Loading...
HomeMy WebLinkAboutDrainage Reports - 01/28/1999TIT s . - •t. 1 Final Drainage Study for Fossil Lake P.U.D. First Filing Fort Collins, Colorado January 28, 1999 61999 SERVICES IN( January 28, 1999 Larimer County Engineering Department P.O. Box 1190 Fort Collins, Colorado 80522 RE: Fossil Lake P.U.D. First Filing Larimer County, Colorado Dear Staff: Northern Engineering Services, Inc. is pleased to resubmit this Final Drainage Study for Fossil Lake P.U.D. First Filing for your review. This report was prepared in compliance with technical criteria contained in the Larimer County Stormwater Management Manual and the City of Fort Collins, Storm Drainage Design Criteria and Construction Standards Manual. If you should have any questions or comments as you review this report, please feel free to contact me at your convenience. Sincerely, NORTHERN ENGINEERING SERVICES, INC. Mary B. Wohnrade, P.E. 420 SOUTH HOWES, SUITE 202, FORT COLLINS, COLORADO 80521, (970) 221-4158, FAX (970) 221 .4 159 TABLE OF CONTENTS I. INTRODUCTION 1.1 Objective .............................................. 1.2 Mapping and Surveying ....................... 1.3 Site Reconnaissance ............................. II. SITE LOCATION AND DESCRIPTION 2.1 Site Location ........................................ 2.2 Existing Site Description ...................... 2.3 Irrigation Ditches and Reservoirs ......... III. HISTORIC CONDITIONS 3.1 Major Basin Description ...................... 3.2 Historic Drainage Patterns ................... 3.3 Off -Site Flows ....................................... IV. DEVELOPED DRAINAGE 4.1 Proposed Development ........................ 4.2 Developed Drainage Basins .................. V. HYDROLOGIC ANALYSIS 5.1 Design Criteria ..................................... 5.2 Developed Basins and Future Filings ... VI. HYDRAULIC ANALYSIS 6.1 Design Criteria .................................... VII. ON -SITE DETENTION PONDS 7.1 Design Criteria ..................................... VIII. WATER QUALITY 8.1 Design Intent and Criteria ................... 8.2 Extended Detention ............................. 8.3 Grass -Lined Swales .............................. IX. EROSION CONTROL 9.1 Erosion Control Plan and Criteria ....... 9.2 Rainfall Erosion Control Plan .............. 9.3 Wind Erosion Control Plan ................. X. EASEMENTS 10.1 Easements ............................................ XI. CONCLUSIONS 11.1 Compliance with Standards ................ 11.2 Downstream Impacts .......................... 11.3 Irrigation Facilities .............................. REFERENCES................................................. .............. 1 .............. 1 .............. 1 2 2 2 6 6 7 ...... 7 p r� 7 APPENDICES Appendix A: Offsite and Historic Hydrology Appendix B: Developed On -site Hydrology Appendix C: Street Capacity Appendix D: Design of Inlets Appendix E: Design of Swales Appendix F: Design of Culverts Appendix G: Design of Storm Sewers Appendix H: Detention Pond Rating Curves and Routing Appendix I: Water Quality Appendix J: Riprap Calculations Appendix K: Erosion Control Calculations Appendix L: Design of Pond Emergency Overflow Weirs 1 ' A x • n m X21t— n.e cR R \/ ---- fpS- RQ�1 -- 1 7 REGE 16 y� q Dick . Lake j' ) Pm1e 1019g7WYBo�PioBrc 'e$ — Sb & Lake Final Drainage Study for Fossil Lake P.U.D. First Filing Fort Collins, Colorado January 28, 1999 I. INTRODUCTION 1.1 Objective This report sunirriarizes a comprehensive hydrologic and hydraulic analysis of both existing and developed conditions for the Fossil Lake P.U.D. First Filing residential development, based on design criteria adopted by Larimer County and the City of Fort Collins, Colorado: 1.2 Mapping and Surveying Aerial topographic mapping with a contour interval of one (1) foot was used in conjunction with field survey information, which was provided by King Surveyors of Windsor, Colorado. 1.3 Site Reconnaissance A site visit was conducted on May 6, 1998 by the project engineer. Based on the topographic mapping, existing drainage basins and land use were confirmed as well as existing structures and utilities. The location and dimensions of existing storm drainage facilities were verified as well as their condition and flow direction- H. SITE LOCATION AND DESCRIPTION 2.1 Site Location Fossil Lake P.U.D. is located in the West Half of Section 9, Township 6 North, Range 68 West of the Third Principal Meridian in Larimer County, Colorado (see Vicinity Map). The site is bounded by County Road 9 on the west, County Road 36 on the north and County Road 7 on the east. 2.2 Existing Site Description ' The Fossil Lake P.U.D. site is an approximately 287.985 acre agricultural parcel. The site slopes generally from northwest to southeast at slopes ranging from 0.77% to 2.63%, towards Fossil Creek Reservoir. There are existing residences on the northwest, west and southeast sides ' of the property. 2.3 Irrigation Ditches and Reservoirs tThere are two existing irrigation ditches located on or adjacent to the site, Muskrat Ditch and Mail Creek Ditch. ' Muskrat Ditch is located at the north end of the site and flows from west to east. The improvements proposed as part of the First Filing will not interfere with this ditch. Mail Creek Ditch is located near the center of the site with a crossing under County Road ' 9 (Culvert IRR-1). Mail Creek Ditch flows from west to east across the existing site, and is 1 Final Drainage Study Fossil lake P.U.D. First Filing January 28, 1999 Northern Engineering Services, Inc. proposed to be rerouted thru the proposed site to Pond 1. Pond 1 will be used for storage of irrigation water. An assumed ditch flow of 20 cfs has been used for design of downstream conveyance elements. The actual flow must be verified later by measuring the flow when the ditch is running fiill, and is probably closer to 10 cfs. III. HISTORIC CONDITIONS 3.1 Major Drainage Basin The site lies within two major drainage basins, the Fossil Creek Basin and the McClellands Basin (see Historic Plan). The majority of the site is located in the Fossil Creek Drainage Basin which is Basin HI, and includes the southern two-thirds of the site or roughly 248.403 acres. According to the Fossil Creek Drainage Basin Master Drainagewav Planning Study (Reference 2), detention is not a requirement in the Fossil Creek Basin. Basin H2, which includes the northern portion of the site and is roughly 39.582 acres, is located in the McClellands Creek Basin. According to the McClellands Basin Master Drainage Plan (Reference 1), detention is required in the McClellands Basin with a maximum 10-year release of 0.2 cfs/acre and a maximum 100-year release of 0.5 cfs/acre. There is no proposed development occurring in this basin as part of the First Filing improvements. 3.2 Historic Drainage Patterns Basin H 1 slopes from the northwest to the southeast at slopes ranging from 0.65 to 2.56% towards Fossil Lake Reservoir. The 2 and 100-year discharges from this basin are 64.2 and 236.3 cfs respectively. Basin H2 slopes generally from the west to east at slopes ranging from 1.31 to 2.78% towards McClellands Drainageway. The 2 and 100-year discharges from this basin are 13.3 and 49.1 cfs respectively. 3.3 Off -Site Flows Off -site runoff enters the Fossil Lake P.U.D. site from the west from Basin OS 1 (see page A-1). The anticipated 2 and 100-year discharges from this basin are 14.3 and 52 cfs respectively. It is assumed that under existing conditions, runoff from this basin would overtop County Road 9 (CR 9) due to the absence of a borrow ditch along the west side of the road. The proposed improvements to CR 9 include a borrow ditch along the west side of the road which will intercept and route runoff from Basin OS 1 to Culvert OS 1. These off -site flows will be routed to Pond 1 for detention. IV. DEVELOPED DRAINAGE 4.1 Proposed Development The Fossil Lake Village P.U.D. development consists of two filings and a total of ten ' phases for a total area of 287.985 acres. The First Filing includes Phases 1- 4, for a total area of 1 t IFinal Drainage StudN Northern Engineering Services. Inc. Fossil Lake P.U.D. First Filing January 28, 1999 199.267 acres. The Second Filing includes Phases 5-10, for a total area of 88.718 acres. The proposed development includes residential lots, mixed use or multi family and, patio or town homes. Outlots will be provided for open space parks and landscape areas. The open space areas identified as Outlots F and I, will also serve as stormwater quality/detention area> A recreation center has also been provided. 4.2 Development Drainage Basins Stormwater runoff from the proposed development will be routed to on -site water quality and detention facilities via overland flow, storm sewers and swales. The site has been divided into a total of 50 developed basins with stormwater routed to three separate facilities, Pond 1, Pond 2 and the Irrigation Pond. Basins 1-6, and 8-17, a total of42.154 acres, will be routed to Pond 1 for water quality treatment and detention. Pond 1 will release to Swale 18 which flows into Swale 25 which then flows into an existing irrigation ditch which is located off -site, east of the development, on developer owned property. The existing irrigation ditch will convey stormwater to Fossil Lake Reservoir. Basins 7, 18 and 20-24, a total of 21.587 acres, will be routed undetained to Fossil Lake Reservoir, following the same flowpath as the release from Pond 1. Basins 25-31, a total of 13.606 acres, will be routed to the Irrigation Pond for inadvertent water quality treatment and detention. The Irrigation Pond is not intended to be a formal detention/water quality facility, and has not been designed as such. The pond has been included in the overall storm drainage system in order to provide water quality enhancement for stormwater runoff from Basins 25-31. In addition, the discharge from Pond 2 will receive a second treatment by routing the flows through the Irrigation Pond. Release from the Irrigation Pond will be overland through a proposed weir, with the discharge directed towards Fossil Lake Reservoir. Basin 32, and a 1.183 acre portion of Basin 38, a total of roughly 3.267 acres, will drain off -site to the Beard property. This flow will be overland just as it was historically, but with a dramatic decrease in the tributary area, from roughly 1 /3 of historic basin H 1 ( approximately 83 acres)to the proposed 3.267 acres. Basins 33-37, 39 and 5.965 acres of Basin 38, a total of 30.786 acres, will be routed to the Irrigation Pond for inadvertent water quality treatment and detention. These basins consist of rural and estate lots with a minimum amount of impervious area. Basins 40-51, a total of 31.765 acres, will be routed to Pond 2 for water quality treatment and detention. Pond 2 will release to Swale 2 which will convey flows to the Irrigation Pond. V. HYDROLOGIC ANALYSIS 5.1 Design Criteria Modeling criteria contained in the Larimer County Stormwater Management Manual, (LCSMM, Reference 3), the City of Fort Collins Storm Drainage Design Criteria Manual (SDDCM, Reference 4) and Storm Drainage Criteria Manual by the Urban Drainage and Flood Final Drainage Study Northern Engineering Services. Inc. Fossil Lake P.U.D. First Filing January 28. 1999 Control District (Reference 5) have been referenced for this Final Drainage Study. The Rational Method has been used to estimate peak stormwater runoff within the developed site. The initial 2-year and major 100-year design storms have been used in the design of the proposed drainage system which includes inlets, swales, storm sewers and detention/water quality ponds. Rainfall intensity data for the Rational Method has been taken from IDF curves and equations generated specifically for the Fossil Lake Village P.U.D. site by the computer program "Watershed Modeling" by Eagle Point. Input of precipitation amounts have been taken from the NOAA Atlas 2, Volume III - Colorado. Compared to Figure 3-1 in the SDDCM, rainfall intensities generated for the Fossil Lake site were approximately 1.5% lower than intensities given in Figure 3-1. The computer program "Watershed Modeling Module", by Eagle Point software has been used in the routing of detention ponds. The program uses the Modified Puls method of reservoir routing. SWMM modeling was also performed as part of the overall hydrologic analysis to verify detention pond sizes and release rates. Section B contains all input and output files and supporting calculations pertaining to this model. 5.2 Developed Basins and Future Filing All storm drainage facilities for this development have been sized based on assumed future developed conditions, which will far exceed the maximum runoff from adjacent undeveloped basins. Consideration has been given to future development of adjacent filings which will impact the design of proposed inlets, swales, storm sewers and detention facilities. VI HYDRAULIC ANALYSIS 6.1 Design Criteria Modeling criteria contained in the Larimer County Stormwater Management Manual (Reference 3) the City of Fort Collins Storm Drainage Design Criteria Manual, (SDDCM, Reference 4) and Storm Drainage Criteria Manual by the Urban Drainage and Flood Control District (Reference 5) have been referenced for this Final Drainage Study. In addition to the aforementioned criteria manuals, the following four computer programs have been used in the design of inlets, swales, culverts and storm sewers: 1) "UDINLET" has been used in the design of inlets; 2) "Flowmaster" has been used in the design of all swales; 3) "HY8" has been used in the design of all culverts; 4) "Storm Sewer Module", by Eagle Point software has been used in the design of all storm sewers. VII. ON -SITE DETENTION PONDS Final Drainage Study Northern Engineering Services. Inc. Fossil Lake P.U.D. First Filing January 28, 1999 7.1 Design Criteria There are two on -site detention ponds proposed for the development, Pond 1 and Pond 2. The computer model "Watershed Module" by Eagle Point software has been used in the analysis of the detention ponds. Appendix H contains the stage -discharge rating and pond routing for each pond. The Modified Puls method, which is commonly used for reservoir routing, has been used in the pond analysis. Emergency overflow weirs have been provided for each pond, which have been designed to pass the total 100-year inflow to the detention facility. Pond 1 is located at the north end of the site and is a wet irrigation/detention pond with a permanent pool elevation of 4899.85. The pond will primarily serve as storage for irrigation water, but will also include extended detention for water quality and, stormwater detention for the I00-year storm. The maximum inflow to Pond 1 is 128.28 cfs which includes the off -site Basin OS and on -site Basins 1-6, 8-17. The maximum release from the pond is 48.31 cfs with an associated water surface elevation of 4902,53 and storage requirement of 5.299 ac-ft. Pond 2 is located at the south end of the site and is a dry detention facility. The pond will primarily serve as an extended detention basin for water quality and, stormwater detention for the 100-year storm The maximum inflow to Pond 2 is 64.80 cfs and includes on -site Basins 40-51. The maximum release from the pond is 31.09 cfs with an associated water surface elevation of 4890.84 and storage requirement of 1.847 ac-ft. VIIL WATER QUALITY 8.1 Design Intent and Criteria Water quality measures have been implemented for the proposed development and will include extended detention and grass -lined swales. In some instances, stormwater will be routed thru more than one water quality treatment facility. Pond I has also been designed with a longer than usual drain time, from 12 hours to a 40 hour drain time, for further water quality enhancement. Criteria contained in the Urban Storm Drainage Criteria Manual, Volume 3-Best Management Practices (Reference 5) has been used in the design of all water quality facilities. Appendix I contains calculations relating to the design water quality facilities. 8.2 Extended Detention Wet and dry extended detention basins have been utilized to enhance stormwater quality from the developed site. The flood routing detention volume has also been provided above the water quality capture volume (WQCV) for Ponds 1 and 2. Pond I is a wet extended detention basin and has been designed for a 40-hour detention time which is a departure from the normal 12-hour drain time. We believe that additional water quality is achieved with the 40-hour drain time. The required water quality capture volume for Pond 1 is 0.53 ac-ft. Pond 1 will discharge into Swale 18 which then flows into Swale 25. These downstream swales provide additional water quality treatment before stormwater is discharged from the site. Final Drainage Study Northern Engineering Services. Inc. Fossil lake P.U.D. First Filing January 28. 1999 Pond 2 is a dry extended detention basin and has been designed for a 40-hour detention time which is the norm The required water quality capture volume for Pond 2 is 0.33 ac-ft. Pond 2 discharges into Swale 2 which then flows into the Irrigation Pond. The proposed Irrigation Pond located in Tract D at the south end of the development, will serve multiple purposes. First and foremost, the pond will store irrigation water which will be delivered from Mail Creek Ditch thru culvert IRR-1. Second, the pond will serve as an energy dissipater for Swales 2, 36 and 40. Finally, the pond will provide an additional water quality treatment for stormwater runoff. A water quality structure will not be provided instead, 1-foot of storage will be provided between the permanent pool elevation of 4873.00 and the overflow weir notch elevation of 4874.00. This one foot of storage will provide a retention volume of roughly 2.94 ac-ft. The total storage from the permanent pool elevation of 4873.00 to the top of pond elevation 4875.00, is roughly 6.154 ac-ft. The overflow weir will be the only outlet from the pond, and has been sized for a total 100-year inflow of 149.6 cfs, which includes the maximum inflow to Pond 2 of 64.8 cfs, the runoff from Basins 33-36 of 28.4 cfs, Basin 38 inflow of 12.4 cfs and Storm Sewer Line 39 discharge of 44.0 cfs. The weir is intended to spread the flow out into a sheet flow type of discharge which will minimize the potential for erosion and, provide additional water quality treatment by introducing overland flow across naturally vegetated areas before stormwater enters Fossil Lake Reservoir. 8.3 Grass -Lined Swales Grass -lined swales have been used to collect overland flows from roadways, yards and parking lots. The swales are used to limit the extent of directly connected impervious areas and, have been designed to maintain low velocities (2 fps) during the 2-year event. Swales which are have been designed for water quality purposes include Swale 2, 18, 24, 25 and 40. The longitudinal slope in these swales generally varies between 0.75 to 1.4%. Table 4-1 in Appendix I summarizes the design criteria used in the design of swales for water quality. IX. EROSION CONTROL 9.1 Erosion Control Plan and Criteria The erosion control plan presented here is intended to control both rainfall and wind erosion. Evaluation of the rainfall erosion control plan will be completed first, with the wind erosion control plan to follow. The Erosion Control Reference Manual for Construction Sites (ECRM), City of Fort Collins, has been referenced for this erosion control plan. 9.2 Rainfall Erosion Control Plan The proposed rainfall erosion control plan during construction will consist of temporary structural erosion control measures. Gravel inlet filters will be placed at all curb inlets. Straw bale inlet protection will be placed at the upstream end of the outlet pipe from Ponds 1 and 2. Silt fencing will be installed along a portion of the east propertyline, adjacent to the existing Beard residence, to prevent sediment from migrating onto private property. LJ ' Vegetative erosion control will be used in association with this project by using straw mulch with temporary seeding. It has been clearly noted on the Grading, Drainage and Erosion Control Plan (note 4) that no soils shall remain exposed for more than thirty days before requiring temporary or permanent erosion control measures, unless approved by Stormwater Utility. Performance standards for the City of Fort Collins to be used for "During Construction" activities are given in Table 8-A of Appendix K. Computation of the "Performance Standard" and "Effectiveness" of the Erosion and Sediment Control Plan are presented in Appendix K of this report. The "Construction Sequence" for the proposed development is given on the Grading, Drainage and Erosion Control Plan. ' 9.3 Wind Erosion Control Plan The proposed wind erosion control plan during construction will consist of silt fencing. From the Wind Erodibility Map for Fort Collins, Colorado, the site is located in a moderate erodibility zone. The silt fencing adjacent to the Beard property will serve a dual purpose in that it will act as both a wind barrier and rainfall erosion control structure. See the Grading, Drainage and Erosion Control Plan for locations of proposed erosion ' control measures. I X. EASEMENTS 10.1 Easements There are no off -site drainage easements proposed as part of the First Filing development. Drainage swales, ponds and storm sewers are located either within an outlot or, within a dedicated drainage easement. XI. CONCLUSIONS 11.1 Compliance with Standards All drainage analyses have been performed according to the Larimer County Stormwater Management Manual, the City of Fort Collins Storm Drainage Design Criteria Manual and the Urban Drainage and Flood Control District's Drainage Criteria Manual. There are no variances requested as part of the proposed development. 11.2 Downstream Impacts Properties downstream of the proposed development include Fossil Lake Reservoir and the Beard property. The amount of stormwater runoff entering the Beard property will be reduced from historic conditions as discussed in Section 4.2. 11.3 Irrigation Facilities The developer will design and construct all irrigation related facilities associated with this development. This Drainage Study and associated Utility Plans will not provide details of any irrigation related structure or facility. Final Drainage Study Fossil take P.U.D. First Filing January, 28, 1999 Northern Engineering Services. Inc. REFERENCES 1). McClellands Basin Master Drainage Plan, City of Fort Collins, Colorado, Greenhorne & O'Mara, Inc., June 20, 1986. 2.) Fossil Creek Drainage Basin Master Drainagewav Planning Study, City of Fort Collins, Larimer County, Colorado, Simons, Li & Associates, Inc., August 1982. 3.) Larimer County Stormwater Management Manual, Resource Consultants Inc., Fort Collins, Colorado, April 1979. 4.) Storm Drainage Design Criteria and Construction Standards, City of Fort Collins, Colorado, May, 1984. 5.) Drainage Criteria Maunal, Volume 1-3, Urban Drainage and Flood Control District, Wright -McLaughlin Engineers, Denver, Colorado, March, 1969. I Storm Drainage Inventory for Fossil Lake Kllage P. U. D. First Filinn Inventory of Storm Sewers: Storm Sewer Line 1 Inventory ofSwales: Swale 5 Storm Sewer Line 1-1 Swale 6 Storm Sewer Line 2 Swale 10 Storm Sewer Line 7 Swale 15 Storm Sewer Line 11 Swale 16 Storm Sewer Line 28 Swale 17 Storm Sewer Line 39 Swale 18 Storm Sewer Line 42 Swale 20 ' Swale 23 Inventory of Culverts: Swale 24 Culvert I Swale 25 Culvert 5 Swale 36 Culvert 15 Swale 39 Culvert 16 Swale 40 ' Culvert 24 Swale 42 Culvert 0S1 Swale 45 Culvert IRR-I Swale 46 Swale 48 Inventory of Inlets: Swale 50 Inlet 1 Inlet 2 Swale 52 Inlet 3: 10' Sidewalk Inlet 7 Inlet 9 Inlet 10 Inlet 11 Inlet 12 Inlet 13 Inlet 20: 10' Sidewalk Inlet 23: 10' Sidewalk Inlet 28 Inlet 29 Inlet 31 Inlet 32 Inlet 42 Inlet 45: 10' Sidewalk I 1 P 1 1 1 1 1 1 1 i 1 1 D 1 1 Off -site Basin (o--l) A - � Fossil Lake Village Site 6 a 3 S. x lellands Drainageway r j s 1 rcvL \ -� 10 � <Y+) ! 1. I9 0 10 Am"a Omsk C 0, . R\1011K y -- <� 17 BETE 16 A. Y X.: ��•. �,— Swede Lake _ Derek Uke <B>5 va.rkf MICMOJW7wsmMmFmcbm tq....w ' Exhibit I 7456050 171.167 12.851 ACRES 22.890 ACRES 581957 SO FT ' 1699109 39.006 1 13r,360 ARCES 930046 21.351 I BP�U4so �5y107 222��-�(iSIN 222 _ 15.6���T BASIN 513 7456050 SO FT 171.167 ACRES 3.658 AC 512 97�S+1t1Y 9� 7456050 SO FT 511 171.167 ACRES BA§MOal1 AC 1699109 SO FT 39.006 ACRES OS-1 85.963 AC ZolBd)' 0 50 A IN 508 26 7AMO FT 26.431 ACRES BASISA?303 19470304WBFAC 44.698 ACRES j � � wa I •- �� o � C T Lq Ta � `i -Dt - Coz3•g3 I L HISTORIC RUNOFF COMPUTATIONS City of Fort Collins, Overland Flow, Time of Concentration: TI= 1.87(1.1-.CCf)L1n / S1'3 Gutter/Swale Flow, Time of Concentration: Tt= L / 60V To= TI + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i,=26.09/(T,+9.41)079, i,00=74.56/(T,+9.52)079 Calculations BY: MLC Velocity, (V) taken from Figure15.2 Project: Fossil Lake Village Rational Equation: Q= CfCiA Date: August 9, 1998 Overland Flow Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Point Basins Area, A (acres) C, C Cy L (ft) Slope,S N Ti (min) L (ft) S M V (fps) T, (min) L (ft) S N ,V (fps) T' ,,,�„ T ,,,,,,, i (In/hr) O lots) 2-Year H1 H7 248.403 1_00 0.25 US 400.0 1_08 31.0 1947.5 1.32 1.70 19.1 0.0 0.00 0.00 0.0 50A 1.03 642 H2 H2 39,582 1.00 0.25 0.25 400.0 1.70 26.6 8884 2,10 2,20 6.7 0.0 0.00 0.00 0.0 33.4 1.34 13.3 too - Year H1 H1 248,403 1.25 0,25 0,25 400.0 1.08 28.7 1947.5 1.32 1.70 19A 0.0 0.00 0,00 1 0.0 47.8 3.04 236.3 H2 H2 39.582 1,25 0,25 0,25 1 400.0 1.70 24.7 888.4 2.10 2.20 6.7 0.0 0.00 0,00 1 0.0 1 31.4 3.97 49.1 D:\PROJECTS\FLF\2Y-RNF.TBL Page 1 of 1 M t• M 11111110 Ill No Text a) 4 Oct I d I I I 1 1 I I I I Composite Runoff Coefficient Calculations Character of Surface Runoff Coefficient Project: Fossil Lake Village Calculations By: M. Chalona Date: August 6, 1998 Notes. 1) Areas for Basin 1 are for existing conditions. 2) Areas for Basins' 3 and 4 are for assumed future conditions. Streets, Parking Lots, Dnves: Asphalt and Concrete ............................... 0.95 Gravel......................................................... 0.50 Roofs........................... ............................ .. 0.95 Lawns, Sandy Soft Flat,<2.0%................................................. 0.10 Average, 2%to 7%..................................... 0.15 Steep,>7.0%............................................ 0.20 Lawns, Heavy Soil: Flat,<2.0%................... I............................ 0.20 Average, 2% to 7%..................................... 0.25 Steep,>7.0%............................................ 0.35 Runoff Coefficients are taken from the City of Fort Collins, SDDCM Table 3-3 Basin ID Basin Area (Acres) Area of Streets, Parking Lots, and Walks (Acres) Area of Roofs, Walks and Drives (Acres) Area of Gravel Parking and Drives (Acres) Area of Lawn and Landscape (Acres) Weighted Runoff Coefficient 1 8.294 0.670 0.000 0.000 7.624 0.31 2 3.974 0.734 0.795 0.000 2.445 0.52 1,2 12.268 1.404 0.795 0.000 10.069 0.38 3 2.231 0.629 0.461 0.000 1.141 0.59 4 3.361 0.716 0.917 0.000 1328 0.59 5 0.745 0.000 0.092 0.000 0.653 0.34 4,5 4.106 0.716 1.009 0.000 2.381 0.54 6 1.906 0.481 0.390 0.000 1.035 0.57 3,6 4.137 1.110 0.851 0.000 2.176 0.58 3-6 8.243 1.826 1.860 0.000 4.557 0.56 7 1.511 0.983 0.201 0.000 0.327 0.80 8 2,100 0,422 0.428 0.000 1.250 0.53 9 3.617 0.776 0.611 0.000 2.230 0.52 8,9 5.717 1.198 1.039 0.000 3.480 0.52 10 0.323 0.143 0.101 1 0.000 0.079 t 0.78 Page 1 of 6 Composite Runoff Coefficient Calculations Character of Surface Runoff Coefficient Project: Fossil Lake Village Calculations By: M. Chalona Date: August 6, 1998 Notes: 1) Areas for Basin 1 are for existing conditions. 2) Areas for Basins' 3 and 4 are for assumed future conditions. Streets, Parking Lots, Drives: Asphalt and Concrete ............. 0.95 Gravel......................................................... 0.50 Roofs......................................................... 0.95 Lawns, Sandy Boll: Flat.<2.0%................................................. 0.10 Average, 2% to 7%..................................... 0.15 Steep,>7.0%.... ............... ............... ......... 0.20 Lawns, Heavy Solt: Flat.<2.0%................................................ 0.20 Average, 2% to 7%..................................... 0.25 Steep.>7.0%............................................ 0.35 Runoff Coefficients are taken from the City of Fort Collins, SDDCM Table 3-3 Basin ID Basin Area (Acres) Area of Streets, Parking Lots, and Walks (Acres) Area of Roofs, Walks and Drives (Acres) Area of Gravel Parking and Drives (Acres) Area of Lawn and Landscape (Acres) Weighted Runoff Coefficient 11 3.602 0.755 0.733 0.000 2.114 0.54 12 3.015 0.390 0.684 0.000 1.941 0.50 13 0.474 0.196 0.134 0.000 0.144 0.74 14 1.526 1.425 0.000 0.000 0.101 0.90 12,14 4.541 1.815 0.684 0.000 2.042 0.64 15 0.317 0.000 0.000 0.000 0.317 0.25 16 1.347 0.000 0.110 0.000 1.237 0.31 15,16 1 1.664 1 0.000 0.110 0.000 1.554 0.30 17 5.322 0.000 0.331 0.000 4.991 0.29 Pond 1 42.154 7.337 5.787 0.000 29.030 0.47 18 2.414 0.000 0.510 0.000 1,904 0.40 7,18 3.925 0.983 0.711 0.000 2.231 0.55 20 6.762 2.090 0.740 0.000 3.932 0.54 21 4.101 0.444 0.730 0.000 2.927 0.45 1 1 1 1 1 Page 2 of 6 I 1 I i I I I I Composite Runoff Coefficient Calculations Character of Surface Runoff Coefficient Project: Fossil Lake Village Calculations By: M. Chalona Date: August 6, 1998 Notes 1) Areas for Basin 1 are for existing conditions. 2) Areas for Basins' 3 and 4 are for assumed future conditions. Streets, Parking Lots, Drives: Asphalt and Concrete ................................ 0.95 Gravel......................................................... 0.50 Roofs......................................................... 0.95 Lawns, Sandy Soil: Flat.<2.0%................................................. 0.10 Average, 2% to 7%..................................... 0.15 Steep, >7.0%...--.................................... 0.20 Lawns, Heavy Sol/• Flat,<2.0%................................................ 0.20 Average. 2% to 7%..................................... 0.25 Steep,>7.0%............................................ 0.35 Runoff Coefficients are taken from the City of Fort Collins, SDDCM Table 3-3 Basin ID Basin Area (Acres) Area of Streets, Parking Lots, and Walks (Acres) Area of Roofs, Walks and Drives (Acres) Area of Gravel Parking and Drives (Acres) Area of Lawn and Landscape (Acres) Weighted Runoff Coefficient 22 3.704 0.846 0.330 0.000 2.528 0.47 23 2.259 0.510 0.300 0.000 1.449 0.50 22,23 5.963 1.356 0.630 0.000 3.977 0.48 21-23 10.064 1.800 1.360 0.000 6.904 0.47 24 0.836 0.000 0.055 0.000 0.781 0.30 20-23 16.826 3.890 2.100 0.000 10.836 0.50 20-24 17.662 3.890 2.155 0.000 11.617 0.49 7,18 20-24 21.587 4.873 2.866 0.000 13.848 0.50 25 1.644 0.350 0,120 0.000 1.174 0.45 26 2.172 0.906 0.083 0.000 1.183 0.57 27 1.290 0.784 0.240 0.000 0.266 0.81 25-27 5.106 2.040 0,443 0.000 2.623 0.59 28 1.471 0.278 0.245 0.000 0,948 0.50 25-28 6.577 2.318 1 0.688 1 0.000 1 3.571 0.57 Page 3 of 6 Composite Runoff Coefficient Calculations Character of Surface Runoff Coefficient Project: Fossil Lake Village Calculations By: M. Chalona Date: August 6, 1998 Notes- 1) Areas for Basin 1 are for existing oondrtions. 2) Areas for Basins' 3 and 4 are for assumed future conditions. Streets, Parking Lots, Drives: Asphalt and Concrete ................................ 0.95 Gravel... -----........................................... 0.50 Rools......................................................... 0.95 Lawns, Sandy Soil: Flat,<2.0%........................................... -.... 0.10 Average. 2% to 7%..................................... 0.15 Steep,>7.0%..............--.......................... 0.20 Lawns, Heavy Soil: Flat.<2.0%................................................ 0.20 Average. 2% to 7%..................................... 0.25 Steep,>7.0%_....... .............................. .... 0.35 Runoff Coefficients are taken from the City of Fort Collins, SDDCM Table 3-3 Basin ID Basin Area (Acres) Area of Streets, Parking Lots, and Walks (Acres) Area of Roofs, Walks and Drives (Acres) Area of Gravel Parking and Drives (Acres) Area of Lawn and Landscape (Acres) Weighted Runoff Coefficient 29 4.699 0.667 0.640 0.000 3.392 0.44 30 1.725 0.155 0.180 0.000 1.390 0.39 29,30 6.424 j 0.822 0,820 0.000 4.782 0.43 31 0.605 0.206 0.134 0.000 0.265 0.64 29-31 7.029 1.028 0.954 0.000 5.047 0.45 32 2.084 0.000 0.338 0.000 1.746 0.36 33 1 3256 0.345 0.270 0.000 2.641 0.38 34 6.836 0.506 0.370 0.000 5.960 0.34 33,34 10.092 0.851 0.640 0.000 8.601 0.35 35 2.742 0.517 0.234 0.000 1.991 0.44 36 1.065 0.190 0.100 0.000 0.775 0.44 35,36 3.807 0.707 0.334 0.000 2.766 0.44 33-36 13.899 1.558 0.974 0.000 11.367 0.38 37 9.396 0.000 1 0.193 0.000 9.203 0.26 38 7.139 0.072 1 0.138 0.000 6.929 0.27 Page 4 of 6 Composite Runoff Coefficient Calculations Character of Surface Runoff Coefficient Project: Fossil Lake Village Calculations By: M. Chalona Date: August 6, 1998 Notes' 1) Areas for Basin 1 are for existing wnditions. 2) Areas for Basins' 3 and 4 are for assumed future conditions. Streets, Parking Lots, Drives: Asphalt and Concrete ................................ 0.95 Gravel......................................................... 0.50 Roofs......................................................... 0.95 Lawns, Sandy Soil: Flat.<2.0%................................ .......... -..... 0.10 Average, 2% to 7%........ -- ........................ 0.15 Steep,>7.0%............................................ 0.20 Lawns, Heavy Soil: Flat,<2.0%.._............................................ 0.20 Average, 2%to 7%..................................... 0.25 Steep.>7.0%.................................... --.... 0.35 Runoff Coefficients are taken from the City of Fort Collins, SDDCM Table 3-3 Basin ID Basin Area (Acres) Area of Streets, Parking Lots, and Walks (Acres) Area of Roofs, Walks and Drives (Acres) Area of Gravel Parking and Drives (Acres) Area of Lawn and Landscape (Acres) Weighted Runoff Coefficient 39 1.535 0.111 0.193 0.000 1.231 0.39 25- 28,39 8.112 2.429 0.881 0.000 4.802 0.54 40 3.901 0.800 0.672 0.000 2A29 0.51 41 2.262 0.510 0.440 0.000 1.312 0.54 40,41 6.163 1.310 1.112 0.000 3.741 0.53 42 0.736 0.279 0.201 0.000 0.256 0.71 40-42 6.899 1.589 1.313 0,000 1997 0.54 43 4.881 0.874 0.672 0.000 3.335 0.47 44 1.246 0.370 0.180 0.000 0.696 0.56 45 0.901 0.280 0.120 0.000 0.501 0.56 43-45 1 7.028 1.524 0.972 0.000 4.532 0.50 46 2.395 0.000 0.300 0.000 2.095 0.34 47 2.191 0.000 0.180 0.000 2.011 1 0.31 Page 5 of 6 Composite Runoff Coefficient Calculations Character of Surface Runoff Coefficient Project: Fossil Lake Village Calculations By: M. Chalona Date: August 6, 1998 Notes. 1) Areas for Basin 1 are for existing conditions. 2) Areas for Basins' 3 and 4 are for assumed future conditions. Streets, Parking Lots, Drives: Asphalt and Concrete.. ..... ......... .............. 0.95 Gravel......................................................... 0.50 Roofs......................................................... 0.95 Lawns, Sandy Soil: Flat<2.0%...... -................... I ............... ...... 0.10 Average, 2% to 7%..................................... 0.15 Steep,>7.0%............ _.............. 0.20 Lawns, Heavy Soil•. Flat.<2.0%................................................ 0.20 Average. 2% to 7%--................................ 0.25 Steep,>7.0%.............. ...... --.................... 0.35 Runoff Coefficients are taken from the City of Fort Collins, SDDCM Table 3-3 Basin ID Basin Area (Acres) Area of Streets, Parking Lots, and Walks (Acres) Area of Roofs, Walks and Drives (Acres) Area of Gravel Parking and Drives (Acres) Area of Lawn and Landscape (Acres) Weighted Runoff Coefficient 40- 42,46, 47 11.485 1.589 1.793 0.000 8.103 0.46 48 1.862 0.000 0.060 0.000 1.802 0.27 40-48 20.375 3.113 2.825 0.000 14,437 0.45 49 3.254 0.340 0.420 0.000 2A94 0.41 50 0.882 0.260 0.180 0,000 0.442 0.60 49,50 4.136 0.600 0.600 0,000 2.936 0.45 51 7.254 0.000 0.310 0.000 6.944 0.28 Pond 2 31.765 3.713 3.735 0.000 24.317 0.41 1 i 1 1 1 1 Page 6 of 6 r ■� r� r��� r r r r r� r� r� r INITIAL STORM (2-YR) RUNOFF COMPUTATIONS City of Fort Collins, Overland Flow, Time of Concentration: Ti= 1.87(1.1-CCf)L'12 / Sv3 Gutter/Swale Flow, Time of Concentration: Tt= L/60V T== Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =26.09/(T,+9.41)0 79 Calculations By: MLC Velocity, (V) taken from Figure15.2 Project: Fossil Lake Village Rational Equation: Q= CfCiA Date: July 31, 1998 Overland Flow Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Point Basins Area, A (acres) C, c C' L (ft) Slope,S N T, (min) L (III S M V (fps) T, (min) L (ft) S N ,V (fps) T tmb, T (-ni i (in/hr) a (cfs) 1 1 8.294 1.00 0.31 0.25 611A 1,45 34.7 244.4 1.12 2.12 1.9 0.0 o.00 0.00 0.0 36.6 1.27 3.3 2 2 3,974 1,00 0,52 0.25 2023 2.00 1T9 833.1 0.60 1,55 9.0 0.0 0.00 0.00 0.0 26.9 1.53 3.2 2 1.2 12.268 1,00 0.65 0,25 2023. 2,00 1T9 833.1 0.60 1.55 9.0 0.0 0.00 0.00 0.0 26.9 1.53 12.2 3 3 2.231 1,00 0,59 0.25 126.6 2,00 14.2 1015.8 0.65 1.61 10.5 0.0 0.00 0.00 0.0 24.7 1.60 2.1 3 3,6 4.137 1_00 0.58 0.25 126.6 2.00 14.2 1015.8 0,65 1.61 10.5 0.0 0.00 0.00 0.0 24.7 1.60 3.9 4 4 3.361 1.00 0,59 0.25 136.2 2.00 14.7 440.5 0.65 1.61 4.6 0.0 0.00 0.00 0.0 19.3 184 3.6 5 5 0.745 1_00 0.34 0.25 105.0 2.00 12.9 0.0 0,00 0,00 0.0 260.7 1.47 1.82 2.4 15.3 207 05 5 4,5 4,106 1,00 0.54 0,25 136.2 2,00 14.7 440.5 0,65 1.61 4.6 260.7 1.47 1.82 2.4 21.7 173 3.8 5 3-6 8.243 1.00 0.56 0.25 126.6 2.00 14.2 1015.8 0.65 1.61 10.5 0.0 0.00 0.00 0.0 24.7 1.60 7.4 7 7 1.511 1.00 0.80 0.25 45.5 2.00 8.5 865.9 0.66 1.61 9.0 0.0 0.00 0,00 0.0 17.5 1.94 2.3 9 9 3.617 1,00 0.52 0.25 135.0 2.68 13.3 478.5 0,96 1.98 4.0 00 0.00 0.00 0.0 17.3 1.95 337 9 8.9 5.717 1,00 0.52 0,25 131.9 2.00 14.5 646.0 0.90 1.89 5.7 0.0 0.00 0.00 0.0 20.2 1.80 5.3 Page 1 of 5 7 INITIAL STORM (2-YR) RUNOFF COMPUTATIONS City of Fort Collins, Overland Flow Time of Concentration: TI= 1.87(1.1-CC,)L1/2 / S1/3 Gutter/Swale Flow Time of Concentration: Tt= L/60V T.= Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =26.09/(T�+9,41)079 Calculations BY: MLC Velocity, (V) taken from Figure15.2 Project: Fossil Lake Village Rational Equation: Q= C,CiA Date: August 6, 1998 Overland Flow Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Area, A L Slope,S Ti L S V T, (min) L (It) S M ,V (fps) T T i (in/hr) O (cfs) Point Basins (acres) C, C CS (ft) N (min) (ft) N (fps) �,,,,,',� i i 10 10 0.323 1.00 0.78 0,25 46.0 2.24 8.2 154A 1.23 2.23 1.2 0.0 0,00 0.00 0.0 9.4 2.57 0.6 11 11 3.502 1.0o 0,54 0.25 137.6 2.00 14.8 611 A 0.75 1.75 5.8 0.0 0,00 0,00 0.0 20.6 1.78 35 12 12 3.015 1.00 0.50 0.25 15L0 3.71 12.9 800.0 0.68 1.80 7.4 0.0 0.00 0.00 0.0 20.3 1.79 2.7 12 14 1.526 1.00 0.90 0,25 15.0 2.00 4.9 1624.4 073 1_71 15.8 0,0 0,00 0.00 0.0 20.7 1.77 2.4 12 12,14 4.541 1.00 0.64 025 1570 3,71 12.9 800.0 0,68 1,80 7.4 0.0 0.00 0.00 0.0 20.3 1.79 5.2 13 13 0,474 1.00 0.74 0.25 46.0 224 8.2 190-7 0.52 1.70 1.9 826.6 0.73 1.40 9.8 19.9 1,81 0.6 15 15 0.317 1.00 0.25 0.25 34.5 8.69 4,5 0.0 0,00 0.00 0.0 239.7 1.63 1.93 2.1 6.6 2.92 0.2 15 Basin 15 + Base 20 cfs Irrigation Flow 20.2 16 15.16 1664 1.00 0,30 0.25 34.5 8.69 4.5 0.0 0.00 0.00 00 965.8 1_60 2.52 6.4 10.9 2.41 1.2 16 Basin 15 + Basin 16+ Base 20 cfs Irrigation Flow+ 14.3 cis Oft-SHe Flow 35.5 18 18 2,414 1.00 0.40 0.25 310.9 2.50 20.7 0.0 0.o0 0.00 00 272.4 1.18 1.63 2.8 23.4 1.65 1.6 18 7,18 3.925 1.00 0.55 0.25 45.5 2.00 8.5 865.9 0.66 1.61 9.0 485.6 1,00 1.50 5.4 22.9 1.68 3.6 Page 2 of 5 INITIAL STORM (2-YR) RUNOFF COMPUTATIONS City of Fort Collins Overland Flow, Time of Concentration: T;= 1.87(1.1-CCf)L1/2 / St" Gutter/Swale Flow, Time of Concentration: Tti L / 60V TC= Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =26.09/(T,+9.41)079 Calculations By: MLC Velocity, (V) taken from Figure15.2 Project: Fossil Lake Village Rational Equation: Q= C,CiA Date: August 6, 1998 Overland Flow Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Area, A L Slope,S T, L S V T( L S ,V T T i a Point Basins (acres) C, C CS (R) N (min) (it) M (fps) (min) (11) M (fps) (,,,,,) (�) (in/hr) (cfs) 18 7,18, 21.587 1.00 0.50 0.25 183.3 3.17 14.6 812.9 1,52 2.47 5.5 473.0 1.22 1.65 4.8 24.9 1.60 17.2 2D-24 18 20-24 17.662 1.00 0,49 0.25 183.3 3.17 14.6 812.9 1.52 2.47 5.5 4730 1,22 'i. 65 4.8 24,9 1.60 13.8 20 20 6,762 1.00 0.54 0.25 183.3 3.17 14.6 812.9 152 2.47 5.5 0.0 0.00 0.00 0.0 20A 1.80 6.6 22 22 3.704 1_00 0.47 0,25 111.5 3.37 111.2 612.7 1,55 1 2.50 4.1 1 0.0 0.00 0.00 0.0 15.3 2.07 3.6 23 22,23 5.963 1,00 0.48 0.25 111,5 3,37 11.2 1210.4 1.31 2,30 8.8 0.0 000 0.00 0.0 20.0 1.81 5.2 23 21-23 10.064 1.00 0.47 0.25 111.5 3,37 11.2 12104 1_31 2.30 8.8 0.0 0,00 0.00 0.0 200 1.81 8.5 24 20-23 16.826 1.00 0,50 0,25 183.3 3.17 14.6 B12.9 1.52 2.47 2.10 2,20 1.4 21,5 173 14.6 24 20-24 17.662 1.00 0.49 0.25 183.3 3.17 14.6 812.9 1.52 2.47 2.10 2.20 1.4 21.5 1.73 15.0 27 25-27 5.106 1.00 0.59 0.25 1935. 2.84 15.6 427.4 2.27 3.03 t200007 0.00 0.00 0.0 18.0 191 5.8 28 25-28 6,577 1.00 0.57 0.25 193.5 2.84 15.6 1063.5 1.60 2.53 0.00 0.00 0.0 22.6 1.69 6.3 30 29,30 6,424 1,00 0.43 0.25 144.1 2.00 15.1 1388.0 1.63 2,55 0.00 0.00 0.0 24.2 1.62 4.5 31 29-31 7.029 1,00 0.45 0.25 144.1 2.00 15.1 1582.0 1.65 2.58 0.00 1 0.00 0.0 25.4 1.58 50 Page 3 of 5 -- INITIAL STORM (2-YR) RUNOFF COMPUTATIONS City of Fort Collins, Overland Flow Time of Concentration: T,= 1.87(1.1-CCf)L" / S1/3 Gutter/Swale Flow Time of Concentration: T,= L / 60V Tc= Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =26.09/(TG+9.41)079 Calculations By: MLC Proiect: Fossil Lake Village Velocity, (V) taken from Figurel5.2 Date: August 6, 1998 Rational Equation: Q= C,CiA Overland Flow Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Area, A L Slope,S T, L S V (fps) T, (min) L (ft) S (%) ,V (fps) T T i (in/hr) 0 (cfs) Point Basins (acres) C, c Cs III) N (min) (ft) N ,,,,,,, ,,,,,,, 32 32 2084. 1.00 0.36 0.25 102.5 2.91 11.3 0.0 0,00 0,00 0.0 0.0 0.00 0.00 0.0 11.3 2.38 1.8 34 33 3.256 1.00 0.38 0.25 202.9 2.05 17,8 800.3 0.91 1.91 TO0.0 0.00 0.00 0.0 24.8 160 20 34 34 6,836 1.00 0.34 0,25 229.1 2.00 19.1 1019.5 0,74 1.73 9.8 00 0.00 0.00 0.0 28.9 1.46 3.4 34 33.34 10.092 1.00 0.35 0.25 229.1 2,00 19.1 1019.5 0.74 1.73 96 00 0.00 0.00 0.0 28.9 1.46 5.2 36 35 2,742 1.00 0,44 0,25 99.7 2,10 12.4 932.7 0,74 1,73 90 0.0 0,00 0.00 0.0 21.4 1.74 2.1 36 33-36 13.899 0.25 229.1 2.00 19.1 1019.5 0.74 1.73 9.8 0.0 0,00 0.00 0.0 28.9 146 7.7 36 35.36 3.807 0.25 99.7 2,10 12.4 932,7 0.74 1.73 9.0 0.0 0.00 0.00 0.0 21.4 1.74 2.9 37 37 9.396 TO00 0,25 185.5 2.75 15.5 0.0 0.00 000 0.0 769.61.39 1.77 7.4 22.9 1.68 41 38 38 7,139 025 2964 2.00 21.7 00 000 000 00 00 0.00 000 00 21.7 1.73 33 39 25-28, 8,112 .. 0,25 1935 2.84 15.6 1063.5 1.60 2.53 7.0 411.1 1.52 1.85 3.7 26.3 1.55 6.8 39 40 40 3.901 1.00 0.51 0,25 147.2 2.04 15.2 710.6 1,78 2,70 4.4 0.0 0.00 0.00 0.0 19.6 1.82 3.6 42 40,41 6.163 1,00 0.53 0.25 147.2 2.04 15.2 1377.1 1.19 2.20 10.4 0.0 0.00 0.00 0.0 25. 11.57 5.1 Page 4 of 5 INITIAL STORM (2-YR) RUNOFF COMPUTATIONS City of Fort Collins, Overland Flow Time of Concentration: Ti= 1.87(1.1-CCf)L1/2 / S1/3 Gutter/Swale Flow Time of Concentration: Tt= L / 60V T'= Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =26.09/(T,+9.41)079 Calculations By: MLC Velocity, (V) taken from Figure15.2 Project: Fossil Lake Village Rational Equation: Q= CfCiA Date: August 6, 1998 Overland Flow Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Area, A L Slope,S T, L S V T, L S ,V T T D Point Basins (acres) C, C Cs (ft) M (min) (ft) N (fps) (min) (ft) M (fps) �.) (m) (in/hr) (cfs) 42 40-42 6,899 1.00 0.54 0.25 147.2 2.04 15.2 1377.1 1.19 2.20 10.4 0.0 0.00 0.00 0.0 25.6 1.57 5.9 43 43 4. B81 1.00 0,47 0.25 140.9 2,00 15.0 670.0 1,26 2.26 4.9 0.0 0.00 0,00 0.0 19.9 1.81 4.1 45 43-45 7.028 1.00 0.50 0.25 140.9 2,00 15.0 1130.0 1.36 2.33 8.1 0.0 0.00 0.00 0.0 23.1 1.67 5.9 46 46 2,395 1 1.00 1 0.34 0.25 120.E 3.15 11.9 1 0.0 0.00 0.00 0.0 434.1 1.55 1.90 3.B 15.7 2.04 1.7 46 40- 11,485 1,00 0.46 0.25 147.2 2,04 15.2 1377.1 1,19 2,20 10.4 158.7 2.52 2,40 1.1 26.7 1 1.53 8.1 42,46, 47 48 40-48 20,375 1,00 0,45 0.25 147.2 2.04 15.2 1377.1 1.19 2.20 10.4 612.7 102 1.50 6.8 32.4 137 125 49 49 3.254 1.00 0.41 0,25 240.8 3.18 16.8 436.6 1,56 2.50 2.9 0.0 0.00 0.00 0.0 19.7 1.82 2.4 5o So 0.882 1.00 0.60 0.25 44.1 2,00 8.4 602.0 1.61 2.53 4.0 0.0 0.00 0.00 00 12.3 2.29 1.2 SO 49,50 4.136 1.00 0.45 0.25 240.8 3.18 16.8 436.6 1.56 2.50 2.9 0.0 0.00 0,00 1 0.0 19.7 1.82 3.4 D.\PROJECTS\FLF\2Y-RNF.TBL Page 5 of 5 MAJOR STORM (100-YR) RUNOFF COMPUTATIONS City of Fort Collins, Overland Flow, Time of Concentration: Ti= 1.87(1.1-CC,)L1/2 / S1/3 Gutter/Swale Flow. Time of Concentration: Tt= L / 60V Tc= Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =74.56/(T,+9.52)079 Calculations By: MLC Velocity, (V) taken from Figure15.2 Project: Fossil Lake Village Rational Equation: Q= C,CiA Date: July 31, 1998 Overland Flow Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Area, A L Siope,S T, L S V T, L S ,v T T i O Point Basins (acres) C, C Cs Ill)(%) (min) (11 (%) (fps) (min) (ft) (%) (fps) (.) (.( (in/hr) (cfs) 1 1 8,294 1,25 0,31 0.25 611.4 1.45 32.2 244.4 1.12 2.12 1.9 0.0 0.00 0.00 0.0 34.1 3,78 12.1 2 2 3.974 1.25 0.52 0,25 2023. 2,00 16.6 833.1 0.60 1.55 9.0 0.0 0.00 0.00 0.0 25.6 4,48 11.6 2 1,2 12.268 1.25 0.55 0.25 2023. 2.00 16.6 833.1 0,60 1.55 9.0 0.0 0.00 0.00 0.0 25.6 4.48 44.7 3 3 2.231 1.25 0.59 0.25 126.6 2.00 13.2 1015.8 0.65 1.61 10.5 0.0 0.00 0.00 0.0 23.7 4.68 7.7 3 3,6 4,137 1.25 0.58 0.25 126,6 2.00 13.2 1015.8 0.65 1.61 10.5 0.0 0.00 0.00 0.0 23.7 4.68 14.0 4 4 3,361 1.25 0.59 0,25 136.2 2.00 13.6 440.5 065 1,61 4.6 0.0 0.00 0.00 0.0 18.2 5.40 13.4 5 5 0,745 1.25 0,34 0.25 105.0 2.00 12.0 0.0 0.00 0.00 0.0 260.7 1,47 1.82 2.4 14.4 6.07 19 5 4,5 4,106 1.25 0.54 0.25 136.2 2.00 13.6 440.5 0.65 1.61 4.6 260.7 1.47 1.82 2.4 20.6 5.06 14.0 5 3-6 8,243 1,25 0,56 0.25 126.6 2.00 13.2 1015.8 0.65 1.61 10.5 0.0 0.00 0,00 0.0 1 23.7 4.68 27.0 7 7 1.511 1.25 0.80 0.25 45.5 2,00 Z9 865.9 0.66 1.61 9.0 0.0 000 0.00 0.0 16.9 5.61 8.5 9 9 3,617 1.25 0.52 0.25 135.0 2,68 12.3 478-5 0.96 1.98 4.0 0.0 0,00 0.00 0.0 16.3 5.72 13.4 9 8,9 5.717 1,25 0.52 0.25 131.9 2.00 13.4 646,0 0.90 1,89 5.7 0.0 0,00 0.00 0.0 19.1 5.27 19.6 Page 1 of 5 H MAJOR STORM (100-YR) RUNOFF COMPUTATIONS City of Fort Collins, Overland Flow. Time of Concentration: T,= 1.87(1.1-CCf)L"' / S1'0 Gutter/Swale Flow, Time of Concentration: T,= L/60V T'= Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =74.56/(T,+9.52)079 Calculations By: MLC Velocity, (V) taken from Figure15.2 Project: Fossil Lake Village Rational Equation: Q= CfCiA Date: August 6, 1998 Overland Flaw Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Area, A L Slope,S T, L S V T, L S ,V T T i C Point Basins (acres) C, C Cs (ft) (%) (min) (ft) (%) (fps) (min) (ft) (%) (fps) (-) (,,,,,, (in/hr) (cfs) 10 10 0.323 1.25 0.78 0.25 46.0 2.24 7.6 154.1 1.23 2,23 1,2 0.0 0.00 0.00 0.0 8.8 7.50 2.4 11 11 3.602 1.25 0.54 0.25 137.E 2.00 13.7 611.1 0,75 1.75 5,8 0.0 0.00 0.00 0.0 195 521 12.7 12 12 3,015 1.25 0.50 0.25 157.0 3.71 11.9 800.0 0.68 1.80 7.4 0.0 0.00 0.00 0.0 19.3 5.24 9.9 12 14 1.526 1_25 0.90 0.25 15.0 2.00 4.5 1624.4 0.73 1_71 15.8 0.0 000 0.00 0.0 20.3 5.10 7.8 12 12,14 4.541 1,25 0.64 0,25 157.0 3,71 11.9 800.0 0,68 1.80 7.4 0.0 0.00 0.00 0.0 19.3 5.24 19.0 13 13 0,474 1.25 0.74 0.25 46.0 2,24 7.6 190.7 0.52 1,70 1.9 826.6 073 1.40 9.8 19.3 5.24 2.3 15 15 0.317 1,25 0.25 0,25 34.5 8,69 4.2 0.0 0.00 0.00 0.0 239,7 1.63 r 1.93 2.1 6.3 8.42 0.8 15 Basin 15 + Base 20 cis Irrigation Flow 20.8 16 15.16 1,664 1.25 0.30 0.25 34.5 8,69 1 4,2 1 0.0 0.00 1 0.00 0.0 965.8 1.60 T252 6.4 106 6.96 4.3 15 Basin 15 + Basin 16+ Base 20 cis Irrigation Flow+ 52.0 cis Off -Site Flow 76.3 18 18 2.414 1.25 0.40 0.25 310.9 2.50 19.1 0.0 0.00 0.00 0.0 272.4 1.18 1_63 2.8 21.9 4 qo 59 18 7,18 1925 1.25 0.55 0,25 45.5 2.00 7.9 865.9 066 1.61 9.0 485.6 1.00 1.50 54 22.3 Page 2 of 5 MAJOR STORM (100-YR) RUNOFF COMPUTATIONS City of Fort Collins, Overland Flow Time of Concentration: T;= 1.87(1.1-CCA" / S1" Gutter/Swale Flow Time of Concentration: T,= L / 60V T�= Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =74.56/(T,+9.52)079 Calculations By: MLC Velocity, (V) taken from Figure15.2 Proiect: Fossil Lake Village Rational Equation: Q= C,CiA Date: August 6, 1998 Overland Flow Gutter Flaw Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Area, A L Slope's T, L S V T, L S ,V T T i O Point Basins (acres) C, C Cs (ft) M (min) (ft) M (fps) (min) (ft) M (fps) (-) (�) (In/hr) (cfs) 18 7,18 21.587 1.25 0,50 0.25 183.3 3.17 13.6 812.9 1.52 2.47 5.5 473.0 1,22 1.65 4.8 23.9 4.66 62.9 20-24 18 20-24 17.662 1.25 0.49 0.25 183.3 3.17 13.6 812.9 1.52 2.47 5.5 473.0 1.22 1.65 4.8 23.9 4.66 50.4 20 20 6.762 1.25 0.54 0.25 183.3 3,17 13.6 812.9 1.52 2,47 5.5 0.0 0.00 0.00 0.0 19.1 5.27 24.1 22 22 3.704 1.25 0.47 0.25 111.5 3.37 10.4 612.7 1.55 2.50 4.1 0.0 0,00 0.00 0.0 14.5 6.05 13.2 23 22,23 5.963 1,25 0.48 0.25 111.5 3.37 10.4 1210.4 1.31 2,30 8.8 0.0 0.00 0,00 00 19.2 5.25 18.8 23 21-23 10.064 1.25 0,47 0.25 111.5 3,37 10.4 1210.4 1.31 2,30 8.8 0.0 0.00 0.00 0.0 19.2 5.25 31.0 24 20-23 16.826 1.25 0.50 0.25 183.3 3.17 13.6 812.9 1.52 2,47 5.5 180.7 2.10 2.20 1.4 20.5 5.07 53.3 24 20-24 17,662 1.25 0.49 0.25 183.3 3.17 136 812.9 1.52 2.47 5.5 160.7 2,10 2.20 1.4 20.5 507 $4.8 27 25-27 5.106 1.25 059 0,25 193.5 2.84 14.5 427.4 2.27 3.03 2A 0.0 0.00 0.00 0.0 16.9 5.61 21.1 28 25-28 6.577 1.25 0,57 0,25 1935. 2.84 14.5 1D63.5 1.60 2,53 7.0 0.0 0.00 0.00 0.0 21.5 4.94 23.1 30 29,30 6.424 1,25 0.43 0.25 144.1 2,00 14.0 1388.0 1.63 2.55 9.1 0.0 0.00 0.00 0.0 23.1 475 16.4 31 29-31 7.029 1 1,25 0.45 0.25 144.1 2,00 14.0 1582.0 1.65 2.58 10.2 0.0 0.00 0.00 0.0 1 24.2 1 463 183 Page 3 of 5 r M M M = M M = = r MAJOR STORM (100-YR) RUNOFF COMPUTATIONS City of Fort Collins. Overland Flow, Time of Concentration: T;= 1.87(1.1-CCf)L1f2 / S1" Gutter/Swale Flow, Time of Concentration: Tt= L / 60V T�= Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =74.56/(T,+9.52)079 Calculations By: MLC Velocity, (V) taken from Figure15.2 Proiect: Fossil Lake Village Rational Equation: Q= C,CiA Date: August 6, 1998 Overland Flow Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Point Basins Area, A (acres) C, C Cs L (ft) Slope,S M T, (min) L (ft) S M V (fps) T, (min) L (ft) S M ,V (fps) T (�i� T (_1 (inlhr) 0 (Cfs) 32 32 2,084 1.25 0.36 0.25 102.5 2.91 10,4 0-0 0,00 0,00 0.0 0.0 0.00 0.00 0.0 10.4 7.02 6.6 34 33 3,256 1.25 0.38 0.25 202.9 2.05 16.5 800.3 0.91 1.91 7.0 0.0 0.00 0.00 0.0 23.5 4.71 7.3 34 34 6.836 1,25 0.34 0.25 229.1 2.00 17.7 1019.5 0.74 1.73 9.8 0.0 0.00 0,00 0.0 27.5 4.30 12.5 34 33.34 10,092 1,25 0.35 0.25 229.1 2.00 17.7 1019.5 0.74 1.73 9.8 0.0 0.00 0,00 0.0 27.5 4.30 19.0 36 35 2,742 1_25 0.44 0,25 99.7 2.10 11.5 932.7 0.74 1.73 9.0 0.0 0.00 0.00 00 20.5 5.07 7.6 36 33-36 13.899 1.25 0.38 0,25 229.1 2.00 17.7 1019.5 0.74 1.73 9.8 0.0 0.00 0.00 0.0 27.5 4.30 284 36 35,36 3.807 1.25 0.44 0.25 99.7 2.10 11'5 932.7 0.74 1.73 9.0 0.0 0.00 0,00 0.0 20.5 5,07 10.6 37 37 9.396 1.25 0.26 0.25 185.5 2.75 14.3 0.0 0.00 0.00 0.0 789.6 1.39 1.77 7.4 21.7 4,92 15.0 38 38 7.139 1.25 0.27 0,25 296.4 2,00 20.1 0.0 0,00 0,00 0.0 0.0 0.00 0.00 0.0 20.1 5.13 12.4 39 25-28, 8.112 1,25 0,54 025 193.5 2,84 14.5 1063.5 1.60 2.53 7.0 411.1 1.52 1.85 3.7 25.2 4.52 24.7 39 40 40 3.901 1,25 0.51 0.25 147.2 2.04 14.1 710.E 1.78 2.70 4.4 0.0 0.00 000 0.0 18.5 5.36 13.3 42 40,41 1 6.163 1.25 0.53 0,25 147.2 2.04 14A 1377,1 1.19 2,20 10.4 0.0 0.00 0.00 0.0 24.5 4.60 18.8 Page 4 of 5 MAJOR STORM (100-YR) RUNOFF COMPUTATIONS City of Fort Collins, Overland Flow, Time of Concentration: Ti= 1.87(1.1-CCf)L112/ Sv3 Gutter/Swale Flow, Time of Concentration: Tt= L/60V T�= Ti + Tt Intensity, (i) taken from Intensity Formula for Fossil Lake Village, i =74.56/(T'+9.52)079 Calculations By: MLC Velocity, (V) taken from Figural5.2 Project: Fossil Lake Village Rational Equation: Q= CfCiA Date: August 6, 1998 Overland Flow Gutter Flow Swale Flow Length, Length, Slope, Velocity, Length, Slope, Velocity Intensity, Flow, Design Point Basins Area, A (acres) Cr C Cs L (it) Slope,S (%) T, (min) L (it) S (%) V (fps) T, (min) L (ft) S (%) ,V (fps) T (., T (.( i (n/hr) O (cfs) 42 40-42 6.899 125 0.54 0.25 147.2 2.04 14.1 1377.1 1,19 2,20 10.4 0.0 0.00 0,00 0.0 24.5 4.60 21.4 43 43 4.881 1.25 0.47 0.25 140.9 2.00 13.9 670.0 126 2.26 4.9 0.0 0.00 0 OD 0.0 18.8 5.31 15.2 45 43-45 7.028 1.25 0.50 0.25 140.9 2,00 13.9 1130.0 1.36 2.33 8.1 0.0 0.00 0,00 0.0 22.0 4.88 21.4 46 46 2,395 1.25 0.34 0.25 1206. 3.15 11.0 00 0.00 0.00 77 434.1 1.55 1,90 3.8 14.8 5.99 6.1 46 40- 11.485 1,25 0,46 0.25 147.2 2.04 14.1 1377.1 1.19 2.20 10.4 158.7 252 2.40 1.1 25.6 4.48 29.6 42,46, 47 48 40-48 20.375 1.25 0.45 0.25 147.2 2.04 14.1 1377.1 1.19 2.20 10.4 612.7 1.02 1_50 6.8 31.3 3,98 45.6 49 49 3,254 1.25 0.41 0.25 240.8 3.18 15.5 436.E 1.56 2.50 2.9 0.0 0.00 0.00 0.0 18.4 5.37 9.0 50 5o 0.882 1.25 0.60 0.25 44.1 2.00 7.8 602.0 1.61 2.53 4.0 00 0.00 0.00 0.0 11.8 6.65 4.4 50 49,50 4.136 1.25 0.45 0.25 240.8 3.18 15.5 436.6 1.56 2.50 2.9 0.0 0.00 0.00 0.0 1 B 4 5.37 12.5 DIPR0JECTS\FLFl2V-RN F.TBL Page 5 of 5 M = M M M S M M M M M 11111110 M M 8/5/98 Page 1 HYDROGRAPH REPORT RECORD NUMBER : 1 TYPE : MOD. RATIONAL DESCRIPTION : Off —Site Basin OS1 [HYDROGRAPH INFORMATION] Peak Discharge ............................ = 51.94 (cfs) Volume .................................... = 6.42 (acft) Time Interval ............................. = 0.20 (min) Time to Peak .............................. = 67.23 (min) Time of Base .............................. = 179.51 (min) Multiplication factor ..................... = 1.00 [RATIONAL HYDROGRAPH INFORMATION] Flow Multiplier ........................... = 1.00000 Receding limb factor ...................... = 1.67000 [APPROXIMATE STORAGE] Maximum Outflow ........................... = 0.00000 (cfs) Maximum Storage ........................... = 0.00000 (cuft) [BASIN DESCRIPTION] [WEIGHTED WATERSHED AREA] DESCRIPTION Basin OS1 AREA CN# RUNOFF COEF 85.96 0 Overall Approximation 85.96 0 [TIME CONCENTRATION -- USER DEFINED] Timeof Concentration ..................... = [RAINFALL DESCRIPTION] Distribution Type ......................... = Total Precipitation ....................... _ ReturnPeriod ............................. _ StormDuration ............................ _ 0.25000 0.25000 67.23 (min) SYNTHETIC 2.71 (in) 100 (yr) 1.12 (hr) -Ia, 8/5/98 HYDROGRAPH REPORT Page 1 RECORD NUMBER : 2 TYPE : MOD. RATIONAL DESCRIPTION : Pond 1 On -Site Inflow Hydrograph [HYDROGRAPH INFORMATION] Peak Discharge ............................ = 109.24 (cfs) Volume.................................... = 5.29 (acft) Time Interval ............................. = 0.10 (min) Time to Peak .............................. = 26.32 (min) Time of Base .............................. = 70.28 (min) Multiplication factor ..................... = 1.00 [RATIONAL HYDROGRAPH INFORMATION] Flow Multiplier ........................... = 1.00000 Receding limb factor ...................... = 1.67000 [APPROXIMATE STORAGE] Maximum Outflow ........................... = 0.00000 (cfs) Maximum Storage ........................... = 0.00000 (cuft) [BASIN DESCRIPTION] [WEIGHTED WATERSHED AREA] DESCRIPTION Basins' 1-6,8-1 AREA CN# RUNOFF COEF 42.15 0 Overall Approximation 42.15 0 [TIME CONCENTRATION -- USER DEFINED] Time of Concentration ..................... _ [RAINFALL DESCRIPTION] Distribution Type ......................... _ Total Precipitation ....................... ReturnPeriod ............................. _ StormDuration ............................ _ 0.58750 0.58750 26.32 (min) SYNTHETIC 1.94 (in) 100 (yr) 0.44 (hr) 'R - � 9 8/5/98 Page 1 HYDROGRAPH REPORT RECORD NUMBER : 3 TYPE : COMBINE DESCRIPTION : Combine Basin OS1 w/ On -Site Basins [HYDROGRAPH INFORMATION] Peak Discharge ............................ = 128.28 (cfs) Volume.................................... = 11.71 (acft) Time Interval ............................. = 1.00 (min) Time to Peak .............................. = 27.00 (min) Time of Base .............................. = 179.00 (min) [COMBINE HYDROGRAPH RECORD #1 HYDROGRAPH # 1 TYPE : MOD. RATIONAL DESCRIPTION Off -Site Basin OS1 Peak Discharge ........................ = 51.94 (cfs) Time to Peak .......................... = 67.23 (min) Time Interval ......................... = 0.20 (min) HYDROGRAPH # 2 TYPE : MOD. RATIONAL DESCRIPTION Pond 1 Inflow Hydrograph Peak Discharge ........................ = 109.24 (cfs) Time to Peak .......................... = 26.32 (min) Time Interval ......................... = 0.10 (min) -E, - dam 8/6/98 Page 1 HYDROGRAPH REPORT RECORD NUMBER : 1 TYPE : MOD. RATIONAL DESCRIPTION : Pond 2 Inflow Hydrograph [HYDROGRAPH INFORMATION] Peak Discharge ............................ = 64.80 (cfs) Volume.................................... = 3.73 (acft) Time Interval ............................. = 0.10 (min) Time to Peak .............................. = 31.30 (min) Time of Base .............................. = 83.57 (min) Multiplication factor ..................... = 1.00 [RATIONAL HYDROGRAPH INFORMATION] Flow Multiplier ........................... = 1.00000 Receding limb factor ...................... = 1.67000 [APPROXIMATE STORAGE] Maximum Outflow ........................... = 0.00000 (cfs) Maximum Storage ........................... = 0.00000 (cuft) [BASIN DESCRIPTION] [WEIGHTED WATERSHED AREA] DESCRIPTION AREA CN# RUNOFF COEF Basins 40-51 31.77 0 0.51250 ---------------------------------------------------------------------- Overall Approximation 31.77 0 0.51250 [TIME CONCENTRATION -- USER DEFINED] Time of Concentration ..................... = 31.30 (min) [RAINFALL DESCRIPTION] Distribution Type ......................... = SYNTHETIC Total Precipitation ....................... = 2.08 (in) Return Period ............................. = 100 (yr) Storm Duration ............................ = 0.52 (hr) I,.!� Er Z� I. O I J_cer 3Z ,� = o., ---I << (15. r,.,/ n40- i:>LRv-.r++ aJ +sue r4+wJ) m m omm Mao man m M M Mr M -U+'.rl i I/a I//"/ -\NI --L -T J-T MI . Illil G . i _ 1 1111111 MMIJ i 11 -�-o2� 7/25/98 Page 1 RAINFALL REPORT RAINFALL TYPE WESTERN RAINFALL ' RAINFALL FILENAME Rainfall Intensity Equations For Fossil Lake Village P.U.D. From NOAA Atlas 2, Volume III -Colorado [PRECIPITATION] [ 2yr/6hr ] = 1.40 in [ 2yr/24hr ] = 2.00 in [ 100yr/6hr ] = 3.40 in [ 100yr/24hr ] = 4.80 in [ Elevation ] = 4900.00 ft INTERMEDIATE INTENSITIES (in/hr) [ 5 min ] [ 15 min ] [ 30 min ] [ 60 min ] [ 6 hr ] [ 24 hr I [ 2 yr] 3.17 2.07 1.44 0.91 0.24 0.08 [ 5 yr] 4.59 3.01 2.09 1.32 0.35 0.12 [ 10 yr] 5.71 3.74 2.59 1.64 0.45 0.15 [ 25 yr] 6.93 4.54 3.14 1.99 0.54 0.18 [ 50 yr] 7.97 5.22 3.62 2.29 0.59 0.20 [ 100 yr] 8.91 5.84 4.04 2.56 0.70 0.24 [ Fig. 3-1] 9.00 6.00 4.17 2.60 [BDE VALUES Intensity = B/(time_conc + D)AE] [ B ] [ D ] [ E 1 [ 2 yr] 26.09 9.41 0.79 [ 5 yr] 39.47 9.77 0.80 [ 10 yr] 47.73 9.52 0.79 [ 25 yr] 57.72 9.48 0.79 [ 50 yr] 66.99 9.57 0.80 [ 100 yr] 74.56 9.52 0.79 II I Table 4.2,6-1 Runoff Coefficients for Rational Method (From: American Sue. of Civil Engineers and Water Pollution Control Fed. [1970] and Seelye [1960]) i Character of surface Runoff coefficients Range Recommended , Pavement --asphalt or concrete 0.70-0.95 0.90 Gravel, from clean and loose to clayey and compact 0.25-0.70 0.50 Roofs 0.70-0.95 0.90 Lawns (irrigated) sandy soil Flat, 2 percent 0.05-0.15 0.10 Average, 2 to 7 percent 0.15-0.20 0.17 Steep, 7 percent or more 0.20-0.30 0.25 ' Lawns (irrigated) heavy soil Flat, 2 percent 0.13-0.17 0.15 Average, 2 to 7 percent 0.18-0.22 0.20 , Steep, 7 percent 0.25-0.35 0.30 Pasture and non -irrigated lawns Sand , Bare 0.15-0.50 0.30 Light vegetation 0.10-0.40 0.25 Loam ' Bare 0.20-0.60 0.40 Light vegetation 0.10-0.45 0.30 Clay Bare 0.30-0.75 0.50 Light vegetation 0.20-0.60 0.40 Composite areas Urban Single-family, 4-6 units/acre 0.25-0.50 0.40 Multi -family, >6 units/acre 0.50-0.75 0.60 Rural (mostly non -irrigated lawn area) <1/2 acre - 1 acre 0.20-0.50 0.35 1 acre - 3 acres 0.15-0.50 0.30 Industrial ' Light 0.50-0.80 0.65 Heavy 0.60-0.90 0.75 Business ' Downtown 0.70-0.95 0.85 Neighborhood 0.50-0.70 0.60 Parks 0.10-0.40 0.20 Rural open space I LCS-WM Manual 4.2 --- 4 April 1979 1 A:\WAD\0E1\TASIES.CNC LOT IMPERVIOUSNESS SINGLE FAMILY RESIDENTIAL (TYPICAL ALL LOTS) ROOF = 1,806 S.F. PATIO = 299 S.F. DRIVEWAY = 483 S.F. WALKS = 75 S.F. TOTAL = 2,663 S.F. = 0.050184 ACRES GUTTER FLOWLINE CENTERLINE OF ROAD NORTHENMO SERVICESFos91L LAKE VILLAGE •o swm NOM AIE YM rT COU COLOMM W5zl .ir.% ...... rm TYPICAL PPERVOWS AREA / LOT R No Text Mennen LLT r COUNTY 4 36 _ROAD 41.8 ACRES W a \\ CHAN. LENGTH-2989' SLOPE - 1.1% ¢ t���� 86.0 ACRES 14 O i h 31.7 ACRES po ID 2 FOSSIL LAKE PROJEC'_�C15,Wj IrG L/i�.�Je vC �BI✓,_oo_ _ CLIENT �AT MADE F' .... DATE . SHE. __ _ - _ _ _ i...,..:....,._r...........v...aa...i...�:..,G...�. ,,.«-.«>...._-. PORT COLLINS. COLORADO 60521 / /o �r �A B6. o A� !�.✓o�EGo�o /Mp,E2//OUS r . O e 04-4qs/ ✓ Zo 1-d7eElo7 - Z//. 4- pc. fceA c��,✓ SPrac>< �/eiyNr��/ �ix.P✓�cr/s 25I sA/ .-E� Aar - 3/. 7 r7c. �OOfs � .Q2/1�E5 .3 rj I�iG. 9�0 �/ S�AcE/LA•�/osrs�f'� 2.� �Ac. /o d�G�41 X/ii) GROJECT,L 1�f� _ JOB NO.��Zi00 _ CLIENTC,,,,IATIONS FOR MADE 8Yl7Ep �' E.ATE CHECVE^ 8, DATE _SHEET FORT COLLINS. COLORADO 80521 ,riu 3qs.,✓ G✓ioTy = A/ _ 1253 g7s , s.F Z� ✓ G✓ioTA/ = (oZo [1 f �s f f 0• i • f • f ♦ f f f 1 1 1 1 1 1 C] 1 1 1 1 I 1 1 1 I 1 1 No Text No Text ' 2 1 1 2 WATERSHED 0 v _ Fossil La a loped Conditions Final Mode 100 YEAR 1-HOU WITH RESOURCE CONSULTANTS RAINFALL AND DISTRIBUTION 3 0 0 1.0 3 1.0 1 1 13 5.0 1.08 1.08 1.34 1.61 2.42 6.99 4.03 2.96 1.61 1.3141 ' 1.1.08 .00 34 / O 1.0808 1 1.08 .39 1.61 2.42 6.99 9.03 2.96 1.61 1.39 1.34 1.08 0.00 1.08 1.08 1.34 1.61 2.42 6.99 4.03 2.96 1.61 1.34 ' 1.34 1.08 0.00 -2 .016 .250 .10 .30 0.51 0.50 .00180 1 10 11 1253 86 2.0110 1 20 21 972 42 52.0110 ' 1 30 31 620 32 34.0150 0 0 ' 0 11 21 0 1 3.0 1300. 0.0170 4.0 4.0 .0380 10.00 0 21 22 9 2 0.1 1. 0.0050 0.0 0.0 0.013 0.10 0.0 0.0 0.1811 0.910 0.9416 4.550 1.9766 ' 15.99 3.1225 32.50 4.3889 96.26 5.7876 50.77 6.3809 52.57 6.6846 53.47 0 31 32 9 2 0.1 1. 0.0050 0.0 0.0 0.013 0.10 0.0 0.0 0.1431 2.50 0.7679 18.93 1.3786 30.75 2.0823 32.63 2.9179 34.51 3.8819 35.51 5.0476 ' 36.19 6.3770 36.88 0 3 2 11 21 31 ENDPROGRAM 11 I L1 I II ENVIRONMEM1TAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTENBER 19741 BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS JIN(1) JIM(2) JIN(3) JIMA) JIN(5) JIN(6) JIN(TI JINl81 JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(21 JOOT(3) JOUT(4) JOUT(5) JOUT 161 JOUT(7) JOUT(0) JOUT(9) JOUT(101 1 2 0 0 0 0 0 0 0 0 N5CRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED PROGRAM CALLED ••. ENTRY MADE TO RUNOFF MODEL Fossil Lake Developed Conditions Final Model 100 YEAR 1-HOUR WITH RESOURCE CONSULTANTS RAINFALL AND DISTRIBUTION NUMBER OF TIME STEPS 300 INTEGRATION TIME INTERVAL (MINUTES) 1.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 13 RAINFALL STEPS, THE TILE INTERVAL IS 5.00 MINUTES FOR RAINGIG NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.08 1.00 1.34 1.61 2.42 6.99 4.03 2.96 1.61 1.34 1.34 1.09 .00 FOR RAINGAGE [UMBER 2 PAINFALL HISTORY IN INCHES PER HOUR 1.08 1.08 1.34 1.61 2.42 6.99 4.03 2.96 1.61 1.34 1.34 1.08 .00 FOR RAINGAGE NUMBER 3 RAINFALL HISTORY IN INCHES PER HOUR 1.08 1.08 1.34 1.61 2.42 6.99 4.03 2.96 1.61 1.34 1.34 1.08 .00 Fossil Lake Developed Canditions Final Model 300 YEAR 1-HOUR WITH RESOURCE CONSULTANTS RAINFALL AND DISTRIBUTION SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN1 INFILTRATION RATEIIN/HR) CAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 C .0 .0 .0 .0300 .016 .250 .100 .300 .51 .50 .00180 10 11 1253.0 06.0 2.0 .0110 .016 .250 .100 .300 .51 .50 .00190 1 20 21 972.0 42.0 52.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 30 31 620.0 32.0 34.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCAICHMINTS, 3 TOTAL TRIBUTARY AREA (ACRES), 160.00 Fossil Lake Developed Conditiona Final Model 100 YEAR 1-HOUR WITH RESOURCE CONSULTANTS RAINFALL AND DISTRIBUTION ••• CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UD54M2-PC MODEL ... II 1 WATERSHED AREA (ACRES) 160.000 TOTAL RAINFALL (INCHES) 2.240 ' TOTAL INFILTRATION (INCHES) .472 TOTAL MTERSiED OUTFLOW (INCHES) 1.066 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .702 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .001 ' Fossil Lake Developed Conditions Final Nodal 100 YEAR 1-HOUR WITH RESOURCE CONSULTANT; RAINFALL AND DISTRIBUTION WIDTH COTTER GUTTER BDP NP OR DIEM LENGTH INVERT SLOPE SIDE SLOPES OVERBANH/SURCHARGE HORIZ TO VERT MANNING DEPTH ' UH NUMBER CONVECTION (FTI IFT) IFT/171 L R N (FT) 11 22 0 1 CHANNEL 3.0 1300. .0170 4.0 4.0 .030 IO.OD 0 21 22 9 2 PIPE .1 1. .0050 .0 .0 .013 .10 ' D RESERVOIR STORAGE IN ACAS -FEET VS SPILINAY OUTFLOW .0 .0 .2 .9 .9 .5 2.0 15.9 3.1 32.5 4.4 46.3 5.8 50.8 6.4 52.6 6.7 53.5 .1 ]I 32 9. I PIPE .1 1. .0050 .0 .0 .013 .30 0 ' AESERVOIA STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.5 .B 18.9 1.4 30.8 2.1 32.6 2.9 34.5 3.9 35.5 5.0 36.2 6.4 36.9 TOTAL MUMMER OF f.UT'TER$/PIPES. 3 Fossil Lake Developed Conditions Final Nodal 100 YEAR 1-HOUR WITH RESOURCE CONSULTANTS RAINFALL AND DISTRIBUTION ' ARRANGpSNT OF 5U9CATCHNENTS AND GUTTERS/PIPES GOITER TRIBUTARY GOITER/PIPE TRIBUTARY SUBAREA D.A. IAC) 11 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 C 0 96.0 it 11 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 38.0 31 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 32.0 F0asi1 Lake DevelopConditions Final NOtlel 100 YEAR 1-HOUR KITHH RESOURCE CONSULTANTS MINFALL AND DISTRIBUTION HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CPS THE LONER NENHER IS ONE OF THE FOLLOWING CASES: I 1 DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION CAN. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CM FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER i TIME(HE/NIN) 11 21 31 0 1. .0 .0 .0 .00( 1 .00( 1 .001 ) 0 3. 0 0 .0 .. .00( 1 :Dols) .00(5) 0 5. .0 .0 .0 .001 1 .00151 .0015) 0 t. .0 .0 .0 .0010 1 .0019)0 .000 Us) 0 9. . .. ' .031 1 .00191 .0013) 0 il. .3 .1 .1 .061 1 .01191 .01 (S) 0 13. .4 .1 .3 .LDI ) .02(9) .01 (5) 0 15. .6 .2 .5 .141 1 .04I31 .03131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1 1 i 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 17. 1.0 .3 .1 .10( 1 .01(S) .04(S) 19. 1.3 .5 1.1 .21( 1 .11151 .06(S) 21. 1.6 .8 1.5 .24( 1 .1515) .09151 23. 2.1 1.1 2.1 .20( 1 .23131 .12(5) 25. 2.6 1.4 2.9 .31( 1 .29(S) .16(3) 23. 4.2 2.0 4.5 .40( ) .41(S) .22(S) 29. 9.1 3.0 7.2 .531 ) .61(S) .32(5) 31. 10.1 4.2 10.5 .63( ) .Bets) .45(S) 33. 11.9 6.9 13.6 .691 1 1.15151 .56(S) 35. 13.E 10.0 16.4 .73( 1 1.43151 .60(5) 37. 15.1 22.9 18.6 .301 I 1.90(5) .06(S) 39. 16.4 15.7 20.4 .00( 1 1.95151 .84(5) 41. 11.7 19.0 21.7 .83( 1 2.19(S) .91151 43. 18.3 22.0 22.1 .851 1 2.40(S) .96(S) 45. 18.8 24.7 23.5 .86( I 2.580) 1.00(5) 47. 19.2 21.0 24.0 .87( 1 2.14(S) 1.03(S) 49. 19.6 29.0 24.4 .831 ) 2.00(S) 1.05131 $1. 20.0 30.9 24.7 .881 I 3.01(S) 1.06(S) 53. 20.4 32_5 24.9 .89( 1 3.12(S) 1.09(5) 55. 20.9 33.7 25.0 .901 1 3.23(S) 1.0e151 57. 21.2 34.8 25.1 .91( 1 3.33(S) 1.09(S) 59. 21.5 35.7 25.2 .91( 1 3.42(5) 1.09(5) 1. 21.9 36.6 25.1 .921 l 3.50(S) 1.09151 3. 21.4 39.3 25.0 .91( 1 3.56(5) 1.08(S) 5. 21.0 31.8 24.9 .90( 1 3.61(S) 1.06151 3. 20.6 30.2 24.3 .9D( 1 3.65(S) 1.04(S) 9. 20.3 30.5 23.0 .69( 1 3.60(S) 1.02(S) 11. 19.9 36.6 23.3 .88( ) 3.69(S) .99(5) 13. 19.6 30.7 22.9 .80( ) 3.7015) .97(S) 15. 19.4 38.8 22.3 .801 1 3J0(S) .94(5) 17. 19.1 36.8 21.9 .86( 1 3.70(S) .91(5) 19. 16.9 38.7 21.2 .861 I 3.69(S) .89(S) 21. 18.7 30.6 20.9 .85( 1 3.66(S) .86(5) 23. 18.5 38.5 20.1 .851 1 3.6I(5) .63(5) 25. 10.3 30.3 19.6 .851 I 3.66(S) .80(s) 27. 18.1 38.1 19.1 .84( 1 3.64(S) .09(S) 29. 13.9 33.9 10.4 .e41 1 3.62(S) .05(S) 31. 17.7 31.1 17.8 .83( ) 3.60(8) .7215) 33. 13.5 37.4 17.1 .031 1 3.50(5) .30(S) 95. 10.3 30.2 16.5 .02( 1 3.55(5) .68(S) 39. 17.1 36.9 15.9 .82( 1 3.53(S) .65(S) 39. 16.9 36.6 15.3 .021 1 3.5D(S) .63(S) 41. 16.6 36.4 14.8 .81( 1 3.48(S) .6115) 43. 16.6 36.1 14.3 .01( 1 3.45(S) .59(5) 45. 16.4 35.8 13.0 .80( ) 3.421S) .50(5) 47. 16.3 35.4 13.3 .60( 1 3.39(SI .55(S) 49. 16.1 35.1 12.9 I 1 I I 1 J 1 1 11 1 L J 1 1 .901 1 3.36(S) .54(s) 1 51. 15.9 34.8 12.4 791 1 3.33(5) .52(S) 1 53. 15.8 34.5 22.0 .79( ) 3.31151 .51151 1 55. 15.6 34.2 11.6 .18( 1 3.28(5) .491S) 1 57. 15.5 33.8 11.3 .J8( 1 3.25(S) .49(5) 1 59. 15.3 33.5 10.9 .78( I 3.22(S) .46(3) 2 1. 15.2 33.2 10.6 .771 I 3.10(S) .45(5) 2 3. 15.0 32.9 10.2 .77( 1 3.151S) .44(S) 2 S. 14.9 32.5 9.9 .771 1 3.12(S) .42(3) 2 7. 14.7 32.1 9.6 . ]6( 1 3.091S) AI(S)2 9. 14.6 31.6 9.3 .76( ) 3.06(S) .40(S) 2 21. 14.4 31.2 9.0 .75( 1 3.03(S) .39(S) 2 13. 14.3 30.0 8.8 .751 ) 3.00(S) .38(S) 2 15. 14.1 30.4 0.5 .75( 1 2.97131 .3713) 2 17. 14.0 30.0 8.3 .74( 1 2.951S) .36(S) 2 19. 13.9 29.5 0.1 .741 1 2.92(5) .35(S) 2 21. 13.7 29.1 7.0 .741 1 2.99(S) .35(S) 2 23. 13.6 20.7 7.6 .73( 1 3.06151 .34(sl 2 25. 13.5 20.3 7.4 .73( 1 2.83(S) .33(S) 2 27. 13.3 29.0 7.2 .731 1 2.81(S) .32131 2 29. 13.2 27.6 7.0 .72( ) 2.70(S) .32(S) 2 31. 13.1 27.2 6.9 .721 1 2.75(S) .31(S) 2 33. 13.0 26.8 6.7 .721 1 2.73(3) .30(SI 2 35. 12.0 26.5 6.5 .711 1 2.70(S) .30151 2 37. 12.7 26.1 6.3 .711 1 2.68(SI .29(S) 2 39. 12.6 25.7 6.2 . ]1( 1 2.65(S) .28(S) 2 41. 12.5 25.4 6.0 .70( 1 2.63(S) .28(S) 2 43. 12.4 25.0 5.9 .70( ) 2.61(3) .27(S) 2 45. 12.2 24.7 5.9 .701 1 2.50(S) .27(S) 2 47. 12.1 24.4 5.6 .691 1 2.56(S) .26(S) 2 49. 12.0 24.0 3.5 .69( 7 2.54(Sl .2613) 2 51. 11.9 23.] 5.4 .691 1 2.51151 .25(5) 2 53. 11.0 23.4 5.3 .69( 1 2.49(S) .25(3) 2 55. 11.7 23.1 5.1 .fist 1 2.47(3) .24(S) 2 57. 11.6 21.8 5.0 .601 1 2.15151 .24(S) 2 59. 11.5 22.5 4.9 .67( ) 2.43(S) .23(S) 3 1. 11.4 22.2 4.8 .67( 1 2.41(5) .23(S) 3 3. 11.3 21.9 4.7 .671 1 2.39(S) .23(S) 3 S. 11.2 21.6 4.6 .66( 1 2.37131 .22(S) 3 7. 11.1 21.3 4.5 .66( 1 2.351S1 .22(5) 3 9. 11.0 21.0 4.4 .66( 1 2.33(S) .22(S) 3 11. 10.9 20.7 4.3 .661 1 2.31(S) .21(S) 3 13. 10.6 20.5 4.3 .651 1 2.2913) .21(S) 3 15. 30.7 20.2 4.2 .651 ) 2.27(51 .21(S) 3 17. 10.6 19.9 4.1 .651 ) 2.25(S) .20(3) 3 19. 10.5 19.7 4.0 .64( ) 2.23(S) .20(S) 3 21. 10.4 19.4 3.9 .64( ) 2.22(S) .20151 I 3 23. 10.3 19.2 3.9 .64( 1 2.20(5) .19131 3 25. 10.2 18.9 3.0 .64( ) 2.18(S) .19151 3 27. 10.1 18.7 3.7 .631 ) 2.17(S) .19(S) 3 29. 10.0 10.5 3.6 .63( ) 2.151S) .19(S) 3 31. 9.9 18.2 3.6 .63( ) 2.13(3) .18(3) 3 33. 9.8 18.0 3.5 .62( 1 2.12(S) .18(5) 3 35. 9.7 17.9 3.4 .62( 1 2.101S) .18(5) 3 37. 9.7 17.5 3.4 .621 ) 2.09(S) .18151 3 39. 9.6 17.3 3.3 .62( ) 2.07(S) .17(3) 3 41. 9.5 17.1 3.3 .611 ) 2.06(31 .17(5) 3 43. 9.4 16.9 3.2 .611 1 2.04(5) .17(3) 3 45. 9.3 26.7 3.2 .61( 1 2.03(S) .17(S) 3 47. 9.2 16.5 3.1 .61( ) 2.01(5) .17(3) 3 49. 9.2 16.3 3.1 .60( 1 2.00(5) .16(S) 3 51. 9.1 16.1 3.0 .60( ) 1.99(5) .16(3) 3 53. 9.0 15.9 2.9 .60( ) 1.97151 .16(3) 3 55. 0.9 15:8 2.9 .59( ) 1.9615) .1613) 3 57. 0.8 15.6 2.9 .591 1 1.95(5) .16(5) 3 59. 0.0 15.5 2.8 .591 1 1.93(5) .15(5) 4 1. 6.7 15.3 2.9 .59( 1 1.92(S) .15(S) 4 3. 8.6 15.2 2.7 .58( ) 1.91151 .15(5) 4 5. 0.5 15.0 2.7 .58( I 1.89(3) .151S) 4 7. 0.5 14.9 2.6 .59( 1 1.88(S) .15(5) 4 9. 0.4 14.7 2.6 .581 I 1.87(3) .15(9) 4 11. 6.3 14.6 2.5 .57( 1 1.86(S) .14(S) 4 13. 0.2 14.5 2.5 .57( 1 1.841S) .14(S) 4 15. 9.2 14.3 2.5 .57( ) 1.93(5) .14(3) 4 17. 0.1 14.2 2.5 .57( 1 1.82(5) .14(S) 4 19. 8.0 14.1 2.4 .561 1 1.81(5) .14(3) 4 21. 8.0 13.9 2.4 .56( 1 1.79(S) .14(3) 4 23. 7.9 13.0 2.4 .56( ) 1.79(5) .1415) 4 25. 7.8 13.7 2.3 .561 1 1.77(3) .13151 4 27. 7.6 13.5 2.3 .55( 1 1.76(S) .13(5) 4 29. 7.7 13.4 2.3 .55( ) 1.75151 .13(S) 4 32. 7.6 13.3 2.3 .55( 1 1.73(5) .13(5) 4 33. 7.6 13.2 2.2 .55( 1 1.72(3) .13(5) 4 35. 7.5 13.0 2.2 .541 1 1.71(5) .13(5) 4 37. 7.4 12.9 2.2 .54( i 1.70(5) .12(S) 4 39. 7.4 12.0 2.2 .54( ) 1.69(5) .1215) 4 41. 7.3 12.7 2.1 .54( 1 1.69(5) .12(5) 4 43. 7.3 12.5 2.1 .54( ) 1.67(S) .12(S) 4 45. 7.2 12.4 2.1 .53( 1 1.66(S) .12(9) 4 47. 7.1 12.3 2.1 .53( 1 1.6515) .12(5) 4 49. 7.1 12.2 2.0 .53( 1 1.63(S) .12(9) 4 S1. 7.0 12.1 2.0 .53( 1 1.62(5) .11(S) 4 53. 7.0 12.D 2.0 .521 1 1.61131 .11(5) 4 $5. 6.9 11.8 2.0 .52( 1 3.60(5) .31(S) E 50. 6.8 11.7 1.9 .52( ) 1.59(5) .11(S) 4 59. 6.8 11.6 1.9 .52( 1 1.58(S) .11(3) Fossil Lake Developed Conditions Final Model 100 YEAR � URCE WITH RESOCONSULTANTS RAINFALL AND DISTRIBUTION `•• PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS ••` ••• NOTE :5 IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT: TYPE (CFS) (FT) (AC -FT) IMR/MIN) 11:1 21.7 .9 1 1 21:2 38.8 .1 3. T: 1 15.. 22:3 30.8 (DIRECT 1 15. 31:2 25.2 .l 1.1:D 0 59. 32:3 25.2 (DIRECT 0 59. ENDPROG PROGRAM CALLED I L1 1 1 i 1 1 1 i 1 i 1 1 r1 1 1 1 1 A 1 II I i 1 1 [1 1 TABLE a-1 NFIAL. STORM - STREET RUNOFF ENCROAC *AU4T LOCAL (Includes places, ollevs No curb -overtopping. Flow may spread to marginal access) crown of street. COLLECTOR No curb -overtopping. 'Flow spread must leave at least one lane width free of water. MAJOR ARTERIAL No curb -overtopping. 'Flow spread must leave at least one-half of roadway width free of water in each direction. Where no curb overtopping exists, encroachment shall not extend over property lines. TABLE a-2 MAJOR STORM - STREET RUNOFF ENCROACHMENT 4111111 q..reo.eur M.a�...nyve�alnrw LOCAL (Includes places, alleys Residential dwellings, public, marginal access, & collector) commercial and industrial buildings shall not be inundated at the ground line unless buildings are flood -proofed. The depth of water over the crown shall not exceed six (6) inches. ARTERIAL Residential dwellings, public, commercial end industrial buildings shall not be inundated at the ground line unless buildings ore flood -proofed. Depth of water at the street crown shall not exceed six (6) inches to allow operation of emergency vehicles. The depth of water over the hutter flowline shall not exceed 18 inches. In some cases, the 18 inch depth over the gutter flowline is more restrictive than the 6 inch depth over the street crown. For these conditions, the most restrivtive of the two criteria shall govern. MAJOR ARTERIAL Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line unless buildings are flood -proofed. The street flow shall not overtop the crown to allow operation of emergency vehicles. The depth of water over the gutter flowline shall not exceed 18 inches. In some cases, the 18 inch depth over the gutter flowline is more restrictive than the no overtopping of the street crown. For these conditions, the most restrivtive of the two criteria shall govern. RR FFF�GE; Cl Y OF FORT COLLINS. STORI ATM VTUIY STORM DRMNAGE DESIGN CRITERIA AND CONSTRUCTION STM1pNt05. 1 UNZr. 1997. \i t: R �3 N CITY OF FORT COLLINS GUTTER CAPACITY FOR VERTICAL 6' CURB AND GUTTER Q = 0.56 z/n s-0.5 yA2.67 roject Description: Fossil Lake Village roject Number: 9812.00 iIs Number: D-2-BDP2.WQ1 27-Jul-98 04:39 PM ESIGN POINT 2 ALLING WATER DRIVE (West Foowline) ESIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.50'). Flow may spread to crown of street. 3) Street width from crown to flaMine = 15' = Local 4) n = 0.016 INPUT OUTPUT SLOPE % Do = depth of water at the crown (it) = 0.073 W = from CL of street to face of gutter (it) 13,00 Dw = depth at back of walk (ft) _ -0.200 W W = width from BOC to BOW (it) 10.00 Flow Spread from Foowline (ft) = 18.65 z1 = 1 I street cross slope 50 2,00 z2 = 1 / gutter cross slope 12 8.33 Q1 6.568 z3 = 1 / gutter cross slope 12 8,33 Q2 4,666 z4 = 1 / sidewalk cross slope 50 2.00 Q3 (-) 1.576 s = longitudinal street slope (ft/ft) 0.005 0.50 Q4 0.000 y = depth at the flowline of gutter (it) 0.5 cs9.66 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.65 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 9.66 0.65 2-YR ALLOWABLE CAPACITY 628 northern engineering services, Inc. CITY OF FORT COLLINS GUTTER CAPACITY FOR VERTICAL G' CURB AND GUTTER Q = 0.56 z/n s^0.5 y^2.67 roject Description: Fossil Lake Village roject Number: 9812.00 ile Number: D-1-DDP3.WQ1 29-Jul-98 01 44 PM ESIGN POINT 3 /ATERFALL PARKWAY (Northwest Flowline) ESIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.50'). Flow must leave at least one lane width free of water. 3) Street width from crown to flowline = 20' = Collector 4) n = 0.016 51 Gutter Width = 2.0' INPUT OUTPUT SLOPE % Do = depth of water at the crown (ft) _ -0.100 W = from CL of street to face of gutter (ft) 18.00 Dw = depth at back of walk (ft) _ -0.333 W W = width from BOC to BOW (ft) 13.00 Flow Spread from Flowline (ft) = 15,00 z1 = 1 / street cross slope 50 2.00 z2 = 1 / gutter cross slope 12 8,33 Q1 3.838 z3 = 1 / gutter cross slope 12 8,33 02 3.464 z4 = 1 / sidewalk cross slope 50 2.00 Q3 (-) 0.921 s = longitudinal street slope (ft/ft) 0.0064 0.64 Q4 ERR y = depth at the flowline of gutter (ft) 0.427 GM ) 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.8 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY - 6.38 0.8 lots)QTOTAL 2-YR ALLOWABLE CAPACITY northern engineering services, Inc. CITY OF FORT COLLINS GUTTER CAPACITY FOR VERTICAL 6" CURB AND GUTTER 0 = 0,56 z/n s^0.5 y"2.67 Description: Fossil Lake Village Number: 9812.D0 nber: D-1-DDP7.WO1 11-Aug-98 10:48 AM DESIGN POINT 7 NATERFALL PARKWAY (Northwest Flowline) DESIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.50'). Flow must leave at least one lane width free of water. 3) Street width from crown to flowline = 25' = Collector 4) n = 0.016 SLOPE % Dc = depth of water at the crown (ft) _ -0200 W = from CL of street to face of gutter (ft) 23.00 Dw = depth at back of walk (ft) _ -0.333 15.00 W W = width from BOC to BOW (ft) 13.00 Flow Spread from Flowline (ft) = z1 = 1 / street cross slope 50 2.00 01 3.685 z2 = 1 / gutter cross slope 12 8,33 02 3.326 z3 = 1 / gutter cross slope 12 50 8.33 2.00 03 (-) 0.894 z4 = 1 / sidewalk cross slope 04 ERR s = longitudinal street slope (fUft) 0.0059 0.59 y = depth at the flowline of gutter (ft) 0.427 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.785 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 6.13 0.785 2-YR ALLOWABLE CAPACITY northern engineering services, inc. M M M M M M M M M M M M M s M M M M MI M CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n SA0.5 yA2.67 act Description: Fossil Lake Village act Number: 9812.00 Number: D-2-BDDP9.WQ1 29-Jul-98 01,48 PM SIGN POINT 9 LING WATER DRIVE (West Flowline) SIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583). Flow may spread to crown of street. 3) Street width from crown to gawline = 15'= Local 4) n = 0.016 S1 r_�M., WLxh = 1 1T INPUT OUTPUT SLOPE % Flow Spread from Flowline (ft) = 15,229 W = From CL of street to lip of gutter (ft) 13.8333 Dc = depth of water over the crown (ft) = 0,005 z1 = 1 / street cross slope 50 2.00 Dw = depth at back of walk (ft) _ -0.125 z2 = 1 / gutter cross slope 10.1818 9.82 at 4.697 z3 = 1 / back of curb slope 3.5789 27,94 02 2,489 z4 = 1 / gutter cross slope 10.1818 9,82 03 0,852 z5 = 1 / back of curb cross slope 3.5789 27.94 04 (-) 0.999 z6 = 1 / sidewalk cross slope 50 2,00 05 (-) 0.000 z7 = 1 / R.O.W. cross slope 50 2.00 Q6 0.000 s = longitudinal street slope (ft/ft) 0.0063 0.63 Q7 ERR y = depth at the Bowline of gutter (ft) 0.3958333 Q TOTAL (cfs) 7.04 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.8 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 7,04 ' 0.8 Q TOTAL (cfs) 5.63 2-YR ALLOWABLE CAPACITY northern engineering services, inc. CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n s^0.5 y^2.67 act Description: Fossil Lake Village ad Number: 9812.00 Number: D-2-BDDPII.WQI 29-Jul-98 09:07 AM 31GN POINT 11 IN WASH SQUARE (North Flowline) 'IGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to Wine = 15'= Local 4) n = 0.016 51 Gutter Width = 1.1T SLOPE % W = From CL of street to lip of gutter (ft) 13.8333 zt = 1 / street cross slope 50 2.00 z2 = 1 / gutter cross slope 10.1818 9.82 z3 = 1 / back of curb slope 3.5789 27.94 z4 = 1 / gutter cross slope 10.1818 9.82 z5 = 1 / back of curb cross slope 3.5789 27.94 z6 = 1 / sidewalk cross slope 50 2.00 z7 = 1 / R.0 W. cross slope 50 2.00 s = longitudinal street slope (ft/ft) 0.0071 0.71 y = depth at the Bowline of gutter (it) 0,3958333 Flow Spread from Flowline (ft) = 15.229 Dc = depth of water over the crown (ft) = 0.005 Dw = depth at back of walk (it) _ -0.125 Q1 4.986 Q2 2.642 Q3 0.904 Q4 (-) 1.D61 Q5 (-) 0.000 Q6 0000 Q7 ERR Q TOTAL (cfs) 7.47 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 7.47 O TOTAL (cfs) 5.98 2-YR ALLOWABLE CAPACITY 08 0.8 northern engineering services, Inc. M M M M M M M M M M M M M M M r ■ 1 IM= M W IM ■. M s M IM M s M M M IM M r CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n s^0.5 y^2.67 ect Description: Fossil Lake Village fact Number: 9812.00 Number: D-2-BDDP72.WQ1 29-Jul-98 09:08 AM SIGN POINT 12 RNER OF FALLING WATER DRIVE AND TWIN WASH SQUARE (West and South Flowline) >IGN CRITERIA: 1) Initial Storrs (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to flowllne = 15'= Local 4) n = 0.016 S\n.i M., Wi h=1 IT INPUT OUTPUT SLOPE % Flow Spread from Flowline (it) = 15.229 W = From CL of street to lip of gutter (ft) 13.8333 Do = depth of water over the crown (ft) = D'OD5 z1 = 1 / street cross slope 50 2,00 Dw = depth at back of walk (ft) _ -0.125 z2 = 1 / gutter cross slope 10.1818 9.82 01 4.583 z3 = 1 / back of curb slope 3.5789 27,94 Q2 2.429 z4 = 1 / gutter cross slope 10.1818 9,82 Q3 0.831 z5 = 1 / back of curb cross slope 3.5789 27.94 04 (-) 0,975 z6 = 1 / sidewalk cross slope 50 2.00 05 (-) 0.000 z7 = 1 / R.O.W. cross slope 50 2.00 Q6 0.000 s = longitudinal street slope (ft/ft) 0.006 0.60 Q7 ERR y = depth at the nowline of gutter (ft) 0.3958333 Q TOTAL (cfs) 6.87 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.8 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 6.87 ' 0.8 IF-0 TOTAL (cfs) 549 11 2-YR ALLOWABLE CAPACITY northern engineering services, inc. CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n SAO.5 y^2.67 ect Description: Fossil Lake Village act Number: 9812.00 Number: D-2-BDDP20.WQ1 29-Jul-98 09:09 AM 'IGN POINT 20 =EKFRONT COURT (South FlaMine) 'IGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to flowline = 15'= Local 4) n = 0.016 Sl riutter Width = 1.17' SLOPE % W = From CL of street to lip of gutter (ft) 13.8333 zt = 1 / street cross slope 50 2.00 z2 = 1 / gutter cross slope 10.1818 9.82 z3 = 1 / back of curb slope 3.5789 27.94 z4 = 1 / gutter cross slope 10.1818 9.82 z5 = 1 / back of curb cross slope 3.5789 27.94 z6 = 1 / sidewalk cross slope 50 2.00 z7 = 1 / R.O.W. cross slope 50 2.00 a = longitudinal street slope (ft/ft) 0.009 0.90 y = depth at the flaMine of gutter (ft) 0.3958333 OUTPUT Flow Spread from Flawline (ft) = Dc = depth of water over the crown (R) _ Dw = depth at back of walk (ft) _ Q1 5.614 Q2 2.975 Q3 1.018 Q4 (-) 1.195 Q5 (-) 0.000 06 0,000 Q7 ERR Q TOTAL (cis) 8.41 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 8.41 Q TOTAL (cfs) 6.73 2-YR ALLOWABLE CAPACITY 15.229 0.005 -0.125 08 Jr., northern engineering services, Inc. ■ I M M r M M M s MIs M MIMI ■M sit MISMIMI r CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER O = 0.56 z/n sA0.5 yA2.67 ect Description: Fossil Lake Village ect Number: 9812.00 Number: 0-2-BDDP22.W01 29Jul-98 09:57 AM iIGN POINT 22 1NE DRIVE (West Flowline) AGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to Bowline = 15'= Local 4) n = 0.016 S1 r.i Mnr Wi h=41T INPUT OUTPUT SLOPE % Flow Spread from Flowline (ft) = 15.229 W = From CL of street to lip of gutter (ft) 13,8333 De = depth of water over the crown (ft) = 0.005 zt = 1 / street cross slope 50 2.00 Dw = depth at back of walk (ft) _ -0.125 z2 = 1 / gutter cross slope 10.1818 SA2 01 5.124 z3 = 1 / back of curb slope 3.5789 27.94 02 2.716 z4 = 1 / gutter cross slope 10,1818 9.82 03 0.929 z5 = 1 / back of curb cross slope 3.5789 27.94 04 (-) 1.090 z6 = 1 / sidewalk cross slope 50 2.00 05 (-) 0.000 z7 = 1 / R.O.W. cross slope 50 2.00 06 0.000 s = longitudinal street slope (ft/ft) 0.0075 0.75 07 ERR y = depth at the flowline of gutter (ft) 0.3958333 0 TOTAL (cfs) 7,68 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.8 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 7.68 0.8 O TOTAL (cfs) 6.14 ) 2-YR ALLOWABLE CAPACITY northern engineering services, inc. CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n 5A0.5 y^2.67 act Description: Fossil Lake Village act Number: 9812.00 Number: 0-2-BDDP23.WQ1 29Jut-98 09:48 AM SIGN POINT 23 IN HERON COURT (South Flowline) SIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.3958Y). Flow may spread to crown of street. 3) Street width from crown to Bowline = 15'= Local 4)n=0,016 51 Gutter Width = 1.17' SLOPE % W = From CL of street to lip of gutter (R) 13.8333 z1 = 11 street cross slope 50 2,00 z2 = 1 / gutter cross slope 10,1818 9,82 z3 = 1 / back of curb slope 3.5789 27.94 z4 = 1 / gutter cross slope 10.1818 9.82 z5 = 1 I back of curb cross slope 3.5789 27.94 z6 = 1 I sidewalk cross slope 50 2.00 z7 = 1 / R.O.W. cross slope 50 2.00 s = longitudinal street slope (ft/ft) 0.008 0,80 y = depth at the flowline of gutter (it) 0.3958333 OUTPUT Flow Spread from Flowline (it) = 15.229 Dc = depth of water over the crown (R) = 0,005 Dw = depth at back of walk (ft) _ -0.125 Q1 5,293 Q2 2,805 Q3 0.960 Q4 (-) 1,126 05 (-) 0.000 06 0.000 Q7 ERR Q TOTAL (cfs) 7.93 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 7.93 Q TOTAL (cfs) 6.34 2-YR ALLOWABLE CAPACITY 0.8 0.8 0 northern engineering services, Inc. IM M r W M IMM 11IMMI =1 A I M m m� IMr M CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 7ln 00.5 y^2.67 ect Description: Fossil Lake Village ect Number 9812.00 Number: D-2-BDDP27.WO1 29-Jul-98 11:55 AM AGN POINT 27 OKERY ROAD (North Flowline) iIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to flowline = 14= Local 4)n=0,016 51 Gutter Width = 1.17' SLOPE % Flow Spread from Flowline (ft) = 15.229 W = From CL of street to lip of gutter (ft) 12,8333 Dc = depth of water over the crown (ft) = 0.025 z1 = 1 / street cross slope 50 2.00 Dw = depth at back of walk (ft) _ -0.125 z2 = 1 / gutter cross slope 10,1818 9.82 01 7.43B z3 = 1 / back of curb slope 3.5789 27.94 02 1942 z4 = i / gutter cross slope 10.1818 9.82 03 1.349 z5 = 1 / back of curb cross slope 3,5789 27.94 04 (-) 1.583 z6 = 1 / sidewalk cross slope 50 2.00 05 (-) 0.000 z7 = 1 / R-O.W. cross slope 50 2.00 06 0,000 s = longitudinal street slope (ft/ft) 0.0158 1.58 Q7 ERR y = depth at the Bowline of gutter (ft) 0,3958333 Q TOTAL (cfs) 11,15 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.6 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 11.15 ' 0.8 Q TOTAL (cfs) 892 2-YR ALLOWABLE CAPACITY northern engineering services, inc. CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n s40.5 y^2.67 ject Description: Fossil Lake Village ject Number: 9812.00 Number: D-2-BDDP28.WQI 11-Aug-98 11.23 AM SIGN POINT 28 SSIL COURT (North Flowllne) SIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.3958S). Flow may spread to crown of street. 3) Street width from crown to floMine = 15'= Local 4) n = 0.016 51 Gutter Width = 1. IT SLOPE % W = From CL of street to lip of gutter (ft) 13.8333 z1 = 1 /street cross slope 50 2.00 z2 = 1 / gutter cross slope 10.1818 9.82 z3 = 1 I back of curb slope 3.5789 27.94 z4 = 1 / gutter cross slope 10.1818 9.82 z5 = 1 / back of curb cross slope 3,5789 27.94 z6 = 1 / sidewalk cross slope 50 2.00 z7 = 1 / R.O.W. cross slope 50 2.00 s = longitudinal street slope (ft/ft) 0,008 0.80 y = depth at the flowline of gutter (ft) 0,3958333 OUTPUT Flow Spread from Flowline (ft) = 15,229 Dc = depth of water over the crown (it) = 0.005 Dw = depth at back of walk (ft) _ -0,125 Q1 5.293 Q2 2.805 Q3 0.960 Q4(-) 1,126 05 (-) 0.000 06 0.000 07 ERR O TOTAL (cfs) 7.93 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 7.93 " O TOTAL (cfs) 6,34 2-YR ALLOWABLE CAPACITY 0.8 northern engineering services, inc. M a w r �s r s a a� ar s s a [� a �► r r r M IMMi m m mom r m m m m M r� m r m CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n SAO.5 yA2.67 ect Description: Fossil Lake Village act Number. 9812.00 Number: D-2-BDDP30.WO1 29-Jul-98 11:34 AM ;IGN POINT 30 DKERY ROAD (West Flowllne) ;IGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to Bowline = 14'= Local 4) n = 0.016 5) Gutter Width = 1.1T INPUT SLOPE % W = From CL of street to lip of gutter (B) 12.8333 z1 = 1 / street cross slope 50 2,00 z2 = 1 / gutter cross slope 10,1818 9,82 z3 = 1 / back of curb slope 3.5789 27.94 z4 = 1 / gutter cross slope 10.1818 9,82 z5 = 1 / back of curb cross slope 3.5789 27.94 z6 = 1 / sidewalk cross slope 50 2.00 z7 = 1 / R.O.W. cross slope 50 2.00 s = longitudinal street slope (R/B) 0.011 1.10 y = depth at the Bowline of gutter (B) 0.3958333 Flow Spread from Flowline (B) = 15.229 Dc = depth of water over the crown (B) = 0.025 Dw = depth at back of walk (B) _ -0.125 Q1 6,206 02 3,289 03 1.125 04 (-) 1.321 05 (-) 0.000 06 0.000 Q7 ERR O TOTAL (cfs) 9,30 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 9.30 O TOTAL (cfs) 7.44 2-YR ALLOWABLE CAPACITY M' 0.8 northern engineering services, Inc. CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n sAO.5 yA2.67 ect Description, Fossil Lake Village ect Number: 9812.00 Number: 0-2-BODP31.W01 29-Jul-98 11:38 AM ;IGN POINT 31 2ET COURT (North FlovAne) SIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to bowline = 14'= Local 4) n = 0.016 51 Gutter Width = 1,17' SLOPE % Flow Spread from Flowllne (tt) = 15.229 W = From CL of street to lip of gutter (ft) 12.8333 Dc = depth of water over the crown (ft) = 0.025 z1 = 1 / street cross slope 50 2.00 Ow = depth at back of walk (it) _ -0.125 z2 = 1 / gutter cross slope 10,1818 9.82 Q1 9.167 z3 = 1 / back of curb slope 3.5789 27.94 Q2 4.858 z4 = 1 / gutter cross slope 10.1818 9.82 03 1,662 z5 = 1 / back of curb cross slope 3,5789 27.94 04 (-) 1,951 z6 = 1 / sidewalk cross slope 50 2.00 Q5 (-) 0 000 z7 = 1 / R.O.W. cross slope 50 2.00 Q6 0 000 s = longitudinal street slope (ft/ft) 0.024 2.40 07 ERR y = depth at the flowline of gutter (it) 0.3958333 Q TOTAL (cfs) 13.74 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.8 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 13.74 ' 0.8 Q TOTAL (cfs) 10 99 2-VR ALLOWABLE CAPACITY northern engineering services, Inc. so M M a M an aaf a� �. ar �■■� a� a� a■t ar a■� � MI M M M� wom r m m m w M r W Ii IM CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n s^0.5 y^2.67 act Description: Fossil Lake Village act Number: 9812.00 Number: D-2-BDOP34.WQ1 29-Jul-98 11:23 AM iIGN POINT 34 )KERY ROAD (West Flowline) CIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to BovAlne - 14'= Local 4) n = 0.016 5) Gutter Width = 1. IT INPUT SLOPE % W = From CL of street to lip of gutter (ft) 12.8333 zl = 1 / street cross slope 50 2,00 z2 = 1 / gutter cross slope 10,1818 9.82 z3 = 1 / back of curb slope 3.5789 27,94 z4 = 1 / gutter cross slope 10.1818 9.82 z5 = 1 / back of curb cross slope 3.5789 27,94 z6 = 1 / sidewalk cross slope 50 2.00 z7 = 1 / R.O.W. cross slope 50 2.00 s = longitudinal street slope (ft/ft) 0.004 0.40 y = depth at the Bowline of gutter (ft) 0.3958333 northern engineering services, inc. Flow Spread from Flowline (ft) = Oc = depth of water over the crown (ft) _ Dw = depth at back of walk (it) _ Q1 3.742 Q2 1.983 Q3 0.679 Q4 (-) 0.796 Q5 (-) 0.000 Q6 0.000 Q7 ERR p He TOTAL (cfs) 5.61 2-YR THEORETICAL CAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 5.61 Q TOTAL (cfs) 2.80 2-YR ALLOWABLE CAPACITY 15.229 0.025 -0.125 0.5 0.5 CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n SA0.5 yA2.67 W Description: Fossil Lake Village >ct Number: 9812.00 Number: D-2-BDDP36.WQ1 29-Jul-98 11:24 AM HGN POINT 36 )KERY ROAD (East Flowline) IIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.3958Y). Flow may spread to crown of street. 3) Street width from crown to Bowline = 14= Local 4) n = 0.016 51 Gutter Width = 1.17' SLOPE % W = From CL of street to lip of gutter (ft) 12.8333 z1 = 1 / street cross slope 50 2.00 z2 = 1 / gutter cross slope 10.1818 9,82 z3 = 1 / back of curb slope 3.5789 27.94 z4 = 1 / gutter cross slope 10,1818 9.82 z5 = 1 / back of curb cross slope 3.5789 27.94 z6 = 1 / sidewalk cross slope 50 2,00 z7 = 1 / R.O.W. cross slope 50 2.00 s = longitudinal street slope (@/ft) 0.004 0.40 y = depth at the flowfine of gutter (ft) 0.3958333 OUTPUT Flow Spread from Flo -Mine (ft) = 15.229 Do = depth of water over the crown (ft) = 0.025 Dw = depth at back of walk (11) _ -0.125 Q1 3.742 02 1.983 Q3 0.679 04 (-) 0,796 Q5 (-) 0.000 Q6 0.000 Q7 ERR q TOTAL (cfs) 5.61 11 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 5,61 ' Q TOTAL lots) 2,80 2-YR ALLOWABLE CAPACITY M [k7 northern engineering services, Inc. IM a no s an �r as a� a a a r �■r r a amr air a M M® s M r M M fm an M s MIMI am M s r M CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n s40.5 y^2.67 act Description: Fossil Lake Village act Number: 9812.00 Number: D-2-BDDP40.WQ1 29-Jul-98 01:34 PM 'IGN POINT 40 4NE DRIVE (West Flowline) SIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39563'). Flow may spread to crown of street. 3) Street wkfth from crown to Boviline = 15'= Local 4) n = 0.016 51 Gutter Width = 1.1T INPUT SLOPE % W = From CL of street to lip of gutter (ft) 13,8333 z1 = 1 / street cross slope 50 2.00 z2 = 1 / gutter cross slope 10.1818 9.82 z3 = 1 / back of curb slope 3.5789 27.94 z4 = 1 / gutter cross slope 10,1818 9.82 z5 = 1 / back of curb cross slope 3.5789 27.94 z6 = 1 / sidewalk cross slope 50 2.00 z7 = 1 / R.O.W. cross slope 50 2.00 s = longitudinal street slope (ft/ft) 0.0169 1.69 y = depth at the Bowline of gutter (ft) 0.3958333 Flow Spread from Flowline (ft) = 15.229 Dc = depth of water over the crown (ft) = 0.005 Dw = depth at back of walk (ft) _ -0.125 Qi 7.692 Q2 4.077 Q3 1.395 Q4 (-) 1.637 Q5 (-) 0.000 Q6 0.000 07 ERR O TOTAL (cfs) 11.53 2-VR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 11.53 Q TOTAL (ofs) 9.22 2-YR ALLOWABLE CAPACITY IM 08 northern engineering services, Inc. CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n SA0.5 yA2.67 act Description: Fossil Lake Village act Number: 9812.00 Number, D-2-BDDP42.WQ1 29-Jul-98 10,09 AM 'IGN POINT 42 9EWATER COURT (North Flowline) 'IGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to flowline = 15'= Local 4) n = 0,016 51 Gutter Width = 1.1 T _ SLOPE % W = From CL of street to lip of gutter (ft) 13.8333 z1 = 1 / street cross slope 50 2.00 z2 = 1 / gutter cross slope 10.1818 9.82 z3 = 1 / back of curb slope 3.5789 27.94 z4 = 1 / gutter cross slope 10.1818 9.82 z5 = 1 / back of curb cross slope 3,5789 27.94 z6 = 1 / sidewalk cross slope 50 2.00 z7 = 1 / R.O.W. cross slope 50 2.00 s = longitudinal street slope (ft/ft) 0.004 0.40 y = depth at the Bowline of gutter (ft) 0.3958333 Flow Spread from Flowline (ft) = 15.229 Dc = depth of water over the crown (ft) = 0.005 Dw = depth at back of walk (ft) _ -0.125 at 3.742 Q2 1.983 03 0.679 04 (-) 0.796 Q5 (-) 0.000 Q6 0.000 Q7 ERR O TOTAL (cfs) 5.61 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 5.61 Q TOTAL (cfs) 2.80 2-YR ALLOWABLE CAPACITY 10161 0.5 northern engineering services, Inc. Im a _ m r soon 00As sIMI rs r �s rr � M IM11 M r M M moo IMMIMI M M Ir M r me am CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n SA0.5 yA2.67 ect Description: Fossil Lake Village act Number: 9812.00 Number: D-2-BDDP45 WQ1 29-Jul-98 10:26 AM IIGN POINT 45 X PARK DRIVE (North Flowline) ;IGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to Bowline = 14= Local 4)n=0,016 5) Gutter Width = 1.17' INPUT W = From CL of street to lip of gutter (ft) z1 = 1 / street cross slope z2 = 1 / gutter cross slope z3 = 1 / back of curb slope z4 = 1 / gutter cross slope z5 = 1 / back of curb cross slope z6 = 1 / sidewalk cross slope z7 = 1 / R.O.W. cross slope s = longitudinal street slope (ft/ft) y = depth at the Bowline of gutter (B) northern engineering services, Inc. SLOPE % Flow Spread from Flowline (ft) = 12.8333 Dc = depth of water over the crown (ft) _ 50 2.00 Dw = depth at back of walk (ft) _ 10,1818 9.82 01 5.293 3.5789 27.94 Q2 2.805 10.1818 9,82 03 0,960 3.5789 27.94 Q4 (-) 1.126 50 2.00 Q5 (-) 0.000 50 2,00 Q6 0.000 0.008 0,80 07 ERR 0.3958333 O TOTAL (cfs) 7.93 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 7.93 Q TOTAL (cfs) 6.34 2-YR ALLOWABLE CAPACITY 15.229 0 025 -0,125 0.8 0.8 I() CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0,56 7/n s^0.5 y^2.67 ect Description. Fossil Lake Village act Number: 9812.00 Number: D-2-BDDP49.WQ7 29-Jul-98 1043 AM SIGN POINT 49 OKERY ROAD (West Flowline) SIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to Bowline = 14'= Local 4)n=0,016 5) Gutter Width = 1.17' INPUT SLOPE % W = From CL of street to lip of gutter (ft) 12.8333 z1 = 1 / street cross slope 50 2.00 z2 = 1 / gutter cross slope 10.1818 9.82 z3 = i / back of curb slope 3.5789 27.94 z4 = 1 / gutter cross slope 10.1818 9,82 z5 = 1 / back of curb cross slope 3.5789 27.94 z6 = 1 / sidewalk cross slope 50 2,00 z7 = 1 / R.O.W. cross slope 50 2.00 s = longitudinal street slope (ft/ft) 0.016 1.60 y = depth at the Bowline of gutter (ft) 0.3958333 Flow Spread from Flowline (ft) = 15.229 Dc = depth of water over the crown (it) = 0.025 Dw = depth at back of walk (ft) _ -0.125 01 7.485 02 3.967 Q3 1.357 Q4 (-) 1.593 05 (-) 0.000 06 0.000 07 ERR Q TOTAL (cfs) 11,22 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 1122 Q TOTAL (cfs) 8.97 2-YR ALLOWABLE CAPACITY northern engineering services, he. = W IM M WON M" M M W IM W M W r M we* M M=1 mom rIMI M� mom IM M am M M m m r CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 z/n SAO.5 yA2.67 ect Description: Fossil Lake Village ect Number: 9812.00 Number: D-2-BDDP50.WQI 29-Jul-98 10:46 AM SIGN POINT 50 OKERY ROAD (East Flowline) SIGN CRITERIA: 1) Initial Storm (2-Year) 2) No Curb Overtopping (0.39583'). Flow may spread to crown of street. 3) Street width from crown to flowllne = 14'= Local 4)n=0,016 51 Gutter Width = 1,1 T INPUT OUTPUT SLOPE % Flow Spread from Flowline (ft) = 15229 W = From CL of street to lip of gutter (ft) 12.8333 Dc = depth of water over the crown (ft) = 0.025 zt = 1 / street cross slope 50 2.00 Dw = depth at back of walk (ft) _ -0,125 z2 = 1 / gutter cross slope 10.1818 9,82 01 7,531 z3 = 1 / back of curb slope 3.5789 27.94 Q2 3.991 z4 = i / gutter cross slope 10.1818 9.82 Q3 1.365 z5 = 1 / back of curb cross slope 3.5789 27.94 04 (-) 1,603 z6 = 1 I sidewalk cross slope 50 2.00 05 (-) 0 000 z7 = 1 / R.O.W. cross slope 50 2.00 Q6 0.000 s = longitudinal street slope (ft/ft) 0.0162 1.62 07 ERR y = depth at the flowline of gutter (fi) 0,3958333 Q TOTAL (cis) 11.29 2-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.8 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 11.29 " 0.8 Q TOTAL (cfs) 9.03 2-YR ALLOWABLE CAPACITY northern engineering services, inc. MAJOR ARTERIAL STREET 12' 7' LT MEDIAN LANE LEFT TURN MEDIAN ROADWAY WIDTH, 107' RIGHT OF WAY WIDTMt 141' CmInJ TRAVEL LANES, Six Imes. 12' wide. LEFT TURN LANE, 12' wide. BIKE LANESt Two lanes. B' wide. PARKNG, None. PARKWAY- 10' CminJ wide. Additional width optional. SIDEWALK, 7' CmtL) wide. Additional width may be required for higher pedestrian traffic within and leading to activity centers. MEDIAN- lq' wide landscaped and 7' wide landscaped in left turn lane areas. WHERE USED, AN Major Arterial streets shown on the Master Street Plan. when the traffic vokxne on the street Is anticipated to be greater then 35.000 vpd. SPEED LIMIT, 40-45 MPH ACCESS, Access will be limited. Points of access must be approved by the City. FENCES- Fences shag be setback a minimum of 10' from the parkway edge of the sidewalk. PARKWAY LANDSCAPING, Parkways shell be landscaped in grass and Incorporate xeriscape principals. whenever appropriate. in accordance with the requirements of the City Forester. TREE PLANTING, Canopy shade trees *hall be planted at 40 foot spacings in the center of all parkways. individual trees shag not be closer than 30 feet from the next street tree. Canopy shade trees shag be placed no closer then 30 feet from roadway intersections. B' from driveways and alleys and shag be no closer then 40 feet from any street light. Mlmmun tree size shag be in accordance with City requirements. Species shall be selected from the City approved canopy shade tree list. MEDIAN LANDSCAPNG� Landscaping shad includes trees. shrubs. ground raver. mdch and Irrigation. and should Incorporate xeriscape principals. whenever appropriate. in accordance with the requirements of the City Forester. CURB AND GUTTER, Vertical curb and gutter. D-1-a 1 1 1 1 1 1 f 1 1 1 `J 1 I r I L I 1 1 1 1 1 1 1 1 MINOR ARTERIAL STREET ROADWAY WIDTH: 52' RIGHT OF WAY WIDTH, B4'Cmin.) TRAVEL LANES, 2 lanes. plus continuous left all 12' vide. LEFT TURN LANE- 12' wide. continuous left. BIKE LANES, Two lanes. 8' ride. PARKING- None. PARKWAY, 10' Cmin) width. Additional width optional. SIDEWALK, Co' Cmin.) width. Additional width may be required for higher pedestrian traffic In activity areas. WHERE USED, AN Minor Arterial streets shown on the Master Street Plan. when the traffic vokmie on the street is anticipated to be 3.500 to 15.000 vpd. SPEED LAST- 30-45 MPH FENCES, Fences shall be setback a minimum of 8' from the parkway edge of the sidewalk PARKWAY LANDSCAPNG, Parkways shall be landscaped in grass and Incorporate xeriscape principals. whenever appropriate. in accordance with the requirements of the City Forester. TREE PLANTING, Canopy shade trees shall be planted at 40 foot spacings in the center of all parkways. Individual trees shall not be closer than 30 feet from the next street tree. Canopy shade trees shall be placed no closer than 30 feet from roadway intersections. 8' from driveways and alleys and shall be no closer than 40 feet from any street light. Minimum tree size shall be in accordance with city requirements. Specks shah be selected from the city approved canopy shade tree list. ACCESS, Access will be limited. Points of access must be approved by the City. CURB AND GUTTERS Vertical curb aid gutter. D-1-G COLLECTOR STREET WITH PARKING 7G" ROW CMIN.) WA0'RAj CWfyWGM�I�q' OADWAw Un- q,esn ill' = r. iLN. 12' INTERSECTIONS ROADWAY, 50' CWHERE NEEDED) RIGHT OF WAYS 7G' Cmin.) TRAVEL LANE5- Two lanes. 11• wide. LEFT TURN LANES- 12' wide at intersection where needed. BILE LANES, Two lanes. 6' wide. PARKNGTwo hues. 8' widen parking may be removed at certain locations to provide a left turn lane at intersections where needed. PARKWAY+ 8' Cam-) width. Additional width optional. SIDEWALK 5' CmmJ width. Additional width may be required for higher pedestrian traffic within and leading to activity areas. MEDIAN- None. Additional width would be required for development requested medians. WHERE USED- These specifications shall apply as required by the Glty. when a Collector street is shown on the Master Street Plan or when the traffic: volume on the street Is anticipated to be in the range of 2500 to 3.500 vehicles per day. SPEED UMIT, 25-30 MPM FENCES, Fences ahal be setback a r mnm of 7' from the parkway edge of the sidewalk. PARKWAY LANDSCAPING! Parkways shall be landscaped in grass and incorporate xerlscape pr"ais. whenever appropriate. in accordance with the requirements of the City Forester. .TREE PLANTING- Canopy shade trees shall be planted at 40 foot spacings in the center of all parkways. Individual trees shall not be closer than 30 feet from the next street tree. Canopy shade trees shall be placed no closer than 30 feet from roadway Intersections, 8' from driveways and alleys and shall be no closer than 40 feet from any street light. Mnlmmm tree size shall be in accordance with City requirements. Specks shall be selected from the City approved canopy shade tree list. ACCESS, Access will be limited. Points of access must be approved by the Clty. G� CUTTER! AND GUST ERAND GUT ERA Vertical curb and gutter. D-1-e RESIDENTIAL LOOAL STREET 20' SETBACK 51' ROW CMIN.) �;TO 4.5' 30' 4.5' CMffO6. ROADWAY_ 6' 9. : I TorrH uc iLqV-I q' i 16' ES�M'T, i TRAVEL i 1 PARK rARK 343' ROADWAY WIDTH- 30'. RIGHT OF WAY WIDTH- 51' Cmin.). TRAVEL LANE WIDTH, 16'. PARKING- Two Imes 7' wide. WHERE USED- All residential local streets where traffic volume is anticipated to be 1000 vpd or less. Curless the Narrow Residential Local Street or Rural Residential Local Street standards are used) SPEED LIMIT, 25 MPH GARAGE DOOR SETBACK, 20' from the back of sidewalk. FENCES- Fences shag be setback a minimum of G' from the parkway edge of the sidewalk. PARKWAY LANDSCAPING, Parkways shag be landscaped In grass mulck annuals and herbaceous perennials. maxkn 18' height. and incorporate xeriscape principals. whenever appropriate. in accordance with the requirements of the Cty Forester. TREE PLANTING, Canopy shade trees shag be planted at 40 foot spec" In the center of all parkways. Individual trees shag not be closer then 30 feet from the next street tree. Canopy shade trees shag be placed no closer than 30 feet from roadway Intersections. 8' from drNeways and alleys and shag be no closer than 40 feet from any street light. Mhmixn tree size shall be 1.25' caliper container or balled and burlapped. Species shag be selected from the Clty approved canopy shade tree list. SIDEWALK- 4.5' mhmun width. Additional width may be required for pedestrian routes to schools. parks. or other activity areas. BIKE LANFS. Bicyclists to share travel lane with motor veNdes. Additional street width up to 4' wider. may be required In the travel lane to accommodate bike traffic to serve activity areas. such as schools and parks. CURB AND GUTTER- Vertical curb and gutter or drive over curb and gutter. D-2-b RURAL RESIDENTIAL LOCAL STREET I UTIL 46' ROW UTL;�—. ESMT. ROADWAY ROADWAY WIDTMV 25'. RIGHT OF WAY WIDTH- 46'. PARMNG- Both sides of street. CURB AND GUTTER, Drive over or vertical curb and gutter. WHERE USED These spedflcatloas may be used for internal local streets of developments. whether standard subdivision or planned unit development. with minimum lot sizes of one (1) acre or larger. when traffic volume. on the street Is anticipated to be less then 300 vpd. SPEED LHT, 25 MPH GARAGE DOOR SETBACK , 50% SIDEWALK, Now. BIKE LANES- Bicyclists share the roadway with motor vehicles. i D-2-d m v Y O c o0 c O0 O O T 00 mS_0 U C cr D Q -n Qm p U m m M co 0 D _T moo fD A c) 2 1 N c > mom $ mo /M m I Y n C.0 ° o ` 40 m L D m • D N- c c Q Ocr � cr � a REDUCTION FACTOR, F NDm �r m T M ° w H — — �r moo 00 m 0 ale m ; am _Z O � m c I No Text 2-Year Inlet Capacity Calculations UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---- -------------------------------------- JSER:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-31-1998 AT TIME 07:06:03 t** PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) _ STREET CROSS SLOPE M _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: 15.00 15.42 1.00 0.98 1.35 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 9.13 GUTTER FLOW DEPTH (ft) = 0.35 FLOW VELOCITY ON STREET (fps)= 3.28 FLOW CROSS SECTION AREA (sq ft)= 1.00 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.29 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 3.30 3.22 0.08 3.30 az 2.97 0.33 1 ----------------------------------------------------------------------'- =-- ' UDINLET: STREET FLOW ANALYSIS DEVELOPED BY DR JAMES GUO, CIVIL ENG DEPT, U OF COLORADO AT DENVER ------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD$FCD ---------------------------------------------------------------- :Northern Engineering Services -Ft Collins Colorado ....................... N DATE 07-31-1998 AT TIME 07:10:26 *, DETERMINATION OF DESIGN FLOW ON THE STREET: STREET ID NUMBER : 1.00 PEAK RUNOFF ON STREET INCLUDES LOCAL BASIN FLOW AND CARRYOVER FLOW. ' LOCAL BASIN FLOW (cfs)= 3.20 TIME OF CONCEMTRATION OF BASIN FLOW (min)= 26.90 CARRYOVER FLOW (cfs)= 0.33 TIME OF CONCENTRATION OF CARRYOVER FLOW (min)= 36.60 LENGTH FOR CARRYOVER FLOW TO DESIGN POINT(ft)= 345.17 SLOPE FOR FLOW LENGTH OF CARRYOVER FLOW (%)= 0.63 ' SCS FLOW TYPE OF CARRYOVER FLOW = Paved STREET DESIGN FLOW (cfs)= _ 3.20 TIME OF CONCENTRATION OF STREET FLOW (min)= 26.90 NOTE: TIME OF CONCENTRATION=O MEANS IT IS NOT GIVEN. AS A RESULT, ' PEAK RUNOFF ON STREET IS THE SUM OF GIVEN FLOWRATES. 1 Ij LJ i ---------------------------------------------------------------------=_�--- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- 3ER:Northern Engineering Services -Ft Collins Colorado ....................... d DATE 07-31-1998 AT TIME 07:18:02 k* PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 2 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.50 GUTTER FLOW DEPTH (ft) = 0.40 FLOW VELOCITY ON STREET (fps)= 2.16 FLOW CROSS SECTION AREA (sq ft)= 1.49 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 7.81 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.20 , FLOW INTERCEPTED (cfs)= 3.20 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.20 FLOW INTERCEPTED (cfs)= 3.20 CARRY-OVER FLOW (cfs)= 0.00 1,�L �-r Z '-------------------------------------------------------------------� UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------- ------------ ------------ -------- -------------------------------- JRJ:Northern Engineering Services -Ft Collins Colorado........................ )N DATE 07-30-1998 AT TIME 15:18:40 tj PROJECT TITLE: Fossil Lake ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 3 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.64 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.88 ' GUTTER FLOW DEPTH FLOW VELOCITY ON STREET (ft) = 0.40 (fps)= 2.47 FLOW CROSS SECTION AREA (sq ft)= 1.58 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.04 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.90 FLOW INTERCEPTED (cfs)= 3.90 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.90— FLOW INTERCEPTED (Cfs)= 3.90 CARRY-OVER FLOW (cfs)= 0.00 I -D-�0 ---------------- -------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- ;SER:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-29-1998 AT TIME 08:05:28 k** PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 7 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.54 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 9.59 GUTTER FLOW DEPTH (ft) = 0.36 FLOW VELOCITY ON STREET (fps)= 2.10 FLOW CROSS SECTION AREA (sa ft)= 1.09 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.72 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 2.30 FLOW INTERCEPTED (Cfs)= 2.30 CARRY-OVER FLOW (Cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.30 G?i e FLOW INTERCEPTED (cfs)= 2.30 P CARRY-OVER FLOW (cfs)= 0.00 '------------------------------------- �_�--- --------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED-BY--METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------- t R:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-29-1998 AT TIME 08:07:09 ' j PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 9 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 1 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (°s) = 0.63 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 13.75 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 2.58 FLOW CROSS SECTION AREA (sq ft)= 2.06 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.98 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.30 FLOW INTERCEPTED (cfs)= 5.30 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.30 FLOW INTERCEPTED (cfs)= 5.30 CARRY-OVER FLOW (cfs)= 0.00 1 i ---------------------------------------------------------------------==---- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ JSER:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-29-1998 AT TIME 07:48:59 ** PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.63 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 4.19 GUTTER FLOW DEPTH (ft) = 0.18 FLOW VELOCITY ON STREET (fps)= 1.73 FLOW CROSS SECTION AREA (sq £t)= 0.35 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.47 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 0.60 , 0.60 0.0 0.660— ' C7Z E 0.60 0.00 11 I G ____________________________________________________________________ _ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER -___----SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------- ------------ -------- -------------------------------- J- JR:Northern Engineering Services -Ft Collins Colorado ....................... DN DATE 07-29-1998 AT TIME 08:13:59 *t PROJECT TITLE: Fossil Lake ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 11 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.71 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.13 GUTTER FLOW DEPTH (ft) = 0.32 ' FLOW VELOCITY ON STREET (fps)= 2.49 FLOW CROSS SECTION AREA (sq ft)= 1.41 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 5.54 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.50 FLOW INTERCEPTED (cfs)= 3.50 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.50 c� e FLOW INTERCEPTED (cfs)= 3.50 CARRY-OVER FLOW (cfs)= 0.00 I I ---------------------------------------------------------------------�- _ UDINLET: INLET HYDARULICS AND SIZING , DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER _--SUPPORTED-BY-METRO_DENVER-CITIES/COUNTIES AND UD&FCD ' 3ER:Northern Engineering Services -Ft Collins Colorado ....................... .4 DATE 07-29-1998 AT TIME 08:15:29 ** PROJECT TITLE: Fossil Lake ' *** CURB OPENING INLET HYDRAULICS AND SIZING: , INLET ID NUMBER: 12 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. t STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.71 , STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.12 , GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: , WATER SPREAD ON STREET (ft) = 13.28 GUTTER FLOW DEPTH FLOW VELOCITY ON STREET (ft) = (fps)= 0.36 2.70 ' FLOW CROSS SECTION AREA (sq ft)= 1.93 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.72 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.20 , FLOW INTERCEPTED (cfs)= 5.20 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.20— FLOW INTERCEPTED (cfs)= 5.20 �? Z CARRY-OVER FLOW (cfs)= 0.00 11 ------------------------------------------------------------------- _-- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------- ----------- - --- - itR:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-29-1998 AT TIME 08:20:17 tt PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 13 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional death to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 4.94 GUTTER FLOW DEPTH (ft) = 0.19 FLOW VELOCITY ON STREET (fps)= 1.44 FLOW CROSS SECTION AREA (sq ft)= 0.41 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 1.66 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (cfs)= LJ I 0.60 0.60 0.00 0.60— �Z c 0.60 �P 0.00 ----------------------------------------------------------------------*�_--=-- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUN-IES AND UD&FCD ------------------------------------------------------------------------------ JSER:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-29-1998 AT TIME 09:55:32 ** PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 20 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.81 GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 2.47 FLOW CROSS SECTION AREA (sq ft)= 2.67 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.19 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.60 , FLOW INTERCEPTED (cfs)= 6.60 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.60—�� n ' FLOW INTERCEPTED (cfs)= 6.60 CARRY-OVER FLOW (cfs)= 0.00 zo 11 1 -------------------------------------------------------------------- - --- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------- ------------ -------- -------------------------------- - J R:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-29-1998 AT TIME 09:59:20 ,t PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 23 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 18.44 GUTTER FLOW DEPTH (ft) = 0.46 ' FLOW VELOCITY ON STREET (fps)= 2.40 FLOW CROSS SECTION AREA (sq ft)= 3.57 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.81 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 8.50 FLOW INTERCEPTED (Cfs)= 8.50 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 8.50 FLOW INTERCEPTED (cfs)= 8.34 CARRY-OVER FLOW (cfs)= 0.16 ------------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------- ------------ ------------ -------- --------------------------------- ' 'SER:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 08-06-1998 AT TIME 17:47:16 ** PROJECT TITLE: Fossil Lake ' *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 28 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 0.40 ' STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.12 , GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: , WATER SPREAD ON STREET (ft) = 16.19 GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= 0.42 2.24 , FLOW CROSS SECTION AREA (sq ft)= 2.79 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 11.51 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.30 , FLOW INTERCEPTED (cfs)= 6.30 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.30 FLOW INTERCEPTED (cfs)= 6.30 CARRY-OVER FLOW (cfs)= 0.00 1 I ------------------ --=1-- ----------------------------------- UDINLET INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------- --------------------------------------------------------------- R:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 08-06-1998 AT TIME 18:19:04 J* PROJECT TITLE: Fossil Lake i CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 42 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 15.00 6.00 63.43 2.00 0.00 depth to flow depth. ' STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 I1, 1 I 1 GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.81 GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 2.21 FLOW CROSS SECTION AREA (sq ft)= 2.67 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 11.20 (cfs)= 5.90 (cfs)= 5.90 (cfs)= 0.00 (cfs)= 5.90 (cfs)= 5.90 (cfs)= 0.00 1 T ------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------ JSER:Northern Engineering Services -Ft Collins Colorado............ )N DATE 07-29-1998 AT TIME 10:03:46 �`** PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 45 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.81 GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 2.21 FLOW CROSS SECTION AREA (sq ft)= 2.67 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.19 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.90 FLOW INTERCEPTED (cfs)= 5.90 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.90— c�z FLOW INTERCEPTED (cfs)= 5.90 h CARRY-OVER FLOW (cfs)= 0.00 1 1 1 1 1 1 Notes: 100-Year Inlet Capacity Calculations Inlet 42 - This inlet has been sized for the 100-year design flow. Lots which are adjacent to this inlet are graded as walkouts with slopes exceeding 2.0% which is not suitable ' for a swale. An emergency overflow has been provided but will not be used on a regular basis. 1 1 1 1 I _----------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------ JSER:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-31-1998 AT TIME 07:07:23 °** PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) _ STREET CROSS SLOPE (%) _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: 15.00 33.19 0.66 0.61 1.35 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 16.56 GUTTER FLOW DEPTH (ft) = 0.50 FLOW VELOCITY ON STREET (fps)= 4.19 FLOW CROSS SECTION AREA (sq ft)= 2.91 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.00 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 12.10 7.37 4.73 12.10— o �� 7.20 n.T 1 1 1 I I I �J -----�--LI- UDINLET: STREET FLOW ANALYSIS DEVELOPED BY DR JAMES GUO, CIVIL ENG DEPT, U OF COLORADO AT DENVER ----SUPPORTED -BY METRO DENVER CITIES/COUNTIES AND UD$FCD - ---------------------------------------- J R:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-31-1998 AT TIME 07:11:50 tj DETERMINATION OF DESIGN FLOW ON THE STREET: ' STREET ID NUMBER : 1.00 PEAK RUNOFF ON STREET INCLUDES LOCAL BASIN FLOW AND CARRYOVER FLOW. ' LOCAL BASIN FLOW (cfs)= 11.60 TIME OF CONCEMTRATION OF BASIN FLOW (min)= 25.60 CARRYOVER FLOW (cfs)= 4.90 TIME OF CONCENTRATION OF CARRYOVER FLOW (min)= 34.10 LENGTH FOR CARRYOVER FLOW TO DESIGN POINT(ft)= 345.17 SLOPE FOR FLOW LENGTH OF CARRYOVER FLOW (%)= 0.63 SCS FLOW TYPE OF CARRYOVER FLOW = Paved _ G7 STREET DESIGN FLOW (cfs)= 113.82'� Z TIME OF CONCENTRATION OF STREET FLOW (min)= 37.72 NOTE: TIME OF CONCENTRATION=O MEANS IT IS NOT GIVEN. AS A RESULT, PEAK RUNOFF ON STREET IS THE SUM OF GIVEN FLOWRATES. --------------------------------------------- UDINLET• INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- ISER:Northern Engineering Services -Ft Collins Colorado ....................... )N DATE 07-31-1998 AT TIME 07:16:18 t** PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 2 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 21.25 GUTTER FLOW DEPTH (ft) = 0.59 FLOW VELOCITY ON STREET (fps)= 2.93 FLOW CROSS SECTION AREA (sq ft)= 4.68 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 18.06 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 13.82 FLOW INTERCEPTED (cfs)= 13.82 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 13.82 FLOW INTERCEPTED (cfs)= 13.82 c CARRY-OVER FLOW (Cfs)= 0.00 " Z --------------------------------------------------------------------� _= ----- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED-BY-METRO-DENVER-CITIES/COUNTIES AND UD&FCD -------------------------------------- tIR:Northern Engineering Services -Ft Collins Colorado ....................... ')N DATE 07-30-1998 AT TIME 14:36:01 .I PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 3 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.08 ' Note: The sump depth is additional death to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.64 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 20.41 GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= 0.57 3.24 FLOW CROSS SECTION AREA (sq ft)= 4.33 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 16.70 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 14.00 FLOW INTERCEPTED (cfs)= 14.00 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 14.00e o.e e FLOW INTERCEPTED (cfs)= 14.00 = = CARRY-OVER FLOW (cfs)= 0.00 11 i ----------------------------------------------------------------------- ----- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER -------_----SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------- ------------ -------- --------------------------------- SER:Northern Engineering Services -Ft Collins Colorado ....................... V DATE 07-30-1998 AT TIME 14:01:32 ** PROJECT TITLE: Fossil Lake ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 7 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.54 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 t GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 17.22 GUTTER FLOW DEPTH (ft) = 0.51 FLOW VELOCITY ON STREET (fps)= 2.71 FLOW CROSS SECTION AREA (sq ft)= 3.13 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 11.43 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 8.50 , FLOW INTERCEPTED (cfs)= 8.50 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 8.50— FLOW INTERCEPTED (cfs)= 8.50 CARRY-OVER FLOW (cfs)= 0.00 _ I I r lJ I r I I J 1] 1 Curb Inlet / Roadway Overtopping Performance Curve: (Sump Conditio Fossil lake Village Filing One Residential Local Street w/ Drive -Over Curb and Gutter Inlet 9 Street Geometry Input: W= Width from Crown to Flowline of Gutter (ft)= 15.00 Wg= Gutter Width (in)= 14.000 Ds= Gutter Depression (in)= 1.375 :urb-Opening Inlet in a Sum When a Curb -Opening Inlet acts like an orifice (Ys+ Y)>(Hc+ Ds), its capacity is approximated by: Qi= 0.67HcLc(64.4Yo)A0.50 Yo= (Ys + Y)-(Hc/2)sinO Where: Hc= Curb Opening Height in Feet= 6.0" Lc= Curb Opening Length in Feet (Varies) Ys= Sump Depth in Feet, (Varies) :urb Opening Input: Y= Gutter Flow Depth in Feet, (Varies) Lc= 10 O= Angle of Inlet Throat= 63.43 Deg %= 15 %= Inlet Capacity Reduction Factor, (Varies) When a curb -opening inlet acts like an weir, (Ys+ Y)<(Hc+ Ds), its capacity is approximated by: Qi= 2.3(Lc+1.8Wg)(Ys+Y)A1.5 (Weir Equation) (Ys+Y) is less than (Hc+Ds) then the curb -opening inlet operates like weir flow, otherwise it is an orifice flow. ;+ Ds= 6.0"+ 1.375"= 7.375"= 0.6146' given below includes the inlet capacity reduction factor Roadway Crown Overtopping: Flow across the roadway is defined by the weir equation as: Qo= CdLHA1.5 Where: Cd= Overtopping Discharge Coefficient Crown Overtopping Input: L= Length of the Roadway Crest Cd= 2.92 H= Depth of Water Overtopping the Crown G1= 0.0063 G1= Street Grade (ft/ft) G2= 0.0063 G2= Street Grade (ft/ft) Ys+Y Yo Qi H L Qo Qt (ft) (ft) (cfs) (ft) (ft) (cfs) (cfs) 0.00000 0.0000 0.00 0.0000 0.00 0.00 0.00 0.60485 0.0000 12.51 __ 0.1424 45.21 7.09 19.60 0100 @ Inlet 9= 19.6cfs 0.61459 0.0000 12.81 0.1489 47.27 7.93 20.74 0.61460 0.3910 14.29 0.1489 47.27 7.93 22.22 0.70000 0.4764 15.77 0.2058 65.34 17.82 33.59 100-Year WSEL= 4907.3+ 0.60485= 4907.90 Crown Elevation in Falling Water Drive = 4907.74 Prfmnc9.wb2 Curb Inlet / Back of Walk Overtoppinq Performance Curve: Fossil Lake Village Filing One Residential Local Street w/ Drive -Over Curb and Gutter Inlet 10 Street Geometry Input: W= Width from Crown to Flowline of Gutter (ft)= 15.00 Wg= Gutter Width (in)= 14.000 Ds= Gutter Depression (in)= 1.375 Distance from F.L. to BOW (ft)= 10.5 Distance from F.L. to TOC (in)= 4.75 Distance from F.L. to BOC (in)= 17.0 ;urb-Opening Inlet in a Sump: 1) When a Curb -Opening Inlet acts like an orifice (Ys+ Y)>(Hc+ Ds), its capacity is approximated by: Qi= 0.67HcLc(64.4Yo)40.50 Yo= (Ys + Y)-(Hc/2)sinO Where: Hc= Curb Opening Height in Feet= 6.0" Lc= Curti Opening Length in Feet (Varies) Ys= Sump Depth in Feet, (Varies) curb Opening Input: Y= Gutter Flow Depth in Feet, (Varies) Lc= 5 O= Angle of Inlet Throat= 63.43 Deg %= 20 %= Inlet Capacity Reduction Factor, (Varies) When a curb -opening inlet acts like an weir, (Ys+ Y)<(Hc+ Ds), its capacity is approximated by: Qi= 2.3(Lc+1.8Wg)(Ys+Y)A1.5 (Weir Equation) (Ys+Y) is less than (Hc+Ds) then the curb -opening inlet operates like weir flow, otherwise it is an orifice flow. c+ Ds= 6.0"+ 1.375"= 7.375"= 0.6146' i given in the table below includes the inlet capacity reduction factor Flow across the back of walk is defined by the weir equation as: Qo= CdLHA1.5 Where: Cd= Overtopping Discharge Coefficient Crown Overtopping Input: L= Length of the Walk Crest Cd= 2.92 H= Depth of Water Overtopping the Walk G1= 0.0063 G1= Back of Walk Grade (fVft) G2= 0.0063 G2= Back of Walk Grade (ft/ft) Ys+Y Yo Qi H L Qo Qt (ft) (ft) (cfs) (ft) (ft) (cfs) (cfs) 0.00000 0.0000 0.00 0.0000 0.00 0.00 0.00 0.57750 0.0000 6.94 0.0000 0.00 0.00 6.94 0.61459 0.0000 7.62 0.0247 7.85 0.09 7.71 0.70680 0.4832 7.48 0.0862 27.37 2.02 9.50 Q100 @ Inlet 10= 9.5cfs 0.75000 0.5264 7.80 0.1150 36.51 4.16 11.96 Q100= 2.4 cfs+ 7.1 cfs from Inlet 9 100-Year WSEL= 4907.3+ 0.7068= 4908.01 Back of Walk Elevation = 4907.88 Prfmnc10.wb2 I I I I Curb Inlet / Roadway Overtopping Performance Curve: (Sump Condition Fossil Lake Village Filing One Residential Local Street w/ Drive -Over Curb and Gutter Inlet 11 Street Geometry Input: W= Width from Crown to Flowline of Gutter (ft)= 15.00 Wg= Gutter Width (in)= 14.000 Ds= Gutter Depression (in)= 1.375 Curb -Opening Inlet in a Sump: 1) When a Curb -Opening Inlet acts like an orifice (Ys+ Y)>(Hc+ Ds), its capacity is approximated by: Qi= 0.67HcLc(64.4Yo)^0.50 Yo= (Ys + Y)-(Hc/2)sinO Where: Hc= Curb Opening Height in Feet= 6.0" Lc= Curb Opening Length in Feet (Varies) Ys= Sump Depth in Feet, (Varies) Curb Opening Input: Y= Gutter Flow Depth in Feet, (Varies) Lc= 10 O= Angle of Inlet Throat= 63.43 Deg %= 15 %= Inlet Capacity Reduction Factor, (Varies) When a curb -opening inlet acts like an weir, (Ys+ Y)<(Hc+ Ds), its capacity is approximated by: Qi= 2.3(Lc+1.8Wg)(Ys+Y)41.5 (Weir Equation) (Ys+Y) is less than (Hc+Ds) then the curb -opening inlet operates like weir flow, otherwise it is an orifice flow. c+ Ds= 6.0"+ 1.375"= 7.375"= 0.6146' i given below includes the inlet capacity reduction factor adway Crown Overtopping: w across the roadway is defined by the weir equation as: = CdLH^1.5 Where: Cd= Overtopping Discharge Coefficient wn Overtopping Input: L= Length of the Roadway Crest Cd= 2.92 H= Depth of Water Overtopping the Crown G1= 0.014 G 1 = Street Grade (ft/ft) G2= 0.0071 G2= Street Grade (ft/ft) Ys+Y Yo Qi H L Qo Qt (ft) (ft) (cfs) (ft) (ft) (cfs) (cfs) 0.00000 0.0000 0.00 0.0000 0.00 0.00 0.00 0.54370 0.0000 10.66 0.1016 21.57 2.04 12.70 Q100 @ Inlet 11= 12.7cfs 0.61459 0.0000 12.81 0.1489 31.61 5.30 18.11 0.61460 0.3910 14.29 0.1489 31.61 5.30 19.59 0.70000 0A764 15.77 0.2058 43.69 11.91 27.69 100-Year WSEL= 4908.0+ 0.5437= 4908.54 Crown Elevation in Twin Wash Square = 4908.43 ' Prfmncll.wb2 Curb Inlet / Roadwav Overtopping Performance Curve: (Sump Condition Fossil Lake Village Filing One Residential Local Street w/ Drive -Over Curb and Gutter Inlet 12 Street Geometry Input: W= Width from Crown to Flowline of Gutter (ft)= 15.00 Wg= Gutter Width (in)= Ds= Gutter Depression (in)= 1.375 14.000 curb -Opening Inlet in a Sump: 1) When a Curb -Opening Inlet acts like an orifice (Ys+ Y)>(Hc+ Ds), its capacity is approximated by: Qi= 0.67HcLc(64.4Yo)"0.50 Yo= (Ys + Y)-(Hc/2)sinO Where: Hc= Curb Opening Height in Feet= 6.0" Lc= Curb Opening Length in Feet (Varies) Ys= Sump Depth in Feet, (Varies) curb Opening Input: Y= Gutter Flow Depth in Feet, (Varies) Lc= 10 O= Angle of Inlet Throat= 63.43 Deg %= 15 %= Inlet Capacity Reduction Factor, (Varies) 2) When a curb -opening inlet acts like an weir, (Ys+ Y)<(Hc+ Ds), its capacity is approximated by: Qi= 2.3(Lc+1.8Wg)(YS+Y)^1.5 (Weir Equation) If (Ys+Y) is less than (Hc+Ds) then the curb -opening inlet operates like weir flow, otherwise it is an orifice flow. Hc+ Ds= 6.0"+ 1.375"= 7.375"= 0.6146' Qi given below includes the inlet capacity reduction factor Crown Flow across the roadway is defined by the weir equation as: Qo= CdLH11.5 Where: Cd= Overtopping Discharge Coefficient Crown Overtopping Input: L= Length of the Roadway Crest Cd= 2.92 H= Depth of Water Overtopping the Crown G1= 0.004 G1= Street Grade (ft/ft) G2= 0.005 G2= Street Grade (ft/ft) Ys+Y Yo Qi H L Qo Qt (ft) (ft) (cfs) (ft) (ft) (cfs) (cfs) 0.00000 0.0000 0.00 0.0000 0.00 0.00 0.00 0.59400 0.0000 12.17 0.1352 60.83 8.83 21.00 Q100 @ Inlet 12= 21.Ocfs 0.61460 0.3910 14.29 0.1489 67.01 11.24 25.53 0.63200 0.4084 14.60 0.1605 72.23 13.56 28.16 0.70000 0.4764 15.77 0.2058 92.63 25.26 41.03 Q100= 19.Ocfs + 2 cfs from Inlet 11 100-Year WSEL= 4908.0+ 0.594= 4908.59 Crown Elevation in Falling Water Drive = 4908.66 r [1 1 I I u A I I I I 1 I Prfmncl2.wb2 Curb Inlet / Back of Walk Overtoppinq Performance Curve: Fossil Lake Village Filing One Residential Local Street vv/ Drive -Over Curb and Gutter Inlet 13 Street Geometry Input: W= Width from Crown to Flowline of Gutter (ft)= 15.00 Wg= Gutter Width (in)= 14.000 Ds= Gutter Depression (in)= 1.375 Distance from F.L. to BOW (ft)= 10.5 Distance from F.L. to TOC (in)= 4.75 Distance from F.L. to BOC (in)= 17.0 'urb-Opening Inlet in a Sump: 1) When a Curb -Opening Inlet acts like an orifice (Ys+ Y)>(Hc+ Ds), its capacity is approximated by: Qi= 0.67HcLc(64AYo)^0.50 Yo= (Ys + Y)-(Hc/2)sinO Where: Hc= Curb Opening Height in Feet= 6.0" Lc= Curb Opening Length in Feet (Varies) Ys= Sump Depth in Feet, (Varies) Curb Opening Input: Y= Gutter Flow Depth in Feet, (Varies) Lc= 5 O= Angle of Inlet Throat= 63.43 Deg off,= 20 %= Inlet Capacity Reduction Factor, (Varies) 2) When a curb -opening inlet acts like an weir, (Ys+ Y)<(Hc+ Ds), its capacity is approximated by: Qi= 2.3(Lc+1.8Wg)(Ys+Y)^1.5 (Weir Equation) If (Ys+Y) is less than (Hc+Ds) then the curb -opening inlet operates like weir flow, otherwise it is an orifice flow. Hc+ Ds= 6.0"+ 1.375"= 7.375"= 0.6146' Qi given in the table below includes the inlet capacity reduction factor Back of ry across the back of walk is defined by the weir equation as: = CdLH^1.5 Where: Cd= Overtopping Discharge Coefficient wn Overtopping Input: L= Length of the Walk Crest Cd= 2.92 H= Depth of Water Overtopping the Walk G1= 0.004 G1= Back of Walk Grade (ft/ft) G2= 0.004 G2= Back of Walk Grade (ft/ft) Ys+Y Yo Qi H L Qo Qt (ft) (ft) (cfs) (ft) (ft) (cfs) (cfs) 0.00000 0.0000 0.00 0.0000 0.00 0.00 0.00 0.57750 0.0000 6.94 0.0000 0.00 0.00 6.94 0.61459 0.0000 7.62 0.0247 12.36 0.14 7.76 0.71300 0.4894 7.52 0.0903 45.17 3.58 11.10 0100 @ Inlet 13= 11.1cfs 0.75000 0.5264 7.80 0.1150 57.50 6.55 14.35 Q100= 2.3 cfs+ 8.8 cfs from Inlet 12 100-Year WSEL= 4908.2+ 0.713= 4908.91 Back of Walk Elevation = 4908.78 1 Prfmncl3.wb2 L Curb Inlet / Back of Walk Overtopping Performance Curve: Fossil Lake Village Filing One Residential Local Street w/ Drive -Over Curb and Gutter Inlet 20 Street Geometry Input: W= Width from Crown to Flowline of Gutter (ft)= 15.00 Wg= Gutter Width (in)= 14.000 Ds= Gutter Depression (in)= 1.375 Distance from F.L. to BOW (ft)= 10.5 Distance from F.L. to TOC (in)= 4.75 Distance from F.L. to BOC (in)= 17.0 :urb-Ooenina Inlet in a Sum When a Curb -Opening Inlet acts like an orifice (Ys+ Y)>(Hc+ Ds), its capacity is approximated by: Qi= 0.67HcLc(64.4Yo)A0.50 Yo= (Ys + Y)-(Hct2)sinO Where: Hc= Curb Opening Height in Feet= 6.0" Lc-- Curb Opening Length in Feet (Vanes) Ys= Sump Depth in Feet, (Vanes) :urb Opening Input: Y= Gutter Flow Depth in Feet, (Vanes) Lc= 10 O= Angle of Inlet Throat= 63.43 Deg %= 15 %= Inlet Capacity Reduction Factor, (Vanes) When a curb -opening inlet acts like an weir, (Ys+ Y)<(Hc+ Ds), its capacity is approximated by: Qi= 2.3(Lc+1.8Wg)(Ys+Y)A1.5 (Weir Equation) (Ys+Y) is less than (Hc+Ds) then the curb -opening inlet operates like weir flow, otherwise it is an orifice flow c+ Ds= 6.0"+ 1.375"= 7.375"= 0.6146' i given in the table below includes the inlet capacity reduction factor Back of Walk Overto w across the back of walk is defined by the weir equation as: = CdLHAt.5 Where: Cd= Overtopping Discharge Coefficient wn Overtopping Input: L= Length of the Walk Crest Cd= 2.92 H= Depth of Water Overtopping the Walk G1= 0.005 G1= Back of Walk Grade (ft/ft) G2= 0.005 G2= Back of Walk Grade (ft/ft) Ys+Y Yo Qi H L Qo Qt (ft) (ft) (cfs) (ft) (ft) (cfs) (cfs) 0.00000 0.0000 0.00 0.0000 0.00 0.00 0.00 0.57750 0.0000 11.67 0.0000 0.00 0.00 11.67 0.61459 0.0000 12.81 0.0247 9.89 0.11 12.92 0.70680 0.4832 15.88 0.0862 34.48 2.55 18.43 0.77300 0.5494 16.94 0.1303 52.13 7.16 24.10 Q100 @ Inlet 20= 24.1cfs 100-Year WSEL= 4901.15+ 0.773= 4901.92 Back of Walk Elevation = 4901.73 I I I 1 I i I I I E I 1 �J Ll FA Prfmnc20.wb2 Curb Inlet / Back of Walk Overtopping Performance Curve: Fossil Lake Village Filing One Residential Local Street w/ Drive -Over Curb and Gutter Inlet 23 Street Geometry Input: W= Width from Crown to Flowline of Gutter (ft)= 15.00 Wg= Gutter Width (in)= 14.000 Ds= Gutter Depression (in)= 1.375 Distance from F.L. to BOW (ft)= 10.5 Distance from F.L. to TOC (in)= 4.75 Distance from F.L. to BOC (in)= 17.0 Curb -Opening Inlet in a Sump: 1) When a Curb -Opening Inlet acts like an orifice (Ys+ Y)>(Hc+ Ds), its capacity is approximated by: Qi= 0.67HcLc(64.4Yo)^0.50 Yo= (Ys + Y)-(Hc/2)sinO Where: Hc= Curb Opening Height in Feet= 6.0" Lc= Curb Opening Length in Feet (Varies) Ys= Sump Depth in Feet, (Varies) Curb Opening Input: Y= Gutter Flow Depth in Feet, (Varies) Lc= 10 O= Angle of Inlet Throat= 63.43 Deg %= 15 %= Inlet Capacity Reduction Factor, (Varies) When a curb -opening inlet ads like an weir, (Ys+ Y)<(Hc+ Ds), its capacity is approximated by: Qi= 2.3(Lc+1.8Wg)(Ys+Y)^1.5 (Weir Equation) If (Ys+Y) is less than (Hc+Ds) then the curb -opening inlet operates like weir flow, otherwise it is an orifice flow. Hc+ Ds-- 6.0"+ 1.375"= 7.375"= 0.6146' Qi given in the table below includes the inlet capacity reduction factor Flow across the back of walk is defined by the weir equation as: Qo= CdLH^1.5 Where: Cd= Overtopping Discharge Coefficient Crown Overtopping Input: L= Length of the Walk Crest Cd= 2.92 H= Depth of Water Overtopping the Walk G1= 0.004 G1= Back of Walk Grade (ft/ft) G2= 0.004 G2= Back of Walk Grade (fVft) Ys+Y Yo Qi H L Qo Qt (ft) (ft) (cfs) (ft) (ft) (cfs) (cfs) 0.00000 0.0000 0.00 0.0000 0.00 0.00 0.00 0.57750 0.0000 11.67 0.0000 0.00 0.00 11.67 0.61459 0.0000 12.81 0.0247 12.36 0.14 12.95 0.70680 0.4832 15.88 0.0862 43.10 3.19 19.07 0.80810 0.5845 17.47 0.1537 76,87 13.53 31.00 Q100 @ Inlet 23= 31.Ocfs 100-Year WSEL= 4902.00+ 0.8081= 4902.81 Back of Walk Elevation = 4902.58 Prfmnc23.wb2 Curb Inlet / Roadwav Overtoppinq Performance Curve: (Sump Condition Fossil Lake Village Filing One Residential Local Street w/ Drive -Over Curb and Gutter Inlet 28 Street Geometry Input: W= Width from Crown to Flowline of Gutter (ft)= 15.00 Wg= Gutter Width (in)= 14.000 Ds= Gutter Depression (in)= 1.375 Curb -Opening Inlet in a Sump: 1) When a Curb -Opening Inlet acts like an orifice (Ys+ r(Hc+ Ds), its capacity is approximated by: Qi= 0.67HcLc(64.4Yo)^0.50 Yo= (Ys + Y)-(HG2)sinO Where: Hc= Curb Opening Height in Feet= 6.0" Lc= Curb Opening Length in Feet (Varies) Ys= Sump Depth in Feet, (Varies) Curb Opening Input: Y= Gutter Flow Depth in Feet, (Varies) Lc= 15 O= Angle of Inlet Throat= 63.43 Deg %= 10 %= Inlet Capacity Reduction Factor, (Varies) When a curb -opening inlet acts like an weir, (Ys+ Y)<(Hc+ Ds), its capacity is approximated by: Qi= 2.3(Lc+1.8Wg)(Ys+Y)^1.5 (Weir Equation) If (Ys+Y) is less than (Hc+Ds) then the curb -opening inlet operates like weir flow, otherwise it is an orifice flow. Hc+ Ds= 6.0"+ 1.375"= 7.375"= 0.6146' Qi given below includes the inlet capacity reduction factor Roadway Crown Overtopping: Flow across the roadway is defined by the weir equation as: Qo= CdLH^1.5 Where: Cd= Overtopping Discharge Coefficient Crown Overtopping Input: L= Length of the Roadway Crest Cd= 2.92 H= Depth of Water Overtopping the Crown G1= 0.004 G1= Street Grade (ft/ft) G2= 0,004 G2= Street Grade (ft/ft) Ys+Y Yo Qi H L Qo Qt (ft) (ft) (cfs) (ft) (ft) (cfs) (cfs) 0,00000 0.0000 0.00 0.0000 0.00 0.00 0.00 0.56555 0.0000 C- 6.3� 0.1162 58.10 6.72 23.10 Q100 @ Inlet 28= 23.1cfs 0.61459 0.0000 18.55 0.1489 74.45 12.49 31.04 0.61460 0.3910 22.69 0.1489 74.45 12.49 35.18 0.70000 0.4764 25.05 0.2058 102.92 28.06 53.11 100-Year WSEL= 4888.5+ 0.56555= 4889.06 Crown Elevation in Street= 4888.89 Prfmnc28.wb2 ----------------------------------------------------------------- = ---- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------- --------- ------- ---------------- ---- -------------------- _R Northern Engineering Services -Ft Collins Colorado ....................... N DATE 08-06-1998 AT TIME 17:44:40 1 PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 29 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.40 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 17.88 1 GUTTER FLOW DEPTH FLOW VELOCITY ON STREET (ft) = (fps)= 0.45 2.36 FLOW CROSS SECTION AREA (sq ft)= 3.37 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.46 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 7.92 7.92 0.00 7.92---0, 7.92 0.00 ' —,a-.. ` ....: i eo C I •J�GT v' �� e 1 . 1 ®/1 iLec�. � Gam.., � � (i. � l a?I i--.+-�...-r /-.�..cT J-�3 I H :�cs/ocK FED <-�QBf�.� Lila ..t/o�i.�T 7 /"-c��o�e Co✓Tco� T Ga.7ER,,d MLf✓c/Al� � Vr[.. , / .SEcT ...3 '� �a c./<J77v.✓ r..,c Li�TEs.--, ,.J/n/�i /✓E G�+Q.ac,rr o� .4 , �F[�E�n.2 /,✓,ter_ /oo yAz LIsiq ✓ C�TsCs/� c'4E _ /8.3 G. F• S. 09 -F/ /7 ' Lo ✓g %✓. �T r I r m a M r 4" = M M r' MMI1 M MIMM M M11M CITY OF FORT COLLINS GUTTER CAPACITY FOR DRIVE OVER CURB AND GUTTER Q = 0.56 zln s^0.5 y^2.67 ject Description: Fossil Lake Village ject Number: 9812.00 Number: D-2-BDDP31.WQ1 18-Aug-98 10:00 AM SIGN POINT 31 RET COURT (North Flowline) SIGN CRITERIA: 1) Initial Storm (100-Year) 2) Street width from crown to flovillne = 14'= Local 3)n=0,016 4) Gutter Width = 1.17' INPUT OUTPUT SLOPE % Flow Spread from Flowline (ft) = 17.072 W = From CL of street to lip of gutter (ft) 12,8333 Oc = depth of water over the crown (ft) = 0.061 z1 = 1 / street cross slope 50 2.00 Dw = depth at back of walk (ft) _ -0.088 z2 = 1 / gutter cross slope 10.1818 9.82 Q 1 12.737 z3 = 1 / back of curb slope 3.5789 27.94 Q2 6.162 z4 = 1 / gutter cross slope 10,1818 9,82 Q3 2.108 z5 = 1 / back of curb cross slope 3.5789 27.94 Q4 (-) 2.710 z6 = 1 / sidewalk cross slope 50 2.00 05 (-) 0.003 z7 = 1 / R.O.W. cross slope 50 2,00 06 0.025 s = longitudinal street slope (ft/ft) 0.024 2.40 07 ERR y = depth at the flowline of gutter (it) 0.433 ') 0 TOTAL (cfs) 18.30 11 100-YR THEORETICAL CAPACITY F = REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY = 0.8 (See Figure 4-2) ACTUAL ALLOWABLE GUTTER CAPACITY = 18,30 ' 0.8 Q TOTAL (cfs) 14.64 r 11 100-YR ALLOWABLE CAPACITY �M northern engineering services, Inc. -------------------------------------------------------------------- ---- 1----- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ JSER:Northern Engineering Services -Ft Collins Colorado ....................... DN DATE 07-30-1998 AT TIME 14:30:04 k** PROJECT TITLE: Fossil Lake *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 42 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.12 GUTTER WIDTH (ft) = 3.67 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 26.50 GUTTER FLOW DEPTH (ft) = 0.62 FLOW VELOCITY ON STREET (fps)= 2.98 FLOW CROSS SECTION AREA (sq ft)= 7.19 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 25.48 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 21.40 FLOW INTERCEPTED (cfs)= 21.40 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 21.40- �•�- FLOW INTERCEPTED (cfs)= 21.40 c,�p CARRY-OVER FLOW (cfs)= 0.00 I I I LJ J J 1] LJ 1 Curb Inlet / Back of Walk Overtopping Performance Curve: Fossil Lake Village Filing One Residential Local Street w/ Drive -Over Curb and Gutter Inlet 45 Street Geometry Input: W= Width from Crown to Flowline of Gutter (ft)= 15.00 Wg= Gutter Width (in)= 14.000 Ds= Gutter Depression (in)= 1.375 Distance from F.L. to BOW (ft)= 10.5 Distance from F.L. to TOC (in)= 4.75 Distance from F.L. to BOC (in)= 17.0 :urb-Opening Inlet in a Sump: 1) When a Curb -Opening Inlet acts like an orifice (Ys+ Y)>(Hc+ Ds), its capacity is approximated by: Qi= 0.67HcLc(64.4Yo)^0.50 Yo= (Ys + Y)-(Hc/2)sinO Where: Hc= Curb Opening Height in Feet= 6.0" Lc= Curb Opening Length in Feet (Varies) Ys= Sump Depth in Feet, (Varies) -urb Opening Input: Y= Gutter Flow Depth in Feet, (Varies) Lc= 10 O= Angle of Inlet Throat= 63.43 Deg %= 15 %= Inlet Capacity Reduction Factor, (Varies) 2) When a curb -opening inlet acts like an weir, (Ys+ Y)<(Hc+ Ds), its capacity is approximated by: Qi= 2.3(Lc+1.8Wg)(Ys+Y)^1.5 (Weir Equation) (Ys+Y) is less than (Hc+Ds) then the curb -opening inlet operates like weir flow, otherwise it is an orifice Flow. c+ Ds= 6.0"+ 1.375"= 7.375"= 0.6146' i given in the table below includes the inlet capacity reduction factor Back of Walk Overto Flow across the back of walk is defined by the weir equation as: Qo= CdLH^1.5 Where: Cd= Overtopping Discharge Coefficient Crown Overtopping Input: L= Length of the Walk Crest Cd= 2.92 H= Depth of Water Overtopping the Walk G1= 0.004 G1= Back of Walk Grade (ft/ft) G2= 0.004 G2= Back of Walk Grade (ft/ft) Ys+Y Yo Qi H L Qo Qt (ft) (ft) (cfs) (ft) (ft) (cfs) (cfs) 0.00000 0.0000 0.00 0.0000 0.00 0.00 0.00 0.57750 0.0000 11.67 0.0000 0,00 0.00 11.67 0.61459 0.0000 12.81 0.0247 12.36 0.14 12.95 0.73340 0.5098 16.32 0.1039 51.97 5.08 21.40 Q100 @ Inlet 45= 21.4 cfs 0.80810 0.5845 17.47 0.1537 76.87 13.53 31.00 100-Year WSEL= 4896.50+ 0.7334= 4897.23 Back of Walk Elevation = 4897.08 Prtmnc45.wb2 i 11E EWCREERN(i SMVMS TABLE 64 uo sou*H Horns suh lox. n. Cowas. Coiauoo eosxi N.ET CAPACRY NEDUCTpN FACTORS �_ 1 I.„., ,,, _.�.. m� m m m m w m m m m m m m m= m w r (�J-3M thru J-3M Concave Grate and Frame IGrate Corners Relieved to Prevent Rocking � t 3 SIDED / FLAT GRAIEC --aJ—LW ^.OVER I rh. I CONCAVE 17 .;RATEO � • �►-2rVA _J _�-2 0 I I— 32VA- T zs,ti {.--- sstc- za,ti. Illustrating J-3448 Catalog Cahlog No. Type of Grate Total Wt. No. Type of Grate Total Wt. _ J-3440 2 Sided Concave 340 J-34te 3 Sided Flat 360 J.M43 2 Sided Flat 340 J,3W 4 Sided Concave 380 J,1 M 3 Sided Concave 360 J-3450 4 Sided Flat 380 GRATE OPENING AREA RATIOS FOR UDINLET 1) FLAT GRATE OPENING AREA RATIO = 209.34 sq—in / 526.50 sq—in (19.5" x 27") = 0.39 CONCAVE GRATE OPENING AREA RATIO 204.75 sq—in / 526.50 sq—in (19.5" x 27") = 0.39 7" FLAT C 21 OP 1.375" OPEN CONCAVE GRATED COVER 18 OPENINGS AT H]Ili J OC�Cl��1�;I RATED 'O\'F� [NING S AT x 7.2-- F1 i Fl 1.625" v 7.00" OPEN AREA= 204.75 sq—in= 1.42 sq—ft REr: C MID C SUPPLY. CWMERCE CITY, COLOPADO (303)2E8-6014 NORTHERN ENGNEERNG SERVICES ' 420 SOUTH HDw_S S•:ITE m2. R. MWNS. COLO"C e0s2, "` AREA INLET FRAME AND GRATE t_ 1 (s)01 2',—A15s o"Ar>yx. Ac.o wurum,e�nam I APPENDICES , Volume I: Appendix A: Offsite and Historic Hydrology , Appendix B: Developed On -site Hydrology Appendix C: Street Capacity Appendix D: Design of Inlets , Volume 2: Appendix E: Design of Swales ' Appendix F: Design of Culverts Appendix G: Design of Storm Sewers Appendix H: Detention Pond Rating Curves and Routing Appendix I: Water Quality Appendix J: Riprap Calculations Appendix K: Erosion Control Calculations Appendix L: Design of Pond Emergency Overflow Weirs 1 1 I LJ J I 1 I F IM MI� i � IM m m m m m m m IM m m m m m SCHEDULE OF PROPOSED SWALES DESCRIPTION TYPE LENGTH (Fr) SLOPE (7) BOTTOM WIDTH (Fr) 100-YR DEPTH (d) 100-YR x 1.333 DEPTH MINIMUM SWALE DEPTH 2 GRASS 360.4 1.39 0.0 1.41 1.57 2.0 5 GRASS 290.0 1.47 0.0 1.04 1.16 2.0 6 GRASS 130.6 1.50 0.0 1.32 1.47 2.0 10 GRASS 270.7 1.66 0.0 1.52 1.69 2.0 15 GRASS 439.2 1.63 0.0 1.20 1.33 2.0 16 GRASS 571.4 1.70 3.0 1.58 1.85 2.0 17 GRASS 118.2 1.50 0.0 2.00 2.23 3.0 18 GRASS 485.6 1.00 0.0 1.67 1.86 2.0 20 GRASS 180.6 2.10 0.0 1.19 1.32 2.0 23 GRASS 284.7 1.78 0.0 1.35 1.50 2.0 24 GRASS 278.0 0.75 0.0 1.90 2.12 2,5 25 GRASS 982.6 0.93 6.0 1.65 1.89 2.0 36 GRASS 346.2 1.52 0.0 2.10 2.34 2.5 39 GRASS 411.1 1.52 0.0 1.27 1.42 2.0 40 GRASS 208.7 0.96 0.0 1.73 1.92 2.0 42 GRASS 160.0 2.10 0.0 1.14 1.27 1.5 45 GRASS 196.9 2.10 0.0 1.14 1.27 1.5 46 GRASS 580.8 1.55 0.0 0.75 0.84 1.5 48 GRASS 1066.9 0.50 0.0 1.56 1.78 2.0 50 GRASS 304.6 1.64 0.0 1.02 1.12 2.0 52 GRASS 218.6 1.20 5.0 1.41 1.61 2.0 n UNLINED CHANNEL DESIGN CRITERIA REFERENCE: THE CITY OF FORT COLLINS "STORM DRAINAGE DESIGN CRITERIA AND CONSTRUCTION STANDARDS", MAY, 1984. SECTION 7.2. UNLINED CHANNELS 1 ) MAXIMUM SIDE SLOPES = 4:1 2) MAXIMUM DEPTH OF FLOW IN CHANNEL = 4.0 3) SUBCRITICAL FLOW ONLY 4) MINIMUM FREEBOARD = ADDITIONAL CAPACITY FOR 1 /3 OF THE DESIGN FLOW. 5) CHANNEL VELOCITY < 7.5 fps DURING THE 100—YR STORM. 6) CHANNEL VELOCITY > 2.0 fps DURING THE 2—YR STORM. 7) MANNINGS "n" = 0.035 (See Table 2-4) 8) MINIMUM RADIUS = 100' OR TWICE THE TOPWIDTH OF THE DESIGN FLOW. ' Swale 2. _:100= 31.09 cfs (Storm Sewer 2) = 3 ' Worksheet for Triangular Channel Project Description ' Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 2 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 ' Channel Slope 0.013900 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 31.09 cfs Resutts Depth 1.41 ft Flow Area 7.99 ft2 ' Wetted Perimeter 11.65 ft Top Width 11.31 f: Critcal Depth 1.30 ft Critical Slope 0.021440 f (ft Velocity 3.89 f (s Velocity Head 0.24 f: i Specific Energy 1.65 ft Froude Number 0.82 Flow is subcritical. I 1 I [1 ' 08/13/98 HowMaster v5.13 10:14:34 AM Haestad Methods, Inc. 37 Brookside Road waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I Swale 2: Q100x1.333 = 41.5 ofs Worksheet for Triangular Channel 4 , Project Description , Project File d:\projects\flt\swales\flf.fm2 Worksheet Swale 2 Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.013900 ft/ft , Left Side Slope 4.000000 H : V Right Side Slope Discharge 4.000000 H : V 41.50 cfs , ' Results Depth 1.57 ft Flow Area 9.92 ft' Wetted Perimeter 12.99 ft , Top Width 12.60 ft Critical Depth 1.46 ft Critical Slope 0.020631 ft/ft ' Velocity 4.18 ft/s Velocity Head 0.27 ft Specific Energy 1.85 ft , Froude Number 0.83 Flow is subcritical. 1 08/13/90 FlowMaster v5.13 10:18:54 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 7S5-1666 Page 1 of 1 Swale 5: Q2= 3.8 ds (Design Point 5) ' Worksheet for Triangular Channel ' Project Description Project File untitied.fm2 Worksheet Swale 5 Flow Element Triangular Channel I Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 I Channel Slope 0.014700 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 3.80 cfs Results Depth 0.64 ft Flow Area 1.62 ft2 ' Wetted Perimeter 5.24 ft Top Width 5,09 ft Critical Depth 0.56 ft Critical Slope 0.028376 ft/ft Velocity 2.35 ft/s Velocity Head 0.09 ft Specific Energy 0.72 ft Froude Number 0.73 Flow is subcritical, �J I 1 ,07/30/98 FlowMaster v5.13 03:35:02 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 t Swale 5: Q100= 14.0 cfs (Design Point 5) Worksheet for Triangular Channel , Project Description ' Project File untitled.fm2 Worksheet Swale 5 Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.014700 ftlft , Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 14.00 cfs ' ' Results Depth 1.04 ft Flow Area 4.30 ft? Wetted Perimeter 8.55 ft ' Top Width 8.30 ft Critical Depth 0.95 ft Crifcal Slope 0.023846 f tft Velocity 3.26 ftis Velocity Head 0.16 ft Specific Energy 1.20 ft Froude Number 0.80 ' Flow is subcritical. 1 1 [I FlowMaster v5.13 07/30/98 ' 03:35:42 PM Hassled Methods, Inc. 37 Brookside Road Waterbury, CT 06706 (203) 755-1666 Page 1 of 1 Swale 5: 0100x1.333= 18.7 cfs ' Worksheet for Triangular Channel Project Description ' Project File untitled.fm2 Worksheet Swale 5 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth k i 1 11 1 1 u 11 1 1 11 1 Input Data Mannings Coefficient 0.035 Channel Slope 0.014700 fdft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 18.70 cfs Results Depth 1.16 ft Flow Area 5,34 fF Wetted Perimeter 9.53 ft Top Width 9.25 ft Critical Depth 1.06 ft Critical Slope 0.022944 ft(ft Velocity 3.50 ft/s Velocity Head 0.19 ft Specific Energy 1.35 ft Froude Number 0.81 Flow is subcritical. 1 07/30/98 03:59:24 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 FlowMaster v5.13 Page 1 of i Swale 6: Q2= 7.4 cfs (Design Pont 5) Worksheet for Triangular Channel r " 1 Project Description Project File d:\projects\flf\swales\flf.fm2 ' Worksheet Swale 6 Flow Element Triangular Channel Method Manning's Formula , Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.015000 ft/ft , Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 7.40 cfs , Results , Depth 0.81 ft Flow Area 2.65 ft' Wetted Perimeter 6.71 ft ' Top Width 6.51 ft Critical Depth 0.73 ft Critical Slope 0.025964 ft/ft , Velocity 2.80 ft/s Velocity Head 0.12 ft Specific Energy 0.93 ft ' Froude Number 0.77 Flow is subcritical. FlowMaster v5.13 08/06/98 Page 1 of , 02:07:53 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 1 ' Swale 6: Q100= 27.0 cfs (Design Pont 5) Worksheet for Triangular Channel Project Description ' Project File d:\projects\flflswales\flf.fm2 Worksheet Swale 6 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.015000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 27.00 cfs Results Depth 1.32 ft Flow Area 6.98 fP Wetted Perimeter 10.90 ft Top Width 10.57 ft Critical Depth 1.23 ft Critical Slope 0.021848 ft/ft Velocity 3.87 ft/s Velocity Head 0.23 ft Specific Energy 1.55 ft Froude Number 0.84 Flow is subcritical. 08ro6ge 02:07:21 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 (203) 755-1666 G FlowMaster v5.13 Page 1 of 1 Swale 6: Q100x1.333= 36.0 ofs Worksheet for Triangular Channel Project Description Project File dAprojects\Mswaleslfif.fm2 Worksheet Swale 6 Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth ' Input Data Mannings Coefficient Channel Slope 0.035 0.015000 ft/ft ' Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 36.00 cfs Results Depth 1.47 ft Flow Area 8.67 fP Wetted Perimeter 12.14 ft , Top Width 11.78 ft Critical Depth 1.38 ft Critical Slope 0.021026 ft/ft Velocity 4.15 ft/s , Velocity Head 0.27 ft Specific Energy 1.74 ft Froude Number 0.85 ' Flow is subcritical. LJ A 08/06/98 FlowMaster v5.13 , 02:06:34 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 ' Swale 10: Q100= 41.01 cfs(Storm Sewer 1) Worksheet for Triangular Channel Project Description ' Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 10 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth [1 Input Data Mannings Coefficient 0.635 Channel Slope 0.016600 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 41.01 cfs Results Depth 1.52 ft Flow Area 9.20 fr= ' Wetted Perimeter 12.51 ft Top Width 12.13 ft Critical Depth 1.46 ft ' Critical Slope 0.020663 ft/ft Velocity 4.46 ft/s Velocity Head 0.31 ft Specific Energy 1.83 ft Froude Number 0.90 Flow is subcritical. I 08/06198 02:24:06 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 V7_ I i FlowMaster v5.13 Page 1 of 1 Swale 10: Q100x 1.333= 54.7 cfs Z Worksheet for Triangular Channel , Project Description Project File d:\projects\flflswales\flf.fm2 , Worksheet Swale 10 Flow Element Triangular Channel Method Manning's Formula , Solve For Channel Depth , Input Data Mannings Coefficient Channel Slope 0.035 0.016600 ft(ft , Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 54.70 cfs Results Depth 1.69 ft Flow Area 11,42 ft2 Wetted Perimeter 13.93 ft , Top Width 13.52 It Critical Depth 1.63 ft Critical Slope 0.019884 ft/ft Velocity 4.79 ft/s , Velocity Head 0.36 ft Specific Energy 2.05 ft , Froude Number 0.92 Flow is subcribcal. 11 u 08/D6P98 FlowMaster v5.13 02:24:50 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale 15: Q2=20.2 cfs (Design Point 15) _ ' Worksheet for Irregular Channel r" ? Project Description ' Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 15 Flow Element Irregular Channel ' Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.016300 ft/ft ' Elevation range: 20.00 ft to 22.00 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 4.00 22.00 4.00 8.00 0.035 ' 8.00 21.00 8.00 16.00 0.040 (Co pe 12.00 20.00 16.00 20.00 0.035 16.00 21.00 20.00 22.00 Discharge 20.20 cfs ' Results Wtd. Mannings Coefficient 0.037 ' Water Surface Elevation 21.19 ft Flow Area 5.67 ft2 Wetted Perimeter 9.81 ft Top Width 9.52 ft ' Height 1.19 ft Critical Depth 21.10 ft Critical Slope 0.026831 fttft ' Velocity 3.57 ftis Velocity Head 0.20 ft Specific Energy 21.39 ft ' Froude Number 0.81 Flow is subcritical. C ' FbwMaster v5.13 OB/14/98 01 :38:57 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 0( 1 Swale 15: Q100=20.8 cfs(Design Point 15) Worksheet for Irregular Channel Project Description Project File d:lprojects\flf\swales\flf.fm2 Worksheet Swale 15 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.016300 fUft Elevation range: 20.00 ft to 22.00 ft. Station (ft) Elevation (ft) Start Station 4.00 22.00 4.00 8.00 21.00 8.00 12.00 20.00 16.00 16.00 21.00 20.00 22.00 Discharge 20.80 cfs Results Wtd. Mannings Coefficient 0.037 Water Surface Elevation 21.20 ft Flow Area 5.78 ft' Wetted Perimeter 9.91 ft Top Width 9.62 ft Height 1.20 ft Critical Depth 21.11 ft Critical Slope 0.026459 ft/ft Velocity 3.60 ft/s Velocity Head 0.20 ft Specific Energy 21.40 ft Froude Number 0.82 Flow is subcritical. End Station 8.00 16.00 20.00 f= -14 Roughness 0.035 0.040 0.035 I r] 08/14/98 FlowMaster v5.13 ' 01:38:37 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I ' Swale 15: Q100x 1.333 =27.7 cfs ' Worksheet for Irregular Channel Project Description ' Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 15 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation 1 1 Input Data Channel Slope 0.016300 ft/ft Elevation range: 20.00 ft to 22.00 ft. Station (ft) Elevation (ft) Start Station 4.00 22.00 4.00 8.00 21.00 8.00 12.00 20.00 16.00 16.00 21.00 20.00 22.00 Discharge 27.70 cfs Results Wtd. Mannings Coefficient 0.036 Water Surface Elevation 21.33 ft Flow Area 7.03 ft2 Wetted Perimeter 10.93 ft Top Width 10.61 ft Height 1.33 ft Critical Depth 21.24 ft Critical Slope 0.023574 ft(ft Velocity 3.94 ft/s Velocity Head 0.24 ft Specific Energy 21.57 ft Froude Number 0.85 Flow is subcritical. End Station 8.00 16.00 20.00 18/14/98 01:38:00 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 -Ij Roughness 0.035 0.040 0.035 FlowMaster v5.13 Page 1 of 1 1 Swale 16: 02=35.5 cfs (Design Point 16) Worksheet for Irregular Channel Project Description Project File d:\projects\flf\swales\flf.fm2 ' Worksheet Swale 16 Flow Element Irregular Channel Method Manning's Formula ' Solve For Water Elevation 1 Input Data Channel Slope 0.017000 fUft Elevation range: 93.00 ft to 95.00 ft. , Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 95.00 0.00 4.00 0.035 4.00 94.00 4.00 15.00 0.040 ' 8.00 93.00 15.00 19.00 0.035 11.00 93.00 15.00 94.00 , 19.00 95.00 Discharge 35.50 cfs Results Wtd. Mannings Coefficient 0.038 Water Surface Elevation 94.15 ft ' Flow Area 8.78 fP Wetted Perimeter 12.51 ft Top Width 12.23 ft , Height 1.15 ft Critical Depth 94.06 ft Critical Slope 0.026128 fVft , Velocity 4.04 fUs Velocity Head 0.25 ft Specific Energy 94.41 ft , Froude Number 0.84 Flow is subcritical. 08/14/98 FlowMaster v5, 13 ' 09:52:57 AM Haestad Methods. Inc. 37 Brookside Road Mterbury, CT 06708 (203) 755-1666 Page 1 of 1 ' Swale 16: Q100=76.3 cfs(Design Point 16) ' Worksheet for Irregular Channel Project Description Project File d:lprojects\flf\swales\flf.fm2 Worksheet Swale 16 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation 1 1 1 1 1 1 1 i 1J 1 1 1 1 Input Data Channel Slope 0.017000 ft/ft Elevation range: 93.00 ft to 95.00 ft. Station (ft) Elevation (ft) Start Station 0.00 95.00 0.00 4.00 94.00 4.00 8.00 93.00 15.00 11.00 93.00 15.00 94.00 19.00 95.00 Discharge 76.30 cfs Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 94.58 ft Flow Area 14.77 ft' Wetted Perimeter 16.05 ft Top Width 15.66 ft Height 1.58 ft Critical Depth 94.54 ft Critical Slope 0.019656 ft/ft Velocity 5.17 ft/s Velocity Head 0.41 ft Specific Energy 95.00 ft Froude Number 0.94 Flow is subcritical. End Station 4.00 15.00 19.00 1 08/14/98 09:53.23 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 Roughness 0.035 0.040 0.035 FlowMaster v5.13 Page 1 of i Swale 16: Q10OX 1.333= 101.7 cfs Worksheet for Irregular Channel Project Description Project File d:\projects\flflswales\flf.fm2 Worksheet Swale 16 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.017000 ft/ft Elevation range: 93.00 ft to 95.00 ft. Station (ft) Elevation (ft) Start Station 0.00 95.00 0.00 4.00 94.00 4.00 8.00 93.00 15.00 11.00 93.00 15.00 94.00 19.00 95.00 Discharge 101.70 cfs Results Wtd. Mannings Coefficient 0.038 Water Surface Elevation 94.85 ft Flow Area 19.30 ft' Wetted Perimeter 18.28 ft Top Width 17.83 ft Height 1.85 ft Critical Depth 94.76 ft Critical Slope 0.018348 iVft Velocity 5.27 ftls Velocity Head 0.43 ft Specific Energy 95.28 ft Froude Number 0.89 Flow is subcritical. End Station 4.00 15.00 19.00 Roughness 0.035 0.040 0.035 08/14/98 09:53:53 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 1 11 1 I 1 1 1 1 I FlowMaster v5.13 , Page 1 of 1 Swale 17: 02=35.5 cfs(Design Point 16) Worksheet for Irregular Channel Project Description ' Project File d:\projects\ftf\swales\flf.fm2 Worksheet Swale 17 Flow Element Irregular Channel ' Method Manning's Formula Solve For Water Elevation Input Data ' Channel Slope 6.015000 ft/ft Elevation range: 93.00 ft to 96.00 ft. Station (ft) Elevation (ft) Start Station 0.00 96.00 0.00 ' 4.00 95.00 8.00 8.00 94.00 16.00 12.00 93.00 ' 16.00 94.00 20.00 95.00 24.00 96.00 tDischarge 35.50 cfs ' Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 94.47 ft Flow Area 8.62 ft' ' Wetted Perimeter 12.11 ft Top Width 11.75 ft Height 1.47 ft ' Critical Depth 94.37 ft Critical Slope 0.021830 fUft Velocity 4.12 ft/s ' Velocity Head 0.26 ft Specific Energy 94.73 ft Froude Number 0.85 ' Flow is subcritical. 1 I End Station 8.00 16.00 24.00 08/14/98 09:59:34 AM Haested Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Roughness 0.035 0,040 0.035 FlowMaster v5.13 Page 1 of 1 Swale 17: Q100=76.3 cfs(Design Point 16) Worksheet for Irregular Channel Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 17 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.015000 ft(ft Elevation range: 93.00 ft to 96.00 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 96.00 0.00 8.00 0.035 4.00 95.00 8.00 16.00 0,040 8.00 94.00 16.00 24.00 0.035 12.00 93.00 16.00 94.00 20.00 95.00 24.00 96.00 Discharge 76.30 cfs Results Wtd. Mannings Coefficient 0.038 Water Surface Elevation 95.00 ft Flow Area 16.04 ft, Wetted Perimeter 16.52 ft Top Width 16.02 ft Height 2.00 ft Critical Depth 94.87 ft Critical Slope 0.022095 Wit: Velocity 4.76 fus Velocity Head 0.35 ft Specific Energy 95.35 ft Froude Number 0.84 Flow is subcritical. 1 1 1 t 1 1 1 08/14/98 FlowMaster v5.13 ' 09:59:18 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I I 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 Swale 17: Q10OX 1.333= 101.7 cfs Worksheet for Irregular Channel Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 17 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.015000 ft/ft Elevation range: 93.00 ft to 96.00 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 96.00 0.00 8.00 0.035 4.00 95.00 8.00 16.00 0.040 8.00 94.00 16.00 24.00 0.035 12.00 93.00 16.00 94.00 20.00 95.00 24.00 96.00 Discharge 101.70 cfs Results Wtd. Mannings Coefficient 0.037 Water Surface Elevation 95.23 ft Flow Area 19.80 ft2 Wetted Perimeter 18.35 ft Top Width 17.80 ft Height 2.23 ft Critical Depth 95.09 ft Critical Slope 0.020938 ft/ft Velocity 5.14 ft/s Velocity Head 0.41 ft Specific Energy 95.63 ft Froude Number 0.86 Flow is subcritical. 1 08/14/98 09:58:47 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 FlowMaster v5.13 Page 1 of 1 Swale 18: Q2=3.6 cfs(Design Point 18) Worksheet for Irregular Channel Project Description Project File d:\projects\fif\swales\fif.fm2 Worksheet Swale 18 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 6.010000 ft/ft Elevation range: 93.00 ft to 95.00 ft. Station (ft) Elevation (ft) Start Station 4.00 95.00 4.00 8.00 94.00 8.00 12.00 93.00 16.00 16.00 94.00 20.00 95.00 Discharge 3.60 cfs Results Wtd. Mannings Coefficient 0.040 Water Surface Elevation 93.70 ft Flow Area 1.98 ft2 Wetted Perimeter 5.81 ft Top Width 5.63 ft Height 0.70 ft Critical Depth 93.55 ft Critical Slope 0.037332 ft/ft Velocity 1.82 ft/s Velocity Head 0.05 ft Specific Energy 93.76 ft Froude Number 0.54 Flow is subcritical. 08/14/98 10'.13.02 AM End Station 8,00 16.00 20.00 Roughness 0.035 0.040 0.035 FlowMaster v5.13 ' Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale 18: 0100 =61.41 cfs (DP 18+pond 1) ' Worksheet for Irregular Channel _ Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 18 Flow Element Irregular Channel ' Method Manning's Formula Solve For Water Elevation I I 1 1 1 Input Data Channel Slope 0.010000 fttft Elevation range: 93.00 ft to 95.00 ft. Station (ft) Elevation (ft) Start Station 4.00 95.00 4.00 8.00 94.00 8.00 12.00 93.00 16.00 16.00 94.00 20.00 95.00 Discharge 61.41 cfs Results Wtd. Mannings Coefficient 0,038 Water Surface Elevation 94.99 ft Flow Area 15.88 ft2 Wetted Perimeter 16.43 ft Top Width 15.94 ft Height 1.99 ft Critical Depth 94.71 ft Critical Slope 0.023036 ft/ft Velocity 3.87 fUs Velocity Head 0.23 ft Specific Energy 95.97 ft Froude Number 0.68 Flow is subcritical. End Station 8.00 16.00 20.00 108/18198 04'.15'.03 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Roughness 0.035 0.040 0.035 FlowMaster v5.13 Page 1 of 1 Swale 18: Q100x 1.333 =81.9 afs Worksheet for Irregular Channel ' Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 18 Flow Element Irregular Channel Method Manning's Formula , Solve For Water Elevation 1 Input Data Channel Slope 0.010000 ft/ft Elevation range: 93.00 ft to 95.00 ft. ' Station (ft) Elevation (ft) Start Station End Station Roughness 4.00 95.00 4.00 8.00 0.035 8.00 94.00 8.00 16.00 0.040 , 12.00 93.00 16.00 20.00 0.035 16.00 94.00 20.00 95.00 ' Discharge 81.90 cfs Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 95.14 ft Flow Area 18.25 ft' ' Wetted Perimeter 16.77 ft Top Width 16.00 ft Height 2.14 ft ' Critical Depth 94.92 ft Critical Slope 0.021800 ft/ft Velocity 4.49 ftis Velocity Head 0.31 ft Specific Energy 95.45 ft Froude Number 0.74 , Flow is subcritical. Water elevation exceeds lowest end station by 0.14 ft. I 08/18/98 FlowMaster v5.13 ' 04:14:13 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 ' Swale 20: Q2= 6.6 cfs (Design Point 20) ' Worksheet for Triangular Channel Project Description Project File untit1ed.fm2 Worksheet Swale 20 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth 1 I C� 1 1 1 1 1 I 1 1 1 1 Input Data Mannings Coefficient 0.035 Channel Slope 0.021000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 6.60 cfs Results Depth 0.73 ft Flow Area 2.14 ft' Wetted Perimeter 6.03 ft Top Width 5.85 ft Critical Depth 0.70 ft Critical Slope 0.026361 ft/ft Velocity 3.08 ft/s Velocity Head 0.15 ft Specific Energy 0.88 ft Froude Number 0.90 Flow is subcritical. 1 07/30/98 03:54:20 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 067OB (203) 755-1666 1 FlowMaster v5.13 Page 1 of i I Swale 20: Q100= 24.1 cfs Worksheet for Triangular Channel Project Description Project File untitled.fm2 ' Worksheet Swale 20 Flow Element Triangular Channel Method Manning's Formula , Solve For Channel Depth Input Data Mannings Coefficient Channel Slope 0.035 0.021000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 24.10 cfs , Results Depth 1.19 ft Flow Area 5.65 ft2 Wetted Perimeter 9.80 ft , Top Width 9.51 ft Critical Depth 1.18 ft Critical Slope 0.022181 fUft Velocity 4.26 ft/s Velocity Head 0.28 ft Specific Energy 1.47 ft ' Froude Number 0.97 Flow is subcritical. 1 1 I, 07/30/98 FlowMaster v5.13 I' 03:55:02 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1' Swale 20: Q100x 1.333= 32.1 cfs ' Worksheet for Triangular Channel Project Description ' Project File untitied.fm2 Worksheet Swale 20 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth 1 1 1 1 1 1 1 1 1 1 11 Input Data Mannings Coefficient 0.035 Channel Slope 0.021000 tt/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 32.10 cfs Results Depth 1.32 ft Flow Area 7.01 ft2 Wetted Perimeter 10.92 ft Top Width 10.59 ft Critical Depth 1.32 ft Critical Slope 0.021349 ft(ft Velocity 4.58 f /S Velocity Head 0.33 ft Specific Energy 1.65 ft Froude Number 0.99 Flow is subcritical. 1 07/3Of98 03:55:26 PM Haeslad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 (203) 755-1666 1 F - 7-1 FlowMaster v5.13 Page 1 of 1 I Swale 23: Q2= 8.5 afs (Design Point 23) Worksheet for Triangular Channel -Z8 Project Description ' Project File untided.fm2 Worksheet Swale 23 Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data Mannings Coefficient 0,035 Channel Slope 0.017800 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 8.50 cfs , ' Results Depth 0.83 ft Flow Area 2.75 ft' Wetted Perimeter 6.84 ft , Top Width 6.64 ft Critical Depth 0.78 ft Critical Slope 0.025488 ft/ft Velocity 3.09 ftls Velocity Head 0.15 ft Specific Energy 0.98 ft Froude Number 0,85 , Flow is subcritical. I 07/30/98 FlowMaster v5.13 ' 03:58:01 PM Hassled Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 , 1 1 Swale 23: Q100= 3 1. 0 cfs ' Worksheet for Triangular Channel Project Description Project File untitied.fm2 Worksheet Swale 23 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth 1 1 LJ 1 1 1 J 1 1 1 1 i Input Data Mannings Coefficient 0.035 Channel Slope 0.017800 ft(ft Left Side Slope 4,000000 H : V Right Side Slope 4.000000 H : V Discharge 31.00 cfs Results Depth 1.35 ft Flow Area 7.27 ft Wetted Perimeter 11.11 ft Top Width 10.78 ft Critical Depth 1.30 ft Critical Slope 0.021448 ft/ft Velocity 4.27 ft/s Velocity Head 0.28 ft Specific Energy 1.63 ft Froude Number 0.92 Flow is subcritical. 1 07/30/98 03:57:26 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 FbwMaster v5.13 Page i of 1 i Swale 23: Q100x 1.333= 41.3 afs =' Worksheet for Triangular Channel , Project Description , Project File untitled.fm2 Worksheet Swale 23 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.017800 fUft , Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 41.30 cfs , ' Results Depth 1.50 ft Flow Area 9.01 ft' Wetted Perimeter 12.38 ft ' Top Width 12.01 ft Critical Depth 1.46 ft Critical Slope 0.020644 fUft , Velocity 4.58 ft/s Velocity Head 0.33 ft Specific Energy 1.83 ft , Froude Number 0.93 Flow is subcritical. 1 FlowMaster v5.13 ' 07/30/98 03:56:58 PM Haestad Methods. Ino, 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of i 1 Swale 24: Q2=13.8 ofs (Design Point 18) ' Worksheet for Triangular Channel Project Description ' Project File cAhaestad\fmwlflf.fm2 Worksheet Swale Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth 1 II 11 Input Data Mannings Coefficient 0.035 Channel Slope 0.007480 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 13.80 cfs Results Depth 1.17 ft Flow Area 5.48 ft' Wetted Perimeter 9.65 ft Top Width 9.36 ft Critical Depth 0.94 ft Critical Slope 0.023892 ft/ft Velocity 2.52 ft/s Velocity Head 0.10 ft Specific Energy 1.27 ft Froude Number 0.58 Flow is subcritical. k8/12/98 03:04:18 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 Swale 24: Q100=50.4 cfs(Design Point 18) Worksheet for Triangular Channel Project Description Project File c:\haestad\fmw\flf.fm2 Worksheet Swale Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.007480 Wit Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 50.40 cis Results Depth 1.90 ft Flow Area 14.48 ftz Wetted Perimeter 15.69 ft Top Width 15.22 ft Critical Depth 1.58 It Critical Slope 0.020103 ft/ft Velocity 3.48 ft/s Velocity Head 0.19 it Specific Energy 2.09 ft Froude Number 0.63 Flow is subcritical. 08112r98 03:05:46 PM Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 C �r d FlowMaster v5.13 Page 1 of 1 1 Swale 24: Q100x1.333 = 67.2cfs ' Worksheet for Triangular Channel Project Description Project File c:\haestad\fmvv\flf.fm2 Worksheet Swale Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth 11 1 1 I J Input Data Mannings Coefficient 0.035 Channel Slope 0.007480 fttft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H V Discharge 67.20 cts Results Depth 2.12 ft Flow Area 17.97 ft' Wetted Perimeter 17.48 ft Top Width 16.96 ft Critical Depth 1.77 ft Critical Slope 0.019347 ft1ft Velocity 3.74 ft/s Velocity Head 0.22 ft Specific Energy 2.34 ft Froude Number 0.64 Flow is subcritical. I 08/12196 03:06:24 PM Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 0670e (203) 756-1666 FlowMaster v5.13 Page 1 of 1 Swale 25: Q100= 111.2cfs (DP18+ Pond 1) i= — :4 Worksheet for Trapezoidal Channel L ham..51 rf , Project Description Project File d:\projects\flf\swales\flf.fm2 , Worksheet Swale 25 Flow Element Trapezoidal Channel Method Manning's Formula ' Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.009260 ft/ft ' Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 6.00 ft ' Discharge 111.21 cfs , Results Depth 1.84 ft Flow Area 24.63 ft' Wetted Perimeter 21.19 ft Top Width 20.74 ft Critical Depth 1.57 ft Critical Slope 0.018123 ft/ft Velocity 4.52 ftfs Velocity Head 0.32 ft Specific Energy 2.16 ft Froude Number 0.73 Flow is subcritical. 08/18/98 0422.27 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 J 1 1 FlowMaster v5.13 , Page 1 of 1 1 1 Swale 25: 0100x1.333= 148.3cfs ' Worksheet for Trapezoidal Channel Project Description ' Project File d:\projects\flflswales\flf.fm2 Worksheet Swale 25 Flow Element Trapezoidal Channel ' Method Manning's Formula Solve For Channel Depth [1 1 1 1 1 1 Input Data Mannings Coefficient 6.035 Channel Slope 0.009260 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 6.00 ft Discharge 148.30 cfs Results Depth 2.11 ft Flow Area 30.45 ft' Wetted Perimeter 23.39 ft Top Width 22.87 ft Critical Depth 1.82 ft Critical Slope 0.017412 fttft Velocity 4.87 ftfs Velocity Head 0.37 ft Specific Energy 2.48 ft Froude Number 0.74 Flow is subcritical. 08/18/98 04:21 :04 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 e FlowMaster v5.13 Page 1 of 1 Swale 36: Q2=7.7 cfs (Design Point 36) Worksheet for Triangular Channel Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 36 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.015100 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 7.70 cfs Results Depth 0.82 ft Flow Area 2.72 ftz Wetted Perimeter 6.80 ft Top Width 6.60 ft Critical Depth 0.75 ft Critical Slope 0.025826 ftlft Velocity 2.83 ft/s Velocity Head 0.12 ft Specific Energy 0.95 ft Froude Number 0.78 Flow is subcritical. 08/13/98 11 :47.32 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 1 1 1 1 1 1 FlowMaster v5.13 , Page 1 of 1 1 Swale 36: Q100=93.2 cfsd2 Basin33-36)' ' Worksheet for Thangldlar Channel L Z-f5. 4 - �S Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 36 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth 1 1 1 I 1 Input Data Mannings Coefficient 0.035 Channel Slope 0.015100 ft(ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 93.20 cfs Results Depth 2.10 ft Flow Area 17.64 ft' Wetted Perimeter 17.32 ft Top Width 16.80 ft Critical Depth 2.02 ft Critical Slope 0.018521 ft/ft Velocity 5.28 ft/s Velocity Head 0.43 ft Specific Energy 2.53 ft Froude Number 0.91 Flow is subcritical. 08/13/98 11 :46.48 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 = G4, 0U,r FlowMaster v5.13 Page 1 of 1 Swale 36: Q100x 1.333 = 124.3 cfs Worksheet for Triangular Channel ' Project Description ' Project File d:\projects\flf\swalesW.fm2 Worksheet Swale 36 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth 1 Input Data Mannings Coefficient 0.035 Channel Slope 0.015100 ft/ft ' Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 124.30 cfs ' , Results Depth 2.34 ft Flow Area 21.90 f 2 Wetted Perimeter 19.29 ft ' Top Width 18.72 ft Critical Depth 2.27 ft Critical Slope 0.017823 fttft , Velocity 5.68 fUs Velocity Head 0.50 ft Specific Energy 2.84 ft ' Froude Number 0.93 Flow is subcritical. L 08/13/98 FlowMaster v5.13 11:45.22 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale 39: 02= 6.8 cfs (Design Point 39) tWorksheet for Triangular Channel Project Description 1 Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 39 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth 1 1 1 i 1 i 1 1 1 i 1 1 1 Input Data Mannings Coefficient 0.035 Channel Slope 0.015200 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 6.80 cfs Results Depth 0.79 ft Flow Area 2.47 ftz Wetted Perimeter 6.48 ft Top Width 6.29 it Critical Depth 0.71 ft Critical Slope 0.026258 ft/ft Velocity 2.75 ft/s Velocity Head 0.12 ft Specific Energy 0.90 ft Froude Number 0.77 Flow is subcritical. 1 08/13/98 11:37:21 AM Haestad Methods, Inc. 37 Brookside Road Watemury, CT 06708 (203) 755-1666 1 FIowMaster v5.13 Page 1 of 1 Swale 39: Q100=24.7 cfs(Design Point 39) Worksheet for Triangular Channel Project Description Project File d:\projects\flf\swales\flf.fm2 ' Worksheet Swale 39 Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.015200 ft/ft ' Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 24.70 cfs ' , Results Depth 1.27 It Flow Area 6.50 ft, Wetted Perimeter 10.51 ft ' Top Width 10.20 ft Critical Depth 1.19 ft Critical Slope 0.022109 ft/ft Velocity 3.80 ft/s , Velocity Head 0.22 ft Specific Energy 1.50 It Froude Number 0.84 ' Flow is subcritical. 08/1398 FlowMaster v5.13 11 :38:17 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 o/ 1 1 Swale 39: Q100x 1.333 = 32.9 efs ' Worksheet for Triangular Channel Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 39 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth I 1 1 LJ I C] Input Data Mannings Coefficient 0.035 Channel Slope 0.015200 fttft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 32.90 cfs Results Depth 1.42 ft Flow Area 8.06 ft' Wetted Perimeter 11.71 ft Top Width 11.36 ft Critical Depth 1.33 ft Critical Slope 0.021280 ft/ft Velocity 4.08 ftts Velocity Head 0.26 ft Specific Energy 1.68 ft Froude Number 0.85 Flow is subcritical. ,08113198 11:38:56 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 Swale 40: Q100=44.0 cfs (Storm Sewer 39) Worksheet for Triangular Channel Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 40 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.009580 fUft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 44.00 cfs Results Depth 1.73 ft Flow Area 11.92 ft2 Wetted Perimeter 14.23 ft Top Width 13.81 ft Critical Depth 1.50 ft Critical Slope 0.020470 fUft Velocity 3.69 fUs Velocity Head 0.21 ft Specific Energy 1.94 It Froude Number 0.70 Flow is subcritical. 08/13/98 02:07:25 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 I 1 FlowMaster v5.13 t Page 1 of 1 Swale 40: Q100x 1.333 = 58 7 cfs Worksheet for Triangular Channel Project Description 1 Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 40 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.009580 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4,000000 H : V ' Discharge 58.70 cfs Results Depth 1.92 ft Flow Area 14.80 ftz ' Wetted Perimeter 15.86 ft Top Width 15,39 ft Critical Depth 1.68 ft ' Critical Slope 0.019699 ft/ft Velocity 3.97 fills Velocity Head 0.24 ft Specific Energy 2.17 ft Froude Number 0.71 Flow is subcritical. LI 0811 W98 FlowMaster v5.13 02:06:04 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale 42: Q2= 5.9 cfs (Design Point 42) Worksheet for Triangular Channel Project Description Project File untrded.fm2 ' Worksheet Swale 42 Flow Element Triangular Channel Method Manning's Formula , Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.021000 ft/ft ' Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 5.90 cfs ' ' Results Depth 0.70 ft Flow Area 1.97 ft' Wetted Perimeter 5.78 ft ' Top Width 5.61 ft Critical Depth 0.67 ft Critical Slope 0.026759 ft/ft Velocity 3.00 ft/s ' Velocity Head 0.14 ft Specific Energy 0.84 ft Froude Number 0.89 , Flow is subcritical. C L HowMaster v5.13 07/30Sa ' 04:09:31 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale 42: Q100= 21.4 afs Worksheet for Triangular Channel Project Description ' Project File untitled.fm2 Worksheet Swale 42 Flow Element Triangular Channel ' Method Manning's Formula Salve For Channel Depth 1 C] Input Data Mannings Coefficient 0.035 Channel Slope 0.021000 fttft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 21.40 cfs Resufts Depth 1.14 ft Flow Area 5.17 ft' Wetted Perimeter 9.38 ft Top Width 9.10 ft Critical Depth 1.12 ft Critical Slope 0.022535 ft/ft Velocity 4.14 ftts Velocity Head 0.27 ft Specific Energy 1.40 ft Froude Number 0.97 Flow is subcritical. ' 07/30/98 04:09:58 PM Haestad Methods, Inc. 37 8rookskle Road Waterbury, CT 06708 (203) 755-1666 [__US FlowMaster v5.13 Page 1 of 1 Swale 42: Q100x1.333= 28.5 cfs Worksheet for Triangular Channel L _ 4, Project Description , Project File untided.fm2 Worksheet Swale 42 Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.021000 ft/ft ' Left Side Slope 4.000000 H : V Right Side Slope Discharge 4.000000 H : V 28.50 cfs ' ' Results Depth 1.27 ft Flow Area 6.41 ft' Wetted Perimeter 10.44 ft ' Top Width 10.13 ft Critical Depth 1.26 ft Critical Slope 0.021691 ft/ft , Velocity 4.45 ft/s Velocity Head 0.31 ft Specific Energy 1.57 ft , Froude Number 0.98 Flow is subcritical. l I 07/30/98 FlowMaster v5.13 04:1025 PM Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page i of 1 1 Swale 45. Q2= 5.9 cfs (Design Point 45) Worksheet for Triangular Channel Project Description ' Project File d:\projects\flflswales\fif.fm2 Worksheet Swale 45 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth 1 C 1 [1 1 1 I 1 Input Data Mannings Coefficient 0.035 Channel Slope 0.021000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 5.90 cfs Results Depth 0.70 ft Flow Area 1.97 ft° Wetted Perimeter 5.78 ft Top Width 5.61 ft Critical Depth 0.67 ft Critical Slope 0.026759 ft/ft Velocity 3.00 ft/s Velocity Head 0.14 ft Specific Energy 0.84 ft Froude Number 0.89 Flow is subcritical. 08/06198 03:00:09 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 FlowMaster v5.13 Page i of 1 Swale 45: Q100=21.4 efs(Design Point 45) i _ 4 u Worksheet for Triangular Channel 1 Project Description 1 Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 45 Flow Element Triangular Channel Method Manning's Formula 1 Solve For Channel Depth 1 Input Data Mannings Coefficient 0.035 Channel Slope 0.021000 ft/ft 1 Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 21.40 cfs 1 Results , Depth 1.14 ft Flow Area 5.17 ft' Wetted Perimeter 9.38 ft 1 Top Width 9.10 ft Critical Depth 1.12 ft Critical Slope 0.022535 ft/ft 1 Velocity 4.14 ft/s Velocity Head 0.27 ft Specific Energy 1.40 ft 1 Froude Number 0.97 Flow is subcritical. 1 1 i 1 1 FIOWM2s1er v5.13 06/06/98 1 03:00:47 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page t of 1 1 Swale 45: Q100x1.333=28.5 cfs ' Worksheet for Triangular Channel Project Description t Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 45 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth d 1 1 I 1 Input Data Mannings Coefficient 0.035 Channel Slope 0.021000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 28.50 cfs Results Depth 1.27 ft Flow Area 6.41 ft' Wetted Perimeter 10.44 ft Top Width 10.13 ft Critical Depth 1.26 ft Critical Slope 0.021691 ft/ft Velocity 4.45 ft/s Velocity Head 0.31 ft Specific Energy 1.57 ft Froude Number 0.98 Flow is subcritical. 18/06/98 03:01:25 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 Swale 46: Q2= 1.7 cfs (Design Point 46) Worksheet for Triangular Channel Project Description Project File untitled.fm2 Worksheet Swale 46 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.015500 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 1.70 cfs Results Depth 0.47 ft Flow Area 0.87 ft2 Wetted Perimeter 3.84 ft Top Width 3.72 It Critical Depth 0.41 It Critical Slope 0.031588 fNft Velocity 1.96 ftis Velocity Head 0.06 ft Specific Energy 0.53 ft Froude Number 0.72 Flow is subcritical. 07/30/98 04:06:51 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 I 1 1 I 1 I r 1 1 1 1 FlowMaster v5.13 ' Page 1 of 1 Swale 46: Q100= 6.1 cfs 1 Worksheet for Triangular Channel Project Description Project File untitled.fm2 Worksheet Swale 46 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 ' Channel Slope 0.015500 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 6.10 cfs Results Depth 0.75 ft Flow Area 2.26 ft2 Wetted Perimeter 6.20 ft Top Width 6.01 ft Critical Depth 0.68 ft Critical Slope 0.026641 ft/ft Velocity 2.70 ft/s Velocity Head 0.11 ft Specific Energy 0.86 ft Froude Number 0.78 Flow is subcritical. I J �7130198 FlowMaster v5.13 04:06:23 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page i of i I I Swale 46: Q100x 1.333= 8.1 cfs Worksheet for Triangular Channel Project Description Project File untiUed.fm2 Worksheet Swale 46 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.015500 ftfft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 8.10 cfs Results Depth 0.84 ft Flow Area 2.80 ft' Wetted Perimeter 6.90 It Top Width 6.69 It Critical Depth 0.76 ft Critical Slope 0.025651 ft/ft Velocity 2.90 ftts Velocity Head 0.13 ft Specific Energy 0.97 ft Froude Number 0.79 Flow is subcritical. 07130/98 04:05:50 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 r -=o- FlowMaster v5.13 Page 1 of 1 I 11 I I I I I I I I i Swale 48: Q2=12.5 cfs (Design Point 48) Worksheet for Irregular Channel Project Description Project File d:\projects\fftswales\flf.fm2 Worksheet Swale 48 Flow Element Irregular Channel ' Method Manning's Formula Solve For Water Elevation I I [1 LJ 1 I 1 11 Input Data Channel Slope 0.005000 ft/ft Elevation range: 93.00 ft to 95.00 ft. Station (ft) Elevation (ft) Start Station 0.00 95.00 0.00 4.00 94.00 4.00 7.00 93.08 7.00 8.00 93.00 9.00 9.00 93.08 12.00 12.00 94.00 16.00 95.00 Discharge 12.50 cfs Results Wtd. Mannings Coefficient 0.019 Water Surface Elevation 93.85 ft Flow Area 3.57 ft' Wetted Perimeter 7.27 ft Top Width 7.03 ft Height 0.85 ft Critical Depth 93.80 ft Critical Slope 0.006530 fttft Velocity 3.51 ftis Velocity Head 0.19 ft Specific Energy 94.04 ft Froude Number 0.87 Flow is subcritical. End Station Roughness 4.00 0.035 7.00 0.040 9.00 0.015 12.00 0.040 16.00 0.035 k8/13198 03:28:34 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 FbwMaster v5.13 Page 1 of 1 Swale 48: Q100=45.6 cfs(Design Point 48) Worksheet for Irregular Channel Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 48 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.005000 fuft Elevation range: 93.00 ft to 95.00 ft. Station (ft) Elevation (ft) Start Station 0.00 95.00 0.00 4.00 94.00 4.00 7.00 93.08 7.00 8.00 93.00 9.00 9.00 93.08 12.00 12.00 94.00 16.00 95.00 Discharge 45.60 cfs Results Wtd. Mannings Coefficient 0.021 Water Surface Elevation 94.56 ft Flow Area 10.44 ft' Wetted Perimeter 12.92 ft Top Width 12.50 ft Height 1.56 ft Critical Depth 94.45 ft Critical Slope 0.006941 ft/ft Velocity 4.37 ft/s Velocity Head 0.30 ft Specific Energy 94.86 ft Froude Number 0.84 Flow is subcritical. End Station 4.00 7.00 9.00 12.00 16.00 08/13/98 032879 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 11 I I Roughness 0.035 0.040 ' 0.015 O.D40 0.035 FlowMaster v5.13 Page 1 of 1 1 I I I C I Swale 48: Q100x1.333= 60.8 afs Worksheet for Irregular Channel Project Description I Project File d:lprojectslflflswales\flf.fm2 Worksheet Swale 48 Flow Element Irregular Channel ' Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 93.00 ft to 95.00 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 95.00 0.00 4.00 0.035 ' 4.00 94.00 4.00 7.00 0.040 7.00 93.08 7.00 9.00 0.015 8.00 93.00 9.00 12.00 0.040 9.00 93.08 12.00 16.00 0.035 12.00 94.00 16.00 95.00 Discharge 60.80 cfs I I IA r I Results Wtd. Mannings Coefficient 0.022 Water Surface Elevation 94.78 ft Flow Area 13.33 fF Wetted Perimeter 14.70 ft Top Width 14.23 ft Height 1.78 ft Critical Depth 94.64 ft Critical Slope 0.007118 ft/ft Velocity 4.56 ft/s Velocity Head 0.32 ft Specific Energy 95.10 ft Froude Number 0.83 Flow is subcritical. 08/13/98 03:27:31 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 Swale 48: Q100 x 1.333= 60.8 cfs Cross Section for Irregular Channel Project Description Project File d:\projects\fif\swales\flf.fm2 Worksheet Swale 48 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Section Data Wtd. Mannings Coefficient 0.022 Channel Slope 0.005000 ft/ft Water Surface Elevation 94.78 ft Discharge 60.80 cfs MWO-1 94.5 93. Tali ri 93.0 0.0 2.0 4.0 6.0 8i0 10.0 12.0 14.0 16-0 Station (ft) 08/13/98 FlowMaster v5.13 03:29:16 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale 50: Q2=3.4 cfs (Design Point 50) Worksheet for Irregular Channel Project Description Project File d:\projects\flflswales\flf.fm2 Worksheet Swale 50 Flow Element Irregular Channel ' Method Manning's Formula Solve For Water Elevation I Input Data Channel Slope 0.016400 ft/ft Elevation range: 92.00 ft to 94.00 ft. Station (ft) Elevation (ft) Start Station 4.00 94.00 4.00 8.00 93.00 8.00 12.00 92.00 16.00 16.00 93.00 20.00 94.00 Discharge 3.40 cfs ' Results Wtd. Mannings Coefficient 0.040 1 Water Surface Elevation 92.63 ft Flow Area 1.58 tt2 Wetted Perimeter 5.18 ft Top Width 5.03 ft ' Height 0.63 ft Critical Depth 92.54 ft Critical Slope 0.037614 ft/ft Velocity 2.15 ft/s Velocity Head 0.07 ft Specific Energy 92.70 ft Froude Number 0.68 Flow is subcritical. I End Station 8.00 16.00 20.00 ' 08/14M 01:49:19 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Roughness 0.035 0.040 0.035 FlowMaster v5.13 Page i of 1 Swale 50: Q100=12.5 cfs(Design Point 50) Worksheet for Irregular Channel Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 50 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.016400 ft/ft Elevation range: 92.00 ft to 94.00 ft. Station (ft) Elevation (ft) Start Station End Station 4.00 94.00 4.00 8.00 8.00 93.00 8.00 16.00 12.00 92.00 16.00 20.00 16.00 93.00 20.00 94.00 Discharge 12.50 cfs Results Wtd. Mannings Coefficient 0.040 Water Surface Elevation 93.02 ft Flow Area 4.15 ft' Wetted Perimeter 8.40 ft Top Width 8.15 ft Height 1.02 ft Critical Depth 92.90 ft Critical Slope 0.031621 fUft Velocity 3.01 ft/s Velocity Head 0.14 ft Specific Energy 93.16 ft Froude Number 0.74 Flow is subcritical. Roughness 0.035 0.040 0.035 08/14/98 01 :49-40 PM Hoestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 I L I [1 1 I r I I FlowMaster v5.13 , Page 1 of 1 I Swale 50: Q100x 1.333 = 16.7 afs ' Worksheet for Irregular Channel Project Description Project File d:\projectslflflswaleslflf.fm2 Worksheet Swale 50 Flow Element Irregular Channel 1 Method Manning's Formula Solve For Water Elevation �I I] d J I I Input Data Channel Slope 0.016400 ft/ft Elevation range: 92.00 ft to 94.00 ft. Station (ft) Elevation (ft) Start Station 4.00 94.00 4.00 8.00 93.00 8.00 12.00 92.00 16.00 16.00 93.00 20.00 94.00 Discharge 16.70 cfs Results Wtd. Mannings Coefficient 0.038 Water Surface Elevation 93.12 ft Flow Area 4.99 ft Wetted Perimeter 9.21 ft Top Width 8.93 ft Height 1.12 ft Critical Depth 93.02 ft Critical Slope 0.029803 fVft Velocity 3.35 fus Velocity Head 0.17 ft Specific Energy 93.29 ft Froude Number 0.79 Flow is subcritical. End Station 8.00 16.00 20.00 08/14/98 01 :50:02 PM Haeslad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Roughness 0.035 0.040 0.035 FlowMaster v5.13 Page 1 of Swale 52: Q100= 64.8 cis (Pond 2) Worksheet for Trapezoidal Channel 1= - &1—N I Project Description Project File d:\projects\flf\swales\flf.fm2 ' Worksheet Swale 52 Flow Element Trapezoidal Channel Method Manning's Formula , Solve For Channel Depth ' Input Data Mannings Coefficient 0.035 Channel Slope 0.012000 ft/tt , Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 5.00 ft Discharge 64.80 cfs ' Results Depth 1.41 ft Flow Area 14.94 ft' , Wetted Perimeter 16.60 It Top Width 16.25 ft Critical Depth 1.25 ft , Critical Slope 0.019487 ft/ft Velocity 4.34 ft/s Velocity Head 0.29 ft Specific Energy 1.70 ft , Froude Number 0.80 Flow is subcritical. ' I I 08/06/98 FlowMaster v5.13 03,09:23 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale 52: Q100x1.33= 86.4 cfs (Pond 2) Worksheet for Trapezoidal Channel Project Description Project File d:\projects\flf\swales\flf.fm2 Worksheet Swale 52 Flow Element Trapezoidal Channel 1 Method Manning's Formula Solve For Channel Depth �J `J I 1 I 1 1 I Input Data Mannings Coefficient 0.035 Channel Slope 0.012000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 5.00 ft Discharge 86.40 cfs Results Depth 1.61 It Flow Area 18.47 ft' Wetted Perimeter 18.30 ft Top Width 17.90 ft Critical Depth 1.45 ft Critical Slope 0.016721 ft/ft Velocity 4.68 ft/s Velocity Head 0.34 ft Specific Energy 1.95 It Froude Number 0.81 Flow is subcritical. ' 08/06/98 03'.09:55 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 C—L� FlowMaster v5.13 Page 1 of 1 TABLE 2-4 MANNN08 ROUGHNE88 COEFFICIENT, n Depth of Depth of Flow of Flow Greater 0.7- 1.5 feet Than 3.0 feet Bermuda crass. Buffalo crass. Kentucky Blueqrass o. Mowed to 2 inches ................................................... 0.035 ..................... 0.030 b. Length 4- 6 inches ................................................. 0.040 ..................... 0.030 Good stand any grass O. Length of 12 inches ................................................. 0.070 ..................... 0.035 b. Length of 24 inches ..................................................0.100 ..................... 0.035 Fair stand any gross o. Length of 12 inches ................................................. 0.060 ..................... 0.035 b. Length of 24 inches ..................................................0.070 ..................... 0.035 • For strighl channels without shrubbery or trees. NU: UReNI DRARIACE AND FLOOD CONTROL DISTRICT J.%ACAO\Ofl\TA6MDMO URBAN STORM DRANACE CRITERIA MANUAL., VOLUME 2 n.l...: n�.. m... NORTHERN HOM SERVICES TABLE 2-4 uo sounl NowEs surf 202. n. COLLNS. COLORADO Bose+ IM .... MANhAJCis ROl1OFlE38 COEFFlCENTIl. n so" WIMI M M err r r +m m i m e m m m� m m s m m man m m NORTHERN ENGINEERING SERVICES _ DESKm VELOCITY AND FROVDE NO .zo soun1 nares sui[ zoz, rr. [owns, c�� eoszi ,__",,,,, __ v____.__ FOR GRASS LINED CHANNELS ,,, J 1 11 I I I' �j 1 J [1 I [1 n D I 1 T- 1 Culvert 5 CURRENT DATE: 07-31-1998 FILE DATE: 07-31-1998 CURRENT TIME: 11:18:33 FILE NAME: FLF-5 FHWA CULVERT ANALYSIS HY-8, VERSION 6.0 C SITE DATA CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET NO. (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 4901.00 4900.35 72.00 1 RCP 2.50 2.50 .013 IMPR SDT CIR 2 3 I 5 6 1 SUMMARY OF CULVERT FLOWS (cfs) FILE: FLF-5 DATE: 07-31-1998 ' ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 4901.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4901.68 2.7 2.7 0.0 0.0 0.0 0.0 0.0 0.00 1 4902.02 5.4 5.4 0.0 0.0 0.0 0.0 0.0 0.00 1 rZ-r--)4902.20 7.4 7.4 0.0 0.0 0.0 0.0 0.0 0.00 1 4902.43 10.8 10.8 0.0 0.0 0.0 0.0 0.0 0.00 1 4902.58 13.5 13.5 0.0 0.0 0.0 0.0 0.0 0.00 1 4902.76 16.2 16.2 0.0 0.0 0.0 0.0 0.0 0.00 1 ' 4902.96 18.9 18.9 0.0 0.0 0.0 0.0 0.0 0.00 1 4903.15 21.6 21.6 0.0 0.0 0.0 0.0 0.0 0.00 1 4903.34 24.3 24.3 0.0 0.0 0.0 0.0 0.0 0.00 1 y1903.53 27.0 27.0 0.0 0.0 0.0 0.0 0.0 0.00 1 9904.20 36.3 36.3 0.0 0.0 0.0 0.0 0.0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: FLF-5 DATE: 07-31-1998 r I HEAD ELEV (ft) 4901.00 4901.88 4902.02 4902.20 4902.43 4902.58 4902.76 4902.96 4903.15 4903.34 4903.53 HEAD ERROR (ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <1> TOLERANCE (ft) = 0.010 I TOTAL FLOW (cfs) 0.00 2.70 5.40 7.40 10.80 13.50 16.20 18.90 21.60 24.30 27.00 FLOW ERROR (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9 FLOW ERROR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <2> TOLERANCE (8) = 1.000 2 CURRENT DATE: 07-31-1998 FILE DATE: 07-31-1998 CURRENT TIME: 11:18:33 FILE NAME: FLF-5 PERFORMANCE CURVE FOR CULVERT 1 - 1( 2.50 (ft) BY 2.50 (ft)) RCP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) 0.00 4901.00 0.00 -0.65 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 2.70 4901.87 0.71 0.87 1-S2n 0.44 0.53 0.44 0.56 4.53 2.17 5.40 4902.02 1.02 1.02 1-S2n 0.63 0.77 0.57 0.72 6.43 2.58 7.40 4902.20 1.20 1.11 1-S2n 0.75 0.90 0.70 0.81 6.60 2.80 10.80 4902.43 1.43 1.29 1-S2n 0.91 1.09 0.92 0.94 6.54 3.07 13.50 4902.58 1.58 1.44 1-S2n 1.04 1.23 0.93 1.02 8.05 3.25 16.20 4902.76 1.76 1.59 1-S2n 1.15 1.35 1.05 1.09 8.23 3.40 18.90 4902.96 1.96 1.76 1-S2n 1.26 1.47 1.17 1.16 8.36 3.54 21.60 4903.15 2.15 1.95 1-52n 1.36 1.56 1.28 1.21 6.56 3.65 24.30 4903.34 2.34 2.15 1-S2n 1.47 1.67 1.37 1.27 8.19 3.77 27.00 4903.53 2.53 2.36 1-S2n 1.57 1.77 1.59 1.32 8.21 3.87 El. inlet face invert 4901.00 ft El. outlet invert 4900.35 ft El. inlet throat invert 4900.95 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION 0.00 ft INLET ELEVATION 4901.00 ft OUTLET STATION 78.07 ft OUTLET ELEVATION 4900.35 ft NUMBER OF BARRELS 1 SLOPE (V/H) 0.0083 CULVERT LENGTH ALONG SLOPE 72.00 ft ***** CULVERT DATA SUMMARY ********«aaa««taa«aaaaaa BARREL SHAPE CIRCULAR BARREL DIAMETER 2.50 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE IMPR SDT CIRC INLET EDGE AND WALL BEVELED EDGES (45-90 DEG WINGWALL) INLET DEPRESSION NONE ***** SIDE -TAPERED CIRCULAR IMPROVED INLET ******* FACE WIDTH 5.00 ft SIDE TAPER (4:1 TO 6:1) (X:1) 4.66 FACE HEIGHT 2.50 ft I I 1 1 L J CURRENT DATE: 07-31-1998 CURRENT TIME: 11:18:33 TAILWATER FILE DATE: 07-31-1998 FILE NAME: FLF-5 ******* REGULAR CHANNEL CROSS SECTION **************** SIDE SLOPE H/V (X:1) 4.0 CHANNEL SLOPE V/H (ft/ft) 0.015 MANNING'S n (.01-0.1) 0.035 CHANNEL INVERT ELEVATION 4900.35 ft CULVERT NO.1 OUTLET INVERT ELEVATION 4900.35 ft ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (cfs) (ft) NUMBER (ft) (f/s) (psf) 0.00 4900.35 0.000 0.00 0.00 0.00 2.70 4900.91 0.513 0.56 2.17 0.52 5.40 4901.07 0.536 0.72 2.58 0.68 7.40 4901.16 0.546 0.81 2.80 0.76 10.80 4901.29 0.559 0.94 3.07 0.88 13.50 4901.37 0.567 1.02 3.25 0.95 16.20 4901.44 0.574 1.09 3.40 1.02 18.90 4901.51 0.579 1.16 3.54 1.08 21.60 4901.56 0.564 1.21 3.65 1.14 24.30 4901.62 0.589 1.27 3.77 1.19 27.00 4901.67 0.593 1.32 3.87 1.24 ROADWAY OVERTOPPING DATA ROADWAY SURFACE EMBANKMENT TOP WIDTH ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. ft ft 1 1000.00 4905.20 2 1060.00 4904.80 3 1089.30 4904.20 4 1188.90 4904.80 J J PAVED 5.00 ft 1 11 Culvert 15 CURRENT DATE: 08-06-1998 FILE DATE: 08-06-1998 CURRENT TIME: 07:25:15 FILE NAME: FLF-15 , FHWA CULVERT ANALYSIS HY-8, VERSION 6.0 C SITE DATA CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET NO. (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 4914.00 4912.27 142.50 1 RCP 2.00 2.00 .013 IMPR SDT CIR , 2 3 4 ,5 6 SUMMARY OF CULVERT FLOWS (cfs) FILE: FLF-15 DATE: 08-06-1998 ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY 0.00 ITR 1 4914.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4914.63 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.00 1 4914.92 4.2 4.2 0.0 0.0 0.0 0.0 0.0 0.00 1 4915.12 6.2 6.2 0.0 0.0 0.0 0.0 0.0 0.00 1 , 4915.29 8.3 8.3 0.0 0.0 0.0 0.0 0.0 0.00 1 4915.49 10.4 10.4 0.0 0.0 0.0 0.0 0.0 0.00 1 4915.70 12.5 12.5 0.0 0.0 0.0 0.0 0.0 0.00 1 4915.91 14.6 14.6 0.0 0.0 0.0 0.0 0.0 0.00 1 , 4916.11 16.6 16.6 0.0 0.0 0.0 0.0 0.0 0.00 1 4916.31 18.7 18.7 0.0 0.0 0.0 0.0 0.0 0.00 1 4916.46 20.2 - 20.2 0.0 0.0 0.0 0.0 0.0 0.00 1 , 4917.13 25.3 25.3 0.0 0.0 0.0 0.0 0.0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: FLF-15 DATE: 08-06-1998 HEAD HEAD TOTAL FLOW % FLOW ELEV (ft) ERROR (ft) FLOW (cfs) ERROR (cfs) ERROR 4914.00 0.000 0.00 0.00 0.00 4914.63 0.000 2.08 0.00 0.00 4914.92 0.000 4.16 0.00 0.00 4915.12 0.000 6.24 0.00 0.00 4915.29 0.000 8.32 0.00 0.00 4915.49 0.000 10.40 0.00 0.00 4915.70 0.000 12.48 0.00 0.00 4915.91 0.000 14.56 0.00 0.00 4916.11 0.000 16.64 0.00 0.00 4916.31 0.000 18.72 0.00 0.00 4916.46 0.000 20.20 0.00 0.00 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (%) = 1.000 2 CURRENT DATE: 08-06-1998 FILE DATE: 08-06-1998 CURRENT TIME: 07:25:15 FILE NAME: FLF-15 PERFORMANCE CURVE FOR CULVERT 1 - 1( 2.00 (ft) BY 2.00 (ft)) RCP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL GRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) 0.00 4914.00 0.00 -1.73 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 2.08 4914.63 0.63 -0.46 1-S2n 0.39 0.49 0.29 0.27 7.10 1.94 4.16 4914.92 0.92 -0.29 1-S2n 0.55 0.71 0.55 0.38 5.90 2.38 6.24 4915.12 1.12 -0.11 1-S2n 0.68 0.88 0.58 0.48 8.25 2.68 8.32 4915.29 1.29 0.11 1-S2n 0.80 1.03 0.73 0.55 8.06 2.90 10.40 4915.49 1.49 0.35 1-S2n 0.91 1.15 0.85 0.62 8.15 3.09 12.48 4915.70 1.70 0.63 1-S2n 1.01 1.27 1.01 0.67 7.88 3.24 14.56 4915.91 1.91 0.94 1-S2n 1.11 1.37 1.11 0.73 8.09 3.38 16.64 4916.11 2.11 1.29 1-S2n 1.21 1.47 1.21 0.78 8.37 3.51 18.72 4916.31 2.31 1.68 1-S2n 1.31 1.55 1.25 0.82 9.05 3.62 20.20 4916.45 2.45 1.98 1-S2n 1.38 1.61 1.31 0.65 9.27 3.69 El. inlet face invert 4914.00 ft El. outlet invert 4912.27 ft El. inlet throat invert 4913.93 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION 0.00 ft INLET ELEVATION 4914.00 ft OUTLET STATION 148.49 ft OUTLET ELEVATION 4912.27 ft NUMBER OF BARRELS 1 SLOPE (V/H) 0.0117 CULVERT LENGTH ALONG SLOPE 142.50 ft «++a+ CULVERT DATA SUMMARY **+++a+a+++«+«a«+r++a««a BARREL SHAPE CIRCULAR BARREL DIAMETER 2.00 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE IMPR SDT CIRC INLET EDGE AND WALL BEVELED EDGES (45-90 DEG WINGWALL) INLET DEPRESSION NONE ***** SIDE -TAPERED CIRCULAR IMPROVED INLET ******* I FACE WIDTH 4.00 ft SIDE TAPER (4:1 TO 6:1) (X:1) 6.00 FACE HEIGHT 2.00 ft 1 I i I 3 CURRENT DATE: 08-06-1998 FILE DATE: 08-06-1996 , CURRENT TIME: 07:25:15 FILE NAME: FLF-15 TAILWATER ******* REGULAR CHANNEL CROSS SECTION BOTTOM WIDTH 3.00 ft SIDE SLOPE H/V (X:1) 4.0 CHANNEL SLOPE V/H (ft/ft) 0.017 MANNING'S n (.01-0.1) 0.035 ' CHANNEL INVERT ELEVATION 4912.27 ft CULVERT NO.1 OUTLET INVERT ELEVATION 4912.27 ft ******* ' UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (cfs) (ft) NUMBER (ft) (f/s) (psf) , 0.00 4912.27 0.000 0.00 0.00 0.00 2.08 4912.54 0.664 0.27 1.94 0.28 4.16 6.24 4912.65 4912.75 0.677 0.684 0.38 0.48 2.38 2.68 0.41 0.50 , 8.32 4912.82 0.689 0.55 2.90 0.58 10.40 4912.89 0.693 0.62 3.09 0.65 12.48 4912.94 0.696 0.67 3.24 0.72 14.56 4913.00 0.699 0.73 3.38 0.77 , 16.64 4913.05 0.701 0.78 3.51 0.82 18.72 4913.09 0.703 0.82 3.62 0.67 20.20 4913.12 0.705 0.85 3.69 0.90 , ROADWAY OVERTOPPING DATA ROADWAY SURFACE EMBANKMENT TOP WIDTH ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. ft ft 1 0.00 4917.37 2 20.00 4917.13 3 37.80 4917.80 4 111.10 4918.00 PAVED 13.00 ft I Culvert 16 1 CURRENT DATE: 08-06-1998 CURRENT TIME: 07:49:51 r-' 1 FILE DATE: 08-06-1998 FILE NAME: FLF-16 FHWA CULVERT ANALYSIS HY-8, VERSION 6.0 C SITE DATA CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET NO. (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 4902.50 4901.58 80.00 1 RCP 2.75 2.75 .013 IMPR SDT CIR 2 3 5 6 SUMMARY OF CULVERT FLOWS (cfs) FILE: FLF-16 DATE: 08-06-1998 ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 4902.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4903.65 7.6 7.6 0.0 0.0 0.0 0.0 0.0 0.00 1 4904.10 15.3 15.3 0.0 0.0 0.0 0.0 0.0 0.00 1 1 4904.55 22.9 Je-22.9 0.0 0.0 0.0 0.0 0.0 0.00 1 4905.02 30.5V 30.5 0.0 0.0 0.0 0.0 0.0 0.00 1 4905.32 �5.5 35.5 0.0 0.0 0.0 0.0 0.0 0.00 1 4905.94 45.8 45.8 0.0 0.0 0.0 0.0 0.0 0.00 1 4906.46 53.4 53.4 0.0 0.0 0.0 0.0 0.0 0.00 1 4906.94 61.0 (p�61.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4901*16 68.7,E 68.7 0.0 0.0 0.0 0.0 0.0 0.00 1 4909.06 76.3 76.3 0.0 0.0 0.0 0.0 0.0 0.00 1 4909.74 81.6 81.6 0.0 0.0 0.0 0.0 0.0 OVERTOPPING ' SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: FLF-16 DATE: 08-06-1998 HEAD HEAD TOTAL FLOW % FLOW ELEV (ft) ERROR (ft) FLOW (cfs) ERROR (cfs) ERROR 4902.50 0.000 0.00 0.00 0.00 4903.65 0.000 7.63 0.00 0.00 4904.10 0.000 15.26 0.00 0.00 4904.55 0.000 22.89 0.00 0.00 4905.02 0.000 30.52 0.00 0.00 4905.32 0.000 35.50 0.00 0.00 4905.94 0.000 45.78 0.00 0.00 4906.46 0.000 53.41 0.00 0.00 4906.94 0.000 61.04 0.00 0.00 4908.16 0.000 68.67 0.00 0.00 4909.06 0.000 76.30 0.00 0.00 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE M = 1.000 2 CURRENT DATE: 08-06-1998 FILE DATE: 08-06-1998 CURRENT TIME: 07:49.51 FILE NAME: FLF-16 PERFORMANCE CURVE FOR CULVERT 1 - 1( 2.75 (ft) BY 2.75 (ft)) RCP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) 0.00 4902.50 0.00 -0.92 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 7.63 4903.65 1.15 0.95 1-S2n 0.69 0.89 0.59 0.77 8.34 3.18 15.26 4904.10 1.60 1.28 1-S2n 0.99 1.27 1.01 1.00 7.66 3.79 22.89 4904.55 2.05 1.67 1-S2n 1.25 1.58 1.18 1.17 9.42 4.19 30.52 4905.02 2.52 2.13 1-S2n 1.48 1.83 1.51 1.30 9.13 4.51 35.50 4905.32 2.82 2.47 1-S2n 1.63 1.98 1.66 1.36 9.48 4.68 45.78 4905.94 3.44 3.27 5-S2n 1.94 2.23 1.97 1.52 10.04 4.98 53.41 4906.46 3.93 3.96 5-S2n 2.23 2.37 2.23 1.61 10.32 5.18 61.04 4906.94 4.44 4.22 2-M2c 2.75 2.51 2.51 1.69 10.70 5.36 68.67 4908.16 5.01 5.66 2-M2c 2.75 2.65 2.65 1.76 11.78 5.52 76.30 4909.06 5.62 6.56 6-FFc 2.75 2.75 2.75 1.83 12.85 5.66 El. inlet face invert 4902.50 ft El. outlet invert 4901.58 ft El. inlet throat invert 4902.41 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT INLET STATION 0.00 ft INLET ELEVATION 4902.50 ft OUTLET STATION 86.73 ft OUTLET ELEVATION 4901.58 ft NUMBER OF BARRELS 1 SLOPE (V/H) 0.0104 CULVERT LENGTH ALONG SLOPE 80.00 ft +++++ CULVERT DATA SUMMARY +w++r++++++++++++w++++++ BARREL SHAPE CIRCULAR BARREL DIAMETER 2.75 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE IMPR SDT CIRC INLET EDGE AND WALL BEVELED EDGES (45-90 DEG WINGWALL) INLET DEPRESSION NONE ***** SIDE -TAPERED CIRCULAR IMPROVED INLET ******* FACE WIDTH 6.00 ft SIDE TAPER (4:1 TO 6:1) (X:1) 5.38 FACE HEIGHT 3.00 ft CURRENT DATE: 08-06-1998 CURRENT TIME: 07:49:51 1 TAILWATER 3 FILE DATE: 08-06-1998 FILE NAME: FLF-16 REGULAR CHANNEL CROSS SECTION **************** SIDE SLOPE H/V (X:1) 4.0 CHANNEL SLOPE V/H (ft/ft) 0.021 MANNING'S CHANNEL n (.01-0.1) INVERT ELEVATION 0.035 4901.58 ft CULVERT NO.1 OUTLET INVERT ELEVATION 4901.58 ft ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (cfs) (ft) NUMBER (ft) (f/s) (psf) 0.00 4901.58 0.000 0.00 0.00 0.00 ' 7.63 4902.35 0.638 0.77 3.18 1.00 15.26 4902.58 0.666 1.00 3.79 1.30 22.89 4902.75 0.684 1.17 4.19 1.52 ' 30.52 4902.88 0.696 1.30 4.51 1.69 35.50 4902.96 0.703 1.38 4.68 1.79 45.78 4903.10 0.714 1.52 4.98 1.97 1 53.41 61.04 4903.19 4903.27 0.721 0.727 1.61 1.69 5.18 5.36 2.08 2.19 68.67 4903.34 0.732 1.76 5.52 2.29 76.30 4903.42 0.737 1.83 5.66 2.38 ' ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH 11.00 ft ++**+ USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. ft ft 1 1000.00 4910.00 2 1042.00 4909.74 3 1062.00 4909.89 4 1082.00 4910.04 5 1097.00 4910.16 Culvert 24 CURRENT DATE: 08-12-1998 CURRENT TIME: 13:30:35 FILE DATE: 08-12-1998 FILE NAME: FLF-24 FHWA CULVERT ANALYSIS HY-8, VERSION 6.0 C SITE DATA CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET NO. (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 4896.20 4894.16 210.00 1 RCP 2.00 2.00 .013 IMPR SDT CIR 2 3 4 5 6 SUMMARY OF CULVERT FLOWS (cfs) FILE: FLF-24 DATE: 08-12-1998 ELEV (ft) 4896.20 TOTAL 0.0 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0 ROADWAY 0.00 ITR 1 4897.28 5.5 5.5 0.0 0.0 0.0 0.0 0.0 0.00 1 4897.76 11.0 11.0 0.0 0.0 0.0 0.0 0.0 0.00 1 z -"�-)4898.16 4898.86 15.0 21.9 15.0 21.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 1 1 4899.63 4899.74 4899.80 4899.85 27.4 32.9 38.4 43.8 25.4 25.6 25.8 25.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.87 6.95 12.31 17.53 13 14 11 8 4899.90 (/- 7- -) 4899.94 49.3 54.8 25.0 25.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.96 29.34 8 7 4899.48 25.0 25.0 0.0 0.0 0.0 0.0 0.0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: FLF-24 DATE: 08-12-1998 HEAD HEAD TOTAL FLOW % FLOW ELEV (ft) ERROR (ft) FLOW (cfs) ERROR (cfs) ERROR 4896.20 0.000 0.00 0.00 0.00 4897.20 0.000 5.48 0.00 0.00 4897.76 0.000 10.96 0.00 0.00 4898.16 0.000 15.00 0.00 0.00 489B.86 0.000 21.92 0.00 0.00 4899.63 -0.004 27.40 0.18 0.66 4899.74 -0.001 32.88 0.32 0.97 4899.80 -0.001 38.36 0.27 0.70 4899.85 -0.002 43.84 0.42 0.96 4899.90 -0.001 49.32 0.32 0.65 4899.94 -0.001 54.80 0.29 0.53 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (%) = 1.000 II CURRENT DATE: 08-12-1998 CURRENT TIME: 13:30:35 2 FILE DATE: 08-12-1998 FILE NAME: FLF-24 PERFORMANCE CURVE FOR CULVERT 1 - 1( 2.00 (ft) BY 2.00 (ft)) RCP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) 0.00 4896.20 0.00 -2.04 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 5.48 4897.28 1.08 -0.45 1-S2n 0.68 0.82 0.62 0.84 6.57 1.93 10.96 4897.76 1.56 0.27 1-S2n 1.00 1.19 0.89 1.09 8.15 2.30 15.00 4898.16 1.96 1.00 1-S2n 1.21 1.40 1.10 1.23 8.52 2.49 21.92 4898.86 2.64 2.66 5-S2n 1.65 1.66 1.65 1.42 7.91 2.73 25.35 4899.64 3.00 3.44 2-M2c 2.00 1.76 1.76 1.54 8.67 2.89 25.61 4899.74 3.03 3.54 2-M2c 2.00 1.77 1.77 1.65 8.72 3.02 25.78 4899.80 3.05 3.60 2-M2c 2.00 1.78 1.78 1.75 8.76 3.14 25.88 4899.65 3.06 3.65 3-M2t 2.00 1.78 1.84 1.84 8.54 3.25 25.04 4899.90 2.97 3.70 3-M2t 2.00 1.75 1.92 1.92 8.14 3.35 25.17 4899.94 2.98 3.74 3-M2t 2.00 1.76 2.00 2.00 8.02 3.44 El. inlet face invert 4896.20 ft El. outlet invert 4894.16 ft El. inlet throat invert 4896.14 ft El. inlet crest 0.00 ft SITE DATA ***** CULVERT INVERT ************** INLET STATION 0.00 ft INLET ELEVATION 4896.20 ft OUTLET STATION 215.99 ft OUTLET ELEVATION 4894.16 ft ' NUMBER OF BARRELS 1 SLOPE (V/H) 0.0094 CULVERT LENGTH ALONG SLOPE 210.00 ft ***** CULVERT DATA SUMMARY ********k#k############+ BARREL SHAPE CIRCULAR BARREL DIAMETER 2.00 ft ' BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE IMPR SDT CIRC INLET EDGE AND WALL BEVELED EDGES (45-90 DEG WINGWALL) INLET DEPRESSION NONE ***** SIDE -TAPERED CIRCULAR IMPROVED INLET ******* FACE WIDTH 4.00 ft ' SIDE TAPER (4:1 TO 6:1) (X:1) 6.00 FACE HEIGHT 2.00 ft 1 L CURRENT DATE: 08-12-1998 CURRENT TIME: 13:30:35 TAILWATER r- 3 FILE DATE: 08-12-1998 FILE NAME: FLF-24 ****+*+ REGULAR CHANNEL CROSS SECTION SIDE SLOPE H/V (X:1) 4.0 CHANNEL SLOPE V/H (ft/ft) 0.007 MANNING'S n (.01-0.1) 0.035 CHANNEL INVERT ELEVATION 4894.16 ft CULVERT NO.1 OUTLET INVERT ELEVATION 4894.16 ft ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (cfs) -(ft) NUMBER (ft) (f/s) (psf) 0.00 4894.16 0.000 0.00 0.00 0.00 5.48 4895.00 0.371 0.84 1.93 0.36 10.96 4895.25 0.388 1.09 2.30 0.47 15.00 4895.39 0.395 1.23 2.49 0.52 21.92 4895.58 0.405 1.42 2.73 0.60 27.40 4895.70 0.410 1.54 2.89 0.66 32.88 4895.81 0.415 1.65 3.02 0.70 38.36 4895.91 0.419 1.75 3.14 0.75 43.84 4896.00 0.423 1.84 3.25 0.78 49.32 4896.08 0.426 1.92 3.35 0.82 54.80 4896.16 0.429 2.00 3.44 0.85 ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH 11.00 ft ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. ft ft 1 1000.00 4900.11 2 1100.00 4899.48 3 1119.00 4899.94 I 1 Culvert OS-1 ' CURRENT DATE: 08-07-1998 FILE DATE: 08-07-1998 CURRENT TIME: 11:45:12 FILE NAME: FLF-OS1 FHWA CULVERT ANALYSIS HY-8, VERSION 6.0 C SITE DATA CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET NO. (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 4913.70 4912.26 136.00 1 RCP 2.50 2.50 .013 IMPR SDT CIR 2 3 4 5 6 1 SUMMARY OF CULVERT FLOWS (cfs) FILE: FLF-OS1 DATE: 08-07-1998 ' ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 4913.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4914.69 5.2 5.2 0.0 0.0 0.0 0.0 0.0 0.00 1 4915.10 10.4 10.4 0.0 0.0 0.0 0.0 0.0 0.00 1 �Z Yi)4915.32 14.3 14.3 0.0 0.0 0.0 0.0 0.0 0.00 1 4915.78 20.8 20.8 0.0 0.0 0.0 0.0 0.0 0.00 1 4916.15 26.0 26.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4916.51 31.2 31.2 0.0 0.0 0.0 0.0 0.0 0.00 1 ' 4916.87 36.4 36.4 0.0 0.0 0.0 0.0 0.0 0.00 1 4917.31 41.6 41.6 0.0 0.0 0.0 0.0 0.0 0.00 1 4917.70 46.8 46.8 0.0 0.0 0.0 0.0 0.0 0,00 1 ' (/Wo?%-)4917.93 52.0 47.9 0.0 0.0 0.0 0.0 0.0 3.57 30 4917.80 47.3 47.3 0.0 0.0 0.0 0.0 0.0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: FLF-OS1 DATE: 08-07-1998 HEAD HEAD TOTAL FLOW $ FLOW ' ELEV (ft) ERROR (ft) FLOW (cfs) ERROR (cfs) ERROR 4913.70 0.000 0.00 0.00 0.00 4914.69 0.000 5.20 0.00 0.00 4915.10 0.000 10.40 0.00 0.00 ' 4915.32 0.000 14.30 0.00 0.00 4915.78 0.000 20.80 0.00 0.00 4916.15 0.000 26.00 0.00 0.00 4916.51 0.000 31.20 0.00 0.00 4916.87 0.000 36.40 0.00 0.00 4917.31 0.000 41.60 0.00 0.00 ' 4917.70 4917.93 0.000 -0.001 46.80 52.00 0.00 0.54 0.00 1.04 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE ($) = 1.000 CURRENT DATE: 08-07-1998 FILE DATE: 08-07-1998 CURRENT TIME: 11:45:12 FILE NAME: FLF-OS1 ' PERFORMANCE CURVE FOR CULVERT 1 - 1( 2.50 (ft) BY 2.50 (ft)) RCP DIS- HEAD- INLET OUTLET , CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW FLOW (cfs) ELEV. (ft) DEPTH (ft) DEPTH (ft) TYPE <F4> DEPTH (ft) DEPTH (ft) DEPTH (ft) DEPTH (ft) VEL. (fps) VEL. (fps) ' 0.00 4913.70 0.00 -1.44 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 5.20 4914.69 0.99 0.23 1-S2n 0.59 0.75 0.59 0.43 5.79 2.54 10.40 4915.10 1.40 0.52 1-S2n 0.85 1.07 0.77 0.62 8.08 3.09 ' 14.30 4915.32 1.62 0.77 1-S2n 1.01 1.27 1.02 0.72 7.62 3.37 20.80 4915.78 2.08 1.26 1-S2n 1.26 1.55 1.15 0.87 9.47 3.72 26.00 4916.15 2.45 1.74 1-S2n 1.44 1.74 1.34 0.96 9.74 3.95 31.20 4916.51 2.81 2.29 1-S2n 1.63 1.90 1.64 1.05 9.18 4.14 ' 36.40 4916.87 3.17 2.92 5-S2n 1.83 2.04 1.74 1.13 10.00 4.31 41.60 4917.31 3.55 3.61 5-S2n 2.08 2.15 2.08 1.20 9.54 4.46 46.80 4917.70 3.96 4.00 2-M2c 2.50 2.26 2.26 1.26 10.03 4.60 47.89 4917.92 4.04 4.22 2-M2c 2.50 2.28 2.28 1.32 10.18 4.73 ' El. inlet face invert 4913.70 ft El. outlet invert 4912.26 ft El. inlet throat invert 4913.64 ft El. inlet crest 0.00 ft , ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION 0.00 ft INLET ELEVATION 4913.70 ft OUTLET STATION 142.07 ft OUTLET ELEVATION 4912.26 ft NUMBER OF BARRELS 1 SLOPE (V/H) 0.0101 CULVERT LENGTH ALONG SLOPE 136.00 ft ***** CULVERT DATA SUMMARY *******+*********aa+++++ BARREL SHAPE CIRCULAR BARREL DIAMETER 2.50 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE IMPR SDT CIRC INLET EDGE AND WALL BEVELED EDGES (45-90 DEG WINGWALL) INLET DEPRESSION NONE ***** SIDE -TAPERED CIRCULAR IMPROVED INLET ******* FACE WIDTH 5.00 ft SIDE TAPER (4:1 TO 6:1) (X:1) 4.86 FACE HEIGHT 2.50 ft 11 1 ' CURRENT DATE: 08-07-1998 CURRENT TIME: 11:45:12 1 TAILWATER 3 FILE DATE: 08-07-1998 FILE NAME: FLF-OS1 ******* REGULAR CHANNEL CROSS SECTION +*+****+*++**+*+ BOTTOM WIDTH 3.00 ft SIDE SLOPE H/V (X:1) 4.0 CHANNEL SLOPE V/H (ft/ft) 0.017 ' MANNING'S n (.01-0.1) 0.035 CHANNEL INVERT ELEVATION 4912.26 ft CULVERT NO.1 OUTLET INVERT ELEVATION 4912.26 ft UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (cfs) (ft) NUMBER (ft) (f/s) (psf) 0.00 4912.26 0.000 0.00 0.00 0.00 5.20 4912.69 0.681 0.43 2.54 0.46 10.40 4912.88 0.693 0.62 3.09 0.65 ' 14.30 4912.98 0.699 0.72 3.37 0.76 20.80 4913.13 0.705 0.87 3.72 0.92 26.00 4913.22 0.709 0.96 3.95 1.02 31.20 4913.31 0.713 1.05 4.14 1.11 ' 36.40 4913.38 0.716 1.13 4.31 1.19 41.60 4913.46 0.719 1.20 4.46 1.27 46.80 4913.52 0.722 1.26 4.60 1.34 ' 52.00 4913.58 0.724 1.32 4.73 1.41 1 1 1 1 1 1 1 ROADWAY OVERTOPPING DATA ROADWAY SURFACE EMBANKMENT TOP WIDTH ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. ft ft 1 1000.00 4918.07 2 1100.00 4917.60 3 1121.00 4917.90 4 1200.00 4918.27 PAVED 24.00 ft k 4 Q FILE NAME: d:\drawings\fIf\drng\f if-drng.stm SUBSET : 1 of 1 NETWORK: 01 DESCRIPTION: StOrM Sewer Line 1 and 1-1 WIDTH : 1 of 3 DATE: 07/31/98 TIME: OB:42 S T O R M S E W E R C U S T O M R E P O R T Line Known Plan Pipe Pipe Mann Inv Crit No. Tot Q Flow Len Dia Type "n" IE Up IE Dn SIP Rim Up Rim Dn HGL Up HGL Dn Dpth cfs cfs ft in in ft ft 8 ft ft ft ft ft ------------------------------------------------------------------------------------------------------------------------------------- 1 41.01 7.40 78.09 30.00 Circ 0.0130 4903.10 4902.50 0.78 4907.30 4905.60 4905.54 4904.65 2.15 2 33.53 12.51 36.00 30.00 Circ 0.0130 4903.50 4903.20 0.91 4907.30 4907.30 4906.00 4905.82 1.97 3 21.02 0.00 174.52 24.00 Circ 0.0130 4905.00 4904.10 0.54 4908..50 4907.30 4907.40 4906.04 1.64 4 13.82 13.82 36.17 21.00 Circ 0.0130 4905.30 4905.10 0.75 4906.00 4908.50 4908.55 4908.32 1.38 5 7.20 0.00 265.56 18.00 Circ 0.0130 4906.90 4905.50 0.54 4910.30 4908.50 4909.55 4908.32 1.04 6 7.20 7.20 74.57 18.00 Circ 0.0130 4907.50 4907.00 0.77 4910.36 4910.30 4910.23 4909.89 1.04 FILE NAME: d:\drawings\fIf\drng\flf-drng. stm SUBSET 1 of 1 NETWORK: 01 DESCRIPTION: Storm Sewer Line 1 WIDTH 2 of 3 DATE: 07/31/98 TIME: 08:42 S T O R M S E W E R C U S T O M R E P O R T Dpth Dpth Calc Up Dn Val Up Vel Dn Kj Junc ft ft ft/s ft/s ft ------------------------------------------------------------------------------------------------------------------------------------- 2.44 2.15 8.40 9.13 0.25 0.27 2.50 2.50 6.83 6.83 0.05 0.04 2.00 1.94 6.69 6.76 1.32 0.92 1.75 1.75 5.75 5.75 0.05 0.03 ) 1.50 1.50 4.07 4.07 1.32 0.34 1.50 1.50 4.07 4.07 0.10 0.03 100—yr Profile Storm Sewer Line 1 Line 1 P-1 Line 2 P-2 Line 3 P-3 Line 4 P-4 e HGL lope w O e Q s 70. + w �M Length(ft) n N 100—yr Profile Storm Sewer Line 1-1 Line S P—S Line 6 P-6 �\ W 0 MH —1 .I Qi _ _ 0 100 1'D 1M 1tl �! 300 ]A fM ]!0 MO 300 JM W ]M Length(ft) l� in' FILE NAME: d:\drawings\flf\drng\flf-drng.stm SUBSET 1 of 1 NETWORK: 02 DESCRIPTION: Storm S*W9r Lin® 2 WIDTH 1 of 3 DATE: 03/29/99 TIME: 10:10 S T 0 R M S E W E R C U S T O M R E P O R T ------------ ------- -----e® e-.-s.v---=-=--=------e.----=-=----- -----:--:-�_m=-= Line Known Plan Pipe Pipe Mann Inv Crit No. Tot Q Flow Len Dia Type "n" IE Up IE Dn Slp Rim Up Rim Dn HGL Up HGL Do Dpth cfs cfs ft in in ft ft 8 ft ft ft ft ft ------------------------------------------------------------------------------------------------------------------------------------- 1 31.09 0.00 340.21 24.00 Circ 0.0110 4882.20 4877.68 1.34 4889.20 4880.16 4883.85 4879.33 1.88 2 31.09 0.00 75.00 24.00 Circ 0.0130 4883.30 4882.30 1.41 4889.20 4889.20 4885.68 4884.34 1.88 3 31.09 0.00 240.00 24.00 Circ 0.0110 4886.00 4883.40 1.10 4891.50 4889.20 4889.03 4885.83 1.88 4 31.09 31.09 13.60 24.00 Circ 0.0110 4889.00 4888.50 4.31 4891.50 4691.50 4890.33 4889.57 1.88 5 0.00 0.00 10.00 6.00 Circ 0.0110 4887.00 4886.10 11.54 4889.00 4891.50 4887.00 4886.10 0.00 FILE NAME: d:\drawings\flf\drng\flf-drng.stm SUBSET : 1 of 1 NETWORK: 02 DESCRIPTION: Storm Sewer Line 2 WIDTH : 2 of 3 DATE: 03/29/99 TIME: 10:10 S T 0 R M S E W E R C U S T O M R E P O R T Dpth Dpth Calc Up On Vel Up vel Dn Kj Junc ft ft ft/s ft/s ft ------------------------------------------------------------------------------------------------------------------------------------- 1.65 1.65 11.22 11.22 0.25 0.49 2.00 2.00 9.90 9.90 0.10 0.15 2.00 2.00 9.90 9.90 0.10 0.55 1.07 1.07 18.16 18.16 0.05 0.26 0.00 0.00 0.00 0.00 0.64 0.00 M i M M M M M M M M M M M M M M M M r 4j 4-4 \�-� H O .r--j Q) W 100—yr Profile Storm Sewer Line 2 Line 1 P-1 Line 2 P-2 Line 3 P-3 Line 4 P-4 Length(ft) FILE NAME: d:\drawings\flf\dreg\flf-drng.stm NETWORK: 03 DESCRIPTION: Storm .Sewer Line 7 DATE: 07/31/98 SUBSET 1 of 1 WIDTH 1 of 3 TIME: 10:33 S T O R M S E W E R C U S T O M R E P O R T Line Known Plan Pipe Pipe Mann Inv Crit No. Tot Q Flow Len Dia Type "nn IE Up IE Dn Slp Rim Up Rim Dn HGL Up HGL Dn Dpth cfs cfs ft in 1n ft ft t ft ft________ ft________ft________ ft_____ _______________________________ ____________________________________-____ __________ 1 9.55 0.00 126.08 18.00 Ciro 0.0130 4898.70 4897.90 0.64 4901.50 4899.90 4900.13 4899.03 1.13 FILE NAME: d:\drawinga\flf\drng\flf-drng.stm SUBSET 1 of 1 WIDTH 2 of 3 NETWORK: 03 DESCRIPTION: Storm Sewer Line 7 TIME: 10:33 DATE: 07/31/90 S T O R M S E W E R C U S T O M R E P O R T Dpth Dpth Calc Up Dn Val Up Vel On Ki Junc ft ft ft/s ft/s ft ---- _------------------ 1.33 1.13 5.17 ________________________________________________________________________________________________________ 5..97 0.25 0.10 M A m m mi m m m m m m m m m m m m m oft m STORM SEWER LINE 7 Profile Line 1 P-1 «a, N Ls10 126.08 ft. of 18 R P ® 0. 42% 0 10 A J0 W 00 !0 A EO YO Im I10 t]0 I.10 �!U Length(ft) FILE NAME: d:\drawings\flf\drng\flf-drng.stm SUBSET 1 of 1 NETWORK: 04 DESCRIPTION: StOrM Sewer Line 11 WIDTH : I of 3 TIME: 11:37 DATE: 01/31/98 S T O R M S E W E R C U S T O M R E P O R T Line Known Plan Pipe Pipe Mann Inv Crit No. Tot Q Flow Len Dia Type "n" IE Up IE Dn SIP Rim Up Rim Dn HGL Up HGL On Dpth cfs cfs ft in In-------------ft-__-----ft--------8----_-ft--------ft--------ft--------ft ft _________-----_---- ________________________ _______ ________ 1 30.35 1.52 81.10 24.00 Circ 0.0130 4903.40 4903.00 0.50 4908.20 4905.50 4906.29 4904.87 1.87 2 22.83 12.17 58.98 24.00 Circ 0.0130 4904.10 4903.50 1.14 4908.00 4908.20 4907.18 4906.65 1.70 3 10.66 10.66 36.00 24.00 Circ 0.0130 4904.70 4904.30 1.21 4908.00 4908.00 4907.53 4907.22 1.17 FILE NAME: d:\drawings\flf\drng\flf-drng.stm SUBSET : 1 of 1 NETWORK: 04 DESCRIPTION: Storm Sewer Line 11 WIDTH 2 of 3 TIME: 11:37 DATE: 07/31/98 S T O R M S E W E R C U S T O M R E P O R T Dpth Dpth Calc Up On Vel Up Vel Dn Kj Junc ft ft ft/s ft/s ft _____________________________________________________________________________________________________________________________________ 2.00 1.87 9.66 9.94 0.25 0.36 2.00 2.00 7.27 7.27 0.05 0.04 2.00 2.00 3.39 3.39 1.32 0.24 M M r M= M = = M r M M r M= M M M M M M M M M M s M M M M M M M M M Storm Sewer Line 11 Profile Line 1 P-1 Line 2 P-2 Line 3 P-3 4912 4012 4911 4911 4910 4910 4y 4--I n l t 1 1 I t 1 I l e 1 4909 490E 4908 GL sl pe 11 0. 60 0 o.902 IOW .9 6% .0, 490E H L to IA Res 49M 490E 1 21 490E /'� W 4904 ® 1.1[37. of 24 in. CO C 4904 r 4� 8 1f 4 i N 49W W 11 ff.Mll 4903 402 402 40 gAq 4901 0 p 0 W 1U 110 11p 1b 1A Ib Ib �� Lengthifti OM FILE NAME: d:\drawings\flf\drng\flf-drng.stm NETWORK: 05 DESCRIPTION: storm Sewer Line 29 DATE: 08/06/98 SUBSET 1 of 1 WIDTH 1 of 3 TIME: 17:53 S T O R M S E W E R C U S T O M R E P O R T Line Known Plan Pipe Pipe Mann Inv Cri[ No. Tot Q Flow Len Dia Type "n" IE Up IE Dn SIP Rim Up Rim Dn HGL Up HGL Dn Dpth cfs cfe ft in in ft ft t ft ft-------- ft-------- ft-------- ft-------- ________________________________________ 1 24.30 1.92 28.60 24.00 Circ 0.0130 4884.95 4884.75 0.74 4888.62 4887.20 4886.94 4886.49 1.74 2 16.38 16.38 41.29 24.00 Circ 0.0130 4885.30 4885.05 0.66 4888.50 4888.62 48B7.48 4887.17 1.46 SUBSET 1 of 1 FILE NAME: d:\drawings\flf\drng\flf-drng.stm WIDTH 2 of 3 NETWORK: 05 DESCRIPTION: Storm Sewer Line 28 TIME: 17:53 DATE: 08/06/98 S T O R M S E W E R C U S T O M R E P O R T Dpth Dpth Calc Up On Val Up Val On Kj Junc ft ft ft/s We ft-------------------------------- ----------------------- 1.99 1.74 _________________________________________________________________________ 7.74 8.36 0.25 0.23 2.00 2.00 5.21 5.21 0.25 0.11 Note: The Plan Len of Line No. 1 includes a 73.25" long FES. n G M M M M r = = = W M i = M= M= M M M= M= M= i M M M s M a M M M= M 100—yr Profile Storm Sewer Line 28 Line 1 P-1 Line 2 P-2 0 w Length(ft) FILE NAME: d:\drawings\flf\drng\flf-drng.stm SUBSET 1 of 1 NETWORK: 06 DESCRIPTION: StOrM .Sewer Line 39 WIDTH 1 of 3 DATE: 03/29/99 TIME: 10:53 S T 0 R M S E W E R C U S T O M R E P O R T ------ ...a.........v........... ..................s............--- ...........------- .............------------------------- .......... Line Known Plan Pipe Pipe Mann Inv Crit No. Tot Q Flow Len Dia Type "n" IE Up IE Dn SIP Rim Up Rim Dn HGL Up HGL Dn Dpth cfs cfs ft in in ft ft 6 ft ft ft ft ft ------------------------------------------------------------------------------------------------------------------------------------- 1 44.00 1.00 406.10 30.00 Circ 0.0110 4877.80 4875.00 0.69 4882.26 4882.31 4880.55 4877.21 2.21 2 43.00 18.30 33.93 24.00 Circ 0.0130 4878.20 4877.90 0.97 4882.50 4882.26 4081.98 4880.86 1.96 3 24.70 24.70 28.60 24.00 Circ 0.0110 4878.50 4878.30 0.74 4880.40 4882.50 4882.74 4882.41 1.75 FILE NAME: d:\drawings\flf\drng\flf-drng.stm SUBSET 1 of 1 NETWORK: 06 DESCRIPTION: Storm Sewer Line 39 WIDTH 2 of 3 DATE: 03/29/99 TIME: 10:53 S T 0 R M S E W E R C U S T O M R E P O R T Dpth Dpth Calc Up In Val Up Val Dn Kj Junc ft ft ft/3 We ft ------------------------------------------------------------------------------------------------------------------------------------- 2.50 2.21 8.96 9.59 0.25 0.31 2.00 2.00 13.69 13.69 0.15 0.44 2.00 2.00 7.86 7.86 0.10 0.10 NA 1 M M M r M M M M M i M a M s M M M M M M M M M M M r M M M M M M r M r M M M Icy 100yr Profile Storm Sewer Line 39 Una 1 P-1 Line 2 P-tine 3 P-3 Length(ft) FILE NAME: d:\drawings\flf\drng\flf-drng.stm SUBSET 1 of 1 NETWORK: 07 DESCRIPTION: Storm Sewer Line 42 WIDTH 1 of 3 DATE: 07/31/98 TIME: 13:51 S T O R M S E W E R C U S T O M R E P O R T Line Known Plan Pipe Pipe Mann Inv Crit No. Tot Q Flow Len Dia Type "n" IE Up IE Dn SIP Rim Up Rim Dn HGL Up HGL Dn Dpth cfs cfs ft in in ft ft 0 ft ft ft ft ft ------------------------------------------------------------------------------------------------------------------------------------- 1 21.40 21.40 66.08 16.00 Circ 0.0130 4900.00 4897.00 4.64 4903.11 4899.00 4901.99 4898.16 1.48 FILE NAME: d:\drawings\fIf\drng\f lf-drng.stm SUBSET : 1 of 1 NETWORK: 07 DESCRIPTION: Storm Sewer Line 42 WIDTH : 2 of 3 DATE: 07/31/98 TIME: 13:51 S T O R M S E W E R C U S T O M R E P O R T Dpth Dpth Calc Up Dn Vel Up Vel On Kj Junc ft ft ft/s ft/s ft ------------------------------------------------------------------------------------------------------------------------------------- 1.16 1.16 14.56 14.56 0.25 0.82 M M M M r M M M M M M M M M M M M M M C- - IS Storm Seger Line 42 Prof He Line 1 P-1 iyui 1��1 M6 4906 1905 4905 4904 4904 I-IlEt 4 1903 4903 4902 4902 4901 4901 \ re 4900 4900 G q0 4899 CO 4899 �G 4898 4898 E• 6• 4897 4897 4896 4896 4895 4895 Length(ft) FILE NAME: d:\drawings\flf\drng\flf-drng.stm NETWORK: 08 DESCRIPTION: Pond 1 Outlet Pipe DATE: 08/18/98 SUBSET : 1 of 1 WIDTH : 1 of 2 TIME: 15:59 S T O R M S E W E R C U S T O M R E P O R T Line Known Plan Pipe Mann Inv Crit Dpth No. Tot Q Flow Len Dia "n.. IE Up IE Do SIP Rim Up Rim Dn HGL Up HGL Dn Dpth Up ft c-- cfs ft in ft _______ft________e______ft________ft________ft________ft________ft______-- ---- ____________________________________ 1 48.31 0.00 118.08 30.00 0.0130 4998.90 4898.00 0.78 4903.BO 4901.10 4901.92 4900.28 2.28 2.50 2 48.31 48.31 14.08 30.00 0.0130 4900.20 4900.00 1.73 4899.00 4903.80 4902.56 4902.29 2.28 2.28 3 0.00 0.00 10.00 6.00 0.0100 4899.85 4898.90 12.65 4901.50 4903.80 4899.85 4898.90 0.00 0.00 FILE NAME: d:\drawings\flf\drng\flf-drng.stm SUBSET : 1 of 1 NETWORK: 08 DESCRIPTION: Pond 1 Outlet Pipe WIDTH 2 of 2 TIME: 15:59 DATE: 08/18/98 S T O R M S E W E R C U S T O M R E P O R T Dpth Calc Dn Val Up Val Do Kj Junc ft ft/s ft/s ft ---- _________________________________________________________________________________________________________________________________ 2.28 9.84 10.29 0.25 0.3B 2.29 10.29 10.24 0.05 0.08 0.00 0.00 0.00 0.10 0.00 Note: 48.31 cfs is the 100-year release from Pond 1. M m m � m i m m m m m m m m � i m m m m 100—yr Profile Pond 1 Outlet Pipe Line 1 P-1 Line 2 P-2 907 490] boa 906 90] 90] 490. 1904 c 14—) T a 1900 -{ H O1909 — b02 ,�4+HtT G s D i 99. 4 190i — 1901 (�'( V 1 134 P j� 1l/�I/\) .90o il. 01 0 n. 19aa ) L 0 1a99 099 r.� W it. of 0 n. 1-1 R P 0 79 bse e9a 4697 097 4896 .ba Length(ft) I 1 1 1 1 u H Elevation 4899.850 4899.900 4900.000 4900.100 4900.200 4900.300 4900.400 4900.500 4900.600 4900.700 4900.800 4900.900 4901.000 4901-100 4901.200 4901.300 4901.400 4901.500 4901.600 4901.700 4901.800 4901.900 4902.000 4902.100 4902.200 4902.300 4902.400 4902.500 4902.600 4902.700 4902.800 4902.900 4903.000 Area (sf) 72766.289 73534.546 75087.435 76791.002 78284.163 79785.540 81.295.132 82812.939 84338.961 85873.199 87415.651 88966.320 90525.203 93134.197 95026.084 96932.769 98854.252 100790.534 102741.614 104707.493 106688.170 108683.646 110693.920 114289.853 116480.548 118651.855 120803.775 122936.308 125049.454 127143.212 129217.583 131272.567 133530.334 Average Area 72766.289 73150.417 74310.990 75939.219 77537.583 79034.852 80540.336 82054.035 83575.950 85106.080 86644.425 88190.986 89745.761 91829.700 94080.141 95979.426 97893.510 99822.393 101766.074 103724.554 105697.831 107685.908 109688.783 112491.886 115385.200 117566.201 119727.815 121870.041 123992.881 126096.333 128180.398 130245.075 132401.451 Volume (cu-ft) 0.000 3650.396 7430.913 7604.712 7753,471 7904.147 8053.820 8205.042 8357.083 8509.944 8666.604 8818.511 8973.835 9219.350 9407.613 9598.745 9789.044 9981.743 10175.919 10371.572 10572.507 10767.806 10967.894 11318.535 11538.361 11757.849 11972.728 12186.742 12398.822 12608.967 12821.310 13023.940 13228.274 �GJ.�I► G�6 r..r,a,J of 40,0949. e�5 Cum. Volume (cu-ft) 0.000 3650,396 11081.309 18686.021 26439.492 34343.639 42397.459 50602.500 58959.583 67469.528 76136.132 84954.643 93928.478 103147.828 112555.442 122154.187 131943.231 141924.974 152100.893 162472.465 173044.972 183812.778 194780.672 206099.207 217637.568 229395.417 241368.145 253554.887 265953-709 278562.676 291383-986 304407.926 317636.200 Cum. Volume (ac-ft) Pond 1 0.000 0.084 0.254 0.429 0.607 0.788 0.973 1.162 1.354 1.549 1.748 1.950 2.156 2.368 2.584 2.804 3.029 3.258 3.492 3.730 3.973 4.220 4.472 4.731 4.996 5.266 5.541 5.821 6.105 6.395 6.689 6.988 7.292 dL jj J Elevation Area (sf) Avera: Area Volume (cu-ft) Cum. Volume (cu-ft) 4900.200 78304.072 78-J4.072 0.000 0.000 4900.300 79792.536 79048.304 7889.447 7889.447 4900.400 81294.766 80543.651 8054.275 15943.722 4900.500 82807.861 82051.314 8204.894 24148.617 4900.600 84331.822 83569.841 8356.598 32505.215 4900.700 85866.646 85099.234 8509.386 41014.600 4900.800 87412.336 86639.491 8665.497 49680.098 4900.900 88968.890 88190.613 8818.600 58498.697 4901.000 90536.309 89752.599 8974.644 67473.342 4901.100 93134.197 91835.253 9219.350 76692.692 4901.200 95026.084 94080.141 9407,613 86100.306 4901.300 96932.769 95979.426 9598.745 95699.050 4901.400 98854.252 97893.510 9789.044 105488.094 4901.500 100790.534 99822.393 9981.743 115469.838 4901.600 102741.614 101766.074 10175.919 125645.757 4901.700 104707.493 103724.554 10371.572 136017.328 4901.800 106688.170 105697.831 10572.507 146589.836 4901.900 108683.646 107685.908 10767.806 157357.642 4902.000 110693.920 109688,783 10967.894 168325.536 4902.100 114289.853 112491.886 11318.535 179644.071 4902.200 116480.548 115385.200 11538.361 191182.432 4902.300 118651.855 117566.201 11757.849 202940.281 4902.400 120803.775 119727.815 11972.728 214913.008 4902.500 122936.308 121870.041 12186.742 227099.751 4902.600 125049.454 123992.881 12398.822 239498.573 4902.700 127143.212 126096.333 12608.967 252107.540 4902.800 129217.583 128180.398 12821.310 264928.850 4902.900 131272.567 130245.075 13023.940 277952.790 4903.000 133530.334 132401.451 13228.274 291181.064 Cum. Volume (ac-ft) 0.000 0.181 0.366 0.554 0.746 0.942 1.140 1.343 1.549 1.761 1.977 2.197 2.422 2.651 2.884 3.123 3.365 3.612 3.864 4.124 4.389 4.659 4.934 5.213 5.498 5.788 6.082 6.381 6.685 1 Pond 1 1 Above WQCV 1 1 1 1 p 1 1 C 1 1 1 1 1 1 I I ' 8/18/98 ' RESERVOIR REPORT RECORD NUMBER : 1 ' STORAGE TYPE : MAN STAGE/STOR DISCHARGE TYPE : COMP STAGE/DIS DESCRIPTION : Pond 1 Rating ' [RATING CURVE LIMIT] Minimum Elevation ......................... _ Maximum Elevation ....................::::: 1 Elevation Increment .................. [STAGE STORAGE INFORMATION] ' Input file = NULL Output file = NULL [Manual Storage vs. Elevation] ELEVATION STORAGE (ft) (cuft) -------------------------------------------- 4900.30 7889.45 4900.40 15943.72 4900.50 24148.62 4900.60 32505.22 4900.70 41014.60 4900.80 49680.10 4900.90 58498.70 4901.00 67473.34 4901.10 76692.69 4901.20 86100.31 4901.30 95699.05 4901.40 105488.09 4901.50 115469.84 4901.60 125645.76 4901.70 136017.33 4901.60 146589.84 4901.90 157357.64 4902.00 168325.54 4902.10 179644.07 4902.20 191182.43 4902.30 202940.28 4902.40 214913.01 4902.50 227099.75 4902.60 239498.57 4902.70 252107.54 4902.80 264928.85 4902.90 277952.79 Page 1 r - 4900.20 (ft) 4903.00 (ft) 0.10 (ft) 8/18/98 Page 2 [Manual Storage vs. Elevation] ' ------------------------------------- ELEVATION 7----------- STORAGE ' (ft) (cuft) ------------------------------------------------ 4903.00 291181.06 ' [STAGE DISCHARGE INFORMATION] OUTLET STRUCTURE: , STR # 2 TYPE : MANUAL RATING CURVE DESCRIPTION : Manual Rating for Pond 1 Outlet Pipe ' [Reservoir Discharge Value vs. Stage] , (the elevation increment is 0.1) ------------------ -------------- -------------- ------------- ------------ --- STAGE ELEVATION STORAGE STORAGE DISCHARGE (ft) ----------------------(ft)---------(Acft)--------(cuft) ----------- (cfs) ' 0.00 4900.20 0.00 0.00 0.00 0.10 4900.30 7889.45 0.91 0.20 4900.40 15943.72 1.82 , 0.30 4900.50 24148.62 2.73 0.40 4900.60 32505.21 3.64 0.50 4900.70 41014.60 4.55 ' 0.60 4900.80 49680.10 6.09 0.70 4900.90 58498.70 8.26 0.80 0.90 4901.00 4901.10 1.549 67473.34 76692.69 10.53 13.16 ' 1.00 4901.20 86100.31 15.94 1.10 4901.30 95699.05 19.06 1.20 4901.40 105488.09 22.19 1.30 4901.50 115469.84 25.36 ' 1.40 4901.60 125645.76 28.93 1.50 4901.70 136017.33 32.50 1.60 4901.80 146589.84 36.03 1.70 4901.90 157357.64 39.48 ' 1.80 4902.00 3.864 168325.54 42.93 1.90 4902.10 179644.07 45.36 2.00 4902.20 191182.43 46.26 2.10 4902.30 202940.28 47.16 ' 2.20 4902.40 214913.01 48.06 2.30 2.40 4902.50 4902.60 227099.75 239498.57 48.96 49.86 ' 2.50 4902.70 252107.54 50.77 2.60 4902.80 264928.85 51.67 2.70 4902.90 277952.79 52.57 2.80 4903.00 6.6B5 291181.06 53.47 , 8/18/98 OUTLET STRUCTURE REPORT Page 1 --F- RECORD NUMBER : 2 TYPE : MANUAL RATING CURVE DESCRIPTION : Manual Rating for Pond 1 Outlet Pipe [RATING CURVE LIMIT] Minimum Elevation ......................... = 4900.20 (ft) Maximum Elevation ......................... = 4903.00 (ft) Elevation Increment ....................... = 0.10 (ft) [Manual Flow Value vs. Elevation] ----------------------------------------- ELEVATION FLOW (ft) (cfs) -------------------------------------------- 4900.75 5.00 4900.98 10.00 4901.17 15.00 4901.33 20.00 4901.49 25.00 4901.63 30.00 4901.77 35.00 4902.06 45.00 4903.17 55.00 [Culvert Weir Discharge Value vs. Stage] (the elevation increment is 0.1) STAGE ELEVATION FLOW (ft) (cfs) ------------------------------------------------ 0.10 4900.30 0.91 0.20 4900.40 1.82 0.30 4900.50 2•73 0.40 4900.60 3.64 0.50 4900.70 4.55 0.60 4900.80 6.09 0.70 4900.90 B.26 0.80 4901.00 10.53 0.90 4901.10 13.16 1.00 4901.20 15.94 1.10 4901.30 19.06 1.20 4901.40 22.19 1.30 4901.50 25.36 1.40 4901.60 28.93 8/18/98 [Culvert Weir Discharge Value vs. Stage) (the elevation increment is 0.1) STAGE ELEVATION FLOW ----------------------------------------- (ft) (cfs) 1.50 4901.70 32.50 1.60 4901.80 36.03 1.70 4901.90 39.48 1.80 4902.00 42.93 1.90 4902.10 45.36 2.00 4902.20 46.26 2.10 4902.30 47.16 2.20 4902.40 48.06 2.30 4902.50 48.96 2.40 4902.60 49.86 2.50 4902.70 50.77 2.60 4902.80 51.67 2.70 4902.90 52.57 2.80 4903.00 53.47 2.90 4903.10 54.37 Page 2 8/18/98 HYDROGRAPH REPORT RECORD NUMBER : 4 Page 1 --7 TYPE : RESER MOD. PULS DESCRIPTION : Pond 1 Routing [HYDROGRAPH INFORMATION] Peak Discharge ............................ = 48.31 (cfs) Volume .................................... = 11.53 (acft) Time Interval ............................. = 1.00 (min) Time to Peak .............................. = 75.00 (min) Time of Base .............................. = 1440.00 (min) Peak Elevation ............................ = 4902.53 (ft) [RESERVOIR STRUCTURE INFORMATION] Reservoir# ............................... = 1 Description ............................... = Pond 1 Storage type .............................. = MAN STAGE/STOR Max storage ............................... = 291181.06 Cuft Discharge type ............................ = COMP STAGE/DIS Max discharge ............................. = 54.37 cfs ' [RESERVOIR INFORMATION] Reservoir# ............................... = 1 Reservoir Description ..................... = Pond 1 1 [INFLOW HYDROGRAPH INFORMATION] ' Hydrograph #.............................. = 3 Hydrograph Description .................... = Combine Basin OS1 w/ On -Site Basins t 1 1 I Elevation Area (s0 Ave. Area Volume (cu-dt) Cum. Volume Cum. Volume (ac-ft) 4687.000 0.000 0.000 0,000 0.000 0,000 4887.100 43.463 21,732 1.466 1.466 0,000 4887.200 171456 107.460 10.022 11.488 0.000 4887.300 383.977 277.717 27.139 38.627 0,001 4887.400 681,028 532.503 52.540 91.168 0.002 4887.500 1062.608 871.818 86.433 177.601 0.004 4887.600 1528.716 1295,662 128.762 306.363 0.007 4887.700 2079.354 1804,035 179.528 485.891 0.011 4887.800 2714.521 2396.938 239.613 725.504 0.017 4887.900 3434.217 3074,369 306.603 1032.107 0.024 4888,000 4238.442 3836.330 382.705 1414.812 0.032 4888.100 8125.812 6182.127 761.286 2176,098 0.050 4888.200 9239.509 8682.661 867.214 3043.313 0.070 4888.300 10459.764 9849.637 984,632 4027.944 0.092 4888.400 11786,578 11123.171 1111.329 5139.273 0,118 4888.500 13219.951 12503.265 1249.197 6388.470 0.147 4888.600 14759.882 13989.917 1397.699 7786.169 0.179 4888.700 16406.373 15583.128 1556.837 9343.006 0.214 4888.800 18159.421 17282.897 1729.583 11072,589 0.254 4888,900 20019.029 19089.225 1907.545 12980.135 0.298 4889.000 21985.195 21002.112 2098.623 15078.758 0.346 4889.100 24310.771 23147.983 2338,180 17416.937 0,400 4889.200 26273.919 25292.345 2527.876 19944,813 0.458 4869.300 28365.481 27319.700 2731.873 22676.686 0.521 4889,400 30585457 29475.469 2946.296 25622.982 0.588 4889.500 32933.848 31759.653 3174.482 26797.464 0.661 4889.600 35406.507 34170.178 3415.352 32212.816 0.740 4889.700 37999.289 36702.898 3688.349 35881.165 0.824 4889.800 40712,192 39355.740 3935.074 39819.239 0.914 4889.900 43545.217 42128.705 4211.075 44030.314 1.011 4890.000 46498,365 45021.791 4500.077 48530.390 1.114 4890.100 50992.964 48745.675 5030.339 53560.729 1.230 4890.200 52414.879 51703.932 5169.740 58730,469 1.348 4890.300 53889.707 53152.293 5315,501 64045.971 1.470 4890.400 55417.806 54653.756 5464.783 69510.753 1.596 4890.500 57006.588 56212.197 5620.396 75131.149 1.725 4890.600 58653.782 57830.185 5782.126 80913.275 1.858 4890.700 60354.087 59503.934 5949.328 86862.603 1.994 4890.800 62116.415 61235.251 6125.175 92987.778 2.135 4890.900 63966.385 63041.400 6302.815 99290.593 2.279 4891.000 65939.962 64953.174 6493A49 105784.042 2.425 4891.100 69629.286 67784.624 6861.047 112645.089 2.586 4891.200 71700.087 70554.687 7055.788 119710.877 2.748 4891.300 73814.449 72757.268 7276.444 126987.322 2.915 4891.400 75973.648 74894.049 7488.810 134476.131 3.087 4891.500 78179.292 77076.470 7706.827 142182.958 3264 4891.600 80433.551 79306.421 7929.577 150112.535 3.446 4891.700 82739.549 81586.550 8157.325 158269.860 3.633 4891.800 85102.710 83921 A 29 8394.867 166664.727 3.826 4891.900 87534.503 66318.607 8630.482 175295.209 4.024 4892.000 90060.123 88797,313 8877.872 184173.081 4.228 4892.100 97357.256 93708,689 9596.755 193769.836 4,448 4892.200 100145.533 98751.394 9974.612 203644.448 4.675 4892.300 102946.760 101546.146 10155.874 213800.322 4.908 4892.400 105762,449 104354.604 10435.049 224235.371 5.148 4892.500 108596.119 107179.284 10717.230 234952.601 5.394 4892.600 111449.908 110023.013 11001.300 245953.901 5.646 4892.700 114327.006 112888.457 11287.527 257241.428 5.905 4892.800 117232.268 115779.637 11581.818 268823.246 6.171 4892.900 120178.091 118705.180 11869.160 280692.405 6.444 4893.000 124968.877 122573,484 12166.507 292858.912 6,723 Pond 2 ' 1 1 r 1 1 I I 1 1 I 1 I Elevation 4889.000 4889.100 4889,200 4889.300 4889.400 4889.500 4889.600 4889.700 4889.800 4889.900 4890.000 4890.100 4890.200 4890.300 4890.400 4890.500 4890.600 4890.700 4890.800 4890.900 4891.000 4891.100 4891.200 4891.300 4891.400 4891.500 4891.600 4891.700 4891 MO 4891.900 4892.000 4892.100 4892.200 4892.300 4892.400 4892.500 4892.600 4892.700 4892.800 4892.900 4893.000 Area (sf) 22476.038 24310.771 26273.919 28365.481 30585.457 32933.848 35406.507 37999.289 40712.192 43545.217 46498.365 50992.984 52414.879 53889.707 55417.806 57006.588 58653.782 60354.087 62116.415 63966.385 65939.962 69629.286 71700.087 73814.449 75973.648 78179.292 80433.551 82739.549 85102.710 87534.503 90060.123 97357.256 100145.533 102946.760 105762.449 108596.119 111449.908 114327.006 117232.268 120178.091 124968.877 Ave. Area (so 22476.038 23393.404 25292.345 27319.700 29475.469 31759.653 34170.178 36702.898 39355.740 42128.705 45021.791 48745,675 51703.932 53152.293 54653.756 56212.197 57830.185 59503.934 61235.251 63041.400 64953.174 67784.624 70664.687 72757.268 74894.049 77076.470 79306.421 81586.550 83921.129 86318.607 88797.313 93708.689 98751.394 101546.146 104354.604 107179.284 110023.013 112888.457 115779.637 118705.180 122573.484 Volume (cu-ft) 0.000 2338.180 2527.876 2731.873 2946.296 3174,482 3415,352 3668.349 3938.074 4211.075 4500.077 5030.339 5169,740 5315.501 5464.783 5620.396 5782.126 5949.328 6125.175 6302,815 6493.449 6861.047 7065.788 7276.444 7488.810 7706.827 7929.577 8157.325 8394.867 8630.482 8877-872 9596.755 9874.612 10155.874 10435.049 10717.230 11001.300 11287.527 11581.818 11869.160 12166.507 Cum. Volume (cu-ft) 0.000 2338.180 4866.055 7597.929 10544.224 13718.707 17134.058 20802,407 24740.481 28951.556 33451.633 38481.971 43651.711 48967.213 54431,995 60052.391 65834.518 71783.845 77909.020 84211.835 90705.284 97566.332 104632.120 111908.564 119397,374 127104.201 135033.777 143191.102 151585.969 160216.451 169094.324 178691.079 188565.690 198721.565 209156.613 219873.843 230875.144 242162.670 253744.488 265613.648 277780.154 Cum. Volume lac-ft) Pond 2 0.000 above WQCV 0.054 0.112 0.174 0.242 0.315 0.393 0.478 0.568 0.665 0.768 0.883 1.002 1.124 1.250 1.379 1.511 1.648 1.789 1.933 2.082 2.240 2.402 2.569 2.741 2.918 3.100 3.287 3.480 3.678 3.882 4.102 4.329 4.562 4.802 5.048 5.300 5.559 5.825 6.098 6.377 p-iD 8/5/98 RESERVOIR REPORT RECORD NUMBER : 1 STORAGE TYPE : MAN STAGE/STOR DISCHARGE TYPE : COMP STAGE/DIS DESCRIPTION : Pond 2 Rating [RATING CURVE LIMIT] Minimum Elevation ......................... _ MaximumElevation ......................... _ ElevationIncrement ....................... _ [STAGE STORAGE INFORMATION], Input file = NULL Output file = NULL [Manual Storage vs. Elevation] ------------------------------------------------ ELEVATION STORAGE (ft) (cuft) ------------------------------------------------ 4889.10 2338.18 4889.20 4866.06 4689.30 7597.93 4889.40 10544.22 4889.50 13718.71 4889.60 17134.06 4889.70 20802.41 4889.80 24740.48 4889.90 28951.56 4890.00 33451.63 4890.10 38481.97 4890.20 43651.71 4890.30 46967.21 4890.40 54432.00 4890.50 60052.39 4690.60 65834.52 4890.70 71763.85 4890.80 77909.02' 4890.90 84211.84 4891.00 90705.28 4891.10 97566.33 4891.20 104632.12 4891.30 111908.56 4891.40 119397.37 4891.50 127104.20 4891.60 135033.78 4891.70 143191.10 Page 1 4889.00 (ft) 4893.00 (ft) 0.25 (ft) 8/5/98 [Manual Storage vs. Elevation] ---------------------------- Page 2 ELEVATION STORAGE (ft) ------------------------------------------------ (cuft) 4891.80 151585.97 4891.90 160216.45 4892.00 169094.32 4892.10 178691.08 4892.20 188565.69 4892.30 198721.57 4892.40 209156.61 4892.50 219873.84 4892.60 230875.14 4892.70 242162.67 4892.80 253744.49 4892.90 265613.65 4893.00 277700.15 [STAGE DISCHARGE INFORMATION] OUTLET STRUCTURE: STR # 2 TYPE : MANUAL RATING CURVE DESCRIPTION : Pond 2- Manual Rating for Storm Sewer Line 2 (Reservoir Discharge Value vs. Stage] (the elevation increment is 0.3) STAGE ELEVATION STORAGE STORAGE DISCHARGE (ft) (ft) (Acft) (cuft) (cfs) -------------------------------------------------------------- 0.00 4889.00 0.00 0.00 0.00 0.25 4889.25 6231.99 2.50 0.50 4889.50 13718.71 5.00 0.75 4889.75 22771.44 11.11 1.00 4890.00 0.768 33451.63 18.93 1.25 4890.25 46309.46 28.08 1.50 4890.50 60052.39 30.75 1.75 4890.75 74846.43 31.69 2.00 4891.00 2.082 90705.28 32.63 2.25 4891.25 108270.34 33.57 2.50 4891.50 127104.20 34.51 2.75 4891.75 147388.54 35.16 3.00 4892.00 3.882 169094.32 35.51 3.25 4892.25 193643.63 35.85 3.50 4892.50 219873.84 36.19 3.75 4892.75 247953.58 36.54 4.00 4893.00 6.377 277780.15 36.88 8/5/98 OUTLET STRUCTURE REPORT RECORD NUMBER 2 TYPE MANUAL RATING CURVE DESCRIPTION Pond 2- Manual Rating for Storm Sewer Line 2 (RATING CURVE LIMIT] Minimum Elevation ......................... _ Maximum Elevation ......................... _ Elevation Increment ....................... _ (Manual Flow Value vs. Elevation] ELEVATION FLOW (ft) (cfs) -------------------------------------------- 4889.50 5.00 4889.71 10.00 4889.89 15.00 4890.03 20.00 4890.17 25.00 4890.30 30.00 4891.63 35.00 4893.00 36.88 [Culvert Weir Discharge Value vs. Stage] (the elevation increment is 0.1) STAGE ELEVATION FLOW (ft) (cfs) ----------------------------------------- 0.10 4889.10 1.00 0.20 4889.20 2.00 0.30 4869.30 3.00 0.40 4889.40 4.00 0.50 4889.50 5.00 0.60 4889.60 7.38 0.70 4889.70 9.76 0.80 4889.80 12.50 0.90 4889.90 15.36 1.00 4890.00 18.93 1.10 4890.10 22.50 1.20 4890.20 26.15 1.30 4890.30 30.00 1.40 4890.40 30.38 1.50 4890.50 30.75 W -12 Page 1 4889.00 (ft) 4893.00 (ft) 0.10 (ft) 8/5/98 [Culvert Weir Discharge Value vs. Stage] (the elevation increment is 0.1) ----------------------------------- STAGE ELEVATION FLOW ------------------------------------------- (ft) (cfs) 1.60 4890.60 31.13 1.70 4890.70 31.50 1.80 4890.80 31.88 1.90 4890.90 32.26 2.00 4891.00 32.63 2.10 4891.10 33.01 2.20 4891.20 33.38 2.30 4891.30 33.76 2.40 4891.40 34.14 2.50 4891.50 34.51 2.60 4891.60 34.89 2.70 4891.70 35.10 2.80 4891.80 35.23 2.90 4891.90 35.37 3.00 4892.00 35.51 3.10 4892.10 35.64 3.20 4892.20 35.78 3.30 4892.30 35.92 3.40 4892.40 36.06 3.50 4892.50 36.19 3.60 4892.60 36.33 3.70 4892.70 36.47 3.80 4892.80 36.61 3.90 4892.90 36.74 Page 2 �-I- 15 8/5/98 HYDROGRAPH REPORT RECORD NUMBER : 2 TYPE : RESER MOD. PULS DESCRIPTION : Pond 2 Routing [HYDROGRAPH INFORMATION] PeakDischarge ............................ _ Volume.................................... _ TimeInterval ............................. _ Timeto Peak .............................. _ Timeof Base .............................. _ PeakElevation ............................ [RESERVOIR STRUCTURE INFORMATION] Page 1 31.09 (cfs) 3.30 (acft) 0.10 (min) 58.50 (min) 144.00 (min) 4890.84 (ft) Reservoir# ............................... = 1 Description............................... = Pond 2 Storage type .............................. = MAN STAGE/STOR Max storage ............................... = 277780.15 Cuft Discharge type ............................ = COMP STAGE/DIS Max discharge ............................. = 36.88 cfs [RESERVOIR INFORMATION] Reservoir# ............................... = 1 Reservoir Description ..................... = Pond 2 w/ WQCV [INFLOW HYDROGRAPH INFORMATION] Hydrograph#.............................. = 1 Hydrograph Description .................... = Pond 2 Inflow Hydrograph r I No Text 1) 1 1 Design of Wet Extended Detention Basins for Water Quality Reference: Urban Storm Drainage Criteria Manual, Volume 3 - Best Management Practices, Urban Drainage and Flood Control District, September 1992. Project: Fossil Lake Village Location: Pond 1 1) Determine the Water Quality Capture Volume: 1.1) Determine Basin Imperviousness: 1.2) 1.3) 1.4) 1.5) Ravin Parameters Basin Area (acres)- 42.154 Area of Roofs (acres)= 5.787 Area of Parking, Walks (acres)- 7.337 Basin Imperviousness (%)= 31 Use a 40-hour detention time for extended detention basins; This is not typical for a wet extended detention basin which is usually a 12-hour drain time, but this will provide additional water quality treatment. Estimate the brim -full storage volume in watershed inches of runoff from Figure 5-1; Required storage from Figure 5-1(inches) = 0.15 Determine the water quality capture volume (WQCV) in ac-ft; WQCV= (Required Storage/12)(Area) ' Required Storage= Required storage from Figure 5-1 in watershed inches. Area= The tributary drainage area upstream of the water quality enhancement facility in acres WQCV= 0.53 ac-ft = 22,952.85 cu-ft 2) Calculate the Number of Perforations per Row for WQCV Release: ' 2.1) WQCV= 0.53 ac-ft 2.2) From the Stage -Storage table for Pond 1, at 0.53 ac-ft, Elevation= 4900.16= 4900.2 2.3) Invert Elevation of WQCV Outlet Pipe= 4899.85= Permanent Pool ' 2.4) Depth at the Outlet (DwQ, feet) = 4900.2-4899.85= 0.35' Use 1.0' minimum according to Fig. 5-3. 2.5) From Figure 5-3, Required Area per Row-- 3.5 in2 2.6) From Figure 5-2, Use (8) k" diameter holes per row, space rows on 4" centers, Riser Pipe is 1.0-foot high D.\PwjvnaNSpAU>eiCsLwyd LI T_? I 1 1 I 1 1 1 Design of Dry Extended Detention Basins for Water Quality Reference: Urban Storm Drainage Criteria Manual, Volume 3 - Best Management Practices, Urban Drainage and Flood Control District, September 1992. Project: Fossil Lake Village Location: Pond 2 1) Determine the Water Quality Capture Volume: 1.1) Determine Basin Imperviousness: Basin Parameters Basin Area (acres)= 31.765 Area of Roofs (acres)= 3.735 Area of Parking, Walks (acres)= 3.713 Basin Imperviousness (%)= 23 1.2) Use a 40-hour detention time for extended detention basins; 1.3) Estimate the brim -full storage volume in watershed inches of runoff from Figure 5-1; 1.4) Required storage from Figure 5-1(inches) = 0.125 1.5) Determine the water quality capture volume (WQCV) in ac-ft; WQCV= (Required Storage/12)(Area) Required Storage= Required storage from Figure 5-1 in watershed inches. Area= The tributary drainage area upstream of the water quality enhancement facility in acres WQCV= 0.33 ac-ft = 14,413.37 cu-ft 2) Calculate the Number of Perforations per Row for WQCV Release: 2.1) WQCV= 0.33 ac-ft 2.2) From the Stage -Storage table for Pond 2, at 0.33 ac-ft, Elevation= 4888.97= 4889.00 2.3) Invert Elevation of Outlet Pipe= 4887.00 2.4) Depth at the Outlet (DwQ, feet) = 4889.0-4887.0 = 2.0 2.5) From Figure 5-3, Required Area per Rory- 0.85 in2 2.6) From Figure 5-2, Use (2) 3/4" diameter hole per row, space rows on 4" centers, Riser Pipe is 2-feet high D.\Ptojecnlipt&xDetCa1.wpd y� �Wo �aa �o yWo o<o �myP o. 0.4 2 Ti m m 0.3 t C Hm i e c 0.2 0.1 0 0 10 20 30 40 50 60 70 so 90 100 - Percent Impervious Area In Tributary Watershed Source: Urbanos, Guo, Tucker (1989) Note: Watershed Inches of runoff shall ep y to the entire watershed tributary to the B P Facility. u 0 FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (WQCV) m 6 s xten ed De entlo Bash (Dry) 0-Ho r Dral time D tentl n Pon s (W t) 1 -Hour Drain me DRAINAGE CRITERIA MANUAL (V. 3) Threaded Water Quality Captule Volunm Lel+l (including 20%addilional vclwlm for Ndinrnt Morape) 1� Dove)(1.Arou1 u d 3' rforat) nd /PaIIOIaNd RINI I(.Rlbr Fabric 0 �Ca � w STRUCTURAL BMPs GW- N 0 � n me a �a i I Y i E (FW) Q3QQ� ir 5 L C 1• a g� o qCF N x Z= 4� Y a Lockable W for • :., Acclaim im PII OPipe WWrwyry Baer 4 (See DNaN) pufl.3et NOW: 1. The a" Plea all" be end ill mreW "{:� �; ::'.•,1!;1 :!h t�t�4.'r�.Y:'.;, aeerlbw Iro am oolleem fiber. 2. AMMImle d ta" YrArda Nytrobfab abet or," alaoa to per anni" =W MM Size Bea to Prwem cwdgLntbn. OUTLETT M'drmletic Uplift Nome: 1. Unlawtan raenaar of holve. a 2. earra lenn hale dlaNra . lw a. ele.enurr 1Ya1rMW Parbamd Caernru ♦1-1N2 DDFDD 1.1 z dio"lor Ale Vale a Threaded Cap Ductile ran or StNI Pp WATER DUALITY RISER PIPE rllea Mom Dbmelar. Im Dlanre a irr s4- (i,L) 4 a - 6 r2N4V 12 e a 16 12 to 14 1 u 24 1a Mole DiaNmr Ale, of Hale (w Iln2 ) Ifs 0.012 1N O.ON ed 0.110 1R 0.106 � O E07 34 OAa2 7/s 0.s01 1 0.785 FIGURE 6.2. WATER GUALITY OUTLET FOR A DRY EXTENDED DETENTION BASIN C z. o.a Y 10.2 1 5 0.1 z 0.0 0.0" 0.02 DRAINAGE CRITERIA MANUAL(V. 3) STRUCTURAL SMN SOLUTION: Required A;sa rr rz4AlF-o6*o4do,,ipoAslod, FAA WK VIA 0.02 0.04 0.06 0.10 020 0.40 0.60 1.0 2.0 ao 6.0 Required Area par Row (n.2) , Same: DwgYs Carnfy Sb Dmn%o rid TeclM=W CeYne. I M. FIGURE 5.3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME Rsv. 3-1.1994 UDFCD DRAINAGE CRITERIA MANUAL (V. 3) Threaded Water Ouallty Capture Volume Level Padotaled Holes Atioye Permanent Pod n Permanent Pool Level Pod Remoyable 6 L Oyerf ow Grate STRUCTURAL EIMPS Stiff Stoat Screen for - Trash Skimmer Open on Top d Bottom R ..�t Rae �0 01 Rlwr Pad Bosom Drain Volvo c ':��� Arxeee PB Outla Ppe—� Water Guah . Inuit. 3 ff) Riser Pipe (See DIM) Notes. 1. Alternate designs are acceptable as wv as" hydraui.. provides the required ounkin if times. 2. U. fresh si unmer sciesna of stiff green alost Size Base to Pm%wtI material lu protect Petro also nsar. Must exond Hydrostatic; Uplift from t e rip of the riser l0 2 e. below this OUTLET WORKS parmanenl pool 10.1, NOT TO SCALE Notes. 1. Minimum number of Isles . 8 2. Minmum noW "nudist . IM' Dia. 1 1 R" diameter Air Vont in Threaded Cap O O O. Water Quality Outlet flows O O O — Ductile Iron or Q Q Q Steel Pipe WATER (DUALITY RISER PIPE NOT TO SCALE Maximum Numbar of Perloralad Columns Riser Hole Dlamam r, ioclhes Dlemaler I/Y" I2" 311' 1' fa+l x a e 6 12 12 9 9 16 16 12 a 10 20 20 14 10 12 24 24 1e 12 Hole Denials, Ana Ib.l tin. 2) 9 0,013 1a 0.0a9 y8 0.110 112 0.196 ye 0.307 31e 0."2 718 0,601 0.785 FIGURE 6-2. WATER QUALITY OUTLET FOR A WET EXTENDED DETENTION BASIN 9-1-1092 UDFCD I1\ i Ll ' DRAINAGE CRITERIA MANUAL(V. 3) STRUCTURAL BMPs 6.0 ' %AMPI E. DyyO= 2011 I DRAINAGE CRITERIA MANUAL (V. 3) STRUCTURAL BMPs 1 1 i 1 i 1 1 1 1 1 Fil i [1 i 1 Grass -Lined Swale Table 4-1 Considerations and Criteria Criteria Design Considerations Velocity Maintaining low velocities in a swale during small, frequent storms encour- ages sedimentation and infiltration. Design the swale for a velocity of 2 fps or less during the 2-year event. Use a Mannings roughness coefficient of n=0.035 and set the longitudinal channel slope and channel cross-section dimensions to limit the flow velocity. Swale Geometry A shallow trapezoidal or triangular channel cross-section is preferred. A maximum depth of 3 feet is recommended during a 2-year storm. Swale side slopes should be no steeper than 4:1 and preferably 5:1 or flatter. Longitudinal Slope Providing a mild slope helps maintain the flow velocities recommended above. Typically, longitudinal slopes will be between 0.2 percent and 0.5 per- cent, but shall not exceed 1.0 percent. Sites with greater slopes should use grade control checks or small drop structures to maintain the required longitudinal slope. Grade Checks Slow velocities down through the use of grade control checks in a swale to promote sedimentation and infiltration. Provide them as needed to maintain the longitudinal slope and to limit maximum flow velocity. Vegetation Dense turf grass cover is recommended to promote sedimentation, filtration, and nutrient uptake, to limit erosion, and to help maintain low flow velocities. Street and Small cutvens at each street crossing and driveway crossings may be used Driveway Crossings to provide onsite stormwater capture and to use the swale, if adequate vol- ume is available, as an extended detention basin. Drainage and Check the water surface during larger storms such as the 5-year through the Flood Control 100-year floods to ensure that drainage from such events is being handled without Flooding critical areas or residential, commercial, and industrial structures. 9-1-92 1 Urban Drainage and Flood Control District k .� a a a Q M� M M M M M M M M M M M" M s M M M CALCULATIONS FOR RIPRAP PROTECTION August 13, 1998 Project: Fossil Lake Village Calculations By: MLC XIMUT IF CALCULATE OUTPUT Q, Design Discharge (Q100 cfs) Control Discharge Storm Sewer(ST) /Culvert Number (Cult') Culvert/Strom Sewer Parameters Y Tailwater Depth (ft) Y,/fi Q/D' Y,/H 0/WH1" F, Froude Q/D"' or Q/WH1-1 Riprap Type (From Figure 5-7 or 5-8) Length of Riprap Width of Riprap Depth of Riprap (ft) D or Diameter Ift) Height (ft) W, Width (ft) Figure 5.7 Figure 5.8 41.01 ST1 2.33 n/a n/a 2.15 0.92 11.53 n/a n/a 4.9 L 15 19 1.5 31.09 ST2 1.94 n/a n/a 1.88 0.97 11.51 n/a n/a 5.9 L. 14 16 1.5 8.55 ST7 2.63 n/a n/a 1.13 0.43 2.00 n/a n/a 0.8 L. 17 21 1.5 30.35 ST11 1.94 n/a n/a 1.87 0.96 11.23 n/a n/a 5.8 L 13 16 1.5 24.30 ST28 1.87 n/a n/a 1.74 0.93 9.50 n/a n/a 5.1 L 12 15 1.5 44.00 ST39 2.36 n/a n/a 2.21 0.94 12.14 n/a n/a 5.1 L 15 19 1.5 21.40 ST42 1.49 n/a n/a 1.48 0.99 11.77 n/a n/a 7.9 L 10 12 1.5 24.92 Culv 1 1.90 n/a n/a 1.80 0.95 9.52 n/a n/a 5.0 L 12 15 1.5 27.00 Culv 5 2.05 n/a n/a 1.59 0.78 9.20 n/a n/a 4.5 L 13 16 1.5 20.80 Culv 15 1.81 n/a n/a 1.61 0.89 8.54 n/a n/a 4.7 L 12 14 1.5 76.30aIrrWeir 2.75 n/a n/a 2.75 1.00 16.73 n/a n/a 6.1 L 18 22 1.5 54.801.90 n/a n/a 1.80 0.95 20.92 n/a n/a 11.0 �� 12 15 1.5 52.002.39 n/a n/a 2.28 0.95 14.07 n/a n/a 5.9 L 16 19 1.5 128.28n/a 1.00 40.00 1.00 n/a n/a 1.00 3.21 3.2 L 7 52 1.5 64.80n/a 1.00 20.00 1.00 n/a n/a 1.00 3.24 3.2 L 7 32 1.5 149.60n/a 1 50.00 1.00 n/a n/a 1.00 2.99 3.0 L 7 63 1.5 Note: Design Discharge is taken from Section E, "Design of Storm Sewers", Total Q column D,=A parameter to be used in Figure 5-7 whenever the culvert/storm sewer flow is supercritical D:\Projects\Flf\Riprap\RIPRAP.wpd D.- 4(D + Y,1. D. shall not exceed D. .s DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap % Smaller Than Intermediate Rock * d50 Designation Given Size Dimension By Weight (Inches) Inches Type VL 70-100 12 50-70 9 35-50 6 6**, 2-10 2 Type L 70-100 15 50-70 12 35-50 9 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 50-70 24 35-50 18 18 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 9 0 *d50 = Mean particle size 3 3 ** Bury types VL and L with native top soil and revegetate to protect from vandalism. r � � oo J\ACAD\DET\FRTCLLNS\STRMDRW\TABLES, DWG Extend ►iprop to height of culvert or normal channel depth, whichever is smaller Riprap thickness on channel side slopes equal to 1.5d5o 4 1 or flatter l perferred IYT 3 ]maximum 1 Downstream Channel PLAN Concrete cradle/cut off, End slope at 1 1 or standard headwall 15d5p �Ir• ,fJ= 0 Granular Bedding PROFILE REFERENCE URBAN DRAINAGE AND FLOOD CONTROL 014RICT URBAN STORM DRAINAGE CRITERIA MANUAL 1C_pE NORTHERN ENGINEERING SERVICES ", : �o e'� r ( fT FIGURE 5- 6 I 420 SOURN NOwES SUITE 102. Fi(910) 121 —At9B wWTmw. .c.0 CDWNS. COLOPADO 9053N l cOFDuOUTLET ERO91O1OfJ I' i N PROTECTA.AN cj 3�3 E3 os 3� wWffi ZY n O 0 00 LOB O\c,\e 3-5 oY �a 8 3. W U� z g LM h O 3 0 O - .2 .4 .6 Yt/H Use Ho instead of H whenever culvert has supercritical flow in the barrel. **Use Type L for a distance of 3H downstream. FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR CONDUIT OUTLET. FIGURE 5-8 IS VALID FOR 0/ WHi.5 OF 8.0 OR LESS. o 0- DESIGN DISCHARGE IN CFS W AND H= WIDTH AND HEIGHT OF RECTANGULAR CONDUIT IN FEET Y, = TAILWATER DEPTH ! ZZ f- FIL I I II 1 I L k [I 1 J rA 1 1 1 1 1 1 1 1 1 ,V- I RAINFALL PERFORMANCE STANDARD EVALUATION .STANDARD FORM A PROJECT: FOSSIL LAKE VILLAGE CALCULATED BY: MLC PROJECT #: 9812.00 FLF FILE NAME: D:\Projects\Flf\Erosion\FormA.WPD DATE: July 30, 1998 DEVELOPED SUBBASIN ERODIBILITY ZONE Asb (ac) Lsb (ft) Asb* Lsb Ssb (%) Asb* Ssb Lb (fl) Sb (%) PS (%) I HIGH 8.294 852.0 7066.5 1.30 10.78 2 HIGH 3.974 1035.4 4114.7 0.90 3.58 3,6 HIGH 4.137 1142.4 4726.1 0.80 3.31 4 HIGH 3.361 576.7 1938.3 1.00 3.36 5 HIGH 0.745 365.7 272.4 1.60 1.19 7 HIGH 1.511 911.4 1377.1 0,70 1.06 8,9 HIGH 5.717 777.9 4447.3 1.10 6.29 10 HIGH 0.323 200.1 64.6 1.50 0.48 11 HIGH 3.602 748.7 2696.8 1.00 3.60 12 HIGH 3.015 957.0 2885A 1.20 3.62 13 HIGH 0.474 1063.3 504.0 0.80 0.38 14 HIGH 1.526 1639.4 2501.7 0.70 1.07 15.16 HIGH 1.664 1000.3 1664.5 1.80 3.00 17 HIGH 5,322 311.8 1659.1 3.80 20.22 18 HIGH 2.414 583.3 1408.1 1.90 4.59 20-24 HIGH 17.662 j 1176.9 20786.4 1.90 33.56 25-28 HIGH 6.577 1257.0 8267.3 1,80 11.84 29-31 HIGH 7.029 1726.1 12132.8 1.70 11.95 32 HIGH 2.084 102.5 213.6 2.90 6.04 33-36 HIGH 13.899 1248.6 17354.3 1.00 13.90 37 HIGH 9.396 975.1 9162.0 1.60 15.03 38 HIGH 7.139 296A 2116.0 2.00 14.28 39 HIGH L535 305.0 468.1 1,90 2.92 4048 HIGH 2O.375 2137.0 43541.4 1.20 24.45 49 HIGH 3.254 677.4 2204.3 2.10 6.83 50 HIGH 0.882 646.1 569.9 1.60 1.41 51 HIGH 7.254 641.6 4654.5 2.80 20.31 TOTAL 143.16 23355. 334362 229.05 233 1.601 78.7 EXAMPLE CALCULATIONS (Basin 403) Lb = SUM(Asb*Lsb)/A Sb = SUM(Asb*Ssb)/A PS (during construction) = 78.7 From Table 8-A PS (after construction) = 78.7/0.85=96.9 I I I I A I� 1 1 1 1 I I 1 1 1 1 1 EFFECTIVENESS CALCULATIONS 57ANDARD FORMB PROJECT: FOSSIL LAKE VILLAGE CALCULATED BY: MLC PROJECT #: 9812.00 FLF FILED NAME: D:\Projccts\FffErosion\FormBI.WPD DATE: July 30. 1998 EROSION CONTROL METHOD C-Factor P-Factor Comment Value Value Roads & Curb 0.01 1.00 Paved & Constructed Gravel Filters 1.00 0.80 Placed at Inlets Hay/Straw Mulch w/Temp. Seed 0.06 1.00 All Areas not in Roadway Straw Bales 1.00 0.80 In Swales and Channels MAJOR PS SUB -BASIN AREA CALCULATIONS BASIN (%) (AC) 78.7 1-51 143.16 DURING CONSTRUCTION: Plan intent: Use gravel filters & straw bales. Roads Lump sum —roads & impervious =41.75 acres Pervious 143.16 - 41.75 = 101.41 acres Cnet = (0.06*101.41)/143.16 = 0.04 Poet = 0.8*0.8 = .64 EFF = [I-(C*P)1100=(I-(0.04*0.64)100 = 97 4 > 78.7 L1 EFFECTIVENESS CALCULATIONS STANDARD FORM B PROJECT: FOSSIL LAKE VILLAGE CALCULATED BY: WC PROJECT 4: 9812.00 FLF FILED NAME: D:\Projects\FlflErosion\FormB.wpd DATE:July 30, 1998 EROSION CONTROL METHOD C-Factor P-Factor Comment Value Value Roads & Curb 0.01 1.00 Paved & Constructed Sod Grass 0.01 1.00 All Yards MAJOR PS SUB -BASIN AREA CALCULATIONS BASIN (%) (AC) 96.9 1-51 143.16 AFTER CONSTRUCTION Plan intent: Petmanentiv sod all yard areas and pave all roadways with curb and gutter. Roads & Lump sum --roads & impervious =41.75 acres impervious Pervious: 143.16 - 41.75 = 101.41 acres Cnet = (0.01 *41.75)+(0.01 * 101.41)/143.16= 0.003 Pnet = 1.00 EFF= [l-(C*P)jl00=(1{0.003*l.00)l00 = 99.7 > 96.9 11 1 1 1 L I 1 m TABLE 8-A �3 RAINFALL PRRmumamov amannavnc Ono Onom nnT T rv� �,......,... 1� FLOW , ..va.rviaesyv LENGTH SLOPE ($) (FT) 0.5 :1.0 1.5 2.0 2.5 3:0 3.5 4.0 4.5 5.0 6.0 7.0 8.0 9.0 10.0 20.0 30.0 40.0 50.0 100 70.9 74.6 76.8 78.4 79.5 80.3 81.1 81.6 82.1 82.5 83.0 83.4 63.6 83.8 84.0 84.7 84.8 84.9 84.9 200 72.0 76.3 76.2 79.5 80.5 81.2 82.1 82.5 82.8 83.2 83.6 83.9 84.0 84.2 84.3 84.8 84.9 84.9 84.9 300 72.4 77.0 78.8.80.0 80.9 81.6 82.5 82.8 83.1 83.5 83.8 84.1 84.2 84.3 84.4 84.8 84.9 84.9 85.0 400 72.6 77.4 79.1 80.3 81.2 81.8 82.7 83.0 83.3 83.7 84.0 84.2 84.3 84.4 84.5 84.8 84.9 84.9 85.0 500 72.7 77.7 79.4 80.5 81.3 81.9 82.8 83.1 83.4 83.8 84.1 84.3 84.4 84.5 84.6 84.9 84.9 85.0 85.0 600 72.8 77.9 79.5 80.6 81.4 82.0 83.0 83.2 83.5 83.9 84.1 84.3 84.4 84.5' 84.6 84.9 84.9 85.0 700 72.8 78.6 79.7 80.8 81.5 82.1 83.0 83.3 83.5 84.0 84.2 84.4 84.5 84.5 84.6 84.9 84.9 85.0 800 72.7 78.1 79.7 80.8 81.6 82.2 83.1 83.4 83.6 84.0 84.2 84.4 84.5 84.6 84.6 84.9 84.9 85.0 900 72.7 78.2 79.8 80.9 81.7 82.2 83.2 83.4 83.6 84.1 84.3 84.4 84.5 84.6 84.7 84.9 84.9 85.0 1000 72.7 78.3 .79.9 81.0 81.7 82.3 83.2 83.5 83.7 84.1 84.3 84.4 84.5 84.6 84.7 84.9 84.9 85.0 1100 72.6 78.3 79.9 81.0 81.7 82.3 83.3 83.5 83.7 84.1 84.3 84.5 84.6 84.6 84.7 84.9 84.9 1200 72.6 78.4 80.0 81.0 81.8 82.3 83.3 83.5 83.7 84.2 84.3 84.5 84.6 84.6 84.7 84.9 84.9 1300 72.6 78.4 80.0 81.1 81.8 82.4 83.3 83.6 83.8 84.2 84.4 84.5 84.6 84.6 84.7 84.9 85.0 1400 72.5 78.5 80.1 81.1 81.8 82.4 83.4 83.6 83.8 84.2 84.4 84.5 84.6 84.7 84.7 84.9 85.0 1500 72.4 78.5 80.1 81.1 81.9 82.4 83.4 83.6 83.8 84.2 84.4 84.5 84.6 84.7 84.7 84.9 85.0 1600 72.4 78.5 80.1 81.1 81.9 82.4 83.4 83.6 83.8 84.2 84.4 84.5 84.6 84.7 84.7 84.9 1700 72.3 78.5 80.1 81.2 81.9 82.4 83.4 83.6 83.8 84.3 84.4 84.5 84.6 84.7 84.7 84.9 1800 72.3 78.6 80.1 81.2 81.9 82.4 83.4 83.7 83.8 84.3 84.4 84.5 84.6 84.7 84.7 84.9 1900 72.2 78.6 80.2 81.2 81.9 82.5 83.5 83.7 83.9 84.3 84.4 84.5 84.6 84.7 84.7 84.9 2000 72.2 78.6 80.2 81.2 81.9 82.5 83.5 83.7 83.9 84.3 84.4 84.6 84.6 84.7 84.7 84.9 2500 71.9 78.6 80.2 81.3 82.0 82.5 83.5 83.7 83.9 84.3 84.5 84.6 84.7 84.7 84.8 3000 71.6 78.7 80.3 81.3 82.0 82.5 83.6 83.8 84.0 84.4 84.5 84.6 84.7 84.7 84.8 3500 71.4 78.7 80.3 81.3 82.0 82.6 83.6 83.8 84.0 84.4 84.5 84.6 84.7 84.7 84.8 4000 71.1 78.6 80.3 81.3 82.0 82.6 83.6 83.8 84.0 84.4 84.5 84.6 84.7 84.8 84.8 4500 70.9 78.6 80.3 81.3 82.0 82.6 83.7 83.9 84.0 84.4 84.6 84.6 84.7 84.8 84.8 5000 70.6 78.6 80.3 81.3 82.0 82.6 83.7 83.9 84.0 84.4 84.6 84.7 84.7 84.8 84.8 T\ 6 Project Number: 9812.00 File: D:\projects\fll\erosion\costest.wb2 13-Aug-98 01:45 PM EROSION CONTROL HAY MULCT{ W/ TEMP SEED RIPRAP OUTLET PROTECTION GRAVEL FILTER SILT FENCE STRAW BALE DIKE STRAW BALE INLET PROTECTION Fossil Lake Village Erosion Control Cost Estimate Units Estimated Unit Total nuantity Price Price AC. 101.41 500 50,705.00 CY 171.05 33.00 5644.65 EA. 13 50.00 650.00 LF, 1312 3.00 3936.00 EA. 45 75.00 3375.00 EA. 6 100.00 600.00 COST TO INSTALL EROSION CONTROL... ................ .. TOTAL = $64,910.65 AMOUNT OF SECURITY = 1.5 x $64,910.65 TOTAL = $97,365.98 sag TOTAL ACRES x ($53 UACRE) x 1.5 TOTAL ACRES = 143.16 COST TO VEGETATE= $114,026.94 WHICHEVER IS GREATER. AMOUNT OF SECURITY = $114,026.94 northern engineering services, inc. M M M M r MA&r I 1 I I 11 l o -f:>/Vi t-r YU (UV✓\P f �pZ 31.7c.5 5ko u Id �6Z FX 4"�\r-ea . IfFou llzevo V!= 3 1"1Co,S 65)91e:�>,S4F I C yd3'IOC,141 N6L.QKG AVA,(LgTLg CCx- i �9Zr�s�.9 a, ��GINIrJC� Sfnl D�p'fil -Sxlta, "LIr .v0 /hcrp.L %u/ahf 5 Pam, PROM s�rc�wr�� r"WL/Aie G>- C'RK7 ' S �-E ✓ 1 3, CA�C.u�0. e,�CC�avd �,aJ jai Sr�rm�.vi 57co � casr^/C7 SeDT= o,o7y x L7Z6 X AI.r2 i+=ZsztWAc,C A�c� ��G.i l.oayw.! C, `RZ -rl o C A 7r-1 1.Iz i yd3 1 J 4 Q II 8/18/98 Page 1 OUTLET STRUCTURE REPORT RECORD NUMBER : 1 TYPE : TRAPEZOIDAL WEIR ' DESCRIPTION : Pond 1 Emergency Overflow Weir [RATING CURVE LIMIT] Minimum Elevation ......................... = 4902.50 (ft) Maximum Elevation ......................... = 4903.50 (ft) Elevation Increment ....................... = 0.10 (ft) ' [OUTLET STRUCTURE INFORMATION] Weir Angle ................................ = 151.92760 (deg) ' Crest Elevation ........................... = 4902.50 (ft) Crest Length .............................. = 40.00 (ft) Coefficient Cw............................ Exponential ............................... 2.98000 1.50000 [TRAP EQUATION] Q = Cw*tan(ang/2)H^exp H = Headwater depth above inlet control section invert, (ft) ang = Weir Angle ' [Culvert Weir Discharge Value vs. Stage] elevation increment is 0.1) ' ---------(the --------------------------------------------- STAGE ELEVATION FLOW ' (-- ----------(cfs)----------- 0.10 4902.60 3.80 0.20 4902.70 10.83 ' 0.30 4902.80 20.06 0.40 4902.90 31.12 0.50 4903.00 43.83 0.60 4903.10 58.06 0.70 4903.20 73.72 0.80 4903.30 90.75 0.90 4903.40 109.10 1.00 4903.50 128.74 > 128.28 cfs Inflow 11 8/13/98 OUTLET STRUCTURE REPORT Page 1 L- P 1 RECORD NUMBER : 1 TYPE : TRAPEZOIDAL WEIR DESCRIPTION : Pond 2 Emergency Overflow Weir [RATING CURVE LIMIT] Minimum Elevation ......................... = 4892.00 (ft) Maximum Elevation ......................... = 4893.00 (ft) Elevation Increment ....................... = 0.10 (ft) [OUTLET STRUCTURE INFORMATION] Weir Angle ................................ = 151.92760 (deg) Crest Elevation ........................... = 4092.00 (ft) Crest Length .............................. = 20.00 (ft) Coefficient Cw............................ = 2.98000 Exponential ............................... = 1.50000 [TRAP EQUATION] Q = Cw*tan(ang/2)H^exp H = Headwater depth above inlet control section invert, (ft) ang = Weir Angle [Culvert Weir Discharge Value vs. Stage] (the elevation increment is 0.1) STAGE ELEVATION FLOW (ft) (cfs) ---------------------------------------------------- 0.10 4892.10 1.91 0.20 4892.20 5.50 0.30 4892.30 10.26 0.40 4892.40 16.04 0.50 4892.50 22.76 0.60 4892.60 30.36 0.70 4892.70 38.81 0.80 4892.80 48.11 0.90 4892.90 58.22 1.00 4893.00 69.14 > 64.8 cfs Pond Inflow 8/14/98 Page 1 ._- OUTLET STRUCTURE REPORT RECORD NUMBER : 1 TYPE : TRAPEZOIDAL WEIR DESCRIPTION : Irrigation Pond Overflow Weir [RATING CURVE LIMIT] Minimum Elevation ......................... = 4874.00 (ft) Maximum Elevation ......................... = 4875.00 (ft) Elevation Increment ....................... = 0.10 (ft) [OUTLET STRUCTURE INFORMATION] Weir Angle ................................ = 151.92760 (deg) Crest Elevation ........................... = 4874.00 (ft) Crest Length .............................. = 50.00 (ft) Coefficient Cw............................ = 2.98000 Exponential ............................... = 1.50000 [TRAP EQUATION] Q = Cw*tan(ang/2)H^exp H = Headwater depth above inlet control section invert, (ft) ang = Weir Angle [Culvert Weir Discharge Value vs. Stage] (the elevation increment is 0.1) ---------------------------------------------------------- STAGE ELEVATION FLOW (ft) (cfs) ---------------------------------------------------------- 0.10 4874.10 4.74 0.20 4074.20 13.50 0.30 4874.30 24.95 0.40 4874.40 38.66 0.50 4874.50 54.37 0.60 4874.60 71.91 0.70 4874.70 91.17 0.60 4874.80 112.07 0.90 4874.90 134.55 1.00 4875.00 158.54 > 149.6 cfs Rectangular Wslr. Suppressed Triangular Weir (V notch) Flguie 6-8 Available Weir Types Rectangular Weir. Contracted Trapezoidal Weir Rectangular Weir, Suppresscd Q=GLHI3 Rectangular Weir, Contracted Q=Cw(L-0.2H)fl° V-Notch Weir e Q = Cwtan 2MH " Trapezoidal Weir Q=CIA L+0.8HtarI�e11H° where: ll JJJJ Q =discharge (cfs) C. =weir coefficient L =crest length (ft) H =head on weir (ft) i Zi L �� 4 I S e �� REP EAGU POINT, wA EPSNEC uODELwC i \ 'i �s AUGUST. 199. I `0:\ACAD\DET\FPTCLLNS\SM4 NG\TA US.DWC NORTHERN ENC,INEERNG SERVICES 420 south NOw S WYE 202 Fl. COLLINS. COLDPADO 9052, ,,.. ..,.. WEIR EQUATIONS ' t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ HANDBOOK OF HYDRAULICS Table 5.3. Values of C in the Formula Q - CLHM for Broad - crested Weirs M �... uQ\DET` uBLES.ce: E, rE r,[ JP . B VICE TABLE 5-3 �za wum yOEi SUIT e^ �L!N51c�>ccNOTHN ENOA4ERNG SERVALUES OF 0 FOR BROADGRE 3 T E D WEIRS] t 2 m 11 i I 11 I ' II I" I I I I 1 1 I I I 1I I ^I L 0 raer ` IcoDLVERT DexuK _ --re, 2O I i L— L_ ❑ L— J ❑ L— J L_ J L— J 77 r _______ _ __________ ____`___ ______ _ ___ __ _ ____ --- _ _____------ _----------- ___ FIIE e , 01 °� G ex I 23 I F 91— , 30 2i 2e F 27 29 F 2e � rJF24 ❑— I ❑ I �i / I _ T _ RrsiDE Laru ssmEn, •oaEr 23 ) 1 10EsDGwALK )1 ❑I❑ 1-36J 39 r—� 1 r,6r I r� " ,L_J I I III I t� a 1259 L—J I LJ JOIN 24 II F92� I I I; r � II D.Ra I I 1 I I as e 00 FRI IIIIIIII ERROR RON[ Roma IIIIIIIII ERROR a m ERROR ERROR ERROR ERROR ERROR WORM ERROR 11INIS IIIIIII ROSS CONNECTOR L STREET) r -- ---- -- -- - -- -- 1 --- - --- - ---- - --- - F26 -1 b Fzz F r Fzo 1 y r� 1 I♦ 911 F3o1 F�F Fze, Fp77 L � I -�. I I ❑ I I I� I I I I I I I L_J 23 L— — __-- ------ — — I --- -- -- --- ---- --- — -- --- _ ♦ z,98 F ` F � r� 1 m 1 III I P I H F ,5 -I F ,8 F Tl I I - F 32 , 33 F 34 -i 36 F 33 , L _ T 381 L— — L_J ❑ I — I I ❑ I I L— J L— J � I L— J L— J — J L_ J LEGEND: -_--_-_-____ _. EximxG STORM SEWER �[aaee_e------ -, EXtI STORM SEWER WI£r y® PROPOSED SIOIM SEWER YP�]m PROPOSED WORM SEWER INLET — es — PROPOSED GOWWIR •mmmWIanoo DESIGN DRAINAGE BOONDRY NEoa �Oao NOD ACRES Pxu IN ACRES QDESIGN PwM PROPERM1 pOUNDARr aoW AR" NORTH GRAPHIC SCALE 50 u ` 50 100 ISO SCRF. I-.50' LARMIEIt COUNTY ENGINEE2QlG APPROVAL RAW, I I I 1 — — No. Revisions _ Bv Dote ICES Project: Print Date: ^;,•„Y^—N•..Z wtt,„.l,. FOSSIL LAKE P.U.D., FIRST FILING NORTHERN ENGINEERING SERA FLF; ea)z.00 0,a a° SCALE: , "= 50' � am w.ms`.+ m`_o e 420 SOUTH HOWES SUITE 202, FT. COLLINS, COLORADO 805` DESIGNER :MBW CHECKED RY:RAC .m m"R u7`E'.�,;,a DRAINAGE PLAN (970) 221-4158 DRAFTSMAN: ACADRI4 PREPARED: 04 20 99 0 MATIWII i C v m I 1 I ti 1 ' r— -- - -- SHALE 18. I 1 I 1 -cl14, I II I l T/E.PT J4 , — 3WhLE 24 I 1 I I zoea I I I I I,l I 1 1 l F/? 1In :; u. BUICK I l I 1 BASINBORMOM BAs 1 I I,l I _I I / 1 7 / S II n l IL _____J / fto y 1 m �� e un / 4 , 9\ ♦ \ Jft 41 / 24�) ` 0 � yWAI£ b CIiOB&�4�5_i Bm CAOBB-BECIIOM di L BANA BYMALE x R. a e eo OIOB68ECTEON lLET 2S 5 PER MLEi m I T 2e / �• i� L � 23� / �SYS E 1.53E I I,GB9 4 1E 7 co B I i SCHEDULE_OF PROPOSED SWALES ©AAAF s��orm�im® mE� OpmQFl��fmm0 i�•l•O�zdlii6l�.>•��)• E3•)• Ek�O m� miif ®01����� mom.)• IiF1.Ot!'L1FEF10 mE�© DRAINAGE EASEMENT OR OUTLOT w FL Z o O n= 0.035 TYPICAL SWAL.E SECTION NOTE LEC EIID: --. ---- EXISTING STORM SEWER __--__- EXISTING STORM SOBER INLET PROPOSED STORM SEWER PROPOSE➢ STORM SEWER II OS PROPOSED CONTEAR •�������� DESIGN ORaWLE BYI.NDRY 1 ANSIN D6YENA Do0 >REp IN Yq6 MR QDEsnN PDINT PRODUCER BOUNDARY ROW ARAM I INUI COMPILERS. ALL SWNFS uELBL BE SEEDED IMIALSTELY. WNH THE PEPMENExM GRASS SEED WX 5JL _ READING THE P1.W AND MULCHED MT AREA OUTSIDE OF A STREET - - H IS STHLfL ITS RECITATION MUST BE L TEMPORARILY AND MULCHED WI 30 SAYS WHETHER CRWDIRD S BEEN COMPLETES OR NOT. UNLESS PAPPROYED BY T OF FORT COLUNS STORMWATER UTILITY DEPARTMEM. A I ANDMULCH CAMEORA. BE INSTALLED IN ACCORDANCE MEN TIE OUT OF FORT CCLUX3. ERO9oN CONTROL RSELNE 1991 MAN EXISTING SWALE TO rOSSIL ON DEVELOP RE OWNED REORDERS 7�7NORTH GRAPHIC SCALE Ioo IUD SCALE I -N) 5 No. Revisions NORTHERN ENGINEERING SERVICES Or D; eEt: FLF; 9812.00R""t Dot SCALE: 1'= 50' 420 SOUTH HOWES SUITE 202, FT. COLLINS, C01DRADO 60021 DESIGNER :MBW CHECKED BY:RAC (970) 221-4158 _ DRAFTSMAN: AGADR 14 PREPARED:04/20 FOSSIL LAKE P.U.D., FIRST FILING DRAINAGE PLAN li I ` r 1 C a I I I I I I L_J L_J L—J , II , I II I I I 2 1 I I r a I I r 4 I I I I L_ L —_J L— J mall II 94 a 4 , I I I I I Omz 1PE`. L.i K til Jyli I >.zs. I I L-J / I I wpn 2 i A$R OT U / SPARNNSTER DETENTION rKILNY / I� oI iI I I I I / Ep1ER ENC9 OVER LOW I I 0v v sT S e l I LT 2 ov Ric y I I I t I aWALE 60 Revisions 8 Date NORTHERN ENGINEERING SERVICES Projector FLF; 9812.00Print Date: SCALE: 7 = 50 420 SOUTH HOWES SUITE 202, Ff. COLLINS. COLORADO 805<1 DESIGNER :MEW ICHECKED 8Y:RAC (970) 221-4158 DRAFTSMAN: ACADR14 PREPARED:04/20 OESCRIPDON PEAK 100-YR REWIRED STORAGE PEAK 100-M WQCv DISCHARGE u WSEL PoND 2 31.09 1.84> 4890.e4 0.33 TRIBUTARY BASINS: b-51 TRIBTM MBA 31.765 ACRES EVDING STORM SEWER ieeaaaaeaae—aa— EXISTING STORM SEWER INIET PROPOSED STORM SEWER PROPOSED STORM SEWER I' ET p� PROPOSED CONTOUR nomommmoo DESIGN DITANM.E ROUNDRY TC,ro - EVEN 01 AREA IN ACRES QDESIGN POINT PKI POI �\ ROW AARA ®NORTH GRAPHIC SCALE w0 50 00 USG FOSSIL LAKE P.U.D., FIRST FILING DRAINAGE PLAN F 1 UI I 3_COIRETEi 1 a 9 5]5 ' I I z lol � 605 I 1 I 2 J I I m I XI SWALE 39 I I z.� uEeFCTLINE 59 Pt 1 � pEfLC3L1 w.. me mile MIN Well NEW See ZEN See MIN 40!Lr P 1, _ 3T()RM SEWER LNE 39 I_ U 'aP E I 5' nPE 32 E\ 9 STLOT / STORM SEWER ENE 39 30ADS N-13 L — J / I I L—JOR If + b 40 / R,NAA � I / GN Cis 5 „ Cm PAT r BWALE 40 000 \ / /144 ♦` J % SWAL 38' AN e , ' RANGOON D 4NTAEA S / PERMANENT POOL L I / E£VATIpI_ yT}DG I No. Revisions _.. By Date Project Print Date: 40RTHERN ENGINEERING SERVICES F�F; ss,2.00 -- SCALE: 1"= 50' 420 SOUTH HOWES SUITE 202. FT. COLLFNS, C01DRADO 80521 DESIGNER : MBW CHECKED BY: RAC Nm . L (970) 221-4158 DRAFTSM AN: ACADRI4 PREPARED: 04 20 99 smco, Inc - ...I LEOEN7 EXISTNG STORM SEWER ------------- EXISNNG STORM SEWER INIFT PROPOSED STORM SEMR -� I PROPOSED STORM SEWER iNl£r — 93 — PROPOSED CONTOUR ummmum• DESIGN DRAINAGE SOMORY MIN DESIGNATOR iDOD AREA IN ACRES QDESIGN POINT PROPERTY DOUNDARY ROW ARROW NORTH GRAPH IC SCALE 5D 150 FAATCIiPE eFIET 27 FOSSIL LAKE P.U.D., FIRST FILING DRAINAGE PLAN sheet 25 9- 7X y` F EDITIONS STORM SEWER _ --------- EXISTING STORM SENT INIR PROPOSES STORM NEWER &IIIII'm� � PROPOSED STORM SEWER INLET —93 � PROPOSED CgrtWR •mmammamill DESIGN ORNNPBE BOVNORY T SIX DESICNATOR ma IN ACRES QDESIGN POINT PROPERI BOONO•AY ROW ARROW NORTH GRAPHIC SCALE 0 ,00 150 SULE: .SD EMITTER COUNTY ENGINEERING APPROVAL Pr oj NORTHERN ENGINEERING SEVCES SCALE- FLF; 9812.00Pri nt Dale: SCALE: 7'= SD' 420 SOUTH HOWES SUITE 202, FT. COLLINS, COLORADO BO?2 DESIGNER :MBW ICHECKED BY:RAC (970) 221-4158 k DRAFTSMAN:ACADRI4 PREPARED:04 20 FOSSIL LAKE P.U.D., FIRST FILING DRAINAGE PLAN RLX40FF TABLE Es4 RwE wMID all elm 4r em �p646J1w m.sl� 6146E e54 o31 ON 33 12.1 1 POD 2 z 3.04 0.52 ON 32 116 PLW 1 x 1 12.2m ON Oet +2.2 44.1 1 POOR) I ] ] OWL ON 0.74 v n 1 ROD - --" "-- ] 36 4,137 ON 0.73 39 14.0 POND 1 4 SSe+ ON 0.14 3.6 134 PAID I 3 3 0.10 0.34 -043 06 14 Pox01 - - 3 4AN au ON 30 14A %xD 1 5 ]-6 Bm D.38 D.ID 74 21.0 ROD I l 1.511 am 1.00 33 fid EM51. DFF I�SNAE MMWL WIE B B 3.817 IF DLW 37 134 POND 1 9 e9 5.717 052 OARS 5.3 198 PMOI 10 10 0.323 o78 O.M 0.6 24 _ PMD 1 1 I 11 3IM ON ON 35 izl POND 1 19 12 3.015 O.b 0,03 27 9.9 POfiDJ Iz 14 IMES 090 1DO 2.4 7.8 PMDI 12 14 11J 4.N1 001 0.N 53 190 Earn 1 13 0.4]4 O.A 0A] as 21 POD 1 15 13 0.]Il on D.]I 02 a2 1WD 1 15 i 65 POry[1MW i1M tp t5 1.064 a3O ON 12 4.3 POMD 1 B.t961 15.15 4 p0 C{$ IN. 1 14.3 CFS WTVIT 16 +e10 z.414 Oa> 0.46 I GA DOEL o NE s FOSSIL WE 18 lte JAv 0,51 004 10.2 MA zO 30 a]N 0.54 OM 6.61 24.1 22 22 J.194 047 059 38 IM OW OFFSIDE SMWF IF FOSSIL I E - 2J 22 SW D.b o.M sx I" EML. DTF9IE SN IE PJ 21-LEE3 tOAN 047 a59 8.5 31.0 EYST OPENS SDIAF & FOSSIL LS - -- 24 W-23 14-028 aM DW E4.6535 ON OFD9EE NIUS k FOSSIL W[ - '- 24 M 24 17M 049 O61 110M-1 TE SMAE k FOSSIL LME n ]5 2l SAN ON 0.74 M 21,1 NUMTO ROD -.. 2e z}26 6.577 057 O 63 23,1 INGAIM PMD - SO M" 6424 043 054 4.5 164 183 MI POO- RIMWN MRD 31 29-31 , 29 0. 5 056 1 5 Sz 32 2084. 036 0.45 1.5 616 Ort5E1E - JJ 3.256 0.b 046 20 73 RRCST4'W POMO ­MNucM PLED fi.836 0% 0.0 34 1z5 m 33-36 +apPO.M ilb naW 11,66 6S "A MIRRI 699GEDd FOND M" POx _-..._ a." 0.16 e® D.b 21 1.1 7.6 28A 35 35,3e OLW 2.9 10.6 MERITION POD 37 ]l EMS 0.26 033 4,1 130 _ OFFSIDE M ]8 1.IM 0.21 D.J4 ]d 124 OFFSRE M 25-25. ]B otf2 0% OM 6.8 24.7 MYJ.MRR POND _ b 40 3.951 as, 6 1]3 ROD 2 @ 40N fi.1fi] o.n.1 N 15d ROD 2 4$ 4 42 66A 0 21.4 ROD 2 b b 4881 047 .1 15.2 b b-45 1.02d D.M9 21.4 POND 22.395 _ 0% l Q1 Pena 2046 n0+75 .1 A0 FIXID 220.375 OAS 5 45.6 KNO 2b JM4 0.414 B.0 0.WD 2M M O.M2 O.M 2 44 tpD 2SO 49 50 4.136 0.45 4 125 Po1N 2 LMMNR, MATCFLlE BFEET 25 LEGEND: EASPNO STORM SEVER �. EY59NG STORM SERER WEFT PROPOSED SIMM SEWEIR Q-1 -�Jlllll PROPOSED STORM SEVER PLOT 93 � PROPOSED CONTOIR emommoom• COSIGN ORARAGE DOUNDW 1 RUIN DEeGWOR 0 on uvEn W 9EREs QDESIGN POIM PROPER1( eDUND Few eRRC I�PNORTH GRAPHIC SCALE 50 0 0 5 SCµ0 E 1 -M NORTHERN ENGINEERING SERVICES PfOfect SCALE: 1' 420 SOUTH HOWES SUITE 202, Ff. COUINS, C01DRADO 80521 DESIGNER (970) 221-4158 DRAFTSM4 Print Date: FOSSIL LAKE P.U.D., FIRST FILING DRAINAGE PLAN MIXED USE DEVELOPMENT lEuvOWflY SWLLE POSSBIF uuUT-Fsnty 1 I I I ►aeT , r ; ' 15TYPE R mr -L a T - > I I I ` II L— � I � I I}2 j� I LJ L- L- I ` \ -J I E` ,.N :< 4 0 .Y r w 1 r ,e 1 r 1 r 12 1 f }I J \ 1 DWNAGE' AND 10 MILE, L-J L-J L-J L-J L- ` EMEUT WAlH ra1 ra r,o -l� n III I I I L-J L-J E- L J L-J 3603 _1 11 .Pl I'. _ _______ ____ __ \ i 4/ _ / I rq, 1 i L—J I I I I r e m r s 1 r 4 f 3lil rL—J L J IL L J 4 I I' IMMI �AeFI - 113 R 2-1 r I I I L— it o� I I I ].Op � ,B I I 41I _l I _ m _ al — 1 �— ' O a pjb , ' 4f V ' , NTURE 1 DEVEI OFD / � BPSIN / AR. e I CI,LERr I IgR141TIOM VN.OV, w� 5 ORuw4 dipH Fu 00 �� i _0I SAAW 1, T01 - 11 POND SUMMARY TABLE DESCRIMON REAK I00-YR DISCRARGE REQUIRED STORAGE MP_XSET PEAK 100-YR WSEL WOCV POND 1 46.31 5.299 4802.5] 0.53 TRIBUTARY BASINS: 1-6. 8-17 TRIBUATRY ARIA: 42.154 ACRES -al LEGEND: EnSTNO VOW MOVER - EXISTING STOW SNER INLET �y PROPOSED "M S M PROPOSED VOW SEVER WILT — 93 PROPOSED LONIOOR s mammumm• DESIGN DWWX BOONDRI 1 BASIN ACRES SIGNATOR W ARFA IxN ACRES PgOKRIY BOUNDARY now ARROW NORTH GRAPHIC SCALE 5D SCALE I'.50' NORTHERN ENGINEERING SERVICES Project: Print Dote: L47 ,e.;mm FosslL LAKE P.U.D., FIRST FILING SCALE: 1 50' ;pNT r' " 420 SOUTH HOWES SUITE 202, FP. COLONS, COIgRADO 8052( DESIGNER : MBW CHECKED BY: RAC i"N nP:(870) 221-415BDRAFTSMAN:ACADR74 PREPARED:04 20 99Im_ DRAINAGE PLAN a ♦ I A 4f ELOPED "_OUNI I I g � I I \ J/ �E L411)K I / / 906 , > ^ I I J $ ON 5 s>a�/ 7 R ����• EXiTNG STORM SEWER --c - EXSnNG S70RU SEWER II IANIR�O PROPOSED STORM EENER _I PROPOSED STORM SEWER MEET — 93 � PROPOSED CONTOUR • m a m m m o m• DESIGN DRNwcE UOUNDRr S Dc51N DESIGNITOR ARI IN ACRES QDESIGN POINT _ PROPERI 80 1 I ARROW NORTH GRAPHIC SCALE ST SCALE I _,D ` N0. Revisions B Date NORTHERN ENGINEERING SERVICES Project SCALE: 420 SOUTH HOWES SUITE 202, FT. COLUNS, COLORADO 80521 DESIGNEE (970) 221-4158 DRAFTS Print Date: 12.00 r;°,.. omlEb CHECKED BY: RACamo� 4 PREPARED: 04/20 99 FOSSIL LAKE P.U.D., FIRST FILING DRAINAGE PLAN