Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 01/24/2001
Final Approved Report 7. H415� Date 00/ FINAL DRAINAGE REPORT I LINDEN PARK P.D.P Submitted to: CITY OF FORT COLLINS May 30, 2000 I .1 FINAL DRAINAGE REPORT FOR LINDEN PARK P.D.P. Submitted to: CITY OF FORT COLLINS ' May 30, 2000 I 1 11 1 0 11 1 1 May 30, 2000 Mr. Basil Hamden City of Fort Collins Stormwater Department P.O. Box 580 Fort Collins, CO 80522-0580 Re: Linden Park P.D.P. Project No. 0930-001 Dear Mr. Hamden: We are pleased to submit this Final Drainage Report for the Linden Park P.D.P. This report includes our evaluation of the proposed storm runoff interception and conveyance facilities, water quality pond analysis, and erosion control plan. All of the comments from the last submittal dated March 20, 2000 have been reviewed and addressed. This report was prepared based on current City of Fort Collins criteria and we believe it meets the requirements for a final submittal. We look forward to your review and comments and will gladly answer any questions you may have. ®ems.. Sincerely, TST, INC. CONSULTING ENGINEERS Nvi 1�' k � &)I J �t X�- Mike R. Jacobson MRJ/tdy ' TST, INC. 748 Whalers Way - Building D Consulting Engineers Fort Collins, CO 80525 (970)226-0557 Metro (303) 595-9103 Fax (970) 226-0204 Email info@tstinc.com www.tstinc.com David B. Lindsay, P.E. I TABLE OF CONTENTS Pace 1.0 Introduction 1.1 Scope and Purpose..............................................................................................................1 1.2 Project Location and Description........................................................................................ I VicinityMap.......................................................................................................................2 2.0 Historic Conditions..........................................................................................................................3 3.0 Developed Conditions Plan.............................................................................................................4 1 1 Tables 1 7 3.1 Design Criteria................................................................................................................ 4-5 3.2 Drainage Plan Development................................................................................................5 3.2.1 Street Capacity .......................................................................................................6 3.2.2 Inlet Design............................................................................................................6 3.2.3 Storm Sewer Design...............................................................................................6 3.2.4 Riprap Design..................................................................................................... 6-7 3.2.5 Water Quality Pond Design...................................................................................7 3.3 Erosion Control...................................................................................................................7 3.4 Requested Variance.............................................................................................................7 Table 1 - Historic Hydrologic Calculations Worksheet............................................................................ 8-9 Table 2 - Summary of Attenuated Historic Runoff.....................................................................................10 Table 3 - Developed Hydrologic Calculations Worksheet.................................................................... 11-14 Table 4 - Summary of Attenuated Developed Runoff........................................................................... 15-16 Table 5 - Summary of Detention Pond Analysis.........................................................................................17 Table 6 - Summary of Street Capacity Analysis................................................................................... 18-19 Table 7 - Summary of Inlet Analysis..........................................................................................................20 Table 8 - Summary of Storm Sewer Design................................................................................................21 Table 9 - Summary of Riprap Design.........................................................................................................22 Technical Appendices Appendix A — Historic Runoff Appendix B — Developed Runoff Appendix C — Street & Channel Capacity Analysis Appendix D — Inlet Analysis Appendix E — Storm Sewer Design Appendix F — Riprap Design Appendix G — Water Quality Pond Design Appendix H — Erosion Control Sheets HistoricDrainage...............................................................................................................Sheet 1 of 1 DevelopedDrainage Plan.................................................................................................... Sheets 1 & 2 of 2 1 1 11 t 1.0 Introduction 1.1 Scone and Purpose This report presents the results of a final drainage evaluation for the Linden Park P.D.P. located in the City of Fort Collins. In accordance with City requirements, the purpose of this report is to present a storm drainage plan that identifies peak runoff conditions and provides a means by which to safely collect and convey runoff across the site. This report will evaluate hydrologic conditions for the proposed development and will use that information for hydraulic analysis of the proposed streets, drainage facilities and water quality facilities. 1.2 Proiect Location and Descrintion The Linden Park P.D.P. is a proposed single-family residential site located in the Southeast quarter of Section 7, Township 6 North, Range 68 West of the Sixth Principal Meridian, County of Larimer, State of Colorado. The site is Northwest of the intersection of Timberline Road and Trilby Road. The site is bounded on the east by Timberline Road, on the west by the Union Pacific Railroad and on the north and south by existing farmland. A vicinity map illustrating the project location is provided on Page 2. The Linden Park P.D.P consists of approximately 37.3 acres. The site will be occupied by 168 single-family homes and 16 duplexes. Access to the site is from Timberline Road at the east end of the property. There will also be an emergency access only entrance from Timberline Road at the far northeast corner of the property. The internal streets on the property will be public streets. The proposed development is situated within the Fossil Creek drainage basin and contributes runoff to Fossil Creek. Due to the location of the proposed development within the Fossil Creek ----drainage basin, -it-is subject-to-the_conditions_specified in-the_"Fossil-Creek.Drainage-Basin-Master- _ _ _ . - - Drainageway Planning Study" [SLA, 1982]. This Master Plan dictates that detention is not ' required within the Fossil Creek Basin, however, restrictions in the existing drainage channels will not permit us to release more than at historic rates. 1 HORSETOOTH ROAD VICINITY MAP N.T.S. E 11 1 1 2. o 1 Historic Conditions [1 The site is currently vacant but has been used as cattle pasture in the recent past. There are two 1 existing irrigation ditches running north to south that divide the sight roughly into thirds. Runoff from the eastern third of this site sheet flows generally from the northwest to the southeast and 1 then off the site. This runoff also includes offsite contributions to the north that flow in the same direction as the previous flow. Runoff from the middle third of the site sheet flows from each irrigation ditch towards the center of this third and then flows south off the site. This runoff also 1 includes offsite contributions to the north that flow south onto the site. Runoff from the western third of the site sheet flows in three different directions. The northern area sheet flows north until it reaches an offsite pond. The eastern portion sheet flows east toward the irrigation ditch where 1 the flow is turned south running off the site. The southwestern portion sheet flows southwest where it is intercepted by the Union Pacific Railroad borrow ditch and then flows south. Historic contours and basin delineation are shown on the Historic Drainage sheet that can be found in the 1 back of.this report. 1 1 1 1 1 1 1 r 1 3 1 3.0 d Developed Conditions Plan 3.1 Design Criteria The drainage system presented in this report has been developed in accordance with the criteria established by the City of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual (SDDC) dated May 1984 and revised in April 1997. Where applicable, design guidelines and information were also obtained from the Denver Regional Council of Govemment Urban Storm Drainage Criteria Manual (USDCM). ' Developed condition hydrology was evaluated based on the 2-year and 100-year storm frequencies as dictated by Table 3-1 of the SDDC manual. Detention of developed flows from ' this site is not required in the Fossil Creek Basin, however, channel restrictions on the south side of Trilby Road limit the release to historic rates from the Linden Park site. Because of the limited size of the subbasins on the site, the Rational Method was selected to '. calculate runoff. The Rational Method utilizes the SDDC manual equation: ' Q = CCfIA where Q is the flow in cfs, C is the runoff coefficient, Cf is the storm frequency coefficient, I is the rainfall intensity in inches per hour, and A is the total area of the basin in acres. The runoff coefficient, C, was calculated from Table 3-3 of the SDDC manual based on the proposed developed condition land use. A composite runoff coefficient was calculated for each sub -basin ' based on the percentage of impervious surface (C = 0.95) and pervious surface (C = 0.25). Cf was taken from Table 3-4 of the SDDC manual and was determined to be 1.0 for the 2-year storm and 1.25 for the 100-year storm. The appropriate rainfall intensity was taken from the rainfall ' intensity duration curve in Figure 3-1 and Figure 3-1 a of the SDDC manual. To obtain the rainfall intensity, the time of concentration had to be determined. The following equation was utilized to determine the time of concentration: ' t' = to+ t8 where to is the time of concentration in minutes, to is the initial or overland flow time in minutes, and tg is the travel time in the gutter in minutes. The initial or overland flow time was calculated with the SDDC manual equation: to = [1.87(1.1 - CCf)L"Si/(S)0.33 4 11 where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the average basin slope in percent, C is the composite runoff coefficient, and Cf is the storm frequency coefficient. The formula limits the product of CCfto 1.0 and when the product exceeds this value 1.0 is used in its place. Gutter (or channel) velocities were determined using Figure 3-2 of the USDCM. The travel time was then determined by dividing the gutter flow length by the velocity. ' This procedure for computing time of concentration allows for overland flow as well as travel time for runoff collected in streets, gutters, channels, or ditches. After the peak runoff was calculated, attenuated runoff was calculated. This was done by combining all contributing areas upstream of a given design point. The time of concentration for the design point was taken as the greatest time of all the contributing subbasins. ' 3.2 Drainage Plan Development 1 The proposed drainage plan consists of a combination of overland flow and gutter flow. The runoff will sheet flow across landscaped yards, common areas and parking lots, then concentrate in proposed streets. Gutter flow in streets will be collected at low points via crosspans and inlets and then conveyed to the individual basin water quality and detention ponds. The flow will then be directed into a 30" storm sewer that flows south and exits into the Paragon Estates channel on the south side of Trilby Road. The Paragon Estates channel leads directly into Fossil Creek. Subbasins were delineated based on proposed grading. Final grading and basin delineation are shown on the Grading, Drainage and Erosion Control Plan sheets which can be found in the back of this report. The proposed site grading will generally maintain existing drainage patterns. Offsite runoff from the north will still be allowed to sheet flow south onto the site where it will be channeled to one of the detention facilities. Basin A will sheet flow across the lots to the individual streets where it will be channeled into the curb and gutter. It will then flow down the streets to the low point of the basin which is detention pond A in the center of Fossil Creek Circle. The flow will enter detention Pond A via continuous grade and sump inlets. Basin B and C will sheet flow across the lots to the individual streets where it will be channeled into the curb and gutter. It will then flow down the streets to the low points of each basin and then enter detention Pond B/C via sump inlets. Basins D, E, F and G sheet flow offsite undetained. The outflow of detention Pond B/C travels through a 24" storm sewer to detention Pond A. Detention Pond A releases the 100-yr ' historic runoff of 25.9 cfs into the 30" storm sewer. This release rate was determined by adding the attenuated historic flows from design points 2 & 3 and then subtracting the attenuated developed flow from design point 36 that leaves the site undetained. We then added 3.4 cfs to the 1 release rate because the developed runoff for historic basin HI is 3.4 cfs less than historic conditions. This was done because historic basins Hl, 112, & H3 all historically ended up at the same point, the Paragon ditch on Trilby Road. There is an excess capacity of 40 cfs in this storm sewer starting at the lot line between Hahn and Robinson. This excess capacity is provided to allow some of the runoff from future developments to the south to enter into this system. This flow then enters the Paragon Estates channel on the south side of Trilby Road. Detention Pond A also has an emergency inlet to utilize the full capacity of the pipe. This inlet is a manhole with a grated lid that is located just downstream of the pond outlet structure. The inlet is placed at elevation 4935.00. Storm sewer data is shown in Appendix E of the report. 5 P This Final Drainage Report includes analysis of the proposed detention ponds, street capacities, inlet capacities, storm sewer hydraulics, riprap and water quality structures. ' The results of the Rational Method Hydrologic Analysis can be found in Table 3 with the methodology of calculations shown in Appendix B. Table 4 shows the results of the runoff attenuation described previously. 3.2.1 Street Capacity ' Street encroachment criteria for the public streets was taken from Table 4-1 (minor storm) and Table 4-2 (major Storm) of the City of Fort Collins Storm Drainage Design Criteria Manual. 2-yr flow depths in all streets, classified as a local streets, were restricted to the crown or the top back of curb whichever is less. 100-yr flow depths in all streets were restricted to 3 feet outside the R.O.W. or 6" over the crown whichever is less. All of these public streets meet these ' requirements and will function below the allowable capacities. The results of the Street Capacity Analysis can be found in Table 6 with supporting calculations presented in Appendix C. 3.2.2 Inlet Design Continuous grade inlets and sump inlets were used to collect the 100-yr runoff from the low. points. All inlets are CDOT Type "R" inlets. Design Points 8, 10 & 18 all utilize continuous grade inlets while Design Points 13, 16, 28 & 33 all utilize sump inlets. All of these inlets convey the storm runoff to the detention ponds. The openings wi11 convey the 2-yr runoff without overtopping the curb. The openings will convey the 100-yr without inundating any buildings. ' The results of the Inlet Analysis and Design can be found in Table 7 with supporting calculations ' presented in Appendix D. 3.2.3 Storm Sewer Design ' Storm Sewer Lines ST-1, ST-2, ST-3, ST-4, ST-6, ST-7, ST-8, ST-9, ST-10 &, ST-13 were analyzed with UDSEWER The water surface at the downstream ends were determined by the ' 100-yr water surface in the detention ponds. Storm Sewer Lines ST-5, ST-11, & ST-12 were analyzed with HY8. The water surface at the downstream ends were determined by the 100-yr water surface in the detention ponds. The results of the Storm Sewer Design can be found in Table 8 with supporting UDSEWER and HY-8 results presented in Appendix E. 3.2.4 Riorao Design 6 I i I 1 Riprap was placed at pipe outlets where exit velocities exceeded 5.0 fps. Our calculations indicate that Class 9 riprap will accommodate each of the pipe outlet conditions except for Line ST-1 where grouted Class 12 riprap will be used. This riprap will be buried as specified by the criteria. The results of the Riprap Design can be found in Table 9 with supporting documentation provided in Appendix F. 3.2.5 Water Ounlity Pond Design The water quality pond in detention Pond A was provided before discharging site runoff to the Paragon Estates channel. This pond was sized and the release rate provided based on Urban Drainage criteria. The analysis of the ponds, with supporting documentation, is provided in Appendix G. 3.3 Erosion Control During construction sediment will be contained on site with silt fences along the perimeter of the site. Temporary straw bale check dams will be installed at 2' vertical intervals on ditches without trickle channels. Temporary gravel inlet filters will be placed in front of the pond outlet structures to trap sediment while construction is in progress. Water quality ponds do, however, need to be periodically checked for excess silt that then needs to be removed. It is recommended that all areas be reseeded and mulched immediately upon completion of construction activities so that there is as little erosion as possible. The results of the Erosion Control with supporting documentation is provided in Appendix H. 3.4 Requested Variance We are requesting a variance to slope the grading on some of the drainage facilities to 3:1. We are requesting this variance because of some of the proposed street and lot layouts constrain the grading in certain areas. We are requesting that the side slopes on detention Pond B & C and the two depressions directly north of the oval detention Pond A be allowed 3:1 grading. We feel these areas will function adequately and that the slightly steeper slope will not cause maintenance crews any sort of problems. 3.5 Interim Timberline Road Drainage Timberline Road is currently being redesigned by others as a four -lane arterial road. In the event Timberline Road has not been built to the four -lane design by the time Linden Park is constructed, an interim plan for the drainage flowing off Timberline Road will be constructed. The drainage flowing off Timberline Road to the north of Fossil Creek Parkway will sheet flow directly into Detention Pond C. The drainage flowing off Timberline Road to the,,south of Fossil Creek Parkway will flow into the existing road -side ditch along Timberline Road. This existing ditch will be regraded so there is a clearly defined ditch running south off the Linden Park Property. a 7 11 r [I 11 E i yak s � s 5;( n G F { Co+ [radvd �i� xlW bi. �ry ,?tr5t ti M1M'; ^�� t%0tl M 5 44 1;j iR,rx,i ar,�r r1'NR Rfld Z !'Ig�ae i i V1 V1 N fV p h M N Vl v1 N � � vl .;f� Wy.�4R y rc N— N N N N N N N N N N N ! Eva i5 O O O O O O O O O O O O O O R 1.JQ2 `.. N'. .. .: ..:. .: .: .. .: .: .: .. .: .. .: "MQ� ,, o04ninto o00ototoo > N N N N N . N N N N N . N N ^5 YY � � fV tV Hf Vl O O O �l C C C OC ".T ii A �fyLi�ki!� 4� ?: F N M v n d w U O w w 0 x� i (4 yY�. »�3» zxxxx 000000 00 0 7R Z:. x o 1a MEN �Is l�lbl�l I�I�IOI�I�I�I�IOI�I I '11=1n1"I 1qIo1o1c1=l01010 M1\1\1�1 I�I�I�lV m \o wlwlvl O � � INI4I�I� �I�I�I�I�I I�INl�lml�l�l� OIOIx.I,Zkfl ICIZI%.IOIOIZIZIZIOI -lolzlzlzl IN lzlzi-I-Izlzlz M ' F Oaf C H o 0 o h o o r h o 0 o r 5j GCS J 1 GO U Q w do = .. hQ14L y 000000000 � ws F a Gil; 9 1 1 1 1 1 i 1 1 1 1 1 i IS fir. N M_ en N �` b O_ T N m m O LJ' a `�`� 00 O O V H ti O O O CO N h h b t 1`Rry +a a � SR/t q t ^ 4' it c.✓" "sy O HI vl _ 00 00 Nf O O N t� O� t0 I� ari o0 0o v �f to vi ae z ., w i ,1s y ��++ Ft�`YRFFrit� 1 : aaT vt tV O O 00 N N N T O� v1 00 i3 Y. ] 6 f Z LF� v W:13° v 4 m tUs, cn o _ r, o. wn pE.+ �'�: bPINb raaviori vi / iwfl � T vl h h N h h ri V1 Vl v1 Vl V1 V1 v1 w N rl N N N N. N N. N N M z c:w 0 0 0 0 0 0 0 vy 0 0 0 0 N of v, va O O vt to vt z N N N N N N N N N N C O O O O O O O O C C O C � x� H�OO.°aNMoo�n�oo000 o o v vi '^ o 0 0 oe H ri ni ri _ F A t d f i My y r a p ❑ ,>, tF„Y�' 2R7U❑ Wo+wOx ❑ ra f �y,�: mrn�nv�rn❑v��n�n 0000 pp]pppo 4ri r Q 5 F �Rf . W I, la � ' 3y1 r' Z ❑ U ❑ W _ w (� �". -� N to �n a M aV1 fm/1 fU/J Q y fw/! y y VJ N fn h 7 O O O x O O 0 0 x x x x 10 L I r I r x P e'er �*Ft rnxf� °W'k' V "'N r +x apya 5 a t >0000i'!ro,.+rZNar: n�Mrtnro�o '^v+toro �`!ov,voo �w w w tEia N jtF. rJ a:a. '�K?`�x.`. 000000 00 O a o rn0000aa vvN'^M a rnO v�oo'^ao M��oo a0000p � tw'Y x �w.0 V1 Vl Vl V1 Vl V1 vl Vl Vl Vl Vl Vl N Yl N v1 fV Yl N Vf N Vx fV Vl N Vl N V1 [V vl tV vl N Vl N V1 N V1 N Vl N Y1 N Y1 N C4 N N N Vl N Vf N Vl N Vl N 4� vw�j fir: — — RMY Ja iron -4 C o00000o O O O O O O o coo o 0 0 oa000000000ao 0 0 0 0 0 0 0 0 0 0 0 0 O 00000 O O O O O 000000 O O O O O O 0 {Q�} 6 u£-`�Fssc SQ ' r r O r N O O r r t` / sOr N Ci 00 00 00 00 N xD a0 aD V a0 V a0 a0 aD �D �O (O a0 aD 00 N 00 N a0 V a0 OO N 00 V aD 00 V M -F'F�•w` O O O O O O O O O O O O G O O O O O O O C; O O CD CD TOO -� N 7 0 0 N N t0 vt W m r vt M of f� Nt O 7 N 0 aO I� r M M O N O aFs aZ'� N 0 0 0 M tV H N r •+ G O O r .r .. .+ C O C C C r C O G �+ '+ C C 6 C tv .;,,�cV 0 0 r» �a.. PnF. t s,y, �a r Y�1r r N M 7 to a0 1� 00 Ot r r N N N N N N N N N N M r M N M M M T M 7 M U C..% U �..� � Q r 4 F � Q IT190 IIITIU 1111 A rry a i t�' r 11 I I L_ I I I !hy t tr7 ,y�`.t�� �% ' NinvvaMN`^r9'^M00araeomanIN ww m«oono inmrotmoo w w'. m Ni o o N o od `D � ;° O oo N N vi ad a t-4 oo v o O O a t' ri .: o o t-: t-: o Mi R x°Y)w RI Y i i n� M In M 00 �D In N O of b N r N vl wD N a O C O G r r r o ..i w yi! + c r aa: r' a aKf� 7 OG n 00 r Q oD ad 00 00 h N h r 7 Qo 0 ad h h M O 06 n h 0 0 O a to N k rT+ ? ^yes r a p/ rN� MinaarnryraoaoIN .r fV N CI N r .r CI r N N r IN N N IN N MININ N N N N lV oa N N 7MrrOw rarraQ, h 8.1 yer A )t1.,v 9SS�ACi 4 Ihw b r wD V h N O O V r 00 M `O 0 0 0 Ow r w0 fn 00 �O1 L` C o N Vl Hf OO y C C1 Or h 00 vl t-� 06 f` 01 Vl y C N r 06 r N -4 OG Oi -4 tV O ~ Y �a. n~ z t " Q a ri;�y k4 E, h r w0 w0 h MI � a n O h O Oo O n O b N 00 M NaNrM�;.C. T;;vi MC N Oi � � r N ^' N I N C N N Cf N V rl O G o V Ci M M O '+ W to N 00 N O O 6 L 4 >➢^p1, Q t t� r t� a N Q Z o N o N vt N vI N vi N M N wt) N N N N N h N h N n lV sD N N N vi r Q Z N N d Z wo r r r r r rn r Q Z a r v, in r C FF7� Ai+ W sF::ti: C9F W(tt�.("✓;. o o ;:.„ +Z O C C INz '+ . . r y r coo Z C -+ 0 0 -� z Q � sf O O 'Q: O Ow n n v n O ��o$000 O a0 M 00000o r Ow M oo N N n n O o O O oin <T M oo V vl O N V h v O v O o in O y t�.' av�.v �l In O O 00 O r T h M .• In O a 7 iD a ? R In M {2. M M M M M J$N QFep, `� Q¢¢ Q R Q Q Q 'G .t Q Q Z Q of '(, �; Q ?, Qryt. � ?, 'G itl L:1 21 07 to U U V U U V ❑ Q R1 U ❑ w}« r 1z 1 1 1 1 1 1 1 1 1 r rx 4. a vi o O a<, w R W ,eYy E�, M1ar; ye� O _ii r V; en O O F ?NY 4 vi V c G v � M O /l v/. S M1 Jlv r 4Y ' WAI A J Si 4 �i /1 � JvYO Zd zz i- �c r; r. x0 5zV SC. O W N O O u f� au /OI _k 5 Z i / 7 :•• � o 00 00 a v M1N, J t, M av co o co c o x<a:: •x o n; Y i ^ 13 v� < c Vi ri vi v �g v w r µ•.: n uh: 0. 1s z- o o 00 00 F m.yF 4N� c:s A % M f^ Y^ Y F p�, r vvi ie�er .: x' W M U µme" v £ F v f W r M } 1 �ao-� • S zz zz 4 F3:r 00 cc MAM z31 z F. „" q E cn v M A z , o U �z pq � � • y. w u, w (� C7 A S H x f l a 14 r n i i r r r i r r r r r r r v C N „ MI fD P M 00 O; N N N N R`'. a4 01 C ao N fmd r h N r oo M oho N "1 (`! [N r fp vl o0 0• 00 fV N N1 C O T47s �1.. O r 00 r O N r n M vl ' ei " 00 N f0 f0 vM1 f0 N vx V n vx r O m n n N vl 00 r as N „L N o— y" f m �G .r+ i tV ! o! vl \ebrvt,fcr ad .c NOm CI m ? w I": w m fd 00 mri 00 ao �i ao o6 0 aomni 00 DD Do ao ao od 0o f+i m Ni 00 0000 O o (ii:r i k a9f 2 r vd,� S o.ho-�ao;�vvr..�ec000m-�ooMmoofnaa r r r r r T; s An(Y �kl� M vi H vl Pi C vi r H O 'n O C vt fp F y.F �M1kv mar rrr rrr ., V+r oo oor 0. MMm�`ooMm��MM�co 0� Of pf Of pf Of r, x+ ; tikM1� Vy: a %F if 7O•' N v! n \n [� Wn 1� T of [� N— of O 7 of n fl: N O r n n o0 m-- 09 41 t� n O O m vx vx N N fD w! g O O 1141 r C 0 ,�. r p? v D: .r.. v v Oi D• .p � z- Fo, \ —xvSk vo UR� a, Vl N vl N Vl N N f•1 N N Yl N Vl N Yl N Yl N Vl N N N N N Yl N Vl N Yl N N N N N Yt N vl <V Vl tV Yl N V1 N YI N vt N Vl N Vl N YI N N N v1 N Y\ N VI N Vf N Vi N Vf N Vl N �v r r r r ..� .ti r r ..� .... .r r r r .-. r r r r r .r r r �15 , M1 6 .',.'�•M �rvaiyh N 0 r 0 .-. 0 ... 0 r 0 r 0 r 0 ... 0 rrrrr... 0 0 0 0 0 0 r 0 r 0 0 r 0 .-. 0 ... 0 r 0 r 0 r 0 r 0 r 0 ... 0 ... 0 r 0 r 0 ... 0 .. 0 r 0 r 0 r 0 r 0 r s �z (C(Rriy.VJ N0 fC fp b V \0 f0 b V b b b b b b b b b N N m f��t b b tq�t pp V f0 f0 O yy O oo m 00 h C G O C C C o O C C C C C C C O C G O O C C C 1 1611 y� - L �J M1 J Ff � v J N O. f0 O\ 00 T Cl 00 of M N o 00 OC f0 t': n N of r 00 m N a 00 M N R N V1 O T ao m n f0 O r w a f0 00 O\ r O 0� n O p a O v O tiaj 00 O r 0 0 vi M v1 N ^+ M b C C G rj pi n a, f k..v�M1 x ' ja xZ. in vC7iO�mp oQ'000Q' cmQ� hyHNa ONow �ZQ:r;CT�pOOoo f�OaoQc��C�aQ�Q4Gocr ✓ n3:� � � P M1 V �` "' a •• O •• N M • r w a s w w w • r s b N n oo •• P O O .r. M� fw+f 7� Vl N N N O� 01 � 00 � h� fp N M 7 k Q\ % M1 M1 r7 Q �d 15 b •y r., f \O r N 00 N V1 'Q O O \G N en O ei N N N 1l N GG O al 4 m� i i1Wri E M �'�p ar „ den rr reeoeoc06 rrvvv rry o 0 00 00 N N N N N O\ r Idd r` T J TO' TO�N r N N N N N N N N r N N— r r— r- N N N N N N tV �,I I^I^ImI^IrIIo*d;I I° ICI l nI�IMINIrI�INI�I Icd I —I I�I�I I-1I—I I ?I LN-,I�Irl�l�l.O+l ^IQINI Irl^It��1�1�O If�'1It�ellNlrl^�IN It�OI ICI Irl I�IpI I�IrI I ju/ ry y F^ I L, Pi 'nh N r N r hh N r N r N r hh N r N r h N r hh N r N r N r N N r of N r vl N r vl N r vl N r vl [. r vlTI r N�I PI PI TI PPI 1 O O O O O O O O O O O O O O O O O O O O O O O O O O O O Q� .T �"�i vpi7 RY: 'VM r r vl N f10 N " t` h r r \O � 00 \O \0 �0 \O \O V�1 cD N "i Hf ri Mf 00 b ? 7 eel � 7 00 00 AOx o 0 0 o o 0 0 0 0 0 0 6 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OIVI l..lNlO rl0lr l— Olent " 7l O^l`D I'nl Ol Ol rl Ol M lC; 101 lC; ci IO C U U C7 0 , �^ �': n + W i '� \y i N V N � O� + ti ... O � • i- O� O vb \p O r o0 A. x, G O � m W W W C u m e5p 1"U� 16 ' POND A TABLE 5. SUMMARY OF DETENTION PONDS A AND B/C:. ANALYSIS AND DFSIC:N 100 YR. STORM CbCIA- 20.191 C"CF0.75 A=26.92 Ac. i 10 7.7 179.7 107,800 26.1 15,660 2.12 15 6.5 155.4 139.895 26.1 23,490 2.67 20 5.6 136.9 164,237 26.1 31,320 3.05 30 4.5 115.1 207,106 26.1 46,980 3.68 40 3.7 99.3 238,345 26.1 62,640 4.03 50 3.2 89.0 267,041 26.1 78,300 4.33 60 2.9 81.5 293,556 26.1 93,960 4.58 70 2.6 76.3 320,435 26.1 109,620 4.84 80 2.4 72.3 346,829 26.1 125,280 5.09 90 2.2 68.2 368,377 26.1 140,940 5.22 100 2.1 65.2 391,137 26.1 156,600 5.38 110 2.0 63.2 416,925 26.1 172,260 5.62 120 1.8 60.1 433,022 26.1 187,920 ;. POP " Developed runoff includes 14.9 cfs from historic basins OSE-0SI plus 9.0 cfs from Pond B/C Release rate consists of attenuated historic DP2 & DP3 minus attenuated developed DP36 plus 3.6 cfs excess release left over from attenuated historic DP I 100 YR. STORM CIA= 5.42 I C"Cf=0.75 A=7.22 Ac. rF 37 :3. r, sat s, rs. Ts j io 117 £ 3 s•/ i � r f �p.,{, xr � l;q��. 10 7.7 54.7 32,845 9.0 5,400 0.63 15 6.5 48.2 43,415 9.0 8,100 0.81 20 5.6 43.3 51,902 9.0 10,900 0.94 30 4.5 37.4 67,317 9.0 16,200 1.17 40 3.7 33.2 79,610 9.0 21,600 1.33 50 3.2 30.4 91,220 9.0 27,000 1.47 60 2.9 29.4 102,244 9.0 32,400 1.60 70 2.6 27.0 113,366 9.0 37,800 1.73 80 2.4 25.9 124,358 9.0 43,200 1.86 90 2.2 24.8 134,050 9.0 48,600 1.96 100 2.1 24.0 144,066 9.0 54,000 2.07 110 2.0 23.5 154,895 9.0 59,400 2.19 120 1.9 22.7 163,123 9.0 64,800 TST Inc. Comullmg • Developed runoff includes 12.9 cfs from historic basins OSA•OSD "" Release rate is 9.0 cfs to maximize pond volume. I2n9/99 Itydromm.x13 Enginemn 17 I I 11 I I I I y 91 A�1 18 I I I I 11 I 1 I "4 Me till ! �r 4. W s. '* N �V �. M m b N ••• N 1� b O: of N �f P m of .• P �• m fV N Mf •� �+ N N m �+ N ^ MrY1N SYn;gv 5 lr v` a 3 1 (4 , N 5 Vf:IXV-. •�•• NPII •N•V• HbN f.ns hi h� 0fff Ne1 MY 1`Gd� 1� 4 P m f6 4dN 4f+1 -OMI of mM Mm-m h �r1 � . v ([' of b O m O m O m O m O m O m O m O m O m O m O m O m O m O m O m O m O m O m O m O m R. o c o 0 0 0 0 0 0 0 o c o e c o 0 o a o a Q fY �� i 1Y 6 W f iM ~` iN rd , u. / flf% 1..� �r �: •y NJ ,6: ttYF r 6 a 0 W a_ a V N ry y Q O to W C� r�r�� N ty tOy Q U ±�-yyp�: .t 0 P t� 0 ry � y CK of O N .2 Oi tO_y td fn Ci of R1 �f u of U Cj' R1 C7 Uo0 G 't 'L ' 616 u ci ^ O 0p r e I( , 3 1 .• N .+ .r m ^. .. N � N N NI Iry M1 MI Iry vQ( d n: „ I r• I I w N 1> 4 P] U C7 19 s� KIM Z' -9 (i 16: 09 14� vwl ll� i Ck z z z iv ul w w o o y y o fu 0 0 0 u u u ...... .... f. 4, w LLI w W ul 14 w ! I 20 u u u u C) -4 u . . . . . . . . . . .. .. .... 04 1 00 N - - N A qm . Me" Mon Aw x by ... .. . . . . . . 0 M u M 4. -t 4. d -t -t e. z z rzzzz2 z2 z2 z2 zzzz2 oo mOi0020',-e,'- qL WF co M M M ca u u cc u am a 0 -e. -'e. a -'e. z z 0 2 t t 2 00 'NMI 21 11 F7 ��''' N N N '+ N 7 N� •+ tff N y O 7 � MZ Li kayo ' Mtf";X Of Of a a T w T G) Of CA C) a f � 4W ' Vi to Vl to N fA Cl)0 w y to fA aa� 33 333-4333 j " uu uuuuuuuu uu u av o{5s W GO 00 00 00 00 00 00 00 00 00 00 00 00 A s.y i 3 Y x 4aa ;SS'4 Y WFy u- '> .• C.'Q N�ooaf.,`�t�o 00v, N a W �`�. vi ri efi tr r tr vi o wi of vi Q .�a wsCyC ..y�, c^1 0o ao ao Vi i Ye00 00 00 0 A o f `Sy fV N AO .—i vi vl d O 7 7 ffl FCiV 0 5 N ri h:f �' N fpV N � N M th`I 00 vt 00 00 toff N a t?' ti nv✓ 4 z fe$a w! o fn fo o N o vitfi ads��o000 v qi ey: o�o0� �a w Li ^f Q ki :u o z°� 55555 55 �n 00 0 0 0 0 0 0 0 0 00 0 ` � h�: V77Fl r/'~I tFA � fF/J tF/! fF/J t7FA h h fF/J 'N fFA v S T W W S#n...u.4a5 22 APPENDIX A Historic Runoff I 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 W O E G U v�y ne of " O 5� "� •r ro n 7 M 1� M r tf 7 O r r M «O fV O O M N G V 4D T [ate' hM P s.i CRyyYy y 4 dd ilsy^ O N N O\ vp 10 O N «n M pp ap O mm.M+.�. ORY'P5� 1hA. T1 �1< d �yO � P '_ tlsT2 4�vDk � � Yrvi . . C � .f�U �Yw r r N n a vi M N Yn rt N r� vs z raa /y o mom R —--— N N N N N JP 1 F M Pi {�f bi1 '�P +f'"� o0000 000000000 Y o 0 0 0 0 0 0 0 0 0 0 0 0 0 r r r r r r ... r r r r r r r z4x r i.:PW ro^ Mtn Q�fO O N v1 )n vl O O O O N N N O .fzl N N N N N - N N N N N tV 6 N a; O C C C C O O C C O C C O F � ( v'n l �i n l f riA z � „ Y O 5 .Alt r N M V vl Z' m U G W P. 0 x �r ¢ 0umWu60x x xx�x tiyy�w0w0 h m. 0 0 00 COO O �a ' x o U W . � � M vi O `O M vi N ou eel C � C V ri c G C ao �,nr<x yfs :a � gf,, •c C W�_d N,: Rlii 4 Ff4 r �1' `v�w Ol M a r b O PI Y1 '+ 00 M O O N .r Y AI nl V tG rf rl vi V1 V t,f aC CG CC O cs O\ w vx vt In N O oo N N N i)v 7y'iF y l! n nAN ' O°sue'' V Y xv r s M O O:F r' nn Mr'r+ rrrMa�a a,'^,x W �; ,3C✓„yv, A : / G , ' '+ 'I O O C O O .00N A C C V' O vi 6 O 0 O 0 G 0 7 � 4 oZZooZZZo nt r 11 E r{ N:O�jc7T,� o0000 oo00oo or ,ox (y xVu , USyr r N M er vx Q m U 0 W Lr 0 /yFr+.ii. YYl r. i(MA!r z `' • �.y r N M V v1 co u %10 ,nR 5xSxx O o0000000 fWA �: NOs�' x h O ,: IgI�I�INlei eiPIgI oIc!1 l^! lvi to lc to Iq lv �InI�I�Ioq oqI'IIgIgI'II'I ^I^I^Iq_Iq.I1.°ININI.101., �I^I0,I0,I�I�I^INI^I NIT I�IpI^I°°TI°°OI� IQl^INI^I O I O I OI O I OI OI OI OI OI OIO 0 0 0 0 0 0 0 0 0 0 0 O IOIOIN Ivilvilvi101O N N N N N N N N N O O C C O O O G C 00IOyI1OI"OI°mIyOl0yi0ylN0l,IxI=I=I O n a "'r/.� QWUGW ^wC7 x-N�v�e A Y. xx 00000xO000xx ' TST, INC. Consultlng Engineers o CLIENT ��JJnp /L JOB NO. ' PROJECT ACT N �£' N AM K ' CALCULATIONS FOR _. /7 � 5 7-bAl G �Q/UA) 0 MADE BY /�! �T DATE -a8-99 CHECKED BY DATE SHEET ( OF �o /STo,ei C x O/UOFF 1 1 TEE S/TE kJf�S �L L ��%E�4TE,D . /NTO S �/ STD,�rG %j/}S/NS GJi�s,� 9 OfF- SiT� �RS�N 5 . Tf%E C4ccJ,c ar1alJ S IC3Ecow A,eE. &ASE D 6A3 %%ie- lef?T/ONAL MF7?Y40, A5 l;>,E�olA)EQ /A% T*E C/Ty OF FORT COU-1,05 SToQAvi p9AWA6E DE5161) C,e17-EX1� 1;lA1VIJ,4L fir- ?-fESE CALCac,47-1oA15 to/GL "SE uSACC) Fok EACH OF -rll�5 7j/ 64S►A)5 AWD TIE D,47-A tA)14& .(36: iAJ 7-YE CAI�CJL-47-/6f,1 S WoP-Kst+E.Er DJE2LAN® TRAQeL 7/Mg, /) / 7//E . �-C�U 6 —r,# DF rhl4 01AER [ �¢/J L ROA O iF G�si S /Ltd S J�2�D i� SJca+ A• ►AAA)A)f .45 TD Re FtECT ?rfFE 4oc ifAGc 3 7`NE -. �rJTi RE !3/}S<n1 • T/lE SGoPC Of Oonel-t1 jb . Ro moFF. w•4S C.4(,C0LhrED AS FA) AOERA&F F6R EAuf �3.4si�, DOE Tv 04PYIAJ - o �C '/L �.g7(/•/ -C�.' �� �F��R�-� - 5= /ili_E.. Ot1�Er2L.4ND SLO.Ps, S /3 C= KJ► (5-Fp C69- ..: =� 87x/./-�(o,Zo�(�•ZS)�(So)'/z, D z LNCRLAAJb 4C1U&Tµ rgEQJ E�XY A WQ%TluIAl r FA4Top o = D%kPR4. ANb. TRXUC4. 77ME. SF TNc Lgocp c,4Alp 4oa&T(4 ,EKcEEDs s'oor� T1/6ek). Fi609c 3-3 /N 7'14E 0-1sY AOL-* 14-07e7- (bzl- ,Js 5TO-PM J>R4iA)A6-E DES16A) C!e"rr 1,4 MAA)LJIL W45 OSF.D Ta DC,TeRA4,A1£ a/ELocr/Es, G0507/3-84 TST, INC. Consulting Engineers ?W CLIENT // w' �i \ n o ,/ �J/O�B NO. dQ930 Q� PROJECT ,�4 /�/TV DEly 044 K CALCULATIONS FOR it/57'J ,C.. /e L)A) 0r%+ �f ' MADE BY_. IM A DATE 6-a6 199 CHECKED BY GATE SHEET OF C2 1 V fro c, ry = 0. SS fP,g (�FIEKE� Trwtfi Sol It ' L , L CNGrN So/�+ 06 p�/ ° 5� ' 77 M E OF C.vi✓C'Gw/'r T/®N _ . •--a-. T-w�t� T TEE o� &•vc�u-r . �_. G _ p 9 rT e�4T/� 34 / �� / 00"IM)6. 7RA1)EL Ti.u,E CO 500) T r OJT-ieA.JEL, T-ME 1 CC TA =�O.2oX%.�Sx3.9Xl/.0)-= /O;$c 5 G0507/3-84 ' Table 3-3 ' RATICNAL INE72OD RUNOFF OOEMCMM Rm COMMITE Ate =SZS Character of Surface Runoff Coefficient Streets, Parking Lots, Drives: ' Asphalt ....................................... Concrete 0.95 ................................ Gravel 0.95 ....................................... 0.50 Roofs .......................................... 0.95 Lawns, Sandy Soil: Flat<2% ................ 0.15 Average 2 to 7$., ..................... 0.1 Steep>7%.................................... 0.20 Lawns, Heavy Soil: ' Flat<28..................................... Average 2 78 0.2 to ............................•. 0.25 Steep>78..................................... 0.35 3.1.7 Time of Concentration In order to use the Rainfall Intensity Duration Curve, the time of concentration must be known. The time of concentration, Tc, represents the time for water to flow from the most remote part of the drainage basin under consideration to the design point under consideration. The time of concentration can be represented by the following equation. T, = t,o + tt Where: ' T, = Time of Concentration, minutes t,.= overland flow time, minutes tt = travel time in the gutter, Swale, or storm sewer, minutes ' The overland flow time, t,,, ,can be determined either by the following equation or the "Overland Time of Flow Curves" from the Urban Storm Drainage Criteria Manual, included in this report (See Figure 3-2). ' 1.87q.1-CCf)D112 Tov S113 ' Where: T„ = Overland Flow Time of Concentration, minutes S = Slope, $ C = Rational Method Runoff Coefficient ' D - Length of Overland Flow, feet' (500, maxi irm) Ct = Frequency Adjustment Factor The travel time, tt, in the gutter, Swale, or storm sewer can be estimated with the help of Figure 3-3. 3.1.8 Adjustment for Infrequent Storms ' The preceding variables are based on the initial storm, that is, the two to tea Year storms. For storms with higher intensities an adjustment of the runoff coefficient is required because of the lessening amount of infiltration, depression retention, and other losses that have a proportionally smaller effect on storm runoff. These frequency adjustment factors are found in Table 3-4. May 1984 Design Criteria ' Revised January 1997 3-5 I� I� I 1 h LJ City of Fort Collins Rainfall Intensity -Duration -Frequency Table for using the Rational Method (5 minutes - 30 minutes) Figure 3-1 a Duration (minutes) 2-year Intensity in/hr 10-year Intensity in/hr 100-year Intensity in/hr 5.00 2.85 4.87 9.95 6.00 2.67 4.56 9.31 7.00 2.52 4.31 8.80 8.00 2.40 4.10 8.38 9.00 2.30 3.93 8.03 10.00 2.21 3.78 7.72 11.00 2.13 3.63 7.42 12.00 2.05 3.50 7.16 13.00 1.98 3.39 6.92 14.00 1.92 3.29 6.71 15.00 1.87 3.19 6.52 16.00 1.81 3.08 6.30 17.00 1.75 2.99 6.10 18.00 1.70 2.90 5.92 19.00 1.65 2.82 5.75 20.00 1.61 2.74 5.60 21.00 1.56 2.67 5.46 22.00 1.53 2.61 5.32 23.00 1.49 2.55 5.20 24.00 1.46 2.49 5.09 25.00 1.43 2.44 4.98 26.00 1.40 2.39 4.87 27.00 1.37 2.34 4.78 28.00 1.34 2.29 4.69 29.00 1.32 2.25 4.60 30.00 1.30 2.21 4.52 11 I ' City of Fort Collins Rainfall Intensity -Duration -Frequency Table for using the Rational Method (31 minutes - 60 minutes) Figure 3-1b Duration (minutes) 2-year Intensity in/hr 10-year Intensity in/hr 100-year Intensity in/hr 31.00 1.27 2.16 4.42 32.00 1.24 2.12 4.33 33.00 1.22 2.08 4.24 34.00 1.19 2.04 4.16 35.00 1.17 2.00 4.08 36.00 1.15 1.96 4.01 37.00 1.13 1.93 3.93 38.00 1.11 1.89 3.87 39.00 1.09 1.86 3.80 40.00 1.07 1.83 3.74 41.00 1.05 1.80 3.68 42.00 1.04 1.77 3.62 43.00 1.02 1.74 3.56 44.00 1.01 1.72 3.51 45.00 0.99 1.69 3.46 46.00 0.98 1.67 3.41 47.00 0.96 1.64 3.36 48.00 0.95 1.62 3.31 49.00 0.94 1.60 3.27 50.00 0.92 1.58 3.23 51.00 0.91 1.56 3.18 52.00 0.90 1.54 3.14 53.00 0.89 1.52 3.10 54.00 0.88 1.50 3.07 55.00 0.87 1.48 3.03 56.00 0.86 1.47 2.99 57.00 0.85 1.45 2.96 58.00 0.84 1.43 1 2.92 59.00 0.83 1.42 1 2.89 60.00 1 0.82 1.40 1 2.86 I APPENDIX B Developed Runoff 1 I 1 11 11 1 r Vi -0:0o �i r C 1� M O M vi fd V M 7 b V 7 C 6 N ri b V 4 '7 O O V 66 �t „N N Nr H;yy, x2ty" &`, 5: cfri-F SCE. =x t `v' rf a irJ yY tP�Yr�'WY% 1 Sr Mb�tewin O G C C N N T< C C r O G N O C V d' b o C o b N N od vi 1- ,',�+' t� ip oo ip I.: N< iG N O p ar > V " Ct Y MBJ �yi', z\�T(F i' P iIP Mi V l�f I�ai .. tV lV IH M tV ri N M O lV b�C 7 ! 4 V N ri M M M z .: C t�i f'! x. .. rTi t e+f z 5Y �i �J�tQ kJi/\ �uiX��tt�ICiP:: '(3r0NWfi Yx n§ Y ml, _� N N Vi N Vi i N Vi Vi N vi N Vi N VI N Vi N- Vi Ci N in N h N h N N N Vi N Vi Cl! Vi N Vi N Vi N h N Vi N h N h N Yi N vi fV vi [V vl N Vi N vi N vi C! i CV of N Yi N q$! - - ' � S 1Gwr, s " C C O O O O C O O C C O C C O O C O C O O O O C C C C O 00 O O O C C AN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 O O O O O O O t ' All n iii (j tom•!• 00 00 00 00 N b b b b 1p b b b b b b b b b 00 c�V CO N b b b 00 N 00 b b 00 00 V tFt r��/s S O C G O O O C C C C C C G C C C G C C C C C C C C C C O G C O O O C O xii'FY 4� � FP �P S' 4tiF . : 'o err` . pya}anviMoovoo is Leo oo a00000N000 Na' o t�eobt�oe ee N C. O Aw�w�F� (OO •+ N N N N N N N N N N M M M M M M F wy�?'' a b t` 00 O .r y t1 V vi b r 00 Oi O N M N M vi N N Yt,ihrr �: i n n M n v a 0 ao V r v o0 00 n �n oo -+ vi ao 00 U ap:uE ri �iooNooc ;D^�e�aoN O� rirmaor aoaoo ry oart�.-� �O O 0 cct�riom 00 < �^ 4, �t� ra a; lOeti *of+ Mof Nri MfV 00 �+ 1OC NC '+ h O� -+ C C O— •+ G O C— •+ C C .-� �I�I�I�I�lal�l�ihlnlnl�lhlal�l�l�l�l�lhi�lnl�l I�I�I�Inl�i I�I�I� NINININI..I—I—INI—ININIc'lTINININININININICR NINI 1—IN IN IN INI I —IN IN IN nI�I�INIMI�I�I�I-ICI'lNIIgIIn1�111 109I IInli"l-I INI -II� �o n M n a r o n o 0o a o r o `R N 00 M oo '^ �anovoMr�nn—MnaronrM000 o�aM�M o—OOMIV 00 0 12 �G �C v% N G — N N P1 N C V o G C ? 'O 1n — C .+ e� 12 �INIaININININININININININININININI-I�IN1 I�I�I�I� �INIzl=1=I-I-I-I-I-I-I-I-I-I-- In- I-I�IzI-I izl�l�l� l� YC t rw� s"' isr3 ig �Y'�'.-�NMvn�orooao�NMa�n �oraao—NM a�n �o noo ao—NMrn v 3 W r i.. 7 N N mma2mm uu uuu o ,M r:F n kr .� isirpf`',Cj rN O Vl O O iJn "x' q >h k ".: r 7M o0 � hYJ O v yri a "v U a r«k7,a e 00 OG � 0 Y 7 YY4 v W c u J Y3 N N N N N F F. w4A 3N ii 00 M vt Fa �6:, Ml- z zY 'WS a OI It-iIOI I. O O NI ININI IN REHMER. �I"I �Ili olol I�I�I I �I I�I�I I�INI y,LiA.I a, m w w C7 v zz ern w w o C m: I I I 11 I I I I I I fl I I I I giwiE r^xa.E A �Y.4 N ry N NPv M .r. M r O O O O O lV .-. t•f C v- ni vi vj G C O �e rMEi .F`f3 L: � yy22tt H H H O\ r H N H 7 0 H r r H f M V< M 00 00 00 00 O 00 00 00 00 00 00 00 O c O O y' $ Y ao b b b b r ,G r G r ad V r r xG c\ vi OG od xC to vi ri od W t-i vi W ao t+i t+i ao u 4 11 kE xeA x:i I *znM '''eyNrrraoc�aro^�aarvv--�00000M-�ooMo e e! MV o H o�a ry .r r tV .. .•: tV fV r r N fV fV tV r r r tV ^ r t ^ r fV V IV u� Ox;� yE F, F r'u M o H 0 Vl 0 Vl o Pf v O o N r r o N 0o O M Q o N r 0 r O_ o 0 yj 0 yj 0 pp 0 pp o e v v r a? 00 m r r r 0 0 M M M F j O,FH3 wiTrrrvtVrarN oq rm-M 1-- r �rev7O ^tea 0, T 00 a H H H H H H H H vl H H H H H H H H H H H H H H H H H H H H H H H H H H F ki: AAK H R M �rU O o 0 0 0 0 0 0 0 0 0 0 0 o 0 O 00 O O 00 O o 0 0 0 0 0 0 0 0 0 o 0 O 00 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tr0.5' . -- , ti '�yx w5 ,OMy O H M N N c0 V M V uD M V H N N N M a M �0 \0 T M O 7 �0 M V 7 V 00 00 00 66 O O O O O O 0 O O O 6 G 6 G 6 O 0 0 0 0 06 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 t, v 5: 5 *' 00MeM 00 N 00 N N O 00 r O 00 x0 ,H. OE O �o a� u,'ei ooroorNHMaraot� eoc^aavi ri�r�r`i r`�ery N �d� c c c gHaM o cH r o r aao N C:� rc '-'�cc = c ,,F z Zz P a N v r•^ !/1: y r O� r M N N r 00 .ri CYx H 00^�,jQo4 N y 40°�C?d Q 0. ... O r N "„, 0. .� M 0. Q W Q H 6[ Q Q Q a Q T r aQ 0. r d r aA�`I¢`ad G 7 _.Qd OR � 'Q;. 00 i w pu O i i r N M i M w M eJ r i 7 H r N r O w Ou M 00 i r i E .E i �0 N M V Saa a;: IT fL ---- I I 1 I I L 1 I� r a � nl � {� � r 00 N r V � nN„ N � LT O O oo r N � O N N CT V 0 ,� •M„ r IBM, QiAY^ x t til:Ya,:li y yfl ��.;xis 4ao nronvooar rrrrr.:�onMr o 0 00 00 1- r Oo OC OC w vi r r 7 V 7 N I.: N O G C O C 0 0 Z" °a r {y F ., g A �y NCTr � N N N rO. ry N O.CT N N a fV r fV fV + TIT t' S 1 a +Y W y Jt T�rea Ol ry "Mill, VY.R yy Ui WS r M r 00 00 1-z r r N n OT N N r r :5,. 8 � O O r� n 00 00 r n P� a G4i M M M M (N`Itv'1 t a W d z Y �ry P N tV OV •y N �` ._ id v In ; y M fb N N N N N N N N N ty / ,�. N N N fV N N N N N N N N N N N N N N N— N N N N N N N N N N N— N N N— N N N N N N N N N — — $ F O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Eg O O O O O O O O O O O O O O O 4�4r {iy tp w r N r N M r N N r N N 00 r N 00 N r N r r b V 00 tp �O t0 �0 b N tD �D N M M M M 00 t0 7 f>'f ? M 7 7 QD 00 io(J O O O O O O O O O O O O O O O O O O C G O o O O O O O O t x : RIM y r: 0 N V 0 N 00 r 00 iC Ot Ot N r 00 N N YO T 00 O pq� N t�f IT 7 V 00 r O 0 r m N N O O a N O t�f M M 00 00 M V; a v t-: 10 N O O •+ O M O O O O O O tF ti C ti 01 6. O xi aa N N N R O °F C1 fQ�1 m N M Hf t��1 O M 0 N O N U U v a^ Q 4. P. � (7 yy I I u F n+ ao • + b 1•i N 7 N i pi �' Y r O M i + a N 10 O n 00 TST, INC. Consulting Engineers CLIENT _ JOBNO. 40Q36-60 I PROJECT /yL�,U pt/ G Adak CALCULATIONS FOR _ p` V aOrOA D 00/V a�r` MADE BY /•!F �_ DATE 10 -I o - 99 CHECKED BY DATE SHEET OF pE�EGnA�D ,QrJNoF� %f( .Si7'F SAS DEG/A)Lr,47Crj �4710 Flo PC-L)*CLoP,9O h1�Thapi AS pEF�NED IN .TEE Ci7Y eic, A0A7" 60 441A) S 5fo��1 W1#46e DC 5/6A) CA?r-rrRrr¢ MA/U)AL .:THE Fd�[QuJIiUG 5,4MO<.E �+� GC'U�,�}l�B�J.: i�c�R St)BsI+SrN �/Z. Tf%SS 0E . . U 15o foie �AcN �C�f. rH� y S06 RA-51A) .7 f4 R)b -"JL URT,¢ 6L) 1- $E. G/STEor? . Nt� DRocoGic 64CC t/G471oA) 5 b00fe95MC. - 7T -771 € . 4E,J:GT!�f . 4F ©EkGgrvr 01 AMok,0 /. A5 . A CA -SO RC D r�. `SJ O . 14 MAAM)f k A 5 To Q6FC E" c THE AveR 4.GE 4C*0 5- r�r AS.: AL'R9GE o� ��1c,� vs�s�t/� 00C UA-RY!!UG.:..'I�DPDk�,efl.�liY�..l�i/THriIJ k'Off�-..Bi�SI/U-• __ :_,_ ._..... CD/kPes'rT� ,Pu�lo<f'..: CLEF . 0Vt914A)b 4 v z rl* e 6 U7`rt2 Fcocc1� C//oo sttJ6-Try£ Lo,vG T FLt 1., F' .TI�?o. TeL. &f-Tl .7�_.� WA-s THE LkiaA TEAT . 1-4iv6,7y, ,4 rGOT7-f FL ow U f 4.0C TY (v.A S t/ T� Key FROM F f 3 3 . Or ��L No Text TST,INC. COnsulting Engineers CLIENT JOB NO. 0 7?0 - 00 1 A PROJECT _ �n,I AI nn p �/ Dc'_� P4R K nn �i N' CALCULATIONS FOR r0Mpe)5, Ta J+ L/�• 0F_, 6D e — ' MADE BY DATE 7 -110 - 17 CHECKED BY DATE SHEET / OF_ FF CvErF, ,1 A5 D•81 54ref-4- Al� o.zo Pon Au5��wf+¢. ,_ /SOO S f�L'Skrea}�.:CorL.J Loa.l k ;...- //Z5,4.', Lawn = . •z969 s. sg! fJ�wsc. u 0,9s zo y9/ kpf 0.2 All 0401 Lo d— A11f- M G0507/3-84 TST,INC. Consulting Engineers Q ^� CLIENT ,, I JOB NO. Q 7.7 O 0 0' PROJECT ��� D ri7J iV PAR K CALCULATIONS FOR CO✓L11��S TE iPt1NCPf Cb EFf. D MADE BY / •/FJ. DATE 7—/ b '99 CHECKED BY DATE SHEET 0 OF 90NOFF fF/Ic o. � I Lo f A17 Lo �- Aal 0,81 Q a� o,as Peri,�J 3.5% Slope. S*ree.f o•�o �o^ (3 02 01601 Lo _ _ ,5-4 . I C3 or6) Zoe- cy ©r61 f cs o.si $4rce.-1- pl r �r�% /%i5✓�OME- • (/2. tia'.'sc-164+role roo4,or,.,, -a 76b lob®/r- 4e�.�>v� D•oz5 ! 2- to I G0507/3-84 No Text DRAINAGE CRITERIA MANUAL s0 30 1- 20 1 .5 0 \o \5 RUNOFF till] Ia II a h`� any 14 n G I I I I l ;" i I`+I I I QT • al �p1 0a yh tv i ee h I I I I I I •= ? I I • wy Oe v h` wT ' Q e 0 aw 1 1 1 1 1 1 1 I It I A I III P A1 1 i 1 I I I I I 1 I I 1 1 1 1 1 1 I I I I I I I 11 1 1 I .2 .3 .5 1 1 1;g 2 3 5 10 20 VELOCITY IN FEET PER SECOND Figure 3-3 ESTIMATE OF AVERAGE FLOW VELOCITY FOR - - - - USE WITH THE RATIONAL FORMULA ' MOST FREQUENTLY OCCURRING 'UNDEVELOPED' LAND SURFACES IN THE DENVER REGION. REFERENCE:: 'Urban Hydrology For Small Watersheds' Technical Release No. 55, USDA SCS Jan.1975. 5-1-84 URBAN DRAINAGE & FLOOD CONTROL DISTRICT No Text I APPENDIX C I Street & Channel Capacity Analysis 11 I 1 1 1 1 1 1 1 t i kS a c d � ivy r frj v� e+1 1�1 O NI fV n y •+ .: (V r r .j r .: vi C O O C C C '+ C � � r fV G + G O� a { M �LL lMSf hw e �aTs) � n3: W :{ i in �i A fhi N N O en 'f t' O m P P Nl Nf O r rn O Gx N N Ox 0 0 0 b m m m 1I m �^ Nurx'' ri t� vi t� vi vi t� r vi v � ri ri � m m � a ee r � vi vi (ri vi n ae xc v eri V V 4 vi w f y F F T tr 1 9 x �kT N O O O O O O O O O O N O 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O N O O O O O O 66 G O C G C 66 G C G C C 66 C C C O C G G C A (S�by7Si4 ��0TC1 a � 4 � a Fp h b H a �_a =Y x 1 m N N x m O O vm/rr (x ... O W eeyy' � �nt( _ ffyy ttyy `R4 <y 3 h N m O O r N ° O p ti y K N H N Hf N (f fA 'U :5 -m `!cr <O<��soas -17��24�'L24�4��C•t� wwmm mo°ciU ot�i_ U Nl Z F z n= i h i � wtr j v ��"�. ( � y sx ��^. h • h m • m� O r • � r r N of r� • N O N • N O. .+ m • .+ ti .hi b r� • ♦ N� • • rf ♦ '? • .N-. • N h N m N b N N N Q (+f r to O t1 N Mf MI N1 m f•1 x - I 1 1 1 ilI t 1 C G ' C 0 6 i e 1 ' TST,INC. Consulting Engineers Im CLIENT - NO. 0930 - O o ) PROJECT Z1i1%DEIJ PARK CALCULATIONS FOR STRE` 7— i4,A7A07-Y MADE BY N1R s DATE CHECKED BY DATE SHEET OF a-Yk SrRt ET 6V4CI7-V I F/- ocA sirgrer, RoieovER. C#G, VaR►ouS' SLOPE I , ! 0 - I I TSTj INC. Consulting Engineers In cuENT _ NO, 0930 -go I _ PROJECT Z /n1 Dt/J P10 is CALCULATIONS FOR 4 % CA & C/ 71e i ■ MADE BY M T DATE a LS" 1 CHECKED BY DATE -SHEET a _ OF 0 TST, INC. Consulting Engineers CLIENT . ` JOB NO, PROJECT/N IA D�.IlS P/-4iz K CALCULATIONS FOR _. =EP- T CAPaC / ?:e MADE BY /" R'f DATE �%-�5-99 CHECKED BY DATE BHBET OFo �-Yp, STREET CqW rrV 3, !o� C,eo5rPJ9n1 - ,CocAL sr2�er s���5ecrionl � s�op� : n,�o% ,��N, S I i 1 1 � 1 M.,+. ,. 3% TST, INC. Consulting Engineers p CLIENT JOB NO. PROJECT ��ND�/lJ An & CALCULATIONS FOR T 611gWI rZ ' MADE BY DATE O� CHECKED BY DATE SHEET OF _ a- M 5TOt r c,4PA67V ' /2.CX055tojYJ DR ICAGeMJ Ai DO? S40Fir = 0.716/L 1 , j �! . Ay. TST, INC. Consulting Engineers Q? CLIENT /� pp JOB NO. D / JD �06 PROJECT L //U a EAJ PA F K CALCULATIONS FOR SMRE E T C4AAC I T 7/ MADE BY // DATE �'z ,��� / CHECKED BY DATE SHEET 5� OF _ -yR S7-RFt7- CAPRCITV 1 r , 6 6Ro55PAAJ — .TAf&,wk1-t10z t fossiL-. CRct-K p4eKWAy, 5coPE No Text [1 TST, INC. Consulting Engineers t� Q CLIENT n �/ JOB NO./s [^/nl�1��D ..-.,/D D I PROJECT Ly�/pN D e� PA Q h Cf CALCULATIONS FOR S`lR E � T ` Ft//Tt. / / 7 MADE BY DATE / °- / CHECKED BY DATE SHEET OF r Q S3 FLFL mo .. A _.D/ AL p, OSo. ... 0,17�.._ 8 TST, INC. Consulting Engineers Im CLIENT JOB NO.6930 - 001 PROJECT _ 0/0 PEAJ Pf4t h CALCULATIONS FOR TnIFECI- CAPPIClerk ' MADE BY DATE 12 J16 CHECKED BY DATE SHEET V OF /oo-yR sTREET C'AP�)c,ry 1 CK0557P�4N l LOCAL e,79gEr r1U7-Le5rCe7-1aA1 51,oPE = 0.60% MIAJ j _ .20 It .9 .8 .7 .3 .2 0 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factorfor applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads,1965) MAY 19U 4-4 DESIGN CRITERIA [1 C�AMiUEL 4-r DP (o — 5svrp"J A -A INPUT DATA: DISCHARGE BOTTOM WIDTH BED SLOPE SIDE SLOPE MANNINGS N RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= h(o /MAx 12.100000 CFS 000000E+00 FT 000000E-03 FT/FT 3.000000 000000E-02 1.647579 FT 1.485899 FPS 8.237560E-01 FT 9.885473 FT 2.885108E-01 1.681863 FT 2.000000 CFS 0.000000E+00 FT 5.000000E-03 FT/FT 3.000000 6.000000E-02 8.388439E-01 FT 9.473479E-01 FPS 4.194576E-01 FT 5.033063 FT 2.577730E-01 8.527797E-01 FT Qien )(/•33 Nj ,e-- at00 x l,33 E- a 2- 0 ),7 PIA) CNANAlEL AT OP 37 - 5£cr1o1%l 5- 5 INPUT DATA: to -YR DISCHARGE = 13.030000 CFS BOTTOM WIDTH = 0.000000E+00 FT BED SLOPE = 1.300000E-02 FT/FT SIDE SLOPE = 4.000000 MANNINGS N = 6.000000E-02 RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: _yk DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= 1.264211 FT 2.038346 FPS 6.320580E-01 FT 10.113690 FT 4.518263E-01 1.328728 FT 2.300000 CFS 0.000000E+00 FT 1.300000E-02 FT/FT 4.000000 6.000000E-02 6.596984E-01 FT 1.320886 FPS 3.299339E-01 FT 5.277587 FT 4.052509E-01 6.867906E-01 FT /t),y �/HIA "'iea X•s5 !. 3mAx ,e,-- 0100 x l.33 E- a z !- 3 A&IN a� r 00 U 4Z C v+v+vioo 0 a�, a c � , W w lS f i v�V ua F as d� WS mod; + t ; Wt f wx t 6.ixt�! iq: C R'qM '-0+' fGJ3n a s vy o .t o 0 , , a W w e n m 4 zz- �L �n z z F �M1 F SQ w a� a __ yy e3 E�F N aF Oo E3E Z o` cU xes O O } ha M1 f, x•; s wwFwF w F v a in g 0 m m 1 b h ,vw - b n m 01 O In H < 1 4 yyvT' A v�r No Text L //V S 7- f- 5T - y 12 11 10 8 10 6 9 0 �. 4 3 S w IL z � N 2 L 7 rib- �U 0 f, 70 r Example_Part o -- 1.0 z ..I z 5.5 v -- _ o.- v) v .U. 0 5 = z o Z z z .4 W S 4.5 z c .3 c? W U. 2 4 z F w 3.5 z W 0 z W Q. 0 -j _I 3 c 0 .08 0 �- p .06 0 0 0 u. z 2.5 = 14.1 .04 W .03 a � 3 a .02 0 a _ IL .01 W c L 0 0 _ -_ Yo 1.2 5 4 3 2 1.5 1.0 .9 .8 .7 .6 .5 .4 .3 .25 .2 .15 ME IFigure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2- Adapted from Bureau of Public Roads Nomograph MAY 1884 5-10 DESIGN CRTERIA /I ya TST, INC. in Consulting Engineers CLIENT PROJECT._._ LIA)PFI'J R K CALCULATIONS FORS/zIN�- + MADE BY t R:T DATE �O — CHECKED BY DATE SHEET cp OF 1 ' dw-Co,oZ](��-z� n = 0.6/ �. 0 ............. No Text SHEET _: OF �2- TST, INC. im Consulting Engineers CLIENT I ,OB NO. 0930 _. o o I PROJECT G-OU I PAR)::_ CALCULATIONS FOR �50 F_T S I Z l N l - MADE BY P-:J- DATE /D - S- CHECKED BY DATE j No Text TST, INC. Consulting Engineers CLIENT JOB NO. Qpp 3 0 00 PROJECT 1,14Q J 0,4 k CALCULATIONSFOR �nJL[.T S/L/.cJG a MADEBY M,-T DATE /o - s 99 CHECKED BY DATE SHEET _ OF .. ... ._.............._......____._.... ...... ... ._..._.._.__,.. _................ ._._ _. _.. .. _ ... GiNE ST- 8 vfprq. AT- .P)cir-r ;= /,.o7 N�rG�f /'dF DprN1,j I I No Text ' 4/NE 5 T-- 5 7-- 9 I.0 12 5 9 II 10 4 8 10 3 .8 6 9 0 4 2 w .7 / w W 3 8 // z a / / 1.5 / L .6 7 z I.0 5 6 _. Ex°mple_P°rt a J I'0 z 9 8 w Sa 5.5 c .8 rn .6 W W 5 = Z o 7 U. .4 Z Z .4 F- z 4.5 Z c .3 0 .6 ... W L (L S 4 L e 0 .5 z 0 _ .2 i z z .3 3.5 w W w '4 CL iO 0 J .I W .25 3 _ = c .06 0 .3 r0 n = 2.5 = .04 W .25 .2 .03 � 3 a .02 c .2 1IL x 2 � t`- d .IS i.01 a .15 , L IA. 0 0 1.5 � ° = 2h .10 r Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2- Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRrrERLA i No Text No Text ;1 APPENDIX E Storm Sewer Design I I 1 11 1 1 ~rR���, aae.an.c.a°�a.aan.Uo� y 'atcsl",�" ovaoaoaov ynoo vT eoav M4s /N .SPySrt_y ik;.i. �„��iF O O m TO O 00 O 00 P1 7 O .•• � V R )My MAC SS� Loo OR g}4 . t Wt� '''� OdmUa7dddddddQQ `+'ZZZZZQ I R R ZQ ZQ ZZoxZ 2 R Z ��".esry tv �i"Mr s,Mp>•,�a d RL b 6 b b d d Oa � Y;.yh°,'N%,(� W; z cal . v ��V �SF AM 'Y�xhA':Y d/�T CY�n 'AHy";I Wj;v Ci m CI CI CIO LV., H. t .fR1��ival���sa! GG s ppdd Z,Z �a�Toraoaoya00 dddddNvZZ ^ {'A-: Qa�t�� O HH FHHH00 <.+a, y,�rMlYiNma�'+xHr3 mog F F F N h y (/) 1 No Text TST, INC. Consulting Engineers CLIENT Joe NO. 0930 - C 0 / TST, INC. Consulting Engineers �] j CLIENT AJ�OB NO. D7 ✓� PROJECT - L1A) DFA J 10p K CALCULATIONS FOR D]._ SLJW C inTST, INC. Consulting Engineers CLIENT _ JOB NO. D 7 30 - DO PROJECT I-pW Dr&) P,99 Z CALCULATIONS FOR 7�f77� /✓l S�GI i7�. /C ' MADE BY 1'-� DATE Io 10 CHECKED BY DATE SHEET OF cj a' ____________ /N�==S - STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng, Dept, U. of Colorado at Denver ' -------Metro -Denver -Cities/Counties -&-UDFCD Pool Fund Study - ------------------------- USER:TST Inc Consulting Engineers ............................................ ' ON DATA 11-16-1999 AT TIME 10:15:41 VERSION=07-11-1995 *** PROJECT TITLE :LINDEN PARK LINE ST-1 ' *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR------ CFS 1.00 0.00 0.00 0.00 ------FEET 66.00 ------FEET 4896.60 -------- 4895.67 OK 2.00 67.10 101.16 0.98 66.00 4903.34 4900.29 OK 3.00 53.32 72.99 1.24 66.00 4920.57 4913.89 OK 4.00 39.56 46.75 1.67 66.00 4929.68 4923.91 OK 5.00 25.78 97.71 1.01 26.00 4930.27 4927.14 OK 6.00 24.84 92.72 1.05 26.00 4931.02 4927.87 OK 7.00 8.00 12.02 30.77 2.25 5.00 2.16 11.56 26.00 26.00 4936.06 4924.00 4929.49 4931.11 OK NO I-AJL r 9.00 1.13 5.00 23.11 26.00 4924.00 4931.22 NO OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 12.00 2.00 1.00 ARCH 41.66 42.00 24.00 38.00 23.00 3.00 2.00 ROUND 25.25 27.00 30.00 0.00 34.00 4.00 3.01 ROUND 31.49 33.00 30.00 0.00 ' 45.00 5.00 4.00 ROUND 28.80 30.00 30.00 0.00 56.00 6.00 5.00 ROUND 28.80 30.00 30.00 0.00 67.00 7.00 6.00 ROUND 28.80 30.00 30.00 0.00 78.00 8.00 7.00 ROUND 28.80 30.00 30.00 0.00 ' 89.00 9.00 8.00 ROUND 30.00 30.00 30.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, ' EXISTTNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ' ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 12.0 23.0 66.0 30.1 2.58 66.0 104.9 1.44 2.59 2.43 22.59 2.38 12.89 12.59 0.00 13.67 13.45 3.66 V-OK V-HI 34.0 66.0 58.2 2.50 13.45 2.38 13.67 13.45 0.00 V-OK R I PRA-f' R E Qb �I 1 11 45.0 26.0 29.1 1.84 6.70 1.77 7.00 5.30 0.89 V-OK 56.0 26.0 29.1 1.84 6.70 1.77 7.00 5.30 0.89 V-OK 67.0 26.0 29.1 1.84 6.70 1.77 7.00 5.30 0.89 V-OK 78.0 26.0 29.1 1.84 6.70 1.77 7.00 5.30 0.89 V-OK 89.0 26.0 26.0 2.50 5.30 1.77 7.00 5.30 0.00 V-OK FROUDE NUMBER--0 INDICATES THAT A PRESSURED FLOW OCCURS SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 12.00 0.45 4896.95 4896.60 4.39 -2.00 NO 23.00 6.50 4911.51 4896.97 6.56 3.87 OK 34.00 2.00 4919.11 4911.51 8.07 6.56 OK 45.00 0.50 4919.63 4919.11 8.14 8.07 OK 56.00 0.50 4920.00 4919.63 8.52 8.14 OK 67.00 0.50 4922.00 4920.00 11.56 8.52 OK 78.00 0.50 4924.00 4922.00 -2.50 11.56 NO 89.00 0.00 4924.00 4924.00 -2.50 -2.50 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS -------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM FEET FEET FEET FEET ---------------------------------------- 12.00 78.50 78.50 --- 4898.95 -------- 4898.60 23.00 223.73 17.97 4914.01 4899.47 34.00 380.00 380.00 4921.61 4914.01 45.00 104.49 104.49 4922.13 4921.61 56.00 73.65 73.65 4922.50 4922.13 67.00 400.00 400.00 4924.50 4922.50 78.00 400.00 400.00 4926.50 4924.50 89.00 1.00 1.00 4926.50 4926.50 ---------------------------- WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET FEET ---------------------------- 4900.29 4895.67.PRSS'ED. 4913.89 4900.29 JUMP 4923.91 4913.89 PRSS'ED 4927.14 4923.91 PRSS'ED 4927.87 4927.14 PRSS'ED 4929.49 4927.87 PRSS'ED 4931.11 4929.49 PRSS'ED 4931.22 4931.11 PRSS'ED -PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST SEWER MANHOLE MANHOLE ENERGY SEWER FRCTION BEND JUNCTURE BEND,LATERAL LOSSES LATERAL DOWNST MANHOLE MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 12.0 2.00 4902.76 7.09 0.05 0.00 0.00 0.00 1.00 4895.67 23.0 3.00 4916.80 13.82 0.08 0.22 0.00 0.00 2.00 4902.76 34.0 4.00 4926.72 9.78 0.05 0.14 0.00 0.00 3.00 4916.80 45.0 5.00 4927.57 0.42 1.00 0.44 0.00 0.00 4.00 4926.72 56.0 6.00 4928.30 0.29 1.00 0.44 0.00 0.00 5.00 4927.57 67.0 7.00 4929.92 1.60 0.05 0.02 0.00 0.00 6.00 4928.30 78.0 8.00 4931.54 1.60 0.05 0.02 0.00 0.00 7.00 4929.92 89.0 9.00 4931.65 0.00 0.25 0.11 0.00 0.00 8.00 4931.54 --I L r d 1 I i 11 1 LINDEN PARK MRJ LINE ST-1 12-13-99 1 , 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 , 100 1.4 , 28.5 , 10 .786 9 1, 4896.6 0 1 12 , 0, 0, 0 66 , 0 , 30.6 , .45 0 0 , 0 , 0 , 0 2 4903.34 , 12 1 23 , 0 , 0 , 0 66 0 , 30.6 , .45 , 0 , 0 , 0 , 0 , 0 3 4920.57 , 23 , 1 , 34 , 0 , 0 , 0 66 0 , 30.6 , .45 , 0 , 0 , 0 , 0 , 0 4 , 4929.68 , 34 , 1 , 45 , 0 , 0 , 0 66 0 , 30.6 , .45 , 0 , 0 , 0 , 0 , 0 5 , 4930.27 , 45 , 1 56 , 0 , 0 0 26 0 , 2.1 , .45 , 0 , 0 , 0 0 0 6 , 4931.02 56 , 1 , 67 , 0 , 0 , 0 26 , 0 , 28.5 , .45 0 , 0 , 0 , 0 , 0 7 , 4936.06 , 67 , 1 78 , 0 , 0 , 0 26 0, 21.7 .45 , 0 0, 0 0 0 8 , 4924 , 78 1 89 , 0 , 0 , 0 26 0 , 2.5 .45 0 , 0 , 0 , 0 , 0 9 4924 , 89 0 0 0 0, 0 26 , 0, 2.5 .45 0 0 0 0 0 8 12 78.5 , .45 , 4898.95 .013 , .05 , 0 3 24 38 23 , 223.73 , 6.5 , 4914.01 , .013 , .08 0 , 1 30 , 0 34 380 , 2 4921.61 , .013 , .05 , 0 1 30 , 0 45 , 104.49 .5 4922.13 , .013 , 1 , 0 , 1 , 30 , 0 56 73.65 .5 , 4922.5 , .013 ,.1 , 0 1 , 30 , 0 67 , 400 .5 4924.5 , .013 .05 0 1 30 0 78 , 400 , .5 , 4926.5 .013 .05 0 1 30 0 89 , 1 , 0 , 4926.5', .013 , .25 , 0 1 30 , 0 e-E v = y93y So d U)A-rEP- ftAt i7Y tl-t). W.26,00 mb ?07To M okoAU ry War6i2 �pc� f.R Rsrk 0OIFIGE P�ArE ioo Yoe -raps+# RRC�- /oo-YR D%.TLET P, Pe 30 " y9.t5! o0 C0 09 siY�$+�s;�``� — ai N n � N •• — t^i N N N t� "J ��']',,i{�•'•`'pi� � �O O� �1 � � 00 � Vi � lLi "{i Yi 1f1 Q "'�':(}','::.'i' r r C'SS�rI"�: ,Lry U My. •! h�: e e � F (?�L, n c� r, o: O� oo � N vi ao � O i r r �L.�1 m ,� CI N N N N -e Ct N Y aF Pi iV Ci Y q •:;..,a ov e�N Mao �er o�jw rv'-, cV C+ r1 r cV tV O O O O O O 4.. Spy •<. $>,.v.•.'.,+ KKam�,, ;J.;:; N � IT av, vo!, aa co CO of° E o o O O O O O O o 0 o O ;, '+^•,^,: 0 0 0 O O O coo O O O O O O ,A; C O o O C V' O Y r fn t�1 O N eo ui O m fV Q s �• :'anf,� �" `�`?`3^•888 888 888 8'88 888 0 00 000 o00 000 v v :r v v vi c v v v' v v v v v �'�:e�s%'"'�(p'`•�..,�Q„' SSTL �'�'#&(�r"•,� Cp C FFF 'FFF FFF FFF �;CL.Irf�•fV p p O zzz O O O zzz O O O O O 000 zzz LS zz`z L11 4L L75 Lli {ly w �a aaa ski€pEoo a p O..pp as'� DAD G1pp pQp cg co �a^a a9L aa G G pp 0 DOD c'w'a Gp0 9�:�r h�. O ^s�:.:33.:: w z s3 F co z—yim F W y t I 7 1 L/NE ST-;�' STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties -&-UDFCD-Pool -Fund -Study ------------- USER:TST Inc Consulting Engineers ............................................ ON DATA 11-16-1999 AT TIME 10:51:03 VERSION=07-17-1995 *** PROJECT TITLE :LINDEN PARK LINE ST_2 *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 0.00 0.00 0.00 9.00 4928.00 4934.80 NO 4E-Du7LE7- 2.00 64.85 1332.76 0.14 9.00 4937.50 4934.92 OK 3.00 51.08 981.07 0.18 9.00 4938.35 4935.02 OK 4.00 37.31 654.53 0.24 9.00 4943.87 4935.59 OK 5.00 23.53 359.82 0.38 9.00 4940.97 4936.23 OK 6.00 22.59 341.04 0.40 9.00 4932.00 4936.37 NO 7.00 9.77 110.76 0.92 9.00 4932.00 4936.40 N0� +A14-£T OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS _--_---NOTE_ THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER ------------------------------------------------------------------- MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (FT) ---------------------------------- 12.00 2.00 1.00 -------(IN)-(FT) ROUND 20.37 ----------------------------- 21.00 24.00 0.00 23.00 3.00 2.00 ROUND 20.37 21.00 24.00 0.00 34.00 4.00 3.00 ROUND 20.37 21.00 24.00 0.00 45.00 5.00 4.00 ROUND 20.37 21.00 24.00 0.00 56.00 6.00 5.00 ROUND 20.37 21.00 24.00 0.00 67.00 7.00 6.00 ROUND 24.00 24.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED -------------- SEWER DESIGN ID FLOW Q NUMBER CFS -------------- 12.0 9.0 23.0 9.0 34.0 9.0 45.0 9.0 56.0 9.0 67.0 9.0 ----------------------- FLOW NORMAL NORAML FULL Q DEPTH VLCITY CFS FEET FPS 14.0 --------------- 1.17 4.73 14.0 1.17 4.73 14.0 1.17 4.73 14.0 1.17 4.73 14.0 1.17 4.73 9.0 2.00 2.86 ------------------------------------- CRITIC CRITIC FULL FROUDE COMMENT DEPTH VLCITY VLCITY NO. FEET FPS FPS 1.08 5.21 2.86 0.85 V-OK 1.08 5.21 2.86 0.85 V-OK 1.08 5.21 2.86 0.85 V-OK 1.08 5.21 2.86 0.85 V-OK 1.08 5.21 2.86 0.85 V-OK 1.08 5.21 2.86 0.00 V-OK 1 -�> 91PRAIP oQF-4V- r i r r r r r r i r FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS -------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) -------------------------------------------------------------- 12.00 0.38 4928.61 4928.00 6.89 -2.00 23.00 0.38 4928.80 4928.60 7.55 6.90 34.00 0.38 4930.17 4928.80 11.70 7.55 45.00 0.38 4931.69 4930.17 7.28 11.70 56.00 0.38 4932.00 4931.69 -2.00 7.28 67.00 0.00 4932.00 4932.00 -2.00 -2.00 OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS --------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM FEET FEET FEET FEET -------------------------------------------------- 12.00 159.79 159.79 4930.61 4930.00 23.00 51.76 51.76 4930.80 4930.60 34.00 360.68 360.68 4932.17 4930.80 45.00 400.00 400.00 4933.69 4932.17 56.00 81.16 81.16 4934.00 4933.69 67.00 1.00 1.00 4934.00 4934.00 COMMENTS NOS OK OK OK NO NO 1 FEET ---------------------------- WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET FEET ----------------------------- 4934.92 4934.80 PRSS'ED 4935.02 4934.92 PRSS'ED 4935.59 4935.02 PRSS'ED 4936.23 4935.59 PRSS'ED 4936.37 4936.23 PRSS'ED 4936.40 4936.37 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS UPST MANHOLE SEWER SEWER MANHOLE ENERGY FRCTION ID NO ID NO. ELEV FT FT 12.0 2.00 4935.05 0.25 23.0 3.00 4935.14 0.08 34.0 4.00 4931*72 0.57 45.0 5.00 4936.36 0.63 56.0 6.00 4936.49 0.13 67.0 7.00 4936.53 0.00 r r r r r ------------------------------------------- JUNCTURE LOSSES DOWNST MANHOLE BEND BEND LATERAL LATERAL MANHOLE ENERGY K COEF LOSS FT K COEF LOSS FT ID FT 1.00 0.00 0.00 0.00 1.00 ------ 4934.80 0.08 0.01 0.00 0.00 2.00 4935.05 0.08 0.01 0.00 0.00 3.00 4935.14 0.05 0.01 0.00 0.00 4.00 4935.72 0.08 0.01 0.00 0.00 5.00 4936.36 0.25 0.03 0.00 0.00 6.00 4936.49 r LINDEN PARK MRJ LINE ST-2 12-14-99 1 , 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 , 100 1.4 , 28.5 , 10 .786 7 1 4928 , 0 1, 12 0 0, 0 9 0, 30.6 .45 0 0, 0 0, 0 2 4937.5 , 12 , 1 23 , 0 , 0 , 0 9 0, 30.6 , .45 0, 0, 0 0 0 3 , 4938.35 23 , 1 , 34 , 0 0 0 9 4 0, 30.6 4943.87 , , .45 34 , , 0, 0, 1 , 45 , 0 0 , 0 0 0 0 9, 0, 30.6 , .45 , 0, 0 0, 0 0 5 , 4940.97 , 45 , 1 , 56 , 0 , 0 0 9, 0, 2.1 .45 , 0 0 0 0 0 6 , 4932 , 56 1 , 67 , 0 , 0 , 0 9 0, 28.5 , .45 0 0 0 0 0 7 4932 , 67 , 0, 0, 0 0, 0 9, 0, 21.7 , .45 , 0, 0 0 0 0 6 12 159.79 .38 , 4930.61 , .013 1 0 1 24 0 23 51.76 , .38 4930.8 , .013 , , .08 0 , 1 24 0 34 , 360.68 , .38 , 4932.17 , .013 .08 0 1 24 0 45 , 400 , .38 , 4933.69 .013 , .05 , 0 , , 1 24 0 56 81.16 , .38 4934 .013 , .08 , , 0 , 1 24 0 67 , 1 , 0 , 4934 .013 , .25 , 0 , , , 1 , 24 , 0 1 1 p /ooyR ��EV- = yg39.00 `/13.2. 00 IPLA71C /0 v Y� le�6c�, oNtc-cr Pf Pe ay,I I-M E 15T-3 - STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver -----Metro -Denver -Cities/Counties -&-UDFCD-Pool -Fund -Study - --------------------------------------- USER:TST Inc Consulting Engineers ............................................ ON DATA 11-15-1999 AT TIME 10:26:29 VERSION=07-17-1995 *** PROJECT TITLE PARK LINE ST-3 :LINDEN *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET --------------------------------------------------------------'----------------- 1.00 0.00 0.00 0.00 19.80 4935.00 4939.00 NO 4�-- puTLC T- 2.00 42.25 275.57 0.47 19.80 4940.22 4937.85 OK 3.00 13.77 58.58 1.44 19.80 4940.22 4938.37 OK 4.00 14.71 170.24 0.67 9.90 4940.22 4939.63 OK 5.00 0.94 5.00 10.48 9.90 4940.22 4939.76 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 ' ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 12.00 2.00 1.00 ROUND 20.05 21.00 18.00 0.00 23.00 3.00 2.00 ROUND 18.00 18.00 18.00 0.00 24.00 4.00 2.00 ROUND 15.46 18.00 18.00 0.00 45.00 5.00 4.00 ROUND 18.00 18.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. ' SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED ' ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ' ID FLOW Q FULL Q DEPTH VLCITY --NUMBER CFS CFS FEET FPS -------------------------------------------------------------------------- DEPTH VLCITY VLCITY NO. FEET FPS FPS 12.0 19.8 14.9 1.50 1.20 1.44 11.34 11.20 0.00 V-OK 23.0 19.8 19.8 1.50 11.20 1.44 11.34 11.20 0.00 V-OK 24.0 9.9 14.9 0.89 9.02 1.21 6.48 5.60 1.84 V-OK 45.0 9.9 9.9 1.50 5.60 1.21 6.48 5.60 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ------------------------------------------ SEWER SLOPE INVERT ELEVATION --------------------------- BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM U STREAM DNSTREAM % (FT) (FT) (FT) (FT) 12.00 2.00 4935.45 4935.00 3.27 -1.50 NO 23.00 0.00 4935.45 4935.45 3.27 3.27 OK 24.00 2.00 4936.19 4935,51 2.53 3.21 OK 45.00 0.00 4936.19 4936.19 2.53 2.53 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 12.00 22.51 22.51 4936.95 4936.50 4937.85 4939.00 PRSS'ED 23.00 1.00 1.00 4936.95 4936.95 4938.37 4937.85 PRSS'ED 24.00 34.00 34.00 4937.69 4937.01 4939.63 4937.85 PRSS'ED 45.00 1.00 1.00 4937,19 4937,69 4939.76 4939.63 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ' ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE ' SEWER MANHOLE ENERGY ID NO ID NO. ELEV-FT------FT--K-COEF-LOSS FRCTION BEND BEND LATERAL LATERAL FT K COEF LOSS FT MANHOLE ID ENERGY FT -- ----------------- 12.0 2.00 4939.79 0.79 --------------------------------------- 1.00 0.00 0.00 0.00 1.00 4939.00 23.0 3.00 4940.32 0.04 0.25 0.49 0.00 0.00 2.00 4939.79 ' 24.0 4.00 4940.12 0.30 0.05 0.02 0.00 0.00 2.00 4939.79 45.0 5.00 4940.25 0.01 0.25 0.12 0.00 0.00 4.00 4940.12 I I 11 LINDEN PARK MRJ LINE ST-3 12-16-99 1 , 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 100 1.4 , 28.5 10 , .786 ' 5 1, 4935 , 0, 1 12 , 0, 0 0 19.8 , 0 30.6 .45 0, 0, 0, 0 0 2 , 4940.22 , 12 2 23 24 0 , 0 19.8 , 0, 30.6 .45 , 0, 0 0 0 0 3, 4940.22 , 23 , 0 0, 0, 0 0 19.8 , 0, 30.6 .45 0, 0, 0 0 0 4 , 9.9 4940.22 , 24 1 , 0 30.6 45 , 0 0 0 0 0 , , , .45 , , 0 , 0 0 5, 4940.22 , 45 , 0 0, 0 0 0 ' 9.9 4 , 0, 2.1 .45 0 0 0 0 0 12 , 22.51 , 2 , 4936.95 , .013 1 0 1 18 0 23 1 0 4936.95 .013 , .25 0 , 1 , 18 0 24 34 2 4937.69 .013 , .05 0 , 1 18 0 45 , 1 0 4937.69 .013 , .25 0 , 1 18 0 1 �v FL ELF,, 1' [I 1_l 1 STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver -------------Metro -Denver -Cities/Counties -&-UDFCD-Pool -Fund -Study ------------- USER:TST Inc Consulting Engineers ............................................ ON DATA 11-15-1999 AT TIME 10:30:31 VERSION=07-17-1995 *** PROJECT TITLE :LINDEN PARK LINE ST-4 RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 0.00 0.00 0.00 14.60 4937.00 4940.00 NO 4-0 tkTLP T 2.00 42.25 410.77 0.35 14.60 4941.32 4939.76 OK 3.00 13.77 91.05 1.06 14.60 4941.32 4939.85 OK 4.00 14.71 255.57 0.50 7.30 4941.32 4940.04 OK ' 5.00 0.94 5.00 7.72 7.30 4941.32 4940.19 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 M - ---------------------------- SEWER MAMHOLE NUMBER -------------- SEWER --------- REQUIRED SUGGESTED --- - -------------- EXISTING ID-NUMBER--UPSTREAM-- DNSTREAM SHAPE-- DIA(RISE)-DIA(RISE)- DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 12.00 2.00 1.00 ROUND 17.89 18.00 24.00 0.00 23.00 3.00 2.00 ROUND 24.00 24.00 24.00 0.00 24.00 4.00 2.00 ROUND 13.79 15.00 24.00 0.00 45.00 5.00 4.00 ROUND 24.00 24.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET ' REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS -------- -------- -------- -------- ---------------- 12.0 14.6 32.1 0.95 .97 -------- ----------------------- 1.42 6.14 4.65 2.05 V-OK 23.0 14.6 14.6 2.00 9.65 1.92 6.14 9.65 0.00 V-OK 29.0 7.3 32.1 0.65 8.26 0.99 4.70 2.32 2.12 V-OK 45.0 7.3 7.3 2.00 2.32 0.99 4.70 2.32 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED LOW OCCURS ------------------------------------------- SEWER SLOPE INVERT ELEVATION ID NUMBER UPSTREAM DNSTREAM -------------------------- BURIED DEPTH UP TREAM DNSTREAM COMMENTS % (FT) (FT) (FT) (FT) �iP2AP R£Q0. 12.00 2.00 4937.45 4937.00 1.87 -2.00 NO 23.00 0.00 4937.45 4937.45 1.87 1.87 OK 24.00 2.00 1931*19 4937.51 1.13 1.81 OK 45.00 0.00 4938.19 4938.19 1.13 1.13 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER ID NUMBER SEWER SURCHARGED CROWN ELEVATION LENGTH LENGTH UPSTREAM DNSTREAM WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 12.00 22.52 22.52 4939.45 4939.00 4939.76 4940.00 PRSS'ED 23.00 1.00 1.00 4939.45 4939.45 4939.85 4939.76 PRSS'ED 24.00 34.00 26.57 4940.19 4939.51 4940.04 4939.76 JUMP 45.00 1.00 1.00 4940.19 4940.19 4940.19 4940.04 PRSS'ED ' PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS 1 --------------------------------------------------------•-----••------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ' ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 12.0 2.00 4940.09 0.09 1.00 0.00 0.00 0.00 1.00 4940.00 23.0 24.0 3.00 4940.18 0.00 4.00 4940.13 0.03 0.25 0.05 0.08 0.00 0.00 0.00 0.00 0.00 2.00 2.00 4940.09 4940.09 45.0 5.00 4940.27 0.13 0.25 0.02 0.00 0.00 4.00 4940.13 11 1 11 I LINDEN PARK MRJ LINE ST-4 12-16-99 1 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 100 1.4 , 28.5 10 .786 5 1, 4937 0, 1 12 0 0 0 14.6 , 0 30.6 , .45 0 , 0 0 , 0 , 0 2 , 4941.32 , 12 2 23 24 0 0 14.6 , , 0, 30.6 .45 0 0 , 0 , 0 0 3, 4941.32 , 23 0 0 0 0, 0 14.6 , 0, 30.6 .45 0, 0, 0 0 0 4, 4941.32 , 24 1, 45 0 0 0 7.3 , 0 , 30.6 , .45 0 0 , 0 0 , 0 5, 4941.32 , 45 , 0 0 0, 0, 0 7.3 , 0, 2.1 .45 0, 0 0, 0 0 4 12 22.52 , 2 4939.45 .013 1 0 1 24 0 23 , 1 0 , 4939.45 , .013 .25 , 0 , 1 24 0 24 34 2 , 4940.19 , .013 , .05 0 , 1 , 24 0 ' 45 , 1 , 0 , 4940.19 .013 , .25 0 1 , 24 0 , I 1 I DO aa.s� �. ay .• Rc P 1 1 a 3y.00 � 02y" RcP a F 0 n L11JE ST-5 - URRENT DATE: 11-16-1999 URRENT TIME: 10:57:14 FHWA CULVERT ANALYSIS HY-8, VERSION 4.0 FILE DATE;. --11-19-- FILE NAME: ST 5 C SITE DATA CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 4935.50 4935.00 124.21 1 RCP 2.50 2.50 .013 CONVENTIONAL 2 3 4 5 6 UMMARY OF CULVERT FLOWS (CFS) FILE: ST_5 DATE: 08-11-1999 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 4939.00 0 0 0 0 0 0 0 0 1 4939.04 oc- 0 5 0 0 0 0 0 0 1 4939.16 10 Z 10 0 0 0 0 0 0 1 1 4939.36 .15 15 0 0 0 0 0 0 1 4939.64 20 20 0 0 0 0 0 0 1 4939.74 (2- TAJ 0 0 0 0 0 0 1 4940.06 30 26 P'PE 0 0 0 0 0 4 17 4940.10 35 26 0 0 0 0 0 9 7 4940.13 40 26 0 0 0 0 0 13 6 4940.15 4940.18 45 50 27 27 0 0 0 0 0 0 0 0 0 0 18 23 5 5 4940.00 25 25 0 0 0 0 0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: ST_5 DATE: 08-11-1999 ' HEAD HEAD TOTAL FLOW % FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR. 4939.00 4939.04 0.00 0.00 0 5 0 0 0.00 0.00 4939.16 0.00 10 0 0.00 4939.36 0.00 15 0 0.00 4939.64 0.00 20 0 0.00 4939.74 0.00 21 0 0.00 4940.06 -0.00 30 0 0.73 4940.10 -0.00 35 0 0.63 4940.13 -0.00 40 0 0.50 4940.15 -0..00 45 0 0.63 4940.18 -0.00 50 0 0.48 <1> TOLERANCE (FT) = 0.010 <2> TOLERANCE (%) = 1.000 1URRENT 2 DATE: 11-16-1999 FILE DATE: 08-11-1999 ,kURRENT TIME: 10:57:14 FILE NAME: ST_5 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 2.5 BY 2.5 } RCP HEAD- INLET OUTLET 'DIS- CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (ofs) (€t) (ft) (ft) <F4> (€t) (ft) (fps) (ft) (fps) (ft) 0 4939.00 0.00 3.53 O-NF 0.00 0.00 0.00 0.00 0.00 3.97 5 4939.04 0.97 3.57 4-FFt 0.74 0.74 1.02 2.50 0.00 3.97 10 4939,16 1.51 3.69 4-FFt 1.07 1.05 2.04 2.50 0.00 3.97 15 4939.36 1.94 3.89 4-FFt 1.36 1.30 3.06 2.50 0.00 3.9.7 20 4939.64 2.32 4.17 4-FFt 1.64 1.52 4.07 2.50 0.00 3.97 >21 4939.74 2.43 4.27 4-FFt 1.72 1.57 4.36 2.50 0.00 3.97 26 4940.06 2.77 4.59 4-FFt 2.01 1.72 5.22 2.50 0.00 3.97 26 4940.09 2.81 4.62 4-FFt 2.06 1.74 5.31 2.50 0.00 3.97 26 4940.13 2.84 4.66 4-FFt 2.10 1.75 5.38 2.50 0.00 3.97 27 4940.15 2.87 4.68 4-FFt 2.14 1.76 5.45 2.50 0.00 3.97 27 4940.19 2.89 4.71 4-FFt 2.17 1.77 5.51 2.50 0.00 3.97 El. inlet face invert 4935.50 ft El. outlet i vert 4935,00 ft El. inlet throat invert 0.00 ft El. inlet or st 0.00 ft I i 1_1 SITE DATA ***** EMBANKMENT TOE UPSTREAM STATION (FT) UPSTREAM ELEVATION (FT) UPSTREAM EMBANKMENT SLOPE (X:1) DOWNSTREAM STATION (FT) DOWNSTREAM ELEVATION (FT) DOWNSTREAM EMBANKMENT SLOPE CULVERT DATA SUMMARY BARREL SHAPE BARREL DIAMETER BARREL MATERIAL BARREL MANNING'S N INLET TYPE INLET EDGE AND WALL INLET DEPRESSION 124.21 4935.50 3.00 0.00 4935.00 (X:1) 3.00 CIRCULAR 2.50 FT CONCRETE 0.013 CONVENTIONAL SQUARE EDGE WITH HEADWALL NONE 121PRAp R€. (at . 3 CURRENT DATE: 11-16-1999 FILE DATE: 08-11-1999 -CURRENT TIME: 10:57:14 FILE NAME: ST_5 TAILWATER ' CONSTANT WATER SURFACE ELEVATION 4939.00 ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 80.00 CREST LENGTH (FT) 100.00 OVERTOPPING CREST ELEVATION (FT) 4940.00 y93q.7y ,I N435•So yq yo- 00 / 30 '' 9c. P /asp. a i ' Fl p,eAP ,efu m. y93s.00 1 STORM SEWER SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Pool -------A----Metro -Denver -Cities/Counties -&-UDFCD- USER:TST Inc Consulting Engineers ............................................. -Fund -Study ------------- ON DATA 11-15-1999 AT TIME 10:39:14 VERSION=07-17-1995 ' *** PROJECT TITLE.:LINDEN PARK LINE ST-6 *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES -------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 0.00 0.00 0.00 16.80 4933.00 4934.80 NO -purE r 2.00 42.25 341.96 0.40 16.80 4938.86 4935.53 OK 3.00 13.77 74.52 1.22 16.60 4938.86 4935.91 OK 4.00 14.71 212.14 0.57 8.40 4938.86 4936.82 OK 5.00 0.94 5.00 8.89 8.40 4938.86 4936.91 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 1 I i I SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM' SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ------------------------------------------------------------------------------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 12.00 2.00 1.00 ROUND 18.85 21.00 18.00 0.00 23.00 3.00 2.00 ROUND 18.00 18.00 18.00 0.00 24.00 4.00 2.00 ROUND 14.54 15.00 18.00 0.00 45.00 5.00 4.00 ROUND 18.00 18.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS -- ---------------------------------------------------------------------------- 12.0 16.8 14.9 1.50 1.41 9.74 9.51 0.00 V-OK 23.0 16.8 16.8 1.50 n75 1.41 9.74 9.51 0.00 V-OK 24.0 8.4 14.9 0.81 81.12 5.92 4.75 1.90 V-OK 45.0 8.4 8.4 1.50 41.12 5.92 4.75 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED ---------------------------------------- SEWER SLOPE INVERT ELEVATION ID NUMBER UPSTREAM DNSTREAM % (FT) (FT) OCCURS -------------------------- BURIED DEPTH COMMENTS TREAM DNSTREAM (FT) (FT) 1 `-� Rle?AP P-90a- 12.00 2.00 4933.81 4933.00 3.55 -1.50 NO 23.00 0.00 4933.81 4933.81 3.55 3.55 OK 24.00 2.00 4934.55 4933.87 2.81 3.49 OK ' 45.00 0.00 4934.55 4934.55 2.81 2.81 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET ' ***'SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------ SEWER SEWER SURCHARGED ID NUMBER LENGTH LENGTH FEET FEET ' ------------------------------ 12.00 23.00 40.60 1.00 40.60 1.00 24.00 34.00 34.00 45.00 1.00 1.00 1 1 1 1 u ------------------- CROWN ELEVATION UPSTREAM DNSTREAM FEET FEET ------------------- 4935.31 4934.50 4935.31 4935.31 4936.05 4935.37 4936.05 4936.05 ---------------------------- WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET FEET ---------------------------- 4935.53 4934.80 PRSS'ED 4935.91 4935.53 PRSS'ED 4936.82 4935.53 PRSS'ED 4936.91 4936.82 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT----- IDFT --------------------------------------------------------------- 12.0 2.00 4936.93 2.13 1.00 0.00 0.00 0.00 ------ 1.00 - 4934.80 23.0 3.00 4937.31 0.03 0.25 0.35 0.00 0.00. 2.00 4936.93 24.0 4:00 4937.17 0.22 0.05 0.02 0.00 0.00 2.00 4936.93 45.0 5.00 4937.26 0.01 0.25 0.09 0.00 0.00 4.00 4937.17 LINDEN PARK MRJ LINE ST-6 12-16-99 1 , 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 100 1.4 , 28.5 , 10 , .786 ' 5 1, 4933 0, 1, 12 0, 0 0 16.8 , 0 , 30.6 .45 0 0 0 0 0 2 4938.86 12 2 , 23 , 24 , 0 , 0 ' , 16.8 , , 0, 30.6 .45 , 0 0 , 0 0 0 3, 4938.86 , 23 0 0, 0 0 0 16.8 , 0, 30.6 .45 0, 0 0, 0 0 4 , 4938.86 , 24 , 1 45 0 0 0 ' 8.4 , 0, 30.6 , .45 0 0 0 0, 0 5, 4938.86 , 45 , 0 0, 0 0, 0 8.4 , 0 , 2.1 , .45 , 0 0 , 0 0 , 0 ' 4 12 , 40.6 2 , 4935.31 .013 1 0 1 18 0 23 , 1 0 4935.31 .013 , .25 0 1 18 0 24 , 34 , 2 , 4936.05 .013 , .05 0 1 , 18 , 0 ' 45 1, 0 4936.05 .013 .25 0 1 18 0 1 ,Q FL QLFV=. 0939•86 1 1 0 0 r F-LEV = -*19 39. Bo I y0. bo, /8" 1�cp I I h a � I STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver ' Pool --------^---Metro -Denver -Cities/Counties -&-UDFCD--Fund -Study ------------- USER:TST Inc Consulting Engineers ............................................ ON DATA 11-15-1999 AT TIME 10:48:49 VERSION=07-17-1995 *** PROJECT TITLE :LINDEN PARK LINE ST-7 *** RETURN PERIOD OF FLOOD IS 100 YEARS ' *** OF HYDRAULICS AT MANHOLES SUMMARY MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 0.00 0.00 0.00 22.00 4929.00 4934.80 NO E-O&%TLIE 7- 2.00 42.25 239.74 0.52 22.00 4936.25 4934.48 OK 3.00 13.77 49.97 1.60 22.00 4936.25 4934.68 OK 4.00 14.72 147.63 0.75 11.00 4936.25 4935.14 OK ' 5.00 0.94 5.00 11.64 11.00 4936.25 4935.19 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 12.00 2.00 1.00 ROUND 20.86 21.00 24.00 0.00 23.00 3.00 2.00 ROUND 24.00 24.00 24.00 0.00 24.00 4.00 2.00 ROUND 16.08 18.00 24.00 0.00 45.00 5.00 4.00 ROUND 24.00 24.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC.CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN IFLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. CFS CFS FEET FPS FEET FPS FPS --NUMBER ------------------------------------------------------------------------ 12.0 22.0 32.1 1.22 7.86 7.00 1.92 V-OK 23.0 22.0 22.0 2.00 n1.67 1.67 7.86 7.00 0.00 V-OK 24.0 11.0 32.1 0.81 1.19 5.67 3.50 2.10 V-OK 45.0 11.0 11.0 2.00 1.19 5.67 3.50 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRES ---------------------------------------- SEWER SLOPE INVERT ELEVATION ID NUMBER UPSTREAM DNSTREAM % (FT) (FT) FLOW OCCURS -------------------------- BURIED DEPTH COMMENTS TREAM DNSTREAM (FT) (FT) R 1 F9plP f-€•Qt) 11 1 ----- ------------ 12.00 ------- ---------- 2.00 4929.95 ------------- 4929.00 -------- 4.30 ------- -2.00 NO 23.00 0.00 4929.95 4929.95 4.30 4-.-30 O-K---- 24.00 2.00 4930.69 4930.01 3.56 4.24 OK 45.00 0.00 4930.69 4930.69 3.56 3.56 OK 1 OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET 1 *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS --------------------------- SEWER ---------------------------------------------------- SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW 1 ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 12.00 47.31 47.31 4931,91 4931,00 4931,41 4934,10 PRSS'ED 1 23.00 1.00 1.00 4931.95 4931.95 4934.68 4934.48 PRSS'ED 24.00 34.00 34.00 4932.69 4932.01 4935.14 4934.48 PRSS'ED 45.00 1.00 1.00 4932.69 4932.69 4935.19 4935.14 PRSS'ED 1 PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS 1 ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY 1 K COEF LOSS FT ID FT --ID-NO--ID-NO�-ELEV-FT------FT--K-COEF-LOSS-FT 12.0 2.00 4935.25 0.45 1.00 - 0.00 0.00 0.00 1.00 4934.80 23.0 3.00 4935.44 0.01 0.25 0.19 0.00 0.00 2.00 4935.25 1 24.0 4.00 4935.33 0.08 0.05 0.01 0.00 0.00 2.00 4.935.25 45.0 5.00 4935.38 0.00 0.25 0.05 0.00 0.00 4.00 4935.33 1 1 11 1 1 i 1 1 ' LINDEN PARK MRJ LINE ST-7 12-16-99 1 , 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 , 100 1.4 , 28.5 , 10 .786 ' 5 1, 4929 , 0, 1 12 , 0, 0 0 22 0 , 30.6 .45 , 0 , 0 , 0 , 0 0 2 4936.25 , 12 , 2 23 24 0 0 ' 22 , 0, 30.6 , .45 , 0 0 , , 0 0 0 3 4936.25 , 23 , 0, 0 0, 0 0 22 , 0 , 30.6 ,, .45 0 , 0 , 0 0 0 4 , 4936.25 , 24 , 1 45 , 0 , 0 , 0 11 , 0, 30.6 , .45 0, 0 0 0 0 5, 4936.25 45 , 0 0, 0 0 0 ' 11 4 0 , 2.1 .45 , 0 , 0 , 0 0 0 12 47.38 , 2 , 4931.95 , .013 1 0 1 24 0 23 , 1 , 0 4931.95 .013 , .25 , 0 1 24 0 24 , 34 2 , 4932.69 .013 .05 0 , 1 24 0 45 , 1 0 4932.69 , .013 .25 0 1 24 0 11 'y FL E:LCV = 4936. s5 'y [l uz 11 LJ - I-IME 5T- ORg STM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study------------- USER:TST Inc Consulting Engineers ............................................ ON DATA 11-15-1999 AT TIME 11:16:36 VERSION=07-17-1995 ' *** PROJECT TITLE :LINDEN PARK LINE ST-8 *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 0.00 0.00 0.00 48.80 4929.00 4934.80 NO E- OVTLE7- 2.00 42.25 80.63 1.15 48.80 4934.90 4934.33 OK 3.00 13.77 11.77 3.54 48.80 4934.90 4934.50 OK ' 4.00 14.71 47.21 1.66 24.40 4934.87 4934.87 NO 2N�E r 5.00 0.94 5.00 25.82 24.40 4934.87 4934.92 NO OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 ' ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 12.00 2.00 1.00 ARCH 28.12 30.00 29.00 45.00 23.00 3.00 2.00 ARCH 37.00 37.00 29.00 95.00 24.00 4.00 2.00 ARCH 21.68 24.00 29.00 45.00 45.00 5.00 4.00 ARCH 37.00 37.00 29.00 45.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED ' ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ' ID FLOW Q FULL Q DEPTH VLCITY NUMBER CFS CFS FEET FPS DEPTH VLCITY VLCITY FEET FPS NO. FPS -------------------------------- -------- -------- 12.0 48.8 101.7 1.50 13.4 -------- 2.26 ----------------------- 8.32 6.54 2.19 V-OK 23.0 48.8 48.8 3.08 6.54 2.26 8.32 6.54 0.00 V-OK ' 19 24.0 24.4 101.7 1.03 11. 1.60 6.22 3.27 2.28 V-OK 45.0 24.4 24.4 3.08 3.27 1.60 6.22 3.27 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED LOW OCCURS ------------------------------------------ SEWER SLOPE INVERT ELEVATION --------------------------- BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM U STREAM DNSTREAM % (FT) (FT) (FT) (FT) I 12.00 2.00 4929.84 4929.01 2.64 -2.42 NO 23.00. 0.00 4929.84 4929.84 2.64 2.64 OK 24.00 2.00 4930.58 4929.90 1.87 2.58 OK 45.00 0.00 4930.58 4930.58 1.87 1.87 OK 1 OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET 1 *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS 1 1 11 1 i 1 1 1 1 1 11 i 0 1 -------------------------- SEWER SEWER SURCHARGED ID NUMBER LENGTH LENGTH FEET FEET -=---------------------------- 12.00 41.75 41.75 23.00 1.00 1.00 24.00 34.00 34.00 45.00 1.00 1.00 ------------------- CROWN ELEVATION UPSTREAM DNSTREAM FEET FEET ------------------- 4932.26 4931.42 4932.26 4932.26 4933.00 4932.32 4933.00 4933.00 ---------------------------- WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET FEET ---------------------------- 4934.33 4934.80 PRSS'ED 4934.50 4934.33 PRSS'ED 4934.87 4934.33 PRSS'ED 4934.92 4934.87 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT----- IDFT --------------------------------------------------------------- 12.0 2.00 4934.99 0.19 1.00 0.00 0.00 0.00 ------ 1.00 - 4934.80 23.0 3.00 4935.16 0.00 0.25 0.17 0.00 0.00 2.00 4934.99 24.0 4.00 4935.04 0.04 0.05 0.01 0.00 0.00 2.00 4934.99 45.0 5.00 4935.08 0.00 0.25 0.04 0.00 0.00 4.00 4935.04 1 LINDEN PARK ' MRJ LINE ST-8 12-16-99 1 , 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 , 100 ' 1.4 5 , 28.5 , 10 .786 1, 4929 , 0, 1 12 0 0 0 48.8 , 0 30.6 , .45 0 0 0 0 0 2 , 4934.9 , 12 , 2 , 23 24 0 0 48.8 , 0 , , 30.6 .45 , 0 0 0 0 0 3 , 4934.9 , 23 0 , 0 , , 0 0 0 , 48.8 , 0, 30.6 .45 0, , 0 , 0 0 0 4, 4934.87 , 24 1 45 0 0 0 24.4 , 0, 30.6 .45 0 0 0 0 0 5, 4934.87 , 45 0, 0, 0, 0 0 24.4 , 0, 2.1 .45 0 0, 0 0 0 4 , ' 12 , 41.75 2 , 4932.26 .013 , 1 0 3 29 45 23 , 1 , 0 , 4932.26 , .013 , .25 0 3 29 45 24 , 34 , 2 , 4933 , .013 , .05 , 0 , , , , 3 29 45 ' 45 , 1 , 0 , 4933 , .013 , .25 , 0 , 3 , , , 29 , 45 1 Ft- 9-L 9— y% 34/ ' � 3'1 oo' a9'x5�s" EL LIP12C � RCP �l 1 STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver -------------Metro -Denver -Cities/Counties -&-UDFCD-Pool -Fund -Study --_---------- USER:TST Inc Consulting Engineers ............................................ ON DATA 11-15-1999 AT TIME 11:22:20 VERSION=07-17-1995 *** PROJECT TITLE :LINDEN PARK LINE ST-9 *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 0.00 0.00 0.00 18.40 4929.00 4934.80 NO <- okv E 2.00 42.25 303.49 0.44 18.40 4934.90 4934.61 OK 3.00 13.77 65.28 1.34 18.40 4934.90 4934.70 OK ' 4.00 14.71 187.86 0.63 9.20 4934.87 4934.90 NO 5.00 0.94 5.00 9.74 9.20 4934.87 4934.92 NO OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 ' ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 12.00 2.00 1.00 ROUND 19.51 21.00 27.00 0.00 23.00 3.00 2.00 ROUND 27.00 27.00 27.00 0.00 24.00 4.00 2.00 ROUND 15.04 18.00 27.00 0.00 45.00 5.00 4.00 ROUND 27.00 27.00 27.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. ' SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ' NUMBER FLOW Q FULL Q DEPTH CFS CFS FEET VLCITY FPS DEPTH VLCITY VLCITY NO. FEET FPS FPS -----ID ------- 12.0 --- -------- -------- -------- 18.4 43.9 1.02 -------- 0.55 -------- -------- 1.50 6.55 --------------- 4.63 2.11 V-OK 23.0 18.4 18.4 2.25 4.63 1.50 6.55 4.63 0.00 V-OK 24.0 9.2 43.9 0.70 8.74 1.05 5.07 2.31 2.16 V-OK 45.0 9.2 9.2 2.25 2.31 1.05 5.07 2.31 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ------------------------------------------ SEWER SLOPE INVERT ELEVATION --------------------------- BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM U STREAM DNSTREAM % (FT) (FT) (FT) (FT) ' 9 1 PREP RE00 , 12.00 2.00 4929.83 4929.00 2.82 -2.25 NO 23.00 0.00 4929.83 4929.83 2.82 2.82 OK 24.00 2.00 4930.57 4929.69 2.05 2.76 OK 45.00 0.00 4930.57 4930.57 2.05 2.05 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 12.00 23.00 41.60 41.60 1.00 1.00 4932.08 4932.08 4931.25 4932.08 4934.61 4934.80 4934.70 4934.61 PRSS'ED PRSS'ED 24.00 34.00 34.00 4932.82 4932.14 4934.90 4934.61 PRSS'ED 45.00 1.00 1.00 4932.82 4932.82 4934.92 4934.90 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV-FT------FT--K-COEF LOSS FT K COEF LOSS FT ID FT ----- - ------------------ 12.0 2.00 4934.95 0.15 ---------------------------------- 1.00 0.00 0.00 0.00 1.00 4934.80 23.0 3.00 4935,03 0.00 0.25 0.08 0.00 0.00 2.00 4134.95 24.0 4.00 4934.98 0.03 0.05 0.00 0.00 0.00 2.00 4934.95 45.0 5.00 4935.00 0.00 0.25 0.02 0.00 0.00 4.00 4934.98 h I LINDEN PARK MRJ LINE ST-9 12-16-99 1 , 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 , 100 1.4 , 28.5 , 10 .786 5 1, 4929 0, 1, 12 0 0 0 18.4 , 0 , 30.6 .45 0 0 0 0 0 2 ; 4934.9 , 12 2 , , , 23 24 , 0 0 18.4 , 0 , 30.6 , .45 0 0 0 0 0 3 , 4934.9 , 23 , 0 , , 0 0 , 0 0 18.4 , , 0, 30.6 .45 , , 0 0 , 0 0 0 4, 4934.87 , 24 1 , 45 0 0 0 9.2 , 0, 30.6 , .45 , 0 0, 0 0 0 5, 4934.87 , 45 0 0 0 0 0 9.2 , , 0, 2.1 .45 0 0 0 0, 0 ' 4 12 41.6 2 4932.08 .013 1 0 1 27 0 23 1 , 0 4932.08 , .013 , .25 , 0 1 27 0 24 45 34 , 2 4932.82 1 0 4932.82 , .013 .05 0 1 27 , 0 , , , , .013 .25 0 1 27 0 [1 ,V FL ELf,v = 87 I `i93ell 8o 1 =================----==-----=--____=____________________________ =/N E - ST-1 D STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver ' Pool -------------Metro -Denver -Cities/Counties -&-UDFCD--Fund -Study ------------- USER:TST Inc Consulting Engineers ............................................ ON DATA 11-15-1999 AT TIME 11:29:29 VERSION=07-17-1995 *** PROJECT TITLE :LINDEN PARK LINE ST-10 *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 0.00 0.00 0.00 19.40 4929.00 4934.80 NO --�-OuTf-ET 2.00 42.25 283.08 0.46 19.40 4936.26 4934.48 OK 3.00 13.77 60.38 1.41 19.40 4936.26 4934.98 OK 4.00 14.71 174.98 0.66 9.70 4936.26 4936.20 OK ' 5.00 0.94 5.00 10.26 9.70 4936.26 4936.32 NO <- Z'-0L£'r OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION 1 I I *** SUMMARY OF SEWER HYDRAULICS NOTE: ------------------------------------------------------------------------------- THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ----------------------------------- 12.00 2.00 1.00 ------------------------------------------- ROUND 19.90 21.00 18.00 0.00 23.00 3.00 2.00 ROUND 18.00 18.00 18.00 0.00 24.00 4.00 2.00 ROUND 15.34 18.00 18.00 0.00 45.00 5.00 4.00 ROUND 18.00 18.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ----------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ----------------------------------------------------------------------------- 12.0 19.4 14.9 1.50 10.9 1.44 11.13 10.98 0.00 V-OK 23.0 19.4 19.4 1.50 10.98 1.44 11.13 10.98 0.00 V-OK 24.0 9.7 14.9 0.88 8.98 1.20 6.40 5.49 1.85 V-OK 45.0 9.7 9.7 1.50 5.49 1.20 6.40 5.49 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED ---------------------------------------- SEWER SLOPE INVERT ELEVATION ID NUMBER UPSTREAM DNSTREAM % (FT) (FT) OCCURS -------------------------- BURIED DEPTH COMMENTS TREAM DNSTREAM (FT) (FT) C 12.00 2.00 4929.92 4929.00 4.84 -1.50 NO 23.00 0.00 4929.92 4929.92 4.84 4.84 OK 24.00 2.00 4930.66 4929.98 4.10 4.78 OK 45.00 0.00 4930.66 4930.66 4.10 4.10 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ' ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ' ------------------------------------------------------------------------------- 12.00 23.00 45.80 45.80 1.00 1.00 4931.42 4931.42 4930.50 4931.42 4934.48 4934.80 4934.98 4934.48 PRSS'ED PRSS'ED 24.00 34.00 34.00 4932.16 4931.48 4936.20 4934.48 PRSS'ED 45.00 1.00 1.00 4932.16 4932.16 4936.32 4936.20 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY D ID NO I NO. ELEV-FT------FT--K-COEF LOSS FT K COEF LOSS- FT-----ID------FT- --SEWER ----------------- 12.0 2.00 4936.35 1.55 --------------------- 1.00 0.00 0.00 0.00 1.00 4934.80 23.0 3.00 4936,15 0.03 0.21 0.47 0.00 0.00 2.00 4936.35 24.0 4.00 4936.66 0.29 0.05 0.02 0.00 0.00 2.00 4936.35 45.0 5.00 4936.79 0.01 0.25 0.12 0.00 0.00 4.00 4936.66 0 LINDEN PARK MRJ LINE ST-10 12-16-99 1 , 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 , 100 1.4 , 28.5 10 .786 5 1, 4929 0, 1 12 0 0 0 19.4 , 0 , 30.6 .45 0 0 0 0 0 2 , , 4936.26 , 12 , 2 , 23 24 , 0 , 0 , 1 19.4 , 0, 30.6 .45 0 0, 0, 0 0 3, 4936.26 , 23 0, 0 0 0 0 19.4 , 0, 30.6 .45 0, 0 0 0 0 4 , 4936.26 , 24 1 45 0 0 0 ' 9.7 , , 0, 30.6 , .45 , , 0 0 0 0 0 5, 4936.26 , 45 , 0, 0 0 0 0 ' 9.7 4 0, 2.1 , .45 0 0 0 0 0 12 , 45.8 , 2 4931.42 , .013 1 0 1 18 0 23 , 1 0 , 4931.42 .013 , .25 0 1 18., 0 24 , 34 2 , 4932.16 .013 , .05 0 1 18 0 ' 45 , 1 0 , 4932.16 .013 .25 0 , 1 , 18 0 ❑ 0 1 , 18 , 0 , 24 , 34 2 , 4932.16 .013 ,05 0 1 18 0 1 45 , 1 , 0 4932.16 .013 .25 0 1 , 1 i 1 o u r ELr.v 0 1 YY�9mYd 1 F ys eo , IL" kcP .%4 0 1 LAN € sr- r I 1 I URRENT DATE: 11-15-1999 =ENT TIME: 12:10:40 FHWA CULVERT ANALYSIS HY-8, VERSION 4.0 FILE DATE: 08-11-1999 FILE NAME: ST_11 C U SITE DATA CULVERT SHAPE, MATERIAL, INLET L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 4938.00 4934.00 119.38 1 RCP 1.25 1.25 .013 CONVENTIONAL 2 3 4 5 6 SUMMARY OF CULVERT FLOWS (CFS) FILE: ST_ll DATE: 08-11-1999 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 4937.89 0�(�Z:p 0 0 0 0 0 0 0 1 4938.20 1 1 0 0 0 0 0 0 1 4938.39 Qluo (�ZN 0 0 0 0 0 0, 1 4938.55 2 2 Pique 0 0 0 0 0 0 1 4938.68 2 2 0 0 0 0 0 0 1 4938.80 3 3 0 0 0 0 0 0 1 4938.91 3 3 0 0 0 0 0 0 1 4939.02 4 4 0 0 0 0 0 0 1 4939.13 4 4 0 0 0 0 0 0 1 4939.24 4939.37 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4942.00 11 11 0 0 0 0 0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: ST_11 DATE: 08--11-1999 HEAD HEAD TOTAL FLOW FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR 4937.89 4938.20 0.00 0.00 0 1 0 0 0.00 0.00 4938.39 0.00 1 0 0.00 4938.55 0.00 2 0 0.00 ' 4938.68 0.00 2 0 0.00 4938.80 0.00 3 0 0.00 4938.91 0.00 3 0 0.00 4939.02 0.00 4 0 0.00 4939.13 0.00 4 0 0.00 4939.24 0.00 5 0 0.00 4939.37 0.00 5 0 0.00 <1> TOLERANCE (FT) = 0.010 <2> TOLERANCE (%) = 1.000 I I 2 1URRENT DATE: 11-15-1999 FILE DATE: 08-11-1999 CURRENT TIME: 12:10:40 FILE NAME: ST_ll PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 1.25 BY 1.25 ) RCP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 4937.89 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.61 1 4938.20 0.32 0.32 1-S2n 0.16 0.27 8.72 0.16 0.00 0.61 �1 4938.39 0.51 0.51 1-S2n 0.24 0.39 .7_. 0.16 0.00 0.61 2 4938.55 0.66 0.66 1-S2n 0.30 0.48 6.99 0.30 0.00 0.61 2 4938.68 0.80 0.80 1-S2n 0.34 0.56 7.25 0.34 0.00 0.61 3 4938.80 0.92 0.92 1-S2n 0.39 0.63 7.71 0.39 0.00 0.61 3 4938.91 1.03 1.03 1-S2n 0.43 0.69 8.11 0.43 0.00 0.61 4 4939.02 1.13 1.13 1-S2n 0.46 0.75 8.44 0.46 0.00 0.61 4 4939.13 1.24 1.24 1-S2n 0.50 0.81 8.72 0.50 0.00 0.61 5 4939.24 1.36 1.36 5-S2n 0.53 0.86 9.05 0.53 0.00 0.61 5 4939.37 1.48 1.48 5-S2n 0.57 0.90 9.27 0.57 0.00 0.61 El. inlet face invert 4938.00 ft El. outlet in ert 4934.00 ft El. inlet throat invert 0.00 ft El. inlet cre t 0.00 ft �rPRAP 62tQb, **** SITE DATA ***** EMBANKMENT TOE ************** UPSTREAM STATION (FT) 119.38 UPSTREAM ELEVATION (FT) 4938.00 UPSTREAM EMBANKMENT SLOPE (X:1) 3.00 DOWMSTREAM STATION (FT) 0.00 DOWNSTREAM ELEVATION (FT) 4934.00 DOWNSTREAM EMBANKMENT SLOPE (X:1) 4.00 **** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 1.25 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE r I I 3 IURRENT DATE: 11-15-1999 FILE DATE: 08-11-1999 CURRENT TIME: 12:10:40 FILE NAME: ST_11 TAILWATER CONSTANT WATER SURFACE ELEVATION 1 4934.80 ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 60.00 CREST LENGTH (FT) 100.00 OVERTOPPING CREST ELEVATION (FT) 4942.00 V L J boo = y938, 39 F. I I y93A. oo I I y%J%, 00 91PRAP � Qe.Qfl. Yg3q, &o L' URRENT DATE: 11-15-1999 URRENT TIME: 12:13:40 FHWA CULVERT ANALYSIS HY-8, VERSION 4.0 Z_iNE sr --/a 1 FILE DATE: 08-11-1999 FILE NAME: ST 12 C U SITE DATA CULVERT SHAPE, MATERIAL, INLET L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 4936.00 4934.00 111.75 1 RCP 1.50 1.50 .013 CONVENTIONAL 2 3 4 5 6 UMMARY OF CULVERT FLOWS (CFS) FILE: ST_12 DATE: 08-11-1999 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 4935.92 0 0 0 0 0 0 0 0 1 4936.52 (2)C-Qz 2 0 0 0 0 0 0 1 4936.86 4937.13 3 5 3 5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4937.38 6 6 0 0 0 0 0 0 1 4937.64 8 8 0 0 0 0 0 0 1 4937.95 9 9 0 0 0 0 0 0 1 4937.97 q�v oo 9OE-r 0 0 0 0 0 0 1 4938.73 12 12 fe 0 0 0 0 0 0 1 4939.22 14 14 0 0 0 0 0 0 1 4939.77 15 15 0 0 0 0 0 0 1 4940.00 16 16 0 0 0 0 0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: ST_12 DATE: 08-11-1999 HEAD HEAD TOTAL FLOW $ FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR 4935.92 4936.52 0.00 0.00 0 2 0 0 0.00 0.00 4936.86 0.00 3 0 0.00 4937.13 0.00 5 0 0.00 4937.38 0.00 6 0 0.00 4937.64 0.00 8 0 0.00 4937.95 0.00 9 0 0.00 4937.97 0.00 9 0 0.00 1 4938.73 0.00 12 0 0.00 4939.22 0.00 14 0 0.00 4939.77 0.00 15 0 0.00 <1> TOLERANCE (FT) = 0.010 <2> TOLERANCE (%) = 1.000 F1 u 1URRENT 2 DATE: 11-15-1999 FILE DATE: 08-11-1999 CURRENT TIME: 12:13:40 FILE NAME: ST_12 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 1.5 BY 1.5 ) RCP HEAD- INLET OUTLET 'DIS- CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 4935.92 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.68 2 4936.52 0.60 0.60 1-S2n 0.33 0.46 5.37 0.33 0.00 0.68 3 4936.86 0.94 0.94 1-S2n 0.47 0.65 6.39 0.47 0.00 0.68 5 4937.13 1.20 1.20 1-S2n 0.58 0.81 7.10 0.58 0.00 0.68 6 4937.38 1.45 1.45 1-S2n 0.68 0.94 7.10 0.58 0.00 0.68 8 4937,64 1.72 1.72 5-S2n 0.78 1.06 8.40 0.76 0.00 0.68 9 �-� 4937.95 2.02 2.02 5-S2n 0.87 1.16 8.67 0.85 0.00 0.68 9 4937.97 2.04 2.04 5-S2n 0.88 1.16 8.69 0.86 0.00 0.68 12 4938.73 2.81 2.81 5-S2n 1.07 1.31 . 3 1.07 0.00 0.68 14 4939.22 3.30 3.30 5-S2n 1.18 1.37 9.06 1.18 0.00 0.68 15 4939.77 3.85 3.85 5-S2n 1.35 1.44 8.96 1.35 0.00 0.68 El. inlet face invert 4936.00 ft E1. outlet vert 4934.00 ft El. inlet throat invert 0.00 ft E1. inlet c st 0.00 ft r r r SITE DATA ***** EMBANKMENT TOE ************** UPSTREAM STATION (FT) 111.75 UPSTREAM ELEVATION (FT) 4936.00 UPSTREAM EMBANKMENT SLOPE (X:1) 3.00 DOWMSTREAM STATION (FT) 0.00 DOWNSTREAM ELEVATION (FT) 4934.00 DOWNSTREAM EMBANKMENT SLOPE (X:1) 4.00 CULVERT DATA SUMMARY BARREL SHAPE BARREL DIAMETER BARREL MATERIAL BARREL MANNING'S N INLET TYPE INLET EDGE AND WALL INLET DEPRESSION. CIRCULAR 1.50 FT CONCRETE 0.013 CONVENTIONAL SQUARE EDGE WITH HEADWALL NONE P fPRr1 P Rcu), CURRENT DATE: 11-15-1999 CURRENT TIME: 12:13:40 TAILWATER CONSTANT WATER SURFACE ELEVATION 11 4934.80 ROADWAY OVERTOPPING DATA ROADWAY SURFACE EMBANKMENT TOP WIDTH (FT) CREST LENGTH (FT) ` OVERTOPPING CREST ELEVATION (FT) PAVED 60.00 100.00 4940.00 ygvo . o 0 W 5,®= y9 3 7.9 �-/a" leCP 1 y936.00 i 1 i 1 1/1175 t 3 FILE DATE: 08-11-1999 FILE NAME: ST_12 (Z� PRO,p is dri- Yl3s" ao No Text _ /-/NE 5T- ------------------ STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver -------------Metro -Denver Cities/Counties & UDFCD Pool Fund Study USER:TST Inc Consulting Engineers ............................................ ON DATA 05-24-2000 AT TIME 13:27:10 VERSION=07-17-1995 PROJECT TITLE :LINDEN PARK LINE ST-13 *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES -------------------------------=---------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND --------- WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 0.00 0.00 0.00 11.00 4939.00 4941.00 NO E- 4>ATLfc T 2.00 99.45 1782.32 0.11 11.00 4941.50 4940.81 OK 3.00 85.68 1472.75 0.13 11.00 4943.55 4940.86 OK 4.00 71.91 1176.48 0.15 11.00 4943.73 4940.97 OK 5.00 58.14 895.34 0.19 11.00 4946.60 4941.50 OK 6.00 57.20 876.66 0.19 11.00 4946.80 4942.00 OK 7.00 44.37 631.90 0.25 11.00 4944.54 4942.30 OK �. 8.00 34.61 457.87 0.32 11.00 4945.02 4942.79 OK 9.00 33.48 438.61 0.33 11.00 4946.10 4944.05 OK 10.00 20.66 232.66 0.53 11.00 4946.40 4944.41 OK 11.00 12.00 10.89 1.13 97.48 1.01 5.00 9.78 11.00 11.00 4949.00 4949.00 4950.19 4951.00 N0� =nJj_B T NO OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: ------------------------------------------------------------------------------- THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING �, ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 12.00 2.00 1.00 ROUND 20.24 21.00 24.00 0.00 23.00 3.00 2.00 ROUND 19.75 21.00 24.00 0.00 34.00 4.00 3.00 ROUND 20.63 21.00 24.00 0.00 45.00 5.00 4.00 ROUND 20.02 21.00 24.00 0.00 56.00 6.00 5.00 ROUND 20.02 21.00 24.00 0.00 67.00 7.00 6.00 ARCH 2O.63 21.00 19.00 30.00 78.00 8.00 7.00 ARCH 2O.63 21.00 19.00 30.00 89.00 9.00 8.00 ARCH 2O.63 21.00 19.00 30.00 910.00 10.00 9.00 ARCH 2O.63 21.00 19.00 30.00 1011.00 11.00 10.00 ROUND 15.39 18.00 24.00 0.00 1112.00 12.00 11.00 ROUND 24.00 24.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------- ---- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT I i 11 11 i �1 ,' FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. CFS CFS FEET FPS FEET FPS FPS --NUMBER --ID-- -------------------------------------------------------------------- 12.0 11.0 17.4 1.15 5.8 19 1LFLOWOCCURS 5.67 3.50 1.06 V-OK 23.0 11.0 18.6 1.11 6.16 5.67 3.50 1.14 V-OK 34.0 11.0 16.5 1.19 5:63 5.67 3.50 0.99 V-OK 45.0 11.0 17.9 1.13 5.995.67 3.50 1.10 V-OK 56.0 11.0 17.9 1.13 5.995.67 3.50 1.10 V-OK 67.0 11.0 17.4 1.18 5.645.61 3.36 1.01 V-OK 78.0 11.0 17.4 1.18 5.645.61 3.36 1.01 V-OK 89.0 11.0 17.4 1.18 5.645.61 3.36 1.01 V-OK 910.0 11.0 17.4 1.18 5.645.61 3.36 1.01 V-OK 1011.0 11.0 36.1 0.76 10.095.67 3.50 2.37 V-OK 1112.0 11.0 11.0 2.00 3.50 5.67 3.50 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSUREOCCURS -------------------------------- -------------- QAP QD, SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ---------------------------------------------------------------------- % (FT) (FT) (FT) (FT) 12.00 0.50 4939.08 4939.00 0.42 -2.00 NO 23.00 0.57 4939.55 4939.08 2.00 0.42 NO 34.00 0.53 4939.77 4939.55 1.96 2.00 OK 45.00 0.53 4940,31 4939.77 4.29 1.96 OK 56.00 0.53 4940.42 4940.31 4.38 4.29 OK 67.00 0.53 4941.12 4940.42 1.84 4.80 OK 78.00 0.53 4941.58 4941.13 1.86 1.83 OK 89.00 0.53 4942.87 4941.58 1.65 1.86 OK 910.00 0.53 4943.10 4942.87 1.72 1.65 OK 1011.00 2.16 4949.00 4943.11 -2.00 1.29 NO 1112.00 0.00 4949.00 4949.00 -2.00 -2.00 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM FEET FEET FEET FEET ------------------------------------------------- 12.00 15.79 0.00 4941.08 4941.00 23.00 82.17 0.00 4941.55 4941.08 34.00 41.54 0.00 4941.77 4941.55 45.00 101.63 0.00 4942.31 4941.77 56.00 19.96 0.00 4942.42 4942.31 67.00 131.88 0.00 4942.70 4942.00 78.00 85.04 0.00 4943.16 4942.71 89.00 243.61 0.00 4944.45 4943.16 910.00 42.72 0.00 4944.68 4944.45 1011.00 272.68 0.00 4951.00 4945.11 1112.00 1.00 1.00 4951.00 4951.00 ---------------------------- WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET FEET ---------------------------- 4940.81 4941.00 JUMP 4940.86 4940.81 JUMP 4940.97 4940.86 SUBCR 4941.50 4940.97 JUMP 4942.00 4941.50 JUMP 4942.30 4942.00 JUMP 4942.79 4942.30 JUMP 4944.05 4942.79 JUMP 4944.41 4944.05 JUMP 4950.19 4944.41 JUMP 4951.00 4950.19 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST SEWER MANHOLE MANHOLE SEWER ENERGY FRCTION JUNCTURE LOSSES DOWNST MANHOLE BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT I 12.0 2.00 4941.00 0.00 0.05 0.00 0.00 0.00 1.00 4941.00 23.0 3.00 4941.05 0.00 0.28 0.05 0.00 0.00 2.00 4941.00 34.0 4.00 4941.46 0.40 0.05 0.01 0.00 0.00 3.00 4941.05 45.0 5.00 4942.00 0.52 0.05 0.01 0.00 0.00 4.00 4941.46 56.0 6.00 4942.19 0.00 1.00 0.19 0.00 0.00 5.00 4942.00 67.0 7.00 4942.79 0.42 1.00 0.18 0.00 0.00 6.00 4942.19 78.0 8.00 4942.96 0.00 1.00 0.18 0.00 0.00 7.00 4942.79 89.0 9.00 4944.54 1.40 1.00 0.18 0.00 0.00 8.00 4942.96 910.0 10.00 4944.59 0.00 0.28 0.05 0.00 0.00 9.00 4944.54 1011.0 11.00 4950.69 6.05 0.28 0.05 0.00 0.00 10.00 4944.59 1112.0 12.00 4951.19 0.46 0.25 0.05 0.00 0.00 11.00 4950.69 11 I .1 LINDEN PARK MRJ LINE ST-13 12-16-99 1 , 15 , 20 , 2 , 2 , 1 , .85 , 500 , 500 , .2 ,N 1 100 1.4 , 28.5 10 .786 12 1 4939 , 0, 1 12 , 0, 0 0 11 0, 30.6 , .45 0 0, 0 0 0 �I 2 4941.5 , 12 , 1 23 0 0 0 11 , 0 , 30.6 , .45 , 0 , 0 , 0 , 0 , 0 3 , 4943.55 , 23 , 1 34 , 0 , 0 , 0 11 , 0 , 30.6 , .45 0 0 0 0 0 ' 4 , 4943.73 , 34 , , 1 , 45 , , , 0 , 0 , , 0 11 , 0 , 30.6 , .45 , 0 , 0 , 0 0 0 5 4946.6 45 1 56 0 0, 0 11 , , 0 , 2.1 , , .45 0 , 0 , 0 , 0 , 0 6 4946.8 , 56 , 1 67 , 0 , 0 , 0 11 , 0, 28.5 , .45 , 0 0 0 0 0 7 4944.54 , 67 , 1 78 , 0 , 0 , 0 11 0 , 21.7 , .45 0 , 0 , 0 , 0 , 0 8 4945.02 , 78 , 1 89 0 0 0 11 0, 2.5 .45 0, 0 0 0 0 9 4946.1 , 89 , 1 910 0 0 0 11 0, 28.5 0, 0, 0 0 0 1 , .45 10 4946.4 , 910 , 1 , 1011 0 , 0 0 11 0, 21.7 , .45 0, 0 0 0, 0 11 11 .4949 , 1011 0, 21.7 , , .45 1 1112 0, 0, 0 0 0 0 0 0 12 4949 , 1112 , 0 0, 0 0 0 11 0, 2.5 , .45 , 0, 0 0 0 0 11 12 15.79 .5 ,. 4941.08 .012 .05 , 0 1 24 ,.0 23 82.17 .57 4941.55 .012 .28 0 1 24 0 34 41.54 .53 , 4941.77 .013 .05 0 1 24 0 45 101.63 .53 4942.31 .012 .05 0 1 24 0 56 19.96 , .53 4942.42 .012 1 0 1 24 0 67 131.88 .53 4942.7 .013 1 0 3 19 30 78 85.04 .53 4943.16 .013 1 0 3 19 30 89 243.61 , .53 4944.45 , .013 1 0 , 3 19 30 910 42.72 .53 4944.68 , .013 .28 , 0 3 19 30 1011 , 272.68 2.16 4951 .012 .28 0 1 24 0 1112 , 1 , 0 4951 .012 .25 0 1 24 0 , , , , u i 1 1 TST, INC. 41WN 57--// Consulting Engineers CLIENT SDL. JOB NO. 30-00I PROJECT LINDa.J Ph6K P. R ? CALCULATIONS FOR I')V6'rtTeb SIPN o.! MADEBY LE.H DATE 12- 15' II CHECKED By DATE SHEET / OF —3 E'Ler VterC'C VIILIE 40&A✓mc- CAS OLhT/OJ5 K N 3.5 f A • (Z.o)(Z.n) + (O.WX2. °) o. oo z0 2 rb/Ifi .. . 0:035 2 v� o:o�3s 1 by iS 3._., _.. ... .. .... ✓P77WfAM ..WATc4 GlN.-_ I �l.q.�►� 30 +..�, .. 0o s .T9N.9,.�� .... .. .. ✓O�INSTNiAM ._W,TYR E�a�,. �� 4-14-54v t Z.v+ F RI'F -4. aES .. -. ..._... ... ^/ i 9.64/.:.::a nv la n �d4zA`.. i hrP n v'n 2 2 /3 z.2 4/3+ ... . i .......'RA -p .. ter/ a 1 _ 5 1 (0.015)2(3.04'µ/s�1 n .Va %2,21 ) 0,5 l 22n l / .... __ _........ TST, INC. Consulting Engineers q CLIENT 5 pf- �7 f� JOB NO. PROJECT Z leMe Ar AIM /"• D. PCALCULATIONS FOR Ia v r-T ty 5, p*a.j 1 MADE BY Gt'H DATE 12 • 15 '1 1C CHECKED BY DATE SHEET Z OF 3 ' 1.1Ler 7d*.0S,-r10+ - Nr0/11IVL11 Sirr77114 2. 0D' 2. 2 SG -Pt- ' e.°aal ccs 2�s6z° �j e • . NYD2A141C $CA, %,cq Nrzo �B•0�' I,S�hr : I,S(dWvp- Q1+v� B. .TN-'/q,�lD ' l Its.Ol J ' ...... ...,./UIM✓.H SrA� IS�QJ12�lC 0�25 147v 1 .. .. .. . 4. TST, INC. Consulting Engineers CLIENT SDL JOB NO. 93D-001 PROJECT L w oyu Rax P A p CALCULATIONS FOR I,Irc1f. ra11 SI PM,E.J ' MADE BY LAM DATE I2' I4' 99 CHECKED BY DATE SHEET 3 OF 3 ' A J411AGI 14"D q 141, 30 - 49q3 4r ITr9, Sirsw i rAc. LOSS hb f`,y03 + (L�(Sfi *2ti1Jp��� + a:�Aj l 4 L= 2(jy0.04y4.35) + 040;1S-40145) q 1.1 0.04 r 1,2q . + 0.146' + 0;01V j NO AVAIL*auc...9-- 'OF (I OS' o . ILL 14 T 11 1 1 F �J 1 7 1 J I 7 APPENDIX F Riprap Design 1 i_ 4�N N N r N d N r rr r of N �r"'O:P'� �z u � s a aw` ao. aaaaaaaa as a V U U U U U U U U U U U U "`�E.�� o0 00000000 00 0 o0— �, W, —o0 —o0—----- — Q a Y ° Fi's 4F^E F 00 d N a O� v0 a V vi 1� V vi a0 , P,nU v k •�'. ri �i �; Cr r o. vi � C ri � �; vi is a, 00 0 v: r r r r r 35: r n 3 v o0 oo ,^, jig T r r FI w< F- F- uawFw Wa Wa Wa rzXo J Oy 0 0 O O O O O o 0 0 00 o F r+ v pC ryu_ y y W y y W W W y N y h h W ar O W W �z W W W � W ry W W W W W W 1;41 J Pi TST, INC. Consulting Engineers CLIENT PROJECT. _J- 1A)Pfp/J r 4 7�- CALCULATIONS FOR c9 I P 0 A P MADE BY DATE 01 070- CHECKED BY DATE SHEET OF ' Q1PR�+P R� QU i RK ftN s Fa,e cat-o4Rir Efors 1 No Text TST, INC. Consulting Engineers //ppi�p CLIENT yP PAX JOB NO. 0 / 3D PROJECT //J�) PQJ PEA K CALCULATIONS FOR f i PR A P MADE BY ' ' ` F'J DATE 1 Z�2D / I CHECKED BY DATE SHEET OF i ' L/iU F I DRAINAGE CRITERIA MANUAL RIPRAP L* �4C IN ■ ■�PAN, PAAFN pAd ■■ EWA loom 0 U .1 Pt Yt/D . b e 1.0 VZAC IF Use Do Instead of D whenever flow is supercritical in the barrel. �*Use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGES FLOOD CONTROL DISTRICT I DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE (4PMB J PV,4/N/-GE Table 5-1 ;F,P/ZA.P �R,4y/{ no,� C4ASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap Designation % Smaller Than Given Size Intermediate Rock d* 50 Dimension By -Weight (Inches) JLnchesl Type VL 70-100 12 50-70 g 35-50 6 6** 2-10 2 Type L 70-100 15 50-70 12 35-50 g 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 50-70 ., 24 35-50 18 18 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 g *d50 = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit. One of the major advantages of wire enclosed rock is that it provides an alternative in situations where available rock sizes are too small for ordinary riprap.' Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be fa.shfoned into almost any shape that can be 11-15-82 11 Table 8-1 lists several gradations of riprap. The minimum ' average size designation for loose riprap shall be 12 inches. Smaller sizes of riprap shall be either buried on slopes which can be easily maintained (4 to 1 minimum side slopes) or grouted slopes are steeper. Grouted riprap should meet all the requirements for regular riprap except that the smallest rock fraction (smaller than the 10 cent size) should per- be eliminated from the gradation. A reduction of riprap size by one size designation (from 18 inches to 12 Inches or from 24 inches to 18 inches) is permitted for grouted riprap. ' Table 8_1 ?iPP'jP G PAZDA r+Va CLASSIFICATION AND GRADATION OF ORDINARY RiPRAP xofToerweight ' RprapDesignsftn Snal aveYtr same ilhe scone sae fs+pounds) f�) 70.100 85 Class 6 tt 50-70 35 35-50 10 6 2-10 <1 ' class 12 70-100 440 50-70 275 35-50 8S 12 2-10 3 ' Class 18 100 1275 50-70 WS 35-50 275 18 2-10 10 100 3500 Class 24 50-70 1700 35-W 655 24 2-10 35 tdw Mean t Biuy on ie Size. At least so percent of tma ss ass shalt be stones equal to or {azgerthan eft dimension. sbpes or Foul rods d slopes are steeper. 1 11 Table relations 2 summarizes riprap requirements for a stable channel fining based on the following �P VS0.17 (d50) . (Ss-1)a. m 6.8 In which, V = Mean channel velocity in feet per second S = Longitudinal channel slope In feet per foci %% = Specific gravity of rock (minimum S.= 2.50) dso = Rock size in feet for which 50 percent of the riprap by weight is smaller. The rock stung requirements in Table 8.2 are based on the rock having a specific gravity of 2.5 or mtl a SAlso, recommended. theare rock sae does not need to be increased for sleeper del side slopes, Provided the topes no steeper than 2h:1v. Rodk tined side slopes steeper than 2h:1v are not Table 8-2 RIPRAP REQUIREMENTS FOR CHANNEL LININGS tt 4 0to1. i to No �preP Requirk 4.1 to 5.8 Class 6 Riprap 52 to 7.1 Class 12 Riprap 72 to 82 Class 18 Riprap Class 24 Riprap t Use S, = 25 unless the soiree of rook and its deruilies are luvwn at the time of design, tt Table valid only for Froude number of o.8 or less and side slopes no steeper ftm 211:1v. MAY 1994 8-18 DESIGN CRITERIA 11 1. 11 1 1 1 APPENDIX G Water Quality Pond Design 1 TABLE S. SUMMARY OF DETENTION PONDS A AND B/C. ANALYSIS AND DESIGN POND A t 100 YR. STORM Q-CIA- 20.191 C•CY-0.75 A-26.92 Ac. �- 10 7.7 179.7 107,800 26.1 15,660 2.12 15 6.5 155.4 139,895 26.1 23.490 2.67 20 5.6 136.9 164,237 26.1 31,320 3.05 30 4.5 115.1 207,106 26.1 46,980 3.68 40 3.7 99.3 238,345 26.1 62,640 4.03 50 3.2 89.0 267,041 26.1 78,300 4.33 60 2.9 81.5 293,556 26.1 93,960 4.58 70 2.6 76.3 320,435 26.1 109,620 4.84 80 2.4 72.3 346,829 26.1 125,280 5.09 90 2.2 68.2 369,377 26.1 140,940 5.22 100 2.1 65.2 391.137 26.1 156,600 5.38 110 2.0 63.2 416,925 26.1 172,260 5.62 120 1.8 60.1 433.022 26.1 187,920 ' • Developed runoff includes 14.8 cfs from historic basins OSE-OSI plus 9.0 cfs from Pond BIC Release rate consists of attenuated historic DP2 & DP3 minus attenuated developed DP36 plus 3.6 cfs excess release left over from attenuated historic DPI POND B/C 100 YR. STORM Q-CIA- 5.42 1 ' C•Cf-0.75 A-722 Ac. 1 - ¢. e. u im a, 1 uhD ➢ ai .M ' RE1,1 4,P $ DE � 10 7.7 54.7 32,845 9.0 5,400 0.63 15 6.5 48.2 43,415 9.0 8,100 0.81 20 5.6 43.3 51,902 9.0 10,900 0.94 30 4.5 37.4 67,317 9.0 16,200 1.17 40 3.7 33.2 79,610 9.0 21,600 1.33 50 3.2 30.4 91,220 9.0 27,000 1.47 60 2.9 29.4 102.244 9.0 32,400 1.60 70 2.6 27.0 113,366 %0 37,800 1.73 80 2.4 25.9 124,358 9.0 43.200 1.96 90 2.2 24.8 134,050 9.0 48,600 1.96 100 2.1 24.0 144,066 9.0 54,000 2.07 110 2.0 23.5 154,R95 9.0 59,400 2.19 120 1.6 22.7 163,123 9.0 64,800 • Developed runoff includes 12.9 cfs from historic basins OSA-OSD "" Release rate is 9.0 cfs tomaximize pond volume. 1 TST Inc. Consulting Eneinc"n 12/29/99 hydranuu.xt, ' TST, INC. Consulting Engineers Q CLIENT J J y n_ tf JOB NO. D/�/ 30 0%�� ' PROJECT /`� Del, � klam. CALCULATIONS FOR _469(MOSf f-t- F{�MOFF <.00F%. MADE BY DATE51Y CHECKED BY DATE SHEET OF �AAttPo5fT� RdA)aFi COLr<FfC/ZNT FC2 PoflD SfzrNG 1 574M PEE LoT- ; to f LoT = 1117/ S S . ' P/ se f6"a = .... � /� Dr: 0c t•ay � a� 1 JAC i4,eeFt = 37.3 a c. of Go d'PY" ' S�fee4- 31 QC, C�P— 0.9 S T' yob; too a:c- 6.95- LA"nJ: A9f,4 1. CotirOosiTe ,eUNo�G CoEF�.c.� _ 37.3 37.3 37..3 1 G050713-84 TST,INC. Consulting Engineers (� CLIENT / I r , 1 A A �/ '' 1 o JOOB� NO. PROJECT Z-1 AV DT'UV 84 /I CALCULATIONS FOR 0ATZF- &Q A-U T)�- MADE BY AMR y DATE 8 -y- 9 9 CHECKED BY DATE SHEET OF 1 1 1 1 S/�'E Z/j1p��U/o�ISiUE55 f�5t^sA�7 f�" vR� 6ormcQ f 51;DEVAAL1K1 Rc #0 aSF-16ARAGE j DR1045WA / /8.7a AG K SLDC'NT!,4t _ ffOJStit)( Z7Br1s�T�i = 57, l.1NlT5/AG ... �6u eE STo-KAGE UoLuMg FKo;�t ORS4/J rWArA)A6E a r"oD Cop)rKOL IMAyuF}t-Fi6uRE S-1 �EQJiKEiJ STaQAU� = O.2►. t/t; WQCJ = P.EQ�IREt� 5TekAGE _ . CAREA) /21 1 1 I G0507/3-84 TST, INC. Consulting Engineers CLIENT JOB NO. 67 30 — O O I /' } �j/�pv WA-7-0 &).41w7-�y �( PROJECT /� 0�r� PA P-V- CALCULATIONS FOR RC-1— }SC /c.A �f' MADE BY_ DATE �� CHECKED BY DATE SHEET OF i t i I 1 i 1. 1 1 1 DRAINAGE CRITERIA MANUAL (V. 3) 9-1-1992 UDFCD O.f 0 m t 0.2 o 0." 05 Cr m Cr. Ia STORMWATER QUALITY MANAGEMENT xten 10-Hot ed De r Drain entlo time Basl (Dry) Diii 1 tenti -Hour n Pon Drain s (W(t) me i i i i 0 . 10 , 20 30 40 50 60 70 80 90 100 Percent Impervious Area in Tributary Watershed Source: Urbanos, Guo, Tucker (1989) Note: Watershed inches of runoff shall appl to the entire watershed tributary to the B pf�Facility. FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (WQCV) 1 1 1 1 1 1 0.8 0.7 0.6 z 0.5 Q o 0.4 x 4~- 0.3 ui 0.2 0 z 0 °- 0.1 0 Mimi= FLOW INTO INLET PER SO. FT. OF OPEN AREA (&-eFT4) Figure 5-3 CAPACITY OF GRATED INLET IN SUMP (From: Wright -McLaughlin Engineers,1969) MAY 1984 5-11 DESIGN CRRERIA DRAINAGE CRITERIA MANUAL (V. 3) E N 10.0 6.0 4.0 2.0 1.0 0.0( me t STRUCTURALBMPs 1EXAMP,, ION: Required Are n. mmilAPIR lAildria, 0110PEPAPROAPIA, lip ENEWUPSAA NPA IBM '�■ VJOA AN UP P'AF T.�II■I 12'1 0 Wii PEA DA rJ . 11■1■�I lZMENAWANNIA WASPAIAPOLWA VAPAPPS 0.01 .02 0.04 0.06 0.10 0.20 0.40 0 60 ©,6 0 2.0 4.0 6.0 Required Area per Row (i 1 Source: Douglas County Storm Drainage and Technical Criteria, 1986. FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME 9-1-1992 UDFCD n Orifice Perforation Details A� WPtate = Wconc. + 6 inches Structural Steel Channel Farmed Into Concrete, To (see below) Span Width Of Structure.-Conc. See Figures 6—a, 6—b T 8 Permanent Water Surface Circular Openings: Wconc. Obtained From Table 6a-1 Rectangular Openings: Wconc. = width of rectangular perforation + 6,, Sc, see Sc, see figure 5 Figure 5 ° a o O O O ° L ° ° a O 0 0 00 C� 0 0 0 0 O a 00 00 0000 °00 0 Eco 000 ° 0 ° °000° ° o 0000 o 000 ° o 0 Example Perforation Patterns ° Mote: The goal in designing the outlet is to minimize the number of columns of perforations that will drain the WQCV in the desired time, Do not, however, increase the diameter of circular perforations or the height of the rectangular perforations beyond 2 inches. Use the allowed perforation shapes and configurations shown above along with Figure 5 to determine the Pattern that provides on area per row closest to that required without exceeding it. Urban Drainage and Flood Control District Drainage Criteria Manual (V,3) nlet V]—auUNI 0e10ee, W9 Figure 4 Orifice Details for i Draining WQCV Fn+ SO Orifice Plate Perforation Sizin Circular Perforation Si*' Chart may be applied to orific e ce plate or verticnl nina „imp► ON Hole Dia (in) Hole Dio (in) Min. Se (in) Area per Row (sq in) n=1 n=2 n=3 1 /4 0.250 1 0.05 0.10 0.15 5/16 0,313 2 0.08 0,15 0:23 3/8 0,375 2 0. 11 0.22 0.33 7/16 0.438 2 0.15 - 0,30 0.45 1 2 0.500 2 0.20 - 0.39, 0.59 9 16 0,563 3 0.25 0,50 0.75 5 8 0,625 3 0,31 0,61 0.92 11 16 0,688 •3 0.37 0.74 1,11 3 4 0,750 3 0.44 - 0.88 1.33 7 8 0,875 3 0.6 1.20 , 9.80 1 1.000 4 0.79 1,57 2.36 1 1 8 1.125 -4 , 9, 1.99 2.98 1 1 4 •1.250 4 1,23 2,45 3,68 1 3 8 1,375 4 1,48 2.97 4.45 1 1 2 1,500 4 1.77 3,53 5,30 1 5 8 1,625 4 2.07 4.15 6,22 1 3 4 1.750 4 2.41 4.81 .7, 22 1 7 8 1,875 4 2,76 5.52 8.28 2 2.000 4 3,14 I 9.42 n = Number of -columns of perforations Minimum steel plate thickness 1/4 5/16 3/8 " Rectangular Perforation Sizing Only one column of rectangular perforations allowed. Rectangular Height = 2 inches Rectangular Width (inches) = Required Area per Row (sq in) 2" Urban Drainage and Flood Control Oistrict Drainage Criteria Manual (V:3) FRO: W-Ma! OalchAwg Rectangular Hole Width Min. Steel Thickness 5" 1 4 6" 1 4 7" 5/32 " 8" 5/16 " 9" 11/32 " 10" 3/8 " >10" 1 /2 " Figure 5 WQCV Outlet Orifice Perforation Stzing 1 . 1 WConcrete Structural Steel Channel Stainless Steel Bolts Formed Into Concrete, or Intermittant Welds, 1 See Figures 6—a, 6—b See Figures 6—a, 6—b 1 1 H Varies 2'-0" to 6'-0" 1 2'-4" 1 (minimum) �L 1 A 1 WQCV Trash Racks: EleyatioCi . 1, Well —screen trash rocks shall be stainless steel and shall be attached by intermittant welds along the edge of the mounting frame. 1 2.. Bar grate trash rocks shall be aluminum and shall be bolted using, stainless steel hardware, 3, Trash Rack widths are for specified trash rack, material. Finer well —screen or mesh size 1 than specified is acceptable, however, trash rack dimensions need to be adjusted for materials having a different open area/gross area ratio (R value) 4, Structural design of trash rack shall be based on full hydrostatic head with zero 1 head downstream of the rack, Overflow Trash Racks: 1. All trash racks shall be mounted using stainless steel hardware and provided with 1 hinged and lockable or b'oltable access panels. 2. Trash racks shall be stainless steel, aluminum, or steel. Steel trash racks shall be hot. 1 dip galvanized and may be hot powder painted, after galvanizing. 3. Trash Racks shall be designed such that the diagonal dimension of each opening Is smaller than the diameter of the outlet pipe, ' 4. Structural design of trash rack shall be based on full hydrostatic head with zero head downstream of the rack. 1 Urban Drainage and Figure '6 Flood Control District WQCV Outlet Standardized ' Drainage Criteria Manual (V.3) Trash Rack Design Fla Y3-01jtlet Oetotla.dwq r- Bolt Down or C8x18.75 American Standard L..k Down Structural Steel Channel. Trash Rack Attached By Welding Rack Swivel Hinge Tubular WOCV Level Trash Rack On fi' 4 Centers 3or4 1�— Optional Varies Flow Contra( 2 —0' U.S. Filter* Stainless C C Steel Perforated Orifice Plate 6.t 0„ Steel Well —Screen Flow Control (or equal) Per Tables Plate 6a-1, 6o-2 T Micro Pool W.S. Outlet Pipe t6` Min. C8x18,75 American 3" Minimum _ L Standard Structural i-- — -- —' 2'_4" Steel Channel Formed j Minimum Into Concrete Battom And Sides Of 16 Trash Rack Attached < By Intermlttant Welds. Wds. 4„ Section A —A From Figure 6, Circular Openings Only Well —Screen Frame Attached To Channel By Intermittent Welds Steel Perforated Flow Control Plate I , 1 ' •� ; 1.1 We. • 'ill •'•' 1 I 1 1 1, Trash Raaek Attached Btery Inmittant Min, •' Welding All Around Section B—B— Plon View From Figure 6, Circular Openings Only Limits for this Standardized Design: 1. All outlet plate openings are circular. 2. Maximum diameter of opening = 2 inches. *U.S. filter, St. Paul, Minnesota, USA Urban Drainage and Flood Control District Drainage Criteria Manual (V,3) Fla! VJ-004t 04tatl3.dw9 Stainless Steel Support Bars No. 93 Stainless Steel (U.S. FilterO or Equal) Wires 0.139" 0.090" Sec`;on C—C From Figure 6, Circular Openings Only R Value = (net open area)/(gross rack area) 1 = 0,60 Figtire 6—o Standardardized Trash Rack Design For WOCV Outlets With Circular Openings - i'„ .1 [l 1 1 Table 6a-1: Standardized WQCV Outlet Design Using 2" Diameter Circular Openings. Minimum Width (W.,j of Concrete Opening for a Well -Screen -Type Trash Rack, See Figure 6-a for Explanation of Terms. Maximum Dia. Width of Trash Rack Opening (W,.,.) Per Column of Holes as a Function of Water De th H of Circular Maximum Opening Number of (inches) H=2.0' H=3.0' H=4.0' H=SA' H=6,0' Columns : 0.25 3 in. 3 in. 3 in, 3 in. 3 in. 14 < 0,50 3 in. '+ 3 in. 3 in. 3 in. 3 in. 14 <_ 0.75 3 i. 6 in. 6 in. 6 in. 6 in. 7 < l oo 6 in. 9 in. 9 in. 9 in. 9 in. 4 < l .25 9 in. 12 in, 12 in. 12 in. 15 in. 2 < 1.50 12 in. 15 in, l8 in. 13 in. 18 in. 2 < 1.75 18 in. 21 in, 21 in. 24 in. 24 in, I < 2.00 21 in. 24 in. 27 in. 30 In. 30 in. I Table 6a-2: Standardized WQCV Outlet Design Using 21' Diameter Circular Openings. US FilterTll Stainless Steel Well-Screen1 (or equal) Trash Rack Design Specifications. Max. Width of Opening Screen #93 VEE Wire Slot Opening Support Rod Type Support Rod, On -Center, Spacing Total Screen Thickness Carbon Steel Frame Type 9" 181, 0,139 0.139 #156 VEE TE .074"x,50" . '/." it, 0.31' 0.655 '/,"x1.0"flat bar W, x l A angle 24" 0,139 TE ,074"x.75" it, 1.03" 1.0" x t %i ' angle 27" 0,139 TE .074"x.75" 1" 1.03" 1.0" x 1'/:" angle 30" 0.139 TE,074"xl,0" l" I.155" 1 t 1 'x l'/A"angle 36" 0.139 TE .074"xI:0" l" 1;155" 1 18'x 1 YV angle 42" 0.139 TE .105"x I.0" 1" 1.155" 1 1 '4"x I A" angle VV \\\Y I, V\. 14Y1, 1.\I IIIIY.]Y W, VViI , DESIGN EXAMPLE: Given: A WQCV outlet with three columns of 5/8 inch (0,625 in) diameter openings. Water Depth•H above the lowest opening of 3.5 feet. Find: The dimensions for a well screen trash rack within the mounting frame, Solution: From Table 6a-1 with an outlet opening diameter of 0.75 inches (i.e., rounded up from 518 inch actual diameter of the opening) and the Water Depth H = 4 feet (i.e., rounded up from 3.5 feet). The minimum width for each column pf openings is 6 inches. Thus, the total width is W.., = 3.6 = 18 inches. The total height, after adding the 2 feet below the lowest row of openings, and subtracting 2 inches for the flange of the top support channel, is 64 inches. Thus, u u .LJ U k.0 UI �l i •I Trash rack dimensions within the mounting frame - 18 inches wide x 64 inches high l From Table 6a-2 select the ordering specifications For an 18", or less, wide opening trash rack using US Filter (or ` equal) stainless steel well -screen with #93 VEE wire, 0.139" openings between wires, TE ,074" x .50" support rods on 1,0" on -center spacing, total rack thickness of 0,655" and %" x l A" welded carbon steel frame. I �I ' Std Well Sceen Trash Rack.doc FJ I 1 ' APPENDIX H Erosion Control 1 1 1 J 1 1 1 1 1 1 II 1 i i 1 1 1 1 1 1 1 [1 /y RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: :41 70 PARK STANDARD FORM A COMPLETED BY: _ P,,,j DATE: DEVELOPED ERODIBILITY Asb Lsb Ssb Lb Sb PS SUBBAqIN ZONE (ac) (ft) (feet) ($) M �a 0.1/0 A 3 6•o�f �o o,� A J o.oy (0o o �S o•Z9 yss /,� A7 b fog 3- i�2 /370 Al l t19 . a s8 9 Bo b _ /0 _. !/ao /, (o .. p�2 1. 6S 750 /,S A13 !• 53 670 ail y o• 3IT /6 0 ! A15 o-y0 160 yi6 p.ay s'so / 3 An 0 /•l A /g /- 38 seo / 4, . A l9 /,/o V30 l•s AZo A 6z/o /•3 AZ/ 0,3y Y70 p,$ A ZZ o• /oo /- o A713 0•og iao / o c26.77 1 79,y MARCH 1991 B-14 DESIGN CRrMIA 93.y a/y 1 1 1 1 1 1 1 1 RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: : L/N DEP W K STANDARD FORM A COMPLETED BY: MAX DATE: DEVELOPED SUBBA§IN ERODIBILITY ZONE Asb (ac) Lsb (ft) Ssb (k) Lb (feet) Sb M PS M (l gal 63 95 iKo RATE o•�/ /,iy 0- io 930 Syo yyo i vo /-o /, 7 /. /, a 3, 93 ti'Sa / Y 79,0 CI G2 c`i CS 1�1o�12A7�. o-3q 0 •y6 /-a7 b- Og /70 SYo 5-00 5-90 // o /,o /-7 /,7 0.9, 0.5 3.35' y9c2 i• 78.Y DI NOPaArE /.o9 /5_0 ____v__ a.-� /sa 12.7 80,3 A100U,47f. 0,1a �o a8,o io a�.o Sy. B F/ 1YgDl�eAIt /.ora yo %y vo 7-y 53,5 G ! /4 oDCteATE 0.5-8 yb o 0.9B y03 ' MARCH 1991 B-14 DESIGN CRITERIA 3/y EFFECTIVENESS CALCULATIONS PROJECT: L/lUD /� PARK STANDARD FORM B COMPLETED BY: /Y/ T DATE: A0 -/l - 9 Erosion Control C-Factor P-Factor Method Value Value Comment $/LT FjFA)cE /. DD d-SO F,406ms/ur 01 o r /.00 501> GRAss O•D/ /.DO ✓,rRAW pile /, 00 O• �D REsE�'7 vcc H 0.0(0 /, 00 MAJOR BASIN PS (-%) SUB BASIN AREA (Ac) CALCULATIONS A 93.y a&.77 /Oo% 5/LT ff.,#-cF, .25-7 PAVfA1ENT, SO% SO Cji, lt�{ C'-FtKToRc �, 25,Y0• o 1) + -t (0.2s)(0,0 = p, oa %1� P-Fae�=�/,oXp.s�+�/•v��o��/L _ Q•65 . B 9a q 3.93 /DD 947- rcWcel loelo srRALu 3A4tx- Dfkt/ /s/ /�/w�vT, GoS� SoD , ash I�cs�rac� rwer" = �0/5X0•o�t(o.coXo•ol�r(o.zsXo.ob��=p o Jul R—FAcTof2--Cox0>) .5) t( ('89J/2- =D•Io5 E- (o.oa)(n,6s)J x/oo = 9b .7% (), 9.Z C 9a, a 3, 3S /oo % STRAW r3.tee D/Ke� Isla PAvgd^eN 1-i 607o SoD� k%tC, �,4G7Gft �./S�O,o!>t�0.6oX0_OI�t�.25J14'6(cJ�Q.O t P- FAcroi : 6-S.0 C/ 90)) K /Ot (> ��242 MARCH 1991 B-15 DESIGN CRITERIA /y EFFECTIVENESS CALCULATIONS PROJECT: L/iU PEA) 17A10K STANDARD FORM B COMPLETED BY: DATE: Erosion Control C-Factor P-Factor Method Value Value 'Comment sicr F6AX boo O-S-0 PAUCAAWT 9.01 /, 0-o �bD 6RA55 5-roe�oj D • 8 0 1?E5&E1>144ozc# 0.06 / o0 MAJOR BASIN PS (t) SUB BASIN AREA (AC) CALCULATIONS D `l`i� S / Oq /D-6Z' 5/z7- F�FnucE, /o% PA1)cmSow wt C - F�tcroiz = (�o,�oaor) t W i P Ac-TeR : O.SD 98. o /ao l 5/LT FI!AXLI IS% PALJ4* Jr1 B5-7, Soo OTC- - FAcrog- = o-o I totP-r4crm ,o•so err iT 90�,7 0,%$ y0% Slcy- FEnJGE� �%S90 P.M1EM¢N � $% Sa-f) Wrc -f�c roe, z o,Or W t P- F'A-crB,e MARCH 1991 8-15 DESIGN CRITERIA I r 1 I I I 1 1 1 11 TST, INC. Consulting Engineers OPINION OF COST Project: Linden Park Job No. 0930-001 3/20/00 By: M.R.J. No. Item Units Unit Cost Total Comments 1. EROSION CONTROL (Developer) Reseed/Mulch 37.31 AC. 1 $655.00 1 $24,431.50 Gravel Inlet Filter 1 21 EA. 1 $235.00 1$470.00 Silt Fence 1 3,8621 L.F. 1 $3.00 1 $11,586.00 Erosion Control Subtotal 150% Subtotal $36,487.50 $54,731.25 1. EROSION CONTROL (City) Reseed/Mulch 37.31 AC. 1 $655.00 1 $24,431.50 Erosion Control Subtotal 150% Subtotal $24,431.50 $36, 647.25 EROSION CONTROL ESCROW AMOUNT $549731.25 of If / B�® fir. FRNMIE tau .k e9- ry 94i y y y MACr C - " fF-I8B ev6481 95 93 FF=46.8 B9 M 87 85 81 "BJ BI 91 -46.6 F2 F 46. fT AS9 IT458 M ff eS5 lS0 Fe IA8 FF-47. f M.> I JL--------- � e9O ar.. II 99 !CO !01 107 IOT Id FFrIB.) !C6 ) lW 110 1 lIJ 114 tree FF- 7 Ile-5 Ae FF-4 17=477 FFr46.) ?+IJJ fFrfU FFrq.9 FF-_IJ6 F! 4 .FF=54 ea42 eke y1416 r + � FOSSIL &A9RPAWKWAY - r- - -- -r --- - -,-- --- - -- ---- ---� r----- - --- ----- -- --- --- -- I FF IJI IJI J 119 118 lIJ )11 I 4 f 52) -51) FF-49)2 r48)\477;)� 1i=41 fFr410 1F fF: J1 fFrIT9 fF K.FF . µ FF11. L___ _ ____ - ___ ___ ____ ___ TERM 141 k9kq Col ✓✓.. roof MAracarrt p � fYFFRH QofN SPACE 6 ) 1 1!9 ) 14z ! 146 11] I9B J30 JSJ -r \� B ` gJ t>9 .4 FF=I) -169 FF-4 FF=I58 FF=4dB F-4(J B FF-4J0 =426 .9 4 ` z! r e a v., 144 I Ale __ _____ I___ ____ __ __ / L69_1-;00;rl�-- WIN 111MOMMM M aASBiN PE4Y L45CINRGE 0 0 I /5) I (cej At 0.> J.2 AZ 0.8 3..5 AJ Or 04 A4 0.1 0.4 AS 0.T 29 A6 0.1 OJ A) 1.> 8.2 AS J6 J6.5 A9 if 15.2 AM JJ 15.5 Aft 15 Mot All 2! 10.8 Ali 1.3 89 A14 as 2) AIJ 0.1 24 At$ 1.1 14 AI) 1.7 8.0 At$ I.> 88 AID 1.5 24 A20 1.9 8.7 "1 1.0 4.2 Alt of 0.4 A2J 0.2 0.8 CONSTRUCTION PHASING SHEETS 44-47 ♦M SUR x,K3 D 0 (cfs) clkwee 0 1(/sJ BI 0.1 08 92 1.0 4.6 03 1.5 7.0 84 1.6 >J 615 E+/ 1.0 Ct OI 0.5 C1 02 08 CJ 1.5 ).1 C4 1.8 75 C5 0.1 0.8 C6 0.9 J8 DJ 1.0 AS EI 0.1 0.5 Ft 1.2 5.0 FI 0.5 2J Cr 1.3 5.8 C2 0.9 4.0 OSI 1.8 8.2 OSB 0.1 0.J OSC 0.0 0.1 OSD 1.0 4.7 ME I.1 S1 OSF D.1 05 O50 0.0 all OSH a a it. 9OS8 sV pap yq 'ro „v, I r rvr ri' - LL 12 w wy/ aa¢nrs'e Q I e t --____ I; ` 20 FF155 FF1JBB ur Ch BO e. t0.1 QU ���FFFFFF Q.1 FF 4alf }k I�1 J Z _ Sl IIAJ-FF-IJ.) fF-IP.9=J-�-fFI40.B_ _57 '__ _�______� iF-64 !W ,W fF JB4 _ __._- III FF J9., oic M LL _r --__ins �--------- VO avy� � or � w0or-N Q CC WORM770M�M0 *1 1. The City of Fort Co//ins Stofmwefo Ufilad, erosion contra/ bspectbr must ). No sail slwkpde shall exceed fen (10) feet m height soil stockp%/es be rwtiloed of bast N Aours poor to any construction on the site. shall filfln ougAd (soil gediMy sf�Mpr'b rremainrng altar JOdaysf shall perifpeLsi� lancin 2 Adrepo%red perimeter sAf fencing shall be installed prior to any land be seeded and md. ulche eSfurDing� finfY (fockp%I%pig, stropping, 9rod%ng, etc.) A// other required central measures sell be installed at the safe lime in the 8 Colo, Ordinance prohibits the /racking, dropping or dponhoat of soils or any consGvcG'pr sequence as odawtvd In fed rppetN paswt seMalub. other mithaval onto Clly streets by or from any rev Cie Any moidvedent conslruclmn props and erosion control mport fed mopenot.VIa9 N dlmW m+udmlNy 0y the contractor J. pre-dafu2once vegelCbon shag be protected and fotoined whenever 9 intoe grow best M" on e/ lnbts. possible. Removal or D•s(unWxn o/ existing r dtotion shall be /,m%fM to the onto regdred her rmmed%ob construction operof%uto one her the shortest 10, Silt fence shall be Mal; / IOOX o Droved coup/ practical pied o/ t%ma. 11. Show bast boners am to be ildo/bd immediofi/y following the grodin0 4. All spoofs exposed during land distorbkrg oc6vity (stdppnq, flooding abide Installations, slockpL filling, etc.) shall be kept in foughened CoMition 12 A# aides disturbed by construction she// be reseeded with o tlry/ond a, by ripping or Aoclrrgpbng land contours until much, gvhthan, or other po�turo k Mulch shed be edhp slow or gross noy (ealenW'ng o psermonenf eras' central is %nse/led he sops m oufvde project i1voloz. opoined of a rote a 1 tons per re and b to be mschonico/lay beef fights of veal/'� he# remain a posed by tone eshab/ng wtiwy law tromped into the boll. nt than fhiry (JOi dots be/ore required, (ampwery, or permanent vowenavir control le.g seed/match, endscopng, etc.) is i eorbd, unless ofherwler lJ the devebpsr shall be nspansrbb {or ono%nlmning all efosoon contra/ approved by the Slormwofo U(%hty facilities, lnc/Wing reseeded arras, until o ice/thy slots a vsgefotion has been eslobhShed. 5 The property shall be watered and mainfoited of all times during constructon octwhes so as topreventwind-caused erosion. A// hard Nreion edraroy discmhnuetl when hgbw dust ==i5rgdcenl profbfi as determined by the Cory of Fort Calla Engineering 1hpaNment. 6. Mr remporory (atrucrum/) erosron contmr mrosures shall le inspled and repaired o reconstructed os vodcofoop7 other each runaff even( In roar to coolants continued pee monar of their intended function. All rebined 9edimsnrs, portrrulorly those on paved rood suees shoo/ be removed anddisposed of in manner and location as to, rouse their re/ se into any tlrornogewy DETENnnlI POND Sl/MM4RY TABLE R A&I A POND 81C !W-kR NHUME 6.2 w. ft.. 1.1 w.ff. IW-YR RELEASE RATE 25.9 cis 9.0 ch 1W-Yq WATER SURFACE ELEYAT/ON 49JI.>0 49M..M W I R OUAL/TY CAPTURE HJLUME 0.62 w. ft. N/A WRIER OIML/TY SURFACE ELEldl779l✓ 4929,W N/A FREEBaeRO I'M it. J.M ft, RELEASE PIPE CE 22 I/4" CieylCE for 5/8' OR/ LEGEND Exsfiog 5" Canrour - --- - F bfkq I' Donlow proposed 5" Contour Proposed I' Contour Proposed Srofm Proposed Ripmp Boson Bcurdory wrein bsnbbcobon r�k. Design Point Few Direction r Propased Straw Bob Wke Proposed Sib Fence - T poetry Crow/ Mbl Finer G;l 0 z J o b w Iw sqe ILIOMI _ City of Ft. Collins, Colorado - UTILITY PLAN APPROVAL TOT• M ei~�eeeve � e APPFO9E0: Omliuwt CHECKED BY: City 6gneer Now ra OR"-Wl 9lnrmota Vllllll 0.Y CHECKED BY: Puke k Peeraellon t •� ss• 12111VO CHECKED BY: 401e ay v CHECKED so: 0.0 CHECKED BY: °`le CJ O w +L f2 ro, / 14 15 es n Q w-h:re w 155156 31 A O fF=398 FF=JRB BO 101 5 1 fr ' FF=JBIi O I FF• E•1=f I ------------- Ist FP Aw r f P)W /LL OMVE 39 Ilk. 00 ASIA _ _ 1( 1J S FF As # 9 11 l fF=d881 B ] 6 3 FF 16 J 1 ) Meese 1 f I6 FF=Ill �= fT IlB fFIF j =IB] Iff e ] FF IBO 116 =163 rpm F ISl 1loft -- - -- - - -- --- ---- ---J - ---- --- ---- -- - - - - _ - - -- ---- - -, -- --, -- -- - - --- J2 3: A EV - I I we w / n 2 w= ANN -'X ._� N w2J fF Il3 Il 28 ! JO JI fE. B B iF=l19 Ff=a15 fF=IB9 FF-tin FT=d6.5 FF=OSB FF=dSB / Cote EK PARKWAY + f •e•3 9 ,•rA+ I n (3 IS u Il d0 FFii fF 5 fF t =U9 FT. 446 ,�= fF K. FF=Ill J9 FF.i).B rrs FF=16. 1► J Ff I18 - I 1 I snur•.0 JJ fF=5]II =4Sl .vyu rsn o FF I59 I I we ' u __ ____ ___ __ __J L _J /,, w m u A I I I I I nnrc: • ff=IJI f! SB ] 414 1 - I 1RACT� I I � fF=I35 fF= =IIB FF fF IB91 - FF IBB fF 4ua` 3] 2 3 =44.9 !f lA] I I I I �c ru -�� .y f •p, w•> y •e' FALCON R/DOEOR n ]9 fF=ILO = 69 FF613] AIO2 - FF�dI. FF tJ9 fF� =2 FF=ISB FF=I30 FF=I(8 6 _________--.__ a^w`savmmwmrne _-Mupm-------nK _. vMVIVAW „met �Mvw, Ares MY-- - ��wan a�wmma Iwemr-0.w� o13 o ! PEN: D/SCIbaROE PEAR 19CNARY.0 0 0 0 0 EPOsk?V LONz8OL NO1ES SUB 1-YR (rJ ICO-ra ( S) sue 845/N z-ra (Is) 100-H! (c/f) I. TM Cr'(r W Fpl coM'ns sr0•mmorar U6c'rr erase^ cOnfrol ins9ecrp must 1 No sod srockph shoo a cevd fen (lo/ /set m he;9nL Au that :rxkpks BASIN he nofdke of Bost St hours prior to any cros(mclwn on the site. Shod Ce porecfee / . Hinenf transport Ce suA a rouyhmmg, mhnng. eJ 02 0.8 old penmefer sdf fencing. My sal aockpde remaarq offer JO obys s/we At 0.] 32 2 All rmt nN penmefer that fenclag Shoff be ,nslo/be Print to any Food be s rodeo' one mukhee. A2 O.B J5 BZ 1.0 (6 b'slurbmg oclM/y (sfxkpibig. Khoo= groemq, elm) Ad other FequitId AJ of 0.♦ BJ 1.5 le then control meosurvs shad be insb/ke or the appropnefs rims in the B Gfy OMinonce prohihms The hotakirg, eroeprg or eerwsinng of soih or any 1.6 77 conslrvelkn ss @ as hKcoree b the OgovvM p9/esr #NOUN other malenal onto C'ly sLeeh by or ham any rrhkc e. Any inofre,Yte l A( 01 O( 96 cant u teen plops one emsmn contra/ repo f --- eervetee mouriol shad Fos cmane0 /mnWorer cv the conlroceor. A3 0.] 29 BS 01 1.0 A6 01 OJ CI 0. t -1 OS J. Pre-drsturbonce vette alion sod// be protected one ndoemee wherever 9. tested growl ~ tPhmm m of havoc A] 1,7 B2 02 02 0..8 possbh. Nerno„o/ or ddurbonce of emsfiN vegebl;on s/rod be Bmiree to ),1 the omo repaint for %mmh opediecrosfrucrbn Bons. door for rod shortest t0. se fence shed be MCI, fnviolence IODE or o terreee moat AB J6 165 CJ I5 pvcfkol period a bare. A9 J1 15.2 CA 1.6 F.5 IL Strom bole burners an to he insfdeed dn/pntioto lopoeitq the grading. AID JJ 15.5 C5 0.2 0.8 I. Ae salts atrodeo' arnmg bed JSNrodrg ocbn'fy (legging, grodPg, utoWX JB testaons, slockPd;n9, rd/mg, etc.) shod/ ae kpf w O rwgneneO covedfron 12. AY drove e%afwbcd by cwurrucl%on shoes be resented wth o drylmM Aft JS 16J C6 09 by ^pM^g or d;sc'g obnq bed coneows unbd mubh, royvbMay or other posrwe mid. Muth shop be edher Seor or gross hey (dependw on All 2J 106 Dl 1.0 4..8 permonent mmsion condof ,s nvhfind N eaig ;n arms ouhiee Project ovaitob/'fy), opPaed of O role or 2 food per one mod he to he mxhonkO& AIJ 1.8 89 Et 0.1 OS A~ nghts of a shall renw;e ewpesee by toed W'stur1hv Mindly per camped mfo the MY. more than thvey (Jo) eon he/ rFqwree temporary or Pempmnr erosion All 0.6 2.7 F1 1.T 30 combo/ (e.g.. seed/mukh, bn0 peg, etc.) %s insl~. dames afherm" IS fie eevehper sMtl be ponsi" for manfanirq off erosion confra At$ 0.5 24 F2 0.5 2.S oppdwd by the slOrmmaer wA,fyr htvs. 'achIdrg roseaded onraF mid a AvaWty stood of r tobae has A16 1.1 5.4 cl fj 58 been esfoheEhed. Al] 1.7 8..0 C2 09 e0 5 the Property shoe oe worwed Cod mdinhime of ad ewes during dnshrdch n hvdms so OS to "wwd mod -caused eroson. Ad Fond AIB IJ BB OLI Is B.2 CWvrodg ocbftmot shoe be ;mmeaietery diesmimuee when rupl%,x Aust OETEMId✓ POYO SUMAaN1' TKYF A19 1.3 ),I OSe 0.1 OJ lmpocts admemf ProPeMbF ve Cfmn;me by the C•Yy or Fort Cabes EC9,nesong Oryorfmmt R0A'D A iGNq 9/C A20 l.9 8J OSC O.0 R t A21 1.0 (.2 OSO 1.0 lJ 6 Ao tewperar, (sMecfwa) enmoon contra measures shelf be bspecrnt and loo-ra WLUME 6.2 oc. ft.. I.I OC.N. A22 0.1 0..♦ 05E 1.1 12 repa%red or recrosfrucfnt as necessoy offer much runoff even' to Coder to 100-ra RELEASE Por]E 259 cis 9.0 ch A2J 62 0.8 O6F 0.1 0.6 astuen ronfmuee pedermotme or that, intended / crtoer. All reraned 100-YR W WR SU ACE ELF0477CJN 19J(.M 49JBN] sed;etenfs, porncukethose on powe otdwdY surf , shaft br hmovee BNI£8 WNRY GNZeE KKUME 0." roc. N. N/A OSD 00 O.O deb or h and dispose,Y Ammeter me keabm m 05 to muse Merr ramose 4A NIA CONSTRUCTION PHASING os'F/ Do 0.1 a y emdwgm r MXR TY SWFACE ELEYATgN .IJO rb9 1.30 N 057 20 B.9 BELFASE flPE SHEETS 44-47 22J� d E 1J 3OB/mI/rv'E LEGEND Exsl/n9 5' Lon[our �shq r cmrdar - Roposnt- P�sse P Contour )KvtFd tY Storm Pmpasad Rip Born Boundary Bosn Ahnrirkobon AK Desr9h P dd Q Few DBvcfbn ► Proposed Store Ham Bike Avooeee se fence - Tempnoy crown /nett ride U) Z Q J d w0 a� J 0 00 U ij J Z ZJ lL 0 YQ a0 LL W 0 z J City of Ft. Collirm, Colorado UTILITY PLAN APPROVAL APPROVED: TST, INC. mod a•-wn CHECKED BY, City Engine, UeN w 09J0-001 Ebrm=stm VWAT 0.Y CHECKED BY Perk• 1 Pa 'Ulft AY r•. rob' 12/11M CHECKEO BY: 4mae E�nwr 0.b CHECKED BY Y M e, CHECKED BY: a.a 57431