Loading...
HomeMy WebLinkAboutDrainage Reports - 07/25/2001Erna! Approved Rg art PROPERTY OF FINAL DRAINAGE AND EROSION CONTROL REPORT HARMONY TECHNOLOGY PARK SECOND FILING J R ENGINEERING 1 1 1 1 FINAL DRAINAGE AND EROSION CONTROL REPORT HARMONY TECHNOLOGY PARK SECOND FILING Prepared by JR ENGINEERING 2620 E. Prospect Rd., Suite 190 Fort Collins, Colorado 80525 (970) 491-9888 Prepared for Hewlett Packard Fort Collins, CO June 20, 2001 Previous submittals: January 23, 2001 March 6, 2001 May 8, 2001 June 6, 2001 Job Number 9265.00 a -1 1 1 +� June 20, 2001 J•R ENGINEERING A Subsidiary of Westrian Mr. Basil Hamdan ' City of Fort Collins Stormwater Utility 700 Wood Street Fort Collins, CO 80521 RE: Revised Final Drainage and Erosion Control Report for Harmony Technology ' Park — Second Filing ' Dear Basil: We are pleased to submit to you, for your approval, this revised Final Drainage and Erosion Control ' Report for Harmony Technology Park - Second Filing. The site is located in the McClellands/Mail Creek Master Drainage Basin. All computations within this report have been completed in ' compliance with the City of Fort Collins Storm Drainage Design Criteria. Appendix J, McClellands basin SWMM, is not included at the time of this submittal. This appendix will be submitted to you upon completion to insert into this report. ' We greatly appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. ' Sincerely, Mark West, E.I. ' Design Engineer attachments 1 ' 2620 Fast Prospect Road, Suite 190, Fort Collins, CO 80525 970-491-9888 • Fax: 970-491-9984 • w Jrengineering.com 7 . John Tufte, P.E. I ' TABLE OF CONTENTS PAGE ' TRANSMITTAL LETTER i TABLE OF CONTENTS i ' 1. GENERAL LOCATION AND DESCRIPTION 1.1 Project Location ................................................. 1 1 1.2 Description of Property....................................................................................................... 1 ' 1.2 Purpose and Scope of Report .............................................................................................. 1 1.3 Design Criteria.................................................................................................................... 1 ' 2. DRAINAGE BASINS AND SUB -BASINS 2.1 Major Basin Description................................................................................................ 2 2 2.2 Existing Sub -basin Description........................................................................................... 2 ' 3. DEVELOPED FLOWS 3 3.1 General Concept.................................................................................................................. 3 ' 3.2 Method................................................................................................................................ 4 3.3 Proposed Drainage Plan ...................................................................................................... 5 3.6 Hydrologic Analysis of the Proposed Drainage Conditions ............................................. 10 ' 3.5 Allowable Street Flow Capacities..................................................................................... 3.4 Curb Inlets......................................................................................................................... 11 11 4. DETENTION POND DESIGN 12 ' 4.1 SWMM Analysis......................................................................................:....................... 12 5. EROSION CONTROL 13 5.1 Erosion and Sediment Control Measures.......................................................................... 5.2 Dust Abatement................................................................................................................ 13 14 5.3 Tracking Mud on City Streets........................................................................................... 14 ' 5.4 Maintenance......................................................................................................................14 5.5 Permanent Stabilization.................................................................................................... 14 ' 6. MISCELLANEOUS 6.1 Variances............................................................................... 15 15 7. REFERENCES 16 ' APPENDIX A MAPS AND FIGURES ' APPENDIX B HYDROLOGIC CALCULATIONS APPENDIX C ' STREET CAPACITY APPENDIX D INLETS 1 1 APPENDIX E STORM PIPES & RIPRAP APPENDIX F 1 DETENTION APPENDIX G WATER QUALITY APPENDIX H 1 EROSION CONTROL APPENDIX I 1 SWMM APPENDIX J McCLELLANDS BASIN SWMM ' APPENDIX K EXCERPTS FROM OTHER REPORTS 1 1 1 1 1 1 1 1 1 1 1 1 I GENERAL LOCATION AND DESCRIPTION ' 1.1 Project Location Harmony Technology Park, Second Filing is a tract of land located in the northwest Quarter of Section 4, Township 6 North, Range 68 West of the 6' Principal Meridian, City of Fort Collins, Larimer County, Colorado. More specifically, the project is located near the southeast comer of the intersection of Ziegler Road and Harmony Road. The project is ' bounded on the north by Harmony Road, on the west by Technology Parkway, on the east by Cambridge Road and on the south by Rock Creek Drive. A vicinity map is included in ' Appendix A. 1.2 Description of Property Harmony Technology Park, Second Filing consists of two lots. Lot 1, the northern lot, is approximately 16 acres. Lot 2, the southern lot, is approximately 35 acres. The development will consist mostly of market rate office space with moderate research and development and minimal manufacturing, if any. The project will consist of 6 proposed building envelopes in a campus setting. The land is currently farmland. ' Future development south and west of the proposed plat will create lots of approximately 16 and 35 net acres of similar type land use. A large portion of the 16 acres lot will be used for ' detention and water quality for the future development and for lot 2 of this proposed development. ' 1.2 Purpose and Scope of Report ' This report defines the proposed final drainage and erosion control plan for Harmony Technology Park, Filing Two, including consideration of all on -site and tributary off -site ' runoff. The plan includes design of all drainage facilities required for this development. ' 1.3 Design Criteria This report was prepared to meet or exceed the submittal requirements established in the City of Fort Collins' "Storm Drainage Design Criteria and Construction Standards" (SDDCCS), dated May 1984. Where applicable, the criteria established in the "Urban Storm Drainage t Criteria Manual" (UDFCD) dated 1984, developed by the Denver Regional Council of Governments has been utilized. Local drainage facilities were designed to convey peak flows from the 100-yr storm event calculated using the Rational Method. Regional hydrology was evaluated using UDSWM- 2PC Rainfall/Runoff Prediction and Watershed Simulations Program (SWMM) endorsed by the Urban Drainage and Flood Control District. DRAINAGE BASINS AND SUB -BASINS 2.1 Major Basin Description According to the City of Fort Collins Master Drainage Plan, this site lies in the McClellands/Mail Creek basin. In August 1999 the final report for the East Harmony Portion of McClellands Creek Master Drainage Plan Update was completed for the City of Fort Collins. A copy of the Final Report's conclusion and a copy of the drainage basin map are included in Appendix J of this report for reference. 2.2 Existing Sub -basin Description Historically, the site generally drains to the southeast comer of the site and eventually reach the Fossil Creek Reservoir Inlet Ditch (FCRID). Soils in the sub -basins are Nunn Clay Loam, 1-3 percent slopes. A copy of the master plan basin maps and soils maps are included in Appendix J. The site is within the moderate wind erodibility zone according to the Wind Erodibility Map for the City of Fort Collins. Offsite runoff enters the site from the existing Celestica site located to the west. Runoff from the Celestica site is currently collected and discharged to a combination of detention and retention ponds located along the south boundary of Celestica property. In addition to the ponds there is a 100-year overflow which currently discharges to an open swale designed with the Celestica site. The swale is located near the southwest corner of the Celestica site and runs generally west to east to the eastern most quarter line where the swale turns south and discharges to an existing irrigation ditch. In the "Final Drainage and Project Development Report for the Harmony Technology Park, First Filing", it is noted that when the property east of Celestica is developed, accommodations must be made to discharge stormwater to any collection system constructed by the new development. 2 According to the Flood Insurance Rate Map (FIRM) for the area, the site lies outside of the 100-yr floodplain. The site is shown on a portion of the FIRM Map Panel No. 080102 0018C in Appendix A. 3. DEVELOPED FLOWS 3.1 General Concept Stormwater will be conveyed via overland, gutter, and pipe flow to onsite detention/water quality ponds. Stormwater in the streets will be carried in the gutter to on -grade or sump ' inlets. The water collected by the inlets will be conveyed within an on -site stormwater collection system. Parking areas and roof drains will drain to the on -site stormwater collection system. Ponding will be allowed in the parking areas as initial detention. The on - site stormwater collection system will carry runoff to the detention/water quality ponds. The ' detention/water quality ponds will discharge into a stormwater collection system designed by TST in conjunction with the Willow Brook development, emptying into the Fossil Creek ' Inlet Ditch. All landscaping adjacent to buildings will be graded away from the foundation with a minimum of a 2% slope or as required by the geotechnical report. The main storm sewer line running south to Pond 2 from the courtyard area between buildings C, D, E, and ' F is sized for all contributing flows from the courtyard area. Final grading in the courtyard area will be included in a minor amendment to the plan set. ' Offsite flow from Celestica's site must be considered with this drainage plan. However, the ' runoff from the Celestica site will not be combined with the runoff collected from the Harmony Technology Park, Second Filing development. Celestica's outfall will be re-routed south down Technology Parkway and east down Rock Creek Drive and will connect to a new pipe located near the intersection of Rock Creek Drive and Cambridge Avenue, designed by TST for the Willow Brook development. The pipe section running east down Rock Creek ' Drive has been sized to anticipate carrying detained flows from the property west of Technology Parkway (Basin OS-2). Flows values from the Celestica site are taken from t Final Drainage and Project Development Report for the Harmony Technology Park First Filing by the Sear- Brown Group and are included in Appendix K. ' Runoff from the offsite basin OS-1 on Harmony Road has also been considered. Runoff from this basin sheet flows south across Harmony Road to Swale A, where it is conveyed ' 3 I r 1 east into Pond 1. Due to the grading required to construct Harmony Road, Swale A does not have a defined flow line near Technology Parkway. The 3-foot deep channel section is created within approximately 250-feet from the end of the gutter in Technology Parkway. The ground slope between the flow line of the defined swale and the edge of asphalt on Harmony Road cannot exceed 6:1. Per an agreement with CDOT, the runoff from Harmony Road is allowed to enter Pond 1 in this development rather than being collected by a separate drainage ditch controlled by CDOT. The HTP, Second Filing detention system is designed such that stormwater from the 100-year event will not impact the surface of Harmony Road. Furthermore, Pond 1 has been designed to accommodate the 100-year flow without using the Harmony Road drainage ditch for the required storage capacity. 3.2 Method The Rational Method was used to determine both the 10-year and 100-year flows for the subbasins indicated in this drainage report (see summary table Appendix B). A detailed description of the hydrologic analysis is provided in the following sections of this report. The resulting 100-year runoff values were used to define design discharges at design points identified along streets, low points, and drainage swales. Storm sewer outlet pipes from inlets are sized based on the theoretical capacity of the inlets during the 100-year storm. All other culverts are sized to convey the peak 100-year flows calculated using the Rational Method. The computer program StormCAD, developed by Haestad Methods, Inc., was used for the storm pipe design. StormCAD considers whether a pipe is under inlet or outlet control and if the flow is uniform, varied, or pressurized and applies the appropriate equations (Manning's, Kutter's, Hazen -Williams etc). Detention is required and is provided using three detention ponds located in the northeast, east and southern portions of the site. The allowed release for the three ponds is 0.5 cfs/acre for the 100-year event and 0.2 cfs/acre for the 10-year event, in accordance with the McClellands Master Drainage Plan. The ponds were sized utilizing SWMM and the input and output data are included in Appendix I. The hydrologic analysis was conducted for developed flows only. A flared end section and riprap is required at all storm sewer outfalls. Riprap is sized according to the pipe size and the flow conditions at the outlet. Guidelines from the "Urban 2 I 1 1 [1 Storm Drainage Criteria Manual" (UDFCD) were used to design the riprap outfalls. Calculations for storm pipe and riprap sizing can be found in Appendix E. 3.3 Proposed Drainage Plan A qualitative summarization of the drainage patterns within each sub -basin and at each design point is provided in the following paragraphs. Discussions of the detailed design of drainage facilities identified in this section are included in the following sections. Runoff from Offsite Subbasin OS1 (Harmony Road) is conveyed via sheet flow to a grass - lined swale that flows to the east into Pond 1. Runoff from Offsite Subbasin OS2 (future HTP developed conditions) is planned to be conveyed via sheet, gutter, and pipe flow to Pond 2. Runoff from Offsite Subbasin OS3 (future HTP developed conditions) is planned to be conveyed via sheet, gutter, and pipe flow to Pond 2. Runoff from Subbasin 101 is conveyed via sheet and gutter flow to a 10' Type `R' inlet at Design Point 301 in Melody Drive. From there it joins the flows from Subbasin 102 and is conveyed to Pond 1 via pipe flow. Runoff from Subbasin 102 is conveyed via sheet and gutter flow to a 10' Type `R' inlet at Design Point 302 in Melody Drive. From there it joins the flows from Subbasin 101 and is conveyed to Pond 1 via pipe flow. Runoff from Subbasin 103 is conveyed via sheet and gutter flow to a quadruple Type 16 combination inlet at Design Point 303 in Melody Drive. From there it joins the flows from Subbasin 104, 126, and 127 and is conveyed to Pond 2 via pipe flow. Runoff from Subbasin 104 is conveyed via sheet and gutter flow to a quadruple Type 16 combination inlet at Design Point 304 in Melody Drive. From there it joins the flows from Subbasin 103, 126, and 127 and is conveyed to Pond 2 via pipe flow. Runoff from Subbasin 105 is conveyed via sheet and gutter flow to a 10' Type `R' inlet at Design Point 305 in Melody Drive where it is combined with the flows from Subbasin 125. E I 1 LI IJ 1 1 From there it joins the flows from Subbasin 106, 107 and 108 and outlets to the east via pipe flow. This water continues to the southeast, via swale flow to a roadside ditch on the north side of Rock Creek Drive. Runoff from Subbasin 106 is conveyed via sheet and gutter flow to a 10' Type `R' inlet at Design Point 306 in Melody Dive. From there it joins the flows from Subbasins 105,125, 107, and 108 to outlet east via pipe flow. This water continues to the southeast, via swale flow to a roadside ditch on the north side of Rock Creek Road. Runoff from Subbasin 107 is conveyed via sheet and gutter flow to a triple Type 16 combination inlet at Design Point 307 in Precision Drive. From there it joins the flows from Subbasins 108, 105, 125, and 106 to outlet east via pipe flow. This water continues to the southeast, via swale flow to a roadside ditch on the north side of Rock Creek Road. Runoff from Subbasin 108 is conveyed via sheet and gutter flow to a triple Type 16 combination inlet at Design Point 308 in Precision Drive. From there it joins the flows from Subbasins 107, 105, 125, and 106 to outlet east via pipe flow. This water continues to the southeast, via swale flow to a roadside ditch on the north side of Rock Creek Road. Runoff from Subbasin 109 is conveyed via sheet and gutter flow to a triple Type16 combination inlet at Design Point 309 in Precision Drive. From there it joins the flows from Subbasin 110 and is conveyed to Pond 2 via pipe flow. Runoff from Subbasin 110 is conveyed via sheet and gutter flow to a triple Type16 combination inlet at Design Point 310 in Precision Drive. From there it joins the flows from Subbasin 109 and is conveyed to Pond 2 via pipe flow. Runoff from Subbasin 111 is conveyed via sheet and gutter flow to a double Type16 combination inlet at Design Point 311 in Precision Drive. From there it joins the flows from Subbasin 112 and is conveyed to Pond 2 via pipe flow. Runoff from Subbasin 112 is conveyed via sheet and gutter flow to a triple Type16 combination inlet at Design Point 312 in Precision Drive. From there it joins the flows from Subbasin 111 and is conveyed to Pond 2 via pipe flow. C 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Runoff from Subbasin 113 is conveyed via sheet and gutter flow to a 10' type `R' inlet at Design Point 313 in Technology Parkway where it is combined with the flows from Subbasin 116. From there it joins the flows from Subbasin 114 and Subbasin 115 and outlets to the east via pipe flow to Pond 2. Runoff from Subbasin 114 is conveyed via sheet and gutter flow to a 10' type `R' inlet at Design Point 314 in Technology Parkway where it is combined with the flows from Subbasin 115. From there it joins the flows from Subbasin 113 and Subbasin 116 and outlets to the east via pipe flow to Pond 2. Runoff from Subbasin 115 is conveyed via sheet and gutter flow to a 10' type `R' inlet at Design Point 314 in Technology Parkway where it is combined with the flows from Subbasin 114. From there it joins the flows from Subbasin 113 and Subbasin 116 and outlets to the east via pipe flow to Pond 2. Runoff from Subbasin 116 is conveyed via sheet and gutter flow to a 10' type `R' inlet at Design Point 313 in Technology Parkway where it is combined with the flows from Subbasin 113. From there it joins the flows from Subbasin 114 and Subbasin 115 and outlets to the east via pipe flow to Pond 2. Runoff from Subbasin 117 is conveyed via sheet and gutter flow to a double Type16 combination inlet at Design Point 317 in Technology Parkway. From there it flows into Pond 2 of Harmony Technology Park, First Filing via pipe flow. Runoff from Subbasin 118 is conveyed via sheet and gutter flow to a double Type 16 combination inlet at Design Point 318 in Technology Parkway. From there it is conveyed to Pond 2 via pipe flow. Runoff from Subbasin 119 is conveyed via sheet and gutter flow to triple Type16 combination inlet at Design Point 319 in Technology Parkway. From there it flows into Pond 2 of Harmony Technology Park, First Filing via pipe flow. Runoff from Subbasin 120 is conveyed via sheet and gutter flow to a triple Type 16 combination inlet at Design Point 320 in Technology Parkway. From there it is conveyed to Pond 2 via pipe flow. 1 7 t 1 LI 1 1 Runoff from Subbasin 121 is conveyed via sheet and gutter flow to a single Type 16 combination inlet at Design Point 321 in Technology Parkway. From there it is conveyed to Pond 2 via pipe flow. Runoff from Subbasin 123 is conveyed via sheet and gutter flow to a 10' type `R' inlet at Design Point 323 in Imagination Drive. From there it joins the flows from Subbasin 124 and is conveyed to Pond 1 via pipe flow. Runoff from Subbasin 124 is conveyed via sheet and gutter flow to a 10' type `R' inlet at Design Point 324 in Imagination Drive. From there it joins the flows from Subbasin 123 and is conveyed to Pond 1 via pipe flow. Runoff from Subbasin 125 is conveyed via sheet and gutter flow to a 10' type `R' inlet at Design Point 305 where it is combined with the flows from Subbasin 105. From there it joins the flows from Subbasin 106,107, and 108 and outlets to the east via pipe flow. This water continues to the southeast, via swale flow to a roadside ditch on the north side of Rock Creek Road. Runoff from Subbasin 126 is conveyed via sheet and gutter flow to a double Type 16 combination inlet at Design Point 326 located in the eastern access drive for the middle portion of the site. From there it joins the flows from Subbasin 127, 103 and 104 and is conveyed to Pond 2 via pipe flow. Runoff from Subbasin 127 is conveyed via sheet and gutter flow to a double Type 16 combination inlet at Design Point 327 located in the eastern access drive for the middle portion of the site. From there it joins the flows from Subbasin 126, 103 and 104 and is conveyed to Pond 2 via pipe flow. Runoff from Subbasin 128 is conveyed via sheet and gutter flow to a single Type 16 combination inlet at Design Point 328 located in the western access drive for the middle portion of the site. From there it joins the flows from Subbasin 129 and is conveyed to Pond 2 via pipe flow. 8 I 1 1 1 Runoff from Subbasin 129 is conveyed via sheet and gutter flow to a single Type 16 combination inlet at Design Point 329 located in the western access drive for the middle portion of the site. From there it joins the flows from Subbasin 128 and is conveyed to Pond 2 via pipe flow. Subbasins 201, 202, 203, and 204 include a portion of the parking area in the northwest area of the site. The runoff from these basins is temporarily detained in the parking lots (major storms) then conveyed to Pond 1 via pipe flow. Runoff from Subbasin 205 is conveyed via sheet and gutter flow to one of two four foot curb cuts that discharge directly into Pond 1. Runoff from Subbasin 206 is conveyed via sheet and gutter flow to one of three four foot curb cuts that discharge directly into Pond 1. Subbasins 207 and 208 form the roofs of the two buildings in the north portion of the site. Flows from these subbasins are conveyed to Pond 1 via pipe flow. ' Subbasin 209 is Pond 1 in the northeast section of the site. Subbasin 210 is a landscaped area. This basin outlets to an area inlet at Design Point 410. From there it is conveyed via pipe flow to Pond 2. The main trunk line running south to Pond 2 is sized for all contributing flows from the courtyard area. Final grading in the courtyard area will be included in a minor amendment to the plan set. ' Subbasins 211, 212, 213, 214, 215, 216, 217, and 218 include a portion of the parking area in the eastern half of the site. The runoff from these basins is temporarily detained in the ' parking lots (major storms) then conveyed to Pond 2 via pipe flow. ' Subbasin 219 is a landscaped area. This basin outlets to an area inlet at Design Point 419. From there it is conveyed via pipe flow to Pond 2. The main trunk line running south to Pond 2 is sized for all contributing flows from the courtyard area. Final grading in the ' courtyard area will be included in a minor amendment to the plan set. Subbasins 220, 221, 2229 223, 2249 2259 226, and 227 include a portion of the parking area ' in the western half of the site. The runoff from these basins is temporarily detained in the parking lots (major storms) then conveyed to Pond 2 via pipe flow. ' 9 Subbasin 228 is a landscaped area located between the four buildings in the middle portion of the site. This area flows to an area inlet at Design Point 428, where it is carried via pipe flow to Pond 2. The main trunk line running south to Pond 2 is sized for all contributing ' flows from the courtyard area. Final grading in the courtyard area will be included in a minor amendment to the plan set. 0 u 1 Subbasin 229 is a landscaped area located between the four buildings in the middle portion of the site. This area flows to an area inlet at Design Point 429, where it is carved via pipe flow to Pond 2. The main trunk line running south to Pond 2 is sized for all contributing flows from the courtyard area. Final grading in the courtyard area will be included in a minor amendment to the plan set. Subbasins 230, 231, 232, and 233 form the roofs of the four buildings in the middle portion of the site. Flows from these subbasins are conveyed to Pond 2 via pipe flow. 3.6 Hydrologic Analysis of the Proposed Drainage Conditions The Rational Method was used to determine both 10-year and 100-year peak runoff values for each subbasin. The Rational Method utilizes the SDDCCS equation: Q = CtCIA (1) where Q is the flow in cubic feet per second (cfs), A is the total area of the basin in acres, Cf is the storm frequency adjustment factor, C is the runoff coefficient, and I is the rainfall intensity in inches per hour. The frequency adjustment factor (Cd is 1.0 for the initial 10- year storm and 1.25 for the major 100-year storm. The appropriate rainfall intensity information was developed based on rainfall intensity duration curves in the SDDCCS Manual. In order to utilize the rainfall intensity curves, the time of concentration is required. The following equation was used to determine the time of concentration. tc = t; + tt (2) 1 10 I 1 1 11 [1 where t. is the time of concentration in minutes, t; is the initial or overland flow time in minutes, and t, is the travel time in the channel, pipe, or gutter in minutes. The initial or overland flow time is calculated with the equation: t = [1.87(1.1 - CQL0s1/(S)0.33 (3) where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the average slope of the basin in percent, and C and Cf are as defined previously. All hydrologic calculations associated with the subbasins are attached in Appendix B of this report. 3.5 Allowable Street Flow Capacities The theoretical street and gutter capacity was calculated using Manning's equation for open channel flow. Allowable gutter flows and maximum street capacities for both the initial and major storms were estimated and evaluated based on the specifications set forth in the SDDCCS Manual. During the initial storm, runoff was not allowed to overtop either the curb or the street crown for all streets. The 10-year storm is used as the initial storm for street capacity calculations. During the major storm, the depth of water over the crown or curb is limited to six inches. For Cambridge Drive and Technology Parkway, runoff from the major storm was not allowed to overtop the curb and was required to leave at least one lane width free of water in each direction. For Imagination Drive and Precision Drive, runoff from the major storm was allowed to spread to the crown of the street with no curb topping. The 100-year storm is used as the major storm for street capacity calculations. Several on - grade inlets are proposed so that street capacity is not exceeded. See the street capacity calculations in Appendix C for more detailed information. 3.4 Curb Inlets Curb inlets, curb cuts or sidewalk culverts are proposed where sump conditions exist or where street runoff carrying capacity is exceeded. All sump inlets proposed with Filing Two are designed to convey the 100-year peak flow after full development is in place. Where inlets were needed to meet street capacity requirements, on -grade inlets were used and downstream inlets consider the carry-over flow from the upstream inlets. On -grade inlets were designed to intercept enough flow so that street capacity was no longer exceeded. Inlet capacity reduction factors were used to account for inlet clogging. Inlets were sized using the computer program UDINLET, developed by James C. Y. Guo of the University of Colorado at Denver. Results of UDINLET sizing is equivalent to using Figures 5-2 to 5-6 11 1 1 1 4. 1 1 1 1 of the Fort Collins SDDCCS Manual. Computer output files for the inlet sizing are provided in Appendix D of this report. All inlet locations and sizes are shown on the Overall Grading and Drainage Plan for the construction of Filing Two. At the time of this report, landscape planning for the area inside the four main buildings in the center of the site is not complete. Stormwater service has been provided by main lines in that area, however, area inlet locations are not yet determined. DETENTION POND DESIGN 4.1 SWMM Analysis Detention is required and will be provided for on the Harmony Technology Park site. The detention for the site is a comprehensive plan that relays storm water from streets, roof drains, and small parking lot detention ponds to three large detention ponds. The detention ponds were sized using an integrated UDSWMM2PC and MODSWMM model. The proposed ponds are located on the northeast, east and southern portions of the site. A SWMM schematic and summary table of the SWMM subbasin parameters are shown in Appendix I. Parking lot detention ponds were sized to provide storage in the upstream reaches of the site. Orifice plates were sized for each pond to limit the 100-year ponding depth in the ponds to 12 inches per City of Fort Collins standards. Storage -discharge curves were developed for each pond based on grading and orifice calculations. The storage -discharge curves were input into SWMM. The orifice plate sizes were iterated until the 100-year SWMM discharge equaled the 100-year orifice discharge. Water quality volume was added in addition to the required detention volume calculated using SWMM. To meet the allowable release rates, orifice plates are required to limit the release rate from ponds to the 100-year discharge. Orifice plate sizing and the stage -discharge curve was calculated using the orifice equation which states, QU = CA [2g(h-Eo)]"2 where Qp = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration (ft/s2) 12 I] k = effective area of the orifice (ft) ' Ea = geometric center elev. of the orifice or downstream tailwater elev. (ft) h = water surface elevation (ft) ' From the SWMM analysis, the required storage volume for Pond 1 (SWMM CE 409), including water quality storage, for the 100-year event is 4.3 acre-feet. The final WSEL for ' the 100-year event is 4909.65 feet. The spillway in Pond 1 has an elevation of 4909.65. The berm for the detention pond has a minimum elevation of 4910.15. ' From the SWMM analysis, the required storage volume for Pond 2 (SWMM CE 434), including water quality storage, for the 100-year event is 21.3 acre-feet. The final WSEL for ' the 100-year event is 4906.96 feet. The spillway in Pond 1 has an elevation of 4906.96. The berm for the detention pond has a minimum elevation of 4908.20. ' From the SWMM analysis, the required storage volume for Pond 3 (SWMM CE 435), ' including water quality storage, for the 100-year event is 1.1 acre-feet. The final WSEL for the 100-year event is 4909.00 feet. The spillway in Pond 1 has an elevation of 4909.68. The ' berm for the detention pond has a minimum elevation of 4910.00. Detention pond stage - storage information for all three ponds is included in Appendix F. Also included in Appendix J is a SWMM model that condenses the overall drainage plan of the site to three basins, conveyance elements, and ponds. This simplified model can be used to integrate developed conditions from this site into the master drainage plan for the McClellands basin. 1 5. EROSION CONTROL ' 5.1 Erosion and Sediment Control Measures ' Erosion and sedimentation will be controlled on -site by use of inlet filters, silt fences, straw bale barriers, and gravel construction entrances. (See the Drainage and Erosion Control Plan ' in the back pocket for details.) The measures are designed to limit the overall sediment yield increase due to construction as required by the City of Fort Collins. A construction schedule showing the overall time frame for construction activities is contained in Appendix H and also shown on the Erosion Control Plan. ' 13 I 11 1 r J Silt fences or straw bale dikes will be utilized in limited areas adjacent to any stripping stockpiles that are created during grading. They will also be used to slow runoff around the perimeter of the site, along the north and east property line of Preston Center. (See Erosion Control Plan for notes relating to placement of silt fence.) 5.2 Dust Abatement During the performance of the work required by these specifications or any operations appurtenant thereto, whether on right-of-way provided by the City or elsewhere, the contractor shall furnish all labor, equipment, materials, and means required. The Contractor shall carry out proper efficient measures wherever and as necessary to reduce dust nuisance, and to prevent dust nuisance, which has originated from his operations from damaging crops, orchards, cultivated fields, and dwellings, or causing nuisance to persons. The Contractor will be held liable for any damage resulting from dust originating from his operations under these specifications on right-of-way or elsewhere. 5.3 Tracking Mud on City Streets It is unlawful to track or cause to be tracked mud or other debris onto city streets or rights -of - way unless so ordered by the Director of Engineering in writing. Wherever construction vehicles access routes or intersect paved public roads, provisions must be made to minimize the transport of sediment (mud) by runoff or vehicles tracking onto the paved surface. Stabilized construction entrances are required per the detail shown on the Erosion Control Plan, with base material consisting of 6" coarse aggregate. The contractor will be responsible for clearing mud tracked onto city streets on a daily basis. 5.4 Maintenance All temporary and permanent erosion and sediment control practices must be maintained and repaired as needed to assure continued performance of their intended function. Straw bale dikes or silt fences will require periodic replacement. Sediment traps (behind hay bale barriers) shall be cleaned when accumulated sediments equal about one-half of trap storage capacity. Maintenance is the responsibility of the developer. 5.5 Permanent Stabilization All soils exposed during land disturbing activity (stripping, grading, utility installations, stockpiling, filling, etc.) shall be kept in a roughened condition by ripping or disking along 14 ' land contours until mulch, vegetation or other permanent erosion control is installed. No soils in areas outside project street rights of way shall remain exposed by land disturbing activity for more than thirty (30) days before required temporary or permanent erosion ' control (e.g. seed/ mulch, landscaping, etc.) is installed, unless otherwise approved by the Stormwater Utility. Vegetation shall not be considered established until the maintenance ' period (two growing seasons) and cover requirements, as stated in the City of Fort Collins Storm Drainage Design Criteria and Construction Standards, have been met. 6. MISCELLANEOUS 6.1 Variances ' Several variances are being requested with this proposal and are listed as follows: ' A. A variance is requested for steeper than 4:1 side slopes in Detention Pond 3. The proposed side slopes will be 3:1 and are needed to provide adequate detention volume. The pond will be maintained by the owner. B. A variance is requested to allow for less than 1 foot of freeboard between the 100- ' year WSEL and the spill elevation in the proposed Detention Pond 1. The actual freeboard of Pond 1 is 0.50'. This difference in freeboard allows for significantly ' more volume available for detention. All surrounding buildings will have final floor elevations 1 foot above the 100-year maximum spill water surface elevation. The ' emergency overflow spillways are designed to pass the entire peak 100-year flow in case of outlet clogging. 1 ' 15 7. REFERENCES 1. "East Harmony Portion of McClellands Creek Master Drainage Plan Update — Final Report", ICON Engineering, August 1999. 2. "City of Fort Collins Stormwater Utility Storm Drainage Design Criteria and Construction Standards" 3. Urban Drainage and Flood Control District, "Urban Storm Drainage Criteria Manual", Volumes 1 and 2, dated March 1969, and Volume 3, dated September 1, . 1999. 4. The Sear -Brown Group, "Final Drainage and Project Development Report for the Harmony Technology Park, First Filing, Fort Collins, Colorado', January 23, 1998. 5. "Willow Brook Storm Sewer Plan & Profile", TST Inc, Consulting Engineers, May 2000. 16 APPENDIX A MAPS & FIGURES I F1 1 1 1 t 1 1 1 11 1 1 1 1 yN r rrf--- e, ter. K�"� _ ' •'ry{�'� _ a W 1 g� i C 1 L_ CORPORATE LIMITS 1 4847 5 ,�,P. ZONE AE 4845 n.yn. n0 RZ C :..' ��w \ M Se >_m N 91 7 k� 1 APPROXIMATE SCALE IN FEET 600 0 600 DING EFFECTS FROM CACHE LA POUDRE RIVER INTERSTATE HIGHWAY 25 DIVIDED FLOW NATIONAL FLOOD INSURANCE PROGRAM FIRM FLOOD INSURANCE RATE MAP CITY OF FORT COLLINS, COLORADO LAPJM ER COUNTY (BEE MAP INDEX FOR PANELS NOT PRINTED) COMMUNITY -PANEL NUMBER 080102 0018 C MAP REVISED: MARCH 18, 1996 LEGEND ®SPECIAL FLOOD HAZARD AREAS INUNDATED BY 100-YEAR FLOOD ZONE A Ne W MW eMaab:u derwniW. ZONE AE ter n:Me alavMlamaetwml:ra. ZONE AN FleWdepd,leflu3fer(weighwans, pandim): bar heed elrvuleN daMmMd. ZONE AD FIPed,deyMa 0 1 be 3 feet (ua:afly NM aw, an "Plnl camelnl: RNI4, de the determined. Fe area M elWdal M nsed. he,, vabdaNa aM deaermbled. ZONE A99 To be pmrectW from 1601w need by Federal need putenbm Where sense, anmYetlen; ere bs eNn[IerrderrtnMM. ZONE V Eunal heed was, vaiecity hued (wave scene); no ban news elewalena darn mined. ZONE VE Ceaaal need with weleclty. hawed (wen uuam): bar need aN.snem summl:rd. ® FLOODWAY AREAS IN ZONE AE OTHERFLOODAREAS ZONE % Areas' of 500-year flood; areas of 100ryear flood with average depths Of last than I foot or with drainage area ku than 1 acuities milt, and area protected by levees from 100- year flood. OOTMER AREAS ZONE 20% Areas determined to be outside 500 year flood plain. ZONE D Area in which flood hazards are undetermined. Flood Boundary ---- FlooEway Boundary Zone D Boundary Bou ® Has Wary ope,, a Spacial Flood Huard Zone, and Boundary DividCoastal Amu of Different , fossil Bay Flood ! Elevation, Within Special Flood! Huud Zones. _513^^-- But Flood Elevation Line; Ele- utlon in Feet- D Cross Section Line U EL 9871 Bay Flood Elevation In Fiat, Where Uniform Within Zone - Federal Emergency Management Agency RM7% Elevation Reference Mart *Referenced to the National Geodetic Vertical Daum of 1929 NOTES Th,- nee is far uy in edminiVIVIng the N.1.1 Flood Insure Program: fl does not McesyrilY kenUly all news wblect to hood particularly from local drainage yurcgs of small a. m all ntenima features outside Special Flood Hatted Ames. Areas of special flood lMtard(IOO.yearfbod) include Zones A. AI AE. AN, AO, A99, V, V1.30 AND VE. Certain pees not in Special Rood Hazard Areas may be proictu flood central structure. NoeMarims of the flinches 3 Mre comet led M cities yt ig interpolated between uoss unions. The Mender," wem bases hycraulk considerations with mallard to requirements of the Fed Emergency Management Agency. Floodway wiZrm, in some, arcs may IR too nano• to show b K: Roadway widths are provided in the HOW Insurance Sealy Report Coastal can flood elevations apply only landward of the shoreline Fen soliciting map panels see witrately minted Map Impact MAP REPOSITORY City of Foe Celem Stormwater math s Department 235 Mathaww Fort CORM, Contest 80524 INITIAL IDENTIFICATION: JUNF 28. 1974 FLOOD HAZARD BOUNDARY MAP REVISIONS: FLOOD INSURANCE RATE MAP EFFECTIVE: JULY 15, 1979 FLOOD INSURANCE RATE MAP REVISIONS: FEBRUARY 15. 1981 My nin isad M.018.1996 to uednt cmpwut 9mita, m chi has flood a . to chit, t0 ace bean fliedms, us t o. ro odes,dole, , hares rasa, to tlrrge aim esrom Ltbmb, C update mtP Emma: add apadal flood huerd Breda from lama r County. Cebrado, an incarpmaa mrviouNY luuees lamer of met raNabn To determine If flout Insurance Is available, contact an Insure agent or call the National Flood Insurance Program at (a Rle.lc n ' Index to Mapping Units 1—Altvan loam, 0 to 3 percent slopes __________ Page 11 60—Larim gravelly sandy loam, 5 to 40 percent Page 85 2—Altvan loam, 3 to 9 percent slopes ---------- 3—Altvan-Satanta loams, 0 to 3 percent slopes __ 11 slopes ----- ---------- --- --- --- 12 61—Larimer fine sandy loam, 1 to 3 percent 35 ' 4—Altvan-Satanta loams, 3 to 9 percent slopes __ 12 slopes _ __ _ --_ ------ -- 62—Lasi meer-Stoneham complex, 3 to 10 percent 5—Aquepts, loamy _—________________------- 6—Aquepts, ponded 7—Ascalon sandy loam, 0 to 3 percent slopes ____ 12 ---------------------------- 13 63—Longmont clay, 0 to 3 percept slopes ________ 86 86 ' 8—Ascalon sandy loam, 3 to 6 percent slopes ---- 13 64—Loveland clay loam, 0 to 1 percent slopes _____ 65—Midway clay loam, 5 to 26 percent slopes ____ 87 38 9—Bainville-Epping silt loams, b to 20 percent 13 66—Minnequa silt loam, 3 to 9 percent slopes ____ 38 slopes ------------- -- -- 10—Bainville-Keith complex, 2 to 9 percent 67—Mslopes a -LaPorte complex, 3 to 1 percent 38 slopes __ 11—Baller-Carnero-complex, 9 to 35 percent 13 slopes __ 68—Miracle sandy loam, 6 to 26 percent slopes --- 39 40 ' slopes _ ----- 12—Baller-Rock outcrop complex, 15 to 45 percent 14 69—Naz sandy loam, 1 to 3 percent slopes ________ 70—Naz sandy loam 3 to 25 percent slopes _______ 40 slopes ---------------------------------- 14 71—Nelson fine sandy loam, 3 to 9 percent slopes__ 15 72—Newfork sandy loam, 0 to 3 percent slopes ___ 41 41 13—Blackwell clay loam, 0 to 5 percent slopes ____ 14—Boyle gravelly sandy loam, 3 to 9 percent 73—Nunn clay loam, 0 to 1 percent slopes ________ 16 74—Nunn clay loam, 1 to 3 percent slopes -------- 42 42 ' slopes _-------------------------------- 15—Boyle gravelly sandy loam, 9 to 30 percent slopes 75—Nunn clay loam, 3 to 5 percent slopes ________ 16 76—Nunn clay loam, wet, 1 to 3 percent slopes ___ 43 43 __________________________________ 16—Boyle-Ratake gravelly sandy loams, 1 to 9 77—Otero sandy loam, 0 to 3 percent slopes ------ 16 78—Otero sandy loam, 3 to 5 percent slopes ______ 43 43 percent slopes ___________________________ ' 17—Boyle-Ratake gravelly sandy loams, 9 to 25 79—Otero sandy loam, 5 to 9 percent slopes ______ 44 percent slopes ___________________________ 18—Breece coarse sandy loam, 0 to 3 percent 16 80—Otero-Nelson sandy loam, 3 to 25 percent slopes ---------------------------------- 44 44 slopes _-------------------------------- 19—Breece coarse sandy loam, 3 to 9 percent 17 81—Paoli fine sandy loam, 0 to 1 percent slopes _- 82—Pendergrass-Rock outcrop complex, 15 to 25 slopes ---------------------------------- 20—Breece coarse sandy loam, 9 to 30 percent 17 percent slopes -------------------------- 83—Pinata-Rock outcrop complex, 15 to 45 percent 46 45 slopes _ _ 21—Carnero loam, 3 to 9 percent slopes ----------- 17 slopes -------- ------------------------- 17 84—Poudre fine sandy loam, 0 to 1 percent slopes_- fine sandy loam, 1 to 9 percent slopes__ 46 46 22—Caruso clay loam, 0 to 1 percent slopes ------ 23—Clergern fine sandy loam, 2 to 10 percent 18 85—Purner 86—Purner-Rock outcrop complex, 10 to 50 47 slopes ------------ t ---------------------- 24—Connerton-Barnum complex, 0 to 3 percent 19 percent slopes ----------------------- --- 87—Ratake-Rock outcrop complex, 25 to 55 47 slopes ---------------------------------- 2b--Connerton-Barnum complex, 3 to 9 percent 19 percent slopes --------------------------- 88—Redfeather sandy loam, 5 to 50 percent 48 slopes ---------------------------------- 19 slopes 89—Renohill clay loam, 0 to 3 percent slopes ----- 48 26—Cushman fine sandy loam, 0 to 3 percent slopes ----- ---------------------------- 20 90—Renohill clay loam 3 to 9 percent slopes ____ clay loams, 3 to 15 percent 49 27—Cushman fine sandy loam, 3 to 9 percent slopes __ loam, 0 to 3 percent slopes ---------- 91—Renohill-Midway 20 slopes - -------------- 21 92—Riverwash-------------------------------- 49 49 49 '28—Driggs 29—Drig s loam, 3 to 25 percent slopes --------- 30 21 93—Rock outcrop _______________________ _____ 22 94—Satanta loam, 0 to 1 percent slopes __________ 50 30—Elbeth-Moen loams, 6 to percent slopes ____ 31—Farnuf loam, 2 to 10 percent slopes __________ 32—Farnuf-Boyle-Rock outcrop complex, 10 to 25 23 95—Satanta loam, 1 to 3 percent slopes ---------- 96—Satanta loam, 3 to 5 percent slopes __________ 50 50 percent slopes ___________________________ 23 97—Satanta loam, gullied, 3 to 9 percent slopes ___ Variant clay loam, 0 to 3 percent 50 ' 33—Fluvaquents, nearly level ___________________ 34—Fort Collins loam, 0 to 1 percent slopes ______ 23 98—Satanta 24 slopes ---------------------------------- outcrop complex, 51 86—Fort Collins loam, 1 to 3 percent slopes ______ 36—Fort Collins loam, 3 to 5 percent slopes ______ 24 99—Schofield-Redfeather-Rock 25 5 to 25 percent slopes ____________________ 25 100—Stoneham loam, 0 to 1 percent slopes ----- —_ bl 52 t37—Fort Collins loam, 5 to 9 percent slopes ______ 38—Foxcreek loam, 0 to 3 percent slopes ________ 25 101—Stoneham loam, 1 to 3 percent slopes ________ 52 52 39—Gapo clay loam, 0 to 5 percent slopes ________ 40—Garrett loam, 0 to 1 percent slopes __________ 26 102—Stoneham loam, 3 to 5 percent slopes -------- 27 103—Stoneham loam, 5 to 9 percent slopes -------- sandy loam, 5 to 15 percent 52 41—Garrett loam, 1 to 3 percent slopes ---------- pits 27 104—Sunshine stony 27 slopes _ _ _ ___-__ Mountain loam, 0 to 1 percent slopes __ 53 54 '42—Gravel 43—Haploborolls-Rock outcrop complex, steep ____ 44—Haplustolls, hilly _________________________ 27 105—Table 27 106—Tassel sandy loam, 3 to 25 percent slopes ___- 54 55 45—Haplustolls-Rock outcrop complex, steep _ 46—Harlan fine sandy loam, 1 to 3 percent slopes__ 28 107—Thedalund loam, 0 to 3 percent slopes --------- 29 108—Thedalund loam, 3 to 9 percent slopes -------- 55 47—Harlan fine sandy loam, 3 to 9 percent slopes_- 30 109—Thiel gravelly sandy loam, 5 to 25 percent 56 ' 48—Heldt clay loam, 0 to 3 percent slopes -___--_ 49—Heldt clay loam, 3 to 6 percent slopes ------- 30 slopes _ ____ _ ____ 30 110—Tine gravelly sandy loam, 0 to 3 percent 57 50—Keith silty clay loam, 0 to 3 percent slopes __ 51—Kildor clay loam, 0 to 6 percent slopes ______ ____ 31 slopes _________________ _____________ 32 111—Tine cobbly sandy loam, 15 to 40 percent b7 52—Kildor-Shale outcrop complex, 5 to 30 percent slopes slopes _______ ___ ___ _________ ____- - 32 112—Trag-Moen complex, 6 to 30 percent slopes __- 58 58 __ ' 53—Kim loam, 1 to 3 percent slopes ____________ 6 32 113—Ulm clay loam, 0 to 3 percent slopes ________ 32 11 Ulmclay loam, 3 to 5 percent slopes -------- 58 54—Kim loam, 3 to percent slopes _____________ 55—Kim loam, 5 to 9 percent slopes ____________ 56—Rim-Thedalund loams, 3 to 15 percent slopes__ 33 115—Weld silt loam, 0 to 3 percent slopes ________ 33 116—Wetmore-Boyle-Moen complex, 5 to 40 percent 59 ' 67—Kirtley loam, 3 to 9 percent slopes __________ 58—Kirtley-Purner complex, 5 to 20 percent 33 slopes ___ _ _ _______________________ 117—Wetmore-Boyle-Rock outcrop complex, 5 to 60 60 slopes _______ --------------------------- 59—LaPorte-Rock outcrop complex, 3 to 30 percent 33 percent slopes ______ -_--__ - 118—Wiley silt loam, 1 to 3 percent slopes ------- 60 61 61 slopes __________________________________ 34 119—Wiley silt loam, 3 to 5 percent slopes ________ 1 I:� 9 9 W►17 0:4 :3 HYDROLOGIC CALCULATIONS I 1 1 1 1 1 1 JR Engineering 2620 E. Prospect Rd, Ste. 190 Fort Collins, CO 80525 DRAINAGE SUMMARY TABLE Design Point Tributary Sub -basin Area (ac) C (10) C (100) tc (10) (min) tc (100) (min) Q(10)tot (cfs) Q(100)tot (cfs) 301 101 0.60 0.75 0.94 7.6 6.5 1.92 5.17 302 102 0.75 0.80 1.00 7.3 6.1 2.57 6.94 303 103 1.23 0.76 0.95 11.5 10.3 3.38 9.18 304 104 0.82 0.75 0.94 11.5 10.4 2.23 5.94 305 105 0.93 0.56 0.70 10.6 9.8 1.93 6.14 306 106 1.01 0.75 0.93 10.6 8.8 2.88 7.89 307 107 0.50 0.70 0.88 9.9 6.8 1.38 4.06 308 108 0.29 0.78 1 0.97 9.3 5.0 1 1.03 3.01 309 109 0.29 0.85 1.00 6.0 5.5 1.08 3.29 310 110 0.30 0.78 0.98 7.5 5.0 1.08 3.46 311 111 0.67 0.49 0.61 6.1 9.0 1.24 3.31 312 112 0.65 0.79 0.98 10.2 8.2 2.00 5.35 313 113 0.74 0.73 0.92 9.3 8.0 2.15 5.74 314 114 0.45 0.48 0.60 9.0 7.8 0.87 2.31 314 115 0.70 0.54 0.67 8.7 9.6 1.47 5.24 313 116 0.42 0.71 0.89 10.9 6.5 1.30 4.13 317 117 0.43 0.64 0.80 7.5 6.4 1.24 4.05 318 118 0.65 0.49 0.61 7.3 7.1 1.48 4.84 319 119 0.84 0.75 0.94 7.7 7.6 2.54 6.78 320 120 0.68 0.74 0.92 8.6 6.7 2.10 5.62 321 121 0.50 0.79 0.99 7.7 5.0 1.96 5.52 323 123 0.93 0.69 0:86 5.0 10.1 2.13 6.18 324 124 1.53 0.48 0.60 13.6 8.1 2.93 7.71 305 125 0.41 0.78 0.97 8.8 5.6 1.40 3.77 326 126 0.30 0.58 0.73 6.8 5.0 0.81 2.16 327 127 0.26 0.52 0.65 5.6 1 5.4 0.59 1.59 328 128 0.27 0.57 1 0.72 6.3 1 5.0 0.77 1.95 329 129 0.14 0.76 1 0.95 5.0 1 5.0 0.52 1.33 HTP STREET FLOW.xIs; SUMMARY I 1 JR Engineering 2620 E. Prospect Rd, Ste, 190 Fort Collins, CO 80525 DRAINAGE SUMMARY TABLE Design Point Tributary Sub -basin Area (ac) C (10) C (100) tc (10) (min) tc (100) (min) 0(10)tot (cfs) Q(100)tot (cfs) 401 201 1.80 0.72 0.90 5.4 5.0 6.06 16.09 402 202 2.39 0.63 0.78 8.4 5.8 6.09 17.51 403 203 1.40 0.57 0.71 11.8 8.9 2.82 8.07 404 204 1.41 0.61 0.76 10.8 7.7 3.15 9.15 405 205 2.05 0.67 0.83 8.8 5.8 5.44 15.97 406 206 1.36 0.84 1.00 5.0 5.0 5.61 13.58 407 207 1.37 0.95 1 1.00 5.0 5.0 6.34 13.63 408 208 1.37 0.95 1 1.00 5.0 5.0 6.34 13.63 409 209 1.42 0.95 1.00 8.4 8.2 5.49 11.91 410 210 1.03 0.10 0.13 11.2 11.2 0.38 0.96 411 211 1.48 0.78 0.98 5.0 5.0 5.64 14.41 412 212 1.95 0.73 0.92 5.5 5.0 6.68 17.83 413 213 0.91 0.78 0.97 5.0 5.0 3.43 8.77 414 214 1.56 0.68 0.84 5.0 5.0 5.12 13.08 415 215 1.70 0.72 0.90 5.0 5.0 5.88 15.30 416 216 1.21 0.79 0.98 5.0 5.0 4.64 11.84 417 217 1.52 0.82 1.00 5.0 5.0 6.09 15.17 418 218 0.94 0:80 1.00 5.0 5.0 3.68 9.35 419 219 1.11 0.36 0.45 11.9 11.0 1 1.41 3.72 420 220 1.28 0.78 0.98 5.0 5.0 4.88 12.47 421 221 1.07 0.81 1.00 5.0 5.0 4.21 10.65 422 222 1.10 0.74 0.93 5.0 5.0 4.00 10.21 423 223 2.04 0.73 0.92 5.0 5.0 7.29 18.62 424 224 1.53 0.64 0.79 6.6 5.0 4.28 12.06 425 225 1.17 0.80 1.00 5.0 5.0 4.58 11.65 426 226 1.69 0.74 0.92 5.0 5.0 6.07 15.50 427 227 1.47 0.69 0.86 5.0 5.0 4.93 12.58 428 228 1.07 0.10 0.13 11.2 11.2 0.39 0.99 429 229 0.81 0.10 0.13 11.2 11.2 0.29 0.75 430 230 1.37 0.95 1.00 5.0 5.0 6.34 13.63 431 231 1.37 0.95 1.00 5.0 5.0 6.34 13.63 432 232 1.37 0.95 1.00 5.0 5.0 6.34 13.63 433 233 1.37 0.95 1.00 5.0 5.0 6.34 13.63 OS1 3.68 0.41 0.51 17.5 17.5 4.41 11.27 HTP FLOW.xIs; SUMMARY tRUNOFF COEFFICIENTS & % IMPERVIOUS LOCATION: Harmony Technology Park - Hewlett Packard - Streets ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 1216100 ' Recommended Runoff Coefficients from Table 3-3 of City of Fort Collins Design Criteria Recommended % Impervious from Urban Storm Drainage Criteria Manual ' Streets, parking lots (asphalt; Sidewalks (concrete) Roofs Lawns (flat <2%, sandy soil) [] 1 u Runoff % coefficient Impervious C 0.95 100 0.95 96 0.95 90 0.10 0 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 8525 SUBBASIN DESIGNATION TOTAL AREA (ac.) TOTAL AREA (sq.8) ROOF AREA (sy.8) PAVED AREA (sy.R) SIDEWALK AREA (sq.fl) LANDSCAPE AREA (sq.8) RUNOFF COEFF. (C) % Impervious 101 0.60 26,300 0 16,531 3.733 6.036 0.75 76 102 0.75 32,813 0 23.732 3,271 5.810 0.80 82 103 1.23 53,653 0 38.369 3,480 11,804 0.76 78 104 0.82 35,903 0 24,076 3,569 8,258 0.75 77 105 0.93 40,423 0 16.621 5.217 18.585 0.56 54 106 1.01 44,053 0 25,607 7,873 10,573 0.75 75 107 0.50 21,852 0 13,578 1,862 6.412 0.70 70 108 0.29 12,764 0 8.328 1,854 2,572 0.78 79 109 0.29 12,796 0 9,223 2,035 1,538 0.85 87 110 0.30 1 13.057 0 8.576 1,912 2,569 0.78 80 111 0.67 29.224 0 10,796 2,590 15,838 0.49 45 112 0.65 28,330 0 19,404 3,490 5,436 0.79 80 113 0.74 32,198 0 20.363 3.658 8.177 0.73 74 114 0.45 19.590 0 7,150 1,636 10,802 0.48 45 115 0.70 30.562 0 13,604 2,170 14,788 0.54 51 116 0.42 18,386 0 11,279 1.941 5.166 0.71 71 117 0.43 18,827 0 9,837 2.197 6,793 0.64 63 118 0.65 28,403 0 11.133 1,906 15,364 0.49 46 119 0.84 36,422 0 25,493 2.538 8,391 0.75 77 120 0.68 29,639 0 19,728 2.428 7.483 0.74 74 121 0.50 21,858 0 14,731 3,070 4,057 0.79 81 123 0.93 40,389 0 23,209 4,826 12.354 0.69 69 124 1.53 66,727 0 24,900 4,849 36.978 0.48 44 125 0.41 17.875 0 11,807 2.445 3.623 0.78 79 126 .0.30 12,980 0 5,452 1,932 5.596 0.58 56 127 0.26 11,170 0 5,479 0 5,691 0.52 49 128 0.27 11,908 0 4,640 2,012 5,256 0.57 55 129 0.14 6,181 0 4,773 0 1,408 0.76 77 Equations - Calculated C coefficients & % Impervious are area weighted C=E(Ci Ai) IAt Ci = runoff coefficient for specific area, Ai Ai = areas of surface with runoff coefficient of Ci In = number of different surfaces to consider At = total area over which C is applicable; the sum of all Ai's HTP STREET FLOW.As /I JR Engineering 2a2G E_ Rvapee Rid.. S1a_ 190 Fat Co1ia. CO aoszs 11 1 u RUNOFF COEFFICIENTS & %IMPERVIOUS LOCATION: Ha nlony Technology Pak - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: InVol Reco mlended Runoff Coefficients from Table 3.3 of Cry of Fort Collins Design Criteria Recommended % Impervious from Urban Storm Drainage Criteria Manual Runoff % coefficient Impervious C Streets, parking rots (asphalt) 0.95 100 Sidewalks (concrete): 0.95 96 Roofs: 0.95 90 Lawns (flat Q%, sandy so9) 0.10 0 SUBBASIN DESIGNATION TOTAL AREA (K.) TOT& ARFA (w.a) ROOF AREA l>4.it) t SURF AREA (w.it) AREA (q.n) RUNOFF I COEFF. (D) % ftnp 9a "I vac 75.192 0 W,ons 2113W on 73 202 2.39 1031ea 0 a,12o 39A71 0 W W 2W +A0 e1.150 0 W,510 27.050 GS] W 201 1.41 atz3/ 0 W.W] W.597 0.E1 W 205 2.05 a9,16+ 0 Sam 29.T92 0.57 67 2015 In sal 0 5z030 T,Ctl 0.51 W 20] 1.37 1 Sam 69,BW 1 0 0 Gas W 206 1.37 Sam W,600 0 0 0.0 90 2W 1.12 02,001 0 6zom 0 am 100 210 1.M `15.050 0 0 ts.oso I 0.10 0 211 1.15 a1,3W 0 61.751 1za0] en W 212 1.95 W.M 0 63A50 21,6M 0.73 Is 213 0.91 39,197 0 31.491 a," 0.78 W 214 1.65 61,1161 0 15,920 21.927 Gas W 215 1.10 71,259 0 51,307 19.962 on 73 216 1.21 52.799 0 I ,575 10223 on at 217 1.52 W,10B 0 W,21+ 10.167 oat W 215 091 10,933 0 33.1171 ],OW old 83 219 I'll 15,218 0 11,720 33.19e 035 31 220 1.2a 55.= 0 11,815 11.050 on W 221 107 46,800 0 W,SW 7,71e 1 0.61 W 222 1.10 0,076 0 35,397 11,W1 0.70 Is M 2.01 W,WS 0 60.265 2z672 0.]J 75 221 1.63 W,175 0 It,a61 24.621 o91 W 126 1.17 Kate 0 42.221 a,Tl6 ow W 220 1.69 T3,151 0 65,224 1=7 OTI TS 22] IAT 63.891 0 N,3s5 1a555 069 69 2M1 1.OT W.S/a 0 0 1o5W 0.10 0 229 oat 36327 0 0 35,327 0.10 0 230 1.37 "'M sam 0 0 095 90 91 1.37 saw N.m 0 0 0.95 90 232 1.3] W.6W 69.eW 0 0 ow 90 233 1.37 59.6W 5B.6W 0 0 0.95 W Ost 3.W 1W,251 0 W.-O" 1021oC1 0.41 35 ow 39N 1.718.013 0 1 0 OW aw tcajio 0 1 0 EOuafion3 - Calculated C coefficients & % Impervious are area weighted C = £ (CI AI) / At Ci = runoff coefficient for specific area, At At - areas of surface with runoff coefficient of CI It = number of different surfaces to consider At = total area over which C is applicable: the sum of all Afs ' HTP FIOW.tla [1 m M YY m m m M O m - N M O r 0 m M r m r O m m m m M 0 0 � z n��.=o of of <orr000i ai ado ni: Sao r�vi of co �o �ci �o �ci vi E r O O m OR m OR m O n O m M N m r m N r m O 0 0 m m m O Cd lh V' M Pd N N N N N O N N N N N fh M N V N N E w m _ �ti W ON m M m M A A aD m m N o O) rn M m m M r M O n N M O) N n M W M m M m m m W m N M m V M n m N m m Z Q � N = m U K N r u 7 m M m m m g M o m n N M o r rn m M n m r o m m OR m M n v n z�n���ooi of �rirr000i of ad or�r na6riri vino o Nro NN U + N N N m? m m O n M O m O n W N N m M l m O O O C t0 N It V m m R O n O r r O y N N M cq 0 m O n m M 0 O N In V V f0 m M N m O fV N N LL J W f0 In N N a fD /� t0 r m t� r N N f0 a m f0 f0 N N a eD n O O Z 2 U a m m m m m m m m m m m m m m m m m m m m m m m m m m m m O C C C 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O O O O O O C t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 uj F F m Lq NU� UO O [m0 W ty0 r t00 1m p In N <(0 N N pp m O cq O O q q N v W f F O N O N N m to m m m m m N m N O M N m N 0 m M r r m m 0 m W N O m p O p O m M m 0 N m m N O o m N m m > MEP C_ o fV agO tV fV N t'J tV mrn m Mrn M mr m �- or fV O Mee IN fV fV Mrn f7 O tV Iq vt ad C'> qr M Noo a O O _ £ m N N N N N N N N N N N N N N N N N N N N N N N N N N N N a N h v m mm m W J O �nommmm ommmrnrnM�nv r m r0 a a_m U 00 0 0 TIMnNunin O G o 0 0 0 0 F � Z_ {- t00 r N ccq m OU� N N M ty0 r V N O O ty0 00 N N 0 C M N N � v 0 0 0 0 6 o 6 O O 616 O O O O O O O O O O O O O O Q y i — < 0 N 0 M 0 v 0 m 0 m 0 n O m O QM- m m r m — o N N M N a N m N m N r N a0 N rn N m Qi m 2 a zt m Q N Z O M N O M M O M p O ttt777 m O M m O th n O th m O th O) O M O t7 t7 N t7 M C') V t7 O C� M l+) r P') m t") O) t") O N M N M M N M 7 N M i0 O M m N M r N M m N M 0J N M a m G ur a ° I t 1 Z 0 1 e gz ' W U o = a U O e W F N as 1 a O c F �3� 8 V m N z O C O < d 1 1 1 J a m m m o 0 0� n o N o 0 0 0 0 o m o 0 0 o m o 0 o ry n o 0 0 jL E O� V� VV�� 1111 11�� $$jj pp Q M� O �f�f ppp pp QQ qq^ qq qq lujl� NNlninn �OOSIV T`10�1'V F�lm`I F 1'1ffimm0^ ITV �l+`I i��OBOe9� az u 6ffiRa3SS8�:,3�$:::8��a80n8�RSSSSSS: J = m m m m m m O O m VI Z<V 0 C O 0 m m 0 0 O e 0 0 O e 0 0 0 0 m e 0 0 m e 0 0 m e .00 e ORR m m 0 m e 0 0 m 0 0. d o m 0 d d e 0 0 O Ti.o o o o 0 0 y K o n o u N FIT FITI f G 8�9R8Sffiffi�B p p q 1�1 p F. S E vffi�9mm Y1 N N p SRYIS Y1 p 6888aVS O O Y1 Y1 q 3ffi q^ 8810� i S 996 � a �o' �^o6n �oo6ari irvri ei eiJnu n ry sK� ry N N N N N N n N N N N N N N N N n N n N " YIIV 3 �a_ Qo �Sno ^m affiffiffi���R8�RS8RRm�R38� .-Effiffiffiffi: �g U d 6 0 0 6 6 0 0 o e d 6 e d o e o o d d d e e o o d o 0 6 m i� — ----ffi-ffi u-m yn �eei,ssanco:ss�n�;s E E C - o z R RR -lain Ran X�n'rvn ry nFnn pSyN N}��pb7a%' np N Z ��yo sssaffissss� :es:IVITH rar«sR rss �<ga N G ' N 'o r U Z O N N ~ Z W LL Z ' yC' Z LL a 0 {CC1J L d � 'O YO � 1 N d x 1 ` a T m 0 O ' F 0 O y p Ca v, z O O ' zza O F F F W a U p F 1 O a O im Q fC fG O O !n m tD IA N N Oi 0 aD f� O1 1C fG A A m N O t0 N N N N N Z « E LL m N n 0 0 0 d m m m O lh t�l C C 0 0 (V N fV EV fV v d fV fV N lV N M (�l �- N O N N E M Z y m � E m u .. O Y N M M r r m m m N m M m r O O N m n m m m m N M<< M r m N m m W Z _� _ m m m m m m d d a d a A r d m d a M m m m A d t+l M M N xm 5rO1 U � F u M �� � .-, m moo ai ao Ed v ui 6 of ec ee n ai vi � r r m e o ab vi v vi N N U r m m d d M m A N M m 0 0 d m d n n d N M m O1 r M O z E o m m m m A fA �l C O Y m N EI) m N O M CI (V fV LL J m m m m 0 d m A m r m r r m m m m d m m m N N d m A 0 0 Z m rn � Q S U a m m m m m m m m m m m m m m m m m m m m m m m m m m m m LL' C 0 0 0 0 C o 0 0 o o 0 0 0 0 0 0 o o o o o o o 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 K W � m m m ttpp i0 h pp N fm0 fmp fm0 mD fm0 fm0 A w N yy m m N fd0 00 N N N O g O O (� O o m 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C O 0 O N N W O N O N m m m m m m m m N m N O M N m N 0 m M A r m m O m m m 0 m m 0 m m 10 O N m N NM O N N N m m M N a J LL� Z m m m m d O 7 m M n n m O m m N O O O N m O- O V C- M d N O O d N O N m C C E fD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 N EV N EV N EV N N EV N N EV lV fV fV fV EV fV fV N EV IV fV N IV N N EV EV t.. m m m m m m •- m m m �- O m m � N d M � M � m N R M � M M M M � O m d � m � M N M N 0 0 C � d J v Zm d O o m m d m O r M m m m n m O O m m m m m N m O m r m m m 0 m fo d m N m m m m m O m A m M r m m N r m m 5 o 000000 0000aaooa0000000000 � U O m m � � umi n or Er° a n o n n m ui lfi U n0 W 0 0 0 0 0 0 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F zm _ p f00 r N ENO Mi C O pp m pp�� N pp�� N M tr0 fmD r< r 0 0110 pp t0 N A N V M No N N 00 0 0 0 0 •- O O O O O N Z 0 0 0 0 0 0 0 0 0 r• - N N N N N N N N N CD — — — — — — — — — — — — — — — — — — — — CD 7 W T T.—I Z N Z mZ N M g m m n m O N M d d M r m m o M d m m r m m F CO O 0 M M Eoi coi M n io w m En m m �n m m M M M M M n N C o d 7 U U LL N U O C N W .E N N C � m 'o c 'E cLo m u � U + C o E E D E C .E m c w m X 0 FLL d F TZ C u'. 'd O N m O MI 0 A m A h O O m VI O N Yj m. ry O m O 00 m m O m N O O m. O O m � O O YI m O O YI YI O O MI MI O O YI YI N N .. O O N N O O N m m _ LL C E L r . m O F m m N m m O N 10 m YI O A 00 y.� a =68R�86S$�n3"ed8:::8��P.P'�'�'n8FR�S O a E o 0 0 0 0 n ri O o N o c o 0 o o- m, LL W Z{2 2 ^ &' 2 m ' m N m m N N m m ry N m m N N m P N O m m � N m m !Y N m m N N m m IT m m C1 m m lV m m TIN N m m N N m m f1 N m m m m N N m m N N m C O C 5 e 0 G 0 0 G C 0 0 OO OO 0 0 OO G 0 d OO G 6 0 OO OO 0 0 OO OO 0 0 OO OO 0 0 OO o 0 o OO 0 0 O o 0 0 O G 0 0 G C 0 0 .6 0 O O 0 0 C O 0 0 G G C W� P 7 U jl 0 v V 1V N N N CI CI IV CI � N f1 f1 lV lV lV lV IV IV � N N N N ry N N N N CI lV N C! (V OO W m PAYFFFFRE —0m FJ mOOI—VO OOO ONN r e$ p $yy. !OI S n t01 S $$ O O O O R 28888 8so�$888.$8 ^P. o.�858 « 8888m () OO OO OO OO G O O o 0 o o o � O OO O OO o- o 0 0 0 - o 2 U n `a noo�sss �nnn�nng$emimm�na$no��'�'8 '8 ffi.i 5= V G G o O OO OO OO G OO o OO OO OO OO OO o G G G O O o G O O O O O O O O O O O 2 2 _ F y y� yy mm p Q m R R R N� F R� R N N N N N N N N N lV lV N IN`I lV N IV N N N N N N Q 2 7 N m � F (V ♦ Y1 q m O JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (City of Fort Collins, I0-Yr Storm) LOCATION: Harmony Technology Park - Hewlett Packard - Streets PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 12/6/00 10 yr storm, Cf = 1.00 DIRECT RUNOFF CARRY OVER TOTAL Design Point Tributary Sub -basin A (ac) C Cf tc (min) 1 (inlhr) Q (10) (cfs) from Design Point Q (10) (cfs) Q(10)tot (cfs) 301 101 0.60 0.75 7.6 4.22 1.92 1.92 302 102 0.75 0.80 7.3 4.27 2.57 2.57 303 103 1.23 0.76 11.5 3.59 3.38 3.38 304 104 0.82 0.75 11.5 3.58 2.23 1 2.23 305 105 0.93 1 0.56 10.6 1 3.72 1.93 1.93 306 106 1.01 0.75 9.9 3.82 2.88 2.88 307 107 0.50 0.70 9.3 3.92 1.38 1.38 308 108 0.29 0.78 6.0 4.54 1.03 1.03 309 109 0.29 0.85 7.5 4.22 1.05 311 0.03 1.08 310 110 0.30 0.78 6.1 4.52 1.06 312 0.02 1.08 311 111 0.67 0.49 10.2 3.77 1.24 1.24 312 112 0.65 0.79 9.3 3.92 2.00 1 2.00 313 113 0.74 1 0.73 9.0 1 3.97 2.15 2.15 314 114 0.45 0.48 8.7 4.01 0.87 0.87 314 115 0.70 0.54 10.9 3.67 1.39 318, 328 & 329 0.08 1.47 313 116 0.42 0.71 7.5 4.23 1.27 317 0.03 1.30 317 117 0.43 0.64 7.3 4.27 1.19 319 0.05 1.24 318 118 0.65 0.49 7.7 4.19 1.34 321 0.14 1.48 319 1 119 0.84 0.75 8.6 4.03 2.54 2.54 320 120 0.68 0.74 7.7 4.20 2.10 1 2.10 321 121 0.50 0.79 5.0 4.87 1.94 320 0.02 1.96 323 123 0.93 0.69 13.6 3.33 2.13 2.13 324 124 1.53 0.48 8.8 4.00 2.93 2.93 305 125 0.41 0.78 6.8 4.37 1.40 1.40 326 126 0.30 0.58 5.6 4.64 0.81 0.81 327 127 026 0.52 6.3 4.47 0.59 0.59 328 128 0.27 0.57 5.0 4.87 0.77 0.77 329 129 0.14 0.76 5.0 4.87 1 0.52 10.52 Q=CrCiA Q = peak discharge (cfs) C = runoff coefficient Cf = frequency adjustment factor i = rainfall intensity (in/hr) from City of Fort Collins IDF curve (4/16/99) A = drainage area (acres) i = 41.44 1 (10+ tc)o M74 HTP STREET FLOW.xIs 1 1 1 1 RATIONAL METHOD PEAK RUNOFF (City of Fort Collins, 10-Yr Storm) LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 1/23/01 10 yr storm, Cf = 1.00 DIRECT RUNOFF CARRY OVER TOTAL Design Point Tributary Sub -basin A (ac) C Cf tc (min) i (inthr) Q (10) (cfs) from Design Point Q (10) (cfs) Q(10)tot (ds) 401 201 1.80 0.72 5.4 4.68 6.06 6.06 402 202 2.39 0.63 8.4 4.07 6.09 6.09 403 203 1.40 0.57 11.8 3.55 2.82 2.82 404 204 1.41 0.61 10.8 3.68 3.15 1 3.15 405 205 2.05 0.67 8.8 3.99 5.44 5.44 406 206 1.36 0.84 5.0 4.87 5.61 5.61 407 207 1.37 0.95 5.0 4.87 6.34 6.34 408 208 1.37 0.95 5.0 4.87 6.34 6.34 409 209 1.42 0.95 8.4 4.06 5.49 5.49 410 210 1.03 0.10 11.2 3.63 0.38 0.38 411 211 1.48 0.78 5.0 4.87 5.64 5.64 412 212 1.95 0.73 5.5 4.66 6.68 6.68 413 213 0.91 0.78 5.0 4.87 3.43 3.43 414 214 1.56 0.68 5.0 4.87 5.12 5.12 415 2t5 1.70 0.72 5.0 4.78 5.88 5.88 416 216 1.21 0.79 5.0 4.87 4.64 4.64 417 217 1.52 0.82 5.0 4.87 6.09 6.09 418 218 0.94 0:80 5.0 4.87 3.68 3.68 419 219 1.11 0.36 11.9 3.54 1.41 1.41 420 220 1.28 0.78 5.0 4.87 4.88 4.88 421 221 1.07 0.81 5.0 4.87 4.21 4.21 422 222 1.10 0.74 5.0 4.87 4.00 4.00 423 223 2.04 0.73 5.0 4.87 7.29 7.29 424 224 1.53 0.64 6.6 4.42 4.28 4.28 425 225 1.17 0.80 5.0 4.87 4.58 4.58 426 226 1.69 0.74 5.0 4.87 6.07 6.07 427 227 1.47 0.69 5.0 4.87 4.93 1 4.93 428 228 1.07 0.10 11.2 3.63 0.39 0.39 429 229 0.81 0.10 11.2 3.63 0.29 0.29 430 230 1.37 0.95 5.0 4.87 6.34 6.34 431 231 1.37 0.95 5.0 4.87 6.34 6.34 432 232 1.37 0.95 5.0 4.87 6.34 6.34 433 233 1.37 0.95 5.0 4.87 6.34 6.34 - 0 OS1 3.68 0.41 17.5 2.95 4.41 4.41 HTP FLOW.xIs Q=CfCiA Q = peak discharge (cfs) C = runoff coefficient Cf = frequency adjustment factor i = rainfall intensity (in/hr) from City of Fort Collins IDF curve (4/16/99) A = drainage area (acres) i = 41.44 / (10+tc)0797 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (City of Fort Collins, 100-Yr Storm) LOCATION: Harmony Technology Park - Hewlett Packard - Streets PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 12/6/00 100 yr storm, Cf = 1.25 DIRECT RUNOFF CARRY OVER TOTAL Des. Point Area Design. A (ac) C Cf tc (min) i (in/hr) Q (100) (cis) from Design Point Q (100) (cfs) Q(100)tot (cfs) 301 101 0.60 0.94 6.5 9.08 5.17 5.17 302 102 0.75 1.00 6.1 9.22 6.94 6.94 303 103 1.23 0.95 10.3 7.66 9.00 326 & 327 0.18 1 9.18 304 104 0.82 0.94 10.4 7.64 5.94 5.94 305 105 0.93 0.70 9.8 7.84 5.09 303. 307, 308 1.05 6.14 306 106 1.01 0.93 8.8 8.16 7.70 304 0.19 7.89 307 107 0.50 0.88 6.8 8.92 3.92 309 0.14 4.06 308 108 0.29 0.97 5.0 9.95 2.84 310 0.17 3.01 309 109 0.29 1.00 5.5 9.51 2.79 311 0.50 3.29 310 110 0.30 0.98 5.0 9.95 2.92 312 0.54 3.46 311 111 0.67 0.61 9.0 8.07 3.31 3.31 312 112 0.65 0.98 8.2 8.37 5.35 5.35 313 113 0.74 0.92 8.0 8.46 5.74 5.74 314 114 0.45 0.60 7.8 8.52 2.31 2.31 314 115 0.70 0.67 9.6 7.89 3.73 318. 328 & 329 1.51 5.24 313 116 0.42 0.89 6.5 9.03 3.39 317 0.74 4.13 317 117 0.43 0.80 6.4 9.09 3.16 319 0.89 4.05 318 .118 0.65 0.61 7.1 8.81 3.52 321 1.32 4.84 319 119 0.84 0.94 7.6 8.61 6.78 6.78 320 120 0.68 0.92 6.7 8.98 5.62 5.62 321 121 0.50 0.99 5.0 9.95 4.94 320 0.58 5.52 323 123 0.93 0.86 10.1 7.73 6.18 6.18 324 124 1.53 0.60 8.1 8.41 7.71 7.71 305 125 0.41 0.97 5.6 9.46 3.77 3.77 326 126 0.30 j 0.73 j 5.0 j 9.95 2.16 2.16 327 127 0.26 0.65 5.4 9.57 1.59 1.59 328 128 0.27 0.72 5.0 9.95 1.95 1.95 329 129 0.14 0.95 5.0 9.95 1.33 1.33 Q=CiA Q = peak discharge (cfs) C = runoff coefficient i = rainfall intensity (in/hr) from City of Fort Collins IDF curve (4/16/99) A = drainage'area (acres) i = 84.682 / (10+ tc)0.7975 HTP STREET FLOW.xIs t 1 1 1 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (City of Fort Collins, 100-Yr Storm) LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 1/23/01 100 yr storm, C1= 1.25 DIRECT RUNOFF CARRY OVER TOTAL Des. Point Area Design. A (ac) C Cf tc (min) i (inthr) Q (100) (Ws) from Design Point Q (100) (ds) Q(100)tot (ds) 401 201 1.80 0.90 5.0 9.95 16.09 16.1 402 202 2.39 0.78 5.8 9.36 17.51 17.5 403 203 1.40 0.71 8.9 8.13 8.07 8.1 404 204 1.41 0.76 7.7 8.56 9.15 9.2 405 205 2.05 0.83 5.8 9.37 15.97 16.0 406 206 1.36 1.00 5.0 9.95 13.58 13.6 407 207 1.37 1.00 5.0 9.95 13.63 13.6 408 208 1.37 1.00 5.0 9.95 13.63 13.6 409 209 1.42 1.00 8.2 8.37 11.91 11.9 410 1 210 1.03 0.13 11.2 7.41 0.96 1.0 411 211 1.48 0.98 5.0 9.95 14.41 1 14.4 412 212 1.95 0.92 5.0 9.95 17.83 17.8 413 213 0.91 0.97 5.0 9.95 8.77 8.8 414 214 1.56 0.84 5.0 9.95 13.08 13.1 415 215 1.70 0.90 5.0 9.95 15.30 15.3 416 216 1.21 0.98 5.0 9.95 11.84 11.8 417 217 1.52 1.00 5.0 9.95 15.17 15.2 418 218 0.94 1.00 5.0 9.95 9.35 9.3 419 219 1.11 0.45 1 11.0 7.47 3.72 1 3.7 420 220 1.28 0.98 5.0 9.95 12.47 12.5 421 221 1.07 1.00 5.0 9.95 10.65 10.6 422 222 1.10 0.93 5.0 9.95 10.21 10.2 423 223 2.04 0.92 5.0 9.95 18.62 18.6 424 224 1.53 0.79 5.0 9.95 12.06 12.1 425 225 1.17 1.00 5.0 9.95 11.65 11.6 426 226 1.69 0.92 5.0 9.95 1 15.50 15.5 427 227 1.47 0.86 1 5.0 9.95 12.58 12.6 428 228 1.07 0.13 11.2 7.41 0.99 1.0 429 229 0.81 0.13 11.2 7.41 0.75 0.8 430 230 1.37 1.00 5.0 9.95 13.63 13.6 431 1 231 1.37 1.00 5.0 9.95 13.63 13.6 432 232 1.37 1.00 5.0 9.95 13.63 13.6 433 233 1.37 1.00 5.0 9.95 13.63 13.6 0 1 Os1 3.68 0.51 17.5 1 6.02 1 11.27 1 1 11.3 HTP FLOWAs Q=CiA Q = peak discharge (cfs) C = runoff coefficient i = rainfall intensity (in/hr) from City of Fort Collins OF curve (4/16/99) A = drainage area (acres) i = 84.682 i (10+ tC)o.71 ,' r ' APPENDIX C ' STREET CAPACITY 1 1 1 1 tJR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins. CO 80525 12/6/00 1 LOCATION: Harmony Technology Park - Hewlett Packard ITEM: STREET CAPACITY CALCULATIONS - East/West Streets A & B COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING C t 1 1 Note: Design flows and street capacities are given for one side of the street unless otherwise indicated Des. Point Street Name Roadway Width (ft) Slope (%) 10 yr Capacity (cfs) Design flow 0(1o) (cis) meets criteria? 100 yr Capacity (cfs) Design flow Q(100) (cfs) meets criteria? 307 B 40 0.66 10.55 0.96 yes 25.91 3.23 yes 308 B 40 0.69 10.78 1.05 yes 26.49 3.39 yes 309 B 40 0.66 10.55 1.08 yes 25.91 3.29 yes 310 B 40 0.69 10.78 1.08 yes 26.49 3.46 yes 311 B 40 0.66 10.55 1.24 yes 25.91 3.31 yes 312 B 40 0.69 10.78 2.00 yes 26.49 5.35 yes 323 A 40 1.24 14.46 2.13 yes 35.51 6.18 yes 324 A 1 40 1 1.23 1 14.40 1 2.93 1 yes 1 35.36 1 7.71 1 yes ' Streets A&B street capacity.xls 1 of 1 JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 12/6/00 LOCATION: Harmony Technology Park - Hewlett Packard ITEM: STREET CAPACITY CALCULATIONS - East/West Streets A & B COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING Minor Storm Design in accordance to "Storm Drainage Design Criteria and Construction Standards" City of Fort Collins, May 1984. Street with 40' Roadway, vertical curb and gutter no curb topping, flow may spread to crown of street calculate for channel slopes from 0.4% to 2% Theoretical Capacity: use revised Mannings eq. Allowable Gutter Flow. Q=0.56*Z/n*S'"2*ya3 Qall =F*Q where Q = theoretical gutter capacity (cfs) F = reduction factor (Fig. 4-2) Z = reciprocal of cross slope (ft/ft) Qall = allowable gutter capacity (cfs) n = roughness coeff. S = channel slope (ftlft) Q = Qa - Qb + Qc y = depth of flow at face of gutter (ft) Section A Section B Section C Z = 12.0 ft/ft Z = 12.0 Wit Z = 50.0 ft/ft n= 0.013 n= 0.013 n= 0.016 y= 0.50 ft y= 0.36 ft y= 0.36 ft S Qa Qb Qc Qtatal F Qall 0.40% 5.15 2.14 7.26 10.26 0.50 5.13 0.50% 5.76 2.40 8.12 11.48 0.65 7.46 0.59% 6.25 2.60 8.82 12.47 0.79 9.85 0.60% 6.31 2.63 8.89 12.57 0.80 10.06 0.65% 6.56 2.73 9.25 13.08 0.80 10.47 0.66% 6.61 2.75 9.32 13.18 0.80 10.55 0.69% 6.76 2.82 9.53 13.48 0.80 10.78 0.80% 7.28 3.03 10.27 14.52 0.80 11.61 1.00% 8.14 3.39 11.48 16.23 0.80 12.98 1.23% 9.03 3.76 12.73 18.00 0.80 14.40 1.24% 9.07 3.78 12.78 18.07 0.80 14.46 1.50% 9.97 4.15 14.06 19.88 0.80 15.90 2.00%1 11.51 1 4.79 1 16.23 1 22.95 1 0.80 1 18.36 CL FL I q B Yb = Yc = 0.36 ft Ya = 0.5 ft Streets A&B street capacity.xis 1 of 2 I JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 12/6/00 t 1] [I 1 LOCATION: Harmony Technology Park - Hewlett Packard ITEM: STREET CAPACITY CALCULATIONS - East/West Streets A & B COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING Major Storm (100-yr) Design in accordance to "Storm Drainage Design Criteria and Construction Standards' City of Fort Collins, May 1984. Street with 40' Roadway, vertical curb and gutter depth of water over crown not to exceed 6", buildings shall not be inundated at the ground line calculate for channel slopes from 0.4% to 2% Theoretical Capacity: use Mannings eq. Allowable Gutter Flow: Q=1.486/n'R2J'S12'A Call =F'Q where Q = theoretical gutter capacity (cfs) F = reduction factor (Fig. 4-2) n = roughness coeff. Qall = allowable gutter capacity (cfs) R= A/P A = cross sectional area (ft) Q = Qa + Qb P = wetted perimeter (ft) S = channel slope Section A Section B A = 7.93 ft2 A = 1.21 ft2 P= 20.91 ft P= 11.22ft R = 0.38 ft R = 0.11 ft n= 0.016 n= 0.035 S Q. Qb Qtot F Qall 0.40% 24.47 0.74 25.21 0.50 12.60 0.50% 27.36 0.83 28.18 0.65 18.32 0.60% 29.97 0.90 30.87 0.80 24.70 0.65% 31.19 0.94 32.14 0.80 25.71 0.66% 31.43 0.95 32.38 0.80 25.91 0.69% 32.14 0.97 33.11 0.80 26.49 0.80% 34.61 1.04 35.65 0.80 28.52 1.00% 38.69 1.17 39.86 0.80 31.89 1.23% 42.91 1.29 44.21 0.80 35.36 1.24% 43.09 1.30 44.39 0.80 35.51 1.50% 47.39 1.43 48.82 0.80 39.05 2.00% 54.72 1.651 56.37 0.80 45.10 FL rt 0.19, 0.36' 0.17' Area A = (0.19')'(18') + (0.36')'(18')'(1/2) + (0.36'+0.19')'(2') + (2')'(0.17')'(1/2) = 7.93 sq. ft. Area B = (11')*(0.22)*(1/2) = 1.21 sq. ft. ' Streets A&B street capacity.xls 2 of 2 JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 1 /22101 LOCATION: Harmony Technology Park - Technology Parkway ITEM: CHECK OF STREET CAPACITY COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING Note: Design flows and street capacities are given for one side of the street unless otherwise indicated Sub- Basin Des. Point Street Name Roadway Width (ft) Slope (%) 10 yr Capacity (cfs) Design flow Q(10) (cis) meets criteria? 100 yr Capacity (cfs) Design flow Q(100) (cfs) meets criteria? 113 313 Technology Parkway 59 0.75 2.51 2.15 yes 32.65 5.74 yes 116 313 Technology Parkway 59 0.54 1.89 1.30 yes 24.58 4.13 yes 114 314 Technology Parkway 59 0.60 2.24 0.87 yes 29.20 2.31 yes 115 314 Technology Parkway 59 0.53 1.85 1.47 yes 24.01 5.24 yes 117 317 Technology Parkway 59 0.62 2.28 1.24 yes 29.68 4.05 yes 118 318 Technology Parkway 59 0.50 1.66 1.48 yes 21.66 4.84 yes 119 319 Technology Parkway 59 0.64 2.32 2.54 no 30.16 6.78 yes 120 320 Technology Parkway 59 0.64 2.32 2.10 yes 30.16 5.62 yes 121 1 321 1 Technology Parkway 1 59 1 0.64 1 2.32 1 1.96 1 yes 1 30.16 1 5.52 1 yes Tech Pkwy street capacity.xls 1 of JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, C080525 12/6/00 LOCATION: HARMONY TECHNOLOGY PARK ITEM: STREET CAPACITY CALCULATIONS - TECHNOLOGY PARKWAY COMPUTATIONS BY: M. WEST SUBMITTED BY: JR ENGINEERING Minor Story Design in accordance to "Storm Drainage Design Criteria and Construction Standards" City of Fort Collins, May 1984. Street with 59' Roadway, 19' Median, and vertical curb and gutter no curb topping calculate for channel slopes from 0.4% to 2% Theoretical Capacity., use revised Mannings eq. Allowable Gutter Flow. Q=0.56'Z/n'S12'y� Qall=F'Q where Q = theoretical gutter capacity (cfs) F = reduction factor (Fig. 4-2) Z = reciprocal of cross slope (ft/ft) Qall = allowable gutter capacity (cfs) n = roughness coeff. S = channel slope (fVft) Q = Qa - Qb + Qc y = depth of flow at face of gutter (ft) Section A Section B Section C Z = 12.0 Wit Z = 12.0 ft/ft Z = 50.0 ft/ft n= 0.013 n= 0.013 n= 0.016 y = 0.33 ft y = 0.16 It y = 0.16 ft One side of the street S Q. Qb Qc Qtofal F Qan 0.40% 1.70 0.25 0.84 2.29 0.50 1.14 0.50% 1.90 0.28 0.93 2.56 0.65 1.66 0.51 % 1.92 0.28 0.94 2.58 0.67 1.73 0.52% 1.94 0.28 0.95 2.61 0.68 1.77 0.53% 1.96 0.28 0.96 2.64 0.70 1.85 0.54% 1.98 0.29 0.97 2.66 0.71 1.89 0.56% 2.01 0.29 0.99 2.71 0.74 2.00 0.60% 2.08 0.30 1.02 2.80 0.80 2.24 0.62% 2.12 0.31 1.04 2.85 0.80 2.28 0.64% 2.15 0.31 1.06 2.90 0.80 2.32 0.71 % 2.27 0.33 1.11 3.05 0.80 2.44 0.75% 2.33 0.34 1.14 3.13 0.80 2.51 0.80% 2.40 0.35 1.18 3,24 0,80 2.59 1.00% 2.69 0.39 1.32 3.62 0.80 2.90 1.50% 3.29 0.48 1.62 4.43 0.80 3.55 2.00% 3.80 0.55 1.87 5.12 0.80 4.09 Tech Pkwy street wpacity.As Ct FL A B Yb = yc = 0.16 ft Ya = 0.33 ft 1 of 2 JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190. Fort Collins, CO 80525 1/22/01 [I LOCATION: HARMONY TECHNOLOGY PARK ITEM: STREET CAPACITY CALCULATIONS - TECHNOLOGY PARKWAY COMPUTATIONS BY: M. WEST SUBMITTED BY: JR ENGINEERING Major Storm (100-yr) Design in accordance to "Stone Drainage Design Criteria and Construction Standards" City of Fort Collins, May 1984. Street with 50' Roadway, vertical curb and gutter - collector street -depth of water over crown not to exceed 6", buildings shall not be inundated at the ground line -calculate for channel slopes from 0.4% to 7% Theoretical Capacity: use Mannings eq. Allowable Gutter Flow., Q=1.486/n-R'•S12•A Call =F•Q where Q = theoretical gutter capacity (cfs) F = n = roughness coeff. Qall = R= A/P Q= A = cross sectional area (ft2) P = wetted perimeter (ft) S = channel slope Section A Section B A = 8.73 ft2 A = 1.69 ft2 P = 20.99 ft P = 13.26 ft R= 0.42it R= 0.13ft n = 0.016 n = 0.035 One side of street S Q. Qb Qtt F Qau 0.40% 28.65 1.15 29.80 0.50 14.90 0.50% 32.03 1.29 33.32 0.65 21.66 0.51 % 32.35 1.30 33.65 0.67 22.55 0.52% 32.67 1.31 33.98 0.68 23.11 0.53% 32.98 1.33 34.30 0.70 24.01 0.54% 33.29 1.34 34.63 0.71 24.58 0.56% 33.90 1.36 35.26 0.74 26.09 0.60% 35.09 1.41 36.50 0.80 29.20 0.62% 35.67 1.43 37.10 0.80 29.68 0.64% 36.24 1.46 37.70 0.80 30.16 0.71 % 38.17 1.54 39.70 0.80 31.76 0.75% 39.23 1.58 40.81 0.80 32.65 0.80% 40.52 1.63 42.15 0.80 33.72 1.00%1 45.301 1.821 47.121 0.80 37.70 1.50% 55.48 2.23 57.71 0.80 46.17 2.00% 64.06 2.581 66.641 0.80 53.31 FL Median Area A = (0.23')•(18') + (0.36')•(18')•(1/2) + (2')•(0.59') + (0.17')•(2')•(1/2) = 8.73 sq. ft. Area B = (13')•(0.26')•(1/2) = 1.69 sq. ft. Tech Pkwy street capacity.xls 1 Of 1 JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 1 /22/01 LOCATION: HTP ITEM: CHECK OF STREET CAPACITY - CAMBRIDGE DRIVE COMPUTATIONS BY: M. WEST SUBMITTED BY: JR ENGINEERING Note: Design flows and street capacities are given for one side of the street unless otherwise indicated Sub- Basin Des. Point Street Name Roadway Width (ft) Slope N 10 yr Capacity (Cis) Design flow Q(10) (cfs) meets criteria? 100 yr Capacity (cfs) Design flow Q(100) (cfs) meets criteria? 101 301 CAMBRIDGE VARIES 0.61 4.67 1.92 yes 38.51 5.17 yes 102 302 CAMBRIDGE VARIES 0.61 4.67 2.57 yes 38.51 6.94 yes 103 303 CAMBRIDGE 52 0.56 4.12 3.38 yes 33.95 11.09 yes 104 304 CAMBRIDGE 52 0.56 4.12 2.23 yes 33.95 5.94 yes 105 305 CAMBRIDGE 52 0.56 4.12 2.45 yes 33.95 10.20 yes 106 306 CAMBRIDGE 52 0.50 3.47 3.32 yes 28.57 9.35 Yes 125 305 CAMBRIDGE 52 0.50 3.47 1.40 yes 1 28.57 1 3.78 yes Cambridge street_capacity.xls 1 of JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 12/6/00 LOCATION: HTP ITEM: STREET CAPACITY CALCULATIONS - EAST SIDE - CAMBRIDGE DRIVE COMPUTATIONS BY: mw SUBMITTED BY: JR ENGINEERING Minor Storm Design in accordance to "Storm Drainage Design Criteria and Construction Standards" City of Fort Collins, May 1984. Street with 52' Roadway, vertical curb and gutter - modified collector street no curb topping, flow spread must leave at least one lane free of water calculate for channel slopes from 0.4% to 7% Theoretical Capacity. use revised Mannings eq. Allowable Gutter Flow. Q = 0.56 'Z/n 'S'n ` y w Qall = F ' Q where Q = theoretical gutter capacity (cfs) F = reduction factor (Fig. 4-2) Z = reciprocal of cross slope (ft/ft) Qall = allowable gutter capacity (cfs) n = roughness coeff. S = channel slope (ft/ft) Q = Qa - Qb + Qc y = depth of flow at face of gutter (ft) Section A Section B Section C Z = 12.0 ft/ft Z = 12.0 ft/ft Z = 50.0 ft/ft n= 0.013 n= 0.013 n= 0.016 y= 0.41ft y= 0.24ft y= 0.24ft One side of street S Qa Qb Qc Qtotal F Qall 0.40% 3.03 0.73 2.46 4.77 0.50 2.38 0.50% 3.39 0.81 2.75 5.33 0.65 3.47 0.56% 3.59 0.86 2.91 5.64 0.73 4.12 0.60% 3.71 0.89 3.02 5.84 0.80 4.67 0.80% 4.29 1.03 3.48 6.74 0.80 5.39 1.00% 4.80 1.15 3.89 7.54 0.80 6.03 1.50% 5.87 1.41 4.77 9.23 0.80 7.39 2.00% 6.78 1.63 5.51 10.66 0.80 8.53 3.00% 8.31 1.99 6.74 13.06 0.72 9.40 4.00% 9.59 2.30 7.79 15.08 0.60 9.05 5.00% 10.72 2.57 8.71 16.86 0.48 8.09 6.00%1 11.75 2.82 9.54 19.18 0.40 7.67 700%1 12.69 3.04 10.30 19.95 0.34 6.78 FL 2.0' A ;� B Cam bridge_street_ca pacity.xls CL 12.0' Yb=Yc= 0.24ft - Ya = 0.41 ft 1 of 2 JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 12/6/00 LOCATION: HTP ITEM: STREET CAPACITY CALCULATIONS - EAST SIDE - CAMBRIDGE DRIVE COMPUTATIONS BY: mw SUBMITTED BY: JR ENGINEERING Major Storm (100-yr) Design in accordance to "Storm Drainage Design Criteria and Construction Standards" City of Fort Collins, May 1984. Street with 52' Roadway, vertical curb and gutter - modified collector street -depth of water over crown not to exceed 6", buildings shall not be inundated at the ground line -calculate for channel slopes from 0.4% to 7% Theoretical Capacity: use Mannings eq. Allowable Gutter Flow: Q=1.486/n'R�'S12-A Qall =F"Q where Q = theoretical gutter capacity (cfs) F = reduction factor (Fig. 4-2) n = roughness coeff. Qall = allowable gutter capacity (CIS) R= A/P Q=Qa+Qb A = cross sectional area (ft) P = wetted perimeter (ft) S = channel slope Section A Section B A = 11.31 ftz A = 2.56 ftZ P = 26.99 ft P = 16.32 ft R= 0.42ft R= 0.16ft n = 0.016 n = 0.035 One side of street S Q. Qb Qtot F Qall 0.40% 37.30 2.00 39.31 0.50 19.65 .'.0.50% 41.71 2.24 43.95 0.65 28.57 0.56% 44.14 2.37 46.51 0.73 33.95 0.60% 45.69 2.46 48.14 0.80 38.51 0.80% 52.75 2.84 55.59 0.80 44.47 1.00% 58.98 3.17 62.15 0.80 49.72 1.50% 72.24 3.88 76.12 0.80 60.89 2.00% 83.41 4.48 87.89 0.80 70.31 3.00% 102.16 5.49 107.65 0.72 77.51 4.00% 117.96 6.34 124.30 0.60 74.58 5.00% 131.88 7.09 138.97 0.48 66.71 6.00% 144.47 7.76 152.24 0.40 60.89 7.00%1 156.051 8.391 164.431 0.34 55.91 Cambridge_ street_capacity.xls FL CL 0.17' 0.48' 0.17' Area A = (0.17')(24') + (0.17'+0.48')'(2') + (2')'(0.17)"(1/2) + (0.48')`(24')'(1/2) = 11.31 sq. ft. Area B = (16')"(0.32')'(1/2) = 2.56 sq. ft. 2 of2 ' APPENDIX D ' INLETS 1 1 I ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER -----SUPPORTED-BY-METRO-DENVER-CITIES/COUNTIES AND UD&FCD ---------------------------------- IS-E-R:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-05-2000 AT TIME 17:20:57 ** PROJECT TITLE: HTP ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 301 1 11 1 1 r 1 1 1 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.61 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 13.94 GUTTER FLOW DEPTH (ft) = 0.40 FLOW VELOCITY ON STREET (fps)= 2.52 FLOW CROSS SECTION AREA (sq ft)= 2.07 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: flow depth. IDEAL INTERCEPTION CAPACITY (cfs)= 13.59 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.17 FLOW INTERCEPTED (cfs)= 5.17 CARRY-OVER FLOW (Cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.17 FLOW INTERCEPTED (cfs)= 5.17 CARRY-OVER FLOW (cfs)= 0.00 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED-BY-METRO-DENVER-CITIES/COUNTIES AND -UD&FCD- ER:JR ENGINEERS-DENVER CO ................................................. ON DATE 12-05-2000 AT TIME 17:21:59 t* PROJECT TITLE: HTP ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 302 1 1 1 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 10.00 6.00 0.00 2.00 0.17 depth to flow depth. STREET LONGITUDINAL SLOPE (%) = 0.61 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.72 GUTTER FLOW DEPTH (ft) = 0.44 FLOW VELOCITY ON STREET (fps)= 2.68 FLOW CROSS SECTION AREA (sq ft)= 2.60 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(°%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 14.88 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.94 FLOW INTERCEPTED (Cfs)= 6.94 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.94 FLOW INTERCEPTED (Cfs)= 6.94 CARRY-OVER FLOW (cfs)= 0.00 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ---SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------- --------------------------------------------------------------- SER:JR ENGINEERS -DENIER CO .................................................. ON DATE 06-15-2001 AT TIME 12:22:17 1** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: �03 INLET ID NUMBER: 303 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 4.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.56 STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.78 ' GUTTER FLOW DEPTH (ft) = 0.36 FLOW VELOCITY ON STREET (fps)= 2.22 FLOW CROSS SECTION AREA (sq ft)= 1.51 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 ' INLET INTERCEPTION CAPACITY: FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= 3.38 ' IDEAL GRATE INLET CAPACITY (cfs)= 3.25 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.88 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.62 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 303 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 14.70 REQUIRED CURB OPENING LENGTH (ft)= 15.02 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 0.98 1 1 1 1 1 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.50 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.50 FLOW INTERCEPTED (Cfs)= 0.49 CARRY-OVER FLOW (cfs)= 0.01 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.76 FLOW INTERCEPTED (cfs)= 0.45 CARRY-OVER FLOW (cfs)= 1.30 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 3.38 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= 2.88 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.49 TOTAL FLOW INTERCEPTED (cfs)= 3.37 CARRYOVER FLOW (cfs)= 0.01 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= 1.62 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.45 TOTAL FLOW INTERCEPTED (cfs)= 2.08 CARRYOVER FLOW (cfs)= 1.30 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ----------SUPPORTED-BYMETRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO .................................................. �N DATE 06-15-2001 AT TIME 12:22:41 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 1o3 ' INLET ID NUMBER: 303 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES IS THE INLET GRATE NEXT TO A CURB = 4.00 ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.56 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 17.88 ' GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= 2.76 ' FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (s)= 3.32 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 ' INLET INTERCEPTION CAPACITY: FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= 9.18 ' IDEAL GRATE INLET CAPACITY (cfs)= 8.48 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 6.81 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 4.24 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 303 ' INLET HYDRAULICS: ON A GRADE. I iGIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 14.70 ' REQUIRED CURB OPENING LENGTH (ft)= 26.19 IDEAL CURB OPENNING EFFICIENCY = 0.77 ACTURAL CURB OPENNING EFFICIENCY = 0.72 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.83 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= t*** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED CARRYOVER FLOW (cfs)= (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 2.37 1.70 0.67 4.94 1.65 3.29 o 6.81 1.70 8.51 0.67 4.24 1.65 5.89 3.29 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD - �SER:JR ENGINEERS-DENVER CO .................................................. �N DATE 06-15-2001 AT TIME 12:23:37 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 304 INLET HYDRAULICS: ON A GRADE. INFORMATION: GIVEN INLET DESIGN INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 4.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 0.56 STREET CROSS SLOPE (%) 2.00 ' STREET MANNING N _ 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 9.78 GUTTER FLOW DEPTH (ft) = 0.32 FLOW VELOCITY ON STREET (fps)= 2.05 ' FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR M = 1.08 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 ' INLET INTERCEPTION CAPACITY: FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= 2.23 ' IDEAL GRATE INLET CAPACITY (cfs)= 2.17 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.98 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.08 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 304 ' INLET HYDRAULICS: ON A GRADE. I 1 1 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 14.70 REQUIRED CURB OPENING LENGTH (ft)= 11.86 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.25 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.25 FLOW INTERCEPTED (cfs)= 0.25 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.15 FLOW INTERCEPTED (cfs)= 0.22 CARRY-OVER FLOW (cfs)= 0.92 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 2.23 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.98 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.25 TOTAL FLOW INTERCEPTED (cfs)= 2.23 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.08 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.22 TOTAL FLOW INTERCEPTED (cfs)= 1.31 CARRYOVER FLOW (cfs)= 0.92 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------- USER:JR ENGINEERS-DENVER CO .................................................. N DATE 06-15-2001 AT TIME 12:24:03 ** PROJECT TITLE: HTP *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: goy INLET ID NUMBER: 304 INLET HYDRAULICS: ON A GRADE, ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 4.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.56 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 14.97 GUTTER FLOW DEPTH (ft) = 0.42 FLOW VELOCITY ON STREET (fps)= 2.50 FLOW CROSS SECTION AREA (sq ft)= 2.37 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 ' INLET INTERCEPTION CAPACITY: FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= 5.94 ' IDEAL GRATE INLET CAPACITY (cfs)= 5.59 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: 4.70 FLOW INTERCEPTED (cfs)= 2.80 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 304 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 14.70 ' REQUIRED CURB OPENING LENGTH (ft)= 20.61 IDEAL CURB OPENNING EFFICIENCY = 0.89 ACTURAL CURB OPENNING EFFICIENCY = 0.84 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.11 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= ' TOTAL FLOW INTERCEPTED CARRYOVER FLOW (cfs)= (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= t 1 1 1 1 1 1.24 1.04 0.19 3.14 1.00 2.15 5.94 4.70 1.04 5.75 0.19 2.80 1.00 3.79 2.15 ------------------------------------------------------------------------------ t UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ---SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD IS-E-R:JR ENGINEERS-DENVER CO .................................................. �N DATE 06-15-2001 AT TIME 12:32:52 ** PROJECT TITLE: HTP ' *** CURB OPENING INLET HYDRAULICS AND SIZING: 1 1 1 1 1 I INLET ID NUMBER: 305 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 0.56 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER.SPREAD ON STREET (ft) = 18.44 GUTTER FLOW DEPTH (ft) = 0.49 FLOW VELOCITY ON STREET (fps)= 2.81 FLOW CROSS SECTION AREA (sq ft)= 3.52 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(°%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 21.90 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 9.91 FLOW INTERCEPTED (cfs)= 9.91 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 9.91 FLOW INTERCEPTED (cfs)= 9.91 CARRY-OVER FLOW (cfs)= 0.00 -------------------- 7--------------------------------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ----------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD IS-E-R:JR ENGINEERS-DENVER CO .................................................. DATE 06-15-2001 AT TIME 12:33:37 ** PROJECT TITLE: HTP ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 306 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= Note: The sump depth is additional 0.17 depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.56 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 16.84 GUTTER FLOW DEPTH (ft) = 0.46 FLOW VELOCITY ON STREET (fps)= 2.67 FLOW CROSS SECTION AREA (sq ft)= 2.96 GRATE CLOGGING FACTOR (°s)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 21.37 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 7.89 FLOW INTERCEPTED (Cfs)= 7.89 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 7.89 FLOW INTERCEPTED (Cfs)= 7.89 tCARRY-OVER FLOW (cfs)= 0.00 I ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER �-----------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------- USER:JR ENGINEERS-DENVER CO .................................................. �N DATE 06-15-2001 AT TIME 12:28:36 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: �01 ' INLET ID NUMBER: 307 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES IS THE INLET GRATE NEXT TO A = CURB ?-- YES 3.00 Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.66 STREET CROSS SLOPE M 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 7.44 GUTTER FLOW DEPTH (ft) = 0.27 FLOW VELOCITY ON STREET (fps)= 2.02 ' FLOW CROSS SECTION AREA (sq ft)= 0.68 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 1.38 ' IDEAL GRATE INLET CAPACITY (cfs)= 1.33 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY DENVER UDFCD METHOD: (cfs)= 1.22 FLOW INTERCEPTED (cfs)= 0.67 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 307 INLET HYDRAULICS: ON A GRADE. I GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 ' REQUIRED CURB OPENING LENGTH (ft)= 9.37 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.16 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= ' TOTAL FLOW INTERCEPTED CARRYOVER FLOW (cfs)= (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= r I I I I 0.16 0.16 0.00 0.71 0.13 0.58 1.38 1.22 0.16 1.38 0.00 0.67 0.13 0.80 0.58 11 I ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER '------------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO .................................................. �N DATE 06-15-2001 AT TIME 12:29:06 ** PROJECT TITLE: HTP *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 107 1 INLET ID NUMBER: 307 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 t INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.66 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.34 ' GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 2.46 FLOW CROSS SECTION AREA (sq ft)= 1.65 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 4.06 ' IDEAL GRATE INLET CAPACITY (cfs)= 3.70 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 3.00 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.85 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 307 ' INLET HYDRAULICS: ON A GRADE. 11 ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 ' REQUIRED CURB OPENING LENGTH (ft)= 17.31 IDEAL CURB OPENNING EFFICIENCY = 0.83 ACTURAL CURB OPENNING EFFICIENCY = 0.75 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.88 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= ' TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 1 l J 1.06 0.79 0.27 2.21 0.75 1.46 4.06 3.00 0.79 3.79 0.27 1.85 0.75 2.60 1.46 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER �SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD - SER:JR ENGINEERS-DENVER CO .................................................. �N DATE 06-15-2001 AT TIME 12:29:56 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: lo8 t INLET ID NUMBER: 308 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES IS THE INLET GRATE NEXT TO A CURB = 3.00 ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.66 STREET CROSS SLOPE (%) 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 6.36 ' GUTTER FLOW DEPTH (ft) = 0.25 FLOW VELOCITY ON STREET (fps)= 1.95 FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= 0.53 50.00 CURB OPENNING CLOGGING FACTOR(°%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE .(Cfs)= 1.03 ' IDEAL GRATE INLET CAPACITY (cfs)= 1.01 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 0.95 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.50 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 308 ' INLET HYDRAULICS: ON A GRADE. t 1 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 REQUIRED CURB OPENING LENGTH (ft)= 7.96 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.08 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.08 FLOW INTERCEPTED (cfs)= 0.08 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.53 FLOW INTERCEPTED (cfs)= 0.07 CARRY-OVER FLOW (cfs)= 0.46 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 1.03 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.95 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.08 TOTAL FLOW INTERCEPTED (cfs)= 1.03 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.50 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.07 TOTAL FLOW INTERCEPTED (cfs)= 0.57 CARRYOVER FLOW (cfs)= 0.46 r ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER -------SUPPORTED -BY-METRO DENVER CITIES/COUNTIES AND UD&FCD SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 06-15-2001 AT TIME 12:30:23 1** PROJECT TITLE: HTP *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' l0 8 INLET ID NUMBER: 308 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= INLET GRATE LENGTH (ft)= 1.87 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.66 STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.84 ' GUTTER FLOW DEPTH (ft) = 0.34 FLOW VELOCITY ON STREET (fps)= 2.32 FLOW CROSS SECTION AREA (sq ft)= 1.30 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= 3.01 2.80 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.35 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.40 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 308 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 ' REQUIRED CURB OPENING LENGTH (ft)= 14.62 IDEAL CURB OPENNING EFFICIENCY = 0.92 ACTURAL CURB OPENNING EFFICIENCY = 0.84 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.60 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= I*** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED CARRYOVER FLOW (cfs)= (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= ' TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= r 1 1 0.66 0.55 0.11 1.61 0.51 1.10 3.01 2.35 0.55 2.90 0.11 1.40 0.51 1.91 1.10 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER k----------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD S-E-R:JR ENGINEERS-DENVER CO .................................................. tN DATE 06-15-2001 AT TIME 12:25:27 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: I INLET ID NUMBER: 309 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.66 STREET CROSS SLOPE (%) 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 6.50 ' GUTTER FLOW DEPTH (ft) = 0.26 FLOW VELOCITY ON STREET (fps)= 1.96 ' FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR M = 0.55 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 1.08 ' IDEAL GRATE INLET CAPACITY (cfs)= 1.05 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 0.99 t BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.53 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 309 ' INLET HYDRAULICS: ON A GRADE. 1 1 t 1 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 REQUIRED CURB OPENING LENGTH (ft)= 8.16 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.09 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 0.09 0.09 0.00 0.55 0.08 0.48 0.53 0.08 0.60 0.48 ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ---- -- ---SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------- kS-E-R:JR ENGINEERS-DENVER CO .......................... ;....................... ON DATE 06-15-2001 AT TIME 12:25:53 1** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: Icy INLET ID NUMBER: 309 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet t NUMBER OF GRATES IS THE INLET GRATE NEXT TO A = CURB ?-- 3.00 YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.66 STREET CROSS SLOPE M = 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.31 ' GUTTER FLOW DEPTH (ft) = 0.35 FLOW VELOCITY ON STREET (fps)= 2.36 FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= 1.40 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 3.29 ' IDEAL GRATE INLET CAPACITY (cfs)= 3.04 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.53 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.52 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 309 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = INLET INTERCEPTION CAPACITY: 10.96 15.39 0.89 0.81 IDEAL INTERCEPTION CAPACITY (cfs)= 0.68 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.76 FLOW INTERCEPTED (cfs)= 0.62 CARRY-OVER FLOW (cfs)= 0.14 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.77 FLOW INTERCEPTED (cfs)= 0.58 CARRY-OVER FLOW (cfs)= 1.19 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 3.29 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.53 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.62 TOTAL FLOW INTERCEPTED (cfs)= 3.15 CARRYOVER FLOW (cfs)= 0.14 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= 1.52 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.58 TOTAL FLOW INTERCEPTED (cfs)= 2.10 CARRYOVER FLOW (cfs)= 1.19 I ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ---- - ---SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD kSER:JR ENGINEERS-DENVER CO .................................................. ON DATE 06-15-2001 AT TIME 12:27:10 t** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 310 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.66 STREET CROSS SLOPE (%) 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 6.50 ' GUTTER FLOW DEPTH (ft) = 0.26 FLOW VELOCITY ON STREET (fps)= 1.96 ' FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= 0.55 50.00 CURB OPENNING CLOGGING FACTOR(°%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 1.08 ' IDEAL GRATE INLET CAPACITY (cfs)= 1.05 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 0.99 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.53 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 310 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 10.90 REQUIRED CURB OPENING LENGTH (ft)= 8.16 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.09 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED (cfs)= (Cfs)= CARRY-OVER FLOW (Cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= ' TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 0.09 0.09 0.00 0.55 0.08 0.48 moor. 0.53 0.08 0.60 0.48 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ---SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD k------------------------------------------------------------------------ S-E-R:JR ENGINEERS-DENVER CO .................................................. ON DATE 06-15-2001 AT TIME 12:27:39 1** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' Igo INLET ID NUMBER: 310 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (s) = 0.66 ' STREET CROSS SLOPE M STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.50 ' GUTTER FLOW DEPTH (ft) = 0.35 FLOW VELOCITY ON STREET (fps)= 2.38 FLOW CROSS SECTION AREA (sq ft)= 1.45 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 3.46 ' IDEAL GRATE INLET CAPACITY (cfs)= 3.19 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.64 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.59 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 310 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 ' REQUIRED CURB OPENING LENGTH (ft)= 15.80 IDEAL CURB OPENNING EFFICIENCY = 0.88 ACTURAL CURB OPENNING EFFICIENCY = 0.80 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.72 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= ' TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 0.82 0.65 0.17 1.87 0.61 1.25 3.46 2.64 0.65 3.29 0.17 1.59 0.61 2.21 1.25 i ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER -SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------- --------------------------------------------------------------- SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 08:19:24 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 1 1l I INLET ID NUMBER: 311 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.66 ' STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.31 ' GUTTER FLOW DEPTH (ft) = 0.35 FLOW VELOCITY ON STREET (fps)= 2.36 FLOW CROSS SECTION AREA (sq ft)= 1.40 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 3.31 IDEAL GRATE INLET CAPACITY (cfs)= 2.80 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.19 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.40 t*** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 311 ' INLET HYDRAULICS: ON A GRADE. I ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 ' REQUIRED CURB OPENING LENGTH (ft)= 15.43 IDEAL CURB OPENNING EFFICIENCY = 0.66 ACTURAL CURB OPENNING EFFICIENCY = 0.56 1 1 u 1 1 1 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.74 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 1.12 FLOW INTERCEPTED (cfs)= 0.62 CARRY-OVER FLOW (cfs)= 0.50 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.91 FLOW INTERCEPTED (cfs)= 0.59 CARRY-OVER FLOW (cfs)= 1.32 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 3.31 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.19 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.62 TOTAL FLOW INTERCEPTED (cfs)= 2.81 CARRYOVER FLOW (cfs)= 0.50 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.40 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.59 TOTAL FLOW INTERCEPTED (cfs)= 1.99 CARRYOVER FLOW (cfs)= 1.32 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ----------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------- SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 08:20:54 '** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' 111 INLET ID NUMBER: 311 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= INLET GRATE LENGTH (ft)= 1.87 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.66 STREET CROSS SLOPE (%) 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 7.06 ' GUTTER FLOW DEPTH (ft) = 0.27 FLOW VELOCITY ON STREET (fps)= 2.00 FLOW CROSS SECTION AREA (sq ft)= 0.62 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= 1.24 1.16 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.04 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.58 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 311 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 ' REQUIRED CURB OPENING LENGTH (ft)= 8.84 IDEAL CURB OPENNING EFFICIENCY = 0.94 ACTURAL CURB OPENNING EFFICIENCY = 0.84 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.19 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.20 ' FLOW INTERCEPTED (cfs)= 0.17 CARRY-OVER FLOW (cfs)= 0.03 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.66 ' FLOW INTERCEPTED (cfs)= 0.15 CARRY-OVER FLOW (cfs)= 0.51 ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 1.24 ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.04 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.17 TOTAL FLOW INTERCEPTED (cfs)= 1.21 ' - CARRYOVER FLOW (cfs)= 0.03 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.58 ' FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.15 TOTAL FLOW INTERCEPTED (cfs)= 0.73 CARRYOVER FLOW (cfs)= 0.51 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------- --------------------------------------- SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 08:25:10 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' 1t2 INLET ID NUMBER: 312 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.69 ' STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 HYDRAULICS: STREET FLOW WATER SPREAD ON STREET (ft) = 13.75 ' GUTTER FLOW DEPTH (ft) = 0.40 FLOW VELOCITY ON STREET (fps)= 2.66 FLOW CROSS SECTION AREA (sq ft)= 2.02 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(°%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= 5.35 4.78 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 3.73 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.39 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 312 ' INLET HYDRAULICS: ON A GRADE. [1 ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= 10.90 20.42 IDEAL CURB OPENNING EFFICIENCY = 0.75 ACTURAL CURB OPENNING EFFICIENCY = 0.66 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.21 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 1.62 FLOW INTERCEPTED (cfs)= 1.07 CARRY-OVER FLOW (cfs)= 0.54 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.96 ' FLOW INTERCEPTED (cfs)= 1.03 CARRY-OVER FLOW (cfs)= 1.93 ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 5.35 BY FAA HEC-12 METHOD: t FLOW INTERCEPTED BY GRATE INLET (cfs)= 3.73 FLOW INTERCEPTED BY CURB OPENING(cfs)= 1.07 TOTAL FLOW INTERCEPTED (cfs)= 4.81 ' CARRYOVER FLOW (cfs)= 0.54 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.39 FLOW INTERCEPTED BY CURB OPENING (cfs)= 1.03 ' TOTAL FLOW INTERCEPTED (cfs)= 3.42 CARRYOVER FLOW (cfs)= 1.93 1 1 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ----------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------- SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 08:26:04 1** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 1 1 INLET ID NUMBER: 31212 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.69 ' STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 8.84 ' GUTTER FLOW DEPTH (ft) = 0.30 FLOW VELOCITY ON STREET (fps)= 2.19 FLOW CROSS SECTION AREA (sq ft)= 0.91 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= 2.00 1.90 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.68 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.95 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 312 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 ' REQUIRED CURB OPENING LENGTH (ft)= 11.68: IDEAL CURB OPENNING EFFICIENCY = 0.99 ACTURAL CURB OPENNING EFFICIENCY = 0.94 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.32 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.32 ' FLOW INTERCEPTED (cfs)= 0.30 CARRY-OVER FLOW (cfs)= 0.02 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.05 ' FLOW INTERCEPTED (cfs)= 0.27 CARRY-OVER FLOW (cfs)= 0.78 ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 2.00 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.68 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.30 TOTAL FLOW INTERCEPTED (cfs)= 1.98 ' CARRYOVER FLOW (cfs)= 0.02 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.95 ' FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.27 TOTAL FLOW INTERCEPTED (cfs)= 1.22 CARRYOVER FLOW (cfs)= 0.78 1 1 1 i ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------- SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 10:18:58 1** PROJECT TITLE: HTP 1 1 1 1 1 i 1 1 1 1 1 1 i 1L *** CURB OPENING INLET HYDRAULICS AND SIZING: li3 INLET ID NUMBER: 313 Mi_kNk10:0 a,, was) ;iAIJImCGRIMi`i.-IWO1i1060 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.65 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 17.88 GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= 2.98 FLOW CROSS SECTION AREA (sq ft)= 3.32 GRATE CLOGGING FACTOR (s)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 21.72 (cfs) = 9.87 (cfs)= 9.87 (cfs)= 0.00 (cfs) = 9.87 (cfs) = 9.87 (cfs)= 0.00 1 0 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER �SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------- SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 10:18:00 ** PROJECT TITLE: HTP ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 314 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.57 STREET CROSS SLOPE M = 2.00 ' STREET MANNING N = GUTTER DEPRESSION (inch)= 0.016 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 16.47 GUTTER FLOW DEPTH (ft) = 0.45 FLOW VELOCITY ON STREET (fps)= 2.66 FLOW CROSS SECTION AREA (sq ft)= 2.84 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 �101":mm m D 0 108 6116)Q�l i ' IDEAL INTERCEPTION CAPACITY (cfs)= 15.43 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 7.55 FLOW INTERCEPTED (cfs)= 7.55 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 7.55 FLOW INTERCEPTED (cfs)= 7.55 CARRY-OVER FLOW (cfs)= 0.00 ' ------------------------------------------------------------------------------ t UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ----SUPPORTED-BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----- ----------------------------------------------------- SER:JR ENGINEERS-DENVER CO .................................................. �N DATE 12-06-2000 AT TIME 09:46:20 ** PROJECT TITLE: HTP *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 111 ' INLET ID NUMBER: 317 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES IS THE INLET GRATE NEXT TO A CURB = 2.00 ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.62 STREET CROSS SLOPE M 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.53 ' GUTTER FLOW DEPTH (ft) = 0.38 FLOW VELOCITY ON STREET (fps)= 2.40 FLOW CROSS SECTION AREA (sq ft)= 1.70 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 4.05 ' IDEAL GRATE INLET CAPACITY (cfs)= 3.35 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: 2.54 FLOW INTERCEPTED (cfs)= 1.67 t*** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 317 ' INLET HYDRAULICS: ON A GRADE. I iGIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 7.00 REQUIRED CURB OPENING LENGTH (ft)= 17.05 IDEAL CURB OPENNING EFFICIENCY = 0.61 ACTURAL CURB OPENNING EFFICIENCY = 0.51 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.93 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED (cfs)= (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= ' TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= t 1 1 1.51 0.77 0.74 2.38 0.74 1.63 4.05 2.54 0.77 3.31 0.74 1.67 0.74 2.42 1.63 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER -SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD �SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 09:47:25 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' 117 INLET ID NUMBER: 317 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (s) = 0.62 STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 7.16 GUTTER FLOW DEPTH (ft) = 0.27 FLOW VELOCITY ON STREET (fps)= 1.94 FLOW CROSS SECTION AREA (sq ft)= 0.64 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 1.24 ' IDEAL GRATE INLET CAPACITY (cfs)= 1.16 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.04 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.58 t*** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 317 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= 7.00 8.70 IDEAL CURB OPENNING EFFICIENCY = 0.95 ACTURAL CURB OPENNING EFFICIENCY = 0.84 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.19 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED (cfs)= (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= ' TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= F 1 iL 0.20 0.17 0.03 0.66 0.15 0.51 1.24 1.04 0.17 1.21 0.03 0.58 0.15 0.73 0.51 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER -SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD I-------------------------------------------------------------------------- S-E-R:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 09:52:03 ** PROJECT TITLE: HTP *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' 118 INLET ID NUMBER: 318 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: t INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 ' STREET CROSS SLOPE M 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 14.13 GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 2.29 ' FLOW CROSS SECTION AREA (sq ft)= 2.12 GRATE CLOGGING FACTOR (s)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= 4.84 IDEAL GRATE INLET CAPACITY (cfs)= 3.97 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED (cfs)= 2.91 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.98 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 318 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 7.00 REQUIRED CURB OPENING LENGTH (ft)= 17.93 IDEAL CURB OPENNING EFFICIENCY = 0.59 ACTURAL CURB OPENNING EFFICIENCY = 0.49 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.14 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 1 1 1.93 0.95 0.99 2.86 0.91 1.94 4.84 2.91 0.95 3.85 0.99 1.98 0.91 2.90 1.94 1 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------- -------------------------------------- SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 09:52:54 1** PROJECT TITLE: HTP *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ICb INLET ID NUMBER: 318 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 ' STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) _ 2.00 HYDRAULICS: STREET FLOW WATER SPREAD ON STREET (ft) = 8.28 t GUTTER FLOW DEPTH (ft) = 0.29 FLOW VELOCITY ON STREET (fps)= 1.82 FLOW CROSS SECTION AREA (sq ft)= 0.81 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= 1.48 1.37 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.19 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.68 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 318 ' INLET HYDRAULICS: ON A GRADE. .1 GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= 7.00 9.16 IDEAL CURB OPENNING EFFICIENCY = 0.93 ACTURAL CURB OPENNING EFFICIENCY = 0.82 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.27 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= ' TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 0.29 0.24 0.05 0.80 0.21 0.58 1.48 1.19 0.24 1.43 0.05 0.68 0.21 0.90 0.58 t ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ----SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD �SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 09:31:48 '** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' 111 INLET ID NUMBER: 31 INLET HYDRAULICS: ON A GRADE.. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 IS THE INLET GRATE NEXT TO A CURB?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.64 ' STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.44 ' GUTTER FLOW DEPTH (ft) = 0.43 FLOW VELOCITY ON STREET (fps)= 2.72 FLOW CROSS SECTION AREA (sq ft)= 2.51 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= 6.78 5.97 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 4.52 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.98 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 319 ' INLET HYDRAULICS: ON A GRADE. � GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 ' REQUIRED CURB OPENING LENGTH (ft)= 22.91 J IDEAL CURB OPENNING EFFICIENCY = 0.69 ACTURAL CURB OPENNING EFFICIENCY = 0.61 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)=. 1.56 ' BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED (cfs)= (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= ' TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 2.26 1.37 0.89 3.80 1.32 2.47 4.52 1.37 5.89 0.89 2.98 1.32 4.31 2.47 I ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------- -SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------- IS-E-R:JR ENGINEERS-DENVER CO .................................................. ON DATE 12-06-2000 AT TIME 09:33:39 '** PROJECT TITLE: HTP t*** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' �jj INLET ID NUMBER: 319 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= INLET GRATE LENGTH (ft)= 1.87 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.64 STREET CROSS SLOPE (%) 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.09 ' GUTTER FLOW DEPTH (ft) = 0.33 FLOW VELOCITY ON STREET (fps)= 2.22 FLOW CROSS SECTION AREA (sq ft)= 1.14 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= 2.54 2.38 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.05 BY DENVER UDFCD METHOD: ' FLOW INTERCEPTED (cfs)= 1.19 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 319 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 ' REQUIRED CURB OPENING LENGTH (ft)= 13.17 IDEAL CURB OPENNING EFFICIENCY = 0.96 ACTURAL CURB OPENNING EFFICIENCY = 0.89 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.47 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= t*** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: t FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= t 1 0.49 0.43 0.05 1.35 0.40 0.95 2.54 2.05 0.43 2.49 0.05 1.19 0.40 1.59 0.95 1 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER -----SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD I---------------------------------------------------------------------- S-E-R:JR ENGINEERS-DENVER CO .................................................. �N DATE 12-06-2000 AT TIME 09:38:04 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' 1 0 INLET ID NUMBER: 30 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.64 STREET CROSS SLOPE M = 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 9.22 ' GUTTER FLOW DEPTH (ft) = 0.31 FLOW VELOCITY ON STREET (fps)= 2.14 FLOW CROSS SECTION AREA (sq ft)= 0.97 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 2.10 IDEAL GRATE INLET CAPACITY (cfs)= 1.99 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.75 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.00 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 320 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 10.90 REQUIRED CURB OPENING LENGTH (ft)= 11.81 IDEAL CURB OPENNING EFFICIENCY = 0.99 ACTURAL CURB OPENNING EFFICIENCY = 0.94 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.35 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED (cfs)= (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= ' TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 0.35 0.33 0.02 1.10 0.29 0.81 2.10 1.75 0.33 2.08 0.02 1.00 0.29 1.29 0.81 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ----------SUPPORTED-BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------- IS-E-R:JR ENGINEERS-DENVER CO .................................................. �N DATE 12-06-2000 AT TIME 09:36:29 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 320 INLET HYDRAULICS: ON A GRADE, GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.64 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.22 ' GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 2.60 FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (s)= 2.15 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 5.62 IDEAL GRATE INLET CAPACITY (cfs)= 5.02 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 3.91 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.51 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 320 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 ' REQUIRED CURB OPENING LENGTH (ft)= 20.61 IDEAL CURB OPENNING EFFICIENCY = 0.74 ACTURAL CURB OPENNING EFFICIENCY = 0.66 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.27 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED CARRYOVER FLOW (cfs)= (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 1 1.71 1.13 0.58 3.11 1.08 2.03 5.62 3.91 1.13 5.04 0.58 2.51 1.08 3.59 2.03 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER �SUPPORTED BY - -- SER:JR ENGINEERS-DENVER CO .................................................. �N DATE 12-06-2000 AT TIME 09:42:55 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 12! ' INLET ID NUMBER: 321 INLET HYDRAULICS: ON A GRADE, GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES IS THE INLET GRATE NEXT TO A CURB = ?-- YES 2.00 Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.64 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 8.94 ' GUTTER FLOW DEPTH (ft) = 0.30 FLOW VELOCITY ON STREET (fps)= 2.11 ' FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR M = 0.92 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 1.96 IDEAL GRATE INLET CAPACITY (cfs)= 1.76 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.49 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.88 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 321 ' INLET HYDRAULICS: ON A GRADE. 1 1 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 REQUIRED CURB OPENING LENGTH (ft)= 11.36 IDEAL CURB OPENNING EFFICIENCY = 0.82 ACTURAL CURB OPENNING EFFICIENCY = 0.71 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.39 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.47 FLOW INTERCEPTED (Cfs)= 0.33 CARRY-OVER FLOW (cfs)= 0.14 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.08 FLOW INTERCEPTED (cfs)= 0.31 CARRY-OVER FLOW (cfs)= 0.77 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 1.96 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= 1.49 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.33 TOTAL FLOW INTERCEPTED (cfs)= 1.82 CARRYOVER FLOW (cfs)= 0.14 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= 0.88 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.31 TOTAL FLOW INTERCEPTED (cfs)= 1.19 CARRYOVER FLOW (cfs)= 0.77 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER _SUPPORTED -BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------- I-S-E-R-:-J-R--E-N-G-INEERS-DENVER CO .................................................. �N DATE 12-06-2000 AT TIME 09:44:05 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 1 1 INLET ID NUMBER: 321 INLET HYDRAULICS: ON A GRADE, ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES IS THE INLET GRATE NEXT TO A = CURB ?-- YES 2.00 Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.64 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.13 GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 2.60 ' FLOW CROSS SECTION AREA (sq ft)= 2.12 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 5.52 IDEAL GRATE INLET CAPACITY (cfs)= 4.37 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY DENVER UDFCD METHOD: (cfs)= 3.17 FLOW INTERCEPTED (cfs)= 2.18 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 321 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 REQUIRED CURB OPENING LENGTH (ft)= 20.41 IDEAL CURB OPENNING EFFICIENCY = 0.53 ' ACTURAL CURB OPENNING EFFICIENCY = 0.44 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.25 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= t FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 2.35 1.03 1.32 3.34 1.00 2.34 5.52 3.17 1.03 4.20 1.32 2.18 1.00 3.18 2.34 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER '------- ----SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------- ------------- USER:JR ENGINEERS-DENVER CO .................................................. �N DATE 12-06-2000 AT TIME 09:15:19 ** PROJECT TITLE: HTP *** CURB OPENING INLET HYDRAULICS AND SIZING: IT INLET ID NUMBER: 323 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.24 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.91 ' GUTTER FLOW DEPTH (ft) = 0.38 FLOW VELOCITY ON STREET (fps)= 3.45 FLOW CROSS SECTION AREA (sq ft)= 1.79 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(°%)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 12.87 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.18 FLOW INTERCEPTED (cfs)= 6.18 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.18 FLOW INTERCEPTED (cfs)= 6.18 ' CARRY-OVER FLOW (cfs)= 0.00 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER -SUPPORTED BY-METRO-DENVER-CITIES/COUNTIES AND UD&FCD ---------- ---------------------------------- SER:JR ENGINEERS-DENVER CO .................................................. �N DATE 12-06-2000 AT TIME 09:16:21 ** PROJECT TITLE: HTP ' *** CURB OPENING INLET HYDRAULICS AND SIZING: 12� INLET ID NUMBER: 324 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= Note: The sump depth is additional 0.17 depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.23 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 tSTREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.22 ' GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 3.61 FLOW CROSS SECTION AREA (sq ft)= 2.15 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 13.79 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 7.71 FLOW INTERCEPTED (cfs)= 7.71 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 7.71 FLOW INTERCEPTED (cfs)= 7.71 ' CARRY-OVER FLOW (cfs)= 0.00 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER '-------- --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------- ------------- USER:JR ENGINEERS-DENVER CO .................................................. �N DATE 12-06-2000 AT TIME 08:08:36 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 2 C� INLET ID NUMBER: 326 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 2.00 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 7.06 GUTTER FLOW DEPTH (ft) = 0.27 FLOW VELOCITY ON STREET (fps)= 3.47 FLOW CROSS SECTION AREA (sq ft)= 0.62 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 2.16 ' IDEAL GRATE INLET CAPACITY (cfs)= 1.89 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: 1.71 FLOW INTERCEPTED (cfs)= 0.95 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 326 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 ' REQUIRED CURB OPENING LENGTH (ft)= 15.56 IDEAL CURB OPENNING EFFICIENCY = 0.66 ' ACTURAL CURB OPENNING EFFICIENCY = 0.55 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.30 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= ' CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 0.45 0.25 0.20 1.21 0.24 0.98 2.16 1.71 0.25 1.96 0.20 0.95 0.24 1.18 0.98 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER '---- -------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------- USER:JR ENGINEERS-DENVER CO .................................................. �N DATE 12-06-2000 AT TIME 08:09:33 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ( 2 INLET ID NUMBER: 326 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 2.00 STREET CROSS SLOPE (%) 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 3.63 ' GUTTER FLOW DEPTH (ft) = 0.20 FLOW VELOCITY ON STREET (fps)= 3.16 FLOW CROSS SECTION AREA (sq ft)= 0.26 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 0.81 ' IDEAL GRATE INLET CAPACITY (cfs)= 0.80 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: 0.79 FLOW INTERCEPTED (cfs)= 0.40 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 326 ' INLET HYDRAULICS: ON A GRADE. r GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 ' REQUIRED CURB OPENING LENGTH (ft)= 9.21 IDEAL CURB OPENNING EFFICIENCY = 0.92 ' ACTURAL CURB OPENNING EFFICIENCY = 0.81 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.02 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 1 1 0.02 0.02 0.00 0.41 0.02 0.40 0.79 0.02 0.81 0.00 0.40 0.02 0.41 0.40 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER '------------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------- ------------- USER:JR ENGINEERS-DENVER CO ........................... ..................... N DATE 06-15-2001 AT TIME 12:20:36 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 1 ' INLET ID NUMBER: 32727 ' INLET HYDRAULICS: ON A GRADE, GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.20 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: t WATER SPREAD ON STREET (ft) = 3.44 GUTTER FLOW DEPTH (ft) = 0.19 FLOW VELOCITY ON STREET (fps)= 2.43 FLOW CROSS SECTION AREA (sq ft)= 0.24 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 0.59 IDEAL GRATE INLET CAPACITY (cfs)= 0.59 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: 0.58 FLOW INTERCEPTED (cfs)= 0.29 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 327 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 ' REQUIRED CURB OPENING LENGTH (ft)= 6.89 IDEAL CURB OPENNING EFFICIENCY = 1.00 ' ACTURAL CURB OPENNING EFFICIENCY = 0.95 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (Cfs)= 0.01 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 7 Ll 1 1 0.01 0.01 0.00 0.30 0.01 0.29 0.59 0.58 0.01 0.59 0.00 0.29 0.01 0.30 0.29 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------- USER:JR ENGINEERS-DENVER CO .................................................. N DATE 06-15-2001 AT TIME 12:21:04 ** PROJECT TITLE: HTP ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 'INLET ID NUMBER: 32727 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.20 STREET CROSS SLOPE M 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 6.88 GUTTER FLOW DEPTH (ft) = 0.26 FLOW VELOCITY ON STREET (fps)= 2.67 ' FLOW CROSS SECTION AREA (sq ft)= 0.60 GRATE CLOGGING FACTOR W = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 1.59 IDEAL GRATE INLET CAPACITY (cfs)= 1.45 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED (cfs)= 1.31 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.72 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 327 INLET HYDRAULICS: ON A GRADE. iGIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 ' REQUIRED CURB OPENING LENGTH (ft)= 11.65 IDEAL CURB OPENNING EFFICIENCY = 0.81 ' ACTURAL CURB OPENNING EFFICIENCY = 0.69 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.23 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED CARRYOVER FLOW (cfs)= (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1 1 0.28 0.20 0.09 0.87 0.18 0.68 1.59 1.31 0.20 1.50 0.09 0.72 0.18 0.91 0.68 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER '------------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------- ------------- USER:JR ENGINEERS-DENVER CO .................................................. �N DATE 05-21-2001 AT TIME 13:51:05 ** PROJECT TITLE: htp ' *** CURB OPENING INLET HYDRAULICS AND SIZING: ?28 INLET ID NUMBER:-1-2-8- ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (s) = 1.00 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 8.00 ' GUTTER FLOW DEPTH (ft) = 0.29 FLOW VELOCITY ON STREET (fps)= 2.55 FLOW CROSS SECTION AREA (sq ft)= 0.76 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.07 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 1.95 FLOW INTERCEPTED (cfs)= 1.95 CARRY-OVER FLOW (cfs)= 0.00 t BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.95 FLOW INTERCEPTED (cfs)= 1.95 ' CARRY-OVER FLOW (cfs)= 0_00 I ----------------------------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------- SER:JR ENGINEERS-DENVER CO ................................................. ON DATE 05-21-2001 AT TIME 13:50:37 [** PROJECT TITLE: htp ' *** CURB OPENING INLET HYDRAULICS AND SIZING: d 3z9 =INLET ID NUMBER: ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in) = 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH Note: The sump depth (ft)= is 0.17 additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE M = 2.00 s STREET MANNING N = 0.016 t GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 6.50 ' GUTTER FLOW DEPTH (ft) = 0.26 FLOW VELOCITY ON STREET (fps)= 2.41 FLOW CROSS SECTION AREA (sq ft)= 0.55 ' GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 5.48 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 1.33 FLOW INTERCEPTED (cfs)= 1.33 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.33 FLOW INTERCEPTED (cfs)= 1.33 ' CARRY-OVER FLOW (cfs)= 0.00 1 APPENDIX E STORM PIPES & RIPRAP I I 1 1 11 1 1 I [1 1 Worksheet Worksheei for Circular Channel Project Description Project File untitled.fm2 Worksheet CMP CULVERT FOR HARMONY SWALE Flow Element Circular Channel Method Manning's Formula Solve For Full Flow Diameter Input Data Mannings Coefficient 0.024 Channel Slope 0.8600 % Discharge 11.30 cfs Results Depth 23.95 in Diameter 23.95 in Flow Area 3.13 ft2 Wetted Perimeter 6.27 ft Top Width 0.00 ft Critical Depth 1.21 ft Percent Full 100.00 Critical Slope 0.018598 ft/ft Velocity 3.61 f /s Velocity Head 0.20 ft Specific Energy FULL ft Froude Number FULL Maximum Discharge 12.16 cfs Full Flow Capacity 11.30 cfs Full Flow Slope 0.008600 ft/ft '05/21/01 FlowMaster v5.15 01:31:32 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 HARMONY SWALE A -A Worksheet for Triangular Channel Project Description Project File untitled.fm2 Worksheet HARMONY SWALE A -A Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.030 Channel Slope 1.0500 % Left Side Slope 4.000000 H : V ' Right Side Slope 4.000000 H : V Discharge 14.99 cfs ' Results Depth 1.07 ft ' Flow Area 4.57 ft' Wetted Perimeter 8.82 ft Top Width 8,56 ft ' Critical Depth 0.97 ft Critical Slope 0.017361 ft/ft Velocity 3.28 f 1s ' Velocity Head 0.17 ft Specific Energy 1.24 ft Froude Number 0.79 ' Flow is subcritical. 1 1 1 '05/21/01 01:12:4:12:46 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 I I Cross Section Cross Section for Triangular Channel Project Description Project File untitled.fm2 Worksheet HARMONY SWALE A -A Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.030 Channel Slope 1.0500 % Depth 1.07 ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H: V Discharge 14.99 cfs 1.07 ft 1 VD H 1 NTS '05/21/01 01:12:56 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 I Swale b Worksheet for Triangular Channel Project Description Project File untitled.fm2 Worksheet Swale b Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.032 Channel Slope 0.9300 % Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 33.08 cfs Results Depth 1.51 ft Flow Area 9.10 ft2 Wetted Perimeter 12.44 ft Top Width 12.07 ft Critical Depth 1.34 ft Critical Slope 0.017775 ft/ft Velocity 3.64 ft/s Velocity Head 0.21 ft Specific Energy 1.71 ft Froude Number 0.74 Flow is subcritical. 1 '06/18/01 11:50:1 11:50:14 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I [I LI Cross Section Cross Section for Triangular Channel Project Description Project File untitled.fm2 Worksheet Swale b Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.032 Channel Slope 0.9300 % Depth 1.51 ft Left Side Slope 4.000000 H: V Right Side Slope 4.000000 H : V Discharge 33.08 cfs 1.51 ft 1 VL H 1 NTS 06/18/01 11:50:20 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755=1666 FlowMaster v5.15 Page 1 of 1 N 1 O I [1 1 l 1 [1 1 L 0 a m m 1 r 6 v n V M 0 c6 v N n 6 6 t0 d;^ C c 0 3 0 a E O O M M 0 0 N N N n n n et at N (� 0 0 C O O O 0 0 0 0 0 0 0 O1 C 0 0 E N N v O v (m0 q f0m 0 m N n n N- 0 yt: 0 0 m n 0 N N 0 0 n 0 0 0 0 0 0 00OOO y j rN c >y" OOOOOOOOOO 0 0 0 0 0 0 0 0 0 0 0 O 0 W 0 0 vvv v vv vvvvv vv vv v ocW O E 0 N n v 0 0 n n 0 N N m n U0 M O m M m O N V M iif 0 0 N v 0 0 0 0 0 0 0 C 0 0 0 O 0 0 0 0 CL v v v v v It It v v v v v v v v v E N 10 O �0 0 0 U0 m O n 0 0 O m 10 n N N O n n O n M 0 0 n 0 0 O d M M N N M M M M N v v 0 N N N 00 a 7 o v o 0 o m o in �0 m M m m so M E c oc�ov�moNomMon vnv.- o v o N o o v o 0 to v o 0 o M_ v _o N C> 0_0) 0 0 0 0 0 0 0) 0 0 0) 0 0) 0) 0 0) 0) vvvvvvvvvvvvvvvv � W Z. 0 0 0 m m M 0 0 0 n 0 M 0 n CO N m N n 0 N 0 0 0 n f0 V 0 M m O,j W v U 0 v O v O N v O v v 0 m It N 0 0 0 0 0 v 0 M m 07 lO N M m N m n n n y^� v vi r� o of v o m n v iv, vmi N_ a O N 0 0 N m M M 0 n O n 0 M N O M O o m m M m o rn M rn 0 0 o n o . - O L O O m m 0 v 0 0 M v N 0 0 n m 0 N 0 0 N o 0o 0 no 0 J N N E M O E .0 Z co c 00 L L L L L L L L L L L L L L L L N U C C as C C c c C c c c C C C c c 0 N 0 0 0 10 0 0 N m m m 0 W m m d a o 1w o N 0m000 R 0 � N (9 1� M N m a. adrLadddddddrLaC 5 4 M O J A � av oLa V%N O. M 77 S - a m 00 o N O yea o�0 0 u I W W a z Z I I I I r W n V r V N M 0 M W V V 10 W V 0 r W N 0 10 0 W n M W W O W N O N M N W 10 V W N n 0 V M V W r r W l0 U U7 0 Q>v N W V N W V W W M W W M M W 0 0 0 10 W W M M o M N M W O O n 10 10 10 m r N m m O 10 O O � N N M M M M N N M N M M 10 M M M M 10 M V M N 10 N M N N RUC 0 0 W W 0> M O W W r M M M 10 W W W M M M M W E 10 M 0> W M 10 V M r N N m 01 V N o O W W W l0 V M O O m m m m m m m 0 0 0 W W m W W W W W r r W N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J C C C C O E N 10 r 4) W N O W O 00 O O 10 V V M W N N W W 0 m C V O W W 0 W r M o N N 0 m W W W W W V V O dV 0 O OO OOOOO O O O O O O O O O O O O O O O N j j c m m m O C m m m m m m m m m m 0 C C 01 m O C m 01 01 D1 c y 0 w v v v v a v v v v v v v v v v v v v v v v v v v v v E J V V N O O m 01 0 0 m 01 0 01 00 m W W W W W W W W r O O O O O O O O O O O O O O O O O O O a) U c rn rn m m m m m m m m m m m m m m m m C orn rnGrnrnCCO ax v v v v v v v a v v v v v v v v v v v v v v v v v v C E O N 01 N W V W O W o M W W M M 0 N 0 W 10 M W W W N M O V O M N N W 0 0 10 4] V m N n m V O y j O aU 0 10 O N o CO N O M W O O m N 0 0 V N W N V W 0 E co V 10 M W M m 7 r N M 10 O N 10 m O 0 7 7 W W 0v O 7 M ri o W M r r W CO CO to r- 0 m v r v v It of M M M V of m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rn rn rn rn M rn 0) rn m m m m m m m m m m 0) 0) rn m rn 01 0) m n c> v v v a v v v v v v v v v v v v v v v v.1 v v v v V w T W r O M 10 CO W 0 M CO M O O W W N N N W n M W W m CO m n W r N M r 10 CO m V V O N r O 0 W 7 m W co 0 o N O V N O, V N W N W V W 0 0 00 W W m 0 r M a — — — —— V N M V N M CO W W V V W U V V O V V o m n t0 r 10 O N 10 O r O n V n (0 r N m O O W W CO CO r V0 W r W M m M M N V m M N ui ui v of of m of V U> v r O 0 M co N N N N V N W W Cl) L w M 10 W co V co O N M co Mn 0 0 0 M W W 0 10 W M 10 CO W O O 0 0 m CO V m 10 m m r m N W 10 r 10 W V N 0 W o CO W V r 10 M r tO W N m 10 10 N V M m V 0 M N 0 0 0 co 0 0 co O O m 0 N 0 W W m V 10 V N M V m O W m N 10 N V N N N N N d^ 0 o N O M 0 0 0 0 0———- 0 0 0 0 0 0 0 0 0 0 0 0 0 y C 0%v O U L W O W W co O V r O N O O m O O W 0 0 N 0 0 V 0 M Cr r- r 7 r o W V N M O o W O O co O 0 N 0 0 0 W 7 O v 0 10 O O W m M W V W V V W V W V m m W W M W y '- M .- r CO M M W W m r o m n N n V 0 N W M CO M 0 J M — a- .- N N V U1 C —— e- — — — —— —�- m O E� zin C O m L L t L L L L L L L L L L L L L L L L L L L L L L L NC U U U U U U U U U U U U U U U U U U U U U U U U U U C C C C C C C C C C C C C C C C C C C C C C C C C W 0 W N N M N N N 00 N O N N N M t07 V V W V W O N W V W m M N O W 0 10 0 W O a O O O m O n V O W N V 0 0 0 0 0— 0 r 0 d e- N Cl) v 10 tp � � � � .- �0 � d) n n N NT — — — — — — — d rL a a d d rL d rL rL d m m m m m m m m rL a rL rL d d c C C! OD 3�0 >� boa c U cE w0 v� O a` fD ID W N n M O N J `m m3 m C � 0 m c w a' D 0 0 0 m O; J i mI C i Y m � a� «c 0 y 0 V1 i OC i mCC F c mC CL No Text t [1 11 CC C C r N 1 1 1 1 N N M 0 O a O) n (D N V (D (0 N a r n rn�� rnv)aoNvN� vmmrmNMN o N U y N O M N V M N N V N N 6 N 0 N > Q � E N N V a v w aD a o rn rn N N a v o d j^ V) N M CO) e- '- N N N M N N N N N N C D 3U 0 ❑ E N N D1 N N N (A CD V V N N N N N (D O V V O N N O) W OD W r r O O N N 0 N n (D r r n m f0 N f0 (0 (O N M J N CI C O C CD O O 0 O O O 0 O o O O O O 0 W O1 W W (Oct Q7 W O T W D7 O W O) C) D7 O 3x�- vvvvvvvvvvvvvvvvv 0 E M CD N N aD aD 00 N N O O] c N N OO f- N r n m O n n V O N N N N C O N N V V V O V M N N N N N CC>� O O O O O O O O O O O O O O O O O a) D! Q) a) a) O O O O a) O) O W O (3O W 0 w V O) CO M 0) 0) N N GO V N V N N co E )O )0 0) �- M M 0) �- 0) 00 O O V O M N O J I,r co I,- n r N n r 0(6 1-(0 (D N N (0 d (DV o 0 0 00 0 0 0 0 O O 0 0 0 0 0 0 (D(D 0) o) o) C) 0) C) o) C) o) O 0) 0 O 0 0) v v v v v v v v v v v E N O GO N N N V V 00 O CO W 0) N N V N N O V N M M C) N N (D N OD O 0) 0) y y 0� 0) co N N N N O N nU D O O O O O CO V V N OD V O C) O N E c O N O V 0 r OD , r n 0) It n n O) , N (O 2 co N N V N V V V M MN M co N N y N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � > o 0) 0) 0) 0) 0) 0) 0) 0) W 0) C) 0) C) C) 0) C) n m v v v v v v v v v v v v v v v v v W �. (D Cl) N O N 0) N N O GO O M O 0) CO V m y N (I— CO M— N W N GO N N n N C) N N — N (O N CD N N V (0 0) C) W V CO N abj ——— N N M M V N M M V M V U d v o rn N 0 a ao m v v aD o o m 0 0 0 rn Nnu?nMNmvovv, m v rr , W o ` M v c i, v ,I _N v � V M N OD N OD n OD W N V V N O N aO O N n n n O N N V O N O O 0 N OO N O O 0OO O) D) N N n M N O N r U O) N N N V N N N N N M N a0 O (D N n = O o —0 o O O O O O O O O O O O N O 0 0 0 C F O U L O O N O N O V M N N m O O r 0 N O O N M n O � O N OD M O O O O N O J .- N N � y a0 EU J Z0) c 00 L L L L L L L L L L L L L L L L L N U U U U U U U U U U U U U U U U U N U) C_ C C C C C C C C C C C C C C C C y V V V V O V V (0 N (D v v N N O N N N N N N M N N M M M N N V V M V N D_ O n (D OD V N r N V M N O N M 0 a (?gT(OcoMcoTwmT—rrnnT a a addrLdadaddrLdddd IIE u ro m � a O O U') Cl) d m co - CL 00 r IT O N IT v [M m CO r CO C3)L` co U N W) v v f0 Q N Or IT 0 N f0 v N N cc; (6 ; C 0 0 0 E w m in to W t0 N Of O d v C7 J O O O O 0 O) W O) O _ v v v v O a o v> v o c0 c O M O f0 O O O y j > O O O) O) W O) C R v v v v 0 W v E GOO o UNi mJ r v It 6 - O O O O rn M rn rn n=v vvov to N E N n CD ` (D_ �U;ID U0 Q. D Ominv E C O N m O O d O O O O N C> v O W O O n_a) vvvv � W y Cl) r to N n Un N r OD 0) 0) 0. U N f6 "' U L v m rn CCD L U � O 0 0 O N O O r r Ti 0 r IT N v co n r 2CI- 0 e o0 0 U L o m LO o 0 v UWi co J N y O E .0 0 Zy c N -6 U U U U O(n C C C C U)vvv N N N N n m to m n a T 9 '4 a a a a m m m N n O N co O n m 0 F U a a-e J N m c m c o w c C K m 0 O 0 m n co U c Xr . � \. � � � � o � § ° ( q G> Q FG a , G a � ) .� � . .�� \�� } .. . .f\°� � & g (2a. q f< 22 $0 �- �� /.. 0 « O n O O v O N 0 M 01 0 0 Q>� E co c� rn rn n r m m �° m m (p O O N m fD m N N N m O M dy mm�ommmmmmmmc� OC 3U 0 ❑ E <o m N N o n rn N rn m m m rn N N n n rn r o «� r-0N0 o) C) C _o0Goco0aorrl _0 0 0 0 0 0 0 0 0 0 0) 0 0 0 0 0 o M amom 3S" vvvvvvvvvvvv O E r N O N N n a W v 0 7 duo r n w n 0 rn 0 N w v 0 0 016 0 0 0 0 0 0 0 0 0 0 0 0 c = 0) 0) 0) 0) 0) 0) w 0) CD 0) 0) 0) o_ W vvv vvavvvvvv E mr m m N N r o O m n7 y -i mco0 aONNrornm v .- o0 0) co )c N w 0 n of <o 0 _ o 0 0 0 0 0 0 00 W 0 0 0 0 O O W O O O) O) 0) v v v j= v v v a v v v v v E N n M N 0) M n n N m N co rn CO O n N N N CO n N r Co y q)_ r' LO ID n 0 v v m co ro n m OUP a D E C O W N O O N M N O O O O O M N O v N 0 W V 2 N 0 0^ O O m o o aD r n ao m n 00 n v 0 v O O O o 0 0 0 0 0 0 0 0 W C>� W O 0) W O O W 0 00 00 a_m v v v v v vv v vv vv w y oo rn r) a0 r aD 0 0 N n n non ao ro n o o ao m v v ai of of N N ao v o C4 f- r) v U 0 f0 O c0 m m O O m aD � c0 N 2) O O O O m O W 0 0 0 M y O) O 0) O O r 00 0 O 0 N Cl) M ❑ 0 0I aD b) n m rn O v N m N O O O n n] 01 O 01 7 0 N N = o o 000000 o .. 0 of o C Fn O L N m O N N 0) co m Cl) 0 Cl) N O GD N O 0M w v O N O w f0 m r o N N 0W N r t0 6 ao Zo c 00 N L L L L L L L L L L L L U U U U V y (n U U U U U U U U C C C C C C C C C C C C � N aD GO N 7 N N O N m N N 0 a L9IT9n d a m a d m d a a d a d. N m apa � N U W o O v y 0 a` r � T O o n J N W N O d C D w N w� z w r 1 D I Y O m C 9 N I D r N N E N a D �l m O � \1 N U FNa W N m 0 � Z vi O - a m doo ~a O o m a y m o � d o y Irro rn O Q � t I N N m Cl? N N N N f) > C 0� ;U E o � rn ci J a7 co in U' C rn rn 3S" v v O 0 CD N C O Oto O q j O) W o w E o yJ r O U� rn rn E rn � m 0— N o aU 7 N W E c N m -C«O O O j > C W O) QS a) v v W Z. N N V N O N a1 "" U m W (a N tD N N v .o M N m r 0^ uo) co 0 0 0 c !/1 0 U a) I,- r°)) J N .00 E� Z 2 N c N U U �U) C c N N CL E d a N z a-2 J m �3 m c m O a) c W K m Y 0 0 m r Cl) E V5 N m o co m O V LoLn ma W N O 4 Z � V W N pQ O f O O 0 m w g ohCD a ii o � m ro d ri o a A m d m 0 C i O O N N 0 O 0 N M M rn rn n ao V w w w N > Q> d;^ m of n � co 1ri co v n cc C 0 ;U 0 ❑ E O (n V V O) 01 0 n 0 n m cq0 N Clcow001r N C7 C O/ O O Q) w OO w CO w w O E n O N N n M M M V W C O N w 0 N O N N V LD v.2 O O W W N j W C c 01 01 CO w w 0: w w w w c �" Q w V V V V V e V V V a N O M M 01 n 10 0 E N w w W N N O O) w M w 0 000o000000 v 7Z5m 0) 0 m rn w ao 0 w w CL V V V V V V V v V V D1 w N n 0 w 01 M 0 E N N v1 0 n M M w N d i V v m n of co co vi ui �ri wo CLU ornMON1.MOMv E C 0O w N 0N O O N V 1M1 V C M M o w w n 0 0 w m O CDO O W W CDO 0) w > rnalrnolwww0)OD W a—N V V V V V V V V V V � w w w V 0 0 M Q1 0 V� w w 10 t0 w n W 0 U y 0 (D 0 0 0 0 0 w w 10 w w 0 w V V V N n n M M O M V 7 V w N N _N y N N M 0 n 0 N w N ao o n w Mow w 2 n^ v 0) N cl 0 0 m 0 m of y 2 O O O o o o N O O O C C N w 0 n M Q1 W N M w w O M O O N 01 w 0 V V N O N w J w V CO) CO N N H a 0 Zy C oy y U) U U U U U U U U U U C_ C C C C C C c c C V w v o 0 o w w w N N N Cl) M M M M M N d cq n addrLrLddadd I Z CD CD w n M O N C rn CD O U 0 I 1 1 t 1 Q> E M N m N M M m 0) {p N O) n M O 10 N O m 0) n n m N m V n m 0 a 3 O E rn m m °' m 0 m m nNi rNi d N M O O O m n J 0 0 0 0 0 0 0 0 0) O) O n O N N n M M M V m c O N N N N O N N V �'�° of of of eo n �ri � vi ui o y j N i o rn rn rn rn rn rn rn rn O) o) OR m m m m 0D m m v v v v e v c y 0 W v v v v ❑ rn m m o v rn n N N m E n rn so n co m r� M N d�jv 000000000m mmomoommom CL c o v o v V v v v o D M m N � n m N m M m E N N N m n M M N N M > _ v co r of m )o LO vi ie n Zo- o.O D O n M o N n M O M v E C N O N N N N O O N v m C .�0- M M O 66 Ih O m 6 N y 0 0 0 0 M 0)O) O 0)M > j� O) Of O O) CO m m 0) m m a d v v V7 v v v v v v W y m m M v 00 M 0 m N m N N m N n 0 0N O m n a Y O) O) O) U m m m O m m m m n 7 � rn rn m rn n n n M v o v c c v m m q O N NM m n N N CD Z N n 0 n N m N m W N N O. o Y M N M M M M m M M _O o O L m o n a rn o o N o n _ m� N rn m n M rn rn o) m o a N N 0 O cNo vi J to V M M N N m 0 E�B Z U) c o 0) N L L L L L L L L L L (D U) U U U U U U U U U U N C C C C c c C C c c a N a o 0 o m m m m n o rn m F a v dddri.dddd m m b N n co O N D 7 Go 0 n CD 0 f U U W V 0 Ez i 0 m N N A x E N Y O. v v O N rn o � y 'm r o � CD N O O 0)N y20 m m o 0 1- o .600 m N N W N o 9a Si 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 U LI Al lJ rZ eq ro ro (o 1N 10 r O N Q co O n m O U U O N Q O n CL M S �vtDi m m o 0 0 a 0 mM aLk o m 2.,% N, n O m V N U n m n N N N-t N N N M N U N m m m m m N N N m O E m N o m N o rn m rn co n O N V n V m N d 4) N t- 0) Cl) .- 0) m m N > ;U 0 E mmrn00Nmv m m N Y m O O v m m m N N N O m m N C9 C 0 0 0 0 0 0 a) m D) m O) O) O) m m m f0 3= R Y R V R Y Y V R O 0 E O 0) 0) Cl) m m O N LO m c m m: m m m n d 0 W m N 0) D) m m N y j M C 0 0 0 0 Ol m Q7 W m 0) O) 0) 0) CO m m m m C o w Y Y a a a Y V7 V E �.-rymmtoo am mJ O V m N N N O m U� o 0 0 o O O rn n= v v v v V v v v v N m N O N m N Q) m m y Cl) N n W N co 0 (1 0) `�Un 7 n 0 0) m m m O N E C N f") m N m m n mt: 2 O O m N 0 6 m m U m C m O) m W O) W m CO m nod v v a v a a a v v � w O V O N O 0 Cl CO .V m N n N n O 0 m N Cl) n N U mornrnrnnrntNgmm v v a a of a a v � W N N N N N m m N m 0 N N M m 0 0 0 m O O m to m o v o m m 2 C o 2 m m f0 N m N m m m m 0 o C � O L m 0 0 0 0 0 �� m n n n o n o 0 0 ai of of ai o ai v v v °' ormi��cO�vvv J N .00 Z (/j c oy N L t L L L L L L L (DU) U U U U U U U U U U) Y O O O N N N N N N m m m G p, N m q 9n aD tiddadadrLd ro tD L6 t0 n M O N to m t- o O U v a J N O W C m c m -a 0 c m W C tD �D 0 O 0 m r c� Xv m a m N aW� = v m . m O O O ts O O m of N ^O m N a` ii 0 ot he I m0 o a. M N I- N O M M N l0 m 0 O H O 4) O O m N < d x 0 NU� uo N m > m oa c_ U rn cw N m l� CD O Q % E N aD O `1 e N > C O 3U 0 O E C14 Cl) m Cii. m N J O O m (3) O) m 3=v � o � O n E o m O 0 �2 00 �,� �� Q 0 co m E rn m 0 m B CDC 0 C) O U cl v v v �-e E` n Go m a m m qg m nU c m c 0 w E c o 0)C � � m m 0 6 0 ' D j N j C O) O) p 05 v v o w to a o m U I- N C m m � - U ui m N a v 0 t N � m y .0 v co m = m Tim in a 2 00 0 o E C cn v 5 O U D0n t ci C a) CD N a)v O m m .0 m .0 E U Z (n v a c o ro N U U A N Y (D CO C C O 2 0 N co V) 1n N m O O ~ m O O N a ma d a Qom a ii 0 I owk O M ON m N Lh N n c� 0 N CO O Q N M N C Lo Q 0 M 0 oi6o y m 0 0 0 t5 0 0 O N — 0 O M � d % 0 t 1 1 0 O) 0 m co O O O N N U N m N N N co O Q E O) co N N O a CO CO CO It d — N ^ ; 0C ;U O 0 E vcoNMN m m n n N M y M M M M N J N U O O O O O W 0 0) O) O 3x vvvvv 0 0 m to M N O cc c N 0) CD O 0 y L O N O O O O CC U- O O O O O 0) 0) O O W 0 w co v Go M c0 E O0nNr. J v M Cl) Cl) N 0 0 0 0 0 W O (Oct C 0) CL vvvvv 7 co 0) co N N E v V Cl) to Go co _ N O N aU 7 v co of c7 c0 E c It It 0) CO Co O 0 N j 0 0 0 0 > = 0) 0) O O) 0) a=d vvvvv � w y rnCOO C) vId: aco C U eN- 0 a3 " U n 0 0 rn CO v ^yF M co N N N U U N CDODrn m CO U a) M O v N O O O O c0 2 a o N M M M N 6 0 0 0 0 O U L N N N ce) m C C N CO CO ch CO N N N N 7 w m N N J � a 0 Z (/j 0 N L L L L L N N U U U U U C C c c c Ln v IT IT IT N N N N a) d CO P c0 7 N d a a d d NLo N N > N La a`) Q c U o E c W CO N O a` m a) A N n 0 N Q to O) O rn (D O U Z v .'e J al � N c 0 c N w o c K w rc a) 0 O O m Cl) U c u ID O Q N N N V) O O 5? n m — 0 O O O O O N co O1 O x co a` is co ^� co m N n co O N Q m O m O U u �A o n N U 0 V OD O > 0 N p N N O CU 3B O O E m � J O 3 2 O O 0 O W C O 5 C 0 > W oC d W E v N J O D O E m N 0— N yUa E n c m o of �> > Of aid a w N coCC) w CC) U U N M t�0 Cl) _o v O ° m N Cl) N O 2 0.^ ..00 h N ... c O U C (D N m J N ao E Z v) c 00 !n N m .a6 ; a CD W m 1N 10 n M O N 7 m O n m 0 F U y LL u F i 1 I� 1 11 0 0 0 0 cO 0 M N to O V Q> rn n M f0 N 0U'j0)rnU) N N of v v 0 C 0 0 p E co co M co m M cl co V `1 fo f0 N N 10 J in (7C O O O O O rn rn rn m rn 3S'-' vvvvv O 0 E m OD C-4 n v yt! 0 0 0 0 0 C0 C> v W O) Cl Of Of _ o w v v v v v 0 CO 00 V) ao E v m CO 0 a N J co O O (7 O O W 0) 0) 0) 0) cl vvvvv D E to i0 n 0) co n n n rn m m N N 0O N N Cl) •t C N QU O O Cl) N 0) E c N O v rn mr.4 L6C;.4 ari N C 1 01 W 0) CD O) a_d vvvvv � w N U co O 0 0 (O O O cli O. � N N f6 "' U mvviCOma rn O V I- N t .V- 0— p C N O OD b O O � ry N n N n 0 2 0 o to cUv 0 U t 0 Co v co 0 O N f0 n O n v v a)0 CO J " � .0 .0 Z U) c 0 4) U U U U U yy N N N N N Cl. f"1 V N LO d n n n n n ddILd.& m m m N N n t0 N V1 0 n m 0 U X W m c c �Z 'm aC> 0 w LO (L wNm O. 0) N S io N moo O O m00 o � � a x 0 nI 1..1. U L 1 J I] n 1 C Lnaa N N ao m W? W N O O ts p O N O O O v IL x 0 I I I 1 m CD ro L6 N n O N Q 7 O O m O U X 0 h c m C t0 co a v` ouria N O = C N W G O F O O O m M a P CD X CD I 1 J ' a a R 1 F1 1 O m v m m m v N O V 0) V O m W0 0 N N v N M M M N V V V m m 2 z> E n M m m V m M O 0 m )O m 7 M M N O 01 n 0 N m d;^ m M v LO N> vi vi 0 M c7 V V N �0 3 0 0 E m It V OD m m N N M� O N V )O v v m co m M n c0 d 0) O 0) 0) 0) 0) co aO m m n m U) J 0 0 0 0 0 0 0 0 0 0 0 0 0 W W T 0 O O O O O Q! O O a) 3 x v v v v v v v v v vr v v v O E r- O V N O LO OD0) m^ N O n n O N v v N O N m y L+ O n n m U) m m m m m m It v M C C O O O O O O O O O O O O O w o E o m m N m o N m M a m n m O M m M O ow M Of O) n y J 0) O O 0) O O 0 6 m m n m m U o 0 0 0 0 0 0 0 0 0 0 0 v 0 m m m m o m 0 0 rn 0 0 0) CL v v v v v v v v v v a v v D m n rn v m-t CO CD M 0 0 E n m v n N M m Cl) 0) n in N ` y i_ o V) n of ei 0 of c i v v NUS n 7 m n O n m rn rn E C v N v V v n n N v N O N o 2 r' n n m m m )O 6 6)O m v v N y '-' .-. > j CDO O O O O O O O O O O O 0) 0) 0) 0) 0) O) 0) 0) 0) 0) 0 0) 0) n5 v It v v IT IT It v v v v o v W O m Cl) O m CO LO 0 CO n m m 0 .T. 0 N M V m 0 v 0 N N V n N m m 0 O V O m 0 V N M M cxt M V 7 v v v a ca U d o 0 0 o v o v o d) N N m V m n m )O '- m V V m m N N N N N U�M^ N 0 v v m N rn n v rn o rn m m O M V m N M N O v m O O N t0 O O O m W� W OO U y N N v M )O N N M 2 o a 0 0 0 0 0 0 0 00 0 0 0 0 �0 O U L O m O O M 0 0 10 m m 0 C n 0 N M m M OD v m N m v 0 0 (D-- vmo0m M ommmrn J M � M N .0 .0 Z4) c 0 d L L L L L L L L L L L L L N U U U U U U U U U U U U U NN C C C C c c C C CC C s C C m [1 V Cl) N N CDCDM co ina c4c4mapao�ao9 mmm0) CLmmmCLadaddddd a7 N (D us 10 n 0 O N N ao O n m O U J c a v 00a W N v Ol 0 _ 1N cq .. O O O .600 a) N Y o C` a x 0 o [1 N d' CY) 0 C J C' J m m m th N r- 0 N Q N ao 0 n (O 0 U ¥(2 &> §\� r)U)f[ § §a. )±2 &0R > mCJ §0 0 | \ k mCD . N co )�> LU § a e E )£ C ° »co �{ E§_ 0 0\ CLUB — om e �� § /a! `V 3 fr- to co ^ k{ _ 0�CD 011 / /3 ! ! m co � j 0 £ \# §§ f !§ m E« _ !$ §2 a. N)N � \\ jc � LM §iL �� 2x0 1] r L I AI m <o us n a Q co 0 N 0 U U m w N N N N cn D L U 0 E N co 0 0 m naoavc:lo d d N v v v N v 0C c 3U 0 0 E Mmoo CD M N M O O 4tll (7� 0 o 0 0 0 0 0 a s a a a a a 3 x a v v v a a a O 0 r N N O amD o 0 0 0 0 0 0 0 ) q jm C C a 0 a a a c G� 0 W v v v v v v v M E CD 0 co N co O J CD CO CO m CO N N U 0 0 0 00 0 0 a a rn rn rn a rn cxv vvvvvvv E NUS N N n w a N CL D o o N CD n a a E G CC N n v M N O O O `1 j O O O O a a a C C a a 0,5� vvvvvvv � W �. co N v co CD a0 co CO a O O O O 0 n 7J N N m �- U m O O O O O O O CO 7 CO 7 CO a a t N N _N v O CO O N n n v N O m O n CO N W N NCD 1N O O O O O O O V5.2. 0) O L o 0 0 0 a N N _ �4= O O O CO N N GO v N v ONo 1N ONO J N Cl) in O Z N c Ej N U U U U U U U OCn C C G G G c C_ N v v v v v 0 N N N N N N C7 m dCO a N ap n O v d N Cn N N g q C0 daddaa.a. CD CD N n M O N O co O n CO O U m a; u 1 1 1 1 1 O< U) a It a N I L O a d [1 1 _I N OD m 0 V V h cm D7 0 ��^ 2 U N 0 t` co co OD Q> A0)000 0 OD V N ; ^ m m m �- ;U 0 0 E 0) o It.v d Cl) CD CO N r J 0000) 01 0) 0) O OD 3x" vv V va 0 0 E rn N O rn m 0 rn N rn o N y r o 0) f� It CD O y a)mC O O O 0) rnmrnrnao 0 W CO m - E (o N m J C7 m m N N 000 N 0) O 0) 0) 0)CL n o E n v m d ui v v Cl) cli O N nU D r� n f0 N O E C N N O N OD )D it2 N 0) n IV W 0) C3) 0) m c) CL C? V V V V V n W L O 0) O O U cD O W O a) co U) O O V d N N Cl) � v U d 0 0 0 O O �^ m m Cl) m m N v 0 O N N O N a O 0) CA O) V U O) N V CO fO OD 2 0 0 0 0 0 0 �o 0 U C O (o O O O C C o It m o O N co O m y O co m O m J N V 0 N N O EU Z Z � C U U U N C C C 0 0 0 0 0 yy c c m m m 0% It ITt0) 0) N N e N a daaaa. ro m Ln N 0 0 N co O n 0 0 U z J 0) Im3 at C � O 0 W c Q' 4) 0 O O m r` m U C N 0 0 L V A 4) N N S E N J L D Fm O h N N 0 0 C 0 0 0 Q m m 0a S 0 N CO O h N O y � N CD 0. 0. x 0 I I CL t CL E � k 2 ■ � I I > 0 |Q; 2CL fkk . 23 . M75 2 / 22{ k; §§ /§E t ° 0 E co ID N k It It \ m cli co . {>` & " _ < §�� � co jCD k k _ , {§« ' �/ E / § \-3 ` ` ! f . m k{04 N_ / al {£ ! 3 CD \ { \� ` { co 0 Cl) LO /. [ fd a 10 #$ �/■ ` sS /§\ 4)� Cl) «i� co ) ¥A77 § 22 2)) I LOCATION: HARMONY TECHNOLOGY PARK ITEM: RIPRAP CALCULATIONS FOR CIRCULAR CONDUIT OUTLETS ' COMPUTATIONS BY: B. STRAND SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 ' From Urban Strom Drainage Criterial Manual, March 1969 (Referenced figures are attached at the end of this section) Q = discharge, cfs D = diameter of circular conduit, ft Yt = tailwater depth, ft ' V = allowable non -eroding velocity in the downstream channel, fvs = 7.0 fVs for erosion resistant soils = 5.5 ills for erosive soils ' From From Design Tailwater Allowable Fig. 5-7 Table 5-1 Type of Flow Diam. Depth Velocity 01,1 Y, Riprap d30 ' LOCATION Pipe Qto (cam) D (ft) yt (ft) V Otis) D1.5 D Type (in) DPA RCP 74.76 4.0 4.04 5.5 9.35 1.01 Type L 9.0 DPJ RCP 12.11 1.75 1.3 5.5 5.23 0.74 Type L 9.0 DPN RCP 17.68 2 0.92 5.5 6.25 0.46 Type L 9.0 DPT RCP 27.9 3 3 5.5 5.37 1.00 Type L 9.0 DPS RCP 13.89 1.75 1.39 5.5 6.00 0.79 Type L 9.0 DPCC DPGG RCP RCP 64.37 16.85 3.5 2 2.37 1.45 5.5 5.5 9.83 5.96 0.68 0.73 Type L Type L 9.0 9.0 DPAAA RCP 163.29 5 3.66 5.5 14.61 0.73 Type L 9.0 I I C1 ' 9265RIPRAP.xls I u 1 LOCATION: HARMONY TECHNOLOGY PARK ITEM: RIPRAP CALCULATIONS FOR CIRCULAR CONDUIT OUTLETS COMPUTATIONS BY: B. STRAND SUBMITTED BY: JR ENGINEERING DATE: 5/8/O1 From Urban Strom Drainage Criterial Manual, March 1969 (Referenced figures are attached at the end of this section) Q = discharge, cfs D = diameter of circular conduit, ft Yt = tailwater depth, it V = allowable non -eroding velocity in the downstream channel, ft/s = 7.0 ft/s for erosion resistant soils = 5.5 ft/s for erosive soils Figure 5-6 From Riprap RipreP Figure 5-9 Min. L Depth Depth Width Expansion L = (1/(2tanq)) from to U2 U2 to L of Riprap Q Factor At = Q/V '(At(Yt-W) Figure 5-8, L Use L LOCATION (in) (in) (ft) D2.5 1/(2 tan B) (ft) (ft) (ft) (ft) DPA 18.0 13.5 12 2.3 6.7 13.59 4.26 12.00 12.00 DPJ 18.0 13.5 5.25 3.0 6.6 2.20 -0.37 5.25 5.25 DPN 18.0 13.5 6 3.1 5.5 3.21 8.22 6.00 8.22 DPT 18.0 13.5 9 1.8 6.7 5.07 -8.77 9.00 9.00 DIPS 18.0 13.5 5.25 3.4 6.7 2.53 0.45 5.25 5.25 DPCC 18.0 13.5 10.5 2.8 6.7 11.70 9.64 10.50 10.50 DPGG 18.0 13.5 6 3.0 6.7 3.06 0.76 6.00 6.00 DPAAA 18.0 13.5 15 2.9 6.7 29.69 20.85 15.00 20.85 1 9265RIPRAP.xls �C®�__ ■ � \ � %»2 §C2COmc j c 9 C. E_ § / f fa000 - ;&- co \ ƒ2§\aoa , o \ �k4)000 /al \ v coLL CD � k rGO L §E®73 ƒ 22° 2 § @cs § \{ >/§§§ ` k 7\ & 0 £#s��r _\{2 /_£ \ k(�� ®»�� £k%www S§ `© Cc_ f)C� - 2§ /� �)ca //k§§§ /( ( jF- CC \ -:-7 j �v p 0 £3 §\)\¥ »_ §2!( ��{�7 2Jf)§ =&gym 2) ' >\7 7# > cc )/ - \� . a) E §/ \ ( § S § § \ - Fr >. § _[ k §k� Kk k}}§ S�Ea E# 3 SEEE } / I 1 0 1 1 1 1 1 1 1 I_�99MCI 1JK1a DETENTION 1 1 1 1 1 1 1 Proposed Detention Pond - Stage/Storage LOCATION: Harmony Technology Park PROJECT NO: 9265.00 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING DATE: 6/25/01 V = 1/3 d (A + B + sgrt(A'B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour North Pond (pond 11 WQCV = 10-yr INSEL• 1007W WSEL- Top of Berm JR Engineering 2620 E. Prospect Rd, Ste. 190 Fort Collins, CO 80525 Stage (ft) Surface Area (ft2) Incremental Storage (ac-ft) Total Storage (ac-ft) Total Storage (Cu-ft) 4903.8 0 4904 4646 0.01 0.01 309.7 4905 17675 0.24 0.25 10770.5 4905.5 24316 0.24 0.49 21224.3 4906 30957 0.32 0.80 35009.1 4907 36926 0.78 1.58 68906.5 4907.89 42197 0.81 2.39 104090.2 4908 42849 0.11 2.50 108767.7 4908.60 46468 0.61 3.11 135555.4 4909 48880 0.44 3.55 154623.0 4909.65 52902 0.76 4.33 188614.8 4910 55068 0.43 4.76 207508.4 4910.15 56349 0.19 4.96 215864.5 vvUUv = 10-YR Detention Volume = 100-YR Detention Volume = Total required volume = u.4a ac-Ti 1.90 ac-ft 3.84 ac-ft 4.33 ac-ft det-pond-alr.xls; volume 1 1 1 1 1 I Proposed Detention Pond - Stage/Storage LOCATION: Harmony Technology Park PROJECT NO: 9265.00 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING DATE: 6/25/01 East Pond loond 31 WQCV = 10-yr WSEL- 100-yr WSEL- Top of Berm - JR Engineering 2620 E. Prospect Rd, Ste. 190 Fort Collins, CO 80525 Stage (ft) Surface Area (ft2) Incremental Storage (ac-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4900.53 0 0 4902 3134 0.04 0.04 1535.7 4902.7 4377 0.06 0.10 4152.5 4903 4910 0.03 0.13 5544.8 4904 5322 0.12 0.24 10659.4 4905 6179 0.13 0.38 16404.6 4905.5 6637 0.07 0.45 19607.8 4906 7094 0.15 0.53 23035.8 4907 8071 0.17 0.70 30613.1 4908 9110 0.20 0.90 39198.3 4909 10827 0.23 1.13 49154.5 4909.5 11740 0.13 1.26 54794.7 4910 12653 0.14 1.40 1 60891.5 vvwuv = u.iu ac-n 10-YR Detention Volume = 0.35 ac-ft 100-YR Detention Volume = 0.93 ac-ft Total required volume = 1.03 ac-ft South Pnnd rnnnd ?1 WQCV = I aTr WSEL- 100-yr WSEL- Top of Berm - Stage (ft) Surface Area (ft2) Incremental Storage (ac-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4900 0 0 0 0 4901 29931 0.23 0.23 9977.0 4902 88920 1.30 1.53 66790.4 4902.38 105873 0.85 2.38 103754.3 4903 133534 1.70 4.08 177804.9 4903.52 150037 1.69 5.77 251491.7 4904 165270 1.74 7.51 327135.9 4904.7 184361 2.81 10.32 449445.8 4905 192542 1.30 11.62 505976.8 4906 216982 4.70 16.31 710617.0 4906.97 240788 5.09 1 21.41 932535.0 4907 241524 0.17 21.57 939769.7 4907.51 255624 2.91 24.48 1066525.4 4908 269171 2.95 27.44 1195085.7 4908.20 274700 1.25 28.68 1249471.9 vvw( v - 4.00 GU -II 10-YR Detention Volume = 7.90 ac-ft 100-YR Detention Volume = 19.00 ac-ft Total required volume = 21.38 ac-ft det-pond-alr.xls; volume I F, 1 1 1 POND 1 10-yr Event, Outlet Sizing LOCATION: Harmony Technology Park PROJECT NO: 9265.00 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING DATE: 6/25/01 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = CoAo sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft2) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 3.86 cfs outlet pipe dia = D = 21.0 in Invert elev. = 4903.50 ft (inv. "D" on outlet structure) Eo = 4904.22 ft (downstream HGL for peak 10 yr flow - from StormCAD) h = 4907.89 ft - 10 yr WSEL Co = 0.63 solve for effective area of orifice using the orifice equation ' A. = 0.398 ftz 57.3 in orifice dia. = d = 8.55 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.41 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 5.65E+05 Co = (K in figure) = 0.63 check Use d = 8.55 in = Ao = 0.399 ft2 = Qmax = 3.86 cfs 8 9/16 in (approx) 57.41 in 2 ' Pond 1 Orifice-10, det-pond-alr.xls I I POND 1 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 9265.00 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING DATE: 6/25/01 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ftz) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 14.98 cfs outlet pipe dia = D = 21.0 in Invert elev. = 4903.50 ft (inv. "D" on outlet structure) Eo = 4906.99 ft (downstream HGL for peak 100 yr flow - from StormCAD) h = 4909.65 ft -100 yr WSEL Co = 0.76 solve for effective area of orifice using the orifice equation A. = 1.506 ft2 216.9 in orifice dia. = d = 16.62 in 11 I I I I I Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.79 kinematic viscosity, v = 1.22E-05 ff/s Reynolds no. = Red = 4Q/(ndv) = 1.13E+06 Co = (K in figure) = 0.76 check Use d = 16.62 in = 16 10116 in (approx) A o= 1.507 R 2= 216.95 in 2 Qmax = 14.99 cfs IPond 1 Orifice-100, det-pond-alr.xls POND 2 ' 10-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 9265.00 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING ' DATE: 6/25/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (fe) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 18.29 cfs outlet pipe dia = D = 36.0 in Invert elev. = 4900.00 ft (inv. "D" on outlet structure) Eo = 4901.37 ft (downstream HGL for peak 10 yr flow - from StormCAD) h = 4904.70 ft -10 yr WSEL ' Co = 0.64 solve for effective area of orifice using the orifice equation A. = 1.952 ft2 281.0 in orifice dia. = d = 18.92 in 1 [1 Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.53 kinematic viscosity, v = 1.22E-05 ftz/s Reynolds no. = Red = 4Q/(ndv) = 1.21 E+06 Co = (K in figure) = 0.64 check Use d = 18.91 in = A, = 1.950 ff 2 = Qmax = 18.28 cfs 1815116 in(approx) 280.85 in 2 tPond 2 Orifice-10, det-pond-air.xls I POND 2 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 9265.00 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING tDATE: 6/25/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 44.37 cfs outlet pipe dia = D = 36.0 in ' Invert elev. = 4900.00 ft (inv. "D" on outlet structure) Eo = 4904.33 ft (downstream HGL for peak 100 yr flow - from StormCAD) h = 4906.97 ft - 100 yr WSEL Co = 0.78 solve for effective area of orifice using the orifice equation ' Ao = 4.363 ft2 628.2 in orifice dia. = d = 28.28 in ' Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.79 ' kinematic viscosity, v = 1.22E-05 ftz/s Reynolds no. = Red = 4Q/(ndv) = 1.96E+06 Co = (K in figure) = 0.78 check ' Use d = 28.28 in = 28 4116 in (approx) A o= 4.362 ft 2= 628.13 in 2 ' Qmax = 44.36 cfs Pond 2 Orifice-100, det-pond-alr.xls r ' POND 3 10-yr Event, Outlet Sizing ' LOCATION: Harmony Technology Park PROJECT NO: 9265.00 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING ' DATE: 6/25/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = Como sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 0.60 cfs outlet pipe dia = D = 15.0 in ' Invert elev. = 4900.53 ft (inv. "D" on outlet structure) Eo = 4900.83 ft (downstream HGL for peak 100 yr flow - from StormCAD) h = 4905.50 ft -10 yr WSEL ' Co = 0.6 solve for effective area of orifice using the orifice equation ' Ao = 0.058 fe 8.3 in orifice dia. = d = 3.25 in ' Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.22 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(7cdv) = 2.31E+05 Co = (K in figure) = 0.6 check tUse d = 3.25 in = 3 4/16 in (approx) A(, = 0.058 ff 2 = 8.30 in 2 ' Qmax = 0.60 cfs ' Pond 3 orifice-10, det-pond-alr.xls 1 POND 3 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park PROJECT NO: 9265.00 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING ' DATE: 6/25/01 Submerged Orifice Outlet: t release rate is described by the orifice equation, Qo = C,Ao sgrt( 2g(h-E,)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) 1 Qo = 0.80 cfs outlet pipe dia = D = 15.0 in ' Invert elev. = 4900.53 ft (inv. "D" on outlet structure) Eo = 4901.66 ft (downstream HGL for peak 100 yr flow - from StormCAD) h = 4909.00 ft - 100 yr WSEL ' Co = 0.6 solve for effective area of orifice using the orifice equation ' Ao = 0.061 ft2 8.8 in orifice dia. = d = 3.35 in 1 1 Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.22 kinematic viscosity, v = 1.22E-05 ftz/s Reynolds no. = Rea = 4Q/(ndv) = 2.99E+05 Co = (K in figure) = 0.6 check Use d = 3.35 in = A,= 0.061 ft2= Qmax = 0.80 cfs 3 6116 in (approx) 8.81 in 2 ' Pond 3 orifice-100, det-pond-alr.xls 1 1 1 1 1 1 1 t 1 a R N 00017 000mgm m YN'1 10 ODN p� OIL 0L r w� oco�in ai�ci oiv� 0 T m W � O m u C o _ w 9 N N 1001 m m O)m OI m sumo_ R U U 0 0 (V t7 N x,r rooivvo�ommmr '^`� rnmrnm �i rn Sim m rn a v e a v e o d< a a m L 0 y O 0 Y O O O O N 10 Vy (O N r M� rn m N m O N v) y E" 00000ci ri vi of ri v Q m� u 0 U m L m O S Omf 1[ O R O O N i V U f ma o E u ooSomo gi,o o N >.O+ q CGOGO�� fV lV ✓•'i of '7 G , m E � m > Lo O O N O m �0 f'l N C O t7 r . O ry y H OOOOO� N Cl th thY O 0 m mSS1(iSSmS pp pp (00� O R L� o�000rO pnp aOOd appb pap oppio v a a v a v e v v a v v J J 3 3 3 T T d 0 0 0 o .- 1 1 1 1 1 1 1 m O1 t C o g o wnn�c�oeo�or v rn m u m n Q a �`rQrn Q T R R O m rn m u j n Hilla U yl 2 N m Q Q m y7 O � a u 4 aa 4 u� oo� o�on S a 0�umMmmn a S� o0000000��� ^ 3 rnrnrnmmmmrnmrnrn� QQQQaQaQQaQQ L u a� v o,t:u�Nrnma7 oamrno mmmmo in c>Q oo�� .-ri cidvvo �E— 0 u c mm•-mo� oirn mm� n .QL 0 ai m ai mmmmn Iti vi m O D O R m u a 000mmrnm R 00 000�'�^01 o a m WC OOOOOOi NI go O) O m O OOOOrc)-OiNrnO O q 0000 �l+l uirrn F+10)O) 0 E O � p OC]lhmmr NN�� nmQ �� f m o00�ohyo.Onyo Tipo mo �mpo m Y v v v a a Q e a a v Q a OQI. V J LU 3 _m O T T 0 0 0 1 1 1 1 1 1 1 1 a' S L 0 d o0000000co��. �p� 0 T d A W 3 O J O N MOI N 9 m O � C Q=� m m 0 r 0 r 0 m M m N m �,u� o00000 p 9 d � u R t.� O� Y0l unim T !� J (f M 10 d n m n m M m n O m N m d m m m m M n ^ rn m m m m m rn rn m m rn y d d d d d d d d d d d � m u w 9 O m 0m w t .L° . RG m mnmmmm d O Y1 m O 9 u t� Svu� i°co ,R 0 0 O O O O O O �p Ea O OM NmIpM- OM m0 O Y 00 e-NM d PO mq - M 0 W 0 � m O O O N M d m n 3n� 6o00000000� m �B�S Qu SIRSBoSIgiS _ vv I od' Sd. V v v d y awi 3 3 3 m p T T 0 0 0 o F 1 Detention Pond ' Emergency Overflow Spillway Sizing LOCATION: Harmony Technology Park PROJECT NO: 9265.00 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING DATE: 5/22/01 top of berm ' Equation for flow over a broad crested weir Q = CLH3r2 � � H spill elevation where C = weir coefficient = 2.6 H = overflow height L = length of the weir ' The pond has a spill elevation equal to the maximum water surface elevation in the pond Design spillway with maximum of 0.5 ft flow depth, thus H is greater than or equal to 0.5 ft Size the spillway assuming that the pond outlet is completely clogged. Pond 1 Q (100) = 133 cfs (peak flow into pond) Spill elev = 4909.65 ft = 100-year WSEL Min top of berm elev.= 4910.15 Weir length required: ' L = 144 ft Use L = 145 ft v = 1.78 ft/s Pond 2 ' Q (100) = 314 cfs (peak flow into pond) Spill elev = 4906.96 ft = 100-year WSEL Min top of berm elev.= 4908.20 Weir length required: ' L= 341 ft Use L = 345 ft ' v = 1.80 ft/s Pond 3 Q (100) = 32 cfs (peak flow into pond) Spill elev = 4909.00 ft = 100-year WSEL Min top of berm elev.= 4910.00 ' Weir length required: L = 35 ft Use L = 35 ft ' v = 1.65 ft/s ' spillways, det-pond-alrAs Detention Pond 201 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 1 1 100-yr outlet orifice dia. = 17.875 in dia. Ao = 1.74 It, outlet invert = 4908.31 ft orifice center = 4909.05 It Co = 0.7 D/S HGL= 4911.90 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4912.70 0.00 8.76 4912.80 0.19 9.29 4912.90 2.84 9.79 4913.00 14.26 10.27 4913.10 42.56 10.72 4913.20 95.66 11.16 4913.30 186.90 11.58 4913.50 541.92 12.38 4913.60 825.09 12.76 4913.70 1188.67 13.13 4913.80 1638.13 13.49 4913.90 2178.59 13.84 4914.00 2816.58 14.19 4914.10 3561.64 1 14.52 4914.20 4424.55 14.85 4914.30 5416.96 15.17 Detention Pond 202 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL I orifice dia. = 16.875 in dia. Ao = 1.55 ft2 outlet invert = 4909.50 ft orifice center = 4910.20 ft Co = 0.8 D/S HGL= 4911.52 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4913.10 0.00 12.53 4913.20 0.05 12.92 4913.30 1.47 13.30 4913.40 10.07 13.67 4913.50 35.13 14.03 4913.60 86.27 14.38 4913.70 176.48 14.72 4913.90 532.70 15.38 4914.00 819.90 15.70 4914.10 1189.89 16.02 4914.20 1652.39 16.32 4914.30 2223.49 16.63 4914.40 2919.49 16.92 4914.50 1 3762.38 1 17.21 4914.60 4782.12 17.50 4914.70 6052.41 17.78 Detention Pond 203 Storage -Discharge Curve LOCATION: Hartnony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL orifice dia. = 11.50 in dia. Ao = 0.72 ft2 outlet invert = 4910.28 It orifice center = 4910.76 It Co = 0.8 D/S HGL= 4911.58 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4914.40 0.00 7.78 4914.50 0.09 7.91 4914.60 1.23 8.05 4914.70 5.84. 8.18 4914.80 16.71 8.31 4914.90 36.62 8.44 4915.00 68.90 8.56 4915.20 185.92 8.81 4915.30 277.85 8.93 4915.40 395.99 9.05 4915.50 542.71 9.17 4915.60 719.72 9.28 4915.70 929.65 9.40 4915.80 1176.89 9.51 4915.90 1 1468.14 9.62 4916.00 1812.05 9.74 Detention Pond 204 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 100-yr outlet orifice dia. = 11.875 in dia. A, = 0.77 ft2 outlet invert = 4910.78 ft orifice center = 4911.27 ft Co = 0.75 D/S HGL= 4911.92 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4914.40 0.00 7.29 4914.50 0.11 7.44 4914.60 1.55 7.58 4914.70 7.31 7.72 4914.80 20.83 7.86 4914.90 45.54 7.99 4915.00 85.59 8.12 4915.20 241.54 8.38 4915.30 366.83 8.51 4915.40 528.68 8.64 4915.50 732.01 8.76 4915.60 981.08 8.88 4915.70 1280.13 9.00 4915.80 1635.18 9.12 4915.90 2052.83 9.24 4916.00 2537.87 9.35 Detention Pond 211 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 100-yr outlet orifice dia. = 16.125 in dia. Ao = 1.42 ft2 outlet invert = 4904.80 ft orifice center = 4905.47 ft Co = 0.65 D/S HGL= 4906.67 Stage h (ft) Dot. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4908.12 0.00 8.91 4908.22 0.38 9.21 4908.32 4.23 9.50 4908.42 18.17 9.79 4908.52 52.29 10.06 4908.62 118.35 10.33 4908.72 227.41 10.59 4908.92 591.11 11.10 4909.02 843.62 11.34 4909.12 1147.58 11.58 4909.22 1509.07 11.81 4909.32 1934.94 12.04 4909.42 2430.47 12.27 4909.52 2999.16 12.49 4909.62 3646.29 12.71 4909.72 4381.73 12.92 Detention Pond 212 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL• 100-yr outlet orifice dia. = 18.75 in dia. A,= 1.92 ft outlet invert = 4904.20 ft orifice center = 4904.98 ft Co = 0.7 D/S HGL= 4906.36 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4907.52 0.00 11.60 4907.62 0.16 12.09 4907.72 2.41 12.56 4907.82 12.17 13.02 4907.92 36.54 13.45 4908.02 108.09 13.88 4908.12 218.73 14.29 4908.32 535.20 15.08 4908.42 786.15 15.46 4908.52 1104.94 15.83 4908.62 1495.60 16.19 4908.72 1965.33 16.55 4908.82 2466.57 16.89 4908.92 3058.20 17.23 4909.02 3810.51 1 17.57 4909.12 4679.39 17.89 1 1 1 1 Detention Pond 213 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL orifice dia. = 13.125 in dia. Ao = 0.94 ft2 outlet invert = 4905.50 ft orifice center = 4906.05 ft Co = 0.65 D/S HGL= 4907.37 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4908.82 0.00 5.90 4908.92 1 0.08 6.10 4909.02 1.26 6.30 4909.12 6.57 6.48 4909.22 20.05 6.67 4909.32 45.58 6.84 4909.42 87.51 7.02 4909.62 243.95 7.35 4909.72 373.36 7.51 4909.82 - 549.48 7.67 4909.92 787.66 7.83 4910.02 1094.63 7.98 4910.12 1468.88 8.13 4910.22 1916.75 8.27 4910.32 1 2444.49 1 8.42 4910.42 1 3057.77 1 8.56 1 1 1 1 1 Detention Pond 214 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 100-yr outlet orifice dia. = 14.875 in dia. Ao = 1.21 ft outlet invert = 4905.00 ft orifice center = 4905.62 ft Co = 0.65 D/S HGL= 4906.73 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4908.32 0.00 7.94 4908.42 0.12 8.18 4908.52 2.00 8.42 4908.62 10.99 8.65 4908.72 34.57 8.88 4908.82 80.57 9.10 4908.92 161.48 9.32 4909.12 479.33 9.73 4909.22 732.18 9.93 4909.32 1053.41 10.13 4909.42 1446.15 10.32 4909.52 1915.45 10.51 4909.62 2466.88 10.70 4909.72 3108.79 10.89 4909.82 3850.59 11.07 4909.92 4701.33 11.24 Detention Pond 215 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL• orifice dia. = 17.375 in dia. Ao = 1.65 ftz outlet invert = 4903.44 ft orifice center = 4904.16 ft Ca = 0.75 D/S HGL= 4905.96 Stage In (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4907.02 0.00 10.20 4907.12 0.02 10.67 4907.22 0.48 11.12 4907.32 3.35 11.56 4907.42 11.94 11.97 4907.52 31.23 12.38 4907.62 69.84 12.77 4907.82 286.20 13.52 4907.92 499.47 13.87 4908.02 759.32 14.22 4908.12 1094.14 14.56 4908.22 1521.53 14.90 4908.32 2059.36 15.22 4908.42 2731.54 15.54 4908.52 3557.53 15.86 4908.62 4536.48 16.16 Detention Pond 216 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 100-yr outlet orifice dia. = 12.75 in dia. A, = 0.89 ft2 outlet invert = 4903.70 It orifice center = 4904.23 ft Co = 0.65 D/S HGL= 4904.75 Stage h (ft) Dot. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4907.18 0.00 7.21 4907.28 0.24 7.36 4907.38 1 3.33 7.50 4907.48 15.87 7.64 4907.58 45.82 7.78 4907.68 101.89 7.92 4907.78 200.22 8.05 4907.98 592.39 8.31 4908.08 910.39 8.44 4908.18 1166.69 8.57 4908.28 1508.26 8.69 4908.38 2125.45 8.81 4908.48 2861.01 8.93 4908.58 3722.06 9.05 4908.68 4723.02 9.17 4908.78 5868.98 9.28 Detention Pond 217 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 100-yr outlet orifice dia. = 16.25 in dia. Ao = 1.44 ft2 outlet invert = 4902.10 It orifice center = 4902.78 ft Co = 0.75 D/S HGL= 4904.78 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4905.42 0.00 6.93 4905.52 0.18 7.46 4905.62 2.66 7.94 4905.72 13.43 8.40 4905.82 40.20 8.84 4905.92 91.24 9.26 4906.02 193.13 9.65 4906.22 609.61 10.40 4906.32 929.24 10.76 4906.42 1331.70 11.10 4906.52 1821.81 11.43 Detention Pond 218 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 100-yr outlet orifice dia. = 11.625 in dia. Ao = 0.74 ft2 outlet invert = 4903.25 It orifice center = 4903.73 It Co = 0.65 D/S HGL= 4904.5 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4906.40 0.00 5.37 4906.50 0.35 5.50 4906.60 3.69 5.64 4906.70 15.79 5.77 4906.80 44.07 5.89 4906.90 95.66 6.02 4907.00 178.34 6.14 4907.20 470.66 6.38 4907.30 688.61 6.49 4907.40 948.33 6.60 4907.50 1254.70 6.71 Detention Pond 220 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL orifice dia. = 13.63 in dia. Ao = 1.01 ft2 outlet invert = 4905.20 It orifice center = 4905.77 ft Co = 0.75 D/S HGL= 4906.4 Stage In (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4908.19 0.00 8.15 4908.29 0.09 8.38 4908.39 1.37 8.60 4908.49 7.38 8.81 4908.59 24.67 9.02 4908.69 62.57 9.22 4908.79 131.62 9.42 4908.99 412.02 9.81 4909.09 640.40 9.99 4909.19 933.59 10.18 4909.29 1292.85 10.36 4909.39 1720.32 10.54 4909.49 2220.50 10.71 4909.59 2797.35 10.88 4909.69 3454.85 1 11.05 4909.79 4197.70 11.22 Detention Pond 221 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL orifice dia. = 13.63 in dia. Ao = 1.01 ftZ outlet invert = 4907.00 ft orifice center = 4907.57 ft Co = 0.75 D/S HGL= 4909.29 Stage h (ft) Dot. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4910.19 0.00 5.78 4910.29 1 0.04 6.09 4910.39 0.84 6.39 4910.49 5.53 6.68 4910.59 19.28 6.95 4910.69 48.24 7.21 4910.79 100.96 7.46 4910.99 326.08 7.95 4911.09 523.58 8.18 4911.19 790.94 8.40 4911.29 1138.10 8.62 4911.39 1573.26 8.83 4911.49 2100.18 9.04 4911.59 2728.15 9.24 4911.69 3466.30 9.44 4911.79 4317.23 9.64 Detention Pond 222 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL orifice dia. = 13.375 in dia. Ao = 0.98 ftZ outlet invert = 4906.52 ft orifice center = 4907.08 ft Co = 0.7 D/S HGL= 4909.58 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4909.60 0.00 0.78 4909.70 0.20 1.90 4909.80 3.09 2.57 4909.90 16.77 3.10 4910.00 53.93 3.55 4910.10 127.10 3.95 4910.20 247.42 4.32 4910.40 680.45 4.96 4910.50 1004.13 5.26 4910.60 1401.26 5.54 4910.70 1876.27 5.80 4910.80 2433.62 6.05 4910.90 3080.58 6.30 4911.00 1 3824.30 1 6.53 4911.10 4671.39 6.76 4911.20 5625.14 6.98 Detention Pond 223 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL orifice dia. = 23.00 in dia. A, = 2.89 ftZ outlet invert = 4906.50 ft orifice center = 4907.46 ft Co = 0.75 D/S HGL= 4909.98 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4909.60 0.00 4909.70 0.42 4909.80 5.30 4909.90 23.98 4910.00 67.09 2.46 4910.10 146.54 6.02 4910.20 278.40 8.15 4910.40 749.61 11.25 4910.50 1102.65 12.52 4910.60 1542.57 13.67 4910.70 2076.86 14.74 4910.80 2714.77 15.73 4910.90 3471.36 16.66 4911.00 4361.78 17.54 4911.10 5405.53 18.38 4911.20 6622.39 19.18 1 t 1 1 1 1 1 1 1 Detention Pond 224 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 100-yr outlet orifice dia. = 13.875 in dia. Ao = 1.05 ft2 outlet invert = 4906.75 It orifice center = 4907.33 it Co = 0.65 D/S HGL= 4909.00 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4909.32 0.00 3.10 4909.42 0.17 3.55 4909.52 2.97 3.95 4909.62 16.63 4.31 4909.72 53.59 4.65 4909.82 132.97 4.96 4909.92 278.91 5.25 4910.12 835.11 5.80 4910.22 1259.25 6.05 4910.32 1787.30 6.29 4910.42 2425.08 6.53 4910.52 3177.93 6.75 4910.62 4050.09 6.97 4910.72 5042.51 7.18 1 1 1 1 1 1 1] Detention Pond 225 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 100-yr outlet orifice dia. = 14.25 in dia. Ao = 1.11 ft outlet invert = 4907.00 ft orifice center = 4907.59 ft Co = 0.65 D/S HGL= 4909.36 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4909.52 0.00 2.31 4909.62 0.17 2.95 4909.72 2.95 3.47 4909.82 16.00 3.92 4909.92 50.10 4.32 4910.02 122.78 4.69 4910.12 258.46 5.04 4910.32 786.05 5.66 4910.42 1190.20 5.95 4910.52 1691.42 6.22 4910.62 2294.85 6.48 4910.72 3005.79 6.74 4910.82 3827.98 6.98 4910.92 1 4763.02 1 7.22 Detention Pond 226 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL. orifice dia. = 17.25 in dia. A, = 1.62 ft outlet invert = 4907.20 ft orifice center = 4907.92 ft Co = 0.75 D/S HGL= 4910.01 Stage h (ft) Dot. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4910.32 0.00 5.44 4910.42 0.25 6.25 4910.52 3.72 6.98 4910.62 18.20 7.63 4910.72 53.28 8.23 4910.82 119.07 8.79 4910.92 230.79 9.32 4911.12 652.04 10.29 4911.22 981.74 10.74 4911.32 1402.15 11.18 4911.42 1919.59 11.60 4911.52 2541.53 12.00 4911.62 3280.05 12.39 4911.72 1 4144.75 12.77 4911.82 5141.23 13.14 4911.92 6273.62 13.50 1 1 1 1 1 Detention Pond 227 Storage -Discharge Curve LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL 100-yr outlet orifice dia. = 17.50 in dia. Ao = 1.67 ft2 outlet invert = 4907.46 ft orifice center = 4908.19 ft Co = 0.7 D/S HGL= 4909.70 Stage h (ft) Det. Volume storage (cu-ft) Total 100yr-Orifice discharge (cfs) 4910.62 0.00 9.00 4910.72 0.06 9.48 4910.82 0.78 9.93 4910.92 3.44 10.36 4911.02 9.59 10.78 4911.12 22.22 11.18 4911.22 46.28 11.57 4911.42 155.40 12.31 4911.52 258.15 12.66 4911.62 406.19 13.00 4911.72 607.98 13.34 4911.82 871.82 13.66 4911.92 1203.00 13.98 4912.02 1606.64 14.29 4912.12 1 2090.64 1 14.60 4912.22 2662.48 14.90 1 1 1 1 I LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: 100-yr WSEL- Pond 201 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1 /3 d (A + B + s9rt(A'B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #201 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4912.7 0 4912.8 1 5.8 0.00 0.19 0.00 1 0.19 4912.9 55.8 0.00 2.65 0.00 2.84 4913.0 185.1 0.00 11.42 0.00 14.26 4913.1 394.0 0.00 28.31 0.00 42.56 4913.2 681.0 0.00 53.10 0.00 95.66 4913.3 1165.3 0.00 91.24 0.00 186.90 4913.4 1761.9 0.00 145.34 0.01 332.24 4913.5 2450.7 0.00 209.69 0.01 541.92 4913.6 3230.7 0.01 283.17 0.02 825.09 4913.7 4056.6 0.01 363.58 0.03 1188.67 4913.8 4947.2 0.01 449.45 0.04 1638.13 4913.9 5875.3 0.01 540.46 0.05 2178.59 4914.0 6898.2 0.01 637.99 0.06 2816.58 4914.1 8017.2 0.02 745.07 0.08 3561.64 4914.2 9255.7 0.02 862.90 0.10 4424.55 4914.3 10607.9 0.02 992.41 0.12 5416.96 LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 100-yr WSEL- [I Pond 202 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V= 1/3d (A+B+sgrt(A'B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #202 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4913.1 0 4913.2 1 1.6 0.00 0.05 0.00 1 0.05 4913.3 33.7 0.00 1.41 0.00 1.47 4913.4 152.7 0.00 8.60 0.00 10.07 4913.5 363.6 0.00 25.07 0.00 35.13 4913.6 675.1 0.00 51.14 0.00 86.27 4913.7 1150.0 0.00 90.20 0.00 176.48 4913.8 1767.7 0.00 144.78 0.01 321.26 4913.9 2481.3 0.00 211.44 0.01 532.70 4914.0 3281.2 0.01 287.20 0.02 819.90 4914.1 4135.1 0.01 370.00 0.03 1189.89 4914.2 5132.8 0.01 462.50 0.04 1652.39 4914.3 6309.5 0.01 571.10 0.05 2223.49 4914.4 7631.6 0.02 696.01 0.07 2919.49 4914.5 9252.2 0.02 842.89 0.09 3762.38 4914.6 11172.7 0.02 1019.74 0.11 4782.12 4914.7 14297.2 0.03 1270.29 0.14 6052.41 LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 100-yr WSEL. Pond 203 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1/3 d (A + B + sgrt(A'B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #203 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4914.4 0 4914.5 1 2.6 0.00 0.09 0.00 1 0.09 4914.6 23.9 0.00 1.15 0.00 1.23 4914.7 72.7 0.00 4.61 0.00 5.84 4914.8 149.3 0.00 10.87 0.00 16.71 4914.9 253.4 0.00 19.90 0.00 36.62 4915.0 397.6. 0.00 32.28 0.00 68.90 4915.1 578.2 0.00 48.51 0.00 117.41 4915.2 797.9 0.00 68.51 0.00 185.92 4915.3 1046.2 0.00 91.93 0.01 277.85 4915.4 1321.9 0.00 118.14 0.01 395.99 4915.5 1617.5 0.00 146.72 0.01 542.71 4915.6 1927.2 0.00 177.01 0.02 719.72 4915.7 2276.3 0.00 209.93 0.02 929.65 4915.8 2673.9 0.01 247.24 0.03 1176.89 4915.9 3157.7 0.01 291.25 0.03 1468.14 4916.0 3728.4 0.01 343.91 0.04 1812.05 LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 100-yr WSEL- Pond 204 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1 /3 d (A + B + sgrt(A'B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #204 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4914.4 0 4914.5 3.3 0.00 0.11 0.00 0.11 4914.6 30.1 0.00 1.44 0.00 1.55 4914.7 90.6 0.00 5.76 0.00 7.31 4914.8 185.4 0.00 13.52 0.00 20.83 4914.9 314.5 0.00 24.71 0.00 45.54 4915.0 493.1 0.00 40.05 0.00 85.59 4915.1 780.3 0.00 63.13 0.00 148.72 4915.2 1084.4 0.00 92.82 0.01 241.54 4915.3 1429.4 0.00 125.29 0.01 366.83 4915.4 1815.3 0.00 161.85 0.01 528.68 4915.5 2259.5 0.00 203.34 0.02 732.01 4915.6 2729.3 0.01 249.07 0.02 981.08 4915.7 3259.4 0.01 299.04 0.03 1280.13 4915.8 3849.8 0.01 355.05 0.04 1635.18 4915.9 4512.0 0.01 417.65 0.05 2052.83 4916.0 5196.8 0.01 485.04 0.06 2537.87 LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: 100-yr WSEL• Pond 211 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1/3 d (A + B + sgrt(A*B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #211 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4908.1 0 4908.2 1 11.3 0.00 0.38 0.00 1 0.38 4908.3 75.1 0.00 3.85 0.00 4.23 4908.4 215.9 0.00 13.94 0.00 18.17 4908.5 484.4 0.00 34.12 0.00 52.29 4908.6 854.1 0.00 66.05 0.00 118.35 4908.7 1345.8 0.00 109.06 0.01 227.41 4908.8 1831.5 0.00 158.24 0.01 385.65 4908.9 2286.1 0.00 205.46 0.01 591.11 4909.0 2771.8 0.01 252.51 0.02 843.62 4909.1 3315.6 0.01 303.96 0.03 1147.58 4909.2 3922.8 0.01 361.49 0.03 1509.07 4909.3 4603.6 0.01 425.86 0.04 1934.94 4909.4 5315.5 0.01 495.53 0.06 2430.47 4909.5 6066.7 0.01 568.70 0.07 2999.16 4909.6 6884.5 0.01 647.13 0.08 3646.29 4909.7 7834.4 0.02 735.43 0.10 4381.73 LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 100-yr WSEL- Pond 212 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1/3 d (A + B + sgrt(A•B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #212 Stage (ft) Surface Area (ft2) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4907.5 0 4907.6 4.9 0.00 0.16 0.00 1 0.16 4907.7 47.3 0.00 2.25 0.00 2.41 4907.8 158.9 0.00 9.76 0.00 12.17 4907.9 339.8 0.00 24.37 0.00 36.54 4908.0 1174.7 0.00 71.54 0.00 108.09 4908.1 1039.5 0.00 110.64 0.01 218.73 4908.2 1572.1 0.00 129.67 0.01 348.40 4908.3 2180.4 0.00 186.80 0.01 535.20 4908.4 2853.7 0.01 250.95 0.02 786.15 4908.5 3534.4 0.01 318.79 0.03 1104.94 4908.6 4291.0 0.01 390.66 0.03 1495.60 4908.7 5115.7 0.01 469.73 0.05 1965.33 4908.8 4909.8 0.01 501.24 0.06 2466.57 4908.9 6983.7 0.01 591.64 0.07 3058.20 4909.0 8075.6 0.02 752.30 0.09 3810.51 4909.1 9317.0 0.02 868.89 0.11 4679.39 1 LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: 100-yr WSEL- Pond 213 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1/3 d (A + B + sgrt(A'B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #213 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4908.8 0 4908.9 1 2.4 0.00 0.08 0.00 0.08 4909.0 25.2 0.00 1.18 0.00 1.26 4909.1 87.2 0.00 5.31 0.00 6.57 4909.2 188.8 0.00 13.48 0.00 20.05 4909.3 328.3 0.00 25.53 0.00 45.58 4909.4 517.5 0.00 41.93 1 0.00 87.51 4909.5 768.9 0.00 63.91 0.00 151.42 4909.6 1091.1 0.00 92.53 0.01 243.95 4909.7 1508.3 0.00 129.41 0.01 373.36 4909.8 2027.0 0.00 176.13 0.01 549.48 4909.9 2755.0 0.01 238.17 0.02 787.66 4910.0 3395.8 0.01 306.98 0.03 1094.63 4910.1 4100.2 0.01 374.24 0.03 1468.88 4910.2 4868.3 0.01 447.88 0.04 1916.75 4910.3 5697.2 0.01 527.73 0.06 2444.49 4910.4 6579.0 0.01 613.28 0.07 3057.77 Pond 214 Proposed Detention Pond - Stage/Storage LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 V = 1/3 d (A + B + sgrt(A*B)) where V = volume between contours, W d = depth between contours, ft A = surface area of contour 100-yr WSEL. #214 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4908.3 0 4908.4 1 3.5 0.00 0.12 0.00 1 0.12 4908.5 41.0 0.00 1.88 0.00 2.00 4908.6 150.4 0.00 9.00 0.00 10.99 4908.7 333.2 0.00 23.58 0.00 34.57 4908.8 599.9 0.00 46.00 0.00 80.57 4908.9 1038.2 0.00 80.91 0.00 161.48 4909.0 1580.1 0.00 129.97 0.01 291.45 4909.1 2194.3 0.00 187.88 0.01 479.33 4909.2 2878.2 0.01 252.85 0.02 732.18 4909.3 3558.3 0.01 321.22 0.02 1053.41 4909.4 4308.6 0.01 392.75 0.03 1446.15 4909.5 5088.3 0.01 469.30 0.04 1915.45 4909.6 5951.4 0.01 551.42 0.06 2466.88 4909.7 6898.5 0.01 641.91 0.07 3108.79 4909.8 7950.1 0.62 741.80 0.09 3850.59 4909.9 9077.2 0.02 850.74 0.11 4701.33 t 1 1 1 1 Pond 215 Proposed Detention Pond - Stage/Storage LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 100-yr WSEL- V = 1 /3 d (A + B + sgrt(A*B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #215 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4907.0 0 4907.1 0.5 0.00 0.02 0.00 1 0.02 4907.2 11.3 0.00 0.47 0.00 0.48 4907.3 50.9 0.00 2.87 0.00 3.35 4907.4 126.7 0.00 8.60 0.00 11.94 4907.5 267.6 0.00 19.28 0.00 31.23 4907.6 518.4.. 0.00 38.62 0.00 69.84 4907.7 949.8 0.00 72.33 0.00 142.17 4907.8 1994.6 0.00 144.03 0.01 286.20 4907.9 2273.9 0.00 213.27 0.01 499.47 4908.0 2937.1 0.01 259.84 0.02 759.32 4908.1 3777.0 0.01 334.83 0.03 1094.14 4908.2 4790.8 0.01 427.39 0.03 1521.53 4908.3 5988.0 0.01 537.82 0.05 2059.36 4908.4 7483.5 0.02 672.19 0.06 2731.54 4908.5 9061.3 0.02 825.99 0.08 3557.53 4908.6 10536.1 0.02 978.95 0.10 4536.48 LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 100-yr WSEL. Pond 216 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1/3 d (A + B + sgrt(A*B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #216 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4907.2 0 4907.3 1 7.2 0.00 0.24 0.00 1 0.24 4907.4 64.1 0.00 3.09 0.00 3.33 4907.5 199.0 0.00 12.54 0.00 15.87 4907.6 413.0 0.00 29.96 0.00 45.82 4907.7 722.8 0.00 56.07 0.00 101.89 4907.8 1269.2 0.00 98.33 0.00 200.22 4907.9 1943.0 0.00 159.42 0.01 359.64 4908.0 2734.4 0.01 232.75 0.01 592.39 4908.1 3647.5 0.01 318.00 0.02 910.39 4908.2 1614.8 0.01 256.31 0.03 1166.69 4908.3 5619.8 0.01 341.57 0.03 1508.26 4908.4 6740.8 0.01 617.18 0.05 2125.45 4908.5 7988.2 0.02 735.57 0.07 2861.01 4908.6 9248.1 0.02 861.05 0.09 3722.06 4908.7 10791.0 0.02 1000.96 0.11 4723.02 4908.8 12141.5 0.03 1145.96 0.13 5868.98 1 1 1 1 Pond 217 Proposed Detention Pond - Stage/Storage LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 V = 1/3 d (A + B + sgrt(A'B)) where V = volume between contours, W d = depth between contours, ft A = surface area of contour 100-yr WSEL- #217 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4905.4 0 4905.5 1 5.3 0.00 0.18 0.00 1 0.18 4905.6 52.6 0.00 2.49 0.00 2.66 4905.7 174.7 0.00 10.77 0.00 13.43 4905.8 373.1 0.00 26.77 0.00 40.20 4905.9 661.3 0.00 51.04 0.00 91.24 4906.0 1424.6 0.00 101.89 0.00 193.13 4906.1 2068.7 0.00 173.67 0.01 366.80 4906.2 2806.3 0.01 242.81 0.01 609.61 4906.3 3602.9 0.01 319.63 0.02 929.24 4906.4 4461.7 0.01 402.46 0.03 1331.70 4906.5 5354.1 0.01 490.11 0.04 1821.81 LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: 100-yr WSEL- Pond 218 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1 /3 d (A + B + sgrt(A*B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #218 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4906.4 0 4906.5 1 10.5 0.00 0.35 0.00 0.35 4906.6 63.9 0.00 3.34 0.00 3.69 4906.7 189.2 0.00 12.10 0.00 15.79 4906.8 388.2 0.00 28.28 0.00 44.07 4906.9 655.1 0.00 51.59 0.00 95.66 4907.0 1011.4. 0.00 82.68 0.00 178.34 4907.1 1442.4 0.00 122.05 0.01 300.40 4907.2 1976.9 0.00 170.26 0.01 470.66 4907.3 2388.4 0.01 217.94 0.02 688.61 4907.4 2811.8 0.01 259.72 0.02 948.33 4907.5 3322.E 1 0.01 306.37 0.03 1254.70 LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 100-yr WSEL- Pond 220 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1 /3 d (A + B + sgrt(A'B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #220 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4908.2 0 4908.3 1 2.6 0.00 0.09 0.00 1 0.09 4908.4 27.6 0.00 1.29 0.00 1.37 4908.5 100.0 0.00 6.00 0.00 7.38 4908.6 258.2 0.00 17.30 0.00 24.67 4908.7 514.2 0.00 37.89 0.00 62.57 4908.8 883.5 0.00 69.06 0.00 131.62 4908.9 1392.8 0.00 112.85 0.01 244.48 4909.0 1975.0 0.00 167.55 0.01 412.02 4909.1 2607.2 0.01 228.38 0.01 640.40 4909.2 3269.2 0.01 293.19 0.02 933.59 4909.3 3926.0 0.01 359.26 0.03 1292.85 4909.4 4633.0 0.01 427.46 0.04 1720.32 4909.5 5380.0 0.01 500.18 0.05 2220.50 4909.6 6166.0 0.01 576.86 0.06 2797.35 4909.7 6992.5 0.02 657.49 0.08 3454.85 4909.8 7873.4 0.02 742.86 0.10 4197.70 LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: 100-yr WSEL• Pond 221 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1 /3 d (A + B + sgrt(A'B)) where V = volume between contours, W d = depth between contours, ft A = surface area of contour #221 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4910.2 0 4910.3 1 1.1 0.00 0.04 0.00 1 0.04 4910.4 18.6 0.00 0.80 0.00 0.84 4910.5 83.0 0.00 4.70 0.00 5.53 4910.6 200.5 0.00 13.75 0.00 19.28 4910.7 388.9 0.00 28.96 0.00 48.24 4910.8 678.8 0.00 52.72 0.00 100.96 4910.9 1102.1 0.00 88.19 0.00 189.16 4911.0 1655.1 0.00 136.92 0.01 326.08 4911.1 2313.2 0.00 197.50 0.01 523.58 4911.2 3051.1 0.01 267.36 0.02 790.94 4911.3 3909.8 0.01 347.16 0.03 1138.10 4911.4 4809.0 0.01 435.17 0.04 1573.26 4911.5 5743.1 0.01 526.92 0.05 2100.18 4911.6 6831.9 0.01 627.97 0.06 2728.15 4911.7 7945.2 0.02 738.15 0.08 3466.30 4911.8 9086.1 0.02 850.93 0.10 4317.23 LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 100-yr WSEL- Pond 222 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1 /3 d (A + B + sgrt(A*B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #222 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4909.6 0 4909.7 5.9 0.00 0.20 0.00 0.20 4909.8 1 61.7 0.00 2.89 0.00 3.09 4909.9 229.9 0.00 13.69 0.00 16.77 4910.0 534.3 0.00 37.16 0.00 53.93 4910.1 948.7 0.00 73.17 0.00 127.10 4910.2 1477.1 0.00 120.32 0.01 247.42 4910.3 2165.1 0.00 181.01 0.01 428.43 4910.4 2892.9 0.01 252.02 0.02 680.45 4910.5 3593.5 0.01 323.68 0.02 1004.13 4910.6 4361.5 0.01 397.13 0.03 1401.26 4910.7 5149.5 0.01 475.00 0.04 1876.27 4910.8 6008.6 0.01 557.35 0.06 2433.62 4910.9 1 6941.9 0.01 646.96 0.07 3080.58 4911.0 7943.7 0.02 743.72 0.09 3824.30 4911.1 9009.3 0.02 847.09 0.11 4671.39 4911.2 10075.6 0.02 953.75 0.13 5625.14 1 1 1 1 1 1 i 1 1 1 LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: 100-yr WSEL• Pond 223 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1 /3 d (A + B + sgrt(A'B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #223 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4909.6 0 4909.7 12.5 0.00 0.42 0.00 0.42 4909.8 99.1 0.00 4.89 0.00 5.30 4909.9 291.4 0.00 18.68 0.00 23.98 4910.0 588.0 0.00 43.11 0.00 67.09 4910.1 1020.9 0.00 79.45 0.00 146.54 4910.2 1640.7, 0.00 131.86 0.01 278.40 4910.3 2346.4 0.00 198.30 0.01 476.70 4910.4 3130.7 0.01 272.91 0.02 749.61 4910.5 3945.7 0.01 353.03 0.03 1102.65 4910.6 4868.9 0.01 439.92 0.04 1542.57 4910.7 5831.3 0.01 534.29 0.05 2076.86 4910.8 6943.1 0.01 637.91 0.06 2714.77 4910.9 8206.3 0.02 756.59 0.08 3471.36 4911.0 9620.8 0.02 890.42 0.10 4361.78 4911.1 11276.1 0.02 1043.75 0.12 5405.53 4911.2 13083.4 0.03 1216.86 0.15 6622.39 I LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 100-yr WSEL- Pond 224 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V=1/3d(A+B+sgrt(A"B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #224 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4909.3 0 4909.4 5.2 0.00 0.17 0.00 1 0.17 4909.5 61.0 0.00 2.80 0.00 2.97 4909.6 230.2 0.00 13.65 0.00 16.63 4909.7 529.6 0.00 36.96 0.00 53.59 4909.8 1091.4 0.00 79.38 0.00 132.97 4909.9 1861.6. 0.00 145.94 0.01 278.91 4910.0 2784.4 0.01 230.76 0.01 509.67 4910.1 3748.3 0.01 325.44 0.02 835.11 4910.2 4754.6 0.01 424.15 0.03 1259.25 4910.3 5824.5 0.01 528.05 0.04 1787.30 4910.4 6947.5 0.01 637.77 0.06 2425.08 4910.5 8125.0 0.02 752.86 0.07 3177.93 4910.6 9331.9 0.02 872.15 0.09 4050.09 4910.7 10528.5 0.02 992.42 0.12 5042.51 LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: 100-yr WSEL- 1 1 Pond 225 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1/3 d (A + B + sgrt(A*B)) where V = volume between contours, ft, d = depth between contours, ft A = surface area of contour #225 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4909.5 0 4909.E 1 5.2 0.00 0.17 0.00 1 0.17 4909.7 60.5 0.00 2.78 0.00 2.95 4909.8 216.4 0.00 13.04 0.00 16.00 4909.9 483.3 0.00 34.10 0.00 50.10 4910.0 1001.5 0.00 72.68 0.00 122.78 4910.1 1746.4 0.00 135.68 0.01 258.46 4910.2 2641.2 0.01 217.84 0.01 476.30 4910.3 3577.5 0.01 309.75 0.02 786.05 4910.4 4523.9 0.01 404.15 0.03 1190.20 4910.5 5516.9 0.01 501.22 0.04 1691.42 4910.6 6567.0 0.01 603.44 0.05 2294.85 4910.7 7665.9 0.02 710.94 0.07 3005.79 4910.8 8790.8 0.02 822.19 0.09 3827.98 4910.9 9921.3 0.02 935.04 0.11 4763.02 LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 100-yr WSEL- Pond 226 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1 /3 d (A + B + sgrt(A*B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #226 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4910.3 0 4910.4 1 7.6 0.00 0.25 0.00 1 0.25 4910.5 72.8 0.00 3.47 0.00 3.72 4910.6 231.7 0.00 14.48 0.00 18.20 4910.7 485.4 0.00 35.08 0.00 53.28 4910.8 846.9 0.00 65.78 0.00 119.07 4910.9 1411.5 0.00 111.73 0.01 230.79 4911.0 2091.9 0.00 174.06 0.01 404.85 4911.1 1 2872.5 0.01 247.19 0.01 652.04 4911.2 3740.6 0.01 329.70 0.02 981.74 4911.3 4685.3 0.01 420.41 0.03 1402.15 4911.4 5679.4 0.01 517.44 0.04 1919.59 4911.5 6775.5 0.01 621.94 0.06 2541.53 4911.6 8012.1 0.02 738.52 0.08 3280.05 4911.7 9297.9 0.02 864.70 0.10 4144.75 4911.8 10647.1 0.02 996.49 0.12 5141.23 4911.9 12014.4 0.03 1132.39 0.14 6273.62 LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: 100-yr WSEL- Pond 227 Proposed Detention Pond - Stage/Storage Harmony Technology Park Filing Two 39265.00 M. West JR ENGINEERING 5/8/01 V = 1 /3 d (A + B + sgrt(A*B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour #227 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Incremental Storage (cu-ft) Total Storage (ac-ft) Total Storage (cu-ft) 4910.6 0 4910.7 1.9 0.00 0.06 0.00 1 0.06 4910.8 14.3 0.00 0.72 0.00 0.78 4910.9 41.1 0.00 2.66 0.00 3.44 4911.0 84.5 0.00 6.15 0.00 9.59 4911.1 173.4 0.00 12.63 0.00 22.22 4911.2 314.8 0.00 24.06 0.00 46.28 4911.3 528.7 0.00 41.72JO.O4 88.00 4911.4 830.6 0.00 67.40155.40 4911.5 1238.0 0.00 102.75258.15 4911.E 1737.0 0.00 148.04406.19 4911.7 2312.5 0.00 201.79607.98 4911.8 2978.1 0.01 263.83871.82 4911.9 3657.1 0.01 331.181203.00 4912.0 4427.9 0.01 403.641606.64 4912.1 5264.3 0.01 484.012090.64 4912.2 6184.9 0.01 571.842662.48 11 [1 Parking Lot Detention Summary LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: JR ENGINEERING DATE: 5/8/01 Pond Volume 201 0.04 202 0.04 203 0.01 204 0.02 211 0.03 212 0.03 213 0.02 214 0.03 215 0.03 216 0.03 217 0.04 218 0.03 220 0.03 221 0.03 222 0.04 223 0.05 224 0.06 225 0.05 226 0.04 227 0.01 Total = 0.67 ac-ft Tributary to Pond I Detention Provided = 0.10 ac-ft Tributary to Pond 2 Detention Provided = 0.49 ac-ft Tributary to Pond 3 Detention Provided = 0.07 ac-ft DESIGN POINT 401 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ftz) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 13.40 cfs outlet pipe dia = D = 27.0 in Invert elev. = 4908.31 ft (inv. "D" on outlet structure) Eo = 4911.90 ft (downstream HGL for peak 100 yr flow - from Stormcad) h = 4913.81 ft - 100 yr WSEL Co = 0.7 solve for effective area of orifice using the orifice equation Ao = 1.726 ft2 = 248.5 in ' orifice dia. = d = 17.79 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering ) ' d/ D = 0.66 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(7cdv) = 9.43E+05 ' Co = (K in figure) = 0.7 check ' Use d = 17.875 in 17-7/8 " Aa = 1.743 ftZ = 250.95 in2 Qmax = 13.53 cfs 1 401, orifice parking storage 5-8-1.xls I DESIGN POINT 402 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Q. = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 16.30 cfs ' outlet pipe dia = D = 21.0 in Invert elev. = 4909.50 ft (inv. "D" on outlet structure) Eo = 4911.52 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4914.25 ft - 100 yr WSEL Co = 0.8 ' solve for effective area of orifice using the orifice equation Ao = 1.537 ft2 221.3 in ' orifice dia. = d = 16.79 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/D= 0.80 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 1.22E+06 Co = (K in figure) = 0.8 check ' Use d = 16.875 in 17-7/8" A o = 1.553 ft2 = 223.65 in 2 Qmax = 16.48 cfs 1 1 402, orifice parking storage 5-8-1.xls DESIGN POINT 403 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 9.10 cfs ' outlet pipe dia = D = 15.0 in Invert elev. = 4910.28 ft (inv. "D" on outlet structure) E. = 4911.58 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4915.53 ft - 100 yr WSEL Co = 0.8 ' solve for effective area of orifice using the orifice equation Ao = 0.713 ft2 = 102.7 in ' orifice dia. = d = 11.44 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering ) ' d/ D = 0.76 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 9.97E+05 Co = (K in figure) = 0.8 check Use d = 11.5 in 11-1 /2" ' A o = 0.721 ft2 = 103.87 in 2 Qmax = 9.20 cfs 1 403, orifice parking storage 5-8-1.xls -1 DESIGN POINT 404 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) ' E. = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 8.70 cfs ' outlet pipe dia = D = 15.0 in Invert elev. = 4910.78 ft (inv. "D" on outlet structure) Eo = 4911.92 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4915.53 ft - 100 yr WSEL Co = 0.75 ' solve for effective area of orifice using the orifice equation Ao = 0.761 ft2 = 109.6 in ' orifice dia. = d = 11.81 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.79 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 9.23E+05 ' Co = (K in figure) = 0.75 check ' Use d = 11.875 in 11-718" A o = 0.769 82 = 110.75 in 2 Qmax = 8.80 cfs ' 404, orifice parking storage 5-8-1.xls DESIGN POINT 411 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A, = effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qa = 11.80 cfs t outlet pipe dia = D = 24.0 in Invert elev. = 4904.80 ft (inv. "D" on outlet structure) Eo = 4906.67 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4909.22 ft - 100 yr WSEL Co = 0.65 ' solve for effective area of orifice using the orifice equation Ao = 1.417 ft2 = 204.0 in ' orifice dia. = d = 16.12 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.67 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(irdv) = 9.17E+05 ' Co = (K in figure) = 0.65 check Use d = 16.125 in 16-1/8" A o = 1.418 R2 = 204.22 in 2 Qmax = 11.81 cfs 1 411, orifice parking storage 5-8-1.xls i ' DESIGN POINT 412 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 "Submerged Orifice Outlet: ' 'release rate is described by the orifice equation, Qo = CoAo sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 16.10 cfs t outlet pipe dia = D = 24.0 in Invert elev. = 4904.20 ft (inv. "D" on outlet structure) E. = 4906.36 ft (downstream HGL for peak 100 yr flow - from Stormcad) h = 4908.62 ft - 100 yr WSEL Co = 0.7 ' solve for effective area of orifice using the orifice equation Ao = 1.906 ft2 274.5 in orifice dia. = d = 18.70 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.78 kinematic viscosity, v = 1.22E-05 ftz/s Reynolds no. = Red = 4Q/(ndv) = 1.08E+06 Co = (K in figure) = 0.7 check Use d = 18.75 in 18-3/4" A o = 1.917 /I z = 276.12 in z Qmax = 16.19 cfs 1 1 1 412, orifice parking storage 5-8-1.xls DESIGN POINT 413 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering tDATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = Cok sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s po = effective area of the orifice (ft) . Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 7.70 cfs ' outlet pipe dia = D = 24.0 in Invert elev. = 4905.50 ft (inv. "D" on outlet structure) Eo = 4907.37 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4909.92 ft - 100 yr WSEL Co = 0.65 solve for effective area of orifice using the orifice equation Ao = 0.924 ft2 = 133.1 in ' orifice dia. = d = 13.02 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.54 kinematic viscosity, v = 1.22E-05 ftZ/s Reynolds no. = Red = 4Q/(7cdv) = 7.41 E+05 ' Co = (K in figure) = 0.65 check Use d = 13.125 in 13-1 /8" ' A o = 0.940 ftZ = 135.30 in 2 Qmax = 7.83 cfs 1 1 413, orifice parking storage 5-8-1.xis 1 DESIGN POINT 414 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: release rate is described by the orifice equation, ' Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft) ' Ea = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 10.30 cfs ' outlet pipe dia = D = 24.0 in Invert elev. = 4905.00 ft (inv. "D" on outlet structure) Eo = 4906.73 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4909.42 ft - 100 yr WSEL Co = 0.65 ' solve for effective area of orifice using the orifice equation Ao = 1.204 ft2 173.4 in ' orifice dia. = d = 14.86 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.62 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(isdv) = 8.68E+05 ' Co = (K in figure) = 0.65 check Use d = 14.875 in 14-718" ' A, = 1.207 R2 = 173.78 in 2 Qmax = 10.32 cfs 1 1 414, orifice parking storage 5-8-1.xls 1 DESIGN POINT 415 t100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = COAO sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 14.50 cfs outlet pipe dia = D = 24.0 in Invert elev. = 4903.44 ft (inv. "D" on outlet structure) Eo = 4905.96 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4908.12 ft - 100 yr WSEL Co = 0.75 ' solve for effective area of orifice using the orifice equation Ao = 1.639 ft2 236.0 in ' orifice dia. = d = 17.34 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.72 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 1.05E+06 ' Co = (K in figure) = 0.75 check Use d = 17.375 in 17-3/8" tAo = 1.647 ft2 = 237.10 in2 Qmax = 14.56 cfs 1 1 ' 415, orifice parking storage 5-8-1.xls DESIGN POINT 416 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 8.60 cfs outlet pipe dia = D = 24.0 in Invert elev. = 4903.70 ft (inv. "D" on outlet structure) Ea = 4904.75 ft (downstream HGL for peak 100 yr flow - from Stormcad) h = 4908.28 ft - 100 yr WSEL Co = 0.65 ' solve for effective area of orifice using the orifice equation Ao = 0.878 ft2 126.4 in ' orifice dia. = d = 12.68 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.53 kinematic viscosity, v = 1.22E-05 ftZ/s Reynolds no. = Red = 4Q/(7cdv) = 8.49E+05 ' Co = (K in figure) = 0.65 check ' Use d = 12.75 in 12-314" Ao = 0.887 It2 = 127.68 in Qmax = 8.69 cfs 1 1 416, orifice parking storage 5-8-1.xls DESIGN POINT 417 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = COAO sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) tCo = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 11.40 cfs outlet pipe dia = D = 24.0 in Invert elev. = 4902.10 ft (inv. "D" on outlet structure) E0 = 4904.78 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4906.52 ft - 100 yr WSEL Co = 0.75 ' solve for effective area of orifice using the orifice equation Ao = 1.436 ft2 = 206.8 in ' orifice dia. = d = 16.23 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.68 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Rea = 4Q/(Trdv) = 8.80E+05 Co = (K in figure) = 0.75 check Use d = 16.25 in 16-1 /4" ' A o= 1.440 ft 2= 207.39 in 2 Qmax = 11.43 cfs 417, orifice parking storage 5-8-1.xls DESIGN POINT 418 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering DATE: 5/8/01 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 fUs Ao = effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 6.60 cfs t outlet pipe dia = D = 24.0 in Invert elev. = 4903.25 ft (inv. "D" on outlet structure) E. = 4904.45 ft (downstream HGL for peak 100 yr flow - from Stormcad) h = 4907.50 ft - 100 yr WSEL Co = 0.65 solve for effective area of orifice using the orifice equation Ao = 0.724 ft2 104.3 in orifice dia. = d = 11.53 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.48 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 7.17E+05 Co = (K in figure) = 0.65 check Use d = 11,625 in 11-1/2" Ao = 0.737 ft2 = 106.14 in2 Qmax = 6.71 cfs 1 418, orifice parking storage 5-8-1.xls DESIGN POINT 420 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = Copy sgrt( 2g(h-Eo)) where Q. = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 fUs Ao = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) tQo = 10.30 cfs outlet pipe dia = D = 21.0 in ' Invert elev. = 4905.20 ft (inv. "D" on outlet structure) Eo = 4906.40 ft (downstream HGL for peak 100 yr flow - from Stormcad) h = 4909.29 ft - 100 yr WSEL ' Co = 0.75 solve for effective area of orifice using the orifice equation ' Ao = 1.007 ft2 = 145.0 in ' orifice dia. = d = 13.59 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.65 ' kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(xdv) = 9.49E+05 ' Co = (K in figure) = 0.75 check Use d = 13.625 in 13-5/8" Ao = 1.013 ft2 = 145.80 in Qmax = 10.36 cfs ' 420, orifice parking storage 5-8-1.xls DESIGN POINT 421 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CoAo sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s ' A0 = effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) t Qo = 8.60 cfs outlet pipe dia = D = 24.0 in Invert elev. = 4907.00 ft (inv. "D" on outlet structure) Ea = 4909.29 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4911.29 ft - 100 yr WSEL Co = 0.75 ' solve for effective area of orifice using the orifice equation Ao = 1.010 ft2 = 145.5 in ' orifice dia. = d = 13.61 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.57 kinematic viscosity, v = 1.22E-05 ftz/s Reynolds no. = Rea = 4Q/(7cdv) = 7.91 E+05 Co = (K in figure) = 0.75 check ' Use d = 13.625 in 13-518" Ao = 1.013 If2 = 145.80 in Qmax = 8.62 cfs 1 421, orifice parking storage 5-8-1.xls DESIGN POINT 422 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering tDATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s py = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 5.80 cfs ' outlet pipe dia = D = 24.0 in Invert elev. = 4906.52 ft (inv. "D" on outlet structure) Eo = 4909.58 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4910.70 ft - 100 yr WSEL Co = 0.7 ' solve for effective area of orifice using the orifice equation Ao = 0.976 ft2 = 140.5 in ' orifice dia. = d = 13.37 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering ) ' d/ D = 0.56 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(7rdv) = 5.43E+05 Co = (K in figure) = 0.7 check ' Use d = 13.375 in 13-3/8" Ao = 0.976 ft2 = 140.50 in2 Qmax = 5.80 cfs t422, orifice parking storage 5-8-1.xls I DESIGN POINT 423 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-E,)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s ' A0 = effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 14.70 cfs outlet pipe dia = D = 24.0 in Invert elev. = 4906.50 ft (inv. "D" on outlet structure) Eo = 4909.98 ft (downstream HGL for peak 100 yr flow - from Stormcad) h = 4910.70 ft - 100 yr WSEL Co = 0.75 ' solve for effective area of orifice using the orifice equation Ao = 2.878 ft2 414.5 in orifice dia. = d = 22.97 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.96 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 8.01 E+05 ' Co = (K in figure) = 0.75 check Use d = 23 in 23" A o = 2.885 R2 = 415.48 in 2 Qmax = 14.74 cfs 1 423, orifice parking storage 5-8-1.xls d i DESIGN POINT 424 1 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering 1 DATE: 5/8/01 Submerged Orifice Outlet: 1 release rate is described by the orifice equation, Qo = COAO sgrt( 2g(h-Eo)) where Q. = orifice outflow (cfs) 1 Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft) 1 Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) 1 Qo = 6.50 cfs 1 outlet pipe dia = D = 21.0 in Invert elev. = 4906.75 ft (inv. "D" on outlet structure) Eo = 4909.00 ft (downstream HGL for peak 100 yr flow - from Stormcad) 1 h = 4910.42 ft - 100 yr WSEL Co = 0.65 1 solve for effective area of orifice using the orifice equation Ao = 1.046 ft2 150.6 in 1 orifice dia. = d = 13.85 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.66 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 5.88E+05 1 Co = (K in figure) = 0.65 check 1 Use d = 13.875 in 13 7/8" Ao = 1.050 ft2 = 151.20 in2 Qmax = 6.53 cfs 1 1 1 424, orifice parking storage 5-8-1.xls DESIGN POINT 425 ' 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park ' PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = COAO sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 6.40 cfs ' outlet pipe dia = D = 21.0 in Invert elev. = 4907.00 ft (inv. "D" on outlet structure) E. = 4909.36 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4910.62 ft - 100 yr WSEL Co = 0.65 solve for effective area of orifice using the orifice equation Ao = 1.093 ft2 157.4 in ' orifice dia. = d = 14.16 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.67 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(7cdv) = 5.66E+05 Co = (K in figure) = 0.65 check Use d = 14,25 in 14-1/4" Ao = 1.108 ft2 = 159.48 in Qmax = 6.48 cfs 425, orifice parking storage 5-8-1.xls I DESIGN POINT 426 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA, sgrt( 2g(h-Eo)) where Q. = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) ' E. = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Qo = 11.50 cfs ' outlet pipe dia = D = 21.0 in Invert elev. = 4907.20 ft (inv. "D" on outlet structure) Eo = 4910.01 ft (downstream HGL for peak 100 yr flow - from Stormcad) ' h = 4911.42 ft - 100 yr WSEL Co = 0.75 solve for effective area of orifice using the orifice equation Ao = 1.609 ft2 = 231.7 in ' orifice dia. = d = 17.18 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering ) d/D= 0.82 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(7rdv) = 8.38E+05 Co = (K in figure) = 0.75 check ' Use d = 17.25 in 17 1 /4" A o = 1.623 ft2 = 233.71 in 2 Qmax = 11.60 cfs 1 426,. orifice parking storage 5-8-1.xls I DESIGN POINT 427 100-yr Event, Outlet Sizing LOCATION: Harmony Technology Park PROJECT NO: 39265.00 COMPUTATIONS BY: M. West SUBMITTED BY: Jr Engineering ' DATE: 5/8/01 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = Cok sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft) ' E. = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Qo = 13.20 cfs ' outlet pipe dia = D = 30.0 in Invert elev. = 4907.46 ft (inv. "D" on outlet structure) Eo = 4909.70 ft (downstream HGL for peak 100 yr flow - from Stormcad) h = 4911.72 ft - 100 yr WSEL Co = 0.7 ' solve for effective area of orifice using the orifice equation A. = 1.653 ft2 238.1 in orifice dia. = d = 17.41 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering ) ' d/ D = 0.58 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 9.49E+05 ' Co = (K in figure) = 0.7 check ' Use d = 17.5 in 17 318" A o= 1.670 re 2= 240.53 in 2 Qmax = 13.34 cfs 1 427, orifice parking storage 5-8-1.xls JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 401 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.8 Developed flow = Qo = CIA C (100) = 0.90 Vol. In = Vi = T C I A = T Qo Developed C A = 1.6 Vol. Out = Vo =K QPo T Release rate, QPo = 13.4 storage = S = Vi - Vo K = 0.8 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (In/hr) Qp (cfs) Vol. In Vi (ft') Vol. Out Vo (ft') Storage S (ft) Storage S (ac-ft) 5 9.95 16.1 4836 3216 1620 0.04 6 9.28 15.0 5412 3859 1552 0.04 7 8.84 14.3 6016 4502 1513 0.03 8 8.45 13.7 6569 5146 1423 0.03 9 8.09 13.1 7078 5789 1289 0.03 10 7.77 12.6 7549 6432 1117 0.03 FAA parking storage.xls,401 [1 DETENTION VOLUME CALCULATIONS - DESIGN POINT 402 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 2.39 Developed flow = Qp = CIA C (100) = 0.78 Vol. in = Vi = T C I A = T Qp Developed C A = 1.9 Vol. Out = Vo =K Qpo T Release rate, Qpo = 16.3 storage = S = Vi - Vo K = 0.8 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, 1 (in/hr) Qp (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 18.5 5565 3912 1653 0.04 6 9.28 17.3 6227 4694 1533 0.04 7 8.84 16.5 6922 5477 1445 0.03 8 8.45 15.7 7559 6259 1299 0.03 9 8.09 15.1 8145 7042 1103 0.03 10 7.77 14.5 8687 7824 863 0.02 FAA parking storage.xls,402 JR Engineering JR Engineering 1 1 1 1 DETENTION VOLUME CALCULATIONS - DESIGN POINT 403 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.4 Developed flow = Qp = CIA C (100) = 0.62 Vol. In = Vi = T C I A = T Qp Developed C A = 0.9 Vol. Out = Vo =K Qpo T Release rate, Qpo = 9.1 storage = S = Vi - Vo K = 0.75 Rainfall intensity from City of Fort Collins OF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qp (cfs) Vol. In VI (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 8.6 2591 2048 543 0.012 6 9.28 8.1 2900 2457 443 0.010 7 1 8.84 1 7.7 1 3223 2867 1 357 1 0.008 8 8.45 7.3 3519 3276 243 0.006 9 8.09 7.0 3792 3686 107 0.002 FAA parking storage.xls,403 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 404 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.41 Developed flow = Qo = CIA C (100) = 0.67 Vol. in = Vi = T C I A = T Qp Developed C A = 0.9 Vol. Out = Vo =K Qpo T Release rate, Qpo = & 7 storage = S = Vi - Vo K = 0.8 Rainfall intensity from City of Fort Collins OF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qp (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 9.4 2820 2088 732 0.017 6 9.28 8.8 3156 2506 650 0.015 7 1 8.84 1 8.4 1 3508 1 2923 1 585 1 0.013 8 8.45 8.0 3830 3341 490 0.011 9 8.09 7.6 4127 3758 369 0.008 10 7.77 7.3 4402 4176 226 0.005 FAA parking storage.xls,404 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 411 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.48 Developed flow = Qo = CIA C (100) = 0.98 Vol. In = Vi = T C I A = T Qp Developed C A = 1.5 Vol. Out = Vo =K Qpo T Release rate, Opo = 11.8 storage = S = Vi - Vo K = 0.8 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qo (cfs) Vol. in Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 14.4 4329 2832 1497 0.03 6 9.28 13.5 4845 3398 1447 0.03 7 8.84 1 12.8 1 5386 1 3965 1421 0.03 8 8.45 12.3 5881 4531 1350 0.03 9 8.09 11.7 6337 5098 1239 0.03 10 7.77 11.3 6759 5664 1095 0.03 FAA parking storage.xls,411 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 412 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.95 Developed flow = Qp = CIA C (100) = 0.92 Vol. In = Vi = T C I A = T Qp Developed C A = 1.8 Vol. Out = Vo =K QPo T Release rate, QPo = 16.1 storage=S=Vi -Vo K= 0.8 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qp (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 17.9 5355 3864 1491 0.03 6 9.28 16.6 5993 4637 1356 0.03 7 8.84 1 15.9 1 6662 1 5410 1 1252 1 0.03 8 8.45 15.2 7274 6182 1092 0.03 9 8.09 14.5 7838 6955 883 0.02 10 7.77 13.9 8360 7728 632 0.01 FAA parking storage.xls,412 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 413 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 0.91 Developed flow = Qp = CIA C (100) = 0.97 Vol. In = Vi = T C I A = T Qp Developed C A = 0.9 Vol. Out = Vo =K QPo T Release rate, QPo = 7.7 storage = S = Vi - Vo K = a8 Rainfall intensity from City of Fort Collins OF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qo (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 8.8 2635 1848 787 0.02 6 9.28 8.2 2949 1 2218 731 0.02 7 8.84 7.8 3278 2587 691 0.02 8 8.45 7.5 3579 2957 622 0.01 9 8.09 7.1 3856 3326 530 0.01 10 7.77 6.9 4113 3696 417 0.01 FAA parking storage.xis,413 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 414 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.56 Developed flow = Qo = CIA C (100) = 0.84 Vol. In = Vi = T C I A = T Qp Developed C A = 1.3 Vol. Out = Vo =K Qpo T Release rate, Qpo = 10.3 storage = S = Vi - Vo K = 0.8 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre Cfs (from fig 2.1) Stone Duration, T (min) Rainfall Intensity, I (in/hr) Qp (cfs) Vol. in Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 13.0 3912 2472 1440 0.03 6 9.28 12.2 4377 2966 1411 0.03 7 8.84 1 11.6 1 4866 1 3461 1 1405 1 0.03 8 8.45 11.1 5313 3955 1358 0.03 9 8.09 10.6 5725 4450 1275 0.03 10 7.77 10.2 6106 4944 1162 0.03 FAA parking storage.xls,414 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 415 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.7 Developed flow = Qp = CIA C (100) = 0.90 Vol. In = Vi = T C 1 A = T Qp Developed C A = 1.5 Vol. Out = Vo =K Qpo T Release rate, Qpo = 14.5 storage = S = Vi - Vo K = 0.8 Rainfall intensity from City of Fort Collins OF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qo (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 15.2 4567 3480 1087 0.02 6 9.28 14.2 5111 4176 935 0.02 7 8.84 13.5 1 5681 1 4872 809 0.02 8 8.45 12.9 6204 5568 636 0.01 9 8.09 12.4 6685 6264 421 0.01 10 7.77 11.9 7130 6960 170 0.00 FAA parking storage.xls,415 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 416 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.21 Developed flow = Qo = CIA C (100) = 0.98 Vol. In = Vi = T C I A = T Qp Developed C A = 1.2 Vol. Out = Vo =K Qpo T Release rate, Qpo = 8.6 storage = S = Vi - Vo K = 0.81 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qp (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 11.8 3540 2090 1450 0.03 6 9.28 11.0 3961 2508 1453 0.03 7 8.84 10.5 1 4403 2926 1477 0.03 8 8.45 10.0 4808 3344 1464 0.03 9 8.09 9.6 5181 3762 1419 0.03 10 7.77 9.2 5526 4180 1346 0.03 15 6.50 7.7 6937 6269 668 0.02 FAA parking storage.xls,416 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 417 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/0I Equations: Area trib. to pond = 1.52 Developed flow = Qp = CIA C (100) = 1.00 Vol. in = Vi = T C I A = T Qp Developed C A = 1.5 Vol. Out = Vo =K QPo T Release rate, Qpo = 11.4 storage = S = Vi - Vo K = 0.8 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, 1 (in/hr) Qo (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 15.1 4537 2736 1801 0.04 6 9.28 14.1 5078 3283 1794 0.04 7 8.84 13.4 1 5644 3830 1814 0.04 8 8.45 12.8 6163 4378 1785 0.04 9 8.09 12.3 6641 4925 1716 0.04 10 7.77 11.8 7083 5472 1611 0.04 15 6.50 9.9 8892 8208 684 0.02 FAA parking storage.xls,417 I U DETENTION VOLUME CALCULATIONS - DESIGN POINT 418 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 0.94 Developed flow = Qo = CIA C (100) = 1.00 Vol. In = Vi = T C I A = T Qp Developed C A = 0.9 Vol. Out = Vo =K Qpo T Release rate, Qpo = 6.6 storage=S=Vi -Vo K= 0.81 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qo (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 9.4 2806 1604 1202 0.03 6 9.28 8.7 3140 1925 1215 0.03 7 8.84 8.3 3490 2245 1245 0.03 8 8.45 7.9 3811 2566 1245 0.03 9 8.09 7.6 4107 2887 1220 0.03 10 7.77 7.3 4380 3208 1173 0.03 15 6.50 6.1 5499 4811 688 0.02 JR Engineering FAA parking storage.xls,418 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 420 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.28 Developed flow = Qp = CIA C (100) = 0.98 Vol. In = Vi = T C I A = T Qo Developed C A = 1.3 Vol. Out = Vo =K Qpo T Release rate, Qpo = 10.3 storage=S=Vi -Vo K= 0.8 Rainfall intensity from City of Fort Collins OF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qo (cfs) Vol. In VI (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 12.5 3744 2472 1272 0.03 6 9.28 11.6 4190 2966 1224 0.03 7 8.84 1 11.1 1 4658 1 3461 1 1197 1 0.03 8 8.45 10.6 5086 3955 1131 0.03 9 8.09 10.1 5480 4450 1031 0.02 10 7.77 9.7 5845 4944 901 0.02�] FAA parking storage.xls,420 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 421 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.07 Developed flow = Qo = CIA C (100) = 1.00 Vol. In = Vi = T C I A = T Qo Developed C A = 1.1 Vol. Out = Vo =K Qpo T Release rate, Qpo = 8.6 storage = S = Vi - Vo K = 0.8 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storrs Duration, T (min) Rainfall Intensity, I (in/hr) Qp (cfs) Vol. In VI (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 10.6 3194 2064 1130 0.03 6 9.28 9.9 3574 2477 1098 0.03 7 8.84 9.5 3973 2890 1084 0.02 8 8.45 9.0 4338 3302 1036 0.02 9 8.09 8.7 4675 3715 960 0.02 10 7.77 8.3 4986 4128 858 0.02 15 6.50 7.0 6260 6192 68 0.00 FAA parking storage.xis,421 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 422 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.1 Developed flow = Qp = CIA C (100) = 0.93 Vol. In = Vi = T C I A = T Qp Developed C A = 1.0 Vol. Out = Vo =K QPo T Release rate, QPo = 5.8 storage = S = Vi - Vo K = 0.84 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qo (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 10.2 3054 1462 1592 0.04 6 9.28 9.5 3417 1754 1663 0.04 7 8.84 9.0 3799 2046 1752 0.04 8 8.45 8.6 4148 2339 1809 0.04 9 8.09 8.3 4469 2631 1839 0.04 10 7.77 7.9 4767 2923 1844 0.04 11 7.47 7.6 5044 3216 1828 0.04 12 7.20 7.4 5302 3508 1794 0.04 13 6.95 7.1 5543 3800 1743 0.04 14 6.72 6.9 5771 4092 1678 0.04 15L 6.50 6.6 5985 4385 1600 0.04 FAA parking storage.xls,422 JR Engineering 1 1 1 1 1 1 1 DETENTION VOLUME CALCULATIONS - DESIGN POINT 423 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 2.04 Developed flow = QD = CIA C (100) = 0.92 Vol. In = Vi = T C I A = T QD Developed C A = 1.9 Vol. Out = Vo =K QPo T Release rate, QPo = 14.7 storage = S = Vi - Vo K = 0.8 Rainfall intensity from City of Fort Collins OF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, 1 (in/hr) QD (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 18.7 5602 3528 2074 0.05 6 9.28 17.4 6269 4234 2036 0.05 7 8.84 16.6 6969 1 4939 2030 0.05 8 8.45 15.9 7610 5645 1965 0.05 9 8.09 15.2 8200 6350 1849 0.04 10 7.77 14.6 8746 7056 1690 0.04 15 6.50 12.2 10980 10584 1 396 0.01 FAA parking storage.xls,423 JR Engineering 1] [1 DETENTION VOLUME CALCULATIONS - DESIGN POINT 424 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.53 acre Developed flow = Qp = CIA C (100) = 0.79 Vol. In = Vi = T C I A = T Qo Developed C A = 1.2 acre Vol. Out = Vo =K QPo T Release rate, QPo = 6.5 cfs storage = S = Vi - Vo K = 0.83 (from fig 2.1) Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qo (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 12.0 3608 1619 1989 0.05 10 7.77 9.4 5632 3237 2395 0.05 11 7.47 9.0 5959 3561 2398 0.06 12 7.20 8.7 6264 3884 2380 0.05 13 6.95 8.4 6550 4208 2342 0.05 14 6.72 8.1 6818 4532 2286 0.05 15 6.50 7.9 7071 4856 2216 0.05 20 5.62 6.8 8152 6474 1678 0.04 25 4.97 6.0 9012 8093 919 0.02 30 4.47 5.4 9722 9711 11 0.00 FAA parking storage.xis,424 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 425 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.17 Developed flow = QD = CIA C (100) = 1.00 Vol. In = Vi = T C I A = T QD Developed C A = 1.2 Vol. Out = Vo =K Qpo T Release rate, QPo = 6.4 storage = S = Vi - Vo K = 0.83 Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall acre acre cfs (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) QD (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 11.6 3492 1594 1899 0.04 6 9.28 10.9 3908 1912 1996 0.05 7 8.84 10.3 4345 1 2231 2113 0.05 8 8.45 9.9 4744 2550 2194 0.05 9 8.09 9.5 5112 2868 2243 0.05 10 7.77 9.1 5452 3187 2265 0.05 11 7.47 8.7 5768 3506 2262 0.05 12 7.20 8.4 6064 3825 2239 0.05 13 6.95 8.1 6340 4143 2197 0.05 14 6.72 7.9 6600 4462 2138 0.05 15 6.50 7.6 6845 4781 2064 0.05 20 5.62 6.6 7891 6374 1517 0.03 FAA parking storage.xls,425 JR Engineering DETENTION VOLUME CALCULATIONS - DESIGN POINT 426 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.69 acre Developed flow = Qp = CIA C (100) = 0.92 Vol. In = Vi = T C I A = T Qp Developed C A = 1.6 acre Vol. Out = Vo =K Qpo T Release rate, Qpo = 11.5 cfs storage = S = Vi - Vo K = 0.8 (from fig 2.1) Rainfall intensity from City of Fort Collins IDF Curve with updated (3.67") rainfall Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qp (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 15.5 4641 2760 1881 0.04 6 9.28 14.4 5194 3312 1882 0.04 7 8.84 13.7 5773 3864 1909 0.04 8 8.45 13.1 6304 4416 1888 0.04 9 8.09 12.6 6793 4968 1825 0.04 10 7.77 12.1 7245 5520 1725 0.04 15 6.50 10.1 9096 8280 816 0.02 FAA parking storage.xls,426 1 1 I i 1 1 i 1 1 1 1 1 1 1 1 1 1 1 I DETENTION VOLUME CALCULATIONS - DESIGN POINT 427 Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park - Filing 2 PROJECT NO: 39265.00 COMPUTATIONS BY: M. West DATE: 5/8/01 Equations: Area trib. to pond = 1.47 acre Developed flow = Qo = CIA C (100) = 0.86 Vol. In = Vi = T C I A = T Qp Developed C A = 1.3 acre Vol. Out = Vo =K QPo T Release rate, QPo = 13.2 cfs 't storage = S = Vi - Vo K = 0.8 (from fig 2.1) Rainfall intensity from City of Fort Collins OF Curve with updated (3.67") rainfall Storm ,Duration, T (min) Rainfall Intensity, I (in/hr) Qp (cfs) Vol. In VI (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 9.95 12.6 3774 3168 606 0.01 6 9.28 11.7 4223 3802 421 0.01 7 8.84 11.2 4694 14435 259 0.01 8 8.45 10.7 5126 5069 57 0.00 9 8.09 10.2 5523 5702 -179 0.00 10 7.77 9.8 5891 6336 -445 -0.01 15 6.50 8.2 7396 9504 -2108 -0.05 20 5.62 7.1 8527 12672 -4145 -0.10 FAA parking storage.xls,427 JR Engineering I t 1 1 1 1 L 1 1 1 1 1 J 1 APPENDIX G WATER QUALITY 1 1 1 1 1 1 1 1 1 JR Engineering 2620 E. Prospect Rd, Ste. 190 Fort Collins, CO 80525 POND 1 DETENTION VOLUME CALCULATIONS Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M.West DATE: 1/23/01 SUBBASIN DESIGNATION TOTAL AREA (ac.) RUNOFF COEFF. (C) C • A 201 1.80 0.72 1.29 202 1 2.39 0.63 1.50 203 1.40 0.57 0.79 204 1.41 0.61 0.86 205 2.05 0.67 1.36 206 1.36 0.84 1.15 207 1.37 0.95 1.30 208 1.37 0.95 1.30 123 0.93 0.69 0.64 124 1.53 0.48 0.73 OS-1 3.68 0.41 1.50 Total Area = 19.29 ac. Weighted C = 0.64 det-pond-alr.xis; pond 1 POND 2 DETENTION VOLUME CALCULATIONS Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M.West DATE: 1/23/01 SUBBASIN DESIGNATION TOTAL AREA (ac.) RUNOFF COEFF. (C) C' A 210 1.03 0.10 0.10 213 0.91 0.78 0.71 214 1.56 0.68 1.05 215 1.70 0.72 1.23 216 1 1.21 0.79 1 0.95 217 1.52 0.82 1.25 218 0.94 0.80 0.75 219 1.11 0.36 0.40 220 1.28 0.78 1.00 221 1.07 0.81 0.87 222 1.10 0.74 0.82 223 2.04 0.73 1.50 224 1 1.53 0.64 1 0.97 225 1.17 0.80 0.94 226 1.69 0.74 1.25 227 1.47 0.69 1.01 228 1.07 0.10 0.11 229 0.81 0.10 0.08 230 1.37 0.95 1.30 231 1.37 0.95 1.30 232 1 1.37 0.95 1 1.30 233 1.37 0.95 1.30 109 0.29 0.85 0.25 110 0.30 0.78 0.23 111 0.67 0.49 0.33 112 0.65 0.79 0.51 113 0.74 0.73 0.54 114 0.45 0.48 0.22 115 1 0.70 0.54 1 0.38 116 0.42 0.71 0.30 117 0.43 0.64 0.28 118 0.65 0.49 0.32 120 0.68 0.74 0.50 121 0.50 0.79 0.40 128 0.27 0.57 0.16 129 0.14 0.76 0.11 OS-2 39.44 0.70 27.61 OS-3 9.30 0.70 103 1.23 0.76 104 0.82 0.75 MO.62 126 0.30 0.58 127 0.26 0.52 Total Area = 86.95 Weighted C = 0.70 10-Year release rate for area = 17.39 ds 100-Year release rate for area = 43.48 CIS JR Engineering 2620 E. Prospect Rd, Ste. 190 Fort Collins, CO 80525 Sizing Pond for fully developed conditions Sizing Pond for fully developed conditions det-pond-alr.xls; pond 2 JR Engineering 2620 E. Prospect Rd, Ste. 190 Fort Collins, CO 80525 POND 3 DETENTION VOLUME CALCULATIONS Rational Volumetric (FAA) Method 100-Year Event LOCATION: Harmony Technology Park Filing Two PROJECT NO: 39265.00 COMPUTATIONS BY: M.West DATE: 1/23/01 SUBBASIN DESIGNATION TOTAL AREA (ac.) RUNOFF COEFF. (C) C ` A 211 1.48 0.78 1.16 212 1 1.95 1 0.73 1 1.43 Total Area = 3.43 ac. Weighted C = 0.76 10-Year release rate for area = 0.69 cfs 100-Year release rate for area = 1.71 cfs Volume Provided in Pipe: Pipe dia. Area Length Volume (in) (ft) (ft) (ft) 27 3.98 556.89 2214.24 36 7.07 435.07 3075.33 Total = 5289.57 Total = 0.12 (ac-ft) det-pond-alr.xls; pond 3 JR Engineering 1 1 WATER QUALITY CAPTURE VOLUME SUMMARY FOR EXTENDED DETENTION PROJECT NAME: HARMONY TECHNOLOGY PARK JR PROJECT NO: 39265 COMPUTATIONS BY: A. Reed DATE: 2/26/01 Guidelines from Urban Strom Drainage Criteria/ Manual, September 1999 (Referenced figures are attached at the end of this section) Use 40-hour brim -full volume drain time for extended detention basin Water quality Capture Volume, WQCV = 1.0 * (0.91 * i3 - 1.19 * i2 + 0.78i) Design Volume: Vol = WQCV/12 * Area * 1.2 MAJOR BASIN Trib. area (acres) Impervious Ratio, la % Impervious i =1a/100 WQCV (watershed inches) Design Volume, Vol. (ac-ft) POND 1 19.29 64 0.64 0.25 0.49 POND 2 1 86.95 1 70 1 0.70 1 0.27 1 2.38 POND 3 1 3.43 1 76 0.76 0.30 1 0.10 9265wq.xls,6/18/01,1:45 PM 1 Design Procedure Form: Extended Detention Basin (EDB) -Sedimentation Facility POND 1 Project Name: HARMONY TECHNOLOGY PARK Project Number: 39265 Company: JR Engineering Designer. A. Reed Date: 2/26/01 1. Basin Storage Volume A) Tributary Area's Imperviousness Ratio (=I,/100) 1, = 68 % i = 0.5804 B) Contributing Watershed Area (Area) A = 17.74 acres C) Water Quality Capture Volume (WQCV) WOCV = 0.27 watershed inches (WQCV=1.0'(0.91'is-1.19+0.78i)) D) Design Volume: Vol = WQCV/12 ' Area ' 1.2 Vol. = 0.47 ac-ft 2. Outlet Works ' A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other. B) Depth at Outlet Above Lowevst Perforations (H) H = 1.7 ft C) Required Maxiumum Outlet Area per Row, (Ao) Ao = 1.6 square inches (Figure EDB-3) ' D) Perforation Dimensions (enter one only) i) Circular Perforation Diamter OR D = 1 inches, OR if) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, See Table 6a-1 for Maximum) nc = 2 number ' F) Actual Design Outlet Area Row (A,) A, = 1.57 inches per square ' G) Number of Rows (nr) H) Total Area nr = 5 number outlet (A„) A,r = 7.85 square inches ' 3. Trash Rack A) Needed Open Area: A, = 0.5' (Figure 7 Value)At At = 267.0 square inches B) Type of Outlet Opening (Check One) x < 2' Diameter Round ' 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref Figure 6a) 1) Width of Trash Rack and Concrete Opening (W,,,,,) W� = 12 inches from Table 6a-1 ii) Height of Trash Rack Screen (HTR) HTR = 18.4 inches = H - 2" for flange of top support t iii) Type of Screen Based on Depth H) x S.S. #93 VE Wire (US Filter) Describe if "other" Other: iv) Screen Opening Slot Dimension, x 0.139" (US Filter) Describe if "other" Other: ' v) Spacing of Support Rod (O.C.) 314 inches Type and Size of Support rod (Ref: Table 6a-2) #156 VEE ' vi) Type and size of Holding Frame (Ref: Table 6a-2) 38" x 1.0" flat bar ' Page 1 1 D) For 2" High Rectangular Opening (Refer to Figure 6b): ' 1) Width of rectangular Opening (W) W = ii) Width of Perforated Plate Opening (Woonc=W+120) W. � _ iii) Width of Trashrack Opening (Wopening) WW—Q = ' from Table 6b-1 iv) Height of Trash Rack Screen (HTR) H„t = ' v) Type of Screen (based on Detph H) (Describe if "other) vi) Cross -bar Spacing (Based on Table 6b-1, KlempTM KPP Grating). Describe if "other 1 1 vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio S. Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) B) Surface Area C) Connector Pipe Diameter (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides 6. Two -Stage Design inches inches inches 11-Mx Klempr"" KPP Series Aluminum Other: inches Other. 2 (UW) 0 acre-feet acres inches yes/no A) Top Stage (Dwo = 2' minumum) Dwo = 1.7 feet B) Bottom Stage (Dss = Dwo + 1.5' min, Dwo + 3.0' max. Storage = 5% to 15% of Total WQCV) C) Micro Pool (Minimum Depth = the Larger of 0.5'Top Stage Depth or 2.5 feet) D) Total Volume: Voles = Storage from 5A + 6A + 6B Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Minimum Z = 4, flatter preferred 8. Dam Embankment Side Slopes (Z, horizontal distance per unit ve Minimum Z = 4, flatter preferred 9. Vegetation (Check the method or describe "other") Storage = 0.47 acre-feet Des = 0 feet Storage = acre-feet Surf. Area = acres Depth = feet Storage = acre-feet Surf. Area = acres Volts = 0.47 acre-feet Z = 4 (horizontalfvertical) Z = 4 (horizontal/vertical) x Native Grass Irrigation Turf Grass Other: ' Pace 2 11 1 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility POND 2 Project Name: HARMONY TECHNOLOGY PARK Project Number: 39265 Company: JR Engineering Designer: B. STRAND Date: 4/30/01 1. Basin Storage Volume A) Tributary Area's Imperviousness Ratio (i=l,/100) la = 70 % i = 0.6974 B) Contributing Watershed Area (Area) A = 84.17 acres C) Water Quality Capture Volume (WQCV) WQCV = 0.27 watershed inches (WQCV =1.0"(0.91 "il-1.19"i2+0.78i)) D) Design Volume: Vol = WQCV/12 ' Area ' 1.2 Vol. = 2.31 ac-ft 2. Outlet Works A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other: 8) Depth at Outlet Above Lowevst Perforations (H) H = 3.3 ft C) Required Maxiumum Outlet Area per Row, (Ao) Ao = 3.2 square inches (Figure EDB-3) D) Perforation Dimensions (enter one only) i) Circular Perforation Diamter OR D = 2 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, See Table 6a-1 for Maximum) nc = 1 number F) Actual Design Outlet Area per Row (Aa) Aa = 3.14 square inches G) Number of Rows (nr) nr = 9 number H) Total outlet Area (A,J At = 28.26 square inches 3. Trash Rack A) Needed Open Area: A, = 0.5' (Figure 7 Value)' A,, A, = 961.1 square inches B) Type of Outlet Opening (Check One) x < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref: Figure 6a) 1) Width of Trash Rack and Concrete Opening (W..) W. = 27 inches from Table 6a-1 ii) Height of Trash Rack Screen (HTR) HTR = 37.6 inches = H - 2" for flange of top support iii) Type of Screen Based on Depth H) x S.S. #93 VE Wire (US Filter) Describe if "other" Other: iv) Screen Opening Slot Dimension, x 0.139" (US Filter) Describe if "other" Other: v) Spacing of Support Rod (O.C.) 3/4 inches Type and Size of Support rod (Ref: Table 6a-2) #156 VEE vi) Type and size of Holding Frame (Ref: Table 6a-2) 3/8" x 1.0" flat bar Page 1 P L D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of rectangular Opening (W) W = ' ii) Width of Perforated Plate Opening (Wconc=W+12") W. = ' iii) Width of Trashrack Opening (Wopening) Woce,,;,v = from Table 6b-1 iv) Height of Trash Rack Screen (HTR) HTR = n 0 t v) Type of Screen (based on Detph H) (Describe if "other) vi) Cross -bar Spacing (Based on Table 6b-1, KlempTM KPP Grating). Describe if "other" vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio 5. Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) B) Surface Area C) Connector Pipe Diameter (Size to drain this volume in 5-minutes under inlet control) b) Paved/Hard Bottom and Sides 6. Two -Stage Design inches inches inches inches KlempTm KPP Series Aluminum Other: inches Other: 2 (I../W) 0 acre-feet acres inches yes/no A) Top Stage (Dwo = 2' minumum) Dwo = 2.6 feet B) Bottom Stage (DBs = Dwo + 1.5' min, Dwo + 3.0' max. Storage = 5% to 15% of Total WQCV) C) Micro Pool (Minimum Depth = the Larger of 0.5'Top Stage Depth or 2.5 feet) D) Total Volume: Vol., = Storage from 5A + 6A + 6B Must be > Design Volume in 1D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Minimum Z = 4, flatter preferred 8. Dam Embankment Side Slopes (Z, horizontal distance per unit ve Minimum Z = 4, flatter preferred 9. Vegetation (Check the method or describe "other") Storage = 2.31 acre-feet Des = 0 feet Storage = acre-feet Surf. Area = acres Depth = feet Storage = acre-feet Surf. Area = acres Volt, = 2.31 acre-feet Z = 4 (horizontal/vertical) Z = 4 (horizontal/vertical) x Native Grass Irrigation Turf Grass Other: ' Page 2 n t I 7 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility POND 3 Project Name: HARMONY TECHNOLOGY PARK Project Number: 39265 Company: 1R Engineering Designer: B. STRAND Date: 4/30/01 1. Basin Storage Volume A) Tributary Area's Imperviousness Ratio (i=IJ100) I, = 75 % i = 0.7497 B) Contributing Watershed Area (Area) A = 6.04 acres C) Water Quality Capture Volume (WQCV) WQCV = 0.30 watershed inches (WQCV = 1.0. (0.91.' is - 1.19 ' iZ + 0.78i) ) D) Design Volume: Vol = WQCW12Area 1.2 Vol. = 0.18 ac-ft 2. Outlet Works A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowevst Perforations (H) H = 2.7 ft C) Required Maxiumum Outlet Area per Row, (Ao) Ao = 0.33 square inches (Figure EDB-3) D) Perforation Dimensions (enter one only) i) Circular Perforation Diamter OR D = 318 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, See Table 6a-1 for Maximum) nc = 3 number F) Actual Design Outlet Area per Row (A,) A, = 0.33 square inches G) Number of Rows (nr) nr = 8 number H) Total outlet Area (A„) At = 2.64 square inches 3. Trash Rack A) Needed Open Area: A, = 0.5 ' (Figure 7 Value) ' A„ A, = 89.8 square inches B) Type of Outlet Opening (Check One) x < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref: Figure 6a) 1) Width of Trash Rack and Concrete Opening (W..) W�, r = 9 inches from Table 6a-1 ii) Height of Trash Rack Screen (HTR) HTR = 30.4 inches = H - 2" for flange of top support iii) Type of Screen Based on Depth H) x S.S. #93 VE Wire (US Filter) Describe if "other" Other: iv) Screen Opening Slot Dimension, x 0.139" (US Filter) Describe if "other" Other: v) Spacing of Support Rod (O.C.) 3/4 inches Type and Size of Support rod (Ref: Table 6a-2) #156 VEE vi) Type and size of Holding Frame (Ref: Table 6a-2) 3/8" x 1.0" flat bar Page 1 1 1 1 1 1 1 D) For 2" High Rectangular Openina (Refer to Figure 6b) 1) Width of rectangular Opening (W) W = inches ii) Width of Perforated Plate Opening (Wconc=W+12") WMM = inches iii) Width of Trashrack Opening (Wopening) W,P.q = inches from Table 6b-1 iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on Detph H) KlempTm KPP Series Aluminum (Describe if "other) Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempTM KPP inches Grating). Describe if "other" Other: vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio 2 (L/W) 5. Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) 0 acre-feet B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no 6. Two -Stage Design A) Top Stage (Dwo = 2' minumum) Dwo = 2.2 feet B) Bottom Stage (DBs = Dwo + 1.5' min, Dwo + 3.0' max. Storage = 5% to 15% of Total WQCV) C) Micro Pool (Minimum Depth = the Larger of 0.5'Top Stage Depth or 2.5 feet) D) Total Volume: Vole, = Storage from 5A + 6A + 6B Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Minimum Z = 4, flatter preferred 8. Dam Embankment Side Slopes (Z, horizontal distance per unit ve Minimum Z = 4, flatter preferred 9. Vegetation (Check the method or describe "other") Storage = 0.47 acre-feet DBs = feet Storage = 0 acre-feet Surf. Area = acres Depth = feet Storage = acre-feet Surf. Area = acres Val,,, = 0.47 acre-feet Z = 3 (horizontal/vertical) Z = 3 (horizontal/vertical) x Native Grass _ Irrigation Turf Grass Other: Page 2 DRAINAGE CRITERIA MANUAL (V.3) STRUCTURAL BEST MANAGEMENT PRACTICES 1 1 1 1 1 C 4 2 1. w 0.6 m 0.41 E �7 0.0E 0.04 1 0.02 E-MMENNo 'rj SOLUTION: Required Area pe Row 1.75 in? Ulm WQCV in which, MIA OR FA146wm�' OF 4W400 MAN 0.011 0. �•� W. 1 W U.cv U.4U U.OV 1.0 2.0 4.0 b.0 t Required Area per Row,a (in.2 ) FIGURE EDB-3 Water Quality Outlet Sizing: Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume 9-1-99 Urban Drainage and Flood Control District S-43 No Text Note: Size 2— through 100—year overflow trash rocks with the aid of figure 7. Overtopping Protection Emergency Spillway Overflow Outlet for Larger Floods w/ Trash Rack' \ 100—YR or Laraer Flood Water Surface j _ WOCV Water Surface `— Finished Grade 7 Orifice Plate Hwocv (See Figure 4� Permanent Water 100—YR Orifice Surface Control Outlet 3or4 Trash Rack 1f— (See Figure 6) — — — — Outlet Pipe = 120% of 100—YR Capacity ' Underdroin Around Micro —Pool (Optional) Drop Box Outlet Opt ior, Overtoppinc _ r Overflow and Emergency � Protection— Spillway I I 100—YR or Larger Flood Water Surface— I WOCV Water Surface Orifice Plate, Hwocv (See Figure 4) Permanent Water 3or4 10—YR Orifice SurfaceV _ 1f— _ Control Outlet Trash Rack — — — — — — See Figure 6) Outlet Pipe = 120% of 10—YR Capacity — — — — — — — — `�,—Underdrain Around Micro —Pool (Optional) Overtopping Spillwoy Option 11 Urban Drainage and Flood Control District ' Drainage Criteria Manual (V.3) File- V3-0a11el Oeloda.0.q Figure 1 �.- Typical WOCV Outlet Structure Profiles + ` Including 100—Year Detention 4 12" 4'-0. 8" C12x25 American Standorcin Structural Steel Channel Famed Into Concrete : Rack Swivel Hinae WOCV Level n �— T Centers 3or4 : Optional Varies C - Flow Control 2*-0" Klem KRP Series Orifice Plate F� teel Perforatedto Aluminum Bar Gratelow Control 6•-0" (or equal) Per Tableslate 6b-1, 6b-2 — — — — -' — Micro Pool Outlet Pipe 18" Min. Vwc 3" Minimum — L 2'-4- Minimum 12" 1 ^" 71J Section A —A Klemp• KRP Series_ From figure 6. Rectangular Openings Only Aluminum Bar Grote. Bolt Bar Grate Using Stoinless Steel Perforated g Flow Control C6x8.2 American I I I /—Stee! Saddle Washers or �Plote Standard Structure I , Trected Steel Bar Stoc� 7—Steel Channel Formec Into Concrete on both Saes �-�q` ,--� Klemp• KRF \ ' .V .i Series (or r Gro \l` Varies 6" Ii Aluminum Bor Grote. 3/16` Width Bars On 1-3/16" Centers �. E I i Wcw,<. I Wo,,.m.. (see Table 6b-1)-, Section B—B — Plan View Sector C—C From Figure 6• Rectangular Openings Only from figure E. Rec tongulor Openings Onl. Limits for this Stondordized Design: R Value = (net open areo)/(gross rock arec.. 1. All outlet plate openings ore rectangular. =•0.71 for cress rods on 2" centers = 0.77 for cross rods on 4" centers 2. Height of rectangular opening = 2 inches. 3. For trash rack opening width (Wop,,;q), see Table 6b-1 •Klemp Corporation, Orem. Utah, USA _ I Urban Drainage and ; Figure 6—b Flood Control District j Standordordized Trash Rock Design Drainage Criteria Manual (V.3) For WQCV Outlets With File: v3-Outlet DetoAx.dwy Rectangular Openings No Text Orifice Plate Perforation Sizina Circular Perforation Sizing Chart may be applied to orifice plate or vertical pipe outlet. Hole Dio (in) Hole Dio (in) Min. SD (in) Area. per Row (sq in; n=1 n=2 n=3 1/4 1 0.250 1 0.05 0.10 0.1.E 5/16 0.313 2 0.08 0.15 0.23 I 3/8 0.375 2 0.11 0.22 0.33 7/16 0.438 2 0.15 0.30 0.45 112 0.500 2 1 0.20 0.39 0.59 9/16 0.563 3 0.25 0.50 0.75 5/8 0.625 3 0.31 0.61 0.92 11 /16 1 0.688 3 0.37 0.74 1 1.11 3/4 0.750 3 0.44 0.88 1.3_' 0.875 3 0.60 1.20 1.80 E7/8 1 1.000 4 0.79 1.57 2.3E 1 1/8 1.125 4 0.99 1.99 2.9E 1 1/4 1.250 4 1.23 2.45 3.68 1 3 8 1.375 4 1.4E 2.97 4.45 1 1 2 1 1.500 4 1.77 3.53 l 5.30 1 5 8 1.625 4 2.07 4.15 6.22 1 3 4 1.750 4 2.41 4.81 7.22 t 7 E 1.875 4 2.76 5.52 8.2E 2 2,000 4 314 1 6.28 9.42 l n = Number of columns of perforotione Minimum steel plate thicknes=_ 1/4 5/1E "; 3/8 " Rectongulor Perforation Sizing Only one column of rectangular perforations allowed. Rectangular Heiqht = 2 inches Req::ired Area per Row (so in) Rectangular Width (inches) _ 2 • Urban Drainage and Flood Control District Rectangular Hole Width Min. Steel Thickness. r• 1 4 � E'• 1 /4 7" 5/32 E•• 5/lE a- 11/32 .. 10" 3/S >10•• 1/2 .. Fiqure 5 WOCV Outlet Orifice Perforation Sizing Drainage Criteria Manual (V.3) rue: v3-aaet Dtims.t.g I 11 11 11 Orifice Perforation Details A---as --- I Struclurol Steel Channel Formed Into Concrete, To Span Width Of Structure. See Figures 6—a, 6—b W Plate — Weonc. + 6 lnChes Weonc. (see below; � E Permanent Water Surfoce I Minimun. i I ' I A !—J Circular Openinqs: Wconc Obtained From Table 6e—' Rectangular Openinqs: Weonc = width of rectonqular perforation + E Sc, see Sc, see figure Figure c a° EOOOO o ,°I o ci C' 000 I 7I o G o 00000 l= O 000 ° L=. c, 000 00 I E�;j °00o°E TL7C_C'' I 0000 0O0000 Example Perforation Pattern Note: The goal i6 designing the outlet is to minimize the number of columns of perforation that will droin the WOCV in the desired time. Do not, however, increase the diameter of circular perforations or the height of the rectangular perforations beyond 2 inches. Use the allowed perforation shapes and confiqurotions shown above olono with Figure 5 to determine the pattern that provides on area per row closest to that required without exceeding it. Urban Drainage and Figure 4 Flood Control District Orifice Details for Drainage Criteria Manual (V.3) Draining WOCV FBe v3-0.11el aetods.d.g 1 t Table 6a-1: Standardized WQCV Outlet Design Using 2" Diameter Circular Openings. Minimum Width (We c.) of Concrete Opening for a Well -Screen -Type Trash Rack. See Figure 6-a for Explanation of Terms. Maximum Dia. Width of Trash Rack O enine (W,o ,.)Per Column of Holes as a Function of Water De th H of Circular Opening (inches) H=2.0' j H=3.0' H=4.0' H=5.0' I H=6.0' Maximum Number of Columns < 0.25 ± in. 3 in. 3 in. 3 in. 3 in. 14 < 0.50 3 in. 3 in. I 3 in. 3 in. 3 in. 14 < 0.75 3 in. ! 6 in. 6 in. 6 in. 6 in. 7 < 1.00 6 in. 9 in. 9 in. 9 in. 9 in. 4 < 1.25 9 in. 12 in. 12 in. 12 in. 15 in. 2 < !.50 12 in. 15 in. 18 in. 18 in. 18in. 2 < 1.75 18 in. 21 in. 21 in. 24 in. 24 in. I < 2.00 21 in. 24 in. 27 in. 30 in. 30 in. _j Table 6a-2: Standardized WQCV Outlet Design Using 2" Diameter Circular Openings. US FilterT"' Stainless Steel Well -Screen' (or equal) Trash Rack Design Specifications. Max. Width of Opening Screen #93 VEE Wire Slot Opening Support Rod Type Support Rod, On -Center, Spacinia Total Screen Thickness Carbon Steel Frame Type 9" 0.139 #156VEE '/." 0.31' V."x1.0"flat bar 18" 0.139 TE .074"x.50" 1" 0.655 '/." x 1.0 angle 24" 0.139 TE .074"x.75" I" 1.03" 1.0" x I''/•" angle 27" 0.139 TE .074' :x.75" I' 1.03" 1.0" x 11/2" angle 30" 0.139 TE .074"x 1.0" I" 1.155" 1 '/;'x I''/:" angle 36" 0.139 TE .074"x 1.0" I" 1.155" I '/,"x i/." angle 42" 0.139 TE .105"x1.0- I" 1.155" 1 '/,'x 1'/2" angle US I -filter, St. Paul, Minnesota, USA DESIGN EXAMPLE: Given: A WQCV outlet with three columns of 5/8 inch (0.625 in) diameter openings. Water Depth H above the lowest opening of 3.5 feet. Find: The dimensions for a well screen trash rack within the mounting frame. Solution: From Table 6a-I with an outlet opening diameter of 0.75 inches (i.e., rounded up from 5/8 inch actual diameter of the opening) and the Water Depth H = 4 feet (i.e., rounded up from 3.5 feet). The minimum width for each column of openings is 6 inches. Thus, the total width is Wc,,,c. = 3.6 = 18 inches. The total height, after adding the 2 feet below the lowest row of openings, and subtracting 2 inches for the flange of the top support channel, is 64 inches. Thus, Trash rack dimensions within the mounting frame = 18 inches wide x 64 inches high From Table 6a-2 select the ordering specifications for an 18", or less, wide opening trash rack using US Filter (or equal) stainless steel well -screen with #93 VEE wire, 0.139" openings between wires, TE .074" x .50" support rods on 1.0" on -center spacing, total rack thickness of 0.655" and'/." x 1.0" welded carbon steel frame. Sid Well Sceen Trash Rack.doc I 1 C APPENDIX H EROSION CONTROL 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 ' Fort Collins, CO 80525 1 1 1 1 1 1 1 11 RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: Harmony Technology Park STANDARD FORM A COMPLETED BY: ALR DATE: 18-Jan-01 DEVELOPED ERODIBILITY Asb Lsb Ssb Ai • Lf Ai • Si Lb Sb PS SUBBASIN(s) ZONE (AC) (FT) (%) (FT) (%) (�) 201 MODERATE 1.80 247 2.0 444.9 3.6 202 2.39 235 2.0 560.5 4.8 203 1.40 335 2.0 470.4 2.8 204 1.41 320 2.0 449.8 2.8 205 2.05 310 2.0 634.7 4.1 206 1.36 175 2.0 238.8 2.7 207 1.37 183 2.0 250.7 2.7 208 1.37 183 2.0 250.7 2.7 209 1.42 460 1.9 654.7 2.7 210 0.86 220 2.0 189.5 1.7 211 1.48 290 2.0 428.7 3.0 212 1.95 190 2.0 370.7 3.9 213 0.91 175 2.0 158.7 1.8 214 1.56 215 2.0 334.9 3.1 215 1.70 290 2.0 494.4 3.4 216 1.21 265 2.0 321.2 2.4 217 1.52 260 2.0 396.4 3.0 218 0.94 205 2.0 192.6 1.9 219 1.11 340 3.5 376.4 3.9 220 1.28 165 2.0 211.7 2.6 221 1.07 190 2.0 203.3 2.1 222 1.10 I80 2.0 198.7 2.2 223 2.04 180 2.0 367.1 4.1 224 1.53 175 2.0 267.1 3.1 225 1.17 210 2.0 245.8 2.3 226 1.69 175 2.0 295.1 3.4 227 1.47 240 2.0 352.0 2.9 228 1.07 220 2.0 235.1 2.1 229 0.81 220 2.0 178.4 1.6 230 1.37 183 2.0 250.7 2.7 231 1.37 193 2.0 250.7 2.7 232 1.37 183 2.0 250.7 2.7 233 1.37 193 2.0 250.7 2.7 Osi 2.40 0.0 0.0 0 0.0 0.0 0.0 101 0.60 536 0.7 323.6 0.4 102 0.75 536 0.7 403.8 - 0.5 103 1.23 871 0.6 1072.8 0.7 104 0.82 871 0.6 717.9 0.5 105 0.93 681 0.6 632.0 0.6 106 1.01 681 0.5 688.7 0.5 107 0.29 450 0.9 131.4 0.3 108 0.29 428 0.7 125.3 0.2 109 0.29 490 0.9 143.9 0.3 110 0.30 439 0.7 131.6 0.2 111 0.67 468 0.8 314.0 0.5 112 0.65 773 0.7 502.7 0.5 113 0.74 744 0.8 549.9 0.6 114 0.45 403 0.7 181.2 0.3 115 0.70 527 0.6 369.7 0.5 ' Erosion.xls I 1 t 1 1 1 1 1 1 1 1 11 JR Engineering 2620 E. Prospect Rd., Ste. Igo Fon Collins, CO 80525 DEVELOPED SUBBASIN(s) ERODIBILITY ZONE Asb (AC) Lsb (Fn Ssb (%) At' Li At • Si Lb (IFT) Sb (%) PS (•/.) 116 0.42 493 0.6 208.1 0.2 117 0.43 472 0.7 204.0 0.3 118 0.65 393 0.5 256.3 0.4 119 0.84 663 0.7 554.4 0.6 120 0.69 563 0.7 383.1 0.5 121 0.50 346 0.7 173.6 0.3 123 0.93 895 1.4 829.8 1.3 124 1.53 726 1.2 1112.1 1.9 125 0.41 431 0.6 176.9 0.2 126 0.30 348 2.0 103.7 0.6 127 0.26 373 1.8 95.6 0.5 128 0.27 325 1.0 88.8 0.3 129 0.14 285 1.0 40.4 0.1 Total 19.77 21291.24 108.23 1077 5.5 84.2% Asb = Sub -basin area Lsb = Sub -basin flow path length Ssb = Sub -basin slope Lb = Average flow path length = sum(Ai Liysum(Ai) Sb = Average slope = sum(Ai SiySum (Ai) PS is taken from Table 8-a (Table 5.1, Erosion Control Reference Manual) by interpolation. An Erosion Control Plan will be developed to contain PS% of the rainfall sedimentation that would normally flow off a bare ground site during a 10-year, or less, precipitation event. ' Erosion.xls 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 ' Fort Collins, CO 80525 11 1 J 1 1 1 EFFECTIVENESS CALCULATIONS PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (1-C*P)* 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 201 1.80 ROADS/WALKS 1.31 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.49 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (1-C*P)* 100 = 98.1 % 202 2.39 ROADS/WALKS 1.48 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.91 Ac. GRAVEL FILTER NET C-FACTOR 0.03 NET P-FACTOR 0.80 EFF = (I-C*P)* 100 = 97.7% 203 1.40 ROADS/WALKS 0.77 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.63 Ac. GRAVEL FILTER NET C-FACTOR 0.03 NET P-FACTOR 0.80 EFF = (I-C*P)* 100 = 97.4% 204 1.41 ROADS/WALKS 0.84 Ac. ROUGHENED GR. 0.00 Ac. - STRAW/MULCH 0.56 Ac. GRAVEL FILTER NET C-FACTOR 0.03 NET P-FACTOR 0.80 EFF = (1-C*P)* 100 = 97.6% ' 9265erosion.xls t 1 1 1 1 1 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (I-C'P)' 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 205 2.05 ROADS/WALKS 1.36 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.68 Ac. GRAVEL FILTER NET C-FACTOR 0.03 NET P-FACTOR 0.80 EFF = (IL•P)* 100 = 97.9% 206 1.36 ROADS/WALKS 1.19 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.17 Ac. GRAVEL FILTER, SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.40 EFF = (I-C•P)* 100 = 99.4% 207 1.37 ROADS/WALKS 0.00 Ac. ROUGHENED GR. 1.37 Ac. STRAW/MULCH 0.00 Ac. SILT FENCE NET C-FACTOR 1.00 NET P-FACTOR 0.45 EFF = (1-C'P)-100 = 55.0% 208 1.37 ROADS/WALKS 0.00 Ac. ROUGHENED GR. 1.37 Ac. STRAW/MULCH 0.00 Ac. STRAW BALES, GRAVEL FILTER NET C-FACTOR 1.00 NET P-FACTOR 0.58 EFF = (1 L•P)• 100 = 42.4% 209 1.42 ROADS/WALKS 1.42 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.00 Ac. GRAVEL FILTER NET C-FACTOR 0.01 NET P-FACTOR 0.80 EFF = (I-C•P)• 100 = 99.2°/ 9265erosion.xls �I J 1 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: I8-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (I-C*P)• 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 210 0.86 ROADS/WALKS 0.07 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.79 Ac. SEDIMENT TRAP NET C-FACTOR 0.06 NET P-FACTOR 0.50 EFF = (I-C'P)• 100 = 97.2% 211 1.48 ROADSIWALKS 1.19 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.29 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (IC•P)' 100 = 99.0% 212 1.95 ROADS/WALKS 1.46 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.49 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (I-C•P)• 100 = 98.9% 213 0.91 ROADS/WALKS 0.72 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.18 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (1C'P)• 100 = 99.0% 214 1.56 ROADS/WALKS 1.05 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.50 Ac. GRAVEL FILTER NET C-FACTOR 0.03 NET P-FACTOR 0.80 C EFF = (I •P)' 100 = 97.9°/ t9265erosion.xls I 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (1-C•P)• 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 215 1.70 ROADS/WALKS 1.25 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.79 Ac. GRAVEL FILTER NET C-FACTOR 0.03 NET P-FACTOR 0.95 EFF = (I-C•P)• 100 = 96.7% 216 1.21 ROADS/WALKS 0.98 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.23 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (I-C*P)* 100 = 98.4% 217 1.52 ROADS/WALKS 1.29 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.23 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (I-C'P)• 100 = 98.6% 218 0.94 ROADS/WALKS 0.78 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.16 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (1-C•P)" 100 = 98.5% 219 1.11 ROADSIWALKS 0.34 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.77 Ac. GRAVEL FILTER, SILT FENCE NET C-FACTOR 0.04 NET P-FACTOR 0.40 EFF = (I-C•P)• 100 = 98.2% ' 9265erosion.xls t JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 813 STRAW BARRIERS 1.00 0.80 EFF = (I -C*P)* 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 220 1.28 ROADSIWALKS 1.03 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.25 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (1-C*P)* 100 = 99.0% 221 1.07 ROADS/WALKS 0.89 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.18 Ac. STRAW BALES, GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.64 EFF = (I-C*P)* 100 = 98.8% 222 1.10 ROADS/WALKS 0.84 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.27 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (I-C*P)* 100 = 98.2% 223 2.04 ROADS/WALKS 1.52 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.52 Ac. SEDIMENT TRAP NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (I-C*P)* 100 = 98.9% 224 1.53 ROADS/WALKS 0.96 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.57 Ac. SILT FENCE NET C-FACTOR 0.03 NET P-FACTOR 0.50 EFF = (I-C*P)* 100 = 98.6% 9265erosion.xls L7 1 1 LL JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: I8-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (1-C•P)*100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 225 1.17 ROADSIWALKS 0.97 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.20 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (1-C*P)* 100 = 99.1 % 226 1.69 ROADS/WALKS 1.27 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.42 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (1-C*P)* 100 = 98.9% 227 1.47 ROADS/WALKS 1.02 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.45 Ac. GRAVEL FILTER NET C-FACTOR 0.03 NET P-FACTOR 0.80 EFF = (I-C*P)* 100 = 98.0% 228 1.07 ROADS/WALKS 0.20 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.87 Ac. GRAVEL FILTER NET C-FACTOR 0.05 NET P-FACTOR 0.80 EFF = (I-C*P)* 100 = 96.0% 229 0.81 ROADS/WALKS 0.00 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.81 Ac. GRAVEL FILTER NET C-FACTOR 0.06 NET P-FACTOR 0.80 EFF = (1-C*P)* 100 = 95.2% 9265erosion.xls I 1 1 1 1 1 1 11 1 1 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (I-C•P)' 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 230 1.37 ROADS/WALKS 0.00 Ac. ROUGHENED GR. 1.37 Ac. STRAW/MULCH 0.00 Ac. GRAVEL FILTER NET C-FACTOR 1.00 NET P-FACTOR 0.72 EFF = (I-C•P)• 100 = 28.0% 231 1.37 ROADS/WALKS 0.00 Ac. ROUGHENED GR. 1.37 Ac. STRAW/MULCH 0.00 Ac. GRAVEL FILTER NET C-FACTOR 1.00 NET P-FACTOR 0.72 EFF = (1-C•P)• 100 = 28.0% 232 1.37 ROADS/WALKS 0.00 Ac. ROUGHENED GR. 1.37 Ac. STRAW/MULCH 0.00 Ac. GRAVEL FILTER, SILT FENCE NET C-FACTOR 1.00 NET P-FACTOR 0.36 EFF = (1-C•P)' 100 = 64.0% 233 1.37 ROADS/WALKS 0.00 Ac. ROUGHENED GR. 1.37 Ac. STRAW/MULCH 0.00 Ac. SILT FENCE NET C-FACTOR 1.00 NET P-FACTOR 0.45 EFF = (I -C*P)• 100 = 55.0% OSI 2.40 ROADS/WALKS 1.62 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.78 Ac. STRAW BALES, GRAVEL FILTER NET C-FACTOR . 0.03 NET P-FACTOR 0.64 EFF = (I-C•P)• 100 = 98.30 ' 9265erosion.xis I 7 1 1 1 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 FOR Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 813 STRAW BARRIERS 1.00 0.80 EFF = (I-C'P)• 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 101 0.60 ROADS/WALKS 0.47 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.14 Ac. SEDIMENT TRAP NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (I-C•P)• 100 = 98.9% 102 0.75 ROADS/WALKS 0.62 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.13 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (1-C*P)* 100 = 99.1% 103 1.23 ROADS/WALKS 0.96 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.27 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (I-C*P)• 100 = 98.9% 104 0.82 ROADS/WALKS 0.63 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.19 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (I-C*P)• 100 = 98.9% 105 0.93 ROADSIWALKS 0.50 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.43 Ac. GRAVEL FILTER NET C-FACTOR 0.03 NET P-FACTOR 0.80 EFF = (I -C•P)• 100 = 97.4% ' 9265erosion.xls I� 1 1 1 FI 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (I-C'P)' 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 106 1.01 ROADSIWALKS 0.77 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.00 Ac. GRAVEL FILTER NET C-FACTOR 0.01 NET P-FACTOR 0.61 EFF = (1-C'P)• 100 = 99.5% 107 0.29 ROADSIWALKS 0.24 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.06 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 -1 JEFF= (I -C•P)• 100 = 98.4% 108 0.29 ROADSIWALKS 0.23 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.06 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (1-C'P)• 100 = 98.4% 109 0.29 ROADS/WALKS 0.26 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.04 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (I -C•P)' 100 = 98.7% 110 0.30 ROADS/WALKS 0.24 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.06 Ac. GRAVEL FILTER, SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.40 EFF = (I-C•P)' 100 = 99.20 ' 9265erosion.xls 17 u I� 1 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: I8-Jan-0I EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (1-C•P)' 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 111 0.67 ROADS/WALKS 0.31 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.36 Ac. SILT FENCE NET C-FACTOR 0.04 NET P-FACTOR 0.50 EFF = (I-C•P)• 100 = 98.1 % 112 0.65 ROADS/WALKS 0.53 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.12 Ac. STRAW BALES, GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.64 EFF = (1-C•P)• 100 = 98.7% 113 0.74 ROADS/WALKS 0.55 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.19 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (1-C*P)° 100 = 98.2% 114 0.45 ROADS/WALKS 0.20 Ac. ROUGHENED OR. 0.00 Ac. STRAW/MULCH 0.25 Ac. SEDIMENT TRAP NET C-FACTOR 0.04 NET P-FACTOR 0.50 EFF = (1-C°P)• 100 = 98.1% 115 0.70 ROADS/WALKS 0.36 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.34 Ac. SILT FENCE NET C-FACTOR 0.03 NET P-FACTOR 0.50 EFF = (I-C•P)•100 = 98.3°/ 9265erosion.xls J r FL I� JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = I-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (1-C*P)* 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 116 0.42 ROADS/WALKS 0.30 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.12 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (1-C*P)* 100 = 98.8% 117 0.43 ROADS/WALKS 0.28 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.16 Ac. SILT FENCE NET C-FACTOR 0.03 NET P-FACTOR 0.50 EFF = (I -C*P)* 100 = 98.6% 118 0.65 ROADS/WALKS 0.30 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.35 Ac. GRAVEL FILTER NET C-FACTOR 0.04 NET P-FACTOR 0.80 EFF = (1-C*P)* 100 = 97.0% 119 0.84 ROADS/WALKS 0.64 Ac.. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.19 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (I-C•P)* 100 = 98.3% 120 0.68 ROADS/WALKS 0.51 Ac. ROUGHENED GR. 0.00 Ac. _ STRAW/MULCH 0.17 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (1-C*P)* 100 = 98.2% 9265erosion.xls I 1 [1 1 1 [1 1 JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADSIWALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH (S = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (I-C•P)• 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 121 0.50 ROADSIWALKS 0.41 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.09 Ac. GRAVEL FILTER, SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.40 EFF = (1-C•P)• 100 = 99.2% 123 0.93 ROADS/WALKS 0.64 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.28 Ac. SILT FENCE NET C-FACTOR 0.03 NET P-FACTOR 0.50 EFF = (I-C•P)• 100 = 98.7% 124 1.53 ROADS/WALKS 0.68 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.85 Ac. STRAW BALES, GRAVEL FILTER NET C-FACTOR 0.04 NET P-FACTOR 0.64 EFF = (I-C*P)* 100 = 97.6% 125 0.41 ROADS/WALKS 0.33 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.08 Ac. GRAVEL FILTER NET C-FACTOR 0.02 NET P-FACTOR 0.80 EFF = (I-C'P)• 100 = 98.4% 126 0.30 ROADS/WALKS 0.17 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.13 Ac. SEDIMENT TRAP NET C-FACTOR 0.03 NET P-FACTOR 0.50 EFF = (1-C'P)• 100 = 98.4% 9265erosion.xls JR Engineering 2620 E. Prospect Rd., Ste. 190 Fort Collins, CO 80525 PROJECT: HARMONY TECHNOLOGY PARK STANDARD FORM B COMPLETED BY: ALR DATE: 18-Jan-01 EROSION CONTROL C-FACTOR P-FACTOR METHOD VALUE VALUE COMMENT BARE SOIL 1.00 1.00 SMOOTH CONDITION ROUGHENED GROUND 1.00 0.90 ROADS/WALKS 0.01 1.00 GRAVEL FILTERS 1.00 0.80 PLACED AT INLETS SILT FENCE 1.00 0.50 SEDIMENT TRAP 1.00 0.50 STRAW MULCH IS = 1-5%) 0.06 1.00 FROM TABLE 8B STRAW BARRIERS 1.00 0.80 EFF = (I -C'P)• 100 MAJOR SUB BASIN AREA EROSION CONTROL METHODS BASIN BASIN (Ac) 127 0.26 ROADS/WALKS 0.13 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.13 Ac. SILT FENCE NET C-FACTOR 0.04 NET P-FACTOR 0.50 EFF = (1 C•P)• 100 = 98.2% 128 0.27 ROADSIWALKS 0.15 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.12 Ac. SILT FENCE NET C-FACTOR 0.03 NET P-FACTOR 0.50 EFF = (I C'P)• 100 = 98.4% 129 0.14 ROADS/WALKS 0.11 Ac. ROUGHENED GR. 0.00 Ac. STRAW/MULCH 0.03 Ac. SILT FENCE NET C-FACTOR 0.02 NET P-FACTOR 0.50 EFF = (I -C*P)• 100 = 98.9% TOTAL AREA = 64.23 ac TOTAL EFF = 94.3% ( S (basin area ' eff) / total area REQUIRED PS = 84.2% ' Since 94.3% >84.2%, the proposed plan is o.k. ' 9265erosion.xls CONSTRUCTION SEQUENCE STANDARD FORM C PROJECT: Harmony Technology Park COMPLETED BY: ALR DATE: 18-Jan-01 Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. MONTH 1 2 3 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 12 Demolition Grading Wind Erosion Control: Soil Roughing Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other Rainfall Erosion Control Structural: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other Vegetative: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation Netfings/Mats/Bla nkets Other BUILDING CONSTRUCTION -77 STRUCTURES: INSTALLED BY: CONTRACTOR MAINTAINED BY: DEVELOPER VEGETATION/MULCHING CONTRACTOR: TO BE DETERMINED BY BID DATE SUBMITTED: APPROVED BY CITY OF FORT COLLINS ON: 9265erosion.xls,1/18101 PAGE 23 I I O 1 U Cn O C C: ' 1 1 1 1 0 1 c v Ln Ln to ' I ti'f 1 qq q qq 1 1 I C I Cn m CT m C C O O C C , 1 C 1 V C- Q• c lc7 Ln UZ Lrn Ir. to , 1 C• I g M q M M W q W W W , I 1 1 C l qCT a)fT a)Cn Cn 0)a)CT Cn C.)COC f 1 • 1 1 1 G 1 C-C-C- C'C C•C'C'C• C•In In In f 1 M l g q co co CO g q q q q q q q q q q 1 1 1 I C I I- ai q ga)Cn m� m m m c,% a)m ACT C)O)CT 1 1 -CY C' C• c" c C• C' C- C- C- C' G c C' C' c c c I tV I q q Cl- q q CO q q co g q q q 00 q M q q q q I 1 I 1 O 1 C M C-In t0 t0 tp t0 1, q q q q q q I 1 1 . I 1 O 1 v c v -W C• C 4cY C' C' C- C' C- C' C' V C- c c C' 4 -W C Z.:C' 1 1 r-1 I g q q M q q M q q q q all q q M 00 q q q q q q q q q q I 1 O 1 1 I CDI W N M C-Ln Ln Ln t0 LO t0 t0 t0 to II- 1\�� f\fff� f-In r, f�q qq I 1 1 . . . . . . . . . . . O I a) 1 M C- C- C- C- C' V C' C C• R C- C c, Q- C' C• �' C- C' C C Q' C' 1 C i i g m q COM M q q qqqq qqqq g q q M q M co q q 00 1 O 1 O 1 t0 O N M C' C'Ln Ln Ln Ln t0 t0 t0 tD to t0 tO ko to to f\ n f\ 1\ fl, r, 1 J I I O I q I CMC'C'C-C-C--:�-C'C•C-C'C'C'C-C C-C-C'C-C•C-C'C'Q'44 1 U 1 I co = 00 CO g q q q q M co g M q M M CO CO CO CO CO CO M CO M CO 1 1 1 1 0 1 C'cn N L•') Mc d'C C'In Ln Ln LO Lo In L•7 Ln ul %0 t0 t0 tp t0 t0n I N1 . I . . . . . . . . . . . . . . . . 1 Z I 1-I 1 M M C V C' C- c C•�-:1, c C• C' C- c C' C--0- C• C• d• C- C' C' C- I ►. 1 f q q q q q q q q q q q q q q L".`qq q CO 000000q CO qq 1 J 1 1 J 1 O 1 Ot0 q O.-/•--INNM 3,4= MC'C-<�C-C- C'C' Ln Ln Ln Ln t0%0 j 1 U 1 tD 1 M M M C• C' C- C C' � I g q q q= q q q q g q M qq M q qqqCOM M gq I 1 LnN Ln 1-,q a) OO �--1 NNN NN C•') M MMMd•C C-O 1 32 . f L.L 1 v Ln I N M L) L•-) M M c C' C- C' C' C CI 1 O:' = q q q q q q qq q M q q q q= q q M q q q q I C I W 1 1 O 1 0_U7 1 r q •--f m C-Lf.' L')t0 t0 f fl, f� co co qqq q m CT a)CC COO 1 U- 1 CD • 1 I J C' I NN C-M M MMMM MM C•7 C4 M* M* M* m* M M MMM NYC C'C'4 1 to I Cn I g q q q q q q q MC-1 q q moo 0000 M q q M W q M COM M 1 1 I O_' 1 O 1 tO Ln q O•-+N L'MC-QmLn Ln Ln tD t0 t0 tD t0 f\ n n 1\ q q 00 a. ON I Q 1 1 I 1 C' 1. -+ N N L •') M M C •) M C) L •') M C' M C 7 C M f •-1 L •-) M C' • 7 M M M L •') c 4 M C• 9 M I Z I I CocoCocoCocoCoco ccCO Coco COCOgq qq qq Cocogwgq 1 Q 1 1 F— 1 Ln I Ln fl- q CD co MM C'C'C'C' C-U')Ln Lo tO t0 t011.Pl. 1 1 M 1 r- f N N N N f ,; M M M M M M M l,; 1 *) M M M M M M M f •') M M f M 1 W 1 I coq C0 co00 M cc ccM co co coCO coCOq co co coCJ co 00 00q co co1 Z 1 O I CO " t0 CO Cl c-- i N N M M M C' C- C• C- C- C• in U7 Ln Ln %D to t.0 %D 1 Q 1 • 1 i I M I G N N N N N N N N N N N N N N N N N N N N N 1 C 1 I g q q q 0000 C 00 co q q CO CO q CO CO CO CO CO CO CO CO CO 00 00 q 1 O 1 1 U- 1 Ln 1 Ln LO a)NMC' Ln t0 nn n g q q ON 0) () ON ON a) D 0 Cl 0 O 0 I C I . 1 1 W I N I a) C O .--1 .-+ •-1 ••-1 .y •-1 •--1 .•y •-1 ••-1 r-I •--1 .--1 r-f .-+ '..1 �..1 N N CV N N N 1 IL 1 1 f co qqO co co q CO W co q q q q co co q q0 q q q q q q 1 1 1 I O 1 C'U-1 M 1 0'W q M'O OO.--I .-+.-I •--IN NNNMMMMMM 1 I . I • 1 1 N 1 q CT O O O O IO O O •-� •-+ .-+ .-+ .--1 •-..--I .--i .--1 .-1 .--I .-y ,-y ..r ,_•q ,� ,� 1 1 I t` 1l. q q co q;CO= g q q q q q q q q q q CO CO CO CO CO CO CO I' 1 I I Ln 1 q N W" r+ c Ln;n f, q CT a) 0 0 r4 •--1 e-f N N N N M M M M M 1 1 • 1 1 r-I 1 to q q CT a) a% CT CT Cn m m O O O O O O O O O O C O O O O 1 1 I l-_ 11% f 1 1\ 1\ I-� f\ I� g q q q q q q q q q q q q q q 1 t 1 1 O 1 to MOC'I%,CnCD romC•C'LnLnU'f V) kok)t0tal--f--t0toto 1 n g CO q C 0 00 00 CO Cq CO C 10 0O C0 00 0O C O CO 00 00 00 00 , 1 1 n1\1\1\f\t\ r-_ fl, I-- nn f\ 1%,nfl. n 1-1f�- n1_f\1\n^f%l1\ I 1 1 1 In 1 a)O d•tO l,q gl-,f-- l-- ta l0 tO Ln,4-C-M MNN Cn to C' •--I CT t0 1 1 . 1 . I 1 O 1 O N N N N N N N N N N N N N N N N N N N .--f . •--1 r O O I I 1 ^n n ^ ^f\ nII- fl- f-_I\n f-In f\1-If\f� 1-Ifl� fl, nl-If\ ^n I I O O O O O O C O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 C9 I— I O O O O O O O O O O O O O O O O O O O O O O C O 0 0 1 1 JZ U- I .--fN M C-LOt01�q O)O.--fN M C- Ln t0 f\ CO M O Ln O Ln Q Ln O I 1 iL W v 1 �.--I ,-1 .--1 ,--1 ,--I .-.L .--L ,--1 N N M M C- C- Ln 1 TABLE 5.1 C) h 1 1 1 1 1 1 1 1 1 HARMONY TECHNOLOGY PARK - SECOND FILING EROSION CONTROL COST ESTIMATE JOB NO. 39265.00 COMPLETED BY EROSION CONTROL MEASURES ITEM DESCRIPTION UNITS I UNIT COST IQUANTITY I TOTAL COST 1 TEMPORARY SEED & MULCH ACRE $ 655.00 6 $ 3,744.40 2 SILT FENCE LF $ 3.00 3,400 _ $ 10,200.00 3 GRAVEL CONSTRUCTION ENTRANCE EACH $ 500.00 6 $ 3,000.00 4 INLET PROTECTION EACH $ 250.00 70 $ 17,500.00 5 STRAW BALES LF $ 3.25 50 is 162.50 6 SEDIMENT TRAP EACH $ 500.00 3 $ 1,500.00 COST $ 36,106.90. CITY RESEEDING COST FOR TOTAL SITE AREA ITEM DESCRIPTION UNITS I UNIT COST IQUANTITY I TOTAL COST 1 JRESEEDWULCH ACRE $ 615.00 21.3 $ 13.115.78 SECURITY DEPOSIT $ 13,115.78 $ 36,106.90 REQUIRED EROSION CONTROL SECURITY DEPOSIT WITH FACTOR OF 150% $ 54,16035 ' APPENDIX I I I 1 1 1 1 1 JR Engineering HTP I O-Yr Event Input File: HTP-SWMM-IO.in 2 1 1 2 3 4 WATERSHED 1/0 HARMONY TECHNOLOGY PARK - FULLY DEVELOPED CONDIONS 10-YEAR EVENT FILE: HTP-SWMM-10.IN/OUT BY JR ENGINEERING 5/22/01 72 0 0 5. 1 1. 25 5. 0.49 0.56 0.65 1.09 1.39 2.69 4.87 2.02 1.21 0.71 0.60 0.52 0.39 0.37 0.35 0.34 0.32 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.0 1 -2 .016 .25 .10 .30 .51 .50 * BASINS TRIBUTARY TO POND 1 301 701 2400 2.4 67..010 101 201 740 0.6 76..005 102 202 740 0.8 82..005 123 223 970 0.9 69..011 124 224 960 1.5 44..011 201 401 720 1.8 73..025 202 402 620 2.4 62..025 203 403 540 1.4 55..025 204 404 504 1.4 60..025 205 905 300 2.1 67..025 206 905 450 1.4 88..025 209 905 1500 1.4 100..016 240 506 130 0.5 90..005 241 507 130 0.5 90..005 242 508 130 0.5 90..005 243 508 200 0.7 90..005 244 509 200 0.7 90..005 * BASINS TRIBUTARY TO POND 2 103 203 580 1.2 78..006 104 204 600 0.8 77..006 109 531 410 0.3 87..007 110 532 420 0.3 80..007 111 211 430 0.7 45..007 112 212 760 0.7 80..007 113 213 730 0.7 74..008 114 214 330 0.5 45..006 115 215 490 0.7 51..005 116 216 440 0.4 71..005 118 911 380 0.7 46..005 120 220 700 0.7 74..006 121 221 600 0.5 81..006 126 226 320 0.3 56..020 127 227 340 0.3 49..018 128 228 320 0.3 55..010 129 229 290 0.1 77..010 210 520 520 0.9 0..020 213 413 260 0.9 80..025- 214 414 360 1.6 68..027 215 415 300 1.7 73..026 216 416 240 1.2 81..039 217 417 360 1.5 85..031 218 418 170 0.9 83..022 219 930 600 1.1 31..020 220 420 360 1.3 80..023 221 421 360 1.1 83..026 0018 1 Page 1 of 6 I 1 1 1 222 422 240 1.1 76..033 223 423 480 2.0 75..025 224 424 240 1.5 63..031 225 425 240 1.2 83..031 226 426 360 1.7 75..025 227 427 360 1.5 69..029 234 940 130 8.5 100..085 245 540 130 0.5 90..020 246 519 130 0.5 90..020 247 521 130 0.5 90..005 248 522 130 0.5 90..005 249 518 130 0.5 90..005 250 524 130 0.5 90..005 251 524 130 0.5 90..005 252 529 130 0.5 90..005 253 527 130 0.5 90..005 254 521 130 0.5 90..005 255 525 130 0.5 90..005 256 533 130 0.5 90..005 302 702 6865 39.4 71..020 303 703 1620 9.3 71..020 * BASINS TRIBUTARY TO POND 3 211 411 630 1.5 80..025 212 412 480 2.0 75..025 0 0 * 14 * 101 102 123 124 301 201 202 * * POND 1 TRIBUTARY CONVAYANCE ELEMENTS 0 201 905 0 4 0.5 520. 2.0 520. 0 202 905 0 4 0.5 520. 2.0 520. 0 222 905 0 2 2.25 26.5 0 223 225 0 4 0.5 705. 2.0 705. 0 224 222 0 4 0.5 712. 2.0 712. 0 225 222 0 2 1.75 44.3 0 501 901 0 2 2.5 178. 0 502 902 0 2 3.5 299. 0 503 903 0 2 4.0 167. 0 504 904 0 2 4.0 138. 0 505 905 0 2 4.0 426. 0 506 501 0 2 1.50 191. 0 507 902 0 2 1.25 95. 0 508 903 0 2 1.5 254. 0 509 904 0 2 1.25 95. 0 701 905 0 1 0.0 670. * POND 1 TRIBUTARY NODES 0 901 502 0 3 0.1 0 902 503 0 3 0.1 0 903 504 0 3 0.1 0 904 505 0 3 0.1 0 905 409 0 3 0.1 JR Engineering HTP 10-Yr Event Input File: HTP-SWMM-IO.in 203 204 205 206 207 208 209 .0061 0. 8. .016 0.5 .0061 10. 50. .016 2.00 .0061 0. 8. .016 0.5 .0061 10. 50. .016 2.00 .0050 0.0 0.0 0.013 1.75 .0124 0. 8. .016 0.5 .0124 10. 50. .016 2.00 .0123 0. 8. .016 0.5 .0123 10. 50. .016 2.00 .0050 0.0 0.0 0.013 1.75 .0022 0.0 0.0 0.013 2.50 .0020 0.0 0.0 0.013 3.50 .0020 0.0 0.0 0.013 4.00 .0020 0.0 0.0 0.013 4.00 .0034 0.0 0.0 0.013 4.00 .0025 0.0 0.0 0.013 1.25 .044 0.0 0.0 0.013 1.25 .012 0.0 0.0 0.013 1.50 .05 0.0 0.0 0.013 1.25 .010 4. 4. 0.030 4.00 Page 2 of 6 I 11 1 I 1 1 1] 1 )R Engineering HTP 10-Yr Event Input File: HTP-SWMM-IO.in * POND 1 TRIBUTARY PARKING LOT DETENTION PONDS 0 401 501 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000040 9.29 .000065 9.79 .00033 10.27 .00098 10.72 .0022 11.16 .0043 11.58 .012 12.38 0.019 12.76 0.027 13.13 0.036 13.49 0.050 13.84 0 402 901 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000010 12.92 .000034 13.30 .00023 13.67 .00081 14.03 .0020 14.38 .0041 14.72 0.0122 15.38 0.0188 15.70 0.0273 16.02 0.038 16.32 0.051 16.63 0 403 902 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000020 7.91 .000028 8.05 .00013 8.18 .00038 8.31 .00084 8.44 .0016 8.56 .0043 8.81 .0064 8.93 .0091 9.05 0.0125 9.17 .0165 9.28 0 404 904 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000020 7.44 .000036 7.58 .00017 7.72 .00048 7.86 .00105 7.99 .0020 8.12 .00555 8.38 .0084 8.51 .01214 8.64 0.017 8.76 0.023 8.88 * POND 1 0 409 9 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.0 0.32 2.83 1.09 3.41 1.90 3.86 2.01 11.52 2.62 12.85 3.06 13.69 3.84 14.99 4.28 93.92 * POND 2 TRIBUTARY CONVAYANCE ELEMENTS 0 203 944 0 4 0.5 855. .0056 0. 8. .016 0.5 2.0 855. .0056 10. 50. .016 2.00 0 204 944 0 4 0.5 855. .0056 0. 8. .016 0.5 2.0 855. .0056 10. 50. .016 2.00 0 211 920 0 4 0.5 426. .0066 0. 8. .016 0.5 2.0 426. .0066 10. 50. .016 2.00 0 212 920 0 4 0.5 760. .0069 0. 8. .016 0.5 2.0 760. .0069 10. 50. .016 2.00 0 213 916 0 4 0.5 731. .0075 0. 8. .016 0.5 2.0 731. .0075 10. 50. .016 2.00 0 214 916 0 4 0.5 377. .010 0. 8. .016 0.5 2.0 377. .010 10. 50. .016 2.00 0 215 916 0 4 0.5 486. .0053 0. B. .016 0.5 2.0 486. .0053 10. 50. .016 2.00 0 216 916 0 4 0.5 480. .0054 0. 8. .016 0.5 2.0 480. .0054 10. 50. .016 2.00 0 220 910 0 4 0.5 550. .0064 0. 8. .016 0.5 2.0 550. .0064 10. 50. .016 2.00 0 221 910 0 4 0.5 335. .0064 0. 8. .016 0.5 2.0 335. .0064 10. 50. .016 2.00 0 226 945 0 4 0.5 325. .0200 0. 8. .016 0.5 2.0 325. .0200 10. 50. .016 2.00 0 227 945 0 4 0.5 350. .0180 0. 8. .016 0.5 2.0 350. .0180 10. 50. .016 2.00 0 228 912 0 4 0.5 325. 0.01 0. 8. .016 0.5 2.0 325. 0.01 10. 50. .016 2.00 0 229 912 0 4 0.5 285. 0.01 0. 8. .016 0.5 2.0 285. 0.01 10. 50. .016 2.00 0 303 934 0 2 3.00 220. .0036 0.0 0.0 0.013 3.00 0 513 933 0 2 2.5 195. .0030 0.0 0.0 0.013 2.50 0 514 934 0 2 3.00 282. .0029 0.0 0.0 0.013 3.00 0 515 913 0 2 3.5 135. .0065 0.0 0.0 0.013 3.50 0 516 936 0 2 4.00 196. .0020 0.0 0.0 0.013 3.50 0 517 940 0 2 4.00 179. .0018 0.0 0.0 0.013 3.50 Page 3 of 6 I 1 1 JR Engineering HTP 10-Yr Event Input File: HTP-SWMM-l0.in 0 518 934 0 2 1.75 93. .0087 0.0 0.0 0.013 1.75 0 519 520 0 2 1.25 48. 0.011 0.0 0.0 0.013 1.25 0 520 926 0 2 2.00 158. .0020 0.0 0.0 0.013 1.50 0 521 926 0 2 2.0 75. .0020 0.0 0.0 0.013 2.00 0 522 926 0 2 1.50 48. .0020 0.0 0.0 0.013 1.25 0 523 927 0 2 2.75 170. .0020 0.0 0.0 0.013 2.50 0 524 927 0 2 2.0 120. .0020 0.0 0.0 0.013 2.00 0 525 927 0 2 1.25 45. 0.005 0.0 0.0 0.013 1.25 0 526 928 0 2 3.5 198. .0020 0.0 0.0 0.013 3.50 0 527 928 0 2 1.25 48. 0.035 0.0 0.0 0.013 1.25 0 528 930 0 2 3.5 434. .0023 0.0 0.0 0.013 3.50 0 529 938 0 2 1.25 204. 0.019 0.0 0.0 0.013 1.25 0 530 931 0 2 2.00 158. .0100 0.0 0.0 0.013 2.00 0 531 931 0 4 0.5 410. .0066 0. 8. .016 0.5 2.0 410. .0066 10. 50. .016 2.00 0 532 931 0 4 0.5 423. .0069 0. 8. .016 0.5 2.0 423. .0069 10. 50. .016 2.00 0 533 919 0 2 1.25 172. .0280 0.0 0.0 0.013 1.25 0 534 920 0 2 2.00 311. .0050 0.0 0.0 0.013 2.00 0 535 930 0 2 5.00 606. .0050 0.0 0.0 0.013 2.75 0 536 921 0 2 5.00 205. .0020 0.0 0.0 0.013 5.00 0 537 931 0 2 1.75 108. .0043 0.0 0.0 0.013 1.75 0 538 922 0 2 3.0 118. .0020 0.0 0.0 0.013 3.00 0 539 922 0 2 1.75 108. .0020 0.0 0.0 0.013 1.75 0 540 922 0 2 1.25 94. .0050 0.0 0.0 0.013 1.25 0 541 923 0 2 3.5 134. .0030 0.0 0.0 0.013 3.50 0 542 923 0 2 1.75 108. .0020 0.0 0.0 0.013 1.75 0 543 920 0 2 3.5 990. .0020 0.0 0.0 0.013 3.50 0 544 911 0 2 1.75 375. .0045 0.0 0.0 0.013 1.75 0 545 912 0 2 2.25 217. .0031 0.0 0.0 0.013 2.00 0 546 920 0 2 5.00 311. .0020 0.0 0.0 0.013 5.00 0 547 914 0 2 2.50 198. .0080 0.0 0.0 0.013 2.50 0 548 915 0 2 3.0 194. .0020 0.0 0.0 0.013 4.00 0 549 915 0 2 2.5 172. .0194 0.0 0.0 0.013 2.00 0 550 915 0 2 1.75 74. .0050 0.0 0.0 0.013 1.50 0 551 917 0 2 4.0 126. .0021 0.0 0.0 0.013 4.00 0 552 546 0 2 4.0 375. .0020 0.0 0.0 0.013 4.00 0 702 940 0 1 15.0 1580. .0075 25.0 25.0 0.030 3.50 0 703 940 0 1 15.0 1394. .0075 25.0 25.0 0.030 3.50 * POND 2 TRIBUTARY NODES 0 910 544 0 3 0.1 0 911 545 0 3 0.1 0 912 547 0 3 0.1 0 913 516 0 3 0.1 0 914 548 0 3 0.1 0 915 551 0 3 0.1 0 916 549 0 3 0.1 0 917 552 0 3 0.1 0 919 534 0 3 0.1 0 920 535 0 3 0.1 0 921 538 0 3 0.1 0 922 541 0 3 0.1 0 923 543 0 3 0.1 0 926 523 0 3 0.1 0 927 526 0 3 0.1 0 928 528 0 3 0.1 0 930 940 0 3 0.1 Page 4 of 6 J 1 1 1 1 JR Engineering HTP I0-Yr Event Input File: HTP-SWMM-IO.in 0 931 940 0 3 0.1 0 932 513 0 3 0.1 0 933 514 0 3 0.1 0 934 515 0 3 0.1 0 936 517 0 3 0.1 0 938 530 0 3 0.1 0 940 434 0 3 0.1 0 944 303 0 3 0.1 0 945 303 0 3 0.1 * POND 2 TRIBUTARY PARKING LOT DETENTION PONDS 0 413 932 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000020 6.10 .000029 6.30 .000151 6.48 .00046 6.67 .001046 6.84 .002009 7.02 .005600 7.35 .00857 7.51 .012614 7.67 .018082 7.83 .025129 7.98 0 414 933 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000003 8.18 .000046 8.42 .000252 8.65 .000794 8.88 .001850 9.10 .003707 9.32 .011004 9.73 .016809 9.93 .024183 10.13 .033199 10.32 .043973 10.51 0 415 934 11 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000011 11.12 .000077 11.56 .000274 11.97 .000717 12.38 .001603 12.77 .006570 13.52 .011466 13.87 .017431 14.22 .025118 14.56 .034929 14.90 0 416 913 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000005 7.36 .000076 7.50 .000364 7.64 .001052 7.78 .002339 7.92 .004596 8.05 .013599 8.31 .020900 8.44 .026783 8.57 .034625 8.69 .048793 8.81 0 417 936 11 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000004 7.46 .000061 7.94 .000308 8.40 .000923 8.84 .002095 9.26 .004434 9.65 .013995 10.40 .021332 10.76 .030572 11.10 .041823 11.43 0 418 938 11 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000008 5.50 .000085 5.64 .000363 5.77 .001012 5.89 .002196 6.02 .004094 6.14 .010805 6.38 .015808 6.49 .021771 6.60 .028804 6.71 0 420 919 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000002 8.38 .000032 8.60 .000169 8.81 .000566 9.02 .001436 9.22 .003022 9.42 .009459 9.81 .014702 9.99 .021432 10.18 .029680 10.36 .039493 10.54 0 421 917 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000001 6.09 .000019 6.39 .000443 6.95 .001107 7.21 .002318 7.46 .007486 7.95 .012020 8.18 .018157 8.40 .026127 8.62 .036117 8.83 .048213 9.04 0 422 550 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000005 1.90 .000071 2.57 .000385 3.10 .001238 3.55 .002918 3.95 .005680 4.32 .015621 4.96 .023052 5.26 .032168 5.54 .043073 5.80 .055868 6.05 0 423 914 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .001540 2.46 .003364 6.02 .006391 8.15 .017209 11.25 .025313 12.52 .035412 13.67 .047678 14.74 .062322 15.73 .079691 16.66 .100132 17.54 .124093 18.38 0 424 542 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000004 3.55 .000068 3.95 .000382 4.31 .001230 4.65 .003052 4.96 .006403 5.25 .019171 5.80 .028908 6.05 .041031 6.29 .055672 6.53 .072955 6.75 0 425 539 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000004 2.95 .000068 3.47 .000367 3.92 .001150 4.32 .002819 4.69 .005933 5.04 .018045 5.66 I� J Page 5 of 6 JR Engineering HT? 10-Yr Event Input ' File: HTP-SWMM-IO.in .027323 5.95 .038829 6.22 .052682 6.48 .069003 6.74 0 426 537 12 2 0.1 1. .001 0. 0. .013 0.1 ' 0.0 0.00 .000006 6.25 .000085 6.98 .000418 7.63 .001223 8.23 .002733 8.79 .005298 9.32 .014969 10.29 .022538 10.74 .032189 11.18 .044068 11.60 .058345 12.00 0 427 536 12 2 0.1 1. .001 0. 0. .013 0.1 ' 0.0 0.00 .000001 9.48 .000018 9.93 .000079 10.36 .000220 10.78 .000510 11.18 .001063 11.57 .003567 12.31 .005926 12.66 .009325 13.01 .013957 13.34 .020011 13.66 * POND 2 0 434 11 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.0 1.70 13.59 3.39 14.97 5.13 16.17 ' 7.94 19.19 17.81 49.11 9.23 22.10 32.53 404.40 13.93 25.05 38.80 989.47 19.03 44.36 * POND 3 TRIBUTARY CONVAYANCE ELEMENTS 0 510 942 0 2 2.50 144. .0020 0.0 0.0 0.013 2.00 0 511 942 0 2 2.00 425. .0020 0.0 0.0 0.013 2.00 0 512 943 0 2 3.0 425. .0020 0.0 0.0 0.013 3.00 * POND 3 TRIBUTARY NODES ' 0 941 0 942 511 0 3 512 0 3 0.1 0.1 0 943 435 0 3 0.1 * POND 3 TRIBUTARY PARKING LOT DETENTION PONDS 0 411 941 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000009 9.21 .000097 9.50 .000417 9.79 .0012 10.06 .00272 10.33 .00522 10.59 .01357 11.10 .0194 11.34 .02635 11.58 .03464 11.81 .04442 12.04 ' 0 412 510 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000004 12.09 .000055 12.56 .00028 13.02 .00084 13.4E .002481 13.88 .005021 14.29 .012286 15.08 .01805 15.46 .025366 15.83 .034334 16.19 .045118 16.55 ' * POND 3 0 435 11 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.0 0.03 0.42 0.15 0.50 0.28 0.57 0.35 0.60 0.43 0.65 0.61 0.70 0.80 0.75 ' 1.03 0.80 1.16 33.00 1.30 91.85 ' 0 0 ENDPROGRAM 1 Page 6 of 6 0 0 H H E o H m z Z E- F r N h 0 z r m a Z o F o H o N m pq .tl h O o as r w w > a m wma m m H h z O F O QQ O N H h W h N [wA m z w E.. Zm F O H H a W m z Z x r r N w a 44 m m U 0£ h O m U r h c z m .m H a 0 z F E. wao z z z F.11 O O Ix z� F w w 5 w w hU a zo Fo rEo !w� a om �r�i a h Q z 4 ZH 0i h w xIZ-la t� w U H U' H a H U I P. P. I H O W O W" 0 ^ •- ❑ o m .7 .7 Z in z ut N W 4. H H mH zU1 x mH >. W (9 a a zo Fo Zo O U mol zo ❑ &. U G. z W w H 0 O H Z mmo O� ❑ O a O w> W h O H N F H H N W ❑ H Z h ❑ N z m H ❑ N >.O >.UWH Z� W HZ Z� + ElM m�7 O H O t(1 W H (9 M Z ^- O w r k.U) W NOa W ^ ^ N (9 O ❑Q>1 U .aa aao a a ❑z >a ❑z a W a W O O W `-' F W H vt O a 0 W H U> w > a m .] Z 0 F O Q c a s a w E m r ui m a F H El H❑ V1 >+ H O O W W F m O m N O W wzQ Z>.H0 h O U .7 W NZH .7 W £ O$ 0 x z m h m W z H x H W z z # w� m awa C40 # ❑z w x2:.4 a _ _ # W F H Q W o Q E+ W >. a a s z w z a s Zo El o W 17 h H a W H in m.o 4 h £ Q Q �o m N O O [O.. >. El ta+. >+ m El h 0 O >. z W ❑ W W .1 [.. F r Q O m E w x ._ a E. o > H a .+ >c D O W (9 N N -- U z Q� w a E Q� a F H F o az wF wm mZ w Q m Z rl E N m a H G. Z w a w N r H > ❑. N H .h >1 W H •£.] w NNN >1 W W Fth O U O ( o E.H 0 EA • • • (-9 0 ❑ 0 h m (9 F O H m W Q£ O x z a W of££ WE 0ZZ of Q x 3 H F E Q W x ❑ H .� H £ U m F Z Z a 0 U m Z N F .-. ❑ >. E w G. HH U .n CQ9 m o m E. P. a H p W a F OQ F aN Z V ON El O h O x fi) z Z x a s a rF�' Q z x m W O •• w (9 O •• m E a EE � a Q ~O S GI z" 44 E. xF u. y soy 00g3 w0 o z c� w -- F O o 0 0 0 O O 00000 0 0 O O O 0 0 0 O 0 O O o 0 0 O 0 0 0 0 0 0 0 O O O O O 0 0 0 0 0 0 O O 0 O a a�mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm x ., ., .. .. 'I r-1 .. rl N ., 'I ti ., ., 'i '-I •-I rl .� .� .-I .. N .-I .-I N .. N .. .� .� ., N ., r, .H �I ., .. ., ., ., .� N .. .I ., ., ., ., \ o0000000000000000000000000000000000000000000000000 H Q0000000000000000000000000000000000000000000000000. F 0 9x O Z E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 QH Z . .. . a � a� z H N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N Z X H �y+� H a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 wa 0 O E. N � a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ww00000000000000000000000000000000000000000000000000 UW .-.�-. r. '. r. r. r. !. .-..-. .-. .-. .-... .-..-I .-. ..-. .-. .-. ...-. .-. .-. .-. .-. .-. r. r. . •-I r. r. '-I r. .. H m ' a>00000000000000000000000000000000000000000000000000 O a N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 4. w ZVZ Q tea' m m m m min m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m F w N rl N fl rl N H •-1 '-I N '-I rl rl rl rl •-I r1 rl r1 rl •-1 rl •i •-I •i '-I rl rl N •-I N fi .-� .-I rl .i .i r-1 .-1 .i r1 .i �-1 .-I .-1 .-I rl .-� N .-� m d o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H N H W W F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a00000000000000000000000000000000000000000000000000 E w a000000000000m0000000000000000000000000000000000000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OW a H T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F 0 [v O O O O O O O O P O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' H �-- O P P r m N N P O O N O M M M O O m 0 •-I N M m M M n1 P m O O N P N Ol N m m O P m r O m m P m P P m N .y W ao wm F Z U' a r N N N N P PPP Ol Ol nl N N N N N N N N N N N N N N N n� N N N N N N N P P P P P P O� P P P P P P P O Q wa a w ' Q R1 N .-1 .-I N M P .i N M P N m Ol O rl N M P M P 01 O r1 N M P N m m 0 'i m r m O1 O M P N m r m Ol O r1 N M P N m ........... w M .-I •-I rl rl m Z M 1 m>; 'von C C [Ll > V1 ' o d ��000000000000000000 �mmmmmmmmmmmmmmmmmm 000000000000000000 . . . . . . . . . . . . . . . . . . 000000000000000000 N N N N N N N N N N N N N N N N N N •-I •-I •-I rl rl rl rl rl rl rl •i .-1 .-I r1 H H rl 'i N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M M M M M M M M M M M M M M M M M M o00000000000000000 000000000000000000 .-..-..-.r. •-.'-. r. O O O O O O O O O O O O O 1 1 1 1 1 1 1 1 1 1 1 1 W W W W W W1 W W W W W W W O P M M N P O QI P Ol �O O N e-............. O O O O M O N P P P P P ' N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N # O N N N N N N N N N N N N f 0 0 0 0 0 0 0 0 0 0 0 0 0 f } I I 1 1 1 1 1 1 1 1 1 1 W W W W W W W W W W W W W E o r.+P�oNHmo�o.om Z W W O .i m ID m m Ol H N M P l0 O W O lD V� 1p .O .O .O m .O l0 IO 1p l0 .O 1p 1p 1p 1p IO O O� Ol O O� .ti Ol 01 M lD .i 1p N > O 0 0 0 0 0 0 0.. a u i i I i I• i i a a H H .-� H H .ti rl H .i .i .-i rl H 1 £ .-� r N M •-I O N N N N N N N N N N N N N O 3 ~ ~ O O O O O O O O O O O O O O O O O O p m~ Ol N O O N N N N N N N N N N O O N N m H .i N m N N 0 0 0 0 0 0 0 0 0 0 N N N N Z O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O\ Z .iNNNMMMPNNIO Z\ LD m ON z W uLD H x a O Z D Z Q O O O❑ O O O O O O O❑❑ W H O H C. mm000000000000.y.-ION o W W W W W W W W W W W W W a s a ---Z' • m W m m m m m m m m m m m O W .7 W E H £ ' m 3 3 3 3 3 3 S 3 S 3 3 3 3 w z x O > H wEl a ~ Z Z Z Z Z Z Z Z Z Z Z Z Z Q Z x wo N N N N N N N N N N N N N N N N N O H H H H H H H H H H H H H W U • . . . • • • • • • • m i+ ElW [.. W •-+ m m ti N - W W W W W W W W W W W W W a s a W O U' M W-000()U VUuUC.)000 ah U s a ' F -- Z Z Z ZZZZ Z Z Z Z Z Z D m U O E+ -- Z Z Z W (9 [7 U (9 C9 C9 m C7 C7 C7 C7 C9 C9 C7 m m H W W S W W W W I vE 00000000O0000000OO U fa.] 4a] 4a] Ela x a o 0 0 0 0 0 0 0 0 0 0 0 0 o N o 0 o F Z Z Z Z Z Z Z Z Z Z Z Z Z a 0 Z O a ' 0000000000000 M ri '-I rl H .-1 H H ri ,ti •-1 H H .-1 W t0 lD P U Q U U U U U U U U U U U V U io H a0 �1,,77 Q\ m z H 0L U U F D a Z Z Z Z Z Z Z Z Z Z Z Z Z >. W U Z Z D a E+ 040000000000000 00 x a H 0 0 0 H Z Z Z Z Z Z Z Z Z Z Z Z Z OH U — �- F D O aH r000fHNmPPOIr rINMNM.-IN a m mm W m m W W W W W W W z F N N N .-I N. N N N N M o 0 .-I .-I a F F F E E E E E E E E E E E x$ H a Q E m U Z P O1 N N N N N N N N N N N N r r P P w D a a,40 a a a a a a a a a U W D a 1. a a a 0 IA c9 DD DDD DDDDDDDD W I Z Z H W 6.0 ElE Ht W E W r Z Q D Z Z E a a a a a a a as as C. a >.x Z xrx Ham" aax�u�c�c�c�c�c�cxxxxx o•• 014 aaaaaa ' N N N N N N N N N N N N N N M M N N O O x x x x x x x x x x x x x QH f El E El El E a 40000 rx E F U U U U U U U U U U U U U x G. « 3 F E E E W C�1 4. O M N W a h O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a Q rl M P l0 m Ol m m N oO4 x-, 0000vl0000.11000000ulo vl0000000 0 o O o ,2� N a w U z H � zz o0000000000000000000000000 •o •o •o •o z. . . . . . . . . . . . . . . . . . . . . . . . . oM Pl0 mm rm .r F o 0 0 0 0 o O O O a m W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O N W>a . a m o m o mom o P 00 ul vl ul ul y E. N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O o 0 0 o P Oa m r o N+ r o m m x OM mlp mOl rm m W E • -1 • ti• ti• ti O P P m m O N O O O P � t) O O O O O O O O O O O O O O a 0\ WOE. 2 m W H x E •- (7 E OOOOr �() N NN PmQI r m l0 rl N P.11000000.-1 m m.l Mr r-1 .-1 Ol .-1 IDM H P Ol Z W NNNNNOOHH PrOl tOmNOl 0l ill Olr aN N N r r r r .-. N H '-I P •-I N 0 Ol H O H H O m m 0 r m O m W W G. W W 0 D D D D F O O o 000 000 000 O. m ,' Z- N O O m N O 1 l 1 O m N N 0 0 0 N m N M O O O O O O. -1 > F O W N N N N N .i N m P P P a sov a a a a a Q H H H H H w a a a a a S S 3 3 m m P m m P m m m m P P m m o O O O O O En CO 0 >01N >N.11 >r m >rm >Nvl .ara.a'n'4 aw.aw a +� w. W a W a wawa w F E+ F F E z o z W z W z w z W z W w W W W 0\ z> z> W z> z> W W W W W W W W w W z W W w w W W W W W W H N Q O Q O M Q O Q O O. O. M a fL a a a W W Q a W M k. a W a r. a W O N x U H S Y H H H H H H H H H H x H I O O H I O O H I O O H I O O H I M m z\ c.l c> aO U aao.aaaaaaac> al •aa o.a Oia aa� r� 0c� a a a a a w H z z z z z N 14 H H H H H O W d P P N P P .......... H M m m m m N N N N N W z z 0 w rWw U�' o r (90 w 00,-1 0U' o r 0 z O .~-1 OQ .P-1 O m O m O .m-1 W E E+ F F E+ A m m m m ah a a m a a D N H O O H O O H O O H O W >. O O O O O O O O O O O O O O O O O O O O O O N O N O N O N O m O W z e-1 > H > H > •-I > > M a a a a a �4 D m m m w m a� a a a a a, o 0 o W F 0." 1 E U .Il N .11 N N N .'-I N m P .11 •-I N m P N N m P tt) Ol e-I N N P O 01 F W O O 0" N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O D z m m M" m m m X D O U m U W I F F N S z as o •• w w F4w E E . N "M P ill .-. N m P N 10 r m 01 .--I rl N m P If) .-1 N M P Ol " F O O N N N N O O O O O O O O O O O O O O O O O O O O x W w y N N N N N N.IIMNNNN.I/NNr 01 Ot Ol OI OIP P P P P 0 c0�o 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000o O O O N O N O N O N O N O N O N O N O N O N O N O O NO N O O r N O O N r O N N N N N O N O N O N tp lD 1p 1p 1p l0 lD �O 1p lD tp lD �O �O 1p t0 1p lD 1p �D tp 1p 1p 1p l0 1D l0 l0 M m M m m m m m m m m m m m m M m m M 1p �O 1p l0 M .-1 �-1 rl rl rl •-1 '-I N ri ry rl 'i .-1 .-1 .-1 .-1 .i .-1 .-I .-1 rl •-I rl •-1 •i '-I •-I N '-I 'i r-1 .-1 .-1 .-1 .4 �-1 H .-1 .-1 .i r-I rl `-I •-I rl •i rl N N .i H .-I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W O W O W O W O W O W O W O W O W O W O W O W O W O W O W O W O N N N N N N N N N N N N N N N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �-1 e-1 rl rl •-I ei rl rl '-I ti .i .-I rl rl rl rl tp 1p tp t0 �O t00f Ot NN OOm m P P P P P P00000000�0001 NO W r 000000000 m00�0 1p Ol Ol0 N N N N l0 tO �O t0 r r O O N N N N 1p �O l0 lD O O W W O O O O m m N �O N �-1 W .I N N N N N N N N N W O �O �O t0 l0 W O O O O O O O O O O O O O O O O O O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N NNNNN�O \OMmrr W W W mNNmmNNNNNN W W N01 W mmrmPNrPrNP01PmON.-1r-INNr N O N O N O N O N O N O N O N O N O N O N O N O N O N O O N O N O O W m O O N W O m N M N M O N O N O m • N N N N N N N N N N N N N N m N m m P P .y ri N N .--� N N .-I m .1 m rl N N N ti S 3 3 3 3 3 3 3 3 3 S S S S 3 3 O O O O O O O O O O O O O O O O a a a a a a a a a a a a a a a a aw.awawawawawawawawawaw.awawaw awaw wawawawawawawawaw(4wawawawawa wawa yyFzC w z w z w z w z w z w z w z w zw zw z w zw z w z w ni z w z w OQOQQQOQOQOQOZOZOaOy4O4OwasaaaaawaaasaawwawQoaO wOO Q o oi S m: m: S x S x x S x 5 x w W.H H H H H H H H H H H H H H H H H H H x M cl 0 c) c> c> c> c) c) c> cr c> c) 0 U aaaaaaaawaaamaaaaaac c> a ' P P P P P P P P P P P P P P N N ...... N N N ...... N N P P N O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O t P P N N .y .-� .i .y .-� .i P P rl e-I M m M •-I m P m N N N N N N N N N m m m M m .-1 tOl 01 01 01 Ol 01 01 01 01 01 01 01 Ol Ol Ol Ol 01 01 01 01 01 N 01 Ol Ol Ol 01 01 01 01 01 01 01 01 01 01 N N N N N N N N N N N N N N m N N N N N N N N N N N N N N N N N N N N N WE- .� o c0�000000000000000000000000000000000000000000000000 0 G�3 �W 0 (�+ O O O r O r N N r N r N O N O N r O O N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �T NN N.IM.i .+m .+m'-IN NN P N H P P M M00000000000000000000000000 00 .-1 H H .-1 �-1 H rl •4 rl •i '-I ri H .� rl rl rl •-I rl rl rl rl •-I rl N rl M mmMmmMmmmmmmmmmmmmo0�.-i �.-+.+r+.-�.-�.-+.-+.+.� �-+�-i .-i '+.�.-�•+-+•� �•+•-+•+m m H rl '-I rl •-I H H .-1 H H .-1 .-1 H .i .-� .-� .-1 �-1 .-I m M 0 0 0 0 0 0 O O O O 0 0 0 0 0 0 O O 0 0 O O O O O O .ti r W .1 O O O O O O O O O O O O O O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O 0 0 ' o00000000000000000000000000000000001 0 000000000 •o N N N N 1 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O N N N r N N r. �o o ooM000000N.�000Po�oNN000000000000000000000000000 0 N N N P N N N M N N P M N W N O� N N N r r rl rl rl rl •-I rl •i •-1 ti N H H �-1 •-I rl •-I rl rl rl rl rl rl '-I •i •-I rl •-I O O r-1 O O O O O O O O O O O O O O O r1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. O . . O O O O O O O O O O O O O O O O O O O O O O O O O ti M H 0 0 0 H O Ol M 0 01 r •-I •-I O\ 01 r r N r W Ol M ID N .-1 •--� �"� �"� �"� 01 M N m .-1 '-I ri .-� m N M 3 � r fa.. F O O O O O O O W O W m N W N W m O N O N W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .I •-� a a H a W .-1 M W � r as wwwwwwwwwwwwwwwwwwwz ww w mmaaawwaan,n,awwawwmaa a a[.w a H H H H H H H H H H H H H H H H H H H S H I O O H mmaaaaaaaaaao.rLaammac�c� ar�. •a a z H o r F w a H o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0�� •� a w W w a N m N m N N N N N N .-1 .-1 N .-1 '-I �-V •-I •-I P P P P P P •-I P N P N M M M P P N N N P P e-1 rl rl •-I M MOO m M Ol Ol m rn m m m m m rn m m m m rn m rn m N O1 Ot N N N N N N N ill N N N N N N N N O� O� N N N N N P M M O1 O� P N �O r W Ol O •-1 N M P N �O r W Ol O r-� N N m 0 .-1 N M P N �O r Ol O .-1 N M �O r W 0 rl N M P 1p W O P N m P M M M M M M P P P P P P P P P P N N N O O .-1 �-1 �-I .-1 •-I .-� .d N H N N N N N N N m M M M m M m P P P H rl N N N N N N N N N N N N N N N N N N N r r Ol Ol Ol 01 Ol O� Ol 01 01 Ot Q� 01 Ol Ol Ol Ol Ol Ol Ol Ol Ol Ol Ol Ol Ol Ol P P 1 m>; 0 c u 3 W H N m m m m O N N N O O O N P O m r r m 0 N r ��•F' mO N rm m l0 mO rm PLO Nm Nlp Pl0 mN HM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S o0 0 00 0 0 00 00 off off o.+ 0H O H 00 m m M m M M M M M M M M M m m H P m '1 m r rl m P H m r H O P H N m H N m H m N H r N •-1 M N H N �O r1 m M H •0 •o ••o •o •o •O •o •o •o •O •O •o ' m o N P r m0 m .-1 N �o m o r m M N .a r P io P �o m .-I o M 00 00 00 00 00 00 00 00 ' o 0 0 0 0 o O o o O o 0 0 0 0 0 0 0 o O o 0 0 0 0 0 r H OHO �O �O PH m�O mN O10 HN Nr Mm mN SON PO • ' m0 NP rm mH Nl0 m0 rm mN m1O 410 m10 O O O O O O O O O O O O O OOH OO H OO•ti OO H OO •ti OO r-I OO.-I OO H OH H OO.� OO H OO.-1 OO H O O O O O O O O O O O O O ' P m H l0 N H N P H m m H l0 N H l0 O H P P H l0 m H O r H O O H N O H O r H m r H 3 mm 3HP 3 rm 3 r o 3 Nl0 3 mo 3m 3NN 3lDN 3 PAD 3M�o 3r O 3mN O O .+ .� O O H O O H O O O .+ O O O .-I O a a a a a a a a a a a a a w w w w w w w E. w w w w w E+ E. E. F F F E. F E+ F. E. F E D D O b o O o O o b O 5 D O O o O o o 000 O o 0 O o 0 0 o 0 O o H O O O O o O 000 00 0 • H H H H H H H H •-1 H H H . .� a a a a a a a a a a a a a 3 3 3 3 3 3 3 3 3 3 3 3 3 a a a a a a a a a a a a a a a a a a a a a a a a a a H H H H H H H H H H H H H a a a a N r •-1 m P m N P N P P m rl N m 0 N r N m O r m m N M m m m m m m m m m m m m > m m > H M > r m >m r 0 > N \O > m m > l0 m > •-I N > N P > m N > M N > l0 O > m N rl '-I ri r-I ri ei F F E E F E E F E E 14 E. E. W W w W W W W W W W W W W W W w w W W W W W w W W W W W W W W W W W W W W W ' w mw aw aw aw aw aw aw aw aw aw aw aw a I O O H I O O H I O O H I O O H I O O H I O O H I 0 0 1-I I O O H I O O H I O O H I O O H I O O H I O O H a .m wa as •a r�. .a r�. .aa •aa •ma .a r�. wwa •a U U U U U U U U U U U U U a a a a a a a a a a a a a z z z z z z z z z z z z z H H H H H H H H H H H H N N N N N N N N N N N N N W W w W W w W W W W W W W w (.7O M U' ON i7(7(D U' (77Cd CD OM (D O(D a7O O 9 •m 9 a•m a aa• m a a aa• N a N am a H O O H O O O O O O O •-+ O O O O •� F E+ E F F E E. F f+ F F F F to m m m m m m m m m m m m ' a a a a a a a a a a a a a H O O H O O H O O H O O H O O H O O H O O H O O H O O H O O H O O H O O H O O O H O N O •.-i O •H O N O N O N O N O NO •N O •N O N O •-1 a a a a a a a a a a a a a W W W w W WW W W W w w w m m m m m m m m m m m m m ' w W W W W W W W W W W W W a a a a a a a a a a a a a P m io m m r o P N m r �o 0 m m m m m m N m N N N N 1 H H H H N N N N N N N N M 1 11 1 'C �•'' ° C �� — W m N W r r r N r P r N P Ol N 01 M M M .-� �O m 1 00 C•� C U O O O O O O O O O F C •' I N .- I N.- I �Y]N Q N Mo m �o r a �a o 0000000000000000000000 N00000.+ r1 '+ Feu. o000000000000000000000 N N N M 0 0 0 O O O O P m 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M M M .-I ti ti M M M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W N ri rl •i O O O e1 H m H P N H �O W • 0 90 0 90 0 O O m o000000000000000000000 • •o •o o000000000000000000000 rvi0000000 N .+ 1 N P W 1p O W •M W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 mP m.-I MN 1 E0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O '-I rl N N N H .-I ri •-1 O O rl O O rl M N m 0 0 0 0 0 0 0 N N 0 0 0 0 0 0 0 O O O O ey H a N F H N M P �-1 N M P N 10 O ei O M P O lD r m 01 O N 1 H '-1 •-1 rl rl 'i '1 N .-� H H H H H .� .-i H .� N P N N 0 O H H O W 4ai E+ F El E E+ El D D D b O P N O O O 000 O H O El 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H 1 > 1 H N N M 8 S 3 3 W a a a a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H H H j m W m O � M'P > 01 H 7El rl P H �-1 •-1 El w W w w z 0 O O O O O O O O O O O O O O O O O O O O O O w W W W W W W W w w O\ w ama HN I r O H H H HIO OHIO OHIO m O N W 1 W aaw mw aw aw z\ w a a a ON a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ O Q a DZ \ Iz-I H H H W C C o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N N M M M N N N ow W W W W W W a W EE w 1 U o m 0 o� co M U o r H E. 9 Q a � aQ \O o o 000 0000000000000000 O m M o O .-I P O ti O M M W (7 0 z 7 a El El ~ W VE i w w w >+ z E+ w Q b a a a a ..4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 H O O T H O O H O O H O W O W ( 7 O OOOOOON O N O N O W w>. El Hm Ha "a `0 a a I w a w W W W \ F E a O O O O O O O o 0 0 0 o N O 0 0 0 0 0 0 N 0 W W N W m x 0 x F N P mN m [F-� H c`�i a o 0 0 0 0 0 0 0 0 0 0 o P o o M o 0 0 o P o UU ElN (07 O O N Ol O H c n P P P M P H w a l Ol Ol 01 P Ol 0 0 N O O w o a s a 1 W O W F W W I z Elx ,E E a W F r1NMPHNMPN�O O.-INMPN�Or m01M.� O F z x z 2 a o •• z z O .-1 N •-1 N M �-I N N a %"' W FC 1 I 1 11 1 L F 1 m>; � PPPolno mlcrNlnmM.+.-IO InNr In �o lnMr� W m vl lnNroul lnm vlmvl Oln vlQOlnmolnQ In Ol Il1Q N m N P 1p r 0l N .-1 m N r W O N L5 VJ Cd w O u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N m P 0 .-1 N m P Ill lD r W 0 .i N M P� l0 r 0 0 0 0 0 0 0 0 .i N P 0 0 0 0 0 0 0 0 Ol 1p O r W O O V l O m O N 0 O O O .i.i.-I.�.i.i.-I.I N N N N N N N N P P P P P P.-I P P N Ifl Ill ill ... ............. N N N N N N N N N N N N N N N N 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O P Ol 01 Ol � Ol 41 Ol Ol P Ol Ol T Ol Ol Ol Ol N Ol Ol Ol 01 P P P Q P Q Q P Q Q Q P P P P P P P P P P P tll N 1() 1IJ 1(J 1Il 111 1A IA Ill 1Il 1Il N 111 N Ul 1() 1(1 tll I() IA I(1 In IA N N 1!1 1l1 Ill 1Il M 0 O ON N 00 a a 1 1 1 t u � MM�mrvlr ill N�+l N�II r N CI m M M li r W P P M r10 m OlONO\M tllMr Mmmr�()Nr Ol PTrr OI�MO F� f-I l0 .-1 •i rl rl M ey P .i ry m N P N .-1 r W N Ol Ol P tp r Ol •-I .-I .-� N m P r N m .-1 lD .-1 M P N P P N M N r 0 {� > y ul G O u 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 00000000000000000000000000000m0000000000000000000000 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O N O l O l D 0 0 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 ti N M 0 0 0 0� 1) O W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000�000000000m000000000000 o P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o vl o 0 0 0 0 o io 0 o M o 0 0 0 0 0 o r o o ul o tll N �Il Vl P O O O O O O O O O O O O O O O O O O O O O O O O O O M O P N O O ill O O O �fl O O P O O O N N O O N O O W O O OOOOOOOOO OOOOOO OOOOOOOOO N r W 01 N.-1 00110M O1 P r1 O N OOIN N P r �Il .-! O P P r P �Il �Il N N N N P P �fl N P P N ul tt> N N N ill ill P �(t P .-1 N N N N N N N N '-I '-I � •i •-1 '-I N N .-� O O O O O N P N .� P P .-1 � M .-1 M M P N N N N M •-I •-I O .-1 Ol Ol P P Ol P 01 P Ol Ql Ol �(t 01 01 Ol P Ol 01 N N �Il 111 N N N N N N� N M �Il N N IA N ul N N N �l/ P i11 M N •-I N M P �Il 10 r m Ol O rl N M P� l0 r m Ol O .-1 N •-1 N M rl N M P� O rl N M P ul lO r 01 O •-I N M \O r W 0 rl N M P l0 M M M M M M M M M P P P P P P P P P P ifl �Il N 0 0 0 0 0 0 0 0 .'-I 'i rl •i .-! .-1 rl .i .--I N N N N N N N M M M M M M ill N itl N � N Ul �Il N � � N N N N t(t ✓1 � N �() Ul � r r r Ol Ol Ol Ol 01 Ol 01 01 Ol 01 Ol Ol Ql Ol Ol Ol 01 Ol Ol 01 Ol Ql Ol 01 01 01 01 Y. 1 0 w o ' 0. .� V •' O o O O O O O ' O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N E H 000000o a H U O P 0 0 0 0 0 1 m Z z N O H E Z W F W ❑ + W U � a QQ❑ w U w za 0 0 0 0 0 0 o Ow a H Q E Q W Z EW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ❑ a W H NNOONNNNNN V1 �(1 OitlNONNN�(1ON �(1 �(1 iflO U1�✓] �(t ifl m m P P m m m M m m M M P M M P M M M M P M M M M M m M m m N .i ❑ N O O O O O O O z O z H F W Q H N ❑ W❑ 0 0 0 0 0 0 o a O N W U E 2 W- 0❑❑❑ 0❑❑❑❑ O Q UE. V ❑ z 5 GUQ o 0 0 o m o 0 0 0 0 o o 0 0 0 o W D o W w W O �+ m m >aa, aW Ox V) x>4 O O O O O O O O w 0 w w m Nx H a C7 O W z o a >4 O m O O O O O N N M N O1 .-I H H •-1 '-1 •i r-1 ri r-1 'i ' n N Q a Q iv N Q E. v W W N 67 ❑ U to a za NNO.--IOC r W W E Q O O N U E x 4 O VI N N z Q E+ O 0LD fn F 0L a M 1� N O N M� W z H Q fn 94 y N O P �O P M N 1� M P 01 O N ill Ot H O O P l0 M H N i!) m P t� N P Ol N r1 .-I .-1 .-1 O N > w H. » • EE W Q NNPIn �(tNN z £ fL 00 to H W U NMMNHNNH.-IHNHIpmmN.tititi rmO�mNmh O>P�O tO O W o O. a a U a o a i a w O mE Oam La ' .z.ao uM L)>r W El dD O.tiNmP�fl0 NE- F N Q m PPP PP P a E Q E 9L W >+E P P PP PPPP PP PPNPPNPP P PNNNNNNNNN NN mmrnmmmm a H a >. x 91, W Z .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . O 1414 z W O > W [u H a O •• NZ z Z fJJ H P £ W ow N N N N N N N N N N N N N N N N N N N N M P P P P P P P P P P Uw S El 0Arai + : E m 0 w I J 1 [1 ' Ill IA to N N N N N N N In O 0 0 IN Ill O O O Ill O O O O O O O Ill O 1I O O O O O O O O 1; O O In N 0 0 II 0 0 0 0 M M M M M M M M M M M P P P P P P P P M P P P P P P P P P M P P P P P P P P P P P M M P P P P P P P O O O O O O O O O O O N N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' O[] O A 0000 00000 O O O O O O O O O O O al P 1 ' r'I ri .i .i .i .i .. .-. . .-. .1 rl N N P Ifl t0 t0 1p M �O M .-1 .-1 P r O M r m, P r w l � W In N M N P r M M M Ol 1p r O m 0 •i ri ri ri 'i 'i ri ri r-i .-1 r-1 r-1 .. i ry e-i rl IA r P t0 tll P m P P r r W Ifl O N r e-1 ey P N r O N M m N M r ti N M M rl r M fl f-I .-1 .-1 rl IA rl .-1 .-1 l0 Ol Ill l0 P P rl r1 N N N r1 N N N rl fi M N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N P P N N N N N N N tD r W 0 .-1 N M P N l0 r P Ill .--I N M P N l0 r W Ol 0 .-I N M P Ill l0 r W 01 O �-I N M P Ill 1p r m 01 O .-I N M P Ifl 1p r m m rl •-I •4 N N N N N N N N M M 0 0 0 0 0 0 0 0 0 �-1 e-I rl •-1 •-I .4 .-I .-1 .-1 .-1 N N N N N N N N N N M M M M M M M M M M P P P P P P P P P P P P P Ill an N It> Ill N Ifl If> Ill Ill Ill Ill N Ill N N IA In Ill N Ifl N N N Ill N Ill N to tll N II1 Ill IIl N N Ill N Ill ru 4.. 0 _N t CU a 1 i(100 �)00 N00000 ill i1100 N 00000000 NO ut0 V; ( 0000001( O N m 00 V; ON 000 V; m P P P P P P P P P P P P m P P m P P P P m P P P m P M P m P P P P P P P P P m m P P m P m P P P m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. - ---- 0 0 0 0 0 0 0 0 0 S S 3 3 3 0 0 0 0 0 S& 8 3 8 8 S S 3 3 S S 8 8 3 O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 aa.a.aaaaaaa.a.aaaaa.a.aaa.aaaaaaaaaaaaaa w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w H H H H H H H H H H H H H E. H H H H H H H H H H H H H H H H H H H H U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U aaaaaaaaa`a�` aW 14Ul 14W14 W aazaaaaaaazz l0 O O m r W P r m �O r �(1 l0 W 01 P H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Ol Ol P O O. r. O. .. N . �-. .. .-1 O l0 W H P O P P •-I O O m N l0 r .-1 N r m .� �D .-1 W N N .� r N P m r 0 .-� 'i OlPmm�flONHlp m bl .i r Nm NN r 0 itl OP W NmNm P OIm W V1Or rM N kON N N .......... N N •-I rl •-I m m m m m m m m m m m m m m m M m m m m m m m m M M M M M M M m m m O rl N m P �(1 lO r W Ol O •-I N •-I N m .--1 N m P N 0 .-1 N m P I(1 1p r 01 O r-I N m �D r W 0 H N m P tp W O .-1 N m P N P P P P P P P P P P ill U) ul O O O O O O O O .-1 H .-1 .-I rl •-I rl •-I rl N N N N N N N m m m m m m m P P P P P P t' O a a Q z m ' 2 1 1 2 3 4 WATERSHED 1/0 HARMONY TECHNOLOGY PARK - FULLY DEVELOPED CONDIONS 100-YEAR EVENT FILE: HTP-100.IN/OUT BY JR ENGINEERING 5/3/01 480 24 5.0 0 0 1.0 1 1.0 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75 0.73 0.71 0.69 0.67 1 -2 .016 .25 .10 .30 .51 .50 * BASINS TRIBUTARY TO POND 1 301 701 2400 2.4 67..010 ' 101 201 740 0.6 76..005 102 202 740 0.8 82..005 123 223 970 0.9 69..011 124 224 960 1.5 44..011 ' 201 401 720 1.8 73..025 202 402 620 2.4 62..025 203 403 540 1.4 55..025 ' 204 404 504 1.4 60..025 205 905 300 2.1 67..025 206 905 450 1.4 88..025 209 905 1500 1.4 100..016 ' 240 506 130 0.5 90..005 241 507 130 0.5 90..005 242 508 130 0.5 90..005 243 508 200 0.7 90..005 244 509 200 0.7 90..005 * BASINS TRIBUTARY TO POND 2 ' 103 104 203 204 580 600 1.2 0.8 78..006 77..006 109 531 410 0.3 87..007 110 532 420 0.3 80..007 111 211 430 0.7 45..007 ' 112 212 760 0.7 80..007 113 213 730 0.7 74..008 114 214 330 0.5 45..006 ' 115 215 490 0.7 51..005 116 216 440 0.4 71..005 118 911 380 0.7 46..005 120 220 700 0.7 74..006 ' 121 221 600 0.5 81..006 126 226 320 0.3 56..020 127 227 340 0.3 49..018 128 228 320 0.3 55..010 129 229 290 0.1 77..010 210 520 520 0.9 0..020 ' 213 214 413 414 260 360 0.9 1.6 80..025 68..027 215 415 300 1.7 73..026 216 416 240 1.2 81..039 217 417 360 1.5 85..031 t 218 418 170 0.9 83..022 219 930 600 1.1 31..020 220 420 360 1.3 80..023 ' 221 421 360 1.1 83..026 JR Engineering HTP 100-Yr Event Input File: HTP-100.in 0018 1 IPage 1 of 6 11 F J L t 11 1 1 222 422 240 1.1 76..033 223 423 480 2.0 75..025 224 424 240 1.5 63..031 225 425 240 1.2 83..031 226 426 360 1.7 75..025 227 427 360 1.5 69..029 234 940 130 8.5 100..085 245 540 130 0.5 90..020 246 519 130 0.5 90..020 247 521 130 0.5 90..005 248 522 130 0.5 90..005 249 518 130 0.5 90..005 250 524 130 0.5 90..005 251 524 130 0.5 90..005 252 529 130 0.5 90..005 253 527 130 0.5 90..005 254 521 130 0.5 90..005 255 525 130 0.5 90..005 256 533 130 0.5 90..005 302 702 6865 39.4 71..020 303 703 1620 9.3 71..020 * BASINS TRIBUTARY TO POND 3 211 411 630 1.5 80..025 212 412 480 2.0 75..025 0 0 * 14 * 101 102 123 124 301 201 202 * * POND 1 TRIBUTARY CONVAYANCE ELEMENTS 0 201 905 0 4 0.5 520. 2.0 520. 0 202 905 0 4 0.5 520. 2.0 520. 0 222 905 0 2 2.25 26.5 0 223 225 0 4 0.5 705. 2.0 705. 0 224 222 0 4 0.5 712. 2.0 712. 0 225 222 0 2 1.75 44.3 0 501 901 0 2 2.5 178. 0 502 902 0 2 3.5 299. 0 503 903 0 2 4.0 167. 0 504 904 0 2 4.0 138. 0 505 905 0 2 4.0 426. 0 506 501 0 2 1.50 191. 0 507 902 0 2 1.25 95. 0 508 903 0 2 1.5 254. 0 509 904 0 2 1.25 95. 0 701 905 0 1 0.0 670. * POND 1 TRIBUTARY NODES 0 901 502 0 3 0.1 0 902 503 0 3 0.1 0 903 504 0 3 0.1 0 904 505 0 3 0.1 0 905 409 0 3 0.1 JR Engineering HTP 100-Yr Event Input File: HTP-100.in 203 204 205 206 207 208 209 .0061 0. 8. .016 0.5 .0061 10. 50. .016 2.00 .0061 0. 8. .016 0.5 .0061 10. 50. .016 2.00 .0050 0.0 0.0 0.013 1.75 .0124 0. 8. .016 0.5 .0124 10. 50. .016 2.00 .0123 0. 8. .016 0.5 .0123 10. 50. .016 2.00 .0050 0.0 0.0 0.013 1.75 .0022 0.0 0.0 0.013 2.50 .0020 0.0 0.0 0.013 3.50 .0020 0.0 0.0 0.013 4.00 .0020 0.0 0.0 0.013 4.00 .0034 0.0 0.0 0.013 4.00 .0025 0.0 0.0 0.013 1.25 .044 0.0 0.0 0.013 1.25 .012 0.0 0.0 0.013 1.50 .05 0.0 0.0 0.013 1.25 .010 4. 4. 0.030 4.00 1 Page 2 of 6 I 1 C JR Engineering HTP 100-Yr Event Input File: HTP-100.in * POND 1 TRIBUTARY PARKING LOT DETENTION PONDS 0 401 501 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000040 9.29 .000065 9.79 .00033 10.27 .00098 10.72 .0022 11.16 .0043 11.58 .012 12.38 0.019 12.76 0.027 13.13 0.038 13.49 0.050 13.84 0 402 901 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000010 12.92 .000034 13.30 .00023 13.67 .00081 14.03 .0020 14.38 .0041 14.72 0.0122 15.38 0.0188 15.70 0.0273 16.02 0.038 16.32 0.051 16.63 0 403 902 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000020 7.91 .000028 8.05 .00013 8.18 .00038 8.31 .00084 8.44 .0016 8.56 .0043 8.81 .0064 8.93 .0091 9.05 0.0125 9.17 .0165 9.28 0 404 904 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000020 7.44 .000036 7.58 .00017 7.72 .00048 7.86 .00105 7.99 .0020 8.12 .00555 8.38 .0084 8.51 .01214 8.64 0.017 8.76 0.023 8.88 * POND 1 0 409 9 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.0 0.32 2.83 1.09 3.41 1.90 3.86 2.01 11.52 2.62 12.85 3.06 13.69 3.84 14.99 4.28 93.92 * POND 2 TRIBUTARY CONVAYANCE ELEMENTS 0 203 944 0 4 0.5 855. .0056 0. 8. .016 0.5 2.0 855. .0056 10. 50. .016 2.00 0 204 944 0 4 0.5 855. .0056 0. 8. .016 0.5 2.0 855. .0056 10. 50. .016 2.00 0 211 920 0 4 0.5 426. .0066 0. 8. .016 0.5 2.0 426. .0066 10. 50. .016 2.00 0 212 920 0 4 0.5 760. .0069 0. 8. .016 0.5 2.0 760. .0069 10. 50. .016 2.00 0 213 916 0 4 0.5 731. .0075 0. 8. .016 0.5 2.0 731. .0075 10. 50. .016 2.00 0 214 916 0 4 0.5 377. .010 0. 8. .016 0.5 2.0 377. .010 10. 50. .016 2.00 0 215 916 0 4 0.5 486. .0053 0. 8. .016 0.5 2.0 486. .0053 10. 50. .016 2.00 0 216 916 0 4 0.5 480. .0054 0. 8. .016 0.5 2.0 480. .0054 10. 50. .016 2.00 0 220 910 0 4 0.5 550. .0064 0. 8. .016 0.5 2.0 550. .0064 10. 50. .016 2.00 0 221 910 0 4 0.5 335. .0064 0. 8. .016 0.5 2.0 335. .0064 10. 50. .016 2.00 0 226 945 0 4 0.5 325. .0200 0. 8. .016 0.5 2.0 325. .0200 10. 50. .016 2.00 0 227 945 0 4 0.5 350. .0180 0. 8. .016 0.5 2.0 350. .0180 10. 50. .016 2.00 0 228 912 0 4 0.5 325. 0.01 0. 8. .016 0.5 2.0 325. 0.01 10. 50. .016 2.00 0 229 912 0 4 0.5 285. 0.01 0. 8. .016 0.5 2.0 .285. 0.01 10. 50. .016 2.00 0 303 934 0 2 3.00 220. .0036 0.0 0.0 0.013 3.00 0 513 933 0 2 2.5 195. .0030 0.0 0.0 0.013 2.50 0 514 934 0 2 3.00 282. .0029 0.0 0.0 0.013 3.00 0 515 913 0 2 3.5 135. .0065 0.0 0.0 0.013 3.50 0 516 936 0 2 4.00 196. .0020 0.0 0.0 0.013 3.50 0 517 940 0 2 7.00 179. .0018 0.0 0.0 0.013 3.50 1 Page 3 of 6 I J i LI 11 JR Engineering HTP 100-Yr Event Input File: HTP-100.in 0 518 934 0 2 1.75 93. .0087 0.0 0.0 0.013 1.75 0 519 520 0 2 1.25 48. 0.011 0.0 0.0 0.013 1.25 0 520 926 0 2 2.00 158. .0020 0.0 0.0 0.013 1.50 0 521 926 0 2 2.0 75. .0020 0.0 0.0 0.013 2.00 0 522 926 0 2 1.50 48. .0020 0.0 0.0 0.013 1.25 0 523 927 0 2 2.75 170. .0020 0.0 0.0 0.013 2.50 0 524 927 0 2 2.0 120. .0020 0.0 0.0 0.013 2.00 0 525 927 0 2 1.25 45. 0.005 0.0 0.0 0.013 1.25 0 526 928 0 2 3.5 198. .0020 0.0 0.0 0.013 3.50 0 527 928 0 2 1.25 48. 0.035 0.0 0.0 0.013 1.25 0 528 930 0 2 3.5 434. .0023 0.0 0.0 0.013 3.50 0 529 938 0 2 1.25 204. 0.019 0.0 0.0 0.013 1.25 0 530 931 0 2 2.00 158. .0100 0.0 0.0 0.013 2.00 0 531 931 0 4 0.5 410. .0066 0. 8. .016 0.5 2.0 410. .0066 10. 50. .016 2.00 0 532 931 0 4 0.5 423. .0069 0. 8. .016 0.5 2.0 423. .0069 10. 50. .016 2.00 0 533 919 0 2 1.25 172. .0280 0.0 0.0 0.013 1.25 0 534 920 0 2 2.00 311. .0050 0.0 0.0 0.013 2.00 0 535 930 0 2 5.00 606. .0050 0.0 0.0 0.013 2.75 0 536 921 0 2 5.00 205. .0020 0.0 0.0 0.013 5.00 0 537 931 0 2 1.75 108. .0043 0.0 0.0 0.013 1.75 0 538 922 0 2 3.0 118. .0020 0.0 0.0 0.013 3.00 0 539 922 0 2 1.75 108. .0020 0.0 0.0 0.013 1.75 0 540 922 0 2 1.25 94. .0050 0.0 0.0 0.013 1.25 0 541 923 0 2 3.5 134. .0030 0.0 0.0 0.013 3.50 0 542 923 0 2 1.75 108. .0020 0.0 0.0 0.013 1.75 0 543 920 0 2 3.5 990. .0020 0.0 0.0 0.013 3.50 0 544 911 0 2 1.75 375. .0045 0.0 0.0 0.013 1.75 0 545 912 0 2 2.25 217. .0031 0.0 0.0 0.013 2.00 0 546 920 0 2 5.00 311. .0020 0.0 0.0 0.013 5.00 0 547 914 0 2 2.50 198. .0080 0.0 0.0 0.013 2.50 0 548 915 0 2 3.0 194. .0020 0.0 0.0 0.013 4.00 0 549 915 .0 2 2.5 172. .0194 0.0 0.0 0.013 2.00 0 550 915 0 2 1.75 74. .0050 0.0 0.0 0.013 1.50 0 551 917 0 2 4.0 126. .0021 0.0 0.0 0.013 4.00 0 552 546 0 2 4.0 375. .0020 0.0 0.0 '0.013 4.00 0 702 940 0 1 15.0 1580. .0075 25.0 25.0 0.030 3.50 0 703 940 0 1 15.0 1394. .0075 25.0 25.0 0.030 3.50 * POND 2 TRIBUTARY NODES 0 910 544 0 3 0.1 0 911 545 0 3 0.1 0 912 547 0 3 0.1 0 913 516 0 3 0.1 0 914 548 0 3 0.1 0 915 551 0 3 0.1 0 916 549 0 3 0.1 0 917 552 0 3 0.1 0 919 534 0 3 0.1 0 920 535 0 3 0.1 0 921 538 0 3 0.1 0 922 541 0 3 0.1 0 923 543 0 3 0.1 0 926 523 0 3 0.1 0 927 526 0 3 0.1 0 928 528 0 3 0.1 0 930 940 0 3 0.1 Page 4 of 6 I 1 i I JR Engineering HTP 100-Yr Event Input File: HTP-100.in 0 931 940 0 3 0.1 0 932 513 0 3 0.1 0 933 514 0 3 0.1 0 934 515 0 3 0.1 0 936 517 0 3 0.1 0 938 530 0 3 0.1 0 940 434 0 3 0.1 0 944 303 0 3 0.1 0 945 303 0 3 0.1 * POND 2 TRIBUTARY PARKING LOT DETENTION PONDS 0 413 932 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .0000020 6.10 .000029 6.30 .000151 6.48 .00046 6.67 .001046 6.84 .002009 7.02 .005600 7.35 .00857 7.51 .012614 7.67 .018082 7.83 .025129 7.98 0 414 933 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000003 8.18 .000046 8.42 .000252 8.65 .000794 8.88 .001850 9.10 .003707 9.32 .011004 9.73 .016809 9.93 .024183 10.13 .033199 10.32 .043973 10.51 0 415 934 11 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000011 11.12 .000077 11.56 .000274 11.97 .000717 12.38 .001603 12.77 .006570 13.52 .011466 13.87 .017431 14.22 .025118 14.56 .034929 14.90 0 416 913 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000005 7.36 .000076 7.50 .000364 7.64 .001052 7.78 .002339 7.92 .004596 8.05 .013599 8.31 .020900 8.44 .026783 8.57 .034625 8.69 .048793 8.8.1 0 417 936 11 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000004 7.46 .000061 7.94 .000308 8.40 .000923 8.84 .002095 9.26 .004434 9.65 .013995 10.40 .021332 10.76 .030572 11.10 .041823 11.43 0 418 938 11 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000008 5.50 .000085 5.64 .000363 5.77 .001012 5.89 .002196 6.02 .004094 6.14 .010805 6.38 .015808 6.49 .021771 6.60 .028804 6.71 0 420 919 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000002 8.38 .000032 8.60 .000169 8.81 .000566 9.02 .001436 9.22 .003022 9.42 .009459 9.81 .014702 9.99 .021432 10.18 .029680 10.36 .039493 10.54 0 421 917 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000001 6.09 .000019 6.39 .000443 6.95 .001107 7.21 .002318 7.46 .007486 7.95 .012020 8.18 .018157 8.40 .026127 8.62 .036117 8.83 .048213 9.04 0 422 550 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000005 1.90 .000071 2.57 .000385 3.10 .001238 3.55 .002918 3.95 .005680 4.32 .015621 4.96 .023052 5.26 .032168 5.54 .043073 5.80 .055868 6.05 0 423 914 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .001540 2.46 .003364 6.02 .006391 8.15 .017209 11.25 .025313 12.52 .035412 13.67 .047678 14.74 .062322 15.73 .079691 16.66 .100132 17.54 .124093 18.38 0 424 542 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000004 3.55 .000068 3.95 .000382 4.31 .001230 4.65 .003052 4.96 .006403 5.25 .019171 5.80 .028908 6.05 .041031 6.29 .055672 6.53 .072955 6.75 0 425 539 12 2 0.1 1. .001 0. 0. .013 0.1 0.0 0.00 .000004 2.95 .000068 3.47 .000367 3.92 .001150 4.32 .002819 4.69 .005933 5.04 .018045 5.66 Page 5 of 6 I 1 1 1 .027323 5.95 .038829 6.22 .052682 0 426 537 12 2 0.1 1. .001 0. 0.0 0.00 .000006 6.25 .000085 .001223 8.23 .002733 8.79 .005298 .022538 10.74 .032189 11.18 .044068 0 427 536 12 2 0.1 1. .001 0. 0.0 0.00 .000001 9.48 .000018 .000220 10.78 .000510 11.18 .001063 .005926 12.66 .009325 13.00 .013957 * POND 2 0 434 11 2 0.1 1. .001 0. 0.0 0.0 1.70 13.59 3.39 7.94 17.81 9.23 32.53 13.93 19.19 49.11 22.10 404.40 25.05 * POND 3 TRIBUTARY CONVAYANCE ELEMENTS 0 510 942 0 2 2.50 144. .0020 0.0 0 511 942 0 2 2.00 425. .0020 0.0 0 512 943 0 2 3.0 425. .0020 0.0 * POND 3 TRIBUTARY NODES 0 941 511 0 3 0.1 0 942 512 0 3 0.1 0 943 435 0 3 0.1 * POND 3 TRIBUTARY PARKING LOT DETENTION PONDS 0 411 941 12 2 0.1 1. .001 0. 0.0 0.00 .000009 9.21 .000097 .0012 10.06 .00272 10.33 .00522 .0194 11.34 .02635 11.58 .03464 0 412 510 12 2 0.1 1. .001 0. 0.0 0.00 .000004 12.09 .000055 .00084 13.45 .002481 13.88 .005021 .01805 15.46 .025366 15.83 .034334 _* POND 3 0 435 11 2 0.1 1. .001 0. 0.0 0.0 0.03 0.42 0.15 0.35 0.60 0.43 0.65 0.61 1.03 0.80 1.16 33.00 1.30 0 0 'ENDPROGRAM JR Engineering HTP 100-Yr Event Input File: HTP-100.in 6.48 .069003 6.74 0. .013 0.1 6.98 .000418 7.63 9.32 .014969 10.29 11.60 .058345 12.00 0. .013 0.1 9.93 .000079 10.36 11.57 .003567 12.31 13.34 .020014 13.66 0. .013 0.1 14.97 5.13 16.17 38.80 19.03 44.36 989.47 0.0 0.013 2.00 0.0 0.013 2.00 0.0 0.013 3.00 0. .013 0.1 9.50 .000417 9.79 10.59 .01357 11.10 11.81 .04442 12.04 0. .013 0.1 12.56 .00028 13.02 14.29 .012286 15.08 16.19 .045118 16.55 0. .013 0.1 0.50 0.28 0.57 0.70 0.80 0.75 91.85 Page 6 of 6 I 1 1 1 iU m 1 1 1 1 1 i 1 1 i 1 uz F O o 0 a�mmm o 0 0 z U W W ❑ QE C P Z £ o 0 0 O H H z . . . E H £ n E £ 0 O E.Ia-I z P r z H D U h 0 m _ h z P rl O. T Z > OOO H a 0 0 0 a z o E. o m m W M M M W H D c r w m h 0 £ m N /1 F O a O C m Ori W lW/1 i�-1 m m a000 .+ Z— D F W W o 0 0 H h 20 Eo o .m W za h o U cQH w W W n h m v a z m w W Z m fm+] m z x r r a 9000 N aw a z0 FO uld' F W NNN -0ox a m . h o QOm U r h 4) H El E- H .+ W W a 0 --- W 00F m 7U Z . VI ZZ �O tO W ma W P>4 w w. a D W Q — E w D E w H W h U P4 z o E o Q o aQ 0 P m a £ O o o vc9 El w o C4 h o U W z W mH Qz QZHa h m >. xHa vl >. W ❑H ❑Hm0 z E£w a O H(9 H aHU o m m O HO W O W HC9 ❑0w 0 n4 z a Z N ill W W EOoo � L. m E. H H N z v = m m >. W G9 a s z0 El Z O U v.-I z OEM •-.o ❑G.0 r. z W W H D O H z mm 0 0 E000 ❑ 0 a O W> W h 0 H E. H H (n . W D Hz 7 ❑H Zm N ❑.� �- >.0 >.UaH Zo W H Z Zo +Em E. H (9 H 0� H0HZ Um W mw tnOa W -� — N o ❑Q>. E a s a 0 D a C ❑ > a A v Z> 0 0 0 Q W a W O O W — F W O m 0 W w a U> W > a m.4 ZO EO c m U' a W EF M.nr m LD W rko a O z W E. m O Z W z Q z H O h 0 U .4 H N Z H 4 H W£ £ D 3 x£ w h m w a H x N w a m H .D Z W O 0 Z F H a z Q-�o v.o M M >.0 D QF W >.0 W U . «4 pz z W z .7z aQ N 0 O Q `� W a >. R7 N F h O h ❑ OE' £ h m .+ .-� h ❑ W ..1 1-4>. m< O oo 17 G. 14 m c> HmH A4 W E E+ • • . m ❑ z Q O a a > W a ❑ W o o O W LD U z Q 1. W aE Q E Ham- Oa 0 W F H Q m z E. N Q m Dm D a O mF m Z W m m a m D O 3 yr N > ❑ to H D IYi >+ � W H £ a W W m Q h O U 0t9Z E HaW 0Z .7 ❑ D h E.0 H !n£ ~~ H W S Z O k. 4Q.� .0-1 a a woo WH ozz Oo El 0 m ❑Zo £E+ H zo H E AOH. D o o H ❑ .-. ~ .-. ~ ~ x .+ I H F ElQ W a x U I O r N W O W s a zN El ❑ >1 El W H Uc(9 ONM EE+ O x O E W N W O N r x O h O x E Q 7 a W 00 .. W u m Q a .-! .ti 0 .. a ra W W £ W co W O £ W Q w m Q H Q • U:0 + Q H £E D Z •aa H 0 0 a.7 Q H W £ I oo ::)D M ti E 3 ♦ x W ZH k.E. xGu Nz M 0 0 N a 1 I L�J 1 1 1 t 1 'C F1 O U p O u 0 O C .- W v W ai 0o w ao000000000000000000000000000000000000000000000000000 �,,, mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 0000000000000000000000000000000000000000000000000000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0000000000000000000000000000000000000000000000000000 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N rl rl rl N rl .+ .-1 .1 .� .-1 .-1 '-I rl •i •-I rl rl N ri .� e-I rl •-1 •-I N N .-1 .-1 rl r1 •-I '-I rl •i rl .-1 ri �-1 .-1 rl •-1 •-I N rl ti 'i .-1 .-1 rl rl rl N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M M M M M M M M M M M M M M M M M M M M M f+. (+. ....... (+. C. M M M M M M M M M M M M M M M M M M M M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . '. .-... .-. I-.r. •-I r. '-I •-.'. .-..-. r. r. . ti '. .-. .-I r. r. •-I •-I f. r-..-.r. •-I r... .-. r. r. •-. r. r. . . r. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N .-1 -1 N N N N N N �D NNNN N �O l0 r r r r m �D N N N m� O m 0 0 0 N r 1p 01 rl N O M lO M N rl .-1 N 01 N O O N . o O o o O O o . . . . o O o O o O o O O o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 o m o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o m o 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. . N 01 P M N N O r m Ol O O O O O m r r O N O P N .--I .i l0 P .-� l0 O� N r O m M .--I N M •i O M �p N M M N Ol pl 0 0 0 m lD P r l0 N l0 l0 m 01 Ol 01 01 01 Ol r r m W P m r P N r P r m N P N r m l0 r m m m M W W r r� m r �O 01 O1 Ol O\ ....... •-I P P N N N r r N m M M r r r N r P r r N M M M .-. O. ... N .. r. . .-I .-. O N N r N N N N N '-I •-I N .-i rl N .-1 .-� .i .-1 •-I rl •i .-1 .-I .-1 .1 N rl .-� •-I ri m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O P O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r Ol Ol r \p N N M P N .-1 .-I �-1 N N N �O P P P r r M P P M r� M M M N N N M M N M .-1 1p M M N P N N M M •-I N '-I rl •-I N N N P P P P Ol O� Ol NNNNNN N N N N N N N N N 01 N N N NNNN P P P P P P O� P P P P P P P P Ol N N N N M P .-1 N M P N 1p Ol O r1 N M P M P Ol O •-I N M P N �O W O .--I l0 r m Ol O M P N �O r m 01 O .� N M P N 1p r P N �O r O N N O O O O O O O P P P P P O 0 0 .-1 �-1 .-1 .-1 r-I '1 .i .-1 N N N N N N rl ti .y .-� .--1 rl „'� •-I N N N N N N N N M P P P 1 =moo voo � x O o 00 0 000000 ems o {L U a 5- O O O O N O O O O N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O F F N O N O N N O N O r N N 0 0 0 mmmmmmmmmmmmm maw A 0 0 0 0 0 0 0 0 0 0 0 0 0 z Za W 0 2 N N N N N N N N N N N N N Z Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . F . . . . . . . . . . . . . a N W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w>a •momo a aomo 00 N N N N a F m N O O O O O O O O O O O O O O O 000000000000o wHa •••••• •o •o •o 0000000000000 oo o H O H r l H H E m w l0 l0 l0 l0 N N N N N N N N N N M 000000000000o aO� 00000.-I.-1.-IH000000 000000000000o waE o00000000000000 I 1 H W W r r m r x M F NN U' E. OOOOrNNNN V'm Oar m�O 0 0 0 0 0 0 0 0 0 0 0 0 0 M M Z w N N N N N O O H H V' r O1 lO M N N NNNNNNNNNNNN w - NNNN r r rr .IN.-1 •-1 C N N. N N N N. N . N N N a N N + O O + I E E. Owl Owl W W W W N o N o M N o N o m N N o 0 0 rn 0 > 0 > x H E 1p �p �O tp l0 1p tp lO 1p �O l0 �O l0 m 01 W O W E O w N N N N N .- M c c c 0 0 0 0 0 0 0 0 0 0 0 0 o m m U a 3 0 v w a W >. >. Cm N N N o m O O 0 O .07 a w a w N N N N N N N N N o o N N m D H m w a w a w a w a O O O O O O O O O N N N N Z Z ZWZW Z w Z W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O z O Z> Z> W Z> Z> W W W W W W ............ NV H H H aoaomaoaommmmmm H m m H ... H H H N Z O U m Z O O U m U u a a m m m m U \ F (i 00\ O O O O O O O O O O O O O +O +n W N O H 0000 oo o 0m m a —Z m U' 01 Ol O� 01 Ol Ol O� 01 Ol r r m r .-I x x O Z H o Z m N N N N N N • m m a H F £ a a H z m 3 3 > W W a > W H Z z U z x m 0 U Z N N N N N N N N N C M N O H H F U m w W fO1'1O1�Nm �uu aw cai W 0u .4 W Z D m U O E w Z wW a O o 0 0 0 0 000000 W W a a G y U W H W U h Z 0000000000000x u w W » a w Fa a. Ua>> acm 0 u a 4 W �a 00000 o o o 0z z a D. -- OZ O m a M M M M M M M M M t0 N M m a 00 a F m W H a W RC E. m D `..4 m--w o m D z m W O U W U [1 O O D a z Z »� W U Z Z D F >+ � a H m400 oz x 4H000H LDZ WE, Z Z O H U H E D OH EUN N NN N N�-1NMCN w> a E O m Z a E W O O O N N N O O O O O Oa • • 00 >. aaa W H OO DZ m m mN N Nmmmmm NmcC Oar.-i NMNM.-I N a N m Z O. ElW Q aFm U Z Z� m0 N.-1NNNNNNMOO.-1 .-1 a F F H XH U I D a w .7 a Q 0 U I U m m D D W m z Z H W E. u W m £Hmm FF H ❑H wEla FF D a W W x F W a z a D Z m zEa a >. Z S H3 En >� aao•• ° zaa a.aa o x� •• WW m O\O.yNMCNIONMriN a a U U y•�+ w w a a a a o W Fm C C N N N N N N N O O. -- I. E E W w ✓! a + F E F F E mm'' a F O O N N N N 0 0 0 0 0 ...... N N N M M N N O O S S ?. H + 40000 fL Q H D W N N N N N N N N N N N E. EU0 X w + 3EFE E W w 0z M W O M U OD 0 PO I M = a u 00 ' ,c O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c u f l x N W P l0 P M 0 0l Ol _ ^ j• Y rl M P 10 w Ol m W N ' o In o ul o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 II1N It)N OOOOOO.i H 'i rl .i II)01I101I)O NOIn OIIION O N OInO U101n0 .y.. r1 H H •-I P O O O O O O e-1 O .-1 O O O O 10 N N N N N N N N N N N H H H ti H N ' M M M M O H H .-I .y ri M M M M M .O l0 ID l0 .O l0 lD lD t0 tD tp 1p 1p 1p l0 l0 fp �O tD 10 �O l0 .-� .-1 H ri M O O O O O rl r � H O M H M N •-� Ol m .-I Ill •-1 .-1 .-� .-1 .-1 .-1 .-I .-1 .-I .-I .-� .-1 H H •-1 ri H •y .-I .y r1 .-� O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N Ill Ill N N Ill N In N N I(1 O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O ' O M M 10 m Ol r m M H H H rV M N PNOOH H H ri H H OO H OO -1 OOH OO H 01 IA IA In NID Ip ID lOr r OOIII In Nlll b 10 1p .00O ' Ol Ol Ill Ol r 0 0 0 N N N Itl N N l0 1p M M r r W m W W Ill Ill M M N N H N l D m N 0 M u l m m r W 3 M M W W W W P P r r r r M M P P P P I I l I 11 M M M M O ti .+ O m f f ai a.. a.. a E. E. u El D P D El P O o o O o o O o 0 000 O H M 1(. . It. O In O In 0 I . O It. . IA . 1(. . . 0 1I1 O ^I •ti .+� a a s aHP N N N N N N N N N N N a a a a a a a a a a H H H H H m m a m a m M P m T P W m m m P P W W o 3 3 S S S 3 3 3 3 3 3 m m m to W O O O O O O O O O O O > Ol N > N Ill > r m > r m > N In a a a a a a a a a a a a a w a w a w a w a w a w a w a w a w a w a w W H H H H E+ W a W a W a W a W a W a W a w a w a W a W a Z W W W W W Z W Z W z Zz W Z W ZZ W Z W y Zy W Z W Z w Z w Z W mmmm4 mm mm mC.. aff. mw �O�OFCOQOEC0 t040404040 x H I O O H I O O H I O O H I O O H I M W 5 x x x YYYY ��CC 777CCC m mmm0 ma •m� mwa •m� •m wa •�c) u u 0 c) c) U c) U u U U a a a a z z z z z H H H H H N N N N .-1 M M M M M N N N N N P P P P P P P P P P C w W W w w 0ofo OQor cQa7ofo C'1oti t7or O ti • ti 9 • m �m0' m �m0' H H E+ H H m m m m m ' a a a a a H O O H O O H O O H O O H O H O O O O O O O O O O N O N O N O N O m O • O O O O O O O O O O O .y > .i > .-I > .-1 > > M a a a a a W w w w w m m n m m z a a a a ' H N M P tll N M P IIl Ol .--I H N P O P P O O l0 l0 l0 l0 O O IIl 0 0 0 0 0 0 0 0 0 0 0 O O O P P N N . -1 .1 ti .- I •- I f I P Ill O1 Ol Ol Ol Ill I() N it/ P N 01 01 01 01 Ol Ol Ol 01 01 01 01 01 Ol Ol l� r m Ol rl H N M P N H N M P 01 M P .-I N M P N �O O H 1p 0 0 0 0 0 0 0 0 0 0 0 O O O O O O H .-1 .-1 .-1 .-I •-. N N N N Ill 1fl IA r Ol Ol Ol Ol 01 P P P P P N N N N N N N N N N N to o ' c�s0 0 0 00000000000000000000 0 00000000000000000000000 a�v o w O O O O O O O O O O O O � (1 � I l O O O N O � (1 O i t l O N O O O O O N O O O N O� (1 � (1 O � (1 O✓ 1� 0 0 0 O� (1 O O O O O O. W O N O W O O N O N O O r N 0 0 Ul r O N �+l N N N O N O M O N O O O r O r N VI r N r N 0 �fl O O r 0 0 Ul �Il O N m N M M P r N N rl N N N M H M H N N N rl N Ill Ill H M .-1 H (4 rl M rl N N N P N H P P M M O 1 l0 10 lD 1p 10 l0 M M M M m m M M M M M M M M M M M M m W W� W M M M M M M M M m M M M M M M M M M M M 0 0 H .-1 .i rl rl .i H .-1 H .y •-I rl rl '-I N •-I H .i H H H H H rl '-I •-1 '-I rl r-i H H H H H H H H H rl rl •i rl '-I H H H H H .-� .-1 M M O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. O O O O O O O O O O O O O O O O O O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' W O W O W O W O W O ul ul O O O O O O O O O O O O O O O O O O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O O O O O Ul N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . O O V/ �Il Vl �Il O N N N l0 Cl m W W �Il W O O ill W W P P W O O M M N H t0 N W W W P P W O itl r H W P N P tp N O P O �Il �Il N N W W N Ol W M Ol r Ol P ill r P r N P Ol P M O itl .i .I N N r H O O O .+ 0 01 m O Ol r .+ .� O1 W r r N r W 01 M M M M N N N .ti N .-1 rl '-I •-1 H H H P N •-I P P P P .� M �O N rl H •i rl rl Ol M N M .-� .--� .-� H M ill M ' NO 1l ONO 1I OO W MOO 1l W OMNMill 1l ul o IllO M000 W O W MN W N(V MO 1I o1I W O0000 '-I N a a a a ao aw.aw.aw a[.waw as wawxwa wawa ww ZWZDIZW ZDIZW z z oao.toaaaammmaaaaaaaaamamoaaamao.aaaaaaarL ma n�aaarC �C 0 0 o a a a a m a m a a a a a a a a rL a a w o o a a a a a a m a a a a a a a rL m m a m a o 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N P M P M t0 O P O l0 1p lD r r r W W O W .-I .-1 .� Ql O O H .i N N N M M O .ti N O P N N ul r WOO P 01 O1 Ol Ol Ol Ol Ol Ol 01 Ol M 01 Ol 01 Ol Ol Ol Ol Ol 01 01 Ol 01 T Ol 01 01 Ol 01 01 Ol Ol Ol Ol 01 01 01 01 01 01 01 01 01 ill Ol Ol N r W Ol M M P �Il l0 r W 01 O •-I N M P Ul �D r W Ol O .i N M P tll lO r W Ol O �-1 N M P Ill �O r W Ol O .-1 N N M O N N N m�IlNuINN�NNNNNNNu'i W N W M� N NON W M W MNNNiIINNNN�II III Ul ill tnr r Ol Y O h N 00 LV a 1 0 CD .bo c o s o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G . z �> W u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O H .-1 .-1 .-1 H H H r-1 .-1 H .-. .-� H r. H •-I '-I •i 'V N H .� .-1 H .� f`l 1`l f`l (•'1 f'1 ('1 f+/ 0000000000000000000000000.-i r m,-� mm,-� Pm ti mr � m P.+ mr.+ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • o • o • o • o • o • o 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000 •o•o •o •oo •o 1 00000000000000000000000000 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' 10 r m o 1� c r m m ,y 1 i e m 00000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • o • o • o • o • o • o 00000000000000000000000000 0 0 0 0 0 0 1 OOOOOOOOOOOOOOOOOOOOOOOOO H ."1 ill .-1 POD.-� SON �-I N P.1 Ol m.-I �O N.1 �O ' 001or 00 mm 00 00 rm Oro 00 .n 10 00m L. W C. D D D D O o o O o o O o 0 000 O 0 o O o 0 00 O o 00000000000000000000000.+ •.-I • •. •.ti • •.a • •H • •.r a a a a a a a H H H H H H H a a a a a a a m m m m m m y •-I N1 N r rl 01 P M : m N m m > > r > m > mr >mrn > Hrl > rm o >m W W W~~ W W W El ul W W W W W W W W W W W W W W aw o w o.w aw o.w a[.. aw as .aa4 •aa .ma as .ma .rya . a a a a a a a z z z z z z z H H H H H H H m t+l t+l Cl I`l t•1 to M t+l t+/ t+1 t+l (n (n (h (.l f�l t•1 trl n1 (•l ("1 f"1 r1 th N N N N N N N rcryy7oo rcay�om �cy�o� 0o.-+ 0or coo.. 0o O r o a0 .0-I O m O m O O D D D 0 N y N a a a a a a a H O O H O O H O O H O O H O O H O O H O O OOOOOOOOOOOOOOOOOOOOOOOO N O N O .-.0 • N O • •-10 •'i 0.- O a a a a a a a w 14 IW/] N vWi N N a a a a a a a vl r l0 m H 01 N P N m .'-I t+I M t0 W O O f•'1 P ifl r O P M M N f'1 P f"1 l0 m 01 P P rl P t!) P ifl (•1 I•'1 (•'1 P P N N N P P .-I .-1 .-I .-1 f'1 f`l O O f"1 l`l (`l r-1 f1 f`l •y N ✓1 N N tl1 N N N to ill N � N to N 01 O1 N N N N N P f'l f'1 01 01 Ol Ol 01 Ol Ol �-. N f'1 P Ul �O r Ol O .1 N .`l l0 r m 0 .i N t•1 P tp m O P N t+1 P N� r m O ' .4 .i ti rl '-I •-I '-I r1 N N N N N N N f1 t1 t1 t1 l'1 N !•1 P P P .-. .-1 rl •-I '-1 ti N Ol Ol Ol 01 01 Ol Ol 01 01 01 01 01 Ol Ol Ol 01 Ol 01 Ol Ol Ol 01 01 Ol 01 P P P P P P P F C O L � O }V O r Ol P 1p N W ill 10 P 1p W N 00 N CV N MOO O 00 00 P 01 m m m m m m m M m m m .-1 .-1 .-I m M m • O O O O O O O • 0 0 0 0 0 0 0 O O O r W O M �(1 rl r P �D P 1p W r-1 O m r Ol 01 o . . 0 0 0 0 0 0 0 o r vl o 0 0 0 0 0 0 0 o H N O O O O O O O O O O O O O O O O O N O �O H tll N r M M MN W" O r W m Ill W l0 P �O m W r .-I O M �D P Ol e-I m �Il m P O O O O O O O O O O O O O O O O O O .-1 OOH OO.-1 O ri H OO H 00.d OO ti OO.-I H H NNNH.-I .-i .y OO.ti OO.� M N • O O O O O O O O O O O O O O O O O O O O O O O O O �Il N O O O O O N o M .-1 t0 � .-1 � W P N N o S� W 3N ul 3�o ul �P10 3mio 3 ro ',i OIN Ol rlP P '$OlH SN�n 3 O .ti O .-I 0 .+ P O .+ O H .-+ O a a a a a a a a a a a E. w w w w w w W. w w w F F F E+ F F E+ E E F F D P D D P D D D O b D O 000 O O O O O rl O O O 000 000 0 0 0 O P N O O O O O O O rl 0 . .-I • .-1 • H • H • H • r1 N O O O O O H . H • H a a a a a a a a ..iNNm a a a 3 3 3 S 3 3 3 & S 3 3 a a a a a a a a a a a a a a a a a a a a a a H H H H H H H H H H H a a a a w a a w a a a W W W W W W W W W W W W W W W W W W W W W W > l0 O > e-I H .-1 .i P .-1 •-I H E F E E F E E. F E F E W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W ww aw aw aw aw aw new aw aaa aw aw new ' O H I O O H 1 aO O H I O O H I O O H I O O H 1 O O H 1 O O H I r O H H H H I O O H I O O H I O W •°'w •a.aa .mwa ."'[�. awa, a Ww, 'Oi�a3.�maaaL awa .p,a .p,a U U U U U U U U .a U U U a a a a a a a a a a a z z z z z z z z z z z H H H H H H H H H H H N N N N N N N N N N N M M M N N N W W W w w W W OP1 W W W W UO UOM [7 O C7 O m UO UUOO 7 !7 a D�P aa LI P,I a a .H. �� O r W O O O .-+ O O O O H O m O O .-I O • m E+ F F E E+ E+ F E+ F F E. H W 0 0 W W W W W W W W a a a a a a a a a a a O H O O H O O H O O H O O H O O H O O H O O H O Ol H O O H O O H O l0 W •N O .N O •N O •N O N O •NO •N O -. o •OOOOOON O N O rl O 61 �-I i i rl H H .--1 7 M .-I .-1 7 a a a a a a a a a a a w w w w w w W W w W W W W W W W W W W W W a w w w w w w w w w a a a a a a a a a a H ' LD F r O P N 01 r � O N N m .-1 N N •-I O O Ol �Il Ol N ill N ill 01 Ol 01 Vl �fl P Ol � O a ' w z a N N M P N lO r P O H N N m .-1 N Ifl a ' N N N N N N N m .--I H H P P P e-1 .-1 m F P P P P P P P P �Il ill ✓1 Ol T 01 P P P O E i _M Z: O N N a 11 J 1 1 1 r �omNmr r r�nr Pr.nPminmmrim H�omP PPo�nom�nrNinmm.iH o�nN ran �o �n 000 QG ti N .-1 N H N .y r-1 H 'i N H H H H H H •-I N H '-I H H f�f m •m � L ._. N Oi o_ u' o0000000000000000000000000000000000000000000 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 ao 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a m 0 m00000000000000000000000000000000000000000000 a Fo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D m H a E .+Nf'1P .-IN ('1P N�OOHOthP O�OrmQ.OHNt+IP O.-�N �"1 P �(1 t0r mOHNt`IP N�Or00 O O O O '-I H '-I H H •-I N N N N N N N N O O O O H H H .-1 H H H H N N N N N N N N F Z W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W a � o0000000000000000000000000000000000000000000 a. i 0 0 00000000000000000000000000000000000000000000 H m O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H z z H m Oo W � o a a m O a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 az w w W H E LL El ow 0�00000000000000000000000000000000000000000000 N H W 140 z F .7 z a E OW o00000000000000000000000000000000000000000000 E. m (9 a E+ h z a au a S a o 0 0 0 0 0 0 0 0 0 0 o n o 0 0 0 0 0 o n o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a m x F N P W N 0 E F m a a H >+ O 0� m F N N P O P P O z N N 01 Ol 01 01 H m O Z o x o O U H a W i F W E 61 z E. F W E '+ N ('1 P H N t`l P t(1 1p O H N c"1 P VI lD r m O� (.'1 .� N (�1 P O1 .-1 N f•f P ttl 1p r m O r1 N m P U1 lD r P i x 5 0 0 0 O H H H H H N N N N N N N N N N 0 0 0 0 0 0 H H r H i N N N N N N N N F Z O z as a xw a M O 00 N 00 co a [1 1 1 11 [1 _5_ o P v' r-I 0: W ow Fo000000000000000000000000000000000000000000000000000 5 0000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 0000000M000000000000Poo.a0000000000000000000000000000 P N N N N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l0 N M P 0 0 0 O P 01 Ol01 O\ OlM N .-I N N M P M l0 O O O1 O O l0 0 0 r O m O Ol 00000 0OOO .�I P P MM M N N N m mN N "NN N O101 Ol 0� Oi T 0 Ol 01 el Ol P P m P rINMP NlOr mOlO rINMP NlOr m01O'-INM PNIDrmOI O.-1NMPNlOr m01O.-1NMPNlO r m01O'-1N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N cn 1 I 1 1 1 m>> U 00 O P P M r t. . Ol . N Ol . . . . . . . . . N . Ol . Ol . . Ol . . . .1. C N W Ol P �O r Ol rl H H N W P r N W H l0 H m P N P P N m N r 0 H m H m M N V o000000000000000000000000000000000000 T 0000000000000000000000000000000000000 0000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000m00000000000000000000000000000 0 N N H H 0 0 0 0 0 0 o io 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a O H N U Q H N M O O O O N O W O 0 0 0 0 0 0 0 0 0 0 0 0 0 Ol O O O O O O P O 0 0 0 0 H z w F W A k k t] k � F W 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o z £ cC A U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o u4 Ow W F a z W m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O F W o a a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o z z izi O �C H (] z o a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O W z U m El no O W U' E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 o 0 M O z G. W r n m a H O z wa w W O O O o 0 0 0 0 0 0 0 o O� 0 0 0 M O 0 0 0 0 0 0 r 0 0 Ill 0 0 0 0 0 0 0 0 14 [Wil W o z 0 N N N M P 01 H Q �4 w a z z O (7 O O O O M O P N O O l l l O O O u l O O P O O O N t l l O O N O O m O O m 0 0 0 0 0 a W F W O O N P ill H m P N N m H O �'J N FJ; P P N Ul Ul N � N tll i11 N � r G. pi x h O U I O O O N r W Ol N H O 01 l0 M 01 P H O N O N H P r O P P r W N O rl O P r N O M P N N N MM HHO H O N dL W !n P ill N W N N N P P V1 N P P N N ifl ifl N 1ll N N P N P P r N N N (4' W FC E W rC a o c7 OOOHNmPHOPm�r mMHmHlO W HOM�O W OMMm�O 01r HONM�O O t!; W O OOOONPNH P P H�flmHmmPNNNN mHHOHNH H H.�O N E W IIINNNNNNNN iflN Nell illNNNlll 111 lllN Nell P lllMNN NP NNN uz z m H OH a a a 0o nz z o 3 H W. o U1 aW H N m .-1 N M P O H N M P N l0 r Ol O H N m \O r m 0 H N m P l0 m 0 H N m P ill H E `.4 W r r r Ol 01 Ol 01 Ol Ol Ol W Ol Ol Ol Ol Ol O1 Ol Ot 01 O1 O1 O1 W 01 Ol 01 Ol Ol Ol Ol Ol Ol 01 O1 Ol 01 N a F z w O o •• a z W a k k �I u rY W Q H c co a z W H N � l w 0 � t � � N � � l to l N U N � n l w w �; lD O l0 l0 i(1 1p �I1 1p tp 1p lD �O r l0 O r l0 �Il N O 1p r �(1 l0 l0 H \ Fa 5 O O O O O O O O O O O O O O O O O O O O O O O O O H O O O O O O O O O O O O O O O O N N O O O O O W 00�0 D DOf]�OCIAAA O q� � q ODD � 0 0 0 o m o 0 0 0 0 0 0 0 0 0 0 0 .. o 0 0 o m I o u m m .y N �- W Q`L . 1l. lD t . t(. t0 IA �O 1A l0 l0 l . r. . . . . I(. '-I r. .-. '-. '-I r..-. r-. r. .-. .--. .-. r-..-. r-. .-. . . N iL UI NmitlmOr rmo�nm rm W r Omm r OP'-IOUImmPul PN�PmPOMrM�l1MN SOP W NMN rN W U ul �DmN�U;a; m U( M�; PmrO mNNNHmm 1O NC P rOMC O Oo � �O tp HNP r MmmP w W w U N 4 El N H P P P P P P P P P P P P N P P N P P P P N N N N N N N N N N N N N N N N N N N N N N N N N N N N N .Z £ ow ... N N ... N N N N N N N N N ... m P P P P P P P P P P P P P P P P P P P P P P P ill �Il t(1 N N Ua w I 1 i 1 i i 1 1 1 �n �n vl vl m r W W, r W m 1O r r llo W 10 r vl r m oo vl rl rl rl mr•l rl rlN rl rlm cal rl rl mm mm m mmm m mm m m mmmmrlmmmmc r>MMmMM rl rl rl rl r� rlm fn r•l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 S S U U i o0 N f'1 N H H •-I N H H N N H H N H H H H H ei H N H .-� N .ti N .ti N f'1 .i .-1 1 �O m (�l m C Ol Ol R Ul m 1p M r 0 f"1 P r b C r W r W r 0 W W r c c tll H 111 f"1 Ol H U] H N m r l'l Ol m r 0 .� C C O t0 m v c H t0 Ul O N r r C N t`l N O 1Ol C4 W Or mOIOHNM c�(110r mOIO.-�N('1v Ul l0r mOIO.-1N f7 van l0r mOIO.ti N('1 v �Il tDrmOl O.ti N.-i Nt"/.-lN «1 N N N N N �Il Vl �(1 N N vl � N� N N ifl N N N �fl tll N N N ul N N N ill N N Y) N N W N N N tll N N t(t � ul �(1 r r r m m i 1 1 1 i 0) N m m m m m m m M m m m m m m m m M m m m m m m m m m m m m m m m O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 aa.aaa.aaaaaaaaaaaaaaaaaaaaaaaaaaa wwwwwwwwwwwwwwwwwwwwwwc.wwwwwwwww E+ E E E E E E E E E E E E E E E F F E E F F E F F F E F E E F E U U U U U V U U U U U U U U U U U U U U U U U U U U U U U U U U . `�a' aaaaaaaaaa`�aaa�aaaa`�`�aaa`�aa . . . H H H H H H H H H H H H H H H H H H H H H H H H H H H H � 0 0 0 � 0 0 � � � 0 0 � � � � ❑ � 0 �❑ 0❑ 0 0 0❑ � � 0 0❑ a a a U P N D) O NrONNmN Nr mP HNm01 Pr rl mr rr 4mH01 �ONPN Pai b r �O •-1 N H l0 m N ri lO rl '-I '-I N N N m P N N H N r •-I d) •-I N N •-I U' a a m mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. m m m rn m rn o+ m m m m m m m m m m m m m m m m o+ m m m rn m m m m a W I 1 1 1 1 1 1 ". 9 9 21►111 Wal McCLELLANDS BASIN SWMM 1 I ' APPENDIX K EXCERPTS FROM OTHER REPORTS Final Aporovea Reporr 73, f ?� FINAL DRAINAGE AND PROJECT DEVELOPMENT REPORT FOR THE HARMONY TECHNOL 0 G Y PARK FIRST FILING FORT COLLINS, COL ORAD0 January 23, 1998 � 5 POO u u THE SEAR -BROWN GROUP Standards in Excellence d 9 a a a a a 11 ram_ STAGE -STORAGE -DISCHARGE TABLE - POND A ELEVATION (FT) AREA (ACRES) VOLUME (AC -FT) DISCHARGE (CFS) 4910.09 0.89 0.00 0.0 4910.57 0.44 1.0 4911.0 0.98 0.85 4911.24 1.10 2_0 4912.0 1.14 1.91 4912.23 2.18 3.0 4913.0 1.18 3.07 4913.58 3.78 4.0 4914.0 1.28 4.30 4915.0 1.39 5.63 4.9 NOTE: Discharge values were determined based on the orifice equation, Q=cA(2gH)A I /2 where c=0.6 A=area of orifice opening (7" wide * 10" high) = 0.49sq.ft. H = water surface elevation in pond minus normal depth in outlet pipe (from flowmaster calcs., included herein) for a given discharge. Following is an example calculation. For Q = 2cfs �1 NOTE: �1 2cfs=(0.6)(0.49)(64.4(x-4910.52))^ 1 /2 x=4911.24 Intermediate volumes are interpolated from the stage -storage table provided within this appendix. NORMAL DEPTH FOR POND A OUTLET PIPE Worksheet for Circular Channel Worksheet NORMAL DEPTH -OUTLET PIPE POND A Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.008800 fttft Diameter 21.00 in Discharge 4.90 cis r � Results i Depth 0.69 ft Flow Area 0.88 ft2 Wetted Perimeter 2.38 ft Top Width 1.71 ft Critical Depth 0.81 ft Percent Full 39.52 Critical Slope 0.004954 fttft Velocity 5.54 ft/s Velocity Head 0.48 ft Specific Energy 1.17 ft Froude Number 1.36 Maximum Discharge 15.99 cis Full Flow Capacity 14.86 cfs Full Flow Slope 0.000956 fttft Flow is supercritical. L �J iArr,. fn1 ctfP- vulucS 11112/g7 01:44:22 PM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I 1 ' ' jI 1 I 1 1 I(; I 1 1 I �I 1 I 1 I 1 .1, I 1 1 1, 1 �I I ' o I P_I 11 I I 1 L 1 1 1 4I 1 1 1 P 100 w 0 100 200 — pI SCRLE: g Y gyFBp,M g WAY XTA dB FD �1,� NB Wz ,jz 6Wa� < pa=al wcaF=€W6°W'm0 mii��oF Fa$ aS Z¢Px JF«a6<00< O � a w d n a U' g z � � z LL w w � z W x V z�� omm FAD'130 UNDER THE W2R aF4RN9pl BE Y d J > o_ o w � J Q O Z Z W�C. D•fr aC NO. USES U My of Fart Wlkm WoEOEp My BMW PIA1, APPN & J PPPRMD: r J aS Y_ W Z < CHECKED BM w K S SeNW uNxS ME2 Q % CHEC'EO BY:aS1� WVw CHECKED BY: S EET C9 OF CI00 OHECKED BY: nw oq_ Ox dw No. 39265.00 °REO® BY' i ` / \ I / I _I M,P was amm mass sms 70 �! 1 _ _ M 40� T— �T MEN — Is, — i 121 TWOERWOOD DW415. yty NS z J, D A TYPICAL SWALE CROSS SECTION SWALE SUMMARY TABLE •• - -'� ---a �, -- - _ os1 — — 1 1 1 _yy 1 1 1 1 1 -- y---miss —yWINE MEN — WIN � VMS MEN miss — of 1331E R OIOD ROW DEPTH. (0) SALOP�E. (S) AM VELOCITY A -A 15.0 CFS 1.1' ME AREA C — — — — i GNP ANN AMID ANN, Ow_ <gWWz'& �WZ a `zmmwow �g ao�`S FINCH ItOF nv€ t gbo3 GNP ANN AMID ANN, Ow_ <gWWz'& �WZ a `zmmwow �g ao�`S FINCH ItOF nv€ t gbo3 c w d w zo o w eo a w � a c RT.. SCALE: 1- VE VERi. SCALE: = 4- 1' 4' LEGEND p R� BASIN BOUNDRY m PROPOSED 1• CONTOUR 1 H PROPOSED 5' CONTOUR ------ -- EXISTING V CONTOUR Ri -- -- --- — EXISTING 56 CONTOUR z PROPOSED STDRLI SEWER II1 — PROPOSED STORM SEWER INLET yy gS O INLET PROTECTION y .4 W_ © SEDIMENT TRAP w SILT FENCE ®® CONSTRUCTION ENTRANCE SIPRA /I"1 F--1 SURBASIN / AREA QDESIGN PONT NOTE: 1. SEE DETAIL SHEET FOR BEST MANAGEMENT PRACTICES (BMP'S) FOR EROSION CONTROL. s;P PREPNR0 UNCER THE WCT SJPERM CF m m m fh y < € r i i m Y (L o y O 0 O Z 0 >. E. DATE W J s No. .yyss O Z oa a City of Fort Collins, Colorado UTILITY PLAN APPROVAL U Q JO W APPROVED: W R' ary D,aM.. Dm. C7 Q Q O CHECKED BY: Z Z U ROt� ! ar...e� unity Dot. O Q CHECKED BY: 2 w se ww unity a wECKED BY. _ Pab ! Rcae1M Del. CHECKED BY: Tex E. DOM SHEET CI3 OP CI00 CHECKED BY: oaM doe No. 39265.00 W AREA D 4o z0 D 4D eo HORZ. SCALE: 1' . 4W VERT. SC0.E: 1 - 4' J, a 4 TYPICAL SWALE CROSS SECTION SWALE SUMMARY TABLE SWALE lag[ K ON FLOW DEPTH. (D) I St;L (S) AW VELCOW A -A Is.O CFS LI' 1.D5x 3.3 FT/S NOW: 1. SEE DETAIL SHEET FOR BEST MANAGEMENT PRACTICES (WP'S) FOR EROSION CONT20.. LEGEND __ FPz� >_= wOl�QiiciraF qq6��[W N�56L1>6Ne wooao gwmm IHX MF 3 $god BASIN BWNDRY - PROPOSED V CONTOUR s PROPOSED 5' CONTOUR - - - - - - - FASTING 1' CONTOUR - — — - EASDNG 5' CONTOUR PROPOSED STORM SENER CI ¢ 0 ; ; F PROPOSED STORM SEWN INLET II i I \ � � � OIN ET PROTEC110N PIUNCB TL DIRECT SUPERm9o. � m 0 0 © SEDIMENT LEAP ^� SILT FENCE ®® ff CMSLRIlC 110E FN'RAHIF RIPRAP Y eSUSBASIN / AREA Q Z a W Q DESIGN PONT } U 0 - O Z aolw c TLiIE J W Q e caaRAnO P.E. W. .NRss O J City of Fart Collins, Colorado Z Z CL em UTILITY PLAN APPROVAL Q O W APPROVED: Wm W W f� Q� my r Ceb 0 Z Q } Q O CHECKED BY: C) rn. ! wM.m. uonY DRN O Q CHECKED BY: 2 LY Slomnal� WRY Oe1e LY Q Q CHECKED BY: _ Psb ! RgMlm DaM CHECKED BY: Twne E Da SHEET C14 OF CE00 CHECKED BT: nw, J08 N0. 39265.00 TI�M \ \ �^ W DFFM • seANSI* Ez�ON Olson owes i*� miss moot goo, soon_ toot �most, MOWN 1 \ . 4 AC\sop IF I n T i - 766 °p 1 226 210 1 1.69 AC - w .eelna 'Fs ' 0.86 A e -cRo 7111Fn1E MAL) 11 F ' IWS •�{1 1. C 1 I SNH 1 R, lo. 225 y 1 t i I Y( �� 1.17 AC ' _ " ' '6 1 A A / 1 1 � l 230 1.37 AC 1 s•' 1 " i11M]MUST wARMVG ew �cwe S• 511R142 - _____ — � RCO SDIKT/ ,� ..... 2 § RRR 9 Y 1 .. _ -. to • 1 ODRECT TO OUEnF (DEBUG v Ilr .etc.. --- — SIX; ----- - ----- - 1 Ill _ ---- __'__. __ _—.--h-------- _ I h-== ----- jet------- _ _ ,.53 A - 1 � 1 - 116 r TrvE R ItAET u 1 / , 231 .42 AC Low PONr-e9n.4w s 1 / ` 1.37 AC Me 8MISS loss toot 1 / OPL' 6'_T1PE R INIET v ; uw PgI�B NI• i FF-faOD F' r Act to 1 '1 OS lei 1 t 1 \s uxx 1 1 2 1 70 �1 E22 1 Z04 A I I§ 1 0.81 1 AC C 1 1 1 2 R.aWaeNMvaxa. # �______�___• 1 s or RC 1-,sue 1 1 v ;M S• Rm Di M AREA E V z ww0 6t CODE DI gQew�g@�, 0$0o"�yg Fwnn rc>N€ 0 Nlnw M c w AD 20 D a Bo 0- < a > HORZ. SCALE: 1• - 40' n IC wRT. SCUF r = a' - LEGEND BASIN BCUNDRY PROPOSED 1' CONTOUR Ci 8 PROPOSED 5' C0IITOUR Z "" '--'-- EKISDNG V CONTOUR !W] - -- -� - E%ISDNG 5' OWTOOR W PROPOSED STORM SEWER Z � PROPOSED STORM SEWER INLET fff i II PROTECTION Z SEDIMENT TRAP SILT FENCE MM G44.^10 CONSTRUCDON ENTRANCE ~ RIPRW eSUBB0.4N / AREA O Q DESIGN POINT W NOTE: a 1. SEE DETAIL SHEET FOR BEST MANAGEMENT PRACTICES (WP'S) FOR EROSION CMTROL. S 'u N rRtPURo uxceR THE al¢cT sIPERMwax a Y a o Y NO f7 Z "N E. RATE DAM W J r maxAoo P.F. NO. mom O Z z a U City of Fort Collins, Colorado UTILITY PLAN APPROVAL U Q 0 W APPROKD: W CRY [rgFew Po4 E.9 Z Q r Z CHECKED BY: U weer At wl..a1. Wmy Dow O Q CHECKED BY: m I LwmMs WNy Wit 0 CHECKED BY: _ P.Y ! R.n.nw, on. CHECKED BY: Twmc DtDI Dw SHEET C15 C£ CTOO CHECKED BY: Dew JOB NO, 39265.00 40 20 0 40 Bo HURL SCALE: 1' a 40• VERT. SCALE: 1' {' NOTE: 1. SEE DETAIL SHEET FOR BEST MANAGEMENT PRACTICES (BMP'S) FOR EROSION CONTROL. ME ,y I LEGEND R� BASIN BOUNDRY PROPOSED V CONTDR PROPOSED 5' CONTOUR - — — — — — - EXISTING 1' CONTOUR EXISTING 5' CONTOUR PROPOSED STORM SENER PROPOSED STORM SEMER INLET O INLET PROTECTION ® SEDIMENT TRAP SILT FENCE ®® CONSTRUCTION ENTRANCE RIPRAP eWBBASIN / AREA QDESGN PUNT w PMEO IINMR TIE DIRECT S NDRIASC N 6 AIM E T E WtlIWp P.E. MG, YYM City of Fort Collins, Colorado U'nUTY PLAN APPROVAL APPROVED: _ oty DNYwu CHECKED BY: w •vne..a unKy CHECKED BY: slamRal MIRY CHECKED BY: Pub t ll s CHECKED BY: Tn Ery,w CHECKED BY.- Y�yy 88@ W z W b a w � < NJ Y K a z a o } 0 O ce 2 J W J O o a ° Z U Z Q W O LLJ � Q a } Q O Z Z U O K � Q I SHEET CIO 0FCTLTO JOB N0. 392B3.00 113 1 I 1 1 1 I i Ile PIiCBON OjWE �y — � _ $k UNPLATCD / /l SIM AREA a 9 II 1 1 232 1 1.37 AC J BIMpNG El13 l 0 5 1 1 z OR �s€ Z20 FZz>ow 6W0� F Wao:znJR� HORZ SCALE: 1' . b' MERT. SCALE: 1' C NOTE: 1. SEE DETNL SHEEI FOR BEST MANAGEMENT PRACTICES (MP-S) FOR EROSION CONTRA. LEGEND BASIN BOUNDRY PROPOSED V CONTOUR PROPOSED 5' CONTOUR --"---- EASTNG V CONTWR - "'- — - EKISTNG 5 CONTOUR PROPOSED STORM SEMER R>• PROPOSED WORM SERER INLET O INLET PROTECFM © SEDIMENT TRAP X- X X9 SILT FENCE ® CONsmcnaN ENTRANCE WRAP Is SUBBASIN / AREA QGE M MNT a ; ; w ZZ alEPMED UNDER 1NE DMe CT wvrnNaaN OF '^ mo Y K OL o } W OZ doa E. TVTE DATE O W Q Q C0.MAW P.E. N0. mm O z J O d LEI City of Fart Collins, Cola cic UTILITY PLAN APPROVAL U Q O W APPROMED: MY EnpH— Dea (7 Q CHECKED BY: } az Z O MA. f Re1� UHN. Cc.e O -a U CHECKED BY: Mom tw WRY CHECKED BY: _ vaM Y Nvaellm pela CHECKED BY.- T. E.p... me SHEET C17 a C100 CHECKED BY: URN "NO. 39285.00 1 11 1 I 40 20 0 AO BO . SCAL E: LE: 1• - 4' f I I f I I IE�EE��IE�EER�F.�E� III NOTE: i 1. SEE DETAIL SHEET FOR BEST MANAGEMENT PRACLCES (WP'S) FOR EROSION CONTROL. LEGEND !J 215 L! -_--- g BASIN 60.NDRY \ IRCIPU. • I F PROPOSED 1' CONTOUR I 1.70 AC I I PROPOSED 5' CONTOUR 0 I 1 I — _ - EXISTING 1' CONTOUR \ 3 ' P - E%ISTNG 5' CONTOUR Z3Z I tl O I i O�A� OUT PROPOSED STOW SEVER i.37 AC v1 m PROPOSED STONM SEINER INLET \ / 1 ( N % O INLET PROTECTIXI SEDIMENT TRAP SET "M ®® // I II III I i caNsmucnaN ENTRANCE RIPRA➢ e SUBBASIN / AREA C DESIGN PANT I I �l I I i LEI < E,Z„a W=='a =rs wm� IN tFm�a�� IN F �w'nntW� z�ii«ao< w � PP[PMEO UNDER ME gPE[T 9WENN9W 6 m m 0 �N 0 p8 a o O O OZ �oREADO ME NO. was rn J W J O oa li , City of Fort Collins, Colorado Z UTIUW PLAN APPROVAL UW Q O W D: F W f� cr GRrD~ DM. Z Q ay: Z Z O I. w• wM.�E. MayOM• O Q U Br smo.m. UNRy Ow K 0 BY: _ Pw4 s llwalbn apb BY: T AME En Dvb SHEET C18 DF C1o0 Br. OR* JOB No. 39255.00 1 �W i3€�Wpa C aD `Egmea��m€ BEE AIEIIE ... �5o$ao N iiiiiin AIIIIIF a¢r INN I_ _ _J,L DPIIR ♦. ♦ t O♦ ♦ .'" J HOHz. SCALE 1• - Waff ' Of r BlYNJ2 RO 11w[ 1HC M . O $ DPAAA SMN31 ner "110 Al♦ `/ERTSCALEI' - 4- ♦ ISil018E w C tl a oft n AU Of Of ` ♦ NOW All 1. 1 {� ♦ANAGEMENT 42V* ♦. PRAACCTICES (OWNS)E DETAIL FOR EROSIONT FOR BEST MCONMOI_ ♦ I i / 9.4L A M 1 — LEGEND z s l / lillillip BARN BOIJI W 1 PROPOSED 1' CONTOUR PROPOSED 5' CONTOUR Z EMSTNG 1' CONTOUR 1 1 j i1 L BURIED RIMA TYPE - — --- - MISTING S' CONTOUR 7+ L BURED RIPRAP PROPOSED STORM SEVER W Ti 1 PROPOSED STORM SEVER INLET x INLET PROTECTW ~ < SENMRIT MAP X--X�g SILT FENCE x ® CCNSIRUCTCN ROMANCE J 11 II I RIPRAP SUBBA4N /AMA � Imin Milli I Q < .. DESIGN PONT In DPIL - OND &49 AC ; / 1 I / if 1 gEPMFD LN.'EX M CIStt AROlN9O! ff M<n�oz 1 _ _ a Of milli ��>•a..a.i. • o _. _. _ _ _ _ __ _ _ ._ aDlx E nv1F DATE p Z -IIIIIIIIN MMADO PE NO 3,Ng� HOCK CR®C OfiVE ^--�,s-�s.�.� — _ _ _ d c / I City of PL�RInns, Col Aldo Z Q F o -> __.. \— - _: - i--�-� - - APPROVED: lil W 0' 1 T —_' — — _" —_ _ DNr DyH.. D.1. p Q CHECKED 8v: MM • ro.x.m. uuRy Dm. Z Z pU O Q CHECKED BY: Of Sbm.at. UnXy Po1. Q CHECKED BY: _ Ding DHEGKED BY: Tmm F� Dill SHEET C19 aF Ct00 CHECKED BY: D.N daB NO. 39285.00 =w J AiJ B J 6��p Zj�Q3 C= _ _D llmw%V�33mOp BEE ARFaF mWbovbovo El�4 • I k 1 w m o w ao RORL SCALE 1' - w' u —+ .ri mom NEt 1a 1 1 ` _. �_ \\ WRT. SCAEE 1• _ A' CT H of r sa ��—rr—ter 1 x°o�ee Ir u _ r r 50 O O ._ _ NOTE' Q. \�\ O t DPe IR ' 08 PRECIBpN ORIVEATIat1 . -_ 1 -+_'-' — 1. SEE DETAIL SHEET Fai BEST YANAC£MQIT d a%auTnl ` _ _— PRACTICES (BMWS) FOR EROSION CONTROL K C A� 7 fI , STM'2 - LEGEND — 8 lO5'x10.5g6' T1PE BASIN BWNCRT 6.0'x6.0'x16' r E L L BURIED RIPRAP S DPD 1 1 , PROPOSED 1' CONTOUR xi $I$ 1 PROPOSED 5CONTOUR !W] BURIED RIPRAP $ EXISTNG Y Cp1TWR W EXISTING 5- CONTOUR z 1 PROPOSED STORM SEWER g 1 PROPOSED STORM SEWR IXIET z q I arse R..n IIIy E 1011 M1NM1IWIM I © INLET PROlEC11CN W SEDIMENT WAR 9 e OND • ar 2 RUP I X -3E—X SILT DENCE Wti < B.SB AC R[t I I I I ® CONSTRUCRM ENTRANCE Iw Hi RIPRAP I !/■/�/�/� j \ RESIGN P /AREA RESIGN V I7 I Q aer UM 1 I$G 1 TI' +13 I M1U • ` 4 TYPICAL SWALE CROSS SECTION _------ I I SWALE SUMMARY TABLE 1 ImmE la x Q100 nDM CfPM 1) 9 IS) AM pyply C ► 1 325'x20'x11'CLASS `` \\ 6 BURIED RIPRAP r`I "---- ML �� ROCK CREEK DRWE ._ _. t OPO _ . I 33 W 3 f I xvAReD wDm rlc YREcr svrnRsa OF in m m Y 0- o > N ED O 0 W N E. rmTE DAIS ADD PL xa wW J O 6 J a = City of Fart Collim Colorado Z Z UTILITY PLAN APPROVAL U Q JO W D: d fY aty F ff DaY F Q Q } O By, O ets a tM.r..et_ r DYe Q BY: Mt mty Uunr Ma Q BY: _ Pvlu R Rqutlm Op. BY: Tmm rm... D.n SHEET C20 d C100 BY: wH. .Io6 No. 39265.00