Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 12/19/2003A oiqyk
FINAL DRAINAGE REPORT
FOR
ARM 91b Filing - Parkside Commons
Submitted to:
CITY OF FORT COLLINS
September 5, 2003
1 September 5, 2003
Mr. Basil Hamden
City of Fort Collins Storm Water Division
1
P.O. Box 580
Fort Collins, CO 80522
' Re: Rigden Farm a Filing — Parkside Commons
Project No. 0891-040
' Dear Mr. Hamden:
1 We are pleased to re -submit to you, this Final Drainage Report for Rigden Farm 9w
Filing — Parkside Commons. This report was prepared based on Urban Storm Drainage
Criteria and City of Fort Collins criteria and after review of the previous submittal
1 comments. We believe it satisfies all criteria and comments for a final report. This
report also includes discussion of erosion and sediment control measures that will be
utilized during and after construction.
We look forward to your review and approval and will gladly answer any questions you
may have.
1
11
1
1
1
1
I
1
1
I
TABLE OF CONTENTS
1 Page
1.0 Introduction
1.1 Scope and Purpose.............................................................................................1
1.2 Project Location and Description......................................................................... I
I2.0 Historic Conditions....................................................................................................... 3
'
3.0 Developed Conditions Plan..........................................................................................4
3.1 Design Criteria............................................................................................4
'
3.2 Drainage Plan Development.......................................................................5
3.2.1 Street Capacity ................................................................................8
3.2.2 Inlet Design.....................................................................................8
3.2.3 Storm Sewer Design
1
3.2.4 Swale Design . ........................................................................9
..9
3.3 Erosion Control/Surety Calculation...........................................................11
1
Exhibits
Exhibit A — Hydrology Tables...................................................................................................6-7
'
Exhibit B — Storm Sewer Network.............................................................................................10
Technical Appendices
1
Appendix A — Hydrology
Appendix B — Street Capacity
'
Appendix C — Inlet Design
Appendix D — Storm Sewer Design
Appendix E — Erosion Control and Surety Calculations
Sheets
MAP POCKET 1 — Overall Drainage and Erosion Control Plan (Sheet 16 of 16)
JR Engineering's Drainage and Erosion Control Plan (Sheet 7 of 20)
I
I
r
I
1 100
IIntroduction
1 1.1 Scope and Purpose
1 This report presents the results of a Final Drainage Evaluation for Rigden Farm — Tract U. In
accordance with the requirements of the Fort Collins Storm Drainage Design Criteria and
Construction Standards Manual (SDDC), the purpose of this report is to present a storm
' drainage plan that identifies peak runoff conditions and provides a means by which to safely
collect and convey runoff across the site. This report will evaluate hydrologic conditions for the
proposed development to determine the location and magnitude of the storm runoff, and will
' use that information for hydraulic analysis of the proposed streets and conveyance facilities.
Rigden Farm — Tract 'U' is part of a master plan and runoff from our site has already been
' accounted for in this master plan. The .design shows runoff from the north half of our site
conveyed east to detention pond 216. Runoff from the south half of our site is conveyed south
to detention pond 218. TST's design of the site provides for no increase in storm runoff than
that of the design by JR Engineering.
1.2 Proiect Location and Description
Rigden Farm — Tract 'U' is a proposed 11 building (6 and 7-plex), 71 multi -family dwelling unit
development located in the Northwest Quarter of Section 29, Township 7 North, Range 68
West of the 6'h P.M., City of Fort Collins, County of Larimer, State of Colorado. The site is
' bounded on the north by Drake Road, the south by Limon Drive, the east by Rockford Drive,
and the west by the proposed Kansas Drive. A vicinity map illustrating the project location is
provided in Figure 1.
fThis project is located entirely within the Ridgen Farm II development. A master drainage plan
was performed by JR Engineering for Rigden Farm — Tract V. All development conforms to
the previously designed drainage plan for Rigden Farm — Tract'U'.
[I
1
TST, Inc. 1 July 2, 2003
' 0953-003
r C
I
Ow
°r •,
'
- -
As
1 2.0
Historic Conditions
The proposed site is currently an undeveloped area located within Rigden Farm II — Filing Eight,
' as designated by JR Engineering. JR Engineering previously performed a drainage analysis on
the site (Rigden Farm — Tract 'U'), and a proposed condition was used to calculate runoff to
several proposed and existing inlets surrounding the site. This proposed condition was factored
into TST's final drainage analysis. The site consists of bare ground that sheet -flows from the
center of the site outward. Currently runoff drains to the north, south, and east where there are
three existing inlets and a swale. The swale follows the north end of the site and collects runoff
from the northern portion of the site. There are two inlets at the southern end of the site and
one at the eastern end of the site; the three inlets collect the remainder of runoff from the site
and convey the storm water to the existing detention ponds discussed earlier. No off -site runoff
enters the Rigden Farm — Tract 'U' site.
JR Engineering's proposed design includes two inlets on the south side of the development,
one on the east, west, and north sides of the development. The two inlets on the south side of
' the site and the one inlet on the east side of the site are already constructed and in place. The
inlet on the west side of the site (east side of Kansas Drive) will be built with the development of
this site. The inlet to the north of the site will be built with the reconstruction of Drake Road,
' before any construction of Rigden Farm — Tract U. Discharges, contributing area, and
composite 'c' values are provided at each design point with JR Engineering's drainage report.
A table showing these characteristics is found in Appendix B of this report. JR Engineering's
' report provides a master plan for drainage, however, there are no specific discharges for only
the Rigden Farm 9"' Filing site. The design points surrounding the site include portions of the
Rigden Farm site as well as other areas surrounding the site.
TST's design provides for no additional runoff contributing to all five inlets designed by JR
Engineering in their proposed drainage plan. A drainage sheet showing basin delineations and
designations is provided with this report for reference.
TST, Inc. 3 July 2, 2003
0953-003
F
L
1 3.0
' Developed Conditions Plan
3.1 Design Criteria
' The drainage system presented in this report has been developed in accordance with the
criteria established by the City of Fort Collins Storm Drainage Design Criteria and Construction
' Standards Manual (SDDC) dated May 1984 and revised in January 1997. Where applicable,
design guidelines and information were also obtained from the Denver Regional Council of
Government Urban Storm Drainage Criteria Manual (USDCM).
' Developed condition hydrology was evaluated based on the 2-year and 100-year storm
frequencies as dictated by Table 3-1 of the SDDC manual.
' Because of the limited size of the sub basins on the site, the Rational Method was selected to
calculate runoff. The Rational Method utilizes the SDDC manual equation:
Q = CCJA
where Q is the flow in cfs, C is the runoff coefficient, Cf is the storm frequency coefficient, I is
' the rainfall intensity in inches per hour, and A is the total area of the basin in acres. The runoff
coefficient, C, was calculated from Table 3-3 of the SDDC manual based on the proposed
developed condition land use. A composite runoff coefficient was calculated for each sub -basin
based on the percentage of impervious surface (C = 0.95) and pervious surface (C = 0.25). Cf
was taken from Table 3-4 of the SDDC manual and was determined to be 1.0 for the 2-year
storm and 1.25 for the 100-year storm. The appropriate rainfall intensity was interpolated from
' the rainfall intensity duration table in Figure 3-1 of the SDDC manual dated 1999. To obtain the
rainfall intensity, the time of concentration had to be determined. The following equation was
utilized to determine the time of concentration:
1
1
tc = t; + tf
where tc is the time of concentration in minutes, ti is the initial or overland flow time in minutes,
and t, is the travel time in the gutter in minutes. The initial or overland flow time was calculated
with the SDDC manual equation:
t. = [1.87(1.1 - CCf)LO.j/(S)0.33
where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the
average basin slope in percent, C is the composite runoff coefficient, and Cf is the storm
frequency coefficient. The formula limits the product of CCf to 1.0 and when the product
exceeds this value 1.0 is used in its place. Gutter (or channel) travel times were determined by
utilizing Figure 3-3 for the flow velocity within the conveyance element. The travel time was
1
TST, Inc. 4 July 2, 2003
0953-003
I
li
I
71
LI
k
i
I
1
then determined by dividing the gutter flow length by the velocity. This procedure for computing
time of concentration allows for overland flow as well as travel time for runoff collected in
streets, gutters, channels, or ditches. After the peak runoff was calculated, attenuated runoff
was calculated. This was done by combining all contributing areas upstream of a given design
point. The time of concentration for the design point was taken as the greatest travel time from
all of the contributing sub -basins. Spreadsheets showing this process are located in Appendix
A with this report.
3.2 Drainage Plan Development
The proposed drainage plan consists of a combination of overland flow and gutter flow. The
runoff will sheet flow across common areas and also be routed by grass swales, then
concentrate at proposed and existing streets. Gutter flow in streets will be collected at low
points via curb inlets and then conveyed via a storm sewer system or sheet flow to the existing
inlets on the east and south sides of the site. The existing storm sewer system will collect the
runoff from this site and convey the flows to existing ponds. Storm runoff that enters the
proposed west and north inlets and also the east inlet will be routed to the existing pond with
designation number 215. Storm runoff that enters the south inlets will be routed to the existing
pond with a designation number 218. A basin delineation plan (JR Engineering) showing the
existing ponds and also the routing path will be provided with this report. Sub basins for Rigden
Farm — Tract 'U' were delineated based on the proposed grading. Final grading and basin
delineation is shown on the Overall Drainage and Erosion Control Plan Sheet, which can be
found in the back of this report.
Basin A encompasses the southwest portion of the site, along Kansas and Limon Drive.
Basin B encompasses the southeast portion of the site, along Rockford and Limon Drive.
Basin C encompasses the center portion of the site.
Basin D encompasses the northwest portion of the site along Kansas Drive.
Basin E encompasses the north portion of the site along Drake Road.
Basin F encompasses the north portion of the site along Drake Road, just east of Basin E.
Basin G encompasses the northeast portion of the site along Drake Road and Rockford Drive.
Runoff from each of the basins will eventually be collected by a storm sewer system and
directed to the two existing detention ponds, located to the south and east of our site. Exhibit A
(next page) shows the Composite 'C' factor and developed conditions hydrology. The exhibit
also shows individual basin hydrology and basin attenuation. All supporting calculations are
found in Appendix A of this report.
TST, Inc. 5 July 2, 2003
0953-003
m cppp pl II.� yy ��v+ll ��((ll pp
B�A�mtp aWO.NOOn� mDDm �aOrOmap 90ln�
E o000000c00000000oo oo OO
U N
m.
a
Wr4 gm 08
00NC4.a-0 03W AN NYnIp
gog000do'd0oci0000o000000
pper' yY pZ 6Y
4$ O O O O O O O O p 0$ S O O F O P
U• O q C 0040004 Q O 0 o00QO Q Off? CO
�Y 3il l
l3 i '..1 - 4Y
s 45 5 2-k 4 l
U
m NOO 00 r 0004 O .-Ogoioo
o 66 0 0 0 0 60 i
0 0 0 o p p o cid p Q o c 0
vil
}
me nmato{+� ®+'o mm�Nyonpy ttpp 'm �.N
NNS'IOm�N
�000000 ooc00000000cci00
t
A
U s eV
mQ.Q ¢ m [0 m m m m 0 0 0 0 W W LL LL (N9
J
E rn
0
a
N M
OR"tgq
W N
W
Mn
Wnm
n
W O
W w�nnm
N W
N S Q
m�mWl�nm�
t7
W n
M N
W
Q
O N.-
�dL6o00—Ns
.
.v
O)0
-
2)dtNp
mrNaaOm
m mamp0
�Nt�(�j
I��amO
mfONr
N_
tm�l �O
W
�NtNO
V
Q��m
mm��v
W m0
W ON
nmmao
t%m
.-ul
NO
�yy
OO
Oa
OOOOaaOO�yO
pOONO
m
aO
mmtO�O
aO{�faaV
m m
mm
m
m CR
aO
tO
Op"
O
W Y]
.(RIP
Y W
In
qoq
O 0)
�
In t[I
IA In
1A 1f) In
<
In V
In In
IA IA
C_
O W,
co W
m
W mmm.-WmW
W
It W
I
m W
W W
W W
W W W
WCQ CR
pp
m
m�mW
WW
m W
W W
of
of
v o
e v
a a d
ai
a of
c
m o
m o
e
N
W o
W N
W
m
e v
N N
a v
N N
o e
N N
l�
W
a N W
V N V
N
0 7
N N
N
Nt+)N
th
OIN
(V
fV
Ml'�th
pl
hNv
tt+l pl
tTl
OI N
I+IM
mc�i
E
o o
0 0
o
�im�0000000n
N
o 0
o n
o 0 o
W
o n
o 0
0 0
O
tG YI
O t[l
vi
ad
N n
vi ui
tf) N
N O t[i
aO
N aC
N ui
tti N
ryO
}m
U
O a
Ol
0
0
0 S S
N
wi
a
N
W W
0 0
0
0 S
m
S tl 1
W
0 0
yy
0 0
o Ni�
W O
m'f010
0 NIA
Ol�tO
rn�l[I
10
If)In NQIOOI
I[j Niue
W
EN
10118
H
ogo�ool
mmg000l�oa$
W
ow
o
ono.
-,a
00-
-0-n
0-00
n
m
nWmmmmmW
8Wn
S O
O
O O
O C
O
C O
O O
G G
G 0 0
0
0 0
0 0
0 0
<
nmW
m thnNOlN
mmWmtOn
W
W
Wm
W O!)nWmmmlpn
N
0
0 0
0 0
0
0 0
0 0
0 0
0 0 0
0
0 0
0 0
0 0
^tyn
W v
m
mal
W m�vl
vWlN
o W
n
N
WW mom
t tV +l
rlm
�-N.7
C
Q¢
C
m a
0 m
m a 0
m 0
0 0
NCO
W
W
Lt��ll
u l I
N'NN
LL
0
0
U)
C
m
Q
m
U
O
W
LL
(9
m
i
i
i c
I o
t
I
W
W N
W W
as
NNN
v a
m
m
.-
m
i 0
I
W
T
Z
J W
U W
2
F Z a
F U W
omm$
8mmga8
No
o
000�ocoo�
U
�dnnnw
n�n�nm
��gcogtiddoo
E
OO
O.00OO
U
mm mm
NN
nlNm0n
O mp
mym
N
O
/J 6
cs
a
njv
Ui
.�f-'
m
�
bnZ
�ctry$'RFIN�N.
C
�
m
m T
4 W
LL
n
:R Q.m
5_
y
f W
I,,
4
y41
G n
Q.f0
m�0
W
IL
1 VJ
r
-..si
na
.
y
CO
a
OMmSme-mN
m
m o
m
m N
W
d m
o
0
O I+j6
N
w ad
�lV
IV
O t0
N
V
aa
m(mal
Q trO.m
�N
r
�
�1OO
QN
i[I
Lp�
L
NMI
dmdC
� �-Cl
O
m
m W
O m
N
N l
m
N
�
Nmm G
M M
MO
p
gN
OMNN
Od
V omm¢iicioamvi
O
O m
O mm
O O
N N
��
N
C
M
OI OM
IV
'7O
l7 OI
O V'
m
m
N d'
m N
N
O
W d
W N
N N
m m
0 0
m
Nc4
eiNNNoi
NNNN
c
E
a0
� O
M
0
Im+l Vi
y
40
p
Oi W
?por�m��ae
vi
lD �aG
fG
c
0
U
00
EN
i=
doWmSWo�WWOW
O
m m
m
0
n N
O W
O
�lio�li
.=oco�o
mm
O
nmm�Snnrmr
O m
N
m d
O W
g�ooli
lioli
lioolio
E
Cg
aom
0
nn0mnwrrmm�
m
M N
m d
O W
N
O
O G
G C
O G
O 0
0 0
m
mo
r
N V
d
l7 N
m m
0 m
,O,IV
,-0000,
Q
5
N
an
d
v 1 N
co d
C4 cm
NI.�
U.OLL
N LL
ca
C p�pmmUO
W
a
QI•!
mUO
W u.
'
'c
Q
00
f0
U'
_
U
U
a
O
O
Q IL
O
dN
aNy NN
U O
m
N
c m
A �
m
n
2
U W -3
7 Z
F Z a
F U W
11
1
1
1
1
'I
J
1
1
1
I�
L
1
1
1
1
1
3.2.1 Street Capacity
Three street sections will be used for the internal streets: 1.) A local residential street section
with 42-foot FL to FL width with vertical curb and gutter and a detached walk, 2.) Private
driveways street section with 28-foot FL to FL width with vertical curb and gutter and attached
walk in some locations, 3.) A local residential street section with 34-foot FL to FL width with
vertical curb and gutter and a detached walk. A worst -case condition was analyzed for the site;
this is the maximum discharge throughout the site flowing at a minimum slope (0.50%).
Street encroachment criteria for the streets was taken from Table 4-1 (minor storm) and Table
4-2 (major storm) of the SDDC. The minor event (2-yr) criteria allows no curb overtopping and
flow may spread to the crown. The major event (100-yr) criteria allows for flow depths of 6
inches over the crown.
All of the streets meet these requirements and will function below the allowable capacities. The
results of the Street Capacity Analysis can be found with supporting calculations in Appendix B.
3.2.2 Inlet Design
CDOT Type "R" curb sump inlets were used to collect the 2-yr and 100-yr. runoff from low
points in the local and private streets. Ponding depths for all inlets in the streets were set such
that flow would not inundate both travel lanes. The inlets are connected to storm sewer
systems that convey the runoff to the detention ponds.
Several proposed inlets were designed by JR Engineering, the west and north inlets were part
of JR Engineering's design. With TST's design, there is no increase in storm runoff to those
inlets. As a result, there is no change in the proposed inlet sizes. JR Engineering proposed a
5' Type 'R' inlet on the west side of the property in Kansas Drive and a 10' Type 'R' inlet on the
north side of the property in the proposed Drake Road. There are also two inlets at the south
end of the property in Limon Drive and one inlet at the east end of the property in Rockford
Drive. Discharges from our site are less than the proposed discharges from JR Engineering's
design; therefore the existing inlets are of sufficient size to collect storm runoff from our site. A
table created by JR Engineering, showing the proposed discharge to the two inlets is found with
this report in Appendix B. No discharges for only the Rigden Farm a Filing were provided in
JR Engineering's drainage report, only discharges to inlets that included Rigden Farm a Fililing
as well as additional area adjacent to the site. Below is a list of TST's proposed storm water
runoff to design points that correspond to JR Engineering's design points.
DP-a5:
TST's Discharge = 6.83 cfs
(1.54 ac, C=1.00)
DP-b5:
TST's Discharge = 9.60 cfs
(2.08 ac, C=1.00)
DP-d2:
TST's Discharge = 1.08 cfs
(0.22 ac, C=0.86)
DP-e2:
TST's Discharge = 2.08 cfs
(0.53 ac, C=0.96)
DP-g2:
TST's Discharge = 8.63 cfs
(1.82 ac, C=0.98)
1
TST, Inc.
1 0953-003
JR Engineering's Discharge = 23.60 cfs
(2.79 ac, C=0.95)
JR Engineering's Discharge = 17.65 cfs
(2.55 ac, C=0.83)
JR Engineering's Discharge = 5.55 cfs
(0.78 ac, C=0.83)
JR Engineering's Discharge = 7.65 cfs
(0.99 ac, C=0.87)
JR Engineering's Discharge = 13.15 cfs
(1.86 ac, C=0.87)
July 2, 2003
'LJ
it
1
n
The difference in discharge between JR Engineering's design and TST's design is due to more
contributing area to the inlets. TST's design contributes a portion of the total contributing area
to each inlet, therefore the smaller discharges to the inlets. Differences in the time of
concentration due to a longer flow path than expected also result in,a different discharge. A
table created by JR Engineering shows their designed composite 'c' factors, contributing areas,
and discharges. Tables showing TST's design characteristics are found in Appendix A. The
results of the Inlet Analysis and Design can be found with supporting calculations in Appendix
B.
Rigden Farm — Tract 'U' is part of a master plan and runoff from our site has already been
accounted for in this master plan. The design shows runoff from the north half of our site
conveyed east to detention pond 216. Runoff from the south half of our site is conveyed south
to detention pond 218. TST's design of the site provides for no increase in storm runoff than
that of the design by JR Engineering. Therefore, our design is not increasing the volume of
water in either of the two detention ponds used for this development.
3.2.3 Storm Sewer Design
The storm sewer lines were analyzed with Neo UDSEWER. The pipes were sized such that the
hydraulic grade remains below the flow line of the proposed inlets.
Storm Sewer Line ST-1 conveys detained runoff to an existing 30" storm sewer line in Limon
Drive at the south end of the site. A manhole will be formed around the existing 30" line, and
ST-1 will tie into this manhole.
ST-2 and ST-2A convey runoff from Basin D, Kansas Drive, and runoff from the undeveloped
site west of Rigden Farm — Tract 'U' via a pair of inlets to the detention pond.
The results of the Storm Sewer Design can be found in Exhibit B with supporting Neo
UDSEWER results presented in Appendix C.
3.2.4 Swale Design
Trickle pans surround the site on all sides and are intended to carry nuisance flows to several
inlets around the site. All grass swales interior to the site are designed to cant' nuisance flows
to the trickle pan surrounding the site. Trickle pans are required for slopes less than 2%,
therefore all swales interior to the site are designed at 2% or greater to minimize the need for
trickle pans.
TST. Inc. 9 July 2, 2003
0953-003
I
Exhibit B
ST-1
MANHOLE
MANHOLE
7.00
18
RCP
MANHOLE 2
MANHOLE
7.00
21
RCP
MANHOLE
INLET 1
7.00
21
RCP
ST-2
EX. MANHOLE 3
INLET 2A
13.02
24
RCP
ST-2A
INLET 2A
INLET 2B
5.03
18
RCP
Notes: -i. oi-zaasignTiOWOT-iJ.UACTSISTrOMJKr-ngineeringuesign.
2. ST-2A design flow of 5.03 cfs is from JR Engineering design.
3. Rigden Farm 9th Filing contribution to Inlet 2A is 1.26 cfs.
TST, INC.
CONSULTING
ENGINEERS
10
7/112003
040—storm
I
' 3.3 Erosion Control/Surety Calculation
The grading of Rigden Farm — Tract 'U' will be consistent with the approved SDDM criteria;
therefore minimal erosion control efforts will be necessary during the construction of the project.
A concern regarding sediment transport from the site is the existing storm sewer system at the
north and south ends of the site. During construction, this concern will be mitigated primarily by
temporary structural measures of silt fence around the majority of the site. Additional measures
will be used by installing gravel filters over all the inlets and straw bale check dams will be
installed in the swales where required. A vehicle tracking control pad will also be used at the
east entrance of the site to minimize sediment transportation.
Upon completion of the utility work, the roads will be paved and the entire disturbed area of the
' site will be reseeded and mulched to provide soil stabilization until build out. Elimination of bare
soils by pavement, riprap, or established vegetation will help eliminate the potential of soil
erosion caused by storm runoff. Since it will take at least one growing season for the
' vegetation to establish itself, it will be necessary to leave the structural measures used during
construction in place for some time. The developer will be responsible for periodic maintenance
of the erosion control facilities during construction and the warranty period. At the end of the
' warranty period, and with the approval of the city, the developer will be responsible for removing
all of the filters and silt fence. It may also be necessary to flush and remove any sediment that
may have built up in the storm sewers.
' The Drainage Plan sheets, located at the end of the report, show the location of the proposed
temporary and permanent erosion control measures. These measures are also shown the
' Grading & Erosion Control Plan sheets in the utility plan set. Erosion control performance and
effectiveness calculations have also been performed for the site, as well as a surety calculation.
The calculations are located in Appendix D of this report.
0
1
1
TST, Inc. 11 July 2, 2003
' 0953-003
Hydrologic Calculations Methodology: Rational Method
Peak Runoff: Q = C CIIA
where: Q = Peak Runoff (CFS)
C = Runoff Coefficient (Table 3-3 SDDC)
Cr = Frequency Coefficient (Table 3-4 SDDC)
I = Rainfall Intensity (Fig 3-1 SDDC)
A = Basin Area (Acres)
Runoff Coefficient (C):
Composite runoff coefficients were calculated for each subbasin based on the proposed
development. Impervious areas were given a value of 0.95, and pervious areas a value
of 0.25 (Lawns, 2-7%) as dictated by Table 3-3 of the SDDC Manual. Calculations for
each subbasin are provided in this Appendix.
Frequency Coefficient (C*
2-year =1.00
100-year =1.25
Note: CCr shall not exceed 1.00
Subbasin Area (A):
Subbasin were delineated based on the final grading plan. The areas were calculated
using the AutoCad area command. I
Overland Travel Time (Ti):
The length of overland runoff was measured to best represent the subbasin. In some
cases this was an average length, in others it was the longest.
The average overland slope represents the total fall across the basin measured along
the overland flow length.
TI =1.87 (1.1 - CCr)D1n
(SI/2)1/rJ
where: TI = Overland flow time of conc. (min)
C = Runoff Coefficient
Cr = Frequency Coefficient
D = Length of Overland flow (500'max)
S = Slope (%)
Channel/Gutter Flow:
Gutter flow will be defined as flow in streets or channels:
Figure 3-2 from the Urban Storm Drainage Criteria Manual (USDCM) was used to
calculate the velocities in gutters and channels.
Gutter Travel Time (Tt) will be calculated as a function of the theoretical capacity by
Tt = LN
where: L = Gutter length
V = Velocity by Fig 3-2 USDCM
\----------t-= -.-; LEGEND
r°
It 77 `ecp:qea���. t:7 .:{,:Cci;7--:�:�G r■ Gi Gil Ct7::: L7:Gi7: e5� 2Gia._.�
nmwvw
wusi i
�r�4r �• �
I
tin
50
IN
L,I\ _
q's
22
pppp
Ism 311,
i-Awkw7w, MOM
-
I
wn,.wln•nvm
_ _
u
C
- - - -
DeftnPaird
CQftfflYAMS8Wns
Area roar
COOposm-v
2-w [ +
TMw Of CwcwtrWm (min)
2.10w 1
InlwniOy Ow"
2-w 1 1
D"aw(ds)
2-W 10- i
84
A2 M
0.7B
Orel
0,81
1.00
8.25
78
2.68
3A7
I 4.87
1. 7 I
2A0
380
120
0
an
0.08
10.00
10.55
2.52
3.80
1 4.3s
2.58
3.54
5.53
3
B 1 83-2
0.42
0
0.70
0.88
3.92
abs
3.24
488
I 8"
0.04
1.38
2.08
,4
BI, B2 B4
1.81
0.80
0.80
.00
14.88
13.80
. 4
3.10
3.81
3.
4.4
8.88
a3
B1.85
2.40
0.7B
0.78
0.98
10.15
15.32
2.02
2.1;
3.Be
3.88
8.67
8.55
92
C1. C2
1.31
Ores
0.83
1.00
8.88
6.36
2W
1.90
S.zO
325
4.80
6.8
a2
01-D2
025
0.
0.
0.00
3.23
5.e8
3.24
4.BB
8.81
0.58
.64
118
1-
0.58
0.
0.78
O.W
10.3
G0.84
2.1P!
3.80
4 q
1.1
67
2.42
2
1-
0."
0.74
0.74
0.92
10.,
10.11
2
3.80
1.38
24
1.77
2.60
1.2
O1- O
0.
0.80
1.
7AS
0.00
2B0
4.
820
17
2A0
4.00
01 -(i2 F7-F2
.88
0.70
0
0.00
7.98
6.00
2.60
4.
8Z0
3.88
8.23
8.48
ID [l
arcrmm r aana:w
nwa� ,• nw7ww
Y Aroro,n ■itar Aw
p
�
---- mrwp r covmrw
---- �• ,• aaVIM
_e_ A1■R1®a[„�
XDRffi a0er mci
,. .a■1• s1u aw1.w
n 4■a6 4m,s,w
► i
OH
dmw ,as
K0B
[®
OH
EF7 WW C3V771aK AG7f3•
- -
7. la aD a raA coon, mm .ow Huy aow2n ca ra tn{owaw
mom a norxd sr boil 94 bows p/u� bi om• «•nsbu[Eb, o+ rM
••040 A dnaga
r` Hronp.trrur[reenlrgada p�a,.ph�ah.�' .. /o,oIW hmae aa+ to aW
pn�oorDga Off-
� Irdwbrr b Y b Ou ar nn ygorgormt•
-
w h carnbucrar, ,ww„ar aw 4[dFvrd h A'w p�yro[.d
bbbhw mjpa
wpari
.xF, adao114 corib,IRIO~ ma ad roan awffl
A. mrr,.ao,o. r+wl. a/e t» aior a
Ores
AWnow o. abrabaxw of w,bmg [wyroma
0 , "Y'k
m[oh a $MM ro fM one rpu9M ror im,.�oh cawOucOb,
s one w Mw narom pa+ad d mew
d2dw6d
40 dL71,p brM dhM60[Y oc6MO• (*0'WPNH J7
41 M wala
4
ae'rD' hMiWm,n[ r7a10w mar a A,pr h o
15MA
Mir
�o=5 a• absr pwmarwnf w[eman danbd b hma/bd
Ab o0 h wiaa ovbbl, P+o/M +bMf nW,b a/ w�• Md mdn
w.powd b AaM Wr a'a+D alb• w non r ir, 65iiy (JO% .bo
- -
ara. npadd MIRWIW w e aostn 4onbor (wa
k�b IAh�pt :h b h= w+ru ofAw.M �prowd
y
-L
d
d 7M�� &w b "ft ve and ffmwm ne at or mne AH;
to wrr d d-maaad aomaa M
Q
anvb[arhn fttve , a a, A
bradbhw&ft oc&SM mar b Am"~ aacwn»„we ,i wr
Jy.1VAN pc.�oav[1 pr�w�im[ - aYfandiwd w m. Gam'
S
a M fe"po r Waaaf! wlww awa6N n waaa7- mar a
hAawcfd and npoad a naaahwiwd w nicwivy aM..am,
0
n„mr rant At adw- ro aww,o wnmad pntrn,enaw a rui
V[iV=7/
hbrabd naclb w M ,wtalwd iwon„wn4 raN m pa■d
,odiq waA[o ~ a nsold a�d h o ,,,aawr
W
O
w
one boott,r - o. Al aaow Maio .. 1,h/a ap &vhw.b[
p
7. Ab w lion (10) bal *IMyhf AN w
V
,roa�ar .+ar wsoasd
nor a pnrocfd /la„ iwdBn.,r nonwaT be
/o nhR ,o8.ba an0 w(M MMD. Nry ,o/ r(ae.�adr
Y
Z
�wq,H,e ort...IO adwBs■ mar a swa Ab and nubaa
a py AaB,awv p,4Jir✓b ra bodfha d[faaH1D [► r
,alb a• ory aElwr nora,m mro a'b we.sb Al' d na„ aw wd[,1,
co
e: �.nr �me',d nora,w .nor a arad hunearafw er
a
O
ft ar hbfa
nham
.d
ab ea,aamv
/»aao
W
- -
S&. _
dSpgw
,pw
7A ./! awas ar,hr0+d 4Y mnsbocar, sw a n,s dad 0145,
-lam,
O
makAd ro i,oNdw w .tab!@oaa, arm beAl aoE
73 7a aH,[Mpr nor at w na,kHrq ar «diwhn
epmwtrd ho Mai m,m o nwoQN' wMN of
nbw bow,
" of at and ad "Ska anba
aMwn&x
Sr3•m n0nar•Ayaaf w RIXM r ON FXXV AtVMW
�
W
a .a*A�& 2 ar by mr Axe ctN2J4Lffw fnataa, mar a
roaa,.e ewe
aw
7a a. sswm e w aroma, conbd dwaw.
la M hbro **,mbar, of Mm" &ft aw to a[. IVW hW
N&W kakobe w ma pww,8tr, o/ wdrn.,r
N
U.
o
Z
o
a;
cc
O
b ■ sb -
so* rwv ■M
ll
I I
City of Pt. Collins, Colorado
UTUM PLAN APPROVAL
TR.p
I
7W.a
APPROVED: �-
r
CHECKED BY.
sr
801-010
*ator i WwtM tw NOIb D le
CHECKED Or.
1• . sd
eto[mnta 01HBb mV
CHECKED BY'.
aw 07 O
�V
wo a Rem..[m roll
CHECKED BY.'
-
'
CHECKED BY:
16
OF 16
Rwtmwl /bwamen Dw4
APPENDIX A
Hydrology
I
Gv
A m
f0 9mD
aD ILf
CNO m
n aD
a0 aA0
m N
t0 n
l0 m
as
LO n
O O
O G
G O
O O
O C
O O
O O
O O
C O
OO 0
0 0
UN
mW
N V
m m
b O1
W m
N I
04
2d
I1
ta`I �!
tm!` b
y a
g o
b o
a a
c o
O
O C
O C
O O
b O
O b
O C
C G
J
++
-
I-
1
.q.•
GG
p -p
a
�ppm'ppi
pp�# pp
z r
4'1 �i
p
pG fQQI"
pt pp
Q�:, 1Qi
g•
o
0 0
0 0
o c
ti ai
o c:
o 0
o c
o 0
0 o
o
d o
U
c
m LV
OPT
000
N¢4�OOOOm
4
445�0
Ng(�N«,h
tcSO
n
q, o
�00000
o'�000b000a00000800
U)kt
Am+
m
O
N m
N
V N
fr�Y.M
N
0
aN0
ry
N N
m
N
ooaoo0
0000000Tibbopo00
1
r�
m
Q Q
Q Q¢
m
(am
m m
m
N O
U W
N
dm
N
mNmnl
OOP)ml�
hL�tOONmNoppp
W
W W
Of I�mf+l
^m1�t7N
0)Pf
I�I�t+l�
W
�-
�OLp000
�tNOG
O �
�aho�
_OOLV
LM
�11 aN0.mrNRapm
mtp
aW00
NNr-�
m�f0
Nn
.0
.
taO�0000th0000
U
Nah
000�07
N_
0
totON000
�}
0Mam-•cOg
nro
mm
LrN
N
O-
0 0
0 O
N O
O O
O—
N O
o O
0
o o—
o
o
dNIN01%
Omm
V mm
ONY
Of 1N
NN0
wi
Ld4
64
NOON
F
2
to m
m m
m�
m
m m
m m
m m
m tg
m
m m
m m
m
N d
� �
m
c
a a
m a
a th
vi of
•6 v
o v
a Q
Y th
o
th a
e v
v
Wamaamomvaaaovamamaaea
N
fV th
ci th
N N
tV N
th pl
Ol th
m m
M fV
Lh
N th
N M
th
C
Elmo
oogoo
O
O
�i
&oSS000SnonoSao
O
N
wm
NaO
��NONNY)tANONap
,LINNN
m �tG
A
C
m
U
C
O
S O
V O
m
mm
pp aa
pp
pp
m'mNap
OLq
lA
�aOONONNOOONlAN1NNO
EN
.
i=
d2888ngmm0S�goS9mti
g.
a
o
o1.-O�0
10110181mil
pmp
naOmmaDN
LNDm
naOm
map
�a0
na0
m am0
a0mr
O
U
O �AaD
Lamm
LEI LAN
a0 mm0.0
W
m aq
cq
NPl
a00
0mm0Da
mc7
u)Om
N
O O
O O
O G
O 0
0 0
000
0 0
0 0
0 0
0
0 0
0 0
0
A'
l7
V
A �
N
N
V 7
N
t� tV
�
O) �m
�
t� m
RvNMNm�-LV
N O
m
N
Q Q
6 Q
Q m
co
..�L
m m
m O
O �
O W
ttyy
W
L-INL-1(N�
m
Q
m
U
m
W
U.
a
m
O
d
m
Nt0
m m
V
m
m�N�N
ma
a
Sttivo
N.-N
m
m
'NN
0
z
��w
�W
H z (9
12
U W
q W
tl
� a
tl
a
n
f
p
�O)fOSS�W
WS
ooao�000a�
eD aD
rnAl�
O
�
Na
mAA
nW
O
m
g�cc0000000
E
U
m i D
f�l�
0
A�l�1�AAa0
N m
O W
pp
N
O O
G C
G G
O G
G
S
1mSmS0
Q
' cJc
.
�.o
ooco
C
�E
!
a'Qm�Jj��WLL(g>l.
a'x
_
m
dmmmm
Oom
m_(V
aMM
G
t�l lfI
tV fC
a0 f0
� fV
lV O
O
Od�O
m
m n
OlOmm�l01�
n W
n
n W
ON
m
QI�tN
A
L
01
�- V
N V
OrrlY
In
U
N_
A m
mm
a m
0
m m
mNm�-(V
m O
0 0
Is
m
m
N
�NOp
In
t7 l�)Opp�m�p�t+pf
d
aAOm
maDm
Nt0
V
t+l NN
o
a amOl
f�N�Y
V iff
Y)
Z
"dmmm�W�mmmoo
O
m O
m
m O
O N
N
�,.-of
ofa
i+i
Rio
acli
oiYY
N
C
m
_
m N
m mN.-O
O O
N W
W
O N
Nmmmm
N O
O
N
fV N
V) tV
t�{ (V
th (V
fN tV
N
C
d
m
o
W
m
m
W
A Or�N�M.,�
mNOi
OfG
tG
C
O
OdN
W
MmNtOm�tON
6
IA�mfCN��hf�'
FN
o
moo.-o
�.000�c
mm
no4imm�
n0
m t h
N I
n
0.
mm�
W
$�000cc000000
Ep
U
{
co
pp
I,
IN�nmm�
po
N
C C
C G
G 6.6
G
C 6.6
ti
Ria
m
V'
ano
m
NOn
�G
�
O�tV
�OOGOe-
N
C
N
N
IL
m
Q
Q
mmamOU
Dili
LL(g
4.
a
m
N
Sa
mto
co
0
W
L
.m
mV
�=N
0
!
M
O
N
2 �
ZFLU
�z
I. z
12
U W
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point = al
Contributing Basins = Al
Contributing Area (ac) 0.17
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0.25
Length (ft) = 28:
Slope (%) = 28
F
Travel Time
I cnnth lftl Rlnnp 10/ 1
T; _ (1.87*(1.1-C*Cf)*DIrz)/S'f'
of 500 feet
Channel
rharartarictirc
5.97 5.53
Time
\/olnrifv /f7/e1 fMinl
70
.2:
Grassed.Wateiwa s
2.248
0.52
None
0.00
:None
oko .
None
OAO
None
0,00
None
0:00
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
I otal I Ime Us2
2 1. 0-vr 100_vr
Actual Time of Concentration = .6.49 QtQ5
3 of 35
7/112003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0:95
Length (ft) = 50
Slope
Ti
Travel Time
Lenath (ftl Sinne (0/.)
a2
A2
0.43
Ti = (1.87*(1.1-C*Cr)*D1n)/Si/'
of 500 feet
1.57
Channel
rharartarictirc
1:57
Time
Valnrity (fticl /Min\
95
0.5
Paved Area, Gutter Flow
1.488
1.06
40
0.50
Paved Area; Gutter Flow
1.488
0.45
` None::
0.00
Non6
0:00
Noe.
0.00_ .
I otal I Ime =1';.. -.,.7__4._. 1
Z 1. 0_yr 100-yr
Actual Time of Concentration = 5:00: 500. ,
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 4 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins --
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" =
Length (ft) _
Slope (%) =
Travel Time
Intensities
Discharge
Notes:
a3
A3
0.269
T; = (1.87*(1.1-C'Cf)'D1n)/St/3
of 500 feet
=1 8
Channel
Time
2 1. 0-vr 100_vr
Actual Time of Concentration = 8 68 8.04
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 5 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" _
Length (ft) _
Slope (%) _
ro
Travel Time
Length (ftl Slone (%)
a4
A4
0.18
T; _ (1.87*(1.1-C*C f)*D in)/S'f'
of 500 feet
1.76
Channel
ChnrartPristir_c
1.
Time
VPlnrily /ft/c1 /Mint
225
1.15.
Paved 'Area; Gutter. Flow
2.125
1.76
None
0.00
None.
0.00
None
0i00
AWL. _
None.
woo..
Total Time =
1.76
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
2 1. 0_vr 100-vr
Actual Time of Concentration = 5r00 5.00
6 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0:5
Length (ft) = 18
Slope
Ti
Travel Time
I ennth (ft) Rlnna 106.1
a5
A5
0.24
Ti = (1.87'(1.1-C'Cf)'D12)/Slf'
Maximum of 500 feet
Channel
rhnrortariefire
1
Time
\/nlnnifii /N/n\ IRA;-%
290
0.77
Paved Area;,Gutter Flow
1.764
214
None
0io0_
,None.
OF00
None:
0:00`
w.....
None.
None
I otal I Ime =1 41a .. 1
2 1. 0_vr 100_vr
Actual Time of Concentration = : _; 51!2', .. L 5;l)0
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 7 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0.25
Length (tt) _
Slope (%) = 28
a
Travel Time
LPnnth fill Slnna f01.1
a4
Al, A2, A4
0.78
T; _ (1.87*(1.1-C*Cf)*D"`)/S
of 500 teet
5.97
Channel
rhnrartarictirc
5.97 5.53
Time
VPInritV 1ft/s1 Win)
70.
2:
Grassed W, .aterwa .
2.248
0;52
225
.. 1 A 5.
Paved=Area .Gutter.:"Flow
2.125
1.7.6
N"
.one.;:.
;..
_.
None' :......
0:00',...
None r
None...
I otal I Ime 2:za,
2 1. 0-vr 100-vr
Actual Time of Concentration = : 8.25 7.81
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 8 of 35 040 storm
1
i
1
1
i
1
1
1
1
1
1
1
1
i
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" =
Length (ft) _
Slope (%) =
a
Travel Time
1 ennth Iftl SlnnP I0/ 1
a5
Al - A5
1.289
Ti = (1.87'(1.1-C`Cr)'D1n)/S'/'
of 500 feet
5.97
Channel
Charartarictirs
Time
valnrifv MCI lMinl
7.0.
2:
Grassed Waterwa s
2.248
0.52
225
1115
Paved.Area, GutterFlow
2:125
1.76
290
0.77
Paved Area; Gutte['Flow
1 764
2.74
None
O.Q9
None
0.00__ .
None
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
Total Time 5:02 "
2 1. 0-vr 100-vr
Actual Time of Concentration = T0.991.055 71
9of35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0:25
Length (ft) = 85
Slope (%) = 4:00
Travel Time
Intensities
Discharge
Notes:
b1
131
0.19
T; _ (1.87*(1.1-C*Ct)*D1n)/Stn
Maximum of 500 feet
i =1 9.24
Channel
Time
2 1. 0_vr 100_vr
Actual Time of Concentration = - 9.24 _ ... 8.56
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 10 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" =
Length (ft) =
Slope (%) _
d
Travel Time
Length (ff) Slnnp (OM
b2
B2
1.46
Ti = (1.87•(1.1-C'Cf)'D1n)/Sin
of 500 feet
11.29
Channel
('hararfariefire
11.29 10.4E
Time
Vnlnrih, ffflc% n1Ai..l
70
2
G[assetl:Wateryiia's:
2:248'
0.52
50
2,50:
Paved,Area; Gutter.;Flow
3.01 t
0r28
140.
0,55
Paved Area ,Gutte�.:Flow
1.488.
None
0 Q0
None `
` , O.QU ,.
i otal i lme =1- 4;3ti:_ 1
21. 0-vr 100-W
Actual Time of Concentration = 13:65 1,12:87
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 11 of 35 040 storm
1
1
1
1
1
1
1
i
t
1
1
1
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0.25
Length (ft) _ 75
Slope (%) = 5
Travel Time
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
C
b3-1
133--1
0.231
T; = (1.87'(1.1-C'Cf)'D1n)/Si/'
of 500 feet
Channel
Time
2 1. 0-vr 100-vr
Actual Time of Concentration = 8.05 7.40
12 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
b3-2
Contributing Basins =
63-2
Contributing Area (ac)=
0.185
Runoff Coefficient's
2-vr
Overland Flow Time
Runoff "C" = 0;25 Ti = (1.87'(1.1-C`Cf)'D12)/Sl/'
Length (ft) = 30 Maximum of 500 feet
Slope (%) = 8 ... 2-vr
Ti = 4.36
Travel Time Channel Time
2.10-vr 100-vr
Actual Time of Concentration = 5.00 5.00
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 13 of 35 040 storm
1
1.
1
1
1
1
1
1
1
1
1
1
1
A
t
t
1
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0.5
Length (ft) = 1;0
Slope (%) = 13
R
Travel Time
I Pnnth (M SlnnP 10/ 1
134
0.16
Ti = (1.87*(1.1-C*Cf)*D1rz)/SI/'
of 500 feet
1.51
Channel
Chnmrtcrktirc
1.51
Time
Vnlnrih, /ftfcl /11Ainl
250
0 93
Paved Area .Gufter Flow
2.008
2.07
N666 .
0:00
None .
-
: 0€00:.
- None
0 o
:None
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
I otal I Ime =L. 10_['::
2 1_, 0-vr 100-vr
Actual Time of Concentration = 500 5:00
14 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point = 155
Contributing Basins = 135
Contributing Area (ac)= 0.234
Runoff Coefficient's 2-vr
0.81
Overland Flow Time
Runoff "C" = 0.5 Ti = (1.87'(1.1-C'Cf)'Dln)/SI/3
Length (ft) = 15" Maximum of 500 feet
Slope (%) = 6 2-vr
2.39 2.39 1.89
Travel Time Channel Time
1 ennfh /ffl Sinn !01.1 L`hnrarfnriefire 1/nInrlfw M/ol IRAinl
155
0.78
Paved' ea; Gutter. Flow
1.764
1.46
Norte
0.00
None
0€00;
None
0.09
None.:
000....
Noise`
0.00
I o>al I Ime =1 l .46
2.10-vr 100_vr
Actual Time of Concentration = 5:00 5.00
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 15 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
1
1
1
f
1
1
1
1
1
1
1
1
1
1
1
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" =
Length (ft) _
Slope (%) =
t
Travel Time
I vnnth fftl Rlnna 10 1
ti3
B3-1, B3-2
0.416
T; = (1.87'(1.1-C'Cf)'Din)/Si13
of 500 feet
3.56
Channel
rhnrnrtarictirc
Time
\/alnrihi /Rlcl /I�Ain\
225
1
Paved -k6a, Gutter Flow
2.125
1-16
None
0.00
None
0.00
None
0:00
None
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
10\ai I ime =I
2 1. 0_vr 100-vr
Actual Time of Concentration = 5.32- . ; 5A6
16 of 35
7/1/2003
040_storm
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" =
Length (ft) _
Slope (%) =
P
Travel Time
I Pnnth fftl RInna 10 1
Iz4
131, 132, 84
1.81
Ti = (1.87*(1.1-C*Cf)*DIn)/SII'
of 500 feet
Channel
ChnrartPrietirc
11
Time
Valnrifv fff/el fkAinl
70
2
Grassed dt6rW0 -
2'.248
0.52
50
2.50 :'.
PaVed,Area; Gutter• Flow
3:011
0.28
140
0:55
Ar6i,,�QUtterFlow
Pay6dr
1.488
1,57
125
Paved Area;
Gutter'Frow
2:008
1.04
-
None__
None"
0:00
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
I oral I [Me J.4u
2 1. 0_vr 100_vr
Actual Time of Concentration = 14.69 1 1106
17 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0,25
Length (ft) = 80
Slope
Ti
Travel Time
I ennth (ftl Slnnp (0/)
b5
B1 - 65
2.46
Ti = (1.87*(1.1-C*Cf)*D1n)/sII3
of 500 feet
Channel
rharartaristirs
.11.29 10.46
Time
Valnriiv /ft/c1 /Mint
70.
2
Grassetl Waterviia"
2.248
0.52
50
2,50
Paved Area; Gtitter Flow
3.011
0.28
140 .
0:55 `
PavedArea G6tfWFlow
1.488
1.5.7
1215 ..
0.93
PaVe&Area; Gutt6r;Flow
2.008
1.04;
155
0:78:
Paved Area;;Gutter.,Flow
1.764
1,46:;
None
0.00
I otal I Ime =1 4XI 1
21.0-vr loavr
Actual Time of Concentration = 16.15 15.32
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 18 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point = C1
Contributing Basins = C1
Contributing Area (ac)= 0.49
Runoff Coefficient's 2-vr
Overland Flow Time
Runoff "C" = 0.25
Length (ft) = 25 `
Slope
Ti
Travel Time
I annth fftl RlnnP !0/.1
Ti = (1.87*(1.1-C*Cf)*D112)/S`f'
of 500 feet
Channel
rharartarictirc
Time
Valnrity Mel IRAinl
28
2.0
Paved,Area, Gutter Flow
3.011
0.:16
130
0.70
Paved Area, Gutter Flow
.1764
1.23
None
O.0
None
0.00... .
None;
None.
0 00=_.;;
I otai I ime
2 1. 0_vr 100_vr
Actual Time of Concentration = 5:3,6 507
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 19 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0.25
Length (ft) = 30
Slope (%) = 9
I
Travel Time
Lenath (ft) Slnne
c2
C2
0.82
T; = (1.87'(1.1-C'Cf)'D"n)/S1/'
Maximum of 500 feet
4-19
Channel
rhararteristir_c
4.
Time
Valnrity (ft/cl (Mint
75.
:=. 2;00..
Grassed .Wat0W- '
2.248
0.56
20
2 00 ,; :. ;
:. .. Paved •Area; ,Gutt&r Flow
3.091:
0.11
j.-
None., _ '.
..
000 ..
None
0;00
None
None.
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
i oiai i ime =1 u;g'( 1
21. 0_yr 100-yr
Actual Time of Concentration = 500 1 500
20 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" _
Length (ft) _
Slope (%) _
f
Travel Time
Length Iftl Slnne 1011
a2
C1 - C2
1.31
Tt = (1.87"(1.1-C'Cf)'D1rz)/Sin
um of 500 feet
Channel
rhnrartericfirc
Time
Vralnrity fft/e1 Mint
28
2
Paved Area; Gutter. Flow
3.011
0.16
1:30
0 70'_ : _
Pave&Area Gii ter..Flow
1.764 ..
1-1 3
115-
0.50 :
Paved Area Gutterv Flow .
1.488
1:29;
None
None,
"None
0 00, .
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
i otai i ime
2 1' 0-vr 100-yr
Actual Time of Concentration = 6A5 6:36
21 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" _
Length (ft) _
Slope (%) _
a
Travel Time
Intensities
Discharge
Notes:
dl
D1
0.1
T; _ (1.87*(1.1-C*Cf)*D12)/31n
of 500 feet
Channel
Time
2 1. 0-vr 100_vr
Actual Time of Concentration = 51Q9- - szo
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 22 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" =
Length (ft) =
Slope (%) _
t
Travel Time
Lenath (ft) Slone (%)
d2
D2
0..149
T; = (1.87*(1.1-C*Cr)*DW)/Sl/'
um of 500 feet
1.47
Channel
Chnrnrtaristirs
I.1
Time
Valnrity (ff/cl Winl
90
0.69'
Paved.Area Gutter Flow
1.627
0.92
None
0:00
-
;None ..
0:00
None
0.00
None..
O:Op
None
0 00
i o>ai i ime =l; VtW.. 1
2 1. 0-vr 100-vr
Actual Time of Concentration = : ;5',.00 5.00
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1 /2003
ENGINEERS 23 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point=
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0:25
Length (ft) = 30"
Slope
Ti:
Travel Time
Length (ftl Slnne (0/)
d2
D1 - D2
0.249
T; = (1.87*(1.1-C*Cf)*D1n)/Sl/'
um of 500 feet
5.09
Channel
rhnrnrtericfirc
Time
Valnrity (fticl lMin%
.75
0.5
Paved Area;.Gtitter Flow
1.488`
0.84
None. .
0.00
None':.
0.00'
None
0.00.
None,
0.00.
None
0:00
i otai 1 ime =1 u.ts4 1
2 1, 0-vr 100-vr
Actual Time of Concentration = 5.93 5 5671
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 24 of 35 040 storm
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0.25
Length (ft) = 60 .
Slope (%) = 2c22.
a
Travel Time
1 annth (ftl Sinn (0/ 1
el
E1
0.27
Ti = (1.87*(1.1-C'Ct)'D1n)/Si/'
of 500 feet
9.44
Channel
rhnrarferictirs
Time
Valnrity (ft/c1 /Mint
None
0:00
None
0.00
None
0!00
None
0:00;
None
01OU:..:
None
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
I otal I Ime WUP. .
2 1. 0-vr 100-vr
Actual Time of Concentration = r 9.44 1, 8.75
25 of 35
7/1 /2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0.95
Length (ft) = 50
Slope (%) = 2
a
Travel Time
Length Iftl Slnne I%1
e2
E2
0.292
Ti = (1.87"(1.1-C`Cf)"DIt2pl 3
of 500 feet
1.57
Channel
rhararfPricfirs
1.57 1.05
Time
Valnrifv /ft/c1 IRAin1
100
0.5
Paved Area G-Otter.Flow
1=.488
1.12
Noriw
0.00
None
0:00
'None
0:00.
-. ..
None..
O.QO;:.
None
000'
1 otal 1 ime =1 1.12
2 1. 0_vr 100_U
Actual Time of Concentration = 5.00 5.00
Intensities
Discharge
Notes:
TST, INC.
CONSULTING 7/1/2003
ENGINEERS 26 of 35 040 storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" _
Length (ft) _
Slope (%) _
a
Travel Time
I annfh /ftl Glnna./0/ 1
e2,
E1 - E2
0.562
Ti = (1.87*(1.1-C*Cf)*D1n)ISI/'
of 500 feet
Channel
Characfaricfirc
9;44 8.75
Time
Valnrihi fff/cl /IUinl
80
0,5
Pavetl Area; Gutter Flow
1.488
0.90
None.
0.09.- .
7.Ndne,
None
0:00
None.
0,99:
Norte
0:00-
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
I otat I ime =1 u;y0
2 1. 0_vr 100_yr
Actual Time of Concentration = 10.34 9.64
27 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff"C" _
Length (ft) _
Slope (%) _
f1
F1
0.36
T; _ (1.87'(1.1-C`Cf)'D1R)/Si/'
of 500 feet,
_1 9.40
Travel Time Channel Time
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
2 1. 0_vr 100_vr
Actual Time of Concentration = , :9 9U 8,71 ..
28 of 35
7/1/2003
040_storm
1
1
1
1
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" =
Length (ft) =
Slope (%) =
n
Travel Time
I annfh (ftfl Rinna 10/ )
f2 _
F2
0.306
Ti = (1.87*(1.1-C*Cf)*D1rz)/Sla
of 500 feet
1.54
Channel
Chararfarisfirs
1.54 1.03
Time
\/Alnrifv MCI Win%
225
0. 5
Paved Area Gutter.Flow
1.488
2.52
None
0.00
None,
0.00.
None
0.00
.,None.
0:00..
None
000
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
I otal I Ime =1 z.5z
2 1, 0-yr 100-vr
Actual Time of Concentration = 5;00 5.00 .
29 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
1
1
1
1
1
1
1
1
1
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = F2.e
Length (ft) _Slope (%) =
a
Travel Time
I Pnnth Iftl Rlnnp f0/ 1
f2
F1 - F2
0.666
T; _ (1.87•(1.1-C'Cf)'D112)/Si/'
of 500 feet
Channel
rhnrnrtPrictirc
Time
VP-InrltV W-0 /Mint
100.
0 5=' .
Paved Area; Gutter Flow,
1 488
1.12-.:.
30 .
0 75�,.
Paved Area; Gutter Flow, , .
1.764
0 20a :.. .
None:.
O.OQ°- .
None .:: ,
0 00:
None. , .
0 0'a
None'
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
I otal I Ime
z i• 0_vr too-U
Actual Time of Concentration = 1,0,80 f0.T1
30 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" = 0;75
Length (ft) = 30
Slope
Ti:
Travel Time
I Pnnth (ftl Rlnnp (0/0
g1-1
G1-1
0.66
Ti = (1.87*(1.1-C'C f)'D 12)/Sln
of 500 feet
Channel
rhararfPricfirs
Time
VPln(-ifv (ft/c) Min)
215
0 5 ..
Raved Area;Guttf:��Flow
1.488,
2.41':'-
None
None ..
0:00:.
None_
0100 _..
None:.:,. ,.
;- q gu:�•.
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
i otai i ime =1 4.4,j. ` 1
2 1, 0-vr 100-vr
Actual Time of Concentration = 525 . 5 00'
31 of 35
7/1/2003
040_storm
!1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point = g1-2
Contributing Basins = G1-2
Contributing Area (ac)= 0.11
Runoff Coefficient's 2-vr
Overland Flow Time
Runoff "C" = 025 T; _ (1.87*(1.1-C*Cf)*D1n)/S'"3
Length (ft) = 30 Maximum of 500 feet
Slope (%) = 5'56 2-vr 10-vr 100-vi
T; = 4.92 492 4.56
Travel Time Channel Time
Length (ft) Slnne f°/"1 rhararfarictirc ValnritV ffticl (Mint
110
1.5.
Paved Area;.GtitterFlow
2 125
0.86
None ..
0.00
None ...
0.00:.
None
0.00
_ .
_ .......... None.,,:..
A:00 ,..
-
None
-
0.
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
Total Time
2 1. 0-vr 100-vr
Actual Time of Concentration = 5r7,8 5:42,;
32 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point =
Contributing Basins =
Contributing Area (ac)=
Runoff Coefficient's
Overland Flow Time
Runoff "C" _
Length (it) _
Slope (%) _
a
Travel Time
Pnnth (ftl Slnnp ("/")
92-
G2
0:2"1
T; _ (1.87*(1.1-C*Cf)*D1n)/St/'
of 500 feet
1.51
Channel
('hararfanahrc
1.51 1.20
Time
VPlnrity (ff/c) (Minl
155.
05.
Paved Area; Gutter.Flow
1.488
1;74
None _
0.00;.
Norse
None0
00 ..
r
Fm
None
0 00
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
I oral I Ime =1
2 1, 0-vr 100-W
Actual Time of Concentration = :; : - 5 00 I 5.QO.
33 of 35
7/1/2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point = g17,2_ .- .
Contributing Basins = 01-1, G1-2
Contributing Area (ac)= 0.77
Runoff Coefficient's
2-vr
10-vr
100-vi
0.80
0.80
1..00
Overland Flow Time
Runoff "C" =
0.25 T; = (1.87'(1.1-C'Cf)'D1n)/sW
Length (it) _ ',......
30:.;;._....:: Maximum of 500 feet
Slope (%) =
5i56_'":.. 2-yr
10-yr
100_y]
T; _ .. 4.92 .
4.92
4-.56
Travel Time Channel Time
Length ft Sloe % Characteristics Velocity tr/s min
110 1 `5 Paved Area, Gutter,Flow. ., 2 125 0 86
140" `•:
.... 0 5:;
P..aved Area; GutterFlow .; `,
1::488.
15T '
.: •r.
:..None .
t-..:
None
Total Time
Intensities
Discharge
Notes:
TST, INC.
CONSULTING
ENGINEERS
2 1. 0_yr 100-U
Actual Time of Concentration = r T,,W 6.99
34 of 35
7/1 /2003
040_storm
DEVELOPED CONDITIONS
TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET
Design Point
Contributing Basins = G.1 - G2,.F1 - F2
Contributing Area (ac)= 1.646
'
Runoff Coefficient's
2-yr
10-yr
100_vr
0:99
0.79
0.79.
Overland Flow Time
Runoff "C" =
0;25 „- .,_ T; _ (1.87'(1.1-C`CfrD'2)/S1n
Length (ft) =
30-.;: ; Maximum of 500 feet
Slope (%) =
5 56 2-yr
10-yr
Mm
T, = 4.92„
4:92
4.56.
T,e„o, Tina
Channel
Time
Len th ft Sloe M Characteristics
Velocity tus
min
Paved Area; Gutte[;Flow
2.1.'2_5
0.96 "
140 l) 5, ..: ... Paved Area; Gutter`Flow.
1.488 :
1:5-
-. - .
,009
None
..
..:None.. .
Total Time =
; 222 .
'
Intensities
C
Discharge
Notes:
t
'
TST, INC.
CONSULTING
'
ENGINEERS
2 1. 0-yr 100-yr
Actual Time of Concentration = 7,35 --- 99
35 of 35
7/1/2003
040_storm
I
' APPENDIX B
Street Capacity
1
1
1
1
U
1
TST, INC.
ConsulBng Engineers A CLIENT JOB NO. -I � L4 0
PROJECTS F 7\ T-d r V"I. 'TC�� LA LCULATIONS FOR S� rt� Q
1 MADE BY DATE Z o CHECKED BY DATE SHEET I OF
1 ;
1
5' ............ :...- ---- .
Z.
�1• t I �
Kee-fit-. u�C �:iy.. ( r �• o�-: o �L3..�o r 1.� .
1 _ .
._�..._.::�o��:_ C�sse;:._.-ti�t-o.x;„,;,,L�,,,,. D•;�e.. �-� Fl.�.�Fesk ...�1oP�.... . .
J
_... _ . -
__. 2,63 45 (DP=b-L) _ ..
h t �;
11 Lt:�
•, = Tso
�ctla)lr�i Aga (Alin �Y� Oti Zip 4 : 50+
t.rsnr' r_L-kSl_lh�i _ 1_Y�.1.'�S..T_!L�_....t�'1�._...__�...... �..;....-_._ _._..... _.. _..__. _ .... ....
t
1 °n _ ; t�
S i s yZ,,.y/.
.77cF ���, 5� Aj..� � c�w� pi� (y) o:3L�'} e.ls
Yi.4 --.
TST, INC.
Consulting Engineers Q �1
CLIENT JOB NO. i1ll� OlO `
PROJECT li glet, FaPw`— Tro.J 'LA-' CALCULATIONS FOR 5�rY.G�-iA�as'1%V il�a.ns¢.S On'�i
' MADE BY DN DATE Z7 G CHECKED BY DATE SHEET OF
• i
.iDP
L/�e_._C�cb....o:-kP+�:?.:.. Aa�;0.1..:,7rir f.�;sg.c.. zyo....a)` ....
-. co X;. ... ...:�L ..Ce45 SIoPe�?w�c,r,rti,. S_Coc�.'ueti}
1 / ._....._.......{...... ...... ... j..p4j'slope ... meµ;: a�
R R�
_.. ^. _�pO�'��Z� $� �•�)_{:.:...��..QaliaUa:= 595. .Z�NO Leg.; ... __...
a... ,QD'.6Cs SiG l ..o)Li (,��?.JyL '_ ftiF+~o
:y
r4
3
91 5.3.._� . .
o�6i6ot5�L /4z� tea oozes
i
_.
t
i..
TST, INC.
Consulting Engineers CLIENT T- I JOB NO. 79 ! -og o
PROJECT ein �rw� - 1 J`G.f�- 1U1 CALCULATIONSFOR cJ�fQ.�-T CG OCLr 7�Otk4emQ. Dr��/r<�-i
' MADE BY DATE Z O CHECKED BY DATE SHEET OF -]
1 � .
.«........_4..«_.�.�._.__...«_.._.�_........ �_.._ .... �...�. .. ..�� ..
4
APPENDIX C
1
Inlet Design
1
I
7
I
4- a t 10 12 14
SLOPt Of OUTTEP
FL UM4-.2
REDUCTION FACTOR FOR -ALLOWABLE GOTTEF.1 OAPACITY
Apply tecludor facta f or 4=s1sbs1bk:="M Z�reUo 0A*0"d1Yt00btWn
(Fro : U.S. Dept. of Commmejoumu of PUblk Rai&, 1965)
l
1
1
1
1
1
1
1
1
1
1
1:
1.
1
1.
1
1
1
1
1.0
.9
.8
7
.6
.5
1`-
W
u. .4
z
L
15
S..le..� a�•- OP -�,,Z
12
Qs-y r' 3,Z(DtS
I�>Ilowal,lL: 0,50'
5
�+ ae <oYfl EIS
yoblolL-0,75'
II
yr=
4
8
3
10
6
9
4cr
h
2
8
3
W
/�
'�/ Z
-_ 5•
c
'
�•
O
r
z
5.5
v
a
o
.8
=
v .5
0
use- 5 rfyfp��vy.rr&
5
Z
.7
'r�1�} Q-T
.L
z
Z .4
_
4.5
z
o •3
W
.6
4
s
v
c .2
x
0
.5
z
Z
r
• 3.5
W
W
•4
a.
O
-3 .
W
ILLc
.08
3
=
c .06
0
.3
W
ac .04
tr
.25
. 2.5
W
W
2
1.5
a .03
a
t-
a .02
4•
0
a �
a
_
�
v
d
W
.01
�0
L
1
0
.2
.15
.10
Figure 5-2
NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2'
Adapted from Bureau of Public Roads Nomograph
MAY 1954 S-10 DESIGN CFOTERIA
0
1
I
11
1
1...
1.
JR Engineering
26" E Psmped Rd. Ste. 190
Fort COMM. CO 80525
RATIONAL METHOD PEAK RUNOFF
(City of Fort Collins,100-Yr Storm)
LOCATION: Rigden II
PROJECT NO: 9164.12 and 9164.15
COMPUTATIONS BY: B. Shand
DATE: 7/25/01
100 yr storm, Cf = 1.25
DIRECT RUNOFF CARRY
OVER
TOTAL
REMARKS
Des, Area A CC[
Point Design. (80)
le
(min)
I
(kft)
Q(100)
Ida)
hom
Design
Pahl
0(100)
(da)
Q(loopt
(Cis)
..-..
1 1ol 1.33 1A0
5.0
9.95 141327
133
102 OA4 1 1.00 1
5.0
9.95
GAO
OA
2 102+204 127 1 1.00 1
&0
9.95
12.63
12.6
103 0A7 1 1.00 1
&0
9.95
4.54
4.6
3 103+205 0.61 1 1.00 1
5.0
9.96
8.05
8.1
4 104 0.77 1 1.00 1
5.0
9.95
7.66
7.7
105 2.18 1 1.00
7.3
8.71
18.97
19.0
5 106 020 1 0.99
5A
9.95
2.54
2.5
DOukla Combo wm
7 107 026 1 0.0
7.7
0.55
2.17
a Combo Inlet
B IN I JO 0.79
8.1
8.41
11.90
6
0.19
e Combo told
9 109 2.79 035
7A
6.85
23AO
e Combo Wd
110 IA1 1AO
72
0.78
14.10
10 110+206 201 1.00
72
sae
17,57
III 0.78 0.83
7.0
Cal
5A5
RM.
11 111+208 0.99 0.87
eA
0.W
7.68
112 IV 0.83
tOJ
TAM
935
12 N2+209 1.65 0.87
0.8
G.14
MIS
13 113 2A5 OA3
83
O=
17AS
9
6244
Type R Wel
114 223 039
72
8.76
7.58
/���
14 114. 20% 203, OS-44 0.90 0.41
15.6
621
14.92
14.9
14d 114X2.203,OS-4,OS3 12.44 OA3
11A
7J5
05A1
85A
1la 0.79 0.75
12.0
721
4.30
44
15 115+03.8 1.05 0.77
12.5
7A8
5.73
5.7
Td Combo Wet
tie 241 0.84
9.8
7A2
15.89
16.9
is 115+OS.9 3A3 0.83
11.4
7.35
21.04
21.0
Ouadmoa Combo Wal
117 2.36 OAS
7A
8,61
1721
172
17 117+05.10 303 0.64
7.9
GAO.
21 AB
2I.8 .
Quedrupla Combo foul
1B Ile 038 GAO
6.0
9.95
332
R110a.15.17
9.10
12.4
10$TypeRWd
16e Ilea 039 1 0.91
5.0
9.95
1.75
RIM
2.150
4.3
BT RWM
119 0.43 1 0.13
72
G.74
0.47
1
0.6
20 120 1.14 OAS
53
9.60
927
9.3
13 grated Wale
21 12l 039 CAB
5.0
9.95
3.35
3.4
TWe R hat
122 0.95 OA4
GA
a=
0.04
20
4.30
10.9
122a 0.64 OAS
6.0
927
527
53
22 1 122+122a 1AO OAS
83
034
11A2
20
430
45.7
lop Type Wet
123 029 0.13
iO.G
7.57
ox
OA
124 4.66 0.73
1&1
629
21.39
21A
124+OS•11
640
0.75
1GA
621
27A6
27.9
Double Combo Wet
E2624
125
201
0.76
12.5
7.06
10.77
29
427
16.0
120
2A1
OA6
7,7
6OM14.54
14A
S• 13 Wated Weis
127
1.83
OAS
e.G
G.17
12.76
12A
125021
3.65
OAD
12.1
7.17
2232
26
427
26.4
0 basin 132
28
128
1.71
OAS
10A
7A2
11Ae
Ii.1
obasin133
29
129
Las
0.60
16A
6.51
6.09
GA
t5wd9 b Gnled Wet
30
130
0.78
0.73
8.3
0.34
4.80
4A
Single Canbo hat
31
131
1.63
0.65
62
221
11.93
11A
Typo 13 grated Web
132
1.02
OA3
5A
9.95
9.41
25
15.44
23.0
32
125+127+132
4.87
0.81
15.7
8J6
26.02
26
427
29.3
doe Combo Net
33
133
0.09
0.62
6.3
9.12
5.20
20,30.32
28.78
34.0
ITffple Combo Net
134
1Ae
OAO
10.3
7.68
11.62
24
i0a
25.7
I
34
134+0542
2.43
0.80
1 10.1
7.56
14.70
24
14.18
28.9
Tdple Combo Wel
1. .
9184nowids
11
1
I
1
1
I
7
I
1
I
1
APPENDIX D
Storm Sewer Design
1
STORM SEWER NETWORK
Exhibit B
MYMY!T1
Pd
ST-I
MANHOLE 1
MANHOLE
7.00
18
RCP
MANHOLE 2
MANHOLE
7.00
21
RCP
MANHOLE
MET 1
7.00
21
RCP
ST-2
EX. MANHOLE 3
INLET 2A
13.02
24
RCP
ST-2A
MET 2A
INLET 2B
1 5.03
18
RCP
Notes: 1. ST-2 design flow of 13.02 ds is from JR Engineering design.
2. ST-2A design flow of 5.03 cfs is from JR Engineering design.
3. Rigden Farm 9th Filing contribution to Inlet 2A is 1.26 efs.
TST, INC.
CONSULTING 711/2003
ENGINEERS 1 of 1 040—storm
4
I
3
3
Lj
66)
2
1
1
0
NeoUDS Results Summary Page 1 of 3
I
I
r
I
I
I
I
I
I
i
NeoUDS Results Summary
Project Title:
Project Description:
Output Created On: 9/5/2003 at 7:53:45 AM
Using NeoUDSewer Version 1.1.
Rainfall Intensity Formula Used.
Return Period of Flood is 0 Years. I
Sub Basin Information
Manhole Basin
ID # Area * C
Time of Concentration
Peak Flow
(CFS)
Overland
(Minutes)
Gutter
mutes)I(Minutes)i(Inch/IIour
BasinRain
I
�1
1.13
5.0
0.0
0.0
6.22
7.0
0
1.13
5.0
0.0
0.0
6.22
7.0
0
1.13
5.0
0.0
0.0
6.22
7.0
®
1.13
5.0
0.0
0.0
6.22
7.0
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <= (10+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes
the calculated values.
Summary of Manhole Hydraulics
Design
Manhole
Contributing
Rainfall
Rainfall
Peak
Ground
Water
ID #
Area * C
Duration
Intensity
Flow
Elevation
Elevation
Comments
(Minutes)
(Inch/Iiour)
CFS
(Feet)
(Feet)
�1
0
0.0
0.00
7.0
4923.10
4520.30
0
3.38
5.0
2.07
7.0
4927.43
4920.66
0
2.25
5.0
3.11
7.0
4927.43
4921.47
®
1.13
5.0
6.22
7.0
4926.85
4922.32
Summary of Sewer Hydraulics
1 file://C:\Program%20Files\NeoUDSewer\Reports\3271910024.htm
9/5/2003
NeoUDS Results Summary
Page 2 of 3
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
Nnte• The uiven denth to flow ratio is 0.9_
Sewer
ID #
Manhole ID Number
Upstream Downstream
��
Calculated
Sewer Diameter (Rise)
Sha a nches)
Suggested
Existing
Diameter (Rise)
nches) (FT)
1Diameter.(Rise)
(Inches (FT)
Width
(FT
�1
00
ound
17.0
18
18
N/A
�2
00FRoundl
17.011
1811
18
N/A
0®0
Round
17.0
18
18
N/A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially availible size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations.
Design
Full
Normal
Normal
Critical
Critical
Full
Sewer
ID
Flow
Flow
Depth
Velocity
Depth
Velocity
Velocity
Froude
Number
Comment
(CFS)
CF5)
(Feet)
(FPS)
(Feet)
(FPS)
(FPS
�1
7.0
8.2
1.07
5.2
1.02
5.5
4.0
0.92
0
7.0F
8.2
1.07
5.2
1.02
5.5
4.0
0.92
0
7.0
8.2
1.07
5.2
1.02
5.5
4.0
0.92
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Sewer ID Slope
%
Invert
ElevationI
Buried Depth
Comment
Upstream
eet
Downstream
(Feet
Upstream
eet
Downstream
eet
�1
0.60
4918.08
4917.25
7.85
4.35
0
6.60
4919.09
4918.58
6.84
7.35
0
0.60
4919.67
4919.08
5.68
6.85
Summary of Hydraulic Grade Line
Invert
Elevation
Water Elevation
Sewer
Sewer
Length
Surcharged
Length
Upstream
Downstream
Upstream
Downstream
Condition
ID #
(Feet)
(Feet)
(Feet)
(Feet)
(Feet)
(Feet)
�11
137.521
137.52
4918.08
4917.25
4920.66
4920.30
Pressured
file:HC:\Program%20Files\NeoUDSewer\Reports\3271910024.htm
9/5/2003
NeoUDS Results Summary
Page 3 of 3
0 85.6 85.6 4919.09 4918.58 4921.47 4920.66 Pressured
0 97.61 97.61 4919.67 4919.08 4922.32 4921.47 Pressured
Summary of Energy Grade Line
Upstream Manhole
Juncture Losses
Downstream
Manhole
Sewer
Energy
Bend
Lateral
Energy
Sewer
Manhole
Elevation
Friction
Bend K
Loss
Lateral K
Loss
Manhole
Elevation
ID #
ID #
(Feet
(Feet
Coefficient
(Feet
Coefficient
Feet
ID #
(Feet)
�0
4920.91
0.61
0.05
0.00
1.00
0.00
4920.30
00
4921.71
0.38
1.00
0.24
0.25
0.18
0
4920.91
�®
4922.57
0.43
1.00
0.24
0.25
0.18
0
4921.71
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
file://C:\Program%20Files\NeoUDSewer\Reports\3271910024.htm
9/5/2003
i i I I i I
I I
wy
o
Z i m
Wpa
w U
Z C
(9 C
W 65
K
L
m
N
c
o,
c
w
V
m
Q
a
�i
r
I
ro
I
m
�
n
I
0
QC4
m
FFo
%�
se
J 01
OI W
m
a
�•
n
°
a
i
a
:r
.r
1
1
1
V.
O
a
m
a
a
'O
cc
10
C
N
W
O O OI
m 0 O
TZ
vNco
�rro
0
Q>v
M V M
M M n
m
cc N W
W N V
N
m
1 N N
N t0 f0
rU
0
O
E
oqq
CD
0IR�
mJ
N O
C CD CO
C%l CM
ca v
C) N W
W Cl W
3=
v o v
v v v
0
nconnv0
fccyro
nLO
a0 W n
06 Ld ui
LE
O) O O)
O) 0 W
'7 v v
v a' .4
E
a? 0
IA V N
gm J
O
im•
r ci aG
W N
ON1 O1
CL.
vavvvv
N
E
W) N 0
N N
m
.og
N aV m
0
C
q 1D 17
N n
m v .�0.
co 0 ao
Ci t, Ln
o•JSm
aovvvv
w
0Mmaomw
.S
O N V
afl a0 aD
m
w O m
G Oi Oi
C.Y,
t3
N M
N n n
v
U.
d
O v 0
0 0 0
Q'
a ao 0
u� Un in
m s
W n v
N I S
O O,
0
m
W 0
0 0 Cl
M O O
CL
�CO
o 0 0
0 0 0
cm
0 0 0
0 O 0
U
M Inc
000
.�
M N N
V O O
N N CD
y�j�
V V fD
V
J
M
ao
E •O
z v)
c
NC
L L c
tU C C
C C
_ _
C 1; W)ND7
V V O
t V
V 't
N N M
N M M
m
L1
M O N
r V
a
ddddda
m
m
N
n
0
N
D7
7
0
S
U
9
a
Q
a rn
m
c
a�
LLN
Z
Q N
(7 D� N
i0
O ,
0
O O
m O N
axo
1
1
1
I
LJ
1
1
1
I
1
1
1
1
1
1
1
1
1
L'
0
r-ZA
Z3.�
5
NeoUDS Results Summary Page 1 of 3
NeoUDS Results Summary
Project Title:
Project Description:
Output Created On: 10/2/2003 at 3:32:38 PM
Using NeoUDSewer Version 1.1.
Rainfall Intensity Formula Used.
Return Period of Flood is 0 Years.
Sub Basin Information
Manhole Basin
ID # Area* C
Time of Concentration
Overland Gutter Basin Rain I
(Minutes); (Minutes inutes) (Inch/Hour)
Peak Flow
(CFS)
�1
0.71
5.0
0.0
0.0
25.52
18.0
0
0.71
5.0
0.0
0.0
25.52
18.0
0
0.65
5.0
0.0
0.0
7.77
5.0
F 0.0
0.0
3.13
13.0
�5
0.65
5.0
0.0
0.0
7.77
5.0
©
4.15
5.0
0.0
0.0
3.13
13.0
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (10+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes
the calculated values.
L
Summary of Manhole Hydraulics
Manhole
ID #
Contributing
*
Area C
Rainfall
Duration
(Minutes)
Rainfall
Intensity
(Inch/Hour)
Design
Peak
CFS
Ground
Elevation
Feet)
Water
Elevation
(Feet)
Comments
F-1
0
0.0
0.00
18.01
4928.56
4923.70
�2
10.3
5.0
1.75
18.0
4927.47
4924.02
0
1.29
5.0
3.88
5.0
4927.17
4924.59
®
8.3
5.0
1.57
13.0
4927.13
4924.79
5�
0.65
5.0
7.77
5.0F
4927 717
4924.62
file:HC:\Program%20Files\NeoLTDSewer\Reports\3274270358.htm 10/2/2003
NeoUDS Results Summary
Page 2 of 3
6 II 4.1
5.011 3.1311 13.011 4927.1311 4925
Summary of Sewer Hydraulics
�l1tP• ThP cr;w n APnth to flnw rntin is 0 9
Manhole ID Number
Calcuiated
suggested
Existing
Sewer
Upstream Downstream
��
Sewer
Diameter (Rise)
Diameter (Rise)
Diameter (Rise) Width
ID #
Sha a
(Inches)
(Inches) )
(Inches) T
�OL
J
Round
21.5j
2411
24
N/A
Round
11.411
1811
18
N/A
�OL
Round
11.4
18
18
N/A
®®I
J
Round
22.2]1
2411
18]F..N/A
0©®
Round
22.21
24]1
18
N/A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially availible size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations.
DesignA
Normal
Normal
Critical
Critical
Full
Froude
Sewer
ID
Flow
Depth
Velocity
Depth
Velocity
Velocity
Number
Comment
(CFS
(Feet)
(FPS
(Feet)
PS)
(FPS)
18.0
1.28
8.4
1.53
7.0
5.7
1.41
F2
5.0
17.2
0.56
8.4
0.86
4.8
2.8
2.32
0
5.0
17.2
0.56
8.4
0.86
4.8
2.8
2.32
®
13.0F
7.4
1.50
7.4
1.33
7.8
7.4
N/A
0
13.0
7.4
1.50
7.4
1.33
7.8
7.4
N/A
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Sewer ID Slope
Invert Elevation
I Buried Depth
Comment
Upstream
(Feet)
Downstream
(Feet)
1 Upstream
eet
Downstream
(Feet)
1.14
4918.84
4917.331
6.63]1
9.23
0
2.66
4919.50
4918.83F
6.17
7.14
file://C:\Program%20Files\NeoUDSewer\Reports\3274270358.htm
10/2/2003
' NeoUDS Results Summary
Page 3 of 3
1
1
0
1 3 112.6611
4919.501
4919.471
6.171
6.201
®
0.50
4918.92
4918.83
6.71
7.14
�5
0.50
4918.92
4918.92
6.71
6.71
Summary of Hydraulic Grade Line
Invert
Elevation
Water
Elevation
Sewer
Sewer
Surcharged
Upstream
Downstream
Upstream
Downstream
ID # Length
eet(Feet)
Length
(Feet)
(Feet)
4917.33
4918.83
(Feet)
4924.02
4924.59
4924.62
(Feet)
4923.70
4924.02
4924.59
Condition
Pressured
Pressured
Pressured
�1
132.07
132.07
4918.84
0
25
25
4919.50
00
1
4919.50
4919.47
®
17
17
4918.92
4918.83
4924.79
4924.02
Pressured
0�1
1
4918.92
4918.92
4925.02
4924.79
Pressured
Summary of Energy Grade Line
Upstream Manhole
Juncture Losses 11
Downstream
Manhole
Sewer
Energy
Manhole
Sewer
Bend K
Bend
Lateral K
Lateral
Manhole
Energy
ID #
Elevation
ID # (Feet
Friction
eet)
Coefficient
Loss
(Feet)
Coefficient
Loss
(Feet
ID #(Feet)
Elevation
�1
0
4924.53
0.83
0.05F
6.00
1.00
0.00
1�
4923.70
�0
4924.71
0.06
1.00F
0.13
0.00
0.00
2�
4924.53
00
4924.75
0.00
0.25F
0.03
0.00
0.00
0
4924.71
®®
4925.63
0.26
1.00F
-0-. 8-4
0.00
0.00
0
4924.53
�5
©
4925.86
0.02
0.25
0.21
0.00
0.00
®
4925.63
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
file:HC:\Program%20Files\NeoUDSewer\Reports\3274270358.htm
10/2/2003
f
F .Z
WH
J {�
z '
ctl-
CL
O i a F
it
',..
i
�w =
N
a i 4 a
� r
� m
Z , N
Wpa
W U
Z�
W y
m
m
C
a
c
W
is
m
a
,I
,1
I
1
(D Z
N N r T m 0 0 n m m N 0n r m m N O N
0
0 0 a v N r m m o o Q
V' m m O C,Z
�
m m V• V7 m m m Of O m m m N m O m N m r
ao
v m r m V'
F U m
N r N N m m m n m r n m V' V' r m r m V
N
m T m m ao 66 m 0 0
Q /
E
aTvnaor)mrrmoonmoTmmmmmrn0vrTmvwv<
m
m n m m O N 0 h m T 0, 1, V m r m m m
m
6
m T m T N N N T m m Z
N 6 6
m
N N 6 m 6 ad r m ad 6 6 m r N r 6 r m m
m m m m m N r
�
CUE
3
0
0
vmrammm0N
rl 0Ma PrM0 M0In,0vvvivirormmr m m m T ,T T N T T T T N N N N N N N
N
N N N N N N N. N N r
m m aa a m a a m m a a m m a m a
a
m m m mom a m m a
v v aa
IN
v v v v a v v v e av
T m m r r m o v o m r v T m m O
N00 DO �mmmTmvminnm
m
m m m m m n r momv,r.NC)0W
arZ
UTvm
ad o vi ad 0 " ad o ad ad ai of vi r ai aV rf
m T T T N N r N T T N N N N N N N
v
N
vi vi (o r co ad ad ad � ad
N N N N N N N N N T
a=
ao m 0) m a m a m m a a m a) m m m m m a
Mick
a m 0) 0) O) m m 0) a
v v v v v
v v v v a v V' v v v v V v v v v v v v
v
v v v v v
r IT in N T n m m o 0 0 m m O N 0 In O
r
m m o m r T V in r O Q
E
v,
ON
O
NT hC T6 Vr0; Z
Om
A C
Om
Im, mvr cn,mr
0rOimN m N NrN m r
m m or N
ma Nm Nv vN r
r
N T N N N N NN
mNTTT
a am mmm aaam
mmammma
C>
v VT V v v j v V V V' v v Y v v o v
v
v v V j li li l' If v v
o_W
O
m NN 0 m r O Cl) r
O M N.m m
CO
r
O CO v N NTm m r v Q
v a N mm 0 0 N m OE
NZ
m mm
d
d d da m m
v
m 6 m av
W �N
0
aV
E
Narrm)naa0ommmoo0mm
nTTaTmmvmo . . . .mNvT
00rmmm)OmNmmQ
a�m�v,rv)nNa0av3
w Z' 0
M m N N )0 N M N N r& T v. 0) m r
W a 0
r
�
'ad r O r N 0 )0 V' m r
IN IN o o 0
0
>%> Cv
a5 m
O am0• OOD m OOl m a 0 0� O) ON) 0 m m
v v v v v V v v v d v v v v V V v v
V
a 0 0 0 m m
.000
v v v v v v v v' v
w
T V' m m a m 10 N N m r m r N r V' V'CC
N m T N N r r It m O m a m N N
O
V;
N to V• m N N u) v In O Q
V; m m m .;V; m Z
ro
n Y
y r oo m M N N m(p r m n w 0 0m 0 ri a/
r
m ad m m r r T N m
N N N
m m N N N N N 0 V' (D y V T V T v m
m N m m n r
U
m
m a m N o 0 o m m m o m m
m )n g N O O O r r m )0 N N r m In r� O
m
O
m m N r m N N N O O Q
11 m 40 N O M m v O O
W
0 N M N a 0) a m COm m M m m T r m
m m {�) m 0 0 0 N N N N T T r r O
N
T a m 0 r m N O O
0 0) O CO T r N
V'
m
N N N N T r r r r r T r T T
r T
0
m�3m
((pp
h m A Omi O N aoto n < o N )O V'
m
m
m r r r r m m m m m Q
r�aavO m a m 0 r r N
a m m r
0) CD co co h N m m m O r m m m 0
mvmm0 mm
0)
vm
m IMP a a
0 o vN o 0 0 0 o T 0 v 0 0 0
0a
0 0$o000�
�m�-
0000caicococcoc0000
cadoocooc000
0
t
N O N V' mmm V• a V• O V tD r O r m T
r m )0 m
v
m n m v r v r n O N Q
Z
0 r O v r v N m w N 0 N m v m m 0 vi'IC
m
m 66 O N ad ad v N ri
C V
m m a m r N a m m N r T N r 0 T m m
V m m T r V m r r m T
V'
N T m V' N N r r m m
m m N T m
m
J
L m
T r T T T r r T T r r r r r r T r T
T
T r T r T T T T T T Q
m 0
7 U
Z
Z to
LL ,C
U U U U U U U U U U U U U 0 U
LU
LL
U U U U U
N m
C C C C C C C C L C C C C C C C C C
C
C C C C C C C C C C Q
rn
O O O O v v v v v v v v v )0 v v v v
m
v O V V• N CO r v v
'�T Z
rD m fD r0 N N N v) N m m N N r N N N N
T
h m 10n r0 r N N r0 N
CL
U Q m O r N M m M
m m m m r r r
V7
It r m O m aD m O T N
r r N N m aQ m a a Q
a
N m a� l)1 ff)! r aQ .r
aman.aaaaaaari.aaari.aa
aaaaaadaad
az
omT
0 D
Z N
Wpa
W U
Z F
W rn
K
N
m
C
C
w«
V
m
O
a
L
I
1
1
L
1
1
1
1
1
1
APPENDIX E
Erosion Control
1
o
'
E+
'
Ua
U
H
I
I
I
W
'
U.5
1
�
H
x
_
U
M
c A
PA
A
o0000
a
0 0
o 0
r�
�
C,4
6q
er . ry
O O
p
6q
W%
69 69
0
O
0
O
0
vl
0
O
0
O
0
O
O
O
OO
+-�
O
&1
O
O
wi
&%
O
0
bq
�
b
00
O
z
PC
0
ti
dd
d
p
a
�O
N
ON
n
O
'n
N
t
a
b
0
U
b
d
ti
\
r\
V
.,
w
.�
o
o
w
;o
-'
'd
u
w
e
w�ao
w
x
a a
a -W
U a
1..
Performance and Effectiveness
Calculations
' TST, INC.
CONSULTING
' ENGINEERS
PROJECT: Rigden Farm - Tract'U' STANDARD FORM A
COMPLETED BY: David Huwa DATE 2127/03
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A,p (ac)
Lb (it)
S b (%)
La'A,p
AA'Sp
PS (%)
Al
moderate
0:.17.
115
2.25
19.55
0.38
A2
moderate
0.43
250
1.42
107.50
0.61
A3
moderate
0.27
200
1.36
54.00
0.37
A4
moderate
0AB
270
0.88
48.60
0.16
A5
moderate
0:24
.. .300
0.74
72.00
0.18
1.29
233.84
1.31
0.7772
PS(after construction)= 0.9143
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A,p (aC)
Lb (it)
S,p (%)
WA,p
A.�'Sp
PS (%)
Bt
moderate
.0:19:.
220
205
41.80
0.39
B2
moderate
1.46
400
1.11
584.00
1.62
B3-1
moderate
0.23
. 200
2.02
46.00
0.46
83-2
moderate
0,i9
210
1.10
39.90
0.21
B4
moderate
: M16
240
0.93
38.40
0.15
B5
moderate
0:23
150
1.73
34.50
0.40
2.48
319
1.31
0.7819
PS (after construction)- 0.9199
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Alb (ac)
L,p (it)
S,p (%)
WA,p
I A,p'Sp
PS (%)
C1
moderate
049
ti190
1.31
93.10
0.04
C2
moderate+0:94
98.40
. 0.77
1,311
1
1 1461
1.08
0,7571
PS (after construction)= 0.8907
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Ao (ec)
L,p (ft)
I SON
Lp'A,p
A,p'Sp
PS (%)
D1
moderate
Obt
°: 90
1.33
9.00
0.13
D2
moderate
%C,O:�iS
5= 'g0
... ..0:91
- 13.50
0.14
0.251
1
1 U01
1.08
0.7494
PS (after construction)= 0.8817
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A* (8c)
Lb (it)
Sob (°/a)
WA,p
A,p'Sp
PS (%)
El
moderate
; 0;27
' 140
`= 0.58
3L80
0.18
E2
moderate
0'29
170
1.03
49.30
0.30
.0i58
156
0.81
0.7404
PS (after construction)= 0.8710
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Am (ac)
Lrp (it)
S,p (%)
I WAm I
Arp'Sp
F1
moderate
: -:0:36
_' .: 230
--":,-:.0.62
82.80
0.22
F2
moderate
0:31
;:....... :.-260
, ... ; 0.95
80.60
0.29
0.671
1 2441
0.771
0.7459
PS (after construction)= 0.8776
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Am (ac)
Lm (it)
S,p (%)
Lp'Arp
A,p'Sp
PS (%)
Gt-1
moderate
US
:250
1.20
165.00
0.79
G1-2
moderate
Oaf
'_. .180
_ _ 232
19.80
0.26
G2
moderate
021:..:
160
1.65
33.60
0.35
0.98
223
1.42
0,7804
Page 1 of 1
PS (after construction)= 0.9182
4125103
040 Eroslon Control Effectiveness.xls
Performance and Effectiveness
Calculations
TST, INC.
CONSULTING
ENGINEERS
PROJECT: Rigden Farm - Tract'U' STANDARD FORM A
COMPLETED BY: David Huwa DATE: 2/27l03
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A,e (ac)
Lb (it)
S, (%)
Lb'A,b
Ap*Sb
PS (%)
Al
moderate
0.47
1:15
2.25
19.55
0.38
A2
moderate
043
250
1.42
107,50
0.61
A3
moderate
027':
200
.36
54.00
0.37
A4
moderate
`.018
" 270
0.88
48.60
0.16
A5
moderate
..7-6.724
77. _300
.. . -0.74
72.00
0.18
1.29
233.84
1.31
0.7772
PS (after construction)= 0.9143
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
AW (ac)
L,b (it)
SO (%)
Lb'A,b
A,b'Sb
PS (%)
B1
moderate:019
220
2.05
41.80
0.39
B2
moderate
1:46
400
1.11
584.00
1.62
133-1
moderate
0.23
200.
2.02
46.00
0.46
83-2
moderate
0.49
210
1.10
39.90
0.21
84
moderate
Ole
-,240
0.93
38.40
0.15
B5
moderate
0r23
.A50
. .4:73
34.50
0.40
2.46
319
1.31
0.7819
PS (after construction)= 0.9199
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A,e (ao)
Lb (it)
S,b (%)
L.b'Am
I A,e'Sb
PS (%)
C1
moderate
0 4$
.:; • ;.190
. 1.31
93.10
0.64
C2
moderate
94
98.40
O.Z7
1.311
1146
1.08
0.7571
PS (after construction)= 0.8907
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Am (ac)
I Lb (ft)
I S,b (%)
WA,b
A,e'Sb
PS (%)
Ot
moderate
90.'
4,33
9.00
0.13
D2
moderate
i5
-::90
.:'..0.91
13.50
0.14
0.251
1
1 90
-1.081
a.T494
PS (after construction)= 0.8817
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
ft)
I S,b (%)
WA,b
A,e'Sb
I PS (%)
E1
moderate
-0:27
. 140
0.58
37.80
0.16
E2
moderate
0:29
170.
1.03
49.30
0.30
0.561
1
1158
0.8'1
- 0.7404
PS(after construction)= 0.8710
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A,b (ac)
Lb (it)
sob (%)
Ly A�b
A,b'Sb
F1
F
moderate
82.80
0.22
F2
moderate
,0.34
'260
-.•u0.95
80.60
0.29
1 0.671
1
2441
0.77
0.7459
PS(after construction)= 0.8776
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Alb (ac)
Lzb (ft)
S,b (%)
Lb'A,b
A,b'Sb
PS (%)
G1-1
moderate
0.66
260
1.20
165.00
0.79
G1-2
moderate
c ;0.14
`:` .180
; 2.32
19.80
0.26
G2
moderate
0.2f
:: ..,160
.: 1.65
33.60
0.35
0.98
223
1.42
0.7804
Page 1 of 1
PS (after construction)= 0.9182
4125/03
040_Eroslon Control Effectiveness xis
r
r
TST, INC.
CONSULTING
ENGINEERS
Performance and Effectiveness
Calculations
PROJECT: Rigden Farm - Tract'U' STANDARD FORM A
COMPLETED BY: David Huwa DATE: 227/03
DEVELOPED
ERODIBILITY ZONEE,(ac)
I.,e (ft)
S,(%)
Le'Am
AWSb
PS(%)SUBBASIN
At
moderate
.115..
2.25
19.55
0.38
A2
moderate
.1.42
107.50
0.61
A3
moderate
. 200
1.36
54.00
0.37
A4
moderate
:270
0.88
48.60
0.16
A5
moderate
.300
�0.74
72.00
0A8
233.84
1.31
0.7772
PS (after construction)= 0.9143
DEVELOPED
SUBBASIN
ERODIBILITY ZONE i
A,b (ac)
L,b (ft)
Sw (%)
Lb'A,b I
A eSb
PS (%)
B1
moderate
':=7 019
:. "220
- 2.05
41.80
0.39
B2
moderate
1Ze
: - -'400
..1.11
554.00
1.62
B3-1
moderate
0:23
- - 200
;,. 2.02
46.00
0.46
B3-2
moderate
019
210
1.10
39.90
0.21
B4
moderate
Q1fi
. 240
. , _ ::0.93
38.40
0.15
85
moderate
O1-23
150
_ 1.73
34.50
0.40
2.46
319
1.311
0.7819
PS (after construction)= 0.9199
DEVELOPED
SUBBASIN
ERODIBILRY ZONE
IkAa (so)
L,b (ft)
S,b (%)
WA,b
AW*Se
PS (%)
C1
moderate
}:048
00
4 i'r:180
1.31
93.10
0.22
C2
moderate
; 82
..., ..:120
,_... _, 50.94
98.40
0.77
1.WI
1
1 1461
1.081
0.7571
PS (after construction)= 0.8907
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Aft (so)
I L,b (ft) I
Sob (%)
Lb Arb
AA,eSb
I PS (%)
Di
moderate
0:1.
>
1.33
9.00
0.13
D2
moderate
0#6
::,.::; 90"...
..:0.91
13.50
0.14
0.25
90
1.08
0.7494
PS (after construcdon)= 0.8817
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A,e (ac)
tw (ft)
Sob (%)
I WA,b I
Am'Sb
PS (%)
E1
moderate
' :,027
, _i -140
'0.58
31.80
0.16
E2
moderate
. ..,029
: 7 :1f'IO
; r: .:1.03
49.30
0.30
0.50
156
0.81
0.7404
PS(after construcdon)= 0.8710
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
AW (ac)
Lb (ft)
S,b (%)
I Le kb
I AWSb
I PS (%)
F1
moderate
�;, ,�ra36
:::. - ;2.30
0.62
12
0.22
F2
moderate
RIM
_ ._528O:=
- _.:0.95
80.60
0.29
0.671
1 2441
0.771
0.7459
PS(after construcdon)= 0.8776
DEVELOPED
SUBBASIN
EROOIBILITY ZONE
A,b (ac)
Lb (ft)
Srb (%)
Lb'A,b
Ao*St,
PS (%)
GI-1
moderate
0.66
250
1.20
165.00
0.79
G1-2
moderate
0.11..
180
2.32
/9.80
0.26
G2
moderate
021
160
1.65
33.60
0.35
0.98
223
1.42
0.7804
Page 1 of 1
PS(after construction)= 0.9182
425103
040 Erosion Control Effectiveness.xis
Performance and Effectiveness
Calculations
• TST, INC.
CONSULTING
ENGINEERS
PROJECT: Rigden Farm -Tmct'U' STANDARD FORMA
COMPLETED BY: David Nuwa DATE: 2/27/03
DEVELOPED
SUBBASIN
ERODBILITY ZONE
Am (ac)
Lo (it)
Sib (%)
WAm
Am'Sp
PS (%)
Al
moderate
0.17
115
: 2.25
19.55
0.38
A2
moderate
0:43
250
1.42
107.50
0.61
A3
moderate
0.27:
200.
1.36
54.00
0.37
A4
moderate
0A
. .-270
: 0:88
48.60
0.16
A5
moderate
24
300
0.74
72.00
0.18
1.291
233.84
1,311
0.7772
PS(after construc8on)= 0.9143
DEVELOPED
ERODIBILITY ZONE
Lm (it)
Sb (%)
Lp'Ae
Am'Se
PS (%)SUBBASIN
B1
moderate
:220
; 2.05
41.80
0.39
B2
moderate
_ 400
'1.11
584.00
1.62
83-1
moderate
EA*.b(SC)
290
202
46.00
0.46
83-2
moderate
210
.. 1.10
39.90
0.21
84
moderate
-. 240
0,93
38.40
0.15
B5
moderate
;.' .150
.'. 1.73
34.50
0.40
319
1:31.
0.7819
PS (after construction)= 0.9199
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Ab (ac)
L,p (it)
SO (%]
LeAsb
A,e'SD
PS (%)
Cl
moderate
0:49,
_. ..190
; .:.-1.11
93.10
0.64
C2
moderate
OY82
..120
`:_ r0.94
98.40
0.
1;311
1 1461
1.08
0.7571
PS (after construction)= 0.8907
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Alb (80)
L,s (it)
I Sob (%)
Ly A,y
I Am'Ss
I PS (%)
D1
moderate33
9:00
0.13
D2
moderate
0.i5
:.;•.. i90
;"-:0391
13.50
0.14
0.251
1
1 Sol
1.08
0.7494
PS (after construction)- 0.8817
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Aw (80
Lb (it)
I Sa (%)
I WAS
I A.n'Se
I PS (%)
Et
moderate
". ".^0:27
` ;r`' "440
:: 0.5B
37.80
0.18
E2
moderate
0129
«sr :170
::_ -<1.03
49.30
0.30
0.651
1
1 156
0.81
0.7.404
PS(after constructon)= 0.8710
DEVELOPED
SUBBASIN
ERODBILITY ZONE
Alb (ac)
Lb (ft)
I S,y (%)
L.6 Am
Ao'Sp
PS (%)
Fl
moderate
=-;0:36
21
2
82.80
0.22
F2
moderate
#.; 5;0;31;
260
. >_ .n0.95
80.60
0.29
0.07
244
0.77
0.7459
PS(after construc8on)= 0.8776
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Am (ae)
Lsb (it)
Ssb (%)
Lt. A,e
AseSe
PS (%)
GI-1
moderate
0;66.
250:
1.20
165.00
0.79
G1-2
moderate
0.11
160,
232
19.80
0.26
G2
moderate
0:21.....
160
....:,1.65
33.60
0.35
0.98
223
1.42
0.7804
Page 1 of 1
PS(after consWction)- 0.9182
4/25103
040 Erosion Control Effectivenessxls
TST, INC.
CONSULTING
' ENGINEERS
Performance and Effectiveness
Calculations
PROJECT: Rigden Farm - Tract'U' STANDARD FORM A
COMPLETED BY: David Huwa DATE: 2127/03
ELOPED
ERODIBILITY ZONE
Ab (ac)
Lm (ft)
Sob (%)
Lt'A,
AM*Sb
PS(%)BBASIN
Al
moderate
. 0:17
1.15
.2-25
19.55
0.38
A2
moderate
0A3
- 150
'. 1.42
107.50
0.61
A3
P
moderate
0:27,
200.
1.36
54.00
0.37
A4
moderate
::0;18:
'270:
.0.88
48.60
-0.16
A5
moderate
_ 0.24
.300
0.74
72.00
0.18
1.29
r 233.84
1.31
0.7772
PS (after construction)= 0.9143
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A,b (ac)
L,b (it)
Srp (%)
Lb'Am
A,b'Sb
PS (%)
Bt
moderate
0.19
; 220
.. 2.05
41.80
0.39
B2
moderate
7476
: , "::400
. - 1.11
584.00
1.62
83-1
moderate
0.23:"..
.1200
2.02
46.00
0.46
B3-2
moderate
0:19
. 210
ti10
39.90
0.21
B4
moderate
1 A.16:
..240:.
0:93
38.40
0.15
85
moderate
. ° i 0!23
... .150
.:... `:1.73
34.50
0.40
2:48
319
1.31
0.7819
PS(afterconstmction)= 0.9199
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Am (ac)
Lb (ft)
S,b (%)
C7
moderate
0.49
.., =190
1.31
93.10
0.64
C2
moderate
e t i_0 82
. : ' .J20
i .,.,i:U.94
98.40
0.77
1:31
148
imal
0.7571
PS(after construction)= 0.8907
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A,b (ac)
Lm (ft)
S,b ON
Lb'Am I
A,b'Sb
I PS (%)
Dt
moderate
01.
• 'T ' .;90
; 1.33
9.00
.0:13
D2
moderate
':F: 0:15
; . ::90s.:,
;;Q91
13.501
0.14
0.25
901
1.081
0.1494
PS(after conslruction)= 0.8817
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A.e (ac)
Lob (ft)
SO (°/.)
Lti A,b
A eSb
PS (%)
Et
moderate
0:27
U.40;=::.
.0:58
37.80
0.16
E2
moderate
;`.`.029
>:;, t70
;+' 1.03
49.30
0.30
0.56
158
0.81
0.7404
PS (after construction)= 0.8710
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
Arb (ac)
Lb (ft)
SO (%)
Lb'Asb
Am'Sb
PS (%)
F1
moderate
0:36
'."
. 0.62
82.80
0.22
F2
moderate
.. .0:31.
:260
0.95
80.60
0.29
0.671
1
1244
0.77
0.7459
PS (after constnrcdon)= 0.8776
DEVELOPED
SUBBASIN
ERODIBILITY ZONE
A,b (ac)
Lb (ft)
Srb (%)
WA*
A,b'Sb
PS (%)
GI-1
moderate
0.66
250
; 1.20
165.00
0.79
G1-2
moderate
0.11
180:
2.32
19.80
0.26
G2
moderate
.0:21
160
. 1.65
33.60
0.35
0.98
223
1.42
0.7804
Page 1 of 1
PS (after construction)= 0.9182
4125103
040 Erosion Control Eftectiveness.xls
Effectiveness Calculations
I
1
1
PROJECT: Rigden Farm-Tract'U' STANDARD FORM B
COMPLETED BY: DH DATE:4/25/03
Erosion Control C-Factor P-Factor
Method Value Value Comment
Sall Treatment Methods
bare soil 1.00 1.00
reseed 0.06 1.00
sod grass 0.01 1.00
pavement 0.01 1.00
Structural Treatment Methods
no structure 1.00 1.00
gravel filter 1.00 0.80
straw bale 1.00 0.80
silt fence 1.00 0.50
sediment trao 1.00 0.50
Major Basin
PS (%)
Sub -Basin
Area
Calculations
Soil Treatment Methods: 0 bare soil 0.00 reseed
Al
0.17
0.05 sod grass 0.14 pavement
Structural Methods: 0.8 straw bale
A
91.43%
0.5 silt fence
C-FACTOR= 0.01 1 no structure
P-FACTOR= 0.40 1 no structure
EFF= 99.55% 0.17 = EFF'A,s 1 no structure
Soil Treatment Methods: 0 bare soil 0.00 reseed
A2
0.43
0.07 sod grass 0.61 pavement
Structural Methods: 0.5 slit fence
1 no structure
C-FACTOR= 0.02 1 no structure
P-FACTOR= 0.50 1 no structure
EFF= 99.21% 0.43 = EFPA,y 1 no structure
Soil Treatment Methods: 0 bare soil 0.00 reseed
A3
0.27
0.06 sod grass 0.21 pavement
Structural Methods: 0.8 straw bale
1 no structure
C-FACTOR= 0.01 1 no structure
P-FACTOR= 0.80 1 no structure
EFF= 99.20% 0.27 = EFF•A,y 1 no structure
Soil Treatment Methods: 0 bare soil 0.00 reseed
A4
0.18
0.01 sod grass 0.15 pavement
Structural Methods: 0.5 silt fence
1 no structure
C-FACTOR= 0.01 1 no structure
P-FACTOR= 0.50 1 no structure
EFF= 99.56% 0.18 = EFF'A,o 1 no structure
$oil Treatment Methods: 0 bare soil 0.00 reseed
AS
0.24
0.02 sod grass 0.23 pavement
Structural Methods: 0.5 slit fence
1 no structure
C-FACTOR= 0.01 1 no structure
P-FACTOR= 0.50 1 no structure
EFF= 99.48% 0.24 = EFF•A0 1 no structure
Area = 1_29 Sum (A,b*EFFm) = 1.28
EFF = 99.4Y=
Performance= 91.4Y= Design Works
TST, INC.
CONSULTING 4125103
ENGINEERS Page 1 of 1 040 Erosion Control Effectivenessids
Effectiveness Calculations
1
1
1
1
1
1
1'
1
1
1
1
1
1
1
1
1
1
PROJECT: Rigden Farm-Tract'U' STANDARD
COMPLETED BY: DH DATE: 4/25K
Erosion Control C-Factor P-Factor
Method Value Value Comment
Soil Treatment Methods
bare soil 1.00 1.00
reseed 0.06 1.00
sod grass 0.01 1.00
pavement 0.01 1.00
Structural Treatment Methods
no structure 1.00 1.00
gravel filter 1.00 0.80
straw bale 1.00 0.80
silt fence 1.00 0.50
sediment tran 1.00 0.50
Major Basin
PS (%)
Sub -Basin
Area
Calculations
Soil Treatment Methods: 0 bare soil
Al
0.17
0.05 sod grass 0.14 pavement
Structural Methods:
A
91.43%
C-FACTOR= 0.01
P-FACTOR= 0.40
EFF= 99.55% 0.17 = EFF'A.e
Soil Treatment Methods: 0 bare soil
A2
0.43
0.07 sod grass 0.61 pavement
Structural Methods:
C-FACTOR= 0.02
P-FACTOR= 0.50
EFF= 99.21% 0.43=EFF'A,b
Soil Treatment Methods: 0 bare soil
A3
0.27
0.06 sod grass 0.21 pavement
Structural Methods:
C-FACTOR= 0.01
P-FACTOR= 0.80
EFF= 99.20% 0.27 = EFPA,s
Soil Treatment Methods: 0 bare soil
A4
0.18
0.01 sod grass 0.15 pavement
Structural Methods:
C-FACTOR= 0.01
P-FACTOR= 0.50
EFF= 99.56% 0.18 ' EFF'A0
Soil Treatment Methods: 0 bare soil
A5
0.24
0.02 sod grass 0.23 pavement
Structural Methods:
C-FACTOR= 0.01
P-FACTOR= 0.50
EFF= 99.48% 0.24 = EFPA,b
Area = 1.29 Sum (A,eEFF,e)' 1.28
EFF = 99.4°/.
Performance = 91.4% Design N
TST, INC.
CONSULTING
ENGINEERS
Page 1 of 7
0.8 straw bale
0.5 silt fence
1 no structure
1 no structure
1 no structure
1.00 reseed
0.5 silt fence
1 no structure
1 no structure
1 no structure
1 no structure
1.00 reseed
0.8 straw bale
1 no structure
1 no structure
1 no structure
1 no structure
).00 reseed
0.5 silt fence
1 no structure
1 no structure
1 no structure
1 no structure
0.00 reseed
0.5 silt fence
1 no structure
1 no structure
1 no structure
1 no structure
4125103
040 Erosion Control Effectiveness.xls
Effectiveness Calculations
I
I
PROJECT: Rlgden Farm-Tract'U' STANDARD FORM B
COMPLETED BY: DH DATE: 4/25/03
Erosion Control C-Factor P-Factor
Method Value Value Comment
Soil Treatment Methods
bare soil 1.00 1.00
reseed 0.06 1.00
sod grass 0.01 1.00
pavement 0.01 1.00
Structural Treatment Methods
no structure 1.00 1.00
gravel filter 1.00 0.80
straw bale 1.00 0.80
slit fence 1.00 0.50
sediment trap 1.00 0.50
Major Basin
PS (%)
Sub -Basin
Area
Calculations
Sol[ Treatment Methods: 0 bare soil 0 reseed
B1
0.19
0.12 sod grass 0.12 pavement
Structural Methods: 0.8 straw bale
B
91.99%
1 no structure
C-FACTOR= 0.01 1 no structure
P-FACTOR= 0.80 1 no structure
EFF= 98.99% 0.2 = EFF•A,b 1 no structure
Soil Treatment Methods: 0 bare soil 0 reseed
82
1.46
0.06 sod grass 1.00 pavement
Structural Methods: 0.8 straw bale
1 no structure
C-FACTOR= 0.01 1 no structure
P-FACTOR= 0.80 1 no structure
EFF= 99.42% 1.5 = EFF'A,b 1 no structure
Soil Treatment Methods: 0 bare soil 0 reseed
B3-1
0.23
0.09 sod grass 0.14 pavement
Structural Methods: 0.8 straw bale
1 no structure
C-FACTOR= 0.01 1 no structure
P-FACTOR= 0.80 1 no structure
EFF= 99.20% 0.2 = EFF•A,b 1 no structure
Soil Treatment Methods: 0 bare soil 0 reseed
B3-2
0A9
0.08 sod grass 0.11 pavement
Structural Methods: 1 no structure
1 no structure
C-FACTOR= 0.01 1 no structure
P-FACTOR= 1.00 1 no structure
EFF= 99.00% 0.2 = EFF*Aeb 1 no structure
Soil Treatment Methods: 0 bare soil 0 reseed
B4
0.16
0.01 sod grass OA2 pavement
Structural Methods: 0.5 silt fence
1 no structure
C-FACTOR= 0.01 1 no structure
P-FACTOR= 0.50 1 no structure
EFF= 99.59% 0.2 = EFF'A,b 1 no structure
Soil Treatment Methods: 0 bare soil 0 reseed
B5
0.23
0.09 sod grass 0.14 pavement
Structural Methods: 0.8 gravel filter
0.5 silt fence
C-FACTOR= 0.01 1 no structure
P-FACTOR= 0.40 1 no structure
EFF= 99.60% 0.2 = EFF'A,b 1 no structure
Area = 2.46 Sum (A,b EFFm) = 2_4
EFF = 99A°/.
Performance = 92.0% Design Works
' TST, INC.
CONSULTING 4/25/03
ENGINEERS Page 2 of 7 040_Ero510n Control Effectiveness xis
Effectiveness Calculations
.1
I
1
I
I
II
I
I
I
F
PROJECT: Rigden Farm - Tract'U'
STANDARD FORM 8
COMPLETED BY: OH
DATE: 4/25103
Erosion Control
C-Factor
P-Factor
Method
Value
Value
Comment
Soil Treatment Methods
bare soil
1.00
1.00
reseed
0.06
1.00
sod grass
0.01
1.00
pavement
0.01
1.00
Structural Treatment Methods
no structure
1.00
1.00
gravel filter
1.00
0.80
straw bate
1.00
0.80
silt fence
1.00
0.50
ediment trap
1.00
0.50
Major Basin
PS (%)
Sub -Basin
Area
Calculations
Soil Treatment Methods:
0 bare soil
0.00 reseed
C1
0.49
0.03 sod grass
0.46 pavement
Structural Methods:
1 no structure
C
89.07%
1 no structure
C-FACTOR= 0.01
1 no structure
P-FACTOR= 1.00
1 no structure
EFF= 99.00%
0.5 = EFF•Ab
1 n0 structure
Soil Treatment Methods:
0 bare soil
0.00 reseed
C2
0.82
0.21 sod grass
0.64 pavement
Structural Methods:
0.8 gravel filter
0.8 straw bale
C-FACTOR= 0.01
1 no structure
P-FACTOR= 0.64
1 no structure
EFF= 99.34%
0.8 = EFF*Ab
1 no structure
Area =
1.31
Sum (Ab'EFFb) -
1_3
EFF=
99.2%
Performance=
89.1% DesignWorks
' TST, INC.
CONSULTING 4/25/03
ENGINEERS Page 3 of 7 040_Erosion Control Effectiveness.xls
Effectiveness Calculations
PROJECT: Rigden Farm-Tract'U'
STANDARD FORM B
COMPLETED BY: DH
DATE: 4/25/03
Erosion Control
C-Factor
P-Factor
Method
Value
Value
Comment
Soil Treatment Methods
bare soil
1.00
1.00
reseed
0.06
1.00
sod grass
0.01
1.00
pavement
0.01
1.00
Structural Treatment Methods
no structure
1.00
1.00
gravel filter
1.00
0.80
straw bale
1.00
0.80
silt fence
1.00
0.60
sediment trap
1.00
0.50
Major Basin
PS (%)
Sub -Basin
Area
Calculations
Soil Treatment Methods:
0 bare soil
0.00 reseed
D1
0.10
0.05 sod grass
0.02 pavement
Structural Methods:
1 no structure
D
88.17%
1 no structure
C-FACTOR= 0.01
1 no structure
P-FACTOR= 1.00
1 no structure
EFF= 99.30%
0.1 = EFF*Aw
1 no structure
Soil Treatment Methods:
0 bare soil
0.00 reseed
D2
0.15
0.04 sod grass
0.11 pavement
Structural Methods:
0.8 gravel filter
0.5 silt fence
C•FACTOR= 0.01
1 no structure
P-FACTOR= 0.40
1 no structure
EFF= 99.60%
0.1 = EFF'Aw
1 no structure
Area =
0.25
Sum (A,eEFFb) =
0_2
EFF =
99.5%
Performance =
88.2% Desl n Works
I
' TST, INC.
CONSULTING 4/25103
ENGINEERS Page 4 of 7 040 Erosion Control Effectiveness.xls
Effectiveness Calculations
tr'
I
PROJECT: Rigden Farm-Tract'U'
STANDARD FORM B
COMPLETED BY: DH
DATE: 4/25103
Erosion Control
C-Factor
P-Factor
Method
Value
Value
Comment
Soil Treatment Methods
bare soil
1.00
1.00
reseed
0.06
1.00
sod grass
0.01
1.00
pavement
0.01
1.00
Structural Treatment Methods
no structure
1.00
1.00
gravel fitter
1.00
0.80
straw bale
1.00
0.80
silt fence
1.00
0.50
sediment trap
1.00
0.50
Major Basin
PS (%)
Sub -Basin
Area
Calculations
Soil Treatment Methods:
0 bare soil
0.00 reseed
E1
0.27
0.06 sod grass
0.18 pavement
Structural Methods:
0.8 straw bale
E
87.10%
1 no structure
C-FACTOR= 0.01
1 no structure
P-FACTOR= 0.80
1 no structure
EFF= 99.29%
0.3 = EFF•Asy
1 no structure
Soil Treatment Methods:
0 bare soil
0.00 reseed
E2
0.29
0.07 sod grass
0.22 pavement
Structural Methods:
0.8 gravel filter
0.5 slit fence
C-FACTOR= 0.01
1 no structure
P-FACTOR= 0.40
1 no structure
EFF= 99.60%
0.3 = EFF'Asb
1 no structure
Area =
0.56
Sum (AseEFFsb) =
0.6
EFF =
99.5°/a
Performance=1
87.1% Desl n Works
' TST, INC.
CONSULTING 4/25/03
ENGINEERS Page 5 of 7 040 Erosion Control Effectivenessxls
F
R
Effectiveness Calculations
PROJECT: Rigden Farm-Tract'U'
STANDARD FORM B
COMPLETED BY: DH
DATE: 4125103
Erosion Control
C-Factor
P-Factor
Method
Value
Value
Comment
Soil Treatment Methods
bare soil
1.00
1.00
reseed
0.06
1.00
sod grass
0.01
1.00
pavement
0.01
1.00
Stru ctural Treatment Methods
n o structure
1.00
1.00
gravel filter
1.00
0.80
straw bale
1.00
0.80
slit fence
1.00
0.50
sediment trap
1.00
0.50
Major Basin
PS (%)
Area
Calculations
FSub-Blasln
Soil Treatment Methods:
0 bare soil
0.00 reseed
0.36
0.11 sod grass
0.16 pavement
Structural Methods:
0.8 straw bale
OF
87.76%
1 no structure
C-FACTOR= 0.01
1 no structure
P-FACTOR= 0.80
1 no structure
EFF= 99.40%
0.4 = EFF'A,s
1 no structure
Soil Treatment Methods:
0 bare sail
0.00 reseed
F2
0.31
0.08 sod grass
0.23 pavement
Structural Methods:
0.5 silt fence
1 no structure
C-FACTOR= 0.01
1 no structure
P-FACTOR= 0.50
1 no structure
EFF= 99.50%
0.3 = EFF'A,s
1 no structure
Area =
0.67
Sum (A-yeEFFey) -
0.7
EFF =
99.4-/e
Performance = 1
87.8%j Design Works
TST, INC.
CONSULTING 4125103
ENGINEERS Page 6 of 7 040_Erosion Control Effectiveness xis
Effectiveness Calculations
PROJECT: Rigden Farm-Tract'U'
COMPLETED BY: DH
Erosion Control
C-Factor
P-Factor
Method
Value
Value
Soil Treatment Methods
bare soil
1.00
1.00
reseed
0.06
1.00
sod grass
0.01
1.00
pavement
0.01
1.00
Structural Treatment Methods
no structure
1.00
1.00
gravel filter
1.00
0.80
straw bale
1.00
0.80
silt fence
1.00
0.50
sediment trap
1.00
0.50
Major Basin PS (%) . _ Sub -Basin Area
G1-1 0.66
G 87.76%
G1-2 I 0.11
G2 1 0.21
Area = 0.98
Calculations
0 bare
0.04 sod grass 0.66 pavement
rat Methods:
'OR= 0.01
OR= 1.00
EFF= 98.94%
ratment Methods:
0.11 sod grass
iral Methods:
rOR= 0.02
rOR= 0.80
EFF= 98.40%
eatment Methods:
0.04 sod grass
iral Methods:
TOR= 0.01
TOR= 0.40
EFF= 99.62%
Sum (A,eEFF,y)
EFF
Performance =
0.7 = EFF'A,s
1 no structure
1 no structure
1 no structure
1 no structure
1 no structure
0 bare soil
0.00 reseed
0.11 pavement
0.8 straw bale
1 no structure
1 no structure
1 no structure
0.1 = EFF'A0
1 no structure
0 bare soil
0.00 reseed
0.16 pavement
0.5 si0 fence
0.8 gravel filter
1 no structure
1 no structure
0.2 = EFF'Am
1 no structure
Works
TST, INC.
4125103
CONSULTING
ENGINEERS Page 7 of 7 040 Erosion Control Effectiveness.xls
I
O
V
O
O
0
ui
c
F
1
0
st
rn
to
o
0
ui tri
0
co
co
coP
lqRlqlc7plq0000
d
cmo
amo
cmo
9
m
COd
ao
co
rn
d
m
rn
d
m
rn
d
m
rn
v
m
rn
d
m
rn
d
m
rn
d
m
m
d�
co
rn
rn
d
co
rn
d to
co
glgl
co
0
LO
co
0
n
co
N
co
W
00
00
s0�1
O
O> ��p
q
O
01
coo
coo
co
000
coo
co
co
coo
co
OD
co
CO
co
OM
tommt0(0n
tirnf�1�n^hnhmm00maDaD
�cocoGococococococo�
co9X
��Wco
co
rn
m
cOddddd�a4
N
co
V:
u1
in
In
(O
10
f0
(O
d
lO
d�
CG
n
ld.-
n
n
f�
n
l�
f�
OD
00
00
co
00
000
m
00
co
co
co
co
a00d0ad0
000000
cco00ccoocco000
mONM
"It
d?tnqtnCO(D(O(O(O(D(D(Om(OI�r`tinti�
m
Mastvddv'ctdV
m
m
m
m
m
m
m
m
CO
CO
��d'Ig--t
mco
D�ad00�DOd00dOa0adDOdDadO
d
grNcl
P7
V;
d:
d
In
to
U)
q
tC)U7O
to
UC
(O(Dm(0
CO
COr
ncco��
coc�coc�009OVO
�
�Idm�V
O
(D
OOO�e-N
N
M
M(h
Mv,
"r
v,
d;
dct
0:
V;
to
to
to
U)(O
(�
m
�aMom�w�a�o
dm�adoa`�o
�
�coo��
Gocodmadocoocoo
t °
to
NtA
nc00!OO��';�N
N
N
NN
gMM(I
cl
V:s�
dd;d
! tU
U)
C4com
mm
My
vdv
���
Od0"t
co
ItD
Od0
a0
o0
'Clot
1 0
00
co
co
co
co
Go
00
co
Go
. (n�
r00r
(h
st
q
to
m(O
I�
n
1�
co
OR
m
mm
co
0
04mOOOOO
Wcolcolco
0
co
G
d'
CO
co
co
co
00
co
co
co
co
co
co
co
co
co
co00
d
(O
to
000rNMCO
sT
to
t0
:,no(O
(O
m(O
mf`
cn
ti"`"`mmm
W
m
coONO
w
ccoo
ccoo
000
w
coOMO
00
WOMO
OMO
OMO
OMD
OMD
OMO
co
oco
c
ccoo
OMO
ccoo
ccoo
co
to
trio
r
N
N
f�mOOrNNMM'7�d
N
N
cn
co
(M
M
M
(h
('7
M
M
M
st�
m
M
U)
M
U)lC)t0
M
M
M
(Om(Qnn
co
M
co
M
m
vi
co
0o
co
co
co
co
co
SO
co
co
SO
co
SO
co
co
co
co
m
co
co
m
m
m
m
m
m
M
N(O
00
q
Or
N
N
M
Ci
Md
d;ddd
U)
O
U7
U)
m
(O
mm
M
Qrrrr
NN
N
N
N
N
N
N
NNNNNCV
NCV
N
N
N
NN
co
00
co
00
c0
co
co
m
co
0o
m
co
co
co
00
w00
co
00
co
Go
co
co
m
co
m(n,nrnc.!r�v,toUD
O
O
r
r
r
r
r
r
nr�aoaocornrno?rna?c?00000O
r
r
r
r
r
r
r
r
r
r
r
N
N
N
(V
NI,.
N
(`(
nmmmmmcom0000commcococoaommmmmmmmm
U1
to
(O
cD
00
0
0
0
0
r
r
4
r
N
N
N
N
M
M
M
cq
cl
(h
N
f'-
�
MCI
000
ccoo
C*
m
ccoo
ccoo
ccoo
coo
Oro
cor
cor
cor
°ro
co
cor
aro
Oro
coo
Oro
co
coo
000
Oro
co
OR
co
N
m
r
d
to
r
ti
mP.n�ccoocoocc000momcoaooccooGo00ccoocococcooccoo
m
Cn
Cn
O
O
r
r
r
r
r
N
N
N
(" J
C?
C7
M
M
titinti�m
tOMOdn01Or"CI
Mdd;
W
m(O
t0
(O�n(O
cc
(0
n
n
n
n
I--
n
n
n
co
n
c0
n
Go
n
w
n
co
n
wm
n
n
co
n
co
n
00
n
00
n
c0
n
Go
n
c0
n
00
n
co
n
n
00
n
c0
n
co
n
rn
o
d;
m
n
ao
m
n
n
(�
(O
m
(o
an
d
�
d
ti
M�
ti
N
�
N
n
tT
m
d;
�
O)
co
oI
ti�
�
ti
n
�
ti
n
�
�
�
ti
ti
rN.
Ca�i
J
COOOOOOOOOOOOOOOOOOOOOOOOO
0
0
0
0
0
0
0
0
0
0
0
0
N
0
M
0
0
LO
0
W
0
I.-
0
M
0
00
0
0
0
0
0
0
0d0
0
0
3
rNMdtomnmO)
7
(0
(0
0
LL
c
O
N
O
W
K�
vow
?Nz
~ z ( j
� tiw
1
Table 8B C-Factors and P-Factors for Evaluating EFF Values.
'
Treatment
C-F200r
P-Factor
BARE SOIL
Packed and smooth ...... ...................... ......... » ..».».....».....»..
Freshlydisked
1.00
1.00
...................................... ...._„................ _. ....
1.00
0.90
Rough irregular surface.._....».......»......»..». .».......».._»....
1.00
0.90
'
��SEDIMENT BASIN/TRAP ................................ _.... ..............
1.00
0.500)
.
SILT FENCE BARRIER .............»......„».._.._......_.__...........
1.00
0.50
'
ASPHALT/CONCRETE PAVEMENT _......... ..„..._........ ....»..._»..
0.01
1.00 '
ESTABLISHED DRY LAND (NATIVE) GRASS.----._-- -
See Fig. g.A
1.00 '
.SOD GRASS .... »... .».»..„........»....»..»...............».._._».....__»...
0.01
1.00
TEMPORARY VEGETATION/COVER CROPS._...».».„__._.._.
0.45(2)
1.00
HYDRAULIC MULCH @ 2 TONS/ACRE ....._..»»»._ ......»_»_.
0.10(3)
1.00
SOIL SEALANT »........... »..... »....„:..»...»...._» .» ......» ...„..
0.10-0.60(4)
1.00
EROSION CONTROL MATS/BLANKETS......»....._...................._..
0.10
1.00
'
GRAVEL MULCH
Mulch shall consist of gravel having a diameter of
approAnately 114" to 1 11r and applied at a rate of at least
'
135 twWacre..
0.05
1.00
HAY OR STRAW DRY MULCH
'
After olontina orals seed apply mulch at a rate of 2lonslacre (minimum) and adequately anchor,
tack or crimp material irrto the soil.
Slope (%)
11 to 15»»........».»..».._„__....»....»..»» »»_.. .»......».. ... 0.07
16 to 20........___
1.00
'
....._..___.._»_.......»_..„»„„».._„ .».......__....
21 to 25.......... __.._..-------------- . _.
0.11
0.14
1.00
1.W
25 to 33».......... »»..»...».............»..».„, ..»»„..»» ...»
..„ 0.17
1.00
'
>33....._..»..__..._...._»..»_...._ ..... ....»..»» ....»....»..»
NOTE: Use
0.20
1.00
of o0w 6Factor or P-Factor values reported in this
table must be substantiated
by
documentation.
(1) Must be constructed as the first step in ovedot grading.
(2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not
' (3) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated.
(4) Value used must be substantiated by documentation.
May 1984 Design Criteria
Revised January 1997 8-7