Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 04/27/2005Fif lApproved Rapv;i
rite �Lr
FINAL DRAINAGE AND EROSION CONTROL REPORTf
HARNIONY RIDGE FILING 2
FORT COLLINS, COLORADO
Prepared for:
GLOBAL HOLDINGS OF COLORADO, LLC
Jim NEWCOMB, MGR
932 E. PITKIN ST.
FORT COLLINS CO 80524
(970) 221-3076
Project #2350.1
February 4, 2005
Prepared by:
153 West Mountain Avenue
Fort Collins, Colorado 80524
FAX 970.484.2443
970.484.1921
II
II
1 February 4, 2005
LANDSCAPE ARCHITECTURE
PLANNING
' MI. Wes Lamarque ENGINEERING
Stormwater Utility
700 Wood Street GRAPHIC DESIGN
' PO Box 580
Fort Collins, CO 80522
' RE: Harmony Ridge Filing 2 Final Drainage and Erosion Control Report
JSD Project No. 2350.1
Dear Mr. Lamarque:
' Please refer to our enclosed "Final Drainage and Erosion Control Report for the Harmony Ridge '
Filing 2" This report has been prepared in accordance with the drainage guidelines presented in
' the City of Fort Collins Storm Drainage Criteria Manual, and has addressed your comments
regarding our November 30, 2004 submittal.
' Please feel free to contact our office at (970) 484-1921 at your convenience if you have any
questions regarding this report. We thank you for your time and consideration in reviewing this
drainage report subittal.
1
Sincerely,
JIM SELL DESIGN, INC.
Eric Skowron, P.E.
Project Engineer
Enclosure
cc: Jim Newcomb
File
I
1 TABLE OF CONTENTS
1
1
1
1
1
1
1
i
i
i
1
i
1
[1
1
Tableof Contents............................................................................................................................
1
Engineer's Certification Block.......................................................................................................
2
General Description and Location..................................................................................................
3
ExistingConditions...................................._................................................................................
3
Drainage Basins and Historic Runoff............................................................................................
3
FigureI — Vicinity Map...........................................................................................................
4
StormDrainage Criteria..................................................................................................................
5
DrainageFacility Design................................................................................................................
5
RunoffCalculations.....................................................................................................................
5
Description Of The Drainage Plan..............................................................................................
6
Figure 2 — Historic Drainage Patterns at the Harmony Ridge Filing 2 Site .............................
7
Figure 3 — Developed Drainage Plan For the Harmony Ridge Filing 2 Site ...........................
8
ErosionControl.............................................................................................................................
10
Wetland Determination And Review............................................................................................
10
Conclusions_.............................................................................._................................................._.
10
References.....................................................................................................................................
11
Appendices....................................................................................................................................
12
APPENDIX A: RUNOFF AND DRAINAGE CALCULATIONS ..........................................
13
APPENDIX B: HYDRAULIC CALCULATIONS..................................................................
14
APPENDIX C: REFERENCED INFORMATION AND SUPPORTING DOCUMENTS......
15
APPENDIX D: EROSION CONTROL CALCULATIONS AND DETAILS .........................
16
1
ILWRI nNIIbILW VMH RMON RIMF IIYIDLSC150MNALDP NAGE REROR'CI%%I
Drainage and Erosion Control Report jor Harnony Ridge Filing 2
February 4. 2005 - Page I
[1
' ENGINEER'S CERTIFICATION BLOCK
I hereby certify that this Drainage and Erosion Control Report for the drainage design for the
Harmony Ridge Filing 2 Site was prepared by me (or under my direct supervision) for the
owners thereof and meets or exceeds the criteria in the City of Fort Collins Storm Drainage
Criteria Manual.
• W 37724 Z
a
ENROJR-t MLIMAMYS8016 NONY Wl%.E INH SCIDRN.U.[N NAGF RE..PoRT,IXS
Eric M. Skowron
Registered Professional Engineer
State of Colorado No. 37724
Drainage and Erosion Control Reportfor Harmony Ridge Filing 2
February J, 2005 - Page 2
GENERAL DESCRIPTION AND LOCATION
The Harmony Ridge Filing 2 site is approximately 14 acres in size. The site is located in
southwest Fort Collins, off Fromme Prairie Way (Old Harmony Road) and west of Seneca Street
in the northwest quarter of Section 3, Township 6 North, Range 69 West of the Sixth P.M.,
Larimer County, Colorado. The project proposes 45 detached single-family lots and 14 attached
single-family lots. The single-family residences are to be patio homes located on small lots
designed to accommodate the topography of the site.
EXISTING CONDITIONS
The site is currently vacant land. Existing elevations on the property range from approximately
5150 feet at the high point in Fromme Prairie Way along the north property line to 5090 along
the Trilby Lateral meandering along the south side of the site. Prairie Ridge Drive is stubbed to
the site on the east side. No surface irrigation infrastructure is present on the Harmony Ridge
Filing 2 site.
According to the Final Subsurface Exploration Report for Harmony Ridge Filing 2, Fort Collins,
' Colorado by EEC, 2 to 4 inches of topsoil were encountered on the site. Brown sandy lean clays
were found underneath the topsoil. Soils exhibited increasing sands, gravels, and cobbles with
depth.
DRAINAGE BASINS AND HISTORIC RUNOFF
Most of the Harmony Ridge Filing 2 site lies within the Fossil Creek Drainage Basin.
Historically, a small area along the north side of the site drained to the McCiellands/Mail Creek
Basin and ultimately into the current alignment of Harmony Road. A site inspection indicated
that a small depression exists along the west side of Harmony Ridge I that routes runoff collected
along the south side of Fromme Prairie Way south into the Fossil Creek Basin.
Harmony Ridge II has been divided into two historic drainage basins. Both basins drain to the
Trilby Lateral at the base of the ridge, and ultimately to the Burns Tributary in the Cathy
Fromme Prairie. A major drainageway southeast of the Harmony Ridge drains to the Burns
Tributary and was utilized as the outlet to the pond in Basin C1 as designed in the Final Drainage
Report for Harmony Ridge P.U.D. (TST, January 1999). The majority of developed runoff from
the Harmony Ridge Filing 2 will drain to the detention pond, combining with runoff from the
west side of Harmony Ridge Filing 1. The remaining portion of Harmony Ridge II will mostly
remain undisturbed and will drain towards the Trilby Lateral with 100-year event developed
discharges that are less than the 100-year historic discharge contributing to the Trilby Lateral.
Flow dissipator beds will intercept side and rear lot runoff during nuisance precipitation events
and will encourage sheet flow during larger events for lots 1-19 along the top of the ridge.
=a
1:IM(ULCr FlLESIL\VDC310 I WRMONY MWE I1N SCMMNAL DRNNAGE RF.IVRl. I
Drainage and Erosion Control Report for Harmony Ridge Filing 2
February 4, 2005 - Page 3
FIGURE I — VICINITY MAP
0
0
cec
m
C
Hi I. C,
V
HARMONY ROAD-4
Ct
.01 W/////11A 1
PROJECT
9
�CCATION -0£
Ct
O
8
Cl
Stm crop
Ct
Ln
m
h;
2
ONI
G
O
LJ
a
O
I
J
V/ �
-J
W
LL
Q
� /
V
4
_ _ _ _ _
F°:;Sil
V V
a eno>ooa xooa
Harmony Ridge Filing 2
r-ofee m.me..
PROJECT VICINITY MAP
LLC
a
t: BNWCCI II1 FAIANW150 HNMONY NI> L DUJ(YSC310 FWAL DI N GER PORT.DO:
Fort Co4MC CO.
Drainage and Erosion Control Report for Harmon Ridge Filing 2
February 4, 2005 - Page 4
II
' Sixteen developed and three off -site drainage basins were delineated as part of the drainage
' analysis. Three landscape medians have been designed with landscape depressions as part of a
stormwater quality concept to encourage filtration of runoff through the site. Although the
landscape medians will attenuate peak flows, no reduction of peak discharge has been considered
' in this analysis for conservative measure. The largest median depression has been designed to
detain water quality capture volume (WQCV) to minimize dispersion of sediments and
contaminants downstream.
STORM DRAINAGE CRITERIA
Storm drainage design criteria were referenced from the City of Fort Collins Storm Drainage
Criteria Manual. Additional reports and manuals referenced in this report include the Final
Drainage Report for Harmony Ridge P.U.D prepared by TST in Fort Collins (January 1999),
Final Subsurface Exploration Report — Harmony Ridge Filing 2 prepared by EEC (May 2004),
and Urban Drainage and Flood Control District's "Urban Storm Drainage Criteria Manuals,
Volumes 1, 2, and 3. "
Per Table 3-1 in the Fort Collins Storm Drainage Criteria Manual, Initial (minor) and Major
storm return periods for all residential development are the 2-year and 100-year events,
respectively. Design storms were based on 2-hour rainfall events. The Rational Method,
appropriate for calculating runoff for basins less than 200 acres, was used to estimate peak runoff
values for various basins on this site. The Fort Collins Storm Drainage Criteria Manual presents
runoff coefficients increased in 1999.
Storm sewers will be required to effectively convey runoff on the Harmony Ridge Filing 2 site.
Two area inlets and three 5-foot (single) Type-R inlets are required to convey minor event
discharge. Vertical curb gutters, cross -pans, and swales will be the primary means of
transporting minor event storm discharges to the inlets and landscaped areas. Major event
discharges will also be conveyed across the site through surface and sub -surface infrastructure.
Erosion control measures shall be implemented to maintain compliance with City of Fort Collins
erosion control criteria as presented within this report. Erosion control elements required for the
site include silt fencing, vehicle -tracking control, inlet protection, riprap, curb socks, and re -
vegetation of disturbed areas with crimped straw.
DRAINAGE FACILITY DESIGN
RUNOFF CALCULATIONS
Storm runoff calculations for the Harmony Ridge Filing 2 Development are presented in
Appendix A. Table A.1 presents composite runoff coefficients for the 2-year and 100-year
precipitation events. Runoff coefficients were referenced from the City of Fort Collins Storm
Drainage Criteria Manual.
:;N!
F'N.O ,EIIS.6 50IW ONT NIXIE JADOC4'l50 FlN DR NAGE ItE WF IW
Drainage and Erosion Control Repor! forHar ny Ridge Filing 2
February 4, 2005 - Page 5
II
1
The time of concentration calculations are presented in Table A.2 for the proposed condition.
' The travel time velocities were referenced from Figure 3-3 of the Fort Collins manual. Table
A.3 presents the historic drainage analysis for 2-year and 100-year events. Rainfall intensity -
duration data is presented in Table A.4. Rainfall intensity -duration data was calculated from
linear interpolation of time -intensity data presented in Figure 3-1 of the Fort Collins manual.
Time of concentration values for each basin were assumed to be equal to the storm duration (a
' standard assumption, as discussed in the Urban Drainage and Flood Control District Urban
Storm Drainage Criteria Manual). Rational Method discharge calculations for the 2-year and
100-year events are presented in Tables A5 and A6, respectively. These tables include routed
' discharges and discharges for each drainage sub -basin. The "comments" column on each of the
Rational Method tables indicates the basins from which storm runoff was routed. The pond
storage requirement calculations are presented in Table A7. Table AS presents water quality
' capture volume (WQCV) requirements and Table A9 presents pond volume calculations. Street
capacity calculations and inlet capacities are presented in Appendix B.
' Proposed cross -pans, channels, and curb cuts have been analyzed with Flowmaster® software.
Swales have been analyzed for freeboard conditions. The freeboard condition has been defined
as the 100-year discharge plus an additional 33% (1.33*100-year discharge.) Storm sewers have
' been analyzed with Stormcad@. Per City of Fort Collins criteria, all swales and sidewalk chases
have been designed for the 100-year event. Additionally, the storm sewers are capable of
conveying the 100-year event discharge.
DESCRIPTION OF THE DRAINAGE PLAN
The historic drainage plan for the Harmony Ridge Filing 2 site is illustrated in Figure 2. Figure
3 illustrates the developed condition drainage plan including grading and drainage basin
delineations.
Drainage Basins 1 and 2 contain portions of Fromme Prairie Way. Discharge from Basin 1 will
be routed to Basin 4a. Ultimately runoff from Basins 1 and 4a will combine with runoff from
Basins 3, 4b, 5, and 8 to flow into the area inlet in the landscape median in the downstream end
of Basin 8. Routed discharge to the inlet in Basin 8 for the 2-year and 100-year events will be
2.34 cfs and 11.11 cfs, respectively. In the event that the area inlet in Basin 8 should become
obstructed during a flooding event, a cross -pan will route runoff to Basin 11a within pending
depth criteria for minor and major events.
Basin 2 will drain along Fromme Prairie Way (Old Harmony Road) as it did prior to construction
of Harmony Ridge I. A review of street capacity analysis provided in the 1999 Final Drainage
Report for Harmony Ridge P.U.D. for Seneca Street and New Harmony Road indicates that
sufficient capacity exists along those roads to convey 0.51 cfs and 2.38 cfs for the 2-year and
100-year events, respectively.
The storm pipe draining the landscape median in Basin Ila will route minor event discharges
from Basins 1, 3, 4a, 4b, 5, 8, 9a, 9b, 10, I la, and 1lb and offsite basins Ola and Olb. Total
routed discharges for the 2-year and 100-year events to Basin 1 la are 8.02 cfs and 36.81 cfs,
C.UNOfICf I11.FSLL.ANDW'9501NRMOPY.'. .X'SQ35019NA DMdNAGh MURT.DOC
Drainage and Erosion Control Reportfor Hurntony Ridge Filing 2
February 4, 2005 - Page 6
O
i
---ARE " ^ �
C.� w
a sa° goo° zoo' T
1
90
moo,
i3
95
96
98 \
99
100
101
102
103
104
10,
Z
�W
o�
O
U
C
N
.y
N
caRaft
z
U
v
4�
cLi-
W
'o
Q
�
J
man
U
�-
O
`o
L
fa
O
0=
fA
U
..
O
N
M
L
�
Q
2
o
O
c0
_O
.
s•
zo
Y
• a
_ °o
i°u °P
a
�
F?om
F J�P
Jt0
pox
±
O6Oi
Al a c w7Ev oisv
0' 50' 100' 200'
©10
7
2t-..�
0,53 0.51 0
33 32 1
b
I�fR/YES
31 ! 90
3� I
\41
42
7 93
95
\ o
23 02 96
3,40 Obi �-9.
3
�< 018 0.8'r 9s
99
j 21 � 100
13
n SWALE 1 101
1
20 �-
.9
102
113
104
105
i
POND 1 1�
-` `
v
Q
U
Q
�
J
J
CIC
a
z
C
cv
_O
O
Q
�
O
Q
M
N
C
L
0
2
'b4
C4
z
O
(D
€g
a Z.G.
1
3 Uee
A..
II
' respectively. Offsite Basin 02 and Basin 13 will contribute flows to Swale 1 downstream of
Basin 12 and into the pond to the southeast. Street capacity calculations are presented in
' Appendix B. Street capacities were calculated for average slopes in each basin. Calculations
were presented for 24-foot cross -sections and 30-foot cross -sections with vertical curbs. All
design street flow depths are within criteria for both minor and major events and are presented in
' Appendix B.
Developed Basins 6 and 7 will contribute 4.61 cfs and 20.43 cfs for the 2-year and 100-year
' events respectively. Historically, 20.45 cfs is contributed to the Trilby Lateral during the 100-
year event.
Swale 1 will route runoff from basins 1, 3, 4a, 4b, 5, 8, 9a, 9b, 10, 1 la, I lb, 12, 13, Ola, Olb,
and 02 to the detention pond. A summation of 100-year discharges for Basins R12, 13, and 02
(51.92 cfs) was used for channel design. The channel will have a 3-foot bottom width with 4:1
' side -slopes. Existing average slope along the swale is 11%. Five boulder drops have been
designed to reduce the maximum slope to 8% and provide an aesthetically pleasing conveyance
channel while maintaining capacity for the 100-year discharge and freeboard (1.33*100-year
' discharge). A minimum boulder size of 24-inches was determined using grade control criteria
(Robinson et al., 1995) and a factor of safety of 1.2. For conservative measure, the existing slope
of I I% was used in sizing the riprap despite a reduction of slope to 8%. Each drop structure is
' clearly labeled with spot elevations in the Drainage and Erosion Control Plan. Boulder sizing
calculations are presented in Appendix B. The channel will be lined with NA Green SC250
permanent erosion control fabric.
' Water quality pond 1 is located in the median in the street in the southeast portion of the site. A
water quality capture volume (WQCV) of 0.13 acre-feet is required to provide temporary storage
with a 40-hour drain time for Basins 1, 3, 4a, 4b, 5, 8, 9a, 9b, 10, 1la, I lb, Ola, and Olb. Only
' 0.12 acre-feet of storage is available in the water quality pond to allow for 1 foot of freeboard, so
an additional 0.01 acre-foot of storage has been accommodated in the detention pond.
' The detention pond has been revised from the design presented by TST for Harmony Ridge 1 in
1999. The pond release rate of 5.65 cfs presented by TST was re -designed because of revisions
to the City of Fort Collins IDF curves. The revised pond will release runoff at a rate of 4.12 cfs
' (2-year release rate from Historic Basin H-2) and will therefore require a water quality capture
volume (WQCV) for Basins 12, 13, and 02 of 0.9 acre-feet, and 0.01 acre-feet of additional
required WQCV from the median water quality pond in Basin I Ia. The total resulting required
' volume for the pond is 1.72 acre-feet. This volume is provided at a water surface elevation of
5090.67, providing 1.33 feet of freeboard. The pond has been designed with 4:1 side slopes
below the freeboard elevation. Cut slopes above the freeboard elevation are to be graded at 3:1
to minimize hillside disturbance.
The existing outlet structure for the pond will be replaced by a 3-foot by 3-foot concrete outlet
' structure. The pond invert elevation will be lowered from 5087.6 to 5084 to maximize storage
capacity and eliminate the stagnant water that currently exists. The pond outlet goes underneath
' the Trilby Lateral and drains to the existing drainage channel leading to the Bums Tributary in
the Cathy Fromme Prairie. The Final Drainage Report for Harmony Ridge P.U.D. (TST, January
1999) prepared a riprap design for the pond outfall to protect the downstream channel from
1 4
Drainage and Erosion Control Report for Aarmonv Ridge Filing 2
eMWw r111 SaANMW fw MO." euoce moocNM* FINu IMieaae Ue kI.ux February 4. 2005-Page 9
11'�-
scour. The TST report specified a Class 12 riprap �e" d downstream of the pipe for outlet
protection. The riprap was designed for a discharge of20.82� cfs. The revised pond design will
have a significantly smaller 100-year release rate of S 6Ycfs. Onsite inspection revealed that
three rows of coir logs were placed downstream of the outlet in place of the riprap. Placement of
the riprap designed by TST is not recommended because the release rate has been significantly
reduced from the TST design and thick vegetation has become established downstream of the
outlet. Details for the construction of the outlet structure are presented in the construction
drawing plan set for Harmony Ridge Filing 2.
EROSION CONTROL
A temporary erosion control plan is to be implemented for the site during construction. Erosion
control performance standards, effectiveness calculations, and surety calculations are presented
in Appendix D. During construction, straw bale barriers, inlet protection, curb socks, silt fences,
and sediment traps are to be constructed to dissipate energy, intercept and detain sediment, and
ultimately keep the project in compliance with City of Fort Collins erosion control standards.
Vehicle tracking control will be incorporated at site entrances at Prairie Vista Drive off of
Fromme Prairie Way and at Prairie Ridge Drive. Refer to the Drainage and Erosion Control Plan
(sheet 14) for designed locations of erosion control elements on the plan set. Erosion control
details are presented on sheet 18.
WETLAND DETERMINATION AND REVIEW
A small wetland is located in the northwest comer of the site. No disturbance is proposed to the
wetland. Non -jurisdictional wetland mitigation for Harmony Ridge I at the detention pond will
be improved from its existing condition in the same location. This mitigation is addressed under
separate cover.
CONCLUSIONS
The Harmony Ridge Filing 2 Drainage Report has been prepared to comply with the present City
of Fort Collins Storm Drainage Criteria Manual and the USDCM. The drainage plan presented in
this report is intended to effectively and safely convey storm runoff through the proposed site.
No drainage variances are requested.
a
E WOMM 111 ES INO@3$0 HARMONY WMC .111tlO W3910NA DMINAGE REMRT LI
Drainage and Erosion Control Reportfor Harmony Ridge Filing 2
February 4, 2005 - Page 10
' REFERENCES
City of Fort Collins Storm Drainage Criteria Manual, Department of Public Works and Water
Utilities Storm Drainage Division, May 1984
Final Drainage Report for Harmony Ridge P.U.D., TST, Inc. Consulting Engineers, January
1999
National Engineering Handbook NEH 4, prepared by Soil Conservation Service, U.S.
Department of Agriculture, April 21, 1993.
Final Subsurface Exploration Report — Harmon,} Ride Filing 2, Earth Engineering Consultants,
Inc., May 2004.
Rock Riprap for Grade Control, Robinson, K.M., Rice, C.E., and Kadavy, K.C., Proc. Water
Res. Engrg., ASCE, San Antonio TX, Vol. 2, 1476-1480, 1995.
Urban Storm Drainage Criteria Manual, Denver Regional Council of Governments,
dated 1969, Volumes 1, & 2
Urban Storm Drainage Criteria Manual, Volume 3 — Best management Practices,
Denver Regional Council of Governments, Urban Drainage and Flood Control District,
September 1999
Drainage and Erosion Control Reportfor Harmony Ridge Filing 2
February 4, 2005 - Page II
APPENDICES
APPENDIX A - RUNOFF AND DRAINAGE CALCULATIONS
• Rational Method calculations
• Pond Sizing calculations
APPENDIX B - HYDRAULIC CALCULATIONS
• Street capacity calculations
• Inlet capacities
APPENDIX C - REFERENCED INFORMATION AND SUPPORTING DOCUMENTS
APPENDIX D - EROSION CONTROL CALCULATIONS AND DETAILS
Drainage and Erosion Control Reportfor Harmony Ridge Filing 2
m00csQ1M HNn Dxannci: �ro[a Lro February 4. 2005 - Appendices
APPENDIX A: RUNOFF AND DRAINAGE CALCULATIONS
a
L:NROIECf IIISIANDL3501IARMONY RIIIGE HIX)CSMISO nNAL DWNA6E R2NRT DOC
Drainage and Erosion Control Report for Harmony Ridge Filing 2
February 4. 2005 - Appendices
I'
I
II
1
t
1
1
1
1
[1
I
Harmony Ridge
Jim Sell Design, Inc.
23501.31-04 EMS
Table A.1: Runoff Coefficients
Sub -Basin.
ID
Sur.'ace
Description
Area
(so h)
Area
(ac)
Total
Area
(ac)
Area
(°61
Runoff
Coefficient
C
Weignted
Runoff
Coefficient
C
1
Landscape
5.274
1) 12
49.55
020
0.10
Root
150
0.00
1,41
0.95
0.01
17o
Pavement
5,220
0.12
49.04
0.95
0.47
0.24
100.00
0.58
2
Landscape
13.967
0.32
63.52
0.20
0.13
Root
1.350
0.03
6.14
0.95
0.06
''0W
Pavement
6.670
0.15
30.34
0.95
0.29
0.50
100.00
0.47
3
Landscape
10.443
0.24
52.39
0.20
0.10
Roof
0.00
0.00
0.95
0.00
Pavement
9,490
0.22
47.61
0.95
0.45.
0.46.
100.00
0.56
. 4a
Landscape
7,009
j 0.16.
32.89
0.20
0.07
Root
81900
0.20
41.77
0.95
0,40
l ow
Pavement
$400
0.12
25.34
0.95
0,24
0.49
100.00
0.70
v 4b
Landscape
1,590
0.04
23.80
0.20
0.05
Roof
1,415
0.03
21.18
0.95
0.20
Pavement
3,675
0.08
55.01
0.95
0.52
0.15
100.00
0.77
5.
Landscape
12,600
0.29
20.60
020
0.04
Roof
26,000
0.60
42.50
0.95
0.40
Pavement
22,575
0.52
36.90
0.95
0.35
1.40
100.00
0.80
6
Landscape
226,971
5.21
97.99
0.35
0.34
-
Roof
-
0.00
0.00
0.95
0.00
d"
Pavement
4.650
0.11
201
0.95
0.02
5.32
100.00
0.36
]
Landscape
18,909
0.43
28,26
0.35
0.10
Roof
48,000
1.10
71,74
0.95
0.68
Pavement
0.00
0.00
0.95
0.00
1.54
100.00
0.78
8
Landscape
13,758.
0.32
59.05
0.20
0.12
Roof
6,240
0.14
26.78
0.95
0.25
91,
Pavement
3,300
0.08
14,16
0.95
0.13
C. 3
100.00
0.51
9a
Landscape
8.815
0.20
26.49
0.20
0.05
Root
14.357
0.33.
43.15
0.95
0.41
'.r ,/
Pavement
10,100
0.23.
30.36
0.95
0.29
0,76
100.00
0.75
Harmony Ridge
Jim Sell Design, Inc.
23501.31-04 EMS
Table A.1: Runoff Coefficients (cunt.)
Sub -Basin
ID
Surface
Description
Area
(so f0
Area
(act
Total
Area
(ac)
Area
(<I
Runoff
Coefficient
C
Weighted
Runoff
Coefficient
C
9b
Landscape
1.548
0.04
17.84
0.20
0,04
Roof
4.127
0.09
47.57
0.95
0.45
Pavement
3,000
0.07
34.58
0.95
0.33
0.20
100.00
0.82
10
Landscape
7,569
0.17
50.73
0.20
0.10
Roof
0.00
0.00
0.95
0.00
W
Pavement
7.350
0.17
49.27
0.95
0.47
0.34
100.00
0.57
• 11a
Landscape
40,720
0.93
62.68
0.20
0.13
Roof
9,920
0.23
15.27
0.95
0.15
Pavement
14,330
0.33
22.06
0.95
0.21
1.49
100.00
0.48
/11b
Landscape
1.099
0.03
27.39
0.20
0.05
Roof
1,780
0.04
44.37
0.95
0,42
Pavement
1,133
0.03
28.24
0.95
027
0.09
100.00
0.74
12
Landscape
10,853
US
33.27
0.20
0.07
Root
9,745
0.22
29,87
0,95
0.28
Pavement
12,025
0.28
36.66
0,95
0.35
0.75
100.00
070
•j 13
Landscape e
7,250
0.17
60.17
0.20
0.12
Roof
4,800
0.11
39.83
0.95
0.38
Pavement
0.00
0.00
0.95
0.00
0.28
100.00
0.50
Ota
5.464
0.13
57.73
0.20
0.12
_Landscape
Roof
4,000
0,09
42.27
0.95
0.40
Pavement
0.00
0.00
0.95
0.00
0,22
100.00
0.52
01b
Landscape
11,681
0.27
50.39
0.20
0.10
Roof
4,000
0.09
17.26
0.95
0.16
Pavement
7.500
OA7
32.35
0.95
0.31
0.53
100.00
0.57
02
Landscape
117,500
2.70
79.39
0.20
0.1.6
Roof
24,000
0.55
16.22
0.95
0.15
Pavement
6,500
0,15
4.39
0.95
0.04
3.40
100.00
0.35
H-1
Landscape
451.027
10.35
98.12
0.20
0.20
Roof
0.00
0.00
0.95
0.00
Pavement
8,650
0.20
1.88
0.95
0,02
10.55
100.00
0.21
H-2
Landscape
271,158
6.22
6,22
7Z41E0201
77.41
0.15
A5Pavement
Roof
71,158
0.18
12,658
0.29
3.61
0.03
8.04
100.00
0.37
'NOTE: Runoff mefficents .,a !,am Table 3-3, page 3-5 of theCty of Fort Collins Storm Drainage Design Criteria
and Construction Standards Manual. According to the sails report (EEC. May 2004) and SCS mapping, runoff
on the top of the ridge are more sandy, and soils on the ridge contain more Gays closer to the surface (heavy
sods). As a result, Historic Basins 1 and 2 averaged coefficients for sandy and heavy soils. Developed basins 1, 7,
8. and 14 used coefficients for steep heavy sails because they are primarily on the edge, while all other basins
used averaged coefficients for sandy and heavy soils with average slope.
M
M = = = M= M M M= r am
Harmony Ridge
Jim Sell Design, Inc.
23501-31-04 EMS
Table A.2: Standard Form: Developed Time. of Concentration
Time of Concentration Calculations: 2-vear
Sub Basin
Initial / Overland
Travel Time
--------------
--------------
--------------
0��m
rt
••
®�
tt
�:�
rt
lvvl m: basins wlm I c values equal to or less Iran 5 minutes use intensity values for a!) minute duration. Please see table A.4-
M M M = = M =
M = M M = M
Harmony Ridge
Jim Sell Design, Inc.
23501-31-04 EMS
Table A.2: Standard Form: Developed Time of Concentration (cont.)
Time of Concentration Calculations: 100-vaar
Sub -Basin
Data
Initial / Overland
Time (Ti)
Travel Time
(Tt)
Urban
Basin
Check, Tc
Final
Tc
Design Pt.
Coeff.
C
Area
ac
Length
it
Slope
(%
Cf
factor
Ti
(min)
Length
(ft)
Slope
%
Grass or
PavementIt/sec
Tt
(min)
(min)
(min)
1
0.58
0.24
55
0.73
1.25
5.81
160
2.38'
i3.O
0.9
11.2
6.7
2
0.47
0.50
45
0.67
1.25
7.30
325
1.97
1.9
12.1
9.2
3
0.56
0.46
30
2.67
1.25
2.98
330
2.21
1.8
12.0
L8
4a
0.70
0.49
130
4.00
1.25
2.97
200
2.00
p
&10
1.1
11.8
4.0
4b
0.77
0.15
60
5.00
1.25
1.15
80
5.00
p
4.20
0.3
10.8
1.5
5
0.80
1.40
60
2.50
1.25
1.1,3
255
0.59
p
1.55
2.7
11.8
3.9
6
0.36
5.32
180
15.28.
1.25
6.55
1145
0.50
9
0.50
38.2
N/A
44.7
7
0.78
1.54
30
18.00
1.25
0.49
36
25.00
9
3.80
0.2
10.4
0.6.
8
0.51
0.53
75
7.33
1.25
3.89
120
1.67
p
2.40
0.8
11.1
4.7
9a
0.75
0.76
65
16.00
1.25
0.96
280
1.00
p
2.00
2.3
11.9
3.3.
9b
0.82
0.20
90
2.50
1.25
1.04
123
1.80
p
2.70
0.8
11.2
1.8
10
0.57
0.34
30
3.33
1.25
2.66
265
0.75
p
1.70
2.6
11.6
5.3
11a
0.48
1.49
85
1.18
1.25
8.17
335
0.00
p+9
3.80
1.5
12.3
9.6
11b
0.74
0.09
53
5.00
1.25
1.35
25
2.00
p
3.10
0.1
10.4
1.5
12
0.70
0.75
105
4.76
1.25
2.56
155
2.58
p
3.30
0.8
11.4
3.3.
13
0.50
0.28
30
8.33
1.25
2.41
27
9.26
9
2.10
0.2
10.3
2.6
O1a
0.52
0.22
80
2.00
1.25
6.02
120
1.00
1.50
1.3
11.1
7.4
01 b
0.57
0.53
125
2.0
11.25
6.3
775
2.00
2.80
0.4
11.1
6.8.
02
0.35
3.40
100
2.00
1.25
9.75
825
20.00
3.10
4.4
15.1
14.2
ivv i �. Doan is mu. , u vaiuea aqua. ru ui leas uian o nnnures use intensity vames ter a o nunure ouranon. riease see rams t1.4.
Harmony Ridge
Jim Sell Design, Inc.
2350131-04 EMS
Table A.3: Historic Basins
Time of Concentration: 2-vear
Basin
Area
C.
High
Discharge
Overland
Overland
Ct
Overland
Channelized
Channel
Channel
Channel
Travel
Final Tc
Coefficient
Point
Elevation
Length
Slope
2-year
Time, Tt
Flow Length
Discharge
Slope
Velocity
Time, Tt
(acres)
(feet)
(feet)
(feet)
o)
min
feet
Elev. II
full
(Wsec
(min.
min)
fl-1
10.55
0.21
5150.5
5138
410
3.0488
1.1
23.1332
231
5090
20.7792
3.10
1.2
244
H-2
8.04
0.37
5150.5
5138
456
3.17g8
1.00
19.8383
575
1 5087
1 8.5217
1 1.6
1 6.0
25.8
Ur anneuzeo now velocities taken from Figure r3, Fortcorms storm uramage.Deslgn umena aria Uonstruceon Standanls tor-snon grass pasture and towns -
Historic Basin Flows: 2-vear
Area
C'
Ci
Te
2yr
2year
Coefficien
Coefficient
Intensity
0
i
(acres
(for 2- r 0
min
fri/hr
(efs)
10.55
0.21
1.00
244
1.45
3
6.04
0.37
1.00
25.8
1.41
4.17
Time of Cnncentratinm 100wear
Basin
Area
C'
High
Discharge
Overland
Overland
Ct
Overland
Channelized
Channel
Channel
Channel
Travel
Final Tc
Coefficient
Point
Elevation
Length
Slope
100-year
Time, Ti
Flow Length
Discharge
Slope
Velocity
Time, Tt
(acres)
feet
(feet)
feel
o
min
feel
Elev.(it)
ftift)
fVsec
(min)
(min)
111
10.55
0.21
5150.5
5131
415
30120
1.25
21.9561
231
5090
20.7792
3.10
1.2
23.2
H-2
8.04
0.37
5150.5
5136
456
3.1798
1.25
17.3301
575
5087
8.5217
1.6
6.0
23.3
Channelized [low velocities taken from Figure 3-3, Fort Collins Storm Drainage Design Criteria and Construction Standards for'shon grass pasture and lawns'
Hietaric Beein Flnwe- 100-vear
Basin
Area
C'
Ct
Tc
100yr
0
Name
Coefficient
Coefficient
Intensity
100year
acres
for 100- r O
min
iNhr
cfs
H-1
t0.55
0.21
1.25
23.2
5.1a
14.63
H-2
8.04
0.37
1.25
23.3
5.16
19.18
Harmony Ridge
Jim Sell Design, Inc.
23501-31-04 EMS
Table AA: Intensity -Duration Interpolations
City of Fort Collins IDF Table
Curalion
I,m)
2 Year
'.intensity
tirvhr
10 Year
Intensity
(in/hr
too Year
Intensity
IIrJhO
5
2.85
4.87
9,95
6
2.67
4,56
9.31
]
2.52
4.31
8.8
8
2.4
4.1
8-38
9
2.3
3,93
8.03
10
2.21
378
]72
11
2,13
3.63
] 42
12
2,05
3.5
7.16
13
1.98
3.39
6,92
14
1.92
329
6.71
15
187
3,19
652
16
1.81
3,08
6.3
17
175
2.99
6A
18
1.]
2.9
5.92
19
L65
2.82
575
20
1.61
274
5.6
21
1.56
2,67
5.45
22
1.53
2.61
5.32
23
149
2.55
5.2
24
1 46
249
5.09
25
143
2.44
4.98
26
14
2.39
4,87
27
1,37
2.34
478
28
1.34
2.29
4.69
29
1.32
225
4.8
30
1.3
2,21
4.52
31
1,27
2,16
442
32
124
2,12
633
33
1.22
2.08
4.24
34
1.19
2,04
4.16
35
1.17
2
4.08
36
1.15
1.96
401
37
1.13
193
3.93
38
I'll
1.89
3,87
39
1_09
1.86
3.8
40
1.07
1.83
374
41
1,05
1.8
3,68
42
1.04
1.]]
3.62
43
1.02
174
3,56
44
1.01
1.72
3,51
45
0,99
1.69
3,46
46
0.98
1.6]
341
47
0.96
1.64
3.36
48
0.95
1.62
3.31
49
0.94
1.6
3,27
50
0.92
1,56
3.23
51
0.91
1-56
3.1B
52
0.9
1.54
3.14
53
089
1.52
3.10
54
088
1.50
307
55
1 0,87 1
148
303
56
0.86
147
2.99
57
085
t45
2.96
58
0.84
1 43
292
59
0.83
142
2.89
80
082
140
2.86
Design Point Flows
Design
Point
Area
Area
lab'.
nunob
Coefficient
CC
2yr
to
Imm1
Intensely
2yr
tinlho
lady,
to
(mint
intensity
100yr
tinlhr
1
1
0.24
0.58
8.9
2.31
6,67
8.97
2
2
0.50
047
10.9
2.14
9.23
7.96
3
3
0.46
0,56
5.8
2.]0
4.81
9.95
as
4a
049
070
64
2,61
4.04
9.95
as
4b
0.15
0.]]
3.1
2.85
1.47
9.95
5
5
140
0.80
60
2.67
3,87
9.95
6
6
5.32
0,36
45.6
0.98
14.71
347
7
7
1.54
078
1_4
2,85
0.64
995
8
8
0.53
0.51
5.9
2 70
4,72
9.95
9a
9a
076
0.]5
5.!
2.84
3.30
9.95
91c
9b
0.20
0.82
39
2.85
180
9.95
10
10
0.34
0.5]
6.2
2.53
5.26
9 78
11a
Ila
1.49
0.40
11.6
2.08
9.64
7.83
1110
11b
0.09
0.74
3.0
2.85
148
9.95
12
12
075
070
5.3
2.79
3.34
9.95
13
13
0.28
0.50
3.3
2,85
2.62
9,95
Old
01a
0.22
0,52
9.1
229
7.36
8,65
01b
01b
0.53
0.57
92
2.28
6.83
8.88
C2
02
340
0.35
15.1
186
14.18
6,88
Historic Basins
Design
Point
Area ID
Area
race
Runoff
Coefficient
CO
2yr
lc
Iminl
intensity
2yr
fil l
100yr
to
II -I
Intensity
100yr
(,h,hr)
H1
H-t
to 55
0.21
244
145
23.20
5.18
H-2
H-2
1 8.04
037
1 25.8
t 41
23.32
5.16
feign notes ana assump eons:
'Note all intensities for design basins, routed basins, and hi5(briG basins
calculated by linear interpolation of Duration and Intensity values
from City of Fan Collins Drainage Criteria Manual. In the rational
method. setting the tluration equal to the final `. c is a standard
assumption. If to values are less than 5 minutes, Intensity values
are used for a 5-mslate duration.
Harmony Ridge
Jim Sell Design, Inc.
23501-31-04 EMS
Table AA: Irnerlsity-Duration Interpolations (corn.)
Routed Basins: 2-vr
Design
Point
Area ID
Area
(act
Runoff
Coefficient
CC
2yr
it
(min)
Intensity
2yr
(Whit
R4a
t 4a
0.73
0.66
10.27
2.19
Rao
'.4a.4b
0.89
0,68
10.60
2.16
R6
6.7
6,85
046
2349
1.48
98
1.34a4b.8
1.88
0,60
11,75
20
Red
9a,9b.01a.01b
1.71
0.67
12.10
2.04
R11a
-.3,4a.4b,5.8,9a.9b,10,tta.11b,Ota,Otb
6.92
0.63
1565
1.83
R12
.3.4a.4b.5.8.9a.9b.10.11a,llb,12.01a.01
7.67
0.64
16,59
1n
Routed Basins: 101l
Design
Point
Area 10
Area
Ad)
Hutton
Coefficient
CC
100yr
to
mint
Intensity
100yr
(INhrl
194a
t.da
073
0.66
l
8.37
Rob
1."Ab
0.89
0.68
8,37
8.25
R6
6.7
585
0.46
22,73
523
RB
1,3Aa40.6
1,88
0.60
9.52
7.87
Ras
9a, 9b, Ota.01b
1 171
0.67
9.73
7,80
R11a
1.3,4a4b.5.8,9a.9b,10, I Ital 1b,Ota,Old
5-52
0.78
1342
6,83
R12
.3.4a,4b,5.8,9a,9o10,1 la.1 lb,12,01a,01
6.27
1 0.7 1
1436
6.64
Design Notre and. Assumptions:
'Note: all intensities for design basins. routed basins. and historic basins
calculated by linear interpolation of Duration and Intensity values
from City of Fod Collins Drainage Criteria Manual. In the rational
method. setting the duration equal to the final To is a standard
assumption, if tc values are less than s minutes, intensity va ues
are used for a 5-mmute duration.
M
Harmony Ridge
Jim Sell Design, Inc.
23501-31 04 EMS
Table A.5: Storm Drainage System Design: Rational Method Procedure: 2-year Developed
DIRECT RUNOFF
•• •
•.
e e•
��
ee
a e.:.
�
e e
�_�_���__
WITTE
M
M M M M M= M M M M M r M
Harmony Ridge
Jim Sell Design, Inc.
23501-31-04 EMS
Table A.9: Storm Drainage System Design: Rational Method Procedure: 1GO-Year Developed
®
�FOR
MNN
"!®!®!N
NNMS�1R!®!®
II
Harmony Ridge
Jim Sell Design, Inc.
23501-31-04 EMS
Table A.7: Required volume for Pond 1: Shared Pond with Harmony Ridge Filing 1 (HR1 Pond at Design Point 21)
Release rate = 4.17 cfs (Tyr Historic discharge from Basin H-2)
Duration
(min)
Composite
C
100 Yr.
Intensity
(in/hr)
Area
(so)
Ct
Q100
lots)
Inflow
Volume
fcu-ft)
Released
Volume 0 2yr historic flow rate
4.17
Pond Detention
Volume
cu-ft)
5
0.62
9.95
9.94
1.25
77
23,053
1,251
21,802
6
0.62
9.31
9.94
1.25
72
25,884
1,501
24,383
7
0.62
8.8
9.94
1.25
68
28.544
1,751
26.792
8
0.62
8.38
9.94
1.25
65
31.065
2.002
29.063
9
0.62
8.03
9.94
1,25
62
33,488
2,252
31.236
10
0.62
7.72
9.94
1.25
60
35,773
2,502
33271
11
0.62
7.42
9.94
1.25
57
37.821
2,752
35.068
12
0.62
7.16
9.94
1,25
1 55
39,813
3,002
36,811
13
0.62
6.92
9.94
1.25
1 53
41.685
3.253
38,433
14
0.62
6.71
9.94
125
1 52
43,529
3,503
40,027
15
0.62
6.52
9.94
1.25
50
45,318
3.753
41,565
16
0.62
6.3
9.94
1.25
49
46,708
4,003
42,705
17
0.62
6.1
9.94
1.25
47
48.052
4,253
43,799
18
0.62
5.92
9.94
1.25
46
49,377
4,504
44,874
19
0.62
5.75
9.94
1.25
44
50,624
4,754
45,870
20
0.62
5.6
9.94
1.25
43
51.898
5,004
46.894
21
0.62
5.46
9,94
1.25
42
53,131
5,254
47.876
22
0.62
1 5.32
9.94
1,25
41
54,233
5,504
48.729
23
0.62
5.2
9.94
1.25
40
55,420
5.755
49,665
24
0.62
5.09
9,94
1.25
39
56,606
6,005
50.601
25
0.62
4.98.
9.94
1,25
38
57.6901
6.255
51435
26
0.62
4.87
9.94
1.25
38
5$672
6.505
52167
27
0.62
4.78
9.94
1.25
37
59,803
6.755
53.048
28
0.62
4.69
9.94
1.25
36
60,850
7,006
53,845
29
0.62
4.6
9.94
1.25
36
61,814
7.256
54.558
30
0.62
4.52
9.94
1.25
35
62.834
7,506
55.328
31
0.62
4.42
9.94
1.25
1 34
63,492
7,756
55.735
32
0.62
4.33
9.94
1.25
33
64.205
8,006
56.199
33
0.62
1 4.24
1 9.94
1.25
33
64,835
8,257
56.579
34
0.62
4.16
9.94
1.25
32
65.540
8,507
57,033
35
0.62
4.08
9.94
1.25
32
66, 170
8,757
57.413
36
0.62
4.01
9.94
1.25
31
66,8931
9,007
57,886
37
0.62
3.93
9.94
1.25
30
67,379
9,257
58.122
38
0,62
3.87
9.94
1.25
30
68,144
9,508
58,636
39
0.62
3.8
9.94
1.25
29
68.672
9,758
58,914
40
0.62
3.74
9,94
1.25
29
69,321
10,008
59,313
41
0.62
3.68
9.94
1.25
28
69,914
10.258
59.656
42
0,62
3.62
9,94
1.25
1 28
70,451
10.508
59,943
43
0.62
3.56
9.94
1.25
1 27
70,933
10.759
60.175
44
0.62
3.51
9.94
125
1 27
71.564
11.009
60.555
45
0.62
1 3.46
9.94
1.25
27
72,147
11,259
60.888
46
0.62
3.41
9.94
125
26
72,685
11,509
61,176
47
0.62
3.36
9.94
1.25
26
73.176
11,759
61.417
48
0.62
3.31
9,94
1.25
26
73,621
12.010
61.611
49
0.62
3.27
9.94
1.25
25
74,246
12,260
61,987
50
0.62
3.23
9.94
125
25
74.835
12,510
62,325
51
0,62
3.18
9.94
1.25
25
75,150
12,760
62,390
52
0,62
3.14
9.94
1.25
24
75,660
13,010
62.649
53
0.62
3A
9.94
1.25
24
76,132
13.267
62,872
I
Harmony Ridge
' Jim Sell Design, Inc.
23501-31-04 EMS
Table A.7: Required volume for Pond 1: Shared Pond with Harmony Ridge Filing 1 (HR1 Pond at Design Point 21) (cont.)
' Release rate = 4.17 cfs (2yr Historic discharge from Basin H-2)
1
r
E
1
1
1
Duration
(min)
Composite
C
100 Yr.
Intensity
(irlli
Area
(so)
Cf
0100
(cfs)
Inflow
Volume
(cu-f)
Released
Volume 4 2yr historic flow rate
4.17
Pond Detention
Volume
(cu-h)
54
0.62
3.07
9.94
1.25
24
76,818
13,511
63.307
55
0.62
3.03
9.94
1.25
23
77,221
13,761
63,460
56
0.62
2.99
9A4
1,25
23
77,587
14,011
63,576
57
0.62
2.96
9,94
1.25
23
78,181
14,261
63,91.9
58
0.62
2.92
9.94
1.25
23
78,477
14,512
63.965
59
0.62
2.89
9.94
1.25
22.
79,010
14.762
64,248
60
0,62
2,86
9.94
1.25
22
79,515
15.012
64,503
65
0.62
2.74
9.94
1.25
1 21
82,511
16,263
66,248
70
0.62
2.61
9.94
1.25
20
84,696
17,514
67.162
75
0.62
2.50
9.94
1.25
19
86.740
18,765
67.975
80
0.62
2.39
9.94
1.25
18
88,656
20,016
68.640
85
0.62
2.30
9.94
125
18
90.454
21,267
69,187
90
0.62
2.21
9.94
125
17
92,145
22.518
69,627
95
0.62
2.13
9.94
125
16
93,737
23.769
69,968
100
0.62
2.06
9.94
1.25
16
95,236
25.020
70,216
105
0.62
1,99
9.94
1.25
15
96.650
26,271
70,379
110
0.62
1.92
9,94
1.25
15
97.985
27,522
70,463
115
0.62
1 1.86
9.94
1.25
14
99,2441
28.773
70,471
120
0.62
1.81
9.94
1.25
1 14
100,433
30,024
70,409
125
0.62
1.75
9.94
1.25
14
101.556
31,275
70,281
130
0.62
1.70
9.94
1.25
13
102.616
32.526
70.090
135
0.62
1.66
9.94
1.25
13
103,617
33,777
69,840
140
0.62
1.61
9.94
1.25
12
104,562
35.028
69,534
145
0.62
1.57
9.94
1.25
12
105,452
36,279
69,173
150
0.62
1.53
9.94
1.25
12
106,292
37,530
68,762
155
0.62
1.49
9.94
1.25
12
107,083
38,781
68,302
160
0.62
1.45
1 9.94
1.25
11
107,828
40,032
67,796
165
0,62
1.42
9.94
1.25
11
108,528
41,283
67.245
170
0.62
1.39
9.94
1.25
11
109,1851
42,534
66,651
175
0.62
1.35
9.94
1.25
10
109,801
43,785
66,016
180
0.62
1.32
9.94
1.25
10
110,378
45.036
65,342
185
0.62
1.29
9.94
1.25
10
110.917
46.287
64.630
190
0.62
1.27
9.94
1.25
10
111419
47,538
63,881
195
0.62'
1.24
9.94
1.25
10
111.886
48,789
63,097
200.
0.62
1.21
9.94
1.25
9
112,318
50,040
62,278
205
0,62
1.19
9.94
125
9
112,718
51,291
61,427
210
0.62
1.16
9.94
1.25
9
113,086
52,542
60,544
215
0.62
1.t4
9.94
1.25
9
113.423
53,793
59.630
220
0.62
1.12
9,94
1.25
9
113,731
55,044
58,687
225
0.62
1.09
9.94
1.25
8
114,0091
56,295 1
57,714
Required Storage Volume = 70,471
or in Acre Feet = 1A2
Harmony Ridge
Jim Sell Design, Inc.
2350131-04 EMS
Table AA: Water Quality Capture Volume Iill Calculations
❑ascription
Cimulnutirig
Proposed
Basms
Tributary
Area
(so)
Percent
Impervious
Drain
Tme
(hours)
WOCV
(watershed
Inches)
Required
III
Storage
acufl(oil
Required
III
Storage
ff
Required
Release
Rate
tots
WOCV
WSEL
(it)
Ports
Bottom
Elevation
fl
Orifice
invert
Elavalmn
fit
Difference
belwean
WOCV and
Pond Bottom
tB
WQCV
Chance
Mee
mq in
Quantity
at WGCV
Orifice
Holes
WOCV
Orifice
Doi m0er
in
Median WOCV Pond
13,4aA1E,5,B.9a,9b,10,11a.1 I b.01a,01b
5.52
0.70
40
0.28
013
5510
0.04
512]]0
5125Jfi
5126.01
1.94
0.82
2.00
0.51
Descdplion
Contributing
Proposed B...
Not Treated In
Medan WGCV Pond
Tributary
are.
(ac)
Percent
Impervious
Drain
Time
(hours)
WQCV
(watersbed
Inches)
Required
WOCV
Storage
ac-hi
Required
WOCV
Storage
C.Nlot.)
Requited
Release
Rate
WOCV
WSEL
ah
Pond
Bottom
Elevation
(111
Onfice
Invert
Elevation
runII
Difference
between
WOCv wm
Pond Bollom
WOCV
Orifice
Area
6
Onamily
oI WOCV
O d,ii
Rules
WOCV
Orifice
Umnmler
hill
Pnnd1
12,13.02
442
0.80
40
024
aUS
3190
1 0.03
1 bri I A
1 500400
5084.25
1 L16
0.]2
200
-0.48
Dunign Noles and Assumptions:
III =a'f0.911A3-1. 1gIA2t]8i)
a = 1.0 for 40 fir drain time
Required WOCV Storage = WOCW12 - Tributary Area in acres
0 = CA(2gHr.5
Where O = Allowable Release Rate lots)
C = Coefficient of friction Im Restriclor -CBO
A=Area of Orifice
g = Accelermgn of Gravity -32.2 W..c-2
R = Dlllermce In Elevation batan an the WGCV wafer surface elevation and the center of the orifice
'Note: Percent Impervious values from 11/02 Fax Irom Glen Schleuter for MMN zoning district
Harmony Ridge
Jim Sell Design, Inc.
23501 31-04 EMS
Table A.9: Pond Volume Calculations
imil'lgn
Congas
Elavation
E
(11)
Area wfin
Contour
A
(sq ft)
Area wfin
Contour
A
(act
Average
Area
A,,,,
fact
((A,+A,,)+(A*A_)o nn
Contour
Interval
D
(8)
(E„i-E„)
Storage
Capacity
V
(acft)
((An+Aivl)+(An-An-1)0.5)/'Eo-l-Err)
Total
Storage
V,a„
(ac-ft)
(S„+D-1
Total
Storage
V,
(cu. ft.)
IS,,+D,,.d
Required
Capacity
S"
(ac-It)
VISE at
Required
Capacity
(ac-8)
three,
inter olalion
Freeboard
(ft)
Er--WSEI
Depth
(h)
5084
0
0.00
0,06
1
0.06
5085
7934
0,18
0.06
2644.67
0.20
1
0.20
0.10
SOBS.la
5086
9410
0.22
0.26
1130fi.18
0,23
1
0.23
5067
11030
0.25
0.49
21515 46
0.27
1
0.27
5088
12842
0,29
ow
33425.35
0,32
1
0.32
5089
14674
0,34
1.08
47157.83
0.36
1
0.36
5090
16638
0.38
1..44
62803.55
0.41
1
0.41
1.72
6090.67
1.33
5091
18685
043
1.85
80455.16
0.45
1
0.45
5092
20874
1 2,30
100224.55
IVOCV Pnnd
Conlou(
Elavahun
E
(it)
Area An
Contour
A
(aq h)
Area who
Contour
A
(ac)
Average
Area
A„v
(ac)
I(A� A,.,)+(A,;A,.,)"/3
Contour
Interval
D
(h)
[E,.,-E„)
Storage
Capacity
V
(ac-8)
gAn+An-l)+(An'An-1)u51/XEn-1Enl
Total
Storage
Ve,,,
(acft)(cu.8.)
IS, +D,,,,)
Total
Storage
V�
IS„+D,,,,I
Required
Capacity
S,w
(ac-ft)
VISE at
Required
Capacity
(ao-h)
linear
Interpolation)
Freeboard
(ft)
(E,,,,,-WSEI
Depth
(II)
5125. 76
0
0.00
0,01
0.24
0.00
5126
1415
0.03
0,00
113,20
0,05
1 1
0.05
_ 5127
3305
Obli
1
1 0.06
1 2407.38
_
0.09
1
0.09
0.13
5127,82
0,88
_ 5128
4305
0.10
1
0.14
1 6201.38
1 0.12
1 5127,70
1 1.00
fill
1
0.11
5124
5220
0.12
0.25
10956.54
II
' APPENDIX B: HYDRAULIC CALCULATIONS
II
II
II
II
II
II
II
II
II
II
II
II
11
' fiPROIIYT IILptiIf ANIJ^_J£O nARMONY RIxF. IPbCL)SNW FTNAL �ILIINAGF. PEPORT DOC
Drainage and Erosion Control Reportfor Harmony Ridge Filing 2
February 4, 2605 - Appendices
Harmony Ridge
Jim Sell Design, Inc.
235011-30-04 EMS
Table 8.1: Street capacity: Minor Event -Vertical Curb: 30-foot local street
Theoretical capacity (as presented in Urban Drainage and Flood Control District Manual 1, Section 2.3.1.2
Q=Qw+Qs
where: Q = theoretical gutter capacity
Qw=flow rate in the depressed section of the gutter (cfs)
Qs=discharge in the section that is above the depressed section (cfs)
Qt=Qs/(1-Eo)
where: Qs=discharge in the section that is above the depressed section (cfs)
where: Qt=theoretical discharge
Qs=0.56/(n'sx)'(SI^0.5)'(y^(8/3))
Eo=1/(1+(sw/sx)/(1+(sw/sx)/((TM/)-1)^(8/3)-i)
where: Sw= gutter slope (ft/ft)=0.083 Will
Sx=street cross -slope (ft/ft)=0.02 fVft
T=top width of flow spread to CL=15'
W=width of gutter=2'
therefore: Eo=0.397
Qa=QYF where: Qa=actual discharge
F=reduction factor per figure 4-2, City of Fort Collins SDCM
Fnr 3n-fnnt wider ctrpptc
1•
11
1 I
I I
�_�__�
I :1
�_
®
1 /•
11
11
��®�®
Harmony Ridge
Jim Sell Design, Inc.
235011-30-04 EMS
Table B.2: Street capacity: Minor Event -Vertical Curb: 24-foot local street
Theoretical capacity (as presented in Urban Drainage and flood Control District Manual 1, Section 2.3.1.2
Q=Qw+Qs
where: Q = theoretical gutter capacity
Qw=flow rate in the depressed section of the gutter (cfs)
Qs=discharge in the section that is above the depressed section (cfs)
Qt=Qs/(1-Eo)
where: Qs=discharge in the section that is above the depressed section (cfs)
where: Qt=theoretical discharge
Qs=0.56/(n'sx)'(SI^0.5)' (y^(8/3))
Eo=1/(1+(sw/sx)/(1+(sw/sx)/((T/W)-1)^(8✓3)-1)
where: Sw= gutter slope (ft/ft)=0.083 ft/ft
Sx=street cross -slope (ftM)=0.02 ft/ft
T=top width of flow spread to CL=12'
W=width of gutter=2'
therefore: Eo=0.491
Qa=Qt'F where: Qa=actual discharge
F=reduction factor per figure 4-2, City of Fort Collins SDCM
Fnr')d-MM WH. ctrcefc
1 .I
I I
I•
I•
• I
��
1 :1
11
11
11
• I
��
I :I
®'
/1
11
11
• I
��
•:•
1 1
1 1
••
• 1
®�
1 :1
1 •1
1/
11
1 1
1 1
®�
/ :1
I•
I•
I I
I•
I I
��
I :1
®'
I I
1•
I•
1 1
��
I :I
®'
11
1 1
/1
11
• 1
����
®
I•
1 1
11
1 1
���
®
11•
1 1
11
1 •
����
1 1
0 1
I•
I I
����
Harmony Ridge
Jim Sell Design, Inc.
235011-30-04 EMS
Table 8.3: Street capacity: Major Event -Vertical Curb
Theoretical capacity (as presented in Urban Drainage and Flood Control District Manual 1, Section 2.3.1'..2
Q=QwaQs
where: Q = theoretical gutter capacity
Qw=flow rate in Ow depressed section of the gutter (cis)
Qs=discharge in the section that is above the depressed section (cis)
QI=Qs/(1 Fri)
where: Qs=discharge in the section that is above the depressed section (cis)
where: QtAheoretical discharge
Qs=0.56/(n'sx)'
Eo=1/(1+(sw/sx)/(l+(sw/sxp(EE/W)-t)"(8/3)-1)
where. Sw= gutter slope(11/16=0.063 fMt
Sx=street cross -slope (Pori)=0.0211/fl
T=lop On of flow spread to CL=15'
W=width of gutter=2'
y=flow depth at curb
therefore: Eo=0.397
Qa=CVF where: Qa=actual discharge
F=reduction factor per figure 4-2, City of Fort Collins SDCM
For 30foot wide streets: Flow capacity on each side of centerlkw
Flow
outside back
of curb:
O1
Flow
between
back of curb
and CL:
02
Residual Ilow
past CL:03
(to subtract
from Of)
at (01=01+02-03)
at
cfs
Slope
(%
Slope
(it/it)
Al
(fM2
n
R
i ft
01
Is
Sx
iVk
n
y
(11
as
(cis)
at
(cis)
F
0e
(cis)
A3
ft^2)
n
R
(AJP) (ft(cis)
03
0,60
0.006
4,62
0.035
0.21
5.38
0.02
0.02
0.93
111.70
185.25
Oleo
148.20
6.25
0.02
0.25
14.09
139.49
0,76
0.008
4.62
0,035
0.21
6.05
0.02
0.02
0.93
12572
208.49
0.80
166.79
6.25
0.02
0.25
15.85
156,99
on
0,006
462
0.035
0.21
6.09
0.02
0.02
0.93
126.54
209.86
0.80
167.88
6.25
0.02
0.25
15.96
158,02
0,85
0,009
4.62
0.035
0.21
6A0
0.02
0.02
0.93
132.95
220A9
0.80
176.39
6.25
0.02
0.25
16,77
166.03
0.90
0.009
4.62
0.035
0.21
6.59
0.02
0.02
0.93
136.81
226.B8
0.80
181,50
6.25
0.02
0.25
17.25
170.84
1.00
0.010
4.62
0.035
0.21
6,94
0.02
0.02
0.93
144.21
239.15
0.80
191,32
6.25
0.02
0,25
18,19
180,08
1.03
0.010
4.62
0.035
0.21
7.05
0.02
0.02
0.93
146.36
242.71
0.00
194.17
6.25
0.02
0,25
18.46
182.76
1.40
0.014
4.62
0.035
0.21
0.22
0.02
0.02
00.93
170.63
282.97
0.80
226.38
6.25
0.02
0.25
21,52
213.07
2.00
0.020
4.62
0,035
0.21
9.82
0.02
0.02
0.93
203.94
338.21
0.80
270.57
625
0.02
0,25
2572
254,67
3.00
0.030
4.62
0.035
0,21
12.03
0.02
0.02
0.93
249.78
414.22
0.72
296.17
6.25
0,02
0.25
31.50
276.70
3.11
0.031
4,62
0.035
0.21L12.25
0.02
0.02
0.93
254.32
421J5
0.71
299.44
82
0,02
0,25
32.07
279,62
371
0037
462
0035
0,210.02
0.02
0,93
277.77
460.64
0,62
285.60
6.2
0,0
0.25
35,03
263.94
1
450
OM5
462
0035
0,21
0.02
0.02
0.93
30591
50732
Q54
273.95
6.25
0.02
0.25
W,,58
250,11
Harmony Ridge
Jim Sell Design, Inc.
235011-30 W EMS
Table 6A: Street capacity: Major Event -Vertical Curb: 24-foot street cross-section
Theoretical capacity (as presented in Urban Drainage and Flood Control District Manual 1, Section 2.3.1.2
O=Ow+Os
where: O = theoretical gutter capacity
Ow=llow rate in the depressed section of the gutter (cis)
Os -discharge in the section that is above the depressed section (cfs)
OI_Os/U-Eo)
where: Os=discharge in the section that is above the depressed section (cis)
where: Ot=theoretical discharge
Os=056J(n'sx)'ISP0.5)'(y^(8/3))
Eo=1/(1,(sw/sx)/(1+(sw/sx)/((TAN)-1)-(8/3)-1)
where: Sw= gutter slope (fV10=0.083 fl/fl
Sx=street cross -slope (fV8)=0.02 fVfi.
T=top width of flow spread to CL=12'
W=width of gutter=2'
y=tlow depth at curb
therefore: Eo=0.491
Oa=OI'F where: Oa=actual discharge
F=redwtl o factor per figure 4-2, City of Fort Collins SDCM
For 24-foct wide streets: Flow capacity on each side of centerline
Flow
outside back
of curb:
01
Flow
between
back of curb
and CL:
02
Residual Ilow
past CL:03
to subtract from Of)
at (Ot=01r02-03)
0t
(cfe
Slope
(h
Slope
ftltt
A/
W2)
in
R
A/P tt
01
lots
Sx
(tVb
n
y
Oft)
as
(cis
at
cis
F
0s
(cis)
A3
tt"2)
n
R
(A/P) (tt)
03
(cfa)
0,60
0.006
3A2
0.035
0.18
3.60
0.02
0.02
0.87
93,50
183.70
0.80
146.96
6.25
0.02
0.25
14.09
136.48
0.76
0,008
3.42
0.035
0.18
4.05
0.02
0.02
0.87
105.24
206.75
0.80
165.40
6.25
0.02
025
15,85
153.50
0.77
0,008
342
0.035
0.18
4.08
0.02
0.02
0.87
105.93.
208.11
0.80
166A8
6.25
0.02
0.25
15.96
154.61
0.85
0.009
3.42
0.035
OAS
4,29
0.02
0.02
0.87
111.29
218.65
0.80
174.92
6.25
0.02
0.25
16J7
162A4
0.90
0.009
3.42
0.035
0.10
4.41
0.02
0.02
0.87
114.52
224.99
0,80
179,99
6.25
0,02
0.25
17.25
167A5
1.00
0010
3.42
0.035
0.18
4.65
0.02
0.02
0,87
120,71
237.16
0.60
189.73
6.25
0.02
0.25
18,19
176. 19
1,03
0.010
3,42
0.035
0.18
4.72
0.02
0.02
0.87
122.51
240.69
0,00
192.55.
6.25
0.02
0.25
18.46
178.81
1.40
0.014
3.42
0.035
0.18
5.50
0.02
0.02
0,87
142.83
280.61
0.80
224:49
6.25
0.02
0.25
21.52
208.47
2.00
0,020
342
0,035
0.18
6,58
0.02
0.02
0.87
170.71
335.39
0.80
268.31
6.25
0.02
0.25
25.72
249,17
3.00
0030
3.42
0,035
0.18
8.05
0,02
0,02
0.87
20908
410.7]
0.72
293.70
6.25
0.02
0.25
31.50
270.26
3.11
0.031
3.42
0.035
0.18
8.20
0.02
0.02
0.87
212.88
418.23
0.71
296.95
6.2
0.02
0.25
32.07
273,07
3.71
0.037
3.42
0.035
0,18
8.96
0,02
0.02
0.8]
232.51
456.80
0.62
283,22
6.25
0.02
0.25
35.03
257.14
4.50
0.045
3.42
0.035
0.18
9.86
0.02
0.02
0.87
256.07
503,09
0.54
271.67
8.25
0.02
0.25
38.58
242.95
Concrete Cross Section: Minor Street Capacity
Cross Section for Irregular Channel
Project Description
Worksheet
Concrete Street Cross section: minor ever
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coeffciei
Slope
Water Surface Elev
0.013
0,037100 ft/ft
0.99 It
,F'as r
SIopG
M,-ror
� a •` 1� 1
2.1�
cc�
ICcJ(r
Q
C<G1l
Elevation Range
Discharge
.50 to 1,67
36,31 cfs
i p
l l b
Off.(
j.il �,0
q _ I3. e
36 31��s
O.'Z
02
O 8�
o `�"
✓
✓
1_80
0.40
10+0 0.00 10+0 5.00 10+10, 00 10 +1 5.00 10 +2 0.00 10 +2 5.00 10 +3 0.00
VA
H:1
NTS
Project Engineer: Jim Sell Design Inc
e.\..12350 final report hydraulic calcs. fm2 Jim Sell Design Inc FlowMaster v6.1 [614k]
02/02/05 04:15:33 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
No Text
M
M M M
Harmony Ridge
Jim Sell Design, Inc.
23501-31-04 EMS
Riprap Calculations
City of Fort Collins Mallhod (Specific Gravity of Rack = 2.50, n = 0.040)
Riprap
Basin
Contributnuj
100yr
Channel
Charnel
Channel
Channel
Channel
Riprap
VS,/(S; 1)
Riprap
Notes
ID
Basins
©
Bottom
Side
Velocity
Slope
Slope
Dso
Class
Width
Slopes
(D., in
(cfsl
(M)
(fps)
(%)
(ttHp
(it)
1
(nffsite)
(offslte)
5.79
2
3 1
4.4
Z5
0 0]5
0.14
2.17
6
Esiend dprap for distance of 8 leaf from end of curb/gutter section
2
(4lsite)
(otlsne)
2.81
2
31
3:6
ZS
0.075
0.09
1.]]
6
Ezlend riprap 35 feel dowrlslream of sidewalk chase to extent of disturbed area
3
6
3
117
2
31
5.7
25
0.25
035
3.45
fi
Extend dprap to toe of 51ope-
4
9
R46
6.23
2
3:1
fi.9
25
0.25
0.52
4.17
12
Extend riprap to toe of slope
5
1 1 a
11.
085
_
2
31
25
_
Extend riprap to toe of slope
3.7
0.25
0.15
2.24
6
3.7
25
0.25
0 15
6
11.
11,
0.65
2
3.1
2.24
6
_
Extend dprap to toe of slope
]
Ile
11 a, 116
085
2_
3:1
3.]
25
0.25
0.15
_ 2.24
6
Extend riprap to toe of slope
1
1
1
1
N'Aggl— .• �^GGE •+� 2 Z 3SG_f
2.2-Z
!p.nsg CSTE�'ej 2.Z2-a.18 2.0-+ •. � G•Z
Z.22
C.; C{c,A CI.25��G.zc)C Bt ^lw.l( Z, Z?-�)
Z°�6
G : VO--C C-- a --en' r i (S35') ' 0 22« 4p 0.ls
'I C 5; 5) 0,614, ` Q. Zn
Z3
k Soo
1
�rke-n%iv,-.
Duo Q `6
' 1 t6c ,- a 'iG, l r 1..%Z a W S(. q Z,4
r
fL1Z t3 aZ
!
E—Li
� - -;/ I? (, F+�isL
(V1% = zoo"
-a ft Zc c �A�-T*R- ci r erK ,
p� _ iz CZo,) = zkt tiso
Harmony Ridge 2: Swale 1
Worksheet for Sharp Crested Rectangular Weir
Project Description
Worksheet Rock Drops in Swale 1
Type Sharp Crested Rectangul
Solve For Headwater Elevation
Input Data
Discharge
69.05 cfs
Crest Elevation
00.00 ft
Tailwater Elevation
98.70 It
Discharge Coefficil
3.33 US
Crest Length
5.00 it
Number of Contrac
0
Results
Headwater Elevation 02.58 ft
Headwater Height Abov 2.58 ft
Tailwater Height Above -1.30 ft
Flow Area 12.9 112
Velocity 5.35 ft/s
Wetted Perimeter 10.16 ft
Top Width 5.00 ft
Project Engineer: Jim Sell Design Inc
e:\...\2350 final report hydraulic calcs.fm2 Jim Sell Design Inc FlowMaster v6.1 [614k]
02/03/05 12:06:38 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Pond Outlet Structure: 100yr Orifice Flow
Worksheet for Generic Orifice
Project Description
Worksheet Pond Outlet Structure: 100yr Orifi<
Type Generic Orifice
Solve For Opening Area
Input Data
Discharge 4.12 cis
Headwater Elevat ,090.67 ft
Centroid Elevatior,085.54 ft
Tailwater Elevatio ,085.00 it
Discharge Coeffic 0.62
Opening Area 0.4 ft2
Results
Headwater Height Above 5.13 ft
Tailwater Height Above G -0.54 R
Velocity 11.26 f /s
r_ 3G'
Project Engineer: Jim Sell Design Inc
e0..A2350 final report hydrautic calcs.fm2 Jim Sell Design Inc FlowMaster v6.1 [614k)
02/02/05 12:02:39 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 USA (203) 755-1666 Page 1 of 1
Scenario: Base
S-ro�+n Sewe'P— rt�Av{StS - Z,i�
LOT 44
w
LOT 32
LOT 43
a,
LOT 33 <
LOT 34 rc
LOT 42
I
/
1
LOT 35 _
LOT41
4
LOT36y — -
LOT 40 LOT 37
i
LOT 39
LOT
LOT31 I>j
LOT 7
LOT 38 LOT 30
LOT 29
LOT 8
LOT 28 6,
_ F
IC g.
LOT 9
o
`
LOT 27
LOT 10
a
{ u LOT 26
LOT 11
\ \ LOT 25
LOT24
0
w«2
LOT 12 LOT 23
LOT 13 i 02
LOT 22
I6
LOT 14-
i[�
LOT 15-', ! - / I� :- LOT21
Title: Harmony Ridge StormCAD
Project Engineer: Jim Sell
e:\...\hydraulics\2350 stmcad 2yr.stm
Jim Sell Design Inc
StormCAD v4.1.1 [4.2014]
11/30/04 03:09:56 PM
®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666
Page 1 of 1
Scenario: Base - Z-(r
Pipe Report
Label
Upstream
Node
DownstreamTotal
Node
System
Flow
(cfs)
Length
(ft)
onstructe
Slope
(ft/ft)
Section
Size
Manning
n
Full
Capacity
(cfs)
Upstreamownstrea
Invert
Elevation
(ft)
Invert
Elevation
(ft)
pstrea
Ground
Elevation
(it)
ownstrea
Ground
Elevation
(it)
UpstreamDownstreamHydraulicHydraulic
Cover
(ft)
Cover
(ft)
Grade
Line In
(ft)
Grade
Line Out
(h)
A-1
I 1
MH 1
2.98
31.30
0.012141
18 inch
0.013
11.57
5,136.78
5,136.40
5,140.00
5,141.70
1.72
3.80
5,137.44
5,136.93
A-2
MH 1
MH 2
2.98
124.60
0.021669
18 inch
0.013
15.46
5,136.30
5,133.60
5,141.70
5,137.80
3.90
2.70
5,136.96
5,134.05
A-3
MH 2
12
2.98
178.60
0.009742
18 inch
0.013
10.37
5,133.50
5,131.76
5,137.80
5,134.90
2.80
1.64
5,134.16
5,132.47
B-1
14
15
2.36
31.00
0.011935
18 inch
0.013
11.48
5,132.64
5,132.27
5,135.85
5,135.85
1.71
2.08
5,133.22
5,132.74
A-4
12
13
5.32
51.70
0.012573
24 inch
0.013
25.36
5,131.66
5,131.01
5,134.90
5,135.62
1.24
2.61
5,132.47
5,131.90
B-2
1 5
13
2.87
50.80
0.015551
18 inch
0.013
13.10
5,132.17
5,131.38
5.135.85
5,135.62
2.18
2.74
5,132.81
5,131.86
A-5
13
01
7.78
74.20
0.012264
24 inch
0.013
25.05
5,130.91
5,130.00
5,135.62
5,130.00
2.71
-2.00
5.131.90
5,130.77
C-1
16
MH 3
8.02
144.40
0.029986
24 inct
0.013
39.17
5.125.76
5.121.43
5,125.76
5,129,93
-2.110
6,50
5,126,77
5,122,04
C-2
MH 3
MH 4
8.02
25.60
0.030078
24 inct
0.013
39.23
5,121.33
5,120.56
5,129.93
5,126.75
6.60
4.19
5,122.34
5,121.24
C-3
MH 4
02
8.02
35.30
0.030028
24 inch
0.013
39.20
5,120.46
5,119.40
5,126.75
5,119.40
4.29
-2.00
5,121.47
5.120.06
7 itle: flarmony Ridge StormCAD
e V..\hydraulics\2350 stmcad 2yr.stm Jim Sell Design Inc
02/02/05 10:16:58 AM ® Hassled. Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666
Project Engineer: Jim Sell
StormCAD v4. 1.1 14.20141
Page 1 of 1
Scenario: Base - ',I(
Node Report
Label
Known
Flow
(cfs)
Total
System
Flow
(Cis)
Ground
Elevation
(fl)
Rim
Elevation
(tt)
Hydraulic
Grade
Line In
(11)
Hydraulic
Grade
Line Out
(tt)
1 1
2.98
2.98
5.140.00
5,140,00
5,137.44
5,137.44
MH 1
2.98
5,141.70
5,141.70
5,136.96
5,136.96
MH 2
2.98
5,137.80
5,137.80
5,134.16
5,134.16
14
2.36
2.36
5,135.85
5,135.85
5,133.22
5,133.22
12
5.32
5.32
5,134.90
5,134.90
5,132.47
5,132.47
15
2.87
2.87
5,135,85
5,135.85
5,132.81
5,132.81
13
7.78
7.78
5,135,62
5,135.62
5,131.90
5,131.90
01
7W8
5.130.00
5.130.00
5,130.77
5,130.77
16
8.02
8.02
5,125.76
5,125.76
5,125.76
5,125.76
MH 3
8.02
5,129.93
5,129.93
5,122.34
5,122.34
MH 4
8,02
5,126.75
5,126.75
5,121.47
5,121.47
02
8.02
5,119.40
5,119.40
5,120.06
5,120.06
Title: Harmony Ridge StormCAD
e1.. \hydraulics\2350 simcad 2yr.stm Jim Seil Design Inc
02/02/05 10:20: 13 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666
Project Engineer: Jim Sell
StormOAD v4.1.1 [4.2014]
Page 1 of 1
Babel. 13
Rim'. 5, 13562It Label: 12�
label: h5 Sump: 5, 130191it Rim: 5,13490fl
Up Inwn. 5130.91 It Simp.5131 66 fl
Do Invert. 5:1300011
L 7420 n
Sze 24 intl
80012
0`00
,abet O 1
Rim: 5.13000 fl
Snnp. 5, 130 00 8
0.50
1-N00 1,50
Babel A4
Up. hwrC 5,131 fi6 it
❑I. Inwn: 5.131 01 H
L 51]Ofl
Sze: 24 mn
S:0➢12573 Nfl
Profile Z-fr
Scenario: Base
?RIAA4GN- 1'c
Label A3
Up. Inwn. 5.133 50 It
n. OInvan. 5,131 76 11
L 1786011
Sze. 18 inM
S-0009742 It
2+00 '&N.n (n)
RabeL MH2
Rim: �.1378011
gimp: 5.13350It
Rabal a2
Up. Inwn:5,136,30 ft
Dn. invert: 5,133.60ft
L 124 60 it
Sze: l8intl
S: 0 021669 Nfl
3+00 3 50 4+00
Lebef MH 1
Rim: 5.141708
Sump 5,136 30 it
5, 14200
Rabat 11
Rim 5,1 00fl
Sump. 5,136]6 fl.
n 5.14000
- 5,13800.
FJawuon fl0
- 5,13600
LtbeL At 5, 13400
Up. Inwn: 5,136 7811
Dp Inwn'5, 13640n
L 3130it
Sze'. 18 Intl 5, t3260.
S.0012141 Nit
5,13000
4 50 5`00
Title: Harmony Ridge StormCAD Project Engineer. Jim Sell
e:\...\hydraulics\2350 stmcad 2yr. stm Jim Sell Design Inc StormCAD v4.1.1 [4.20141
11/30/04 02:59.33 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 USA 1-203-755-1666 Page 1 of 1
w w w w w w w w w M w w w w w w w
Profile - Z1�
Scenario: Base
Label:13 Label:15
Rim: 5,135.62 ft Rim: 5,135.85 ft
Sump:5,130.91 ft Sump 5,132.17ft
I
0+70 0+90 1+ Ration
�tation (ft)
Label: B-2
Up. Invert 5,132.17 ft
Dn. Invert 5,131.38 ft
L: 50.80 ft
Size: 18 inch
S: 0,015551 ft/ft
Label: 14
Rim: 5,135.85 It
Sump: 5,132.64 ft
5,136.00
5,134+50
5,133.50 Elevation (ft)
5,132.50
5,131.50
5,130.50
1+60
Label: B-1
Up. Invert 5,132.64 ft
Dn. Invert: 5,132.27 ft
L: 3 1. 00 ft
Size: 18 inch
S: 0.011935 fVft
Title Harmony Ridge StormCAD Project Engineer Jim Sell
eA... \hydraulicst2350 stmcad 2yr. stm Jim Sell Design Inc StormCAD v4. 1_1 [4.2014]
11/30/04 03:06:41 PM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755.-1666 Page 1 of 1
Label: MH 3
Rim: 5,129.93 ft
Sump: 5,121.43 ft
Label: MH 4
Rim: 5,126.75 ft
Sump: 5,120.56 ft
Label: O 2
Rim: 5,1 19.40 ft
Sump: 5,119.40 ft
Label: C-2
Up. Invert 5,121.33 ft
Dn. Invert 5,120.56 ft
L: 25.60 ft
0+50 0+00 Size: 24 inch 1+00
Label: C-3 S: 0.030078 ft/ft
Up. Invert 5,120.46 ft
Din. Invert 5,119.40 ft
L: 35.30 ft
Size: 24 inch
S: 0.030028 ft/ft
Profile y r
Scenario: Base
r✓:la,.u..5 : ,
5,130.00
5,128.00
5,126.00
Label: 16
Rim: 5,125.76 ft
Sump: 5,125.76 ft
5,124.00
Label: C-1 5,122.00
Up. Invert 5,125.76 ft
Dn. Invert 5,121.43 ft
L: 144.40 ft
Size: 24 inch 5,120.00
S: 0.029986 ft/ft
5,1 18.00
Station (ft)1+50 2+00 2+50
Bevation (ft)
Title: Harmony Ridge StormCAD Project Engineer: Jim Sell
e:\...\hydraulics\2350 slmcad 2yr.stm Jim Sell Design Inc StormCAD v4.1.1 [4.20141
02/02/05 10:21:48 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1:666 Page 1 of 1
Scenario: Base
STOFM
SCt&w- 40M45(is - ldD�r
b b b
b b b
b 5 b o
J J J
.. LOT 44
'
1
«,
I LOT 43 k,
LOT 33 LOT 32
g
a
I I
LOT 34
I
Z
�
LOT 42
LOT 35
`/ LOT 41
LOT 36
- - LOT
LOT37
� -._.�-
LOT 39
LOT A�LOT31
LOT 7
LOT 38
< LOT 30
LOT 8
�y� LOT 29 z =
/
e3 LOT 28
LOT 9
"
LOT 27
\
X-1
LOT 10
t
LOT 26
LOT 11
LOT 25
\\
01 LOT 24
LOT 12
LOT 23
LOT 13
/
oz
LOT 22
i s
LOT 14�
I
LOT 21
Title: Harmony Ridge StormCAD
Project Engineer: Jim Sell
e:\_.\hydraulics\2350 stmcad 100yr.stm
Jim Sell Design Inc
StormCAD v4.1.1 j4.20141
11/30/04 03:11:36 PM ID Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666
Page 1 of 1
Scenario: Base - (LYE ( r
Pipe Report
Label
Upstream
Node
Downstream
Node
Total
System
Flow
(CIS)
Length
(ft)
onstructe
Slope
(ft/ft)
Section
Size
ManningE
n
Full
Capacity
(cfs)
Upstream
Invert
Elevation
(ft)
ownstrea
Invert
Elevation
(11)
pstrean
Ground
Elevation
(ft)
)ownstrean
Ground
Elevation
(ft)
UpstreamDownstream
Cover
(ft)
Cover
(ft)
Hydraulic
Grade
Line In
(fry
Hydraulic
Grade
Line Out
(a)
A-1
1 1
MH 1
13.90
31.30
0.012141
18 inch
0.013
11.57
5,136.78
5,136.40
5,140.00
5,141.70
1.72
3.80
5,140.53
5,139.98
A-2
MH 1
MH 2
13.90
124.60
0.021669
18 inch
0.013
15.46
5.136.30
5,133.60
5,141.70
5,137.80
3.90
2.70
5,139.98
5,137.80
A-3
MH 2
12
13.90
178.60
0.009742
18 inch
0.013
10.37
5,133.50
5,131.76
5,137.80
5,134.90
2.80
1.64
5,137.90
5,134.78
B-1
14
15
11.25
31.00
0.011935
18 inch
0.013
11.48
5.132.64
5,132.27
5,135.85
5,135.85
1.71
2.08
5,135.36
5,135.00
A-4
12
13
25.01
51.70
0.012573
24 incr
0.013
25.36
5,131.66
5,131.01
5,134.90
5,135.62
1.24
2.61
5,134.78
5,134.15
B-2
15
13
1.3.64
50.80
0.015551
18 inch
0.013
13.10
5,132.17
5,131.38
5,135.85
5,135.62
2.18
2.74
5,135.00
5,134.15
A-5
13
01
38.65
74.20
0.012264
24 inch
0.013
25.05
5,130.91
5,130.00
5,135.62
5,130.00
2.71
-2.00
5,134.15
5,131.95
C-1
16
MH 3
38.65
144.40
0.029986
24 inch
0.013
39.17
5.125.76
5,121.43
5,125.76
5,129.93
-2.00
6.50
5.127.71
5.123.07
C-2
MH 3
MH 4
38.65
25.60
0.030078
24 inch
0.013
39.23
5,121.33
5,120.56
5,129.93
5,126.75
6.60
4.19
5,123.28
5.122.33
C-3
MH 4
02
38.65
35.30
0.030028
24 inch
0.013
39.20
5,120.46
5,119.40
5,126.75
5,119.40
4.29
-2.00
5,122.41
5,121.15
Title Harmony Ridge SlormCAD
a:\...\hydraulics\2350 simcad 100yr.slm Jim Sell Design Inc
02/02/05 10:01:43 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1,666
Project Engineer: .Jim Sell
SlormCAD v4.1. 1 14.20141
Pape 1 of 1
r= r= r
Scenario: Base ! ( A'; ,
Node Cost Report
Label
Known
Flow
(cfs)
Total
System
Flow
(cfs)
Ground
Elevation
(ft)
Rim
Elevation
(ft)
Hydraulic
Grade
Line In
(ft)
Hydraulic
Grade
Line Out
(ft)
1 1
13.90
13.90
5,140.00
5,140.00
5,140.00
5,140.00
MH 1
13.90
5,141.70
5,141.70
5,139.98
5,139.98
MH 2
13.90
5,137.80
5,137.80
5,137.80
5,137.80
14
11.25
11.25
5,135.85
5,135.85
5,135.36
5,135.36
12
25.01
25.01
5,134.90
5,134.90
5.134.78
5.134.78
15
13.64
13.64
5.135.85
5,135.85
5,135.00
5,135.00
13
38.65
38.65
5,135.62
5,135.62
5,134.15
5,134A5
01
38.65
5,130.00
5,130.00
5,131.95
5,131.95
16
38.65
38,65
5,125.76
5,125.76
5,125.76
5,125.76
MH 3
38.65
5,129.93
5,129.93
5,123.28
5,123.28
MH 4
38.65
5,126.75
5,126.75
5.122.41
5,122,41
02
38.65
5,119.40
5,119.40
5,121.15
5,121.15
i rile: Harmony Ridge SformCAD Project Engineer: Jim Sell
e:\...\hydraulics\2350 slmcad I00yr.slm Jim Sell Design Inc StormCAD v4.1.1 (4.20141
02/02/05 10:04:03 AM ®Haeslad Methods, Inc. 37 Brookside Hoad Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
a• M Mill = M M
Profile — 1604C
Scenario: Base
&v—" C H A
label. 13 label 12
Rim 5.135.62 M1, Rim: 5.134. 90pp
Sump 5,130.91fl Sump. 5,131.6I6a
label 01
Rim:'5, 130.0011
Sunp. 5,130 00 fl
0`00 0.50 1-00
Label: A5
Up Jnvert 5,130.91 M1
Dn lnverl: 5,130.00 M1
L 7420fl
Sz e. 241irm
S. 0012264 M1m
1+50 2,00
babel'. A4
Up. invert. 5,131 66 fl
D. Invert: 5,131 01 fl
L 51]Ofl
Size'. 24 inch
S'. 0.012573 MI
label' MH 1
Rim: 5.141 704
Sump: 5.136 30 M1
label' I 1 5,192 00
Rim: 5,140. 00M1
label A3
Sung: 5, 136 76 0
Up h." 513350 fl
label MH 2
IDn. Invert 5, 1317G fl
RIM-513780ft
5,140.00
L 1766011
Sump 5,13350A
Sze: 18 Inai
S. 0.OW742 M1
'
5,138.00
Hevaiion lfll
-
5.13600
5,13400
Label: A2
tabel:At
Up. Imien ,136.30fl
utlp. Invert. 5,13640 iL
Dn. lnveh 13360il
Pn. Invhar[5.13fi <Ofl
L 124:6021 -
L 31 3011 5, 13200
Sze: 18im1h
Sze'. 19inch
S: 0.021669 M1m
S 0.012141 MI
-
15,130.00
2-50
3 00 3 50
4+00
4,50 b00
Sab.n An
Title: Harmony Ridge StormCAD Project Engineer: Jim Sell
e:\...\hydraulics\2350 stmcad 100yr. stm Jim Sell Design Inc StormCAD v4.1.1 [4.2014]
11/30/04 03: 13: 19 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
Label: 13
Rim: 5,135.62 ft
Sump: 5,130.91 ft
r Ml M r
Profile - LOa qr
Scenario: Base
BPWC* 13
Label:15 Label:14
Rim: 5,135.85 ft Rim: 5,135.85 ft
Sump: 5,132.17 ft Sump: 5,132.64 ft
5,136.00
0+70 0+90 1+10 1+30
Label: B-2 Station (ft)
Up. Invert:5,132.17 ft
Dn. Invert: 5,131.38 ft
L: 50.80 ft
Size: 18 inch
S: 0.015551 fVft
5,134.50
5,133.50 Bevation (ft)
5,132+50
5,131.50
5,130,50
1+60
Label: B-1
Up. Invert: 5,132.64 ft
Dn. Invert 5,132.27 ft
L: 31,00 ft
Size: 18 inch
S: 0.011935 f tft
Title: Harmony Ridge StormCAD Project Engineer. Jim Sell
e \ ..\hydraulics\2350 stmcad 100yr. stm Jim Sell Design Inc Storm CAD v4.1.1 [4.2014]
11/30/04 03,15. 11 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
M11 = M r
Profile j,�yr
Scenario: Base
Label: MH 3
Rim: 5,129.93 ft
Sump: 5,121.43 ft
Label: MH 4
Rim: 5,126.75 ft
Sump: 5,120.56 ft
Label: 02
Rim: 5,1 19.40 ft Label: C-2
Sump: 5,119.40 ft Up. Invert 5,121.33 ft
Dn. Invert 5,120.56 ft
L: 25.60 ft
0+00 0+50 Sze: 24 inch 1+00
Label: C-3 S: 0.030078 ft/ft
Up. Invert 5,120.46 ft
Dn. Invert 5,119.40 ft
L: 35.30 ft
Size: 24 inch
S: 0.030028 ft/ft
Station (ft)1+50
Label: 16
Rim: 5,125-76 ft
Sump: 5,125.76 ft
Label: C-1
Up. Invert 5,125.76 ft
Dn. Invert 5,121.43ft
L: 144.40 ft
Size: 24 inch
S: 0.029986 ft/ft
2+00
Title: Harmony Ridge Storn-CAD Project Engineer: Jim Sell
e:\...\hydraulics\2350 stlncad I00yr.stm Jim Sell Design Inc StormCAD v4.1.1 14.20141
02/02/05 10:12:23 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
GRATE INLET IN A SUMP
Project = Harmony Ridge Filing 2
Inlet ID = Inlet 1: 100yr 0: 13.9 cfs
Curie
Gutter
it Flow
Ih of a Unit Grate
Lo =
3.35 ft
i of a Unit Grate
Wo =
2.79 ft
Opening Ratio for a Grate (typical values = 0.6-0.9)
A =
0.75
ling Factor for a Single Inlet (typical value = 0.5)
C, =
0.50
e Coefficient (typical value = 0.67)
Cd =
0.67
Coefficient (typical value = 3.00)
C.„ =
3.00
Depression, if any (not part of upstream Composite Gutter)
aio.,i =
13.0 inches
Number of Units in the Grated Inlet
No =
1
sign Discharge on the Street (from Street Hy)
Q. =
13.9 cfs
ter Depth for Design Condition
Yd =
19.1 inches
al Length of Grated Inlet(s)
L =
3.4 it
a Weir
Dacity as a Weir without Clogging
0 , =
53.7 cis
gging Coefficient for Multiple Units
Coef =
1.00
gging Factor for Multiple Units
Clog =
0.50
)acity as a Weir with Clogging
Owa =
43.7 cfs
an Orifice
)acity as an Orifice without Clogging
Oo; =
47.5 cfs
)acity as an Orifice with Clogging
Qoa =
23.8 cfs
oacity for Design with Clogging
0, =
23.8 cfs
oture Percentage for this Inlet = 0, / 0, =
C%=
100.00 %
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
2350 Inlet A-1 worksheet .xIs, Grate-S 2/3/2005, 3:32 PM
u
' Project = Harmony Ridge Filing 2
Inlet ID = Inlet 2: 100yr 0: 11.1 cfs
1
GRATE INLET IN A SUMP
Curb
Gutter
Flow
Length of a Unit Grate
Lo =
3.35 ff
Width of a Unit Grate
Wo=
2.79 ft
Area Opening Ratio for a Grate (typical values = 0.6-0.9)
A =
0.75
Clogging Factor for a Single Inlet (typical value = 0.5)
Co =
0.50
Orifice Coefficient (typical value = 0.67)
Ce =
0.67
Weir Coefficient (typical value = 3.00)
C„, =
3.00
Local Depression, if any (not part of upstream Composite Gutter)
a,., =
13.0 inches
Total Number of Units in the Grated Inlet
No =
1
Design Discharge on the Street (from Street Hy)
0, =
11.1 cfs
Water Depth for Design Condition
Ya =
18.7 inches
Total Length of Grated Inlet(s)
L =
3.4 It
As a Weir
Capacity as a Weir without Clogging
Q., =
51.9 cis
Clogging Coefficient for Multiple Units
Coef =
1.00
Dogging Factor for Multiple Units
Clog =
0.50
Capacity as a Weir with Clogging
Q, =
42.2 cis
As an Orifice
Capacity as an Orifice without Clogging
=
47.0 cfs
Capacity as an Orifice with Clogging
0oa =
23.5 cfs
for Design with Clogging 0, = 23.5 cfs
Percentage for this Inlet = 0, / 0, = C%= 100.00 %
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
2350 Inlet 2 worksheet .xIs, Grate-S
2/3/2005, 3:39 PM
I
CURB OPENING INLET IN A SUMP
Project = Harmony Ridge Filing 2
Inlet ID = Inlet3, 100yr: carryover flow from Inlet 4: 100yr: 5.4 cfs
W Lu WP
P 3.< --- 30-
H:
Gutter
Yd
Pus
orate r
Flo v Direction
gn Information (Input)
th of a Unit Inlet
L„ =
5.00 it
Depression, if any (not part of upstream Composite Gutter)
aq w =
4.00 inches
it of Curb Opening in Inches
H =
6.00 inches
Width for Depression Pan
Wo =
3.00 it
Sing Factor for a Single Unit (typical value = 0.1)
C, =
0.10
t of Throat (see USDCM Figure ST-5)
Theta =
63.4 degrees
e Coefficient (see USDCM Table ST-7)
C, =
0.67
Coefficient (see USDCM Table ST-7)
CN =
3.00
Number of Units in the Curb Opening Inlet
No =
1
a Weir
sign Discharge on the Street (from Street Hy)
O, =
5.4 cfs
ter Depth for the Design Condition
Y, =
10.89 inches
al Length of Curb Opening Inlet
L.=
5.00 It
Dacity as a Weir without Clogging
O,„ =
27.0 cfs
gging Coefficient for Multiple Units
Cost =
1.00
gging Factor for Multiple Units
Clog =
0.10
)acity as a Weir with Clogging
O„, =
25.7 cfs
an Orifice
)acity as an Orifice without Clogging
Oo, =
11.1 cfs
Dacity as an Orifice with Clogging
O„ =
10.0 cfs
3acity for Design with Clogging
Q. =
10.0 cfs
3ture Percentage for this Inlet = O, / Qo =
C%=
100.00 °e
Note: Unless additional policing depth or spilling over the curb is acceptable, a capture
percentage of less than 1000o in a sump may indicate the need for additional inlet units.
2350 Inlet 3 worksheet As, Curb-S 2/3/2005, 3:21 PM
11 CURB OPENING INLET ON A GRADE
Project: Harmony Ridge Filing 2
Inlet ID: Inlet Inlet 4, 100yr: 11.25 cfs
I, WP
WP ----- ><- ->
Flow Direction
Curb
Gutter
h of a Single Inlet Unit
L„ =
5.00 ft
ing Factor for a Single Unit Inlet (typical value = 0.1)
Co =
0.10
Depression, if any (not part of upstream Composite Gutter)
al.w =
4.0 inches
ier of Curb Opening Inlet Units
No =
1
5is (Calculated)
In Discharge on the Street (from Street Hy)
Q, =
11.3 cis
Depth for Design Condition
Ya =
11.9 inches
Length of Curb Opening Inlet
L =
5.00 ft
r Flow to Design Flow Ratio (from Street Hy)
E, =
0.19
alent Slope S.
S. =
0.2137 Wit
red Length LT to Have 100 % Interception
L7 =
13.54 it
ing Coefficient
Cost =
1.00
ing Factor for Multiple -unit Curb Opening Inlet
Clog =
0.10
ive (Unclogged) Length
L. =
4.50 ft
r No -Clogging Condition
eption Capacity
Q, =
6.3 cfs
r Clogging Condition
d Interception Capacity
Qa =
5.8 cfs
over flow = Q, - Q] =
0, =
5.4 cfs
ire Percentage for this Inlet = Q, / Q, =
C% =
51.7 %
2350 Inlet B-1 worksheet .xis, Curb-G 2/3/2005, 3:42 PM
CURS OPENING INLET ON A GRADE
Project: Harmony Ridge Filing 2
Inlet ID: Inlet 5, 100yr: 2.39 cfs
Wn L WP
ow Direction
In of a Single Inlet Unit
L„ =
5.00 It
ling Factor for a Single Unit Inlet (typical value = 0.1)
Ca =
0.10
Depression, if any (not part of upstream Composite Gutter)
almai =
4.0 inches
)er of Curb Opening Inlet Units
No =
1
,sis (Calculated)
In Discharge on the Street (from Street Hy)
Q, =
2.4 cfs
r Depth for Design Condition
Yd =
10.0 inches
Length of Curb Opening Inlet
L =
5M It
r Flow to Design Flow Ratio (from Street Hy)
Eo =
0.47
alent Slope S.
% =
0.4925 Wit
'.red Length LT to Have 100% Interception
Lr =
4.28 It
king Coefficient
Coef =
1.00
ping Factor for Multiple -unit Curb Opening Inlet
Clog =
0.10
ive (Unclogged) Length
La =
4.28 ft
r No -Clogging Condition
eption Capacity
O, =
2.4 cfs
r Clogging Condition
d Interception Capacity
Qa =
2.4 cfs
over flow = Qa - Qa =
Qo =
0.0 cfs
ire Percentage for this Inlet = Qa / Qo =
C% =
100.0. %
1
2350 Inlet 5 worksheet As, Curb-G 2/3/2005, 3:44 PM
II
II
II
II
Project = Harmony Ridge Filing 2
Inlet ID = Inlet 1: 2vr 0: 2.98 cfs
GRATE INLET IN A SUMP
----------------
Curb
Gutter
F— Flow
ngth of a Unit Grate
L. =
3.35 ft
idth of a Unit Grate
Wo =
2.79 ft
ea Opening Ratio for a Grate (typical values = 0.6.0.9)
A =
0.75
Dgging Factor for a Single Inlet (typical value = 0.5)
Co =
0.50
ifice Coefficient (typical value = 0.67)
Cd =
0.67
eir Coefficient (typical value = 3.00)
Cw =
3.00
cal Depression, if any (not part of upstream Composite Gutter)
al«ai =
13.0 inches
tal Number of Units in the Grated Inlet
No =
1
1pacity of Grate Inlet in a Sump (Calculated)
!sign Discharge on the Street (from Street Hy)
0, =
3.0 cfs
ater Depth for Design Condition
Ya =
16.4 inches
tal Length of Grated Inlet(s)
L =
3.4 ft
! a Weir
1pacity as a Weir without Clogging
Q,„ =
42.8 cfs
ogging Coefficient for Multiple Units
Coef =
1.00
Dgging Factor for Multiple Units
Clog =
0.50
1pacity as a Weir with Clogging
Q� =
34.7 cfs
an Orifice
1pacity as an Orifice without Clogging
Qc; =
44.0 cfs
1pacity as an Orifice with Clogging
Qoa =
22.0 cfs
ipacity for Design with Clogging
Oa =
22.0 cfs
ipture Percentage for this Inlet = Oa/ Qo =
C% =
100.00 %
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
2350 Inlet 1 2yr worksheet .xIs, Grate-S 2/3/2005, 3:00 PM
I
II
I!
GRATE INLET IN A SUMP
Project = Harmony Ridge Filing 2
Inlet ID = Inlet 2: 2yr Q: 2.34 cfs
Curb
Gutter
igth of a Unit Grate
Lo =
3.35 It
ith of a Unit Grate
Wo =
2.79 It
a Opening Ratio for a Grate (typical values = 0.6-0.9)
A =
0.75
gging Factor for a Single Inlet (typical value = 0.5)
C, =
0.50
`ice Coefficient (typical value = 0.67)
Ca =
0.67
.ir Coefficient (typical value = 3.00)
Cw =
3.00
al Depression, if any (not part of upstream Composite Gutter)
almai =
13.0 inches
al Number of Units in the Grated Inlet
No =
1
3acity of Grate Inlet in a Sump (Calculated)
sign Discharge on the Street (from Street Hy)
Q, =
2.3 cfs
ter Depth for Design Condition
Y, =
16.0 inches
al Length of Grated Inlet(s)
L =
3.4 It
a Weir
)acity as a Weir without Clogging
Q. =
41.1 cfs
gging Coefficient for Multiple Units
Coef =
1.00
gging Factor for Multiple Units
Clog =
0.50
)acity as a Weir with Clogging
Q„, =
33.4 cfs
an Orifice
)acity as an Orifice without Clogging
Q., =
43.5 cfs
)acity as an Orifice with Clogging
Qoa =
21.7 cfs
racity for Design with Clogging
Q, =
21.7 cfs
3ture Percentage for this Inlet = Q, / Q, =
C%=
100.00 910
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
1
2350 Inlet 2 2yr wcrksheet .xls, Grate-S 2/3/2005, 3:02 PM
CURB OPENING INLET IN A SUMP
Project = Harmony Ridge Filing 2
Inlet ID = Inlet 3, 2yr. carryover flow from Inlet 4: 100yr: 0 cfs
WF Lu WP
-7<-----><_--�.
H
Gutter
Yd
Pan
Ovate r
Flow Direction
gn Information (Input)
th of a Unit Inlet
L„ =
5.00 ft
Depression, if any (not part of upstream Composite Gutter)
a,�i =
4.00 inches
it of Curb Opening in Inches
H =
6.00 inches
Width for Depression Pan
WP =
3.00 It
Sing Factor for a Single Unit (typical value = 0.1)
Cp =
0.10
a of Throat (see USDCM Figure ST-5)
Theta =
63.4 degrees
e Coefficient (see USDCM Table ST-7)
C' =
0.67
Coefficient (see USDCM Table ST-7)
Cw
3.00
Number of Units In the Curb Opening. Inlet
No =
1
a Weir
sign Discharge on the Street (from Street Hy)
O, =
0.0 cfs
ter Depth for the Design Condition
Yd =
10.89 inches
al Length of Curb Opening Inlet
L=
5.00 ft
oacity as a Weir without Clogging
Q. =
27.0 cfs
gging Coefficient for Multiple Units
Coef =
1.00
gging Factor for Multiple Units
Clog =
0.10
cacity as a Weir with Clogging
O� =
25.7 cfs
an Orifice
Dacity as an Orifice without Clogging
Oo; =
11.1 cfs
Dacity as an Orifice with Clogging
Oo, =
10.0 cfs
oacity for Design with Clogging
O, =
10.0 cis
oture Percentage for this Inlet = O, / O, =
Co'. =
NDIV/0! 46
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
2350 Inlet 3 2yr worksheet .xIs, Curb-S 213/2005, 3:25 PM
CURB OPENING INLET ON A GRADE
Project: Harmony Ridge Filing 2
Inlet ID: Inlet Inlet 4. 2vr: 2.36 cfs
L W P
CAP -><----- >.( -
Curb
Gutter
Flaw Direction
1 of a Single Inlet Unit 5.00 It
ng Factor for a Single Unit Inlet (typical value = 0.1) Co = 0.10
Depression, if any (not part of upstream Composite Gutter) ai. = 4.0 inches
er of Curb Opening Inlet Units No = 1
1n Discharge on the Street (from Street Hy)
0a =
2.4 cfs
r Depth for Design Condition
Yd =
10.0 inches
Length of Curb Opening Inlet
L =
5.00 ft
r Flow to Design Flow Ratio (from Street Hy)
Ea =
0.46
alent Slope Se
Se =
0.4960 ft/ft
ired Length LT to Have 100% Interception
LT =
4.24 It
ling Coefficient
Coef =
1.00
ling Factor for Multiple -unit Curb Opening Inlet
Clog =
0.10
rive (Unclogged) Length
L. =
4.24 It
r No -Clogging Condition
eption Capacity
O, =
2.4 cfs
r Clogging Condition
_
if Interception Capacity
0e =
2.4 cfs
over flow = Ca - 0. =
0h =
0.0 cfs
ire Percentage for this Inlet = 0, / 00 =
C% =
100.0 %
2350 Inlet 4 2yr worksheet As. Curb-G 2/3/2005, 3:26 PM
CURB OPENING INLET ON A GRADE
Project: Harmony Ridge Filing 2
Inlet ID: Inlet 5. 2vr: 0.51 cfs
L RAP
Curb
Gutter
Flaw Direction
i of a Single Inlet Unit L„ = 5.00 ft
ng Factor for a Single Unit Inlet (typical value = 0.1) Co = 0.10
Depression, if any (not part of upstream Composite Gutter) a,..., = 4.0 inches
er of Curb Opening Inlet Units No = 1
In Discharge on the Street (from Street Hy)
Q, =
0.5 cfs
. Depth for Design Condition
Y, =
8.3 inches
Length of Curb Opening Inlet
L =
5.00 ft
r Flow to Design Flow Ratio (from Street Hy)
Eo =
0.99
alent Slope S.
S. =
1.0099 Wit
red Length LT to Have 100% Interception
LT =
1,45 ft
ing. Coefficient
Coat=
1.00
ing Factor for Multiple -unit Curb Opening Inlet
Clog =
0.10
ive (Unclogged) Length
L. =
1.45 ft
r No -Clogging Condition
eption Capacity
O, =
0.5 cfs
r Clogging Condition
it Interception Capacity
O, =
0.5 cfs
over flow =0o-%=
Ce=
0.0 cfs
ire Percentage for this Inlet = O, / Co =
C % =
100.0 %
2350 Inlet 5 2yr worksheet .xls, Curb-G 2/3/2005, 3:29 PM
I
' APPENDIX C: REFERENCED INFORMATION AND SUPPORTING
DOCUMENTS
II
II
II
II
II
II
II
II
II
II
II
II
II
1
Drainage and Erasion Control Report for Harnumv Ridge Filing 2
r:vauna rtn.ieu_owm�w wu ONY WXI-mu WM Mr iax,orvnne xrmxr.DOC February 4, 2005-Appendices
C 0 a 2 IC 12 h
0= GU7'=�
Fc_re :-Z
S S1
C.f fCf'pCliCle 51CL�•�.•rc��'E'fer'.^.?.l yG''.2. "-"'cCl/•C.�
S. =e^t ccr-..fG2rce• fit;! aC :f ?_Clic ..czc5.
I,
n I p —
I � v
3: Cat
I
I
(lcrer:ac-ed = cw)
i
�;
(. -1 ct CGenn4)
Cr ginal 6u"sr =ne
•
1
•
4�� .
'��'` ,�-6utta Lecrer;rn C Ir.laf
3iNI
a=
c�CTiON A ->
-
a`
o
n�
m�
:n-� •'y9 5 1.Y 7�AG5 Xx/'c
i _
n IIEIGII
Cl T OF OPENING Ih F
4 O N N w •1, in al
01
_l to 10 it -- to
11 �J In In /n In In
]1 \ p\
i> IIEIGIIT OF OPENING (11) IN INCITESVI
Irl
u n 9
li � 1 ID
111 \\O
u
II
111 -11 I u 1.
ill Lr 1
w 1
C ll !I
'� CAPACITY PER FOOT OF �ENGT11 OF OPENING, (0/1.) IN f,.FS. PER FOOT
f
1 ni
OI t, m in I l
ur
al 1
1 rt� i 1 1
ra II \
• lJ Ill
_1
U1 [,
r,l /11
RATIO OF OEPTII OF WATER IN IN F 1:/ITT.
GUTTER, yn, TO NFIfi11T OF OPENING,II,IyI� 1 _ t—
in Tl 1 1 1
ba
in O m
U L> n to In -
=1
u
11
i�
C .'
C7
r
W 0.
J 0
Z
C 1NTC 5.7. F 7. C= Cc_y 1 = l-
CAA C,OF CFA � c- INL= i IQ �L'cIP,
ter-
FLU ID DYNAMICS 17-17
1'.5 400roximata Croce Coef5bents for Turbulent Water
IL
'A si:ort tube has a length. less than 2 to 3 diameters.
A B C D
A,u. contracla = Cc-4o 17.73
' C = area of vena contracts
17.74
orifice area
'The theoretical discharge rate from a tank is V =
A„ � 779 . However, this relationship needs to be cor-
rected for friction and contraction by multiplying by C,
and C, The coefficient of discharge. Cd, is the product
of the coefficients of velocity and contraction.
1l;yt
5 F�'
' V = C�voAo = CdvtAo = CjA,,v12gh 17.75
pltf' Cd = C` C,
V,. _ actual discharge 1776
' theoretical discharge
22, DISCHARGE FROM
PRESSURIZED TANKS
' If the gas or vapor above the liquid in a tank is at gage
Pr"Rsure p. and the discharge is to atmospheric pressure.
the bead causing discharge will be
P [Sl,' 17.77(a)
P9
+ (P) X 9 fL1.S.] 17.77(b)
' The discharge velocity can be calculated from Eq. 17.69
aging the increased discharge head.
Yo = F, \29h
Figure 17. 12 Discharge from a Pressurized Tank
23. COORDINATES OF A FLUID STREAM
Fluid discharged from an orifice in a tank gets its initial
velocity from the conversion of potential energy. Af-
ter discharge, no additional energy conversion occurs,
and all subsequent velocity- changes are due to external
forces.
h
1
Figure 17.13 Coordinates of a Fluid Stream
"�- PROFESSIONAL PUBLICATIONS, 1 N C.
FINAL DRAINAGE REPORT
FOR
HARINIONY RIDGE P.U.D.
Suhmittcd to:
CITY OF FORT COLLINS
.Iantlary w, i»',
m = M m m m = m = = m m m m r m m
'1'AISi,I': 1. 111•I)Itol,o IC CALCIILMIONS WORKS1IFF I
IN
.
IAS
'j "�
IIIIf1:1W.4
IQ''{�'/da14
ARStill
.I`AJ
iiN
��1UNf11 I1 �yy
ifl/P,l�Nii
11`1 �'��I
4I�I•wfsllt4 j'.a Ivi�ll
�,l'Iii 111�LNt 1;IC1)I►Y.�x„I�r
itf.�PfiiV 4i�Rrl1 �M�{li1',�"jufU fjtlr�''V'St�rr,G� i1tl'
ball,ANil
Iy��tl,µ� ILIiA�'�
IINlaITlII.
Nl It 11:1•:
U1111LAN11-.
11AI(ItLA NII IHAS 'P:I IIAIii
I'1. fl
2-Yrs1
l'lll ll,l!
IL(I%%,
111
-
r\
-
A
A
A
nX
-\
nf.
n/
r\N
A"
nlll
All
nl J
nll
r\I1
I
I
1
1
1
2
•1
111 ..
3
6
i
P
7 -
4
IUS
II 17
ILIA
LSN
IL iG
/1.1(r
1.17
Il_t)
0.41
11 �IN
11 If _
II la
nSn
1.14
U•bl
ILR$
O.7J
._ 11.71
11.71
0.7$
0.57
U.fill
...__ .-
11.59
---
ILLO
..- ___
ot,n
- ._.
0.57
0,7R
11.7X
I00
1.1/0
I,nll
1011
1.25
I Z$
1.25
125
1.23
1.25
.__.._-_..
123
1.2$
100
I] --
20
411
10
I$
53-
]s .-
50
-_-__- -
IU
__
_In
- - ---"
dll
35
71(10
)1111
If as
_.
11111
21111
11111
)1111(1
-
_ 111111
4.A1
In nn- -
0 tll -
200-
- ]
17
111
I II
] /N
II NG
A11N
2JIh
411J
Inl
1 lx
-. 1.N1
]..I11
N)
10•'
11 t.l
_ 0,LN
Lil _
11 tx _
_. 7.99tll--.-
1.11
___..
7 91 _
a.r,�,
) -i /
I lu
I
',III _
JIII
I
-
-- %I_-
III
__. 11 _.
- u _
_
-- - 11
nu
-t
xo.IIII
100
1.00
1.11()
1110
----
100
--_ -_-_
--.._ I IXI
1.on ...-
1.f111
19(I
I110
1.25
-___.-_
113
1.25
-- ---
1.2$
1.25
II
III
IIJ
111 -
Ibl
-IIt
-11
-I/
I1
11
---11
1l7
It I
I.-i2
IOR
IAO
-
O.GII
0.7%
0.77
--0.74
ON,
_-_
In0
1/10
In0
I.IRI
1.23
1-2$
1.23
1.25
-
110
.1$
70
}$
Uur
31111
N1111
400
21111
S.x z. _
211%
I /❑
252
2.'1'1
40! _..
Il %I
0./1 _
LJI
I I1 _
iN11
riJlt
'Ala
7111
Inn
1.25
J5.
I'
CI
(7
11
( 1
21
It
Ifi
I/
741
2. 211
7.11
_.I 7N
n, iR-
0.25
IL 20
--
0.20
31111
1011
4111
-
$1111
6tll
Ill!
__ II G1
)71
IG.JI
il./l
_ I5.51
_
17]7
IJ 117
III N$
Il fi7 - _
If•.77
- ibll -
)10
J)I1 _.
)311
__-_-__
I.00
1.110
1.00
.-_. _ -_
1.1111
1.23
1.23
1.23
1.23
-
111
111
ul
I11
Ilt
U6
nr
IIR
11
12
I -
11
I$_-
16
57
Ill-
0.91
n f•l
--050
nln
-0.19
ILI•I
av
11.2R
0.46
O.PO
0.60
II}3
11.47
O.PS
0.e7
0.75--
1.00
2011
.11041
Rnll
10.11(I
25,00
- 2.110
21111
- r.5u --
21111
9,11
.. _ IlII
s.11,.
2•I1
7}7
LRG
1 xv
-
_--__IRS
7A9
Ir tf
L75
].Id
G01
to )N
- I n
112
I7
160
11
- I1Q
•NI
- nm
_. 115.,
In0
100
Inn
1.2$
1.25
JI
I30
25
711
25
an
- -
7U
1.25
1.2$
1.1111
Lllfl
Inn
1.2$
Lz3 --
-----'--
Ino
11$
0.70
n.2o
0211
1.25
1.23
..--_
.- _1.2$
-_. --
200
390
20.11
-
I.
Li
I.7
IR
1'1
211
040
2.11
LN$
21 Al
12 t0 __
F11.71
N(fi
__ 12.45
11 RR---
RIA
11 Jr -
_
- 12.Ifi
111
J m
_.
call
L00
1.120
-
L00
1S 1, II ll
I I ll dl'1 R
r 1111,'rl 11, 1INII
000
I IIIIIrll.l RN liAIII rls
w w ! ! w ! ! w � ! span � � � � � � `M
'1'Alt1.P, I. IIYUI!(IL(1l;IC CAI,CULA'llONS R'OIlKtiilisl�l'
' litll
ill _S ILN �
AVIMAl1 IP
1:111 II Il4
' ti1,oi I °I'uG'
(+ j Itkl+
:.„(1)11111I1y`f
Fry1P'111 IISV I1fI��'i'p�
1}IJy1�l 1 (11 1111'I!J�'P
r l I (fp.jTln,(9R�
ly,6 py'1(l ILI111ti" ill
1(tA�9q�111�114'I+
�g�yIp W h(i h p1�
1"ndF P'(dlLl) I•.,
' i,llnu IIF,C(7nl:NN-IVAl1Un
7tI IC
i'11'� 2-yr lungr
-,... (nAu) (ndn)
RAINFALL I NILINS111'
1 1
2-I-r ', Illn.11 '
p•In,l) (iunuj
1.13AK 1 IMAIAIII.IC
11 V
2 1, nnl rr
(r Lj 0f•1
,1
II
1
I.
A
AI
A
As
�b
Al
r\R
A"S
- ,vn
rill
n 17
r\I I
r\I -I
-III
I17 -
III
Ili
IR
1'I
- 17
1 I
1'd
I11
h7
I11
u-
Ili -
Ilx
bl
I7
IA
7
1
I
_. __.
7
A
ill
- a -
7
a
q
'1
II
I1-
11
I 1
I9
71
I t
II,
11
_. -'-
II
17
14
is-
i l
1R
IR
Ilr
70
1.711
-_.-__
4J(r
1.12
7.11l
•I On
1'11n
G W
70 lrll
nno
nnn
nnn
nGn
LIIIr
),III
LIn
7.Sn
-__ _-___
d 11n
7 25
_
'l rill
4.15
4,5$
.11/0
-._ . _
nnfl
-.-
1.11
Ion
nn
---7n--212
_zln
2.011
1.1%
t71
411
1,11
I.R'1
S.1fl
230
0.R2
fifin
2.I6
----
__._._._ 1.7t
d.po
-
44R -._
2.57
6.42
2.}I
.1.114
4112
ud
LIR
4.•IR
R.21
Y,l7
4.42
4.71
S 95
I IL
101
I,t/
- __-. 1.21
7.Ifl
511.
1.711
I.IR
l.az
ocr
7 47
2.76
4.'ly
771
LIS
.1.74
-
1:Rf
Alt
I5.11
11.91
15.72
1110
1.111
I111
I111
1.111
i 111
2.'15
I Ifl
--I.111
_ LIn
lln
I w
I In
11111
7.7t
I.111
1_In _.-._
i, 1f1
Inn
71111
7 10 -_-
21n1
190
/.III)
7.1111
71111
7.00
7.Pn __.
"f On
7.00
. 7 NI
71111
7110
7nn
znn
llxl
7.1111
71111
l.nn
71111
7.Ixl
"Lnn
t'lll
660
t,•Nl
`S t0
----- -__-
7.nn
TOO
700
..7. .00 _----
znn
7n0
Ina
7.1111
- 100
6.40
I. 111
4111
11,�I
IL 71
1.7a
1.11
I.I I
Z.INI
Iln 1
I1R4
a.9',
aan
0 n
I.P,.
7.111
5.16
2. RI.
1!•I
7 I,�I
1Jv
5Gt
1.12
ILY7
nhR
_._ .
n9'1
---
.n91 _.
11 1/
�-._-
n.17
n.l'/
a.ml
fLfiY
n 17
t.n7
0.1R
---II 1.1
111
I)bt
oRl
1.�I:R
7'rl
t_qJ
I L0.
7.77
7. td
I11
700
141
].IR
Il 69
7 tR
'LS]
'/1I
Al R)
-.. 4.77
1,11-
1 dS
_._... - ._..
1 1 R
4.4R
7fi1
I 11 --
--
I nl
I a.l
I
I P.1
I.tR
I /u
- 7 JI -
--._ --
qPl
-----
4.IS
_ ....-_-
4.21
5.70
311/
A.27
7.1i
-__-.-- __-.
0..1.1
_--_--._
2.09
___.-_-
1.70
1.17
2.1.1
o.lf
11117
grill
Iron
o nn
LGf.
),})
oLll
tlnn
nlxl
2.21
2.R5
4.15
4.11
}x5
2„1'i
10-1
4,51
t,'/0
2 (.1
7.U}
tI
_.t
6f2
4.29
492
.1A2
__-.._. -__-
17; fi
I2.R5
-- __--
LI2
1.12
I,05
3,50
16.5 R
111.05
3.211
1.27
IRllr.
------ -
nno
----
n.nn
LIS
---
7.�17
_.-
1.71
21a----lln
4,-1-1) ---
--c.Y--
0.64
4.55
7..•11
-_� R.17--- -
12.RR
I1.R.1
- _
'1.11
.. _
2:R2
--- -
2tt
iJn
------..1.
z.7n
-
I. w
1Jo
3.10
7.60---
7.Jn
2. Ili
--_-__
R,m
2.94
--no
-L
0I5
_--
5.71
_4-_
-mflc
-0.36
1:14
L0'1
RAr
2.22
5.11
2.12
}]'/
.192
lY4
0..70
R95 -
I.08
1.42
2.99
1.12
1.67
14.55
ISI, Il ll"
I I Ipir.l II.I II.11i I I/11/'!R
I Iknln}.W, 0110 hpll.nl•.
Reprinted front the North American Water and Envirommtent Congress O 1996 American Society of Civil &tgineers
ROC& BIYR" FOR GRADS CONTROL
Charles E. Ricel, Kerry M. Robinsont, and Kent C. Kadavy'
A. M. ASCE
Abstract
Rock chutes (riprap channe
as grade control structures t
to a lower elevation. Common
rock riprap channels were
evaluations, procedures are
should ensure the structural
rock chutes.
as on steep slopes) are used
o safely conduct a water flow
procedures used for design of
evaluated. Based on these
recommended for design that
stability and safety of the
Introduction
Modifications to natural channels generally increase
the channel gradient, flow capacity, and flow velocity.
The sediment carrying capacity is increased and the
channels tend to degrade. When degradation occurs,
gradient control is required.
Gradient control structures are used to locally drop the
channel bed level and decrease the channel grade between
structures to a stable gradient. One type of grade control
structure is a chute formed by stabilizing a steepened
portion of the channel by lining the channel with loose
riprap.
Loose riprap-lined channels or rock chutes can be used
in many situations to safely conduct water to a lower
elevation and provide effective grade control. The riprap
serves to stabilize the chute and dissipate some flow
energy. Depending on site conditions and stone
availability, rock chutes may offer economic advantages
over more traditional type structures. Rock chutes are
also an aesthetically pleasing alternative for
environmentally sensitive areas.
Background
Six procedures for the design of riprap lined channels
were evaluated. The design procedures are presented in
'Research Hydraulic Engineer, 'Agricultural Engineer, USDA,
' ARS, Hydraulic Engineering Research Unit, 1301 N. Western
St., Stillwater, OK 74075.
II
II
Reprinted from the North American Waster end Environment Congress C 1996 Amerim, Society of Civil &igineers
English units. Rather than converting the equations to
ade
ish units
metric
the final result converted tomSI units using TheEngvariables
andconvertedvariables
used are:
d - flow depth, ft;
d� - maximum flow depth, ft;
d5 = riprap size for which 50% is finer, in.;
D riprap size for which 50% is finer, ft;
gm= acceleration due to gravity - 32.2 Lt/s1;
n - Manning roughness coefficient;
q - unit discharge, fe/s/ft;
design unit discharge, ft /s/ft;
qq, unit discharge at riprap failure, fe/s/ft;
S - specific gravity of water - 1.0;
S, bed slope, tangent;
S, specific gravity of riprap = 2.65;
V - mean velocity, ft/s;
V - minimum velocity, ft/s;
w = unit weight of water - 62.4 lb/ft3;
w, - unit weight of riprap - 2.65(w);
y = Isbash coefficient, 1.20 and 0.86 for maximum and
minimum riprap stability; and
a - bed slope angle - tan-' Se.
nasign Procedures
' Zsbash (1936) conducted a series of experiments that
yielded a relationship for the minimum velocity V) that
will remove loose riprap as:
V� = y(2g(S. - S)/S)112(Dm)tn (1)
For flow on a sloping bed, Simons and Senturk (1977),
assuming y - 1.20, expressed the Isbash equation as:
0.347 (V2) / [ (S, - 1)gD50) = Cos a (2)
To solve the equation, V = q/d, where the depth d is
aasumed equal to the hydraulic radius. The Manning
equation is used to solve for d with n expressed as, [Abt
et al. (1988)1:
n - 0. 0456 (dy0S,) atfv - 0. 0677 (D50.4e) e'139
(3)
Isbashrs (1936) data were obtained from the construction
of dams by depositing rounded riprap into flowing rivers.
One objective of the study was to size the individual
stones located on the downstream rockfill dam slope to
resist movement due to overtopping flow.
Normann (1975) presented the following relationship for
the maximum permissible depth of flow d. for channels lined
with riprap as:
II
Reprinted from the North America Water and Environment Congreaa O 1996 American Society of Civil Mlgineers
II
II
II
II
II
d. = 5 (Dso) NSa
(4)
The Manning equation is used to calculate d. assuming:
n s 0.0395(D50)...
(5)
Normann's procedure was developed from modifications of
the method presented by Anderson et al. (1970). This
method is applicable to slopes much flatter than the slopes
generally associated with rock chutes.
Olivier (1967) presented the following relationship for
the unit discharge q at riprap movement as:
q - 0.423(Dw)"((w. - w)/w]SO(Sa)-ns (6)
Olivier's (1967) results are from laboratory experiments
with narrow (0.56 m wide) and short (1.52 m) flumes, small
stone sizes (Ds0 5 60 mm), and slopes ranging from 8 to 45%.
' Abt and Johnson (1991) 'presented the following
expression relating the median riprap size to bed slope and
overtopping discharge (qr) at failure:
' D50 - 0.436(Sa)041(C.U)0se (7)
The unit discharge in equation (7) was modified to take
into account the riprap movement to riprap failure ratio
where
' q4.,m - of/0.74 = 1.35q, (8)
Thus, for design:
DS0 — 0.436(Sa)0As(qA..vjG"' (9)
Abt and Johnson's (1991) results plotted in Fig. 1 are
from two-dimensional tests with large flumes, using angular
riprap with D50 5 157.5 mm, and slopes of 10 and 20%. The
plotted points are the unit discharges associated with
stone movement that these authors recommend for design.
Their data for indoor flumes, rounded stone and lesser
slopes are not shown in Fig. 1.
Robinson et al. (1995) presented an expression relating
median unit discharge at failure to stone size to bed
slope. The expression solved explicitly for D30 is:
D50 - 0.402(S.)0.tesg0sa (10)
The results by Robinson et al. (1995) shown in Fig. 1
were obtained with two-dimensional tests using three
different flumes ranging from 0.76 to 1.83 m wide, angular
riprap with D50 ranging from 15 to 155 mm, and slopes
ranging from 10 to 40%.
Reprinted from the North American Water and Environrnent Congress O 1996 American Society of Civil Engineers
t The USDA, Soil Conservation Service (now the Natural
Resources Conservation derived, for for design of rock chutes in DN-22
theoretically the design note was canceled Richard L.
(USDA, SCS, 1985). however, 4
' in 1995 (Letter of March 8, 1995, from
Duesterhaus, Deputy Chief for Soil Science and Resource
Assessment, Natural Resources Conservation Service)
' because field personnel using the design noce sported that
the criteria yielded unreasonably large
Comnarison of pesian Procedures
Table 1 presents DSe values predicted from the design
procedures for different q and S, combinations. The Normann
(1975) and USDA (1985) procedures predict the largest size
riprap. The Normann (1975) procedure is probably not
applicable for design of rock chutes as it was developed
using USDDN 22t riprapded
( 985)procedure, theoretically derived,
A. was not
verified with observed results. The results shown in TABLE
1 confirm that field personnel were correct in their
evaluation that the riprap sizes were unreasonably large.
Thus, administrative cancellation of DN-22 was justified.
olivier's (1967) procedure appears to predict reasonable
riprap sizes for the smaller slopes but not for larger
slopes. The reason for ' this 0 mm)°and short flume lengths t known but may due to
the small riprap sizes (Dm S
(1.52 m) used in his study. Abt and Johnson
The Isbash (Simon and Senturk, 1977)rocedures predict
(1991), and Robinson et al. (1995) p
' smaller size riprap. The large differences between the Abt
Johnsonand
and the Robinson et al.
995)
proceduresat the) 10% slope are probably due to theldata
base used to develop the predictive relationships: the Abt
and Johnson data base was from tests with S, ranging from 1
to 2ol: the Robinson et al. data base was from tests with
S, ranging from 10 to 40%. Fig. 1 shows that the Robinson
et al. (1995) relationship, (lo), becomes more conservative
as the elope decreases. The differences in the Abt and
Johnson and Robinson et al. predictions suggest that the
' exponent for S, in the equations is not a constant.
The Isbash (1936) procedure appears to predict
reasonable riprap sizes considering the procedure was
developed by depositing rounded riprap into a flowing
' stream. However, the riprap sizes predicted with the
Isbash (1936) equation are affected by the relationship
used to calculate the Manning roughness coefficient.
' 'Three Dimensional Field -Scale Tests
Two three-dimensional field -scale rock chutes were
constructed at the USDA, ARS Hydraulic Laboratory,
' Stillwater, OK, using angular riprap with a DSO of 18e mm on
on
field-scalee and a hadwof a drop7of 3.66am312.74slope.
Each
bottom
1
II
' Reprinted from the North Amerimn Water and Environment Congress O 1996 Amer'r I Sudety of i 4. 1 uigulea.o
width, and 2:1 side slopes. The riprap was placed 2Dsa
' thick on an 8-oz. nonwoven geofabric on top of concrete
sand approximately 51 mm thick. Theesu t betweenthese
tests, presented in Fig. 1, show good agLe
' field -scale tests and the Abt and Johnson (1991) and
Robinson at al. (1995) Plumes testtructures s. are accurately
The highest stable
discharges for both field -scale s
' predicted by (10) developed from the two-dimensional flume
tests.
4,tmmarti -nd Conclus on
Six procedures for the design of rock riprap channels
were evaluated for their applicability Ito the( n stability
h and
design of rock chutes. procedures by and Robinson al.
Senturk, 1977), Abt and Johnson (1991), the RobAbt and Johnson
(1995) give similar results. However, ar
(1991) and Robinson at al. (1995) procedures e
19are
recommended for design. `ThHAUtoras�lo e Johh6 whiltetl?e
Sonreta Edld:; ('1y77')'S'?!pro�cu,•• a.-...._.,-- --
Q,teepes�]bpe'd4� Results from two three-dimensional Pield-
scale rock chute tests provide verification of the Robinson
at al. (1995) procedure for design. Additional analyses
combining the two data bases to develop arelationship
in
which the exponent on the bed slope S. a
variabht
result in an improved procedure for design. Use of
0% is not recommended and
their use forr S, of may' result 4in excessive riprap Sizes -
Relgrences J „ Ruff, James F., and
Abt, Steven R., Wittler, Rodney
1(hattak, Mohammand S. 1988. Resistance to Flow over Riprap
in Steep Channels. Water Resources Bulletin, lAm,r 1 QO Water
Resources Association. Vol. 24, No. 6'1991. Riprap Design
Abt, Steve R. and Johnson, Ter ASCE Vol. 117, No.
for overtopping Flow. J. Hydr. Engrg.,
8, 959-972.
Anderson, Alvin G., paintal, A.s., and Davenport, J.T.
1970.
CHPP Report 108, Highway Research Board Riprap-Lined National Academy
NA ademy
of Sciences, Washington, D.C.
Isbash, S.V. 1936. Construction of dams by depositing
rock in flowing water. proc., Second Congress on Small
Dams, Washington, D.C., pp. 123-136.
Normann, Jerome M. 1975. Design
Cir No stable
Channels with
Flexible Linings. Hydr. Engrg. D C
Of
Transportation, Fed. Highway Adm., Washington,
Olivier, H. (1967). Through and Overflow Rockfill Dams -
New Design Techniques. Proc., Institution of Civil Engrs.,
Mar., 36, 433-471.
Robinson, K.M., Rica, C.
San AntonioadT7C,avy�Volc 2,11476 1480.
Water Res. Engrg•, t
'
Reprinted from the North American Water and Environment ConKM33 O 1996 Amerirvn yocrety v. �..... ,.,s,•,=�•�
Simons,
Daryl B. and
SenturkI Fuat. 1977. sediment
Publications, Fort
'
Transport
Technology. Water Resources
Collins,
U.S.
CO.
Department Of
Agriculture, SCS, Engineering
Division,
Design Unit.
Report: Evaluation of DN-22 and
D.C. November
'
Interim Recommended Model. Washington,
1985.
TABLE 1. Comparison of Design Procedures
1
e (m'/e/ml
S. (�)
1.39
10 20
0.929
40 10 20 40
Dn (MM)
III ,
Procedure
Isbash
Nocmann
283 363
454 777
482
1332
213 277 366
347 595 1018
0Oliver
M226
a Johnson
314 539
267 360
924
482
241 411 704
210 284 384
326 369
5Abt
3
1Rcbinson
'
DN-22 (USDA)
365 408
546 858
460
1265
293
442 704 1012 T 297 467 683
100
'
BED SLOPE
E
• 1o.ox
�
♦ 1zsc
'
E
■ 16.7%
•
♦ , 22.2x
•
W
40.0%
'
�
v •
Q
•
FIELD SCALE
S
0 16.7x
to
10-2
p 33.3%
0
Z
•
ABT 3 JOHNSON
'���
O 10.0%
D)
V 20.0%
10 10D
10' 102
'
D50* S (MM)
'
Figure 1.
Robinson et al. (1995) data
APPENDIX D: EROSION CONTROL CALCULATIONS AND DETAILS
a
E'.V'ROIICf Hlliµll.&NW150 DARMONY RICHE IMOGSM50JINA1, DRAINAGE 4 MRT IXx
Drainage and Erosion Control Repon for Harmony Ridge Filing i
February 4, 2005 - Appendices
RAINFALL PERFORMANCE STANDARD EVALUATION
PROJECT: HARMONY RIDGE FILING 2 STANDARD FORM A
COMPLETED BY: EMS DATE: 1-26-05
DEVELOPED
SUBBASIN
ERODIBILITY
ZONE
Asb
(ac)
Lsb
(ft)
Ssb
N
Lb
(ft)
Sb
N
PS
N
1
Moderate
0.24
215
1.95
2
Moderate
0.50
370
1.81
3
Moderate
0.46
360
2.25
4a
Moderate
0.49
330
2.79
4b
Moderate
0.15
140
5.00
5
Moderate
1.40
315
0.95
6
Moderate
5.32
1325
2.51'
7
Moderate
1.54
66
21.82
8
Moderate
0.53
195
3.85
9a
Moderate
0.76
345
3.83
9b
Moderate
0.20
213
2.10
10
Moderate
0.34
295
1.02
11a
Moderate
1.49
420
0.24
11 b
Moderate
0.09
78
4.04
12
Moderate
0.75
260
3.46
13
Moderate
0.28
57
i 8.77
Asb SUM:
14.56
654.80
4.41
83.45
Interpolation Table:
slope (%)
4 4.41 4.5
flow length
(ft)
600
1 83.2 83.5
654.8
83.25 83.45 83.5
700
1 83.3 83.5
M M
M = M M
M M
EFFECTIVENESS CALCULATIONS
PRO IECT'. HARMONY RIDGE FILING 2 Sl ANOAFln FORM R
COMPLETED BY: EMS DATE 1.26 05
Erosion Control Method C-..Factor P Factor Comment
Value Value
Rare Soil 1 0.9 Disked
Roughen Round 1 0.9
Sediment Trap 1 0.5
R.raluMelks 0.01 1
Straw Bale Barrier 1 0.8
Temporary Crop 045 1
Established Grass Doe 1
Erosion Control Mata/Blallkels 0.1 1
Straw Mulch I%to 10% 0.06 1
Straw Mulch Lt%to 15% 007 1
Cal[VIa6Dae Summary
Malor
PS
Bob
Area
Slope
Road"alka
Disked Sell
Straw Mulch
Other
Wirt
Wtd
EFF
Nesm
(%)
Basin
ec)
(%
C Factor
P-Faobr
Area ac
Area e
C
IF
Aree a[
Area %
C
P
ARa ac
Area 56
C
P
Base.
Area (ac)
Area (%)
C
P
A
83.45
11
_ 024__
195
0.12
Culb Sock
Ne
n/a
1
0.8
0.51
6.76
60.94
4s.04 -
0.01
1
0.12
50.96
1
0.9
0
0.06
1
2
-_
_
0.50
_-
-
1 B1
0.15
30.34
0.01
1
_-
Q35
1
0.5
0.70
0.37
7396
-._
69.66
_
1
-.._
0.9
.
0
--
6.06
1
S81 Fence
Na
n/a
_ ____ -_____
Curb Sock
nla
0.8
_
2.25
_
0
3.
048
022
4].81
___
0.01
_
1
_
0.24-
_
52.39
1
0.9
-
�0.08
-1
_
CUYB Sock
_
Ne
me
me
_1
1
0.8
_
053
0]6
59.92
_.._
9]9
_
_
0.12
-
25.34
1
0
____
da
049
-D49-
0.01
037
74_66
1
09
0
t
Sock
Curb So
._.
n/a
nla -
t
0.0
__.
075
0.74
4454
-
4U
-_ _-_
0.15
-. ..
55.01
__
0.01
_
1
1
..
O.B
_ 76
0]fi
_
65.21
S.INI
0.08
-
OID
-
44.99
1
09
0
0.06
1
Curb Sock
-
n/a
___.
nn,
_
046
0.95 _-
0.52
38.90
001
_t
078
_53_.86
1
0.9
0.13 _
924
Sediment Trap
n/a_
1
0.5
55
0.19
09.63
008
1
SIII Fence
_n/e
Na
Na
1
0.5
_O
Straw Bale Barrier
n/a
Ne
1
0.B
8
5.32
2.51-
0.11
2.01
0.01
1
am
_
-am
1
0.9
0.30
_
5.60
ON
1
Est. Grass
4.91
92.39
0.1
1
0.08
0.08
9941
]
1.54
21.82
0.00
000
0.01
1
1.54
100.00
1
0.9
0
006
1
Strew Bale Barrier
me
1
0.8
1L00
036
6400
me
SIII Fence
n/a.
1
0.5
B
0.53
3&5
0.08
14.16
0.01
1
042
78.37
1
09004
747
ON
Sediment Trap_
We Na
nla_
1
0.5
015_
08.36
_
we
Na �
1
0.5
_07_9
SIII Fence
Sock
e
n/a
1
0.8
StrawwSela Border
me
e
nla
108
par0.76
3.83
0.23
30.36
0.01
1
0.53
69.64
1
09
- 0
0.0_6
-_t
Gravel Filter
ma
nla
1
.
08
0 )U
0.60
58.35
_ _
_ _
_
Curb Sock
n/a
nra
1
0.8
91,
020
2.10
OID
34.58
0.01
1
0.13
6542
1
0.9
0
0.06
i
Sill Fence
We
nra
1
OS'
O66
0.37
7542
Curb Sock
n/a
No
1
0.8
10
0.34
1.02
0.17
49.27
0.01
1
0.17
5073
1
09
0
0.06
1
Gravel Filler
n/a
We
1
09
051
0.61
66.88
Curb Sock
me
me
1
08
11a
149
0.24
033
2206.
001
1
0.90
6025
1
0.9
0.26
1769
00d
1
Sediment Trap
Far
c/o
1
0.5
0.62
0.15
90.75
SIII Fence
ma
n/a
1
05
Curb Sock
me
No
1
08
Straw Bale Border
nra
nra
1
0.8
111,
0.09
004
0.03
2824
0.01
1
0.07
71.76
1
0.9
0
006
1
Curb Sock
ma
n/a
1
09
0.72
0.74
46.50
12
0.75
346
028
36.86
0.01
1
037
4931
1
09
0.10
1382
006
1
Silt Fence
nra
n/a
1
0.5
0.51
0.30
8463
Straw Bale Barrier
n/a
We
1
0.0
Curb Sock
n/a
nla
1
Ofi
13
028
877
0.00
am
0.01
1
0.28
100.00
1
0.9
0
0 06
1
Straw Bale Bonier
Na
me
1
US
1100
0.36
64 00
S01 Fence
me
me
1
0.5
Area Sum'. 14.56
Weight.d EFF.
e'3.49
PROJECT: HARMONY RIDGE FILING 2 STANDARD FORM C
COMPLETED BY: EMS DATE: 1-31-05
MONTH 1 2 3 4 5 6 7 6 9 10 11 1?
CONSTRUCTION PHASE (Weea/Moptil
Demolition
— —
Gretling(Indutle OXsite)
ovanol
DetentiorvWO Ponds
Swedes. Drainegeways, Streams
Oltcdes
Pipeline Installation (include Offsite) -
Water
Sanitary $ewer
Smrmwmer,
Concrete Installation (Include Offsite)
urea Inlets
Cum Inlets
Pond GUIIBI Slmclures
C rh and Guller/Street
Box Culverts. Bridges
Street Installation (Include Oflsite)
_. __. -
Gratliing/Base
Pavement
Miscellaneous (include Offsitel
Drop Structures
Other (List)
_-__--
-----
- --
��-
---_-
X X X X
X X
X X
X X
-
-----
X X X X
X X X X
XX
X X
X
X X
_ _ _
X
X X X X
_ _
_ _
X X
-._-rX--X-
X X
BEST MANAGEMENT PRACTICES
Structural - - - -
Silt Fence Barriers
Contour Fmrews (RippiagrDisking)
Sediment Trap/Filler
Vehicle Tracking Pads
Flow Barriers (Bales, Welder. Etc)
Intel Filter
Sand Bags -� -- --
Bare Son Preparation
Terracing. -- - _ - - --- -
Stream Flow Diversion
Rip Far
Filler (List)
VegeMXve
Temporary Seed Planting
Mulchi-WSealant
Permanent Send Planting
Sod Installation
N.fie,VBlankels/Mals l
II
Harmony Ridge
' Jim Sell Design, Inc.
2350 1-31-04 EMS
' Erosion Control Estimate of Probable Cost
1. Erosion Control Measures
Item
Description
Units
Unit Cost
Quantity
Total Cost
1
2
-----Silt Fence_
Vehicle Tracking Control (25'x50'x6")
$--0.97
2025
$ 1,964.25
L.F.-
EACH
$ 650.00
2
$ 1,300.00
3
- - -
4
Inlet Protection
- - - - - - - ----------
Straw Bales
EACH
$ 275.00
2
$ 550.00
--
L.F.
-
$ 3.06
-
72
----
$ 220.32
5
Sediment Trap
EACH
$ 650.00
3
$ 1,950.00
6
7
Curb Sock
EACH
$ 275.00
$ 700.00
14
--(1-831
1 $ 3,850.00
Seeding/Straw Mulch
Acre
$ 581.00
Total Cost $ 10,415.57
2. City Reseedinq Cost for Total Site Area
Item
Description
Units
Unit Cost
Quantity
I Total Cost
1
Reseed/Mulch
Acre
$725
14.56
$10,553.39
3. Security Deposit (greater amount of items 1 and 2) $10,553.39
Required Erosion Control Security Deposit with 150% Factor: $15,830.09
IJ
11
1
Vmax3 - SC250 Overview
Page 1 of 2
omp
Salhl 12 I Moen
Performance Profile I Problems Solved
SC25fl=
f. Permanent Turf Reinforcement Mat
High Performance
Exceeds to 24" Rock Riprap
A Step Above Temporary Erosion Control Blankets
North American Green's SC250 is comprised of a permanent, high
strength three-dimensional matting structure incorporated with a
straw/coconut fiber matrix. It is designed to provide both extended
_ - term., pre -vegetated erosion protection and permanent turf
reinforcement in a wide variety of applications, including severe slopes,
high flow channels and stream banks.
Stream
30nu5 The straw/coconut fiber matrix enhances the permanent matting's initial
mulching and erosion control performance for up to 24 months. Proven
in laboratory and field research, the permanent matting's high strength
3-D structure increases the shear resistance of vegetation up to 10 Ibs /
ftz (480 Pa).
With even the toughest stand of unreinforced grasses typically failing at
shear stress levels of 3.7 Ibs / ftz, the SC250 more than doubles the
shear resistance of any vegetation. This enables the SC250 to be used in
many applications where rock riprap and concrete were once the only
viable alternatives.
Maximum Value with Vmax3 SC250
Cost Comparison SC250 24" (0.6 m) Rock Riprap
Materials $6,400-8,500 $21,500
Labor $4,300-5,700 $14,200
Total Installed Cost $10,700-14,200 $35,700
($6-8 yd2/$7-10 m2) ($20 yd2/$24 mz)
MAXIMUM SAVINGS OF $25,000
* Based on costs for protecting a 16 ft X 1,000 ft (4.8 m X 305 m) drainage channel.
* Costs shown in U.S. Dollars. Costs may vary based on location.
SC250 Product Application Guide*
T;p vE-
Slack 'JV Stac!hzed
Pclyprovweoe
5,bs 1.soo.r apprc,
Ne,gnt
CcNTE.R VEr
57ack UV Stab,6zed
Polypropylene Cprruga
241bs 1.000
aporovmate NeigW
MATRIX MA77RIAL
7VPo 3traw,':0% Coca
SOT -CM NET
31ack W Stabrlrzed
Potyprcpylene
5 !bs / 1, 000 ft' approl
weight
THREAD
Slack uV Stabilized
polypropylene
DtMENSiCNS
Width: 6.30 t (2 ml
Length: 55. 50 it (16.91
Area: 40 yd' (33.40 m
We; 34.00 bs (15-
Download Technic,
Specifications PDF
Limiting. Shear Stress Ib/ftz (Pa)
Applications Flow Duration Permissible Velocity ft/s Typical Projects FHWA FP-03
(m/s) TRM Categories
Bare Soil Vegetated
httD://www.nanreen.conVvmax3/products/index.tol I/ 6/2005
Vmae3 - SC250 Overview
Page 2 of 2
0.5 hr 50 hr 0.5 hr 50 hr Unvegetated Vegetated
1:1 & 3.0 2.5 10.0 8.0 9.5 15 Roadside Ditches, Types S.A, B
Greater (144) (120) (480) (383) (2.9) (4.6) Golf Course S:wales, and C
Slopes Stream Bank Protection
Medium to
High Flow
Channels
24-Month
Vegetation
Grow -in
Period
* This guide is for general purposes only. Actual product selection and design should be developed using North
American Green's Erosion Control Materials Design Software (ECMDSC" ).
* All unvegetated and vegetated Vmax3 performance values are based on laboratory research utilizing test
methods similar to those detailed in ASTM D 6459-00.
Distributor Locator Contact Us Privacy Policy Terms of Use North American Green
,ail Vmas7 crccucts iaae been rested by AAS:PTO's Nat.cnal 71ansprrtaucn P,oruct Evaivahon Program for RECPs.
GSA Ccntract ?lumber GS-07.1-33MD 2009
52005 Vorh American Geer - all -igr.[s reservec.
Site Delon oy Gray Loan Marketing Grua -.c. Cnautrc izec use nr maces and content Is strCly prcnibited.
httn://www.na2reen.com/vmar3/products/index.tt)l 1/26/2005
'North American Green - ECMDS Version 4.2 !2/1/2005i10:11 AM ,COMPUTED B'C EMS
,nuicu nNr,,c narmenynioeernma.
ROM STAT10NiREACH: Outlet 2 iTO STATION/REACH: Pond 1
HYDRAULIC RESULTS
Discharge
cfsl
Peak Flow
Period hrsl
'Jelocity (fpsl
Area.(sq.ft)
Hydraulic
I Radiusfftl
Normal
I De thfft
51.9
1.0
1 6.36
1 7.45
064
1 1.04
LINER RESULTS
SC250
S = 0.0800
1 L Bottom J 1
4.0 Width =3.00ft 4.0
Not to Scale
Reach
Matting Type
Stability Analysis
Vegetation Characteristics
Permissible
Shear Stress
[psf]
Calculated
Shear Stress
(psf)
Safety Factor
Remarks
Staple Pattern
Phase
Class
Type
Density
Straight
SC250
I Vegetation
2
1C
Mix
7595%
G.00
5.20
1.15
STABLE
Staple —E—T
Soil
Sand
2.500
0.560
4.46
STABLE
.North American Green -ECMDSVersion 4.2 122112005i10:1'_AM:COMPUTEDBY: EMS
wuzx.Yny
Discharge
fcfsl
Peak Flow
Period fhrsl
Velocity (fps)
Area tsq.10
Hydraulic
Radiuslftl
Normal
De th (ft
69,0
1.0
1 7.50
9.20
0.72
1.T9
i�
4.0
LINER RESULTS
S C250
Bottom
Width = 3.00 ft
1 1
4.0
Not to Scale
Reach
Matting Type
Stability Analysis
Vegetation Characteristics
Permissible
Shear Stress
fpsfl
Calculated
Shear Stress
tpsO
Safety Factor
Remarks
Staple Pattern
Phase
Class
Type
Density
Straight
SC250
Vegetation
2
1 C
I Mix
75-95%
6.00
5.93
1.01
STABLE
Staple
Soil.
Sand
2.500
0.522
4.79
STABLE
IRIPR"P
-W-
NET V5ERa
E*u_Nos ea—/
MAL
CN SAW
la 55 EF
5 FEET RWC
If 2711
W rLANDS AN r - If
4
\\
Rlp PS 4a
NPIwP PER mQw J FEET WK. ESEEMO TO EDE 40"YE
WIN
\\VV[[ ` ``--- -
fPAAPE WAY
--__ ._-_____- _ -
MORRIS
_ _-ET `- CS
T .
1 45 y 1 r— 't— I —I— _ — n i_
/J m 1
V r W m 0 'N N y M5 UJ Mt
44 a h I�
I'I" I' I'IM'I�I
r----- -- - - -
p7 �I
OA1 IN
37 ' / 5 S7 33 —INW32
34
35
OWN _l►v` 7
4a\ '�\�\ v�
`A�k -a _
/ 0� WE
Ak
31
Sput FINK 8, SURE
RI IAi GRELING NTCN IN / \ /
MCNEYEx Is Fvx111FA wJIN. /
CIRKS Stl FENCE NCE CR L\ \ IP q
�iCnAi xasaaa i X / ` \ \\ IS ?j\ SF 1 R 1 . 0.28 1
E SIPENCE WMdn S32 of
won Rnrtrtx / \ \\ t \ \ 3\ 37
APPRWAE NWR THE
SEED
SANITARYSANITARYLINE EXU ATYI EM'SNi,ER / \ \ `\ / RV PAp ): N iN1 /
02
WM NA%E PURE SEES MIX
\ \ p21 I
A�SLT
A^LNE PNNI AND FEWK. EPENCEOWN CMPED SPUR
/
20 s�N 31
I19 1/ PER anus
bao
SEE
0 IS a IN / / ��--
\
v
/ / I rtuPWrm
sm
AIN 6RNilPD D.
-
\
/ CLEAN smlNart rnou PCxD
u®AP.
Ian m 1 SRI
Wµ Iltl
WIND IW
H
CALL UnurY NonRanC
GENIES C C CXEA00
1-300-922-1987
a 534.8700
C
U
e
MIX
LL
Won
.J
INN,
0)
W
W
t3
0
c
p?
U
a
W
!F7
Ric
Q
U
2
15
\
0
\
o
\
0
\
\
\
\
REVIEW SET
NOT FOR
\
CONSTRUCTION
SESSIONS
GD /Y4
IP II
2MO ENO GRADING CURRE
DPsgPvd EMS
�.,
CARDkrd Wo
Oavb 07-33-M
�� 1
II
ReviainA
_ awlw
IWv N-ausSo
ProjRD! / zJso
Ixv s.smR.s
I 1
OF