Loading...
HomeMy WebLinkAboutDrainage Reports - 01/10/19971 mtor�RTr OF in rovsl Report ' FORT C0111AS UTII11'lE8 �.�, T" 1 ! FINAL DRAINAGE AND EROSION CONTROL STUDY FOR RID GEWOOD HILLS P. U. D. SECOND FILING FORT COLLINS, COLORADO JANUARY 1997 THE SEAR -BROWN GROUP Standards in Excellence Z/ HYDROLOGY FINAL DRAINAGE AND EROSION CONTROL STUDY FOR RIDGEWOOD HILLS P.U.D. SECOND FILING FORT COLLINS, COLORADO January 9, 1997 Prepared for: d. Jensen Enterprises 4828 S. College Fort Collins, CO 80525 Prepared by: SEAR -BROWN GROUP Formerly RBD Inc. 209 S. Meldrum Fort Collins, Colorado 80521 (303) 482-5922 SBG Job No. 014-054 ' THE SEAR -BROWN GROUP FULL -SERVICE DESIGN PROFESSIONALS FORMERLY RBD, INC. 209 SOUTH MELDRUM FORT COLLINS. COLORADO 80521-2603 ' 970-482-5922 FAX:970-482-6368 Mr. Basil Hamdan City of Fort Collins Utility Services, Stormwater ' 235 Mathews Fort Collins, Colorado 80522 January 17, 1997 ' SUBJECT: Final Drainage and Erosion Control Study for Ridgewood Hills P.U.D. Second Filing ' Dear Basil, We are pleased to resubmit to you, for your review and approval, this final Drainage and Erosion ' control Study for the Ridgewood Hills P.U.D. Second Filing. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, ' The Sears -Brown Group Prep ed By: ®� p,LLE',°Reviewed By: un Allen -Morley, P °� <� Kevin W. Gingery, Project Engineer "�'"°°°° Project Manager, Water Resources NA9•�` NEW YORK°PENNSYLVANIA COLORADO•UTAH STANDARDS IN EXCELLENCE EQUAL OPPORTUNITY EMPLOYER TABLE OF CONTENTS PAGE I. GENERAL LOCATION AND DESCRIPTION 1 A. Location I B. Description of Project 1 U. DRAINAGE BASINS A. Major Drainage Basin Description 1 B. Sub -Basin Descriptions 2 III. DRAINAGE DESIGN CRITERIA A. Regulations 2 B. Development Criteria Reference and Constraints 2 C. Hydrological Criteria 3 D. Hydraulic Criteria 3 E. Variances from Criteria 3 IV. DRAINAGE FACILITY DESIGN A. General Concept 4 B. Specific Details 4 V. STORM WATER QUALITY A. General Concept 6 VI. EROSION CONTROL A. General Concept 6 B. Specific Details 6 VII. CONCLUSIONS A. Compliance with Standards 7 B. Drainage Concept 7 C. Storm Water Quality 7 D. Erosion Control Concept 7 REFERENCES 7 APPENDIX VICINITY MAP 1 HYDROLOGY 2 DESIGN OF INLETS, STORM SEWER AND RIP RAP 17 SWALE DESIGN 88 SWMM MODEL 103 DETENTION DESIGN 134 L r" FINAL DRAINAGE AND EROSION CONTROL STUDY FOR RIDGEWOOD HILLS P.U.D. SECOND FILING FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION A. Location The Ridgewood Hills P.U.D. development is located in the southern part of Fort Collins, south of Trilby Road, north of County Road 32 (extended), west of College Avenue, and east of Shields Street. A vicinity map of the proposed site is included in the appendix. More particularly, the site is situated in the north half of Section 14, Township 6 North, Range 68 West of the 6th P.M., City of Fort Collins, Larimer County, Colorado. B. Description of Property The Ridgewood Hills P.U.D. Second Filing contains 61.83 acres more or less and is currently open pasture land covered with native vegetation. The development consists of single-family residential lots, patio homes and multi -family residential sites. The site generally slopes from west to the east with grades ranging from approximately 0.5% to 10%. Historically, runoff from a majority the site consists as sheet flow across the eastern boundary of the site towards Highway 287. A small portion of the Second Filing site, 2.93 acres, drains as sheet flow across the west boundary (refer to pg. 4 of the appendix). The majority of the First and Second Filing sites historically drain into an existing sump area located east of the site. DRAINAGE BASINS A. Major Basin Drainage Description , The site is located within the Fossil Creek Drainage Basin. No major drainage ways exist within the site. B. Sub -Basin Drainage Description Historically the majority of the site drainage sheet flows west to east with a small portion(2.93 ac.) of the site draining to the west. There are 3 general small drainage ways which exist on site. These flow west to east and are generally located along Sedgewick Drive, south of Strasburg Drive and near Tiflin Court. The flows from these drainage ways would then sheet flow offsite and then flow in a northeasterly direction towards an historic low area near the outlet from detention pond 39. The storm drainage would then flow in an easterly direction and be intercepted by a ditch on the west side of College Avenue (U.S. 287). The storm flows would then pass south to a Culvert which would take the flows under College Avenue. As discussed in the Final Drainage and Erosion Control Study for Ridgewood Hills P.U.D. First Filing_ the restricted capacity of this culvert has caused the site to limit its discharge to 0.19 cfs/acre for a total discharge from the site of 15.6 cfs (please refer to pages 20 -23 in the Appendix of the above mentioned report, excerpts are in the Appendix of this report) The second filing will discharge all of its storm flow through the 21 inch outfall pipe from pond 39. M. DRAINAGE DESIGN CRITERIA A. Regulations The City of Fort Collins Storm Drainage Design Criteria was used in the preparation of this report. B. Development Criteria Reference and Constraints The Fossil Creek Master Drainage Plan criteria and constraints are being utilized for this Final Drainage Study. Drainage criteria not specified in the Fossil Creek Drainage plan will be in accordance with the City of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual. The above criteria is supplemented by site discharge restrictions of 0.19 cfs/ac as noted on Pages 20 to 23 of the Appendix in the Final Drainage and Erosion control Study for Ridgewood Hills P.U.D. First Filing. 2 C. Hydrological Criteria The rational method is being used to determine peak runoff flows from the site. The 2 and 100 year rainfall criteria, obtained from the City of Fort Collins, were ' used in determining peak flows. The flows calculated using the rational method will be used for the sizing the curb inlets and storm sewers. The rainfall criteria is included in the appendix. A SWMM model is used to more accurately calculate the required detention volumes. D. Hydraulic Criteria All calculations within this study have been prepared in accordance with the City of Fort Collins Drainage Criteria. E. Variances from Criteria Variances are requested as follows: 1. A variance to allow storm water from Basin 301 to sheet flow offsite without detention. It is proposed that runoff from this basin be released at a rate less than the total historic rate, in the historic westerly direction towards Lang Gulch. 2. A variance to allow curved vane inlets at the east end of Strasburg Drive due to the steep road grades 3. A variance to allow 0.20 cfs carryover flow offsite at design point 421 during the 100 year storm event due to the steep road grades of Strasburg Drive. A temporary berm is provided at the end of Strasburg Drive to divert the remaining 0.20 cfs to Pond 39. 4. A variance to allow the Depth of Detention Pond 39 to exceed 4 feet of depth. The depth required is less than the depth required for the First Filing of the Ridgewood Hills PUD. 5. A variance of the performance standard during construction is requested. We feel that we have complied with best practices and further measures are not needed. 3 IV. DRAINAGE FACILITY DESIGN A. B. General Conceit Runoff from the Second Filing site will be conveyed to three on -site detention ponds via curb and gutter, swales and storm sewers. A portion of the east most detention pond, Pond 39, was constructed with the First Filing and will be enlarged to account for the increased runoff from the Second Filing. The two additional ponds proposed with this filing are to be routed through detention pond 39 which releases detained stormwater into the existing 2 1 " RCP storm sewer, also constructed during the First Filing. Specific Details The Final Drainage and Erosion Control Study for the First Filing specifies a 0.19 cfs/acre release rate from the Second Filing site and limits the maximum release from detention pond 39 to be less than or equal to 15.6cfs. This 15.6cfs release rate, which is less than the historic 2 year rate, was specified as not to exceed the capacity of the existing 24" culvert under Highway 287. We have fiuther plotted the Boundary of Ridgewood Hills PUD Second Filing on the original First Filing Exhibit and find that 2.6 acres which flow to the aforementioned culvert were not included in the original calculations. This does not have a significant effect on the design of the detention facilities and is accounted for in the calculations. A SWMM analysis was done for the second filing to more accurately determine the detention pond requirements (refer to Appendix page 79 for details). This was done for three different conditions as follows: 1. All detention pond outlets unblocked 2. Detention Ponds 117 and 500 outlets blocked 3. Detention Pond 500 outlet blocked. The base of the SWMM Model is the same as that of the First Filing. Only basin 411 was modified as it included portions of the 2nd filing, see Appendix. It is noted in the Data Deck where the modifications and new basins are added. Basin 301 is to be released undetained as sheet flow in the historic direction across the western boundary of the site. Existing runoff peaks were determined for the 2 El and 100 year events to be 2.7cfs and 5.6cfs, respectivly. Developed runoff peaks were determined to be 1.2 cfs and 4.3 cfs, respectively. It can be seen that the developed runoff peaks are less than the historic peaks and the proposed nature of flow is essentially the same as the historic sheet flow. Basins 301-313 are designed to drain to detention pond 313 located in the southwest portion of the site. The 2 and 100 year storm events have been generally designed to be transported to detention pond 313 by the street system with the exception of the swale in basin 311. Runoff is to be detained and released at a maximum rate of (0.19cfs/ac. x 24.55 ac.) = 4.66 cfs. Detention volumes were calculated using a SWMM computer model. The discharge from pond 117 is to be conveyed to pond 39 by a storm sewer . Detention Pond 117 is designed to have no emergency spillway as there is sufficient capacity with zero discharge. Basins 500-504 are designed to drain to detention pond 500 located in the southeast comer of the site. The flows for 2 and 100 year storm events are taken to detention pond 500 via the street system and pipe system. All of the curb inlets and pipes have been designed for the 100 year storm event due to grading considerations. Runoff is to be detained and released at a maximum rate of 0.19cfs/ac. X 13.36 ac. = 2.53 cfs. The detained runoff is to be conveyed by a storm sewer and released into pond 39. Pond 500 is also designed with no emergency spillway as there is sufficient volume to detain the 100 year storm with zero discharge. Basins 400 to 408 of the First Filing and basins 409 to 424 drain directly into detention pond 39 located at northeast comer of the site. Flow from the First Filing basin 400 to 407 discharge into the north end of pond 39 via a 30 inch RCP. Flow from First Filing basins 408 and 409 flow to Avondale Road and then into the 2nd Filing. These flows then join 2nd Filing flows and discharge to pond 39 via the storm drainage system in Hudson Court. The other flows from the 2 and 100 year storm events are transported to detention pond 39 via the street and storm drain system. Pond 39 releases detained stormwater into the existing 21" RCP storm sewer constructed during for the First Filing. Discharge from this storm sewer flow to the previously mentioned existing 24" RCP culvert with its limiting capacity. The storm drainage then flows east to Benson Reservoir. Pond 39 receives flows from the first filing and ponds 117 and 500 for a total catchment area of 88.77 ac. Though an outflow of 16.87 cfs is calculated using 0.19 cfs/ac, a maximum allowable discharge of 15.6 cfs is used based on the first filing drainage report. Pond 39 is designed with a 48 inch diameter emergency overflow with the crest level set at 5056.2 feet above sea level. Flows from the overflow structure will by-pass a blockage at the orifice plate and continue to 5 V. VL discharge to the existing 21" RCP, STORM WATER QUALITY A. General ConcWt Beginning in October of 1992, the water quality of storm water runoff was required to be addressed on all final design utility plans. The Ridgewood Hills P.U.D. Second Filing is anticipating construction beginning in the Summer of 1996. Therefore for this study, we have sought to find various Best Management Practices for the treatment of storm water quality runoff at this preliminary design phase which could be incorporated in the final design process. Runoff is conveyed by grassed lined swales and detention ponds in order to provide an opportunity for pollutants to be removed. EROSION CONTROL A. General ConcWt The Ridgewood Hills P.U.D. is in the Low, Moderate and High Rainfall and Moderate Wind Erodibility Zones per the City of Fort Collins zone maps. The potential exists for erosion problems during construction, and after construction until the disturbed ground is again vegetated. In accordance with the City of Fort Collins Erosion Control Reference Manual for construction sites, the erosion control performance standard to be 83.0% during construction and 97.6% after construction. The erosion control specified on the Final Drainage and Erosion Control Plan will result in a performance standard during construction of 81.05% and 99.86% after construction. A variance is requested for the lower performance standard during construction. B. Specific Detail Upon the commencement of over lot construction a silt fence along the West boundary must be constructed. Following completion of the over lot grading all areas which are not roads or access roads shall be mulched and seeded as shown on the drainage and erosion control plan in a pocket at the back of this Report. On completion of the utilities and roadways, straw bale check dams and gravel inlet N. filters should be installed. These may be removed upon completion of the road system. The estimate of probable costs for erosion control is ($39,915) x (1.5) _ $59,873 for an escrow amount. All construction activities must also comply with the State of Colorado permitting ' process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Health NPDES Permit will be required before any construction grading can begin. ' VL CONCLUSIONS A. Compliance with Standards All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. B. Drainage Conceit The proposed drainage concepts adequately provide for detention of developed runoff from the Ridgewood Hills site. In general emergency spillways were not , necessary, except for Detention Pond 39. There is sufficient capacity in Ponds 117 and 500 to hold the 100 year storm without discharge. C. Water Quality Control ' Because storm water quality has become a requirement, the site has addressed this storm water aspect. Swales and detention ponds have been used to improve the water quality. D. Erosion Control Concept Per the City of Fort Collins Erosion Control Reference Manual for Construction Sites, at the time of final design of the site, the erosion control performance standard will need to be calculated and appropriate measures taken to control erosion from the site. 7 1 04 3 4. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, Revised January 1992. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991. Fossil Creek Drainage Basin Master Drainage way Planning Study, by Simons, Li & Associates, Inc., August 1982 Final Drainage and Erosion Control Study For Ridgewood Hills P.U.D. First Filing, by RBD Inc., March 1995. 0 I 11 11 APPENDIX 1 I I 1 n 1 I I I 1 1 I 3/ 52 °% I � ilm / — ¢/ • 3 a 37 r I� cv •. ; 38 33 ' • 39 40 41 32 42 31 0 43 29 a 44 85 86 -_—� 84 87 88 , 46 • , • ' r r 47 i 8 81 79 78 77 , 47 ' 48 69 70 I 7 ♦ r 71 72 r 68 6 66 r 65 fi4 63 62 •. r 53 �... 55 56 58_ 9 f V CLIENT ,atiJSci.) ! `I�(�-(� JOB NO.'�VIy�`O s.'�2 ■��INC PROJECT ICi >hE7.�.�YX�S� Cyr«� CALCULATIONSFOR IT St�I L �"�"T En91I1@ErIltg Consultants MADE BYE-IME DATECHECKED BYDATE SHEET OF 2 i .. ------------- --- ---- _-._.._... -..._ .. ._. _.-.. .3��.....-.. .....,....�j0 ...__ _-.- ..... ... ........... x ...-_..._. ... - ... _ .. ..... .. _ __ 1 Ff1 �l F I (. 2�Z> y� ; - _ _ .... Q : c�-c-1 Qom= .2.7 _.. - - t LCX�=.Ytz _;Z� v ... .: _ .:. __- ..... ... ..._ -. _.. -.: . . - .... - ..... .. _ ... _ -- _,. ('lam:= I ?�_��ZS-L.dg �/� ��.Z.g3� ....-_. _'.. .............. :..._ .............. ;. . I CLIENT �c N-'"lJ I `/r3 JO....... T:IDINC PROJECT 1� i7 tiCL-22 CALCULATIONS FOR Engineering Consultants MADEBYMDATE a27 CHECKED BY DATE -SHEET -OF I RBD, Inc., Engineering Consultants Weighted Runoff Coefficients Project 014-054 JAM RIDGEWOOD HILLS, SECOND FILING 06/11/96 1 Area of House is 2000 sq. ft Area of dirve is 600 sq. ft �I oil off-ml-: O®/ --© 1 /K - 1 1• 1 / ® : / 1/1 Stone Drainage Design and Technical Criteria RBD, Inc., Engineering Consultants 61 Weighted Runoff Coefficients Project # 014-054 JAM RIDGEWOOD HILLS, SECOND FILING 06/11/96 This sheet calculates the composite "C" values for the Rational Method. Design Area Impennous C. Pervious C. tote ac. Imp ac. Percent Im rv. Percent Pervious Comp. CATCHMENT 300 301 0.95 0.25 2.02 0.01 0.01 0.99 0.25 302 0.95 0.25 2.11 0.85 0.40 0.60 0.53 303 0.95 0.25 1.48 0.18 0.12 0.88 0.33 304 0.95 0.25 2.81 0.36 0.13 0.87 0.34 305 0.95 0.25 1.92 NOT USED NOT USED 0.50 0.26 0.74 0.43 306 307 308 0.95 0.25 2.26 0.62 0.28 0.72 0.44 309 0.95 0.25 1.01 0.19 0.19 0.81 0.38 310 0.95 0.25 0.42 0.17 0.42 0.58 0.54 311 0.95 0.25 4.05 0.63 0.16 0.841 0.36 312 0.95 0.25 1.53 0.70 0.45 0.55 0.57 313 0.95 0.25 4.94 0.06 0.01 0.99 0.26 CATCHMENT400 409 0.95 0.35 3.36 1.43 0.43 0.57 0.61 406 0.95 0.25 1.63 0.03 0.02 0.98 0.26 407 408 0.95 0.25 3.04 0.83 0.27 0.73 0.44 409 0.95 0.25 0.54 0.32 0.60 0.40 0.67 410 0.95 0.25 1.49 0.86 0.58 0.42 0.65 411 0.95 0.25 1.05 0.03 0.02 0.98 0.27 412 0.95 0.25 5.41 0.53 0.10 0.90 0.32 413 0.95 0.25 1.20 0.36 0.30 ' 0.70 0.46 414 0.95 0.25 1.14 1.11 0.98 0.02 0.93 415 0.95 0.25 1.07 0.86 0.80 0.20 0.81 416 0.95 0.25 1.40 0.49 0.35 0.65 0.49 417 0.95 0.25 0.77 0.33 0.42 0.58 0.55 418 0.95 0.25 1.91 0.51 0.26 0.74 0.44 419 0.95 0.25 3.44 0.85 0.25 0.75 0.42 420 0.95 0.25 0.76 0.49 0.65 0.35 0.71 421 0.95 0.25 0.87 0.39 0.45 0.55 0.56 422 0.95 0.25 0.77 0.43 0.56 0.44 0.64 4231 0.95 0.25 3.04 .0.81 0.27 0.73 0.44 424 0.95 0.25 1.51 0.03 0.02 0.98 0.26 CATCHMENT 500 500 0.95 0.25 5.55 0.30 0.05 0.95 0.29 501 0.95 0.25 0.981 0.48 0.49 0.51 0.59 5021 0.95 0.25 2.61 0.39 0.15 0.85 0.36 503 0.95 0.25 1.13 0.61 0.54 0.46 0.63 504 0.95 0.25 2.98 0.06 0.02 0.98 0.26 i t' I 11 11 �t I I I Storm Drainage Design and Technical Criteria A �I RBD, Inc., Engineering Consultants 0144)54 TIME OF CONCENTRATION SUBDIVISION: STORM 2 yr cf = RIDGEWOOD HILLS, SECOND FILING r� CALCULATED BY: JAM DATE 06/11/96 i 1.00 ti = 1.87M.1 - C x CnD^0.5 S-(1/3) tc = ti + tL SUB -BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS DESIG: AREA C LENGTH SLOPE ti LENGTH SLOPE VELOCITY tL to (ac) (ft) N (min) (ft) M (ft/s) (min) (min) 1 2 3 4 5 6 7 7a 8 9 10 11 12 CATCHMENT 300 301 2.02 0.25 100 2.00 12.6 0 PA 0.60 1.47 0.0 12.6 302 2.11 0.53 55 3.00 5.5 450 PA 0.60 1.47 5.1 10.6 303 1.48 0.33 220 2.50 15.6 300 PA 0.60 1.47 3.4 19.0 304 2.81 0.34 150 2.00 13.8 520 PA 0.60 1.47 5.9 19.7 305 1.92 0.43 120 2.00 10.9 750 PA 0.60 1.47 8.5 19.4 306 NOT USED 307 NOT USED 308 2.26 0.44 130 2.50 10.3 420 PA 0.60 1.47 4.8 15.1 309 1.01 0.38 90 2.50 9.4 250 PA 3.85 3.80 1.1 10.5 310 0.42 0.54 50 4.00 4.7 300 PA 3.85 3.80 1.3 6.0 311 4.05 0.36 300 4.00 15.1 400 PA 1.50 2.35 2.8 18.0 312 1.53 0.57 50 2.00 5.6 60 PA 1.20 2.09 0.5 6.1 313 4.94 0.26 100 9.00 7.6 800 PL 0.40 0.40 33.4 41.0 CATCHMENT 400 405(409) 3.36 0.61 1 140 3.00 7.6 820 PA 0.80 1.70 8.0 15.6 406 1.63 0.26 60 3.50 8.0 520 G 5.00 3.44 2.5 10.5 407 NOT CONSIDERED (IN 1 ST FILIN(j) 408 3.04 0.44 270 10.00 9.4 370 PA 0.80 1.70 3.6 13.0 409 0.54 0.67 30 2.00 3.5 400 PA 0.80 1.70 3.9 7.4 410 1.49 0.65 30 2.00 3.6 470 PA 7.00 5.17 1.5 5.2 411 1.05 0.27 80 2.00 11.1 530 G 5.50 3.61 2.4 13.5 412 5.41 0.32 200 1.00 20.6 300 PA 1.00 1.91 2.6 23.3 413 1.20 0.46 200 7.00 8.9 300 PA 7.32 5.29 0.9 9.8 414 1.14 0.93 20 10.00 0.6 510 PA 1.00 1.91 4.5 5.1 415 1.07 0.81 20 10.00 1.1 470 PA 2.80 3.23 2.4 5.0 416 1.40 0.49 100 5.00 6.6 200 PA 5.00 4.35 0.8 7.4 417 0.77 0.55 70 2.00 6.9 500 PA 5.10 4.39 1.9 8.8 418 1.91 0.44 80 8.50 5.4 450 G 2.80 2.58 2.9 8.4 419 3.44 0.42 200 5.00 10.5 380 PA 0.40 1.19 5.3 15.8 420 0.76 0.71 30 2.00 3.2 830 PA 6.00 4.77 2.9 6.1 421 0.87 0.56 40 2.00 5.0 600 PA 6.50 4.97 2.0 7.1 422 0.77 0.64 55 2.00 5.0 380 PA 2.30 2.92 2.2 7.2 423 3.04 0.44 200 11.00 7.9 440 PA 0.80 1.70 4.3 12.2 424 1.51 0.26 100 10.00 7.3 0 PA 0.60 1.47 0.0 7.3 CATCHMENT500 500 5.55 0.29 510 1.70 28.7 200 PA 0.60 1.47 2.3 31.0 501 0.98 0.59 60 2.00 5.8 330 PA 0.60 1.47 3.7 9.6 502 2.61 0.36 200 11.00 8.9 390 PA 0.60 1.47 4.4 13.3 503 1.13 0.63 30 2.00 3.9 370 PA 0.60 1.47 4.2 8.1 504 2.98 0.26 250 8.50 12.1 0 PA 0.60 1.47 0.0 12.1 Note: Column 7a codes the channel type for velocity calculations. PA = Paved Area, PL = Pasture& Lawns, GW = Grassed Waterway, Storm Drainage Design and Technical Criteria 6 N Y n G �2n w O NYjn 6D m"' bmm r nn ri.ry A n. Nmomrr NNmm �ZM W n b r 0 ¢mZm oio.:.� ^i:o ri :� ri: •i � .-� ri�::ei 'i:N� �+m �v w rwy c� aN =� n w DK� wV WU Nb1AN C100 h OO OIOM ri O01 :00�' IA bM1 Yl V! 2 < U M J J J mSSS J J J J Rmm R J J m8 << J J J J < J J< J RRR 82 68RRR J J J J 388R GOOD Cnl1 00 GOh h MiN 000NG 0000 N � 0SQL^ K LL W 02n c ijSj 00( o�.mm rvo.oNm nm +p < ~ H� pm YY�� m 0 v v 0 0 0 a O. p ry h N n r N N N n S O O O 0 O n m Z NA A A ��0 NCI��� Ci fi Ol �Oii IY IY IV IV II IV�M OI !)IV IV IV f1 11 lV fV l'i CI HIV IV IV I'V c rvnR�� `R�R�r mr .mmSR RrRBR D m 00000 ooG000 Go 000ddoo00dd00oodd dG000 i r w —c nEm a� wJw ��b O LL y�A 'OmOm b00m0 f b0 'hYl'ry0Y1 Y11�dO�Ol�n'A n0'O� Q 2 U—D w W m o w ? A n Jm oo n A . b R R R R Rt. »ova ii Fi p <RoR�-- X\w\ 0- m 0 0 9 n n. rvNnNN o $RSS9 A f.n nn n' v v\S�SSSiSS..\\\ N N 00 o� gg z W z f w o u F MS 0 F OF u u g u p @ S HSR /I 1 2 s z � r = Y E 8 € W a VS g g v o m fi y q A tt��1l a O 2 Og O O W u myr _ W ... 60 lag W �A N 0 0 0Nn N N n IVN n p !i ry -VO FW�}O NOV' �.F m W ^ 6 y�.� 6 a— 8 oxm o w Y1 N N' G C Ih d M OI O' M YI Vt w �LN W JJ J JJ< < J J J J as—' gg S m R 8�em m 8 em em rjjpf� ee c ai r vino c o w o 0 N LL rn . m m O N n m N n N N t N m n LL— IV YI fl O n N t O �'I O O t n n IV f1 N' 1�1 C pLL— W p� 0Nn N N N 0 n a = W�^CCL of vi ri vi ri ti i c ' f o o i b ^ of N ri ri pp m ^ C m^ 0 O m S nNH S O p N p ry S ==. n ry m 0 f 0 n U 0 n. O O t O t O . C N O . O N O O O C N O 0 G 0 o O t . O O O O N n O O on f It o o O o o r — o 0 0 =�n OOi 0 0 0 O 0 O n0' � 0 0 Yi Qt b A n d C aim ww N o`f 3�n OY0 0 m 0 0 0 0 nm0 ' ^ n N 0 YI A n m 2 O � O gg �. N j 0 a ei o n n Z =0 z w c^ mo c^ N O ii �^'+ e4i n � wF U z 00 S u a� O u u ci not m g O n' onm m O. m N e o O� ��� e4 n ii e� � � �$� � voi R ! � � .6 ) § § C4 (#© . k\!- §- . §� §!_ |!! n 85! § !! a = ; §;e E§ !§5 !ee! |§ !. | !!!§ B !§ | !|! §!! m|e! , 14| § | !3!! E __ !!! !|| !!!! !! | |||| ! !! �. !IV r;@ �0 §;;; ;r k4Kk - r■ ;� ;: |!! 0! _ ; a! ; Ey , � ®�§■; i 6 . ~ =e e. ; », N .0 . „ E ■ &#.Imk� - �R# |� ■�_ `\f| .. �7| ..k�■\}��\) `f} 0 �\/ v �§E !| !%- §§■ !!� eee§|fie■ e !e !■§§ § ■■ ■ RBD, Inc., Engineering Consultants 014-054 TIME OF CONCENTRATION SUBDIVISION: STORM 100 yr cf = 1.25 RIDGEWOOD HILLS, SECOND FILING DATE 06/11/96 CALCULATED BY: JAM ti = 1.87r1.1 - c x cnD•o.s SA(1/3) tc=ti+tL SUB -BASIN DATA INITIAL/OVERLANDTIME TRAVEL TIME FINAL REMARKS DESIG: AREA C LENGTH SLOPE ti LENGTH SLOPE VELOCITY tL tc (ac) (ft) M (min) (ft) M MIS) (min) (min) 1 2 3 4 5 6 7 7a 8 9 10 11 12 CATCHMENT 300 301 2.02 0.25 100 2.00 11.6 0 0 11.6 302 2.11 0.53 55 2.00 4.8 0 PA 0.60 1.47 0.0 5.0 303 1.48 0.33 220 3.00 13.1 450 PA 0.60 1.47 5.1 18.2 304 2.81 0.34 150 2.50 11.4 300 PA 0.60 1.47 3.4 14.8 305 1.92 0.43 120 2.00 9.1 520 PA 0.60 1.47 5.9 15.0 306 NOT USED 307 NOT USED 308 2.26 0.44 130 3 8.6 420 PA 0.60 1.47 4.8 13.3 309 1.01 0.38 90 3 8.1 420 PA 3.85 3.80 1.8 10.0 310 0.42 0.54 50 4 3.5 250 PA 3.85 3.80 1.1 5.0 311 4.05 0.36 300 4 13.3 300 PA 1.50 2.35 2.1 15.4 312 1.53 0.57 50 2 4.1 400 PA 1.20 2.09 3.2 7.3 313 4.94 0.26 100 9 7.0 60 PA 0.40 1.19 0.8 7.8 CATCHMENT 400 405(409) 3.36 0.61 140 3.00 5.3 820 PA 0.80 1.70 8.0 13.3 406 1.63 0.26 60 3.50 7.4 520 G 5.00 3.44 2.5 9.9 407 408 3.04 0.44 270 10.00 7.8 370 PA 0.80 1.70 3.6 11.4 409 0.54 0.67 30 2.00 2.1 400 PA 0.80 1.70 3.9 6.0 410 1.49 0.65 30 2.00 2.3 470 PA 7.00 5.17 1.5 5.0 411 1.05 0.27 80 2.00 10.2 530 G 5.50 3.61 2.4 12.6 412 5.41 0.32 200 1.00 18.5 300 PA 1.00 1.91 2.6 21.2 413 1.20 0.46 200 7.00 7.3 300 PA 7.32 5.29 0.9 8.2 414 1.14 0.93 20 10.00 0.4 510 PA 1.00 1.91 4.5 5.0 415 1.07 0.81 20 10.00 0.4 470 PA 2.80 3.23 2.4 5.0 416 1.40 0.49 100 5.00 5.3 200 PA 5.00 4.35 0.8 6.0 417 0.77 0.55 70 2.00 5.2 500 PA 5.10 4.39 1.9 7.1 418 1.91 0.44 80 8.50 4.6 450 G 2.80 2.58 2.9 7.5 419 3.44 0.42 200 5.00 8.8 380 PA 0.40 1.19 5.3 14.2 420 0.76 0.71 30 2.00 1.8 830 PA 6.00 4.77 2.9 5.0 421 0.87 0.56 40 2.00 3.7 600 PA 6.50 4.97 2.0 5.7 422 0.77 0.64 55 2.00 3.2 380 PA 2.30 2.92 2.2 5.4 423 3.04 0.44 200 11.00 6.6 440 PA 0.80 1.70 4.3 10.9 424 1.51 0.26 100 10.00 6.7 0 PA 0.60 1.47 0.0 6.7 CATCHMENT 500 500 5.55 0.29 510 1.70 26.2 200 PA 0.60 1.47 2.3 28.5 501 0.98 0.59 60 2.00 4.1 330 PA 0.60 1.47 3.7 7.9 502 2.61 0.36 200 11.00 7.8 390 PA 0.60 1.47 4.4 12.2 503 1.13 0.63 30 2.00 2.6 370 PA 0.60 1.47 4.2 6.8 504 2.98 0.26 250 8.50 11.2 0 PA 0.60 1.47 0.0 11.2 Note: Column 7a codes the channel type for velocity calculations. Storm Drainage Design and Technical Criteria ■ ■ ;22 22 |! k� 9 . . �� . �� :,; � ;; �;;; ■; . - .��,�- ;; - . (» aci ci] � |t. „! , #| ■! ! ®§e§ «! °. §ee 66 s!! !! ! | 66ci § 5! ,f !|§ §! ! 6ci , // j |e ,■■ . ,■a „ . ,n. . -- - |! /� -�\�§. _� �� - - ®� �■| " § k@E|,- 7$§-!■!# # !■ e §!&$kKn0 ■#■� #k -__ ����\\� -, , `}\ -;!■()e | ! |B �$■ &� 9- ■]e !2. 2;e!§!se e §e ■■e■ ■ ■■ � ■ i F G O W G n I W m W a a2 6 a' O $ Y O v 8 O V I F a N O Y Cyy OZ W 7 0 C nm^! rN n n\ moms m'^n W? OnNe OOm\ W y'� �n'Fl1�00 00 fI N1 m nn C ' - MN : 'ddYl' 00 Y11�IN W� O yaH V Cl WIC Gyp 0� m �^ rvnnry nnn _ m �\n n mn r_o rvnrvry a \\i4 CIS 'o $ ��o m' nn a�ati� .. �Q�� U aaJ aJJaJ eSSS SSm S 328 se �sSRs SSSS FGw V d6ci 66'1 _ OO d0� n V1 Mi 0'C 0110' Op0'0' N nn\nn ONeOmO Nm O\n0\n\nOnbe- QLL O�Z : n'nl�m bf�flC O' Cf� IV O'V1C Y1�:b'OY�N': ^ - mN^^O Y �p wLL� ��`, nn\rvn enbmmm mmnm\ne�n\rvmnne.. mmm�m C pm :'li lid OII IV O'm'^ �fY O'IY O'NO'Y n:d'cdd�: bYIA n O' �� nn•r_ rys:o.a aa:.e:Rss_�ms..... nes.m n- IIC--N-___e-n0'0'0'Fl� -- Yi0 f1.tI r,_ as:aa .ssaas .s essrssssssa�s�sm:. ss�sm �� ddeme dndNdd dl: m dui i:ddddddddddm :mmdd ^a7f: edddd ssax.s n s. .vamess:wsass ed sxa U dddddd eeeee ee 'o oddddod eeeee eonmo oo\.+m nm �eomrvrv000-nnor<mr _.G -_Yi add^nri doi -duiNr dui uidrr�ui uinod ry m SQU m�v eonmo Noo\nm nm ooervnoeo-bnor\mr �6viMndviri Nmnmry =,^5 E - ^^r �dddrw �a dnw'driddd ryr'd� u g Q m J 00 N 2 Wm J O WW NN O_Nn O o p O O nnn nf,rnnnnnn a 6Ym0_rvn\Nmr000-nnN $�5\\a\\ �+ en OW F o3w\\�SSSL�'v iTi$oN Q Q W W m WM_ J f W WO U U u p g mZ u u u d�- aas�.es=__� ssssse_---_m-mve_Nnr Q z en $gi nnn n nnnnnnn �(\\\\\v$S\\\.\\....a Ti df 1 o X' a w n�• Am A �m O 1�1 \ pS p=0 N 0 NVV 0 L� m m 1Z N P O 05 y m N r Ell v $ z O P Y P O N O V IJ Otll. Y BYO N � J O G N Wig D O D D D D •� o u 3 y "m g3ar egm �J OwC � C pp o Y O e + po S Y m 0 o tl 0 000 N Vp0 0 J ,O J 0 S Y o S eee WE n N -VN Y O 9v O O O O t SON N O N Y Y ?�(mj + �O T p ^ J Y e O O O Y S O S O OYN O SNS �+J O Y Y V S O S 00 SS P \xa m r r r r> Drr r r r r rr N +e ka m " m H v +^N m?p J O \ OY G O O N V + N VW. N - Y Y+ O Y Y1 YP m ?^ U X O ^m T N�e N.. R� � s qppq • O y�r� g 2�� 9 C � P t y A /7 I I I I I I n n DESIGN OF INLETS, STORM SEWER AND RIP RAP R 11 0 • HUDSON COURT � DESIGN OF INLETS, STORM SEWER AND RIP RAP u r i 1 1 C 10 CLIENT T=_r,_'.'=-',.; JOB NO. %DINC PROJECT ��� 2nJ CALCULATIONSFOR V;Lb Engineering Consultants MADEBYTATE& !8 CHECKED BY DATE -SHEET- OF zo --------------------------------------------------=----------------------- --------------------------------------------------------------------------- REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 09-17-1996 AT TIME 11:01:58 *** PROJECT TITLE : Ridgewood Hills - 2nd Filing HUDSON Ct. file: Hudson.out RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES �. ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ----------- INCH/HR CFS FEET FEET - 1.00 --MINUTES -----------------------------------------------=------- 51.70 57.32 59.32 NO 2.00 51.70 71.79 64.23 OK 3.00 41.20 83.06 79.76 OK 4.00 39.10 96.58 88.70 OK 5.00 39.10 96.58 89.30 OK OK MEANS WATER ELEVATION 1S LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 -------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM ID NO. -- ------------------------------------------------------------ DNSTREAM SHAPE ID NO. DIA(HIGH) (IN) (FT) DIA(HIGH) (IN) (FT) DIA(HIGH) (IN) (FT) WIDTH (FT) ,j 10.00 2.00 1.00 ROUND 23.39 24.00 24.00 0.00 20.00 3.00 2.00 ROUND 21.48 24.00 24.00 0.00 30.00 4.00 3.00 ROUND 24.14 27.00 24.00 0.00 40.00 5.00 4.00 ROUND 24.14 27.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED I ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. ' NUMBER CFS CFS FEET FPS FEET FPS FPS li --------------------------------------------------------------------- 10.0 51.7 55.6 1.53 20.09 1.96 16.53 16.46 2.88 V-HI 20.0 41.2 55.6 1.28 19.37 1.93 16.65 13.11 3.24 V-OK 30.0 39.1 38.6 2.00 12.45 1.92 13.31 12.45 0.00 V-OK 40.0 39.1 38.6 2.00 12.45 1.92 12.63 12.45 0.00 V-OK V FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------'__---------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM 10.00 6.00 62.27 57.29 7.52 -1.97 NO 20.00 6.00 77.83 62.35 3.23 7.44 OK 30.00 2.90 86.28 77.93 8.30 3.13 OK 40.00 2.90 86.28 86.28 8.30 8.30 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1.5 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS I SEWER ID NUMBER -----'--------------------------------------------------' SEWER SURCHARGED LENGTH LENGTH UPSTREAM CROWN ELEVATION DNSTREAM WATER ELEVATION UPSTREAM DNSTREAM CONDITION ------- FLOW FEET FEET FEET FEET FEET - 10.00 -FEET ----------------------------------------------------------- 83.00 0.50 64.27 59.29 64.23 59.32 JUMP 20.00 258.00 25.83 79.83 64.35 79.76 64.23 JUMP 30.00 288.00 288.00 88.28 79.93 88.70 79.76 PRSSIED 40.00 0.10 0.10 88.28 88.28 89.30 88.70 PRSSIED PRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 10.0 2.00 68.44 4.91 1.00 4.21 0.00 0.00 1.00 59.32 20.0 3.00 82.43 13.86 0.05 0.13 0.00 0.00 2.00 68.44 30.0 4.00 91.10 8.55 0.05 0.12 0.00 0.00 3.00 82.43 , 40.0 5.00 91.71 0.00 0.25 0.60 0.00 0.00 4.00 91.10 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 2z =------------------------------- UDINLET: INLET HYDAAULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG.DEPT. U.;OF, COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ............................... N DATE 06-14-1996 AT TIME 08:28:41 ** PROJECT TITLE: RIDGEWOOD HILLS 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: rINLET ID NUMBER: 408 l 0 0 INLET HYDRAULICS: IN A SUMP. V I M r GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 15.00 6.00 45.00 2.00 0.25 depth to flow depth. STREET LONGITUDINAL SLOPE (o) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 30.81 GUTTER FLOW DEPTH (ft) = 0.74 FLOW VELOCITY ON STREET (fps)= 3.99 FLOW CROSS SECTION AREA (sq ft)= 9.62 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(o)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 36.39 (cfs)= 38.30 (cfs)= 32.76 (cf s)= 5.54 (cfs)= 38.30 (cfs)= 32.76 (cfs) = 5.54 ----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 06-14-1996 AT TIME 08:34:20 *** PROJECT TITLE: RIDGEWOOD HILLS 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 410P- INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: 5.00 25.24 0.33 0.28 8.00 2.00 0.016 1.50 2.00 WATER SPREAD ON STREET (ft) = 5.56 GUTTER FLOW DEPTH (ft) = 0.24 FLOW VELOCITY ON STREET (fps)= 6.61 FLOW CROSS SECTION AREA (sq ft)= 0.43 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(-%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.95 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 2.90 0.82 2.08 2.90 0.81 2.09 I I 1�l 1 11 i -------------------------------------- --------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG.DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------=------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. N DATE 06-14-1996 AT TIME 08:38:22 ** PROJECT TITLE: RIDGEWOOD HILLS 2ND FILING VJ *** CURB OPENING INLET HYDRAULICS AND SIZING: V INLET ID NUMBER: 410 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 �I Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 17.13 GUTTER FLOW DEPTH (ft) = 0.47 FLOW VELOCITY ON STREET (fps)= 4.56 FLOW CROSS SECTION AREA (sq ft)= 3.06 GRATE CLOGGING FACTOR (o)= 50.00 CURB OPENNING CLOGGING FACTOR(o)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 19.77 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 14.00 FLOW INTERCEPTED (cfs)= 14.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 14.00 FLOW INTERCEPTED (cfs)= 14.00 CARRY-OVER FLOW (cfs)= 0.00 z5 RBD, Inc., Engineering Consultants Riprap Design Project. Ridgew000d Hills PUD 2nd Filing Designer. • JAM Project #. 014-054 Date: 06/15/96 Location: Hudson court Pipe dia.: 24 in Tailwater: 0.8 ft Discharge 51.7 cfs Max. V.• 5 ft/s I. Required riprap type: ' Q/D^2.5 = 9.14 SUPERCRITICAL DESIGN —use equiv. Da Da = 1.77 It Yn = 1.53 It Yt/Da = 0.45 Q/Da^1.5 22.05 d50 = 18 in —> Use Class 18 riprap ' 2. Expansion factor. 1 / [2 tan(theta)] = 1.8 3. Riprap length: At = Q/V = 10.34 ft2 L = 1 /[2tan(theta)]'(At/Yt - D) = 20 ft 4. Governing limits: L>3D= 6 ft <=20ft—>OK L < 10kD 22 ft => 20 ft —> OK 5. Maximum depth: Depth = 2d50 = 2 (18 in / 12) = 3 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width =3D=3(24in/12)= 6 ft Summary. Class 18 riprap Length = 20 It Depth = 3 ft Width = 6 ft 15-Jun-96 ,� Z& I 1 u 7 I 111 I IJ STRASBURG DRIVE DESIGN OF INLETS, STORM SEWER AND RIP RAP 11 *mm Engineering Consultants CLIENT � JOBNO. PROJECT n u-- � CALCULATIONS FOR y � S, . " i MADE BY DATE _n:_tg CHECKED BY- DATE SHEET OF -- ---- ------ - ------ ----- ------- ----------- - - - -- - ----- - ------------------ A F ------ ------ a. 0--r- t V.-2 E- /P_ 7, 7,40 121/� 0, I-C.0 0- 0-7 __03­1 -21(6. y(p -6.er:, ezi­ -7. p aP 15(0o -4- �I , x' Sip . 199A .... .. � r37 b:. - 7- 44Zi j J.175 0 __1P0.. 657rq7_ -- -- -- r73" ­_­ 5: 3 o a z 210. _Z� _q's.o- /s3 L 83 12 F rl..b _: I /9.v: SQ....... ------ ­72 - 1 9,:r zi It',. G jo-sS.- .. .... ..... ...... ... .. .. TMINC Engineering Consultants I I I I 0jr; CLIENT JOB NO. PROJECT 'D , CALCULATIONS FOR "_j - MADE iY-2EMNbATEI1(Dv4iCHECKED BY - DATE -SHEET-OF ti _ CLIENT JOB No. O/AIR INC �J �7 � PROJECT' aa/�i /' � CALCULATIONS FOR Engineering Consultants MADE BY �- DATE/ CHECKED BY- DATE SHEET OF -------- — --------------------- _ �Ccsss . i4.1 e,�c�. ----�.178. _..EJJr. _ _ cam_ cosy t� :17775c�OcnZ_M'- (d) Entrance Loises.—The loss of head at the entrance of a conduit is comparable with the loss in a short tube or in a sluice. If H is the head pro- ducing the discharge, C is the discharge coefficient, : and a is the area, the discharge, Q, is equal to - ------------------_�.__-------- - - --_----__.__-. __ Ca 2gH , and the velocity, v, is equal to , C 2g , or ■ z H— C2 2g) (12) Since H = h + h, (the velocity head plus the head lost at the entrance), equation (12) may be written: I 2b I 1 1 1 1 REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER . IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 10-08-1996 AT TIME 15:59:23 *** PROJECT TITLE : Ridgewood Hills 2nd Filing - STRASBURG Dr. *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA *-C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ----------- MINUTES INCH/HR CFS FEET FEET - 1.00 - -------------------------------------------------- 44.79 61.95 61.62 OK 2.00 44.79 65.95 62.97 OK 3.00 42.38 65.65 64.44 OK 4.00 24.00 71.03 66.97 OK 6.00 22.50 74.88 70.94 OK 7.00 19.54 90.92 83.27 OK 8.00 19.54 98.56 92.41 OK 9.00 19.54 98.89 93.48 OK 10.00 19.54 98.33 95.44 OK 11.00 15.86 98.33 96.80 OK 12.00 4.66 107.92 104.99 OK 13.00 4.66 107.92 105.38 OK 14.00 17.93 66.00 66.45 NO 15.00 14.13 71.60 67.73 OK 16.00 2.53 75.00 72.65 OK 17.00 11.60 83.42 76.04 OK 18.00 11.60 83.42 77.08 OK 19.00 5.50 68.82 64.42 OK 21.00 3.60 72.20 67.37 OK 23.00 3.60 75.12 67.93 OK 25.00 2.53 75.00 72.76 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 29 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ------------------------------------------------------------------------------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 10.00 2.00 1.00 ROUND 25.24 27.00 30.00 0.00 20.00 3.00 2.00 ROUND 24.72 27.00 30.00 0.00 30.00 4.00 3.00 ROUND 19.85 21.00 21.00 0.00 40.00 6.00 4.00 ROUND 16.54 18.00 21.00 0.00 60.00 7.00 6.00 ROUND 16.43 18.00 21.00 0.00 70.00 8.00 7.00 ROUND 17.18 18.00 21.00 0.00 80.00 9.00 8.00 ROUND 19.95 21.00 21.00 0.00 90.00 10.00 9.00 ROUND 19.95 21.00 21.00 0.00 100.00 11.00 10.00 ROUND 18.45 21.00 21.00 0.00 110.00 12.00 11.00 ROUND 10.19 15.00 15.00 0.00 120.00 13.00 12.00 ROUND 10.19 15.00 15.00 0.00 140.00 14.00 3.00 ROUND 22.00 24.00 24.00 0.00 150.00 15.00 14.00 ROUND 20.12 21.00 21.00 0.00 160.00 16.00 15.00 ROUND 8.29 15.00 15.00 0.00 250.00 25.00 16.00 ROUND 8.29 15.00 15.00 0.00 170.00 17.00 15.00 ROUND 12.65 15.00 15.00 0.00 180.00 18.00 17.00 ROUND 12.65 15.00 15.00 0.00 190.00 19.00 2.00 ROUND 11.49 15.00 15.00 0.00 210.00 21.00 19.00 ROUND 8.37 15.00 15.00 0.00 230.00 23.00 21.00 ROUND 8.37 15.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT 1D FLOW Q FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 10.0 44.8 71.2 1.44 15.34 2.20 9.80 9.12 2.49 V-OK 20.0 42.4 71.2 1.39 15.14 2.16 9.94 8.63 2.51 V-OK 30.0 24.0 28.0 1.25 13.08 1.64 18.10 9.98 2.14 V-OK 40.0 22.5 42.6 0.90 17.97 1.62 10.33 9.35 3.74 V-OK 60.0 19.5 37.7 0.89 15.82 1.57 9.91 8.12 3.32 V-OK 70.0 19.5 33.5 0.96 14.46 1.57 8.61 8.12 2.89 V-OK 80.0 19.5 22.5 1.26 10.52 1.57 8.61 8.12 1.70 V-OK 90.0 19.5 22.5 1.26 10.52 1.57 8.61 8.12 1.70 V-OK 100.0 15.9 22.5 1.08 10.13 1.46 9.10 6.59 1.86 V-OK 110.0 4.7 13.1 0.52 9.77 0.89 17.07 3.80 2.77 V-OK 120.0 4.7 13.1 0.52 9.77 0.89 5.02 3.80 2.77 V-OK 140.0 17.9 22.7 1.34 8.01 1.53 1.81 5.71 1.29 V-OK 150.0 14.1 15.9 1.29 7.46 1.39 8.72 5.87 1.19 V-OK 160.0 2.5 12.3 0.38 7.90 0.65 22.02 2.06 2.64 V-OK 250.0 2.5 12.3 0.38 7.90 0.65 3.94 2.06 2.64 V-OK 170.0 11.6 18.3 0.72 15.80 1.19 9.62 9.45 3.61 V-OK 180.0 11.6 18.3 0.72 15.80 1.19 9.62 9.45 3.61 V-OK 190.0 5.5 11.2 0.62 9.09 0.95 5.49 4.48 2.30 V-OK 210.0 3.6 17.1 0.39 11.05 0.76 4.58 2.93 3.67 V-OK 230.0 3.6 17.1 0.39 11.05 0.76 4.58 2.93 3.67 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS Z 8 ' REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 1 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER 1 IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ------------------------------------------------------------------------------ 1 *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 01-17-1997 AT TIME 10:59:57 ' *** PROJECT TITLE : Ridgewood Hills 2nd Filing - STRASBURG Dr. 1 *** RETURN PERIOD OF FLOOD IS 100 YEARS (Design flow hydrology not calculated using UDSEWER) ' *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS 1 ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR ------------------------------------------------------------------------------- CFS FEET FEET 1.00 1A4.79 61.95 61.62 OK 1 2.00 44.79 65.95 62.97 OK 3.00 42.38 65.65 64.44 OK 4.00 24.00 71.03 66.97 OK 6.00 22.50 74.88 70.94 OK 7.00 19.54 90.92 83.47 OK 1 8.00 19.54 98.56 92.41 OK 9.00 19.54 98.94 93.53 OK 10.00 19.54 98.56 95.32 OK 11.00 15.86 98.33 96.92 OK ' 12.00 4.66 107.92 104.99 OK 13.00 4.66 107.92 105.38 OK 14.00 17.93 66.00 66.45 NO 1 15.00 16.00 14.13 2.53 71.60 75.00 67.73 72.65 OK OK 17.00 11.60 83.42 76.04 OK 18.00 11.60 83.42 77.40 OK 19.00 5.50 68.82 64.42 OK 21.00 3.60 72.20 67.93 OK 1 23.00 3.60 75.12 67.97 OK 25.00 2.53 75.00 72.76 OK 26.00 5.50 98.33 97.44 OK 27.00 5.50 98.33 97.50 OK ' OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ----- ---- ------------------------------------------------------------ SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING 10.00 3.00 60.77 59.60 2.68 -0.15 NO 20.00 3.00 61.73 60.89 1.42 2.56 NO 30.00 3.10 65.33 62.48 3.95 1.42 NO 40.00 7.20 69.32 65.53 3.81 3.75 OK 60.00 5.63 81.90 69.71 7.27 3.42 OK 70.00 4.44 90.84 81.90 5.97 7.27 OK 80.00 1.76 91.96 91.04 5.23 5.77 OK 90.00 1.90 93.75 92.16 3.06 5.03 OK 100.00 2.00 95.14 94.19 1.44 2.62 NO 110.00 4.10 104.10 95.64 2.57 1.44 NO 120.00 4.10 104.10 104.10 2.57 2.57 OK 140.00 1.00 62.73 62.20 1.27 1.45 NO 150.00 1.00 65.25 63.08 4.60 1.17 NO 160.00 3.63 72.00 65.72 1.75 4.63 OK 250.00 3.63 72.00 71.64 1.75 2.11 OK 170.00 8.00 74.85 67.17 7.32 3.18 OK 180.00 8.00 74.85 74.05 7.32 8.12 OK 190.00 3.00 63.47 61.97 4.10 2.73 OK 210.00 7.00 67.17 63.67 3.78 3.90 OK 230.00 7.00 67.17 67.16 6.70 3.79 OK 270.00 2.00 94.57 94.57 2.51 2.51 OK 260.00 2.00 94.57 94.45 2.51 2.86 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1.5 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 10.00 39.00 0.00 63.27 62.10 62.97 61.62 JUMP 20.00 28.00 25.77 64.23 63.39 64.44 62.97 JUMP 30.00 91.96 45.03 67.08 64.23 66.97 64.44 JUMP 40.00 52.64 0.00 71.07 67.28 70.94 66.97 JUMP 60.00 216.46 0.00 83.65 71.46 83.47 70.94 JUMP 70.00 201.36 0.00 92.59 83.65 92.41 83.47 JUMP 80.00 52.35 0.00 93.71 92.79 93.53 92.41 JUMP 90.00 83.61 0.00 95.50 93.91 95.32 93.53 JUMP 100.00 47.42 32.68 96.89 95.94 96.92 95.32 JUMP 110.00 206.37 12.06 105.35 96.89 1D4.99 96.92 JUMP 120.00 0.10 0.10 105.35 105.35 105.38 104.99 PRSSIED 140.00 53.27 53.27 64.73 64.20 66.45 64.44 PRSSIED 150.00 217.00 161.87 67.00 64.83 67.73 66.45 JUMP 160.00 173.00 48.14 73.25 66.97 72.65 67.73 JUMP 250.00 10.00 0.00 73.25 72.89 72.76 72.65 JUMP 170.00 96.00 0.00 76.10 68.42 76.04 67.73 JUMP 180.00 10.00 10.00 76.10 75.30 77.40 76.04 PRSSIED 190.00 50.00 24.77 64.72 63.22 64.42 62.97 JUMP 210.00 50.00 0.00 68.42 64.92 67.93 64.42 JUMP 230.00 0.10 0.00 68.42 68.41 67.97 67.93 JUMP 270.00 0.10 0.10 95.82 95.82 97.50 97.44 PRSSIED 260.00 6.00 6.00 95.82 95.70 97.44 95.32 PRSSIED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT I y . 1 n n I 1 ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ---------------------------------------------------------------------- % (FT) (FT) (FT) (FT) 10.00 3.00 60.77 59.60 2.68 -0.15 NO 20.00 3.00 61.73 60.89 1.42 2.56 NO 30.00 3.10 65.33 62.48 3.95 1.42 NO 40.00 7.20 69.32 65.53 3.81 3.75 OK 60.00 5.63 81.70 69.51 7.47 3.62 OK 70.00 4.44 90.84 81.90 5.97 7.27 OK 80.00 2.00 91.91 91.05 5.23 5.76 OK 90.00 2.00 93.87 92.11 2.71 5.03 OK 100.00 2.00 95.14 94.07 1.44 2.51 NO 110.00 4.10 104.10 95.64 2.57 1.44 NO 120.00 4.10 104.10 104.10 2.57 2.57 OK 140.00 1.00 62.73 62.20 1.27 1.45 NO 150.00 1.00 65.25 63.08 4.60 1.17 NO 160.00 3.63 72.00 65.72 1.75 4.63 OK 250.00 3.63 72.00 71.64 1.75 2.11 OK 170.00 8.00 74.85 67.17 7.32 3.18 OK 180.00 8.00 74.85 74.84 7.32 7.33 OK 190.00 3.00 63.47 61.97 4.10 2.73 OK 210.00 7.00 66.61 63.67 4.34 3.90 OK 230.00 7.00 67.17 67.16 6.70 3.79 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1.5 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION - FEET FEET FEET FEET FEET' FEET 10.00 39.00 ------------------------------------------------ 0.00 63.27 62.10 62.97 61.62 JUMP 20.00 28.00 25.77 64.23 63.39 64.44 62.97 JUMP 30.00 91.96 45.03 67.08 64.23 66.97 64.44 JUMP 40.00 52.64 0.00 71.07 67.28 70.94 66.97 JUMP 60.00 216.46 1.07 83.45 71.26 83.27 70.94 JUMP 70.00 201.36 0.00 92.59 83.65 92.41 83.27 JUMP 80.00 43.15 0.00 93.66 92.80 93.48 92.41 JUMP 90.00 88.16 0.00 95.62 93.86 95.44 93.48 JUMP 100.00 53.42 32.60 96.89 95.82 96.80 95.44 JUMP 110.00 206.37 9.07 105.35 96.89 104.99 96.80 JUMP 120.00 0.10 0.10 105.35 105.35 105.38 104.99 PRSS'ED 140.00 53.27 53.27 64.73 64.20 66.45 64.44 PRSS'ED 150.00 217.00 161.87 67.00 64.83 67.73 66.45 JUMP 160.00 173.00 48.14 73.25 66.97 72.65 67.73 JUMP 250.00 10.00 0.00 73.25 72.89 72.76 72.65 JUMP 170.00 96.00 0.00 76.10 68.42 76.04 67.73 JUMP 180.00 0.10 0.10 76.10 76.09 77.08 76.04 PRSS'ED 190.00 50.00 24.77 64.72 63.22 64.42 62.97 JUMP 210.00 42.00 0.00 67.86 64.92 67.37 64.42 JUMP 230.00 0.10 0.00 68.42 68.41 67.93 67.37 JUMP PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS 3� ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 10.0 2.00 64.26 1.35 1.00 1.29 0.00 0.00 1.00 61.62 20.0 3.00 65.59 0.27 0.05 0.06 0.25 1.00 2.00 64.26 30.0 4.00 68.51 1.34 1.02 1.58 0.00 0.00 3.00 65.59 40.0 6.00 72.30 3.71 0.05 0.07 0.00 0.00 4.00 68.51 60.0 7.00 84.29 11.94 0.05 0.05 0.00 0.00 6.00 72.30 70.0 8.00 93.43 9.06 0.08 0.08 0.00 0.00 7.00 84.29 80.0 9.00 94.50 0.70 0.36 0.37 0.00 0.00 8.00 93.43 90.0 10.00 96.46 1.63 0.32 0.33 0.00 0.00 9.00 94.50 100.0 11.00 97.47 0.32 1.02 0.69 0.00 0.00 10.00 96.46 110.0 12.00 105.21 7.72 0.05 0.01 0.00 0.00 11.00 97.47 120.0 13.00 105.61 0.00 1.78 0.40 0.00 0.00 12.00 105.21 140.0 14.00 66.96 0.33 0.00 0.00 0.25 1.03 3.00 65.59 150.0 15.00 68.26 1.28 0.05 0.03 0.00 0.00 14.00 66.96 160.0 16.00 72.71 3.93 0.00 0.00 0.25 0.52 15.00 68.26 250.0 25.00 72.83 0.00 1.78 0.12 0.00 0.00 16.00 72.71 170.0 17.00 77.43 7.75 1.02 1.42 0.00 0.00 15.00 68.26 180.0 18.00 78.47 0.00 0.00 0.00 0.25 1.04 17.00 77.43 190.0 19.00 64.73 0.46 0.05 0.02 0.00 0.00 2.00 64.26 210.0 21.00 67.51 2.77 0.05 0.01 0.00 0.00 19.00 64.73 230.0 23.00 68.07 0.53 0.25 0.03 0.00 0.00 21.00 67.51 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. ;; o1 m I 1 -------------------------------------------='- 10.0 2.00 64.26 1.35 1.00 1.29 0.00 0.00 1.00 61.62 20.0 3.00 65.59 0.27 0.05 0.06 0.25 1.00 2.00 64.26 30.0 4.00 68.51 1.34 1.02 1.58 0.00 0.00 3.00 65.59• 40.0 6.00 72.30 3.71 0.05 0.07 0.00 0.00 4.00 68.51 60.0 7.00 84.49 12.14 0.05 0.05 0.00 0.00 6.00 72.30 70.0 8.00 93.43 8.86 0.08 0.08 0.00 0.00 7.00 84.49 80.0 9.00 94.55 0.75 0.36 0.37 0.00 0.00 8.00 93.43 90.0 10.00 96.34 1.48 0.30 0.31 0.00 0.00 9.00 94.55 100.0 11.00 97.60 0.33 1.36 0.92 1.50 0.01 10.00 96.34 110.0 12.00 105.21 7.60 0.05 0.01 0.00 0.00 11.00 97.60 120.0 13.00 105.61 0.00 1.78 0.40 0.00 0.00 12.00 105.21 140.0 14.00 66.96 0.33 0.00 0.00 0.25 1.03 3.00 65.59 150.0 15.00 68.26 1.28 0.05 0.03 0.00 0.00 14.00 66.96 160.0 16.00 72.71 3.93 0.00 0.00 0.25 0.52 15.00 68.26 250.0 25.00 72.83 0.00 1.78 0.12 0.00 0.00 16.00 72.71 170.0 17.00 77.43 7.75 1.02 1.42 0.00 0.00 15.00 68.26 180.0 18.00 78.79 0.32 0.00 0.00 0.25 1.04 17.00 77.43 190.0 19.00 64.73 0.46 0.05 0.02 0.00 0.00 2.00 64.26 210.0 21.00 68.07 3.33 0.05 0.01 0.00 0.00 19.00 64.73 230.0 23.00 68.10 0.00 0.25 0.03 0.00 0.00 21.00 68.07 270.0 27.00 97.81 0.00 0.02 0.01 1.25 0.05 26.00 97.75 260.0 26.00 97.75 0.04 1.36 0.42 0.25 0.95 10.00 96.34 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT 1S NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (1N) (FT) (FT) ------------------------------------------------------------------------------- 10.00 2.00 1.00 ROUND 25.24 27.00 30.00 0.00 20.00 3.00 2.00 ROUND 24.72 27.00 30.00 0.00 ' 30.00 4.00 3.00 ROUND 19.85 21.00 21.00 0.00 40.00 6.00 4.00 ROUND 16.54 18.00 21.00 0.00 60.00 7.00 6.00 ROUND 16.43 18.00 21.00 0.00 70.00 8.00 7.00 ROUND 17.18 18.00 21.00 0.00 ' 80.00 9.00 8.00 ROUND 20.44 21.00 21.00 0.00 90.00 10.00 9.00 ROUND 20.14 21.00 21.00 0.00 100.00 110.00 11.00 12.00 10.00 11.00 ROUND ROUND 18.45 10.19 21.00 15.00 21.00 15.00 0.00 0.00 , 120.00 13.00 12.00 RAND 10.19 15.00 15.00 0.00 140.00 14.00 3.00 ROUND 22.00 24.00 24.00 0.00 150.00 15.00 14.00 ROUND 20.12 21.00 21.00 0.00 160.00 16.00 15.00 ROUND 8.29 15.00 15.00 0.00 250.00 25.00 16.00 ROUND 8.29 15.00 15.00 0.00 ' 170.00 17.00 15.00 ROUND 12.65 15.00 15.00 0.00 180.00 18.00 17.00 ROUND 12.65 15.00 15.00 0.00 190.00 19.00 2.00 ROUND 11.49 15.00 15.00 0.00 210.00 21.00 19.00 ROUND 8.37 15.00 15.00 0.00 ' 230.00 23.00 21.00 ROUND 8.37 15.00 15.00 0.00 270.00 27.00 26.00 ROUND 12.40 15.00 15.00 0.00 260.00 26.00 10.00 ROUND 12.40 15.00 15.00 0.00 ' DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. ' FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ' - --- 10.0 ---- ---- 44.8 71.2 ---- 1.44 ----- 15.34 ---- 2.20 ---- 9.80 ---- ---- 9.12 2.49 ---- V-OK 20.0 42.4 71.2 1.39 15.14 2.16 9.94 8.63 2.51 V-OK 30.0 40.0 24.0 28.0 22.5 42.6 1.25 0.90 13.08 17.97 1.64 1.62 18.10 10.33 9.98 2.14 9.35 3.74 V-OK V-OK ' 60.0 19.5 37.7 0.89 15.82 1.57 9.91 8.12 3.32 V-OK 70.0 19.5 33.5 0.96 14.46 1.57 8.61 8.12 2.89 V-OK 80.0 19.5 21.1 1.33 9.95 1.57 8.61 8.12 1.53 V-OK 90.0 19.5 21.9 1.29 10.29 1.57 8.61 8.12 1.63 V-OK 100.0 15.9 22.5 1.08 10.13 1.46 9.10 6.59 1.86 V-OK ; 110.0 4.7 13.1 0.52 9.77 0.89 17.07 3.80 2.77 V-OK 120.0 4.7 13.1 0.52 9.77 0.89 5.02 3.80 2.77 V-OK 140.0 17.9 22.7 1.34 8.01 1.53 1.81 5.71 1.29 V-OK 150.0 14.1 15.9 1.29 7.46 1.39 8.72 5.87 1.19 V-OK , 160.0 2.5 12.3 0.38 7.90 0.65 22.02 2.06 2.64 V-OK 250.0 2.5 12.3 0.38 7.90 0.65 3.94 2.06 2.64 V-OK 170.0 11.6 18.3 0.72 15.80 1.19 9.62 9.45 3.61 V-OK 180.0 11.6 18.3 0.72 15.80 1.19 9.62 9.45 3.61 V-OK 190.0 5.5 11.2 0.62 9.09 0.95 5.49 4.48 2.30 V-OK ' 210.0 3.6 17.1 0.39 11.05 0.76 4.58 2.93 3.67 V-OK 230.0 3.6 17.1 0.39 11.05 0.76 4.58 2.93 3.67 V-OK 270.0 5.5 9.2 0.70 7.81 0.95 2.53 4.48 1.83 V-OK 260.0 5.5 9.2 0.70 7.81 0.95 5.49 4.48 1.83 V-OK ' FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM X -- (FT) (FT) (FT) (FT) ' ' REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 ' DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH ' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ' *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 10-08-1996 AT TIME 16:14:30 *** PROJECT TITLE : ' *** RETURN PERIOD OF FLOOD IS 5 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY MINUTES INCH/HR ----------- PEAK FLOW ELEVATION CFS FEET ELEVATION FEET -------------------------------------------------- 15.00 11.60 71.60 67.91 OK 17.00 11.60 83.42 76.04 OK 18.00 11.60 83.42 ,T 76.42 OK ' OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER ----- SEWER --------- REQUIRED --------- SUGGESTED --------- EXISTING ----- ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGN) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ' -------------------------------------------------------------------- 170.00 17.00 15.00 ROUND 12.65 15.00 15.00 0.00 180.00 18.00 17.00 ROUND 12.65 15.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. ' FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ' ID FLOW 0 FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER ------------------------------------------------------------------------------- CFS CFS FEET FPS FEET FPS FPS ' 170.0 180.0 11.6 11.6 18.3 18.3 0.72 0.72 15.80 15.80 1.19 1.19 9.62 9.62 9.45 9.45 3.61 V-OK 3.61 V-OK S-A ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS , - - --- --- ---- 170.0 11.6 18.3 0.72 --- 15.80 - ---- --- -- 1.19 9.62 9.45 3.61 V-OK 180.0 11.6 18.3 0.72 15.80 1.19 9.62 9.45 3.61 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ' ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 170.00 8.00 74.85 67.17 7.14 3.18 OK ' 180.00 8.00 74.85 74.77 7.32 7.22 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- ' SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET ' - -- -- -FEET - ---- 170.00 96.00 0.00 ----' 76.10 ------ " "---- ---- 68.42 76.04 67.91 JUMP 180.00 1.00 1.00 76.10 76.02 76.42 76.04 PRSSIED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ' ' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS - ------ ------- ---- UPST MANHOLE SEWER -------- ------ ------ ------- JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ---------------------------------------------------------------------- 170.0 17.00 77.43 8.10 1.02 1.42 0.00 0.00 15.00 67.91 180.0 18.00 77.81 0.03 0.25 0.35 0.00 0.00 17.00 77.43 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. , LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. ' FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 11 t - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i w UDINLET:'INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. ,U•OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORAD0.......................:.. N DATE 07-26-1996 AT TIME 11:27:10 ** PROJECT TITLE: RIDGEWOOD 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 419 INLET HYDRAULICS: IN A SUMP. 1b d p J GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= ' INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= ' Note: The sump depth is additional STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (°s) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW.CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (a)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 7.00 6.00 45.00 2.00 0.25 depth to flow depth.-�----� t 0.40 2.00 0.013 1.50 2.00 19.00'ef - 0.51'* - .G r: o•�L c� 2.98 3.74 50.00 20.00 IDEAL INTERCEPTION CAPACITY (cfs)= 14.31 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 11.20 FLOW INTERCEPTED (cfs).= 11.20 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.20 FLOW INTERCEPTED (cfs)= 11.20 CARRY-OVER FLOW (cfs)= 0.00 i-I�ow L.N� f l 1=C�.- 3; ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 04-16-1996 AT TIME 12:15:41 *** PROJECT TITLE: RIDGEWOOD 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 422 ( cc c� ems(' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: Toe sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.96 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.50 FLOW INTERCEPTED (cfs)= 5.50 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.50 FLOW INTERCEPTED (cfs)= 5.50 CARRY-OVER FLOW (cfs)= 0.00 p.Q. 4 z2_ GHo�= I n t- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG-DEPT. U:OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------- ---------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ............................. N DATE 07-26-1996 AT TIME 11:34:28 t** PROJECT TITLE: RIDGEWOOD 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 422 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.80 STREET CROSS SLOPE (.) = 2.00 STREET MANNING N = 0.013 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) - 12.34 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 3.34 FLOW CROSS SECTION AREA (sq ft)= 1.65' GRATE CLOGGING FACTOR (.)= 50.00 ' CURB OPENNING CLOGGING FACTOR(.)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.70 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.50 FLOW INTERCEPTED (cfs)= 5.50 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.50 FLOW INTERCEPTED (cfs)= 5.50 CARRY-OVER FLOW (cfs)= 0.00 ------------------------------------------------------ ------------ - - - - -- - -- 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY , DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-04-1996 AT TIME 14:27:55 *** PROJECT TITLE: RIDGEWOOD HILLS 2ND FILING *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 420k \ 00 C J INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.41 INLET GRATE LENGTH (ft)= 2.75 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 0.00 GRATE OPENING AREA RATIO (%) = 0.35 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE STREET CROSS SLOPE STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER -SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: 7.32 2.00 0.016 2.00 2.00 8.00 0.33 7.38 0.81 20.00 20.00 DESIGN DISCHARGE (cfs)= 6.00 IDEAL GRATE INLET CAPACITY (cfs)= 3.12 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.50 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.50 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 420 4 -38 I L [l I 1 INLET HYDRAULICS: IN A SUMP.".' 42D Q GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.96 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.50 FLOW INTERCEPTED (cfs)= 2.68 CARRY-OVER FLOW (cfs)= 0.82 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.50 FLOW INTERCEPTED (cfs)= 2.37 CARRY-OVER FLOW (cfs)= 1.13 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= AN es 2.50 2.68 5.18 0.82 \ 2.50 Avq 2.37 / J 4.87 1.13 S.oZs ------------------------------------------------------------------------?J-�--- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ , USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 09-16-1996 AT TIME 13:29:55 *** PROJECT TITLE: RIDGEWOOD HILLS PUD 2ND FILING *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 420 ` p INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.41 INLET GRATE LENGTH (ft)= 2.75 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 1.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 7.32 STREET CROSS SLOPE 00 = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 2.19 GUTTER FLOW DEPTH (ft) = 0.17 FLOW VELOCITY ON STREET (fps)= 5.74 FLOW CROSS SECTION AREA (sq ft)= 0.17 GRATE CLOGGING FACTOR (%)= 20.00 CURB OPENNING CLOGGING FACTOR(°s)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 1.00 IDEAL GRATE INLET CAPACITY (cfs)= 1.00 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.80 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 420,q INLET HYDRAULICS: ON A GRADE. I 4-v 11 I I I 1 I i 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 REQUIRED CURB OPENING LENGTH (ft)= 14.63 IDEAL CURB OPENNING EFFICIENCY = 0.37 ACTURAL CURB OPENNING EFFICIENCY = 0.30 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.00 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.00 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.20 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.20 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 1.00 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.00 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 1.00 CARRYOVER FLOW BY DENVER UDFCD METHOD: (cfs)= 0.00 FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.80 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 0.80 CARRYOVER FLOW (cfs)= 0.20 c 41 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-16-1996 AT TIME 13:32:53 *** PROJECT TITLE: RIDGEWOOD HILLS PUD 2ND FILING *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 420 ` © p INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.41 INLET GRATE LENGTH (ft)= 2.75 INLET GRATE TYPE =Curved. Vane Grate NUMBER OF GRATES = 1.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 4.00 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 0.97 GUTTER FLOW DEPTH (ft) = 0.08 FLOW VELOCITY ON STREET (fps)= 2.58 FLOW CROSS SECTION AREA (sq ft)= 0.04 GRATE CLOGGING FACTOR (°s)= 20.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 0.10 IDEAL GRATE INLET CAPACITY (Cfs)= 0.10 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 0.10 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.08 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 420 INLET HYDRAULICS: ON A GRADE. 1 1 f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 REQUIRED CURB OPENING LENGTH (ft)= 4.64 IDEAL CURB OPENNING EFFICIENCY = 0.89 ACTURAL CURB OPENNING EFFICIENCY = 0.78 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.00 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.00 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.02 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.02 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 0.10 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.10 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 0.10 CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.08 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 0.08 CARRYOVER FLOW (cfs)= 0.02 4z 43 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-16-1996 AT TIME 13:41:54 *** PROJECT TITLE: RIDGEWOOD 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 423 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 0.80 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 18.06 GUTTER FLOW DEPTH (ft) = 0.53 FLOW VELOCITY ON STREET (fps)= 3.38 FLOW CROSS SECTION AREA (sq ft)= 3.43 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 16.68 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 11.60 FLOW INTERCEPTED (cfs)= 11.60 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.60 FLOW INTERCEPTED (cfs)= 11.60 CARRY-OVER FLOW (cfs)= 0.00 '- { t- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,t. e. UDINLET: INLET HYDARULICS AND SIZING 1 DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD IF ---------------------------------------------------------------------- - SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ............................. ON DATE 04-21-1996 AT TIME 22:04:38 t** PROJECT TITLE: RIDGEWOOD HILLS PUD 2ND FILING *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 424 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.35 INLET GRATE LENGTH (ft)= 1.98 INLET GRATE TYPE =Parallel Bar P-1-7/8 NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 1.00 GRATE OPENING AREA RATIO (.) = 0.90 IS THE INLET GRATE NEXT TO A CURB ?-- NO Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (.) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.94 GUTTER FLOW DEPTH (ft) = 0.34 FLOW VELOCITY ON STREET (fps)= 2.87 FLOW CROSS SECTION AREA (sq ft)= 1.32 GRATE CLOGGING FACTOR (.)= 50.00 CURB OPENNING CLOGGING FACTOR(.)= 10.00 ' INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 3.80 IDEAL GRATE INLET CAPACITY (cfs)= 14.99 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 3.80 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 4-80— CARRY-OVER FLOW (cfs)= 0.00 7 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- - USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON DATE 09-16-1996 AT TIME 13:54:10 *** PROJECT TITLE: RIDGEWOOD HILL PUD 2ND FILING *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 421 1-, j Q C-2� C�.¢.�►1�- v INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.41 INLET GRATE LENGTH (ft)= 2.75 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 1.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 7.32 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 7.53 GUTTER FLOW DEPTH (ft) = 0.32 FLOW VELOCITY ON STREET (fps)= 7.28 FLOW CROSS SECTION AREA (sq ft)= 0.73 GRATE CLOGGING FACTOR (%)= 20.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 5.30 IDEAL GRATE INLET CAPACITY (cfs)= 3.89 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 3.64 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 3.11 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 421 A INLET HYDRAULICS: ON A GRADE. 21-6 4ZL GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 REQUIRED CURB OPENING LENGTH (ft)= 29.43 IDEAL CURB OPENNING EFFICIENCY = 0.19 ACTURAL CURB OPENNING EFFICIENCY = 0.16 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.32 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 1.66 FLOW INTERCEPTED (cfs)= 0.26 CARRY-OVER FLOW (cfs)= 1.40 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.19 FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 0.26 1.93 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 5.30 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 3.64 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.26 TOTAL FLOW INTERCEPTED (cfs)= 3.90 CARRYOVER FLOW (cfs)= 1.40 BY DENVER UDFCD METHOD: nn ^ FLOW INTERCEPTED BY GRATE INLET (cfs)= 3.11 3 �T FLOW INTERCEPTED BY CURB OPENING (cfs)= �= 0.26 TOTAL FLOW INTERCEPTED (cfs)= 3.37 / CARRYOVER FLOW (cfs)= 1.93 IJ r I r I fl [l I f -4- ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 09-16-1996 AT TIME 13:57:59 *** PROJECT TITLE: RIDGEWOOD HILL PUD 2ND FILING *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 421 (3 x op INLET HYDRAULICS: ON A GRADE. U GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.41 INLET GRATE LENGTH (ft)= 2.75 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 1.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (.) = 7.32 STREET CROSS SLOPE (.) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 2.78 GUTTER FLOW DEPTH (ft) = 0.22 FLOW VELOCITY ON STREET (fps)= 6.80 FLOW CROSS SECTION AREA (sq ft)= 0.24 GRATE CLOGGING FACTOR (.)= 20.00 CURB OPENNING CLOGGING FACTOR(.)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE IDEAL GRATE INLET CAPACITY BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs) = 1.67 (cfs) = 1.66 (cfs) = 1.58 (cfs) = 1.33 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 421 6 INLET HYDRAULICS: ON A GRADE. / V V3 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 REQUIRED CURB OPENING LENGTH (ft)= 15.88 IDEAL CURB OPENNING EFFICIENCY = 0.34' ACTURAL CURB OPENNING EFFICIENCY = 0.28 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.03 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.09 FLOW INTERCEPTED (cfs)= 0.03 CARRY-OVER FLOW (cfs)= 0.07 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.34 FLOW INTERCEPTED (cfs)= 0.02 CARRY-OVER FLOW (cfs)= 0.31 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 1.67 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.58 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.03 TOTAL FLOW INTERCEPTED (cfs)= 160 CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: 0..07 \ n FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.33 LOS( I FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.02/ J TOTAL FLOW INTERCEPTED (cfs)= 1.36 CARRYOVER FLOW (cfs)= 0.31 I [1 I i 1 I -------------------------------------------------------------------- ------- , UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- - USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ............................. ON DATE 09-16-1996 AT TIME 14:00:24 *** PROJECT TITLE: RIDGEWOOD HILL PUD 2ND FILING- *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 421 `c>c> C-� J 021-1 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.41 INLET GRATE LENGTH (ft)= 2.75 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 1.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 4.00 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 1.09 GUTTER FLOW DEPTH (ft) = 0.11 FLOW _VELOCITY ON STREET (fps) = 3.25 FLOW CROSS SECTION AREA (sq ft)= 0.06 GRATE CLOGGING FACTOR (%)= 20.00 CURB OPENNING CLOGGING FACTOR (%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 0.20 IDEAL GRATE INLET CAPACITY (cfs)= 0.20 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 0.20 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.16 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 421 �©(=> INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.30 REQUIRED CURB OPENING LENGTH (ft)= 5.42 IDEAL CURB OPENNING EFFICIENCY = 0.82 ACTURAL CURB OPENNING EFFICIENCY = 0.70 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.00 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.00 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.04 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.04 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 0.20 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.20 ' FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 0.20 CARRYOVER FLOW BY DENVER UDFCD METHOD: (cfs)= 0.00 FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.16 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 0.16 CARRYOVER FLOW (cfs)= 0.04 u I i li F Sv I RBD, Inc., Engineering Consultants Riprap Design Project: Ridgew000d Hills PUD 2nd Filing Designer: JAM Project A 014-054 Date: 06/15/96 Location: Strasburg Drive Pipe dia.: 30 in Tailwater.1 ft Discharge 44.79 cfs Max. V.- 5 ft/s I. Required riprap type: Q/D12.5 = 4.53 < 6 --> use design charts D = 2.50 ft 1.53 YUD = 0.40 Q/D11.5 = 11.33 d50 = 12 in —> Use Class 12 riprap 2. Expansion factor: 1 / [2 tan(theta)] = 2.7 3. Riprap length: At = O V = 8.958 ft2 L = 1/[2tan(theta)]'(At/Yt - D) = 17 ft 4. Governing limits. L>3D= 8 ft <=17ft—>OK L<10D= 25 ft => 17ft—>OK Maximum depth: . Depth =2d50=2(12in/12)= 2 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width = 3D = 3 (30 in /12) = 8 ft Summary: Class 12 riprap Length = 17 ft Depth = 2 ft Width = 8 ft I c2 I i 11 AVONDALE AND TIFLIN COURT j DESIGN OF INLETS, STORM SEWER AND RIP RAP 1 i i 1 1 i 11 fl 1 12 _ 575 CLIENT , � 5 JOB NO. CD 1 6— - O SL. INC PROJECT y� CALCULATIONSFOR � )7.-) Engineering Consultants MADE BYaL\L. DATE dd //,,��� CHECKED BY DATE SHEET OF moo. Idln3v- G _ l -- S. Zo '_ /cam /yhC LZt+f _Zo Z_ - - Z� J3Zi71.zo i - 79 /&o S I , I. ; f i ---------- 1 r 5�� ------------ REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT ' DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 09-17-1996 AT TIME 11:32:39 *** PROJECT TITLE : Ridgewood Hills 2nd Filing - AVONDALE to TIFLIN file: tiflin.out ' *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS' ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET - - ---- ----- - ----- 1.00 20.20 75.25 ----- 74.60 OK 2.00 20.20 88.02 76.20 OK 3.00 20.20 86.80 77.95 OK 4.00 16.50 86.49 79.79 OK 5.00 11.70 101.30 93.84 OK 6.00 8.60 101.28 94.29 OK 7.00 8.60 101.28 94.38 OK 8.00 7.40 86.29 84.99 OK 9.00 7.40 86.29 85.13 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH -ID NO. ID NO. (IN) (FT) (IN) (FT) ------------------- -------------------------------------- (IN) (FT) (FT) 10.00 2.00 1.00 ROUND 22.23 24.00 24.00 0.00 20.00 3.00 2.00 ROUND 22.23 24.00 24.00 0.00 30,00 4.00 3,00 ROUND 17.36 18,00 18,00 0.00 40.00 5.00 4.00 ROUND 13.79 15.00 18.00 0.00 50.00 6.00 5.00 ROUND 16.70 18.00 18.00 0.00 60.00 7.00 6.00 ROUND 17.17 18.00 18.00 0.00 80.00 8.00 3.00 ROUND 13.86 15.00 15.00 0.00 90.00 9.00 8.00 ROUND 13.86 15.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. i FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ---------------------------------------------------------------------- 10.0 20.2 24.8 1.37 8.81 1.61 7.45 6.43 1.40 V-OK 20.0 20.2 24.8 1.37 8.81 1.61 7.45 6.43 1.40 V-OK 30.0 16.5 18.2 1.12 11.69 1.41 11.73 9.34 1.98 V-OK 40.0 11.7 23.9 0.74 13.45 1.29 10.20 6.62 3.11 V-OK 50.0 8.6 10.5 1.03 6.65 1.14 8.15 4.87 1.21 V-OK 60.0 8.6 9.8 1.09 6.24 1.14 5.99 4.87 1.08 V-OK 80.0 7.4 9.2 0.85 8.31 1.07 7.66 6.03 1.67 V-OK 90.0 7.4 9.2 0.85 8.31 1.07 6.59 6.03 1.67 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ----- ----- ----------------- ------- ----- -------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) 10.00 ------------------------------------------------ 1.20 74.59 72.85 11.43 0.40 NO 20.00 1.20 76.34 74.68 8.46 11.34 OK 30.00 3.00 78.38 76.92 6.61 8.38 OK 40.00 5.15 92.55 78.38 7.25 6.61 OK 50.00 1.00 93.15 92.65 6.63 7.15 OK 60.00 1.00 93.15 93.15 6.63 6.63 OK 80.00 2.00 83.43 82.79 1.61 2.76 OK 90.00 2.00 83.43 83.43 1.61 1.61 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1.5 FEET SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS -------------------------- SEWER ------------------------------------------------- SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 10.00 144.74 0.00 76.59 74.85 76.20 74.60 JUMP 20.00 137.97 0.00 78.34 76.68 77.95 76.20 JUMP 30.00 48.52 0.00 79.88 78.42 79.79 77.95 JUMP 40.00 275.19 11.97 94.05 79.88 93.84 79.79 JUMP 50.00 50.00 2.18 94.65 94.15 94.29 93.84 JUMP 60.00 0.10 0.00 94.65 94.65 94.38 94.29 JUMP 80.00 32.00 28.80 84.68 84.04 84.99 77.95 JUMP - 90.00 0.10 0.10 84.68 84.68 85.13 84.99 PRSSIED PRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW 11 I SX I*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT 10.0 2.00 76.84 1.60 1.00 0.64 0.00 0.00 1.00 74.60 20.0 3.00 78.59 1.60 0.23 0.15 0.00 0.00 2.00 76.84 30.0 4.00 81.14 2.24 0.00 0.00 0.25 0.30 3.00 78.59 40.0 5.00 94.52 13.35 0.05 0.03 0.00 0.00 4.00 81.14 50.0 6.00 94.65 0.11 0.05 0.02 0.00 0.00 5.00 94.52 60.0 7.00 94.75 0.00 0.25 0.09 0.00 0.00 6.00 94.65 80.0 8.00 85.56 6.39 1.02 0.58 0.00 0.00 3.00 78.59 90.0 9.00 85.70 0.00 0.25 0.14 0.00 0.00 8.00 85.56 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I I I a REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY .....................................,........ ON DATA 07-26-1996 AT TIME 10:21:34 *** PROJECT TITLE : RIDGEWOOD HILLS 2ND FILING - WOODROW *** OF FLOOD IS 100 YEARS ' RETURN PERIOD *** SUMMARY OF HYDRAULICS AT MANHOLES , ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ' MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------ 3.00 7.40 86.56 83.64 OK 8.00 7.40 86.29 84.50 OK 9.00 7.40 86.29 84.65 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS w NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGHY WIDTH ID NO. ID NO. (IN) (FT) (1N) (FT) (IN) (FT) (FT) -------------------------------------------------------------------- 80.00 8.00 3.00 ROUND 13.86 15.00 15.00 0.00 90.00 9.00 8.00 ROUND 13.86 15.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES , DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED I --------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 80.0 7.4 9.2 0.85 8.31 1.07 6.59 6.03 1.67 V-OK 90.0 7.4 9.2 0.85 8.31 1.07 6.59 6.03 1.67 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---- --- - -------- --- - --- -------- - -'---------- ---------'-------- ------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) 80.00 2.00 83.43 82.79 1.61 2.52 NO 90.00 2.00 83.43 83.43 1.61 1.61 NO IOK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ' ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION - FEET ------------------------------------------------------------------------------- FEET FEET FEET FEET FEET 80.00 32.00 0.00 84.611 114.04 84.50 113.64 JUMP 90.00 0.10 0.00 84.68 84.68 84.65 84.50 JUMP PRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ----------------------------------------------------------------------- 80.0 8.00 85.07 0.85 1.02 0.58 0.00 0.00 3.00 83.64 90.0 9.00 85.21 0.00 0.25 0.14 0.00 0.00 8.00 85.07 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. m ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- - USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON DATE 09-16-1996 AT TIME 14:05:18 *** PROJECT TITLE: RIDGEWOOD HILL PUD 2NND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 500 /QQ INLET HYDRAULICS: IN A SUMP. U GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 6.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M = 0.60 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 16.94 GUTTER FLOW DEPTH (ft) = 0.51 FLOW VELOCITY ON STREET (fps)= 2.83 FLOW CROSS SECTION AREA (sq ft)= 3.04 GRATE CLOGGING FACTOR (.)= 20.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 12.27 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 8.60 FLOW INTERCEPTED (cfs)= 8.60 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 8.60 FLOW INTERCEPTED (cfs)= 8.60 CARRY-OVER FLOW (cfs)= 0.00 G •74 t------------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. N DATE 09-16-1996 AT TIME 14:09:23 ** PROJECT TITLE: RIDGEWOOD HILL PUD 2NND FILING CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 501 LO INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE, (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.31 GUTTER FLOW DEPTH (ft) = 0.45 FLOW VELOCITY ON STREET (fps)= 2.60 " FLOW CROSS SECTION AREA (sq ft)= 2.22 GRATE CLOGGING FACTOR (%)= 20.00 CURB OPENNING CLOGGING FACTOR(°.)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.75 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.80 FLOW INTERCEPTED (cfs)= 5.80 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.80 FLOW INTERCEPTED (cfs)= 5.80 CARRY-OVER FLOW (cfs)= 0.00 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-16-1996 AT TIME 14:11:40 *** PROJECT TITLE: RIDGEWOOD HILL PUD 2NND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 502 ,c)Q [/l! a&%--% INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (t) = 0.50 STREET CROSS SLOPE (t) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 16.75 GUTTER FLOW DEPTH (ft) = 0.50 FLOW VELOCITY ON STREET (fps)= 2.57 FLOW CROSS SECTION AREA (sq ft)= 2.97 GRATE CLOGGING FACTOR (t)= 20.00 CURB OPENNING CLOGGING FACTOR(t)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 10.19 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 7.60 FLOW INTERCEPTED (cfs)= 7.60 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 7.60 FLOW INTERCEPTED (cfs)= 7.60 CARRY-OVER FLOW (cfs)= 0.00 6Z ---------------------------------------------------------- ------------------- d, UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------- i's- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO................................ N DATE 09-16-1996 AT TIME 14:12:39 I** PROJECT TITLE: RIDGEWOOD HILL PUD 2NND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 50JE3 10a) v � J — INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 r LATERAL WIDTH OF DEPRESSION (ft)= .2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (o) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.91 GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= 2.74 FLOW CROSS SECTION AREA (sq ft)= 2.70 GRATE CLOGGING FACTOR (%)= 20.00 CURB OPENNING CLOGGING FACTOR(o)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 10.04 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 7.40 FLOW INTERCEPTED (cfs)= 7.40 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 7.40 FLOW INTERCEPTED (cfs)= 7.40 CARRY-OVER FLOW (cfs)= 0.00 r It RBD, Inc., Engineering Consultants Riprap Design Project: Ridgew000d Hills PUD 2nd Filing Designer. • JAM Project #. 014-054 Date: 06/15/96 Location: Tiflin Court Pipe dia.: 24 in Tailwater.• 0.8 ft Discharge 20.2 cfs Max. V: 5 ft/s 1. Required riprap type: Q/1312.5 = 3.57 < 6 —> use design charts D = 2.00 ft 1.53 Yt/D = 0.40 Q/D"1.5 = 7.14 d50 = 6 in —> Use Class 6 riprap 2. Expansion factor. 1 / [2 tan(theta)] = 3.7 3. Riprap length: At = QN = 4.04 ft2 L = 1/[2tan(theta)]*(At/Yt - D) = 11 ft 4. Governing limits. L>3D= 6ft <=11ft—>OK L<10D= 20ft =>11ft—>OK 5. Maximum depth:. Depth =2d50=2(6in/12)= 1 ft 6. Bedding., Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width =3D=3(24in/12)= 6 ft Summary. Class 6 riprap Length = 11 ft Depth = 1 ft Width = 6 ft I 111 7 1) It SEDGEWICK DRIVE DESIGN OF INLETS, STORM SEWER AND RIP RAP 13 r No Text REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 09-17-1996 AT TIME 11:56:44 *** PROJECT TITLE : Ridgewood Hills 2nd Filing - Sedgwick Dr. file: sedgwick.out *** RETURN PERIOD OF FLOOD IS 2 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 9.80 9.20 7.92 OK 2.00 9.80 11.52 9.18 OK 3.00 4.50 11.46 10.10 OK 4.00 4.50 11.46 10.15 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH). WIDTH ------------------------------------------------------------------------------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 10.00 2.00 1.00 ROUND 17.54 18.00 18.00 0.00 20.00 3.00 2.00 ROUND 13.10 18.00 15.00 0.00 30.00 4.00 3.00 ROUND 13.10 18.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW G FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. -NUMBER CFS CFS FEET FPS FEET FPS FPS 10.0 9.8 10.5 1.15 6.77 1.21 6.44 5.55 1.12 V-OK 20.0 4.5 6.5 0.77 5.70 0.89 10.55 3.67 1.25 V-OK 30.0 4.5 6.5 0.77 5.70 0.89 4.84 3.67 1.25 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ---------------------------------------------------------------------- % (FT) (FT) (FT) (FT) 10.00 1.00 7.97 7.70 2.05 -0.00 NO 20.00 1.00 8.57 8.21 1.64 2.06 OK 30.00 1.00 8.57 8.57 1.64 1.64 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1.5 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET -------------------------------------------------------------------- 10.00 27.00 0.00 9.47 9.20 9.18 7.92 JUMP 20.00 36.00 36.00 9.82 9.46 10.10 9.18 PRSSIED 30.00 0.10 0.10 9.82 9.82 10.15 10.10 PRSSIED PRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUSCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY --ID- -- NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT -------------------------------------------------------------------- 10.0 2.00 9.65 1.26 1.00 0.48 0.00 0.00 1.00 7.92 20.0 3.00 10.30 0.17 0.05 0.01 0.05 0.47 2.00 9.65 30.0 4.00 10.36 0.00 0.25 0.05 0.00 0.00 3.00 10.30 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 11 t---------------------------------------------------------- 108 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL.ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -----------------------------------------------------------=------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. N DATE 05-16-1996 AT TIME 16:22:20 ** PROJECT TITLE: RIDGWOOD HILLS PUD 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 309 INLET HYDRAULICS: IN A SUMP. ',Z, cr-jol- GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in) = 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.85 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.28 GUTTER FLOW DEPTH (ft) = 0.33 FLOW VELOCITY ON STREET (fps)= 5.48 FLOW CROSS SECTION AREA (sq ft)= 1.18 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(°s)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.75 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 6.50 FLOW INTERCEPTED (cfs)= 6.50 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 6.50 FLOW INTERCEPTED (cfs)= 6.50 CARRY-OVER FLOW (cfs)= 0.00 ----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 05-16-1996 AT TIME 16:23:07 *** PROJECT TITLE: RIDGWOOD HILLS PUD 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 310 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 5.00 6.00 45.00 2.00 0.25 depth to flow depth. STREET LONGITUDINAL SLOPE (°s) = 3.85 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 8.00 GUTTER FLOW DEPTH (ft) = 0.29 FLOW VELOCITY ON STREET (fps)= 4.99 FLOW CROSS SECTION AREA (sq ft)= 0.76 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 7.74 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.80 FLOW INTERCEPTED (cfs)= 3.80 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.80 FLOW INTERCEPTED (cfs)= 3.80 CARRY-OVER FLOW (cfs)= 0.00 t' ------------------------------------------------------------------------------ UDINLET: INLET HYDAAULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD - ----------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 06-06-1996 AT TIME 17:02:15 ** PROJECT TITLE: ridgwood hills pud 2nd filing *** CURB OPENING INLET HYDRAULICS AND SIZING: �ooyr INLET ID NUMBER: 309 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. 'r STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.85 STREET CROSS SLOPE (.) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 17.88 GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= 7.24 FLOW CROSS SECTION AREA (sq ft)= 3.32 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 10.02 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 23.90v FLOW INTERCEPTED (cfs)= 8.52 CARRY-OVER FLOW (cfs)= 15.38 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 23.90 FLOW INTERCEPTED (cfs)= 8.52 CARRY-OVER FLOW (cfs)= 15.38 I Q�------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................-: ON DATE 01-08-1997 AT TIME 09:24:38 *** PROJECT TITLE: RIDGEWOOD HILL 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 310 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (t) = 3.85 STREET CROSS SLOPE 00 = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 19.00 GUTTER FLOW DEPTH (ft) = 0.55 FLOW VELOCITY ON STREET (fps)= 7.62 FLOW CROSS SECTION AREA (sq ft)= 3.78 GRATE CLOGGING FACTOR (a)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 10.58 (cfs) = 28.80 = 3'1.3 -S. (cfs) = 8.47 (cfs) = 20.330 (cfs) = 28. 80 Sew p jJ 31� (cfs)= 8.47 (cfs)= 20.33 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD cf-------------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. m DATE 06-06-1996 AT TIME 17:03:15 *** PROJECT TITLE: ridgwood hills pud 2nd filing *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 310 �t INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 i SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.85 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.88 GUTTER FLOW DEPTH (ft) = 0.42 FLOW VELOCITY ON STREET (fps)= 6.54 FLOW CROSS SECTION AREA (sq ft)= 2.34 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW 9.46 (cfs)= 15.40 FLOW INTERCEPTED (cfs)= 8.05 _ CARRY-OVER FLOW (cfs)= 7.35 y� BY DENVER UDFCD METHOD:_ DESIGN FLOW (cfs)= 15.40 FLOW INTERCEPTED (cfs)= 8.05 CARRY-OVER FLOW (cfs)= 7.35 TUDINC. CLIENT JOB NO. 3 �7 k PROJECT 12? �=•ti--Ci% Z � CALCULATIONS FOR Engineering Consultants MADE BYa/_nATE—;'74&ECKED BY- DATE SHEET OF A division of The Sear -Brown Group �C.%�2 iC— JF..GTi.:N r` %��.5l�n•' /biN� 3�0 12il3 r �1 +,sz 12./�3 12..c4- 3- t•sZ 11Z-G} 3-[v• AUL- r� �3 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Ridgewood hill pud 2nd design pt 310 @ 6x -�� a � V j A" - WEIR COEF. 2.700 STA ELEV o 0.0 12.63 118.5 12.04 188.5 12.67 ELEVATION DISCHARGE (feet) (cfs) i+BS,r Is.1. t a. v . 12.04 0.00 12.14 0.94 12.24 5.33 12.34 14.68 0�� =iz.4z Fbr z®•� = . -s 12.44 30.13 ��=iz.ag r0 37 �� :� b\�L `.• 12.54 52.64 RBD, Inc., Engineering Consultants Riprap Design Project: Ridgew000d Hills PUD 2nd Filing Designer. JAM Project A 014-054 Date: 06/15/96 Location: Sedgewick Pipe dia.: 18 in Tailwater: 0.6 ft Discharge 9.8 cfs Max. V: 5 ft/s 1. Required nprap type: Q/D^2.5 = 3.56 < 6 —> use design charts D = 1.50 It 1.53 Yt/D = 0.40 Q/1311.5 = 5.33 d50 = 6 in —> Use Class 6 riprap 2. Expansion factor.• 1 / [2 tan(theta)] = 0.4 3. Riprap length: At = CvV = 1.96 ft2 L = 1/[2tan(theta)]*(At/Yt - D) = 1 It 4. Governing limits. L> 31) = 5 ft increase length to 5 ft L<10D= 15ft =>1ft—>OK 5. Maximum depth:. Depth =2d50=2(6in/12)= 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width = 3D = 3 (18 in /12) = 5 ft Summary. - Class 6 riprap Length = 5 It Depth = 1 It Width = 5 ft 7 i 1' i R t u it STONEHAM COURT DESIGN OF INLETS, STORM SEWER AND RIP RAP 14 ----------------------------------------------------------=------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 06-14-1996 AT TIME 08:51:55 *** PROJECT TITLE: RIDGEWOOD HILLS 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 312 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 6.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.85 STREET CROSS SLOPE (o) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.88 GUTTER FLOW DEPTH (ft) = 0.36 FLOW VELOCITY ON STREET (fps)= 5.84 FLOW CROSS SECTION AREA (sq ft)= 1.54 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 10.58 (cfs) = 8.90 (cfs) = 8.90 (cfs) = 0.00 (cfs)= 8.90 (cfs)= 8.90 (cfs)= 0.00 I 'rr TOWNEIOME DESIGN OF INLETS, STORM SEWER AND RIPRAP 1 t 1 i e-J ■MING Engineering Consultants �8 CLIENT JOB NO. PROJECT CALCULATIONS FOR , MADE BY_DATE CHECKED BY DATE SHEET OF _ ........... ........ _ .. _ _ P-1 AA 7. t `� - 7s,.®o.. .:.. 1:�1•'j.� ..:: : Qo.::go.o3,7v•8GrM :: S _---So.2�' :.: ro:3 �: :--.: So..:::)13:.go..:$.oZ.Q,�•?J� rQ.¢" .-.:::t8". __.:.-��. --8q,e2� ro.3 60 -M-8c; z gq:Yh Yid.2 _. -nb .l 2.I-7T0,92,0.LS 7¢,a u 79 REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 09-11-1996 AT TIME 13:30:27 *** PROJECT TITLE "Z7 *** RETURN ioo PERIOD OF FLOOD IS OE YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER ----------- AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 ------------------------------------------------------ 30.50 51.00 56.15 NO 2.00 30.50 68.40 60.65 OK 3.00 30.50 72.50 68.90 OK 4.00 19.20 75.00 72.54 OK 5.00 10.30 80.29 77.81 OK 6.00 10.30 89.00 86.93 OK 7.00 10.30 89.70 87.93 OK 8.00 1030.00 89.70 88.06 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(H1GH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) -------------------------------------------------------------------- 10.00 2.00 1.00 ROUND 18.30 21.00 21.00 0.00 20.00 3.00 2.00 ROUND 18.30 21.00 21.00 0.00 30.00 4.00 3.00 ROUND 17.51 18.00 18.00 0.00 40.00 5.00 4.00 ROUND 12.45 15.00 18.00 0.00 50.00 6.00 5.00 ROUND 12.10 15.00 18.00 0.00 60.00 7.00 6.00 ROUND 14.81 15.00 18.00 0.00 70.00 8.00 7.00 ROUND 14.81 15.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 10.0 30.5 44.1 1.07 19.81 1.69 12.81 12.68 3.68 V-OK 20.0 30.5 44.1 1.07 19.81 1.69 12.81 12.68 3.68 V-OK 30.0 19.2 20.7 1.14 13.33 1.44 17.51 10.86 2.22 V-OK 40.0 10.3 27.6 0.64 14.47 1.23 12.37 5.83 3.68 V-OK 50.0 10.3 29.8 0.61 15.33 1.23 6.64 5.83 4.00 V-OK 60.0 10.3 17.4 0.83 10.25 1.23 6.64 5.83 2.20 V-OK 70.0 10.3 17.4 0.83 10.25 1.23 6.64 5.83 2.20 V-OK FROUDE NUMBER=O INDICATES THAT A ---------------------------------------------------------------------- PRESSURED FLOW OCCURS SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM %..... (FT) ---------------------------------------- (FT) (FT) (FT) 10.00 7.72 58.96 51.00 7.69 -1.75 NO 20.00 7.72 67.21 58.96 3.54 7.69 OK 30.00 3.88 71.10 67.20 2.40 3.80 OK 40.00 6.86 76.58 71.09 2.21 2.41 OK 50.00 8.02 85.70 76.58 1.80 2.21 OK 60.00 2.72 86.70 85.70 1.50 1.80 OK 70.00 2.72 86.70 86.70 1.50 1.50 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ----- SEWER ----- ---------- SEWER SURCHARGED ----- --------- CROWN ELEVATION ----- --------- ' WATER ELEVATION ---- FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET 10.00 -FEET 103.17 44.10 60.71 52.75 60.65 56.15 JUMP 20.00 106.89 0.00 68.96 60.71 68.90 60.65 JUMP 30.00 100.39 33.52 72.60 68.70 72.54 68.90 JUMP 40.00 80.03 19.66 78.08 72.59 77.81 72.54 JUMP 50.00 113.70 0.00 87.20 78.08 86.93 77.81 JUMP 60.00 36.80 16.32 88.20 87.20 87.93 86.93 JUMP 70.00 0.10 0.00 88.20 88.20 88.06 87.93 JUMP PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS r� ------------------------------------------------------------------------------ UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 10.0 2.00 63.15 4.50 1.00 2.50 0.00 0.00 1.00 56.15 20.0 3.00 71.40 8.20 0.02 0.05 0.00 0.00 2.00 63.15 30.0 4.00 74.37 2.53 0.24 0.44 0.00 0.00 3.00 71.40 40.0 5.00 78.34 3.87 0.18 0.09 0.00 0.00 4.00 74.37 50.0 6.00 87.46 9.10 0.04 0.02 0.00 0.00 5.00 78.34 60.0 7.00 88.46 0.29 1.35 0.71 0.00 0.00 6.00 87.46 70.0 8.00 88.59 0.00 0.25 0.13 0.00 0.00 7.00 88.46 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 8Z ------------------------------------------------------------------------------� UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 06-14-1996 AT TIME 09:00:24 *** PROJECT TITLE: RIDGEWOOD HILLS 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 414 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 7.00 6.00 45.00 2.00 0.25 depth to flow depth. STREET LONGITUDINAL SLOPE M) = 2.50 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 16.56 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 4.71 FLOW CROSS SECTION AREA (sq ft)= 2.18 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR (%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 12.00 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 10.30 FLOW INTERCEPTED (cfs)= 10.30 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 10.30 FLOW INTERCEPTED (cfs)= 10.20 CARRY-OVER FLOW (cfs)= 0.10 1 11 i 1 Ll 11 I i S3 -------------------------------------------------- --------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------- --=----------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ............................. N DATE 06-14-1996 AT TIME 09:02:31 ** PROJECT TITLE: RIDGEWOOD HILLS 2ND FILING *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 415 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 6.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 2.50 STREET CROSS SLOPE (%) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 16.09 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 4.64 FLOW CROSS SECTION AREA (sq ft)= 2.07 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 10.69 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= flow depth. 9.60 9.60 0.00 9.60 9.08 0.52 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 06-14-1996 AT TIME 09:08:32 *** PROJECT TITLE: RIDGEWOOD HILLS 2ND FILING *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 4 L@ S INLET HYDRAULICS: IN A SUMP. U` GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.38 INLET GRATE LENGTH (ft)= 2.44 INLET GRATE TYPE =Nonstandard Grate NUMBER OF GRATES = 2.00 SUMP DEPTH ON GRATE (ft)= 0.00 GRATE OPENING AREA RATIO (%) = 0.00 IS THE INLET GRATE NEXT TO A CURB ?-- NO Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (0 = 2.50 STREET CROSS SLOPE (o) = 1.50 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 16.09 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 4.64 FLOW CROSS SECTION AREA (sq ft)= 2.07 GRATE CLOGGING FACTOR (%)= 20.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 9.60 IDEAL GRATE INLET CAPACITY (cfs)= 0.00 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 9.60 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 9.60 RBD, Inc., Engineering Consultants Riprap Design Project: Ridgew000d Hills PUD 2nd Filing Designer. JAM Project A 014-054 Date: 06/15/96 Location: Townhomes Pipe dia.: 21 in Tailwater: 0.7 ft Discharge 30.8 cfs Max. V.• 5 ft/s 1. Required riprap type: Q/D12.5 = 7.60 SUPERCRITICAL DESIGN —use equiv. Da Da = 1.64 ft Yn = 1.53 ft YVDa = 0.43 Q/Da"1.5 14.67 d50 = 12 in —> Use Class 12 riprap2. Expansion factor., 1 / [2 tan(theta)] = 1.8 3. Riprap length: At = Q/V = 6.16 ft2 L = 1/[2tan(theta)]•(At/Yt - D) = 13 ft 4. Governing limits: L>3D= 5 ft <=13ft—>OK L < 10kD 18 ft => 13 It OK 5. Maximum depth:, Depth = 2d50 = 2 (12 in / 12) = 2 ft 6. Bedding. Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width = 3D = 3 (21 in /12) = 5 It Summary: Class 12 riprap Length = 13 ft Depth = 2 ft Width = 5 ft i i e15-Jun-96 e ��N L r�1 CLIENT �(� JOB NO. O %Dtw PROJECT F—V- , CALCULATJONSFOR 1r Engineering Consultants MADE BY � DATE —9/-ZP— CHECKED BY DATE SHEET OF R-3409 Gutter Inlet Frame and Grate Heavy Duty Total Weight 340 Pounds 29; I61 f 271 j Ili I Z 30i FZ.To 'CT 7-4/4.A `U 4S ._ .... . 1 --- — ---- - ------ --- --- - - r A M R-2574 Catch Basin Frame, Convex Grate Heavy Duty Total Weight 420 Pounds 237� - R-2577 Series Catch Basin Frames, Convex Grates Heavy Duty Catalog F Wt. No. Inches Lbs, R-2577-1 4 315 R-2577 7 360 R-2577-A 8 415 R-2577-B 9 420 R-2577-C 10 430 R-2578 Catch Basin Frame, Convex Grate Heavy Duty Total Weight 315 Pounds Furnished standard with ground bearing surfaces. Furnished with convex grate as shown or with flat grate. When ordering, specify which is required. R-2579 Catch Basin Frame, Convex Grate Heavy Duty Total Weight 300 Pounds / Furnished standard with convex grate. Also available with flat grate. When ordering, specify type I' required. Not recommended for bicycle trof- fic. For safety standards see pages 88 to 93. r� arslN�l�l�l�l�l��ata r Not recommended for bicycle traffic. For safety standards see pages 88 to 93. SWALE DESIGN 15 own DESIGN POINT 311 At Cross Section for Triangular Channel v Project Description Project File cAhaestadlfmw1014-054.fm2 Worksheet design point 311 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.009000 ft/ft Depth 1.40 ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 14.36 cfs = coo I =1 1.40 ft 1 V N H 1 NTS 06/13/96 10:49:58 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755.1666 FlowMaster v5.13 Page 1 of 1 �U 1 DESIGN POINT 311 Worksheet for Triangular Channel , Project Description Project File c:lhaestad\fmw\014-054.fm2 Worksheet design point 311 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth ' Input Data Mannings Coefficient 0.060 , Channel Slope 0.009000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V ' Discharge 14.36 cfs Results Depth 1.40 ft Flow Area 7.89 ft2 , Wetted Perimeter 11.58 ft Top Width 11.24 ft Critical Depth 0.96 ft Critical Slope 0.069846 f 1ft ' Velocity 1.82 fus Velocity Head 0.05 ft Specific Energy 1.46 ft ' Froude Number 0.38 Flow is subcritical. ' 06/13/96 FlowMaster v5.13 , 10:50:24 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DESIGN POINT 411A Cross Section for Triangular Channel Cp Project Description Project File c.\haestadlfmw\014-054.fm2 Worksheet DESIGN POINT 411A Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.080000 f ift Depth 0.52 ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H: V Discharge 3.06 cfs 0.52 ft 1 VD H 1 NTS os/13/96 11:03:54 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 ,(203) 755-1666 FlowMaster v5.13 Page 1 of 1 DESIGN POINT 411A _/6-1 Worksheet for Triangular Channel Project Description Project File c:\haestad\fmw\014-054.fm2 Worksheet DESIGN POINT 411A Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.080000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 3.06 cfs Results Depth 0.52 ft Flow Area 1.09 fF Wetted Perimeter 4.31 ft Top Width 4.18 ft Critical Depth 0.52 ft Critical Slope 0.085833 ft/ft Velocity 2.80 fUs Velocity Head 0.12 ft Specific Energy 0.64 ft Froude Number 0.97 Flow is subcritical. 06n 3f96 11:0427 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 , Page 1 of 1 013 DESIGN POINT 411 Cross Section for Triangular Channel Project Description Project File cAhaestad\fmw\014-054.fm2 Worksheet DESIGN POINT 411 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.024000 ft/ft Depth 0.65 ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 3.06 cfs 0.65 ft 1 V H 1 NTS 06/13/96 . ' 11:07:41 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 q¢1 DESIGN POINT411.:--- G% Worksheet for Triangular Channel ' ' Project Description Project File c:lhaestad\fmw\014-054.fm2 Worksheet DESIGN POINT 411 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth ' Input Data 0.060 ' Mannings Coefficient Channel Slope 0.024000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V ' Discharge 3.06 cfs = , •.� o X \ ' Results Depth 0.65 ft Flow Area 1.71 ftz , Wetted Perimeter 5.40 ft Top Width 5.24 ft Critical Depth 0.52 ft Crttical Slope 0.085833 ft/ft , Velocity 1.79 ft/s Velocity Head 0.05 ft Specific Energy 0.70 ft ' Froude Number 0.55 Flow is subcrltical. ' 06/13/96 FlowMaster v5.13 , 11:07:22 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DESIGN POINT 406 Cross Section for Triangular Channel Project Description Project File c:lhaestadlfmw1014-054.fm2 Worksheet design point 406 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.061400 ft/ft Depth 0.57 ft Left Side Slope 6.000000 H : V Right Side Slope 6.000000 H : V Discharge 5.20 cfs = C�,00 X ' 5 1 e_ 1 i 1 1 06/13/96 ' 10:48:53 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 0.57 ft 1 V N H 1 NTS FlowMaster v5.13 Page 1 of 1 DESIGN POINT 406��. Worksheet for Triangular Channel ' Project Description Project File c:\haestad\fmw\014-054.fm2 Worksheet design point 406 Flow Element Triangular Channel , Method Manning's Formula Solve For Channel Depth , Input Data Mannings Coefficient 0.060 ' Channel Slope 0.061400 ft/ft Left Side Slope 6.000000 H : V Right Side Slope 6.000000 H : V , Discharge 5.20 cfs Results Depth 0.57 ft Flow Area 1.97 ft2 ' Wetted Perimeter 6.97 ft Top Width 6.87 ft Critical Depth 0.54 ft Critical Slope 0.082564 ft/ft ' Velocity 2.64 ft/s Velocity Head 0.11 ft Specific Energy 0.68 ft , Froude Number 0.87 Flow is subcritical. ' 1 1 06/13/96 FlowMaster v5.13 , 10:49:26 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 DESIGN POINT 303 ' Cross Section for Triangular Channel Project Description Project File c:lhaestadlfmw\014-054.fm2 Worksheet Flow Element DESIGN POINT3o3 Triangular Channel Method Manning's Formula ' Solve For Channel Depth Section Data ' Mannings Coefficient 0.060 Channel Slope 0.010000 f tft Depth 0.55 ft ' Left Side Slope 10.000000 H : V Right Side Slope 10.000000 H : V Discharge 3.20 cfs t 0.55 ft VD ' H 1 NTS 9 4- 06n 3196 ' 11:19:23AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 9� DESIGN POINT 303 Worksheet for Triangular Channel , Project Description Project File cAhaestad\fmw\014-054.fm2 Worksheet DESIGN POINT 3W S 0 3 Flow Element Triangular Channel ' Method Manning's Formula Solve For Channel Depth , Input Data Mannings Coefficient 0.060 ' Channel Slope 0.010000 ft/ft Left Side Slope 10.000000 H : V Right Side Slope 10.000000 H : V ' Discharge 3.20 cfs . o o A z ' Results Depth 0.55 ft Flow Area 3.06 ft2 ' Wetted Perimeter 11.11 ft Top Width 11.06 ft Critical Depth 0.36 ft Critical Slope 0.093201 ft/ft ' Velocity 1.05 fds Velocity Head 0.02 ft Specific Energy 0.57 ft , Froude Number 0.35 Flow is subcritical. , t 06/13/96 - FlowMaster v5.13 , 11:19:03 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 IDESIGN POINT 312 Cross Section for Triangular Channel Project Description Project File c:\haestad\fmw\014-054.fm2 ' Worksheet DESIGN POINT 312 Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.060000 ft(ft ' Depth 0.84 ft Left Side Slope 5.000000 H : V Right Side Slope Discharge 5.000000 H : V 11.84 cfs = Q oo X , ? z' 06/13/96 11:23:03 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 0.84 ft 1 VD H 1 NTS FlowMaster v5.13 Page 1 of 1 DESIGN POINT 312 Worksheet for Triangular Channel Project Description Project File c:thaestad\fmw1014-054.fm2 Worksheet DESIGN POINT 312 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.060000 ft/ft Left Side Slope 5.000000 H : V Right Side Slope 5.000000 H : V Discharge 11.84 cfs Results Depth 0.84 ft Flow Area 3.53 ftz Wetted Perimeter 8.56 ft Top Width 8.40 ft Critical Depth 0.81 ft Critical Slope 0.072781 ftfft Velocity 3.36 ft/s Velocity Head 0.18 ft Specific Energy 1.01 ft Froude Number 0.91 Flow is subcritical. 06/13/96 11:23:40 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 iD."3 qL 1 1 t FlowMaster v5.13 , Page 1 of 1 /b/ DESIGN POINT 311A Cross Section for Triangular Channel ' Project Description Project File c:\haestadlfmw1014-054.fm2 ' Worksheet Flow Element DESIGN POINT 311A Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data ' Mannings Coefficient 0.060 Channel Slope 0.006000 ft/ft Depth 1.83 ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 23.58 cfs 1 1 06/13/96 01:02:41 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1.83 ft 1 VD H 1 NTS FlowMaster .v5.13 Page 1 of 1 adz , DESIGN POINT 311 A Worksheet for Triangular Channel , , Project Description Project File c:\haestad\fmw\014-054.fm2 Worksheet DESIGN POINT 311A Flow Element Triangular Channel , Method Manning's Formula Sohn For Channel Depth Input Data 0.060 , Mannings Coefficient Channel Slope 0.006000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V ' Discharge 23.58 cfs ' Results Depth 1.83 ft Flow Area 13.33 ftz ' Wetted Perimeter 15.05 ft Top Width 14.60 ft Critical Depth 1.17 ft Critical Slope 0.065377 ft/ft ' Velocity 1.77 ft/s Velocity Head 0.05 ft Specific Energy 1.87 ft Froude Number 0.33 Flow is subcritical. ' r L JI I 1 f 06/13/96 FlowMaster v5.13 , 01:03:11 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Cross Section Cross Section for Triangular Channel Project Description Project File c:lhaestadlfmw1014054.fm2 Worksheet 100 YEAR OVERFLOW CHANNEL DES. PT. 501 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.050000 f 1ft Depth 0.76 ft Left Side Slope 10.000000 H : V Right Side Slope 10.000000 H : V Discharge 16.50 cfs t 0gn 1 /96 ' 01:57:06 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 76 ft 1 VD H 1 NTS FlowMaster v5.13 Page 1 of 1 OVERFLOW CHANNEL, 100 YR STRM, DP 501 Worksheet for Triangular Channel Project Description Project File c:\haestadlfmw\014054.fm2 Worksheet 100 YEAR OVERFLOW CHANNEL DES. PT. 501 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.050000 ft/ft Left Side Slope 10.000000 H : V Right Side Slope 10.000000 H : V Discharge 16.50 cfs Results v Depth 0.76 ft Flow Area 5.72 ft2 ' Wetted Perimeter 15.20 ft Top Width 15.12 ft Critical Depth 0.70 ft Critical Slope ' 0.074902 ft/ft Velocity 2.89 ft/s Velocity Head 0.13 ft Specific Energy 0.89 ft , Froude Number 0.83 Flow is subcritical. , J I 09/11/96 FlowMaster v5.13 01:58:05 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 , n ' Cross Section Cross Section for Triangular Channel Project Description Project File c:lhaestadlfmw\014054.fm2 Worksheet Flow Element 100 YEAR OVERFLOW CHANNEL DP 503 Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.040000 ft/ft Depth 0.67 ft Left Side Slope 7.000000 H : V Right Side Slope 7.000000 H : V Discharge 7.40 cfs 0.67 ft 1� V .H 1 NTS 09r11/96 ' 02:39:09 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 l�3 SWMM MODELING 16 I I ra� 411 400 LEGEND 1 41 40 , 3 400 Basin Element ao Conveyance39 , Element F 39 Detention Pond 1 Element 1 11 50 i Direct Connection ' Element u7 500 ' 51 60 510 600 ' SWMM SCHEMATIC RIDGEWOOD HILL PUD 2ND FILING , /a6 r i r i r i TOTAL/AVG 1 1 rTOTAL/AVG i 1 r r Ridgewood Second Filing - Final Design 014-054 CALC BY: JAM DATE: SWMM BASIN DATA CATCHMENT AREAS 03-Jun-96 BASIN SUB TOTAL IMPERV. PERCENT BASIN BASIN COMMENTS BASINS AREA AREA IMPERVIOUS LENGTH WIDTH r�.a /�.x roc% 10% ON 400 19.3 35% FROM FIRST FILING 411 406 0.82 0.03 3% 407 408 2.43 0.82 34% 409 0.54 0.32 60% 410 1.49 0.86 58% 411 1.05 0.03 2% 412 5.32 0.53 10% 413 1.78 0.36 20% 414 1.13 1.11 98% 415 2.08 0.86 41 % 416 1.02 0.49 48% 417 0.77 0.33 42% 418 2.08 0.51 25% 419 3.44 0.85 25% 420 0.76 0.49 65% 421 0.87 0.39 45% 422 0.77 0.43 56% 423 3.04 0.81 27% 424 1.36 0.03 2% 30.76 9.25 30% 170 7879 600 301 2.02 0.01 1 % 302 2.11 0.85 40% 1 303 1.48 0.18 12% 304 2.81 0.36 13% 305 1.92 0.50 26% 306 W7 308 2.261 0.62 28% 309 1.01 0.19 19% 310 0.42 0.17 42% 311 4.05 0.63 16% 312 1.53 0.70 45% 313 4.94 0.06 1 % 24.65 4.28 17% 166 6442 510 500 5.55 0.30 • 5% 501 0.98 0.48 49% 502 2.61 0.39 15% 503 1.13 0.61 54% 504 3.09 0.06 2% 13.36 1.84 14% 250 2328 total area 87.96 BASIN WIDTH=AREAIBASIN LENGTH D 0 0 O n u n c m 6 p m x D m x m W W W W W W W W W+++ N N N N N 0 O O W O O O O O O V V V V V V 00000 ZO ' a b O m O 0 m a c +mmmmo''o'rn'mrnL. LLL. L,tJWfJww ..8 n m m t000 VOf V1AW N+ NA WN+ NAW N+ x N O c fD NO�fJ+O V A . . . W N N. . . . 1D �t V O b,L, t00 � o—"O N M V N N O MW" N W V+ O yr W V A+ W V OWo p CO G O NN 0�01 OIN N NtT AA AAA NNN NN c T� 00000000o p 0 O10 +p.-4pp"J O A —00 N++00 vc ++a�C Pb inN 66:. NI V O. .p 3� wm "+ W"W AOf —0-0" + W W NOf m0 m a n r 00m jao N NDD a 3 3 3 m 0 3 c 0 0 O m+ O + O+ 0 0 3 00 < v O m m 1 m n Z m m p N m m CO) N r m m 1 v 1 A :5 M g m m m m 1 1 1 N 1 2 2 rOr< vvO mOpvvOr0 ___MMOMOMMOM mv T DDMO mOMmOM 0v r = r D r = > z z D m 1 M M m m y�N N mom mo Om p c = D + + + N Z J N N J l mom am 0 m m r 000 0o y ono o� N N CA d L �m N n m m N N j :N amN m O O tJ w WA J J� OQ X O m N O N O O M No r Z 0o 000 0 -4 2 D N v T_ m m N � 1 m T Z � o O m m N m n 0 m A 0 c 0 w c 'o I SWMM MODEL RIDGE2A.DAT ALL DETENTION POND WITH FREE OUTLETS i 1 A 1 i I 22 1 !o,9 A 2 1 1 2 3 4 WATERSHED 1/0 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2a.DAT 50 0 0 5.0 1 1.0 25 5 0.60 0.96 1.44 1.68 3.00 5.40 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 -2 .016 .250 0.1 0.5 0.5 0.5 1 150 15 3032 3.48 42 .02 1 200 20 3111 8.67 39 .02 1 250 25 1067 2.45 37 .02 1 300 30 6279 17.7 64 .02 1 400 40 7006 19.3 35 .04 * Begin 2nd filing changes 1 411 41 788030.7 30 .02 1 510 51 2300 13.4 14 .02 1 600 60 6442 24.5 17 .02 0 0 15 14 0 4 0 18.0 0 14 13 5 2 0.1 0.0 0.0 0.04 0.62 1.56 13 0 0 1 0 20 19 0 4 0 18.0 0 19 18 5 2 0.1 0.0 0.0 0.02 1.60 2.00 18 25 0 4 0 10 0 25 24 4 2 0.1 0.0 0.0 0.05 24 29 0 2 1.25 30 29 0 4 0 18.0 29 28 0 4 0 36.0 0 28 27 7 2 0.1 0.0 0.0 0.05 1.58 3.50 2.48 27 0 0 1 0 40 3 0 4 0 18.0 • Begin 2nd Filing changes 41 3 0 5 2.00 18.0 3 39 0 3 51 500 0 2 2.0 0 500 50 6 2 0.1 0.0 0.0 0.06 1.73 2.56 2.51 50 1 0 2 2.0 60 117 0 4 0 18.0 0 117 11 6 2 0.1 0.0 0.0 .011 2.90 4.66 4.51 11 1 0 2 2.0 1 39 0 3 0 39 38 9 2 0.1 0.0 0.0 0.08 2.02 11.67 3.31 8.86 16.65 38 0 0 2 1.75 1800 0.020 0 1800 0.02 20 1 0.0001 0.87 0.15 1000 0.035 4 1800 0.020 50 1800 0.02 20 1 0.0001 0.50 0.44 550 0.020 4 550 0.02 4 1 0.0001 1.79 0.28 110 0.005 0 900 0.035 0 900 0.035 20 650 0.020 50 650 0.02 20 1 0.0001 1.20 .38 4.00 3.01 500 0.025 4 1550 0.045 0 1550 0.045 20 600 .045 600 0.075 20 600 0.043 1 0.0001 1.20 0.42 2.82 510 0.028 810 0.008 0 810 0.008 20 1 0.0001 2.02 0.66 5.32 1050 0.042 1 0.0001 4.59 0.42 13.29 4.92 350 0.015 50 0.016 20 .02 0.013 1.20 0.41 4 0.060 0 0.016 20 .02 0.013 1.31 1.55 4 0.060 4 0.06 0.013 2.62 0.70 0 0.013 50 0.016 20 0.02 50 0.016 20 0.02 0.013 2.20 .88 4.20 4 0.060 50 0.016 20 0.02 .013 20 0.02 0.013 .016 1.81 1.03 0.013 50 0.016 20 0.02 .016 3.25 1.61 0.013 .016 7.62 1.06 14.73 6.79 0.013 1 .0018 0.4 10.0 0.1 1.45 4.0 0.4 10.0 0.1 1.80 3.0 10.0 0.1 2.95 1.25 0.4 10.0 0.4 10.0 0.1 2.90 4.0 0.4 10.0 2.00 10.0 2.0 .1 2.27 2.0 0.4 10.0 .1 4.17 2.0 1 9.83 15.44 2.0 I I i I 71 I I A ' 0 7 5 3 38 1 11 50 2 60 ' ENDPROGRAM I 11 I rl I 11 Ell 11 �r ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JINGO) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JDUT(8) JOUT(9) JOUT0 0) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED 1/PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2a.DAT NUMBER OF TIME STEPS 50 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.40 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 .00 r RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2a.DAT r SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 .0 .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 , I // Z 150 15 3032.0 3.5 42.0 200 20 3111.0 8.7 39.0 250 25 1067.0 2.5 37.0 30 6279.0 17.7 64.0 '300 400 40 7006.0 19.3 35.0 411 41 7880.0 30.7 30.0 510 51 2300.0 13.4 14.0 600 60 6442.0 24.5 17.0 TOTAL NUMBER OF SUBCATCHMENTS, 8 TOTAL TRIBUTARY AREA (ACRES), 120.20 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2a.DAT .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0400 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 I*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 120.200 TOTAL RAINFALL (INCHES) 2.920 TOTAL INFILTRATION (INCHES) .564 TOTAL WATERSHED OUTFLOW (INCHES) 1.992 TOTAL ERROR SURFACE STORAGE AT END OF STROM (INCHES) IN CONTINUITY, PERCENTAGE OF RAINFALL .364 .000 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2a.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORI2 TO VERT MANNING DEPTH JK NUMBER 15 CONNECTION 14 0 4 CHANNEL (FT) .0 (FT) 1800. (FT/FT) .0200 L .0 R 50.0 N .016 (FT) .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 14 13 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .9 .1 1.2 .4 1.5 .6 1.6 13 0 0 1 CHANNEL .0 1000. .0350 4.0 4.0 .060 4.00 0 20 19 0 4 CHANNEL .0 1800. .0200 50.0 .0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 19 18 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .4 1.3 1.6 1.8 1.6 2.0 18 25 0 4 CHANNEL .0 550. .0200 4.0 4.0 .060 3.00 0 OVERFLOW 10.0 550. .0200 4.0 4.0 .060 10.00 25 24 4 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.8 .3 2.6 .7 3.0 24 29 0 2 PIPE 1.3 110. .0050 .0 .0 .013 1.25 0 30 29 0 4 CHANNEL .0 900. .0350 .0 50.0 .016 .40 0 OVERFLOW 18.0 900. .0350 20.0 20.0 .020 10.00 29 28 0 4 CHANNEL .0 650. .0200 50.0 50.0 .016 .40 0 OVERFLOW 36.0 650. .0200 20.0 20.0 .020 10.00 28 27 7 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.2 .4 2.2 .9 2.9 1.6 3.5 2.5 4.0 3.0 4.2 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 .060 4.00 0 '27 40 3 0 4 CHANNEL .0 1550. .0450 .0 50.0 .016 .40 0 OVERFLOW 18.0 1550. 41 3 0 5 PIPE 2.0 600. OVERFLOW 18.0 600. 3 39 0 3 .0 0. 51 500 0 2 PIPE 2.0 600. 500 50 6 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.2 .4 1.8 50 1 0 2 PIPE 2.0 510. 60 117 0 4 CHANNEL .0 810. OVERFLOW 18.0 810. 117 11 6 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 2.0 .7 3.3 11 1 0 2 PIPE 2.0 1050. 1 39 0 3 .0 0. 39 38 9 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.6 .4 7.6 4.9 14.7 6.8 15.4 8.9 16.6 38 0 0 2 PIPE 1.8 350. TOTAL NUMBER OF GUTTERS/PIPES, 24 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2a.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES 113 .0450 20.0 20.0 .020 10.00 .0450 .0 .0 .013 2.00 0 .0450 20.0 20.0 .020 10.00 .0010 .0 .0 .001 10.00 0� .0430 .0 .0 .013 2.00 0 .0001 .0 .0 .016 .10 0 1.0 2.3 1.7 2.6 2.5 2.8 .0280 .0 .0 .013 2.00 0� .0080 .0 50.0 .016 .40 0 .0080 20.0 20.0 .020 10.00 .0001 .0 .0 .016 .10 0 1.6 4.2 2.9 4.7 4.5 5.3 .0420 .0 .0 .013 2.00 0 .0010 .0 .0 .001 10.00 0 .0001 .0 .0 .016 .10 0 1.1 9.8 2.0 11.7 3.3 13.3 .0150 .0 .0 .013 2.00 0 , GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA 11 117 0 0. 0 0 0 0 0 0 0 0 0 0 0 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 150 0 0 0 18 19 0 0 0 0 0 0 0 0 0 0 0 0 0 19 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 24 25 0 0 0 0 0 0 0 0 0 0 0 0 0 25 18 0 0 0 0 0 0. 0 0 0 250 0 0 0 27 28 0 0 0 0 0 0 0 0 0 0 0 0 0 28 29 0 0 0 0 0 0 0 0 0 0 0 0 0 29 24 30 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 300 0 0 0 38 39 0 0 0 0 0 0 0 0 0 0 0 0 0 39 3 1 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 400 0 0 0 41 0 0 0 0 0 0 0 0 0 0 411 0 0 0 50 500 0 0 0 0 0 0 0 0 0 0 0 0 0 51 0 0 0 0 0 0 0 0 0 0 510 0 0 0 60 0 0 0 0 0 0 0 0 0 0 600 0 0 0 117 60 0 0 0 0 0 0 0 0 0 0 0 0 0 500 51 0 0 0 0 0 0 0 0 0 0 0 0 0 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2a.DAT HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 7 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH I 114- i(D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 1 2 3 11 38 50 60 0 5. .00 .00 .01 .00 .00 .00 .00 .00( ) .00( ) .00( ) 00( ) .01( ) .00( ) .01( ) 0 30. 3.50 .00( ) .00 .00( ) 92.23 .00( ) 2.22 .30( 9.15 ) .85( ) 1.28 .25( ) 20.71 .47( ) 0 55. 6.66 .00 78.30 4.37 15.09 2.29 42.63 .00( ) .00( ) .00( ) .41( ) 1.16( ) .33( ) .59( ) 1 20. 7.09 .00 16.51 4.65 15.56 2.44 11.94 .00( ) .00( ) .00( ) .43( ) 1.19( ) 34( ) .41( ) 1 45. 7.17 .00 7.85 4.69 15.61 2.48 4.74 .00( ) .00( ) .00( ) .43( ) 1.19( ) .35( ) .29( ) 2 10. 7.15 .00 2.28 4.67 15.55 2.47 1.99 .00( ) .00( ) .00( ) .43( ) 1.19( ) .35( ) .21( ) 2 35. 7.09 .00 .80 4.63 15.42 2.45 .89 .00( ) .00( ) .00( ) .43( ) 1.18( ) .35( ) .15( ) 3 0. 7.01 .00 .31 4.58 15.32 2.43 .44 .00( ) .00( ) .00( ) .42( ) 1.17( ) 34( ) ) 3 25. 6.92 .00 .10 4.52 15.21 2.40 .12( .20 .00( ) .00( ) .00( ) .42( ) 1.17( ) 34( ) .09( ) 3 50. 6.84 .00 .02 4.47 15.11 2.37 .08 .00( ) .00( ) .00( ) .42( ) 1.16( ) 34( ) .06( > THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 11 14 19 24 25 28 29 30 38 39 41 50 51 117 500 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2a.DAT **PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 1 7.2 (DIRECT FLOW) 1 50. 3 247.1 (DIRECT FLOW) 0 35. 11 4.7 .4 1 45. 13 1.5 .5 1 30. 14 1.5 .1 .5 1 20. 15 17.8 .4 0 40. 18 1.7 .5 1 45. 19 1.7 .1 1.3 1 40. 20 38,9 .5 0 40. 24 2.6 .7 1 5. 25 2.6 .1 .3 1 10. 27 4.3 .7 2 5. 28 4.3 .1 3.3 2 5. 29 114.5 .6 0 40. 30 136.1 .7 0 35. 38 15.6 1.2 1 40. 39 15.6 .1 7.1 1 40. 40 101.1 .6 0 35. 41 146.0 2.5 0 35. 50 2.5 .3 1 55. 51 41.9 1.5 0 35. 60 90.8 .8 0 40. 117 4.7 .1 3.0 1 45. 500 2.5 .1 1.5 1 55. ENDPROGRAM PROGRAM CALLED I I 7 I I n i I fl I I [1 I I I I SWMM MODEL RIDGE2B.DAT DETENTION POND 117 AND 500 OUTLET BLOCKED 23 2 1 1 2 3 4 WATERSHED 1/0 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2b.DAT 300 0 0 5.0 1 1.0 25 5 0.60 0.96 1.44 1.68 3.00 5.40 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 -2 .016 .250 0.1 0.5 0.5 0.5 1 150 15 3032 3.48 42 .02 1 200 20 3111 8.67 39 .02 1 250 25 1067 2.45 37 .02 1 300 30 6279 17.7 64 .02 1 400 40 7006 19.3 35 .04 * Begin 2nd filing changes 1 411 41 788030.7 30 .02 1 510 51 2300 13.4 14 .02 1 600 60 6442 24.5 17 .02 0 0 15 14 0 4 0 18.0 0 14 13 5 2 0.1 0.0 0.0 0.04 0.62 1.56 13 0 0 1 0 20 19 0 4 0 18.0 0 19 18 5 2 0.1 0.0 0.0 0.02 1.60 2.00 18 25 0 4 0 10 0 25 24 4 2 0.1 0.0 0.0 0.05 24 29 0 2 1.25 30 29 0 4 0 18.0 29 28 0 4 0 36.0 0 28 27 7 2 0.1 0.0 0.0 0.05 1.58 3.50 2.48 27 0 0 1 0 40 3 0 4 0 18.0 * Begin 2nd Filing changes 41 3 0 5 2.00 18.0 3 39 0 3 51 500 0 2 2.0 0 500 50 6 2 0.1 0.0 0.0 0.06 1.73 2.51 50 1 0 2 2.0 60 117 0 4 0 18.0 0 117 11 6 2 0.1 0.0 0.0 .011 2.90 4.51 11 1 0 2 2.0 1 39 0 3 0 39 38 9 2 0.1 0.0 0.0 0.08 2.02 11.97 3.31 8.86 17.07 38 0 0 2 1.75 1800 0.020 0 1800 0.02 20 1 0.0001 0.87 0.15 1000 0.035 4 1800 0.020 50 1800 0.02 20 1 0.0001 0.50 0.44 550 0.020 4 550 0.02 4 1 0.0001 1.79 0.28 110 0.005 0 900 0.035 0 900 0.035 20 650 0.020 50 650 0.02 20 1 0.0001 1.20 .38 4.00 3.01 500 0.025 4 1550 0.045 0 1550 0.045 20 600 .045 600 0.075 20 600 0.043 1 0.0001 0.42 510 0.028 810 0.008 0 810 0.008 20 1 0.0001 0.66 1050 0.042 1 0.0001 4.71 0.42 13.63 4.92 350 0.015 .0018 50 0.016 20 .02 0.013 1.20 0.41 4 0.060 0 0.016 20 .02 0.013 1.31 1.55 4 0.060 4 0.D6 0.013 2.62 0.70 0 0.013 50 0.016 20 0.02 50 0.016 20 0.02 0.013 2.20 .88 4.20 4 0.060 50 0.016 20 0.02 .013 20 0.02 0.013 .016 1.03 0.013 50 0.016 20 0.02 .016 1.61 0.013 .016 7.81 1.06 15.11 6.79 0.013 1 0.4 10.0 0.1 1.45 4.0 0.4 10.0 0.1 1.80 3.0 10.0 0.1 2.95 1.25 0.4 10.0 0.4 10.0 0.1 2.90 4.0 0.4 10.0 2.00 10.0 2.0 .1 2.0 0.4 10.0 .1 2.0 .1 10.08 15.84 2.0 t i I I r I �I 11 I 0 7 5 3 38 ENDPROGRAM 1 11 50 .2 60 //8 117 t ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT0 0) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED 1/PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2b.DAT ' NUMBER OF TIME STEPS 300 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.40 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 .00 L RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2b.DAT , SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV.. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 .0 .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 /2-O '. 150 15 3032.0 3.5 42.0 200 20 3111.0 8.7 39.0 250 25 1067.0 2.5 37.0 300 30 6279.0 17.7 64.0 400 40 7006.0 19.3 35.0 411 41 7880.0 30.7 30.0 510 51 2300.0 13.4 14.0 600 60 6442.0 24.5 17.0 TOTAL NUMBER OF SUBCATCHMENTS, 8 TOTAL TRIBUTARY AREA (ACRES), 120.20 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2b.DAT .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0400 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 I*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 120.200 TOTAL RAINFALL (INCHES) 2.920 TOTAL INFILTRATION (INCHES) .895 TOTAL WATERSHED OUTFLOW (INCHES) 1.992 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .033 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2b.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK CONNECTION (FT) (FT) (FT/FT) L R N (FT) 'NUMBER 15 14 0 4 CHANNEL .0 1800. .0200 .0 50.0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 14 13 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .0 .9 .1 1.2 .4 1.5 .6 1.6 13 0 0 1 CHANNEL .0 1000. .0350 4.0 4.0 .060 4.00 0 20 19 0 4 CHANNEL .0 1800. .0200 50.0 .0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 19 18 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .4 1.3 1.6 1.8 1.6 2.0 18 25 0 4 CHANNEL .0 550. .0200 4.0 4.0 .060 3.00 0 OVERFLOW 10.0 550. .0200 4.0 4.0 .060 10.00 25 24 4 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.8 '.3 2.6 .7 3.0 24 29 0 2 PIPE 1.3 110. .0050 .0 .0 .013 1.25 0 30 29 0 4 CHANNEL .0 900. .0350 .0 50.0 .016 .40 0 OVERFLOW 18.0 900. .0350 20.0 20.0 .020 10.00 29 28 0 4 CHANNEL .0 650. .0200 50.0 50.0 .016 .40 0 OVERFLOW 36.0 650. .0200 20.0 20.0 .020 10.00 28 27 7 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.2 .4 2.2 .9 2.9 1.6 3.5 2.5 4.0 3.0 4.2 27 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 .060 4.00 0 40 3 0 4 CHANNEL .0 1550. .0450 .0 50.0 .016 .40 0 OVERFLOW 18.0 1550. 41 3 0 5 PIPE 2.0 600. OVERFLOW 18.0 600. 3 39 0 3 .0 0. 51 500 0 2 PIPE 2.0 600. 500 50 6 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .4 .0 50 1 0 2 PIPE 2.0 510. 60 117 0 4 CHANNEL .0 810. OVERFLOW 18.0 810. 117 11 6 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .7 .0 11 1 0 2 PIPE 2.0 1050. 1 39 0 3 .0 0. 39 38 9 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.7 .4 7.8 4.9 15.1 6.8 15.8 8.9 17.1 38 0 0 2 PIPE 1.8 350. TOTAL NUMBER OF GUTTERS/PIPES, 24 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2b.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES .0450 20.0 20.0 .020 10.00 .0450 .0 .0 .013 2.00 .0450 20.0 20.0 .020 10.00 .0010 .0 .0 .001 10.00 .0430 .0 .0 .013 2.00 .0001 .0 .0 .016 .10 1.0 .0 1.7 .0 2.5 .0280 .0 .0 .013 2.00 .0080 .0 50.0 .016 .40 .0080 20.0 20.0 .020 10.00 .0001 .0 .0 .016 .10 1.6 .0 2.9 .0 4.5 .0420 .0 .0 .013 2.00 .0010 .0 .0 .001 10.00 .0001 .0 .0 .016 .10 1.1 10.1 2.0 12.0 .0150 .0 .0 .013 GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA 11 117 0 0 0 0 0 0 0 0 0 0 0 0 0 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 14 15 0 0 O 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 150 0 0 0 18 19 0 0 0 0 0 0 0 0 0 0 0 0 0 19 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 24 25 0 O 0 0 0 0 0 0 0 0 0 0 0 25 18 0 0 0 0 0 0 0 0 0 250 0 0 0 27 28 0 0 0 0 0 0 0 0 0 0 0 0 0 28 29 0 0 0 0 0 0 0 0 0 0 0 0 0 29 24 30 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 300 0 0 0 38 39 0 0 0 0 0 0 0 0 0 0 0 0 0 39 3 1 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 400 0 0 0 41 0 0 0 0 0 0 0 0 0 0 411 0 0 0 50 500 0 0 0 0 0 0 0 0 0 0 0 0 0 51 0 0 0 0 0 0 0 0 0 0 510 0 0 0 60 0 0 0 0 0 0 0 0 0 0 600 0 0 0 117 60 0 0 0 0 0 0 0 0 0 0 0 0 0 500 51 0 0 0 0 0 0 0 0 0 0 0 0 0 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2b.DAT HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 7 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT 1N FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH Uzi i 0 0 0 0 0 0 3.3 13.6 2.00 0� 0 0 0 01 1 ` (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 1 2 3 11 38 50 60 0 5. .00 .00 .01 .00 .00 .00 .00 .00( ) .00( ) .00( ) .00( ) .01( ) .00( ) .01( ) 0 30. .00 .00 92.23 .00 9.15 .00 20.71 .00( ) .00( ) .00( ) .01( ) .85( ) .01( ) .47( ) 0 55. .00 .00 78.30 .00 15.40 .00 42.63 .00( ) .00( ) .00( ) .01( ) 1.18( ) .01( ) .59( ) 1 20. .00 .00 16.51 .00 15.73 .00 11.94 .00( ) .00( ) .00( ) .01( ) 1.20( ) .01( ) .41( ) 1 45. .00 .00 7.85 .00 15.67 .00 4.74 .00( ) .00( ) .00( ) .01( ) 1.19( ) .01( ) .29( ) 2 10. .00 .00 2.28 .00 15.53 .00 1.99 .00( ) .00( ) .00( ) .01( ) 1.18( ) .01( ) .21( ) 2 35. .00 .00 .80 .00 15.34 .00 .89 .00( ) .00( ) .00( ) .01( ) 1.17( ) .01( ) .15( ) 3 0. .00 .00 .31 .00 15.14 .00 .44 .00( ) .00( ) .00( ) .01( ) 1.16( ) .01( ) .12( ) 3 25. .00 .00 .10 .00 14.72 .00 .20 .00( ) .00( ) .00( ) .01( ) 1.14( ) .01( ) .09( ) 3 50. .00 .00 .02 .00 14.27 .00 .08 .00( ) .00( ) .00( ) .01( ) 1.12( ) .01( ) .06( ) 4 15. .00 .00 .00 .00 13.82 .00 .02 .00( ) .00( ) .00( ) .01( ) 1.09( ) .01( ) .04( ) 4 40. .00 .00 .00 .00 13.30 .00 .01 .00( ) .00( ) .00( ) .01( ) 1.06( ) .01( ) .02( ) 5 5. .00 .00( ) .00 .00( ) .00 .00( ) .00 .01( ) 12.72 1.03( ) .00 .01( ) .00 .02( ) 5 30. .00 .00 .00 .00 12.17 .00 .00 .00( ) .00( ) .00( ) .01( ) 1.00( ) .01( ) .01( ) 5 55. .00 .00 .00 .00 11.47 .00 .00 .00( ) .00( ) .00( ) .01( ) .97( ) .01( ) .01( ) 6 20. .00 .00 .00 .00 10.72 .00 .00 .00( ) .00( ) .00( ) .01( ) .93( ) .01( ) .01( ) 6 45. .00 .00 .00 .00 9.96 .00 .00 .00( ) .00( ) .00( ) .01( ) .89( ) .01( ) .01( ) 7 10. .00 .00 .00 .00 8.82 .00 .00 .00( ) .00( ) .00( ) .01( ) .83( ) .01( ) .01( ) 7 35. .00 .00 .00 .00 7.77 .00 .00 8 0. .00( ) .00 .00( ) .00 .00( .00 ) .01( ) .00 .77( ) 5.70 .01( ) .00 .01( > .00 ' .00( ) .00( ) .00( ) .01( ) .65( ) .01( ) .01( ) 8 25. .00 .00 .00 .00 2.09 .00 .00 .00( ) .00( ) .00( ) .01( ) .39( ) .01( ) .01( ) 8 50. .00 .00 .00 .00 .29 .00 .00 ' .00( ) .00( ) .00( ) .01( ) .15( ) .01( ) .01( ) 9 15. .00 .00 .00 .00 D4 .00 .00 .00( ) 00( ) .00( ) 01( ) 06( ) 01( ) 01( ) 9 40, 00 .00( ) .00 .00( ) .00 .00( ) .00 .01( ) .01 .03( ) .00 .01( ) .00 .01( ) 10 5. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 10 30. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 10 55. 00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 11 20. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 11 45. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 12 10. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 12 35. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 13 0. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 13 25. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) izz ,I t 13 50. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 14 15. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 14 40. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 15 5. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( )' .01( ) .01( ) 15 30. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 15 55. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 16 20. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 16 45. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 17 10. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 17 35. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 18 0. .00 .00( ) .00 .00( ) .00 .00( ) .00 .01( ) .00 .02( ) .00 .01( ) .00 .01( ) 18 25. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 18 50. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 19 15. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 19 40. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 20 5. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 20 30. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 20 55. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 21 20. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 21 45. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 22 10. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 22 35. .00 .00( ) .00 .00( ) .00 .00( ) .00 .01( ) .00 .02( ) .00 .01( ) .00 .01( ) 23 0. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 23 25. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 23 50. .00 .00 .00 .00 .00 .00 .00 , .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 24 15. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) 24 40. .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .00( ) .01( ) .02( ) .01( ) .01( ) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 11 14 19 24 25 28 29 30 38 39 41 50 51 117 RW HILLS 2ND 100 YR STORM EVENT FN:RIDGE2b.DAT **' PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS •k* CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 1' /IZA ' 1 .0 3 247.1 11 .0 13 1.5 14 1.5 15 17.8 18 1.7 19 1.7 20 38.9 24 2.6 25 2.6 27 4.3 28 4.3 29 114.5 30 136.1 38 15.7 39 . ' 40 10101.1 41 146.0 50 .0 51 41.9 60 90.8 117 .0 500 .0 ENDPROGRAM PROGRAM CALLED 1 (DIRECT FLOW) 7 55. (DIRECT FLOW) 0 35. .0 7 55. .5 1 30. .1 .5 1 20. .4 0 40. .5 1 45. .1 1.3 1 40. .5 0 40. .7 1 5. .1 .3 1 10. .7 2 5. .1 3.3 2 5. .6 0 40. .7 0 35. 1.2 1 20. .1 6.5 1 20. .6 0 35. 2.5 0 35. .0 4 30. 1.5 0 35. .8 0 40. .1 3.7 5 55. .1 1.9 5 20. SWMM MODEL RIDGE2C.DAT ONLY DETENTION POND 39 OUTLET BLOCKED 24 11 I i .1 I It I I 111 G� I I 2 1 1 2 3 4 WATERSHED 1/0 RW HILLS 2ND 100 YR STORM EVENT - POND 39 OUTLET CLOSED FN:RIDGE2C.DAT 300 0 0 5.0 1 1.0 1 25 5 0.60 0.96 1.44 1.68 3.00 5.40 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 -2 .016 .250 0.1 0.5 0.5 0.5 .0018 1 150 15 3032 3.48 42 .02 1 200 20 3111 8.67 39 .02 1 250 25 1067 2.45 37 .02 1 300 30 6279 17.7 64 .02 1 400 40 7006 19.3 35 .04 * Begin 2nd filing changes 1 411 41 788030.7 30 .02 1 510 51 2300 13.4 14 .02 1 600 60 6442 24.5 17 .02 0 0 15 14 0 4 0 1800 0.020 0 50 0.016 0.4 18.0 1800 0.02 20 20 .02 10.0 0 14 13 5 2 0.1 1 0.0001 0.013 0.1 0.0 0.0 0.04 0.87 0.15 1.20 0.41 1.45 0.62 1.56 13 0 0 1 0 1000 0.035 4 4 0.060 4.0 20 19 0 4 0 1800 0.020 50 0 0.016 0.4 18.0 1800 0.02 20 20 .02 10.0 0 19 18 5 2 0.1 1 0.0001 0.013 0.1 0.0 0.0 0.02 0.50 0.44 1.31 1.55 1.80 1.60 2.00 18 25 0 4 0 550 0.020 4 4 0.060 3.0 10 550 0.02 4 4 0.06 10.0 0 25 24 4 2 0.1 1 0.0001 0.013 0.1 0.0 0.0 0.05 1.79 0.28 2.62 0.70 2.95 24 29 0 2 1.25 110 0.005 0 0 0.013 1.25 30 29 0 4 0 900 0.035 0 50 0.016 0.4 18.0 900 0.035 20 20 0.02 10.0 29 28 0 4 0 650 0.020 50 50 0.016 0.4 36.0 650 0.02 20 20 0.02 10.0 0 28 27 7 2 0.1 1 0.0001 0.013 0.1 0.0 0.0 0.05 1.20 .38 2.20 .88 2.90 1.58 3.50 2.48 4.00 3.01 4.20 27 0 0 1 0 500 0.025 4 4 0.060 4.0 40 3 0 4 0 1550 0.045 0 50 0.016 0.4 18.0 1550 0.045 20 20 0.02 10.0 • Begin 2nd Filing changes 41 3 0 5 2.00 600 .045 .013 2.00 18.0 600 0.075 20 20 0.02 10.0 3 39 0 3 51 500 0 2 2.0 600 0.043 0.013 2.0 0 500 50 6 2 0.1 1 0.0001 .016 .1 0.0 0.0 0.09 1.10 0.47 1.71 1.09 2.15 1.80 2.53 2.58 2.84 50 1 0 2 2.0 510 0.028 0.013 2.0 60 117 0 4 0 810 0.008 0 50 0.016 0.4 18.0 810 0.008 20 20 0.02 10.0 0 117 11 6 2 0.1 1 0.0001 .016 .1 0.0 0.0 .016 1.91 0.74 3.11 1.70 3.97 3.01 4.67 4.63 5.28 11 1 0 2 2.0 1050 0.042 0.013 2.0 1 39 0 3 0 39 38 19 2 0.1 1 0.0001 .016 .1 0.0 0.0 0.08 0.42 1.06 2.02 3.31 4.92 6.79 7.00 7.20 7.41 1.19 7.62 3.37 7.83 6.19 8.03 9.54 8.24 13.33 8.45 15.84 8.65 15.84 8.86 15.84 /0216 38 0 0 2 1.75 350 0.015 0 7 5 3 38 1 11 50 2 60 ENDPROGRAM 0.013 2.0 I ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY 'TAPE OR DISK ASSIGNMENTS UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JINGO) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED 1/PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** RW HILLS 2ND 100 YR STORM EVENT - POND 39 OUTLET CLOSED FN:RIDGE2C.DAT NUMBER OF TIME -STEPS 300 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH /FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR �. .60 .96 1.44 1.68 3.00 5.40 9.00 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .12 .12 .00 RW HILLS 2ND 100 YR STORM EVENT POND 39 OUTLET CLOSED FN:RIDGE2C.DAT SUBAREA GUTTER WIDTH NUMBER OR MANHOLE (FT) -2 0 .0 3.72 2.16 1.56 .24 .24 .24 AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 I 150 15 3032.0 3.5 42.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 200 20 3111.0 8.7 39.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 250 25 1067.0 2.5 37.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 300 30 6279.0 17.7 64.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 400 40 7006.0 19.3 35.0 .0400 .016 .250 .100 .500 .50 .50 .00180 1 411 41 7880.0 30.7 30.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 510 51 2300.0 13.4 14.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 600 60 6442.0 24.5 17.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 8 TOTAL TRIBUTARY AREA (ACRES), 120.20 RW HILLS 2ND 100 YR STORM EVENT POND 39 OUTLET CLOSED i FN:RIDGE2C.DAT *** *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL WATERSHED AREA (ACRES) 120.200 TOTAL RAINFALL (INCHES) 2.920 TOTAL INFILTRATION (INCHES) .895 TOTAL WATERSHED OUTFLOW (INCHES) 1.992 , TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .033 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 RW HILLS 2ND 100 YR STORM EVENT - POND 39 OUTLET CLOSED FN:RIDGE2C.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 15 14 0 4 CHANNEL .0 1800. .0200 .0 50.0 .016 .40 0� OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 14 13 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .9 .1 1.2 .4 1.5 .6 1.6 13 0 0 1 CHANNEL .0 - 1000. .0350 4.0 4.0 .060 4.00 0 20 19 0 4 CHANNEL .0 1800. .0200 50.0 .0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 19 18 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0'� RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .4 1.3 1.6 1.8 1.6 2.0 18 25 0 4 CHANNEL .0 550. .0200 4.0 4.0 .060 3.00 0 OVERFLOW 10.0 550. .0200 4.0 4.0 .060 10.00 25 24 4 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.8 .3 2.6 .7 3.0 24 29 0 2 PIPE 1.3 110. .0050 .0 .0 .013 1.25 0 30 29 0 4 CHANNEL .0 900. .0350 .0 50.0 .016 .40 0 1 OVERFLOW 18.0 900. .0350 20.0 20.0 .020 10.00 29 28 0 4 CHANNEL .0 650. .0200 50.0 50.0 .016 .40 0 28 27 7 2 OVERFLOW PIPE 36.0 .1 650. 1. .0200 .0001 20.0 .0 20.0 .0 .020 .013 10.00 .10 0f RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.2 .4 2.2 .9 2.9 1.6 3.5 2.5 4.0 3.0 4.2 27 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 .060 4.00 O 40 3 0 4 CHANNEL .0 1550. .0450 .0 50.0 .016 .40 0 rt 130 OVERFLOW 18.0 1550. .0450 20.0 20.0 .020 10.00 41 3 0 5 PIPE 2.0 600. .0450 .0 .0 .013 2.00 0 OVERFLOW 18.0 600. .0450 20.0 20.0 .020 10.00 3 39 0 3 .0 0. .0010 .0 .0 .001 10.00 0 51 500 0 2 PIPE 2.0 600. .0430 .0 .0 .013 2.00 0 500 50 6 2 PIPE .1 1. .0001 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.1 .5 1.7 1.1 2.1 1.8 2.5 2.6 2.8 50 1 0 2 PIPE 2.0 510. .0280 .0 .0 .013 2.00 0 60 117 0 4 CHANNEL .0 810. .0080 .0 50.0 .016 .40 0 OVERFLOW 18.0 810. .0080 20.0 20.0 .020 10.00 117 11 6 2 PIPE .1 1. .0001 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.9 .7 3.1 1.7 4.0 3.0 4.7 4.6 5.3 11 1 0 2 PIPE 2.0 1050. .0420 .0 .0 .013 2.00 0 1 39 0 3 .0 0. .0010 .0 .0 .001 10.00 0 39 38 19 2 PIPE .1 1. .0001 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .4 .0 1.1 .0 2.0 .0 3.3 .0 4.9 .0 6.8 .0 7.0 .0 7.2 .0 7.4 1.2 7.6 3.4 7.8 6.2 8.0 9.5 8.2 13.3 8.4 15.8 8.7 15.8 8.9 15.8 .0 .0 38 0 0 2 PIPE 1.8 350. .0150 .0 .0 .013 2.00 0 TOTAL NUMBER OF GUTTERS/PIPES, 24 �t RW HILLS 2ND 100 YR STORM EVENT - POND 39 OUTLET CLOSED FN:RIDGE2C.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 11 117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.5 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 15 0 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 3.5 18 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.7 19 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.7 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 8.7 ' 24 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.1 25 18 0. 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 11.1 27 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.8 28 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.8 29 24 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.8 30 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 17.7 38 39 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 87.9 39 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87.9 40 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 0 0 0 0 19.3 41 0 0 0 0 O 0 0 0 0 0 411 0 0 0 0 0 0 0 0 0 30.7 50 500 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 13.4 51 0 0 0 0 0 0 0 0 0 0 510 0 0 0 0 0 0 0 0 0 13.4 60 0 0 0 0 0 0 0 0 0 0 600 0 0 0 0 0 0 0 0 0 24.5 117 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0- 24.5 500 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13.4 RW HILLS 2ND 100 YR STORM EVENT - POND 39 OUTLET CLOSED FN:RIDGE2C.DAT �YDROGRAPHS ARE LISTED FOR THE FOLLOWING 7 CONVEYANCE ELEMENTS I THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET i 3/ (S) DENOTES STORAGE 1N AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 1 2 3 11 38 50 60 0 5. .00 .00 .01 .00 .00 .00 .00 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .01( ) 0 30. 3.12 .00 92.23 2.08 .00 1.04 20.71 .00( ) .00( ) .00( ) .29( ) .01( ) .23( ) .47( ) 0 55. 6.36 .00 78.30 4.21 .00 2.15 42.63 .00( ) .00( ) .00( ) .41( ) .01( ) .32( ) .59( ) 1 20. 6.95 .00 16.51 4.60 8.66 2.35 11.94 .00( ) .00( ) .00( ) .43( ) .82( ) .34( ) .41( ) 1 45. 7.05 .00 7.85 4.66 12.85 2.39 4.74 .00( ) .00( ) .00( ) .43( ) 1.04( ) .34( ) .29( ) 2 10. 7.03 .00 2.28 4.64 12.47 2.39 1.99 .00( ) .00( ) .00( ) .43( ) 1.02( ) .34( ) .21( ) 2 35. 6.95 .00 .80 4.58 10.56 2.37 .89 .00( ) .00( ) .00( ) .42( ) .92( ) .34( ) .15( ) 3 0. 6.84 .00 .31 4.51 9.12 2.34 .44 .00( ) .00( ) .00( ) .42( ) .84( ) .34( ) .12( ) 3 25. 6.73 .00 .10 4.43 8.18 2.30 .20 .00( ) .00( ) .00( ) .42( ) .79( ) .33( ) .09( ) 3 50. 6.62 .00 .02 4.35 7.54 2.26 .08 .00( ) .00( ) .00( ) .41( ) .76( ) .33( ) .06( ) 4 15. 6.50 .00 .00 4.28 7.11 2.22 .02 .00( ) .00( ) .00( ) .41( ) .73( ) .33( ) .04( ) 4 40. 6.38 .00 .00 4.20 6.82 2.18 .01 .00( ) .00( ) .00( ) .41( ) .72( ) .33( ) .02( ) 5 5. 6.26 .00 .00 4.12 6.60 2.14 .00 .00( ) .00( ) .00( ) .40( ) .70( ) .32( ) .02( ) 5 30. 6.14 .00 .00 4.05 6.42 2.09 .00 .00( ) .00( ) .00( ) .40( ) .69( ) .32( ) .01( ) 5 55. 6.01 .00 .00 3.97 6.27 2.04 .00 .00( ) .00( ) .00( ) .40( ) .68( ) .32( ) .01( ) 6 20. 5.84 .00 .00 3.85 6.13 1.99 .00 .00( ) .00( ) .00( ) .39( ) .68( ) .31( ) .01( ) 6 45. 5.68 .00 .00 3.74 5.99 1.94 .00 .00( ) .00( ) .00( ) .38( ) .67( ) .31( ) .01( ) 7 10. 5.52 .00 .00 3.62 5.85 1.90 .00 .00( ) .00( ) .00( ) .38( ) .66( ) .30( ) .01( ) 7 35. 5.36 .00 .00 3.51 5.69 1.85 .00 .00( ) .00( ) .00( ) .37( ) .65( ) .30( ) .01( ) 8 0. 5.21 .00 .00 3.41 5.54 1.80 .00 .00( ) .00( ) .00( ) .37( ) .64( ) .30( ) .01( ) 8 25. 5.06 ' .00 .00 3.30 5.39 1.76 .00 .00( ) .00( ) .00( ) .36( ) .63( ) .29( ) .01( ) 8 50. 4.92 .00 .00 3.20 5.24 1.72 .00 .00( ) .00( ) .00( ) .36( ) .62( ) .29( ) - .01( ) 9 15. 4.73 .00 .00 3.10 5.09 1.64 .00 .00( ) .00( ) .00( ) .35( ) .61( ) .28( ) .01( ) 9 40. 4.48 .00 .00 2.93 4.91 1.55 .00 .00( ) .00( ) .00( ) .34( ) .60( ) .28( ) .01( ) 10 5. 4.23 .00 .00 2.77 4.70 1.46 .00 .00( ) .00( ) .00( ) .33( ) .59( ) .27( ) .01( ) 10 30. 4.00 .00 .00 2.61 4.48 1.39 .00 .00( ) .00( ) .00( ) .32( ) .57( ) .26( ) .01( ) 10 55. 3.78 .00 .00 2.47 4.26 1.31 .00 .00( ) .00( ) .00( ) .31( ) .56( ) .25( ) .01( ) 11 20. 3.57 .00 .00 2.33 4.04 1.24 .00 .00( ) .00( ) .00( ) .30( ) .54( ) .25( ) .01( ) 11 45. 3.38 .00 .00 2.20 3.83 1.17 .00 .00( ) .00( ) .00( ) .30( ) .53( ) .24( ) .01( ) 12 10. 3.19 .00 .00 2.08 3.63 1.11 .00 .00( ) .00( ) .00( ) .29( ) .51( ) .24( ) .01( ) 12 35. 2.74 .00 .00 1.96 3.39 .78 .00 .00( ) .00( ) .00( ) .28( ) .49( ) .20( ) .01( ) 13 0. .79 .00 .00 .28 2.97 .51 .00 .00( ) .00( ) .00( ) .11( ) .46( ) .16( ) .01( ) �• 13 25. .35 .00 .00 ' .00( ) .00( ). .00( ) 13 50. .22 .00 .00 .00( ) .00( ) .00( ) 14 15. 15 .00 .00 .00( ) .00( ) .00( ) 14 40. .10 .00 .00 .00( ) .00( ) .00( ) �y 15 5. .06 .00 .00 .00( ) .00( ) .00( ) 15 30. .04 .00 .00 .00( ) .00( ) .00( ) 15 55. .03 .00 .00 .00( ) .00( ) .00( ) 16 20. .02 .00 .00 .00( ) .00( ) .00( ) 16 45. .01 .00 .00 �1 .00( ) .00( ) .00( ) 17 10. .01 .00 .00 .00( ) .00( ) .00( ) '17 35. 01 .00( ) .00 .00( ) .00 .00( ) '18 0. .00 .00 .00 .00( ) .00( ) .00( ) 18 25. .00 .00 .00 .00( ) .00( ) .00( ) 18 50. .00 .00 .00 .00( ) .00( ) .00( ) 19 15. .00 .00 .00 19 40. .00( ) .00 .00( ) .00 .00( ) .00 .00( ) .00( ) .00( ) 20 5. .00 .00 .00 .00( ) .00( ) .00( ) 20 30. .00 .00 .00 .00( ) .00( ) .00( ) 20 55. .00 .00 .00 .00( ) .00( ) .00( ) 21 20. .00 .00 .00 .00( ) .00( ) .00( ) 21 45. 00 .00 .00 .00( ) .00( ) .00( ) 22 10. .00 .00 .00 .00( ) .00( ) .00( ) 22 35. .00 .00 .00 i .00( ) .00( ) .00( ) 23 0. .00 .00 .00 00( ) .00( ) .00( ) 23 25. .00 .00 .00 .00( ) .00( ) .00( ) 23 50. .00 .00 .00 24 15. .00( ) .00 .00( ) .00 .00( ) .00 .00( ) .00( ) .00( ) 24 40. .00 .00 .00 .00( ) .00( ) .00( ) HE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL TABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 11 14 19 24 25 28 29 30 38 39 1 41 50 51 117 500 .01 2.23 .34 .00 .03( ) .40( ) .13( ) .01( ) .00 1.64 .22 .00 .01( ) .34( ) .11( ) .01( ) .00 1.21 .15 .00 .01( ) .30( ) .09( ) .01( ) .00 1.01 .10 .00 .01( ) .27( ) .07( ) .01( ) .00 .84 .06 .00 .01( ) .25( ) .06( ) .01( ) .00 .70 .04 .00 .01( ) .23( ) .05( ) .01( ) .00 .59 .03 .00 .01( ) .21( ) .04( ) .01( ) .00 .49 .02 .00 .01( ) .19( ) .03( ) .01( ) .00 .40 .01 .00 .01( ) .17( ) .03( ) .01( ) .00 .33 .01 .00 .01( ) .16( ) .02( ) .01( ) .00 .28 .01 .00 .01( ) .15( ) .02( ) .01( ) .00 .23 .00 .00 .01( ) .13( ) .02( ) .01( ) .00 .19 .00 .00 .01( ) .12( ) .01( ) .01( ) .00 .16 .00 .00 .01( ) .11( ) .01( ) .01( ) .00 .13 .00 .00 .01( ) .10( ) .01( ) .01( ) .00 .11 .00 .00 .01( ) .09( ) .01( ) .01( ) .00 .09 .00 .00 .01( ) .09( ) .01( ) .01( ) .00 .07 .00 .00 .01( ) .08( ) .01( ) .01( ) .00 .06 .00 .00 .01( ) .07( ) .01( ) .01( ) .00 .05 .00 .00 .01( ) .07( ) .01( ) .01( ) .00 .04 .00 .00 .01( ) .06( ) .01( ) .01( ) .00 .03 .00 .00 .01( ) .05( ) .01( ) .01( ) .00 .03 .00 .00 .01( ) .05( ) .01( ) .01( ) .OD .02 .00 .00 .01( ) .05( ) .01( ) .01( ) .00 .02 .00 .00 .01( ) .04( ) .01( ) .01( ) .00 .02 .00 .00 .01( ) .04( ) .01( ) .01( ) .00 .01 .00 .00 .01( ) .04( ) .01( ) .01( ) .00 .01 .00 .00 .01( ) .03( ) .01( ) .01( ) RW HILLS 2ND 100 YR STORM EVENT - POND 39 OUTLET CLOSED FN:RIDGE2C.DAT PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** I / 33 CONVEYANCE PEAK ELEMENT (CFS) 1 7.1 3 247.1 11 4.7 13 1.5 14 1.5 15 17.8 18 1.7 19 1.7 20 38.9 24 2.6 25 2.6 27 4.3 28 4.3 29 114.5 30 136.1 38 13.1 39 13.1' 40 107 1 41 146.0 50 2.4 51 41.9 60 90.8 117 4.7 500 2.4 STAGE STORAGE TIME (FT) (AC -FT) (HR/MIN) (DIRECT FLOW) 1 50. (DIRECT FLOW) 0 35. .4 1 45. .5 1. 30. .1 .5 1 20. .4 0 40. .5 1 45. .1 1.3 1 40. .5 0 40. .7 1 5. .1 .3 1 10. .7 2 5. .1 3.3 2 5. .6 0 40. .7 0 35. 1.1 1 55. .1 8.2 1 55. .6 0 35. 2.5 0 35. .3 1 55. 1.5 0 35. .8 0 40. .1 3.0 1 45. .1 1.5 1 55. ENDPROGRAM PROGRAM CALLED t Is 1 3 4- DETENTION DESIGN `R RIDGEWOOD HILLS 2ND FILING JOB. NO. 014-054 G DETENTION POND SUMMARY TABLE POND VOLUME VOLUME VOLUME MAXIMUM 100 YR. 100 YR. NO. REQUIRED REQUIRED PROVIDED OUTFALL W.S. ELEV. W.S. ELEV. (unblocked (blocked @ ELEV. (unblocked (blocked condition) condition) condition) condition) ac-ft ac-ft ao-ft) (cfs) (ac-ft ac-ft 500 1.5 1.9 2.84@5076 2.53 5074.6 5075.1 117 3 3.7 5.48@5109 4.66 5107.9 5108.4 39 7.1 8.2 8.86@5057 15.6 5056.15 5056.7 Note: Maximum outfal determined as follows: Pond 500 13.36 ac * 0.19 cfs/ac = Pond 117 24.55 ac * 0.19 cfs/ac = Pond 39 from pg 4 RW1st report = t 2.53 4.66 15.6 /3 s /�f RBD, Inc., Engineering Consultants ISM Ridgewood Hills Second Filing Detention Pond Rating Curve Pond 39 Cumulative Elev Area Area Storage Storage Outflow (ft) (ft2) (ac) (ac-ft) (ac-ft) (cfs) 5049.0 0 0.00 0.00 0 5050.0 10,136 0.23 0.08 0.08 4.59 5051.0 20,990 0.48 0.35 0.42 7.62 5052.0 35,240 0.81 0.63 1.06 9.83 5053.0 49,784 1.14 0.96 2.02 11.67 5054.0 64,250 1.47 1.29 3.31 13.29 5055.0 78,057 1.79 1.61 4.92 14.73 5056.0 86,400 1.98 1.87 6.79 15.44 5057.0 95,387 2.19 2.06 8.86 16.65 V=1 /3d(A+B+(AB)^.5) r� 04-Jun-96 '� 13;t RBD, Inc., Engineering Consultants RIDGEWOOD HILLS 2ND FILING Detention Pond Orifice Restriction JOB NO. 014-054 C = 0.6 Orifice Calculations for Pond 39 TAIL ORIFICE ORIFICE WATER DEPTHS WATER HEAD CALC. MAX STORAGE DIA AREA SURFACE DEPTH OUTFLOW OUTFLOW VOLUME POND (in) (sq. ft.) (elev) (ft) (ft) (ft) . (cfs) (cfs) (ac. ft.) 39 5049.00 39 15.8 1.36 5050.00 1.0 0.51 0.49 4.59 15.60 0.08 39 15.8 1.36 5051.00 2.0 0.65 1.35 7.62 15.60 0.42 39 15.8 1.36 5052.00 3.0 0.75 2.25 9.83 15.60 1.06 39 15.8 1.36 5053.00 4.0 0.83 3.17 11.67 15.60 2.02 39 15.8 1.36 5054.00 5.0 0.89 4.11 13.29 15.60 3.31 39 15.8 1.36 5055.00 6.0 0.95 5.05 14.73 15.60 4.92 39 15.8 1.36 5056.00 7.0 1.45 5.55 15.44 15.60 6.79 39 15.8 1.36 5057.00 8.0 1.55 6.45 16.65 15.60 8.86 100 YR WSEL(7.1 aaft)= 5056.15 Note: All tailwater depths calculated as normal depth(see associated rating Table) except at elev. 5056 which was taken from Ridgwood 1 st Filing UDSEWER calculations. The tail water Depth for elev. 5057 is an approximation. Orifice Equation Q = CA(2gH)^0.5 Where: Q = Flow in cfs C= coefficient of constriction A = Area of orifice in sq. ft. g= accelation of gravity H= head of water over the centroid of orifice 24- Ju1-96 /3S Table Rating Table for Circular Channel Project Description Project File cAhaestad\fmw\014-054.fm2 Worksheet pond 39 out fall discharge Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Constant Data Mannings Coefficient 0.013 Channel Slope 0.027100 ft/ft Diameter 21.00 in Input Data Minimum Mabmum Increment !� Discharge 3.75 17.00 0.50 cfs 1 � Rating Table Discharge Depth Velocity (cfs) (ft) MIS) 3.75 0.45 7.70 4.25 0.48 7.99 , 4.75 0.51 8.24 5.25 0.53 8.48 5.75 0.56 8.70 6.25 0.58 8.91 6.75 0.61 9.10 7.25 0.63 9.28 , 7.75 0.65 9.45 4 8.25 0.68 9.62 8.75 0.70 9.77 9.25 0.72 9.92 9.75 0.74 10.064- 10.25 0.76 10.19 10.75 0.78 10.32 11.25 0.80 10.44 11.75 0.82 10.56 4 12.25 0.84 10.67 12.75 0.86 10.78 13.25 0.88 10.89 13.75 0.90 10.99� 14.25 0.92 11.08 14.75 0.94 11.18 15.25 0.96 11.27' 05/31/96 FlowMaster v5.13 09:52:53 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 2 4 • ■ CM REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *'* EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 01-10-1995 AT TIME 16:03:37 '** PROJECT TITLE : Ridgewood Hills Pond #39 211, outlet pipe *** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCHAR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 0 0.00 0.00 5.60 5021.44 5023.04 NO 3.00 13.34 0 15.60 5035.40 5026.89 OK 5.00 .00 .5 .00 15.60 5038.18 5030.56 OK 6.00 .00 �11. 0.00 15.60 5051.52 5038.89 OK 7.00 !.0 .00 1 . 1 0.00 15.60 5048.00 5042.39 OK 8.00 .00 .22 0.00 15.60 5050.67 5046.39 OK 9.00 .0 10.00 0 15.60 5057.00 5050.45 OK 10.00 1 5.00 1560. 15.60 5057.00 5050.62 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 10.00 3.00 1.00 ROUND 20.88 24.00 21.00 0.00 30.00 5.00 3.00 ROUND 20.88 24.00 21.00 0.00 50.00 6.00 5.00 ROUND 18.17 21.00 MOO 0.00 60.00 7.00 6.00 ROUND 20.88 24.00 21.00 0.00 70.00 8.00 7.00 ROUND 20.88 24.00 21.00 0.00 80.00 9.00 8.00 ROUND 17.32 18.00 21.00 0.00 90.00 10.00 9.00 ROUND 17.32 18.00 21.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS 10.0 15.6 15.9 1.41 7.53 1.45 7.31 6.49 1.09 V-OK 30.0 15.6 15.9 1.41 7.53 1.45 7.31 6.49 1.09 V-OK 50.0 15.6 23.0 1.06 10.29 1.45 7.31 6.49 1.93 V-OK 60.0 15.6 15.9 1.41 7.53 1.45 7.31 6.49 1.09 V-OK 70.0 15.6 15.9 1.41 7.53 1.45 7.31 6.49 1.09 V-OK 80.0 15.6 26.2 0.97 11.35 1.45 7.31 6.49 2.25 V-OK / T 90.0 15.6 26.2 0.97 11.35 1:45 7.31 6.49 2.25 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS _____________^_-•-•--•-------•--•----------•- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM - % (FT) (FT) (FT) (FT) ----------------------------- 10.00 1.00 5025.44 5021.44 8.21 -1.75 NO 30.00 1.00 5029.11 5025.44 7.32 8.21 OK 50.00 2.10 5037.44. 5029.06 12.33 7.37 OK 60.00 1.00 5040.94 5037.44 5.31 12.33 OK 70.00 1.00 5044.94 5040.94 3.98 5.31 OK 60.00 2.71 5049.00 5044.94 6.25 3.98 OK 90.00 2.71 5049.00 5049.00 6.25 6.25 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 'FEET SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ---•-------------•--- _ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEETFEET FEET FEET FEET FEET ---- - - - ------------------- 10.00 400.00 0.00 5027.19 5023.19 5026.89 5023.04 JUMP 30.00 367.00 0.00 5030.86 5027.19 5030.56 5026.89 JUMP 50.00 399.00 29.25 5039.19 5030.81 5038.89 5030.56 JUMP 60.00 350.00 0.00 5042.69 5039.19 5042.39 5038.89 JUMP 70.00 400.00 0.00 5046.69 5042.69 5046.39 5042.39 JUMP 80.00 150.00 0.00 5050.75 5046.69 5050.45 5o46_z9 ilmo !N � = S e 4 9• o ° 90.00 0.10 0.00 5050.75 5050.75 5050.62 5050645 JUMP i PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW TW. T;laaTr *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------ ____ _ UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY --ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT --------------- _------------------------------------------------------------- 10.0 3.00 5027.55 3.85 1.00 0.65 0.00 0.00 1.00 5023.04 30.0 5.00 5031.22 3.64 0.05 0.03 0.00 0.00 3.00 5027.55 50.0 6.00 5039.55 7.47 1.32 0.86 0.00 0.00 5.00 5031.22 60.0 7.00 5043.05 3.47 0.05 0.03 0.00 0.00 6.00 5039.55 70.0 8.00 5047.05 3.97 0.05 0.03 0.00 0.00 7.00 5043.05 80.0 9.00 5051.11 4.03 0.05 0.03 0.00 0.00 8.00 5047.05 90.0 10.00 5051.27 0.00 0.25 0.16 0.00 0.00 9.00 5051.11 BEND LOSS =BEND K* FLOWING FULL VHEAD'IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP, j FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. i 11 :i N C m C U c `a w c m w d m c C O N tON.-N W OqT Npf th �NN 10 OefOO MOnON?t0 ODON V OGo -J 0 J �OV F-Q � OO lh V'tG t� �nnn OD OD 40 OD CD t y � J Q� LL y^ F-.r 0n W w M cqcqcq 0 0 0 0 0 0 0 0 000000000- �10 .-f0 Oj � 0000 COOOO�Pi<GOf �� �� O (ja�a 000000000rnnrnv� v 00000000a,(,)-in(�OD� Ct QaF� 000000666ql6(6ciV)U)Lf)to O 0 0 jw�y gg0000000rnnrn��o� o000000��� mp 3 �W W y 01 O1 r JLLO p Q p p 0000 OO OOOO OO OOOO .... U Fr[- O O G O G O O O O 00' 0' 0000000 �Or w ° ° _� O G N U C A � < C W O O OOOO OOC�00000 0�000 O O O O O O O O N l0 t O n a D N ip ° W ` O C O g ry C O v W O O O O O O O O O O O O O O O O O U LL O a x ww m O QUJ= d F dw J Q IL W v Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z L O C Q CL O = E tL i0 I.-0000000� a N{7 R1000 n00 a CDN 0, Ol 0 e W r cirivui�d��nr�nrrrnr�ad a Q q p C O p Q p p o p r N� PW) r-.0°D � O vas o 0 W j 7a: X 'O Q a' N .... p0�0000000 V N N N N N N tNpG �tOC �tOC N iO N dig 0 in LO p`_ C W O1 C CO � � 1� 1LO N 1°U Ln 100 IOO W w �0 8 WO) w w US ton WO) w y „O�„ C 0 � N C7 a w L c c a JO NC o 77Q ?? 0 V7VR0 y m c 4) fi O RixRV Q — yLn 1 �0 'n O Ocw>�2 q R u O LyN W U 01 N , CUc OOdO((0 C 3 C O O` y� 00 l7 o U Q301 O w �. O 3 m�v JC JO U LLa c N f000 0000 OOOO f0 f0 f000 f0 O) Q N !.% W G d U N LL UQ W L Ln KO... 'o` 00 3 ° z 0 3 oo¢'co2 O O Oao n c ��z c_'w c m O p c°7i c a �d0 mc� O� 00 O !� a �t- d4 3 file: emer-of f RIDGEWOOD HILLS 2nd filing JOB NO. 014-054 S CALCULATION OF RATING CURVE FOR EMERGENCY OVERFLOW FOR POND 39 The emergency overflow is a 48 in diameter manhole covered by a grate, placed downstream of the outlet to pond 39 such that if the outlet becomes blocked, flows may spill into it. The limiting capacity of the emergency overflow is the downstream capacity of the 21" diameter pipe. Pipe Invert = Crest of Weir = Elevation Weir head (ft) 49 50 51 52 53 54 55 56 56.15 56.2 56.3 56.4 56.5 56.6 56.7 56.8 56.9 57 58 Weir Equation 0 0 0 0 0 0 0 0 0 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 1.85 Q = CLH13/2 49 56.15 Weir Flow (cfs) 0 0 0 0 0 0 0 0 0.00 0.38 1.96 4.22 6.99 10.19 15.84 15.84 15.84 15.84 15.84 Pipe Flow (cfs) 0 0 0 0 0 0 0 0 15.84 15.84 15.84 15.84 15.84 15.84 15.84 15.84 15.84 15.84 15.84 Q = FLOW (CFS) C = COEFICIENT L = LENGTH H = HEAD (ft) Control Detention flow Pond rate Volume (cfs) (ac. ft.) 0 0 0 0.09 0 0.44 0 1.15 0 2.2 0 3.58 0 5.28 0 7.25 1.07 7.25 3.03 7.36 5.57 7.57 8.58 7.79 12.00 8.01 15.80 8.22 15.84 8.44 15.84 8.65 15.84 8.87 15.84 9.09 15.84 11.78 Pipe Capacity of 21' dia @ 1.00 % = 15.84 cfs 2.7 (ref: Brater and King table 5-7) 12.5 ft r t0 tp0 M AmmJ t0 {Opm !O Ol Vl !J N lei N O b an0 N� O O O b q! W r 1p !q e') 1p M Vl OJ N l0 l0 R {O ° b M N N O P!! M N wi wi ai vi ei ci N mi n ni ei wi p N r=^ {p p m m n= f9 N P P 6 N N N M1 MMMoi ri Nmm�gn mNa mN O m OJ m t•> w m O V O n N t0 CJ a0 N! N�pp N N O! aqqJ N � O M l0 VCJ l9 l9 N N t9 !f CJ N pO CN .N•. O O m P o0 aNC aND w .Ni q V � tN0 t0 ep Na Npp No N N e0 M N N ciN t9 OJ N O N N N N N N N N N N N �^• m nnnC9 n m m b O N N N N N N N N L$ o m a a N N N n n n o v e m m m o M M M o b m o d 200 o 0 o r r r e o 0 0 p c E A w w w w w w w w w r r o ca°o° 0333««3««333 W O E "VQAN N N NNNNN. V O O O O N P mmnn o C m V 0 >ca N N N N N Ca3 C n ou 0 3«« y1 U tl ✓� CO N G p O m OOQ P 0! MNN N z Y E o T o •y l � c E o tl .; N O m m OC..tl.anmQO O C `p o G L m o x G O r.) m r 7 v cd �° MMMMOJ rer Y j aU a m > � s E ° CS E" `oho mwrrrr C ora a 3 3 3« •a L O Gr b V U F me O r N M< 13 is F b � N t0 O N � a eu0f a0 N� o O O ! PJ _!e9 tl n vi b m ! p y o! N O m r m m O b q !0 O n n ri n L m � ° O O O o,Eo 310Aww m'..mi rm 'SOH N b `oam 123Aww o Cm- « m G SOH N N 1 1 1 1 1 PLAN CONSTRUCT 4! DIA RECSTORM UVNL^r-l� MANHOLE OVER 211 IDIA ORM SEWER =J-ONSTRUCT STANDARD MANHOLE BASE SEC11ON INV. APPROX. 5049.2 NTS 1 1 STANDARD 4.0' DIA PRECAST MANHOLE GALVANIZED STEEL - GRATE IN 2 HALVES DESIGNED TO 60 LB/S.F. LOADING C. • COORDINATE DIAMETER OF GRATE WITH PRECAST CONCRETE RING MANUFACTURER 1.0' 1.0' 2.25' • 2.25' • 2 1/2'x2 1/2' GALVANIZED STEEL TABS WITH 5/8'x2 1/2' ANCHOR BOLTS (TYP.) rRBD, Inc., Engineering Consultants �- Ridgewood Hills Second Filing Detention Pond Ratinq Curve Pond 117 Elev Area Area (ft) (ft2) (ac) 5104.1 0 0.00 5105.0 15,539 0.36 5106.0 34,606 0.79 5107.0 49,500 1.14 5108.0 64,419 1.48 5109.0 761971 1.77 r Cumulative Storage Storage Outflow (ac-ft) (ac-ft) (cfs) 0.00 0.00 0.11 0.11 2.02 - 0.56 0.66 3.25 0.95 1.61 4.17 1.29 2.90 4.66 1.60 `4.51 5.32 V=1 /3d(A+B+(AB)^.5 14-4n, 31-May-96 RBD, Inc., Engineering Consultants RIDGEWOOD HILLS 2ND FILING Detention Pond Orifice Restriction JOB NO. 014-054 C = 0.6 Orifice Calculations for Pond 117 �\ TAIL ORIFICE ORIFICE WATER DEPTHS WATER HEAD CALC. MAX STORAGE DIA AREA SURFACE DEPTH OUTFLOW OUTFLOW VOLUME POND (In) (sq. ft.) (elev) (ft) (ft) (ft) (cfs) (cfs) (ac. ft.) 117 5104.10, 117 10.1 0.56 5105.00 0.9 0.33 0.57 2.02 4.66 0.11 117 10.1 0.56 5106.00 1.9 0.43 1.47 3.25 4.66 0.66 117 10.1 0.56 5107.00 2.9 0.48 2.42 4.17 4.66 1.61 117 10.1 0.56 5108.00 3.9 0.87 3.03 4.66 4.66 2.90 117 10.1 0.56 5109.00 4.9 0.95 3.95 5.32 4.66 4.51 100 year WSEL(3.0) ac-ft = 5108.06 Note: All tailwater depths calculated as normal depth(see associated rating Table) except at elev. 510 which was taken from UDSEWER calculations. The tail water Depth for elev. 5109 is an approximation. Orifice Equation Q = CA(2gH)^0.5 Where: Q = Flow in cfs C= coefficient of constriction A = Area of orifice in sq. ft. g= accelation of gravity H= head of water over the centroid of orifice l\ 24-Jul-96 r Table Rating Table for Circular Channel Project Description Project File c:lhaestad\fmw1014-054.fm2 Worksheet Flow Element Pond 117 outfall rating curve Circular Channel Method Manning's Formula i Solve For Channel Depth 1 Constant Data Mannings Coefficient 0.013 Channel Slope 0.040000 f 1ft Diameter 15.00 in Input Data Minimum Ma)dmum Increment Discharge 0.11 7.00 0.50 cfs Rating Table Discharge Depth Velocity (cfs) (ft) ON 0.11 0.08 3.22 0.61 0.18 5.39 1.11 0.25 6.44 1.61 0.30 7.184 Z.oZ 2.11 0.34 7.76 2.61 0.38 8.24 3.11 0.42 8.66_.4 3.61 0.45 9.02 _. 4.11 0.48 9.351-- 4.61 0.52 9.64�5 5.11 0.55 9.91. 5.61 0.58 10.16 6.11 0.60 10.38 ' 6.61 0.63 10.59 7.11 0.66 10.78 �l 05/31/96 FlowMaster v5.13 09:50:13 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 RBD, Inc., Engineering Consultants Ridgewood Hills Second Filing Detention Pond Rating Curve Pond 500 Cumulative Elev Area Area Storage Storage Outflow (ft) (ft2) (ac) (ac-ft) (ac-ft) (cfs) 5071.0 0 0.00 0.00 0.00 .0.00 5072.0 7,713 0.18 0.06 0.06 1.20 5073.0 25,510 0.59 0.36 0.42 1.81 5074.0 28,870 0.66 0.62 1.03 2.27 5075.0 32,350 0.74 0.70 1.73 2.56 5076.0 36,029 0.83 0.78 2.51 2.82 V=1 /3d(A+B+(AB)^.5) rRBD, Inc., Engineering Consuftants RIDGEWOOD HILLS 2ND FILING Detention Pond Orifice Restriction JOB NO, 014-054 C = 0.6 Orifice Calculations for Pond 500 TAIL ORIFICE ORIFICE WATER DEPTHS WATER HEAD DIA AREA SURFACE DEPTH POND (In) (sq. ft.) (elev) (ft) (ft) (ft) 500 5071.00 500 7.3 0.29 5072.00 1.0 0.26 0.74 500 7.3 0.29 5073.00 2.0 0.32 1.68 500 7.3 0.29 5074.00 3.0 0.36 2.64 500 7.3 0.29 5075.00 4.0 0.65 3.35 500 7.3 0.29 5076.00 5.0 0.95 4.05 SEL(1.50 ac-ft) = 5074.67 CALC. MAX STORAGE OUTFLOW OUTFLOW VOLUME (cfs) (cfs) (ac. ft.) 1.20 2.53 0.06 1.81 2.53 0.42 2.27 2.53 1.03 2.56 2.53 1.73 2.82 2.53 2.51 Note: All tailwater depths calculated as normal depth(see associated rating Table) except at elev. 5075 which was taken from UDSEWER calculations. The tail water Depth for elev. 5076is an approximation. Orifice Equation Q = CA(2gH)10.5 Where: Q = Flow in cfs C= coefficient of constriction A = Area of orifice in sq. ft. g= accelation of gravity H= head of water over the centroid of orifice / S-0 24-Jul-96 157 Table Rating Table for Circular Channel ' Project Description Project File c:\haestad\fmw\014-054.fm2 Worksheet pond 500 discharge table Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Constant Data Mannings Coefficient 0.013 Channel Slope 0.036300 ft/ft Diameter 15.00 in r Input Data Minimum Mabmum Increment Discharge 0.06 7.00 0.50 cfs Rating Table Discharge Depth Velocity MIS) (ft) (ft/s) 0.06 0.06 2.59 0.56 0.18 5.08 1.06 0.25 6.14 1.56 2.06 0.30 6.87 0.35 7. 2.56 0.39 7.92 2. Z =ITS ��„ •'`. 3.06 0.42 8.32 3.56 0.46 8.68 4.06 0.49 9.00 4.56 0.53 9.28 5.06 0.56 9.54 5.56 0.59 9.77 6.06 0.62 9.99 6.56 0.65 10.19 7.06 0.68 10.37 05/31/96 09:54:14 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1! a FlowMaster v5.13' Page 1 of 1 /5Z EROSION CONTROL DESIGN 17 RBD, Inc. 5 ►s3 1 t s i 1 1 t 1 RAINFALL PERFORMANCE STANDARD EVALUATION *014-054 PROJECT: Ridgewood PUD 2nd Filing STANDARD FORM CALCULATED BY: JAM DATE: 07/26/96 Developed Erodibilty Asb Lsb Ssb Lb Sb PS Subbasin Zone (ac) (ft % ft % 301 high 2.02 100 2.80 302 high 2.11 400 1.00 303 high 1.48 350 1.14 304 high 2.81 600 1.00 305 high 1.92 760 0.68 306 307 308 high 2.26 450 1.11 309 high 1.01 400 2.00 310 high 0.42 300 2.00 311 high 4.05 900 1.80 312 high 1.53 420 1.20 313 high 4.94 900 0.50 406 high 0.82 550 6.00 408 high 2.43 250 7.00 409 high 0.54 380 0.60 410 high 1.49 550 8.00 411 high 1.05 520 8.00 412 high 5.32 670 1.00 413 high 1.78 .410 3.40 414 high 1.13 500 5.00 415 high 2.08 690 1.68 416 high 1.02 300 3.00 417 high 0.77 510 5.00 418 high 2.08 520 5.00 419 high 3.44 220 6.00 420 high 0.76 810 8.00 421 high 0.87 620 8.00 422 high 0.77 380 0.50 423 high 3.04 310 8.00 424 high 1.36 250 5.50 500 high 5.55 510 3.00 501 high 0.98 330 0.60 502 high 2.61 220 5.50 503 high 1.13 210 1.00 504 high 3.09 380 1.00 Total 68.66 500 3.1 83.0 twrmrLt EAU ULA I Lb = sum(AiLi)/sum(Ai) = (2.02 x 100 +... + 3.09 x 380)/ 68.66 500 ft Sb = sum(AiSi)/sum(Ai) = (2.02 x 2.80 +... + 3.09 x 1:00)/ 68.66 = 3.1 % PS (during construction) = 83.0 (from Table 8A) PS (after construction) = 83.0/0.85 = 97.6 /S¢ RBD, Inc. CALCULATED BY: JAM DATE: 07/26/96 Erosion Control C-Facto P-Facto Comment Number Method Value Value 3 Bare Soil - Rough Irregular Surface 1 0.9 placed at area inlets 5 Straw Bale Barrier 1 0.8 placed at swales 6 Gravel Filter 1 0.8 placed at boundaries 8 Silt Fence Barrier 1 0.5 9 AsphaWConcrets Pavement 0.01 1 all areas not paved 19 Established Grass Ground Cover -100% 0.02 1 39 Hay or Straw Dry Mulch (15% slope) 0.06 1 area not disturbed during construction MAJOR S A BASIN ok ac SITE 83.0 68.66 MAJOR SUB AREA Practice C *A P' A Remarks BASIN BASIN ac SITE DURING CONSTRUCTION 301 PERVIOUS AREA 2.02 8 2.02 1.01 Silt Fence Barrier 301 ROADWAY 0.00 0.00 0.00 0.00 302 PERVIOUS AREA 1.34 39 0.03 1.34Hay orStraw Dry Mulch (15%slope) 302 ROADWAY 0.77 5 0.77 0.62 Straw Bale Barrier 303 PERVIOUS AREA 1.32 39 0.03 1.32 Hay or Straw Dry Mulch (15%slope) 303 ROADWAY 0.16 3 0.16 0.14 Bare Soil -Rough Irregular Surface 304 PERVIOUS AREA 2.53 39 0.05 2.53Hay orStraw Dry Mulch (15%slope) 304 ROADWAY 0.28 6 028 022 Gravel Filter 305 PERVIOUS AREA 1.49 39 0.03 1.49 Hay or Straw Dry Mulch (1 -5% slope) 305 ROADWAY 0.43 6 0.43 0.34 Gravel Filter 308 PERVIOUS AREA 1.73 39 0.03 1.73 Hay or Straw Dry Mulch (1 -5% slope) 308 ROADWAY 0.53 39 0.01 0.53 Hay or Straw Dry Mulch (1-5% slope) 309 PERVIOUS AREA 0.85 39 0.02 0.85 Hay or Straw Dry Mulch (1-5% slope) 309 ROADWAY 0.16 6 0.16 0.13 Gravel Filter 310 PERVIOUS AREA 0.26 39 0.01 026Hay orStraw Dry Mulch (15%slope) 310 ROADWAY 0.16 6 0.16 0.13 Gravel Fitter 311 PERVIOUS AREA 4.05 39 0.08 4.05 Hay or Straw Dry Mulch (15% slope) 311 ROADWAY 0.00 0.00 0.00 0.00 312 PERVIOUS AREA 0.94 39 0.02 0.94 Hay or Straw Dry Mulch (1 -5% slope) 312 ROADWAY 0.59 39 0.01 0.59 Hay or Straw Dry Mulch (15% slope) 313 PERVIOUS AREA 4.94 39 0.10 4.94Hay orStraw Dry Mulch (15%slope) 313 ROADWAY 0.00 0.00 0.00 0.00 406 PERVIOUS AREA 0.82 39 0.02 0.82 Hay or Straw Dry Mulch (15%slope) 406 ROADWAY 0.00 0.00 0.00 0.00 408 PERVIOUS AREA 1.62 39 0.03 1.62 Hay or Straw Dry Mulch (1 -5% slope) 408 ROADWAY 0.81 6 0.81 0.65 Gravel Filter 409 PERVIOUS AREA 0.23 39 0.00 023 Hay or Straw Dry Mulch (15%slope) 409 ROADWAY 0.31 5 0.31 025 Straw Bale Barrier 410 PERVIOUS AREA 0.73 39 0.01 0.73 Hay or Straw Dry Mulch (1-5% slope) 410 ROADWAY 0.76 6 0.76 0.61 Gravel Filter 411 PERVIOUS AREA 1.05 39 0.02 1.05 Hay or Straw Dry Mulch (1 -5% slope) 411 ROADWAY 0.00 0.00 0.00 0.00 412 PERVIOUS AREA 5.32 6 5.32 4.26 Gravel Filter 412 ROADWAY 0.00 0.00 0.00 0.00 413 PERVIOUS AREA 1.48 39 0.03 1.48 Hay or Straw Dry Mulch (15%slope) 413 ROADWAY 0.30 5 0.30 0.24 Straw Bale Barrier 414 PERVIOUS AREA 0.58 39 0.01 0.58 Hay or Straw Dry Mulch (15%slope) 414 ROADWAY 0.55 5 0.55 0.44 Straw Bale Barrier 415 PERVIOUS AREA 1.67 39 0.03 1.67 Hay or Straw Dry Mulch (15%slope) 415 ROADWAY 0.41 5 0.41 0.33 Straw Bale Barrier 416 PERVIOUS AREA 0.60 39 0.01 0.60 Hay or Straw Dry Mulch (1 -5% slope) 416 ROADWAY 0.42 5 0.42 0.34 Straw Bale Barrier n I 11 1 i I ,r I' RBD, Inc. Ys;11 i r i It e CALCULATED BY: JAM DATE: 07/26/96 Erosion Control C-Facto P-Facto Comment Number Method Value 'Value 3 Bare Soil - Rough Irregular Surface 1 0.9 placed at area inlets 5 Straw Bale Barrier 1 0.8 placed at swales 6 Gravel Filter 1 0.8 placed at boundaries 8 Silt Fence Barrier 1 10.5 9 Asphatt/Concrete Pavement 0.01 1 all areas not paved 19 Established Grass Ground Cover -100% 0.62 1 39 Hay or Straw Dry Mulch (1-5% slope) 0.06 1 area not disturbed during construction MAJOR PS AREA BASIN % ac SITE 83.0 68.66 MAJOR SUB AREA Practice C*A P'A Remarks BASIN BASIN ac SITE DURING CONSTRUCTION 417 PERVIOUS AREA 0.47 39 0.01 0.47 Hay or Straw Dry Mulch (1-5% slope) 417 ROADWAY 0.30 5 0.30 024 Straw Bale Barrier 418 PERVIOUS AREA 1.88 39 0.04 1.88 Hay or Straw Dry Mulch (1-5% slope) 418 ROADWAY 0.20 5 020 0.16 Straw Bale Barrier 419 PERVIOUS AREA 2.69 39 0.05 2.69 Hay or Straw Dry Mulch (15% slope) 419 ROADWAY 0.75 6 0.75 . 0.60 Gravel Filter 420 PERVIOUS AREA 0.27 39 0.01 0.27 Hay or Straw Dry Mulch (15%slope) 420 ROADWAY 0.49 6 0.49 0.39 Gravel Filter 421 PERVIOUS AREA 0.52 39 0.01 0.52 Hay or Straw Dry Mulch (15% slope) 421 ROADWAY 0.35 6 0.35 028 Gravel Filter 422 PERVIOUS AREA 0.37 39 0.01 0.37 Hay or Straw Dry Mulch (1-5% slope) 422 ROADWAY 0.40 6 0.40 0.32 Gravel Filter 423 PERVIOUS AREA 3.04 39 0.06 3.04 Hay or Straw Dry Mulch (15% slope) 423 ROADWAY 0.00 0.00 0.00 0.00 424 PERVIOUS AREA 1.36 39 0.03 1.36 Hay or Straw Dry Mulch (15% slope) 424 ROADWAY 0.00 0.0o 0.00 0.00 500 PERVIOUS AREA 5.25 39 0.11 525 Hay or Straw Dry Mulch (1-5% slope) 500 ROADWAY 0.30 6 0.30 024 Gravel Filter 501 PERVIOUS AREA 0.46 39 0.01 0.46Hay orStraw Dry Mulch (15%slope) 501 ROADWAY 0.52 6 0.52 0.42 Gravel Fitter 502 PERVIOUS AREA 2.61 39 0.05 2.61 Hay or Straw Dry Mulch (1 -5% slope) 502 ROADWAY 0.00 0 0.00 0.00 0.00 503 PERVIOUS AREA 1.13 39 0.02 1.13 Hay or Straw Dry Mulch (15% slope) 503 ROADWAY 0.00 0 0.00 0.00 0.00 504 PERVIOUS AREA 3.09 39 0.06 3.09 Hay or Straw Dry Mulch (15% slope) 504 ROADWAY 0.00 0 0.00 0.60 0.00 172198 64.836 Cnet=(2.02x1.00+..+3.09x06)/68.66 = 0.25 PneY-(2.02x90+_+3.09x1.00)/68.66 = 0.76 EFF = (1-C`P)100 = (1-0.25-0.76)100 = 81.05 ««< 83.0 (PS) Assume paving not constructed within 6 weeks; use gravel inlet fillers at all area inlets & sift fence at swales & downstream perimeters. RBD, Inc. / s(o I tuber Method Value 9 Asphatt/Concrete Pavement 0.01 16 Established Grass Ground Cover - 70% 0.04 19 Established Grass Ground Cover -100% 0.02 MAJOR BASIN PS % AREA ac SITE 97.6 68.66 M JOR SUB BASIN BASIN A AMIU4 ment Value 1 Paved and constructed 1 Lawns and openspace 1 Area not disturbed during construction Practice C' A P • A AFTER CONSTRUCTION 301 PERVIOUS AREA 2.02 16 0.08 2.02 Established Grass Ground Cover - 70% 301 ROADWAY 0 9 0.00 0.00 Asphalt/Concrete Pavement 302 PERVIOUS AREA 1.34 16 0.05 1.34 Established Grass Ground Cover- 70% 302 ROADWAY 0.77 9 0.01 0.77 Asphalt/Concrete Pavement 303 PERVIOUS AREA 1.32 16 0.05 1.32 Established Grass Ground Cover - 70% 303 ROADWAY 0.16 9 0.00 0.16 AsphaR/Concrete Pavement 304 PERVIOUS AREA 2.53 16 0.10 2.53 Established Grass Ground Cover-70% 304 ROADWAY 0.28 9 0.00 0.28 Asphalt/Concrete Pavement 305 PERVIOUS AREA 1.49 16 0.06 1.49 Established Grass Ground Cover - 70% 305 ROADWAY 0,43 9 0.00 0.43 Asphalt/Concrete Pavement 308 PERVIOUS AREA 1.73 16 0.07 1.73 Established Grass Ground Cover - 70% 308 ROADWAY 0.53 9 0.01 0.53 Asphalt/Concrete Pavement 309 PERVIOUS AREA 0.85 16 0.03 0.85 Established Grass Ground Cover-70% 309 ROADWAY 0.16 9 0.00 0.16 Asphalt/Concrete Pavement 310 PERVIOUS AREA 0.26 16 0.01 0.26 Established Grass Ground Cover - 70% 310 ROADWAY 0.16 9 0.00 0.16 AsphaR/Concrete Pavement 311 PERVIOUS AREA 4.05 16 0.16 4.05 Established Grass Ground Cover - 70% 311 ROADWAY 0 9 0.00 0.00 Asphalt/Concrete Pavement 312 PERVIOUS AREA 0.94 16 0.04 0.94 Established Grass Ground Cover- 70% 312 ROADWAY 0.59 9 0.01 0.59 Asphalt/Concrete Pavement 313 PERVIOUS AREA 4.94 16 0.20 4.94 Established Grass Ground Cover - 70% 313 ROADWAY 0 9 0.00 0.00 Asphalt/Concrete Pavement 406 PERVIOUS AREA 0.82 16 0.03 0.82 Established Grass Ground Cover- 70% 406 ROADWAY 0 9 0.00 0.00 Asphalt/Concrete Pavement 408 PERVIOUS AREA 1.62 16 0.06 1.62 Established Grass Ground Cover - 70% 408 ROADWAY 0.81 9 0.01 0.81 AsphaR/Concrete Pavement 409 PERVIOUS AREA 0.23 16 0.01 0.23 Established Grass Ground Cover - 70% 409 ROADWAY 0.31 9 0.00 0.31 AsphaR/Concrete Pavement 410 PERVIOUS AREA 0.73 16 0.03 0.73 Established Grass Ground Cover - 70% 410 ROADWAY 0.76 9 0.01 0.76 AsphalttConcrete Pavement 411 PERVIOUS AREA 1.05 16 0.04 1.05 Established Grass Ground Cover - 70% 411 ROADWAY 0 9 0.00 0.00 Asphalt/Concrete Pavement 412 PERVIOUS AREA 5.32 16 0.21 5.32 Established Grass Ground Cover-70% 412 ROADWAY 0 9 0.00 0.00 Asphalt/Concrete Pavement 413 PERVIOUS AREA 1.48 16 0.06 1.48 Established Grass Ground Cover - 70% 413 ROADWAY 0.3 9 0.00 0.30 AsphaldConcrete Pavement 414 PERVIOUS AREA 0.58 16 0.02 0.58 Established Grass Ground Cover - 70% 414 ROADWAY 0.55 9 0.01 0.55 AsphaR/Concrete Pavement 415 PERVIOUS AREA 1.67 16 0.07 1.67 Established Grass Ground Cover- 70% 415 ROADWAY 0.41 9 0.00 0.41 Asphalt/Concrete Pavement 416 PERVIOUS AREA 0.6 16 0.02 0.60 Established Grass Ground Cover - 70% 416 ROADWAY 0.42 9 0.00 0.42 Asnhatt/Concrete Pavement 1 17 I RBD, Inc. CALCULATED BY: JAM DATE: 07/26/96 Erosion Control C-Facto P-Facto Comment Number Method Value Value 9 Asphalt/Concrete Pavement 0.01 1 Paved and constructed 16 Established Grass Ground Cover-70% 0.04 1 Lawns and openspace 19 Established Grass Ground Cover -100% 0.02 1 Area not disturbed during construction i 6 r MAJOR BASIN PS % ac SITE 97.6 68.66 IVIFWUR I AUD BASIN BASIL 417 PERVIOUS AREA 417 ROADWAY 418 PERVIOUS AREA 418 ROADWAY 419 PERVIOUS AREA 419 ROADWAY 420 PERVIOUS AREA 420 ROADWAY 421 PERVIOUS AREA 421 ROADWAY 422 PERVIOUS AREA 422 ROADWAY 423 PERVIOUS AREA 423 ROADWAY 424 PERVIOUS AREA 424 ROADWAY 500 PERVIOUS AREA 500 ROADWAY 501 PERVIOUS AREA 501 ROADWAY 502 PERVIOUS AREA 502 ROADWAY 503 PERVIOUS AREA 503 ROADWAY 504 PERVIOUS AREA 504 ROADWAY F1KCF1 AFTER CONSTRUCTION 0.47 16 0.02 0.47 Established Grass Ground Cover - 70% 0.3 9 0.00 0.30 Asphalt/Concrete Pavement 1.88 16 0.08 1.88 Established Gress Ground Cover - 70% 0.2 9 0.00 0.20 Asphalt/Concrete Pavement 2.69 16 0.11 2.69 Established Grass Ground Cover - 70% 0.75 9 0.01 0.75 Asphalt/Concrete Pavement 0.27 16 0.01 0.27 Established Grass Ground Cover - 70% 0.49 9 0.00 0.49 Asphalt/Concrete Pavement 0.52 16 0.02 0.52 Established Gress Ground Cover - 70% 0.35 9 0.00 0.35 Asphalt/Concrete Pavement 0.37 16 0.01 0.37 Established Grass Ground Cover - 70% 0.4 9 0.00 0.40 Asphalt/Concrete Pavement 3.04 16 0.12 3.04 Established Grass Ground Cover - 70% 0 9 0.00 0.00 Asphalt/Concrete Pavement 1.36 16 0.05 1.36 Established Grass Ground Cover - 70% 0 9 0.00 0.00 Asphall/Concrete Pavement 5.25 19 0.11 5.25 Established Grass Ground Cover -100% 0.3 9 0.00 0.30 Asphall/Concrete Pavement 0.46 16 0.02 0.46 Established Grass Ground Cover - 70% 0.52 16 0.02 0.52 Established Grass Ground Cover - 70% 2.61 16 0.10 2.61 Established Grass Ground Cover - 70% 0 16 0.00 0.00 Established Gress Ground Cover - 70% 1.13 16 0.05 1.13 Established Grass Ground Cover - 70% 0 16 0.00 0.00 Established Grass Ground Cover - 70% 3.09 16 0.12 3.09 Established Grass Ground Cover - 70% 0 16 0.00 0.00 Established Gress Ground Cover - 70% ' Cnet = [2.02x0.04+,,,+0.26x0.04y68.66 0.01 Pnet = [2.02x1.00+...+0.26x1.00y68.66 0.20 EFF= = (1-C'P)100 = (1-0.01'0.20)100 99.86 > 97.6 (PS) i i i 1 1 1 1 1 1 I 1 1 f G) � m m c m --I 3 O CO) m r O r 0 O O w z { 1 D O 1 O z o m r 0ztnl3v< Nm S m OD-iOwwwp wN5wwp 00-<>d-0Wm mG)� °0a°0 n3o my 'ai v Cd C Nj00NCZ ON N D om A, ^z(m �_I O CA—co mNcO D 0 H�Z COm D G4O�)m m Z N rO Npa= n ( M -a 0Z CL O to U2 f° O 0) w co � o o w m 3 m m m g O O .z O m my m 7,0 0 < y fL3 N O S N a c m CD m 3 � � o N m c � m � 3c O_ 3 � y � C N N U) m (— d N C y N � o n m O w O = z D 0 N O m z J i 0 O � r .N. n n_ N o -4 c i O Z w m O c m z 0 m I i i I I RBD, Inc. EROSION CONTROL COST ESTIMATE PROJECT: Ridgwood Hills PUD 2nd filing #014-054 PREPARED BY: JAM DATE: 04/20/96 CITY RESEEDING COST Unit Total Method Quantity Unit Cost Cost Notes Reseed/mulch 68.66 ac $500 $34,330 See Note 1. Subtotal $34,330 Contingency 50% $17,165 Total $51,495 EROSION CONTROL MEASURES Unit Total Number Method Quantity Unit Cost Cost Notes 6 Gravel Filter 21 ea $300 $6,300 8 Silt Fence Barrier 1150 LF $3 $3,450 39 Hay or Straw Dry Mulch (1-5% slope) 58.23 ac $500 $29,115 59 Seeding (Native) 0 ac $305 $0 5 Straw Bale Barrier 7 ea $150 $1,050 Subtotal $39,915 Contingency 50% $19,958 Total $59,873 Total Security $59,873 I c EXCERPTS FROM RIDGEWOOD HILLS FIRST FILING FINAL DRAINAGE AND EROSION II CONTROL STUDY /6/ FINAL DRAINAGE AND EROSION CONTROL STUDY FOR RIDGEWOOD HILLS P.U.D. FIRST FILING FORT COLLINS, COLORADO STG 3PY March 3, 1995 Prepared for: d. Jensen Enterprises P.O. Box 1007 Fort Collins, CO 80522 Prepared by: RBD, Inc. Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 (303) 482-5922 ■ RBD Job No. 014-047 /6ZI Pond #14 will discharge to the West into the existing roadside ditch along Trilby Road. At the point where pond #14 outlets, the existing roadside ditch will be carrying 15.06 cfs for the 100 year storm from Trilby Road, inludin flowby past inlets 1 E and 1 G. This flow is not being detain e within the Ridgewood site due to elevation restrictions etc. Pond #14 will discharge an additional 1.5 cfs into the ditch. The 1.5 cfs is above. the historical release rate of 0.77 cfs, however the pond volume has been maximized, and an orifice sized for only 0.77 cfs would surely clog. The total flow in the Trilby roadside ditch will be 16.56 cfs. The capacity of the ditch at this point was checked and found to be approximately 40 cfs. This flow will be conveyed within the ditch adjacent to Trilby Rd. through the box culvert under the Railroad Crossing and into Lang Gulch. The calculations for the capacity of the Trilby Roadside ditch are included in the appendix. Ponds #19 and #25 will discharge into pond #28. Pond #28 will discharge to the east along Trilby Road. The total 2 year historic flow for Ponds #19, #25 and #28 is 6.57 cfs. The discharge from Pond #28 into the Trilby Roadside ditch will be 4.3 cfs. Even though the Trilby Roadside ditch is being improved with the Ridgewood subdivision the available capacity is still only 12.11 cfs at the smallest section. 'This is -why the release rate from Pond #28 was held to the minimum which was physically possible. The flows from pond #28 will cross under Trilby Rd. in an existing 18" culvert and eventually be conveyed to Fossil Creek. The outlet for pond #39 will be a 21 " pipe which will convey the flow in an easement all the way until it reaches Highway 287, and outlet just upstream of an existing 24" culvert which crosses under the highway and discharges into Robert Benson Lake. The allowable release rate for pond #39 is not based on the historical release rate but rather on a pro- rated capacity of the existing 24" culvert under Highway 287 for the entire drainage area. The total drainage area to the 24" culvert is equal to 125 acres. The 2 year historical flow rate for this 125 acres equals 23.7 cfs. An analysis was done to see if the existing 24" culvert has the capacity to convey this 23.7 cfs. Based on this analysis which is shown in the appendix the 24" culvert can convey the 23.7 cfs. Therefore, the allowable release rate from pond #39 during Phase I was determined by taking the 2 year historical flow and dividing by the total drainage area which gave an allowable flow per acre of .19cfs. This figure was then multiplied by the total drainage area of Phase I which equals 24.6 acres for an allowable release rate of 4.7cfs. The allowable release rate for pond #39 with the inclusion of Phase II will be 82.2 acres x 0.19cfs/acre for a total of 15.6 cfs. The 100 year flow rates at the 24" culvert were compared in the existing condition and after the M No Text Rmm Engineering Consultants C6¢ ��20/ ' CLIENT �i.►a+_� JOB NO. PROJECT � CALCULATIONS FOR ' MADEBY4DATE UNA CHECKED BY_ DATE SHEET _OF it P O .. [ � `• � n n �' 2° xl Eadl_/io�AX DiJch,L>, 1� PIC I Cz0•20Cfs M j' �� .: i ; � p ' .j , ! i � . � : I . A' � °`'`ail �� . 303>`�7 lley� Tyoe n''lzE•f, ' : � • ° • I - • I � � efislin,e ZI'S'l. P. L/JSJ L[ti:�r I :' ' v ' : � i ! t . I , • , ' .. ' -- � \ a1 B1a. 393>/S (Ste D�:.+i/% j s �' !p - Cc�n_>clin9 fo erisJial lQ �•• j.; _�- i'.i ;�;`.�;,',�',^�J ii UcssCv/✓erlal.S/d.3o3//S i:' � � !j:1.6.,1;'I:I�'I� �•!I'.` 303'62-Inaia//ed ��, _�. i ; I� I �1• I'�i I??:I: til:h lii�� •'� :i�l! III; .I.I :;:I ,I�:?: .i.. �i. �io •.,\j�T.. bT..a ,.1 OOc�a�•\�2 i, I ILL LA • I �- -- 1 ® - co• -xo 0 ti P-. _- I �a Ino b MA ta,se l2, ' CLIENT PROJECT CALCULATIONS FOR ' MADE BY- DATE CHECKED BY DATE SHEET OF i - a • n C �• C m C) >aynsawr9 t/l > N £ = OOnma nia2 ax n p 1- .1 � p _ >;ti '+a gtitiS~C _ O n > P24 ;^ f o �+ nc2->i o m ' r<n m S 0 z .a. Sao Q I x O a O m y £j y 0-. O y m y y r i N O H m N p n S 1 I n = > = 9 DO 0 In O- ` ; Ac C S m i i N rs a y >zf r zsa 2ZC (APro 0 0 cn CA _f s o 2 m I ` O 0 S O z c+ 9 p ti r r � m S T r e m � r e �fr a . O N O r N ` 4 + V U < n N < N 9 i m m _ Cf r a � s n n ^ <In 1� n > a rls+ } ^ r -4 m L.3 to � N r `t m � J o lu" �I Zva oez T i n SEE ADD L,SNTS. m yC r<n ❑ ❑ ❑ ❑ r K a 2 n o n QQ J c > -i n m > yiZ1�� y O _� 2 - 0 n n m n o I m > p m m j a - H m O .., m D a < z y o w\ N m y <' z O r t r O �t CI I 0 > Ul y ❑ ❑ r s 1'�S, J r\ p'� > ti O r S 9 > r D r f b 0 = J H w n y y r r r m D o o'� m t/1 m � .. > _ E � a s �- O > - r N � r N — G Oo gg r��l r N e m y la O n j e, . Q 'S m a o n _ • — _ I m m m C y _ r 1 Y c Dpr to I p m m = CONTROL e O > O uI VV NEAOWATER I -i Eri UI ELEVATION I m m N C) OUTLET I Z {J J J VELOCITY - m O o z 1 S O Y 0 CHART 1-0- ISO 10,000 I68 8,000 EXAMPLE (2) (3) ' I56 6,000 D•42 Inches (3.5 fset) 8'- 6. 5,000 0.120 cis S 144 8. 1 ... 3. 4,000 Im +► NM , I32 o foot 3,000 Z' 5.1. ,4.3..: 120 (1) Y.s tut"` •= _ _ 4. (2) 2.1 7.4 2,000 (S) 2.2 7.7 4• ' 108 3.. 'D Ia feet G -. 3. 96 1,000 3 800 84 600 2 SOO rn 72 400 + / 3 2. u W 300 j y = 60 Is. 200 FW- S4 100 IX J 4° / s 80 i 3. c2 42 v 6 W 1.0 ,, 1.0 ' U. o-: U. o 0 H SCALE' ENTRANCE p 1.0 ` 4 TYPE ¢ - o: g W 36 ►'• ' " 11I square adds digit .9 .9 W hasdsell 3f 33 p 1 Q '20 (Y) Grooea aad with W 30 haadaall s .S e (S) croow aM .e . 27 rro)ectlal to 7 .... .. , 24 S .T 6 To use seola (2) or (S) tnlast 21 S horlswely to scale In, ibex I 4 use straight Inclined line throgh 1 , 0 end 0 *colas, or reverse as 8 3 illaolrold. .jr 18 . i � s 1.0 :." a .s 1Y HEADWATER DEPTH FOR HEADWATER SCALES 283 CONCRETE PIPE CULVERTS ' REVISED MAY1964 WITH INLET CONTROL SUREAU tN RMLIC ROAD$ dAK MA 181 ' Preceding page blank , oCH ART 4 E 6 4 2 0 BUREAU OF PUBLIC ROADS JAN. 1964 DISCHARGE-0-CFS / V 60 90 I00 6 J Q DISCHARGE- ' VV uo0 900 I000 0 0-CFS i: FE Uibf.;IiaRGE-0-CFS �VVV I84 CRITICAL DEPTH CIRCULAR PIPE ��p Z7 RBD INC. ENGINEERING CONSULTANTS ' WEIR SECTION FLOW DATA WEIR FLOW OVER HWY. 287 WEIR COEF. 3.000 STA ELEV 0.0 5020. 60 aeg 68.0 5019.50 136.0 5020.60 5019 ELEVATION DISCHARGE (feet) - --- -- ' 5019.50 0.0 5019.60 0.4 5019.70 2.4 , 5019.80 6.5 5019.90 13.3 5020.00 23.2 5020.10 36.7 UISEL x 5020.20 53.9 A= 5020.30 75.2 5020.40 101.0 5020.50 131.4 = 45,E ads!-�'e5020.60 167.0 Nsite�3• L3 1 AS ' C°'IS?.^,Ot EO _� S. W. ka NO BEVIS1Ol75 � F.EYi.iED 'O' zO -5 VOID,—� r 6 N., R. 6pl k Y or h'y A/on9 � of o`I to 72-m Easement-7 — _ I I -___ ______-_ —OT 4 �o I I �\i90 � �:\ •J ZTern�eSein en%r tNI lT Ogvt� Zz \�V t YY ti��op _ _ lO.QsPhafi—Mat - ---- --- - I I"IOA Similar /a 'LA ; -17 ----- - - - - - -a - - t - - - --- — ---_ - -- - - -- - - - - - - - _ - r-- - - -__- _ = - -- _ - - 1 f =- • ------ 1.._. -- - - 7.- cc• - - -- - is _.. - I'-- I.• .-.:I -�- � .. ELL j-- ---_--rl__ .l. .i' 4' /G'/ZCCOR�-'-•--j--- -L. ' - r ---.1-_J __ '� _- -�'• r� -' -- 1- 1__.:y-_• ♦ 1 --.-- - - - q742- - .L197B_ — _,-1 .?V/ ,�Z .�3 I'i �' •-- -- - �� I _-!: - '=E�2R22!/a MucEExcavolit 3C25 STORM DRAINAGE DESIGN AND TECHNICAL CRITERIAI- TABLE 1401 WEIR FLOW COEFFICIENTS SHAPE COEFFICIENT COMMENTS Sharp Crested - Projection Ratio (H/P = 0.4) 3.4 H -< 1.0 Projection Ratio (H/P = 2.0) 4.0 H> 1.0 W/Sharp�U/S Corner 2.6 Minimum Value W/Rounded U/S Corner 3.1 Critical Depth Triangular Section - A) Vertical U/S Slope - 1:1 D/S Slope 3.8 H > 0.7 A;-.LD Sl 3.2 H> 0.7 10:1 D/S Slope 2.9 H> 0.7 B) 1:1 U/S Slope - 1:1 D/S Slope 3.8 H >0.5 3:1 D/S Slope 3.5 H >0.5 Trapezoidal Section 1:1 U/S Slope, 2:1 D/S Slope 3.4 H:- 1.0 2:1 U/S Slope, 2:1 D/S Slope 3.4 H > 1.0 Road Crossings Gravel 3.0 H>1.0 Paved 3.1 H 1.0 I3 Date: NOV 1884 Rev: ■■■■MOMMSON ■■■■ ■ ►I v �• r u y u •a u • r act* [ 211 SCHEMATIC 8" H I t Q .v v • CC& CC Or ful [ G ADJUSTMENT FOR TAILWATER Y REFERENCE: King & Brater, Handbook of Hydraulics, McGraw Hill Book Company, 1963 - Design of Small Dams, Bureau of Reclem.,1977 , 16Z CHARTS, TABLES AND FIGURES DRAINAGE CRITERIA MANUAL RUNOFF TABLE 3-1 (42) RECOMMENDED -RUNOFF COEFFICIENTS AND PERCENT IMPERVIOUS LAND USE OR PERCENT FREQUENCY SURFACE CHARACTERISTICS IMPERVIOUS 2 5 10 100 Business: Commercial Areas 95 .87 .87 .88 .89 Neighborhood Areas 70 .60 .65 .70 .80. Residential: ' Single -Family * .40 .45 .50 .60 Multi -Unit (detached) 50 .45 .50 .60 .70 ' Multi -Unit (attached) 70 .60 .65 .70 .80 112 Acre Lot or Larger * .30 .35 .40 .60 ' Apartments 70 .65 .70 .70 .80 Industrial• Light Areas 80 .71 .72 .76 .82 ' Heavy Acres 90 .80 .80 .85 .90 ! Parks, Cemetaries: 7 .10 .18 .25 .45 Playgrounds: 13 .15 .20 .30 .50 Schools: 50 .45 .50 .60 .70 Railroad Yard Areas 20 .20 .25 .35 .45 Undeveloped Areas: ' Historic F1ow.Analysis- 2 (See "Lawns") - Greenbelts, Agricultural Offsite Flow Analysis 45 .43 .47 .55 .65 (when land use not defined) Streets: ' Paved 100 .87 .88 .90 .93 Gravel (Packed) 40 .40 .45 .50 .60 Drive and Walks: 96 .87 .87 .88 .89 Roofs: 90 .80 .85 .90 .90 ' Lawns, Sandy Soil 0 .00 .01 .05 .20 Lawns, Clayey Soil 0 .05 .15 .25 .50 NOTE: These Rational Formula coefficients may not be valid for large basins. *Sze Figure 2-1 for percent impervious. 11-1-90 URBAN DRAINAGE AND FLOOD CONTROL DISTRICT i63 DRAINAGE CRITERIA MANUAL RUNOFF 50 40 0 w 30 cc Q O cc 20 w a 10 0 C TEST AREA LOCATIONS 0 ARAPAHOE COUNTY O ❑ LITTLEION /01 0 LOW DENSITY MEDIUM DENSITY 1 2 3 4 HOUSING DENSITY — UNITS PER ACRE FIGURE 2-1. RESIDENTIAL HOUSING DENSITY VS. IMPERVIOUS AREA 5-1-84 URBAN DRAINAGE & FLOOD CONTROL DISTRICT 5 , ■ 1 2 ' 1 45 f,,%-'- ' \ i.i 1 T3INC CLIENT -�: I JOBNO. PROJECT . CALCULATIONSFOR ' Engineering Consultants MADE BY DATE CHECKED BY DATE -SHEET- OF I ..� ; 'A 10 I I � i 1 No Text Fm t . INTERPOLATED VALUES FOR 100 YEAR INTENSITIES Tc. _ Value Clr-) 5.00 9.0 5.10. 9.0 5.20 8.9 5.30 8.9 5.40 8.9 5.50 8.8 5.60 8.8 5.70 8.7 5.80 8.7 5.90 8.7 6.00 8.6 6.10 8.6 6.20 8.6 6.30 8.5 6.40 8.5 6.50 8.5 6.60 8.4 6.70 8.4 6.80 8.4 6.90 8.3 7.00 8.3 7.10 8.2 7.20 8.2 7.30 8.2 7.40 8.1 7.50 8.1 7.60 8.1 7.70 8.0 7.80 8.0 7.90 8.0 8.00 7.9 8.10 7.9 8.20 7.8 8.30 7.8 8.40 7.8 8.50 7.7 8.60 7.7 8.70 7.7 8.80 7.6 8.90 7.6 9.00 7.6 9.10 7.5 9.20 7.5 9.30 7.5 9.40 7.4 9.50 7.4 9.60 7.3 9.70 7.3 , 9.80 7.3 9.90 7.2 10.00 7.2 DRAINAGE CRITERIA MANUAL 50 I— 20 Z w U Cr uj a 10 z w 0. 0 5 w s 3 O U 2 Cr. w Q� .; 1 RUNOFF �MENNsm�v� �FAWA � VA �� sINSEPA n �n►�►�,��.,� OWN mill _III-IIIII.,-IIIII AEIII.111111MA111 IIIIIIIIIIII-,IIIIIIIIIIII.IIIIIII.IIIII.-....- ME �...1111.............mossim .. 2 .3 ..5 1 2 3 5 10 20 VELOCITY 'IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING "UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical �.. Release No. 55. USDA. SCS Jan. 1975. 5-1-84 URBAN DRAINAGE 3 FLOOD CONTROL DISTRICT .9 .8 .7 VON s : 0 6 F: 0.8 ::0.4% F:0.5 I I I I BELOW MINIMUM ALLOWABLE I STREET GRADE 0 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 DESIGN CRITERIA alculations for curb Capacities and Velocities lajor and Minor Storm per City of Fort Collins Storm Drainage Design Criteria COLLECTOR w/ 6" Vertical curb and gutter Prepared by: RSD, Inc. 0 is for one side of the road only February 28, 1992 V is based on theoretical capacities 4 Area = 3.55 sq.ft. Area = 28.96 sq.ft. Minor Storm . Major Storm slope Red. . Minor' . 0 V . Major . 0 V (%) :Factor . X . (cfs) (fps) . X . (cfs) (fps) 0.40 : 0.50 : 135.32 : 4.28 2.41 : 1129.59 : 35.72 2.47 0.50 : 0.65 : 135.32 : 6.22-: 2.70 : 1129.59 : 51.92 2.76 0.60 : 0.80 : 135.32 : 8.39 2.95 : 1129.59 : 70.00 3.02 0.70 : 0.80 : 135.32 : 9.06 3.19 : 1129.59 : 75.61 3.26 0.30 : 0.80 : 135.32 : - 9.68 3.41 : 1129.59 : 80.83 3.49 0.90 : 0.80 : 135.32 : 10.27 3.62 : 1129.59 : 85.73 : 3.70 1.00 : 0.80 : 135.32 : 10.83 3.81 : 1129.59 : 90.37 : 3.90 : 1.25 : 0.80 : 135.32 : 12.10 4.26 : 1129.59 : 101.03 : 4.36 : 1.50 : 0.80 : 135.32 : 13.26 4.67 : 1129.59 : 110.68 : 4.78 : 1.75 : 0.80 : 135.32 : 14.32 5.04 : 1129.59 : 119.54 : 5.16 : 2.00 : 0.80 : 135.32 : 15.31 5.39 : 1129.59 : 127.80 : 5.52 : 2.25 : 0.78 : 135.32 : 15.83 5.72 : 1129.59 : 132.16 : 5.85 : 2.53 : 0.76 : 135.32 : 16.26 6.03 : 1129.59 : 135.74 : 6.17 : 2.75 : 0.74 : 135.32 : 16.61 6.32 : 1129.59 : 138.62 : 6.47 : 3.00 0.72 : 135.32 : 16.88 6.60 : 1129.59 : 140.87 : 6.76 : 3.25 0.69 : 135.32 : 16.83 6.87 : 1129.59 : 140.51 : 7.03 : 3.50 0.66 : 135.32 : 16.71 7.13 : 1129.59 : 139.48 : 7.30 : 3.75 0.63 : 135.32 : 16.51 : 7.38 : 1129.59 : 137.81 : 7.55 : 4.00 0.60 : 135.32 : 16.24 : 7.62 : 1129.59 : 135.55 : 7.80 : 4.25 0.58 135.32 16.18 : 7.66 : 1129.59 : 135.07 : 8.04 : 4.50 0.54 : 135.32 : 15.50 : 8.09 : 1129.59 : 129.40 : 8.27 : 4.75 0.52 : 135.32 : 15.34 : 8.31 : 1129.59 : 128.02 : 8.50 : 5.00 0.49 : 135.32 : 14.83 : 8.52 : 1129.59 : 123.77 : 8.72 : 5.25 0.46 : 135.32 : 14.26 : 8.73 : 1129.59 : 119.06 : 8.94 : 5.50 : 0.44 : 135.32 : 13.96 : 8.94 : 1129.59 : 116.56 : 9.15 : 5.75 : 0.42 : 135.32 : 13.63 : 9.14 : 1129.59 : 113.76 : 9.35 : 6.00 : 0.40 : 135.32 : 13.26 : 9.34 : 1129.59 : 110.68 : 9.55 : I I u I I I I No Text IV 1A I - CLIENT el,. -I —JOB NO. RWIWI PROJECT CALCULkTIONSFOA(I-�=-O_ Engineering Consultants MADESY � DATE Z 3Z CF.ECKEDI3Y_DATE _SHEET OF J - ----------- ...... .. V) N 11 -r�j ti A 3CS, r--: -S , C57: w. - ------ 7 T' ....... ... . ...... 7 c-- I C—Z-4 VA aT ..... .......71 7-1 I 7_ -=7 .7 -7-- 7- 7 7 F --- ------ ----------- 4n1-3hi �7: F, L L.I., IJ-* j I Z 4-4- 7 10 H4444 L 1 j T_777-. :7-1 r-*: Calculations for Curb Capacities and Velocities and Minor Storrs 'Fejor per City of Fort Collins Storm Draina[e Design Criteria . RESIDE971AL with drive over curb and C is for one side of the road only Sutter Prepared February by: RBD, Inc. 28, 1992 V is based on theoretical capacities Area = 2.63 sq.ft. Area = 20.11 sq.ft. Minor Storm : Major Storm Slope ; Red. : Minor . Q V . Major : 0 V (%) :Factor : X : (cfs) (fps) : X . (cfs) (fps) 0.40 0.50 : 65.71 : 2.74 2.09 : 696.73 : 22.03 2.19 . 0.50 0.60 ; 0.65 : 0.80 : E5.71 85.71 : 3.99 : 5.37 : 2.33 : 2.55 : 696.73 : 696.73 : 32.02 43.17 : 2.45 2.68 0.70 0.60 : 86.71 : 5.80 : 2.76 : 696.73 : 46.63 : 2.90 0.80 0.60 : 65.71 :- 6.20 2.95 696.73 : 49.85 3.10 '0.90 0.80 : 66.71 6.58 3.13 696.73 52.68 3.29 1.DO 0.80 : 65.71 : 6.94 • 3.30 696.73 : $5.74 . 3.46 : 1.25 O.SD : 86.71 : 7.76 : 3.69 : 696.73 : 62.32 3.87 1.50 0.80 : 86.71 : 8.50 : 4.04 : 696.73 : 68.27 : 4.24 1.75 0.80 : 86.71 : 9.18 : 4.36 : 696.73 : 3.73 : 4.58 2.00 0.80 : 66.71 : 9.61 : 4.66 : 696.3 : 78.63 : 4.90 2.25 2.50 0.78 : 0.76 : 86,71 66.71 : 10.15 : : 10.42 : 4,95 : 5.21 : 696.73 : 696.73 : 81.52 : E3.72 : 5.20 5.48 2.75 : „ 0.74 : 65.71 :_ 10..64 : 5.47.: 696.3 : 85.50 .: -.5.75 3.00 : 0.72 : 66.71 : 10.61 : 5.71 : 696.3 : 66.29 6.0D 3.25 : 0.69 : 86.71 : 10.79 : 5.94 : 696.3 : 66.67 : 6.25 ; 3.50 : 0.66 : E6.71 : 10.71 : 6.17 : 696- 3 : 86.03 6.48 3.75 : 0.63 : 86.71 : 10.58 : 6.38 : 696.3 : 85.00 : 6.71 4.00 : 4.25 : 0.6D : 0.58 : 86.71 : 66.71 : 10.41 : 10.37 : 6.59 : 6.E0 : 696.3 : 676.3 : E3.61 : E3.31 : 6.93 7.14 ; 4.50 : 0.54 : 66.71 : 9.93 : 6.97 : 696.3 : 77.81 : 7.35 4.75 : 0.52 : 66.71 : 9.E3 : 7.19 : 696.3 : 78.96 : 7.55 5.00 : 0.49 : 66.71 : 9.50 : 7.37 : 696.3 : 76.34 : 7.75 5.25 : 0.46 : 56.71 : 9.14 : 7.55 : 696.73 : 3.43 : 7.94 5.50 : 0.44 : 85.71 : 8.95 : 7.73 : 696.3 : 71.89 : 8.13 5.75 : 0.42 : 86.71 : 8.3 : 7.91 : 696.3 : 70.17 : 8.31 6.00 : 0.40 : 86.71 : 8.50 : 8.08 : 696.3 : 68.27 : 8.49 I� 11 i� CLI5 NTJO6 NO. PROJECT CALCULATIONS FORc� T' �7 �—c •1L.L/ Engineering Consultants WADE 6Y DATEZ-CIZ- CNECKEDEY DATE SHEET z OF Z �• - - _ _• _ czL:Z_3+CaV,1.�'?'.�.SID�.L�/1�L>�._—.7 -J U./U_U�_i-_� ri 10- - :. tJf1.SOZ:Si�ZM-.iE=PT'L1---11''dTS�_ .�VEti�• ....- --.... e_..:.-.- ----...:.._.! _.._..:.: ::_: ::/L.Z�I]- _ p�!E3 SID�.o,=_.ST2.ESET•��!Ly. �Cl/Z Ir�.so'=Im•o� C4S.�li.-"Z3,IT 1 toez loo+ �1 .:j. 17 1.17X1LZ7.'SrJ.=�J9.C�6 "+ I�i ca.=S9.�o_ 1;c.33 r 16.33 ...off ----- = - -- --- Z-� • r N1 � tJ TJ 1,,,1 L S.: _: _.? � _.-_.. �.. L� � . � � _ )` . v :�? 7 L•�) . - `. p:+a- t 7.:y . I.1 _,!; O.O 3 S..) _.._ -.. p . O _. .� J..17 7 7 _.21]�T�c.0 S /� : ' � � ` �r i =1:i1 a-i.�,7 ii.J�•'_s_.E � �,o,a�� — , � I z � � t : • :: •—: • • 1 � :.: ; , ; 1-----L �T_:t.�i':�.j�o. e!-x� — /' c'----11:2:-�3Li •� ' i_' '_ 1y�T- }, J i_7 1 1:_ 1- i1 I ? I i 7 j= i 1�.---- 7-- 1_�i C i I 1 �:f? ; -i1�� :-T i 1I 1_ �_'��\�=r'—?1 , I i :.1T_;._� I f�l! t 1 :�iLj — Q, 1 x— r ����; -1'-3_ f 1 1 I i i r•1 i, 1 1 1 y: i 1 f _: —; :, L oT: � , •TT�'E i �_i � ` ' ' ;-r 1 ! c ! f- , t i , , ,�1 ��_I , I I I i ! 1 i I t j i `t ! t J , i ,, T ri--- , , , 1 , i ItJC r.. , Engineering Consultants CLIENT P� C' CA Lj,,_ts JOB NO. ,N L - Q: PROJECT —CALCULATIONSFORC 27, =?- T::L L_< M.A.DE BY DA.-rE 7.9Z CHECKED EY_ DATE SHEET —I OF Z .7- _J. - -7- 7 :7 7 J/Z� (:�X:,4 E C C7 Y_ ­j.. 7-7 ...... Zz>L>Ca#4 1j C—_ 0-1 P e-L '77 7 77 -7- :2 J To r.&L- 7 7 '7 ----------- -"7'-; 4 T. f T7 TES IL ca 4� LI i j 17 1 J L J-1-1.J _L i J. LL. LI z _L T.) 7 -?-=-I ?_,z42_ -7 Z 'rc5,-'B; Z C>e-: �T( I- Outs o-w Adjustment Factor — k 0 0 o a o 0 CD. old, o cc Co CC. cc 0QO co ;v -� (7; cc N U)I co, o Q� o CD 0 1 n CD ,tJ O o O C4 i I i i I i I i I I 1.0 12 5 9 11 10 4 8 10 3 8 6 9 ~o yN� 2 04 U. 7 w 3 8 zi�� z 1.5 o. ' 6. /vi2� 7 ti T z 0`'ic� 1.0 .5 Exapnia p --.8- Uj 5.5 CY -- --- ao .8 w 5 z .6 o .7 U .4 z z .4 F- - w z 4.5 z. 0 3 w .6 G ^ U. _ L 0 O .5 v _ .2 f z z � z 3 0 o w 3.5 W w '.4 ao 0 I W w 0 0 0 .08 .25 3 _ = O .06 3 c� c� O z U. = 2:5 = w .04 w 25 r .2 0_ .03 Q H a .02 0 .2 2 U F- n. 15 .01 0 .15 L u 0 ' --- -- - -- - - o Yo a 1.5 a=2,h .10 I 1.2 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph ry MAY 1984 5-10 DESIGN CRITERIA f DRAINAGE CRITERIA MANUAL E n�rnHr �F0' 9 = Expansion Angle MEMNON 0 0 W-A IN F PAP EAPAR PREENCIEN :; go= .l .2 .3 A .5 .6 .7 .8 TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D ' i FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS , 11-15-82 URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE /Y,� Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap % Smaller Than Intermediate Rock * d50 Designation Given Size Dimension By Weight (Inches) (Inches) Type VL 70-100 12 50-70 9 35-50 6 6** 2-10 2 Type L 70-100 15 50-70 12 35-50 9 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 50-70 24 35-50 18 18 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 9 *d50 = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit. One of the major advantaaes of wire enclosed rock is that it provides an alternative in situations where available rock sizes are too small for ordinary riprap. Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be fashioned into almost any shape that can be 11-15-82 0 0 Yt/D Use Da insteod of D whenever flow is supercriticol in the borrel_ **Use Type L for a distance of 3D downsirecm . FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT GRADATION FOR FILTER MATERIAL R BY piss PANG SOIM[ SUM 6 1IT41 TWE 1 (m]r D]ROFi Y.10 YfbIGAIIOI IGLOT A SIX ARE yiS (AAMn 0) YcwM 7DSm) sEcwNl 0Em) r .... SRI 3/0 .... 20 P] 3/r Ion ... 0 95-IW LLID N6 VF ... FD lo-]I pro I -ID (p 0.3 0 ] CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP S a TOTAL KEPT WR1➢ wM MM ME SSIYE WS a50t DEBOIAIMI a+M Ba ON w ) (wfs) DUST Gjt 70-100 AN 50-7o x i}N 10 6 3-10 0 CLASS a 711-10 Vol SO-70 275 a-50 u 1] P-10 3 DASS IS, 10 1775 SY70 W6 ]5-w In t6 I-I0 10 DAD N 10 Man Sp-M MO D-50 W Is I-10 b t050 l PMME SIM AT UllaiTW THEW55 9WL WESIOFS MS N Lt NNYacm I YEBLE5NMY7 F46lSANSRPDI ad Has 7.3 Ii At EAM OF Rx. WM TES. r MF W 0.41 OUTLET / ORIFICE PLATE DETAIL EROSION CONTROL NOTES THE OTr OF FORT W $ SrtlWWI. IC xOrY1ED AT RFMr E6 N NYA WE-pSnIRBMCE WMTATM SHALL N RFYOV.LL OR NSNRNWCE OF EMMG RENTS® FOR YN W CMSrN R OF DAM YUNWNW Cornea arm Cc MOST CpSTBKINII Oe IRS WIE BE MTwYT 10 Mr IANO WO WTMIFD wYR.MA POa;�E. WL N: Wlm TO ME MFA Me NOW TIE NYg T PRKT W BASIS EW o G LW ors c A vuyrY (SA G, WAC"r, UTILITY NSTALLMIxs. sTOCVNNG. s Erc. 91N1 Z NVr n A R01NY[Id COROMBI )Y RWPWa M = MMG IMO C Uxtt YNOR. AWTAI , OR OTHER i1WINENr ER09M COIrwL' IS war M 9 N THEM Wrsl'E I CT sI T T m OF I 9141 REYMX Br I,WD p5116NBRG Mnxx Fw ar THM NNW (SO) OA 9 BNwc mwwenY w wwlMaT mOWW XNTN0. (F G 5®/ENILOI. ETC) 5 NSTILE0. UNFSs On1TAw5E WPROND BY nod SIMRNAIq UTMTY. AFTER 111E U11.1 AMCNNDI WSi nlE RGra'My SIMx WOUND R W ME PArE31Mr SNp1CTAM TZ wsi MN Ff M OR® WEm, Rat man Ne.V1 BE ttr WM A COINN'TOM COIOEh BINf$ 1/3 NI WIW Y%Fn..WO A J/A asp WVSE I THE PROD w WIµ., BE'MIERFD AND TANS➢ Ar µL RYES OMWG CMSmcW MRNn6 m M 10 wEMllr MM-DM fRfArN. NL eMtl OISTIRWMG ACnNTIEs SMALL BE �lA�yM AT M�n i PMFPIF$ nFNGXFFRNG DEhNYYm BY W P�p �l in OF➢MTIWNr. NO- rE MN (aRwVryRALI ERDWOI r YFAWNE$ SH" E wed cC .VID REPANFD OR IEWIsmUCIFD M 1FY Arlp FAa wwOF EMRr IN ONkA TO A9N7RE C PB6M 6 w1B10 NNCII01, µL IWTMIEO pan y Ybl PA y 5xT EM RRODpELAdY ANDMvOr IN Aw note o AS NOT M wnloRnTo Mr MAwAYWAr. x0 son sraxPAE MALL ERMFD rzN O PEr w roGHr. Al sob s1aaPNEs Mill BE Nb2c rxFY sFDll SRANiN MO er 9M6Aa RWOIUL30 MY Sli ipOXG MY SIX 5 W IIOIMNIC NiIFW ]II DAIS 91M1 BE 4ER0 AM SAME' ANDIElER MO YIILOm On (PDWNIQ %ewllBlrs M OAOIwC mC . OR OPW a VMS M Mr OMAN YADWAL Wro City final BY OR MY LfNOE MY wApN T OEA M YA¢ I SHALL sE O YNFOAMY BY 0E QMMA M PLACE BwMFAS IN STNR FAS M ON $VIE LAM F LJRTACY %r HMZ MM Mal ON THE TMN r-TOP TO BWIMM PL.rCE FLATTEST NO6EWTµ AND O W CUM OF RWI JsY%R Itll IS EQUIVALENT 70 ME W arm BWIOER DUE SIX TANS THS WWI. OR . DEPTH a wart -WEER SEE TAKE BF10N NO ME ATIEMS iSlf• NLE9�k�� TM O war LAYER sax vN YE SITE IO-r MN. SECTION F/L . She" Y R'-a' Y O-e' / A \ - N.i 4µ5EC PA^.ERI YM PACE MST SCREW wAm TO WITH aqp, Gµvµ m r EACY PIMA 0w - y[WLA1X STEEL FUR ((11jim (AAKITo Y-111) SEE YE B J L. KUSE ENa1No µgNw BOD we TO T A SECTION A —A "Rat ANDaR a Li:mwrw' PLAN VIEW / \ 3— —I' -Y J• s/r e. ]:I 71/Y W^PE a• YW, act ST SECTION B—B s/6' NI.LSs SCREW - 1r0.C. ale WLVeN$EII W/ COMRRWMN MEAD MR RUBe W/ PAR S A as peLVANND ALIKE 1. 3 - m M YNR nc xoT[ LAWN ME E SH rs K le"Clio MM E NEIWN A M arm Pus MALL s (WIN M THE SOEIYR AND DETAIL 'Ant RR CM n INTO RE Cu a' AS as w FAOI sNE) caxnNED lxm ME aNe AxD WTm METAL SIDEWALK CULVERT FOR CURB, GUTTER AND SDEWALK o.NPDES NOTES: ]. BYP'S FOR SiONIWAIER POLLUTION FREYENPW: 1. 91E O506P1NN: o Framn m6 Seanul Cm"[ a R home cm m nyd9p erxs mi M. anM wan sew Rlxy mnWclun Y planed an I Sr Erosion Collins! Holu m6 Spumes bens His Nul, Me orb, e. Motorola Handling lend SpY Prewnim: b. me sup wtmlxa are plmnap a Its b "g My . Owls glasys uxly antaM . wrael " Nwle be Ilderi to ttn4d oae6ag n kNk , and ,w MtW home cmetructlon. ants old .date. and ap lead of Vass u Wt Ond concrete to mx on aNm twlM a cot enter either Rc6Yl I, On Mle contains RL&N polled u,i of wall the Ben Lou or Fasw Cre . Aspnds concrete, 6uildin9 ma mn o CN ". Mw.ain, and LAM motnxN aste, a eMnuprby wawa nor or aw 9 9 d L,n l net Alma, wise FsswClark Bilateral a as A, RaRmd'C' - 0" Will cmwructa Rao d'C IJmem Lail 11 Its Saint Of a spill Down the site amid m 057 alter cros"c4 Me Me late ei1M1N Me ring most, slam How Assum. or Dade, wprc to closing pf RM Uo lity zone and the W onto send .s VVid be anavi,Mw imme6utdy m rYnors tee (r ,ty zone par Its City of Fort Collins LW arms. Val"rmoterlds and wew't lawn. spins AM, WM VMS am q who welfare of w la m tee now curing. Alp oaw to e91 No m6Netn to ecru and and r W w"b,. L FINAL STABROEATW AND LL MRM STMMWAMR MMAGOADIT'. 4 0x aura LAM wnwt1y Cmwu of a bwlw f Wd. a. Sae Lwnn Cw4q Notes this Moot fa Mot etmliewim mMwles to emus pawtmts n L No clop PA4WNid p tl a en we May" nor an stamaam ainnorae. Fna staludtm at a. SONS dam an late ul m rob W ups, the chmim ede s of lot Until yeow" of each Sa B, rdMns4ewn r any " eater ,e Raant Rmsm Law. ob ria,inNMud Pat nm en lers 6e undertakto er C Me Faui C,NI RMpwB and te La isolatedw. d Rower utants Per heel cowlyd Pollutants Slam "fill N m hen W site WIN abnwdY inter 1M FMw Pew rob r and Me Cache La Pwbe Riw, S. OTHER CONi Slam eww , o Xan ter ae W portion of N MAN u to Me lmlRn panes by'MRxa 4n a to ee Waste a M"Mes mould Do l tWm radar C� s had gl and pipte. They Materials,Materials,pma muse products Dan the Sao and aos"u Of OM byte Bmam to Rmv LaW e uheray moortais off -site in an manate maw a tam, measures ended ee anderlen to t da-me n No nm-worm .Star e enu sum M al sea wl 4MRng It all and dons ePNaye Dan M1ate � ngalin n xn Dove Me Mapct die. vng lu 41e um foal mud and awns me not DweW a y maeaaDs and amaw la enter non-wmwtW ainme.oys Which deatiOna into own! Crew Rewwu g. WF MAPS_ w Robert Smsm Loa a. Sews Oonaye At Emden Contra Nan (this sheet). 6. INSPECTION AND MNMIEMMM O inspection and montmanu mould be unMtsm we nyumr basis of m11NW n Baia. 6 of W Toms wd COnaiNms of the OM$ COMA P&MAt NOTES 1, FINAL PLACEMENT OF BOULDERS TO BE APPROVED BY THE DESIGN MN EER PRIOR TO MWMNO I. W= wO1rING. C1F.W ALL DIRT AWI YAIDhµS iROI RO}( THAT CORD FICYN7 WE WWI mm IIOYNtl TO RWI. I PLACE GROUT BY REJECTION METHODS AND USE A PENGL NBRATM TO FILL THE VOIDS TO THE SPECIFIED GROUT DEPTH. CLEAN EXCESS GROUT FROM ALL EXPOSED SURFACES, THE DESIGN ENCINEER SHALL OBSERVE THE ENTWE MWTING PROCESS. ♦ THE CMTRACTOR SMALL CMI G T WY " PLADDIEMT pROCF1XMFS TO ACHELE THE SFEfiED rw n µRD MACE OF THE f T LAn'R. E6T 21 - OA NOW �CPR10 PArz 0 AM: AND STEEL G von AFTER FMRKATIOI C Nabs (1513/16-NA) ALIGN LAM WMN M PALE ER09W MAY 1 CM511NcnWNEWNM[C PROECi wDri KES P.V.D. SWOMID FILING STANDARD FOAL c SEWER£ MOR NI ONLY CW nD NO I Me DAM 11-17-97 IIDWeptan,wylkwmla 1e an mpn..aIns IT Nmwha arm. xlm , sq� ewx w 6e nwmx apaW by ILA Cry El(Mer. Y ^WYa aupn In9 a nx Iadnux Ise YEM 1%7 IBM YOXM AYJ IJ As lot xlo JFJ O OT wJoxw ow uA clam iswsbBmlgw Ae3 O Bmxn willostateres Val Swmx,Nen OIw xuNFµ. EROMM CONTROL snUCwm n Waslm/sAm tam Saws LI Fsnu Bale Bond Saw Bas YE W Wwalm CmtcnyEan" raWgl�Alb Pena OM-4aN YUW AGETAME. InImYnmmma t Saw wmtm Tomenorwy sod NmtN Nmi1lMO/InbAMaets aw SNUCn,NLS IMTA110 BY YANTANfp BY _ wILIAIYIR/WIfi4 COs1BACIw _ OAK mewl Also MED BY CITY O FMr COLONS M HEADWALL 7R It z Recommended $ac"es and roplmollm Rat" at seas no, ranpi Vegetables and/a, Cow Crwe Ver," �(i allied Pnna/Acre al Rxbeu Calls 30 Cola Cod 70 Cxml RN Ctd e0 Meat - W COCAe0 _ Spay Cod 60 Baarlle Call 60 Ram ]0 Hprse Sdm Ram IS Sorghum seam 10 Ner map, a ... N mate WIN nd ass, me, me9,o TaW Ala WWI adantYp rDatas Ion a "rennwl I Inaary/cowmy Mossess, Tr acer 11 4 Fmin9 colas Ise Pwannla and Temporary/cow Cron Gre"sa. DAM PERENrvwL nupmay/coV WASSES CGCP GRASSES Jon 01 - TOM 26 Yes Two Nu No Ib 01 - May 15 Yx Ye No yes May 16 - May 31 Yes Y" o Jn 01 - Out 31 Na NO Y" No Aug 01 - Aug 31 No Y" No Yee up 01 - 5" W No No No VMS Oct 01 - q Jt Y" Y" Na No Mukning Wtll be used to most In awWiW ismt a1 lactation, One w more Of the rsIuwny mulcts sndl M used WIP a pwm,iW a)ana qms seas mowaa w a wpamrY Tha ion or cow "leis. AcaytWe Appr elks Rio. Muslim Dct" Of a$ . Snow or Hoy 01 - Dole 31 z one/our. Hylauic �soaa a papa,) w IS - may 15 t lens/mre Erosion c lnl (mate , Somats) Jan 01 - D" JI Not opplic m n.da wi be eon nets F.H a . Prim a IO In n estate T emg a in, gran hay ROM arm may Mae, d ant: y Or mmaninp ma itit OMoeeb. o 11 ,migatwl is and, hydraulic Mi may be applies Dam Mach 15 1bau54 Sptei 30. N a w Hoy SoAli 1 May Or stry, mulch will be anchwW ,o the III by ane of Me Bala ng methnl'. (a) A bMpir Which Sill menu the Dew four mrn" Or chase Alto the saw. Al lawt bR of the hen mod u ID Inches or more m Iwgth (b) YmuOr �Yu Tee 14ng to ulch malnficturava wabuaUmlued car the a (c) reafims MVWV On the mulch to the mmafam,« a recaTlmmdatkn. 3. µl sum, or MY must be n" of nwiws S"da. CLAS CATION AND GRADATION OF GROUTED RIFRAP RIPRM S 9IAUFD MM wTFAYEMATE DEOOIARON (WEN 93 O DSM BY WEIGHT (LAMES) OPE YO 70-IM 21 501 ID o-s II TYPE HG 70-I00 30 50-70 24 0-5 I6 TYPE WHO 70-I00 62 W-M ]] 0_5 Ie REQUIREMENTS FOR GROUTS _ C t.. WINE N. 6 SPANS/Cr. AOWFFrz or SN�r 7M I SMO ((MKSAE ) LOYPRDWLE srRENGO IDDo IN AM AT IS, DAYS a MP YLY AR MTWNYMT 7,5% Y 151 MAN xIWFM ENT 1.5 LJOI F E41 OR APPINOMED EQUIVALENT m6ER TO SPECYICARMS FOR DETAILED REQUIREMENTS ••AAWUM OF LAX MY WIN MAY W SalanTUmO For ME CB MN MS YAIBEAL .ALL OTHER WRAPPx'GF NS AS SPEDnm IN UwM, Sa l R " uxMAxcED CALL UTILITY NOTIFICATION CENTER OF COLORADO iw800w922w1987 OR C 534m6700 "�° GALA g w MYN N AMNCN NOON YW O4 OMOE w U"VAM rw TIN NANDM a• 1wwTnNN rNa tmno City of Fart Collins, Colorado UMXrY PLAN APPROVAL APPROVED: I4ector of Dg{wuriRE Dete CHECKED BY: WSW Ao &W. INUIR�r Beer CHECKED BY: .CdAIeA� u�-Owe CHECKED BY PNMa as BecroelbR Bale CHECKEO BY: ate CHECKED BY: Date FORT LOLUNS - LOWLMO WATER DISTRICT SOUTH FORT C011MS SANITATION DISTRICT UTILITY •PLAN APPROVAL APPRDk£D ,` MANAGER DAIS Alai APPROVED r -Z--well a- 6FN FSTel vesdam DATE Z1- .6i JAC. JAM MAXI DESIGNED OCT 19196 VA DAZE . A [. M3 San Munn wait BMalC Set,Set,NC n 0 W nu An.. Eryy..wery DNLIINro rest 0 CdaaW NYxI How. Cbob som a°w 9M/W-%27 WiCaly-min RIDGEWOOD HILLS P.U.D., SECOND FILING I DRAINAGE NOTES AND DETAILS FORT COLLINS, COLORADO 36 1 7 i jtl II`I, I POTENTIAL GTY OF FORT CCLLM9 OPEN WAGE I SEDIMENT C FENCE, SEE SHEET ) BY FA .r. el'I'm 303 a r1� I AL I^ KIWI 401 ''ii'�'� 41,, ! IF to m- if il�I�\_®./ -•IIAS/ ICI 311 II I )SAC �=L d e ACJ JAM DRAWN DE9RlfD APFROWD CAIE Z7 11e Ii1 { } J , CITY FD.n -QI4, 4 Engineering Consultants °tl 5tlitli �"" mN1 eui ar m FIRM r H0. ^°, m•••.e^a c,.m sio/ae umµ WAIT wiv- men ss IN IS owl J, 4 9qt . 1.W.3J . 14.36 sry 5 __. SECTION A I" e 12 WIN SEE SHEET 29 1L FOR DETAIL 4 - - ♦ I 91m 00 y00 eh 5 - &ODS _ 1-48"1 OVERFLOW SCALE 1 •-100' WEIR, SEE DETAIL SEC ON ... 1., .1. n SHEET JB e gPlu ELEV - 56.2 .I_ 12 MIx. LEGEND N2 `\RATE ,: Jt 61m-ass. __asee� EXISTING CONTOUR SHRET SS - 2.Mf am]did-- -89-� PROPOSED CONTOUR YE SHEET DETAIL SEC"DIRECTION OF FLOW FOROETgIL II e Qj DESIGN POINT AI MIN �aa�ae� DRAINAGE BASIN BOUNDARY ---GRATED e BASIN NUMBER '. M H LID J1 1,y- OaT ,1 6 5.20 eN 14MC BASIN AREA 61 ; 1i x.tX AVERAGE STREET SLOPE 6ELJTION 4111 111111 11111 1111 PHASE LINE 6 13 ulx. O GRAVEL INLET FILTER I PXIID n qI STRAW BALE CHECK DAM dAdd-GW x 1 .35 10 i0 5 -1 1.J! .J30 <O 100 YEAR HWL FOR POND e �[ /� 6 . 1,� FOR -MTAIRj 'I 8EGTN)N F e - SEDIMENT CONTROL PENCE e iNl6R J 9 MM. POID 99 II 50 RCP DRAINED AREA 50.05 ACRES 100 E WIRE 505615 �I 1�� aiM- 0.a4 VOL REWIRED )CIAO AC FT 5 ✓/ 5 O,m • I}] - 11.04 d. VOL FRONDED: 888 AC FT 6 - 6,00% RELEASE RATE - 15.6 ch COMBINATION INLET SURFACE AREA = 219 AC • m •" 24' RCP I&TN3N F PoNB IAA e DR4INED AREA 2455 A^RES J 100 YA. WED. 5105.60 A AREA 1. VILL REWIRED: 30 AC IT `INLET 15MM. VOL. PROVIDED. 5.48 AC -FT RELEASE RAZE . 4.56 CISC\ JI 6,p- 1'63' SURFACE AREA: . 1.77 AC e CURB _y,m o ex] • 2J58 ct. pp I DRAINED AREA - 1336 ACRES 15" PCP 1p0 YR. WSC. - 60)4.6) SECTION 9 VOL. REWIRED .ISO AC -FT e VOL, PROVIDED' . 284 AC CT RELEASE RATE. 2.53 eh SURFACE AREA 0.W AC OEA£L SITE HYDROLOGY `r ' DDE DN BASIN AREA loci 'C" (chi (Ow 30] VERB CHASE J03 P 0AL 1.32 O.D OJ 2.4 J09 J10 303.302,J 4,309 305,]OQ310 7.41 4.60 0.17 6.5 0.44 3.8 23.9 15.4 31p- 31t JOJ.30L304, S,JOB,J09 - 3tt,] 2 12.01 5.58 0.48 10.1 0.42 4.5 37.3 17.3 312 JI2 I.W M57 2.6 8.9 406 NB,413,4 ), ,40 lG9 9.)) 0.52 10.1 39,1 ItOA NB,tl3.40408. 409+W11410 10.51 0.51 11.0 41.2 tl0 116.N3.40 b8 409 .109+410 12.03 0.5) 137 51.7 410 410.409 2.03 0.66 3.5 14.0 411 . 414.. 41{416.415,411 --.. 414_ _.- 5.11 0.59 67 J0.5 10.3 114 p.93 ].4 415 41B 415 414.48 10) 3.05 0.01 L8 0.621 &1 9.6 19.2 415 418 1.91 0.41 2.2 114 41V 419 344 U4 J.0 1 11.2 420 42 0J6 071 18 60 4W 419,122.421 4 3,424.Q0 11.19 013 10.1 I I1.8 _ 421 421 421: 41472 491 A23,424 OE) 1043 058 l4 0.45 18J 53 1 42.4 421 504,42 424 1.55 0 J8 6 4 14 3 I21A tl9.422{211N CEPTED 421 0.0 114 225 1218 419.422.471 IN CEPIED 421 0.16 12♦ 24.0 422 422 0.77 p,64 1.4 5.5 422 32 1.21 0.46 8.5 19.5 42 423 424 3.5 0. 11.1 424 424 1.51 0.26 28 IT i.t 4.1 50p- -- -SCO - 5.55 _ 0.29 2.3 8.6 501 500, t 6.53 0.3] 3.1 11.7 501 501. 0.95 0.59 1.5 5.8 502 SO 2.61 0.36 2.1 7.6 502 500.501502 9.14 O34 4,4 18.5 SOJ 500,501, 2,50] 10.27 0.37 5.4 20.2 50] 501 1,13 0.63 1.9 7.4 SS SY I W E/k I. RIDGEWOOD HILLS P.U.D. SECOND FILING FORT COLLINS. COLORADO IASI 534=6700 now ONAf RIG. ynWIOY ' bWMwW NW M[�OY.�p vela City of Fort Collins, Colorado P ROVAL APPROVED / Director of Fn®vu to CHECKED BY: }y%1' rta a T neWela uu9e) ar< CHECKED BYS 9LLI Duty / / o- 7 1USES CHECKED BY: Pena IMcrcetlo0 Oeh CHECKED BY. Date CHECKED BY: fall EMT DOWNS - LOWLAND WATER DISTRICT SOUTH FORT COLLINS SANITATION DISTRICT UTILITY PLAN APPROVAL APPROVED "II / mmAGOI DATE 12'XAI APPROVED c h516 FHtlXE£P DATE SHEETS A SHEET DRAINAGE AND EROSION CONTROL PLAN 36 8