Loading...
HomeMy WebLinkAboutDrainage Reports - 05/21/2008 (3)1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 City of Ft. Collins Appro d Plans Approved By Date 5/2+1a 8 Final Drainage and Erosion Control Study for Harmony Technology Park Site Master Plan Fort Collins, Colorado Prepared for: MAV Development 303 Detroit Street, Suite 301 Ann Arbor, Michigan 48104 Prepared by Stantec Consulting, Inc. 209 South Meldrum Fort Collins, Colorado 80521 (970) 482-5922 Gam. Sta11teC Final Drainage and Erosion Control Study Harmony Technology Park Site Master Plan Fort Collins, Colorado 0 May 19, 2008 ' Stantec Consulting Inc 209 South Meldrum Street ' Fort Collins CO 80521.2603 Tel: (970) 482-5922 Fax: (970) 482-6368 stantec.com Stantec May 19, 2008 t Mr. Basil Hamdan City of Fort Collins Water Utilities--Stormwater 700 Wood Street Fort Collins, Colorado 80521 IRE: Final Drainage and Erosion Control Study for Harmony Technology Park Site Master Plan ' Dear Basil: We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion Control Study for Harmony Technology Park Site Master Plan. All computations within this study have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. ' Respectfully, Stantec ' Prepared by: ' Brad Kugle Anthony G. Willkomm, P.E. Project Engineer Project Manager TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION A. LOCATION I B. DESCRIPTION OF PROPERTY 1 II. DRAINAGE BASINS A. MAJOR BASIN DESCRIPTION 1 B. SUB -BASIN DESCRIPTION 1-2 III. DRAINAGE DESIGN CRITERIA A. REGULATIONS - 12 B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 2 C. HYDROLOGICAL CRITERIA 2 D. HYDRAULIC CRITERIA 2 IV. DRAINAGE FACILITY DESIGN A. GENERAL CONCEPT 3 B. EXISTING SPECIFIC.DETAILS 3-4 C. PROPOSED SPECIFIC DETAILS 4-5 V. STORM WATER QUALITY A. GENERAL CONCEPT 6 B. SPECIFIC DETAILS 6 VI. EROSION CONTROL , A. GENERAL CONCEPT 6 VII. CONCLUSIONS A. COMPLIANCE WITH STANDARDS 6 B. DRAINAGE CONCEPT 7 C. STORM WATER QUALITY 7 D. EROSION CONTROL CONCEPT 7 REFERENCES 8 APPENDIX PAGE VICINITY MAP A RATIONAL METHOD HYDROLOGY B SWMM POND SIZING AND EPA SWMM C POND SIZING CALCULATIONS: RATING CURVES, WQCV D SWMM AND RATIONAL EXHIBITS E PRELIMINARY DRAINAGE AND EROSION CONTROL STUDY FOR HARMONY TECHNOLOGY PARK SITE MASTER PLAN ' FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION A. Location The Harmony Technology Park is located south of Harmony Road and east of Ziegler Road in southeastern Fort Collins, Colorado. The site is shown on the Vicinity Map ' in Appendix A. More particularly, the site is situated in the northwest quarter of Section 4, Township 6 North, Range 68 West of the Sixth P.M., City of Fort Collins, Larimer County, Colorado. ' B. Description of Property Harmony Technology Park Site Master Plan (HTPSMP) consists approximately of 120 acres. The development will consist mostly of office, light industrial and commercial buildings.. The majority of the property currently consists of fallow ' farmland with tall grass vegetation. The site generally slopes in a southeasterly direction at approximately 0.5%4.0%. ' II. DRAINAGE BASINS _. ' A. Ma *or Basin Description ' The HTPSMP lies within the McClellands Basin. The project drainage is modeled in the East Harmony Portion of McClellands Creek Master Drainage Plan (August 1999). ' B. Existing Sub -Basin Description ' Historic drainage patterns on the subject site are in a southeasterly direction. Existing flows from the site flow overland to Lady Moon Drive, where there is a series of small detention ponds and outlet pipes into a main storm line, 24" to 36", ' that runs south down Lady Moon drive. Flow is then routed into a 53" x 83" elliptical pipe and piped east down Rock Creek Drive. Flows are eventually released into the Fossil Creek Inlet Ditch. 1 The anticipated off -site runoff from the adjacent property and roadways surrounding the HTPSMP will be outflow from the existing Intel Pond A. HTP First Filing and existing overland and gutter flows from Harmony Road, Lady Moon Drive and Rock Creek Drive. Currently the 100-year overflow of 4.9 cfs from Intel discharges into an ' open swale and flows west to east toward Lady Moon Drive. Flow is routed south through a open ditch to an existing detention pond and released through an existing 15" pipe into the existing 24" pipe running south down Lady Moon Drive. ' Additional details on existing conditions are provided in section IV. B. DRAINAGE BASIN CRITERIA A. Regulations ' The City of Fort Collins Storm Drainage Design Criteria is being used for the subject site. B. Development Criteria Reference and Constraints ' The criteria and constraints from The East Harmony Portion of McClellands Basin 100-Year Master Plan dated August 1999 by Icon Engineering will be utilized in this Drainage Study. The Harmony Technology Park Site Master Plan is currently being ' utilized as fallow agricultural land. C. Hydrologic Criteria ' The Rational Method was used for determining surface runoff for the existing project site. The 10-year and 100-year storm event criteria, obtained by the City of Fort Collins, were used in calculating runoff values. These calculations and criteria are included in Appendix B of this study. ' The City of Fort Collins Storm Drainage Criteria requires water quality and detention of the 100-year design storm event, with a 10-year historic release rate for this site. ' The allowable release rate from the on -site detention ponds is 0.5 cfs/acre for the 100-year event and 0.2 cfs/acre for the 10-year storm event, in accordance with the McClellands Master Drainage Plan. The proposed ponds have been sized utilizing ' EPA SWMM and ModSWMM. The input and output data are included in Appendix C. D. Hydraulic Criteria ' All calculations within this study have been prepared in accordance with the City of Fort Collins Storm Drainage Criteria and are included in the appendices. ' 2 I IV. DRAINAGE FACILITY DESIGN A. General Concept The purpose of this study is to size the proposed detention ponds and present general drainage concepts for HTPSMP, for use when future development of the site is reviewed. It is important to note that all storm infrastructure was designed for the 100-year storm, with an 80% impervious value being used for all basins in the SWMM model analysis. HTPSMP has been divided into six SWMM basins, (see SWMM Drainage Exhibit in back pocket of this study for locations). Runoff from these basins will be routed via curb and gutter, swales and storm drains to the proposed detention facilities in the future. ' The proposed ponds have been sized to provide water quality and extended detention for the site, while also providing controlled releases into the storm drain system. Flows are conveyed to the southeast corner of the site. The site area is approximately 120 acres. At 0.5 cfs per acre the site can release 60 cfs at the final discharge point in Rock Creek Drive. All ponds are design with one foot of freeboard. ' B. Existing Specific Details The flows from the entire site have been calculated as an existing condition with the rational method. ' Basins OS1, OS2 Basins OS 1, OS2. convey storm flow from a small portion of the north side of Rock Creek Drive and the east and west sides of Lady Moon Drive. Flow is conveyed via curb and gutter and is captured by two existing Type R Inlets and released into the ditch on the east side of Lady Moon Drive. Basin EX-1 Basin EX-1 conveys its flows southeast towards design point EX-1 in its existing overland flow condition, where flow is treated and released to existing storm pipe in Lady Moon Drive. Basins EX-2, EX-3 ' Basins EX-2, EX-3, convey flow from the east and west sides of Lady Moon Drive and is captured in Combination Type 13 on grade Inlets. From there is discharged into an existing detention pond and released at Design Point EX-1. 3 Basin EX-4 Basin EX-4 conveys its flows southeast towards design point EX-4 in its existing overland flow condition. Flow from a road side ditch is also routed east to an existing inlet and discharged into the existing detention pond. Here flow is treated ' and release into existing pipe in Lady Moon Drive. ' Basins EX-5, EX-6 Basins EX-5, EX-6, convey flow from the east and west sides of Lady Moon Drive and is captured in Type R Inlets. From there is discharged into an existing detention ' pond and released at Design Point EX-4. Basin EX-7 Basin EX-7 conveys its flows southeast towards design point EX-7 in its existing ' overland flow condition, where flow is treated and release to existing storm pipe in Lady Moon Drive. ' Basin EX-8 Basin EX-8 conveys its flow from a high point in Ziegler Road, south to Rock Creek Drive. Flow travels east via curb and gutter to an existing 15' Type R Inlet at EX-8 and discharges to EX-7. ' C. Proposed Specific Details Water quality and detention is required and will be provided for the Harmony Technology Park site. The detention for the site is a comprehensive plan that relays storm water to six proposed detention ponds. The entire site was ' modeled as being 80% impervious and detention ponds sized using MODSWMM EPASWMM. an'd ' Pond 110 Pond 110 will capture flow from 32.9 acres of the site and provides 8.08 acre/feet of storage including water quality. The controlled release rate out of ' the pond will be 15 cfs into a 24" pipe that will be routed into the existing 36" storm pipe in Lady Moon Drive. Pond 101 Pond 101 will capture flow from 6.9 acres of the site and provides 1..53 acre/feet of storage including water quality. The controlled release rate out of the pond will be 5 cfs into a 18" pipe that will be routed to a proposed 30" pipe in Technology Parkway. Here, flows will combine with the existing 100-yr outlet flow from Pond A on the Intel Site. 4 Pond 201 Pond 201 will capture flow from 23.0 acres of the site and provides 5.76 acre/feet of storage including water quality. The controlled release rate out of the pond will be 10 cfs into a 18" pipe that will be routed to a proposed 30" ' pipe in Technology Parkway. Here flows will combine with outflow from Pond 101 and the existing 100-yr outlet flow from Pond A on.the Intel Site. ' Pond 501 Pond 501 will capture flow from 16.5 acres of the site and provides 4.14 acre/feet of storage including water quality. The controlled release rate out of the pond will be 7.5 cfs into a 18" pipe that will be routed to a proposed 30" ' pipe in Technology Parkway. Here flows will combine with outflow from Pond 201, Pond 101 and the existing 100-yr outlet flow from Pond A on the Intel Site. The combined flows will be diverted east in the existing 30" storm in Rock Creek Drive. ' Pond 600 Pond 600 will capture flow from 12.4 acres of the site and provides 2.61 acre/feet of storage including water quality. The controlled release rate out of the pond will be 10 cfs into a proposed 18" pipe that will be routed to Pond 301. The release rate and storage for this pond was achieved by running EPASWMM for Ponds 600 and 301 in series. Pond 301 Pond 301 will capture flow from 29.0 acres of the site and provides 8.65 acre/feet of storage including water quality. The controlled release rate out of the pond will be T2 cfs into a proposed 24" pipe that will be routed to an existing 24" pipe in Lady Moon Drive. The release rate and storage for this pond was achieved by running EPASWMM for Ponds 600 and 301 in series. The combined outflow from Ponds 600 and 301 will be conveyed south in the ' existing 30" storm in Lady Moon Drive. The SWMM models and data are located in Appendix C. Mapping is shown in ' Appendix E. NOTE: ' Per discussion with City of Fort Collins Stormwater Department, any lot development that requires detention and water quality will facilitate construction of ' the entire pond for that basin, as shown in the SWMM exhibit and per required SWMM model volumes. No partial ponds will be built unless approved by City of Fort Collins Stormwater Department. The purpose of this is to mitigate continued regrading and continued disturbance of erosion control measures and seeding/landscaping of the ponds, as new phases of development occur. I E I V. STORM WATER QUALITY A. General Concept ' The State of Colorado requires Stormwater Management Plans as part of their permit process. The Harmony Technology Park site development is anticipating ' construction beginning in June of 2008. Therefore this study has sought to find various Best Management Practices for the treatment of storm water runoff that could be implemented in the construction phase of the project. B. Specific Details ' Best Management Practices (BMP) for the treatment of storm water runoff has been incorporated into the design for this project. This includes extended ' detention and grass lined swales. Best management practices shall be provided with each phase of development or as sites develop within the Master Plan. VI. EROSION CONTROL ' A. General Concept The Harmony Technology Park site lies within the Moderate Rainfall Erodibility Zone and the Moderate Wind Erodibility Zone per the City of Fort Collins zone maps.. The potential exists for erosion problems during construction, and after construction until the disturbed ground is re -vegetated or paved. Erosion Control devices shall be used in the construction of each phase that will be completed to make up the Harmony Technology Park. Erosion Control Performance Standards shall also be completed with each construction phase along with a construction schedule showing the overall time frame for construction activities. VII. CONCLUSIONS A. Compliance with Standards ' All computations within this study have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. The City of Fort Collins Stormwater Utility will not maintain the on -site storm drainage facilities within the Harmony ' Technology Park Site. The owners of the Harmony Technology Park Site will maintain their on -site storm drainage facilities on a regular basis. 0 [1 1 1 1 1 r-, J 1 1 1 I 1 11, J LIB i u 1 1 B. C. LO Drainage Concept The proposed drainage concepts presented in this study and shown on the final utility plans adequately provide for the transmission of developed on -site runoff to the proposed detention ponds. As site develops the combination of on -site street capacities and the on -site storm sewer system will provide for the developed flows to reach the proposed detention ponds. The sizes, locations and release rates of these ponds will allow the Harmony Technology Park to develop in conformance with the McClellands Basin Drainage Master Planning concepts accepted by the City of Fort Collins. If groundwater is encountered at the time of construction, a Colorado Department of Health Construction Dewatering Permit will be required. Storm Water Ouality Sediment basin traps will be provided within the on -site detention ponds in each phase of construction. These traps will allow storm water pollutants an opportunity to be filtered out of the storm water as the storm water carries the pollutants across the site. Periodic maintenance may be required to remove sediment deposits as they accumulate in the on -site detention ponds. Erosion Control Concept Erosion control concepts will need to adequately provide for the control of wind and rainfall erosion from Harmony Technology Park Site. Through the construction of the proposed phases performance standards will be met per the City of Fort Collins Regulations. 7 r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 REFERENCES 1. Storm Drainage Design Criteria and Construction Standards -by the City of Fort Collins, Colorado, May 1984, Revised January 1997. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991, Revised January 1997. 3. East Harmony Portion of McClellands Basin 100-Year Master Plan, by Icon Inc., Fort Collins, Colorado, August 1999. 4. Final Drainage and Erosion Control Report, Harmony Technology Park 2"d Filing, Prepared by JR Engineering, June 20, 2001. 5. 2004 High School Final Drainage and Erosion Control Study, Poudre School District R-1, Prepared by Nolte Associates, Inc., June 24, 2002 6. Final Drainage and Project Development Report for Harmony Technology Park First Filing, Prepared by Sear -Brown, January 23, 1998. 7. The Urban Storm Drainage Criteria Manual (published by the Urban Drainage and Flood Control District — Denver, Colorado — June 2001). E.3 I 1 I 1 I I I 1 I I i 1 II 1 1 I n APPENDIX A 1 I I I I I 7 I I I I I I 1 I VICINITY MAP VICINITY MAP t:NGUSHR ITWOATH LP, —INT TAR>< "I cls INS, I l)N c l R RL FAA 0 ?Nt,T ON RD TOPMWATER Aq Swmm- • BASIN PROJECT LOCATION HCC m G) --HARMONY ROAD___-_ - I Ili A p v m RIC TRAILJT LEDGE HARMON TECAOLC PARK Tk DRIVE '-AnLErd D R. 7 VAT OR V OR JA L4 =PPER C R SCALE: 1" = 1500' i 1 1 1 1 i 1 1 1 1 1 1 1 0 1 1 APPENDIX B 1 H L 1 1 L 1 1 1 1 1 1 1 1 1 1 1 1 RATIONAL METHODHYDROLOGY 8 1 Existing Weighted Runoff Coefficients Harmony Technology Park Site 187710640 This sheet calculates the composite "C" values for the Rational Method. EX-1 0,95 0.25 2,486,501 57.08 248,650 5.71 10 90 0.32 EX-2 0.95 0.25 24,158 0.55 20,534 0.47 85 15 0,85 EX-3 0.95 0.25 36,795 0.84 31,275 0.72 85 15 0.85 EX-4 0,95 0.25 478,575 10.99 47,858 1.10 10 90 0.32 EX-5 0.95 0.25 23,637 0.54 20,092 0.46 85 15 0.85 EX-6 0.95 Us 42,065 0.97 35.755 0.82 85 15 0.85 EX-7 0.95 0.25 2,074,707 47.63 207,471 4.76 10 90 0.32 EX-8 0,95 0.25 141.438 3,25 120,222 2.76 85 15 0.85 OS-1 0.95 0.25 64,326 1.48 54,677 1.26 85 15 0.85 OS-2 0.95 0,25 44.688 1.03 37.985 0.87 85 15 0.85 SITE 0.95 0.29 5.416.889 124 824 51T 19 152 85 � . `° wm 338 PM The SearSrown Group 3113/2008 11 TIME OF CONCENTRATION 10 year design storm Harmony Technology Park Site 187710640 1.87(1.I - CCr ),� tt - 5.0.333 tc = tr+tL Cr = 1.00 SUB -BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS BASIN AREA, C LENGTH SLOPE t; LENGTH CHANNEL SLOPE VELOCITY tL I. NO. (ac) (ft) N (min) (ft) TYPE(a) N (ft/s) (min) (min) 1 2 3 4 5 6 7 8 10 12 13 EX-1 57.08 0.32 500 1 32.6 2000 GW 1 1.54 21.7 54.3 EX-2 0.55 0.85 50 2 2.7 810 PA 0.6 1.47 9.2 11.9 EX-3 0.84 0.85 50 2 2.7 - 810 PA 0.6 1.47 9.2 11.9 EX-4 10.99 0.32 500 1 32.6 1000 GW 1 1.54 10.8 43.4 EX-5 0.54 0.85 50 2 2.7 460 PA 0.6 1.47 5.2 7.9 EX-6 0.97 0.85 50 2 2.7 460 PA 0.6 1.47 5.2 7.9 EX-7 47.63 0.32 500 1 32.6- 2150 GW 1 1.54 23.3 55.9 EX-8 3.25 0.85 80 2 3.4 2500 PA 0.6 1.47 28.4 31.8 OS-1 1.48 0.85 25 2 1.9 650 PA 0.6 1.47 7.4 9.3 OS 0.85 25 2 1.9 640 PA 0.6 1.47 7.3 S-21..03 _9.2 A� � 3J Sj'.1iRil nf TiY`4'Y.'`I Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway The Sear -Brown Group R 3:38 PM 3/13/2008 1 TIME OF CONCENTRATION 100 year design storm Harmony Technology Park Site 187710640 1.87(L1-CCf).�D t; = Su.w tc= t;+t' Cr = 1.25 SUB -BASIN DATA INITIALIOVERLAND TIME TRAVEL TIME FINAL REMARKS BASIN AREA C LENGTH SLOPE ti LENGTH CHANNEL SLOPE VELOCITY tL I. NO. (ac) (ft) M (min) (ft) TYPE(a) M (fUs) (min) (min) 1 2 3 4 5 6 7 8 10 12 13 EX-1 57.08 0.32 500 1.0 29.3 2000 GW 1.0 1.54 21.7 50.9 EX-2 0.55 0.85 50 2.0 1.0 810 PA 0.6 1.47 9.2 10.3 EX-3 0.84 0.85 50 2.0 1.0 810 PA 0.6 1.47 9.2 10.3 EX-4 10.99 0.32 500 1.0 29.3 1000 GW 1.0 1.54 10.8 40.1 EX-5 0,54 0.85 50 2.0 1.0 460 PA 0.6 1,47 5.2 6.3 EX-6 0.97 0.85 50 2.0 1.0 460 PA 0.6 1.47 5.2 6.3 EX-7 47.63 0.32 500 1.0 29.3 2150 GW 1.0 1.54 23.3 52.5 EX-8 3.25 0.85 80 2.0 1.3 2500 PA 0.6 1.47 28.4 29.7 OS-1 1.48 0.85 25 2.0 0.7 650 PA 0.6 1.47 7.4 8.1 OS-2 1.03 0.85 25 2.0 0.7 1 640 PA 0.6 1.47 7.3 .� ,8.0 .,n,tc' Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway The Sear -Brown Group 3:38 PM W13/2008 Rational Method 10 Year Design Storm Harmony Technology park Site 187710640 Routing Flow Time (tJ Runoff Street Pipe Design Point Basins t° Length Type Slope Velocity Travel pe Travel t°: C Intensity Area Ulrect Runoff Uther Runoff Total Runoff Capacity Design Velocity Slope Manning's Roughness Size Flow Depth Capacity Design Flow Normalverage Flow Depth Velocity Location (min) (ft) (a) (%) (f/s) (min) (min) (min) (in/hr) (ac) (cfs) (cfs) (cfs) (cfs) (ft/s (ft/s) ° (/o) "n" (in) (in) (cfs) (cfs) (in) (ft/s) Remarks EX-1 EX-1 54.3 0.0 54.3 0.32 1.49 57.08 27.28 0.00 27.28 EX-2 EX-2 11.9 0.0 11.9 0.85 3.52 0.55 1.65 0.00 1.65 EX-3 EX-3 11.9 - 0.0 11.9 0.85 3.52 0.84 2.51 0.00 2.51 EX-4 EX-4 43.4 - 0.0 43.4 0.32 1.73 10.99 6.08 0.00 6.08 EX-5 EX-5 7.9 - 0.0 7.9 0.85 4.16 0.54 1.91 0.00 1.91 EX-6 EX-6 7.9 - 0.0 7.9 0.85 4.16 0.97 3:39 0.00 3.39 EX-7 EX-7 55.9 - 0.0 55.9 0.32 1.46 47.63 22.33 0.00 22.33 EX-8 EX-8 31.8 - 0.0 31.8 0.85 2.13 3.25 5.85 0.00 5.85 OS-1 OS-1 9.3 - 0.0 9.3 0.85 3.90 1.48 4.86 0.00 1 4.86 OS-2 OS-2 9.2 - 0.0 9.2 0.85 3.92 1.03 3.40 0.00 3.40 Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway c The Sear-arown Group A 3:40 PM 3/13/2008 Rational Method 100 Year Design Storm Harmony Technology Park Site 187710640 Routing Flow Time (tJ Runoff Street -D-es-ig-n--1TO-rM-aT Average Flow Flow Depth Velocity Design Point Basins t° Length Type Slope Velocity Travel ipe Travel Direct u1ner I ota-F 1<. C C•Cr Intensity Area Runoff Runoff Runoff Capacity Design Velocity Pipe Capacity Slope Manning's Roughness Size Flow Depth Capacity Location (min) (ft) (a) (%) (ft/s) (min) (min) (min) (in/hr) (ac) (cfs) (cfs) (cfs) (cfs) (ft/s) (ft/s) (%) "n" (in) (in) (cfs) (cfs) Remarks EX-1 EX-1 50.9 0.0 50.9 0.32 0.40 3.19 57.08 72.86 0.00 72.86 (in) (ft/s) EX-2 EX-2 10.3 0.0 10.3 0.85 1.00 7.64 0.55 4.24 0.00 .4.24 EX-3 EX-3 10.3 0.0 10.3 0.85 1.00 7.64 0.84 6.45 0.00 6.45 EX-4 EX-4 40.1 0.0 40.1 0.32 0.40 3.73 10.99 16.41 0.00 16.41 EX-5 EX-5 6.3 0.0 6.3 0.85 1.00 9.24 0.54 5.01 0.00 5.01 EX-6 EX-6 6.3 0.0 6.3 0.85 1.00 9.24 0.97 8.92 0.00 8.92 EX-7 EX-7 52.5 0.0 52.5 0.32 0.40 3.12 47.63 59.53 0.00 59.53 EX-8 EX-8 29.7 0.0 29.7 0.85 1.00 4.54 3.25 14.75 0.00 14.75 OS-1 OS-1 8.1 0.0 8.1 0.85 1.00 8.39 1.48 12.40 0.00 12.40 OS-2 OS-2 8.0 0.0 8.0 0.85 1.00 8.44 1.03 8.66 0.00 8.66 � Ril".,yST,"�, Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway ' The Sear -Brown Group 3:38 PM 3/13/2008 i 1 i 1 1 1 0 1 1 1 1 1 1 1 1 1 1 APPENDIX C 1 I 1 1 1 1 1 SWMM POND SIZING AND 1 1 1 L 1 1 L 1 1 1 1 EPA SWMM 1 I Stantec ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) *** ENTRY MADE TO RUNOFF MODEL *** 0 CASVVMMU-ITPMasterFina1100 revised5-16-OB.out c 1 Printed: 5/16/2008 Stantec HARMONY TECHNOLOGY PARK 100-YEAR EVENT FILE: HTPMasterFina1100.IN STANTEC; 3/6/08 NUMBER OF TIME STEPS 720 INTEGRATION TIME INTERVAL (MINUTES) 1.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.84 5.49 1.22 1.06 1.00 .95 .91 .87 .73 .71 .69 , .67 9.95 4.12 2.48 1.46 .84 .81 .78 .75 9 ' C:\SWMM\HTPMasterFina1100 revised5-16-08.out 2 Printed: 5/16/2008 Stantec HARMONY TECHNOLOGY PARK 100-YEAR EVENT FILE: HTPMasterFinal100.IN STANTEC; 3/6/08 I SUBAREA GUTTER WIDTH AREA PERCENT GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. NO -2 0 .0 .0 .0 100 100 4591.0 32.9 80.0 1 401 101 1502.0 6.9 80.0 1 501 201- 3343.0 23.0 80.0 1 600 600 2568.0 12.4 80.0 1 601 301 4210.0 29.0 80.0 1 801 501 2585.0 16.5 80.0 1 903 208 300.0 10.0 80.0 1 TOTAL NUMBER OF SUBCATCHMENTS, 7 TOTAL TRIBUTARY AREA (ACRES), 130.72 SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) (FT/FT) IMPERV. PERV. IMPERV. PERV. .0300 .016 .250 .100 .300 .0200 .016 .250 .100 .300 .0200 .016 .250 .100 .300 .0200 .016 .250 .100 .300 .0200 .016 .250 .100 .300 .0200 .016 .250 .100 .300 .0200 .016 .250 .100 .300 .0200 .016 .250 .100 .300 ' HARMONY TECHNOLOGY PARK 100-YEAR EVENT FILE: HTPMasterFinal100.IN STANTEC; 3/6/08 INFILTRATION RATE(IN/HR) MAXIMUM MINIMUM DECAY RATE .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 ' HYOROGRAPHS ARE LISTED FOR THE FOLLOWING 2 SUBCATCHMENTS AVERAGE VALUES WITHIN TIME INTERVALS TIME(HR/MIN) 600 601 0 1. .0 .0 . 0 2. .0 .0 0 3. .0 .0 0 4. .0 .1 0 5. .0 .1 0 6. .1 .1 0 7. .4 .7 ' 0 8. 1.5 2.6 0 9. 3.0 5.3 0 10. 4.6 8.2 0 11. 6.2 11.5 0 1. . 15. ' 0 139 . .2 18.1 0 14. 10.3 20.7 0 15. 11.1 22.9 0 1. 13..1 ' 0 17. 15.7 3333.1 0 18. 17.8 37.9 0 19. 19.2 41.6 0 20. 20.2 44.5 0 2. 2.. ' 0 22. 24.6 5454.3 0 23. 26.4 58.7 0 24. 27.8 62.2 0 25. 28.9 64.9 0 2. 35.3 .7 ' 0 27. 45.6 98.7 98 0 28. 52.6 114.4 0 29. 57.2 125.6 0 30. 60.1 133.6 ' 0 3. .5 0 3294 . 94. 205. 205.5 0 33. 106.3 234.1 0 34. 112.9 252.1 0 35. 116.6 263.5 0 36. 101.2 0 37. 77.9 236.1 189.2 ' 0 38. 66.5 163.3 0 39. 60.3 147.9 0 40. 56.7 138.3 0 41, 50.7 0 42. 43.3 124.3 107.8 0 43. 38.9 97.1 0 44. 36.1 89.8 0 45. 34.3 84.7 0 4. .7. 0 4726 . 26.9 67.7 ' 0 48. 24.2 61.1 0 49. 22.3 56.4 0 50. 21.0 52.9 ' 0 51, 19.7 49.4 CASVVMM\HTPMasterFina1100 revised5-16-08.out 3 Printed: 5/16/2008 Stantec 1_1 1 1 1 0 52. 18.3 46.0 0 53. 17.3 43.4 0 54. 16.6 41.4 0 55. 16.1 39.9 0 56. 15.4 38.2 0 57. 14.7 36.3 0 58. 14.1 34.9 0 59. 13.7 33.7 1 0. 13.4 32.8 1 1. 13.0 31.9 1 2. 12.7 31.0 1 3. 12.4 30.3 1 4. 12.2 29.7 1 5. 12.0 29.2 1 6. 11.8 28.6 1 7. 11.6 28.1 1 8. 11.4 27.6 1 9. 11.3 27.2 1 10. 11.2 26.9 1 11. 11.0 26.5 1 12. 10.9 26.1 1 13. 10.7 25.7 1 14. 10.6 25.5 1 15. 10.5 25.2 1 16. 10.4 24.9 1 17. 10.3 24.6 1 18. 10.2 24.3 1 19. 10.1 24.0 1 20. 10.0 23.8 1 21. 9.9 23.6 1 22. 9.8 23.3 1 23. 9.7 23.1 1 24. 9.6 22.9 1 25. 9.5 22.7 1 26. 9.5 22.5 1 27. 9.4 22.2 1 28. 9.3 22.0 1 29. 9.2 21.9 1 30. 9.1 21.7 . 1 31. 9.1 21.5 1 32. 9.0 21.3 1 33. 8.9 21.1 1 34. 8.8 20.9 1 35. 8.8 20.8 1 36. 8.7 20.6 1 37. 8.6 20.4 1 38. 8.5 20.2 1 39. 8.4 20.0 1 40. 8.4 19.9 1 41. 8.3 19.7 1 42. 8.2 19.5 1 43. 8.2 19.4 1 44. 8.1 19.3 1 45. 8.1 19.2 1 46. 8.0 19.0 1 47. 8.0 18.9 1 48. 7.9 18.7 1 49. 7.9 18.6 1 50. 7.8 18.5 1 51. 7.8 18.4 1 52. 7.7 18.2 1 53. 7.6 18.1 1 54. 7.6 18.0 1 55. 7.6 17.9 1 56. 7.5 17.8 1 57. 7.5 17.6 1 58. 7.4 17.5 1 59. 7.4 17.4 2 0. 7.3 17.3 2 1. 6.5 15.7 2 2. 5.2 13.1 2 3. 4.3 11.1 2 4. 3.5 9.5 2 5. 3.0 8.2 2 6. 2.5 7.1 2 7. 2.2 6.3 2 8. 1.9 5.5 2 9. 1.7 4.9 2 10. 1.5 4.4 2 11. 1.3 4.0 2 12. 1.2 3.6 2 13. 1.1 3.3 2 14. 1.0 3.0 2 15. .9 2.7 2 16. .8 2.5 2 17. .7 2.3 2 18. .7 2.2 2 19. .6 2.0 2 20. .6 1.9 2 21. .5 1.7 0 C:\SWMM\HTPMasterFina1100 revised5-16-08.out 4 Printed: 5/16/2008 Stantec 2 22. .5 1.6 2 23. .5 1.5 2 24. .4 1.4 2 25. .4 1.3 2 26. .4 1.2 2 27. .3 1.2 2 28. .3 1.1 2 29. .3 1.0 2 30. .3 1.0 2 31. .3 .9 2 32. .2 .9 2 33. .2 .8 2 34. .2 .8 2 35. .2 .7 2 36. .2 .7 2 37. .2 .7 2 38. .2 .6 2 39. .2 .6 2 40. .2 .6 2 41. 1 .5 2 42. l .5 2 43. 1 .5 2 44. 1 .5 2 45. 1 .5 2 46. 1 .4 2 47. 1 .4 2 48. 1 .4 2 49. 1 .4 2 50. 1 .4 2 51. 1 .3 2 52. 1 .3 2 53. 1 .3 2 54. 1 .3 2 55. 1 .3 2 56. 1 .3 2 57. 1 .3 2 58. l .3 2 59. 1 .2 3 0. 1 .2 . 3 1. 1 .2 3 2. 1 .2 3 3. .0 .2 3 4. .0 .2 3 5. .0 .2 3 6. .0 .2 3 7. .0 .2 3 8. .0 .2 3 9. .0 .2 3 10. .0 .2 3 11. .0 .2 3 12. .0 .1 3 13. .0 .1 3 14. .0 .1 3 15. .0 .1 3 16. .0 .1 3 17. .0 .1 3 18. .0 .1 3 19. .0 .1 3 20. .0 .1 3 21. .0 .1 3 22. .0 .1 3 23. .0 .1 3 24. .0 .1 3 25. .0 .1 3 26. .0 .1 _ 3 27. .0 .1 3 28. .0 .1 3 29. .0 .1 3 30. .0 .1 3 31. .0 .1 3 32. .0 .1 3 33. .0 .1 3 34. .0 .1 3 35. .0 .1 3 36. .0 .1 3 37. .0 .1 3 38. .0 .1 3 39. .0 .1 3 40. .0 .1 3 41. .0 .1 3 42. .0 .1 3 43. .0 l 3 44. .0 .1 3 45. .0 .1 3 46. .0 .1 3 47. .0 .1 3 48. .0 .1 3 49. .0 .0 3 50. .0 .0 3 51. .0 .0 C:\SWMM\HTPMasterFina1100 revised5-16-08.out 5 Printed: 5/16/2008 Stantec 3 52. .0 .0 3 53. .0 .0 3 54. .0 .0 3 55. .0 .0 3 56. .0 .0 3 57. .0 .0 3 58. .0 .0 3 59. .0 .0 4 0. .0 .0 4 1. .0 .0 4 2. .0 .0 4 3. .0 .0 4 4. .0 .0 - 4 5. .0 .0 4 6. .0 .0 4 7. .0 .0 4 8. .0 .0 4 9. .0 .0 4 10. .0 .0 4 11. .0 .0 4 12. .0 .0 4 13. .0 .0 4 14. .0 .0 4 15. .0 .0 4 16. .0 .0 4 17. .0 .0 4 18. .0 .0 4 19. .0 .0 4 20. .0 .0 4 21. .0 .0 4 22. .0 .0 4 23. .0 .0 4 24. .0 .0 4 25. .0 .0 4 26. .0 .0 4 27. .0 .0 4 28. .0 .0 4 29. .0 .0 4 30. .0 .0 4 31. .0 .0 4 32. .0 .0 4 33. .0 .0 4 34. .0 .0 4 35. .0 .0 4 36. .0 .0 4 37. .0 .0 4 38. .0 .0 4 39. .0 .0 4 40. .0 .0 4 41. .0 .0 4 42. .0 .0 4 43. .0 .0 4 44. .0 .0 4 45. .0 .0 4 46. .0 .0 4 47. .0 .0 4 48. .0 .0 4 49. .0 .0 4 50. .0 .0 4 51. .0 .0 4 52. .0 .0 4 53. .0 .0 4 54. .0 .0 4 55. .0 .0 4 56. .0 .0 4 57. .0 .0 4 58. .0 .0 4 59. .0 .0 5 0. .0 .0 5 1. .0 .0 5 2. .0 .0 5 3. .0 .0 5 4. .0 .0 5 5. .0 .0 5 6. .0 .0 5 7. .0 .0 5 8. .0 .0 5 9. .0 .0 5 10. .0 .0 5 11. .0 .0 5 12. .0 .0 5 13. .0 .0 5 14. .0 .0 5 15. .0 .0 5 16. .0 .0 5 17. .0 .0 5 18. .0 .0 5 19. .0 .0 5 20. .0 .0 C:\SWMM\HTPMasterFina1100 revised5-16-08.out 6 Printed: 5/16/2008 Stantec C:\SWMM\HTPMasterFina1100 revised5-16-08.out VA Printed: 5/16/2008 Stantec C:\SWMM\HTPMasterFina1100 revised5-16-08.out 8 Printed: 5/16/2008 Stantec 8 21. .0 .0 8 22. .0 .0 8 23. .0 .0 8 24. .0 .0 8 25. .0 .0 8 26. .0 .0 8 27. .0 .0 8 28. .0 .0 8 29. .0 .0 8 30. .0 .0 8 31. .0 .0 8 32. .0 .0 8 33. .0 .0 8 34. .0 .0 8 35. .0 .0 8 36. .0 .0 8 37. .0 .0 8 38. .0 .0 8 39. .0 .0 8 40. .0 .0 8 41. .0 .0 8 42. .0 .0 8 43. .0 .0 8 44. .0 .0 8 45. .0 .0 8 46. .0 .0 8 47. .0 .0 8 48. .0 .0 8 49. .0 .0 8 50. .0 .0 8 51. .0 .0 8 52. .0 .0 8 53. .0 .0 8 54. .0 .0 8 55. .0 .0 8 56. .0 .0 8 57. .0 .0 8 58. .0 .0 . 8 59. .0 .0 9 0. .0 .0 9 1. .0 .0 9 2. .0 .0 9 3. .0 .0 9 4. .0 .0 9 5. .0 .0 9 6. .0 .0 9 7. .0 .0 9 8. .0 .0 9 9. .0 .0 9 10. .0 .0 9 11. .0 .0 9 12. .0 .0 9 13. .0 .0 9 14. .0 .0 9 15. .0 .0 , 9 16. .0 .0 9 17. .0 .0 9 18. .0 .0 9 19. .0 .0 9 20. .0 .0 9 21. .0 .0 9 22. .0 .0 9 23. .0 .0 9 24. .0 .0 9 25. .0 .0 9 26. .0 .0 9 27. .0 .0 9 28. .0 .0 9 29. .0 .0 9 30. .0 .0 9 31. .0 .0 9 32. .0 .0 9 33. .0 .0 9 34. .0 .0 9 35. .0 .0 9 36. .0 .0 9 37. .0 .0 9 38. .0 .0 9 39. .0 .0 9 40. .0 .0 9 41. .0 .0 9 42. .0 .0 9 43. .0 .0 9 44. .0 .0 9 45. .0 .0 9 46. .0 .0 9 47. .0 .0 9 48. .0 .0 9 49. .0 .0 C:\SWMM\HTPMasterFina1100 revised5-16-08.out 9 Printed: 5/16/2008 ' 9 50. .0 Stantec .0 9 51. .0 .0 9 52. .0 .0 9 9 5. 54. .0 .0 .0 .0 ' 9 55. .0 .0 9 56. .0 .0 9 57. .0 .0. 9 9 58. 59. .0 .0 .0 .0 10 0. .0 .0 10 1. .0 .0 10 2. .0 .0 10 10 3. 4. .0 .0 .0 .0 10 5. .0 .0 10 6. .0 .0 10 7. .0 .0 10 8. .0 .0 10 9. .0 .0 10 10. .0 .0 10 11. .0 .0 10 12. .0 .0 10 13. .0 .0 10 14. .0 .0 10 15. .0 .0 10 16. .0 .0 10 17. .0 .0 10 18. .0 .0 10 . .0 .0 10 20. 20 .0 .0 10 21. .0 .0 10 22. .0 .0 10 23. .0 .0 10 24. .0 .0 ' 10 25. .0 .0 10 26. .0 .0 10 27. .0 .0 10 28. .0 .0 . 10 . .0 .0 30 10 30. .0 .0 10 31. .0 .0 10 32. .0 .0 10 33. .0 .0 10 34. .0 .0 10 35. .0 .0 10 36. .0 .0 10 37. .0 .0 10 38. .0 .0 ' 10 . .0 .0 40 10 40. .0 .0 10 41. .0 .0 10 42. .0 .0 10 43. .0 .0 10 44. .0 .0 10 45. .0 .0 , 10 46. .0 .0 10 47. .0 .0 10 48. .0 .0 ' 10 5. .0 .0 0 10 51. .0 .0 10 51. .0 .0 10 52. .0 .0 10 53. .0 .0 ' 10 54. .0 .0 10 55. .0 .0 10 56. .0 .0 10 57. .0 .0 10 58. .0 .0 10 5. .0 .0 0 11 0. .0 .0 11 1. .0 .0 11 2. .0 .0 11 3. .0 .0 11 4. .0 .0 11 5. .0 .0 11 6. .0 .0 11 7. .0 .0 11 8. .0 .0 11 11 10. .0 .0 11 11. .0 .0 11 12. .0 .0 11 13. .0 .0 ' 11 14. .0 .0 11 15. .0 .0 11 16. .0 .0 11 17. .0 .0 11 18. .0 .0 ' 11 19. .0 .0 C:\SWMM\HTPMasterFina1100 revised5-16-08.out 10 Printed: 5/16/2008 Stantec I C:\SWMM\HTPMasterFina1100 revised5-16-08.out 11 Printed: 5/16/2008 Stantec HARMONY TECHNOLOGY PARK 100-YEAR EVENT FILE: HTPMasterFinaI100.IN STANTEC; 3/6/08 I *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 130.720 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .250 TOTAL WATERSHED OUTFLOW (INCHES) 3.321 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .098 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 m CASVVMMU-ITPMasterFina1100 revised5-16-08.out IN Printed: 5/16/2008 Stantec HARMONY TECHNOLOGY PARK 100-YEAR EVENT FILE: HTPMasterFinal100.IN STANTEC; 3/6/08 WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 210 205 0 2 PIPE 2.0 600. .0030 .0 .0 .013 2.00 1 205 206 0 2 PIPE 2.5 1330. .0030 .0 .0 .013 2.50 1 206 207 0 2 PIPE 2.5 1300. .0030 .0 .0 .013 2.50 1 208 207 0 3 .1 1. .0010 .0 .0 .001 10.00 1 207 511 0 3 .1 1. .0010 .0 .0 .001 10.00 1 110 510 9 2 PIPE .0 0. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 6.0 .2 8.5 1.9 10.4 3.4 12.1 5.2 13.5 7.4 14.8 10.0 15.9 12.9 17.0 600 301 6 2 PIPE .0 0. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.5 .5 6.3 1.2 7.8 1.9 8.9 2.6 10.0 211 510 0 2 PIPE 2.5 1140. .0030 .0 .0 .013 2.50 1 510 511 0 3 .1 1. .0010 .0 .0 .001 10.00 1 100 110 0 3 .1 1. .0010 .0 .0 .001 10.00 1 101 210 5 2 PIPE .0 0. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1 2.5 4 3.5 1.0 4.3 1.6 5.0 201 205 9 2 PIPE .0 0. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 2.6 .2 4.5 .8 5.8 1.7 6.8 2.7 7.8 3.8 8.6 5.0 9.3 6.4 10.0 301 211 8 2 PIPE .0 0. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.5 .7 6.4 1.9 7.9 3.4 9.1 5.0 10.1 6.8 11.1 8.7 12.0 501 206 9 2 PIPE .0 0. .0010 .0 .0 .001 .00 0 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.6 .3 3.8 .8 4.6 1.4 5.3 2.1 5.9 3.0 6.5 3.9 7.0 4.9 7.5 TOTAL NUMBER OF GUTTERS/PIPES. 14 7 C:\SWMM\HTPMasterFina1100 revised5-16-08.out 13 Printed: 5/16/2008 Stantec HARMONY TECHNOLOGY PARK 100-YEAR EVENT FILE: HTPMasterfina1100.IN STANTEC; 3/6/08 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 100 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 32.9 205 210 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.9 206 205 501 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46.4 207 206 208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56.4 208 0 0 0 0 0 0 0 0 0 0 903 0 0 0 0 0 0 0 0 0 10.0 210 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.9 211 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41.4 510 110 211 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74.3 u GASWMM\HTPMasterFina1100 revised5-16-08.out 14 Printed: 5/16/2008 I Stantec HARMONY TECHNOLOGY PARK 100-YEAR EVENT FILE: HTPMasterFinal100.IN STANTEC; 3/6/08 1 1 1 0 u n HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 6 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 101 110 201 301 501 600 0 1. .0 .0 .0 .0 .0 .0 .00( ) .00(S) .00(S) .00(S) .00(S) .00(S) 0 6. .0 .0 .0 .0 .0 .0 .00(S) .00(S) .00(S) .00(S) .00(S) .00(S) 0 11. .3 2.0 2.6 1.3 .8 .9 .01(S) .04(S) .02(S) .04(S) .02(S) .02(S) 0 16. 1.3 8.3 3.4 4.7 2.7 3.4 .05(S) .17(S) .12(S) .17(S) .09(S) .08(S) 0 21. 2.5 8.8 4.6 5.5 3.3 4.8 .11(S) .42(S) .31(S) .45(S) .24(S) .18(S) 0 26. 2.8 9.3 5.3 6.6 3.9 5.5 .20(S) .86(S) .63(S) .88(S) .46(S) .34(S) 0 31. 3.4 10.3 6.3 7.7 4.7 6.7 .40(S) 1.77(S) 1.28(S) 1.75(S) .94(S) .69(S) 0 36. 4.1 12.2 7.6 9.1 5.7 8.1 .79(S) 3.55(S) 2.54(S) 3.38(S) 1.85(S) 1.38(S) 0 41. 4.4 13.0 8.2 9.8 6.1 8.7 .99(S) 4.66(S) 3.31(S) 4.43(S) 2.40(S) 1.75(S) 0 46. 4.5 13.5 8.5 10.2 6.3 9.0 1.10(S) 5.29(S) 3.76(S) 5.05(S) 2.71(S) 1.94(S) 0 51. 4.6 13.7 8.7 10.4 6.4 9.2 1.16(S) 5.65(S) 4.01(S) 5.44(S) 2.89(S) 2.03(S) 0 56. 4.6 13.9 8.8 10.5 6.5 9.2 1.19(S) 5.88(S) 4.18(S) 5.72(S) 3.00(S) 2.09(S) 1 1. 4.6 14.0 8.9 10.7 6.6 9.3 1.21(S) 6.05(S) 4.30(S) 5.94(S) 3.09(S) 2.12(S) 1 6. 4.6 14.0 8.9 10.8 6.6 9.3 1.23(S) 6.19(S) 4.41(S) 6.14(S) 3.16(S) 2.14(S) 1 11. 4.6 14.1 9.0 10.9 6.6 9.3 1.24(S) 6.30(S) 4.49(S) 6.31(S) 3.22(S) 2.15(S) 1 16. 4.7 14.2 9.0 11.0 6.7 9.3 1.25(S) 6.41(S) 4.57(S) 6.48(S) 3.27(S) 2.16(S) 1 21. 4.7 14.2 9.1 11.0 6.7 9.3 1.25(S) 6.50(S) 4.6.4(S) 6.63(S) 3.32(S) 2.16(S) 1 26. 4.7 14.3 9.1 11.1 6.7 9.3 1.26(S) 6.58(S) 4.70(S) 6.78(S) 3.36(S) 2.17(S) 1 31. 4.7 14.3 9.1 11.2 6.8 9.3 1.26(S) 6.65(S) 4.76(S) 6.92(S) 3.40(S) 2.17(S) 1 36. 4.7 14.4 9.2 11.2 6.8 9.3 1.26(S) 6.72(S) 4.81(S) 7.05(S) 3.44(S) 2.16(S) 1 41. 4.7 14.4 9.2 11.3 6.8 9.3 1.26(S) 6.77(S) 4.86(S) 7.17(S) 3.47(S) 2.16(S) 1 46. 4.7 14.4 9.2 11.4 6.8 9.3 1.26(S) 6.83(S) 4.90(S) 7.29(S) 3.50(S) 2.15(S) 1 51. 4.7 14.5 9.2 11.4 6.8 9.3 1.26(S) 6.87(S) 4.94(S) 7.41(S) 3.52(S) 2.14(S) 1 56. 4.7 14.5 9.3 11.5 6.8 9.3 1.26(S) 6.91(S) 4.97(S) 7.52(S) 3.55(S) 2.13(S) 2 1. 4.7 14.5 9.3 11.5 6.8 9.3 1.25(S) 6.95(S) 5.00(S) 7.62(S) 3.57(S) 2.11(S) 2 6. 4.6 14.5 9.3 11.5 6.8 9.2 1.23(S) 6.93(S) 4.99(S) 7.67(S) 3.56(S) 2.07(S) 2 11. 4.6 14.5 9.3 11.5 6.8 9.1 1.21(S) 6.87(S) 4.95(S) 7.69(S) 3.53(S) 2.02(S) 2 16. 4.6 14.4 9.2 11.5 6.8 9.1 1.18(S) 6.79(S) 4.91(S) 7.69(S) 3.49(S) 1.97(S) 2 21. 4.5 14.4 9.2 11.5 6.8 9.0 1.15(S) 6.71(S) 4.85(S) 7.69(S) 3.45(S) 1.91(S) 2 26. 4.5 14.3 9.2 11.5 6.8 8.9 1.12(S) 6.62(S) 4.80(S) 7.68(S) 3.41(S) 1.85(S) 2 31. 4.5 14.3 9.1 11.5 6.7 8.8 1.09(S) 6.53(S) 4.74(S) 7.67(S) 3.37(S) 1.79(S) 2 36. 4.4 14.2 9.1 11.5 6.7 8.7 1.06(S) 6.44(S) 4.68(S) 7.66(S) 3.33(S) 1.73(S) 2 41. 4.4 14.1 9.1 11.5 6.7 8.6 1.03(S) 6.35(S)• 4.62(S) 7.64(S) 3.28(S) 1.67(S) 2 46. 4.4 14.1• 9.0 11.5 6.7 8.5 1.00(S) 6.25(S) 4.56(S) 7.62(S) 3.24(S) 1.61(S) . 2 51. 4.3 14.0 9.0 11.5 6.6 8.4 .97(S) 6.16(S) 4.50(S) 7.61(S) 3.19(S) 1.56(S) 2 56. 4.3 14.0 8.9 11.5 6.6 8.3 CASVVMM\HTPMasterFinaIlO0 revised5-16-OB.out 15 Printed: 5/16/2008 J 1 1 Stantec .94(S) 6.07(S) 4.44(S) 7.59(S) 3.15(S) 1.50(S) 3 1. 4.3 13.9 8.9 11.5 6.6 8.2 .91(S) 5.97(S) 4.38(S) 7.57(S) 3.10(S) 1.44(S) 3 6. 4.2 13.9 8.9 11.5 6.6 8.1 .89(S) 5.88(S) 4.32(S) 7.54(S) 3.06(S) 1.39(S) 3 11. 4.2 13.8 8.8 11.5 6.5 8.0 .86(S) 5.78(S) 4.26(S) 7.52(S) 3.02(S) 1.33(S) 3 16. 4.1 13.8 8.8 11.4 6.5 7.9 .83(S) 5.69(S) 4.20(S) 7.50(S) 2.97(S) 1.28(S) 3 21. 4.1 13.7 8.8 11.4 6.5 7.9 .80(S) 5.60(S) 4.14(S) 7.48(S) 2.93(S) 1.22(S) 3 26. 4.0 13.6 8.7 11.4 6.4 7.8 .77(S) 5.50(S) 4.08(S) 7.45(S) 2.88(S) 1.17(S) 3 31. 4.0 13.6 8.7 11.4 6.4 7.7 .74(S) 5.41(S) 4.03(S) 7.43(S) 2.84(S) 1.12(S) 3 36. 4.0 13.5 8.7 11.4 6.4 7.5 .72(S) 5.32(S) 3.97(S) 7.40(S) 2.79(S) 1.06(S) 3 41. 3.9 13.5 8.6 11.4 6.4 7.4 .69(S) 5.23(S) 3.91(S) 7.37(S) 2.75(S) 1.01(S) 3 46. 3.9 13.4 8.6 11.4 6.3 7.3 .66(S) 5.13(S) 3.85(S) 7.35(S) 2.71(S) .96(S) 3 51. 3.8 13.3 8.5 11.4 6.3 7.2 .64(S) 5.04(S) 3.79(S) 7.32(S) 2.66(S) .91(S) 3 56. 3.8 13.3 8.5 11.4 6.3 7.1 .61(S) 4.95(S) 3.73(S) 7.29(S) 2.62(S) .86(S) 4 1. 3.8 13.2 8.5 11.3 6.2 7.0 .58(S) 4.86(S) 3.67(S) 7.26(S) 2.58(S) .81(S) 4 6. 3.7 13.1 8.4 11.3 6.2 6.9 .56(S) 4.77(S) 3.61(S) 7.23(S) 2.54(S) .77(S) 4 11. 3.7 13.1 8.4 11.3 6.2 6.8 .53(S) 4.68(S) 3.56(S) 7.20(S) 2.49(S) .72(S) 4 16. 3.6 13.0 8.3 11.3 6.1 6.7 .51(S) 4.59(S) 3.50(S) 7.17(S) 2.45(S) .67(S) 4 21. 3.6 12.9 8.3 11.3 6.1 6.6 .48(S) 4.50(S) 3.44(S) 7.14(S) 2.41(S) .63(S) 4 26. 3.6 12.8 8.3 11.3 6.1 6.5 .46(S) 4.41(S) 3.39(S) 7.10(S) 2.37(S) .58(S) 4 31. 3.5 12.8 8.2 11.2 6.1 6.4 .43(S) 4.32(S) 3.33(S) 7.07(S) 2.33(S) .54(S) 4 36. 3.5 12.7 8.2 11.2 6.0 6.2 .41(S) 4.24(S) 3.27(S) 7.04(S) 2.28(S) .50(S) 4 41. 3.4 12.6 8.1 11.2 6.0 6.0 .39(S) 4.15(S) 3.22(S) 7.00(S) 2.24(S) .45(S) 4 46. 3.3 12.6 8.1 .11.2 6.0 5.9 .36(S) 4.06(S) 3.16(S) 6.97(S) 2.20(S) .41(S) 4 51. 3.2 12.5 8.1 11.2 5.9 5.7 .34(S) 3.98(S) 3.11(S) 6.93(S) 2.16(S) .37(S) 4 56. 3.2 12.4 8.0 11.2 5.9 5.5 .32(S) 3.89(S) 3.05(S) 6.89(S) 2.12(S) .34(S) 5 1. 3.1 12.4 8.0 11.1 5.9 5.3 .30(S) 3.81(S) 3.00(S) 6.85(S) 2.08(S) .30(S) 5 6. 3.1 12.3 7.9 11.1 5.8 5.2 .28(S) 3.72(S) 2.94(S) 6.81(S) 2.04(S) .26(S) 5 11. 3.0 12.2 7.9 11.1 5.8 5.0 .26(S) 3.64(S) 2.89(S) 6.77(S) 2.00(S) .23(S) 5 16. 2.9 12.2 7.9 11.1 5.8 4.9 .23(S) 3.55(S) 2.83(S) 6.73(S) 1.96(S) .19(S) 5 21. 2.9 12.1 7.8 11.1 5.7 4.7 .21(S) 3.47(S) 2.78(S) 6.68(S) 1.92(S) .16(S) 5 26. 2.8 12.0 7.8 11.0 5.7 4.6 .20(S) 3.39(S) 2.72(S) 6.64(S) 1.88(S) .13(S) 5 31. 2.8 11.9 7.7 11.0 5.7 4.3 .18(S) 3.30(S) 2.67(S) 6.59(S) 1.84(S) .10(S) 5 36. 2.7 11.8 7.7 11.0 5.6 3.2 .16(S) 3.22(S) 2.62(S) 6.54(S) 1.80(S) .07(S) 5 41. 2.6 11.8 7.6 11.0 5.6 2.3 .14(S) 3.14(S) 2.57(S) 6.49(S) 1.76(S) .05(S) 5 46. 2.6 11.7 7.6 10.9 5.6 1.7 .12(S) 3.06(S) 2.51(S) 6.43(S) 1.73(S) .04(S) 5 51. 2.5 11.6 7.5 10.9 5.5 1.3 .10(S) 2.98(S) 2.46(S) 6.36(S) 1.69(S) .03(S) 5 56. 2.4 11.5 7.5 10.8 5.5 .9 .09(S) 2.90(S) 2.41(S) 6.29(S) 1.65(S) .02(S) 6 1. 2.0 11.4 7.4 10.8 5.5 .7 .07(S) 2.82(S) 2.36(S) 6.23(S) 1.61(S) .02(S) 6 6. 1.6 11.3 7.4 10.8 5.4 .5 .06(S) 2.74(S) 2.31(S) 6.15(S) 1.57(S) .01(S) 6 11. 1.3 11.2 7.4 10.7 5.4 .4 .05(S) 2.67(S) 2.26(S) 6.08(S) 1.54(S) .01(S) 6 16. 1.1 11.2 7.3 10.7 5.4 .3 .04(S) 2.59(S) 2.21(S) 6.01(S) 1.50(S) .01(S) 6 21. .9 11.1 7.3 10.7 5.3 .2 .03(S) 2.51(S) 2.16(S) 5.94(S) 1.46(S) .00(S) 6 26. .8 11.0 7.2 10.6 5.3 .1 .03(S) 2.44(S) 2.11(S) 5.87(S) 1.43(S) .00(S) 6 31. .6 10.9 7.2 10.6 5.2 .1 .02(S) 2.36(S) 2.06(S) 5.80(S) 1.39(S) .00(S) 6 36. .5 10.8 7.1 10.5 5.2 .1 .02(S) 2.29(S) 2.01(S) 5.72(S) 1.36(S) .00(S) 6 41. .4 10.7 7.1 10.5 5.2 .1 C:\SWMM\HTPMasterFina1100 revised5-16-OB.out 16 Printed: 5/16/2008 11 C 1 I u u Stantec .02(S) 2.21(S) 1.96(S) 5.65(S) 1.32(S) .00(S) 6 46. .4 10.7 7.0 10.5 5.1 .0 .01(S) 2.14(S) 1.91(S) 5.58(S) 1.28(S) .00(S) 6 51. .3 10.6 7.0 10.4 5.1 .0 .01(S) 2.07(S) 1.86(S) 5.51(S) 1.25(S) .00(S) 6 56. .2 10.5 7.0 10.4 5.0 .0 .01(S) 1.99(S) 1.81(S) 5.44(S) 1.21(S) .00(S) 7 1. .2 10.4 6.9 10.3 5.0 .0 .01(S) 1.92(S) 1.77(S) 5.37(S) 1.18(S) .00(S) 7 6. .2 10.3 6.9 10.3 5.0 .0 .01(S) 1.85(S) 1.72(S) 5.30(S) 1.15(S) .00(S) 7 11. .1 , 10.3 6.8 10.3 4.9 .0 .00(S) 1.78(S) 1.67(S) 5.22(S) 1.11(S) .00(S) 7 16. .1 10.2 6.8 10.2 4.9 .0 .00(S) 1.71(S) 1.62(S) 5.15(S) 1.08(S) .00(S) 7 21, .1 10.1 6.7 10.2 4.8 .0 .00(S) 1.64(S) 1.58(S) 5.08(S) 1.04(S) .00(S) 7 26. .l 10.0 6.6 10.1 4.8 .0 .00(S) 1.57(S) 1.53(S) 5.01(S) 1.01(S) .00(S) 7 31. .1 10.0 6.6 10.1 4.8 .0 .00(S) 1.50(S) 1.49(S) 4.94(S) .98(S) .00(S) 7 36. .1 9.9 6.5 10.1 4.7 .0 .00(S) 1.43(S) 1.44(S) 4.88(S) .95(S) .00(S) 7 41. .0 9.8 6.5 10.0 4.7 .0 .00(S) 1.36(S) 1.40(S) 4.81(S) .91(S) .00(S) 7 46. .0 9.7 6.4 10.0 4.6 .0 .00(S) 1.30(S) 1.35(S) 4.74(S) .88(S) .00(S) 7 51. .0 9.7 6.4 9.9 4.6 .0 .00(S) 1.23(S) 1.31(S) 4.67(S) .85(S) .00(S) 7 56. .0 9.6 6.3 9.9 4.6 .0 .00(S) 1.16(S) 1.26(S) 4.60(S) .82(S) .00(S) 8 1. .0 9.5 6.3 9.8 4.5 .0 .00(S) 1.10(S) 1.22(S) 4.53(S) .79(S) .00(S) 8 6. .0 9.5 6.2 9.8 4.5 .0 .00(S) 1.03(S) 1.18(S) 4.47(S) .76(S) .00(S) 8 11. .0 9.4 6.2 9.7 4.4 .0 .00(S) .97(S) 1.14(S) 4.40(S) .72(S) .00(S) 8 16. .0 9.3 6.1 9.7 4.4 .0 .00(S) .90(S) 1.09(S) 4.33(S) .69(S) .00(S) 8 21. .0 9.2 6.1 9.7 4.3 .0 .00(S) .84(S) 1.05(S) 4.26(S) .66(S) .00(S) 8 26. .0 9.2 6.0 9.6 4.2 .0 .00(S) .78(S) 1.01(S) 4.20(S) .64(S) .00(S) 8 31. .0 9.1 6.0 9.6 4.2 .0 .00(S) .71(S) .97(S) 4.13(S) .61(S) .00(S) 8 36. .0 9.0 5.9 9.5 4.1 .0 .00(S) .65(S) .93(S) 4.07(S) .58(S) .00(S) 8 41. .0 9.0 5.9 9.5 4.1 .0 .00(S) .59(S) .89(S) 4.00(S) .55(S) .00(S) 8 46. .0 8.9 5.8 9.4 4.0 .0 .00(S) .53(S) .85(S) 3.94(S) .52(S) .00(S) 8 51. .0 8.8 5.7 9.4 4.0 .0 .00(S) .47(S) AW S) 3.87(S) .49(S) .00(S) 8 56. .0 8.8 5.7 9.4 4.0 .0 .00(S) .41(S) .77(S) 3.81(S) .47(S) .00(S) 9 1. .0 8.7 5.6 9.3 3.9 .0 .00(S) .35(S) .73(S) 3.74(S) .44(S) .00(S) 9 6. .0 8.6 5.5 9.3 3.9 .0 .00(S) .29(S) .69(S) 3.68(S) .41(S) .00(S) 9 11. .0 8.6 5.4 9.2 3.8 .0 .00(S) .23(S) .65(S) 3.61(S) .39(S) .00(S) 9 16. .0 8.4 5.3 9.2 3.8 .0 .00(S) .17(S) .62(S) 3.55(S) .36(S) .00(S) 9 21. .0 6.0 5.2 9.2 3.7 .0 .00(S) .12(S) .58(S) 3.49(S) .33(S) .00(S) 9 26. .0 4.2 5.2 9.1 3.6 .0 .00(S) .08(S) .54(S) 3.42(S) .31(S) .00(S) 9 31. .0 3.0 5.1 9.1 3.5 .0 .00(S) .06(S) .51(S) 3.36(S) .28(S) .00(S) 9 36. .0 2.1 5.0 9.0 3.4 A .00(S) .04(S) .48(S) 3.30(S) .26(S) .00(S) 9 41. .0 1.5 4:9 9.0 3.3 .0 .00(S) .03(S) .44(S) 3.24(S) .24(S) .00(S) 9 46. .0 1.1 4.8 8.9 3.2 .0 .00(S) .02(S) .41(S) 3.18(S) .22(S) .00(S) 9 51. .0 .8 4.8 8.9 3.1 .0 .00(S) .01(S) .37(S) 3.11(S) .19(S) .00(S) 9 56. .0 .5 4.7 8.8 3.1 .0 .00(S) .01(S) .34(S) 3.05(S) .17(S) .00(S) 10 1. .0 .4 4.6 8.8 3.0 .0 .00(S) .01(S) .31(S) 2.99(S) .15(S) .00(S) 10 6. .0 .3 4.6 8.7 2.9 .0 .00(S) .01(S) .28(S) 2.93(S) .13(S) .00(S) 10 11. .0 .2 4.5 8.7 2.8 .0 .00(S) .00(S) .25(S) 2.87(S) .11(S) .00(S) 10 16. .0 .1 4.3 8.6 2.7 .0 .00(S) .00(S) .22(S) 2.81(S) .09(S) .00(S) 10 21. .0 .1 4.0 8.6 2.7 .0 .00(S) .00(S) .19(S) 2.75(S) .07(S) .00(S) 10 26. .0 .1 3.8 8.5 2.2 .0 C:\SWMM\HTPMasterFina1100 revised5-16-08.out 17 Printed: 5/16/2008 Stantec [1 .00(S) .00(S) .16(S) 2.69(S) 10 31. .0 .0 3.6 8.5 .00(S) .00(S) .14(S) 2.64(S) 10 36. .0 .0 3.4 8.4 .00(S) .00(S) .11(S) 2.58(S) 10 41. .0 .0 3.2 8.4 .00(S) .00(S) .09(S) 2.52(S) 10 46. .0 .0 3.0 8.3 .00(S) .00(S) .07(S) 2.46(S) 10 51. .0 .0 2.8 8.3 .00(S) .00(S) .05(S) 2.40(S) 10 56. .0 .0 2.7 8.3 .00(S) .00(S) .03(S) 2.35(S) 11 1. .0 .0 1.7 8.2 .00(S) .00(S) .01(S) 2.29(S) 11 6. .0 .0 .7 8.2 .00(S) .00(S) .01(S) 2.23(S) 11 11. .0 .0 .3 8.1 .00(S) .00(S) .00(S) 2.18(S) 11 16. .0 .0 .1 8.1 .00(S) .00(S) .00(S) 2.12(S) 11 21. .0 .0 .0 8.0 .00(S) .00(S) .00(S) 2.07(S) 11 26. .0 .0 .0 8.0 .00(S) .00(S) .00(S) 2.01(S) 11 31. .0 .0 .0 7.9 .00(S) .00(S) .00(S) 1.96(S) 11 36. .0 .0 .0 7.9 .00(S) .00(S) .00(S) 1.90(S) 11 41. .0 .0 .0 7.8 .00(S) .00(S) .00(S) 1.85(S) 11 46. .0 .0 .0 7.8 .00(S) .00(S) .00(S) 1.80(S) 11 51. .0 .0 .0 7.7 .00(S) .00(S) .00(S) 1.74(S) 11 56. .0 .0 .0 7.6 .00(S) .00(S) .00(S) 1.69(S) m .06(S) .00(S) 1.7 .0 .04(S) .00(S) 1.3 .0 .03(S) .00(S) 1.0 .0 .03(S) .00(S) .8 .0 .02(S) .00(S) .6 .0 .02(S) .00(S) .5 .0 .01(S) .00(S) .3 .0 .01(S) .00(S) .3 .0 .01(S) .00(S) .2 .0 .01(S) .00(S) .2 .0 .00(S) .00(S) .1 .0 .00(S) .00(S) .1 .0 .00(S) .00(S) .1 .0 .00(S) .00(S) .1 .0 .00(S) .00(S) .0 .0 .00(S) .00(S) . .0 .0 .00(S) .00(S) .0 .0 .00(S) .00(S) .0 .0 .00(S) .00(S) C:\SWMM\HTPMasterFinal100 revised5-16-08.out 18 Printed: 5/16/2008 Stantec HARMONY TECHNOLOGY PARK 100-YEAR EVENT FILE: HTPMasterFina1100.IN STANTEC; 3/6/08 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME WQ,G`/ Io+al QR f,y --CA 4r too- Y4 ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 100:3 101:2 297.7 4.7 (DIRECT .0 FLOW) 1.3:D 0 1 35. 39. 0.13 -� i .53 a.c.- -Pf 110:2 14.5 .0 6.9:D 2 2. t.oS 7,qg c�c EE 201:2 9.3 .0 5.0:D 2 2. 0.'1(o S,7/v 205:2 13.9 1.4 2 4. 206:2 20.8 1.9 2, 6. 207:3 77.6 (DIRECT FLOW) 0 36. 208:3 63.9 (DIRECT FLOW) 0 36. 210:2 4.7 .9 1 41. 211:2 301:2 11.5 11.5 1.3 .0 7.7:D 2 2 20. 16. ^-a �•�� -� if.6s a 501:2 6.8 0 3.6:D 2 2. O.$ti �� y,{y /f a,L • FE 510:3 26.0 (DIRECT FLOW) 2 6. 511:3 98.0 (DIRECT FLOW) 0 36. 2 ac. - t 600:2 9.3 .0 2.2:D 1 27. 0,41 ---� •Co{ ENDPROGRAM PROGRAM CALLED CASVVMM\HTPMasterFina1100 revised5-16-08.out 19 Printed: 5/16/2008 f."A 600 O�+lef 1 Ppc 1 T1 13 Ppe 2�, T4 Afe 3y Po^A 301 0y+let Z ptpe y Tz OL%4gll 1 SWMM 5 Page 1 +-) >z L ' 00 I N I M ri I rl O I 1 M 1 O I O I to I H I O O I M r I I r I O 3 I O 00 1 � v 1 � I C O I O •I d to I ' I zl OI Fi 1 VI I K I W 1 > I I I n LJ 11 O O 00 O O 00 , 00 tb tb 00 O U W I 1 O 4) QrN•I tO-i-i .. tA VIZW WCD 0 LL} Q Q • O - UD2:E0C)H .-0 V1 s rd a ,Y 0 i; • 4J 0 O. N C* -N NiJ i; 0 ,. • >, iJ VI •r is N L. VI D is ait C M N N E O * tn-4J 0 is 4J C •E F- ic VI * •r 3 O10 N •r * C O C -O IS it VI is 0W•r OIN iJC ,Y >,it iJ C U L.•r 3;r* 33 L•r NOiJ 3; M ,Y O O M -0 i-+ Q 3 it Ci: rr iJC CNO it Q„ LLLL VI W < w w N VI I OOOO�rIOOr-Ito E C 1 0 0 0 V M 0 0 0 rI 3 O I . . .oILn000 . r r I � I 0 0 0 C)M M 0 0 0 0 N y.t 1 OOOOM000N1OrI E N 1 000000tnO00�st 3 N I 0 0 0 O V V O 0 0 0 0 10 0 0 0 0 0 0 0 0 L 1 V I ItY I it it . . . . . . . . . . . 3; is it J is is -� it i; •r it it Ci: 3 No •ri; 3 3 3 .r Ev it #J it 000 0 3 i; Ci; rrr ?i 3 V1>r L is 0 is 4-4-4- 3 0 0 0 00 4, U is C C C Orr O'O J L- it H H H • r 4- 4- J N L. it OM; 4- iJ iJ L'0 W it Cit L. LL 3 C 33CON is •r it N N N O H O O O iJ L- it }I* SS }Jr •r VI O iJ it 3 it }.t i..t b 4- r r r 4J iJ •r it Q* CO N 3 C M M M Mr VI 3 ,Y NN"OHCCCLrl C i< it 3 3 C L L L Q•rr•r is 34; 3H NNN aiJ M+-t is Q it >,iJ O H iJ iJ iJ M-" C C i;r* LNLDXXC>C•rO it LLit 0 3 U W W W H W HLLU rl u i 1 1 1 1 1 1 1 L O O O O M 000000 1; ri r♦OM V) i is ar is i xi is a) -,Y .. .. .. .. .. O i is C it i cl is His aJ is i< is Tit i< Tic tc V) V1 is 4J it =.. .L( a) it •r is is E * E � i••t L. i• r i; E * as (V is •r i; i; 7 * 4J Q is -0 i; V) is V) * ro i; is i; 0 it 4� -X it p.,Y Q !Z D- T C • V) -k is a) is a) a) a) •0 O is c * it iJ 4J 4J IJ ro •r • H * nn/'1 it V) •k V) VI (A a) iJ i rnr�tn i i +J ro •k 3 •k i,vvv is a) •k a) a) v V) L 3: O ;: it E it E E E a) •kc—i: MfV rnH *•r%•r•r•r C{J is LL is rl a) a) a) it F- % F }- F •r H it is V Q Q Q � it ;t 3; 4� 3; •r •r •r it 01ic E a) E iJ (V it V) , ri d d d it C„ 7 0) 3 C 0) is a) is E ro E a) ro is r—* Y.Y1Y i; iJ >; .r L•r U L- it 01it C C C C i; 3 it C a) X L a) it •rit •r •r •r •r it pit •r > cd a) 1 is 2i: JJJJ Kit 2a2da xa)c ro U•r C E Q) .. t{— L. L O LL E U T �O(d TE=v r LL X ro E M ++ 7 4J a) E O_ a) r a) LL x O i v Q F 0 f�'T �t to 0 o0 -tr O rl rl ri ONH NNNNOrIN 0000000 � — — Ln1.0v�000vu, t-•i M M N N MN OMMMMOM H OC)OOHO mmmmmmm vvvvvvv LA 1.0 ml0 M-CZI-tA V ri to lO r-IItO V 100 f�M10N N to to Wit NO OOOOri c; Z Z Z Z OOOOJWW H HHHJl7 l7 UhHHa a Z Z Z Z F-0 0 = m D D D nnnn OV)V) rH rOH r O O ro O M 4— -O 7 O O riNm',1-Odd E E x ro E 7 E X ro 2 1 3 tU r 0Er0 r 30) 4- r 2: H > 3 (L)r 0 E r0 r = M 4- r 2 +,CO Cl F-1 > L 00 O 1Xvc M r0 V •r HM:cE I (V M4-L L 00 Lt 1 3 rl 0) U 0 OEU>, M•r O b F -0 O Dr 3V) O (O OLL C i-)rU 0 O 4- aHc Fi r• 3 V) r0 OLL LrU W 4- J H J N rl T F- N ml.o N rl Otn 00�rr N M-�' t-i r� rl rl n t-I r� r-iM rl rl Mt-IM 0000Ol0 st OOOOOHH O O O O O H W 000 to c) IN N rI N N t•-I mM .. .... .... .... rI N rl 0 nl 0 0 OOOOOoo 0 H01O rl 00 to M rn N r�Ln ul^ 01 r1 mrV rl 1.00 rt rl ri rl r. rl N OOOOOoO •C OOOOOtn <t OOOOOIDm ri lD :--1 N zzzz OOOOJwQw UUUUIaiWw zzzzF-00 »7»F-H n n n n o o o I rl i r O ri I r-OO 1 fO IO M v 1 4-OO 'O I i-r C C z I rr r�l M,;I- 0 d d i••r .j 'O I s E 4J C 1 i-)•r d 0 1 Q rY ty V 1 OJ LL 1 0 3 i-+ 1 O VI I •r vtc s I •r m •r 1 s t 1 O) I C s 1 s C aj v IJ 1 TO O. LL i • r i 1 LU 0 I N a l > O 1 X O 4J (0Q i NI .0 I V I > I G1 0 1 13 -0 I !n L- as I i r0 I 7.0 0 1 O U Gl I = L Vf I 3 •r I Vl L I I L I O) I 3 i v 1 O > it Lis s I it r0 i:� 3 I is E i 1 It E it u 1 It 3 it L I i Vli 3 I i it V I i 4) is U I it Olit O 1 I: L * I It (0 is O) I it .0 it C I It U it •r I It L. it O) 1 is 3 it L. I It V) it (0 1 it ;t s I it a) it U I N is "O it L. I "O i O it 3 1 O X z It Vl I z V1N I�qd-r1 I;tmr�lo rn MmmlOrn rINNOO Inrbre) ID01 In N IOre) � lOVNM;r NMNstN N r\00O01 N (1 M 0 00 r\o W ID 00 ri 0) zzz OOOwuj H H H lQQ7 1QQ7 UUUO'K z z z 0 0 »>F-F- rf r) rf Vl V) It >,it 'O it L it 4) it (v it 'O It E it 0 it E 0 it 3 i r i V) it 4- i i it 01 t tL it C it L it •r is tU it O it 3 It O it it O is i I, 4) r- it LL it 0 it it 0 It IL it C it -0 it It O a O it z it z E 3 30 Er •r 4- X i•+ fO X iJ r0 c 2: V M a N O) r0 a E v 3 E E 3 > CM i-+ Q V a VI LL U C E L L In nro L.0 00 O I M r ri r I 7 M LL OII r-f 0 M M 1 i_+ 0 t9 O O00 O rl a r LL LL rn t. O O O r-i O rl M to 01� 00 Itt N t•-I r1 N 00 rl 00 0000 rntn to O V r•I v In Oi M M V 00 00 to In ri N (D �t 01 N 0 rl 00 1D M C C aaaa r N r I t••I I r1 I M E M I M I M I iJ 7 is I n I n I Or 2 I • I i- O 1 M 1 M > I I I I I I •3 VI I I i rl r I X O LL to 1 to I far U I I 2: LL I t•i I r1 I rf I rl I I I I I I • 3 VI I I I I I I n I n I I 01 O LL I f� I n I U QLL 11 T I 1 I I I I I I I I 1 1 1 I I 1 1 01 1 I 1 1 I 3 64J I N (N I N I O a)C I I 1 r L V I O I O I LL LLfl I M 1 m I 1 1 I I I 1 I it 1 is I I I it it I I 1 % Tic I 1 I it Lis I I I it ra * I I I it E it I is E i 0J 1 I it 7 i; I -0 1 1 it Ln it I O 1 1 is * I Z I I i ;t I I t••� I is O it I r l r l it r it I r I r I E it LL it 1 ra I ra I aJ is it 1 4— 1 4— 1 }J is Y it I 4J I }J I VI it C it 1 3 I 7 I >, it •r is I 0 1 0 1 VI it J it I X r L YL LL 0J Xr 3 Xr O fa 7r a LLLL E >, U FJ 0J E•r VI r U \ (0 O4- X N C a c E t- L. L. O LL 3 EUT boco E3VI 7 O LL ErU •r LL X ra z t1J O. T H 000� 0001.0 rl rl rl O 'TrlNIt lD�r�lO 0000 nVr to 00000M f� V N to 00 (n00 7 00 V N NN riN rf rlOOfV Hr4 O O O O O O 0)tD In H O ri N f�00 to Mtn 61N �r-I d>rl rl rl r-i ri I- H H H H D D D } } Z Z Z Z 2: N: 0000» UUUUOo H r%j M-tl- 0J 01 0) 0J O. fl_ fl_ f1 •r •r •r •r aaaariN I 1 1 k 1 1 1 1 1 1 1 1 w I ri ri00 m1OOOO C I O O O O tC 10000 sl U I O O O O I I L I VNOr-I CJ I 0 0 0 ri S 1 E I O O O O 7 I Z I i-: 10000 r I O O O O L I V I O O O O {.J I ai� i 0000 r 1 0000 O U 1 0 0 0 0 I I M I r 1 . .00 M L I O U i 0000 O N 1 010OO M•r I Or-1OO I L I O U I r-I O H '-i tD 'O 10000 C >1 10000 0 L. I aol0000 I I 0nrOO >% 1 00000 L. a 1 0000 I I >� 1 0000 r 10000 1 1 0 0 0 0 s 1 0000 i•+ 1 O0VO O 1 C I r-I r•I H H >>i: J I i ro i i Ei i Ei i 7 G i VI t I is i; I is O i< I is Olic I is L •k I is rC is I is S K I is U * I k :3 is V1 k i i-: I is i-: 3: r I k •r •% 7 I riNM� -; 3-= C I aQO. 0. is C* O 1 •r •r •r •r •4 OX U I aaa 0. is u* I >"a I 1 0 }J W 1 r-I H r-I I L•r 4- 1000 I 7 U•r 1 O M E 1 000 1 S O•r I I fC J I 1 V I 1 1 1 I 3 1 I r O I I r r I I 3 LL I I L r I O O O I 7 G1 cd I 1 O > E 1000 12 0 L. I -00 1 I Q Z 1 I i I 1 I I E 1 In l0 01 I I r0 I 00000 I I N I I I L 1 N N 00 I I i••: I ri ri I I of I I f�C I I I (] I 1 I I r I I A E I O I� 00 I 7 cV I N01M I LL C) 1 1 L I r�000 I V1 4 + 1 r1 L. Ln I z CL OD I S I I I I VI 1 O I) 00 I I •O I c . 0. . I 1 C I I W I r�000 1 ri I S I 1 1 0 1 0 1 I I CO I 0100 N rn 0000 H H OO r-i 'I M M cri r lrl L L o M: Cl O H H O C C E O O•r 4J C'O 7 Wo OYO Cl C) C VI S C1 Q tQ Vf V1 r r•r C1 >. >i r r tv MMN QQ0 n I J 1 1 1 1 APPENDIX D u 1 1 i 1 1 1 1 1 1 1 i 1 i 1 1 1 POND SIZING CALCULATIONS: 1 RATING CURVES9 WQ CV 1 1 I 1 1 1 1 1 1 1 1 1 1 !� !9# 1.tx POND ml \ A¥t=r ea;_,t ,Are,Aa mlu_,act,Alme,af ». © \� # re. Are cmlag amlcdc . # t2 «« of . 4914.0000 27595.1368 1.5928 1.5539 . . 4913.0000 .24272¥6603 0.9974 0.9589 . § \ 4912.0000 21050x235 0.4772 0.4391 4911.0000 10194.2622 0.1185 0.0879 m+.mm 132.470 amm amm v , \� �.� 41 .� I § . .f\ }� \ � �� � F� \ . � � � 2±� :«• All «W Page 1 \ I Harmony Technology Park STANTEC Pond 101 Orifice Calculation 187710640 100-Year Pond Orifice Plate Basic Equation: Q=Cd*A•(2g9(h1-h2))0.5 Revised Equation: A=Q/(Cd • (2g • (h1 - h2 ))0.5 Input Basin Area = 6.90 Contributing Drainage Area Cd= 0.65 Input g= 32.20 ft/s2 Gravitational Constant h1= 4914.00 100 year WSEL h2= .4910.00 Invert Elevation of Pipe Q = 5.00 cfs Input A= 0.48 ftz Calculated orifice area *r— 4.69 Calculated radius (inches) * Orifice opening bottom aligned with invert of pipe, difference in head on the orifice measured from the centerline of the orifice opening Orifice Dia. = 9.3741 inches 0.7812 feet I I LO 00 LO N 0 co co 0 W) ci 0 C; 0 0 tn m CY -co M 12 !t 0 0 0— 0 00 V MOON 000M c; Ncli li CO CD N 0 0 14- 0) U) LO E 0 0 6 06 6 CD' L) to as 0 0) CO CN 0) 0 0 M CO CO 'C to 0 C) 0 C) CD D" C)* co 04 'n ce) qt m Cf) 0 0 CIJ C'4 ce) Cl) co C) m r� ce) 0 co LO N4 19 C Lo ci 0 6 C5 0 t,Q CD N , ce) CO -,t C4 N 'T CO Il- 0) (M co m 0) 0 N CO '-T qT It I- Ict K. 0 04 04 04 N CD N ce) 't V: 0 CN CO q qt q q V* . It O Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 11 11 1 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 101) 1. Basin Storage Volume A) Tributary Area's Imperviousness Ratio (i = le/ 100) B) Contributing Watershed Area (Area) C) Water Quality Capture Volume (WQCV) (WQCV=1.0*(0.91 *13-1.19*12+0.78*1)) D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 18 = i = Area = WQCV = Vol = 80.00 0.80 6.90 0.33 0.227 % acres watershed inches acre-feet 2. Outlet Works A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforation (H) H = 1.40 feet C) Required Maximum Outlet Area per Row, (A.) Ao = 0.81 square inches D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR D = 1.0000 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, See Table 6a-1 For Maximum) nc = 1 number F) Actual Design Outlet Area per Row (A,) Ao = 0.79 square inches G) Number of Rows (nr) nr = 4 number H) Total Outlet Area (At) Ao, = 3.30 square inches 3. Trash Rack A) Needed Open Area: Ai = 0.5 * (Figure 7 Value) * Aot At = .112 square inches B) Type of Outlet Opening (Check One) x < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening Mm m) from Table 6a-1 Wconc = 6 inches ii) Height of Trash Rack Screen (HTR) HTR = 41 inches WQCV Pond 101.x1s, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 11 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 101) iii) Type of Screen (Based on Depth H), Describe if "Other" x S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other' X 0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) 0.75 inches Type and Size of Support Rod (Ref.: Table 6a-2) #156 VEE vi) Type and Size of Holding Frame (Ref.: Table 6a-2) 3/8 in. x 1.0 in. flat bar D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = inches ii) Width of Perforated Plate Opening (W� e = W + 12") Woo" inches iii) Width of Trashrack Opening (Wopefing) from Table 6b-1 Wopening = Inches iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP inches Grating). Describe if "Other" Other: vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio (LIW) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet i B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no WQCV Pond 101.x1s, EDB 11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 101) 6. Two -Stage Design A) Top Stage (DWo = 2' Minimum) DWo = feet Storage= acre-feet B) Bottom Stage (Des = DWo+ 1.5' Minimum, DWo+ 3.0' Maximum, Des = feet Storage = 5% to 15% of Total WQCV) Storage= acre-feet Surf. Area= acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.5 ' Top Stage Depth or 2.5 Feet) Storage= acre-feet Surf. Area= acres D) Total Volume: Vol,,, = Storage from 5A + 6A + 6B Vol,o, = acre-feet Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = 4.00 (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: WQCV Pond 101.xis, EDB POND 110 tmp#67.txt ' #Units=Elevation,ft,Area,ft2,volume,acft,volume,acft # Elev Area Cumml Avg Cumml Conic # ft ft2 acft acft 4906.0000 137622.9646 13.0348 12.9345 ' 4905.0000 121394.0787 10.0617 9.9634 4904.0000 103363.9981 7.4818 7.3863 4903.0000 86427.8780 5.3033 5.2106 ' 4902.0000 4901.0000 70411.6478 58718.1104 3.5030 2.0208 3.4135 1.9333 4900.0000 43170.3898 0.8513 0.7684 4899.0000 15492.8019 0.1779 0.1216 ' 4898.0000 9.5781 0.0000 0.0000 fl L] 1 f Page 1 Harmony Technology Park STANTEC Pond 110 Orifice Calculation 187710640 100-Year Pond Orifice Plate Basic Equation: Q=Cd•A•(2g•(h1-h2))0.5 Revised Equation: A=Q/(Cd • (2g • (h1 - h2 W.5 Input Basin Area = 32.92 Contributing Drainage Area Cd= 0.65 Input g= 32.20 ft/s2 Gravitational Constant h1= 4904.20 100 year WSEL h2= 4898.00 Invert Elevation of Pipe Q = 15.00 cfs Input A= 1.15 ft` Calculated orifice area *r= 7.28 Calculated radius (inches) * Orifice opening bottom aligned with invert of pipe, difference in head on the orifice measured from the centerline of the orifice opening Orifice Dia. = 14 §:514 inches 1.2126 feet G i u d K O A fU A CD a c CD V/ O A f0 CD v fD f70 C1 HA ( .O. O 3 0 O CD R1 N fn 0 O f1 CD o D a a p o G co ro 0 4 O w 0 O C 7 co AOW000000OO 4 O(0 -4CJ7 00 CD O Cn A W N i 0 O W CD `< v V `W� O V i W O O D W co co cn i CVIIW N(p co Nv 0 0 W AA V N W 0 W fll CO N N i i 0 0 0 i V W CO 6 'w CD W O i? CO O D Cn W V co En i A O CD W N A 0 V Cn O W W O O A O CD N V W N i CO W V A V N fv -': CD N O O V CO W 00 co co CD co W W W CA _ 0 O N :�l A Cn i Do .P j V CO CO W W O W W Cn N O` fD CO) n cD-lcnwi000 0 A 0) j A v 00 Ol c 000 Cn CWO COiW N -. + ... tQ lD w n O' O Ol W Cr A W N O W W O 0 c s O N Cn Co :-4 A O A N N O OA W V U7W n o 0 3.0 v c Ct) .O. a� O "• O CC) C 0 O EL 0 0) CD 3 \I c fD O o p Do O 0)v ov 3< w A 3 o 0 m v fD CD Iu Cc C to N N CD o n =r IU n fn O O i O N W Cn Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 Designer: Brad Kugler Company: Stantec Date: May 16, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 110) 1. Basin Storage Volume 18 = 80.00 % A) Tributary Area's Imperviousness Ratio (i = 1a / 100) i = 0.80 B) Contributing Watershed Area (Area) Area = 32.92 acres C) Water Quality Capture Volume (WQCV) WQCV = 0.33 watershed inches (WQCV =1.0*(0.91 *13-1.19.12+0.78*1)) D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 Vol = 1.081 acre-feet 2. Outlet Works A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforation (H) H = 2.27 feet C) Required Maximum Outlet Area per Row, (Ao) Ao = 1.9.3 square inches D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR D = 1.5000 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, SeeJable 6a-1 For Maximum) nc = 1 number F) Actual Design Outlet Area per Row (Ao) Ao = 1.77 square inches G) Number of Rows (nr) nr = 7 number H) Total Outlet Area (Ao,) At = 12.03 square inches 3. Trash Rack A) Needed Open Area: A, = 0.5 * (Figure 7 Value) * Aot At = 385 square inches B) Type of Outlet Opening (Check One) x < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (Wcon�) from Table 6a-1 Wcone - 15 inches — -- ii) Height of Trash Rack Screen (HTR) HTR = 51 inches 1 WQCV Pond 110.xls, EDB ' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 I� 1 1 Designer: Brad Kugler Company: Stantec Date: May 16, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 110) iii) Type of Screen (Based on Depth H), Describe if "Other" x S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other" x 0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) 1.00 inches Type and Size of Support Rod (Ref.: Table 6a-2) TE 0.074 in. x 0.50 in. vi) Type and Size of Holding Frame (Ref.: Table 6a-2) 0.75 in. x 1.00 in. angle D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = inches ii) Width of Perforated Plate Opening (W..., = W + 12") Wwnc = inches iii) Width of Trashrack Opening (Wopening) from Table 6b-1 Wapening - Inches iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP inches Grating). Describe if "Other" Other: vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio (L/W ) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no WQCV Pond 110.xls, EDB 11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: Brad Kugler Company: Stantec Date: May 16, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 110) 6. Two -Stage Design A) Top Stage (Dwo = 2' Minimum) DWo = feet Storage= acre-feet B) Bottom Stage (Des = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum, Des = feet Storage = 5% to 15% of Total WQCV) Storage= acre-feet Surf. Area= acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.5 " Top Stage Depth or 2.5 Feet) Storage= acre-feet Surf. Area= acres D) Total Volume: Vol,at = Storage from 5A + 6A + 6B Voltot = acre-feet Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = 4.00 (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: WQCV Pond 110.xls, EDB I ' tmp#53.txt POND 201 #units=Elevation,ft,Area,ft2,volume,acft,volume,acft ' # Elev Area Cumml Avg Cumml Conic # ft ft2 acft acft 4912.0000 60937.5165 6.4234 6.3841 4911.0000 56011.1344 5.0811 5.0421 ' 4910.0000 51185.3016 3.8506 3.8121 4909.0000 46460.0268 2.7298 2.6917 4908.0000 41835.3295 1.7163 1.6787 4907.0000 33206.1554 0.8549 0.8192 ' 4906.0000 18178.3167 0.2651 0.2380 4905.0000 3232.3367 0.0194 0.0155 4904.5000 142.7907 0.0000 0.0000 11 1 Page 1 Harmony Technology Park STANTEC Pond 201 Orifice Calculation 187710640 ' 100-Year Pond Orifice Plate Basic Equation: ' Q=Cd•A•(2g•(h1-h2))0.5 ' Revised Equation: ' A=Q/(Cd • (2g • (h1 - h2 ))0.5 Input Basin Area = 23.02 Contributing Drainage Area Cd= 0.65 Input g= 32.20 ft/sz Gravitational Constant h1= 4912.00 100 year WSEL h2= 4904.50 Invert Elevation of Pipe ' Q = 10.00 cfs Input Output A= 0.70 ftz Calculated orifice area ' *r= 5.66 Calculated radius (inches) ' Orifice opening bottom aligned with invert of pipe, difference in head on the orifice measured from the centerline of the orifice opening Orifice Dia. = 11.3290 inches 0.9441 El feet 1 LO LO It 0 tn .21 Im cu > a) a) E 0 m (D Cy >� E Y C m o m CO 0 ty 13: v v 0 D0 26 E m F-- t- m Co CO r (D 0 in q w F- Lo Ce) 0 c,� 4 L6 CD r, oo o) cl co ci -2� Im S m C) N It 04 00 0) NT CO CO to. E 8 C) C� N 000 0 w C) m 1- r- M C5 C) C) C) 1: N C15 L6 (6 6 U) a N N w 0 'c,4 m zr t;r CA 0 0 C14 Co 000NM to N. 6 ci 6 6 r r r r Ci �j w Lo 0 0 Iq w 0 0 r. N (D m V a) .t Co 0 co 0) 5 6 0) r- 7 co 0) N to N CO CO CO 0 a 00 co r.- co M I,. CN C) co LO U') 't a r, CO QO co r.- 00 0 C) IT rl- 0) OWN C; 6 C5 6 6 M co N CO (0 LO C) LO P, t- C> n (D 00 CO r.- co Ict 'gr co I N 00 19T r C) 0) U) CO CO CO r (D r (D C) , CO M V 't LO LO (D CO U) Q. Uo LO LO LO LO U) CO tn MO NM ;T U) CD r-- > Lo Lo(Dr--co0)0 cq cn co 0 CD CD 0 0 , � 0) 0) 0 CD m (n m M CD 0 .9 1 .9 I Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 201) 1. Basin Storage Volume la = 80.00 % A) Tributary Area's Imperviousness Ratio (i = 18 / 100) i = 0.80 B) Contributing Watershed Area (Area) Area = 23.02 acres C) Water Quality Capture Volume (WQCV) WQCV = . 0.33 watershed inches (WQCV =1.0*(0.91 *13-1.19*12+0.78'1)) D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 Vol = . 0.756 acre-feet 2. Outlet Works A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforation (H) H = 2.39 feet C) Required Maximum Outlet Area per Row, (Ao) Ao = 1.26 square inches D) Perforation Dimensions (enter one only): I) Circular Perforation Diameter OR D = 0.8500 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, See *Table 6a-1 For Maximum) nc = '2. number F) Actual Design Outlet Area per Row (Ao) Ao = 1.13 square inches G) Number of Rows (nr) nr = 7 number H) Total Outlet Area (At) At = 8.14 square inches 3. Trash Rack A) Needed Open Area: At = 0.5 * (Figure 7 Value) * Aot At = 282 square inches B) Type of Outlet Opening (Check One) x < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (Wconc) from Table 6a-1 Wconc = 12 inches ii) Height of Trash Rack Screen (HTR) HTR = 53 inches WQCV Pond 201.xls, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 201) iii) Type of Screen (Based on Depth H), Describe if "Other" X S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other" X 0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) 1.00 inches Type and Size of Support Rod (Ref.: Table 6a-2) TE 0.074 in. x 0.50 in. vi) Type and Size of Holding Frame (Ref.: Table 6a-2) 0.75 in. x 1.00 in. angle D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = inches ii) Width of Perforated Plate Opening (Wwnc = W + 12") Wwnc = inches iii) Width of Trashrack Opening (Wapening) from Table 6b-1 Wopening = Inches iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP inches Grating). Describe if "Other" Other: vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge 4. Detention Basin length to width ratio (LAW) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no WQCV Pond 201.x1s, EDB ' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 i L r Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 201) 6. Two -Stage Design A) Top Stage (Dwo = 2' Minimum) Dwo = feet Storage= acre-feet B) Bottom Stage (DBs = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum, Dm = feet Storage = 5% to 15% of Total WQCV) Storage= acre-feet Surf. Area= acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.5' Top Stage Depth or 2.5 Feet) Storage= acre-feet Surf. Area= acres D) Total Volume: Voltot = Storage from 5A + 6A + 6B Voltot = acre-feet Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = 4.00 (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: WQCV Pond 201.xls, EDB I tmp#54.txt POND 301 #units=Elevation,ft,Area,ft2,volume,acft,volume,acft # Elev Area Cumml Avg cumml Conic # ft ft2 acft acft 4909.0000 85813.3071 8.7577 8.6796 4908.0000 80152.2235 6.8527 6.7749 4907.0000 74590.8191 5.0765 4.9991 4906.0000 69128.9262 3.4268 3.3498 4905.0000 59929.5117 1.9454 1.8697 4904.0000 39213.9360 0.8074 0.7400 4903.0000 15466.6723 0.1798 0.1331 4902.0000 195.0938 0.0000 0.0000 Page 1 I ' Harmony Technology Park STANTEC Pond 301 Orifice Calculation 187710640 ' 100-Year Pond Orifice Plate Basic Equation: 1 Q=Cd•A•(2g•(h1-h2))0.5 ' Revised Equation: A=Q/(Cd • (2g • (h1 - h2 ))0.5 Input ' Basin Area = 29.00 Contributing Drainage Area Cd= 0.65 Input ' g= 32.20 ft/s2 Gravitational Constant h1= 4909.00 100 year WSEL h2= 4902.00 Invert Elevation of Pipe ' Q = 12.00 cfs Input Output A= 0.87 ft2 Calculated orifice area ' *r— 6.31 Calculated radius (inches) * Orifice opening bottom aligned with invert of pipe, difference in head on the orifice measured from the centerline of the orifice opening Orifice Dia. = 12.6262 1.0522 inches feet I I I to (0 Lo N C) C) LO rl. CD 0000 io ca 0 N co E (D cc CU w Q cu , cr 5 5 !t 0 " t 0 03 0 C� 0 C� LO .zl_ W 0 04 0) 0 77, i CD 3 C) m I�t r-- Lo 0 rl co LO LO V(D r r- 00 cr) C) 1` (D 0 co Ep 6 r c6 L6 c6 06 6" 00U to 0 C') r C') 00 Lc) 00 0 C:), O 0 W It CO r, M 1.- 0 , C; 77 (0 LO CD U) LO r— ti -It (D co 0) cf) cy) cy) (.0 LO 1` r-- (N CD co r- m 0) -q b N w 0 m a 0 4 U.) (S m 0 N a m a Lo 0 P, M , 't 0 0 Cl (Y) 0) CO LO t- 00 0) - ci 6 6 LO CD r CO C14 (M LO r 0 C14 IT M , to , M r� 0 M 0 M It 0 LO CV) to 03 co CL C) r N m I LO 0 P, m CO > 00000000 00 LU 0' C`0)0) , mt (3t, 0' q q CD _0 0 U) `m O O 0 (D m 0 co Cd m 2! 0 U) m m 3: m .T x ai 2-0 ZI C) rn CV) 0 IL c 0 cu �5 CL 0 C) 00 I Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 301) 1. Basin Storage Volume la = 80.00 % A) Tributary Area's Imperviousness Ratio (i = la / 100) i = 0.80 B) Contributing Watershed Area (Area) Area = 29.00 acres C) Water Quality Capture Volume (WQCV) WQCV = 0M watershed inches (WQCV =1.0' (0.91 ' 13 - 1.19. 12 + 0.78 " 1)) D) Design Volume: Vol = (WQCV / 12)' Area' 1.2 Vol = 0.952,. acre-feet 2. Outlet Works A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforation (H) H = 2.19 feet C) Required Maximum Outlet Area per Row, (Ao) Ao = 1.79 ' square inches D) Perforation Dimensions (enter one only) i) Circular Perforation Diameter OR D = 1.5000 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, See Table 6a-1 For Maximum) nc = 1- number F) Actual Design Outlet Area per Row (AJ A. = .1.77. square inches G) Number of Rows (nr) nr = 7 number H) Total Outlet Area (Aot) Aat = 11.61 square inches 3. Trash Rack A) Needed Open Area: At = 0.5' (Figure 7 Value)' Aat At = 371 square inches B) Type of Outlet Opening (Check One) x < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (W� c:) from Table 6a-1 Wmac = 15 inches ii) Height of Trash Rack Screen (HTR) HTR = 50 inches WQCV Pond 301.x1s, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 301) iii) Type of Screen (Based on Depth H), Describe if "Other" x S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other' X 0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) 1.00 inches Type and Size of Support Rod (Ref.: Table 6a-2) TE 0.074 in. x 0.50 in. vi) Type and Size of Holding Frame (Ref.: Table 6a-2) 0.75 in. x 1.00 in. angle D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = inches ii) Width of Perforated Plate Opening (Wwn. = W + 12") Wwno = inches iii) Width of Trashrack Opening (Wapen;ng) from Table 6b-1 Wopening - Inches iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacing (Baseq on Table 6b-1, KlempTm KPP inches Grating). Describe if "Other" Other: vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio (L/W) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no WQCV Pond 301.xls, EDB ' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 301) 6. Two -Stage Design A) Top Stage (DWo = 2' Minimum) DWo = feet Storage= acre-feet B) Bottom Stage (Dm = DWo+ 1.5' Minimum, DWo+ 3.0' Maximum, Da = feet Storage = 5% to 15% of Total WQCV) Storage= acre-feet Surf. Area= acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.5 ' Top Stage Depth or 2.5 Feet) Storage= acre-feet Surf. Area= acres D) Total Volume: Voltot = Storage from 5A + 6A + 6B Vol,', = acre-feet Must be > Design Volume in I 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = 4.00 (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: WQCV Pond 301.xls, EDB ' tmp#55.txt POND 501 ' #units=Elevation,ft,Area,ft2,volume,acft,volume,acft # Elev Area Cumml Avg Cumml Conic # ft ft2 acft acft 4911.0000 46747.6934 4.9266 4.8934 4910.0000 42110.0118 3.9067 3.8740 ' 4909.0000 37572.8774 2.9920 2.9598 4908.0000 33136.2945 2.1804 2.1487 4907.0000 28800.2696 1.4695 1.4384 4906.0000 24564.8139 0.8569 0.8265 t 4905.0000 17382.1399 0.3754 0.3473 4904.0000 7565.6240 0.0891 0.0687 4903.0000 195.1957 0.0000 0.0000 a Page 1 1 1 1 1 Harmony Technology Park Pond 501 Orifice Calculation 100-Year Pond Orifice Plate Basic Equation: Q=Cd•A•(2g•(hl-h2))0.5 Revised Equation: A=Q/(Cd • (2g • (hl - h2 ))0.5 In Basin Area = 16.50 Cd= 0.65 g= 32.20 ft/s2 h1= 4911.00 h2= 4903.00 Q = 7.50 cfs Output Contributing Drainage Area Input Gravitational Constant 100 year WSEL Invert Elevation of Pipe Input A= 0.51 ft2 Calculated orifice area *r— 4.83 Calculated radius (inches) ` Orifice opening bottom aligned with invert of pipe, difference in head on the orifice measured from the centerline of the orifice opening Orifice Dia. = 9.6542 inches 0.8045 feet STANTEC 187710640 LO LO N C) 0 co in to N C; 0 0 CD CD r- .2 CO N > CD N E CD CC 0) 0 E 0 CY m m o m CO 1 0 1a, 3: 6 10 if, co 0 LO > Lo 0 v v 0 V 0 v 3 .2 0 E m 0 OoLnMOMONOM C) CO h Lr) CO 0) LO C) LO C; N M4 Lo, to CO r�-' -0, Lf) r-� m m -t LO co r�l 0) E3 " 0 0 0 M.00 �T , CD 00 00 Lo 0 N N c6 4 6 It M O n CO W N M �t " 0 CD C> N I* co fl- w 0 0 m 0 0 M 6 ci C=; 6 C) 0 0 co m co co rl 0) "t CO �T CO to Ln I- 1- NCO m 4) r, 0) Cl) 0) to , co qT co 0 0 (0 LO r.- co C3) M -It CV) 0) co o C,4 CD c) co "*: 00 R C) rl 0) (0 C�o CO CO (D P� C) CO LO 1� 00 (D C) ci 6 ci 6 C) C; 6 6 M N �T C) Co Ce) 0 Co (D C�j 0 Lo CO (D 0 CO P� It 0 cr) C. 14 0) to M CO CO LO � 0 M rl M NN 0 Ce) '�t N LO (0 r'- CO 'T N 0 0 0 C) 0 C> 0 qT d I;r It -4- q Rr 'T Nt Iq Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 P i J Designer: Brad Kugler Company: Stantec Date: May 15, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 501) 1. Basin Storage Volume la = 80.00 % A) Tributary Area's Imperviousness Ratio (i = la / 100) i = 0.80 B) Contributing Watershed Area (Area) Area = 16.50 acres C) Water Quality Capture Volume (WQCV) WQCV = 0.33 watershed inches (WQCV =1.0*(0.91.*1'-1.19*1'+0.78*1)) D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 Vol = 0.542 acre-feet 2. Outlet Works A) Outlet Type (Check One) X Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforation (H) H = 2.40 feet C) Required Maximum Outlet Area per Row, (AJ Ao = 0.90 square inches D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR D = 1.0000 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, See Table 6a-1 For Maximum) nc = 1 number F) Actual Design Outlet Area per Row (AJ A. = 0.79 square inches G) Number of Rows (nr) nr = 7 number H) Total Outlet Area (A,,) At = 5.65 square inches 3. Trash Rack A) Needed Open Area: At = 0.5 * (Figure 7 Value) * Aot At = 192 square inches B) Type of Outlet Opening (Check One) X < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening Mm m) from Table 6a-1 Mont = 9 inches ii) Height of Trash Rack Screen (HTR) HTR = 53 inches WQCV Pond 501.xls, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility. Sheet 2 of 3 Designer: Brad Kugler Company: Stantec . Date: May 15, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 501) iii) Type of Screen (Based on Depth H), Describe if "Other' x S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other" x 0.139" (US Filter) Other: v) Spacing of Support Rod (D.C.) 0.75 inches Type and Size of Support Rod (Ref.: Table 6a-2) #156 VEE vi) Type and Size of Holding Frame (Ref.: Table 6a-2) 3/8 in. x 1.0 in. flat bar D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = inches ii) Width of Perforated Plate Opening (Woonc = W + 12") Woono = inches iii) Width of Trashrack Opening (Wopening) from Table 6b-1 Wopening = Inches iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP inches Grating). Describe if "Other" Other: vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio (L/W) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no WQCV Pond 501.xls, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: Brad Kugler Company: Stantec Date: May 15, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 501) 6. Two -Stage Design A) Top Stage (Dwo = 2' Minimum) Dwo = feet Storage= acre-feet B) Bottom Stage (Dm = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum, DBs = feet Storage = 5% to 15% of Total WQCV) Storage= acre-feet Surf. Area= acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.5 * Top Stage Depth or 2.5 Feet) Storage= acre-feet Surf. Area= acres D) • Total Volume: Volt., = Storage from 5A + 6A + 6B Vol,o, = acre-feet Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = 4.00 (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: WQCV Pond 501.xls, EDB rtmp#56.txt POND 600 #units=Elevation,ft,Area,ft2,volume,acft,volume,acft # Elev Area Cumml Avg Cumml Conic # ft ft2 acft acft 4911.0000 35026.0383 2.6878 2.6420 4910.0000 32167.9764 1.9165 1.8709 4909.0000 29410.4444 1.2097 1.1643 4908.0000 26753.4422 0.5650 0.5199 4907.0000 11140.3293 0.1300 0.0978 4906.0000 189.2611 0.0000 0.0000 L' LJ I r LJ 11 Page 1 1 1 1 1 Harmony Technology Park Pond 600 Orifice Calculation 100-Year Pond Orifice Plate Basic Equation: Q=Cd*A*(2g*(h1 -h2W.5 Revised Equation: A=Q/(Cd * (2g • (h1 - h2 W.5 Basin Area = 12.38 Cd= 0.65 g= 32.20 ft/s2 h1= 4911.00 h2= 4906.00 Q = 10.00 cfs Ut Contributing Drainage Area Input Gravitational Constant 100 year WSEL Invert Elevation'of Pipe Input A= 0.86 ftZ Calculated orifice area *r— 6.27 Calculated radius (inches) * Orifice opening bottom aligned with invert of pipe, difference in head on the orifice measured from the centerline of the orifice opening Orifice Dia. = 12.5376 inches 1.0448 feet STANTEC 187710640 9 LO CO LO 0 0 I�t co 0 0 co I? 0 C; .2 CD M CD N W m a) > w o E 0 CD m a) CT E " .2 C m m 0 (D M 0 cr k v v 12 !t 0 " 0 0 0= 0 r- N LO lqr C> q V C') rh 0) O CO r-: o6 6 co 0 6 0 0 NCD 1� 0 CO 00 co co 6 C=; 0 C14 C, N N -IT rl cr) n' C; 6 ci C), c; 00 N It � t- cl) co m 't C, U') co Cw) Ce) CD Co p, CC) NCO Cl r, , , "T Q -q Lo zr CO 00 4 to cq M C) CO , h CO Cl CD C) C) C*4 CO CO t'- 00 ci ci c; 6 ci 6 (a 0 co 0 00 co 00 0) '-4- CO CO 04 Q rl- C� NLO Lo 0) CO 0) N qct 04 04 Ce) M CIJ M co CD 0 N CO 'I- CO co 0 > co r, w 0 a a 0 0 0 � mommomo, 'It V V V V 0 0 0 ti ww Ie .D x c CC _0 c 0 CL c 0 cu 0 O. Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 600) 1. Basin Storage Volume A) Tributary Area's Imperviousness Ratio (i = 18 / 100 ) B) Contributing Watershed Area (Area) C) Water Quality Capture Volume (WQCV) (WQCV =1.0*(0.91 *13-1.,9'12+0.78'1)) D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 2. Outlet Works A) Outlet Type (Check One) la = 80.00 % i = 0.80 Area = 12.38 acres WQCV = 0.33 : watershed inches Vol = 0.406 acre-feet X Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above.Lowest Perforation (H) H = 1.73 feet C) Required Maximum Outlet Area per Row, (Ao) Ao = 1.06 square inches D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR D = 0.8000 inches, OR ii) 2" Height Rectangular Perfgration Width W = inches E) Number of Columns (nc, See Table 6a-1 For Maximum) nc = 2 number F) Actual Design Outlet Area per Row (Ao) A. = 1.01 square inches G) Number of Rows (nr) nr = 5 number H) Total Outlet Area (At) At = 5.22 square inches 3. Trash Rack A) Needed Open Area: At = 0.5 * (Figure 7 Value)' Aot B) Type of Outlet Opening (Check One) At = 182 square inches X < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (Wconc) from Table 6a-1 Wconc = 12 inches ii) Height of Trash Rack Screen (HTR) HTR = 45 inches WQCV Pond 600.xls, EDB ' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 I I I I r I I I I i I I I I I I 1 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 600) iii) Type of Screen (Based on Depth H), Describe if "Other' X S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other" X 0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) 1.00 inches Type and Size of Support Rod (Ref.: Table 6a-2) TE 0.074 in. x 0.50 in. vi) Type and Size of Holding Frame (Ref.: Table 6a-2) 0.75 in. x 1.00 in. angle D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = inches ii) Width of Perforated Plate Opening (Woono = W + 12") Wconc = inches iii) Width of Trashrack Opening (Wopening) from Table 6b-1 Wopening = inches iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on depth H) (Describe if "Other") KlempT"' KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempT"' KPP inches Grating). Describe if "Other" Other: vii) Minimum Bearing Bar Size (KlempT"' Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio (L/W) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no I WQCV Pond 600.xls, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: Brad Kugler Company: Stantec Date: March 13, 2008 Project: Harmony Tech Park Location: Fort Collins (Pond 600) 6. Two -Stage Design A) Top Stage (Dwo = 2' Minimum) Dwo = feet Storage= acre-feet B) Bottom Stage (DBs = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum, DB = feet Storage = 5% to 15% of Total WQCV) Storage= acre-feet Surf. Area= acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.5 . Top Stage Depth or 2.5 Feet) Storage= acre-feet Surf. Area= . acres D) Total Volume: Volt,, = Storage from 5A + 6A + 6B Vol,o, = acre-feet Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = 4.00 (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: i _ WQCV Pond 600.xis, EDB I I r I I ,t I I 1 I I i I APPENDIX E I I I SWMM AND RATIONAL EXHIBITS 1 1 11 I i I I i I 7 f I I � I 501 \ PROPOS D2d'ST( \ \ \ \ 801 PROPOSED 18' STORM OUTLET O 4495 rm / PROPOSED STORM STORM DU LET y PROPOSED 18' STORM ' 1 I II \ \ I � / �PROPOSED%' NORM / 4) 00 / I I 1 r \ S ----t $Ju r■ � -HARMONY HARM-_O_NY TECHNOLOGY / PA`RK i`___--___� 14 PROPOSED R' jr El;l3I✓E/ ' ---1_ < 1\ STORM 1 EXISTING 24' STORM TO BE ABANDONED DSED48-STORM T=10 ds / /°' / OT=12 cfs °I z EXISTING STORM 211 PROPOSED 2d' STORM I PROPOSED STORM OUTLET ul `` EXISTING 15' STORM TO BE ABNDONED / I / t' STORM / / /�PROWSEp'%' STORM I LP�POSEDWSTORM ISTING 30-STORM ISTING 38' STORM BE ABANDONED ISTING 38' STORM 15 Dfs OPOSED 24' STORM —EXISTING 53'X 83' ELLIPTICALSTORM STORM D I'IN) %%%%%p%mp1"m —(4915)--- EXISTING MDE%CONTOUR 5Ff INTERNAL ----(4916)--- EXISTING INTERMEDIATE CONTOUR-1 FT INTERVAL I00 S"M BASIN too DETENTIONPOND 20t MOOS SUBBNMN CONNETNMI 5W ROUONG ELEMENT BASIN NDARY DETENTION POND SUMMARY Msml•>BEB>.�scn•rr���sas��dl��d4'�ikE'� E cs E O i PNRASeaI EXNIBR NOT FOR CONSTRUC NpKfFrplaf NnYr No MsSM�L.De+ILw-T.-OD vruuoo Dv n9No�SWMM RBnsion SICK loft o 44Rj HP EXISTING INLET AND IF STORM PIPE �� __ EXIST)E G ROADWAY I EM t�cq% _� / EXISTING I IGATION I �+1' I�� 11 \PIPE 8 DITC \ DRAINAGE DITCH I\ L . A\ \V A 1 - �1 INTEL (HTP FIRST FILING) rr _ _ /. ' _ EXISTING Is POND t / / 21' OVERFLOW STORM PIPE or 'i �\\ I / Z EXISTING ORIVATE IRRRRIGj7ON DITCH / i m tJ 'as) I EXISTING IRRIGATION I t / PIPER DITCH \\ II I ! I I \ e m1 III E I I l Ir \ /v It ll I I I / II I AV i i I I I EI Sz e E 3 l 6X2 I I / \ 1 HARMONY TECHNOLOGY PARK \I 7 \ \ / ses I t . vv I / I EXISTING STOW\ aaF-3wT.xmEaorr. EXISTING 24- STORM EXISTING 24- STORM 1Y STORM NG DETENTION STORM 8 EXISTING W'STORM EXISTING 31F STORM m ww o� II , IFA� EXISTING53-X8Y IF,IIi ELLIPTICAL STORM EXISTING 36' STORM o IN 225' 1:IW1��81� � II LEGEND —(4915)— UISTINGINLEXCONTOUR-SFTINTERY& --(4916)-- UISTINGINTERMEDIATECONTWR-1FTINIEWK BASIN I0c�1n p•Vnw B26 — ACRES ® - 6MINIGE DESIGN POINT HYDROLOGY TABLE Design Point Swin(s) Mee lisle/ composite 1c. Gt4(eEe) 010(clTe) EX-1 EX-1 57,08 0.32 2728 7286 EX2 EX-2 0.65 0.85 1.85 4.24 EX41 EX-3 D.84 DAS 2.51 6.45 EXI EXI IO.BS 0.32 808 16.11 EXS EX-5 0.54 085 1.S1 5.01 EX-6 EXA 0.97 085 3.39 8.92 EX-7 EX-7 47W 0.32 U.33 59.53 EX-8 EXA 325 0.85 585 14.75 OS-1 CS-1 1.4S 0.85 4.M 12AO OS-2 0&2 1.03 0.85 340 865 EXHIBIT NOT FOR CONSTRUCTION e.= 187710640 m wmr: PULLmLT,N4LN-Ia-m IS WI( m18m NIPAW DmmNNo. RATIONAL Revisbn SW 1d1