Loading...
HomeMy WebLinkAboutDrainage Reports - 04/27/2005Fif lApproved Rapv;i rite �Lr FINAL DRAINAGE AND EROSION CONTROL REPORTf HARNIONY RIDGE FILING 2 FORT COLLINS, COLORADO Prepared for: GLOBAL HOLDINGS OF COLORADO, LLC Jim NEWCOMB, MGR 932 E. PITKIN ST. FORT COLLINS CO 80524 (970) 221-3076 Project #2350.1 February 4, 2005 Prepared by: 153 West Mountain Avenue Fort Collins, Colorado 80524 FAX 970.484.2443 970.484.1921 II II 1 February 4, 2005 LANDSCAPE ARCHITECTURE PLANNING ' MI. Wes Lamarque ENGINEERING Stormwater Utility 700 Wood Street GRAPHIC DESIGN ' PO Box 580 Fort Collins, CO 80522 ' RE: Harmony Ridge Filing 2 Final Drainage and Erosion Control Report JSD Project No. 2350.1 Dear Mr. Lamarque: ' Please refer to our enclosed "Final Drainage and Erosion Control Report for the Harmony Ridge ' Filing 2" This report has been prepared in accordance with the drainage guidelines presented in ' the City of Fort Collins Storm Drainage Criteria Manual, and has addressed your comments regarding our November 30, 2004 submittal. ' Please feel free to contact our office at (970) 484-1921 at your convenience if you have any questions regarding this report. We thank you for your time and consideration in reviewing this drainage report subittal. 1 Sincerely, JIM SELL DESIGN, INC. Eric Skowron, P.E. Project Engineer Enclosure cc: Jim Newcomb File I 1 TABLE OF CONTENTS 1 1 1 1 1 1 1 i i i 1 i 1 [1 1 Tableof Contents............................................................................................................................ 1 Engineer's Certification Block....................................................................................................... 2 General Description and Location.................................................................................................. 3 ExistingConditions...................................._................................................................................ 3 Drainage Basins and Historic Runoff............................................................................................ 3 FigureI — Vicinity Map........................................................................................................... 4 StormDrainage Criteria.................................................................................................................. 5 DrainageFacility Design................................................................................................................ 5 RunoffCalculations..................................................................................................................... 5 Description Of The Drainage Plan.............................................................................................. 6 Figure 2 — Historic Drainage Patterns at the Harmony Ridge Filing 2 Site ............................. 7 Figure 3 — Developed Drainage Plan For the Harmony Ridge Filing 2 Site ........................... 8 ErosionControl............................................................................................................................. 10 Wetland Determination And Review............................................................................................ 10 Conclusions_.............................................................................._................................................._. 10 References..................................................................................................................................... 11 Appendices.................................................................................................................................... 12 APPENDIX A: RUNOFF AND DRAINAGE CALCULATIONS .......................................... 13 APPENDIX B: HYDRAULIC CALCULATIONS.................................................................. 14 APPENDIX C: REFERENCED INFORMATION AND SUPPORTING DOCUMENTS...... 15 APPENDIX D: EROSION CONTROL CALCULATIONS AND DETAILS ......................... 16 1 ILWRI nNIIbILW VMH RMON RIMF IIYIDLSC150MNALDP NAGE REROR'CI%%I Drainage and Erosion Control Report jor Harnony Ridge Filing 2 February 4. 2005 - Page I [1 ' ENGINEER'S CERTIFICATION BLOCK I hereby certify that this Drainage and Erosion Control Report for the drainage design for the Harmony Ridge Filing 2 Site was prepared by me (or under my direct supervision) for the owners thereof and meets or exceeds the criteria in the City of Fort Collins Storm Drainage Criteria Manual. • W 37724 Z a ENROJR-t MLIMAMYS8016 NONY Wl%.E INH SCIDRN.U.[N NAGF RE..PoRT,IXS Eric M. Skowron Registered Professional Engineer State of Colorado No. 37724 Drainage and Erosion Control Reportfor Harmony Ridge Filing 2 February J, 2005 - Page 2 GENERAL DESCRIPTION AND LOCATION The Harmony Ridge Filing 2 site is approximately 14 acres in size. The site is located in southwest Fort Collins, off Fromme Prairie Way (Old Harmony Road) and west of Seneca Street in the northwest quarter of Section 3, Township 6 North, Range 69 West of the Sixth P.M., Larimer County, Colorado. The project proposes 45 detached single-family lots and 14 attached single-family lots. The single-family residences are to be patio homes located on small lots designed to accommodate the topography of the site. EXISTING CONDITIONS The site is currently vacant land. Existing elevations on the property range from approximately 5150 feet at the high point in Fromme Prairie Way along the north property line to 5090 along the Trilby Lateral meandering along the south side of the site. Prairie Ridge Drive is stubbed to the site on the east side. No surface irrigation infrastructure is present on the Harmony Ridge Filing 2 site. According to the Final Subsurface Exploration Report for Harmony Ridge Filing 2, Fort Collins, ' Colorado by EEC, 2 to 4 inches of topsoil were encountered on the site. Brown sandy lean clays were found underneath the topsoil. Soils exhibited increasing sands, gravels, and cobbles with depth. DRAINAGE BASINS AND HISTORIC RUNOFF Most of the Harmony Ridge Filing 2 site lies within the Fossil Creek Drainage Basin. Historically, a small area along the north side of the site drained to the McCiellands/Mail Creek Basin and ultimately into the current alignment of Harmony Road. A site inspection indicated that a small depression exists along the west side of Harmony Ridge I that routes runoff collected along the south side of Fromme Prairie Way south into the Fossil Creek Basin. Harmony Ridge II has been divided into two historic drainage basins. Both basins drain to the Trilby Lateral at the base of the ridge, and ultimately to the Burns Tributary in the Cathy Fromme Prairie. A major drainageway southeast of the Harmony Ridge drains to the Burns Tributary and was utilized as the outlet to the pond in Basin C1 as designed in the Final Drainage Report for Harmony Ridge P.U.D. (TST, January 1999). The majority of developed runoff from the Harmony Ridge Filing 2 will drain to the detention pond, combining with runoff from the west side of Harmony Ridge Filing 1. The remaining portion of Harmony Ridge II will mostly remain undisturbed and will drain towards the Trilby Lateral with 100-year event developed discharges that are less than the 100-year historic discharge contributing to the Trilby Lateral. Flow dissipator beds will intercept side and rear lot runoff during nuisance precipitation events and will encourage sheet flow during larger events for lots 1-19 along the top of the ridge. =a 1:IM(ULCr FlLESIL\VDC310 I WRMONY MWE I1N SCMMNAL DRNNAGE RF.IVRl. I Drainage and Erosion Control Report for Harmony Ridge Filing 2 February 4, 2005 - Page 3 FIGURE I — VICINITY MAP 0 0 cec m C Hi I. C, V HARMONY ROAD-4 Ct .01 W/////11A 1 PROJECT 9 �CCATION -0£ Ct O 8 Cl Stm crop Ct Ln m h; 2 ONI G O LJ a O I J V/ � -J W LL Q � / V 4 _ _ _ _ _ F°:;Sil V V a eno>ooa xooa Harmony Ridge Filing 2 r-ofee m.me.. PROJECT VICINITY MAP LLC a t: BNWCCI II1 FAIANW150 HNMONY NI> L DUJ(YSC310 FWAL DI N GER PORT.DO: Fort Co4MC CO. Drainage and Erosion Control Report for Harmon Ridge Filing 2 February 4, 2005 - Page 4 II ' Sixteen developed and three off -site drainage basins were delineated as part of the drainage ' analysis. Three landscape medians have been designed with landscape depressions as part of a stormwater quality concept to encourage filtration of runoff through the site. Although the landscape medians will attenuate peak flows, no reduction of peak discharge has been considered ' in this analysis for conservative measure. The largest median depression has been designed to detain water quality capture volume (WQCV) to minimize dispersion of sediments and contaminants downstream. STORM DRAINAGE CRITERIA Storm drainage design criteria were referenced from the City of Fort Collins Storm Drainage Criteria Manual. Additional reports and manuals referenced in this report include the Final Drainage Report for Harmony Ridge P.U.D prepared by TST in Fort Collins (January 1999), Final Subsurface Exploration Report — Harmony Ridge Filing 2 prepared by EEC (May 2004), and Urban Drainage and Flood Control District's "Urban Storm Drainage Criteria Manuals, Volumes 1, 2, and 3. " Per Table 3-1 in the Fort Collins Storm Drainage Criteria Manual, Initial (minor) and Major storm return periods for all residential development are the 2-year and 100-year events, respectively. Design storms were based on 2-hour rainfall events. The Rational Method, appropriate for calculating runoff for basins less than 200 acres, was used to estimate peak runoff values for various basins on this site. The Fort Collins Storm Drainage Criteria Manual presents runoff coefficients increased in 1999. Storm sewers will be required to effectively convey runoff on the Harmony Ridge Filing 2 site. Two area inlets and three 5-foot (single) Type-R inlets are required to convey minor event discharge. Vertical curb gutters, cross -pans, and swales will be the primary means of transporting minor event storm discharges to the inlets and landscaped areas. Major event discharges will also be conveyed across the site through surface and sub -surface infrastructure. Erosion control measures shall be implemented to maintain compliance with City of Fort Collins erosion control criteria as presented within this report. Erosion control elements required for the site include silt fencing, vehicle -tracking control, inlet protection, riprap, curb socks, and re - vegetation of disturbed areas with crimped straw. DRAINAGE FACILITY DESIGN RUNOFF CALCULATIONS Storm runoff calculations for the Harmony Ridge Filing 2 Development are presented in Appendix A. Table A.1 presents composite runoff coefficients for the 2-year and 100-year precipitation events. Runoff coefficients were referenced from the City of Fort Collins Storm Drainage Criteria Manual. :;N! F'N.O ,EIIS.6 50IW ONT NIXIE JADOC4'l50 FlN DR NAGE ItE WF IW Drainage and Erosion Control Repor! forHar ny Ridge Filing 2 February 4, 2005 - Page 5 II 1 The time of concentration calculations are presented in Table A.2 for the proposed condition. ' The travel time velocities were referenced from Figure 3-3 of the Fort Collins manual. Table A.3 presents the historic drainage analysis for 2-year and 100-year events. Rainfall intensity - duration data is presented in Table A.4. Rainfall intensity -duration data was calculated from linear interpolation of time -intensity data presented in Figure 3-1 of the Fort Collins manual. Time of concentration values for each basin were assumed to be equal to the storm duration (a ' standard assumption, as discussed in the Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual). Rational Method discharge calculations for the 2-year and 100-year events are presented in Tables A5 and A6, respectively. These tables include routed ' discharges and discharges for each drainage sub -basin. The "comments" column on each of the Rational Method tables indicates the basins from which storm runoff was routed. The pond storage requirement calculations are presented in Table A7. Table AS presents water quality ' capture volume (WQCV) requirements and Table A9 presents pond volume calculations. Street capacity calculations and inlet capacities are presented in Appendix B. ' Proposed cross -pans, channels, and curb cuts have been analyzed with Flowmaster® software. Swales have been analyzed for freeboard conditions. The freeboard condition has been defined as the 100-year discharge plus an additional 33% (1.33*100-year discharge.) Storm sewers have ' been analyzed with Stormcad@. Per City of Fort Collins criteria, all swales and sidewalk chases have been designed for the 100-year event. Additionally, the storm sewers are capable of conveying the 100-year event discharge. DESCRIPTION OF THE DRAINAGE PLAN The historic drainage plan for the Harmony Ridge Filing 2 site is illustrated in Figure 2. Figure 3 illustrates the developed condition drainage plan including grading and drainage basin delineations. Drainage Basins 1 and 2 contain portions of Fromme Prairie Way. Discharge from Basin 1 will be routed to Basin 4a. Ultimately runoff from Basins 1 and 4a will combine with runoff from Basins 3, 4b, 5, and 8 to flow into the area inlet in the landscape median in the downstream end of Basin 8. Routed discharge to the inlet in Basin 8 for the 2-year and 100-year events will be 2.34 cfs and 11.11 cfs, respectively. In the event that the area inlet in Basin 8 should become obstructed during a flooding event, a cross -pan will route runoff to Basin 11a within pending depth criteria for minor and major events. Basin 2 will drain along Fromme Prairie Way (Old Harmony Road) as it did prior to construction of Harmony Ridge I. A review of street capacity analysis provided in the 1999 Final Drainage Report for Harmony Ridge P.U.D. for Seneca Street and New Harmony Road indicates that sufficient capacity exists along those roads to convey 0.51 cfs and 2.38 cfs for the 2-year and 100-year events, respectively. The storm pipe draining the landscape median in Basin Ila will route minor event discharges from Basins 1, 3, 4a, 4b, 5, 8, 9a, 9b, 10, I la, and 1lb and offsite basins Ola and Olb. Total routed discharges for the 2-year and 100-year events to Basin 1 la are 8.02 cfs and 36.81 cfs, C.UNOfICf I11.FSLL.ANDW'9501NRMOPY.'. .X'SQ35019NA DMdNAGh MURT.DOC Drainage and Erosion Control Reportfor Hurntony Ridge Filing 2 February 4, 2005 - Page 6 O i ---ARE " ^ � C.� w a sa° goo° zoo' T 1 90 moo, i3 95 96 98 \ 99 100 101 102 103 104 10, Z �W o� O U C N .y N caRaft z U v 4� cLi- W 'o Q � J man U �- O `o L fa O 0= fA U .. O N M L � Q 2 o O c0 _O . s• zo Y • a _ °o i°u °P a � F?om F J�P Jt0 pox ± O6Oi Al a c w7Ev oisv 0' 50' 100' 200' ©10 7 2t-..� 0,53 0.51 0 33 32 1 b I�fR/YES 31 ! 90 3� I \41 42 7 93 95 \ o 23 02 96 3,40 Obi �-9. 3 �< 018 0.8'r 9s 99 j 21 � 100 13 n SWALE 1 101 1 20 �- .9 102 113 104 105 i POND 1 1� -` ` v Q U Q � J J CIC a z C cv _O O Q � O Q M N C L 0 2 'b4 C4 z O (D €g a Z.G. 1 3 Uee A.. II ' respectively. Offsite Basin 02 and Basin 13 will contribute flows to Swale 1 downstream of Basin 12 and into the pond to the southeast. Street capacity calculations are presented in ' Appendix B. Street capacities were calculated for average slopes in each basin. Calculations were presented for 24-foot cross -sections and 30-foot cross -sections with vertical curbs. All design street flow depths are within criteria for both minor and major events and are presented in ' Appendix B. Developed Basins 6 and 7 will contribute 4.61 cfs and 20.43 cfs for the 2-year and 100-year ' events respectively. Historically, 20.45 cfs is contributed to the Trilby Lateral during the 100- year event. Swale 1 will route runoff from basins 1, 3, 4a, 4b, 5, 8, 9a, 9b, 10, 1 la, I lb, 12, 13, Ola, Olb, and 02 to the detention pond. A summation of 100-year discharges for Basins R12, 13, and 02 (51.92 cfs) was used for channel design. The channel will have a 3-foot bottom width with 4:1 ' side -slopes. Existing average slope along the swale is 11%. Five boulder drops have been designed to reduce the maximum slope to 8% and provide an aesthetically pleasing conveyance channel while maintaining capacity for the 100-year discharge and freeboard (1.33*100-year ' discharge). A minimum boulder size of 24-inches was determined using grade control criteria (Robinson et al., 1995) and a factor of safety of 1.2. For conservative measure, the existing slope of I I% was used in sizing the riprap despite a reduction of slope to 8%. Each drop structure is ' clearly labeled with spot elevations in the Drainage and Erosion Control Plan. Boulder sizing calculations are presented in Appendix B. The channel will be lined with NA Green SC250 permanent erosion control fabric. ' Water quality pond 1 is located in the median in the street in the southeast portion of the site. A water quality capture volume (WQCV) of 0.13 acre-feet is required to provide temporary storage with a 40-hour drain time for Basins 1, 3, 4a, 4b, 5, 8, 9a, 9b, 10, 1la, I lb, Ola, and Olb. Only ' 0.12 acre-feet of storage is available in the water quality pond to allow for 1 foot of freeboard, so an additional 0.01 acre-foot of storage has been accommodated in the detention pond. ' The detention pond has been revised from the design presented by TST for Harmony Ridge 1 in 1999. The pond release rate of 5.65 cfs presented by TST was re -designed because of revisions to the City of Fort Collins IDF curves. The revised pond will release runoff at a rate of 4.12 cfs ' (2-year release rate from Historic Basin H-2) and will therefore require a water quality capture volume (WQCV) for Basins 12, 13, and 02 of 0.9 acre-feet, and 0.01 acre-feet of additional required WQCV from the median water quality pond in Basin I Ia. The total resulting required ' volume for the pond is 1.72 acre-feet. This volume is provided at a water surface elevation of 5090.67, providing 1.33 feet of freeboard. The pond has been designed with 4:1 side slopes below the freeboard elevation. Cut slopes above the freeboard elevation are to be graded at 3:1 to minimize hillside disturbance. The existing outlet structure for the pond will be replaced by a 3-foot by 3-foot concrete outlet ' structure. The pond invert elevation will be lowered from 5087.6 to 5084 to maximize storage capacity and eliminate the stagnant water that currently exists. The pond outlet goes underneath ' the Trilby Lateral and drains to the existing drainage channel leading to the Bums Tributary in the Cathy Fromme Prairie. The Final Drainage Report for Harmony Ridge P.U.D. (TST, January 1999) prepared a riprap design for the pond outfall to protect the downstream channel from 1 4 Drainage and Erosion Control Report for Aarmonv Ridge Filing 2 eMWw r111 SaANMW fw MO." euoce moocNM* FINu IMieaae Ue kI.ux February 4. 2005-Page 9 11'�- scour. The TST report specified a Class 12 riprap �e" d downstream of the pipe for outlet protection. The riprap was designed for a discharge of20.82� cfs. The revised pond design will have a significantly smaller 100-year release rate of S 6Ycfs. Onsite inspection revealed that three rows of coir logs were placed downstream of the outlet in place of the riprap. Placement of the riprap designed by TST is not recommended because the release rate has been significantly reduced from the TST design and thick vegetation has become established downstream of the outlet. Details for the construction of the outlet structure are presented in the construction drawing plan set for Harmony Ridge Filing 2. EROSION CONTROL A temporary erosion control plan is to be implemented for the site during construction. Erosion control performance standards, effectiveness calculations, and surety calculations are presented in Appendix D. During construction, straw bale barriers, inlet protection, curb socks, silt fences, and sediment traps are to be constructed to dissipate energy, intercept and detain sediment, and ultimately keep the project in compliance with City of Fort Collins erosion control standards. Vehicle tracking control will be incorporated at site entrances at Prairie Vista Drive off of Fromme Prairie Way and at Prairie Ridge Drive. Refer to the Drainage and Erosion Control Plan (sheet 14) for designed locations of erosion control elements on the plan set. Erosion control details are presented on sheet 18. WETLAND DETERMINATION AND REVIEW A small wetland is located in the northwest comer of the site. No disturbance is proposed to the wetland. Non -jurisdictional wetland mitigation for Harmony Ridge I at the detention pond will be improved from its existing condition in the same location. This mitigation is addressed under separate cover. CONCLUSIONS The Harmony Ridge Filing 2 Drainage Report has been prepared to comply with the present City of Fort Collins Storm Drainage Criteria Manual and the USDCM. The drainage plan presented in this report is intended to effectively and safely convey storm runoff through the proposed site. No drainage variances are requested. a E WOMM 111 ES INO@3$0 HARMONY WMC .111tlO W3910NA DMINAGE REMRT LI Drainage and Erosion Control Reportfor Harmony Ridge Filing 2 February 4, 2005 - Page 10 ' REFERENCES City of Fort Collins Storm Drainage Criteria Manual, Department of Public Works and Water Utilities Storm Drainage Division, May 1984 Final Drainage Report for Harmony Ridge P.U.D., TST, Inc. Consulting Engineers, January 1999 National Engineering Handbook NEH 4, prepared by Soil Conservation Service, U.S. Department of Agriculture, April 21, 1993. Final Subsurface Exploration Report — Harmon,} Ride Filing 2, Earth Engineering Consultants, Inc., May 2004. Rock Riprap for Grade Control, Robinson, K.M., Rice, C.E., and Kadavy, K.C., Proc. Water Res. Engrg., ASCE, San Antonio TX, Vol. 2, 1476-1480, 1995. Urban Storm Drainage Criteria Manual, Denver Regional Council of Governments, dated 1969, Volumes 1, & 2 Urban Storm Drainage Criteria Manual, Volume 3 — Best management Practices, Denver Regional Council of Governments, Urban Drainage and Flood Control District, September 1999 Drainage and Erosion Control Reportfor Harmony Ridge Filing 2 February 4, 2005 - Page II APPENDICES APPENDIX A - RUNOFF AND DRAINAGE CALCULATIONS • Rational Method calculations • Pond Sizing calculations APPENDIX B - HYDRAULIC CALCULATIONS • Street capacity calculations • Inlet capacities APPENDIX C - REFERENCED INFORMATION AND SUPPORTING DOCUMENTS APPENDIX D - EROSION CONTROL CALCULATIONS AND DETAILS Drainage and Erosion Control Reportfor Harmony Ridge Filing 2 m00csQ1M HNn Dxannci: �ro[a Lro February 4. 2005 - Appendices APPENDIX A: RUNOFF AND DRAINAGE CALCULATIONS a L:NROIECf IIISIANDL3501IARMONY RIIIGE HIX)CSMISO nNAL DWNA6E R2NRT DOC Drainage and Erosion Control Report for Harmony Ridge Filing 2 February 4. 2005 - Appendices I' I II 1 t 1 1 1 1 [1 I Harmony Ridge Jim Sell Design, Inc. 23501.31-04 EMS Table A.1: Runoff Coefficients Sub -Basin. ID Sur.'ace Description Area (so h) Area (ac) Total Area (ac) Area (°61 Runoff Coefficient C Weignted Runoff Coefficient C 1 Landscape 5.274 1) 12 49.55 020 0.10 Root 150 0.00 1,41 0.95 0.01 17o Pavement 5,220 0.12 49.04 0.95 0.47 0.24 100.00 0.58 2 Landscape 13.967 0.32 63.52 0.20 0.13 Root 1.350 0.03 6.14 0.95 0.06 ''0W Pavement 6.670 0.15 30.34 0.95 0.29 0.50 100.00 0.47 3 Landscape 10.443 0.24 52.39 0.20 0.10 Roof 0.00 0.00 0.95 0.00 Pavement 9,490 0.22 47.61 0.95 0.45. 0.46. 100.00 0.56 . 4a Landscape 7,009 j 0.16. 32.89 0.20 0.07 Root 81900 0.20 41.77 0.95 0,40 l ow Pavement $400 0.12 25.34 0.95 0,24 0.49 100.00 0.70 v 4b Landscape 1,590 0.04 23.80 0.20 0.05 Roof 1,415 0.03 21.18 0.95 0.20 Pavement 3,675 0.08 55.01 0.95 0.52 0.15 100.00 0.77 5. Landscape 12,600 0.29 20.60 020 0.04 Roof 26,000 0.60 42.50 0.95 0.40 Pavement 22,575 0.52 36.90 0.95 0.35 1.40 100.00 0.80 6 Landscape 226,971 5.21 97.99 0.35 0.34 - Roof - 0.00 0.00 0.95 0.00 d" Pavement 4.650 0.11 201 0.95 0.02 5.32 100.00 0.36 ] Landscape 18,909 0.43 28,26 0.35 0.10 Roof 48,000 1.10 71,74 0.95 0.68 Pavement 0.00 0.00 0.95 0.00 1.54 100.00 0.78 8 Landscape 13,758. 0.32 59.05 0.20 0.12 Roof 6,240 0.14 26.78 0.95 0.25 91, Pavement 3,300 0.08 14,16 0.95 0.13 C. 3 100.00 0.51 9a Landscape 8.815 0.20 26.49 0.20 0.05 Root 14.357 0.33. 43.15 0.95 0.41 '.r ,/ Pavement 10,100 0.23. 30.36 0.95 0.29 0,76 100.00 0.75 Harmony Ridge Jim Sell Design, Inc. 23501.31-04 EMS Table A.1: Runoff Coefficients (cunt.) Sub -Basin ID Surface Description Area (so f0 Area (act Total Area (ac) Area (<I Runoff Coefficient C Weighted Runoff Coefficient C 9b Landscape 1.548 0.04 17.84 0.20 0,04 Roof 4.127 0.09 47.57 0.95 0.45 Pavement 3,000 0.07 34.58 0.95 0.33 0.20 100.00 0.82 10 Landscape 7,569 0.17 50.73 0.20 0.10 Roof 0.00 0.00 0.95 0.00 W Pavement 7.350 0.17 49.27 0.95 0.47 0.34 100.00 0.57 • 11a Landscape 40,720 0.93 62.68 0.20 0.13 Roof 9,920 0.23 15.27 0.95 0.15 Pavement 14,330 0.33 22.06 0.95 0.21 1.49 100.00 0.48 /11b Landscape 1.099 0.03 27.39 0.20 0.05 Roof 1,780 0.04 44.37 0.95 0,42 Pavement 1,133 0.03 28.24 0.95 027 0.09 100.00 0.74 12 Landscape 10,853 US 33.27 0.20 0.07 Root 9,745 0.22 29,87 0,95 0.28 Pavement 12,025 0.28 36.66 0,95 0.35 0.75 100.00 070 •j 13 Landscape e 7,250 0.17 60.17 0.20 0.12 Roof 4,800 0.11 39.83 0.95 0.38 Pavement 0.00 0.00 0.95 0.00 0.28 100.00 0.50 Ota 5.464 0.13 57.73 0.20 0.12 _Landscape Roof 4,000 0,09 42.27 0.95 0.40 Pavement 0.00 0.00 0.95 0.00 0,22 100.00 0.52 01b Landscape 11,681 0.27 50.39 0.20 0.10 Roof 4,000 0.09 17.26 0.95 0.16 Pavement 7.500 OA7 32.35 0.95 0.31 0.53 100.00 0.57 02 Landscape 117,500 2.70 79.39 0.20 0.1.6 Roof 24,000 0.55 16.22 0.95 0.15 Pavement 6,500 0,15 4.39 0.95 0.04 3.40 100.00 0.35 H-1 Landscape 451.027 10.35 98.12 0.20 0.20 Roof 0.00 0.00 0.95 0.00 Pavement 8,650 0.20 1.88 0.95 0,02 10.55 100.00 0.21 H-2 Landscape 271,158 6.22 6,22 7Z41E0201 77.41 0.15 A5Pavement Roof 71,158 0.18 12,658 0.29 3.61 0.03 8.04 100.00 0.37 'NOTE: Runoff mefficents .,a !,am Table 3-3, page 3-5 of theCty of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual. According to the sails report (EEC. May 2004) and SCS mapping, runoff on the top of the ridge are more sandy, and soils on the ridge contain more Gays closer to the surface (heavy sods). As a result, Historic Basins 1 and 2 averaged coefficients for sandy and heavy soils. Developed basins 1, 7, 8. and 14 used coefficients for steep heavy sails because they are primarily on the edge, while all other basins used averaged coefficients for sandy and heavy soils with average slope. M M = = = M= M M M= r am Harmony Ridge Jim Sell Design, Inc. 23501-31-04 EMS Table A.2: Standard Form: Developed Time. of Concentration Time of Concentration Calculations: 2-vear Sub Basin Initial / Overland Travel Time -------------- -------------- -------------- 0��m rt •• ®� tt �:� rt lvvl m: basins wlm I c values equal to or less Iran 5 minutes use intensity values for a!) minute duration. Please see table A.4- M M M = = M = M = M M = M Harmony Ridge Jim Sell Design, Inc. 23501-31-04 EMS Table A.2: Standard Form: Developed Time of Concentration (cont.) Time of Concentration Calculations: 100-vaar Sub -Basin Data Initial / Overland Time (Ti) Travel Time (Tt) Urban Basin Check, Tc Final Tc Design Pt. Coeff. C Area ac Length it Slope (% Cf factor Ti (min) Length (ft) Slope % Grass or PavementIt/sec Tt (min) (min) (min) 1 0.58 0.24 55 0.73 1.25 5.81 160 2.38' i3.O 0.9 11.2 6.7 2 0.47 0.50 45 0.67 1.25 7.30 325 1.97 1.9 12.1 9.2 3 0.56 0.46 30 2.67 1.25 2.98 330 2.21 1.8 12.0 L8 4a 0.70 0.49 130 4.00 1.25 2.97 200 2.00 p &10 1.1 11.8 4.0 4b 0.77 0.15 60 5.00 1.25 1.15 80 5.00 p 4.20 0.3 10.8 1.5 5 0.80 1.40 60 2.50 1.25 1.1,3 255 0.59 p 1.55 2.7 11.8 3.9 6 0.36 5.32 180 15.28. 1.25 6.55 1145 0.50 9 0.50 38.2 N/A 44.7 7 0.78 1.54 30 18.00 1.25 0.49 36 25.00 9 3.80 0.2 10.4 0.6. 8 0.51 0.53 75 7.33 1.25 3.89 120 1.67 p 2.40 0.8 11.1 4.7 9a 0.75 0.76 65 16.00 1.25 0.96 280 1.00 p 2.00 2.3 11.9 3.3. 9b 0.82 0.20 90 2.50 1.25 1.04 123 1.80 p 2.70 0.8 11.2 1.8 10 0.57 0.34 30 3.33 1.25 2.66 265 0.75 p 1.70 2.6 11.6 5.3 11a 0.48 1.49 85 1.18 1.25 8.17 335 0.00 p+9 3.80 1.5 12.3 9.6 11b 0.74 0.09 53 5.00 1.25 1.35 25 2.00 p 3.10 0.1 10.4 1.5 12 0.70 0.75 105 4.76 1.25 2.56 155 2.58 p 3.30 0.8 11.4 3.3. 13 0.50 0.28 30 8.33 1.25 2.41 27 9.26 9 2.10 0.2 10.3 2.6 O1a 0.52 0.22 80 2.00 1.25 6.02 120 1.00 1.50 1.3 11.1 7.4 01 b 0.57 0.53 125 2.0 11.25 6.3 775 2.00 2.80 0.4 11.1 6.8. 02 0.35 3.40 100 2.00 1.25 9.75 825 20.00 3.10 4.4 15.1 14.2 ivv i �. Doan is mu. , u vaiuea aqua. ru ui leas uian o nnnures use intensity vames ter a o nunure ouranon. riease see rams t1.4. Harmony Ridge Jim Sell Design, Inc. 2350131-04 EMS Table A.3: Historic Basins Time of Concentration: 2-vear Basin Area C. High Discharge Overland Overland Ct Overland Channelized Channel Channel Channel Travel Final Tc Coefficient Point Elevation Length Slope 2-year Time, Tt Flow Length Discharge Slope Velocity Time, Tt (acres) (feet) (feet) (feet) o) min feet Elev. II full (Wsec (min. min) fl-1 10.55 0.21 5150.5 5138 410 3.0488 1.1 23.1332 231 5090 20.7792 3.10 1.2 244 H-2 8.04 0.37 5150.5 5138 456 3.17g8 1.00 19.8383 575 1 5087 1 8.5217 1 1.6 1 6.0 25.8 Ur anneuzeo now velocities taken from Figure r3, Fortcorms storm uramage.Deslgn umena aria Uonstruceon Standanls tor-snon grass pasture and towns - Historic Basin Flows: 2-vear Area C' Ci Te 2yr 2year Coefficien Coefficient Intensity 0 i (acres (for 2- r 0 min fri/hr (efs) 10.55 0.21 1.00 244 1.45 3 6.04 0.37 1.00 25.8 1.41 4.17 Time of Cnncentratinm 100wear Basin Area C' High Discharge Overland Overland Ct Overland Channelized Channel Channel Channel Travel Final Tc Coefficient Point Elevation Length Slope 100-year Time, Ti Flow Length Discharge Slope Velocity Time, Tt (acres) feet (feet) feel o min feel Elev.(it) ftift) fVsec (min) (min) 111 10.55 0.21 5150.5 5131 415 30120 1.25 21.9561 231 5090 20.7792 3.10 1.2 23.2 H-2 8.04 0.37 5150.5 5136 456 3.1798 1.25 17.3301 575 5087 8.5217 1.6 6.0 23.3 Channelized [low velocities taken from Figure 3-3, Fort Collins Storm Drainage Design Criteria and Construction Standards for'shon grass pasture and lawns' Hietaric Beein Flnwe- 100-vear Basin Area C' Ct Tc 100yr 0 Name Coefficient Coefficient Intensity 100year acres for 100- r O min iNhr cfs H-1 t0.55 0.21 1.25 23.2 5.1a 14.63 H-2 8.04 0.37 1.25 23.3 5.16 19.18 Harmony Ridge Jim Sell Design, Inc. 23501-31-04 EMS Table AA: Intensity -Duration Interpolations City of Fort Collins IDF Table Curalion I,m) 2 Year '.intensity tirvhr 10 Year Intensity (in/hr too Year Intensity IIrJhO 5 2.85 4.87 9,95 6 2.67 4,56 9.31 ] 2.52 4.31 8.8 8 2.4 4.1 8-38 9 2.3 3,93 8.03 10 2.21 378 ]72 11 2,13 3.63 ] 42 12 2,05 3.5 7.16 13 1.98 3.39 6,92 14 1.92 329 6.71 15 187 3,19 652 16 1.81 3,08 6.3 17 175 2.99 6A 18 1.] 2.9 5.92 19 L65 2.82 575 20 1.61 274 5.6 21 1.56 2,67 5.45 22 1.53 2.61 5.32 23 149 2.55 5.2 24 1 46 249 5.09 25 143 2.44 4.98 26 14 2.39 4,87 27 1,37 2.34 478 28 1.34 2.29 4.69 29 1.32 225 4.8 30 1.3 2,21 4.52 31 1,27 2,16 442 32 124 2,12 633 33 1.22 2.08 4.24 34 1.19 2,04 4.16 35 1.17 2 4.08 36 1.15 1.96 401 37 1.13 193 3.93 38 I'll 1.89 3,87 39 1_09 1.86 3.8 40 1.07 1.83 374 41 1,05 1.8 3,68 42 1.04 1.]] 3.62 43 1.02 174 3,56 44 1.01 1.72 3,51 45 0,99 1.69 3,46 46 0.98 1.6] 341 47 0.96 1.64 3.36 48 0.95 1.62 3.31 49 0.94 1.6 3,27 50 0.92 1,56 3.23 51 0.91 1-56 3.1B 52 0.9 1.54 3.14 53 089 1.52 3.10 54 088 1.50 307 55 1 0,87 1 148 303 56 0.86 147 2.99 57 085 t45 2.96 58 0.84 1 43 292 59 0.83 142 2.89 80 082 140 2.86 Design Point Flows Design Point Area Area lab'. nunob Coefficient CC 2yr to Imm1 Intensely 2yr tinlho lady, to (mint intensity 100yr tinlhr 1 1 0.24 0.58 8.9 2.31 6,67 8.97 2 2 0.50 047 10.9 2.14 9.23 7.96 3 3 0.46 0,56 5.8 2.]0 4.81 9.95 as 4a 049 070 64 2,61 4.04 9.95 as 4b 0.15 0.]] 3.1 2.85 1.47 9.95 5 5 140 0.80 60 2.67 3,87 9.95 6 6 5.32 0,36 45.6 0.98 14.71 347 7 7 1.54 078 1_4 2,85 0.64 995 8 8 0.53 0.51 5.9 2 70 4,72 9.95 9a 9a 076 0.]5 5.! 2.84 3.30 9.95 91c 9b 0.20 0.82 39 2.85 180 9.95 10 10 0.34 0.5] 6.2 2.53 5.26 9 78 11a Ila 1.49 0.40 11.6 2.08 9.64 7.83 1110 11b 0.09 0.74 3.0 2.85 148 9.95 12 12 075 070 5.3 2.79 3.34 9.95 13 13 0.28 0.50 3.3 2,85 2.62 9,95 Old 01a 0.22 0,52 9.1 229 7.36 8,65 01b 01b 0.53 0.57 92 2.28 6.83 8.88 C2 02 340 0.35 15.1 186 14.18 6,88 Historic Basins Design Point Area ID Area race Runoff Coefficient CO 2yr lc Iminl intensity 2yr fil l 100yr to II -I Intensity 100yr (,h,hr) H1 H-t to 55 0.21 244 145 23.20 5.18 H-2 H-2 1 8.04 037 1 25.8 t 41 23.32 5.16 feign notes ana assump eons: 'Note all intensities for design basins, routed basins, and hi5(briG basins calculated by linear interpolation of Duration and Intensity values from City of Fan Collins Drainage Criteria Manual. In the rational method. setting the tluration equal to the final `. c is a standard assumption. If to values are less than 5 minutes, Intensity values are used for a 5-mslate duration. Harmony Ridge Jim Sell Design, Inc. 23501-31-04 EMS Table AA: Irnerlsity-Duration Interpolations (corn.) Routed Basins: 2-vr Design Point Area ID Area (act Runoff Coefficient CC 2yr it (min) Intensity 2yr (Whit R4a t 4a 0.73 0.66 10.27 2.19 Rao '.4a.4b 0.89 0,68 10.60 2.16 R6 6.7 6,85 046 2349 1.48 98 1.34a4b.8 1.88 0,60 11,75 20 Red 9a,9b.01a.01b 1.71 0.67 12.10 2.04 R11a -.3,4a.4b,5.8,9a.9b,10,tta.11b,Ota,Otb 6.92 0.63 1565 1.83 R12 .3.4a.4b.5.8.9a.9b.10.11a,llb,12.01a.01 7.67 0.64 16,59 1n Routed Basins: 101l Design Point Area 10 Area Ad) Hutton Coefficient CC 100yr to mint Intensity 100yr (INhrl 194a t.da 073 0.66 l 8.37 Rob 1."Ab 0.89 0.68 8,37 8.25 R6 6.7 585 0.46 22,73 523 RB 1,3Aa40.6 1,88 0.60 9.52 7.87 Ras 9a, 9b, Ota.01b 1 171 0.67 9.73 7,80 R11a 1.3,4a4b.5.8,9a.9b,10, I Ital 1b,Ota,Old 5-52 0.78 1342 6,83 R12 .3.4a,4b,5.8,9a,9o10,1 la.1 lb,12,01a,01 6.27 1 0.7 1 1436 6.64 Design Notre and. Assumptions: 'Note: all intensities for design basins. routed basins. and historic basins calculated by linear interpolation of Duration and Intensity values from City of Fod Collins Drainage Criteria Manual. In the rational method. setting the duration equal to the final To is a standard assumption, if tc values are less than s minutes, intensity va ues are used for a 5-mmute duration. M Harmony Ridge Jim Sell Design, Inc. 23501-31 04 EMS Table A.5: Storm Drainage System Design: Rational Method Procedure: 2-year Developed DIRECT RUNOFF •• • •. e e• �� ee a e.:. � e e �_�_���__ WITTE M M M M M M= M M M M M r M Harmony Ridge Jim Sell Design, Inc. 23501-31-04 EMS Table A.9: Storm Drainage System Design: Rational Method Procedure: 1GO-Year Developed ® �FOR MNN "!®!®!N NNMS�1R!®!® II Harmony Ridge Jim Sell Design, Inc. 23501-31-04 EMS Table A.7: Required volume for Pond 1: Shared Pond with Harmony Ridge Filing 1 (HR1 Pond at Design Point 21) Release rate = 4.17 cfs (Tyr Historic discharge from Basin H-2) Duration (min) Composite C 100 Yr. Intensity (in/hr) Area (so) Ct Q100 lots) Inflow Volume fcu-ft) Released Volume 0 2yr historic flow rate 4.17 Pond Detention Volume cu-ft) 5 0.62 9.95 9.94 1.25 77 23,053 1,251 21,802 6 0.62 9.31 9.94 1.25 72 25,884 1,501 24,383 7 0.62 8.8 9.94 1.25 68 28.544 1,751 26.792 8 0.62 8.38 9.94 1.25 65 31.065 2.002 29.063 9 0.62 8.03 9.94 1,25 62 33,488 2,252 31.236 10 0.62 7.72 9.94 1.25 60 35,773 2,502 33271 11 0.62 7.42 9.94 1.25 57 37.821 2,752 35.068 12 0.62 7.16 9.94 1,25 1 55 39,813 3,002 36,811 13 0.62 6.92 9.94 1.25 1 53 41.685 3.253 38,433 14 0.62 6.71 9.94 125 1 52 43,529 3,503 40,027 15 0.62 6.52 9.94 1.25 50 45,318 3.753 41,565 16 0.62 6.3 9.94 1.25 49 46,708 4,003 42,705 17 0.62 6.1 9.94 1.25 47 48.052 4,253 43,799 18 0.62 5.92 9.94 1.25 46 49,377 4,504 44,874 19 0.62 5.75 9.94 1.25 44 50,624 4,754 45,870 20 0.62 5.6 9.94 1.25 43 51.898 5,004 46.894 21 0.62 5.46 9,94 1.25 42 53,131 5,254 47.876 22 0.62 1 5.32 9.94 1,25 41 54,233 5,504 48.729 23 0.62 5.2 9.94 1.25 40 55,420 5.755 49,665 24 0.62 5.09 9,94 1.25 39 56,606 6,005 50.601 25 0.62 4.98. 9.94 1,25 38 57.6901 6.255 51435 26 0.62 4.87 9.94 1.25 38 5$672 6.505 52167 27 0.62 4.78 9.94 1.25 37 59,803 6.755 53.048 28 0.62 4.69 9.94 1.25 36 60,850 7,006 53,845 29 0.62 4.6 9.94 1.25 36 61,814 7.256 54.558 30 0.62 4.52 9.94 1.25 35 62.834 7,506 55.328 31 0.62 4.42 9.94 1.25 1 34 63,492 7,756 55.735 32 0.62 4.33 9.94 1.25 33 64.205 8,006 56.199 33 0.62 1 4.24 1 9.94 1.25 33 64,835 8,257 56.579 34 0.62 4.16 9.94 1.25 32 65.540 8,507 57,033 35 0.62 4.08 9.94 1.25 32 66, 170 8,757 57.413 36 0.62 4.01 9.94 1.25 31 66,8931 9,007 57,886 37 0.62 3.93 9.94 1.25 30 67,379 9,257 58.122 38 0,62 3.87 9.94 1.25 30 68,144 9,508 58,636 39 0.62 3.8 9.94 1.25 29 68.672 9,758 58,914 40 0.62 3.74 9,94 1.25 29 69,321 10,008 59,313 41 0.62 3.68 9.94 1.25 28 69,914 10.258 59.656 42 0,62 3.62 9,94 1.25 1 28 70,451 10.508 59,943 43 0.62 3.56 9.94 1.25 1 27 70,933 10.759 60.175 44 0.62 3.51 9.94 125 1 27 71.564 11.009 60.555 45 0.62 1 3.46 9.94 1.25 27 72,147 11,259 60.888 46 0.62 3.41 9.94 125 26 72,685 11,509 61,176 47 0.62 3.36 9.94 1.25 26 73.176 11,759 61.417 48 0.62 3.31 9,94 1.25 26 73,621 12.010 61.611 49 0.62 3.27 9.94 1.25 25 74,246 12,260 61,987 50 0.62 3.23 9.94 125 25 74.835 12,510 62,325 51 0,62 3.18 9.94 1.25 25 75,150 12,760 62,390 52 0,62 3.14 9.94 1.25 24 75,660 13,010 62.649 53 0.62 3A 9.94 1.25 24 76,132 13.267 62,872 I Harmony Ridge ' Jim Sell Design, Inc. 23501-31-04 EMS Table A.7: Required volume for Pond 1: Shared Pond with Harmony Ridge Filing 1 (HR1 Pond at Design Point 21) (cont.) ' Release rate = 4.17 cfs (2yr Historic discharge from Basin H-2) 1 r E 1 1 1 Duration (min) Composite C 100 Yr. Intensity (irlli Area (so) Cf 0100 (cfs) Inflow Volume (cu-f) Released Volume 4 2yr historic flow rate 4.17 Pond Detention Volume (cu-h) 54 0.62 3.07 9.94 1.25 24 76,818 13,511 63.307 55 0.62 3.03 9.94 1.25 23 77,221 13,761 63,460 56 0.62 2.99 9A4 1,25 23 77,587 14,011 63,576 57 0.62 2.96 9,94 1.25 23 78,181 14,261 63,91.9 58 0.62 2.92 9.94 1.25 23 78,477 14,512 63.965 59 0.62 2.89 9.94 1.25 22. 79,010 14.762 64,248 60 0,62 2,86 9.94 1.25 22 79,515 15.012 64,503 65 0.62 2.74 9.94 1.25 1 21 82,511 16,263 66,248 70 0.62 2.61 9.94 1.25 20 84,696 17,514 67.162 75 0.62 2.50 9.94 1.25 19 86.740 18,765 67.975 80 0.62 2.39 9.94 1.25 18 88,656 20,016 68.640 85 0.62 2.30 9.94 125 18 90.454 21,267 69,187 90 0.62 2.21 9.94 125 17 92,145 22.518 69,627 95 0.62 2.13 9.94 125 16 93,737 23.769 69,968 100 0.62 2.06 9.94 1.25 16 95,236 25.020 70,216 105 0.62 1,99 9.94 1.25 15 96.650 26,271 70,379 110 0.62 1.92 9,94 1.25 15 97.985 27,522 70,463 115 0.62 1 1.86 9.94 1.25 14 99,2441 28.773 70,471 120 0.62 1.81 9.94 1.25 1 14 100,433 30,024 70,409 125 0.62 1.75 9.94 1.25 14 101.556 31,275 70,281 130 0.62 1.70 9.94 1.25 13 102.616 32.526 70.090 135 0.62 1.66 9.94 1.25 13 103,617 33,777 69,840 140 0.62 1.61 9.94 1.25 12 104,562 35.028 69,534 145 0.62 1.57 9.94 1.25 12 105,452 36,279 69,173 150 0.62 1.53 9.94 1.25 12 106,292 37,530 68,762 155 0.62 1.49 9.94 1.25 12 107,083 38,781 68,302 160 0.62 1.45 1 9.94 1.25 11 107,828 40,032 67,796 165 0,62 1.42 9.94 1.25 11 108,528 41,283 67.245 170 0.62 1.39 9.94 1.25 11 109,1851 42,534 66,651 175 0.62 1.35 9.94 1.25 10 109,801 43,785 66,016 180 0.62 1.32 9.94 1.25 10 110,378 45.036 65,342 185 0.62 1.29 9.94 1.25 10 110.917 46.287 64.630 190 0.62 1.27 9.94 1.25 10 111419 47,538 63,881 195 0.62' 1.24 9.94 1.25 10 111.886 48,789 63,097 200. 0.62 1.21 9.94 1.25 9 112,318 50,040 62,278 205 0,62 1.19 9.94 125 9 112,718 51,291 61,427 210 0.62 1.16 9.94 1.25 9 113,086 52,542 60,544 215 0.62 1.t4 9.94 1.25 9 113.423 53,793 59.630 220 0.62 1.12 9,94 1.25 9 113,731 55,044 58,687 225 0.62 1.09 9.94 1.25 8 114,0091 56,295 1 57,714 Required Storage Volume = 70,471 or in Acre Feet = 1A2 Harmony Ridge Jim Sell Design, Inc. 2350131-04 EMS Table AA: Water Quality Capture Volume Iill Calculations ❑ascription Cimulnutirig Proposed Basms Tributary Area (so) Percent Impervious Drain Tme (hours) WOCV (watershed Inches) Required III Storage acufl(oil Required III Storage ff Required Release Rate tots WOCV WSEL (it) Ports Bottom Elevation fl Orifice invert Elavalmn fit Difference belwean WOCV and Pond Bottom tB WQCV Chance Mee mq in Quantity at WGCV Orifice Holes WOCV Orifice Doi m0er in Median WOCV Pond 13,4aA1E,5,B.9a,9b,10,11a.1 I b.01a,01b 5.52 0.70 40 0.28 013 5510 0.04 512]]0 5125Jfi 5126.01 1.94 0.82 2.00 0.51 Descdplion Contributing Proposed B... Not Treated In Medan WGCV Pond Tributary are. (ac) Percent Impervious Drain Time (hours) WQCV (watersbed Inches) Required WOCV Storage ac-hi Required WOCV Storage C.Nlot.) Requited Release Rate WOCV WSEL ah Pond Bottom Elevation (111 Onfice Invert Elevation runII Difference between WOCv wm Pond Bollom WOCV Orifice Area 6 Onamily oI WOCV O d,ii Rules WOCV Orifice Umnmler hill Pnnd1 12,13.02 442 0.80 40 024 aUS 3190 1 0.03 1 bri I A 1 500400 5084.25 1 L16 0.]2 200 -0.48 Dunign Noles and Assumptions: III =a'f0.911A3-1. 1gIA2t]8i) a = 1.0 for 40 fir drain time Required WOCV Storage = WOCW12 - Tributary Area in acres 0 = CA(2gHr.5 Where O = Allowable Release Rate lots) C = Coefficient of friction Im Restriclor -CBO A=Area of Orifice g = Accelermgn of Gravity -32.2 W..c-2 R = Dlllermce In Elevation batan an the WGCV wafer surface elevation and the center of the orifice 'Note: Percent Impervious values from 11/02 Fax Irom Glen Schleuter for MMN zoning district Harmony Ridge Jim Sell Design, Inc. 23501 31-04 EMS Table A.9: Pond Volume Calculations imil'lgn Congas Elavation E (11) Area wfin Contour A (sq ft) Area wfin Contour A (act Average Area A,,,, fact ((A,+A,,)+(A*A_)o nn Contour Interval D (8) (E„i-E„) Storage Capacity V (acft) ((An+Aivl)+(An-An-1)0.5)/'Eo-l-Err) Total Storage V,a„ (ac-ft) (S„+D-1 Total Storage V, (cu. ft.) IS,,+D,,.d Required Capacity S" (ac-It) VISE at Required Capacity (ac-8) three, inter olalion Freeboard (ft) Er--WSEI Depth (h) 5084 0 0.00 0,06 1 0.06 5085 7934 0,18 0.06 2644.67 0.20 1 0.20 0.10 SOBS.la 5086 9410 0.22 0.26 1130fi.18 0,23 1 0.23 5067 11030 0.25 0.49 21515 46 0.27 1 0.27 5088 12842 0,29 ow 33425.35 0,32 1 0.32 5089 14674 0,34 1.08 47157.83 0.36 1 0.36 5090 16638 0.38 1..44 62803.55 0.41 1 0.41 1.72 6090.67 1.33 5091 18685 043 1.85 80455.16 0.45 1 0.45 5092 20874 1 2,30 100224.55 IVOCV Pnnd Conlou( Elavahun E (it) Area An Contour A (aq h) Area who Contour A (ac) Average Area A„v (ac) I(A� A,.,)+(A,;A,.,)"/3 Contour Interval D (h) [E,.,-E„) Storage Capacity V (ac-8) gAn+An-l)+(An'An-1)u51/XEn-1Enl Total Storage Ve,,, (acft)(cu.8.) IS, +D,,,,) Total Storage V� IS„+D,,,,I Required Capacity S,w (ac-ft) VISE at Required Capacity (ao-h) linear Interpolation) Freeboard (ft) (E,,,,,-WSEI Depth (II) 5125. 76 0 0.00 0,01 0.24 0.00 5126 1415 0.03 0,00 113,20 0,05 1 1 0.05 _ 5127 3305 Obli 1 1 0.06 1 2407.38 _ 0.09 1 0.09 0.13 5127,82 0,88 _ 5128 4305 0.10 1 0.14 1 6201.38 1 0.12 1 5127,70 1 1.00 fill 1 0.11 5124 5220 0.12 0.25 10956.54 II ' APPENDIX B: HYDRAULIC CALCULATIONS II II II II II II II II II II II II 11 ' fiPROIIYT IILptiIf ANIJ^_J£O nARMONY RIxF. IPbCL)SNW FTNAL �ILIINAGF. PEPORT DOC Drainage and Erosion Control Reportfor Harmony Ridge Filing 2 February 4, 2605 - Appendices Harmony Ridge Jim Sell Design, Inc. 235011-30-04 EMS Table 8.1: Street capacity: Minor Event -Vertical Curb: 30-foot local street Theoretical capacity (as presented in Urban Drainage and Flood Control District Manual 1, Section 2.3.1.2 Q=Qw+Qs where: Q = theoretical gutter capacity Qw=flow rate in the depressed section of the gutter (cfs) Qs=discharge in the section that is above the depressed section (cfs) Qt=Qs/(1-Eo) where: Qs=discharge in the section that is above the depressed section (cfs) where: Qt=theoretical discharge Qs=0.56/(n'sx)'(SI^0.5)'(y^(8/3)) Eo=1/(1+(sw/sx)/(1+(sw/sx)/((TM/)-1)^(8/3)-i) where: Sw= gutter slope (ft/ft)=0.083 Will Sx=street cross -slope (ft/ft)=0.02 fVft T=top width of flow spread to CL=15' W=width of gutter=2' therefore: Eo=0.397 Qa=QYF where: Qa=actual discharge F=reduction factor per figure 4-2, City of Fort Collins SDCM Fnr 3n-fnnt wider ctrpptc 1• 11 1 I I I �_�__� I :1 �_ ® 1 /• 11 11 ��®�® Harmony Ridge Jim Sell Design, Inc. 235011-30-04 EMS Table B.2: Street capacity: Minor Event -Vertical Curb: 24-foot local street Theoretical capacity (as presented in Urban Drainage and flood Control District Manual 1, Section 2.3.1.2 Q=Qw+Qs where: Q = theoretical gutter capacity Qw=flow rate in the depressed section of the gutter (cfs) Qs=discharge in the section that is above the depressed section (cfs) Qt=Qs/(1-Eo) where: Qs=discharge in the section that is above the depressed section (cfs) where: Qt=theoretical discharge Qs=0.56/(n'sx)'(SI^0.5)' (y^(8/3)) Eo=1/(1+(sw/sx)/(1+(sw/sx)/((T/W)-1)^(8✓3)-1) where: Sw= gutter slope (ft/ft)=0.083 ft/ft Sx=street cross -slope (ftM)=0.02 ft/ft T=top width of flow spread to CL=12' W=width of gutter=2' therefore: Eo=0.491 Qa=Qt'F where: Qa=actual discharge F=reduction factor per figure 4-2, City of Fort Collins SDCM Fnr')d-MM WH. ctrcefc 1 .I I I I• I• • I �� 1 :1 11 11 11 • I �� I :I ®' /1 11 11 • I �� •:• 1 1 1 1 •• • 1 ®� 1 :1 1 •1 1/ 11 1 1 1 1 ®� / :1 I• I• I I I• I I �� I :1 ®' I I 1• I• 1 1 �� I :I ®' 11 1 1 /1 11 • 1 ���� ® I• 1 1 11 1 1 ��� ® 11• 1 1 11 1 • ���� 1 1 0 1 I• I I ���� Harmony Ridge Jim Sell Design, Inc. 235011-30-04 EMS Table 8.3: Street capacity: Major Event -Vertical Curb Theoretical capacity (as presented in Urban Drainage and Flood Control District Manual 1, Section 2.3.1'..2 Q=QwaQs where: Q = theoretical gutter capacity Qw=flow rate in Ow depressed section of the gutter (cis) Qs=discharge in the section that is above the depressed section (cis) QI=Qs/(1 Fri) where: Qs=discharge in the section that is above the depressed section (cis) where: QtAheoretical discharge Qs=0.56/(n'sx)' Eo=1/(1+(sw/sx)/(l+(sw/sxp(EE/W)-t)"(8/3)-1) where. Sw= gutter slope(11/16=0.063 fMt Sx=street cross -slope (Pori)=0.0211/fl T=lop On of flow spread to CL=15' W=width of gutter=2' y=flow depth at curb therefore: Eo=0.397 Qa=CVF where: Qa=actual discharge F=reduction factor per figure 4-2, City of Fort Collins SDCM For 30foot wide streets: Flow capacity on each side of centerlkw Flow outside back of curb: O1 Flow between back of curb and CL: 02 Residual Ilow past CL:03 (to subtract from Of) at (01=01+02-03) at cfs Slope (% Slope (it/it) Al (fM2 n R i ft 01 Is Sx iVk n y (11 as (cis) at (cis) F 0e (cis) A3 ft^2) n R (AJP) (ft(cis) 03 0,60 0.006 4,62 0.035 0.21 5.38 0.02 0.02 0.93 111.70 185.25 Oleo 148.20 6.25 0.02 0.25 14.09 139.49 0,76 0.008 4.62 0,035 0.21 6.05 0.02 0.02 0.93 12572 208.49 0.80 166.79 6.25 0.02 0.25 15.85 156,99 on 0,006 462 0.035 0.21 6.09 0.02 0.02 0.93 126.54 209.86 0.80 167.88 6.25 0.02 0.25 15.96 158,02 0,85 0,009 4.62 0.035 0.21 6A0 0.02 0.02 0.93 132.95 220A9 0.80 176.39 6.25 0.02 0.25 16,77 166.03 0.90 0.009 4.62 0.035 0.21 6.59 0.02 0.02 0.93 136.81 226.B8 0.80 181,50 6.25 0.02 0.25 17.25 170.84 1.00 0.010 4.62 0.035 0.21 6,94 0.02 0.02 0.93 144.21 239.15 0.80 191,32 6.25 0.02 0,25 18,19 180,08 1.03 0.010 4.62 0.035 0.21 7.05 0.02 0.02 0.93 146.36 242.71 0.00 194.17 6.25 0.02 0,25 18.46 182.76 1.40 0.014 4.62 0.035 0.21 0.22 0.02 0.02 00.93 170.63 282.97 0.80 226.38 6.25 0.02 0.25 21,52 213.07 2.00 0.020 4.62 0,035 0.21 9.82 0.02 0.02 0.93 203.94 338.21 0.80 270.57 625 0.02 0,25 2572 254,67 3.00 0.030 4.62 0.035 0,21 12.03 0.02 0.02 0.93 249.78 414.22 0.72 296.17 6.25 0,02 0.25 31.50 276.70 3.11 0.031 4,62 0.035 0.21L12.25 0.02 0.02 0.93 254.32 421J5 0.71 299.44 82 0,02 0,25 32.07 279,62 371 0037 462 0035 0,210.02 0.02 0,93 277.77 460.64 0,62 285.60 6.2 0,0 0.25 35,03 263.94 1 450 OM5 462 0035 0,21 0.02 0.02 0.93 30591 50732 Q54 273.95 6.25 0.02 0.25 W,,58 250,11 Harmony Ridge Jim Sell Design, Inc. 235011-30 W EMS Table 6A: Street capacity: Major Event -Vertical Curb: 24-foot street cross-section Theoretical capacity (as presented in Urban Drainage and Flood Control District Manual 1, Section 2.3.1.2 O=Ow+Os where: O = theoretical gutter capacity Ow=llow rate in the depressed section of the gutter (cis) Os -discharge in the section that is above the depressed section (cfs) OI_Os/U-Eo) where: Os=discharge in the section that is above the depressed section (cis) where: Ot=theoretical discharge Os=056J(n'sx)'ISP0.5)'(y^(8/3)) Eo=1/(1,(sw/sx)/(1+(sw/sx)/((TAN)-1)-(8/3)-1) where: Sw= gutter slope (fV10=0.083 fl/fl Sx=street cross -slope (fV8)=0.02 fVfi. T=top width of flow spread to CL=12' W=width of gutter=2' y=tlow depth at curb therefore: Eo=0.491 Oa=OI'F where: Oa=actual discharge F=redwtl o factor per figure 4-2, City of Fort Collins SDCM For 24-foct wide streets: Flow capacity on each side of centerline Flow outside back of curb: 01 Flow between back of curb and CL: 02 Residual Ilow past CL:03 to subtract from Of) at (Ot=01r02-03) 0t (cfe Slope (h Slope ftltt A/ W2) in R A/P tt 01 lots Sx (tVb n y Oft) as (cis at cis F 0s (cis) A3 tt"2) n R (A/P) (tt) 03 (cfa) 0,60 0.006 3A2 0.035 0.18 3.60 0.02 0.02 0.87 93,50 183.70 0.80 146.96 6.25 0.02 0.25 14.09 136.48 0.76 0,008 3.42 0.035 0.18 4.05 0.02 0.02 0.87 105.24 206.75 0.80 165.40 6.25 0.02 025 15,85 153.50 0.77 0,008 342 0.035 0.18 4.08 0.02 0.02 0.87 105.93. 208.11 0.80 166A8 6.25 0.02 0.25 15.96 154.61 0.85 0.009 3.42 0.035 OAS 4,29 0.02 0.02 0.87 111.29 218.65 0.80 174.92 6.25 0.02 0.25 16J7 162A4 0.90 0.009 3.42 0.035 0.10 4.41 0.02 0.02 0.87 114.52 224.99 0,80 179,99 6.25 0,02 0.25 17.25 167A5 1.00 0010 3.42 0.035 0.18 4.65 0.02 0.02 0,87 120,71 237.16 0.60 189.73 6.25 0.02 0.25 18,19 176. 19 1,03 0.010 3,42 0.035 0.18 4.72 0.02 0.02 0.87 122.51 240.69 0,00 192.55. 6.25 0.02 0.25 18.46 178.81 1.40 0.014 3.42 0.035 0.18 5.50 0.02 0.02 0,87 142.83 280.61 0.80 224:49 6.25 0.02 0.25 21.52 208.47 2.00 0,020 342 0,035 0.18 6,58 0.02 0.02 0.87 170.71 335.39 0.80 268.31 6.25 0.02 0.25 25.72 249,17 3.00 0030 3.42 0,035 0.18 8.05 0,02 0,02 0.87 20908 410.7] 0.72 293.70 6.25 0.02 0.25 31.50 270.26 3.11 0.031 3.42 0.035 0.18 8.20 0.02 0.02 0.87 212.88 418.23 0.71 296.95 6.2 0.02 0.25 32.07 273,07 3.71 0.037 3.42 0.035 0,18 8.96 0,02 0.02 0.8] 232.51 456.80 0.62 283,22 6.25 0.02 0.25 35.03 257.14 4.50 0.045 3.42 0.035 0.18 9.86 0.02 0.02 0.87 256.07 503,09 0.54 271.67 8.25 0.02 0.25 38.58 242.95 Concrete Cross Section: Minor Street Capacity Cross Section for Irregular Channel Project Description Worksheet Concrete Street Cross section: minor ever Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coeffciei Slope Water Surface Elev 0.013 0,037100 ft/ft 0.99 It ,F'as r SIopG M,-ror � a •` 1� 1 2.1� cc� ICcJ(r Q C<G1l Elevation Range Discharge .50 to 1,67 36,31 cfs i p l l b Off.( j.il �,0 q _ I3. e 36 31��s O.'Z 02 O 8� o `�" ✓ ✓ 1_80 0.40 10+0 0.00 10+0 5.00 10+10, 00 10 +1 5.00 10 +2 0.00 10 +2 5.00 10 +3 0.00 VA H:1 NTS Project Engineer: Jim Sell Design Inc e.\..12350 final report hydraulic calcs. fm2 Jim Sell Design Inc FlowMaster v6.1 [614k] 02/02/05 04:15:33 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 No Text M M M M Harmony Ridge Jim Sell Design, Inc. 23501-31-04 EMS Riprap Calculations City of Fort Collins Mallhod (Specific Gravity of Rack = 2.50, n = 0.040) Riprap Basin Contributnuj 100yr Channel Charnel Channel Channel Channel Riprap VS,/(S; 1) Riprap Notes ID Basins © Bottom Side Velocity Slope Slope Dso Class Width Slopes (D., in (cfsl (M) (fps) (%) (ttHp (it) 1 (nffsite) (offslte) 5.79 2 3 1 4.4 Z5 0 0]5 0.14 2.17 6 Esiend dprap for distance of 8 leaf from end of curb/gutter section 2 (4lsite) (otlsne) 2.81 2 31 3:6 ZS 0.075 0.09 1.]] 6 Ezlend riprap 35 feel dowrlslream of sidewalk chase to extent of disturbed area 3 6 3 117 2 31 5.7 25 0.25 035 3.45 fi Extend dprap to toe of 51ope- 4 9 R46 6.23 2 3:1 fi.9 25 0.25 0.52 4.17 12 Extend riprap to toe of slope 5 1 1 a 11. 085 _ 2 31 25 _ Extend riprap to toe of slope 3.7 0.25 0.15 2.24 6 3.7 25 0.25 0 15 6 11. 11, 0.65 2 3.1 2.24 6 _ Extend dprap to toe of slope ] Ile 11 a, 116 085 2_ 3:1 3.] 25 0.25 0.15 _ 2.24 6 Extend riprap to toe of slope 1 1 1 1 N'Aggl— .• �^GGE •+� 2 Z 3SG_f 2.2-Z !p.nsg CSTE�'ej 2.Z2-a.18 2.0-+ •. � G•Z Z.22 C.; C{c,A CI.25��G.zc)C Bt ^lw.l( Z, Z?-�) Z°�6 G : VO--C C-- a --en' r i (S35') ' 0 22« 4p 0.ls 'I C 5; 5) 0,614, ` Q. Zn Z3 k Soo 1 �rke-n%iv,-. Duo Q `6 ' 1 t6c ,- a 'iG, l r 1..%Z a W S(. q Z,4 r fL1Z t3 aZ ! E—Li � - -;/ I? (, F+�isL (V1% = zoo" -a ft Zc c �A�-T*R- ci r erK , p� _ iz CZo,) = zkt tiso Harmony Ridge 2: Swale 1 Worksheet for Sharp Crested Rectangular Weir Project Description Worksheet Rock Drops in Swale 1 Type Sharp Crested Rectangul Solve For Headwater Elevation Input Data Discharge 69.05 cfs Crest Elevation 00.00 ft Tailwater Elevation 98.70 It Discharge Coefficil 3.33 US Crest Length 5.00 it Number of Contrac 0 Results Headwater Elevation 02.58 ft Headwater Height Abov 2.58 ft Tailwater Height Above -1.30 ft Flow Area 12.9 112 Velocity 5.35 ft/s Wetted Perimeter 10.16 ft Top Width 5.00 ft Project Engineer: Jim Sell Design Inc e:\...\2350 final report hydraulic calcs.fm2 Jim Sell Design Inc FlowMaster v6.1 [614k] 02/03/05 12:06:38 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Pond Outlet Structure: 100yr Orifice Flow Worksheet for Generic Orifice Project Description Worksheet Pond Outlet Structure: 100yr Orifi< Type Generic Orifice Solve For Opening Area Input Data Discharge 4.12 cis Headwater Elevat ,090.67 ft Centroid Elevatior,085.54 ft Tailwater Elevatio ,085.00 it Discharge Coeffic 0.62 Opening Area 0.4 ft2 Results Headwater Height Above 5.13 ft Tailwater Height Above G -0.54 R Velocity 11.26 f /s r_ 3G' Project Engineer: Jim Sell Design Inc e0..A2350 final report hydrautic calcs.fm2 Jim Sell Design Inc FlowMaster v6.1 [614k) 02/02/05 12:02:39 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 USA (203) 755-1666 Page 1 of 1 Scenario: Base S-ro�+n Sewe'P— rt�Av{StS - Z,i� LOT 44 w LOT 32 LOT 43 a, LOT 33 < LOT 34 rc LOT 42 I / 1 LOT 35 _ LOT41 4 LOT36y — - LOT 40 LOT 37 i LOT 39 LOT LOT31 I>j LOT 7 LOT 38 LOT 30 LOT 29 LOT 8 LOT 28 6, _ F IC g. LOT 9 o ` LOT 27 LOT 10 a { u LOT 26 LOT 11 \ \ LOT 25 LOT24 0 w«2 LOT 12 LOT 23 LOT 13 i 02 LOT 22 I6 LOT 14- i[� LOT 15-', ! - / I� :- LOT21 Title: Harmony Ridge StormCAD Project Engineer: Jim Sell e:\...\hydraulics\2350 stmcad 2yr.stm Jim Sell Design Inc StormCAD v4.1.1 [4.2014] 11/30/04 03:09:56 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Scenario: Base - Z-(r Pipe Report Label Upstream Node DownstreamTotal Node System Flow (cfs) Length (ft) onstructe Slope (ft/ft) Section Size Manning n Full Capacity (cfs) Upstreamownstrea Invert Elevation (ft) Invert Elevation (ft) pstrea Ground Elevation (it) ownstrea Ground Elevation (it) UpstreamDownstreamHydraulicHydraulic Cover (ft) Cover (ft) Grade Line In (ft) Grade Line Out (h) A-1 I 1 MH 1 2.98 31.30 0.012141 18 inch 0.013 11.57 5,136.78 5,136.40 5,140.00 5,141.70 1.72 3.80 5,137.44 5,136.93 A-2 MH 1 MH 2 2.98 124.60 0.021669 18 inch 0.013 15.46 5,136.30 5,133.60 5,141.70 5,137.80 3.90 2.70 5,136.96 5,134.05 A-3 MH 2 12 2.98 178.60 0.009742 18 inch 0.013 10.37 5,133.50 5,131.76 5,137.80 5,134.90 2.80 1.64 5,134.16 5,132.47 B-1 14 15 2.36 31.00 0.011935 18 inch 0.013 11.48 5,132.64 5,132.27 5,135.85 5,135.85 1.71 2.08 5,133.22 5,132.74 A-4 12 13 5.32 51.70 0.012573 24 inch 0.013 25.36 5,131.66 5,131.01 5,134.90 5,135.62 1.24 2.61 5,132.47 5,131.90 B-2 1 5 13 2.87 50.80 0.015551 18 inch 0.013 13.10 5,132.17 5,131.38 5.135.85 5,135.62 2.18 2.74 5,132.81 5,131.86 A-5 13 01 7.78 74.20 0.012264 24 inch 0.013 25.05 5,130.91 5,130.00 5,135.62 5,130.00 2.71 -2.00 5.131.90 5,130.77 C-1 16 MH 3 8.02 144.40 0.029986 24 inct 0.013 39.17 5.125.76 5.121.43 5,125.76 5,129,93 -2.110 6,50 5,126,77 5,122,04 C-2 MH 3 MH 4 8.02 25.60 0.030078 24 inct 0.013 39.23 5,121.33 5,120.56 5,129.93 5,126.75 6.60 4.19 5,122.34 5,121.24 C-3 MH 4 02 8.02 35.30 0.030028 24 inch 0.013 39.20 5,120.46 5,119.40 5,126.75 5,119.40 4.29 -2.00 5,121.47 5.120.06 7 itle: flarmony Ridge StormCAD e V..\hydraulics\2350 stmcad 2yr.stm Jim Sell Design Inc 02/02/05 10:16:58 AM ® Hassled. Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Jim Sell StormCAD v4. 1.1 14.20141 Page 1 of 1 Scenario: Base - ',I( Node Report Label Known Flow (cfs) Total System Flow (Cis) Ground Elevation (fl) Rim Elevation (tt) Hydraulic Grade Line In (11) Hydraulic Grade Line Out (tt) 1 1 2.98 2.98 5.140.00 5,140,00 5,137.44 5,137.44 MH 1 2.98 5,141.70 5,141.70 5,136.96 5,136.96 MH 2 2.98 5,137.80 5,137.80 5,134.16 5,134.16 14 2.36 2.36 5,135.85 5,135.85 5,133.22 5,133.22 12 5.32 5.32 5,134.90 5,134.90 5,132.47 5,132.47 15 2.87 2.87 5,135,85 5,135.85 5,132.81 5,132.81 13 7.78 7.78 5,135,62 5,135.62 5,131.90 5,131.90 01 7W8 5.130.00 5.130.00 5,130.77 5,130.77 16 8.02 8.02 5,125.76 5,125.76 5,125.76 5,125.76 MH 3 8.02 5,129.93 5,129.93 5,122.34 5,122.34 MH 4 8,02 5,126.75 5,126.75 5,121.47 5,121.47 02 8.02 5,119.40 5,119.40 5,120.06 5,120.06 Title: Harmony Ridge StormCAD e1.. \hydraulics\2350 simcad 2yr.stm Jim Seil Design Inc 02/02/05 10:20: 13 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Jim Sell StormOAD v4.1.1 [4.2014] Page 1 of 1 Babel. 13 Rim'. 5, 13562It Label: 12� label: h5 Sump: 5, 130191it Rim: 5,13490fl Up Inwn. 5130.91 It Simp.5131 66 fl Do Invert. 5:1300011 L 7420 n Sze 24 intl 80012 0`00 ,abet O 1 Rim: 5.13000 fl Snnp. 5, 130 00 8 0.50 1-N00 1,50 Babel A4 Up. hwrC 5,131 fi6 it ❑I. Inwn: 5.131 01 H L 51]Ofl Sze: 24 mn S:0➢12573 Nfl Profile Z-fr Scenario: Base ?RIAA4GN- 1'c Label A3 Up. Inwn. 5.133 50 It n. OInvan. 5,131 76 11 L 1786011 Sze. 18 inM S-0009742 It 2+00 '&N.n (n) RabeL MH2 Rim: �.1378011 gimp: 5.13350It Rabal a2 Up. Inwn:5,136,30 ft Dn. invert: 5,133.60ft L 124 60 it Sze: l8intl S: 0 021669 Nfl 3+00 3 50 4+00 Lebef MH 1 Rim: 5.141708 Sump 5,136 30 it 5, 14200 Rabat 11 Rim 5,1 00fl Sump. 5,136]6 fl. n 5.14000 - 5,13800. FJawuon fl0 - 5,13600 LtbeL At 5, 13400 Up. Inwn: 5,136 7811 Dp Inwn'5, 13640n L 3130it Sze'. 18 Intl 5, t3260. S.0012141 Nit 5,13000 4 50 5`00 Title: Harmony Ridge StormCAD Project Engineer. Jim Sell e:\...\hydraulics\2350 stmcad 2yr. stm Jim Sell Design Inc StormCAD v4.1.1 [4.20141 11/30/04 02:59.33 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 USA 1-203-755-1666 Page 1 of 1 w w w w w w w w w M w w w w w w w Profile - Z1� Scenario: Base Label:13 Label:15 Rim: 5,135.62 ft Rim: 5,135.85 ft Sump:5,130.91 ft Sump 5,132.17ft I 0+70 0+90 1+ Ration �tation (ft) Label: B-2 Up. Invert 5,132.17 ft Dn. Invert 5,131.38 ft L: 50.80 ft Size: 18 inch S: 0,015551 ft/ft Label: 14 Rim: 5,135.85 It Sump: 5,132.64 ft 5,136.00 5,134+50 5,133.50 Elevation (ft) 5,132.50 5,131.50 5,130.50 1+60 Label: B-1 Up. Invert 5,132.64 ft Dn. Invert: 5,132.27 ft L: 3 1. 00 ft Size: 18 inch S: 0.011935 fVft Title Harmony Ridge StormCAD Project Engineer Jim Sell eA... \hydraulicst2350 stmcad 2yr. stm Jim Sell Design Inc StormCAD v4. 1_1 [4.2014] 11/30/04 03:06:41 PM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755.-1666 Page 1 of 1 Label: MH 3 Rim: 5,129.93 ft Sump: 5,121.43 ft Label: MH 4 Rim: 5,126.75 ft Sump: 5,120.56 ft Label: O 2 Rim: 5,1 19.40 ft Sump: 5,119.40 ft Label: C-2 Up. Invert 5,121.33 ft Dn. Invert 5,120.56 ft L: 25.60 ft 0+50 0+00 Size: 24 inch 1+00 Label: C-3 S: 0.030078 ft/ft Up. Invert 5,120.46 ft Din. Invert 5,119.40 ft L: 35.30 ft Size: 24 inch S: 0.030028 ft/ft Profile y r Scenario: Base r✓:la,.u..5 : , 5,130.00 5,128.00 5,126.00 Label: 16 Rim: 5,125.76 ft Sump: 5,125.76 ft 5,124.00 Label: C-1 5,122.00 Up. Invert 5,125.76 ft Dn. Invert 5,121.43 ft L: 144.40 ft Size: 24 inch 5,120.00 S: 0.029986 ft/ft 5,1 18.00 Station (ft)1+50 2+00 2+50 Bevation (ft) Title: Harmony Ridge StormCAD Project Engineer: Jim Sell e:\...\hydraulics\2350 slmcad 2yr.stm Jim Sell Design Inc StormCAD v4.1.1 [4.20141 02/02/05 10:21:48 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1:666 Page 1 of 1 Scenario: Base STOFM SCt&w- 40M45(is - ldD�r b b b b b b b 5 b o J J J .. LOT 44 ' 1 «, I LOT 43 k, LOT 33 LOT 32 g a I I LOT 34 I Z � LOT 42 LOT 35 `/ LOT 41 LOT 36 - - LOT LOT37 � -._.�- LOT 39 LOT A�LOT31 LOT 7 LOT 38 < LOT 30 LOT 8 �y� LOT 29 z = / e3 LOT 28 LOT 9 " LOT 27 \ X-1 LOT 10 t LOT 26 LOT 11 LOT 25 \\ 01 LOT 24 LOT 12 LOT 23 LOT 13 / oz LOT 22 i s LOT 14� I LOT 21 Title: Harmony Ridge StormCAD Project Engineer: Jim Sell e:\_.\hydraulics\2350 stmcad 100yr.stm Jim Sell Design Inc StormCAD v4.1.1 j4.20141 11/30/04 03:11:36 PM ID Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Scenario: Base - (LYE ( r Pipe Report Label Upstream Node Downstream Node Total System Flow (CIS) Length (ft) onstructe Slope (ft/ft) Section Size ManningE n Full Capacity (cfs) Upstream Invert Elevation (ft) ownstrea Invert Elevation (11) pstrean Ground Elevation (ft) )ownstrean Ground Elevation (ft) UpstreamDownstream Cover (ft) Cover (ft) Hydraulic Grade Line In (fry Hydraulic Grade Line Out (a) A-1 1 1 MH 1 13.90 31.30 0.012141 18 inch 0.013 11.57 5,136.78 5,136.40 5,140.00 5,141.70 1.72 3.80 5,140.53 5,139.98 A-2 MH 1 MH 2 13.90 124.60 0.021669 18 inch 0.013 15.46 5.136.30 5,133.60 5,141.70 5,137.80 3.90 2.70 5,139.98 5,137.80 A-3 MH 2 12 13.90 178.60 0.009742 18 inch 0.013 10.37 5,133.50 5,131.76 5,137.80 5,134.90 2.80 1.64 5,137.90 5,134.78 B-1 14 15 11.25 31.00 0.011935 18 inch 0.013 11.48 5.132.64 5,132.27 5,135.85 5,135.85 1.71 2.08 5,135.36 5,135.00 A-4 12 13 25.01 51.70 0.012573 24 incr 0.013 25.36 5,131.66 5,131.01 5,134.90 5,135.62 1.24 2.61 5,134.78 5,134.15 B-2 15 13 1.3.64 50.80 0.015551 18 inch 0.013 13.10 5,132.17 5,131.38 5,135.85 5,135.62 2.18 2.74 5,135.00 5,134.15 A-5 13 01 38.65 74.20 0.012264 24 inch 0.013 25.05 5,130.91 5,130.00 5,135.62 5,130.00 2.71 -2.00 5,134.15 5,131.95 C-1 16 MH 3 38.65 144.40 0.029986 24 inch 0.013 39.17 5.125.76 5,121.43 5,125.76 5,129.93 -2.00 6.50 5.127.71 5.123.07 C-2 MH 3 MH 4 38.65 25.60 0.030078 24 inch 0.013 39.23 5,121.33 5,120.56 5,129.93 5,126.75 6.60 4.19 5,123.28 5.122.33 C-3 MH 4 02 38.65 35.30 0.030028 24 inch 0.013 39.20 5,120.46 5,119.40 5,126.75 5,119.40 4.29 -2.00 5,122.41 5,121.15 Title Harmony Ridge SlormCAD a:\...\hydraulics\2350 simcad 100yr.slm Jim Sell Design Inc 02/02/05 10:01:43 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1,666 Project Engineer: .Jim Sell SlormCAD v4.1. 1 14.20141 Pape 1 of 1 r= r= r Scenario: Base ! ( A'; , Node Cost Report Label Known Flow (cfs) Total System Flow (cfs) Ground Elevation (ft) Rim Elevation (ft) Hydraulic Grade Line In (ft) Hydraulic Grade Line Out (ft) 1 1 13.90 13.90 5,140.00 5,140.00 5,140.00 5,140.00 MH 1 13.90 5,141.70 5,141.70 5,139.98 5,139.98 MH 2 13.90 5,137.80 5,137.80 5,137.80 5,137.80 14 11.25 11.25 5,135.85 5,135.85 5,135.36 5,135.36 12 25.01 25.01 5,134.90 5,134.90 5.134.78 5.134.78 15 13.64 13.64 5.135.85 5,135.85 5,135.00 5,135.00 13 38.65 38.65 5,135.62 5,135.62 5,134.15 5,134A5 01 38.65 5,130.00 5,130.00 5,131.95 5,131.95 16 38.65 38,65 5,125.76 5,125.76 5,125.76 5,125.76 MH 3 38.65 5,129.93 5,129.93 5,123.28 5,123.28 MH 4 38.65 5,126.75 5,126.75 5.122.41 5,122,41 02 38.65 5,119.40 5,119.40 5,121.15 5,121.15 i rile: Harmony Ridge SformCAD Project Engineer: Jim Sell e:\...\hydraulics\2350 slmcad I00yr.slm Jim Sell Design Inc StormCAD v4.1.1 (4.20141 02/02/05 10:04:03 AM ®Haeslad Methods, Inc. 37 Brookside Hoad Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 a• M Mill = M M Profile — 1604C Scenario: Base &v—" C H A label. 13 label 12 Rim 5.135.62 M1, Rim: 5.134. 90pp Sump 5,130.91fl Sump. 5,131.6I6a label 01 Rim:'5, 130.0011 Sunp. 5,130 00 fl 0`00 0.50 1-00 Label: A5 Up Jnvert 5,130.91 M1 Dn lnverl: 5,130.00 M1 L 7420fl Sz e. 241irm S. 0012264 M1m 1+50 2,00 babel'. A4 Up. invert. 5,131 66 fl D. Invert: 5,131 01 fl L 51]Ofl Size'. 24 inch S'. 0.012573 MI label' MH 1 Rim: 5.141 704 Sump: 5.136 30 M1 label' I 1 5,192 00 Rim: 5,140. 00M1 label A3 Sung: 5, 136 76 0 Up h." 513350 fl label MH 2 IDn. Invert 5, 1317G fl RIM-513780ft 5,140.00 L 1766011 Sump 5,13350A Sze: 18 Inai S. 0.OW742 M1 ' 5,138.00 Hevaiion lfll - 5.13600 5,13400 Label: A2 tabel:At Up. Imien ,136.30fl utlp. Invert. 5,13640 iL Dn. lnveh 13360il Pn. Invhar[5.13fi <Ofl L 124:6021 - L 31 3011 5, 13200 Sze: 18im1h Sze'. 19inch S: 0.021669 M1m S 0.012141 MI - 15,130.00 2-50 3 00 3 50 4+00 4,50 b00 Sab.n An Title: Harmony Ridge StormCAD Project Engineer: Jim Sell e:\...\hydraulics\2350 stmcad 100yr. stm Jim Sell Design Inc StormCAD v4.1.1 [4.2014] 11/30/04 03: 13: 19 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Label: 13 Rim: 5,135.62 ft Sump: 5,130.91 ft r Ml M r Profile - LOa qr Scenario: Base BPWC* 13 Label:15 Label:14 Rim: 5,135.85 ft Rim: 5,135.85 ft Sump: 5,132.17 ft Sump: 5,132.64 ft 5,136.00 0+70 0+90 1+10 1+30 Label: B-2 Station (ft) Up. Invert:5,132.17 ft Dn. Invert: 5,131.38 ft L: 50.80 ft Size: 18 inch S: 0.015551 fVft 5,134.50 5,133.50 Bevation (ft) 5,132+50 5,131.50 5,130,50 1+60 Label: B-1 Up. Invert: 5,132.64 ft Dn. Invert 5,132.27 ft L: 31,00 ft Size: 18 inch S: 0.011935 f tft Title: Harmony Ridge StormCAD Project Engineer. Jim Sell e \ ..\hydraulics\2350 stmcad 100yr. stm Jim Sell Design Inc Storm CAD v4.1.1 [4.2014] 11/30/04 03,15. 11 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 M11 = M r Profile j,�yr Scenario: Base Label: MH 3 Rim: 5,129.93 ft Sump: 5,121.43 ft Label: MH 4 Rim: 5,126.75 ft Sump: 5,120.56 ft Label: 02 Rim: 5,1 19.40 ft Label: C-2 Sump: 5,119.40 ft Up. Invert 5,121.33 ft Dn. Invert 5,120.56 ft L: 25.60 ft 0+00 0+50 Sze: 24 inch 1+00 Label: C-3 S: 0.030078 ft/ft Up. Invert 5,120.46 ft Dn. Invert 5,119.40 ft L: 35.30 ft Size: 24 inch S: 0.030028 ft/ft Station (ft)1+50 Label: 16 Rim: 5,125-76 ft Sump: 5,125.76 ft Label: C-1 Up. Invert 5,125.76 ft Dn. Invert 5,121.43ft L: 144.40 ft Size: 24 inch S: 0.029986 ft/ft 2+00 Title: Harmony Ridge Storn-CAD Project Engineer: Jim Sell e:\...\hydraulics\2350 stlncad I00yr.stm Jim Sell Design Inc StormCAD v4.1.1 14.20141 02/02/05 10:12:23 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 GRATE INLET IN A SUMP Project = Harmony Ridge Filing 2 Inlet ID = Inlet 1: 100yr 0: 13.9 cfs Curie Gutter it Flow Ih of a Unit Grate Lo = 3.35 ft i of a Unit Grate Wo = 2.79 ft Opening Ratio for a Grate (typical values = 0.6-0.9) A = 0.75 ling Factor for a Single Inlet (typical value = 0.5) C, = 0.50 e Coefficient (typical value = 0.67) Cd = 0.67 Coefficient (typical value = 3.00) C.„ = 3.00 Depression, if any (not part of upstream Composite Gutter) aio.,i = 13.0 inches Number of Units in the Grated Inlet No = 1 sign Discharge on the Street (from Street Hy) Q. = 13.9 cfs ter Depth for Design Condition Yd = 19.1 inches al Length of Grated Inlet(s) L = 3.4 it a Weir Dacity as a Weir without Clogging 0 , = 53.7 cis gging Coefficient for Multiple Units Coef = 1.00 gging Factor for Multiple Units Clog = 0.50 )acity as a Weir with Clogging Owa = 43.7 cfs an Orifice )acity as an Orifice without Clogging Oo; = 47.5 cfs )acity as an Orifice with Clogging Qoa = 23.8 cfs oacity for Design with Clogging 0, = 23.8 cfs oture Percentage for this Inlet = 0, / 0, = C%= 100.00 % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. 2350 Inlet A-1 worksheet .xIs, Grate-S 2/3/2005, 3:32 PM u ' Project = Harmony Ridge Filing 2 Inlet ID = Inlet 2: 100yr 0: 11.1 cfs 1 GRATE INLET IN A SUMP Curb Gutter Flow Length of a Unit Grate Lo = 3.35 ff Width of a Unit Grate Wo= 2.79 ft Area Opening Ratio for a Grate (typical values = 0.6-0.9) A = 0.75 Clogging Factor for a Single Inlet (typical value = 0.5) Co = 0.50 Orifice Coefficient (typical value = 0.67) Ce = 0.67 Weir Coefficient (typical value = 3.00) C„, = 3.00 Local Depression, if any (not part of upstream Composite Gutter) a,., = 13.0 inches Total Number of Units in the Grated Inlet No = 1 Design Discharge on the Street (from Street Hy) 0, = 11.1 cfs Water Depth for Design Condition Ya = 18.7 inches Total Length of Grated Inlet(s) L = 3.4 It As a Weir Capacity as a Weir without Clogging Q., = 51.9 cis Clogging Coefficient for Multiple Units Coef = 1.00 Dogging Factor for Multiple Units Clog = 0.50 Capacity as a Weir with Clogging Q, = 42.2 cis As an Orifice Capacity as an Orifice without Clogging = 47.0 cfs Capacity as an Orifice with Clogging 0oa = 23.5 cfs for Design with Clogging 0, = 23.5 cfs Percentage for this Inlet = 0, / 0, = C%= 100.00 % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. 2350 Inlet 2 worksheet .xIs, Grate-S 2/3/2005, 3:39 PM I CURB OPENING INLET IN A SUMP Project = Harmony Ridge Filing 2 Inlet ID = Inlet3, 100yr: carryover flow from Inlet 4: 100yr: 5.4 cfs W Lu WP P 3.< --- 30- H: Gutter Yd Pus orate r Flo v Direction gn Information (Input) th of a Unit Inlet L„ = 5.00 it Depression, if any (not part of upstream Composite Gutter) aq w = 4.00 inches it of Curb Opening in Inches H = 6.00 inches Width for Depression Pan Wo = 3.00 it Sing Factor for a Single Unit (typical value = 0.1) C, = 0.10 t of Throat (see USDCM Figure ST-5) Theta = 63.4 degrees e Coefficient (see USDCM Table ST-7) C, = 0.67 Coefficient (see USDCM Table ST-7) CN = 3.00 Number of Units in the Curb Opening Inlet No = 1 a Weir sign Discharge on the Street (from Street Hy) O, = 5.4 cfs ter Depth for the Design Condition Y, = 10.89 inches al Length of Curb Opening Inlet L.= 5.00 It Dacity as a Weir without Clogging O,„ = 27.0 cfs gging Coefficient for Multiple Units Cost = 1.00 gging Factor for Multiple Units Clog = 0.10 )acity as a Weir with Clogging O„, = 25.7 cfs an Orifice )acity as an Orifice without Clogging Oo, = 11.1 cfs Dacity as an Orifice with Clogging O„ = 10.0 cfs 3acity for Design with Clogging Q. = 10.0 cfs 3ture Percentage for this Inlet = O, / Qo = C%= 100.00 °e Note: Unless additional policing depth or spilling over the curb is acceptable, a capture percentage of less than 1000o in a sump may indicate the need for additional inlet units. 2350 Inlet 3 worksheet As, Curb-S 2/3/2005, 3:21 PM 11 CURB OPENING INLET ON A GRADE Project: Harmony Ridge Filing 2 Inlet ID: Inlet Inlet 4, 100yr: 11.25 cfs I, WP WP ----- ><- -> Flow Direction Curb Gutter h of a Single Inlet Unit L„ = 5.00 ft ing Factor for a Single Unit Inlet (typical value = 0.1) Co = 0.10 Depression, if any (not part of upstream Composite Gutter) al.w = 4.0 inches ier of Curb Opening Inlet Units No = 1 5is (Calculated) In Discharge on the Street (from Street Hy) Q, = 11.3 cis Depth for Design Condition Ya = 11.9 inches Length of Curb Opening Inlet L = 5.00 ft r Flow to Design Flow Ratio (from Street Hy) E, = 0.19 alent Slope S. S. = 0.2137 Wit red Length LT to Have 100 % Interception L7 = 13.54 it ing Coefficient Cost = 1.00 ing Factor for Multiple -unit Curb Opening Inlet Clog = 0.10 ive (Unclogged) Length L. = 4.50 ft r No -Clogging Condition eption Capacity Q, = 6.3 cfs r Clogging Condition d Interception Capacity Qa = 5.8 cfs over flow = Q, - Q] = 0, = 5.4 cfs ire Percentage for this Inlet = Q, / Q, = C% = 51.7 % 2350 Inlet B-1 worksheet .xis, Curb-G 2/3/2005, 3:42 PM CURS OPENING INLET ON A GRADE Project: Harmony Ridge Filing 2 Inlet ID: Inlet 5, 100yr: 2.39 cfs Wn L WP ow Direction In of a Single Inlet Unit L„ = 5.00 It ling Factor for a Single Unit Inlet (typical value = 0.1) Ca = 0.10 Depression, if any (not part of upstream Composite Gutter) almai = 4.0 inches )er of Curb Opening Inlet Units No = 1 ,sis (Calculated) In Discharge on the Street (from Street Hy) Q, = 2.4 cfs r Depth for Design Condition Yd = 10.0 inches Length of Curb Opening Inlet L = 5M It r Flow to Design Flow Ratio (from Street Hy) Eo = 0.47 alent Slope S. % = 0.4925 Wit '.red Length LT to Have 100% Interception Lr = 4.28 It king Coefficient Coef = 1.00 ping Factor for Multiple -unit Curb Opening Inlet Clog = 0.10 ive (Unclogged) Length La = 4.28 ft r No -Clogging Condition eption Capacity O, = 2.4 cfs r Clogging Condition d Interception Capacity Qa = 2.4 cfs over flow = Qa - Qa = Qo = 0.0 cfs ire Percentage for this Inlet = Qa / Qo = C% = 100.0. % 1 2350 Inlet 5 worksheet As, Curb-G 2/3/2005, 3:44 PM II II II II Project = Harmony Ridge Filing 2 Inlet ID = Inlet 1: 2vr 0: 2.98 cfs GRATE INLET IN A SUMP ---------------- Curb Gutter F— Flow ngth of a Unit Grate L. = 3.35 ft idth of a Unit Grate Wo = 2.79 ft ea Opening Ratio for a Grate (typical values = 0.6.0.9) A = 0.75 Dgging Factor for a Single Inlet (typical value = 0.5) Co = 0.50 ifice Coefficient (typical value = 0.67) Cd = 0.67 eir Coefficient (typical value = 3.00) Cw = 3.00 cal Depression, if any (not part of upstream Composite Gutter) al«ai = 13.0 inches tal Number of Units in the Grated Inlet No = 1 1pacity of Grate Inlet in a Sump (Calculated) !sign Discharge on the Street (from Street Hy) 0, = 3.0 cfs ater Depth for Design Condition Ya = 16.4 inches tal Length of Grated Inlet(s) L = 3.4 ft ! a Weir 1pacity as a Weir without Clogging Q,„ = 42.8 cfs ogging Coefficient for Multiple Units Coef = 1.00 Dgging Factor for Multiple Units Clog = 0.50 1pacity as a Weir with Clogging Q� = 34.7 cfs an Orifice 1pacity as an Orifice without Clogging Qc; = 44.0 cfs 1pacity as an Orifice with Clogging Qoa = 22.0 cfs ipacity for Design with Clogging Oa = 22.0 cfs ipture Percentage for this Inlet = Oa/ Qo = C% = 100.00 % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. 2350 Inlet 1 2yr worksheet .xIs, Grate-S 2/3/2005, 3:00 PM I II I! GRATE INLET IN A SUMP Project = Harmony Ridge Filing 2 Inlet ID = Inlet 2: 2yr Q: 2.34 cfs Curb Gutter igth of a Unit Grate Lo = 3.35 It ith of a Unit Grate Wo = 2.79 It a Opening Ratio for a Grate (typical values = 0.6-0.9) A = 0.75 gging Factor for a Single Inlet (typical value = 0.5) C, = 0.50 `ice Coefficient (typical value = 0.67) Ca = 0.67 .ir Coefficient (typical value = 3.00) Cw = 3.00 al Depression, if any (not part of upstream Composite Gutter) almai = 13.0 inches al Number of Units in the Grated Inlet No = 1 3acity of Grate Inlet in a Sump (Calculated) sign Discharge on the Street (from Street Hy) Q, = 2.3 cfs ter Depth for Design Condition Y, = 16.0 inches al Length of Grated Inlet(s) L = 3.4 It a Weir )acity as a Weir without Clogging Q. = 41.1 cfs gging Coefficient for Multiple Units Coef = 1.00 gging Factor for Multiple Units Clog = 0.50 )acity as a Weir with Clogging Q„, = 33.4 cfs an Orifice )acity as an Orifice without Clogging Q., = 43.5 cfs )acity as an Orifice with Clogging Qoa = 21.7 cfs racity for Design with Clogging Q, = 21.7 cfs 3ture Percentage for this Inlet = Q, / Q, = C%= 100.00 910 Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. 1 2350 Inlet 2 2yr wcrksheet .xls, Grate-S 2/3/2005, 3:02 PM CURB OPENING INLET IN A SUMP Project = Harmony Ridge Filing 2 Inlet ID = Inlet 3, 2yr. carryover flow from Inlet 4: 100yr: 0 cfs WF Lu WP -7<-----><_--�. H Gutter Yd Pan Ovate r Flow Direction gn Information (Input) th of a Unit Inlet L„ = 5.00 ft Depression, if any (not part of upstream Composite Gutter) a,�i = 4.00 inches it of Curb Opening in Inches H = 6.00 inches Width for Depression Pan WP = 3.00 It Sing Factor for a Single Unit (typical value = 0.1) Cp = 0.10 a of Throat (see USDCM Figure ST-5) Theta = 63.4 degrees e Coefficient (see USDCM Table ST-7) C' = 0.67 Coefficient (see USDCM Table ST-7) Cw 3.00 Number of Units In the Curb Opening. Inlet No = 1 a Weir sign Discharge on the Street (from Street Hy) O, = 0.0 cfs ter Depth for the Design Condition Yd = 10.89 inches al Length of Curb Opening Inlet L= 5.00 ft oacity as a Weir without Clogging Q. = 27.0 cfs gging Coefficient for Multiple Units Coef = 1.00 gging Factor for Multiple Units Clog = 0.10 cacity as a Weir with Clogging O� = 25.7 cfs an Orifice Dacity as an Orifice without Clogging Oo; = 11.1 cfs Dacity as an Orifice with Clogging Oo, = 10.0 cfs oacity for Design with Clogging O, = 10.0 cis oture Percentage for this Inlet = O, / O, = Co'. = NDIV/0! 46 Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. 2350 Inlet 3 2yr worksheet .xIs, Curb-S 213/2005, 3:25 PM CURB OPENING INLET ON A GRADE Project: Harmony Ridge Filing 2 Inlet ID: Inlet Inlet 4. 2vr: 2.36 cfs L W P CAP -><----- >.( - Curb Gutter Flaw Direction 1 of a Single Inlet Unit 5.00 It ng Factor for a Single Unit Inlet (typical value = 0.1) Co = 0.10 Depression, if any (not part of upstream Composite Gutter) ai. = 4.0 inches er of Curb Opening Inlet Units No = 1 1n Discharge on the Street (from Street Hy) 0a = 2.4 cfs r Depth for Design Condition Yd = 10.0 inches Length of Curb Opening Inlet L = 5.00 ft r Flow to Design Flow Ratio (from Street Hy) Ea = 0.46 alent Slope Se Se = 0.4960 ft/ft ired Length LT to Have 100% Interception LT = 4.24 It ling Coefficient Coef = 1.00 ling Factor for Multiple -unit Curb Opening Inlet Clog = 0.10 rive (Unclogged) Length L. = 4.24 It r No -Clogging Condition eption Capacity O, = 2.4 cfs r Clogging Condition _ if Interception Capacity 0e = 2.4 cfs over flow = Ca - 0. = 0h = 0.0 cfs ire Percentage for this Inlet = 0, / 00 = C% = 100.0 % 2350 Inlet 4 2yr worksheet As. Curb-G 2/3/2005, 3:26 PM CURB OPENING INLET ON A GRADE Project: Harmony Ridge Filing 2 Inlet ID: Inlet 5. 2vr: 0.51 cfs L RAP Curb Gutter Flaw Direction i of a Single Inlet Unit L„ = 5.00 ft ng Factor for a Single Unit Inlet (typical value = 0.1) Co = 0.10 Depression, if any (not part of upstream Composite Gutter) a,..., = 4.0 inches er of Curb Opening Inlet Units No = 1 In Discharge on the Street (from Street Hy) Q, = 0.5 cfs . Depth for Design Condition Y, = 8.3 inches Length of Curb Opening Inlet L = 5.00 ft r Flow to Design Flow Ratio (from Street Hy) Eo = 0.99 alent Slope S. S. = 1.0099 Wit red Length LT to Have 100% Interception LT = 1,45 ft ing. Coefficient Coat= 1.00 ing Factor for Multiple -unit Curb Opening Inlet Clog = 0.10 ive (Unclogged) Length L. = 1.45 ft r No -Clogging Condition eption Capacity O, = 0.5 cfs r Clogging Condition it Interception Capacity O, = 0.5 cfs over flow =0o-%= Ce= 0.0 cfs ire Percentage for this Inlet = O, / Co = C % = 100.0 % 2350 Inlet 5 2yr worksheet .xls, Curb-G 2/3/2005, 3:29 PM I ' APPENDIX C: REFERENCED INFORMATION AND SUPPORTING DOCUMENTS II II II II II II II II II II II II II 1 Drainage and Erasion Control Report for Harnumv Ridge Filing 2 r:vauna rtn.ieu_owm�w wu ONY WXI-mu WM Mr iax,orvnne xrmxr.DOC February 4, 2005-Appendices C 0 a 2 IC 12 h 0= GU7'=� Fc_re :-Z S S1 C.f fCf'pCliCle 51CL�•�.•rc��'E'fer'.^.?.l yG''.2. "-"'cCl/•C.� S. =e^t ccr-..fG2rce• fit;! aC :f ?_Clic ..czc5. I, n I p — I � v 3: Cat I I (lcrer:ac-ed = cw) i �; (. -1 ct CGenn4) Cr ginal 6u"sr =ne • 1 • 4�� . '��'` ,�-6utta Lecrer;rn C Ir.laf 3iNI a= c�CTiON A -> - a` o n� m� :n-� •'y9 5 1.Y 7�AG5 Xx/'c i _ n IIEIGII Cl T OF OPENING Ih F 4 O N N w •1, in al 01 _l to 10 it -- to 11 �J In In /n In In ]1 \ p\ i> IIEIGIIT OF OPENING (11) IN INCITESVI Irl u n 9 li � 1 ID 111 \\O u II 111 -11 I u 1. ill Lr 1 w 1 C ll !I '� CAPACITY PER FOOT OF �ENGT11 OF OPENING, (0/1.) IN f,.FS. PER FOOT f 1 ni OI t, m in I l ur al 1 1 rt� i 1 1 ra II \ • lJ Ill _1 U1 [, r,l /11 RATIO OF OEPTII OF WATER IN IN F 1:/ITT. GUTTER, yn, TO NFIfi11T OF OPENING,II,IyI� 1 _ t— in Tl 1 1 1 ba in O m U L> n to In - =1 u 11 i� C .' C7 r W 0. J 0 Z C 1NTC 5.7. F 7. C= Cc_y 1 = l- CAA C,OF CFA � c- INL= i IQ �L'cIP, ter- FLU ID DYNAMICS 17-17 1'.5 400roximata Croce Coef5bents for Turbulent Water IL 'A si:ort tube has a length. less than 2 to 3 diameters. A B C D A,u. contracla = Cc-4o 17.73 ' C = area of vena contracts 17.74 orifice area 'The theoretical discharge rate from a tank is V = A„ � 779 . However, this relationship needs to be cor- rected for friction and contraction by multiplying by C, and C, The coefficient of discharge. Cd, is the product of the coefficients of velocity and contraction. 1l;yt 5 F�' ' V = C�voAo = CdvtAo = CjA,,v12gh 17.75 pltf' Cd = C` C, V,. _ actual discharge 1776 ' theoretical discharge 22, DISCHARGE FROM PRESSURIZED TANKS ' If the gas or vapor above the liquid in a tank is at gage Pr"Rsure p. and the discharge is to atmospheric pressure. the bead causing discharge will be P [Sl,' 17.77(a) P9 + (P) X 9 fL1.S.] 17.77(b) ' The discharge velocity can be calculated from Eq. 17.69 aging the increased discharge head. Yo = F, \29h Figure 17. 12 Discharge from a Pressurized Tank 23. COORDINATES OF A FLUID STREAM Fluid discharged from an orifice in a tank gets its initial velocity from the conversion of potential energy. Af- ter discharge, no additional energy conversion occurs, and all subsequent velocity- changes are due to external forces. h 1 Figure 17.13 Coordinates of a Fluid Stream "�- PROFESSIONAL PUBLICATIONS, 1 N C. FINAL DRAINAGE REPORT FOR HARINIONY RIDGE P.U.D. Suhmittcd to: CITY OF FORT COLLINS .Iantlary w, i»', m = M m m m = m = = m m m m r m m '1'AISi,I': 1. 111•I)Itol,o IC CALCIILMIONS WORKS1IFF I IN . IAS 'j "� IIIIf1:1W.4 IQ''{�'/da14 ARStill .I`AJ iiN ��1UNf11 I1 �yy ifl/P,l�Nii 11`1 �'��I 4I�I•wfsllt4 j'.a Ivi�ll �,l'Iii 111�LNt 1;IC1)I►Y.�x„I�r itf.�PfiiV 4i�Rrl1 �M�{li1',�"jufU fjtlr�''V'St�rr,G� i1tl' ball,ANil Iy��tl,µ� ILIiA�'� IINlaITlII. Nl It 11:1•: U1111LAN11-. 11AI(ItLA NII IHAS 'P:I IIAIii I'1. fl 2-Yrs1 l'lll ll,l! IL(I%%, 111 - r\ - A A A nX -\ nf. n/ r\N A" nlll All nl J nll r\I1 I I 1 1 1 2 •1 111 .. 3 6 i P 7 - 4 IUS II 17 ILIA LSN IL iG /1.1(r 1.17 Il_t) 0.41 11 �IN 11 If _ II la nSn 1.14 U•bl ILR$ O.7J ._ 11.71 11.71 0.7$ 0.57 U.fill ...__ .- 11.59 --- ILLO ..- ___ ot,n - ._. 0.57 0,7R 11.7X I00 1.1/0 I,nll 1011 1.25 I Z$ 1.25 125 1.23 1.25 .__.._-_.. 123 1.2$ 100 I] -- 20 411 10 I$ 53- ]s .- 50 -_-__- - IU __ _In - - ---" dll 35 71(10 )1111 If as _. 11111 21111 11111 )1111(1 - _ 111111 4.A1 In nn- - 0 tll - 200- - ] 17 111 I II ] /N II NG A11N 2JIh 411J Inl 1 lx -. 1.N1 ]..I11 N) 10•' 11 t.l _ 0,LN Lil _ 11 tx _ _. 7.99tll--.- 1.11 ___.. 7 91 _ a.r,�, ) -i / I lu I ',III _ JIII I - -- %I_- III __. 11 _. - u _ _ -- - 11 nu -t xo.IIII 100 1.00 1.11() 1110 ---- 100 --_ -_-_ --.._ I IXI 1.on ...- 1.f111 19(I I110 1.25 -___.-_ 113 1.25 -- --- 1.2$ 1.25 II III IIJ 111 - Ibl -IIt -11 -I/ I1 11 ---11 1l7 It I I.-i2 IOR IAO - O.GII 0.7% 0.77 --0.74 ON, _-_ In0 1/10 In0 I.IRI 1.23 1-2$ 1.23 1.25 - 110 .1$ 70 }$ Uur 31111 N1111 400 21111 S.x z. _ 211% I /❑ 252 2.'1'1 40! _.. Il %I 0./1 _ LJI I I1 _ iN11 riJlt 'Ala 7111 Inn 1.25 J5. I' CI (7 11 ( 1 21 It Ifi I/ 741 2. 211 7.11 _.I 7N n, iR- 0.25 IL 20 -- 0.20 31111 1011 4111 - $1111 6tll Ill! __ II G1 )71 IG.JI il./l _ I5.51 _ 17]7 IJ 117 III N$ Il fi7 - _ If•.77 - ibll - )10 J)I1 _. )311 __-_-__ I.00 1.110 1.00 .-_. _ -_ 1.1111 1.23 1.23 1.23 1.23 - 111 111 ul I11 Ilt U6 nr IIR 11 12 I - 11 I$_- 16 57 Ill- 0.91 n f•l --050 nln -0.19 ILI•I av 11.2R 0.46 O.PO 0.60 II}3 11.47 O.PS 0.e7 0.75-- 1.00 2011 .11041 Rnll 10.11(I 25,00 - 2.110 21111 - r.5u -- 21111 9,11 .. _ IlII s.11,. 2•I1 7}7 LRG 1 xv - _--__IRS 7A9 Ir tf L75 ].Id G01 to )N - I n 112 I7 160 11 - I1Q •NI - nm _. 115., In0 100 Inn 1.2$ 1.25 JI I30 25 711 25 an - - 7U 1.25 1.2$ 1.1111 Lllfl Inn 1.2$ Lz3 -- -----'-- Ino 11$ 0.70 n.2o 0211 1.25 1.23 ..--_ .- _1.2$ -_. -- 200 390 20.11 - I. Li I.7 IR 1'1 211 040 2.11 LN$ 21 Al 12 t0 __ F11.71 N(fi __ 12.45 11 RR--- RIA 11 Jr - _ - 12.Ifi 111 J m _. call L00 1.120 - L00 1S 1, II ll I I ll dl'1 R r 1111,'rl 11, 1INII 000 I IIIIIrll.l RN liAIII rls w w ! ! w ! ! w � ! span � � � � � � `M '1'Alt1.P, I. IIYUI!(IL(1l;IC CAI,CULA'llONS R'OIlKtiilisl�l' ' litll ill _S ILN � AVIMAl1 IP 1:111 II Il4 ' ti1,oi I °I'uG' (+ j Itkl+ :.„(1)11111I1y`f Fry1P'111 IISV I1fI��'i'p� 1}IJy1�l 1 (11 1111'I!J�'P r l I (fp.jTln,(9R� ly,6 py'1(l ILI111ti" ill 1(tA�9q�111�114'I+ �g�yIp W h(i h p1� 1"ndF P'(dlLl) I•., ' i,llnu IIF,C(7nl:NN-IVAl1Un 7tI IC i'11'� 2-yr lungr -,... (nAu) (ndn) RAINFALL I NILINS111' 1 1 2-I-r ', Illn.11 ' p•In,l) (iunuj 1.13AK 1 IMAIAIII.IC 11 V 2 1, nnl rr (r Lj 0f•1 ,1 II 1 I. A AI A As �b Al r\R A"S - ,vn rill n 17 r\I I r\I -I -III I17 - III Ili IR 1'I - 17 1 I 1'd I11 h7 I11 u- Ili - Ilx bl I7 IA 7 1 I _. __. 7 A ill - a - 7 a q '1 II I1- 11 I 1 I9 71 I t II, 11 _. -'- II 17 14 is- i l 1R IR Ilr 70 1.711 -_.-__ 4J(r 1.12 7.11l •I On 1'11n G W 70 lrll nno nnn nnn nGn LIIIr ),III LIn 7.Sn -__ _-___ d 11n 7 25 _ 'l rill 4.15 4,5$ .11/0 -._ . _ nnfl -.- 1.11 Ion nn ---7n--212 _zln 2.011 1.1% t71 411 1,11 I.R'1 S.1fl 230 0.R2 fifin 2.I6 ---- __._._._ 1.7t d.po - 44R -._ 2.57 6.42 2.}I .1.114 4112 ud LIR 4.•IR R.21 Y,l7 4.42 4.71 S 95 I IL 101 I,t/ - __-. 1.21 7.Ifl 511. 1.711 I.IR l.az ocr 7 47 2.76 4.'ly 771 LIS .1.74 - 1:Rf Alt I5.11 11.91 15.72 1110 1.111 I111 I111 1.111 i 111 2.'15 I Ifl --I.111 _ LIn lln I w I In 11111 7.7t I.111 1_In _.-._ i, 1f1 Inn 71111 7 10 -_- 21n1 190 /.III) 7.1111 71111 7.00 7.Pn __. "f On 7.00 . 7 NI 71111 7110 7nn znn llxl 7.1111 71111 l.nn 71111 7.Ixl "Lnn t'lll 660 t,•Nl `S t0 ----- -__- 7.nn TOO 700 ..7. .00 _---- znn 7n0 Ina 7.1111 - 100 6.40 I. 111 4111 11,�I IL 71 1.7a 1.11 I.I I Z.INI Iln 1 I1R4 a.9', aan 0 n I.P,. 7.111 5.16 2. RI. 1!•I 7 I,�I 1Jv 5Gt 1.12 ILY7 nhR _._ . n9'1 --- .n91 _. 11 1/ �-._- n.17 n.l'/ a.ml fLfiY n 17 t.n7 0.1R ---II 1.1 111 I)bt oRl 1.�I:R 7'rl t_qJ I L0. 7.77 7. td I11 700 141 ].IR Il 69 7 tR 'LS] '/1I Al R) -.. 4.77 1,11- 1 dS _._... - ._.. 1 1 R 4.4R 7fi1 I 11 -- -- I nl I a.l I I P.1 I.tR I /u - 7 JI - --._ -- qPl ----- 4.IS _ ....-_- 4.21 5.70 311/ A.27 7.1i -__-.-- __-. 0..1.1 _--_--._ 2.09 ___.-_- 1.70 1.17 2.1.1 o.lf 11117 grill Iron o nn LGf. ),}) oLll tlnn nlxl 2.21 2.R5 4.15 4.11 }x5 2„1'i 10-1 4,51 t,'/0 2 (.1 7.U} tI _.t 6f2 4.29 492 .1A2 __-.._. -__- 17; fi I2.R5 -- __-- LI2 1.12 I,05 3,50 16.5 R 111.05 3.211 1.27 IRllr. ------ - nno ---- n.nn LIS --- 7.�17 _.- 1.71 21a----lln 4,-1-1) --- --c.Y-- 0.64 4.55 7..•11 -_� R.17--- - 12.RR I1.R.1 - _ '1.11 .. _ 2:R2 --- - 2tt iJn ------..1. z.7n - I. w 1Jo 3.10 7.60--- 7.Jn 2. Ili --_-__ R,m 2.94 --no -L 0I5 _-- 5.71 _4-_ -mflc -0.36 1:14 L0'1 RAr 2.22 5.11 2.12 }]'/ .192 lY4 0..70 R95 - I.08 1.42 2.99 1.12 1.67 14.55 ISI, Il ll" I I Ipir.l II.I II.11i I I/11/'!R I Iknln}.W, 0110 hpll.nl•. Reprinted front the North American Water and Envirommtent Congress O 1996 American Society of Civil &tgineers ROC& BIYR" FOR GRADS CONTROL Charles E. Ricel, Kerry M. Robinsont, and Kent C. Kadavy' A. M. ASCE Abstract Rock chutes (riprap channe as grade control structures t to a lower elevation. Common rock riprap channels were evaluations, procedures are should ensure the structural rock chutes. as on steep slopes) are used o safely conduct a water flow procedures used for design of evaluated. Based on these recommended for design that stability and safety of the Introduction Modifications to natural channels generally increase the channel gradient, flow capacity, and flow velocity. The sediment carrying capacity is increased and the channels tend to degrade. When degradation occurs, gradient control is required. Gradient control structures are used to locally drop the channel bed level and decrease the channel grade between structures to a stable gradient. One type of grade control structure is a chute formed by stabilizing a steepened portion of the channel by lining the channel with loose riprap. Loose riprap-lined channels or rock chutes can be used in many situations to safely conduct water to a lower elevation and provide effective grade control. The riprap serves to stabilize the chute and dissipate some flow energy. Depending on site conditions and stone availability, rock chutes may offer economic advantages over more traditional type structures. Rock chutes are also an aesthetically pleasing alternative for environmentally sensitive areas. Background Six procedures for the design of riprap lined channels were evaluated. The design procedures are presented in 'Research Hydraulic Engineer, 'Agricultural Engineer, USDA, ' ARS, Hydraulic Engineering Research Unit, 1301 N. Western St., Stillwater, OK 74075. II II Reprinted from the North American Waster end Environment Congress C 1996 Amerim, Society of Civil &igineers English units. Rather than converting the equations to ade ish units metric the final result converted tomSI units using TheEngvariables andconvertedvariables used are: d - flow depth, ft; d� - maximum flow depth, ft; d5 = riprap size for which 50% is finer, in.; D riprap size for which 50% is finer, ft; gm= acceleration due to gravity - 32.2 Lt/s1; n - Manning roughness coefficient; q - unit discharge, fe/s/ft; design unit discharge, ft /s/ft; qq, unit discharge at riprap failure, fe/s/ft; S - specific gravity of water - 1.0; S, bed slope, tangent; S, specific gravity of riprap = 2.65; V - mean velocity, ft/s; V - minimum velocity, ft/s; w = unit weight of water - 62.4 lb/ft3; w, - unit weight of riprap - 2.65(w); y = Isbash coefficient, 1.20 and 0.86 for maximum and minimum riprap stability; and a - bed slope angle - tan-' Se. nasign Procedures ' Zsbash (1936) conducted a series of experiments that yielded a relationship for the minimum velocity V) that will remove loose riprap as: V� = y(2g(S. - S)/S)112(Dm)tn (1) For flow on a sloping bed, Simons and Senturk (1977), assuming y - 1.20, expressed the Isbash equation as: 0.347 (V2) / [ (S, - 1)gD50) = Cos a (2) To solve the equation, V = q/d, where the depth d is aasumed equal to the hydraulic radius. The Manning equation is used to solve for d with n expressed as, [Abt et al. (1988)1: n - 0. 0456 (dy0S,) atfv - 0. 0677 (D50.4e) e'139 (3) Isbashrs (1936) data were obtained from the construction of dams by depositing rounded riprap into flowing rivers. One objective of the study was to size the individual stones located on the downstream rockfill dam slope to resist movement due to overtopping flow. Normann (1975) presented the following relationship for the maximum permissible depth of flow d. for channels lined with riprap as: II Reprinted from the North America Water and Environment Congreaa O 1996 American Society of Civil Mlgineers II II II II II d. = 5 (Dso) NSa (4) The Manning equation is used to calculate d. assuming: n s 0.0395(D50)... (5) Normann's procedure was developed from modifications of the method presented by Anderson et al. (1970). This method is applicable to slopes much flatter than the slopes generally associated with rock chutes. Olivier (1967) presented the following relationship for the unit discharge q at riprap movement as: q - 0.423(Dw)"((w. - w)/w]SO(Sa)-ns (6) Olivier's (1967) results are from laboratory experiments with narrow (0.56 m wide) and short (1.52 m) flumes, small stone sizes (Ds0 5 60 mm), and slopes ranging from 8 to 45%. ' Abt and Johnson (1991) 'presented the following expression relating the median riprap size to bed slope and overtopping discharge (qr) at failure: ' D50 - 0.436(Sa)041(C.U)0se (7) The unit discharge in equation (7) was modified to take into account the riprap movement to riprap failure ratio where ' q4.,m - of/0.74 = 1.35q, (8) Thus, for design: DS0 — 0.436(Sa)0As(qA..vjG"' (9) Abt and Johnson's (1991) results plotted in Fig. 1 are from two-dimensional tests with large flumes, using angular riprap with D50 5 157.5 mm, and slopes of 10 and 20%. The plotted points are the unit discharges associated with stone movement that these authors recommend for design. Their data for indoor flumes, rounded stone and lesser slopes are not shown in Fig. 1. Robinson et al. (1995) presented an expression relating median unit discharge at failure to stone size to bed slope. The expression solved explicitly for D30 is: D50 - 0.402(S.)0.tesg0sa (10) The results by Robinson et al. (1995) shown in Fig. 1 were obtained with two-dimensional tests using three different flumes ranging from 0.76 to 1.83 m wide, angular riprap with D50 ranging from 15 to 155 mm, and slopes ranging from 10 to 40%. Reprinted from the North American Water and Environrnent Congress O 1996 American Society of Civil Engineers t The USDA, Soil Conservation Service (now the Natural Resources Conservation derived, for for design of rock chutes in DN-22 theoretically the design note was canceled Richard L. (USDA, SCS, 1985). however, 4 ' in 1995 (Letter of March 8, 1995, from Duesterhaus, Deputy Chief for Soil Science and Resource Assessment, Natural Resources Conservation Service) ' because field personnel using the design noce sported that the criteria yielded unreasonably large Comnarison of pesian Procedures Table 1 presents DSe values predicted from the design procedures for different q and S, combinations. The Normann (1975) and USDA (1985) procedures predict the largest size riprap. The Normann (1975) procedure is probably not applicable for design of rock chutes as it was developed using USDDN 22t riprapded ( 985)procedure, theoretically derived, A. was not verified with observed results. The results shown in TABLE 1 confirm that field personnel were correct in their evaluation that the riprap sizes were unreasonably large. Thus, administrative cancellation of DN-22 was justified. olivier's (1967) procedure appears to predict reasonable riprap sizes for the smaller slopes but not for larger slopes. The reason for ' this 0 mm)°and short flume lengths t known but may due to the small riprap sizes (Dm S (1.52 m) used in his study. Abt and Johnson The Isbash (Simon and Senturk, 1977)rocedures predict (1991), and Robinson et al. (1995) p ' smaller size riprap. The large differences between the Abt Johnsonand and the Robinson et al. 995) proceduresat the) 10% slope are probably due to theldata base used to develop the predictive relationships: the Abt and Johnson data base was from tests with S, ranging from 1 to 2ol: the Robinson et al. data base was from tests with S, ranging from 10 to 40%. Fig. 1 shows that the Robinson et al. (1995) relationship, (lo), becomes more conservative as the elope decreases. The differences in the Abt and Johnson and Robinson et al. predictions suggest that the ' exponent for S, in the equations is not a constant. The Isbash (1936) procedure appears to predict reasonable riprap sizes considering the procedure was developed by depositing rounded riprap into a flowing ' stream. However, the riprap sizes predicted with the Isbash (1936) equation are affected by the relationship used to calculate the Manning roughness coefficient. ' 'Three Dimensional Field -Scale Tests Two three-dimensional field -scale rock chutes were constructed at the USDA, ARS Hydraulic Laboratory, ' Stillwater, OK, using angular riprap with a DSO of 18e mm on on field-scalee and a hadwof a drop7of 3.66am312.74slope. Each bottom 1 II ' Reprinted from the North Amerimn Water and Environment Congress O 1996 Amer'r I Sudety of i 4. 1 uigulea.o width, and 2:1 side slopes. The riprap was placed 2Dsa ' thick on an 8-oz. nonwoven geofabric on top of concrete sand approximately 51 mm thick. Theesu t betweenthese tests, presented in Fig. 1, show good agLe ' field -scale tests and the Abt and Johnson (1991) and Robinson at al. (1995) Plumes testtructures s. are accurately The highest stable discharges for both field -scale s ' predicted by (10) developed from the two-dimensional flume tests. 4,tmmarti -nd Conclus on Six procedures for the design of rock riprap channels were evaluated for their applicability Ito the( n stability h and design of rock chutes. procedures by and Robinson al. Senturk, 1977), Abt and Johnson (1991), the RobAbt and Johnson (1995) give similar results. However, ar (1991) and Robinson at al. (1995) procedures e 19are recommended for design. `ThHAUtoras�lo e Johh6 whiltetl?e Sonreta Edld:; ('1y77')'S'?!pro�cu,•• a.-...._.,-- -- Q,teepes�]bpe'd4� Results from two three-dimensional Pield- scale rock chute tests provide verification of the Robinson at al. (1995) procedure for design. Additional analyses combining the two data bases to develop arelationship in which the exponent on the bed slope S. a variabht result in an improved procedure for design. Use of 0% is not recommended and their use forr S, of may' result 4in excessive riprap Sizes - Relgrences J „ Ruff, James F., and Abt, Steven R., Wittler, Rodney 1(hattak, Mohammand S. 1988. Resistance to Flow over Riprap in Steep Channels. Water Resources Bulletin, lAm,r 1 QO Water Resources Association. Vol. 24, No. 6'1991. Riprap Design Abt, Steve R. and Johnson, Ter ASCE Vol. 117, No. for overtopping Flow. J. Hydr. Engrg., 8, 959-972. Anderson, Alvin G., paintal, A.s., and Davenport, J.T. 1970. CHPP Report 108, Highway Research Board Riprap-Lined National Academy NA ademy of Sciences, Washington, D.C. Isbash, S.V. 1936. Construction of dams by depositing rock in flowing water. proc., Second Congress on Small Dams, Washington, D.C., pp. 123-136. Normann, Jerome M. 1975. Design Cir No stable Channels with Flexible Linings. Hydr. Engrg. D C Of Transportation, Fed. Highway Adm., Washington, Olivier, H. (1967). Through and Overflow Rockfill Dams - New Design Techniques. Proc., Institution of Civil Engrs., Mar., 36, 433-471. Robinson, K.M., Rica, C. San AntonioadT7C,avy�Volc 2,11476 1480. Water Res. Engrg•, t ' Reprinted from the North American Water and Environment ConKM33 O 1996 Amerirvn yocrety v. �..... ,.,s,•,=�•� Simons, Daryl B. and SenturkI Fuat. 1977. sediment Publications, Fort ' Transport Technology. Water Resources Collins, U.S. CO. Department Of Agriculture, SCS, Engineering Division, Design Unit. Report: Evaluation of DN-22 and D.C. November ' Interim Recommended Model. Washington, 1985. TABLE 1. Comparison of Design Procedures 1 e (m'/e/ml S. (�) 1.39 10 20 0.929 40 10 20 40 Dn (MM) III , Procedure Isbash Nocmann 283 363 454 777 482 1332 213 277 366 347 595 1018 0Oliver M226 a Johnson 314 539 267 360 924 482 241 411 704 210 284 384 326 369 5Abt 3 1Rcbinson ' DN-22 (USDA) 365 408 546 858 460 1265 293 442 704 1012 T 297 467 683 100 ' BED SLOPE E • 1o.ox � ♦ 1zsc ' E ■ 16.7% • ♦ , 22.2x • W 40.0% ' � v • Q • FIELD SCALE S 0 16.7x to 10-2 p 33.3% 0 Z • ABT 3 JOHNSON '��� O 10.0% D) V 20.0% 10 10D 10' 102 ' D50* S (MM) ' Figure 1. Robinson et al. (1995) data APPENDIX D: EROSION CONTROL CALCULATIONS AND DETAILS a E'.V'ROIICf Hlliµll.&NW150 DARMONY RICHE IMOGSM50JINA1, DRAINAGE 4 MRT IXx Drainage and Erosion Control Repon for Harmony Ridge Filing i February 4, 2005 - Appendices RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: HARMONY RIDGE FILING 2 STANDARD FORM A COMPLETED BY: EMS DATE: 1-26-05 DEVELOPED SUBBASIN ERODIBILITY ZONE Asb (ac) Lsb (ft) Ssb N Lb (ft) Sb N PS N 1 Moderate 0.24 215 1.95 2 Moderate 0.50 370 1.81 3 Moderate 0.46 360 2.25 4a Moderate 0.49 330 2.79 4b Moderate 0.15 140 5.00 5 Moderate 1.40 315 0.95 6 Moderate 5.32 1325 2.51' 7 Moderate 1.54 66 21.82 8 Moderate 0.53 195 3.85 9a Moderate 0.76 345 3.83 9b Moderate 0.20 213 2.10 10 Moderate 0.34 295 1.02 11a Moderate 1.49 420 0.24 11 b Moderate 0.09 78 4.04 12 Moderate 0.75 260 3.46 13 Moderate 0.28 57 i 8.77 Asb SUM: 14.56 654.80 4.41 83.45 Interpolation Table: slope (%) 4 4.41 4.5 flow length (ft) 600 1 83.2 83.5 654.8 83.25 83.45 83.5 700 1 83.3 83.5 M M M = M M M M EFFECTIVENESS CALCULATIONS PRO IECT'. HARMONY RIDGE FILING 2 Sl ANOAFln FORM R COMPLETED BY: EMS DATE 1.26 05 Erosion Control Method C-..Factor P Factor Comment Value Value Rare Soil 1 0.9 Disked Roughen Round 1 0.9 Sediment Trap 1 0.5 R.raluMelks 0.01 1 Straw Bale Barrier 1 0.8 Temporary Crop 045 1 Established Grass Doe 1 Erosion Control Mata/Blallkels 0.1 1 Straw Mulch I%to 10% 0.06 1 Straw Mulch Lt%to 15% 007 1 Cal[VIa6Dae Summary Malor PS Bob Area Slope Road"alka Disked Sell Straw Mulch Other Wirt Wtd EFF Nesm (%) Basin ec) (% C Factor P-Faobr Area ac Area e C IF Aree a[ Area % C P ARa ac Area 56 C P Base. Area (ac) Area (%) C P A 83.45 11 _ 024__ 195 0.12 Culb Sock Ne n/a 1 0.8 0.51 6.76 60.94 4s.04 - 0.01 1 0.12 50.96 1 0.9 0 0.06 1 2 -_ _ 0.50 _- - 1 B1 0.15 30.34 0.01 1 _- Q35 1 0.5 0.70 0.37 7396 -._ 69.66 _ 1 -.._ 0.9 . 0 -- 6.06 1 S81 Fence Na n/a _ ____ -_____ Curb Sock nla 0.8 _ 2.25 _ 0 3. 048 022 4].81 ___ 0.01 _ 1 _ 0.24- _ 52.39 1 0.9 - �0.08 -1 _ CUYB Sock _ Ne me me _1 1 0.8 _ 053 0]6 59.92 _.._ 9]9 _ _ 0.12 - 25.34 1 0 ____ da 049 -D49- 0.01 037 74_66 1 09 0 t Sock Curb So ._. n/a nla - t 0.0 __. 075 0.74 4454 - 4U -_ _-_ 0.15 -. .. 55.01 __ 0.01 _ 1 1 .. O.B _ 76 0]fi _ 65.21 S.INI 0.08 - OID - 44.99 1 09 0 0.06 1 Curb Sock - n/a ___. nn, _ 046 0.95 _- 0.52 38.90 001 _t 078 _53_.86 1 0.9 0.13 _ 924 Sediment Trap n/a_ 1 0.5 55 0.19 09.63 008 1 SIII Fence _n/e Na Na 1 0.5 _O Straw Bale Barrier n/a Ne 1 0.B 8 5.32 2.51- 0.11 2.01 0.01 1 am _ -am 1 0.9 0.30 _ 5.60 ON 1 Est. Grass 4.91 92.39 0.1 1 0.08 0.08 9941 ] 1.54 21.82 0.00 000 0.01 1 1.54 100.00 1 0.9 0 006 1 Strew Bale Barrier me 1 0.8 1L00 036 6400 me SIII Fence n/a. 1 0.5 B 0.53 3&5 0.08 14.16 0.01 1 042 78.37 1 09004 747 ON Sediment Trap_ We Na nla_ 1 0.5 015_ 08.36 _ we Na � 1 0.5 _07_9 SIII Fence Sock e n/a 1 0.8 StrawwSela Border me e nla 108 par0.76 3.83 0.23 30.36 0.01 1 0.53 69.64 1 09 - 0 0.0_6 -_t Gravel Filter ma nla 1 . 08 0 )U 0.60 58.35 _ _ _ _ _ Curb Sock n/a nra 1 0.8 91, 020 2.10 OID 34.58 0.01 1 0.13 6542 1 0.9 0 0.06 i Sill Fence We nra 1 OS' O66 0.37 7542 Curb Sock n/a No 1 0.8 10 0.34 1.02 0.17 49.27 0.01 1 0.17 5073 1 09 0 0.06 1 Gravel Filler n/a We 1 09 051 0.61 66.88 Curb Sock me me 1 08 11a 149 0.24 033 2206. 001 1 0.90 6025 1 0.9 0.26 1769 00d 1 Sediment Trap Far c/o 1 0.5 0.62 0.15 90.75 SIII Fence ma n/a 1 05 Curb Sock me No 1 08 Straw Bale Border nra nra 1 0.8 111, 0.09 004 0.03 2824 0.01 1 0.07 71.76 1 0.9 0 006 1 Curb Sock ma n/a 1 09 0.72 0.74 46.50 12 0.75 346 028 36.86 0.01 1 037 4931 1 09 0.10 1382 006 1 Silt Fence nra n/a 1 0.5 0.51 0.30 8463 Straw Bale Barrier n/a We 1 0.0 Curb Sock n/a nla 1 Ofi 13 028 877 0.00 am 0.01 1 0.28 100.00 1 0.9 0 0 06 1 Straw Bale Bonier Na me 1 US 1100 0.36 64 00 S01 Fence me me 1 0.5 Area Sum'. 14.56 Weight.d EFF. e'3.49 PROJECT: HARMONY RIDGE FILING 2 STANDARD FORM C COMPLETED BY: EMS DATE: 1-31-05 MONTH 1 2 3 4 5 6 7 6 9 10 11 1? CONSTRUCTION PHASE (Weea/Moptil Demolition — — Gretling(Indutle OXsite) ovanol DetentiorvWO Ponds Swedes. Drainegeways, Streams Oltcdes Pipeline Installation (include Offsite) - Water Sanitary $ewer Smrmwmer, Concrete Installation (Include Offsite) urea Inlets Cum Inlets Pond GUIIBI Slmclures C rh and Guller/Street Box Culverts. Bridges Street Installation (Include Oflsite) _. __. - Gratliing/Base Pavement Miscellaneous (include Offsitel Drop Structures Other (List) _-__-- ----- - -- ��- ---_- X X X X X X X X X X - ----- X X X X X X X X XX X X X X X _ _ _ X X X X X _ _ _ _ X X -._-rX--X- X X BEST MANAGEMENT PRACTICES Structural - - - - Silt Fence Barriers Contour Fmrews (RippiagrDisking) Sediment Trap/Filler Vehicle Tracking Pads Flow Barriers (Bales, Welder. Etc) Intel Filter Sand Bags -� -- -- Bare Son Preparation Terracing. -- - _ - - --- - Stream Flow Diversion Rip Far Filler (List) VegeMXve Temporary Seed Planting Mulchi-WSealant Permanent Send Planting Sod Installation N.fie,VBlankels/Mals l II Harmony Ridge ' Jim Sell Design, Inc. 2350 1-31-04 EMS ' Erosion Control Estimate of Probable Cost 1. Erosion Control Measures Item Description Units Unit Cost Quantity Total Cost 1 2 -----Silt Fence_ Vehicle Tracking Control (25'x50'x6") $--0.97 2025 $ 1,964.25 L.F.- EACH $ 650.00 2 $ 1,300.00 3 - - - 4 Inlet Protection - - - - - - - ---------- Straw Bales EACH $ 275.00 2 $ 550.00 -- L.F. - $ 3.06 - 72 ---- $ 220.32 5 Sediment Trap EACH $ 650.00 3 $ 1,950.00 6 7 Curb Sock EACH $ 275.00 $ 700.00 14 --(1-831 1 $ 3,850.00 Seeding/Straw Mulch Acre $ 581.00 Total Cost $ 10,415.57 2. City Reseedinq Cost for Total Site Area Item Description Units Unit Cost Quantity I Total Cost 1 Reseed/Mulch Acre $725 14.56 $10,553.39 3. Security Deposit (greater amount of items 1 and 2) $10,553.39 Required Erosion Control Security Deposit with 150% Factor: $15,830.09 IJ 11 1 Vmax3 - SC250 Overview Page 1 of 2 omp Salhl 12 I Moen Performance Profile I Problems Solved SC25fl= f. Permanent Turf Reinforcement Mat High Performance Exceeds to 24" Rock Riprap A Step Above Temporary Erosion Control Blankets North American Green's SC250 is comprised of a permanent, high strength three-dimensional matting structure incorporated with a straw/coconut fiber matrix. It is designed to provide both extended _ - term., pre -vegetated erosion protection and permanent turf reinforcement in a wide variety of applications, including severe slopes, high flow channels and stream banks. Stream 30nu5 The straw/coconut fiber matrix enhances the permanent matting's initial mulching and erosion control performance for up to 24 months. Proven in laboratory and field research, the permanent matting's high strength 3-D structure increases the shear resistance of vegetation up to 10 Ibs / ftz (480 Pa). With even the toughest stand of unreinforced grasses typically failing at shear stress levels of 3.7 Ibs / ftz, the SC250 more than doubles the shear resistance of any vegetation. This enables the SC250 to be used in many applications where rock riprap and concrete were once the only viable alternatives. Maximum Value with Vmax3 SC250 Cost Comparison SC250 24" (0.6 m) Rock Riprap Materials $6,400-8,500 $21,500 Labor $4,300-5,700 $14,200 Total Installed Cost $10,700-14,200 $35,700 ($6-8 yd2/$7-10 m2) ($20 yd2/$24 mz) MAXIMUM SAVINGS OF $25,000 * Based on costs for protecting a 16 ft X 1,000 ft (4.8 m X 305 m) drainage channel. * Costs shown in U.S. Dollars. Costs may vary based on location. SC250 Product Application Guide* T;p vE- Slack 'JV Stac!hzed Pclyprovweoe 5,bs 1.soo.r apprc, Ne,gnt CcNTE.R VEr 57ack UV Stab,6zed Polypropylene Cprruga 241bs 1.000 aporovmate NeigW MATRIX MA77RIAL 7VPo 3traw,':0% Coca SOT -CM NET 31ack W Stabrlrzed Potyprcpylene 5 !bs / 1, 000 ft' approl weight THREAD Slack uV Stabilized polypropylene DtMENSiCNS Width: 6.30 t (2 ml Length: 55. 50 it (16.91 Area: 40 yd' (33.40 m We; 34.00 bs (15- Download Technic, Specifications PDF Limiting. Shear Stress Ib/ftz (Pa) Applications Flow Duration Permissible Velocity ft/s Typical Projects FHWA FP-03 (m/s) TRM Categories Bare Soil Vegetated httD://www.nanreen.conVvmax3/products/index.tol I/ 6/2005 Vmae3 - SC250 Overview Page 2 of 2 0.5 hr 50 hr 0.5 hr 50 hr Unvegetated Vegetated 1:1 & 3.0 2.5 10.0 8.0 9.5 15 Roadside Ditches, Types S.A, B Greater (144) (120) (480) (383) (2.9) (4.6) Golf Course S:wales, and C Slopes Stream Bank Protection Medium to High Flow Channels 24-Month Vegetation Grow -in Period * This guide is for general purposes only. Actual product selection and design should be developed using North American Green's Erosion Control Materials Design Software (ECMDSC" ). * All unvegetated and vegetated Vmax3 performance values are based on laboratory research utilizing test methods similar to those detailed in ASTM D 6459-00. Distributor Locator Contact Us Privacy Policy Terms of Use North American Green ,ail Vmas7 crccucts iaae been rested by AAS:PTO's Nat.cnal 71ansprrtaucn P,oruct Evaivahon Program for RECPs. GSA Ccntract ?lumber GS-07.1-33MD 2009 52005 Vorh American Geer - all -igr.[s reservec. Site Delon oy Gray Loan Marketing Grua -.c. Cnautrc izec use nr maces and content Is strCly prcnibited. httn://www.na2reen.com/vmar3/products/index.tt)l 1/26/2005 'North American Green - ECMDS Version 4.2 !2/1/2005i10:11 AM ,COMPUTED B'C EMS ,nuicu nNr,,c narmenynioeernma. ROM STAT10NiREACH: Outlet 2 iTO STATION/REACH: Pond 1 HYDRAULIC RESULTS Discharge cfsl Peak Flow Period hrsl 'Jelocity (fpsl Area.(sq.ft) Hydraulic I Radiusfftl Normal I De thfft 51.9 1.0 1 6.36 1 7.45 064 1 1.04 LINER RESULTS SC250 S = 0.0800 1 L Bottom J 1 4.0 Width =3.00ft 4.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress [psf] Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight SC250 I Vegetation 2 1C Mix 7595% G.00 5.20 1.15 STABLE Staple —E—T Soil Sand 2.500 0.560 4.46 STABLE .North American Green -ECMDSVersion 4.2 122112005i10:1'_AM:COMPUTEDBY: EMS wuzx.Yny Discharge fcfsl Peak Flow Period fhrsl Velocity (fps) Area tsq.10 Hydraulic Radiuslftl Normal De th (ft 69,0 1.0 1 7.50 9.20 0.72 1.T9 i� 4.0 LINER RESULTS S C250 Bottom Width = 3.00 ft 1 1 4.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress fpsfl Calculated Shear Stress tpsO Safety Factor Remarks Staple Pattern Phase Class Type Density Straight SC250 Vegetation 2 1 C I Mix 75-95% 6.00 5.93 1.01 STABLE Staple Soil. Sand 2.500 0.522 4.79 STABLE IRIPR"P -W- NET V5ERa E*u_Nos ea—/ MAL CN SAW la 55 EF 5 FEET RWC If 2711 W rLANDS AN r - If 4 \\ Rlp PS 4a NPIwP PER mQw J FEET WK. ESEEMO TO EDE 40"YE WIN \\VV[[ ` ``--- - fPAAPE WAY --__ ._-_____- _ - MORRIS _ _-ET `- CS T . 1 45 y 1 r— 't— I —I— _ — n i_ /J m 1 V r W m 0 'N N y M5 UJ Mt 44 a h I� I'I" I' I'IM'I�I r----- -- - - - p7 �I OA1 IN 37 ' / 5 S7 33 —INW32 34 35 OWN _l►v` 7 4a\ '�\�\ v� `A�k -a _ / 0� WE Ak 31 Sput FINK 8, SURE RI IAi GRELING NTCN IN / \ / MCNEYEx Is Fvx111FA wJIN. / CIRKS Stl FENCE NCE CR L\ \ IP q �iCnAi xasaaa i X / ` \ \\ IS ?j\ SF 1 R 1 . 0.28 1 E SIPENCE WMdn S32 of won Rnrtrtx / \ \\ t \ \ 3\ 37 APPRWAE NWR THE SEED SANITARYSANITARYLINE EXU ATYI EM'SNi,ER / \ \ `\ / RV PAp ): N iN1 / 02 WM NA%E PURE SEES MIX \ \ p21 I A�SLT A^LNE PNNI AND FEWK. EPENCEOWN CMPED SPUR / 20 s�N 31 I19 1/ PER anus bao SEE 0 IS a IN / / ��-- \ v / / I rtuPWrm sm AIN 6RNilPD D. - \ / CLEAN smlNart rnou PCxD u®AP. Ian m 1 SRI Wµ Iltl WIND IW H CALL UnurY NonRanC GENIES C C CXEA00 1-300-922-1987 a 534.8700 C U e MIX LL Won .J INN, 0) W W t3 0 c p? U a W !F7 Ric Q U 2 15 \ 0 \ o \ 0 \ \ \ \ REVIEW SET NOT FOR \ CONSTRUCTION SESSIONS GD /Y4 IP II 2MO ENO GRADING CURRE DPsgPvd EMS �., CARDkrd Wo Oavb 07-33-M �� 1 II ReviainA _ awlw IWv N-ausSo ProjRD! / zJso Ixv s.smR.s I 1 OF