S)
11 16.
.0
.0
.1
8.1
.00(S)
.00(S)
.00(S)
2.12(S)
11 21.
.0
.0
.0
8.0
.00(S)
.00(S)
.00(S)
2.07(S)
11 26.
.0
.0
.0
8.0
.00(S)
.00(S)
.00(S)
2.01(S)
11 31.
.0
.0
.0
7.9
.00(S)
.00(S)
.00(S)
1.96(S)
11 36.
.0
.0
.0
7.9
.00(S)
.00(S)
.00(S)
1.90(S)
11 41.
.0
.0
.0
7.8
.00(S)
.00(S)
.00(S)
1.85(S)
11 46.
.0
.0
.0
7.8
.00(S)
.00(S)
.00(S)
1.80(S)
11 51.
.0
.0
.0
7.7
.00(S)
.00(S)
.00(S)
1.74(S)
11 56.
.0
.0
.0
7.6
.00(S)
.00(S)
.00(S)
1.69(S)
m
.06(S)
.00(S)
1.7
.0
.04(S)
.00(S)
1.3
.0
.03(S)
.00(S)
1.0
.0
.03(S)
.00(S)
.8
.0
.02(S)
.00(S)
.6
.0
.02(S)
.00(S)
.5
.0
.01(S)
.00(S)
.3
.0
.01(S)
.00(S)
.3
.0
.01(S)
.00(S)
.2
.0
.01(S)
.00(S)
.2
.0
.00(S)
.00(S)
.1
.0
.00(S)
.00(S)
.1
.0
.00(S)
.00(S)
.1
.0
.00(S)
.00(S)
.1
.0
.00(S)
.00(S)
.0
.0
.00(S)
.00(S) .
.0
.0
.00(S)
.00(S)
.0
.0
.00(S)
.00(S)
.0
.0
.00(S)
.00(S)
C:\SWMM\HTPMasterFinal100 revised5-16-08.out
18
Printed: 5/16/2008
Stantec
HARMONY TECHNOLOGY PARK
100-YEAR EVENT FILE: HTPMasterFina1100.IN STANTEC; 3/6/08
*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS ***
*** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY
CONVEYANCE PEAK STAGE STORAGE TIME WQ,G`/ Io+al QR f,y --CA 4r too- Y4
ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN)
100:3
101:2
297.7
4.7
(DIRECT
.0
FLOW)
1.3:D
0
1
35.
39.
0.13
-� i .53
a.c.- -Pf
110:2
14.5
.0
6.9:D
2
2.
t.oS
7,qg
c�c EE
201:2
9.3
.0
5.0:D
2
2.
0.'1(o
S,7/v
205:2
13.9
1.4
2
4.
206:2
20.8
1.9
2,
6.
207:3
77.6
(DIRECT
FLOW)
0
36.
208:3
63.9
(DIRECT
FLOW)
0
36.
210:2
4.7
.9
1
41.
211:2
301:2
11.5
11.5
1.3
.0
7.7:D
2
2
20.
16. ^-a
�•��
-� if.6s
a
501:2
6.8
0
3.6:D
2
2.
O.$ti
�� y,{y
/f
a,L • FE
510:3
26.0
(DIRECT
FLOW)
2
6.
511:3
98.0
(DIRECT
FLOW)
0
36.
2
ac. - t
600:2
9.3
.0
2.2:D
1
27.
0,41
---� •Co{
ENDPROGRAM PROGRAM CALLED
CASVVMM\HTPMasterFina1100 revised5-16-08.out
19
Printed: 5/16/2008
f."A 600
O�+lef 1
Ppc 1 T1
13
Ppe 2�,
T4
Afe 3y
Po^A 301
0y+let Z
ptpe y Tz
OL%4gll 1
SWMM 5 Page 1
+-)
>z
L
'
00
I
N I
M
ri I
rl
O I
1
M
1
O I
O
I
to I
H
I
O
O I
M
r I
I
r I
O
3 I
O
00 1
�
v 1
�
I
C
O I
O
•I
d
to I
'
I
zl
OI
Fi 1
VI I
K I
W 1
> I
I
I
n
LJ
11
O O
00
O O
00 ,
00
tb tb
00 O U
W I 1 O 4)
QrN•I tO-i-i .. tA
VIZW WCD 0
LL} Q Q • O -
UD2:E0C)H
.-0 V1
s rd a
,Y 0 i;
• 4J 0 O. N
C*
-N NiJ
i; 0 ,.
• >, iJ VI
•r is
N L. VI
D
is ait
C M N N E
O *
tn-4J 0
is
4J C •E F-
ic VI *
•r 3 O10 N
•r *
C O C -O IS
it VI is
0W•r OIN iJC
,Y >,it
iJ C U L.•r
3;r*
33 L•r NOiJ
3; M ,Y
O O M -0 i-+ Q 3
it Ci:
rr iJC CNO
it Q„
LLLL VI W < w w
N VI I OOOO�rIOOr-Ito
E C 1 0 0 0 V M 0 0 0 rI
3 O I . . .oILn000 .
r r I
� I 0 0 0 C)M M 0 0 0 0
N y.t 1 OOOOM000N1OrI
E N 1 000000tnO00�st
3 N I 0 0 0 O V V O 0 0 0 0
10 0 0 0 0 0 0 0 0
L 1
V I
ItY I
it it . . . . . . . . . . .
3; is
it J is
is -� it
i; •r it
it Ci: 3 No
•ri; 3 3 3 .r Ev
it #J it 000 0 3
i; Ci; rrr ?i 3 V1>r L
is 0 is 4-4-4- 3 0 0 0 00
4, U is C C C Orr O'O J L-
it H H H • r 4- 4- J N L.
it OM; 4- iJ iJ L'0 W
it Cit L. LL 3 C 33CON
is •r it N N N O H O O O iJ L-
it }I* SS }Jr •r VI O iJ
it 3 it }.t i..t b 4- r r r 4J iJ •r
it Q* CO N 3 C M M M Mr VI 3
,Y NN"OHCCCLrl C
i< it 3 3 C L L L Q•rr•r
is 34; 3H NNN aiJ M+-t
is Q it >,iJ O H iJ iJ iJ M-" C C
i;r* LNLDXXC>C•rO
it LLit 0 3 U W W W H W HLLU
rl
u
i
1
1
1
1
1
1
1
L
O O O O M
000000
1; ri r♦OM
V) i
is ar is
i xi
is a) -,Y
.. .. .. .. ..
O i
is C it
i
cl
is His
aJ
is i<
is
Tit
i< Tic
tc
V)
V1
is 4J it
=..
.L(
a)
it •r is
is
E *
E �
i••t L.
i• r
i;
E *
as (V
is •r i;
i;
7 *
4J Q
is -0
i;
V) is
V)
* ro i;
is
i;
0
it 4� -X
it
p.,Y
Q !Z D- T C
• V) -k
is
a) is
a) a) a) •0 O
is c *
it
iJ
4J 4J IJ ro •r
• H * nn/'1
it
V) •k
V) VI (A a) iJ
i rnr�tn
i
i
+J ro
•k 3 •k i,vvv
is
a) •k
a) a) v V) L
3: O ;:
it
E it
E E E a)
•kc—i: MfV rnH
*•r%•r•r•r
C{J
is LL is rl a) a) a)
it
F- %
F }- F •r H
it is V Q Q Q �
it
;t
3; 4� 3; •r •r •r
it
01ic
E a) E iJ (V
it V) , ri d d d
it
C„
7 0) 3 C 0)
is a) is
E ro E a) ro
is r—* Y.Y1Y
i;
iJ >;
.r L•r U L-
it 01it C C C C
i;
3 it
C a) X L a)
it •rit •r •r •r •r
it
pit
•r > cd a) 1
is 2i: JJJJ
Kit
2a2da
xa)c
ro U•r
C E
Q) ..
t{— L. L
O LL
E U T
�O(d
TE=v
r LL
X
ro
E M ++
7 4J a)
E O_ a)
r a) LL
x O
i
v
Q
F
0
f�'T �t to 0 o0 -tr
O rl rl ri ONH
NNNNOrIN
0000000
� — —
Ln1.0v�000vu,
t-•i M M N N MN
OMMMMOM
H OC)OOHO
mmmmmmm
vvvvvvv
LA 1.0 ml0 M-CZI-tA
V ri to lO r-IItO
V 100 f�M10N
N to to Wit NO
OOOOri c;
Z Z Z Z
OOOOJWW
H HHHJl7 l7
UhHHa a
Z Z Z Z F-0 0
= m D D D
nnnn OV)V)
rH
rOH
r O O
ro O M
4— -O
7 O O
riNm',1-Odd
E
E
x
ro
E
7
E
X
ro
2
1
3 tU r
0Er0
r 30)
4- r 2:
H >
3 (L)r
0 E r0
r = M
4- r 2
+,CO
Cl F-1 >
L
00
O
1Xvc
M r0 V •r
HM:cE
I (V
M4-L L
00 Lt
1 3
rl 0) U 0
OEU>,
M•r O b
F -0
O
Dr 3V)
O (O OLL
C i-)rU
0 O 4-
aHc
Fi
r• 3 V)
r0 OLL
LrU
W 4-
J H
J
N
rl
T
F-
N ml.o N rl Otn
00�rr N M-�'
t-i r� rl rl n t-I r�
r-iM rl rl Mt-IM
0000Ol0 st
OOOOOHH
O O O O O H W
000 to c) IN
N rI N N t•-I mM
.. .... .... ....
rI N rl 0 nl 0 0
OOOOOoo
0 H01O rl 00 to
M rn N r�Ln ul^
01 r1 mrV rl 1.00
rt rl ri rl r.
rl N
OOOOOoO •C
OOOOOtn <t
OOOOOIDm
ri lD
:--1 N
zzzz
OOOOJwQw
UUUUIaiWw
zzzzF-00
»7»F-H
n n n n o o o
I rl
i r O ri
I r-OO
1 fO IO M
v 1 4-OO
'O I i-r C C
z I rr r�l M,;I- 0 d d
i••r
.j
'O I s E 4J
C 1 i-)•r d
0 1 Q rY ty
V 1 OJ LL
1 0 3
i-+ 1 O
VI I •r
vtc
s I •r m
•r 1
s t
1
O) I C
s 1 s C aj
v
IJ 1 TO O.
LL i • r i
1 LU
0
I N
a l >
O 1 X O
4J (0Q
i
NI
.0 I
V I
> I G1
0 1 13
-0 I !n L-
as I i r0
I 7.0
0 1 O U
Gl I = L
Vf I 3
•r I Vl
L I
I
L I
O) I
3 i v
1 O
>
it Lis
s I
it r0 i:�
3 I
is E i
1
It E it
u 1
It 3 it
L I
i Vli
3 I
i it
V I
i 4) is
U I
it Olit
O 1
I: L *
I
It (0 is
O) I
it .0 it
C I
It U it
•r I
It L. it
O) 1
is 3 it
L. I
It V) it
(0 1
it ;t
s I
it a) it
U I N
is "O it
L. I "O
i O it
3 1 O
X z It
Vl I z
V1N I�qd-r1
I;tmr�lo rn
MmmlOrn
rINNOO
Inrbre) ID01
In N IOre) �
lOVNM;r
NMNstN
N r\00O01
N (1 M 0 00
r\o W ID 00
ri 0)
zzz
OOOwuj
H H H lQQ7 1QQ7
UUUO'K
z z z 0 0
»>F-F-
rf r) rf Vl V)
It >,it 'O
it L it 4)
it (v it 'O
It E it 0
it E 0
it 3 i r
i V) it 4-
i i
it 01 t tL
it C it L
it •r is tU
it O it 3
It O it
it O is i I, 4)
r- it LL it 0
it it 0
It IL it C
it -0 it
It O a O
it z it z
E 3
30
Er
•r 4-
X i•+
fO
X iJ
r0 c
2: V M
a
N
O)
r0
a
E v
3 E
E 3
>
CM i-+
Q V
a
VI
LL
U
C
E
L
L
In
nro
L.0
00
O
I
M r
ri r
I 7
M LL
OII
r-f
0
M M
1 i_+
0
t9 O
O00
O rl
a
r
LL
LL
rn
t.
O
O
O
r-i
O rl
M to
01�
00 Itt
N t•-I
r1 N
00
rl 00
0000
rntn
to O
V r•I
v In
Oi M
M
V 00
00 to
In ri
N (D
�t 01
N
0 rl
00
1D M
C C
aaaa
r N r
I t••I I r1
I
M E M
I M I M
I
iJ 7 is
I n I n
I
Or 2
I • I
i- O
1 M 1 M
>
I I
I I
I
I
•3 VI
I I
i rl
r
I
X O LL
to 1 to
I
far U
I I
2: LL
I t•i I r1
I
rf I rl
I
I I
I
I
I
• 3 VI
I I
I I
I
I n I n
I
I
01 O LL
I f� I n
I
U
QLL
11 T
I 1
I I
I I
I
I
I
I
1 1
1 I
I 1
1 01 1
I
1
1
I
3 64J
I N (N I N
I
O a)C
I I
1
r L V
I O I O
I
LL LLfl
I M 1 m
I 1
1
I
I I
1 I
it
1
is I
I I
it
it I
I 1
%
Tic I
1 I
it
Lis I
I I
it
ra * I
I I
it
E it I
is
E i
0J
1 I
it
7 i; I
-0
1 1
it
Ln it I
O
1 1
is
* I
Z
I I
i
;t I
I t••� I
is
O it I
r
l r l
it
r it I
r
I r I E
it
LL it 1
ra
I ra I aJ
is
it 1
4—
1 4— 1 }J
is
Y it I
4J
I }J I VI
it
C it 1
3
I 7 I >,
it
•r is I
0
1 0 1 VI
it
J it I
X r L
YL LL 0J
Xr 3
Xr O
fa 7r
a LLLL
E >, U
FJ 0J
E•r VI
r U \
(0 O4-
X N C
a c E
t- L. L.
O LL
3
EUT
boco
E3VI
7 O LL
ErU
•r LL
X
ra
z
t1J
O.
T
H
000�
0001.0
rl rl rl O
'TrlNIt
lD�r�lO
0000
nVr to
00000M
f� V N to
00 (n00 7 00 V
N NN riN rf
rlOOfV Hr4
O O O O O O
0)tD In H O ri
N f�00 to Mtn
61N �r-I d>rl
rl rl r-i ri
I-
H H H H
D D D } }
Z Z Z Z 2: N:
0000»
UUUUOo
H r%j M-tl-
0J 01 0) 0J
O. fl_ fl_ f1
•r •r •r •r
aaaariN
I
1
1
k
1
1
1
1
1
1
1
1
w I ri ri00
m1OOOO
C I O O O O
tC 10000
sl
U I O O O O
I
I
L I VNOr-I
CJ I 0 0 0 ri
S 1
E I O O O O
7 I
Z I
i-: 10000
r I O O O O
L I
V I O O O O
{.J I
ai� i 0000
r 1 0000
O U 1 0 0 0 0
I I
M I
r 1 . .00
M L I
O U i 0000
O N 1 010OO
M•r I Or-1OO
I L I
O U I r-I O H '-i
tD
'O 10000
C >1 10000
0 L. I
aol0000
I
I
0nrOO
>% 1 00000
L.
a 1 0000
I
I
>� 1 0000
r 10000
1
1 0 0 0 0
s
1 0000
i•+
1 O0VO
O
1
C
I r-I r•I H H
>>i:
J
I
i
ro i
i
Ei
i
Ei
i
7 G
i
VI t
I
is
i;
I
is
O i<
I
is
Olic
I
is
L •k
I
is
rC is
I
is
S K
I
is
U *
I
k
:3
is
V1 k
i
i-:
I
is
i-: 3:
r
I
k
•r •%
7
I riNM�
-;
3-=
C
I aQO. 0.
is
C*
O
1 •r •r •r •r
•4
OX
U
I aaa 0.
is
u*
I >"a I
1 0 }J W 1 r-I H r-I
I L•r 4- 1000
I 7 U•r 1
O M E 1 000
1 S O•r I
I fC J I
1 V I
1 1
1 I
3 1
I r O I
I r r I
I 3 LL I
I L r I O O O
I 7 G1 cd I
1 O > E 1000
12 0 L. I
-00 1
I Q Z 1
I i
I 1
I I E 1 In l0 01
I I r0 I 00000
I I N I
I I L 1 N N 00
I I i••: I ri ri
I I
of I
I f�C I
I I (] I
1 I
I r I
I A E I O I� 00
I 7 cV I N01M
I LL C) 1
1 L I r�000
I V1 4 + 1 r1
L. Ln I
z CL
OD I
S I
I
I I VI 1 O I) 00
I I •O I c . 0. .
I 1 C I
I W I r�000
1 ri
I S I
1 1
0
1 0 1
I I CO I
0100
N rn
0000
H H
OO
r-i 'I
M M
cri
r lrl
L L o
M: Cl
O
H H O
C C E
O O•r
4J
C'O
7 Wo
OYO Cl
C) C VI
S C1 Q
tQ
Vf V1 r
r•r C1
>. >i
r r tv
MMN
QQ0
n
I
J
1
1
1
1 APPENDIX D
u
1
1
i
1
1
1
1
1
1
1
i
1
i
1
1
1
POND SIZING CALCULATIONS:
1 RATING CURVES9 WQ CV
1
1
I
1
1
1
1
1
1
1
1
1
1
!�
!9# 1.tx
POND ml
\
A¥t=r ea;_,t ,Are,Aa mlu_,act,Alme,af
». ©
\�
# re.
Are
cmlag amlcdc
.
# t2
«« of
.
4914.0000
27595.1368
1.5928
1.5539
. .
4913.0000
.24272¥6603
0.9974
0.9589
. §
\
4912.0000
21050x235
0.4772
0.4391
4911.0000
10194.2622
0.1185
0.0879
m+.mm
132.470
amm
amm
v
, \�
�.�
41
.�
I
§
.
.f\
}� \
�
�� � F�
\
. �
�
� 2±� :«•
All
«W
Page 1
\
I
Harmony Technology Park STANTEC
Pond 101 Orifice Calculation 187710640
100-Year Pond Orifice Plate
Basic Equation:
Q=Cd*A•(2g9(h1-h2))0.5
Revised Equation:
A=Q/(Cd • (2g • (h1 - h2 ))0.5
Input
Basin Area =
6.90
Contributing Drainage Area
Cd=
0.65
Input
g=
32.20 ft/s2
Gravitational Constant
h1=
4914.00
100 year WSEL
h2=
.4910.00
Invert Elevation of Pipe
Q =
5.00 cfs
Input
A= 0.48 ftz Calculated orifice area
*r— 4.69 Calculated radius (inches)
* Orifice opening bottom aligned with invert of pipe, difference in
head on the orifice measured from the centerline of the orifice opening
Orifice Dia. = 9.3741 inches
0.7812 feet
I
I
LO
00
LO N
0
co co 0
W)
ci
0 C;
0 0 tn
m
CY -co M
12
!t
0 0
0—
0
00 V MOON
000M
c; Ncli li CO
CD
N
0 0 14- 0) U)
LO
E 0 0
6 06 6
CD'
L) to
as
0 0) CO CN 0)
0 0 M CO CO
'C
to
0 C) 0 C) CD
D"
C)*
co
04
'n ce) qt
m
Cf)
0
0 CIJ C'4 ce)
Cl)
co
C) m r�
ce)
0 co LO
N4 19
C Lo
ci 0 6 C5 0
t,Q
CD
N , ce) CO
-,t
C4
N 'T CO Il- 0)
(M
co
m 0) 0 N CO
'-T
qT
It I-
Ict
K.
0 04 04 04
N
CD N ce) 't
V:
0 CN CO q
qt q q
V*
. It
O
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 1 of 3
11
11
1
Designer:
Brad Kugler
Company:
Stantec
Date:
March 13, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 101)
1. Basin Storage Volume
A) Tributary Area's Imperviousness Ratio (i = le/ 100)
B) Contributing Watershed Area (Area)
C) Water Quality Capture Volume (WQCV)
(WQCV=1.0*(0.91 *13-1.19*12+0.78*1))
D) Design Volume: Vol = (WQCV / 12) * Area * 1.2
18 =
i =
Area =
WQCV =
Vol =
80.00
0.80
6.90
0.33
0.227
%
acres
watershed inches
acre-feet
2. Outlet Works
A) Outlet Type (Check One)
x
Orifice Plate
Perforated Riser Pipe
Other:
B) Depth at Outlet Above Lowest Perforation (H)
H =
1.40
feet
C) Required Maximum Outlet Area per Row, (A.)
Ao =
0.81
square inches
D) Perforation Dimensions (enter one only):
i) Circular Perforation Diameter OR
D =
1.0000
inches, OR
ii) 2" Height Rectangular Perforation Width
W =
inches
E) Number of Columns (nc, See Table 6a-1 For Maximum)
nc =
1
number
F) Actual Design Outlet Area per Row (A,)
Ao =
0.79
square inches
G) Number of Rows (nr)
nr =
4
number
H) Total Outlet Area (At)
Ao, =
3.30
square inches
3. Trash Rack
A) Needed Open Area: Ai = 0.5 * (Figure 7 Value) * Aot
At =
.112
square inches
B) Type of Outlet Opening (Check One)
x
< 2" Diameter Round
2" High Rectangular
Other:
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening Mm m)
from Table 6a-1
Wconc =
6
inches
ii) Height of Trash Rack Screen (HTR)
HTR =
41
inches
WQCV Pond 101.x1s, EDB
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 2 of 3
11
Designer:
Brad Kugler
Company:
Stantec
Date:
March 13, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 101)
iii) Type of Screen (Based on Depth H), Describe if "Other"
x
S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other'
X
0.139" (US Filter)
Other:
v) Spacing of Support Rod (O.C.)
0.75
inches
Type and Size of Support Rod (Ref.: Table 6a-2)
#156 VEE
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
3/8 in. x 1.0 in. flat bar
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening (W)
W =
inches
ii) Width of Perforated Plate Opening (W� e = W + 12")
Woo"
inches
iii) Width of Trashrack Opening (Wopefing) from Table 6b-1
Wopening =
Inches
iv) Height of Trash Rack Screen (HTR)
HTR =
inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempTm KPP Series Aluminum
Other:
vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP
inches
Grating). Describe if "Other"
Other:
vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2)
(Based on depth of WQCV surcharge)
4. Detention Basin length to width ratio (LIW)
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet
i
B) Surface Area acres
C) Connector Pipe Diameter inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides yes/no
WQCV Pond 101.x1s, EDB
11
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 3 of 3
Designer:
Brad Kugler
Company:
Stantec
Date:
March 13, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 101)
6. Two -Stage Design
A) Top Stage (DWo = 2' Minimum)
DWo =
feet
Storage=
acre-feet
B) Bottom Stage (Des = DWo+ 1.5' Minimum, DWo+ 3.0' Maximum,
Des =
feet
Storage = 5% to 15% of Total WQCV)
Storage=
acre-feet
Surf. Area=
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.5 ' Top Stage Depth or 2.5 Feet)
Storage=
acre-feet
Surf. Area=
acres
D) Total Volume: Vol,,, = Storage from 5A + 6A + 6B
Vol,o, =
acre-feet
Must be > Design Volume in 1 D
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
4.00 (horizontal/vertical)
per unit vertical) Minimum Z = 3, Flatter Preferred
9. Vegetation (Check the method or describe "Other")
Native Grass
Irrigated Turf Grass
Other:
Notes:
WQCV Pond 101.xis, EDB
POND 110
tmp#67.txt
'
#Units=Elevation,ft,Area,ft2,volume,acft,volume,acft
# Elev
Area
Cumml Avg Cumml
Conic
# ft
ft2
acft acft
4906.0000
137622.9646
13.0348
12.9345
'
4905.0000
121394.0787
10.0617
9.9634
4904.0000
103363.9981
7.4818
7.3863
4903.0000
86427.8780
5.3033
5.2106
'
4902.0000
4901.0000
70411.6478
58718.1104
3.5030
2.0208
3.4135
1.9333
4900.0000
43170.3898
0.8513
0.7684
4899.0000
15492.8019
0.1779
0.1216
'
4898.0000
9.5781
0.0000
0.0000
fl
L]
1
f
Page 1
Harmony Technology Park STANTEC
Pond 110 Orifice Calculation 187710640
100-Year Pond Orifice Plate
Basic Equation:
Q=Cd•A•(2g•(h1-h2))0.5
Revised Equation:
A=Q/(Cd • (2g • (h1 - h2 W.5
Input
Basin Area =
32.92
Contributing Drainage Area
Cd=
0.65
Input
g=
32.20 ft/s2
Gravitational Constant
h1=
4904.20
100 year WSEL
h2=
4898.00
Invert Elevation of Pipe
Q =
15.00 cfs
Input
A= 1.15 ft` Calculated orifice area
*r= 7.28 Calculated radius (inches)
* Orifice opening bottom aligned with invert of pipe, difference in
head on the orifice measured from the centerline of the orifice opening
Orifice Dia. = 14 §:514 inches
1.2126 feet
G
i
u
d
K O
A
fU
A
CD
a
c
CD
V/
O
A
f0
CD
v
fD
f70
C1
HA
(
.O.
O
3
0
O
CD
R1
N
fn
0
O
f1
CD
o D
a
a
p o
G co
ro
0
4
O
w
0
O
C
7
co
AOW000000OO
4
O(0
-4CJ7
00 CD O
Cn A W N i 0 O W
CD
`<
v
V
`W�
O
V
i
W O O
D
W co co cn i
CVIIW
N(p
co Nv 0 0
W AA V N W 0 W
fll
CO N N i i 0 0 0
i V W CO 6 'w CD W O
i? CO O
D
Cn W V co En
i
A
O
CD W N A 0 V Cn O
W W O O A O CD N
V
W N i CO W V A V N
fv
-':
CD N O O V CO W 00
co co CD co W W W CA
_
0
O
N
:�l
A Cn i Do .P j
V
CO
CO W W O W W Cn N O`
fD
CO) n
cD-lcnwi000
0
A 0) j A v 00
Ol c
000
Cn CWO COiW N
-. +
... tQ
lD w
n O'
O
Ol
W Cr A W N O W W O
0 c
s
O
N
Cn Co :-4 A O A N N O
OA W V U7W
n o
0
3.0
v
c
Ct) .O.
a�
O "•
O
CC)
C 0
O
EL
0 0)
CD 3
\I
c
fD
O o
p
Do
O
0)v ov
3<
w A
3
o
0
m
v fD
CD Iu
Cc C
to N
N CD
o n
=r IU
n
fn
O O i
O
N W
Cn
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 1 of 3
Designer:
Brad Kugler
Company:
Stantec
Date:
May 16, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 110)
1. Basin Storage Volume
18 =
80.00
%
A) Tributary Area's Imperviousness Ratio (i = 1a / 100)
i =
0.80
B) Contributing Watershed Area (Area)
Area =
32.92
acres
C) Water Quality Capture Volume (WQCV)
WQCV =
0.33
watershed inches
(WQCV =1.0*(0.91 *13-1.19.12+0.78*1))
D) Design Volume: Vol = (WQCV / 12) * Area * 1.2
Vol =
1.081
acre-feet
2. Outlet Works
A) Outlet Type (Check One) x Orifice Plate
Perforated Riser Pipe
Other:
B) Depth at Outlet Above Lowest Perforation (H)
H =
2.27
feet
C) Required Maximum Outlet Area per Row, (Ao)
Ao =
1.9.3
square inches
D) Perforation Dimensions (enter one only):
i) Circular Perforation Diameter OR
D =
1.5000
inches, OR
ii) 2" Height Rectangular Perforation Width
W =
inches
E) Number of Columns (nc, SeeJable 6a-1 For Maximum)
nc =
1
number
F) Actual Design Outlet Area per Row (Ao)
Ao =
1.77
square inches
G) Number of Rows (nr)
nr =
7
number
H) Total Outlet Area (Ao,)
At =
12.03
square inches
3. Trash Rack
A) Needed Open Area: A, = 0.5 * (Figure 7 Value) * Aot At = 385 square inches
B) Type of Outlet Opening (Check One) x < 2" Diameter Round
2" High Rectangular
Other:
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening (Wcon�)
from Table 6a-1 Wcone - 15 inches — --
ii) Height of Trash Rack Screen (HTR) HTR = 51 inches
1
WQCV Pond 110.xls, EDB
' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 2 of 3
I�
1
1
Designer: Brad Kugler
Company: Stantec
Date: May 16, 2008
Project: Harmony Tech Park
Location: Fort Collins (Pond 110)
iii) Type of Screen (Based on Depth H), Describe if "Other"
x
S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other"
x
0.139" (US Filter)
Other:
v) Spacing of Support Rod (O.C.)
1.00
inches
Type and Size of Support Rod (Ref.: Table 6a-2)
TE 0.074 in. x 0.50 in.
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
0.75 in. x 1.00 in. angle
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening (W)
W =
inches
ii) Width of Perforated Plate Opening (W..., = W + 12")
Wwnc =
inches
iii) Width of Trashrack Opening (Wopening) from Table 6b-1
Wapening -
Inches
iv) Height of Trash Rack Screen (HTR)
HTR =
inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempTm KPP Series Aluminum
Other:
vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP
inches
Grating). Describe if "Other"
Other:
vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2)
(Based on depth of WQCV surcharge)
4. Detention Basin length to width ratio (L/W )
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet
B) Surface Area acres
C) Connector Pipe Diameter inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides yes/no
WQCV Pond 110.xls, EDB
11
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 3 of 3
Designer:
Brad Kugler
Company:
Stantec
Date:
May 16, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 110)
6. Two -Stage Design
A) Top Stage (Dwo = 2' Minimum)
DWo =
feet
Storage=
acre-feet
B) Bottom Stage (Des = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum,
Des =
feet
Storage = 5% to 15% of Total WQCV)
Storage=
acre-feet
Surf. Area=
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.5 " Top Stage Depth or 2.5 Feet)
Storage=
acre-feet
Surf. Area=
acres
D) Total Volume: Vol,at = Storage from 5A + 6A + 6B
Voltot =
acre-feet
Must be > Design Volume in 1 D
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
4.00 (horizontal/vertical)
per unit vertical) Minimum Z = 3, Flatter Preferred
9. Vegetation (Check the method or describe "Other")
Native Grass
Irrigated Turf Grass
Other:
Notes:
WQCV Pond 110.xls, EDB
I
' tmp#53.txt
POND 201
#units=Elevation,ft,Area,ft2,volume,acft,volume,acft
'
# Elev
Area
Cumml Avg Cumml
Conic
# ft
ft2
acft acft
4912.0000
60937.5165
6.4234
6.3841
4911.0000
56011.1344
5.0811
5.0421
'
4910.0000
51185.3016
3.8506
3.8121
4909.0000
46460.0268
2.7298
2.6917
4908.0000
41835.3295
1.7163
1.6787
4907.0000
33206.1554
0.8549
0.8192
'
4906.0000
18178.3167
0.2651
0.2380
4905.0000
3232.3367
0.0194
0.0155
4904.5000
142.7907
0.0000
0.0000
11
1
Page 1
Harmony Technology Park STANTEC
Pond 201 Orifice Calculation 187710640
' 100-Year Pond Orifice Plate
Basic Equation:
' Q=Cd•A•(2g•(h1-h2))0.5
' Revised Equation:
' A=Q/(Cd • (2g • (h1 - h2 ))0.5
Input
Basin Area =
23.02
Contributing Drainage Area
Cd=
0.65
Input
g=
32.20 ft/sz
Gravitational Constant
h1=
4912.00
100 year WSEL
h2=
4904.50
Invert Elevation of Pipe
'
Q =
10.00 cfs
Input
Output
A=
0.70 ftz
Calculated orifice area
'
*r=
5.66
Calculated radius (inches)
'
Orifice opening bottom aligned with invert of pipe, difference in
head on the orifice measured from the centerline of the orifice opening
Orifice Dia.
=
11.3290
inches
0.9441
El
feet
1
LO
LO
It 0
tn
.21
Im
cu
> a) a)
E
0 m
(D Cy
>� E
Y
C m
o m CO
0 ty
13:
v v
0
D0 26
E m
F-- t- m Co CO r (D
0 in q w F- Lo Ce) 0
c,� 4 L6 CD r, oo o) cl
co
ci
-2�
Im
S m
C) N It 04 00 0) NT CO
CO
to.
E 8
C) C� N 000 0 w C) m
1-
r-
M
C5 C) C) C) 1: N C15 L6 (6
6
U)
a N N w 0 'c,4 m zr
t;r
CA
0 0 C14 Co 000NM
to
N.
6 ci 6 6 r r r r
Ci
�j
w Lo 0 0 Iq w 0 0
r.
N (D m V a) .t Co 0
co 0) 5 6 0) r- 7 co 0)
N
to
N CO CO CO 0 a 00 co
r.-
co
M I,. CN C) co LO U')
't
a r, CO QO co r.- 00
0 C) IT rl- 0) OWN
C; 6 C5 6 6
M
co N CO (0 LO C) LO P,
t- C> n (D 00 CO
r.-
co
Ict
'gr co I N 00 19T r C) 0)
U)
CO
CO CO r (D r (D C)
,
CO
M V 't LO LO (D
CO
U)
Q.
Uo LO LO LO LO U) CO tn
MO
NM ;T U) CD r--
>
Lo Lo(Dr--co0)0 cq
cn
co
0 CD CD 0 0 , �
0) 0) 0 CD m (n m M
CD
0
.9 1
.9
I
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 1 of 3
Designer:
Brad Kugler
Company:
Stantec
Date:
March 13, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 201)
1. Basin Storage Volume
la = 80.00 %
A) Tributary Area's Imperviousness Ratio (i = 18 / 100) i = 0.80
B) Contributing Watershed Area (Area) Area = 23.02 acres
C) Water Quality Capture Volume (WQCV) WQCV = . 0.33 watershed inches
(WQCV =1.0*(0.91 *13-1.19*12+0.78'1))
D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 Vol = . 0.756 acre-feet
2. Outlet Works
A) Outlet Type (Check One) x Orifice Plate
Perforated Riser Pipe
Other:
B) Depth at Outlet Above Lowest Perforation (H)
H =
2.39
feet
C) Required Maximum Outlet Area per Row, (Ao)
Ao =
1.26
square inches
D) Perforation Dimensions (enter one only):
I) Circular Perforation Diameter OR
D =
0.8500
inches, OR
ii) 2" Height Rectangular Perforation Width
W =
inches
E) Number of Columns (nc, See *Table 6a-1 For Maximum)
nc =
'2.
number
F) Actual Design Outlet Area per Row (Ao)
Ao =
1.13
square inches
G) Number of Rows (nr)
nr =
7
number
H) Total Outlet Area (At)
At =
8.14
square inches
3. Trash Rack
A) Needed Open Area: At = 0.5 * (Figure 7 Value) * Aot
At =
282 square inches
B) Type of Outlet Opening (Check One)
x
< 2" Diameter Round
2" High Rectangular
Other:
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening (Wconc)
from Table 6a-1
Wconc =
12 inches
ii) Height of Trash Rack Screen (HTR)
HTR =
53 inches
WQCV Pond 201.xls, EDB
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 2 of 3
Designer: Brad Kugler
Company: Stantec
Date: March 13, 2008
Project: Harmony Tech Park
Location: Fort Collins (Pond 201)
iii) Type of Screen (Based on Depth H), Describe if "Other"
X
S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other"
X
0.139" (US Filter)
Other:
v) Spacing of Support Rod (O.C.)
1.00
inches
Type and Size of Support Rod (Ref.: Table 6a-2)
TE 0.074 in. x 0.50 in.
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
0.75 in. x 1.00 in. angle
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening (W)
W =
inches
ii) Width of Perforated Plate Opening (Wwnc = W + 12")
Wwnc =
inches
iii) Width of Trashrack Opening (Wapening) from Table 6b-1
Wopening =
Inches
iv) Height of Trash Rack Screen (HTR)
HTR =
inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempTm KPP Series Aluminum
Other:
vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP
inches
Grating). Describe if "Other"
Other:
vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2)
(Based on depth of WQCV surcharge
4. Detention Basin length to width ratio (LAW)
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet
B) Surface Area acres
C) Connector Pipe Diameter inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides yes/no
WQCV Pond 201.x1s, EDB
' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 3 of 3
i
L
r
Designer: Brad Kugler
Company: Stantec
Date: March 13, 2008
Project: Harmony Tech Park
Location: Fort Collins (Pond 201)
6. Two -Stage Design
A) Top Stage (Dwo = 2' Minimum)
Dwo =
feet
Storage=
acre-feet
B) Bottom Stage (DBs = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum,
Dm =
feet
Storage = 5% to 15% of Total WQCV)
Storage=
acre-feet
Surf. Area=
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.5' Top Stage Depth or 2.5 Feet)
Storage=
acre-feet
Surf. Area=
acres
D) Total Volume: Voltot = Storage from 5A + 6A + 6B
Voltot =
acre-feet
Must be > Design Volume in 1 D
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
4.00 (horizontal/vertical)
per unit vertical) Minimum Z = 3, Flatter Preferred
9. Vegetation (Check the method or describe "Other")
Native Grass
Irrigated Turf Grass
Other:
Notes:
WQCV Pond 201.xls, EDB
I
tmp#54.txt
POND 301
#units=Elevation,ft,Area,ft2,volume,acft,volume,acft
# Elev
Area
Cumml Avg cumml
Conic
# ft
ft2
acft acft
4909.0000
85813.3071
8.7577
8.6796
4908.0000
80152.2235
6.8527
6.7749
4907.0000
74590.8191
5.0765
4.9991
4906.0000
69128.9262
3.4268
3.3498
4905.0000
59929.5117
1.9454
1.8697
4904.0000
39213.9360
0.8074
0.7400
4903.0000
15466.6723
0.1798
0.1331
4902.0000
195.0938
0.0000
0.0000
Page 1
I
' Harmony Technology Park STANTEC
Pond 301 Orifice Calculation 187710640
' 100-Year Pond Orifice Plate
Basic Equation:
1 Q=Cd•A•(2g•(h1-h2))0.5
' Revised Equation:
A=Q/(Cd • (2g • (h1 - h2 ))0.5
Input
'
Basin Area =
29.00
Contributing Drainage Area
Cd=
0.65
Input
'
g=
32.20 ft/s2
Gravitational Constant
h1=
4909.00
100 year WSEL
h2=
4902.00
Invert Elevation of Pipe
'
Q =
12.00 cfs
Input
Output
A=
0.87 ft2
Calculated orifice area
'
*r—
6.31
Calculated radius (inches)
* Orifice opening bottom aligned with invert of pipe, difference in
head on the orifice measured from the centerline of the orifice opening
Orifice Dia.
= 12.6262
1.0522
inches
feet
I
I
I
to
(0
Lo N
C) C)
LO rl. CD
0000
io
ca
0 N
co
E (D
cc CU
w
Q cu ,
cr
5
5
!t
0 " t 0
03
0
C� 0
C� LO .zl_ W 0
04
0)
0
77,
i
CD
3
C) m I�t r-- Lo 0 rl co
LO
LO
V(D
r r- 00 cr) C) 1` (D
0
co
Ep
6 r c6 L6 c6 06
6"
00U
to
0 C') r C') 00 Lc) 00 0
C:),
O
0 W It CO r, M
1.-
0
,
C;
77
(0 LO CD U) LO r— ti -It
(D co 0) cf) cy) cy) (.0 LO
1` r-- (N CD co r- m 0)
-q b N w 0 m a 0
4 U.) (S m 0 N a m
a Lo 0 P, M , 't 0
0
Cl (Y) 0) CO LO t- 00 0)
-
ci 6 6
LO CD r CO C14 (M LO r
0
C14
IT M , to , M
r�
0 M 0 M It 0 LO
CV)
to
03
co
CL
C) r N m I LO 0 P,
m
CO
>
00000000
00
LU
0' C`0)0) , mt (3t,
0'
q q
CD
_0
0
U) `m
O
O
0
(D
m
0
co
Cd
m
2!
0
U)
m
m
3:
m
.T
x
ai
2-0
ZI
C)
rn
CV)
0
IL
c
0
cu
�5
CL
0
C)
00
I
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 1 of 3
Designer:
Brad Kugler
Company:
Stantec
Date:
March 13, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 301)
1. Basin Storage Volume
la =
80.00
%
A) Tributary Area's Imperviousness Ratio (i = la / 100)
i =
0.80
B) Contributing Watershed Area (Area)
Area =
29.00
acres
C) Water Quality Capture Volume (WQCV)
WQCV =
0M
watershed inches
(WQCV =1.0' (0.91 ' 13 - 1.19. 12 + 0.78 " 1))
D) Design Volume: Vol = (WQCV / 12)' Area' 1.2
Vol =
0.952,.
acre-feet
2. Outlet Works
A) Outlet Type (Check One) x Orifice Plate
Perforated Riser Pipe
Other:
B) Depth at Outlet Above Lowest Perforation (H) H = 2.19 feet
C) Required Maximum Outlet Area per Row, (Ao) Ao = 1.79 ' square inches
D) Perforation Dimensions (enter one only)
i) Circular Perforation Diameter OR
D =
1.5000
inches, OR
ii) 2" Height Rectangular Perforation Width
W =
inches
E) Number of Columns (nc, See Table 6a-1 For Maximum)
nc =
1-
number
F) Actual Design Outlet Area per Row (AJ
A. =
.1.77.
square inches
G) Number of Rows (nr)
nr =
7
number
H) Total Outlet Area (Aot)
Aat =
11.61
square inches
3. Trash Rack
A) Needed Open Area: At = 0.5' (Figure 7 Value)' Aat At = 371 square inches
B) Type of Outlet Opening (Check One) x < 2" Diameter Round
2" High Rectangular
Other:
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening (W� c:)
from Table 6a-1 Wmac = 15 inches
ii) Height of Trash Rack Screen (HTR) HTR = 50 inches
WQCV Pond 301.x1s, EDB
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 2 of 3
Designer:
Brad Kugler
Company:
Stantec
Date:
March 13, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 301)
iii) Type of Screen (Based on Depth H), Describe if "Other"
x
S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other'
X
0.139" (US Filter)
Other:
v) Spacing of Support Rod (O.C.)
1.00
inches
Type and Size of Support Rod (Ref.: Table 6a-2)
TE 0.074 in. x 0.50 in.
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
0.75 in. x 1.00 in. angle
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening (W)
W =
inches
ii) Width of Perforated Plate Opening (Wwn. = W + 12")
Wwno =
inches
iii) Width of Trashrack Opening (Wapen;ng) from Table 6b-1
Wopening -
Inches
iv) Height of Trash Rack Screen (HTR)
HTR =
inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempTm KPP Series Aluminum
Other:
vi) Cross -bar Spacing (Baseq on Table 6b-1, KlempTm KPP
inches
Grating). Describe if "Other"
Other:
vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2)
(Based on depth of WQCV surcharge)
4. Detention Basin length to width ratio (L/W)
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet
B) Surface Area acres
C) Connector Pipe Diameter inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides yes/no
WQCV Pond 301.xls, EDB
' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 3 of 3
Designer:
Brad Kugler
Company:
Stantec
Date:
March 13, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 301)
6. Two -Stage Design
A) Top Stage (DWo = 2' Minimum)
DWo =
feet
Storage=
acre-feet
B) Bottom Stage (Dm = DWo+ 1.5' Minimum, DWo+ 3.0' Maximum,
Da =
feet
Storage = 5% to 15% of Total WQCV)
Storage=
acre-feet
Surf. Area=
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.5 ' Top Stage Depth or 2.5 Feet)
Storage=
acre-feet
Surf. Area=
acres
D) Total Volume: Voltot = Storage from 5A + 6A + 6B
Vol,', =
acre-feet
Must be > Design Volume in I
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
4.00 (horizontal/vertical)
per unit vertical) Minimum Z = 3, Flatter Preferred
9. Vegetation (Check the method or describe "Other")
Native Grass
Irrigated Turf Grass
Other:
Notes:
WQCV Pond 301.xls, EDB
' tmp#55.txt
POND 501
' #units=Elevation,ft,Area,ft2,volume,acft,volume,acft
# Elev Area Cumml Avg Cumml Conic
# ft ft2 acft acft
4911.0000 46747.6934 4.9266 4.8934
4910.0000
42110.0118
3.9067
3.8740
'
4909.0000
37572.8774
2.9920
2.9598
4908.0000
33136.2945
2.1804
2.1487
4907.0000
28800.2696
1.4695
1.4384
4906.0000
24564.8139
0.8569
0.8265
t 4905.0000
17382.1399
0.3754
0.3473
4904.0000
7565.6240
0.0891
0.0687
4903.0000
195.1957
0.0000
0.0000
a
Page 1
1
1
1
1
Harmony Technology Park
Pond 501 Orifice Calculation
100-Year Pond Orifice Plate
Basic Equation:
Q=Cd•A•(2g•(hl-h2))0.5
Revised Equation:
A=Q/(Cd • (2g • (hl - h2 ))0.5
In
Basin Area =
16.50
Cd=
0.65
g=
32.20 ft/s2
h1=
4911.00
h2=
4903.00
Q =
7.50 cfs
Output
Contributing Drainage Area
Input
Gravitational Constant
100 year WSEL
Invert Elevation of Pipe
Input
A= 0.51 ft2 Calculated orifice area
*r— 4.83 Calculated radius (inches)
` Orifice opening bottom aligned with invert of pipe, difference in
head on the orifice measured from the centerline of the orifice opening
Orifice Dia. = 9.6542 inches
0.8045 feet
STANTEC
187710640
LO
LO N
C) 0
co in to
N
C;
0 0
CD CD r-
.2
CO
N
> CD N
E
CD CC
0) 0
E
0
CY m m
o m CO
1
0 1a,
3: 6
10 if,
co
0
LO >
Lo 0
v v
0 V
0 v
3 .2
0 E m
0
OoLnMOMONOM
C) CO h Lr) CO 0) LO C) LO
C; N M4 Lo, to CO r�-'
-0,
Lf)
r-�
m
m -t LO co r�l 0)
E3
" 0
0 0 M.00 �T , CD 00 00
Lo
0
N N c6 4
6
It
M
O n CO W N
M
�t
" 0
CD C> N I* co fl- w 0 0
m
0
0 M
6 ci C=; 6 C) 0 0
co m co co rl 0) "t CO �T
CO to Ln I- 1- NCO
m
4)
r, 0) Cl) 0) to , co
qT co 0 0 (0 LO r.-
co
C3)
M
-It CV) 0) co o C,4 CD c)
co
"*:
00
R
C) rl 0) (0 C�o CO CO (D P�
C) CO LO 1� 00 (D C)
ci 6 ci 6 C) C; 6 6
M
N �T C) Co Ce) 0 Co
(D
C�j
0
Lo CO (D 0 CO P� It
0
cr)
C. 14
0) to M CO CO LO �
0
M
rl
M
NN
0 Ce) '�t N LO (0 r'- CO
'T
N
0 0 0 C) 0 C> 0
qT d I;r It -4- q Rr 'T
Nt
Iq
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 1 of 3
P
i
J
Designer: Brad Kugler
Company: Stantec
Date: May 15, 2008
Project: Harmony Tech Park
Location: Fort Collins (Pond 501)
1. Basin Storage Volume
la = 80.00 %
A) Tributary Area's Imperviousness Ratio (i = la / 100) i = 0.80
B) Contributing Watershed Area (Area) Area = 16.50 acres
C) Water Quality Capture Volume (WQCV) WQCV = 0.33 watershed inches
(WQCV =1.0*(0.91.*1'-1.19*1'+0.78*1))
D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 Vol = 0.542 acre-feet
2. Outlet Works
A) Outlet Type (Check One) X Orifice Plate
Perforated Riser Pipe
Other:
B) Depth at Outlet Above Lowest Perforation (H)
H =
2.40
feet
C) Required Maximum Outlet Area per Row, (AJ
Ao =
0.90
square inches
D) Perforation Dimensions (enter one only):
i) Circular Perforation Diameter OR
D =
1.0000
inches, OR
ii) 2" Height Rectangular Perforation Width
W =
inches
E) Number of Columns (nc, See Table 6a-1 For Maximum)
nc =
1
number
F) Actual Design Outlet Area per Row (AJ
A. =
0.79
square inches
G) Number of Rows (nr)
nr =
7
number
H) Total Outlet Area (A,,)
At =
5.65
square inches
3. Trash Rack
A) Needed Open Area: At = 0.5 * (Figure 7 Value) * Aot At = 192 square inches
B) Type of Outlet Opening (Check One) X < 2" Diameter Round
2" High Rectangular
Other:
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening Mm m)
from Table 6a-1 Mont = 9 inches
ii) Height of Trash Rack Screen (HTR) HTR = 53 inches
WQCV Pond 501.xls, EDB
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility.
Sheet 2 of 3
Designer:
Brad Kugler
Company:
Stantec .
Date:
May 15, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 501)
iii) Type of Screen (Based on Depth H), Describe if "Other' x S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other"
x
0.139" (US Filter)
Other:
v) Spacing of Support Rod (D.C.)
0.75
inches
Type and Size of Support Rod (Ref.: Table 6a-2)
#156 VEE
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
3/8 in. x 1.0 in. flat bar
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening (W)
W =
inches
ii) Width of Perforated Plate Opening (Woonc = W + 12")
Woono =
inches
iii) Width of Trashrack Opening (Wopening) from Table 6b-1
Wopening =
Inches
iv) Height of Trash Rack Screen (HTR)
HTR =
inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempTm KPP Series Aluminum
Other:
vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP
inches
Grating). Describe if "Other"
Other:
vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2)
(Based on depth of WQCV surcharge)
4. Detention Basin length to width ratio (L/W)
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet
B) Surface Area acres
C) Connector Pipe Diameter inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides yes/no
WQCV Pond 501.xls, EDB
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 3 of 3
Designer:
Brad Kugler
Company:
Stantec
Date:
May 15, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 501)
6. Two -Stage Design
A) Top Stage (Dwo = 2' Minimum)
Dwo =
feet
Storage=
acre-feet
B) Bottom Stage (Dm = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum,
DBs =
feet
Storage = 5% to 15% of Total WQCV)
Storage=
acre-feet
Surf. Area=
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.5 * Top Stage Depth or 2.5 Feet)
Storage=
acre-feet
Surf. Area=
acres
D) • Total Volume: Volt., = Storage from 5A + 6A + 6B
Vol,o, =
acre-feet
Must be > Design Volume in 1 D
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
4.00 (horizontal/vertical)
per unit vertical) Minimum Z = 3, Flatter Preferred
9. Vegetation (Check the method or describe "Other")
Native Grass
Irrigated Turf Grass
Other:
Notes:
WQCV Pond 501.xls, EDB
rtmp#56.txt
POND 600
#units=Elevation,ft,Area,ft2,volume,acft,volume,acft
# Elev
Area
Cumml Avg Cumml
Conic
# ft
ft2
acft acft
4911.0000
35026.0383
2.6878
2.6420
4910.0000
32167.9764
1.9165
1.8709
4909.0000
29410.4444
1.2097
1.1643
4908.0000
26753.4422
0.5650
0.5199
4907.0000
11140.3293
0.1300
0.0978
4906.0000
189.2611
0.0000
0.0000
L'
LJ
I
r
LJ
11
Page 1
1
1
1
1
Harmony Technology Park
Pond 600 Orifice Calculation
100-Year Pond Orifice Plate
Basic Equation:
Q=Cd*A*(2g*(h1 -h2W.5
Revised Equation:
A=Q/(Cd * (2g • (h1 - h2 W.5
Basin Area =
12.38
Cd=
0.65
g=
32.20 ft/s2
h1=
4911.00
h2=
4906.00
Q =
10.00 cfs
Ut
Contributing Drainage Area
Input
Gravitational Constant
100 year WSEL
Invert Elevation'of Pipe
Input
A= 0.86 ftZ Calculated orifice area
*r— 6.27 Calculated radius (inches)
* Orifice opening bottom aligned with invert of pipe, difference in
head on the orifice measured from the centerline of the orifice opening
Orifice Dia. = 12.5376 inches
1.0448 feet
STANTEC
187710640
9
LO
CO
LO
0 0
I�t co 0
0 co I?
0
C;
.2
CD
M CD
N
W
m a)
> w
o E
0 CD m
a) CT
E "
.2
C m m
0 (D M
0 cr
k
v v
12
!t
0 " 0
0
0=
0 r- N LO lqr C>
q V C') rh 0) O
CO r-: o6
6
co
0
6
0 0 NCD 1�
0 CO 00 co
co
6 C=; 0 C14
C,
N
N -IT rl
cr)
n'
C; 6 ci
C),
c;
00 N It � t- cl)
co m 't C, U') co
Cw) Ce) CD Co p, CC)
NCO
Cl
r, , , "T Q
-q Lo zr CO 00 4
to
cq
M
C) CO , h CO Cl
CD
C)
C) C*4 CO CO t'- 00
ci ci c; 6 ci 6
(a
0 co 0 00 co
00
0) '-4- CO CO 04
Q
rl- C�
NLO
Lo
0)
CO 0)
N
qct
04 04 Ce) M
CIJ
M
co
CD
0 N CO 'I- CO
co
0
>
co r, w 0 a
a 0 0 0 �
mommomo,
'It V V V V
0
0
0
ti
ww
Ie
.D
x
c
CC
_0
c
0
CL
c
0
cu
0
O.
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 1 of 3
Designer:
Brad Kugler
Company:
Stantec
Date:
March 13, 2008
Project:
Harmony Tech Park
Location:
Fort Collins (Pond 600)
1. Basin Storage Volume
A) Tributary Area's Imperviousness Ratio (i = 18 / 100 )
B) Contributing Watershed Area (Area)
C) Water Quality Capture Volume (WQCV)
(WQCV =1.0*(0.91 *13-1.,9'12+0.78'1))
D) Design Volume: Vol = (WQCV / 12) * Area * 1.2
2. Outlet Works
A) Outlet Type (Check One)
la = 80.00 %
i = 0.80
Area =
12.38
acres
WQCV =
0.33 :
watershed inches
Vol =
0.406
acre-feet
X Orifice Plate
Perforated Riser Pipe
Other:
B) Depth at Outlet Above.Lowest Perforation (H)
H =
1.73
feet
C) Required Maximum Outlet Area per Row, (Ao)
Ao =
1.06
square inches
D) Perforation Dimensions (enter one only):
i) Circular Perforation Diameter OR
D =
0.8000
inches, OR
ii) 2" Height Rectangular Perfgration Width
W =
inches
E) Number of Columns (nc, See Table 6a-1 For Maximum)
nc =
2
number
F) Actual Design Outlet Area per Row (Ao)
A. =
1.01
square inches
G) Number of Rows (nr)
nr =
5
number
H) Total Outlet Area (At)
At =
5.22
square inches
3. Trash Rack
A) Needed Open Area: At = 0.5 * (Figure 7 Value)' Aot
B) Type of Outlet Opening (Check One)
At = 182 square inches
X < 2" Diameter Round
2" High Rectangular
Other:
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening (Wconc)
from Table 6a-1 Wconc = 12 inches
ii) Height of Trash Rack Screen (HTR) HTR = 45 inches
WQCV Pond 600.xls, EDB
' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 2 of 3
I
I
I
I
r
I
I
I
I
i
I
I
I
I
I
I
1
Designer: Brad Kugler
Company: Stantec
Date: March 13, 2008
Project: Harmony Tech Park
Location: Fort Collins (Pond 600)
iii) Type of Screen (Based on Depth H), Describe if "Other'
X S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other"
X 0.139" (US Filter)
Other:
v) Spacing of Support Rod (O.C.)
1.00 inches
Type and Size of Support Rod (Ref.: Table 6a-2)
TE 0.074 in. x 0.50 in.
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
0.75 in. x 1.00 in. angle
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening (W)
W =
inches
ii) Width of Perforated Plate Opening (Woono = W + 12")
Wconc =
inches
iii) Width of Trashrack Opening (Wopening) from Table 6b-1
Wopening =
inches
iv) Height of Trash Rack Screen (HTR)
HTR =
inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempT"' KPP
Series Aluminum
Other:
vi) Cross -bar Spacing (Based on Table 6b-1, KlempT"' KPP
inches
Grating). Describe if "Other"
Other:
vii) Minimum Bearing Bar Size (KlempT"' Series, Table 6b-2)
(Based on depth of WQCV surcharge)
4. Detention Basin length to width ratio
(L/W)
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (5 to 10% of the Design Volume in 1 D)
acre-feet
B) Surface Area
acres
C) Connector Pipe Diameter
inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides
yes/no
I
WQCV Pond 600.xls, EDB
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 3 of 3
Designer: Brad Kugler
Company: Stantec
Date: March 13, 2008
Project: Harmony Tech Park
Location: Fort Collins (Pond 600)
6. Two -Stage Design
A) Top Stage (Dwo = 2' Minimum)
Dwo =
feet
Storage=
acre-feet
B) Bottom Stage (DBs = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum,
DB =
feet
Storage = 5% to 15% of Total WQCV)
Storage=
acre-feet
Surf. Area=
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.5 . Top Stage Depth or 2.5 Feet)
Storage=
acre-feet
Surf. Area=
. acres
D) Total Volume: Volt,, = Storage from 5A + 6A + 6B
Vol,o, =
acre-feet
Must be > Design Volume in 1 D
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
4.00 (horizontal/vertical)
per unit vertical) Minimum Z = 3, Flatter Preferred
9. Vegetation (Check the method or describe "Other")
Native Grass
Irrigated Turf Grass
Other:
Notes:
i _ WQCV Pond 600.xis, EDB
I
I
r
I
I
,t
I
I
1
I
I
i
I
APPENDIX E
I
I
I
SWMM AND RATIONAL EXHIBITS
1
1
11
I
i
I
I
i
I
7
f
I
I
� I
501
\
PROPOS D2d'ST(
\ \ \ \ 801
PROPOSED 18' STORM OUTLET
O
4495
rm
/ PROPOSED STORM
STORM
DU LET y
PROPOSED 18' STORM
' 1 I
II \ \
I � /
�PROPOSED%' NORM /
4) 00 /
I
I
1
r \
S ----t $Ju r■ � -HARMONY
HARM-_O_NY TECHNOLOGY
/ PA`RK
i`___--___�
14
PROPOSED R'
jr
El;l3I✓E/
'
---1_
<
1\
STORM
1
EXISTING 24' STORM
TO BE ABANDONED
DSED48-STORM
T=10 ds /
/°'
/ OT=12 cfs °I
z
EXISTING STORM
211
PROPOSED 2d' STORM
I
PROPOSED STORM OUTLET
ul `` EXISTING 15' STORM
TO BE ABNDONED
/ I
/
t' STORM / /
/�PROWSEp'%' STORM
I
LP�POSEDWSTORM
ISTING 30-STORM
ISTING 38' STORM
BE ABANDONED
ISTING 38' STORM
15 Dfs
OPOSED 24' STORM
—EXISTING 53'X 83'
ELLIPTICALSTORM
STORM
D
I'IN) %%%%%p%mp1"m
—(4915)---
EXISTING MDE%CONTOUR 5Ff INTERNAL
----(4916)---
EXISTING INTERMEDIATE CONTOUR-1 FT INTERVAL
I00
S"M BASIN
too
DETENTIONPOND
20t
MOOS
SUBBNMN CONNETNMI
5W
ROUONG ELEMENT
BASIN NDARY
DETENTION POND SUMMARY
Msml•>BEB>.�scn•rr���sas��dl��d4'�ikE'�
E
cs
E
O
i
PNRASeaI
EXNIBR
NOT FOR
CONSTRUC
NpKfFrplaf NnYr
No MsSM�L.De+ILw-T.-OD
vruuoo
Dv n9No�SWMM
RBnsion
SICK
loft
o
44Rj HP
EXISTING
INLET AND IF
STORM PIPE
�� __ EXIST)E G ROADWAY I EM
t�cq% _� / EXISTING I IGATION I
�+1' I�� 11 \PIPE 8 DITC \ DRAINAGE DITCH I\
L . A\ \V A 1
-
�1
INTEL
(HTP FIRST FILING)
rr
_ _ /.
' _ EXISTING
Is POND t / / 21' OVERFLOW STORM PIPE
or
'i �\\ I / Z
EXISTING ORIVATE
IRRRRIGj7ON DITCH /
i m
tJ
'as)
I EXISTING
IRRIGATION
I
t
/ PIPER DITCH
\\
II
I !
I I
\
e
m1
III
E
I I l
Ir
\ /v
It
ll
I
I I /
II
I
AV i i
I
I
I
EI
Sz
e
E
3
l
6X2
I I
/
\ 1
HARMONY TECHNOLOGY
PARK
\I
7 \
\
/
ses
I t
.
vv I
/
I
EXISTING
STOW\
aaF-3wT.xmEaorr.
EXISTING 24- STORM
EXISTING 24- STORM
1Y STORM
NG DETENTION
STORM
8 EXISTING W'STORM
EXISTING 31F STORM
m ww
o�
II ,
IFA� EXISTING53-X8Y
IF,IIi ELLIPTICAL STORM
EXISTING 36' STORM
o IN 225'
1:IW1��81� � II
LEGEND
—(4915)— UISTINGINLEXCONTOUR-SFTINTERY&
--(4916)-- UISTINGINTERMEDIATECONTWR-1FTINIEWK
BASIN I0c�1n p•Vnw
B26 — ACRES
® - 6MINIGE DESIGN POINT
HYDROLOGY TABLE
Design
Point
Swin(s)
Mee
lisle/
composite
1c.
Gt4(eEe)
010(clTe)
EX-1
EX-1
57,08
0.32
2728
7286
EX2
EX-2
0.65
0.85
1.85
4.24
EX41
EX-3
D.84
DAS
2.51
6.45
EXI
EXI
IO.BS
0.32
808
16.11
EXS
EX-5
0.54
085
1.S1
5.01
EX-6
EXA
0.97
085
3.39
8.92
EX-7
EX-7
47W
0.32
U.33
59.53
EX-8
EXA
325
0.85
585
14.75
OS-1
CS-1
1.4S
0.85
4.M
12AO
OS-2
0&2
1.03
0.85
340
865
EXHIBIT
NOT FOR
CONSTRUCTION
e.= 187710640
m wmr: PULLmLT,N4LN-Ia-m
IS
WI( m18m
NIPAW
DmmNNo. RATIONAL
Revisbn SW
1d1