Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 10/21/2004
City of Ft. Collins Approv s Approved By 7 Date fojL & '-FINAL DRAINAGE REPORT -FJ* esr FOR MAPLE HILL TiaHzb REPLAT /, E 62 L, 'il J e-: F�> la P y TST. INC. CONSULTING ENGINELRc. ■ 0 I ,4 1 I ' 748 Whalers Way, Bldg, D Fort Collins, CO 80525 970.226.0557 303.595.9103 'metro fax 970.226.0204 info@tstinc.com www.tstinc.com TST, INC. CONSULTING ENGINEERS April 24, 2004 Mr. Basil Hamden City of Fort Collins Storm Water Division P.O. Box 580 Fort Collins, CO 80522 Re: Maple Hill Third Replat Project No. 1003-0000.00 Dear Mr. Hamden: We are pleased to submit to you, this Final Drainage Report for the Maple Hill Third Replat. This report was prepared based on Urban Storm Drainage Criteria and City of Fort Collins criteria. We believe it satisfies all criteria for a final report. This report is an addendum to the Final Drainage report for Maple Hill, and references that report for the Erosion Control plan. This report includes UDsewer and UDSwmm models for a final condition. This ultimate design was analyzed to show the ultimate impact on the development, should these replats be pursued. We look forward to your review and approval and will gladly answer any questions you may have. Sincerely, p0 REG/S TST, INC. CONSULTING ENGINEERS Matthew Walker MIW/sjk Enclosures ■ I �J 1 TABLE OF CONTENTS 1.0 Introduction Page 1.1 Scope and Purpose....................................................................................................................1 1.2 Project Location and Description...............................................................................................1 2.0 Historic Conditions............................................................................................................................3 3.0 Developed Conditions Plan 3.1 Design Criteria...........................................................................................................................4 3.2 Drainage Plan Development......................................................................................................5 3.2.1 Street Capacity..............................................................................................................6 3.2.2 Inlet Design...................................................................................................................6 3.2.3 Storm Sewer Design.....................................................................................................6 3.2.4 Detention Pond Design.................................................................................................6 3.3 Erosion/Sediment Control Plan..................................................................................................6 Figures Figure1 -Vicinity Map...................................................................................................................................2 Tables Table A— Changes to % Impervious and Composite C...............................................................................5 Technical Appendicies ' Appendix A — Hydrologic Calculations Worksheet Appendix B — Summary of Street Capacity Analysis Appendix C — Summary of Inlet Analysis and Design ' Appendix D — Summary of Storm Sewer Design Appendix E — SWMM Output Sheets RationalDrainage Plan................................................................................................................ Sheet 1 of 2 Rational Drainage Plan................................................................................................................ Sheet 2 of 2 UDSWM Drainage Plan............................................................................................................... Sheet 1 of 1 1 1 1 1. 1 1.0 1 Introduction 1 1 1 n 1 1 1 1 1 �J J L 1 1.1 Scope and Purpose This report presents the results of a Final Drainage Evaluation for the Maple Hill Third Replat, being a replat of Blocks 17, 22, 23, and 29. In accordance with the requirements of the Fort Collins Storm Drainage Design Criteria and Construction Standards Manual (SDDC), the purpose of this report is to present a storm drainage plan that identifies peak runoff conditions and provides a means by which to safely collect and convey runoff across the site. This report will evaluate hydrologic conditions for the proposed development to determine the location and magnitude of the storm runoff, and will use that information for hydraulic analysis of the proposed streets and conveyance facilities. 1.2 Proiect Location and Description Maple Hill is a proposed single family and multi -family dwelling unit development located in the Northwest Quarter of Section 32, Township 8 North, Range 68 West of the 6t' P.M., City of Fort Collins, State of Colorado. The site is bounded on the west by County Road 11, the south by existing agricultural land, the east by the LarimeNWeld No. 8 Irrigation Ditch (No. 8) and the north by County Road 52. Blocks 17, 22, 23, and 29 are all found in the southern portion of the site. Block 17 is located between Maple Hill Drive, Summerpark Lane, Marshfield Lane, and County Road 11. Block 22 is located between Summerpark Lane, Country Club Road, Marshfield Lane, and County Road 11. Block 23 is located Summerpark Lane, Sunbury Lane, Marshfield Lane, and Forecastle Drive. Block 29 is located in between Sunbury Lane, Country Club Road, Muir Lane, and Marshfield Lane. A vicinity map illustrating the project location is provided in Figure 1. l e.rt,L L ) X�� w SF d w` (-4_, at � This project is located entirely within the Coope xelder Drainage �' s e drainage study currently does not exist for this portion of th . owever, the existing IL"�- topography indicates that the proposed sit a o. 8 ditch and conveyed south. The purpose for the replat is to change the layout of Blocks 17, 22, 23, and 29. One lot each will be added to Blocks 17, 22, and 29. An alley and 2 additional lots will be added to Block 23. t d- sL, s a fk ,JA k. L L 4., .f -(, CO,, Ak L4-� U-� &- d-L:;� _ 1 TST, Inc. 1 April 16, 2004 1003-0000 I I I L J I I I I I J I I [1 I VICINITY MAP r 2.0 Historic Conditions The proposed site has historically been agricultural in nature and drains in a southeasterly direction at slopes ranging from 0.6 to under 2 percent. It is currently undeveloped, with existing vegetation from agricultural use. The Larimer/Weld No. 8 Irrigation Ditch eventually receives all drainage from this site. The approved final drainage report for Maple Hill describes the drainage and erosion control plan for this site. It is the intention of this report to describe the impact of the redesign on the existing drainage plan. TST, Inc. 1003-0000 Cl April 16, 2004 �I J 1 I 1 1 3.0 Developed Conditions Plan 3.1 Design Criteria The drainage system presented in this report has been developed in accordance with the criteria established by the City of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual (SDDC) dated May 1984 and revised in January 1997. Design guidelines and information were also obtained from the Denver Regional Council of Government Urban Storm Drainage Criteria Manual (USDCM) and used where applicable. Developed condition hydrology was evaluated based on the 27year and 100-year storm frequencies as dictated by Table 3-1 of the SDDC manual. Because of the limited size of the subbasins on the site, the Rational Method was selected to calculate runoff. However, the detention pond was analyzed and designed using UDSWM, which will be discussed in Section 3.2.4. The Rational Method utilizes the SDDC manual' equation: Q = CCflA where Q is the flow in cfs, C is the runoff coefficient, Cf is the storm frequency coefficient, I is the rainfall intensity in inches per hour, and A is the total area of the basin in acres. The runoff coefficient, C, was calculated from Table 3-3 of the SDDC manual based on the proposed developed condition land use. A composite runoff coefficient was calculated for each sub -basin based on the percentage of impervious surface (C = 0.95) and pervious surface (C = 0.25). Cf was taken from Table 3-4 of the SDDC manual and was determined to be 1.0 for the 2-year storm and 1.25 for the 100-year storm. The appropriate rainfall intensity was interpolated from the rainfall intensity duration table in Figure 3-1 of the SDDC manual dated 1999. To obtain the rainfall intensity, the time of concentration had to be determined. The following equation was utilized to determine the time of concentration: tc = ti + tt where tc is the time of concentration in minutes, t, is the initial or overland flow time in minutes, and tt is the travel time in the gutter in minutes. The initial or overland flow time was calculated with the SDDC manual equation: ti = [1.87(1.1 - CCf)L0.5]/(S)0.33 where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the average basin slope in percent, C is the composite runoff coefficient, and Cf is the storm frequency coefficient. The formula limits the product of CCf to 1.0 and when the product TST, Inc. 4 April 16, 2004 1003-0000 I 1 1 1 exceeds this value 1.0 is used in its place. Gutter (or channel) travel times were determined by utilizing Figure 3-3 for the flow velocity within the conveyance element. The travel time was then determined by dividing the gutter flow length by the velocity. This procedure for computing time of concentration allows for overland flow as well as travel time for runoff collected in streets, gutters, channels, or ditches. The peak runoff is computed for each subbasin and then attenuated. Attenuated runoff is calculated by combining the contributing subbasins upstream of a given design point and determining the greatest time of concentration from the contributing area. 3.2 Drainage Plan Development The proposed drainage plan consists of a combination of overland flow and gutter flow. The runoff will sheet flow across landscaped yards and common areas, then concentrate at proposed streets. Gutter flow in streets will be collected at low points via curb inlets or area inlets and then conveyed via a storm sewer system or drainage pans to the detention ponds. Subbasins were delineated based on the proposed grading. The alley has been graded with a low points and inlet in the middle of the block to minimize the amount of water that flows across the sidewalk to the street. Final grading and basin delineation is shown on the Rational Drainage Plan Sheet, which can be found in the back of this report. The approved drainage plan for the site has two (2) detention ponds. These ponds have been ' hydraulically linked to function as one detention pond. Most of the site runoff will be directed through this pond prior to discharge to the Larimer/Weld No.8 Ditch (No.8). The development has been restricted to a 10 cfs release rate, except at the northeast corner of the site where the CI E 1 Lind Farm property will discharge into the ditch through a series of swales and storm sewer pipe. Basin B encompasses the middle/right portion of the site. This includes the proposed multi- family area and the neighborhood park. Basin C encompasses the southwest part of the site. Adding the lots to Blocks 17, 22, 23, and 29 and constructing the alley on Block 23 will increase the impervious area of the basins, which will increase the flow from the blocks. The roof area was assumed to be 40'X'50' in the original design. This roof area changed to 30'X40' on the replated blocks to approximate the duplex units that will be placed on the lots. Table A below details how the addition of the lots and alley will change the percent impervious area and the composite C values for the blocks. The increases in C values have a minor impact on the system. The SWMM model was regenerated based on the new information. Table A: Changes to % Impervious and Composite C 1lot 1 11.5 1 12.6 1 0.33 10.34 11ot 1 10.98 11.96 0.33 0.33 2 lots & alley23.2 33.1 0.41 0.48 1lot 1 14.7 1 16.3 1 0.35 0.36 ' TST, Inc. 5 April 16, 2004 1003-0000 ' In addition to the analysis of Blocks 17, 22, 23, and 29, the original flow at design point 23 was adjusted to account for small modifications to the contributing area and overland flow travel ' time. The adjustment reduced the flow at design point 23 from 48.43 cfs to 43.12 cfs. A summary of hydrologic calculations is included in Appendix A. ' 3.2.1 Street Capacity ' The alley street section is 15-feet from BOC to BOC with rollover curb and gutter on the low side of the street and a 1 foot concrete apron on the high side. The street will drain from one side to the other. ' Street encroachment criteria for the streets was taken from Table 4-1 (minor storm) and Table 4-2 (major storm) of the SDDC. The minor event (2-yr) criteria allows no curb overtopping and ' flow may spread to the crown. The major event (100-yr) criteria allows for flow depths of 6 inches over the crown. As per the City Engineering Department, no more than 0.5 cfs will flow across the sidewalks. ' The alley meets these requirements and will function below the allowable capacities. The flow in the 100-year storm will not spread outside of the right of way and will not inundate any ' structures. The flow from the alley to the street in the 2 year storm is less than 0.5 cfs in all cases. The results of the Street Capacity Analysis can be found in Appendix B. 3.2.2 Inlet Deslan CDOT Type "R" curb sump inlets were used to collect the 2-yr and 100-yr. runoff from low points in the alley. The ponding depth for the inlet in the alley was set such that flow would spread to the R.O.W. (back of walk) in the 100-yr storm. The results of the Inlet Analysis and Design can be found in Appendix C. ' 3.2.3 Storm Sewer Design The storm sewer lines were analyzed with Neo UDSEWER. The pipes were sized such that the hydraulic grade remains below the flow line of the proposed inlets and manhole rims. ' ST-3 conveys runoff from Basin C through a series of inlets to the detention pond. A new branch was added to ST-3 to collect runoff from the alleys. Additionally, Inlet 3E shifted east as a result of the new lot layout. ' ST-4 conveys runoff from Basin A through a series of inlets to the detention pond. ST-4E and ST-4E-1, branches of ST-4, changed as a result of the new lot configuration on Block 17. The ' 21" RCP from Inlet 4P to MH 4F-1 was lengthened from 25' to 27.3' and the diameter decreased to 18". The 27" RCP from Inlet 40 to MH 4F-1 increased to a 21" diameter RCP. The 27" RCP from MH 4F-1 to MH 4F was shortened from 238' to 227' and the diameter increased to 36". ' The results of the Storm Sewer Design can be found in Appendix D. I7 ' TST, Inc. 6 April 16, 2004 1003-0000 ' 3.2.4 Detention Pond Design A combined water quality and detention pond was provided designed to detain the site runoff ' prior to releasing it into the ditch. This pond is sized based on SDDC and Urban Drainage criteria and the total release rate of the site (10 cis). The pond was designed with an orifice plate with multiple orifices to provide for an extended drainage time. The water quality volume was based on the 2-yr. storm, with the 100-yr storm overtopping the control structure and ' entering the discharge pipe. An orifice plate was designed on the discharge pipe to control the 100-yr discharge from the pond. If the pond were to overtop, it will spill in a historic southeasterly direction and into the No. 8 Ditch. No structures will be inundated if overtopping occurs. A spillway was sized to convey any overtopping without jeopardizing the integrity of the pond. ' The required volume for the 100-year storm in the detention pond was listed as 41.71 Ac-ft in the original Maple Hill Final Drainage Report dated March 26, 2003. The three replats to the original site plan, including the third replat described in this report, increases the required storage volume to 41.80 Ac-ft. The 0.09 Ac ft of additional volume will add approximately 1 inch to the water surface elevation in the pond. This minor change in volume will not negatively ' impact the original detention pond design. The site was analyzed using UDSWM. The basin widths were obtained by taking the area of the basin, and dividing it by the length of the flow path. The supporting documentation for the Detention Pond Design can be found with this report. ' 3.3 Erosion Control ' The Erosion control plan for these two blocks can be found in the drainage report for the Maple Hill Subdivision. This replat will not impact the original design. 1 TST, Inc. 7 April 16, 2004 1003-0000 FI 7 11 1 0 APPENDIX A 1 HYDROLOGIC CALCULATIONS WORKSHEET 1 No Text No Text Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Length (ft) _ Slope (%) = H Travel Time I cnnth 1ft1 Clnnc 1041 Pipe Attenuation for Sub -Basins A and B 23 .5A17,A18,A19, B 14, 615 7.18 Ti = (1.87"(1.1-C"Cf)`D1n)/S'/3 Maximum of 500 feet 2.11 Channel r:hnrnrterietirc Time valnrity (ft/c) (Mint 175 1.14 Paved Area, Gutter Flow 2,125 1.37 230 4.00 Paved Area, Gutter Flow 4.265 0.90 250 4.00 Paved Area, Gutter Flow 4.265 0.98 250 3.92 Paved Area, Gutter Flow 3.933 1.06 290 3.85 Paved Area, Gutter Flow 3.933 1.23 300 3.00 Paved Area, Gutter Flow 3.686 1.36 Intensities Discharge TST, INC. CONSULTING ENGINEERS I Dial I Ime = 1 v.oa . � 2 1, 0-vr 100-yr Actual Time of Concentration = 9.01 8.24 Page 1 of 2 4/2012004 Pipe Attenuation_new.xls I 1 0 1 1 1 1 11 1 APPENDIX B 1 SUMMARY OF STREET CAPACITY ANALYSIS 1 1 1 1 1 1 i 1 1 1 I C h 1 1 1 �I �rUczr] J L 1 APPENDIX C 1 SUMMARY OF INLET ANALYSIS AND DESIGN 1 1 1 w a O M b O O a O N w h O m T N1 O N 0E 0 11 F APPENDIX D I SUMMARY OF STORM SEWER DESIGN 1 1 1 I SUMMARY OF STORM SEWER DESIGN i. ST-3H MH-3E MH-3HI 6.30 18 RCP MH-3HI MH-3112 6.30 18 RCP MH-3112 INLET 3H1 6.30 18 RCP TST, INC. CONSULTING ENGINEERS 4/20/2004 Hydromas.xls J I 0 1 1 1 1 1 11 1 1 1 1 11 0 0 W W 11 I NeoUDS Results Summary I ' Project Title: Gillespie Farm Project Description: ST-3 Output Created On: 4/13/2004 at 11:53:49 AM ' Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. I 11 d I I 1 I J I 11 Sub Basin Information F-F--1 Time of Concentration �- Manhole Basin 'Overland Gutter ID # lArea's C. (Minutes) (Minutes), F0 18.20: 5.6 6.0 0.0 5.78 105.1. 1 18.20 5.0 0.0: 0.0 5.78 105.1; 5.78 105.1 .F 3 16.18; 5.0 0.0 0.0. 6.23 100.8 r 4 16.18 5.0 0.0.' 6.0 6.23 100.8' r 9 11.44; 5.0 0.0; 0.0 5.93 67.9 �- 8.13 5.0= 0.0. CO. 7.01 57.0 I ' - 0.95` 5.0 0.0 0.0 7.76. 7.4. F8- ... 1.19.......5..0:..__......0.0:...........0.0. _ ... _ 11.54: ... 13.7 1.19: 5.0 .. 0.0 0.0 _........_ 5.77 ... 6.8 10 1.19 5.0... _ 6.0 .. 6.6 5.77 . 6.8. 11 -2.23 5.0 0.0 0.0 10.62 23.7_ 12 2.23 5.0 0.0. 6.0. 10.62 23.7`. 13 1.66` 5.0 6.0. 6.0 5.16 8.6 14 1.66 5.0 0.0 0.0 5.16 8.6 16 4.06! 5.0 0.0 0.0 7.00: 28.5 15 4.071 5.0 0.0 0.0 6.99 28.5, Basin Rain I Peak Flow (Minutes)' (Inch/Hour) (CFS) 1 .17 1 .. 11.201 5.01. 0.01 0.0 I... 6.40 18. 8.40. 5.0 .. 0.0 0.0. 7.57 19 0.70 5.0 0.0 0.0 5.43 20 0.70 5.0 0.0 0.0 5.43 21 6.76 5.0 0.0 0.0 9.36 22 0.70 5.0 0.0 0.0 9.36 23 6.00 5.0 0.0 6.0 14 000.00 24 1 0.001 5.01 0.01 0.01 14500.00 71. 3.8 6.6 5.8 5.8 I I I r I 25 0.00 5.0 0.0 0.0 14500.00 5.8 26 0.04 5.0 0.0 0.0 F 145.00 5.8 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (IO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Manhole ID # Contributing Area * C Rainfall Duration (Minutes) Rainfall Intensity (InclJHour) Design Peak Flow ; Ground Elevation e (Feet) Water Elevation (Feet) Comments -0 -0 0.0 0.00 �iCF-S) 1 5.1 5 03.51 5003.51 F7 131.21F77SA - 0.80. 105.1 5008.33 F 5003.77.F- F-2-F 113.01 5.0:F 0.93 105.1 -5oo8.561 5003.86 3 -F 93.86 1 5.01 1.07: 100.8 5009.53 5004.22 r-. r 4 77.67 5.0, 1.30:F 100.8 -5669.641 5005.19'F F 5-1 40.87 16.31 S.0 1.66, 5.0 3.50 F 67.9 59-11-491 5007.18:� 57.0' S026.54 7. 5015.73 F 0.95 F 5.0 7-76F 7.41 500833 F 5006.83 8-1 3.56 5.0, 3.85, 13.7: 5699-751 5006.27 F-- I 9 _ 1.19 9 0 5.77 6.8 5009 20;j 5006.53 ... ...... 10 1.19 5.0 5.77 6.8 5009.20. 5006.51.� 11 1 .4.461 5 0;F 5.31 23.7 5011.66. 5008.14 - Surface 12 2.23, 5.0 71062-[23.7 5007.00F5008.71 Water Present 13 1.66 5.0 5.168.6; -5611-171 5008.341 14-1 1.66 5.0 5.16 8.6 5011.63 F 5008.31 16 4.06 5.0 7.00: 28.5 5019.93 5 117.63 -- 15 F 4.07 5.0 F 6.99' 28.5-F 5019.93F 5017.69 F- 17 53.47 F 5.01 1.34 11.7 F 5012.01 5 006.28 18 26.11 5.0 2.43 63.6 5014.99 5011.32 19 F 1.41 5.01 2.71 3.8 F 5011.72 F 5007.81 �- 20 0.7 5.0 5.43 3.8 5011.49 F 5007.82 r I 1 I 1 1 1 A I I I 11 1 21 22 I 1.41 5.0 F 4.68F 6.6 5014.37 F 50 44.11 F 0.7 5.0. 9.36 6.6 F 5014.13 F 5014.01 F- 23 0.04 5.0 140.78 5.8 5033.95 5025.17 24 0.04 5.0 142.16 5.8 5034.15 5029.68 25 0.04 5.0 7743.56 5.8: 5033.98 5030.07 26 0.04 5.0 F 145.00 F 5.81 5033.92F 5030.13.� Summary of Sewer Hydraulics Note: The given depth to flow ratio is 1. �- Manhole ID Number �- Calculated FSuggested Existing erSewerDiameter rew# Downstream �II (Rise) jDiameter (Rise) DiameteRWidUpstream I Shape (Inches) (FT) (Inches) (FT) (Inches) (FT) (FT) . 1 ....1 .. I . _ 0 ...., (Round i... 50.71 54.1 .... 54 I .. N/A 12 Round, 50 7 54 54 N/A 23 .�� 2 Round 49 9. 54 54 N/A 34 4 3 Arch 49.9: 54 43' 68 27 F 7 'F - 2 Round 18.8 21 21. N/A : „48 ,1 8.8 i. 4 - Round' 16.7 18 24 N/A 89 . I ' ... I °.. ,.. _ Round:.................15.3 ..._ ......... _ ..18_ ......_......... .. 24 N/A 8I 10 �- Round 15.3 18 24 N/A 41�1 1L�1.. .. .. `' ... .Round: _ .... 19.9 21 .... 24 N/A 1112 .1z . �1.1 ....... Round ... _ ........ 23.6 24 ... 24 N/A N/A 513 13 I ,- Round 19.8 21 24 514 14 5- Round: 19X 21 24 N/A 616 16 Ir ,6 - Round. 21.3 24 33 N/A F6_15-F 15 F4 FRoundl 21.3F 24 33 N/A �- 17 4 Round 37.0 42 42 F N/A F�3 5 ..-.. 1-7 Round 36.2....................... 42 FF Ir ' - . . 18 _ ... I . ? . ,.. Round 29.8 .... ..... _ _30. _...... .......30 .... N/A 5. 6 - . 18, Round: 28.6 ... ..... 30 .. 30 N/A 6 19 17 Round 12.3 18 18 FN/A 20 19 Round 12.3 18 18 N/A 21 18 Round 17.9 18 24 N/A i- 22 21 Round 16.3 18 18 N/A 1 10 26 F 25 Round,F 14AF 18 F 18 N/A 11 25 24 Round 14.4 18 18 N/A 13 24 F 23 FRoundF 11.6 F 18 F 18 N/A 14 23 I 6 - Round 11.7 „ 18F 18 N/A r Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size ' All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. LI 1 I I i, Sewer Design Full Normal Normal Critical CriticalFFuc"FroudeFlowFlow Depth Velocity Depth Velocity Comment(CFS) (CFS). (Feet) (FPS) (Feet) (FPS) Number ID Fronde ow r 1 105.1 F 124.7 3.17 F7 8.8 3.01 9.3 6.6 0.91 �- 12 F 105.1 F 1 44.7 F 3.171 8.8, 3.01 9.3 6.6' 0.91 F- 23 100.8 124.7 3.07 8.7 2.94 9.1 6.3 0.93 34 100.8 134.2 2.99 8.8 2.92 9.0 6.0 0.96 �- 27 7A 10.0' 1.12 4.6: 1.01. 5,2. 3.1 0.82.1 77. 48 13.7 35.9, 0.86 10.6 1.33 6.2; 4.4 2.33 r 89 6.8. „22.7 0.75 6.3 0.93. 4.8 810 8 6.22.T 037 6.3 0.93. 4.8 2.2 1.49 411 23.7 39.3 1.12 1-3-11 1.71 8.3 7.5 2.42 F- 1112 23.7 24.7 1.5T 9.0 1.71 8.3 7.5 1.25 F5137F 8.6; 14.3, 1.11 4.8 1.06 5.1 • 2.7.. 0.88 514 ! 8.6 14.3. 1.11 4.8 1.06; 5.1 2.7 0.88 616 . 28.5 91.8 i F LUF 3.6. 1.77F 7.1 F .8 2.72 615 28.5• 91.8' 1.05. 13.6: 1.77 7.1 4.8 2.72.�- 2 71.7 100.9 --218F 11.4 F 2.65F 9.2 7.4. I ,- 67 9 100.9 2.10 11.3 2 58 8.9 7.1 1.49 �- �- 63 6 65.0 2.00 15.1 2 37 13.2 12.9 1.83•- 565.0 1.81 F7.0 14.9, , 2.33 12.0E-11.61 2.01 F-- 3 8 10.5; 0.62i 5.5 0.76 4.2 2.2 1.41 7 0.62' S.5 0.76 F 4.2, 2.2: 1.41 �-F 6:6. 14.3 0.95 4.5 0.91 4.7 2.1 0.91 F 9 6.6 8.5; 0.99 5.3 0.99 5.3 1 3.7 F 1 10 F 5.8 F 10 5F 079F 61F 093F 5 11 3.3 1.35 11 F 5.8F-1-6-TF 0.79F 6.1 0.93 F 5.1 F 3.3 1.35 F- 13_. ....,5.8 19.0' 6.57 9.4. 7 0.93 [-77775Tj .,...3.3 ._. 2.561 14 F 58F 185F 058F 9.3 0.93 5.1F 3.31 2.49 �- ' A Froude number = 0 indicated that a pressured flow occurs. Ll I ' Summary of Sewer Design Information I u I� I .1 1 11 F-F-1 Invert Elevation Buried Depth 1 Sewer ID Slope Upstream Downstream Upstream Downstream (Feet) (Feet) (Feet) (Feet) Comment F 1 - 0.40 1 5000.40 1 4999.87 3.43 -0.86 ISewer Too Shallow 12 0.40. 5000.52 5000.40 3.54 3.43 23 0.40 F 5001.10 F 5000.52F 3.93F 3.54 1- 34 0.40 F 5 22.15 5001.10 F-3.911 4.85 27 0.40 5093.21 5003.19 3.37 3.62: 48 F2.50 F 5003.46 F 5002.15 F 4.29 F 5.491 89 F 1.00 F 50 33.81 F 5003.46 3.39 F 4.29 810 1.00'F 5003.61 F 5003.46 3.59 F 4.29 1- 411 F3.00: 5006 43F 5002 15F 3.23.F 5.491 1112 F 1.19;F 50 77.00 F 5 006.43 F 2.00. 3.23 JSom Too Shallow 513 6.40, 5004.61 5004.51 F4.56F 4.981 514 0.40. 5004.D 5004.51 F 5.16 F 4.98. 616 3.00 F 5013.43.F 5013.28 F 3 75F 4.51 1- 615 3.00 5014.03 F 5013.28 F 3.15 F 4.51' r -2F 1 -.66F 5003.63 F 5002.25 F 4.88 F 3.89 I ' 1.00 F 5004.60 0003.62 F 3.39 F 4.881 4 2.50 5008.95 5004.60 3.54. 4.39 1- 5- 2.50 F75013.4o F 5008.96 F774.64 F F. 6 1.00 5005.87 5003.65 4.35 6 86 F - 1.00 5006 05 F 5005.98F 3.94. 4 24` F 0.40, 5-009.9-8 5009.27: 2.39 3.72 --I 0 9 0.65 501 .13 5010.08: 1% 2.79 1- 10 1.00' 5028.98 5028.97 3.44. 3.51 `1 11 1.OQ 5028.98 -5528-911 3.501 3.74. F� 13 3.25 �5028.75 5024.34 3.90:�- 14 3.09 F-502424F 5013.28 8.21 5.761 1 Summary of Hydraulic Grade Line F-F-F-1 Invert Elevation Water Elevation Sewer ID it Sewer Length (Feet) Surcharged Length (Feet) Upstream (Feet) Downstream (Feet) �� Upstream. (Feet) Downstream. (Feet) Condition I 1 132.981 0: 5000.40 4999.87 5003.77: 5003.51 Subcritical 12 F 29.5 F 0 F 5600.52 F 5000.40 F 5003.MF 5003.77 Subcritical I r I u I I I i [_I 1 r, I I I 23 F 145.26I 0 5001.10 5000.52 5004.22:F 5003.86 Subcritical 34 F 2-61.44 F 0 5002.15 F 5001.10 F 50 55.19 5004.22 Subcritical 27 I 5I V F5003.2IF 5093.1?F5006.831 5003.86 Subcritical 48 52.5 52.5 5003.46 5002.15 5006.27 5005.19 Pressured 89 35 35 5003.81 5003.46 5006.53 5906.27 Pressured, 810 15 15 F 5003.61 F 5003.46 5006.51, 5006.271 Pressured 411 F 142.74 72.02 5006.43 F 5002.15 F5008.14 5005.19 Jump; 1112 48 0.32 5007.00 F 5006.43 F 5008.71 5008.14 Jump 513 F 25 F 25 F 5004.61 F 5004.51 5008.34, 5007.18 Pressured. 514 FF-75 5004.53 F 5004.51 F59083U 5007.18 Pressured: 616 5 5 5613.43 5013.28 F 5617.63: 5615.73 Pressured: 615 25 25 5014.03 5013.28 5017.69 5015.73 Pressured' 137.83 F 0.F 5003.63 5002.25 5006.28 5005.19. Jump, r 3 97.5 0' 5004.60 5003.62 5007.18 5006.28, Jump: I 4 - 174 0.08! 50 88.95 5004.60 5011.32 S007.18. Jump 5 177.67 100.46 5013.40 F 5008.96 F 5M.73...F 5011.32 Jump: F-6-- 222.44 222.44 5005.87. 5003.65 F5007.81 5006.28 Pressured' 7.17 7.17 5006.05 F. 5005.98 5007.82 5007.81 FPressured �- 177.94 177.94: 5009.98 5099.27.F.5014.11iF 011.32 Pressured:, 7.17 7.17 F 5610.13 F 5610.08 F 5614.015014.11 Pressured 10 1IF 0 F 5028.98'F 5028.971 50... 5030.OT Jump, 11 6.88,F 0, 5028.98 5028.9T 5030.07 F 7iq29.68 Jump. 13 .59 F 0 1355028.75 5024.34 5029.68 5025.1T lump; 14 354.79, 115.89 5024.24 5013.28 5025.17{ 5015.73. Jumpl Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole Energy Sewer Bend Lateral Energy Sewer Mjhole Bend K Lateral K Manhole Elevation Friction Loss Loss Elevation ID # . # (Feet) (Feet) Coefficient[(Feet) Coefficient feet) . ID # (Feet) ��- 5004.83 1.32 0.05 0.00 0.00: 0.00 r 0 5003.51, 12 F -25004.97 0.10 0.05 F 0.03 0.00 F 0.001 ' 3004.83. 23 I� ' 5005.40 0.40 0.05 0.03 0.00 0.00 r 2 5004.97 34 i 4 _ 5006.36 6.93 6.65 0.03; 0.00; 0.00 F 3 5005.40 27 .F -75006.98 2.00 0.05 0.01 0.00 F 0.00 r 2 5004.97; 48 r 8 5006.57 0.19 0.05. 0.01 0.00 0.00 14 5006.36:. 89 F-9- 5006.60 0.03 0.05 0.00 0.00 F 0.00 1 8 5006.57 810 10 5006.59 0.01 0.05 0.00 0.00 0.00 r 8 5006.57 I I I 1 1 I I I 411 11 5009.21 F 2.80 F 0.05 FO.04 0.00 0.00 F -4 5006.36 1112 12 5009.78 0.53 0.05 0.04 0.00 0.00 11 5009.21. 513 F 13-1 5008.46 0.04 0.05 0.01 0.00 F 0.00 F 5 5008.42 514 F 14 F 5008.43 0.01 0.05 0.01 0.00 F 0.00 r 5 5008.42 616 F 16 5017.99 0.01 0.05 0.02 0.00 F 0.00 r 6 5017.95 615 F 15 F 5018.04 6.07 6.05 6.02 6.00 F 6.00 F 6 1 5017.95' r 2 17 5007.59 1.18 0.05 0.04 0.00; 0.00 F 4 5006.36 - -5 5008.42. 0.79 0.05. 0.04 0.00 0.00. 17 5007.59 r -4F 18 5014.03 F 5.48 0.05 0.13 0.00 0.00 r 5 - 5008.42. r 5 7�7- 5017.95 .05 3.82 00.10 0.00 0.00 18 5014.03 FT7F 19-F 50 77.88 F 0.29 0.05 F 0.00 0.00:F7.00 17 F 5007.59 F 7 20 5007.89 0.01 6.05 1 0.00 0.00 0.00, 19 5007.88 r 8 _ 21 5014.18 0.15.F 0.05F 0.00 1 07WF 0.007 18 F 5014.03 r 9 - 22 5014.22 0.03 0.05 6.61 0.00. 0.00 21 5014.18 10 26 5030.29 0.02 0.25 0.04 0.00 0.00 25 5030.24 11 25 5030.24 0.15. 0.05: 0.01' 0.00 6.00 24 5030.07 13 24 F 5930.07 4.29 1.32 F 0.22. 0.06 0.00 F 23 5625.56' 14 F 23 5025.56 7.39: 1.32 0.22: 0.00: 0.00 �' 5017.95 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. ' Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. I I I Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole ID # Rim Elevation; (Feet) Invert Elevation (Feet) Manhole Height (Feet) 0 5003.51. 4999.87 �- 5008.33 5000.40 7.93: I� 2 - 5008.56 5000.52 8.04 I 3 - 0009.53 F 5001.101 8.43 5009.64 5002.15 7.49 I 5 5611.49 5004.51 F 6.98 5020-541 5013.28 7.26 F7 F 5008.33 F 5003.21 F 5.12 I 1 1 I I I I I I r 8 F 5009.75F 5003.46 6.29 9-1 5009.20 5003.81 5.39 10 F 5-009.20 F 5003.61 F 5.59 11 F 5-011.6615006.43 5.23 12-F 5007.00 F 5007.00 0.00 13 -5611.17F-5664.611 6.56 14 F 5011.63 5004.53 7.10' 16 0019.93 F 5013.43 F 6.50 -13F 5019.93F 5014.03 5.90. 17 F 5012.01F 5003.621 8.38 18 F 5014.99 F 5008.951 6.04 19 5011.72, 5005.87 5.85 20 0011.49 F 5006.05 5.44. 21 F 5014.37 ,500.91.9.8F4.39 22 50-14.131 5010.13 4.00 23 F 5033.951 5024.24 9.71 24 F 5-034.15,F 5-028.75 F 5.40 :F72T-F7 5933.98f 5028.97 F 5.01; 26 5033.92 5028.98 4.94: Upstream Tre Width : Sewer ID F(G round At Invert #Feet) (Feet) Downstream Trench Widthnch Trench On Ground At Invert . (Feet) (Feet) Length (Feet) Wall Earth Volume Thickness (Cubic (Inches) yards) 1 14.4 9.4 5.9 F 9A 132 W. 5.50 338, 12 14.7 9A F 4,4 9.4,F 29.5,F 5.56F 100: 23 15.4 9.4. 14.7 9.4 145.26; 5.50. 511 34 16.5. 10.6, 18.4 10.6 261.44 5.62 1037 27 16.0 4.2; F 10.5 F 4.2 F 2.75 r 7: 48 12.1 4,5;F 14.5 4.5 52.5 3.00 107! 89 T 10.3. 4.5 12.1,F 4.5F 35.F 3.96F 55 810 _. .... .. 10.7 4.5 12.1 4.5 .. .. 15 3.00 24 F774-11 10.0, 4.5 14,5 4.5 142.74 3.00. 261 1112 -0.5 4.5 10.0 4.5 48, 3.00 41 513 12.6 4.5 13.5 4.5 25 3.00' 49 514 13.7 4.5; 13.5 4.5I 5 3.001 11, 616 11.6F 5.4: F 13.1 F 5.4 r 5F 3.75. 10 615 10.4 5.4 13.1 5.4. 25' 3.75 48 I J I I I�2 F14.5 F 6.2F 12.5 F 6.2 F 137.83 F 4.50 352 F 3 11.5,F 6.2F 14.5F 6.2 F 97.5 F 4.50 238 I Y- 11.0 5.1 12.7 F 5.1 F 174 3.50F 319 13.2 5.1. 11.0 5.1 F-177-671 3.50 337, F--6- 11.8 3.9 16.8 3.9 222.44.1. 2.50 1 497 F 7 F 11.0 F 3.9 F 1.6 F 3.9 F 7.171 2.501 10 8.3 4.5. 10.9 4.5 177.94` 3.00 226 -sF �- 8.1. 3.9 8.7 3.9 7.17; 2.50I 10 10.0 3.9 10.1 3.9 r 1 2.50 11 10.1 3.9 10.6 3.9 6.88F 2.50 F 9 13 F 16.9 3.9 19.3 3.9 335.59; 2.50 346 14 19.5. 3.9 14.6 3.9 354.79 2.50 1075; Total earth volume for sewer trenches = 6014.24 Cubic Yards. The earth volume was estimated to have a bottem width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. ' If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivelant diameter in inches/12)+1 I I L �L 1 IJ J 1 i 1 23 f 2223 122 722 9 67611 719 19 1920 20 i i al urn 618 617 1516 39 515 514 - fUt 35 ®� 12 21 1112 47 43 OS ELEV= SOW , 51 I 1011 10 910' �S-�616 53 39 3 23 I,¢61t 62 12 18 58 67 W.BE.® C NeoUDS Results Summary Project Title: Gillespie Farm Project Description: ST-4 Output Created On: 4/20/2004 at 8:57:25 AM ' Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. I r 1 I 1 I Sub Basin Information Time of Concentration Manhole Basin Overland Gutter Basin F Rain I Peak Flow ID # JArea * C: (Minutes) (Minutes) (Minutes) (Inch/HOUr) (CFS) 0 58.71 5.0 1 0.0 0.0 4.96 291.3 58.71. 5.0 0.0; 0.0 4.96 291.3_ F-2- 50.47. 5.0 0.0 -66F 5.25 264.9 I� '- 47.79 5.0 F 0.0 F 0.01 5.40 258.3. I " F 6.00.F 0.0.F 6.61 6.0.F 0.00. 159.8 I. 5 1999.5.0 F 66F 0.0 7.99 159.8 I� °. ..: .. ..8.38 ... ...5.6 .. 0.0.. 0.0..........1 ....2.41.....__.103.9 ' I - 3.29 5.0 F 0.0 0.0, 21.55 F 70.9 8� 5.82 5.0; 0.0 0.0 7.41 43.1 I. ..'. 27.75 ...... _5.0.... _.......0.0_ . ... 0.0. .......5.19 .... 144.0 10 22.13 5.0 0.0 0.0. 5.20 115.7 11F 14.47 5.6 0.0 0.0 5.35 77.5' 12 7.46 F 5.OF 0.0 0.0 F 7.35F 54.9 13 7.46, 5.0 0.0 0' 0.7.35 54.9 14 2.08 5.0. 0.0 0.0 6.96 14.5 15 8.91 5.0 0.0 0.0 5.97 53.2 16 6.04775.0 F. 6.0 F 0.0 5.93 35.9 17 -i.47F 5.0 F 0:0 F 0.6 F 8.61 21.3 18 2.14 F 5.0 F 0.0 F 0.0 F 5.96 F .8 19 0.00 0.0 0.0 0.0 0.00 3.6 26 0.40 5.0 0.0 0.0 8.90 3.6 22 0.00! 6.0 0.0 0.0 0.00 57.7 1 23 1 1.21 I 5.0 27 F 0.00 F 0.0 F29 0.01 0.01 47.671 57.7 0.0 0.0 0.00 28.8 0.0 F-6.6 F-6.00F 3.6 I I LJ I L I 33 F 6-61F 5.0 0.0 F7 0.0 F 1436.49 F 10.6 35 0.01 5.0 0.0 0.0 F 1 336.49 10.6 37 F 6.00 6.0 0.0 0.0 6.00 12.8 39 0.00 F7 0.0 0.0 0.0 0.00 6.4 41 0.00. 6.0 0.0 6.0 F-6.66F 14.5 43 0.00 0.0 F-P-oF 0.0 F 0.00 F 7.2 45 F 0.00 F 0.0 F 0.0 F 0.0 F 6.00 F 18.6 47 0.00 0.0 OA F70.0 F 0.00 F779.6 49 0.00 6.0 0.0 0.0 6.00 35.9 51 0.00 6.6 0.0 0.0 0.00 13.8 53 0.00' 6.0 0.0. 0.0 0.00 13.8, 55 9.02 5.0 6.0 1 0.0 7.35 66.3 56. 0.00 ... ... . .....0.0. .... .... 0.0 0.00 18.7 58.. . .0.00:.. 0.0.._......... 0.0 ........0.0 _..... ....... 0.00 .. .... 18.7 60 1.49 5.0 6.0 0.0, 7.04 16.5. 62 r 0.00; 6.0 F776.9 F 6.0 F 6.66F 10.5 64 F 2.89.F 50 F7 0.0 7 0.0 F 5.19 F 15.0 65 0.00. 0.0 0.0 6.0 0.00 21.6 67 0.00 o-ocF7 6.0 0.0 F 0.00 F 1.6: 69 0.00 0.0. 0.0 0.0. 0.00 15.1. 21 6.00 0.0 6.0 5.01 0.001 17.9 24 .... 14.80_ . 5.6 .. ......0.0 ._. _....OA ..... .. 2.19. 32.5 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design hole Contributing Rainfall Rainfall Peak GroundF Water # FID Area * C Duration Intensity Flow Elevation evation Comments (Minutes) (Inch/Hour) . (CFS) (Feet) Feet) Fo F oF 0.0 0.00 291.3 5003.51 5003.52 Surface Water Present r 1 1] 1 i F-1 325.21 5.0 0.90 291.3 5012.61 5005.41 F 2 257.79 F7 5.0 F 1.03F 264.9 F 5009.20 F 5007.10 F F-37F7 205.82F 5.0 F 1.25F 258.3 F 5009.58 F 5007.34 F 4 69.73 F 5.0 F 2.29 F 1598F 502142F 5014.72 69.73 5.0 2.29 F 159.8, -5636-871 5029.08 �- 6 32.7 5.0 3.18..F 103.9 5046.36 5037.37 F- F 7 F 19.7F 5.0 F 3.60; 70.9 5055.18 F 5046.53 �- �8 5.82 5.0777.41, 41 5008.47 5007.43F F-T-F 88.31 F 5.0 F L63F 144-oF 5009.20F 5008.0&F 10 60.55 5.0 F 1.90F 115.2, 5011.17 5008.60,F- 11 29.4 5.0 2.64 77.5 F 5010.38.F 5008.96.. 12 F 14.92 F 5.0.F 3.68 F 54.9 5011.71 F7 5009.75 [ 13 7.46 5.0 7.35 54.9. 5005.00 5010.02 Water �FSurface :Present ............... 14 2.08 5.0: 6.96 F 14.5 S034.89 5033.80 15 F 14.95 F 5.0 F 3.56 F 53 2F 5034.45 5033.621 16 6.04 5.0, 5.93 35.9 5036.15 5034.83 17 2.49; 5.0: 8.56 21.3F 5O44.52 5044.35'.F-- 18 2.14 5.0 5.96 12.8 -5644.221 5041.57F 19 0.4 5.0 8.90 3.6. -5657-621 5050.06!� _.. 20 ... 0.4 5.0; 8.90 3.6 F 5056.81 5051.48 1- 22 F 16.01: _ 5.6 F 3.60 F 57.7F 5056621 5050.14,E 23 16.01 5.0 3.60 F 57.7'F 5055.16 5051.46 27 14.8 5.0. 1.95 28.8 5054.66 5051.36 29 I V 0.0 0.00, 3.6 5056.30.F 5051.56 -33F--o.oF 5.01 1436.49:F 10.6 F 5044.35 1 5044.29 35 0.01 5.0. 1436.49.F 10.6 5044.34: 5044.33 37 0.0. 0.00 12.8 5044.03 5041.60 39 6.0 0.00: 6.4 5644.03 5641.73 41 I v 0.0 0.00, 14.5- 5034.65 5033.83 43 0 0.0 0.Pa. 7.- 5034.65 F75033.93 45 � 0.0 0.00' 18.0; 5034.24 5033.59 47 r 0 0.0 0.00 9.0 5034.24 5933.75 49 F 0 F 0.0 F. 0.00 35.9F 5035.95 F 5034.86 F- 51 r 0 0.0 0.00, 13.8'F 5008.94 5008.35 53 F 0 F 0.0 F 0.00 F 13.8,F 59p8NF 5008.45 F Surface 55 9.02 5.0 7.35 66.3 5005.00 5008.84 Water ���� Present 56 F 0 0.0 0.00 18.7 -5669.981 5009.22 �- C 58 0.0 0.00 18.7 5009.98 F 5009.32 60 F 1.49 5.0 F 7.04 r 10.5 F 5008.99 5008.15 F 62 F 6F 0.0 F 0.00 10.5 5008.99 F 5008.21 F 64-F 2.89 F. 5.0 5.19 15.0. 5oqi.49F 5007.11 65 ( 0 0.0 0.00 F 21.6 -5668.651 5006.74 F- 67 I OF 0.0 F O.WF 21.6F 5008.05F 5007.10 69 F 6F 6.0 F 6.66T 15TF 5655.18 5050.03I 21 F-6 0.0 0.00; 17.9, 5035.95 5035.01 F 24 14.8 5.0 2.19 32.5 5058.00 5052.84 F Summary of Sewer Hydraulics Note: The given depth to flow ratio is 1. Manhole ID Number Calculated Suggested Existing Sg# iameter (Rise D(inches) (Rise) D(Inches) Diameter W(FT) Upstream. FDownstream Shape (FT)) (FT)iameter (Inches) (FT)) ' 1 1 1 0 lRound] 78.0 1 781 781 N/A 12-1 - 1 Arch 81.7 84F 58F 91 23 I 3 I L FAr&F 71.0 72 F 58F 1 ' 34 ..I "........ I ' Round 52.2 ................. 54. _ . _ ... _ . 42 N/A 45 �.� Round 40.1 42. 42. N/A 56 I .. 6. I . .. 5 ..... lRound 1 ....33.61 ... .... 36.1...... 361 N/A, 67I !..6 ... ,Round ....... 28.8 .... 30 .. 30.F N/A 18 .�F -, Arch. 35.7 36 ............ 34 _ 53 'F 39 I 9 I 3 FArch_F 54.7F 60 F7 53F 83 910 10 F-q7-Arch 51.5 54 48 FT6 1011 11 10 Arch 45.2 48 38 60. 'F S14 14 I ' Round 19.1 21 27 N/A 515 15 ��� Arch. _....... _-.....36.4. :.... 42 ..... ' 617 .. 17.- .I �....°. .. Round ..... 21.1 24 36 N/A. 618 18 I ° Round 18.3 21. 24 N/A 1516 16 15 Round F 33.9 F. MF 36 N/A 'F 719 19 Round 7 10.6 F 18F 18. N/A 1920 20 19 Round 13.7 18 18 N/A ' 722 22 F 7 - Round 36.6 F 36F 42 N/A 2223 23 22 Round: 40,5 42. 42 N/A 164 64 F 1 Round 18.1 21 21 N/A ' 865 65 Round 23.6 24 21 F N/A 867 67 Round 23.6 24 18 N/A 260 F60 I -`Round F 21.4 241 24 N/A I 7 11 r,II 262 62 � 2 Round 21.4 24 24 N/A 953 F 53 F9 Round F 18.5 F 21 F 24 F N/A 951 F 51 F9 Round F !UF 21 24 N/A 1055 55 5Round 42.7 F 48 F N/A 1156 56 11 Round 19.6 21 27 N/A 1158 58 11 Round 19.6 21 27 N/A 1112 12 11 Round 39.7 42 42 N/A 1213 F 13 12 Round F 39.7 F 42 -42F N/A 1441 F 41 F 14 Round F 24.1 F 27 F 27 F N/A 1443 43 14 Round 88.6 21 21. N/A l545 45 15 Round 26.1 27 27 N/A 1547 47 15 Round 20.2 21 21 N/A 1649 49 16 Round' 33.9'. 36 36 N/A 1837 F 37 F18 FRoundF 23.0 F 241 24. „N/A 1733 F 3 F 17 Round F 7 21.51 24 F 21 F N/A 1735 35 F 17 Round 1 15.4 18:F 18 N/A 2029.F 29 F 26 Round 13.7F 18.F 18 N/A 769 F 69 7 -7Round, 24.5. 27 27 F N/A 2327: 27 23 Round 21.4, 24 27 N/A 1839 39 18 Round 17.7 18 ....... 18 N/A 1621. 21 16 Round' 26.1 27 27 N/A 2724 24 27 Round. 27.5 30 24 N/A. Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment (CFS) (CFS) (Feet)._.;.. (FP$).. (Feet) .; .. (FPS)....: .._(FPS) ..: ............ r 1 291.3 292.7 5.30 10.1 4.60, 11.6 8.8 0.74 -777 12 264.9 208.0 6.21 8.8 4.40 11.6 8.8 N/A 23 F258.3 F294.2 F 4.51F 11.0 F 4.40 F 11.3 F 8.5 F 0.94 66 3.3661667 N/A3359 F45 F159.8 181.9 2.54, 21.3F 3.36 16.8 16.6' 2.42 Velocity Is F56 103.9F125.1 2.09 F 19.8F 2.86F 15.0 14.7F 2.53 VelocHigh: 1 1 t F67 F 70ity Is .9 79.6F 1.84 183F 2.40 14.6 F 14.4F 2.44 VelocHigh 18 43.1 73.5 2.00 7A 2.03 7.3 4.2 1.03 39 144.0 F257.8F 3-vF 16.5 F 31 F 9.4 F 5.7 F 1.19 F 1 309.0 5910 115.2 18915 1.08 F loll 77.5 96.2 2.78 8.2 2.64 8.6 5.9 0.91 514 F 14.5 36.7 0.98 8.7 132 6.0 3.6. 1.77 �- 515 53.2 117.9 1.92 8.8 .19 27A T. 1.27 617 F 21.3 F 88 2F 1 66F 103F I 52F 5.9 F 3.0 F 2.11,1 618 F 12.8 F 26.74F 0.98'F 8.3F T278F 6.0 F 4.1 F 1.67 Fr- 1516 35.9 42.3 2.12: 6.7. 1.94 7.4 F 5.1:F 0.851 719 3.6 14.5 0.51 6.8 0.74 4.1 2.0 1.97 F 1920 3.6 F 7.4 0.73 4.2 0.74 F 411 2.0::j 0.97 F-7- 722 .. 57.7F 87.4 F. 2.08 F..., 9.7 .. ....2.38: ..............8.3 .. .... 6.o... 1.3. F ....... 2223 F 57.7 .. 63 8F 2.61,F 7.5,F772 38 .. „ 8.3. 6.0:1 0.83 �- 164 15.0 22.5 1.05' lo.0 1.43' 7.1 6.2' 1.89 865 21.6 15.9 1.75, 9.0 1.60! 9.3 9.0 N/A r 867 21.6 10.5. 1.50 12.2: 1.46; 12.3 12.2 N/A F 266 16.5 1U 1.27 5.0 1.16 S.6 3.3 0.84 �- 262 10.5 14.3: 1.27? 5.0 1.16 5.6. 3.3 0.84:F 11 [1 1 1 11 2724 32.5 22.7 2.00 103 1.86: 10.7 10.3 N/A -I A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information F�F- Invert Elevation Buried Depth Sewer ID Slope Upstream Downstream. U stream; Downstream Comment %p : (Feet) (Feet) (Feet) (Feet) I ' F 0.31 5000.31. 4999.79 5.80 -2.78 Sewer Too Shallow 12 F6.20 F 5000.90 F 5000.48 r 3.47;F 7.301 23 F6.40 F 5001.05.F 5000.89 F 3.70 F 3.47,r 34-F 0.79 F 5004.13F 5000.88T 13.79 5.20.1 45 3.25 5025.72 F75011M F .65:F 5.5T 56 3.50 5034.51 F 5025.72 F 8.85 8.15 r- 67 3.75 5044.13 5034.51; 8.55 9.35 18 0.44 5002.17 5000.32 3.47 9.45: 39 0.50, 500120 5000.89: 3.58 4.27 910 0.44: 5002.43 5001.19 4.74 4.01 1011 0.40: 5003.04 5002.42 4.1T F.5.58. 514 1.40 5029.05 5025.72 3.59 8.90 515 0.60, 5027 57 F 5025.73 3.71 F 7.98 617 F 1.74 F 5037.97 F 5033.83 1 3.55: 9.531. 618 1.35 5038.67 5034.51: 3.55 9.85 1516 0.40 5029.43F 5027.57:F 3.721 3.88 719 F 1.90 5648.88 5644.13 6.64 ..... .. 9.55; . 1920 0.50 5050.75' SO48.88 4.56 6.64F 722 0.75 5046.01, 5044.13 7.11 7.55 2223 0.40. 5047.58. 5046.01 4.08: 7.11. 164 F2.66 F 5001.89 F 5000.47 4.85 10.39, 865 FLOO F5002.311 5002.19 3.99 4.53 867 1.00: 5002.57 5002.19 3.98., 4.78. F --_i 260 0.40. 5000.94 5000.89 6.05 6.31 262 0.40 50 11.05 5000.90 5.94 F 6.30. 953 1.50 5003.32 5002.75 3.62 4.45 951 F1.56 F5002.937 5002.75F 4.011 4.415 1055 0.40. 5002.75 5002.42 1.75 4.75 Sewer Too Shallow 1156 2.00 5093.74 5003.50 3.99 4.63 1158 2.00 5004.26 F 5003.50 F 3.47 F 4.63, I I 7l J C 1 1 1 1112 0.40 5664 -.63F 5003.04 4.18 F 3.83 1213F 0.40 50 44.36 5 004.03 F -2.86 F 4.18 jSewer Too Shallow 1441F 0.40 5029.08 5629.06 F 3.32 3.58 1443 F 0.40 F 5029-65F 5029.55 3.25 F 3.59 1545 0.40 5028.77 5028.75 i- 3.45 1547 0.40 F 5629.30 F 5629.20 3.19 3.50 1649 r 0.40 F 5029.45 F 5029.43 F 3.50 F 3.72 1837 -- 5038.69 5038.67 334 F 3.55 1733 50.40F5038.94F 5038.92F 3.66 F 3.851. 1735 F 2.34 F5039.81 F75039.23 F 3.03F 3.79 2029 0.50 F 5050 82F 5050.75 F 3.98 F 4.56 769 F 0.46 F 5648.57 F 5648.50 4.36 4.43 1- 2327 F 3.00 F 5048.00 F 5047ssF 4.41 F 5.33 F 1839 Fo.40,F 5639.20, 5639.16 3.33 F 3.62, 1621 F 6.40 5030.28 5636.18 3.42 3.72 2724 1.00,F 5049.68F 5048.57,F 632 4.09 i Summary of Hydraulic Grade Line F-F-F-IInvert Elevation � Water Elevation Sewer ID Sewer Surcharged Upstream: Downstream Upstream Djeet)stream: Length Length [Condition # eet) (Feet) (Feet) (Feet) (Feet) , 169.41 0 5000.3 I'l 4999.79F 5005.41 5003.52 Subcritical. 12 208.83. 20M3: 5000.90 5000.48 5007.10 5005.41 Pressured. 23 38.17; 38.1.7 5001.05 5000.89 5007.34F5007.10 Pressured' 34 F741-1.251 411.25 5004.1. 5000 88_ 5014.72 5007 34 Pressured; 45 411.25 -.O.ET 5025.72 5W2.35F 5029.08 5W1 32: Jump, 56 251 144.52 5034.51 5025.72 5037.37 5029.08 Jump. 67 F 256.641 97.45, F 5044.13 F 5034.51 F5046.53 1 5037.37Jump', -18F 419 419 F 5002.17 F 5000.32 5007.43.F 5005.41 Pressured; 39 F62.5 F 62.5 5001.20 F 5000.89 F 5008.0&,F 5007.34 Pressured 910 F -281.06F 2K.66F 5002.43 5001.19 F 5008.60 5008.08 Pressured 1011 F 156 F 156F 5003.04 F 5002.42 F5008.96 F 5008.60 FPressured 514 238_ 238 5029.05 5025.72 5033.80 5029.08 Pressured 515 308 308 5027.57 5025.73 5033.62: 5029.08: Pressured 617 238 238, 5037.97 5033.83 504435:. 5037.37 Pressured 618 F 308 F 308 F5038.67 F 5034.51 F5041.57 F 5037.37 FPressured 1516 464 464 5029.43.F 5027.57 F 5034.83'F 5033.62 FPressured 719 2501 233.27 5048.88 -5044.13F 5050.06F 5046.53. Jump: I I 1 [J 11 1 1 [1 1920 373.55I V 5050.75 F 5048.88 5051.48 5050.06 Subcritical 722 250 250 5646.01 F 5644.13 -5656.141 5046.53 Pressured 2223 F 393.32 393.32 5647.58 F 5046.01 F 5651.46 5050.14 Pressured. 164 70.86 70.86 5001.89. 5000.47 5007.11 5005.41 Pressured: 865 12 12.F 5002.31 F 5002.19 5006.74 5007.43 Pressured 867 38 38 F 5002.57 F 5002.19 5007.16 1 5007.43 Pressured 260 12 12 5000.94. 5000.89 F 5008.15 F 5007.10 Pressured 262 38 38 F 5001.05 F 5000.90 F5008.2I.j 5007.10. Pressured 953 38 38' 5003.32 F 5002.75,1 5008.45 5008.08 FPressured 951 12 12;F 5002.93. 5002.75 5008.35 5008m Pressured 1055 F UF 82 5002.75.F 5002.42 FTqo8.84.F 5008.60:. Pressured 1156 12 12 5003.74 5003.50. 5009.22 F 5008.96 Pressured. 1158 38 38. 5004.26;F 5003.56 F 5009.32 1 5008.96 Pressured 1112 F 246.27 246 27 5004.03 5003.64 5009.75 5008 96 Pressured 1213 82 82', 5004.36 5004.03 501-0.021 5009.75 FPressured 1441 F-5 F_ 5 5029.08:F 5029.06F 5033.83; 5033.80 Pressured', 1443 25 25 5029.65 5029.55 5033.93 5033.80 Pressured: 1545 F_5F_55028.77. 5028.75 5033.59, . 5033.62 Pressured_ 1547 25.r 25 F 5029 3OF 5029.2O 5033 751 5033.62 Pressured: 1649 �� 5029.45 5029.43: 5034.86 5034.83 Pressured I.J8 5.j 5' 5038.69 5038.67 5041.60; 5041.57' Pressured 1733 55038.94 8.9 5032 5044.29 r 5044.35: Pessured: � 1735 25 25: 5039.81 5039.23 5044.33 5044 35 Pressured. ,F 2029 F 14F Of 5050.82 F 5050.75F 5051561 5051.48 Subcritical 769 17.29 0,,5048.57: 5048.50 5050.03 5046.53 Subcritical; 2327 14. 14; 5048.00 5047.58F5051.36 5051.46 Pressured; 1839 25 25 5039.20 5039.10 5041.73 5041.5T Pressured 1621 F 25. 25 5030.28, 5030.18. 5035.01: 5034.83 Pressured 2724 110.84 110.84 5049.68 5048.57 F5052.84 F 051.36 FPressured Summary of Energy Grade Line Downstream 1I Upstream ManholeF Juncture Losses Manhole Energy Sewer F(Feet) Lateral Energy Sewer Manhole Bend K K . ManholeElevation FrictionLoss Elevation ID # ID # )( Coefficient [Lateral oefficienY ) ID # (Feet) (Feet) (Feet) _ (Feet) �r 1 5007.06 3.54 0.05 0.00 0.00 0.001 0 5003.52 12 r _2F 5008.29F 1.18 F o.05F 6.06 F 6.00 F 0.00 F 1 -F 5007.06 �F 3 5008.47 0.12 6.05 0.06 6.00. 0.00 - 2 5008.29 I 1 1 1 I 34 r -4F 5019.00 10.32 0.05 0.21 0.00 F 0.00 F-3 5008.47 45 5 5033.48 14.27 0.m 6.21 0.00 F 0.00 5019.00. 56 r 6 F 504U4F 7.19 F .05 0.17 F 0.00 F 0.00 F 5 5033.48 67 F 7 F 5949.86 F 8.85F 0.05T o. 16F 0.00 0.00 F 6 5040.84 18 .F -8F 50 77.71 F 0.63 F 9.95F o.qTF 0.00 F .00 F. F5007.M 39 I ' 5008.59 0.10 0.05 0.03 0.00 0.00 F�3 5008.47 910 10 5009.07 0.46 0.05 0.02 0.00 0.001 9 5008.59 1011 F 11 5009.50 0.40 F 0.05.F 0.03F 0.00 F 0.00 F 10 5009.07 514 14 F 5034.01 F 0.52F 0.05 0.01 F 0.00 F o-oo F 5 - 5033.48 515 15 5033.87 0.38 0.05 0.01 0.00 F 0.00 F-5 5033.48 617 17 5044.50 0.24 0.64 0.09 6.25 3.32 F-6- 5040.84 618 F 18 5641.83 6.97. 0.05. 0.01 0.00: 6.001 6 F 5040.84 1516 ' 16 5035.23 1.33 0.05. 0.02. 0.00: 0.00 F 15 5033.87 719 F 19 F 5050.12 7 0.27 0.05 0.00, 0.00 0.001 7 5049.86 1920 20 5651.75 F 1.63 6.05 F 0.00 6.00 _0.00' 19 5050.12 722 22 5650.70 0.82 0.65 0.03 0.00', 0.00l 5049.86 2223 23 5652.01 F 1.29.F 6.65 0-031 0.00 0.00 F-7227F 5050.70: 164 �- 5007.72 0.63 0.05. 0.03 0.00 F 0.00 1 5007.06 865 65 5007.99 0.22 0.05 0.06 0.00 0.00 1 8- 5007.71I 867 67 56 9.41 1.59 0.05 0.12 0.00 0.00'F-8- 5007.71 260 F 60 F 5008.33 0.03 0.05 0.01 0.00 0.00 �2 :: 5008.29 262 62 5008.38:. 0.08 0.05 0.01 0.00 0.001 2 5008.29', 953 F 53 5008.75 0.14 0.05 0.01 0.00 F 0.00 l9 5008.59 951 F 51 5008.65 F 0.04 6.65 F 0.01 0.00 I 0.00.F9 F5008.59 1055 55 5009.27 6.17 6.05 0.02 0.00; 0.00 10 5009.07, 1156 56 5009.56 0.04r 6.05 0.02 0.00 0.00; 11 5009.50: 1158 F 58 F 5009.66.. 0.14 0.05 0.02. 0.00 I o-ooiF 11 F 5009.50 1112 12 5010.26 0.73 0.05 0.03; 0.007 0.00 11 5009.50: 1213 13 5010.53 0.24 0.05 0.03 6.00; 0.00. 12 5010.26. 1441 41 5034.03 0.01 0.05' 0.01 0.00 0.00 14 5034.01: 1443 43 5034.07 0.05 0.05' 0.01 0.00' 0.00 14 5034.01, 1545 45 5033.90, 0.02 0.05 0.02. 0.00: 0.00. 15 5033.87: 5547. 47 5033.96.F 6.68 0.05 0.01 0.00 0.00: 15 5033.87, 1 449 49 F 5035.26 0.01 0.05 0.02 0.00 0.00 16 5035.23' 1837 37 5041.86 0.02 6.65 0.01 F 0.00 F 0.00 F 18 F 5041.83 F-1-73TF 33 F7504Z59 F 6.02F o.25F 6.08F 0.00'F 6.00 F 17 5044.50' 1735 35 5644.89 0.25 0.25 0.14 0.00 0.00 17 5044.50 2629 29 F 5651.82 0.07 0.05 I 0.00 0.00 0.00 F 26 5051.75 7 99 _ 69 5050.51 6.64 0.05 0.01 0.00 0.00 �- 5049.86 2327 27 5052.18 0.12 6.05T 0.04 0.00 F 0.00 23 5052.01 1 1 1 1 1 1 1839--r 39 F5041.93F 0.09 0.05 F 0.01 0.00 F 0.00 F 18 5041.83 1621 21 503532 OA8 0.05 0.02 0.00 0.00 16 5935.23 2724 F 24 F 5054.50 2.33 0.00 F 6.00 F 0.00 F0.00 F 27 5052.18 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole ID # Rim Elevation (Feet) Invert Elevation (Feet) Manhole Height (Feet) 5003.51 F 4999.79 3.72 I -IF 5012.61F 5000.311 12.30 2 5009.20 5000.89 F 8.31 F 3 F 5009.58'.F 5000.88 8.70 5021.42 -5664131 17.29 .F-5 5 336.87 r 5025.72F 11.15 76-F77 SO46361 5033.83 12.53 5055.18'F 5O44.13 11.051 8 - 5008.47 5002.17 6.30' `F-9- F 5009.20. 5001.19 8.01 -1oF 5011.17F 5002.42 F 8.75 -11F 5010.38 F 5003.04 7.34 12 F 5011.71;F 5004.031 7.68 13 5005.00: 500436. 0.64 14 5034.89 5029.05 5.84 ,15 5034.45. F 5027.57 F 6M 16 F 5036.15 .5029.43 6.72 17 F 5044.5zF 5037.9TI 6.55, 18 F 5044.22 F 5038.671 5.55 19 0057.02:F 5048.881 8.14' 20 5056.81 F 5050.751 6.06 22 F 5056.62 F 5046.01 F 10.61 23 F 5055.16 F 5047.58F 7.58 d 1 1 1 1 1 27 F 5054.66F 5048.00 6.66 29 5056.30 F 5050821 5.48 33 F 5044.35 F 5038.94 5.41 35 5044.34 5039.81 F 4.53 37 F. 044.03 F5038.69 5.34 39 F 5044.03 F 5039.20 F 4.83 41 F 5034.65 F 5029.08 F 5.57 43-F 5034.65 F 5029.65 5.00 45 F 5034.24F 5028.771 5.47 47 F 5034.24F 5029.30 4.94 49 F 5035.95F 5029.45 F 6.50 51 5008.94 5002.93 _ 6.01 53 5068.94 5003.32 5.62, 55 5005.00: 5002.75 2.25 56 F 5009.98; 5003.74 6.24; 58 F 5009.98.F 5004.26 5.72 60 0008.99' 3000.94 8.05; 62 5008.99; 5001. 7.94 64 F 5008.49 F 5001.891 6.60 65 7 5008.65 F 5002.31 F 5.74 67 F 5008.05'F 5002.57 F 5.48' 69 5055.18: 5048.57 6.61 21 ... 5035.95 5030.28 5.67 24 F 5058.00: 5049.68: 8.32, Upstream Trench Downstream Trench Width Width Earth Sewer ID On Ground AtInvert On Ground At Invertickness Wall Volume 7Lenh FTh #(Feet)(Feet) (Feet) (Feet)nches) (Cubic Yards) 1 20.8 F 11.8 3.7 11.8 169 4; „ _ 7.50 780 12 17.3 F 12.8 25.0 12.8 M8*83.1 7.21 F 1273' 23 17.8. F 12.8 F 17.3F 12.81 38.17 7.21F 178. 34 32.3 6.2 F 15.1 F 6.21 411.25 4.50 2778 45 20.0 6.2:F 15.9 F 6.21 411.25F 4.501 1597': 56 22.0 5.T 20.6 5.7 251 4.00 1230 67 21.0 5.1 22.6 5.1 F 256.64 3.50 F 1269 18 14.6 F 9.2 f 26.6F 9.2 F 419F 462F 2169: r I 1 1 1 1 �I 1 1 1 1 1 39 17.0. 12.0 18.4 12.0 62.5 6.67 279 910 18.8 -FAF 17.3F 11.4 f 281.06 f 6.17 f 1226 1011 16.5. 9.8 19.3 9.8 156 5.08 611 514 F 10.9 F 487 21.5 4.8 238 3.25 750. 515 15.6 9.8 24.1 9.8F 308 F 5.08 F 1461 617 11.4 5.7 23.4 5.7 2HF 4.00 F 9079 618 10.6 4.5 23.2 4.5 308 3.00. 1049 1516 11.8, 5.7 12.1 5.7 464 4.00. 928 719 16.4 3.9 22.2 3.9 250 2.50 950 1920 12.2 3.9 16.4 3.9 373.55 2.50. 825 722 19.0: 6.2 19.8 6.2 250 4.50 1086 2223 12.9 6.2 19.0 6.2 393.32 4.50 1295 „2.75 269 164 „ 13.0 4.2 . 24.1 .. 4.2 F.70.86 20. 867 11.0: 3.9 12.6 3.9;F-381 2.%j 60 260 15.6 4.5 16.1; 4.5, 12 3.00 33; 262 15.4 4.5 16.1 4.5 38; 3.00; 102. 953 F 10.7 F 4.5 F 12AF 4.5F 381 3.00. 62: 951 T 11.5 4.5. l2.4 4.5 12 3.00. 21' 1655 1.7 6.8 14.7 6.8 82 5.00 168 1156 11.7. 4.8 13.0' 4.8 12 3.25 22 1158.. . 10.6 F.. 4.8: ... 13.0 . 4.8 F 38 ... _ . ..3.25 1 _........67 1112 F 13.1 .... 6.2F 12AF 6.2 F 246.27-1 4.50: 582 1213 -1.0; 6.2, 13.1; 6.2 u 4.50 136, 1441 10.3 4.8 10.9: 4.8 F-5 3.25 F 8 1443 9.8 4.2 10.5 4.2 25: 2.75 32, 1545 10.1 4.8 10.6 4.8.� 3.257 1547 9.7 4.2 10.3. 4.2. 2525: 2.75 31. 1649 F 1.1.3. 5.7F 11.8 F 5..71......., 5 ._ 4.00:. .,.. ...10 1837 1733 7 10.6:F 4ZF. 11.0T 4.2F 5 F 2.757 1735 9.1� 3.9 10.7 3.9 25; 2.50; 30 2029 11.0; 3.9. 12.2 3.9 14, 2.50 21° 769 12.4 4.8. 12.6 4.8 17.29 3.25 33 2327 12.5. 4.8: 14.4 4.8. 14 3.25 30j 1839 F 9.7 3-qF 10.3 F 19F 25;F 2.50 30 1 221 10.5 -4.8'F 11.1F 4.8 F 2�5F 3.25 39 2 224 16.1 4.5 11.7 F 4.5 F 110.84 F 3.00 248 Total earth volume for sewer trenches = 24659.63 Cubic Yards. The earth volume was estimated to have a bottem width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. ' If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivelant diameter in inches/12)+1 1 1 1 1 n 1 F 1 I 1 1 1 1 1 Ll 1 1 APPENDIX E UDSWM OUTPUT 1 I i 1 1 1 1 i I 1 I I I I I I E E n — f m W mmmmm >00000 �00000 W �o W Z z N N m m m 0 Z G G C O O J Z to N N N N 2S C W W M M N N N 9 W O O O O G KQ 0 a a o 0 o c c X co C 0 N N N N N N N N N N U Q W a c o 0 0 0 LL W Q m m m m m w o 0 0 0 0 N G G G G C W C Z Q a r M n m W 0 0 0 0 0 m 0 0 0 0 G C � J fn y Z a O O M M z a 'a n m pm Q v Z � tq _� 67 ~ M N N n N N pp O � r T 0 n V y 3 w a W n n N N N 0 z z N w m o 0 0 a p m Z y z C O c u E 3 d a N W mmmmmmmm >00000aoo �00000000 w �o w N N N N N m m m 2 Q� J Z N N N N N N N N O C C O C p p C W C7 W M M M M M N N N W G G G G O O C O KQ 0 a y U > LL W r G r G r G r C r G r C r G r G y K F N N N N N N N N QW CL o 0 0 06 o a' 0' W Q g m m m m m m m m y w 0 0 0 0 0 0 0 0 W _ K z y N m N O O M n N m w 0 0 0 0 0 0 0 0 m O C Ci C C G G C C � J N y Z LU N N N N M 'C WHMO w 2 V M m N N n n m a N Y N N N N n r Q Z U) m= Op m p f0 N C N n N w m 0 m n o m 3 Z � y O w N N N N N N N 0 a z w y w mr V z N 11 I 1 r I I I I 1 I [1 100yr-MH 3rd replat.sin 2 1 1 2 3 4 WATERSHED 0 Gillespie Farm Drainage Plan - Project #: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers 240 0000 5.0 1 24 5 1. 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.48 1.22 1.06 1. 0.95 0.91 0.87 0.84 0.81 0.78 0.75 0.73 0.71 0.69 0.67 1 101 201 585. 26.3 53.0.0120.016 0.25 0.1 0.3 0.51 0.5 0.0018 1 102 2021068. 48.8 50.0.0180.016 0.25 0.1 0.3 0.51 0.5 0.0018 1 103 203 666. 23.5 55.0,0270.016 0.25 0.1 0.3 0.51 0.5 0.0018 1 104 2041025. 33.5 50.0.0080.016 0.25 0.1 0.3 0.51 0.5 0.0018 1 105 2051154. 26.7 58.0.0060.016 0.25 0.1 0.3 0.51 0.5 0.0018 1 106 216 978. 24.7 13.0.0130.016 0.25 0.1 0.5 4.5 0.6 0.0018 1 107 215 720. 17.9 13.0.0170.016 0.25 0.1 0.5 4.5 0.6 0.0018 1 108 214 472. 11. 14.0.0220.016 0.25 0.1 0.5 4.5 0.6 0.0018 0 8 101 102 103 104 105 106 107 108 0 0 0 0 0 0 C 0 201 301 4 524. 0.02 50. 50. 0.016 0. 30. 524. 0.02 10. 10. 0.02 5 0 206 306 4 400. 0.03 50. 50. 0.016 0. 30. 400. 0.03 10. 10. 0.02 5 0 202 302 4 550. 0.02 50. 50. 0.016 0. 30. 550. 0.02 10. 10. 0.02 5 0 207 307 4 367. 0.001 50. 50. 0.016 0. 30. 367. 0.001 10. 10. 0.02 5 0 208 308 4 234. 0.001 50. 50. 0.016 0. 30. 234. 0.001 10. 10. 0.02 5 0 203 303 4 247. 0.001 50. 50. 0.016 0. 30. 247. 0.001 10. 10. 0.02 5 0 212 312 4 417. 0.002 50. 50. 0.016 0. 30. 417. 0.002 10. 10. 0.02 5 0 213 313 4 186. 0.002 50. 50. 0.016 0. 30. 186. 0.002 10. 10. 0.02 4 4 4 4 4 4 4 5 1 0 7.1 100yr_MH 3rd replat.sin 36.3 8.7 47. 10. 49.7 10.3 0. 0. 0 4 305 308 309 310 0 0 0 0 0 0 0 0 0 0 0 0 ENDPROGRAM Page 2 I 100yr_MH 3rd.sot C 11 I I I I t 1 1 1 1 URBAN DRAINAGE STORM WATER MANAGEMENT MODEL - 32 BIT VERSION 1998 REVISED BY UNIVERSITY OF COLORADO AT DENVER * ENTRY MADE TO RUNOFF MODEL *** Gillespie Farm Drainage Plan - Project #: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers ONUMBER OF TIME STEPS 240 OINTEGRATION TIME INTERVAL (MINUTES) 5.00 25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OFOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.48 1.22 1.06 1.00 .95 .91 .87 .84 .81 .78 .75 .73 .71 .69 .67 1 Gillespie Farm Drainage Plan - Project #: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers SUBAREA GUTTER WIDTH AREA PERCENT SLOPE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) PERV. MAXIMUM MINIMUM DECAY RATE NO 101 201 585. 26.3 53.0 .0120 .300 .51 .50 .00180 1 102 202 1068. 48.8 50.0 .0180 .300 .51 .50 .00180 1 103 203 666. 23.5 55.0 .0270 .300 .51 .50 .00180 1 104 204 1025. 33.5 50.0 .0080 .300 .51 .50 .00180 1 105 205 1154. 26.7 58.0 .0060 .300 .51 .50 .00180 1 106 216 978. 24.7 13.0 .0130 .500 4.50 .60 .00180 1, 107 215 720. 17.9 13.0 .0170 .500 4.50 .60 .00180 1 108 214 472. 11.0 14.0 .0220 500 4.50 .60 .00180 1 OTOTAL NUMBER OF SUBCATCHMENTS, 8 OTOTAL TRIBUTARY AREA (ACRES), 212.40 1 RESISTANCE FACTOR SURFACE IMPERV. PERV. IMPERV. .016 .250 .100 .016 .250 .100 .016 .250 .100 .016 .250 .100 .016 .250 .100 .016 .250 .100 .016 .250 .100 .016 .250 .100 Gillespie Farm Drainage Plan - Project #: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 8 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS TIME(HR/MIN) 101 102 103 104 105 106 107 108 Q 1. 0 5. 0. 0. 0. 0. 0. 0. 0. 0 10. 1. 2. 1. 1. 1. 1. 1. Page 1 ' 100yr-IH 3rd.sot 0 15. 4. 8. 6. 5. 5. 3. 2. 0 20. 9. 20. 13. 13. 12. 5. 4. 3. ' 0 25. 19. 38. 24. 25. 24. 8. 6. 4. 0 30. 38. 74. 45. 49. 46. 14. 10. 7. 0 35. 81. 158. 95. 105. 99. 31. 23. 16. 0 40. 101. 190. 108. 128. 119. 32. 24. 17. 0 45. 77. 139. 74. 95. 87. 23. 18. ' 12. 0 50. 58. 103. 54. 71. 64. 22. 17. 12. 0 55. 46. 81. 42. 56. 49. 20. 16. 11. 1 0. 38. 68. 35. 47. 41. 19. 15. 10. 1 5. 33. 60. 31. 41. 35. 18. 14. ' 9. 1 10. 30. 54. 28. 37. 32. 17. 13. I 9. 1 15. 27. 50. 25. 34. 29. 17. 13. 9. ' 1 20. 26. 47. 23. 32. 27. 16. 12. 8. 1 25. 24. 45. 22. 30. 25. 15. 12. 8. 1 30. 23. 42. 21. 29. 24. 15. 11. 7. 1 35. 22. 40. 19. 27. 22. 14. 11. 7. ' 1 40. 21. 38. 18. 26. 21. 13. 10. 6. 6. 1 45. 20. 36. 17. 25. 20. 13. 10. 1 50. 19. 35. 17. 24. 19. 12. 9. 6. 1 55. 18. 33. 16. 23. 18. 12. 9. 5. ' 2 0. 18. 32. 15. 22. 18. 11. 8. 5. 2 5. 15. 28. 13. 19. 15. 10. 7. 4. 2 10. 12. 22. 9. 15. 12. 8. 6. 4. Page 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100yr_MH 3rd.sot 2 15. 10. 19. 7. 13. 3. 2 20. 9. 16. 6. 11. 3. 2 25. 8. 14. 5. 10. 3. 2 .30. 7. 12. 4. 9. 3. 2 35. 6. 11. 4. 8. 2. 2 40. 6. 10. 3. 7. 2. 2 45. 5. 9. 3. 7. 2. 2 50. 5. 9. 3. 6. 2. 2 55. 4. 8. 3. 6. 2. 3 0. 4. 7. 2. 5. 2. 3 5. 4. 7. 2. 5. 2. 3 10. 4. 6. 2. 5. 1. 3 15. 3. 6. 2. 4. 1. 3 20. 3. 6. 2. 4. 1. 3 25. 3. 5. 2. 4. 1. 3 30. 3. 5. 1. 4. 1. 3 35. 3. 5. 1. 3. 1. 3 40. 2. 4. 1. 3. 1. 3 45. 2. 4. 1. 3. 1. 3 50. 2. 4. 1. 3. 1. 3 55. 2. 4. 1. 3. 1. 4 0. 2. 3. 1. 3. 1. 4 5. 2. 3. 1. 2. 1. 4 10. 2. 3. 1. 2. 1. 4 15. 2. 3. 1. 2. Page 3 9. 8. 6. 8. 7. 5. 7. 7. 5. 6. 6. 4. 5. 6. 4. 5. 5. 4. 4. 5. 4. 4. 5. 3. 3. 5. 3. 3. 4. 3. 3. 4. 3. 3. 4. 3. 2. 4. 3. 2. 4. 2. 2. 3. 2. 2. 3. 2. 2. 3. 2. 2. 3. 2. 2. 3. 2. 2. 3. 2. 1. 2. 2. 1. 2. 2. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1 1 1 1 1 1 1 1 1 i 1 r 1 1 1 1 1 r 1 100yr-MH 3rd.sot 1. 4 20. 2. 3. 1. 2. 1. 2. 1. 1. 4 25. 2. 3. 1. 2. 1. 2. 1. 1. 4 30. 1. 3. 1. 2. 1. 2. 1. 1. 4 35. 1. 2. 1. 2. 1. 2. 1. 1. 4 40. 1. 2. 1. 2. 1. 2. 1. 1. 4 45. 1. 2. 1. 2. 1. 2. 1. 0. 4 50. 1. 2. 0. 2. 1. 2. 1. 0. 4 55. 1. 2. 0. 1. 1. 1. 1. 0. 5 0. 1. 2. 0. 1. 1. 1. 1. 0. 5 5. 1. 2. 0. 1. 1. 1. 1. 0. 5 10. 1. 2. 0. 1. 1. 1. 1. 0. 5 15. 1. 2. 0. 1. 1. 1. 1. 0. 5 20. 1. 2. 0. 1. 1. 1. 1. 0. 5 25. 1. 2. 0. 1. 1. 1. 1. 0. 5 30. 1. 1. 0. 1. 0. 1. 1. 0. 5 35. 1. 1. 0. 1. 0. 1. 1. 0. 5 40. 1. 1. 0. 1. 0. 1. 1. 0. 5 45. 1. 1. 0. 1. 0. 1. 1. 0. 5 50. 1. 1. 0. 1. 0. 1. 1. 0. 5 55. 1. 1. 0. 1. 0. 1. 1. 0. 6 0. 1. 1. 0. 1. 0. 1. 0. 0. 6 5. 1. 1. 0. 1. 0. 1. 0. 0. 6 10. 1. 1. 0. 1. 0. 1. 0. 0. 6 15. 1. 1. 0. 1. 0. 1. 0. 0. Page 4 6 20. 1. 1. 0. 6 25. 1. 1. 0. 6 30. 1. 1. 0. 6 35. 1. 1. 0. 6 40. 0. 1. 0. 6 45. 0. 1. 0. 6 50. 0. 1. 0. 6 55. 0. 1. 0. 7 0. 0. 1. 0. 7 5. 0. 1. 0. 7 10. 0. 1. 0. 7 15. 0. 1. 0. 7 20. 0. 1. 0. 7 25. 0. 1. 0. 7 30. 0. 1. 0. 7 35. 0. 0. 0. 7 40. 0. 0. 0. 7 45. 0. 0. 0. 7 50. 0. 0. 0. 7 55. 0. 0. 0. 8 0. 0. 0. 0. 8 5. 0. 0. 0. 8 10. 0. 0. 0. 8 15. 0. 0. 0. 100yr_MH 3rd.sot 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Page 5 8 20. 0. 0. 0. 8 25. 0. 0. 0. 8 30. 0. 0. 0. 8 35. 0. 0. 0. 8 40. 0. 0. 0. 8 45. 0. 0. 0. 8 50. 0. 0. 0. 8 55. 0. 0. 0. 9 0. 0. 0. 0. 9 5. 0. 0. 0. 9 10. 0. 0. 0. 9 15. 0. 0. 0. 9 20. 0. 0. 0. 9 25. 0. 0. 0. 9 30. 0. 0. 0. 9 35. 0. 0. 0. 9 40. 0. 0. 0. 9 45. 0. 0. 0. 9 50. 0. 0. 0. 9 55. 0. 0. 0. 10 0. 0. 0. 0. 10 5. 0. 0. 0. 10 10. 0. 0. 0. 10 15. 0. 0. 0. 10 20. 0. 0. 100yr_MH 3rd.sot 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Page 6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 100yr_MH 3rd.sot 0. 10 25. 0. 0. 0. 0. 0. 0. 0. 0. 10 30. 0. 0. 0. 0. 0. 0. 0. 0. 10 35. 0. 0. 0. 0. 0. 0. 0. 0. 10 40. 0. 0. 0. 0. 0. 0. 0. 0. 10 45. 0. 0. 0. 0. 0. 0. 0. 0. 10 50. 0. 0. 0. 0. 0. 0. 0. 0. 10 55. 0. 0. 0. 0. 0. 0. 0. 0. 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 11 5. 0. 0. 0. 0. 0. 0. 0. 0. 11 10. 0. 0. 0. 0. 0. 0. 0. 0. 11 15. 0. 0. 0. 0. 0. 0. 0. 0. 11 20. 0. 0. 0. 0. 0. 0. 0. 0. 11 25. 0. 0. 0. 0. 0. 0. 0. 0. 11 30. 0. 0. 0. 0. 0. 0. 0. 0. 11 35. 0. 0. 0. 0. 0. 0. 0. 0. 11 40. 0. 0. 0. 0. 0. 0. 0. 0. 11 45. 0. 0. 0. 0. 0. 0. 0. 0. 11 50. 0. 0. 0. 0. 0. 0. 0. 0. it 55. 0. 0. 0. 0. 0. 0. 0. 0. 12 0. 0. 0. 0. 0. 0. 0. 0. 0. 12 5. 0. 0. 0. 0. 0. 0. 0. 0. 12 10. 0. 0. 0. 0. 0. 0. 0. 0. 12 15. 0. 0. 0. 0. 0. 0. 0. 0. 12 20. 0. 0. 0. 0. 0. 0. 0. 0. Page 7 12 25. 0. 0. 0. 12 30. 0. 0. 0. 12 35. 0. 0. 0. 12 40. 0. 0. 0. 12 45. 0. 0. 0. 12 50. 0. 0. 0. 12 55. 0. 0. 0. 13 0. 0. 0. 0. 13 5. 0. 0. 0. 13 10. 0. 0. 0. 13 15. 0. 0. 0. 13 20. 0. 0. 0. 13 25. 0. 0. 0. 13 30. 0. 0. 0. 13 35. 0. 0. 0. 13 40. 0. 0. 0. 13 45. 0. 0. 0. 13 50. 0. 0. 0. 13 55. 0. 0. 0. 14 0. 0. 0. 0. 14 5. 0. 0. 0. 14 10. 0. 0. 0. 14 15. 0. 0. 0. 14 20. 0. 0. 0. 100yr_MH 3rd.sot 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Page 8 1 1 1 1 1 14 25. 0. 0. 0. 14 30. 0. 0. 0. 14 35. 0. 0. 0. 14 40. 0. 0. 0. 14 45. 0. 0. 0. 14 50. 0. 0. 0. 14 55. 0. 0. 0. 15 0. 0. 0. 0. 15 5. 0. 0. 0. 15 10. 0. 0. 0. 15 15. 0. 0. 0. 15 20. 0. 0. 0. 15 25. 0. 0. 0. 15 30. 0. 0. 0. 15 35. 0. 0. 0. 15 40. 0. 0. 0. 15 45. 0. 0. 0. 15 50. 0. 0. 0. 15 55. 0. 0. 0. 16 0. 0. 0. 0. 16 S. 0. 0. 0. 16 10. 0. 0. 0. 16 15. 0. 0. 0. 16 20. 0. 0. 0. 16 25. 0. 0. 100yr_MH 3rd.sot 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Page 9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 16 30. 0. 0. 0. 16 35. 0. 0. 0. 16 40. 0. 0. 0. 16 45. 0. 0. 0. 16 50. 0. 0. 0. 16 55. 0. 0. 0. 17 0. 0. 0. 0. 17 5. 0. 0. 0. 17 10. 0. 0. 0. 17 15. 0. 0. 0. 17 20. 0. 0. 0. 17 25. 0. 0. 0. 17 30. 0. 0. 0. 17 35. 0. 0. 0. 17 40. 0. 0. 0. 17 45. 0. 0. 0. 17 50. 0. 0. 0. 17 55. 0. 0. 0. 18 0. 0. 0. 0. 18 5. 0. 0. 0. 18 10. 0. 0. 0. 18 15. 0. 0. 0. 18 20. 0. 0. 0. 18 25. 0. 0. 0. 100yr_MH 3rd.sot 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Page 10 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 18 30. 0. 18 35. 0. 18 40. 0. 18 45. 0. 18 50. 0. 18 55. 0. 19 0. 0. 19 5. 0. 19 10. 0. 19 15. 0. 19 20. 0. 19 25. 0. 19 30. 0. 19 35. 0. 19 40. 0. 19 45. 0. 19 50. 0. 19 55. 0. 20 0. 0. 1 100yr_MH 3rd.sot 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Gillespie Farm Drainage Plan - Project #: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM386 MODEL *** WATERSHED AREA (ACRES) 212.400 TOTAL RAINFALL (INCHES) 3.671 Page 11 11 I 1 11 d 100yr-MH 3rd.sot TOTAL INFILTRATION (INCHES) .952 TOTAL WATERSHED OUTFLOW (INCHES) 2.610 TOTAL SURFACE STORAGE AT END OF STORM (INCHES) .109 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .002 1 Gillespie Farm Drainage Plan - Project #: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP HORIZ TO VERT MANNING DEPTH NUMBER CONNECTION L R N (FT) 201 301 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 206 306 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 202 302 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 207 307 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 208 308 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 203 303 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 212 312 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 213 313 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 214 314 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 210 310 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 204 304 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 209 309 0 4 50.0 50.0 .016 .40 10.0 10.0 .020 5.00 205 305 0 4 50.0 50.0 .016 .40 JK n 0 C A N U U L 7 CHANNEL OVERFLOW CHANNEL OVERFLOW CHANNEL OVERFLOW CHANNEL OVERFLOW CHANNEL OVERFLOW CHANNEL OVERFLOW CHANNEL OVERFLOW CHANNEL OVERFLOW CHANNEL OVERFLOW CHANNEL 0 OVERFLOW CHANNEL 0 OVERFLOW CHANNEL 0 OVERFLOW CHANNEL 0 OVERFLOW Page 12 WIDTH INVERT OR DIAM LENGTH SLOPE (FT) (FT) (FT/FT) .0 524. .0200 30.0 524. .0200 .0 400. .0300 30.0 400. .0300 .0 550.. .0200 30.0 550. .0200 .0 367. .0010 30.0 367. .0010 .0 234. .0010 30.0 234. .0010 .0 247. .0010 30.0 247. .0010 .0 417. .0020 30.0 417. .0020 .0 186. .0020 30.0 186. .0020 .0 1320. .0030 30.0. 1320. .0030 .0 244. .0020 30.0 244. .0020 .0 536. .0020 10.0 536. .0020 .0 298. .0020 30.0 298. .0020 .0 658. .0020 30.0 658. .0020 I 11 [] 1 C 100yr_MH 3rd.sot 10.0 10.0 .020 5.00 215 315 0 4 CHANNEL .0 632. 50.0 50.0 .016 .40 0 OVERFLOW 30.0 632. 10.0 10.0 .020 5.00 216 316 0 4 CHANNEL .0 684. 50.0 50.0 .016 .40 0 OVERFLOW 30.0 684. 10.0 10.0 .020 5.00 217 317 0 4 CHANNEL .0 508. 50.0 50.0 .016 .40 0 OVERFLOW 30.0 508. 10.0 10.0 .020 5.00 301 206 0 3 .0 1. 0 .0 .001 10.00 0 306 207 0 3 .0 1. 0 .0 .001 10.00 0 307 208 0 3 .0 1. 0 .0 .001 10.00 0 302 207 0 3 .0 1. 0 .0 .001 10.00 0 308 400 0 3 .0 1. 0 .0 .001 10.00 0 304 209 0 3 .0 1. .0 .0 .001 10.00 0 309 400 0 3 .0 1. .0 .0 .001 10.00 0 303 212 0 3 .0 1. .0 .0 .001 10.00 0 310 400 0 3 .0 1. 0 .0 .001 10.00 0 305 400 0 3 .0 1. 0 .0 .001 10.00 0 311 700 0 3 .0 1. 0 .0 .001 10.00 0 312 210 0 3 .0 1. 0 .0 .001 10.00 0 313 212 0 3 .0 1. 0 .0 .001 10.00 0 314 213 0 3 .0 1. .0 .0 .001 10.00 0 315 216 0 3 .0 1. 0 .0 .001 10.00 0 316 217 0 3 .0 1. .0 .0 .001 10.00 0 317 206 0 3 .0 1. .0 .0. .001 10.00 0 400 311 7 2 PIPE .0 1. .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 8.2 .0 16.2 5.0 7.1 36.3 8.7 47.0 10.0 49.7 10.3 OTOTAL NUMBER OF GUTTERS/PIPES, 34 1 Gillespie Farm Drainage Plan - Project #: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. consulting Engineers ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26.3 202 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48.8 Page 13 .0010 .0010 .0020 .0020 .0040 .0040 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 25.9 101 0 102 0 100yr-1H 3rd.sot 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23.5 204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.5 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26.7 206 301 317 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 207 306 302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 117.7 208 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 117.7 209 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.5 210 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34.5 212 303 313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34.5 213 314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.0 214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.0 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.9 216 315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42.6 217 316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42.6 301 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26.3 302 202 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48.8 303 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23.5 304 204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.5 305 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26.7 306 206 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68.9 307 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 117.7 308 208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 117.7 309 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.5 310 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34.5 311 400 0 0 0 0 0 0 0 0 0 Page 14 103 0 104 0 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 108 0 107 0 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100yr-MH 3rd.sot 1 1 1 1 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 212.4 312 212 0 0 0 0 0 0 0 0 0 0 0 0 0 34.5 313 213 0 0 0 0 0 0 0 0 0 0 0 0 0 11.0 314 214 0 0 0 0 0 0 0 0 0 0 0 0 0 11.0 315 215 0 0 0 0 0 0 0 0 0 0 0 0 0 17.9 316 216 0 0 0 0 0 0 0 0 0 0 0 0 0 42.6 317 217 0 0 0 0 0 0 0 0 0 0 0 0 0 42.6 400 308 309 310 305 0 0 0 0 0 0 0 0 0 0 212.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Gillespie Farm Drainage Plan - Project #: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 4 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 305 308 309 310 0 5. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 0 10. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 0 15. 2. 1. 1. 0. .0( ) .0( ) .0( ) .0( ) 0 20. 7. 7. 5. 3. .0( ) .0( ) .0( ) .0( ) 0 25. 16. 28. 14. 11. .0( ) .0( ) .0( ) .0( ) 0 30. 37. 78. 35. 26. .0( ) .0( ) .0( ) .0( ) 0 35. 90.0() 193.0( 87 69 ) .0( ) .0( ) 0 40. 118. 320. 130. 116. .0( ) .O( ) .0( ) .0( ) 0 45. 88. 291. 104. 103. .0( ) .O( ) .0( ) .0( ) 0 50. 66. 209. 73. 71. .0( ) .O( ) .0( ) .O( ) Page 15 100yr-1H 3rd.sot 0 55. 52.00) 178.0( 60 59 ) .0( ) .0( ) 1 0. 43.0() 153.0( 49 51 ) .0( ) .00 ) 1 5. 37. 134. 43. 44. .0( ) .0( ) .0( ) .0( ) 1 10. 33. 123. 39. 40. .0( ) .0( ) .0( ) .O( ) 1 15. 30. 113. 36. 37. .00 ) .0( ) .0( ) .0( ) 1 20. 28.0() 107.0( 33 34 ) .0( ) .0( ) 1 25. 26. 101. 31. 32. .0( ) .0( ) .0( ) .0( ) 1 30. 24. 96. 30. 30. .0( ) .0( ) .0( ) .0( ) 1 35. 23. 92. 28. 29. .0( ) .0( ) .0( ) .0( ) 1 40. 22. 87. 27. 27. .0( ) .0( ) .0( ) .00 ) 1 45. 21. 84. 26. 26. .0( ) .0( ) .0( ) .0( ) 1 50. 20.0( 80.0C 25.0( 24.0( ) ) ) ) 1 55. 19. 76. 24. 23. .0( ) .0( ) .0( ) .00 ) 2 0. 18. 73. 23. 22. .0( ) .0( ) .0( ) .0( ) 2 5. 16. 69. 21. 21. .0( ) .0( ) .0( ) .O( ) 2 10. 14.00 61.0( 18 18 ) ) .0( ) •OC ) 2 15. 12. 52. 15. 15. .0( ) .00 ) .0( ) .0( ) 2 20. 9. 45. 13. 13. .0( ) .0( ) .0( ) .0( ) 2 25. 8. 40. .0() 0() .0() .0() 2 30. 7. 36. 10. 9. .0( ) .0( ) .0( ) .O( ) 2 35. 6. 33. 9. 8. .0( ) OC ) .0( ) .0( ) 2 40. 5. 30. 8. 7. .0( ) .O( ) .0( ) .0( ) 2 45. 5. 27. 7. 7. .0( ) .00 ) .0( ) .0( ) 2 50. 4. 25. 7. 6. .0( ) .00 ) .0( ) .00 ) Page 16 2 55. 3 0. 3 5. 3 10. 3 15. 3 20. 3 25. 3 30. 3 35. 3 40. 3 45. 3 50. 3 55. 4 0. 4 5. 4 10. 4 15. 4 20. 4 25. 4 30. 4 35. 4 40. 4 45. 4 50. 4 55. 42 4 .0 C ) .0( ) 422 .0( ) .0( ) 320 .00 ) .0( ) 319 .0C ) .00 ) 318 .0( ) .0( ) 317 .0( ) .0( > 216 .00 ) .0C ) 215 .0C ) .00 ) 214 .0( ) .0C ) 214 .0( ) .0C ) 213 .0C ) .0C ) 212 .0C ) .0( ) 212 .0( ) .0( ) 1.0( ) 11.0( ) 111 .0C ) .0( ) 110 .0C ) .0( ) 110 .0( ) .0C ) 1. 9. .0( ) .0( ) 1. 9. .0( ) .0( ) 1. 8. .0( ) .00 ) 18 .0C ) .0( ) 1. 7. .0( ) .0( ) 1. 7. .0( ) .0( ) 1. 7. .0( ) .0( ) 1. 6. 100yr_MH 3rd.sot 66 .0( ) .0( ) 65 .0( ) .0( ) 55 .0C ) .0( ) S 4 -OC ) .00 ) 54 .0( ) .00 ) 44 .0( ) .0C ) 44 .0C ) .0C ) 43 .00 ) .0C ) 43 .0C ) .0C ) 33 .0( ) .0C ) 33 .0( ) .0C ) 33 .0( ) .0( ) 32 .0C ) .00 ) 32 .0( ) .0( ) 32 .0C ) .0( ) 2.0( ) 2.0C ) 2.0( ) 2.0( ) 2. 2. .0( ) .0( ) 2. 2. .0( ) .0( ) 2. 2. .0( ) .O( ) 2. 1. ) 1.0C ) 2. 1. .0( ) .0( ) 2. 1. .0( ) .0( ) 2. 1. .0( ) .0( ) 2. 1. Page 17 1 1 1 1 1 1 1 1 1 1 A 1 1 1 1 1 i 1 1 100 r(-MH 3rd.sot .0() .0() 0() .0() 5 0. 1 6 2 1 .0( ) .0( ) .0( ) .0( ) 5 5. 1 6 1 1 .0( ) .0( ) .0( ) .0C ) 5 10. 1. 6. 1. 1. .0() .00) .0() .0() 5 15. 1. 5. 1. 1. .0( ) .0( ) .0( ) .0( ) 5 20. 1. 5. 1. 1. .00 ) .0( ) .0( ) .0( ) 5 25. 1. 5. 1. 1. .0( ) .0( ) .00 ) .0( ) 5 30. 1 5 1 1 .0( ) .0( ) .0( ) .00 ) 5 35. 1. 5. 1. 1. .0( ) .0( ) .0( ) .0( ) 5 40. 0. 4. 1. 1. .00 ) .0( ) .0( ) .0( ) 5 45. 0. 4. 1. 1. .0( ) .0( ) .0( ) .0( ) 5 50. 0. 4. 1. 1. .0( ) .0( ) .0( ) .0( ) 5 55. 0. 4. 1. 1. .0( ) .0( ) -0( ) -0( ) 6 0. 0. 4. 1. 1. .O( ) .0( ) .0( ) .0( ) 6 5. 0. 4. 1. 1. .0( ) .0( ) .O( ) .0( ) 6 10. 0. 3. 1. 1. .0( ) .0( ) .0( ) .O( ) 6 15. 0. 3. 1. 1. .0( ) .0( ) .0( ) .0( ) 6 20. 0. 3. 1. 0. .0( ) .0( ) .0( ) .0( ) 6 25. 0. 3. 1. 0. .0( ) .0( ) .0( ) .0( ) 6 30. 0. 3. 1. 0. .0( ) .00 ) .0( ) .0( ) 6 35. 0. 3. 1. 0. .0( ) .0( ) .0( ) .0( ) 6 40. 0. 3. 1. 0. .0( ) .00 ) .0( ) .0( ) 6 45. 0 3 1 0 .0( ) .00 ) .0( ) .0( ) 6 50. 0 2 1 � .0( ) .0( ) .0( ) .O( ) 6 55. 0. 2. 1. 0. .0( ) .0( ) .0( ) .0( ) Page 18 7 0. O 2 .00 ) .0( ) 7 5. O 2 .00 ) .0C ) 7 10. 0 2 .0( ) .0( ) 7 15. 0. 2. .oC ) .0C > 7 20. 0. 2. .0( ) .O( ) 7 25. O 2 .00 ) .0( ) 7 30. 0 2 .0( ) .0( ) 7 35. 0 2 .0( ) .00 ) 7 40. O 2 .00 ) .00 ) 7 45. 0 2 .0( ) .0( ) 7 50. 0 1 .0( ) .0( ) 7 55. O 1 .00 ) .0( ) 8 0. 0. 1 0( ) .0C ) 8 5. 0 1 .0( ) .0( ) 8 10. O 1 .00 ) .0( ) 8 15. 0 1 .0C ) .0( ) 8 20. 0 1 .0C ) .0( ) 8 25. 0 1 .0( ) .0C ) 8 30. 0 1 .0( ) .0( ) 8 35. 0.0( 1.0( ) ) 8 40. 0 1 .0( ) .0( ) 8 45. 0 1 .0( ) .0C ) 8 50. 0 1 .0( ) .0( ) 8 55. 0.0( 1.00 ) ) 100yr_MH 3rd.sot 1° .0( ) .0( ) 1° .0C ) .00 ) 1° .0( ) .0( ) 1.0( ) °.0( ) 0. 0. ) °.O( ) °° .0( ) .O( ) °° .0( ) .0( ) °° .O( ) .0( ) °° .0( ) .O( ) °° .0( ) .0( ) °° .O( ) .0( ) °° .0C ) .0( ) 0. 0. ) °.0( ) °° .0( ) .0( ) °° .o( ) .0( ) °° .0( ) .0( ) °° .0C ) .0( ) °° .0( ) .0( ) 0. 0. .0( ) .0( ) °° .0( ) .0( ) °° .0( ) .0C ) °° .0( ) .0( ) °° .0( ) .0( ) °° .0( ) .0( ) Page 19 ' 100yr-tH 3rd.sot 9 0. 0 1 0 0.0( .0( ) .0( ) .0( ) ) 9 5. 0. 1. 0. 0. .0( ) .00 ) .0( ) .0( ) 9 10. 0 1 0 � .0( ) .00 ) .0C ) .O( ) 9 15. 0. 1. 0. 0. .O( ) .0( ) .00 ) .0( ) ' 9 20. 0. 1. 0. 0. .0( ) .0( ) .00 ) .0( ) 9 25. O 1 O 0 ' .00 ) .0( ) .00 ) .0C ) 9 30. 0. 1. 0. 0. ' .O( ) .O( ) .0( ) .O( ) 9 35. 0. 1. 0. 0. .O( ) .0( ) .0( ) .0( ) 9 40. 0 0 0 0 .0( ) .0( ) .0( ) .0C ) 9 45. 0. 0. 0. 0. .O( ) .0( ) .O( ) •0C ) 9 50. 0. 0. 0. 0. ' .00 ) .0( ) .O( ) .0( ) 9 55. 0. 0. 0. 0. .0( ) .0( ) .O( ) .0( ) 10 0. O 0 � � .00 ) .0( ) .O( ) .O( ) 10 5. 0. 0. 0. 0. ' .0( ) .0( ) .0( ) .0( ) 10 10. 0. 0. 0. 0. ' .0( ) .0( ) .0( ) .0( ) 10 15. O O 0 0 .00 ) .0( ) .O( ) .O( ) ' 10 20. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 10 25. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 10 30. 0. 0. 0. 0. ' .O( ) .O( ) .O( ) .O( ) 10 35. 0 O 0 0 .0( ) .0( ) .0( ) .0C ) 10 40. 0 0 � � .0( ) .0( ) .0( ) .0( ) 10 45. 0 0 0 O ' .0( ) .0( ) .0( ) .00 ) 10 50. O 0 0 0 .00 ) .0( ) .0( ) .0( ) ' 10 55. O 0 0 � .00 ) .0( ) .0( ) .0( ) Page 20 100yr_MH 3rd.sot .0( ) .0( ) .0( ) .0( ) 11 5. 0. 0. 0. 0. .0() .0() .0() .0() 11 10. 0. 0. 0. 0. .0( ) .0( ) .O( ) .0( ) 11 15. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) 11 20. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 11 25. 0 0 0 O .0( ) .0( ) .0( ) .00 ) 11 30. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 11 35. O 0 0 O .00 ) .0( ) .0( ) .00 ) 11 40. 0. 0. 0. 0. .0( ) .0C ) .0( ) .0( ) 11 45. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 11 50. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) 11 55. 0. 0. 0. 0. .0( ) .0( ) .O( ) .0( ) 12 0. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) 12 5. O 0 0 O .00 ) .0( ) .0( ) .0( ) 12 10. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 12 15. 0 0 0 0 .0( ) .0C ) .0( ) .0( ) 12 20. O O O 0 .00 ) .00 ) .00 ) .0( ) 12 25. 0. 0. 0. 0. .0( ) .O( ) .0( ) .0( ) 12 30. 0. 0. 0. 0. .0( ) .O( ) .0( ) .0( ) 12 35. 0. 0. 0. 0. .0( ) .O( ) .0( ) .0( ) 12 40. 0 O O O .0( ) .00 ) .O( ) .00 ) 12 45. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) 12 50. O 0 0 O .00 ) .0( ) .0( ) .0( ) 12 55. 0 0 O 0 .0( ) .0( ) .0( ) .0( ) 13 0. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) Page 21 13 5. 0 0 .0( ) .0( ) 13 10. O•OC 0.00 ) ) 13 15. 0.0( 0.0( ) ) 13 20. 0 0 .00 ) .00 ) 13 25. 0 0 .0( ) .0( ) 13 30. 0.0( 0:0( ) ) 13 35. 0 0 .0C ) .0( ) 13 40. 0.0( O•OC ) ) 13 45. 0.0( 0.0( ) ) 13 50. 0. 0. .0( ) .0( ) 13 55. 0. 0. .oC ) .O( ) 14 0. O 0 .00 ) .0( ) 14 5. 0 0 .0( ) .0( ) 14 10. 0.0( 0.0( ) ) 14 15. 0.0( 0.0( ) ) 14 20. 0 0 .0( ) .00 ) 14 25. 0 0 .0( ) .0C ) 14 30. 0. 0. 0( ) 0( ) 14 35. 0.0( 0.0( ) ) 14 40. 0.0( 0.0( ) ) 14 45. 0.0( 0.0( ) ) 14 50. 0.0( 0.0( ) ) 14 55. 0.0( 0.0C ) ) 15 0. O 0 .00 ) .0C ) 100yr_MH 3rd.sot 00 .0C ) .0C ) 0O .0C ) .00 ) 00 .0( ) .0C ) 0� .00 ) .0( ) 0. 0. .0( ) .0( ) 00 .0( ) .0C ) O0 .00 ) .0( ) OO .00 ) .0( ) 0. 0. .0( ) .0( ) 00 .0( ) .0( ) 00 .0( ) .0( ) 00 .0( ) .0C ) 00 .0( ) .0C ) 00 .0( ) .0( ) 00 .0( ) .0( ) 00 .0( ) .0( ) 0. 0. .O( ) .0( ) 00 .0C ) .0( ) 0. 0. .0( ) .0( ) 0� .0( ) .O( ) 0. 0. .0( ) .0( ) 00 .0( ) .0( ) 00 .0( ) .0( ) 0� .O( ) .00 ) Page 22 100yr_MH 3rd.sot 15 5. 0. 0. 0. 0. .00) .0() .0() .0() 15 10. 0. 0. 0. 0. .O( ) .0( ) .0( ) .00 ) 15 15. 0 O 0 O .0C ) .0( ) .0( ) .00 ) 15 20. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 15 25. 0. 0. 0. 0. .0( ) .00 ) .0( ) .00 ) 15 30. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 15 35. 0. 0. 0. 0. .00 ) .0( ) .0( ) .O( ) 15 40. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 15 45. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 15 50. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 15 55. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 16 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 16 5. O 0 O O .00 ) .0( ) .0( ) .00 ) 16 10. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 16 15. 0. 0. 0. 0. .0( ) .0( ) .0( ) .00 ) 16 20. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 16 25. O 0 0 0 .00 ) .0( ) .0C ) .0( ) 16 30. O O O O .00 ) .00 ) .00 ) .00 ) 16 35. O O 0 O .00 ) .00 ) .0( ) .00 ) 16 40. 0. 0. 0. 0. .0( ) .O( ) .0( ) .0( ) 16 45. O 0 O 0 .00 ) .0( ) .00 ) .0( ) 16 50. O 0 0 0 ,OC ) .0( ) .0( ) .0C ) 16 55. 0. 0. 0. 0. .0() .00) .0() .O() 17 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .00 ) 17 5. 0. 0. 0. 0. Page 23 100yr_MH 3rd.sot .0( ) .0( ) 0( ) .0( ) 17 10. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) 17 15. 0. 0. 0. 0. .0() .0() .0() .0() 17 20. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 17 25. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 17 30. 0. 0. 0. 0. .0( ) •0( ) .0( ) .0( ) 17 35. 0 O 0 0 .0C ) .00 ) .0( ) .0( ) 17 40. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 17 45. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 17 50. 0 0 0 0 .0( ) .0C ) .0C ) .0( ) 17 55. 0 0 0 0 .0( ) .0( ) .0C ) .0( ) 18 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 18 5. 0. 0. 0. 0. .0( ) .00 ) .0( ) .0( ) 18 10. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 18 15. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 18 20. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 18 25. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 18 30. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 18 35. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 18 40. 0. 0. 0. 0. .00 ) .0( ) .0( ) .0( ) 18 45. 0. 0. 0. 0. .0( ) .0( ) .00 ) .0( ) 18 50. 0 0 O O .0( ) .0( ) .00 ) .00 ) 18 55. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 19 0. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) 19 5. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) Page 24 1 100yr_MH 3rd.sot 19 10. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 19 15. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) 19 20. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 19 25. 0. 0. 0. 0. -0( ) -0( ) -0( ) -0( ) 19 30. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) 19 35. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) 19 40. 0. 0. 0. 0. .O( ) .0( ) .0( ) .0( ) 19 45. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 19 50. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 19 55. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) 20 0. 0 0 0 0 .0( ) .0( ) .0( ) .0( ) Gillespie Farm Drainage Plan - Project #: 953-003 100-YEAR Developed Condition - October 2002 - TST Inc. Consulting Engineers *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS E CONVEYANCE PEAK STAGE STORAGE ELEMENT (CFS) (FT) (AC -FT) (F 315 20. (DIRECT FLOW) 316 44. (DIRECT FLOW) 214 12. .4 217 44. .5 201 1112. 3114 (DIRECT FLOW) 317 44. (DIRECT FLOW) 301 104. (DIRECT FLOW) 213 12. .4 1 203 109. 1.0 1 202 190. .7206 1 112. 3113 (DIRECT FLOW) 303 109. (DIRECT FLOW) 1 302 190. (DIRECT FLOW) 306 142. (DIRECT FLOW) I 212 121. .9 I 204 130. 1.0 I 207 333. 1.6 I 312 121. (DIRECT FLOW) I 304 130. (DIRECT FLOW) I 307 .333. (DIRECT FLOW) I 205 118. .9 I 210 116. .9 1 AD DETENTION DAMS *** TIME IR/MIN) 1 40. 1 40. 1 40. 1 40. 1 50. 1 45. 1 40. 1 50. 1 45. 1 40. 1 50. I 40. 1 40. 1 40. 50. 40. 40. 40. 40. 40. 40. 40. 40. 40. 40. 40. Page 25 100yr-IH 3rd.sot 209 130. .9 0 40. 208 320. 1.6 0 40. 305 118. (DIRECT FLOW) 0 40. 310 116. (DIRECT FLOW) 0 40. 309 130. (DIRECT FLOW) 0 40. 308 320. (DIRECT FLOW) 0 40. --� 400 9. .0 41.8 5 5. 100 yR. VOLAAM'E 311 9. (DIRECT FLOW) 5 0. 700 9. (DIRECT FLOW) 5 0. Page 26 0 _ i v-,--, 1 10 r "f-I -. r- air rt Id IF Al 102 J1 49 f QJ 20,jez � i 10, .c4 53 cc }2>2 To e... .. - .-., g e NIL103 52 55 §203 tt er N.2 —� 11 f LLL or ti,_7T _To It I g 104;;' I'm<W Id t 33.46 50 rl® cc Kos 1 A A. Fre es V j F.W. i - 1 I f _ SRI fly I L cr I€ ' - �r9to ; r _A diD, f' ra,si t^ S WA h sill' 'rr fir • is red .- a ..ir 11f So .r/ s� 7 .. or 20 rx 4 _ 'OYR WATER SURFACE EC SOOJ 5/ = 45.04 /( t l = 5003,51 i .....� - 111 lD p ;4� •zos��Tf 105 D Emw DIRECTION 'NCNC. P3 g g g PROPOSED N RM STCSEWER ]A METAL smEwnLN CULVERT EXISTING STORM SEWER � BASIN DELINEATOR PROPOSED CONTOUR A DESIGN POINT -� EXISTING CONTOUR ® CONVEYANCE ELEMENT PROPOSED TOi 4945 0 FINISHED FLOOR MON ELEVATION 2O0 0 zoo AM rrar 1'-2ODMa, City of Ft. Collins, Colorado UTILITY PLAN APPROVAL APPROVED'. city engineer Date Consul EE,gmee-, CHECKED BY: 748 wlllAT. lid, - Water IT Waate.ater Utility Dele CHECKED BY: ' Stormw+ter Utlllty Date r z pa CHECKED By IMICIV18102 Parke AT lbare Uon Dale e zr w CHECKED BY: Traffic Engineer Dale OF CHECKED BY: xetw+i Iteaourcea Mle NOTES 1. SEE SHEET 2 FOR STORM SEWER CONSTRUCTION NOTES. 2. SEE SHEETS MC-580 FOR ALL STORM 'FEWER PROFILE INFORMATION. }. SEE FINAL DRAINAGE REPORT FOR MAPLE HILL SUBDNISION FOR EROSION CONTROL DETAILS. A . SEE SHEETS 124-128 FOR DETAILS, 5 THE TOP OF FOUNDATION ELEVATIONS SHOWN ARE THE MINIMUM ELEVATIONS REOWRED FOR PROTECTION FROM THE 100-TEAR WATER SURFACE IN STREETS, CHANNELS. DITCHES, SWAl£S OR OTHER DRAINAGE FACILITIES, AS LLUSTRATED BY A MASTER GRADING PUN ARE -0 BE SHOWN. E THIS GRADING PLAN IS FOR BLOCK 26 ;WITHIN ROWj ONLY. SEE SHEETS 10-23 FOR `ACRE INFORIM➢ON. ���� i %\ / r i yam, brsl / / II — / Al coris �'�y� iorl cots r �a �, / I �� t 1�70 IF / J / / i �I t RK w_, OF T / CRY UP / OFit 7 / _ p �. �' �� �/ 0.0 osz I /io / Lor12 LOT 0 LOT IF I 4 4 ` G0>11 y COT 1 / IT LOT /I I I - 1 L T l y N I� l 11 T B y I / LO L - LO >O � IO 7 IF \ C3 tore 'I z GAT CSb� °T's ', I I'LOT5 l 3.6 r tole i I orC5e LOTS I 0.5 04, 1 \ :DLO OT C _'E��,I 02 1 \ LOTT GOr9� I _ 1 I \ B f LO rCUP I C I r ;iFIT Lo�z� ,2.�5Jy m orsi_LOr _ _- -- BE <. "t r r OTi I C4s L Tay I o I/ / I ;. I I'i I _I 0.0 0.5 V I �, c, \, I Lrz I J 1 �.6 (^c —I I % / bO yMLEYE ,�6c I ^ I LOT II I v II�� I LO e 1 rs �ori c r o e orsl Lod III wN noON.' INLLT 10 \ OYf �� \, \ \ It la. CC' - Ffl Syr _ n. YCV .. .. . �� I� Al � I / �..., z ,\�L IBp .�RR �— _ _ �r �o 21 CUT FE P,l KEY MAP Egg' i9 BOXELDER SANITATION DISTRICT APPROVED FOR BORLOEN SANITATION DETECT City Of Ft. COIILRS, Colorado r UTILITY P AN APPROVAL N BY DATE: APPROVED'. TIME ee= n=te CHECKED BY: EAST LARIMER COUNTY WATER DISTRICT �_�__ =. uwur wLe UTILITY PLAN APPROVAL HECKEL BY: sbr.mnte„ utirty Dste APPROVED: 'IFCKEO BY PATEN,b PC,—eT4o, Oete N ue,Rn DATE' = LCKED BT' o so 1w Hero= n, OUR APPROVED 5}I�es ENS....♦,.,r F- pr. I f. 11 �ele KK, My '1011*1 I. SEE SHEET 2 FOR STORM SEWER CONSTRUCTION NOTES. 2. SEE SHEETS 58C—MD FOR ALL STORM SEWER PROFILE INFORMATION. 3. SEE FINAL DRAINAGE REPORT FOR MAPLE HILL SUBDIRSION FOR EROSION CONTROL DETAILS. 4, SEE SHEETS 124-128 FOR DUALS, 5, THE TOP OF FOUNDATION ELEVATIONS SHOWN ARE THE MINIMUM ELEVATIONS REQUIRED FOR PROTECTION FROM THE 100—TEAR WATER SURFACE IN STREETS, CHANNELS. CONCHES. SWALES OR OTHER DRAINAGE FACILRIES, AS ILLUSTRATED BY A MASTER GRADING PUN ARE TO BE SHOWN. 6. THIS GRADING PEAK IS FOR BLOCK 26 (WITHIN ROW) ONLY. SEE SHEETS 10-23 FOR MORE INFORMATION. MAPLE HILL DRIVEE KEY MAP \ to: It LOT OF LOT 110 LOT 11,LEu to LO I tare I LOT3 I I LOT. LO: J MLI W, F.W. ��25INL 47 b. �L La3 F�•.. .� I SUNBURY LANE wan F` SUNBURY LANE 1 xc _., _. ,�.. u.... , -7 AJ>m,� rRix rn 7+�_ 5 I I `� �� 11 -- f7ac�y� ,I N "F 1 C9-1 Q °�5 1.4 LOT9 OT W1 LOT; J r .TS L0T1 �9 QO l LOTS L ! L C 0.36 .� CL F[s x' F[s I i / U c J z \ \ w �_ �. �� A �. A / / / ;_ 7— ILz i 0 BOXELDER SANITATION DISTRICT ANITBSAXITN DIDISSRICTTRICT uELDEPIKINED Fax City of Ft. Collins, Colorado UTILITY N APPROVAL KID BY: —DATE: APPROVED'. v Conawtm.EEnngmee.s City [ I,", Oete cary OVp TM "1"1" X%, MI 0 TRE:EX17ING Fen c e. celo,eee CHECKED BY: - - svo vvF0551 EAST LARIMER COUNTY WATER DISTRICT MILK. k %,,A w te, umuy DI _ _ .. AM �1 UTILITY PLAN APPROVAL CHECKED BY: rav D03.000000 Sbem e V IRy Ono a t' tRecreetiI avmory MAKE APPROVED: CHECKED BY: 4A21/04 amegv Paeke Uete ® ON p[una CHECKED BY C DAM vun. en:,=e.. mo- o IW APPROVED: OP A r _ NH Sptena [ry'.neer L DATE: