Loading...
HomeMy WebLinkAboutDrainage Reports - 12/19/2003A oiqyk FINAL DRAINAGE REPORT FOR ARM 91b Filing - Parkside Commons Submitted to: CITY OF FORT COLLINS September 5, 2003 1 September 5, 2003 Mr. Basil Hamden City of Fort Collins Storm Water Division 1 P.O. Box 580 Fort Collins, CO 80522 ' Re: Rigden Farm a Filing — Parkside Commons Project No. 0891-040 ' Dear Mr. Hamden: 1 We are pleased to re -submit to you, this Final Drainage Report for Rigden Farm 9w Filing — Parkside Commons. This report was prepared based on Urban Storm Drainage Criteria and City of Fort Collins criteria and after review of the previous submittal 1 comments. We believe it satisfies all criteria and comments for a final report. This report also includes discussion of erosion and sediment control measures that will be utilized during and after construction. We look forward to your review and approval and will gladly answer any questions you may have. 1 11 1 1 1 1 I 1 1 I TABLE OF CONTENTS 1 Page 1.0 Introduction 1.1 Scope and Purpose.............................................................................................1 1.2 Project Location and Description......................................................................... I I2.0 Historic Conditions....................................................................................................... 3 ' 3.0 Developed Conditions Plan..........................................................................................4 3.1 Design Criteria............................................................................................4 ' 3.2 Drainage Plan Development.......................................................................5 3.2.1 Street Capacity ................................................................................8 3.2.2 Inlet Design.....................................................................................8 3.2.3 Storm Sewer Design 1 3.2.4 Swale Design . ........................................................................9 ..9 3.3 Erosion Control/Surety Calculation...........................................................11 1 Exhibits Exhibit A — Hydrology Tables...................................................................................................6-7 ' Exhibit B — Storm Sewer Network.............................................................................................10 Technical Appendices 1 Appendix A — Hydrology Appendix B — Street Capacity ' Appendix C — Inlet Design Appendix D — Storm Sewer Design Appendix E — Erosion Control and Surety Calculations Sheets MAP POCKET 1 — Overall Drainage and Erosion Control Plan (Sheet 16 of 16) JR Engineering's Drainage and Erosion Control Plan (Sheet 7 of 20) I I r I 1 100 IIntroduction 1 1.1 Scope and Purpose 1 This report presents the results of a Final Drainage Evaluation for Rigden Farm — Tract U. In accordance with the requirements of the Fort Collins Storm Drainage Design Criteria and Construction Standards Manual (SDDC), the purpose of this report is to present a storm ' drainage plan that identifies peak runoff conditions and provides a means by which to safely collect and convey runoff across the site. This report will evaluate hydrologic conditions for the proposed development to determine the location and magnitude of the storm runoff, and will ' use that information for hydraulic analysis of the proposed streets and conveyance facilities. Rigden Farm — Tract 'U' is part of a master plan and runoff from our site has already been ' accounted for in this master plan. The .design shows runoff from the north half of our site conveyed east to detention pond 216. Runoff from the south half of our site is conveyed south to detention pond 218. TST's design of the site provides for no increase in storm runoff than that of the design by JR Engineering. 1.2 Proiect Location and Description Rigden Farm — Tract 'U' is a proposed 11 building (6 and 7-plex), 71 multi -family dwelling unit development located in the Northwest Quarter of Section 29, Township 7 North, Range 68 West of the 6'h P.M., City of Fort Collins, County of Larimer, State of Colorado. The site is ' bounded on the north by Drake Road, the south by Limon Drive, the east by Rockford Drive, and the west by the proposed Kansas Drive. A vicinity map illustrating the project location is provided in Figure 1. fThis project is located entirely within the Ridgen Farm II development. A master drainage plan was performed by JR Engineering for Rigden Farm — Tract V. All development conforms to the previously designed drainage plan for Rigden Farm — Tract'U'. [I 1 TST, Inc. 1 July 2, 2003 ' 0953-003 r C I Ow °r •, ' - - As 1 2.0 Historic Conditions The proposed site is currently an undeveloped area located within Rigden Farm II — Filing Eight, ' as designated by JR Engineering. JR Engineering previously performed a drainage analysis on the site (Rigden Farm — Tract 'U'), and a proposed condition was used to calculate runoff to several proposed and existing inlets surrounding the site. This proposed condition was factored into TST's final drainage analysis. The site consists of bare ground that sheet -flows from the center of the site outward. Currently runoff drains to the north, south, and east where there are three existing inlets and a swale. The swale follows the north end of the site and collects runoff from the northern portion of the site. There are two inlets at the southern end of the site and one at the eastern end of the site; the three inlets collect the remainder of runoff from the site and convey the storm water to the existing detention ponds discussed earlier. No off -site runoff enters the Rigden Farm — Tract 'U' site. JR Engineering's proposed design includes two inlets on the south side of the development, one on the east, west, and north sides of the development. The two inlets on the south side of ' the site and the one inlet on the east side of the site are already constructed and in place. The inlet on the west side of the site (east side of Kansas Drive) will be built with the development of this site. The inlet to the north of the site will be built with the reconstruction of Drake Road, ' before any construction of Rigden Farm — Tract U. Discharges, contributing area, and composite 'c' values are provided at each design point with JR Engineering's drainage report. A table showing these characteristics is found in Appendix B of this report. JR Engineering's ' report provides a master plan for drainage, however, there are no specific discharges for only the Rigden Farm 9"' Filing site. The design points surrounding the site include portions of the Rigden Farm site as well as other areas surrounding the site. TST's design provides for no additional runoff contributing to all five inlets designed by JR Engineering in their proposed drainage plan. A drainage sheet showing basin delineations and designations is provided with this report for reference. TST, Inc. 3 July 2, 2003 0953-003 F L 1 3.0 ' Developed Conditions Plan 3.1 Design Criteria ' The drainage system presented in this report has been developed in accordance with the criteria established by the City of Fort Collins Storm Drainage Design Criteria and Construction ' Standards Manual (SDDC) dated May 1984 and revised in January 1997. Where applicable, design guidelines and information were also obtained from the Denver Regional Council of Government Urban Storm Drainage Criteria Manual (USDCM). ' Developed condition hydrology was evaluated based on the 2-year and 100-year storm frequencies as dictated by Table 3-1 of the SDDC manual. ' Because of the limited size of the sub basins on the site, the Rational Method was selected to calculate runoff. The Rational Method utilizes the SDDC manual equation: Q = CCJA where Q is the flow in cfs, C is the runoff coefficient, Cf is the storm frequency coefficient, I is ' the rainfall intensity in inches per hour, and A is the total area of the basin in acres. The runoff coefficient, C, was calculated from Table 3-3 of the SDDC manual based on the proposed developed condition land use. A composite runoff coefficient was calculated for each sub -basin based on the percentage of impervious surface (C = 0.95) and pervious surface (C = 0.25). Cf was taken from Table 3-4 of the SDDC manual and was determined to be 1.0 for the 2-year storm and 1.25 for the 100-year storm. The appropriate rainfall intensity was interpolated from ' the rainfall intensity duration table in Figure 3-1 of the SDDC manual dated 1999. To obtain the rainfall intensity, the time of concentration had to be determined. The following equation was utilized to determine the time of concentration: 1 1 tc = t; + tf where tc is the time of concentration in minutes, ti is the initial or overland flow time in minutes, and t, is the travel time in the gutter in minutes. The initial or overland flow time was calculated with the SDDC manual equation: t. = [1.87(1.1 - CCf)LO.j/(S)0.33 where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the average basin slope in percent, C is the composite runoff coefficient, and Cf is the storm frequency coefficient. The formula limits the product of CCf to 1.0 and when the product exceeds this value 1.0 is used in its place. Gutter (or channel) travel times were determined by utilizing Figure 3-3 for the flow velocity within the conveyance element. The travel time was 1 TST, Inc. 4 July 2, 2003 0953-003 I li I 71 LI k i I 1 then determined by dividing the gutter flow length by the velocity. This procedure for computing time of concentration allows for overland flow as well as travel time for runoff collected in streets, gutters, channels, or ditches. After the peak runoff was calculated, attenuated runoff was calculated. This was done by combining all contributing areas upstream of a given design point. The time of concentration for the design point was taken as the greatest travel time from all of the contributing sub -basins. Spreadsheets showing this process are located in Appendix A with this report. 3.2 Drainage Plan Development The proposed drainage plan consists of a combination of overland flow and gutter flow. The runoff will sheet flow across common areas and also be routed by grass swales, then concentrate at proposed and existing streets. Gutter flow in streets will be collected at low points via curb inlets and then conveyed via a storm sewer system or sheet flow to the existing inlets on the east and south sides of the site. The existing storm sewer system will collect the runoff from this site and convey the flows to existing ponds. Storm runoff that enters the proposed west and north inlets and also the east inlet will be routed to the existing pond with designation number 215. Storm runoff that enters the south inlets will be routed to the existing pond with a designation number 218. A basin delineation plan (JR Engineering) showing the existing ponds and also the routing path will be provided with this report. Sub basins for Rigden Farm — Tract 'U' were delineated based on the proposed grading. Final grading and basin delineation is shown on the Overall Drainage and Erosion Control Plan Sheet, which can be found in the back of this report. Basin A encompasses the southwest portion of the site, along Kansas and Limon Drive. Basin B encompasses the southeast portion of the site, along Rockford and Limon Drive. Basin C encompasses the center portion of the site. Basin D encompasses the northwest portion of the site along Kansas Drive. Basin E encompasses the north portion of the site along Drake Road. Basin F encompasses the north portion of the site along Drake Road, just east of Basin E. Basin G encompasses the northeast portion of the site along Drake Road and Rockford Drive. Runoff from each of the basins will eventually be collected by a storm sewer system and directed to the two existing detention ponds, located to the south and east of our site. Exhibit A (next page) shows the Composite 'C' factor and developed conditions hydrology. The exhibit also shows individual basin hydrology and basin attenuation. All supporting calculations are found in Appendix A of this report. TST, Inc. 5 July 2, 2003 0953-003 m cppp pl II.� yy ��v+ll ��((ll pp B�A�mtp aWO.NOOn� mDDm �aOrOmap 90ln� E o000000c00000000oo oo OO U N m. a Wr4 gm 08 00NC4.a-0 03W AN NYnIp gog000do'd0oci0000o000000 pper' yY pZ 6Y 4$ O O O O O O O O p 0$ S O O F O P U• O q C 0040004 Q O 0 o00QO Q Off? CO �Y 3il l l3 i '..1 - 4Y s 45 5 2-k 4 l U m NOO 00 r 0004 O .-Ogoioo o 66 0 0 0 0 60 i 0 0 0 o p p o cid p Q o c 0 vil } me nmato{+� ®+'o mm�Nyonpy ttpp 'm �.N NNS'IOm�N �000000 ooc00000000cci00 t A U s eV mQ.Q ¢ m [0 m m m m 0 0 0 0 W W LL LL (N9 J E rn 0 a N M OR"tgq W N W Mn Wnm n W O W w�nnm N W N S Q m�mWl�nm� t7 W n M N W Q O N.- �dL6o00—Ns . .v O)0 - 2)dtNp mrNaaOm m mamp0 �Nt�(�j I��amO mfONr N_ tm�l �O W �NtNO V Q��m mm��v W m0 W ON nmmao t%m .-ul NO �yy OO Oa OOOOaaOO�yO pOONO m aO mmtO�O aO{�faaV m m mm m m CR aO tO Op" O W Y] .(RIP Y W In qoq O 0) � In t[I IA In 1A 1f) In < In V In In IA IA C_ O W, co W m W mmm.-WmW W It W I m W W W W W W W W WCQ CR pp m m�mW WW m W W W of of v o e v a a d ai a of c m o m o e N W o W N W m e v N N a v N N o e N N l� W a N W V N V N 0 7 N N N Nt+)N th OIN (V fV Ml'�th pl hNv tt+l pl tTl OI N I+IM mc�i E o o 0 0 o �im�0000000n N o 0 o n o 0 o W o n o 0 0 0 O tG YI O t[l vi ad N n vi ui tf) N N O t[i aO N aC N ui tti N ryO }m U O a Ol 0 0 0 S S N wi a N W W 0 0 0 0 S m S tl 1 W 0 0 yy 0 0 o Ni� W O m'f010 0 NIA Ol�tO rn�l[I 10 If)In NQIOOI I[j Niue W EN 10118 H ogo�ool mmg000l�oa$ W ow o ono. -,a 00- -0-n 0-00 n m nWmmmmmW 8Wn S O O O O O C O C O O O G G G 0 0 0 0 0 0 0 0 0 < nmW m thnNOlN mmWmtOn W W Wm W O!)nWmmmlpn N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^tyn W v m mal W m�vl vWlN o W n N WW mom t tV +l rlm �-N.7 C Q¢ C m a 0 m m a 0 m 0 0 0 NCO W W Lt��ll u l I N'NN LL 0 0 U) C m Q m U O W LL (9 m i i i c I o t I W W N W W as NNN v a m m .- m i 0 I W T Z J W U W 2 F Z a F U W omm$ 8mmga8 No o 000�ocoo� U �dnnnw n�n�nm ��gcogtiddoo E OO O.00OO U mm mm NN nlNm0n O mp mym N O /J 6 cs a njv Ui .�f-' m � bnZ �ctry$'RFIN�N. C � m m T 4 W LL n :R Q.m 5_ y f W I,, 4 y41 G n Q.f0 m�0 W IL 1 VJ r -..si na . y CO a OMmSme-mN m m o m m N W d m o 0 O I+j6 N w ad �lV IV O t0 N V aa m(mal Q trO.m �N r � �1OO QN i[I Lp� L NMI dmdC � �-Cl O m m W O m N N l m N � Nmm G M M MO p gN OMNN Od V omm¢iicioamvi O O m O mm O O N N �� N C M OI OM IV '7O l7 OI O V' m m N d' m N N O W d W N N N m m 0 0 m Nc4 eiNNNoi NNNN c E a0 � O M 0 Im+l Vi y 40 p Oi W ?por�m��ae vi lD �aG fG c 0 U 00 EN i= doWmSWo�WWOW O m m m 0 n N O W O �lio�li .=oco�o mm O nmm�Snnrmr O m N m d O W g�ooli lioli lioolio E Cg aom 0 nn0mnwrrmm� m M N m d O W N O O G G C O G O 0 0 0 m mo r N V d l7 N m m 0 m ,O,IV ,-0000, Q 5 N an d v 1 N co d C4 cm NI.� U.OLL N LL ca C p�pmmUO W a QI•! mUO W u. ' 'c Q 00 f0 U' _ U U a O O Q IL O dN aNy NN U O m N c m A � m n 2 U W -3 7 Z F Z a F U W 11 1 1 1 1 'I J 1 1 1 I� L 1 1 1 1 1 3.2.1 Street Capacity Three street sections will be used for the internal streets: 1.) A local residential street section with 42-foot FL to FL width with vertical curb and gutter and a detached walk, 2.) Private driveways street section with 28-foot FL to FL width with vertical curb and gutter and attached walk in some locations, 3.) A local residential street section with 34-foot FL to FL width with vertical curb and gutter and a detached walk. A worst -case condition was analyzed for the site; this is the maximum discharge throughout the site flowing at a minimum slope (0.50%). Street encroachment criteria for the streets was taken from Table 4-1 (minor storm) and Table 4-2 (major storm) of the SDDC. The minor event (2-yr) criteria allows no curb overtopping and flow may spread to the crown. The major event (100-yr) criteria allows for flow depths of 6 inches over the crown. All of the streets meet these requirements and will function below the allowable capacities. The results of the Street Capacity Analysis can be found with supporting calculations in Appendix B. 3.2.2 Inlet Design CDOT Type "R" curb sump inlets were used to collect the 2-yr and 100-yr. runoff from low points in the local and private streets. Ponding depths for all inlets in the streets were set such that flow would not inundate both travel lanes. The inlets are connected to storm sewer systems that convey the runoff to the detention ponds. Several proposed inlets were designed by JR Engineering, the west and north inlets were part of JR Engineering's design. With TST's design, there is no increase in storm runoff to those inlets. As a result, there is no change in the proposed inlet sizes. JR Engineering proposed a 5' Type 'R' inlet on the west side of the property in Kansas Drive and a 10' Type 'R' inlet on the north side of the property in the proposed Drake Road. There are also two inlets at the south end of the property in Limon Drive and one inlet at the east end of the property in Rockford Drive. Discharges from our site are less than the proposed discharges from JR Engineering's design; therefore the existing inlets are of sufficient size to collect storm runoff from our site. A table created by JR Engineering, showing the proposed discharge to the two inlets is found with this report in Appendix B. No discharges for only the Rigden Farm a Filing were provided in JR Engineering's drainage report, only discharges to inlets that included Rigden Farm a Fililing as well as additional area adjacent to the site. Below is a list of TST's proposed storm water runoff to design points that correspond to JR Engineering's design points. DP-a5: TST's Discharge = 6.83 cfs (1.54 ac, C=1.00) DP-b5: TST's Discharge = 9.60 cfs (2.08 ac, C=1.00) DP-d2: TST's Discharge = 1.08 cfs (0.22 ac, C=0.86) DP-e2: TST's Discharge = 2.08 cfs (0.53 ac, C=0.96) DP-g2: TST's Discharge = 8.63 cfs (1.82 ac, C=0.98) 1 TST, Inc. 1 0953-003 JR Engineering's Discharge = 23.60 cfs (2.79 ac, C=0.95) JR Engineering's Discharge = 17.65 cfs (2.55 ac, C=0.83) JR Engineering's Discharge = 5.55 cfs (0.78 ac, C=0.83) JR Engineering's Discharge = 7.65 cfs (0.99 ac, C=0.87) JR Engineering's Discharge = 13.15 cfs (1.86 ac, C=0.87) July 2, 2003 'LJ it 1 n The difference in discharge between JR Engineering's design and TST's design is due to more contributing area to the inlets. TST's design contributes a portion of the total contributing area to each inlet, therefore the smaller discharges to the inlets. Differences in the time of concentration due to a longer flow path than expected also result in,a different discharge. A table created by JR Engineering shows their designed composite 'c' factors, contributing areas, and discharges. Tables showing TST's design characteristics are found in Appendix A. The results of the Inlet Analysis and Design can be found with supporting calculations in Appendix B. Rigden Farm — Tract 'U' is part of a master plan and runoff from our site has already been accounted for in this master plan. The design shows runoff from the north half of our site conveyed east to detention pond 216. Runoff from the south half of our site is conveyed south to detention pond 218. TST's design of the site provides for no increase in storm runoff than that of the design by JR Engineering. Therefore, our design is not increasing the volume of water in either of the two detention ponds used for this development. 3.2.3 Storm Sewer Design The storm sewer lines were analyzed with Neo UDSEWER. The pipes were sized such that the hydraulic grade remains below the flow line of the proposed inlets. Storm Sewer Line ST-1 conveys detained runoff to an existing 30" storm sewer line in Limon Drive at the south end of the site. A manhole will be formed around the existing 30" line, and ST-1 will tie into this manhole. ST-2 and ST-2A convey runoff from Basin D, Kansas Drive, and runoff from the undeveloped site west of Rigden Farm — Tract 'U' via a pair of inlets to the detention pond. The results of the Storm Sewer Design can be found in Exhibit B with supporting Neo UDSEWER results presented in Appendix C. 3.2.4 Swale Design Trickle pans surround the site on all sides and are intended to carry nuisance flows to several inlets around the site. All grass swales interior to the site are designed to cant' nuisance flows to the trickle pan surrounding the site. Trickle pans are required for slopes less than 2%, therefore all swales interior to the site are designed at 2% or greater to minimize the need for trickle pans. TST. Inc. 9 July 2, 2003 0953-003 I Exhibit B ST-1 MANHOLE MANHOLE 7.00 18 RCP MANHOLE 2 MANHOLE 7.00 21 RCP MANHOLE INLET 1 7.00 21 RCP ST-2 EX. MANHOLE 3 INLET 2A 13.02 24 RCP ST-2A INLET 2A INLET 2B 5.03 18 RCP Notes: -i. oi-zaasignTiOWOT-iJ.UACTSISTrOMJKr-ngineeringuesign. 2. ST-2A design flow of 5.03 cfs is from JR Engineering design. 3. Rigden Farm 9th Filing contribution to Inlet 2A is 1.26 cfs. TST, INC. CONSULTING ENGINEERS 10 7/112003 040—storm I ' 3.3 Erosion Control/Surety Calculation The grading of Rigden Farm — Tract 'U' will be consistent with the approved SDDM criteria; therefore minimal erosion control efforts will be necessary during the construction of the project. A concern regarding sediment transport from the site is the existing storm sewer system at the north and south ends of the site. During construction, this concern will be mitigated primarily by temporary structural measures of silt fence around the majority of the site. Additional measures will be used by installing gravel filters over all the inlets and straw bale check dams will be installed in the swales where required. A vehicle tracking control pad will also be used at the east entrance of the site to minimize sediment transportation. Upon completion of the utility work, the roads will be paved and the entire disturbed area of the ' site will be reseeded and mulched to provide soil stabilization until build out. Elimination of bare soils by pavement, riprap, or established vegetation will help eliminate the potential of soil erosion caused by storm runoff. Since it will take at least one growing season for the ' vegetation to establish itself, it will be necessary to leave the structural measures used during construction in place for some time. The developer will be responsible for periodic maintenance of the erosion control facilities during construction and the warranty period. At the end of the ' warranty period, and with the approval of the city, the developer will be responsible for removing all of the filters and silt fence. It may also be necessary to flush and remove any sediment that may have built up in the storm sewers. ' The Drainage Plan sheets, located at the end of the report, show the location of the proposed temporary and permanent erosion control measures. These measures are also shown the ' Grading & Erosion Control Plan sheets in the utility plan set. Erosion control performance and effectiveness calculations have also been performed for the site, as well as a surety calculation. The calculations are located in Appendix D of this report. 0 1 1 TST, Inc. 11 July 2, 2003 ' 0953-003 Hydrologic Calculations Methodology: Rational Method Peak Runoff: Q = C CIIA where: Q = Peak Runoff (CFS) C = Runoff Coefficient (Table 3-3 SDDC) Cr = Frequency Coefficient (Table 3-4 SDDC) I = Rainfall Intensity (Fig 3-1 SDDC) A = Basin Area (Acres) Runoff Coefficient (C): Composite runoff coefficients were calculated for each subbasin based on the proposed development. Impervious areas were given a value of 0.95, and pervious areas a value of 0.25 (Lawns, 2-7%) as dictated by Table 3-3 of the SDDC Manual. Calculations for each subbasin are provided in this Appendix. Frequency Coefficient (C* 2-year =1.00 100-year =1.25 Note: CCr shall not exceed 1.00 Subbasin Area (A): Subbasin were delineated based on the final grading plan. The areas were calculated using the AutoCad area command. I Overland Travel Time (Ti): The length of overland runoff was measured to best represent the subbasin. In some cases this was an average length, in others it was the longest. The average overland slope represents the total fall across the basin measured along the overland flow length. TI =1.87 (1.1 - CCr)D1n (SI/2)1/rJ where: TI = Overland flow time of conc. (min) C = Runoff Coefficient Cr = Frequency Coefficient D = Length of Overland flow (500'max) S = Slope (%) Channel/Gutter Flow: Gutter flow will be defined as flow in streets or channels: Figure 3-2 from the Urban Storm Drainage Criteria Manual (USDCM) was used to calculate the velocities in gutters and channels. Gutter Travel Time (Tt) will be calculated as a function of the theoretical capacity by Tt = LN where: L = Gutter length V = Velocity by Fig 3-2 USDCM \----------t-= -.-; LEGEND r° It 77 `ecp:qea���. t:7 .:{,:Cci;7--:�:�G r■ Gi Gil Ct7::: L7:Gi7: e5� 2Gia._.� nmwvw wusi i �r�4r �• � I tin 50 IN L,I\ _ q's 22 pppp Ism 311, i-Awkw7w, MOM - I wn,.wln•nvm _ _ u C - - - - DeftnPaird CQftfflYAMS8Wns Area roar COOposm-v 2-w [ + TMw Of CwcwtrWm (min) 2.10w 1 InlwniOy Ow" 2-w 1 1 D"aw(ds) 2-W 10- i 84 A2 M 0.7B Orel 0,81 1.00 8.25 78 2.68 3A7 I 4.87 1. 7 I 2A0 380 120 0 an 0.08 10.00 10.55 2.52 3.80 1 4.3s 2.58 3.54 5.53 3 B 1 83-2 0.42 0 0.70 0.88 3.92 abs 3.24 488 I 8" 0.04 1.38 2.08 ,4 BI, B2 B4 1.81 0.80 0.80 .00 14.88 13.80 . 4 3.10 3.81 3. 4.4 8.88 a3 B1.85 2.40 0.7B 0.78 0.98 10.15 15.32 2.02 2.1; 3.Be 3.88 8.67 8.55 92 C1. C2 1.31 Ores 0.83 1.00 8.88 6.36 2W 1.90 S.zO 325 4.80 6.8 a2 01-D2 025 0. 0. 0.00 3.23 5.e8 3.24 4.BB 8.81 0.58 .64 118 1- 0.58 0. 0.78 O.W 10.3 G0.84 2.1P! 3.80 4 q 1.1 67 2.42 2 1- 0." 0.74 0.74 0.92 10., 10.11 2 3.80 1.38 24 1.77 2.60 1.2 O1- O 0. 0.80 1. 7AS 0.00 2B0 4. 820 17 2A0 4.00 01 -(i2 F7-F2 .88 0.70 0 0.00 7.98 6.00 2.60 4. 8Z0 3.88 8.23 8.48 ID [l arcrmm r aana:w nwa� ,• nw7ww Y Aroro,n ■itar Aw p � ---- mrwp r covmrw ---- �• ,• aaVIM _e_ A1■R1®a[„� XDRffi a0er mci ,. .a■1• s1u aw1.w n 4■a6 4m,s,w ► i OH dmw ,as K0B [® OH EF7 WW C3V771aK AG7f3• - - 7. la aD a raA coon, mm .ow Huy aow2n ca ra tn{owaw mom a norxd sr boil 94 bows p/u� bi om• «•nsbu[Eb, o+ rM ••040 A dnaga r` Hronp.trrur[reenlrgada p�a,.ph�ah.�' .. /o,oIW hmae aa+ to aW pn�oorDga Off- � Irdwbrr b Y b Ou ar nn ygorgormt• - w h carnbucrar, ,ww„ar aw 4[dFvrd h A'w p�yro[.d bbbhw mjpa wpari .xF, adao114 corib,IRIO~ ma ad roan awffl A. mrr,.ao,o. r+wl. a/e t» aior a Ores AWnow o. abrabaxw of w,bmg [wyroma 0 , "Y'k m[oh a $MM ro fM one rpu9M ror im,.�oh cawOucOb, s one w Mw narom pa+ad d mew d2dw6d 40 dL71,p brM dhM60[Y oc6MO• (*0'WPNH J7 41 M wala 4 ae'rD' hMiWm,n[ r7a10w mar a A,pr h o 15MA Mir �o=5 a• absr pwmarwnf w[eman danbd b hma/bd Ab o0 h wiaa ovbbl, P+o/M +bMf nW,b a/ w�• Md mdn w.powd b AaM Wr a'a+D alb• w non r ir, 65iiy (JO% .bo - - ara. npadd MIRWIW w e aostn 4onbor (wa k�b IAh�pt :h b h= w+ru ofAw.M �prowd y -L d d 7M�� &w b "ft ve and ffmwm ne at or mne AH; to wrr d d-maaad aomaa M Q anvb[arhn fttve , a a, A bradbhw&ft oc&SM mar b Am"~ aacwn»„we ,i wr Jy.1VAN pc.�oav[1 pr�w�im[ - aYfandiwd w m. Gam' S a M fe"po r Waaaf! wlww awa6N n waaa7- mar a hAawcfd and npoad a naaahwiwd w nicwivy aM..am, 0 n„mr rant At adw- ro aww,o wnmad pntrn,enaw a rui V[iV=7/ hbrabd naclb w M ,wtalwd iwon„wn4 raN m pa■d ,odiq waA[o ~ a nsold a�d h o ,,,aawr W O w one boott,r - o. Al aaow Maio .. 1,h/a ap &vhw.b[ p 7. Ab w lion (10) bal *IMyhf AN w V ,roa�ar .+ar wsoasd nor a pnrocfd /la„ iwdBn.,r nonwaT be /o nhR ,o8.ba an0 w(M MMD. Nry ,o/ r(ae.�adr Y Z �wq,H,e ort...IO adwBs■ mar a swa Ab and nubaa a py AaB,awv p,4Jir✓b ra bodfha d[faaH1D [► r ,alb a• ory aElwr nora,m mro a'b we.sb Al' d na„ aw wd[,1, co e: �.nr �me',d nora,w .nor a arad hunearafw er a O ft ar hbfa nham .d ab ea,aamv /»aao W - - S&. _ dSpgw ,pw 7A ./! awas ar,hr0+d 4Y mnsbocar, sw a n,s dad 0145, -lam, O makAd ro i,oNdw w .tab!@oaa, arm beAl aoE 73 7a aH,[Mpr nor at w na,kHrq ar «diwhn epmwtrd ho Mai m,m o nwoQN' wMN of nbw bow, " of at and ad "Ska anba aMwn&x Sr3•m n0nar•Ayaaf w RIXM r ON FXXV AtVMW � W a .a*A�& 2 ar by mr Axe ctN2J4Lffw fnataa, mar a roaa,.e ewe aw 7a a. sswm e w aroma, conbd dwaw. la M hbro **,mbar, of Mm" &ft aw to a[. IVW hW N&W kakobe w ma pww,8tr, o/ wdrn.,r N U. o Z o a; cc O b ■ sb - so* rwv ■M ll I I City of Pt. Collins, Colorado UTUM PLAN APPROVAL TR.p I 7W.a APPROVED: �- r CHECKED BY. sr 801-010 *ator i WwtM tw NOIb D le CHECKED Or. 1• . sd eto[mnta 01HBb mV CHECKED BY'. aw 07 O �V wo a Rem..[m roll CHECKED BY.' - ' CHECKED BY: 16 OF 16 Rwtmwl /bwamen Dw4 APPENDIX A Hydrology I Gv A m f0 9mD aD ILf CNO m n aD a0 aA0 m N t0 n l0 m as LO n O O O G G O O O O C O O O O O O C O OO 0 0 0 UN mW N V m m b O1 W m N I 04 2d I1 ta`I �! tm!` b y a g o b o a a c o O O C O C O O b O O b O C C G J ++ - I- 1 .q.• GG p -p a �ppm'ppi pp�# pp z r 4'1 �i p pG fQQI" pt pp Q�:, 1Qi g• o 0 0 0 0 o c ti ai o c: o 0 o c o 0 0 o o d o U c m LV OPT 000 N¢4�OOOOm 4 445�0 Ng(�N«,h tcSO n q, o �00000 o'�000b000a00000800 U)kt Am+ m O N m N V N fr�Y.M N 0 aN0 ry N N m N ooaoo0 0000000Tibbopo00 1 r� m Q Q Q Q¢ m (am m m m N O U W N dm N mNmnl OOP)ml� hL�tOONmNoppp W W W Of I�mf+l ^m1�t7N 0)Pf I�I�t+l� W �- �OLp000 �tNOG O � �aho� _OOLV LM �11 aN0.mrNRapm mtp aW00 NNr-� m�f0 Nn .0 . taO�0000th0000 U Nah 000�07 N_ 0 totON000 �} 0Mam-•cOg nro mm LrN N O- 0 0 0 O N O O O O— N O o O 0 o o— o o dNIN01% Omm V mm ONY Of 1N NN0 wi Ld4 64 NOON F 2 to m m m m� m m m m m m m m tg m m m m m m N d � � m c a a m a a th vi of •6 v o v a Q Y th o th a e v v Wamaamomvaaaovamamaaea N fV th ci th N N tV N th pl Ol th m m M fV Lh N th N M th C Elmo oogoo O O �i &oSS000SnonoSao O N wm NaO ��NONNY)tANONap ,LINNN m �tG A C m U C O S O V O m mm pp aa pp pp m'mNap OLq lA �aOONONNOOONlAN1NNO EN . i= d2888ngmm0S�goS9mti g. a o o1.-O�0 10110181mil pmp naOmmaDN LNDm naOm map �a0 na0 m am0 a0mr O U O �AaD Lamm LEI LAN a0 mm0.0 W m aq cq NPl a00 0mm0Da mc7 u)Om N O O O O O G O 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 A' l7 V A � N N V 7 N t� tV � O) �m � t� m RvNMNm�-LV N O m N Q Q 6 Q Q m co ..�L m m m O O � O W ttyy W L-INL-1(N� m Q m U m W U. a m O d m Nt0 m m V m m�N�N ma a Sttivo N.-N m m 'NN 0 z ��w �W H z (9 12 U W q W tl � a tl a n f p �O)fOSS�W WS ooao�000a� eD aD rnAl� O � Na mAA nW O m g�cc0000000 E U m i D f�l� 0 A�l�1�AAa0 N m O W pp N O O G C G G O G G S 1mSmS0 Q ' cJc . �.o ooco C �E ! a'Qm�Jj��WLL(g>l. a'x _ m dmmmm Oom m_(V aMM G t�l lfI tV fC a0 f0 � fV lV O O Od�O m m n OlOmm�l01� n W n n W ON m QI�tN A L 01 �- V N V OrrlY In U N_ A m mm a m 0 m m mNm�-(V m O 0 0 Is m m N �NOp In t7 l�)Opp�m�p�t+pf d aAOm maDm Nt0 V t+l NN o a amOl f�N�Y V iff Y) Z "dmmm�W�mmmoo O m O m m O O N N �,.-of ofa i+i Rio acli oiYY N C m _ m N m mN.-O O O N W W O N Nmmmm N O O N fV N V) tV t�{ (V th (V fN tV N C d m o W m m W A Or�N�M.,� mNOi OfG tG C O OdN W MmNtOm�tON 6 IA�mfCN��hf�' FN o moo.-o �.000�c mm no4imm� n0 m t h N I n 0. mm� W $�000cc000000 Ep U { co pp I, IN�nmm� po N C C C G G 6.6 G C 6.6 ti Ria m V' ano m NOn �G � O�tV �OOGOe- N C N N IL m Q Q mmamOU Dili LL(g 4. a m N Sa mto co 0 W L .m mV �=N 0 ! M O N 2 � ZFLU �z I. z 12 U W TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = al Contributing Basins = Al Contributing Area (ac) 0.17 Runoff Coefficient's Overland Flow Time Runoff "C" = 0.25 Length (ft) = 28: Slope (%) = 28 F Travel Time I cnnth lftl Rlnnp 10/ 1 T; _ (1.87*(1.1-C*Cf)*DIrz)/S'f' of 500 feet Channel rharartarictirc 5.97 5.53 Time \/olnrifv /f7/e1 fMinl 70 .2: Grassed.Wateiwa s 2.248 0.52 None 0.00 :None oko . None OAO None 0,00 None 0:00 Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS I otal I Ime Us2 2 1. 0-vr 100_vr Actual Time of Concentration = .6.49 QtQ5 3 of 35 7/112003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0:95 Length (ft) = 50 Slope Ti Travel Time Lenath (ftl Sinne (0/.) a2 A2 0.43 Ti = (1.87*(1.1-C*Cr)*D1n)/Si/' of 500 feet 1.57 Channel rharartarictirc 1:57 Time Valnrity (fticl /Min\ 95 0.5 Paved Area, Gutter Flow 1.488 1.06 40 0.50 Paved Area; Gutter Flow 1.488 0.45 ` None:: 0.00 Non6 0:00 Noe. 0.00_ . I otal I Ime =1';.. -.,.7__4._. 1 Z 1. 0_yr 100-yr Actual Time of Concentration = 5:00: 500. , Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 4 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins -- Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = Length (ft) _ Slope (%) = Travel Time Intensities Discharge Notes: a3 A3 0.269 T; = (1.87*(1.1-C'Cf)'D1n)/St/3 of 500 feet =1 8 Channel Time 2 1. 0-vr 100_vr Actual Time of Concentration = 8 68 8.04 TST, INC. CONSULTING 7/1/2003 ENGINEERS 5 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" _ Length (ft) _ Slope (%) _ ro Travel Time Length (ftl Slone (%) a4 A4 0.18 T; _ (1.87*(1.1-C*C f)*D in)/S'f' of 500 feet 1.76 Channel ChnrartPristir_c 1. Time VPlnrily /ft/c1 /Mint 225 1.15. Paved 'Area; Gutter. Flow 2.125 1.76 None 0.00 None. 0.00 None 0i00 AWL. _ None. woo.. Total Time = 1.76 Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS 2 1. 0_vr 100-vr Actual Time of Concentration = 5r00 5.00 6 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0:5 Length (ft) = 18 Slope Ti Travel Time I ennth (ft) Rlnna 106.1 a5 A5 0.24 Ti = (1.87'(1.1-C'Cf)'D12)/Slf' Maximum of 500 feet Channel rhnrortariefire 1 Time \/nlnnifii /N/n\ IRA;-% 290 0.77 Paved Area;,Gutter Flow 1.764 214 None 0io0_ ,None. OF00 None: 0:00` w..... None. None I otal I Ime =1 41a .. 1 2 1. 0_vr 100_vr Actual Time of Concentration = : _; 51!2', .. L 5;l)0 Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 7 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0.25 Length (tt) _ Slope (%) = 28 a Travel Time LPnnth fill Slnna f01.1 a4 Al, A2, A4 0.78 T; _ (1.87*(1.1-C*Cf)*D"`)/S of 500 teet 5.97 Channel rhnrartarictirc 5.97 5.53 Time VPInritV 1ft/s1 Win) 70. 2: Grassed W, .aterwa . 2.248 0;52 225 .. 1 A 5. Paved=Area .Gutter.:"Flow 2.125 1.7.6 N" .one.;:. ;.. _. None' :...... 0:00',... None r None... I otal I Ime 2:za, 2 1. 0-vr 100-vr Actual Time of Concentration = : 8.25 7.81 Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 8 of 35 040 storm 1 i 1 1 i 1 1 1 1 1 1 1 1 i DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = Length (ft) _ Slope (%) = a Travel Time 1 ennth Iftl SlnnP I0/ 1 a5 Al - A5 1.289 Ti = (1.87'(1.1-C`Cr)'D1n)/S'/' of 500 feet 5.97 Channel Charartarictirs Time valnrifv MCI lMinl 7.0. 2: Grassed Waterwa s 2.248 0.52 225 1115 Paved.Area, GutterFlow 2:125 1.76 290 0.77 Paved Area; Gutte['Flow 1 764 2.74 None O.Q9 None 0.00__ . None Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS Total Time 5:02 " 2 1. 0-vr 100-vr Actual Time of Concentration = T0.991.055 71 9of35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0:25 Length (ft) = 85 Slope (%) = 4:00 Travel Time Intensities Discharge Notes: b1 131 0.19 T; _ (1.87*(1.1-C*Ct)*D1n)/Stn Maximum of 500 feet i =1 9.24 Channel Time 2 1. 0_vr 100_vr Actual Time of Concentration = - 9.24 _ ... 8.56 TST, INC. CONSULTING 7/1/2003 ENGINEERS 10 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = Length (ft) = Slope (%) _ d Travel Time Length (ff) Slnnp (OM b2 B2 1.46 Ti = (1.87•(1.1-C'Cf)'D1n)/Sin of 500 feet 11.29 Channel ('hararfariefire 11.29 10.4E Time Vnlnrih, ffflc% n1Ai..l 70 2 G[assetl:Wateryiia's: 2:248' 0.52 50 2,50: Paved,Area; Gutter.;Flow 3.01 t 0r28 140. 0,55 Paved Area ,Gutte�.:Flow 1.488. None 0 Q0 None ` ` , O.QU ,. i otal i lme =1- 4;3ti:_ 1 21. 0-vr 100-W Actual Time of Concentration = 13:65 1,12:87 Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 11 of 35 040 storm 1 1 1 1 1 1 1 i t 1 1 1 DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0.25 Length (ft) _ 75 Slope (%) = 5 Travel Time Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS C b3-1 133--1 0.231 T; = (1.87'(1.1-C'Cf)'D1n)/Si/' of 500 feet Channel Time 2 1. 0-vr 100-vr Actual Time of Concentration = 8.05 7.40 12 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = b3-2 Contributing Basins = 63-2 Contributing Area (ac)= 0.185 Runoff Coefficient's 2-vr Overland Flow Time Runoff "C" = 0;25 Ti = (1.87'(1.1-C`Cf)'D12)/Sl/' Length (ft) = 30 Maximum of 500 feet Slope (%) = 8 ... 2-vr Ti = 4.36 Travel Time Channel Time 2.10-vr 100-vr Actual Time of Concentration = 5.00 5.00 Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 13 of 35 040 storm 1 1. 1 1 1 1 1 1 1 1 1 1 1 A t t 1 DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0.5 Length (ft) = 1;0 Slope (%) = 13 R Travel Time I Pnnth (M SlnnP 10/ 1 134 0.16 Ti = (1.87*(1.1-C*Cf)*D1rz)/SI/' of 500 feet 1.51 Channel Chnmrtcrktirc 1.51 Time Vnlnrih, /ftfcl /11Ainl 250 0 93 Paved Area .Gufter Flow 2.008 2.07 N666 . 0:00 None . - : 0€00:. - None 0 o :None Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS I otal I Ime =L. 10_[':: 2 1_, 0-vr 100-vr Actual Time of Concentration = 500 5:00 14 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = 155 Contributing Basins = 135 Contributing Area (ac)= 0.234 Runoff Coefficient's 2-vr 0.81 Overland Flow Time Runoff "C" = 0.5 Ti = (1.87'(1.1-C'Cf)'Dln)/SI/3 Length (ft) = 15" Maximum of 500 feet Slope (%) = 6 2-vr 2.39 2.39 1.89 Travel Time Channel Time 1 ennfh /ffl Sinn !01.1 L`hnrarfnriefire 1/nInrlfw M/ol IRAinl 155 0.78 Paved' ea; Gutter. Flow 1.764 1.46 Norte 0.00 None 0€00; None 0.09 None.: 000.... Noise` 0.00 I o>al I Ime =1 l .46 2.10-vr 100_vr Actual Time of Concentration = 5:00 5.00 Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 15 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET 1 1 1 f 1 1 1 1 1 1 1 1 1 1 1 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = Length (ft) _ Slope (%) = t Travel Time I vnnth fftl Rlnna 10 1 ti3 B3-1, B3-2 0.416 T; = (1.87'(1.1-C'Cf)'Din)/Si13 of 500 feet 3.56 Channel rhnrnrtarictirc Time \/alnrihi /Rlcl /I�Ain\ 225 1 Paved -k6a, Gutter Flow 2.125 1-16 None 0.00 None 0.00 None 0:00 None Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS 10\ai I ime =I 2 1. 0_vr 100-vr Actual Time of Concentration = 5.32- . ; 5A6 16 of 35 7/1/2003 040_storm TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = Length (ft) _ Slope (%) = P Travel Time I Pnnth fftl RInna 10 1 Iz4 131, 132, 84 1.81 Ti = (1.87*(1.1-C*Cf)*DIn)/SII' of 500 feet Channel ChnrartPrietirc 11 Time Valnrifv fff/el fkAinl 70 2 Grassed dt6rW0 - 2'.248 0.52 50 2.50 :'. PaVed,Area; Gutter• Flow 3:011 0.28 140 0:55 Ar6i,,�QUtterFlow Pay6dr 1.488 1,57 125 Paved Area; Gutter'Frow 2:008 1.04 - None__ None" 0:00 Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS I oral I [Me J.4u 2 1. 0_vr 100_vr Actual Time of Concentration = 14.69 1 1106 17 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0,25 Length (ft) = 80 Slope Ti Travel Time I ennth (ftl Slnnp (0/) b5 B1 - 65 2.46 Ti = (1.87*(1.1-C*Cf)*D1n)/sII3 of 500 feet Channel rharartaristirs .11.29 10.46 Time Valnriiv /ft/c1 /Mint 70. 2 Grassetl Waterviia" 2.248 0.52 50 2,50 Paved Area; Gtitter Flow 3.011 0.28 140 . 0:55 ` PavedArea G6tfWFlow 1.488 1.5.7 1215 .. 0.93 PaVe&Area; Gutt6r;Flow 2.008 1.04; 155 0:78: Paved Area;;Gutter.,Flow 1.764 1,46:; None 0.00 I otal I Ime =1 4XI 1 21.0-vr loavr Actual Time of Concentration = 16.15 15.32 Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 18 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = C1 Contributing Basins = C1 Contributing Area (ac)= 0.49 Runoff Coefficient's 2-vr Overland Flow Time Runoff "C" = 0.25 Length (ft) = 25 ` Slope Ti Travel Time I annth fftl RlnnP !0/.1 Ti = (1.87*(1.1-C*Cf)*D112)/S`f' of 500 feet Channel rharartarictirc Time Valnrity Mel IRAinl 28 2.0 Paved,Area, Gutter Flow 3.011 0.:16 130 0.70 Paved Area, Gutter Flow .1764 1.23 None O.0 None 0.00... . None; None. 0 00=_.;; I otai I ime 2 1. 0_vr 100_vr Actual Time of Concentration = 5:3,6 507 Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 19 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0.25 Length (ft) = 30 Slope (%) = 9 I Travel Time Lenath (ft) Slnne c2 C2 0.82 T; = (1.87'(1.1-C'Cf)'D"n)/S1/' Maximum of 500 feet 4-19 Channel rhararteristir_c 4. Time Valnrity (ft/cl (Mint 75. :=. 2;00.. Grassed .Wat0W- ' 2.248 0.56 20 2 00 ,; :. ; :. .. Paved •Area; ,Gutt&r Flow 3.091: 0.11 j.- None., _ '. .. 000 .. None 0;00 None None. Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS i oiai i ime =1 u;g'( 1 21. 0_yr 100-yr Actual Time of Concentration = 500 1 500 20 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" _ Length (ft) _ Slope (%) _ f Travel Time Length Iftl Slnne 1011 a2 C1 - C2 1.31 Tt = (1.87"(1.1-C'Cf)'D1rz)/Sin um of 500 feet Channel rhnrartericfirc Time Vralnrity fft/e1 Mint 28 2 Paved Area; Gutter. Flow 3.011 0.16 1:30 0 70'_ : _ Pave&Area Gii ter..Flow 1.764 .. 1-1 3 115- 0.50 : Paved Area Gutterv Flow . 1.488 1:29; None None, "None 0 00, . Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS i otai i ime 2 1' 0-vr 100-yr Actual Time of Concentration = 6A5 6:36 21 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" _ Length (ft) _ Slope (%) _ a Travel Time Intensities Discharge Notes: dl D1 0.1 T; _ (1.87*(1.1-C*Cf)*D12)/31n of 500 feet Channel Time 2 1. 0-vr 100_vr Actual Time of Concentration = 51Q9- - szo TST, INC. CONSULTING 7/1/2003 ENGINEERS 22 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = Length (ft) = Slope (%) _ t Travel Time Lenath (ft) Slone (%) d2 D2 0..149 T; = (1.87*(1.1-C*Cr)*DW)/Sl/' um of 500 feet 1.47 Channel Chnrnrtaristirs I.1 Time Valnrity (ff/cl Winl 90 0.69' Paved.Area Gutter Flow 1.627 0.92 None 0:00 - ;None .. 0:00 None 0.00 None.. O:Op None 0 00 i o>ai i ime =l; VtW.. 1 2 1. 0-vr 100-vr Actual Time of Concentration = : ;5',.00 5.00 Intensities Discharge Notes: TST, INC. CONSULTING 7/1 /2003 ENGINEERS 23 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point= Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0:25 Length (ft) = 30" Slope Ti: Travel Time Length (ftl Slnne (0/) d2 D1 - D2 0.249 T; = (1.87*(1.1-C*Cf)*D1n)/Sl/' um of 500 feet 5.09 Channel rhnrnrtericfirc Time Valnrity (fticl lMin% .75 0.5 Paved Area;.Gtitter Flow 1.488` 0.84 None. . 0.00 None':. 0.00' None 0.00. None, 0.00. None 0:00 i otai 1 ime =1 u.ts4 1 2 1, 0-vr 100-vr Actual Time of Concentration = 5.93 5 5671 Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 24 of 35 040 storm i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0.25 Length (ft) = 60 . Slope (%) = 2c22. a Travel Time 1 annth (ftl Sinn (0/ 1 el E1 0.27 Ti = (1.87*(1.1-C'Ct)'D1n)/Si/' of 500 feet 9.44 Channel rhnrarferictirs Time Valnrity (ft/c1 /Mint None 0:00 None 0.00 None 0!00 None 0:00; None 01OU:..: None Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS I otal I Ime WUP. . 2 1. 0-vr 100-vr Actual Time of Concentration = r 9.44 1, 8.75 25 of 35 7/1 /2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0.95 Length (ft) = 50 Slope (%) = 2 a Travel Time Length Iftl Slnne I%1 e2 E2 0.292 Ti = (1.87"(1.1-C`Cf)"DIt2pl 3 of 500 feet 1.57 Channel rhararfPricfirs 1.57 1.05 Time Valnrifv /ft/c1 IRAin1 100 0.5 Paved Area G-Otter.Flow 1=.488 1.12 Noriw 0.00 None 0:00 'None 0:00. -. .. None.. O.QO;:. None 000' 1 otal 1 ime =1 1.12 2 1. 0_vr 100_U Actual Time of Concentration = 5.00 5.00 Intensities Discharge Notes: TST, INC. CONSULTING 7/1/2003 ENGINEERS 26 of 35 040 storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" _ Length (ft) _ Slope (%) _ a Travel Time I annfh /ftl Glnna./0/ 1 e2, E1 - E2 0.562 Ti = (1.87*(1.1-C*Cf)*D1n)ISI/' of 500 feet Channel Characfaricfirc 9;44 8.75 Time Valnrihi fff/cl /IUinl 80 0,5 Pavetl Area; Gutter Flow 1.488 0.90 None. 0.09.- . 7.Ndne, None 0:00 None. 0,99: Norte 0:00- Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS I otat I ime =1 u;y0 2 1. 0_vr 100_yr Actual Time of Concentration = 10.34 9.64 27 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff"C" _ Length (ft) _ Slope (%) _ f1 F1 0.36 T; _ (1.87'(1.1-C`Cf)'D1R)/Si/' of 500 feet, _1 9.40 Travel Time Channel Time Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS 2 1. 0_vr 100_vr Actual Time of Concentration = , :9 9U 8,71 .. 28 of 35 7/1/2003 040_storm 1 1 1 1 DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = Length (ft) = Slope (%) = n Travel Time I annfh (ftfl Rinna 10/ ) f2 _ F2 0.306 Ti = (1.87*(1.1-C*Cf)*D1rz)/Sla of 500 feet 1.54 Channel Chararfarisfirs 1.54 1.03 Time \/Alnrifv MCI Win% 225 0. 5 Paved Area Gutter.Flow 1.488 2.52 None 0.00 None, 0.00. None 0.00 .,None. 0:00.. None 000 Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS I otal I Ime =1 z.5z 2 1, 0-yr 100-vr Actual Time of Concentration = 5;00 5.00 . 29 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET 1 1 1 1 1 1 1 1 1 Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = F2.e Length (ft) _Slope (%) = a Travel Time I Pnnth Iftl Rlnnp f0/ 1 f2 F1 - F2 0.666 T; _ (1.87•(1.1-C'Cf)'D112)/Si/' of 500 feet Channel rhnrnrtPrictirc Time VP-InrltV W-0 /Mint 100. 0 5=' . Paved Area; Gutter Flow, 1 488 1.12-.:. 30 . 0 75�,. Paved Area; Gutter Flow, , . 1.764 0 20a :.. . None:. O.OQ°- . None .:: , 0 00: None. , . 0 0'a None' Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS I otal I Ime z i• 0_vr too-U Actual Time of Concentration = 1,0,80 f0.T1 30 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" = 0;75 Length (ft) = 30 Slope Ti: Travel Time I Pnnth (ftl Rlnnp (0/0 g1-1 G1-1 0.66 Ti = (1.87*(1.1-C'C f)'D 12)/Sln of 500 feet Channel rhararfPricfirs Time VPln(-ifv (ft/c) Min) 215 0 5 .. Raved Area;Guttf:��Flow 1.488, 2.41':'- None None .. 0:00:. None_ 0100 _.. None:.:,. ,. ;- q gu:�•. Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS i otai i ime =1 4.4,j. ` 1 2 1, 0-vr 100-vr Actual Time of Concentration = 525 . 5 00' 31 of 35 7/1/2003 040_storm !1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = g1-2 Contributing Basins = G1-2 Contributing Area (ac)= 0.11 Runoff Coefficient's 2-vr Overland Flow Time Runoff "C" = 025 T; _ (1.87*(1.1-C*Cf)*D1n)/S'"3 Length (ft) = 30 Maximum of 500 feet Slope (%) = 5'56 2-vr 10-vr 100-vi T; = 4.92 492 4.56 Travel Time Channel Time Length (ft) Slnne f°/"1 rhararfarictirc ValnritV ffticl (Mint 110 1.5. Paved Area;.GtitterFlow 2 125 0.86 None .. 0.00 None ... 0.00:. None 0.00 _ . _ .......... None.,,:.. A:00 ,.. - None - 0. Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS Total Time 2 1. 0-vr 100-vr Actual Time of Concentration = 5r7,8 5:42,; 32 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = Contributing Basins = Contributing Area (ac)= Runoff Coefficient's Overland Flow Time Runoff "C" _ Length (it) _ Slope (%) _ a Travel Time Pnnth (ftl Slnnp ("/") 92- G2 0:2"1 T; _ (1.87*(1.1-C*Cf)*D1n)/St/' of 500 feet 1.51 Channel ('hararfanahrc 1.51 1.20 Time VPlnrity (ff/c) (Minl 155. 05. Paved Area; Gutter.Flow 1.488 1;74 None _ 0.00;. Norse None0 00 .. r Fm None 0 00 Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS I oral I Ime =1 2 1, 0-vr 100-W Actual Time of Concentration = :; : - 5 00 I 5.QO. 33 of 35 7/1/2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point = g17,2_ .- . Contributing Basins = 01-1, G1-2 Contributing Area (ac)= 0.77 Runoff Coefficient's 2-vr 10-vr 100-vi 0.80 0.80 1..00 Overland Flow Time Runoff "C" = 0.25 T; = (1.87'(1.1-C'Cf)'D1n)/sW Length (it) _ ',...... 30:.;;._....:: Maximum of 500 feet Slope (%) = 5i56_'":.. 2-yr 10-yr 100_y] T; _ .. 4.92 . 4.92 4-.56 Travel Time Channel Time Length ft Sloe % Characteristics Velocity tr/s min 110 1 `5 Paved Area, Gutter,Flow. ., 2 125 0 86 140" `•: .... 0 5:; P..aved Area; GutterFlow .; `, 1::488. 15T ' .: •r. :..None . t-..: None Total Time Intensities Discharge Notes: TST, INC. CONSULTING ENGINEERS 2 1. 0_yr 100-U Actual Time of Concentration = r T,,W 6.99 34 of 35 7/1 /2003 040_storm DEVELOPED CONDITIONS TIME OF CONCENTRATION, INTENSITY, AND DISCHARGE WORKSHEET Design Point Contributing Basins = G.1 - G2,.F1 - F2 Contributing Area (ac)= 1.646 ' Runoff Coefficient's 2-yr 10-yr 100_vr 0:99 0.79 0.79. Overland Flow Time Runoff "C" = 0;25 „- .,_ T; _ (1.87'(1.1-C`CfrD'2)/S1n Length (ft) = 30-.;: ; Maximum of 500 feet Slope (%) = 5 56 2-yr 10-yr Mm T, = 4.92„ 4:92 4.56. T,e„o, Tina Channel Time Len th ft Sloe M Characteristics Velocity tus min Paved Area; Gutte[;Flow 2.1.'2_5 0.96 " 140 l) 5, ..: ... Paved Area; Gutter`Flow. 1.488 : 1:5- -. - . ,009 None .. ..:None.. . Total Time = ; 222 . ' Intensities C Discharge Notes: t ' TST, INC. CONSULTING ' ENGINEERS 2 1. 0-yr 100-yr Actual Time of Concentration = 7,35 --- 99 35 of 35 7/1/2003 040_storm I ' APPENDIX B Street Capacity 1 1 1 1 U 1 TST, INC. ConsulBng Engineers A CLIENT JOB NO. -I � L4 0 PROJECTS F 7\ T-d r V"I. 'TC�� LA LCULATIONS FOR S� rt� Q 1 MADE BY DATE Z o CHECKED BY DATE SHEET I OF 1 ; 1 5' ............ :...- ---- . Z. �1• t I � Kee-fit-. u�C �:iy.. ( r �• o�-: o �L3..�o r 1.� . 1 _ . ._�..._.::�o��:_ C�sse;:._.-ti�t-o.x;„,;,,L�,,,,. D•;�e.. �-� Fl.�.�Fesk ...�1oP�.... . . J _... _ . - __. 2,63 45 (DP=b-L) _ .. h t �; 11 Lt:� •, = Tso �ctla)lr�i Aga (Alin �Y� Oti Zip 4 : 50+ t.rsnr' r_L-kSl_lh�i _ 1_Y�.1.'�S..T_!L�_....t�'1�._...__�...... �..;....-_._ _._..... _.. _..__. _ .... .... t 1 °n _ ; t� S i s yZ,,.y/. .77cF ���, 5� Aj..� � c�w� pi� (y) o:3L�'} e.ls Yi.4 --. TST, INC. Consulting Engineers Q �1 CLIENT JOB NO. i1ll� OlO ` PROJECT li glet, FaPw`— Tro.J 'LA-' CALCULATIONS FOR 5�rY.G�-iA�as'1%V il�a.ns¢.S On'�i ' MADE BY DN DATE Z7 G CHECKED BY DATE SHEET OF • i .iDP L/�e_._C�cb....o:-kP+�:?.:.. Aa�;0.1..:,7rir f.�;sg.c.. zyo....a)` .... -. co X;. ... ...:�L ..Ce45 SIoPe�?w�c,r,rti,. S_Coc�.'ueti} 1 / ._....._.......{...... ...... ... j..p4j'slope ... meµ;: a� R R� _.. ^. _�pO�'��Z� $� �•�)_{:.:...��..QaliaUa:= 595. .Z�NO Leg.; ... __... a... ,QD'.6Cs SiG l ..o)Li (,��?.JyL '_ ftiF+~o :y r4 3 91 5.3.._� . . o�6i6ot5�L /4z� tea oozes i _. t i.. TST, INC. Consulting Engineers CLIENT T- I JOB NO. 79 ! -og o PROJECT ein �rw� - 1 J`G.f�- 1U1 CALCULATIONSFOR cJ�fQ.�-T CG OCLr 7�Otk4emQ. Dr��/r<�-i ' MADE BY DATE Z O CHECKED BY DATE SHEET OF -] 1 � . .«........_4..«_.�.�._.__...«_.._.�_........ �_.._ .... �...�. .. ..�� .. 4 APPENDIX C 1 Inlet Design 1 I 7 I 4- a t 10 12 14 SLOPt Of OUTTEP FL UM4-.2 REDUCTION FACTOR FOR -ALLOWABLE GOTTEF.1 OAPACITY Apply tecludor facta f or 4=s1sbs1bk:="M Z�reUo 0A*0"d1Yt00btWn (Fro : U.S. Dept. of Commmejoumu of PUblk Rai&, 1965) l 1 1 1 1 1 1 1 1 1 1 1: 1. 1 1. 1 1 1 1 1.0 .9 .8 7 .6 .5 1`- W u. .4 z L 15 S..le..� a�•- OP -�,,Z 12 Qs-y r' 3,Z(DtS I�>Ilowal,lL: 0,50' 5 �+ ae <oYfl EIS yoblolL-0,75' II yr= 4 8 3 10 6 9 4cr h 2 8 3 W /� '�/ Z -_ 5• c ' �• O r z 5.5 v a o .8 = v .5 0 use- 5 rfyfp��vy.rr& 5 Z .7 'r�1�} Q-T .L z Z .4 _ 4.5 z o •3 W .6 4 s v c .2 x 0 .5 z Z r • 3.5 W W •4 a. O -3 . W ILLc .08 3 = c .06 0 .3 W ac .04 tr .25 . 2.5 W W 2 1.5 a .03 a t- a .02 4• 0 a � a _ � v d W .01 �0 L 1 0 .2 .15 .10 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2' Adapted from Bureau of Public Roads Nomograph MAY 1954 S-10 DESIGN CFOTERIA 0 1 I 11 1 1... 1. JR Engineering 26" E Psmped Rd. Ste. 190 Fort COMM. CO 80525 RATIONAL METHOD PEAK RUNOFF (City of Fort Collins,100-Yr Storm) LOCATION: Rigden II PROJECT NO: 9164.12 and 9164.15 COMPUTATIONS BY: B. Shand DATE: 7/25/01 100 yr storm, Cf = 1.25 DIRECT RUNOFF CARRY OVER TOTAL REMARKS Des, Area A CC[ Point Design. (80) le (min) I (kft) Q(100) Ida) hom Design Pahl 0(100) (da) Q(loopt (Cis) ..-.. 1 1ol 1.33 1A0 5.0 9.95 141327 133 102 OA4 1 1.00 1 5.0 9.95 GAO OA 2 102+204 127 1 1.00 1 &0 9.95 12.63 12.6 103 0A7 1 1.00 1 &0 9.95 4.54 4.6 3 103+205 0.61 1 1.00 1 5.0 9.96 8.05 8.1 4 104 0.77 1 1.00 1 5.0 9.95 7.66 7.7 105 2.18 1 1.00 7.3 8.71 18.97 19.0 5 106 020 1 0.99 5A 9.95 2.54 2.5 DOukla Combo wm 7 107 026 1 0.0 7.7 0.55 2.17 a Combo Inlet B IN I JO 0.79 8.1 8.41 11.90 6 0.19 e Combo told 9 109 2.79 035 7A 6.85 23AO e Combo Wd 110 IA1 1AO 72 0.78 14.10 10 110+206 201 1.00 72 sae 17,57 III 0.78 0.83 7.0 Cal 5A5 RM. 11 111+208 0.99 0.87 eA 0.W 7.68 112 IV 0.83 tOJ TAM 935 12 N2+209 1.65 0.87 0.8 G.14 MIS 13 113 2A5 OA3 83 O= 17AS 9 6244 Type R Wel 114 223 039 72 8.76 7.58 /��� 14 114. 20% 203, OS-44 0.90 0.41 15.6 621 14.92 14.9 14d 114X2.203,OS-4,OS3 12.44 OA3 11A 7J5 05A1 85A 1la 0.79 0.75 12.0 721 4.30 44 15 115+03.8 1.05 0.77 12.5 7A8 5.73 5.7 Td Combo Wet tie 241 0.84 9.8 7A2 15.89 16.9 is 115+OS.9 3A3 0.83 11.4 7.35 21.04 21.0 Ouadmoa Combo Wal 117 2.36 OAS 7A 8,61 1721 172 17 117+05.10 303 0.64 7.9 GAO. 21 AB 2I.8 . Quedrupla Combo foul 1B Ile 038 GAO 6.0 9.95 332 R110a.15.17 9.10 12.4 10$TypeRWd 16e Ilea 039 1 0.91 5.0 9.95 1.75 RIM 2.150 4.3 BT RWM 119 0.43 1 0.13 72 G.74 0.47 1 0.6 20 120 1.14 OAS 53 9.60 927 9.3 13 grated Wale 21 12l 039 CAB 5.0 9.95 3.35 3.4 TWe R hat 122 0.95 OA4 GA a= 0.04 20 4.30 10.9 122a 0.64 OAS 6.0 927 527 53 22 1 122+122a 1AO OAS 83 034 11A2 20 430 45.7 lop Type Wet 123 029 0.13 iO.G 7.57 ox OA 124 4.66 0.73 1&1 629 21.39 21A 124+OS•11 640 0.75 1GA 621 27A6 27.9 Double Combo Wet E2624 125 201 0.76 12.5 7.06 10.77 29 427 16.0 120 2A1 OA6 7,7 6OM14.54 14A S• 13 Wated Weis 127 1.83 OAS e.G G.17 12.76 12A 125021 3.65 OAD 12.1 7.17 2232 26 427 26.4 0 basin 132 28 128 1.71 OAS 10A 7A2 11Ae Ii.1 obasin133 29 129 Las 0.60 16A 6.51 6.09 GA t5wd9 b Gnled Wet 30 130 0.78 0.73 8.3 0.34 4.80 4A Single Canbo hat 31 131 1.63 0.65 62 221 11.93 11A Typo 13 grated Web 132 1.02 OA3 5A 9.95 9.41 25 15.44 23.0 32 125+127+132 4.87 0.81 15.7 8J6 26.02 26 427 29.3 doe Combo Net 33 133 0.09 0.62 6.3 9.12 5.20 20,30.32 28.78 34.0 ITffple Combo Net 134 1Ae OAO 10.3 7.68 11.62 24 i0a 25.7 I 34 134+0542 2.43 0.80 1 10.1 7.56 14.70 24 14.18 28.9 Tdple Combo Wel 1. . 9184nowids 11 1 I 1 1 I 7 I 1 I 1 APPENDIX D Storm Sewer Design 1 STORM SEWER NETWORK Exhibit B MYMY!T1 Pd ST-I MANHOLE 1 MANHOLE 7.00 18 RCP MANHOLE 2 MANHOLE 7.00 21 RCP MANHOLE MET 1 7.00 21 RCP ST-2 EX. MANHOLE 3 INLET 2A 13.02 24 RCP ST-2A MET 2A INLET 2B 1 5.03 18 RCP Notes: 1. ST-2 design flow of 13.02 ds is from JR Engineering design. 2. ST-2A design flow of 5.03 cfs is from JR Engineering design. 3. Rigden Farm 9th Filing contribution to Inlet 2A is 1.26 efs. TST, INC. CONSULTING 711/2003 ENGINEERS 1 of 1 040—storm 4 I 3 3 Lj 66) 2 1 1 0 NeoUDS Results Summary Page 1 of 3 I I r I I I I I I i NeoUDS Results Summary Project Title: Project Description: Output Created On: 9/5/2003 at 7:53:45 AM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. I Sub Basin Information Manhole Basin ID # Area * C Time of Concentration Peak Flow (CFS) Overland (Minutes) Gutter mutes)I(Minutes)i(Inch/IIour BasinRain I �1 1.13 5.0 0.0 0.0 6.22 7.0 0 1.13 5.0 0.0 0.0 6.22 7.0 0 1.13 5.0 0.0 0.0 6.22 7.0 ® 1.13 5.0 0.0 0.0 6.22 7.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. Summary of Manhole Hydraulics Design Manhole Contributing Rainfall Rainfall Peak Ground Water ID # Area * C Duration Intensity Flow Elevation Elevation Comments (Minutes) (Inch/Iiour) CFS (Feet) (Feet) �1 0 0.0 0.00 7.0 4923.10 4520.30 0 3.38 5.0 2.07 7.0 4927.43 4920.66 0 2.25 5.0 3.11 7.0 4927.43 4921.47 ® 1.13 5.0 6.22 7.0 4926.85 4922.32 Summary of Sewer Hydraulics 1 file://C:\Program%20Files\NeoUDSewer\Reports\3271910024.htm 9/5/2003 NeoUDS Results Summary Page 2 of 3 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 Nnte• The uiven denth to flow ratio is 0.9_ Sewer ID # Manhole ID Number Upstream Downstream �� Calculated Sewer Diameter (Rise) Sha a nches) Suggested Existing Diameter (Rise) nches) (FT) 1Diameter.(Rise) (Inches (FT) Width (FT �1 00 ound 17.0 18 18 N/A �2 00FRoundl 17.011 1811 18 N/A 0®0 Round 17.0 18 18 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical Critical Full Sewer ID Flow Flow Depth Velocity Depth Velocity Velocity Froude Number Comment (CFS) CF5) (Feet) (FPS) (Feet) (FPS) (FPS �1 7.0 8.2 1.07 5.2 1.02 5.5 4.0 0.92 0 7.0F 8.2 1.07 5.2 1.02 5.5 4.0 0.92 0 7.0 8.2 1.07 5.2 1.02 5.5 4.0 0.92 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Sewer ID Slope % Invert ElevationI Buried Depth Comment Upstream eet Downstream (Feet Upstream eet Downstream eet �1 0.60 4918.08 4917.25 7.85 4.35 0 6.60 4919.09 4918.58 6.84 7.35 0 0.60 4919.67 4919.08 5.68 6.85 Summary of Hydraulic Grade Line Invert Elevation Water Elevation Sewer Sewer Length Surcharged Length Upstream Downstream Upstream Downstream Condition ID # (Feet) (Feet) (Feet) (Feet) (Feet) (Feet) �11 137.521 137.52 4918.08 4917.25 4920.66 4920.30 Pressured file:HC:\Program%20Files\NeoUDSewer\Reports\3271910024.htm 9/5/2003 NeoUDS Results Summary Page 3 of 3 0 85.6 85.6 4919.09 4918.58 4921.47 4920.66 Pressured 0 97.61 97.61 4919.67 4919.08 4922.32 4921.47 Pressured Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole Sewer Energy Bend Lateral Energy Sewer Manhole Elevation Friction Bend K Loss Lateral K Loss Manhole Elevation ID # ID # (Feet (Feet Coefficient (Feet Coefficient Feet ID # (Feet) �0 4920.91 0.61 0.05 0.00 1.00 0.00 4920.30 00 4921.71 0.38 1.00 0.24 0.25 0.18 0 4920.91 �® 4922.57 0.43 1.00 0.24 0.25 0.18 0 4921.71 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. file://C:\Program%20Files\NeoUDSewer\Reports\3271910024.htm 9/5/2003 i i I I i I I I wy o Z i m Wpa w U Z C (9 C W 65 K L m N c o, c w V m Q a �i r I ro I m � n I 0 QC4 m FFo %� se J 01 OI W m a �• n ° a i a :r .r 1 1 1 V. O a m a a 'O cc 10 C N W O O OI m 0 O TZ vNco �rro 0 Q>v M V M M M n m cc N W W N V N m 1 N N N t0 f0 rU 0 O E oqq CD 0IR� mJ N O C CD CO C%l CM ca v C) N W W Cl W 3= v o v v v v 0 nconnv0 fccyro nLO a0 W n 06 Ld ui LE O) O O) O) 0 W '7 v v v a' .4 E a? 0 IA V N gm J O im• r ci aG W N ON1 O1 CL. vavvvv N E W) N 0 N N m .og N aV m 0 C q 1D 17 N n m v .�0. co 0 ao Ci t, Ln o•JSm aovvvv w 0Mmaomw .S O N V afl a0 aD m w O m G Oi Oi C.Y, t3 N M N n n v U. d O v 0 0 0 0 Q' a ao 0 u� Un in m s W n v N I S O O, 0 m W 0 0 0 Cl M O O CL �CO o 0 0 0 0 0 cm 0 0 0 0 O 0 U M Inc 000 .� M N N V O O N N CD y�j� V V fD V J M ao E •O z v) c NC L L c tU C C C C _ _ C 1; W)ND7 V V O t V V 't N N M N M M m L1 M O N r V a ddddda m m N n 0 N D7 7 0 S U 9 a Q a rn m c a� LLN Z Q N (7 D� N i0 O , 0 O O m O N axo 1 1 1 I LJ 1 1 1 I 1 1 1 1 1 1 1 1 1 L' 0 r-ZA Z3.� 5 NeoUDS Results Summary Page 1 of 3 NeoUDS Results Summary Project Title: Project Description: Output Created On: 10/2/2003 at 3:32:38 PM Using NeoUDSewer Version 1.1. Rainfall Intensity Formula Used. Return Period of Flood is 0 Years. Sub Basin Information Manhole Basin ID # Area* C Time of Concentration Overland Gutter Basin Rain I (Minutes); (Minutes inutes) (Inch/Hour) Peak Flow (CFS) �1 0.71 5.0 0.0 0.0 25.52 18.0 0 0.71 5.0 0.0 0.0 25.52 18.0 0 0.65 5.0 0.0 0.0 7.77 5.0 F 0.0 0.0 3.13 13.0 �5 0.65 5.0 0.0 0.0 7.77 5.0 © 4.15 5.0 0.0 0.0 3.13 13.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (10+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supercedes the calculated values. L Summary of Manhole Hydraulics Manhole ID # Contributing * Area C Rainfall Duration (Minutes) Rainfall Intensity (Inch/Hour) Design Peak CFS Ground Elevation Feet) Water Elevation (Feet) Comments F-1 0 0.0 0.00 18.01 4928.56 4923.70 �2 10.3 5.0 1.75 18.0 4927.47 4924.02 0 1.29 5.0 3.88 5.0 4927.17 4924.59 ® 8.3 5.0 1.57 13.0 4927.13 4924.79 5� 0.65 5.0 7.77 5.0F 4927 717 4924.62 file:HC:\Program%20Files\NeoLTDSewer\Reports\3274270358.htm 10/2/2003 NeoUDS Results Summary Page 2 of 3 6 II 4.1 5.011 3.1311 13.011 4927.1311 4925 Summary of Sewer Hydraulics �l1tP• ThP cr;w n APnth to flnw rntin is 0 9 Manhole ID Number Calcuiated suggested Existing Sewer Upstream Downstream �� Sewer Diameter (Rise) Diameter (Rise) Diameter (Rise) Width ID # Sha a (Inches) (Inches) ) (Inches) T �OL J Round 21.5j 2411 24 N/A Round 11.411 1811 18 N/A �OL Round 11.4 18 18 N/A ®®I J Round 22.2]1 2411 18]F..N/A 0©® Round 22.21 24]1 18 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially availible size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. DesignA Normal Normal Critical Critical Full Froude Sewer ID Flow Depth Velocity Depth Velocity Velocity Number Comment (CFS (Feet) (FPS (Feet) PS) (FPS) 18.0 1.28 8.4 1.53 7.0 5.7 1.41 F2 5.0 17.2 0.56 8.4 0.86 4.8 2.8 2.32 0 5.0 17.2 0.56 8.4 0.86 4.8 2.8 2.32 ® 13.0F 7.4 1.50 7.4 1.33 7.8 7.4 N/A 0 13.0 7.4 1.50 7.4 1.33 7.8 7.4 N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Sewer ID Slope Invert Elevation I Buried Depth Comment Upstream (Feet) Downstream (Feet) 1 Upstream eet Downstream (Feet) 1.14 4918.84 4917.331 6.63]1 9.23 0 2.66 4919.50 4918.83F 6.17 7.14 file://C:\Program%20Files\NeoUDSewer\Reports\3274270358.htm 10/2/2003 ' NeoUDS Results Summary Page 3 of 3 1 1 0 1 3 112.6611 4919.501 4919.471 6.171 6.201 ® 0.50 4918.92 4918.83 6.71 7.14 �5 0.50 4918.92 4918.92 6.71 6.71 Summary of Hydraulic Grade Line Invert Elevation Water Elevation Sewer Sewer Surcharged Upstream Downstream Upstream Downstream ID # Length eet(Feet) Length (Feet) (Feet) 4917.33 4918.83 (Feet) 4924.02 4924.59 4924.62 (Feet) 4923.70 4924.02 4924.59 Condition Pressured Pressured Pressured �1 132.07 132.07 4918.84 0 25 25 4919.50 00 1 4919.50 4919.47 ® 17 17 4918.92 4918.83 4924.79 4924.02 Pressured 0�1 1 4918.92 4918.92 4925.02 4924.79 Pressured Summary of Energy Grade Line Upstream Manhole Juncture Losses 11 Downstream Manhole Sewer Energy Manhole Sewer Bend K Bend Lateral K Lateral Manhole Energy ID # Elevation ID # (Feet Friction eet) Coefficient Loss (Feet) Coefficient Loss (Feet ID #(Feet) Elevation �1 0 4924.53 0.83 0.05F 6.00 1.00 0.00 1� 4923.70 �0 4924.71 0.06 1.00F 0.13 0.00 0.00 2� 4924.53 00 4924.75 0.00 0.25F 0.03 0.00 0.00 0 4924.71 ®® 4925.63 0.26 1.00F -0-. 8-4 0.00 0.00 0 4924.53 �5 © 4925.86 0.02 0.25 0.21 0.00 0.00 ® 4925.63 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. file:HC:\Program%20Files\NeoUDSewer\Reports\3274270358.htm 10/2/2003 f F .Z WH J {� z ' ctl- CL O i a F it ',.. i �w = N a i 4 a � r � m Z , N Wpa W U Z� W y m m C a c W is m a ,I ,1 I 1 (D Z N N r T m 0 0 n m m N 0n r m m N O N 0 0 0 a v N r m m o o Q V' m m O C,Z � m m V• V7 m m m Of O m m m N m O m N m r ao v m r m V' F U m N r N N m m m n m r n m V' V' r m r m V N m T m m ao 66 m 0 0 Q / E aTvnaor)mrrmoonmoTmmmmmrn0vrTmvwv< m m n m m O N 0 h m T 0, 1, V m r m m m m 6 m T m T N N N T m m Z N 6 6 m N N 6 m 6 ad r m ad 6 6 m r N r 6 r m m m m m m m N r � CUE 3 0 0 vmrammm0N rl 0Ma PrM0 M0In,0vvvivirormmr m m m T ,T T N T T T T N N N N N N N N N N N N N N N. N N r m m aa a m a a m m a a m m a m a a m m m mom a m m a v v aa IN v v v v a v v v e av T m m r r m o v o m r v T m m O N00 DO �mmmTmvminnm m m m m m m n r momv,r.NC)0W arZ UTvm ad o vi ad 0 " ad o ad ad ai of vi r ai aV rf m T T T N N r N T T N N N N N N N v N vi vi (o r co ad ad ad � ad N N N N N N N N N T a= ao m 0) m a m a m m a a m a) m m m m m a Mick a m 0) 0) O) m m 0) a v v v v v v v v v a v V' v v v v V v v v v v v v v v v v v v r IT in N T n m m o 0 0 m m O N 0 In O r m m o m r T V in r O Q E v, ON O NT hC T6 Vr0; Z Om A C Om Im, mvr cn,mr 0rOimN m N NrN m r m m or N ma Nm Nv vN r r N T N N N N NN mNTTT a am mmm aaam mmammma C> v VT V v v j v V V V' v v Y v v o v v v v V j li li l' If v v o_W O m NN 0 m r O Cl) r O M N.m m CO r O CO v N NTm m r v Q v a N mm 0 0 N m OE NZ m mm d d d da m m v m 6 m av W �N 0 aV E Narrm)naa0ommmoo0mm nTTaTmmvmo . . . .mNvT 00rmmm)OmNmmQ a�m�v,rv)nNa0av3 w Z' 0 M m N N )0 N M N N r& T v. 0) m r W a 0 r � 'ad r O r N 0 )0 V' m r IN IN o o 0 0 >%> Cv a5 m O am0• OOD m OOl m a 0 0� O) ON) 0 m m v v v v v V v v v d v v v v V V v v V a 0 0 0 m m .000 v v v v v v v v' v w T V' m m a m 10 N N m r m r N r V' V'CC N m T N N r r It m O m a m N N O V; N to V• m N N u) v In O Q V; m m m .;V; m Z ro n Y y r oo m M N N m(p r m n w 0 0m 0 ri a/ r m ad m m r r T N m N N N m m N N N N N 0 V' (D y V T V T v m m N m m n r U m m a m N o 0 o m m m o m m m )n g N O O O r r m )0 N N r m In r� O m O m m N r m N N N O O Q 11 m 40 N O M m v O O W 0 N M N a 0) a m COm m M m m T r m m m {�) m 0 0 0 N N N N T T r r O N T a m 0 r m N O O 0 0) O CO T r N V' m N N N N T r r r r r T r T T r T 0 m�3m ((pp h m A Omi O N aoto n < o N )O V' m m m r r r r m m m m m Q r�aavO m a m 0 r r N a m m r 0) CD co co h N m m m O r m m m 0 mvmm0 mm 0) vm m IMP a a 0 o vN o 0 0 0 o T 0 v 0 0 0 0a 0 0$o000� �m�- 0000caicococcoc0000 cadoocooc000 0 t N O N V' mmm V• a V• O V tD r O r m T r m )0 m v m n m v r v r n O N Q Z 0 r O v r v N m w N 0 N m v m m 0 vi'IC m m 66 O N ad ad v N ri C V m m a m r N a m m N r T N r 0 T m m V m m T r V m r r m T V' N T m V' N N r r m m m m N T m m J L m T r T T T r r T T r r r r r r T r T T T r T r T T T T T T Q m 0 7 U Z Z to LL ,C U U U U U U U U U U U U U 0 U LU LL U U U U U N m C C C C C C C C L C C C C C C C C C C C C C C C C C C C C Q rn O O O O v v v v v v v v v )0 v v v v m v O V V• N CO r v v '�T Z rD m fD r0 N N N v) N m m N N r N N N N T h m 10n r0 r N N r0 N CL U Q m O r N M m M m m m m r r r V7 It r m O m aD m O T N r r N N m aQ m a a Q a N m a� l)1 ff)! r aQ .r aman.aaaaaaari.aaari.aa aaaaaadaad az omT 0 D Z N Wpa W U Z F W rn K N m C C w« V m O a L I 1 1 L 1 1 1 1 1 1 APPENDIX E Erosion Control 1 o ' E+ ' Ua U H I I I W ' U.5 1 � H x _ U M c A PA A o0000 a 0 0 o 0 r� � C,4 6q er . ry O O p 6q W% 69 69 0 O 0 O 0 vl 0 O 0 O 0 O O O OO +-� O &1 O O wi &% O 0 bq � b 00 O z PC 0 ti dd d p a �O N ON n O 'n N t a b 0 U b d ti \ r\ V ., w .� o o w ;o -' 'd u w e w�ao w x a a a -W U a 1.. Performance and Effectiveness Calculations ' TST, INC. CONSULTING ' ENGINEERS PROJECT: Rigden Farm - Tract'U' STANDARD FORM A COMPLETED BY: David Huwa DATE 2127/03 DEVELOPED SUBBASIN ERODIBILITY ZONE A,p (ac) Lb (it) S b (%) La'A,p AA'Sp PS (%) Al moderate 0:.17. 115 2.25 19.55 0.38 A2 moderate 0.43 250 1.42 107.50 0.61 A3 moderate 0.27 200 1.36 54.00 0.37 A4 moderate 0AB 270 0.88 48.60 0.16 A5 moderate 0:24 .. .300 0.74 72.00 0.18 1.29 233.84 1.31 0.7772 PS(after construction)= 0.9143 DEVELOPED SUBBASIN ERODIBILITY ZONE A,p (aC) Lb (it) S,p (%) WA,p A.�'Sp PS (%) Bt moderate .0:19:. 220 205 41.80 0.39 B2 moderate 1.46 400 1.11 584.00 1.62 B3-1 moderate 0.23 . 200 2.02 46.00 0.46 83-2 moderate 0,i9 210 1.10 39.90 0.21 B4 moderate : M16 240 0.93 38.40 0.15 B5 moderate 0:23 150 1.73 34.50 0.40 2.48 319 1.31 0.7819 PS (after construction)- 0.9199 DEVELOPED SUBBASIN ERODIBILITY ZONE Alb (ac) L,p (it) S,p (%) WA,p I A,p'Sp PS (%) C1 moderate 049 ti190 1.31 93.10 0.04 C2 moderate+0:94 98.40 . 0.77 1,311 1 1 1461 1.08 0,7571 PS (after construction)= 0.8907 DEVELOPED SUBBASIN ERODIBILITY ZONE Ao (ec) L,p (ft) I SON Lp'A,p A,p'Sp PS (%) D1 moderate Obt °: 90 1.33 9.00 0.13 D2 moderate %C,O:�iS 5= 'g0 ... ..0:91 - 13.50 0.14 0.251 1 1 U01 1.08 0.7494 PS (after construction)= 0.8817 DEVELOPED SUBBASIN ERODIBILITY ZONE A* (8c) Lb (it) Sob (°/a) WA,p A,p'Sp PS (%) El moderate ; 0;27 ' 140 `= 0.58 3L80 0.18 E2 moderate 0'29 170 1.03 49.30 0.30 .0i58 156 0.81 0.7404 PS (after construction)= 0.8710 DEVELOPED SUBBASIN ERODIBILITY ZONE Am (ac) Lrp (it) S,p (%) I WAm I Arp'Sp F1 moderate : -:0:36 _' .: 230 --":,-:.0.62 82.80 0.22 F2 moderate 0:31 ;:....... :.-260 , ... ; 0.95 80.60 0.29 0.671 1 2441 0.771 0.7459 PS (after construction)= 0.8776 DEVELOPED SUBBASIN ERODIBILITY ZONE Am (ac) Lm (it) S,p (%) Lp'Arp A,p'Sp PS (%) Gt-1 moderate US :250 1.20 165.00 0.79 G1-2 moderate Oaf '_. .180 _ _ 232 19.80 0.26 G2 moderate 021:..: 160 1.65 33.60 0.35 0.98 223 1.42 0,7804 Page 1 of 1 PS (after construction)= 0.9182 4125103 040 Eroslon Control Effectiveness.xls Performance and Effectiveness Calculations TST, INC. CONSULTING ENGINEERS PROJECT: Rigden Farm - Tract'U' STANDARD FORM A COMPLETED BY: David Huwa DATE: 2/27l03 DEVELOPED SUBBASIN ERODIBILITY ZONE A,e (ac) Lb (it) S, (%) Lb'A,b Ap*Sb PS (%) Al moderate 0.47 1:15 2.25 19.55 0.38 A2 moderate 043 250 1.42 107,50 0.61 A3 moderate 027': 200 .36 54.00 0.37 A4 moderate `.018 " 270 0.88 48.60 0.16 A5 moderate ..7-6.724 77. _300 .. . -0.74 72.00 0.18 1.29 233.84 1.31 0.7772 PS (after construction)= 0.9143 DEVELOPED SUBBASIN ERODIBILITY ZONE AW (ac) L,b (it) SO (%) Lb'A,b A,b'Sb PS (%) B1 moderate:019 220 2.05 41.80 0.39 B2 moderate 1:46 400 1.11 584.00 1.62 133-1 moderate 0.23 200. 2.02 46.00 0.46 83-2 moderate 0.49 210 1.10 39.90 0.21 84 moderate Ole -,240 0.93 38.40 0.15 B5 moderate 0r23 .A50 . .4:73 34.50 0.40 2.46 319 1.31 0.7819 PS (after construction)= 0.9199 DEVELOPED SUBBASIN ERODIBILITY ZONE A,e (ao) Lb (it) S,b (%) L.b'Am I A,e'Sb PS (%) C1 moderate 0 4$ .:; • ;.190 . 1.31 93.10 0.64 C2 moderate 94 98.40 O.Z7 1.311 1146 1.08 0.7571 PS (after construction)= 0.8907 DEVELOPED SUBBASIN ERODIBILITY ZONE Am (ac) I Lb (ft) I S,b (%) WA,b A,e'Sb PS (%) Ot moderate 90.' 4,33 9.00 0.13 D2 moderate i5 -::90 .:'..0.91 13.50 0.14 0.251 1 1 90 -1.081 a.T494 PS (after construction)= 0.8817 DEVELOPED SUBBASIN ERODIBILITY ZONE ft) I S,b (%) WA,b A,e'Sb I PS (%) E1 moderate -0:27 . 140 0.58 37.80 0.16 E2 moderate 0:29 170. 1.03 49.30 0.30 0.561 1 1158 0.8'1 - 0.7404 PS(after construction)= 0.8710 DEVELOPED SUBBASIN ERODIBILITY ZONE A,b (ac) Lb (it) sob (%) Ly A�b A,b'Sb F1 F moderate 82.80 0.22 F2 moderate ,0.34 '260 -.•u0.95 80.60 0.29 1 0.671 1 2441 0.77 0.7459 PS(after construction)= 0.8776 DEVELOPED SUBBASIN ERODIBILITY ZONE Alb (ac) Lzb (ft) S,b (%) Lb'A,b A,b'Sb PS (%) G1-1 moderate 0.66 260 1.20 165.00 0.79 G1-2 moderate c ;0.14 `:` .180 ; 2.32 19.80 0.26 G2 moderate 0.2f :: ..,160 .: 1.65 33.60 0.35 0.98 223 1.42 0.7804 Page 1 of 1 PS (after construction)= 0.9182 4125/03 040_Eroslon Control Effectiveness xis r r TST, INC. CONSULTING ENGINEERS Performance and Effectiveness Calculations PROJECT: Rigden Farm - Tract'U' STANDARD FORM A COMPLETED BY: David Huwa DATE: 227/03 DEVELOPED ERODIBILITY ZONEE,(ac) I.,e (ft) S,(%) Le'Am AWSb PS(%)SUBBASIN At moderate .115.. 2.25 19.55 0.38 A2 moderate .1.42 107.50 0.61 A3 moderate . 200 1.36 54.00 0.37 A4 moderate :270 0.88 48.60 0.16 A5 moderate .300 �0.74 72.00 0A8 233.84 1.31 0.7772 PS (after construction)= 0.9143 DEVELOPED SUBBASIN ERODIBILITY ZONE i A,b (ac) L,b (ft) Sw (%) Lb'A,b I A eSb PS (%) B1 moderate ':=7 019 :. "220 - 2.05 41.80 0.39 B2 moderate 1Ze : - -'400 ..1.11 554.00 1.62 B3-1 moderate 0:23 - - 200 ;,. 2.02 46.00 0.46 B3-2 moderate 019 210 1.10 39.90 0.21 B4 moderate Q1fi . 240 . , _ ::0.93 38.40 0.15 85 moderate O1-23 150 _ 1.73 34.50 0.40 2.46 319 1.311 0.7819 PS (after construction)= 0.9199 DEVELOPED SUBBASIN ERODIBILRY ZONE IkAa (so) L,b (ft) S,b (%) WA,b AW*Se PS (%) C1 moderate }:048 00 4 i'r:180 1.31 93.10 0.22 C2 moderate ; 82 ..., ..:120 ,_... _, 50.94 98.40 0.77 1.WI 1 1 1461 1.081 0.7571 PS (after construction)= 0.8907 DEVELOPED SUBBASIN ERODIBILITY ZONE Aft (so) I L,b (ft) I Sob (%) Lb Arb AA,eSb I PS (%) Di moderate 0:1. > 1.33 9.00 0.13 D2 moderate 0#6 ::,.::; 90"... ..:0.91 13.50 0.14 0.25 90 1.08 0.7494 PS (after construcdon)= 0.8817 DEVELOPED SUBBASIN ERODIBILITY ZONE A,e (ac) tw (ft) Sob (%) I WA,b I Am'Sb PS (%) E1 moderate ' :,027 , _i -140 '0.58 31.80 0.16 E2 moderate . ..,029 : 7 :1f'IO ; r: .:1.03 49.30 0.30 0.50 156 0.81 0.7404 PS(after construcdon)= 0.8710 DEVELOPED SUBBASIN ERODIBILITY ZONE AW (ac) Lb (ft) S,b (%) I Le kb I AWSb I PS (%) F1 moderate �;, ,�ra36 :::. - ;2.30 0.62 12 0.22 F2 moderate RIM _ ._528O:= - _.:0.95 80.60 0.29 0.671 1 2441 0.771 0.7459 PS(after construcdon)= 0.8776 DEVELOPED SUBBASIN EROOIBILITY ZONE A,b (ac) Lb (ft) Srb (%) Lb'A,b Ao*St, PS (%) GI-1 moderate 0.66 250 1.20 165.00 0.79 G1-2 moderate 0.11.. 180 2.32 /9.80 0.26 G2 moderate 021 160 1.65 33.60 0.35 0.98 223 1.42 0.7804 Page 1 of 1 PS(after construction)= 0.9182 425103 040 Erosion Control Effectiveness.xis Performance and Effectiveness Calculations • TST, INC. CONSULTING ENGINEERS PROJECT: Rigden Farm -Tmct'U' STANDARD FORMA COMPLETED BY: David Nuwa DATE: 2/27/03 DEVELOPED SUBBASIN ERODBILITY ZONE Am (ac) Lo (it) Sib (%) WAm Am'Sp PS (%) Al moderate 0.17 115 : 2.25 19.55 0.38 A2 moderate 0:43 250 1.42 107.50 0.61 A3 moderate 0.27: 200. 1.36 54.00 0.37 A4 moderate 0A . .-270 : 0:88 48.60 0.16 A5 moderate 24 300 0.74 72.00 0.18 1.291 233.84 1,311 0.7772 PS(after construc8on)= 0.9143 DEVELOPED ERODIBILITY ZONE Lm (it) Sb (%) Lp'Ae Am'Se PS (%)SUBBASIN B1 moderate :220 ; 2.05 41.80 0.39 B2 moderate _ 400 '1.11 584.00 1.62 83-1 moderate EA*.b(SC) 290 202 46.00 0.46 83-2 moderate 210 .. 1.10 39.90 0.21 84 moderate -. 240 0,93 38.40 0.15 B5 moderate ;.' .150 .'. 1.73 34.50 0.40 319 1:31. 0.7819 PS (after construction)= 0.9199 DEVELOPED SUBBASIN ERODIBILITY ZONE Ab (ac) L,p (it) SO (%] LeAsb A,e'SD PS (%) Cl moderate 0:49, _. ..190 ; .:.-1.11 93.10 0.64 C2 moderate OY82 ..120 `:_ r0.94 98.40 0. 1;311 1 1461 1.08 0.7571 PS (after construction)= 0.8907 DEVELOPED SUBBASIN ERODIBILITY ZONE Alb (80) L,s (it) I Sob (%) Ly A,y I Am'Ss I PS (%) D1 moderate33 9:00 0.13 D2 moderate 0.i5 :.;•.. i90 ;"-:0391 13.50 0.14 0.251 1 1 Sol 1.08 0.7494 PS (after construction)- 0.8817 DEVELOPED SUBBASIN ERODIBILITY ZONE Aw (80 Lb (it) I Sa (%) I WAS I A.n'Se I PS (%) Et moderate ". ".^0:27 ` ;r`' "440 :: 0.5B 37.80 0.18 E2 moderate 0129 «sr :170 ::_ -<1.03 49.30 0.30 0.651 1 1 156 0.81 0.7.404 PS(after constructon)= 0.8710 DEVELOPED SUBBASIN ERODBILITY ZONE Alb (ac) Lb (ft) I S,y (%) L.6 Am Ao'Sp PS (%) Fl moderate =-;0:36 21 2 82.80 0.22 F2 moderate #.; 5;0;31; 260 . >_ .n0.95 80.60 0.29 0.07 244 0.77 0.7459 PS(after construc8on)= 0.8776 DEVELOPED SUBBASIN ERODIBILITY ZONE Am (ae) Lsb (it) Ssb (%) Lt. A,e AseSe PS (%) GI-1 moderate 0;66. 250: 1.20 165.00 0.79 G1-2 moderate 0.11 160, 232 19.80 0.26 G2 moderate 0:21..... 160 ....:,1.65 33.60 0.35 0.98 223 1.42 0.7804 Page 1 of 1 PS(after consWction)- 0.9182 4/25103 040 Erosion Control Effectivenessxls TST, INC. CONSULTING ' ENGINEERS Performance and Effectiveness Calculations PROJECT: Rigden Farm - Tract'U' STANDARD FORM A COMPLETED BY: David Huwa DATE: 2127/03 ELOPED ERODIBILITY ZONE Ab (ac) Lm (ft) Sob (%) Lt'A, AM*Sb PS(%)BBASIN Al moderate . 0:17 1.15 .2-25 19.55 0.38 A2 moderate 0A3 - 150 '. 1.42 107.50 0.61 A3 P moderate 0:27, 200. 1.36 54.00 0.37 A4 moderate ::0;18: '270: .0.88 48.60 -0.16 A5 moderate _ 0.24 .300 0.74 72.00 0.18 1.29 r 233.84 1.31 0.7772 PS (after construction)= 0.9143 DEVELOPED SUBBASIN ERODIBILITY ZONE A,b (ac) L,b (it) Srp (%) Lb'Am A,b'Sb PS (%) Bt moderate 0.19 ; 220 .. 2.05 41.80 0.39 B2 moderate 7476 : , "::400 . - 1.11 584.00 1.62 83-1 moderate 0.23:".. .1200 2.02 46.00 0.46 B3-2 moderate 0:19 . 210 ti10 39.90 0.21 B4 moderate 1 A.16: ..240:. 0:93 38.40 0.15 85 moderate . ° i 0!23 ... .150 .:... `:1.73 34.50 0.40 2:48 319 1.31 0.7819 PS(afterconstmction)= 0.9199 DEVELOPED SUBBASIN ERODIBILITY ZONE Am (ac) Lb (ft) S,b (%) C7 moderate 0.49 .., =190 1.31 93.10 0.64 C2 moderate e t i_0 82 . : ' .J20 i .,.,i:U.94 98.40 0.77 1:31 148 imal 0.7571 PS(after construction)= 0.8907 DEVELOPED SUBBASIN ERODIBILITY ZONE A,b (ac) Lm (ft) S,b ON Lb'Am I A,b'Sb I PS (%) Dt moderate 01. • 'T ' .;90 ; 1.33 9.00 .0:13 D2 moderate ':F: 0:15 ; . ::90s.:, ;;Q91 13.501 0.14 0.25 901 1.081 0.1494 PS(after conslruction)= 0.8817 DEVELOPED SUBBASIN ERODIBILITY ZONE A.e (ac) Lob (ft) SO (°/.) Lti A,b A eSb PS (%) Et moderate 0:27 U.40;=::. .0:58 37.80 0.16 E2 moderate ;`.`.029 >:;, t70 ;+' 1.03 49.30 0.30 0.56 158 0.81 0.7404 PS (after construction)= 0.8710 DEVELOPED SUBBASIN ERODIBILITY ZONE Arb (ac) Lb (ft) SO (%) Lb'Asb Am'Sb PS (%) F1 moderate 0:36 '." . 0.62 82.80 0.22 F2 moderate .. .0:31. :260 0.95 80.60 0.29 0.671 1 1244 0.77 0.7459 PS (after constnrcdon)= 0.8776 DEVELOPED SUBBASIN ERODIBILITY ZONE A,b (ac) Lb (ft) Srb (%) WA* A,b'Sb PS (%) GI-1 moderate 0.66 250 ; 1.20 165.00 0.79 G1-2 moderate 0.11 180: 2.32 19.80 0.26 G2 moderate .0:21 160 . 1.65 33.60 0.35 0.98 223 1.42 0.7804 Page 1 of 1 PS (after construction)= 0.9182 4125103 040 Erosion Control Eftectiveness.xls Effectiveness Calculations I 1 1 PROJECT: Rigden Farm-Tract'U' STANDARD FORM B COMPLETED BY: DH DATE:4/25/03 Erosion Control C-Factor P-Factor Method Value Value Comment Sall Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trao 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 0.00 reseed Al 0.17 0.05 sod grass 0.14 pavement Structural Methods: 0.8 straw bale A 91.43% 0.5 silt fence C-FACTOR= 0.01 1 no structure P-FACTOR= 0.40 1 no structure EFF= 99.55% 0.17 = EFF'A,s 1 no structure Soil Treatment Methods: 0 bare soil 0.00 reseed A2 0.43 0.07 sod grass 0.61 pavement Structural Methods: 0.5 slit fence 1 no structure C-FACTOR= 0.02 1 no structure P-FACTOR= 0.50 1 no structure EFF= 99.21% 0.43 = EFPA,y 1 no structure Soil Treatment Methods: 0 bare soil 0.00 reseed A3 0.27 0.06 sod grass 0.21 pavement Structural Methods: 0.8 straw bale 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.80 1 no structure EFF= 99.20% 0.27 = EFF•A,y 1 no structure Soil Treatment Methods: 0 bare soil 0.00 reseed A4 0.18 0.01 sod grass 0.15 pavement Structural Methods: 0.5 silt fence 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.50 1 no structure EFF= 99.56% 0.18 = EFF'A,o 1 no structure $oil Treatment Methods: 0 bare soil 0.00 reseed AS 0.24 0.02 sod grass 0.23 pavement Structural Methods: 0.5 slit fence 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.50 1 no structure EFF= 99.48% 0.24 = EFF•A0 1 no structure Area = 1_29 Sum (A,b*EFFm) = 1.28 EFF = 99.4Y= Performance= 91.4Y= Design Works TST, INC. CONSULTING 4125103 ENGINEERS Page 1 of 1 040 Erosion Control Effectivenessids Effectiveness Calculations 1 1 1 1 1 1 1' 1 1 1 1 1 1 1 1 1 1 PROJECT: Rigden Farm-Tract'U' STANDARD COMPLETED BY: DH DATE: 4/25K Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment tran 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil Al 0.17 0.05 sod grass 0.14 pavement Structural Methods: A 91.43% C-FACTOR= 0.01 P-FACTOR= 0.40 EFF= 99.55% 0.17 = EFF'A.e Soil Treatment Methods: 0 bare soil A2 0.43 0.07 sod grass 0.61 pavement Structural Methods: C-FACTOR= 0.02 P-FACTOR= 0.50 EFF= 99.21% 0.43=EFF'A,b Soil Treatment Methods: 0 bare soil A3 0.27 0.06 sod grass 0.21 pavement Structural Methods: C-FACTOR= 0.01 P-FACTOR= 0.80 EFF= 99.20% 0.27 = EFPA,s Soil Treatment Methods: 0 bare soil A4 0.18 0.01 sod grass 0.15 pavement Structural Methods: C-FACTOR= 0.01 P-FACTOR= 0.50 EFF= 99.56% 0.18 ' EFF'A0 Soil Treatment Methods: 0 bare soil A5 0.24 0.02 sod grass 0.23 pavement Structural Methods: C-FACTOR= 0.01 P-FACTOR= 0.50 EFF= 99.48% 0.24 = EFPA,b Area = 1.29 Sum (A,eEFF,e)' 1.28 EFF = 99.4°/. Performance = 91.4% Design N TST, INC. CONSULTING ENGINEERS Page 1 of 7 0.8 straw bale 0.5 silt fence 1 no structure 1 no structure 1 no structure 1.00 reseed 0.5 silt fence 1 no structure 1 no structure 1 no structure 1 no structure 1.00 reseed 0.8 straw bale 1 no structure 1 no structure 1 no structure 1 no structure ).00 reseed 0.5 silt fence 1 no structure 1 no structure 1 no structure 1 no structure 0.00 reseed 0.5 silt fence 1 no structure 1 no structure 1 no structure 1 no structure 4125103 040 Erosion Control Effectiveness.xls Effectiveness Calculations I I PROJECT: Rlgden Farm-Tract'U' STANDARD FORM B COMPLETED BY: DH DATE: 4/25/03 Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 slit fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Sol[ Treatment Methods: 0 bare soil 0 reseed B1 0.19 0.12 sod grass 0.12 pavement Structural Methods: 0.8 straw bale B 91.99% 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.80 1 no structure EFF= 98.99% 0.2 = EFF•A,b 1 no structure Soil Treatment Methods: 0 bare soil 0 reseed 82 1.46 0.06 sod grass 1.00 pavement Structural Methods: 0.8 straw bale 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.80 1 no structure EFF= 99.42% 1.5 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 0 reseed B3-1 0.23 0.09 sod grass 0.14 pavement Structural Methods: 0.8 straw bale 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.80 1 no structure EFF= 99.20% 0.2 = EFF•A,b 1 no structure Soil Treatment Methods: 0 bare soil 0 reseed B3-2 0A9 0.08 sod grass 0.11 pavement Structural Methods: 1 no structure 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 1.00 1 no structure EFF= 99.00% 0.2 = EFF*Aeb 1 no structure Soil Treatment Methods: 0 bare soil 0 reseed B4 0.16 0.01 sod grass OA2 pavement Structural Methods: 0.5 silt fence 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.50 1 no structure EFF= 99.59% 0.2 = EFF'A,b 1 no structure Soil Treatment Methods: 0 bare soil 0 reseed B5 0.23 0.09 sod grass 0.14 pavement Structural Methods: 0.8 gravel filter 0.5 silt fence C-FACTOR= 0.01 1 no structure P-FACTOR= 0.40 1 no structure EFF= 99.60% 0.2 = EFF'A,b 1 no structure Area = 2.46 Sum (A,b EFFm) = 2_4 EFF = 99A°/. Performance = 92.0% Design Works ' TST, INC. CONSULTING 4/25/03 ENGINEERS Page 2 of 7 040_Ero510n Control Effectiveness xis Effectiveness Calculations .1 I 1 I I II I I I F PROJECT: Rigden Farm - Tract'U' STANDARD FORM 8 COMPLETED BY: OH DATE: 4/25103 Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bate 1.00 0.80 silt fence 1.00 0.50 ediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 0.00 reseed C1 0.49 0.03 sod grass 0.46 pavement Structural Methods: 1 no structure C 89.07% 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 1.00 1 no structure EFF= 99.00% 0.5 = EFF•Ab 1 n0 structure Soil Treatment Methods: 0 bare soil 0.00 reseed C2 0.82 0.21 sod grass 0.64 pavement Structural Methods: 0.8 gravel filter 0.8 straw bale C-FACTOR= 0.01 1 no structure P-FACTOR= 0.64 1 no structure EFF= 99.34% 0.8 = EFF*Ab 1 no structure Area = 1.31 Sum (Ab'EFFb) - 1_3 EFF= 99.2% Performance= 89.1% DesignWorks ' TST, INC. CONSULTING 4/25/03 ENGINEERS Page 3 of 7 040_Erosion Control Effectiveness.xls Effectiveness Calculations PROJECT: Rigden Farm-Tract'U' STANDARD FORM B COMPLETED BY: DH DATE: 4/25/03 Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.60 sediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 0.00 reseed D1 0.10 0.05 sod grass 0.02 pavement Structural Methods: 1 no structure D 88.17% 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 1.00 1 no structure EFF= 99.30% 0.1 = EFF*Aw 1 no structure Soil Treatment Methods: 0 bare soil 0.00 reseed D2 0.15 0.04 sod grass 0.11 pavement Structural Methods: 0.8 gravel filter 0.5 silt fence C•FACTOR= 0.01 1 no structure P-FACTOR= 0.40 1 no structure EFF= 99.60% 0.1 = EFF'Aw 1 no structure Area = 0.25 Sum (A,eEFFb) = 0_2 EFF = 99.5% Performance = 88.2% Desl n Works I ' TST, INC. CONSULTING 4/25103 ENGINEERS Page 4 of 7 040 Erosion Control Effectiveness.xls Effectiveness Calculations tr' I PROJECT: Rigden Farm-Tract'U' STANDARD FORM B COMPLETED BY: DH DATE: 4/25103 Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel fitter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) Sub -Basin Area Calculations Soil Treatment Methods: 0 bare soil 0.00 reseed E1 0.27 0.06 sod grass 0.18 pavement Structural Methods: 0.8 straw bale E 87.10% 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.80 1 no structure EFF= 99.29% 0.3 = EFF•Asy 1 no structure Soil Treatment Methods: 0 bare soil 0.00 reseed E2 0.29 0.07 sod grass 0.22 pavement Structural Methods: 0.8 gravel filter 0.5 slit fence C-FACTOR= 0.01 1 no structure P-FACTOR= 0.40 1 no structure EFF= 99.60% 0.3 = EFF'Asb 1 no structure Area = 0.56 Sum (AseEFFsb) = 0.6 EFF = 99.5°/a Performance=1 87.1% Desl n Works ' TST, INC. CONSULTING 4/25/03 ENGINEERS Page 5 of 7 040 Erosion Control Effectivenessxls F R Effectiveness Calculations PROJECT: Rigden Farm-Tract'U' STANDARD FORM B COMPLETED BY: DH DATE: 4125103 Erosion Control C-Factor P-Factor Method Value Value Comment Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Stru ctural Treatment Methods n o structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 slit fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) Area Calculations FSub-Blasln Soil Treatment Methods: 0 bare soil 0.00 reseed 0.36 0.11 sod grass 0.16 pavement Structural Methods: 0.8 straw bale OF 87.76% 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.80 1 no structure EFF= 99.40% 0.4 = EFF'A,s 1 no structure Soil Treatment Methods: 0 bare sail 0.00 reseed F2 0.31 0.08 sod grass 0.23 pavement Structural Methods: 0.5 silt fence 1 no structure C-FACTOR= 0.01 1 no structure P-FACTOR= 0.50 1 no structure EFF= 99.50% 0.3 = EFF'A,s 1 no structure Area = 0.67 Sum (A-yeEFFey) - 0.7 EFF = 99.4-/e Performance = 1 87.8%j Design Works TST, INC. CONSULTING 4125103 ENGINEERS Page 6 of 7 040_Erosion Control Effectiveness xis Effectiveness Calculations PROJECT: Rigden Farm-Tract'U' COMPLETED BY: DH Erosion Control C-Factor P-Factor Method Value Value Soil Treatment Methods bare soil 1.00 1.00 reseed 0.06 1.00 sod grass 0.01 1.00 pavement 0.01 1.00 Structural Treatment Methods no structure 1.00 1.00 gravel filter 1.00 0.80 straw bale 1.00 0.80 silt fence 1.00 0.50 sediment trap 1.00 0.50 Major Basin PS (%) . _ Sub -Basin Area G1-1 0.66 G 87.76% G1-2 I 0.11 G2 1 0.21 Area = 0.98 Calculations 0 bare 0.04 sod grass 0.66 pavement rat Methods: 'OR= 0.01 OR= 1.00 EFF= 98.94% ratment Methods: 0.11 sod grass iral Methods: rOR= 0.02 rOR= 0.80 EFF= 98.40% eatment Methods: 0.04 sod grass iral Methods: TOR= 0.01 TOR= 0.40 EFF= 99.62% Sum (A,eEFF,y) EFF Performance = 0.7 = EFF'A,s 1 no structure 1 no structure 1 no structure 1 no structure 1 no structure 0 bare soil 0.00 reseed 0.11 pavement 0.8 straw bale 1 no structure 1 no structure 1 no structure 0.1 = EFF'A0 1 no structure 0 bare soil 0.00 reseed 0.16 pavement 0.5 si0 fence 0.8 gravel filter 1 no structure 1 no structure 0.2 = EFF'Am 1 no structure Works TST, INC. 4125103 CONSULTING ENGINEERS Page 7 of 7 040 Erosion Control Effectiveness.xls I O V O O 0 ui c F 1 0 st rn to o 0 ui tri 0 co co coP lqRlqlc7plq0000 d cmo amo cmo 9 m COd ao co rn d m rn d m rn d m rn v m rn d m rn d m rn d m m d� co rn rn d co rn d to co glgl co 0 LO co 0 n co N co W 00 00 s0�1 O O> ��p q O 01 coo coo co 000 coo co co coo co OD co CO co OM tommt0(0n tirnf�1�n^hnhmm00maDaD �cocoGococococococo� co9X ��Wco co rn m cOddddd�a4 N co V: u1 in In (O 10 f0 (O d lO d� CG n ld.- n n f� n l� f� OD 00 00 co 00 000 m 00 co co co co a00d0ad0 000000 cco00ccoocco000 mONM "It d?tnqtnCO(D(O(O(O(D(D(Om(OI�r`tinti� m Mastvddv'ctdV m m m m m m m m CO CO ��d'Ig--t mco D�ad00�DOd00dOa0adDOdDadO d grNcl P7 V; d: d In to U) q tC)U7O to UC (O(Dm(0 CO COr ncco�� coc�coc�009OVO � �Idm�V O (D OOO�e-N N M M(h Mv, "r v, d; dct 0: V; to to to U)(O (� m �aMom�w�a�o dm�adoa`�o � �coo�� Gocodmadocoocoo t ° to NtA nc00!OO��';�N N N NN gMM(I cl V:s� dd;d ! tU U) C4com mm My vdv ��� Od0"t co ItD Od0 a0 o0 'Clot 1 0 00 co co co co Go 00 co Go . (n� r00r (h st q to m(O I� n 1� co OR m mm co 0 04mOOOOO Wcolcolco 0 co G d' CO co co co 00 co co co co co co co co co co00 d (O to 000rNMCO sT to t0 :,no(O (O m(O mf` cn ti"`"`mmm W m coONO w ccoo ccoo 000 w coOMO 00 WOMO OMO OMO OMD OMD OMO co oco c ccoo OMO ccoo ccoo co to trio r N N f�mOOrNNMM'7�d N N cn co (M M M (h ('7 M M M st� m M U) M U)lC)t0 M M M (Om(Qnn co M co M m vi co 0o co co co co co SO co co SO co SO co co co co m co co m m m m m m M N(O 00 q Or N N M Ci Md d;ddd U) O U7 U) m (O mm M Qrrrr NN N N N N N N NNNNNCV NCV N N N NN co 00 co 00 c0 co co m co 0o m co co co 00 w00 co 00 co Go co co m co m(n,nrnc.!r�v,toUD O O r r r r r r nr�aoaocornrno?rna?c?00000O r r r r r r r r r r r N N N (V NI,. N (`( nmmmmmcom0000commcococoaommmmmmmmm U1 to (O cD 00 0 0 0 0 r r 4 r N N N N M M M cq cl (h N f'- � MCI 000 ccoo C* m ccoo ccoo ccoo coo Oro cor cor cor °ro co cor aro Oro coo Oro co coo 000 Oro co OR co N m r d to r ti mP.n�ccoocoocc000momcoaooccooGo00ccoocococcooccoo m Cn Cn O O r r r r r N N N (" J C? C7 M M titinti�m tOMOdn01Or"CI Mdd; W m(O t0 (O�n(O cc (0 n n n n I-- n n n co n c0 n Go n w n co n wm n n co n co n 00 n 00 n c0 n Go n c0 n 00 n co n n 00 n c0 n co n rn o d; m n ao m n n (� (O m (o an d � d ti M� ti N � N n tT m d; � O) co oI ti� � ti n � ti n � � � ti ti rN. Ca�i J COOOOOOOOOOOOOOOOOOOOOOOOO 0 0 0 0 0 0 0 0 0 0 0 0 N 0 M 0 0 LO 0 W 0 I.- 0 M 0 00 0 0 0 0 0 0 0d0 0 0 3 rNMdtomnmO) 7 (0 (0 0 LL c O N O W K� vow ?Nz ~ z ( j � tiw 1 Table 8B C-Factors and P-Factors for Evaluating EFF Values. ' Treatment C-F200r P-Factor BARE SOIL Packed and smooth ...... ...................... ......... » ..».».....».....».. Freshlydisked 1.00 1.00 ...................................... ...._„................ _. .... 1.00 0.90 Rough irregular surface.._....».......»......»..». .».......».._».... 1.00 0.90 ' ��SEDIMENT BASIN/TRAP ................................ _.... .............. 1.00 0.500) . SILT FENCE BARRIER .............»......„».._.._......_.__........... 1.00 0.50 ' ASPHALT/CONCRETE PAVEMENT _......... ..„..._........ ....»..._».. 0.01 1.00 ' ESTABLISHED DRY LAND (NATIVE) GRASS.----._-- - See Fig. g.A 1.00 ' .SOD GRASS .... »... .».»..„........»....»..»...............».._._».....__»... 0.01 1.00 TEMPORARY VEGETATION/COVER CROPS._...».».„__._.._. 0.45(2) 1.00 HYDRAULIC MULCH @ 2 TONS/ACRE ....._..»»»._ ......»_»_. 0.10(3) 1.00 SOIL SEALANT »........... »..... »....„:..»...»...._» .» ......» ...„.. 0.10-0.60(4) 1.00 EROSION CONTROL MATS/BLANKETS......»....._...................._.. 0.10 1.00 ' GRAVEL MULCH Mulch shall consist of gravel having a diameter of approAnately 114" to 1 11r and applied at a rate of at least ' 135 twWacre.. 0.05 1.00 HAY OR STRAW DRY MULCH ' After olontina orals seed apply mulch at a rate of 2lonslacre (minimum) and adequately anchor, tack or crimp material irrto the soil. Slope (%) 11 to 15»»........».»..».._„__....»....»..»» »»_.. .»......».. ... 0.07 16 to 20........___ 1.00 ' ....._..___.._»_.......»_..„»„„».._„ .».......__.... 21 to 25.......... __.._..-------------- . _. 0.11 0.14 1.00 1.W 25 to 33».......... »»..»...».............»..».„, ..»»„..»» ...» ..„ 0.17 1.00 ' >33....._..»..__..._...._»..»_...._ ..... ....»..»» ....»....»..» NOTE: Use 0.20 1.00 of o0w 6Factor or P-Factor values reported in this table must be substantiated by documentation. (1) Must be constructed as the first step in ovedot grading. (2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not ' (3) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. May 1984 Design Criteria Revised January 1997 8-7