Loading...
HomeMy WebLinkAboutDrainage Reports - 01/29/1999FINAL DRAINAGE REPORT HARMONY RIDGE P.U.D. Submitted to: CITY OF FORT COLLINS January 20, 1999 1 1 1 1 1 1 I FINAL DRAINAGE REPORT FOR HARMONY RIDGE P U D Submitted to CITY OF FORT COLLINS January 20, 1999 January 20, 1999 1 Mr Basil Hamden City of Fort Collins Stormwater Department P O Box 580 Fort Collins CO 80522 IRE Harmony Ridge PUD Project No 10-875-000 ' Dear Mr Hamden We are pleased to resubmit this Final Drainage Report for the Harmony Ridge P U D The ' report includes our evaluation of the proposed storm runoff interception and conveyance facilities detention analysis and erosion control plan It should be noted that the preliminary report was prepared and submitted to the City by Stewart & Associates Inc ' (September 18 1995) This submittal includes revisions based on the City s previous comments 1 [1 We believe this report meets the requirements for a final submittal and we look forward to your review and comment If you should have any questions please feel free to contact us Sincerely TST INC CONSULTING ENGINEERS ,2 g -Z/� Eric M Fuhrman EMF/DBL ' TST, INC. Consulting Engineers 748 Whalers Way Bu Idmg D Fort Collins CO 80525 (970) 226 0557 Metro (303) 595 9103 Fax (970) 226 0204 Email m(o@tsnne com www Mine com David B Lindsay P E 102 Inverness Terrace East Suite 105 Englewood CO 80112 0 Fax(ex 303) 792 9489 r TABLE OF CONTENTS 10 Introduction 1 1 Scope and Purpose 12 Project Location and Description 13 Previous Studies 20 Historic Conditions 30 Developed Conditions Plan 3 1 Design Criteria 32 Drainage Plan Development 32 1 Street Capacity 3 2 2 Storm Sewer Design 3 23 Inlet Analysis 324 Channel Spillway and Riprap Design 3 2 5 Detention Pond Analysis 33 Erosion Control Figures Figure 1 - Vicinity Map Tables Table 1 - Hydrologic Calculations Worksheet Table 2 - Summary of Attenuated Runoff Table 3 - Summary of Street Capacity Analysis Table 4 Summary of Storm Sewer Design Table 5 - Summary of Inlet Analysis and Design Table 6 - Summary of Riprap Design Table 7 Summary of Detention Pond Analysis and Design Technical Appendices Appendix A Rational Method Analysis Appendix B - Street Capacity Analysis Appendix C - Storm Sewer Design Appendix D - Inlet Analysis and Design Appendix E - Channel Spillway and Riprap Design Appendix F - Detention Pond Analysis Appendix G - Erosion Control Calculations Sheets Drainage & Erosion Control Plans Page 1 1 1 9 4 5 10 10 14 14 17 17 2 7&8 9 I1 13 15 16 17 0 I 1.0 Introduction ' 1 1 Scope and Purpose This report presents the results of a final drainage evaluation for the Harmony Ridge P U D A ' hydrologic analysis of the proposed development plan was completed to determine the location and magnitude of the storm runoff The hydrologic data was then used to evaluate conveyance and detention facilities based on City criteria ' 12 Proiect Location and Description ' The Harmony Ridge P U D is a proposed combination townhome residential and single family residential site This site is located in the East half of the Northwest Quarter of Section 3, T6N R69W of the 6th Principal Meridian Larimer County Colorado The site is bounded on the north ' by the future alignment of Harmony Road on the east by The Ridge P U D on the south by the Cathy Fromme Prairie and on the west by unplatted vacant land A vicinity map illustrating the project location is provided in Figure 1 ' The Harmony Ridge P U D consists of approximately 31 4 acres Approximately 22 3 acres is proposed for townhome units and the remaining 9 1 acres is proposed for low -density single family lots The development will consist of 22 building pads for townhomes with garages and 15 single-family lots The townhomes will be two story buildings with walkout basements ' 13 Previous Studies The Preliminary Drainage Report for the Harmony Ridge P U D (Stewart & Associates Inc, ' September 18 1995) was reviewed prior to the preparation of this report Portions of the `Prelimmary Drainage Study for the Overlook at Arapaho Farms P U D (RBD Inc 1996) and the McClellands-Mail Creek Master Plan were reviewed for information pertinent to this development I 1 1 1 i 11 1 1 [1 1 i 1 1 i 1 I- I i 1 FIGURE 1 NIN VICINITY MAP 2000 2 SCALE 1 = HORSETOOTH ROAD O T PROJECT LOCATION HARMONY ROAST, j Q 2 � V v V Sao I 1 2.0 I iJ Historic Conditions The site currently lies with in two major drainage basins The northern 1/5 of the site lies within Reach 2B of the McClellands/Mail Creek Basin The remaining southern portion of the site lies within the Fossil Creek Drainage Basin The site has a variety of native grasses and shrubs with some cactus in the higher areas and some small volunteer Russian Olive trees in the wetter drainageways ' Runoff from the northern end of the site sheet flows at flat to moderate slopes to the existing southern roadside ditch adjacent to the current alignment of Harmony Road The runoff is collected in the ditch and is conveyed east along Harmony Vegetation is moderately dense ' consisting mostly of dryland grasses and some cactus Rocks of moderate and small sizes are present and the topsoil appears to be underlain by gravel and bedrock ' The southern portion of the site is much steeper and has two major dramageways which discharge to the Bums Tributary in the Cathy Fromme Prairie open space The eastern most dramageway is well defined and appears to be wet to moist with well established grasses and ' some shrubs The upper end of this dramageway is the steepest and narrowest and contains scattered moderate to large size rocks on the surface with well established grasses The lower reaches of the dramageway are less steep The channel bottom width increases and is protected by an abundance of grasses The western most dramageway is also well defined and is steeper at the top than at the bottom This dramageway contains well established grasses and some scattered rocks but does not appear as moist as the other Both drainageways meander more at the bottom than at the top and exhibit signs of past bank and bed erosion that has softened and revegetated over time The bed and banks of both currently appear to be stable ' An existing irrigation lateral flows east to west along the southern property limits of the site This ditch is still in use by others and will remain in use after this development is completed It is ' suspected that the ditch may leak and is contributing moisture to the dramageways, especially the eastern most dramageway This can not be the only source of moisture though because areas upstream of the ditch also appear moist 1 3 1 1 1 3.0 Developed Conditions Plan 31 Design Criteria The drainage system presented in this report has been developed in accordance with the criteria established by the City of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual (SDDC) dated May 1984 and revised in January 1997 Where applicable, design guidelines and information were also obtained from the Denver Regional Council of Government Urban Storm Drainage Criteria Manual (USDCM) Developed condition hydrology was evaluated based on the 2-year and 100-year storm frequencies as dictated by Table 3-1 of the SDDC manual Detention of developed flows from the north end of this site is not specifically required by the McClellands Basin Master Plan but is provided by this design The southern portions of the development are within the Fossil Creek Basin in which there is no requirement for detention so historic runoff computations were not necessary for this site Because of the limited size of the subbasms on the site the Rational Method was selected to calculate runoff The Rational Method utilizes the SDDC manual equation Q = CCrIA where Q is the flow in cfs C is the runoff coefficient Cf is the storm frequency coefficient I is the rainfall intensity in inches per hour and A is the total area of the basin in acres The runoff coefficient C was calculated from Table 3-3 of the SDDC manual based on the proposed developed condition land use A composite runoff coefficient was calculated for each sub -basin based on the percentage of impervious surface (C = 0 95) and pervious surface (C = 0 20) Cr was taken from Table 3-4 of the SDDC manual and was determined to be 1 0 for the 2-year storm and 1 25 for the 100-year storm The appropriate rainfall intensity was taken from the rainfall intensity duration curve in Figure 3-1 of the SDDC manual To obtain the rainfall intensity the time of concentration had to be determined The following equation was utilized to determine the time of concentration t'=t,+tc where t, is the time of concentration in minutes and tt is the travel time in the gutter in minutes with the SDDC manual equation t, is the initial or overland flow time in minutes The initial or overland flow time was calculated 4 I 1 [1 87(1 1 - CCf)L05i/(S)033 where L is the length of overland flow in feet (limited to a maximum of 500 feet) S is the average basin slope in percent C is the composite runoff coefficient and Cf is the storm frequency coefficient The formula limits the product of CC f to 1 0 and when the product exceeds this value 1 0 is used in its place Gutter (or channel) travel times were determined by calculating the flow velocity within the conveyance element assuming a flow depth equivalent to a minor storm The travel time was then determined by dividing the gutter flow length by the velocity This procedure for computing time of concentration allows for overland flow as well as travel time for runoff collected in streets gutters channels or ditches After the peak runoff was calculated, attenuated runoff was calculated This was done by combining all contributing areas upstream of a given design point The time of concentration for the design point was taken as the greatest time of all the contributing subbasins 32 Drainage Plan Development The proposed drainage plan consists of a combination of overland flow and gutter flow The runoff will sheet flow across landscaped yards and common areas then concentrate at proposed street low points in drainageways or channels or in a detention pond Gutter flow in streets will be collected at low points via curb inlets and then conveyed to the channels or ponds via a storm sewer system Subbasins were delineated based on proposed grading Final grading and basin delineation are shown on the Final Drainage and Erosion Control Plan sheets which can be found in the back of this report As indicated previously Basin D lies within the McClelland's/Mail Creek Drainage Basin Storm drainage from the eastern portion of Basin D will be conveyed into a detention pond on the ' Harmony Ridge site It will then be discharged to the Regency Park Channel along the north side of Harmony Rd at a 2-year historic rate of 2 37 cfs The drainage from the western portion of the site (Basins D6 & D7) will drain directly onto Seneca St and then onto New Harmony Rd The drainage from the existing swales along Harmony Rd will also follow this path until construction by Overlook is completed The design of the storm sewer and detention pond is discussed in more detail later in this report The southern portion of the site lies within the study area of the Fossil Creek Basin Master 4OO (Simons &Li) Per this master plan no detention is required and we have confirmed that no detention is required within this portion of the Burns Tributary, which is tributary to Fossil Creek Although detention is not required in the southern portion of the site storm water quality is an important consideration because of the Cathy Fromme open space the site discharges to Storm runoff from Basin A will be collected at low points in the streets and routed through a series of retention ponds which will act as both water features for the site as well as water quality ponds The ponds will have an alternate potable water source that may be circulated between the ponds The design of this water source and location is to be determined with the landscape plans The outlet structure from the down stream most pond in Subbasin Al was designed to reduce flow I 1 5 ' velocities to the minimum practical value (there is nearly 65 feet of fall across this basin) so that ' the existing eastern dra►nageway could be maintained in as natural a state as possible Basin B is approximately half the size of Basin A and also discharges to the existing eastern dnangeway at two locations Runoff from this basin is collected entirely from low points in the streets and conveyed directly to the existing drainageway via storm sewers Although it was not practical to route this basin through the water feature/quality ponds we were able to design the storm sewer outlets to reduce the flow velocities to manageable levels again to provide as much protection to the existing drainageway as possible Basin C represents the western existing drainageway At this time there is only a small portion of Subbasin Cl that will be developed although it is possible that a future addition to this site could be extended into this area A water feature/quality pond is being installed in this subbasm but ' given the limited amount of development currently planned upstream this pond will serve pnmanly as a feature ' The results of the Rational Method Hydrologic Analysis can be found in Table 1 with the methodology of calculations shown in Appendix A Table 2 shows the results of the runoff attenuation described previously I�1 u 11 I� 1 6 I I II I J. C 'n n. `iD p C CEN,K KIND iNN C'. G V' G,S G N p G,p �O K. I Irvl I rvl e�ZQ2! �I I K N N N KiCY Q� n N n N V'IN P VIP N b N K JS UQUS << .-. C S C•O C OHO €, 8 O C S C C O ^I'nE - I+ O gISIS O O C CHIN C € e vpi n G C C'N O p n M.^.IH� I elN V NN gvilK G <�. (J � .�. IO N OONN OOOONN _a nn ONONNI Knnr.n €SOS €NONONOO rn rven Sp, O x -_ er,_nnN N�naN rn� rr e°3 {i =N N N N N N r N N N N N N N N- r N N r- N N N N N N N N N N. . N N N. N YI N N N N M - -- - - Z !Igo iCr <ICIn N b HI.0 �<V'I vNi .D n r r r N N N O K.O nl! Y O r N fV z 3f. OC O 1� O P O P O C O OIO C O Flr OIC C O O O O O O O O O O C 0 0 0 O C O t �^ IN p N n Mtn OIe N< NIA r- alo f O n 1� K iN._ N �n K v co _IO CIOOOO�_ n --_ _ h N NI O O CIG.G C,CG CIN :. O ff- Z G < < < O _ N mlc•^ c ;� U J eU - O C e._..0 6CL i--'� n z Kee PiPIW nl � n 'r v v, n wlv rvo m v� C— r P � Nnl Irv,o le'.r ni � � < i i i i i y c G _C5 O C;' -C i a n I I C O �� r. Nn yin rIC.n{n In NnM n NINI N Mln N nn � N N N V a= Ip''I vi N m P SIP n0 Q r-- P �p a e m m F eC'• �:1_ v^ <,t�.^. IP.� r u J I i V C OC �Oyrm �C ✓1 O m Q P N< N ;; n O N GO K n m— Q N N V' N Q M r ✓� N �p V� m N m h < e N n P P r N �p P_ P eV Vi H et N �n f7 aC n_ Q_ �'�� � m m � O r h n N 0 0 0 0 •D M m n O V b N -.O N O- n O m M O O n b ��~ N O. O eV �� /V O O O O O- •'i M eV M N n � O� O O O O �� O�- ! a.. G n n vi O O vi wi T h C O C /V eV Q a 4 ri 0 R n M M C V G y � v S}'O�e v�iln fir' eFigvoi,ro,� $ g nnnon€oc In n nn by p fV P a << G n n C N N N- N< I < D y�-N'Nnrn<O_✓��L rirPP ^nnn< -I.�� -r.iur -Nn<,N^rmm PO Z < < <!<< <I`< a < <<¢<I<�c _I_ e.��o U U u< u e ry ^ C < eF.�L CL` aim •r v I. 11 IoLI I I �_I✓.f I�.I�I, I� I l;j I I- i� r r t -1� ✓. r P� < I_ Y ,.. I I I I I✓I I I I I �� P I� �I�I� Ia �_ III I : I c .'� _I I✓ I ^10 I` rvl✓ � 101 I IV'Ii PAIN ✓i I1 N � r c C O C �� TIT �Nry I I IC IC IC I ICICIC I IC k Y = CICC C CC C ICE€I€ € €C.€ C( G Vt C GIC.I .CIO C, ClO €G,C.1 €:C.€ C € P P'r O € €'€€I€ € CI C CP ClOIO C'CI� € ✓i r e N���a .I£ � ;I N �iN c Ll r. � Ia IPPP jjiiii,i�: == _ }-' Y T1 E Yid C � N rC �C'i v V NY.rp �f ✓ N rCP P P _ __ _ R �[IF. M s�p.�N _ _ ITV INI✓IN I✓I I i 1. ���N n- n n ✓IJ N n .IN /Nv N _ _ h M h n'.7 N N M iry M _ In In ry _I✓_ /VI -- 111 _ _ _�._ _ _ _..._ _ _ _ _ _ _ _ 8.8,8€88 8 $$I88 88F888888 88I8 ( _— — . Sig�r#8I8$I€888I€8€I€$8888 I IP n lr nvl rllV r4 vrP.G<,IM1.CSV'�b I n PI e b nn n b N 8 8 b nnn N N �n s OhV b ✓r did o d e d d d dldlo o d d'e d d d d d d d d e coo did d d did dle d d d d j5i� N1 �la sPN n^AO c n d d O nP d d �V' d �re O ID e tV C C� ❑IG 1 �, FICI=. C G � I z 01,I z Io s _ I Iry Ci 1' 1ff 1 II✓ ll I I i � � III I I F` 1 I I I � e: I I 1 3 2 1 Street Capacity Street encroachment criteria for the streets was taken from Table 4-1 (minor storm) and Table 4-2 (major storm) of the SDDC Runoff from Subbasins D6 and D7 will leave the site undetained and join the flow on Harmony Rd Capacity calculations for Harmony Rd were performed to assure that this added flow did not exceed criteria All of the streets meet these requirements and will function below the allowable capacities The results of the Street Capacity Analysis can be found in Table 3 with supporting calculations presented in Appendix B 3 2 2 Storm Sewer Design Lines ST-I and ST-2 will allow for most of the runoff from the eastern portion of Basin D to be intercepted and directed to a detention facility on the Harmony Ridge site where it will be detained and discharged to the Regency Park Channel The Imes were analyzed with UDSEWER and pipes sized such that hydraulic grades remain at or below the flow line of proposed inlets so that inlet capacity is not effected An orifice plate was designed for the outlet of the detention pond (ST-1) to limit the flow to 2 37 cfs Lines ST-7 and ST-10 were also analyzed with UDSEWER The water surface at the downstream end of Line ST-7 was determined by the water surface in the downstream channel The down stream water surface for Line ST-10 was determined by the 100-yr water surface in the ' feature pond the line discharges to ' Lines ST-8 and ST-9 are simple culverts which were analyzed with HY-8 In both cases the upstream ponding head was limited to allow for approximately one foot of freeboard and the downstream fixed water surface was determined by downstream conveyance facilities Lines STA ST-5 ST-6 and ST-I I represent the downstream most discharge points from the southern portion of the site to the Cathy Fromme open space As indicated earlier the design of these outfalls was to be such that outlet velocities from each of these pipes be reduced as much as possible to reduce the impact on the exiting dramageways Because of the incredible amount of vertical relief across this site we determined that the best way to flatten out the discharge pipes would be to use drop manholes at the upstream side of the discharge pipe This would allow us to convey the runoff efficiently over the length of most of the systems and then dissipate the energy to manageable levels at the outlet pipe We ran into two problems with our analysis We intended to use a UDSEWER model but needed to determine the correct loss coefficient to use for the drop manholes We researched this but were frustrated to find that an accurate coefficient was not available It was suggested that determining such a coefficient would be an excellent topic for a post graduate thesis but that did not help our situation now We discussed this matter at length with representatives of Lidstone and Anderson Inc who are intimately familiar with this software They agreed that the idea of the drop manholes was the correct approach and in the absence of an accurate loss coefficient that we could run the model with no additional coefficient and simply let the flat slope (0 50%) of the outlet pipes dictate the outlet velocity This should produce results conservatively high but it was the only way we could get around the absence of an 10 k \vy •��-- - t�% - \22 / \ _ m �� �k - � .\. 2 y } :-� -- - - 7 ® ! � :21 §2§ \ §@° ` < � ^ e - + y � � ( \� \�\\ - b accurate coefficient When we initially set up and ran the model we began getting results that ' simply made no sense For instance when we ran the model it provided us with a recommended size for the pipe immediately upstream of the drop The pipe was very steep so the model recommended a relatively small pipe We were not happy with the velocity in this recommended pipe so we bumped it up a size and the model did not react well For some reason the model showed an increase in the HGL elevations of several feet 7 feet in one location This simply did not make sense We again consulted with L►dstone and Anderson and they are of the opinion that the model simply can not handle a drop situation where the HGL of the down stream pipe in the drop inlet is below the invert of the pipe at the upstream end What they suggested and what we did, was test each drop It could be reasoned that if the HGL of the downstream pipe is below ' the invert of the upstream pipe that the pipes are hydraulically disconnected In that case it should be possible to accurately analyze the upstream and down stream portions of the system independently UDSEWER does not function with only one pipe in the system so those reaches ' would be analyzed with HY-8 If the HY-8 analysis showed that the upstream pond►ng was less than the elevation of the invert in of the drop manhole then the HY-8 data was considered accurate The upstream portion of the system could then be analyzed with UDSEWER and the ' results of two analysis combined to get a hydraulic picture of the entire system This method worked for Lines ST-4 and ST-6 By disconnecting the upstream and down stream portions of Lines ST-5 and ST-II we created two culvert situations so both these lines were analyzed ' exclusively with HY-8 ' The results of the Storm Sewer Analysis and Design can be found in Table 4 with supporting calculations and model outputs presented in Appendix C 1 1 1 1 12 'I t 1 1 1 J A 1- TABLE 4 SUMMARY OF STORK! SEWER DESIGN LINM FROM (DOWN STREAM) TO (UPSTREAM) DESIGN FLOW Or') PIPE DIAMETER (m) PIPE MATERIAL I I I I I E>aSTINGCHAI.NEL I MH #lA I 2.�7 15 I RCP ST 1 I MH 91A MH #IB 2 17 15 RCP MH 0113 PONTDD I 2.)7 I 15 RCP I I I I I POND D I NUT 2A 730 15 RCP ST 2 I INLET 2A I INLET 213 I 620 I 15 RCP INLET 2B I DP .T3 15 I RCP I I CHAN1.'EL I MH MA I 1769 24 RCP ST- I MH #4A I 1vtH 44B 1769 15 RCP MH #413 I1qLET 4A 1769 15 RCP I I I ST 5 CHANTNTEL I M H #.*)A 56 87 36 I RCP M H #SA DPI 56 87 36 RCP I I I I I CHANNEL MH #6A I 3345 30 RCP MH #6A MH #613 3345 24 RCP ST-6 MH #6B I INLET 6A 24 14 15 I RCP MH #613 I MH #6C 931 15 RCP MH. #6C INLET 6B 931 15 RCP CHANNEL INLET 7A 4512 36 RCP ST 7 INLET 7A INLET 7B I 4371 I 30 I RCP INLET 7B DP 2 26 78 24 RCP ST 8 DP 2 DP 4 5 94 I 18 I RCP I ST 9 POND DP 7 323 15 RCP POND I MH #IOA I 1119 15 RCP ST 10 MH. #IOA I WLET IOA I 1119 15 RCP INLET IOA I INLET I OB 7 78 15 RCP I I ST 11 I CHANNEL MH #11A 2082 3000 RCP M H. #11A I DP 21 I 2082 2400 RCP I I TST, INC ' CONIULTING ENGINEERS 10/16/98 000_hydl x1s 13 3 2 3 Inlet Analysis ' All of the proposed inlets will be CDOT Type R curb inlets All of the inlets except for the two inlets at Design Point 32 (the private access from Harmony) will be in sump conditions and will intercept the 100 yr runoff A low point could not be created at design point 32 so these inlets will function on grade Both inlets will be 10 feet and our analysis shows that during the 100-yr event approximately 1 5 cfs will pass the inlets and reach Harmony Road Runoff from Subbasin D6 and D7 will leave the site and join the flow on Harmony Rd The street capacity of Harmony will accept these flows without exceeding criteria The results of the Inlet analysis and design can be found in Table 5 with supporting calculations presented in Appendix D ' 3 2 4 Channel, Spillway, and Riprap Desn! Proposed channels and spillways were designed to prevent erosion caused by storm runoff In cases where this could not be accomplished by grade control appropriate nprap was used Proposed channels were evaluated with a program which utilizes Manning s Equation to determine flow depth ' and velocity based on input design flows bed slopes channel cross section and roughness coefficients Spillways were designed as broad crested weirs and appropriate nprap was installed to prevent erosion of the embankment Most of the feature ponds in Basin A do not have outlet pipes to convey over ' flows or storm ninoff The spillways will provide this Because they will frequently be in use we are recommending that the nprap not be buried and that a fabric liner be installed under the bedding material to reduce the encroachment of weeds Riprap calculations indicate that Class 6 nprap is ' sufficient for the spillways However we are increasing that to Class 9 and seeking a variance from the criteria to leave the nprap unburied due to the frequent use of the spillways The effects of developed flows from this site on the two existing drainageways which discharge to the Bums Tributary were analyzed Our results show that the western most drainageway in Basin C will function adequately with only a pipe outlet nprap blanket for Line ST 11 The eastern most ' drainageway in Basin E will need to convey runoff from both Basin A and Basin B Although these flows are significantly higher than historic flows most of the dramageway can operate with little or no stabilization needed The upper reach of this drainageway in Subbasin E1 is the steepest and will ' require not only pipe outlet nprap for Lines ST 4 ST 5 and ST-6 but also bed stabilization Down stream in Subbasin E2 the effects are less but our analysis does indicate that during major storms the flow velocities exceed the maximums presented in Table 7 3 of the SDDC for erosion resistant soils ' Given the sensitive nature of this open space and the City s desire to disturb it as little as possible we are proposing that in lieu of nprap protection for the entire reach that rock cutoff walls be installed Our plan is to install three of these cutoff walls spaced approximately 100 feet apart The vegetation in ' this reach is very well established and will likely provide more stabilization than our analysis indicates At the very least we can show that the bed will sustain normal flows and the cutoff walls will prevent major erosion damage caused by larger storms We feel this compromise best meets the needs of the Stormwater Department while addressing the concerns of the Natural Resources Department about leaving this area as natural as possible A summary of the nprap requirements for this site can be found in Table 6 Our analysis of the channels and spillways is presented in Appendix E 14 uz`� r S Z; r NiO IOC C P CiC 71, a 'r JM Ni 1 N N C NN Z I I < C (p N P k o _ r T Y. <<'i5 `15 ` `4<z cC IUlu U U U U U U �j U U i U 41 U. Y. JJ. ILL Z N Zv.�lc Z ZZ X r i1 T 7v L Y I'LL zhN' C C z z'z <4_` z e�zzl`z 17 U I E i < rv'<I<�G �i< I <�,< $18 <l< « �r j z �.z'z,z C ZX X C __ XIz z �n <<G�pI<<I< N < <IN P Z z��.ziXz y� N yy Z z 6O C �' p�iZZ _ w < �^. < < < y�j< < < Vnj rNV rNv < S h P r �..., ,.X p X z X o z z Z p __ z X coo m0 fl�_r IPZZX= KIN Z =ZZZ _ _ z z !�F p s - f � > 33 zlL�zl��z'<:< ? S ` S5 L < 7< r c< O O CmZ OHO < a N < r <.Z G z GIG J u _ rL u hu �[ V V ✓, r < z Z z z.< zlC t~n z Z �. z. z.. C< rlr IG17i l l UI -I 11 1 [l d 1 ��I J 11 3 2 5 Detention Pond Analysis Detention of developed flows from this site was necessary to discharge to the Regency Park Channel As stated in the preliminary drainage report for this site the discharge was limited to the 2-year historic flow of 2 37 cfs With an inflow of approximately 10 cfs from subbasms DI-D5, the pond will peak in about 30 minutes in a 100-yr event Our mass -balance design of the detention pond indicates that 0 20 Ac-ft of active capacity is required The 100-yr pond►ng elevation was determined by the flowlme elevation of the inlets on ST-2, less one foot of freeboard An onfice plate was designed for the outlet pipe to limit the release rate to the 2-year historic flow Table 7 presents the results of the mass -balance computations while supporting calculations demonstrating the pond s total capacity can be found in Appendix F 33 Erosion Control Because the Cathy Fromme open space is down stream from the majority of the site sediment control will be critical Most of the area from this site contributing runoff to the open space will either be undisturbed (Basin C) or will pass through a series of water feature/quality ponds that will act as sediment traps (Basin A) Sediments from other areas on the site will be trapped at inlet filters or pond outlet pipe filters in perimeter silt fence or by straw bale check dams located in the channels and dramageways A stilling basin/sediment trap is also being installed at DP 18 for additional silt control Long term erosion protection will include reseeding of all disturbed areas channel bed stabilization and pipe outlet riprap The onsite measures and the natural processes present in the existing dramageways should ensure no detrimental effects to water quality in the Burns Tributary Erosion control calculations and the erosion control cost estimate can be found in Appendix G 17 .. Z i � L c C c C v� rc r� y } :n -< •� r r r r r r r r r r r r r =A-- a r L: Lzr - �n 4 a`ll z c IN I 1 APPENDIX A RA TIONAL METHOD ANAL YSIS d Ll 1 1 F! r J II r- IJ � c G^ r '.„: C•c GGC P�" N�C IC C:N' ICIc c{ y'K CI •N � C r. ''N INN �;G C �I P�✓. a P IN N �i c Y�� <� s. �0 a � - N� r'G•G 1� - PI r.'�'' P V N _<i1��K N a b11� G - Cc InN C- nIVIN I I v.N- ^' I I i Z jG cl � GC G C C C GOO I �if� 'N O• C'C p el�'� � � _ � C _ � r_'1-_.P7F! IY,IG I J.1.1L- JJ0-N'.r. �j� . GIOL:2 n r.Y -,< n N eGcn n�G N.n n G G lo �'C l„. G n NI_ 0„ N G nn o Ni� r -,-- > 7-it N+.N NiN N,Y1 N IN y� N N fV N N N N M N N NIN VI M N n N M YV NIN N fY N N N NIN n N N N N N N N N N N N N N N N n W N N N N N N N N N N N N gs a S,g € '€8g€$88$ €€'S lk l ZL <Iar C1cil! rr P NI r r CnIr <Y+ CK eNICN' � CIC I I IICrIjr IIrC CI I InN I Ir IGa I_i<PIIra.i<P III��iII_I ill�Il �I IIII IIl�IItlII �_IN rI .. - c I!'NII NIN "'Ir Ia iu „ 7 a i NI .IN s Ord n.'�I - CGGG I GCIC CICI - Ir CICIGICIC iC ie C IC N i I 1 1 1 i 1 1 1 1 1 NI K Kr < N K r � I CIS I I�NIN - rV air A, r I t��r�P �'�iA H a n a V! N C-- C'✓'.K -n P N G ^1 O Ir ' IPI r,ry ! r I .I � I !,P IvI r I N PI'c Ic p, P A In P- � P�`'P I`� ciC r G OIrI I INIG OIC C C N no nir. nl-G C IC - C O E`G CiC IC III II IIIII Iil III _,'I CICIR � S cl r'r r r� rIr rIr r rIr �' ✓�✓+ r r r�rl r n rn r Lc Lc Z I�Ir'r Ir it �G �G �C I✓1GUj Is I �✓�C �O �O�O j i�� G G�G ✓ c�C�O CUCIJ CI G CIO ,I rin N n r.'n NrvIN I I y r G',n N rl Ir',- R INS! Pi.�r K,P RIP A Sr O cn IPIK'In - �r.n N ..�-`N t` CiN N'. r n..n rt:Ia h -'�� r. - < N �0! N R.N�• v i Y I I i � R �. n Ir IKO.R „ N -I! N KIKI r Nor. = N T.rRIIM nL.• SIN - N.1P N r < n n tiC v.IN - 'N T Y" NF�lr niQ E"fi Y� N.a R P O n r `��N'CO n O Nr-N r OCCCC�r� iNnNn--- CI-COOO-n C-- J - l4 S lIR n r JjRil OC 'r. r N P< P _ y�lei� ✓ a r O C O.N N !! a n! a'n nln C n N C N a N n n n N Is 3 jjr I 1O C ,. C r'. &J�s p Cl O..r ee n IO n n ;..�� r.l N IN ! �C 'H C O C:O N IN'N CiN PIa !I! Olnl C'N Ia N MS nIa n K a- == �rvlllil��✓ ���I�ii-� INI��hI il iiil I-i "- �.r.K'P 1^I�� I 1 I J 1 t F, 1 C� 1 8 _a$$ g .I8 �o c rvIry G LULr I `"e'61 mIG YPf « IV p P n S< C n s pp p p .`.« L --.nC�NCnn�PCI OOn- nCP=Inn �n �G l�� O'OGC- N N I m ry _ Z �:. I f € c s 8l 08pn8a5,a..g8 e c n 8 m 8r� n n 888'& Fi e Q€€R;Qr�o nrle Z v�i-. CT ~ C E Nry na it v.:l ✓i - + 1 �� z `_ I•i S, ° lJm N c -. Nli N N m - ✓_, - S'.: mlo ^i& a .mnlr r N E yK Y C ICI f. C�C�O C1['V V VVIP i Ti. f In W C= nnn v.In nN n N N N N n n- M -- - V - } dr:€I88888 a 888888888 Eggs ,88 8 Eggs 88888888E 888 -17 r SnRd�nrB�Se Z°Rd88 a nnnln - SRdd... 6 T�6 c.ddQ c o o co 0 o c c did elm c c c o e o did o c e c ego 0 did c o c e e 6 did e � w 3N_�h Saes 8 e= geSE88o 8=8 V 6 O O C � E p a Zv P n L 6 v LL n L < 7 = < t < IR,R L .. C t-E . � <-❑ <�31 .I� <.� mM.- O .t .ild s�.iN �LJ z r O �� -IT_._ _' - _ m _ Plc z No Text I 11 TST, INC. Consulting Engineers CLIENT JOB NO. /C- y77-GD0 PROJECT /Tc'C /. j' q�J>GF !'?.,;. ). CALCULATIONS FOR MADE BY DATE 4 /it/97 CRECKED BY DATE SWEET OF Y-7.!/JG�F (CrJ C= /A,v,pw aF=,- (F.Cc» TgLE .3'/ cf .SDoc) �i= fGVFrrcY Ccf'Fr. (Fie'cn Tycc S-/ c� Saco .=&,e Efcy .S/.w.y4si✓ .7=s�� c.v 'Tir J Lr�GSED ✓E✓FL L.%EFF%. IN Qd/GGS f?EI '� Nt^� rev .., GF e,90 /r.CJ Ft�jPF ��J r:S ' /=AEfS A //f'Lvc cF c.zS cR 435 JErt:vir..✓• </.J Scn« AS .i-11c Tf:"s2�r y -7,-45cer 3-3 '17- ' ENJ cF Tti�-S ��F.�Jiv, F� �E/ cY CL6isC/Ee%T /C'\ tY-e s/.Lc J 3 cy/A.c! S- �✓E. G✓�LAf/D ScFE ��J CCj s i. o /, //�'/✓JFe' o✓ez C� L./ hr�.��D S.Ga. Zd' 2 - Fr e �I A ay, r nz G.N• b.i7 r %�� i�/Yz�(.?9)r ._'�Z ZE��.r7)r•LFZci lr2,BS� m .�. J`9 T1z FL /e, s's r f „7. 5 y..,yd - 0, ym /•yVL ,C/% zf50V5 �`- G05CTr3.64 ' TST, INC. Consulting Engineers CLIENT PROJECT "`e��"'`�'"�'r f�j7Gf /�(:.�, CALCULATIONS FOR . MADE BY �iT >r DATE /' CNECNED BY JOB NO. GATE SOEET 'I— OF .!iz'`.•:JF D✓F+ �� � :sW �,o .F Zi .:'y C. w.'. �rF/f /nLCF L�. e 7 t, 05 e I ' ZF Ca ' r i(i3. ��.zd� _ �.G 1 -Cf t h tL G'6C1t.6, ' TST, INC. Consulting Engineers CLIENT JOB NO ' PROJECT °-�°a py +�JL F CALCULATIONS FOR MADE BY ��` 7 DATE 'r /ZA /Tt'7 CMECY.ED BY DATE SWEET 3 OF S i(z2.nJl p+ i9.0 4,-11 h / S6�- f I TST, INC. Consulting Engineers CLIENT JOSNO. PROJECT ,✓%wC /?(%/, CALCULATIONS FOR K�iNGFF MADE BY : AAr t DATE /g �7 CHECKED Br DATE SHUT _-� OF C ry;�cs/.� ✓'/iNGFF C£G�/cic .liT: �.t^> G/.J (/�L/iES Y AI ' " 7UG313/i.J f+J �✓� /n"�Pi : {r FcY✓ !v� C c �4>?:9.<) r-.?,5L!zrl1 ': 6,71 . 'IJ ��BA�,.✓ A 9: Yat' /.nP, !Foe l?c'-✓ Ini7/ Sri= PEza 1 S �s ti 4 a- 'WX /JNn, fsy. /tea" . f c ` t •✓S(4S) 'r' . 56 ( ZS) ] S '7 15r.i Ail: 7fX /,,P SSA Tfr� ,. ate-l•�s(ts)y,zt<.:s)�-.7s ' ,. �:.5<s/Ar f /t/� 75� /✓� zt� ems✓ .78 A;i,c/.L zAxzc - 3 -3 e SD Dc. GO50>:5-EA I TST, INC. Consurmg Engineers CLIENT JOB NO. l e- Js75 -GaJ PROJECT �Lr�xi I'9Lf �(j. CALCULATIONS FORNc Fc C MADE BY. �%% DATE /' ! CHECKED BY DATE SHEET OF ,T.FVs.,J Cl; 5CZ -m ;) r- �ce'�si.:= Cam' /� /b'�:v..? pZ � ?£�F•✓ SFO—sw %/' r /MP 7bijis>✓ �G'Q5J�5,.✓ C7z; 79x /.,-/ 25% pery s4SrnJ !i3 fl.% lint; y/% Pf¢✓ IF Py arFb4 P1, glow I F I-i P&I,V w4 A. - r2L(•sf)'. w(,z5)3a. $5 Sy,FrIi 51-1 7-9 7/: ­P Z97' Fk-w✓ (•9f) t-.29(•Z' _ ,'75 S�: 73'01 /MP, Z7 � Pe-z✓ W I' B- ` Z- 7F e• YS) •t • 77(,7 5)7 t GC5CT5.EA r I I I I APPENDIX B STREET CA PA CITY ANALYSIS I I I I I I I I 11 I I 1 1 1 1 1 1 1 1 1 1 1 1 LI 1 1 f� �"� •� �X �P P !c C c ¢ ✓�i P h nry mt� ry I U i II > n r I z II - �_ p pppp p p pp .Z.i SIC s >I>p x-Q J -�O> = CIz+1 p y_U,1 T • UZ I � 3% Z 3IJ C, Ii'1 N�N O e'M1 Tf N � T N eI ru 1 1 1 1 1 1 1 1 1 0 8 7 3 2 0 0 2 4 6 8 IO 12 14 SLOP OF CUTTER (%) Flou e 4 2 REDUCTION F^C 7 OR FOR ALLOWABLE GU 77ER CAPACITY Apply redUCIon factor for applicable Slope c the dheore'Ical oL"er CF-PM yto ob ain alloHable cL"er capac y (From U S Dept of Co—r-erce BL eau of Public RoaCS 1965) IA Y tq4 4 4 p_SICN CP T:=� A TST. INC. Consulting Engineers ' CLIENT PROJECT ' MADE BV CALCULATIONS FOR / c d _pt'E G l� � i CHECKED By — DATE „=EE'�_ OF J �� % .i6 � _ •�o`rt< lrEr �i:�C"a rf= C !a,r SaJ/ %��iG�S Sc43c / 6 IE s,e s{`E YE°' z z yr c�,t Jfifff ST-EE � �c[L.:".� C� (i, �.�i:✓, S�Gic y L. (/.Hz) 31). 's`Z P(/. •Z(s,S�Y.ZB� = Z:d/ =r - L � I 1 C. .E, MWTST INC Consulting Encineers /U- �7S-GCJ CLIENT LJ06 NO L —y PROJECT �"� ��"� Y '�y� f �'�' CALCULATIONS FOR `� �'�G / 1 ADE BY G'.%c :)A E CHECKED Ev DA E SEE Z 0 7 Y= !,-r` ` 6�7/ c -'Y vdEcvaz CMG 1-/ .� i�c.J�D Sty z$ �c-�L drF,ocs SCcF v a 1 6 34 I r� G "t7 1 I 1 fie 3 =�ZZ�,zr�= �JP r1 -c 7 �1 7 L`Z isS Lt— C L :5 ^itch, kz L EJ l e17 L 35' 55 C4 z - P�= ass/i4` !9 l G /b i I I I i L7 TST INC Consulunc Encinee ' CLIENT _ PROJECT MADE EY !CB NO v .0 /i "�; /c %�✓ / CALCULA IONS FOR 1 _ 3 m E C/' CH C EL EV .,LTE ET ^E z — V '-751 ►I Z6—c4 c / rOC� 061 i c 1 Itp 14 .7is/ PIC- ll,�z /�7� /GE3 , /T` L t/3 ��l( /L)� ,ZZS,/�z S Zoo YO Z c!. / _ / LJ7 ` /G m(oC ZL�Li ��c3 (S.oz)t /7/C;>', 1 ` 4�,�, .5—/ �7c� G✓ C G '' Sw� �tcicr = (�J�iF' c✓ 5 y (//7)1 `G z` z - 2y L.� cc5 E TST INC Consulting Enomee s ! p CLIENT JOB NO _ PROJECT YL"t J CALCU L IONS FOR NODE BY G � F Cx E G7 CHECKED 6Y Dx E T OF YZ 0� kl I GF, t5 1-7 1 ✓l / Z 1 1 11 S< T5T INC Consremg Enginee s CLIENT JOE NO w/x �� > PROJECT /"rt' C4LCD t.TiONS FOR 3 � DA E EHEE MADE Er DR E CNECrEO Er fGGoj !%ELc�Trt S — �LcicS >C/o r. �i✓� ��/� r (�' ✓iE✓ 'L` iIS/f�L/e—f G G/' w `7 <r/ — 5=(�✓✓/o Zl- J ✓c/ —n .✓ �/w — �:7 A - z oG �, z ��G/1✓E Y �� i� ✓r5_Y S�Cr 17ri�; rl - y-- H 9/ �t /s ✓ �= yy/8 tls L"Y 1 - I1 ,1 I I APPENDIX C STORM SEWER DESIGN LJ 1 1 1 TABLE 4 SUMMARY OF STORM SEWER DESIGN LINE FROM (DOWN STREAM) TO (UP STREAM) DESIGN FLOW (cfs) PIPE DIAMETER {in) PIPE MATERIAL I I EXISTING CHANNEL I M H PIA 237 15 I RCP ST1 MH.*lA I M H *1B I MH*lB POND D I 237 2.37 15 I 15 RCP RCP I I POND D I INTLET 2A I 7 .)0 15 I RCP ST 2 I INLET 2A I INLET 2B I INLET 2B I DP .)3 I 6 20 430 I 15 I 15 I RCP RCP ( I CHANNEL I M H *4A I 1769 24 I RCP ST-4 M H 44A I M H 44B M H *413 IN] ET 4A 1769 1769 15 15 RCP RCP i I ST 5 CHANNEL M H. *5A I M H 45A I DP 1 5687 I 5687 16 )6 I RCP RCP I CHANNn I UH MA 3345 30 RCP MR *6A M.H. *613 3345 24 RCP ST-6 MH *613 M H *613 INLET 6A I M H *6C 24 14 931 15 15 RCP RCP KH *6C INLET 6B 931 15 RCP I I CHATN'NIM INLET 7A 45 12 36 I RCP ST 7 INLET 7A RITLET 713 INLET 7B DP 2 4371 2678 30 24 RCP RCP ( I I ST 8 DP 2 DP 4 5 94 I 18 RCP I ST 9 POND DP 7 323 15 I RCP I I POND I M H * 1 OA 1119 15 RCP ST 10 MH *10A INLET l0A I INLET IOA I INLET 10B 1119 779 15 15 I RCP I RCP I I I I ST 11 CHANNTEL I MH * 11A 2082 .30 00 I RCP M H. *11A DP 21 2082 2400 RCP I I I TST, INC ' CONSULTING 10/16/98 ENGINEERS 000_h)dl xls 1 TST INC ConsuhinD Enginee s ' CLIENT JOB NO /C- %7S cL C PROJECT CALCULATIONS FOR 1 NADE BY S Y C- CA /�! CHEC1 E. EY E / F L - l /�EN c/J`�GN t'Z, r^ (� .J✓ -..Ei SEA %r-rf{ FD vs��ca c�rPu- �•c-f �Dt,c,--�/ C,cc.c5 i �,Z T E p E v'L✓ A.s �'E.c ••• � < lv S 1 .4FGT'�.J /,u✓ � /,� — 1 1 1 1 1 S� ��K s/E> tJDSc wFJZ fG I�vT -F p3If rNart ws L —I 7 1 C101A W (N✓ Of �* v c 4 fii `l D rS a� P A, y /Z 7' lam✓ U� rs /1-5 = 4' ✓�j `o A - GLTrurr jL 6- 5 - zL= /A�✓ a Lp— GCS E ------- ------------------------------- STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr James Goo Civil Eng Dept, U of Coloraoo at Denver ' -------------Metro —Denver -Cities/Counties -6-UDFCD-Pool -Fund -Study ------------- USER TST Inc Consulting Ene-neers ON DATA 10-15-1998 AT TIME 17 18 55 VERSION=07-17-1995 ++* PROJECT TITLE Parmony R-oge - Det Pond Outlet - ST-1 **+ SUMMARY OF hYDRAULICS AT MP-NI-OLES ------------------------------------------------------- MANTiOLE CNTRBTING RAINrA L RPINFP?L DESIGN CROUND HATER COWE14TS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ' - NINUT_S-- !NCI-/-R CFS FD"T EET --------------------- ----------------------- 1 00 0 00 0 00 0 00 2 37 5113 00 511a 25 NO 2 00 26 48 256a 17 0 08 2 37 5118 59 51-4 66 OK 3 00 14 71 1101 17 0 16 2 37 5122 65 51 47 OK A 00 0 94 23 79 2 51 2 ,17 5123 00 5119 13 OK OK MEANS WATER ELEVATION IS LOvDR Tr..iN GROUND ELDVATION *'+ SUMMARY OF SEWER FvDRkULICS NOTE ThE GIVEN FLOW DEPT--TO-SZ4ER S_ZE RATIO= 85 SEWER M42,�IOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID 14UMBER UPSTREAM DNSTREAM ShAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO ID NO (IN) (FT) (IN) (FT) (IN) (FT) (FT) r------12---00 -------2---00 --------1--00 ----- ROUND -----------11--73 --------15---00 -------15---00 --------0-00 23 00 3 00 2 00 ROUND 9 58 15 00 15 00 0 00 34 00 4 00 3 00 ROUND 9 58 15 00 15 00 0 00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INChES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY ' SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE FOR A NEW SEWER, FLOW WAS ANALYZED BY TYE SUGGESTED SEWER SIZE OTHERWISE, EXISITNG SIZE WAS USED r------------------------------------------------- ------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMM:NT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO ' NUMBER CFS CFS FEET FPS FEET FPS FPS --------------------------------------------------------- 12 0 2 4 4 6 0 64 3 76 0 63 3 82 1 93 0 93 V-OK 23 0 2 4 7 9 0 47 5 60 0 63 3 82 1 93 1 67 V-OK ' 39 0 2 4 7 9 0 47 5 60 0 63 3 62 1 93 1 67 V-OK FROUDE NUMBER=O INDICATES '-AT A PRZSSJRED FLOG OCCURS SEWER SLOPE —INVERT -ELEVATION BURIED DEPTH COMM-NTS ID NUMBER UPSTREAM DNSTREAM UDSTRLkM DNSTREAV (FTJ-_____�--- PI (FT) (FT) _$ 12 00 0 50 5114 02 5113 00 3 32 -1 25 NO 23 00 1 47 5117 64 5114 02 3 56 3 32 OK 34 00 1 47 5118 50 5117 84 3 25 3 56 OK ' OK MEANS BURIED DEPTH IS CREATER ThAN REQUIRED SOIL COVER OF 1 FEET *-* SUMMARY OF hYDRAULIC C=.ADI:NT LINE rLONG S:WERS J I J 1 1 -------------------------'-_------__----T-_--_F__---__ SEWER SERER SURCHARGED CROAN ELEVATION ---- RATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTRE;tM UPSTREAM T DhSTR._ M CONDITION FEET FEZT FEET FEET FEET F::ET ---- -------------------------------------------------------------------------- 12 00 203 20 0 00 5115 27 5114 25 5114 66 5114 25 SUBCR 23 00 259 65 0 00 5119 09 5115 27 5118 47 5114 66 JUMP 34 00 45 14 0 00 5119 75 5119 09 5119 13 5118 47 JUMP PRSS ED=DRESSURZD FLOW TUM;)=POSSIBLE I-YDRPULIC JUMP SUBCR=SUBCRITICA.L FLOW *** SUWLARY OF EWERCY CRADIENT LIKE ALONG S2wERS ------------------------------------------------------------------------------- UPST MA2%ZhOLE SEA'.R JUNCTURL LOSSES DOOhST MAhKOLZ SEWER MANHOLE Eh :RCY FACTION BEND BE14D LfTERP? LATERP.L *Lr1090LZ ENERGY ID NO ID NO ELEV FT FT A CODF LOSS FT K CODF LOSS FT ID FT ------------------------------------------------------------------------------- 12 0 2 00 5114 88 0 63 1 00 0 00 0 00 0 00 1 00 5114 25 23 0 3 00 51-8 70 3 80 0 28 0 02 0 00 0 00 2 00 5114 88 34 0 4 00 5119 36 0 63 0 46 0 03 0 00 0 00 3 00 5118 70 ' BEND LOSS =BEND K*-LOAING FULL VhEAD --N SERER LATERAL LOSS= OUTFLOW FULL V7-:P.D-JCT LOSS K*INFLOW FULL VhEAD FRICTION LOSS=O MEANS IT IS INEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP FRICTION LOSS INCLUDES SEDER INVERT DROP AT MANHOLE ' NOTICE VI-EAD DENOTES ThE VELOCITY DEAD OF FULL FLOW CONDITION A MINIMUM JUCTION LOSS OF 0 05 FT WOULD BE INTRODUCED UNLESS LATERAL K=0 FRICTION LOSS VAS ESTIMATED BY BACKAATER CURVE COMPUTPTIONS 1 1 1 pi 1 1 STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr James Cuo, Civil Eng Dept, U of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study LSER TST Inc Ccrsult�ng Eng_neers ON DATA 10-20-1998 FT TINE 14 29 15 VERSION=07-17-1995 ' *** PROJECT TITLE Harmony Ridge - ST-2 +** SU*LMARY OF 1•YDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MAATiOLE CNTRBTING RA:hFP.LL RPINrALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DLRATION INTENSITY PEAR FLOW ELEVATION ELEVATION iNCMi ---- --FEET--- ------- -----------------------------S 1 00 0 00 ------------- 0 00 ------R 0 00 -----CrS------FEET 7 26 5120 00 5122 00 NO 2 00 52 20 1329 22 0 14 7 26 5124 94 5122 24 OK ' 3 00 13 77 2=5 78 0 53 7 26 5124 94 5123 12 OK 4 00 2a 66 619 25 0 25 6 21 5125 20 5123 50 OK 5 00 12 82 263 E9 0 Z8 6 21 5125 20 5124 40 OK 6 00 10 89 =L9 30 0 39 4 26 5126 50 5124 58 OK 7 00 1 13 10 01 3 79 4 26 5126 50 5125 52 OK OK MEAN'S WATER ELEVATION IS LOWER ThAN GROUND ELEVATION *** SUMMARY OF SEWER uYDKAULICS NOTE TI-E GIVEN FLOW DEPTr-TO-S:;4ER SIZE RATIO= 85 ------------------------------------------------------------------------------- SEWER MP.MHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DhSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH :D NO ID NO (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------ ------- 12 00 --------- 2 00 1 00 ROUND 12 02 15 00 15 00 0 00 2-3-0-0 3--0-0 00- 2 00 ROUND 12 02 15--------- 5 00 15 00 0--0- 0 24 00 4 00 2 00 ROUND 11 34 15 00 15 00 0 00 45 00 5 00 4 00 ROUND 11 34 15 00 15 00 0 00 46 00 6 00 4 00 ROUND 9 23 15 00 15 00 0 00 67 00 7 00 6 00 ROUND 9 23 15 00 15 00 0 00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE ' FOR A NEW SEWER FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE OTFERWISE EXISITNG SIZE WAS USED ' ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORMAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTi VLCITY DEPTH VLCITY VLCITY NO NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 12 0 7 3 13 1 0 66 10 99 1 07 6 50 5 92 2 66 V-OK 23 0 7 3 13 1 0 66 10 99 1 07 6 50 5 92 2 66 V-OK 24 0 6 2 13 1 0 60 10 56 1 00 5 68 5 06 2 71 V-OK 45 0 6 2 13 1 0 60 10 56 1 00 5 68 5 06 2 71 V-OK 46 0 4 3 15 6 0 45 10 63 0 63 4 69 3 47 3 33 V-OK _ 67 0 4 3 15 6 0 45 10 63 0 83 4 69 3 47 3 33 V-OK 1 FROUDE NUMBER=0 IADICFTES Tl.AT A PRESSURED FLOW OCCLRS ---------------------------------------------------------------------- SEWER SLOPE IN%r::RT ELE✓ATION BURIED DEPTH COMMENTS ID NUMBER UPSTREkM DNSTRE.X.M UPSTREAM DNSTREAM I r 11 I I u I I % (FT) (FT) (FT) (FT) ---------------------------------------------- 12 00 4 12 5121 17 5120 00 2 52 - 1 25 23 00 4 12 5121 17 5121 13 2 52 2 56 24 00 4 12 5122 50 5121 17 1 45 2 52 45 00 4 12 5122 50 5122 46 1 45 1 49 46 00 5 81 5123 50 5122 50 1 75 1 45 67 00 5 81 5123 50 5123 44 1 75 1 81 OK MEANS BURIED DEPTH IS CREATER ThAN REQUIRED SOIL COVER OF *** SU%NkRY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------ SEWER SEWER SURCuJ RC=D ID NUMBER LENGTh LENCTH FEETFE_T 12 00 ---- 28 ------ 31 - 7 09 23 00 1 00 0 00 24 00 32 34 0 00 45 00 1 00 0 00 46 00 17 22 0 00 67 00 1 00 0 00 ------------------- CROWN ELEVATION UPSTREAM DNSTREAM FEETFEET ------- 5122 42 5121 25 5122 A2 5122 38 5123 75 5122 42 5123 75 5123 71 5124 75 5123 75 5124 75 5124 69 NO OK OK OK OK OK 1 rEET ---------------------------- WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET 5122 24 -F££T --- 5122 ---------- 00 JUMP 5123 12 5122 24 JUMP 5123 50 5122 24 JUMP 5124 40 5123 50 JUN'P 5124 58 5123 50 JUMP 5125 52 5124 58 JUMP PRSS'ED=PRESSURED FLOW JUMP=POSSIBLE hYDRAULIC JUMP SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------- UPST MANHOLE SEWER SEWER MANHOLE ENERGY FRCTION ID NO ID NO ELEV FT FT ------------------------------- 12 0 2 00 5122 89 0 89 23 0 3 00 5123 67 0 64 24 0 4 00 5124 04 1 04 45 0 5 00 5124 79 0 65 46 0 6 00 5124 77 0 72 67 0 7 00 5125 71 0 85 ------------------------------------------- JUNCTURE LOSSES DOWNST MANHOLE BEND BEND LATERAL LATERAL MANHOLE ENERGY K COEF LOSS FT K COEF LOSS FT ID ----- FT- -------------------------------------- 1 00 0 00 0 00 0 00 1 00 5122 00 0 25 0 14 0 00 0 00 2 00 5122 89 0 28 0 11 0 00 0 00 2 00 5122 89 0 25 0 10 0 00 0 00 4 00 5124 04 0 05 0 01 0 00 0 00 4 00 5124 04 0 50 0 09 0 00 0 00 6 00 5124 77 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE VHEAD DENOTES Th£ VELOCITY HEAD OF FULL FLOW CONDITION A MINIMUM JUCTION LOSS OF 0 05 FT WOULD BE INTRODUCED UNLESS LATERAL K=0 FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS 1 TST INC Consulting e-noineers CLIENT ,eJ/ PROJECT MADE BY Li/ e� S7--7 I I 1 -e-7 �I /<% = 75 JOE NO GCC CALCULATIONS FOR -A E CHECIED BY —Da E F 3 OF v I i `ji'�C�✓` �� `, $N /IJ ✓ I/J = L � I n�✓ _ I ZIVE ST-$ Gi.7/,67- Ti✓�✓ L iS/v Win` Z 3 .?i/y-may° /✓u�X a'S= i3� /.eJr cur —1m269 I r< VIA 1 GCS E 1 ' Path C \HY8\DATA File ST-4_OUT PRN ' CURRENT DATE 10-16-1997 CURRENT TIME 16 00 12 I 0 vme-T P/Rz / Z 8,103 a 10-16-97 4 00 14 pm Page 1 1 FILE DATE 07-08-1997 FILE NAME ST-4_OUT FHWA CULVERT ANALYSIS HY-8, VERSION 4 0 C U SITE DATA CULVERT SHAPE, MATERIAL, INLET L INLET OUTLET CULVERT BARRELS V ELEV ELEV LENCTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 73 35 73 00 70 00 1 RCP 2 00 2 00 013 CONVENTIONAL 2 3 4 6 w FILE ST-d_OUT CULVERT HEADi%ATER ELEVATION (FT) ' DISCHARCE 1 2 3 4 5 0 73 35 0 00 0 00 0 00 0 00 3 74 06 0 00 0 00 0 00 0 00 5 74 46 0 00 0 00 0 00 0 00 8 74 78 0 00 0 00 0 00 0 00 10 75 18 0 00 0 00 0 00 0 00 13 75 42 0 00 0 00 0 00 0 00 1 15 75 67 0 00 0 00 0 00 0 00 —�18 U. 0 00 0 00 0 00 0 00 18 � 0 00 0 00 0 00 0 00 23 76 72 0 00 0 00 0 00 0 00 25 77 20 0 00 0 00 0 00 0 00 58 88 77 0 00 0 00 0 00 0 00 The a ove Q and HW are for a point above the roadway • w6riz �de�� ,a ��r yA � S deco u DATE 07-08-1997 0 00 84 00 0 00 4 87 0 00 85 38 0 00 85 80 0 00 86 19 0 00 86 54 0 0 86 86 0 0 87 17 0 0 87 20 0 0 87 75 0 0 88 02 0 0 0 00 �GE�nG"J d� iti vcR 2 CURRENT DATE 10-16-1997 FILE DATE 07-08-1997 CURRENT TINE 16 00 12 FILE NAME ST-4_OUT PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 2 BY 2 ) RCP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV DEPTH DEPTH TYPE DEPTH DEPTH VEL DEPTH VEL DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 73 35 0 00 0 00 0-NF 0 00 0 00 0 00 0 00 0 00 0 00 3 74 06 0 71 0 71 1-S2n 0 53 0 54 3 76 0 53 2 65 0 17 5 74 46 1 11 1 11 1-S2n 0 76 0 79 4 52 0 76 3 36 0 25 8 74 78 1 43 1 43 1-S2n 0 96 0 97 5 02 0 96 3 84 0 31 10 75 18 1 70 1 83 2-M2c 1 14 1 13 5 48 1 13 4 21 0 37 13 75 &2 1 97 2 07 2-M2c 1 33 1 27 5 96 1 27 4 52 0 42 15 75 67 2 25 2 32 2-M2c 1 54 1 40 6 41 1 40 4 78 0 46 --� 18 75 92 2 57 2 54 6-FFn 2 00 1 50 5 57 2 00 5 01 0 50 I 18 75 95 2 60 2 57 6-FFn 2 00 1 51 63 2 00 5 03 0 50 23 76 72 3 36 3 37 6-FFn 2 00 1 68 7 16 2 00 5 40 0 57 25 77 20 3 83 3 85 6-FFn 2 00 1 75 7 96 2 00 5 57 0 61 ' E1 inlet face invert 73 35 ft E1 o tlet invert 73 00 ft E1 inlet throat invert 0 00 ft E1 inlet crest 0 00 ft \,fJc �drLE i?��P �fd✓iPci� SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 70 00 ' INLET ELEVATION (FT) 73 35 OUTLET STATION (FT) 0 00 OUTLET ELEVATION (FT) 73 00 NUMBER OF BARRELS 1 ' SLOPE (V-FT/H-FT) 0 0050 CULVERT LENGTH ALONG SLOPE (FT) 70 00 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 2 00 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 0 013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDCE WITH HEADWALL INLET DEPRESSION NONE 11 I I I CURRENT DATE 10-16-1997 ' CURRENT TIME 16 00 12 I TAILWATER 3 FILE DATE 07-08-1997 FILE NAME ST-4_OUT REGULAR BOTTOM CHANNEL CROSS SECTION **************** WIDTH (FT) 5 00 SIDE SLOPE H/V (X 1) 4 0 CHANNEL SLOPE V/H (FT/FT) 0 050 MANNING S N ( 01-0 1) 0 035 CHANNEL INVERT ELEVATION (FT) 73 00 CUL\ERT NO 1 OUTLET INVERT ELEVATION 73 00 FT UNIFORM FLOW RATING CURVE FOR DOHNSTREAM CHANNEL FLOW W S E FROLDE DEPTH 4EL ShEAR (CFS) (FT) NUMBER (FT) (FPS) (PSF) 0 00 73 00 0 000 0 00 0 00 0 00 2 50 73 17 1 146 0 17 2 65 0 52 5 00 73 25 1 190 0 25 3 36 0 77 7 50 73 31 1 212 0 31 3 84 0 97 10 00 73 37 1 225 0 37 4 21 1 14 12 50 73 42 1 235 0 42 4 52 1 30 15 00 73 46 1 243 0 46 4 78 1 43 17 50 73 50 1 249 0 50 5 01 1 56 17 70 73 50 1 249 0 50 5 03 1 57 22 50 73 57 1 258 0 57 5 40 1 78 25 00 73 61 1 262 0 61 5 57 1 89 ROADWAY OVERTOPPING DATA ' ROADWAY SURFACE EMBANKMENT TOP WIDTH (FT) CREST LENCTH (FT) ' OVERTOPPING CREST ELEVATION (FT) I PAVED 1 00 1 00 84 00 I UPfTJPEAirt /?EAc✓r5 I I I I I I I I I I I I --------------------------------------------------------------- STORi SEWER SYSTEM DESIGN USING UDSEWER MODEL _E•delcPed •hy Dr. ..a .es Guc' Civil Eno. Dept, U. Cr CC1C_Tadc 2t Denver N,etre Denver Cities/Counties 5 UDFCD Pocl Fund Study USER:TST _.^.0 Ccnsulting =--neers----............................................ ON DATA 10- 6_1057 AT TIME 1E:OE:06 VERSION=C.7-1 _-CGs *," PROJECT TITLE :Ha=,,,cny Ridge - ST-4 RET:; RN PERIOD OF FLOOD IS 100 YEARS "" SUMMARY OF FYDRAULICS AT M;,N:TOLES --- CNBTII�G v NFA� 1 zR._14 FL.-.LGN---GROUND WATER CO?^_`:E.N'c C uv n•.T101v _NTENSiTY PEAK FLOW \A_1CN ELEVATION TES INCri-R CFS --- ------------------------------------------------------ - r 2.00 2.G0 0.00 17.E9 5�E6.00 ^0E° ON 3.00 28.48 =E9.EE C.62 i7.E9 5095.50 :'E9.54 OK 4.00 14.71 76.'.2 1.20 17.E9 5113.i0 5107.33 OK 8.72 OK5.0C 0.95 OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ON NeF,„ Ac ayr SUNMIARY OF SEWER HYDRAULICS FGR� /7.69 DcE14P , iO I NOTE: THE GTV'ZN FLOW DEPTH-TO_c£WER SIZE RATIO= .E5 ------------------------------------------------------------------------------ SEWER VAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. 11) 140. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ----------------------------------------------------------------------------- 23.00 3.00 2.00 ROU14D 24.82 15.00 15.00 0.00 34.00 4.00 3.00 ROUND 12.51 i5.00 15.00 0.00 45.00 5.00 4.00 ROUND 12.51 15.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG .SIZE WAS USED SEWER DESIGN FLOW 140R✓.A.L NORAML CRITIC CRITIC FULL ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NUMBER CPS CPS FEET FPS FEET FPS FPS 23.0 17.7 18.3 0.99 17.00 1.23 14.46 14.42 -4.0 17.7 28.8 0.71 24.66 1.23 14.46 14.42 45.0 17.7 26.8 0.71 24.68 1.23 i4.46 14.4.2 IFROUDE NUMBER=O INDICATES THAT A PRESSURED FLOP: OCCURS i I I ------------------------------------------ SEWER SLOrE I7\I7ERT ELEVATION ----------- BURItD DEPTH ID NUMBER U?STic .M DNSTRrkM U?57RI.,'-.M INSTRF-_M _ (FT) (FT) (FT) (FT) ------------------------------------------------------------ 23.00 8.00 50E6.31 5083.99 5.94 2.76 34.00 19.79 510E.10 5GE8.29 5.%., 5.96 45.00 19.79 516E.10 5105.9C 5.75 5.95 CK ME.L.NS EURIED DEPTH IS GRATER THAN REQUIRED SOIL OF ------------- FROUDE COMMENT 140. 2 96 V-OK 5.72 V-HI 5.72 V-HI COMM..ENT S CK CK CK l FEET I I* "` SUNS✓Z;RY OF HYDRAULIC GRADIENT LIKE ALONG SEWERS I I I I ----- ---- SEWER ----- SEWER ------------------------------------------- SUA.C_Z.RGED - CROWN ELEVATIOd - WATER ELEVATION FLOW SD NUMISBER LENGTHLENGTH UPSTRERN DNS -REAM UP57RER24 DNSTRERM CONDITION FEET FEET 'EET FEET FEET FEET --------------------------------------------------------------------- 23.00 54.00 0.00 50fi9._6 ` "165.24 5069.54 5C65.00 JUN,? 34.00 90.00 7.50 5107.35 5C69.54 5107.33 5069.54 .`JMP 45.00 i.00 1.00 5107.35 5107.15 5108.23 5107.33 PRSS'ED P RS S'_7-=PRESSURED 'LOW; JMP=PCSS7BLE t'�':RA i'LIC �v'b:P; SUBCR=SU5CRITICFS, FLOW -'* SUNLvA Y OF ENERGY CvSQENT LINE r:ONG SEWERS ------------------------------------------------------------------------------- ;;P°T" LCSSES DOWNST P:WQHD-, E S EA;ER '✓=L;50_D '�£R:"i FRC?IC'.d nmr*-: D =t._£Azr _L3ER=.1 ]• I_ HOLE E14ERGY __ No ID NC. =:_EV F r_ K CC=' LC°S F_ K CC_ ,. . -SS FT IDJ .. --------------------------------------------------.----------------------------- 23.0 3.00 50-2.79 7.-9 0.05 0.00 0.00 0.00 2.00 5065.00 4.0 9.00 5110.56 i6.69 0.26 0.90 0.00 0.00 3.00 5092.79 45.0 5.00 5111.46 0.07 0.25 0.61 0.00 O.OD 4.00 5110.5E --END LOSS =SEND K* FLAWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL V%EAD-JCS LOSS K*INFLOW FULL V7HEAD FRICTION :,CSS=O MEPJ�S IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO TJMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE 1 NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS. OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 I tJ I 6 riTL ET f i�F Path C \HY8\DATA File ST-5_OUT PRN 8 103 a 10-22-97 11 21 34 am Page 1 CURRENT DATE 10-22-1997 CURRENT TIME 11 21 33 i z I 1 FILE DATE 07-08-1997 FILE NAME ST-5_OUT FHAA CULVERT ANALYSIS HY-8 LERSION 4 0 C SITE DATA CULVERT SHAPE MATERIAL INLET U L INLET OLTLET CULVERT BARRELS V ELEV ELEV LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 73 88 73 50 76 64 1 RCP 3 00 3 00 013 CONVENTIONAL 2 3 4 5 6 ■ FILE ST-5_OUT CULVERT HEADWATER ELEVATION (FT) ' DISCHARGE 1 2 3 4 5 0 73 88 0 00 0 00 0 00 0 00 7 74 90 0 00 0 00 0 00 0 00 13 75 48 0 00 0 00 0 00 0 00 20 75 94 0 00 0 00 0 00 0 00 26 76 34 0 00 0 00 0 00 0 00 33 76 72 0 00 0 00 0 00 0 00 1 39 77 25 0 00 0 00 0 00 0 00 46 77 60 0 00 0 00 0 00 0 00 52 78 03 0 00 0 00 0 00 0 00 —�157 78 43 0 00 0 00 0 00 0 00 65 9 22 0 00 0 00 0 00 0 00 156 96 17 0 00 0 00 0 00 0 00 The ab ve Q and HW are for a point above the roadway DATE 07-08-1997 6 ROADWAY 0 00 88 0 00 9 63 0 00 90 60 0 00 91 41 0 00 92 13 0 00 92 79 0 00 93 41 0 00 94 00 0 00 94 56 0 00 94 95 0 00 95 61 0 00 0 00 wee,nr /A/ roe 42 M H �5A 2 CURRENT DATE 10-22-1997 FILE DATE 07-08-1997 ' CURRENT TIME 11 21 33 FILE NAME ST-5_OUT PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 3 BY 3 ) RCP 'DIS- HEAD- INLET OUTLET CHARCE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILAATER ELEV DEPTH DEPTH TYPE DEPTH DEPTH VEL DEPTH VEL DEPTH 'FLOW (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 73 88 0 00 0 00 0-NF 0 00 0 00 0 00 0 00 0 00 0 00 7 74 90 1 02 1 02 1-S2n 0 74 0 79 4 75 0 74 3 67 0 29 t 13 75 48 1 60 1 60 1-S2n 1 07 1 14 5 72 1 07 4 57 0 42 20 75 94 2 06 2 06 1-S2n 1 34 1 41 6 36 1 34 5 17 0 53 26 76 34 2 46 2 46 1-S2n 1 59 1 64 6 83 1 59 5 63 0 62 ' 33 76 72 2 84 2 84 1-S2n 1 83 1 85 7 17 1 83 6 01 0 69 0 76 39 77 25 3 23 3 37 2-M2c 2 08 2 03 7 68 2 03 6 33 46 77 60 3 66 3 72 2-M2c 2 38 2 19 8 25 2 19 6 61 0 83 78 03 4 15 4 01 6-FFn 3 00 2 34 7 36 3 00 6 86 0 89 '52 --i 57 78 43 4 55 4 39 6-FFn 3 00 2 43 3 00 7 03 0 93 65 79 22 5 34 5 10 6-FFn 3 00 2 57 792 20 3 00 7 30 0 99 ' E1 inlet face invert 73 88 ft E1 o tlet invert 73 50 ft E1 inlet throat invert 0 00 ft El i let crest 0 00 ft \ SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 76 64 INLET ELEVATION (FT) 73 88 OUTLET STATION (FT) 0 00 OUTLET ELEVATION (FT) 73 50 NUMBER OF BARRELS 1 ' SLOPE (V-FT/H-FT) 0 0050 CULVERT LENGTH ALONG SLOPE (FT) 76 64 ***** CULVERT DATA SUMMARY ************************ 1 BARREL SHAPE CIRCULAR BARREL DIAMETER 3 00 FT BARREL MATERIAL CONCRETE ' BARREL MANNING'S N 0 013 _ INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE 1 1 pdTLF! ,01R.e 4P i1 RF001Rr D CURRENT DATE 10-22-1997 CURRENT TIME 11 21 33 TAILAATER 3 FILE DATE 07-08-1997 FILE NAME ST-5_OUT ******* REGULAR CHANNEL CROSS SECTION **************** ' BOTTOM WIDTH (FT) 5 00 SIDE SLOPE H/V (X 1) 4 0 CHANNEL SLOPE V/H (FT/FT) 0 050 MANNING S N ( 01-0 1) 0 035 ' CHANNEL INVERT ELEVATION (FT) 73 50 CULXERT NO 1 OUTLET INVERT ELEVATION 73 50 FT UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W S E FROUDE DEPTH VEL SHEAR ' (CFS) (FT) NUMBER (FT) (FPS) (PSF) 0 00 73 50 0 000 0 00 0 00 0 00 6 50 73 79 1 204 0 29 3 67 0 90 13 00 73 92 1 237 0 42 4 57 1 32 ' 19 50 74 03 1 253 0 53 5 17 1 65 26 00 74 12 1 263 0 62 5 63 1 93 32 50 74 19 1 270 0 69 6 01 2 17 39 00 74 26 1 276 0 76 6 33 2 38 45 50 74 33 1 281 0 83 6 61 2 58 52 00 74 39 1 285 0 89 6 86 2 77 56 75 74 43 1 288 0 93 7 03 2 89 65 00 74 49 1 292 0 99 7 30 3 10 ' ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 1 00 CREST LENCTH (FT) 1 00 ' OVERTOPPING CREST ELEVATION (FT) 88 00 1 Path C \HY8\DATA File ST-5_IN PRN ' CURRENT DATE 10-22-1997 CURRENT TIME 11 23 03 [1 L„ sT- s 7 060 a 10-22-97 it 23 04 am Page 1 1 FILE DATE 07-08-1997 FILE NAME ST-5 IN FHWA CULVERT ANALYSIS HY-8 VERSION 4 0 C SITE DATA CULVERT SHAPE MATERIAL INLET U L INLET OUTLET CULVERT BARRELS V ELEV ELEV LENCTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 88 50 86 96 19 32 1 RCP 3 00 3 00 013 CONVENTIONAL 3 4 5 6 P FILE ST-5 IN CULVERT HEADWATER ELEVATION (FT) DATE 07-08-1997 DISCFARGE 1 2 3 4 5 6 ROADWAY 0 88 50 0 00 0 00 0 00 0 00 0 00 93 0 7 89 41 0 00 0 00 0 00 0 00 0 00 94 63 13 89 99 0 00 0 00 0 00 0 00 0 00 95 60 20 90 45 0 00 0 00 0 00 0 00 0 00 96 41 26 90 85 0 00 0 00 0 00 0 00 0 00 97 13 33 91 23 0 00 0 00 0 00 0 00 0 00 97 79 39 91 62 0 00 0 00 0 00 0 00 0 00 98 41 46 92 05 0 00 0 00 0 00 0 00 0 00 99 00 52 92 54 0 00 0 00 0 00 0 00 0 00 99 56 --�j57 92 9 0 00 0 00 0 00 0 00 0 00 99 95 65 93 72 0 00 0 00 0 00 0 00 0 00 100 61 117 101 27 0 00 0 00 0 00 0 00 0 00 0 00 The a� ve Q and HW are for a point above the roadway 4"-✓ ,iN c s �E 04-) /i✓TY r ry^X cU S �oR u�s r�Lx ii 2 CURRENT DATE 10-22-1997 FILE DATE 07-08-1997 CURRENT TIME 11 23 03 FILE NAME ST-5_IN PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 3 BY 3 ) RCP DIS- HEAD- INLET OUTLET CHARCE HATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILkATER ' FLO4 ELEV DEPTH DEPTH TYPE DEPTH DEPTH %EL DEPTH VEL DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 88 50 0 00 0 00 0-NF 0 00 0 00 0 00 0 00 0 00 1 30 ' 7 69 41 0 01 0 91 1-S2n 0 36 0 79 10 30 0 42 0 00 1 30 13 89 99 1 49 1 49 1-S2n 0 52 1 14 11 48 0 65 0 00 1 30 20 90 45 1 95 1 95 1-S2n 0 64 1 41 12 22 0 83 0 00 1 30 26 90 85 2 35 2 35 1-S2n 0 74 1 64 12 78 0 99 0 00 1 30 33 91 23 2 73 2 73 1-S2n 0 83 1 85 13 26 1 13 0 00 1 30 39 91 62 3 12 3 12 5-S2n 0 92 2 03 13 68 1 27 0 00 1 30 46 92 05 3 55 3 55 5-S2n 1 00 2 19 14 09 1 40 0 00 1 30 '52 92 54 4 04 4 04 5-S2n 1 07 2 34 14 49 1 52 0 00 1 30 �j57 92 94 4 44 4 44 5-S2n 1 12 2 43 4 76 1 60 0 00 1 30 65 93 72 5 22 5 22 5-S2n 1 21 2 57 /15 30 1 74 0 00 1 30 E1 inlet face invert 88 50 ft E1 invert 86 96 ft E1 inlet throat invert 0 00 ft E1 ttlet let crest 0 00 ft SITE DATA ***** CULVERT INVERT o4 7-c /m z&5A INLET STATION (FT) 19 26 INLET ELEVATION (FT) 88 50 OUTLET STATION (FT) 0 00 OUTLET ELEVATION (FT) 86 96 ' NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0 0800 CULVERT LENCTH ALONG SLOPE (FT) 19 32 CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 3 00 FT ' BARREL MATERIAL CONCRETE BARREL MANNING S N 0 013 INLET TYPE CONVENTIONAL ' INLET EDCE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE 1 I 1 CURRENT DATE 10-22-1997 ' CURRENT TIME 11 23 03 1 TAILWATER 3 FILE DATE 07-08-1997 FILE NAME ST-5_IN ' CONSTANT 4KATER SURFACE ELEVATION 88 26 —7Nu�.ns4 py. -%y Fwc 36 Z--p �S 55G -75 cis ' ROADWAY OVERTOPPING DATA ROADWAY SURFACE EMBANKMENT TOP HIDTH (FT) CREST LENCTH (FT) OVERTOPPING CREST ELEVATION (FT) [I 1 r� t �J IJ PAVED 1 00 1 00 93 00 ' TST, INC. ConSoAinD Enpinee.< CLIENT _ PACJECT --g� ' MADE BY r Y j 1 (N � IQ � s ulT ' rIQ i CJECkED EY JOB No !J -X75—cce CAL'J,L-IDNS ECF �'Z� n• �g/i Eh' e4'E __:EET y OF 4 11 Path C \HY8\DATA File ST-6_P12 PRN ^URRENT DATE 07-08-1997 URRENT TIME 15 46 28 t L /�✓C S7- Co 8 107 a 7-08-97 3 46 28 pm Page 1 FHWA CULVERT ANALYSIS HY-8 VERSION 4 0 1 FILE DATE 07-08-1997 FILE NAME ST-6_P12 C SITE DATA CULVERT SHAPE MATERIAL INLET U L INLET OUTLET CULVERT BARRELS V ELEV ELEV LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 73 52 73 00 103 00 1 RCP 2 50 2 50 013 CONVENTIONAL 3 4 J-?✓ �cf 6 FILE ST-6_P12 CULVERT HEADWATER ELEVATION (FT) DATE 07-08-1997 DISCHARGE 1 2 3 4 5 6 ROADWAY 0 73 52 0 00 0 00 0 00 0 00 0 00 84-205 5 74 42 0 00 0 00 0 00 0 00 0 00 --85 53 9 74 93 0 00 0 00 0 00 0 00 0 00 /86 28 14 75 33 0 00 0 00 0 00 0 00 0 00 86 92 18 75 69 0 00 0 00 0 00 0 00 0 00 / 87 48 23 76 19 0 00 0 00 0 00 0 00 0 00 88 00 27 76 49 0 00 0 00 0 00 0 00 0 00 88 49 32 7 83 0 00 0 00 0 00 0 00 0 00 88 94 33 77 0—� 0 00 0 00 0 00 0 00 0 00 I 89 14 41 0 00 0 00 0 00 0 00 0 00 89 80 45 78 55 0 00 0 00 0 00 0 00 0 00 90 21 95 90 32 0 00 0 00 0 00 0 00 0 00 00 The above Q and HW are for a point above the roadway \0 /✓� r� / � � r h EX 2 URRENT DATE 07-08-1997 FILE DATE 07-08-1997 CURRENT TIME 15 46 28 FILE NAME ST-6_P12 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 2 5 BY 2 5 ) RCP ' DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV DEPTH DEPTH TYPE DEPTH DEPTH VEL DEPTH VEL DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 73 52 0 00 0 00 0-NF 0 00 0 00 0 00 0 00 0 00 0 00 5 74 42 0 90 0 90 1-S2n 0 65 0 69 4 37 0 65 3 25 0 23 9 74 93 1 41 1 41 1-S2n 0 95 1 00 5 26 0 95 4 07 0 35 14 75 33 1 81 1 81 1-S2n 1 19 1 23 5 84 1 19 4 63 0 43 18 75 69 2 17 2 17 1-S2n 1 42 1 43 6 26 1 42 5 05 0 51 23 76 19 2 51 2 67 2-M2c 1 65 1 61 6 75 1 61 5 40 0 57 27 76 49 2 89 2 97 2-M2c 1 91 1 77 7 27 1 77 5 70 0 63 32 76 83 3 31 3 25 6-FFn 2 50 1 90 6 42 2 50 5 96 0 68 ' --o-33 77 03 3 51 3 47 6-FFn 2 50 1 96 2 50 6 06 0 71 41 77 90 4 35 4 38 6-FFn 2 50 2 12 8 25 2 50 6 40 0 78 45 78 55 4 99 5 03 6-FFn 2 50 2 22 9 17 2 50 6 59 0 82 E1 inlet face invert 73 52 ft El outlet invert 73 00 ft E1 inlet throat invert 0 00 ft El inlet crest 0 00 ft **** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 103 00 INLET ELEVATION (FT) 73 52 OUTLET STATION (FT) 0 00 OUTLET ELEVATION (FT) 73 00 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0 0050 CULVERT LENGTH ALONG SLOPE (FT) 103 00 CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 2 50 FT ' BARREL MATERIAL CONCRETE BARREL MANNING'S N 0 013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE 1 I �I I URRENT DATE 07-08-1997 ' CURRENT TIME 15 46 28 n TAILWATER k****** REGULAR CHANNEL CROSS SECTION **************** 3 FILE DATE 07-08-1997 FILE NAME ST-6_P12 ' BOTTOM AIDTH (FT) 5 00 SIDE SLOPE H/V (X 1) 4 0 CHANNEL SLOPE V/H (FT/FT) 0 050 MANNING S N ( 01-0 1) 0 035 CHANNEL INVERT ELEVATION (FT) 73 00 CULVERT NO 1 OUTLET IhR ERT ELEVATION 73 00 FT ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W S E FROUDE DEPTH VEL SHEAR ' (CFS) (FT) NUMBER (FT) (FPS) (PSF) 0 00 73 00 0 000 0 00 0 00 0 00 4 50 73 23 1 184 0 23 3 25 0 73 9 00 73 35 1 220 0 35 4 07 1 08 13 50 73 43 1 238 0 43 4 63 1 35 18 00 73 51 1 250 0 51 5 05 1 58 22 50 73 57 1 258 0 57 5 40 1 78 27 00 73 63 1 264 0 63 5 70 1 97 31 50 73 68 1 269 0 68 5 96 2 13 33 45 73 71 1 271 0 71 6 06 2 20 40 50 73 78 1 277 0 78 6 40 2 43 45 00 73 82 1 281 0 82 6 59 2 57 ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 1 00 CREST LENGTH (FT) 1 00 ' OVERTOPPING CREST ELEVATION (FT) 84 25 J 1 Path C \HY8\DATA File ST-6_P23 PRN ' CURRENT DATE 07-08-1997 "URRENT TIME 16 08 33 ■ a ,5. ra 7 060 a 7-08-97 4 08 32 pm Page 1 1 FILE DATE 07-08-1997 FILE NAME ST-6 P23 FHWA CLL4ERT ANALYSIS HY-8 VERSION 4 0 C SITE DATA CULVERT SHAPE MATERIAL INLET U L INLET OUTLET CULVERT BARRELS V ELEV ELEV LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 88 77 84 25 116 09 1 RCP 2 00 2 00 013 CONVENTIONAL 2 4 5 6 ■ FILE ST-6_P23 CULVERT HEADAATER ELEVATION (FT) DISCHARCE 1 2 3 4 5 0 88 77 0 00 0 00 0 00 0 00 5 89 77 0 00 0 00 0 00 0 00 9 90 33 0 00 0 00 0 00 0 00 ' 14 90 82 0 00 0 00 0 00 0 00 18 91 38 0 00 0 00 0 00 0 00 23 92 09 0 00 0 00 0 00 0 00 27 92 99 0 00 0 00 0 00 0 00 32 94 06 0 00 0 00 0 00 0 00 33 94 58 0 00 0 00 0 00 0 00 ' 41 9 67 0 00 0 00 0 00 0 00 45 98 22 0 00 0 00 0 00 0 00 50 99 99 0 00 0 00 0 00 0 00 The above Q and HW are for a point above the roadway DATE 07-08-1997 6 ROAD Y 0 00 3 5 0 00 194 78 0 00 95 53 0 00 96 17 0 00 96 73 0 00 197 25 0 00 74 0 00 197 98 19 0 00 98 39 0 00 ' 99 05 0 00 99 46 0 00 0 00 2 :URRENT DATE 07-08-1997 FILE DATE 07-08-1997 ' CURRENT TIME 16 08 33 FILE NAME ST-6_P23 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 2 BY 2 ) RCP DIS- HEAD- INLET OUTLET CHARCE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILAATER FLOW ELEV DEPTH DEPTH TYPE DEPTH DEPTH VEL DEPTH VEL DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 88 77 0 00 0 00 0-NF 0 00 0 00 0 00 0 00 0 00 2 00 5 89 77 1 00 1 00 1-Slf 0 42 0 74 1 43 2 00 0 00 2 00 9 90 33 1 56 1 56 1-Slf 0 61 1 07 2 86 2 00 0 00 2 00 14 90 82 2 05 2 05 1-Slf 0 75 1 32 4 30 2 00 0 00 2 00 18 91 38 2 61 2 61 1-Slf 0 88 1 52 5 73 2 00 0 00 2 00 23 92 09 3 32 3 32 1-Slf 1 00 1 68 7 16 2 00 0 00 2 00 27 92 99 4 22 d 22 1-Slf 1 12 1 81 8 59 2 00 0 00 2 00 32 94 06 5 29 2 06 4-FFt 1 24 1 94 10 03 2 00 0 00 2 00 33 94 58 5 81 2 64 4-FFt 1 29 2 00 10 65 2 00 0 00 2 00 41 96 67 7 90 5 05 4-FFt 1 50 2 00 12 89 2 00 0 00 2 00 45 98 22 9 45 6 82 4-FFt 1 66 2 00 14 32 2 00 0 00 2 00 E1 inlet face invert 88 77 ft E1 outlet invert 84 25 ft E1 inlet throat invert 0 00 ft E1 inlet crest 0 00 ft SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 116 00 INLET ELEVATION (FT) 88 77 OUTLET STATION (FT) 0 00 OUTLET ELEVATION (FT) 84 25 ' NUMBER OF BARRELS SLOPE (V-FT/H-FT) 1 0 0390 CULVERT LENGTH ALONG SLOPE (FT) 116 09 CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 2 00 FT BARREL MATERIAL CONCRETE ' BARREL MANNING'S N 0 013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL ' INLET DEPRESSION NONE 1 3 'URRENT DATE 07-08-1997 FILE DATE 07-08-1997 ' CURRENT TINE 16 08 33 FILE NAME ST-6_P23 ' TAILWATER CONSTANT TaATER SURFACE ELEVATION 86 25 ROADT^AY OVERTOPPING DATA ROADWAY SURFACE PACED EMBANKMENT TOP WIDTH (FT) 1 00 CREST LENGTH (FT) 1 00 OVERTOPPING CREST ELEVATION (FT) 93 50 Lir/c 'fT- �o SYfT�/� ✓/1 of ,�iPE z? -------------------------------------- ----------------STORM SEWER SYSTEM DESIGN 'USING UDSENER MODEL Developed by Dr. James Cuc, Civil Ena. Dept, U. of Colorado at Denver Metro Denver Cities/Counties S UDFCD Pool Fund Study :no CC.^.5"mot_.^:C _ ^E ErS..................... ........... ...... 1;.^A ii-24-1997 ..= 7I1.E I0:'4:42 \rERS7C?N=07-i7-i995 '•• PRCJECT TITLE :Earmc-y R'_cce - ST-6 SJP^_t>RY OF HY::RA'LICS AT KkN? CLES ______________________________________________________________________ ?✓,;.;?<-GLE CNTR TING Rk--NFP.LL RAINF LL DE.5IGN GROUND 1%'TkTER ID NUMBER AREA " C DURATION INTENSITY PEAK FLOW ELEVATION EL=.%ATION R CFS ------------------ 3.0C 0.00 0.00 0.00 I_.45 5096.50 5094.56 4.8' 3.77 ,_.29 _.75 24.'_4 5107.52 5100.24 j2.S2 35.E9 1.56 24.14 51C7.53 _`30L 69 _I.72 347.ES 0.39 .--1 51C2.50 5C96.45 i3.95 172._C 0.67 9.31 5118.95 51'_2.i0 E." _2.E2 __-.E2 0.73 9.31 5118.95 51i2.42 OK MEANS 4;=.TER ELEVATION _S LOWER T AN CRO'UND ELEVATION *-- S:UI✓!MkRY OF SE11:ER Y--.R.ULICS CO?�i.KE]<TS OK OK CK CK OK CK NOTE: = GIVEN FLOW DEPTH.-TC-SEWER SIZE RATIO= .85 ------------------------------------------------------------------------- SEWER N,AMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNS'TREP1i SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (:FT) (IN) (FT) (IN) (FT) (FT) -----------------------------------------------^----------------------------- 34.00 4.00 3.00 ROUND 14.44 15.00 15.00 0.00 45.00 5.00 4.00 ROUND 14.44 15.00 i5.00 0.00 36.00 6.00 3.00 ROUND 17.05 18.00 15.00 0.00 67.00 7.00 6.00 ROUND 10.29 15.00 15.00 0.00 78.00 6.00 7.00 ROUND 10.29 15.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CA-PACITY. SUGGESTED DIAMETER WAS DETERMINED By COMMERCIALLY Al'FS LFBLE SIZE. FCR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE: OTHERWISE, EXISITNG SIZE WAS USED ______________________________________________________________._.______-_________ SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FILL Q DEPTH V7-CITY ., D_.r. VLCITY VLCITY NO.. Nl.£!BER CFS CFS FEET FPS " -------------------------------- FPS FPS ---------------------------------------------- 34.0 24.1 2E.6 0.93 24.71 1.24 19.E9 19.E1 4-.E1 V-EI 45.0 24.1 2E.6 0.53 24.71 1.24 19.69 29.ET 4.E1 V-"r:I 36.0 9.3 6.6 1.25 7.59 1.15 7.90 7.59 0.00 V-OK 67.0 9.3 25.5 0.52 19.14 1.15 7.90 7.59 5.37 V-OK 76.0 9.3 25.5 0.52 ,9.14 i.i5 7.90 7.59 5.37 V-OK FROL'L'= NL:ME:ER=0 INDICATES A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLCFE IN^,=RT E=E\!A7ICN :.0 RIED CCU"✓ 57S ID ?vLTI:n."R L'FS7RE3id D?GS7RET-.1`: .%F SIRE%-N DN 57 RE.-'✓ IF7) iFT) !FT) (FT) lJ ---------------------------------------------------------------------- -4.00 17.11. 5099.00 5093.50 7.27 3.75 CK 45.00 17.21 5099.00 5098.83 1.28 7.44 CK 36.CD 1.05 5095.38 5093.50 5.87 3.15 OK 67.OD 15.50 5110.95 5098.25 6.75 3.00 OK 75.�.. 15.50 5110.95 5110.80rt b.75 6.90 CK CK. ML:NS L..._ED -*' SJn✓ IAP.Y OF HYDRAULIC GRF^.I ANT LINE ALONG SE-WZE S -------------------------------------------------------- ------------------- - SEWER SURC==KGED"H :: ?S-RCF.Cmild E__.'ATICN KA=ER E-E\;= =C'_ FLOW .. �•=ER ENGT:'. E?4GE'-?d NS T R!--2?1 U:S-?.E MI NS'=R_=M CONDITICN FEET FEET FEET FEET FEET FEET __________________________________________.___-_-____--._______- 3..00 32.i5 0.00 _`"_00.25 SC94.75 ---------------- 5100.24 5099.58 JU'!r 45.00 i.00 1.00 5100.25 5100.08 5101.69 5100.24 FRSS'ED 36.00 179.40 J 9.40 5096.63 `-094.75 5098.45 5094.58 PRSS'ED 67.00 81.94 0.00 i2.20 5C99.50 5:12.10 `98.55 JUP:P '8.00 1.00 1.00 12.20 5112.C5 5.112.42 ° -_2.10 RSS.'ED JUI✓.P� 5`�C:.=5c3Cn:TI C.=.?. ` FLOW ' *'* SUNLKt RY OF ENERGY GRkA-IENT LINE. ALONG SEWERS ------------------------------------------------------------------------- UPST YL%NHCLE SEWER. JUNCTURE LOSSES DOWNST MANHCLE SEWER MAN'HCLE ENERGY :RCTION -BEND ND .T-.T E�_=. ---J .T�J-21-.--ICL-J ENERGY ID NO ID NO. ELEV FT F K COEF LOSS FT K COEF LOSS^F. ID FT 1 ----------------------------------------- 34.0 4.00 5106.26 11.68 0.46 ---------- 0.00 - ---------------------- 0.00 C.00 3.00 -- 5094.58 45.0 5.00 5107.90 0.14 0.25 1.50 0.00 0.00 4.00 5106.26 36.0 6.00 5099.34 4.76 0.05 0.00 0.35 0.00 3.00 5094.58 ' 67.0 7.00 5113.07 16.0 8.00 5113.31 12.82 0.02 1.01 0.25 0.90 0.22 0.00 0.00 6.00 0.00 0.00 7.00 5099.34 5113.07 BEND LOSS =BEND K* FLOWING FULL VEEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VTFEAD-JCT LOSS K*INFLOW FULL VHEAD ' FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO 7JMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT.XMIHOLE NOTICE: 1,7iEAD DENOTES T-^E %-:,OCITY %F-zD OF FULL FLOW CONDITION. A MIN-KJM SUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED 'UNLESS LATERAL K=O. ' FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.. L INC. Con Consut�uno Encneers im CLIENT JOE NO i,' r77 ✓CC PPCJECT i nr. I. ✓ CALCULL71ON5 FOR GJn� �EGo-CK -7 N.LCEEy OZTE CHEC,EC Er Cc'E S-EE' !mac �'.-c./c7 i� i� :•-�' �: �',_' I r::F- 7A !tip!— - 6 ^ �✓LVBc T G rEi.:/tiG i f J T !/5'= ' S.Ai k! .<g. jy i/P 7 \\ 1 IJI IJ y C95C' :- EI I ZIA, 5r- 1 570',.kM SEWER SEWER SYSTEM DESIGN USING UDSEWER MODEL----- Develcped by Dr. ;;times Guo, Civil Dng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties 6 UDFCD Pool Fund Study ---------------- JSE.~.:TST ._nc _-'c-veers.......... ................... ..... VERSION=07-17-1995CvATA 10-3C-1997 AT TIME 11:16:41 ........... +*" PRO.?ECT TITLE :Harncny Ridge - ST-7 +.. c;,�.n✓ray C.r HYDRAULICS AT MANHOLES ----------------------------------------------------------------- ------- PL=2�'901E CNT-STING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID N"I'vBER AREA C DURATION INTENSITY PEAK FLOW ELEVATION ELEVA?i0N ' INCH/HR CFS FEET FEET -MINUTES ---------------------- ------------------------------------------------ 1.00 0.00 0.00 0.00 45.12 5114.00 5i14.73 NO 2.00 52.20 121.C4 0.E6 45.12 511E.75 5116.37 OK 3.30 13.77 14.C5 3.28 45.12 5118.75 51i7.33 CK 4.00 24.66 42.55 1.77 43.71 SliB.%5 5117.10 CK 5.00 12.E2 i2.E7 3.41 43.71 5118.75 5117.73 CK 6.00 10.E9 24.E5 7.00 1.13 5.00 2.46 23.80 26.78 26.18 5119.00 5119.00 5117.41 5117.99 CK CK CK MEANS LATER ELEVATION IS LOWER THAN GROUND ELEVATION ' ... c�o✓v_•._Y OF SEWER HYDRAULICS NC?E: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER MAMHOLE NU'D25ER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 12.00 2.00 1.00 ROUND 35.41 36.00 36.00 0.00 23.00 3.00 2.00 ROUND 35.41 36.00 36.00 0.00 24.00 4.00 2.00 ROUND 26.98 27.00 30.00 0.00 M 45.00 5.00 4.00 ROUND ROUND 26.98 21.50 27.00 24.00 30.00 24.00 0.00 0.00 46.00 6.00 4.00 67.00 7.00 6.00 ROUND 21.50 24.00 24.00 0.00 '.. DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, - EXISTTNG SIZE WAS USED SEWER DESIGN FLOW NORMAL. N0RAML CRITIC CRITIC FULL FROUDE CONLM✓NT ID FLOW Q FULL Q DEPTH %`.CITY DEPTH VTCITY VLCITY NO. 3.';,OJzEA CFS CFS FEET FPS FEET FPS FPS ------------- ---'---- 3 34- -- 12.0 45.1 47--.------2-- -- ------------------------------------- 761 2.12 8.43 6.36 0.67 V-CK 23.0 45.1 47.3 2.34 7.61 2.12 8.43 6.36 0.87 V-OK 24.0 43.7 58.2 1.E2 / 13.01 2.18 9.62 8.90 1.93 V-OK ' 45.0 43.7 58.2 1.62 36.0 1.28 ; 13.C1 12.56 2.18 2.76 9.62 9.07 6.90 1.93 6.52 2.10 V-OK V-CK 46.0 2E.8 E7.0 26.8 36.0 1.28 112.56 1.76 9.07 8.52 2.10 V-CK FRCU DE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS / ------------------------------ ,--,-r------- 1-F----------------- SEWER ID NUMBER SLOPE UPSTREFvM IN\ZRT ELEVATION DN.STREAM BURIED UPSTREAM DEPTH DNSTREAM COMMENTS £ (FT) (FT) (FT) (FT) ______________________________________________________________________ 12.00 0.50 51i4.C9 5114.00 1.E6 -3.00 NO 23.00 0.50 511_4.09 5114.C9 1.66 1.E7 CK 24.00 2.00 5114.73 5114.08 1.52 2.17 ON 45.00 2.00 5114.73 5114.71 1.52 1.54 OK 46.00 2.52 5115.00 5114.73 2.00 2.02 OK 67.00 2.52 5115.00 5114.97 2.00 2.C3 ON ON MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET ALONG SEWERS •** S'JMtKZR.Y OF HYDRAULLC Gi rJIE?C^_ TINE SEWER SEWER SURC::A"RGED CROWN ELEVATION WATER ELEVATION CONDITION FLOW ID NUMBS LENGTH LENGTH : 'r STREAM DNSTREAM UPSTREP-M DNSTRE,%M _ET rEET EET FEET FEET FEET 12.00 17.61 C.00 5"i 17. 09 5117.00 51'-6.87 5114. i3 SUBCR 23.00 1.00 0.00 5i17.09 5117.09 511-7.33 51_'6.37 SUBCR 24.00 32.27 0.00 5117.23 5116.1-8 5117.10 51-6.27 7JN.P 45.00 1.00 0.00 5117.23 5117.21 5117.73 5117.i0 JJNP t 46.00 10.71 10.71 5111.00 51i6.73 5117.41 5117.10 PRSS'ED 67.00 1.00 1.00 5.111.00 511_6.97 5117.98 5117.41 PRSS'ED PRSS'ED=PRESSURED FLOW; SUMP=?OS.S.IBLE HYDRAULIC JUMP; SUBCR=SUBCRITICFS. FLOW -** SUMMERY OF ENERGY GRADIENT LINE A-CNG SEWERS I r ---------------------- -PST MANHOLE SEWER SEWER MANHOLE ENERGY FRCTION ID NO ID NO. ELEV FT FT ------------------------------- 12.0 2.00 5117.30 2.57 23.0 3.00 5117.96 0.50 24.0 4.00 5118.33 0.93 45.0 5.00 5118.95 0.32 46.0 6..00 5118.53 0.15 67.0 7.00 51i9.i0 0.01 ------------------------------------------- JUNCTURE LOSSES DOWNST MANHOLE BEND BEND LATERAL LATERAL MANHOLE ENERGY K COEF LOSS FT K COEF LOSS FT ID FT ---------------------------------------------- 0.25 0.00 0.00 0.00 1.00 5114.73 0.25 0.16 0.00 0.00 2.00 5117.30 0.08 0.10 0.00 0.00 2.00 5117.30 0.25 0.31 0.00 0.00 4.00 5118.33 0.05 0.06 0.00 0.00 4.00 5118.33 0.50 0.56 0.00 0.00 6.00 5118.53 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O M..ANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO TJMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: AHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS. LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I 'r-t.RMONY RSDCE -- EXIST_NG DRP.II4AGEWAY AT DP 2 :NFUT DATA: -`SC._-AGE _ -�=O'+ p=DTv SLOrE _ SLOPE _--P..^. _ 45.000000 CFS 5.000000 FT 5.000000E-02 FT/FT 4.000000 3.500000E-C2 7.2EE:.49E-01 _FT . 7.E:3273 FPS FT FT 5 FT L/,liC ljT-7 (�o w,JST.PE,t rH Cy.F.J,�.�2 1 Path C \HY8\DATA File ST-8 PRN 1 1 1 1 CURRENT DATE 10-24-1997 CURRENT TINE 10 15 16 Z,,aE s7-- ? 7 064 a 10-24-97 10 15 18 am Page 1 FHWA CULVERT ANALYSIS HY-8 VERSION 4 0 1 FILE DATE 07-07-1997 FILE NAME ST-8 C SITE DATA CULVERT SHAPE MATERIAL INLET U L INLET OUTLET CULVERT BARRELS V ELEV ELEV LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 5117 00 5115 50 81 25 1 RCP 1 50 1 50 013 CONVENTIONAL 2 3 4 5 6 • FILE ST-8 CULVERT HEADWATER ELEVATION (FT) DISCHARGE 1 2 3 4 5 0 5117 98 0 00 0 00 0 00 0 00 2 5118 01 0 00 0 00 0 00 0 00 3 5118 11 0 00 0 00 0 00 0 00 ' 5 5118 20 0 00 0 00 0 00 0 00 �i 6 �3 0 00 0 00 0 00 0 00 8 5118 81 0 00 0 00 0 00 0 00 ' 9 5119 18 0 00 0 00 0 00 0 00 0 00 000 0 00 11 5119 61 0 00 12 5120 11 0 00 0 00 0 00 0 00 14 5120 67 0 00 0 00 0 00 0 00 15 5121 31 0 00 0 00 0 00 0 00 17 5122 00 0 00 0 00 0 00 0 00 The ab ve Q and HW are for a point above the roadway -I- ✓ y�ca 3 c L t —r 1 DATE 07-07-1997 6 0 00 5119 0 0 00 5119 62 0 00 5119 98 0 00 5120 28 0 001 5120 54 0 00 5120 80 0 00 5121 04 0 00 5121 25 0 00 5121 46 0 00 5121 67 0 00 5121 86 0 00 0 00 ,7^< f< r y,Z) � Fz_ I fi I I I 1 I I t CURRENT DATE CURRENT TIME PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 1 5 BY 1 5 ) RCP 10-24-1997 10 15 16 0 FILE DATE 07-07-1997 FILE NAME ST-8 DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV DEPTH DEPTH TYPE DEPTH DEPTH VEL DEPTH VEL DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 5117 98 0 00 0 98 0-NF 0 00 0 00 0 00 0 00 0 00 2 48 2 5118 01 0 60 1 01 1-Sif 0 32 0 46 0 85 1 50 0 00 2 48 3 5118 11 0 94 1 11 1-Sif 0 46 0 65 1 70 1 50 0 00 2 48 5 5118 20 1 20 1 20 1-Slf 0 58 0 81 2 55 1 50 0 00 2 48 —=:-6 5118 50 1 44 1 50 4-FFt 0 67 0 94 �3 1 50 0 00 2 48 8 5118 81 1 72 1 81 4-FFt 0 77 1 06 4 24 1 50 0 00 2 48 9 5119 18 2 02 2 18 4-FFt 0 86 1 16 5 09 1 50 0 00 2 48 11 5119 61 2 38 2 61 4-FFt 0 96 1 24 5 94 1 50 0 00 2 48 12 5120 11 2 81 3 11 4-FFt 1 05 1 31 6 79 1 50 0 00 2 48 14 5120 67 3 30 3 67 4-FFt 1 16 1 37 7 64 1 50 0 00 2 48 15 5121 31 3 85 4 31 4-FFt 1 32 1 44I 8 49 1 50 0 00 2 48 El inlet face invert 5117 00 ft El outlet in%ert 5115 50 ft E1 inlet throat invert 0 00 ft E1 i'nlet crest 0 00 ft ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 81 24 INLET ELEVATION (FT) 5117 00 OUTLET STATION (FT) 0 00 OUTLET ELEVATION (FT) 5115 50 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0 0185 CULVERT LENCTH ALONG SLOPE (FT) 81 25 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 1 50 FT BARREL MATERIAL CONCRETE BARREL MANNING S N 0 013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDCE WITH HEADWALL INLET DEPRESSION NONE C,`r7 tiir7EC.V --cD 1 CURRENT DATE 10-24-1997 ' CURRENT TINE 10 15 16 TAILAATER ' CONSTANT RATER SURFACE ELEVATION 5117 98 ROADAAY OVERTOPPING DATA ' ROADAAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 1 00 CREST LENCTH (FT) 1 00 ' OVERTOPPING CREST ELEVATION (FT) 5119 00 1 1 1 1 I I 3 FILE DATE 07-07-1997 FILE NAME ST-8 1 GlvE ST 9 ' Path C \HY8\DATA File ST-9 PRN CURRENT DATE 10-26-1997 CURRENT TINE 05 00 20 ■ ■ 7 066 a 10-26-97 5 00 22 am Page 1 1 FILE DATE 07-07-1997 FILE NAME ST-9 FHWA CULVERT ANALYSIS HY-8 VERSION 4 0 C SITE DATA CULVERT SHAPE MATERIAL INLET U L INLET OUTLET CULVERT BARRELS V ELEV ELEV LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 5132 00 5131 00 82 54 1 RCP 1 25 1 25 013 CONVENTIONAL 3 4 5 • FILE ST-9 CULVERT HEADTAATER ELEVATION (FT) ' DISCHARGE 1 2 3 4 5 0 5132 00 0 00 0 00 0 00 0 00 1 5132 52 0 00 0 00 0 00 0 00 2 5132 81 0 00 0 00 0 00 0 00 3 5133 04 0 00 0 00 0 00 0 00 —�j 3 5133 09 0 00 0 00 0 00 0 00 5 5133 50 0 00 0 00 0 00 0 00 6 5133 78 0 00 0 00 0 00 0 00 7 5134 11 0 00 0 00 0 00 0 00 8 5134 51 0 00 0 00 0 00 0 00 9 5135 06 0 00 0 00 0 00 0 00 10 5135 75 0 00 0 00 0 00 0 00 12 5137 31 0 00 0 00 0 00 0 00 The ab ve Q and HW are for a point above the roadway ZElf -iw,4Aj mAX guar 1iF8G6 �4IV D /N 6 !i0 f77brT C.Irg - ;1 P 06 DATE 07-07-1997 6 ROADWAY 0 00to 50 0 0097 0 0025 0 0048 0 0053 0 0087 0 0005 0 0022 0 0038 0 00 53 0 00 68 0 00 00 /?7Ar )POOP aG ec ' 2 CURRENT DATE 10-26-1997 FILE DATE 07-07-1997 ' CURRENT TIME 05 00 20 FILE NAME ST-9 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 1 25 BY 1 25 ) RCP ' DIS- HEAD- INLET OUTLET CHARGE TaATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER ' FLOW ELEV DEPTH DEPTH TYPE DEPTH DEPTH VEL DEPTH VEL DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 5132 00 0 00 0 00 0-NF 0 00 0 00 0 00 0 00 0 00 0 50 ' 1 5132 52 0 52 0 52 1-S2n 0 31 0 39 4 16 0 31 0 00 0 50 2 5132 81 0 81 0 81 1-S2n 0 45 0 56 5 01 0 45 0 00 0 50 3 5133 04 1 04 1 04 1-S2n 0 56 0 69 5 57 0 56 0 00 0 50 3 5133 09 1 09 1 09 1-S2n 0 59 0 72 5 68 0 59 0 00 0 50 5 5133 50 1 50 1 50 5-S2n 0 77 0 90 6 27 0 77 0 00 0 50 6 5133 78 1 78 1 78 5-S2n 0 88 0 99 ; 6 50 0 88 0 00 0 50 7 5134 11 2 11 2 11 5-S2n 1 01 1 05 6 60 1 01 0 00 0 50 ' 8 5134 51 2 51 2 43 6-FFn 1 25 1 11 1 6 52 1 25 0 00 0 50 9 5135 06 2 96 3 06 6-FFn 1 25 1 17 7 33 1 25 0 00 0 50 10 5135 75 3 47 3 75 6-FFn 1 25 1 23 i 8 15 1 25 0 00 0 50 ' E1 inlet face invert 5132 00 ft E1 outlet invert 5131 00 ft E1 inlet throat invert 0 00 ft E1 inlet crest 0 00 ft SITE DATA ***** CULVERT INVERT ************** \r ✓�' "' �' �RA� �'r v z�t> INLET STATION (FT) 82 53 ' INLET ELEVATION (FT) 5132 00 OUTLET STATION (FT) 0 00 OUTLET ELEVATION (FT) 5131 00 ' NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0 0121 CULVERT LENGTH ALONG SLOPE (FT) 82 54 CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 1 25 FT ' BARREL MATERIAL CONCRETE BARREL MANNING S N 0 013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE 1 1 CURRENT DATE: 10-26-1997 ' CURRENT TIME: 05:00:20 TAILWATER ' CONSTANT WATER SURFACE ELEVATION 5131.50 w .. ROADWAY OVERTOPPING DATA - ' ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 1.00 CREST LENGTH (FT) 1.00 ' OVERTOPPING CREST ELEVATION (FT) 5134.50 1 1 1 1 3 FILE DATE: 07-07-1997 FILE NAME: ST-9 TST, INC. Consuming Engineers tCUEN1 ice NO 16 - 7j -46-0 II II II II 1 II PROJECT %r✓�'r A, :> Ca'.CuLcl IONS FOR .ETC •. /� i�GC2 —7/ / / MODE EY ' � CciE , c " CH ECeEG EY CL-E SMEEr � OR L;ti� sr-/o ICA l,I /.. ✓ / G/, ,E .5/- ✓/ VG /%/, rh I:..✓ = c. 0." r{. i Z s .� JrFp( ,5. z Z l 1 /N✓cZ�'A ' STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Gnc, Civil Eng. Dept, U. of Colorado at Denver ' Me-_c_Denver C_-_es/Counties_&-UDFCD Pool- Fund_ Stvdy_____________ ..__-..��._ _no CCnsult.'nq -ncC n eers ............................................. 10-26-1997 AT :ME 10:31:37 \_RSION=07-17-199c ' *** PROJECT TITLE Rcdge - ST-10 :Ha+:ncny *** c''�kRY CF HY--Rr:OL:CS T ---------------------------------------------------------------------------- N,t;NHCLE CNT .BTING Rr,I'.QFF? L RAINFALL DESIGN GROUND WATER COMMENTS ID N,7MBER AREA * C DURATION :NTENSITY PESK FLOW ELEVATION ELEVATI-N__.____--- ' MINUTES :1d C:^:/FR CPS FEET FEET --------------------------------------------------------------------- 1.00 0.00 0..l0 0.CO 11 19 5124.00 _124 NO 2.00 55 E_E.° 0.20 5129.89 OK ' 8 3.00 41.31 _`E3.4e 0.27 ,-. -2.50 -9 5115.25 5132.91 OK 4.00 13.77 131.74 0.6i _-.19 5135.25 5133.28 CK 5.00 13.77 215.07 0.56 1.78 5135.37 5134.92 CK 6.00 2_2.82 i95.cl O.E'_ 7.78 Si35.37 ; 5135.09 OK ' CK MEANS WATER ELEVATION :5 LOWER THAN GROUND EIE\'AT 10N *** SUMMARY OP SEWER HYDRAU,:CS 1 NOTE: _HE GIVEN FLOW ZE?T:?-TC-SES�i-R SIZE RAT_O= .85 ------------------------------------------------------------------------------- SEWER *'.AMHOLE Ni.1✓.BER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIAtRISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ---- -------------------------------------------------------------------------- 12.00 2.00 1.00 ROUND 14.95 15.00 15.00 0.00 ' 23.00 3.00 2.00 ROUND 14.95 15.00 15.00 0.00 34.00 4.00 3.00 ROUND 14.95 15.00 -- 15.00 0.00 35.00 5.00 3.00 ROUND 16.09 i 18.00 - 15.00 0.00 ' 56.00 6.00 5.00 ROUND 16.09 B.00 e- C K 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET ' REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE .SUGGESTED SEWER SIZE; OTHERWISE, ' EXISTING SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. FEET FPS ----------------F-c -- -------------C-S----------------------?5---- 12.0 11.2 11.3 1.01 00.52 _: 1.19 9.30 9.12 1 78 V-CK- 23.0 11.2 11.3 1.01 -O.52 1.:9 9.30 9.12 1.78 V-OK ' 34.0 11.2 11.3 i.C1 1C.52 1.19 9.30 9.12 1.78 v-OK -5.0 7.8 6.5 1.25 6.34 1.C9 6.84 6.34 0.00 V-CK `6 0 7 8 6 5 1 25� 6 24 1.09 6.E4 6.34 0.00 V-CK ' PRC::ZE 'ca'.`'BER=C INDICATES A irRESSURED FLCW OCCURS _ 1` i Lc-714 C- F 5 rtF'r Fc-�c:.�. /✓c ______________________________________________________________________ SEYi£R SLOPE I'.CV'r.RT ELE\=.TI ON BUFI ED DEPTH CC°?iE:vTS T) NU1,2ER UrSTRE';M _QGS-RE;.M ".'PSTREF:4 DNSTR:.=.M PT1 FT) FT) FT) I ------------------------------------------------------- 12.00 3.06 5126.65 5124.00 2.60 --------------- -1.25 NO 23.00 3.06 5131.72 5228.66 2.28 2.59 CK 34.00 3.06 5131.72 5131.69 2.28 2.31 OK 35.00 1.00 5132.42 5131.72 1.70 2.28 CK 56.00 1.00 5132.42 8132.41 1.70 1.71 ON CK MEAr4S BUR:-D --EPTH T-S GREATER TKP.N REQUIRED SOIL COVER OF 1 FEE'" ' *** SUMMARY OF HYDRAULIC G:=ADIENT LINE ALONG SEWERS SEWER SEWER SURC _ARCED CROWN ELE`7=014 WATER ELE\%A770N FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 1-2.00 152.00 0.00 5129.90 5125.25 5129.84 5124.50 - ? 2_.00 :00.15 0.00 5132.97 5129.91 5132.91 5129.84 S.iMP 34.00 1.00 0.00 5132.97 5132.94 5133.28 5132.91 � ' P 35.00 70.21 70.21 5133.67 5132.97 5134.92 5132.91 PRSS'-D 56.00 1.00 1.00 5133.67 5133.66 5135.09 5134.92 P-SS'-D FLOW;. TiP=PCSS:BLE -YDRAULIC jJMP; SUBCR=SlJBCRIITCF3. _-:''W *** SUM!wlKY OF ENERGY GRADIENT LINE ALONG SEWERS ' --------------------------------------------- 'CPST MANHOLE SEWER --------------------------- jUNCTUR7 LOSSES DOWNST PN MFOLE SEWER !✓_=1:'r.OLD ENERGY FiiCTI01v =ET D BEND �TERAL LATERAL '.�.ANHOLE ENERGY ID N0 ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT 12.0 2.00 5131.18 6.68 0.50 0.00 0.00 0.00 1.00 5124.50 23.0 3.00 5134.25 2.71 0.28 0.36 0.00 0.00 2.00 5131.18 34.0 4.00 5134.57 0.00 0.25 0.32 0.00 0.00 3.00 5134.25 35.0 5.00 5135.55 1.01 0.46 0.29 0.00 0.00 3.00 5134.25 56.0 6.00 5i35.72 0.01 0.25 0.26 0.00 0.00 5.00 5135.55 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. ' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I Path: C:\HY8\DATA ' File: ST-11OUT.PRN 8,111 .a.. 7-09-97 10:07:44 am Page 1 1 ^URRENT DATE: 07-09-1997 FILE DATE: 07-09-1997 ;URRENT TIME: 10:05:21 FILE NAME: ST-11OUT I! FHWA CULVERT ANALYSIS HY-8, VERSION 4.0 C SITE DATA CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 79.72 79.50 52.00 1 RCP 2.50 2.50 .013 CONVENTIONAL 2 3 , 4 5 ' 6 FILE: ST-11 CULVERT HEADWATER ELEVATION (FT) DATE: 07-09-1997 5 0.00 6 ROP�7WA .04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DISCHARGE 1 2 3 4 0.00 87.0�; 0.00 8 0.00 88.55 0.00 i 89.04 0.00 � 89.46 0.00 1 89.86 0.00 � 90.23 0.00 i 80.56 0.00 i 90.92 0.00 ` 91.24 0.00 1 91.54 0.00 0.00 1 2 ]URRENT DATE: 07-09-1997 FILE DATE: 07-09-1997 ' CURRENT TIME: 10:05:21 FILE NAME: ST-11 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 2.5 BY 2.5 ) RCP ' DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 79.72 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 3 80.42 0.70 0.70 1-S2n 0.56 0.56 3.65 0.56 2.83 0.18 6 80.81 1.09 1.09 1-S2n 0.80 0.80 4.41 0.80 3.57 0.28 9 81.13 1.41 1.41 1-S2n 1.00 1.00 4.91 1.00 4.07 0.35 ' 12 81.56 1.69 1.84 2-M2c 15 81.81 1.94 2.09 2-M2c 1.17 1.34 1.16 1.30 5.40 5.81 1.16 1.30 4.46 4.78 0.41 0.46 18 82.02 2.17 2.30 2-M2c 1.50 1.43 6._19 1.43 5.05 0.51 82.23 2.38 2.51 2-M2c 1.66 1.55 6.52. 1.55 5.28 0.55 ' 24 82.46 2.63 2.74 2-M2c 1.86 1.66 ,'6.93 1.66 5.50 0.59 27 82.68 2.69 2.96 2-M2c 2.09 1.77 7.27 1.77 5.70 0.63 30 82.88 3.16 3.11 6-FFn 2.50 1.86 6.11 2.50 5.87 0.67 ' El. inlet face invert 79.72 ft El. outlet invert 79.50 ft El. inlet throat invert 0.00 ft E1. inlet crest 0.00 ft SITE DATA ***** CULVERT INVERT INLET STATION (FT) 52.00 INLET ELEVATION (FT) 79.72 OUTLET STATION (FT) 0.00 OUTLET ELEVATION (FT) 79.50 NUMBER OF BARRELS 1 ' SLOPE (V-FT/H-FT) 0.0042 CULVERT LENGTH ALONG SLOPE (FT) 52.00 ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 2.50 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE 1 :URRENT DATE ' CURRENT TIME 07-09-1997 10 05 21 TAILWATER 3 FILE DATE 07-09-1997 FILE NAME ST-11 ****** REGULAR CHANNEL CROSS SECTION **************** BOTTOM WIDTH (FT) 5 00 SIDE SLOPE H/V (X 1) 4 0 CHANNEL SLOPE V/H (FT/FT) 0 050 MANNING'S N ( 01-0 1) 0 035 ' CHANNEL INVERT ELEVATION (FT) 79 50 CULVERT NO 1 OUTLET IA4ERT ELEVATION 79 50 FT ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W S E FROUDE DEPTH \fEL SHEAR ' (CFS) (FT) NUMBER (FT) (FPS) (PSF) 0 00 79 50 0 000 0 00 0 00 0 00 3 00 79 68 1 158 0 18 2 83 0 58 6 00 79 78 1 200 0 28 3 57 0 86 ' 9 00 79 85 1 220 0 35 4 07 1 08 12 00 79 91 1 233 0 41 4 46 1 27 15 00 18 00 79 96 1 243 80 01 1 250 0 0 46 51 4 5 78 05 1 43 1 58 20 82 80 05 1 255 0 55 5 28 1 71 24 00 80 09 1 260 0 59 5 50 1 85 27 00 80 13 1 264 0 63 5 70 1 97 30 00 80 17 1 268 0 67 5 87 2 08 ROADWAY OVERTOPPING DATA ROADWAY SURFACE EMBANKMENT TOP WIDTH (FT) CREST LENGTH (FT) OVERTOPPING CREST ELEVATION (FT) PAVED 1 00 1 00 87 00 1 Path: C-\HY8\DATA File: ST-11_IN.PRN 7,060 .a.. 7-09-97 10:11:02 am Page 1 1 ' CURRENT DATE: 07-09-1997 FILE DATE: 07-09-1997 :URRENT TIME: 10:11:03 FILE NAME: ST-11_IN I FHWA CULVERT ANALYSIS HY-8, VERSION 4.0 C SITE DATA CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV, ELEV. LENGTH SHAPE SPAN RISE MANNING INLET (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE 1 88.00 87.00 15.03 1 RCP 2.00 2.00 .013 CONVENTIONAL 2 3 4 5 6 FILE: ST-11_IN CULVERT HEADWATER ELEVATION (FT) DATE: 07-09-1997 DISCHARGE 1 2 3 4 5 6 ROADWAY 0 89.00 0.00 0.00 0.00 0.00 1_00, 3 89.02 0.00 0.00 0.00 0.00 0.00 91.98 6 89.18 0.00 0.00 0.00 0.00 0.00 ( 92.55 9 89.53 0.00 0.00 0.00 0.00 0.00 ; 93.04 12 89.85 0.00 0.00 0.00 0.00 0.00 ` 93.46 15 90.19 0.00 0.00 0.00 0.00 0.00 93.86 18 9 58 0.00 0.00 0.00 0.00 0.00 I 94.23 _s 21 91.01 0.00 0.00 0.00 0.00 0.00 94.56 24 9 0.00 0.00 0.00 0.00 0.00 94.92 27 i 92.19 0.00 0.00 0.00 0.00 0.00 95.24 30 92.89 0.00 0.00 0.00 0.00 0.00 95.54 42 96.37 0.00 0.00 0.00 0.00 0.00 0.00 The above 4 and HW are for a point above the roadway. \ 2 ;URRENT DATE: 07-09-1997 FILE DATE: 07-09-1997 CURRENT TIME: 10:11:03 FILE NAME: ST-11-IN PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 2 BY 2 ) RCP ' DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH 'FLOW (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 89.00 0.00 1.00 0-NF 0.00 0.00 0.00 0.00 0.00 2.00 3 89.02 0.73 1.02 1-Slf 0.29 0.60 0.95 2.00 0.00 2.00 6 89.18 1.18 1.18 1-Slf 0.43 0.86 1.91 2.00 0.00 2.00 9 89.53 1.53 1.53 1-Slf 0.52 1.07 2.86 2.00 0.00 2.00 12 89.85 1.85 1.85 1-Slf 0.61 1.24 3.82 2.00 0.00 2.00 ' 15 90.19 2.19 2.19 1-Slf 0.69 1.40 4.77 2.00 0.00 2.00 18 90.58 2.58 2.58 1-Slf 0.76 1.52 5_73 2.00 0.00 2.00 -21 91.01 3.01 2*15 4-FFt 0,82 1.63 '6.63� 2,00 0,00 2,00 ' 24 91.57 3.57 2.53 4-FFt 0.89 1.72 ' 7-6-4 2.00 0.00 2.00 27 92.19 4.19 2.93 4-FFt 0.95 1.81 8.59 2.00 0.00 2.00 30 92.89 4.89 3.38 4-FFt 1.01 1.90 9.55 2.00 0.00 2.00 El. inlet face invert 88.00 ft El. inlet throat invert 0.00 ft El. outlet invert 87.00 ft El. inlet crest 0.00 ft r**** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 15.00 INLET ELEVATION (FT) 88.00 OUTLET STATION (FT) 0.00 OUTLET ELEVATION (FT) 87.00 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0667 CULVERT LENGTH ALONG SLOPE (FT) 15.03 CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 2.00 FT BARREL MATERIAL CONCRETE ' BARREL MANNING'S N 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE J 3 -"URRENT DATE: 07-09-1997 FILE DATE: 07-09-1997 CURRENT TIME: 10:11:03 FILE NAME: ST-11_IN ' TAILWATER CONSTANT WATER SURFACE ELEVATION 89.00 �_ ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 1.00 CREST LENGTH (FT) 1.00 ' OVERTOPPING CREST ELEVATION (FT) 91.00 1 i OWN TST. INC. Cons�A,ng Enanees iCLIENT !oe No PROJECT CILCUL4T1CNc FCP l7G-�'M JENE:� Ep._: E" Gl'E _. ✓� /"i✓,`/_- i%G.�/J2 S�%(%67� �GrJYJ �iXE�/R fig S7- � 't Er✓ _-EL•G.�G�/ ��yC A' fad/ -'AFL. :5,Y 7/GG. f'G �� 3 L /✓v<= boy i.`'/ i �H til iLtl✓c 7/0/,17 $/G�c ,72 r 1 "�4?0-4 ay r C l4z REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 0 DEVELOPED BY JAMES C Y GUO ,PHD, PE ' DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINACE AND FLOOD CONTROL DISTRICT DENVER COLORADO ------------------------------------------------------------------------------ J EXECUTED BY THE ENGINEERING CO - Ft C 111rs C lrrad ON DATA AT TIME 1Z; 56 L8 -+�** PROJECT TITLE J THE CHURCH OF LATTER-DAY SAINTS STORM SEWER SYSTEM rro�FF-WoT� i"�e / F—Lvw OF RETURN PE �TeB 9,=ee is —5 vE +ns— 7 F S oz')J 6 CA) (f- il� rt •n nt1,1nw� ��✓ �E�F,4 1� ** SUMMARY OF -------------- TZ: i o w C 4 -2- e�) = S ✓a A'o ( h-0 d A 10-�r J,nP ��e 51 y SUBBAS I N RUNOFF PREDICTIONS ✓ °L'}'V ✓ ✓! A Y I �% d /.� 5 MANHOLE BASIN ID NUMBER AREA * C -------------------- 1 Iw 1n On L rm 1n (t) J j 1)t) 4 0) 10 1() 111) CM 5 (I) In nU ------------------------------------------------- TIME OF CONCENTRATION OVERLAND GUTTER BASIN RAIN I PEAK FLOW Tr (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS ------------------------------------------------- 1) lu) t) (u) t) M) 4 75 47 49 n lu) t) t)O V ()0 4 75 47 49 u tu) t) nl) t) ()() 4 75 47 49 n tu) p nl) n n() 4 75 47 49 n ()t) f) O() 7 48 4 e1 42 l() ' THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES FOR RURAL AREA BASIN TIME OF CONCENTRATION =)ln MINUTES vOR URBAN AREA, BASIN TIME OF CONCENTRATION =)5 MINUTES _ AT THE 1ST DESIGN POINT TC (=(1()+TOTAL LENGTH/18()) IN MINUTES WHEN WEIGHTED RUNOFF COEFF=) 2 THE BASIN IS CONSIDERED TO BE URBANIZED ' WHEN TO+TF()TC IT INDICATES THE ABOVE DESIGN CRITERIA SUPERCEDES COMPUTATIONS 1- ' ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL ID NUMBER AREA + C DURATION INTENSITY DESIGN PEAK FLOW GROUND ELEVATION WATER COMMENTS ELEVATION - MINUTES INCH/HR CFS FEET FEET c =------------------------------------------------------------------------------- 1. (:)il 0. Crir 0. Cr(") O. Q0 42. 10 5102. 00 51(.'10. 80 OK ' - `. 00 C). C)0 8.52 C). ()C) 42. 10 51C)3. ill 5100. 06 OK 3, 00 n, pf) 8. 22 O. nC) 42.10 5104.2i) 51C)1. 11 OK 4.00 0.0O 7.70 0.00 42.10 5106.40 5102.84 OK ' - 5. 00 10. 00 7.48 4.21 42. 10 5107. 75 51 C)3. 49 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION t SUMMARY OF SEWER HYDRAULICS - NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING _ ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH (IN) (FT) (FT) '- ---ID-NO_----ID-NO_-----------(IN)-(FT)-(IN)-(FT) ------ 1.00 2.00 1.00 ROUND 33.48 36.00 36.00 0.00 2. 00 3. 00 2. 00 ROUND 32.36 33. 00 36. CIO 0. 00 _ 3. 00 4. 00 Z. cm-.) ROUND 32.36 32. 00 36. 00 0. 00 ' - 4. 0 ) 5. 00 4. i) ) ROUND 35.43 36. 00 42. 00 0. OC) 1 UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES -DIMENSION DIMENSION UNITS FOR BOX SEWER ARE IN FEET -REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. 'SUGGESTED -=OR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, __XISITNG SIZE WAS USED 1 ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMEN = ID FLOW G FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 1.0 42.1 51.2 2.07 8.09 2.12 7.87 5.96 1.04 V-Or. ' _ 2.0 42.1 56.1 1.94 8.72 2.12 7.87 5.96 1.18 V-OK 3.0 42.1 56.1 1.94 8.72 2.12 7.87 5.96 1.18 V-OK _ 4.0 42.1 66.5 2.02 7.31 2.02 7.33 4.38 1.00 V-ON, - =ROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- _ SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM _ (FT) (FT) (FT) (FT) n ------------------------------------------------------ C i urt.s�7 1,011 0,511 5097,94 5097, 70 2.16 1. 30 NO L - 2.00 0.60 5098.99 5098.04 2.a1 2.06 OK - 3. 00 C.). 6C) 5loC)_ 72 5099. 08 2.68 2.12 OH - 4.00 0.37 5101.17 5 100. 82 3.08 2.08 0N, r-DK THAN REOUIR:ED SOIL COVEROF 2 FEET MEANS BURIED DEPTH I'S GREATER 3 00 9 69 5 67 8 57 5 67 272 62 4 00 397 4 i 4 00 1rl 91 6 25 8 91 6 25 95 00 4 50 168 4 1 OTAL EARTH VOLUME FOR SEWER TRENCHES = 841 5181 CUBIC YARDS EWER FLOW LINE IS DETERMINED BY THE USER 1 EARTH VOLUME WAS ESTIMATED TO HAVE BOTTOM WIDTH=DIAMETER OR WIDTH OF SEWER + 2 * B B=ONE FEET WHEN DIAMETER OR WIDTH (=48 INCHES B=TWO FEET WHEN DIAMETER OR WIDTH )48 INCHES IF BOTTOM WIDTH (MINIMUM WIDTH 2 FT THE MINIMUM WIDTH WAS USED BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE ONE FOOT 1 SEWER WALL THICKNESS=E0IVLNT DIAMATER IN INCH112 +1 IN INCHES �D BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE ONE FOOT SEWER WALL THICKNESS=EDIVLNT DIAMATER IN INCH/1e +1 IN INCHES 1� -*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ' ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW 'ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET -------------------------FEET------FEET------FEETFEET ------- 1. CrCr 47.99 0. (10 5100. ?4 5100. 70 51('-)0. ()6 5100. 80 JUMP 2.40 157.74 0.00 5101.99 5101.04 5101.11 5100.06 JUMP 3.00 272.82 0.00 5103.72 5102.08 5102.84 5101.11 JUMP 4.00 95.00 0.00 5104.67 5104.32 5103.49 5102.84 SUBCR _1 ' PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS 7------------------------------------------------------------------------------ ' UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------ 1. 0 2. O) 5101. Cr8 o. 28 1). Crir 0. OCt 0, pC> 0. ULr 1.('.() 5100.80 2.0 3.00 5102.29 1.06 0.28 ().15 0.00 0.00 2.00 5101.08 i 3. i i 4.00 5104.02 r2 1. 40 n, 60 0. 33 0. i n i 0. Cris 3. 00 5102. 29 J 4. 0 5. 00 5104. 32 0. 00 1. 00 0. 30 0. 00 0. O4 i 4.00 5104.02 ' BEND LOSS =BEND Y,* VHEAD IN SEWER. LATERAL LOSS= OUTFLOW VHEAD-JCT LOSS Y.*INFLOW VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE i NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. /*** SUMMARY OF EARTH EXCAVATION VOLUME FOR COST ESTIMATE. THE TRENCH SIDE SLOPE = 1 ,-MANHOLE---GROUND------INVERT---MANHOLE--------------------------------------- -, MANHOLE GROUND INVERT MANHOLE ID NUMBER ELEVATION ELEVATION HEIGHT FTFT FT -71 ---------------- 00 5102.00 5097.70 4.30 - ----- 1.2.00 5103.10 5097.94 5.16 S.00 5104.20 5098.93 5.21 4. 1'.r0 5106. 40 5100. 72 5.68 5. Cr0 5107. 75 5101. 17 6.58 ------------------------------------------------------------------------------ ' SEWER UPST TRENCH WIDTH DNST TRENCH WIDTH TRENCH WALL EARTH ID NUMBER ON GROUND AT INVERT ON GROUND AT INVERT LENGTH THICKNESS VOLUME FT FT FT FT FT INCHES CUBIC YD wl STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Gue, Civil Eng. Dept, U. of Colorado at Denver ' Metro Denver Cities/Counties 6 UDFCD Pool Fund Study USER:TST Inc Consulting Engineers ............................................ �- ON DATA 01-29-1998 AT TIME 14:52:45 VERSION=07-17-1995 "* PROJECT TITLE :Harmony Ridge ' '** SUMMP:RY OF HYDRAULICS AT MANHOLES ------------------------------------------------ MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 0.00 0.00 0.00 42.00 5102.00 5100.60 OK 2.00 41.31 96.59 2.02 42.00 5103.10 5100.67 OK 3.00 27.54 53.63 1.53 42.00 5104.20 5101.21 OK 4.00 13.77 16.34 3.05 42.00 5106.40 5102.64 OK 5.00 12.82 14.07 3.27 42.00 5107.75 5103.59 OK 1 OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION " * SUMMARY OF SEWER HYDRAULICS SIZE RATIO= 170TE: THE GIVEN FLOW DEPTH -TO -SEWER .85 ' ------------------------------------------------------------------------------- SEWER NJ,11130LE NUMBER SEWER ID NUMBER UPSTREAM DNSTREAM SHAPE REQUIRED SUGGESTED EXISTING DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 12.00 2.00 1.00 ROUND 34.47 36.00 36.00 0.00 ' 23.00 3.00 2.00 ROUND 33.32 36.00 36.00 0.00 34.00 4.00 3.00 ROUND 33.32 36.00 36.00 0.00 45.00 5.00 4.00 ROUND 36.48 42.00 42.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES - DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED 1 ----SEWER-------D----ESIGN------ F-LOW----- --NORMAI--------NORAML------ -CRITIC---- --- -CRITIC--------- F--ULL----F-ROUDE------CON----- , IdE)9T ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. -------R----- CPS -----CFS- FEET -------- ----FPS- ------- FEET -----FPS -----FPS --------------- 12.0 42.0 47.3 2.20 7.56 2.12 7.85 5.94 0.92 V-OK 23.0 42.0 51.8 2.05 6.16 2.12 7.65 5.94 1.06 V-OK 34.0 42.0 51.8 2.C5 8.16 2.12 7.85 5.94 1.06 V-OK ' 45.0 42.0 61.4 2.13 6.87 2.02 7.32 4.37 0.91 V-OK FROUDE NUMBER=0 INDICATES THAT A PRESSURED FLOW OCCURS t-------------------------------------------___-----------------.-----_ SEWER SLOPE INVERT ELEVATION B'URI^D DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREkM UPSTREAM DNSTREPM (FT) (FT) (FT) (FT) ------------------- 12.00 ------------------------------ 0.50 5097.94 5097.70 2.16 1.30 OK ' 23.00 0.60 5098.59 5098.04 2.21 2.06 OK 34.00 0.60 5100.72 5099.CB 2.68 2.12 OK 45.00 0.37 5101.17 5100.€2 3.08 2.08 OK CK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ' - ---------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW :D NUMEER _mu UPSTREAM i LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTR..AM CONDITION FEET ------FEET FEET ------ _----12 00---- -FEET ------FEET ------FEET 47.019----- 0.00 � 5100.95 5100.70 5100.67 5100.60 SUBCR 23.00 157.74 0.00 5101.99 5201.04 5101.11 5100.87 JUMP 34.00 272.62 0.00 5103.72 5202.08 5102.84 5101.11 JUMP 45.00 95.00 0.00 5104.67 5104.32 5103.59 5102.84 SUBCR PRSS'ED=PRESSURED FLAW; JUMP=PCSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICP.L. FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------ U PST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FACTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ' ID NO ID ------------------------ NO. ELEV FT-----FT--K-COEF LOSS FT K COEF LOSS FT ID ------------------------------------- ----FT- 12.0 2.00 5101.44 0.64 0.00 0.00 0.00 0.00 1.00 5100.60 23.0 3.00 5102.07 0.48 0.28 0.15 0.00 0.00 2.00 5101.44 34.0 4.00 5103.80 1.40 0.60 0.33 0.00 0.00 3.00 5102.07 1 45.0 5.00 5104.32 0.23 1.00 0.30 0.00 0.00 4.00 5103.80 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS- OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD ' FRICTION LOSS=O MEANS IT IS NEGLIGIBLE. OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM TUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTI.MATED BY BACKWATER CURVE COMPUTATIONS. 11 I I r L I I I t/X�•lJvL t-./ /�7, 77c; c-fL Z3� c�5 'i PI STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties 6 UDFCD Pool Fund Study USER:TST Inc Consulting Engineers,. ..... ON DATA 01-29-1998 AT TINE 15:02:.39 VERSICN=07-17-1995 *'* PROJECT TITLE :Harmony Ridge '** SUMMARY OF HYDRAULICS AT Kz.NHOLES -------------------------------------------------------------- MANHOLE CNTRETING RAINFALL RAINFALL DESIGN GROUND WATER ' ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCHi Y.R CFS FEET FEET 1.00 0.00 0.00 0.00 44.37 5102.00 5100.80 2.00 41.31 E9.40 1..07 44..37 5103.10 5100.69 3.00 27.54 49.34 1.61 44.37 5104.20 5101.11 4.00 13.77 14.57 3.22 44.37 5106.40 5102.64 ' 5.00 12.62 12.44 3.46 44.37 5'_07.75 5103.70 OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION COMMENTS CK OK OK OK OK *** SUMMARY OF SEWER HYDRAULICS. RATIO= NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE .65 ' ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER ID NUMBER UPSTREAM DNSTREAM SEWER SHAPE REQUIRED SUGGESTED DIA(RISE) DIA(RISE) EXISTING DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 12.00 2.00 1.00 ROUND 35..19 36.00 36.00 0.00 23.00 3.00 2.00 ROUND 34.01 36.00 36.00 0.00 34.00 4.00 3.00 ROUND 34.01 36.00 36.00 0.00 45.00 5.00 4.00 ROUND 37.23 42.00 42.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. F,OR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED t --- -------------NOR -SEWE---R --- --'AM-L --- --- -Ri --CRITIC --------- - F--LOW---'NORMAL.--- D--ESIGN ORMAL. CT.IC--- E'--ULL----F-ROUDE-------COMMEN---- T ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. 1 NUMBER CFS CPS FEET ---- ____---- ____---- _____r___ _ -FPS FEET FPS ___---- ____---- ____---- FPS ____---- _---- __ 12.0 44.4 47.3 2.31 7.6.0 2.12 8.29 6.28 0.88 V-OK 23.0 44.4 51.8 2.14 8.24 2.12 8.29 6.28 1.03 V-OK 34.0 44.4 51.8 2.14 8.24 2.12 8.29 6.28 1.03 V-OK 45.0 44.4 61.4 2.20 6.95 2.07 7.48 4.61 0.89 V-OK FROUDE NUMBER=O INDICATES THAT A c PRESSURED -- .SOW OCCURS --------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COTX2.ENTS ID NUMBER UPSTREAM DNSTREfM UPSTREAM DNSTREA.M (FT) (FT) -------------------------------_------ 12.00 0.50 5097.94 5097.70 --------- -- 2.16 1.30 CK I 1 r 1 1 23.00 0.60 5098.99 5098.04 2.21 2.06 CK 34.00 0.60 5100.72 5099.08 2.68 2.12 OK 45.00 0.37 5102.17 5100.82 3.08 2.08 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS --------------------------- SEWER SEWER SURCHARGED ID NUMBER LENGTH LENGTH FEET FEET ---------------------- 12.00 47.99 0.00 23.00 157.74 0.00 34.00 272.62 0.00 45.00 95.00 0.00 ------------------- CROWN ELEVATION UPSTREAM DNSTREAM FEETFEET ----------- 5100.94 5i00.70 5101.99 5101.04 5103.72 5102.08 5204.67 5104.32 ----------------------------- WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET FEET ----------------------------- 5100.89 5100.80 SUBCR 5101.11 5.100.89 JUMP 5102.84 5101.11 JUMP 5103.70 5102.84 SUBCR .S S'ED=?. ESSURED FLOW; JUMP=PCSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------`--`---------------------------------_ UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT 12 0 ----------------------------------------------------------------------- 2.00 5101.52 0.72 0.00 0.00 0.00 0.00 1.00 5100.80 23.0 3.00 5102.18 0.49 0.28 0.17 0.00 0.00 2.00 5101.52 34.0 4.00 5103.91 1.36 0.60 0.37 0.00 0.00 3.00 5102.18 45.0 5.00 5104.45 0.21 1.00 0.33 0.00 0.00 4.00 5103.91 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. ' LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. ' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 I 1 t 1 I 1 APPENDIX D INLET ANAL YSIS AND DESIGN 1 1 I I I I / I z 0 � � I I I I I z a�� § - 2t$ _ - 82z - -- a� ` ^ � - - \2k -- - - /» - 7 2 _v &— P� _ zz __f z ems¥ \\ § r Lr LC w cr 0 En zz -._ co / / (z §E zzf� _ §Tl< - - _ TST, INC. ConSuhing Engineers CLIENT PROJECT ��` /'-L� V /,7", CALCULATIONS FOR WADE BY DATE /cl 9-7 CNELr.ED By — JOB _ NO T: f 5 1 DATE SHEET / OF ✓ �^ rj / f3/G/.J ki/.;T Z ��: ^;:/ -%.i// %YPf �.��C✓/'S //:c�'l �,j° '��, lnmD = v.SSc tq TCL6fT/ciL �.^cc�T{' — /•iD c e/ IA:Lri /% ;°l l �-- / r rJA.- Z '/ ; i�cr- : j;'rf .� • GL:= < .i: t3.."^ } sA r j ' /%y'h T.^ir i 1 �� �i/� T/A/ S�.t/�— yl+ ?�� %.%�✓..:..'�- ...�� %.'Ja.� rrq-�/ JGL V/ � ... Lj'i [� V*zc'—y =•G� c�jrJ /�`/N. //-YET Ltc'L f' _ ��/r(,Fc� _ ��%' -1 C A'•:.c j = � �///� ' .iii/L/J �i<T I/ //.:LlT. ��yE ���� �✓:-'."�' //✓1i �O � SY/�'.� (,.,✓;AY � /� /Q /` i /'(9/ L'TS . n!/,✓. ;,✓LsT LEiJc-f/ c r74�2,11,tr` - y.�2 �� �--5c ; �') �— 'Ln% /Z /DEFT: y/3• ..,u,. �L.t-'$ //Jz �o Ti Jvmf/ li//cc = :['S•!`/ cr3 /IL,?L'Tr 64A4< /7 = Z, 5 crs /rl 29-^4' G:`CY' b4 Z 1 1 1 1 1 1 1 10 12 5 11 18 4 9 3 10 6 8 F t- LL 2 9 0 4U. H / u- 7 8 3 z 1 5 a / cn 2 { b / LL P z_ f t 10 er 5 _ _ ie_Port a_ 0 J z z 9 _ -8_ ____ w 55 —0 8 M W 6 LL o 7 W 5 Z w 4 U z — z 4 = z 45 Z _ w a.0 3 w 6 v 0 x 0 5 4LL 2 z c� z o LU 3 3 5 w W 4 0 o. -i I 0 LL o 08 W �- 25 3 0 c 06 3 x x o U. z x x 04 25 25 W w 2 a 03 a 02 Q 0 2 2 a a x � c� a 15 01 Uj 0 15 L ti 0 I 0 Yo H 4t t 10 o 2 h 12 Floure 5 2 NONOCRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUI tPS DEPRESSION DEPTH 2 Aocp e,' rom Bure u o1 Public Roaos Nomooraph t AY S84 5 0 DESICN CRI-EFTA 10 9 8 7 6 5 w UJI LL- 4 z L v c� z_ z 3 w a 0 0 25 f- 0 w x 4 15 10 8 10 6 f.. t- w 9 Ow4 3 t~i 8 w �� z i cn 2 L \ 7 tb iw o Example z 1 0 I c° f z Porto z— _ w 55 0 --�__ _ — — a' cn w 6 O ---�o w 5 z 0 Z Z 4 F- - w = 45 z a 3 0 0 — w . lL = 4 - 02 O c� = F- z_ c° - 3 5 z w z w a 0 w 1 ILL ILL 08 w ~ 3 ►- 0 06 = 0 U. z = z 04 ¢ 25 a 03 w � � a 3 a 02 0 2 a = a 01 c L a O O 4y0 I5 --- --- 4 - - -- -- a I = 12 5 4 3 2 15 10 9 8� - { 7 6 5 4 3 25 2 119 Flaure 5 2 NOMOCRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS DEPRESSION DEPTH 2 Aoapied from Bureau of Public Roaos Nomograph I AY 84 5 io DESIGN CRI-ERIA /G u ;11, ,'r / &EST /ac-FT 10 12 10 S 11 8 10 6 8 � � 9 0 4 w 7 u_ / ILL 8 w 3 ��� z — (L cn 2 z c Z_ G' I L z 5 6 ExcT_e_; er 1 0jie,� Z — _'—-8— w 5 5 a -- — a ~ y w -- 6. c� 0 u_ w 5 z O tW 4 f z - z 4 w f- = z 45 z a 3 0 _ w ^ w = 4 o 2 0 0 co z z = z w 3 3 5 z 0 z c o_ 0 w a w J 1 D: U. O O O 08 w F 25 3 0 � 06 _ = 0 0 u_ z _ 25 _ ¢ 04 Li _ w 2 a 03 F a � � 3 a 02 0 2 a x u a 15 01 W 0 L w 0 0 15 --- +-- - - -- -- Yo a I -J- 1 2 5 4 3 2 15 1 0 -o 9 8 7 6 5 4 3 25 2 15 H Floure 5 2 NONOCRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS DEPRESSION DEPTH 2 Acap ed from Bureau o Public Roads Nomoorcph f AY 64 5 10 D SICK CRI- RIA 10 12 5 11 IO 4 ' S 8 3 10 6 8 9 04 a 2 7 LL 8 3 a 1 5 N 2� ' $ Ex nee — 1 0 ? 5 _ 9 %t+i' p= —-8— W ' 55 v ___ —0 8 LiW u- 5 N = z 6 z z z LL o 7 4 4 z 45 z o 3 w 6 ' v a O x 5 4 2 o v z_ z = t- t- 'z W 3 3 5 z v z ° '� 4 ao UJI a W I tx V_ 0 a a 08 o W ►- ~ 25 3 0 II- ~ o 06 ~ 3 _ = o ILL. z = 2 5 i w 04 W 25 2 a 03 F- a } � 3 a 02 0 2 2 a U x b 15 01 c 15 ' L a 0 t o Yo 15 --- -- - - - -- ¢ a ' c 2 h 10 I 12 ' NOMOCRPAH Flcure 5 2 FOR CAPACITJY OF CURB OPENING INLETS IN SUMPS DEPRESSION DEPTH 2 Acap ed rom Bureau of Public Roads Nomoeraph ' I AY 64 5 0 D SIGN CRI-E-IA 10 12 5 10 4 8 10 6 3 8 ~I�� ILL2 9 7 04 /� � 3 8 w -Z 15 a 6 7 b U. L Por{ �e U v ' Exo�p z 10 5 6_ ExeT le Port a_ 10- Z 9 55 cn ------ 0 v 6 8 w U- 5 = z o 7 4 z z 4 z 45 z o 3 6 .. s W 0 W _ 2 0 5 c� z = t- � z w 3 3 5 W 0 W - 0 4 0 0_ I ' U. 0 ILL 0 08 w F 25 3 0 0 0 06 3 _ = � z = 2 5 i W 04 w 25 2 a 03 ~ a � 3 a 02 0 2 2 a = �' a 15 01 0 15 L W ' 0 0 ' 15 --- -- - --I-- -- yo Q -T z 2 h 10 I r 2 NOMOCRPAH Floure 5 2 FOR CAPACITY OF CURB OPENING INLETS IN SUMPS DEPRESSION DEPTH 2 Aeap eo from Bureau of Public Rocs Nomograph I AY 64 5 10 DESIGN CRI-ERIA 1 1 1 1 1 1 10 9 8 7 6 A F- w w u_ 4 z (7 z z 3 w 0- 0 ILL- 0 25 r•- 0 w i� 15 12 5 II 10 4 8 10 6 1 3 �° G 9 ow 4 LL i 2 ILL 8 w 3 z — 1 5 a r 7 POrj b w r �e EX°�P v z 1 0 6- Excrrp e_P rt o_ 1 0 Z 9 J —8- 55 v ----0 8 6 Li " z ILL.5 o 7 c� z Z 4 45 z o 3 6 — w U. _ 4 v 0 2 G O 5 T z O 35 w w 4 a O i Cr ao 0 08 w 3 0 06 3 z _ ¢ 04 25 2 5 wa w 03 +— � a 3 c 02 0 2 2 a u x � a 01 0 15 L LL ' O I O 4y0 15 --- --- — — -- -- a z Le 112 Floure 5 2 NOMOCRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS DEPRESSION DEPTH 2 Acapted rom Bureau of Public Roccs Nomograph I AY E4 5 10 DESIGN CRI-ERIA 10 12 10 S I 1 8 10 6 8 F. t- 9 0 0 4 a 7 LL 8 w 3 z a - 6 7 PoCi, �, 2 \ems / �xo Z L �- z 5 — _ _e P^rt o 55 v ---- a ~ w a w 6 c� 0 w LL 5 = z o 4 z - z 4 w F- = ? 45 z ao 3 - w w = 4 O 2 0 O z x w 3 35 z z z a o w a O w w 25 3 a 0 w 08 0 w _ = 0 06 0 c� z i 2 5 i w 04 z 2 a 03 w �- } I— a 3 a 02 0 2 a a = U F- a 15 01 w 0 L �— 0 o 15 --- t-- - - -- -- -T Yc C ¢ I i 12 5 4 3 2 15 �O 10 9 a 7 6 5 n 3 25 2 15 r. Figure 5 2 N0140CRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS DEPRESSION DEPTH 2 Adcpteo ron Bureau of Public Roads Nomograph I AY 4 5 10 DESIGN CRITERIA TST, INC. ConSuLtnc Emneers CLIENT PROJECT 't �•-: `r /.'i �. C4LCJ.ai.^R5 FOR . M<OE E+' '` - CCF ' -C Ce EC✓.EL Er _ JOB NO CF � ' N �'iJNJ �O ✓�� { % %/J �� � l �PS R �. I•/: /rip" �,� G/rtGc�„ .. ''o Qru� - 4•/u � _ ��Q. ��` / _ ,:. C C�J Cr- Fi.'.i..% L^ ✓Nf/o-! T✓'S •,. l i /JGdT ) Tz �QTt &I LCT /i✓%C1Cc�%7.r.✓ �(L,% — FirD ''/ JiE /!i rT ri✓(r"r No Text No Text TST, INC. ConsuAing Enoinee•s -f 7 -- / CLIENT JOB NO " ✓ •� — r PROJECT-r.v.w.'y /�✓C ram. (. L.c C<LCLL<71ENE COP —r -73 N.z..cE er -„ec�.eo eY ,.c:T �✓'=.5, j.✓ ".i; i✓— 'C�S� L c-� .�„Fc �w�`-/. /• 'i �c T GrJ GiL4 .: / ��/,% •//y� _ I .� ///ry ��/ `�` •c w /4 Jw fi l �. ! �..% 7-5 L.�E-� •; UZ r3 1 .J lT (1 / s _ 'iJ ��✓ -i.w _ ....:"ram ...J � — . r �� — �.� .t.- Me i C% f/0 i %/✓7�;Y-4a /'?...✓ Cam..✓(r%/.[ = �G TALL 1 '- I I No Text No Text 0 1 1 APPENDIX E CHANNEL, SPILL WAY, AND RIPRAP DESIGN 1 1 1 1 1 1 1 1 I 1 1 1 n F 1 < '� - ✓. f< r r.<<v<<< VJ V: r, 1r m G'<<✓.iv. i_ <,<'i <j< < ji< < < < 1 <.< < UU fir: �zi"z- nacre zi Inc l�_� r. c < z zz « «< zzz lip Z'Z iI�IZ z'z C�(.'�.•. MIZ''n h Z'N�r 1pj Z VII p z Z ZZlc :z Z Z d -_ Z Z o d c 5 Z ` v < N r rv'o' T ZIz z x Z Z Z �Z Z r N h N N n a n _ Z �.. ZIZ Z O Z Z'Z o -- z z CIO C, �^ < ^ i^BIZZ.Z. 771 <'«+f << Z O M vi n - z << Z N Al Mf �.h - ti <I< - x - = < Z.Z.<.Z'Z < Z Z z: Z Z.Z'Z L'^, _ < < _Z L.. 1. J. I z i1 C! S u �s N DRAINAGE CRITERIA MANUAL 001 I;. RIPRAP I TYPE) L 4i 2 4 Y /D 6 8 10 t Use Do Instead of D whenever flow is supercritical In the barrel **Use Type L for a distance of 3D downstream FIGURE 5-7 RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET 11-15-62 URBAN DRAINAGE 8 FLOOD CON-ROL DIS-RICT DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap A Smaller Than Intermediate Rock * d50 Designation Given Size Dimension By Weight (Inches) (Inches) Type VL 70-100 12 50-70 9 35-50 6 6** 2-10 2 Type L 70-100 15 50-70 12 35-50 9 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 50-70 24 35-50 18 i8 2-i0 6 Type Vk 100 42 50-70 33 35-50 24 24 2-10 9 *dSO = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit. One of the major advantages of wire enclosed rock is that it provides an alternative in situations where available rock sizes are too small for ordinary riprap. Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be f?shioned into almost anv shape that can be 11-15-82 I 1 Table 8.1 lists several gradations of riprap. The minimum average size designation for loose riprap shall be 12 inches. Smaller sizes of riprap shall be either buried on slopes which can be easily ' maintained (4 to 1 minimum side slopes) or crouted if slopes are steeper. Grouted riprap should meet all the requirements for regular riprap except that the smaliest rock fraction (smaller than the 10 per- cent size) should be elimirated from the gradation. A reduction of riprap size by one size designation (from 18 inches to 12 inches or from 24 inches to 18 inches) is permitted for crouted riprap. � Ctie K LL4 Table 8-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP ' % of Total W eight Smallerthanthe Stone Size d„t Riprap Designation Given Size (in pounds) (inches) 70-100 85 ' Class 6It 50.70 a5 35-50 10 6 2.10 <1 ' 70-100 440 Class 12 50.70 275 35-50 E5 12 2.10 3 ' 100 1275 Classl8 50.70 655 ' 35-50 275 18 2.10 10 100 3500 Gass 24 50.70 1700 35.50 655 24 2.10 35 t d,o= Mean Particle Size. At least 50 percent of the mass shall be stones equal to or larder than this dimension. ' 'rt Bury on s to 1 side slopes or orout rock B slopes are steeper. Table 8-2 summarizes riprap requirements for a stable channel lining based on the following relationship: ' VSo.17 5.9 (dsd)�r"— = in which, V = Mean channel velocity in feet per second S = Longitudinal channel slope in feet per foot S, = Specific gravity of rock (minimum Ss= 2.50) dso = Rock size in feet for which 50 percent of the riprap by weight is smaller. ' The rock sizing requirements in Table 8-2 are based on the rock having a specific gravity of 2.5 or more. Also, the rock size does not need to be increased for steeper channel side slopes, provided the side slopes are no steeper than 2h:1v. Rock lined side slopes steeper than 2h:1v are not ' recommended. Table 8.2 RIPRAP REQUIREMENTS FOR CHANNEL LININGS tt t vSo.17/(S.. 1)e.ae t Rook Type lit 0 to 1.4 No Riprap Required ' 1.5 to 4.0 Class 6 Riprap ' 4.1 to 5.8 Class 12 Riprap 5.9to 7.1 Class 18 Riprap 7.2to 8.2 Class 24 Riprap ' t Use S. - 2.5 unless the source o! rock and rs densities are known at line time of desgn. lit Table valid only for Frondenumber of O.B or less and s,ce slopes no steeper than 2h:1 v. MAY t9&4 5-18 DESIGN CRITERIA I d TST. INC. Consuiung Engloeers CLIENT PROJECT �'� iXt/ F ✓•.� CLLCULtiiCNs FOR MADE EY l Iii pt'E. '� ! LHECK EC By _JCEND �C-(.iJl-tcV E S-EE, Cr �G•c: c.c�.r c' //,�`IPrr,P Tc-=✓`J� I'E2 �jr lr� %i-<rti.�LE roc /?� 5 =:t.,,';. f;=��✓ �a �=.t< �� �n e`C-e�.,< Serer )� T �ua-ee /7cPT✓ f. r%=E ✓/FM J E— izs 3.75 rf �-- G- (-z C)( Lq - Z) = S. �l t- G <. Sly _g) = o•Z9 -r4 ,s3 Am ut;z rv. C; ��3ba sC � 44 F�CsrJ L%'S 5T G 30 " d Yr,� c�tz,-;!O , , ) 0:5Ztm C5£ L"3.7 3C•z•�' 75 rf 4-- ,7i3�tr:-�rG ES ri.Jx lyryc�/.:G ��,-'6./J 4-- 11 DRAINACE CRITERIA MANUAL 8 7 RIPRAP A = Expansion Angle �sAA Is wars WMAN VAI A FAA I�PAV 1 2 S 4 0 b / c TAILWATER DEPTH/ CONDUIT HEIGHT Yt/ D FIGURE 5-9 EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE & FLOOD CONTROL DISTRICT tFile: DP_17 Harmony Ridge -- Existing Drainageway at DP 17 INPUT DATA: ' DISC _-.~GE _ BOTTOM WIDTH _ BED SLOPE _ SIDE SLOPE _ MANNINGS N RESULTS: ^NL - Non .. .L DEPTH - FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH FROUDE NUIVEER SPECIFIC ENERGY= INPUT DATA: ' DISCHARGE _ BOTTOM WIDTH = BED SLOPE SIDE SLOPE MANNINGS N RESULTS: NORMAL DEPTH - FLOW VELOCITY = HYDR. DEPTH ' TOP WIDTH FROUDE NUMBER = SPECIFIC ENERGY= 1 8.010000 CPS�— uZ 5.000000 FT 4.000000E-02 FT/FT 15.000000 3.50000CE-02 2.935871E-01 FTr- 2. 900005 FPS 4— /_.: 2.000392E-01 FT 13.807610 FT 1.142650 4.241776E-01 FT 28.970000 CPS to 5.000000 FT 4.000000E-02 FT/FT 15.000000 3.500000E-02 5.408747E-01 FT F 4.083599 FPS 0-% Ri�Kn? 3.342199E-01 FT 21.226240 FT 1.244798 7.998154E-01 FT ILG-Ww 15 ' I File: DP 16 Ha:ncny :Ridge -- Existing. D:ainzoeway a,. DP 16 INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ N.7-1Q,1:J;GS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DTSCHr 2GE - BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE NIAI KINGS N RESULTS: NORMAL DEPTH - FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH FROUDE NU!,BER = SPECIFIC ENERGY= II 7.720000 CPS r Lr�z 40.000000 FT 4.550000E-02 FT/FT 7.500000 3.500000E-02 9.896164E-02 FTC 1.913652 FPS 9.724545E-C2 FT 41.484420 FT 1.081435 1.558260E-01 FT 28.450000 CPS 40.000000 FT 4.550000E-02 FT/FT 7.500000 3.500000E-02 2.155134E-01 FT 3..172528 FPS 2.074266E-01 FT 43.232700 FT 2.227567 3.718011E-01 FT IL File: DP 15 Harmony Ridge -- Existing Drainageuay at DP 15 INPUT DATA: DISCHARGE = 6.790000 CFS -i-- I z BOTTOM WIDTH = 40.000000 FT BED SLCPE = 4.350000E-02 FT/FT SIDE SLOPE = 20.000000 M:ANNINGS N = 3.500000E-02 RESULTS: NORMAL DEPTH = FLOW VELOCITY HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= 9.231949E-02 FT f- _ 1.157202 FPS--- a, X 8.S4376SE-02 FT 43.692760 FT 2.041297 1.4022661E-01 F^1 INPUT DATA: DISCHARGE = 25. C40000 CFS -- BOTTOM WIDTH = 40.000000 FT BED SLOPE = 4.350000E-02 FT/FT SIDE SLOPE = 20.000000 MANNINGS N = 3.500000E-02 RESULTS: NORMAL DEPTH = 1.994989E-01 FT E-- FLOW VELOCITY = 2.852687 FPS -0--po KPRA? HYDR. DEPTH = 1.829450E-01 FT TOP WIDTH = 47.979960 FT FROUDE NUMBER = 1.175346 SPECIFIC ENERGY= 3.258626E-01 FT II tFile: DP_20 Harmony Ridge -- Existing Drainageway at DP 20 cFr T, w ES INPUT DATA: DISCFAR'GE = 28.050000 CPS 1E %z BOTTOM WIDTH = 15.000000 FT BED SLOPE = 3.3.30000E-02 FT/FT SIDE SLOPE - 7.500000 MANNINGS N 4.500000E-02 RESULTS: FTC NORMAL DEPTH - 4.686953E-01 FLOW VELOCITY = 3.231742 FPS 4—' �•rO '-'°r- FYDR. DEPTH 3.935792E-01 FT ' TOP WIDTH 22.030430 FT FROUDE NUNBER 9.073442E-C1 SPECIFIC ENERGY= 6.308716E-01 FT INPUT DATA: ' DISCHARGE = 1.05.170000 CFS� BOTTOM WIDTH = 15.000000 FT BED SLOPE 3.330000E-02 FT/FT SIDE SLOPE 7.500000 MANNINGS N 4.500000E-02 RESULTS: ' NORMAL DEPTH - 9.690415E-01 FT* o K,eccr nEi:J"�� FLOW VELOCITY = 4.874223 FPS c--✓ - HYDR. DEPTH 7..305338E-01 FT TOP WIDTH 29.535620 FT FROUDE NUMBER = 1.004980 SPECIFIC ENERGY= 1.337955 FT II II II File: DP_19'. Harmony Ridge -- Existing Drainageway at DP 19 ' INPUT DATA: DISCHARGE 28.570000 CFS BOTTOM WIDTH 5.000000 FT BED SLOPE = 5.350000E-02 FT/FT SIDE SLOPE = 5.000000 NiANNINGS N = 4.50000CE-02 RESULTS: NORMkI, DEPTH 7.419614E-01 FT F' FLOW VELOCITY 4.420459 FPSf—�=� - HYDR. DEPTH = 5.2C3969E-C1 FT TOP WIDTii 12.419610 FT ' FROUDE NUMBER 1.0798-12 SPECIFIC ENERGY= 1.045385 FT ' INPUT DATA: DISCHARGE 103.860000 CFS-6 ' BOTTOM WIDTH 5.000000 FT BED SLOPE = 4.350000E-02 FT/FT SIDE SLOPE 5.000000 ' MANNINGS N 4.500000E-02 RESULTS: NORMAL DEPTH 1.36.9520 FT t— _ FLOW VELOCITY 6.257596 FPS- HYDR. DEPTH = 8.785630E-01 FT TOP WIDTH 18.895200 FT FROUDE NUMBER _ 1.176503 SPECIFIC ENERGY= 1.997556 FT 1 , II r � y r'✓� y J 4 File: DP 18 Harmony Ridge -- Existing D.rainageway at DP 18 INPUT DATA: DISCHARGE = 31.930000 CPS E- LQ� BOTTOM WIDTH = 5.000000 FT BED SLOPE = 5.71000CE 02 FT/FT SIDE SLOPE = 5.000000 MR.NNIN'GS N = 4.500000E-02 RESULTS: NORMAL DEPTH = 7.326786E-01 FT* -- FLOW VELOCITY = 5.029531 FPS •— 20 c =zr� HYDR. DEPTH = 5.150164E-01 FT TOP WIDTH = 12.326790 FT FROUDE NUMBER = 1.235064 SPECIFIC ENERGY= 1.1007 FT INPUT DATA: DISCHARGE = 109.580000 CFS BOTT0M WIDTH = 5.000000 FT BED SLOPE = 5.710000E-02 FT/FT SIDE SLOPE = 5.000000 MANNINGS N = 4.500000E-02 RESULTS: NORMAL DEPTH = 1.336057 FT '- FLOW VELOCITY = 7.015784 FPS, evony K 00' " HYDR. DEPTH = 8.503145E-01 FT TOP WIDTH = 18.368570 FT FROUDE NUMBER = 1.340183 SPECIFIC ENERGY= 2.101162 FT _ File: DIP II If II II II II II II II II II i1 Des-cn Pci;t 11 Overflcw Swale INPUT DATA: DiscK7-.RGE _ CM W1 BED ELCPE _ SIDE MANN.I.NGS REs'CL-S LCW r w - _NPUTAT.S: D-_S-v-t RGE _ B-TTOM WIDTH BED SLOPE _ SIDE SLCFE _ M.P.NNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH. _ TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: N 0Fvr=iL D-P T5 = F-OW=.1^vC:7Y TOP W_I"r. _ FRO�DE '.2:.^.✓DER = 5.1E0000 CFS� C.000OCCE-00 _ 2.000000E-01 FT/FT 6.000000 3.500000E-02 6.149E50 FPS 1.87C"_C8E-Gi ._ 4.4EE612 -, 2.5vE12S 17.E90000 CFSe-G u� 0.0�000�00E-00 FT V c. OOI.'CO.E-Cl ,T/,T 6.000000 3.500000E-C2 5.934785E-01 FT 8.3E9792 FPS 2.967747E-Gi FT 7.121742 FT 2.707530 1.681265 FT 23.530000 CFSC-Ll. 0.000000E+00 FT 2.000000E-01 FT/FT 6.000000 3.500000E-C2 6.604773E-Cl FT- 8.987601 FPS 3.303232E-01 FT 7.925727 FT 2.75579= 1.G147/8 ?: f 4. � J � �, C F_-e:DP 1 r.armcny R-doe -- Snbhasln Al Channel INPUT DATA LISC = 10.50000C CFS-e G,.z .=TRGE BOTTOM WIDTH = 3.000000 FT BED SLOPE = 5.500000E-02 FT/FT SIDE SLOPE = 5.000000 NCRV;-1 -.._ n = E.031 ECE-01 _-e FLOW VELOC=TY = 5.374497 Fps'�.c DEPTH = 4C112 U9L-C1 _ ^CP WIDTH c 9.U35 E0 ._ FROUDE NUMBER = 1.49433t SPECIFIC ENERGY= 1.0517C4 ._ M SCHh.RGE = 56.670000 CFS -- BOTTOM W:D7u = 3.000000 FT BED SLOPE = 5.50000CE-02 FT/FT SIDE SLOPE = 5.000000 N,ANNINGS N = 3.500000E-C2 RESULTS: NORMP.L DEPTH = 9.985213E-01 FT e— FLOW VELOCITY = 7.125076 FPS HYDR. DEPTH = 6.146737E-01 FT TOP WIDTH = 12.985210 FT FROUDE NUNMER = 1.601545 SPECIFIC ENERGY= 1.766824 FT �cc-yp ,< s e: =F 2 :'.armc. v Rioge A6 Channel �- - 2 GE = 6.570000 CFS c Gz 307_TON W:-T3 = 3.000000 FT =7-D SLGPE = 7.500000E-02 FT/FT S==E SLCPE = 4.000000 tdII N:NGS N -S FTE— FLEW 1,=10Ci7Y = 4.6G4233 FPS Y=R. _r=a = 2.529545E-C1 ... .CP W_T^ FRGUD^� tvti^!�ER = 1.6132 �4 SPEG`C E]dE ='ISC:rKGE = 19.160000 CFS "_ U._c ACT —CM W7—'.0 3.0.:000O FT BED SLCPE = 7.500000E-C2 FT/FT SIDE SLOPE = 4.000000 YJNNINGS N = 3.500000E-02 kLS'vi: S: NORMAL DEPTH = 5.769110E-01 FT 4— FLOW VELOCITY = 6.255637 FPS HYDR. DEPTH = 4.021680E-01 FT TOP WIDTH = 7.615288 FT FROUDE T^JNSER = 1.736364 SPECIFIC ENERGY= 1.164605 FT �Lo ya s —2 J :__e:DP 5 Fa-=cny Ridge -- Sub--a=in A9 Channel INPUT -.. DISC .=.RGE _ SCTTC*, WIDTH = EED SLOPE _ SIDE SLCF— _ REs.LTs: FLOW \=LOCITY - HYDR. .CP ViI_... - SPEC_c_C ENERC"= INPUT DATr.: BCTTOM Y;I DTH = SIDE SLOPE _ NJiNNINGS N = RESULTS: NOR ikl, DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE N'UN.BER = SPECIFIC ENERGY= I I II II II II 2.170000 CcS� yz 5.000000 FT 2.500000E-01 FT/FT 5.000000 3.SOOGOGE-02 9.4919-_"_r2 FT E 77 5.9497°� FT 2.4856E3 3.c5142cE-01 FT 5.750000 CFS 5.000000 F"I .2.500000E-01 FT/FT 5.000000 3.500000E-02 1.674940E-01 FT f- 5.878095 FPS — r2iFRA? PeQL� 1.465494E-01 FT 6.674940 FT 2.705931 7.040151E-01 FT pc -yR � � 1 �2' e 1�- J Path: C:\UTILS File: DP-8 1,243 .a.. 7-10-97 11:09:14 am Page 1 HARMONY eReQ-t'nM --- CHANNEL CONNECTING PONDS Al2 AND All INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= ' INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE SIDE SLOPE _ MANNINGS N = ' RESULTS: NORMAL DEPTH = ' FLOW VELOCITY HYDR. DEPTH = TOP WIDTH = ' FROUDE NUMBER SPECIFIC ENERGY= II 7.50000-0E-01 CFS- 1.500000 FT 2.000000E-01 FT/FT 4.000000 3.500000E-02 1.057053E-01 FT � 3.691717 FPS -• 8.661062E-02 FT 2.345642 FT 2.210624 3.173322E-01 FT 2.000000 CFS. 1.500000 FT 2.00-0000E-01 FT/FT 4.000000 3.500000E-02 1.806704E-01 FT 4.978857 FPS G /fir 1.363834E-01 FT 2.945363 FT 2.375860 5.655929E-01 FT 91 F_2e: P a3 1:2rmcny R_dge -- Tract 2 Channel =NPUT rATA: SCE ..E-_2 N--P L-L _LP.L = _.3eC27 E-C1 F_ _LOW 77---C = Y = 2.E50393 :_S r. '_R. _c" n = _.65950GE-01 ._ =CP K=_-.. = 2.71-2219 FT -.22C270 -N_ T -ATP.: 3OTTO1.1 Wil== _ EED SLCPE _ SIPS RESULTS: NORMAL DEPTH = FLAW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPEC:IFIC ENERCY 4.250000 CFS 0.00000CE+00 5.000000E-02 FT/FT 4.000030 ?.S000GCE-C2 5.27100EE-01 _ 3.E24912 FPS 2.635020E-01 FT 4.216805 FT 1.313i11 7.54273EE-01 FT I 1 I 1 t 1 Sti Z ! J Ji 1pm it I w z— c i f = „ O O��ar MR AIN n ,F+N C¢¢ CC pp C iC p— O F iE CiC 8 818 C O:C C O l O O ! O d 1� t 8 C 0 C 0 C 0 O O C C C C C -1CY {<i CIO CO OiE aY z z5z Foz :Har7cny Ridge P.U.D. Typical Side Lct Swale Capacity Check RGE BCTTOM WIDTH = QED SLOPE _ SII: SLCP_ _ !✓zt.N l!c GS N = P.ES"=S: N C PI,}' L L'=PTH = cnD SLOPE _ S_LE SLCPE _ K;2 N_NGS N = ..ESi,LT'S: NCRP':U DEPTH = FLOW VELOCITY = BY--R. DEPTH = TOP WIDTH = FRCUDE NUMBER = S'ECFIC INPUT DATA: DISCHARGE _ BCTTOM WIDTH = EED .SLOPE _ SIDE SLCPE _ Mi+ NINGS N _ RESULTS: LC'�.ti ,v ZLOC.1 = HYDRI. DEPTH_ .CP WIDTH _ S=VCITiC VN7E -G'c= 3.4000OCE-Cl CPSc-6�_ 0.000000E-0O :T E.ECC000E-03 FT/FT E.00C'CC0 3.500000E-02 2.555565E-01 6.6E-1272E-C1 -PS .2 _.2E000(1 CPC �—✓vo C.00000C -CO FT 6.E000CCE-C3 FT/FT 6.000000 3.50000CE-C2 9.177990E-01 FT 1.202992 ..FPS 2.089399E-01 FT 5.012986 FT 9.637995E-01 9.402209E-01 FT 1. 660000 CFS t— C co 33 0.000000E-00 -T 6.600000E-C3 FT/FT 6.000000 3.E000OCE-02 2S27E0 FPS 2.32IGc9__ 5 84CS6 FT 4.722465- vl 4. Sl2Slsc-.1 _ _ aIF3 m I 1] Swale behind Lot 30 Attenuated Runoff for Lot 30 (Attenuation of flow from Lots 30 31 32 35 &36 Please see Individual Lot Runoff table for individual lot values ) Area Tc(2) Tc(100) I(2) I(100) Q(2) Q(100) Ac C Cf(2) Cf(100) min min in/hr in/hr cfs cfs 1 79 41 1 0 1 25 10 96 9 39 2 4 7 0 1 75 6 37 Tc value used for attenuation is highest value of individual lot being attenuated INPUT DATA DISC'-.ARGE = 1 750000 CFS BOTTOM WIDTH = 0 000000E+00 FT BED SLOPE = 9 000000E-02 FT/FT SIDE SLOPE = 6 000000 MANNINGS N = 3 500000E-02 RESULTS NORMAL DEPTH = 2 894958E-01 FT FLOW VELOCITY = 3 478057 FPS HYDR DEPTH = 1 448364E-01 FT TOP WIDTH = 3 473949 FT FROUDE NUMBER = 1 610534 SPECIFIC ENERGY= 4 773356E-01 FT INPUT DATA DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS NORMAL DEPTH = FLOW VELOCITY = HYDR DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS NORMAL DEPTH = FLOW VELOCITY = HYDR DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= 6 370000 CFS 0 000000E+00 FT 9 000000E-02 FT/FT 6 000000 3 500000E-02 4 699760E-01 FT 4 805508 FPS 2 350404E-01 FT 5 639722 FT 1 746788 8 285623E-01 FT 8 470000 CFS 0 000000E+00 FT 9 000000E-02 FT/FT 6 000000 3 500000E-02 5 229778E-01 FT 5 160502 FPS 2 615333E-01 FT 6 275733 FT 1 778281 9 364992E-01 FT TST, INC. CensjllinD Engineers CLIENT JJOE NO. t LL PROJECT ! /���^'✓V 1( �r-� ~'�'��' CLLQRATIONE FOR 5r, iLw1!Y/ MADE BY '/�` DA'E / /-' S % CHECKED BY DATE '_nE ET / GF o2 ' = �r-!?r<5;�✓ f rd �E[�/�= N ,✓n. cello✓ 07.o Cd-5 't Z— c✓J..r _ .�=�M r r!-. �, 5, ' �%cF0 C:v_ �L� _ e I SVC>IicS.n7 4/0-F.c�7 Ni✓/n �.7.?�G�. .. vr L.S. /:i fU✓O { NGI�r.LL U.J. r= �4Z zz= Q:Cw4H' I -1 1 "wTST, C. Consunn6 Engineers /0' CLIENT JCB No. 1 PROJECT /.�r K! 1/ Y 'IC �( v l- •. �. CALCULATIONS FOR !Cl" i L—"• s MADE BY CITE i �� - C�.EC'-EO Ev DATE $MEET CE 1 =/CCU A4 : C=< 7 l fVc L ` zz 1 = : �• �; FA �- �✓OGMnL. W.S. ieGry2. �f-S. � ., i�-.s L o1"Pn zy.•ecP 1 &-cwLu3iZ 1 r _ Lo' n5' Ji II O' a ' TcT INC 5 CC r- 1 1 1 1 1 1 1 1 1 1 ce 5 C E _ F EC7 DE E 42 41 40 LO 39 _N 38 t=0 u 37 3 36 c 35 o 34 33 32 31 30 D E c E JC E D ,, 1 ,,' c c D ��'�L. -WAY /VV I5� C III ' i H=giy en M1¢'stl h'=Eesi6n M1eaE v-r.sewAe ww1/1 J W !2 1 U E U 19 0 U 17 0 02 04 06 08 10 12 14 H/h' TA5Lc F;zn-A FLUM Mt GUAAWIC.5 1ea=j E-KintNe-Riva APPLIc�-nO eigh'-h ed ifion, by Daugher+y , Frcinzini and Finnertiore, , �Je 434� F5ure- 12 31 I 1 1 1 LJ 1 1 1 APPENDIX F DETENTION POND ANAL YSIS 1 1 1 1 cez a oc OC } C N N Cl, N N N N N N N N rl a- �. �. N x �r x r x v ,- r r N ,y cc C .. N N C C �.. r '� h Vn T N---- 5z - TST, INC. Consutling Engineers CLIENT JOB NO. 1 _ �''-- E /� -:r- PROJECT /'/'F �i CALCULATIONS FOR !C/ E/J �m F `� -7 / MADE BY DATE �� CNEC✓EO 6Y DATE BnEEi OF =AJ .% ice^c�. C F ;;� T �.1 �, r:i ���• �Y i_ r�� /J i M1G/ VIA ' �//�l �/7: �, /!': �rG✓Y.r✓LE A�FI'� :�r� .C_J�% C�j `� J/$ fj �S;rilK 'i� �,<LZ//!. L%if N-/�CC 1 1 -.,� r*><F• ���-Rr��-/:� ,c �n:.^5= fr'PA .�>/!J jf' = Z.Y� /*G - 1 :1.' UCJ Fes;:?cM !31-- % rl�, •T+GVS i-7z CS 7 1 i 1 ' 1 1 i. 1 1 TST, INC. CDnsunmg Engineers ' CLIENT II II 91 JOB NO. /A, -' 7S-=G'c PROJECT - - CALCULATIONS FOR �r-iF� �'C �✓ 2 MADE By �n' .� - DATE4 `�r / "A7 CHECKED Ey DATE SHEET Z OF 3 �i�J ��%1/-Y � ;%•'SL.�in�ES •t /r EC'.!/-�.CY //�.lK CL'fRi /JbZ ZS 5 rJ<f. /.'.C-v,Z U i. yZ �t� v E^ COCO— A'. %y aJ IC i � �• a. �•L r, zR= ,03 ZZ zr Gil II II II II II TST, INC. ConsuAing Engineers CLIENT JOB NO PROJECT PROJECT /','/j<<?'Gn%Y" '"Lf /-w.D CALCULATIONS FOR J£"✓rNTc1.) C MADE EY ` r DATE `L 1z� CHECKED 6Y OAT E. SwEE+75Cc� Sr-/ ; fi4Lcg i4� CFI�LE /pR'F% U,ry .e Ft4c� c✓C4 GC:=iLF lb•, I 1 1 1 1 1 r I 1 APPENDIX G EROSION CONTROL CALCULATIONS I RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: <I4�( nai✓� C bGc v,n STANDARD FORM A COYPLETED BY: DATE: DEVELOPED ERODIBILITY Asb Lsb Ssb Lb Sb PS SLBBASIN ZONE (ac) (ft) M (feet) M M Ci..^ yr✓ w. �0 41s 4, a sa ?. 1 3 /,cc7,47 3•4 C1 o .2. f g. 4o iL J.So 1--/, -7 MARCH 19S1 8-14 CESICN CRITERIA EFFECTIVENESS CALCULATIONS /_///Znoi✓-i -0Gc I.v,O. STANDARD FORM B COMPLETED BY: yG L DATE: Erosion Control C-Factor ?-Factor Method Value Value Comment S: C:..d• YAP lGU G.J9 Y=4T-4c/i.[... -. ../: PROJECT: 1L ,. 1 1 [1 1 Is EFFECTIVENESS CALCULATIONS PROJECT: STP.NDARD FORM B COMPLETED BY: V6 L DATE: 97 Erosion Control C-Factor P-Factor Method Value Value Comioent TiLp /, Gi p•JD SSA-.6ALZ vfM f.00 0.8u G.ul I,vo p �Ti G /w,.�p �..✓� P'-fe- S c ?4 *'AJOR PS SUB F -REA BASIN) ($) BASIN (Ac) CP.LCJIATIONS ./ n v cK,�x.��i — 76 47 .%✓� (. Tj_C7�1 C jb tF�= Z'/-Z�GG."C&� �i � GJ /o• � � :rc� IMARCH 7SIC 1 E-15 DESIGN CRI7ERIA EFFECTIVENESS CKLCL-UTIONS PROJECT : f �/Lr.</W'y 2 L' G c • v, D • STANDARD FORK B CO?•.^rLETED BY: V6 L DATE: Erosion Control C-Factor P-Factor Method Value Value Comment ;r,Ap .i �i 2�-./ OAlt; lA,, I.GD D•�L) I vJ I,uv J. L I iO r. ✓c-1 MAJOR PS SUB AREA BASIN (AC) CALCULATIONS c✓ rf f(/v p.sU ADO %Sep' rti . i2tir ram = b -7 t C-r wt i = J.; ✓ Atd F✓ t f'-iFrt � •J� s MARCH 1_<E1 E-15 DESIGN CRITFR:A it 1 I EFFECTIVENESS CALCULATIONS PROJECT: STANDARD FORM B COMPLETED BY: D& L DATE: Erosion Control C-Factor P-Pactcr Method Value Value Cc=dDent Seo., A G(i 4i, Z7D Far-r,ic/✓_zt,;•� S I'�✓PL L7J. p lrYG G�..�•o ✓� MAJOR PS SUB Aa EA BA.SIN ( $ ) BASIN I (Ac) I CALCL'LATIOA'S i Ole 14 i. r �> r� /�✓ / J LL4C l t . L7 = L•�,SIC,GI!'LC.Js-C.G(.� a ✓'E f-�AcT..n cat P ja��ti = v. EG N.ARCH 1W £-1 S DES ICN CFI-, EFIA I i 1 FFECTIVENESS CA?CUUTIONS PROJECT: f///Lrcy-r /L:Cac v,0. STANDARD FORM B COMPLETED BY: D& L DATE: Erosion Control C-Factor P-Factor Method Value Value Comment . �ZU•...�.,.+Y. F.p /, G'✓ D.aD rGST-.r/O�t t; ;-� r...�/S MfAJOR PS SUB ARZA BASIN ($) IBASINI (AcQ) CALE CUTATIONS !r. t f- r�/-- �e (,y- �,i it •.%jam -�.✓a -tP-Rx4A `>-F = , -� r�iGt%"K.- i:, = Ci6.a Ga I. �0 r 7Ft0 441's W, C-RAC YL \S�C,rI� C. SJ �.✓Vi i,.✓T f P-Fa.c^ten c :� ro s P4.-z ..��F � fir% �, ` l �:/ ~ �= '✓r s— �G V Lj t C, F-A A P ' MARCH 1951 E•75 DESIGN CRITERIA 11 u I EFFECTIVENESS CALCULATIONS PROJECT: STANDARD FORM B COMPLETED BY: fib L DATE: Erosion Control C-Factor P-Factor Method Value Value Conbant S�F-.G4L,7✓f•. l.co O•gu O.vl I,uv G<ece.e,/Jvy c.C-- . :. C: s 1 . au NAaOR PS SUB AREA BASIN ($) BASIN (AC) CALCMATIONS �Q: •a >`/s <✓, s. =LL 7 fs>i/�. ,� +-�,I;. O(s.4; ' MARCH 1cc1 S-15 DESIGN CFI� iEFIA F-M, 1 UMTST, INC Consulting EnQmeers OPMON OF COST Client Joe Vansant Project Harmony Ridge P U D Job No 10 875 000 Date 10 20 98 B) E M F No Item Qua bty Un tc Unit Cost Total Comments I EROSION CONTROL (Des eloper) Reseed/Mulch 151 AC I 5650 00 S9 750 00 Gm ,el Inlet Filters 91 EA 1 5,)35 00 1 S2 11500 S It Fence 14001 L F S3 00 1 S4 200 00 Straw Bal Barrier 141 EA S 50 00 S3 500 00 Ced in nt TMP 1 I EA 1 5500 00 5500 00 Erosion Control Subtotal ISO/Subtotal 520 065 00 53009 50 2 EROSION CONTROL (CltN) Reseed/Mulch 221 AC 1 T56 00 1 S12 430 00 Erosion Control Subtotal ISO/ Subtotal S.1243000 S16 64S 00 EROSION CONTROL ESCROW AMOUNT 53009730 Tht an Opinion of Cost and supplied on) as a g de TST s not responstbl for fluctuation in costs of mateng lanor o unforeseen conbgenc es U P g I f I WITH ERi COLONS se ' gAeyp aL!'aP s/re UTILITY PUN APPROVAL rA9 23 51240 51CitY of Ft. Collins. Colorado PoRI CIXLiNS-LDhUWO W����ADRPoi WE Aro a 05' 5rJr0UTILITY PLAN APPROVAL 28- L-1—� Ale rs as 31343 APPROWD Dva.Yr al uaweao. Na DATE CHECKED BY �� p, van ,00nDacD Q ,YJulav Date SAI At J a' .' _ \ CHECKED BY. a I A9 to AB J a6' Ara to A9 5 ae' t , A4. a a utwtJ D,YDAIT �EJ ' WAI2 o' as' . P Y hRe omtwn CHECKED Bo. . a...\ 1 CHECKED BY OTT � 0,Y I f /sting emlz,s TI 2 nad nVnposM nree CoI PY r M 2, CHECKED BY Mt acme yMl ry "'PAPS Of , occur wM eespn of Me, _ \ J baOrq sham /o- say, lately We/,ge,mt OKI cw+OPrcn. 0ema a aeac 9 alob, Aeon at rme / CWtaII&V Nmi col Wzt Mawn7711 mro S -' a am bI loll At re aarat Iv ,nW be ?YV:IO daq Oat II wswnw+ts ca comYa, Seats -- y� mee cor le a/ omnq m A See mlTables / eemonMhYA m •\ _- a. Of IGI _ -- -- --� sl ---------- Da JIe - --- , --- - ------- -y 3 _ \ r r �/= T_�_��— — ' lv JlAD7 IT I H .� 11 an 7 f r 5rJ9� i A YiIO +•� w w a�swAs,f tit .,.... AC Ix-h n5FI-02o2.Ccv /M M MS [¢K r22 eJ ii}} V fRFFBa.WO AIJ 06 _ L — / �n oae:,P r nosy. o PR I IE RAWE DRIVE = T K —IF r s-Kee,' 1 I Art WAIT KHTT .„„,.J 1It o * a� 1 �\ fi« �V l >V \ \ y z �v _�� v a O — �� —ITT Yet, y ¢ 0 y ambI Fee c \ z m, w I\IrPILAL L' rSWALE SECTION Lory w \ l At AI a IT I I \ cc �e .£r 5¢e IT INS. to 73 \ r� \ �� 2 JJ \/T5J IIIHII / �. N \ s LLOT,9f 13 Nara YK 0M sn- r 1 FF A (n SrJ2 of BI / AI / Ra w. �. r��em L0T2I'� / 1 ITT,�y r!/ 5 Gtl bI. TST, INC . �� ITT,m+n IT- tIT \ ' 6 V Al R BS �( j iy K �" I _ l � Lor l nrz NOVfNPEF 1991 \ MA r6H LINE SEE SHEEr 27" M' 26 — �� / 1� �sr2s 27 sos� oft 6'A N In 141, MI All. A _ A ti 11 A way vu.xnv�v�xx le'lull, rrra FIND Ali •r<wvmrt IIV .n.a. y All MAI MI WAI Al -''i WityTAMMAILI HART AlTI1 Ill IF IRA MAT L/NE SE HEFT 26 All 1 �- ©5 r R\ I14 II \\\\ All At IN N AN. NNN d / ' I / r / / I I / / a..Wo o. Silly ITT 1=M+J , i LorI Lvr \, Loris XI �.' f A V V A, �, A --� �o Duty W �r�D AAA o NEECl 46y. v LOT 2B �'V BI We, / A LOT 97 rs � 1 vu Ja �- CI' n1Al'I nAcrs 17 ITT TWO, 1 i �I l ,I =,r / \ I I o /s C�S p • L�'"T 2B mr �ovpr lIt / sec a°';7y` Imx.�+ --. .. . / L SS/) , A �e �' / Amr. 1 / / / \\ x /� lit I d / I � Y Lor" 6 511200 I lJiGEND I/H,N AL .0 UN e / IT I ITTARYWARD I / I MIAM. t, All, RAI TARIFF MNLI I� -I AIT, AM. City of Ft. Cblliu., Colorado 1 // UTILITY PLAN APPROVAL APPROVED Dumb[ el — Eoyuuenq Deb �— — L)ITEUNT SD WATER DISTRICTTRICT CHECKED By 4LiN$ $U1114¶DN DISTRICT 11.pe k .vlwety Utility Dvt. J i U1,11I PLAN APPROVAL CHECKED BY. utility ITT m.m.a.. CHECKED BY vPOKD _ _-.- DAM— CHECKED pvk. k R,,,, an By Dote o TRY S CHECKED BY. o wDKD - Di. a w 0 0 EE Z 0 2 a x 27 1 271