Loading...
HomeMy WebLinkAboutDrainage Reports - 04/02/1999PROPERTY OF F11 +eport FORT COLLINS ' REVISION: FINAL DRAINAGE AND EROSION CONTROL STUDY FOR HEWLETT-PACKARD COMPANY BUILDING 4 FORT COLLINS, COLORaDO March 22, 1999 THE SEAR -BROWN GROUP Standards in Excellence REVISION: FINAL DRAINAGE AND EROSION CONTROL STUDY FOR HEWLETT-PACKARD BUILDING 4 FORT COLLINS, COLORADO March 22, 1999 Prepared for: IDC Portland Office 2020 S.W. Fourth Avenue, 3rd Floor Portland, Oregon 97201 Prepared by: The Sear -Brown Group 209 S. Meldrum Fort Collins, Colorado 80521 (970) 482-5922 RBD Job No. 799-001 I 1 I I 1-7 11 I-n L 1 THE SEAR -BROWN GROUP FULL -SERVICE DESIGN PROFESSIONALS 209 SOUTH MELDRUM FORT COLLINS, COLORADO 80521-2603 970-482-5922 FAX:970-482-6368 March 22, 1999 Mr. Basil Hamdan City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 SUBJECT: Revision to the Final Drainage and Erosion Control Study Hewlett-Packard Building 4 Dear Basil: We are pleased to submit to you, for your review and approval, this Revision to the Final Drainage and Erosion Control Study for the Hewlett-Packard Building 4. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, The Sear -Brown Group Prepared By: m Allen -Morley, PE esign Engineer Reviewed By: Kevin W. Gingery, P.E. Engineering Manager NEW YORK• PENNSYLVANIA COLORADO • UTAH • WYOMING STANDARDS IN EXCELLENCE EQUAL OPPORTUNITY EMPLOYER TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION A. Location 1 B. Description of Project 1 II. DRAINAGE BASINS A. Major Drainage Basin Description 1 B. Sub -Basin Descriptions 2 C. SWMM Model Compliance 2 III. DRAINAGE DESIGN CRITERIA A. Regulations 3 B. Development Criteria Reference and Constraints 3 C. Hydrological Criteria 3 D. Hydraulic Criteria 3 E. Variances from Criteria 3 IV. DRAINAGE FACILITY DESIGN A. General Concept 4 B. Specific Details 4 V. STORM WATER QUALITY A. General Concept 7 VI. EROSION CONTROL A. General Concept 7 B. Specific Details 7 VII. CONCLUSIONS A. Compliance with Standards 8 B. Drainage Concept 8 C. Storm Water Quality 8 D. Erosion Control Concept 8 REFERENCES 9 tAPPENDIX ' VICINITY MAP 1 HYDROLOGY 3 DESIGN OF STORM SEWERS 11 DESIGN OF INLETS 40 RIPRAP DESIGN 72 EROSION CONTROL 77 ' CHARTS, FIGURES AND TABLES 85 EXCERPTS FROM BUILDING 5 REPORT, 100 YEAR SWMM MODEL 99 1 1 I t REVISION TO THE ' FINAL DRAINAGE AND EROSION CONTROL STUDY FOR HEWLETT-PACKARD BUILDING 4 FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION A. Location 1 1, 1 I The Hewlett-Packard Building 4 site is located in southeast Fort Collins (see vicinity map in the Appendix), north of Harmony Road and east of County Road 9 within the southwest 1/4 of section 33, township 7 north, range 68 west of the 6th P.M., City of Fort Collins, Larimer County, Colorado. B. Description of Property The Hewlett-Packard Building 4 site is north of the existing Fort Collins Hewlett- Packard office and industrial park. The site encompasses approximately 32 acres. The existing topography generally slopes from west to east at approximately 0.7 percent. Native grasses overlaying lean clay with sand or sandy lean clay cover the majority of the site. In the southern portion of the site there are existing parking lots with modular buildings. There are newly constructed parking areas and an office building, Building 5, are located east of the site. The existing Building 2 is southeast of the construction area. H. DRAINAGE BASINS A. Maior Basin Drainage Description The Hewlett-Packard site lies entirely within the Fox Meadows Drainage Basin which is approximately bounded by Horsetooth Road on the north, Harmony road on the south, the Cache La Poudre River and I-25 on the east and Lemay Avenue on the west(refer to the general location Map in the Appendix). A Master Plan for the Fox Meadows Drainage Basin (Basin H) was Prepared by Resource Consultants, Inc., in 1981. This area was studied again by Nolte and Associates in 1990 when a master drainage plan was prepared for the Hewlett-Packard site. Nolte's master drainage report did not alter any of the assumption or conclusions which were made in the Fox Meadows Master Drainage Plan. I Ij 7 ;I The Regional Channel located along County Road 9 and the north boundary of the Hewlett-Packard property which was recommended in the Nolte report was designed and built with the Hewlett-Packard Building 5 project. The channel was designed for the 100 year storm and discharges to the north detention pond. The north detention pond discharges to a series of detention ponds to the south through an existing 30 inch diameter pipe. Nolte's report recommended that the 30 inch diameter outlet pipe of this north pond be enlarged to 48 inch diameter at the full development of the entire Hewlett Packard site. This increased diameter is required to avoid surcharging the north detention pond which would result in uncontrolled overland flow. This enlargement is part of this project but is not included in this report. It is intended that an addendum to this report will be submitted and construction of this improvement be completed before the certificate of occupancy is granted. B. Sub -Basin Drainage Description Historically the site receives flows from the west at two discharge points along County Road 9. Flows discharge from the Symbios site through 2-30 inch diameter concrete pipes under County road 9 at the top of the regional drainage channel. Flow from a second discharge point at the northwest corner of the Hewlett-Packard property will ultimately come from three sources (1) Symbios Logic (2) English Ranch (3) local drainage from 2 residential properties. The off -site and on -site storm runoff then flows east where it is intercepted by ' local roadside ditches or the ditch adjacent to the newly constructed parking lot for Building 5 which takes the runoff north to the regional drainage channel. C. SWMM Model compliance The Original Master Drainage Report for the Hewlett Packard Site, Preston Kelly Subdivision, Fort Collins, Colorado created a SWMM computer model for the site. During the development of the Hewlett Packard Building 5 project the Final Drainage Study for Hewlett Packard Company Building 5 report this model was modified to reflect the new conditions as well as update the SWMM parameters to those the City of Fort Collins criteria. Please see the Appendix for a copy of the model with the revisions. The purpose of this modified SWMM model was to ' size the regional drainage channel which is located along the north property line of the Hewlett Packard site. The Hewlett Packard Building 4 project is located primarily in subcatchment area 32 . The original input file to the modified SWMM anticipated a catchment area to contain 31.3 acres with a percent impervious area of 60 percent. The proposed drainage catchment area has an area of 39 acres with a percent impervious area of 33 percent. Due to the nearly equivalent subcatchment area and the much smaller 1 2 11 ' percent of impervious area proposed the site, conditions will be well within the parameters set by the Building 5 SWMM model. DRAINAGE DESIGN CRITERIA A. Regulations ' The City of Fort Collins Storm Drainage Design Criteria as established by the Fox Meadows Basin Drainage Master Plan will be used in the preparation of this ' report. B. Development Criteria Reference and Constraints ' The Hewlett-Packard Building 4 site drainage is designed in conformance with the Fox Meadows Basin Drainage Master Plan (Basin H) and the Hewlett-Packard Master Drainage Plan by Nolte. C. Hydrological Criteria ' The runoff to the regional drainage channel was previously calculated for Building 5 and excerpts from that are contained in the Appendix. The most recent ' 100-year storm event hyetograph and infiltration parameters determined -.by the City of Fort Collins were used in the calculation of the runoff values. ' The rational method is used to determine the peak flow from the developed runoff for design of the hydraulic structures and interior roadway drainage facilities. These are designed using the 10 and 100 year rainfall criteria from the City of Fort Collins. D. Hydraulic Criteria All calculations within this study have been prepared in accordance with the City of Fort Collins Drainage Criteria and are included in the appendix. E. Variances from Criteria ' No variances are requested for the proposed site. 1 3 ' IV. DRAINAGE FACILITY DESIGN A. General Concept The site will be designed to conform with the Master Drainage Report For ' Hewlett Packard, with the majority of the storm water flows being conveyed to the regional channel to the north. Offsite flows from the west and north are intercepted by the regional channel and °Offsite are accounted for in the SWMM modeling. flows to the south and west are conveyed away from the site in the existing Hewlett Packard storm drainage ' system. West of Building 4, the storm water from all of the parking area flows to curb ' inlets and then is piped to the regional channel. The area south of the parking and building 4 drains south, as it has historically, to the local storm drainage system. . The perimeter road drains to curb inlets, then to pipes and then to the regional ' channel. Building 4 has four main roof drain pipes which outfall to the north and east, these outfall to a collection system which empties into the regional channel. East of Building 4 is a complicated system of existing and proposed storm drains. ' The existing storm sewers generally take storm water to the southeast and are sized for the minor storm. The proposed system will take flows to the regional channel and be sized for the 100 year storm. B. Specific Details County Road 9, Basins OS-1, OS-2 and OS-3 lie to the west of the site and drain to the regional channel through existing inlets. The storm flows from County Road 9 are accounted for in the regional channel SWMM model as are the storm flows which enter the site from Symbios and English Ranch. The storm runoff which is generated in Basin 1 is also accounted for by the SWMM model. The rest of the hydrology calculations for the site are based on the rational method. Basins 20, 21, 19, 18, 17, 14, and 11 all drain to the existing storm drain system to ' the south. A new area inlet has been added to Basin 14 and Basin 20 to facilitate the new grading. This storm drainage system, generally 12" diameter pipes at 0.3 % slope, has a limited capacity of approximately 2 cfs. Evidently the storm ' drainage system has worked adequately up until now. In order to not worsen downstream conditions we have reduced the amount of impervious surface area. 4 J Basins 21,19,18 and 17 will have a reduced impervious area with the removal of the existing modular buildings and associated parking and their replacement with ' landscaped areas. This reduces the amount of storm water that historically flows through this system. The modular buildings and the associated parking which will be removed have a total area of 3.2 acres. See pages 11 a and 1 lb of the tappendix for an exhibit. Previously, this area was primarily impervious area and flooding was always a ' problem. Buildings have been removed and additional pervious area has been added to this area, thus improving the conditions and decreasing some of the flooding. A low area acts as an overflow for water draining to the subject area. It leads water away from the existing buildings to an existing inlet. The elevation of this spillway is at 18.20'. The finished floor elevation of the existing buildings is ' at 19'. The spillway will allow stormwater to flow away from the building prior to reaching the 19' elevation. The rest of the storm drainage system which conveys the majority of the storm ' water generated by the site consists primarily of three main storm drain outfalls. The west outfall conveys flows from Basins 22, 22a and 23. These basins are primarily parking lots where each area drains to its own type 'R' inlet_ These ' Basins then drain to a pipe (Profile A) which flows north toward the regional channel. These storm flows are then joined by flows from the perimeter road, Basins 2,3,4 and 5 (Profile D) and these combined flows then discharge into the ' regional channel. Because of a conflict with the electric and telephone duct a series of elliptical pipes with headwall are used to discharge stormwater to the ' regional channel. A Type'R' inlet box is being used as vault for the multiple pipes. We did not account for this Type 'R' inlet in our drainage calculations as it will make little difference to the overall calculations. This entire length of pipe is ' designed for the 100 year storm. The subdrain pipe of the water meter building located on the northwest corner of ' the site, which will not receive any stormwater runoff, will directly discharge into the regional channel via a 6" PVC pipe. In the middle of the site, the storm drain system (Profile B) conveys flows from the parking area, which includes Basins 24, 24a, 24b, 25, 25a, and 40 north towards the regional channel. Landscaped Basins 6 and 26 intercept the system ' through pipes with flared end sections. These storm flows are joined by roof drainage from Basins 9 and 10, and surface flows from Basins 37, and 38, which accept flow through area inlets. The storm drain pipe then connects to a type 'R' ' inlet which receives flows from the south half of the north section of the access road, Basin 8. Runoff from the north half of the road, Basins 7, intercepts the system through another type "R" Inlet, which is where the three systems that ' convey flows from the east side of the site are combined. Due to another conflict with the same duct bank north of the site, a vault with a series of elliptical pipes is 5 d 1 1 1 1 1 1 i 1 1 1 1 1 1 1 i used to discharge flows to the regional channel. As a matter of economy, the three separate incoming pipe systems ( Profile B, Profile C, Profile E) were combined at the large Type 'R' Inlet in Basin 7. The storm drainage system from the eastern portion of the site is by far the most complicated. This consists of a mixture of existing and proposed storm drains. Starting from the south, Basin 14 accepts flows through a new area inlet and discharges stormwater to the existing system. There are two main storm drainage systems which serve the east side of the building, Profile C and profile E. Profile C serves to pick up the 100 year flows from a portion of the building (Basins 12 and 13) and from Basins 30, 31, and 36. The roof drains only accept the 10 year runoff from the buildings, however, the 100 year overflow from the roof drains will be intercepted by the area inlets in Basins 30, 31, and 36. The inlets have been sized to accommodate the extra flows without impeding the building or surrounding structures. Profile C combines with Profile B and E at the inlet in Basin 7 where the combined system outfalls to the regional channel. The existing 18 inch pipe, which conveys flows from the existing site to an offsite detention pond, does not have enough capacity to convey the 100 year developed flows from the east side of the site. The existing system does not have enough capacity to accept even the 10 year storms. Due to this condition, it is necessary to have a low level pipe system with an overflow system that is designed to take the excess flows. This was done on Profile E where the next pipe north of the existing 18 inch pipe has a reverse grade. The reverse grade is set at 1 % so that sedimentation is minimized. An orifice was placed on the entrance to the pipe which takes flows to the existing 18 inch pipe. This orifice was sized to pass 3 cubic feet per second(cfs) in order to avoid surcharging the existing system. This is half of the existing system s capacity. Basins 16, 28, 29 and 32 are small service areas to the east of the building which are served by the storm drainage system, Profile E. Basin 16 and 28 are existing basins which discharge to an existing inlet and 12" line which ties into the proposed Profile E. Flow from Basin 29 enters the system through a proposed Type "R" inlet. Stormwater from the service road, Basin 32 and 35, are also served by Profile E. Basin 32 has an area inlet which accepts the 100 year developed flows as well as a portion of the overflow from Basin 12 roof drain. Basin 35 accepts flows through a Type "R" Inlet. Basin 33, which is the truck loading area, is served by a strip drain (Profile F) which then outfalls to Profile E. Both Profile C and Profile E combine with Profile B in the type 'R' Inlet on the north side of the access road in Basin 7. The Chemical storage Building has overflow piping to take any chemical spill to a 1 concrete containment vault. This vault is shown near the east side of building 4 on the erosion control plans at the back of the report. Basin 15, the roof area of 1 6 1 the new chemical storage building, joins the existing system east of the storage building and flows North. This pipe conveys storm water to the north where it connects to the existing system downstream (east) of the orifice plate on Profile E. Basin OS-4 is an existing basin which is the present chemical storage area which is set below the surrounding grade. It is served by it own area inlets. STORM WATER QUALITY A. General Concept Beginning in October of 1992, the water quality of storm water runoff was required to be addressed on all final design utility plans. Hewlett-Packard is anticipating construction beginning in the Summer of 1998. Therefore for this study, we have sought to find various Best Management Practices for the treatment of storm water quality runoff. Runoff is conveyed by a grassed lined regional channel through existing detention ponds in order to provide an opportunity for pollutants to be removed. The detention pond releases at a very slow rate therefore many of the pollutants will settle out. EROSION CONTROL A. General Concept The Hewlett-Packard Building 4 site is in the moderate wind and moderate rain erodability Zones per the City of Fort Collins zone maps. The potential exists for erosion problems during construction, and after construction until the disturbed ground is again vegetated. In accordance with the City of Fort Collins Erosion Control Reference Manual for Construction Sites, the erosion control performance standard is 76.30 % during construction and 89.8% after construction. The erosion control specified on the Final Drainage and Erosion Control Plan will result in a performance standard during construction of 79.09% and 97.08% after construction. B. Specific Detail Prior to overlot grading all silt fence must be in place and gravel inlet filter must be placed on all existing area inlets. The areas covered by road and parking lot must have a 1 inch layer of gravel mulch (1/4" to 1 '/z" gravel) applied at the of at least 135 tons/acre. All other disturbed areas except Basin 6 should have a roughened surface. Disturbed areas of Basin 6 will have straw mulch applied and crimped. After installation of the 7 i concrete sidewalk, culvert and curb inlets, the inlets shall be filtered with a combination of concrete blocks,'/2" wire screen and 3/4" coarse gravel. After installation of the storm drains, riprap protection and gravel inlet filters shall be installed. IIf the disturbed areas will not be built within one growing season, a permanent seed shall be applied. The estimate of probable costs for erosion control is ($31,939) x (1.5) _ $47,909 for an escrow amount. ' All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Health NPDES Permit will be required before any ' construction grading can begin. VII. CONCLUSIONS A. Compliance with Standards All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. B. Drainage Conceit The proposed drainage concepts adequately provide for the developed runoff from the site and are within the parameters set out in the Master Drainage Plan for Hewlett Packard. C. Water Quality Control Because storm water quality has become a requirement, the site has addressed this storm water aspect. Swales and detention ponds have been used to improve the ' water quality. D. Erosion Control Concept ' The proposed erosion control concepts adequately provide for the control of wind and rainfall erosion from the Hewlett-Packard Building 4 Expansion. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance standards will be met. The proposed erosion control concepts presented in this report and shown on the erosion control plan are in compliance with the City of Fort Collins erosion control criteria. 1, 8 1 REFERENCES 1. Storm Drainage Desien Criteria and Construction Standards by the Citv of Fort Collins, Colorado, May 1984, Revised January 1992. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991. 3. Fox Meadows Basin(basin H) Drainage Master Plan, Fort Collins, Colorado, by Resource Consultants Inc., February 25, 1981. 4. Master Drainage Report, Hewlett Packard Site, Preston Kelly Subdivision, Fort Collins, Colorado, by Nolte and Associates, revised October 1990. E I I I APPENDIX r I I 1 1 I r I r 1 I I i 1 [1 1 1 VICINITY MAP 1 1J 1 1 1 i 1 1 1 11 i 1 11 2. I I 1 I 1 1 DRAKE RD. �n F F Q } Q N HORSETOOTH RD. o a N a PROJECT a z SITE z F HARMONY RD. of 0 z VICINITY MAP N.T.S. L 11 11 d L 1 1 1 1 Ll 1 1 1 1 1 1 HYDROLOGY 3 1 ' RBD, Inc., Engineering Consultants ' Weighted Runoff Coefficients sheet 1 of 1 Project # 799-001 'HP Building 4 - ADDENDUM This sheet calculates the composite "C" values for the Rational Method. ' " Numbers 20 and 21a are not used 11 1 1 1 I TLD 07/27/98 Design Area Impervious "C" Pervious "C'. A,total ac. A,Imp ac.) A,perv. (ac.) % Imp %pery Comp. OFFSITE BASINS OS1 0.95 0.25 0.87 0.58 0.29 67% 33% 0.72 OS2 0.95 0.25 1.52 0.94 0.58 62% 38% 0.68 OS3 0.95 0.25 0.79 0.41 0.38 52% 48% 0.61 OS4 0.95 0.251 0.57 0.571 0 100% 0% 0.95 OS5 0.95 0.25 0.29 0.29 0 100% 0% 0.95 OS6 0.95 0.25 2.31 1.62 0.69 70% 30% 0.74 OS7 0.95 0.25 0.34 0.18 0.16 53% 47% 0.62 Otal: 6.69 4.59 2.10 69% 31% 0.73 ONSITE BASINS 1 0.95 0.25 5.28 0.00 5.28 0% 100% 0.25 2 0.95 0.25 1.23 0.19 1.04 15% 85% 0.36 3 0.95 0.25 0.8 0.131 0.67 16% 84% 0.36 4 0.95 0.251 1.67 0.191 1.44 11 % 86% 0.32 5 0.95 0.25 0.77 0.12 0.65 16% 84% 0.36 6 0.95 0.25 6.75 0.00 6.75 0% 100% 0.25 7 0.95 0.25 0.75 0.23 0.52 31 % 69% 0.46 8 0.95 0.25 0.41 0.24 0.17 59% 41% 0.66 9 0.95 0.25 0.99 0.99 0 100% 0% 0.95 10 0.95 0.25 0.46 0.46 0 100% 0% 0.95 11 0.95 0.25 0.38 0.38 0 100% 0% 0.95 12 0.95 0.25 0.7 0.7 0 100% 0% 0.95 13 0.95 0.251 0.5 0.51 0 100% 0% 0.95 14 0.95 0.25 0.43 0.25 0.18 58% 42% 0.66 15 0.95 0.25 0.39 0.39 0 100% 0% 0.95 16 0.95 0.25 0.18 0.18 0 100% 0% 0.95 17 0.95 0.25 1.96 0.56 1.4 29% 71% 0.45 18 0.95 0.25 0.9 0.05 0.85 6% 94% 0.29 19 0.95 0.25 2.85 0.10 2.75 4% 96% 0.27 20 0.95 0.25 0.38 0.08 0.3 21 % 79% 0.40 21 0.95 0.25 0.74 0.46 0.28 62% 38% 0.69 22 0.95 0.251 1.01 0.791 0.22 78% 22% 0.80 22a 0.95 0.25 0.87 0.72 0.15 83% 17% 0.83 23 0.95 0.25 0.74 0.49 0.25 67% 34% 0.72 24 0.95 0.25 0.63 0.56 0.07 89% 11% 0.87 24a 0.95 0.25 0.37 0.35 0.02 95% 5% 0.91 24B 0.95 0.25 0.31 0.25 0.06 81% 19% 0.81 25 0.95 0.25 0.65 0.48 0.17 74% 26% 0.77 25A 0.95 0.25 0.54 0.42 0.12 78% 22% 0.79 26 0.95 0.25 0.3 0.27 0.03 90% 10% 0.88 27 0.95 0.251 0.04 0.041 0 100% 0% 0.95 28 0.95 0.25 0.25 0.25 0 100% 0% 0.95 29 0.95 0.25 0.15 0.15 0 100% 0% 0.95 30 0.95 0.25 0.16 0.16 0 100% 0% 0.95 31 0.95 0.25 0.07 0.07 0 100% 00% 0.95 32 0.95 0.25 0.52 0.31 0.21 60% 40% 0.67 33 0.95 0.25 0.03 0.03 0 100% 0% 0.95 34 0.95 0.25 0.42 0.23 0.19 55% 45% 0.63 35 0.95 0.25 0.39 0.39 0 100% 0% 0.95 36 0.95 0.251 0.33 0.161 0.17 48% 52% 0.59 37 0.95 0.25 0.33 0.29 0.04 88% 12% 0.87 38 0.95 0.25 0.32 0.23 0.09 72% 28% 0.75 39 0.95 0.25 2.02 0.00 2.02 0% 100% 0.25 40 0.95 0.25 0.06 0.05 0.01 83% 17% 0.83 SITE 39.03 12.89 26.10 33.03% 66.87% 0.48 ' Stom Drainage Design and Technical Criteria ' RBD, Inc., Engineering Consultants ' 799-001 SUBDIVISION: HP Building 4 - ADDENDUM CALCULATED BY: TLD TIME OF CONCENTRATION STORM 10 yr DATE 01/13/99 cf = 1.00 ti = 1.870.1- C x Cnoro.5 S"1/3 tc = ti + tL SUB -BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS DESIG: AREA C LENGTH SLOPE ti LENGTH SLOPE VELOCITY tL tc (ac) (ft) (%) (min) (ft) (%) (ft/s) (min) (min) 1 2 3 4 5 6 7 7a 8 9 10 11 12 OFFSITE BASIN OS1 0.87 0.72 17 2.00 2.3 37 PA 0.50 1.34 0.5 5.0 OS2 1.52 0.68 17 2.00 2.6 62 PA 0.60 1.47 0.7 5.0 OS3 0.79 0.61 17 2.00 3.0 27 PA 0.50 1.34 0.3 5.0 OS4 0.57 0.95 0 1.00 0.0 18 PA 3.00 3.35 0.1 5.0 OS5 0.29 0.95 20 3.00 0.9 120 PA 2.00 2.72 0.7 5.0 OS6 2.31 0.74 70 3.50 3.7 40 PA 0.70 1.59 0.4 5.0 OS7 0.34 0.62 80 8.50 3.9 120 PA 2.00 2.72 0.7 5.0 ONSITE BASINS 1 5.28 0.25 90 5.50 8.5 2300 GW 0.50 1.09 35.2 43.7 2 1.23 0.36 40 10.00 4A 580 PA 0.60 1.47 6.6 10.7 3 0.80 0.36 80 0.70 13.9 400 PA 0.60 1.47 4.5 18.4 4 1.67 0.32 40 2.50 6.8 490 PA 0.60 1.47 5.6 12.3 5 0.77 0.36 40 1.40 7.8 260 PA 0.60 1.47 3.0 10.8 6 6.75 0.25 500 0.50 44.8 140 PL 0.67 0.53 4.4 49.2 7 0.75 0.46 90 1.00 11.3 720 PA 0.60 1.47 8.2 19.5 8 0.41 0.66 13 3.50 2.0 680 PA 0.60 1.47 7.7 9.7 9 0.99 0.95 0 1.00 0.0 300 PA 1.50 2.35 2.1 5.0 10 0.46 0.95 0 1.00 0.0 140 PA 1.50 2.35 1.0 5.0 11 0.38 0.95 0 1.00 0.0 130 PA 1.50 2.35 0.9 5.0 12 0.70 0.95 0 1.00 0.0 240 PA 1.50 2.35 1.7 5.0 13 0.50 0.95 0 1.00 0.0 150 PA 1.50 2.35 1.1 5.0 14 0.43 0.66 170 2.80 7.7 0 PA 1.00 1.91 0.0 7.7 15 0.39 0.95 0 1.00 0.0 110 PA 1.00 1.91 1.0 5.0 16 0.18 0.95 0 1.00 0.0 90 PA 1.00 1.91 0.8 5.0 17 1.96 0.45 295 1.90 16.9 0 PL 1.00 0.66 0.0 16.9 18 0.90 0.29 200 1.75 17.8 0 PL 1.00 0.66 0.0 17.8 19 2.85 0.27 390 18.00 11.6 0 PL 1.00 0.66 0.0 11.6 20 0.38 0.40 120 1.80 11.8 0 PL 1.00 0.66 0.0 11.8 21 0.74 0.69 50 8.00 2.7 250 PA 2.50 3.05 1.4 5.0 22 1.01 0.80 60 12.00 1.9 350 PA 1.00 1.91 3.1 5.0 22a 0.87 0.83 55 12.00 1.6 350 PA 1.00 1.91 3.1 5.0 23 0.74 0.72 58 12.00 2.4 350 PA 1.00 1.91 3.1 5.4 24 0.63 0.87 0 1.00 0.0 310 PA 1.00 1.91 2.7 5.0 24a 0.37 0.91 0 1.00 0.0 290 PA 1.00 1.91 2.5 5.0 24B 0.31 0.81 0 1.00 0.0 235 PA 0.80 1.70 2.3 5.0 25 0.65 0.77 60 3.00 3.3 210 PA 1.00 1.91 1.8 5.2 25A 0.54 0.79 0 1 0.0 240 PA 1 1.91 2.1 5.0 26 0.30 0.88 160 1.5 4.5 0 PL 1 0.66 0.0 5.0 27 0.04 0.95 0 1 0.0 35 PA 1.5 2.35 0.2 5.0 28 0.25 0.95 0 1 0.0 100 PA 1 1.91 0.9 5.0 29 0.15 0.95 0 1 0.0 105 PA 3 3.35 0.5 5.0 30 0.16 0.95 0 1 0.0 80 PA 3 3.35 0.4 5.0 31 0.07 0.95 0 1 0.0 70 PA 1.5 2.35 0.5 5.0 32 0.52 0.67 32 10 2.1 190 PA 1.5 2.35 1.3 5.0 33 0.03 0.95 0 1 0.0 55 PA 3.4 3.57 0.3 5.0 34 0.42 0.63 30 12 2.1 220 PA 1 1.91 1.9 5.0 35 0.39 0.95 30 21 0.6 175 PA 0.7 1.59 1.8 5.0 36 0.33 0.59 20 20 1.6 115 PA 3 3.35 0.6 5.0 37 0.33 0.87 10 20 0.5 75 PA 2.6 3.11 0.4 5.0 38 0.32 0.75 30 13 1.5 35 PA 2.5 3.05 0.2 5.0 39 2.02 0.25 355 1.1 29.0 0 PA 1 1.91 0.0 29.0 40 0.06 0.83 12 2 1.4 53 PA 0.63 1.50 0.6 5.0 ' Note: Column 7a codes the channel type for velocity calculations. PA = Paved Area, PL = Pasture& Lawns, GW = Grassed Waterway, ' Stonm Drainage Design and Technical Criteria 5 REID, Inc., Engineering Consultants 799-001 SUBDIVISION: HP Building 4 - ADDENDUM CALCULATED BY: TLD TIME OF CONCENTRATION STORM 100 yr cf = 1.25 DATE 01/13/99 ti = 1.e70.1 - C x Cf)D"0.5 SA(1/3) tc = ti + tL SUB -BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS DESIG: AREA C LENGTH SLOPE ti LENGTH SLOPE VELOCITY tL tc (ac) (ft) N (min) (ft) N (fUs) (min) (min) 1 2 3 4 5 6 7 7a 8 9 10 11 12 OFFSITE BASINS OS1 0.87 0.72 17 2.00 1.2 37 PA 0.50 1.34 0.5 5.0 OS2 1.52 0.68 17 2.00 1.5 62 PA 0.60 1.47 0.7 5.0 OS3 0.79 0.61 17 2.00 2.0 27 PA 0.50 1.34 0.3 5.0 OS4 0.57 0.95 0 1.00 0.0 18 PA 3.00 3.35 0.1 5.0 OS5 0.29 0.95 20 3.00 0.6 120 PA 2.00 2.72 0.7 5.0 OS6 2.31 0.74 70 3.50 1.8 40 PA 0.70 1.59 0.4 5.0 OS7 1 0.34 0.62 80 8.50 2.7 120 PA 2.00 2.72 0.7 5.0 ONSITE BASINS 1 5.28 0.25 90 5.50 7.9 2300 GW 0.50 1.09 35.2 43.1 2 1.23 0.36 40 10.00 3.6 580 PA 0.60 1.47 6.6 10.2 3 0.80 0.36 80 0.70 12.2 400 PA 0.60 1.47 4.5 16.7 4 1.67 0.32 40 2.50 6.1 490 PA 0.60 1.47 5.6 11.6 5 0.77 0.36 40 1.40 6.9 260 PA 0.60 1.47 3.0 9.8 6 6.75 0.25 500 0.50 41.5 140 PL 0.67 0.53 4.4 45.9 7 0.75 0.46 90 1.00 9.2 720 PA 0.60 1.47 8.2 17.4 8 0.41 0.66 13 3.50 1.2 680 PA 0.60 1.47 7.7 8.9 9 0.99 0.95 0 1.00 0.0 300 PA 1.50 2.35 2.1 5.0 10 0.46 0.95 0 1.00 0.0 140 PA 1.50 2.35 1.0 5.0 11 0.38 0.95 0 1.00 0.0 130 PA 1.50 2.35 0.9 5.0 12 0.70 0.95 0 1.00 0.0 240 PA 1.50 2.35 1.7 5.0 13 0.50 0.95 0 1.00 0.0 150 PA 1.50 2.35 1.1 5.0 14 0.43 0.66 170 2.80 4.8 0 PA 1.00 1.91 0.0 5.0 15 0.39 0.95 0 1.00 0.0 110 PA 1.00 1.91 1.0 5.0 16 0.18 0.95 0 1.00 0.0 90 PA 1.00 1.91 0.8 5.0 17 1.96 0.45 295 1.90 13.9 0 PL 1.00 0.66 0.0 13.9 18 0.90 0.29 200 1.75 16.2 0 PL 1.00 0.66 0.0 16.2 19 2.85 0.27 390 18.00 10.7 0 PL 1.00 0.66 0.0 10.7 20 0.38 0.40 120 1.80 10.2 0 PL 1.00 0.66 0.0 10.2 21 0.74 0.69 50 8.00 1.6 250 PA 2.50 3.05 1.4 5.0 22 1.01 0.80 60 12.00 0.7 350 PA 1.00 1.91 3.1 5.0 22a 0.87 0.83 55 12.00 0.6 350 PA 1.00 1.91 3.1 5.0 23 0.74 0.72 58 12.00 1.3 350 PA 1.00 1.91 3.1 5.0 24 0.63 0.87 0 1.00 0.0 310 PA 1.00 1.91 2.7 5.0 24a 0.37 0.91 0 1.00 0.0 290 PA 1.00 1.91 2.5 5.0 24B 0.31 0.81 0 1.00 0.0 235 PA 0.80 1.70 2.3 5.0 25 0.65 0.77 60 3.00 1.4 210 PA 1.00 1.91 1.8 5.0 25A 0.54 0.79 0 1.00 0.0 240 PA 1.00 1.91 2.1 5.0 26 0.30 0.88 160 1.50 2.1 0 PL 1.00 0.66 0.0 5.0 27 0.04 0.95 0 1.00 0.0 35 PA 1.50 2.35 0.2 5.0 28 0.25 0.95 0 1.00 0.0 100 PA 1.00 1.91 0.9 5.0 29 0.15 0.95 0 1.00 0.0 105 PA 3.00 3.35 0.5 5.0 30 0.16 0.95 0 1.00 0.0 80 PA 3.00 3.35 0.4 5.0 31 0.07 0.95 0 1.00 0.0 70 PA 1.50 2.35 0.5 5.0 32 0.52 0.67 32 10.00 1.3 190 PA 1.50 2.35 1.3 5.0 33 0.03 0.95 0 1.00 0.0 55 PA 3.40 3.57 0.3 5.0 34 0.42 0.63 30 12.00 1.4 220 PA 1.00 1.91 1.9 5.0 35 0.39 0.95 30 21.00 0.4 175 PA 0.70 1.59 1.8 5.0 36 0.33 0.59 20 20.00 1.1 115 PA 3.00 3.35 0.6 5.0 37 0.33 0.87 10 20.00 0.2 75 PA 2.60 3.11 0.4 5.0 38 0.32 0.75 30 13.00 0.7 35 PA 2.50 3.05 0.2 5.0 39 2.02 0.25 355 1.10 26.9 0 PA 1.00 1.91 0.0 26.9 40 0.06 0.83 12 2.00 0.5 53 PA 0.63 1.50 0.6 5.0 Note: Column 7a codes the channel type for velocity calculations. PA = Paved Area, PL = Pasture& Lawns, GW = Grassed Waterway, Storm Drainage Design and Technical Criteria F O Y< S W K �2n m mmNNmm. n nn..Nry ry n non N rv_nNrv_n_ry nmm ry 02 n •N.N• O, Nn^ nnON.T,nN n l%� W i NQ aw— n0 z io�ry N'!w, W _ N O�' O�m w ry SN aN �� d a"� pp YY11 pp pp a Af�irNV N V �VV � OV�V��O�V ND�O O X_m a 'c �d�C c o CcC d oo6CCa�6C C J� �Y1� NNNN NN wO^N z SOU w ! W CC NmuDi ppppppOO pJp pp� m0�0,0 m�D, o O aeC� 6GG COOL o0 ry NNN^vi mmn moNN _,ry n. mnmmno u�ryon _e�nn JLL Om — a w�^ O �bN UQ nNNn�q� _moon IV�oN_n__NryNnIV �I`i�nOriGry�.Nn__Nrv�0O�000@C�IV�__�C z Ow C CCND a . . . .a m CGDDDCDDD_CrvD O_ O O D O O O D O O O O O CCDCODDDNG _a_$asss�s��_sss:a$s.ss.$s.$�$sss�ssss Ny �5C-0 l��l�`"' n N N NN NNNvl Yl vi Yl of YIN YiNN P!SGS299 V1 b b q G q NNN N Y1 Nfmi, tin �i 1��S���$Bm �i g. �. rINSb00C0NbnIm�,0 6,P m �i,u W, m,n O1N�, lNyO V CCCCGC. Co00CDCO CD O O. G C C D O O O C C C G O C C O..... C..... 0000 0000 w.nmN nO0o0 OOmOmm 00000000000000 �� �N vi V1 YINNNN :GO'G=Oq YInNNNIF YI YIbA'^NNNNNNNNNNNNNNNNNNNNNN�N a�m W z i 5 O�EN 2 ow.. o0000o n.nmrvNNOD000 oommm0000.00NN0000000D00000000 _5 BEn nNNriNvi Yi �CmHe�maNNNYiNrN � NNnNN NNNNNNNNNNNNNNN�N y 0000000 aZ � ..rvn.Nmnem9�v���m��mR«p rvmR�RnrvnR;nR�Rmn��9 Q m O O J a 0 S z z ry n N �= 'd o9 0000000 11 f O yS2 W � W O ' N % b U' 2 pp d s � 0 N 5. 1 f ' N O 1 p y i m o g, H 5 N S uu au a wp ZO ?O Y rc W�o w�4PP 9w..P. -„xxx LL. z p 2 N i. w 0" ot8 f.r N OX 2x— ow Pw � ppS p-pySy 2 i0 x. L{0A 00 �ryn�� noP nn nn NNN�NNNnVI I'I mIV IV�� ��ImV .j- rvbOnN .mOO,nnnPnmmmOnn000 n e'IOC� �WPOiN IV 11 li `C lFrynn N�VM 6� 3o i �2r Z WSJ N P NOD' ) F n ObP�1� �O, M,�n�NN NN^^^^n N,NNW g0q0t0tVV!e aOPIN`I 1�1 �«n�nO�NIGV OIF"�rN6b� <ym -� w�6n mma�pp mm �NNfei lnl ryN�n`I A (<V ��'11'��NrvNrvNrvNNn��'1� 6 Q �l� N COCOO CGOOOOOOGCGGCOOCCO00� J� NN wU�N w w w ,�$ N LL �Z nN �OOnnnPn V,nmennOOm,PnOP nrvNod� �re6N�maim nrvein m�: ei rinN Nm m �LL U��_ nNN _eOO,n nnPnmPmPmmOOmPnOP �aOiPNNnli al�ry'INNNb�n'' GK�' qq"pp N" bb ppNN pp �OVO . Pm,O=P,N..A�N�e(INOYO eOG..OGOCG.OP y[Z-1ym Z_5G- �nnNNn NNNN�< <�NNNVI<NnNN<�N< U nF4.Nimnm O.O..o'8'$$ 0.0.. o00060 6000006000o6000e6coo6c C c �b�nnOO�b.O my . N, P, n OmNrryN�N ICRPmIC �CmOm CCNmmmOY1N NYI�I�Y10 y�_ a'� b 6 v �PNP�rvP��� O�C�IVCCCC�CCCCCCOC� CC�CGG wW W 2 u 10 ter. H�n rvo-ePmPnNon�NPmmnnrry N ^^m'NmO0Y1000VODOiG V1 �ObaeNYl Yl Y101�YIC w� �n ����yy'44P OOn ON �pp�''ll Aryl �1rtrt <�tt�gmm b ry m0 ryryR �!1 i ,�,9y4R o =n.ryry'rt�"�yyl u�mmnarRnR�R�nm W nni�'Y'Y� q^(rvm<iry •R •i eryrrvnmP b S rN 44�xi nrry �� ��ryel eiNHHH06�er�lO�1�H��NAn^n c a i d N � oqq 'p� vQp oQ np aQ �QQ �QQ dqq N eee e e C E E E g c Sa k G W W W C C O O O C �_ n N O Z R n n n nnn n nmIV IV IVNNmn U^ N n N m O n n N \ n\ n n O lV ¢ O F y� 2 U N T v � Wf ��p n�mN fV�N NN ry NOS n p O p o 0 \\ O\ n O\ a V� •01 N N O n V r O r O. f C O O ...... N v `' Zg n w Via_ 6$$ S.SSS SS h N p X� 666 O C C G 66 N N V QQ� NIVmN NnN\N0NN01CIlGVNn�nJmlV Y1d IF IG YInNN�NOIV �fV��Cnnnn\lVC U0�a JNYI OIV _ IV Nn1V\fV9NNm�OIm\1•IN�9�Y1�NpI�mN nfVN�IV CIVJJOV10nnCi t•I IV IVG Q¢` a m NrinllRnE p qq pp qq ��OO yY�� 1V RNmOArA\p��m•110•,N�Iplmp$mlmin00n01n'1nmE�EN��ONO�R01 Cn1010$ a=p O N � O � C 0 0 0 0 0 OO O O O G C •- O N O O J C O C OO O C C G p C O O O O OO C C C G C IV O $.$$.$$$8 m� p Ot d 9 d Z� ��mffiffi�m U oc00000 6coodod6o600cd600000660000600006666o6600ccd6 00....0.00.....O.O.O..0066ddm ).Sn O O O O O O O NYI YI YI YI YI YI ry n m m p\ ............... O O O O O O O O O O O O O O O O ...... 'OO�m= NNNNNNN YI YI YI YI YI YI. N N N N N N N... NYl YI N 'OGCYIN W .-. ¢gym a_ d jz 55 O�VN J n LL \ I 5UC\ O Z _ ¢ J O O O O O O O N n m m p\ p O O O O O O O O p N n N O O O O O O O O O O O O O O O O O O O O O O p O DIM ....... ...... RY1 N ytI N Y� LLNmmENNN (n ry Y� p �•Nn\Nmnmp������O�m�RNNrynN gmNNRNImVRR��N•I�ER�m•I Ol if eplS m LLO 0000000 Z O NN NN N w mn � uX Oj' Ni ¢�OOOOOOO Z o�Nm\nmrmp Nn '^mNa m� 'Nn\Nmnmp�� � _ RN�"�NNNryNnRNN �innn$ai�$eni e�nS pm O I s Q� Eep � ww � [�n�• n c Z _ Eci �'A_An"q 00 F _ �J O � N N:mrv. w�PnNoo�m�NwNowoo�wpoN .YI YI �I��NN000Y1 IVNNN0�1 �I vi l•i\01C U �y ry a W2N Nm 0-ml•1 FmPF„-OFPN�:��?O Vf O�G {'yam OI•ImN�����N �C C1�11•I YI YI N NOS NN ao F NP m NO V^ 0 F OOyP�. tOO.OI y�y'�NN�y����NNN N,PO O, ry0ry0 00OP N01 ���t7�1�1��N0001h'^'F(O FP O� lV aD� s11••II 6 w pp �NN�O.11.1 NNN OI fV�l117�NNNNNNNNn��O'Im LL N N 000co 6c6c660c0e606oCoco 0oJ N,N N w Q ... Z'- Ww $$$ $ OX- NV' 000 0 JQ ONOONN ��NN�i•1 .OIf IVNO GI.1 l7 YIN�Nt�IP$ PD- PPw On^ O -- m N OO 0;3 ry WUo C� v` S^ W t10 m ryry qq pp pp pp pp NO�$m0 NYIP$$�O��FO�$mN dlm•I�NNNmhO!P, p 1�0� CI��fV 1� ��JIVN..N00000JCCGO0OJ00 p p pp Q p VP NNOON 00000000OF 1�1� 0000000mm00i IA pp y� ryN 1� VN1 YN1 y� �1O� yN� Y1(1� yN� yN�yN� y�(�jyN� y�y��j IN•111 t7 0 r N 0 A 0 0 0$ 0$ 0 m O P$ 0 P 0 P 0 0 0 m O O O G O O O O O O O O O V m O O O O Oo O O O O O O O O O ��F "^ OO�riYI YIOOFFOPO N001NNNNOOI�YIG W ^ 6 � O 1 .. O OO O J J O O O C O C C OOG C G O J 00,000 J W �N O LL Z yy�� pp ryry y� mhN� ��00drym . �0f�`110A����gOq YY1I O'^v. y�y��pmp NSS �I�NN m N 0 P$0N K� $�O ^OTC YIh000NNN0001��001 NNICONY11f11A000 pm �O 3 N�o'n - NN e� �i n C pm n N LL 1NV y�NmNNNNRN` 6� Na�yy �N � ryNN .GF 5S0mNN ��N ryN �ryryy {N{yyN yy�� ��Y �ONNNOm 41 N W HIV N{NryyNNN�NNCS_mP��/ YEN N NNNNi'G�C4�`00O000P4n m m Nfj:p'N lNV O O_�m 00 1' lVN OY-IN `NNNO �Opq 0 �n U I00 I•I ri C�17$ N �N\�Nl•5 11NNNNm660w M10•I O `S eimN Ox� E E 10 1 1 1 1 1 1 1 DESIGN OF STORM SEWERS a b 1 1 1 i 1 1 1 1 �- �-1,- -.�- � .. r . ' �, 1 1 1 1 1 i 1 A 1 1 N 1 1 I 1,2, 1 ISTORM DRAINIUDSEWER MODELING: The majority of the storm flows are conveyed north to the regional channel through four main storm drain systems. Due to the constraints of the elevation of the channel outfall and the conflicts with the existing telephone and electric duct banks, small, multiple elliptical pipes are required to avoid these utilities. The Rational Method was used to compute the flows at the inlet boxes, and the result was that small, multiple elliptical pipes are required. The multiple pipes are modeled in UDSEWER as an equivalent box drain. The box drain in the UDSEWER model has the equivalent area as the multiple pipes which are required. The height of the box is 14"- which is the inside height of the proposed elliptical pipe. The width of the box was calculated by dividing the total pipe area required for the given flows by the height ( h = 14"). The energy loss coefficient, Kb,was calculated with the equation: Kb = Ke (1-(A1/A2))2, where Kb = 0.5. A Kb< 0.05 was calculated so a Kb = 0.05 was used. I 1 I 11 I r THE SEAR -BROWN GROUP ' Project: Project No. By: Checked: Date: Sheet - of E W J W O a M M M N N- N N Oo(DO000 o O M O O O O o o o 6666660 O (n In O In N O In (O C O O N O O M N No ,6600606601 vn(DCl) Onn Cl) W n N n M 0 0 0 M W P.: W Q) O N N N O m •- n N 0 M (O M n n (D 00l OOn N 0M(D 0LOM (D � � W O O tD W O O O O O O O O N N V V <{ V R 7 0 0 66666666 �to. rnNNCo. U 4 ( � M Lo of o r- ., cn N cn M O O M O M N M O N O n (O 0 N M V � con a0 0 (OO CD 0 0 0 (= 0 0 � N N N N N N O n 0 0 M M I N(il or --co r'? O) o T N N N N N N N N �0NMv n(Dnmrn�l co Z w a pa w w J J wa O _j 2 � C/) M W —2 F- >a W Ow 22 Q Q' W W J 2 j N x W V W F V 2 J Q r ~ W a> J - U X 050 S Q Z Q J Q' W W a w a (n O C� rn a I 1. r r i� I I I 1 I --------------------------------------------- ----------------- ----------------------------- STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver ------------ Metro Denver Cities/Counties 8 UDFCD- Pool -Fund -Study ---------- -------------- --------___ USER:Kelvin Gingery.......................................................... ON DATA 03-22-1999 AT TIME 11:51:12 VERSION=12-29-1995 *** PROJECT TITLE :HP Building 4 *** RETURN PERIOD OF FLOOD IS 100 YEARS (Design flow hydrology not calculated using UDSEWER) *** SUMMARY OF HYDRAULICS AT MANHOLES ----------------------------------------- '------ MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS 1D NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 24.60 14.00 17.40 NO 90.00 24.60 21.20 17.41 OK 2.00 24.60 21.57 17.68 OK 3.00 22.10 21.10 18.35 OK 4.00 22.10 21.00 19.11 OK 5.00 9.10 21.73 19.90 OK 6.00 10.90 19.81 19.38 OK 7.00 5.20 19.81 19.70 OK 8.00 5.20 19.81 19.73 OK 9.00 9.10 21.73 20.12 OK 10.00 16.40 22.50 19.27 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: ------------------------------------------------------------------------------- THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH -- ID NO. -------------- ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 901.00 90.00 1.00 BOX ---------------------------------- 1.01 1.50 1.17 5.09 290.00 2.00 90.00 ROUND 31.66 33.00 33.00 0.00 32.00 3.00 2.00 ROUND 28.25 30.00 30.00 0.00 43.00 4.00 3.00 ROUND 28.25 30.00 30.00 0.00 510.00 5.00 10.00 ROUND 20.26 21.00 21.00 0.00 62.00 6.00 2.00 ROUND 21.68 24.00 21.00 0.00 76.00 7.00 6.00 ROUND 16.35 18.00 18.00 0.00 87.00 8.00 7.00 ROUND 16.35 18.00 18.00 0.00 95.00 9.00 5.00 ROUND 20.26 21.00 21.00 0.00 104.00 10.00 4.00 ROUND 25.38 27.00 27.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 901.0 24.6 21.6 1.01 4.80 0.90 5.38 4.13 0.84 V-OK 290.0 24.6 27.6 2.03 5.24 1.64 6.67 4.14 0.66 V-0K 32.0 22.1 26.0 1.77 5.95 1.59 6.69 4.50 0.82 V-OK 43.0 22.1 26.0 1.77 5.95 1.59 6.69 4.50 0.82 V-OK 510.0 9.1 10.0 1.30 4.73 1.12 5.61 3.78 0.74 V-OK 62.0 10.9 10.0 1.75 4.53 1.24 5.99 4.53 0.00 V-OK 76.0 5.2 6.7 0.99 4.21 0.88 4.85 2.94 0.80 V-OK �7 11 ' 87.0 5.2 6.7 0.99 4.21 0.88 4.85 2.94 0.80 V-OK 95.0 9.1 10.0 1.30 4.73 1.12 5.61 3.78 0.74 V-OK 104.0 16.4 19.4 1.59 5.47 1.41 6.26 4.12 0.80 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS -----------------------------.__.._..-----------....__._-------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ' ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM -.._'-------------'-----------__.'----------------------------__------ (FT) (FT) (FT) (FT) 901.00 290.00 0.27 0.27 14.67 15.02 14.46 14.66 5.36 3.80 -1.63 3.79 NO OK 32.00 0.40 15.76 15.02 2.84 4.05 OK 43.00 0.40 17.23 15.86 1.27 2.74 NO 510.00 0.40 18.56 17.68 1.42 3.07 NO 62.00 0.40 16.33 15.02 1.73 4.80 NO ' 76.00 0.41 16.57 16.43 1.74 1.88 NO 87.00 0.41 16.57 16.57 1.74 1.74 NO 95.00 0.40 18.56 18.56 1.42 1.42 NO 104.00 0.39 17.58 17.33 2.67 1.42 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ---------------------------- ------------__.__._------------------._..___._.---- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION --- _FEET '-'--------'-" FEET FEET ------------------" FEET FEET FEET ' 901.00 78.10 78.10 15.84 15.63 '-----'---- 17.41 ------------- 17.40 PRSS'ED - 290.00 133.60 0.00 17.77 17.41 17.68 17.41 SUBCR 32.00 185.90 185.90 18.26 17.52 18.35 17.68 PRSS'ED 43.00 343.70 0.00 19.73 18.36 19.11 18.35 SUBCR ' 510.00 220.70 0.00 20.31 19.43 19.90 19.27 SUBCR 62.00 327.80 327.80 18.08 16.77 19.38 17.68 PRSS'ED 76.00 34.50 34.50 18.07 17.93 19.70 19.38 PRSS'ED 87.00 0.10 0.10 18.07 18.07 19.73 19.70 PRSS'ED 95.00 0.10 0.00 20.31 20.31 20.12 19.90 SUBCR 104.00 63.63 0.00 19.83 19.58 19.27 19.11 SUBCR PRSS'ED=PRESSURED FLOW; *** SUMMARY OF ENERGY GRADIENT JUMP=POSSIBLE LINE HYDRAULIC ALONG JUMP; SUBCR=SUBCRITICAL SEWERS FLOW --------------------------"""""------------------""""'---------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID -------------------------------------------.._-..------------.______ NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT IO FT 901.0 90.00 17.67 290.0 2.00 17.96 0.27 0.27 1.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00 "'-------- 1.00 90.00 17.40 17.67 32.0 3.00 18.66 0.54 0.05 0.02 0.35 0.16 2.00 17.96 43.0 4.00 19.66 0.93 0.20 0.06 0.00 0.00 3.00 18.66 510.0 5.00 20.24 0.54 0.05 0.01 0.00 0.00 10.00 19.69 62.0 6.00 19.70 1.54 0.62 0.20 0.00 0.00 2.00 17.96 76.0 7.00 19.83 0.08 0.38 0.05 0.00 0.00 6.00 19.70 87.0 8.00 19.86 0.00 0.25 0.03 0.00 0.00 7.00 19.83 95.0 9.00 20.34 0.04 0.25 0.06 0.00 0.00 5.00 20.24 104.0 10.00 19.69 0.02 0.06 0.02 0.00 0.00 4.00 19.66 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP, FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THEVELOCITYHEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. wil L ' HP Building 4 profile A 2 15, 20 3, 2, 1 , .8 500,300 .2,Y 1 1 ' 1.35 , 28.5 10 .786 11 1, 14 , 0 1, 901 , 0 0 0 24.6 , 0 1, .5 , 0, 0 0 0 0 ' 90 , 21.2 901 , 1 290 0 0 0 24.6 , 0 1, .5 , 0, 0 0 0 0 2 , 21.57 290 , 2 , 62 32 0 0 24.6 0 1 .5 0 0 0 0 0 3, , 21.1 32 1 43 0 0 0 22.1 , 0 1 .5 0 0 0 0 0 4, 21 , 43 1, 104 0 0 0 22.1 , 0 1 .5 , 0 0 0 0 0 5, 21.73 510 1 95 0 0 0 9.1 0, 1 .5 0 0 0 0 0 6 , 19.81 62 , 1 76 , 0 , 0 , 0 10.9 , 0 1 , .5 0, 0, 0, 0, 0 7 , 19.81 76 1 87 , 0 , 0 , 0 5.2 0 1, .5 0 0 0 0 0 8 , 19.81 , 87 , 0 , 0 , 0 , 0 , 0 5.2 , 0 , 1 , .5 , 0 , 0 , 0 , 0 , 0 9 , 21.73 , 95 , 0 , 0 , 0 , 0 , 0 9.1 , 0, 1 .5 , 0, 0 0 0 0 10 22.5 104 1 510 0 0 0 16.4 0 1, .5 0, 0 0 0 0 10 901 78.1 .27 15.84 .013 1 0 2 1.17 5.09 ' 290 133.6 .27 17.77 .013 .05 0 1 33 0 32 185.9 .4 18.26 .013 .0 5, .35 1 30 0 43 343.7 .4 19.73 .013 .2 , 0, 1 3 0, 0 510 220.7 .4 20,31 .013 .05 0 1 21 0 62 327.8 .4 18.08 , , .013 .62 0 , , 1 21 0 76 34.5 .41 18.07 .013 .38 0 1 18 0 87, .1 .41 18.07 .013 .25 0 1 18 0 95 .1 .4 20.31 .013 .25 0 1 21 0 104 63.63 .39 , 19.83 , .013 .06 0 1 27 , 0 ' 1 18 0 95 .1 .4 20.31 , .013 , .25 0 1 21 0 104 63.63 .39 I 11 I I I IAA ' . THE SEAR -BROWN GROUP nn1 Project: Protect No. By: T� 1� Checked: Date: �{ \\� �. - n., Sheet of r I � ,'I r o 'n i � •� 131� 13 m1c q .1-fD (07 M m m 0(n Ow 000 N w ON N N NN 0u)00to 00w MMM O O In m In O O O 0 O In O O O O O O O O O O O O O O O O O O 0 0 N N N 0 0 0 N O N O 0 N O O O O O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O N In 0 to N N 0 0 In 0 0 0 O Un (n U) (n (n In 0 in In 0 N 0 m N 0 O M O M O M 0 N O N O N N N N O O m N M N I� N N m N N M N 0 0 m In m O O O m 0 m�- O O O O N In U) of (n In O O N M LL) m W, N N N N 0 0 0 O O O N 0 0 0 (D 0 C' V N C V' O O cj In 0 0 I- O OO 0 0 6 (n In W 0 0 W 6 0 0 6 m 0r-� I` 0 Ih Ih O O I.- M M V 0 0 0 0 0 D) N O O O O N O O CO O ClO OI O co (n N N <{ O O (-. Ih V� I-- V V 0 0 0 O (D (D M N N I� N N �n Ln N N M C' to 0 (� c- V V V, 0 I� h f\ �� h I` I` 'T (D 0 V 0 0 0 0 O O O V o o o o V t o o o 0 0 0 0 (n 0 O N N V m m O OOOOOOOOOOOOOOOOIn OOOO M M O V' V �.- O O O N V O N O O C) O 0) 0 O O O 00 O 0 O 1 D) CO O V O O O_ O O_ O O_ ^ (D O O CD0 0 0 0 0 0 _O O O 0 O0 0 CD (D m C7 0 0 0 6 0 0 0 0 O M 0 0 0 n 0 0 n 0 0 0 N M N 1 N N V 0 N R W 0 V 0 CO 0 N N M ',t (n 0 I- 0 N O N N^ h In W V' M Q) �_ N N N 0 N N 0mi N M V 0 0 c� a0 O O N M if7 0 r 0 0 N N N N N UO N N N co N M 0 CD C) 0 N N 0 0 0 0 0 0 0 0 0 0 V O O O O O O O O O O O O h IZ M M V V 0 co 0 0 0 N OD 00 0 if) 0 In lf7 0 MMNNNNtn (n (V N�O0O7� N NOO (C MM m V V N W O (l- I%. O O O O M M O 0 0 0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CDv, (D O O o 0 h rn (n (n In 0 co m m rn 0 0 0 c v, O CD In O O o 0 N f` O O N N N N N N N N N 0 06 CD CD 0 N N N N N N N N 0 0 N M V 0 m N m 0 01 N M 'IT 0 0f.- of 0 O N M a 0 0 I-- W M O act N X 2 w z w W w 3 a w m a�w U U w w 2 � aCl) LU N I Z J X d U 'vwz J — d F Z_ J Q Q H Z Q � O N > 7 N U' Z W Q OSU a wza LU (n J a:Da CL LU UJ ~ J W � 2 U F- THE SEAR -BROWN GROUP rProject: Nr `� �irl�l.�i',dlLll Project No. By: Z' Checked: Date: !' I^ " Sheet ofi qzi !%1✓ i i +-- — — 932 -i i to obs 1 z 2 Q Z) J 0 5 Z m W 0 0-0 2 Q U�LOCNN�(N MM NcO lu O O (o O r o t o O O O O O O O O O O O O Q O O O O O O O O O O O O O O O O O O Z 0 In In 00 LO In N LO N U) LO In O N ui N In In _ O O O M O O M N M N M N, M N M N N Q 00000 � 0.-0 000 ' 0 ' 00 W c o N (f 0 0O N O000 0 0 0012 N (O O N N O O7 O) (D (D O O M M ro In tf7 r!l ri(O(cr,r--r.r:rn �rnr-r.r--r�r�nr�r� U- r I r' r r r r r r r r r r r r r r T N_ O N (O r-- O O 0 LO O O O M 0 0 0 O O M O O N V R N O O O O O O O O 0 0 0 0 N N V O (o tfi Q) } O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J O O O O N MO 0 0 0 0 0 0 0 0 0 0 0 0 O CD_ J O N In O O M M M 0 O N N Q M M� N N � O O� !- W O) � 7 t` r.., V V Q 0 0 0 0 0 0 ' � O O N N O O O O O O F N N N, n —0 O 0 O M O (n V N O N O C p N M V V 0 N 0) , O O up) LO r, V 00 N" M T O O O) W 0 0 0 0 0 0 rnrn 000000000000000000 00 r- co co V f` r` P.- 0 0 0 v O to M co OC6 600^ ONNN MMM of 66 � � NN O rIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 'IT w 0 rn (n O (n rn rn o 0 N r` 6 o6 O O 66 O O O 6 6 0 0 6 6 66 �, N N, N N N N , , N N, , � N M V U( m r- W O N M V O CO n co m a� rT IL IL N a r • THE SEAR -BROWN GROUP Project: ��L� nJu�!! '.. Project No. BY: �G/� Checked: Date: < %9,c Sheet of �)l ID; I r lg2i 832 7' _67Z fo li c•�? �(3 Ak i�" e-rusrir�tr 8s� consd�a� (OTNC4. Q FLocJ TIC- IQ T� EX�S7�tJ is j � o IDAs�a zg n I:z N M M O M n N U) z lA a m i v W (7 z_ W 0 J --j LL ::) in a= �(ONNM CNNmw WNNI M V 'ITM N N N OOOLn0LnO0OOOOOOOO O O O N N N O N O 0 0 0 0 0 0 0 O O O O C O 0 0 0 0 0 0 0 0 0 0 O O In N O N O O N N N In N In O N N O O M N M O N M N N (O M N M N �: OOO � O � 60 1 6600 �0 V 0N0 WmvnN V v0LnU')Mu I NNLnO,ON0Or,N,c0OMM M lh O O V M V V 7 M M O 6 6 6 6 v� O N N V' v O in In In In O f� O In V, V w M r n O .- e- 0 O N V M N I N N N N N N O W M M O L n M M M 0 0 0 to I n O O I M W 0 0? M N n In n« Nr O O O to 0 O O Q Q O 6 6 6 6 O W N W .-: Oo0 Lo r�OV 0 0 O O OO 0)I (D D1 a0 O (O O O In O N O N 0 co � C CO O � 0 0 O � O � CV I N O N M N M O N It In mwo�mwaoo�o�o�o�wwaoOm OOOOOOOOOOOOOOOMMI W w M M Q) I N m 0) Itt V In O w0 0 0 c0 ^ ^ O iyj V �MM.-�Ovv OO O O h 000 W 000000 0 (000col O V r� r� 0 M 0 � N N O O, �, O 01 N I-_T wN OOOOOO W N N W 66 N N M V to CD co 0) N M O NCO^ I y 00 co 00 O c co W D 0 co co co co W a 0 z w W W � W � a Z W J oa W J W 7 O2 LL m O =a �W d� U a w W z = W J co a X D w W W rn 2 J = J> U N a} Cl) J a N Q H F- Z W � W J J � W U aX ao m a4 11 L - \J0gS\-7'-N-00i \ DpAlwag, \ Gdda-e.um\ cQrnb; Ined .ouf. 1 1 1 H 1J LEI - ------------------------------------------------------ STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study USER:Kelvin Gingery.......................................................... ON DATA 03-22-1999 AT TIME 12:56:58 VERSION=12-29-1995 *** PROJECT TITLE : *** RETURN PERIOD OF FLOOD IS 5 YEARS (Design flow hydrology not calculated using UDSEWER) *** SUMMARY OF HYDRAULICS AT MANHOLES -------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN ---------------------------- GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ------------------------------- MINUTES INCH/HR CFS FEET FEET 811.00 ----------------------------------------------- 4.80 18.16 18.18 NO 2.00 66.80 17.47 14.69 OK 3.00 40.80 17.67 15.01 OK 4.00 38.70 23.00 16.00 OK 5.00 33.40 23.00 17.28 OK 6.00 25.30 20.00 18.44 OK 7.00 24.30 20.00 19.43 OK 14.00 16.60 21.80 19.79 OK 18.00 13.40 21.00 20.08 OK 17.00 8.60 20.90 20.19 OK 15.00 5.60 20.31 20.57 NO 16.00 5.60 20.31 20.61 NO 19.00 2.80 18.00 17.71 OK 20.00 2.80 18.00 18.68 NO 23.00 6.20 21.00 16.90 OK 12.00 2.40 20.50 17.27 OK 13.00 2.40 20.50 17.25 OK 24.00 3.80 20.00 17.11 OK 25.00 3.80 20.00 17.80 OK 26.00 9.80 20.50 18.51 OK 10.00 5.30 20.50 19.42 OK 11.00 5.30 20.50 19.45 OK 29.00 8.50 18.00 19.63 NO 30.00 8.50 18.00 20.10 NO 8.00 2.70 19.73 19.91 NO 9.00 2.70 19.73 19.93 NO 21.00 0.50 21.40 20.32 OK 22.00 0.50 21.40 20.32 OK 92.00 13.70 19.60 16.75 OK 93.00 10.60 18.85 18.14 OK 94.00 10.60 20.10 18.57 OK 95.00 6.40 20.10 19.06 OK 96.00 2.70 19.50 19.48 OK 97.00 2.70 20.50 19.62 OK 98.00 2.70 20.50 19.64 OK 102.00 3.00 19.10 17.36 OK 103.00 3.00 19.10 17.42 OK 100.00 3.70 20.50 19.63 OK 101.00 3.70 20.50 19.72 OK 28.00 4.50 20.00 19.03 OK 27.00 4.50 20.00 18.98 OK 82.00 13.30 19.70 15.96 OK 83.00 13.30 18.70 17.80 OK 84.00 5.10 18.55 17.86 OK 85.00 4.90 20.39 17.87 OK 88.00 5.10 19.60 18.06 OK 888.00 5.20 18.10 18.21 NO 89.00 3.90 18.20 18.34 NO 801.00 3.90 18.20 18.26 NO 810.00 9.50 18.16 17.74 OK 812.00 4.80 18.16 18.21 NO as 813.00 3716.33 16.96 814.00 1532.74 16.96 802.00 803.00 1.00 104.00 105.00 106.00 107.00 108.00 109.00 OK MEANS WATER ELEVATION 1.40 18.00 1.40 18.00 66.80 12.00 5.00 20.10 6.40 20.10 1.50 19.90 1.50 19.90 2.30 19.00 2.30 19.00 IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS 17.86 17.86 18.32 18.33 14.89 19.34 19.15 19.26 19.27 19.43 19.43 NO NO NO NO N0 OK OK OK OK NO NO NOTE: THE GIVEN ---------------------------------------------------------------- FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ------------------------------------------------------------------------------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 21.00 2.00 1.00 BOX 0.92 1.00 1.17 13.21 32.00 3.00 2.00 ROUND 35.56 36.00 36.00 0.00 43.00 4.00 3.00 ROUND 34.86 36.00 36.00 0.00 54.00 5.00 4.00 ROUND 32.40 33.00 33.00 0.00 65.00 6.00 5.00 ROUND 29.72 30.00 33.00 0.00 76.00 7.00 6.00 ROUND 29.28 30.00 33.00 0.00 87.00 8.00 7.00 ROUND 12.84 18.00 15.00 0.00 98.00 9.00 8.00 ROUND 12.84 18.00 15.00 0.00 1026.00 10.00 26.00 ROUND 17.05 18.00 18.00 0.00 1110.00 11.00 10.00 ROUND 17.05 18.00 18.00 0.00 1223.00 12.00 23.00 ROUND 11.07 18.00 18.00 0.00 1312.00 13.00 12.00 ROUND 11.07 18.00 15.00 0.00 147.00 14.00 7.00 ROUND 25.38 27.00 27.00 0.00 1517.00 15.00 17.00 ROUND 17.82 18.00 18.00 0.00 1615.00 16.00 15.00 ROUND 17.82 18.00 18.00 0.00 1718.00 17.00 18.00 ROUND 20.93 24.00 24.00 0.00 1814.00 18.00 14.00 ROUND 24.72 27.00 27.00 0.00 193.00 19.00 3.00 ROUND 7.88 18.00 12.00 0.00 2019.00 20.00 19.00 ROUND 7.88 18.00 12.00 0.00 2117.00 21.00 17.00 ROUND 5.92 18.00 12.00 0.00 2221.00 22.00 21.00 ROUND 5.92 18.00 12.00 0.00 234.00 23.00 4.00 ROUND 15.80 18.00 18.00 0.00 2423.00 24.00 23.00 ROUND 9.52 18.00 15.00 0.00 2524.00 25.00 24.00 ROUND 9.52 18.00 15.00 0.00 265.00 26.00 5.00 ROUND 21.47 24.00 18.00 0.00 2726.00 27.00 26.00 ROUND 9.85 18.00 15.00 0.00 2827.00 28.00 27.00 ROUND 9.85 18.00 15.00 0.00 296.00 29.00 6.00 ROUND 14.73 18.00 18.00 0.00 3029.00 30.00 29.00 ROUND 14.73 18.00 18.00 0.00 921.00 92.00 2.00 ROUND 20.74 21.00 21.00 0.00 932.00 93.00 92.00 ROUND 24.91 27.00 21.00 0.00 943.00 94.00 93.00 ROUND 24.20 27.00 21.00 0.00 954.00 95.00 94.00 ROUND 20.03 21.00 21.00 0.00 965.00 104.00 105.00 ROUND 19.45 21.00 21.00 0.00 976.00 97.00 96.00 ROUND 10.02 18.00 15.00 0.00 987.00 98.00 97.00 ROUND 10.02 18.00 15.00 0.00 1009.00 100.00 94.00 ROUND 12.91 18.00 12.00 0.00 1011.00 101.00 100.00 ROUND 12.91 18.00 12.00 0.00 1029.00 102.00 92.00 ROUND 9.18 18.00 12.00 0.00 1031.00 103.00 102.00 ROUND 9.18 18.00 12.00 0.00 821.00 82.00 2.00 ROUND 20.10 21.00 36.00 0.00 832.00 83.00 82.00 ROUND 42.00 42.00 42.00 0.00 843.00 84.00 83.00 ROUND 42.00 42.00 42.00 0.00 854.00 85.00 84.00 ROUND 16.95 18.00 33.00 0.00 898.00 888.00 88.00 ROUND 15.58 18.00 21.00 0.00 899.00 89.00 888.00 ROUND 13.99 18.00 21.00 0.00 891.00 801.00 89.00 ROUND 13.99 18.00 15.00 0.00 882.00 802.00 888.00 ROUND 5.67 18.00 12.00 0.00 883.00 803.00 802.00 ROUND 5.67 18.00 12.00 0.00 870.00 810.00 83.00 ROUND 15.22 18.00 18.00 0.00 lJ 1 1 1 [1 871.00 811.00 810.00 ROUND 13.30 18.00 18.00 0.00 872.00 812.00 811.00 ROUND 13.30 18.00 18.00 0.00 874.00 813.00 84.00 ROUND 1.85 18.00 12.00 0.00 875.00 814.00 813.00 ROUND 1.85 18.00 12.00 0.00 887.00 88.00 85.00 ROUND 17.81 18.00 21.00 0.00 964.00 96.00 104.00 ROUND 15.44 18.00 21.00 0.00 995.00 105.00 95.00 ROUND 21.34 24.00 21.00 0.00 1065.00 106.00 105.00 ROUND 9.23 18.00 18.00 0.00 1067.00 107.00 106.00 ROUND 9.23 18.00 18.00 0.00 1084.00 108.00 104.00 ROUND 12.04 18.00 18.00 0.00 1098.00 109.00 108.00 ROUND 12.04 18.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------ 21.0 66.8 64.1 0.92 5.47 0.93 5.46 4.32 1.00 V-OK 32.0 40.8 42.3 2.37 6.81 2.12 7.62 5.77 0.77 V-OK 43.0 38.7 42.3 2.26 6.79 2.02 7.64 5.47 0.81 V-OK 54.0 33.4 35.2 2.14 6.74 1.95 7.43 5.62 0.81 V-OK 65.0 25.3 33.5 1.78 6.21 1.66 6.74 4.26 0.88 V-OK 76.0 24.3 33.5 1.73 6.15 1.63 6.64 4.09 0.89 V-OK 87.0 2.7 4.1 0.74 3.57 0.67 4.07 2.20 0.80 V-OK 98.0 2.7 4.1 0.74 3.57 0.67 4.07 2.20 0.80 V-OK 1026.0 5.3 6.1 1.07 3.91 0.88 4.89 3.00 0.69 V-OK 1110.0 5.3 6.1 1.07 3.91 0.88 4.89 3.00 0.69 V-OK 1223.0 2.4 8.8 0.54 4.24 0.61 3.58 1.36 1.19 V-OK 1312.0 2.4 5.4 0.58 4.28 0.63 3.84 1.96 1.12 V-OK 147.0 16.6 19.6 1.59 5.54 1.42 6.29 4.17 0.81 V-OK 1517.0 5.6 5.8 1.19 3.72 0.91 4.99 3.17 0.59 V-OK 1615.0 5.6 5.8 1.19 3.72 0.91 4.99 3.17 0.59 V-OK 1718.0 8.6 12.4 1.22 4.27 1.06 5.11 2.74 0.74 V-OK 1814.0 13.4 17.0 1.51 4.74 1.27 5.78 3.37 0.72 V-OK 193.0 2.8 8.6 0.39 9.79 0.71 4.71 3.57 3.19 V-OK 2019.0 2.8 8.6 0.39 9.79 0.71 4.71 3.57 3.19 V-OK 2117.0 0.5 3.3 0.26 3.03 0.30 2.48 0.64 1.23 V-OK 2221.0 0.5 3.3 0.26 3.03 0.30 2.48 0.64 1.23 V-OK 234.0 6.2 8.8 0.93 5.40 0.96 5.19 3.51 1.07 V-OK 2423.0 3.8 12.8 0.47 9.10 0.79 4.68 3.10 2.73 V-OK 2524.0 3.8 12.8 0.47 9.10 0.79 4.68 3.10 2.73 V-OK 265.0 9.8 6.1 1.50 5.55 1.21 6.44 5.55 0.00 V-OK 2726.0 4.5 13.9 0.49 10.09 0.89 4.84 3.67 2.94 V-OK 2827.0 4.5 13.9 0.49 10.09 0.89 4.84 3.67 2.94 V-OK 296.0 8.5 14.6 0.82 8.56 1.13 5.95 4.81 1.85 V-OK 3029.0 8.5 14.6 0.82 8.56 1.13 5.95 4.81 1.85 V-OK 921.0 13.7 14.2 1.38 6.73 1.38 6.75 5.70 0.99 V-OK 932.0 10.6 6.7 1.75 4.41 1.24 5.82 4.41 0.00 V-OK 943.0 10.6 7.3 1.75 4.41 1.24 5.82 4.41 0.00 V-OK 954.0 6.4 7.3 1.27 3.42 0.94 4.86 2.66 0.55 V-OK 965.0 5.0 6.2 1.20 2.85 0.85 4.29 2.08 0.48 V-LOW 976.0 2.7 7.9 0.50 5.85 0.67 4.07 2.20 1.68 V-OK 987.0 2.7 7.9 0.50 5.85 0.67 4.07 2.20 1.68 V-OK 1009.0 3.7 3.1 1.00 4.71 0.82 5.38 4.71 0.00 V-OK 1011.0 3.7 3.1 1.00 4.71 0.82 5.38 4.71 0.00 V-OK 1029.0 3.0 6.2 0.49 7.79 0.74 4.79 3.82 2.21 V-OK 1031.0 3.0 6.2 0.49 7.79 0.74 4.79 3.82 2.21 V-OK 821.0 13.3 63.1 0.94 7.07 1.20 5.02 1.88 1.51 V-OK 832.0 13.3 13.3 3.50 1.38 1.17 4.73 1.38 0.00 V-LOW 843.0 5.1 5.1 3.50 0.53 0.76 3.31 0.53 0.00 V-LOW 854.0 4.9 29.0 0.76 3.64 0.77 3.59 0.82 0.87 V-OK 898.0 5.2 11.6 0.82 4.68 0.87 4.38 2.16 1.03 V-OK 899.0 3.9 11.6 0.70 4.34 0.74 4.06 1.62 1.06 V-OK 891.0 3.9 4.7 0.87 4.29 0.80 4.73 3.18 0.85 V-OK o I 1 11 I 882.0 1.4 10.4 0.25 9.20 0.51 3.47 1.78 3.86 V-OK 883.0 1.4 10.4 0.25 9.20 0.51 3.47 1.78 3.86 V-OK 870.0 9.5 14.9 0.87 8.94 1.19 6.32 5.38 1.86 V-OK 871.0 4.8 10.8 0.70 5.92 0.84 4.69 2.72 1.42 V-OK 872.0 4.8 10.8 0.70 5.92 0.84 4.69 2.72 1.42 V-OK . 874.0 0.0 4.4 0.06 1.60 0.10 0.73 0.04 1.42 V-LOW 875.0 0.0 4.4 0.06 1.60 0.10 0.73 0.04 1.42 V-LOW 887.0 5.1 7.9 1.02 3.51 0.86 4.34 2.12 0.67 V-OK 964.0 2.7 6.2 0.81 2.47 0.61 3.59 1.12 0.55 V-LOW 995.0 6.4 6.2 1.75 2.66 0.94 4.86 2.66 0.00 V-LOW 1065.0 1.5 8.9 0.42 3.76 0.49 2.99 0.85 1.21 V-OK 1067.0 1.5 8.9 0.42 3.76 0.49 2.99 0.85 1.21 V-OK 1084.0 2.3 6.7 0.60 3.45 0.60 3.51 1.30 0.90 V-OK 1098.0 2.3 6.7 0.60 3.45 0.60 3.51 1.30 0.90 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS SEWER SLOPE ---------------------------------- INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ---------------------------------------------------------------- . % (FT) (FT) (FT) (FT) 21.00 0.30 12.07 11.99 4.23 -1.16 NO 32.00 0.40 12.39 12.24 2.28 2.23 OK 43.00 0.40 13.53 12.49 6.47 2.18 OK 54.00 0.44 14.21 13.61 6.04 6.64 OK 65.00 0.40 15.21 14.30 2.04 5.95 OK 76.00 0.40 16.44 15.26 0.81 1.99 NO 87.00 0.40 17.00 16.45 1.48 2.30 NO 98.00 0.40 17.00 17.00 1.48 1.48 NO 1026.00 0.34 14.70 14.54 4.30 4.46 OK 1110.00 0.34 14.70 14.70 4.30 4.30 OK 1223.00 0.70 14.40 14.06 4.60 5.44 OK 1312.00 0.70 14.40 14.40 4.85 4.85 OK 147.00 0.40 16.71 16.45 2.84 1.30 NO 1517.00 0.30 17.41 17.09 1.40 2.31 NO 1615.00 0.30 17.41 17.41 1.40 1.40 NO 1718.00 0.30 17.09 17.02 1.81 1.98 NO 1814.00 0.30 17.02 16.71 1.73 2.84 NO 193.00 5.81 17.00 14.50 0.00 2.17 NO 2019.00 5.81 17.00 16.99 0.00 0.01 NO 2117.00 0.85 17.60 16.79 2.80 3.11 OK 2221.00 0.85 17.60 17.60 2.80 2.80 OK 234.00 0.70 14.32 13.85 5.18 7.65 OK 2423.00 3.92 16.20 14.32 2.55 5.43 OK 2524.00 3.92 16.20 16.20 2.55 2.55 OK 265.00 0.34 14.78 14.55 4.22 6.95 OK 2726.00 4.58 16.20 14.78 2.55 4.47 OK 2827.00 4.58 16.20 16.20 2.55 2.55 OK 296.00 1.91 18.50 17.26 -2.00 1.24 NO 3029.00 1.91 18.50 18.50 -2.00 -2.00 NO 921.00 0.80 14.90 12.52 2.95 3.20 OK 932.00 0.18 15.22 14.89 1.88 2.96 NO 943.00 0.21 15.46 15.31 2.89 1.79 NO 954.00 0.21 15.47 15.46 2.88 2.89 OK 965.00 0.15 15.63 15.54 2.72 2.81 OK 976.00 1.50 16.65 15.79 2.60 2.46 OK 987.00 1.50 16.65 16.65 2.60 2.60 OK 1009.00 0.73 16.65 16.21 2.85 2.89 OK 1011.00 0.73 16.65 16.65 2.85 2.85 OK 1029.00 2.97 16.00 14.90 2.10 3.70 OK 1031.00 2.97 16.00 16.00 2.10 2.10 OK 821.00 0.89 14.76 12.10 1.94 2.37 NO 832.00 -0.93 13.08 14.28 2.12 1.92 NO 843.00 -0.93 12.50 13.09 2.55 2.11 OK 854.00 0.30 11.44 11.20 6.20 4.60 OK 898.00 0.53 12.49 12.24 3.86 5.61 OK 899.00 0.53 12.82 12.49 3.63 3.86 OK 891.00 0.53 12.82 12.82 4.13 4.13 OK 882.00 8.40 12.74 11.48 4.26 5.62 OK 883.00 8.40 12.74 12.73 4.26 4.27 OK N 0 1 11 I 1 1 1 1] 1 870.00 2.00 14.60 14.40 2.06 2.80 OK 871.00 1.05 15.15 14.85 1.51 1.81 NO 872.00 1.05 15.15 15.15 1.51 1.51 NO 874.00 1.50 14.95 13.75 1.01 3.80 NO 875.00 1.50 14.95 14.95 1.01 1.01 NO 887.00 0.25 12.14 11.69 5.71 6.95 OK 964.00 0.15 15.80 15.63 1.95 2.72 NO 995.00 0.15 15.55 15.48 2.80 2.87 OK 1065.00 0.72 16.00 15.79 2.40 2.81 OK 1067.00 0.72 16.00 16.00 2.40 2.40 OK 1084.00 0.41 16.00 15.88 1.50 2.72 NO 1098.00 0.41 16.00 16.00 1.50 1.50 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS '---------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 21.00 26.60 26.60 13.24 13.16 14.69 14.89 PRSSIED 32.00 38.00 0.00 15.39 15.24 15.01 14.69 SUBCR 43.00 259.70 0.00 16.53 15.49 16.00 15.01 SUBCR 54.00 136.92 136.92 16.96 16.36 17.28 16.00 PRSSIED 65.00 226.34 226.34 17.96 17.05 18.44 17.28 PRSSIED 76.00 296.00 296.00 19.19 18.01 19.43 18.44 PRSSIED 87.00 137.42 137.42 18.25 17.70 19.91 19.43 PRSSIED 98.00 0.10 0.10 18.25 18.25 19.93 19.91 PRSSIED 1026.00 48.00 48.00 16.20 16.04 19.42 18.51 PRSSIED 1110.00 0.10 0.10 16.20 16.20 19.45 19.42 PRSSIED 1223.00 48.00 48.00 15.90 15.56 17.27 16.90 PRSSIED 1312.00 0.10 0.10 15.65 15.65 17.25 17.27 PRSSIED 147.00 66.13 66.13 18.96 18.70 19.79 19.43 PRSSIED 1517.00 108.00 108.00 18.91 18.59 20.57 20.19 PRSSIED 1615.00 0.10 0.10 18.91 18.91 20.61 20.57 PRSSIED 1718.00 24.79 24.79 19.09 19.02 20.19 20.08 PRSSIED 1814.00 104.64 104.64 19.27 18.96 20.08 19.79 PRSSIED 193.00 43.00 0.00 18.00 15.50 17.71 15.01 JUMP 2019.00 0.10 0.00 18.00 17.99 18.68 17.71 JUMP 2117.00 95.00 95.00 18.60 17.79 20.32 20.19 PRSSIED 2221.00 0.10 0.10 18.60 18.60 20.32 20.32 PRSSIED 234.00 67.00 67.00 15.82 15.35 16.90 16.00 PRSSIED 2423.00 48.00 39.38 17.45 15.57 17.11 16.90 JUMP 2524.00 0.10 0.00 17.45 17.45 17.80 17.11 JUMP 265.00 67.00 67.00 16.28 16.05 18.51 17.28 PRSSIED 2726.00 31.00 31.00 17.45 16.03 18.98 18.51 PRSSIED 2827.00 0.10 0.10 17.45 17.45 19.03 18.98 PRSSIED 296.00 65.00 0.00 20.00 18.76 19.63 18.44 JUMP 3029.00 0.10 0.00 20.00 20.00 20.10 19.63 JUMP 921.00 297.40 297.40 16.65 14.27 16.75 14.69 PRSSIED 932.00 181.60 181.60 16.97 16.64 18.14 16.75 PRSSIED 943.00 71.60 71.60 17.21 17.06 18.57 18.14 PRSSIED 954.00 7.00 7.00 17.22 17.21 19.06 18.57 PRSSIED 965.00 57.00 57.00 17.38 17.29 19.34 19.15 PRSSIED 976.00 57.10 57.10 17.90 17.04 19.62 19.48 PRSSIED 987.00 0.10 0.10 17.90 17.90 19.64 19.62 PRSSIED 1009.00 60.50 60.50 17.65 17.21 19.63 18.57 PRSSIED 1011.00 0.10 0.10 17.65 17.65 19.72 19.63 PRSSIED 1029.00 37.00 37.00 17.00 15.90 17.36 16.75 PRSSIED 1031.00 0.10 0.10 17.00 17.00 17.42 17.36 PRSSIED 821.00 299.06 0.00 17.76 15.10 15.96 14.69 JUMP 832.00 129.00 129.00 16.58 17.78 17.80 15.96 PRSSIED 843.00 62.97 62.97 16.00 16.59 17.86 17.80 PRSSIED 854.00 80.85 80.85 14.19 13.95 17.87 17.86 PRSSIED 898.00 47.00 47.00 14.24 13.99 18.21 18.06 PRSSIED 899.00 61.64 61.64 14.57 14.24 18.34 18.21 PRSSIED 891.00 0.10 0.10 14.07 14.07 18.26 18.34 PRSSIED 882.00 15.00 15.00 13.74 12.48 18.32 18.21 PRSSIED 883.00 0.10 0.10 13.74 13.73 18.33 18.32 PRSSIED d�9 I 11 I i I I I I i [1 I i I I I I I 870.00 10.00 10.00 16.10 15.90 17.74 17.80 PRSS'ED 871.00 28.50 28.50 16.65 16.35 18.18 17.74 PRSS'ED 872.00 0.10 0.10 16.65 16.65 18.21 18.18 PRSS'ED 874.00 80.19 80.19 15.95 14.75 17.86 17.86 PRSS'ED 875.00 0.10 0.10 15.95 15.95 17.86 17.86 PRSS'ED 887.00 179.87 179.87 13.89 13.44 18.06 17.87 PRSS'ED 964.00 112.00 112.00 17.55 17.38 19.48 19.34 PRSS'ED 995.00 49.00 49.00 17.30 17.23 19.15 19.06 PRSS'ED 1065.00 29.00 29.00 17.50 17.29 19.26 19.15 PRSS'ED 1067.00 0.10 0.10 17.50 17.50 19.27 19.26 PRSS'ED 1084.00 29.00 29.00 17.50 17.38 19.43 19.34 PRSS'ED 1098.00 0.10 0.10 17.50 17.50 19.43 19.43 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 21.0 2.00 14.98 0.09 1.00 0.00 0.00 0.00 1.00 14.89 32.0 3.00 15.71 0.53 0.38 0.20 0.00 0.00 2.00 14.98 43.0 4.00 16.71 0.82 0.05 0.02 0.75 0.17 3.00 15.71 54.0 5.00 17.78 0.54 0.36 0.18 0.25 0.34 4.00 16.71 65.0 6.00 18.72 0.51 0.05 0.01 0.25 0.42 5.00 17.78 76.0 7.00 19.69 0.62 1.32 0.34 0.00 0.00 6.00 18.72 87.0 8.00 19.99 0.24 0.82 0.06 0.00 0.00 7.00 19.69 98.0 9.00 20.01 0.00 0.25 0.02 0.00 0.00 8.00 19.99 1026.0 10.00 19.56 0.12 0.05 0.01 0.25 0.44 26.00 18.99 1110.0 11.00 19.59 0.00 0.25 0.03 0.00 0.00 10.00 19.56 1223.0 12.00 17.30 0.02 0.00 0.00 0.25 0.18 23.00 17.09 1312.0 13.00 17.31 0.00 0.25 0.01 0.00 0.00 12.00 17.30 147.0 14.00 20.06 0.19 0.20 0.05 0.50 0.12 7.00 19.69 1517.0 15.00 20.72 0.31 0.20 0.03 0.20 0.09 17.00 20.30 1615.0 16.00 20.76 0.00 0.25 0.04 0.00 0.00 15.00 20.72 1718.0 17.00 20.30 0.04 0.05 0.01 0.00 0.00 18.00 20.26 1814.0 18.00 20.26 0.19 0.05 0.01 0.00 0.00 14.00 20.06 193.0 19.00 18.05 2.16 0.95 0.19 0.00 0.00 3.00 15.71 2019.0 20.00 18.88 0.77 0.25 0.05 0.00 0.00 19.00 18.05 2117.0 21.00 20.32 0.02 0.35 0.00 0.00 0.00 17.00 20.30 2221.0 22.00 20.32 0.00 0.25 0.00 0.00 0.00 21.00 20.32 234.0 23.00 17.09 0.23 0.75 0.14 0.00 0.00 4.00 16.71 2423.0 24.00 17.26 0.14 0.25 0.04 0.00 0.00 23.00 17.09 2524.0 25.00 17.95 0.65 0.25 0.04 0.00 0.00 24.00 17.26 265.0 26.00 18.99 0.58 1.32 0.63 0.00 0.00 5.00 17.78 2726.0 27.00 19.19 0.15 0.25 0.05 0.00 0.00 26.00 18.99 2827.0 28.00 19.24 0.00 0.25 0.05 0.00 0.00 27.00 19.19 296.0 29.00 20.18 0.98 1.32 0.47 0.00 0.00 6.00 18.72 3029.0 30.00 20.46 0.19 0.25 0.09 0.00 0.00 29.00 20.18 921.0 92.00 17.25 2.21 0.05 0.03 0.50 0.04 2.00 14.98 932.0 93.00 18.44 0.81 0.05 0.02 0.45 0.37 92.00 17.25 943.0 94.00 18.87 0.32 0.38 0.11 0.00 0.00 93.00 18.44 954.0 95.00 19.17 0.01 0.05 0.01 0.25 0.27 94.00 18.87 965.0 104.00 19.41 0.06 0.00 0.00 0.25 0.09 105.00 19.26 976.0 97.00 19.70 0.10 1.32 0.10 0.00 0.00 96.00 19.50 987.0 98.00 19.72 0.00 0.25 0.02 0.00 0.00 97.00 19.70 1009.0 100.00 19.98 0.65 1.32 0.45 0.00 0.00 94.00 18.87 1011.0 101.00 20.06 0.00 0.25 0.09 0.00 0.00 100.00 19.98 1029.0 102.00 17.59 0.26 0.35 0.08 0.00 0.00 92.00 17.25 1031.0 103.00 17.65 0.00 0.25 0.06 0.00 0.00 102.00 17.59 821.0 82.00 16.35 1.38 0.05 0.00 0.00 0.00 2.00 14.98 832.0 83.00 17.83 1.48 0.05 0.00 0.00 0.00 82.00 16.35 843.0 84.00 17.86 0.00 0.05 0.00 0.25 0.03 83.00 17.83 854.0 85.00 17.88 0.01 1.32 0.01 0.25 0.00 84.00 17.86 898.0 888.00 18.28 0.05 1.32 0.10 0.00 0.00 88.00 18.13 899.0 89.00 18.38 0.04 0.05 0.00 0.25 0.06 888.00 18.28 891.0 801.00 18.42 0.00 0.25 0.04 0.00 0.00 89.00 18.38 882.0 802.00 18.37 0.02 1.32 0.07 0.00 0.00 888.00 18.28 883.0 803.00 18.38 0.00 0.25 0.01 0.00 0.00 802.00 18.37 I 3o ' 870.0 810.00 18.19 0.08 0.62 0.28 0.00 0.00 83.00 17.83 871.0 811.00 18.29 0.06 0.38 0.04 0.00 0.00 810.00 18.19 872.0 812.00 18.32 0.00 0.25 0.03 0.00 0.00 811.00 18.29 874.0 813.00 17.86 0.00 1.32 0.00 0.00 0.00 84.00 17.86 875.0 814.00 17.86 0.00 0.25 0.00 0.00 0.00 813.00 17.86 887.0 88.00 18.13 0.19 0.20 0.01 0.25 0.05 85.00 17.88 964.0 96.00 19.50 0.03 0.05 0.00 0.25 0.06 104.00 19.41 995.0 105.00 19.26 0.08 0.10 0.01 0.00 0.00 95.00 19.17 ' 1065.0 106.00 19.28 0.01 1.32 0.01 0.00 0.00 105.00 19.26 1067.0 107.00 19.28 0.00 0.25 0.00 0.00 0.00 106.00 19.28 1084.0 108.00 19.45 0.01 1.32 0.03 0.00 0.00 104.00 19.41 1098.0 109.00 19.46 0.00 0.25 0.01 0.00 0.00 108.00 19.45 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE ' NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 1 Ll 7 1 1 31 I 1 1 u r I I 2, 18,20,3,2, 1 ,.8,500,300,.2,Y 1,5 1.35 , 28.5 , 10, .786 62 811 , 18.16,871 , 1 ,872,0,0,0 4.8,0,.5,.5,0,0,0,0,0 2 , 17.47 , 21 , 3 , 32 , 921 , 821 , 0 66.8,0,.5,.5,0,0,0,0,0 3, 17.67,32,2,43, 193,0,0 40.8,0,.5,.5,0,0,0,0,0 4,23,43,2,54,234,0,0 38.7,0,.5,.5,0,0,0,0,0 5 , 23 , 54 , 2 , 65 , 265 , 0, 0 33.4,0,.5,.5,0,0,0,0,0 6,20,65,2,76,296,0,0 25.3,0,.5,.5,0,0,0,0,0 7,20,76,2, 147,87,0,0 24.3,0,.5,.5,0,0,0,0,0 14,21.8, 147, 1 , 1814,0,0,0 16.6,0,.5,.5,0,0,0,0,0 18,21,1814,1,1718,0,0,0 13.4,0,.5,.5,0,0,0,0,0 17,20.9, 1718,2, 1517,2117,0,0 8.6,0,.5,.5,0,0,0,0,0 15,20.31 , 1517, 1 , 1615,0,0,0 5.6,0,.5,.5,0,0,0,0,0 16,20.31 , 1615 , 0 , 0 , 0 , 0 , 0 5.6,0,.5,.5,0,0,0,0,0 19, 18, 193, 1 ,2019,0,0,0 2.8,0,.5,.5,0,0,0,0,0 20, 18,2019,0,0,0,0,0 2.8,0,.5,.5,0,0,0,0,0 23,21,234,2, 1223 , 2423 , 0 , 0 6.2,0,.5,.5,0,0,0,0,0 12,20.5, 1223, 1 , 1312,0,0,0 2.4,0,.5,.5,0,0,0,0,0 13,20.5, 1312,0,0,0,0,0 2.4,0,.5,.5,0,0,0,0,0 24,20,2423, 1 ,2524,0,0,0 3.8,0,.5,.5,0,0,0,0,0 25 , 20 , 2524 , 0 , 0 , 0 , 0, 0 3.8,0,.5,.5,0,0,0,0,0 26 , 20.5 , 265 , 2 , 1026 , 2726, 0, 0 9.8,0,.5,.5,0,0,0,0,0 GLdd►endL�L`�\Ccmbirca. daf 3Z I I I L! 10,20.5, 1026, 1, 1110,0,0,0 5.3,0,.5,.5,0,0,0,0,0 11 ,20.5, 1110,0,0,0,0,0 5.3,0,.5,.5,0,0,0,0,0 29, 18,296, 1 ,3029,0,0,0 8.5,0,.5,.5,0,0,0,0,0 30,18,3029,0,0,0,0,0 8.5,0,.5,.5,0,0,0,0,0 8, 19.73,87, 1 ,98,0,0,0 2.7,0,.5,.5,0,0,0,0,0 9, 19.73 , 98 , 0 , 0 , 0 , 0 , 0 2.7,0,.5,.5,0,0,0,0,0 21,21.4,2117,1,2221,0,0,0 .5,0,.5,.5,0,0,0,0,0 22,21.4,2221 ,0,0,0,0,0 .5,0,.5,.5,0,0,0,0,0 92 , 19.6 , 921 , 2 , 932, 1029, 0, 0 13.7,0,.5,.5,0,0,0,0,0 93, 18.85,932, 1,943,0,0,0 10.6,0,.5,.5,0,0,0,0,0 94,20.1 ,943,2,954, 1009,0,0 10.6,0,.5,.5,0,0,0,0,0 95 , 20.1 , 954, 1 , 995 , 0, 0, 0 6.4,0,.5,.5,0,0,0,0,0 96, 19.5,964, 1,976,0,0,0 2.7,0,.5,.5,0,0,0,0,0 97,20.5,976, 1,987,0,0,0 2.7,0,.5,.5,0,0,0,0,0 98,20.5,987,0,0,0,0,0 2.7,0,.5,.5,0,0,0,0,0 102, 19.1 , 1029, 1 , 1031 ,0,0,0 3,0,.5,.5,0,0,0,0,0 103,19.1,1031,0,0,0,0,0 3,0,.5,.5,0,0,0,0,0 100,20.5, 1009, 1, 1011,0,0,0 3.7,0,.5,.5,0,0,0,0,0 101,20.5,1011,0,0,0,0,0 3.7,0,.5,.5,0,0,0,0,0 28,20,2827,0,0,0,0,0 4.5,0,.5,.5,0,0,0,0,0 27 , 20 , 2726, 1 , 2827 , 0, 0, 0 4.5,0,.5,.5,0,0,0,0,0 82, 19.7, 821 , 1 , 832,0,0,0 13.3,0,.5,.5,0,0,0,0,0 83, 18.7 , 832 , 2 , 843 , 870 , 0 , 0 13.3,0,.5,.5,0,0,0,0,0 33 I r 1 1 C 1 84,18.55,843,2,854,874,0,0 5.1,0,.5,.5,0,0,0,0,0 85,20.39,854, 1,887,0,0,0 4.9,0,.5,.5,0,0,0,0,0 88, 19.6,887, 1 ,898,0,0,0 5.1,0,.5,.5,0,0,0,0,0 888,18.1,898,2,899,882,0,0 5.2,0,.5,.5,0,0,0,0,0 89,18.2,899,1,891,0,0,0 3.9,0,.5,.5,0,0,0,0,0 801 , 18.2,891 ,0,0,0,0,0 3.9,0,.5,.5,0,0,0,0,0 810,18.16,870,1,871,0,0,0 9.5,0,.5,.5,0,0,0,0,0 812, 18.16,872,0,0,0,0,0 4.8,0,.5,.5,0,0,0,0,0 813, 16.96,874, 1 ,875,0,0,0 .03,0,.5,.5,0,0,0,0,0 814, 16.96,875,0,0,0,0,0 .03,0,.5,.5,0,0,0,0,0 802, 18,882, 1 ,883,0,0,0 1.4,0,.5,.5,0,0,0,0,0 803, 18,883,0,0,0,0,0 1.4,0,.5,.5,0,0,0,0,0 1,12,0,1,21,0,0,0 66.8,0,.5,.5,0,0,0,0,0 104, 20.1 , 965 , 2 , 1084,964,0,0 5,0,1,.5,0,0,0,0,0 105,20.1 ,995,2, 1065,965,0,0 6.4,0, 1,.5,0,0,0,0,0 106,19.9,1065,1,1067,0,0,0 1.5,0,1,.5,0,0,0,0,0 107, 19.9, 1067,0,0,0,0,0 1.5,0, 1 ,.5,0,0,0,0,0 108, 19, 1084, 1 , 1098,0,0,0 2.3,0, 1 ,.5,0,0,0,0,0 109, 19, 1098,0,0,0,0,0 2.3,0, 1 ,.5,0,0,0,0,0 61 21,26.6,.3,13.24,.013,1,0,2,1.17,13.21 32,381.4,15.39,.013,.38,0,1,36,0 43,259.7,.4, 16.53,.013,.05,.75, 1,36,0 54,136.92,.44,16.96,.013,.36,.25,1,33,0 65,226.34,.4, 17.96,.013,.05,.25, 1 ,33,0 76,296,.4,19.19,.013,1.321,0,1,33,0 87,137.42,.4,18.25,.013,.82,0,1,15,0 3q- I 1 IJ 98,.1 ,.4, 18.25,.013,.25,0, 1 , 15,0 1026,48,.34,16.2,.013,.05,.25,1,18,0 1110,.1 ,.34, 16.2,.013,.25,0, 1 , 18,0 1223,48,.7, 15.9,.013,0,.25, 1 , 18,0 1312,.1,.7,15.65,.013,.25,0,1,15,0 147,66.13,.4,18.96,.013,.2,.5,1,27,0 1517, 108,.3, 18.91 ,.013,.2,.2, 1 , 18,0 1615,.1,.3,18.91,.013,.25,0,1,18,0 1718,24.79,.3, 19.09,.013,.05,0, 1,24,0 1814, 104.64,.3, 19.27,.013,.05,0, 1 ,27,0 193,43,5.81,18,.013,.95,0,1,12,0 2019,.1,5.81,18,.013,.25,0,1,12,0 2117,95,.85, 18.6,.013,.35,0, 1 , 12,0 2221 ,.1 ,.85, 18.6,.013,.25,0, 1 , 12,0 234,67,.7, 15.82,.013,.75,0, 1 , 18,0 2423,48,3.92, 17.45,.013,.25,0, 1, 15,0 2524,.1,3.92, 17.45,.013,.25,0,1, 15,0 265,67,.34,16.28,.013,1.32,0,1,18,0 2726,31 ,4.58, 17.45,.013,.25,0, 1 , 15,0 2827,.1,4.58,17.45,.013,.25,0,1,15,0 296,65,1.91,20,.013,1.32,0,1,18,0 3029,.l , 1.91 ,20,.013,.25,0, 1 , 18,0 921 , 297.4, .8 , 16.65,.013,.05,.5,1,21,0 932, 181.6,.18, 16.97,.013,.05,.45, 1 ,21 ,0 943,71.6,.21,17.21,.013,.38,0,1,21,0 954,7,.21,17.22,.013,.05,.25,1,21,0 965,57,.15,17.38,.013,0,.25,1,21,0 976,57.1,1.5,17.9,.013,1.32,0,1,15,0 987,.1 , 1.5, 17.9,.013,.25,0, 1 , 15,0 1009,60.5,.73,17.65,.013,1.32,0,1,12,0 1011,.1,.73,17.65,.013,.25,0,1,12,0 1029,37,2.97, 17,.013,.35,0, 1, 12,0 1031 ,.1 ,2.97, 17,.013,.25,0, 1 , 12,0 821,299.06,.89,17.76,.013,.05,0,1,36,0 832,129,-.93,16.58,.013,.05,0,1,42,0 843,62.97,-.93, 16,.013,.05,.25, 1 ,42,0 854,80.85,.3, 14.19,.013, 1.32,.25, 1,33,0 898,47,.53, 14.24,.013, 1.32,0, 1 ,21,0 899,61.64,.53, 14.57,.013,.05,.25, 1,21,0 891 ,.l ,.53, 14.07,.013,.25,0, 1 , 15,0 882,15,8.4,13.74,.013,1.32,0,1,12,0 883,.1,8.4,13.74,.013,.25,0,1,12,0 870, 10,2, 16.1 ,.013,.62,0, 1 , 18,0 871,28.5,1.05,16.65,.013,.38,0,1,18,0 872,.1 , 1.05, 16.65,.013,.25,0, 1 , 18,0 874,80.19,1.5,15.95,.013,1.32,0,1,12,0 35 ' 875,.1,1.5,15.95,.013,.25,0,1,12,0 887, 179.87,.25, 13.89,.013,.2,.25, 1 ,21 ,0 964,112,.15,17.55,.013,.05,.25,1,21,0 995,49,.15,17.3,.013,.1,0,1,21,0 1065,29,.72, 17.5,.013, 1.32,0, 1 , 18,0 ' 1067,.1,.72,17.5,.013,.25,0,1,18,0 1084,29,.41 , 17.5,.013, 1.32,0, 1 , 18,0 1098,.1,.41,17.5,.013,.25,0,1,18,0 -1,18, 11 11 1 THE SEAR -BROWN GROUP Project: Project No. By: Checked: Date: Sheet of 5E NOTE C4 r),pe cod_ALa i60 GFj. Lj. Olc,SX VL OF G,,o C-,CS ire I .1 EXISTING 12 INCH PIPE CAPACITY Worksheet for Circular Channel Project Description Project File c:\haestad\fmw\hpbld4.fm2 Worksheet existing pipes Flow Element Circular Channel Method Manning's Formula Solve For Full Flow Capacity Input Data Mannings Coefficient 0.013 Channel Slope 0.003000 ft/ft Diameter 12.00 in Results ' Depth 1.00 ft Discharge 1.95 cfs Flow Area 0.79 ftz ' Wetted Perimeter 3.14 ft Top Width 0.00 ft Critical Depth 0.60 ft Percent Full 100.00 ' Critical Slope 0.006791 ft/ft Velocity 2.48 ft/s Velocity Head 0.10 ft ' Specific Energy FULL ft Froude Number FULL Maximum Discharge 2.10 cfs ' Full Flow Capacity 1.95 cfs Full Flow Slope 0.003000 ft/ft 1 02116198 04:14:13 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 38 FlowMaster v5.13 Page 1 of 1 4930 4926 4920 4915 4910 4905 pk EF CONSTRUCT AINUNK FENCE - - - - - - - - - - - - - - - - z - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 0 rA w Lu 9) 40 LF 4920 12, CmP - EXISTING GROUND -PROPOSED GRADE 4915 I 4910 in - VTDu V�vv '50" V' rye (q) 14 23 " RE See prof i te, below ,31 DT Ol 1-12 oo - 219+{ h S 0.432 I 4 -2-5- t O'j, - 3.Mft _EHI Nofe The sheet' is o, cv--out' SECTION 9+50 TO ike Sear -Brown Building 5 Oar'sshowing + I 6e re9ianal channel wctfev- 5urfqce prAile. ^Wk1Tt=1C1 IMM rt ICIUM rem CURVE RADIUS I I ENOTH I TANGENT CHORD I BEARING I DELTA I ZW.W 79,70' 40.19 7 0' '57' 1 1 01004 I CL4 1 2=o 4 9* 0.1 79.35' 1 5 81; YI 5-2 B-15-5e CL5 1 530.00�330,70�17 0.9 , a 37.0.� DOI on= Sam �MMMMM 40 L SEE THIS M= 0 10 25 w pw"w"n"09 - vac 0 SCALE IN FEET MACAW `CONSTRUCT CHAINLINK FENCE FN 89WIr E O+c FES FES 20' LOOP ROAD EXTENSION REFER M SHEET C-2.4 REFER To GRAMD PLANS FOR \-(9) 14"KWHERCP CONTOURS IN ROADWAY/PARKING LOT See profile below dt 274.� (hw r-S: 1� S O.Q% CALL tjT1UTY NOTPcATKN -I. 4 -2x- _2_2L i Dm 142ft CENTER OF COLORADO 1-800-922-1987 534-6700 SECMIN FT+50 Ir --, —,3.00 To City of Fort Collis UTH= PLAN A APPROVED: CHECKED BY: ... U. CHECKED BY: Stcrmvata ULM CHECKED Or. pub a Rem u CHECKED Or. CHECKED BY: _A — 29+00 28+00 27+00 26+00 25+00 24+00 23+00 224�0_21400 20+00 19+00 18+00 17+00 16+00 15+00 14+( 1 — RLB ROT DFS mambomth NY. REGIONAL CHANNEL (REACH 2) DRAWN DESONED CHECKED mizu c 26a HEWLETT-PACKARD COMP PLAN & PROFILE BUILDING 5 F-- L 1 1 1 1 1 k 1 1 1 1 1 1 DESIGN OF INLETS 1 i` I &\ ------------------------------------- .----------------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLOR -ADO .............................. ON DATE 02-16-1998 AT TIME 16:38:23 '*** PROJECT TITLE: HP BLD 4/100YR ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) 2.00 2.00 = STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 17.50 GUTTER FLOW DEPTH (ft) = 0.43 FLOW VELOCITY ON STREET (fps)= 2.43 FLOW CROSS SECTION AREA (sq ft)= 2.46 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.53 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.00 ' FLOW INTERCEPTED (cfs)= 6.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.00 FLOW INTERCEPTED (cfs)= 6.00 CARRY-OVER FLOW (cfs)= 0.00 I y1 1 q2 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED-BY-METRO DENVER CITIES/COUNTIES AND UD&FCD 1SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............... ... .. .. ON DATE 02-16-1998 AT TIME 16:37:04 i** PROJECT TITLE: HP BLD 4/100YR 1 1 1 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 2 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 17.13 GUTTER FLOW DEPTH (ft) = 0.42 FLOW VELOCITY ON STREET (fps)= 2.41 FLOW CROSS SECTION AREA (sq ft)= 2.37 GRATE CLOGGING FACTOR (1)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 9.47 (cfs)= 5.70 (cfs)= 5.70 (cfs)= 0.00 (cfs) = 5.70 (cfs) = 5.70 (cfs)= 0.00 �3 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------- ------------------------------------------- ------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON DATE 02-16-1998 AT TIME 16:42:29 '*** PROJECT TITLE: HP BLD 4/100YR ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 3 I 0 G 1 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE M) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 20.88 GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= 2.66 FLOW CROSS SECTION AREA (sq ft)= 3.43 GRATE CLOGGING FACTOR (1)= 50.00 CURB OPENNING CLOGGING FACTOR (%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW (cfs)= 9.10 (cfs)= 9.10 (cfs) = 0.00 (cfs) = 9.10 (cfs) = 9.10 (cfs) = 0.00 7 y3 I �y ------------------------------------------------------------------------------ ' UDINLET: INLET HYDRAULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------- - USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ............................. ON DATE 03-16-1998 AT TIME 08:34:32 *** PROJECT TITLE: HP Bld4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 4 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.60 STREET CROSS SLOPE (o) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: I I I WATER SPREAD ON STREET (ft) = 14.13 GUTTER FLOW DEPTH (ft) = 0.45 FLOW VELOCITY ON STREET (fps)= 2.58 FLOW CROSS SECTION AREA (sq ft)= 2.16 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR (o)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 19.43 (cfs)= 5.60 (cfs)= 5.60 (cfs)= 0.00 (cfs) = 5.60 (cfs)= 5.60 (cfs)= 0.00 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ---------- - - SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON DATE 07-27-1998 AT TIME 16:02:58 r*** PROJECT TITLE: HP Bldg 4 - Addendum *** CURB OPENING INLET HYDRAULICS AND SIZING: Ir�let- INLET ID NUMBER: 5 5- INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.44 GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 2.70 2.55 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.96 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.90 ' FLOW INTERCEPTED (cfs)= 6.90 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.90 FLOW INTERCEPTED (cfs)= 6.90 CARRY-OVER FLOW (cfs)= 0.00 ys ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ------ -- SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---- ---- -------------------------------------- USER:KEVIN GINGERY-RDB INC FT.---COLLINS-----COLORADO .............................. ON DATE 02-16-1998 AT TIME 16:48:02 1*** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 6 I I i I I I I I INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 13.75 GUTTER FLOW DEPTH (ft) = 0.44 FLOW VELOCITY ON STREET (fps)= 2.55 FLOW CROSS SECTION AREA (sq ft)= 2.06' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 9.65 (cfs)= 5.20 (cfs)= 5.20 (cfs)= 0.00 (cfs)= 5.20 (cfs)= 5.20 (cfs)= 0.00 1 y6 1' ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED-BY-METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------ SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO....... ...................... ON DATE 07-27-1998 AT TIME 14:03:53 1** PROJECT TITLE: HP Bldg 4 - Addendum I I i I I 1 I *** CURB OPENING INLET HYDRAULICS AND SIZING: &(S INLET ID NUMBER: 8 ) Inlef. `7 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 11.29 IDEAL CURB OPENNING EFFICIENCY = 0.98 ACTURAL CURB OPENNING EFFICIENCY = 0.92 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N - 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.00 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 2.25 FLOW CROSS SECTION AREA (sq ft)= 1.17 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR (%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.55 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 2.60 FLOW INTERCEPTED (cfs)= 2.39 CARRY-OVER FLOW (cfs)= 0.21 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.60 FLOW INTERCEPTED (cfs)= 2.17 CARRY-OVER FLOW (cfs)= 0.43 type , �, In le+ Ceps+ cF S911 PuLot �h ch (Joy+h dyaula-T 97 i �g ---------------------------------------------------------------------------49 ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------ USER:KEVIN GINGERY-RDB -- INC FT. COLLINS COLORADO.............................. ON DATE 03-16-1998 AT TIME 08:42:30 '*** PROJECT TITLE: HP Bld4/100YR ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 8 iINLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 30.00 REQUIRED CURB OPENING LENGTH (ft)= 10.76 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 2.00 1 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 9.59 ' GUTTER FLOW DEPTH (ft) = 0.36 FLOW VELOCITY ON STREET (fps)= 2.22 FLOW CROSS SECTION AREA (sq ft)= 1.09 I GRATE CLOGGING FACTOR (o)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 5.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.40 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 2.40 2.40 0.00 2.40 2.28 0.12 �iEX i "T yFL 2 t K)UC_ 7 Cr Lrs_ j(,o `o vvr (A UkCiS WATUL AND U0uT0S k,_')0a-7H Zr1-fl iY7W Ls( CH aaQEL- 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------- -------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 02-16-1998 AT TIME 16:53:34 i*** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 9 iINLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 i GUTTER WIDTH (ft) = 2.00 i i i i I STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 19.56 GUTTER FLOW DEPTH (ft) = 0.46 FLOW VELOCITY ON STREET (fps)= 2.57 FLOW CROSS SECTION AREA (sq ft)= 3.04 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR (%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW c" M (cfs)= 7.80 (cfs)= 7.80 (cfs) = 0.00 (cfs) = 7.80 (cfs)= 7.80 (cfs)= 0.00 i y9 1 �o ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED -BY-METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 02-16-1998 AT TIME 16:54:30 i*** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 1 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (°s) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) 2.00 = 2.00 STREET FLOW HYDRAULICS: 1 i 1 1 WATER SPREAD ON STREET (ft) = 13.47 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 2.17 FLOW CROSS SECTION AREA (sq ft)= 1.53 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR (%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW OWN (cfs) = 3.30 (cfs) = 3.30 (cfs) = 0.00 (cfs)= 3.30 (cfs) = 3.30 (cfs)= 0.00 1 570 I ------------------------------------------------------------------------- ----- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER -SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ON DATE 02-16-1998 AT TIME 16:55:31 .............................. '*** PROJECT TITLE: HP BLD 4/100YR *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 12 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00. 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.44 GUTTER FLOW DEPTH (ft) = 0.35 ' FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 2.11 1.33 GRATE CLOGGING FACTOR M 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 1 r INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 9.27 (cfs)= 2.80 (cfs)= 2.80 (cfs)= 0.00 (cfs)= 2.80 (cfs)= 2.80 (cfs) = 0.00 J 51 I 5Z ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 02-16-1998 AT TIME 16:56:17 ' *** PROJECT TITLE: HP BLD 4/100YR ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 13 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.91 GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 2.33 FLOW CROSS SECTION AREA (sq ft)= 2.06 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 10.49 (cfs)= 4.80 (cfs)= 4.80 (cfs)= 0.00 (cfs)= 4.80 (cfs)= 4.80 (cfs)= 0.00 Jr2 i ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U'OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------- USER:KEVIN GINGERY-RDB INC-FT. COLLINS COLORADO ............................. ON DATE 07-27-1998 AT TIME 14:15:29 *** PROJECT TITLE: HP Bldg 4 - Addendum *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 40 IrnL�_t ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.20 STREET CROSS SLOPE (°s) = 0.63 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 3.44 GUTTER FLOW DEPTH (ft) = 0.19 ' FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 2.44 0.20 GRATE CLOGGING FACTOR (6)= 50.00 CURB OPENNING CLOGGING FACTOR(o)= 20.00 iINLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 5.74 ' BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED (cfs)= (cfs)= 0.50 0.50 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.50 FLOW INTERCEPTED (cfs)= 0.50 CARRY-OVER FLOW (cfs)= 0.00 1 1 53 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO................................ ON DATE 07-27-1998 AT TIME 14:09:37 *** PROJECT TITLE: HP Bldg 4 - Addendum *** CURB OPENING INLET HYDRAULICS AND SIZING: -Snsco �n�,f oZf INLET ID NUMBER: 29 1 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 9.31 ' IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 0.99 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.80 STREET CROSS SLOPE (%) = 3.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ISTREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 3.72 GUTTER FLOW DEPTH (ft) = 0.28 FLOW VELOCITY ON STREET (fps)= 3.75 FLOW CROSS SECTION AREA (sq ft)= 0.37 GRATE CLOGGING FACTOR (0-)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 1.40 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 1.40 FLOW INTERCEPTED (cfs)= 1.38 CARRY-OVER FLOW (cfs)= 0.02 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.40 FLOW INTERCEPTED (cfs)= 1.19 CARRY-OVER FLOW 0.21 �`(cfs)= ' 4)e f'XRS1-cfw CINE'Gl ((,(If+ 'L'O _t�o5i�'1 It- RL Sy 11 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON DATE 07-27-1998 AT TIME 14:07:19 *** PROJECT TITLE: HP Bldg 4 - Addendum ' *** CURB OPENING INLET HYDRAULICS AND SIZING: e'cSt rj INLET ID NUMBER: 35 ) 10(C+ ?-+ 1 11 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 0.74 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.94 GUTTER FLOW DEPTH (ft) = 0.39 FLOW VELOCITY ON STREET (fps)= 2.57 FLOW CROSS SECTION AREA (sq ft)= 1.36 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 10.02 (cfs)= 3.50 (cfs) = 3.50 (cfs)= 0.00 (cfs)= 3.50 (cfs)= 3.50 (cfs)= 0.00 5.5' 1 1 The Sear -Brown Group HP Bldg 4 - Addendum Area Inlet 11 in Sump - Basin 26 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate Area = Stage interval, dh = Weir equation: Qw=CLcH^1.5 C = 3.0 Lc = 1.8 ft H Qw Qo (ft) (cfs) (cfs) 0.00 0.00 0.00 0.10 0.17 1.23 0.20 0.48 1.74 0.30 0.89 2.14 0.40 1.37 2.47 0.50 1.91 2.76 0.60 2.51 3.02 0.70 3.16 3.26 0.80 3.86 3.49 0.90 4.61 3.70 1.00 -- 3.90 1.10 -- 4.09 799-001 Neenah Grate Number: R3401 0.9 ft --� l9 X 1 3/in� Sew ca �i s{•cr �avQe. (go 1.8 ft--> 50% 1.62 ikopen 0100_ 1. �s ti CansevVa�+ve Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 0.8 ft2 Q(100) = 2.7 cfs d 100 = 0.63 ft 0 0.2 0.4 OB 08 1 1.2 Head (!t) .......... _.... ._.__......_._...._____......__..___._....._...... ___.._. _.... -■ Weir -+ orifice Controlling 56 13-Jan-99 The Sear -Brown Group HP Bldg 4 - Addendum Area Inlet 14 in Sump - Basin 17 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate Area = Stage interval, dh = Weir equation: Qw=CLcHAl.5 C = 3.0 Lc = 1.8 ft H Qw Qo (ft) ----------------------- (cfs) (cfs) 0.00 -------------- 0.00 0.00 0.10 0.17 1.23 0.20 0.48 1.74 0.30 0.89 2.14 0.40 1.37 2.47 0.50 1.91 2.76 0.60 2.51 3.02 0.70 3.16 3.26 0.80 3.86 3.49 0.90 4.61 3.70 1.00 -- 3.90 1.10 -- 4.09 5 6 C 3 re X2 0 1 799-001 Neenah Grate Number: R3401 0.9 ft 1.8 ft 50% 1.62 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 0.8 ft2 Q(100) = 7.1 cfs d(100) = 2.68 ft NOti ` Sf0Yr AWO--b-r wi l i po,% D')c"" qfo ded 10W oxea Q 18.2' --------------- - - - - -r - - -- -- �w _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 0 0.2 04 0.6 0.8 1 Head (8) -t Weir Orifice Controlling 1.2 max ws>r,' = (0. '7- t 51 30-Jul-98 The Sear -Brown Group HP Bldg 4 - Addendum Area Inlet 14A in Sump - Basin 20 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate Area = Stage interval, dh = Weir equation: Qw=CLcHAl.5 C = 3.0 Lc = 1.8 ft H Qw Qo (ft) (cfs) (cfs) 0.00 0.00 0.00 0.10 0.17 1.23 0.20 0.48 1.74 0.30 0.89 2.14 0.40 1.37 2.47 0.50 1.91 2.76 0.60 2.51 3.02 0.70 3.16 3.26 0.80 3.86 3.49 0.90 4.61 3.70 1.00 -- 3.90 1.10 -- 4.09 5 4 3 m R. 2 1 799-001 Neenah Grate Number: R3401 0.9 ft 1.8 ft 50% 1.62 0.1 ft Orifice equation: Qo = C Ac (2gH)"0.5 C = 0.6 Ac = 0.8 ft2 Q(100) = 2.7 cfs d(100) = 0.63 ft ------------------ r' r-- -- _ _ _ _ _ _ _ _ _ _ _ _ _ _'_ _ _ _ _ _ _ _ _ _ _ _ _ _ x x X 0 0 0.2 0.4 0.5 0.0 1 Head (ft) -rt Weir -t- Cdfim �COntrolling 1.2 30-Jul-98 The Sear -Brown Group 1 1 1 1 HP Bldg 4 - Addendum Area Inlet 15 in Sump - Basin 14 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate Area = Stage interval, dh = Weir equation: Qw=CLcHAl.5 C = 3.0 Lc = 1.8 ft H Qw Qo (ft) ----------------------- (cfs) (cfs) 0.00 -------------- 0.00 0.00 0.10 0.17 1.23 0.20 0.48 1.74 0.30 0.89 2.14 0.40 1.37 2.47 0.50 1.91 2.76 0.60 2.51 3.02 0.70 3.16 3.26 0.80 3.86 3.49 0.90 4.61 3.70 1.00 -- 3.90 1.10 -- 4.09 5 4 '6 3 P D2 0 1 799-001 Neenah Grate Number: R3401 0.9 ft 1.8 ft 50% 1.62 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 0.8 ft2 Q(100) = 5 cfs d(100) = 1.58 ft NtrFe S_orn,watj. r wi l I pass o"" 9vCL84eW tow a recz rGD 1$ 5 -- - - - -- r` - - -- -- ____---- _____________. _ r _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i i 0 0 0.2 0.4 0,6 0.8 1 Head (ft) -F Weir -t Orifice Cwtm ing 1.2 MCLX WSE(, . 18 .1` 59 30-Jul-98 The Sear -Brown Group 1 1 1 1 1 1 1 1 HP Bldg 4 - Addendum Area Inlet 16 in Sump - Basin 30 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate Area = Stage interval, dh = Weir equation: Qw=CLcHAl.5 C = 3.0 Lc = 2.7 ft H Qw Qo (ft) •--------------------- (cfs) (cfs) 0.00 ------------ 0.00 0.00 0.10 0.26 3.70 0.20 0.72 5.23 0.30 1.33 6.41 0.40 2.05 7.40 0.50 2.86 8.27 0.60 3.76 9.06 0.70 4.74 9.79 0.80 5.80 10.47 0.90 6.92 11.10 1.00 -- 11.70 1.10 -- 12.27 14 12 10 t 6 0 4 2 0 799-001 Neenah Grate Number R3401 C 2.7 ft = Q3'JLq`0 Z', c.r,a- 4.ac� �a-F (08 1.8 ft 2.i "til 50% 4.86 0.1 ft a petit. %bpK Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 2.4 ft2 Q(100) = 2.3 cfs d(100) = 0.43 ft ---------------------------- ---------------- L -- ----- -------------------------- - '--------------- ___ _____________________ 0 0.2 0.4 0.6 0.8 1 Hwd (ft) -rt Weir -+ Orifice Controlling 1.2 30-Jul-98 The Sear -Brown Group HP Bldg 4 - Addendum Area Inlet 17 in Sump - Basin 31 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate Area = Stage interval, dh = Weir equation: Qw=CLcH^1.5 C = 3.0 Lc = 2.7 ft H Qw Qo (ft) (cfs) (cfs) 0.00 0.00 0.00 0.10 0.26 3.70 0.20 0.72 5.23 0.30 1.33 6.41 0.40 2.05 7.40 0.50 2.86 8.27 0.60 3.76 9.06 0.70 4.74 9.79 0.80 5.80 10.47 0.90 6.92 11.10 1.00 -- 11.70 1.10 -- 12.27 14 12 10 U 8 e 6 O 4 2 0 799-001 Neenah Grate Number R3401 C 2.7 ft 1.8 ft 50% 4.86 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 2.4 ft2 Q(100) = 1.50 cfs d(100) = 0.32 ft L00'0� ----------X=- `---- ------ _ _ _ _ _ t__ _ _ _ _ _ _ _ _ _ _ ______________ __ _________ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 0.2 0.4 0.6 0.8 1 Head (0) y- Weir -+- Cnfice Contmiin0 1.2 61 30-Jul-98 1 1 The Sear -Brown Group Project Location Design Point 31 INLET - 18 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate area = Stage interval, dh = Weir equation: Qw = C Lc H^1.5 C = 3.0 Lc = 1.8 ft H Qw Qo (ft) (cfs) (cfs) 0.00 0.00 0.00 0.10 0.17 1.22 0.20 0.48 1.72 0.30 0.89 2.11 0.40 1.37 2.44 0.50 -- 2.73 0.60 -- 2.99 0.70 -- 3.23 0.80 -- 3.45 0.90 -- 3.66 1.00 - 3.86 1.10 -- 4.05 5 4 p3 a2 0 Neenah Grate Number: R3401 1.8 ft 0.9 ft 50% 1.602 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 0.8 ft2 Q(100) = 1.5 cfs d(100) = 0.41 ft ______________ ____-_---_-_-_. ------- --- -------------------- _ r _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i 0 0.2 0.4 0.6 0.8 1 1.2 Head (ft) -E Weir -,- Orifice �ConWlling M. 6.2 03-Apr-98 The Sear -Brown Group HP Bldg 4 - Addendum 799-001 Area Inlet 23 in Sump - Basin 32 Neenah Grate Number R3401 C Grate: (specify) Open length, L = 2.7 ft Open width, W = 1.8 ft Clogging, c = 50% Grate Area = 4.86 Stage interval, d 0.1 ft Weir equation: Orifice equation: Qw = C Lc HAl .5 Qo = C Ac (2gH)^0.5 C = 3.0 C = 0.6 Lc = 2.7 ft Ac = 2.4 ft2 H Qw Qo (ft) (cfs) (cfs) 0.00 0.00 0.00 0.10 0.26 3.70 0.20 0.72 5.23 0.30 1.33 6.41 0.40 2.05 7.40 Q(100) 4.8 cfs 0.50 2.86 8.27 �d(100) 0.71 ft 0.60 3.76 9.06 0.70 4.74 9.79 0.80 5.80 10.47 0.90 6.92 11.10 1.00 -- 11.70 1.10 -- 12.27 14 ,2 ,0 B �gge 6 4 2 0 -------------------- - - - - -- - -- --------- - ------- - - - - --- - - - - -- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 0.2 0.4 0.6 0.8 1 He d (ft) - weir -+ on0oe .ContmUing 1.2 63 30-Jul-98 The Sear -Brown Group HP Bldg 4 - Addendum Area Inlet 25 in Suma - Basin 36 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate Area = Stage interval, dh = Weir equation: Qw = C Lc H^1.5 C = 3.0 Lc = 1.8 ft H Qw Qo (ft) (cfs) (cfs) 0.00 0.00 0.00 0.10 0.17 1.23 0.20 0.48 1.74 0.30 0.89 2.14 0.40 1.37 2.47 0.50 1.91 2.76 0.60 2.51 3.02 0.70 3.16 3.26 0.80 3.86 3.49 0.90 4.61 3.70 1.00 -- 3.90 1.10 -- 4.09 799-001 Neenah Grate Number: R3401 0.9 ft 1.8 ft 50% 1.62 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 0.8 ft2 0(100) = 3 cfs d(100) = 0.68 ft ------------------- ---- -- -- r _ r ' - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ L 0 0 0.2 0.4 0.5 0.8 1 1.2 Head (ft) t Weir -w orifice .controlling (10 4 30-Jul-98 The Sear -Brown Group HP Bldg 4 - Addendum Area Inlet 26 in Sump - Basin 37 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate Area = Stage interval, dh = Weir equation: Qw=CLcHAl.5 C = 3.0 Lc = 1.8 ft H Qw Qo (ft) --------- (cfs) (cfs) -------------- 0.00 -------------- 0.00 0.00 0.10 0.17 1.23 0.20 0.48 1.74 0.30 0.89 2.14 0.40 1.37 2.47 0.50 1.91 2.76 0.60 2.51 3.02 0.70 3.16 3.26 0.80 .3.86 3.49 0.90 4.61 3.70 1.00 -- 3.90 1.10 -- 4.09 799-001 Neenah Grate Number: R3401 0.9 ft 1.8 ft 50% 1.62 0.1 ft Orifice eguation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 0.8 ft2 Q(100) = 3.8 cfs d 100 = 0.95 ft 1' W R oy\.A reams + 'then. case n (o w } coII l k j'c�ncr -cf 5{Pyr� 6S 14-Jan-99 The Sear -Brown Group HP Bldg 4 - Addendum 799-001 Area Inlet 27 in Sump - Basin 38 Neenah Grate Number: R3401 Grate: (specify) Open length, L = 0.9 ft Open width, W = 1.8 ft Clogging, c = 50% Grate Area = 1.62 Stage interval, dh = 0.1 ft Weir equation: Orifice equation: Qw = C Lc H^1.5 Qo = C Ac (2gH)^0.5 C = 3.0 C = 0.6 Lc = 1.8 ft Ac = 0.8 ft2 H Qw Qo (cfs) (cfs) -----(ft) ----- 0.00 ---------------------------- 0.00 0.00 0.10 0.17 1.23 0.20 0.48 1.74 0.30 0.89 2.14 0.40 1.37 2.47 Q(100) = 4.5 cfs 0.50 1.91 2.76 d 100 = 1.32 ft 0.60 2.51 3.02 0.70 3.16 3.26 o1A4 fec►c O-S 4 0.80 3.86 3.49 �1 c v� ; ; ; I l Flow ', rtc- 6� �\ �P 0.90 4.61 3.70 L 1'Qx*_ A Cook eA-JMA"' `�k AM! +1 1.00 -- 3.90 0 1.10 -- 4.09 5 ._ 4 : 3 ip G X2 0 1 0 0 0.2 0.4 0.6 0.8 1 Head (1t) -■ . Weir -+ Onfim Controlling 1.2 re 14-Jan-99 The Sear -Brown Group 1 1 1 1 1 HP Bldg 4 - Addendum Trench Drain at Basin 33 Grate: (specify) Open length, L = Open width, W = Clogging, c = Grate Area = Stage interval, dh = Weir equation: Qw=CLcHAl.5 C = 3.0 Lc = 45.0 ft H Qw Qo (ft) ---------------------- (cfs) (cfs) 0.00 ------------ 0.00 0.00 0.10 4.27 34.26 0.20 12.07 48.45 0.30 22.18 59.34 0.40 34.15 68.52 0.50 -- 76.61 0.60 -- 83.92 0.70 -- 90.64 0.80 -- 96.90 0.90 -- 102.78 1.00 -- 108.34 1.10 -- 113.62 120 100 80 a" 60 40 20 0 Neenah Grate Number: R3401 45.0 ft 1.0 ft 50% 45 0.1 ft Orifice equation: Qo = C Ac (2gH)^0.5 C = 0.6 Ac = 22.5 ft2 Q(100) = 0.3 cfs d(100) = 0.01 ft ----- -+-- ------ ----- -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - i i 0 0.2 0.4 0.6 0.8 1 Head (n) -f weir on0m Controlling 1.2 799-001 6 "1 27-Jul-98 �ER INLET FRAMES AND GRATES R-3397 Gutter Inlet and Grate `yt�„ { •_ -,"� ' Heavy Duty `•ti ��� Total Weight 330 Pounds ' Note opening of rear of frame. �23 ' 208 1 I 'i6 —1 5_0T -_ �z 178 Also available with Type v grate.~` 25if 23 (See R-3157-2 page 108). 325926y Order as R•3397.1. R-3401 Single Gutter Inlet Frame and Grate 4 Heavy Duty Total Weight 410 Pounds R-3401-C Triple Gutter Inlet Frames and Grates ' Double unit, total weight 790 pounds; triple unit, total weight 1160 pounds. L PLAN VIEW R-3401 PLAN VIEW R-3401B Illustrating R-3401 Illustrating R-3401-B If grates installed with slots in some direction as traffic —not recommended for bicycle traffic. For safety standards see pages 88 to 93. PLAN VIEW R-3401 C Illustrating R-3401-C NEENAH 1S4 FOUNDRY COMPANY W1 R-4990 Heavy Duty Trench Frames with Grated or Solid Covers MATERIALS: All frames and grates are furnished standard in Gray Iron, Class 35, for heavy duty use. For extra heavy duty use, see page 170 for Airport Trenches. Standard Cover Dimensions Catalog Dimensions in inches Weight per lineal foot (without frame) A B C Type A Type C Type D Type E Type P Frame— No. R-4990-AX 8 1 y2 6 19 22 19 22 25 12 R-4990-BX 10 1 y2 8 24 27 29 27 31 12 R-4990-CX 12 1 y2 10 28 31 40 36 37 12 R-4990-DX �90-EX 14 17 1Y2_„ l y2 .124. 15 �3�_ 39 __35_.._,52-_.,_ 52 55 47.__,,45__ 49 — 12 : —1 y' +` R-4990-FX 20 1 V2 18 54 67 70 70 — 12 R-4990-GX 23 1 y2 21 60 77 85 — — 12 R-4990-HX 26 1%2 24 71 100 85 — — 12 R-4990-JX 30 2 1 27* 100 120 100 — 17 R-4990-KX 33 2 30* 110 140 150 — — 17 R-4990-LX 36 2 33* 120 130 185 — — 17 R-4990-MX 39 2 36* 130 200 180 — — 17 R-4990-NX 45 2 42* 150 245 210 — — 17 R-4990-OX 51 2 48* 190 1 — 215 — — 1 17 'A• Annular spacing "Weight per foot —includes both sides. R-4991 Light Duty Trench Frames with Grated or Solid Covers Standard Cover Dimensions Catalog Dimensions in inches III eight per lineal foot (without frame) No. AT B I C Type A Type C Type D Type E Type P Frame" R-4991-AX 8 1 �6 6 12 15 22 17 — 12 R-4991-BX 10 1 V 8 14 18 28 27 — 12 R-4991-CX 12 1 J� 10 13 23 34 23 — 12 R 4991-DX 14 1 V2 12- 16 22 27 28 — 12 R-4991-EX. 17 1 �j 15 29 29 37 38 — 12 R-4991-FX 20 1 1,� 18 41 42 42 42 12 R-4991-GX 23 1Y2 21 51 51 55 51 — 12 R-4991-HX 26 1yi 24 44 58 65 63 — 12 R4491-JX 29 1 116 1 27 71 1 79 74 1 74 12 R-4991-KX 32 1%2 1 30 52 90 86 87 — 12 1-LX 35 1 � 33120100 105 — 12 1-MX 38 lye 36 95 120 110 115 12 1-NX R 44 116 42 115 155 120 115 — 12 1-OX 50 116 48 135 145 105 1 10 — 12 "Weight per foot —includes both sides. 'NdA1NAL t ASpI ACE OPEN A SOLID GRATE LID m C �.. .: HEAVY DUTY L� Illustrating heavy duty trench frames and Type A grates to drain loading ramp. Designs in this series are being used successfully in subway construction, intersecting elevated highways and underpasses, airport hangar doors, ramps and other special purposes. Illustrating trench frames with grated covers in the deck area around a municipal pool. GOMINAL lb ANNUL OPEN A SOLID SPACE GRATE LID m C LIGHT DUTY The above schematic drawings identify basic dimensions only and do not apply to all cover designs. Bar and rib depths, plate thicknesses, and seating widths, may vary on different sizes and styles. If your project has design restrictions, ask for approval drawings. ' 228 NEENAH 6 9 ( rl9LS b�-�ro� I, I 11 h 1 1 1 1 1 �I 1 1 1 1 RIP RAP DESIGN 72" The Sear -Brown Group Riprap Design L 1 1 Project., Hewlett Packard Building 4 Designer.' Traci dowr Project #: 799-001 Date: 01 /14/99 Location: PROFILE -A Pipe dia.: 18 in Tailwater. 0.8 ft Discharge 6.15 cfs Max. V. 5 fUs r 1g'' G'r.Ujcr = I'�r�XZ3 egui�a�� I. Required riprap type: ����� Q/D12.5 = 2.23 < 6 --> use design charts eut���S `,i D = 1.50 ft Q/D^1.5 = 3.35 © (o•ls CAS 1� (_� d50 = in YyK�-X OU Gpt� W ryL rtyA -> Use Class 0 riprap sy 51•em- 2. Expansion factor: 1 / [2 tan(theta)] = 4.4 3. Riprap length: At = QN = 1.23 ft2 L = 1/[2tan(theta)]'(AUYt - D) = ft 4. Governing limits: L> 3D = 5 ft increase length to 5 ft L<10D= 15 ft=>Oft -->OK 5. Maximum depth: Depth = 2d50 = 2 (0 in / 12) = ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width = 3D = 3 (18 in /12) = 5 ft Summary. I 7 Class 0 riprap Length = 5 ft Depth = ft Width = 5 ft Conclusion: Use Class 6 Riprap as a minimum Place riprap 1 foot deep and extend the riprap one foot on each side of the concrete apron. Extend the riprap across the channel to 3 ft. above the invert of the pipe. i�' b-m oVE-'Ty�e a cuss A B nq tn�NJ " mver t-D iUx_ err d 4 \ Y ' s-��T3 14-Jan-99 I 1 1 I 7 I 1 1 1 1 The Sear -Brown Group Riprap Design Project: Hewlett Packard Building 4 Designer: tld Project #: 799-001 Date: 01 /14/99 Location: Oulet for combined profiles B,C,E Pipe dia.: 18 in Tailwater.• 0.8 ft Discharge 7.422 cfs Max. V. 5 ft/s j; pe_ = t y " X 23 ^ CqW VaieJ 1. Required riprap type: Q/D^2.5 = 2.69 < 6 --> use design charts D = 1.50 ft Yt/D = 0.53 Q/D^1.5 = 4.04 d50 = in > Use Class 0 riprap 2. Expansion factor: 1 / [2 tan(theta)] = 4.4 3. Riprap length: At = QN = 1.4844 ft2 L = 1/[2tan(theta)]*(At/Yt - D) = 2 ft 4. Governing limits: L> 3D = 5 ft increase length to 5 ft L<1OD= 15 ft =>2ft-->OK 5. Maximum depth: Depth = 2d50 = 2 (0 in / 12) = ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width = 3D = 3 (18 in /12) = 5 ft Summary. Class 0 riprap Length = 5 ft Depth = ft Width = 5 ft Conclusion: Use Class 6 Riprap as a minimum Place riprap 1 foot deep and extend the riprap one foot on each side of the concrete apron. Extend the riprap across the channel to 3 ft. above the invert of the pipe. Place over 6" Type II Class A bedding material and cover with 6" topsoil. —� e�ti CA �:, pQ © -4.9z2- ra�5 I%9 4 Y-YI0,x VAA«0 r 14-Jan-99 �c! (-+5�-+9 1�a� Yt oIx") I E LJ 1 I I I I I 1 I I I I 1 EROSION CONTROL I II RBD, Inc. ' RAINFALL PERFORMANCE STANDARD EVALUATION 1 1 1 1 1 1 i 1 1 1 1 1 PROJECT: ICBD Genesis IV STANDARD FORM CALCULATED BY: tld DATE: 07/31/98 Developed Erodibilty Asb Lsb Ssb Lb Sb PS Subbasin Zone (ac) (ft % ft (% 1 moderate 5.28 2390 0.69 2 moderate 1.23 620 1.21 3 moderate 0.80 480 0.62 4 moderate 1.67 530 0.74 5 moderate 0.77 730 1.12 6 moderate 6.75 640 0.67 7 moderate 0.75 810 0.64 8 moderate 0.41 693 0.65 9 moderate 0.99 300 1.50 10 moderate 0.46 140 1.50 11 moderate 0.38 130 1.50 12 moderate 0.70 240 1.50 13 moderate 0.50 150 1.50 14 moderate 0.43 170 2.80 15 moderate 0.39 110 1.00 16 moderate 0.18 90 1.00 17 moderate 1.96 295 1.90 18 moderate 0.90 200 1.75 19 moderate 2.85 390 1.00 20 moderate 0.38 120 1.80 21 moderate 0.74 300 3.42 22 moderate 1.01 410 2.61 22A moderate 0.87 405 2.49 23 moderate 0.74 408 2.56 24 moderate 0.63 310 1.00 24A moderate 0.37 290 1.00 24B moderate 0.31 235 0.80 25 moderate 0.65 270 1.44 25A moderate 0.54 240 1.00 26 moderate 0.30 160 1.50 27 moderate 0.04 35 1.50 28 moderate 0.25 100 1.00 29 moderate 0.15 105 3.00 30 moderate 0.16 80 3.00 31 moderate 0.07 70 1.50 32 moderate 0.52 222 1.36 33 moderate 0.03 55 3.70 34 moderate 0.42 250 2.32 35 moderate 0.39 205 3.67 36 moderate 0.33 135 5.52 37 moderate 0.33 85 4.65 38 moderate 0.32 65 7.35 39 moderate 2.02 355 1.10 40 moderate 0.06 355 1.10 Total 39.03 14373 83.7 622 0.9 76.3 CAAIVIYLC I,.ALI.ULA I IUNA ' Lb = sum(AiLi)/sum(Ai) _ (5.28 x 2390 + ... + 0.06 x 355v 0.06 622 ft Sb = sum(AiSi)/sum(Ai) _ (5.28 x 0.69 + .,. + 0.06 x 1.10)/ 39.03 0.9 % PS (during construction) = 76.3 (from Table 8A) ' PS (after construction) = 76.3/0.85 = 89.8 I w 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 RBD, Inc. EFFECTIVENESS CALCULATIONS Total Site as one phase 7oosm PROJECT: ICBD Genesis IV STANDARD FORM B CALCULATED BY: 0d DATE: 01/14/99 Erosion Control C-Facto P-Factcli Comment Number Method Value Value 3 Bare Soil- Rough Irregular Surface 1 0.9 placed at area Inlets 5 Straw Bale Barrier 1 0.8 placed at swales 6 Gravel Filter 1 0.8 placed at boundaries 8 Slit Fence Barrier 1 0.5 9 Asphalt/Concrete pavement 0.01 1 all areas not paved 17 Established Gress Ground Cover -80% 0.03 1 18 Established Grass Ground Cover - 90% 0.025 1 19 Established Gress Ground Cover -100% 0.02 1 38 Gravel Mulch 0.05 1 39 Hay or Straw Dry Mulch (1-5%slope) 0.06 1 area not disturbed during construction BASIN % aEA h"hU I IVtNtSS CALCULA I IONS Total Site as one phase ree_nn� PROJECT: ICBD Genesis IV STANDARD FORM B CALCULATED BY: 8d DATE: 01/14/99 Erosion Control C-Facto P-Facto Comment Number Method Value Value 3 Bare Soil- Rough Irregular Surface 1 0.9 placed at area inlets 5 Straw Bale Barrier 1 0.8 placed at swales 6 Gravel Filter 1 0.8 placed at boundaries 8 Silt Fence Barrier 1 0.5 9 AsphalVConcrete Pavement 0.01 1 all areas not paved 17 Established Grass Ground Cover - 80% 0.03 1 18 Established Grass Ground Cover - Do% 0.025 1 19 Established Gress Ground Cover - 1 Do% 0.02 1 38 Gravel Mulch 0.05 1 39 Hay or Straw Dry Mulch (1-5%slope) 0.06 1 area not disturbed during construction MAJOR BASIN PS % AREA - ac SITE 76.3 39.03 UB A A Practioe C- A P- A Remarks BASIN BASIN ac SITE DURING CONSTRUCTION 1 PERVIOUS AREA 5.28 17 0.16 5.28 Established Grass Ground Cover -00% 1 ROADWAY 0.00 2 PERVIOUS AREA 1.04 3 1.04 0.94 Bare Soil - Rough Irregular Surface 2 ROADWAY 0.19 38 0.01 0.19 Gravel Mulch 3 PERVIOUS AREA 0.67 18 0.02 0.67 Established Grass Ground Cover -90% 3 ROADWAY 0.13 38 0.01 0.13 Gravel Mulch 4 PERVIOUS AREA 1.44 39 0.09 1.64 Hay or Straw Dry Mulch (1-5%slope) 4 ROADWAY 0.23 38 0.01 0.23 Gravel Mulch 5 PERVIOUSAREA 0.65 39 0.04 0.65 Hay or SVaw Dry Mulch (1-5% slope) 5 ROADWAY 0.12 38 0.01 0.12 Gravel Mulch 6 PERVIOUSAREA 6.75 39 0.41 6.75 Hay or Straw Dry Mulch (1-5% slope) 6 ROADWAY 0.00 3 7 PERVIOUS AREA 0.52 3 0.52 0.47 Bare Sail- Rough Irregular Surface 7 ROADWAY 0.23 38 0.01 0.23 Gravel Mulch 8 PERVIOUS AREA 0.17 3 0.17 0.15 Bare Soil- Rough Irregular Surface 8 ROADWAY 0.24 38 0.01 0.24 Gravel Mulch 9 PERVIOUS AREA 0.00 9 ROADWAY 0.99 9 0.01 0.99 Psphalt/Cwtvete Pavement 10 PERVIOUS AREA 0.00 10 ROADWAY 0.46 9 0.00 0.46 Asphalt/Concrete Pavement 11 PERVIOUS AREA 0.00 11 ROADWAY 0.38 9 0.00 0.38 AsphaMConcrete Pavement 12 PERVIOUS AREA 0.00 12 ROADWAY 0.70 9 0.01 0.70 AsphalVCowete Pavement 13 PERVIOUS AREA 0.00 13 ROADWAY 0.50 9 0.01 0.50 AsphalVConcrete Pavement 14 PERVIOUS AREA 0.00 3 14 ROADWAY 0.43 38 0.02 0.43 Gravel Mulch 15 PERVIOUS AREA 0.00 3 15 ROADWAY 0.39 38 0.02 0.39 Gravel Much 16 PERVIOUS AREA 0.00 3 16 ROADWAY 0.18 38 0.01 0.18 Gravel Mulch 17 PERVIOUS AREA 0.24 3 0.24 0.22 Bare Soll- Rough lreguar Surface 17 ROADWAY 1.72 3 1.72 1.55 Bare Soil- Rough Irregular Surface 18 PERVIOUS AREA 0.85 3 0.95 0.77 Bare Soil- Rough Irregular Surface 18 ROADWAY 0.05 3 0.05 0.05 Bare Soil- Rough Irregular Surface 19 PERVIOUS AREA 2.75 3 2.75 248 Bare Soil- Rough Irregular Surface 19 ROADWAY 0.10 3 0.10 0.09 Bare Soil- Rough lrreguar Surface 20 PERVIOUS AREA 0.35 3 0.35 0.32 Bare Soil- Rough irregular Surface 20 ROADWAY 0.03 3 003 0.03 Bare Soil- Rough Irregular Surface 21 PERVIOUS AREA 0.28 18 0.01 0.28 Established Grass Ground Cover -90% 21 ROADWAY 1 0.46 9 eb0 0.46 AS halVConcrete Pavement "}l RBD, Inc. ' EFFECTIVENESS CALCULATIONS Total Site as one phase 79g11n1 PROJECT: ICED Genesis IV STANDARD FORM B CALCULATED BY: did DATE: 01114t99 Erosion Control C-Facto P-Facto Comment Number Method Value Value 3 Bare Soil - Rough Irregular Surface 1 0.9 placed at area inlets 5 Straw Bale Banner 1 0.8 placed at swales 6 Gravel Filter 1 0.8 placed at boundaries 8 Silt Fence Barrier 1 0.5 9 Asphalt/Concrete Pavement 0.01 1 all areas not paved 17 Established Grass Ground Cover - 80% 0.03 1 18 Established Grass Ground Cover - 90% 0.025 1 19 Established Grass Ground Cover -100% 0.02 1 38 Gravel Mulch 0.05 1 39 May or Straw Dry Mulch (1-5%slope) 0.06 1 area not disturbed during construction MAJOR BASIN PS % AREA ac SITE 76.3 39.03 AJ A Practice C- A P- A Remarks BASIN BASIN ac SITE DURING CONSTRUCTION 22 PERVIOUS AREA 0.22 3 0.22 0.20 Bare Soil- Rough Irregular Surface 22 ROADWAY 0.79 38 0.04 0.79 Gravel Mulch 22A PERVIOUS AREA 0.15 3 0.15 0.14 Bare Soil- Rough Irregular Surface 22A ROADWAY 0.72 38 0.04 0.72 Grovel Mulch 23 PERVIOUS AREA 0.25 3 0.25 0.23 Bare Soil- Rough Irregular Surface 23 ROADWAY 0.49 38 0.02 0,49 Gravel Mulch 24 PERVIOUSAREA 0.07 3 0.07 0.06 Bare Soil- Rough Irregular Surface 24 ROADWAY 0.56 38 0.03 0.56 Gravel Mulch 24A PERVIOUSAREA 0.02 3 0.02 0.02 Bare Soil- Rough Irregular Surface 24A ROADWAY 0.35 38 0.02 0.35 Gravel Mulch 248 PERVIOUSAREA 0.06 3 0.06 0.05 Bare Soil- Rough Irregular Surface 24B ROADWAY 0.25 38 0.01 0.25 Gravel Mulch 25 PERVIOUSAREA 0.17 3 0.17 0.15 Bare Soil- Rough Irregular Surface 25 ROADWAY 0.48 38 0.02 0.48 Gravel Mulch 25A PERVIOUS AREA 0.12 3 0.12 0.11 Bare Soil- Rough Irregular Surface 25A ROADWAY 0.42 38 0.02 0.42 Gravel Mulch 26 PERVIOUS AREA 0.03 3 0.03 0.03 Bare Soil Rough Irregular Surface 26 ROADWAY 0.27 38 0.01 0.27 Gravel Mulch 27 PERVIOUS AREA 0.00 3 27 ROADWAY 0.04 9 0.00 0.04 Asphall/Comets Pavement 28 PERVIOUS AREA 0.00 3 28 ROADWAY 0.25 38 0.01 0.25 Gravel Mulch 29 PERVIOUS AREA 0.00 3 29 ROADWAY 0.15 38 0.01 0.15 GravelMulch 30 PERVIOUS AREA 0.00 3 30 ROADWAY 0.16 38 0.01 0.16 Gravel Mulch 31 PERVIOUS AREA 0.00 3 0.00 0.00 Bare Soil- Rough Irregular Surface 31 ROADWAY 0.07 38 0.00 0.07 Gravel Mulch 32 PERVIOUS AREA 0.21 3 0.21 0.19 Bare Sou- Rough Irregular Surface 32 ROADWAY 0.31 38 0.02 0.31 Gravel Mulch 33 PERVIOUS AREA 0.00 18 33 ROADWAY 0.03 38 0.00 0.03 Gravel Mulch 34 PERVIOUS AREA 0.19 18 0.00 0.19 Established Gross Ground Cover -90% 34 ROADWAY 0.23 38 0.01 0.23 GravelMukh 35 PERVIOUS AREA 0.00 18 35 ROADWAY 0.39 38 0.02 0.39 Gravel Mulch 36 PERVIOUS AREA 0.17 18 0,00 0.17 Estaoushed Grass Ground Cover -90% 36 ROADWAY 0.16 38 0.01 0.16 Gravel Mulch 37 PERVIOUS AREA 0.04 18 0.00 0.04 Established Grass Ground Cover -90% 37 ROADWAY 0.29 38 0.01 0.29 Gmvd MNch 38 PERVIOUSAREA 0.09 18 0.00 0.09 Established Grass Ground Cover -90% 38 ROADWAY 0.23 38 0.01 0.23 Gravel Mulch 39 PERVIOUS AREA 2.02 39 0.12 2.02 Hay or Strm Dry Mulch (1.5% slope) 39 ROADWAY 0.00 39 40 PERVIOUS AREA 0.01 18 0.00 0.01 Established Grass Ground Cover -90% 40 ROADWAY 0.05 38 0.00 0.05 Gravel Much 10.44105 38.118 Cnet=(2.02x1 oD+.!3ogx,06)v6&66 = 0.27 Prrer-(2.02x.90-_t3.09x1.00y8B.68 = 0.78 EFF = (1-C'P)100 = (1-0.27'0.78)100 = 79.10 > 76.3 (PS) Assume paving not constructed within 6 weeks: use gravel inlet filters at all area inlets & silt fence at swales & downstream perimeters. L$4:9401 RBD, Inc. EFFECTIVENESS CALCULATIONS Total Site 799-001 PROJECT: ICBD Genesis IV STANDARD FORM B CALCULATED BY: tld DATE: 01/14/99 Erosion Control C-Facto P-Factoi Comment Number Method Value Value 9 Asphalt/Concrete Pavement 0.01 1 Paved and constructed 16 Established Grass Ground Cover- 70% 0.04 1 Lawns and openspace 19 Established Grass Ground Cover- 100% 0.02 1 Area not disturbed during construction MAJOR P A A BASIN % ac SITE 89.8 39.03 MAJOR SUB AREA Practice C' A P' A Remarks BASIN BASIN ac AFTER CONSTRUCTION 1 PERVIOUS AREA 5.28 16 0.21 5.28 Established Grass Ground Cover - 70% 1 ROADWAY 0.00 9 0.00 0.00 Asphalt/Concrete Pavement 2 PERVIOUS AREA 1.04 16 0.04 1.04 Established Grass Ground Cover - 70% 2 ROADWAY 0.19 9 0.00 0.19 Asphalt/Concrete Pavement 3 PERVIOUS AREA 0.67 16 0.03 0.67 Established Grass Ground Cover - 70% 3 ROADWAY 0.13 9 0.00 0.13 Asphalt/Concrete Pavement 4 PERVIOUS AREA 1.44 16 0.06 1.44 Established Grass Ground Cover - 70% 4 ROADWAY 0.23 9 0.00 0.23 Asphalt/Concrete Pavement 5 PERVIOUS AREA 0.65 16 0.03 0.65 Established Grass Ground Cover - 70% 5 ROADWAY 0.12 9 0.00 0.12 Asphalt/Concrete Pavement 6 PERVIOUS AREA 6.75 16 0.27 6.75 Established Grass Ground Cover- 70% 6 ROADWAY 0.00 9 0.00 0.00 AsphalUConcrete Pavement 7 PERVIOUS AREA 0.52 16 0.02 0.52 Established Grass Ground Cover - 70% 7 ROADWAY 0.23 9 0.00 0.23 Asphalt/Concrete Pavement 8 PERVIOUS AREA 0.17 16 . 0.01 0.17 Established Grass Ground Cover - 70% 8 ROADWAY 0.24 9 0.00 0.24 Asphalt/Concrete Pavement 9 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover - 70% 9 ROADWAY 0.99 9 0.01 0.99 Asphalt/Concrete Pavement 10 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover - 70% 10 ROADWAY 0.46 9 0.00 0.46 Asphalt/Concrete Pavement 11 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover- 70% 11 ROADWAY 0.38 9 0.00 0.38 Asphalt/Concrete Pavement 12 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover - 70% 12 ROADWAY 0.70 9 0.01 0.70 Asphalt/Concrete Pavement 13 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover - 70% 13 ROADWAY 0.50 9 0.01 0.50 Asphalt/Concrete Pavement 14 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover - 70% 14 ROADWAY 0.43 9 0.00 0.43 Asphalt/Concrete Pavement 15 PERVIOUS AREA 0.00 16 0.00 0.00 Established Gress Ground Cover - 70% 15 ROADWAY 0.39 9 0.00 0.39 Asphalt/Concrete Pavement 16 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover - 70% 16 ROADWAY 0.18 9 0.00 0.18 Asphalt/Concrete Pavement 17 PERVIOUS AREA 0.24 16 0.01 0.24 Established Grass Ground Cover- 70% 17 ROADWAY 1.72 9 0.02 1.72 Asphalt/Concrete Pavement 18 PERVIOUS AREA 0.85 16 0.03 0.85 Established Grass Ground Cover- 70% 18 ROADWAY 0.05 9 0.00 0.05 Asphalt/Concrete Pavement 19 PERVIOUS AREA 2.75 16 0.11 2.75 Established Grass Ground Cover- 70% 19 ROADWAY 0.10 9 0.00 0.10 Asphalt/Concrete Pavement 20 PERVIOUS AREA 0.35 16 0.01 0.35 Established Grass Ground Cover- 70% 20 ROADWAY 0.03 9 0.00 0.03 Asphalt/Concrete Pavement 21 PERVIOUS AREA 0.28 16 0.01 0.28 Established Grass Ground Cover - 70% 21 ROADWAY 0.46 9 0.00 0.46 Asphalt/Concrete Pavement F REID, Inc. ' EFFECTIVENESS CALCULATIONS Total Site 799-001 u 1 1 PROJECT: ICBD Genesis IV STANDARD FORM B CALCULATED BY: tld DATE: 01/14/99 Erosion Control C-Facto P-Factoi Comment Number Method Value Value 9 Asphalt/Concrete Pavement 0.01 1 Paved and constructed 16 Established Grass Ground Cover - 70% 0.04 1 Lawns and openspace 19 Established Grass Ground Cover - I 00-A 0.02 1 Area not disturbed during construction MAJOR PS AREA BASIN % ac SITE 89.8 39.03 MAJO S B AREA Practice C- A P• A Remarks BASIN BASIN ac AFTER CONSTRUCTION 22 PERVIOUS AREA 0.22 16 0.01 0.22 Established Grass Ground Cover - 70% 22 ROADWAY 0.79 9 0.01 0.79 Asphalt/Concrete Pavement 22A PERVIOUS AREA 0.15 16 0.01 0.15 Established Grass Ground Cover - 70% 22A ROADWAY 0.72 9 0.01 0.72 Asphalt/Concrete Pavement 23 PERVIOUS AREA 0.25 16 0.01 0.25 Established Grass Ground Cover - 70% 23 ROADWAY 0.49 9 0.00 0.49 Asphalt/Concrete Pavement 24 PERVIOUS AREA 0.07 16 0.00 0.07 Established Grass Ground Cover-70% 24 ROADWAY 0.56 9 0.01 0.56 Asphalt/Concrete Pavement 24A PERVIOUS AREA 0.02 16 0.00 0.02 Established Grass Ground Cover - 70% 24A ROADWAY 0.35 9 0.00 0.35 Asphalt/Concrete Pavement 248 PERVIOUS AREA 0.06 16 0.00 0.06 Established Grass Ground Cover- 70% 24B ROADWAY 0.25 9 0.00 0.25 Asphalt/Concrete Pavement 25 PERVIOUS AREA 0.17 16 0.01 0.17 Established Grass Ground Cover- 70% 25 ROADWAY 0.48 9 0.00 0.48 AsphalUConcrete Pavement 25A PERVIOUS AREA 0.12 16 0.00 0.12 Established Grass Ground Cover - 70% 25A ROADWAY 0.42 9 0.00 0.42 AsphaluConcrete Pavement 26 PERVIOUS AREA 0.03 16 0.00 0.03 Established Grass Ground Cover - 70% 26 ROADWAY 0.27 9 0.00 0.27 AsphaluConcrete Pavement 27 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover-70% 27 ROADWAY 0.04 9 0.00 0.04 Asphalt/Concrete Pavement 28 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover-70% 28 ROADWAY 0.25 9 0.00 0.25 AsphaluConcrete Pavement 29 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover - 70% 29 ROADWAY 0.15 9 0.00 0.15 Asphalt/Concrete Pavement 30 PERVIOUS AREA 0.00 19 0.00 0.00 Established Grass Ground Cover - 100% 30 ROADWAY 0.16 9 0.00 0.16 Asphalt/Concrete Pavement 31 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover-70% 31 ROADWAY 0.07 9 0.00 0.07 Asphalt/Concrete Pavement 32 PERVIOUS AREA 0.21 16 0.01 0.21 Established Grass Ground Cover - 70% 32 ROADWAY 0.31 9 0.00 0.31 Asphalt/Concrete Pavement 33 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover - 70% 33 ROADWAY 0.03 9 0.00 0,03 AsphalUConcrete Pavement 34 PERVIOUS AREA 0.19 16 0.01 0.19 Established Grass Ground Cover - 70% 34 ROADWAY 0.23 9 0.00 0.23 Asphalt/Concrete Pavement 35 PERVIOUS AREA 0.00 16 0.00 0.00 Established Grass Ground Cover - 70% 35 ROADWAY 0.39 9 0.00 0.39 Asphalt/Concrete Pavement 36 PERVIOUS AREA 0.17 16 0.01 0.17 Established Grass Ground Cover - 70% 36 ROADWAY 0.16 9 0.00 0.16 Asphalt/Concrete Pavement 37 PERVIOUS AREA 0.04 16 0.00 0.04 Established Grass Ground Cover - 70% 37 ROADWAY 0.29 9 0.00 029 Asphalt/Concrete Pavement 38 PERVIOUS AREA 0.09 16 0.00 0.09 Established Grass Ground Cover - 70% 38 ROADWAY 0.23 9 0.00 0.23 AsphaluConcrele Pavement 39 PERVIOUS AREA 2.02 16 0.08 2.02 Established Grass Ground Cover - 70% 39 ROADWAY 0.00 9 0.00 0.00 Asphalt/Concrete Pavement 40 PERVIOUS AREA 0.01 16 0.00 0.01 Established Grass Ground Cover - 70% 40 ROADWAY 0.05 9 0.00 0.05 AsphaluConcrete Pavement Chet = [5.28x0.04+,_+0.17x0.04)139.03 = 0.03 Pnet = [5.28x1.00+...+0.17x1.00]/39.03 = 1.00 EFF = (1-C'P)100 = (1-0.03'1.00)100 = 97.09 > 89.8 (PS) RBD. Inc. EROSION CONTROL CONSTRUCTION SEQUENCE PHASE 1 Construction 799-001 PROJECT: ICBD Genesis IV STANDARD FORM C CALCULATED BY: tld DATE: 07/27/98 SEQUENCE for 1996 ONLY Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. YEAR 1996 1997 MONTHS S 1 O 1 N D J I F I M I A I M I J I J I A WIND EROSION CONTROL Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation N ettings/Mats/Blankets Other STRUCTURES: INSTALLED BY VEGETATION/MULCHING CONTRACTOR DATE SUBMITTED MAINTAINED BY APPROVED BY CITY OF FORT COLLINS ON RBD, Inc. EROSION CONTROL COST ESTIMATE J� Genesis -IV— - PREPARED BY: TLD DATE: 02/17/98 Unit Total Method Quantity Unit Cost Cost Notes Reseed/mulch 39.3 ac $500 $19,650 See Note 1. Subtotal $19,650 Contingency 50% $9,825 Total $29,475 EROSION CONTROL MEASURES Unit Total Number Method Quantity Unit Cost Cost Notes 5 Straw Bale Barrier 2 ea $150 $300 6 Gravel Filter 23 ea $300 $6,900 8 Silt Fence Barrier 3010 LF $3 $9,030 38 Gravel Mulch 7.24 ac $1,350 $9,774 39 Hay or Straw Dry Mulch (1-5% slope) 11.87 ac $500 $5,935 Subtotal $31,939 Contingency 50% $15,970 Total $47,909 Total Security $47,909 Notes: 1. A<1 ac=$1300/ac; A=1-10 ac=$650/ac; A>10 ac=$500/ac. LJ I 11 I I I I 1] I I I CHARTS, TABLES AND FIGURES I� 950 1 i 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DRAINAGE CRITERIA MANUAL 5( 3C z w U cc IL 1C z w O5 N w cc 3 O 0 2 cL w F- 3 1 5. RUNOFF w ����� ��� ► mm ME 111 1 NA ��■ ► Il ,' ' ���� I■■■MEN •I 11111WANNIMIN INN i■�►�11111rANNINI■11r,■r�s�ii����■■�� a . I 2 3 5 10 20 VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING "UNDEVELQPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. 5-1-84 URBAN DRAINAGE & FLOOD CONTROL DISTRICT DRCOG . $6 No Text INTERPOLATED VALUES FOR 100 YEAR INTENSITIES Tc Value ��,�µr- 5.00 9.0 5.10 9.0 5.20 8.9 5.30 8.9 5.40 8.9 5.50 8.8 5.60 8.8 5.70 8.7 5.80 8.7 5.90 8.7 6.00 8.6 6.10 8.6 6.20 8.6 6.30 8.5 6.40 8.5 6.50 8.5 6.60 8.4 6.70 8.4 6.80 8.4 6.90 8.3 7.00 8.3 7.10 8.2 7.20 8.2 7.30 8.2 7.40 8.1 7.50 8.1 7.60 8.1 7.70 8.0 7.80 8.0 7.90 8.0 8.00 7.9 8.10 7.9 8.20 7.8 8.30 7.8 j 8.40 7.8 8.50 7.7 8.60 7.7 8.70 7.7 8.80 7.6 8.90 7.6 9.00 7.6 9.10 7.5 9.20 7.5 9.30 7.5 9.40 7.4 9.50 7.4 9.60 7.3 9.70 7.3 9.80 7.3 9.90 1.2 10.00 7.2 8 1 1 1 1 1 1.0 12 5 .9 11 10 4 8 10 3 8 6 9 o iiD U. 2 8 w 3 �. Z a 1.5 F 6 2 0 7 - w a. 0. {/ L .5 Ex_ _ 1.0 2rz.4zrr z �- 5.5 0 - - - - - ao .8 f- w 5 = z .6 0 .7 u- .4 z z .4 f- Z 4.5 z o 3 6 - w L ' LL S 4 0 .2 0 .5 co 0 = t- z z F 3 w 3.5 z z T 4 a _ o ao J I w tL U- a .08 ►- 0 .25 3 0 o f- S S p .06 3 LL z w w - S S .04 25 2.5 w w .2 } .03 f- a 3 a .02 0 .2 a 2 a S U H a .15 .01 0 .15 L u, 0 0 --- -- - -- - - yo a 1.5 0_ 0=2h 10 1.2 0 n Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" -I Adapted from Bureau of Public Roads Nomograph Y 1984 5-10 DESIGN CRITERIA 1.2 15 = 2.5' VA Nm cc o .6 F— U Q L- Z 0 .5 U w M ,4 .3 .2 s:0.4% F=0.5 I BELOW MINIMUI,4 I ALLOWABLE I STREET GRADE .O y 1 1 1 1 1 1 I I f I 1 1 1 1 0 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. S (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 DESIGN CRITERIA `STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 803 t MANHOLE AND JUNCTION LOSSES 1 O/ M07t ra rTTypoc/ PLAN PLAN of IA I. 1 0 �J I I o, USE EQUATION 801 SECTION ►i —_ K CASE r INLET ON MAIN LINE Jr k= o:OS /rLtn(,cl� c.ryMti:nLine °"k USE EQUATION 805 NL- V4 — K VI` K= W",ei)5tr, PLAN SECTION CASE M MANHOLE ON FAIN LINE WITH A° BRANCH LATERAL USE EQUATION 805 x k v�2 z� SECTION CASE II INLET ON MAIN LINE NIIIIIIII�It • PLAN a °=•' USE EQUATION 801 uL=K �L a�. SECTION CAEg Mr INLET OR MANHOLE AT 4 BEGINNING OF LINE CASE III CASE NO. K. 90 K. I 5 22 11/2 0.75 II 0.25 45 0.50 IV 1.25 60 0.35 90 0.25 No Lateral See Case I Date: NOV 1984 I REFERENCE: Rev: APWA Special Report No. 49, 1981 9r Table 813 C-Factors and P-Factors for Evaluating EFF Values. Treatment C-Factor P-Factor ' BARE SOIL Packedand smooth................................................................ 1.00 1.00 Freshlydisked........................................................................ 1.00 0.90 ' Rough irregular surface........................................................... 1.00 0.90 .SEDIMENT BASIN/TRAP................................................................. 1.00 0.50" I ' STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG ........................ 1.00 0.80 SILT FENCE BARRIER..................................................................... 1.00 0.50 ASPHALT/CONCRETE PAVEMENT ................................................... 0.01 1.00 ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A 1.00 SODGRASS................................................................................. 0.01 1.00 TEMPORARY VEGETATION/COVER CROPS .................................... 0.4512' 1.00 HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.1013' 1.00 SOIL SEALANT....................................................................0.01-0.60141 1.00 ' EROSION CONTROL MATS/BLANKETS............................................ 0.10 1.00 GRAVEL MULCH ' Mulch shall consist of gravel having a diameter of approximately 1/4" to 1 1/2" and applied at a rate of at least 135 tons/acre.............. 0.05 1.00 HAY OR STRAW DRY MULCH ' After olantino orass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil. Slope (°.61 ' 1 to 05.............................................................................0.06 1.00 6 to 10............................................................................. 0.06 1.00 11 to 15............................................................................. 0.07 1.00 16 to 20............................................................................. 0.11 1.00 ' 21 to 25.............................................................................0.14 1.00 25 to 33.............................................................................0.17 1.00 > 33.......................................................................... 0.20 1.00 NOTE: Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation. (1) Must be constructed as the first step in overlot grading. (2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required. (3) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. I MARCH 1991 2•6 DESIGN CRITERIA 91 1"' I 1 r— F L Table 8-B C-Factors and P-Factors for Evaluating EFF Values (continued from previous page). Treatment C-Factor P-Factor CONTOUR FURROWED SURFACE Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. Basin Maximum Slope Length (°,G) (feet) 1 to 2 400..........................................................................1.00 0.60 3 to 5 300..........................................................................1.00 0.50 6 to 8 200..........................................................................1.00 0.50 9 to 12 120..........................................................................1.00 0.60 13 to 16 80..........................................................................1.00 0.70 17 to 20 60..........................................................................1.00 0.80 > 20 50.......................................................................... 1.00 0.90 TERRACING Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. Basin Slope M 1 to 2..................................................................................... 1.00 0.12 3 to 8.................................................................................... 1.00 0.10 9 to 12.................................................................................... 1.00 0.12 13 to 16..................................................................................... 1.00 0.14 17 to 20.....................................................................................1.00 0.16 > 20..................................................................................... 1.00 0.18 NOTE. Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation. ' MARCH 1991 8.7 DESIGN CRITERIA 93 1 ' o Qo ai O a ' 0 v 1] 1 L] t z H a 0 U 0 G. 414 10 co W C r G ' MARCH1991 0 rno+000 o vvUiuiUi Ic1 mmmmm O-m01mrn000000 o v v v v U1 U1 U1 U1 U1 U1 vmmmmmmmgmm o matrnrn ...cic oc o+o,a rnc,000 . ............ o v v v v r v v v v v v r N N to M m g m m Co Co m m m m m W m m m O . the . emc. 0Ot1. c. 0. O. 0 . 17,. M. . . . . . . O v v v v v v v v v v v r v v v v v v v v N co Co m m m m m co m m Co g m 00 m co Co m m Co 0 onaUllotototOnnnnnnnnnhnnmmmmmm . . . . . . . . . . . . . . . . . . . . . . . . . . o vvvvvvvvvv v r rrvrcvarvvvvvav rl mmmmmCoCO COmmcopColbmCocommmCommcoCom O CoNMVU1 U1 U1 tD t0 tD 10t0 ton nnnnnnnn n m Coco . . . . . . . . . . . . . . . . C% Mvvvvv�'vv� v rvvvvvvvvvv�'vvv co m m co m m m Co co co m 0 m 0 m m m m m m m m m m m m 0 100 NMvvU1U1U11r1 0 t0t0t0tDt0t0t0tDnnnnnn . . . . . . . . . . . . . . . . . q Mr vvvsrvr a vsrrvvvsr�vvr �rva r Iry m m m Co co m m m m m 0 m m m m m m co OD '00 co co m m co m O vO H N ri m RT v v v In in Ln u) in In In In In%D%0%0%0%DWN ................. .. . n Mrlvvvv�rvrvavrvvvvvvvvvvvv Co m m Co 00 CO 00 m Co CO co CO Co co CO co Co Co CO CO CO Co Co CO m co O 9t ccoC! ir�N M MMvvvvvvvvU1U1U1U1to10 . . . . . . . . . . . . . . . . . . . . . . . . . t0 M M P1 v v v v v v v v v v v v v v v v v v v v v v v CO CO COmmmgmmmmmmmmmmmmmmmgqmm . O In N In NCO 01 0 0 ri rq ri N N N N N M M M M M v v v v v �Ln N M M M M M v v v v v v v v v v v v v v v v v v v v CO CO 0D co m Co Co Co m Co Co Co CO CO Co Co co Co co Co Co Co Co Co m co W' 04ln ricoriMVlnLc)%D0nnrmcommmc00%0,m00000 . .......................... v NNt'fC'1Mf`1f"1MMMMMMMMMMMMMMvv7.ry u] cOmcocomaooOmmmmgmmmmgmmmmmmmmm 0 1ou�morlNM�alnlnu11o101o1o1annnnmmmrnrn . . . . . . . . . . . . . . . . . . . . . v ri N N c 1 cr1 r 1 Pl r`1 M f9 M M M M M M M M M M M M M M M M m m m m co cO o0 0o m m m m m m m m m m m m m m m m m m 0 r4rg0Nw00r4NNMMMvvvvv0 m0%0%010nf- en (nM MM mmcomW mc00pmcoCOmmmmmmmmmmmcommq O M N tD co Ot 0 r1 N N M M M v v v v v v U1 U7 U1 U7 t0 10 l0 t0 C) O H ri ri ri N N N N N N N N N N N N N N N N N N N NN mmmmgmmmmmmmmgmmmmmmmmmmmm In . ... ....... ... ... .... N mO.Or-1r•1r•Iririririririririririr•iHririNNNNNN n m g m OD OD cO m cO m O0 m m Co m m Co m m Co Co m m co Co co O V'U1 O I'1 In 10 c00D Of OOOri ri ri r-INNNNMMMM M M . . . . . . . . . . . . . . . . . . . . . . . . . . N co 0% 0 0 0 0 0 O O rq rq ri H Hq ri ri ri ri Hri r� r•� r� r� r� nncoc000cocommmmmmmmmmmmmmmgmmm In m N Coriv U7 n n m m 0 O o rl ri rl riH NNNMMMMM . . . . . . . . . . . . . . . . . . . . . 4 tOCoco 010;0;(1I;% 10101OoOOOOOOOOOOO o 0 n n n In n n n n n In n 00 co Co Co CO co Co m CO m Co Co CO m co O . wmovn01OriNMMv-wmIn In In 101010t0nn101010 . . . . . . . . . . . . . . . . . . . . . . . r1 vtonnnnmcO cm coca Cc mwmmmmcommmmgco n n n n n n n n n n n n n n n n n n n n n n n n n n In 01Ovt0ncoconnntDto101nvvMMNNIn%ovr10110 . . . . . . . . . . . . . . . . . . . . . . . . . . . O oNNNNr N N N N NN N N NN NNri.i 1; ri OO nnnnnnnnnlrnnnnnnnnnni�nnnnn x E,..• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [7N oOOOOOOOOOOOOOOOOOOOOOOOOO 7.k• riNMVU)tOnCoQlOriNMVlntonco01OU1OU1OU1O av Hr'Ir'�r{ririririririNNMMvvl1.1 8.4 9y DESIGN CRITERIA .i' I ( i I I I ► I � ( I I I I I I I t I 1 t I I I i I I I f , { I I I I I I I ( I I • • I T, I I I I I t I(► i i ► I i I G> ! 0) C71 C Ci CYO cc Co 00 O O O O O O ^i0 T41-Lo J d 0 0 0 L 0 O ° w 0 O iJ �I 0 ram-+ �.. OINI L 1% 4 C�� J 95 r 4 DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap % Smaller Than Intermediate Rock d5O* Designation Given Size Dimension By Weight (Inches) (Inches) Type VL 70-100 12 50-70 9 35-50 6 6** 2-10 2 Type L 70-100 15 50-70 12 35-50 9 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 50-70 24 35-0 2-10 18 18 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 9 *d5O = Mean particle size ** Bury types VL and L with native from vandalism. top soil and revegetate to protect 5.2 Wire Enclosed Rock Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit. One of the major advantages of wire enclosed rock is that it provides an alternative in situations where available rock size's are too small for ordinary riprap. Another advantage is the versatility that results from the regular geometric shapes of wire blocks and mats can be fashioned enclosed rock. The rectangular into almost any shape that can be 11-15-82 9G DRAINAGE CRITERIA MANUAL RIPRAP I: 6. = Expansion Angle IN EMAINFROMMEME AM MAI Pj NO PJAM's 0 m 0 .1 .2 .3 .4 ..5 .6 .7 .8 TAILWATER DEPTH/CONDUIT HEIGHT, Yt/D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT Td n 4C 0 a 2C I I L 2 A Y t/D .6 .8 ID Use Do instecd of D whenever flow is supercriticol in the borrel. *Use Type L for o distonce of 3D downsirecm. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE IN FLOOD CONTROL DISTRICT [J I EXCERPTS FROM BUILDING 5 REPORT I Ll 1 1 1 I 1 I I n I I 100 YEAR SWMM MODEL I im REV. 3 FINAL DRAINAGE STUDY FOR HEWLETT-PACKARD COMPANY BUILDING 5 FORT COLLINS, COLORADO October 4, 1996 Prepared for: H + L Architecture 1621 18th Street, Suite 100 Denver, Colorado 80202 Prepared by: RBD, Inc. Engineering Consultants A Division of Sear Brown 209 South Meldrum Fort Collins, Colorado 80521 (970) 482-5922 RBD Job No. 282-015 /00 I ;Z o 0 z Lu ; Z a' W o ;U W ; Lu o U)i cc �-- iu a _ ... D .LL ? J ). of--- --- — 2 Q W W Q W 2 U3 o m Q o ti' W W � Q � f ®�otpl N b m O� m O p � ti M Q U H W. �2 U CO 0 0 PAGE 70 REMOVED I [1 J �J I 1 1 I 11 CLIENT Rl LC [.�r"C. JOB NO. INC PROJECT �le :.I// G 'rGi CCb•rrl, CALCULATIONS FOR fvyA" m Engineering Consultants MADEBT ✓ TDATE l rl NECKED BY- DATE —SHEET—OF /f1-CacQGtys �dsr/� �W/!'IM /l'Icdc-�cGa.�ic'�� S q \ — +P �A t* (Gi ('� � S Ae vi--1 O L' r'/l-CYL+ O, 0 0 7:�- Ff�Frt ^ J AJ j,A �9 6 iJ% Oo 3 s1= O. D6 D 103 ISWMM input rile 282013S1.DAT: e 1 1 2 3 4 WATERSHED 0 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT 96 5.0 1 10. 25 5.0 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3:72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 .2 .016 .25 .1 .3 .51 .5 .0018 1 21 125 3200 66.3 40 .004 1 23 126 4000 61.3 40 .007 1 24 127 2600 10.6 40 .003 1 31 128 5000 87.9 40 .008 1 32 35 3200 31.3 60 .003 1 33 42 600 13.3 10 .050 1 34 39 4800 78.6 70 .005 ski 1 30 38 1630 18.7 72 .007 0 0 1 36 35 0 1 3.0 900.0 .0037 4.0 4.0 .060 10.00 1 35 38 0 1 5.0 1300.0 .0037 4.0 4.0 .035 10.00 1 38 40 0 1 5.0 1900.0 .0046 4.0 4.0 .035 10.00 0 40 43 10 2 .01 100.0 .01 .023 .01 0.00 0.00 0.44 20.00 0.98 20.00 1.61 20.0 2.35 24.0 3.25 50.0 4.74 80.0 7.03 100.0 8.23 110.0 9.86 250.0 1 43 42 0 5 4.0 650.0 .025 0.0 0.0 .016 4.00 50.0 650.0 .025 50.0 50.0 .035 100.0 0 39 41 11 2 .01 100.0 .01 .023 .01 0.00 0.00 0.06 2.00 1.04 31.0 2.10 38.0 3.23 46.00 4.45 52.00 5.37 54.0 5.78 56.0 7.16 60.0 8.66 64.00 10.28 68.0 41 42 0 5 4.7 300.0 .050 0.0 0.0 .016 4.70 50.0 300.0 .025 50.0 50.0 .035 100.00 0 42 203 8 2 .01 0.1 .11 .001 100.0 .0 .0 2.0 21.0 4.2 22.5 6.90 23.5 9.9 24.2 13.4 25.0 16.4 214.5 19.6 575.6 1 125 213 0 1 2.0 2600.0 .004 30.0 30.0 .016 100.00 1 126 214 0 1 2.0 2000.0 .004 30.0 30.0 .016 100.00 1 127 35 0 1 2.0 1300.0 .006 30.0 30.0 .016 100.00 i 128 215 0 1 2.0 2600.0 .004 30.0 30.0 .016 100.00 * TEFORETICAL 3-POINT RATING CURVES FOR FUTURE UPSTREAM DETENTION PONDS 213 35 3 2 0.1 100.0 .010 .013 0.1 0 .0 5.33 24.0 6.0 24.0 214 35 3 2 0.1 100.0 .010 .013 0.1 .0 .0 5.70 24.0 7.0 24.0 215 36 3 2 0.1 100.0 .010 .013 0.1 .0 .0 9.32 24.0 10.0 24.0 0 12 1 35 38 39 41 42 40 43 213 214 215 36 127 NDPROGRAM I / 0 1 I T-3 SVVMM output file 282O13S1.OUT: ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 - DEVELOPED BY METCALF + EDDY, INC. ' UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) ' UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) WATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282O13S1.DAT ER OF TIME STEPS 96 I.,iEGRATION TIME INTERVAL (MINUTES) 5.00 10.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .12 .12 .00 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 21 125 3200.0 66.3 40.0 .0040 .016 .250 .100 .300 23 126 4000.0 61.3 40.0 .0070 .016 .250 .100 .300 24 127 2600.0 10.6 40.0 .0030 .016 .250 .100 .300 31 128 5000.0 87.9 40.0 .0080 .016 .250 .100 .300 32 35 3200.0 31.3 60.0 .0030 .016 .250 .100 .300 33 42 600.0 13.3 10.0 .0500 .016 .250 .100 .300 34 39 4800.0 78.6 70.0 .0050 .016 .250 .100 .300 30 38 1630.0 18.7 72.0 .0070 .016 .250 .100 .300 TOTAL NUMBER OF SUBCATCHMENTS, 8 TOTAL TRIBUTARY AREA (ACRES), 368.00 ETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED n_.ISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT 1 1.56 .24 INFILTRATION RATE(IN/HR) GAGE MAXIMUM MINIMUM DECAY RATE NO .51 .50 .00180 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 I ' OS ' *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** "RSHED AREA (ACRES) 368.000 ' TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .479 'TOTAL WATERSHED OUTFLOW (INCHES) 2.195 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .216 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .004 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 36 35 0 1 CHANNEL 3.0 900. .0037 4.0 4.0 .060 10.00 1 35 38 0 1 CHANNEL 5.0 1300. .0037 4.0 4.0 .035 10.00 1 38 40 0 1 CHANNEL 5.0 1900. .0046 4.0 4.0 .035 10.00 1 40 43 10 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 20.0 1.0 20.0 1.6 20.0 2.4 24.0 3.3 50.0 ' 4.7 80.0 7.0 100.0 8.2 110.0 9.9 250.0 43 42 0 5 PIPE 4.0 650. .0250 .0 .0 .016 4.00 1 OVERFLOW 50.0 650. .0250 50.0 50.0 .035 100.00 39 41 11 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 1.0 31.0 2.1 38.0 3.2 46.0 4.5 52.0 5.4 54.0 5.8 56.0 7.2 60.0 8.7 64.0 10.3 68.0 41 42 0 5 PIPE 4.7 300. .0500 .0 .0 .016 4.70 1 OVERFLOW 50.0 300. .0500 50.0 50.0 .035 100.00 42 203 8 2 PIPE .0 0. .1100 .0 .0 .001 100.00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0, 2.0 21.0 4.2 22.5 6.9 23.5 9.9 24.2 13.4 25.0 16.4 214.5 19.6 575.6 125 213 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 '126 214 0 1 CHANNEL 2.0 2000. .0040 30.0 30.0 .016 100.00 1 127 35 0 1 CHANNEL 2.0 1300. .0060 30.0 30.0 .016 100.00 1 128 215 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 213 35 3 2 PIPE .1 100. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 5.3 24.0 6.0 24.0 214 35 3 2 PIPE .1 100. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 5.7 24.0 7.0 24.0 215 36 3 2 PIPE .1 100. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 9.3 24.0 10.0 24.0 TOTAL NUMBER OF GUTTERS/PIPES, 15 ' HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 35 36 127 213 214 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 257.4 36 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87.9 38 35 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 276.1 ' 39 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 78.6 40 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 276.1 41 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78.6 42 43 41 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 368.0 43 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 276.1 106 125 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 66.3 126 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 61.3 127 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 10.6 ' 128 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 87.9 213 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66.3 214 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.3 ' 215 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87.9 HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET ' (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER ' TIME(HR/MIN) 35 36 38 39 40 41 42 43 127 213 0 5. .00 .00 .00 .02 .00 .01 .00 .00 .00 .00 0 10. .00( ) .02 .00( .00 ) .00( ) .01 .00(s) .18 .00( ) .00 .02( .11 ) .00(s) .01 .00( ) .00 .00( ) .02 .00( ) .01 .02( ) .00( ) .01( ) .01(S) .00(S) .06( ) .00(S) .00( ) .02( ) .00(S) 0 15. .92 .00 .43 2.11 .06 1.67 .17 .01 .66 .02 .20( ) .00( ) .12( ) .06(S) .00(S) .22( ) .02(S) .03( ) .11( ) .00(S) 0 20. 5.94 .00 3.46 7.58 .57 7.01 .63 .25 2.61 .09 ' .56( ) .01( ) .39( ) .25(S) .01(S) .43( ) .06(S) .11( ) .20( ) .02(S) 0 25. 18.68 .02 13.38 19.26 2.70 18.31 1.78 1.78 5.87 .34 1.02( ) .04( ) .81( ) .64(S) .06(S) .68( ) .17(S) .28( ) .28( ) .07(S) 0 30, 47.78 .11 40.05 34.08 9.20 33,39 4.33 7.32 13.03 1.05 ' 1.61( ) .10( ) 1.41( ) 1.51(S) .20(S) .92( ) .41(S) .54( ) .38( ) .23(S) 35. 114.15 .48 106.51 46.98 20.00 46.42 9.10 17.96 30.11 2.86 2.40( ) .24( ) 2.22( ) 3.43(S) .61(S) 1.08( ) .87(S) .84( ) .54( ) .63(S) 7 40. 164.63 1.52 182.26 55.50 20.00 55.27 15.11 21.05 37.99 6.14 2.83( ) .45( ) 2.82( ) 5.68(S) 1.46(S) 1.18( ) 1.44(S) .91( ) .59( ) 1.36(S) ' 0 45. 153.45 3.55 206.34 59.88 31.88 59.72 21.02 28.56 30.60 10.08 2.74( ) .69( ) 2.97( ) 7.12(S) 2.62(S) 1.23( ) 2.03(S) 1.06( ) .54( ) 2.24(S) 0 50. 135.29 6.38 195.78 62.33 58.95 62.27 21.51 55.22 25.08 13.71 2.59( ) .92( ) 2.91( ) 8.03(S) 3.69(S) 1.25( ) 2.74(S) 1.50( ) .50( ) 3.04(S) 0 55. 123.07 9.53 176.21 63.93 75.43 63.86 22.10 74.57 20.67 16.77 ' 2.48( ) 1.11( ) 2.78( ) 8.63(S) 4.51(S) 1.27( ) 3.61(S) 1.77( ) .46( ) 3.72(S) 1 0. 115.01 12.60 158.05 64.85 83.29 64.84 22.63 82.37 16.95 19.28 2.41( ) 1.26( ) 2.65( ) 9.01(S) 5.12(S) 1.28( ) 4.55(S) 1.87( ) .43( ) 4.28(S) 1 5, 109.02 2.35( ) 15.34 1.37( ) 143.13 2.53( ) 65.33 9.20(S) 87.22 5.57(S) 65.31 1.28( 22.99 ) 5.53(S) 87.09 1.93( ) 13.73 .39( ) 21.29 4.73(S) 1 10. 104.57 17.67 131.41 65.49 90.15 65.50 23.36 89.70 11.11 22.89 2.31( ) 1.46( ) 2.44( ) 9.26(S) 5.90(S) 1.28( ) 6.52(S) 1.97( ) .36( ) 5.08(S) 1 15. 100.94 19.59 122.34 65.41 92.29 65.41 23.64 92.19 9.04 24.01 2.27( ) 1.53( ) 2.36( ) 9.23(S) 6.15(S) 1.28( ) 7.51(S) 2.00( ) .33( ) 5.36(S) 1 20. 97.64 21.14 115.23 65.16 93.84 65.18 23.88 93.63 7.48 24.01 2.24( ) 1.59( ) 2.30( ) 9.13(S) 6.32(S) 1.28( ) 8.51(S) 2.02( ) .31( ) 5.58(S) 1 25. 94.64 22.37 109.43 64.78 94.92 64.79 24.11 94.86 6.26 24.01 2.21( ) 1.63( ) 2.24( ) 8.98(5) 6.45(S) 1.28( ) 9.50(S) 2.03( ) .28( ) 5.75(S) 1 30. 92.01 23.17 104.55 64.30 95.62 64.33 24.33 95.53 5.28 24.01 2.18( ) 1.65( ) 2.20( ) 8.78(S) 6.53(S) 1.27( ) 10.48(S) 2.04( ) .26( ) 5.89(S) 1 35. 89.85 23.59 100.56 63.73 96.03 63.76 24.56 96.01 4.54 24.01 2.16( ) 1.66( ) 2.16( ) 8.56(S) 6.58(S) 1.27( ) 11.46(S) 2.05( ) .25( ) 5.99(S) ' 1 40. 88.09 2.14( ) 23.79 1.67( ) 97.34 2.13( ) 63.09 8.32(S) 96.20 6.59(S) 63.13 1.26( 24.78 ) 12.43(S) 96.18 2.05( ) 3.98 ) 24.01 6.07(S) 1 45. 86.64 23.90 94.76 62.42 96.19 62.45 25.00 96.20 .24( 3.55 24.01 2.12( ) 1.67( ) 2.10( ) 8.07(S) 6.59(S) 1.25( ) 13.39(S) 2.05( ) .22( ) 6.13(S) 1 50. 85.45 23.95 92.69 61.72 96.05 61.76 74.05 96.06 3.20 24.01 ) 1.68( ) 2.08( ) 7.81(S) 6.58(S) 1.25( ) 14.18(S) 2.05( ) .21( ) 6.17(S) I2.11( 1 55. 84.22 23.98 90.81 61.00 95.80 61.02 105.43 95.83 2.86 24.01 2.09( ) 1.68( ) 2.06( ) 7.53(S) 6.55(S) 1.24( ) 14.67(S) 2.05( ) .20( ) 6.20(S) 0. 82.90 23.99 88.93 60.23 95.45 60.27 125.07 95.49 2.52 24.01 ' 2 5. 2.08( ) 81.50 1.68( 24.00 ) 2.04( ) 86.98 7.25(S) 59.38 6.51(S) 95.01 1.23( 59.42 ) 14.98(S) 137.12 2.04( ) 95.07 .19( ) 2.17 6.21(S) 24.01 2.06( ) 1.68( ) 2.02( ) 6.95(S) 6.46(S) 1.22( ) 15.17(S) 2.04( ) .18( ) 6.21(S) 2 10. 80.07 24.00 84.96 58.47 94.48 58.52 144.24 94.55 1.84 24.01 2.05( ) 1.68( ) 2.00( ) 6.63(S) 6.40(S) 1.21( ) 15.29(S) 2.03( ) .17( ) 6.19(S) 107 ' 2 15. 78.84 24.01 83.07 57.54 93.87 57.58 148.18 93.94 1.57 24.01 2.03( ) 1.68( ) 1.98( ) 6.31(S) 6.33(S) 1.20( ) 15.35(S) 2.02( ) .16( ) 6.16(S) 2 20. 77.84 24.01 81.41 56.59 93.19 56.64 150.06 93.27 1.34 24.01 ' 2.02( ) 1.68( ) 1.96( ) 5.98(S) 6.25(S) 1.19( ) 15.38(S) 2.01( ) ) 6.13(S) ? 25. 77.04 24.01 80.02 55.40 92.46 55.46 150.56 92.55 .15( 1.16 24.01 2.01( ) 1.68( ) 1.95( ) 5.66(S) 6.17(S) 1.18( ) 15.39(S) 2.00( ) .14( ) 6.08(S) ' 30. 76.40 2.00( ) 24.01 1.68( ) 78.87 1.93( ) 53.91 5.33(S) 91.70 6.08(S) 53.98 1.16( ) 150.06 15.38(S) 91.79 1.99( ) 1.01 ) 24.01 6.02(S) 2 35. 75.87 24.01 77.93 53.21 90.93 53.20 149.00 91.01 .13( .89 24.01 2.00( ) 1.68( ) 1.92( ) 5.00(S) 5.99(S) 1.16( ) 15.36(6 1.98( ) .12( ) 5.95(S) 2 40. 75.43 24.01 77.17 52.50 90.15 52.56 147.73 90.23 .79 24.01 1.99( ) 1.68( ) 1.91( ) 4.68(S) 5.90(S) 1.15( ) 15.34(S) 1.97( ) .12( ) 5.88(S) ' 2 45. 75.06 24.01 76.53 51.54 89.37 51.57 146.29 89.46 24.01 1.99( ) 1.68( ) 1.91( ) 4.36(S) 5.81(S) 1.14( ) 15.32(S) 1.96( ) .70 .11( ) 5.80(S) 2 50. 74.75 24.01 76.01 49.97 88.61 50.08 144.60 88.69 .63 24.01 1.98( ) 1.68( ) 1.90( ) 4.04(S) 5.73(S) 1.12( ) 15.29(S) 1.95( ) .10( ) 5.71(S) 2 55. 74.43 24.01 75.55 48.44 87.86 48.48 142.65 87.94 .56 24.01 1.98( ) 1.68( ) 1.89( ) 3.73(S) 5.64(S) 1.10( ) 15.26(S) 1.94( ) .10( ) 5.62(S) 3 0. 73.96 24.01 75.10 46.95 87.12 47.04 140.55 87.21 24.01 1.97( ) 1.68( ) 1.89( ) 3.42(S) 5.56(S) 1.09( ) 15.23(S) 1.94( ) .51 .10( ) 5.53(S) ' 3 5. 73.37 1.97( ) 24.01 1.68( ) 74.58 1.88( ) 45.29 3.13(S) 86.41 5.47(S) 45.35 1.07( ) 138.34 15.19(S) 86.49 1.93( ) .46 ) 24.01 5.43(S) 3 10. 72.74 24.01 74.00 43.28 85.70 43.39 135.98 85.78 .09( .42 23.99 1.96( ) 1.68( ) 1.88( ) 2.85(S) 5.39(S) 1.04( ) 15.16(S) 1.92( ) .09( ) 5.33(S) 3 15. 71.96 24.01 73.33 41.35 85.00 41.42 133.48 85.08 .38 23.52 1.95( ) 1.68( ) 1.87( ) 2.57(S) 5.31(S) 1.02( ) 15.12(S) 1.91( ) .08( ) 5.22(S) 3 20. 71.00 24.01 72.55 39.50 84.29 39.61 130.92 84.37 .34 23.05 1.94( ) 1.68( ) 1.86( ) 2.31(S) 5.23(S) 1.00( ) 15.08(S) 1.90( ) .08( ) 5.12(S) 3 25. 69.97 24.01 71.64 37.75 83.58 37.82 128.35 83.66 .31 22.58 1.92( ) 1.68( ) 1.85( ) 2.06(S) 5.15(S) .97( ) 15.04(S) 1.89( ) .08( ) 5.01(S) ' 3 30. 68.91 23.94 70.66 36.17 82.86 36.25 125.82 82.94 .29 22.11 1.91( ) 1.68( ) 1.84( ) 1.82(S) 5.07(S) .95( ) 15.00(S) 1.88( ) .07( ) 4.91(S) 3 35. 67.80 23.76 69.62 34.65 82.11 34.72 123.36 82.20 .26 21.65 1.89( ) 1.67( ) 1.82( ) 1.59(S) 4.98(S) .93( ) 14.96(S) 1.87( ) .07( ) 4.81(S) 3 40. 66.63 23.52 68.52 33.19 81.35 33.27 120.95 81.44 .24 21.19 ' 1.88( ) 1.66( ) 1.81( ) 1.37(S) 4.89(S) .92( ) 14.92(S) 1.86( ) .07( ) 4.70(S) 3 45. 65.41 23.26 67.36 31.79 80.57 31.86 118.60 80.66 .22 20.73 1.86( ) 1.65( ) 1.80( ) 1.16(S) 4.81(S) .90( ) 14.88(S) 1.85( ) .06( ) 4.60(S) 3 50. 64.18 22.97 66.17 28.70 79.47 28.94 115.98 79.62 .20 20.28 1.85( ) 1.65( ) 1.78( ) .96(S) 4.71(S) .85( ) 14.84(S) 1.84( ) .06( ) 4.50(S) ' 55. 62.94 22.68 64.95 23.66 77.67 23.96 112.37 77.91 .18 19.83 1.83( ) 1.64( ) 1.77( ) .79(S) 4.62(S) .78( ) 14.78(S) 1.81( ) .06( ) 4.40(S) 4 0. 61.71 22.38 63.72 19.53 75.94 19.72 107.76 76.11 .17 19.39 1.81( ) 1.63( ) 1.75( ) .65(S) 4.54(S) .71( ) 14.71(S) 1.79( ) .06( ) 4.31(S) ' 4 5. 60.48 22.08 62.49 16.15 74.28 16.37 102.82 74.48 .15 18.96 1.80( ) 1.62( ) 1.73( ) .54(S) 4.46(S) .65( ) 14.63(S) 1.77( ) .05( ) 4.21(S) 4 10. 59.28 21.78 61.27 13.38 72.67 13.52 97.94 72.84 .14 18.53 1.78( ) 1.61( ) 1.72( ) .44(S) 4.38(S) .59( ) 14.55(S) 1.75( ) .05( ) 4.11(S) 4 15. 58.09 21.48 60.06 11.11 71.11 11.27 93.31 7130 .13 18.11 1.76( ) 1.60( ) 1.70( ) .37(S) 4.30(S) .54( ) 14.48(S) 1.73( ) .05( ) 4.02(S) 4- 20. 56.91 21.18 58.86 9.24 69.60 9.35 89.03 69.77 .11 17.69 1.75( ) 1.59( ) 1.69( ) .30(S) 4.22(S) .50( ) 14.41(S) 1.70( ) .05( ) 3.93(S) 4 25. 55.76 20.88 57.68 7.70 68.13 7.82 85.12 68.31 .10 17.28 ' 1.73( ) 1.58( ) 1.67( ) .25(S) 4.15(S) .45( ) 14.35(S) 1.68( ) .04( ) 3.84(S) 4 30. 54.62 20.59 56.52 6.44 66.70 6.52 81.57 66.87 .09 16.88 1.71( ) 1.57( ) 1.65( ) .21(S) 4.08(S) .42( ) 14.30(S) 1.67( ) .04( ) 3.75(S) 4 35. 53.50 20.29 55.38 5.40 65.31 5.48 78.35 65.47 .09 16.49 1.70( ) 1.56( ) 1.64( ) .17(S) 4.01(S) .38( ) 14.24(S) 1.65( ) .04( ) 3.66(S) ' 4 40. 52.40 20.00 54.25 4.54 63.95 4.60 75.44 64.11 .08 16.10 1.68( ) 1.55( ) 1.62( ) .15(S) 3.94(S) .35( ) 14.20(S) 1.63( ) .04( ) 3.57(S) 4 45. 51.32 19.71 53.14 3.83 62.62 3.89 72.80 62.77 .07 15.72 1.66( ) 1.54( ) 1.61( ) .12(S) 3.88(S) .33( ) 14.16(S) 1.61( ) .04( ) 3.49(S) 4 50. 50.26 19.42 52.05 3.24 61.32 3.29 70.38 61.47 .06 15.35 ' 1.65( ) 1.53( ) 1.59( ) .10(S) 3.81(S) .30( ) 14.12(S) 1.59( ) .03( ) 3.41(S) 4 55. 49.22 19.13 50.98 2.75 60.05 2.80 68.17 60.20 .06 14.98 1.63( ) 1.52( ) 1.58( ) .09(S) 3.75(S) .28( ) 14.08(S) 1.57( ) .03( ) 3.32(S) 5 0. 48.19 18.85 49.93 2.35 58.80 2.39 66.13 58.95 .05 14.62 1 1.62( ) 1.51( ) 1.56( ) .07(S) 3.69(S) .26( ) 14.05(S) 1.55( ) .03( ) 3.24(S) 5 5. 47.18 18.56 48.90 2.01 57.59 2.05 64.24 57.73 .05 14.27 1.60( ) 1.50( ) 1.55( ) .06(S) 3.63(S) .24( ) 14.02(S) 1.54( ) .03( ) 3.17(S) 5 10. 46.19 18.28 47.88 1.70 56.39 1.73 62.47 56.54 .04 13.92 ) 1.49( ) 1.53( ) .05(S) 3.57(S) .22( ) 13.99(S) 1.52( ) .03( ) 3.09(S) '1.58( 5 15. 45.22 18.01 46.89 1.44 55.23 1.47 60.80 55.37 .04 13.58 1.57( ) 1.48( ) 1.52( ) .04(S) 3.51(S) .21( ) 13.97(S) 1.50( ) .03( ) 3.01(S) 20. 44.27 17.73 45.91 1.23 54.08 1.26 59.22 54.22 .03 13.25 5 25. 1.55( ) 43.34 1.47( ) 17.46 1.50( ) 44.95 .04(S) 1.06 3.45(S) 52.96 .19( ) 1.08 13.94(S) 57.72 1.49( ) 53.10 .02( ) .03 2.94(S) 12.93 1.54( ) 1.46( )- 1.48( ) .03(S) 3.40(S) .18( ) 13.92(S) 1.47( ) .02( ) 2.87(S) 5 30. 42.42 17.19 44.01 .91 51.86 .93 56.30 52.00 .03 12.61 1.52( ) 1.45( ) 1.47( ) .03(S) 3.34(S) .17( ) 13.90(S) 1.45( ) .02( ) 2.80(S) 108 .N m 5 35. 41.52 16.93 43.09 .79 50.78 .81 54.95 50.92 .02 12.30 1.51( ) 1.44( ) 1.46( ) .02(S) 3.29(S) .16( ) 13.87(S) 1.44( ) .02( ) 2.73(S) 5 40. 40.64 16.67 42.19 .69 49.62 .71 53.63 49.77 .02 11.99 ' 1.49( ) 1.43( ) 1.44( ) .02(S) 3.24(S) .15( ) 13.85(S) 1.42( ) .02( ) 2.66(S) 5 45. 39.77 16.41 41.30 .61 48.19 .62 52.30 48.39 .02 11.69 1.48( ) 1.42( ) 1.43( ) .02(S) 3.19(S) .14( ) 13.83(S) 1.40( ) .02( ) 2.60(S) 50. 38.93 16.15 40.43 .54 46.87 .55 50.92 47.02 .01 11.40 1.46( ) 1.41( ) 1.41( ) .02(S) 3.14(S) .13( ) 13.81(S) 1.38( ) .02( ) 2.53(S) 5 55. 38.09 15.89 39.58 .48 45.63 .49 49.54 45.79 .01 11.12 1.45( ) 1.40( ) 1.40( ) .01(S) 3.10(S) .12( ) 13.79(6 1.36( ) .01( ) 2.47(S) 6 0. 37.28 15.64 38.74 .43 44.46 .43 48.20 44.60 .01 10.84 1.43( ) 1.39( ) 1.38( ) .01(S) 3.06(S) .12( ) 13.77(S) 1.34( ) .01( ) 2.41(S) ' 6 5. 36.48 15.40 37.92 .38 43.35 .39 46.90 43.49 .01 10.57 1.42( > 1.38( ) 1.37( ) .01(S) 3.02(S) .11( ) 13.75(S) 1.32( ) .01( ) 2.34(S) 6 10. 35.70 15.15 37.12 .34 42.29 .35 45.66 42.43 .01 10.30 ' 6 15. 1.40( ) 34.93 1.37( ) 14.91 1.35( ) 36.33 .01(S) .31 2.98(S) 41.28 .11( ) .31 13.73(S) 44.48 1.30( ) 41.42 .01( ) .01 2.29(S) 10.04 1.39( ) 1.36( ) 1.34( ) .01(S) 2.95(S) .10( ) 13.71(S) 1.29( ) .01( ) 2.23(S) 6 20. 34.18 14.67 35.56 .28 40.32 .28 43.35 40.44 .01 9.78 1.37( ) 1.35( ) 1.33( ) .01(S) 2.91(S) .10( ) 13.69(S) 1.27( ) .01( ) 2.17(S) 6 25. 33.45 14.44 34.80 .25 39.39 .25 42.27 39.51 .01 9.54 ' 1.36( ) 1.34( ) 1.31( ) .01(S) 2.88(S) .09( ) 13.67(S) 1.26( ) .01( ) 2.12(S) 6 30. 32.73 14.20 34.06 .22 38.49 .23 41.23 38.61 Al 9.29. 1.34( ) 1.33( ) 1.30( ) .01(S) 2.85(S) .09( ) 13.66(S) 1.24( ) .01( ) 2.06(S) 6 35, 32.02 13.98 33.34 .20 37.62 .21 40.24 37.74 .01 9.06 1.33( > 1.32( ) 1.29( ) .01(S) 2.82(S) .08( ) 13.64(S) 1.23( ) .01( ) 2.01(S) 6 40. 31.33 13.75 32.62 .18 36.78 .19 39.29 36.90 .01 8.82 1.32( ) 1.31( ) 1.27( ) .01(S) 2.79(S) .08( ) 13.63(S) 1.21( ) .01( ) 1.96(S) 6 45. 30.65 13.53 31.93 .17 35.97 .17 38.37 36.08 .00 8.60 1.30( ) 1.30( ) 1.26( ) .01(S) 2.76(S) .08( ) 13.61(S) 1.20( ) .01( ) 1.91(S) ' 6 50. 29.99 13.31 31.25 .15 35.18 .16 37.49 35.28 .00 8.38 1.29( ) 1.29( ) 1.25( ) .00(S) 2.74(S) .07( ) 13.60(S) 1.19( ) .01( ) 1.86(S) 6 55. 29.34 13.09 30.58 .14 34.40 .14 36.63 34.51 .00 8.16 1.27( ) 1.28( ) 1.23( ) .00(S) 2.71(S) .07( ) 13.58(S) 1.17( ) .01( ) 1.81(S) 7 0. 28.71 12.88 29.92 .13 33.65 .13 35.80 33.76 .00 7.95 ' 1.26( ) 1.27( ) 1.22( ) .00(S) 2.68(S) .07( ) 13.57(S) 1.16( ) .01( ) 1.76(S) 7 5. 28.09 12.66 29.28 .11 32.92 .12 34.99 33.02 .00 7.74 1.25( ) 1.26( ) 1.21( ) .00(S) 2.66(S) .06( ) 13.56(S) 1.15( ) .01( ) 1.72(S) 7 10. 27.48 12.46 28.66 .10 32.20 .11 34.21 32.30 .00 7.54 ' 1.23( ) 1.25( ) 1.19( ) .00(S) 2.63(S) .06( ) 13.55(S) 1.13( ) .01( ) 1.67(S) 15. 26.88 12.25 28.04 .10 31.51 .10 33.45 31.60 .00 7.35 1.22( ) 1.24( ) 1.18( ) OO(S) 2.61(S) .06( ) 13.53(S) 1.12( ) .01( ) 1.63(S) 7 20. 26.30 12.05 27.44 .09 30.83 .09 32.71 30.92 .00 7.16 1.21( ) 1.23( ) 1.17( ) .00(S) 2.59(S) .06( ) 13.52(S) 1.11( ) .01( ) 1.59(S) ' 7 25. 25.73 11.85 26.85 .08 30.16 .09 31.99 30.25 .00 6.97 1.20( ) 1.22( ) 1.16( ) .00(S) 2.56(S) .06( ) 13.51(S) 1.10( ) .01( ) 1.55(S) 7 30. 25.17 11.65 26.28 .08 29.51 .08 31.29 29.60 .00 6.79 1.18( ) 1.21( ) 1.14( ) .00(S) 2.54(S) .05( ) 13.50(S) 1.08( ) .01( ) 1.51(S) 7 35. 24.63 11.46 25.71 .07 28.87 .08 30.60 28.96 .00 6.61 ' 1.17( ) 1.20( ) 1.13( ) .00(S) 2.52(S) .05( ) 13.49(S) 1.07( ) .01( ) 1.47(S) 7 40. 24.09 11.27 25.16 .07 28.25 .07 29.94 28.34 .00 6.43 1.16( ) 1.19( ) 1.12( ) .00(S) 2.50(S) .05( ) 13.48(S) 1.06( ) .01( ) 1.43(S) 7 45. 23.57 11.08 24.62 .07 27.64 .07 29.28 27.73 .00 6.27 ' 1.14( ) 1.18( ) 1.11( ) .00(S) 2.48(S) .05( ) 13.47(S) 1.05( ) .00( ) 1.39(S) 7 50. 23.06 10.90 24.09 .06 27.05 .06 28.65 27.14 .00 6.10 1.13( ) 1.18( ) 1.10( ) .00(S) 2.46(S) .05( ) 13.46(S) 1.04( ) .00( ) 1.35(S) 7 55. 22.55 10.71 23.57 .06 26.47 .06 28.03 26.55 .00 5.94 1.12( ) 1.17( ) 1.08( ) .00(S) 2.44(S) .05( ) 13.45(S) 1.03( ) .00( ) 1.32(S) 8 0. 22.06 10.53 23.07 .06 25.90 .06 27.42 25.98 .00 5.78 1.11( ) 1.16( ) 1.07( ) .00(S) 2.42(S) .05( ) 13.44(S) 1.01( ) .00( ) 1.28(S) HEWLETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBO, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT 2 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING CONVEYANCE ELEMENTS 'THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH ' (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 214 215 107 0 5. .00 .00 ) ) ' 0 10. .01 .01 .00(s) .00(s) 15. .03 .02 0 20. .01(S) .16 .01(S) .11 .04(S) .04(S) 0 25. .57 .41 .13(S) .16(S) 0 30. 1.60 1.17 ' .38(S) .45(S) 0 35. 4.02 3.02 .95(S) 1.17(S) 0 40. 8.01 6.18 1.90(S) 2.40(S) 0 1 45. 12.29 9.77 2.92(S) 3.79(S) 0 .50. 15.83 12.94 3.76(S) 5.02(S) 0 55. 18.66 15.61 4.43(S) 6.06(S) 1 0. 20.90 17.82 4.96(S) 6.92(S) 1 5. 22.66 19.65 ' 5.38(s) 7.63(S) 1 10. 24.01 21.13 5.70(S) 8.20(S) 1 15, 24.01 22.34 5.95(S) 8.67(S) ' 1 20. 24.01 23.30 6.14(S) 9.05(S) 1 25. 24.01 24.01 6.29(S) 9.35(S) 1 30. 24.01 24.01 6.39(S) 9.59(S) 1 35. 24.01 24.01 6.47(S) 9.79(S) 40. 24.01 24.01 ' 6.52(S) 9.95(S) 45. 24.01 24.01 6.55(S) 10.08(S) ' 50. 24.01 6.56(S) 24.01 10.18(S) 55. 24.01 24.01 6.56(S) 10.26(S) 0. 24.01 24.01 6.54(S) 10.32(S) ' 5. 24.01 24.01 6.51(S) 10.36(S) 2 10. 24.01 24.01 6.47(S) 10.38(S) ' 2 15. 24.01 24.01 6.41(S) 10.38(S) 2 20. 24.01 24.01 6.34(S) 10.37(S) 2 25. 24.01 24.01 6.27(S) 10.34(S) 2 �-O. 24.01 24.01 6.18(S) 10.30(S) 1 35. 24.01 24.01 10.24(S) '6.09(S) 2 40. 24.01 24.01 5.99(S) 10.18(S) 2 45. 24.01 24.01 5.88(S) 10.11(S) ' 2 50. 24.01 24.01 5.77(S) 10.03(S) 2 55. 23.83 24.01 5.66(S) 9.94(S) 3 0. 23.34 24.01 5.54(S) 9.85(S) 5. 22.86 24.01 5.43(s) 9.76(S) ' 5 10. 22.37 5.31(S) 24.01 9.66(S) 3 15. 21.89 24.01 5.20(S) 9.55(S) 3 20. 21.41 24.01 gin Ito I t 11 r 5.08(S) 9.44(S) 3 25. 20.94 24.01 4.97(S) 9.33(S) 3 30. 20.47 23.73 4.86(S) 9.21(S) 35. 20.01 23.43 4.75(S) 9.10(S) 3 40. 19.55 23.13 4.64(S) 8.98(S) 3 45. 19.10 22.83 4.53(S) 8.86(S) 3 50. 18.65 22.53 4.43(S) 8.74(S) 3 55. 18.22 22.22 4.32(S) 8.63(S) 4 0. 17.78 21.92 4.22(S) 8.51(S) 4 5. 17.36 21.62 4.12(S) 8.39(S) 4 10. 16.94 21.32 4.02(S) 8.27(S) 4 15. 16.53 21.01 3.92(S) 8.16(S) 4 20. 16.13 20.71 3.83(S) 8.04(S) 4 25. 15.74 20.42 3.74(S) 7.93(S) 4 30. 15.35 20.12 3.64(S) 7.81(S) 4 35. 14.97 19.83 3.55(S) 7.70(S) 4 40. 14.60 19.53 3.47(S) 7.58(S) 4 45. 14.24 19.24 3.38(S) 7.47(S) 4 50. 13.88 18.96 3.30(S) 7.36(S) 4 55. 13.53 18.67 3.21(S) 7.25(S) 0. 13.19 18.39 3.13(S) 7.14(S) 5 5. 12.86 18.11 3.05(S) 7.03(S) 5 10. 12.53 17.83 2.97(S) 6.92(S) 5 15. 12.21 17.56 2.90(S) 6.82(S) 5 20. 11.90 17.29 2.82(S) 6.71(S) 5 25. 11.60 17.02 2.75(S) 6.61(S) 5 30. 11.30 16.75 2.68(S) 6.50(S) 5 35. 11.01 16.49 2.61(S) 6.40(S) 5 40. 10.72 16.23 2.54(S) 6.30(S) 5 45. 10.44 15.97 2.48(S) 6.20(S) 5 50. 10.17 15.72 2.41(S) 6.10(S) 5 55. 9.91 15.47 2.35(S) 6.00(S) 6 0. 9.65 15.22 2.29(S) 5.91(S) 6 5. 9.39 14.98 2.23(S) 5.81(S) 6 10. 9.15 14.74 2.17(S) 5.72(S) 6 15. 8.91 14.50 2.11(S) 5.63(S) 6 20. 8.67 14.27 2.06(S) 5.54(S) 25. 8.44 14.03 2.00(S) 5.45(S) .6 30. 8.22 13.81 1.95(S) 5.36(S) 6 35. 8.00 13.58 1.90(S) 5.27(S) 6 40. 7.79 13.36 11 ' 1.85(S) 5.18(S) 6 45. 7.58 13.14 1.80(S) 5.10(S) 6 50. 7.37 12.92 1.75(S) 5.01(S) 55. 7.18 12.71 1.70(S) 4.93(S) 7 0, 6.98 1.66(S) 12.50 4.85(S) 7 5. 6.79 12.29 1.61(S) 4.77(S) 7 10. 6.61 12.09 1.57(S) 4.69(S) 7 15. 6.43 11.89 1.53(S) 4.61(S) 7 20. 6.26 11.69 7 25. 1.48(S) 6.09 4.54(S) 11.49 1.44(S) 4.46(S) 7 30. 5.92 11.30 1.40(S) 4.38(S) 7 35. 5.76 11.11 1.37(S) 4.31(S) 7 40. 5.60 10.92 1.33(S) 4.24(S) ' 7 45. 5.45 1.29(S) 10.74 4.17(S) 7 50. 5.30 10.56 1.26(S) 4.10(S) 7 55. 5.15 10.38 1.22(S) 4.03(S) 8 0. 5.01 10.20 1.19(S) 3.96(S) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL ,STABILITY OSCILLLATIONS PROBLEMS THAT DURING THE LEAD TO HYDRAULIC SIMULATION. 39 40 41 42 43 213 214 215 11 ETT-PACKARD MASTER DRAINAGE STUDY (FOX MEADOWS BASIN H) 100-YR DEVELOPED REVISED 12 JAN 96; RBD, INC., ENGR. CONS. (dkt); FILE: 282013S1.DAT *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 35 164.6 2.8 0 40. Gt/VT-l2AL �111 36 24.0 1.7 2 30. wEsr �ELTIGN►}L _- 38 206.3 3.0 0 45 FI}S T 39 65.5 .0 9.3 1 10. 40 96.2 .0 6.6 1 40. 41 65.5 1.3 1 10. 42 150.6 .0 15.4 2 25. 43 96.2 2.1 1 45. 125 135.8 1.0 0 45. 126 167.1 1.1 0 40. 127 38.0 .6 0 40. 128 216.5 1.3 0 40. 203 150.6 (DIRECT FLOW) 2 25. 213 24.0 .1 6.2 2 0. 214 24.0 .1 6.6 1 50. 215 24.0 .1 10.4 2 15. IENDPROGRAM PROGRAM CALLED m 1/2 No Text SEEDING CHART Table 11.2. Recommenced U" and Application Rates of Ssede for Temporary Vegeldlion and/or Cover Crape. Species S"eon 1 Dr01ed Pounds/Acre Annual R)agress Cot 20 Oahe Cod Ja Cereal Rye Cod AO ym.at - Matter cod AO yA"t - Spring Cod N Barley Cad e0 Millet WPm 30 Hybrid Sudan Warm 15 Sorghum wpm 10 Coal nnoFF Won" make their major growth M the swig Wa^^ eeawn 7a " theme them majorgrowth In late strong and summer. Tads 11.4 Identities planting dates far personal as d temponary/cow Crop grasses. Table 11 4 Planting Dated for Poresnlal and Temporary/Cow Crap Gras"]. DATE PERENNIAL TEMPORARY/COVER GRASSES CROP GRASSES warm Cir^I Warm Cool STRAW BALES STAKED MOTH TWO STAKES PER BALE TN1NE POINT A MUST BE HIg1ER 14AN A PDNT B A SECTION A A Jan Ot - Feb 28 Yr Yes Yes No No No CANAPACTE➢ Yee Mail Ot - May 15 Y" BAO(ML May 16 - May 31 Y" No Tee No Jun 01 - Jul 31 No No Yes No Aug 01 - Aug 31 No Yn No Yes yp 01 - W 30 No No No Y" Oct 01 - Dec 31 yes Y" No No Mulching shall be used to a"lei In establishment of vegetation. One or more of the following mulches shill be used with a perennial drNond grass wed mixture, p a tempo wry vegetation or cow Crop. Mulch Acceptable Application Rate Dates of use Straw per Hay Jan 01 - Dec 31 2 tone/acre Hydraulio (wood or paper) Mar 15 - May 15 2 tons/acre Er"Ion contra) (mats or blankets) Jan Ot - Dec 31 Not appilcoble Hay or straw mulch shall be tee of noxious weeds and at least 50% of Ore Ober shall be 10 Inch" For more In length. NTn seeding with nollve grasses hay torn a nellw grass In a suggested mularing malrlal, If avelable. If rdgatlon Is used, hydraulic mulches may be appliod tan Morah 15 through September DO. Hay or Straw Mulch 1. Hay ar straw mulch will be ancrond to the Boll by one of the fagoll methods: (a) A Angel whlch will alms the fiver four Inches w more Into the soll. At I"et SO% of the fiber shall be 10 Inches or more in length. (b) Narwha red mules netting Installed moor file hay aw straw aaoerdi g is 111mleeoYrre' Y•b•elbns. (c) Tockil spread on the mulch to the manufacturers recommendation. 2. All straw or hay must be tend of noxious weeds. GRADATION FOR FILTER MATERIAL Is BY WEIGHT PASSING SOUARE MESH SIEVES TYPE I TYPE II (COOT CONCRETE SAND SPECIFlCATON (COOT CLASS A SIEVE SIZE (AASHTO MB) SECTION ]03.01) SECTION ]03.09} 3' .... 90-100 1-1/2' .... .... 3/4' .... 20-90 3/8' 100 .... M4 95-IN 0-20 #16 45-80 .... #50 10-M .... /100 2-10 .... #200 0-3 0-3 (iF A 3/f UK) GfW+ 0,d1•1[ wCFnl soot gua n1n nlPm MRA SEcnaN A -A AREA INLET GRAVEL FILTER T PROFILE VIEW tilJERAL NOTES: 1. INSPECT, REPAIR, AND REPLACE. (IF NECESSARY) ME FILTERS AFTER EACH STORM EVENT. 2. ALL BALES MUST BE REPLACED AFTER 12 MONTHS UNLESS APPROVAL IS GRANTED BY THE ENGINEERING DIVISION FOR LONGER USE. EROSION BALE CHECK DAM81711111101 LANE STANDARD EROSION CONTROL CONSTRUCTION PLAN NOTES The nIXy q Four CrFY Slmmw{W Vtkhy IPkn mrbX Fgsla mwt N naMIN Of IoAs wa 3. Pk. b MY muVwlMgpm PY Nb (N"p :YbPFn PaMa la. ) u o� �wue.�e wmYmi�lrel ^�.s.aF° M e. Frtr.e at the eppapble we F w mWwlM vyvin we FeLvbe F w ggrevJ vejct w'aWe. miWugYn rMa va vvYen embtl rw\. IN come RtaeeeGvo wglorlw drM M Pe1M.f as nIMW Myw Pv.Fb Rmeq v ylugve el aNFy nprgYn MJ e, antiw to we vee rewk! b Rnmebne miWu<LLn r.glMe ma a w MMrI raaaw adios of m.e wF•we'�° ke o slams Imm\Mbtrpp (eFa aaakra ny "tmgLm..bMpray aqa) Mm 1 M.ve avatwr by ^mesa e.nFnp doe I.ra amtwre Mu ..y a ww men F wlm x Y F e , sole . IF ca m r � . u ln)mrhighs Of .q MM wMby anal }onge.m�Y�m N tN lty e.a.rWMleer I,"maarama.apyrjM. IMe.aenky b) b Femw, Union aM..r enaa•ee by M. seam.gM udx) TM booklets M M egwM me wow,gui etylJ"en a/FY miWuaNn vlMflr w ow b present . ,ed woN., ul lad wagons attMir ores be Fm.palloy 0 tFwl OrpowFv Depe"at. M bryvsy (ebwNtl) voted cost mWr Mil W Ng tot ma s a rmrMwM i nrwy eN Wr n.elt sort n aM b aware maFowd pvlmmmn of their smookI Y be rwnwwl"wand devoted M F a mana4 ntl� Y Ms not towovrenalYio, ills Its my 1.FAPaI Noo n `IanN Mu alone tM (10) fim ��howu M1 w vR North es r volet'1:a rron r t ]spafter n by a M wJM vY mM I'd M ,M w"Of MY ul Ilps, serer o-sm.. Naan�n. ON,Fawwna wrpFe a arpae'14 a on a car oar. mr.\.rr rta Mr FoerFMl ewx.e mq..w Mal be. e.r.e k°1m+da�ur y vow, mlesv: of floo, IF pre"3011 M. M aa� Herders"\ greatest w mrYmb MI Mal tooar w oneOf a � such two ,arba blM1q .n man a rnsP.arae w� c.gt�brrwesny a retlr ee sae a Me ayMt l e/ePNreMa Mwool aleme! e/Y grow) 9Malmal me lot b OF lemat nt IM�1an/ave�After FelWllm d w vnvMe Ypea4 WM a we FIMa OF, NIW MN ae NIeM MM o mlMelkF q Cmvele tlafe 1IY M a � coal 7/4- cogrook Feldlea. ve.Y. AfterMddaW� 0 but Mean Oelr IPy pretest" ma pert FM If to GNturtea va on rvt M WN YIRF w pwFp wen. a pnrimwrt and NrJ M aplbt qW P9FD POSTS en• LIXr AIs I YT fFM¢ WM YCCf1101 W eh'N•! aT rEMIX NMS DETAIL ', v � mmAcrtn ehaaxi ={ MnWF Raw b � �- Hanrc sd '-„AnW mL SECTION A ELEVATION e t IxYECi Al RANR iplfE hF1FR FAfil sttlN sTE31T RdOLE srtlllfXi Wpl e' W THE xpplT W THE NRa xu SEEN can. Adam 96wOrT Wlui dE RA® IN 1WSgL NIE SEDIMENT CONTROL FENCE N.T.S. CURB INLET O GRAVEL FILTER (ApPRo%. 3/4' CIA.) ^-•�i�;> :,P�:'_iuk.;y tt; CONCRETE MORE SCREEN BLOCI( (APpRO%. 1/2' MESH) t£NERAL NOTES: 1. reBELi NO rdPM n1Pe eFIP Ebl SIrA1 . ImwrF mar Into gW Hu) OF 4Odi 9� BE CEN91ro N Y1 /�AAaD �Rmr'ang IEmAVA.ni�i BASIN Dnu ) n sTrml w can veemhmY OI � 2ft.4' vgOp STUD � GRAVEL FILTER MARE SCREEN PLAN VIEW OVERRLOW FILTERED WAIEA R WW F MORE SCREEN CURB INLET 2'xTHE mm a" Book e WDOD SND SECT ON A OFRONDS F EROSION CONTROL CURB INLET GRAVEL FILTER NPDES PERMIT NOTES ond Powdows Of Fluid oll doubt OF volaut IF n 1, R9IPTOI'. x errs rm smelwAlzll Pgtuil°rr PRew\mmx: Qis eana..m wAe" "r.eugw ne,aFp paYN of. Dwlm ma swrr.hl fmFde , cam^ r.rt unnr aw.uu[ta^ YW�a.r.e <m cmw Hqr me Sewwrn ima (w „ w w:aa tbvan e. Tile ^rsM «uWur m pm^w n Me fMnng e. ugalW xmeFR ab saw nwmtlm. giev OMet P^!ia ubRY Frttll^tYn, pesos! W^Fnn rRwIE M oneey An b meN eulehp F.IrIgYn, me LueeFq vneWgAm. rmlvq. and .ub, v-0 a19a✓R q aw 4m\ we c 1M We antaFe Vp mostMM .qpa 30 ear we b n `N� mgvtl. Is not I.rw as tlb unevW tleFa en v wefF4 AN moo Un, m Pvia MrM e Rglmb 'C - 00 e.lv. wWucbn, Re<bf 'C - eM Wdlr wlleb � rLrl pey 4{atll mimb. nu an. .a..uaum. no M. Iw .IMF w wM.q, wrsR maws. darts me ae.,p el-prm,s Mwa wore r eminr zw ore Ya.a, w.e uaeekxr ^or Of eYaaPe me m. an -orb vee orb a,a zannp.Mw ntr If Not um..a^. m wnA w rtma •.•• ^> OPIUM m en�w off -wile a .ert q mope, If ma.m^gtlr r.°:n AY'eF^. Ulf e� w\ o .w^ rM:mib�Fw III ON ee .,el.rua to eoa a ae ro.rw M m \^p,M a^rl. , .I,wla w ^a.,ria�. SEQUENCE STRUCTURES: CONSTRUCTION 1998 1B1iB MONTH F M A M I J J A S O N I O J OVERLOT GRADING MONO EROSION CONTROL Soil Roughening P.dm.tr eamw Additional Bwrlme Vegetative Methods Soil $"loot Other RAINFALL EA09IX1 CANTN0. STRUCTURAL SedM"t irap/BaeM Inlet Vllt✓e 9Naw Bestirs St, {so- Bamlre Sand Edge Ban Soll Preparation Contour Furrows Temaclny Agnoll/Lonpsle Paying Olnr-novel Mulch KGETAnK: P•ms"tl Ssed PIP1tYlg TsmtAmtKlq Sed Installation NdtMgs/Mols/Blankeb Ocher INSTALLED BY —MAINTAINED BY �EGETanaN/MULCHwc CONTRACTOR DATE SUBMITIEO APPROVED BY CITY 6 FDtT GOWNS ON DES100 3MIO IGNATION 4410 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP % OF TOTAL NEI(gVT RIPRAP SMALLER THAN THE STONE SIZE d50} OVEN SIZE (IN POUNDS) (INg1E5 CLA55 8 tt J5p-)0 35 2510 n e CLASS 12 5�]0 Z`r10 85 12 CUSS 18 100 1275 50-JO 855 25-50 275 18 2-10 10 CU55 24 50-JO 1J00 �sio serer za tdKOF THE MASS SHALL BEASTpiEST 50 PERCENT EQUAL TO OR LARGER THAN THIS DIMENSION. }}BURY ON t TO 1 SIDE SLOPES OR GROUT ROCK IF SLOPES ARE STEEPER. City 4/3/9 or Fast Collins, cd«ado UTILITY PLAN APPROVAL APPROVED. DAViD STRINGER 4 6 SIB gYMb of Erlgrhswrq Deb CHECKED By, N/A 4 6 98 Wv4 d'blseab IHiIY DaM CHECKED BY: LIEN D. SCHLUETER CHECKED BY. mrin a NOcmwm 1-800-922-1987 •534-6700'la�y IOC.` Porva^e Dma. — F°i1o^ewa:9o^ 9]10/ue. ]era HEWLETT PACKARD FORT coLLws ICBD GENESIS IV BUILDING FORT COLLINS COLORA00 DRAINAGE & EROSION CONTROL NOTES ruSPEE0010➢VG ORANIHG NUMBER: C-4.2