Loading...
HomeMy WebLinkAboutDrainage Reports - 11/13/1992Final Approved Report Date,'.� FINAL DRAINAGE AND EROSION CONTROL STUDY FOR THE UPPER MEADOW AT MIRAMONT FIRST FILING FORT COLLINS, COLORADO FINAL DRAINAGE AND EROSION CONTROL STUDY FOR THE UPPER MEADOW AT MIRAMONT FIRST FILING FORT COLLINS, COLORADO November 10, 1992 Prepared for: Client: Nordic/Neal Partnership 309 West Harmony Road Fort Collins; CO 80526 Prepared by: RBD, Inc. Engineering Consultants. 2900 South College Avenue Fort Collins, Colorado 80525 (303) 226-4955 RBD Job No. 504-001 5' BERM �. EL 4414.6 1 BURY w/6" OF TOPSOIL, -� 120 MIN. . lRIP-RAP (NO SMALLER ROCK FRAGMEN ON 12" -THK. TYPE 11 CDOH CLASS A BEDDING MAT'L. (SECTION TAKEN LOOKING NORTH) SCALE: 1 "=5' . RIPRAP EMBANKMENT PROTECTION LIMITS = 31 DETAIL (SECTION TAKEN LOOKING..EAST) N.T.S. a EL a0)n. r' •! 4 r-•• /-r• v=100 yd %Ac Or Overaxcavate Permanent Pond by Es4,imzzd Sediment Load D E [__INITIAL POND MUST CONTAIN AT LEt _ 1.26_ACR.E_F_EET_OF... V_0LU_ME. RMINC. Engineering Consultants 2900 South College Avenue Fort Collins, Colorado 80525 ' 303/226-4955 FAX:303/226-4971 November 10, 1992 Ms. Kathy Malers City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 RE: Final Drainage and Erosion Control Study for The Upper Meadow at Miramont First Filing Dear Kathy: We are pleased to resubmit to you, for your review and approval, this Final Drainage and Erosion Control Study for The Upper Meadow at Miramont First Filing. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria ' We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, RBD Inc. Engineering Consultants ' Roger A. Curtiss, P.E. Project Engineer Kevin W. Gingery, .E. Project Manager cc: Gary Nordick ' Other offices: Denver 303/458-5526 • Vail 303/476-6340 • Longmont 303/678-9584 ' TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION A. LOCATION 1 B. DESCRIPTION OF PROPERTY 1 ' If. DRAINAGE BASINS A. MAJOR BASIN DESCRIPTION 1 B. SUB -BASIN DESCRIPTION 1 ' III. DRAINAGE DESIGN CRITERIA A. REGULATIONS 2 ' B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS C. HYDROLOGICAL CRITERIA 2 2 D. HYDRAULIC CRITERIA 3 ' E. VARIANCES FROM CRITERIA IV. DRAINAGE FACILITY DESIGN 3 A. GENERAL CONCEPT 3 B. SPECIFIC DETAILS 3 ' V. EROSION CONTROL A. GENERAL CONCEPT 9 B. SPECIFIC DETAILS 9 VI. CONCLUSIONS A. COMPLIANCE WITH STANDARDS 11 B. DRAINAGE CONCEPT 11 ' C. EROSION CONTROL CONCEPT 11 REFERENCES 11 APPENDIX VICINITY MAP 1 HYDROLOGY 2 PERMANENT DETENTION POND FIRST FILING 7 ' TEMPORARY DETENTION POND BOARDWALK DR. & LEMAY AVE. 34 DESIGN OF INLETS, STORM SEWERS AND SWALES 41 RIPRAP DESIGN 63 ' EROSION CONTROL 69 CHARTS, TABLES AND FIGURES 74 REVISIONS FROM PREVIOUS REPORT ' 1. Minor text modifications. 2. Add overflow weir to temporary detention pond. 3. Change swales from 3:1 to 4:1 side slopes. ' 4. Revise Basin 4 time of concentration. 5. Minor clarifications and additions to the drainage plan. 6. Minor clarifications in the text of the report I . 1. FINAL DRAINAGE AND EROSION CONTROL STUDY / FOR THE UPPER MEADOW AT MIRAMONT FIRST FILING FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION ' A. Location The Upper Meadow at Miramont First Filing development is located in the ' southeast part of Fort Collins, south of Harmony Road and west of Lemay Avenue. The Upper Meadow at Miramont is shown on the Vicinity Map in the Appendix. More particularly, the site is situated in the east half of ' Section 1, Township 6 North, Range 69 West, of the 6th P.M., City of Fort Collins, Larimer County, Colorado. ' B. Description of Property The Upper Meadow at Miramont First Filing contains 20.1 acres more or ' less of which all of the area is currently undeveloped and being proposed for residential development. The site currently consists of cultivated farmland and is part of the Oak/Cottonwood Farm Development. The Mail Creek irrigation canal runs in a northwest to southeast direction immediately south of the First Filing. Topography at the site is generally sloping from northwest to southeast at approximately 1.4% . II. DRAINAGE BASINS A. Major Basin Description ' The Upper Meadow at Miramont First Filing lies within the McClellands Basin per the vicinity map in the appendix. No major drainageway exists in the Oak/Cottonwood Farm site. B. Sub -Basin Description ' Historic drainage patterns on the subject site are southeasterly across the site to the three existing 36" RCP's under Lemay Avenue which direct storm water runoff east through the existing Oakridge Development. An off -site basin (0-2) lies to the west of the First Filing and this basin contains the ' rear lot runoff of the existing residential development. This off -site storm water runoff currently enters the First Filing site at the southwest corner of ' the site. A second Off -site basin (0-1) lies north of the First Filing and currently storm water runoff from this site sheet flows across the First Filing site. DRAINAGE DESIGN CRITERIA A. Regulations The City of Fort Collins Storm Drainage Design Criteria is being used for the ' subject site. B. Development Criteria Reference and Constraints The Upper Meadow at Miramont First Filing historically drains southeasterly under Lemay Avenue and through the adjacent Oakridge development. The ' McClellands Basin Master Drainage Plan criteria and constraints recommends on -site detention using a staged release rate of 0.20 cfs/acre for a 10 year design storm and 0.50 cfs/acre for a 100 year design storm. ' Downstream improvements have been completed within the Oakridge development to accept a maximum storm water runoff of 0.5 cfs per acre for all storm events from the Oak/Cottonwood Farm site per the report titled "Master Drainage Study for the Oakridge Business Park". Portions of the Oak/Cottonwood Farm site contain existing developments which do release their respective storm water runoff at the 0.5 cfs'per acre requirement. C. Hydrological Criteria ' The Rational method is being used to determine runoff peak flows from the site and surrounding off -site tributary areas. The 2 and 100 year rainfall criteria, which was obtained from the City of Fort Collins, is the criteria ' which was utilized. This criteria is included in the Appendix. The SWMM model, as acquired from the Urban Drainage and Flood Control ' District, was utilized for the Overall Drainage Plan of the Oak/Cottonwood Farm site within the McClellands Basin. Because The Upper Meadow at ' Miramont First Filing requires the construction of Boardwalk Drive for access to the site, a number of permanent drainage components under and adjacent to Boardwalk Drive are required to be constructed at the time of ' development of the First Filing. In order to finally design the drainage components associated with Boardwalk Drive, the SWMM model, as developed for the Oak/Cottonwood Farm Overall Drainage Plan, was ' updated to include the First Filing final design components. 2 1 ' D. Hydraulic Criteria ' All calculations within this study have been prepared in accordance with the City of Fort Collins Drainage Criteria. ' E. Variances from Criteria No variances are being sought for this project. IV. DRAINAGE FACILITY DESIGN A. General Concept The Upper Meadow at Miramont First Filing is planned as a single family ' residential housing development. The First filing will include 62 lots. Storm water flows will be generally routed along historic drainage patterns. Included in the back pocket of this report is the drainage plan for the First Filing. B. Specific Details ' Basins 1, 2, 3, and 4 lie within The Upper Meadow at Miramont First Filing. Basin 1 is proposing to utilize the street conveyance of Boardwalk Drive to transport developed storm water runoff to the downstream low point in Boardwalk Drive at design point 1 where the runoff will enter a roadside ditch and be conveyed to a temporary downstream detention pond. The ' temporary downstream detention pond is in the location of the permanent detention pond. When the future filing street connects into this low point on ' Boardwalk Drive, from the west, the future filing street will contain sump inlets and a storm sewer to drain the intersection into the downstream roadside ditch, but in the interim water will sheet flow into the ditch at the ' site of the future intersection. Basins 2 and 3 are proposing to utilize the street conveyance systems within the First Filing to transport their developed storm water runoff to the low points at design points 2 and 3. Within basins 2 and 3 a storm sewer system has been provided to transport the 2 year storm water runoff into the permanent detention pond adjacent to the First Filing. The 100 year ' storm water runoff from both basin 2 and basin 3 is proposed to be transported into the detention pond by the streets, storm sewer systems, ' and a grass swale over each storm sewer system. Basin 4 contains the permanent detention pond and swale "A" for conveyance of the off -site residential development storm water runoff from ' 3 LII r basin 0-2, around The Upper Meadow at Miramont First Filing. Swale "A" is also to be utilized for the Mail Creek Ditch maintenance access along the north side of the Ditch. The. detention pond will be discussed later in this report. Boardwalk Drive will contain basins 5, 6, and portions of basin 1, 0-1, and 0-5. Boardwalk Drive is planned as the major access route to The Upper Meadow at Miramont First Filing. For the final design of Boardwalk Drive, various Oak/Cottonwood Farm overall drainage components required being designed. Included below is a discussion of each of the Boardwalk Drive overall drainage components and how they were addressed along with The Upper Meadow at Miramont First Filing. a. Off -Site Basin 0-1 This basin currently contains a small church in the northwest corner of the site. The remainder of the site is at historic conditions with native grasses covering the site. As shown on the Oak/Cottonwood Farm Overall Drainage Study by RBD Inc. dated May 1992, the northern portion of this basin sheet flows onto Boardwalk Drive and the southern portion of this basin sheet flows onto The Upper Meadow at Miramont First Filing site. Along with development of The Upper Meadow at Miramont first Filing, a landscaped berm will be constructed along the north property line of the First Filing of Miramont. Along with construction of this landscaped berm, off -site historic drainage from basin 0-1 will be redirected easterly onto Boardwalk Drive and conveyed southeasterly in Boardwalk Drive. A letter from the adjacent property owner, with their approval to construct the off -site landscaped berm, is included on page 41C in the Appendix. In the Oak/Cottonwood Farm Overall Drainage Study, Basin 0-1 was noted as having the same storm water runoff discharge requirement of 0.5 cfs/acre as the remainder of the Oak/Cottonwood Farm development. Also on the Overall Drainage Plan, a storm sewer system was shown in Boardwalk Drive to drain a future detention facility at the southeast corner of basin 0-1. With development of The Upper Meadow at Miramont First Filing and Boardwalk Drive, the conveyance capacity of Boardwalk Drive during the initial storm (10 year) was found to be 12.9 cfs. Basin 1 of the First Filing will be contributing 7.33 cfs of storm water runoff onto Boardwalk Drive during the 10 year storm event. Thus 5.57 cfs of available capacity exists in Boardwalk Drive for storm water conveyance from basin 0-1 during the 10 year storm event. The requirement of releasing Id F L_ 11 11 11 1 1 0.5 cfs/acre from basin 0-1 would mean that basin 0-1 is entitled to release up to 22.9 acres times 0.5 cfs/acre = 11.45 cfs of storm water during the initial storm event (10 year). With Boardwalk Drive only able to convey 5.57 cfs of additional storm water runoff from basin 0-1, this leaves 11.45 - 5.57 = 5.88 cfs of runoff over and above the Boardwalk Drive conveyance capacity. Given the area of basin 0-1, 22.90 acres, and a maximum release of 5.57 cfs of storm water from the site, yields an allowable release rate for the 10 year storm of (5.57/22.90 = 0.24 cfs/acre) for basin 0-1. An agreement from the property owners of basin 0-1 to limit the initial storm water runoff discharging onto Boardwalk Drive is included in the Appendix on page 41A. Boardwalk Drive has been designed to convey the fully developed detained storm water runoff from off -site basin 0-1 on the street surface instead of under ground in a storm sewer system. For the major storm event (100 year) the requirement of releasing 0.5 cfs/acre from basin 0-1 would mean that basin 0-1 is entitled to release up to 22.9 acres times 0.5 cfs/acre = 11.45 cfs of storm water onto Boardwalk Drive. Basin 1 of the First Filing will be contributing 15.7 cfs of storm water runoff onto Boardwalk Drive during the 100 year storm event. The conveyance capacity of Boardwalk Drive during the major storm (100 year) was found to be 107 cis. Therefore Boardwalk Drive has adequate conveyance capacity during the 100 year storm event. Off -site Basin 0-3 and On -site Basin 6 On the Oak/Cottonwood Farm Overall Drainage Plan, basin 0-3 is ultimately planned to be regraded to drain southeasterly away from Boardwalk Drive and towards a detention facility at the southeast corner. Until Basin 0-3 is developed, the basin will temporarily sheet flow historic storm water runoff onto Boardwalk Drive and be conveyed downstream from design point 6 by the storm sewer and roadside ditch conveyance system. The storm sewer system at design point 6 has been designed in conformance with the Oak/Cottonwood Farm Overall Drainage Plan to convey the (ultimate after grading of Basin 0-3 and Basin 6) 25 year developed storm water runoff from Basin 6 (Boardwalk Drive). The 25 year design is conservative. Storm water runoff during a 100 year storm event in Basin 6 will pond up in Boardwalk Drive at design point 6, meeting the 100 year street ponding criteria, and either enter the storm sewer system inlet at design point 6 or cross over the crown of the street and proceed to the downstream roadside ditch conveyance system. In the interim, the storm sewer system at 5 ' design point 6 is adequate to accommodate the historic storm water runoff from Basin 0-3. ' c Off -site Basin 0-4 On the Oak/Cottonwood Farm Overall Drainage Plan, this basin is ultimately planned to drain easterly into a future storm sewer system and the roadside ditch along the west side of Boardwalk Drive. With construction of Boardwalk Drive, construction of the ultimate roadside ditch section along the west side of the street is also proposed at this time. The SWMM model was updated for the ' changes proposed with basin 0-1 and the development proposed herein, and the roadside ditch has been designed in conformance with the Oak/Cottonwood Farm Overall Drainage Plan. ' At the southeastern corner of basin 0-4 a culvert is proposed under Boardwalk Drive to convey the roadside ditch storm water under the ' street and into a downstream roadside ditch on the eastern side of Boardwalk Drive. The culvert was sized with the revised SWMM model hydrology and has been sized to pass the 25 year storm event under Boardwalk Drive in accordance with the Oak/Cottonwood Farm Overall Drainage Plan. For the 42" culvert sizing, the future anticipated land uses were used in the SWMM modeling to determine the potential runoff from basins adjacent to the roadside ditch and into the 42" culvert. In the event of a 100 year storm reaching the 42" culvert upstream end at Boardwalk Drive, storm water will pond up with the majority of the water passing through the culvert. Excess storm water runoff not entering the culvert is proposed to overflow onto Boardwalk Drive and be conveyed easterly to the low point at design point 0-5. From the low point at design point 0-5, excess runoff from the 42" culvert would ' either pass through the storm sewer system under Boardwalk Drive or pond up and pass over the crown of Boardwalk Drive, meeting the 100 year street ponding criteria, and proceed northerly into the roadside ditch behind the street. d. Off -site Basin 0-5 ' On the Oak/Cottonwood Farm Overall Drainage Plan, a portion of basin 0-5 is ultimately planned to drain northwesterly into the ' roadside ditch located in basin 0-4 at the upstream end of the 42" RCP. The other portion of basin 0-5 is ultimately planned to drain into the storm sewer system at the low point in Boardwalk Drive ' adjacent to Lemay Avenue (design point 0-5). In conformance with ' 6 t 1 F- L t the Oak/Cottonwood Farm Overall Drainage Plan, the storm sewer system at the low point in Boardwalk Drive, west of Lemay Avenue (design point 0-5), has been designed to convey the 25 year developed storm water runoff ultimately anticipated to reach the storm sewer system. The 25 year design is conservative. The 15 foot inlet at design point 0-5 has been designed as if basin 0-5 (ultimate basin 212 per the Overall Drainage Study) sheet flowed onto Lemay Avenue and Boardwalk Drive and did not contain an internal storm sewer system. A storm sewer stub out of the back of inlet number 5 has been provided in the event an internal storm sewer system is proposed upstream of this inlet within ultimate basin 212. Storm water runoff from a 100 year storm event reaching inlet number 5 would pond up and a portion of the runoff would enter the storm sewer system and a portion of the runoff would cross over the crown of Boardwalk Drive and proceed northerly to the roadside ditch. Ponded storm water at this location meets the 100 year street ponding criteria. e. Basin 5 This basin contains only the eastern portion of Boardwalk Drive and drains to a low point at design point 5. An inlet has been designed at the low point to convey the 25 year storm water runoff from the street to the roadside ditch in conformance with the Oak/Cottonwood Farm Overall Drainage Plan. Adjacent to basin 5 the roadside ditch has been designed from the outlet of the 42" culvert to a temporary detention pond downstream of design point 5. The roadside ditch was sized according to the revised SWMM model hydrology and in conformance with the drainage concepts proposed in the Oak/Cottonwood Farm Overall Drainage Plan. The permanent detention pond located in The Upper Meadow at Miramont First Filing was sized and the SWMM model was revised to include the final designed pond hydraulic characteristics. From the design calculations, the maximum future release from this detention pond is anticipated to be 7 cfs. This equates to approximately 0.30 cfs/acre from the contributory basins to this pond. The release rate is less than the 0.50 cfs/acre runoff rate that the downstream improvements in Oakridge are capable of handling. By limiting the release rate in this pond, compensation for this reduced rate should be provided in the future detention pond at Lemay Avenue and Boardwalk Drive, thus reducing the future pond size. The permanent detention pond was designed in conformance with the concepts presented in the Oak/Cottonwood Farm Overall Drainage Plan. An emergency overflow weir has been provided along the eastern side of the pond to allow 7 storm water to exit the pond and drain onto Boardwalk Drive in the event the outlet pipe became plugged. Overflows reaching Boardwalk Drive would be transmitted downstream 'safely by the street, storm sewers, and roadside ditches to the existing culverts under Lemay Avenue. With the development of Basin 1 and Boardwalk Drive, a temporary detention pond is necessary upstream of the three existing 36" RCP's to control the developed site discharge to 0.5 cfs/acre and be in conformance ' with the Oak/Cottonwood Farm Overall Drainage Plan. Calculations were made to size the temporary detention pond upstream of the existing 36" culverts. The temporary detention pond is being located in the northwest corner of the Lemay Avenue/Boardwalk Drive intersection to avoid the historic overland flow path of storm water draining to the existing culverts under Lemay Avenue. Off -site easements are required for this pond and ' the roadside ditch into the pond. The temporary detention pond is proposed to be excavated into existing ground with a 10" outlet pipe connecting the pond to the northern most existing 36" culvert under Lemay ' Avenue. It is our understanding that the southern two 36" culverts were not installed correctly and water stands in these culverts instead of draining. The temporary detention pond was sized to accommodate the developed ' runoff from basin 1 and Boardwalk Drive (Oakridge Drive to Lemay Avenue) with one foot of freeboard. An emergency overflow weir has been provided along the northern side of the temporary detention pond to allow storm water to exit the pond and drain to the existing 36" culverts in the event the outlet pipe becomes plugged. When Basin 213 in the Oak/Cottonwood Farm Overall Drainage Plan develops, then the ultimate detention pond number 340 will be sized, using the SWMM computer model, designed, and constructed adjacent to Lemay Avenue. A subdrain system is being installed in the Miramont First Filing to alleviate some minor groundwater problems in the area. Based on the report designing the subdrain system, by Resourse Consultants, Inc., peak flows from the subdrain are anticipated to be 70 gpm (0.16 cfs). The subdrain is a gravity system and will daylight into the temporary detention pond at the northwest corner of Boardwalk Drive and Lemay Avenue. The low flow pan through the downstream Oakridge Development, is assumed to be designed to accomodate 1% of the 100 year flow, (100 year flow of 119 cfs; 1 % of 100 year flow is 1.19 cfs). Therefore the peak flows from the underdrain system should be able to be conveyed within the existing low flow pan in the Oakridge Development, and no downstream impacts to the Oakridge Development are anticipated. V 1 t EROSION CONTROL A. General Concept The Upper Meadow at Miramont First Filing lies within the Moderate Rainfall and Wind Erodibility Zone per the City of Fort Collins zone maps. The potential exists for erosion problems during construction of the First Filing and after construction until the disturbed ground is again vegetated. It is anticipated that the First Filing improvements will begin in the fall of 1992 and be completed by the spring of 1993. Thus the new improvements will be subjected to both wind and rainfall erosion. Per the City of Fort Collins Erosion Control Reference Manual for Construction Sites and related calculations in the appendix, the erosion control performance standard for the subject site is 75.7 % . From the calculations in the appendix, the effectiveness of the proposed erosion control plan is 75.3 % during the construction portion of the development. Therefore the erosion control plan as specifically detailed below, most nearly meets the City of Fort Collins requirements. ' B. Specific Details If the curb, gutter, sidewalks, and asphalt are not installed within 6 weeks ' after construction begins, then these improvements should not be included in the erosion control effectiveness calculations. Given our experience and the anticipated construction time frame for a development of this size, we have assumed that the curb, gutter, sidewalks, and asphalt will not be installed within 6 weeks after construction begins. ' The erosion control effectiveness calculations were completed initially assuming that the roadways contain bare ground for the first six weeks and ' all other disturbed areas are seeded and mulched immediately after overlot grading. The effectiveness of this plan was 65 % and thus did not meet the City's criteria. Therefore a sediment trap was proposed in the bottom of the ' permanent detention pond to collect sediment leaving the disturbed portion of basins 2, 3, and 4, and the effectiveness of the erosion control plan rose to 75.3 %. Included below is a discussion of the erosion control measures ' to be taken during construction of The Upper Meadow at Miramont First Filing. ' Before overlot grading of basins 1, 2, and 3, the permanent detention pond in basin 4 will be initially constructed such that it will function as a sediment trap for the improvements planned in basins 2, 3, and 4. The initial ' detention pond, for sediment collection, must contain at least 1.26 acre feet 9 0 ' of volume, an outlet pipe with gravel filter, and an emergency spillway. Once the temporary vegetation seed, mulch (for wind erosion control), and roadway asphalt and concrete have been installed in basins 2 and 3, the detention pond can be converted into a final pond. After overlot grading of the final detention pond and remainder of basin 4, all disturbed areas will have a permanent seed applied. After seeding, a hay or straw mulch will be applied over the seed at a rate of 2 tons/acre (min.) and the mulch will be adequately anchored, tacked, or crimped into the soil. Depending on ' the percentage of the permanent detention pond initially completed for the sediment trap, the installation of a temporary vegetation seed and later a permanent seed, with mulch, may be required. ' Once the detention/sedimentation pond has been completed, the overlot grading can proceed in basins 1, 2 and 3. After the overlot grading has ' been completed in basins 1, 2 and 3, all disturbed areas, not in a roadway, will have a temporary vegetation seed applied. After seeding, a hay or straw mulch (for wind erosion control) will be applied over the seed at a rate ' of 2 tons/acre (min.) and the mulch will be adequately anchored, tacked, or crimped into the soil. After the utilities have been installed, the roadway surfaces will receive the pavement structure. After installation of the curb ' inlets, the inlets will be filtered with a combination of concrete blocks, wire screen and coarse gravel. ' After overlot grading has been completed on Boardwalk Drive and the adjacent cut slopes, all disturbed areas, not in the asphalt and concrete areas, will have the permanent landscaping improvements installed to ' control erosion. In the event the landscaping contractor will not be installing the permanent plantings within 6 weeks after construction begins, a temporary seed and mulch will need to be installed on all disturbed areas, ' not in the asphalt and concrete areas, to control rainfall and wind erosion. After permanent seeding has been completed, a hay or straw mulch will be applied over the seed at a rate of 2 tons/acre (min.) and the mulch will be adequately anchored, tacked, or crimped into the soil. After the utilities have been installed, the roadway surfaces will receive the pavement structure. After installation of the curb inlets, the inlets will be filtered with ' a combination of concrete blocks, wire screen and coarse gravel. ' All other disturbed areas within the limits of construction, including the off - site swales and temporary detention pond, will have a permanent seed applied after construction is completed. After seeding, a hay or straw mulch ' will be applied over the seed at a rate of 2 tons/acre (min.) and the mulch will be adequately anchored, tacked, or crimped into the soil. Straw bale dikes will be installed immediately after the roadside ditch has been ' constructed. 10 1 VI. CONCLUSIONS ' A. Compliance with Standards All computations within this report have been completed in compliance with ' the City of Fort Collins Storm Drainage Design Criteria. B. Drainage Concept ' The permanent and temporary detention ponds will adequately provide for the detention of developed storm water runoff from The Upper Meadow at Miramont First Filing and Boardwalk Drive. The street conveyance systems will adequately transport developed runoff from the various contributory points to sump inlets and storm sewer systems. The storm sewer systems and roadside ditch will safely convey developed storm water runoff from this initial phase of construction, to the existing culverts under Lemay Avenue. The developed storm water runoff has been controlled in order to eliminate ' off -site downstream damage from the 2 year and 100 year storm events. The proposed drainage concepts presented in this report and shown on the drainage plan are in compliance with the City of Fort Collins drainage criteria. No variances are being sought for this project. C. Erosion Control Concept The proposed erosion control concepts adequately provide for the control ' of wind and rainfall erosion from The Upper Meadow at Miramont First Filing and Boardwalk Drive. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance standards will be ' most nearly met. The proposed erosion control concepts presented in this report and shown on the erosion control plan are in compliance with the ' City of Fort Collins erosion control criteria. Hay or straw mulch is being proposed as it has recently proven to be the most economical and efficient method available to control erosion. ' REFERENCES 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort ' Collins, Colorado, May 1984, Revised January 1992. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort ' Collins, Colorado, January 1991. 11 1 ' 3. Overall Drainage Study Oak/Cottonwood Farm in Fort Collins, Colorado by RBD Inc., May 1992. 4. Master Drainage Study for the Oakridge Business Park in Fort Collins, Colorado, by RBD inc., September 1990. 12 APPENDIX IS I. LL, V--p Lu -n RJeff 0 Cc ..it WHORSET OTK ........ ... u% up p ....................... Warren ... ... ...... ...I ...... ..... Lake.: .. '-A: cc w m THE UPPER MEADOW AT \�-•�--� \! f`""11'!�.t, ~ �, MIRAMONT FIRS I FILING HARMONY( ROAD I.J -OAKRIDGE AREA ti McCLELLANDS BASIN 3 0AHICOTTONWO D FARM 00 COUNTY ROAD 36 ... ........ . ati .......... . T. ii:l ....0 ............... ... Z A .211 zi z ml TRILBY 1 ROAD z ... FOSE IL C R E ASIN Fossil Creek O Res.ervoir'," VICINITY MAP FIGURE 1 I 1 i 1 HYDROLOGY Li 0 1 11 c Z LZ �J O W o W 6 Z O ULL c O m fn F-- a J D m U J f✓7 Q U cr Q oc Q � N N N N N N N N N N N cL O a s In U II p 11 11 Z O N O N H H W N Qrr S 9 N o a0 N s N r ° m N aIn. N+, ^� y In < O U U tn ° Q N ? T N i \ c _ °' T co o U) '-��� z a w J to W CL m o � . cv-Li W W Q IY (L e 0 o co .% O �) O .9 ; N N o o Vt f- v (h If) 1— N v . rh f (v N 4 o Q o 0 0 0` 0 I o W M N °- to N In kn N r O dJ J Zl 1 N \9 M O 111 o I^ cA w m f .v r W^ W >+. CL O e oto �9 M O IsO O M �'" O O 0 O O O O o O O v J N N � v Ln N N N - N W Z� Z o IO O O N tn N g N N N t N In N M 1.0 Q V) O a In cr o�-- Z o p o p D O O O o V l+1 o' r 10t1 6J N J- '- 6- �9 N m Q Q N N m r O ry M 41 W zt o O O p N M T irk ,9 0 co � o N �I I Z 11 In O� Ul H. 0 cc W , U Z O U- 3 O Y cw r rC z m F. U W J D m U • � J N ¢ U O CV 7 J � � a' N �9 W. o M M W ° Lo u o zu o N r O N N y' N s o * a N �- U C. t` O UNJ o• a- h P N 7 a ., •� o a- m m , o a m o W In \ \ N W7t' CL 1— N -Zrh Z In I Q m r o N j N LQ ro C� r Qr o Li J m N ac W co - N U1 r\, N Q � _ Z~ Z M o N Pi _ W It) T N N N Vl J toN C M N N m In i Z O O o o o p p o 0 a N Q- w u j N r- In T N W o- 6 ry m 0 Q ¢ .. N T o �^ N � 9 0 0 0 0 1IN U z Z a w w _z 0 z W U LY Q w cc U J U z U w F- 0 z ¢ z C7 1) W O W 0 z 0 1 i 1 i. 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 a Y. N i1c o� MAY 1984 5-3 Q 0 Z w W 0 Z� J `— W Vj a � .S W F- W }� LO L W T Ur � LL z Q, � L o� OE U) o [L ILL O LL Q O LL_ J Q U a DESIGN CRITERIA 1 1. 1 1 1 1 1 1 i 1 i 1 1 1 MAY 1984 5-3 i Q 0 Z C) W 0 Z—cy) �m J T Lli a0 d � ,c WC �W T v' 0 �w(m (D:3 u Z� Q Q L O p� c� OE C o m LL 0 LL 2 cc 0 LL J Q U n. H DESIGN CRITERIA 7/qH PERMANENT DETENTION POND FIRST FILING �I L.' CLIENT 1y grad{ k-/Nea I JOB NO. '4y-00� ' INC PROJECT IN / ra rno,[ /1 ! CALCULATIONS FOR And UOlUM e Engineering Consultants MADE BYRDATE S,-Z% 9HECKEDBV DATE SHEET 8 OF 9H CSc- 1 0 -- - ...y. I. l f I 2c� �9 Z 3y, y98 0,-77 7I 1 a I ! f , { I i } 1 ' ' 1 1 ' 1 I , I I I I I 11 I I I I I I I I I I I Ij I CLIENT --b-1—drL, C _Xad_ JOB NO. �NC PROJECT fil i rz 7" CALCULATIONS FOR Pand Ka-h,2 Engineering Consultants MADEBYeW(- OATE-f �91?_ CHECKED BY— DATE —SHEET 3 OF Ti PO i1D 77 E 7EAJ 3 -------- ----- Ft 1 / b, IV OUT - .6 # 7-): Cq,-,Y� /7 F C�?P C Cc FS) 0..T 0 i.,I. i 0. 6,,& 3,4� 0. 0 7 3! 0 . Y ir 2�4_.L_,! 0 79;Z57 -7 b 0,:. 3.0' /,257 7 F. o,; /Z.0 -3,0, 1,25T 74.0. 3, a5 eo 3.6 7f3 75) 6 zsi 6 -7,0 :3.0 7-6 P OF 6EW-111 6_46'Ll, 7:5,00-: t Ws, T-u); Fj+-�-_ RCP .151 FLOWIAJ6 FLALL�:, 4r, o la. v(1-'re- _r, lei- FL6ws: NOTE r) M 6 6- 7- coATMgz_ C.4PAC-i-rY, ;cWalyl cgqer �1' )6-,-7-H FOIC CpIVCke7LC_ __CUZ- VCe7'6 'bU 177Y ?4,1667- OJ70L-�­, 690oV6' 6:�VV /C�7e C-77/// /3-3 Qz� V17 O/j 3"' t. or 51AJ& A) A 6(2L),9 7-) 0 P"Oer WC 71', :.j... sj 7' T y.- ail 7-8 Rcp— liccr-e4z 16 / I �Ir : x -4 69,6 6 7L, 360 vb 970 0 2. jq BY( 2; 2 I. _4 .......... 4 - - - - - - - - - - - - - - - - - - - - - - - -- ------ -- 4 LI T No Text n/qq ' ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 ' DEVELOPED BY METCALF + EDDY, INC.. UNIVERSITY OF FLORIDA ' WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY 1 'TAPE OR DISK ASSIGNMENTS UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) J1N(6) JIN(7) JIN(8) JIN(9) JIN(10) ' 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT0 0) 1 2 0 0 0 0 0 0 0 0 ' NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 1 1 WATERSHED PROGRAM CALLED '*** ENTRY MADE TO RUNOFF MODEL *** COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RBD FILE NO. 50400102.DAT �IUMBER OF TIME STEPS 50 OINTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .12 .36 .48 .60 .84 1.80 3.24 1.08 .84 .48 .36 .36 .36 .24 .24 .24 .24 .12 .12 .12 .12 .12 .12 .12 .00 ' COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RBD FILE NO. 50400102.DAT 'SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 0. .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 ' 201 320 315. 14.8 14.5 .0183 .016 .250 .100 .500 .50 .50 .00180 1 ' 202 322 700. 22.9 50.0 203 307 1000. 32.3 80.0 204 301 900. 19.0 80.0 303 650. 5.8 47.0 '205 206 306 650. 7.7 70.0 207 311 650. 13.8 57.0 208 313 950. 41.3 55.0 209 321 435. 23.4 40.0 '210 324 400. 8.9 40.0 211 325 700. 10.9 40.0 212 328 400. 4.2 70.0 213 340 700. 9.1 70.0 '214 330 2200. 1.6 90.0 215 331 35. .7 90.0 216 329 35. 1.0 90.0 OTOTAL NUMBER OF SUBCATCHMENTS, 16 TOTAL TRIBUTARY AREA (ACRES), 217.38 .0165 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0105 .016 .250 .100 .500 .50 .50 .00180 .0080 .016 .250 .100 .500 .50 .50 .00180 .0235 .016 .250 .100 .500 .50 .50 .00180 .0170 .016 .250 .100 .500 .50 .50 .00180 .0085 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0200 .016 .250 .100 .500 .50 .50 .00180 .0380 .016 .250 .100 .500 .50 .50 .00180 .0055 .016 .250 .100 .500 .50 .50 .00180 .Olio .016 .250 .100 .500 .50 .50 .00180 .0270 .016 .250 .100 .500 .50 .50 .00180 .0060 .016 .250 .100 .500 .50 .50 .00180 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT ' RED FILE NO. 50400102.DAT *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** ' WATERSHED AREA (ACRES) 'TOTAL RAINFALL (INCHES) TOTAL INFILTRATION (INCHES) TOTAL WATERSHED OUTFLOW (INCHES) TOTAL SURFACE STORAGE AT END OF STROM (INCHES) ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL '1 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RBD FILE NO. 50400102.DAT 217.380 GUTTER ' NUMBER 301 302 ' 303 304 305 306 307 30 3099 310 311 ' 31 313 320 321 322 323 ' 324 1.060 .289 .536 .236 .007 WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK CONNECTION (FT) (FT) (FT/FT) L R N (FT) 302 0 2 PIPE 2.5 96. .0032 .0 .0 .013 2.47 0 304 0 1 CHANNEL 4.0 260. .0021 2.0 2.0 .035 5.00 0 304 0 2 PIPE 1.3 10. .0017 .0 .0 .013 1.25 0 305 0 2 PIPE 2.5 40. .0070 .0 .0 .013 2.47 0 309 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 5.00 0 309 0 2 PIPE 1.3 10. .0038 .0 .0 .013 1.25 0 308 0 2 PIPE 1.5 120. .0033 .0 .0 .013 1.50 0 310 0 1 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 310 0 2 PIPE 2.3 75. .0211 .0 .0 .013 2.25 0 312 0 2 PIPE 2.5 853. .0123 .0 .0 .013 2.50 0 312 0 2 PIPE 1.0 315. .0020 .0 .0 .013 1.00 0 340 0 2 PIPE 3.0 480. .0100 .0 .0 .013 3.00 0 312 0 2 PIPE 2.3 680. .0038 .0 .0 .013 2.25 0 321 0 1 CHANNEL 5.0 1350. .0050 4.0 4.0 .035 5.00 0 324 8 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .3 2.6 .8 4.3 1.5 5.5 2.5 6.4 3.8 7.3 5.4 8.0 323 0 2 PIPE 1.3 10. .0125 .0 .0 .013 1.25 0 324 0 1 CHANNEL .0 1500. .0142 50.0 .0 .016 1.50 0 331 0 2 PIPE 3.0 120. .0050 .0 .0 .013 3.00 0 1 ' 325 326 0 1 CHANNEL 4.0 326 327 0 2 PIPE 3.5 327 329 0 1 CHANNEL 4.0 328 329 0 2 PIPE 1.8 329 340 0 1 CHANNEL 5.0 330 324 0 2 PIPE 1.5 331 325 0 2 PIPE 3.0 340 0 0 2 PIPE 5.2 'TOTAL NUMBER OF GUTTERS/PIPES, 26 ' COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RBD FILE NO. 50400102.DAT 'ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE ' 301 0 0 0 0 0 0 0 0 0 0 302 301 0 0 0 0 0 0 0 0 0 303 0 0 0 0 0 0 0 0 0 0 ' 304 302 303 0 0 0 0 0 0 0 0 305 304 0 0 0 0 0 0 0 0 0 ' 306 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 0 ' 308 307 0 0 0 0 0 0 0 0 0 309 305 306 0 0 0 0 0 0 0 0 ' 310 308 309 0 0 0 0 0 0 0 0 311 0 0 0 0 0 0 0 0 0 0 312 310 311 313 0 0 0 0 0 0 0 ' 313 0 0 0 0 0 0 0 0 0 0 320 0 0 0 0 0 0 0 0 0 0 ' 321 320 0 0 0 0 0 0 0 0 0 322 0 0 0 0 0 0 0 0 0 0 ' 323 322 0 0 0 0 0 0 0 0 0 324 321 323 330 0 0 0 0 0 0 0 ' 325 331 0 0 0 0 0 0 0 0 0 326 325 0 0 0 0 0 0 0 0 0 327 326 0 0 0 0 0 0 0 0 0 ' 328 0 0 0 0 0 0 0 0 0 0 329 327 328 0 0 0 0 0 0 0 0 ' 330 0 0 0 0 0 0 0 0 0 0 331 324 0 0 0 0 0 0 0 0 0 ' 340 312 329 0 0 0 0 0 0 0 0 13liq 420. .0050 3.0 3.0 .035 3.00 0 100. .0050 .0 .0 .013 3.50 0 750. .0050 3.0 3.0 .035 3.00 0 100. .0100 .0 .0 .013 1.75 0 240. .0050 4.0 4.0 .035 4.00 0 80. .0050 .0 .0 .013 1.50 0 80. .0050 .0 .0 .013 3.00 0 130. .0015 .0 .0 .013 5.20 0 TRIBUTARY SUBAREA D.A.(AC) 204 0 0 0 0 0 0 0 0 0 19.0 0 0 0 0 0 0 0 0 0 0 19.0 205 0 0 0 0 0 0 0 0 0 5.8 0 0 0 0 0 0 0 0 0 0 24.9 0 0 0 0 0 0 0 0 0 0 24.9 206 0 0 0 0 0 0 0 0 0 7.7 203 0 0 0 0 0 0 0 0 0 32.3 0 0 0 0 0 0 0 0 0 0 32.3 0 0 0 0 0 0 0 0 0 0 32.5 0 0 0 0 0 0 0 0 0 0 64.8 207 0 0 0 0 0 0 0 0 0 13.8 0 0 0 0 0 0 0 0 0 0 119.9 208 0 0 0 0 0 0 0 0 0 41.3 201 0 0 0 0 0 0 0 0 0 14.8 209 0 0 0 0 0 0 0 0 0 38.2 202 0 0 0 0 0 0 0 0 0 22.9 0 0 0 0 0 0 0 0 0 0 22.9 210 0 0 0 0 0 0 0 0 0 71.6 211 0 0 0 0 0 0 0 0 0 83.2 0 0 0 0 0 0 0 0 0 0 83.2 0 0 0 0 0 0 0 0 0 0 83.2 212 0 0 0 0 0 0 0 0 0 4.2 216 0 0 0 0 0 0 0 0 0 88.3 214 0 0 0 0 0 0 0 0 0 1.6 215 0 0 0 0 0 0 0 0 0 72.3 213 0 0 0 0 0 0 0 0 0 217.4 iy/qN COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RBD FILE NO. 50400102.DAT �HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 26 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ' ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE 1N AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 301 302 303 304 305 306 307 308 309 310 311 312 313 340 320 321 322 323 324 325 '326 0 5. 0. 327 0. 328 0. 329 0. 330 0. 331 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ' .0( ) .0( ) .0( ) .0( ) .0( ) O(S) .0( ) .O( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0 10. 0( ) 0. .0( 0. ) .0( 0. ) .0( ) 0. .0( ) 0. .0( ) 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .O( ) .0( ) .0( ) 0(S) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. '0( 0 15. ) 0. .0( 0. ) .0( 0. ) .0( ) 0. .O( ) 0. .0( ) 0. 0. 0. 0. 0. .0( ) .0( ) .1(. ) .0( ) .0( ) .0( ) .1( ) .0( ) .0( ) .O( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ' .0( ) .0( ) .0( ) .0( ) .0( ) O(S) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. '0( 0 20. ) 0. .0( 0. ) .0( 0. ) .0( ) 0. .0( ) 0. .0( ) 0. 0. 0. 0. 0. .1( ) .0( ) .1( ) .1( ) .0( ) .1( ) .1( ) .1( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ' .1( ) .0( ) .1( ) .1( ) .0( ) O(S) .1( ) .0( ) .1( ) .0( ) 0. 0. 0. 0. 0. 0. ' 0 25. .0( ) 2. .0( 1. ) .1( 1. ) .0( ) 2. .1( ) 0. .1( ) 1. 2. 0. 2. 1. .5( ) .2( ) .7( ) .4( ) .1( ) .5( ) .7( ) .3( ) .3( ) .2( ) 1. 2. 1. 3. 0. 0. 2. 0. 3. 1. .7( ) .4( ) .4( ) .6( ) .0( ) O(S) .5( ) .1( ) .5( ) .3( ) 1. 0. 1. 1. 2. 3. ' 0 30. .3( ) 9. .1( 5. ) .4( 3. ) .1( ) 9. .5( ) 3. .5( ) 4. 6. 2. 10. 8. 1.1( ) .7( ) .0(0) .9( ) .6( ) .0(0) .0(0) .6( ) .7( ) .7( ) 2. 15. 9. 22. 0. 0. 8. 4. 9. 9. 0 35. ' 0 40. ' 0 45. 1 ' 0 50. .0(0) 1.0( ) 1.1( ) 1.6( ) .1( ) O(S) .0(0) .2( ) .9( ) .7( ) 9. 2. 4. 4. 2. 9. .8( ) .3( ) .6( ) .4( ) .6( ) .9( ) 24. 27. 3. 28. 16. 4. 6. 4. 18. 20. .0(0) 1.7( ) .0(0) 1.8( ) 1.3( ) .0(0) .1(0) .8( ) 1.0( ) 1.2( ) 2. 48. 21. 74. 1. 0. 8. 6. 20. 26. .1(0) 1.9( ) .1(0) 3.1( ) .2( ) 1(S) AM .3( ) 1.4( ) 1.3( ) 25. 12. 9. 17. 6. 21. 1.4( ) .9( ) 1.0( ) .9( ) 1.0( ) 1.4( ) 24. 23. 3. 28. 27. 4. 6. 5. 34. 34. .0(0) 1.6( ) .0(0) 1.7( ) 1.8( ) .1(0) .3(0) .9( ) 1.5( ) 1.6( ) 2. 50. 21. 91. 2. 1. B. 7. 15. 29. .2(0) 1.9( ) .2(0) 3.6( ) .3( ) .2(S) .1(0) .3( ) 1.2( ) 1.3( ) 29. 24. 4. 29. 0. 17. 1.6( ) 1.2( ) .6( ) 1.2( ) .1( ) 1.2( ) 21. 22. 3. 23. 26. 4. 6. 6. 28. 37. 1.9( ) 1.6( ) .1(0) 1.5( ) 1.7( ) AM .5(0) .9( ) 1.3( ) 1.7( ) 2. 63. 21. 96. 2. 2. 8. 7. 14. 20. .3(0) 2.3( ) .2(0) 3.7( ) .3( ) .3(S) .2(0) .3( ) 1.1( ) 1.1( ) 20. 25. 3. 29. 2. 14. 1.3( ) 1.2( ) .5( ) 1.2( ) .5( ) 1.1( ) 12. 15. 3. 20. 22. 4. 6. 6. 28. 33. 1.3( ) 1.3( ) .0(0) 1.4( ) 1.6( ) AM .6(0) .9( ) 1.3( ) 1.6( ) 2. 54. 21. 88. 2. 3. B. 8. 15. 18. .3(0) 2.0( ) .3(0) 3.5( ) .3( ) .3(S) .2(0) .3( ) 1.1( ) 1.1( ) 18. 20. 2. 24. 0. 16. 1.2( ) 1.1( ) .4( ) 1.1( ) .2( ) 1.2( ) 12. 12. 3. 13. 17. 4. 6. 6. 19. 29. 1.3(' ) 1.1( ) .0(0) 1.1( ) 1.4( ) AM .7(0) .9( ) 1.0( ) 1.4( ) 2. 52. 21. 75. 2. 3. 8. 8. 12. 16. .3(0) 2.0( ) .2(0) 3.1( ) .3( ) .4(S) .2(0) .3( ) 1.1( ) 1.0( ) 17. 18. 1. 20. 1. 13. 1.2( ) 1.1( ) .3( ) 1.0( ) .3( ) 1.1( ) 8. 10. 3. 14. 14. 4. 6. 6. 20. 25. 1.0( ) 1.0( ) .0(0) 1.1( ) 1.2( ) .1(0) .8(0) .9( ) 1.0( ) 1.3( ) 2. 47. 21. 72. 2. 3. 8. 8. 14. 15. .3(0) 1.9( ) .2(0) 3.1( ) .3( ) .4(S) .2(0) .3( ) 1.1( ) 1.0( ) 15. 16. 1. 19. 0. 14. 1.1( ) 1.0( ) .3( ) .9( ) .2( ) 1.1( ) 9. 8. 3. 10. 12. 4. 6. 6. 15. 23. 1.1( ) .9( ) .0(0) .9( ) 1.2( ) AM .9(0) .9( ) .9( ) 1.3( ) 2. 46. 21. 64. 1. 3. 8. 8. 12. 15. '.4(0) 1.8( ) .2(0) 2.8( ) .2( ) .4(S) .2(0) .3( ) 1.0( ) 1.0( ) 15. 15. 1. 17. 1. 13. 1.1( ) 1.0( ) .3( ) .9( ) .3( ) 1.1( ) 6. 7. 3. 11. 11. 4. 6. 6. 16. 22. .8( ) .9( ) 1.0( ) 1.0( ) 1.1( ) AM .9(0) .9( ) .9( ) 1.2( ) 2. 44. 21. 65. 1. 3. 8. 8. 13. 14. r 1 ' 1 15. 1 1 20. r 1 25. 1 ' 1 30. r ' 1 35. 1 ' 1 40. 1 1 45. r ' 1 50. 1 r .4(0) 1.8( ) AM 2.9( ) .2( ) .5(S) .2(0) .3( ) 1.1( ) .9( ) 14. 15. 1. 16. 0. 13. 1.1( ) 1.0( ) .3( ) .9( ) .2( ) 1.1( ) 6. 6. 0. S. 8. 4. 6. 6. 11. 20. .9( ) .8( ) .0( ) .6( ) 1.0( ) .0(0) .9(0) .9( ) .8( ) 1.2( ) 2. 42. 21. 59. 1. 3. 8. 8. 12. 14. AM 1.7( ) .0(0) 2.7( ) .2( ) .5(S) .2(0) .3( ) 1.0( ) .9( ) 14. 14. 1. 16. 0. 12. 1.1( ) .9( ) .3( ) .9( ) .2( ) 1.0( ) 5. 5. 1. 8. 7. 4. 6. 6. 12. 18. .8( ) .7( ) .6( ) .8( ) .8( ) .0(0) 1.0(0) 1.0( ) .8( ) 1.1( ) 2. 35. 14. 54. 1. 3. 8. 8. 13. 14. AM 1.5( ) 1.4( ) 2.6( ) .2( ) .5(S) .1(0) .3( ) 1.1( ) .9( ) 14. 14. 1. 15. 0. 13. 1.0( ) .9( ) .3( ) .9( ) .2( ) 1.1( ) 5. 5. 0. 4. 6. 4. 6. 6. 9. U. .8( ) .7( ) .1( ) .6( ) .8( ) .0(0) 1.0(0) 1.0( ) .7( ) 1.1( ) 2. 26. 6. 42. 1. 3. 8. 8. 12. 14. .4(0) 1.3( ) .9( ) 2.2( ) .2( ) .5(S) .1(0) .3( ) 1.0( ) .9( ) 14. 14. 1. 15. 0. U. 1.0( ) .9( ) .3( ) .8( ) .2( ) 1.0( ) 4. 4. 1. 6. 5. 2. 6. 6. 8. 15. .7( ) .7( ) .6( ) .7( ) .7( ) .6( ) 1.0(0) 1.0( ) .7( ) 1.0( ) 2. 23. 7. 40. 1. 3. S. 8. 12. 13. .4(0) 1.2( ) .9( ) 2.2( ) .2( ) .5(S) AM .3( ) 1.0( ) .9( ) 13. 14. 1. 15. 0. 12. 1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( ) 4. 4. 0. 3. 5. 1. 6. 6. 4. 12. .7( ) .6( ) .0( ) .5( ) .7( ) .3( ) 1.0(0) 1.0( ) .5( ) .9( ) 2. 20. 6. 35. 1. 3. 8. 8. 12. 13. AM 1.1( ) .8( ) 2.0( ) .1( ) .5(S) .0(0) .3( ) 1.0( ) .9( ) 13. 13. 0. 14. 0. 12. 1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( ) 3. 3. 1. 5. 4. 1. 6. 6. 6. 12. .6( ) .6( ) .5( ) .6( ) .6( ) .5( ) 1.0(0) 1.0( ) .6( ) .9( ) 2. 18. 5. 33. 1. 3. 8. 8. 12. 13. .4(0) 1.1( ) .8( ) 2.0( ) .1( ) .5(S) .0(0) .3( ) 1.0( ) .9( ) 13. 13. 0. 14. 0. 12. 1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( ) 3. 3. 0. 2. 4. 0. 6. 6. 3. 11. .6( ) .5( ) .0( ) .4( ) .6( ) .3( ) 1.0(0) 1.0( ) .4( ) .8( ) 2. 18. 4. 32. 1. 3. 2. 6. 10. 12. AM 1.1( ) .7( ) 1.9( ) .1( ) .5(S) .5( ) .3( ) .9( ) .8( ) 12. 12. 0. 13. 0. 10. 1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( ) 2. 3. 1. 4. 3. 1. 6. 6. 5. 11. .6( ) .5( ) .4( ) .6( ) .6( ) .5( ) 1.0(0) 1.0( ) .5( ) .8( ) 2. 16. 4. 30. 0. 3. 2. 4. 8. 10. )t,,/9'I 1 1 i 1 55. i 2 0. i 2 5. ' 2 10. 1 ' 2 15. 1 i 2 20. i 2 25. 1 ' 2 30. i 1 AM 1.0( ) .7( ) 1.8( ) .1( ) .5(S) .4( ) .2( ) .8( ) .8( ) 10. 11. 0. 12. 0. 8. .9( ) .8( ) .2( ) .8( ) .2( ) .8( ) 2. 2. 0. 2. 3. 0. 6. 6. 3. 10. .6( ) .5( ) .1( ) .4( ) .5( ) .2( ) 1.0(0) 1.0( ) .4( ) .8( ) 2. 16. 4. 28. 0. 3. 2. 3. 7. 8. .4(0) 1.0( ) .7( ) 1.8( ) .1( ) .5(S) .4( ) .2( ) .8( ) .7( ) 8. 10. 0. 11. 0. 7. .8( ) .8( ) .2( ) .7( ) .2( ) .8( ) 2. 2. 1. 3. 3. 1. 6. 6. 4. 10. .5( ) .5( ) .4( ) .5( ) .5( ) .5( ) 1.0(0) 1.0( ) .5( ) .8( ) 2. 15. 4. 26. 0. 3. 1. 2. 6. 7. AM 1.0( ) .7( ) 1.7( ) .1( ) .5(S) .4( ) .2( ) .7( ) .6( ) 7. 8. 0. 9. 0. 6. .7( ) .7( ) .2( ) .6( ) .2( ) .7( ) 2. 2. 0. 2. 3. 0. 6. 6. 2. 10. .5( ) .4( ) .0( ) .4( ) .5( ) .2( ) .9(0) 1.0( ) .4( ) .8( ) 2. 15. 3. 23. 0. 3. 1. 2. 5. 6. AM 1.0( ) .6( ) 1.6( ) .1( ) .5(S) .4( ) .2( ) .7( ) .6( ) 6. 7. 0. 8. 0. 6. .7( ) .7( ) .1( ) .6( ) .1( ) .7( ) 1. 2. 0. 2. 2. 1. 6. 6. 3. 9. .4( ) .4( ) .3( ) .4( ) .5( ) .4( ) .9(0) 1.0( ) .4( ) .8( ) 2. 14. 3. 21. 0. 3. 1. 2. 5. 6. .4(0) .9( ) .6( ) 1.6( ) .1( ) .4(S) .3( ) .2( ) .7( ) .6( ) 6. 6. 0. 7. 0. 5. 7( ) .6( ) .1( ) .6( ) .1( ) .7( ) 1. 1. 0. 1. 2. 0. 6. 6. 2. 9. .4( ) .3( ) .0( ) .3( ) .4( ) .0( ) .9(0) 1.0( ) .3( ) .8( ) 2. 13. 2. 19. 0. 3. 1. 1. 4. 5. .3(0) .9( ) .5( ) 1.5( ) .1( ) .4(S) .3( ) .2( ) .6( ) .5( ) 5. 6. 0. 6. 0. 5. 6( ) .6( ) .1( ) .5( ) .0( ) .6( ) 1. 1. 0. 2. 2. 1. 6. 6. 2. 8. .4( ) .3( ) .2( ) .4( ) .4( ) .3( ) .9(0) 1.0( ) .3( ) .7( ) 2. 12. 2. 18. 0. 3. 1. 1. 4. 5. .3(0) .9( ) .5( ) 1.4( ) .1( ) .4(S) .2( ) .1( ) .6( ) .5( ) 5. 5. 0. 5. 0. 4. .6( ) .5( ) .1( ) .5( ) .0( ) .6( ) 1. 1. 0. 1. 1. 0. 6. 6. 1. 8. .3( ) .3( ) .0( ) .3( ) .3( ) .0( ) .8(0) 1.0( ) .3( ) .7( ) 2. 11. 1. 17. 0. 3. 1. 1. 4. 4. .3(0) .8( ) .4( ) 1.4( ) .1( ) .4(S) .3( ) .1( ) .6( ) .5( ) 4. 5. 0. 5. 0. 4. .6( ) .5( ) .1( ) .5( ) .0( ) .6( ) 1. 1. 0. 1. 1. 0. 6. 6. 2. B. .3( ) .3( ) .2( ) .3( ) .3( ) .3( ) .8(0) 1.0( ) .3( ) .7( ) 2. 11. 1. 16. 0. 3. 0. 1. 4. 4. lbllq 2 35. 2 40. 1 ' 2 45. ' 2 50. ' 2 55. ' 3 0. ' 3 5. ' 3 10. .3(0) .8( ) .4( ) 1.3( ) .1( ) .4(S) .2( ) .1( ) .6( ) .5( ) 4. 4. 0. S. 0. 4. 6( ) .5( ) .1( ) .5( ) .0( ) .6( ) 1. 1. 0. 1. 1. 0. 6. 6. 1. 8. .3( ) .2( ) .0( ) .2( ) .3( ) .0( ) .8(0) 1.0( ) .2( ) .7( ) 2. 11. 1. 15. 0. 3. 0. 1. 4. 4. .3(0) .8( ) .4( ) 1.3( ) .1( ) .4(S) .2( ) .1( ) .6( ) .5( ) 4. 4. 0. 4. 0. 4. 5( ) .5( ) .1( ) .4( ) .0( ) .6( ) 1. 1. 0. 1. 1. 0. 6. 6. 1. 7. .3( ) .2( ) .1( ) .3( ) .3( ) .2( ) .7(0) 1.0( ) .2( ) .7( ) 2. 10. 1. 14. 0. 3. 0. 1. 3. 4. .3(0) .8( ) .3( ) 1.3( ) .1( ) .4(S) .2( ) .1( ) .5( ) .4( ) 4. 4. 0. 4. 0. 3. .5( ) .5( ) .1( ) .4( ) .0( ) .5( ) 0. 1. 0. 1. 1. 0. 6. 6. 1. 7. .3( ) .2( ) .0( ) .2( ) .2( ) .0( ) .7(0) 1.0( ) .2( ) .7( ) 2. 10. 1. 14. 0. 3. 0. 0. 3. 3. .3(0) .8( ) .3( ) 1.2( ) .1( ) .3(S) .2( ) .1( ) .5( ) .4( ) 3. 4. 0. 4. 0. 3. .5( ) .5( ) .1( ) .4( ) .0( ) .5( ) 0. 0. 0. 1. 1. 0. 6. 6. 1. 7. .2( ) .2( ) .1( ) .2( ) .2( ) .2( ) .7(0) 1.0( ) .2( ) .7( ) 2. 10. 1. 14. 0. 3. 0. 0. 3. 3. .3(0) .8( ) .3( ) 1.2( ) .1( ) .3(S) .1( ) .1( ) .5( ) .4( ) Z. 3. 0. 4. 0. 3. .5( ) .4( ) .0( ) .4( ) .0( ) .5( ) 0. 0. 0. 0. 1. 0. 6. 6. 1. 7. .2( ) .2( ) .0( ) .2( ) .2( ) .0( ) .6(0) 1.0( ) .2( ) .7( ) 2. 10. 1. 13. 0. 3. 0. 0. 3. 3. .3(0) .8( ) .3( ) 1.2( ) .0( ) .3(S) .2( ) .1( ) .5( ) .4( ) 3. 3. 0. 3. 0. 3. .5( ) .4( ) .0( ) .4( ) .0( ) .5( ) 0. 0. 0. 0. 0. 0. 6. 6. 1. 7. .2( ) .2( ) .1( ) .2( ) .2( ) .2( ) .6(0) 1.0( ) .2( ) .7( ) 2. 9. 1. 13. 0. 3. 0. 0. 3. 3. .2(0) .8( ) .3( ) 1.2( ) .0( ) .3(S) .1( ) .1( ) .5( ) .4( ) 3. 3. 0. 3. 0. 3. .5( ) .4( ) .0( ) .4( ) .0( ) .5( ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) .2( ) .0( ) .2( ) .2( ) .0( ) .5(0) 1.0( ) .2( ) .7( ) 2. 9. 1. 13. 0. 2. 0. 0. 3. 3. .2(0) .8( ) .3( ) 1.2( ) .0( ) .3(S) .2( ) .1( ) .5( ) 4( ) 3. 3. 0. 3. 0. 3. 5( ) .4( ) .0( ) .4( ) .0( ) .5( ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) .1( ) .1( ) .2( ) .2( ) .1( ) .5(0) 1.0( ) .2( ) .7( ) 2. 9. 0. 12. 0. 2. 0. 0. 3. 3. ' 3 15. ' 3 20. 1 ' 3 25. ' 3 30. ' 3 35. I 3 40. 3 45. 3 50. 1 .2(0) .8( ) .2( ) 1.2( ) .0( ) .3(S) .1( ) .1( ) .5( ) .4( ) 3. 3. 0. 3. 0. 3. .5( ) .4() .0( ) .4() .0( ) .5( ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) .1( ) .0( ) .2( ) .2( ) .0( ) .5(0) 1.0( ) .2( ) .7( ) 2. 9. 0. 12. 0. 2. 0. 0. 2. 3. .2(0) .7( ) .2( ) 1.2( ) .0( ) .3(S) .2( ) .1( ) .5( ) .4( ) 3. 3. 0. 3. 0. 2. .5( ) .4( ) .0( ) .3( ) .0( ) .5( ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) .1( ) .1( ) .2( ) .1( ) A( ) AM 1.0( ) .1( ) .7( ) 2. 9. 0. 12. 0. 2. 0. 0. 2. 2. .2(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) .4( ) .4( ) 2. 3. 0. 3. 0. 2. .4( ) .4( ) .0( ) .3( ) .0( ) .4( ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) .1( ) .0( ) .1( ) .1( ) .0( ) AM 1.0( ) .1( ) .7( ) 2. 9. 0. 12. 0. 2. 0. 0. 2. 2. .2(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) .4( ) .3( ) 2. 2. 0. 3. 0. 2. .4( ) .4( ) .0( ) .3( ) .0( ) .4( ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) .1( ) .1( ) .1( ) .1( ) .1( ) .3(0) 1.0( ) .1( ) .7( ) 2. 9. 0. 11. 0. 2. 0. 0. 2. 2. .2(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) .4( ) .3( ) 2. 2. 0. 2. 0. 2. .4( ) .3( ) .0( ) .3( ) .0( ) .4() 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) .1( ) .0( ) .1( ) .1( ) .0( ) .3(0) 1.0( ) .1( ) .7( ) 2. 9. 0. 11. 0. 2. 0. 0. 2. 2. .2(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) .4( ) .3( ) 2. 2. 0. 2. 0. 2. .4( ) .3( ) .0( ) .3( ) .0( ) .4( ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .1( ) .1( ) .1( ) .1( ) .1( ) .1( ) .3(0) 1.0( ) .1( ) .7( ) 2. 9. 0. 11. 0. 2. 0. 0. 2. 2. .2(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) .4( ) .3( ) 2. 2. 0. 2. 0. 2. .4( ) .3( ) .0( ) .3( ) .0( ) .4( ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .1( ) .1( ) .0( ) .1( ) .1( ) .0( ) .2(0) 1.0( ) .1( ) .7( ) 2. 9. 0. 11. 0. 1. 0. 0. 2. 2. AM .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) .4( ) .3( ) 2. 2. 0. 2. 0. 2. .4( ) .3( ) .0( ) .3( ) .0( ) .4( ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. A( ) .1( ) .0( ) .1( ) .1( ) .1( ) .2(0) 1.0( ) .1( ) .6( ) 2. 9. 0. 11. 0. 1. 0. 0. 2. 2. zolgq ' .1(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .0( ) .1( ) .4( ) 2. 2. 0. 2. 0. 2. 4( ) .3( ) .0( ) .3( ) .0( ) .4( ) 3 55. 0. 0. 0. 0. 0. 0. 6. 6. 0. .1( ) .1( ) .0( ) .1( ) .1( ) .0( ) .1(0) 1.0( ) .1( ) 2. 9. 0. 10. 0. 1. 0. 0. 1. ' .1(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) .4( ) 2. 2. 0. 2. 0. 1. ) .3( ) -0( ) .3( ) .0( ) M ) '4( 4 0. 0. 0. 0. 0. 0. 0. 6. 6. 0. .1( ) .1( ) .0( ) .1( ) .1( ) -1( ) .1(0) 1.0( ) .1( ) 2. 9. 0. 10. 0. 1. 0. 0. 1. ' .1(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .0( ) -1( ) .3( ) 1. 2. 0. 2. 0. 1. ) .3( ) .0( ) .3( ) .0( ) .3( ) '3( 4 5. 0. 0. 0. 0. 0. 0. 6. 6. 0. .1( ) .1( ) .0( ) .1( ) .1( ) .0( ) .1(0) 1.0( ) .1( ) 2. 9. 0. 10. 0. 1. 0. 0. 1. ' .1(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) .3( ) 1. 1. 0. 2. 0. 1. ) .3( ) .0( ) .2( ) .0( ) .3( ) '3( 4 10. 0. 0. 0. 0. 0. 0. 6. 6. 0. .1( ) .1( ) .0( ) .1( ) .1( ) .1( ) .0(0) 1.0( ) .1( ) 2. 9. 0. 10. 0. 1. 0. 0. 1. ' .1(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .0( ) .1( ) .3( ) 1. 1. 0. 1. 0. 1. ' .3( ) .3( ) .0( ) .2( ) .0( ) .3( ) COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RSD FILE NO. 50400102.DAT ** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) ' 322 B. 1.3 .2 0 55. 320 2. .3 0 45. 330 6. 1.0 0 35. ' 321 3. .1 .5 1 30: MIRgMONT FlR.ST F/L/AJG 301 24. 2. .0 0 40. DETE/jTIoAtJ Poh1O 3 2. 1.4 0 35. /✓igx, HuJEL = 70.16 303 03 33. 1.3 .1 0 45. 302 27. 1.7 0 35. ' 331 21. 1.4 0 35. 304 28. 1.8 0 35. 325 29. 1.3 0 40. 306 305 4. 27. 1.3 1.8 .1 0 50. 0 40. 307 6. 1.5 1.0 1 35. 326 29. 1.6 0 40. 309 34. 1.5 0 40. ' 308 6. 1.0 2 35. 3( ) ' 328 9. 1.0 0 35. 327 25. 1.2 0 45. 313 21. 2.3 .3 0 50. 311 2. 1.0 1 30. ' 310 37. 1.7 .4 0 45. 329 29. 1.2 0 45. 312 63. 2.3 0 45. 340 96. 3.7 0 45. y ENDPROGRAM PROGRAM CALLED �L 2#qq [1 t ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY ITAPE OR DISK ASSIGNMENTS UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) J1N(6) JIN(7) JIN(8) JIN(9) JIN(10) ' 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED PROGRAM CALLED ' *** ENTRY MADE TO RUNOFF MODEL *** COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT RBD FILE NO. 50400100.DAT NUMBER OF TIME STEPS 50 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 60 .96 1.44 1.611 3.00 5.40 9,00 3.72 2,16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 .00 ' COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT RBD FILE NO. 50400100.DAT ' SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 0. .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 ' 201 320 315. 14.8 14.5 .0183 .016 .250 .100 .500 .50 .50 .00180 1 Z31gq 202 322 700. 22.9 50.0 203 307 1000. 32.3 80.0 204 301 900. 19.0 80.0 205 206 303 306 650. 650. 5.8 7.7 47.0 70.0 207 311 650. 13.8 57.0 208 313 950. 41.3 55.0 209 321 435. 23.4 40.0 324 400. 8.9 40.0 '210 211 325 700. 10.9 40.0 212 328 400. 4.2 70.0 213 340 700. 9.1 70.0 '215 214 330 331 2200, 35. 1.6 .7 90.0 90.0 216 329 35. 1.0 90.0 OTOTAL NUMBER OF SUBCATCHMENTS, 16 OTOTAL TRIBUTARY AREA (ACRES), 217.38 I .0165 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0105 .016 .250 .100 .500 .50 .50 .00180 .0080 .016 .250 .100 .500 .50 .50 .00180 .0235 .016 .250 .100 .500 .50 .50 .00180 .0170 .016 .250 .100 .500 .50 .50 .00180 .0085 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0200 .016 .250 .100 .500 .50 .50 .00180 .0380 .016 .250 .100 .500 .50 .50 .00180 .0055 .016 .250 .100 .500 .50 .50 .00180 .0110 .016 .250 .100 .500 .50 .50 .00180 .0270 .016 .250 .100 .500 .50 .50 .00180 .0060 .016 .250 .100 .500 .50 .50 .00180 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT ' RBD FILE NO. 50400100.DAT *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** ' WATERSHED AREA (ACRES) 217.380 TOTAL RAINFALL (INCHES) 2.920 ' TOTAL INFILTRATION (INCHES) .363 TOTAL WATERSHED OUTFLOW (INCHES) 2.154 ' TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .403 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .003 '1 GUTTER ' NUMBER 301 302 303 ' 304 305 306 307 ' 308 309 310 311 312 ' 313 320 321 ' 322 323 ' 324 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT RBD FILE NO. 50400100.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER NDP NP OR DIAN LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK CONNECTION (FT) (FT) (FT/FT) L R N (FT) 302 0 2 PIPE 2.5 96. .0032 .0 .0 .013 2.47 0 304 0 1 CHANNEL 4.0 260. .0021 2.0 2.0 .035 5.00 0 304 0 2 PIPE 1.3 10. .0017 .0 .0 .013 1.25 0 305 0 2 PIPE 2.5 40. .0070 .0 .0 .013 2.47 0 309 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 5.00 0 309 0 2 PIPE 1.3 10. .0038 .0 .0 .013 1.25 0 308 0 2 PIPE 1.5 120. .0033 .0 .0 .013 1.50 0 310 0 1 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 310 0 2 PIPE 2.3 75. .0211 .0 .0 .013 2.25 0 312 0 2 PIPE 2.5 853. .0123 .0 .0 .013 2.50 0 312 0 2 PIPE 1.0 315. .0020 .0 .0 .013 1.00 0 340 0 2 PIPE 3.0 480. .0100 .0 .0 .013 3.00 0 312 0 2 PIPE 2.3 680. .0038 .0 .0 .013 2.25 0 321 0 1 CHANNEL 5.0 1350. .0050 4.0 4.0 .035 5.00 0 324 8 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .3 2.6 .8 4.3 1.5 5.5 2.5 6.4 3.8 7.3 5.4 8.0 323 0 2 PIPE 1.5 10. .0100 .0 .0 .013 1.50 0 324 0 1 CHANNEL .0 1500. .0142 50.0 .0 .016 1.50 0 331 0 2 PIPE 3.0 120. .0050 .0 .0 .013 3.00 0 325 326 0 1 CHANNEL 4.0 326 327 0 2 PIPE 3.5 327 329 0 1 CHANNEL 4.0 328 329 0 2 PIPE 1.8 329 340 0 1 CHANNEL 5.0 330 324 0 2 PIPE 1.5 331 325 0 2 PIPE 3.0 340 0 0 2 PIPE 5.2 NUMBER OF GUTTERS/PIPES, 26 'OTOTAL 1 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT ' RBD FILE NO. 50400100.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE 301 0 0 0 0 0 0 0 0 0 0 ' 302 301 0 0 0 0 0 0 0 0 0 303 0 0 0 0 0 0 0 0 0 0 ' 304 302 303 0 0 0 0 0 0 0 0 305 304 0 0 0 0 0 0 0 0 0 ' 306 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 0 ' 308 307 0 0 0 0 0 0 0 0 0 309 305 306 0 0 0 0 0 0 0 0 ' 310 311 308 0 309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 312 310 311 313 0 0 0 0 0 0 0 ' 313 0 0 0 0 0 0 0 0 0 0 320 0 0 0 0 0 0 0 0 0 0 ' 321 320 0 0 0 0 0 0 0 0 0 322 0 0 0 0 0 0 0 0 0 0 ' 323 322 0 0 0 0 0 0 0 0 0 324 321 323 330 0 0 0 0 0 0 0 ' 325 326 331 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 327 326 0 0 0 0 0 0 0 0 0 ' 328. 0 0 0 0 0 0 0 0 0 0 329 327 328 0 0 0 0 0 0 0 0 ' 330 0 0 0 0 0 0 0 0 0 0 331 324 0 0 0 0 0 0 0 0 0 a 340 312 329 0 0 0 0 0 0 0 0 71liq 420. .0050 3.0 3.0 .035 3.00 0 100. .0050 .0 .0 .013 3.50 0 750. .0050 3.0 3.0 .035 3.00 0 100. .0100 .0 .0 .013 1.75 0 240. .0050 4.0 4.0 .035 4.00 0 80. .0050 .0 .0 .013 1.50 0 80. .0050 .0 .0 .013 3.00 0 130. .0015 .0 .0 .013 5.20 0 TRIBUTARY SUBAREA D.A.(AC) 204 0 0 0 0 0 0 0 0 0 19.0 0 0 D 0 0 0 0 0 0 0 19.0 205 0 0 0 0 0 0 0 0 0 5.8 0 0 0 0 0 0 0 0 0 0 24.9 0 0 0 0 0 0 0 0 0 0 24.9 206 0 0 0 0 0 0 0 0 0 7.7 203 0 0 0 0 0 0 0 0 0 32.3 0 0 0 0 0 0 0 0 0 0 32.3 0 0 0 0 0 0 0 0 0 0 32.5 0 0 0 0 0 0 0 0 0 0 64.8 207 0 0 0 0 0 0 0 0 0 13.8 0 0 0 0 0 0 0 0 0 0 119.9 208 0 0 0 0 0 0 0 0 0 41.3 201 0 0 0 0 0 0 0 0 0 14.8 209 0 0 0 0 0 0 0 0 0 38.2 202 0 0 0 0 0 0 0 0 0 22.9 0 0 0 0 0 0 0 0 0 0 22.9 210 0 0 0 0 0 0 0 0 0 71.6 211 0 0 0 0 0 0 0 0 0 83.2 0 0 0 0 0 0 0 0 0 0 83.2 0 0 0 0 0 0 0 0 0 0 83.2 212 0 0 0 0 0 0 0 0 0 4.2 216 0 0 0 0 0 0 0 0 0 88.3 214 0 0 0 0 0 0 0 0 0 1.6 215 0 0 0 0 0 0 0 0 0 72.3 213 0 0 0 0 0 0 0 0 0 217.4 ' 7S�q q COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT ' RED FILE NO. 50400100.DAT 'HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 26 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER 'TIME(HR/MIN) 301 302 303 304 305 306 307 308 309 310 311 312 313 340 320 321 322 323 324 325 327 328 329 330 331 '326 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ' .0( ) .0( ) .0( ) .0( ) .0( > O(S) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. .0( ) .O( ) .Oc ) .0( ) .O( ) .0( ) ' 0 1D. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .1( ) -0( ) .1( > -0( ) -0( ) .1( ) .1( ) -0( ) -0( ) -0( > 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ' -I( ) .Dc ) .0( ) .0( ) .0( > O(S) .1( ) .0( ) .1( ) .0( ) 0. 0. 0. 0. 0. 0. . 0 ( ) -0( ) -0( ) -0( ) .1( ) -0( ) ' 0 15. 4. 1. 2. 3. 1. 3. 4. 0. 3. 1. .7( ) .3( ) .9( ) .5( ) .2( ) .7( ) .9( ) .3( ) 4( ) .3( ) 2. 5. 3. 6. 0. 0. 4. 1. 5. 3. ' .0(0) .5( ) .6( ) .8( ) .0( ) O(S) .7( ) .1( ) .6( ) .4( ) 2. 0. 2. 1. 3. 4. .4( ) .1( ) .5( ) .2( ) .7( ) .6( ) ' 0 20. 12. 8. 3. 11. 5. 4. 6. 2. 11. 10. 1.3( ) .9( ) .0(0) 1.0( ) .7( ) .0(0) .0(0) .7( ) .7( ) .8( ) 2. 20. 13. 30. 0. 0. 11. 4. 10. 12. ' .0(0) 1.1( ) 1.3( ) 1.9( > .1( ) O(S) 1.3( ) .2( ) .9( ) .9( ) 12. 4. 5. 6. 2. 11. 1.0( ) .5( ) .7( ) .5( ) .5( ) 1.0( ) ' 0 25. 24. 27. 3. 29. 18. 4. 6. 4. 20. 22. .0(0) 1.7( ) .0(0) 1.8( ) 1.4( ) .0(0) .2(0) .8( ) 1.0( ) 1.2( ) 2. 48. 21. 76. 1. 1. 11. 8. 21. 27. ' .1(0) 1.9( ) .1(0) 3.2( ) .2( ) .1(S) .0(0) .3( ) 1.4( ) 1.3( ) 26. 14. 8. 19. 5. 21. 1.5( ) .9( ) .9( ) .9( ) .9( ) 1.4( ) 0 30. 24. 23. 3. 27. 28. 4. 6. 5. 33. 35. .1(0) 1.6( ) .1(0) 1.7( ) 1.8( ) .1(0) .5(0) .9( ) 1.4( ) 1.6( ) ' 2. 52. 21. 119. 4. 2. 11. 10. 39. 54. 2blq� 1 ' 0 35. 1 ' 0 40. ' 0 45. 0 50. 0 55. ' 1 0. ' 1 5. ' 1 10. 1 .3(0) 2.0( ) .3(0) .0(0) 1 .4( ) .3(S) .2(0) .3( ) 2.1( ) 1.8( ) 53. 35. 17. 46. 8. 42. 2.2( ) 1.5( ) 1.5( ) 1.5( ) .0(0) 2.2( ) 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. .6(0) 1.6( ) .2(0) 1.7( ) 1.7( ) .4(0) 1.3(0) .9( ) 1.3( ) 1.7( ) 2. 63. 21. 119. 10. 4. 11. 11. 51. 96. .7(0) 2.3( ) 1.1(0) AM .7( ) .6(S) .6(0) .4( ) .0(0) 2.4( ) 76. 73. 17. 88. 8. 51. .1(0) 2.1( ) .1(0) 2.0( ) .0(0) .1(0) 24. 24. 3. 28. 27. 4. 6. 6. 33. 37. 1.1(0) 1.6( ) .4(0) 1.7( ) 1.7( ) .6(0) 2.3(0) .9( ) 1.4( ) 1.7( ) 2. 58. 21. 119. 14. 5. 11. 11. 51. 86. 1.1(0) 2.2( ) 2.0(0) .9(0) .8( ) 1.1(S) 1.1(0) .4( ) .0(0) 2.2( ) 76. 76. 17. 101. 8. 51. .2(0) 2.1( ) .1(0) 2.1( ) .0(0) .1(0) 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. 1.4(0) 1.6( ) .5(0) 1.7( ) 1.7( ) .8(0) 3.1(0) .9( ) 1.3( ) 1.7( ) 2. 61. 21. 119. 13. 5. 11. 11. 43. 72. 1.4(0) 2.2( ) 2.6(0) 1.4(0) .8( ) 1.4(S) 1.4(0) .4( ) 2.3( ) 2.1( ) 76. 76. 17. 95. 8. 51. .2(0) 2.1( ) AM 2.1( ) .0(0) .1(0) 24. 24. 3. 28. 27. 4. 6. 6. 32. 37. 1.6(0) 1.6( ) .5(0) 1.7( ) 1.7( ) .8(0) 3.7(0) .9( ) 1.4( ) 1.7( ) 2. 59. 21. 119. 12. 6. 11. 11. 31. 70. 1.5(0) 2.2( ) 3.0(0) 1.8(0) .8( ) 1.7(S) 1.6(0) .4( ) 1.8( ) 2.0( ) 76. 76. 17. 97. 3. 51. .2(0) 2.1( ) .0(0) 2.1( ) .7( ) .0(0) 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. 1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 4.1(0) .9( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 11. 6. 11. 11. 31. 56. 1.7(0) 2.2( ) 3.3(0) 2.1(0) .7( ) 2.0(S) 1.8(0) .4( ) 1.8( ) 1.8( ) 76. 76. 7. 88. 1. 33. .1(0) 2.1( ) .8( ) 2.0( ) .3( ) 1.9( ) 24. 24. 3. 28. 27. 4. 6. 6. 32. 38. 1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 4.4(0) .9( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 11. 6. 11. 11. 27. 41. 1.8(0) 2.2( ) 3.6(0) 2.4(0) .7( ) 2.2(S) 1.9(0) .4( ) 1.6( ) 1.6( ) 51. 64. 3. 72. 2. 26. 2.2( ) 1.9( ) .5( ) 1.8( ) .5( ) 1.6( ) 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. 1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 4.7(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 10. 6. 11. 11. 27. 38. 1.9(0) 2.2( ) 3.7(0) 2.5(0) .7( ) 2.3(S) 2.0(0) .4( ) 1.6( ) 1.5( ) 30. 42. 4. 52. 0. 29. 1.6( ) 1.6( ) .6( ) 1.6( ) .1( ) 1.7( ) 24. 24. 3. 28. 27. 4. 6. 6. 32. 38. 1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 4.9(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 9. 6. 11. 11. 24. 35. 27/11 1 1 15. 1 1 20. ' 1 25. 1 ' 1 30. ' 1 35. 1 40. 1 1 45. 1 50. 2.0(0) 2.2( ) 3.8(0) 2.4(0) .6( ) 2.5(S) 2.0(0) .4( ) 1.5( ) 1.5( ) 42. 37. 1. 40. 1. 24. 1.9( ) 1.5( ) .4( ) 1.4( ) .4( ) 1.5( ) 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. 1.6(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.0(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 8. 6. 11. 11. 25. 32. 2.0(0) 2.2( ) 3.9(0) 2.3(0) .6( ) 2.6(S) 2.1(0) .4( ) 1.6( ) 1.4( ) 26. 34. 3. 38. 0. 26. 1.5( ) 1.4( ) .5( ) 1.3( ) .1( ) 1.6( ) 24. 24. 3. 28. 27. 4. 6. 6. 32. 38. 1.5(0) 1.6( ) .6(o) 1.7( ) 1.7( ) 1.0(0) 5.1(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 8. 6. 11. 11. 22. 30. 2.1(0) 2.2( ) 3.9(0) 2.2(0) .6( ) 2.7(S) 2.1(0) .4( ) 1.5( ) 1.4( ) 36. 31. 1. 34. 1. 22. 1.8( ) 1.4( ) .3( ) 1.3( ) .3( ) 1.5( ) 24. 24. 3. 26. 27. 4. 6. 6. 31. 38. 1.4(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.2(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 7. 7. 11. 11. 24. 29. 2.1(0) 2.2( ) 3.9(0) 2.1(0) .6( ) 2.7(S) 2.1(0) .4( ) 1.5( ) 1.3( ) 24. 30. 2. 32. 0. 24. 1.4( ) 1.4( ) .4( ) 1.2( ) .2( ) 1.5( ) 24. 24. 3. 28. 27. 4. 6. 6. 32. 38. 1.3(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.3(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 7. 7. 11. 11. 21. 27. 2.1(0) 2.2( ) 3.9(0) 1.9(0) .6( ) 2.8(S) 2.1(0) .4( ) 1.4( ) 1.3( ) 32. 28. 1. 30. 0. 22. 1.6( ) 1.3( ) .2( ) 1.2( ) .3( ) 1.4( ) 24. 24. 3. 27. 27. 4. 6. 6. 31. 38. 1.2(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.3(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 6. 7. 11. 11. 23. 26. 2.1(0) 2.2( ) 3.9(0) 1.7(0) .5( ) 2.9(S) 2.1(0) .4( ) 1.5( ) 1.3( ) 23. 27. 1. 29. 0. 23. 1.4( ) 1.3( ) .3( ) 1.2( ) .2( ) 1.5( ) 24. 24. 3. 27. 27. 4. 6. 6. 32. 38. 1.1(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.4(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. M. 6. 7. 11. 11. 21. 26. 2.2(0) 2.2( ) 3.9(0) 1.5(0) .5( ) 2.9(S) 2.1(0) .4( ) 1.4( ) 1.3( ) 29. 26. 1. 28. 0. 21. 1.6( ) 1.3( ) .2( ) 1.2( ) .2( ) 1.4( ) 24. 24. 3. 27. 27. 4. 6. 6. 31. 38. .9(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.4(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 6. 7. 11. 11. 22. 25. 2.2(0) 2.2( ) 3.9(0) 1.3(0) .5( ) 3.0(S) 2.1(0) .4( ) 1.4( ) 1.2( ) 23. 26. 1. 27. 0. 22. 1.4( ) 1.3( ) .3( ) 1.1( ) .2( ) 1.4( ) .,24. 24. 3. 27. 27. 4. 6. 6. 32. 38. .8(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 5. 7. 11. 11. 21. 25. 1 55. ' 2 0. ' 2 5. t ' 2 10. ' 2 15. ' 2 20. ' 2 25. 2 30. 1 2.2(0) 2.2( ) 3.8(0) 1.1(0) .5( ) 3.0(S) 2.0(0) .4( ) 1.4( ) 1.2( ) 27. 25. 1. 26. 0. 21. 1.5( ) 1.2( ) .3( ) 1.1( ) .2( ) 1.4( ) 24. 24. 3. 27. 27. 4. 6. 6. 31. 38. .7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 5. 7. 11. 11. 21. 24. 2.2(0) 2.2( ) 3.8(0) .9(0) .5( ) 3.1(S) 2.0(0) .4( ) 1.4( ) 1.2( ) 22. 25. 1. 26. 0. 21. 1.3( ) 1.2( ) .3( ) 1.1( ) .2( ) 1.4( ) 24. 24. 3. 27. 27. 4. 6. 6. 32. 38. .5(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 5. 7. 11. 11. 20. 23. 2.2(0) 2.2( ) 3.7(0) .7(0) .5( ) 3.1(S) 2.0(0) .4( ) 1.4( ) 1.2( ) 25. 24. 0. 25. 0. 21. 1.4( ) 1.2( ) .2( ) 1.1( ) .2( ) 1.4( ) 24. 24. 3. 27. 27. 4. 6. 6. 31. 38. .4(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 5. 7. 11. 11. 21. 23. 2.2(o) 2.2( ) 3.6(0) .5(0) .4( ) 3.1(S) 1.9(0) .4( ) 1.4( ) 1.2( ) 21. 23. 0. 24. 0. 20. 1.3( ) 1.2( ) .2( ) 1.1( ) .1( ) 1.4( ) 24. 24. 3. 27. 27. 4. 6. 6. 32. 38. .2(0) 1.6( ) .5(0) 1.7( ) 1.7( ) .8(0) 5.5(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 4. 7. 11. 11. 20. 22. 2.2(0) 2.2( ) 3.5(0) .3(0) .4( ) 3.1(S) 1.9(0) .4( ) 1.4( ) 1.2( ) 23. 22. 0. 23. 0. 20. 1.4( ) 1.2( ) .1( ) 1.1( ) .1( ) 1.4( ) 24. 24. 3. 27. 27. 4. 6. 6. 31. 38. .1(0) 1.6( ) .5(0) 1.7( ) 1.7( ) .8(0) 5.5(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 4. 7. 11. 11. 20. 21. 2.2(0) 2.2( ) 3.5(0) .0(0) .4( ) 3.2(S) 1.8(0) .4( ) 1.4( ) 1.1( ) 20. 22. 0. 22. 0. 20. 1.3( ) 1.2( ) .1( ) 1.0( ) .0( ) 1.4( ) 8. 14. 3. 18. 22. 4. 6. 6. 27. 35. 1.0( ) 1.3( ) .5(0) 1.3( ) 1.6( ) .8(0) 5.5(0) 1.0( ) 1.3( ) 1.6( ) 2. 58. 21. 87. 4. 7. 11. 11. 19. 21. 2.2(0) 2.2( ) 3.4(0) 3.5( ) .4( ) 3.2(S) 1.8(0) .4( ) 1.3( ) 1.1( ) 22. 21. 0. 22. 0. 20. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.4( ) 0. 3. 3. 6. 13. 4. 6. 6. 17. 26. .0( ) .5( ) .5(0) .7( ) 1.2( ) .8(0) 5.4(0) 1.0( ) 1.0( ) 1.4( ) 2. 50. 21. 67. 4. 7. 11. 11. 20. 21. 2.2(0) 1.9( ) 3.3(0) 2.9( ) .4( ) 3.2(S) 1.7(0) .4( ) 1.4( ) 1.1( ) 20. 21. 0. 21. 0. 19. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 2. 1. 3. 4. 6. 4. 6. 6. 11. 18. .5( ) .3( ) .5(0) .6( ) .8( ) .7(0) 5.4(0) 1.0( ) .8( ) 1.1( ) 2. 41. 21. 67. 3. 7. 11. 11. 19. 21. 1 1 2 35. ' 2 40. ' 2 45. 2 50. 2 55. ' 3 0. ' 3 5. ' 3 10. 2.2(0) 1.7( ) 3.2(0) 2.9( ) .4( ) 3.2(S) 1.7(0) .4( ) 1.3( ) 1.1( ) 21. 21. 0. 21. 0. 20. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 0. 1. 3. 4. 5. 4. 6. 6. 9. 16. .2( ) .3( ) .5(0) .6( ) .7( ) .7(0) 5.4(0) 1.0( ) .7( ) 1.0( ) 2. 38. 21. 56. 3. 7. 11. 11. 19. 20. 2.2(0) 1.6( ) 3.1(0) 2.6( ) .4( ) 3.2(S) 1.6(0) .4( ) 1.3( ) 1.1(.) 20. 21. 0. 21. 0. 19. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 1. 1. 3. 4. 4. 4. 6. 6. 9. 15. .4( ) .3( ) .4(0) .6( ) .6( ) .7(0) S A M 1.0( ) .7( ) 1.0( ) 2. 37. 21. 61. 3. 7. 11. 11. 19. 20. 2.2(0) 1.6( ) 3.0(0) 2.8( ) .4( ) 3.2(S) 1.6(0) .4( ) 1.3( ) 1.1( ) 21. 20. 0. 20. 0. 19. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 1. 1. 3. 4. 4. 4. 6. 6. 8. 15. .3( ) .3( ) .4(0) .6( ) .6( ) .7(0) 5.3(0) 1.0( ) .6( ) 1.0( ) 2. 37. 21. 56. 3. 7. 11. 11. 19. 20. 2.2(0) 1.6( ) 2.9(0) 2.6( ) .4( ) 3.2(S) 1.5(0) .4( ) 1.3( ) 1.1( ) 20. 20. 0. 20. 0. 19. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 1. 1. 3. 4. 4. 4. 6. 6. B. 15. .3( ) .2( ) .4(0) .6( ) .6( ) .6(0) 5.3(0) 1.0( ) .7( ) 1.0( ) 2. 37. 21. 59. 3. 7. 11. 11. 19. 20. 2.2(0) 1.6( ) 2.7(0) 2.7( ) .3( ) 3.2(S) 1.4(0) .4( ) 1.3( ) 1.1( ) 20. 20. 0. 20. 0. 19. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 1. 1. 3. 3. 4. 4. 6. 6. 8. 15. .3( ) .2( ) AM .5( ) .6( ) .6(0) 5.3(0) 1.0( ) .6( ) 1.0( ) 2. 37. 21. 56. 3. 7. 11. 11. 19. 20. 2.2(0) 1.6( ) 2.6(0) 2.6( ) .3( ) 3.2(S) 1.4(0) .4( ) 1.3( ) 1.1( ) 19. 20. 0. 20. 0. 19. 1.2( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 1. 1. 3. 4. 4. 4. 6. 6. 8. 14. .3( ) .2( ) .4(0) .6( ) .6( ) .6(0) 5.2(0) 1.0( ) .6( ) 1.0( ) 2. 37. 21. 58. 3. 7. 11. 11. 19. 20. 2.2(0) 1.6( ) 2.5(0) 2.7( ) .3( ) 3.2(S) 1.3(0) .4( ) 1.3( ) 1.1( ) 20. 20. 0. 20. 0. 19. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 0. 1. 3. 3. 4. 4. 6. 6. 8. 14. .2( ) .2( ) .4(0) .5( ) .6( ) .5(0) 5.2(0) 1.0( ) .6( ) 1.0( ) 2. 37. 21. 56. 3. 7. 11. 11. 19. 19. 2.2(0) 1.6( ) 2.4(0) 2.6( ) .3( ) 3.2(S) 1.2(0) .4( ) 1.3( ) 1.1( ) 19. 20. 0. 20. 0. 19. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 1. 1. 3. 4. 3. 4. 6. 6. 8. 14. .3( ) .2( ) .3(0) .5( ) .6( ) .5(0) 5.2(0) 1.0( ) .6( ) 1.0( ) 2. 36. 21. 57. 2. 7. 11. 11. 19. 19. 3011 y 1 3 15. 3 20. ' 3 25. 3 30. 1 ' 3 35. ' 3 40. ' 3 45. ' 3 50. 1 1 2.1(0) 1.6( ) 2.3(0) 2.6( ) .3( ) 3.1(S) 1.2(0) .4( ) 1.3( ) 1.1( ) 20. 19. 0. 20. 0. 19. 1.3( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 0. 0. 3. 3. 3. 4. 6. 6. 8. 14. .2( ) .2( ) .3(0) .5( ) .6( ) .5(0) SA M 1.0( ) .6( ) 1.0( ) 2. 36. 21. 56. 2. 7. 11. 11. 19. 19. 2.1(0) 1.6( ) 2.2(0) 2.6( ) .3( ) 3.1(S) 1.1(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 0. 0. 3. 3. 3. 4. 6. 6. 8. 14. .2( ) .2( ) .3(0) .5( ) .6( ) .5(0) 5.1(0) 1.0( ) .6( ) 1.0( ) 2. 36. 21. 56. 2. 7. 11. 11. 19. 19. 2.1(0) 1.6( ) 2.0(0) 2.6( ) .3( ) 3.1(S) 1.0(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. W. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 0. 0. 3. 3. 3. 4. 6. 6. 7. 14. .2( ) .2( ) .3(0) .5( ) .6( ) AM 5.1(0) 1.0( ) .6( ) 1.0( ) 2. 36. 21. 56. 2. 7. 11. 11. 19. W. 2.1(0) 1.6( ) 1.9(0) 2.6( ) .3( ) 3.1(S) 1.0(o) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 0. 0. 3. 3. 3. 4. 6. 6. 8. 14. .2( ) .2( ) .3(0) .5( ) .6( ) AM 5.0(0) 1.0( ) .6( ) 1.0( ) 2. 36. 21. 56. 2. 7. 11. 11. 19. 19. 2.1(0) 1.6( ) 1.8(0) 2.6( ) .3( ) 3.1(S) .9(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 0. 0. 3. 3. 3. 4. 6.. 6. 7. 14. .2( ) .1( ) .2(0) .5( ) .6( ) AM 5.0(0) 1.0( ) W) 1.0( ) 2. 36. 21. 55. 2. 7. 11. 11. 19. 19. 2.1(0) 1.6( ) 1.7(0) 2.6( ) .3( ) 3.1(S) .8(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 0. 0. 3. 3. 3. 4. 6. 6. 8. 14. .2( ) .1( ) .2(0) .5( ) .6( ) .3(0) 4.9(o) 1.0( ) .6( ) 1.0( ) 2. 36. 21. 55. 2. 7. 11. 11. 19. 19. 2.1(0) 1.6( ) 1.5(0) 2.6( ) .3( ) 3.1(S) .8(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 0. 0. 3. 3. 3. 4. 6. 6. 7. 14. .2( ) .1( ) .2(0) .5( ) .6( ) .3(0) 4.9(0) 1.0( ) .6( ) .9( ) 2. 36. 21. 55. 2. 7. 11. 11. 19. 19. 2.1(0) 1.6( ) 1.4(0) 2.6( ) .3( ) 3.0(S) .7(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 18. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 0. 0. 3. 3. 3. 4. 6. 6. 7. 14. .2( ) .1( ) :2(0) .5( ) .6( ) .3(0) 4.9(0) 1.0( ) .6( ) .9( ) 2. 36. 21. 55. 2. 7. 11. 11. 18. 19. ' 311g4 ' 2.1(0) 1.6( ) 1.3(0) 2.6( > .3( ) 3.0(S) .6(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 19. 3 55. 1.2( ) 0. 1.1( ) 0. .0( ) 3. 1.0( ) 3. .0( 3. ) 1.3( ) 4. 6. 6. 7. 14. .2( ) .1( ) .2(0) .5( ) .5( ) .3(0) 4.8(0) 1.0( ) .6( ) .9( ) 2. 36. 21. 55. 2. 7. 11. 11. 18. 19. 2.1(0) 1.6( ) 1.1(0) 2.6( ) .3( ) 3.0(S) .5(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 18. '1.2( 4 0. ) 0. 1.1( ) 0. .0( ) 3. .9( ) 3. .0( 3. ) 1.3( ) 4. 6. 6. 7. 14. .2( ) .1( ) .1(0) .5( ) .5( ) .2(0) 4.8(0) 1.0( ) .6( ) .9( ) 2. 36. 21. 55. 2. 7. 11. 11. 18. 19. ' 2.1(0) 1.6( ) 1.0(0) 2.6( ) .3( ) 3.0(S) .5(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 18. 4 5. 1.2( ) 0. 1.1( ) 0. .0( ) 3. .9( ) 3. .0( 3. ) 1.3( ) 4. 6. 6. 7. 14. .2( ) .1( ) .1(0) .5( ) .5( ) .2(0) 4.7(0) 1.0( ) .6( ) .9( ) 2. 36. 21. 55. 2. 7. 11. 11. 18. 19. ' 2.0(0) 1.6( ) .9(0) 2.6( ) .2( ) 3.0(S) .4(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 18. 1.2( ) 1.1( ) .0( ) .9( ) .0( ) 1.3( ) 4 10. 0. 0. 3. 3. 3. 4. 6. 6. 7. 14. .1( ) .1( ) .1(0) .5( ) .5( ) .2(0) 4.7(0) 1.0( ) .6( ) .9( ) 2. 36. 21. 55. 2. 7. 11. 11. 18. 19. ' 2.0(0) 1.6( ) .8(0) 2.6( ) .2( ) 2.9(S) 3(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 18. 1.2( ) 1.1( ) .0( ) .9( ) .0( ) 1.3( ) COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT ' RBD FILE NO. 50400100.DAT ** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) ' 322 11. 1.5 2.1 1 25. 320 14. .8 0 40. 330 8. 1.5 .0 0 40. 323 11. .4 1 40. 321 7. .1 3.2 2 40. M112gMOA/1 FIRST FILI/JG ' 301 24. 2.5 1.7 1 0. DETENTION PO'v p 324 51. 3.0 .0 0 35. M q k i♦W EL = 7 3. SO 303 3. 1.3 .6 1 20. 302 27. 1.7 0 25. ' 331 51. 3.0 .1 0 40. 304 29. 1.8 0 25. 325 96. 2.4 0 35. 306 4. 1.3 1.0 1 15. 305 28. 1.8 0 30. ' 307 6. 1.5 5.5 2 5. 326 76. 3.5 .2 0 45. 309 33. 1.4 0 30. ' 308 6. 1.0 2 25. 328 17. 1.8 1 0 40. 327 76. 2.1 0 55. 313 21. 2.3 3.9 1 25. 4 311 2. 1.0 .2.2 2 10. 310 38. 1.7 1 15. 329 101. 2.1 0 40. 312 63. 2.3 0 35. 340 119. 5.2 2.5 1 5. NDPROGRAM PROGRAM CALLED 11 331, q ' RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA 1 OVERFLOW WEIR. FROM DETENTION POND TO BOARDWALK DRIVE WEIR COEF. NL 1 t ���� 1{atilODac�� o� J��ID2c1JCS �563 3.200 -� ' Z 5' STA ELEV ' 0.0 75.00 7 S. o:� 4.0 74.00 4.1 Ty,P\ ¢/ . I ry tom• -74. 00 29.0 74.00 ' 33.0 75.00 ' ELEVATION (feet) DISCHARGE (cfs) 74.0 0.0 ' 74.1 2.6 74.2 7.3 74.3 13.6 74.4 21.2 ' 74.5 29.9 74.6 39.7 74.7 50.6 %4-7S, 74.8 62.4 CO._ZS--.-f=_p \ f HoAs:D__ .74.9 75.3 / 75.0 89.0 1 1 1 3` liq TEMPORARY DETENTION POND BOARDWALK DRIVE AND LEMAY AVENUE 1 T:DINC Engineering Consultants CLIENT IVO rd"C-K /uc,( JOB NO. 5041_00 PROJECT 1MrA—o-,f Firs i- f'_LA-n CALCULATIONS FOR MADEBYI<UJ6 DATE 5112-9 CHECKED BY DATE —SHEET 33-5, OF Iq _J p --T B5;0;u Lij�; &K DR -1 V6 �5 0/A15 6_215 PO_-5 A77&f_' ...... OF 0, a­ L;j A I k vE: _L��'4�1I ' .. F a�-ii e u b�in�{ { e lalne� Gn� TWE7 RAT re eexSecL� 8.95 ltkj 07 I:_W_I rffei- DETAWE )P -4 Overall jy1(. ra-i ma7c_A;oc_ f?� DE7FAfn0^J 160A .. 4 1=a��+ f-, 5arhe J. From +I, e- Cals Stortr Basin 2 Ac c 0, �,o h'aST to 04 L & .5 91 - 5 .1.1 Basin d A- .5! , = 1 Wc c- f cr 4F 57­pE 11Aj F_ r7 CO—f: 0--si 96-) 0, a C? Ccf.= 0. a ZCi -zs. ----------- --------- .......... U51 FAA : D- �-c f:c7, PC 'I C&r�,pu cr-.. rl�cj rLk r,. +0 j !r+crl FC:nA near wa / _Fit 1puj. at 0,A _e 6.9 3;. e7o cfs Q100 p e K7� Ll 0' 3 -7 Cl'f 10 1,o Adf '9 4- L 'OFT 4 - LL___� ------- L __r 7 OF "A) sm"p) 36ljq ----------- - - DETENTION POND SIZING BY FAA METHOD DEVELOPED BY JAMES C.Y. GUO, PHD, P.E. DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF COLORADO AT DENVER ------------------- --------------------------------------------------------- EXECUTED ON 07-07-1992 AT TIME 10:44:27 ' PROJECT TITLE: TEMPORARY DETENTION POND AT BOARDWALK AND LEMAY L*** DRAINAGE BASIN DESCRIPTION ' BASIN ID NUMBER = 1.00 BASIN AREA (acre)= 6.96 RUNOFF COEF = 1.00 DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN ' DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.0 7.3 5.2 4.2 3.5 3.0 2.6 2.1 1.7 1.5 1.2 1.0 ' ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 3.48 CFS ' OUTFLOW ADJUSTMENT FACTOR = .97 ' AVERAGE RELEASE RATE = 3.3756 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT ' ----------------------------------------------------- 0.00 0.00 0.00 0.00 0.00 5.00 9.00 0.44 0.02 0.41 10.00 7.30 0.71 0.05 0.66 ' 15.00 6.25 0.91 0.07 0.84 20.00 5.20 1.01 0.09 0.91 25.00 4.68 1.13 0.12 1.01 ' 30.00 4.15 1.20 0.14 1.06 t37/9 4 ' 35.00 3.83 1.29 0.16 1.13 40.00 3.50 1.35 0.19 1.17 ' 45.00 50.00 3.25 3.00 1.41 1.45 0.21 0.23 1.20 1.22 55.00 2.80 1.49 0.26 1.23 60.00 2.60 1.51 0.28 1.23 65.00 2.46 1.55 0.30 1.25 70.00 2.32 1.57 0.33 1.25 75.00 2.19 1.59 0.35 1.24 80.00 2.05 1.59 0.37 1.21 ' 85.00 1.91 1.57 0.40 1.18 90.00 1.77 1.54 0.42 1.13 95.00 1.64 1.50 0.44 1.06 ' 100.00 1.50 1.45 0.46 0.99 ----------------------------------------------------- THE REQUIRED POND SIZE = 1.247779 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES ***** GEOMETRIES OF ----------------------------------------------------- AN EQUIVALENT CIRCULAR POND STAGE CONTOUR CONTOUR POND POND ' (DEPTH) DIAMETER AREA SIDE SLP STORAGE FEET ----------------------------------------------------- FEET ACRE FT/FT ACRE -FT 0.00 166.53 0.50 3.00 0.00 ' 0.50 169.53 0.52 3.00 0.25 1.00 172.53 0.54 3.00 0.52 1.50 175.53 0.56 3.00 0.79 ' 2.00 178.53 0.57 3.00 1.07 2.50 181.53 0.59 3.00 1.37 3.00 184.53 0.61 3.00 1.67 1 7- L 1 11 �-- 00 1 co 'd- N On 00 CO -Q- N O 00 00 00 O o 0 O O O O O O x — Jo4ola3-4uaua-}snfpV MoUpnp ,n O 0 4 w O w N O w 4� is M O b w .� 41 c3 � e.) a) O b O M a' O � � a' 3 O, 0 44 w 4J N � O O 1; O PL' a I I I I I I I I LI I I I I I I MNC Engineering Consultants pg -777 7"T777T CLIENT JOB NO. -010/ PROJECT N-A I Z .. KA or.1r CALCULATIONS FOR EMP PCIUV MADE BY E!6-' DATE -1Z' CHECKED BY - DATE SHEET 38 OF d. . . -- ---- -- --- -- - I 1 1 t 1 1 1 RBD INC. ENGINEERINGCONSULTANTS WEIR SECTION FLOW DATA OVERFLOW WEIR FROM TEMPORARY DETENTION POND AT LEMAY AND BOARDWALK WEIR COEF. 3.000 -i From I<'mq �- ,Qrafe.r' iia ni boo �' ar Ny�rav%icy �Ii(i3 STA ELEV 0.0 63.30 4.0 62.30 29.0 62.30 33.0 63.30 63,30IF y' I 6Z•3o EC. Q,ao= 5/,5,c11'7 P9 38/y4 ELEVATION DISCHARGE (feet) ......... (cfs) --------- 62.30 0.0 62.40 2.4 62.50 6.9 62.60 12.7 62.70 19.8 62.80 28.0 62.90 37.2 63.00 47.4 51,5 c{S oEL G3.0'/ 63.10 58.5 (6,2(a' Freebo4,d_) 63.20 70.6 63.30 83.5 Pro J vo - used. Q=c.LN 3& EQ. I I U I I I I I I I I I I IJ 11 I Engineering Consultants 10119,Q T 3 CLIENT sslnre_ai�K c—� JOBNO. PROJECT M I CALCULATIONS FOR 22,jiz Qe+, P, MADE BY Win. DATE T1- CHECKED BY - DATE -SHEET 35 OF qq FIVE '7L_r=-7r 7�� r> P ZT=� ::2 UA+1 ce, r- T;1 I et For g lore- "=:4> h (o -2, 3 (S-7,9q -1--, -33) 3,3 -rcr,?,". Pipe, under GCS3,110 c-Ps (c CC44,11 F, IJOW et co rr, El c I I I I I I I I 11 I I I I I 11 I I I I CLIENT Alo rd i c- (< /., e-,L t INC PROJECT M r.1 ryk:W � —JOB NO. —yy CALCULATIONS FOR 7e- a,j5;k7L, Pon,/ f Engineering Consultants MADE BY Ka) DATE CHECKED BY DATE SHEET OF qq 19kT- 3 COIL17-, A.330 -d ... ... 4__ ..... f ;- ........ .. . ...... :0+1 ). r -- - --------- T. J. ...... ... r j . E 'i Z 4 (oZ,5 14WEC Hw67c _3 .: 0 W w/ly DESIGN OF INLETS, STORM SEWERS AND SWALES m I 1 1 1 7 L ■ Engineering Consultants 2900 South Co!lece Avenue Fort Collins, Colorado 60525 303 226•4955 FAX: 303226.4971 August 5, 1992 ' Susan D. Hayes Stormwater Utility Dept. City of Fort Collins ' 235 Mathews Fort Collins, Co. 80522 ' RE: Drainage for the Northwest Oak Farm Area Dear Susan: The purpose of this letter is to address the drainage design for the northwest area of the Oak Farm Area in southeast Fort Collins. The area is approximately 22.9 acres of land ' bounded on the north by the south right-of-way line of Harmony Road, on the east by the Centerline gf -.cardwalk DrrJe, on the south L :he nor h p-c-perty line of ? ce. ,.y N. y th prepo.. d Upper k4eadow at. Miramont First Filing development, and on the vest by the east property line of the existing Fairway Estates development. The stormwater release rate for this area has been analyzed in the past by two separate ' drainage plans. The first plan called The McClellands Basin Master Drainage Plan, required on -site detention using a staged release rate of 0.20 cfs/acre for a 10 year ' design storm and 0.50 cfs/acre for a 100 year design storm. This criteria was superseded by the Oakridce Master Drainage Plan which allowed a maximum storm water runoff of 0.50 cis per acre ter all storm events from the Oak/Cottonwood Farm site. With the development of The Upper Meadow at Miramont First Filing, Boardwalk Drive is planned to extend from Oakridge Drive, southeasterly to the intersection of Lemay Avenue ' and Keenland Drive. The street conveyance capacity for this section of street in the initial (10 year) storm water runoff is 12.90 cfs of water. When the drainage of the Upper Meadow at Miramont First Filing, is taken into consideration, the remaining capacity in ' Boardwalk Drive for the above described property is 5.57 cfs. Given the area of the subject property, this yields an allowable release rate for the 10 year storm of (5.57/22.90 T 0.24 cfs/acre) for the subject property. By restricting the release rate for the 10 year W 9/9y ' Other offices: Cenver 303.456-5526 • Vail 303 476-63-0 • Lcnomoct 303 678-9564 I t storm to this level the subject property can develop without additional storm drainage improvements to Boardwalk Drive. Based on this analysis, the drainage for the subject area should be designed to detain the developed storm water from this property and release the runoff at a maximum initial storm (10 year) release rate of 0.24 cfs/acre and a maximum major storm (100 year) release rate of 0.50 cfs/acre. Outfall for this site's detention should be into the west flowline of Boardwalk Drive. At these release rates, Boardwalk Drive will convey developed storm water runoff from this property, to downstream drainage facilities. By approval of this letter, G.T. Land and the Front Range Baptist Church (the current property owners) agree to the aforementioned drainage criteria. Sincerely, RBD, INC. —1� Stan A.IvIlyers, P.E. ' APPROVED: I� J 1 1 Oak Farm Inc. J Title Front Ra aptist Chu ch 1-)tz w� Title /�/ 9 Date ' Date 1 d 1 z J yicl9y I 1 Stanford Plaza 3555 Stanford Road Suitc I(X) G. T. LAND COLORADO INC. fun Collins, CO X0525 Ms. Kathy Malers City of Fort Collins Storm Drainage Utility P.O. Box 580 Fort Collins, CO 80522-0580 ' Dear Kathy: Port Collins _ 303-223-3933 Denver — 303-440-3433 Longnumt — 303-651-6336 facsimile — 303.223.4671 October 6, 1992 This letter is written to inform you that Oak Farm Inc., as the owner of the property adjacent to the north of the Upper Meadow at Miramont, is aware of the planned landscape berm and other grading proposed on our property in conjunction with the Upper Meadow; and has no objection to ' said grading. We do not feel that an "off -site easement" is necessary to allow this grading. Sincer ly, i r C. s , CCIM Oak Farm Inc. cc: Eldon Ward, Cityscape Urban Design, Inc. Gary Nordick and Bill Neal, Nordick/Nea1 Partnership Stan Myers, RBD 1 r, J 1 -7(7) CLIENT Nord ic-9 110ea I -JOB NO. 5-OY-OL11 NC PROJECT mlramc,-( 15-"-Fj/b2t CALCULATIONS FOR I-- in k Is 4- S*rM Swrs Engineering Consultants MADE BY K(J(z DATE LZI-12 CHECKED BY -DATE SHEET OF IIJ 66TS 1- A_�... .5L/er_jq Z, curb' 0/�Op_oj Y. .. .... ...... ..... . ... hey ht :=a0,78 h.,. 7i 0,50 . . ..... ... ... . .... ... Tram ni, 1­76 4f 7W A. 01 _2 ? Pe 51 e , .5 , i svr�o J7 _7,e r/e _/D 0 3 Ur1. -7 T _7 a .76 617 10,3 -pr-� CV C, # 7- L-------- ----------- - 7 77 (Sump �c r C:co J." b-tf h 00 -4­ "'T L we Er T - - - - - - - - - - - - - - - - - - - 7- L F1 de-f-4 __74 X: �aj r7. . ...... ..... '4 5-32 O'� q jj� V/Q 6 C-0 1 T:iDNC ' Engineering Consultants 1 I 1 �I r CLIENT _ Aj6rd ic, - hde4l JOB NO. -�Dy-Ai/ PROJECT Mi ✓a manf :5*- %n 7 CALCULATIONS FOR -5/';?C- )n le/5S&Y M SW/5• MADEBYYW(- DATES-'21-'�7 CHECKEDBY— DATE SHEET 43OF °14 I :..p i IIJLbr srS - Fror, I ii+e Ouerai d �e S'�dj'r OaK /Cof�'anwooci Farm De n o ' i S li cf5 a�_ECEr17En1T 3ZS ,... , SWmM rY10 OEZ 5 fs � ax �✓f%c� dcPtti oSOf_f /,/5crs�fY { . Red I for. ._70./90) !. /Scdo ;r;V6'. SroQM' SEwE2 _ A i NLEi J /1 s,7cFs /�71n,.P�e. S.i¢e ?er=.G,ty U52 ManninyS � EQ�Fina� /Ni r S'lc��'�r D e4' Flou! S 5 O/o 1 !Q 677$cfs 5-,7cfs Coe) - I ' - ?,`GorrF rm hy�ra�u(ic5 iiw/ UDSEU�EQ - I Z)5c '15 "P/PE 4 D, t 1 - , B NLET t' Z TZ? DETEA177C'/ Q2= �',1c{5. /✓/n, Ppa Sipe �r.0 =.IS '� /7=.O/3;_ 4 r/o w s BPS__ } (Con'fi-rrr+,�{/ydravlicS iN/UDSect�r) , ;. � ,- o _C ouTCETPIPEf':'FPOrO: 'DETE 0Jj Po'JO � Dn�Ira ye Sir (a Oak �Co�fm vcoa( rar�i Sc�mr+ !Y100EG5 / Alec cnf 321 s,ree; 15" j (IJoTE• PGND NYDRavucs, FJRE LC.v kmEp 6c5E HERE+ r iNESE c, .#--` - y I 0PE/J....c- �Gan-Fir� H,/clrau/Ic5 W�G.OS : _ I _ so90 +- RWINC ' Engineering Consultants [1 0 1 H 1 .SWM%Yt ✓Ylot F) j�AVI y 1. ' su�mm �rn.i CLIENT Nncd)GK,/�e, JOB NO. SOy-00/ st L PROJECT Mira man � Fi %/��/ CALCULATIONS FOR S� zzC SfdrM S2WCf$ MADEBY " -DATE 'S-��9?CHECKED BY DATE SHEET NH OF 4N Eti1 DESIGnJ; Pd/NT S ¢; Erall Dluinaye:S�l,�Jy�ai' OaK' mov; S/cOE-OrIF7, �' Zl "RcP wiTh From 0vero 11 Drai,aa yL Stvdr ir,� Oak /C07'-fznuccc� ZS Y,2! T/iL fo//twin, -r4ocus N.G re — 3za 17 i 19 q 3 = . (o c¢5 ,fro , s� /at? y G t Fm Z /cf # iev ov5 6/CS) n i rafi na 1 ."e To}aflow a _ 'e11 41ov.l of-uf 7creascna _ f-(o oQS :- 23 cfS (ne 1770nn)195: EQ i F,+d r»in.�Cheni7-el flea/_-Eol c� Z_S' P/PE t 123-] -f za t .. i t^ i J 1 CUG.L/Ek'7;:h�YOCRuics;fl2F� /!V 7tJESE` Cr3Ccu[,,9ToN5 � I ' Or eYa/l_ D��rio Stuc%_-fo oEGS� Ft,Eme�vT .3.Zg /s I I I I I I 11 I I I 11 I I I 7� NC Engineering Consultants CLIENT JOB NO. -5__0q_t10 PROJECT Stein" CALCULATIONS FOR 57-Z-2 eodl$;dle GK'4e5 MADEBY"02' DATE5_2" CHECKED BY -DATE -SHEET q5' OF 1q "I , 5 :51j7 ; . I . i F TIP _f, II /3. G c S J.. V= ,81 /­ ----- - L) (00 r� q7 h P Y, C� ac'liy, i 2,3 4-A 1 3 De L Z 70 5) o 5,0Ii to --- -- ------- ro 132,9!cfs -3 7_1 4. I RBD INC. ENGINEERING CONSULTANTS ' WEIR SECTION FLOW DATA BOARDWALK OVERFLOW OVER CROWN AT STATION 2+10 ' WEIR COEF. 3.000 ' STA ELEV From fhL O e�r�ailFD^"+hams 95cfs -__-- ----- Oak �Co{Eo„wa j ' 60.0 66.06 Far roadsr�e d%+�� a-(o� �cRrd,.elK . 7j 160.0 64.30 propose Q cvlverT w?!l� Pars aP�r�x; aieY 185.0 64.06 -7(ocfs uif! 95-70= l9cs overf(own5 210.0 63.88 00F'A'alk aNei �`ra f liar, ed ' 519.7 66.21 Gnw o'r,af of _S���iov Zf/o. Aclaliiiono�/y -f-He basin imme%iaie.l� so fG of sfaiiov Z+10 Q oo = !7 rls t Crown o 6c s in ' ELEVATION DISCHARGE !p pass (feet) (Cfs) IUi(! me<< Je�wee.; i0`1/ef 63.9 0.0 li*5 s pl�j5 ' 64.1 5.3 64.3 �4,33 29.7 36cft 6 4 . 5 `�- 79.8 64.7 157.4 64.9 265.4 t0. faK ) 65.1 406.5 = 04'33 - 65.3 583.2 pe f+6 0.f- F{cwbne an <_a� G sick 65.5 798.0 33- G3•ZS= /,O8'G1•S'(cK) 65.7 1053.1 65.9 1350.8 3 Pro graM Uses Q=CIA h /114'F1on 1 '7 I 1 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA BOARDWALK OVERFLOW OVER TOP BACK OF CURB AT STATION 2+10 WEIR COEF. 3.000 STA 60.0 160.0 185.0 210.0 519.7 ELEVATION ' (feet)_ 63.8 ' 63.9 63.9 64.0 64.1 ' 64.2¢- 64.3 64.4 ' 64.5 64.6 11 G 1 ELEV 64.74 64.17 63.93 63.75 66.08 DISCHARGE (Cfs)__ libhq Fr'on, -7�Ae. Oueral( Droi lo7e udr �cr OaKIco4wwook Farr�j) f(,e Qlou'�SC{; -Far roo.l side d,4c G.a lai,2 ;,Tr dUua ll(, Th e. orCyose4 cc/Ler% roXlw+ aPloafely 76 a5- Wu 495 11 -76= 0uer�lcwiny OnTD Boo dualk qn/� 4raJtl)r,� ea5f -fv Lcw /oLl of Sfai o Zt/o. Addifiana(ly -/'/,r Lasi17 ivnn,edia�ely S<0tl cT s/��-Joo ztio 17 c�9 f , P/Js 64 51Y, JR card wn I lk ) Qica " case p>Pe �lur Jecl' iam 2 r✓ r b 0.0 -I , ci i q' c.l, % Tc�° 0.9 „eel 4, / 5 5 /4 t- /- t -7 cf5 _ y3eF5 5.3 14.7 29.7/3c{s 51.7 81.5 ijepf'n a{ � back aJI- CLrb 120.2 = GY,IG— a,'7.s = / Ft c c 168.E -o yll,,goI's c = O,9 I 227.6 DePfh in F1�w/;ne (OK) Pro j ra,r uses Q=C 1 �� (F vaf ion RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA BOARDWALK OVERFLOW OVER CROWN AT STATION 14+73 WEIR COEF. 3.000 STA ELEV 0.0 71.06 65.0 70.67 85.0 70.61 103.0 70.56 121.0 70.51 141.0 70.45 194.0 70.75 437.0 71.72 Fro, Rai'je^a! C4(Sj D e6i9n Gf o 13. cl %3I te.r`� were plu�3.7� e:{� 13I9Cfs weul.Q ✓PeA {u Po 55 OvY'r �-he c,-3,wn c'� L3aa,:lwaf� P ro ce e�. 4-v -f'h e- and roadside dif �t, ELEVATION DISCHARGE (feet) --------- (cfs) --------- 70.5 0.0 70.5 1.8 70.6 70,62 10.7 13 9c(S 70.7�- 29.2 4-- oe.lwa(X 70.8 59.3 DeP(l� a% Crown 70.9 101.0 = 7o.GZ0,1-7' a,so 71.0 155.5 �oWJine cn Eas- siale 70,GZ- G9�ti2-- 'lz Pro33rarr uses Q= CC NEquafion 1 1 1 1 1 sO�gN RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA SWITCHGRASS OVERFLOW OVER TOP BACK OF CURB AT STATION 3+20 WEIR COEF. of 3.000 �- E�4Tio�IS STA ELEV 80.1 76.19 320.0 74.99 470.9 75.79 ELEVATION DISCHARGE (feet) --------- (cfs) --------- 75.0 0.0 75.1 1.3 75.2 7.4 75.3 20.3 iL.L PASS Im ye E .v.- "7S.31 75.4 41.7 75.5 72.8 75.6 114.9 75.7 168.9 75.8 235.9 TvT�I _ oiJ�_i.�!v._DEPT�1— oa LLF----5S �u�� I. s oe-� 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 6"l q q RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA BLUESTEM OVERFLOW OVER TOP BACK OF CURB AT STATION 14+43.20 WEIR COEF. 3.000 � ?�cv- c ELEvdTl o..ls STA ELE ___-- _-- V Z ZS_i o 1324.0 79.51 1443.2 79.00 1548.7 79.84 ELEVATION DISCHARGE ( feet) (cfs) 79.0 0.0 79.1 1.2 79.2 6.8 79.3 18.8 tiz C - �L. i9.33 79.4 38.6 79.5 67.4 RMINC Engineering Consultants CLIENT _ 100r ciic K I AJeea ( JOB NO. SO'/ 00 / PROJECT MIreL OCf FFrSCALCULATIONS FOR S'for,n Sewe, MADE BYkw (7 DATE S28" 9Z CHECKED By- DATE -SHEET 5Z OF 9N , a ' ('ramcOEL u/S LO.S i J -�-r- �. ` I - +i-TI-� /N✓(o6,,0'�- .�-. -, +.^1 it �; ; L �. I..i{ Lr��-� ...I + Kb 0 ZS I I F I t _ Qzs 8, 44 I I I � Q� _. UOSEuJE2 M qnl HocE iJd 4 i ;_ I - r 52vJ'Y'. l7y�r'aL�tCS avil r12-,c�."' ! aC� 1 25YK .STORM SEWED; SYSTErn. z.//✓GS.y9 S I L - SG LF_ .Z4' PE,'PIPE � .; O. I tF 21 "RGP 'a`/; o0 90 iCTo. MODEL i 1 I �rioceL wok�r_cASE ,- SO.LF 21"RcP - IF 21 'STUB: IS V0.7- _uSEo� -, 95 5T72E£7-:4 MM6Y_ CN� �/0090 - - r WS C _ Fo}vre Max ro ljSD 00 - /J✓-GUT+�`j � ' ^' _ ,(� ' ' ' � 1 -� i., _u 6 3 25 { �v(n3,2S I { - jr lI ,Kb I 1 } r -------------------------------------------------------------------------- REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 3 DEVELOPED BY ' JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT - DENVER, COLORADO ** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA ON DATA 07-09-1992 AT TIME 11:52:26 *** PROJECT TITLE : MIRAMONT FIRST FILING STORM SEWER ACROSS BOARDWALK DRIVE *** RETURN PERIOD OF FLOOD IS 25 YEARS ** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------ 1.00 N/A N/A N/A 8.00 69.50 68.50 OK 2.00 N/A N/A N/A 8.00 69.82 69.06 OK 3.00 N/A N/A N/A 8.00 69.82 69.19 OK �K MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 2 IT SEEMS THE GIVEN RUNOFF IS TOO HIGH[ '** SUMMARY OF SEWER HYDRAULICS ' NOTE: THE GIVEN FLOW DEPTH•TO•SEWER SIZE RATIO= 1 ---•••................•--_.._..............................._.--- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. ....•••••... •- (1N) (FT) (IN) (FT) (IN) (FT) (FT) 1.00 2.00 1.00 ROUND 18.51 ......................... 21.00 18.00 0.00 2.00 3.00 2.00 ROUND 18.51 21.00 18.00 0.00 'IMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, 'OR XISITNG SIZE IS USED �S4/� SEWER DESIGN Q P-FULL Q DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS ID NUMBER IN CFS IN CFS YN FEET YC FEET IN FPS NUMBER 1.00 8.00 7.45 1.50 1.06 4.53 0.00 V-OK 2.00 8.00 7.45 1.50 1.06 4.53 0.00 V•OK IROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) ......... (FT) (FT) (FT) 1.00 0.50 66.84 ................. 66.34 1.48 .... 1.66 ...... NO �K 2.00 0.50 66.84 66.84 1.48 1.48 NO MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET I** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 1.00 100.00 100.00 68.34 67.84 69.06 68.50 PRSS'ED 2.00 0.10 0.00 68.34 68.34 69.19 69.06 PRSS'ED �RSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW I** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ............................................................................... ' SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY ID NO. ELEV FT ELEV FT FT 1D K K LOSS FT .................. -............................................................ 1.00 2.00 69.38 69.06 0.58 1.00 0.95 0.00 0.30 68.50 2.00 3.00 69.51 69.19 0.05 2.00 0.25 0.00 0.08 69.38 BEND LOSS =BEND K* VHEAD IN SEWER. MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO 'FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES DROP AT MANHOLE C I t REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER•MODEL VERSION 3 DEVELOPED BY ' JAMES C.Y. GUO PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO --'-------------------------------------------- ----------------------------- ** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY . DENVER METRO AREA ON DATA 07.09-1992 AT TIME 12:58:06 *** PROJECT TITLE : MIRAMONT FIRST FILING STORM SEWER SYSTEM INLETS 4 TO 5 *** RETURN PERIOD OF FLOOD IS 25 YEARS RAINFALL INTENSITY FORMULA IS GIVEN I** SUMMARY OF HYDRAULICS AT MANHOLES ............................................................................... MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ' ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET .. ... .......... ................. ... .... ...... ...... ... ......................... 1.00 N/A N/A N/A 23.00 63.95 61.50 OK ' 2.00 N/A N/A N/A 23.00 63.25 61.59 OK 3.00 N/A N/A N/A 17.00 63.25 62.58 OK 4.00 N/A N/A N/A 17.00 63.25 62.87 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 2 HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 3 IT SEEMS THE GIVEN RUNOFF IS TOO HIGH! '** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= tISEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING D NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGN) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ....__....••••............•••• 1.00 2.00 1.00 ................................................. ROUND 23.73 24.00 24.00 0.00 ' 2.00 3.00 2.00 ROUND 21.56 24.00 21.00 0.00 3.00 4.00 3.00 ROUND 21.56 24.00 21.00 0.00 'IMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES IMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, IXISITNG SIZE 4S USED 0 SEWER DESIGN Q P-FULL 0 DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS ID NUMBER IN CFS IN CFS YN FEET YC FEET IN FPS NUMBER .............................•---......._........................... 1.00 23.00 23.79 1.58 1.69 8.63 1.19 V-OK 2.00 17.00 15.89 1.75 1.50 7.07 0.00 V-OK 3.00 17.00 15.89 1.75 1.50 7.07 0.00 V-OK 1ROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ......................................------------- .----------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ' .....•••.....-•---............-. 1.00 1.10 59.80 59.40 1.45 2.55 NO ...............-----•------ 2.00 1.00 60.55 60.05 0.95 1.45 NO 3.00 1.00 60.55 60.55 0.95 0.95 NO IMEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET I** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS .....•--.......--•-'-••-•----••'............................................... SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ' 1.00 2.00 36.00 50.00 8.73 50.00 61.80 62.30 61.40 61.80 61.59 62.58 61.50 JUMP 61.59 PRSS'ED 3.00 0.10 0.00 62.30 62.30 62.87 62.58 PRSS'ED ** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ............... ............................................................... SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY ID NO. ELEV FT ELEV FT FT ID K K LOSS FT -•............ . • ---......_.......••-........ 1.00 2.00 62.74 61.59 0.09 1.00 1.00 0.00 1.16 61.50 '2.00 3.00 63.36 62.58 0.57 2.00 0.05 0.00 0.04 62.74 3.00 4.00 63.65 62.87 0.10 3.00 0.25 0.00 0.19 63.36 BEND LOSS =BEND K* VHEAD IN SEWER. MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD 'JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES DROP AT MANHOLE J I 7 L 58/ 9q I REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 3 DEVELOPED ' 8Y JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH ' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER LID AND FCD POOL FUND STUDY . DENVER METRO AREA ON DATA 05.28.1992 AT TIME 16:30:11 ** PROJECT TITLE UPPER MEADOW AT MIRAMONT FIRST FILING �TOeM �LllE=� T=20M �lU 1TC44G2L�SS �� ** RETURN PERIOD OF FLOOD IS 2 YEARS 4L)kS IA/GET ND, l I** SUMMARY OF HYDRAULICS AT MANHOLES ............................................................................... MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ..-• ... ...... ..... ................. ............................................ ' 1.00 N/A N/A N/A 5.70 71.25 70.40 OK 2.00 N/A N/A N/A 5.70 74.49 71.48 OK 3.00 N/A N/A N/A 5.70 74.49 71.61 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ** SUMMARY OF SEWER HYDRAULICS OTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. •................................................... (IN) (FT) (IN) (FT) (IN) (FT) (FT) ' 1.00 2.00 1.00 RAND 16.30 18.00 15.00 0.00 2.00 3.00 2.00 ROUND 16.30 18.00 15.00 0.00 �IMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL OR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, XISITNG SIZE IS USED '.........'-..........-••. .... SEWER DESIGN 0 P-FULL 0 DEPTH •................................... CRTC DEPTH VELOCITY FROUDE COMMENTS ID NUMBER IN CFS IN CFS YN FEET YL FEET IN FPS NUMBER 1.00 5.70 4.58 1.25 0.97 4.64 0.00 V-OK 2.00 5.70 4.58 1.25 0.97 4.64 0.00 V-OK RROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS I o/9q I SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) 1.00 0.50 ................................................. 70.70 70.00 2.54 •0.00 NO 2.00 0.50 70.70 70.70 2.54 2.54 OK lK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ....•••••••.........................••••••'.................................... SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET .. ..... ...... ....•••••••••••••....... ..... ............ ....................... .. ' 1.00 139.00 139.00 71.95 71.25 71.48 70.40 PRSS'ED 2.00 0.10 0.00 71.95 71.95 71.61 71.48 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS .......... ........ ••••'••••••........ ................. ........ ' SEWER BEND LOSS =BEND K* VHEAD IN SEWER. MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. ' FRICTION LOSS INCLUDES DROP AT MANHOLE UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE 1 1 n �I 0 0/14 REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 3 DEVELOPED ' BY JAMES C.Y. GUD ,PND, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH ' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA LPROJECT TITLE ON DATA 05.29.1992 AT TIME 08:18:11 ** UPPER MEADOW AT MIRAMONT FIRST FILING S7 ** RETURN PERIOD OF FLOOD IS 2 YEARS C.L)Iz a 1N6 ET NO. Z I** SUMMARY OF HYDRAULICS AT MANHOLES .........---•.......•'•••....•••••••............................................ MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ................................................................................ ' 1.00 N/A N/A N/A 6.70 73.75 70.40 OK 2.00 N/A N/A N/A 6.70 75.50 73.81 OK 3.00 N/A N/A N/A 6.70 78.50 75.54 OK 4.00 N/A N/A N/A 6.70 78.50 75.88 OK �K MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS ' NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING - ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID N0. ................•••••••.. ID N0. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 1.00 2.00 ... • 1.00 ..... ROUND 17.32 ..... ..... 18.00 ..... ..... ..._..... 18.00 0.00 ' 2.00 3.00 2.00 ROUND 14.19 15.00 15.00 0.00 3.00 4.00 3.00 ROUND 14.19 15.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES IMENSION UNITS FOR BOX SEWER ARE IN FEET EQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL OR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE IS USED ------------------------------------------------------------------------------ SEWER DESIGN Q P-FULL Q DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS ID NUMBER IN CFS IN CFS YN FEET YC FEET IN FPS NUMBER 1.00 6.70 7.45 1.11 1.00 4.77 0.81 V-OK 2.00 6.70 ...7.80 0.89 1.04 7.15 1.38 V-OK 3.00 - 6.70 7.80 0.89 1.04 7.15 1.38 V-OK IROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS 61/lq I ' ID SEWER NUMBER SLOPE INVERT ELEVATION UPSTREAM DNSTREAM BURIED UPSTREAM DEPTH DNSTREAM COMMENTS % (FT) (FT) (FT) (FT) ...................................................................... 1.00 0.50 72.37 72.26 1.63 -0.01 NO 2.00 1.45 74.50 72.61 2.75 1.64 NO ' 3.00 1.45 74.50 74.50 2.75 2.75 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET '** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW 'I D NUMBER LENGTH LENGTH UPSTREAM ONSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET •----••.................•--............................._...................... 1.00 23.00 0.00 73.87 73.76 73.81 70.40 SUBCR ' 2.00 130.00 0.00 75.75 73.86 75.54 73.81 JUMP 3.00 0.10 0.00 75.75 75.75 75.88 75.54 JUMP IRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW '** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS -------------••----............................................................ SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY ID NO. ELEV FT ELEV FT FT 1D K K LOSS FT ... ... ...... .......... ... .... .......... ... ... ... ..... ..... ..... .... ...... .... . 1.00 2.00 74.17 73.81 3.41 1.00 1.00 0.00 0.35 70.40 '2.00 3.00 76.33 75.54 2.01 2.00 0.20 0.00 0.16 74.17 3.00 4.00 76.67 75.88 0.14 3.00 0.25 0.00 0.20 76.33 BEND LOSS =BEND K* VHEAD IN SEWER. MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD 'JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES DROP AT MANHOLE L 1 1 1 1 1 1 1 F U. p z N 13uno r cc w I Q � • W W NOIIVA313 Cl- �I m • • H I tl317MOtl3X rz W p OQ a 'IONIN07 W Z W U N N F W Q N N J w w w N Q W I Io 0 W i- > wrj _ > U O I y� N Vf J i Q 3 O I z<I 1 o O N Q W J N ^ a of N II WC y (ri x v 3 J ? u N W LL O I I I• F � m ' y r U L W _ U 00 O rlz m r o JW� S V v J F W c ¢ i W i o m Q F W S W W p Q n .. O = O m N fA c� W J W ¢ LL O 39 a W 3: _ 0' C p W J W N = �fy)! �� O O - W Q ¢= m H31: 1 -F H y O J N W= H u U H O = s = F M N m kn o'¢Is a�u(U Lu c H J -0 II II Y Y S 2 _ 3'o W X• Q I- C ¢ U = 11 lL F Q W ¢ W x J u o o 3 u o ¢ J ❑ ❑ N 3 - U z o J J Q W N c o Q " 0 3 o r Q ¢ W 3 Q n o � O CW I 1v`- J C Z O W P. Ili Z u S Q S O `L W ,,finn 2 x wo v 2 W O w J C eoWo IL V ¢ La<?Ovwi y U. it .=3 --O FQ Q Q N =I o uC < vo 'U¢W �Q ari¢a W _ owo 3Wa3 Q JX• N S N Q 6JW WWJ�F 'S1XS'1.00v 33Sa�oxz?ow 240. O/q4 RIPRAP DESIGN I �r -7 11 TMINC Engineering Consultants CLIENT /Jodi ck /A/ezLI JOBNO. S6y-00/ PROJECT M7r-4e"01,7, First Fi lire CALCULATIONS FOR_RiP/'rz-ice MADESYK'VG DATESZS9 CHECKEDBY DATE SHEET J_OF _T_ I). R/PR/�P %-TEND �0F IS'"RCP /VTO` �i'2N � �TEmPo,2sr�2Y� I I I I I � L r -.,fir - 2 ZS / 50.., .` Fy � y , , I , ST, Dd j �aniax .Pd �f l-sa ?Z6� + { { STEP 3 Det bedd n5 US _ I Zj"TyKi I siEP4 DEt R,�rap , w d-Y 3 Q �jn 13(i;s) Y S Use S `/UiaTH z) .R IPRfI ?T.ENO a F, yZ /iUTv pzS _-76as I 1 Tw= Zip; ' 1 j I 1 I 4. 14 D., 3,51 ' .. i pis C3.$)i si Fi 5-7 f Use T'veL CLoss (o RIPILI STcY2 Deb i-he ex�onson-r"'�d-or C`/Z-fan B) i 57Fp3 I .De.h the k-- ef- V f rtx �rof c{,oi f r C Y,q FP5' .non erns, e) -` ' r I - iI _ { I r _ i?t y `1 L C6yYi19/zI) 35� �— _. 35 �. i ■S � CLIENT /i lllr-d [C k'kca- / JOB NO. 570'1-601 INC PROJECT �l i /v man f F rST` 5/ircALCULATIONS FOR fZ �P/-' p Engineering Consultants MADE BY ' 6" DATE SZg 9ZCHECKED BY DATE SHEET OF 21 I [J 1 u 1 No Text I I (o9lq 4 EROSION CONTROL F, RAINFALL PERFORMANCE STANDARD EVALUATION 70/9N PROJECT: M I F-gmowl- FIQST FIL//JG- #Soy -oo I STANDARD FORM A COMPLETED BY: KW G *6) Re) D DATE: DEVELOPED ERODIBILITY Asb Lsb Ssb Lb Sb PS SUBBA§IN ZONE (ac) (ft) M (feet) M M 41)64 1 MODEQyTt 3,yz 17zo 0.9y 2 mopE� 9TE (o,Zy e 10 0,ct /✓10DERfiiE 7.oq �4/S D,S� �i MOVC2/)iE 6 , 19 2,200 0 ,G 5 MoDE�29t� /.92 1097 0.15, (D rnonEQgtF ),(,2 1037- ).33 27,23 iy°13 0,'77 -7s,71 From 7lble INC UDEs 50UT-H '(z OF 30f1k0 Ml CK t721VE [b_ Surn L56K9`h)/Surn f�,b 17zo (3,yZ)tEioCG.zv t/y/S(7, y)t Zza( a•�4)f /057 C/•92Jt1�3" (/•GZ)_'y 3 L6 - Z7.Z3 5b= .94 (3.4z; L.9�C6• Y)1'-,SG(7,Y)t,rc Y ICG 19)+, 7S(I,9Z)t/•3(�,�z) =.-77 0 27. z3 MARCH1991 B-14 DESIGN CRITERIA -71/qj EFFECTIVENESS CALCULATIONS PROJECT: IY1 1 R p md/u1' FIRST FIL/A/ G #soy -oo l STANDARD FORM B COMPLETED BY: Ku)C; a RBD DATE: S�Zz�gZ Erosion Control C-Factor P-Factor Method Value Value Cominent ROADS w CuR8 0.01 1.00 P4VED9- COA.5reLr-T7r4l akpUEL >=ILTERS 1,00 0.60 AT /N4.E'T5 HHf op- STR9u/ 0,0(0 /100 MULCH lv /seep( $EDIir1 E/JT dA51/✓�TkNP /i0O d'So rnUST BE Co.J57R �TE0 95 THE F/,C'ST STEP OVERLor 6.P1%o//16 MAJOR PS SUB AREA BASIN (%) BASIN (Ac) CALCULATIONS 75,710 1 3,i2 Roads 1-Curb /,75 9G (F/s5vrne,( moo+ con5froc4el u)/r, 6 weeks mULCH x3,4Z- I,'IS= 1,(o-719C. NfT C FACTOR = 1,G7C'D(0)-�-1,75CI,oc� _ 0,5y 3,qz /JfT P racier = 1.00 EFF- (I cxP)X)Oo=Cr-(,54x1))xtoo = Z (,Zy Road5.- Curb 1,117 9c SSvmPA nv con5 r✓ c c i17 6urcY mL,(�ti ^-6•ZLI-l.°17=y,77s7L /VET C FpCTCR = �{'7]('O(o)i-(•5''J(I.OG) _ Q,zB NET P FActor=-t,00 x,5o=,so EFF = (l-cxv)xtoo = (I-C•28x.s0))= 86.O% . 3 -7, Lj RoadS 4 Curb I, b 1 0 C- Ass um[ rrcf ConS•frucfrd �1;n 6etK 'WULCH ,7,5'1 01 = 6.03 Vc. NET C F,4-TCR = (a,o3C•o6)+ = D.20 -7,Qv NET P FACTOR =1,d0 X,5O=•SO EFF= 0-CX P)Xroo= (I-(•Z�x5O)).= 6to.U%v (o119 Rows a Curb x O Ac- /•17uIck ^ b,lq Ac. /Ve•{- C = - 0 (c A/c} P = 1,00 Ef+, (1_CxP)xroo= (/-(,o(,x,so))xloo= g7,090 S 1.9Z Roa6sy Curb l,yy 9c- (Flss yr e4 not ccnsfruc-qed w/in 6 w eK5) /Nulclf qc- _ 1,92-/-4yo•48CaoG)+/,'l4C/,00 NET C FACTOR- ) q Z NET P F AcToi2 = -2,00 EFF = (I-CxP)X Iod=CI'CZ3,590 MARCHIS91 9-15 DESIGN CRITERIA EFFECTIVENESS CALCULATIONS PROJECT: rY11Rl9M0Nj FIRST FILI/JG #Soy-ool STANDARD FORM B COMPLETED BY: K0G 03 R8D DATE: 5/Zz/yz Erosion Control C-Factor P-Factor Method Value Value Comment Rog05 7 CuRB O,o l lion 1 Cens4rvc- ed Gravel FilkrS /,60 lefs 14a%r ar Sfraw p,0(o 1100 /hulcl^ Cu/Seed MAJOR PS SUB AREA BASIN (%) BASIN (Ac) CALCULATIONS -75-.7 (0 I,(aZ PoaAS 4-Cur6 /,Z2 .9L CA55um d ncyCanS{refr w/in 6 mule -In /,(,z - bzz. /VefC Foc+rr c o 4oC,o6)+I,ZZU,Oo) _ O7i NET P FOC'E'0r = /iO0 xr0o (1-(,�7xr))= off= (l-Gxv)xloe= EFF,uet-3,4Z}hb6,0(6.29)7L8G.0(7,3Y)+97(6,1a)+235 1g2)+23,2(t 27,2: EF�rdET= 75,3 le, �,7S,790 C0K) 44LC01.NT10A15 F02 5ED1MEwT 7-k9P /I/ 607-rOM of FIRST I=II_IIJCo DETENTICij p0AJ0 : OveR EXGfiUAiE �ER/�A7✓ENT PoNO 83 EST/M9T60 SEo/i✓I Eti T' Coia0 r,l Z Se -LT = 0,74 xLRb xp 7,8Y4 6, lq = 20,3 AG i / a &F,o 4,(L I e a� load L iQb - 2-64 a51n5 2 3'F4 Com L-in c,l� for B i 5edT = 0-74 K Z S4 X 20,31 SP�im P/T An{ici�a�Pt OUri,'1 SeCy 0� �l1-= 6l,2 f f� bare 54orrn 2�,Le^ 0, to year- ,L Pond Vol vwe- sti irb e Ord loo ya s/acre 0I COn Warr SAC,( V = I00 (20 -3) = 203o c- 20 30 CY (z'7) g3560 = /126 AC -Fr' No{-e:The- e1e.{eo+icn POrc! cUi(y be lni Bally 5e,,hmenf Cons+rur'ke1 as aL Icast +17e 1,Z6 AC-GT of Havin� "L+ Volume-, 52) MARCH 1991 8-15 DESIGN CRITERIA I -7319y CONSTRUCTION SEQUENCE 'PROJECT: -Fhe:laPer ffieadow &+ M ,ramonI- Firs(- FiI in-) STANDARD FORM C SEQUENCE FOR 19 9Z ONLY COMPLETED BY: KW G O Mb DATE: OC•ioBER, 1992 'Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for 'approval by the City Engineer. YEAR 19 9 2 1993 MONTH I I S' O I ti I D I �% I I M 14 I M I J' -J GRADING IND EROSION CONTROL Soil Roughening Perimeter Barrier ' Additional Barriers Vegetative Methods Soil Sealant ' Other RAINFALL EROSION CONTROL ' STRUCTURAL: Sediment Trap/Basin Inlet Filters ' Straw Barriers Silt Fence Barriers Sand Bags ' Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving ' Other ' VEGETATIVE: Permanent Seed Planting Mulching/Sealant ' Temporary Seed Planting Sod Installation Nettings/Mate/Blankets Other (RUCTURES: INSTALLED BY GETATION/MULCHING CONTRACTOR 1TE SUBMITTED 1 MAINTAINED BY APPROVED BY CITY OF FORT COLLINS ON ' MARCH 1991 8-16 DESIGN CRITERIA CHARTS, TABLES AND FIGURES V, - L6, C I yt ; ; � ilk 1 1 i 1 i 1 1 i 1 1 1 1 1 1 1 i 1 DRAINAGE CRITERIA MANUAL 50 F- 20 Z w U Cr w a 10 Z w a 0 5 N w cc 3 0 CU 2 w a 1 5 .1 RUNOFF �nnnnllll//��I�IUII/ Mon I FA I1 M oil .• .�� In����� inn I�nnn'I- - I r 2 .3 .5 1 2 3 5 10 20 VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING "UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. 5 -1-84 URBAN DRAINAGE 3 FLOOD CONTROL DISTRICT 75/9N No Text 1 1 1 ' MAY 1984 n 119 .9 .7 .3 .2 W s=06°/ F = 0.8 -IN s-0.4% F=0.5 I BELOW MINIMUM ALLOWABLE I STREET GRADE I I 0 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 DESIGN CRITERIA �I 7811q 0 Calculations for Curb Capacities and Velocities Major and Minor Storms per City of Fort Collins Storm Drainage Design Criteria RESIDENTIAL with drive over curb and gutter '0 is for one side of the road only V is based on theoretical capacities 1 11 u 11 1 Slope Red. . (%) :Factor : 0.40 : 0.50 : 0.60 : 0.70 : 0.80 : 0.90 : 1.00 : 1.25 : 1.50 : 1.75 : 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 . 5.00 5.25 5.50 5.75 . 6.00 0.50 : 0.65 : 0.80 : 0.80 : 0.80 : 0.80 : 0.80 : 0.80 : 0.80 : 0.80 0.80 0.78 0.76 0.74 0.72 0.69 0.66 0.63 0.60 0.58 0.54 0.52 0.49 0.46 0.44 0.42 0.40 Area = 2.63 sq.ft. Minor Storm Minor . C V X : (cfs) (fps) 86.71 : 2.74 2.09 86.71 : 3.99 2.33 86.71 : 5.37 2.55 86.71 : 5.80 2.76 : 86.71 : 6.20 2.95 : 66.71 : 6.58 3.13 : 86.71 : 6.94 3.30 : 86.71 : 7.76 3.69 : 86.71 : 8.50 4.04 : 86.71 : 9.18 4.36 : 86.71 : 9.81 4.66 : 86.71 : 10.15 4.95 : 86.71 : 10.42 5.21 : 86.71 : 10.64 5.47 : 86.71 : 10.81 5.71 : 86.71 : 10.79 : 5.94 : 86.71 : 10.71 : 6.17 : 86.71 : 10.58 : 6.38 : 86.71 : 10.41 : 6.59 : 86.71 : 10.37 : 6.80 : 86.71 : 9.93 : 6.99 : 86.71 : 9.83 : 7.19 : 86.71 : 9.50 : 7.37 : 86.71 : 9.14 : 7.55 : 86.71 : 8.95 : 7.73 : 86.71 : 8.73 : 7.91 : 86.71 : 8.50 : 8.08 : Prepared by: RSD, Inc. February 28, 1992 Area = 20.11 sq.ft. Major Storm Major : C V X : (cfs) (fps) 696.73 : 22.03 2.19 696.73 : 32.02 2.45 696.73 : 43.17 2.68 696.73 : 46.63 2.90 696.73 : 49.85 3.10 696.73 : 52.88 3.29 : 696.73 : 55.74 3.46 : 696.73 : 62.32 3.87 : 696.73 : 68.27 : 4.24 : 696.73 : 73.73 : 4.58 : 696.73 : 78.83 : 4.90 : 696.73 : 81.52 : 5.20 : 696.73 : 83.72 : 5.48 : 696.73 : 85.50 : 5.75 : 696.73 : 86.89 : 6.00 : 696.73 : 86.67 : 6.25 : 696.73 : 86.03 : 6.48 : 696.73 : 85.00 : 6.71 : 696.73 : 83.61 : 6.93 : 696.73 : 83.31 : 7.14 : 696.73 : 79.81 : 7.35 : 696.73 : 78.96 : 7.55 : 696.73 : 76.34 : 7.75 : 696.73 : 73.43 : 7.94 : 696.73 : 71.89 : 8.13 : 696.73 : 70.17 : 8.31 : 696.73 : 68.27 : 8.49 : I No Text I 81l iq Calculations for Curb Capacities and Velocities :ajor and Minor Storms ' per City of Fort Collins Storm Drainage Design Criteria COLLECTOR u/ 611 Vertical curb and gutter Prepared by: RBD, Inc. '0 is for one side of the road only February 28, 1992 V is based on theoretical capacities Area = 3.55 sq.ft. Area = 28.96 sq.ft. 1 Minor Storm : Major Storm Slope Red. Minor 0 V Major 0 V (X) :Factor : X : (cfs) (fps) : X : (cfs) (fps) 1 0.40 : 0.50 : 135.32 : 4.28 2.41 : 1129.59 : 35.72 2.47 0.50 : 0.65 : 135.32 : 6.22 2.70 : 1129.59 : 51.92 2.76 0.60 : 0.80 : 135.32 : 8.39 2.95 : 1129.59 : 70.00 3.02 0.70 : 0.80 : 135.32 : 9.06 3.19 : 1129.59 : 75.61 3.26 0.80 : 0.80 : 135.32 : 9.68':' 3.41 : 1129.59 : 80.83 3.49 0.90 : 0.80 : 135.32 : 10.27 : 3.62 : 1129.59 : 85.73 3.70 ' 1.00 : 0.80 : 135.32 : 10.83 : 3.81 : 1129.59 : 90.37 : 3.90 1.25 : 0.80 : 135.32 : 12.10 : 4.26 : 1129.59 : 101.03 : 4.36 1.50 : 0.80 : 135.32 : 13.26': 4.67 : 1129.59 110.68 4.78 ' 1.75 : 0.80 : 135.32 : 14.32 : 5.04 : 1129.59 119.54 :. 5.16 2.00 : 0.80 : 135.32 : 15.31 : 5.39 : 1129.59 127.80 5.52 2.25 : 0.78 : 135.32 : 15.83 : 5.72 : 1129.59 132.16 5.85 2.50 : 0.76 : 135.32 : 16.26 : 6.03 : 1129.59 135.74 6.17 : ' 2.75 : 0.74 : 135.32 : 16.61 : 6.32 : 1129.59 138.62 6.47 : 3.00 : 0.72 : 135.32 : 16.88 : 6.60 : 1129.59 140.87 : 6.76 : 3.25 0.69 : 135.32 : 16.83 : 6.87 : 1129.59 140.51 : 7.03 3.50 : 0.66 : 135.32 : 16.71 : 7.13 : 1129.59 139.48 :. 7.30 3.75 : 0.63 : 135.32 : 16.51 : 7.38 : 1129.59 137.81 7.55 4.00 : 0.60 : 135.32 : 16.24 : 7.62 : 1129.59 135.55 7.80 ' 4,25 0,58 : 135.32 : 16.18 : 7.86 : 1129.59 135.07 8.04 4.50 0.54 : 135.32 : 15.50 : 8.09 : 1129.59 129.40 8.27 : 4.75 0.52 : 135.32 : 15.34 : 8.31 : 1129.59 128.02 8.50 : 5.00 0.49 : 135.32 : 14.83 : 8.52 : 1129.59 123.77 : 8.72 ' 5.25 0.46 : 135.32 : 14.26 : 8.73 : 1129.59 119.06 : 8.94 5.50 0.44 : 135.32 : 13.96 : 8.94 : 1129.59 116.56 : 9.15 5.75 : 0.42 : 135.32 : 13.63 : 9.14 : 1129.59 : 113.76 9.35 ' 6.00 :. 0.40 : 135.32 : 13.26 : 9.34 : 1129.59 : 110.68 : 9.55 71 n LJ I I CLIENT (:14 1-'/ 52,C)l L-1%45, _JOBNO. PROJECT CALCULATIONS FOR e!'-�( m-T-r_--z_ Engineering Consultants MADESYJ50,DATE ZSZ CHECKED BY DATE -SHEET OF L ..... .. .... I I I I I I I I I I I I I 11 I p I I RMINC CLIENT nj Ort I i u c. -JOB NO. PROJECT -CALCULATIONS FOR 6% n-TT-sv­_ p4rvw Engineering Consultants MADE BY-ffia- DATE2sZ CHECKED BY DATE QV ... .... WA p i J SHEET 2 OF ........... ...... ' 1.0 12 5 11 10 4 •9 8 10 3 6 9 0 4 2 u- - /��"� 7 x 3 8 � ��� z 1.5 6 7 e P j1b,.�� 2/ o z 1.0 z 5 �- —° e, ort a .0 — — — z .9 w 5.5 �? _--- a .8 F- w - .6 w w IAj 5 = z o 7 u- .4 z z .4 F- ' ? 4.5 z o 3 � 6 w s u- _ 4 _ .2 0 .5 t-- z z h - 0 o w '3 3.5 Uziw T 4 ao a J .I ' 0 w wo wo 0 .LL 08 .25 3 _ = 0 .06 3 co c� ow z i i .04 ac 25 2.5 w w ' 2 a .03 a }' 3 0 .02 w 2 a o a = 2 a E- c� a ' 15 .01 0 .15 L u. 0 0 yo H a=2 h 10 I 1.2 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA DRAINAGE CRITERIA MANUAL RIPRAP 95-19q Use Do instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 31) downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE & FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL RIPRAP 66/9q h ion Angle 6 E>� g PQ ns ON EA IN 0 AO0 PJA m m 0 0 0 -owl M �mmmmmm 101 .l .2 .3 A .5 I .6 .7 .8 TAILWATER DEPTH/ CONDUIT HEIIGHT, Yt / D i FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT n L I I O CA0%OOO Ci V V In o In In oo0oo O o)rno)o)000000 O. v v v V U) L. U. U) U) U) v CID CID 00000000 0 oo. rn. rnO. C)C)C)(. (. e .)000 . . . . O vV vvvVVVV VvvInU)U) M o 0 0 0 0 0 0 o 0 0, o 0 o o o o r 0 0 0 oN o) o rn a% o) a, o) o) o a, rn ai o) a) rn o Vvva�rvVVVvvvvvvVVaVa N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O OM V tntOtDtDtOr. rrl�rrrrrrrro00o00 . . . . . . . . . . . . . . . . . . . . . . . . . . O O v v v V V v V v V v V v V v V v v v v V V v v v v v O oNMV 404 01010w0%0rrrrrrrhrr000 Q• . . . . . . . . . . . . . . . . a 01 MVV'V'VVVVVVV4VVVvvVVVVVVVVv Uo o 0 0 o o o o o o o o o o o o o o o 0 o o o o o o O tD O N M V v u) U) U) U) t0 tD tD 10 0 W t0 to tD t0 r r r I` I` r too M V v V V v v v V v v v v v v V v v V V v v v v v v H03000000000tooc00000000000000 0 0 V 0) rl N M M V v V v U) U) In U) U) U) In U) U) 10 10 W 0 t0 t0 I\ . . . . . . . . . . . . . . . . . . . 0 r M M V V v V V V V V V v v V V V V v V V V V V v V V U 00000co0000co0 co 0000000000000 a O O• tDoOHH NNMMMMy V V vvv V V U)U)U)mt.00 . . . . . . . V V v v v v v v v v v V v. v. V. V, vo v. v. O tD M M M vv vv r4 000000000000000000000000coco O 10 0Nlnr-wm00'iHHNNNNNMMMInMvvvvv . . . . . . . . . . . . . . . . . . . . . . oG4 In NMMMMMVVV V V V VvvvVvvV V Vvvvv 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W fn W W Q OU) HWHMVM0%DtOrrr00000o0 MM00000 . . . . . . . . . . . . . . . . . . . . . . . 0 V N N M M M M M M M M M M M M M M M M M M M a V v v v H0 In cococococo0o0o00000000oo0000000 O oIn00r-INMvvU)U)U)WWtDt0tDrrrro0o010) H W V ' i N N M A l" ) M A M M M M M M M M M M M M M M M M M M co0 0 0 0 0 0 o 0 0 co 0 0 0 0 0 o o 0 0 0 o o o 0 0 W In e-4e-4U)ro00riNNMMMVv V vvinInU)IDtDtOrr M ri N N N N r') c4 r4 r4 c4 M r) M M M M M M M M M M M M M M co co 0 0 Co Co co co c0 0 co co 0 co co 0 co 0 0 0 0 o o 0 0 0 r0 O M N t0 CO 0) 0 r1 N N M M M V V V V V V U) U) In In lD tD tD tO 0He1 r1 r4 N N N N N N N. N. N. N N. N. N. N N. N N. N. N NN aCC) 0000000000000000000000000 In In InO)Ncol vU)t0rrr0ooMONONa%O)-ON 000000 a I -a N O)OOririrIH44'-IrlrI4rl'iriri44 4N(4NNNN r0000000000oC00000o0oo0C0000 z O VInOMU)t0o00)000ririririNNNNMMMMMtn •� N o()OOOOOOOririririri1;4ri444rl4riri4r♦ W r r o 0 o o o 0 o o 0 o 0 o o 0 o o 0 0 o 0 o o o 0 U) 0N0rivinrr00)Ot00rlrlr4.-4rINNNMMMMM . . . . . . . . . . . . . . . C. • . C. . . . . . . . . tD000;0)Ot0t0;0)0)0�0000 C;C;C 000000 r r r r r r r r r r r 0 0 co 0 0 0 0 0 0 0 0 0 0 0 0 O tDnOVr0)OriNMen V vU)InInIn%D0tOtDrrtDtDo • • • • • • • • • �. . . • • . • . • • • • tDrl�rrc00ocD0co0cU000000000000 �J\ rt�t�rrt�rrrt�nt�rl�t�:rrrt�rrrl�rrt� \ O)Ov%DroorrrtO%0kDLnv-V'CO) MNNON%DvriO)to O O. N N. N N N N N N N. N. N N N N N N N N 4 4 4 rrO O r r r r r r r r r r r ramr r r r r r r r r r r r r r 3H� 00000000000000 00000000000 O U P 0000000000000 0, 00000000000 4Zr4 riNM V m%Drool0riNM V In%Drmmol.00momO P4PQ .rl.-I•iririrlHr-4HriNNMM%rvIn MARCH 1991 8.4 DESIGN CRITERIA 07/ qy ' FORT COLLINS EROSION CONTROL MANUAL I 1 Moderate irodibility Zone Loading Ratios. 1 0 1 0L01Tr q" I I I 1 I I 1 1 I I I 1 I I I I I I I I I I 1 O 17 C� O q 1.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 •MC'L0LD1l- I I I I 1 I I I I I I I I I I 1 I I I I I 1 Ln 1 0 1 1 1 1 1 1 1 1 1 '1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 CL0(ntnLnC'IgNIVNq I I I I I I 1 I I I I 1 1.1 1 1 I 1 OCL)Ctn n MLD I O C'MV C�I •NMC'C'Lni0\D101-r- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I C' 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 0 1 CLningr-rgC1gMLOmmLOC'OtO I I I I 1 1 I I 1 I I I 1 0 Ln -7 M Lr) r- n -! (n V) V 1 I I I I 1 I I I I I M 1 Or-lN NMMM[^. C'C'C'cLrlintntn I I I 1 1 1 1 1 1 1 1 1 0 1 crl- GPt-MIl C�.r.-irOgV �`'�OI-cCLn I I I I I I I • 1 0 I I I I I I I C 1 • C1 r rr " r , N N N N N N N N N N N M M M I I I I I I 1 N 1 0 r I I I I I I I o I OorNntnv cLnctr c -NLnq C>g1-tnOgvnvmr-I 1 O 1 G LLl 1� lO NC M 1-" C CO r MLDgGN CLD CO � r-i r--i rl ri 1 IV M C' CCLn Ln lD lO r 1` I` q co co co C% n CI C) CI 3 1 O 1 ONr M0N0nMLn NMM r .0 ('0 MLnr,LnCO I Gl I ONNCNNCCI- OM%ZCO" LnI,gC NMtnrlk.0OOO� I 1 0NMM-Z7LnLnLn1.0I0IO\.O;l— r- r- I-ggmqmn I O 1 OC%M4�-+�tnin -itomm - , �c't,Or1M�0NM.-iv) I 1 O M I - CO I-MM N Ln CO iM tn(-C1 M C IO r� C O +Ur OON I 1 Or-i N Cl) m C' C' C• to Ln Ln to Ln VD 1.0 lO lO I'D-.01` 1- I` Q q q m C% 1 O 1 0r,r-t-Vr =%D0NNo%.DN110n mlq,LnLn�'I'D.l0Ln1-kD 1 r- I CLnNr- CI-ONC'LDr-C\ortiMC•LnlD1-gNIDC�1- MLn 1 1 0" N N Cl) M M C C C C C' C' Lr) Ln Ln to Ln Lf1 to N mo%10 0 1` t- 1- 1. 0 1 0 C% Ln Ln lO N C' C r-q r- C z g q q l- kD C N O M O N N ON to I kD I ON CCNNgoC 4U1r-gC�(S1- NMIzz:1 t:OMtnl:gO 1 l 0" r-I N N N M M M M M M M G C' C• C' C C' C' v to N Ln Ln Ln LD ti 1 ^O 1 0M1�gMM0LnC% 4NN -10MLn NC%Lnr-1I-NM0LnM0 1 dP 1 O 1 Ln I 0C 1- O N C' Ln lD CO Cl C r-i N N C C L' kq Lfl Cl r-I M 4 Ln 1� 0~~~NNNNNNNMMMMMMMMMMM ;I,V 17C'C' I C.Ln I ONI-\DOr-�r-I coin r-I%O. %DOMtO0Mtng0000-TC%V"I- 3 1 Sa I Oq•r M L) LD r 1` CO C% C� C Or-Ir r. NNN[V C444 tP Ut LDS I In 1 0Mr-t rl ri r-i ri ri rl r-1 ri NNNNNNN N N N N N N N N N 1 O 1 0 m m cl� Ogtn.i 110 O d'q.-IvI-ONNI-Cyr-d'O'�M t,O I C' I �r Or-i ri �c Ln �%o r r r co co C� C� C� C� C� �riNNM I 1 0 I� " ri ri ri ri r1 ri ri r-1 r-I ri ri ri r1 .-'� r-i r--1 ri N N N N N N 1 to I Or -I �NM.11-MgN�C\N Ln qC NC'Lq coO1-N r-O M%D S1 M I . c"NNMM- r v C• to Ln Ln lq Lq LD LD Lq 1- 1` q q m m Cl I 1 0 lO CO r--I r-I " r 4 r-1 r-I ri ri ri ri 1 O 1 0r- V -gtntnggtnn iNNOOO --4NNM-1LntOt-t-t- a I • I Otn co in O Ct-C%.-+M v' ,o r- a) C% 1 Cl) I••• •. ••• 0 0 0 0 0 0 0 0 0 0 0 0 I 1 0 Ln LD 1` q q q q Cl% C1 n C1 m n ON r-I ri ri r-Ir-t r'I a I to 1 O r-1 Ln in LD lD O C% IT q n m I- to 11 r' N 1` r-( Ln q ri O Ln q O .-4 iI • I C 1, 1- M 1- O M C' IO 1` q C) O r-IN N MM C•C'v L01-I-I-CM I N 1 0C•Ln�cO1`1`1`1`1`I-I,g00qqqC:7qqqqqqqqq I O 1 O 1-4Ln N to q l- 1-4 M C' N 0 tD 1-4 kD r-I. Ln cor-4 v %.0 in r 4 v k.0 - %D I • 1 OC%r-NNI-C� I N MCCtn�,O"0r-r-r-MMM Cl00000 I N 1 OMCr Ln Ln Ln Ln to 1 to 1 0mmClv1.4 M %roLnNgC1gNtngr-Im110r- nLOM00On 1 ri 1 OrI gr4C CO r-7 N N N MMMMMC C'C'Ln LnV 1 1 O M ar 4 C• C 4 Ln L1 Ln Ln Ln In to to Ln Ln to Ln L' Ln Ln Ln Ln to 0 1 0rgm0 MLnC N mmt�OM\0con riN C LntnM00mg1� Otn. 9N v0"0l-l-gg0C.,a%C%C100000O r-Lr-1000 . . . . . . . . . . . . . . . . . 1 1 0 N N M M M M M M C Mr ^C4 M M M M 1 Ln 1 0C•01-0NNNNNr-g00nmr,l10L N"MMq'd'0r-cOr-I 1 • 1 oq 00 rqr-lr-Ir-Ir-Ir-/r-Lr-Ir100000O000NONm qqq I O 1 1 1 0 NNNNNNNNNNNNN NN CV NN 144 ri ri ri ri I I I C 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 E-I 1 O O O O O O O O O O O O O O O 'O O O O O O O O O O O I L-I I ri NMCN5I�gm O r-i NMC Ln kD I- q CE O Ln 0 to O Ln0 1 v 1 rl r, r, ri r, ri 1 ri ri N N M M IT C'Ln I ' Table 8B C-Factors and P-Factors for Evaluating EFF Values. Treatment C-Factor P-Factor ' BARE SOIL Packedand smooth................................................................ 1.00 1.00 Freshlydisked1.00 0.90 ........................................................................ Rough irregular surface........................................................... 1.00 0.90 SEDIMENT BASIN/TRAP................................................................. 1.00 0.5011) ' STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG ........................ 1.00 0.80 SILT FENCE BARRIER..................................................................... 1.00 0.50 ASPHALT/CONCRETE PAVEMENT ................................................... 0.01 1.00 ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A 1.00 ' SOD GRASS................................................................................. 0.01 1.00 TEMPORARY VEGETATION/COVER CROPS .................................... 0.45"' 1.00 ' HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10"' 1.00 SOIL SEALANT....................................................................0.01-0.60"1 1.00 ' EROSION CONTROL MATS/BLANKETS............................................ 0.10 1.00 GRAVEL MULCH ' Mulch shall consist of gravel having a diameter of approximately 1 /4" to 1 1 /2" and applied at a rate of at least 135 tons/acre.............. 0.05 1.00 HAY OR STRAW DRY MULCH After olantina Grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately tack or crimp material into the soil. anchor, Slope M 1 to 05.............................................................................0.06 1.00 6 to 10............................................................................. 0.06 1.00 11 to 15............................................................................. 0.07 1.00 16 to 20.............................................................................0.11 1.00 ' 21 to 25 . . 0.14 1.00 25 to 33.... .0.17 1.00 > 33.......................................................................... 0.20 1.00 ' NOTE: Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation. (1) Must be constructed as the first step in overlot grading. ' (2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required. (3) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. ' MARCH 1991 8-6 DESIGN CRITERIA goigN CHART 1O 18 0 10,000 168 8,000 EXAMPLE (2) (3) 156 6,000 0.42 inches (3.5 fast) 44 132 5,000 G•120 cfs 4,000 + tier 132 D feet 3,000 (1) 2.5 8.8 120 (2) 2.1 7.7 2,000 (3) 2.2 7.T 108 s0 in feet 96 1,000 800 84 600 500 72 400 = 300 ��t.�►g U N Z z 60 200 o 54 t•- � i w 48 / �� 100 > x 60 a c� o /2 N SO �ji,• ENTRANCE is 40 I D SGAL� TYPE W W headwall 33 e. •20/ii (2)�Z Groove end with j headwall 30 Ir, - V (3) Groove end De} n-F(0/t projecting 27 I Pon 8 24 % i 6 To use eel• (2) or (3) project i 2I 4 a onfollysc to .cols reverse 4 use straight Inclined line through D and 0 seals•, or nrerse as 3 Jlusrroted. le ' z Is 1•za 1.0 12 HEADWATER DEPTH FOR HEADWATER SCALES 283 CONCRETE PIPE CULVERTS REVISED MAY1964 WITH INLET CONTROL BUREAU DF PUBLIC ROADS JAIL 1963 . 181 Preceding page blank 6. 6. 5. 6. S. 4. S. 4. 4. 3. 3. 2• 2. 2. 3 I.5 2 I.S N 0: � 1.5 0 z x a 1.0 1.0 W O z I.0 ►W .9 .9 30 .9 ¢ .8 7 T .7 6 .6 6 S 5 .5 TABLE 12 - ENTRANCE LOSS COEFFICIENTS Outlet Control, Full or Partly Full Entrance head loss x He = ke V 29 Type of Structure and Design of Entrance Qbefficient ka Pipe. Concrete Projecting from fill, socket end (groove -end) 0.2 Projecting from fill, sq. cut end . . . . . . . . . . 0.5 Headwall or headwall and wingwalls USe. yZ"RC? Socket end of pipe (groove -end) 0.2 -�-- Square -edge . . . . . . . . . . . . . . . . . 0.5 0.2 Rounded (radius = 1/12D) . . . . . . . . . . . . . Mitered to conform to fill slope 0.7 *End -Section conforming to fill slope . . . . . 0•5 q pe{c. •T;Vn Pol7�( Beveled edges, 33.70 or 451 bevels . . . . . . . . 0.2 Side -or slope -tapered inlet . . . . . . . . . . . . . 0.2 Pipe or Pipe -Arch. Corrugated Metal Projecting from fill (no headwall) . . . . . . . . . . . 0.9 Headwall or headwall and wingwalls square -edge . . . . . . . 0.5 Mitered to conform to fill slope, paved or unpaved slope . . . 0.7 *End -Section conforming to fill slope . . . . . . . . . . 0.5 0.2 Beveled edges, 33.70 or 45° bevels Side -or slope -tapered inlet . . . . . . . . . . . . . 0.2 Box Reinforced Concrete Headwall parallel to embankment (no wingwalls) Square -edged on 3 edges 0.5 Rounded on 3 edges to radius of 1/12 barrel dimension, or beveled edges on 3 sides . . . . . 0.2 Wingwalls at 30° to 750 to barrel Square -edged at crown . 0.4 Crown edge rounded to radius of 1/12 barrel dimension, or beveled top edge . . . . . . . . . . 0.2 Wingwall at 10° to 250 to barrel Square -edged at crown . . . . . . . . . . . . . 0.5 Wingwalls parallel (extension of sides) It Square -edged at crown . 0.7 Side -or slope -tapered inlet 0.2 *Note: "End Section conforming to fill slope," made of either metal or concrete, the sections commonly available from manufacturers. From limited hydrau- 'n�let are and lic tests they are equivalent in operation to a headwall in both Outlet control. Some end sections, incorporating a to ed taper in their be ed sign have a superior hydraulic performance. These after sections can 179 ' O CHART 4 ' 3 2 I 0 owl ...- . _ '■■■■gym a NEI '60 70 80 90 100 DISCHARGE-Q-CFS 6 ' S F- W �1 W rV 4 c 2 d W 3 o J a U 2 1111111111111111111111111111111111111111111111111111111111111111 OEM 0 MEMO ✓ii��■■■P�/■■ DISCHARGE-Q-CFS 8 fl J a 700 800 900 10000 u U vrot,MAKbt-Q -GFS BUREAU OF PUBLIC ROADS JAN.1964 CRITICAL DEPTH CIRCULAR PIPE 184 9Z%9q STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA1 TABLE 802C STORM SEWER ENERGY LOSS COEFFICIENT (BENDS AT MANHOLES) 1.4 ,j/ I�Z'I 1.2 Lr r,oa r.cy 1.0 J:iZ o4 Y 0.8 c O.l%s m o d (b U = p4Y 0 0.6 C;i G c:5 Q,y4 0.4 0- L 0,30 O.j2 6,Z$ 05q 0 19 0.2 D•1G 0.rz 0 03' 0.cv 00 I I I I I I A- . I I I I B no nd at Ma Special Deflector hole, haping (Curved � I Bend at Manhole, Curved or Detlectorl I I Manhole I I I I I I I o^ 200 40- 60° 80° go- 100° De action ngle Y , Degrees NOTE: Head loss applied at outlet of manhole. DATE: J A N. 1 9 8 8I REFERENCE: REV* Modern Sewer Design, AISI, Washington D.C., 1980. ICI I 1 1 t STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA MANHOLE AND JUNCTION LOSSES WMq I MOT[ ►a A.j TIN •1 1.101. USE EQUATION 801 SECTION (�L_ K CASE I 3 INLET ON MAIN LINE or k= o 05 ��'l,tnlule (:1 h�a:c�Linz \o e `• USE EQUATION 805 NI_�� IL= °`j25 jec PLAN oy PLAN TABLE 803 USE EQUATION 805 A L.� o,y SECTION CASE II INLET ON MAIN LINE WITH BRANCH LATERAL ---- ---- - o—� PLAN k Vie ,z0 V-=0.:25 USE EQUATION 801 O.Z. o,., k=J•Z5 SECTION CASE 7Z INLET OR.MANHOLE AT BEGINNING OF LINE SECTION CASE III MANHQLE ON MAIN LINE CASE III WITH 90 _BRANCH LATERAL : CASE NO. K . G° KK q I 5 22 1/2 0.15 II 0.25 45 0.50 IV 1.25 60 M5 90 0.25 No Lateral See Case I Date: NOV 1984' REFERENCE, Rev: APWA Special Report No. 49, 1981 i - 26 WIUE UVLRILOW FOUR W/}I' / Ag00 N9C9 - - qb MDE BORIEO RIv-RAP ,p�.s0 - 'BA�O SIX ALK DRIVE p •0 E E DEFPEL ON DETAIL SNi. ]I III 1E S PIPE EN T PROIECTON. �_ $E SNI. 4 FOR PROFILE SE TRY uEP.E 3e rM�M ^ o ✓.nrc2pu ou LnNoacnec ,, 1 i b r: !' 9� , l L 33 0Heu3 nNO ED�TeaITW 30�' M' mSI II ��.� °9 F'. H L. U 11< REPLIED GYnLL eM �; m r o 31 ° 37 g•, ce.neec.ao To eex � k x s0 k < � � � 31 __ 25' 4I 81 � ° xn.ImaD ReocToe oEusl.v & 1 I II ' .- °Y° \ roP 1lb 30 's>D zac EPer M M s / �t l r e >>B -I — -- m 3 AAe s+veE cEPu•eur. ae . mP- . 1 1 < 1F �a < 3l0ssu 36 � / --.-32 /s / ag°a>g.>.• _ 2 < ' P � TF_BOz 1 � .I re , CtfP� Ae T{, _ _ _— �V ��`- 38 29 ;° l / 3 r _ �J 3 r 1 � - I r✓- "i, _ tune INLET !' m 3 CFpRA3S L_ a, ' LIT i Is' RICE SEE SHT_ 8 FOR PROFILE / v 6 i 4 R 591p t r ' SMr170ppgASS —_' C��?i }�� b ti G • `e *b 304 VLr 39 iP=b0.9 r r I _ _ / / I A dm y, p (r P BO Irl TF-785 0 •MAN '. n` 1 DETEN VOLUME POND 60 �'' I I�� 41 i mr � � i o a •ww��T 27 1° IDo re. wsEL-n.sD z OR wsEL-Town RELEAS vRonoeD-CFS (10 Er. < m 28 RELEASE RAC qA CFS boD ra.) r � r � ( 7 N' _ aD crs zrR / 5 m mer �m° eP 52 _ _-J im7 42 mo _��__ r 999yyy / 1 - e% 1 I 4 < n / �0 /� 5DD �� C • 9P .Ps. 4 i ' F nlr�^ e, - .. d2 ALL LOT a6 IS TO / xee Ns� i / _e4 �: 21 LE FIST' r'... wW� 8 I r I °"" I i _ I I 43 W• m De. - III T, nq o 6 m I. �l _ m m 51 i INV m 1 8'nI 1 mE - A �sBE Mn°nrcra+nnna .uwni 1° Leo n $I THE MAY r 64 . _ _ .. m.Exx 4 ww THE NEP L TIME"T w / ,T IWE u � S L xiONG s M,N r° « 1 m THHETEc1°I MAT. NCE 1 / / I14 �. _� ti •I �_! �.° 23 IEX­eRa o - MATCH E a rrlr mwAnu Evp(Sx< KDa I 6 0 I I V Q FINISHED (SAKE 9r4L Br Y. / s AN • L )1 tim ' I 44 AT I ' .hr 11 VARIES 10' ACCESS ¢ 3' MIN. °. %°Fa ONE 4EnIHC�rw STALL ME SODDED P m I y� II DRAINAGE POND EASEMENT SEASONAL pOAD 7 ED� �50 m l Y I' I NSEL a russ " r o THE DRA o. SHARP mmxsl.u<rzn IW na / uL CAMS D r! , 9W 9 ._ v1 ALLOWWO°<KWir ms(Snmur"cmx°Eomr"TO W '9 ma x a dF ry r i o n _ 2P 4:I SLOPE N. ALL LOTS MEN O.6aDT mww rlus a s f J I �.1 V (� e4� O 0� — � I 45>s GREATER SHALL IN cAsmlc T d `\ 9 b O 1' LdOM'CE M A 916I P94 (Mn) �J \ r.4 W ( ._Ni li I� 41 VAX A w P 49 er[ IP Me � IB' PE PIPE - P IHSTULED4Rx SENATEM 4CeE�a M m • �� �b I —SEE $NT 19 FOR PROFILE mE SANTu, MASS MUN. 3 46 m ° IS' PE PIPE SECTION A EYE %Ao W Cs.EWA. C[NTLMLM GRACE r •. ° p I ^ SEE SHT. IB FOP PROFILE n ONE EMN4� INSIuLLEDAATAM MWd eY Q)r LL < P UP OF 14% 2 MANI l£WAv cENRAUN[ ueDE slut a. 4 BJW 4 _ pb N - I 1 m 21 L 491E EARN LOT SMALL x FRALUA n BY A ausrtW \ , h. P �. n°' TO nxl.rANEp1TMTTHI FBI TYEE .rM Of ""IOTRUTDOM FTHE m IS aewux SYsml RRAxm "� 9 `%a • b `• M I )Y 1 >B x MSMIW W DENETO L FAY IKUY AI91m 65 � `.9a 47 ul ca., m 20 SHAALLLN NORMALLY uKl p� f49m16 ioi m.na+niADE NT ANsESHED a itARUE) e G YrtACx s M Ay7m e PrmawRTY TINE AND'ww swum I C PAS TO >_ar_�>nOf MISTYsoN nDL.".vnw N w, LU� mGRP RECORD HILL RASPED TRANS AND PROSPECT F, cH T� -_J Imo L ^i �r\ wl _ yl\ 14 vROf FwwCE cE. c. , ALL LOTS °ai 'm .P4BUILT III TI OPENINGS AT LESS OMAN IKE ICU, rj� MINIMUM ELEVATIONS $HOWN. FOR GUYS BEEN Am A CMIFICATI" OF WE AP -BUILT MUM r9°G Ssi[% s ByJ L_-.. xl t0'TPFwcup AxL�r �H o .. oxTO 3. THE CITY PRIOR TO RELEASE OF THE f+@n - 49A8<° /1S `A 0 - 1 +.cn =� t IOD MENACE FROM SAC SOON MAY ROAD TRY GROUNDWATER LEWLA (SBf"ay �• r09 �� ��8j1 `ea ___ 'ti,! i PRELIMINARY ASA / < EN ING MAKER 7 - -- _.' o NOT usa far DAN.a a DOWN NXx or CA LOON D.MA°E:" W -83 7 �� N 7 �i' euuvuatNnpRonnsy US&TANITSre..1m .ND,w SCAM CONTROL : a 2,e� I 2� v 3 rF_828 (F `e2 ,, LEGEND PROGRESS I THE I � FCN ... DAL.(S. - rNL"� sN u . RsnT 6 IWr"MD�IT W`s - A' / A OR D FHA GRADING DESIGNATION °is MI �.� N �� /3 �. _ —160 PROPOSED SPOT ELEVATION ♦y �! aD 15 nu mP - 17 4979 m 1 - 9 — PROPOSED CONTOUR -02w _ie_ 5096 EXISTING CONTOU R SCALE Y-50TF. FOUNDATION D CONCRETE • O 3]' DITCH EASEMENir— FOUNATON WALL — r L_ DATE OF FORD MAY ], 1992 MAIL CREEK DITCH - _ --- NOTE NO ASEMENT FINISHED FLOOR ELEVATION SHALL BE LOWER THAN 84.5 PLO PAC Si.n i� I6 EnyinceNnq Consultants THE UPPER MEADOW AT MIRAMONT P.U.D. FHA GRADING PLAN - - — FIRST FILING 21 6 NO. BY DATE REN40N DF$('vu - Existing Harmony Market eb / �o / 1 ® nb:l r.J. r.r •.. ' fo.JI and M°... ,'" date, Or s• I p� E%12T. DPed 6NANNEL \Add. li�m `-_ Ar / \ �; Existing Oakridge Development I .ex... 40 u �O�AND Two an. 70 N'Fwcwa 4' EXKT. BG" RC P'S am 014-1 .m v .. m n •., 111. ItWe" ,e im�� TV had, MAIL Barley It >sfTIDB♦-• ` ,` EX15T. iP CURB INIEj ®ml,/�•I V'p"•�•O•"D I \ OUTLET PIPE GRAVEL_ w'., vrt.a s unav vs. BASIN, I.I a,, ree., ... J p t"y a ,... I` ,A. / \ i/' FILTER { EROSION Q'� CCC/ � a����1��ry'r / ♦ m B^px ny\ BALE CHECK DAM ., IV, VIAr* DELTA 81PR�P6 O na.o/M �� • mano FUHq: 611e �.0>_BDT / • 'a, do e. Ma y= A �, r ow Fs.n o.n.on wEn FALL FYti / ffa�5ucrlol. ts" p to WIDE P.wNI WWA �0 dam. . � 0.6b D..."en, SLATIMIL Mal 9.2 IL �o TV .'ism..su j 9Z 9 \SS s�e0� s TV �. �N m ITS w a / �� • : � In riw. \ mw NET 10 5y'PIN m 0s / a b yw. os x TEMVY;PTRY PWD N. unu� 9H MAX L vC wrtx Q.yAr ..W MA EL. L2.'A e me Ay OLJU it's AC L'p ecm PE PIPE \ rwus a�>>PA�e �rtnx JV J \ 968 CLASS 6 TTI. ILY .329 ALPHA? a secnox _ � SIN M4 � of 1S'tVP 'R" ice. 41L ass O6fXEQEINWBTGtIOi > "-mql� D..'6.i/ n BBe _ e o� ww rwD�rw ra.rt z rope vwa•D5U-..lH 4 >'WIMOA4 tnwae rrua Qf 5.6 LFb Cott SIRET 1i It thor MALT Rpl plw..r�fYK F✓r4 WAse..m, de TV .m .w WWu.. Pni Fegr ob ,CTME-f �_.�..">/.. �e.�e� Mim�.0 Cent, VI FT. ; . � / I.xa. L. k ,.. .,.......� ....... Amm, Vat _"1 y 5 Rod" ..a l.f�. w../b DL ca/e.l ftn, D .. � \ jv m vM,..�O�woef. ic.n �'Z wit The F,R.I / �� 3P a ....,LIN sr. D'n W<.m.nl IIJ DIKE ILRB vam a w* / DIRK SS L, i / \p TA K M1/Ya.r onb)v. v.Td.IwPv cuss 1. /+ / j F90'L a92a / wss I f �% 2S ad ENERGEN r i RifRAP g� Or=2.; LEGEND �. CPS 4. G,FB' W. �' ,� RROW WER �. ICO YR. ENE[GENCY/� / / / / B _ m_ .6 EK —_ -"� ��-I. STRF{rLT��ro .� BASIN DESIGNATION $', ` -- • CURB INLET e / P /�dn GRA%EL GILTER In �' m � /'I /�•_ I t I h „�--�. - BOARD � s..- �✓ '42'RCp/ 1.06 AL BASIN AREA not r / DT. I � �/ �y47 , �..� BASIN DAAY dl�BOUN OESIpN PONT ffS ,�\ /__ \ 1.' AVERAGE STREET SLOPE FORT OP BS CFS •w nT M(fc6 IT �>n.— EXISTING CONTOUR DRAI GE "W BE L � I F �_ ____ A L Dm-JLT cPs ,/ saver n A REDNto TO /� �� I I �,I — �� ` /� i oe uAoc ansgL..n �� I �> SIB I I _ 5EDIMEN( SRAP i y PROPOSED CONTOUR (� [/d ' Y WTIET PIPE GRAVEL FILTEQ "e®I Le u.uy.........-. BEARDWPLK OK. J _ L EROSRM BALE CMELK W.M .�.. '^unur....... u..... __LINKdedeleade _ ` �: a j dene,w...c,,et:.-�X.I== W«r /ERo510N BALE AlB 4. V.50ere" he10 ALILL IMM,MLIM f/ / CHECK DAM AT VOLUME • 3.064AT FT. �T .�.I.. Led At. �need �~_ �+«i ,IT I -I-. YaunaD en.9s. j.o cS1. .... .�... .. ...... r+..r,. A.^i..yu �JE+[`�r-�i��j.�,',} / ---- ve¢voenrc 11 ILL jl\ / I uWOM .. u..ILL u ...u.I. �... .. "Leellet _ j / T.EL .. rI. ue1M.[.. for pr.vnaa W i..Wru%/[aver � _...I.... M.... I_.. _... �IT ..;�1.:.t. ..1�... 'ALA ..................., .. . _ /% AILL. .T �ui�` C-1 I Ill Lest ther.l. Le L.II, de Thee \\ III` �• `g'°u.P nee6r. �'.._f. ti.t y—....`-SRI.... .. al-� / // ill O I'll r .I ' /�'ti" Ali `. ...'." ... r ... dm� x // so, s.P. RE51oENT1AL \\, �\ r: MAI.... -. -- } I PRELIMINARY ;X: ..--. -- •�••—•••T m PDO NOT use la. may orslime A%I`A yI \ e .' _ _� ea_u . ..r a er.. Jm n .,..ro.w e. the *,IT .r a. ... .... . ....,....A tjoy ..m., .r ..r, Ja At ,.en \`` \ se- IM 10 IIM2 hall Do To Mete' L� Eg21. BERM\ V ` _ 0.4 a. I. 1 DD2 _ - _ - _ 0bC Avez\ �. �C� ..�. Le .� / >I cr ,er...anr"s to ..,..r rr.ror. ....raCr a. ON R E-DITCH - ,/l / Ill Tork4ftIlto ..: _ .. .. ......rra..r, r.....ba....)IIIJ III the M1 \ / _ _ • �/ ' wee . . 11 � Ias AC D • 13.6 — / 11 ��w _I'll mrTh e BQ�G .a .... a delle, ILL _ Ateadateddene ALL m. - - _. .. _.... 0866 Li.•."�..11ua 11 Tf I Scale L' 100.0' ..A � —� �� �����" �._ 1 � A �� / � - - �!sf� -IN.D -eD.e on lots m... / e / y / l __, ad DLH KwL ,°U 600 cDlel.nBMW SHEETS SNEE' OPAWN DEs16NED CHECKED :WL, unamE rm.m eaem THE UPPER MEADOW AT MIRAMONT P.U.D. Engineering CDnSultants 053JR.F DRAINAGE AND EROSION CONTROL PLAN '11 4 Sad-DOI xaoD s� :. i1 laD ns 9uf b. w.n.9uN. ml APPROVED DATE PRmecr No. 6aem Wil,Dew..e'°""ii y FIRST FILING NO BY DATE REVISION DESCRIPTION ]OL]]64911 "969tl:v. �' ]6V.ML1