HomeMy WebLinkAboutDrainage Reports - 11/13/1992Final Approved Report
Date,'.�
FINAL DRAINAGE AND
EROSION CONTROL STUDY
FOR
THE UPPER MEADOW AT
MIRAMONT FIRST FILING
FORT COLLINS, COLORADO
FINAL DRAINAGE AND
EROSION CONTROL STUDY
FOR
THE UPPER MEADOW AT
MIRAMONT FIRST FILING
FORT COLLINS, COLORADO
November 10, 1992
Prepared for:
Client:
Nordic/Neal Partnership
309 West Harmony Road
Fort Collins; CO 80526
Prepared by:
RBD, Inc. Engineering Consultants.
2900 South College Avenue
Fort Collins, Colorado 80525
(303) 226-4955
RBD Job No. 504-001
5'
BERM
�. EL 4414.6
1
BURY w/6" OF TOPSOIL, -�
120 MIN. . lRIP-RAP
(NO SMALLER ROCK FRAGMEN
ON 12" -THK. TYPE 11 CDOH
CLASS A BEDDING MAT'L.
(SECTION TAKEN LOOKING NORTH)
SCALE: 1 "=5'
. RIPRAP EMBANKMENT PROTECTION LIMITS = 31
DETAIL
(SECTION TAKEN LOOKING..EAST)
N.T.S.
a
EL a0)n.
r' •! 4
r-•• /-r•
v=100 yd %Ac
Or Overaxcavate Permanent Pond by
Es4,imzzd Sediment Load
D E
[__INITIAL POND MUST CONTAIN AT LEt
_ 1.26_ACR.E_F_EET_OF... V_0LU_ME.
RMINC.
Engineering Consultants
2900 South College Avenue
Fort Collins, Colorado 80525
' 303/226-4955
FAX:303/226-4971
November 10, 1992
Ms. Kathy Malers
City of Fort Collins
Utility Services Stormwater
235 Mathews
Fort Collins, Colorado 80522
RE: Final Drainage and Erosion Control Study
for The Upper Meadow at Miramont First Filing
Dear Kathy:
We are pleased to resubmit to you, for your review and approval, this Final Drainage and
Erosion Control Study for The Upper Meadow at Miramont First Filing. All computations
within this report have been completed in compliance with the City of Fort Collins Storm
Drainage Design Criteria
' We appreciate your time and consideration in reviewing this submittal. Please call if you
have any questions.
Respectfully,
RBD Inc. Engineering Consultants
' Roger A. Curtiss, P.E.
Project Engineer
Kevin W. Gingery, .E.
Project Manager
cc: Gary Nordick
' Other offices: Denver 303/458-5526 • Vail 303/476-6340 • Longmont 303/678-9584
'
TABLE OF CONTENTS
DESCRIPTION
PAGE
I. GENERAL LOCATION AND DESCRIPTION
A. LOCATION
1
B. DESCRIPTION OF PROPERTY
1
'
If. DRAINAGE BASINS
A. MAJOR BASIN DESCRIPTION
1
B. SUB -BASIN DESCRIPTION
1
'
III. DRAINAGE DESIGN CRITERIA
A. REGULATIONS
2
'
B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS
C. HYDROLOGICAL CRITERIA
2
2
D. HYDRAULIC CRITERIA
3
'
E. VARIANCES FROM CRITERIA
IV. DRAINAGE FACILITY DESIGN
3
A. GENERAL CONCEPT
3
B. SPECIFIC DETAILS
3
'
V. EROSION CONTROL
A. GENERAL CONCEPT
9
B. SPECIFIC DETAILS
9
VI. CONCLUSIONS
A. COMPLIANCE WITH STANDARDS
11
B. DRAINAGE CONCEPT
11
'
C. EROSION CONTROL CONCEPT
11
REFERENCES
11
APPENDIX
VICINITY MAP
1
HYDROLOGY
2
PERMANENT DETENTION POND FIRST FILING
7
'
TEMPORARY DETENTION POND BOARDWALK DR. & LEMAY AVE.
34
DESIGN OF INLETS, STORM SEWERS AND SWALES
41
RIPRAP DESIGN
63
'
EROSION CONTROL
69
CHARTS, TABLES AND FIGURES
74
REVISIONS FROM PREVIOUS REPORT
' 1. Minor text modifications.
2. Add overflow weir to temporary detention pond.
3. Change swales from 3:1 to 4:1 side slopes.
' 4. Revise Basin 4 time of concentration.
5. Minor clarifications and additions to the drainage plan.
6. Minor clarifications in the text of the report
I
. 1.
FINAL DRAINAGE AND
EROSION CONTROL STUDY /
FOR
THE UPPER MEADOW AT
MIRAMONT FIRST FILING
FORT COLLINS, COLORADO
GENERAL LOCATION AND DESCRIPTION
' A. Location
The Upper Meadow at Miramont First Filing development is located in the
' southeast part of Fort Collins, south of Harmony Road and west of Lemay
Avenue. The Upper Meadow at Miramont is shown on the Vicinity Map in
the Appendix. More particularly, the site is situated in the east half of
' Section 1, Township 6 North, Range 69 West, of the 6th P.M., City of Fort
Collins, Larimer County, Colorado.
' B. Description of Property
The Upper Meadow at Miramont First Filing contains 20.1 acres more or
' less of which all of the area is currently undeveloped and being proposed
for residential development. The site currently consists of cultivated
farmland and is part of the Oak/Cottonwood Farm Development. The Mail
Creek irrigation canal runs in a northwest to southeast direction immediately
south of the First Filing. Topography at the site is generally sloping from
northwest to southeast at approximately 1.4% .
II. DRAINAGE BASINS
A. Major Basin Description
' The Upper Meadow at Miramont First Filing lies within the McClellands
Basin per the vicinity map in the appendix. No major drainageway exists in
the Oak/Cottonwood Farm site.
B. Sub -Basin Description
' Historic drainage patterns on the subject site are southeasterly across the
site to the three existing 36" RCP's under Lemay Avenue which direct storm
water runoff east through the existing Oakridge Development. An off -site
basin (0-2) lies to the west of the First Filing and this basin contains the
' rear lot runoff of the existing residential development. This off -site storm
water runoff currently enters the First Filing site at the southwest corner of
' the site. A second Off -site basin (0-1) lies north of the First Filing and
currently storm water runoff from this site sheet flows across the First Filing
site.
DRAINAGE DESIGN CRITERIA
A. Regulations
The City of Fort Collins Storm Drainage Design Criteria is being used for the
' subject site.
B. Development Criteria Reference and Constraints
The Upper Meadow at Miramont First Filing historically drains southeasterly
under Lemay Avenue and through the adjacent Oakridge development. The
' McClellands Basin Master Drainage Plan criteria and constraints
recommends on -site detention using a staged release rate of 0.20 cfs/acre
for a 10 year design storm and 0.50 cfs/acre for a 100 year design storm.
' Downstream improvements have been completed within the Oakridge
development to accept a maximum storm water runoff of 0.5 cfs per acre
for all storm events from the Oak/Cottonwood Farm site per the report titled
"Master Drainage Study for the Oakridge Business Park". Portions of the
Oak/Cottonwood Farm site contain existing developments which do release
their respective storm water runoff at the 0.5 cfs'per acre requirement.
C. Hydrological Criteria
' The Rational method is being used to determine runoff peak flows from the
site and surrounding off -site tributary areas. The 2 and 100 year rainfall
criteria, which was obtained from the City of Fort Collins, is the criteria
' which was utilized. This criteria is included in the Appendix.
The SWMM model, as acquired from the Urban Drainage and Flood Control
' District, was utilized for the Overall Drainage Plan of the Oak/Cottonwood
Farm site within the McClellands Basin. Because The Upper Meadow at
' Miramont First Filing requires the construction of Boardwalk Drive for
access to the site, a number of permanent drainage components under and
adjacent to Boardwalk Drive are required to be constructed at the time of
' development of the First Filing. In order to finally design the drainage
components associated with Boardwalk Drive, the SWMM model, as
developed for the Oak/Cottonwood Farm Overall Drainage Plan, was
' updated to include the First Filing final design components.
2
1
' D. Hydraulic Criteria
' All calculations within this study have been prepared in accordance with the
City of Fort Collins Drainage Criteria.
' E. Variances from Criteria
No variances are being sought for this project.
IV. DRAINAGE FACILITY DESIGN
A. General Concept
The Upper Meadow at Miramont First Filing is planned as a single family
' residential housing development. The First filing will include 62 lots. Storm
water flows will be generally routed along historic drainage patterns.
Included in the back pocket of this report is the drainage plan for the First
Filing.
B. Specific Details
'
Basins 1, 2, 3, and 4 lie within The Upper Meadow at Miramont First Filing.
Basin 1 is proposing to utilize the street conveyance of Boardwalk Drive to
transport developed storm water runoff to the downstream low point in
Boardwalk Drive at design point 1 where the runoff will enter a roadside
ditch and be conveyed to a temporary downstream detention pond. The
'
temporary downstream detention pond is in the location of the permanent
detention pond. When the future filing street connects into this low point on
'
Boardwalk Drive, from the west, the future filing street will contain sump
inlets and a storm sewer to drain the intersection into the downstream
roadside ditch, but in the interim water will sheet flow into the ditch at the
'
site of the future intersection.
Basins 2 and 3 are proposing to utilize the street conveyance systems
within the First Filing to transport their developed storm water runoff to the
low points at design points 2 and 3. Within basins 2 and 3 a storm sewer
system has been provided to transport the 2 year storm water runoff into
the permanent detention pond adjacent to the First Filing. The 100 year
'
storm water runoff from both basin 2 and basin 3 is proposed to be
transported into the detention pond by the streets, storm sewer systems,
'
and a grass swale over each storm sewer system.
Basin 4 contains the permanent detention pond and swale "A" for
conveyance of the off -site residential development storm water runoff from
'
3
LII
r
basin 0-2, around The Upper Meadow at Miramont First Filing. Swale "A"
is also to be utilized for the Mail Creek Ditch maintenance access along the
north side of the Ditch. The. detention pond will be discussed later in this
report.
Boardwalk Drive will contain basins 5, 6, and portions of basin 1, 0-1, and
0-5. Boardwalk Drive is planned as the major access route to The Upper
Meadow at Miramont First Filing. For the final design of Boardwalk Drive,
various Oak/Cottonwood Farm overall drainage components required being
designed. Included below is a discussion of each of the Boardwalk Drive
overall drainage components and how they were addressed along with The
Upper Meadow at Miramont First Filing.
a. Off -Site Basin 0-1
This basin currently contains a small church in the northwest corner
of the site. The remainder of the site is at historic conditions with
native grasses covering the site. As shown on the Oak/Cottonwood
Farm Overall Drainage Study by RBD Inc. dated May 1992, the
northern portion of this basin sheet flows onto Boardwalk Drive and
the southern portion of this basin sheet flows onto The Upper
Meadow at Miramont First Filing site. Along with development of The
Upper Meadow at Miramont first Filing, a landscaped berm will be
constructed along the north property line of the First Filing of
Miramont. Along with construction of this landscaped berm, off -site
historic drainage from basin 0-1 will be redirected easterly onto
Boardwalk Drive and conveyed southeasterly in Boardwalk Drive. A
letter from the adjacent property owner, with their approval to
construct the off -site landscaped berm, is included on page 41C in
the Appendix.
In the Oak/Cottonwood Farm Overall Drainage Study, Basin 0-1 was
noted as having the same storm water runoff discharge requirement
of 0.5 cfs/acre as the remainder of the Oak/Cottonwood Farm
development. Also on the Overall Drainage Plan, a storm sewer
system was shown in Boardwalk Drive to drain a future detention
facility at the southeast corner of basin 0-1. With development of
The Upper Meadow at Miramont First Filing and Boardwalk Drive, the
conveyance capacity of Boardwalk Drive during the initial storm (10
year) was found to be 12.9 cfs. Basin 1 of the First Filing will be
contributing 7.33 cfs of storm water runoff onto Boardwalk Drive
during the 10 year storm event. Thus 5.57 cfs of available capacity
exists in Boardwalk Drive for storm water conveyance from basin
0-1 during the 10 year storm event. The requirement of releasing
Id
F
L_
11
11
11
1
1
0.5 cfs/acre from basin 0-1 would mean that basin 0-1 is entitled to
release up to 22.9 acres times 0.5 cfs/acre = 11.45 cfs of storm
water during the initial storm event (10 year). With Boardwalk Drive
only able to convey 5.57 cfs of additional storm water runoff from
basin 0-1, this leaves 11.45 - 5.57 = 5.88 cfs of runoff over and
above the Boardwalk Drive conveyance capacity. Given the area of
basin 0-1, 22.90 acres, and a maximum release of 5.57 cfs of storm
water from the site, yields an allowable release rate for the 10 year
storm of (5.57/22.90 = 0.24 cfs/acre) for basin 0-1. An agreement
from the property owners of basin 0-1 to limit the initial storm water
runoff discharging onto Boardwalk Drive is included in the Appendix
on page 41A. Boardwalk Drive has been designed to convey the
fully developed detained storm water runoff from off -site basin 0-1 on
the street surface instead of under ground in a storm sewer system.
For the major storm event (100 year) the requirement of releasing 0.5
cfs/acre from basin 0-1 would mean that basin 0-1 is entitled to
release up to 22.9 acres times 0.5 cfs/acre = 11.45 cfs of storm
water onto Boardwalk Drive. Basin 1 of the First Filing will be
contributing 15.7 cfs of storm water runoff onto Boardwalk Drive
during the 100 year storm event. The conveyance capacity of
Boardwalk Drive during the major storm (100 year) was found to be
107 cis. Therefore Boardwalk Drive has adequate conveyance
capacity during the 100 year storm event.
Off -site Basin 0-3 and On -site Basin 6
On the Oak/Cottonwood Farm Overall Drainage Plan, basin 0-3 is
ultimately planned to be regraded to drain southeasterly away from
Boardwalk Drive and towards a detention facility at the southeast
corner. Until Basin 0-3 is developed, the basin will temporarily sheet
flow historic storm water runoff onto Boardwalk Drive and be
conveyed downstream from design point 6 by the storm sewer and
roadside ditch conveyance system. The storm sewer system at
design point 6 has been designed in conformance with the
Oak/Cottonwood Farm Overall Drainage Plan to convey the
(ultimate after grading of Basin 0-3 and Basin 6) 25 year developed
storm water runoff from Basin 6 (Boardwalk Drive). The 25 year
design is conservative. Storm water runoff during a 100 year storm
event in Basin 6 will pond up in Boardwalk Drive at design point 6,
meeting the 100 year street ponding criteria, and either enter the
storm sewer system inlet at design point 6 or cross over the crown
of the street and proceed to the downstream roadside ditch
conveyance system. In the interim, the storm sewer system at
5
' design point 6 is adequate to accommodate the historic storm water
runoff from Basin 0-3.
' c Off -site Basin 0-4
On the Oak/Cottonwood Farm Overall Drainage Plan, this basin is
ultimately planned to drain easterly into a future storm sewer system
and the roadside ditch along the west side of Boardwalk Drive. With
construction of Boardwalk Drive, construction of the ultimate
roadside ditch section along the west side of the street is also
proposed at this time. The SWMM model was updated for the
'
changes proposed with basin 0-1 and the development proposed
herein, and the roadside ditch has been designed in conformance
with the Oak/Cottonwood Farm Overall Drainage Plan.
'
At the southeastern corner of basin 0-4 a culvert is proposed under
Boardwalk Drive to convey the roadside ditch storm water under the
'
street and into a downstream roadside ditch on the eastern side of
Boardwalk Drive. The culvert was sized with the revised SWMM
model hydrology and has been sized to pass the 25 year storm
event under Boardwalk Drive in accordance with the
Oak/Cottonwood Farm Overall Drainage Plan. For the 42" culvert
sizing, the future anticipated land uses were used in the SWMM
modeling to determine the potential runoff from basins adjacent to
the roadside ditch and into the 42" culvert. In the event of a 100
year storm reaching the 42" culvert upstream end at Boardwalk
Drive, storm water will pond up with the majority of the water passing
through the culvert. Excess storm water runoff not entering the
culvert is proposed to overflow onto Boardwalk Drive and be
conveyed easterly to the low point at design point 0-5. From the low
point at design point 0-5, excess runoff from the 42" culvert would
' either pass through the storm sewer system under Boardwalk Drive
or pond up and pass over the crown of Boardwalk Drive, meeting
the 100 year street ponding criteria, and proceed northerly into the
roadside ditch behind the street.
d. Off -site Basin 0-5
' On the Oak/Cottonwood Farm Overall Drainage Plan, a portion of
basin 0-5 is ultimately planned to drain northwesterly into the
' roadside ditch located in basin 0-4 at the upstream end of the 42"
RCP. The other portion of basin 0-5 is ultimately planned to drain
into the storm sewer system at the low point in Boardwalk Drive
' adjacent to Lemay Avenue (design point 0-5). In conformance with
' 6
t
1
F-
L
t
the Oak/Cottonwood Farm Overall Drainage Plan, the storm sewer
system at the low point in Boardwalk Drive, west of Lemay Avenue
(design point 0-5), has been designed to convey the 25 year
developed storm water runoff ultimately anticipated to reach the
storm sewer system. The 25 year design is conservative. The 15
foot inlet at design point 0-5 has been designed as if basin 0-5
(ultimate basin 212 per the Overall Drainage Study) sheet flowed
onto Lemay Avenue and Boardwalk Drive and did not contain an
internal storm sewer system. A storm sewer stub out of the back of
inlet number 5 has been provided in the event an internal storm
sewer system is proposed upstream of this inlet within ultimate basin
212. Storm water runoff from a 100 year storm event reaching inlet
number 5 would pond up and a portion of the runoff would enter the
storm sewer system and a portion of the runoff would cross over the
crown of Boardwalk Drive and proceed northerly to the roadside
ditch. Ponded storm water at this location meets the 100 year street
ponding criteria.
e. Basin 5
This basin contains only the eastern portion of Boardwalk Drive and
drains to a low point at design point 5. An inlet has been designed
at the low point to convey the 25 year storm water runoff from the
street to the roadside ditch in conformance with the
Oak/Cottonwood Farm Overall Drainage Plan. Adjacent to basin 5
the roadside ditch has been designed from the outlet of the 42"
culvert to a temporary detention pond downstream of design point
5. The roadside ditch was sized according to the revised SWMM
model hydrology and in conformance with the drainage concepts
proposed in the Oak/Cottonwood Farm Overall Drainage Plan.
The permanent detention pond located in The Upper Meadow at Miramont
First Filing was sized and the SWMM model was revised to include the final
designed pond hydraulic characteristics. From the design calculations, the
maximum future release from this detention pond is anticipated to be 7 cfs.
This equates to approximately 0.30 cfs/acre from the contributory basins
to this pond. The release rate is less than the 0.50 cfs/acre runoff rate that
the downstream improvements in Oakridge are capable of handling. By
limiting the release rate in this pond, compensation for this reduced rate
should be provided in the future detention pond at Lemay Avenue and
Boardwalk Drive, thus reducing the future pond size. The permanent
detention pond was designed in conformance with the concepts presented
in the Oak/Cottonwood Farm Overall Drainage Plan. An emergency
overflow weir has been provided along the eastern side of the pond to allow
7
storm water to exit the pond and drain onto Boardwalk Drive in the event
the outlet pipe became plugged. Overflows reaching Boardwalk Drive
would be transmitted downstream 'safely by the street, storm sewers, and
roadside ditches to the existing culverts under Lemay Avenue.
With the development of Basin 1 and Boardwalk Drive, a temporary
detention pond is necessary upstream of the three existing 36" RCP's to
control the developed site discharge to 0.5 cfs/acre and be in conformance
' with the Oak/Cottonwood Farm Overall Drainage Plan. Calculations were
made to size the temporary detention pond upstream of the existing 36"
culverts. The temporary detention pond is being located in the northwest
corner of the Lemay Avenue/Boardwalk Drive intersection to avoid the
historic overland flow path of storm water draining to the existing culverts
under Lemay Avenue. Off -site easements are required for this pond and
' the roadside ditch into the pond. The temporary detention pond is
proposed to be excavated into existing ground with a 10" outlet pipe
connecting the pond to the northern most existing 36" culvert under Lemay
' Avenue. It is our understanding that the southern two 36" culverts were not
installed correctly and water stands in these culverts instead of draining.
The temporary detention pond was sized to accommodate the developed
' runoff from basin 1 and Boardwalk Drive (Oakridge Drive to Lemay Avenue)
with one foot of freeboard. An emergency overflow weir has been provided
along the northern side of the temporary detention pond to allow storm
water to exit the pond and drain to the existing 36" culverts in the event the
outlet pipe becomes plugged. When Basin 213 in the Oak/Cottonwood
Farm Overall Drainage Plan develops, then the ultimate detention pond
number 340 will be sized, using the SWMM computer model, designed, and
constructed adjacent to Lemay Avenue.
A subdrain system is being installed in the Miramont First Filing to alleviate
some minor groundwater problems in the area. Based on the report
designing the subdrain system, by Resourse Consultants, Inc., peak flows
from the subdrain are anticipated to be 70 gpm (0.16 cfs). The subdrain is
a gravity system and will daylight into the temporary detention pond at the
northwest corner of Boardwalk Drive and Lemay Avenue.
The low flow pan through the downstream Oakridge Development, is
assumed to be designed to accomodate 1% of the 100 year flow, (100 year
flow of 119 cfs; 1 % of 100 year flow is 1.19 cfs). Therefore the peak flows
from the underdrain system should be able to be conveyed within the
existing low flow pan in the Oakridge Development, and no downstream
impacts to the Oakridge Development are anticipated.
V
1
t
EROSION CONTROL
A. General Concept
The Upper Meadow at Miramont First Filing lies within the Moderate Rainfall
and Wind Erodibility Zone per the City of Fort Collins zone maps. The
potential exists for erosion problems during construction of the First Filing
and after construction until the disturbed ground is again vegetated. It is
anticipated that the First Filing improvements will begin in the fall of 1992
and be completed by the spring of 1993. Thus the new improvements will
be subjected to both wind and rainfall erosion.
Per the City of Fort Collins Erosion Control Reference Manual for
Construction Sites and related calculations in the appendix, the erosion
control performance standard for the subject site is 75.7 % . From the
calculations in the appendix, the effectiveness of the proposed erosion
control plan is 75.3 % during the construction portion of the development.
Therefore the erosion control plan as specifically detailed below, most
nearly meets the City of Fort Collins requirements.
' B. Specific Details
If the curb, gutter, sidewalks, and asphalt are not installed within 6 weeks
' after construction begins, then these improvements should not be included
in the erosion control effectiveness calculations. Given our experience and
the anticipated construction time frame for a development of this size, we
have assumed that the curb, gutter, sidewalks, and asphalt will not be
installed within 6 weeks after construction begins.
' The erosion control effectiveness calculations were completed initially
assuming that the roadways contain bare ground for the first six weeks and
' all other disturbed areas are seeded and mulched immediately after overlot
grading. The effectiveness of this plan was 65 % and thus did not meet the
City's criteria. Therefore a sediment trap was proposed in the bottom of the
' permanent detention pond to collect sediment leaving the disturbed portion
of basins 2, 3, and 4, and the effectiveness of the erosion control plan rose
to 75.3 %. Included below is a discussion of the erosion control measures
' to be taken during construction of The Upper Meadow at Miramont First
Filing.
' Before overlot grading of basins 1, 2, and 3, the permanent detention pond
in basin 4 will be initially constructed such that it will function as a sediment
trap for the improvements planned in basins 2, 3, and 4. The initial
' detention pond, for sediment collection, must contain at least 1.26 acre feet
9
0
' of volume, an outlet pipe with gravel filter, and an emergency spillway.
Once the temporary vegetation seed, mulch (for wind erosion control), and
roadway asphalt and concrete have been installed in basins 2 and 3, the
detention pond can be converted into a final pond. After overlot grading of
the final detention pond and remainder of basin 4, all disturbed areas will
have a permanent seed applied. After seeding, a hay or straw mulch will
be applied over the seed at a rate of 2 tons/acre (min.) and the mulch will
be adequately anchored, tacked, or crimped into the soil. Depending on
' the percentage of the permanent detention pond initially completed for the
sediment trap, the installation of a temporary vegetation seed and later a
permanent seed, with mulch, may be required.
' Once the detention/sedimentation pond has been completed, the overlot
grading can proceed in basins 1, 2 and 3. After the overlot grading has
' been completed in basins 1, 2 and 3, all disturbed areas, not in a roadway,
will have a temporary vegetation seed applied. After seeding, a hay or
straw mulch (for wind erosion control) will be applied over the seed at a rate
' of 2 tons/acre (min.) and the mulch will be adequately anchored, tacked,
or crimped into the soil. After the utilities have been installed, the roadway
surfaces will receive the pavement structure. After installation of the curb
' inlets, the inlets will be filtered with a combination of concrete blocks, wire
screen and coarse gravel.
' After overlot grading has been completed on Boardwalk Drive and the
adjacent cut slopes, all disturbed areas, not in the asphalt and concrete
areas, will have the permanent landscaping improvements installed to
' control erosion. In the event the landscaping contractor will not be installing
the permanent plantings within 6 weeks after construction begins, a
temporary seed and mulch will need to be installed on all disturbed areas,
' not in the asphalt and concrete areas, to control rainfall and wind erosion.
After permanent seeding has been completed, a hay or straw mulch will be
applied over the seed at a rate of 2 tons/acre (min.) and the mulch will be
adequately anchored, tacked, or crimped into the soil. After the utilities
have been installed, the roadway surfaces will receive the pavement
structure. After installation of the curb inlets, the inlets will be filtered with
' a combination of concrete blocks, wire screen and coarse gravel.
' All other disturbed areas within the limits of construction, including the off -
site swales and temporary detention pond, will have a permanent seed
applied after construction is completed. After seeding, a hay or straw mulch
' will be applied over the seed at a rate of 2 tons/acre (min.) and the mulch
will be adequately anchored, tacked, or crimped into the soil. Straw bale
dikes will be installed immediately after the roadside ditch has been
' constructed.
10
1
VI. CONCLUSIONS
' A. Compliance with Standards
All computations within this report have been completed in compliance with
' the City of Fort Collins Storm Drainage Design Criteria.
B. Drainage Concept
' The permanent and temporary detention ponds will adequately provide for
the detention of developed storm water runoff from The Upper Meadow at
Miramont First Filing and Boardwalk Drive. The street conveyance systems
will adequately transport developed runoff from the various contributory
points to sump inlets and storm sewer systems. The storm sewer systems
and roadside ditch will safely convey developed storm water runoff from this
initial phase of construction, to the existing culverts under Lemay Avenue.
The developed storm water runoff has been controlled in order to eliminate
' off -site downstream damage from the 2 year and 100 year storm events.
The proposed drainage concepts presented in this report and shown on the
drainage plan are in compliance with the City of Fort Collins drainage
criteria. No variances are being sought for this project.
C. Erosion Control Concept
The proposed erosion control concepts adequately provide for the control
' of wind and rainfall erosion from The Upper Meadow at Miramont First Filing
and Boardwalk Drive. Through the construction of the proposed erosion
control concepts, the City of Fort Collins performance standards will be
' most nearly met. The proposed erosion control concepts presented in this
report and shown on the erosion control plan are in compliance with the
' City of Fort Collins erosion control criteria. Hay or straw mulch is being
proposed as it has recently proven to be the most economical and efficient
method available to control erosion.
' REFERENCES
1. Storm Drainage Design Criteria and Construction Standards by the City of Fort
' Collins, Colorado, May 1984, Revised January 1992.
2. Erosion Control Reference Manual for Construction Sites by the City of Fort
' Collins, Colorado, January 1991.
11
1
' 3. Overall Drainage Study Oak/Cottonwood Farm in Fort Collins, Colorado by RBD
Inc., May 1992.
4. Master Drainage Study for the Oakridge Business Park in Fort Collins, Colorado,
by RBD inc., September 1990.
12
APPENDIX
IS I.
LL,
V--p
Lu
-n
RJeff 0
Cc ..it WHORSET OTK
........ ... u% up p
.......................
Warren ... ... ...... ...I ......
.....
Lake.: ..
'-A: cc
w
m
THE UPPER MEADOW AT \�-•�--�
\! f`""11'!�.t, ~ �, MIRAMONT FIRS I FILING
HARMONY( ROAD
I.J
-OAKRIDGE
AREA ti
McCLELLANDS BASIN
3 0AHICOTTONWO D FARM
00 COUNTY ROAD 36
... ........ .
ati
.......... .
T.
ii:l
....0
............... ...
Z
A .211
zi z
ml
TRILBY 1 ROAD
z
...
FOSE IL C R E ASIN Fossil Creek
O
Res.ervoir',"
VICINITY MAP
FIGURE 1
I
1
i
1
HYDROLOGY
Li
0
1
11
c
Z LZ �J
O W
o
W 6
Z
O
ULL
c
O
m
fn F--
a
J
D
m U
J
f✓7 Q
U
cr
Q
oc
Q
�
N
N
N
N
N
N
N
N
N
N
N
cL
O
a
s
In U
II
p
11
11
Z
O
N
O
N
H
H W
N
Qrr
S
9
N
o
a0
N s
N r
° m
N
aIn.
N+,
^�
y
In
< O
U U
tn
°
Q
N
?
T
N
i
\
c
_
°'
T
co
o
U)
'-���
z
a
w
J to
W CL
m
o
�
.
cv-Li
W
W
Q
IY
(L
e
0 o co
.%
O
�)
O
.9
; N
N
o
o
Vt
f-
v (h
If)
1—
N v
. rh
f
(v
N
4 o
Q o
0
0
0`
0
I
o
W
M N
°-
to
N
In
kn
N
r
O
dJ
J
Zl
1
N
\9
M
O
111
o
I^
cA
w
m
f
.v
r
W^
W
>+.
CL
O e
oto
�9
M
O
IsO
O
M
�'"
O
O
0
O
O
O
O
o
O
O v
J
N
N
�
v
Ln
N
N
N
-
N
W
Z�
Z
o
IO
O
O
N
tn
N
g
N
N
N
t
N
In
N
M
1.0
Q
V)
O
a
In
cr
o�--
Z
o
p
o
p
D
O
O
O
o
V
l+1
o'
r
10t1
6J
N
J-
'-
6-
�9
N
m Q
Q N
N
m
r
O
ry
M
41
W
zt
o
O
O
p
N
M
T
irk
,9
0
co
� o
N
�I I
Z 11 In
O�
Ul
H.
0
cc
W ,
U
Z
O
U- 3
O Y
cw r
rC z m
F. U W
J
D
m U
• � J
N ¢
U
O
CV 7
J
�
�
a'
N
�9
W.
o
M
M
W
°
Lo
u
o
zu
o
N
r
O
N N
y' N
s
o
*
a N
�-
U C.
t`
O
UNJ
o•
a-
h
P
N
7
a
., •� o
a- m
m
,
o
a
m
o
W
In
\
\
N
W7t'
CL
1—
N
-Zrh
Z
In
I
Q
m
r
o
N
j
N
LQ
ro
C�
r
Qr
o
Li
J
m
N
ac
W
co
-
N
U1
r\,
N
Q �
_
Z~
Z
M
o
N
Pi
_
W
It)
T
N
N
N
Vl
J
toN
C
M
N
N
m
In
i
Z
O
O
o
o
o
p
p
o
0
a
N Q-
w u j
N
r-
In
T
N
W
o-
6
ry
m 0
Q ¢ ..
N
T
o
�^
N
�
9
0
0
0
0
1IN
U
z
Z
a
w
w
_z
0
z
W
U
LY
Q
w
cc
U
J
U
z
U
w
F-
0
z
¢
z
C7
1)
W
O
W
0
z
0
1
i
1
i.
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
a Y. N
i1c o�
MAY 1984
5-3
Q
0
Z
w
W
0
Z�
J `—
W Vj
a
� .S
W
F- W
}�
LO L
W T
Ur �
LL
z
Q,
� L
o�
OE
U) o
[L ILL
O
LL
Q
O
LL_
J
Q
U
a
DESIGN CRITERIA
1
1.
1
1
1
1
1
1
i
1
i
1
1
1
MAY 1984
5-3
i
Q
0
Z
C)
W
0
Z—cy)
�m
J T
Lli
a0
d
� ,c
WC
�W
T v'
0 �w(m
(D:3
u Z�
Q
Q L
O p�
c�
OE
C o
m LL
0
LL
2
cc
0
LL
J
Q
U
n.
H
DESIGN CRITERIA
7/qH
PERMANENT DETENTION POND
FIRST FILING
�I
L.'
CLIENT 1y grad{ k-/Nea I JOB NO. '4y-00�
' INC PROJECT IN / ra rno,[
/1 ! CALCULATIONS FOR And UOlUM e
Engineering Consultants MADE BYRDATE S,-Z% 9HECKEDBV DATE SHEET 8 OF 9H
CSc-
1
0
-- - ...y.
I.
l
f
I
2c� �9 Z
3y, y98
0,-77
7I
1
a
I
!
f
,
{
I
i } 1 '
' 1
1
'
1
I
,
I
I
I
I
I
11
I
I
I
I
I
I
I
I
I
I
I
Ij
I
CLIENT --b-1—drL, C _Xad_ JOB NO.
�NC PROJECT fil i rz 7" CALCULATIONS FOR Pand Ka-h,2
Engineering Consultants MADEBYeW(- OATE-f �91?_ CHECKED BY— DATE —SHEET 3 OF
Ti
PO i1D 77
E 7EAJ
3 -------- -----
Ft 1
/ b,
IV OUT -
.6
# 7-): Cq,-,Y� /7
F C�?P C Cc FS)
0..T 0
i.,I. i 0.
6,,& 3,4� 0.
0 7 3! 0 .
Y ir 2�4_.L_,!
0 79;Z57
-7 b 0,:.
3.0' /,257 7 F. o,; /Z.0
-3,0, 1,25T
74.0. 3, a5 eo 3.6 7f3
75) 6 zsi 6
-7,0 :3.0
7-6 P OF 6EW-111 6_46'Ll, 7:5,00-:
t Ws, T-u); Fj+-�-_ RCP .151 FLOWIAJ6 FLALL�:, 4r, o la. v(1-'re- _r, lei- FL6ws:
NOTE r) M 6 6- 7- coATMgz_ C.4PAC-i-rY, ;cWalyl cgqer �1'
)6-,-7-H FOIC CpIVCke7LC_ __CUZ- VCe7'6 'bU 177Y ?4,1667-
OJ70L-�, 690oV6' 6:�VV /C�7e C-77///
/3-3
Qz� V17 O/j 3"'
t.
or
51AJ& A) A 6(2L),9 7-) 0 P"Oer
WC 71',
:.j...
sj 7'
T
y.- ail
7-8
Rcp— liccr-e4z
16
/ I �Ir
: x
-4
69,6 6 7L, 360 vb
970 0
2. jq
BY(
2;
2
I.
_4 .......... 4
- - - - - - - - - -
- - - - - - - - - - - - -
-- ------ --
4
LI
T
No Text
n/qq
' ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
' DEVELOPED BY METCALF + EDDY, INC..
UNIVERSITY OF FLORIDA
' WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY
1
'TAPE OR DISK ASSIGNMENTS
UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
JIN(1)
JIN(2)
JIN(3)
JIN(4)
JIN(5)
J1N(6)
JIN(7)
JIN(8)
JIN(9)
JIN(10)
'
2
1
0
0
0
0
0
0
0
0
JOUT(1)
JOUT(2)
JOUT(3)
JOUT(4)
JOUT(5)
JOUT(6)
JOUT(7)
JOUT(8)
JOUT(9)
JOUT0 0)
1
2
0
0
0
0
0
0
0
0
'
NSCRAT(1)
NSCRAT(2)
NSCRAT(3)
NSCRAT(4)
NSCRAT(5)
3
4
0
0
0
1
1
WATERSHED PROGRAM CALLED
'*** ENTRY MADE TO RUNOFF MODEL ***
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT
RBD FILE NO. 50400102.DAT
�IUMBER OF TIME STEPS 50
OINTEGRATION TIME INTERVAL (MINUTES) 5.00
1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
.12 .36 .48 .60 .84 1.80 3.24 1.08 .84 .48
.36 .36 .36 .24 .24 .24 .24 .12 .12 .12
.12 .12 .12 .12 .00
' COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT
RBD FILE NO. 50400102.DAT
'SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE
NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO
-2 0 0. .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180
' 201 320 315. 14.8 14.5 .0183 .016 .250 .100 .500 .50 .50 .00180 1
' 202 322 700. 22.9 50.0
203 307 1000. 32.3 80.0
204 301 900. 19.0 80.0
303
650.
5.8
47.0
'205
206
306
650.
7.7
70.0
207
311
650.
13.8
57.0
208
313
950.
41.3
55.0
209
321
435.
23.4
40.0
'210 324 400. 8.9 40.0
211 325 700. 10.9 40.0
212 328 400. 4.2 70.0
213 340 700. 9.1 70.0
'214 330 2200. 1.6 90.0
215 331 35. .7 90.0
216 329 35. 1.0 90.0
OTOTAL NUMBER OF SUBCATCHMENTS,
16
TOTAL TRIBUTARY AREA (ACRES),
217.38
.0165
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0105
.016
.250
.100
.500
.50
.50
.00180
.0080
.016
.250
.100
.500
.50
.50
.00180
.0235
.016
.250
.100
.500
.50
.50
.00180
.0170
.016
.250
.100
.500
.50
.50
.00180
.0085
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0200
.016
.250
.100
.500
.50
.50
.00180
.0380
.016
.250
.100
.500
.50
.50
.00180
.0055
.016
.250
.100
.500
.50
.50
.00180
.Olio
.016
.250
.100
.500
.50
.50
.00180
.0270
.016
.250
.100
.500
.50
.50
.00180
.0060
.016
.250
.100
.500
.50
.50
.00180
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT
' RED FILE NO. 50400102.DAT
*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
' WATERSHED AREA (ACRES)
'TOTAL RAINFALL (INCHES)
TOTAL INFILTRATION (INCHES)
TOTAL WATERSHED OUTFLOW (INCHES)
TOTAL SURFACE STORAGE AT END OF STROM (INCHES)
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL
'1
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT
RBD FILE NO. 50400102.DAT
217.380
GUTTER
' NUMBER
301
302
' 303
304
305
306
307
30
3099
310
311
' 31
313
320
321
322
323
' 324
1.060
.289
.536
.236
.007
WIDTH
INVERT
SIDE SLOPES
OVERBANK/SURCHARGE
GUTTER
NDP
NP
OR DIAM
LENGTH
SLOPE
HORIZ
TO VERT
MANNING
DEPTH
JK
CONNECTION
(FT)
(FT)
(FT/FT)
L
R
N
(FT)
302
0
2
PIPE
2.5
96.
.0032
.0
.0
.013
2.47
0
304
0
1
CHANNEL
4.0
260.
.0021
2.0
2.0
.035
5.00
0
304
0
2
PIPE
1.3
10.
.0017
.0
.0
.013
1.25
0
305
0
2
PIPE
2.5
40.
.0070
.0
.0
.013
2.47
0
309
0
1
CHANNEL
4.0
460.
.0021
2.0
2.0
.035
5.00
0
309
0
2
PIPE
1.3
10.
.0038
.0
.0
.013
1.25
0
308
0
2
PIPE
1.5
120.
.0033
.0
.0
.013
1.50
0
310
0
1
CHANNEL
.0
1200.
.0050
4.0
4.0
.035
1.10
0
310
0
2
PIPE
2.3
75.
.0211
.0
.0
.013
2.25
0
312
0
2
PIPE
2.5
853.
.0123
.0
.0
.013
2.50
0
312
0
2
PIPE
1.0
315.
.0020
.0
.0
.013
1.00
0
340
0
2
PIPE
3.0
480.
.0100
.0
.0
.013
3.00
0
312
0
2
PIPE
2.3
680.
.0038
.0
.0
.013
2.25
0
321
0
1
CHANNEL
5.0
1350.
.0050
4.0
4.0
.035
5.00
0
324
8
2
PIPE
.1
300.
.0053
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.1 .0
.3
2.6
.8
4.3
1.5
5.5
2.5 6.4
3.8
7.3
5.4 8.0
323
0
2
PIPE
1.3
10.
.0125
.0
.0
.013
1.25
0
324
0
1
CHANNEL
.0
1500.
.0142
50.0
.0
.016
1.50
0
331
0
2
PIPE
3.0
120.
.0050
.0
.0
.013
3.00
0
1
' 325 326 0 1 CHANNEL 4.0
326 327 0 2 PIPE 3.5
327 329 0 1 CHANNEL 4.0
328 329 0 2 PIPE 1.8
329 340 0 1 CHANNEL 5.0
330 324 0 2 PIPE 1.5
331 325 0 2 PIPE 3.0
340 0 0 2 PIPE 5.2
'TOTAL NUMBER OF GUTTERS/PIPES, 26
' COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT
RBD FILE NO. 50400102.DAT
'ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES
GUTTER TRIBUTARY GUTTER/PIPE
' 301 0 0 0 0 0 0 0 0 0 0
302 301 0 0 0 0 0 0 0 0 0
303 0 0 0 0 0 0 0 0 0 0
' 304 302 303 0 0 0 0 0 0 0 0
305 304 0 0 0 0 0 0 0 0 0
' 306 0 0 0 0 0 0 0 0 0 0
307 0 0 0 0 0 0 0 0 0 0
' 308 307 0 0 0 0 0 0 0 0 0
309 305 306 0 0 0 0 0 0 0 0
' 310 308 309 0 0 0 0 0 0 0 0
311 0 0 0 0 0 0 0 0 0 0
312 310 311 313 0 0 0 0 0 0 0
' 313 0 0 0 0 0 0 0 0 0 0
320 0 0 0 0 0 0 0 0 0 0
' 321 320 0 0 0 0 0 0 0 0 0
322 0 0 0 0 0 0 0 0 0 0
' 323 322 0 0 0 0 0 0 0 0 0
324 321 323 330 0 0 0 0 0 0 0
' 325 331 0 0 0 0 0 0 0 0 0
326 325 0 0 0 0 0 0 0 0 0
327 326 0 0 0 0 0 0 0 0 0
' 328 0 0 0 0 0 0 0 0 0 0
329 327 328 0 0 0 0 0 0 0 0
' 330 0 0 0 0 0 0 0 0 0 0
331 324 0 0 0 0 0 0 0 0 0
' 340 312 329 0 0 0 0 0 0 0 0
13liq
420.
.0050
3.0
3.0
.035
3.00 0
100.
.0050
.0
.0
.013
3.50 0
750.
.0050
3.0
3.0
.035
3.00 0
100.
.0100
.0
.0
.013
1.75 0
240.
.0050
4.0
4.0
.035
4.00 0
80.
.0050
.0
.0
.013
1.50 0
80.
.0050
.0
.0
.013
3.00 0
130.
.0015
.0
.0
.013
5.20 0
TRIBUTARY SUBAREA D.A.(AC)
204 0 0 0 0 0 0 0 0 0 19.0
0 0 0 0 0 0 0 0 0 0 19.0
205 0 0 0 0 0 0 0 0 0 5.8
0 0 0 0 0 0 0 0 0 0 24.9
0 0 0 0 0 0 0 0 0 0 24.9
206 0 0 0 0 0 0 0 0 0 7.7
203 0 0 0 0 0 0 0 0 0 32.3
0 0 0 0 0 0 0 0 0 0 32.3
0 0 0 0 0 0 0 0 0 0 32.5
0 0 0 0 0 0 0 0 0 0 64.8
207 0 0 0 0 0 0 0 0 0 13.8
0 0 0 0 0 0 0 0 0 0 119.9
208 0 0 0 0 0 0 0 0 0 41.3
201 0 0 0 0 0 0 0 0 0 14.8
209 0 0 0 0 0 0 0 0 0 38.2
202 0 0 0 0 0 0 0 0 0 22.9
0 0 0 0 0 0 0 0 0 0 22.9
210 0 0 0 0 0 0 0 0 0 71.6
211 0 0 0 0 0 0 0 0 0 83.2
0 0 0 0 0 0 0 0 0 0 83.2
0 0 0 0 0 0 0 0 0 0 83.2
212 0 0 0 0 0 0 0 0 0 4.2
216 0 0 0 0 0 0 0 0 0 88.3
214 0 0 0 0 0 0 0 0 0 1.6
215 0 0 0 0 0 0 0 0 0 72.3
213 0 0 0 0 0 0 0 0 0 217.4
iy/qN
COTTONWOOD FARMS OVERALL DRAINAGE
PLAN 2
YEAR EVENT
RBD FILE
NO. 50400102.DAT
�HYDROGRAPHS ARE LISTED
FOR THE
FOLLOWING
26
CONVEYANCE
ELEMENTS
THE
UPPER NUMBER IS DISCHARGE IN
CFS
THE
LOWER NUMBER IS ONE OF THE FOLLOWING CASES:
'
( )
DENOTES
DEPTH ABOVE INVERT
IN
FEET
(S)
DENOTES
STORAGE 1N
AC
-FT FOR DETENSION
DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW.
(I)
DENOTES
GUTTER INFLOW
IN CFS FROM
SPECIFIED INFLOW
HYDROGRAPH
(D)
DENOTES
DISCHARGE
IN
CFS DIVERTED
FROM THIS GUTTER
(0)
DENOTES
STORAGE IN
AC
-FT FOR SURCHARGED GUTTER
TIME(HR/MIN)
301
302
303
304
305
306
307
308
309
310
311
312
313
340
320
321
322
323
324
325
'326
0
5.
0.
327
0.
328
0.
329
0.
330
0.
331
0.
0.
0.
0.
0.
.0( )
.0(
) .0(
)
.0( )
.0( )
.0( )
.0( )
.0(
) .0( )
.0( )
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
'
.0( )
.0(
) .0(
)
.0( )
.0( )
O(S)
.0( )
.O(
) .0( )
.0( )
0.
0.
0.
0.
0.
0.
0
10.
0( )
0.
.0(
0.
) .0(
0.
)
.0( )
0.
.0( )
0.
.0( )
0.
0.
0.
0.
0.
.0( )
.0(
) .0(
)
.0( )
.0( )
.0( )
.0( )
.0(
) .0( )
.0( )
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.0( )
.0(
) .O(
)
.0( )
.0( )
0(S)
.0( )
.0(
) .0( )
.0( )
0.
0.
0.
0.
0.
0.
'0(
0
15.
)
0.
.0(
0.
) .0(
0.
)
.0( )
0.
.O( )
0.
.0( )
0.
0.
0.
0.
0.
.0( )
.0(
) .1(.
)
.0( )
.0( )
.0( )
.1( )
.0(
) .0( )
.O( )
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
'
.0( )
.0(
) .0(
)
.0( )
.0( )
O(S)
.0( )
.0(
) .0( )
.0( )
0.
0.
0.
0.
0.
0.
'0(
0
20.
)
0.
.0(
0.
) .0(
0.
)
.0( )
0.
.0( )
0.
.0( )
0.
0.
0.
0.
0.
.1( )
.0(
) .1(
)
.1( )
.0( )
.1( )
.1( )
.1(
) .0( )
.0( )
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
'
.1( )
.0(
) .1(
)
.1( )
.0( )
O(S)
.1( )
.0(
) .1( )
.0( )
0.
0.
0.
0.
0.
0.
' 0
25.
.0( )
2.
.0(
1.
) .1(
1.
)
.0( )
2.
.1( )
0.
.1( )
1.
2.
0.
2.
1.
.5( )
.2(
) .7(
)
.4( )
.1( )
.5( )
.7( )
.3(
) .3( )
.2( )
1.
2.
1.
3.
0.
0.
2.
0.
3.
1.
.7( )
.4(
) .4(
)
.6( )
.0( )
O(S)
.5( )
.1(
) .5( )
.3( )
1.
0.
1.
1.
2.
3.
' 0
30.
.3( )
9.
.1(
5.
) .4(
3.
)
.1( )
9.
.5( )
3.
.5( )
4.
6.
2.
10.
8.
1.1( )
.7(
) .0(0)
.9( )
.6( )
.0(0)
.0(0)
.6(
) .7( )
.7( )
2.
15.
9.
22.
0.
0.
8.
4.
9.
9.
0 35.
' 0 40.
' 0 45.
1
' 0 50.
.0(0)
1.0( )
1.1( )
1.6( )
.1( )
O(S)
.0(0)
.2( )
.9( )
.7( )
9.
2.
4.
4.
2.
9.
.8( )
.3( )
.6( )
.4( )
.6( )
.9( )
24.
27.
3.
28.
16.
4.
6.
4.
18.
20.
.0(0)
1.7( )
.0(0)
1.8( )
1.3( )
.0(0)
.1(0)
.8( )
1.0( )
1.2( )
2.
48.
21.
74.
1.
0.
8.
6.
20.
26.
.1(0)
1.9( )
.1(0)
3.1( )
.2( )
1(S)
AM
.3( )
1.4( )
1.3( )
25.
12.
9.
17.
6.
21.
1.4( )
.9( )
1.0( )
.9( )
1.0( )
1.4( )
24.
23.
3.
28.
27.
4.
6.
5.
34.
34.
.0(0)
1.6( )
.0(0)
1.7( )
1.8( )
.1(0)
.3(0)
.9( )
1.5( )
1.6( )
2.
50.
21.
91.
2.
1.
B.
7.
15.
29.
.2(0)
1.9( )
.2(0)
3.6( )
.3( )
.2(S)
.1(0)
.3( )
1.2( )
1.3( )
29.
24.
4.
29.
0.
17.
1.6( )
1.2( )
.6( )
1.2( )
.1( )
1.2( )
21.
22.
3.
23.
26.
4.
6.
6.
28.
37.
1.9( )
1.6( )
.1(0)
1.5( )
1.7( )
AM
.5(0)
.9( )
1.3( )
1.7( )
2.
63.
21.
96.
2.
2.
8.
7.
14.
20.
.3(0)
2.3( )
.2(0)
3.7( )
.3( )
.3(S)
.2(0)
.3( )
1.1( )
1.1( )
20.
25.
3.
29.
2.
14.
1.3( )
1.2( )
.5( )
1.2( )
.5( )
1.1( )
12.
15.
3.
20.
22.
4.
6.
6.
28.
33.
1.3( )
1.3( )
.0(0)
1.4( )
1.6( )
AM
.6(0)
.9( )
1.3( )
1.6( )
2.
54.
21.
88.
2.
3.
B.
8.
15.
18.
.3(0)
2.0( )
.3(0)
3.5( )
.3( )
.3(S)
.2(0)
.3( )
1.1( )
1.1( )
18.
20.
2.
24.
0.
16.
1.2( )
1.1( )
.4( )
1.1( )
.2( )
1.2( )
12.
12.
3.
13.
17.
4.
6.
6.
19.
29.
1.3(' )
1.1( )
.0(0)
1.1( )
1.4( )
AM
.7(0)
.9( )
1.0( )
1.4( )
2.
52.
21.
75.
2.
3.
8.
8.
12.
16.
.3(0)
2.0( )
.2(0)
3.1( )
.3( )
.4(S)
.2(0)
.3( )
1.1( )
1.0( )
17.
18.
1.
20.
1.
13.
1.2( )
1.1( )
.3( )
1.0( )
.3( )
1.1( )
8.
10.
3.
14.
14.
4.
6.
6.
20.
25.
1.0( )
1.0( )
.0(0)
1.1( )
1.2( )
.1(0)
.8(0)
.9( )
1.0( )
1.3( )
2.
47.
21.
72.
2.
3.
8.
8.
14.
15.
.3(0)
1.9( )
.2(0)
3.1( )
.3( )
.4(S)
.2(0)
.3( )
1.1( )
1.0( )
15.
16.
1.
19.
0.
14.
1.1( )
1.0( )
.3( )
.9( )
.2( )
1.1( )
9.
8.
3.
10.
12.
4.
6.
6.
15.
23.
1.1( )
.9( )
.0(0)
.9( )
1.2( )
AM
.9(0)
.9( )
.9( )
1.3( )
2.
46.
21.
64.
1.
3.
8.
8.
12.
15.
'.4(0)
1.8( )
.2(0)
2.8( )
.2( )
.4(S)
.2(0)
.3( )
1.0( )
1.0( )
15.
15.
1.
17.
1.
13.
1.1( )
1.0( )
.3( )
.9( )
.3( )
1.1( )
6.
7.
3.
11.
11.
4.
6.
6.
16.
22.
.8( )
.9( )
1.0( )
1.0( )
1.1( )
AM
.9(0)
.9( )
.9( )
1.2( )
2.
44.
21.
65.
1.
3.
8.
8.
13.
14.
r
1
' 1 15.
1
1 20.
r
1 25.
1
' 1 30.
r
' 1 35.
1
' 1 40.
1
1 45.
r
' 1 50.
1
r
.4(0) 1.8( ) AM 2.9( ) .2( ) .5(S) .2(0) .3( ) 1.1( ) .9( )
14. 15. 1. 16. 0. 13.
1.1( ) 1.0( ) .3( ) .9( ) .2( ) 1.1( )
6. 6. 0. S. 8. 4. 6. 6. 11. 20.
.9( ) .8( ) .0( ) .6( ) 1.0( ) .0(0) .9(0) .9( ) .8( ) 1.2( )
2. 42. 21. 59. 1. 3. 8. 8. 12. 14.
AM 1.7( ) .0(0) 2.7( ) .2( ) .5(S) .2(0) .3( ) 1.0( ) .9( )
14. 14. 1. 16. 0. 12.
1.1( ) .9( ) .3( ) .9( ) .2( ) 1.0( )
5. 5. 1. 8. 7. 4. 6. 6. 12. 18.
.8( ) .7( ) .6( ) .8( ) .8( ) .0(0) 1.0(0) 1.0( ) .8( ) 1.1( )
2. 35. 14. 54. 1. 3. 8. 8. 13. 14.
AM 1.5( ) 1.4( ) 2.6( ) .2( ) .5(S) .1(0) .3( ) 1.1( ) .9( )
14. 14. 1. 15. 0. 13.
1.0( ) .9( ) .3( ) .9( ) .2( ) 1.1( )
5. 5. 0. 4. 6. 4. 6. 6. 9. U.
.8( ) .7( ) .1( ) .6( ) .8( ) .0(0) 1.0(0) 1.0( ) .7( ) 1.1( )
2. 26. 6. 42. 1. 3. 8. 8. 12. 14.
.4(0) 1.3( ) .9( ) 2.2( ) .2( ) .5(S) .1(0) .3( ) 1.0( ) .9( )
14. 14. 1. 15. 0. U.
1.0( ) .9( ) .3( ) .8( ) .2( ) 1.0( )
4. 4. 1. 6. 5. 2. 6. 6. 8. 15.
.7( ) .7( ) .6( ) .7( ) .7( ) .6( ) 1.0(0) 1.0( ) .7( ) 1.0( )
2. 23. 7. 40. 1. 3. S. 8. 12. 13.
.4(0) 1.2( ) .9( ) 2.2( ) .2( ) .5(S) AM .3( ) 1.0( ) .9( )
13. 14. 1. 15. 0. 12.
1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( )
4. 4. 0. 3. 5. 1. 6. 6. 4. 12.
.7( ) .6( ) .0( ) .5( ) .7( ) .3( ) 1.0(0) 1.0( ) .5( ) .9( )
2. 20. 6. 35. 1. 3. 8. 8. 12. 13.
AM 1.1( ) .8( ) 2.0( ) .1( ) .5(S) .0(0) .3( ) 1.0( ) .9( )
13. 13. 0. 14. 0. 12.
1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( )
3. 3. 1. 5. 4. 1. 6. 6. 6. 12.
.6( ) .6( ) .5( ) .6( ) .6( ) .5( ) 1.0(0) 1.0( ) .6( ) .9( )
2. 18. 5. 33. 1. 3. 8. 8. 12. 13.
.4(0) 1.1( ) .8( ) 2.0( ) .1( ) .5(S) .0(0) .3( ) 1.0( ) .9( )
13. 13. 0. 14. 0. 12.
1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( )
3. 3. 0. 2. 4. 0. 6. 6. 3. 11.
.6( ) .5( ) .0( ) .4( ) .6( ) .3( ) 1.0(0) 1.0( ) .4( ) .8( )
2. 18. 4. 32. 1. 3. 2. 6. 10. 12.
AM 1.1( ) .7( ) 1.9( ) .1( ) .5(S) .5( ) .3( ) .9( ) .8( )
12. 12. 0. 13. 0. 10.
1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( )
2. 3. 1. 4. 3. 1. 6. 6. 5. 11.
.6( ) .5( ) .4( ) .6( ) .6( ) .5( ) 1.0(0) 1.0( ) .5( ) .8( )
2. 16. 4. 30. 0. 3. 2. 4. 8. 10.
)t,,/9'I
1
1
i 1 55.
i
2 0.
i 2 5.
' 2 10.
1
' 2 15.
1
i 2 20.
i 2 25.
1
' 2 30.
i
1
AM
1.0(
) .7( )
1.8( )
.1( )
.5(S)
.4( )
.2(
) .8( )
.8( )
10.
11.
0.
12.
0.
8.
.9( )
.8(
) .2( )
.8( )
.2( )
.8( )
2.
2.
0.
2.
3.
0.
6.
6.
3.
10.
.6( )
.5(
) .1( )
.4( )
.5( )
.2( )
1.0(0)
1.0(
) .4( )
.8( )
2.
16.
4.
28.
0.
3.
2.
3.
7.
8.
.4(0)
1.0(
) .7( )
1.8( )
.1( )
.5(S)
.4( )
.2(
) .8( )
.7( )
8.
10.
0.
11.
0.
7.
.8( )
.8(
) .2( )
.7( )
.2( )
.8( )
2.
2.
1.
3.
3.
1.
6.
6.
4.
10.
.5( )
.5(
) .4( )
.5( )
.5( )
.5( )
1.0(0)
1.0(
) .5( )
.8( )
2.
15.
4.
26.
0.
3.
1.
2.
6.
7.
AM
1.0(
) .7( )
1.7( )
.1( )
.5(S)
.4( )
.2(
) .7( )
.6( )
7.
8.
0.
9.
0.
6.
.7( )
.7(
) .2( )
.6( )
.2( )
.7( )
2.
2.
0.
2.
3.
0.
6.
6.
2.
10.
.5( )
.4(
) .0( )
.4( )
.5( )
.2( )
.9(0)
1.0(
) .4( )
.8( )
2.
15.
3.
23.
0.
3.
1.
2.
5.
6.
AM
1.0(
) .6( )
1.6( )
.1( )
.5(S)
.4( )
.2(
) .7( )
.6( )
6.
7.
0.
8.
0.
6.
.7( )
.7(
) .1( )
.6( )
.1( )
.7( )
1.
2.
0.
2.
2.
1.
6.
6.
3.
9.
.4( )
.4(
) .3( )
.4( )
.5( )
.4( )
.9(0)
1.0(
) .4( )
.8( )
2.
14.
3.
21.
0.
3.
1.
2.
5.
6.
.4(0)
.9(
) .6( )
1.6( )
.1( )
.4(S)
.3( )
.2(
) .7( )
.6( )
6.
6.
0.
7.
0.
5.
7( )
.6(
) .1( )
.6( )
.1( )
.7( )
1.
1.
0.
1.
2.
0.
6.
6.
2.
9.
.4( )
.3(
) .0( )
.3( )
.4( )
.0( )
.9(0)
1.0(
) .3( )
.8( )
2.
13.
2.
19.
0.
3.
1.
1.
4.
5.
.3(0)
.9(
) .5( )
1.5( )
.1( )
.4(S)
.3( )
.2(
) .6( )
.5( )
5.
6.
0.
6.
0.
5.
6( )
.6(
) .1( )
.5( )
.0( )
.6( )
1.
1.
0.
2.
2.
1.
6.
6.
2.
8.
.4( )
.3(
) .2( )
.4( )
.4( )
.3( )
.9(0)
1.0(
) .3( )
.7( )
2.
12.
2.
18.
0.
3.
1.
1.
4.
5.
.3(0)
.9(
) .5( )
1.4( )
.1( )
.4(S)
.2( )
.1(
) .6( )
.5( )
5.
5.
0.
5.
0.
4.
.6( )
.5(
) .1( )
.5( )
.0( )
.6( )
1.
1.
0.
1.
1.
0.
6.
6.
1.
8.
.3( )
.3(
) .0( )
.3( )
.3( )
.0( )
.8(0)
1.0(
) .3( )
.7( )
2.
11.
1.
17.
0.
3.
1.
1.
4.
4.
.3(0)
.8(
) .4( )
1.4( )
.1( )
.4(S)
.3( )
.1(
) .6( )
.5( )
4.
5.
0.
5.
0.
4.
.6( )
.5(
) .1( )
.5( )
.0( )
.6( )
1.
1.
0.
1.
1.
0.
6.
6.
2.
B.
.3( )
.3(
) .2( )
.3( )
.3( )
.3( )
.8(0)
1.0(
) .3( )
.7( )
2.
11.
1.
16.
0.
3.
0.
1.
4.
4.
lbllq
2 35.
2 40.
1
' 2 45.
' 2 50.
' 2 55.
' 3 0.
' 3 5.
' 3 10.
.3(0)
.8( )
.4( )
1.3( )
.1( )
.4(S)
.2( )
.1( )
.6( )
.5( )
4.
4.
0.
S.
0.
4.
6( )
.5( )
.1( )
.5( )
.0( )
.6( )
1.
1.
0.
1.
1.
0.
6.
6.
1.
8.
.3( )
.2( )
.0( )
.2( )
.3( )
.0( )
.8(0)
1.0( )
.2( )
.7( )
2.
11.
1.
15.
0.
3.
0.
1.
4.
4.
.3(0)
.8( )
.4( )
1.3( )
.1( )
.4(S)
.2( )
.1( )
.6( )
.5( )
4.
4.
0.
4.
0.
4.
5( )
.5( )
.1( )
.4( )
.0( )
.6( )
1.
1.
0.
1.
1.
0.
6.
6.
1.
7.
.3( )
.2( )
.1( )
.3( )
.3( )
.2( )
.7(0)
1.0( )
.2( )
.7( )
2.
10.
1.
14.
0.
3.
0.
1.
3.
4.
.3(0)
.8( )
.3( )
1.3( )
.1( )
.4(S)
.2( )
.1( )
.5( )
.4( )
4.
4.
0.
4.
0.
3.
.5( )
.5( )
.1( )
.4( )
.0( )
.5( )
0.
1.
0.
1.
1.
0.
6.
6.
1.
7.
.3( )
.2( )
.0( )
.2( )
.2( )
.0( )
.7(0)
1.0( )
.2( )
.7( )
2.
10.
1.
14.
0.
3.
0.
0.
3.
3.
.3(0)
.8( )
.3( )
1.2( )
.1( )
.3(S)
.2( )
.1( )
.5( )
.4( )
3.
4.
0.
4.
0.
3.
.5( )
.5( )
.1( )
.4( )
.0( )
.5( )
0.
0.
0.
1.
1.
0.
6.
6.
1.
7.
.2( )
.2( )
.1( )
.2( )
.2( )
.2( )
.7(0)
1.0( )
.2( )
.7( )
2.
10.
1.
14.
0.
3.
0.
0.
3.
3.
.3(0)
.8( )
.3( )
1.2( )
.1( )
.3(S)
.1( )
.1( )
.5( )
.4( )
Z.
3.
0.
4.
0.
3.
.5( )
.4( )
.0( )
.4( )
.0( )
.5( )
0.
0.
0.
0.
1.
0.
6.
6.
1.
7.
.2( )
.2( )
.0( )
.2( )
.2( )
.0( )
.6(0)
1.0( )
.2( )
.7( )
2.
10.
1.
13.
0.
3.
0.
0.
3.
3.
.3(0)
.8( )
.3( )
1.2( )
.0( )
.3(S)
.2( )
.1( )
.5( )
.4( )
3.
3.
0.
3.
0.
3.
.5( )
.4( )
.0( )
.4( )
.0( )
.5( )
0.
0.
0.
0.
0.
0.
6.
6.
1.
7.
.2( )
.2( )
.1( )
.2( )
.2( )
.2( )
.6(0)
1.0( )
.2( )
.7( )
2.
9.
1.
13.
0.
3.
0.
0.
3.
3.
.2(0)
.8( )
.3( )
1.2( )
.0( )
.3(S)
.1( )
.1( )
.5( )
.4( )
3.
3.
0.
3.
0.
3.
.5( )
.4( )
.0( )
.4( )
.0( )
.5( )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
.2( )
.0( )
.2( )
.2( )
.0( )
.5(0)
1.0( )
.2( )
.7( )
2.
9.
1.
13.
0.
2.
0.
0.
3.
3.
.2(0)
.8( )
.3( )
1.2( )
.0( )
.3(S)
.2( )
.1( )
.5( )
4( )
3.
3.
0.
3.
0.
3.
5( )
.4( )
.0( )
.4( )
.0( )
.5( )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
.1( )
.1( )
.2( )
.2( )
.1( )
.5(0)
1.0( )
.2( )
.7( )
2.
9.
0.
12.
0.
2.
0.
0.
3.
3.
' 3 15.
' 3 20.
1
' 3 25.
' 3 30.
' 3 35.
I 3 40.
3 45.
3 50.
1
.2(0)
.8( )
.2( )
1.2( )
.0( )
.3(S)
.1( )
.1( )
.5( )
.4( )
3.
3.
0.
3.
0.
3.
.5( )
.4()
.0( )
.4()
.0( )
.5( )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
.1( )
.0( )
.2( )
.2( )
.0( )
.5(0)
1.0( )
.2( )
.7( )
2.
9.
0.
12.
0.
2.
0.
0.
2.
3.
.2(0)
.7( )
.2( )
1.2( )
.0( )
.3(S)
.2( )
.1( )
.5( )
.4( )
3.
3.
0.
3.
0.
2.
.5( )
.4( )
.0( )
.3( )
.0( )
.5( )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
.1( )
.1( )
.2( )
.1( )
A( )
AM
1.0( )
.1( )
.7( )
2.
9.
0.
12.
0.
2.
0.
0.
2.
2.
.2(0)
.7( )
.2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
.4( )
.4( )
2.
3.
0.
3.
0.
2.
.4( )
.4( )
.0( )
.3( )
.0( )
.4( )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
.1( )
.0( )
.1( )
.1( )
.0( )
AM
1.0( )
.1( )
.7( )
2.
9.
0.
12.
0.
2.
0.
0.
2.
2.
.2(0)
.7( )
.2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
.4( )
.3( )
2.
2.
0.
3.
0.
2.
.4( )
.4( )
.0( )
.3( )
.0( )
.4( )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
.1( )
.1( )
.1( )
.1( )
.1( )
.3(0)
1.0( )
.1( )
.7( )
2.
9.
0.
11.
0.
2.
0.
0.
2.
2.
.2(0)
.7( )
.2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
.4( )
.3( )
2.
2.
0.
2.
0.
2.
.4( )
.3( )
.0( )
.3( )
.0( )
.4()
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
.1( )
.0( )
.1( )
.1( )
.0( )
.3(0)
1.0( )
.1( )
.7( )
2.
9.
0.
11.
0.
2.
0.
0.
2.
2.
.2(0)
.7( )
.2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
.4( )
.3( )
2.
2.
0.
2.
0.
2.
.4( )
.3( )
.0( )
.3( )
.0( )
.4( )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.1( )
.1( )
.1( )
.1( )
.1( )
.1( )
.3(0)
1.0( )
.1( )
.7( )
2.
9.
0.
11.
0.
2.
0.
0.
2.
2.
.2(0)
.7( )
.2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
.4( )
.3( )
2.
2.
0.
2.
0.
2.
.4( )
.3( )
.0( )
.3( )
.0( )
.4( )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.1( )
.1( )
.0( )
.1( )
.1( )
.0( )
.2(0)
1.0( )
.1( )
.7( )
2.
9.
0.
11.
0.
1.
0.
0.
2.
2.
AM
.7( )
.2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
.4( )
.3( )
2.
2.
0.
2.
0.
2.
.4( )
.3( )
.0( )
.3( )
.0( )
.4( )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
A( )
.1( )
.0( )
.1( )
.1( )
.1( )
.2(0)
1.0( )
.1( )
.6( )
2.
9.
0.
11.
0.
1.
0.
0.
2.
2.
zolgq
' .1(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .0( ) .1( ) .4( )
2.
2.
0.
2.
0.
2.
4( )
.3(
) .0( )
.3( )
.0( )
.4( )
3
55.
0.
0.
0.
0.
0.
0.
6.
6.
0.
.1( )
.1(
) .0( )
.1( )
.1( )
.0( )
.1(0)
1.0( )
.1( )
2.
9.
0.
10.
0.
1.
0.
0.
1.
'
.1(0)
.7(
) .2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
.4( )
2.
2.
0.
2.
0.
1.
)
.3(
) -0( )
.3( )
.0( )
M )
'4(
4
0.
0.
0.
0.
0.
0.
0.
6.
6.
0.
.1( )
.1(
) .0( )
.1( )
.1( )
-1( )
.1(0)
1.0( )
.1( )
2.
9.
0.
10.
0.
1.
0.
0.
1.
'
.1(0)
.7(
) .2( )
1.1( )
.0( )
.2(S)
.0( )
-1( )
.3( )
1.
2.
0.
2.
0.
1.
)
.3(
) .0( )
.3( )
.0( )
.3( )
'3(
4
5.
0.
0.
0.
0.
0.
0.
6.
6.
0.
.1( )
.1(
) .0( )
.1( )
.1( )
.0( )
.1(0)
1.0( )
.1( )
2.
9.
0.
10.
0.
1.
0.
0.
1.
'
.1(0)
.7(
) .2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
.3( )
1.
1.
0.
2.
0.
1.
)
.3(
) .0( )
.2( )
.0( )
.3( )
'3(
4
10.
0.
0.
0.
0.
0.
0.
6.
6.
0.
.1( )
.1(
) .0( )
.1( )
.1( )
.1( )
.0(0)
1.0( )
.1( )
2.
9.
0.
10.
0.
1.
0.
0.
1.
'
.1(0)
.7(
) .2( )
1.1( )
.0( )
.2(S)
.0( )
.1( )
.3( )
1.
1.
0.
1.
0.
1.
'
.3( )
.3(
) .0( )
.2( )
.0( )
.3( )
COTTONWOOD
FARMS OVERALL
DRAINAGE PLAN 2 YEAR EVENT
RSD FILE NO. 50400102.DAT
**
PEAK FLOWS, STAGES AND STORAGES
OF GUTTERS AND DETENSION DAMS
***
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT
(CFS)
(FT)
(AC -FT)
(HR/MIN)
'
322
B.
1.3
.2
0 55.
320
2.
.3
0 45.
330
6.
1.0
0 35.
'
321
3.
.1
.5
1 30:
MIRgMONT
FlR.ST
F/L/AJG
301
24.
2.
.0
0 40.
DETE/jTIoAtJ
Poh1O
3
2.
1.4
0 35.
/✓igx,
HuJEL = 70.16
303
03
33.
1.3
.1
0 45.
302
27.
1.7
0 35.
'
331
21.
1.4
0 35.
304
28.
1.8
0 35.
325
29.
1.3
0 40.
306
305
4.
27.
1.3
1.8
.1
0 50.
0 40.
307
6.
1.5
1.0
1 35.
326
29.
1.6
0 40.
309
34.
1.5
0 40.
'
308
6.
1.0
2 35.
3( )
'
328
9.
1.0
0
35.
327
25.
1.2
0
45.
313
21.
2.3
.3
0
50.
311
2.
1.0
1
30.
'
310
37.
1.7
.4
0
45.
329
29.
1.2
0
45.
312
63.
2.3
0
45.
340
96.
3.7
0
45.
y
ENDPROGRAM PROGRAM CALLED
�L
2#qq
[1
t
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY
ITAPE OR DISK ASSIGNMENTS
UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) J1N(6) JIN(7) JIN(8) JIN(9) JIN(10)
' 2 1 0 0 0 0 0 0 0 0
JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10)
1 2 0 0 0 0 0 0 0 0
NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5)
3 4 0 0 0
WATERSHED PROGRAM CALLED
' *** ENTRY MADE TO RUNOFF MODEL ***
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT
RBD FILE NO. 50400100.DAT
NUMBER OF TIME STEPS 50
INTEGRATION TIME INTERVAL (MINUTES) 5.00
1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
60
.96
1.44
1.611
3.00
5.40
9,00
3.72
2,16
1.56
1.20
.84
.60
.48
.36
.36
.24
.24
.24
.24
.24
.24
.12
.12
.00
'
COTTONWOOD FARMS OVERALL DRAINAGE PLAN
100 YEAR EVENT
RBD FILE NO.
50400100.DAT
' SUBAREA
GUTTER WIDTH
AREA
PERCENT
SLOPE
RESISTANCE
FACTOR
SURFACE STORAGE(IN)
INFILTRATION
RATE(IN/HR) GAGE
NUMBER OR MANHOLE (FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
MAXIMUM MINIMUM DECAY RATE NO
-2
0 0.
.0
.0
.0300
.016
.250
.100
.500
.50 .50
.00180
' 201
320 315.
14.8
14.5
.0183
.016
.250
.100
.500
.50 .50
.00180 1
Z31gq
202
322
700.
22.9
50.0
203
307
1000.
32.3
80.0
204
301
900.
19.0
80.0
205
206
303
306
650.
650.
5.8
7.7
47.0
70.0
207
311
650.
13.8
57.0
208
313
950.
41.3
55.0
209
321
435.
23.4
40.0
324
400.
8.9
40.0
'210
211
325
700.
10.9
40.0
212
328
400.
4.2
70.0
213
340
700.
9.1
70.0
'215
214
330
331
2200,
35.
1.6
.7
90.0
90.0
216
329
35.
1.0
90.0
OTOTAL NUMBER OF SUBCATCHMENTS, 16
OTOTAL TRIBUTARY AREA (ACRES), 217.38
I
.0165
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0105
.016
.250
.100
.500
.50
.50
.00180
.0080
.016
.250
.100
.500
.50
.50
.00180
.0235
.016
.250
.100
.500
.50
.50
.00180
.0170
.016
.250
.100
.500
.50
.50
.00180
.0085
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0200
.016
.250
.100
.500
.50
.50
.00180
.0380
.016
.250
.100
.500
.50
.50
.00180
.0055
.016
.250
.100
.500
.50
.50
.00180
.0110
.016
.250
.100
.500
.50
.50
.00180
.0270
.016
.250
.100
.500
.50
.50
.00180
.0060
.016
.250
.100
.500
.50
.50
.00180
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT
' RBD FILE NO. 50400100.DAT
*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
' WATERSHED AREA (ACRES) 217.380
TOTAL RAINFALL (INCHES) 2.920
' TOTAL INFILTRATION (INCHES) .363
TOTAL WATERSHED OUTFLOW (INCHES) 2.154
' TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .403
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .003
'1
GUTTER
' NUMBER
301
302
303
' 304
305
306
307
' 308
309
310
311
312
' 313
320
321
' 322
323
' 324
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT
RBD FILE NO. 50400100.DAT
WIDTH
INVERT
SIDE SLOPES
OVERBANK/SURCHARGE
GUTTER
NDP
NP
OR DIAN
LENGTH
SLOPE
HORIZ
TO VERT
MANNING
DEPTH
JK
CONNECTION
(FT)
(FT)
(FT/FT)
L
R
N
(FT)
302
0
2
PIPE
2.5
96.
.0032
.0
.0
.013
2.47
0
304
0
1
CHANNEL
4.0
260.
.0021
2.0
2.0
.035
5.00
0
304
0
2
PIPE
1.3
10.
.0017
.0
.0
.013
1.25
0
305
0
2
PIPE
2.5
40.
.0070
.0
.0
.013
2.47
0
309
0
1
CHANNEL
4.0
460.
.0021
2.0
2.0
.035
5.00
0
309
0
2
PIPE
1.3
10.
.0038
.0
.0
.013
1.25
0
308
0
2
PIPE
1.5
120.
.0033
.0
.0
.013
1.50
0
310
0
1
CHANNEL
.0
1200.
.0050
4.0
4.0
.035
1.10
0
310
0
2
PIPE
2.3
75.
.0211
.0
.0
.013
2.25
0
312
0
2
PIPE
2.5
853.
.0123
.0
.0
.013
2.50
0
312
0
2
PIPE
1.0
315.
.0020
.0
.0
.013
1.00
0
340
0
2
PIPE
3.0
480.
.0100
.0
.0
.013
3.00
0
312
0
2
PIPE
2.3
680.
.0038
.0
.0
.013
2.25
0
321
0
1
CHANNEL
5.0
1350.
.0050
4.0
4.0
.035
5.00
0
324
8
2
PIPE
.1
300.
.0053
.0
.0
.013
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.1 .0
.3
2.6
.8
4.3
1.5
5.5
2.5 6.4
3.8
7.3
5.4 8.0
323
0
2
PIPE
1.5
10.
.0100
.0
.0
.013
1.50
0
324
0
1
CHANNEL
.0
1500.
.0142
50.0
.0
.016
1.50
0
331
0
2
PIPE
3.0
120.
.0050
.0
.0
.013
3.00
0
325
326
0
1
CHANNEL
4.0
326
327
0
2
PIPE
3.5
327
329
0
1
CHANNEL
4.0
328
329
0
2
PIPE
1.8
329
340
0
1
CHANNEL
5.0
330
324
0
2
PIPE
1.5
331
325
0
2
PIPE
3.0
340
0
0
2
PIPE
5.2
NUMBER
OF GUTTERS/PIPES,
26
'OTOTAL
1
COTTONWOOD FARMS
OVERALL DRAINAGE
PLAN
100
YEAR EVENT
'
RBD FILE
NO.
50400100.DAT
ARRANGEMENT
OF SUBCATCHMENTS
AND GUTTERS/PIPES
GUTTER
TRIBUTARY
GUTTER/PIPE
301
0
0
0
0
0
0 0
0
0
0
'
302
301
0
0
0
0
0 0
0
0
0
303
0
0
0
0
0
0 0
0
0
0
'
304
302
303
0
0
0
0 0
0
0
0
305
304
0
0
0
0
0 0
0
0
0
'
306
0
0
0
0
0
0 0
0
0
0
307
0
0
0
0
0
0 0
0
0
0
'
308
307
0
0
0
0
0 0
0
0
0
309
305
306
0
0
0
0 0
0
0
0
'
310
311
308
0
309
0
0
0
0
0
0
0
0 0
0 0
0
0
0
0
0
0
312
310
311
313
0
0
0 0
0
0
0
'
313
0
0
0
0
0
0 0
0
0
0
320
0
0
0
0
0
0 0
0
0
0
'
321
320
0
0
0
0
0 0
0
0
0
322
0
0
0
0
0
0 0
0
0
0
'
323
322
0
0
0
0
0 0
0
0
0
324
321
323
330
0
0
0 0
0
0
0
'
325
326
331
325
0
0
0
0
0
0
0
0
0 0
0 0
0
0
0
0
0
0
327
326
0
0
0
0
0 0
0
0
0
'
328.
0
0
0
0
0
0 0
0
0
0
329
327
328
0
0
0
0 0
0
0
0
'
330
0
0
0
0
0
0 0
0
0
0
331
324
0
0
0
0
0 0
0
0
0
a
340
312
329
0
0
0
0 0
0
0
0
71liq
420.
.0050
3.0
3.0
.035
3.00 0
100.
.0050
.0
.0
.013
3.50 0
750.
.0050
3.0
3.0
.035
3.00 0
100.
.0100
.0
.0
.013
1.75 0
240.
.0050
4.0
4.0
.035
4.00 0
80.
.0050
.0
.0
.013
1.50 0
80.
.0050
.0
.0
.013
3.00 0
130.
.0015
.0
.0
.013
5.20 0
TRIBUTARY SUBAREA
D.A.(AC)
204
0
0
0
0
0
0
0
0
0
19.0
0
0
D
0
0
0
0
0
0
0
19.0
205
0
0
0
0
0
0
0
0
0
5.8
0
0
0
0
0
0
0
0
0
0
24.9
0
0
0
0
0
0
0
0
0
0
24.9
206
0
0
0
0
0
0
0
0
0
7.7
203
0
0
0
0
0
0
0
0
0
32.3
0
0
0
0
0
0
0
0
0
0
32.3
0
0
0
0
0
0
0
0
0
0
32.5
0
0
0
0
0
0
0
0
0
0
64.8
207
0
0
0
0
0
0
0
0
0
13.8
0
0
0
0
0
0
0
0
0
0
119.9
208
0
0
0
0
0
0
0
0
0
41.3
201
0
0
0
0
0
0
0
0
0
14.8
209
0
0
0
0
0
0
0
0
0
38.2
202
0
0
0
0
0
0
0
0
0
22.9
0
0
0
0
0
0
0
0
0
0
22.9
210
0
0
0
0
0
0
0
0
0
71.6
211
0
0
0
0
0
0
0
0
0
83.2
0
0
0
0
0
0
0
0
0
0
83.2
0
0
0
0
0
0
0
0
0
0
83.2
212
0
0
0
0
0
0
0
0
0
4.2
216
0
0
0
0
0
0
0
0
0
88.3
214
0
0
0
0
0
0
0
0
0
1.6
215
0
0
0
0
0
0
0
0
0
72.3
213
0
0
0
0
0
0
0
0
0
217.4
'
7S�q q
COTTONWOOD FARMS OVERALL DRAINAGE PLAN
100 YEAR EVENT
'
RED FILE
NO. 50400100.DAT
'HYDROGRAPHS ARE LISTED
FOR THE
FOLLOWING 26
CONVEYANCE ELEMENTS
THE
UPPER NUMBER IS DISCHARGE IN CFS
THE
LOWER NUMBER IS ONE OF THE FOLLOWING
CASES:
( )
DENOTES
DEPTH ABOVE INVERT
IN
FEET
(S)
DENOTES
STORAGE IN AC
-FT FOR
DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW.
(1)
DENOTES
GUTTER INFLOW
IN CFS
FROM SPECIFIED INFLOW
HYDROGRAPH
(D)
DENOTES
DISCHARGE IN
CFS DIVERTED FROM THIS GUTTER
(0)
DENOTES
STORAGE IN AC
-FT FOR
SURCHARGED GUTTER
'TIME(HR/MIN)
301
302
303
304
305
306
307
308
309
310
311
312
313
340
320
321
322
323
324
325
327
328
329
330
331
'326
0
5.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.0( )
.0(
) .0( )
.0(
) .0( )
.0( )
.0( )
.0( )
.0( )
.0( )
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
'
.0( )
.0(
) .0( )
.0(
) .0( >
O(S)
.0( )
.0( )
.0( )
.0( )
0.
0.
0.
0.
0.
0.
.0( )
.O(
) .Oc )
.0(
) .O( )
.0( )
' 0
1D.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.1( )
-0(
) .1( >
-0(
) -0( )
.1( )
.1( )
-0( )
-0( )
-0( >
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
'
-I( )
.Dc
) .0( )
.0(
) .0( >
O(S)
.1( )
.0( )
.1( )
.0( )
0.
0.
0.
0.
0.
0.
. 0 ( )
-0(
) -0( )
-0(
) .1( )
-0( )
' 0
15.
4.
1.
2.
3.
1.
3.
4.
0.
3.
1.
.7( )
.3(
) .9( )
.5(
) .2( )
.7( )
.9( )
.3( )
4( )
.3( )
2.
5.
3.
6.
0.
0.
4.
1.
5.
3.
'
.0(0)
.5(
) .6( )
.8(
) .0( )
O(S)
.7( )
.1( )
.6( )
.4( )
2.
0.
2.
1.
3.
4.
.4( )
.1(
) .5( )
.2(
) .7( )
.6( )
' 0
20.
12.
8.
3.
11.
5.
4.
6.
2.
11.
10.
1.3( )
.9(
) .0(0)
1.0(
) .7( )
.0(0)
.0(0)
.7( )
.7( )
.8( )
2.
20.
13.
30.
0.
0.
11.
4.
10.
12.
'
.0(0)
1.1(
) 1.3( )
1.9(
> .1( )
O(S)
1.3( )
.2( )
.9( )
.9( )
12.
4.
5.
6.
2.
11.
1.0( )
.5(
) .7( )
.5(
) .5( )
1.0( )
' 0
25.
24.
27.
3.
29.
18.
4.
6.
4.
20.
22.
.0(0)
1.7(
) .0(0)
1.8(
) 1.4( )
.0(0)
.2(0)
.8( )
1.0( )
1.2( )
2.
48.
21.
76.
1.
1.
11.
8.
21.
27.
'
.1(0)
1.9(
) .1(0)
3.2(
) .2( )
.1(S)
.0(0)
.3( )
1.4( )
1.3( )
26.
14.
8.
19.
5.
21.
1.5( )
.9(
) .9( )
.9(
) .9( )
1.4( )
0
30.
24.
23.
3.
27.
28.
4.
6.
5.
33.
35.
.1(0)
1.6(
) .1(0)
1.7(
) 1.8( )
.1(0)
.5(0)
.9( )
1.4( )
1.6( )
'
2.
52.
21.
119.
4.
2.
11.
10.
39.
54.
2blq�
1
' 0 35.
1
' 0 40.
' 0 45.
0 50.
0 55.
' 1 0.
' 1 5.
' 1 10.
1
.3(0) 2.0( ) .3(0) .0(0) 1 .4( ) .3(S) .2(0) .3( ) 2.1( ) 1.8( )
53. 35. 17. 46. 8. 42.
2.2( ) 1.5( ) 1.5( ) 1.5( ) .0(0) 2.2( )
24. 24. 3. 26. 27. 4. 6. 6. 30. 38.
.6(0) 1.6( ) .2(0) 1.7( ) 1.7( ) .4(0) 1.3(0) .9( ) 1.3( ) 1.7( )
2. 63. 21. 119. 10. 4. 11. 11. 51. 96.
.7(0) 2.3( ) 1.1(0) AM .7( ) .6(S) .6(0) .4( ) .0(0) 2.4( )
76. 73. 17. 88. 8. 51.
.1(0) 2.1( ) .1(0) 2.0( ) .0(0) .1(0)
24. 24. 3. 28. 27. 4. 6. 6. 33. 37.
1.1(0) 1.6( ) .4(0) 1.7( ) 1.7( ) .6(0) 2.3(0) .9( ) 1.4( ) 1.7( )
2. 58. 21. 119. 14. 5. 11. 11. 51. 86.
1.1(0) 2.2( ) 2.0(0) .9(0) .8( ) 1.1(S) 1.1(0) .4( ) .0(0) 2.2( )
76. 76. 17. 101. 8. 51.
.2(0) 2.1( ) .1(0) 2.1( ) .0(0) .1(0)
24. 24. 3. 26. 27. 4. 6. 6. 30. 38.
1.4(0) 1.6( ) .5(0) 1.7( ) 1.7( ) .8(0) 3.1(0) .9( ) 1.3( ) 1.7( )
2. 61. 21. 119. 13. 5. 11. 11. 43. 72.
1.4(0) 2.2( ) 2.6(0) 1.4(0) .8( ) 1.4(S) 1.4(0) .4( ) 2.3( ) 2.1( )
76. 76. 17. 95. 8. 51.
.2(0) 2.1( ) AM 2.1( ) .0(0) .1(0)
24. 24. 3. 28. 27. 4. 6. 6. 32. 37.
1.6(0) 1.6( ) .5(0) 1.7( ) 1.7( ) .8(0) 3.7(0) .9( ) 1.4( ) 1.7( )
2. 59. 21. 119. 12. 6. 11. 11. 31. 70.
1.5(0) 2.2( ) 3.0(0) 1.8(0) .8( ) 1.7(S) 1.6(0) .4( ) 1.8( ) 2.0( )
76. 76. 17. 97. 3. 51.
.2(0) 2.1( ) .0(0) 2.1( ) .7( ) .0(0)
24. 24. 3. 26. 27. 4. 6. 6. 30. 38.
1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 4.1(0) .9( ) 1.4( ) 1.7( )
2. 60. 21. 119. 11. 6. 11. 11. 31. 56.
1.7(0) 2.2( ) 3.3(0) 2.1(0) .7( ) 2.0(S) 1.8(0) .4( ) 1.8( ) 1.8( )
76. 76. 7. 88. 1. 33.
.1(0) 2.1( ) .8( ) 2.0( ) .3( ) 1.9( )
24. 24. 3. 28. 27. 4. 6. 6. 32. 38.
1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 4.4(0) .9( ) 1.4( ) 1.7( )
2. 60. 21. 119. 11. 6. 11. 11. 27. 41.
1.8(0) 2.2( ) 3.6(0) 2.4(0) .7( ) 2.2(S) 1.9(0) .4( ) 1.6( ) 1.6( )
51. 64. 3. 72. 2. 26.
2.2( ) 1.9( ) .5( ) 1.8( ) .5( ) 1.6( )
24. 24. 3. 26. 27. 4. 6. 6. 30. 38.
1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 4.7(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 10. 6. 11. 11. 27. 38.
1.9(0) 2.2( ) 3.7(0) 2.5(0) .7( ) 2.3(S) 2.0(0) .4( ) 1.6( ) 1.5( )
30. 42. 4. 52. 0. 29.
1.6( ) 1.6( ) .6( ) 1.6( ) .1( ) 1.7( )
24. 24. 3. 28. 27. 4. 6. 6. 32. 38.
1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 4.9(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 9. 6. 11. 11. 24. 35.
27/11
1
1 15.
1
1 20.
' 1 25.
1
' 1 30.
' 1 35.
1 40.
1
1 45.
1 50.
2.0(0) 2.2( ) 3.8(0) 2.4(0) .6( ) 2.5(S) 2.0(0) .4( ) 1.5( ) 1.5( )
42. 37. 1. 40. 1. 24.
1.9( ) 1.5( ) .4( ) 1.4( ) .4( ) 1.5( )
24. 24. 3. 26. 27. 4. 6. 6. 30. 38.
1.6(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.0(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 8. 6. 11. 11. 25. 32.
2.0(0) 2.2( ) 3.9(0) 2.3(0) .6( ) 2.6(S) 2.1(0) .4( ) 1.6( ) 1.4( )
26. 34. 3. 38. 0. 26.
1.5( ) 1.4( ) .5( ) 1.3( ) .1( ) 1.6( )
24. 24. 3. 28. 27. 4. 6. 6. 32. 38.
1.5(0) 1.6( ) .6(o) 1.7( ) 1.7( ) 1.0(0) 5.1(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 8. 6. 11. 11. 22. 30.
2.1(0) 2.2( ) 3.9(0) 2.2(0) .6( ) 2.7(S) 2.1(0) .4( ) 1.5( ) 1.4( )
36. 31. 1. 34. 1. 22.
1.8( ) 1.4( ) .3( ) 1.3( ) .3( ) 1.5( )
24. 24. 3. 26. 27. 4. 6. 6. 31. 38.
1.4(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.2(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 7. 7. 11. 11. 24. 29.
2.1(0) 2.2( ) 3.9(0) 2.1(0) .6( ) 2.7(S) 2.1(0) .4( ) 1.5( ) 1.3( )
24. 30. 2. 32. 0. 24.
1.4( ) 1.4( ) .4( ) 1.2( ) .2( ) 1.5( )
24. 24. 3. 28. 27. 4. 6. 6. 32. 38.
1.3(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.3(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 7. 7. 11. 11. 21. 27.
2.1(0) 2.2( ) 3.9(0) 1.9(0) .6( ) 2.8(S) 2.1(0) .4( ) 1.4( ) 1.3( )
32. 28. 1. 30. 0. 22.
1.6( ) 1.3( ) .2( ) 1.2( ) .3( ) 1.4( )
24. 24. 3. 27. 27. 4. 6. 6. 31. 38.
1.2(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.3(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 6. 7. 11. 11. 23. 26.
2.1(0) 2.2( ) 3.9(0) 1.7(0) .5( ) 2.9(S) 2.1(0) .4( ) 1.5( ) 1.3( )
23. 27. 1. 29. 0. 23.
1.4( ) 1.3( ) .3( ) 1.2( ) .2( ) 1.5( )
24. 24. 3. 27. 27. 4. 6. 6. 32. 38.
1.1(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.4(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. M. 6. 7. 11. 11. 21. 26.
2.2(0) 2.2( ) 3.9(0) 1.5(0) .5( ) 2.9(S) 2.1(0) .4( ) 1.4( ) 1.3( )
29. 26. 1. 28. 0. 21.
1.6( ) 1.3( ) .2( ) 1.2( ) .2( ) 1.4( )
24. 24. 3. 27. 27. 4. 6. 6. 31. 38.
.9(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.4(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 6. 7. 11. 11. 22. 25.
2.2(0) 2.2( ) 3.9(0) 1.3(0) .5( ) 3.0(S) 2.1(0) .4( ) 1.4( ) 1.2( )
23. 26. 1. 27. 0. 22.
1.4( ) 1.3( ) .3( ) 1.1( ) .2( ) 1.4( )
.,24. 24. 3. 27. 27. 4. 6. 6. 32. 38.
.8(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 5. 7. 11. 11. 21. 25.
1 55.
' 2 0.
' 2 5.
t
' 2 10.
' 2 15.
' 2 20.
' 2 25.
2 30.
1
2.2(0) 2.2( ) 3.8(0) 1.1(0) .5( ) 3.0(S) 2.0(0) .4( ) 1.4( ) 1.2( )
27. 25. 1. 26. 0. 21.
1.5( ) 1.2( ) .3( ) 1.1( ) .2( ) 1.4( )
24. 24. 3. 27. 27. 4. 6. 6. 31. 38.
.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 5. 7. 11. 11. 21. 24.
2.2(0) 2.2( ) 3.8(0) .9(0) .5( ) 3.1(S) 2.0(0) .4( ) 1.4( ) 1.2( )
22. 25. 1. 26. 0. 21.
1.3( ) 1.2( ) .3( ) 1.1( ) .2( ) 1.4( )
24. 24. 3. 27. 27. 4. 6. 6. 32. 38.
.5(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 5. 7. 11. 11. 20. 23.
2.2(0) 2.2( ) 3.7(0) .7(0) .5( ) 3.1(S) 2.0(0) .4( ) 1.4( ) 1.2( )
25. 24. 0. 25. 0. 21.
1.4( ) 1.2( ) .2( ) 1.1( ) .2( ) 1.4( )
24. 24. 3. 27. 27. 4. 6. 6. 31. 38.
.4(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 5. 7. 11. 11. 21. 23.
2.2(o) 2.2( ) 3.6(0) .5(0) .4( ) 3.1(S) 1.9(0) .4( ) 1.4( ) 1.2( )
21. 23. 0. 24. 0. 20.
1.3( ) 1.2( ) .2( ) 1.1( ) .1( ) 1.4( )
24. 24. 3. 27. 27. 4. 6. 6. 32. 38.
.2(0) 1.6( ) .5(0) 1.7( ) 1.7( ) .8(0) 5.5(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 4. 7. 11. 11. 20. 22.
2.2(0) 2.2( ) 3.5(0) .3(0) .4( ) 3.1(S) 1.9(0) .4( ) 1.4( ) 1.2( )
23. 22. 0. 23. 0. 20.
1.4( ) 1.2( ) .1( ) 1.1( ) .1( ) 1.4( )
24. 24. 3. 27. 27. 4. 6. 6. 31. 38.
.1(0) 1.6( ) .5(0) 1.7( ) 1.7( ) .8(0) 5.5(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 4. 7. 11. 11. 20. 21.
2.2(0) 2.2( ) 3.5(0) .0(0) .4( ) 3.2(S) 1.8(0) .4( ) 1.4( ) 1.1( )
20. 22. 0. 22. 0. 20.
1.3( ) 1.2( ) .1( ) 1.0( ) .0( ) 1.4( )
8. 14. 3. 18. 22. 4. 6. 6. 27. 35.
1.0( ) 1.3( ) .5(0) 1.3( ) 1.6( ) .8(0) 5.5(0) 1.0( ) 1.3( ) 1.6( )
2. 58. 21. 87. 4. 7. 11. 11. 19. 21.
2.2(0) 2.2( ) 3.4(0) 3.5( ) .4( ) 3.2(S) 1.8(0) .4( ) 1.3( ) 1.1( )
22. 21. 0. 22. 0. 20.
1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.4( )
0. 3. 3. 6. 13. 4. 6. 6. 17. 26.
.0( ) .5( ) .5(0) .7( ) 1.2( ) .8(0) 5.4(0) 1.0( ) 1.0( ) 1.4( )
2. 50. 21. 67. 4. 7. 11. 11. 20. 21.
2.2(0) 1.9( ) 3.3(0) 2.9( ) .4( ) 3.2(S) 1.7(0) .4( ) 1.4( ) 1.1( )
20. 21. 0. 21. 0. 19.
1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( )
2. 1. 3. 4. 6. 4. 6. 6. 11. 18.
.5( ) .3( ) .5(0) .6( ) .8( ) .7(0) 5.4(0) 1.0( ) .8( ) 1.1( )
2. 41. 21. 67. 3. 7. 11. 11. 19. 21.
1
1
2 35.
' 2 40.
' 2 45.
2 50.
2 55.
' 3 0.
' 3 5.
' 3 10.
2.2(0)
1.7(
) 3.2(0)
2.9( )
.4( )
3.2(S)
1.7(0)
.4( )
1.3( )
1.1( )
21.
21.
0.
21.
0.
20.
1.3( )
1.1(
) .1( )
1.0( )
.0( )
1.3( )
0.
1.
3.
4.
5.
4.
6.
6.
9.
16.
.2( )
.3(
) .5(0)
.6( )
.7( )
.7(0)
5.4(0)
1.0( )
.7( )
1.0( )
2.
38.
21.
56.
3.
7.
11.
11.
19.
20.
2.2(0)
1.6(
) 3.1(0)
2.6( )
.4( )
3.2(S)
1.6(0)
.4( )
1.3( )
1.1(.)
20.
21.
0.
21.
0.
19.
1.3( )
1.1(
) .1( )
1.0( )
.0( )
1.3( )
1.
1.
3.
4.
4.
4.
6.
6.
9.
15.
.4( )
.3(
) .4(0)
.6( )
.6( )
.7(0)
S A M
1.0( )
.7( )
1.0( )
2.
37.
21.
61.
3.
7.
11.
11.
19.
20.
2.2(0)
1.6(
) 3.0(0)
2.8( )
.4( )
3.2(S)
1.6(0)
.4( )
1.3( )
1.1( )
21.
20.
0.
20.
0.
19.
1.3( )
1.1(
) .1( )
1.0( )
.0( )
1.3( )
1.
1.
3.
4.
4.
4.
6.
6.
8.
15.
.3( )
.3(
) .4(0)
.6( )
.6( )
.7(0)
5.3(0)
1.0( )
.6( )
1.0( )
2.
37.
21.
56.
3.
7.
11.
11.
19.
20.
2.2(0)
1.6(
) 2.9(0)
2.6( )
.4( )
3.2(S)
1.5(0)
.4( )
1.3( )
1.1( )
20.
20.
0.
20.
0.
19.
1.3( )
1.1(
) .1( )
1.0( )
.0( )
1.3( )
1.
1.
3.
4.
4.
4.
6.
6.
B.
15.
.3( )
.2(
) .4(0)
.6( )
.6( )
.6(0)
5.3(0)
1.0( )
.7( )
1.0( )
2.
37.
21.
59.
3.
7.
11.
11.
19.
20.
2.2(0)
1.6(
) 2.7(0)
2.7( )
.3( )
3.2(S)
1.4(0)
.4( )
1.3( )
1.1( )
20.
20.
0.
20.
0.
19.
1.3( )
1.1(
) .1( )
1.0( )
.0( )
1.3( )
1.
1.
3.
3.
4.
4.
6.
6.
8.
15.
.3( )
.2(
) AM
.5( )
.6( )
.6(0)
5.3(0)
1.0( )
.6( )
1.0( )
2.
37.
21.
56.
3.
7.
11.
11.
19.
20.
2.2(0)
1.6(
) 2.6(0)
2.6( )
.3( )
3.2(S)
1.4(0)
.4( )
1.3( )
1.1( )
19.
20.
0.
20.
0.
19.
1.2( )
1.1(
) .1( )
1.0( )
.0( )
1.3( )
1.
1.
3.
4.
4.
4.
6.
6.
8.
14.
.3( )
.2(
) .4(0)
.6( )
.6( )
.6(0)
5.2(0)
1.0( )
.6( )
1.0( )
2.
37.
21.
58.
3.
7.
11.
11.
19.
20.
2.2(0)
1.6(
) 2.5(0)
2.7( )
.3( )
3.2(S)
1.3(0)
.4( )
1.3( )
1.1( )
20.
20.
0.
20.
0.
19.
1.3( )
1.1(
) .1( )
1.0( )
.0( )
1.3( )
0.
1.
3.
3.
4.
4.
6.
6.
8.
14.
.2( )
.2(
) .4(0)
.5( )
.6( )
.5(0)
5.2(0)
1.0( )
.6( )
1.0( )
2.
37.
21.
56.
3.
7.
11.
11.
19.
19.
2.2(0)
1.6(
) 2.4(0)
2.6( )
.3( )
3.2(S)
1.2(0)
.4( )
1.3( )
1.1( )
19.
20.
0.
20.
0.
19.
1.2( )
1.1(
) .0( )
1.0( )
.0( )
1.3( )
1.
1.
3.
4.
3.
4.
6.
6.
8.
14.
.3( )
.2(
) .3(0)
.5( )
.6( )
.5(0)
5.2(0)
1.0( )
.6( )
1.0( )
2.
36.
21.
57.
2.
7.
11.
11.
19.
19.
3011 y
1 3 15.
3 20.
' 3 25.
3 30.
1
' 3 35.
' 3 40.
' 3 45.
' 3 50.
1
1
2.1(0)
1.6( )
2.3(0)
2.6( )
.3( )
3.1(S)
1.2(0)
.4( )
1.3( )
1.1( )
20.
19.
0.
20.
0.
19.
1.3( )
1.1( )
.0( )
1.0( )
.0( )
1.3( )
0.
0.
3.
3.
3.
4.
6.
6.
8.
14.
.2( )
.2( )
.3(0)
.5( )
.6( )
.5(0)
SA M
1.0( )
.6( )
1.0( )
2.
36.
21.
56.
2.
7.
11.
11.
19.
19.
2.1(0)
1.6( )
2.2(0)
2.6( )
.3( )
3.1(S)
1.1(0)
.4( )
1.3( )
1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1.1( )
.0( )
1.0( )
.0( )
1.3( )
0.
0.
3.
3.
3.
4.
6.
6.
8.
14.
.2( )
.2( )
.3(0)
.5( )
.6( )
.5(0)
5.1(0)
1.0( )
.6( )
1.0( )
2.
36.
21.
56.
2.
7.
11.
11.
19.
19.
2.1(0)
1.6( )
2.0(0)
2.6( )
.3( )
3.1(S)
1.0(0)
.4( )
1.3( )
1.1( )
19.
19.
0.
19.
0.
W.
1.2( )
1.1( )
.0( )
1.0( )
.0( )
1.3( )
0.
0.
3.
3.
3.
4.
6.
6.
7.
14.
.2( )
.2( )
.3(0)
.5( )
.6( )
AM
5.1(0)
1.0( )
.6( )
1.0( )
2.
36.
21.
56.
2.
7.
11.
11.
19.
W.
2.1(0)
1.6( )
1.9(0)
2.6( )
.3( )
3.1(S)
1.0(o)
.4( )
1.3( )
1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1.1( )
.0( )
1.0( )
.0( )
1.3( )
0.
0.
3.
3.
3.
4.
6.
6.
8.
14.
.2( )
.2( )
.3(0)
.5( )
.6( )
AM
5.0(0)
1.0( )
.6( )
1.0( )
2.
36.
21.
56.
2.
7.
11.
11.
19.
19.
2.1(0)
1.6( )
1.8(0)
2.6( )
.3( )
3.1(S)
.9(0)
.4( )
1.3( )
1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1.1( )
.0( )
1.0( )
.0( )
1.3( )
0.
0.
3.
3.
3.
4.
6..
6.
7.
14.
.2( )
.1( )
.2(0)
.5( )
.6( )
AM
5.0(0)
1.0( )
W)
1.0( )
2.
36.
21.
55.
2.
7.
11.
11.
19.
19.
2.1(0)
1.6( )
1.7(0)
2.6( )
.3( )
3.1(S)
.8(0)
.4( )
1.3( )
1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1.1( )
.0( )
1.0( )
.0( )
1.3( )
0.
0.
3.
3.
3.
4.
6.
6.
8.
14.
.2( )
.1( )
.2(0)
.5( )
.6( )
.3(0)
4.9(o)
1.0( )
.6( )
1.0( )
2.
36.
21.
55.
2.
7.
11.
11.
19.
19.
2.1(0)
1.6( )
1.5(0)
2.6( )
.3( )
3.1(S)
.8(0)
.4( )
1.3( )
1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1.1( )
.0( )
1.0( )
.0( )
1.3( )
0.
0.
3.
3.
3.
4.
6.
6.
7.
14.
.2( )
.1( )
.2(0)
.5( )
.6( )
.3(0)
4.9(0)
1.0( )
.6( )
.9( )
2.
36.
21.
55.
2.
7.
11.
11.
19.
19.
2.1(0)
1.6( )
1.4(0)
2.6( )
.3( )
3.0(S)
.7(0)
.4( )
1.3( )
1.1( )
19.
19.
0.
19.
0.
18.
1.2( )
1.1( )
.0( )
1.0( )
.0( )
1.3( )
0.
0.
3.
3.
3.
4.
6.
6.
7.
14.
.2( )
.1( )
:2(0)
.5( )
.6( )
.3(0)
4.9(0)
1.0( )
.6( )
.9( )
2.
36.
21.
55.
2.
7.
11.
11.
18.
19.
'
311g4
'
2.1(0)
1.6( )
1.3(0)
2.6( >
.3(
) 3.0(S)
.6(0)
.4(
) 1.3( )
1.1( )
19.
19.
0.
19.
0.
19.
3
55.
1.2( )
0.
1.1( )
0.
.0( )
3.
1.0( )
3.
.0(
3.
) 1.3( )
4.
6.
6.
7.
14.
.2( )
.1( )
.2(0)
.5( )
.5(
) .3(0)
4.8(0)
1.0(
) .6( )
.9( )
2.
36.
21.
55.
2.
7.
11.
11.
18.
19.
2.1(0)
1.6( )
1.1(0)
2.6( )
.3(
) 3.0(S)
.5(0)
.4(
) 1.3( )
1.1( )
19.
19.
0.
19.
0.
18.
'1.2(
4
0.
)
0.
1.1( )
0.
.0( )
3.
.9( )
3.
.0(
3.
) 1.3( )
4.
6.
6.
7.
14.
.2( )
.1( )
.1(0)
.5( )
.5(
) .2(0)
4.8(0)
1.0(
) .6( )
.9( )
2.
36.
21.
55.
2.
7.
11.
11.
18.
19.
'
2.1(0)
1.6( )
1.0(0)
2.6( )
.3(
) 3.0(S)
.5(0)
.4(
) 1.3( )
1.1( )
19.
19.
0.
19.
0.
18.
4
5.
1.2( )
0.
1.1( )
0.
.0( )
3.
.9( )
3.
.0(
3.
) 1.3( )
4.
6.
6.
7.
14.
.2( )
.1( )
.1(0)
.5( )
.5(
) .2(0)
4.7(0)
1.0(
) .6( )
.9( )
2.
36.
21.
55.
2.
7.
11.
11.
18.
19.
'
2.0(0)
1.6( )
.9(0)
2.6( )
.2(
) 3.0(S)
.4(0)
.4(
) 1.3( )
1.1( )
19.
19.
0.
19.
0.
18.
1.2( )
1.1( )
.0( )
.9( )
.0(
) 1.3( )
4
10.
0.
0.
3.
3.
3.
4.
6.
6.
7.
14.
.1( )
.1( )
.1(0)
.5( )
.5(
) .2(0)
4.7(0)
1.0(
) .6( )
.9( )
2.
36.
21.
55.
2.
7.
11.
11.
18.
19.
'
2.0(0)
1.6( )
.8(0)
2.6( )
.2(
) 2.9(S)
3(0)
.4(
) 1.3( )
1.1( )
19.
19.
0.
19.
0.
18.
1.2( )
1.1( )
.0( )
.9( )
.0(
) 1.3( )
COTTONWOOD FARMS OVERALL DRAINAGE
PLAN 100
YEAR
EVENT
'
RBD FILE NO. 50400100.DAT
**
PEAK FLOWS, STAGES
AND STORAGES
OF GUTTERS
AND DETENSION
DAMS ***
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT
(CFS)
(FT)
(AC -FT)
(HR/MIN)
'
322
11.
1.5
2.1
1 25.
320
14.
.8
0 40.
330
8.
1.5
.0
0 40.
323
11.
.4
1 40.
321
7.
.1
3.2
2 40.
M112gMOA/1 FIRST
FILI/JG
'
301
24.
2.5
1.7
1 0.
DETENTION PO'v p
324
51.
3.0
.0
0 35.
M q k
i♦W EL =
7 3. SO
303
3.
1.3
.6
1 20.
302
27.
1.7
0 25.
'
331
51.
3.0
.1
0 40.
304
29.
1.8
0 25.
325
96.
2.4
0 35.
306
4.
1.3
1.0
1 15.
305
28.
1.8
0 30.
'
307
6.
1.5
5.5
2 5.
326
76.
3.5
.2
0 45.
309
33.
1.4
0 30.
'
308
6.
1.0
2 25.
328
17.
1.8
1
0
40.
327
76.
2.1
0
55.
313
21.
2.3
3.9
1
25.
4
311
2.
1.0
.2.2
2
10.
310
38.
1.7
1
15.
329
101.
2.1
0
40.
312
63.
2.3
0
35.
340
119.
5.2
2.5
1
5.
NDPROGRAM PROGRAM CALLED
11
331, q
' RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
1
OVERFLOW WEIR. FROM DETENTION POND TO BOARDWALK DRIVE
WEIR COEF.
NL 1
t
����
1{atilODac�� o� J��ID2c1JCS �563
3.200 -�
'
Z 5'
STA
ELEV
'
0.0
75.00
7 S. o:�
4.0
74.00
4.1 Ty,P\
¢/ . I ry tom• -74. 00
29.0
74.00
'
33.0
75.00
'
ELEVATION
(feet)
DISCHARGE
(cfs)
74.0
0.0
'
74.1
2.6
74.2
7.3
74.3
13.6
74.4
21.2
'
74.5
29.9
74.6
39.7
74.7
50.6
%4-7S,
74.8
62.4
CO._ZS--.-f=_p
\
f HoAs:D__
.74.9
75.3
/
75.0
89.0
1
1
1
3` liq
TEMPORARY DETENTION POND
BOARDWALK DRIVE AND LEMAY AVENUE
1
T:DINC
Engineering Consultants
CLIENT IVO rd"C-K /uc,( JOB NO. 5041_00
PROJECT 1MrA—o-,f Firs i- f'_LA-n CALCULATIONS FOR
MADEBYI<UJ6 DATE 5112-9 CHECKED BY DATE —SHEET 33-5, OF Iq
_J
p
--T
B5;0;u Lij�; &K DR -1 V6 �5 0/A15 6_215 PO_-5 A77&f_' ......
OF 0,
a L;j A I k vE:
_L��'4�1I ' .. F a�-ii e u b�in�{ { e lalne� Gn� TWE7 RAT
re eexSecL�
8.95 ltkj 07 I:_W_I
rffei-
DETAWE )P -4
Overall
jy1(. ra-i ma7c_A;oc_ f?�
DE7FAfn0^J 160A
.. 4 1=a��+ f-, 5arhe
J. From +I, e- Cals Stortr
Basin 2 Ac c 0, �,o h'aST to
04
L & .5 91 - 5 .1.1
Basin d A- .5! , = 1
Wc c-
f
cr 4F 57pE 11Aj
F_ r7 CO—f: 0--si
96-) 0, a
C?
Ccf.= 0. a ZCi -zs.
----------- ---------
..........
U51 FAA : D- �-c f:c7, PC 'I C&r�,pu cr-.. rl�cj rLk r,. +0
j
!r+crl FC:nA near
wa
/
_Fit
1puj. at 0,A
_e
6.9 3;. e7o
cfs Q100 p e K7� Ll
0' 3 -7 Cl'f 10 1,o Adf '9
4- L
'OFT
4 -
LL___� ------- L
__r
7
OF
"A)
sm"p)
36ljq
----------- - -
DETENTION POND SIZING BY FAA METHOD
DEVELOPED BY
JAMES C.Y. GUO, PHD, P.E.
DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF COLORADO AT DENVER
------------------- ---------------------------------------------------------
EXECUTED ON 07-07-1992 AT TIME 10:44:27
' PROJECT TITLE: TEMPORARY DETENTION POND AT BOARDWALK AND LEMAY
L*** DRAINAGE BASIN DESCRIPTION
' BASIN ID NUMBER = 1.00
BASIN AREA (acre)= 6.96
RUNOFF COEF = 1.00
DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN
' DURATION 5 10 20 30 40 50 60 80 100 120 150 180
INTENSITY 9.0 7.3 5.2 4.2 3.5 3.0 2.6 2.1 1.7 1.5 1.2 1.0
' ***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE = 3.48 CFS
' OUTFLOW ADJUSTMENT FACTOR = .97
' AVERAGE RELEASE RATE = 3.3756 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL
RAINFALL
INFLOW
OUTFLOW
REQUIRED
DURATION
INTENSITY
VOLUME
VOLUME
STORAGE
MINUTE
INCH/HR
ACRE -FT
ACRE -FT
ACRE -FT
'
-----------------------------------------------------
0.00
0.00
0.00
0.00
0.00
5.00
9.00
0.44
0.02
0.41
10.00
7.30
0.71
0.05
0.66
'
15.00
6.25
0.91
0.07
0.84
20.00
5.20
1.01
0.09
0.91
25.00
4.68
1.13
0.12
1.01
'
30.00
4.15
1.20
0.14
1.06
t37/9 4
' 35.00 3.83 1.29 0.16 1.13
40.00
3.50
1.35
0.19
1.17
' 45.00
50.00
3.25
3.00
1.41
1.45
0.21
0.23
1.20
1.22
55.00
2.80
1.49
0.26
1.23
60.00
2.60
1.51
0.28
1.23
65.00 2.46 1.55 0.30 1.25
70.00 2.32 1.57 0.33 1.25
75.00 2.19 1.59 0.35 1.24
80.00
2.05
1.59
0.37
1.21
'
85.00
1.91
1.57
0.40
1.18
90.00
1.77
1.54
0.42
1.13
95.00
1.64
1.50
0.44
1.06
'
100.00
1.50
1.45
0.46
0.99
-----------------------------------------------------
THE REQUIRED POND SIZE = 1.247779 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES
***** GEOMETRIES OF
-----------------------------------------------------
AN EQUIVALENT CIRCULAR POND
STAGE
CONTOUR
CONTOUR
POND
POND
'
(DEPTH)
DIAMETER
AREA
SIDE SLP
STORAGE
FEET
-----------------------------------------------------
FEET
ACRE
FT/FT
ACRE -FT
0.00
166.53
0.50
3.00
0.00
'
0.50
169.53
0.52
3.00
0.25
1.00
172.53
0.54
3.00
0.52
1.50
175.53
0.56
3.00
0.79
'
2.00
178.53
0.57
3.00
1.07
2.50
181.53
0.59
3.00
1.37
3.00
184.53
0.61
3.00
1.67
1
7-
L
1
11
�-- 00 1 co 'd- N On 00 CO -Q- N
O 00 00 00
O o 0 O O O O O O
x — Jo4ola3-4uaua-}snfpV MoUpnp
,n
O 0
4
w
O w
N
O w
4� is
M
O b
w
.� 41
c3 �
e.) a)
O b
O
M a'
O � �
a' 3
O, 0
44
w
4J
N �
O
O 1;
O PL'
a
I
I
I
I
I
I
I
I
LI
I
I
I
I
I
I
MNC
Engineering Consultants
pg
-777 7"T777T
CLIENT JOB NO. -010/
PROJECT N-A I Z .. KA or.1r CALCULATIONS FOR EMP PCIUV
MADE BY E!6-' DATE -1Z' CHECKED BY - DATE SHEET 38 OF
d. . .
-- ---- -- --- -- -
I
1
1
t
1
1
1
RBD INC. ENGINEERINGCONSULTANTS
WEIR SECTION FLOW DATA
OVERFLOW WEIR FROM TEMPORARY DETENTION POND AT LEMAY AND BOARDWALK
WEIR COEF.
3.000 -i From I<'mq �- ,Qrafe.r' iia ni boo �' ar Ny�rav%icy �Ii(i3
STA ELEV
0.0 63.30
4.0 62.30
29.0 62.30
33.0 63.30
63,30IF
y' I 6Z•3o EC.
Q,ao= 5/,5,c11'7
P9 38/y4
ELEVATION
DISCHARGE
(feet)
.........
(cfs)
---------
62.30
0.0
62.40
2.4
62.50
6.9
62.60
12.7
62.70
19.8
62.80
28.0
62.90
37.2
63.00
47.4 51,5 c{S oEL G3.0'/
63.10
58.5 (6,2(a' Freebo4,d_)
63.20
70.6
63.30
83.5
Pro J vo - used. Q=c.LN 3& EQ.
I
I
U
I
I
I
I
I
I
I
I
I
I
IJ
11
I
Engineering Consultants
10119,Q T 3
CLIENT sslnre_ai�K c—� JOBNO.
PROJECT M I CALCULATIONS FOR 22,jiz Qe+, P,
MADE BY Win. DATE T1- CHECKED BY - DATE -SHEET 35 OF qq
FIVE '7L_r=-7r 7�� r> P ZT=� ::2
UA+1 ce, r- T;1 I et
For g lore- "=:4> h (o -2, 3 (S-7,9q -1--, -33)
3,3 -rcr,?,". Pipe, under
GCS3,110 c-Ps (c CC44,11 F,
IJOW et co rr,
El c
I
I
I
I
I
I
I
I
11
I
I
I
I
I
11
I
I
I
I
CLIENT Alo rd i c- (< /., e-,L t
INC PROJECT M r.1 ryk:W � —JOB NO.
—yy CALCULATIONS FOR 7e- a,j5;k7L, Pon,/
f Engineering Consultants MADE BY Ka) DATE CHECKED BY DATE SHEET OF qq
19kT- 3 COIL17-,
A.330
-d ... ...
4__ .....
f ;-
........ .. . ......
:0+1 ). r
-- - ---------
T.
J.
......
...
r
j
.
E
'i Z 4 (oZ,5
14WEC
Hw67c
_3
.:
0 W
w/ly
DESIGN OF INLETS,
STORM SEWERS AND SWALES
m
I
1
1
1
7
L
■
Engineering Consultants
2900 South Co!lece Avenue
Fort Collins, Colorado 60525
303 226•4955
FAX: 303226.4971
August 5, 1992
' Susan D. Hayes
Stormwater Utility Dept.
City of Fort Collins
' 235 Mathews
Fort Collins, Co. 80522
' RE: Drainage for the Northwest Oak Farm Area
Dear Susan:
The purpose of this letter is to address the drainage design for the northwest area of the
Oak Farm Area in southeast Fort Collins. The area is approximately 22.9 acres of land
' bounded on the north by the south right-of-way line of Harmony Road, on the east by the
Centerline gf -.cardwalk DrrJe, on the south L :he nor h p-c-perty line of ? ce.
,.y N. y th prepo.. d
Upper k4eadow at. Miramont First Filing development, and on the vest by the east
property line of the existing Fairway Estates development.
The stormwater release rate for this area has been analyzed in the past by two separate
' drainage plans. The first plan called The McClellands Basin Master Drainage Plan,
required on -site detention using a staged release rate of 0.20 cfs/acre for a 10 year
' design storm and 0.50 cfs/acre for a 100 year design storm. This criteria was
superseded by the Oakridce Master Drainage Plan which allowed a maximum storm water
runoff of 0.50 cis per acre ter all storm events from the Oak/Cottonwood Farm site.
With the development of The Upper Meadow at Miramont First Filing, Boardwalk Drive is
planned to extend from Oakridge Drive, southeasterly to the intersection of Lemay Avenue
' and Keenland Drive. The street conveyance capacity for this section of street in the initial
(10 year) storm water runoff is 12.90 cfs of water. When the drainage of the Upper
Meadow at Miramont First Filing, is taken into consideration, the remaining capacity in
' Boardwalk Drive for the above described property is 5.57 cfs. Given the area of the
subject property, this yields an allowable release rate for the 10 year storm of (5.57/22.90
T 0.24 cfs/acre) for the subject property. By restricting the release rate for the 10 year
W 9/9y
' Other offices: Cenver 303.456-5526 • Vail 303 476-63-0 • Lcnomoct 303 678-9564
I
t
storm to this level the subject property can develop without additional storm drainage
improvements to Boardwalk Drive.
Based on this analysis, the drainage for the subject area should be designed to detain
the developed storm water from this property and release the runoff at a maximum initial
storm (10 year) release rate of 0.24 cfs/acre and a maximum major storm (100 year)
release rate of 0.50 cfs/acre. Outfall for this site's detention should be into the west
flowline of Boardwalk Drive. At these release rates, Boardwalk Drive will convey
developed storm water runoff from this property, to downstream drainage facilities.
By approval of this letter, G.T. Land and the Front Range Baptist Church (the current
property owners) agree to the aforementioned drainage criteria.
Sincerely,
RBD, INC.
—1�
Stan A.IvIlyers, P.E.
' APPROVED:
I�
J
1
1
Oak Farm Inc.
J
Title
Front Ra aptist Chu ch
1-)tz w�
Title
/�/ 9
Date ' Date
1
d
1
z
J
yicl9y
I
1
Stanford Plaza
3555 Stanford Road
Suitc I(X)
G. T. LAND COLORADO INC. fun Collins, CO X0525
Ms. Kathy Malers
City of Fort Collins
Storm Drainage Utility
P.O. Box 580
Fort Collins, CO 80522-0580
' Dear Kathy:
Port Collins _ 303-223-3933
Denver — 303-440-3433
Longnumt — 303-651-6336
facsimile — 303.223.4671
October 6, 1992
This letter is written to inform you that Oak Farm Inc., as the owner of
the property adjacent to the north of the Upper Meadow at Miramont, is
aware of the planned landscape berm and other grading proposed on our
property in conjunction with the Upper Meadow; and has no objection to
' said grading. We do not feel that an "off -site easement" is necessary to
allow this grading.
Sincer ly,
i
r C. s , CCIM
Oak Farm Inc.
cc: Eldon Ward, Cityscape Urban Design, Inc.
Gary Nordick and Bill Neal, Nordick/Nea1 Partnership
Stan Myers, RBD
1
r,
J
1 -7(7)
CLIENT Nord ic-9 110ea I -JOB NO. 5-OY-OL11
NC PROJECT mlramc,-( 15-"-Fj/b2t CALCULATIONS FOR I-- in k Is 4- S*rM Swrs
Engineering Consultants MADE BY K(J(z DATE LZI-12 CHECKED BY -DATE SHEET OF
IIJ 66TS
1-
A_�...
.5L/er_jq Z,
curb' 0/�Op_oj
Y. .. .... ...... ..... . ...
hey ht
:=a0,78
h.,. 7i 0,50 . . ..... ... ... . .... ...
Tram ni,
176
4f
7W A.
01
_2
?
Pe 51
e , .5 , i svr�o J7 _7,e r/e _/D
0 3
Ur1.
-7
T
_7
a .76
617 10,3 -pr-� CV C, # 7-
L-------- ----------- -
7 77 (Sump �c r C:co
J."
b-tf
h
00
-4
"'T
L
we Er
T
- - - - - - - - - - - - - - - - - - -
7-
L
F1
de-f-4 __74 X:
�aj r7.
. ...... ..... '4
5-32 O'� q jj� V/Q 6
C-0
1
T:iDNC
' Engineering Consultants
1
I
1
�I
r
CLIENT _ Aj6rd ic, - hde4l JOB NO. -�Dy-Ai/
PROJECT Mi ✓a manf :5*- %n 7 CALCULATIONS FOR -5/';?C- )n le/5S&Y M SW/5•
MADEBYYW(- DATES-'21-'�7 CHECKEDBY— DATE SHEET 43OF °14
I :..p i
IIJLbr srS
- Fror, I ii+e Ouerai d �e S'�dj'r OaK /Cof�'anwooci Farm
De n o ' i S li cf5 a�_ECEr17En1T 3ZS ,... , SWmM rY10 OEZ 5
fs �
ax �✓f%c� dcPtti oSOf_f /,/5crs�fY
{ . Red I for. ._70./90)
!.
/Scdo ;r;V6'.
SroQM' SEwE2 _
A
i
NLEi
J
/1
s,7cFs /�71n,.P�e. S.i¢e ?er=.G,ty
U52 ManninyS � EQ�Fina� /Ni r S'lc��'�r D e4'
Flou! S 5 O/o 1
!Q 677$cfs 5-,7cfs Coe) - I
' - ?,`GorrF rm hy�ra�u(ic5 iiw/ UDSEU�EQ - I Z)5c '15 "P/PE 4 D,
t 1 - ,
B NLET t' Z TZ? DETEA177C'/
Q2= �',1c{5. /✓/n, Ppa Sipe �r.0 =.IS '� /7=.O/3;_ 4
r/o w
s BPS__
} (Con'fi-rrr+,�{/ydravlicS iN/UDSect�r) , ;. � ,- o
_C ouTCETPIPEf':'FPOrO: 'DETE 0Jj Po'JO �
Dn�Ira ye Sir (a Oak �Co�fm vcoa( rar�i Sc�mr+ !Y100EG5 /
Alec cnf 321 s,ree; 15" j
(IJoTE• PGND NYDRavucs, FJRE LC.v kmEp 6c5E HERE+ r
iNESE c,
.#--` - y I 0PE/J....c-
�Gan-Fir� H,/clrau/Ic5 W�G.OS
:
_ I _
so90
+-
RWINC
' Engineering Consultants
[1
0
1
H
1
.SWM%Yt ✓Ylot
F)
j�AVI y
1.
'
su�mm �rn.i
CLIENT Nncd)GK,/�e, JOB NO. SOy-00/
st L
PROJECT Mira man � Fi %/��/ CALCULATIONS FOR S� zzC SfdrM S2WCf$
MADEBY " -DATE 'S-��9?CHECKED BY DATE SHEET NH OF 4N
Eti1 DESIGnJ; Pd/NT S ¢;
Erall Dluinaye:S�l,�Jy�ai' OaK'
mov; S/cOE-OrIF7,
�' Zl "RcP wiTh
From 0vero 11 Drai,aa yL Stvdr ir,� Oak /C07'-fznuccc�
ZS Y,2! T/iL fo//twin, -r4ocus N.G re
— 3za 17 i
19 q 3 = . (o c¢5 ,fro , s� /at? y
G t Fm Z /cf # iev ov5 6/CS) n i
rafi na 1 ."e
To}aflow a
_ 'e11 41ov.l of-uf 7creascna
_
f-(o oQS :- 23 cfS
(ne 1770nn)195: EQ i F,+d r»in.�Cheni7-el flea/_-Eol c� Z_S' P/PE
t
123-] -f za
t
.. i t^ i J 1
CUG.L/Ek'7;:h�YOCRuics;fl2F�
/!V 7tJESE` Cr3Ccu[,,9ToN5
� I '
Or eYa/l_ D��rio Stuc%_-fo
oEGS� Ft,Eme�vT .3.Zg /s
I
I
I
I
I
I
11
I
I
I
11
I
I
I
7�
NC
Engineering Consultants
CLIENT JOB NO. -5__0q_t10
PROJECT Stein" CALCULATIONS FOR 57-Z-2 eodl$;dle GK'4e5
MADEBY"02' DATE5_2" CHECKED BY -DATE -SHEET q5' OF 1q
"I ,
5 :51j7 ; . I . i F
TIP
_f, II
/3. G c S
J..
V= ,81 / ----- -
L)
(00 r� q7
h P Y, C� ac'liy, i
2,3
4-A 1 3 De
L Z 70 5)
o
5,0Ii
to
--- -- -------
ro
132,9!cfs -3
7_1
4.
I
RBD INC. ENGINEERING CONSULTANTS
' WEIR SECTION FLOW DATA
BOARDWALK OVERFLOW OVER CROWN AT STATION 2+10
' WEIR COEF.
3.000
' STA ELEV From fhL O e�r�ailFD^"+hams 95cfs
-__-- ----- Oak �Co{Eo„wa j
' 60.0 66.06 Far roadsr�e d%+�� a-(o� �cRrd,.elK . 7j
160.0 64.30 propose Q cvlverT w?!l� Pars aP�r�x; aieY
185.0 64.06 -7(ocfs uif! 95-70= l9cs overf(own5
210.0 63.88 00F'A'alk aNei �`ra f liar, ed
' 519.7 66.21 Gnw o'r,af of _S���iov Zf/o. Aclaliiiono�/y
-f-He basin imme%iaie.l� so fG of sfaiiov
Z+10 Q oo = !7 rls t Crown o 6c s in
' ELEVATION DISCHARGE !p pass
(feet) (Cfs) IUi(! me<< Je�wee.; i0`1/ef
63.9 0.0 li*5 s pl�j5
' 64.1 5.3
64.3 �4,33 29.7 36cft
6 4 . 5 `�- 79.8 64.7 157.4
64.9 265.4 t0. faK )
65.1 406.5 = 04'33 -
65.3 583.2 pe f+6 0.f- F{cwbne an <_a� G sick
65.5 798.0 33- G3•ZS= /,O8'G1•S'(cK)
65.7 1053.1
65.9 1350.8
3
Pro graM Uses Q=CIA h /114'F1on
1
'7
I
1
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
BOARDWALK OVERFLOW OVER TOP BACK OF CURB AT STATION 2+10
WEIR COEF.
3.000
STA
60.0
160.0
185.0
210.0
519.7
ELEVATION
'
(feet)_
63.8
'
63.9
63.9
64.0
64.1
'
64.2¢-
64.3
64.4
'
64.5
64.6
11
G
1
ELEV
64.74
64.17
63.93
63.75
66.08
DISCHARGE
(Cfs)__
libhq
Fr'on, -7�Ae. Oueral( Droi lo7e udr �cr
OaKIco4wwook Farr�j) f(,e Qlou'�SC{;
-Far roo.l side d,4c G.a lai,2 ;,Tr dUua ll(,
Th e. orCyose4 cc/Ler%
roXlw+
aPloafely 76 a5- Wu 495 11 -76=
0uer�lcwiny OnTD Boo dualk qn/�
4raJtl)r,� ea5f -fv Lcw /oLl of
Sfai o Zt/o. Addifiana(ly -/'/,r Lasi17
ivnn,edia�ely S<0tl cT s/��-Joo ztio
17 c�9 f , P/Js 64 51Y,
JR card wn I lk ) Qica "
case p>Pe �lur Jecl' iam
2 r✓ r b
0.0 -I , ci i q' c.l, % Tc�°
0.9 „eel 4, / 5 5 /4 t- /- t -7 cf5 _ y3eF5
5.3
14.7
29.7/3c{s
51.7
81.5 ijepf'n a{ � back aJI- CLrb
120.2 = GY,IG— a,'7.s = / Ft c c
168.E -o yll,,goI's
c = O,9 I
227.6 DePfh in F1�w/;ne (OK)
Pro j ra,r uses Q=C 1 �� (F vaf ion
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
BOARDWALK OVERFLOW OVER CROWN AT STATION 14+73
WEIR COEF.
3.000
STA ELEV
0.0
71.06
65.0
70.67
85.0
70.61
103.0
70.56
121.0
70.51
141.0
70.45
194.0
70.75
437.0
71.72
Fro, Rai'je^a! C4(Sj
D e6i9n Gf o
13. cl %3I te.r`�
were plu�3.7� e:{� 13I9Cfs
weul.Q ✓PeA {u Po 55 OvY'r
�-he c,-3,wn c'� L3aa,:lwaf�
P ro ce e�. 4-v -f'h e-
and
roadside dif �t,
ELEVATION
DISCHARGE
(feet)
---------
(cfs)
---------
70.5
0.0
70.5
1.8
70.6 70,62
10.7
13 9c(S
70.7�-
29.2 4--
oe.lwa(X
70.8
59.3
DeP(l� a% Crown
70.9
101.0
= 7o.GZ0,1-7'
a,so
71.0
155.5
�oWJine
cn Eas- siale
70,GZ- G9�ti2--
'lz
Pro33rarr uses Q= CC NEquafion
1
1
1
1
1
sO�gN
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
SWITCHGRASS OVERFLOW OVER TOP BACK OF CURB AT STATION 3+20
WEIR COEF. of
3.000
�- E�4Tio�IS
STA ELEV
80.1 76.19
320.0 74.99
470.9 75.79
ELEVATION
DISCHARGE
(feet)
---------
(cfs)
---------
75.0
0.0
75.1
1.3
75.2
7.4
75.3
20.3 iL.L PASS Im ye E .v.- "7S.31
75.4
41.7
75.5
72.8
75.6
114.9
75.7
168.9
75.8
235.9
TvT�I _ oiJ�_i.�!v._DEPT�1—
oa
LLF----5S �u�� I. s oe-�
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
6"l q q
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
BLUESTEM OVERFLOW OVER TOP BACK OF CURB AT STATION 14+43.20
WEIR COEF.
3.000 � ?�cv- c ELEvdTl o..ls
STA ELE
___--
_-- V Z ZS_i o
1324.0
79.51
1443.2
79.00
1548.7
79.84
ELEVATION
DISCHARGE
( feet)
(cfs)
79.0
0.0
79.1
1.2
79.2
6.8
79.3
18.8 tiz C - �L. i9.33
79.4
38.6
79.5
67.4
RMINC
Engineering Consultants
CLIENT _ 100r ciic K I AJeea ( JOB NO. SO'/ 00 /
PROJECT MIreL OCf FFrSCALCULATIONS FOR S'for,n Sewe,
MADE BYkw (7 DATE S28" 9Z CHECKED By- DATE -SHEET 5Z OF 9N
, a
'
('ramcOEL u/S LO.S i J
-�-r-
�.
` I
- +i-TI-� /N✓(o6,,0'�- .�-. -, +.^1 it �; ; L �. I..i{ Lr��-�
...I + Kb 0 ZS I I F I
t
_
Qzs 8, 44
I I
I �
Q� _. UOSEuJE2 M qnl HocE iJd 4 i ;_
I - r
52vJ'Y'. l7y�r'aL�tCS avil r12-,c�."' ! aC� 1
25YK .STORM SEWED; SYSTErn. z.//✓GS.y9 S I
L -
SG LF_ .Z4' PE,'PIPE � .; O. I tF 21 "RGP 'a`/; o0 90
iCTo. MODEL
i
1 I �rioceL wok�r_cASE
,- SO.LF 21"RcP - IF 21 'STUB: IS V0.7-
_uSEo� -,
95 5T72E£7-:4 MM6Y_ CN�
�/0090
-
- r
WS C _ Fo}vre Max ro ljSD
00 - /J✓-GUT+�`j � ' ^' _ ,(� ' ' ' � 1 -� i.,
_u
6 3 25 { �v(n3,2S I {
- jr lI
,Kb I 1 } r
--------------------------------------------------------------------------
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 3
DEVELOPED
BY
' JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
- DENVER, COLORADO
** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA
ON DATA 07-09-1992 AT TIME 11:52:26
*** PROJECT TITLE :
MIRAMONT FIRST FILING STORM SEWER ACROSS BOARDWALK DRIVE
*** RETURN PERIOD OF FLOOD IS 25 YEARS
** SUMMARY OF HYDRAULICS AT MANHOLES
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
------------------------------------------------------------------------
1.00 N/A N/A N/A 8.00 69.50 68.50 OK
2.00 N/A N/A N/A 8.00 69.82 69.06 OK
3.00 N/A N/A N/A 8.00 69.82 69.19 OK
�K MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 2
IT SEEMS THE GIVEN RUNOFF IS TOO HIGH[
'** SUMMARY OF SEWER HYDRAULICS
' NOTE: THE GIVEN FLOW DEPTH•TO•SEWER SIZE RATIO= 1
---•••................•--_.._..............................._.---
SEWER MAMHOLE NUMBER SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER UPSTREAM DNSTREAM SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
ID NO. ID NO.
....•••••... •-
(1N) (FT)
(IN) (FT)
(IN) (FT)
(FT)
1.00 2.00 1.00 ROUND
18.51
.........................
21.00
18.00
0.00
2.00 3.00 2.00 ROUND
18.51
21.00
18.00
0.00
'IMENSION UNITS FOR ROUND AND ARCH SEWER
ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER =
COMMERCIAL
A NEW SEWER, FLOW IS ANALYZED BY THE
SUGGESTED
SEWER SIZE; OTHERWISE,
'OR
XISITNG SIZE IS USED
�S4/�
SEWER
DESIGN Q
P-FULL Q
DEPTH CRTC
DEPTH
VELOCITY
FROUDE COMMENTS
ID NUMBER
IN CFS
IN CFS
YN FEET YC
FEET
IN FPS
NUMBER
1.00
8.00
7.45
1.50
1.06
4.53
0.00 V-OK
2.00
8.00
7.45
1.50
1.06
4.53
0.00 V•OK
IROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID
NUMBER
UPSTREAM DNSTREAM
UPSTREAM
DNSTREAM
%
(FT)
.........
(FT)
(FT)
(FT)
1.00
0.50
66.84
.................
66.34
1.48
....
1.66
......
NO
�K
2.00
0.50
66.84
66.84
1.48
1.48
NO
MEANS BURIED
DEPTH
IS GREATER
THAN REQUIRED SOIL
COVER OF
2 FEET
I** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET FEET FEET FEET FEET FEET
1.00 100.00 100.00 68.34 67.84 69.06 68.50 PRSS'ED
2.00 0.10 0.00 68.34 68.34 69.19 69.06 PRSS'ED
�RSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
I** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
...............................................................................
' SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE
ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY
ID NO. ELEV FT ELEV FT FT 1D K K LOSS FT
.................. -............................................................
1.00 2.00 69.38 69.06 0.58 1.00 0.95 0.00 0.30 68.50
2.00 3.00 69.51 69.19 0.05 2.00 0.25 0.00 0.08 69.38
BEND LOSS =BEND K* VHEAD IN SEWER.
MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO
'FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES DROP AT MANHOLE
C
I
t
REPORT OF STORM SEWER SYSTEM DESIGN
' USING UDSEWER•MODEL VERSION 3
DEVELOPED
BY
' JAMES C.Y. GUO PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
--'-------------------------------------------- -----------------------------
** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY . DENVER METRO AREA
ON DATA 07.09-1992 AT TIME 12:58:06
*** PROJECT TITLE :
MIRAMONT FIRST FILING STORM SEWER SYSTEM INLETS 4 TO 5
*** RETURN PERIOD OF FLOOD IS 25 YEARS
RAINFALL INTENSITY FORMULA IS GIVEN
I** SUMMARY OF HYDRAULICS AT MANHOLES
...............................................................................
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
' ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
.. ... .......... ................. ... .... ...... ...... ... .........................
1.00 N/A N/A N/A 23.00 63.95 61.50 OK
' 2.00 N/A N/A N/A 23.00 63.25 61.59 OK
3.00 N/A N/A N/A 17.00 63.25 62.58 OK
4.00 N/A N/A N/A 17.00 63.25 62.87 OK
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 2
HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 3
IT SEEMS THE GIVEN RUNOFF IS TOO HIGH!
'** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO=
tISEWER
MAMHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
D
NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGN)
DIA(HIGH)
WIDTH
ID NO.
ID NO.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
....__....••••............••••
1.00
2.00
1.00 .................................................
ROUND
23.73
24.00
24.00
0.00
'
2.00
3.00
2.00
ROUND
21.56
24.00
21.00
0.00
3.00
4.00
3.00
ROUND
21.56
24.00
21.00
0.00
'IMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
IMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL
FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
IXISITNG SIZE 4S USED
0
SEWER DESIGN Q P-FULL 0 DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS
ID NUMBER IN CFS IN CFS YN FEET YC FEET IN FPS NUMBER
.............................•---......._...........................
1.00 23.00 23.79 1.58 1.69 8.63 1.19 V-OK
2.00 17.00 15.89 1.75 1.50 7.07 0.00 V-OK
3.00 17.00 15.89 1.75 1.50 7.07 0.00 V-OK
1ROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
......................................-------------
.-----------
SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS
ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM
% (FT) (FT) (FT) (FT)
' .....•••.....-•---............-. 1.00 1.10 59.80 59.40 1.45 2.55 NO ...............-----•------
2.00 1.00 60.55 60.05 0.95 1.45 NO
3.00 1.00 60.55 60.55 0.95 0.95 NO
IMEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET
I** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
.....•--.......--•-'-••-•----••'...............................................
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
ID
NUMBER
LENGTH
LENGTH
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM CONDITION
FEET
FEET
FEET
FEET
FEET
FEET
'
1.00
2.00
36.00
50.00
8.73
50.00
61.80
62.30
61.40
61.80
61.59
62.58
61.50 JUMP
61.59 PRSS'ED
3.00
0.10
0.00
62.30
62.30
62.87
62.58 PRSS'ED
** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
...............
...............................................................
SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE
ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY
ID NO. ELEV FT ELEV FT FT ID K K LOSS FT
-•............ . • ---......_.......••-........
1.00 2.00 62.74 61.59 0.09 1.00 1.00 0.00 1.16 61.50
'2.00 3.00 63.36 62.58 0.57 2.00 0.05 0.00 0.04 62.74
3.00 4.00 63.65 62.87 0.10 3.00 0.25 0.00 0.19 63.36
BEND LOSS =BEND K* VHEAD IN SEWER.
MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
'JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES DROP AT MANHOLE
J
I
7
L
58/ 9q
I
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 3
DEVELOPED
' 8Y
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
*** EXECUTED BY DENVER LID AND FCD POOL FUND STUDY . DENVER METRO AREA
ON DATA 05.28.1992 AT TIME 16:30:11
** PROJECT TITLE
UPPER MEADOW AT MIRAMONT FIRST FILING �TOeM �LllE=� T=20M �lU 1TC44G2L�SS ��
** RETURN PERIOD OF FLOOD IS 2 YEARS 4L)kS IA/GET ND, l
I** SUMMARY OF HYDRAULICS AT MANHOLES
...............................................................................
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
..-• ... ...... ..... ................. ............................................
' 1.00 N/A N/A N/A 5.70 71.25 70.40 OK
2.00 N/A N/A N/A 5.70 74.49 71.48 OK
3.00 N/A N/A N/A 5.70 74.49 71.61 OK
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
** SUMMARY OF SEWER HYDRAULICS
OTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
SEWER MAMHOLE NUMBER SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER UPSTREAM DNSTREAM SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
ID NO. ID NO.
•...................................................
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
'
1.00 2.00 1.00 RAND
16.30
18.00
15.00
0.00
2.00 3.00 2.00 ROUND
16.30
18.00
15.00
0.00
�IMENSION
UNITS FOR ROUND AND ARCH SEWER
ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER = COMPUTED; SUGGESTED
DIAMETER =
COMMERCIAL
OR A NEW SEWER, FLOW IS ANALYZED BY THE
SUGGESTED
SEWER SIZE;
OTHERWISE,
XISITNG SIZE IS USED
'.........'-..........-••. ....
SEWER DESIGN 0 P-FULL 0 DEPTH
•...................................
CRTC DEPTH
VELOCITY
FROUDE COMMENTS
ID NUMBER IN CFS IN CFS YN FEET
YL FEET
IN FPS
NUMBER
1.00 5.70 4.58 1.25 0.97 4.64 0.00 V-OK
2.00 5.70 4.58 1.25 0.97 4.64 0.00 V-OK
RROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
I
o/9q
I
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
%
(FT)
(FT)
(FT)
(FT)
1.00
0.50
.................................................
70.70
70.00
2.54
•0.00 NO
2.00
0.50
70.70
70.70
2.54
2.54 OK
lK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
....•••••••.........................••••••'....................................
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET FEET FEET FEET FEET FEET
.. ..... ...... ....•••••••••••••....... ..... ............ ....................... ..
' 1.00 139.00 139.00 71.95 71.25 71.48 70.40 PRSS'ED
2.00 0.10 0.00 71.95 71.95 71.61 71.48 PRSS'ED
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
.......... ........ ••••'••••••........ ................. ........
' SEWER
BEND LOSS =BEND K* VHEAD IN SEWER.
MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
' FRICTION LOSS INCLUDES DROP AT MANHOLE
UPSTREAM MANHOLE
FRICTION
DOWNSTREAM MANHOLE
1
1
n
�I
0
0/14
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 3
DEVELOPED
' BY
JAMES C.Y. GUD ,PND, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
*** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA
LPROJECT TITLE ON DATA 05.29.1992 AT TIME 08:18:11 **
UPPER MEADOW AT MIRAMONT FIRST FILING S7
** RETURN PERIOD OF FLOOD IS 2 YEARS C.L)Iz a 1N6 ET NO. Z
I** SUMMARY OF HYDRAULICS AT MANHOLES
.........---•.......•'•••....•••••••............................................
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
................................................................................
' 1.00 N/A N/A N/A 6.70 73.75 70.40 OK
2.00 N/A N/A N/A 6.70 75.50 73.81 OK
3.00 N/A N/A N/A 6.70 78.50 75.54 OK
4.00 N/A N/A N/A 6.70 78.50 75.88 OK
�K MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
*** SUMMARY OF SEWER HYDRAULICS
' NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
SEWER MAMHOLE
NUMBER
SEWER REQUIRED
SUGGESTED
EXISTING -
ID NUMBER UPSTREAM
DNSTREAM
SHAPE DIA(HIGH)
DIA(HIGH)
DIA(HIGH) WIDTH
ID N0.
................•••••••..
ID N0.
(IN) (FT)
(IN) (FT)
(IN) (FT) (FT)
1.00 2.00
... •
1.00
.....
ROUND 17.32
..... .....
18.00
..... ..... ..._.....
18.00 0.00
' 2.00 3.00 2.00 ROUND 14.19 15.00 15.00 0.00
3.00 4.00 3.00 ROUND 14.19 15.00 15.00 0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
IMENSION UNITS FOR BOX SEWER ARE IN FEET
EQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL
OR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE IS USED
------------------------------------------------------------------------------
SEWER DESIGN Q P-FULL Q DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS
ID NUMBER IN CFS IN CFS YN FEET YC FEET IN FPS NUMBER
1.00 6.70 7.45 1.11 1.00 4.77 0.81 V-OK
2.00 6.70 ...7.80 0.89 1.04 7.15 1.38 V-OK
3.00 - 6.70 7.80 0.89 1.04 7.15 1.38 V-OK
IROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
61/lq
I
'
ID
SEWER
NUMBER
SLOPE
INVERT ELEVATION
UPSTREAM DNSTREAM
BURIED
UPSTREAM
DEPTH
DNSTREAM
COMMENTS
%
(FT)
(FT)
(FT)
(FT)
......................................................................
1.00
0.50
72.37
72.26
1.63
-0.01
NO
2.00
1.45
74.50
72.61
2.75
1.64
NO
'
3.00
1.45
74.50
74.50
2.75
2.75
OK
OK
MEANS BURIED
DEPTH
IS GREATER
THAN REQUIRED SOIL
COVER OF
2 FEET
'** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
'I D NUMBER LENGTH LENGTH UPSTREAM ONSTREAM UPSTREAM DNSTREAM CONDITION
FEET
FEET
FEET
FEET
FEET
FEET
•----••.................•--............................._......................
1.00 23.00
0.00
73.87
73.76
73.81
70.40 SUBCR
'
2.00 130.00
0.00
75.75
73.86
75.54
73.81 JUMP
3.00 0.10
0.00
75.75
75.75
75.88
75.54 JUMP
IRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
'** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------••----............................................................
SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE
ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY
ID NO. ELEV FT ELEV FT FT 1D K K LOSS FT
... ... ...... .......... ... .... .......... ... ... ... ..... ..... ..... .... ...... .... .
1.00 2.00 74.17 73.81 3.41 1.00 1.00 0.00 0.35 70.40
'2.00 3.00 76.33 75.54 2.01 2.00 0.20 0.00 0.16 74.17
3.00 4.00 76.67 75.88 0.14 3.00 0.25 0.00 0.20 76.33
BEND LOSS =BEND K* VHEAD IN SEWER.
MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
'JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES DROP AT MANHOLE
L
1
1
1
1
1
1
1
F
U.
p
z
N
13uno
r
cc
w
I
Q
�
•
W
W
NOIIVA313
Cl-
�I
m
• •
H
I
tl317MOtl3X
rz
W
p
OQ
a
'IONIN07
W
Z
W
U
N N F W
Q
N
N
J
w w w
N
Q
W I Io 0
W
i-
>
wrj
_
>
U
O
I
y�
N
Vf J
i
Q
3
O
I
z<I
1
o
O
N
Q
W
J
N
^ a
of
N
II
WC
y
(ri
x
v 3
J
?
u
N
W
LL
O I
I I•
F
�
m '
y
r
U
L
W
_
U
00
O
rlz
m
r
o
JW�
S
V v
J
F W
c
¢
i
W
i o
m
Q
F
W
S
W
W
p
Q n
..
O
= O
m
N
fA
c�
W
J
W
¢
LL
O
39
a
W
3:
_
0'
C p
W J W
N
= �fy)! �� O
O
-
W
Q ¢=
m H31:
1 -F
H y O
J
N
W=
H u U
H O
=
s
=
F M N m
kn
o'¢Is
a�u(U
Lu
c
H
J -0 II II
Y Y S 2
_
3'o
W
X•
Q
I- C
¢
U
=
11
lL
F
Q
W
¢
W
x
J
u
o
o
3
u o
¢
J
❑
❑
N
3
-
U
z
o
J
J
Q
W N
c
o
Q
"
0
3
o
r
Q
¢
W
3
Q
n
o
�
O CW
I
1v`-
J C
Z
O
W
P. Ili
Z u
S
Q
S
O
`L
W
,,finn
2
x
wo v
2 W
O
w
J C
eoWo
IL V
¢
La<?Ovwi
y
U.
it
.=3 --O FQ
Q
Q
N
=I
o
uC
<
vo
'U¢W
�Q ari¢a
W
_
owo 3Wa3
Q
JX•
N
S
N
Q
6JW WWJ�F
'S1XS'1.00v
33Sa�oxz?ow
240.
O/q4
RIPRAP DESIGN
I
�r
-7
11
TMINC
Engineering Consultants
CLIENT /Jodi ck /A/ezLI JOBNO. S6y-00/
PROJECT M7r-4e"01,7, First Fi lire CALCULATIONS FOR_RiP/'rz-ice
MADESYK'VG DATESZS9 CHECKEDBY DATE SHEET J_OF _T_
I). R/PR/�P %-TEND �0F IS'"RCP /VTO` �i'2N � �TEmPo,2sr�2Y� I I I I I � L
r
-.,fir - 2 ZS / 50.., .`
Fy
� y
,
, I ,
ST, Dd j �aniax .Pd �f l-sa ?Z6� +
{
{
STEP 3 Det bedd n5 US _ I Zj"TyKi
I
siEP4 DEt R,�rap , w d-Y 3 Q �jn 13(i;s) Y S Use S `/UiaTH
z) .R IPRfI ?T.ENO a F, yZ /iUTv
pzS _-76as I 1
Tw= Zip; ' 1
j I
1
I 4.
14
D., 3,51 ' .. i
pis C3.$)i si Fi 5-7 f Use T'veL CLoss (o RIPILI
STcY2 Deb i-he ex�onson-r"'�d-or C`/Z-fan B)
i
57Fp3 I .De.h the k-- ef-
V f rtx �rof c{,oi f r
C Y,q FP5' .non erns, e) -` ' r
I - iI
_ { I r
_ i?t y
`1 L C6yYi19/zI) 35� �—
_.
35 �. i
■S � CLIENT /i lllr-d [C k'kca- / JOB NO. 570'1-601
INC PROJECT �l i /v man f F rST` 5/ircALCULATIONS FOR fZ �P/-' p
Engineering Consultants MADE BY ' 6" DATE SZg 9ZCHECKED BY DATE SHEET OF 21
I
[J
1
u
1
No Text
I
I
(o9lq 4
EROSION CONTROL
F,
RAINFALL PERFORMANCE STANDARD EVALUATION 70/9N
PROJECT: M I F-gmowl- FIQST FIL//JG- #Soy -oo I STANDARD FORM A
COMPLETED BY: KW G *6) Re) D DATE:
DEVELOPED
ERODIBILITY
Asb
Lsb
Ssb
Lb
Sb
PS
SUBBA§IN
ZONE
(ac)
(ft)
M
(feet)
M
M
41)64
1
MODEQyTt
3,yz
17zo
0.9y
2
mopE� 9TE
(o,Zy
e 10
0,ct
/✓10DERfiiE
7.oq
�4/S
D,S�
�i
MOVC2/)iE
6 , 19
2,200
0 ,G
5
MoDE�29t�
/.92
1097
0.15,
(D
rnonEQgtF
),(,2
1037-
).33
27,23
iy°13
0,'77
-7s,71
From 7lble
INC UDEs
50UT-H '(z
OF 30f1k0 Ml
CK t721VE
[b_ Surn
L56K9`h)/Surn
f�,b
17zo
(3,yZ)tEioCG.zv
t/y/S(7,
y)t Zza(
a•�4)f /057
C/•92Jt1�3"
(/•GZ)_'y
3
L6 -
Z7.Z3
5b= .94
(3.4z; L.9�C6•
Y)1'-,SG(7,Y)t,rc
Y
ICG 19)+,
7S(I,9Z)t/•3(�,�z)
=.-77
0
27. z3
MARCH1991
B-14
DESIGN CRITERIA
-71/qj
EFFECTIVENESS CALCULATIONS
PROJECT: IY1 1 R p md/u1' FIRST FIL/A/ G #soy -oo l STANDARD FORM B
COMPLETED BY: Ku)C; a RBD DATE: S�Zz�gZ
Erosion Control C-Factor P-Factor
Method Value Value Cominent
ROADS w CuR8 0.01 1.00 P4VED9- COA.5reLr-T7r4l
akpUEL >=ILTERS 1,00 0.60 AT /N4.E'T5
HHf op- STR9u/ 0,0(0 /100
MULCH lv /seep(
$EDIir1 E/JT dA51/✓�TkNP /i0O d'So rnUST BE Co.J57R �TE0
95 THE F/,C'ST STEP
OVERLor 6.P1%o//16
MAJOR
PS
SUB
AREA
BASIN
(%)
BASIN
(Ac)
CALCULATIONS
75,710
1
3,i2
Roads 1-Curb /,75 9G (F/s5vrne,( moo+ con5froc4el u)/r, 6 weeks
mULCH x3,4Z- I,'IS= 1,(o-719C.
NfT C FACTOR = 1,G7C'D(0)-�-1,75CI,oc� _ 0,5y
3,qz
/JfT P racier = 1.00
EFF- (I cxP)X)Oo=Cr-(,54x1))xtoo =
Z
(,Zy
Road5.- Curb 1,117 9c SSvmPA nv con5 r✓ c c i17 6urcY
mL,(�ti ^-6•ZLI-l.°17=y,77s7L
/VET C FpCTCR = �{'7]('O(o)i-(•5''J(I.OG) _ Q,zB
NET P FActor=-t,00 x,5o=,so
EFF = (l-cxv)xtoo = (I-C•28x.s0))= 86.O% .
3
-7, Lj
RoadS 4 Curb I, b 1 0 C- Ass um[ rrcf ConS•frucfrd �1;n 6etK
'WULCH ,7,5'1 01 = 6.03 Vc.
NET C F,4-TCR = (a,o3C•o6)+ = D.20
-7,Qv
NET P FACTOR =1,d0 X,5O=•SO
EFF= 0-CX P)Xroo= (I-(•Z�x5O)).= 6to.U%v
(o119
Rows a Curb x O Ac-
/•17uIck ^ b,lq Ac.
/Ve•{- C = - 0 (c
A/c} P = 1,00
Ef+, (1_CxP)xroo= (/-(,o(,x,so))xloo= g7,090
S
1.9Z
Roa6sy Curb l,yy 9c- (Flss yr e4 not ccnsfruc-qed w/in 6 w eK5)
/Nulclf qc-
_ 1,92-/-4yo•48CaoG)+/,'l4C/,00
NET C FACTOR- )
q Z
NET P F AcToi2 = -2,00
EFF = (I-CxP)X Iod=CI'CZ3,590
MARCHIS91
9-15
DESIGN CRITERIA
EFFECTIVENESS CALCULATIONS
PROJECT: rY11Rl9M0Nj FIRST FILI/JG #Soy-ool STANDARD FORM B
COMPLETED BY: K0G 03 R8D DATE: 5/Zz/yz
Erosion Control C-Factor P-Factor
Method Value Value Comment
Rog05 7 CuRB O,o l lion 1 Cens4rvc- ed
Gravel FilkrS /,60 lefs
14a%r ar Sfraw p,0(o 1100
/hulcl^ Cu/Seed
MAJOR
PS
SUB
AREA
BASIN
(%)
BASIN
(Ac)
CALCULATIONS
-75-.7
(0
I,(aZ
PoaAS 4-Cur6 /,Z2 .9L CA55um d ncyCanS{refr w/in 6
mule -In /,(,z - bzz.
/VefC Foc+rr c o 4oC,o6)+I,ZZU,Oo) _ O7i
NET P FOC'E'0r = /iO0
xr0o
(1-(,�7xr))=
off= (l-Gxv)xloe=
EFF,uet-3,4Z}hb6,0(6.29)7L8G.0(7,3Y)+97(6,1a)+235 1g2)+23,2(t
27,2:
EF�rdET= 75,3 le, �,7S,790 C0K)
44LC01.NT10A15 F02 5ED1MEwT 7-k9P /I/ 607-rOM of FIRST
I=II_IIJCo DETENTICij p0AJ0 : OveR EXGfiUAiE �ER/�A7✓ENT
PoNO 83 EST/M9T60 SEo/i✓I Eti T' Coia0
r,l Z
Se -LT = 0,74 xLRb xp
7,8Y4 6, lq = 20,3 AG
i / a
&F,o 4,(L I e a� load
L iQb - 2-64 a51n5 2 3'F4 Com L-in c,l�
for B i
5edT = 0-74 K Z S4 X 20,31
SP�im P/T An{ici�a�Pt OUri,'1
SeCy 0�
�l1-= 6l,2 f f� bare
54orrn 2�,Le^
0, to year-
,L
Pond Vol vwe- sti irb e Ord
loo ya s/acre 0I COn Warr SAC,(
V = I00 (20 -3) = 203o c-
20 30 CY (z'7) g3560 = /126 AC -Fr'
No{-e:The- e1e.{eo+icn POrc! cUi(y be lni Bally
5e,,hmenf
Cons+rur'ke1 as aL
Icast +17e 1,Z6 AC-GT of
Havin� "L+
Volume-,
52)
MARCH 1991
8-15
DESIGN CRITERIA
I
-7319y
CONSTRUCTION SEQUENCE
'PROJECT: -Fhe:laPer ffieadow &+ M ,ramonI- Firs(- FiI in-)
STANDARD FORM C
SEQUENCE FOR 19 9Z ONLY COMPLETED BY: KW G O Mb DATE: OC•ioBER, 1992
'Indicate by use of a bar line or symbols when erosion control measures will be installed.
Major modifications to an approved schedule may require submitting a new schedule for
'approval by the City Engineer.
YEAR 19 9 2 1993
MONTH I I S' O I ti I D I �% I I M 14 I M I J' -J
GRADING
IND EROSION CONTROL
Soil Roughening
Perimeter Barrier
' Additional Barriers
Vegetative Methods
Soil Sealant
' Other
RAINFALL EROSION CONTROL
' STRUCTURAL:
Sediment Trap/Basin
Inlet Filters
' Straw Barriers
Silt Fence Barriers
Sand Bags
' Bare Soil Preparation
Contour Furrows
Terracing
Asphalt/Concrete Paving
' Other
' VEGETATIVE:
Permanent Seed Planting
Mulching/Sealant
' Temporary Seed Planting
Sod Installation
Nettings/Mate/Blankets
Other
(RUCTURES: INSTALLED BY
GETATION/MULCHING CONTRACTOR
1TE SUBMITTED
1
MAINTAINED BY
APPROVED BY CITY OF FORT COLLINS ON
' MARCH 1991 8-16 DESIGN CRITERIA
CHARTS, TABLES
AND FIGURES
V, -
L6,
C
I yt ; ;
� ilk
1
1
i
1
i
1
1
i
1
1
1
1
1
1
1
i
1
DRAINAGE CRITERIA MANUAL
50
F- 20
Z
w
U
Cr
w
a 10
Z
w
a
0 5
N
w
cc 3
0
CU 2
w
a
1
5
.1
RUNOFF
�nnnnllll//��I�IUII/
Mon
I FA I1
M
oil
.• .�� In�����
inn
I�nnn'I-
- I r
2 .3 .5 1 2 3 5 10 20
VELOCITY IN FEET PER SECOND
FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR
USE WITH THE RATIONAL FORMULA.
*MOST FREQUENTLY OCCURRING "UNDEVELOPED"
LAND SURFACES IN THE DENVER REGION.
REFERENCE: "Urban Hydrology For Small Watersheds" Technical
Release No. 55, USDA, SCS Jan. 1975.
5 -1-84
URBAN DRAINAGE 3 FLOOD CONTROL DISTRICT
75/9N
No Text
1
1
1
' MAY 1984
n
119
.9
.7
.3
.2
W
s=06°/
F = 0.8
-IN
s-0.4%
F=0.5
I BELOW MINIMUM
ALLOWABLE
I STREET GRADE
I
I
0 2 4 6 8 10 12 14
SLOPE OF GUTTER (%)
Figure 4-2
REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY
Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain
allowable gutter capacity.
(From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965)
4-4
DESIGN CRITERIA
�I
7811q
0
Calculations for Curb Capacities and Velocities
Major and Minor Storms
per City of Fort Collins Storm Drainage Design Criteria
RESIDENTIAL with drive over curb and gutter
'0 is for one side of the road only
V is based on theoretical capacities
1
11
u
11
1
Slope Red. .
(%) :Factor :
0.40 :
0.50 :
0.60 :
0.70 :
0.80 :
0.90 :
1.00 :
1.25 :
1.50 :
1.75 :
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75 .
5.00
5.25
5.50
5.75 .
6.00
0.50 :
0.65 :
0.80 :
0.80 :
0.80 :
0.80 :
0.80 :
0.80 :
0.80 :
0.80
0.80
0.78
0.76
0.74
0.72
0.69
0.66
0.63
0.60
0.58
0.54
0.52
0.49
0.46
0.44
0.42
0.40
Area = 2.63 sq.ft.
Minor Storm
Minor . C V
X : (cfs) (fps)
86.71 : 2.74 2.09
86.71 : 3.99 2.33
86.71 : 5.37 2.55
86.71 : 5.80 2.76 :
86.71 : 6.20 2.95 :
66.71 : 6.58 3.13 :
86.71 : 6.94 3.30 :
86.71 : 7.76 3.69 :
86.71 : 8.50 4.04 :
86.71 : 9.18 4.36 :
86.71 : 9.81 4.66 :
86.71 : 10.15 4.95 :
86.71 : 10.42 5.21 :
86.71 : 10.64 5.47 :
86.71 : 10.81 5.71 :
86.71 : 10.79 : 5.94 :
86.71 : 10.71 : 6.17 :
86.71 : 10.58 : 6.38 :
86.71 : 10.41 : 6.59 :
86.71 : 10.37 : 6.80 :
86.71 : 9.93 : 6.99 :
86.71 : 9.83 : 7.19 :
86.71 : 9.50 : 7.37 :
86.71 : 9.14 : 7.55 :
86.71 : 8.95 : 7.73 :
86.71 : 8.73 : 7.91 :
86.71 : 8.50 : 8.08 :
Prepared by: RSD, Inc.
February 28, 1992
Area = 20.11 sq.ft.
Major Storm
Major : C V
X : (cfs) (fps)
696.73 : 22.03 2.19
696.73 : 32.02 2.45
696.73 : 43.17 2.68
696.73 : 46.63 2.90
696.73 : 49.85 3.10
696.73 : 52.88 3.29 :
696.73 : 55.74 3.46 :
696.73 : 62.32 3.87 :
696.73 : 68.27 : 4.24 :
696.73 : 73.73 : 4.58 :
696.73 : 78.83 : 4.90 :
696.73 : 81.52 : 5.20 :
696.73 : 83.72 : 5.48 :
696.73 : 85.50 : 5.75 :
696.73 : 86.89 : 6.00 :
696.73 : 86.67 : 6.25 :
696.73 : 86.03 : 6.48 :
696.73 : 85.00 : 6.71 :
696.73 : 83.61 : 6.93 :
696.73 : 83.31 : 7.14 :
696.73 : 79.81 : 7.35 :
696.73 : 78.96 : 7.55 :
696.73 : 76.34 : 7.75 :
696.73 : 73.43 : 7.94 :
696.73 : 71.89 : 8.13 :
696.73 : 70.17 : 8.31 :
696.73 : 68.27 : 8.49 :
I
No Text
I
81l iq
Calculations for Curb Capacities and Velocities
:ajor and Minor Storms
' per City of Fort Collins Storm Drainage Design Criteria
COLLECTOR u/ 611 Vertical curb and gutter Prepared by: RBD, Inc.
'0 is for one side of the road only February 28, 1992
V is based on theoretical capacities
Area = 3.55 sq.ft. Area = 28.96 sq.ft.
1 Minor Storm : Major Storm
Slope Red. Minor 0 V Major 0 V
(X) :Factor : X : (cfs) (fps) : X : (cfs) (fps)
1 0.40 : 0.50 : 135.32 : 4.28 2.41 : 1129.59 : 35.72 2.47
0.50 : 0.65 : 135.32 : 6.22 2.70 : 1129.59 : 51.92 2.76
0.60 : 0.80 : 135.32 : 8.39 2.95 : 1129.59 : 70.00 3.02
0.70 : 0.80 : 135.32 : 9.06 3.19 : 1129.59 : 75.61 3.26
0.80 : 0.80 : 135.32 : 9.68':' 3.41 : 1129.59 : 80.83 3.49
0.90 : 0.80 : 135.32 : 10.27 : 3.62 : 1129.59 : 85.73 3.70
' 1.00 : 0.80 : 135.32 : 10.83 : 3.81 : 1129.59 : 90.37 : 3.90
1.25 : 0.80 : 135.32 : 12.10 : 4.26 : 1129.59 : 101.03 : 4.36
1.50 : 0.80 : 135.32 : 13.26': 4.67 : 1129.59 110.68 4.78
' 1.75 : 0.80 : 135.32 : 14.32 : 5.04 : 1129.59 119.54 :. 5.16
2.00 : 0.80 : 135.32 : 15.31 : 5.39 : 1129.59 127.80 5.52
2.25 : 0.78 : 135.32 : 15.83 : 5.72 : 1129.59 132.16 5.85
2.50 : 0.76 : 135.32 : 16.26 : 6.03 : 1129.59 135.74 6.17 :
' 2.75 : 0.74 : 135.32 : 16.61 : 6.32 : 1129.59 138.62 6.47 :
3.00 : 0.72 : 135.32 : 16.88 : 6.60 : 1129.59 140.87 : 6.76 :
3.25 0.69 : 135.32 : 16.83 : 6.87 : 1129.59 140.51 : 7.03
3.50 : 0.66 : 135.32 : 16.71 : 7.13 : 1129.59 139.48 :. 7.30
3.75 : 0.63 : 135.32 : 16.51 : 7.38 : 1129.59 137.81 7.55
4.00 : 0.60 : 135.32 : 16.24 : 7.62 : 1129.59 135.55 7.80
' 4,25 0,58 : 135.32 : 16.18 : 7.86 : 1129.59 135.07 8.04
4.50 0.54 : 135.32 : 15.50 : 8.09 : 1129.59 129.40 8.27 :
4.75 0.52 : 135.32 : 15.34 : 8.31 : 1129.59 128.02 8.50 :
5.00 0.49 : 135.32 : 14.83 : 8.52 : 1129.59 123.77 : 8.72
' 5.25 0.46 : 135.32 : 14.26 : 8.73 : 1129.59 119.06 : 8.94
5.50 0.44 : 135.32 : 13.96 : 8.94 : 1129.59 116.56 : 9.15
5.75 : 0.42 : 135.32 : 13.63 : 9.14 : 1129.59 : 113.76 9.35
' 6.00 :. 0.40 : 135.32 : 13.26 : 9.34 : 1129.59 : 110.68 : 9.55
71
n
LJ
I
I
CLIENT (:14 1-'/ 52,C)l L-1%45, _JOBNO.
PROJECT CALCULATIONS FOR e!'-�( m-T-r_--z_
Engineering Consultants MADESYJ50,DATE ZSZ CHECKED BY DATE -SHEET OF
L
..... .. ....
I
I
I
I
I
I
I
I
I
I
I
I
I
11
I
p
I
I
RMINC
CLIENT nj Ort I i u c. -JOB NO.
PROJECT -CALCULATIONS FOR 6% n-TT-sv_ p4rvw
Engineering Consultants MADE BY-ffia- DATE2sZ CHECKED BY DATE
QV
... .... WA
p
i J
SHEET 2 OF
...........
......
' 1.0 12
5
11 10 4
•9 8
10 3
6
9 0 4 2
u- - /��"�
7 x 3
8 � ��� z 1.5
6 7 e P j1b,.�� 2/ o
z 1.0
z
5 �- —° e, ort a .0 — — — z .9
w
5.5 �? _--- a .8
F- w - .6
w w
IAj
5 = z o 7
u- .4 z z .4 F-
' ? 4.5 z o 3 � 6
w
s u- _
4 _ .2 0 .5
t--
z z h -
0 o
w '3 3.5 Uziw T 4
ao a J .I
' 0 w
wo wo 0 .LL 08
.25 3
_ = 0 .06 3
co c� ow z
i i .04 ac 25
2.5 w w
' 2 a .03 a
}' 3
0 .02 w 2
a o
a =
2 a E-
c� a
' 15 .01 0 .15
L u.
0
0
yo H
a=2 h 10
I 1.2
Figure 5-2
NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2"
Adapted from Bureau of Public Roads Nomograph
MAY 1984 5-10 DESIGN CRITERIA
DRAINAGE CRITERIA MANUAL
RIPRAP 95-19q
Use Do instead of D whenever flow is supercritical in the barrel.
**Use Type L for a distance of 31) downstream.
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE & FLOOD CONTROL DISTRICT
DRAINAGE CRITERIA MANUAL
RIPRAP
66/9q
h
ion Angle
6 E>� g
PQ ns
ON
EA
IN 0 AO0
PJA
m
m
0
0
0
-owl
M
�mmmmmm
101
.l .2 .3 A .5 I .6 .7 .8
TAILWATER DEPTH/ CONDUIT HEIIGHT, Yt / D
i
FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS
11-15-82
URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT
n
L
I
I
O CA0%OOO
Ci V V In o In
In oo0oo
O o)rno)o)000000
O. v v v V U) L.
U. U) U) U) v CID CID 00000000
0 oo. rn. rnO. C)C)C)(. (. e .)000
. . . .
O vV vvvVVVV VvvInU)U)
M o 0 0 0 0 0 0 o 0 0, o 0 o o o
o r 0 0 0 oN o) o rn a% o) a, o) o) o a, rn ai o) a) rn
o Vvva�rvVVVvvvvvvVVaVa
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O OM V tntOtDtDtOr. rrl�rrrrrrrro00o00
. . . . . . . . . . . . . . . . . . . . . . . . . .
O O v v v V V v V v V v V v V v V v v v v V V v v v v v
O oNMV 404 01010w0%0rrrrrrrhrr000
Q• . . . . . . . . . . . . . . . .
a 01 MVV'V'VVVVVVV4VVVvvVVVVVVVVv
Uo o 0 0 o o o o o o o o o o o o o o o 0 o o o o o o
O tD O N M V v u) U) U) U) t0 tD tD 10 0 W t0 to tD t0 r r r I` I` r
too M V v V V v v v V v v v v v v V v v V V v v v v v v
H03000000000tooc00000000000000
0 0 V 0) rl N M M V v V v U) U) In U) U) U) In U) U) 10 10 W 0 t0 t0 I\
. . . . . . . . . . . . . . . . . . .
0 r M M V V v V V V V V V v v V V V V v V V V V V v V V
U 00000co0000co0 co 0000000000000
a O O• tDoOHH NNMMMMy V V vvv V V U)U)U)mt.00
. . . . . . . V V v v v v v v v v v V v. v. V. V, vo v. v.
O tD M M M vv vv
r4 000000000000000000000000coco
O 10 0Nlnr-wm00'iHHNNNNNMMMInMvvvvv
. . . . . . . . . . . . . . . . . . . . . .
oG4 In NMMMMMVVV V V V VvvvVvvV V Vvvvv
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W fn W
W Q OU) HWHMVM0%DtOrrr00000o0 MM00000
. . . . . . . . . . . . . . . . . . . . . . .
0 V N N M M M M M M M M M M M M M M M M M M M a V v v v
H0 In cococococo0o0o00000000oo0000000
O oIn00r-INMvvU)U)U)WWtDt0tDrrrro0o010)
H
W V ' i N N M A l" ) M A M M M M M M M M M M M M M M M M M M
co0 0 0 0 0 0 o 0 0 co 0 0 0 0 0 o o 0 0 0 o o o 0 0
W
In e-4e-4U)ro00riNNMMMVv V vvinInU)IDtDtOrr
M ri N N N N r') c4 r4 r4 c4 M r) M M M M M M M M M M M M M M
co co 0 0 Co Co co co c0 0 co co 0 co co 0 co 0 0 0 0 o o 0 0 0
r0 O M N t0 CO 0) 0 r1 N N M M M V V V V V V U) U) In In lD tD tD tO
0He1 r1 r4 N N N N N N N. N. N. N N. N. N. N N. N N. N. N NN
aCC) 0000000000000000000000000
In In InO)Ncol vU)t0rrr0ooMONONa%O)-ON 000000
a
I -a N O)OOririrIH44'-IrlrI4rl'iriri44 4N(4NNNN
r0000000000oC00000o0oo0C0000
z O VInOMU)t0o00)000ririririNNNNMMMMMtn
•� N o()OOOOOOOririririri1;4ri444rl4riri4r♦
W r r o 0 o o o 0 o o 0 o 0 o o 0 o o 0 0 o 0 o o o 0
U) 0N0rivinrr00)Ot00rlrlr4.-4rINNNMMMMM
. . . . . . . . . . . . . . . C. • . C. . . . . . . . .
tD000;0)Ot0t0;0)0)0�0000 C;C;C 000000
r r r r r r r r r r r 0 0 co 0 0 0 0 0 0 0 0 0 0 0 0
O tDnOVr0)OriNMen V vU)InInIn%D0tOtDrrtDtDo
• • • • • • • • • �. . . • • . • . • • • •
tDrl�rrc00ocD0co0cU000000000000
�J\ rt�t�rrt�rrrt�nt�rl�t�:rrrt�rrrl�rrt�
\ O)Ov%DroorrrtO%0kDLnv-V'CO) MNNON%DvriO)to
O O. N N. N N N N N N N. N. N N N N N N N N 4 4 4 rrO O r r r r r r r r r r r ramr r r r r r r r r r r r r r
3H�
00000000000000 00000000000
O U P
0000000000000 0, 00000000000
4Zr4
riNM V m%Drool0riNM V In%Drmmol.00momO
P4PQ
.rl.-I•iririrlHr-4HriNNMM%rvIn
MARCH 1991
8.4 DESIGN CRITERIA
07/ qy
' FORT COLLINS EROSION CONTROL MANUAL
I
1
Moderate irodibility Zone Loading Ratios.
1 0 1 0L01Tr q" I I I 1 I I 1 1 I I I 1 I I I I I I I I I
I 1 O 17 C� O q 1.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 •MC'L0LD1l- I I I I 1 I I I I I I I I I I 1 I I I I I
1 Ln 1 0 1 1 1 1 1 1 1 1 1 '1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 CL0(ntnLnC'IgNIVNq I I I I I I 1 I I I I 1 1.1 1 1
I 1 OCL)Ctn n MLD
I O C'MV C�I •NMC'C'Lni0\D101-r- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I C' 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I 0 1 CLningr-rgC1gMLOmmLOC'OtO I I I I 1 1 I I 1 I I
I 1 0 Ln -7 M Lr) r- n -! (n V) V 1 I I I I 1 I I I I
I M 1 Or-lN NMMM[^. C'C'C'cLrlintntn I I I 1 1 1 1 1 1 1 1
1 0 1 crl- GPt-MIl C�.r.-irOgV �`'�OI-cCLn I I I I I I
I • 1 0 I I I I I I
I C 1 • C1 r rr " r , N N N N N N N N N N N M M M I I I I I I
1 N 1 0 r I I I I I I
I o I OorNntnv cLnctr c -NLnq C>g1-tnOgvnvmr-I
1 O 1 G LLl 1� lO NC M 1-" C CO r MLDgGN CLD CO � r-i r--i rl ri
1 IV M C' CCLn Ln lD lO r 1` I` q co co co C% n CI C) CI
3 1 O 1 ONr M0N0nMLn NMM r .0 ('0 MLnr,LnCO
I Gl I ONNCNNCCI- OM%ZCO" LnI,gC NMtnrlk.0OOO�
I 1 0NMM-Z7LnLnLn1.0I0IO\.O;l— r- r- I-ggmqmn
I O 1 OC%M4�-+�tnin -itomm - , �c't,Or1M�0NM.-iv)
I 1 O
M I - CO I-MM N Ln CO iM tn(-C1 M C IO r� C O +Ur OON
I 1 Or-i N Cl) m C' C' C• to Ln Ln to Ln VD 1.0 lO lO I'D-.01` 1- I` Q q q m C%
1 O 1 0r,r-t-Vr =%D0NNo%.DN110n mlq,LnLn�'I'D.l0Ln1-kD
1 r- I CLnNr- CI-ONC'LDr-C\ortiMC•LnlD1-gNIDC�1- MLn
1 1 0" N N Cl) M M C C C C C' C' Lr) Ln Ln to Ln Lf1 to N mo%10 0 1` t- 1-
1. 0 1 0 C% Ln Ln lO N C' C r-q r- C z g q q l- kD C N O M O N N ON to
I kD I ON CCNNgoC 4U1r-gC�(S1- NMIzz:1 t:OMtnl:gO
1 l 0" r-I N N N M M M M M M M G C' C• C' C C' C' v to N Ln Ln Ln LD
ti 1 ^O 1 0M1�gMM0LnC% 4NN -10MLn NC%Lnr-1I-NM0LnM0
1 dP 1 O
1 Ln I 0C 1- O N C' Ln lD CO Cl C r-i N N C C L' kq Lfl Cl r-I M 4 Ln 1�
0~~~NNNNNNNMMMMMMMMMMM ;I,V 17C'C'
I C.Ln I ONI-\DOr-�r-I coin r-I%O. %DOMtO0Mtng0000-TC%V"I-
3 1 Sa I Oq•r M L) LD r 1` CO C% C� C Or-Ir r. NNN[V C444 tP Ut LDS
I In 1 0Mr-t rl ri r-i ri ri rl r-1 ri NNNNNNN N N N N N N N N N
1 O 1 0 m m cl� Ogtn.i 110 O d'q.-IvI-ONNI-Cyr-d'O'�M t,O
I C' I �r Or-i ri �c Ln �%o r r r co co C� C� C� C� C� �riNNM
I 1 0 I� " ri ri ri ri r1 ri ri r-1 r-I ri ri ri r1 .-'� r-i r--1 ri N N N N N N
1 to I Or -I �NM.11-MgN�C\N Ln qC NC'Lq coO1-N r-O M%D
S1 M I . c"NNMM- r v C• to Ln Ln lq Lq LD LD Lq 1- 1` q q m m Cl
I 1 0 lO CO r--I r-I " r 4 r-1 r-I ri ri ri ri
1 O 1 0r- V -gtntnggtnn iNNOOO --4NNM-1LntOt-t-t-
a I • I Otn co in O Ct-C%.-+M v' ,o r- a) C%
1 Cl) I••• •. ••• 0 0 0 0 0 0 0 0 0 0 0 0
I 1 0 Ln LD 1` q q q q Cl% C1 n C1 m n ON r-I ri ri r-Ir-t r'I
a I to 1 O r-1 Ln in LD lD O C% IT q n m I- to 11 r' N 1` r-( Ln q ri O Ln q O .-4
iI • I C 1, 1- M 1- O M C' IO 1` q C) O r-IN N MM C•C'v L01-I-I-CM
I N 1 0C•Ln�cO1`1`1`1`1`I-I,g00qqqC:7qqqqqqqqq
I O 1 O 1-4Ln N to q l- 1-4 M C' N 0 tD 1-4 kD r-I. Ln cor-4 v %.0 in r 4 v k.0 - %D
I • 1 OC%r-NNI-C� I N MCCtn�,O"0r-r-r-MMM Cl00000
I N 1 OMCr Ln Ln Ln Ln to
1 to 1 0mmClv1.4 M %roLnNgC1gNtngr-Im110r- nLOM00On
1 ri 1 OrI gr4C CO r-7 N N N MMMMMC C'C'Ln LnV
1 1 O M ar 4 C• C 4 Ln L1 Ln Ln Ln In to to Ln Ln to Ln L' Ln Ln Ln Ln to
0 1 0rgm0 MLnC N mmt�OM\0con riN C LntnM00mg1�
Otn. 9N v0"0l-l-gg0C.,a%C%C100000O r-Lr-1000
. . . . . . . . . . . . . . . . .
1 1 0 N N M M M M M M C Mr ^C4 M M M M
1 Ln 1 0C•01-0NNNNNr-g00nmr,l10L N"MMq'd'0r-cOr-I
1 • 1 oq 00 rqr-lr-Ir-Ir-Ir-/r-Lr-Ir100000O000NONm qqq
I O 1
1 1 0 NNNNNNNNNNNNN NN CV NN 144 ri ri ri ri
I I I C 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 E-I 1 O O O O O O O O O O O O O O O 'O O O O O O O O O O O
I L-I I ri NMCN5I�gm O r-i NMC Ln kD I- q CE O Ln 0 to O Ln0
1 v 1 rl r, r, ri r, ri 1 ri ri N N M M IT C'Ln
I
'
Table 8B C-Factors and P-Factors for Evaluating EFF Values.
Treatment C-Factor
P-Factor
'
BARE SOIL
Packedand smooth................................................................ 1.00
1.00
Freshlydisked1.00
0.90
........................................................................
Rough irregular surface........................................................... 1.00
0.90
SEDIMENT BASIN/TRAP................................................................. 1.00
0.5011)
'
STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG ........................ 1.00
0.80
SILT FENCE BARRIER..................................................................... 1.00
0.50
ASPHALT/CONCRETE PAVEMENT ................................................... 0.01
1.00
ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A
1.00
'
SOD GRASS................................................................................. 0.01
1.00
TEMPORARY VEGETATION/COVER CROPS .................................... 0.45"'
1.00
'
HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10"'
1.00
SOIL SEALANT....................................................................0.01-0.60"1
1.00
'
EROSION CONTROL MATS/BLANKETS............................................ 0.10
1.00
GRAVEL MULCH
'
Mulch shall consist of gravel having a diameter of approximately
1 /4" to 1 1 /2" and applied at a rate of at least 135 tons/acre.............. 0.05
1.00
HAY OR STRAW DRY MULCH
After olantina Grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately
tack or crimp material into the soil.
anchor,
Slope M
1 to 05.............................................................................0.06
1.00
6 to 10............................................................................. 0.06
1.00
11 to 15............................................................................. 0.07
1.00
16 to 20.............................................................................0.11
1.00
'
21 to 25 . . 0.14
1.00
25 to 33.... .0.17
1.00
> 33.......................................................................... 0.20
1.00
'
NOTE: Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation.
(1) Must be constructed as the first step in overlot grading.
'
(2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required.
(3) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated.
(4) Value used must be substantiated by documentation.
' MARCH 1991 8-6 DESIGN CRITERIA
goigN
CHART 1O
18 0 10,000
168 8,000 EXAMPLE (2) (3)
156 6,000 0.42 inches (3.5 fast)
44
132
5,000 G•120 cfs
4,000 + tier
132 D feet
3,000 (1) 2.5 8.8
120 (2) 2.1 7.7
2,000 (3) 2.2 7.T
108
s0 in feet
96 1,000
800
84 600
500
72 400
= 300 ��t.�►g
U N Z
z 60 200
o 54
t•- � i
w 48 / �� 100
>
x 60
a
c�
o /2 N SO �ji,• ENTRANCE
is 40 I D SGAL� TYPE
W
W headwall
33 e.
•20/ii (2)�Z Groove end with
j headwall
30 Ir, - V (3) Groove end
De} n-F(0/t projecting
27 I Pon
8
24 %
i
6 To use eel• (2) or (3) project
i
2I 4 a onfollysc to .cols reverse
4 use straight Inclined line through
D and 0 seals•, or nrerse as
3 Jlusrroted.
le
' z
Is
1•za
1.0
12 HEADWATER DEPTH FOR
HEADWATER SCALES 283 CONCRETE PIPE CULVERTS
REVISED MAY1964 WITH INLET CONTROL
BUREAU DF PUBLIC ROADS JAIL 1963 .
181
Preceding page blank
6.
6.
5.
6.
S.
4.
S.
4.
4.
3.
3.
2•
2.
2.
3
I.5
2
I.S
N
0:
�
1.5
0
z
x
a
1.0
1.0
W
O
z
I.0
►W
.9
.9
30
.9
¢
.8
7
T
.7
6
.6
6
S
5
.5
TABLE 12 - ENTRANCE LOSS COEFFICIENTS
Outlet Control, Full or Partly Full Entrance head loss
x
He = ke
V
29
Type of Structure and Design of Entrance
Qbefficient ka
Pipe. Concrete
Projecting from fill, socket end (groove -end)
0.2
Projecting from fill, sq. cut end . . . . . . . . .
. 0.5
Headwall or headwall and wingwalls
USe. yZ"RC?
Socket end of pipe (groove -end)
0.2 -�--
Square -edge . . . . . . . . . . . . . . . .
. 0.5
0.2
Rounded (radius = 1/12D) . . . . . . . . . . . .
.
Mitered to conform to fill slope
0.7
*End -Section conforming to fill slope . . . . .
0•5 q pe{c. •T;Vn Pol7�(
Beveled edges, 33.70 or 451 bevels . . . . . . . .
0.2
Side -or slope -tapered inlet . . . . . . . . . . . .
. 0.2
Pipe or Pipe -Arch. Corrugated Metal
Projecting from fill (no headwall) . . . . . . . . . .
. 0.9
Headwall or headwall and wingwalls square -edge . . . . . .
. 0.5
Mitered to conform to fill slope, paved or unpaved slope . .
. 0.7
*End -Section conforming to fill slope . . . . . . . . .
. 0.5
0.2
Beveled edges, 33.70 or 45° bevels
Side -or slope -tapered inlet . . . . . . . . . . . .
. 0.2
Box Reinforced Concrete
Headwall parallel to embankment (no wingwalls)
Square -edged on 3 edges
0.5
Rounded on 3 edges to radius of 1/12 barrel
dimension, or beveled edges on 3 sides . . . . .
0.2
Wingwalls at 30° to 750 to barrel
Square -edged at crown .
0.4
Crown edge rounded to radius of 1/12 barrel
dimension, or beveled top edge . . . . . . . .
. . 0.2
Wingwall at 10° to 250 to barrel
Square -edged at crown . . . . . . . . . . . .
. 0.5
Wingwalls parallel (extension of sides)
It
Square -edged at crown .
0.7
Side -or slope -tapered inlet
0.2
*Note: "End Section conforming to fill slope," made of either metal or concrete,
the sections commonly available from manufacturers. From limited hydrau-
'n�let
are and
lic tests they are equivalent in operation to a headwall in both
Outlet control. Some end sections, incorporating a to ed taper in their
be
ed sign have a superior hydraulic performance. These after
sections can
179
' O CHART
4
' 3
2
I
0
owl
...-
.
_
'■■■■gym
a
NEI
'60 70 80 90 100
DISCHARGE-Q-CFS
6
'
S
F-
W
�1
W
rV 4
c
2
d
W 3
o
J
a
U 2
1111111111111111111111111111111111111111111111111111111111111111
OEM
0
MEMO
✓ii��■■■P�/■■
DISCHARGE-Q-CFS
8
fl
J
a
700 800 900 10000
u
U
vrot,MAKbt-Q -GFS
BUREAU OF PUBLIC ROADS
JAN.1964 CRITICAL DEPTH
CIRCULAR PIPE
184
9Z%9q
STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA1 TABLE 802C
STORM SEWER ENERGY LOSS COEFFICIENT
(BENDS AT MANHOLES)
1.4
,j/
I�Z'I
1.2
Lr
r,oa
r.cy
1.0
J:iZ
o4
Y 0.8
c O.l%s
m
o d (b
U
= p4Y
0
0.6
C;i G
c:5
Q,y4
0.4
0- L
0,30 O.j2
6,Z$
05q
0 19 0.2
D•1G
0.rz
0 03'
0.cv
00
I
I
I
I
I
I
A-
.
I
I
I
I
B
no
nd at Ma
Special
Deflector
hole,
haping
(Curved
� I
Bend at Manhole,
Curved or Detlectorl
I
I
Manhole
I
I
I
I
I
I
I
o^ 200 40- 60° 80° go- 100°
De action ngle Y , Degrees
NOTE: Head loss applied at outlet of manhole.
DATE: J A N. 1 9 8 8I REFERENCE:
REV* Modern Sewer Design, AISI, Washington D.C., 1980.
ICI
I
1
1
t
STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA
MANHOLE AND JUNCTION LOSSES
WMq
I
MOT[ ►a A.j TIN
•1 1.101.
USE EQUATION 801 SECTION
(�L_ K CASE I
3 INLET ON MAIN LINE or
k= o 05 ��'l,tnlule (:1 h�a:c�Linz
\o
e `•
USE EQUATION 805
NI_��
IL= °`j25 jec
PLAN
oy PLAN
TABLE 803
USE EQUATION 805
A L.�
o,y
SECTION
CASE II
INLET ON MAIN LINE
WITH BRANCH LATERAL
---- ---- - o—�
PLAN
k Vie
,z0
V-=0.:25
USE EQUATION 801
O.Z.
o,., k=J•Z5
SECTION
CASE 7Z
INLET OR.MANHOLE AT
BEGINNING OF LINE
SECTION
CASE III
MANHQLE ON MAIN LINE CASE III
WITH 90 _BRANCH LATERAL : CASE NO. K . G° KK q
I 5 22 1/2 0.15
II 0.25 45 0.50
IV 1.25 60 M5
90 0.25
No Lateral See Case I
Date: NOV 1984' REFERENCE,
Rev: APWA Special Report No. 49, 1981
i
- 26 WIUE UVLRILOW FOUR W/}I'
/ Ag00 N9C9 - - qb MDE BORIEO RIv-RAP
,p�.s0 - 'BA�O SIX
ALK DRIVE p •0 E E DEFPEL ON DETAIL SNi. ]I III
1E S PIPE EN T PROIECTON.
�_ $E SNI. 4 FOR PROFILE SE TRY
uEP.E 3e rM�M ^ o
✓.nrc2pu ou LnNoacnec ,, 1 i b r: !' 9�
, l L
33
0Heu3 nNO ED�TeaITW 30�' M' mSI II ��.� °9 F'. H L. U 11<
REPLIED GYnLL eM �; m r o 31 °
37 g•,
ce.neec.ao To eex � k x s0 k < � � � 31 __ 25'
4I 81 � °
xn.ImaD ReocToe oEusl.v & 1 I II ' .- °Y° \ roP 1lb 30 's>D
zac EPer M M s / �t l r e >>B -I — --
m 3
AAe s+veE cEPu•eur. ae . mP- . 1 1 < 1F �a < 3l0ssu 36 � / --.-32 /s / ag°a>g.>.• _
2 < '
P �
TF_BOz 1 � .I re , CtfP� Ae T{, _ _ _— �V ��`-
38 29
;° l / 3 r _ �J
3 r 1 � - I r✓- "i, _ tune INLET !'
m 3 CFpRA3S L_ a, '
LIT
i
Is' RICE
SEE SHT_ 8 FOR PROFILE
/ v
6 i 4 R 591p t r ' SMr170ppgASS —_' C��?i }�� b ti
G
• `e *b
304
VLr 39 iP=b0.9 r r
I _ _
/ / I A
dm y, p (r P BO Irl
TF-785 0 •MAN '. n`
1
DETEN
VOLUME
POND
60 �'' I I�� 41 i mr � � i o a •ww��T 27 1° IDo re. wsEL-n.sD z OR wsEL-Town
RELEAS vRonoeD-CFS (10 Er.
< m 28 RELEASE RAC qA CFS boD ra.)
r � r � ( 7 N' _ aD crs zrR
/ 5 m mer �m° eP 52 _ _-J im7 42 mo _��__
r 999yyy / 1 -
e% 1 I 4 < n / �0 /� 5DD �� C • 9P .Ps. 4 i ' F nlr�^ e, - ..
d2 ALL LOT a6 IS TO
/ xee Ns� i / _e4 �: 21 LE FIST'
r'... wW�
8 I r I °""
I i _ I I 43 W• m
De. -
III T, nq o 6 m I. �l _ m m 51 i INV
m 1 8'nI 1 mE - A �sBE Mn°nrcra+nnna .uwni 1°
Leo n $I
THE
MAY
r 64 . _ _ .. m.Exx 4 ww THE NEP L TIME"T w
/ ,T IWE
u � S L xiONG s M,N r°
« 1 m THHETEc1°I MAT.
NCE 1 / / I14 �. _� ti •I �_! �.° 23 IEXeRa o - MATCH E a rrlr mwAnu Evp(Sx< KDa
I 6 0 I I V Q FINISHED (SAKE 9r4L Br Y.
/ s AN • L )1 tim ' I 44 AT I ' .hr 11 VARIES 10' ACCESS ¢ 3' MIN. °. %°Fa ONE 4EnIHC�rw STALL ME SODDED
P m I y� II DRAINAGE POND EASEMENT SEASONAL pOAD
7 ED� �50 m l Y I' I NSEL a russ
" r o THE DRA o. SHARP mmxsl.u<rzn IW na
/ uL CAMS D
r! , 9W 9 ._ v1 ALLOWWO°<KWir ms(Snmur"cmx°Eomr"TO
W
'9 ma x a
dF ry r i o n _ 2P 4:I SLOPE N. ALL LOTS MEN O.6aDT mww rlus a
s f J
I �.1 V (� e4� O 0� — � I 45>s GREATER SHALL IN cAsmlc
T d `\ 9 b O 1' LdOM'CE M A 916I P94 (Mn)
�J \ r.4 W ( ._Ni li I� 41 VAX A w
P 49 er[ IP Me � IB' PE PIPE - P IHSTULED4Rx SENATEM 4CeE�a M m
• �� �b I —SEE $NT 19 FOR PROFILE mE SANTu, MASS MUN.
3 46 m ° IS' PE PIPE SECTION A EYE %Ao W Cs.EWA. C[NTLMLM GRACE
r •. ° p I ^ SEE SHT. IB FOP PROFILE n ONE EMN4� INSIuLLEDAATAM MWd eY
Q)r LL < P UP OF 14%
2 MANI l£WAv cENRAUN[ ueDE slut
a. 4 BJW 4 _ pb N - I 1 m 21 L 491E EARN LOT SMALL x FRALUA n BY A ausrtW
\ , h. P �. n°' TO nxl.rANEp1TMTTHI FBI TYEE .rM Of ""IOTRUTDOM
FTHE m
IS aewux SYsml RRAxm "�
9 `%a • b `• M I )Y 1 >B x MSMIW W DENETO L FAY IKUY AI91m
65 � `.9a 47 ul ca.,
m 20 SHAALLLN NORMALLY uKl
p� f49m16 ioi m.na+niADE NT ANsESHED a itARUE) e G YrtACx s M Ay7m e PrmawRTY TINE AND'ww swum I C PAS
TO >_ar_�>nOf MISTYsoN nDL.".vnw N w,
LU� mGRP RECORD HILL RASPED TRANS AND PROSPECT
F, cH T� -_J Imo L ^i �r\ wl _ yl\ 14 vROf FwwCE cE.
c.
, ALL LOTS
°ai 'm .P4BUILT III TI OPENINGS AT LESS OMAN IKE
ICU, rj� MINIMUM ELEVATIONS $HOWN. FOR GUYS BEEN
Am A CMIFICATI" OF WE AP -BUILT
MUM
r9°G Ssi[% s ByJ L_-.. xl t0'TPFwcup AxL�r �H o .. oxTO
3. THE CITY PRIOR TO RELEASE OF THE
f+@n - 49A8<° /1S `A 0 - 1 +.cn
=� t
IOD MENACE FROM SAC SOON MAY ROAD TRY GROUNDWATER LEWLA
(SBf"ay �• r09 �� ��8j1 `ea ___ 'ti,! i PRELIMINARY ASA
/
<
EN
ING MAKER
7 - -- _.' o NOT usa far DAN.a a DOWN NXx or CA LOON D.MA°E:"
W -83 7 �� N 7 �i' euuvuatNnpRonnsy US&TANITSre..1m .ND,w SCAM CONTROL
: a
2,e� I 2� v 3 rF_828 (F `e2 ,, LEGEND PROGRESS I THE
I � FCN ... DAL.(S. -
rNL"� sN
u . RsnT 6
IWr"MD�IT W`s
- A' / A OR D FHA GRADING DESIGNATION
°is MI �.� N ��
/3
�. _ —160 PROPOSED SPOT ELEVATION
♦y �! aD 15 nu mP - 17 4979
m 1 - 9 — PROPOSED CONTOUR
-02w _ie_ 5096 EXISTING CONTOU
R
SCALE Y-50TF. FOUNDATION
D CONCRETE
• O 3]' DITCH EASEMENir— FOUNATON WALL
— r
L_
DATE OF FORD MAY ], 1992 MAIL CREEK DITCH -
_ --- NOTE NO ASEMENT FINISHED FLOOR ELEVATION SHALL BE LOWER THAN 84.5
PLO PAC Si.n i� I6
EnyinceNnq Consultants THE UPPER MEADOW AT MIRAMONT P.U.D. FHA GRADING PLAN
- - — FIRST FILING 21 6
NO. BY DATE REN40N DF$('vu -
Existing Harmony Market
eb
/ �o
/ 1 ® nb:l r.J. r.r •.. ' fo.JI and M°... ,'" date, Or s• I p� E%12T. DPed 6NANNEL
\Add. li�m `-_ Ar / \ �; Existing Oakridge Development
I .ex...
40
u �O�AND Two an. 70
N'Fwcwa 4' EXKT. BG" RC P'S
am
014-1 .m v .. m n •., 111. ItWe" ,e im�� TV had, MAIL Barley It
>sfTIDB♦-• ` ,` EX15T. iP CURB INIEj
®ml,/�•I V'p"•�•O•"D I \ OUTLET PIPE GRAVEL_
w'., vrt.a s unav vs. BASIN, I.I a,, ree., ... J p t"y a ,... I` ,A. / \ i/' FILTER { EROSION Q'�
CCC/ � a����1��ry'r / ♦ m B^px ny\ BALE CHECK DAM .,
IV, VIAr* DELTA 81PR�P6 O na.o/M �� • mano FUHq: 611e �.0>_BDT / • 'a, do e. Ma y=
A �, r ow Fs.n o.n.on wEn FALL FYti / ffa�5ucrlol. ts" p to WIDE P.wNI WWA
�0 dam. . � 0.6b D..."en, SLATIMIL
Mal
9.2 IL �o TV
.'ism..su
j
9Z
9
\SS
s�e0� s
TV
�.
�N
m ITS w a
/
�� •
:
� In riw.
\
mw
NET 10
5y'PIN
m 0s
/ a b yw. os x TEMVY;PTRY PWD
N. unu� 9H MAX L vC
wrtx Q.yAr ..W MA EL. L2.'A
e me Ay OLJU it's AC L'p
ecm PE PIPE \
rwus a�>>PA�e �rtnx JV J \ 968
CLASS 6
TTI. ILY .329 ALPHA?
a
secnox _ � SIN M4 � of
1S'tVP 'R"
ice. 41L ass O6fXEQEINWBTGtIOi > "-mql� D..'6.i/
n BBe _ e o� ww rwD�rw ra.rt z rope vwa•D5U-..lH 4 >'WIMOA4 tnwae rrua Qf 5.6 LFb
Cott SIRET 1i It thor MALT
Rpl plw..r�fYK F✓r4 WAse..m,
de
TV
.m
.w WWu.. Pni Fegr ob
,CTME-f
�_.�..">/..
�e.�e�
Mim�.0
Cent, VI FT.
;
. � /
I.xa.
L.
k
,.. .,.......� .......
Amm, Vat _"1
y
5
Rod"
..a l.f�. w../b DL ca/e.l
ftn,
D ..
�
\
jv m vM,..�O�woef. ic.n �'Z wit The F,R.I
/ �� 3P a ....,LIN
sr. D'n W<.m.nl IIJ DIKE
ILRB
vam a w* / DIRK SS L, i
/ \p TA K M1/Ya.r onb)v. v.Td.IwPv cuss 1. /+ / j F90'L a92a /
wss I
f
�% 2S ad ENERGEN r i RifRAP g�
Or=2.; LEGEND
�. CPS 4. G,FB' W. �' ,� RROW WER �. ICO YR. ENE[GENCY/� / / / /
B _
m_ .6 EK —_ -"� ��-I. STRF{rLT��ro .� BASIN DESIGNATION
$', ` -- • CURB INLET
e / P /�dn GRA%EL GILTER In
�' m � /'I /�•_ I t I h „�--�. - BOARD � s..- �✓ '42'RCp/ 1.06 AL BASIN AREA
not
r / DT.
I � �/ �y47 , �..� BASIN DAAY
dl�BOUN
OESIpN PONT
ffS
,�\ /__ \ 1.' AVERAGE STREET SLOPE
FORT
OP BS CFS •w nT M(fc6 IT �>n.— EXISTING CONTOUR
DRAI GE "W BE L � I F �_ ____ A L Dm-JLT cPs ,/ saver n A
REDNto TO /� �� I I �,I — �� ` /� i oe uAoc ansgL..n �� I �> SIB
I I _ 5EDIMEN( SRAP i y PROPOSED CONTOUR
(� [/d ' Y WTIET PIPE GRAVEL FILTEQ "e®I Le u.uy.........-.
BEARDWPLK OK. J _ L EROSRM BALE CMELK W.M .�.. '^unur....... u..... __LINKdedeleade _
` �: a j
dene,w...c,,et:.-�X.I== W«r /ERo510N BALE
AlB 4. V.50ere" he10 ALILL IMM,MLIM f/ / CHECK DAM
AT
VOLUME • 3.064AT FT. �T .�.I.. Led At.
�need �~_ �+«i
,IT I -I-. YaunaD en.9s. j.o cS1. .... .�... .. ...... r+..r,. A.^i..yu �JE+[`�r-�i��j.�,',} / ---- ve¢voenrc
11
ILL
jl\ / I uWOM .. u..ILL u ...u.I. �... .. "Leellet _ j / T.EL .. rI. ue1M.[.. for pr.vnaa W i..Wru%/[aver
� _...I.... M.... I_.. _... �IT ..;�1.:.t. ..1�...
'ALA ..................., .. . _ /% AILL. .T �ui�` C-1 I Ill
Lest
ther.l. Le L.II, de Thee
\\ III` �• `g'°u.P nee6r. �'.._f. ti.t y—....`-SRI.... .. al-� / // ill O I'll r
.I ' /�'ti"
Ali
`. ...'." ...
r
... dm� x // so, s.P.
RE51oENT1AL \\, �\ r: MAI.... -. -- } I PRELIMINARY
;X: ..--. -- •�••—•••T m PDO NOT use la. may orslime A%I`A
yI
\ e
.' _ _� ea_u . ..r a er.. Jm n .,..ro.w e. the *,IT .r a.
... .... . ....,....A tjoy
..m., .r ..r, Ja At ,.en
\`` \
se- IM 10 IIM2 hall Do To
Mete'
L�
Eg21. BERM\ V ` _ 0.4 a. I. 1 DD2 _ - _ - _ 0bC Avez\ �. �C� ..�. Le .� / >I cr ,er...anr"s to ..,..r rr.ror. ....raCr a.
ON R E-DITCH - ,/l /
Ill Tork4ftIlto
..: _ .. .. ......rra..r, r.....ba....)IIIJ III the M1
\ / _
_ • �/ ' wee . . 11 �
Ias AC
D • 13.6 — / 11
��w _I'll mrTh
e
BQ�G .a ....
a delle, ILL _
Ateadateddene
ALL m. - - _. .. _....
0866 Li.•."�..11ua
11
Tf I
Scale L' 100.0' ..A � —� �� �����" �._ 1 � A �� / � - - �!sf�
-IN.D -eD.e on lots m...
/ e / y /
l __,
ad
DLH KwL ,°U 600 cDlel.nBMW SHEETS SNEE'
OPAWN DEs16NED CHECKED :WL, unamE rm.m eaem THE UPPER MEADOW AT MIRAMONT P.U.D.
Engineering CDnSultants 053JR.F DRAINAGE AND EROSION CONTROL PLAN '11 4
Sad-DOI xaoD s� :. i1 laD ns 9uf b. w.n.9uN. ml
APPROVED DATE PRmecr No. 6aem Wil,Dew..e'°""ii y FIRST FILING
NO BY DATE REVISION DESCRIPTION ]OL]]64911 "969tl:v. �' ]6V.ML1