Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 05/01/1996
INAGE AND EROSION CONTROL STUDY 'HE HAMLET AT MiPAMONT P.U.D. FORT COLLINS, COLC3WADO March 29, 199G 1 1 1 1 i 1 1 FINAL DRAINAGE AND EROSION CONTROL STUDY FOR THE HAMLET AT MIRAMONT P.U.D. FORT COLLINS, COLORADO March 29, 1996 Prepared for: KEM Homes P.O. Box 1845 3000 South College Avenue Fort Collins, CO 80526 Prepared by: RBD, Inc. Engineering Consultants 209 South Meldrum Fort Collins, Colorado 80521 (970) 482-5922 RBD Job No. 567-006 INC. Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 ' 970/482-5922 FAX:970/482-6368 March 29, 1996 ' Mr. Basil Harridan City of Fort Collins ' Utility Services Stormwater 235 Mathews Street ' Fort Collins, Colorado 80522 RE: Final Drainage and Erosion Control Study for The Hamlet at Miramont P.U.D. ' Dear Basil: ' We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion Control Study for The Hamlet at Miramont, P.U.D.. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage ' Design Criteria. All comments made by the Stormwater Utility during the second review proces after the required resubmittal on November 3, 1995 have been addressed at this time. ' We appreciate your time and consideration in reviewing this resubmittal. Please call if you have any questions. ' Respectfully, ' RBD Inc. Engineering Consultants � Prepared by: ) ' rry E. C bot Project Engineer ' cc: Mr. Bill Krug 1 Reviewed by: /Kevin W. tinge7— Water Resources Project Manager Denver3031458-5526 TABLE OF CONTENTS DESCRIPTION GENERAL LOCATION AND DESCRIPTION A. Location B. Description of Property DRAINAGE BASINS A. Major Basin Description B. Sub -basin Description III. DRAINAGE DESIGN CRITERIA A. Regulations B. Development Criteria Reference and Constraints C. Hydrological Criteria D. Hydraulic Criteria E. Variances from Criteria IV. DRAINAGE FACILITY DESIGN A. General Concept B. Specific Details ' C. Detention Pond 340 V. STORM WATER QUALITY ' A. General Concept VI. EROSION CONTROL ' A. General Concept ' VII. CONCLUSIONS A. Compliance with Standards B. Drainage Concept ' REFERENCES APPENDIX ' VICINITY MAP HYDROLOGIC CALCULATIONS ' STORM SEWER SIZING SWALES, INLETS AND CURB OPENINGS DETENTION POND 350 EROSION CONTROL CALCULATIONS 0 PAGE 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 3 11 19 30 61 1 1 I. 1 II. 1 FINAL DRAINAGE AND EROSION CONTROL STUDY FOR THE HAMLET AT MIRAMONT, P.U.D. FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION A. Location The Hamlet at Miramont, P.U.D.development is bounded by Mail Creek Irrigation Ditch on the south and west, Boardwalk and Highcastle Drives on the north, and a future commercial site and Lemay Avenue to the east. The site location can also be described as situated in the Southeast Quarter, Section 1, Township 6 North, Range 69 West of the 6th P.M., City of Fort Collins, Larimer County, Colorado. The site location can be seen on page 2 of the Appendix. B. Description of Property The Hamlet at Miramont development contains approximately 11.681 acres, more or less. The property is generally undeveloped at the present time. The property is being proposed for residential development within the City of Fort Collins Zoning District and will be developed consistent with other Miramont filings. Native and pasture grasses presently cover the property. The topography of the site generally slopes from south to north at slopes up to 5.0 percent. DRAINAGE BASINS A. Major Basin Description The proposed development lies within the McClellands Drainage Basin. Runoff from the project area is currently routed by gutters and culverts to an existing storm drainage channel which exits the site along the north property line and outlets to Detention Pond 340. The east portion of the site which does not dump into the channel drains directly to Boardwalk Drive and then disperses to a 15' curb inlet which outlets also outlets of Detention Pond 340. 1 I 0 ' B. Sub -basin Description The Hamlet at Miramont development has been divided into 11 internal sub - basins. Basins 1, 31.4, 5, 6, 7, 8, 9 and 11 will be developed consisting of proposed multi -unit residential buildings, garages, and private street improvements. Basins 1, 3, 4 and 5 drain to the existing regional channel along the north property line of the Hamlet property. Basins 6, 7, 8, 9, and 11 drain into Boardwalk and are captured in the 15' curb inlet at the eastern end of Boardwalk Drive. Basin 2 consists partly of the half -street width of the existing Highcastle Drive which outlets to the east 5' inlet at the northern- most end of Highcastle Drive. Basin 13 consists of the existing Boardwalk Drive. These sub -basins are shown on the Final Drainage and Erosion Control Plan in the back pocket of this report. III. DRAINAGE DESIGN CRITERIA A. Regulations ' The City of Fort Collins Storm Drainage Design Criteria is being used for the subject site. ' B. Development Criteria Reference and Constraints ' In accordance with the Overall Drainage Study for Oak/Cottonwood Farm, runoff from the Oak/Cottonwood Farm site must be limited to 0.5 cfs/acre. Regional detention meeting this criteria will be provided downstream in an enlarged detention pond on the northwest corner of Boardwalk Drive and Lemay Avenue. Runoff is transported from the subject site to the regional tdetention pond via an existing open channel. The streets and associated drainage systems surrounding the site, including ' Boardwalk and Highcastle Drives, are existing. Storm drainage facilities, including the existing 42" storm pipe crossing Boardwalk Drive, for these areas were previously designed by RBD, Inc. for Miramont First and Second ' Filings. As currently proposed, this site will not receive off -site flows from the surrounding street sub -basin. ' C. Hydrological Criteria ' The Rational Method for determining surface runoff, within the Hamlet property was used for the project site. The 2-year and 100-year storm event 1 2 criteria, obtained by the City of Fort Collins, were used in calculating runoff values. These calculations and criteria are included in the Appendix of this ' report. D. Hydraulic Criteria All hydraulic calculations within this report have been prepared in ' accordance with the City of Fort Collins Drainage Criteria and are also included in the Appendix. ' E. Variances from Criteria No variances are being sought for the Hamlet at Miramont, P.U.D. ' IV. DRAINAGE FACILITY DESIGN ' A. General Concept The majority of the on -site runoff produced by the proposed Hamlet at ' Miramont development will flow to the existing regional storm drainage channel, and then into the regional detention pond on the northwest corner of Boardwalk Drive and Lemay Avenue. The remaining flow is carried in the ' south gutter of Boardwalk Drive to an existing curb inlet west of Lemay Avenue. This inlet also discharges to the existing detention pond. The ' proposed Drainage and Erosion Control Plan is included in the back pocket of this report. ' Mail Creek Irrigation Ditch forms the high point along the south edge of the site. This ditch has already been lined --using a bentonite clay liner -- adjacent to The Hamlet at Miramont, P.U.D.. ' B. Specific Details ' The Hamlet at Miramont development has been broken down into 11 sub - basins. Runoff from sub -basins 1, 3, 4 and 5 will be conveyed north to the existing regional storm drainage channel by drive -over curb and gutter and ' inverted crowns in the access drives. Flows from Basin 1 will be carried via gutter/street capacity to sub -basin 3. Flows from Basins 2 will be carried via street capacity in Highcastle Drive to the 5' curb inlet at the northern end of ' Highcastle Drive. Runoff from sub -basin 3 is carried in an inverted crown and overland/channel flow through curb openings to the flared end section ' inlet of the proposed 42" pipe beneath the access drive. Runoff from sub - basin 5 is carried in the gutter on the uphill sides of the condominiums to 3 Ll ' sub -basin 4. Sub -basin 4, in turn accumulates sub -basins 1, 3, 4 and 5 and outfalls through curb openings, then to the existing 42" storm pipe which ' crosses under Boardwalk Drive. Sub -basins 6, 7, 8, 9, and 11 drain directly onto Boardwalk Drive. The street capacity of Boardwalk Drive to handle this flow has been checked and found to be acceptable. ' C. 100-year Overflow Path ' As shown in the Upper Meadow at Miramont First and Second Filing drainage reports, the 42" RCP underneath Boardwalk Drive at The Hamlet ' at Miramont overflows during the 100-year storm event, entering Boardwalk Drive and flowing into the regional detention pond (Pond 340). ' The existing 42" storm drain system was sized for the 25-year storm event. Storm events greater than the 25-year event currently pond up in the existing drainage channel until eventually overtopping the curb and gutter behind the headwall of the existing 42" pipe under Boardwalk Drive. Per this report, a culvert analysis was done to evaluate the effect of the proposed Hamlet development on the 100-year overflow values. The "STORM SEWER SIZING" section of this report includes design calculations showing that 91.83 cfs attempts to enter this existing pipe during the 100-year event. This pipe will be surcharged and will only pass 82.00 cfs during this storm, ' leaving 9.83 cfs overtopping, which can be handled by Boardwalk Drive's street capacity. ' D. Detention Pond 340 ' Problems with the Oakridge Detention Pond downstream of Detention Pond 340 and a request from the City of Fort Collins Stormwater Utility has necessitated the final design of Detention Pond 340. In order to achieve the required 0.5 cfs per acre release during a 100-year storm at the existing 36" culverts under Lemay Avenue, Detention Pond 340 is planned immediately upstream of the 36" culverts. Based on the Master Drainage Study for the ' Oakridge Business Park, Fort Collins, Colorado, the tributary area to the 36" culverts under Lemay Avenue was 241.56 acres from Basins 300 and 50, and the maximum release from the tributary area at 0.5 cfs per acre was ' 120.78 cfs. The total release from the properties lying west of the centerline of Lemay Avenue (original Basins 300 and 50), including Detention Pond 340, will be 113.9 cfs as shown for element number 341 on the SWMM ' output. This is in compliance with the expectations in the Master Drainage Study for the Oakridge Business Park. The volume of the proposed detention pond is 5.06 acre-feet at elevation 4961.00. The required volume for the proposed detention pond based on the UDSWMM model is 4.3 acre- 1 4 feet. The 100-year storm water surface elevation is expected to be 4960.54. The detention pond outlet structure will be comprised of an intake structure ' with flared wingwalls and a 2' high by 4' wide RCBC. Per the requirements of the Oakridge Business Park Master, a staged release structure was not neccessary as the regional detention pond in Oakridge Business Park is ' adequate to bring the 10-year release rate below the allowable 0.2 cfs per acre discharge. The RCBC enters a proposed 20' Type 'R' curb inlet at the ' upstream end of the 36" culverts under Lemay Avenue. V. STORM WATER QUALITY ' A. General Concept The water quality of storm water runoff must be addressed on all final design utility plans. The Hamlet at Miramont development is anticipating construction beginning in 1995. Best Management Practices for the ' treatment of storm water runoff will be determined during final design for this project. However, BMPs may include grass -lined swales, minimized DCIA, and installation of silt fence and straw bale barriers. ' All construction activities must comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. ' A Colorado Department of Health NPDES Permit will be required before any construction grading can begin. ' VI. EROSION CONTROL A. General Concept The Hamlet at Miramont P.U.D. site lies within the Moderate Rainfall and ' Wind Erodibility Zone per the City of Fort Collins Zone Maps. The potential exists for silt movement into the existing channel and inlets during construction, due to the site slopes. Because this construction is to take ' place in an area that is partially developed, the potential exists for wind disturbance. Per the City of Fort Collins Erosion Control Reference Manual for Construction -Sites and related calculations in the appendix, the erosion control performance standard for the subject site during construction is ' 98.31 % and 98.77% after construction, since the entire site is to be paved or sodded, therefore receiving some form of erosion protection. 5 ' B. Specific Details ' To control silt movement within stormwater runoff, each of the existing and proposed strorm pipes shall have straw bales placed in front of it. The downstream perimeter of the major construction area to the shall be ' surrounded by a siltation fence along the south side of the channel. As shown on the Drainage and Erosion Control Plan, some of the basins used ' in drainage analysis are covered with pavment. In the cases where this pavement is not to be disturbed, the existing asphalt will serve as an erosion control measure "already in place". During the overlot grading process and ' preceding the revegetation phase, disturbed areas are scheduled to be filled and compacted and subjected to regular "watering down" to control wind erosion and air pollution. ' VII. CONCLUSIONS ' B. Compliance with Standards All computations that have been completed within this report are in ' compliance with the City of Fort Collins Erosion Control Reference Manual for Construction Sites and the Storm Drainage Design Criteria Manual. ' C. Drainage Concept ' The proposed drainage concepts presented in this report and on the construction plans adequately provide for the transmission of developed on - site runoff to the existing downstream detention facilities. The combination ' of onsite street capacities and the onsite storm drain system will provide for the 2-year and the 100-year developed flows to reach the existing storm drainage channel and downstream detention facility. The existing ' downstream detention facility is to be enlarged and final constructed by others as a result of the development of The Hamlet at Miramont project. ' If, at the time of construction for some unforeseen reason, groundwater is encountered, a Colorado Department of Health Construction Dewatering Permit would be required. �I L 1 6 C ' REFERENCES ' 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, revised January 1991. ' 2. Overall Drainage Study for Oak/Cottonwood Farm, McClellands Basin, Fort Collins, Colorado, by RBD, Inc., May 4, 1992, revised October 10, 1994. ' 3. Final Drainage and Erosion Control Study for the Upper Meadow at Miramont PUD First Filing, Fort Collins, Colorado, by RBD, Inc., November 10, 1992. ' 4. Final Drainage and Erosion Control Study for the Upper Meadow at Miramont PUD Second Filing, Fort Collins, Colorado, by RBD, Inc., February 1, 1993. ' 5. McClellands Basin 100-year Master Plan Update (County Road 9 to Fairway Estates) for Proposed Modifications to the Oakridge Village Regional Detention ' Pond, Fort Collins, Colorado, by RBD, Inc., April 1, 1996 1 7 APPENDIX I 1 1 ' VICINITY MAP 1 u 1 1 1 LJ 1 1 1 1 1 .1 1 1 1 1 1 1 1 1 1 1 1 1 HARMONY ROAD co O oOAKR�00 D Q DETENTION w O� POND 340 J J 4 O r PROJECTSITE +� � Q 4q14 cRFFk Q w F-OsS� J SOUTf�RIpGE �REfK GREENS . v PORTNER RES. VICINITY MAP SCALE: 1 "=2000' 11 J ' HYDROLOGIC CALCULATIONS H 1 1 3 I I C O U O) U o� w �— D_ I 1 C ' O (o OJ to N N co 0 ' w O 0 = =o co N H L Y c 0 U m c c . 0 .� rn Z w U U c � LU Z co 0 W w CLd0 .6 O L O) OI c O N N L O N N 7 co U O) O Q O U om L_ N O) N U c� N () L to U) :c H OMMh (D�(D�OMO00 O 00ti(Dt`O�CO(DOt` ti o_ o 0 0 0 0 0 0 0 0 0 0 0 o U CDN0mMN0MNC)I� M C ? O O (D (o , 6 r� c6 L IT (0 (D IT (D .Z M V' M M N V' (O r V' N M ` N N D_ (D (fl M 0 (o m 'l, to 0 1� f� c Z M1�- (Dt�V'I-0O N U O CM V OOON� V (l�MC66 (MD CL 0(O00rl-LO'IT M(n0)1�1 0.. 00000000000 O a M0 t--M0 V'MV't,-0 CD E U OD V r�N0) C- 7CVt- � - m Q 6 C5 0 00000 00000000000 0 Co ;:r W '-T 0 (O0M t� M 0 U') N N 0 NNNM 0 Ci O tp r-ONNr-N0000o N Q � V1 LO LO (o to (O (o N (O (o 0 (O (O N N N N N N N N N N N N a V 0 0 0 0 0 0 0 0 0 0 0 0 a� a N 0 0 to to 0 LO to LO 0 (O LO u') 7 . O O O O M O 0 O 0 0 0 0) O 0 0 0 0 0 0 0 0 0 0 0 O � U O) c a E .-NMV'00r-0O0 M c U N Q F_- U 1 Ln O ❑ ce) U ce) r X U r N f` U F- 1 o 0 II N U U 0 ' ❑ � N Q CL O z (O N ' z A N z ' U 0� W Q 0 F- U U ❑ ' W 0 W H � N S y U �a } m ' ❑ W f- U ' 0 U IX Q aU U 0 O C O r a� i " a Y a a t Q 0 A c N N C C C Ad C C C 2 01 01 m � W 01 C� m J .. Q t= tY 000 (nr Ohtn (D (n CO U N r r N N z «+ E- LL v U z W 0 _ gp 0J L L a` O Q a a a$ a a a` a` a s UU#1A O N LO LO I� M 1,(O CA 00 r M CV C» (C) O O C5 O O J C O r N �--v CA Or N M 1- N O Ml(nO U ^ r M N M r r N N N N 0 W 2 W �rn W ~ Wa. 00M000000(n -JLLI 0NNMu7000 r(phh O O o W r N r M O O N N r 0 J F N _ (nN000(A OOOON N (n r� (D W LO N 01 tr 0 Z v r r N N r M Cn r r 0 W J M(n O N CA n CD M CA(n4 .-. MM.0r0 VnNN CV CV C r r W to H ❑ 00000000000 z W a^ t00000 M00000 O U o LO N N N 0* r N r r r N d'J— 0= OUY00(C)000LO0(n O)N�N1� stN Q~ 00)Nst F—Z�v z J (D(Dn(gr(q�n eo(Drnr U M o 0 0 0 0 0 0 0 0 0 0 QQ MOO tnrNN ONNNO ^ r O N CV r N 0 0 0 0 0 ofU N ❑ Q z U) m r w ❑ r Cl) (� r N M � N fD r 0 CA r r [0 .O N C U U a� f— c m c m •N N ❑ CA N ❑ E 0 65 I I I pia q 4 W a e a i s: Ulf a s �r'i i YI WO i 2 0 N b O ry w wL� F (�ynp OJW GV' !V N f W�N NO gag Div n u ryw .. r W 9 A R Y m o L: c c )N F_ 0 qN N u e a V N LL �p 1e 1V + WI'10 p f^IN!'1 ppppyy�� ��Yl rlm Nm �^ 'i vim N rive rie �i 0 z i v ¢ p q q p ry O� 1�LL— N '=rin II Nn W�N.O A1re f.:O �zL= VIb Ni0 H0000' �i a� 'nm� ry�� N, i3 o mo Q¢ u13o 0o nni Nm o o e o. Q �a� ax meaa :�a a�n� NE W 2N nry rin�� Z2V'. ^^ dd pp dodd ooeic ..d o00 pip rip p dd U m 00 dda.N 00000 00 NYt �rl�� .OM ONONO nN em .e�' yea R�eeh #Ff a ..m w g� F r ri W N H u N 1C IC ie'm -N0 eMYI IO YI If /1 � zE^ J C N yQZ n W F N d a of 1 LL V O N N N n N � n � � N V N. �� m N m N �. � r- ^ O ry N � n n N .. m r• m N' '^ w � lJ Y U w U IL U U W w y 1 1 1 1 FU LO N T N II U IL N LL O D p a O � Q N > N U.) Q v 0) O � (� o 0a I- Z W U W F- Q Q U Up tL O W C F i t0 m Cu U d H } m p W H 05 U Ir Zj Q 0-0 U co O C O p tLO aw N P c a Y A N UC Wy O m c O lL O O N N Q C J a J R Y O t a a a C y 9 9 a O ' 00vNoCotom0CD0n JQ .-. C N O in to to I� tN ui to t% 6 T T N V . E T - U- U Z O �-- F. o u u <uu EE GG ;mm $E! u W gU) N N V N N N N N N N N N N N N N a OO a a a U T0NtntnrMn 0MCO .� TtMC O tnOOOO6 E O .... N f-- M O T LO M Il. n 0 to to O V T M N M T T N N N N O 0 CD W , W ~ -) W 0000O00000tn OtANMU')WCD mrr Q Oc l0 TNT Mt, ONNCD J v < = U) tN O 00 to 0000 Ln N to r.- 0 M to N 0) at M Z �r T N N T M LO T T M W J h 00NT 000 a)O)M 0) I� N th T t`70) to 0 C7T tj C W :- ' to E H p 0CD0000000a0 Z W tn0Ootn eo00o00 goo ^ Lo O N N N O T N T T T N J v W U O= CD 00 O LO O O to to to to O N C14 n 0) N'R^SN v Q N CO Z Z W J O co)"Cl) h t0 T CO to M O CO to to I- to In Co u) 00 to Orn ll U M o 0 0 0 0 0 0 0 0 0 0 Q ^ M DD tnTNNONNNO T O N tV T CV 0 0 0 0 0 Q X vN Q Z w Q 0 W T M cop T N M LOCO I- CO 0) T T I I I 1] I I I I 11 I � I | " ■|! k! f f(�� �$))2 §� k| !«a ! 11H � | . # �§a= | | §£r ® \§� „ ! k §£_ ;■ ��q! §5| �� ��. n||!| !! §¥e ® !! !!§§ @!! @r||| §! S@ |SECS !§§ cod6. 5| ..N, �2r . »w_ . k§�� ! m k ~ k § k x/ d� /§ /§ LL | uj }o «o■ [ §i k �\ U)■; `i fJ tiME TV=- AT- M19.P.W0QT-, 2"-'0:TnL. - _ - - - ---. ---- -:. 1 LJ EXISTING SITE HYDROLOGY Total Disturbed Area — 10.45 acres Rational "C" — 0.20 DRAINAGE BASIN STATISTICS Gross Platted Area — 11.39 acres Gross Area "C' — 0.50 Net Platted Area — 9.29 acres Net Area "C' — 0.41 DEVELOPED SITE HYDROLOGY DESIGN POINT BASIN AREA (ac) "C" 02 (cfs) Q100 (cfs) 1 209 B 1.87 0.50 2.01 7.60 2 209 C 3.98 0.31 1.91 6.98 3 210 & 1 8.95 0.57 .14,68 46.40 4 215 0.61 0.90 1.73 5.19 5 5 0.96 0.95 2.2 6.7 6 0-3,6 12.12 0.30 3.7 13.9* 1 1 LLI • • • • • LL,•. z cc • , ca �� rtu .. UN01 • • • • • • aaa a�ad;aa� NNE aea a aa ME CC ■■CCIE� � al aC�0 �aC� a 'ME a:a6:aC ... Ma a■•• eel_ ee _eeEe � l=�i� 1 �� 1�1=(�=�11 111i�=! ��1��11 iTIT !=�1 t O u� d N df10H 133d S3H3N1—h011V11d1038d ,AY 190,4 3'2 I 1 O N e O >n O CESIGN CRITERIA 10 6 No Text 1 lZ 1 URRENT DATE: 12-19-1995 URRENT TIME: 15:16:50 F---------- ' C U------ L INLE V ELEV ' # (FT) ' 1 2 64.6 3 4 6 FILE DATE: 12-19-1995 FILE NAME: PIPE1 -------------------------------------------------------------------- -------------- FHWA CULVERT ANALYSIS -------------------------- -------------- HY-8, VERSION 4.0-------------------------- -------------------------------------------------------------------- SITE DATA --CULVERT SHAPE, MATERIAL, INLET ------------------- --- ----------------------------------- OUTLET CULVERT BARRELS ELEV. LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) MATERIAL (FT) (FT) n TYPE 64.23 109.40 1 RCP 3.50 3.50 .012 CONVENTIONAL '---------------------------------------_---------- -SUMMARY-OF-CULVERT-FLOWS------------------------- (CFS) FILE. PIPE1 DATE. 12-19-1995 - ' ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 64.66 0 0 0 0 0 0 0 0 1 65.91 10 10 0 0 0 0 0 0 1 66.56 20 20 0 0 0 0 0 0 1 ' 67.07 30 30 0 0 0 0 0 0 1 67.50 40 40 0 0 0 0 0 0 1 ' 68.01 68.40 50 60 50 60 0 0 0 0 0 0 0 0 0 0 0 0 1 1 68.81 70 70 0 0 0 0 0 0 1 68.90 73 73 0 0 0 0 0 0 1 69.65 90 87 0 0 0 0 0 3 5 ' 69.84 100 90 0 0 0 0 0 9 7 69.35 82 82 0 0 0 0 0 OVERTOPPING •------------ --------------------------------------------------------------- �.4's -------------------------------------------------------------------------------- SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: PIPE1 DATE: 12-19-1995 ' HEAD ELEV (FT) 64.66 ' 65.91 66.56 ' 67.07 67.50 68.01 68.40 ' 68.81 68.90 69.65 ------- 69 _84 -------- <1> TOLERANCE (FT) -------------------- HEAD TOTAL FLOW ERROR(FT) FLOW(CFS) ERROR(CFS) 0.00 0 0 0.00 10 0 0.00 20 0 0.00 30 0 0.00 40 0 0.00 50 0 0.00 60 0 0.00 70 0 0.00 73 0 -0.00 90 0 -0.01 100 1 ------------------------------------------ 0.010 ------------------------------------------ <2> TOLERANCE FLOW ERROR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.70 (%) = 1.000 �3 2 ,CURRENT DATE: 12-19-1995 FILE DATE: 12-19-1995 CURRENT TIME: 15:16:50 FILE NAME: PIPE1 '------ ---------------------------------------------------------------------- PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 3.5 BY 3.5 ) RCP -------------------------- DIS- HEAD- INLET 7----------------------------------------------------- OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 ------------------------------------------------------------------------- 64.66 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 10 65.91 1.25 1.25 1-S2n 0.89 0.94 5.15 0.89 1.92 0.75 ' 20 30 66.56 67.07 1.90 2.41 1.90 2.41 1-S2n 1-S2n 1.29 1.62 1.37 1.69 6*21 7.08 1.29 1.59 2.32 2.59 1.05 1.27 40 67.50 2.84 2.84 1-S2n 1.92 1.96 7.40 1.92 2.79 1.46 50 68.01 3.24 3.35 2-M2c 2.22 2.20 7.85 2.20 2.95 1.62 60 68.40 3.65 3.74 2-M2c 2.55 2.42 8.44 2.42 3.10 1.76 ' 70 68.81 4.09 4.15 2-M2c 2.98 2.61 9.11 2.61 3.22 1.88 73 68.90 4.24 4.21 6-FFn 3.50 2.67 7.59 3.50 3.26 1.92 '87 69.65 69.84 4.99 5.18 4.98 5.16 6-FFn 6-FFn 3.50 3.50 2.88 2.92 9.05 9.36 3.50 3.50 3.44 3.53 2.11 2.21 ----90 -------------------------------------------------------------------------- E1. inlet face invert 64.66 ft El. outlet invert 64.23 ft -------El. inlet ---------------------- throat invert -----0_00-ft El. inlet ------ ------ crest ------ -------0_00-ft ----- 11 SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 109.40 INLET ELEVATION (FT) 64.66 OUTLET STATION (FT) 0.00 OUTLET ELEVATION (FT) 64.23 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0039 CULVERT LENGTH ALONG SLOPE (FT) 109.40 CULVERT DATA SUMMARY BARREL SHAPE BARREL DIAMETER BARREL MATERIAL BARREL MANNING'S N INLET TYPE INLET EDGE AND WALL INLET DEPRESSION I---------------------- E 1 1 ************************ CIRCULAR 3.50 FT CONCRETE 0.012 CONVENTIONAL GROOVED END PROJECTION NONE 0 3 'CURRENT DATE: 12-19-1995 FILE DATE: 12-19-1995 CURRENT TIME: 15:16:50 FILE NAME: PIPE1 ----------------------------------------- -------------------------- TAILWATER -------------------------- -------------------------------------------------------------------------------- '******* REGULAR CHANNEL CROSS SECTION **************** BOTTOM WIDTH (FT) 4.00 SIDE SLOPE H/V (X:1) 4.0 ' CHANNEL SLOPE V/H (FT/FT) 0.005 MANNING'S N (.01-0.1) 0.035 CHANNEL INVERT ELEVATION (FT) 64.23 ' CULVERT NO.1 OUTLET INVERT ELEVATION 64.23 FT ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (CFS) (FT) NUMBER (FT) (FPS) (PSF) ' 0.00 64.23 0.000 10.00 64.98 0.392 0.00 0.75 0.00 1.92 0.00 0.23 20.00 65.28 0.399 1.05 2.32 0.33 30.00 65.50 0.404 1.27 2.59 0.40 40.00 65.69 0.407 1.46 2.79 0.46 50.00 65.85 0.409 1.62 2.95 0.50 60.00 65.99 0.412 1.76 3.10 0.55 70.00 66.11 0.414 1.88 3.22 0.59 73.01 66.15 0.414 1.92 3.26 0.60 90.00 66.34 0.417 2.11 3.44 0.66 66.44 0.419 2.21 3.53 0.69 ------100.00 ----------------------------------------------------------------------- -------------------------- ROADWAY OVERTOPPING DATA -------------------------- ------------------------------------------------------------------------------ ROADWAY SURFACE PAVED **** EMBANKMENT TOP WIDTH (FT) USER DEFINED ROADWAY PROFILE 90.00 CROSS-SECTION X Y COORD. NO. (FT) (FT) 1 0.00 69.87 ' 2 14.00 70.00 3 29.00 69.35 '----------4 8900 -----------�------_ 7135 ----------------------------------------- ' WENT'� M Ho MSS Joe No. �� • GCio Rom PROJECT CALCVLATIOHSFOA ' Englneering Consultants ►yADEBY PC, DATE CHECKED BY DATE - SHEET•__DP 72P_IPi?�P Oar p)=�TE�71�� 1J7�' I tisES . UGiSON T�P•plai,i'o';� �--COo I C-0NT2�L C�+?_I7�QJ,� C-alyMt4 C�,> _ 73.01 Vey - �•59 Silo j .. ' •. , ..... Use: pE3SI�fJ G}ip2T'S TYPE= . of MIPQ&P; P�m FJe e= s-7.:...._' ' use= 'G1�� co ' • •j I ro.,L �. . : .. Pevti1 Flc�ue S -9 GO) 1 Lswr *4 oF=* PeoT-Ecia:i: 1 ��; �,� _ . ... ; ..d•�,. �... cam'.• _ , _2_ ..._ .. ' (_.GpiJlT+ieaF,J �3c�"_ "f� •111»•l:�loerrre .., o 1 NI aK P eaP ')>=P-} JA r 21 P Qc� P C'�r.1Cu�s1ol..J._ :RjPlzda k;' �• 1 1_ 1 .... 1� ... .... 'w l Drrt . -- t cam. 5� • :. i •.. .. II .' ,.. .' . • ' • I 9 1 FURRENT DATE: 12-19-1995 URRENT TIME: 15:36:59 -------------- U L I V 1 2 3 4 5 6 SITE DATA INLET OUTLET ELEV. ELEV. (FT) ---------------- (FT) 63.07 62.06 FILE DATE: 12-19-1995 FILE NAME: PIPE2 -------------------------------------------- --- FHWA CULVERT ANALYSIS ------------- --- HY-8, VERSION 4.0------------- -------------------------------------------- -----CULVERT SHAPE, MATERIAL, INLET -------- ----------------------- CULVERT BARRELS LENGTH SHAPE SPAN RISE MANNING INLET (FT) MATERIAL (FT) (FT) n TYPE 214.00 1 RCP 3.50 3.50 .012 CONVENTIONAL ------------------------------------------------------------------------k-UM----R-YMAOF CULVERT FLOWS (CFS) FILE: PIPE2 DATE: 12-19-1995 ' ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 63.07 0 0 0 0 0 0 0 0 1 64.31 10 10 0 0 0 0 0 0 1 64.97 20 20 0 0 0 0 0 0 1 ' 65.48 30 30 0 0 0 0 0 0 1 65.91 40 40 0 0 0 0 0 0 1 66.31 50 50 0 0 0 0 0 0 1 66.71 60 60 0 0 0 0 0 0 1 67.21 70 70 0 0 0 0 0 0 1 67.67 80 80 0 0 0 0 0 0 1 67.87 90 83 0 0 0 0 0 6 10 ' 67.89 92 84 0 0 0 0 0 8 4 67.80 82 82 0 0 0 0 0 OVERTOPPING ------------------------------------------------------------------------------ -------------------------------------------------------------------------------- SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: PIPE2 DATE: 12-19-1995 HEAD HEAD TOTAL FLOW % FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR 63.07 0.00 0 0 0.00 ' 64.31 0.00 10 0 0.00 64.97 0.00 20 0 0.00 65.48 0.00 30 0 0.00 ' 65.91 0.00 40 0 0.00 66.31 0.00 50 0 0.00 66.71 0.00 60 0 0.00 67.21 0.00 70 0 0.00 ' 67.67 0.00 80 0 0.00 67.87 -0.00 90 1 0.76 67_89------------------------------92 ------ --------- 1 ----0-65 ----- <1> TOLERANCE (FT) = 0.010 <2> TOLERANCE (%) = 1.000 17 2 11URRENT DATE: 12-19-1995 FILE DATE: 12-19-1995 CURRENT TIME: 15:36:59 FILE NAME: PIPE2 r -------------------------------------------------------------------- PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 3.5 BY 3.5 ) RCP -------------------------------------------------------------------------------- DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) r------------------------------------------------------------------------------ 0 63.07 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 10 64.31 1.24 1.24 1-S2n 0.85 0.94 5.51 0.85 1.92 0.75 20 64.97 1.90 1.90 1-S2n 1.23 1.37 6.64 1.23 2.32 1.05 ' 30 65.48 2.41 2.41 1-S2n 1.53 1.69 7.38 1.53 2.59 1.27 40 65.91 2.84 2.84 1-S2n 1.82 1.96 7.93 1.82 2.79 1.46 50 66.31 3.24 3.24 1-S2n 2.09 2.20 8.35 2.09 2.95 1.62 60 66.71 3.64 3.64 5-S2n 2.37 2.42 8.66 2.37 3.10 1.76 ' 70 67.21 4.09 4.14 2-M2c 2.69 2.61 9.11 2.61 3.22 1.88 80 67.67 4.60 4.57 6-FFn 3.50 2.79 8.32 3.50 3.33 2.00 83 84 67.87 4.78 4.80 .6-FFn 67.89 4.79 4.82 6-FFn 3.50 3.50 2.84 2.84 8.67 8.69 3.50 3.50 3.44 3.45 2.11 2.13 -=- -------------------------------------------------------------------------- E1. inlet face invert 63.07 ft El. outlet invert 62.06 ft ---------- El. inlet throat invert 0.00 ft ------ ------- ------- --------- ------ El. inlet --- ------ crest ------ -------0_00-ft ----- **** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 214.00 INLET ELEVATION (FT) 63.07 OUTLET STATION (FT) 0.00 OUTLET ELEVATION (FT) 62.06 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0047 ' CULVERT LENGTH ALONG SLOPE (FT) 214.00 ***** CULVERT DATA SUMMARY ************************ ' BARREL SHAPE CIRCULAR BARREL DIAMETER 3.50 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.012 ' INLET TYPE CONVENTIONAL INLET EDGE AND WALL GROOVED END PROJECTION INLET DEPRESSION NONE t-------------------- I 3 'CURRENT DATE: 12-19-1995 FILE DATE: 12-19-1995 CURRENT TIME: 15:36:59 FILE NAME:.PIPE2 ------- ----------------------------------------- TAILWATER -------------------------- -------------------------------------------------------------------------------- ****** REGULAR CHANNEL CROSS SECTION **************** BOTTOM WIDTH (FT) 4.00 SIDE SLOPE H/V (X:1) 4.0 ' CHANNEL SLOPE V/H (FT/FT) 0.005 MANNING'S N (.01-0.1) 0.035 CHANNEL INVERT ELEVATION (FT) 62.06 CULVERT NO.1 OUTLET INVERT ELEVATION 62.06 FT ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL ' FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (CFS) (FT) NUMBER (FT) (FPS) (PSF) ' 0.00 10.00 62.06 0.000 62.81 0.392 0.00 0.75 0.00 1.92 0.00 0.23 20.60 63.11 0.399 1.05 2.32 0.33 30.00 63.33 0.404 1.27 2.59 0.40 40.00 63.52 0.407 1.46 2.79 0.46 50.00 63.68 0.409 1.62 2.95 0.50 60.00 63.82 0.412 1.76 3.10 0.55 70.00 63.94 0.414 1.88 3.22 0.59 ' 80.00 64.06 0.416 2.00 3.33 0.62 90.00 64.17 0.417 2.11 3.44 0.66 91.83 64.19 0.418 2.13 3.45 0.66 r------------------------------------------------------------------------------- -------------------------- ROADWAY OVERTOPPING DATA -------------------------- ------------------------------------------------------------------------------ r- ROADWAY SURFACE ' EMBANKMENT TOP WIDTH (FT) CREST LENGTH (FT) OVERTOPPING CREST ELEVATION (FT) ------------------------------------ 1 PAVED 90.00 100.00 67.80 1 I 1 11 I 1 1 1 1 1 1 1 1 1 1 SWALES, INLETS AND CURB OPENINGS 19 ?O ' RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION SWALE 'A' ' STA ELEV M .� 0.00 20.00 20.00 15.00 ' 40.00 20.00 'N' VALUE SLOPE (ft/ft) ---------- ......--•---• 0.035 0.0200 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) (sq ft) (fps) (cfs) N0. ' --------- ------- ........ ••• ------ 15.50 1.0 2.3 2.34 0.83 _ 16.00 4.0 3.7 14.87 0.93 ' 16.50 9.0 4.9 43.84 0.99 17.00 16.0 5.9 94.40 1.04 17.50 18.00 25.0 6.8 36.0 7.7 171.14 278.26 1.08 1.11 18.50 49.0 8.6 419.69 1.14 19.00 64.0 9.4 599.14 1.17 ' 19.50 81.0 10.1 820.17 1.19 20.00 100.0 10.9 1086.16 1.21 1 1 1 z� 1 RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION ' SWALE SECTION 'B' STA ELEV ' 0.00 20.00 20.00 15.00 ' 40.00 20.00 'N' VALUE SLOPE (ft/ft) ---------- ............. 0.060 0.0050 =S�vALE._S�'J"�JEE1J_.�J1LR�1.lE�s ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) (sq ft) (fps) (Cfs) N0. ' ------- -------- ------ 15.50 1.0 0.7 0.68 0.24 16.00 4.0 1.1 4.34 0.27 16.50 9.0 1.4 12.79 0.29��- 17.00 16.0 1.7 27.53 0.30 -1-D---- ___ ' 17.50 18.00 25.0 36.0 2.0 2.3 49.92 81.16 0.31 0.32 18.50 49.0 2.5 122.41 0.33 19.00 64.0 2.7 174.75 0.34 ' 19.50 81.0 3.0 239.22 0.35 - 20.00 100.0 3.2 316.80 0.35 1 1 1 Z 2, ' RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION DRIVEWAYS STA ELEV 4� BIDE.\\jh{C L,.-..._'_. ._. ----- ...... 0.00 20.00 j 30.00 19.10 31.00 18.98 ' 32.00 19.46 44.00 19.82 ' IN' VALUE SLOPE ---------- ............. (ft/ft) ' 0.016 0.0050 ' ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) (sq ft) (fps) (cfs) NO. ' --------- 19.08 ------- 0.1 -------- 0.9 --------- 0.05 ...... 0.69 19.18 0.3 1.1 0.32 0.74 ' 19.28 19.38 0.9 1.8 1.5 2.0 1.35 3.54 0,80 0.85 19.48 3.1 2.3 7.05 0.89 19.58 5.0 2.4 12.15 0.90 19.68 7.5 2.7 20.22 0.93 19.78 10.7 3.0 31.79 0.95 1 23 ' RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION -, INVERTED CROWN _ \Ot-Nk k , STA ELEV --- ----- _2 PAIJ__ 1P .SPE�i�I� 0.00 20.00 i 21.00 19.37 42.00 20.00 INk VALUE SLOPE (ft/ft) ---------- ------------- 0.016 0.0090 -,_111}J1,FAVIJ� 0 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) --------- (sq ft) ------- (fps) -------- (cfs) --------- NO. ------ 19.47 0.3 1.2 0.40 0.95 19.57 1.3 1.9 2.54 1.06 19.67 3.0 2.5 7.49 1.14 19.77 5.3 3.0 16.13 1.19 19.87 8.3 3.5 29.24 1.24 i<•' 19.97 12.0 4.0 47.53 1.27 M ...- �q ' RED INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION ' SECTION A6 STA ELEV i - - - - - ' 0.00 20.00 10.00 19.00 ' 14.00 18.92 36.00 18.48 37.00 18.36 37.00 18.86 ' 39.00 20.86 'N' VALUE SLOPE (ft/ft) ----------------------- ' 0.016 0.0250 ELEVATION AREA VELOCITY DISCHARGE FROUDE ' -(feet)-- (sq ft) --(fps)---(cfs)-- NO. ' 18.46 0.0 1.8 0.08 1.46 18.56 0.3 2.2 0.66 1.58 18.66 1.1 3.2 3.38 1. 75 ' 18.76 2.3 4.1 9.54 1.87 o.34 - 18.86 4.1 5.0 20.24 1.96 18.96 6.3 5.8 36-.46 2.03 19.06 9.0 6.8 61.63 2.12 ' 19.16 11.8 8.0 94.73 2.20 19.26 14.8 9.1 133.74 2.27 19.36 17.8 10.0 178.49 2.33 ' 19.46 21.0 10.9 228.88 2.38 19.56 24.3 11.7 284.83 2.42 19.66 27.7 12.5 346.33 2.46 ' 19.76 31.2 13.3 413.37 2.50 19.86 34.8 14.0 485.96 2.53 19.96 38.5 14.7 564.13 2.56 1 1 1 1 1 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA CURB OPENIGN WEIR COEF. 3.000 STA ELEV 0.0 20.00 1.0 19.64 4.0 19.64 5.0 20.00 ELEVATION (feet) 19.64 19.74 19.84 19.94 DISCHARGE (cfs) 0.00 0.30 0.91 1.77 DJU o�IEG G= f� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA CURB OPENINGS WEIR COEF. 3.000 STA ELEV 0.0 20.00 40.0 19.76 40.0 19.26 46.0 19.22 46.0 19.72 51.0 19.72 51.0 19.22 57.0 19.26 57.0 19.76 97.0 20.00 ELEVATION (feet) 19.22 19.32 19.42 19.52 19.62 19.72 19.82, 19.92 GUG6 OFeQ%Q4�7 FlzOk& IaCLr---ss2 DL wE S . DISCHARGE (cfs) 0.00 0.81 2.75 5.33 8.43 11.97 16.69 z�.43 p•1o8 25.15 ' ****** HYCHL ****** (Version 2.0) ****** Date 04-01-96 t Commands Read From File: N:\HYDRO\MCTRANS\HYCHL\HAMLET.CHL JOB RUNDOWN UNI 0 ' ** UNITS PARAMETER = 0 (ENGLISH) CHL .25 22.43 VSH 4 4 ** V-SHAPE RIGHT Z1 = 4.0 AND LEFT Z2 = 4.0 LRR -1.4 2 0 2.65 .15 ** STABILITY FACTOR 1.40 ** SPECIFIC GRAVITY 2.65 ' ** SHIELDS PARAMETER .150 END ***************END OF COMMAND FILE************ ' RUNDOWN 1!,4-ro ' INPUTREVIEW - DESIGN PARAMETERS: DESIGN DISCHARGE (CFS): 22.43 ' CHANNEL SHAPE: VSHAPED CHANNEL SLOPE (FT/FT): .250 ------------------------------------- HYDRAULIC CALCULATIONS USING BATHURST ------------------------------------- ' FLOW (CFS) MAX DEPTH (FT) 22.43 .83 AREA (FT-2) 2.81 WETTED PERIMETER (FT) 6.91 HYDRAULIC RADIUS (FT) .41 AVG VELOCITY (FT/SEC) 7.98 MANNINGS EQUIVALENT .052 / D50 .36 'Davg FROUDE NUMBER 1.54 REYNOLDS NUMBER (10�5) 2.88 ------------- RIPRAP DESIGN ------ ------- ' LINING PERMIS SHR CALC. SHR STAB. CONDITION TYPE (LB/FTA2) (LB/FTA2) FACTOR D50(FT) --------- BOTTOM; STRAIGHT ------ RIPRAP ---------- 18.05 --------- 13.01 ------ ------- 1.40 1.17 SIDE; STRAIGHT RIPRAP 15.16 10.93 1.40 1.05 *** NORMAL END OF HYCHL *** DETENTION POND 340 30 No Text YR. YR, OAKRIDGE DAMDGE BUSINESS PARK MASTER DRAINAGE STUDY BY RBD, IN, DATED SEPIEMBER 1090. I < I 3300 I ro n I I� YR. HARMONY CRo88N0 I (� 190 I N IS H I I IFUTURE DEVELOPMENT) z9 Al — I WILLOW BFRNBB T410B1 SPRDItl PAW., BY LpSRrc a ANomSON. MC.. DATED AUGUST 10" (LA ?10) (LA M � I I 310 I I I I WLDWOODFARMS 3 I I — — — — — — — — — — — — — — — — — — — --------------- I I I 1s I I B I MCCLELLANDS BARN W<LC LANDS DAM MASTER DRAINAGE U' �) PLAN. BY GREENNORNE A DY1ARA. INC.. T x I DATED ,APIE lass. I r' I ]E1 314 aoo I I I I I I I n I n 35 M TIMBER Cp@tt/ 81 IS I ON CREEK STETSM CPM P.u.a • ro1eER GREEN P.Ud•. BY ROD. Na, DATED DECEMBER ISS& 4 (Go Oww un— —«t I En*oo" Consuhmts I OAK RIDGE REGIONAL _.. ` I Aw ,aas Dmt I n c . c�a.. �a 'o I No+ 04 c'"' w DETENTION POND 3WMM EXHIBIT 1 1 NO.BY DATE REVISION DESOR1P11W APPROMED DAtE PRO ECT NQ 1A / m-AIM AU / tl►+!M A BASIN # 100 YEAR CONTROL 340 YES 330 NO 320 NO 310 YES 300 YES 290 YES 280 NO 270 YES 260 YES 250 YES 240 NO 230 YES 220 YES 210 NO 200 NO 120 NO 110 NO REMARKS Possible, if onsite problems exist Cemetary . Offsite from north of Harmony Offsite from west to Lemay Existing Street Existing Downstream street capacity is OK From sump in Innovation to channel Possible YES; Direct to Pond Possible YES; Includes Comlinear Internal street system The 10 year storm model did not include any site specific detention for the Oakridge site. The above results indicate that control at the regional detention pond is adequate to bring the 10 year release rate below the allowable 0.2 efs per acre discharge. This includes offsite Basin 300. z.z.z rtow Characteristics STREET SYSTEM FLOW DEPTH Page 8 of Appendix A is a sorted list of all the basins and conveyance elements with their respective flow depths. The internal street system was evaluated according to allowable flow depth. The City of Fort Collins criteria states that14 both local and collector streets may have an 18" depth of runoff in the gutter for the major (100 year) storm event and arterial streets are only allowed a depth of 0.5' above the crown. There are no arterial streets internal to the Oakridge site. For comparative purposes only, the above mentioned evaluation is based on the arterial standard. There are only three streets that exceed 0.51in crown depth and are located at the downstream end of the basin (see enclosed Drainage Plan). This exceedance is only 0.04 feet in each case. They are Elements 21 (Innovation Drive), 12 (internal future street near Comlinear) and 7 (Wheaton Drive). Innovation Drive and Wheaton Drive have been built. All the,internal streets have 100 year water surface levels below' the allowed 18" standard and present no hinderance to the passage of emergency vehicles. Element 12 is associated with Basin 120 (Comlinear) and was evaluated at a minimum grade of 0.6% slope. 14 City of Fort Collins, Op. Cit., Table 4-4, page 4-6. —7 }A_ FnL�s=- i----------- -- -- - - 2. 3.2iI) 0. 3(I) 5. 4.8(I) '• 2.51I) 2. 1.3(1) 28.. 39.3(1) 56. 55.0(I) 2.5( 62.1O 6 ,0(S) 0. ±i) Of ±O .0( ) 4 iU. E3. E•8. E•9. 79. U• 43• 1. 2. c(S? 28.2(S) .Ci) 1.9!) 1O 2.1O 2O .7O .2( i( ) 3 3() (. l(> 2. 0. 60. 5. 0. 1. 0. 65. .2(> .1() 1.1() 3() .0() .5() .1() 2.1( ) 3. 3O U. 0O 0. .2O 64. 3.7( 58. 8O ± .2( 1. 5O 4'3. 0O 54. OO 0, 0(i) 4. 0. .3(I) 4• 4./(I) 2. 2.5(1) 1. 1.3(1) 49. 37.5(1) 54. 55.0(I) 5°•, 2.5() 64. 2.1() 68. v(S) 0. 0. 0. 0. H .0() H) .0() OA/,kIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL OAY,100,DAT) 3r PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS CONVEYANCE PEAK STAGE STORAGE TIME IV wr ELEMENT (CFS) (FT) (AC -FT) (NR/MIN) 300 130. (DIRECT FLOW) 0 30. 310 58, (DIRECT FLOW) 0 40. 33 33. .6 0 40. 2`r0 3. (DIRECT FLOW) 0 15. 210 8. (DIRECT FLOW) 0 20. 24 27. .6 0 40. 30 130. (DIRECT FLOW) 0 30. 15 6. .4 0 45. 5 7. .4 Q 55. we3t %Z of Ze-ma Ave 31 58. (DIRECT FLOW) 0 40. 28 10. .4 1 5. 7'O 6. (DIRECT FLOW) 0 15. i 21 68. .9 0 40. 2'j 3 1.0 .0 1 0. 23 7• •4 0 45. 34U 2. (DIRECT FLOW) 0 15. 7 111. .9 0 40. 4 125. 3.0 0 45. 27 70. .9 1 10. 44 59. 1.4 0 45. 20 99. 2.6 0 45. 19 10, .2 0 35. 18 9. .4. 0 55. 9 ° .5 0 45. lU .7 0 4n 11 10. .4 1 30. 39• .7 0 45. 8 143. 3.3 0 40. i U V U 03 w c4 O O I, r (D r Ln N N H T N M Q J C) O N 7 m w w w H U OWw v >Q� -i w < m Q c Ow a o o z z v Oa o c CP W Z F- F- aoo 0 1°o Q O O Cl) t}' a O r LLI O O O O O O O a. IL O Z o 2 M o c o 0 0 0 0 m z (D CM ce) CO N trD O Z O cCL `i M co r N N O N N (A O n' a Q (D 0) v LO r co v u h o ri ui ui o O O O O N M O O r c0 ul r 7 (6 O r U Q Z O U O r 00 OR r 00 Cl) Ml O Cl) 00 00 0o co Q O O O O O O O Ln w Z o 0 0 0 o 0 U O_ o 0 0 0 0 0 0 W w ((D rn coo v r m rn a� w a CD CN o Cl) L Q m N N N N N N N Y Y O LL w 3 3 0 L L Y N Y (Y-0 a 2 °' ~ a (6 N f0 a mO 3 (`c (` a a� w cu m m 2 w o o � go m > 2 � o S m w 0) N N cp N O Oo O o V' F- II 0) _ n. LO m N ' Inc., Engineering Consultants RBD, ' Detention Pond 180 (340) 567-006 Capacity -Discharge Rating Curve 1 Pond Inlet Outlet Total ' Elevation Storage Control Control Outflow (ft) (AF) HW/D (cfs) (cfs) (cfs) (1) (2) (3) (4) ' 4957.5 0.00 0.00 0.00 0.00 0.00 0.44 0.24 4.00 6.43 4.00 '4958.0 4958.5 0.99 0.49 9.60 15.90 9.60 4959.0 1.55 0.74 18.00 25.32 18.00 '4959.5 2.28 0.99 28.40 32.39 4960.0 3.01 1.24 37.20 38.20 28.40 37.20 4960.5 3.85 1.49 45.60 45.94 45.60 47.5 cfs @ WSEL 4960.64 ' 4961.0 4.69 1.74 52.40 53.37 52.40 Pond Outlet Invert = 4957.52 ft MSL 'Box Culvert Height = 2 ft Box Culvert Width = 4 ft t Noe (1) HW/D = (WSEL - invert el.) / Box height (2) From FHWA nomograph (following) ' (3) Derived from UDSEWER analysis (see following page) (4) Minimum of inlet control or outlet control discharge. 1 1 1 03-Apr-96 . RBD, Inc., Engineering Consultants Detention Pond 180 (340) Area -Capacity Rating Curve Cumulative Elev Area Area Storage (ft)- (ft2) (ac) (ac-ft) --- - ------------------------------------ V = d/3"(A+B+(AB)^0.5) 4952.5 °: '4953.0 -M 4954.0 ° deadtpool' 4955.0 '4956.0 4957.0 27,978 ° �P4 4957.5 34,696 0.80 4958.0 41,414 0.95 4959.0 55,791 1.28 '4960.0 4961.0 72,237 74,146 1.66 1.70 1 1 567-006 0.00 0.44 1.55 3.01 4.1 ac-ft at WSEL = 4960.65 4.69 03-Apr-96 11 'Detention Pond 340 567-006 Outlet Rating Curve (from UDSEWERI Q(pond) Q(Lemay) Q(out) Start. D/S U/S CE 340/180 CE312/177 HWL HWL (cfs) (cfs) (cfs) (ft el) (ft el) ' (1) (1) (2) (3) (4) ' ----------------- 0.00 0.36 ----------------- 0.00 2.48 -------------- 0.00 2.84 ---------------------------- 4957.10 4957.28 4957.52 4957.65 2.87 6.90 9.77 4957.49 4957.78 9.18 14.26 23.44 4957.74 4958.17 ' 23.63-, 25.39 49.02 4958.09 4958.88 34.08 40.67 74.75 4958.35 4959.62 ' 39.50 45.64 48.62 88.12 97.90 4958.47 4958.55 4960.12 4960.48 52.26 <a' 55.00 57.81 112.81 4958.67 4961.11 (5 ' 60.00 60.77 120.77 4958.73 4961.46 (5) ' Notes' (1) Hydrographs from SWMM model ' (2) Sum of conveyance element hydrographs (3) From D/S channel rating (following) (4) Determined by numerous iterations of UDSEWER model ' using the above conveyance element hydrographs (5) Discharges estimated for upper boundary of rating curve 11 11 1 m ' T!5/c 33 CLIENT •�=M HO%IES JOB NO.-67-DD6 I!JC PROJECT / Nc ; JFI �L L: CALCULATIONS FOR LET E//T/ GN I"HD ' Engineering Consultants WADE SY%�i DATE:�e SCHECKED BY DATE SHEET OF JGSEW�iP f//AL i'SIS F> Dl/TLET %JORrS OF ft/JG :.�0 i ' pEL K /i✓C E 7- led Fz D•J 4:9..4z. cF3 JN✓,=4957, 3 IJLBi Ks= 0.25 j/J✓.rY957.5Z O Kb=0.y0 9Y[iP�3X7,07 Get✓G = �`�?.D y-,1of7 x f �CbC OO 0✓T 1.6 i ' PvV. = f 157, / OUDSEw/ER P/PE /✓uII)BER "/,_i, AW1 f...N%M�ER— . _. . :......... ' Q Ks- /cc /— a '� fGR- S4GGE�✓ ExPANs/o�✓; �a = 3 7rIH2°.. ! { KT /oI I Jsi - (WAo i Pf e,lej)-erg+ di GampaS,:! : a!' 3-.�36 �� tZG r-'�.. A /s ub5 1 rER i ' on� allows �i s,n.q� Ottiticv Ufa � ti rn0-,-� oode? his I Lv_eyan�U-7l�rn�n� 6 m0 de(ac� aS a✓� EX f+ (BIT P B-/D 1 1 1 1 CQ Scr 1 ' S t M Ll (� r0 A i rK r,t G n--t- f� L�,, � � Bo o ¢o - / v iYo sh�i�g ... h1Air>.C��2 at 8=41 0� O,So O a4A / z M ' REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED 6Y JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT ' DENVER, COLORADO ' ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ •" EXECUTED BY DENVER C17Y/COJNTY USE ONLY ............................................. ON DATA 01-15.1996 AT TIME 16:44:25 PROJECT TITLE : Detention Pond 340 Outlet ' •" RETURN PERIOD OF FLOOD IS 100 YEARS SUMMARY OF HYDRAULICS AT MANHOLES ..................................•--•--•-•--•------------------------•-------- MANHOLE CNTRSTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ' ID NUMBER AREA ' C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CIS FEET FEET ----................................••..............- 1.00 100.60 4962.00 4958.57 plus OK fJ aye r �o k GE7 Csy Gas) ' 2.00 100.60 4963.00 4959.77 3.00 46.20 4963.DO 4959.84 4.00 46.20 4963.00 4960.05 OK OK OK - - -- �Cf'/ OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' "' SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER S12E RATIO= 1 1 -•--- •--•---- -----••-- ---•--•- --- SEWER MAMHOLE NUMBER SEWER REOUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH 1D 110.- ID N0. (FT) (IN) (FT) (11) (FT) (IT) ' ---__----_(111) 1.00 2.00 1.00 BOX 2.21 2.50 3.00 7.07 2.00 3.00 2.00 BOX 1.55 2.00 2.00 4.00 3.00 4.00 3.00 BOX 1.55 2.00 2.00 4.00 DIMENSION UNITS FOR ROJND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REOUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY, SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. ' FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED 1 .._SE.W'.ER.........DESIGN....••FLO---...ND --------N-OR-A.ML ----•CR--1-U •C-•--CRI--••TIC•._-..FUL--L••--IFR--OJDE.--._-CO-•-- W MN.E NT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. ' NUMBER CIS CIS FEET FPS IEET FPS FPS 1 1] 1 FI, LEI 1 1 1 1 1.0 100.6 115.3 2.21 6.45 1.E5 7.71 4.74 0.77 V-OK 2.0 46.2 49.5 1.55 7.43 1.61 7.19 5.78 1.05 V-OK 3.0 46.2 49.5 1.55 7.43 1.61 7.19 5.78 1.05 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLO'a OCCURS ......................•--...---....................................... SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ...................................................................... 1.00 0.21 4957.30 4957.10 2.70 1.90 NO 2.00 0.50 4957.52 4957.30 3.48 3.70 OK 3.00 0.50 4957.52 4957.52 3.1.8 3.48 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ............................................................................... SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW 1D NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ...............•-----.............------------..............-- 1.00 94.00 0.00 4960.30 4960.10 4959.77 4958.57 SUBCR 2.00 44.00 44.00 4959.52 4959.30 4959.84 4959.77 PRSS'ED 3.00 0.10 0.10 4959.52 4959.52 4960.05 4959.84 PRSS'ED PRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUSCRITICAL FLOW *"* SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ............................................................................... UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT .................................................................... 1.0 2.00 4960.12 1.20 1.00 0.35 0.00 0.00 1.00 4958.57 2.0 3.00 4960.36 0.11 0.25 0.13 0.00 0.00 2.00 4960.12 3.0 4.0014960.57 0.00 0.40 0.21 0.00 0.00 3.00 4960.36 WS�L BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K•INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE .'NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. �� b/5 cc mrc f ' RBD INC. ENGINEERING CONSULTA-NTS CHANNEL RATING INFORMATION ' EXISTING CHANNEL D/S OF TRIPLE 36" RCP'S ELEVATION ' -(feet)-- ' 4957.30 4957.50 4957.70 ' 4957.90 4958.10 4958.30 4958.50 4958.70 4958.90 4959.10 ' 4959.30 4959.50 4959.70 ' 4959,90 4960.10 4960.30 4960.50 ' 4960.70 4960.90 1 STA ELEV 0.00 4961.10 q 1 16.00 4957.10 33.00 4957.10 49.00 4961.10 1-71 'N' VALUE SLOPE (ft/ft) 0.035 0.0040 AREA VELOCITY DISCHARGE FROUDE. (sq ft) ------- (fps) -------- (cfs) --------- NO. ------ 3.6 0.9 3.19 0.36 7.4 1.4 10.28 0.40 11.7 1.8 20.58 0.43 16.2 2.1 33.87 0.44 21.0 2.4 50.10 0.46 26.2 2.6 69.27 0.47 31.7 2.9 91.40 0.48 37.5 3.1 116.54 0.49 43.6 3.3 144.76 0.50 50.1 3.5 176.12 0.50 56.8 3.7 210.70 0.51 63.9 3.9 248.58 0.52 71.3 4.1 289.83 0.52 79.1 4.2 334.53 0.53 87.1 4.4 382.77 0.53 95.5 4.6 434.63 0.54 104.2 4.7 490.20 0.54 113.2 4.9 549.54 0.54 122.5 5.0 612.76 0.55 1 • �-Is� CHART 8 i2 11 600 (1) (2) (3) 00 EXAMPLE 9 B to to 400 3'c 2' Sol 0 • 7! CIS -7 6 iSCf./ft. 6 7 8 9 300 infer C feet 6 7 S 6 0) 1.75 3.5 S 6 1 200 (2) I.90 3.8 4 S (3) 2D5 4.1 4 4 7 3 3 3 ~ 6 O 100 O I` 60 2 _. w 2 0--- 60 — -- 2 S 4 so i.s L3 u F 40 </.35 w I.S LL 1 Z O In 30 4 / I 2 x ~ 0/ cc t.o = 60, 22 z _ � zl U. ' S •9 1.0 LO f. .3 an of — 1... S t, ind..ell ►lore w.8 O .9 .9 W � u 6 2 1 w 0 6 ~ .7 LL 6 o � S HW WINGWALL a 7 7 —SCALE AH w 6 a cr (1) So• to 73• 3 K) so•.nd Iv .6 IS) O'(ubnelen. .S 2 of r;e..) •S . cold (2) of (3) po)ect .S i herl Mtat t• SCSI* (1), then .SS Streieht iiarlinCe lie. 1hre.eh .4 ( 0 end 0 "ales. or riSu SS )Ilectrotod. 6 a 4 .6 HEADWATER DEPTH FOR BOX CULVERTS 3 WITH INLET CONTROL BUREAU Of PV^:.LIC ROADS JAN. re63 18S TABLE 12 - ENTRANCE LOSS COEFFICIENTS Outlet Control, Full or Partly Full Entrance head loss H, = ke v2 2g Type of Structure and Design of E_ntr•s:ce Coefficient k. Pipe. Concrete Projecting from fill, socket end (groove -end) 0.2 Projecting from fill, sq. cut end . . . . 0.5 . Headwall or headwall znd w'ingw•:lls : : : : : : : Socket end of pipe (groove-cnd) 0.2 Squire -edge 0.5 Rounded (radius = 1/12D) 0.2 Mitered to conform to fill slope 07 *End -Section conforming to fill slope . . . . . . . .. . . 0.5 Beveled edges, 33.7° or 45° bevels 0.2 Side -or slope -tapered inlc[ , . . . • . 0.2 PIDC or Pioe-Arch Ct)rru4a1ed Met31 0.9 Projecting from fill (no headwall) Headwall or headwall and w•ingw•alls square -edge . . . . . . . 0.5 Mitered to conform to fill slope, paved or unpaved slope 0.7 *End -Section conforming to fill slope 0.5 Beveled edges, 33.71 or 45° bevels . . . . . . . . . . . 0.2 Side -or slope -tapered inlet 0.2 Box Reinforced Concrete Headwall parallel to embankment (no wingwalis) Square -edged on 3 edges . 0.5 Rounded on 3 edges to radius of 1/12 barrel dimension, or beveled edges on 3 sides . . . . . . . 0.2 ' Wingwzlls at 30° to 751 to barrel Square -edged at crown Crown edge rounded to radius of 1/12 barrel ' dimension, or beveled top edge 0.2 Wingwall at 100 to 250 to barrel Square -edged at crown 0.5 Wingwalls parallel (extension of sides) j' Square -edged at crown 0.7 ., Side -or slope -tapered inlet 0.2 ' *Note: "End Section conforming to fill slope," made of either metal or concrcte; are the sections commonly available from manufacturers. From limited hydrau- lic tests they are equivalent in oper?tioa to a headwall in outlet control. Some end sections, incorporating a closed 7atter both jac-t and taper . in their can be cTsign have a superior hydraulic performance. These sections ' 179 C-yT 100-YEAR SWMM MODEL (PROPOSED MODIFICATION) y ' SWAM input file OAK-100.DAT: z 1 t z 3 4 ATERSHED 0 McCLELLANDS BASIN REGIONAL SWMM MODEL (UPDATED W/ ROUTING CORRECTIONS) 100-YEAR EVENT RID, INC., ENGR. CONS. (dkt) 03 APR 96 1ILE: OAK-100 50 0 0 5.0 1 1.0 1 25 5 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 ' 0.24 0.24 0.12 0.12 0.00 .2 .016 .250 0.1 0.5 0.5 0.5 .0018 1 80 8 313057.12 40 .01 1 60 6 1150 8.95 40 .01 '1 70 7 135129.38 40 .01 1 130 13 67524.66 40 .01 1 100 10 85,013.19 40 .01 1 150 15 50 1.84 80 .02 1 110 11 34 9.58 84 .02 '1 320 11 305 2.14 10 .01 1 120 12 50017.79 8D .02 1 90 9 40013.12 10 .01 1 190 19 250 1.38 80 .01 '1 200 20 70031.34 80 .01 1 210 21 500 7.51 80 .01 1 240 24 300 5.00 80 .01 1 280 28 50 6.90 80 .02 1 330 33 700 5.63 80 .01 1 160 16 3500 4.02 84 .02 1 250 250 500 1.60 80 .01 OAKRIDGE BLOCK ONE 1 270 270 625 3.30 60 .01 1 271 271 2017 6.30 55 .01 1 272 272 817 1.50 31 .09 1 360 36 3223 2.37 87 .02 * ALL FOLLOWING BASINS FROM MIRAMONT MASTER PLAN, RBD, INC. '1 201 320 31514.75 25.0183 1 202 322 70021.50 50.0165 1 203 172 100032.25 80.0100 1 204 166 90019.00 80.0100 1 205 168 650 5.85 47.0105 '1 206 171 650 7.70 70.0080 1 207 176 100013.80 57.0235 1 203 178 95033.61 70.0170 1 209 321 43523.40 40.0085 '1 165 324 40010.30 40.0100 1 211 325 100010.90 64.0200 1 212 328 400 4.20 80.0380 1 213 180 70016.89 30.0055 1 214 179 2200 1.62 9D.0110 1 215 331 500 0.70 90.0270 1 216 327 1400 0.96 90.0060 * ALL FOLLOWING BASINS FROM STETSON CREEK MASTER PLAN, RBD, INC. SUBBASIN 301 MODIFIED FOR DEVELOPED CONDITION 1 301 301 438530.20 45.0077 .430 0.6 1 302 95 350047.30 45 .01 .390 0.6 SUBBASIN 303 MODIFIED FOR DEVELOPED CONDITION, REDUCED BY L&A WILLOW SPRINGS 1 303 303 7260 50.0 45.0113 '1 305 365 198878.50 3.9.0110 .25 1 306 372 1729 8.73 31.2.0200 .95 1 307 359 960 5.42 17.0.1262 .95 1 308 370 1335 7.03 40.0.0200 .60 '1 309 361 507 1.63 4.0.1262 .99 1 311 371 315 2.78 40.0.0200 0.9 1 312 363 569 2.09 2.3.1262 .99 1 313 366 495 0.91 1.0.0500 0.9 1 314 373 993291.15 34.0.0200 .55 ' 1 315 374 100014.39 40.0.0200 .35 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 316 39 276499.00 2.0.0169 0.3 ALL FOLLOWING SUBBASINS ARE FROM G&O 1986 McCLELLANDS BASIN MASTER PLAN EXISTING CONDITION SUBBASINS BTWN STETSON CREEK & CTY RD 9 1 217 367 890 18.4 5.0 .010 1 218 367 950 17.4 5.0 .030 1 222 32 375 19.3 5.0 .008 1 223 368 2000 23.0 5.0 .040 1 224 368 1500 13.8 5.0 .010 G&O SUBBASIN 215 RENUMBERED AS 225, REDUCED TO EXCLUDE WILDWOOD 1 225 35 2858 65.6 5.0 .006 ....................................................................... SUBBASIN 304 MODELED BY FOLLOWING DEVELOPED BASINS, FROM WILLOW SPRINGS PUD DRAINAGE PLAN, LIDSTONE & ANDERSON, AUGUST 1994 1 1 201 1200 8.4 38. .020 .020 .25 .1 .3 .51 .5 .0018 1 2 202 1350 4.6 64. .020 .020 .25 .1 .3 .51 .5 .0018 1 3 203 800 5.7 44. .020 .020 .25 .1 .3 .51 .5 .0018 1 4 209 300 1.6 74. .020 .020 .25 .1 .3 .51 .5 .0018 1 5 209 800 3.1 64. .020 .020 .25 .1 .3 .51 .5 .0018 1 6 210 2500 11.6 60. .020 .020 .25 .1 .3 .51 .5 .ODIS 1 7 209 750 3.3 57. .020 .020 .25 .1 .3 .51 .5 .0018 1 8 210 450 2.3 67. .020 .020 .25 .1 .3 .51 .5 .0018 1 9 209 3000 18.3 29. .020 .020 .25 .1 .3 .51 .5 .0018 1 10 210 1400 8.5 25. .020 .020 .25 .1 .3 .51 .5 .0018 1 15 215 1300 7.1 17. .015 .020 .25 .1 .3 .51 .5 .0018 1 16 216 200 1.8 12. .020 .020 .25 .1 .3 .51 .5 .0018 1 20 219 600 4.1 46. .020 .020 .25 .1 .3 .51 .5 .0018 1 21 219 1400 9.0 46. .020 .020 .25 .1 .3 .51 .5 .0018 . 1 22 219 1800 7.2 51. .020 .020 .25 .1 .3 .51 .5 .0018 1 23 224 1000 2.2 61. .020 .020 .25 .1 .3 .51 .5 .0018 1 24 ,224 500 3.4 42. .020 .020 .25 .1 .3 .51 .5 .0018 1 25 226 900 4.0 65. .020 .020 .25 .1 .3 .51 .5 .0018 1 26 226 1000 2.9 31. .020 .020 .25 .1 .3 .51 .5 .0018 1 30 330 1700 11.7 60. .020 .020 .25 .1 .3 .51 .5 .0018 1 40 140 1300 6.1 29. .020 .020 .25 .1 .3 .51 .5 .0018 1 41 357 800 3.5 50. .020 .020 .25 .1 .3 .51 .5 .0018 0 0 0 15 4 0 1 0 1600 0.004 50 0 0.016 1.5 0 4 6 0 1 0 800 0.0044 4 4 0.035 5.0 0 7 6 0 1 0 1400 0.0100 0 50 0.016 1.5 0 6 50 0 1 0 1200 0.0032 4 4 0.035 5.0 0 8 50 0 1 0 1800 0.0033 4 4 0.035 5.0 0 13 50 0 1 0 3600 0.006 50 0 0.016 1.5 0 12 22 0 1 0 1300 0.006 50 0 0.016 2.5 0 16 22 0 1 0 3500 0.006 50 50 0.016 2.0 0 11 50 0 1 0 8350 0.006 50 0 0.016 1.5 0 10 50 0 1 0 1600 0.006 50 0 0.016 1.5 0 9 51 0 1 5 1000 0.006 15 15 0.035 5.0 0 18 51 0 1 0 1100 0.006 50 0 0.016 1.5 0 19 51 0 1 0 200 0.005 100 10D 0.016 1.5 0 20 51 0 1 0 2100 0.005 4 4 0.035 5.0 0 21 44 0 1 0 1200 0.005 50 0 0.016 1.5 0 44 51 0 1 3 800 0.005 10 10 0.035 2.0 -1 220 22 3 3 0 1 0 0 0.32 11.87 4.1 0 0 22 43 0 1 0 1600 0.007 4 4 0.035 5.0 0 43 51 4 2 0.1 1 0.001 0.016 0.1 0 0 0 133 .01 140 .02 150 CONVEYANCE ELEMENTS 50 AND 51 REPLACE C.E. 17 FOR PROPER ROUTING TO POND 2 0 50 2 0 1 10 500 0.005 15 15 0.040 5.0 0 51 2 0 1 10 500 0.005 15 15 0.040 5.0 -1 230 23 3 3 0 1 0. 0. 0.30 7.21 7.16 0 0 23 18 0 1 0 1300 0.005 50 0 0.016 1.5 0 24 7 0 1 0 700 0.008 50 0 0.016 1.5 OAKRIDGE BUSINESS PARK 4TH & 8TH FILING OUTLET 0 250 25 6 2 0.1 1 0.005 0.013 0.1 0 0 0.0 0.19 0.01 0.24 0.08 0.28 0.31 0.32 0.33 5 0 25 22 0 2 1.25 500 0.005 0.013 1.25 -1 260 26 3 3 0 1 0. 0. 0.24 11.19 6.99 0 0 26 42 0 5 3.5 800 0.005 0.016 3.5 10 800 0.005 4 4 0.035 5.0 0 42 22 0 2 6 1 0.005 0.016 6.0 OAKRIDGE BLOCK ONE 0 270 27 0 3 0 1 0.001 0.001 10.0 0 271 27 0 5 2.25 45 0.004 0.013 2.25 0 45 0.004 198 117 0.020 5.0 0 272 275 6 2 0.1 10 0.001 0.013 0.1 ' 0 0 0.02 0.43 0.13 0.76 0.29 0.98 0.50 1.16 0.76 1.32 0 275 27 0 2 3.5 676 0.0084 0.013 3.5 0 27 41 8 2 0.1 10 0.001 0.013 0.1 0 0 0.03 0.78 0.22 2.51 .0.52 3.46 0.90 4.21 1.37 4.84 2.10 57.63 3.20 191.38 0 41 26 0 5 4.0 100 0.005 0.016 4.0 10 100 0.005 50 50 0.016 1.0 0 36 26 0 5 1.25 90 0.014 0.013 1.25 '0 90 . 0.014 200 200 0.020 5.0 0. 28 275 0 1 0 5000 0.005 0 50 0.016 1.5 -1 340 11 3 3 0 1 0. 0. 0.23 1.91 6.96 0 -1 310 31 11 3 0 1 ' 0. 0. 0.08 0. 0.17 0. 0.25 2. 0.33 10. 0.42 25. 0.50 38. 0.58 53. 0.67 59. 0.75 55. 5.00 55. 0 31 275 0 2 3 108 0.0075 0.013 3.0 1 290 29 3 3 0 1 0. 0. 0.22 3.06 6.98 0 ARTIFICIAL OVERFEDW CHANNEL TO ELIMINATE SURCHARGE 0 29 18 0 5 1.00 500 0.005 0.013 1.0 20 500 0.005 0.5 0.5 0.016 5.0 0 33 21 0 1 0 700 0.008 50 0 0.016 1.5 OAKRIDGE POND WITH REVISED OUTLET HYDRAULICS 0 2 116 12 2 0.1 77 0.007 0.013 0.1 0.0 0.0 0.00 2.30 0.02 16.06 0.11 51.28 0.59 86,17 2,36 115,72 6,17 144,72 12.05 169.80 19.65 193.70 28.60 214.81 33.64 224.38 38.67 233.10 ------------------------------------------ ---•----.......... ..- * ALL FOLLOWING CONVEYANCE ELEMENTS FROM MIRAMONT MASTER PLAN, RBD, INC. * POND 166 (301) RATING CURVE COMPOSITES 3 DETENTION PONDS IN BASIN 204 ' 0 166 167 3 2 0.1 96 0.0060 0 0 0.013 0.10 0.0 0.0 1.6 24.0 3.4 26.4 0 167 169 0 1 4.00 260 0.0021 2 2 0.035 4.00 * POND 168 (303) RATING CURVE FROM EVANGELICAL COVENANT REPORT BY LANDMARK 0 168 169 3 2 0.1 10 0,0010 0 0 0.013 0.10 '0.0 0.0 0.07 0.90 0.43 1.36 0 169 170 0 2 2.27 40 0.0070 0 0 0.013 2.27 0 170 174 0 1 4.00 460 0.0021 2 2 0.035 4.00 * FUTURE DETENTION POND 171 (306) 0 171 174 3 2 0.1 10 0.0038 0 0 0.013 0.10 0.0 0.0 1.0 4.0 2.0 4.3 POND 172 (307) RATING CURVE COMPOSITES 5 DETENTION PONDS IN BASIN 203 0 172 173 3 2 0.1 120 0.0033 0 0 0.013 0.10 '0.0 0.0 6.5 53 8.0 6.0 0 173 175 0 1 0 1200 0.0050 4 4 0.035 1.10 0 174 175 0 2 2.25 75 0.0211 0 0 0.013 2.25 0 175 177 0 2 2.50 853 0.0123 0 0 0.013 2.50 * POND 176 (311) RATING CURVE FROM OAKRIDGE WEST PUD REPORT BY RBD ' 0 176 177 5 2 0.1 315 0.0020 0 0 0.013 0.10 0.0 0.0 0.04 1.10 0.23 1.71 0.79 2.15 1.78 2.56 0 177 341 0 2 3.00 480 0.0100 0 0 0.013 3.00 0 178 177 11 2 0.10 1310 0.0033 0 0 0,013 0.10 0.0 0.0 0.60 2.1 1.26 4.1 1.92 5.4 2.64 6.5 2.80 6.7 2.99 12.3 3.35 13.4 4.13 15.5 4.68 .16.8 4.91 17.3 0 320 321 0 1 5.00 1350 0.0050 4 4 0.035 4.00 0 321 324 8 2 0.1 300 0.0053 0 0 0.013 0.10 0.0 0.0 0.05 0.0 0.31 2.6 0.79 4.3 1.52 5.5 2.55 6.4 3.85 7.3 5.40" 8.0 * FUTURE DETENTION POND 322 0 322 323 3 2 0.1 10 0,0100 O 0 0.013 0,10 0.0 0.0 1.9 11.0 4.0 11.3 0 323 324 0 1 0 150D 0.0142 50 0 0.016 1.50 CE 324 MODELED USING HGL AS SLOPE 0 324 331 0 2 3.00 36 0.0222 0 0 0.013 3.00 '0 325 326 0 1 4.00 420 0.0050 4 4 0.035 3.00 CE 326 MODELED USING HGL AS SLOPE 0 326 327 0 2 3.50 214 0.016E 0 0 0.013 3.50 0 327 329 0 1 4.00 750 0.0050 4 4 0.035 3.00 * CE 328 MODELED WITH STREET CROWN OVERFLOW USING HGL AS SLOPE ' 0 328 329 0 5 1.75 101 0.0149 0.013 1.75 0 101 0.0149 133 44 0.016 5.0 0 329 180 0 1 5.00 240 0.0050 4 4 0.035 4.00 * CE 179 (330) MODELED WITH STREET CROWN OVERFLOW USING HGL AS SLOPE ' 0 179 324 0 5 1.50 80 0.0110 0.013 1.50 0 80 0.0110 167 167 0.016 5.0 * CE 331 MODELED USING HGL AS SLOPE ' 0 331 325 0 2 3.00 30 0.0261 0 0 0.013 3.00 * POND 180 (340) RATING CURVE 0 180 341 8 2 0.10 20 0.0040 0 0 0.013 0.10 0.0 0.0 0.44 4.00 0.99 9.60 1.55 18.00 2.28 28.40 3.01 37.20 3.85 45.60 4.69 52.40 0 341 4 0 2 5.20 120 0.0040 0 0 0.013 5.20 * ALL FOLLOWING CONVEYANCE ELEMENTS FROM STETSON CREEK MASTER PLAN, RBD, INC. 0 91 93 0 1 0 1325 0.0150 4 4 0.060 5.0 ' 0 93 94 10 2 0.1 1 0.0050 0.013 0.1 0.00 0.0 0.05 0.00 0.51 0.0 0.98 0.0 1.62 1.9 2.40 5.40 3.33 7.7 4.35 14. 5.41 20.7 6.52 93.90 0 94 357 0 1 0 1000 0.0027 3 3 0.035 5.0 ' 0 95 93 0 3 0 1 * CONCEPTUAL DETENTION FOR SUBBASINS 301 AND 303 0 301 91 2 2 0.1 1 0.0050 0.013 0.1 0.00 0.0 3.25 15.1 ' 0 303 357 2 2 0.1 1 0.0050 0.013 0.1 0.00 0.0 6.30 25.0 0 357 358 O-1 16 10 0.0050 4 4 0.045 4.00 0 358 359 0 2 9.44 103 0.0050 6.013 9.44 0 359 360 0 1 16 950 0.0050 4 4 0.045 4.00 ' 0 360 361 0 2 9.44 46 0.0050 0.013 9.44 0 361 362 0 1 16 619 0.0050 4 4 0.045 4.00 0 362 363 0 1 16 215 0.0050 4 4 0.045 4.00 0 363 364 0 1 16 415 0.0050 4 4 0.045 4.00 ' 0 364 366 0 1 16 90 0.0050 4 4 0.045 4.00 0 365 366 0 1 0 1125 0.0045 4 4 0.035 2.35 0 366367 0 1 16 377 0.0050 4 4 0.045 4.00 0 38 373 0 1 0 1080 0.0050 4 4 0.035 3.50 0 39 38 0 1 0 2160 0.0050 4 4 0.035 3.50 ' 0 370 361 9 2 0.10 1 0.0050 0.013 0.10 0.00 0.0 .00 0.00 .04 0.80 .19 1.14 .41 1.40 .57 3.52 .68 3.71 .80 3.88 .99 4.13 0 371 362 7 2 0.10 1 0,0115 0.013 0.10 0.00 0.0 .00 0.52 .103 1.18 .219 1.39 .304 1.39 .371 1.58 .550 1.75 POND 372 RATING CURVE FROM STETSON CREEK 2ND FILING, BY NORTHERN ENGINEERING 0 372 363 6 2 0.10 1 0.0020 0.013 0.10 0.00 0.00 0.17 10.00 0.42 22.37 0.74 33.27 0.94 37.98 1.17 50.54 0 373 364 16 2 0.10 1 0.0042 0.013 0.10 0.00 0.0 .061 0.00 .465 0.0 1.578 0.0 ' 3.566 6.4 6.256 16.8 6.909 18.0 7.562 18.8 8.216 19.6 8.869 20.8 9.522 21.6 9.910 31.5 10.298 49.4 10.6B7 72.6 11.075 99.7 11.463 130.9 0 374 38 13 2 0.10 1 0.0040 0.013 0.10 0.00 0.0 .009 0.00 .119 0.0 0.230 0.0 ' 0.409 1.13 0.469 2.11 0.528 2.76 0.678 3.94 0.827 4.84 1.062 5.60 1.297 6.27 1.532 6.87 1.711 7.29 * ALL FOLLOWING CONV. ELEMENTS ARE FROM G&O 1986 McCLELLANDS BASIN MASTER PLAN EXISTING CONDITION CONVEYANCE ELEMENTS SUBBASINS BTUN STETSON CREEK & CTY RD, 0 35 102 0 1 1.0 1250 0.010 50 50 0.045 5.0 0 32 102 0 1 1.0 3300 0.006 75 1.5 0.045 5.0 0 367 368 0 4 5.0 950 0.007 1.5 2.8 0.045 5.0 ' 31.0 950 0.007 50 50 0.045 10.0 0 368 102 0 4 5.0 1960 0.010 3.0 3.0 0.045 5.0 29.0 1960 0.010 25 100 0.045 10.0 * CROSSING UNDER CTY RD 9; PER RBD 1987 McCLELLANDS BASIN CH. IMP. PHASE ONE * 0 102 103 0 5 4.5 50 0.005 0.024 5.6 29.0 50 0.005 25 100 0.018 10.0 ------------- ...-----•------------............---- SUBBASIN 304 MODELED BY FOLLOWING CONVEYANCE ELEMENTS, FROM * WILLOW SPRINGS PUD DRAINAGE PLAN, LIDSTONE & ANDERSON, AUGUST 1994 201 202 0 3 .1 1. 202 209 0 3 .1 1. 203 209 0 3 .1 1. 209 210 0 3 .1 1. 210 309 0 3 .1 1. ' 309 140 14 2 .1 1. .1 0.0 0.0 0.59 0.47 1.06 1.29 1.72 2.13 2.68 3.12 3.61 4.20 4.09 6.97 5.09 7.51 6.09 7.51 7.43 7.92 8.77 8.40 9.85 8.64 ' 10.56 8.81 10.92 9.00 215 315 0 3 315 216 5 2 0 * 0 1.21 1.1 216 116 0 3 116 140 0 1 140 357 0 1 219 224 0 3 224 218 0 3 218 124 8 2 0.0 0.0 0,97 124 226 11,0 0 2 226 217 0 3 217 357 8 2 0.0 0.0 0.45 10.0 330 357 7 2 0.0 0.0 1.11 4.0 0 0 ENDPROGRAM 0.08 0.5 0.34 .1 1. 10. 1650. .003 4 10. 700. .003 4 .1 1. .1 1. .1 1. 0.07 4.0 0.24 1.64 12.0 2.46 3. 825. .008 0 .1 1. .1 1. 0.04 4.0 0.12 0.73 12.0 1.16 .1 1. 0.08 1.0 0.27 1.86 5.0 2.82 .1 0.75 0.86 1.0 4. .035 5. 4. .035 5. .1 6.0 0.52 8.0 14.0 3.44 16.0 0. .011 5. .1 6.0 0.24 8.0 14.0 1.72 16.0 .1 2.0 0.65 3.0 6.0 0 SNNINB1 output file OAK-100.0UT: ' ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. ' UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) ' UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS ' MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS ' JIN(1) JIN(2) JIN(3) J1N(4) J1N(5) JIN(6) JIN(7) JIN(8) JIN(9) JINGO) 2 1 0 0 0 0 0 0 0 0 ' JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 ' !7ATERSHED PROGRAM CALLED,. ENTRY MADE TO RUNOFF MODEL *** ,McCLELLANDS BASIN REGIONAL SWMM MODEL (UPDATED W/ ROUTING CORRECTIONS) 100-YEAR EVENT RBD, INC., ENGR. CONS. (dkt) 03 APR 96 FILE: OAK-100 OF TIME STEPS 50 'NUMBER INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH ' FOR 25 RAINFALL STEPS, THE TIME FOR RAINGAGE NUMBER 1 RAINFALL INTERVAL IS 5.00 MINUTES HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 ' .24 .24 .12 .12 .00 McCLELLANDS BASIN REGIONAL SWMM MODEL (UPDATED W/ ROUTING CORRECTIONS) 100-YEAR EVENT RBD, INC., ENGR. CONS. (dkt) 03 APR 96 FILE: OAK-100 'SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE 1 NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE -2 0 .0 .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 80 8 3130.0 57.1 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 60 6 1150.0 8.9 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 70 7 1350.0 29.4 40.0 .0100 .016 .250 .100 .500 .50 .50 00180 130 13 675.0 24.7 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 10 850.0 13.2 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 '100 150 15 50.0 1.8 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 110 11 34.0 9.6 84.0 .0200 .016 .250 .100 .500 .50 .50 .00180 320 11 305.0 2.1 10.0 .0100 .016 .250 .100 .500 .50 .50 .00180 120 12 500.0 17.8 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 90 9 400.0 13.1 10.0 .0100 .016 .250 .100 .500 .50 .50 .00180 190 19 250.0 1.4 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 200 20 700.0 31.3 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 210 21 500.0 7.5 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 240 280 24 28 300.0 50.0 5.0 6.9 80.0 80.0 .0100 .0200 .016 .016 .250 .250 .100 .100 .500 .500 .50 .50 .50 .50 .00180 .00180 330 33 700.0 5.6 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 160 16 3500.0 4.0 84.0 .0200 .016 .250 .100 .500 .50 .50 .00180 250 250 500.0 1.6 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 270 625.0 3.3 60.0 .0100 .016 .250 .100 .500 .50 .50 .00180 '270 271 271 2017.0 6.3 55.0 .0100 .016 .250 .100 .560 .50 .50 .00180 272 272 817.0 1.5 31.0 .0900 .016 .250 .100 .500 .50 .50 .00180 360 36 3223.0 2.4 87.0 .0200 .016 .250 .100 .500 .50 .5D .00180 '201 202 320 322 315.0 700.0 14.8 21.5 25.0 50.0 .0183 .0165 .016 .016 .250 .250 .100 .100 .500 .500 .50 .50 .511 .50 .00180 .00180 203 172 1000.0 32.3 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 204 166 900.0 19.0 80.0 .0100 .016 .250 .100 .500 .50 .50 .DOIBO 205 168 650.0 5.8 47.0 .0105 .016 .250 .100 .500 .50 .50 .00180 206 171 650.0 7.7 70.0 .0080 .016 .250 .100 .500 .50 .50 .00180 207 176 1000.0 13.8 57.0 .0235 .016 .250 .100 .500 .50 .50 .00180 208 178 950.0 33.6 70.0 .0170 .016 .250 .100 .500 .50 .50 .00180 200 321 435.0 23.4 40.0 .0085 .016 .250 .100 .500 .50 .50 .00180 165 324 400.0 10.3 40.0 0100 .016 .250 .100 .500 .50 .50 .00180 325 1000.0 10.9 64.0 .0200 .016 .250 .100 .500 .50 .50 .00180 '211 211 328 400.0 4.2 80.0 .0380 .016 .250 .100 .500 .50 .50 .00180 213 180 700.0 16.9 30.0 .0055 .016 .250 .100 .500 .50 .50 .00180 214 179 2200.0 1.6 90.0 .0110 .016 .250 .100 .500 .50 .50 .00180 331 500.0 .7 90.0 .0270 .016 .250 .100 .500 .50 .50 .00180 '215 216 327 1400.0 1.0 90.0 .0060 .016 .250 .100 .500 .50 .50 .00180 301 301 4385.0 30.2 45.0 .0077 .016 .430 .100 .600 .50 .50 .00180 302 95 3500.0 47.3 45.0 .0100 .016 .390 .100 .600 .50 .50 .00180 303 303 7260.0 50.0 45.0 .0113 .016 .250 .100 .5110 .50 .50 .00IBD 305 365 1988.0 78.5 3.9 Olio .016 .250 .100 .250 .50 .50 .00180 306 372 1729.0 8.7 31.2 .0200 .016 .250 .100 .950 .50 .50 .00180 307 359 960.0 5.4 17.0 .1262 .016 .250 .100 .950 .50 .50 .0018D 308 370 1335.0 7.0 40.0 .0200 .016 .250 .100 .600 .50 .50 .00180 309 361 507.0 1.6 4.0 .1262 .016 .250 .100 .990 .50 .50 .00180 311 371 315.0 2.8 40.0 .0200 .016 .250 .100 .900 .50 .50 .00180 312 363 569.0 2.1 2.3 .1262 .016 .250 .100 .990 .50 .50 .00180 313 366 495.0 .9 1.0 .0500 .016 .250 .100 .900 .50 .50 .00180 314 373 9932.0 91.2 34.0 .0200 .016 .250 .100 .550 .50 .50 .001110 374 1000.0 14.4 40.0 .0200 .016 .250 .100 .350 .50 .50 .00180 '315 316 39 2764.0 99.0 2.0 .0169 .016 .250 .100 .300 .50 .50 .00180 217 367 890.0 18.4 5.0 .0100 .016 .250 .100 .5DO .50 .50 .00180 218 367 950.0 17.4 5.0 .0300 .016 .250 .100 .500 .50 .50 .00180 222 32 375.0 19.3 5.0 .0080 .016 .250 .100 .500 .50 .50 .00180 223 368 2000.0 23.0 5.0 .0400 .016 .250 .100 .500 .50 .50 .00180 224 368 1500.0 13.8 5.0 .0100 .016 .250 .100 .500 .50 .50 .00180 225 35 2858.0 65.6 5.0 .0060 .016 .250 .100 .500 .50 .50 .00180 201 1200.0 8.4 38.0 .0200 .020 .250 .100 .300 .51 .50 .00180 2 202 1350.0 4.6 64.0 .0200 .020 .250 .100 .300 .51 .50 .00180 '1 3 203 800.0 5.7 44.0 .0200 .020 .250 .100 .300 .51 .50 .00180 4 209 300.0 1.6 74.0 :.0200 .020 .250 .100 .300 .51 .50 .00180 5 209 800.0 3.1 64.0 .0200 .020 .250 .100 .30D .51 .50 .00180 210 2500.0 11.6 60.0 .0200 .020 .250 .100 .300 .51 .50 .00180 '6 7 209 750.0 3.3 57.0 .0200 .020 .250 .100 .300 .51 .50 .00180 8 . 210 450.0 2.3 67.0 .0200 .020 .250 .100 .300 .51 .50 .00180 9 209 3000.0 18.3 29.0 .0200 .020 .250 .100 .300 .51 .50 .00180 10 210 1400.0 8.5 25.0 .0200 .020 .250 .100 .300 .51 .50 .00180 215 1300.0 7.1 17.0 .0150 .020 .250 .100 .300 .51 .50 .00180 '15 16 216 200.0 1.8 12.0 .0200 .020 .250 .100 .300 .51 .50 .00180 20 219 600.0 4.1 46.0 .D200 .020 .250 .100 .300 .51 .50 .00180 21 219 1400.0 9.0 46.0 .0200 .020 .250 .100 .300 .51 .50 .00180 22 219 1800.0 7.2 51.0 .0200 .020 .250 .100 .300 .51 .50 .00180 23 224 1000.0 2.2 61.0 .0200 .020 .250 .100 .300 .51 .50 .00180 24 224 500.0 3.4 42.0 .0200 .020 .250 .100 .300 .51 .50 .00180 25 226 900.0 4.0 65.0 .0200 .020 .250 .100 .300 .51 .50 .00180 26 226 1000.0 2.9 31.0 .0200 .010 .250 .100 .300 .51 .50 .001110 ' 30 330 1700.0 11.7 60.0 .0200 .020 .250 .100 .300 .51 .50 .00180 NO 40 140 1300.0 6.1 29.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 41 357 800.0 3.5 50.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 'TOTAL NUMBER OF SUBCATCHMENTS, 80 TOTAL TRIBUTARY AREA (ACRES), 1199.08 'McCLELLANDS BASIN REGIONAL SWMM MODEL (UPDATED W/ ROUTING CORRECTIONS) 100-YEAR EVENT RBD, INC., ENGR. CONS. (dkt) 03 APR 96 FILE: OAK-100 ' *** CONTINUITY CHECK FOR SUSCATCHMEMT ROUTING IN UDSWK2•PC MODEL *** ' WATERSHED AREA (ACRES) RAINFALL 1199.080 2.890 TOTAL (INCHES) TOTAL INFILTRATION (INCHES) .532 TOTAL WATERSHED OUTFLOW (INCHES) 1.847 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .511 ' ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .002 McCLELLANDS BASIN REGIONAL SWMM MODEL (UPDATED W/ ROUTING CORRECTIONS) 100-YEAR EVENT RBD, INC., ENGR. CONS. (dkt) 03 APR 96 FILE: OAK-100 GUTTER NUMBER 15 ' 4 7 6 8 13 12 16 11 10 9 18 19 20 21 44 220 GUTTER CONNECTION 4 6 6 50 50 50 22 22 50 50 51 51 51 51 44 51 22 ' 22 43 43 51 50 2 51 2 230 23 ' 23 24 25D 25 260 ' 26 42 270 ' 271 18 7 25 22 26 42 22 27 27 WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK (FT) (FT) (FT/FT) L R N (FT) 0 1 CHANNEL .0 1600. .0040 50.0 .0 .016 1.50 0 0 1 CHANNEL .0 800. .0044 4.0 4.0 .035 5.00 0 0 1 CHANNEL .0 1400. .0100 .0 50.0 .016 1.50 0 0 1 CHANNEL .0 1200. .0032 4.0 4.0 .035 5.00 0 0 1 CHANNEL .0 1800. .0033 4.0 4.0 .035 5.00 0 0 1 CHANNEL .0 3600. .0060 50.0 .0 .016 1.50 0 0 1 CHANNEL .0 1300. .0060 50.0 .0 AM 2.50 0 0 1 CHANNEL .0 3500. .0060 50.0 50.0 .016 2.00 0 0 1 CHANNEL .0 8350. .0060 50.0 .0 .016 1.50 0 0 1 CHANNEL .0 1600. D060 50.0. .0 .016 1.50 0 0 1 CHANNEL 5.0 1000. .0060 15.0, 15.0 .035 5.00 0 0 1 CHANNEL .0 1100. .0060 50.0 .0 .016 1.50 0 0 1 CHANNEL .0 200. .0050 100.0 100.0 .016 1.50 0 0 1 CHANNEL .0 2100. .0050 4.0 4.0 .D35 5.00 0 0 1 CHANNEL .0 1200. .0050 50.0 .0 .016 1.50 0 0 1 CHANNEL 3.0 800. .0050 10.0 10.0 .035 2.00 0 3 3 .0 1. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS .0 .0 .3 11.9 4.1 .0 0 1 CHANNEL .0 1600. .0070 4.0 4.0 .035 5.00 0 4 2 PIPE .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 133.0 .0 140.0 .0 150.0 0 1 CHANNEL 10.0 500. .0050 15.0 15.0 .040 5.00 0 0 1 CHANNEL 10.0 500. .0050 15.0 15.0 .040 5.00 0 3 3 1 .0 1. .0010 .0 .0 .001 10.00 .1 TIME IN HRS VS INFLOW IN CFS .0 .0 .3 7.2 7.2 .0 0 1 CHANNEL .0 1300. .0050 50.0 .0 .016 1.50 0 0 1 CHANNEL .0 700. .0080 50.0 .0 .016 1.50 0 6 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .2 .0 .2 1 .3 .3 .3 .3 5.0 0 2 PIPE 1.3 500. .0050 .0 .0 .013 1.25 0 3 3 .0 1. D010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS .0 .0 .2 11.2 7.0 .0 0 5 PIPE 3.5 800. .0050 .0 .0 .016 3.50 0 OVERFLOW 10.0 800. .0050 4.0 4.0 .035 5.00 0 2 PIPE 6.0 1. .0050 .0 .0 .016 6.00 0 0 3 .0 1. .0010 .0 .0 .001 10.0D 0 0 5 PIPE 2.3 45. .0040 .0 .0 .013 2.25 0 ' OVERFLOW .0 45. .0040 198.0 117.0 .020 5.00 272 275 6 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .0 .4 .1 .8 .3 1.0 .5 1.2 .8 1.3 275 27 0 2 PIPE 3.5 676. .0084 .0 .0 .013 3.50 0 27 41 8 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .8 .2 2.5 .5 3.5 .9 4.2 1.4 4.8 ' 2.1 57.6 3.2 191.4 41 26 0 5 PIPE 4.0 100. .0050 .0 .0 .016 4.00 0 OVERFLOW 10.0 100. .0050 50.0 50.0 .016 1.00 36 26 0 5 PIPE 1.3 90. .0140 .0 .0 .013 1.25 0 ' OVERFLOW .0 90. .0140 200.0 200.0 .020 5.00 28 275 0 1 CHANNEL .0 5000. .0050 .0 50.0 .016 1.50 0 340 11 3 3 .0 1. .0010 .0 .0 .001 10.00 .1 TIME IN HRS VS INFLOW IN CFS .0 .0 .2 1.9 7.0 .0 310 31 11 3 .0 1. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW 1N CFS .0 .0 .1 .0 .2 .0 .3 2.0 .3 10.0 .4 25.0 31 275 .5 0 38.0 2 .6 53.0 .7 59.0 PIPE 3.0 108. .8 .0075 55.0 .0 5.0 .0 55.0 .013 3.00 0 290 29 3 3 .0 1. .0010 .0 .0 .001 10.00 .1 TIME 1N HRS VS INFLOW IN CFS .0 .0 .2 3.1 7.0 .0 29 18 0 5 PIPE 1.0 500. .0050 .0 .0 .013 1.00 0 ' OVERFLOW 20.0 500. .0050 .5 .5 .016 5.00 33 21 0 1 CHANNEL .0 700. .0080 50.0 .0 .016 1.50 0 2 116 12 2 PIPE .1 77. .0070 .0 .0 .013 .10 0 RESERVOIR .0 STORAGE IN .0 ACRE-FEET VS SPILLWAY OUTFLOW .0 2.3 .0 16.1 .1 51.3 .6 86.2 2.4 115.7 6.2 144.7 12.1 169.8 19.6 193.7 28.6 214.8 33.6 224.4 38.7 233.1 166 167 3 2 PIPE .1 96. .0060 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.6 24.0 3.4 26.4 ' 167 169 0 1 CHANNEL 4.0 260. .0021 2.0 2.0 .035 4.00 0 168 169 3 2 PIPE .1 10. .0010 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 170 .0 0 .0 2 .1 .9 .4 1.4 PIPE 2.3 40. .0070 .0 .0 .013 2.27 0 '169 170 174 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 4.00 0 171 174 3 2 PIPE .1 10. .0038 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.0 4.0 2.0 4.3 ' 172 173 3 2 PIPE .1 120. .0033 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 6.5 5.5 8.0 6.0 173 175 0 1 CHANNEL .0 1200. 0050 4.0 4.0 .035 1.10 0 175 0 2 PIPE 2.3 75. .0211 .0 .0 .013 2.25 0 '174 175 1T7 0 2 PIPE 2.5 853. .0123 .0 .0 .013 2.50 0 176 177 5 2 PIPE .1 315. .0020 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.1 .2 1.7 .8 2.1 1.8 2.6 ' 177 341 0 2 PIPE 3.0 480. .0100 .0 .0 .013 3.00 0 178 177 11 2 PIPE .1 1310. .0033 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .6 2.1 1.3 4.1 1.9 5.4 2.6 6.5 2.8 6.7 .0 3.0 .0 12.3 3.4 13.4 4.1 15.5 4.7 16.8 4.9 17.3 320 321 0 1 CHANNEL 5.0 1350. .0050 4.0 4.0 .035 4.00 0 321 324 8 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .3 2.6 .8 4.3 1.5 5.5 2.5 6.4 3.9 7.3 5.4 8.0 322 323 3 2 PIPE .1 10. .0100 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.9 11.0 4.0 11.3 324 0 1 CHANNEL .0 1500. .0142 50.0 .0 .016 1.50 0 '323 324 331 0 2 PIPE 3.0 36. .0222 .0 .0 .013 3.00 0 325 326 0 1 CHANNEL 4.0 420. .0050 4.0 4.0 .035 3.00 0 326 327 0 2 PIPE 3.5 214. .0168 .0 .0 .013 3.50 0 327 329 0 1 CHANNEL 4.0 750. .0050 4.0 4.0 .035 3.00 0 ' 328 329 0 5 PIPE 1.8 101. .0149 .0 .0 .013 1.75 0 OVERFLOW .0 101. .0149 133.0 44.0 .016 5.00 329 180 0 1 CHANNEL 5.0 240. .0050 4.0 4.0 .035 4.00 0 179 324 0 5 PIPE 1.5 80. .0110 .0 .0 .013 1.50 0 OVERFLOW .0 80. .0110 167.0 167.0 .016 5.00 331 325 0 2 PIPE 3.0 30. .0267 .0 .0 .013 3.00 0 180 341 8 2 PIPE .1 20. .0040 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .4 4.0 1.0 9.6 1.6 18.0 2.3 28.4 3.0 37.2 3.9 45.6 4.7 52.4 341 4 0 2 PIPE 5.2 120. .0040 .0 .0 .013 5.20 0 91 93 0 1 CHANNEL .0 1325. .0150 4.0 4.0 .060 5.00 0 ' 93 94 10 2 PIPE .1 1. .0050 .0 .0 .013 10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .5 .0 1.0 .0 1.6 1.9 2.4 5.4 '3.3 94 357 0 7.7 1 4.3 14.0 5.4 20.7 CHANNEL .0 1000. 6.5 .0027 93.9 3.0 3.0 .035 5.00 0 95 93 0 3 .0 1. .0010 .0 .0 .001 10.00 0. 301 91 2 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 3.3 15.1 ' 303 357 2 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 6.3 25.0 '357 358 358 359 0 0 1 2 CHANNEL 16.0 10, PIPE 9.4 103. 0050 .0050 4.0 .0 4.0 .0 .045 .013 4.00 9.44 0 0 359 360 0 1 CHANNEL 16.0 950. .0050 4.0 4.0 .045 4.00 0 360 361 0 2 PIPE 9.4 46. .0050 .0 .0 .013 9.44 0 361 362 0 1 CHANNEL 16.0 619. .0050 4.0 4.0 .045 4.00 0 363 0 1 CHANNEL 16.0 215. .0050 4.0 4.0 .045 4.00 0 '362 363 364 0 1 CHANNEL 16.0 415. .0050 4.0 4.D .045 4.00 0 364 366 '• 0 1 CHANNEL 16.0 90. .0050 4.0 4.0 .045 4.00 0 365 366 0 1 CHANNEL .0 1125. .0045 4.0 4.0 .035 2.30 0 367 0 1 CHANNEL 16.0 377. 0010 4.0 4.0 .045 4.00 0 '366 38 373 0 1 CHANNEL .0 1080. .0050 4.0 4.0 .035 3.50 0 39 38 0 1 CHANNEL .0 2160. OD50 4.0 4.0 .035 3.50 0 370 361 9 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .0 .8 .2 1.1 .4 1.4 .6 3.5 ' .7 3.7 .8 3.9 1.0 4.1 371 362 7 2 PIPE .1 1. .0015 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .1 1.2 .2 1.4 .3 1.4 .4 1.6 .6 1.8 ' 372 363 6 2 PIPE .1 1. .0020 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 10.0 .4 22.4 .7 33.3 .9 37.9 81.2 50.5 373 364 16 2 PIPE .1 1. OD42 .0 .0 .013 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .5 .0 1.6 .0 3.6 6.4 6.3 16.8 6.9 18.0 7.6 18.8 8.2 19.6 8.9 20.8 9.5 21.6 9.9 31.5 10.3 49.4 10.7 72.6 11.1 99.7 11.5 130.9 374 38 13 2 PIPE .1 1. OD40 .0 .0 .013 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 ._ .0 .0. .0 .1 .0 .2 .0 .4 1.1 .5 2.1 .5 2.8 .7 3.9 .8 4.8 1.1 5.6 1.3 6.3 1.5 6.9 7.3 '1.7 35 102 0 1 CHANNEL 1.0 1250. .0100 50.0 50.0 .045 5.00 0 32 102 0 1 CHANNEL 1.0 3300. .0060 75.0 1.5 .045 5.00 0 367 368 0 4 CHANNEL 5.0 950. .0070 1.5 2.8 .D45 5.00 0 OVERFLOW 31.0 950. .0070 50.0 50.0 .045 10.00 368 102 0 4 CHANNEL 5.0 1960. .0100 3.0 3.0 .045 5.00 0 ' OVERFLOW 29.0 1960. .0100 25.0 100.0 .045 10.00 201 202 0 3 .1 1. .0010 .0 .0 .001 10.00 0 202 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 203 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 209 210 0 3 .1 1. .0010 .0 .0 .001 10.00 0 210 309 0 3 .1 1. .0010 .0 .0 .001 10.0D 0 309 140 14 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .6 .5 1.1 1.3 1.7 2.1 2.7 3.1 3.6 4.2 ' 4.1 7.0 5.1 7.5 6.1 7.5 7.4 7.9 8.8 8.4 9.8 8.6 10.6 8.8 10.Q 9.0 215 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 315 216 5 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .5 .3 .8 .9 1.0 1.2 1.1 216 116 0 3 .1 1. .0010 .0 .0 .001 10.00 0 116 140 0 1 CHANNEL 10.0 1650. .0030 4.0 4.0 .035 5.00 0 140 357 0 1 CHANNEL 10.0 70D. .0030 4.0 4.0 .035 5.00 0 219 224 0 3 .1 1. .0010 .0 .0 .001 MOO 0 224 218 0 3 .1 1. .0010 .0 .0 .001 10.00 0 218 124 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .1 4.0 .2 6.0 .5 8.0 1.0 10.0 1.6 12.0 2.5 14.0 3.4 16.0 124 226 0 2 PIPE 3.0 825. .0080 .0 .0 .011 5.00 0 226 217 0 3 .1 1. .0010 .0 .0 .001 10.00 0 ' 217 357 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 4.0 .1 6.0 .2 8.0 .5 10.0 .7 12.0 ' 1.2 14.0 1.7 16.0 330 357 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.0 .3 2.0 .7 3.0 1.1 4.0 1.9 5.0 2.8 6.0 ' TOTAL NUMBER OF GUTTERS/PIPES, 116 'McCLELLANDS BASIN REGIONAL SWMM MODEL (UPDATED W/ ROUTING CORRECTIONS) 100-YEAR EVENT RBD, INC., ENGR. CONS. (dkt) 03 APR 96 FILE: OAK-100 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 2 50 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 472.1 ' 4 6 15 341 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 219.3 0 262.6 7 24 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 34.4 8 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 57.1 9 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0. 0 0 0 13.1 10 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 13.2 ' 11 340 0 0 0 0 0 0 0 0 0 110 320 0 0 0 0 0 0 0 0 11.7 12 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 17.8 13 0 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0 0 0 0 0 24.7 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 4.0 18 23 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 19 0 0 0 0 0 0 0 0 0 0 190 0 0 0 0 0 0 0 0 0 1.4 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 31.3 21 33 0 0 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 13.1 ' 22 12 16 220 25 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43.8 23 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 24 0 0 0 0 0 0 0 0 0 0 240 0 0 0 0 0 0 0 0 0 5.0 25 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 ' 26 260 41 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20.4 27 270 271 275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.0 28 0 0 0 0 0 0 0 0 0 0 280 0 0 0 0 0 0 0 0 0 6.9 29 290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 31 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 ' 32 0 0 0 0 0 0 0 0 0 0 222 0 0 0 0 0 0 0 0 0 19.3 33 0 0 0. 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0. 0 0 5.6 35 0 0 0 0 0 0 0 0 0 0 225 0 0 0 0 0 0 0 0 0 65.6 36 0 0 0 0 0 0 0 0 0 0 360 0 0= 0 0 0 0 0 0 0 2.4 38 39 374 0 0 0 0 0 0 0 0 0 0 0 _0 0- 0 0 0 0 0 113.4 ' 39 0 0 0 0 0 0 0 0 0 0 316 0 0 0 0 0 0 0 0 0 99.0 41 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.0 42 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20.4 43 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43.8 ' 44 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13.1 50 6 8 13 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 369.3 51 9 18 19 20 44 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 102.8 91 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30.2 93 91 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77.5 ' 94 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77.5 95 0 0 0 0 0 0 0 0 0 0 302 0 0 0 0 0 0 0 0 0 47.3 116 2 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 481.0 124 218 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.9 ' 140 309 116 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 554.5 166 0 0 0 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 19.0 167 166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.0 168 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 5.8 169 167 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 170 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 171 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 7.7 172 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 32.3 173 172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.3 ' 174 170 171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.6 175 173 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.8 176 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 13.8 177 175 176 178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112.2 178 0 0 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0 0 0 0 33.6 ' 179 0 0 0 0 0 0 0 0 0 0 214 0 0 0 0 0 0 0 0 0 1.6 180 329 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 105.2 201 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8.4 ' 202 201 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 13.0 203 0 209 202 20 21 209 ' 2155 0 216 315 217 226 218 224 ' 219 0 220 0 224 219 226 .124 230 0 ' 250 0 260 0 270 0 271 0 272 0 ' 275 272 2 290 0 301 0 303 0 ' 309 210 310 '•0 315 215 320 0 321 320 ' 322 0 0 323 322 0 324 321 323 325 331 ' 326 32525 327 326 0 328 0 0 329 327 32 330 0 0 ' 331 324 0 340 0 0 341 177 180 94 303 '357 358 357 0 359 358 0 360 359 0 361 360 370 ' 362 361 371 363 362 372 364 363 373 365 0 0 366 364 365 ' 367 366 0 368 367 0 370 0 0 371 0 0 ' 372 0 0 373 38 0 374 0 0 NONCONVERGENCE IN GUTTER 'NONCONVERGENCE IN GUTTER THE FOLLOWING CONVEYANCE STABILITY PROBLEMS THAT OSCILLLATIONS DURING THE 2 19 27 29 31 '124 166 167 168 169 177 178 179 180 217 301 303 309 315 321 329 330 331 341 357 ' 366 370 371 372 373 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 179 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 140 217 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DURING TIME STEP 26 AT DURING TIME STEP 28 AT ELEMENTS HAVE NUMERICAL LEAD TO HYDRAULIC SIMULATION. 36 41 42 43 93 171 172 174 175 176 218 250 271 272 275 322 324 325 326 .328 358 360 362 363 364 374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CONVEYANCE CONVEYANCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ELEMENT 271 ELEMENT 271 3 0 0 0 0 0 0 0 0 0 5.7 4 5 7 9 0 0 0 0 0 0 45.0 6 8 10 0 0 0 0 0 0 0 67.4 15 0 0 0 0 0 0 0 0 0 7.1 16 0 0 0 0 0 0 0 0 0 8.9 0 0 0 0 0 0 0 0 0 0 32.8 0 0 0 0 0 0 0 0 0 0 25.9 20 21 22 0 0 0 0 0 0 0 20.3 0 0 0 0 0 0 0 0 0 0 .0 23 24 0 0 0 0 0 0 0 0 25.9 25 26 0 0 0 0 0 0 0 0 32.8 0 0 0 0 0 0 0 0 0 0 .0 250 0 0 0 0 0 0 0 0 0 1.6 0 0 0 0 0 0 0 0 0 0 .0 270 0 0 0 0 0 0 0 0 0 3.3 271 0 0 0 0 0 0 0 0 0 6.3 272 0 0 0 0 0 0 0 0 0 1.5 0 0 0 0 0 0 0 0 0 0 8.4 0 0 0 0 0 0 0 0 0 0 .0 301 0 0 0 0 0 0 0 0 0 30.2 303 0 0 0 0 0 0 0 0 0 50.0 0 0 0 0 0 0 0 0 0 0 67.4 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 7.1 201 0 0 0 0 0 0 0 0 0 14.8 209 0 0 0 0 0 0 0 0 0 38.1 202 0 0 0 0 0 0 0 0 0 21.5 0 0 0 0 0 0 0 0 0 0 21.5 165 0 0 0 0 0 0 0 0 0 71.6 211 0 0 0 0 0 0 0 0 0 83.2 0 0 0 0 0 0 0 0 0 0 83.2 216 0 0 0 0 0 0 0 0 0 84.1 212 0 0 0 0 0 0 0 0 0 4.2' 0 0 0 0 0 0 0 0 0 0 88.3 30 0 0 0 0 0 0 0 0 0 11.7 215 0 0 0 0 0 0 0 0 0 72.3 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 217.4 41 0 0 0 0 0 0 0 0 0 730.0 0 0 0 0 0 0 0 0 0 0 730.0 307 0 0 0 0 0 0 0 0 0 735.4 0 0 0 0 0 0 0 0 0 0 735.4 309 0 0 0 00 0 0 0 0 744.0 0 0 0 0 0 0 0 0 0 0 746.8 312 0 0 0 0 0 0 0 0 0 757.6 0 0 0 0 0 0 0 0 0, 0 962.2 305 0 0 0 0 0 0 0 0 0 78.5 313 0 0 0 0 0 0 0 0 0 1041.6 217 218 0 -O 0 0 0 0 0 0 1077.4 223 224 0 0 0 0 0 0 0 0 1114.2 308 0 0 0 0 0 0 '' 0 0 0 7.0 311 0 0 0 0 0 0 0 0 0 2.8 306 0 0 0 0 0 0 0 0 0 8.7 314 0 0 0 0 0 0 0 0 0 204.5 315 0 0 0 0 0 0 0 0 0 14.4 MCCLELLANDS BASIN REGIONAL SWMM MODEL (UPDATED W/ ROUTING CORRECTIONS) '100-YEAR EVENT RBD, INC., ENGR. CONS. (dkt) 03 APR 96 FILE: OAK-100 '*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS **' CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) ' 2 219.8 .1 31.2 2 25. I 1 0 1 1 1 4 103.6 2.8 6 163.5 3.5 7 111.3 .9 8 142.7 3.3 9 9.2 .5 10 35.9 .7 11 12.0 .4 12 82.5 .9 13 39.3 .7 15 5.8 .4 16 12.4 .3 18 9.6 .4 19 9.6 .2 20 99.3 2.6 21 68.4 .9 22 147.2 2.9 23 6.8 .4 24 27.5 .6 25 .3 .2 26 86.9 4.3 27 76.4 .1 2.3 28 9.8 .4 29 2.9 1.0 31 58.5 2.5 32 4.6 .4 33 33.4 .6 35 37.9 .7 36 25.5 1.5 38 72.7 2.4 39 66.7 2.3 41 77.6 3.1 42 86.9 2.5 43 147.0 .1 .0 44 59.3 1.4 50 359.4 2.4 51 317.4 2.3 91 15.0 1.3 93 35.1 .1 5.6 94 34.4 2.2 95 206.6 (DIRECT FLOW) 102 524.6 (DIRECT FLOW) 116 221.0 2.9 124 15.9 1.0 140 230.2 3.0 166 24.7 .1 2.1 167 24.7 1.7 168 1.8 .1 .8 169 26.4 1.9 170 26.4 1.7 171 4.0 .1 1.1 172 5.0 .1 5.9 173 5.0 .9 174 30.4 1.4 175 34.6 1.6 176 2.7 .1 2.1 177 54.1 2.0 178. 16.7 .1 4.7 179 16.8 1.6 180 47.5 .1 4.1 201 47.7 (DIRECT FLOW) 202 88.6 (DIRECT FLOW) 203 35.0 (DIRECT FLOW) 209 285.2 (DIRECT FLOW) 210. 439.5 (DIRECT FLOW) 215 28.5 (DIRECT FLOW) 216 5.9 (DIRECT FLOW) 217 15.0 .1 1.4 218 15.9 .1 3.4 219 140.4 (DIRECT FLOW) 220 12.4 (DIRECT FLOW) 224 181.7 (DIRECT FLOW) 226 65.0 (DIRECT FLOW) 230 8.0 (DIRECT FLOW) 250 .3 .1 .3 260 11.7 (DIRECT FLOW) 270 23.8 (DIRECT FLOW) 271 43.9 2.6 272 .8 .1 .2 275 65.6 2.2 290 3.5 (DIRECT FLOW) 301 15.1 .1 3.2 1 20. 303 24.8 .1 6.3 1 20. 309 9.1 .1 11.0 2 0. ' 310 58.3 (DIRECT FLOW) 0 40. 315 1.1 .1 .9 2 0. 320 22.0 1.0 0 40. 321 7.0 .1 3.4 2 30. 322 11.1 .1 2.2 1 25. 323 11.1 .4. 1 30. 324 58.9 1.7 0 35. 325 117.0 2.4 0 35. 326 114.0 2.5 0 35. 327 115.4 2.4 0 40. 328 33.0 2.0 0 35. 329 139.1 2.5 0 40. 330 5.0 .1 1.8 1 15. ' 331 66.6 1.7 0 35. 340 2.1 (DIRECT FLOW) 0 15. 341 101.2 2.6 1 20. 357 302.4 2.9 1 45. 358 302.6 3.6 1 50. 359 302.7 2.9 1 50. 360 302,:7 3.6 1 50. 361 306.5 2.9 1 55. 362 307.9 3.0 1 55. 363 310.0 3.0 1 55. ' 364 410.5 3.4 1 25. 365 47.8 2.1 0 55. 366 449.2 3.6 1 20. ' 367 368 468.5 488.9 5.2 4.4 1 1 25. 25. 370 3.9 .1 .8 1 10. 371 1.4 .1 .3 1 15. 372 16.3 .1 .3 0 45. ' 373 131.1 .1 11.5 1 15. 374 7.2 .1 1.7 1 25. 1 H EROSION CONTROL CALCULATIONS 61 INC. ' Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 ' 970/482-5922 FAX:970/482-6368 November 3, 1995 ' Mr. Basil Harridan City of Fort Collins ' Utility Services Stormwater 235 Matthews Fort Collins, CO 80522 ' RE:: The Hamlet at Miramont, P.U.D. Erosion Control Cost Estimate Dear Basil: ' This portion of the report is to satisfy the City of Fort Collins requirements for an erosion control security deposit for the Harmony Market P.U.D., Eleventh Filing. The City of Fort Collins Current Cost Factors will be used in this estimate. ' There will be approximately 11.00 acres disturbed within this project. Using the city revegetation criteria of $500.00 per acre for sites greater than 10 acres, and a 150% ' contingency, the total obligation of KEM Homes, Inc. for a security deposit would be: (11.00) x ($500.00 per acre) x (150% contingency) = $8250.50 A cost breakdown of the erosion control measures that will need to be installed is listed below: 1 [1 1 Temp seed & Mulch (11.00 ac. @ $500 per acre) = $ 5500 Straw Bale check dams (2 @ $150 apiece) = $ 300 1588 L.F. of Silt Fence (@ $3.00/L.F.) = $ 4704 Inlet Filters (4 @ $100 apiece) = 400 TOTAL x 150% CONTINGENCY 62 = $16356 1 Denver303/458-5526 Therefore, the larger amount, or the amount of security deposit obligation should be in the amount of $16356.00. Please call with any questions regarding this estimate. Respectfully, RBD Inc., Engin ring Consultants 4d� P bot Prineer 63 This page outlines the rainfall performance standard evaluation ' Project: The Hamlet at Miramont For: KEM Homes tProject No: 567-006 DURING CONSTRUCTION: DEVELOPED ERODIBILITY Asb Lsb SUBBASIN ZONE (ac) (feet ' 1 MODERATE 1.31 400 2 MODERATE 0.84 550 3 MODERATE 2.51 450 ' 4 MODERATE 2.11 500 5 MODERATE 1.28 350 6 MODERATE 2.24 750 7 MODERATE 0.09 100 ' 8 MODERATE 0.21 125 9 MODERATE 0.26 150 11 MODERATE 0.29 120 ' 13 MODERATE 0.93 900 12.07 NET AFTER CONSTRUCTION: value is the "during construction" value divided by 0.85 'This It's value is : 94.47% 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.8 PEC 22-Dec-95 STANDARD FORM A 524.44 1.90 80.30 L3 ' This page calculates the effectiveness of the erosion control plan. PEC 22-Dec-95 Project: The Hamlet at Mlramont STANDARD FORM B For: KEM Homes Project No: 567-006 EROSION C-Factor P-Factor Comments ' CONTROL Value Value METHOD Contour Furrowed Surface 1.00 0.50 To be used during interim Temporary Vegetation 0.45 1.00 Parking lot, Building Straw Mulch 0.06 1.00 Parking lot, Building Fence 1.00 0.50 Perimeter of Parking 'Siltation Asphalt/Concrete Pavement 0.01 1.00 Parking lot, Building �J u [J 11 MAJOR PS SUB- AREA BASIN % BASIN ac DURING CONSTRUCTION AFTER CONSTRUCTION 1 1.31 Foothills 81.50% EFFECTIVE'C': 0.03 0.01 Disturbed- 1.31 EFFECTIVE'P': 1.00 1.00 EFFECTIVENESS: 97.30% 99.00% 2 0.84 0.38 EFFECTIVE'C': 0.02 0.01 Disturbed- 0.46 EFFECTIVE'P': 0.68 1.00 EFFECTIVENESS: 98.68% 99.00% 3 2.51 EFFECTIVE'C': 0.03 0.01 Disturbed- 2.51 EFFECTIVE'P': 0.25 1.00 EFFECTIVENESS: 99.33% 99.00% 4 2.11 EFFECTIVE'C': 0.03 0.01 Disturbed- 2.11 EFFECTIVE'P': 0.25 1.00 EFFECTIVENESS: 99.33% 99.00% 5 1.28 EFFECTIVE'C': 0.03 0.01 Disturbed- 1.28 EFFECTIVE'P': 1.00 1.00 EFFECTIVENESS: 97.30% 99.00% 6 2.24 EFFECTIVE'C': 0.03 0.01 Disturbed- 2.24 EFFECTIVE'P': 0.50 1.00 EFFECTIVENESS: 98.65% 99.00% 1 1 1 1 1 1 7 0.09 EFFECTIVE'C' : 0.03 0.01 Disturbed- 0.09 EFFECTIVE'P': 0.50 1.00 EFFECTIVENESS: 98.65% 99.00% 8 0.21 EFFECTIVE'C' : 0.03 0.01 Disturbed- 0.21 EFFECTIVE'P': 0.50 1.00 EFFECTIVENESS: 98.65% 99.00% 9 0.26 EFFECTIVE'C' : 0.03 0.01 Disturbed- 0.26 EFFECTIVE'P': 0.50 1.00 EFFECTIVENESS: 98.65% 99.00% 11 0.29 EFFECTIVE 'C' : 0.03 0.01 Disturbed- 0.29 EFFECTIVE'P': 0.50 1.00 EFFECTIVENESS: 98.65% 99.00% 13 0.93 0.7 EFFECTIVE 'C' : 0.03 0.04 Disturbed- 0.23 EFFECTIVE'P': 1.00 1.00 EFFECTIVENESS: 96.60% 95.96% TOTAL 12.07 98.46% 98.77% Since 98.46% > 80.40%, proposed plan is OK, during construction. Since 98.77% > 94.59%, proposed plan is OK, after construction. 1 bb O mmOOO O 44 Ll InM L7 qqqqq 1 O . Ct0)mCt000.000 . . . 0 . . . . . . . d' d' d'd' 1fl m M LO M n v g q q q q q 0 q q co - O q Cl o Gl Cl G1 Cl Gl n o Cl o O O O 1 O V'd'd•d'd'd'd't7d'd'•Q'd'Inlnul M g q q q q q q q q q q q q q q 1 O O h co q coCl Cl C1 Cl m 0 0) mC1 C, Cl m C1 m C1 m. . . . . . . . . . . . . d' d' d' •d' d' t7 d' d' d' d' <7 aT �" 'C d' d' d' d' d' d' N g q q q q q q q q q q q q q q q q q q q . O 0Md'm0t DtDtDhr•hhrhrrhhl-qqqqqq ................... O 1 o r-i ggqqqqqqqqqqqfAqqqqqqqqqqqq O gN MvIn In In tD tD to tD tO%D rh r h h h r r h h CO co CO ' O . . . . . . a .0 rn Mvwd vvcvwvvvd vv�r� car cvvvv�d 1 coggqcoCC) qqqqqCo. ggqqqqqqqqqcococo O %D0NMd'd'Inlnlnlnt000QkD%DtD0%D%Dhhhhhh . . . . . . . . . . . . . . . . . . . . . 1 N Z co M <T gqqqcomd' d' d' d' d' d' d' d' 'c!' d' aT �" d' d' d' d' •c7 d' d' d' •ct' d' d' gM.mwwwm0qqqqq'co qqqqqco H a O v m rf N M M v v V. • Y In In N m In to In In to tD lD 10 lO 0 w r- .... O h ...... .... .... . MMd d d t Yd 7c"d d d t o v<rtr �rvvvvv<r<r U g q q q q q q q q q to g q q q q q q q q q q q q q q 1 O OtDgOri r-INNMMMMV"C d'd'd'd'd'd'Ill 111 In In tD tD . . . . . . . . . . . . . . . . . 1 G4 .. o g q q q q q q q q q q q q q q q q q q q q q q q q q In N u-) r- co mi N N N N v O O rt H r M M M M M v V' d' V' O dp .N . . . . . . .. . . . . . . . . . CO P4 In N M M M M rl d' d' d' d' d' V' V' d' d' d' d' d' d' d' •r1' d' d' d' d' d' g q q q q q q q q q q q q q q q q q q q q q q q q q W to W' 1 rigriMd'ulUl�DiDt�t�t�gggqqqmC�rnOOOOO. 0Q Otn 0 a V' NNMMMMMMMM c4 M r4 M M M M M M M M v d'-Ir d'd' E-1 to g co q q q q q q q q co q q co q q co co q q q q q q q q. m O lD In 1 . , q O rf N M V' d' In In In %D tD l0 t0 tD h h h h q q q O Cl . . . . .MMMMMMM - f11 'R' V4 mrl M M MM M rI r4 c4 M co CIO co co co co co co co coco co co g q q q q q q q q q q q q .-In=- rl H LO h CO O O ri N N M M Md'%t -W V' V' In In In tD tD 0 h r- M -• . . . . . . . . . . . . . . . y ri N N N N M M M M M M M M M M M M M M M M M M M M M� CO CO CO CO q CO q q q q q q q co q q q q .qq q q q q q q. O-. MNtD co ClO ri N N M M M d'd' d' V' of d' In In In Into tD tD tO �O . . . . . . . . . . ." . . . . . • . . . . . .' . 1 LL' ... f?• 0ri r-I ri r-{ N N N N N N N N N N N N N N N N N N N NN ,.- qCO CO CO qcO COggqqqqqqqqqqqqqqqqq - ll'1 1n N 01NMd'ln tOhhhggqOl Ol Ot OI Qt'O1000000 N ... 01OOr4144rl4144 ri44ri44r{r 44cr NNNNN h co co co co co co .q co co coco coco co co co co q co q co co co co q k. " .Z O d'In OMInto q q Gl 000 ri ri ri ri N N N N M M M M MM N qGl 0000 ri rI ri ri ri H H r♦ H H H H H r•i ri riH 1 r-tl. q CO coo000 q q q q q q q q C3 co g q q q q q q q c0 q q Ul q N q ri V In h h *c'tl C1 ON 0 0 rq ri rl r4 ri N N N M M M M M 1 - r-I tDq c O h h h C1011C Of CI CtMO0 C; c;C; 0000000 h r- h r- COh h hth co CO CO CO CO CO CO CO CO q q q q q O %DriO-V'h ClO ri NMMd'•.;r m in In to tD q tD lD h h tO to tD ri • . . . . . . V'tDh`hhhggqqqqq gggqqqqqqcoqqq 1 r, N r- t- r r 1` t- r l-, h h r r h r l- h h r, r In Gl0 d'iftDhggr(,I-totDwin V'd'MM NNG)W V'r-{Cl%D O . ..... . . . . . • . . . . . . . . . . . O N N* N N N N N N N N N N N N N N N N N ri r-I ri ri O O h h hI h h h h h r h h h h r h h h h h h h h h h h h OUEi wWw 1 MARCH 1991 00000000000000000000000000 00000000000000000000000000 ri NM V' In tD h q M O H N M•P In tD r W 000 OIII O M0 H H r•i H H H H H H H N N m m V'V'In 8-4 DESIGN CRITERIA b-7 k ' Table 8B C-Factors and P-Factors for Evaluating EFF Values. Treatment C-Factor P-Factor BARE SOIL Packed and smooth................................................................ 1.00 1.00 Freshly disked........................................................................ 1.00 0.90 ' Rough irregular surface........................................................... 1.00 0.90 SEDIMENT BASINfTRAP................................................................. 1.00 0.50„i ' STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG ........................ SILT FENCE BARRIER..................................................................... 1.00 1.00 0.80 0.50 ASPHALT/CONCRETE PAVEMENT ................................................... 0.01 1.00 ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A 1.00 ' SOD GRASS................................................................................. 0.01 1.00 TEMPORARY VEGETATION/COVER CROPS .................................... 0.45121 1.00 ' HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10"' 1.00 SOIL SEALANT....................................................................0.01-0.60"' 1.00 ' EROSION CONTROL MATS/BLANKETS............................................ 0.10 1.00 GRAVEL MULCH ' Mulch shall consist of gravel having a diameter of approximately 1 /4" to 1 1 /2" and applied at a rate of at least 135 tons/acre.............. 0.05 1.00 HAY OR STRAW DRY MULCH ' After planting grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil. Slope (%) 1 to 05.............................................................................0.06 1.00 ' 6 to 10............................................................................. 0.06 1.00 11 to 15.............................................................................0.07 1.00 ' 16 to 20.............................................................................0.11 21 to 25............................................................................. 0.14 1.00 1.00 25 to 33.............................................................................0.17 1.00 > 33.......................................................................... 0.20 1.00 ' NOTE: Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation. (1) Must be constructed as the first step in overlot grading. ' (2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required. (3) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. ' MARCH 1991 8-6 DESIGN CRITERIA blzi-> 1 0 Li 0 1 Table 8-13 C-Factors and P-Factors for Evaluating EFF Values (continued from previous page). Treatment C-Factor P-Factor CONTOUR FURROWED SURFACE Must be maintained throughout the construction period, otherwise P-Factor = 1 .00. Maximum length refers to the down slope length. Basin Maximum Slope Length (%) (feet) 1 to 2 400..........................................................................1.00 0.60 3 to 5 300..........................................................................1.00 0.50 6 to 8 200..........................................................................1.00 0.50 9 to 12 120..........................................................................1.00 0.60 13 to 16 80..........................................................................1.00 0.70 17 to 20 60..........................................................................1.00 0.80 > 20 50.......................................................................... 1.00 0.90 TERRACING Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. Basin Slope (%) 1 to 2..................................................................................... 1.00 0.12 3 to 8..................................................................................... 1.00 0.10 9 to 12..................................................................................... 1.00 0.12 13 to 16..................................................................................... 1.00 0.14 17 to 20.....................................................................................1.00 0.16 >20..................................................................................... 1.00 0.18 NOTE: Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation. ' MARCH 1991 8-7 DESIGN CRITERIA No Text