Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 01/03/2007
City of Ft. Collins Approved Plans Approved By Date Final Drainage and Erosion Control Report Lind Property, Filling 2 Stantec 1 1 1 1 1 Final Drainage and Erosion Control Report StanteC Lind Property, Filling 2 Fort Collins, Colorado January 5, 2005 U 11 Stantec Consulting Inc 209 South Meldrum Street Fort Collins CO 80521-2603 Tel: (970) 482-5922 Fax: (970) 482-6368 stantec.com 0/11 StAnteC Mr. Basil Hamdan City of Fort Collins Water Utilities --Storm water 700 Wood Street Fort Collins, Colorado 80521 December'29.2006 ' RE: Final Drainage and Erosion Control Report for Lind Property, Filing 2. Dear Basil: We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion Control Report for Lind Property, Filing 2. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. ' We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. ' Respectfully, The Sear -Brown Group Prepared by: ;RKevied by: 14 John Gooch, EIT Jim Allen -Morley, P.E. Project Engineer Project Manager 1 r TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION 5 A. LOCATION 5 B. DESCRIPTION OF PROPERTY 5 II. DRAINAGE BASINS 5 A. MAJOR BASIN DESCRIPTION 5 B. SUB -BASIN DESCRIPTION 6 III. DRAINAGE DESIGN CRITERIA 6 A. REGULATIONS 6 B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 7 C. HYDROLOGIC CRITERIA 7 D. HYDRAULIC CRITERIA 7 E. VARIANCE 7 IV. DRAINAGE FACILITY DESIGN 7 A. GENERAL CONCEPT 7 B. SPECIFIC DETAILS 8 C. DETENTION PONDS 11 D. SWMM MODEL 12 E. STREET CAPACITIES 12 V. STORM WATER QUALITY 12 A. GENERAL CONCEPT 12 B. SPECIFIC DETAILS 13 VI. EROSION CONTROL A. GENERAL CONCEPT 13 VII. CONCLUSIONS A. COMPLIANCE WITH STANDARDS 14 B. DRAINAGE CONCEPT 14 C. STORM WATER QUALITY 15 D. EROSION CONTROL CONCEPT 15 REFERENCES 15 APPENDIX VICINITY MAP/SWMM MAP PAGE A RATIONAL METHOD HYDROLOGY/STREET CAPACITIES B SWMM POND SIZING, RATING CURVES, WQCV, ORIFICE, & C OVERFLOW WEIR CALCULATIONS STORM INLET SIZING: UDINLET D STORM DRAIN SIZING: UDSEWER E SWALE SIZING & RIPRAP CALCULATIONS F EROSION CONTROL CALCULATIONS G DRAINAGE & EROSION CONTROL PLAN DRAWINGS & DETAILS H ' FINAL DRAINAGE AND EROSION CONTROL REPORT ' FOR LIND FILING 2 FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION A. Location Lind Property is bounded to the north and east by the Reservoir No. 8 Outlet Canal, ' to the south by County Road 52, and to the west by County Road 11. The property to the north, south and west of the site is agricultural land, and Richard's Lake Subdivision (rural homes) makes up the property to the west. Lind Filing 2, is ' located due east of Lind Filing 1, and is located in the southeast quadrant of the Lind Property Site. ' The Lind Property site can also be described as situated in the west half of Section 29, Township 8 North, Range 68 West of the O P.M., of the City of Fort Collins, Larimer County, Colorado, and comprises approximately 173 acres (see vicinity map Appendix A). Filing 2 is approximately 45 acres and is located in the southeast corner of the site. ' B. Description of Property The Lind Property, Filing 2, consists of 104 single-family units, 17 alley -load units, ' and 30 multi -family units on approximately 45 acres of land, which is currently fallow agricultural land. The topography of Filing 2 generally slopes northeast to southwest (towards County Road 52 and away from the No. 8 ditch at varying slopes from 1.0 percent to 5.0 ' percent. ' IL DRAINAGE BASINS A. Major Basin Description The Lind Property development lies within the Cooper Slough Drainage Basin. The Cooper Slough Drainage Basin generally flows north to south and ultimately drains into the Larimer and Weld County Canal. 1 5 ' There are two major historic drainage basins (Al & A2) that contribute to the existing storm runoff that travels through Filings 1 and 2 of the Lind Property site. ' Major Basin, Al (44.5 acres), drains southeast at an approximate slope of 1.5 to 5.0 percent. The stormwater from this basin collects in an existing 12" CMP culvert, is ' routed under County Road 52, and is released via overland flow onto the adjacent land south of Lind Property. Major Basin, A2 (66.3 acres), drains southeast at an approximate slope of 1.0 to 3.0 percent. The stormwater from this basin is collected in a second existing 12" CMP culvert and is also released on the property south of the Lind Property site. It is important to note that the Lind Filing 2 plans provide for 11.55 acres of the Historic Basin A2 being routed north and included in Historic Basin A3, rather than contributing to Pond 100, as shown in the Lind Filing 1 Drainage Report and Plans. This change in Historic Basin Areas is accounted for in the provided SWMM Model. ' The change accounts for 99.25 acres (of the 110.8 acre historic basin area) being routed to Ponds 100 and 200. 81.6 acres will be routed to Pond 100, while the ' remaining 17.7 acres will be routed to Pond 200. Major Basin, A3 (64.2 acres +11.55 acres), drains to the east and ultimately into the Number 8 Ditch. See Lind Filing 1 Drainage Report for details on this basin. The Historic Basins, taken from the Lind Filing 1 Drainage Report, can be seen in the ' Drainage Exhibit found in Appendix B. B. Sub -Basin Description ' Three Major Basins provide drainage patterns on the subject site and are in a ' southeasterly direction (see Existing Drainage Exhibit in Appendix B). The Existing Drainage Exhibit will be updated upon the construction of Lind Filing 1, and will show the addition of 11.55 acres to Historic Basin A3, as mentioned above. The updates will reflect the developed basins of Lind Filing 1 and Filing 2, and will be ' represented by the SWMM Basins replacing Historic Basins Al and A2. The SWMM Basins will account for 99.25 acres, while Historic Basin A3 will account for the remaining 75.75 acres, of the Lind Site. III. DRAINAGE BASIN CRITERIA A. Regulations Because the Lind Property, Filing 2 site is located in the Cooper Slough Drainage Basin in the City of Fort Collins, the criteria is to detain the 100-year developed stormwater runoff and release at a discharge rate set by the City of Fort Collins. The Urban Storm Drainage Manual (published by the Urban Drainage and Flood control 6 11 ' District — Denver, Colorado), the City of Fort Collins Storm Drainage Design Criteria, and MODSWMM have been used to calculate the stormwater runoff and ' design the storm water facilities for this site. At this time, 4.0 cfs will be the cumulative stormwater release rate for the detention ' ponds within Lind Filings 1 and 2. Pond 100 will have a maximum release rate of 3 cfs, while Pond 200 will have a maximum release rate of 1 cfs. ' B. Development Criteria Reference and Constraints The criteria and constraints from the City of Fort Collins will be met. C. Hydrologic Criteria ' The Rational Method for determining surface runoff was used for the project site. The 2-year and 100-year storm event intensities were used in calculating runoff values. The City of Fort Collins intensity duration frequency curves were used to obtain rainfall data for each storm specified. Detention pond sizing was computed using MODS WMM. The water quality for the pond was computed using the Water ' Quality Capture Volume equation from the Urban Storm Drainage Criteria Manual, Volume 3. These calculations and criteria are included in Appendices B and C of this report. D. Hydraulic Criteria ' All hydraulic calculations within this report have been prepared in accordance with the City of Fort Collins Drainage Criteria and are also included in the Appendix. ' E. Variance ' No variances are being requested at this time. IV. DRAINAGE FACILITY DESIGN ' A. General Concept The majority of the runoff produced by the Lind Property, Filing 2, development flows via curb and gutter, cross -pans, inlets, swales, and storm pipe to the proposed detention ponds located at the southwest and northeast corners of Filing 2. In addition, the maj ority of Filing 1 off -site developed basins F 1 through F 16, and OS 1- OS7 will also flow via curb and gutter, cross -pans, inlets, and storm pipe to the proposed pond in southwest corner of Filing 2. It is important to note that Filing one ' basin numbers 45-48, and OS3-OS5, have been replaced with the basins shown in the Filing 2 plans. 1 7 ' The capacity of the pond in the southwest corner of Filing 2, takes into account storage for all contributing basins (81.6 acres) from Filings 1 (see Lind Filing 1 ' plans) and Filing 2. The pond in the northeast corner of Filing 2 will detain stormwater from only a few basins (17.7 acres) in Filing 2. Filing 2, basins 9,14, 20, and OS5, will flow overland and into the Number 8 Ditch, as historically occurred. The total area of these basins is 4.70 acres, all of which will be grass. As mentioned in the Filing 1, Drainage Report, the City of Fort Collins is currently ' preparing a Master Plan Update for storm water in the Fort Collins area. The master plan states that the area of Lind Property shall release its storm water into a future ditch that will run along the west side of the existing No. 8 Ditch on the Lind ' Property and on the Maple Hill Subdivision. Because this plan is not finalized, the current plan is for Pond 200 to release directly ' into the No. 8 Ditch at a maximum rate of 1.0 cfs. Stantec met with The Windsor Reservoir & Canal Company's Engineer and came to an agreement on the 1.0 cfs release rate into the No. 8 Ditch, as well as establishing erosion control measures at ' the release point. B. Specific Details Lind Farm Filing 2 contains approximately 45 acres. Filing 2 has been broken into 30 on -site drainage basins and 6 off -site basins. It is important to note that off -site ' basins OS1-OS6 have replaced some of the basins from Lind Filing 1, in order to simplify the drainage for the site. Furthermore, all contributing basins from Filing 1 ' have been accounted for in the storm drainage SWMM model to size the detention ponds for the site (see SWMM exhibit in Appendix Q. The attributed 100-year runoff from basins in Filing 1 and the majority of basins :n Filing 2 was used in sizing the southwest detention pond. The 100-year runoff from the remaining basins ' within Filing 2 was used to size the northeast detention pond. The Lind Filing 2 SWMM model provided for 60% impervious and 40% pervious for residential areas, ' and 10% impervious and 90% pervious for parks and greenbelts. Basins 1 & 2 Basins 1 and 2 will convey their flows overland, then south along Beachcomber Lane towards design points 1 and 2. The flows combine at Brightwater Drive (Lind Filing 1) and are routed west, along the north side of Brightwater Drive, where an existing ' 15' Type R Inlet (in sump) captures the combined flows from Basins 1 and 2 of Filing 2, and basin 34 of Filing 1. 11 I Basin 15 Basin 15 conveys its flow overland, then south along Bar Harbour Drive (Lind Filing 1) toward design point 15. Runoff from basin 15 combines with flows from basin 37A of Lind Filing 1, and continues south towards design point 37A. Here, the ' combined runoff from the two basins is captured by a 10' Type 13, Combination Inlet. The runoff from basins 15 and 37A is routed west in the proposed storm pipe to the existing 60" RCP, running south in Bar Harbour Drive. The 60" RCP carries flows from Filing 1 and flows from basins 1, 2, and 15 of Filing 2, south and then east into the detention pond located in the southwest corner of Lind Filing 2. It is important to note that the 10' Type 13 Combination Inlet will be installed withFiling ' 1, and will be shown as a revision to the Filing 1 plans. The inlet is necessary to maintain the 2-year street capacity along the east side of Bar Harbor Drive. ' Basins 3, 4, 5, & 5A Basins 3 and 4 convey their flows overland and onto Brightwater Drive, where a 10' Type R Inlet (in sump, design point 3) and a 5'Type R Inlet (in sump, design point 4) capture the attributed flows at design points 3 and 4. Once captured, the flows from basins 3 and 4 are conveyed northeast in the proposed storm drain. Meanwhile, runoff from basins 5 and 5A flows overland and onto Beachcomber Lane, where two, ' 5'Type R Inlets (in sump at design points 5 & 5A) capture the flows at design points 5 and 5A. The combined flow is routed east, then south in the proposed storm drain and combines with that from basins 3 and 4. Here, the combined flow from basins 3, ' 4, 5, and 5A is conveyed east, then south into detention Pond 200. ' Basins 6, 7, 8, 19 & 12 Basins 6, 7, and 8 convey their flows overland and towards their respective design points, along Thoreau Road and Bowside Drive. Ultimately, the basins combine and flow south along Thoreau Road, then west along Bowside Drive towards design point 8, where a 10' Type R Inlet (in sump) captures the combined flow. Likewise, basin 19 conveys its flow overland and toward design point 19, where a 10' Type R Inlet ' (in sump) captures the flow from basin 19. The flow from basin 19 combines with that from basins 6-8 in the proposed storm drain and is routed east towards detention Pond 200. Meanwhile, basin 12 conveys its flow overland, then south along Thoreau ' Road towards design point 12, where a 10' Type R Inlet (in sump) captures the flow from basin 12. Once captured, the flow from basin 12 combines with that from basins 6-8, and 19 in the proposed storm drain, and is conveyed east into detention Pond 200. Basins 10 & 11 ' Basins 10 and 11 convey their flows overland and east towards the proposed swale (Swale B in the plans). Once in the swale, the flow from basins 10 and 11 is conveyed south and into Pond 200. It is important to note that the swale will have a Class D, Sod Former throughout its length to mitigate erosion (see calculations in Appendix F. Furthermore, North American Green C350 erosion control fabric will 1 9 I 7 U 1 1 L� I 0 11 be installed where Swale B enters Pond 200 to mitigate erosion to the pond embankment. Basin 13 Basin 13 is primarily comprised of the northeast detention pond along with green and hard areas from the residential units. The residential portion of basin 13 conveys its flows overland and into the detention pond. Basin 13 is the ultimate design point for basins 3-8, 10-11, 12-13, and 19. It is important to note that North American Green C350 erosion control fabric will be installed where the trickle pan enters the south end of Pond 200 to mitigate erosion to the pond embankment. Basin 13 will discharge at 1.0 cfs into the Number 8 Ditch, in accordance with the proposed SWMM model. Basins 9,14, 20, & OS5 Basins 9, 14, 20, and OS5 convey their flows overland and into the Number 8 Ditch, as historically occurred. These basins will remain green/park areas and therefore will continue to provide their historic runoff to the Number 8 Ditch. Basins 16-18 Basins 16-17 convey their runoff overland and ultimately towards design point 16, where a 15' Type R Inlet (in sump) captures the combined flows. Meanwhile, basin 18 conveys its flow overland and along Bowside Drive towards design point 18, where a 5' Type R Inlet (in sump) captures the flow from basin 18. The flow from basins 16-18 combines in the proposed storm drain and is routed east and then south into detention Pond 100. Basins 21-25 Basins 21-25 convey their flows overland and ultimately onto Clarion Lane. The flows from basins 22-25 combine and are routed south along Clarion Lane, where they ultimately combine at design point 25. Here, a 15' Type R Inlet (in sump) captures the combined runoff from basins 22-25, and conveys the storm flows west in the proposed storm drain. Meanwhile, the runoff from basin 21 is also routed south along Clarion Lane towards design point 21, where a 5' Type R Inlet (in sump) captures the flow from basin 21. The flow from basin 21 combines with that from basins 22-25 and is routed west in the proposed storm drain and into detention Pond 100. Basins 27-29, OSI, OS3, & OS4 Basin 27 conveys 65% of its flow overland, then south along Thoreau Road towards design point 27, where a Quadruple Type 13, Combination Inlet (on -grade) captures the 12.37 cfs flow from basin 27. The remaining 6.66 cfs flow from basin 27 flows overland to the east and into the proposed swale (Swale A in the plans), running south along the east side of Lots 1-6. Once in the swale, the flow from is conveyed south and into the proposed area inlet at the southeast corner of basin 27. The 6.66 10 I I u 11 I 7 I cfs flow is conveyed west in the proposed storm drain and joins with the 12.37 cfs at design point 27. Basin 28 conveys its flow overland, then south along Thoreau Road towards design point 28, where a Double Type 13, Combination Inlet captures the flow from basin 28. Once captured, the flows from basins 27 and 28 combine in the proposed storm drain and are routed south and west along County Road 52. Meanwhile, basin 29 conveys its flows to 5 capture points. Nyloplast inlets at the south ends of the alleys and also at the south ends of the proposed drainage swales between the multifamily units, capture the flows from basin 29, and route them ultimately to design point 29. The storm flows from offsite basins OS 1, OS3, and OS4 convey their flows overland and ultimately onto County Road 52, towards design points OS3 and OS4. Here, the flows are captured by an existing Double Type 13 Combination Inlet (in sump) at design point OS3 and an existing 5' Type R Inlet (in sump) at design point OS4. Once captured, the flows combine with that from basins 27-29, and are routed west and north in the existing 38"x 60" HERCP and 48" RCP and into detention Pond 100. Basin 26 Basin 26 is primarily comprised of the detention Pond 100, along with green and hard areas from the residential units. The residential portion of basin 26 conveys its flows overland.and into the detention pond. Basin 26 is the ultimate design point for Lind Filingl on -site, off -site and future basins, and basins 1-2,15-18, 21-29, OS I, OS3, and OS4 of Filing 2. Basin 26 will discharge at 3.0 cfs into the existing swale along the south side of County Road 52, and will be conveyed east and ultimately into the Number 8 Ditch Basins 9,14, & 20 Basins 9, 14, and 20 will flow overland and into the Number 8 Ditch, as historically occurred. These basins will be grass/greenbelt areas, and thus will remain at their historic runoff rates. Basin OS6 Basin OS6 will capture offsite flows from the north and convey them west/southwest in the proposed swale (Swale C in plans) north of Block 7, Lots 1-10. Swale C will route the flows southwest and into the existing 42" RCP from Lind Filing 1. ' C. Detention Ponds Detention Pond 100 (southwest pond) will provide 21.93 acre-feet of detention, ' which includes 1.93 acre-feet for water quality. Basins from Lind Filings 1 and 2 contribute 81.6 acres to Pond 100 (see SWMM Exhibit in Appendix Q. The 100- ' 11 ' year water surface elevation is 5020.84, which is 0.14' higher than that shown in the Lind Filing 1 Plans. The freeboard elevation for the pond will be 5021.84. An outlet ' structure will provide for a maximum release rate of 3.0 cfs. The outlet structure will release detained flows into an existing Swale on the south side of County Road 52. Here the flows'will be routed east and ultimately into the Number 8 Ditch. In the ' event the outlet structure for the pond becomes plugged, nn emergency spillway, located in the southeast corner of the pond, will release flows onto County Road 52. The outlet elevation for the spillway is equal to the 100-year water surface elevation. It is important to note that the spillway will be built with Lind Filing 1, and the detail may be found in the Lind Filing 1 Plans. Detention Pond 200 (northeast pond) will provide 4.52 acre-feet of detention, which includes 0.42 acre-feet for water quality. Basins from Lind Filing 2 contribute 17.7 ' acres to Pond 200 (see SWMM Exhibit in Appendix Q. The 100-year water surface elevation is 5028.98, and the freeboard elevation of the pond is 5029.98. An outlet structure will provide for a maximum release rate of 1.0 cfs. The outlet structure will ' release detained flows into the Number 8 Ditch. In the event the outlet structure for the pond becomes plugged, an emergency spillway, located at the southeast comer of the pond, will release flows into the Number 8 Ditch. The outlet elevation for the ' spillway is equal to the 100-year water surface elevation. D. SWMM Model ' hi order to analyze the detention ponds within the Lind Filing 2 development, the Urban Drainage Districts MODSWMM routing computer model was used. Refer ' to the attached SWMM Exhibit in Appendix C for Particular Details. ' E. Street Capacities The 2 and 100-year street capacities for Lind Filing 2 were calculated using the ' Rational Method. The proposed local, connector, and collector street designs, within the subdivision, meet the required 2-year and 100-year street capacities (see calculations in Appendix B). 1 - V. STORM WATER QUALITY ' A. General Concept ' The State of Colorado requires Stormwater Management Plans as part of their permit process. The Lind Filing 2 site development is anticipating construction beginning in April of 2006. Therefore this study has sought to find various Best Management Practices for the treatment of storm water runoff that could be implemented in the construction phase of the project. ' 12 11 ' B. Specific Details ' Best Management Practices (BMP) for the treatment of storm water runoff has been incorporated into the final design for this project. This will include extended detention and grass -lined ponds that will trap sediment. Best management practices ' to be used during construction include gravel inlet filters, vehicle tracking pads, straw bale area inlet filters, and seeding and straw mulch crimped into areas where grading has occurred. ' Detention facilities will have adequate capacity to provide water quality capture volume before being released. The ponds will have adequate volume between the spillway elevations and the water quality control volume elevations to detain the developed 100-year storm. If the outlet structure for either pond should ever become plugged, the ponds' spillways have been designed to prevent the ponds from ' overtopping by providing a controlled release while maintaining one foot of freeboard. In the event the ponds utilize their spillways, stormwater from Pond 100 will be released south onto County Road 52, while that from Pond 200 will spill east ' and into the Number 8 Ditch. VI. EROSION CONTROL A. General Concept The Lind Filing 2, site lies within the Moderate Rainfall Erodibility Zone and the ' Moderate Wind Erodibility Zone per the City of Fort Collins zone maps. The potential exists for erosion problems during construction, but should be minimal after completion of Lind Property, Filing 2 development. Silt fence will be installed along the south, east, and west sides of the site to prevent sediment from leaving the site. ' Tracking pads will also be placed at entrances/exits to the site. Silt fence will also be placed along the south side of County Road 52, where necessary (see recorded ' County Road 52 plans). The computed Erosion Control Performance Standards (PS) before and after ' construction are 77.4 and 91.0 respectively. Furthermore, the effectiveness values during and after construction are 95.3 and 97.6 respectively. These computed values meet the City of Fort Collins requirements and can be seen in Appendix G. An erosion control escrow cost estimate of $61,806 (price includes 50% contingency) is also included in Appendix G. This represents the cost to re -seed the entire project, tnot the cost of the erosion control methods required for construction on the site. 1 13 1 0 B. SDecific Details ' A silt fence will be installed prior to grading of the site, as shown on the drainage and erosion control plan. Upon Phase One construction of detention pond 200 and the ' outlet structure, the detention pond shall be straw mulched. All other disturbed areas not in a roadway or greenbelt area shall have temporary vegetation seed applied within 30 days of initial disturbance. After seeding, a hay or straw mulch shall be ' applied over the seed at a rate of 1.5-tons/acre minimum, and the mulch shall be adequately anchored, tacked, or crimped into the soil. Those areas that are to be paved as part of Phase One must have a 1-inch layer of gravel mulch applied at a rate ' of at least 135 tons/acre 30 days after overlot grading is completed. The pavement structure shall be applied within 30 days after the utilities have been installed. t If the disturbed areas will not be built on within one growing season, a permanent seed shall be applied. After seeding, a hay or straw mulch shall be applied over the seed at a minimum rate of 1.5 tons/acre, and the mulch shall be adequately anchored, ' tacked or crimped into the soil. In the event a portion of the roadway pavement surface and utilities will not be constructed for an extended period of time after overlot grading, a temporary vegetation seed and mulch shall also be applied to the ' roadway areas as discussed above. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Health NPDES permit has been obtained such that ' construction grading can continue within this development. VII. CONCLUSIONS A. Compliance with Standards ' All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. The City of Fort Collins Storm ' water Utility will not maintain the on -site storm drainage facilities within the Lind Filing 2 site. The owners of the Lind Filing 2 site will maintain their on -site storm drainage facilities on a regular basis. 1 B. Drainage Concept The proposed drainage concepts presented in this study and shown on the utility plans adequately provide for the transmission of developed on -site runoff to the 14 I 7 H 1 1 proposed detention ponds. The combination of on -site street capacities and the on - site storm sewer system will provide for the 100-year developed flows to reach the proposed detention ponds. The release rates of 3.0 cfs and 1.0 cfs for Ponds 100 and 200, respectively, will be adhered to. If groundwater is encountered at the time of construction, a Colorado Department of Health Construction Dewatering Permit will be required. C. Storm Water Quality The final design addresses the water quality aspect of stormwater runoff. The grass - lined swales and detention ponds and extended detention will provide an opportunity for stormwater pollutants to filter out of the stormwater runoff before flows are directed to the Cooper Slough Drainage Basin. D. Erosion Control Concept Proposed erosion control concepts will adequately provide for the control of wind and rainfall erosion from the Lind Property, Filing 2 development. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance standards have been met. The proposed erosion control concepts presented in the final report and shown on the erosion control plan are in compliance with the City of Fort Collins Erosion Control Criteria ' REFERENCES 1 1 1 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, Revised January 1997. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991, Revised January 1997. 3. The Urban Storm Drainage Criteria Manual (published by the Urban Drainage and Flood Control District — Denver, Colorado — June 2001). 15 11 I I APPENDIX I I I I I 1 1 1 1 VICINITY MAP/SWMM MAP 1 I i 7 1 1 1 1 1 1 1 1 v' I C I N I 150""Y'r SCALE: 1 2500' Legend 0 DRY CRECICBASIN ❑ BORELDEIR CREEK BASIN �❑ COOPfyR SLOUGIIBASIN GRTTNBRIAR/F.VEILGRBEN BASIN ❑ wES"P VINe BASIN ❑ OLD I'OWNNORTIITRIBUTARYSUB-BASIN ❑ OLD IOWN BASIN ❑ CANAL IMPORTATION BASIN SPRING CREEK BASIN ❑ FOOTIIR,LS BASIN FOX MEADOWS BASIN C MCCLBLLANDSlMAIL CREEK BASIN ❑ FOSSIL CREEIC BASIN "' CITY LIMITS — URBAN GROWTH AREA C1T O11O n COLLIH, GEOGRAPHIC INFOp 11011 MEIN MDUM emu-s.aw�uwr�..µy ...._. tib•n .r Mnr.. r...r..Wr December 04, 2001 1" = 6000 Feet N tVR I 1 1 1 i 1 1 1 H 1 1 1 1 1 1 1 RATIONAL METHOD HYDROLOGY/STREET CAPACITIES 1 I v Existing Rational Calculations for Entire Lind Property 11 PL]D99 rv..m.n .�nmlf P.M., 0.2W PIsIW Cp me]aMl M.npDM9apNMD99k p pal iW: lf\ po)\91fp\(famr�f\l ]pcnp�d�n\yo9.pp� �p PI�WL IbY 00] - lA]pn MOJ.:I[W59 V � I- N m O � N r N 6 M V 'T � � O O O O p� N N N � O �a M O O LO Cl CD N GO 11 L e�- d h Q. 3 O o N LL 0 .c W N Q Q M Q N Cl) a� 0 N N N N N N ID to G n m O UJ s m c s s a 0 L I I N � U N M N m a3 CO O O O O C - d N d O O cis N n O Q J V Ci E j M Q' c o U L �o 0 0 0 0 0 O 0 V O M 11 � ayN O W N b N 9 U O n O CoCO O CD 0 U O 00 N N L N N L N N ^< N O O ` O n Q Co L m m 0 m il I.1 A I,1 4 + p ^ _ O 1` 00 �i I I i1 Y < Q M W C J £ m n N r 0 o r n m n r W W F- W IL O W QU) a F J W m z w a°° a Lr,. ~ U F U` wn prn9.a.. w N J W F O Z W WLLI a 0 o N N J c Q F Z 2 ~ oo os= Z w J F Q Q z W Of as m Z mQZ�a¢a:' m I0 + 0 t` II V W 1, \\° \If � § ~{ \ z yr \ / j 4 > > �\ }m \ >L- cr 0E\\�ma2\ k&~, 6 0 co 0 )�~��� A// c \\\ _ §-\ § \ 2 ju \ .k {( °\//\ §J \ \/ /° 0/ _ > / }\`///\ \} (° \j \° \ mk^J} \/ co ° ` \/ A \/}- >7< k/» < JE m .1 .� .J .I |1 �) t Z0 L an /!a§\ \D!E \ \IG:\ § G= \ LL ) : [� \ .®ƒ §g2( }!gG} /e\ w3\ ! ! No Text I 1 11 -D 1] 1. u Proposed Rational Calculations for Lind Filing 2 I F on0000000e.0000a e^oo^000�oaoQooaQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o d o 0 0 0 0 0 0 0 0 0 0 0 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o m 0 m PA 0 0 0 0 0 0 ............... 0 0 0 0 0 0 0 0 0 0' ..... - d o... id N N m. m^ W b m m N m m m m mm m.. m rn rn rn-- .,p P n m d d rn O 10 P N N O n n N O N N N ................. NN d N O d P N N N N m O O O N I O m n N N P m 1p 10 N n m N N O N -n^ N YI N l7 O N N N N o N p N N o F m o n rn n o m Q^ o In m N o t0 /D p m Q ft O m n m m p C N N Ih O O N N MmnOn ^n OQ l0m�mdfrn N n�d(Om N.: N N N N N N N [NV N N N N N N {NV ............. N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O Ct T T mTT m m m m m m m m P m m m m m m m N Nq ONi ONi N ONi ..................... 0 0 ....... 0 0 0 0 0 J �I N Y to ll LL � drv�n m�com E na�N� o � ob nry c�nm m ry vio mmm mmmmm °'=on`�`�nrvnnao�c�m O 2onnrvrvrvNm Ana NN NNrvNN ry NN W W p= oa moNN r n m ���no� a � r w " �w m aaa¢aa a a333aa33a a a a3 a a a¢ as a¢ aaaaa33a Z m a a a m m a a a 2 U 2 ?'fir 0000a,�QQoo 0 ............... aman�c'3an mo ego ovi�nm nmor em�mm� n a m m �`: No aNONmnan N mry roc �mNn Y.-�nm 0 rc w >aOm NaNNco oo 00000000ryN 000 o,00000000aoo o, � N N N N N N N N N N N M N tV N [`� N ry N tv N N N N tV N N N N N a Z x � Oo 000 0 000000gi�oc.mmry.o w m m o m m o m u u m m n m m Irv-, o n o 0 0 o o 'o o a 000 0 000000d000dad0000 c 000 ooc m -1 mom o m n . o N o o r rn n ry g o ry n a v v m o o n m tO oN m i0 N N ��oo�--.-o Nan o� a--�ooN fNo�nNo � o �dory �c m z m ym¢ N O� 2 ry n ammr mo�n+n ammrmm r� NNrvm miN nu' 000 0 ina � � � N ry N N O O O O O O m I 1 II II 1 Y S K LL E m tli N N N m n N r n? N N N n r N�ii J ................ E [�P�N�(7 7NONOQ�� NNC: P CI NNNOmNOm �4 3rn � La nn`�.Mo mm�ory P� nnn�yi �i�Norzr O ao Nit1NNN0 NrvNry N N C1 N N eI N th N 7 W a N N N N N 1- O ry O m O r O n n N m N tp N m ry N [� ,0 _ � m N6 � � � � N 6FY? W R zw ¢¢¢as¢¢¢333aa33aaaa3eaaaaaaaaaaaa33a a amaaaaaaaar,woaaWLoaaaawaaaaaaaaaa.aaa��a ~ U 2 �r .............. O 00 O O O O O O B O O c m N N `9f' m a n o m a n h m n a o vl ul o wO � N o ry n N m n �n m v:t �tnrton nmv .....00mmrM. EfO 6e�i ri n-ry rvad vv � mn Pn � � �ry om �. w s F 5 a' W >$�eN8800SS€SS$�ooQooS88aaQ0000S.SSSoo8o80 N F Z 2 F Ur C.P O O 00 O O fOf 8 10'i ry ONO pp � O 0 0� 0 $ONO N O! O N N W J m M o COf H U m mm .mro m na m n mm . �ommm m; ¢ o 0 ................................. osa i z � m m a nom " o NNo onr �n oo P P P Pi�P on�om N�' ¢ Q � N m m y ? Q 2� P o ry InPNmrm '. �N� d'`"!°� �� NNNN NNNnNN00000 N m ON..,. I 1 3 a § { H 66866H888HB888888H88888688H68$88d86 86668$8 8$8 H8468H88 88 RP 89 88HHeR 88888H8 8S' d.....86868886888N88H68HH68Y88R6868688 eNseseB 8RP 68PH8H88 888688 668588 A...... S» ».......o.a....e..e>..e..e.�e�oo.o.a.. ... a.:: �x �A%HRP$PPA88$PfleP6PPePHPPeSPeBHPPPe PR¢ HFS P-P$P AR8 APB RRS SP 88$HAB 08ANB8 R$:8 N86F flF � a (3• iF. 4 4 �B �P as 2 A a F. Ba xx6ePa a a.} A _. s $% AJauE Y ax �dA6'aR Rfi FFFR RFPRFFRR;RPF>R0.RFRAP R¢>FAR Rk? PfR fiBfi ffi Ff 3f €9P RfV 4f 8¢F RRR 3F FiFR�- ` �99JP8Po6 a6A8P ooR a 3 5 8o-R 8 tl88 _2 -688 8 P F R,A A aP �'48 F2 P •.B YY Cy6£ RFH SI. y•y..y i S xy8 4A 8 .. C .B 6 _ -- --Ri --- ' C.B9 5i Ri6G ^u�' •G Oa H.a 'e3 � .546.C, �.^C SflF ' .....,........... ..»a»..... ... e.e »� >o•, .. .- o•.an „_>->d ae..6. >a e> >.. >,. 9E#`u ., ._... .=a -a e.1rR :regoo ao 8�1 •x .xs s _�- .. ,.c _ 2A g�P 4: ��_.......... .. f... '. l.R.•R.:R6i I{o b'YaaA 9^-i eF0 .. Oi 4= ." tl ,]..C.-.¢ ^.'.b'R'i 94 + f a� a a N c �^ �a V t� O V 3 fM d�A. N � � o N s o � � J s � Q Ci < o g � v t s � M � s t C yj f T .f� � N N 3y a X P� pa 4°` a�R a° ;tl dl s& aP 9 3pa9�3 a6E€€( ID Bdee888 8A' ',x 88BB888 N£. '.e aeas xas as IR BaxS888 8A a6 L0 :• - tl iN8 68 SC,)A F. :. eaH as a•x•ae SRG A H'a ee p B;u caz s a ' D 0 ' O O U N C N N (p O O J H Q ' 3 c N o. ' O U r O O N p 0000 O O c! Y N W N W O O O O O C � O Wy h m N W C c � �niOO N O y W r N t0O ciOm _ r y m O O O O O lD uj O V) u) O O N N u) 0 0 0 Ny N W N W fA (D ! Q O OONa my N cDn W mC b 0 0 0 0 O tD R O m O O N N O O p O O O 0 Ny N W W m! c N ow d O O N r N V 0 0 0 O O O O O O O N N O O O 00 O V N O O T y M V n W W N c O CV O u) O N m O f 0 M r W W N y n N O N fV O O ^ O V m m W O z v — V O m 000 O V V 66'-C O O N Uf 0 0 0 00 a o 0 0 O O O O p 42 c c O O m N .� Q O 61 N 0-w 7'+ d 0 m M06 C9 m 'c (7 C N co IL a N o 0 7 c ¢LL z U � Yl >c O 'C Q m m W O v �vdair v ooNo i0000 c� v�cnnnNa: U) O 0000 c00)N o6 M O O N p 10000 V 0 (O n n N C O 0000 co6C,4 O`- 00 N co O toO V n<Orn5 N �000 000 (0 N f0Ot0OC N OONN my inNwC)0 C n 0 tn00 (ON (DOtO OONN n 4)N Mn K)O� u 000 O Ow 0C N 0 0 0 0 � N O N OONN N.- a00MOC 000 tom U'i Ci � M O `q N C O O N N O W N W O) `D C N N M N N 0 O ri 01 LO 3 y OONN u] tONM1� N`OC p• `o C O w N e N 0 0 . 0 � N O O C O O °•-�'� ciwav M «cu N O y c�i m rn y 3 N e OON InONNtOMC p � C t0 (p t0 V'O �m 000C) 0 0 C) N y N a N y M O J T O O'p N � f N z'� E N l0 tO O .>. Z (� C .� m C J wO O wC (gyp 'O J O N ` >> O ND. w w n d 3 W (D o U> U m; � C 3 3 M N Gl l0 N< _O o 0 E `o y o❑ y L co a C aLLZU a�H� m o" U •- J - C7 J } _ O ai N u 0 m o 3 a o o o ❑ Z -e p _ N N M �Z `R > N > C O .. @ �Z uQ N m N u N p N O O C �/1 c0 c 0'O N LL t0 f0 O O J `� `3 C `� O y a>i a>)o n d O O U >_ U 2S w o d 0 J Ewa (7 m �.�(� 3 M o N L a6c acw 0 E�'o 3 ILo.LL 2 o L J U rn c J O m 3 � o o > m N d m J I 1 1 I 1 i I I N O N m O� O O N M� W— N c <V NOOO wInON O O W m W O W I "In WI O n y fO h O O N CJ m W C1 W C N IV O00 OIt'1O OJ O o � W W W O W In Ntn TN Or Ny O I O N h n W N O C N IV 0 0 0 f0 O N m O W W O W W NU mc7O Qy O r O N W O W W O C cV N O 0 a W W O m m O W m W W O W W NN NInOr Wy O r O N h r W N ( N N O 0 0 •- W O O) 1p O W N In W O W INN W m nooQ O h O O N m W W Q W cO O W y! M — O N � y 0 o W W u O O N N N O O N N ry M p I+j N O O W O O O W N O O O Q W W n N C 10 NN OOOQIN 00 ON O � N O N f` N N O O N N r OO W OOO NIn 00 O Y m to O N r y .J InW W 1p cV fV O O O Q N O O QC C N O N N N O O N N A O N W y W OO W NOO tnN OO W � W to NC oO O N N N N O O N N y O N n y W O O W O O O W In O O O 6 f` W W�q C W N N O O Q IA 0 0 O cV Cn O C'l � O W InNN OON N �I� (")O W Ny Q O O W O O O In O O C'> NNO00 00 N N W W W Q V O W W N O A M N O O O O O O In O O W W W W W D( N O A M N 00 W InNNOONN � NOt� O r O O In B O O O> n W W N f V N O O O Q ID 0 0 p o n O m W( C vC.t�'.x�'CCC C lit in O H of UFO 1 N$ O daY V 9 CY 10 i'�•IL j;•LL I O.A ry' d10 �UUCUl01 v dwEa3E3 "ny n0 O) O d d d V1 O d IU Y C O D U O 1 o rna3o"o.N u0 � Komi U' c a=a 1"ito dd= 0 3a` � d d 0 O O N O 6L y d O 1 C dE �LL U o wa ¢MF--~ Q} i O T Cu- O N a y L U'w =N U o0 O> O( 0 d> H O ! 1 u 0 d U y 0 0 N O O W > a m U a C m o o 00 0 c C t U i a 0 U c C I D o c 0 U N C ' /1 A a m U � N .0 O H m LL N C b U J 3 G N m E U I 1 Q O O W b N N O h N N Q O 0 0 0 0 0 0 •= h N f0 W y b Q (O N W C N O N N N O O O b 0 0 N a N O N b O � O A N M 0 0 W b N N O tOO N N y A b b b y O Q. O m 0 0 0 0 0 O 4l Q h W O C O A O M N W O O N W N N O O N N M A M N � O OR O O tO N 0 0 Y W b h V y O W b O O1 O C O b N � O O N W N N O O N N b A M b M A O W N O O b b 0 Y bo N N O O p N 0 Q 0 Ow N Oo fn O[w I C N O b N �- O O fp A N N N N Of fA Q N M N O h N O O N y 0 0 SC fA A W M 1 N (V N O O O O O O W Q O W M C O Q W Q O M O O W O N N O O N N y! N m 0 W ty y N O h N 0 0 b b O O W N W W N N O O O Q b 0 0 O� a{ O O W C N N O O O Q W O O A M O K O m A O O b A N N O O N N Lq Lq0 0 Y( M Q M N S O m h f0 C N N O O O Q W O O O b Q O fD N � O L6 � o W.-o otn tnoo OQ,a OR A C IV (V O O O Q N O O M O O N _ a SSE EY N . p f d a m fa o E C 'tJ Ns OD ala yal Nal Os 6U n mo 3f i a _J rno E L N U O cUUil0 S m �Up d d Y f Y. O w-UDO O < Lt«QO wm C•❑p UN•aneoi CDmo d d 0 oO N aL 0 dON ydO t Jaal ia E m f O y n ~r a rnH = o OUrnc Ou d cm . o > a- o N w a 2 N p m 00 O a o O 0 O L c a U a 3 < s > c c I C i 1 1 1 1 SWMM 1 POND SIZING, RATING CURVES, WQCV, ORIFICE, & OVERFLOW 1 WEIR CALCULATIONS 1 1 1 1 1 1 1 1 1 1 1 SWMM POND SIZING [J 1 I 11 PI." P... PIeIIN 8): pooNl PMllr: a( Nn L:WGS\6Mp05\flip\(Iptrver\GOON\SeWM1M LnW peektoo M�1eeNpltA PISIW: Vr 03. i00r - 3NSpn NMr. P[d92S Stantec ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) ' HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) ' BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) *** ENTRY MADE TO RUNOFF MODEL *** J C:\SWMM\Lind Filing 2\Lind2Final.out 1 Printed: 12/28/2004 [1 Stantec LIND FARM FILING 2 100-YEAR EVENT FILE: LINDFILING2.IN STANTEC; 12/27/04 ' NUMBER OF TIME STEPS 720 INTEGRATION TIME INTERVAL (MINUTES) 1.00 1 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH 1 FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.84 5.49 1.22 1.06 1.00 .95 .91 .87 1 .73 .71 .69 .67 1 1- 1 1 1 1 1 1 i 1 9.95 4.12 2.48 1.46 .84 .81 .78 .75 C:\SWMM\Lind Filing 2\Lind2Final.out 2 Printed: 12/28/2004 Stantec LIND FARM FILING 2 100-YEAR EVENT FILE: LIN11ILI1G2.I1 STANTEC; 11121111 ' GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) :SUBAREA AGI NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE ' NO -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 .51 .50 .00180 401 101 7667.0 52.8 60.0 .0300 .016 .250 .100 .300 .51 .50 .00180 1 402 102 980.0 6.8 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 ' 1 403 103 1348.0 6.2 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 404 104 3029.0 10.4 60.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 100 100 1571.0 5.4 10.0 .0300 .005 .250 .100 .300 .51 .50 .00180 1 501 201 3020.0 10.4 60.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 502 202 651.0 3.0 60.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 200 200 1851.0 4.3 10.0 .0300 .005 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 8 TOTAL TRIBUTARY AREA (ACRES), 99.25 LIND FARM FILING 2 100-YEAR EVENT FILE: LINDFILING2.IN STANTEC; 12/27/04 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 2 SUBCATCHMENTS AVERAGE VALUES WITHIN TIME INTERVALS ' TIME(HR/MIN) 100 200 0 1. .0 .0 0 2. .0 .0 0 3. .0. .0 ' ,.- 0 4. .0 .0 0. 5. .0 .0 0 6. .0 .0 0 7. .3 .3 0 B. .7 .5 0 9. .6 .5 ' 0 10. .6 .5 0 11. .7 .5 0 12. .7 .6 0 13. .7 .6 0 14. .7 .6 ' 0 15. .7 .6 0 16. 1.0 .8 0 17. 1.3 1.0 0 18. 1.2 .9 0 19. 1.2 1.0 0 20. 1.2 1.0 0 21. 1.5 1.2 0 22. 1.9 1.6 0 23, 2.. 0 24. 2.5 2.3 ' 0 25. 2.9 2.8 0 26. 4.8 4.6 0 27. 6.7 6.4 0 2. . . .5 . 0 299 9.3 ' 0 30. 10.9 10.7 0 31. 15.3 14.8 0 32. 19.9 19.0 0 33. 23.0 22.1 0 34. 26.8 25.4 ' 0 35. 29.9 28.0 0 36. 28.6 26.3 0 37. 26.4 23.7 0 38. 26.0 22.7 0 39. 25.0 21.3 ' 0 40. 24.5 20.5 0 41. 22.7 18.6 0 42. 21.0 16.9 0 43. 19.9 15.7 J 0 44. 18.8 14.6 ' 0 45. 17.9 13.8 0 46. 16.5 12.5 0 47. 15.1 11.2 0 48. 14.1 10.4 0 49. 13.. 0 50. 12.4 8.9 C:\SWMM\Lind Filing 2\Lind2Final.out 3 Printed: 12/28/2004 I Stantec 0 51. 11.6 8.2 0 0 52, 53. 10.8 10.2 7. 7.1 ' 0 54. 9.6 6.7 0 55. 9.1 6.3 0 56. 8.6 5.9 0 0 5. 58. 8. 7.7 5. 5.3 ' 0 59. 7.4 5.0 1 0. 7.0 4.8 1 1. 6.7 4.6 1 2. 6.4 4.3 1 3. 6.1 4.2 1 4. 5.9 4.0 1 5. 5.7 3.9 1 6. 5.5 3.7 1 7, 5.3 3. 1 8. 5.1 3.4 ' 1 9. 4.9 3.3 1 10. 4.8 3.2 1 11. 4.6 3.1 1 12, 4. 3.0 1 13. 4.3 3.0 1 14. 4.2 2.9 1 15. 4.1 2.8 1 16. 4.0 2.7 1 17. 3.9 2.6 1 18. 3.8 2. 1 19. 3.7 2.55 1 20. 3.6 2.5 1 21. 3.5 2.4 1 22. 3.4 2.4 1 23. 3.3 2.3 ' 1 24. 3.3 2.3 1 25. 3.2 2.2 1 26. 3.1 2.2 1 27. 3.1 2.1 1 2. 3. 2.1 ' 1 29. 2.99 2.1 1 30. 2.9 2.0 1 31. 2.8 2.0 1 32. 2.8 1.9 ' 1 33. 2.7 1.9 1 34. 2.7 1.9 1 35. 2.6 1.8 1 36. 2.6 1.8 1 37. 2.5 1.8 1 38. 2. 1.7 1 39. 2.44 1.7 1 40. 2.4 1.7 1 41. 2.3 1.6 1 42. 2.3 1.6 1 43. 2.2 1.6 ' 1 44. 2.2 1.6 1 45. 2.2 1.5 1 46. 2.1 1.5 1 47. 2.1 1.5 1 48, 2. 1.5 1 49.' 2.00 1.5 ' 1 50. 2.0 1.4 1 51. 2.0 1.4 1 52. 1.9 1.4 1 53. 1.9 1.4 1 54. 1.9 1.3 ' 1 55. 1.9 1.3 1 56. 1.8 1.3 1 57. 1.8 1.3 1 58. 1. 1.3 1 59. 1.77 1.2 ' 2 0. 1.7 1.2 2 1. 1.5 1.0 2 2. 1.3 .9 2 3. 1. 2 4. 1.1 .8 .8 2 5. 1.1 .7 2 6. 1.0 .7 2 7. 1.0 .6 2 8. .9 .6 ' 2 9. .9 .6 2 10. .9 .6 2 11. .8 .5 2 12. .8 .5 13. 8 5 2 14. .7 .5 2 15. .7 .4 2 16. .7 .4 2 17. .6 .4 2 18. .6 .4 2 . .6 .4 20 2 20. .6 .3 C:\SWMM\Lind Filing 2\Lind2Final.out 4 Printed: 12/28/2004 Stantec 2 21. .6 .3 2 2. 2 23. .5 .3 .5 .3 ' 2 24. .5 .3 2 25. .5 .3 2 26. .5 .3 2 2. 2 28. .4 .2 .4 .2 2 29. .4 .2 2 30. .4 .2 2 31. .4 .2 2 3. .4 2 33. .2 .4 .2 2 34. .3 .2 2 35. .3 .2 2 36. .3 .2 2 3. .3 .2 2 38. .3 .2 2 39. .3 .1 2 40. .3 .1 2 41. .3 .1 2 42. .3 .1 2 4. .3 .1 2 44. .2 .1 2 45. .2 .1 2 46. .2 .1 2 47. .2 .1 2 48. .2 .1 2 49. .2 .1 2 50. .2 .1 2 51. .2 .1 2 52. .2 .1 2 53. .2 .1 2 54. .2 .1 2 55. .2 .1 2 56. .2 .1 2 57. .2 .1 2 5. 2 1 ' 2 59. .1 .1 3 0. 1 1 3 1. 1 1 3 2. 1 1 ' 3 3. 3 4. 3 5. 1 .0 .1 .0 1 .0 l / 3 6. .1 .0 3 7. 1 .0 3 3 8. 9. 1 .1 .0 .0 3 3 10. 11. 1 1 .0 .0 ' 3 3 3 3 12. 13. 14. 15. 1 1 .1 1 .0 .0 .0 3 16. 1 .0 .0 ' 3 3 3 3 17. 18._ 19. 20. 1 1 .1 1 .0 .0 .0 3 21. 1 .0 .0 ' 3 3 3 3 22. 23. 24. 25. 1 1 .1 1 .0 .0 .0 3 26. 1 .0 .0 3 3 3 27. 2. 29. 1 .1 .0 .0 .0 .0 ' 3 3 30. 31. .0 .0 .0 .0 3 3 3 32. 33. 34. .0 .0 .0 .0 .0 .0 3 3 35. 36. .0 .0 .0 .0 3 3 37. 38. .0 .0 .0 .0 ' 3 3 . 40 40. .0 .0 .0 .0 3 3 41. 42. .0 .0 .0 .0 .� 3 3 43. 44. .0 .0 .0 .0 3 3 45. 46. .0 .0 .0 .0 3 3 47. 48. .0 .0 .0 .0 ' 3 3 . 50 50. .0 .0 .0 .0 C:\SWMM\Lind Filing 2\Lind2Final.out 5 Printed: 12/28/2004 Stantec 3 51. 3 52. 3 53. 3 54. 3 55. 3 56. 3 57. 3 58. ' 3 59. 4 0. 4 1. 4 2. 4 3. 4 4. 4 5. 4 6. 4 7. 4 8. ' 4 9. 4 10. 4 11. 4 12. 4 13. ' 4 14. 4 15. 4 16. 4 17. 4 1. 4 19. 4 20. 4 21. 4 22. 4 23. 4 24. 4 25. 4 26. 4 27. ' 4 4 4 4 28. 29. 30. 31. 4 4 4 4 4 32. 33. 34. 35. 36. ' 4 4 4 4 4 37. 38, 39. 40. 41. 4 4 4 4 4 42. 43, 44. 45. 46. ' 4 4 4 4 4 47. 48. 49. 50. 51. 4 4 52. 53. 4 54. ' 4 55. 4 56. 4 57. 4 58. 4 5. 0 5 . 5 1. 5 2. 5 3. ' S 4. 5 II' 5. 5 6. 5 7. 5 8. ' 5 9. 5 10. 5 11. 5 12. 5 13. ' ,J 5 14. 5 15. 5 16. 5 17. 5 18. ' 5 . 20 5 20. C:\SWMM\Lind Filing 2\Lind2Final.out 6 Printed: 12/28/2004 Stantec i i i i I I I I I I I I �I I I I I I I I I I I I I I I I I I I I I I I I I I I I 11 I I I I I CAS 21. .0 .0 22. .0 .0 23. .0 .0 24. .0 .0 25. .0 .0 26. .0 .0 27. .0 .0 28. .0 .0 29. .0 .0 30. .0 .0 31. .0 .0 32. .0 .0 33. .0 .0 34. .0 .0 35. .0 .0 36. .0 .0 37. .0 .0 38. .0 .0 39. .0 .0 40. .0 .0 41. .0 .0 42. .0 .0 43. .0 .0 44. .0 .0 45. .0 .0 46. .0 .0 47. .0 .0 48. .0 .0 49. .0 .0 50. .0 .0 51. .0 .0 i 52. .0 .0 i 53. .0 .0 i 54. .0 .0 55. .0 .0 i 56. .0 .0 i 57. .0 .0 i 58. .0 .0 i 59. .0 .0 i 0. .0 .0 1. .0 .0 2. .0 .0 3. .0 .0 4. .0 .0 S. .0 .0 i 6. .0 .0 7. .0 .0 8. .0 .0 i 9. .0 .0 10. .0 .0 11. .0 .0 i 12. .0 .0 i 13. .0 .0 i 14. .0 .0 15. .0 .0 16. .0 .0 17. .0 .0 18. .0 .0 19: .0 .0 i 20. .0 .0 i 21. .0 .0 22. .0 .0 i 23. .0 .0 i 24. .0 .0 i 25. .0 .0 26. .0 .0 i 27. .0 .0 i 28. .0 .0 i 29. .0 .0 i 30. .0 .0 i 31. .0 .0 i 32. .0 .0 i 33. .0 .0 i 34. .0 .0 i 35. .0 .0 36. .0 .0 i 37. .0 .0 38. .0 .0 39. .0 .0 40. .0 .0 i 41. .0 .0 i 42. .0 .0 43. .0 .0 i 44. .0 .0 45. .0 .0 46. .0 .0 47. .0 .0 48. .0 .0 49. .0 .0 50. .0 .0 WMM\Lind Filing 2\Lind2Final.out 7 Printed: 12/28/2004 ' Stantec 6 51. .0 .0 6 52. .0 .0 6 53. .0 .0 6 54. .0 .0 6 55. .0 .0 6 56. .0 .0 6 57. .0 .0 6 5. .0 .0 ' 6 59. .0 .0 7 0. .0 .0 7 1. .0 .0 7 2. .0 .0 7 3. .0 .0 7 4. .0 .0 7 5. .0 .0 7 6. .0 .0 7 7. .0 .0 7 8. .0 .0 ' 7 9. .0 .0 7 10. .0 .0 7 11. .0 .0 7 12. .0 .0 7 13. .0 .0 7 14. .0 .0 7 15. .0 .0 7 16. .0 .0 7 17. .0 .0 7 18. .0 .0 ' 7 19. .0 .0 7 20. .0 .0 7 21. .0 .0 7 22. .0 .0 7 23. .0 .0 ' 7 24. .0 .0 7 25. .0 .0 7 26. .0 .0 7 27. .0 .0 7 2. .0 .0 7 29. .0 .0 7 30. .0 .0 7 31. .0 .0 7 32. .0 .0 7 33. .0 .0 7 34. .0 .0 7 35. .0 .0 7 36. .0 .0 7 37. .0 .0 7 38. 7 39. .0 .0 .0 .0 ' 7 40. .0 .0 7 41. .0 .0 7 42. .0 .0 7 43. 7 44. .0 .0 .0 .0 7 45. .0 .0 7 46. .0 .0 7 47. .0 .0 7 48. .0 .0 7 49 *.0 .0 7 50. 50 .0 .0 7 51. .0 .0 7 52. .0 .0 7 53. .0 .0 7 54. .0 .0 7 55. .0 .0 7 56. .0 .0 7 57. .0 .0 7 58. .0 .0 7 5. .0 .0 8 0. 0 .0 .0 8 1. .0 .0 8 2. .0 .0 8 3. .0 .0 8 4. .0 .0 8 5. .0 .0 8 6. .0 .0 8 7. .0 .0 8 8. .0 .0 8 9. .0 .0 8 10. .0 .0 8 11. .0 .0 8 12. .0 .0 J 8 13. .0 .0 8 14. .0 .0 v 8 15. .0 .0 8 16. .0 .0 8 17. .0 .0 8 18. .0 .0 ' 8 . .0 .0 20 8 20. .0 .0 C:\SWMM\Lind Filing 2\Lind2Final.out 8 Printed: 12/28/2004 ' Stantec 8 21. .0 .0 8 2. .0 .0 8 23. .0 .0 8 24. .0 .0 8 25. .0 .0 \ 8 26. .0 .0 8 2. .0 .0 8 28. .0 .0 8 29. .0 .0 8 30. .0 .0 8 31. .0 .0 8 32. .0 .0 8 33. .0 .0 ' 8 34. .0 .0 8 35. .0 .0 8 36. .0 .0 8 37. .0 .0 8 38. .0 .0 ' 8 39. .0 .0 8 40. .0 .0 8 41. .0 .0 8 42. .0 .0 8 43. .0 .0 ' 8 44. .0 .0 8 45. .0 .0 8 46. .0 .0 8 47. .0 .0 8 4. .0 .0 8 49. .0 .0 8 50. .0 .0 8 51. .0 .0 8 52. .0 .0 8 53. .0 .0 8 54. .0 .0 8 55. .0 .0 8 56. .0 .0 8 57. .0 .0 8 5. .0 .0 ' 8 59. .0 .0 9 0. .0 .0 9 1. .0 .0 9 2. .0 .0 9 3. .0 .0 � 9 4. .0 .0 9 5. .0 .0 9 6. .0 .0 9 7. .0 .0 9 8. 9 9. .0 .0 .0 .0 9 10. .0 .0 9 11. .0 .0 9 12. .0 .0 9 13. 9 14. .0 .0 .0 .0 9 15. .0 .0 9 16. .0 .0 9 17. .0 .0 9 18. .0 .0 9 19. .0 .0 9 20. .0 .0 9 21. .0 .0 9 22. .0 .0 9 23. .0 .0 9 24. .0 .0 9 25. .0 .0 9 26. .0 .0 9 27. .0 .0 9 28. .0 .0 9 . .0 .0 9 30. 30 .0 .0 9 31. .0 .0 9 32. .0 .0 9 33. .0 .0 9 34. .0 .0 9 35. .0 .0 9 36. .0 .0 9 37. .0 .0 9 38. .0 .0 9 . .0 .0 9 40. 40 .0 .0 9 41. .0 .0 9 42. .0 .0 9 43. .0 .0 J 9 44. .0 .0 9 45. .0 .0 9 46. .0 .0 9 47. .0 .0 9 48. .0 .0 . 9 49. .0 .0 9 50. .0 .0 C:\SWMM\Lind Filing 2\Lind2Final.out 9 Printed: 12/28/2004 9 51. 9 5, 9 53. 9 54. 9 55. 1 9 56. } 9 57. 9 5. ' 9 59. 10 0. 10 1. 10 2. 10 3. 1 10 4. 10 5. 10 6. 10 7. 10 8. 10 9. 10 10. 10 11. 10 12. 10 13. 10 14. 10 15. 10 16. 10 17. 10 18. 10 . 10 20 20. 10 21. 10 22. 10 23. 10 24. 10 25. 10 26. 10 27. 10 2. 10 29. 10 30. 10 31. 10 32. 10 r 10 10 10 33. 34. 35. 36. 10 ' 10 10 10 10 37. 38. 39. 40. 41. 10 10 10 10 10 42. 43, 44. 45. 46. 10 10 10 10 10 47. 48, 49: 50. 51. 10 10 10 10 10 52. 53. 54. 55. 56. 10 10 57. 58. 10 5. 11 0 . 11 1. 11 2. 11 3. 11 4. 11 5. 11 6. 11 7. 11 8. ' 11 11 9. 10. 11 11 11. 12. 11 J11 13. 14. 11 11 15. 16. 11 11 17. 18. Stantec 11 . 20 11 20. C:\SWMM\Lind Filing 2\Lind2Final.out 10 Printed: 12/28/2004 Ili L Stantec 11 11 11 "� 11 i 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1 11 11 11 11 11 1 11 11 11 11 11 1 11 11 11 11 11 1 1 i 1 1 .1 1 1 C:\SWMM\Lind Filing 2\Lind2Final.out 11 Printed: 12/28/2004 iStantec LIND FARM FILING 2 111-YEAR EVENT FILE: 1_I111I1_I112.IN STANTEC; 12/27/04 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** ' WATERSHED AREA (ACRES) 99.250 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .562 TOTAL WATERSHED OUTFLOW (INCHES) 3.007 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) 100 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 LIND FARM FILING 2 100-YEAR EVENT FILE: LINDFILING2.IN STANTEC; 12/27/04 WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N 101 100 0 2 PIPE 8.0 410. .0040 .0 .0 .013 ° 102 100 0 2 PIPE 4.0 460. .0040 .0 .0 .013 0 103 100 0 2 PIPE 4.0 45. .0040 .0 .0 .013 ' 0 104 100 0 2 PIPE 4.0 400. .0040 .0 .0 .013 0 201 200 0 2 PIPE 4.0 180. .0040 .0 .0 .013 1.° 202 200 0 2 PIPE 4.0 55. .0040 .0 .0 .013 �100 500 10 2 PIPE 1 1. .0040 .0 .0 .013 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .5 1.1 2.4 1.5 5.5 1.9 8.7 2.1 2.4 15.4 2.6 18.9 2.8 22.0 3.0 25.7 3.2 200 500 8 2 PIPE .1 1. .0040 .0 .0 .013 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .4 .3 .6 .8 .7 1.7 .8 .9 4.5 1.0 6.4 1.1 TOTAL NUMBER OF GUTTERS/PIPES, 8 i i DEPTH (FT) 8.00 4.00 4.00 4.00 4.00 4.00 .10 12.0 3.0 10 C:\SWMM\Lind Filing 2\Lind2Final.out 12 Printed: 12/28/2004 Stantec LIND FARM FILING 2 1 100-YEAR EVENT FILE: LINDFILING2.IN STANTEC; 12/27/04 �4RRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE D.A.(AC) 100 101 102 103 104 0 0 0 0 0 0 81.6 ' 101 0 0 0 0 0 0 0 0 0 0 52.8 � 102 0 0 0 0 0 0 0 0 0 0 6.8 103 0 0 0 0 0 0 0 0 0 0 14. 6.2 104 0 0 0 0 0 0 0 0 0 0 � 10.4 200 201 202 0 0 0 0 0 0 0 0 17.6 10.4 201 0 0 0 0 0 0' 0 0 0 0 202 0 0 0 0 0 0 0 0 0 0 3.0 LIND FARM FILING 2 100-YEAR EVENT FILE: LINDFILING2.IN M 4 STANTEC; 12/27/04 TRIBUTARY SUBAREA 100 0 0 0 0 0 0 0 0 0 401 0 0 0 0 0 0 0 0 0 402 0 0 0 0 0 0 0 0 0 403 0 0 0 0 0 0 0 0 0 404 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 501 0 0 0 0 0 0 0 0 0 502 0 0 0 0 0 0 0 0 0 CASWMM\Lind Filing 2\Lind2Final.out 13 Printed: 12/28/2004 Stantec 3 C:\SWMM\Lind Filing 2\Lind2Final.out 14 Printed: 12/28/2004 I Stantec HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 2 CONVEYANCE ELEMENTS I 0 1 I I rl u I� I LJ I I 1 I I 1 THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET t (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 100 200 0 1. .0 .0 .00( ) .00( ) 0 2. .0 .0 .00(S) .00(S) 0 3. .0 .0 .00(S) .00(S) 0 4. .0 .0 .00(S) .00(S) 0 5. .0 .0 .00(S) .00(S) 0 6. .0 .0 .00(S) .00(s) 0 7. .0 .0 .00(s) .00(s) 0 8. .0 .0 .01(s) .00(s) 0 9. .0 .1 .02(S) .01(S) 0 10. .04(S) .01(S) 0 11. .1 .2 .07(S) .02(S) 0 12. .2 .3 .11(S) .03(S) 0 13. .4 .4 .16(S) .04(S) 0 14. .5 .4 .22(S) .06(S) 0 15. .6 .4 .29(S) .07(S) 0 16. .8 .4 .37(S) .09(S) _ 0 17. 1.0 .4 .46(S) .10(S) 0 18. 1.1 .5 .57(S) .13(S) 0 19. 1.1 .5 .68(S) .15(S) 0 20. 1.1 .5 .81(S) .17(S) 0 21. 1.2 .5 .94(S) .20(S) 0 22. 1.2 .5 1.09(S) .23(S) 0 23.. 1.3 .5 1.26(S) .26(S) 0 24. 1.3 .6 1.43(S) .30(S) 0 25. 1.3 .6 1.62(S) .33(S) 0 26. 1.4 .6 1.83(S) .38(S) 0 27. 1.5 .6 2.10(S) .44(S) 0 28. 1.5 .6 2.43(S) .51(S) 0 29. 1.6 .7 2.81(S) .59(S) 0 30. 1.6 .7 +22 S, .68(S) 0 31. T 3.70 S 79(S) 0 32. 4.32(S) .94(S) 0 33. 1.8 .7 5.05(S) 1.10(S) 0 34. 1.9 .8 5.87(S) 1.28(S) 0 35. 2.0 .8 0 36. 6.74(S) 2.0 1.48(S) .8 7.58(S) 1.66(S) 0 37. 2.1 .8 8.29(S) 1.81(S) 0 38. 8.89(S) 1.94(S) 0 39. 2.2 .8 C:\SWMM\Lind Filing 2\Lind2Final.out e 2 00 t C 1 31.5 m.�es , sly : o. 9s4�. ff �s« ,eaJk!J ciL.vc -or Pow-1 Zoo) 3%. S �l.w{tJ 5 c 8, �7 9-C1 �SfC • A. a„d 16D) 15 Printed: 12/28/2004 y0 Stantec 9.44(S) 2.06(S) 0 40. 2.2 .9 9.96(S) 2.17(S) 0 41. 2.3 .9 10.44(S) 2.27(S) 0 42. 2.3 .9 10.88(S) 2.36(S) 0 43. 2.3 .9 ' 11.27(S) 2.44(S) 0 44. 2.4 .9 11.63(S) 2.52(S) 0 45. 2.4 .9 11.97(S) 2.59(S) ' 0 46. 2.4 .9 12.28(S) 2.65(S) 0 47. 2.4 .9 12.57(S) 2.71(S) 0 48. 2.5 .9 12.83(S) 2.76(S) 0 49. 2.5 .9 13.07(S) 2.81(S) 0 50. 2.5 .9 13.29(S) 2.86(S) ' 0 51. 2.5 .9 13.50(S) 2.90(S) 0 52. 2.5 .9 13.69(S) 2.94(S) 0 53. 2.5 .9 ' 13.88(S) 2.97(S) 0 54. 2.5 .9 14.05(S) 3.01(S) 0 55. 2.6 .9 14.22(S) 3.04(S) ' 0 56. 2.6 .9 14.37(S) 3.07(S) 0 57. 2.6 .9 14.52(S) 3.10(S) 0 58. 2.6 .9 14.67(S) 3.13(S) 0 59. 2.6 .9 14.81(S) 3.16(S) 1 0. 2.6 .9 1.94(S) 3.18(S) ' 1 D 1. 2.6 2 15.07(S) .9 3.21(S) 1 2. 2.6 .9 15.19(S) 3.23(S) 1 3. 2.6 15.31(S) .9 3.25(S) t 1 4. 2.6 .9 15.42(S) 3.28(S) 1 5. 2.6 .9 1 6. 1.54(S) 2 2.6 3.30(S) .9 ' 15.65(S) 3.32(S) 1 7. 2.6 .9 15.76(S) 3.34(S) 1 8, 2.7 15.86(S) .9 3.36(S) ' 1 9. 2.7 .9 15.96(S) 3.38(S) 1 10. 2.7 .9 1.06(S) 3.40(S) 1 11. 2 2.7 .9 ' 16.16(S) 3.42(S) 1 12. 2.7 .9 16.26(S) 3.44(S) 1 13. 2.7 .9 16.35(S) 3.46(S) ' 1 14. 2.7 .9 16.45(S) 3.47(S) 1 15. 2.7 .9 16.54(S) 3.49(S) 1 16. 2.7 .9 16.63(S) 3.51(S) 1 17. 2.7 .9 16.72(S) 3.53(S) 1 18. 2.7 .9 16.80(S) 3.54(S) ' 1 19. 2.7 .9 16.89(S) 3.56(S) 1 20. 2.7 16.97(S) .9 3.57(S) 1 21. 2.7 1.0 ' 17.05(S) 3.59(S) 1 22. 2.7 1.0 17.14(S) 3.60(S) 1 23, 2.7 1.0 17.22(S) 3.62(S) ' 1 24. 2.7 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 16 Printed: 1212812004 ' Stantec 17.29(S) 3.64(S) 1 25. 2.7 1.0 ' 17.37(S) 3.65(S) 1 26. 2.7 1.0 17.45(S) 3.66(S) 1 27. 2.8 1.0 17.53(S) 3.68(S) ' 1 28. 2.8 1.0 17.60(S) 3.69(S) 1 29. 2.8 1.0 17.67(S) 3.71(S) 1 30. 2.8 1.0 ' 17.75(S) 3.72(S) 1 31. 2.8 1.0 17.82(S) 3.73(S) 1 32. 2.8 1.0 17.89(S) 3.75(S) ' 1 33. 2.8 1.0 17.96(S) 3.76(S) 1 34. 2.8 1.0 18.03(S) 3.77(S) 1 35. 2.8 1.0 ' 18.10(S) 3.79(S) 1 36. 2.8 1.0 18.17(S) 3.80(S) 1 37. 2.8 1.0 18.23(S) 3.81(S) ' 1 38. 2.8 1.0 18.30(S) 3.82(S) 1 39. 2.8 1.0 18.36(S) 3.84(S) 1 40. 2.8 1.0 18.43(S) 3.85(S) 1 41. 2.8 1.0 18.49(S) 3.86(S) 1 42. 2.8 1.0 18.56(S) 3.87(S) ' 1 43. 2.8 1.0 18.62(S) 3.88(S) 1 44. 2.8 1.0 18.68(S) 3.90(S) 1 45. 2.8 1.0 ' 18.74(S) 3.91(S) Y 1 46. 2.8 1.0 18.80(S) 3.92(S) 1 47. 2.8 1.0 18.86(S) 3.93(S) ' 1 48, 2.8 1.0 18.92(S) 3.94(S) 1 49. 2.8 1.0 18.98(S) 3.95(S) 1 50. 2.8 1.0 ' 1.04(S) 3.96(S) 2 1 51. 2.8 1.0 19.10(S) 3.97(S) 1 52. 2.8 1.0 19.15(S) 3.98(S) ' 1 53, 2.9 1.0 19.21(S) 3.99(S) 1 54. 2.9 1.0 19.27(S) 4.00(S) 1 55. 2.9 1.0 19.32(S) 4.01(S) ' 1 56. 2.9 .0 4 19.38(S) .02(S) 1 57. 2.9 1.0 19.43(S) 4.03(S) 1 58. 2.9 1.0 ' 19.49(S) 4.04(S) 1 59. 2.9 1.0 19.54(S) 4.05(S) 2 0. 2.9 1.0 19.59(S) 4.06(S) 2 1. 2.9 .0 4 19.64(S) .07(S) 2 2. 2.9 1.0 19.69(S) 4.08(S) 2 3, 2.9 1.0 19.72(S) 4.09(S) 2 4. 2.9 1.0 19.75(S) 4.09(S) 2 5. 2.9 1.0 19.78(S) 4.09(S) ' 2 6. 2.9 1.0 19.80(S) 4.10(S) 2 7. 2.9 1.0 19.82(S) 4.10(S) 2 8, 2.9 1.0 ' 19.84(S) 4.10(S) 2 9. 2.9 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 17 Printed: 12/28/2004 ' Stantec 19.86(S) 4.10(5) 2.9 19.87(S) .0 4 4.11(S) 2 11. 2.9 1.0 2 12. 19.88(S) 2.9 4.11(S) 1.0 1.89(S) .11(5) 2 13. 22.9 1.0 1 ' 19.90(S) 4.11(S) 2 14. 2.9 1.0 19.91(S) 4.11(S) 2.9 .0 19.92(S) 4 4.11(S) 2 16. 2.9 1.0 19.92(S) 4.11(S) 2 17. 2.9 1.0 19.93(S) 4.11(S) 2 18. 2.9 1.0 ' 19.94(S) 4.11(S) 2 19. 2.9 1.0 19.94(S) 4.11(S) 2 20. 2.9 1.0 19.95(S) 4.11(S) 2 21. 2.9 1.0 19.95(S) 4.11(S) 2 22. 2.9 1.0 19.95(S) 4.11(S) 2 23. 2.9 .0 ' 19.96(S) 4 4.11(S) 2 24. 2.9 1.0 19.96(S) 4.11(S) 2 25. 2.9 1.0 19.96(S) 4.11(S) ' 2 26. 2.9 1.0 19.96(S) 4.11(S) 2 27. 2.9 1.0 19.97(S) 4.11(S) 2 28. 2.9 .0 ' 19.97(S) 4 4.11(S) 2 29. 2.9 1.0 19.97(S) 4.11(S) 2 30. 2.9 1.0 19.97(S) 4.11(S) ' 2 31. 2.9 .0 19.97(S) 4 4.11(S) 2 32. 2.9 1.0 19.97(S) 4.11(S) ' 2 33. 2.9 19.97(S) .0 4 4.11(S) 2 34. 2.9 1.0 19.97(S) 4.11(S) 2 35. 2.9 1.0 2 36. 1.97(S) 2 2.9 4.11(S) 1.0 ' 19.97(S) 4.11(S) 2 37. 2.9 1.0 19.97(S) 4.10(S) 2 38._ 2.9 19.97(S) .0 4 4.10(S) ' 2 39. 2.9 1.0 19.97(S) 4.10(S) 2 40. 2.9 1.0 1.97(S) 4.10(S) 2 41. 2.9 2 1.0 ' 19.97(S) 4.10(S) 2 42, 2.9 1.0 19.97(S) 4.10(S) 2 43. 2.9 .0 19.97(S) 4 4.10(S) 2 44. 2.9 1.0 19.97(S) 4.10(S) 2 45. 2.9 1.0 19.97(S) 4.10(S) 2 46. 2.9 1.0 ' 19.97(S) 4.10(S) 2 47. 2.9 1.0 19.97(S) 4.10(S) 2 48. 2.9 1.0 19.96(S) 4.09(S) ' 2 49. 2.9 1.0 19.96(S) 4.09(S) 2 50. 2.9 1.0 19.96(S) 4.09(S) 2 51. 2.9 1.0 19.96(S) 4.09(S) 2 52. 2.9 1.0 19.96(S) 4.09(S) 2 53. 2.9 1.0 19.96(S) 4.09(S) ' 2 54. 2.9 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 18 Printed: 12/28/2004 ' Stantec 11,11111 4.09(1) ' 2 55. 2.9 .0 4 19.95(S) 4.09(S) 2 56. 2.9 1.0 19.95(S) 4.09(S) 2 57. 2.9 1.0 19.95(S) 4.09(S) 2 58. 2.9 1.0 19.95(S) 4.08(S) 2 59. 2.9 1.0 19.94(S) 4.08(S) ' 3 0. 2.9 .0 4 19.94(S) 4.08(S) 3 1. 2.9 1.0 19.94(S) 4.08(S) 3 2. 2.9 1.0 19.94(S) 4.08(S) ' 3 3. 2.9 .0 4 19.93(S) 4.08(S) 3 4. 2.9 1.0 19.93(S) 4.08(S) 3 5, 2.9 1.0 19.93(S) 4.08(S) 3 6. 2.9 1.0 19.93(S) 4.08(S) 3 7. 2.9 1.0 19.92(S) 4.07(S) ' 3 8. 2.9 .0 4 19.92(S) 4.07(S) 3 9. 2.9 1.0 19.92(S) 4.07(S) 3 11, 2.9 1.0 ' 19.91(S) 4.07(S) 3 11. 2.9 1.0 19.91(S) 4.07(S) 3 12. 2.9 1.0 19.91(S) 4.07(S) 3 13. 2.9 1.0 ' 19.91(S) 4.07(S) 3 14. 2.9 1.0 19.90(S) 4.07(S) 3 15. 2.9 1.0 ' 19.90(S) 4.06(S) 3 16. 2.9 .0 4 19.90(S) 4.06(S) 3 17. 2.9 1.0 19.89(S) 4.06(S) 3 18. 2.9 .0 4 19.89(S) 4.06(S) 3 19. 2.9 1.0 19.89(S) 4.06(S) 3 20. 2.9 1.0 ' 19.88(S) 4.06(S) 3 21. 2.9 1.0 19.88(S) 4.06(S) 3 22. 2.9 1.0 19.88(S) 4.06(S) ' 3 23.. 2.9 .0 4 19.88(S) 4.05(S) 3 24. 2.9 1.0 19.87(S) 4.05(S) 3 25. 2.9 1.0 ' 1.87(S) 4.05(S) 2 3 26. 2.9 1.0 19.87(S) 4.05(S) 3 27. 2.9 1.0 19.86(S) 4.05(S) ' 3 28. 2.9 .0 4 19.86(S) 4.05(S) 3 29. 2.9 1.0 19.86(S) 4.05(S) 3 30. 2.9 1.0 19.85(S) 4.05(S) 3 31. 2.9 1.0 19.85(S) 4.04(S) 3 32. 2.9 1.0 19.84(S) 4.04(S) 3 33. 2.9 1.0 19.84(S) 4.04(S) 3 34. 2.9 1.0 19.84(S) 4.04(S) 3 35. 2.9 1.0 19.83(S) 4.04(S) ' 3 36. 2.9 1.0 19.83(S) 4.04(S) 3 37. 2.9 1.0 19.83(S) 4.04(S) 3 38. 2.9 1.0 ' 19.82(S) 4.03(S) 3 39. 2.9 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 19 Printed: 12/28/2004 ' Stantec ...82(S) 4.03(S) 2.9 1.0 4 19.82(S) 4.03(S) 3 41. 2.9 1.0 19.81(S) 4.03(S) 3 42. 2.9 1.0 ' J 19.81(S) 4.03(S) 3 43. 2.9 1.0 19.81(S) 4.03(S) 3 44. 2.9 1.0 19.80(S) 4.03(S) ' 3 45. 2.9 .0 4 19.80(S) .03(5) 3 46. 2.9 1.0 19.79(S) 4.02(S) 3 47. 2.9 1.0 19.79(S) 4.02(S) ' 3 48. 2.9 1.0 19.79(S) 4.02(S) 3 49. 2.9 1.0 19.78(S) 4.02(S) 3 50. 2.9 1.0 ' 19.78(S) 4.02(S) 3 51. 2.9 1.0 19.78(S) 4.02(S) 3 52. 2.9 1.0 19.77(S) 4.02(S) ' 3 53. 2.9 .0 4 19.77(S) 4.02(S) 3 54: 2.9 1.0 19.77(S) 4.01(S) 3 55. 2.9 1.0 19.76(S) 4.01(S) 3 56. 2.9 1.0 19.76(S) 4.01(S) 3 57. 2.9 1.0 19.75(S) 4.01(S) ' 3 58. 2.9 .0 4 19.75(S) 4.01(S) 3 59. 2.9 1.0 19.75(S) 4.01(S) 4 0. 2.9 1.0 ' 19.74(S) 4.01(S) \ 4 1. 2.9 1.0 J19.74(S) 4.00(S) 4 2. 2.9 1.0 19.73(S) 4.00(S) ' 4 3. 2.9 .0 4 19.73(S) 4.00(S) 4 4. 2.9 1.0 19.73(S) 4.00(S) 4 5. 2.9 1.0 19.72(S) 4.00(S) 4 6. 2.9 1.0 19.72(S) 4.00(S) 4 7. 2.9 1.0 19.72(S) 4.00(S) ' 4 8.. 2.9 .0 4 19.71(S) 4.00(S) 4 9. 2.9 1.0 19.71(S) 3.99(S) 4 10. 2.9 1.0 ' 1.70(S) 3.99(S) 2 4 11. 2.9 1.0 19.70(S) 3.99(S) 4 12. 2.9 1.0 19.70(S) 3.99(S) ' 4 13. 2.9 1.0 19.69(S) 3.99(S) 4 14. 2.9 1.0 19.69(S) 3.99(S) 4 15. 2.9 1.0 19.68(S) 3.99(S) ' 4 16. 2.9 1.0 19.68(S) 3.98(S) 4 17. 2.9 1.0 19.68(S) 3.98(S) 4 18. 2.9 1.0 ' 19.67(S) 3.98(S) 4 19. 2.9 1.0 19.67(S) 3.98(S) 4 '20. 2.9 1.0 19.67(S) 3.98(S) ' 4 21. 2.9 1.0 19.66(S) 3.98(S) 4 22. 2.9 1.0 19.66(S) 3.98(S) 4 23. 2.9 1.0 ' 19.65(S) 3.98(S) 4 24. 2.9 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 20 Printed: 12/28/2004 ' Stantec 19.65(S) 3.97(S) 4 25, 2.9 1.0 19.65(S) 3.97(S) 4 26. 2.9 1.0 19.64(S) 3.97(S) 1 4 27. 2.9 1.0 1.64(S) 3.97(S) 4 28. 2 2.9 1.0 19.63(S) 3.97(S) 4 29. 2.9 1.0 19.63(S) 3.97(S) 4 30. 2.9 1.0 19.63(S) 3.97(S) ' 4 31. 2.9 1.0 19.62(S) 3.96(S) 4 32. 2.9 1.0 19.62(S) 3.96(S) 4 33. 2.9 1.0 19.61(S) 3.96(S) 4 34. 2.9 1.0 19.61(S) 3.96(S) 4 35. 2.9 1.0 19.61(S) 3.96(S) ' 4 36. 2.9 1.0 19.60(S) 3.96(S) 4 37. 2.9 1.0 19.60(S) 3.96(S) 4 38. 2.9 1.0 ' 19.59(S) 3.96(S) 4 39. 2.9 1.0 19.59(S) 3.95(S) 4 40. 2.9 1.0 3.95(S) ' 4 41. .19.59(S) 2.9 1.0 19.58(S) 3.95(S) 4 42. 2.9 1.0 19.58(S) 3.95(S) 4 43. 2.9 1.0 ' 19.58(S) 3.95(S) 4 44. 2.9 1.0 19.57(S) 3.95(S) 4 45. 2.9 1.0 19.57(S) 3.95(S) ' -, 4 46. 2.9 19.56(S) 1.0 3.94(S) 4 47. 2.9 1.0 19.56(S) 3.94(S) 4 48. 2.9 19.56(S) 1.0 3.94(S) 4 49. 2.9 1.0 19.55(S) 3.94(S) 4 50. 2.9 1.0 4 51. 1.55(S) 2 2.9 3.94(S) 1.0 ' 19.54(S) 3.94(S) 4 52. 2.9 1.0 19.54(S) 3.94(S) 4 53._ 2.9 1.0 19.54(S) 3.94(S) ' 4 54. 2.9 1.0 19.53(S) 3.93(S) 4 55. 2.9 1.0 19.53(S) 3.93(S) 4 56. 2.9 1.0 ' 19.52(S) 3.93(S) 4 57. 2.9 1.0 19.52(S) 3.93(S) 4 58. 2.9 1.0 19.52(S) 3.93(S) 4 59. 2.9 1.0 19.51(S) 3.93(S) 5 0. 2.9 1.0 19.51(S) 3.93(S) S 1. 2.9 1.0 ' 19.50(S) 3.92(S) 5 2. 2.9 1.0 19.50(S) 3.92(S) 5 3. 2.9 1.0 19.50(S) 3.92(S) t 5 4. 2.9 1.0 19.49(S) 3.92(S) 5 5. 2.9 1.0 19.49(S) 3.92(S) 5 6. 19.49(S) 3.92(S) 5 7. 2.9 1.0 19.48(S) 3.92(S) 5 8, 2.9 1.0 19.48(S) 3.92(S) ' 5 9. 2.9 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 21 Printed: 12/28/2004 Stantec 19.47(S) 3.91(S) 5 10. 2.9 1.0 19.47(S) 3.91(S) ' 5 11. 2.9 1.0 �1 19.47(S) 3.91(S) 5 12. 2.9 1.0 19.46(S) 3.91(S) 5 13. 2.9 1.0 ' 19.46(S) 3.91(S) 5 14. 2.9 1.0 19.45(S) 3.91(S) 5 15. 2.9 1.0 19.45(S) 3.91(S) ' 5 16. 2.9 1.0 19.45(S) 3.90(S) 5 17. 2.9 1.0 19.44(S) 3.90(S) 5 18. 2.9 1.0 ' 19.44(S) 3.90(S) 5 19. 2.9 1.0 19.43(S) 3.90(S) 5 20. 2.9 1.0 19.43(S) 3.90(S) ' 5 21. 2.9 1.0 19.43(S) 3.90(S) 5 22. 2.9 1.0 19.42(S) 3.90(S) 5 23. 2.9 1.0 ' 19.42(S) 3.90(S) 5 24. 2.9 1.0 19.41(S) 3.89(S) 5 25. 2.9 1.0 19.41(S) 3.89(S) ' 5 26. 2.9 1.0 19.41(S) 3.89(S) 5 27. 2.9 1.0 19.40(S) 3.89(S) 5 28. 2.9 1.0 ' 19.40(S) 3.89(S) 5 29. 2.9 1.0 19.39(S) 3.89(S) 5 30. 2.9 1.0 19.39(S) 3.89(S) ' 5 31. 2.9 19.39(S) 1.0 3.88(S) 5 32. 2.9 1.0 19.38(S) 3.88(S) 5 33, 2.9 19.38(S) 1.0 3.88(S) 5 34. 2.9 1.0 19.38(S) 3.88(S) 5 35. 2.9 1.0 1.37(S) 3.88(S) 5 36. 2 2.9 1.0 ' 19.37(S) 3.88(S) 5 37. 2.9 1.0 19.36(S) 3.88(S) 5 38, 2.9 1.0 19.36(S) 3.88(S) 5 39. 2.9 1.0 19.36(S) 3.87(S) 5 40. 2.9 1.0 19.35(S) 3.87(S) 5 41. 2.9 1.0 ' 19.35(S) 3.87(S) 5 42. 2.9 1.0 19.34(S) 3.87(S) 5 43. 2.9 1.0 19.34(S) 3.87(S) ' 5 44. 2.9 1.0 19.34(S) 3.87(S) 5 45. 2.9 1.0 19.33(S) 3.87(S) 5 46. 2.9 1.0 ' 19.33(S) 3.86(S) 5 47. 2.9 1.0 19.32(S) 3.86(S) 5 48. 2.9 1.0 19.32(S) 3.86(S) ' 5 49. 2.9 1.0 19.32(S) 3.86(S) 5 50. 2.9 1.0 19.31(S) 3.86(S) • / 5 51. 2.9 1.0 19.31(S) 3.86(S) 5 52. 2.9 1.0 19.30(S) 3.86(S) 5 53. 2.9 1.0 19.30(S) 3.86(S) ' 5 54. 2.9 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 22 Printed: 12/28/2004 ' Stantec 19.30(S) 3.85(S) 2.9 1.0 19.29(S) 3.85(S) 5 56. 2.9 1.0 19.29(S) 3.85(S) 5 57. 2.9 1.0 19.29(S) 3.85(S) 5 58. 2.9 1.0 ' 19.28(S) 3.85(S) 5 59. 2.9 1.0 19.28(S) 3.85(S) 6 0, 2.9 1.0 19.27(S) 3.85(S) ' 6 1. 2.9 1.0 19.27(S) 3.84(S) 6 2. 2.9 1.0 19.27(S) 3.84(S) 6 3. 2.9 1.0 ' 19.26(S) 3.84(S) 6 4. 2.9 1.0 19.26(S)' 3.84(S) 6 19.25(S) 3.84(S) t 6 6. 2.9 1.0 19.25(S) 3.84(S) 6 7. 2.9 1.0 19.25(S) 3.84(S) 6 8. 2.9 1.0 ' 19.24(S) 3.84(S) 6 9. 2.9 1.0 19.24(S) 3.83(S) 6 10. 2.9 1" 19.23(S) 3.83(S) ' 6 11. 2.9 1.0 19.23(S) 3.83(S) 6 12. 2.9 1.0 19.23(S) 3.83(S) 6 13. 2.9 1.0 19.22(S) 3.83(S) 6 14. 2.9 1.0 19.22(S) 3.83(S) 6 15. 2.9 1.0 19.21(S) 3.83(S) 6 16. 2.9 1.0 N� 11 19.21(S) 3.82(S) 6 17. 2.9 1.0 19.21(S) 3.82(S) ' 6 18. 2.9 19.20(S) 1.0 3.82(S) 6 19. 2.9 1.0 19.20(S) 3.82(S) 6 20. 2.9 1.0 6 21. 19.20(S) 2.9 3.82(S) 1.0 ' 19.19(S) 3.82(S) 6 22. 2.9 1.0 19.19(S) 3.82(S) 6 23._ 2.9 1.0 19.18(S) 3.82(S) 6 24. 2.9 1.0 19.18(S) 3.81(S) 6 25. 2.9 1.0 1.18(S) 3.81(S) 6 26. 2.9 2 1.0 19.17(S) 3.81(S) 6 27. 2.9 1.0 19.17(S) 3.81(S) 6 28. 2.9 1.0 19.16(S) 3.81(S) ' 6 29. 2.9 1.0 19.16(S) 3.81(S) 6 30. 2.8 1.0 19.16(S) 3.81(S) 6 31. 2.8 1.0 19.15(S) 3.81(S) 6 32. 2.8 1.0 19.15(S) 3.80(S) 6 33. 2.8 1.0 19.14(S) 3.80(S) ' 6 34. 2.8 1.0 19.14(S) 3.80(S) 6 35. 2.8 1.0 19.14(S) 3.80(S) 6 36. 2.8 1.0 ' 19.13(S) 3.80(S) 6 37. 2.8 1.0 19.13(S) 3.80(S) 6 38. 2.8 1.0 19.12(S) 3.80(S) 6 39. 2.8 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 23 printed: 12/28/2004 Stantec 19.12(S) 3.79(S) 2.8 1.0 19.12(S) 3.79(S) 6 41. 2.8 1.0 19.11(S) 3.79(S) 6 42. 2.8 1.0 19.11(S) 3.79(S) 6 43. 2.8 1.0 ' 19.11(S) 3.79(S) 6 44. 2.8 1.0 19.10(S) 3.79(S) 6 45. 2.8 1.0 19.10(S) 3.79(S) ' 6 46. 2.8 1.0 19.09(S) 3.79(S) 6 47. 2.8 1.0 19.09(S) 3.78(S) 6 48. 2.8 1.0 ' 19.09(S) 3.78(S) 6 49. 2.8 1.0 19.08(S) 3.78(S) 6 50, 2.8 1.0 19.08(S) 3.78(S) ' 6 51. 2.8 1.0 19.07(S) 3.78(S) 6 52. 2.8 1.0 19.07(S) 3.78(S) 6 53. 2.8 1.0 19.07(S) 3.78(S) 6 54. 2.8 1.0 19.06(S) 3.77(S) 6 55, 2.8 1.0 19.06(S) 3.77(S) ' 6 56. 2.8 1.0 19.05(S) 3.77(S) 6 57. 2.8 1.0 19.05(S) 3.77(S) 6 58. 2.8 1.0 ' 19.05(S) 3.77(S) 6 59. 2.8 1.0 19.04(S) 3.77(S) 7 0. 2.8 1.0 19.04(S) 3.77(S) ' 7 1. 2.8 19.03(S) 1.0 3.77(S) 7 2. 2.8 1.0 19.03(S) 3.76(S) 7 3, 2.8 19.03(S) 1.0 3.76(S) ' 7 4. 2.8 1.0 19.02(S) 3.76(S) 7 5. 2.8 1.0 7 6. 1.02(S) 2 2.8 3.76(S) 1.0 ' 19.02(S) 3.76(S) 7 7. 2.8 1.0 19.01(S) 3.76(S) 7 8.. 2.8 1.0 19.01(S) 3.76(S) 7 9. 2.8 1.0 19.00(S) 3.75(S) 7 10. 2.8 1.0 1.00(S) 3.75(S) 7 11. 2 2.8 1.0 19.00(S) 3.75(S) 7 12. 2.8 1.0 18.99(S) 3.75(S) 7 13, 2.8 1.0 18.99(S) 3.75(S) ' 7 14. 2.8 1.0 18.98(S) 3.75(S) 7 15. 2.8 1.0 18.98(S) 3.75(S) 7 16. 2.8 1.0 ' 18.98(S) 3.75(S) 7 17. 2.8 1.0 18.97(S) 3.74(S) 7 18, 2.8 1.0 18.97(S) 3.74(S) ' 7 19. 2.8 1.0 18.96(S) 3.74(S) 7 20. 2.8 1.0 18.96(S) 3.74(S) 7 21. 2.8 1.0 ' 18.96(S) 3.74(S) 7 22. 2.8 1.0 18.95(S) 3.74(S) 7 23, 2.8 1.0 18.95(S) 3.74(S) ' 7 24. 2.8 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 24 Printed: 12/28/2004 ' Stantec 18.95(S) 3.74(S) 7 25. 2.8 1.0 18.94(S) 3.73(S) ' 7 26. 2.8 1.0 ^ 1 7 27. 1.94(S) 2 2.8 3.73(S) 1.0 18.93(S) 3.73(S) 7 28. 2.8 1.0 ' 18.93(S) 3.73(S) 7 29. 2.8 1.0 18.93(S) 3.73(S) 7 30. 2.8 1.0 18.92(S) 3.73(S) ' 7 31. 2.8 1.0 18.92(S) 3.73(S) 7 32. 2.8 1.0 18.91(S) 3.72(S) 7 33. 2.8 1.0 t 18.91(S) 3.72(S) 7 34. 2.8 1.0 18.91(S) 3.72(S) 7 35. 2.8 1.0 18.90(S) 3.72(S) ' 7 36. 2.8 1.0 18.90(S) 3.72(S) 7 37. 2.8 1.0 18.89(S) 3.72(S) 7 38. 2.8 1.0 ' 18.89(S) 3.72(S) 7 39. 2.8 1.0 18.89(S) 3.72(S) 7 40. 2.8 1.0 18.88(S) 3.71(S) ' 7 41. 2.8 1.0 18.88(S) 3.71(S) 7 42. 2.8 1.0 18.87(S) 3.71(S) 7 43. 2.8 18.87(S) 1.0 3.71(S) 7 44. 2.8 1.0 18.87(S) 3.71(S) 7 45. 2.8 1.0 ' --'� 7 46. 1.86(S) 2.8 2 3.71(S) 1.0 18.86(S) 3.71(S) 7 47. 2.8 1.0 18.86(S) 3.70(S) 7 48, 2.8 18.85(S) 1.0 3.70(S) ' 7 49. 2.8 1.0 18.85(S) 3.70(S) 7 50. 2.8 1.0 1.84(S) 3.70(S) 7 51. 2.8 2 1.0 18.84(S) 3.70(S) 7 52. 2.8 1.0 18.84(S) 3.70(S) 7 53, 2.8 1.0 18.83(S) 3.70(S) 7 54. 2.8 1.0 18.83(S) 3.70(S) 7 55. 2.8 1.0 18.82(S) 3.69(S) 7 56. 2.8 1.0 18.82(S) 3.69(S) 7 57.. 2.8 1.0 18.82(S) 3.69(S) 7 58. 2.8 1.0 18.81(S) 3.69(S) ' 7 59. 2.8 1.0 18.81(S) 3.69(S) 8 0. 2.8 1.0 18.80(S) 3.69(S) 8 1. 2.8 1.0 ' 18.80(S) 3.69(S) 8 2. 2.8 1.0 18.80(S) 3.69(S) 8 3, 2.8 1.0 18.79(S) 3.68(S) ' 8 4. 2.8 1.0 18.79(S) 3.68(S) 8 5. 2.8 1.0 18.79(S) 3.68(S) 8 6. 2.8 1.0 18.78(S) 3.68(S) 8 7. 2.8 1.0 18.78(S) 3.68(S) 8 8, 2.8 1.0 18.77(S) 3.68(S) 8 9. 2.8 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 25 Printed: 12/28/2004 ' Stantec 18.77(S) 3.68(S) 8 10. 2.8 1.0 18.77(S) 3.67(S) ' 8 11. 2.8 1.0 18.76(S) 3.67(S) 8 12. 2.8 1.0 18.76(S) 3.67(S) 8 13. 2.8 1.0 18.75(S) 3.67(S) 8 14. 2.8 1.0 18.75(S) 3.67(S) 8 15. 2.8 1.0 18.75(S) 3.67(S) 8 16. 2.8 1.0 18.74(S) 3.67(S) 8 17. 2.8 1.0 18.74(S) 3.67(S) 8 18. 2.8 1.0 ' 18.73(S) 3.66(S) 8 19. 2.8 1.0 18.73(S) 3.66(S) 8 20. 2.8 1.0 18.73(S) 3.66(S) ' 8 21. 2.8 1.0 18.72(S) 3.66(S) 8 22. 2.8 1.0 18.72(S) 3.66(S) 8 23. 2.8 1. 18.72(S) 3.66(S) 8 24. 2.8 1.0 18.71(S) 3.66(S) 8 25. 2.8 1.0 18.71(S) 3.65(S) 8 26. 2.8 1.0 18.70(S) 3.65(S) 8 27. 2.8 1.0 18.70(S) 3.65(S) 8 28. 2.8 18.70(S) 1. 3.65(S) 8 29. 2.8 1.0 18.69(S) 3.65(S) 8 30. 2.8 1.0 8 31. 18.69(S) 2.8 18.68(S) 3.65(S) 1.0 3.65(S) 8 32. 2.8 1.0 18.68(S) 3.65(S) 8 33, 2.8 18.68(S) 1.0 3.64(S) ' 8 34. 2.8 1.0 18.67(S) 3.64(S) 8 35. 2.8 1.0 1.67(S) 3.64(S) 8 36. 2 2.8 1.0 ' 18.66(S) 3.64(S) 8 37. 2.8 1.0 18.66(S) 3.64(S) 8 38. 2.8 1.0 18.66(S) 3.64(S) ' 8 39. 2.8 1.0 18.65(S) 3.64(S) 8 40. 2.8 1.0 18.65(S) 3.64(S) 8 41. 2.8 1.0 18.65(S) 3.63(S) 8 42. 2.8 1.0 18.64(S) 3.63(S) 8 43. 2.8 1.0 18.64(S) 3.63(S) ' 8 44. 2.8 1.0 18.63(S) 3.63(S) 8 45. 2.8 1.0 18.63(S) 3.63(S) 8 46. 2.8 1.0 ' 18.63(S) 3.63(S) 8 47. 2.8 1.0 18.62(S) 3.63(S) 8 48. 2.8 1.0 18.62(S) 3.62(S) ' 8 49. 2.8 1.0 18.61(S) 3.62(S) 8 50. 2.8 1.0 18.61(S) 3.62(S) 8 51. 2.8 1.0 18.61(S) 3.62(S) 8 52. 2.8 1.0 18.60(S) 3.62(S) 8 53. 2.8 1.0 18.60(S) 3.62(S) ' 8 54. 2.8 1.0 C:\SWMM\Lind Filing 2\Lind2Final.out 26 Printed: 12/28/2004 ' Stantec 18.60(S) 3.62(S) 2.8 1.0 18.59(S) 3.62(S) 8 56. 2.8 1.0 18.59(S) 3.61(S) 8 57. 2.8 1.0 } 18.58(S) 3.61(S) 8 58. 2.8 1.0 ' 18.58(S) 3.61(S) 8 59. 2.8 1.0 18.58(S) 3.61(S) 9 0. 2.8 1.0 18.57(S) 3.61(S) ' 9 1. 2.8 1.0 18.57(S) 3.61(S) 9 2. 2.8 1.0 18.56(S) 3.61(S) 9 3. 2.8 1.0 ' 18.56(5) 3.61(S) 9 4. 2.8 1.0 18.56(S) 3.60(S) 9 5, 2.8 1.0 18.55(S) 3.60(S) ' 9 6. 2.8 1.0 18.55(S) 3.60(S) 9 7. 2.8 1.0 18.54(S) 3.60(S) 9 8. 2.8 1.0 18.54(S) 3.60(S) 9 9. 2.8 1.0 18.54(S) 3.60(S) 9 10. 2.8 1.0 18.53(S) 3.60(S) ' 9 11. 2.8 1.0 18.53(S) 3.59(S) 9 12. 2.8 1.0 18.53(S) 3.59(S) 9 13. 2.8 1.0 ' 18.52(S) 3.59(S) 9 14. 2.8 1.0 18.52(S) 3.59(S) 9 15. 2.8 1.0 18.51(S) 3.59(S) ' 9 16. 2.8 18.51(S) 1.0 3.59(S) 9 17. 2.8 1.0 18.51(S) 3.59(S) 9 18. 2.8 18.50(S) .9 3.59(S) 9 19. 2.8 .9 18.50(S) 3.58(S) 9 20. 2.8 .9 1.49(S) 3.58(S) 9 21. 2 2.8 .9 18.49(S) 3.58(S) 9 22. 2.8 .9 18.49(S) 3.58(S) 9 23. 2.8 18.48(S) .9 3.58(S) ' 9 24. 2.8 .9 18.48(S) 3.58(S) 9 25. 2.8 .9 18.48(S) 3.58(S) 9 26. 2.8 .9 ' 18.47(S) 3.58(S) 9 27. 2.8 .9 18.47(S) 3.57(S) 9 28. 2.8 .9 18.46(S) 3.57(S) ' 9 29. 2.8 .9 18.46(S) 3.57(S) 9 30. 2.8 .9 18.46(S) 3.57(S) 9 31. 2.8 .9 18.45(S) 3.57(S) 9 32. 2.8 .9 18.45(S) 3.57(S) 9 33. 2.8 .9 18.44(S) 3.57(S) ' 9 34. 2.8 .9 18.44(S) 3.56(S) 9 35. 2.8 18.44(S) .9 3.56(S) 9 36. 2.8 .9 18.43(S) 3.56(S) 9 37. 2.8 .9 18.43(S) 3.56(S) 9 38. 2.8 .9 18.42(S) 3.56(S) ' 9 39. 2.8 .9 C:\SWMM\Lind Filing 2\Lirid2Final.out 27 Printed: 12/28/2004 1 18.42(S) 3.56(S) 9 40. 2.8 .9 18.42(S) 3.56(S) ' 9 41. 2.8 .9 18.41(S) 3.56(S) 9 42. 18.41(S) 3.55(S) 9 43. 2.8 .9 ' 18.41(S) 3.55(S) 9 44. 2.8 .9 18.40(S) 3.55(S) 9 45. 2.8 .9 18.40(S) 3.55(S) 9 46. 2.8 .9 18.39(S) 3.55(S) 9 47. 2.8 .9 18.39(S) 3.55(S) 9 48. 2.8 .9 ' 18.39(S) 3.55(S) 9 49. 2.8 .9 18.38(S) 3.55(S) 9 50. 2.8 .9 18.38(S) 3.54(S) ' 9 51. 2.8 .9 18.37(S)' 3.54(S) 9 52. 2.8 .9 18.37(S) 3.54(S) 9 53. 2.8 .9 18.37(S) 3.54(S) 9 54. 2.8 .9 18.36(S) 3.54(S) 9 55. 2.8 .9 18.36(S) 3.54(S) ' 9 56. 2.8 .9 18.36(S) 3.54(S) 9 57. 2.8 .9 18.35(S) 3.53(S) 9 58. 2.8 .9 ' 18.35(S) 3.53(S) 9 59. 2.8 .9 18.34(S) 3.53(S) 10 0. 2.8 .9 1.34(S) 3.53(S) i' 10 1. 2 2.8 .9 ' 18.34(S) 3.53(S) 10 2. 2.8 .9 18.33(S) 3.53(S) 10 3. 2.8 .9 18.33(S) 3.53(S) ' 10 4. 2.8 .9 18.32(S) 3.53(S) 10 5. 2.8 .9 1.32(S) 3.52(S) 10 6. 2 2.8 .9 18.32(S) 3.52(S) 10 7. 2.8 .9 18.31(S) 3.52(S) 2.8 .9 18.31(S) 3.52(S) 10 9. 2.8 .9 18.31(S) 3.52(S) 10 10. 2.8 .9 18.30(S) 3.52(S) 10 11. 2.8 .9 ' 18.30(S) 3.52(S) 10 12. 2.8 .9 18.29(S) 3.52(S) 10 13. 2.8 .9 18.29(S) 3.51(S) ' 10 14. 2.8 .9 18.29(S) 3.51(S) 10 15. 2.8 .9 18.28(S) 3.51(S) 10 16. 2.8 .9 ' 18.28(S) 3.51(S) 10 17. 2.8 .9 18.27(S) 3.51(S) 10 18. 2.8 .9 18.27(S) 3.51(S) ' 10 19. 2.8 .9 18.27(S) 3.51(S) 10 20. 2.8 .9 18.26(S) 3.50(S) 10 21. 2.8 .9 18.26(S) 3.50(S) 10 22. 2.8 .9 18.26(S) 3.50(S) 10 23. 2.8 .9 18.25(S) .3.50(S) ' 10 24. 2.8 .9 C:\SWMM\Lind Filing 2\Lind2Final.out Stantec 28 Printed: 12/28/2004 ' Stantec 18.25(S) 3.50(1) 2.8 .9 18.24(S) 3.50(S) 10 26. 2.8 .9 10 27. 18.24(S) 2.8 3.50(S) .9 18.24(S) 3.50(S) 10 28. 2.8 .9 ' 18.23(S) 3.49(S) 10 29. 2.8 .9 18.23(S) 3.49(S) 10 30. 2.8 .9 18.22(S) 3.49(S) ' 10 31. 2.8 .9 18.22(S) 3.49(S) 10 32. 2.8 .9 18.22(S) 3.49(S) 10 33. 2.8 . 18.21(S) 3.49(S) 10 34. 2.8 .9 18.21(S) 3.49(S) 10 35. 2.8 .9 18.21(S) 3.49(S) ' 10 36. 2.8 .9 18.20(S) 3.48(S) 10 37. 2.8 .9 18.20(S) 3.48(S) 10 38. 2.8 .9 ' 18.19(S) 3.48(S) 10 39. 2.8 .9 18.19(S) 3.48(S) 10 40. 2.8 .9 18.19(S) 3.48(S) 10 41. 2.8 .9 18.18(S) 3.48(S) 10 42. 2.8 .9 18.18(S) 3.48(S) 10 43. 2.8 .9 ' 18.17(S) 3.47(S) 10 44. 2.8 .9 18.17(S) 3.47(S) 10 45. 2.8 .9 1.17(S) 3.47(S) ' 10 46. 2 2.8 .9 18.16(S) 3.47(S) 10 47. 2.8 .9 18.16(S) 3.47(S) 10 48. 2.8 18.16(S)•. .9 3.47(S) 10 49. 2.8 .9 18.15(S) 3.47(S) 10 50. 2.8 .9 10 51. 1.15(S) 2.8 2 3.47(S) .9 ' 18.14(S) 3.46(S) 10 52. 2.8 .9 18.14(S) 3.46(S) 10 53_ 2.8 . 18.14(S) 3.46(S) ' 10 54. 2.8 .9 18.13(S) 3.46(S) 10 55. 2.8 .9 18.13(S) 3.46(S) 10 56. 2.8 .9 ' 18.12(S) 3.46(S) 10 57. 2.8 .9 18.12(S) 3.46(S) 10 58. 2.8 .9 18.12(S) 3.46(S) ' 10 59. 2.8 .9 18.11(S) 3.45(S) 11 0. 2.8 .9 18.11(S) 3.45(S) 11 1. 2.8 . 18.11(S) 3.45(S) 11 2. 2.8 .9 18.10(S) 3.45(S) 11 3. 2.8 .9 18.10(S) 3.45(S) ' 11 4. 2.8 .9 18.09(S) 3.45(S) 11 S. 2.8 .9 12.89(S) 3.95(S) \� 11 6. 18.09(S) 3.44(S) 11 7. 2.8 .9 18.08(S) 3.44(S) 11 8. 2.8 .9 18.08(S) 3.44(S) ' 11 9. 2.8 .9 C:\SWMM\Lind Filing 2\Lind2Final.out 29 Printed: 12/28/2004 ' Stantec 18.07(S) 3.44(S) 2.8 18.07(S) .9 3.44(S) 11 11. 2.8 .9 18.07(S) 3.44(S) 11 12. 2.8 .9 18.06(S) 3.44(S) 11 13. 2.8 .9 18.06(S) 3.44(S) 11 14. 2.8 .9 18.06(S) 3.43(S) 11 11, 2.8 .9 18.05(S) 3.43(S) ' 11 16. 2.8 .9 18.05(S) 3.43(S) 11 17. 2.8 .9 18.04(S) 3.43(S) 11 18. 2.8 .9 ' 18.04(S) 3.43(S) 11 19. 2.8 .9 18.04(S) 3.43(S) 11 20. 2.8 .9 18.03(S) 3.43(S) ' 11 21. 2.8 .9 18.03(S) 3.43(S) 11 22. 2.8 .9 18.02(S) 3.42(S) 11 23. 2.8 .9 ' 18.02(S) 3.42(S) 11 24. 2.8 .9 18.02(S) 3.42(S) 11 25. 2.8 .9 18.01(S) 3.42(S) ' 11 26. 2.8 .9 18.01(S) 3.42(S) 11 27. 2.8 .9 18.01(S) 3.42(S) 11 28. 2.8 . 18.00(S) 3.42(S) 11 29. 2.8 .9 18.00(S) 3.42(S) 11 30. 2.8 .9 17.99(S) 3.41(S) 11 31. 2.8 .9 17.99(S) 3.41(S) - 11 32. 2.8 .9 17.99(S) 3.41(S) 11 33. 2.8 17.98(S) .9 3.41(S) 11 34. 2.8 .9 17.98(S) 3.41(S) 11 35. 2.8 .9 1.98(S) 3.41(S) 11 36. 2 2.8 .9 ' 17.97(S) 3.41(S) 11 37. 2.8 .9 17.97(S) 3.40(S) 11 38._ 2.8 . 17.96(S) 3.40(S) ' 11 39. 2.8 .9 17.96(S) 3.40(S) 11 40. 2.8 .9 1.96(S) 3.40(S) 11 41. 2 2.8 .9 ' 17.95(S) . 3.40(S) 11 42. 2.8 .9 17.95(S) 3.40(S) 11 43. 2.8 .9 17.94(S) 3.40(S) 11 44. 2.8 .9 17.94(S) 3.40(S) 11 45. 2.8 .9 17.94(S) 3.39(S) 11 46. 2.8 .9 17.93(S) 3.39(S) 11 47. 2.8 .9 17.93(S) 3.39(S) 11 48. 2.8 .9 17.93(S) 3.39(S) 11 49. 2.8 .9 17.92(S) 3.39(S) 11 50. 2.8 .9 J 17.92(S) 3.39(S) 11 51. 2.8 .9 ' 17.91(S) 3.39(S) 11 52. 2.8 .9 17.91(S) 3.39(S) 11 53. 2.8 .9 17.91(S) 3.38(S) 11 54. 2.8 .9 C:\SWMM\Lind Filing 2\Lind2Final.out 30 Printed: 12/28/2004 1 17.90(S) 3.38(S) 11 55. 2.8 .9 17.90(S) 3.38(S) 1 11 56. 2.8 .9 11 57. 17.89(S) 2.8 3.38(S) .9 1.89(S) 3.38(S) 11 58. 2 2.8 .9 1 17.89(S) 3.38(S) 11 59. 2.8 .9 17.88(S) 3.38(S) 12' 0. 2.8 .9 1 17.88(S) 3.38(S) 1 1 1 1 1 1 1 1 1 i [1 11 Stantec 1 C:\SWMM\Lind Filing 2\Lind2Final.out 31 Printed: 12/28/2004 I Stantec LIND FARM FILING 2 100-YEAR EVENT FILE: LINDFILING2.IN STANTEC: 12/27/04 1 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS'*** ** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY 1 CONVEYANCE PEAK STAGE STORAGE TIME w QC � o `� ;�� .�y �QQ - Yt- ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 100:2 2.9 .1 20.0: D 2 36.—� �. 93 —� Z I • p3 ac • 4 �j fond 101:2 428.9 5.1 0 35. 1 102:2 48.7 2.1 0 35. 103:2 49.0 2.1 0 35. 104:2 89.7 3.2 0 35. 200:2 1.0 .1 4.1: D 2 21.— O, 4Z —: 9 S2 ac: -4 Pad zoo 201:2 91.0 3.3 0 35. 1 202:2 24.6 1.4 0 35. 500:3 3.9 (DIRECT FLOW) 2 32, 1 ENDPROGRAM PROGRAM CALLED 1 1 1 i i 7 L i 11 �J 1 C:\SWMM\Lind Filing 2\Lind2Final.out 32 Printed: 12/28/2004 I 1 1 RATING CURVES 1 1 1 i 11 i 1 1 1 1 1 1 Pond100FinalRatingcurvel2-21-04.txt Lind Filing 2 Final Rating Curve Pond 100 ].Gooch 12-21-04 #units=Elevation, ft, Area, ft2,Vol ume,acft, volume, acft # Elev area Cumml Avg Cumml Conic # ft ft2 acft acft ' 5021.8500 5020.8500 163888.7695 159197.9121 25.8153 22.1068 25.6660 21.9576 5020.0000 155255.3192 19.0388 18.8897 5019.0000 150669.4873 15.5273 15.3783 5018.0000 146140.4259 12.1204 11.9715 ' 5017.0000 141668.1351 8.8168 8.6680 5016.0000 137252.6150 5.6152 5.4666 5015.0000 132893.8661 2.5143 2.3659 5014.0000 38699.9314 0.5447 0.5040 ' 5013.0000 8756.0051 0.0000 0.0000 1� 1 I Page 1 O CD O CD O ONO 0 0 6 6 O O M U (Oj U > afOi E a`0i M. cy m Cc _ o _m m O�Q R.� 0 I d- m U N O M �U OI-- �(D 70NM0 0 p Oo(Om�v(DMC) O N N (V N M M O ? U w is oor�n��0ornro (0 7` O CO M V (p fA M M (A CD r (Up .O O N Cn 00 O 00 LO N N O d O _ O1 0 0 CD CD CDC, r.- ati O l0 O O M A N Cl) � 0 0 r� O O M M M OM M M M O N V a c U U m O U m U rn a� Q O J W N � o v v a� 777 0 M O o ri m c,) CO O O (P O N O e 0 u- O O: w 77 C6 d V (0 N N V O O O Or-- N V �- O M M (D N N O, .-- M Cp N N 00 O N O f` M (D �, O 43) V r. Co V 00 00 N D) 00 , (D M , 00 O O N V 00 V R N O (D O Cp Q ..� O 00 O O O O O (D O (D N! M C (V N OD O N (M v O (O r O O M M M CO (M M M vi ; O M 00 (D , V' � cr) m (V 01 Cc O O DY (D F O D) O O (D � (O O CA 00 (D. — 0 Z ` (D (A CO N (0 , (O N 00 C) G) O (D N r 1 0 0 0 O M Y I_ 00 M M �f V' O O O (D V 00 M s M 0.' O O O N M � O (D f— OO 00 Co Co 00 T '00 7 C f— (OD r a. d O co O� > Md'O(DI-000O000 �' O r w, 0 r- c- CD No �F, O P C w co C)O CD O oO O N N 0 N 3 OOu�OOOOOn (oO (oO(on Ma O _O N O W X O N N_ N N Z 7 U rn c w m v C O a v v LO (O Lo O O MO00 O N O O 0 0 l0 L U � � CM v U � N 0 } N w� crmM co O la � O O T a� O 3 a f it _ lLL d O u p OO 0 m wtm U O T 00lT Ov(O r N T O CD MM C)aa N T O o .' (D (D NE-Lo OD(D(O00N:NC1 "0 O O M I� m (O(OMV to OW O O O T N 4 V (D cD T U U) d _ OIO Ih co ih I - I - OM N h O O N O M N LO O 00 M to O M a 0 a 0 O T T O T O m N V ,D T M ct V M ,�:.. ...,. y V N M V' I- T T � W N N n N m U.) In ";2. �' Cl co LO m -q � m Q .�.. O m0 0 1N O T N T'V'�ORh1�m,. N O O O 00 m (O (D LO N N m w (O TO (O m M m (D T T (D �; N O O T T T m c0 OO 00 n m a v O r- Lo co OTT O co O (D (O O P'- m I-- M v V In (D T N V (0 P%- r- CO U') (D (D Il- cb co Q N. (D 00 > (nv(O(Dl�CC) mmO N ' 0 0 0 0 0 0 0 0 l ' ' 0 N w (O LO LO LO (O U-)LOLn (O t c 0 0 U U (9 O U (0 v U oaa Q o 0 � xx xx II II II II J Q Q Q Q Cl) (o > allill d O O O O O w O O O O o 0 0 0 T O O O O O O O O d Of l6 O co a cr O O O O N O O O O R T goo doo O ..0000 M O N N 3 N N 0 0. - 0 0 H LO In In U') H ao to X O N N_ N N 7 U m c m -0 c 0 a E E 3 U T 0 ' Pond200FinalRatingCurvel2-21-04.txt Lind Filing 2 Final Rating Curve ' Pond 200 J.Gooch 12-21-04 '. #units=Elevation, ft, Area, ft2,Vol ume,acft,volume, acft # Elev Area Cumml Avg Cumml Conic # ft ft2 acft acft 5030.0000 85048.5621 6.4348 6.3778 5029.0000 74118.1865 4.6079 4.5522 5028.0000 63069.6236 3.0332 2.9792 5027.0000 47621.9294 1.7626 1.7128 5026.0000 28641.3544 0.8872 0.8466 5025.0000 17651.9671 0.3558 0.3203 5024.0000 6674.6658 0.0766 0.0511 ' 5023.0000 0.0001 0.0000 0.0000 Page 1 I 1 WQCV CALCULATIONS I i I I I 0 I I i I H 1 IJ ' Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 Designer: ' Company: Date: Project: ' Location: 1 1 11 1 C John Gooch Stantec December 21, 2004 Lind Filing 2 Fort Collins 1. Basin Storage Volume A) Tributary Area's Imperviousness Ratio (i = Ia / 100 ) B) Contributing Watershed Area (Area) C) Water Quality Capture Volume (WQCV) (WQCV=1.0*(0.91 *13-1.19*I2+0.78*1)) D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 2. Outlet Works A) Outlet Type (Check One) B) Depth at Outlet Above Lowest Perforation (H) C) Required Maximum Outlet Area per Row, (A.) D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR ii) 2" Height Rectangular Perforation Width E) Number of Columns (nc, See Table 6a-1 For Maximum) F) Actual Design Outlet Area per Row (Ao) G) Number of Rows (nr) H) Total Outlet Area (A,) 3. Trash Rack A) Needed Open Area: A, = 0.5 * (Figure 7 Value) * Ao, B) Type of Outlet Opening (Check One) C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (Wm ,) from Table 6a-1 ii) Height of Trash Rack Screen (HTR) �QcU Pay 160 18 = 60.00 % i = ,0.60;,-1p11. Area = 81.58 acres WQCV = 0.24; �-::<watershed inches Vol = =,. - .90, 71,,; acre-feet x Orifice Plate Perforated Riser Pipe Other: H = 4.00 feet A. = 1.62 'square inches D = 1.0000 inches, OR W = inches nc =2 F < number A. square inches nr = s:12 ar: number Ao, = 18.851;, ` square inches A, = 641 :> square inches X < 2" Diameter Round 2" High Rectangular Other: Wwnc = 18 inches HTR = .72. -' inches ' UDFCD Form Pond 100FinalDesign.xls, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 Designer: John Gooch Company: Stantec Date: December 21, 2004 Project: Lind Filing 2 Location: Fort Collins iii) Type of Screen (Based on Depth H), Describe if "Other" I x S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other" X_`;'."�0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) Type and Size of Support Rod (Ref.: Table 6a-2) vi) Type and Size of Holding Frame (Ref.: Table 6a-2) ,1:00,t ;`.inches TE 0.074 in. x 0.50 in. 0.75 in. x 1.00 in. angle D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = , � inches ii) Width of Perforated Plate Opening (Wwnc = W + 12") W. _ inches iii) Width of Trashrack Opening (W.pemng) from Table 6b-1 Wopening r. '{ a?,, _ , inches iv) Height of Trash Rack Screen (HTR) HTR = ' . ,.'3 inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempTM KPP w ; r inches Grating). Describe if "Other" Other: vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio VVII) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no UDFCD Form Pond 100FinalDesign.xls, EDB H Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: John Gooch Company: Stantec Date: December 21, 2004 Project: Lind Filing 2 Location: Fort Collins 6. Two -Stage Design A) Top Stage (Dwo = 2' Minimum) Dwo = feet Storage= acre-feet B) Bottom Stage (DBs = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum, DsS = feet Storage = 5% to 15% of Total WQCV) Storage= acre-feet Surf. Area= :. , ; _' acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.5 ' Top Stage Depth or 2.5 Feet) Storage= acre-feet Surf. Area= `; ` `:':. °; ^t i" ° acres D) Total Volume: Voltoi = Storage from 5A + 6A + 6B Vol,o, Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred S. Dam Embankment Side Slopes (Z, horizontal distance) Z = 3.00 (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: UDFCD Form Pond 100FinalDesign.xls, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 Designer: John Gooch Company: Stantec p Date: December 21, 2004 Project: Lind Filing 2 Location: Fort Collins 1. Basin Storage Volume la = 60.00 % A) Tributary Area's Imperviousness Ratio (i = la/ 100) i = 0.60.. . B) Contributing Watershed Area (Area) Area = 17.64 acres C) Water Quality Capture Volume (WQCV) WQCV = 6:24 ' watershed inches (WQCV =1.0*(0.91'11_1.19"12+0.78*1)) D) Design Volume: Vol = (WQCV / 12) "Area " 1.2 Vol = 1„15 0.417? .: acre-feet 2. Outlet Works A) Outlet Type (Check One) x Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforation (H) H = 4.00 feet C) Required Maximum Outlet Area per Row, (Ao) A. = 0.35:`.. square inches D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR D = 0.6800 inches, OR ii) 2" Height Rectangular Perforation Width W = inches E) Number of Columns (nc, See Table 6a-1 For Maximum) nc = .,I ': '.; number F) Actual Design Outlet Area per Row (Ao) A. = .0.36& •. square inches G) Number of Rows (nr) nr = 12 number H) Total Outlet Area (A.� Aot = 4.36 _ square inches 3. Trash Rack A) Needed Open Area: A, = 0.5 ` (Figure 7 Value) ' Aot At = 154 square inches B) Type of Outlet Opening (Check One) x < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (Ww,) from Table 6a-1 Wcoot - 6 inches — ii) Height of Trash Rack Screen (HTR) HTR = 72 inches UDFCD Form Pond200FinalDesign.x1s, EDB L Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 J Designer: John Gooch Company: Stantec Date: December 21, 2004 Project: Lind Filing 2 Location: Fort Collins iii) Type of Screen (Based on Depth H), Describe if "Other" I x S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other' I X: ' .0.139" (US Filter) Other: v) Spacing of Support Rod (D.C.) Type and Size of Support Rod (Ref.: Table 6a-2) vi) Type and Size of Holding Frame (Ref.: Table 6a-2) ':,'0:75 :,.« inches #156 VEE 3/8 in. x 1.0 in. flat bar D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = -+inches ii) Width of Perforated Plate Opening (Ww , = W + 12") Wm c _ @ inches iii) Width of Trashrack Opening \""open;n0) from Table 6b-1 Wopen;ne inches iv) Height of Trash Rack Screen (HTR) HTR = ° I _ :. -inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTM KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempTm KPP inches Grating). Describe if "Other' Other: vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2) (Based on depth of WQCV surcharge) 4. Detention Basin length to width ratio (L/W) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (5 to 10% of the Design Volume in 1 D) acre-feet B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no UDFCD Form Pond200FinalDesign.xls, EDB Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: John Gooch Company: Stantec Date: December 21, 2004 Project: Lind Filing 2 Location: Fort Collins 6. Two -Stage Design A) Top Stage (Dwo = 2' Minimum) Dwo = feet Storage= acre-feet B) Bottom Stage (DBs = Dwo+ 1.5' Minimum, Dwo+ 3.0' Maximum, DBs = feet Storage = 5% to 15% of Total WQCV) Storage= acre-feet Surf. Area=r.;:, C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.5 ` Top Stage Depth or 2.5 Feet) Storage= acre-feet Surf. Area=' acres D) Total Volume: Volt,, = Storage from 5A + 6A + 6B Voltot = acre-feet Must be > Design Volume in 1 D 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = 3.00 (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: UDFCD Form Pond200FinalDesign.xls, EDB ORIFICE CALCULATIONS 1 1 1 1 1 1 � 1 Ord Stantec iz-z9-off �r��ce ('u•CcwQti'�w,f � Pn�s IUv ;' zo0. Q = 3,0 104 4 Pool 2dv : Qz; o c>; Cd = o, 6s adZ T.w.E(wl,= 5di3.2G� a = Ca Ao zy a h a _ flaa cc4) Cd = ci, cczrT� CK{" !i = �jr:'�ite Am U4 2 ) �i Hew, (H.W. -TO) P) g_31.z-P�/5z 3.0 cfs = O. bs ( Z�j�q_g N) (7s-16 18.9b = �fPd,-1)(22.) r D b�� I N,Lj, EIN 6-oz.v.9b 4X n 7.W, Eleo = 5oZ3,00 a TajjAe-r' ,, bJJA c4L><4 r L ` 1.0n- o,S) (d,z) L 1`J, d� a 0,3Z 2 3.8 filches > (f44 PI4�Ye Pn�4l zool Designed by: Checked by: I ' Project Description Tailwater Pond4,00 Outlet Worksheet for Circular Channel Worksheet Tailwater Orifice Pond too ' Flow Element Circular Channel Method Manning's Formula ' Solve For Full Flow Diameter Input Data ' mannings coemc u.u1 s D g Rc P Channel Slope 008600 ft/ft � rroi%& L,a 1 �% r `� `f Discharge 3.00 cfs ' Results Depth 0.96 ft —�j Lku ,� valor �w Qr.�it (oCcrrX�P Diameter Flow Area 11.6 in 0.7 ft' '' II L5 ' INS �r P,PE Sofz,3o Wetted Perime 0.00 ft Top Width 0.00 ft Critical Depth 0.75 ft --- S� 13,�6 TIJ F�W Percent Full 100.0 % Critical Slope 009586 ft/ft Velocity 4.11 ft/s ' Velocity Head 0.26 ft Specific Energ, 1.23' ft Froude Numbe 0.00 Maximum Disc 3.23 cfs ' Discharge Full 3.00 cfs Slope Full 008600 ft/ft Flow Type N/A 11 Project Engineer: Alicia Forward ' c:\program riles\haestad\fmw\lindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 [7.00051 12/29/04 02:24:45 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 I 0 [I 1 1 I J OVERFLOW WEIR CALCULATIONS 1 Project: Lind Filing 2 l Location: Pond 100 ' Broad Crested Weir - Basic Equation: CI Q = CoLeH1.5 Calculate Q from Dimensions: C= 3.00 L= 200 ft H= 1.00 ft Q= 600 cfs Calculate L from Q and H C= 3.00 Q= 600 cfs H= 1.00 ft L= 200 ft Calculate H from Q and L C= 3.00 Q= 600 cfs L= 200 ft H= 1.00 ft STANTEC Proj. Number: 614-005 By: J. Gooch *This Q value was taken from the Lind Filing 1 Report, which reflects a flowrate that accounts for Filings 1, 2, & 3. *Q= Qioo x 2....... Q= 300 x 2 = 600cfs. H= Freeboard - 100-Yr WSEL = 4921.84 - 4920.84 = 1.00' Therefore ... L=200' 1 1 Project: Lind Filing 2 Location: Pond 200 1 1 Broad Crested Weir - Basic Equation: 1 Q _ C*L*H1.5 Calculate Q from Dimensions: C= 3.00 L= 33 ft H= 1.00 ft Q= 99 cfs " Calculate L from Q and H C= 3.00 Q= 100 cfs H= 1.00 ft L= 33 ft Calculate H from Q and L C= 3.00 Q= 100 cfs L= 33 ft H= 1.01 ft STANTEC Proj. Number: 614-005 By: J. Gooch Q= Qioo x 2....... Q= 50 x 2 = 100cfs. H= Freeboard - 100-Yr WSEL = 4929.98 - 4928.98 = 1.00' Therefore ... L=33' I 0 1 1 1 1 STORM INLET SIZING: UDINLET 1 1 1 1 1 1 1 1 1 1 11 1 � u 1 Area Inlet Design - Sump Condition Area Inlet: STIN-Al-2 Project No. 614-005 This sheet computes the controlling area Inlet flow condition. 1� 0 1 Orifice Weir Equation: 3 Q, = CLH 1 where: H = head above weir Orifice Equation: Q.,V_ = C. A, 2 gH where: H= h 2- h r Grate: NEENAH R3401 Weir: Orifice: C„,.y = 3.20 C.nnr. = 0.65 Lcr.e = 17.30 ft. (1) A.,;n.. = 14.61 ftz Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 6022.60 100 year Design Flow (cfs) = 6.66 100 year WSEL (6.66) = 5022.74 Head (ft.) Q, O.flR.. 4..wi WSEL 0.00 0.00 0.00 0.00 5022.50 0.50 15.66 43.10 15.66 5023.00 1.00 44.28 60.95 44.28 5023.50 1.50 81.35 74.64 74.64 5024.00 2.00 125.24 86.19 86.19 5024.50 2.50 175.03 96.36 96.36 5025.00 3.00 230.09 105.56 105.56 5025.50 3.50 289.94 114.02 114.02 5026.00 4.00 354.24 121.89 121.89 5026.50 4.50 422.69 129.29 129.29 5027.00 5.00 495.07 136.28 136.28 5027.50 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Space width = 1.8229 ft. Bar width = 0.0729 ft. Number of bars= 10 Number of spaces = 9 Grate length = 17.14 ft. Effective Grate Length = 16.41 ft. Space width = 0.0990 ft. Bar width = 0.0729 ft. Number of bars= 10 Number of spaces = 9 Grate Width = 1.62 ft. Effective GrateWidth = 0.89 ft. ' The Sear -Brown Group 2:24 PM 1/3/2005 [1 1 1 1 1 1 1 13 1 0 L__I I 1 1 1 IJ Design Flow = Gutter Flow + Carry-over Flow OVERLAND I STREEET I I OVERLAND ® <—GUTTER FLOW PLUS CARRY-OVER FLOW-*---- E- GUTTER FLOW INLET INLET 112 OF STREET Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C N/P Calculated 5-yr. Runoff Coefficient, C5 FffA Overland Flow Velocity, Vo NIA fps Gutter Flow Velocity, VG 13/Q fps Overland Flow Time, to WA minutes Gutter Flow Time, tG NlA minutes Calculated Time of Concentration, Tc PUPA minutes Time of Concentration by Regional Formula, Tc t I/! minutes Recommended Tc N/! minutes Time of Concentration Selected by User, Tc MIA minutes Design Rainfall Intensity, I N1l inch/hr Calculated Local Peak Flow, Qp NtR cfs Total Design Peak Flow, Q ,_.;_; .1.0;57: cis IDP3 100Yr.xls, Q-Peak 12/29/2004, 6:04 PM WEIR. SUMP OR SAGLOCATI0N. Project Und FUng 2 Inlet ID Combination InieF faB DP'3 '' Warning ,(Lo (C)-- i Design Information (input) Type of Inlet Type CDOT:;Typa R Curti Openmg Local Depression (in addition to gutter depression'a' from'O-AIIOW) a„r„ inches Number of Unit Inlets (Grate or Curb Opening) No <3� Grate Information Length of a Unit Grate L, (G) NIA: feet Width of a Unit Grate W, feet Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50) C, (G) NIA! Grate Weir Coefficient (typical value 3.00) C„. (G) =;X:': ;;.:;;:;;;:.;,,.,;:.;,NIA Grate Orifice Coefficient (typical value 0.67) Co (G) MA Curb Opening Information Length of a Unit Curb Opening L,(C) _�_5013 feet Height of Vertical Curb Opening in Inches H, .: :::. &F)!) inches Height of Curb Orifice Throat in Inches Hw, 586i inches Angle of Throat (see USDCM Figure ST-5) Theta 0.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W, .; 06 feet Clogging Factor for a Single Curb Opening (typical value 0.10) C, (C):::.,II.$Q: Curb Opening Weir Coefficient (typical value 2,30-3.00) Cw (C) 3.3U Curb Opening Orifice Coefficient (typical value 0,67) C. (C) Resulting Gutter Flow Depth for Grate Inlet Capacity in aSum ........................... Clogging Coefficient for Multiple Units ........................... ........................... Coef /A Clogging Factor for Multiple Units Clog .,, ;i fill$: As a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 10.57 cfs curb) d„, ..;if3iAi inches Flow Depth at Local Depression with Clogging (0 cfs grate, 10.57 cfs curb) d,,, : :::.:.Nl.A inches As an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 10.57 cfs curb) d, NIAj inches Flow Depth at Local Depression with Clogging (0 cfs grate, 10.57 cfs curb) d„ Resulting Gutter Flow Depth Outside of Local Depression d,.o„„ _ .WAinches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity In a Sump Clogging Coefficient for Multiple Units Coef Clogging Factor for Multiple Units Clog Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 10.57 cfs curb) d„, 58 inches Flow Depth at Local Depression with Clogging 0 cfs rate, 10.57 cfs curb p p gg g ( g ) d„a : ` 6 ;: 6i9 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 10.57 cfs curb) do,::.:rt:5 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 10.57 cfs curb) d B.@'j inches Resulting Gutter Flow Depth Outside of Local Depression d,r,,,s ::::35 inches Resultant Street Conditions Total Inlet Length L - tOQ�feet Total Inlet Interception Capacity (Design Discharge from (}Peak) O, cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d 3A inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T feet Resultant Flow Depth at Maximum Allowable Spread dsraeng ;Q Q. Inches Alarning 3: Guttor €low dzpth is g?cater than the 112 inches alkewed fo: the MINOR 5 T ORP,h ;sr£ shea-AEEcvi —>foI Iiplek o..0.0:•f DP3 100Yr.xls, Inlet In Sump 12/2912004, 6:04 PM Design Flow = Gutter Flow + Carry-over Flow OVERLANDFOI STREET RIDE OVERLAND ® GUTTER FLOW PLUS CARRY-OVER FLOW F- ® E- GUTTER FLOW INLET INLET 1/2 OF STREET Design Storm Return Period, Tr = Return Period One -Hour Precipitation, P, _ Cj= C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = ............................. NIA Calculated 5-yr. Runoff Coefficient, C5 = .......:...::..:;,.;.. N!A Overland Flow Velocity, Vo = hflA fps Gutter Flow Velocity, VG = .:;,.:,:;:;>;>;»€'>;::,NfA fps Overland Flow Time, to = WA minutes Gutter Flow Time, to = ,._„,,,,,;;;; ,,,;; E (/A mi tes Calculated Time of Concentration, T, = WA minutes Time of Concentration by Regional Formula, Tc = Et/A minutes Recommended T, = j..... N!A minutes Time of Concentration Selected by User, Tc = hflA minute! Design Rainfall Intensity, I = hftA inch/hr Calculated Local Peak Flow, Qp = N/A cfs Total Design Peak Flow, Q = $.1i2 cfs ' DP4 100Yr.xls, Q-Peak 12/29/2004, 6:05 PM [1 INLET IN A;SUMP.Q.:R SAG LOCATIO',N Project XX Und FIng 2 Inlet ID -:' ComB(natton;Inlet @RP..d V'41ming W3ming ,L—Lo (C)71 Design Information Ilnput) Type of Inlet Type = rCOOT.Type R Gufb bpemng Local Depression (in addition to gutter depression's' from'O-AIIoW) a,,,,, 3 00. inches Number of Unit Inlets (Grate or Curb Opening) No 7` Grate Information Length of a Unit Grate L, (G) =tA'- feet Width of a Unit Grate W- _._NIA.feet Area Opening Ratio for a Grate (typical values 0.15-0.90) Am, ....MIA'. Clogging Factor for a Single Grate (typical value 0.50) Cr (G) NfA;� Grate Weir Coefficient (typical value 3.00) C„ (G) _>;::':;:: :;;:;N1A Grate Orifice Coefficient (typical value 0.67) C. (G) . RUAf Curb Opening Information Length of a Unit Curb Opening Lo (C) .. ._..:5ii)tl feet Height of Vertical Curb Opening in Inches H,,,r-;.;:`:`_B66 inches Height of Curb Orifice Throat in Inches H„„d ::: 5,96: inches Angle of Throat (see USDCM Figure ST-5) Theta ` 63 Oi degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp2:€10 feet Clogging Factor for a Single Curb Opening (typical value 0.10) C, (C) 050. Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) Curb Opening Orifice Coefficient (typical value 0.67) C.(C) ,. Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coef Clogging Factor for Multiple Units Clog As a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 8.62 cis curb) d, .zNiAi inches Flow Depth at Local Depression with Clogging (0 cfs grate, 8.62 cfs curb) d„a ,:.. ::::.;NIA inches As an Orifice ' Flow Depth at Loral Depression without Clogging (0 cfs grate, 8.62 cfs curb) d, Nlfi� inches Flow Depth at Local Depression with Clogging (0 cfs grate, 8.62 cfs curb) cl M/f inches Resulting Gutter Flow Depth Outside of Local Depression d,.. - ,NIl1 Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coef 1.1f0: Clogging Factor for Multiple Units Clog Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 8.62 cis curb) dw = _ 69i. inches Flow Depth at Local Depression with Clogging (0 cfs grate, 8.62 cfs curb) d„, .8.7 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 8.62 cfs curb) da .5i 77! inches Flow Depth at Local Depression with Clogging (0 cfs grate, 8.62 cfs curb) d„ 227: inches Resulting Gutter Flow Depth Outside of Local Depression Inches Resultant Street Conditions Total Inlet Length L 50 feet Total Inlet Interception Capacity (Design Discharge from 0-Peak) O $ G cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d Inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T =;;.>79t0: feet - T-Max Resultant Flow Depth at Maximum Allowable Spread dsreeno a ;:;<'> .... 13(3: inches 'R'arning 5: Gut?rr flaw depth is greater than :hz 8 im'hes aliowc•d `or the N1A,iOR STORM isce si:ect'O•Alla»') �lrxriln:� 9; FEow spm-.A art^ads rnttsiarmoo stmO trewu distaste, Row depile at cfcwn is 12.3 mcfsts, 0134 100Yr.xls, Inlet In Sump TIPC Af So S' J,ale.� 3 oK�r 12/29/2004, 6:05 PM Design Flow =Gutter Flow + Carry-over Flow OVERLAND SIDE OVERLAND FLOW| STREET | I FLOW � � *~~GUTTER FLOW PLUS CARRY-OVER FLOw**GUTTER FLOW INLET INLET 1/2 OF STREET (local peak flow for1/2 of street, plus flow bypassing upstream subcatchments): 8ubuatchmenArea = Acres Percent Imperviousness = ,& NRC8Soil Type JA,B,C'nrD ^ ^ Site: 8he�U�un� Overland Flow = Site |sNor Gutter Flow = for aCatchment: Calculated Design Storm Runoff Coefficient, C= Calculated 5'yr.Runoff Coefficient, C5= Overland Flow Velocity, Vn= fps Gutter Flow Velocity, Vo= fps Overland Flow Time, tn= minutes Gutter Flow Time, tn= minutes Calculated Time nfConcentration, T,= minutes TimeofConoentrotiunbyReginna|Formu|a.T"= minutes RecommendedTo= minutes Time ayConcentration Selected byUser, T,= minutes Design Rainfall Intensity, |= inoh/h/ Calculated Local Peak Flow, Ov= cfs Project = Inlet ID = shaming YVarniny ,'Lo (C)— i Design Information finputl Type of Inlet Type CDOT:Type RGurb:Upen. Local Depression (in addition to gutter depression'a' from'Q-AIIoW) aid 3 O(1. inches Number of Unit Inlets (Grate or Curb Opening) Noj:� Grate Information Length of a Unit Grate L. (G) _>l;>;iiNta feet Width of a Unit Grate w, NIA feet Area Opening Ratio for a Grate (typical values 0.15-0,90) • ,&. NIA: Clogging Factor for a Single Grate (typical value 0.50) C, (G) _:: d d£MW Grate Weir Coefficient (typical value 3,00) C® (G) Grate Orifice Coefficient (typical value 0.67) C. (G) Curb Opening Information Length of a Unit Curb Opening L. (C) ;5;00: feet Height of Vertical Curb Opening in Inches::.;6:Q(7i inches Height of Curb Orifice Throat in Inches inches Angle of Throat (see USDCM Figure ST-5) Theta fi3 A: degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W, 2.,O11: feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C)- Curb Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) Curb Opening Orifice Coefficient (typical value 0.67) C. (C) _._......::........08%i Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sump ........................... Clogging Coefficient for Multiple Units ........................... ........................... Coe(_ %: :N/�l Clogging Factorfor Multiple Units Clog NIA? As a Weir ........................... Flow Depth at Local Depression without Clogging (0 cfs grate, 6.67 cfs curb) ........................... ......................... d„, 'B..VA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.67 cfs curb) d,,,:::.Nt:4 inches As an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.67 cfs curb) d, inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.67 cfs curb) d IN inches Resulting Gutter Flow Depth Outside of Local Depression d�,,,, ,..,..,,.-':: pJq: Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity In a Sumo Clogging Coefficient for Multiple Units Coef Clogging Factor for Multiple Units Clog ff50E Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.67 cfs curb) d„, inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.67 cfs curb) d„, _; T:2; inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.67 cfs curb) d„ 5 7 inches Flow Depth at Lowl Depression with Clogging (0 cfs grate, 6.67 cis curb) d„ S inches Resulting Gutter Flow Depth Outside of Local Depression d,z,,,e Inches Resultant Street Conditions Total Inlet Length L 54I feet Total Inlet Interception Capacity (Design Discharge from O-Peak) Q.X. cfs Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d = :11:5 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) 7 0 ,,,;,;,;,,;,, 18111: feet= T-Max Resultant Flow Depth at Maximum Allowable Spread dsvasag Inches 'A'arning 5: Guttar flew dept'e. is orcater than ihz 6 Inches allowtd for th¢ -MAJOR SFpRA9 ilea si:ec2'2 Aligw't Warnin j 6: FEr%Y sprcxd ertoeds fnasimunl street .rown distant. Rove dapilt at efoK.^ is a 0 inci:es. s'Ty f 4% `Q(ov 4 DP5 100Yr.xis, Inlet In Sump 12/29/2004, 6:06 PM Design Flow = Gutter Flow + Carry-over Flow OVERLAND J STREET I I FLOWND ® F GUTTER FLOW PLUS CARRY-OVER FLOW F ® F GUTTER FLOW INLET INLET 1/2 OF STREET (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): "Q T " If you +erftered a value here. sklp ths: rest of this sheet and proceed to sheet Q-Ailow) Site: (Check One Box Only Site is Urban Site Is Non Urban =C1`P1/(C2+T, Subcatchment Area Percent Imperviousness NRCS Soil Type Slope (tuft) Length (ft) Overland Flow Gutter Flow Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, C2 C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb for a Catchment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo Gutter Flow Velocity, VG Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, Tc Time of Concentration by Regional Formula, T, Recommended T, Time of Concentration Selected by User, T, Design Rainfall Intensity, I Calculated Local Peak Flow, Qp Total Design Peak Flow, Q as Acres o� A. B, C, or D years inches cfs fps fps minutes minutes minutes minutes minutes minutes inch/hr cfs cis ' DP5A 10OYr.xis, Q-Peak 12/29/2004, 6:07 PM INLET IN R SUMP oR SAG :LOCATI;N Project Lmd Fhng 2 Inlet ID .. -' _Gombinatiotrinlet {d DP SA ,�—Lo (C)—i Design Information Ilnputl Type of Inlet Type CDOT.;044R Curb bpemng Local Depression (in addition to gutter depression'a' from'Q-AIov/) a..„ 3 013: inches Number of Unit Inlets (Grate or Curb Opening) No Grate Information Length of a Unit Grate L. (G),F11j; feet idth of a Unit Grate W. .. WA.. feet Area Opening Ratio for a Grate (typical values 0.15-0.90) Am NIA Clogging Factor for a Single Grate (typical value 0.50) Cr (G) NIA` Grate Weir Coefficient (typical value 3.00) C. (G) Grate Orifice Coefficient (typical value 0,67) C. (G) WA Curb Opening Information Length of a Unit Curb Opening L. (C) _ ;; ;3: [ : ;'% i ;5;00 feet Height of Vertical Curb Opening in Inches H,,,r-:;:.;:,;:.:: ;:.,.;:;S;66: inches Height of Curb Orifice Throat in Inches Hr„ee inches Angle of Throat (see USDCM Figure ST-5) Theta degrees Side Width forbepression Pan (typically the gutter width of 2 feet) Wp ., ...: i;.:::.2:00: feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) 0.50f Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) Curb Opening Orifice Coefficient (typical value 0.67) C. (C) Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sumo Clogging Coefficient for Multiple Units Coef N7R Clogging Factor for Multiple Units Clog NIA' As a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 3.96 cfs curb) d inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.96 cfs curb) d„.,-;.;;.,,;;,;;.;;;,,.;;.,:.NIA inches As an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 3.96 cfs curb) d'NIA inches ::.. Flow Depth at Local Depression with Clogging (0 cfs grate, 3.96 cfs curb) do, .. : inches Resulting Gutter Flow Depth Outside of Local Depression .... WA' Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity In a Sump Clogging Coefficient for Multiple Units Coef Clogging Factor for Multiple Units Clog Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 3.96 cfs curb) d„, d.T inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.96 cfs curb) d„, inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 3.96 cfs curb) cl, .....:::,;:?i...,.....3i inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.96 cfs curb) d ,! 6.$; inches Resulting Gutter Flow Depth Outside of Local Depression d.4. .. ..:23' inches Resultant Street Conditions Total Inlet Length L feet Total Inlet Interception Capacity (Design Discharge from 4Peak) Q. 4 U cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T=:;i:;:;;s;::�9:7! feet Resultant Flow Depth at Maximum Allowable Spread dsraewo:A OU: inches > 5'Tje K DP5A 100Yr.xis, Inlet In Sump 12/29/2004, 6:07 PM Design Flow = Gutter Flow + Carry-over Flow y OVERLAND SIDE y STREET I I OVERLAND FLOW ® F GUTTER FLOW PLUS CARRY-OVER FLOW F ® e— GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "tJ 2„p of " Ir you pan€cred a value here, ski p the rest or this sheet and proceed to sheet Q-Al low) Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type A, B, C, or D Site: (Check One Box Only) Site is Urban Site Is Non Urban. =Cl'P1/(C2+11 Slope (ft/tt) Length (ft) Overland Flow Gutter Flow Design Storm Return Period, Tr Return Period One -Hour Precipitation, P, C, C2 C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb for a Catchment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo Gutter Flow Velocity, VG Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, T, Time of Concentration by Regional Formula, Tc Recommended T. Time of Concentration Selected by User, Tc Design Rainfall Intensity, I Calculated Local Peak Flow, Qp Total Design Peak Flow, Q years inches cis rDP8 100Yr.xis, Q-Peak 12/29/2004, 6:00 PM Project = Inlet ID = Warning! Warfstng i —Lo (C)71 Design Information (input) Type of Inlet Type OD07 TypA R Gurb'Openmg Local Depression (in addition to gutter depression 'a'from'O-AIIoW) aid 3.pU inches Number of Unit Inlets (Grate or Curb Opening) No 2 Grate Information Length of a Unit Grate L. (G) __<E<;::N(A. feet Width of a Unit Grate W. .;,_:..: :::::_. _ N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,� NIA Clogging Factor for a Single Grate (typical value 0,50) Ct (G) NI/: Grate Weir Coefficient (typical value 3.00) C„. (G) Grate Orifice Coefficient (typical value 0.67) C. (G) Curb Opening Information Length of a Unit Curb Opening L. (C) feet Height of Vertical Curb Opening in Inches H,,,,t ....9.00, inches Height of Curb Orifice Throat in Inches Hft n inches Angle of Throat (see USDCM Figure ST-5) Theta 63 d': degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W,= feet Clogging Factor for a Single Curb Opening (typical value 0,10) C, (C) - _,_,,,..,.,;,;:;,., _.,,:.,0 501 Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) Curb Opening Orifice Coefficient (typical value 0.67) Co (C) Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sumo Clogging Coefficient for Multiple Units Coef Clogging Factor for Multiple Units Clog tVIA� As a Weir ........................... Flow Depth at Local Depression without Clogging (0 cis grate, 22.66 cfs curb) .......................... ........................... ::NfA: inches Flow Depth at Local Depression with Clogging (0 cis grate, 22.66 cfs curb) ........................... ......................... d„s _; '!}:jl':'::3stdlik inches As an Orifice Flow Depth at Local Depression without Clogging (D cfs grate, 22.66 cfs curb) d td/A inches Flow Depth at Local Depression with Clogging (0 cfs grate, 22.66 cfs curb) do,-;;;t,:NiA inches Resulting Gutter Flow Depth Outside of Local Depression ........................... Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump Clogging Coefficient for Mulb pie Units Coef ' _t25: Clogging Factorfor Multiple Units Clog-:,*..:: Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 22.66 cfs curb) d, 9 7E inches Flow Depth at Local Depression with Clogging (0 cfs grate, 22.66 cfs curb) d„. ; 411fii inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 22.66 cfs curb) d„ . 47 3 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 22.66 cfs curb) d„ : > �p $ inches Resulting Gutter Flow Depth Outside of Local Depression d,.cu,a _,j i._,._..775: Inches Resultant Street Conditions Total Inlet Length L 1013'; feet Total Inlet Interception Capacity (Design Discharge from O-Peak) O � 327 cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d = 1Y:g' inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T feet = T-Max Resultant Flow Depth at Maximum Allowable Spread dsrnsm ,,.......,: �:.......1.1.6inches '1AZroing:r: Guttcr`c': dapti: is o=caterthan:ire 6Inches aliowcd for the NIA,:OR STORM isec shect'f2• IIaeY1 �dr roir>> 6; Flaw strfced ezceacs rneximum snaet crown distance. Ficw dupih et crow^ is 11.6 inches. )pI j9CP, l00 "%1hi DP8 10OYr.xls, Inlet In Sump 12/29/2004, 6:01 PM. 1 ' / D 1 I 11 Design Flow = Gutter Flow + Carry-over Flow �OVFROLWND STSIDEREET I I ❑VFROLWND ® GUTTER FLOW PLUS CARRY-OVER FLOW -- ® F— GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): c: 's I€ you erdered a vaiue here, skin the rest or this sheet and oroceed to t; teat Q-Mow) (Enter data in the blue cells): Site: (Check One Box Only) Site is Urban: 17777=1 Site Is Non Urban Subcatchment Area Acres Percent Imperviousness % NRCS Soil Type A, B, C, or D Slope (ft/ft) Length (ft Overland Flow xi Gutter Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T� = Time of Concentration by Regional Formula, T, = Recommended Tc = Time of Concentration Selected by User, T, = Design Rainfall Intensity, I = Calculated Local Peak Flow, Qp = Total Design Peak Flow, Q= fps fps minutes minutes minutes minutes minutes minutes inch/hr cfs cis ' DP12 100Yr.xls, Q-Peak 12/29/2004, 6:02 PM INLET IN A SUMP OR SAG LOCATION Project-. >; i.lnd Fiimg 2 Inlet ID ....<. Gombinatlon:liltet (rD DP 12 -< ..... Wai ping Warninry ,�—Lo (C)— A Design Information (input) Type of Inlet Type CD07 TypeRCutb:Opehmg Local Depression (in addition to gutter depression's' from'(D-AIIoW) aKK„ inches Number of Unit Inlets (Grate or Curb Opening) No =k3'%< %i5:iiin>3. Grate Information Length of a Unit Grate La (G) _!';;':N/A feet idth of a Unit Grate ........................... W. = 2' .'' "st ic(<>:':'i :N(A' feIt Area Opening Ratio for a Grate (typical values 0.15-0.90) A,m Clogging Factor for a Single Grate (typical value 0.50) Cr (G) :.........tVi$; Grate Weir Coefficient (typical value 3.00) C. (G) Grate Orifice Coefficient (typical value 0.67) C. (G) Curb Opening Information Length of a Unit Curb Opening Lo (C)::5;00i fleet Height of Vertical Curb Opening in Inches Hwn-::;;::: <'.::..-:6-:gq inches Height of Curb Orifice Throat in Inches ........................... ..._.........._....__ Hs,od=;<.;:�;;ai .::i«596: inches Angle of Throat (see USDCM Figure ST-5) Theta S3 A: degrees Side Width for Depression Pan (typically the gutter Mdth of 2 feet) W,-..;,.,,.;;.;!:,.:,.:..;7.00! feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) Curb Opening Weir Coefficient (typical value 2.30-3.00) C„. (C)i�fj�. Curb Opening Orifice Coefficient (typical value 0.67) Co (C) Qg7! Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coef Clogging Factor for Multiple Units Clog 1vfR As a Weir ........................... Flow Depth at Local Depression without Clogging (0 cfs grate, 15.34 cis curb) ........................... ........................... d„ > inches Flow Depth at Local Depression with Clogging (0 cfs grate, 15.34 cis curb) inches As an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 15.34 cfs curb) da i9 . inches Flow Depth at Local Depression with Clogging (0 cfs grate, 15.34 cfs curb) d N7:4 inches Resulting Gutter Flow Depth Outside of Local Depression d,4 , ;i W Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity In a Sumo Clogging Coefficient for Multiple Units Coef = Clogging Factor for Multiple Units Clog - I>.....�0$a:; Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 15.34 cfs curb) d ;' 75 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 15.34 cfs curb) d„,8:9 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 15.34 cfs curb) da .,.,.,;;, j ;#6 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 15.34 cfs curb) do, 11 Q; inches Resulting Gutter Flow Depth Outside of Local Depression,8p Inches Resultant Street Conditions Total Inlet Length L 40 ff: feet Total Inlet Interception Capacity (Design Discharge from L4Peak) C 1$ 3 cfs Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d8:0 Inches Resultant Street Flow Spread (based on sheet O-Allow geometry) T feet = T-Max Resultant Flow Depth at Maximum Allowable Spread dspae. 1:7: Inches 'l.zrning 5: Guttcr `low dzpth is'!cater than iha 6 lechz aIlaeser3 for thc- FthA,:OR STORM isea shec•? •rk..Allaw') �`k:rning 8: Flow sprc d errfeds fie.'.%iingili sip ae4 crn+wn distance. FEcra dapllt at crcrtt^. is 3.: incises. IDf IJpJ- > Qioo `°p4%el DP12 100Yr.xls, Inlet In Sump 12129/2004, 6:03 PM L� r Design Flow = Gutter Flow + Carry-over Flow �OVERLAND I STREET I yIDE U FLOW ® F—GUTTER FLOW PLUS CARRY-OVER FLOW YF ® e GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): Q F3, €£?I cl's If you entered a Value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area jAcres Percent Imperviousness °h NRCS Soil Type A, B, C, or D Site: (Check One Box Only) Site is Urban Site Is Non Urban aanrrJr&9M Slope (ft/ft) Length (ft) Overland Flow Gutter Flow Design Storm Return Period, T, = Return Period One -Hour Precipitation, P, = Cj= C2= C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Qe = Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T° = Time of Concentration by Regional Formula, T° = Recommended T° = Time of Concentration Selected by User, T° = Design Rainfall Intensity, I = Calculated Local Peak Flow, QP = Total Design Peak Flow, Q = minutes minutes minutes minutes minutes minutes inch/hr DP16 100Yr.xls, Q-Peak 12/29/2004, 5:40 PM I 1 1 1 i J 1 1 i 1 1 Project = Inlet ID = seaming Warning •. ,�—Lo (C)—,f Design Information (Inputs Type of Inlet Type .CDOT:;n RGur�Openmg Local Depression (in addition to gutter depression'a' from'Q-NIoW) a.,i 3.00.1 inches Number of Unit Inlets (Grate or Curb Opening) No .:'. Grate Information :::.. ..: :::.. ::.. ::.. :...::. Length of a Unit Grate L, (G);;i feet Width of a Unit Grate ........................... ........................... W, feet Area Opening Ratio for a Grate (typical values 0.15-0,90) A- . NIA' Clogging Factor for a Single Grate (typical value 0.50) Cf (G) Grate Weir Coefficient (typical value 3,00) C. (G) Grate Orifice Coefficient (typical value 0.67) C, (G) NA' Curb Opening Information ,: Length of a Unit Curb Opening L. (C) ......:::..: ..s>00 feet Height of Vertical Curb Opening in Inches FI„c :i &IXi. inches Height of Curb Orifice Throat in Inches H„-� _::;:;:::::s.::<:.586 inches Angle of Throat (see USDCM Figure ST-5) Theta 63 q: degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W, ., ....2:(40j feet Clogging Factor fora Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) ',:; 2<39. Curb Opening Orifice Coefficient (typical value 0.67) C, (C) Resulting Gutter Flow Depth for Grate Inlet Capacity In a Sum .. Clogging Coefficient for Multiple Units Coef NIAk, Clogging Factor for Multiple Units Clog As a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 36.19 cfs curb) inches Flow Depth at Local Depression with Clogging (0 cfs grate, 36.19 cfs curb) d„e-,;,;;,,;;;,,;,,;,,,,,:;..N. lk inches As an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 36.19 cfs curb) du NA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 36.19 cfs curb) d„ inches Resulting Gutter Flow Depth Outside of Local Depression WA l inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coef 1 31;: Clogging Factor for Multiple Units Clog Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs gate, 36.19 cfs curb) d 42.4 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 36.19 cfs curb) d„, _inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 36.19 cfs curb) d„ .....,:::i......,..t2:5' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 36.19 cfs curb) d„ 1 inches Resulting Gutter Flow Depth Outside of Local Depression d,�,sa. _15it inches Resultant Street Conditions Total Inlet Length L 1sia feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. = cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d 15:7! inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T i%-:_..:...1HA feet = T-Max Resultant Flow Depth at Maximum Allowable Spread _ dsp,,,= 9A: inches °A'zrning 5: GuMr flow depth is •emater than the 61En:hzs allo%vc•:l R f the 4r7A,:OR STORM isco sheet'o-Allow l i^Ii:Cff lff f 6l FfCSS 5�rfeP-d vym^ods fn this i Shaet cm-il oistaritt'. FWK, depth St cfc-'V . tS 3k 111L'.�ee. DP16 100Yr.xls, Inlet In Sump > IS' 1 J1 iti, QI6O (''eu+>°d 12/29/2004, 5:44 PM I H 10 1 1_1 0 Design Flow = Gutter Flow + Carry-over Flow OVERLAND I SIDEOVERLAND I I FLOW OWSTREET ® E— GUTTER FLOW PLUS CARRY-OVER FLOW e ® e GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "L3 9;t3 cN; If you entered a value here, skip the: rest of this sheet and proceed to sheet Q-Aliow Geographic Information: (Enter data in the blue cells): Subcatchment Area Acres Percent Imperviousness % NRCS Soil Type A, B, C, or D Site: (Check One Box Onl ) Site is Urban Site Is Non Urban =Ge'Pe/(Gp+lC Slo a fUft Length (ft Overland Flow Gutter Flow Design Storm Return Period, T, Return Period One -Hour Precipitation, Pe C, CZ C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qh Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, Tc = Time of Concentration by Regional Formula, T. = Recommended T, = Time of Concentration Selected by User, T, = Design Rainfall Intensity, I = Calculated Local Peak Flow, Qp = Total Design Peak Flow, Q = minutes minutes minutes minutes minutes minutes inch/hr cfs cfs tDP18 100Yr.xls, Q-Peak 12/29/2004, 5:48 PM Project Inlet ID Warning 1" Mrning ,r--Lo (C) 4 Design Information Ilnnutl Type of Inlet Type CDOT7ype R GurhOpening .!< Local Depression (in addition to gutter depression'a' from'O-Allow') ai..b 3.DOi inches Number of Unit Inlets (Grate or Curb Opening) No Grate Information Length of a Unit Grate L. (G) _^'I;?NIA: feet Width of a Unit Grate W. <?" ;!NIA! feet Area Opening Ratio for a Grate (typical values 0,15-0.90) hm MIA'. Clogging Factor for a Single G rate (typical value 0.50) C, (G) .., ._.NIA' Grate Weir Coefficient (typical value 3.00) Cw (G) Grate Orifice Coefficient (typical value 0.67) C, (G) WR Curb Opening Information Length of a Unit Curb Opening L.(C) «.: 5.00: feet Height of Vertical Curb Opening in Inches H,,,,r :' 8.00 inches Height of Curb Orifice Throat in Inches ......................... Hy,.y = ;;; :.... z;57,95' inches Angle of Throat (see USDCM Figure ST-5) Theta : ? $3 4: degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W,-.;:.,.,:..;;;.,. .;:.::200j feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C)-;;;;;;;;;;;;;;;;;;QSp'. Curb Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) Curb Opening Orifice Coefficient (typical value 0.67) C. (C) Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef :: ........:::........:MIA: Clogging Factor for Multiple Units Clog N/A' As a Welr Flow Depth at Local Depression without Clogging (0 cfs grate, 9.02 cfs curb) d„, ..:;;NIA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 9.02 cfs curb) d,.,,-:..;.,;.,,,;.,;::: :::<.:<;:NW inches As an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 9.02 cfs curb) do NA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 9.02 cfs curb) do, .:....,,:: F;.,::....,,Ntk inches Resulting Gutter Flow Depth Outside of Local Depression d„p,,,til11: inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity In a Sump Clogging Coefficient for Multiple Units Coef 1 00 Clogging Factor for Multiple Units Clog .: .., ..q'50 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 9.02 cfs curb) dM I,1 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 9.02 cfs curb) d.„, inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 9.02 cfs curb) do 8 1 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 9.02 cfs curb) d 2 $ inches Resulting Gutter Flow Depth Outside of Local Depression Inches Resultant Street Conditions Total Inlet Length L 50: feet Total Inlet Interception Capacity (Design Discharge from 4Peak) Q. 9 Ucfs Resultant Gutter Flow Depth (based on sheet G-Allow geometry) d-<::::.::.:.21a6' Inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T feet = T-Max Resultant Flow Depth at Maximum Allowable Spread cl .n„ inches P;zruing 5: Guttor fWW deptit is •amaU:r titan the F Inches allowed for the sMAJOR STORM (scc shect'O•Alian'I Vi::rnirrg 9; Flaw spread ezcaads rprisLuuar sueet crown distanco. Ficw depth Mt cfewn is 1 S; igctres. DP18 100Yr.xls, Inlet In Sump S Type. Q V -IC-) Vow depd�j w:11 �z z. 18 i So S f tble'f is 0 ((4N 12/29/2004, 5:52 PM .J 11 1 1 1 i 1 1 1 1 11 1 1 1 [1 Design Flow = Gutter Flow + Carry-over Flow yOVERLAND SIDE y I STREET I OVERLAND FLOW ® F GUTTER FLOW PLUS CARRY -`MOVER FLOW YF— ® F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): "L3 1f1,f3 : afs " I you entered a value tiers_. skip the rest of this sheet and taroc Led to sheet Q-Allow) Geographic Information: (Enter data in the blue cells): Site: (Check One Box Only) Site is Urban Site Is Non Urban Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type - s>:as::::: >::: s;>;>A, B, C, or D Slope ftlft Length (ft) Overland Flow Gutter Flow =G1`P1/(G2+Ic)L3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches CS C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = ............................. A Calculated 5-yr. Runoff Coefficient, CS =N/A Overland Flow Velocity, Vo NIA fps Gutter Flow Velocity, VG = NtR fps Overland Flow Time, to = NWT minutes Gutter Flow Time, to -:WA minutes Calculated Time of Concentration, T, - ;;>;:;:;;;,«<;;;;:.:NA minutes Time of Concentration by Regional Formula, T, NlA minutes Recommended Tc N!A minutes Time of Concentration Selected by User, T. N!A minutes Design Rainfall Intensity, I N/11 inch/hr Calculated Local Peak Flow, Qp = cfs Total Design Peak Flow, Q = cfs 1 DP19 100Yr.xls, Q-Peak 12/29/2004, 6:02 PM Project = Inlet ID = Warning Lo (C)— A Design Information (Input) Type of Inlet Type CO6Flyp6 R Curh4emng Lpcal Depression (in addition to gutter depression's' from'O-Allow') a.y : ,::._ .. 3 �00, inches Number of Unit Inlets (Grate or Curb Opening) Grate Information Length of a Unit Grate L. (G) = >' ;NW feet Width of a Unit Grate W. .:NIAfeet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,m, Clogging Factor fora Single Grate (typical value 0.50) Cr (G) Grate Weir Coefficient (typical value 3,00) C •, (G) Grate Orifice Coefficient (typical value 0.67) C, (G) NIAf Curb Opening Information Length of a Unit Curb Opening L. (C) .,..,..5.00'. feet Height of Vertical Curb Opening in Inches H„h-:;:.;;;:.:: inches Height of Curb Orifice Throat in Inches H 5 fi&: inches Angle of Throat (see USDCM Figure ST-5) Theta =63 4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W, �: .. Era feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) =: _tL50,i Curb Opening Weir Coefficient (typical value 2.30-3.00) G„(C) = Curb Opening Orifice Coefficient (typical value 0.67) C. (C) Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficientfor Multiple Units Coef NIA Clogging Factor for Multiple Units Clog As a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 10.87 cfs curb) inches Flow Depth at Local Depression with Clogging (0 cfs grate, 10.87 cfs curb),:::.F!a7A inches As an OriFlce Flow Depth at Local Depression without Clogging (0 cfs grate, 10.87 cfs curb) d N!A' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 10.87 cfs curb) d„ ;,, ;,,NIA inches Resulting Gutter Flow Depth Outside of Local Depression d,.c,,,, ,�;: WA? Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity In a Sum Clogging Coefficientfor Multiple Units Coef 125: Clogging Factor for Multiple Units Clog Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 10.87 cfs curb) d 54 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 10.87 cfs curb) d„., A: inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 10.87 cfs curb) d : s 4 it inches Flow Depth at Local Depression with Clogging (0 cfs grate, 10.87 cfs curb) d, 9 inches Resulting Gutter Flow Depth Outside of Local Depression d,�„„ :-:......_.42i: Inches Resultant Street Conditions Total Inlet Length L: 10 A' feet Total Inlet Interception Capacity (Design Discharge from 4Peak) O t09 cfs Resultant Gutter Flaw Depth (based on sheet q•Allow geometry) it 4:1 inches Resultant Street Flow Spread (based on sheet O-Allow geometry) T feet Resultant Flow Depth at Maximum Allowable Spread dsraeno ....OInches "l,'arning 5: Gutfrr flow depth is .--!cater than the 5!2 in( has allcrwe<i for the MINOR 670RM ;sea sheet 'Q :Alcw" DP19 100Yr.xls, Inlet In Sump 12/29/2004, 6:02 PM r 1 1] 0 1 Design Flow = Gutter Flow + Carry-over Flow �OVFLOWND y STROEET I YDVND FLOW ® FyGUTTER FLOW PLUS CARRY—OVER FLOW YF ® F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): I you entered a value here, skip the rest or this sheet and Prcceed to sheet Q-Allow) Geographic Information: (Enter data Site: (Check One Box Only) Site is Urban Site Is Non Urban =G.-N./(Gc+ Subcatchment Area Acres Percent Imperviousness % NRCS Soil Type A, B, C, or D Slope (ft/ft) Length (ft) Overland Flow Gutter Flow Design Storm Return Period, Tr Return Period One -Hour Precipitation, P, C, C2 C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo Gutter Flow Velocity, VG Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, T, Time of Concentration by Regional Formula, T. Recommended T, Time of Concentration Selected by User, T, Design Rainfall Intensity, I Calculated Local Peak Flow, Qp Total Design Peak Flow, Q years inches cis minutes minutes minutes minutes minutes ' DP21 100Yr.xls, Q-Peak 12/29/2004, 5:32 PM LNLET IN A SUMP OR SAG.........00ATION ... Project _ in Filing 2 Inlet ID .::. ...... :-... . < .. ...:.CgmbinaFlonilnieF (d�DP2i .......... ,I`—Lo (C) —ter Design Information llnputl Type of Inlet Type GOOijypeRCutb;Openiny - Local Depression (in addition to gutter depression 'a'from'Q-AIIoW) a,ad ; ,,,3;D0 inches Number of Unit Inlets (Grate or Curb Opening) No Grate Information Length of a Unit Grate Lo (G) J: feet idth of a Unit Grata W. = fi i a?'' ">?' i <' :;NYA' feet Area Opening Ratio for a Grate (typical values 0.15-0,90) AO. NIA Clogging Factor for a Single Grate (typical value 0,50) Cr (G) hUA' Grate Weir Coefficient (typical value 3.00) C. (G) A' Grate Orifice Coefficient (typical value 0.67) C. (G) N(A'. Curb Opening Information Length of a Unit Curb Opening L.(C) _)_j:_ 500i feet Height of Vertical Curb Opening in Inches H� -::.:,: ,:, ,:.;;:,11A? inches Height of Curb Orifice Throat in Inches Hw a 5,O6: inches Angle of Throat (see USDCM Figure ST-5) Theta Gi 4: degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp .........:;:�:.:.: Zt)t3 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) Curb Opening Weir Coefficient (typical value 2.30-3.00) C., (C) Curb Opening Orifice Coefficient (typical value 0.67) Co (C) Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sump Clogging Coefficient for Multiple Units X. Coef «---,- Clogging Factor for Multiple Units ........................... Clog N/A As a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 2.92 cfs curb) d„ ':t3Hti inches Flow Depth at Local Depression with Clogging (0 cfs grate, 2.92 cfs curb) d. Niq inches As an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 2.92 cfs curb) da ..__ _--:: '1V)A inches Flow Depth at Local Depression with Clogging (0 cfs grate, 2.92 cfs curb) d„ ::::.NIA' inches Resulting Gutter Flow Depth Outside of Local Depression d,.c,,,, _..»:;:, ;:!::.:,;:.: N/A*. inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coef t 00: Clogging Factor for Multiple Units Clog t) SV Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 2.92 cfs curb) d„, 34 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 2.92 cfs curb) d„, . inches 4:2: Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 2.92 cfs curb) da = inches Flow Depth at Local Depression with Clogging (0 cis grate, 2.92 cfs curb) d 5t inches Resulting Gutter Flow Depth Outside of Local Depression d.,. v .Q:>2; inches Resultant Street Conditions Total Inlet Length L -; 5U'feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. _ 29 cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d 42inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T feet Resultant Flow Depth at Maximum Allowable Spread dy, v �;.s., . ..00 inches S' 13 (� *- �o, 00fiii DP21 100Yr.xls, Inlet In Sump 12/29/2004, 5:32 PM Design Flow = Gutter Flow + Carry-over Flow �OVFLOWND y I STROEET YOVLOWND ® <--GUTTER FLOW PLUS CARRY -`MOVER FLOW E— ® F GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): IQ s ol;a " If you entered a value hove, skip the. rest of this sheet and proceed to sheet Q-Allow) Site: (Check One Box Only) Site is Urban Site Is Non Urban Information: Intensity I (inch/hr) = C, ' P1 / ( CZ + Tc Subcatchment Area Acres Percent Imperviousness % NRCS Soil Type = A, B, C, or D Slope (ft/fl) Length (ft Overland Flow Gutter Flow Design Storm Return Period, Tr Return Period One -Hour Precipitation, P, C, C2 C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Ve Gutter Flow Velocity, VG Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, T, Time of Concentration by Regional Formula, T. Recommended T, Time of Concentration Selected by User, T, Design Rainfall Intensity, I Calculated Local Peak Flow, Qp Total Design Peak Flow, Q rs ies ' DP25 100Yr.xis, Q-Peak 12/29/2004, 5:22 PM INLET IN QSUMP..OR SAG.LOCATIN Project Und Fling 2 Inlet ID ........." - ...............-' .. in nation Inlet (M DP 26 ` ,.. Waning 1iVafRirgi ,�—Lo (C)—,f Design Information llnput) Type of Inlet Type CQOT:7ypeRCuth Opening Local Depression (in addition to gutter depression'a'from'Q-AIIoW) aKK„ ,_,.-:;.__3Winches Number of Unit Inlets (Grate or Curb Opening) No Grate Information Length of a Unit Grate L, (G) _ A' feet Width of a Unit Grate .....................:..::. W . N/Afeet Area Opening Ratio for a Grate (typical values 0.15-0.90) A... = NIA' Clogging Factor for a Single Grate (typical value 0.50) Cr (G) =hUA: Grate Weir Coefficient (typical value 3.00) C„ (G) =N/q Grate Orifice Coefficient (typical value 0.67) ........................... ..................... C, (G) Curb Opening Information Length of a Unit Curb Opening L. (C)500: feet Height of Vertical Curb Opening in Inches H,,,,1-..^:;:.,::.;;::6�W' inches Height of Curb Orifice Throat in Inches Hy„„r :. ;;:::5;8&i inches Angle of Throat (see USDCM Figure ST-5) Theta S3 A: degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp .. ....200' feet Clogging Factor for a Single Curb Opening (typical value 0.10) C, (C) Curb Opening Weir Coefficient (typical value 2.30-3,00) C„. (C) ..,Z30. Curb Opening Onfice Coefficient (typical value 0.67) C, (C) :: ,,,.;:.ti-87: Resulting Gutter Flow Depth Tor Grate Inlet Capacity in a Sumi xi Clogging Coefficient for Multiple Units Coef- NIA Clogging Factor for Multiple Units Clog N/A' As a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 33.33 cfs curb) d„ .:: 'WAS inches Flow Depth at Local Depression with Clogging (0 cfs grate, 33.33 cfs curb) dam., ;. :::.;ta1.A inches As an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 33.33 cfs curb) cl NIA: inches Flow Depth at Local Depression with Clogging (0 cfs grate, 33.33 cfs curb) d NIA inches Resulting Gutter Flow Depth Outside of Local Depression d,.c„t, :::: WA. inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coal i 31; Clogging Factor for Multiple Units Clog Q22 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 33.33 cfs curb) d t t. 7; inches Flow Depth at Local Depression with Clogging (0 cfs grate, 33.33 cfs curb) d. S3;&' inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 33.33 cfs curb) d„ ,;.;.;;�:..._._ ti1:0 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 33.33 cfs curb) d1fi inches Resulting Gutter Flow Depth Outside of Local Depression inches Resultant Street Conditions Total Inlet Length L ITa. feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q, 333 cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d 133 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T ...: 1914: feet = T-Max Resultant Flow Depth at Maximum Allowable Spree d.,. I:O: inches 'ldenling 5: Gutm flow depth is ofeat r than the F Inches ailowed for the .'AA,lOR STORM iscc s"e(.V12-AII*w ) i^i::Cff lff 6: FlCw : Pm:`-d oxt^euz fn::%n11ni1i itreei crown distaste- Flew depth et crown is i if'thes- :�p A. cl DP25 100Yr.xls, Inlet In Sump 12/29/2004, 5:45 PM [1 1 1 1 H ID I t�� Design Flow = Gutter Flow + Carry-over Flow yOVFLOWND SIDE y STREET I I❑VFLOWND y ® GUTTER FLOW PLUS CARRY—OVER FLOW F ® F GUTTER FLOW INLET INLET 112 OF STREET =C1' P1 /(CZ+T, Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, C2 C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T. _ Time of Concentration by Regional Formula, T. _ Recommended T. _ Time of Concentration Selected by User, T, _ Design Rainfall Intensity, I = Calculated Local Peak Flow, Qp = Total Design Peak Flow, Q = irs ies ' DP27 100Yr.xls, Q-Peak 12/29/2004, 5:36 PM ' >iNLET ON A CONTINUOUS.GRADE; '-; ;[ ;,' Project Ltnd Fihne2 ,:E Inlet ID. ": '� .iSombmatiomaptet {d�DP 37 .: :! W:Gring Deslan Information Onoutl Type of Inlet Type CDOT Type l3 t;omb(natlon Local Depression (in addition to upstream gutter depression's' from'QAllow) aioca = Inches Total Number of Units In the Inlet (Grate or Curb Opening) No =b Length of a Single Unit Inlet (Grate or Curb Opening) Lb Width of a Unit Grate (cannot be greater than W from Q-Allow) Wo =1 73 tt Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CrG =........: i... .0.50; Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) CC Street Hydraulics (Calculated) WARNING Q IS GREATER THAN ALLOWABLE Q FOR MAJOR STORM Design Discharge for Half of Street (from Q-Peak) Q.1Rn cfs Water Spread Width T Water Depth at Flowline (excluding local depression) ......................... d = i3i;i;i:i%:i2;:'i;i%:.'�i;i;5 Qi Inches Water Depth at Street Crown (or at Ta„yJ dcaowu Inches Ratio of Gutter Flow to Design Flow E, 0943; Discharge outside the Gutter Section W, carried in Section T. 0. ...::..::;E........§90 cfs Discharge within the Gutter Section W ......................... Ow Cf. Discharge Behind the Curb Face OeAIXi cfs Street Flow Area a F.2(r sq It Sheet Flow Velocity V. $,63: fps Water Depth for Design Condition dLOCA .. ..:,.T:,'Ai Inches Grate Analysis Calculated Total Length of Inlet Grate Opening L ' 12;iM1! tt Ratio of Grate Flow to Design Flow Edoanre Under No -Clogging Condition Minimum Velocity Where Grate Spash-Over Begins ......................... V. = `, fps Interception Rate of Frontal Flow RI =i; Interception Rate of Side Flow R Q64d Interception Capacity - 4 ': ..... 979i cfs Under Clogging Condition Clogging Coefficient for Muldple-unit Grate Inlet GrateCoef Clogging Factor for Multiple -unit Grate Inlet GrateClog Effective (unclogged) Length of Multiple -unit Grate Inlet L. Minimum Velocity Where Grate Spash-Over Begins V. = fps Interception Rate of Frontal Flow Rr = Interception Rate of Side Flow R - 449: Actual Interception Capacity Q B;fiSi cfs Carry -Over Flow = Q.-Q, (to be applied to curb opening or next d/s inlet) Qb _., `; ,3Y3 cis Curb or Slotted Inlet Openino Analysis (Calculated Equ W lent Slope S. (based on gate carry-over) S. ': OLg38.i Wit Required Length LT to Have 100% Interception LT = it Under No -Clogging Condition Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT) L 13.00It Interception Capacity Q 1 64i cis Under Clogging Condition Clogging Coefficient .......................... ......................... CurbCoef Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet CurbClog : ....:0..7T Effective (Unclogged) Length L ft 10 O1,i Actual Interception Capacity Q. .. jOSi cfs Carry -Over Flow = Qb su -Q, Qb cfs Summary Total Inlet Interception Capacity Q 10.10i cfs Total Inlet Carry -Over Flow (Bow bypassing Inlet) Qn-' 23T:i cfs Capture Percentage = Q,10, = C..4 l�'p ewwnTA�I l "'� I.JNTI� 12/29/2004. 5:34 PM DP27 10OYr.xls, Inlet On Grade 1 I 1 J 1 e Design Flow = Gutter Flow + Carry-over Flow OVERLAND ND STREET V D FLOW ® F GUTTER FLOW PLUS CARRY—OVER FLOW oe ® F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): It you en€eyed a value here. skip the rest of this sheet and vroceed to sheet Q-Allow) (Enter data in the blue cells): Site: (Check One Box Only) Site is Urban Site Is Non Urban SntImp Imperviousness Area =Acres Percent Imperviousness = °h NRCS Soil Type = ;;:...::.:.::::::..::.:;; A, B, C, or D Slope (ft/ft) Length (ft) Overland Flow Gutter Flow Design Storm Return Period, Tr Return Period One -Hour Precipitation, P, Ci Cz C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo Gutter Flow Velocity, VG Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, T, Time of Concentration by Regional Formula, T, Recommended Tc Time of Concentration Selected by User, T, Design Rainfall Intensity, I Calculated Local Peak Flow, Qp Total Design Peak Flow, Q irs ies minutes minutes minutes inchthr ' DP28 100Yr.xls, Q-Peak 12/29/2004, 5:15 PM Project: Inlet ID: ,1`1-o (C)---.,r H-Curb Wp H-Verl Wo W L. (G) Design Information (Input) Type of Inlet Type CD073yp013 Comb{nat(pn Local Depression (in addition to upstream gutter depression'a'from'O�Allc W) aLgc,,L $ d inches Total Number of Units In the Inlet (Grate or Curb Opening) No 4 Length of a Single Unit Inlet (Grate or Curb Opening) La It Width of a Unit Grate (cannot be greater than W from Q-Allow) W. 1 7$ It Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CrG Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) CrC Street Hydraulics (Calculated) WARNING' Q IS GREATER THAN ALLOWABLE Q FOR MINOR STORM Design Discharge for Half of Street (from PPeek) Da 392 cfs Water Spread Width T -: @3,ift Water Depth at Flowline (excluding local depression) d <' AN Inches Water Depth at Street Crown (or at Tsur) deRGYM,.;,4:3: inches Ratio of Gutter Flow to Design Flow E. Discharge outside the Gutter Section W, carried In Section T, Q. cfs Discharge within the Gutter Section W C6 Z 77 cfs Discharge Behind the Curb Face OBncu .......:.::..::.... 000, cfs Street Flow Area A, '; 0 B5; sq ft Street Flow Velocity V,-: A62.fps Water Depth for Design Condition cILocnL Inches Grate Analysis Calculated ' Total Length of Inlet Grate Opening L 1ZD�; ff Ratio of Grate Flow to Design Flow E�GBATE Under No -Clogging Condition .......................... Minimum Velocity Where Grate Spash-Over Begins ......................... V. .`:;i 25:70i fps Interception Rate of Frontal Flow Ri 1 W; Interception Rate of Side Flow R 0.7X: Interception Capacity 4 3.S5i cfs Under Clogging Condition Clogging Coefficient for Multiple -unit Grate Inlet GateCoef 1 B8 Clogging Factor for Multiple -unit Grate Inlet GrateClog Effective (unclogged) Length of Multple-u ft Grate Inlet L. g 3b,! R Minimum Velocity Where Grate Spash-Over Begins Ve 15.86. fps Interception Rate of Frontal Flow R, = Interception Rate of Side Flow R. Actual Interception Capacity Q. .3i3Ti gfs Carry -Over Flow - Q.-Cl. (to be applied to curb opening or next d/s inlet) Qe 0,34i cfs Curb or Slotted Inlet Opening Analysis (Calculated Equivalent Slope S. (based on grate carryover) S. Required Length LT to Have 100% Interception LT z! $'32itt Under No -Clogging Condition Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT) L 831 tt Interception Capacity Q 42?! cis Under Clogging Condition .......................... Clogging Coefficient ......................... CurbCoef i"£'.":!:'.1;.'33i Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet CurbClog-i 017 Effective (Unciogged) Length Le It Actual Interception Capacity -fa Carry -Over Flow =Qe(Gna -Q, Qe ,.....:i:...:.__6`29 of Summary Total Inlet Interception Capacity Q S,gSi efs Total Inlet Carry -Over Flow (flow bypassing Inlet) Qe .0?7; cfs Capture Percentage = Q,/Q. - C% .93.1,: % Double )elt 13 (o.� 'W4N JvT (opal f"Piw 12t29/2004, 5:34 PM DP28 100Yr.xis, Inlet On Grade I i 1 1 1 STORM DRAIN SIZING: UDSEWER i 1 1 1 II 1 1 1 i i 1 1 1 5"T ILIA - N - A sTkm -N-AI srkm - N - 6 SrRtA N - 8 I STRAP-N-82 5TLM-OV - 6 16 15 10 (5TfYA-N • ij 4 3 -A ST12M ' AI - PrI M. 15 14 4 6 0 4 5 S'rRM•N-A il NeoUDS Results Summary .�� NeoUDS Results Summary t Project Title: Lind Filing 2 Project Description: Storm A- Al-B- 131- 132 Output Created On: 12/28/2004 at 4:53:07 PM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Manhole Basin ID # Area * C Time of Concentration Overland Gutter Bann Rain I (Minutes) (Minutes) (Minutes) (Inch/Hour) Peak Flow (CFS) 1� 0.00 5.0 0.0 0.0 13585.00 54.3 2�1 0.00 5.0 0.0 0.0 15232.50 60.9 0 0.00 5.0 0.0 0.0 15232.50 60.9 0.0 0.0 8152.50 32.6 5� 0.00 5.0 0.0 0.0 1462.50 5.8 © 0.00 5.0 0.0 0.0 5542.50 22.2 7� 0.00 5.0 0.0 0.0 5542.50 22.2 ® 0.00 5.0 0.0 0.0 980.00 3.9 9� 0.00 5.0 0.0 0.0F 4275 000 17.1 10 0.00 5.0 0.6 0.0 1750.00 7.0 11 0.00 5.0 0.0 0.0 3457.50 13.8 12 0.00 5.0 0.0 0.0 865.00 3.5 13 0.00 5.0 0.0 0.0 1500.00 6.0 14 0.00 5.0 0.0 0.0 1000.00 4.0 15 0.00 5.0 0.0 0.0 500.00 2.0 16 0.00 5.0 0.0 0.0 500.00 2.0 The shortest design rainfall duration is 5 minutes. Denver Specs NOT used. Summary of Manhole Hydraulics Page 1 of 7 Manhole Contributing # Area * C Rainfall Rainfall regnID k Ground Water CommentDuration Intensi w Elevation Elevation file: //C:\Program%20Files\NeoUD Sewer\Reports\3 3134143 8 6:htm 12/28/2004 NeoUDS Results Summary Page 2 of 7 1 0 (Minutes) 0.0 (Inch/Hour) 0.00 (CFS) 54.3 (Feet) 5016.92 (Feet) 5017.00 Surface Water Present 0 0.06 5.0 1015.50 60.9 5020.82 5017.18 0 0.06 5.0 1088.04 60.9 5020.00 5017.97 ® 0.03 5.0 1164.64 32.6 5020.02 5018.88 �5 � 5.0 1462.50 5.8 5020.81 5018.32 © 0.02 5.0 1108.50 22.2 5021.61 5019.69 0.02 5.0 1385.62 22.2 5022.17 5020.47 ®� 5.0 980.00 3.9 5022.37 5021.12 �9 0.01 5.0 2137.50 17.1 5022.56 5020.92 10 l� 5.0 1750.00 7.0 5022.56 5021.71 11 12 13 14 0.02 0 0.02 0.01 5.0 5.0 5.0 5.0 576.25 865.00 375.00 500.00 13.8 3.5 6.0 4.0 5021.02F 5021.04 5021.83 5021.38 5019,58 5021.48 5022.45 5023.42 0 Surface Water Present Surface Water Present Surface Water Present [Surfaceaterresent ::16 =0 5.0 500.00 2.0 5022.50 5022.89 Surface Water Present Summary of Sewer Hydraulics Note: The given denth to flow ratio is 0.9_ Sewer ID # Manhole ID Number Upstream Downstream �� Sewer Shape Calculated IDiameter (Rise) (Inches) (FT) 11 Suggested JF777ixisting Diameter (Rise) (Inches) (FT) I Diameter (Rise) Width (Inches) (FT) (FT) �1 00 Round 49.7 5]41 48 N/A 0®�0 Round 33.1 36 30 N/A ®� IO Round 17.6 18 30 N/A 5�©0 Round 29.8 3-0]1 30 N/A file://C:\Program%20Files\NeoUDSewer\Reports\3313414386.htm 12/29/2004 INeoUDS Results Summary Page 3 of 7 1 6 11 7 I1 6 Roundj 29.811 3011 30 N/A 0®� Round Round 7731 27.]11 lJ81 3011 18 30 N/A N/A ®0� 10 Round 13.3 18 18 N/A Arch 49.7 54 38 60 10 11 ® Round 17.1 18 18 F N/A 11 12 11 Round 11.011 18 12 N/A 12 13 11 Round 13.5I 18 15 N/A 13 14 13 Round 11.618 15 N/A 14 15 14 Round 9.0 -18]1 12 N/A 15 16 13 Round 9.0 18 12 N/A tRound and arch sewers are measured in inches. Box sewers are measured in feet. ' Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. ' If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. 1 Sewer Design ll Normal Normal Critical Critical Full Froude ID Flow (CFS) ow :(FlS) Depth (Feet) Velocity (FPS) Depth (Feet) Velocity (FPS) Velocity (FPS) Number Comment 60.9 55.8 4.00 4.8 2.35 7.9 4.8 N/A 32.6 25.2 2.50 6.6 1.94 8.0 6.6 N/A ® 5.8 24.4 0.83 4.1 0.84 4.0 1.2 0.92 5� 22.2 22.5 , 2.01 5.2 1.60 6.7 4.5 0.63 © 22.2 22.5 2.01 5.2 1.60 6.7 4.5 0.63 3.9 5.8 0.91 3.5 0.77 4.3 2.2 0.71� ® 17.1 22.5 1.63 5.1 1.40 6.0 3.5 0.75 7.0 15.8 0.70 8.7 1.02 5.5 4.0 2.08 0 60.9 59.0 4.08 4.7 2.34 7.9 4.7 N/A 10 13.8 15.8 1.09 10.1 1.36 8.2 7.8 1.76 11 3.5 4.4 0.67 6.2 0.79 5.2 4.4 1.41 12 6.0 7.9 0.81 7.1 0.99 5.8 4.9 1.49 13 4.0 7.9 0.63 6.5 0.81 4.8 3.3 1.63 14 2.0 4.4 0.47 5.4 0.60 4.1 2.5 1.58 15 2.0 4.4 0.47 5.4 0.60 4.1 2.5 1.58 ' .A Froude number = 0 indicated that a pressured flow occurs. file://C:\Program%20Files\NeoUDSewer\Reports\3313414386_htm 12/2R/2004 ' NeoUDS Results Summary Page 4 of 7 1 1 1 1 Summary of Sewer Design Information Invert ElevationI lo e Upstream Downstream Sewer ID r OX0 (Feet) (Feet) Buried De th Upstream Downstream (Feet) (Feet) Comment 1� 0.20 5013.14 5012.92 3.68 .0.00 Sewer Too S.hallo� 3� 0.50 5013.82 5013.61 3.70 3.89 ® 0.47 5013.67 5013.62 4.64 3.88 5� 6.40 5015.08 5013.61 4.03 3.89 © 6.40 5015.46 5015.08 4.21 4.03 �7 0.40 5015.49 5015.47 5.38 5.20 ® 6.40 5015.58 5015.46 4.48 4.21 �9 3.00 5019.56 5015.60 1.50 5.46 Sewer Too Shallow �2 0.20 5013.61 5013.14 3.22 4.52 10 3.00 5014.44 5013.82 '7 5.08 4.70 11 2.00 5015.89 5014.44 4.15 5.58 12 2.00 5016.09 5014.43 4.49 5.34 13 2.00 5017.80 5016.10 2.33 4.48 14r 2.00 5019.56 5017.80 2.97 2.58 15 .2.00 5016.25 5016.09 5.25 4.74 Summary of Hydraulic Grade Line Invert Elevation Water Elevation Sewer ID # Sewer Length (Feet) Surcharged Length (Feet) Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream (Feet) Condition 1� 108.61 108.6115013.14 5012.92 5017.18 5017.00 Pressured 3� 41.65 41.65 5013.82 5013.61 5018.88 5017.97 Pressured 11.67 11.67 5013.67 5013.62 5018.32 5017.97 Pressured 5� 367.14 367.14 5015.08 5013.61 5019.69 5017.97 Pressured © 96.02 96.02 5015.46 5015.08 5020.47 5019.69 Pressured 6.1 5015.49 5015.47 5021.12 5020.47 Pressured 31.23 5015.58 5015.46 5020.92 5020.47 Pressured L� 132.071 132.07 5019.56 5015.60 5021.71 5020.92 Pressured 0 20.56 0 20.56 5014.44 0�000 5013.82 5019.58 5018.88 Pressured 72.56 72.56 5015.89 5014.44 5021.48 5019.58 Pressured file://C:\Program%20Files\NeoUDSewer\Reports\3313414386.htm 12/28/2004 NeoUDS Results Summary Page 5 of 7 -I 12 11 82.881 82.88 5016.09 5014.4311 5022.451 5019.58 Pressured 13 85.16 85.16 5017.80 5016.10 5023.42 5022.45 Pressured 14 88.17 88.17 5019.56 5017.80 5023.86 5023.42 Pressured 15 8.1 8.1 5016.25 5016.09 5022.89 5022.45 Pressured Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole Sewer Energy Manhole Sewer Bend Bend K Lateral Lateral K Energy Manhole ID # Elevation ID # Feet ( ) Friction (Feet) Loss Loss Coefficient )Coefficient (Feet) (Feet Elevation # (Feet) �� 5017.55 0.55 1.00 0.00 0.00 0.00 5017.00 �® 5019.56 0.35 1.32 0.90 0.00 0.00 5018.31 ®� 5018.34 0.00 1.32F 0.03 0.00 0.00 0 5018.31 �© 5020.00 1.42 0.05 0.02 0.25 0.26 0 5018.31 ©� 5020.79 0.37 1.32 0.42 0.00 0.00 © 5020.00 �® 5021.20 0.01 1.32 0.10 0.25 0.30 � ' S020.79 ®� 5021.11 0.07 1.32F -0. 2-5 0.00 0.00 5020.79 �9 10 5021.95 0.78 0.05 0.01 1.00 0.05 5021.11 �� 5018.31 0.50 0.77 0.26 0.00 0.00 0 5017.55 10 1 0.05 0.25 0.45 ® 5019.56 11 12 5021.78 0.91 1.16 0.35 0.00 0.00 11 5020.53 12 13 5022.82 0.95 1.32 0.49 0.26 0.85 11 5020.53 13 - 14 5023.59 0.43 0.05F 0.01 0.25 0.33 13 5022.82 14 15 5023.96 0.37 0.04 0.00 0.00 0.00 14 5023.59 15 16 5022.99 0.03 1.32 0.13 0.00 0.00 13 5022.82 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. `j Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. file://C:\Program%20Files\NeoUDSewer\Reports\3313414386.htm 12/28/2004 ' NeoUDS Results Summary Page 6 of 7 Manhole ID # Rim Elevation (Feet) linvert Elevation (Feet) Manhole Height (Feet) �1 5016.92 5012.92 4.00 �2 5020.82 5013.14 7.68 0 5020.00 5013.61 6.39 ® 5020.0211 5013.821 6:20 5�1 5020.81 5013.67 7.14 © 5021.6111 5015.08 6.53 0 5022.171 5015.46 6.71 ® 5022.371 5015.49 6.88 �9 502275-611 5015.581 6.98 101 5022.5611 5019.561 3,00 111 502170211 5014.431 6.59 12 5021.0411 5015.891 5.15 13 5021.831 5016.0:9]1 5.74 141 5021.381 5017.8011 3.58 151 5023.531 5019.56 3.97 161 5022.5011 5016.25 6.25 Sewer ID # Upstream Trench Width Downstream Trench Width Trench Wall Earth Length Thickness Volume (Feet) (Inches) (Cubic Yards) On Ground (Feet) At Invert (Feet) On Ground (Feet) At Invert (Feet) �l 12.5 6.8 5.2 6.8 108.61 5.00 206 11.3 5.1 11.7 5.1 41.65 3.50 73 ® 13.2 5.1 11.7 5.1 11.67 3.50 23 �5 12.0 5.1 11.7 5.1 367.14 3.50 671 © 12.3 5.1 12.0 5.1 96.02 3.50 182 13.8 3.9 13.5 3.9 6.1 2.50 12 ® 12.9 5.1 12.3 5.1 31.23 3.50 63 6.1 3.9 14.0 3.9 132.07 2.50 180 0 14.6 9.8 17.2 9.8 236 5.08 775 10 13.2 3.9 12.5 3.9 20.56 2.50 37 11' 11.0 3.3 13.8 3.3 72.56 2.00 118 12 11.9 3.6 13.6 3.6 82.88 2.25 144 13 7.5 3.6 11.8 3.6 85.16 2.25 97 file://C:\Program%20Files\NeoUDSewer\Reports\3313414386.htm 12/28/2004 NeoUDS Results Summary Page 7 of 7 14 8.611 3.31 7.81 3.31 88.171 2.001 72 15 13.2 3.3 _ 12.2 3.3 8.1 2.00 14 Total earth volume for sewer trenches = 2665.85 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/ 12)+1 I file://C:\Progra,m%2OFiles\NeoUDSewer\Reports\3313414386.htm 12/28/2004 I SEAR -BROWN LIND 2 'Riprap For STRM-N-Al Updated: 3-Jan-05 ' Pipe Diameter: D 18 in Discharge: Q 6.66. cfs Tailwater*: y 0.6 ft unknown ' * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: By: AGM 187010140 Checked: Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec ' Q/D2.5 = 2.42 < 6 --> use design charts D = 1.50 ft ' YUD = 0.40 Q/D111.5 = 3.63 d50 = 3.00 in -------> 6 in ----> Use Type VL (Class 6) riprap 2. Expansion Factor: ' 1/2tanO = 5.16 3. Riprap Length: ' At = Q/V = 0.86 ft2 L = 1/2tan0 * (At/Yt - D) = 0 ft 1 i. Governing Limits: L> 3D 5 ft increase length to 5 ft ' L<10D 15 ft=>0ft-->OK 5. Maximum Depth: ' Depth = 2d50 = 2 (6 in / 12) = 1 ft ' 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width: Width =3D=3(18in/12)= 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type VL (Class 6) riprap ' Length = 5 ft Depth = 1 ft Width = 5 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 ' V:\52870FWCTIVE\JOBS\614005\DATA\DRAINAGE\RIPRAP\RIP RAP STRM-A.XLS ,J 1 A _ _ 1 3a" PC P -C —1 F z 36 "Rcp NeoUDS Results Summary Page 1 of 3 1 I 11 H 1 NeoUDS Results Summary Project Title: Project Description: Output Created On: 12/28/2004 at 5:30:21 PM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Manhole Basin ID # Area * C Time of Concentration Peak Flow CFS Overland Minutes ( Gutter) Minutes Basin) Minutes ( Rain I Inch/Hour �1 0.00 5.0 0.0 0.0 8505.00 34.0 0 0.00 5.0 0.0 0.0 8687.50 34.8 3� 0.00 5.0 0.0 0.0 8320.00 33.3 The shortest design rainfall duration is 5 minutes. ' For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. u Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall peak Ground Water ID # Area * C Duration Intensity Flow Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) Surface 1 0 0.0 0.00 34.0 5015.50 5017.00 Water Present 0 0.01 5.0 4343.75 34.8 5020.25 5016.64 00 5.0 8320.00 33.3 5020.03 5017.62 ' `JSummary of Sewer Hydraulics 1 file://C:\Program%20Files\NeoUDSewer\Reports\331341662 Lhtm 12/28/2004 NeoUDS Results Summary Note- The given denth to flnw rntin is 0 9 Page 2 of 3 Sewer ID # Manhole ID Number Calculated Sewer Diameter (Rise) Shape (Inches) (FT) Suggested Existing Upstream �� Downstream Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) (FT) Width (FT) Round 3 5.3]1 36 30 N/A E91 34.8 36 30 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment CFS) CFS (Feet (FPS) (Feet) (FPS FPS �1 34.8 22.5 2.50 7.1 2.00 8.3 7.1 N/A 0 33.3 22.5 2.50 6.8 1.96 8.1 6.8 N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert ElevationI Buried De th Sewer ID Slope Upstream Downstream Upstream Downstream Comment (Feet) I (Feet) (Feet) (Feet) 0 0.40 ISewer Too Shallow 0 0.40 F 5-01-3-34 5013.21 4.19 4.54 Summary of Hydraulic Grade Line Invert Elevation Water Elevation Sewer ID # Sewer Length (Feet) Surcharged Length (Feet) Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream (Feet) Condition 1� 44.47 44.47 5013.20 5013.02 5016.64 5017.00 Pressured U 31.33 31.33 5013.34 5013.21 5017.62 5016.64 Pressured file: //C : \Program%20Fi le s\NeoUD Sewer\Reports\3 313416621. htm 12/28/2004 1� 1 1 1 1 1 1 NeoUDS Results Summary Summary of Energy Grade Line Page 3 of 3 Upstream Manhole Juncture Losses Downstream Manhole Sewer Manhole Energy Sewer Bend K Bend Lateral K Lateral Manhole Energy ID # ID # Elevation Friction Coefficient Loss Coefficient Loss ID # Elevation (Feet) (Feet) (Feet) (Feet) (Feet) 1��2 5017.42 0.42 1.00F -0. 0-0 0.00 0.00 �1 5017.00 00 5018.33 0.27 0.05 0.04 0.25 0.60 0 5017.49 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1 Manhole ID # Rim Elevation (Feet) I Invert Elevation (Feet) Manhole Height (Feet) 1� 5015.501 5013.02 2.48 0 5020.251 5013.20 7.05 0 5020.03]1 5013.34]1 6.69 Upstream Trench Downstream Trench Width Width Earth Sewer ID On Ground At Invert On Ground At Invert Trench Length Wall Thickness Volume # (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) (Cubic Yards) �1 13.0 5.1 3.9 5.1 44.47 3.50 62 0 12.3 5.1 13.0 5.1 31.33 3.50 63 Total earth volume for sewer trenches = 124.5 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. ' '•.J The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 file://C:\Program%2OFiles\NeoUDSewer\Reports\3313416621.htm 12/28/2004 SEAR -BROWN LIND 2 Riprap For STRM-N-C Updated: 3-Jan-05 ' Pipe Diameter: D 30 in Discharge: Q 34 cfs nown Tailwater`: 1.0 ft unk ' " Assume that y=0.4'D if tailwater conditions are unknown 1. Required riprap type: 7 L ' 2. Expansion Factor: By: AGM 187010140 Checked: Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec 11 Q/D2.5 = 3.44 < 6 --> use design charts D = 2.50 ft YUD = 0.40 Q/D^1.5 = 8.60 d50 = 7.13 in -------> 9 in -- > Use Type L (Class 9) riprap 1/2tan0= 4.03 3. Riprap Length: At = QN = 4.42 . ft2 L = 1 /2tanO ' (At/Yt - D) = 8 ft 1. Governing Limits: L>3D 8 ft <=8ft-->OK L<10D 25 ft =>8ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 1.5 ft ' 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width: Width = 3D = 3 (30 in /12) = 8 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type L (Class 9) riprap ' Length = 8 ft Depth = 1.5 ft Width = 8 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTIVE\JOBS\614005\DATA\DRAINAGE\RIPRAP\RIP RAP STRM-C.XLS ST14 STEM—N—D 1; 3o"kcP 2 3 �S7M1�-d—S 1 �-- STP nt -N Z" Rcp Pew loo STMH-�-3 STMH —6-7- L3q s ,i2,. KcP `" s i SrRM•N- p gZ'FES .12" up NeoUDS Results Summary Page 1 of 5 I 1 NeoUDS Results Summary Project Title: L,%A F"""J Z Project Description: STRA-N -- 6, SPm'N-d'J Output Created On: 12/28/2004 at 6:47:12 PM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula43sed. Return Period of Flood is A-Ytars.. l0o -Y(L. Sub Basin Information 2� 0.00 5.0 0.0 0.0 10732.50 42.9 3� 0.00 5.0 0.0 0.0 2255.00 9.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the -first design point, the time constant is <= (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall Peak Ground Water ID # Area * C Duration Intensity Flow Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) 00 5.0 9047.50 36.2 5027.10 5026.00 0 0.01 5.0 3577.50 42.9 5026.89 5022.60 �� 5.0 2255.00 9.0 5027.09 5023.85 file:HC:\Program%20Files\NeoUDSewer\Reports\331342123 Lhtm 12/28/2004 NeoUDS Results Summary Page 2 of 5 1 4J 0.021 5.01 2586.251 41.41 5027.791 5021.621 �5 0.02 5.0 1992.00 39.8 5030.52 5020.86 © 0.02 5.0 1595.83 38.3 5030.86 5020.32 0.03 5.0 1312.86 36.8 5030.00 5019.76 8 0 0.0 0.00 35.2 d[: Edmt e Summary of Sewer Hydraulics Notes The viven rlenth to flnw rntin is 0 9 Sewer ID # Manhole I FSe 7we r Sha a I Calculatedj Suggested Existin Upstream Downstream Diameter (Rise]) (Inches T Diameter (Rise) (Inches) T) Diameter (Rise) (Inches) (FT) Width (FT) ��1 0 FRound]l 735.9l3611 24 N/A Round 21.311 24 24 F N/A 00® Round . 38.211 4211 30 N/A ®®0 FRound]l 37,711 42 42].F N/A FRound]l 37.211 42 42 N/A ©©0 Round 36.6 1 42 42].F N/A �7 �7 ®Round 23.9 24 42 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer Design ID Flow (CFS) �1 36.2 12.4 2.00 11.5 1.90 11.8 11.5 N/A 0 9.0 22.4 1.26 4.3 1.08 5.2 2.9 0.73 42.9 22.5 2.50 8.7 2.17 9.5 8.7 N/A 55.3 2.26 6.3 2.00 7.3 4.3 0.79 �5 39.8 55.3 2.20 6.3 1.96 7.2 4.1 0.8 55.3 2.14 6.2 1.93 7.0 4.0 0.81 �7 36.8 165.9 1.12 13.8 1.89 6.9 3.8 2.71 Full Normal Critical Critical Flow Depth M Depth Velocity S(FPS) Froude (CFS) (Feet) (Feet) (FPS) file:HC: \Program%20F i les\NeoUD Sewer\Reports\3 313 421231.htm 12/28/2004 NeoUDS Results Summary A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Sewer ID t Invert ElevationI Buried Depth Comment Upstream (Feet) Downstream Upstream Downstream (Feet) (Feet) (Feet) 0.40 5019.421 5019.32 5.68 5.57 0 0.40 5019.34 5019.31 5.75 5.58 0 0.40 5019.31 5019.01 5.08 6.28 ® 0.40 5019.01 5018.62 5.28 8.40 0.40 5018.62 5018.08 8.40 9.28 © 0.40 5018.09 5017.88 9.27 8.62 3.60 5017.87 5014.87 8.63 -1.70 Sewer T'oo Shallow Summary of Hydraulic Grade Line Page 3 of 5 Sewer Surcharged Sewer Length Length ID # (Feet) (Feet) Invert Elevatior< Water Elevation Condition Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream (Feet) �1 25.92 25.92 5019.42 5019.32 5026.00 5022.60 Pressured 0 8.25 8.25 5019.34 5019.31 5023.85 5022.60 Pressured 0 75.3 75.3 5019.31 5019.01 5022.60 5021.62 Pressured �5 01 �6 134.48 0 0 5018.62 5018.08 5020.86 5020.32 Subcritical 00 0 500 00000 500 SubO �7 83.23 0 5017.87 5014.87 5019.76 5017.00 Jump Summary of Energy Grade Line Downstream Upstream Manhole Juncture Losses Manhole Sewer Manhole Energy Sewer Bend K Bend Lateral K Lateral Energy ID # ID # Elevation Friction Coefficient Loss Coefficient Loss ID # Elevation (Feet) (Feet) (Feet) (Feet) (Feet) file : HC:\Program%20Fi le s\NeoUD Sewer\Reports\3 313421231.htm 12/28/2004 NeoUDS Results Summary Page 4 of 5 1 II 1 II 5028.0611 0.8811 1.3211 2.7211 0.2511 0.6711 2 11 5023.791 00 5023.97 0.02 1.32 0.17 0.00 0.00 5023.79 00 5023.79 1.50 0.04 6.05 0.00 0.00 ® 5022.24 ®® 5022.24 0.41 1.32 0.38 0.00 0.00 5021.45 0� 5021.45 0.51 0.07 0.02 0.00 0.00 © 5020.92 ©© 5020.92 0.30 0.49 0.12 0.00 0.00 5020.51 0� 5020.51 3.51 0.03 0.00 0.00 0.00 ® 5017.00 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side s]one is 1 _ Manhole ID # Rim Elevation (Feet) Invert Elevation (Feet) Manhole Height (Feet) �1 5027.10 5019.4211 7.68 0 5026.891 5019.3111 7.58 3� 5027.091 5019.34 7.75 ® 5027.79 5019.01 8.78 5�1 5030,521 5018.621 11.90 5030.8611 5018.081 12.78 �7 5030.001 5017.871 12.13 ® 5016.67 5014.87 1.80 Upstream Trench I Downstream Trench Width Width Earth Sewer ID On Ground At Invert On Ground At Invert Trench Wap Length Thickness Volume # (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) (Cubic Yards) �l 14.9 4.5 14.6 4.5 25.921 3.00 63 15.0 4.5 14.7 4.5 8.25 3.00 20 �3 14.1 5.1 16.5 5.1 75.3 3.50 204 file:HC:\Program%20Files\NeoUDSewer\Reports\3313421231.htm - 12/28/2004 NeoUDS Results Summary Page 5 of 5 15.31 6.21 21.51 6.21 96.961 4.50 396 21.5 6.2 23.3 6.2 134.48 4.50 742 © 23.3 6.2 22.0 6.2 53.67 4.50 301 �7 22.0 6.2 1.3 6.2 83.23 4.50 258 Total earth volume for sewer trenches = 1983.91 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/ 12)+1 file: //C:\Program%20F iles\NeoUD Sewer\Reports\3 313421231.htm 12/28/2004 SEAR -BROWN LIND 2 'Riprap For STRM-N-D Updated: 3-Jan-05 �1 ' Pipe Diameter: D . 42 in Discharge: Q 35.2 cfs Tailwater*: y 1.4 ft (unknown) ' * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: By: AGM 187010140 Checked: Soil Type: Erosion Resistant Soil (Clay) Max Velocit : v 7.7 ft/sec ' Q/D2.5 = 1.54 < 6 --> use design charts D = 3.50 ft ' YUD = 0.40 Q/D^1.5 = 5.38 d50 = 4.46 in -------> 6 in ----> Use Type VL (Class 6) riprap 2. Expansion Factor: ' 1/2tan0= 6.14 3. Riprap Length: ' At = Q/V = 4.57 ft2 L = 1/2tanO * (At/Yt - D) _ -1 ft ' `i. Governing Limits: L > 3D 11 ft increase length to 11 ft ' L < 10D 35 ft => -1 ft --> OK 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft ' 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width: Width = 3D = 3 (42 in /12) = 11 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type VL (Class 6) riprap ' Length = 11 ft Depth = 1 ft Width = 11 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 ' V:\52870F\ACTIVE\JOBS\614005\DATA\DRAINAGE\RIPRAP\RIP RAP STRM-D.XLS .6-Z STIN -E -1- 3o"P,cp f8"aA z —570 -N-El 4 Y� z SriN -E1- 4 STMN-E-'L 5 30 „RAP �s 3a �� QCA V 0 3o"FES ' NeoUDS Results Summary Page 1 of 4 NeoUDS Results Summary Project Title: LIND FARM 2- Project Description: STRM-N-El, STR.M-d-E ' Output Created On: 12/28/2004 at 7:49:35 PM Using NeoUDSewer Version 1.5. Rainfall Intensity . Return Period of Flood is I to - Yk ' Sub Basin Information 1 11 11 Time of Concentration Manhole ID # Basin Area * C Overlan j mutes utter (Minutes)Minutes Basin) ( Rain I ) Inch/Hour Peak Flow CFS ) w �1 0.00 5.0 0.0 0.0 5665.00 22.7 0 0.00 5.0 0.0 0.0 2717.50 10.9 3� 0.00 5.0 0.0 0.0 7685.00 30.7 ® 0.00 - 5.0 0.0 0.0 8317.50 33.3 5� 0.00 5.0 0.0 0.0 7777.50 31.1 © 0.00 5.0 0.0 0.0 7777.50 31.1 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall peak Ground Water ID # Area * C Duration Intensity Flow Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) 00 5.0 5665.00 22.7 5034.39 5032.03 ,7 00 5.0 2717.50 10.9 5034.39 5031.86 0.01 5.0 2561.67 30.7 5034.16 5030.67 0 ® 0.02 5.0 2079.38 33.3 5035.20 5028.84 0.02 5.0 1555.50 31.1 5031.75 5026.75 0 file:HC:\Program%20Files\NeoUDSewer\Reports\3 313424975.htm 12/28/2004 ' NeoUDS Results Summary Page 2 of 4 ' 0 0.0 0.00 31.1]L 5026.50 5026.00 �JI Summary of Sewer Hydraulics ' Note: The given depth to flow ratio is 0.9. Manhole ID Number I Calculated Suggested Existing Sewer Sewer Diameter (Rise) IDiameter (Rise) IDiameter (Rise) Width ID # Upstream Downstream Sha a (Inches) (FT) (Inches) (FT) I (Inches) (FT) T) Round 30.1]1 33 I. 24 N/A ®®0 Round Round 26.8 24 18 N/A Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment (CFS) (CFS) (Feet) (FPS) (Feet) (FPS) (FpS) �1 22.7 12.4 2.00 7.2 1.69 8.0 7.2 N/A 0 10.9 5.8 1.50 6.2 1.26 6.9 6.2 N/A 30.7 22.5 2.50 6.3 1.89 7.7 6.3 N/A 45.1 1.60 10.0 1.96 8.1 6.8 1.51 �5 31.1 45.1 1.53 9.9 1.90 7.8 6.3 1.54 A Froude number = 0 indicated that a pressured flow occurs. ' Summary of Sewer Design Information ' J Sewer ID Slope Invert Elevation Buried Depth Comment Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream (Feet) 0.40 5027.61 5027.58 4.78 4.58 0.40 5027.69 5027.58 5.20 5.08 file://C:\Program%20Files\NeoUDSewer\Reports\3313424975.htm, 12/28/2004 ' NeoUDS Results Summary Page 3 of 4 3 1_2140J 5027.58 5026.891 4.081 5.811 ® 1.60 5026.88 5024.85 5.82 4.40-1 1.60 5024.85 5024.09 4.40 -0.09 Sewer Too Shallow Summary of Hydraulic Grade Line Invert ElevationI Water Elevation Sewer ID # Sewer Length (Feet) Surcharged Length (Feet) Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream (Feet) Condition 1� 6.54 6.54 5027.61 5027.58 5032.03 5030.67 Pressured 0 27.64 27.64 5027.69 5027.58 5031.86 5030.67 Pressured 3� 172.12 172.12 5027.58 5026.89 5030.67 5028.84 Pressured ® 126.98 0 5026.88 5024.85 5028.84 5026.75 Jump 5� 47.41 0 5024.85 5024.09 5026.75 5026.00 Jump ' D Summary of Energy Grade Line h �.J I� Upstream ManholeI Juncture Losses Downstream F Manhole Sewer Sewer Bend Lateral Bend K Lateral K Energy Manhole Manhole Energy ID # ID # Elevation (Feet) Friction (Feet) Loss Loss Coefficient (Feet) Coefficient (Feet) Elevation ID # (Feet) 0�1 5032.84 0.09 1.32 1.07 0.25 0.41 3� 5031.28 �0 5032.45 0.39 1.32 0.78 0.00 0.00 0 5031.28 0 3� 5031.28 1.41 0.03 0.02 0.00 0.00 ® 5029.85 ®® 5029.85 2.12 0.06 0.04 0.00 0.00 5027.69 �5 5� 5027.69 1.69 0.03 0.00 0.00 0.00 © 5026.00 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate 11 file: //C :\Program%20Fi les\NeoUD Sewer\Reports\3 313424975. htm 12/28/2004 ' NeoUDS Results Summary Page 4 of 4 I 1 [1 LJ LJ The ncer oiven trench sirle Onne is 1 Manhole ID # Rim Elevation (Feet) Invert Elevation (Feet) Manhole Height (Feet) 1� 5034.39 5027.61]1 6.78 0 5034.391 5027.69]1 6.70 0 5034.1611 5027.58 6.58 ®1 5035.201 5026.8811 8.32 5�1 5031.75jl 5024.85 6.90 ©j 5026.50 1 5024.09 2.41 Upstream Trench Downstream Trench Width Width Earth Sewer ID On At Ground Invert On Ground At Invert Trench Wall Length Thickness Volume # (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) (Cubic Yards) �1 13.1 4.5 12.7 4.5 6.54 3.00 13 0 13.5 3.9 13.2 3.9 27.64 2.50 53 0 12.1 5.1 15.5 5.1 172.12 3.50 400 ® 15.6 5.1 12.7 5.1 126.98 3.50 305 12.7 5.1 3.7 5.1 47.41 3.50 64 Total earth volume for sewer trenches = 834.02 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/ 12)+1 fi le://C :\Program%20Files\NeoUDS ewer\Reports\3 313 424975. htm 12/28/2004 SEAR -BROWN LIND 2 ' Riprap For STRM-N-E Updated: 3-Jan-05 I ' Pipe Diameter: D 30 in Discharge: Q 31.1 cfs Tailwater*: y 1.0 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: By: AGM 187010140 Checked: Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec 1 Q/D1.5 = 3.15 < 6 --> use design charts D = 2.50 ft YUD = 0.40 Q/DAl .5 = 7.87 d50 = 6.52 in -------> 9 in ----> Use Type L (Class 9) riprap 2. Expansion Factor: ' 1/2tanO = 4.31 3. Riprap Length: At = Q/V = 4.04 ft2 L = 1 /2tan0 * (At/Yt - D) = 7 ft ' 71. Governing Limits: J L> 3D 8 ft increase length to 8 ft ' L<10D 25 ft =>7ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (30 in /12) = 8 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type L (Class 9) riprap ' Length = 8 ft Depth = 1.5 ft Width = 8 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 ' V:\52870F\ACTIVE\JOBS\614005\DATA\DRAINAGE\RIPRAP\RIP RAP STRM-E.XLS 1 1 1 i 1 1 1 1 1 1� 1 S 1 ,4k� 19"90 5 ► kM-N -r= No. 8 D-o4J -0 ' NeoUDS Results Summary Pagel of 3 1 1. NeoUDS Results Summary I 1 I I I 1 I I 1 I Project Title: L" at rd,, j Z Project Description: 5 MM- N - F Output Created On: 12/29/2004 at 3:06:45 PM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Manhole Basin ID # Area* C Time of Concentration Peak Flow CFS Overland Minutes ( Gutter Minutes (Basin) Minutes ( Rain I ) Inch/Hour l� 0.00 5.0 0.0 0.0 250.00 1.0 0 0.00 5.0 0.0 0.0 250.00 1.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall Peak Ground Water ID # Area * C Duration Intensity Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS (Feet) (Feet) �1 0 5.0 250.00 1.0 5025.50 5023.19 Surface 2 0 0.0 0.00 1.0 5019.50 5023.00 Water Present Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number I I Calculated 11 Suggested Existing file://C: \Program%20Files\NeoUD Sewer\Reports\3 313 494404. htm 12/29/2004 NeoUDS Results Summary Page 2 of 3 Sewer ID # Upstream �� Downstream Sewer Shape Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) (FT) Width (FT) �1 �1 �2 Round 6.0 1]81 18 N/A Round and arch sewers are measured in inches. ' Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size ' All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. i I Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment (CFS) (CFS) (Feet) (FPS) (Feet) FPS) FPS) 1� 1.0 18.5 0.24 5.6 0.39 2.7 0.6 2.43 A Froude number = 0 indicated that a pressured flow occurs. ' Summary of Sewer Design Information I I 1 _D Invert Elevation Buried Depth Sewer ID Slope % Upstream (Feet) Downstream (Feet) Upstream (Feet) Downstream (Feet) Comment 0 4.09 ISewer Too Shallow Summary of Hydraulic Grade Line Invert Elevation Water Elevation Sewer Surcharged Sewer Length Length Upstream Downstream Upstream Downstream Condition ID # (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) I1 1 I 111.72I 80.05d Li022.80 501802 .23 5-319 5023.00 Jump Summary of Energy Grade Line Upstream Manhole Juncture Losses Energy I Sewer I I Bend I I Later, Manhole Elevation Friction Bend K Loss Lateral K Loss Downstream Manhole nholIAEnergy Elevation I file:HC:\Program%20Files\NeoUD Sewer\Reports\3313494404.htm 12/29/2004 ' NeoUDS Results Summary Page 3 of 3 t 1 I �J 7 1 ID # 11 ID # I (Feet) I (Feet) lCoefficient eet) Coefficient I (Feet) I ID # 1 (Feet) == 5023.31 0.31 0.05 0.00 0.00 0.00 = 5023.00 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole ID # Rim Elevation (Feet) Invert Elevation (Feet) Manhole Height (Feet) 5025.50 5022.80 2.70 0 5019.50]1 5018.23]1 1.27 Upstream Trench Downstream Trench Width Width Earth Sewer ID On Ground At Invert On Ground At Invert Trench Length Wall Thickness Volume # (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) (Cubic Yards) �1 5.5 3.9 2.6 3.9 111.72 2.50 51 Total earth volume for sewer trenches = 50.51 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/ 12)+1 I file: HC:\Program%20Files\NeoUD Sewer\Reports\3313494404.htm 12/29/2004 SEAR - BROWN LIND 2 Riprap For STRM-N-F Updated: 3-Jan-05 Pipe Diameter: D 18 in Discharge: Q 3 cfs Tailwater*: y 0.6 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown By: AGM 187010140 Checked: Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec 1. Required riprap type: ' Q/D2.5 = 1.09 < 6 --> use design charts D = 1.50 ft YUD = 0.40 ' Q/D111.5 = 1.63 d50 = 1.35 in -------> 0 in ----> Use geotextile or minimum riprap gradation. 2. Expansion Factor: Snit 1/2tan0= 6.59 3. Riprap Length: At = QN = 0.39 ft2 L = 1/2tan0 * (At/Yt - D) _ -6 ft i. Governing Limits: L> 3D 5 ft increase length to 5 ft L<10D 15 ft =>-6ft-->OK 5. Maximum Depth: ' Depth = 2d50 = 2 (0 in / 12) = 0 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (18 in /12) = 5 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: geotextile or minimum riprap n_ -,iow gradation. LISE U[c ' Length = 5 ft ,�� V00- Depth = 0 ft Width = 5 ft wow Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870FVACTIVE\JOBS\614005\DATA\DRAINAGE\RIPRAP\RIP RAP STRM-F.XLS ,SrW-N -6 S-Tw-N-6,1 smiK — nl - 6i z ST&—nl-6t-1 : n, a 19"�cP Z411PJP 6 !8" R.cP 6 .s v 29 "2CP s 29 ",ec p 10 5TO-N-6; J 0 Pei Z0 NeoUDS Results Summary Page 1 of 5 I 1 0 1 11 NeoUDS Results Summary Project Title: LIND FARM Project Description: STRM-N-G1 Output Created On: 12/29/2004 at 9:53:57 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Manhole BatJ ID # Area Time of Concentration Peak Flow (CFS Overland (Minutes) Gutter (Minutes) Basin (Minutes) Rain I (Inch/Hour) 0 0.00 5.0 0.0 0.0 1667.50 6.7 0 0.00 5.0 0.0 0.0 542.50 2.2 0 0.00 5.0 0.0 0.0 2160.00 8.6 ® 0.00 5.0 0.0 0.0 1550.00 6.2 5� 0.00 5.0 0.0 0.0 2642.50 10.6 © 0.00 5.0 0.0 0.0 2155.00 8.6 7� 0.00 5.0 0.0 0.0 4632.50 18.5 ® 0.00 5.0 0.0 0.0 4517.50 18.1 �9 0.00 0.0 0.0 0.0 0.00 18.1 10 0.00 5.0 0.0 0.0 4517.50 18.1 The shortest design rainfall duration is 5 minutes. ' For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (lO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall peak Ground Water ID # Area * C Duration Intensity Flow Elevation Elevation Comments (Minutes) (Inch/Hour) (CFS) (Feet) (Feet) 1667.50 6.Z 5043.96 5037.46 file:HC:\Program%20Files\NeoUDSewer\Reports\3 313475637.htm 12/29/2004 NeoUDS Results Summary Page 2 of 5 . 1 2 J1 0 5.01 542.501 2.21 5044.051 5036.94 3� 0.01 5.0 720.00 8.6 5043.78 5036.56 ® 0.02 5.0 387.50 6.2 5044.38 5034.58 00 5.0 2642.50 10.6 5038.89 5036.44 ©�0 5.0 2155.00 8.6 5038.69 5035.510 7� 0.01 5.0 1544.17 18.5 5038.69 5034.76 ® 0.03 5.0 564.69 18.1 5040.04 5032.44 9� 0.03 5.0 564.69 18.1 5034.98 5030.56 10 0 0.0 0.00 18.1 5030.00 5026.00 Summary of Sewer Hydraulics Nnte• The riven denth to flow ratin is n 9 Sewer ID # Manhole I Calculated Sewer Diameter (Rise) Shape (Inches) (FT) J Suggested Existing Upstream �� Downstream Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) (FT) Width (FT) 000 Round 15.7 18 18 N/A �00 Round 9.2 18 18 N/A 3� 3�®Round 17.]31 18 18 N/A F 4 FRound]l 181 18 F N/A Round 22.]61 2411 18 N/A ©©0 Round 20,91 211 18 N/A FRound]l 27.9j 3011 24 F N/A F 8 Round 27.61 3701 24 N/A ��9 10 Round 27.6 30 24 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment (CFS) (CFS) (Feet) (FPS) (Feet) (FPS) (FPS) 1� 6.7 9.6 0.92 5.9 1.00 5.3 3.8 1.17 �2 2.2 12.9 0.42 5.4 0.59 3.4 1.2 1.75 3� 8.6 9.6 1.12 6.1 1.14 6.0 4.9 1.04� file://C:\Program%20Files\NeoUDSewer\Reports\331347563 7.htm 12/29/2004 NeoUDS Results Summary Page 3 of 5 1 4 1 6.21 9.611 0.881 5.81 0.961 5.21 3.51 1.19 j 5� 10.6 5.8 1.50 6.0 1.24 6.7 6.0 N/A © 8.6 5.8 1.50 4.9 1.14 6.0 4.9 N/A 7� 18.5F 1-2-4] 2.00 5.9 1.55 7.1 5.9 N/A F 1-2.4 2.00 5.8 1.53 7.0 5.8 N/A �9 18.1 12.4 2.00 5.8 1.53. 7.0 5.8 N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation 11 Buried Depth Sewer ID , . ,r. "ram »"' '".,"""�" „ "r »"' »' Comment (Feet) eet (Feet (Feet) 1� 1.10 5035.05 5034.75 7.41 7.53 0 2.00 5034.86 5034.75 7.69 7.53 1 3 11 1.10N 5034.7511 5032.7011 7.5311 10.1811 ' 11 ® 1.10 5032.70 5028.96 10.18 9.58 5� 0.40 5030.01 5029.84 7.38 7.35 Summary of Hydraulic Grade Line Invert Elevation 11 Water Elevation Sewer Surcharged Sewer Length Length Upstream Downstream Upstream Downstream Condition ID # (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) 1� 27.09 27.09 5035.05 5034.75 5037.46 5036.56 Pressured 0 5.67 5.67 5034.86 5034.75 5036.94 5036.56 Pressured 3� 186.55 186.55 5034.75 5032.70 5036.56 5034.58 Pressured ® 340.08 340.08 5032.70 5028.96 5034.58 5032.44 Pressured 41.671 41.6711 5030.0111 5029.8411 5036.441 5034.76 1 Pressured 1 9.67 5029.88 5029.84 5035.51 5034.76 Pressured 7� 220.14 220.14 5029.84 5028.96 5034.76 5032.44 Pressured file://C:\Program%2OFiles\NeoUDSewer\Reports\3313475637.htm 12/29/2004 NeoUDS Results Summary Page 4 of 5 1 � 170.351 170.35]1 5028.96 1 5028.281 5032.44 5030.56 1. Pressured �9 64.06 64.06 5028.28 5028.02 5030.56 5026.00 Pressured Summary of Energy Grade Line Sewer ID # Upstream Manhole ManholeLEnergy on ID # Sewer Friction eet) Juncture Losses Downstream Manhole Bend K Coefficient Bend Loss (Feet) Lateral K Coefficient Lateral Loss (Feet) Manhole ID # Energy Elevation (Feet) �1 �1 5037.69 0.14 1.32 0.29 0.25 0.32 0 5036.93 00 5036.97 0.00 1.32 0.03 0.00 0.00 3� 5036.93 0 3� 5036.93 1.67 1.32 0.49 0.00 0.00 ® 5034.77 ®® 5034.77 1.57 1.32 0.25 0.00 0.00 ® 5032.95 5��5 5037.00 0.56 1.32 0.73 0.25 0.40 �7 5035.30 ©© 5035.88 0.09 1.32 0.49 0.00 0.00 �7 5035.30 �7 �7 5035.30 1.95 0.03 0.02 0.25 0.38 ® 5032.95 ®® 5032.95 1.44 0.85 0.44 0.00 0.00 �9 5031.08 �9 �9 5031.08 5.08 0.05 0.00 0.00 0.00 10 5026.00 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The iv er uiven trench side slnne is 1 _ Manhole ID # Rim Elevation (Feet) Invert Elevation (Feet) Manhole Height (Feet) �1 5043.96]1 5035.05 8.91 0 5044.051 5034.8611 9.19 0 5043.7811 5034.75 9.03 ® 5044.38 5032.70]1 11.68 �5 5038.89 5030.01 8.88 ©1 5038.69 5029.88 8.81 file://C:\Program%20Files\NeoUDSewer\Reports\3 31347563 7.htm 12/29/2004 NeoUDS Results Summary 1 7 j 5038.6911 5029.84�1 8.85] ® 5040.0411 5028.961 11.08 5034.98 5028.28]1 6.70 10 11 5030.0011 5028.0211 1.98 Upstream Trench Downstream Trench Width Width Page 5 of 5 Earth Sewer ID On Ground At Invert On Ground At Invert Trench Length Wall Thickness Volume # (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) (Cubic Yards 17.9 3.9 18.1 3.9 27.09 2.501 89 18.5 3.9 18.1 3.9 5.67 2.50 19 0 18.1 3.9 23.4 3.9 186.55 2.50 812 ® 23.4 3.9 22.2 3.9 340.08 2.50 1740 17.8 3.9 17.8 3.9 41.67 2.50 134 © 17.7 3.9 17.8 3.9 9.67 2.50 31 17.2 4.5 21.7 4.5 220.14 3.00 867 ® 21.7 4.5 12.9 4.5 170.35 3.00 569 12.9 4.5 3.5 4.5 64.06 3.00 78 Total earth volume for, sewer trenches = 4338.57 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 file://C:\Program%20Files\NeoUDSewer\Reports\331347563 7.htm 12/29/2004 SEAR -BROWN LIND 2 Riprap For STRM-N-G Updated: 3-Jan-05 Pipe Diameter: D 24 in Discharge: Q 18.1 cfs Taiwwater*: y 0.8 ft (unknown) * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: 2. Expansion Factor: 3. Riprap Length: By: AGM 187010140 Checked: Soil Type: Erosion Resistant Soil (Clay) Max Velocity: V 7.7 ft/sec Q/Dz s = 3.20 < 6 --> use design charts D = 2.00 ft YUD = 0.40 Q/D11.5 = 6.40 d50 = 5.30 in -------> 6 in ----> Use Type VL (Class 6) riprap 1/2tanO= 4.26 ' At = Q/V = 2.35 ft2 L = 1/2tanO * (At/Yt - D) = 4 ft `t. Governing Limits: L> 3D 6 ft increase length to 6 ft L<1OD 20 ft =>4ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. ' 7. Riprap Width: Width = 3D = 3 (24 in /12) = 6 ft ' (Extend riprap to minimum of culvert height or normal channel depth.) Summary: ' Type VL (Class 6) riprap ' Length = 6 ft Depth = 1 ft Width = 6 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870FWCTIVE\JOBS\614005\DATA\DRAINAGE\RIPRAP\RIP RAP STRM-GALS I 1 1 1 1 SWALE SIZING & RIPRAP CALCULATIONS 1 1 I 1 1 1 i 1 1 1 1 11 Swale A w/ Pan Worksheet for Irregular Channel Project Description Worksheet Swale A w/ Pai Flow Element Irregular Cham Method Manning's Forr Solve For Channel Depth Input Data ChannelSl(005000 ft/ft n Discharge 6.66 cfs Options Current Roughness Methc)ved Lotter's Method Open Channel Weighting wed Lotters Method Closed Channel Weighting Horton's Method Results Mannings Coefficiei ' Water Surface Elev. Elevation Range Flow Area Wetted Perimeter Top Width . Actual Depth Critical Elevation ' Critical Slope Velocity Velocity Head Specific Energy ' Froude Number Flow Type 0.022 0.48 ft �[[� .00 to 1.32 3.2 ft' 11.33 ft 11.27 ft 0.48 ft 0.41 ft 0.011236 ft/ft 2.09 ft/s 0.07 ft 0.55 ft 0.69 -�, L A Subcritical ' Roughness Segments Start End Mannings Station Station Coefficient ' 0+09 -0+01 0.030 -0+01 0+01 0.016 0+01 0+09 0.030 ' Natural Channel Points Station Elevation -0+09 1.32 -0+05 0.32 t -0+01 0+00 0.08 0.00 0+01 0.08 0+05 0.32 ' 0+09 1.32 So (6 � Project Engineer: Alicia Forward c:\program files\haestad\fmw\lindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005) 01/03/05 02:57:59 PM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA .+1-203-755-1666 Page 1 of 1 Swale A w/ Pan Worksheet for Irregular Channel Project Description Worksheet Swale A w/ Pai Flow Element Irregular Chani Method Manning's Forr Solve For Channel Depth Input Data Channel SI(005000 ft/ft Discharge 8.86 cis k 1..33 Options Current Roughness Meth()ved Lotter's Method Open Channel Weighting 3ved Lotter's Method Closed Channel Weightin( Horton's Method Results ' Mannings Coefficiei Water Surface Elev. 0.022 0.54 ft Elevation Range .00 to 1.32 Flow Area 3.9 ft' Wetted Perimeter 11.84 ft ' Top Width 11.76 ft Actual Depth 0.54 ft Critical Elevation 0.46 ft 'Critical Slope 0.011024 tuft J Velocity 2.27 ft/s Velocity Head 0.08 ft Specific Energy 0.62 ft ' Froude Number 0.70 Flow Type Subcritical I I Roughness Segments Start End Mannings Station Station Coefficient -0+09 -0+01 0.030 -0+01 0+01 0.016 0+01 0+09 0.030 Natural Channel Points Station Elevation (ft) (ft) ' -0+09 1.32 -0+05 0.32 ' -0+01 0+00 0.08 0.00 0+01 0.08 0+05 0.32 t0+09 1.32 Project Engineer: Alicia Forward c:\program files\haestad\fmw\lindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/03/05 02:57:03 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section Cross Section for Irregular Channel ' Project Description Worksheet Swale A w/ Pai ' Flow Element Irregular Chani Method Manning's Forr ' Solve For Channel Depth Section Data Mannings Coefficiei 0.022 ' Channel Slope 0.005000 ft/ft Water Surface Elev. 0.54 ft Elevation Range .00 to 1.32 ' Discharge 8.86 cfs 1 } 0.0 0.00 -0+10 -0+08 -0+06 -0+04 -0+02 0+00 0+02 0+04 0+06 0+08 0+10 ' v:1 HA N TS 1 1 Project Engineer: Alicia Forward c:\program files\haestad\fmwVindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 [7.00051 01/03/05 02,57:20 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Swale B Worksheet for Triangular Channel 1 Project Description Worksheet Swale B Flow Element Triangular Char Method Manning's Fom Solve For Channel Depth Input Data Mannings Coeffic 0.030 Channel Slope 020000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Discharge 8.20 cfs —!J� 600 Results Depth 0.76 ft —� d Flow Area 2.3 ft' Wetted Perimr 6.23 ft Top Width 6.05 ft Critical Depth 0.76 ft c Critical Slope 0.018833 ft/ft Velocity 3.59 ft/s Velocity Head 0.20 ft Specific Enerc 0.96 It' tnf - CetCpt Froude Numb, 1.03 > , Q, 9 s0 '�W N+pg9wT 6ps4t,oW74ot Flow Type supercritical �j Class y Sea�i �avtnned (9TW iw� W:tl be Zof 41 � Project Engineer: Alicia Forward c:\program files\haestad\fmw\lindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/03/05 02:45:42 PM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Project Description Worksheet Swale B ' Flow Element Triangular Char Method Manning's Forrr Solve For Channel Depth Input Data Mannings Coeffic 0.030 Channel Slope 020000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Table Rating Table for Triangular Channel Attribute Minimum Maximum Increment Discharge (cfs) 8.20 10.90 2.70 Discharge Depth Velocity Flow Wetted Top (cfs) (ft) (fUs) Area Perimeter Width (ft') (ft) (ft) 8.20 0.76 3.59 2.3 6.23 6.05 10.90 0.8 .85 2.8 6.93 6.73 y A60 x 1. 3 i � 4,vu,6 Project Engineer: Alicia Forward c:\program files\haestad\fmw\lindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005) 01/03/05 02:45:27 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 I 1 Project Description Worksheet Swale B 1 Flow Element Triangular Char Method Manning's Fom Solve For Channel Depth 1 Section Data 1 Mannings Coeffic 0.030 Channel Slope 020000 f/ft Depth 0.76 It Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Discharge 8.20 cfs 1 1 1 1 1 1 Cross Section Cross Section for Triangular Channel 0.76 ft 1 V: 1 N H:1 N TS Project Engineer: Alicia Forward 1 c:\program files\haestad\fmw\lindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/03/05 02:45:37 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 HYDRAULIC RESULTS Discharge lots) Peak Flow Period fhfslRadius Velocity (fps) Area (sq.ft) Hydraulic ft Normal Depth ft 0.2 100.0 1 3.59 2.29 0.37 0.76 LINER RESULTS Bottom 1 4.0 Width = 0.00 ft 4.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress [psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type nsity P95% Straight Unreinforced Vegetation D Sod 3.33 0.94 3.53 STABLE Soil Clay Loam 0.050 0.013 3.92 STABLE Project Description Worksheet Swale C ' Flow Element Triangular Char Method Manning's ForrT Solve For Channel Depth Input Data ._J 1 1 1 1 Swale C Worksheet for Triangular Channel Mannings Coeffic 0.030 Channel Slope 020000 ft/ft Left Side Slope 3.00 H : V Right Side Slope 3.00 H : V Discharge 6.00 cfs Results Depth 0.75 ft -- > Flow Area 1.7 ft' Wetted Perimr 4.76 ft Top Width 4.52 ft Critical Depth 0.76 ft Critical Slope 0.019469 ft/ft Velocity 3.53 f /s Velocity Head 0.19 ft Specific Enerc Froude Numb- 0.95 ft 1.01 , 6A 56 . pea'r►saw4 Flow Type supercritical C(�ss d Sd j-e✓w�e✓ (Gass sl-� w� Z" 6„ ) Project Engineer: Alicia Forward c:\program files\haestad\fmw\lindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 [7.0005] 01/03/05 03:05:52 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 1 1 \ Project Description Worksheet Swale C ' Flow Element Triangular Char Method Manning's Forrr Solve For Channel Depth Input Data Mannings Coeffic 0.030 Channel Slope 020000 ft/ft Left Side Slope 3.00 H : V Right Side Slope 3.00 H : V Table Rating Table for Triangular Channel Attribute Minimum Maximum Increment Discharge (cfs) 6.00 8.00 1.00 Discharge Depth Velocity Flow Wetted Top (cfs) (ft) (fus) Area Perimeter Width (ft') (ft). (ft) 6.00 0.75 3.53 1.7 4.76 4.52 7.00 0.80 3.67 1.9 5.05 4.79 8.0 %0.8 3.791 2.1 5.31 5.03 0-J"4. O x 1,33 i Project Engineer: Alicia Forward c:\program files\haestad\fmw\lindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 17.00051 01/03/05 03:06:17 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ' Project Description Worksheet Swale C Flow Element Triangular Char Method Manning's Four Solve For Channel Depth Section Data Mannings Coeffic 0.030 Channel Slope 020000 Wit Depth 0.75 ft Left Side Slope . 3.00 H : V Right Side Slope 3.00 H : V Discharge 6.00 cfs Cross Section Cross Section for Triangular Channel 0.75 ft VAN HA N TS Project Engineer: Alicia Forward c:\program files\haestad\fmw\lindfiling2.fm2 Sear -Brown Group FlowMaster v7.0 [7.00051 01/03/05 03:06:31 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 _I J HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) I Hydraulic Radius ft Normal De th ft 100.0 3.53 1.70 0.36 0.75 LINER RESULTS Unreinforced Vegetation S = 0.0200 1 L Bottom J 1 3.0 Width = 0.00 ft 3.0 Not to Scale Reach Matting.Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class TypeP>-95,%l. Straight Unreinforced Vegetation D Sod 3.33 0.94 3.54 STABLE Soil Clay Loam 0.050 0.013 3.94 STABLE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius(IQ Normal Depth ft 13.1 100.0 1 4.03 1 3.25 1 0.44 0.90 LINER RESULTS C350 S = 0.0200 1 L Bottom J 1 4.0 Width = 0.00 ft 4.0 Not to Scale Reach Matting'Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight C350 Vegetation 3 D Sod >=95% 7.00 1.12 6.23 STABLE Staple E Soil Clay Loam 1.200 0.069 17.38 STABLE �� �a No.(k HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.fl) Hydraulic Radius(It)Dept Normal ft 3.0 100.0 8.22 0.37 1 0.19 0.43 1L 2.0 LINER RESULTS C350 Bottom Width = 0.00 ft I1 2.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight C350 Vegetation 3 1 D I Sod 1 >=95 % 7.00 6.66 1.05 STABLE Staple E Soil Clay Loam 1.200 0.622 1.93 STABLE Sw�► e, e Pond zoo i J 1 1 1 1 i 1 1 1 i F 1 1 i 11 1 EROSION CONTROL CALCULATIONS 1 RAINFALL PERFORMANCE STANDARD EVALUATION 614 005 Projeot: Lind Filing 2 STANDARD FORM A alculated By: JRG. Date: 1/5/2005 DEVELOPED SUBBASIN ERODIBILITV ZONE Asb Jac) Lsb (ft) Sab (%) Lb (it Sb (%) PS (A) 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 051 OS2 OS3 OS4 O55 OS6 5A 0 0 0 Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate 186 110 170 36 4.7 23 1.3 D.6 06 1A 4.2 3.9 2.5 1.6 0.9 107 0.5 5.7 31.3 2.1 2A 4.1 0.2 0.1 5.3 1.2 T2 0.2 16.1 2.1 0.2 0.9 0.3 0.0 0A 0.3 3.4 1.9 0.2 0.0 0.0 0.0 0.06 0.07 0,04 0.03 0.02 0.03 0.03 0.04 0.04 004 0.03 0.07 0.11 0.02 0.04 0.14 004 0.04 004 0.01 0.02 0.06 0.04 0.06 0.01 0.11 0.10 002 0.06 0.01 0.02 0.02 0.01 0.10 0.08 0.01 0.00 0.00 0.00 242 110 170 1.32 100 170 1.05 70 170 0.80 40 1.40 075 30 2.00 /.63 50 1.20 1.82 130 1.20 1.10 200 2.00 1.10 1 130 200 0.75 1 120 2.00 2.53 20 1 so 5.09 j 120 j 1.20 0.59 50 2.00 1.08 300 200 4.70 380 1.75 1.17 100 180 1.19 115 1.75 L57 150 1.30 0.25 50 2.00 0.35 20 250 2.00 150 1.60 1.01 70 2.00 2.28 180 140 0.54 20 1.40 5.41 170 1.20 2.40 50 2.40 0.47 20 2.40 1.66 30 2.00 0.49 30 1.20 100 0.1 1.20 0.73 30 1.20 0.66 30 1.20 2.76 70 2.00 2.20 50 200 0.26 0.00 0.00 0.00 40 0 0 0 1 W 0.00 0.00 000 Total 56.99 124.10 1.63 77.4 EQUATIONS Lb = sum(AiLi)/sum(Ai) = 124A ft Sb = sum(AiSi)Isum(Ai) = 1.63 % PS (during constructlon) • 77.4 (from Table BA) PS (after construction) = 77.4 10.85 • 91.0 I 1 1 L t EFFECTIVENESS CALCULATIONS 614-005 Project Lind Filing 2 STANDARD FORM B Calculated By.- JRG Date. IIS12005 Erosion Control C-Factor P-Factor Comment Number Method Value Value 3 Bare Soil - Rough Irregular Surface 1 0.9 6 Gravel Filter 1 0.8 5 Straw Bale Barrier 1 0:8 6 Gravel Filler 1 0.8 8 Silt Fence Barrier 1 0.5 38 Gravel Mulch 0.05 1 39 Hay or Straw Dry Mulch (1-5% slope) 0.06 1 SUB PS AREA BASIN (%) (ac) Site 77.37 56.99 SUB BASIN SUB AREA AREA (ac) Practice C•A P'A Remarks DURING CONSTRUCTION 38 0.01 0.19 Gravel Mulch 1 Impervious 0.19 1 Pervious 1.67 39 0.10 1.67 Hay or Straw Dry Mulch (1-5% slope) 2 Impervious 0.24 38 0.01 0.24 Gravel Mulch I 2 Pervious 2.18 39 0.13 2.18 Hay or Straw Dry Mulch (1-5% slope) 3 Impervious 0.13 38 0.01 0.13 Gravel Mulch I 3 Pervious 1.19 39 0.07 1.19 Hay or Straw Dry Mulch (1-5% slope) 4 Impervious 0.10 38 0.01 0.10 Gravel Mulch I 4 Pervious 0.95 39 0.06 0.95 Hay or Straw Dry Mulch (1-5% slope) 5 Impervious 0.13 38 0.01 0.13 Gravel Mulch I 5 Pervious 0.52 39 0.03 0.52 Hay or Straw Dry Mulch (1-5% slope) 6 Impervious 0.25 38. 0.01 0.25 Gravel Mulch I 6 Pervious 0.55 39 0.03 0.55 Hay or Straw Dry Mulch (1-5% slope) 7 Impervious 0.33 38. 0.02 0.33 Gravel Mulch I 7 Pervious 1.30 39 0.08 1.30 Hay or Straw Dry Mulch (1-5% slope) 8 Impervious 0.55 38 0.03 0.55 Gravel Mulch 8 Pervious 1.27 39 0.08 1.27 Hay or Straw Dry Mulch (1-5% slope) 9 Impervious 0.00 38. 0.00 0.00 Gravel Mulch I 9 Pervious 1.10 39 0.07 1.10 Hay or Straw Dry Mulch (1-5% slope) 10 Impervious 0.00 38 0.00 0.00 Gravel Mulch I 10 Pervious 1.10 39 0.07 1.10 Hay or Straw Dry Mulch (1-5% slope) 11 Impervious 0.00 38 0.00 0.00 Gravel Mulch I 11 Pervious 0.75 39 0.05 0.75 Hay or Straw Dry Mulch (1-5% slope) 12 Impervious 1.01 38. 005 1.01 Gravel Mulch I 12 Pervious 1.52 39. 0.09 1.52 Hay or Straw Dry Mulch (1-5% slope) 13 Impervious 0.00 38 0.00 0.00 Gravel Mulch I 13 Pervious 5.09 39 0.31 5-09 Hay or Straw Dry Mulch (1-5% slope) 14 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 14 Pervious 0.59 39 0.04 0.59 Hay or Straw Dry Mulch (1-5% slope) 15 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 15 Pervious 1.08 39 0.06 1.08 Hay or Straw Dry Mulch (1-5% slope) I 11 1 SUB BASIN SUB. AREA AREA (ac) Practice C' A P • A Remarks 16 Impervious 0.47 38 0.02 0.47 Gravel Mulch 16 Pervious 4.23 39 0.25 4.23 Hay or Straw Dry Mulch (1-5% slope) 11 17 Impervious 0.23 38 0.01 0.23 Gravel Mulch I 17 Pervious 0.94 39 0.06 0.94 Hay or Straw Dry Mulch (1-5% slope) 18 Impervious 0.24 38 0.01 0.24 Gravel Mulch I 18 Pervious 0.95 39 0.06 0.95 Hay or Straw Dry Mulch (1-5% slope) 19 Impervious 0.16 38 0.01 0.16 Gravel Mulch I 19 Pervious 1.41 39 0.08 1.41 Hay or Straw Dry Mulch (1-5% slope) 20 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 20 Pervious 0.25 39 0.02 0.25 Hay or Straw Dry Mulch (1-5% slope) 21 Impervious 0.68 38 0.03 0.68 Gravel Mulch I 21 Pervious 0.17 39 0.01 0.17 Hay or Straw Dry Mulch (1-5% slope) 22 Pervious 0.40 38 0.02 0.40 Gravel Mulch I 22 Impervious 1.60 39 0.10 1.60 Hay or Straw Dry Mulch (1-5% slope) 23 Pervious 0.20 38 0.01 0.20 Gravel Mulch I 23 Impervious 0.81 39 0.05 0.81 Hay or Straw Dry Mulch (1-5% slope) 24 Impervious 0.45 38 0.02 0.45 Gravel Mulch I 24 Pervious 1.82 39 0.11 1.82 Hay or Straw Dry Mulch (1-5% slope) 25 Impervious 0.27 38 0.01 0.27 Gravel Mulch I 25 Pervious 0.27 39 0.02 0.27 Hay or Straw Dry Mulch (1-5% slope) 26 Impervious 0.00 38 0.00 0.00 Gravel Mulch I 26 Pervious 5.41 39 0.32 5.41 Hay or Straw Dry Mulch (1-5% slope) 27 Impervious 0.24 38 0.01 0.24 Gravel Mulch 27 Pervious 2.16 39 0.13 2.16 Hay or Straw Dry Mulch (1-5% slope) 28 Impervious 0.38 38 0.02 0.38 Gravel Mulch I 28 Pervious 0.09 39 0.01 0.09 Hay or Straw Dry Mulch (1-5% slope) 29 Impervious 0.50 38 0.03 0.50 Gravel Mulch I 29 Pervious 1.16 39 0.07 1.16 Hay or Straw Dry Mulch (1-5% slope) OS1 Impervious 0.39 38 0.02 0.39 Gravel Mulch I OS1 Pervious 0.09 39 0.01 0.09 Hay or Straw Dry Mulch (1-5% slope) OS2 Impervious 1.00 39 0.06 1.00 Hay or Straw Dry Mulch (1-5% slope) OS2 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) OS3 Impervious 0.22 38 0.01 0.22 Gravel Mulch I OS3 Pervious 0.51 39 0.03 0.51 Hay or Straw Dry Mulch (1-5% slope) OS4 Impervious 0.66 38 0.03 0.66 Gravel Mulch I OS4 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 085 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) OS5 Pervious 2.76 39 0.17 2.76 Hay or Straw Dry Mulch (1-5% slope) OS6 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) OS6 Pervious 2.20 39 0.13 2.20 Hay or Straw Dry Mulch (1-5% slope) 5A Impervious 0.05 39 0.00 0.05 Hay or Straw Dry Mulch (1-5% slope) 5A Pervious 0.21 39 0.01 0.21 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Impervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) 0 Pervious 0.00 39 0.00 0.00 Hay or Straw Dry Mulch (1-5% slope) Cnet 0.06 Pnet0.805264 7EFF C-P)100 > 77.4 PS Before 1 1 1 1 EFFECTIVENESS CALCULATIONS 614-005 Project: Und Filing 2 STANDARD FORM B Glcu/atedB : JRG - Date:.. 115/2005 Number Erosion Control Method C-Factor Value P-Factor I Value Comment 9Asphalt/Concrete 12 14 16 18 P Asphalt/Concrete Pavement Established Grass Ground Cover - 30 % Established Grass Ground Cover - 50 % Established Grass Ground Cover - 70% Established Grass Ground Cover- 90% 0.01 0.15 0.08 0.04 0.025 1 1 1 1 1 SUB I PS BASIN (%) AREA (ac) Site 1 91.02 56.99 SUB BAS N SUB I AREA AR EA I c) I Practice C• A P• A Remarks AFTER CONSTRUCTION 1 Impervious 0.190 9 0.0019 0.19 Asphalt/Concrete Pavement 1 Pervious 1.670 16 0.0668 1.67 Established Grass Ground Cover - 70% 2 Impervious 0.240 9 0.0024 0.24 Asphalt/Concrete Pavement 2 Pervious 2.180 16 0*0872 2.18 Established Grass Ground. Cover - 70% 3 Impervious 0.130 9 0.0013. 0. 13. Asphalt/Concrete Pavement 3 Pervious 1.190 16 0.0476 1.19 Established Grass Ground Cover - 70% 4 Impervious 0.100 9 0.001 0.1 AsphalUConcrete Pavement 4 Pervious 0.945 16 0.0378 0.945 Established Grass Ground 'Cover -70% 5 Impervious 0.130 9 0.0013 0.13 AsphalUConcrete Pavement 5 Pervious 0.520 16 0.0208 0.52 Established Grass Ground Cover - 70% 6 Impervious 0.250 9 0.0025 0.25 Asphalt/Concrete Pavement 6 Pervious 0.550 16 0.022 0.55 Established Grass Ground Cover - 70% 7 Impervious 0.330 9 0.0033 0.33 Asphalt/Concrete Pavement 7 Pervious 1.300 16 0.052 1.3 Established Grass Ground Cover - 70% 8 Impervious 0.550 9 0.0055 0.55 AsphalUConcrete Pavement 8 Pervious 1.270 16 0,0508 1.27 Established Grass Ground Cover- 70% 9 - Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 9 Pervious 1.100 16 0.044 1.1 Established Grass Ground Cover - 70% 10 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 10 Pervious 1.100 16 0.044 1.1 Established Grass Ground Cover - 70% 11 Impervious 0.000 9 0 0 AsphalUConcrete Pavement 11 Pervious 0.750 16 0.03 0.75 Established Grass Ground Cover - 70% 12 Impervious 1.010 9 0.0101 1.01 Asphalt/Concrete Pavement 12 Pervious 1.520 16 0.0608 1,52 Established Grass Ground .Cover -70% 13 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 13 Pervious 5.090 16 0.2036 5.09 Established Grass Ground Cover - 70% 14 Impervious 0.000 39 0 0 Established Grass Ground. Cover - 90% 14 'Pervious 0.590 39 0.01475 0.59 Established Grass Ground Cover - 90% 15 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 15 Pervious 1.080 16 0.0432 1.08 Established Grass Ground Cover - 70% 16 Impervious 0.470 9 0.0047 047 Asphalt/Concrete Pavement 16 Pervious 4.230 16 0. 1692 4.23 Established Grass Ground Cover - 70% 17 Impervious 0.230 39 0.00575 0.23 Established Grass Ground Cover - 90% 17 Pervious 0.940 39 0.0235 0.94 Established Grass Ground Cover - 90% 18 Impervious 0.240 9 0.0024 0.24 AsphalUConcrete Pavement I 1 li L 1 i 1 1 1 4J 1 1 1 1 I 1 u SUB BASIN SUB AREA AREA (ac) Practice C' A P `A Remarks 18 Pervious 0.950 16 0.038 0.95 Established Grass Ground Cover - 70% 19 Impervious 0.160 9 0.0016 0.16 Asphalt/Concrete Pavement 19 Pervious 1 A10 16 0.0564 1.41 Established Grass Ground Cover - 70% 20 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 20 Pervious 0.250 16 0.01 0.25 Established Grass Ground Cover - 70% 21 Impervious 0.680 9 0.0068 0.68 Asphalt/Concrete Pavement 21 Pervious 0.170 16 0.0068 0.17 Established Grass Ground Cover - 70% 22 Pervious 0.400 9 0.004 0.4 Asphalt/Concrete Pavement 22 Impervious 1.600 16 0.064 1.6 Established Grass Ground Cover - 70% 23 Pervious 0.200 9 0.002 0.2 Asphalt/Concrete Pavement 23 Impervious 0.810 16 0.0324 0.81 Established Grass Ground Cover - 70% 27 Impervious 0.240 9 0.0024 0.24 Asphalt/Concrete Pavement 27 Pervious 2.160 16 0.0864 2.16 Established Grass Ground Cover - 70% 28 Impervious 0.380 9 0.0038 0.38 Asphalt/Concrete Pavement 28 Pervious 0.090 16 0.0036 0.09 Established Grass Ground Cover - 70% OS2 Impervious 1.000 9 0.01 1 AsphalUConcrete Pavement OS2 Pervious 0.000 16 0 0 Established Gress Ground Cover - 70% OS3 Impervious 0.220 9 0.0022 0.22 AsphalUConcrete Pavement OS3 Pervious 0.510 16 0.0204 0.51 Established Grass Ground Cover - 70% OS4 Impervious 0.660 9 0.0066 0.66 Asphalt/Concrete Pavement OS4 Pervious 0.000 16 0 0 Established Grass Ground Cover- 70% OS5 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement OS5 Pervious 2.760 16 0.1104 2.76 Established Grass Ground Cover - 70% OS6 Impervious 0.000 9 - 0 0 Asphalt/Concrete Pavement OS6 Pervious 2.200 16 0.088 2.2 Established Grass Ground Cover - 70% 5A Impervious 0.050 9 0.0005 0.05 Asphalt/Concrete Pavement SA Pervious 0.210 16 0.0084 0.21 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 Asphalt/Concrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% 0 Impervious 0.000 9 0 0 AsphalUConcrete Pavement 0 Pervious 0.000 16 0 0 Established Grass Ground Cover - 70% Cnet = 0.028512 Pnet = 0.82 EFF = (1-C•P)100 > 91.0 PS After EROSION CONTROL CONSTRUCTION SEQUENCE Lind Filing 2 C SEQUENCE FOR 20D3 ONLY Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. YEAR 2006 2007 MONTH A M J J A S O N D J F M OVERLOT GRADING WIND EROSION CONTROL Soil Roughening Permitter Banter Additional Barriers Vegetative Methods Sol] Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Gravel Mulch AsphalUConcrete Paving Other VEGETATIVE: Permanent SeedPlanting Mulching/Sealant Temporary Seed Planting Sod Installation Nettings/Mats/Blankets Other STRUCTURES: INSTALLED BY_ VEGETATION/MULCHING CONTRACTOR DATE SUBMITTED MAINTAINED BY APPROVED BY CITY OF FORT COLLINS ON I 1 lJ 1 EROSION CONTROL COST ESTIMATE Project: Lind Filing 2 614-005 Prepared By::. JRG Date: 1/S/200 CITY RESEEDING COST Unit Total Method Quantity Unit Cost Cost Notes Reseed/mulch 56.99 ac $723 $41,203.77 Subtotal $41,204 Contingency 50% $20,602 Total $61,806 Notes: 1. A<=5 ac=$655/ac; A>5 ac=$615/ac. EROSION CONTROL MEASURES Unit Total Number Method Quantity Unit Cost Cost Notes Vehicle Tracking Mat 18.5 CY $30 $555 6 Gravel Filter 13 ea $300 $3,900 5 Straw Bale Barrier 9 ea $150 $1,350 8 Silt Fence Barrier _ 4735 LF $3 $14,205 38 Gravel Mulch 8.03 ac $1,350 $10,841 39 Hay or Straw Dry Mulch (1-5% slope) 48.96 ac $500 $24,480 Subtotal $55,331 Contingency 50% $27,665 Total $82,996 Total Security $82,996 I coco 0 co co o coo coo co T O w m 0 0O m O O O 0 m m 0 �0 �0 V w w w M CO W w w W W co O r aO aO 00 W D) 0) m W O m W W T 01 O W W Q7 D7 o v v v a 4 o v v co v v v v v w w w4 w w4 w wW OD w w w wo N 0 M y cn o ro o o r r r-! n r r n rn r n r n o co ao co cv eo v c v v V v v v v v v v v v v v v v v v v v v v v o_ ao ao ao ao ao aD oo ro ao m co aD eD ao 07 ao aD m co ao ao m ao m aD v. cn in �n co co co r. r r r r r r r r r 0 0 O c6 I W 9 m M m m C� 10� W W 00 co co co g 00 W ai o o 0 0 w ado ado ado 0 to v N M V V o cn o 0 0 0 0 0 0 0 o co o n n r r r r 0 q o co v v 4 v v v v co co 4 co co .co 4 Vo m Vo co co ao w co ao ao aO aO co co <o ccoo c0o ccoo coo ccoo co ' n o 0 0 0 0 0 0 0 o ao co ao O ao M M co V V V V V V V V V V V V V V V V V V V V � V w w w w w w w OD w m w wW W wW O wO O O wO aD O N M M M M M O V V O V V V V 4 R V V V V V V V V ui a0 W W ao aO ao ao ao eD co eD eD aD ao aD ao ao ao ao ao ao ao aD 0 o r r c- C� co co Go co OD 0) m V V V V V � N N M M P") C) 6 M M M M M cIlilh lh 17 M Ili(") M 6 M � Op Oo 00 c0 Co Op CO CO c0 Oo W OD cp Oo CD 00 OD OD OD OD W O f0 i0 a0 M � N M V V �0 u1 N tO t0 t0 c0 f0 r r r n o 0 o rn rn O N N cM 6 6 6 6 M M M M M M M M M M M M M M 6 cM 6 -- V aO aD ao aD ao aO aO a0 O O W W aD O O O a0 O O aD N W aD eD aO 00 N N N N O ch M M M M M M M M M M M M M M M M M M M 00 OD OD 00 00 OD 00 GO 0o W OD 0o OD OD 00 00 00 Co OD 0p W c+D CD DD O M N o W M N .- N N M M M V V V V V V 0 C N N 0 to 0 0 A O O O N N N N N N N N N N N N N N N N N N N N ' M aO o7 W W W W O ao O c0 O W a0 O aD ao W ap W O W O O W aO 0 0 I0 O N M V c0 r N N n OD c0 ao aO aO c0 aO a0 OD OD aO c0 aO c0 c0 ao aD ao aO 0 O O 0 0 0 0 0 0 0 0 N n r w co m m co eD aO aO aD OD aD aD aD ao aD aD ao c0 c0 aO O W N W V N r n M M M O O N N N M M M M M ^ 6 c0 GO 6 6 0I 6 6 6 W 6 0 0 0 0 0 0 0 0 0 ' r r r r r r n r n r r o 0 0 o w w co o m w w w w 0 o M r V n M CO - N M M V V V. u� u� 0 0 o 0 0 o r n o o 0 v 6 r n r ao ao o ao w ao co 0 Oo co co 0 o eo 0 0 0 0 r r r n n n r r r r r n n r n r r r r r n r r r n O N V o n co CO n n r c0 cO c0 i0 V V M N N d) c0 V � p_ 6 r N N N N (V N N N N N N N N N C' i N N N n 6 6 0 o r r n r r n r r r n n r r r r n n n r r- r- r o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O O o O o 0 0 0 o 0 o O O o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 � � � � � � •- � � N N M M V V 4� O LL 1 Ll ' 'TABLE 88" ' Erosion Control Methods and Costs # Method C-Factor P-Factor Unit Unit Cost Comment 1 Bare Soil - Packed and smooth 1 1 2 Bare Soil - Freshly disked 1 0.9 3 Bare Soil - Rough Irregular Surface 1 0.9 4 Sediment/Basin Trap 1 0.5 Must be constructed as the first step in ovedot grading. 5 Straw Bale Barrier 1 0.8 ea $150 '6 Gravel Filter 1 0.8 ea $300 ' 7 Sand Bag 8 Silt Fence Barrier 1 1 0.8 0.5 LF $3 9 AsphalttConcrete Pavement 0.01 1 10 Established Grass Ground Cover - 10% 0.31 1 ac 11 Established Grass Ground Cover - 20% 0.22 1 ac 12 Established Grass Ground Cover - 30% 0.15 1 ac ' 13 Established Grass Ground Cover - 40% 0.11 1 ac 14 Established Grass Ground Cover - 50% 0.08 1 ac 15 Established Grass Ground Cover -60% 0.06 1 ac ' 16 Established Grass Ground Cover - 70% 0.04 1 ac 17 Established Grass Ground Cover - 80% 0.03 1 ac 18 Established Grass Ground Cover - 90% 0.025 1 ac 19 Established Grass Ground Cover - 100% 0.02 1 ac 20 Sod Grass 0.01 1 ac 21 Temporary Vegetation 0.45 1 ac Assumes planting dates listed below, thus dry or hydraulic mulches are not required. 22 Cover Crops 0.45 1 ac Assumes planting dates listed below, thus dry or hydraulic mulches are not required. 23 Hydraulic Mulch @ 2 tons/acre 0.1 1 ac Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. 24 Soil Sealant 0.01 1 Value used must be substantiated by documentation. 25 Soil Sealant 26 Soil Sealant 0.05 0.1 1 1 Value used must be substantiated by documentation. Value used must be substantiated by documentation. 27 Soil Sealant 0.15 1 Value used must be substantiated by documentation. 28 Soil Sealant 0.2 1 Value used must be substantiated by documentation. ' 29 Soil Sealant 0.25 1 Value used must be substantiated by documentation. 30 Soil Sealant 0.3 1 Value used must be substantiated by documentation. 31 Soil Sealant 0.35 1 Value used must be substantiated by documentation. 32 Soil Sealant 0.4 1 Value used must be substantiated by documentation. `J 33 Soil Sealant 0.45 1 Value used must be substantiated by documentation. I 1 1 0 34 Soil Sealant 0.5 1 Value used must be substantiated by documentation. 35 Soil Sealant 0.55 1 Value used must be substantiated by documentation. 36 Soil Sealant 0.6 1 Value used must be substantiated by documentation. 37 Erosion Control Mats/Blankets 0.1 1 38 Gravel Mulch 0.05 1 ac $1.350 Mulch shall consist of gravel having a diameter of approximately 1/4" to 1 1/2" and applied at a rate of at least 135 tons/acre. 39 Hay or Straw Dry Mulch (1-5% slope) 0.06 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil. 40 Hay or Straw Dry Mulch (6-10% slope) 0.06 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tonslacre (minimum) and adequately anchor, tack or crimp material into the soil. 41 Hay or Straw Dry Mulch (11-15% slope) 0.07 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil. 42 Hay or Straw Dry Mulch (16-20% slope) 0.11 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil, 43 Hay or Straw Dry Mulch (21-25% slope) 0.14 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tonstacre (minimum) and adequately anchor, tack or crimp material into the soil. 44 Hay or Straw Dry Mulch (25-33% slope) 0.17 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tonstacre (minimum) and adequately anchor, tack or crimp material into the soil. _ 45 Hay or Straw Dry Mulch (>33% slope) 0.2 1 ac $500 After planting grass seed, apply mulch at a rate of 2 tonstacre (minimum) and adequately anchor, tack or crimp material into the soil. 48 Contoured Furrow Surface (1-2% basin slope) 1 0.6 ac Maximum length = 400'. Must be maintained throughout the construction period, otherwise P-Fodor = 1.00. Maximum length refers to the down slope length. 47 Contoured Furrow Surface (3-5% basin slope) 1 0.5 ac Maximum length = 300'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 48 Contoured Furrow Surface (6-8% basin slope) 1 0.5 ac Maximum length = 200'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 49 Contoured Furrow Surface (9-12% basin slope) 1 0.6 ac Maximum length = 120'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 50 Contoured Furrow Surface (13-16% basin slope) 1 0.7 ac Maximum length = 80'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 51 Contoured Furrow Surface (17-20% basin slope) 1 0.8 ac Maximum length = 60. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 52 Contoured Furrow Surface (>20% basin slope) 1 0.9 ac Maximum length = 50'. Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. 53 Terracing (1-2% basin slope) 1 0.12 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 54 Terracing (3-8% basin slope) 1 0.1 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 55 Terracing (9-12% basin slope) 1 0.12 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 56 Terracing-(13-16% basin slope) 1 0.14 ac7 Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 57 Terracing (17-20% basin slope) 1 0.16 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 58 Terracing (>20% basin slope) 1 0.18 ac Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. 59 Seeding (Native) ac $305 CDOT - 1994 60 Seeding (Lawn) ac CDOT - 1994 61 Seeding (Shrub) lb $52 CDOT - 1994 62 Seeding (Wetlands) ac $696 CDOT - 1994 63 Mulching ac $334 CDOT-1994 1 0 I 1 1 1 DRAINAGE & EROSION CONTROL 1 PLAN DRAWINGS & DETAILS 1 1 1 1 1 H 1 1 11 7 1 5 \ - - - - _ NUT FILTERS- / CLA55 0 SOD FORMER /A v n ~Y� ;11\Xf ' \\�ACLASS D SOD FORMER A I GRAVEL INILET TARS , �® e 1152 LE SILT FENCE ��f 1 ' ♦' MULCN a W t I MUL19E T , 28 :50VEHICLE GRAVEL 'RACKING DEVICE NLET FILTERS-) ^� _ MULCN 4 MELLCN �L \ 11 201 LP SILT FENCE ti �fli '�- M _ I' E%ISTNG 200' EMERGENCY n _I- tJ r It It SPILLWAY EDETAIL 1 -� tillSHEEETT C5605) _ it PlIx \ MAI —77 No IF SILT NENCE 32'z5O' VEHICLE TRACKING DEVICE DEVICE' VEHICLE TRACKING DANCE 1 — 30' K so NORTH AMERICAN GREEN C350 GEOTEKTILE %—JAL EMERGENCY rn SEE DETAIL V SILT FENCE GRAVEL INLET FILTERS — STRAW BALE INLET FILTER NOTES I A.L DFOUR CD MEAs SIRE TO WE MEMO AND MACHED. 21 RIF/SE REFER TO CAW CONSTRUCTION NET FOR CR52 EROBKNCCNTRM. 11FMFHASING REFER In SxFETCBRp R INL SWNES SHALL 5, gp.Op/55UIEp UMEM WTEDOTIERAISE. 5) SEE TAKESH EREQUIREMENTS I E SPEC GLW9FgR9REGFICSFFDM{' PROFANITY AND THE NO n L�HOM W1ERNiCRId OF THE ANADARKO E&P COMPANY LP BT NAYS IR — ANADARKO LAND CORP. Br. _ NAPE: _ mwDYn PROPERTY UK ITS w� wwe UNITS OF CONSTRUCTION . __. PROI FLOWUNE CALL UTIIJW NOTIFICATION 5 10 NEW INDEX CONTOIRS CENTER OF CIX.ORADO ---51^---- NOW INWAMEDATECONTOURS 1-800-922-1987 9)1 ��- D]91N6 CMICVRS ORONiIYRSPF T[ NEW S NNI MAN WITH WATERS FOPTlvW NARROW UTURES EXISTAM STORM MAN WORRIED SWALE City of Fort Collins, Colorado ••: UTILITY PLAN APPROVAL PRMOSFD AKRAM STREET SLOE DRECTON OF FLOW APPRUIED: City En Date nCer ® WOE TRACKING PAL9 CHECKED ST. —A — A rzxLE Water h Waelewater UURIY Dale ® GEOTExn,E LINER CHECKED EY: ® IM M WATER WATER SURFACE Slorinwaler Utility we ® WON WATER SURFACE CHECKED BY: PorEe B Recrw4On Dale MPRAF CHECKED W. TMIFF Engineer Date ® UIWM CMTR0. FABRIC CHECKED BY: i� MASEL INLET FILTER Gate STRAW BOLUS CHECK DAu I THESE PLANS HAVE BEEN RENEWED BY THE LOCAL STRAW BALE INLET FILTER ENRIY FOR CONCEPT ONLY. THE REVIEW DOES NOT BY RENEWING IMPLY RENT, THE LOITYCALE ENTRY DEPARTMENT, THE LOCAL AMNIA ENGINEER, OR THE HAY M STRAW MY uOLp LOCAL ENTITY FOR AFURTHEY AND CORRECTNESS OF (1- THE NRITHE REVIEW DONS ITEMS THE PLANS IMPLY THAT QUANTITIES OF TIT NOT IMPLY THAT IVNITESOF H ARE THE FINAL OUANI111E5 REWIRED. THE REVIEW Windsor Reservoir and CanalCo.SHALL NOT BE CONSTRUED IN ANY REASON AS BE IRRIGATION LINE APPROVAL ACCEPTANCE of FlNUD IPL RESPONSIBILITY BY THE LOCAL FOR QUANTITIES ITEMS APPROVED : THATNUTTY E REQUIRED E SHOWN THAT MAY BE FEOUIRED DURING THE Manager DNe CONSTRUCTION PHASE. �g49 8 EE 3p'? fU S ca^c aVLLFII N Z J >LL F W Wf LLO x � W .cz Z ME PROJECT M. 614005 MAWNOSR CS200 SHEET 7 OF 69 STRAW BALES STAKED WITH TWO STAKES ;I PER BALE TONNE �V VB STANDARD EROSM AX09EMM CONRtOL CONSTRUCTION PLAN N s $Bpw. w.m (1) Tneemsiomm�trmmspectwenNtx named m wsll"my rmr(2e)hwmdbrwammnwma this seeLA al a nt There shall no earindnromg brown wlsaa, go times"nor an aaaaq"dam. s All WrM sit and crnsnurnon fer Erg Shall ",nSmll ]fro anyl d, Lazing cryOr CONSTRUCTlce SW CHLE Pm}ea: Lana emxrty Filing 2 t Began April 20Gt Indicate s.nn bar line when constructions .ol occurr and when Multi, uumno will he imla.ee SEEDWO CHART m Table ILY. Recommenced Species and Applied Rat" of Seeds for Temporary Vegetation and/ter Cover Crops. sped" Siege I) DrilleI P°ande/Acre (1 he as POINT A MUST BE racc�kpding grading etc) All other rt ,m norm mnlml measures ¢hall be amalkt M HIGHER THAN eapmp^ale time rn the construction sequence as Ind"Win IM appo p w Jw,luh. wnslrvctml PONT B A anderm,o,,o,t r p" At aarme A (4) Filing conavonon. fie Deal shall was ream ire For Pewrem am moll on Site eryson z ° g kaedm the propeM suroenuy'watered rim"w'md Waste i mmt Inc B Deweloae, she neuheresamaMeas instating and ma tte m all eastern ci lfsudes seems here, (5) Prpelstmormv lalwn shall he piledes and suinM eliereverpwde. Remo llo,d,st,amd A existing wegmon shall be limited to lM erea(sl o,m lo,,mmMote amenudah gcrmms.+MM the ahmm rachwl TO time reT All drug mum. wshoepl wing 8EC710N �A� PLAN VIEW orfaskn,ng.one lanery d oceatane.smapich m a mmdmed wmllan by nppm or dnkmg glom lam mllwn unit n etc l ss mammWsprournby etc) Hall A J vagelmwn, w enter F amnl eosw comm BMPS are lmus led. No sohir, eras outage pgetl street GENERAL NOTES: ngehupway slat remain egroad by bad dl¢bmim mlvM in, more than MlM (]01 days Italian reauimd COMPACTED tampoary or mmwoM Mail cal(eg. wedmuim. Insistence . etc)nmslalkel unless wheat. BACKFlLL �R�W I. INSPECT. REPAIR, AND REPLACE, awmved by me CMmO M (IF NECESSARYI THE FILTERS AFTER (7) I°adarmmmlmuemmanlsotemlar aVemmnry lanxlut.e argon mmm meaeuns slay. every yea (2) As,e werrrecanf sister w ent ACH STORM EVENT. (a) B ,nspecl" an a minimum of Ohm .Sus am cad remem a, rewnstmc esnems a aria m maim me opeuman maarmwmof 2. ALL BALES MUST BE REPLACED AFTER 12 Men Intended lnndan. MONTHS UNLESS APPROVAL IS GRANTED BY (b) Remain In puce mall such time as all the worrmndmg dlstumed areas are sin ,mdv SON" TIE ENGINEERING DIVISION FOR LONGER USE. an unusual by He erosion wmmiinapecta PROFILE VIER (a) Be mnowed ax.,tle she has-hw-n.uffaenuv aawped a. eetamin"I.v ha eroson mlma m�dm (a) 4 en wmmwry email mnlM neutral are 2m°mthe Devebmr shall de rmxgsAk to the than EROSION BALE CHECK B L up and removal N ell wdimmt am deans fir all d2mage,romin ,bo, and other melt, fal (gl TN amexta¢mll mmmMteh dean up dry mmVmlim nu'+nas oaevemntlymumar,remdng aaeaN,sbwallla o°gIe,MIW°bYtlw/. arq mMa wasveels am wakweys encbned Mtle CURB INLET am tlesch mMm dry. \. (101 AB ".Imd ¢eat em¢.vwa hM sa¢e meal lyadwev u+as. IMXeamoed.aarms"d mature moist n M ht tee si h dMwn mSales (11.) N pbsM1 ll mmowate1m nget M1an SN mist undstomedM wesby fencing "near nY rt m. watering dpm a I I 9 A,ry wAsl kp rafter GRAVEL FILTER s am Imes d ye 'hall bs A (APPROX. 3/C IA Th,thrlycmpm sal Tne gl OWnen mltin m,nywmAS nmX one slam sew, lies w;n be choreal mare minim me mainteierrz Ter to me crymonnry Or ,loon completion old IUMIN One CONCRETE owners Asillihep•mectam HOut is AanddmiwlDb WRE SCREEN BLOCK O]I oly Dbmance are cyhrmo D�wneye Perms system (COP 5l regmrenems mdAeawlawmuu, A (APPROX. 1/2' MESH) ismwge o, allow lee mxnarge of any p ih nto, mmammalee water barn wrgmmion Sam A tin s malwe. but are rot embed to drawma wddm No, emla. machete von w ndard mem"h. ela^dgasecull lee. andsandurywal T°emMa c shall m adtmesakewhdeverm"¢u,a Sexe MaOD STUD air sery to assure the mmmmenl and d,gm l of hydrants On the sine, accodarche ism OVERFLOW FILTERED WATER O pope, env and all owimnle hml state a oat umea regwalbns RUNOFF (141 A magnalm area walla spaded m ore Forcumshe nxcs chute wavoit The area shall be ammromm so as to contain washout material and located at least firm (Nob lam a a yfarm any Via y durngwnslrvrtorl Umnwmdee,mfmnslmdonaclrvieyzlhec°ncrelewasM maleuaPM11W removed and propery disposed of pear to the area being resomd CURB INLET (15) To ensure that sedmteni m ,net move yes all mmdual bHnnea more Of thelsbabW WRE SCREEN x ,mmvemmn mnt,ol Baas shall to mWlhe and mB^tame° unit its are sufficiently smdysd, GRAVEL FILTER 2'x4' WIOD STUD esdmerminedhynee ,onconeoli,g or ryAtnin lovel.rm eM Lmm Orhl. WRE SCREEN (a.I Mh as gum, eow,smu®. 9EOTION Ibl Out to Em.nage swap PLAN VIEW (c.) Nomlmmnmeter GENERAL NOTES: OF) Duterlaatlme. f,emm 1. INSPECT AND REPAIR FILTERS AFTER EACH STURM EVENT. (16) Gammmin xis fete maywma,t amain wmhel measures rn emrlanrownm le mown On these der REMOVE SEDIMENT WHEN ONE HALF OF THE FILTER DEPTH The Dews endangerment wnatewer measures are dwomnm ner inn, an deal by the HAS BEEN FILLED. REMOVED SEDIMENT SHALL BE DEPOSITED CIWCouny, IN AN AREA TRIBUTARY TO A SEDIMENT BASIN OR OMER FALTERING MEASURE Annual Ryegraes Cod 20 Got$ Cod 70 Cereal Rye Cod 40 Wh"t -bunter Cod 40 Most - Spring Cod 60 Barley Cod 60 Valet Warm W Lin Hybrid Sudon Warm 15 ZZ SorgM1um Warm 10 an Cool season grasses make their major rowth in the spring. Warts season grasses Ed make their major growth In late spying Ono Summer. Table 11.4 identifies planting dates for perennial and t« porary/cover crop grosses. Table IL4, Ranting Dates for Feel and Temporary/Cowr Crop Grosses. DATE PERENNIAL TEMPOz ARY/COVER GRASSES CROP GRASSES Warm Cool Warm Cod Jon 01 - Feb 28 Yes Yea No No Mot 01 - May 15 Yes Yes No Yea ;no May Is - May 31 Yes No Yes No ri ! g Yw "sd� a;;wEv9 Jun Ot -Jul }t No No Yes No O' j 144NJ gpilty Sep Ot - Sw 30 No No No Y" o No Yale No Yesb•D� tf6 gy¢?2b Cut Ot - Data 31 Yes Yes No No oar F bgp �a l Mulching shall be used to assist n establishment f Vegetation. One an more of Vie following mulches shall be used with o perennial dryland grass seed mixture a a § H. 8� temporary vegetation a cover crop t"E Ste. uNsis Mulch Application Rate Acceptable 01 Dal" of me Straw or Hay dos p1 - Dec 31 1 1/2-2 tons/aae if Hydraulic (woos « paper) May 15 - May 15 1 t appl cone/tea. E4oaion control (mats a bl"kela) Jar 01 - D" 31 Not appliouDle Hay or straw much shall be free of noxious weeds and at least 50E of the fiber snail k' be 10 inches or more m length. omen sending with native gro"ea hay from a native we a Ca grove is a suggested mulching material, if Evil W do m If irrigation is used. hydraulic mulch" may be applied from March 15 through Sep W. Yj w Hay a Straw Mulch r 3 J a WEN ypU�Q VQyQ Si Si s 1. Hay a straw mulch will be anchored to the aDn by one of l i 8Z Ue fallowing methods: (a) A crimper which will crimp the Ref four Inches w are Into the soil. At least 50% of the Ref Mail be 10 inches or more in I"gth. (b) Manufactured mulch netting Installed over the hay or straw according to manufacturers irwbuic me. 2. SEDIMENT AND GRAVEL SHALL BE IMMEDIATELY REMOVED FROM TRAVELED WAY OF ROADS, (c) TacnOem anal r " the mulch to the nuladureia recanmendall". EROSION CONTROL CURB INLET GRAVEL FILTER ofhaymust be R" of noxious vessel ND " rx, 1. SITE DESCRIPTION: CLASSIFICATION AND GRADATION OF OFW94ARY RPRAP in r I t a' rI't oat IF- If, mudh�a ELL 000000mmmo©o ?an a. Single & multi family r"Id"bal construction whit costsata o o gra Ing, u ywu ham vm. rf Pond 100aUllctim and the be wnpleted Wet to the additionof a teftim Ideal c ele triclklemal pansrading in the bottan w.mAo" mrar. o MT b. The jor adlMies era plannetl b the rdlowln9 sequence: 1. q"rin9 antl (bobbing nec"eaY far PMmele contrds she I Installation of Perimetef C"Rds. SMa "Iw' I Demdltlan of existing strvcturea4. Ov of grading Including temporary didersion numb". VeinI Grading i detention Pand 200. r grading of Pond 100. 6. �). Roadway constructionintludln9 storm-'FB. Stabilization, hedoNtr sing amazing mpures9. RemoVel of c"Ird m"SuresSECTION A-A The site contains riding. with m acres. All 45 acres Of the site are expected to ®" axes PROTECTION vm � 1 undergo clearing one/or gr°tling, with same additional olhite grading takng place m eaelem ALd EE T21 C; EU��� Sgo D` p�Upa RLL�LL� INLET PR _ _ properly line. �esarN: saw w'i ear :r'maewm �c �_ w .hooch .o resr.ow,Now 'p- Irrl wAna[ �. n Ivor w wxw1 OF THE Suss SHALL rE slats 2glui m m Mxcw nw1 THIS arias rmatu /mom d. Rational 'Ce we 0.20 before construction, Rational 'C' = 0.63 after crostmctien. The -Himun w lmw and Low Mind Erica lly Zone oar the CIIV lever s a Tml KE aLgaw STONE as OJ I1f2WA1M row Its a am M m01vs) (rates) cuss Ve m - liN W w- m a 25 - so m a 2- a 1 DASD 12 m - Gas 44) 50 - m 275 25 - w W 12 2 - 10 3 aAs is 100 ITTa 50 - m aY n - 50 2m 1e 2 - 0 10 CLASS 24 100 Yes 50 - m ITOO O - m a55 2a 2 - 10 H ® ess, A A I a _..era mpo wind t e IllSubjectednus zone maps. t in the wineasee r.gimi of up�rodmalalr T■ to SR lie. new Th p tl m la t Sixth op ety ear t of open fain Iona Before a"eWdl", Me ails mShe f r Ia a ntb grosses ma as C r There a. anticipated polwlan sod There all be no monde storage or d"rang " site. There WIN lie no chemical storage sources. _....... ANADARKO EAP COMPANY LP BY: 11 n n g. mere will be anticipated non-stormwater canpan"ts of discharge. MML'. SO PLAd EIS Exceedinga the Lorimar and Weld County Canal. Stares ter non b. The downstream re ding water is a .."®: ,awl �w"nalr t""Ia rotor r Or om Me wed porlim ibis she At bw lr"oWW la twos pie -aka ealarlbn pants by hdawl ITS. w _ v _ �ms"� a rH ru.0 r.em war w prp to t®o. ap dFENCE curb & gutter, pip" channala. and ~md Nast flow, O Same more �T v "washout SILT 'mr'aATEC 6%1O� hall K I sin.= w.ry Irxrt n,tatmr statues awl ter esavro w1a rm was row 1ru nNw. 2 STE ANADARKO LAND CORP. 0. See DrRainage &Erosion Control Plan. CALL UNILITY NOTIFICATION Q STRAW B IR STRUCTURE ]ntRS; BY: CENTER tables 3. BMP'S FOR STORMWATER POLLUTION PREVENTION: //O��FIICC�OIILL�ORAO/0�p 1400,,9224 9S7 N W ~ I. VE1MCIr TRAa(IND WT SHALL w AT fl DImANGEy TO THE caa1MN1EH STIE a.Erasl" and Sediment Controls: See Erosion C"trd Notes and Sequence Table (this NAME AM. SLOPE ]heel). _six OR Em EwArt Z Z I kTIe4E TRACKING WY SHALL BE "WM iCw °O nea�w J AS WE TO PRMXT INY WTfIYL a WNi TIMLItm onto Cie 51RfET. b. Materials Handling and Spill Prewntim: Measures shouts be undertaken to contra buildin Its: MEMBER mu u 0 materials and waste, and diapo"l of excess 0aphall "d Concrete to "Sure those mateoll do 3, s M Mo D M WTvsu SMLIID, BmMam not I"ve the site an "ter ma set"bon pone which ewntadly Outlets to Foil Creek. F W Z .ef1d' sal" OR Tavel® CHro av STRm SHALL BE lm1 my Asphalt, concrete, building materials, waste, paid cleanup by-products should not be oinEarged Cif of FOR Collins, Colorado Y THESE PLANS HAVE BEEN REVIEWED BY 2 O X Vrr'a also Rsa.Fn, Into the an -site curb Inlele and storm sewer systems nor should they "ter the off -site UTILITY PLAN APPROVAL THE LOCAL ENTITY FOR CONCEPT ONLY. 111O 20 _& det"tbn pond In lie sweet of a will ban the site into an an -site Verb Inlet or stall "wef THE RENEW DOES NOT IMPLY O Z Z 0 rig, s �lem, appropriate m"Sur" should be undertaken immedialdy to remove the wnlee materials Dom, RESPONSIBILITY BY THE REVIEWING p' g0 0 = as0 =STATE [LRSSIPIUTI011 FOR NOMINAL n prevent future apple Ran occurring. qq imtlaeer 0.M DEPARTMENT, THE LOCAL ENTTY 6 r Iiiin STONE SITE. ygl, ENGINEER, DR TIE LOCAL ENTITY FOR O IM ur0 00 MANAGEMENT: 4. FlVAL STosion AIIW AND LONG-TERM STIMMnal OIEIXED BY: ACCURACY AND CORRECTNESS OF THE Z W :W ALL EDGES WILL BE 'TOED' INTO ABOVE DIMENSION. st See Er"ion Control Notes this ah"t fa Mal alabalzation measures to a"Rd pollut"ts axle a Eest"alu metr 0.M CALCULATIONS MRM MONE. THE H 0 In stational discharges. RENEW DOES NOT IMPLY THAT P CT la IF RIP -RAP TO BE GROUTED WEORD BY: WANYTES IK ITEMS ON THE PLANS GROUT SHALL BE IN ACCORDANCE TO ASTINCIls'-LATEST REVISION. 5. DTHER WN1HW5: 9tofmnte 01ID11 0.te ARE THE FINAL WANTTES REQUIRED. C.1 ,a 1 2 ]. ROCK / a. Measures should be undertaken to mmow excess waste products from the site and THE RENEW SHALL NOT BE CgHSTRUED V IY0�5 GROUT SHALL BE VIBRATED IN RACE. I /2 - ]/a' mLTBt uIFR assume of then waste materials off -site In an appropriate manner. In atltllliM, m"Sur" gIEOATD BY: aV IN MY REASON AS ACCEPTANCE OF TOPS OF EXPOSED RIP -RAP WILL BE tee to limit off -site nil tracking of mud "a Bell Village Ran wM1ides Pub W RnTesli" FINANCIAL RESPONSIBILITY BY WE "AaNm W. VET BRUSHED AND CLEANED OF GROUT TO EXPOSE RIP -RAP COLOR. r MIN should undertaken leaving the site. Mud and debris should not be tracketl along rOueways and allowed to enter gIEgBD By., LOGAL ENTITY FOR ADDITIXiAL GAL Ga AldS22o C on -protected drainage ways which discharge eventually Into the Cache LO Insiders River. DaNe assr pste QUANTITIES OF ITEMS sH THAT MAY 6. INSPECTION AND MAINTENANCE: BE REWIRED DURING THE SHEET B OF 69 . VEHICLE TRACKING AT a. Innucti" and maintenance be undertaken an a regular basis as Outlined in CH M BW CONSTRUCTION PHASE. RIP RAP DRAWING Section 6 of the T"" and C"diti"s of the COMES G"eral Permit Bola No Text