Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 02/20/1998
P'ROPF,�RTY OF F�AT CpI.WNs UT���g . ►�� ,. ,� ,� iI�//�►�►T�'�� '� ►: .� � / / i ' / / r � Harmony Road Realignment � Fort Collins, Colorado �� - r�.;��_ .� January 199� t � O�C�r�1, I'�� - � �, ,? i� t� ;� � ,. , � . , /i�,�� , � � ? 81� ,' ��,�;, v :� :, THE SEAR-BROWN GROUP Standards in F�cellence ! 1 � � ' � � u � � IJ � � � � � � � TH E SEAR-BROWN G ROU P FULLrSERVICE DESIGN PROFESSIONALS FORMERLY RBD, INC. 209 SOUTH MELDRUM FORT COLLINS, COLORADO 80521-2603 970-482-5922 FAX:970-482-6368 January 26, 199$ Mr. Glen Schlueter City of Fort Collins Water Utilities--Stormwater 235 Mathews Street Fort Collins, Colorado 80522 RE: Hydraulic Report for the Harmony Road Realignment Dear Glen: We are pleased to submit to you, for your review and approval, this Hydraulic Report related to the construction of the new intersection of Taft Hill Road and Harmony Road/County Road 38E. This report is derived from the numerous final drainage reports previously submitted for the Woodridge Fourth Filing, and documents the hydraulic design of the future regional storm sewer between this intersection and Westfield Park. This report also demonstrates that construction of this intersection does not increase stormwater runoff into the county's Imperial Estates subdivision. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, The Sear-Brown Group, T^^ Prepared by: �' �/_ �i ,,, � ��'li i l �4--� ' � �-� ? David K. Thaemert, P.E Water Resource Enginee� � cc: File 434-013B � NEW YORK • PENNSYLVANIA � COLORADO•UTAH STANDARDS IN EXCELLENCE Reviewed by: ���� � Kevin W . Gingery, P. . Water Resources Project Manager EQUAL OPPORTUNITY EMPLOYER � , , � \ _ � , � � � � � i .i / �,!!_. , _ � I. GENERAL LOCATION AND DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 1 II. DRAINAGE BASINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Major Basin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. SWMM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 III. DRAINAGE DESIGN CRITERIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A. Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 B. Development Criteria Reference and Constraints . . . . . . . . . . . . . . . . . . . 2 C. Hydrologic Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 D. Hydraulic Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 E. Variances from Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 r. IV. DRAINAGE FACILITY DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A. General Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 � B. Specific Details—Ultimate Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 C. Speciiic Details—Interim Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 � V. EROSION CONTROL ........................................5 VI. CONCLUSIONS ............................................b � A. Compliance with Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 B. Drainage Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 � i ' � � � � � VII. REFERENCES .............................................6 APPENDICES Vicinity Map APPENDIX A: HYDROLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 100-Year SWMM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-15 APPENDIX B: HYDRAULIC DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 Design of Inlets, Storm Drain, and Swales . . . . . . . . . . . . . . . . . . . . . . . . . . B-3 Regional Storm Drainage Pipe and Channel (Ultimate Condition) . . . . . . . . . . B-17 Interim Intersection Storm Drainage Improvements . . . . . . . . . . . . . . . . . . . B-35 Riprap and Channel Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-46 HYDRAULIC REPORT FOR THE HARMONY ROAD REALIGNMENT FORT COLLINS, COLORADO I. GENERAL LOCATION AND DESCRIPTION The intersection of Taft Hill Road and Harmony Road/County Road 38E is located adjacent to the Overlook at Woodridge Fourth Filing P.U.D. The site location can also be described as centered at the west quarter corner of Section 34, Township 7 North, Range 69 West of the 6th P.M., City of Fort Collins, Larimer County, Colorado. The site location can be seen on the second page of the Appendices. II. DRAINAGE BASINS A. Major Basin Description This intersection and roadway improvement along the existing Taft Hill Road and County Road 38E is described as off-site Basins O-2 and O-4. These basins are located within the historic Basins 78 and 80 of the McClellands and Mail Creek Master Plan, but have been incorporated into revised Basin 82 as part of the updates incuned with the Woodridge Fourth Filing. B. SWMM Model The City of Fort Collins' SWMM model for a 100-year storm event withuZ the Mail Creek Basin was previously updated to reflect field conditions and proposed storm drainage system modifications near the intersection of Taft Hill Road and realigned Harmony Road. Revisions to upstream conveyance elements 205 and 207 have been documented in previous submittals, and are included in this report as the final reference location for this supplementary information. Conveyance elements 201 and 208 were aggregated into direct flow conveyance element 200 to determine total off-site flow crossing Taft Hill Road. Peak 100- year flow at conveyance element 200 is 186.5 cfs. Conveyance element 200 extends along the north property line of the Gates Fourth Filing, to conveyance element 47 within Westfield Park. Due to the lack of capacity in conveyance element 49, no off-site flows will be routed through Imperial Estates via this conveyance element; this is a 1994 modifcation to the original routing proposed in the McClellands and Mail Creek Master Plan. In response to new review comments from the City of Fort Collins Stormwater Utility, additional revisions were made to the SWMM model which were changes from the 1993 master plan model. These included hyetograph corrections and a reduced impervious area detention factor. This resulted in slightly increased off- site flows from the west with no change in sub-basin parameters. The Woodridge SWMM e�chibit is included in the back of this report for reference. III. DRAINAGE DESIGN CRITERIA A. Regulations The City of Fort Collins Storm Drainage Design Criteria is being used for the subject site. B. Development Criteria Reference and Constraints The future regional storm sewer system will not be consttucted at the same time as the other proposed improvements to this intersection. According to the City of Fort Collins Stormwater Utility, it must be demonstrated that 100-year runoff at this point is not exacerbated by the interim improvements which are proposed for this intersection. C. Hydrologic Criteria Regional hydrologic modeling was completed using SWMM. Current SWMM modeling and excerpts from previously approved models are included in Appendix A of this report. Rational method runoff calculations were completed for comparison of small individual basins tributary to the northeast corner of Taft Hill Road and the realigned Harmony Road. Additional rational method runoff calculations are excerpted from the Overlook Fourth Filing drainage report as supporting documentation for flows in the Harmony Road storm sewer system. D. Hydraulic Criteria All hydraulic calculations within this report have been prepared in accordance with the City of Fort Collins Drainage Criteria and are also included in Appendix B. E. Variances from Criteria No variances are being sought for the proposed project site. Fa IV. DRAINAGE FACILITY DESIGN A. General Concept The ultimate runoff from the widening of Taft Hill Road will be directed east and north in a regional storm sewer system, in accordance with City of Fort Collins directives, along the north property line of the adjacent Gates at Woodridge Fourth Filing and thence to Westfield Park and downstream regional detention facilities. Design of the storm drain system east of the Harmony Road right-of-way has been previously addressed in the Gates Fourth Filing revised drainage report, but is now included in this report as a portion of this intersection design and ultimate construction. SWMM analysis has been included in this report only for documentation of upstream conditions (north and west of Woodridge) and expected runoff associated with the regional storm drain system between Taft Hill Road and Westfield Park. Basin O-2 includes the widening of the existing Taft Hill Road adjacent to the Overlook Fourth Filing. Basin O-4 includes the interim widening of Taft Hill Road north of realigned Hannony Road; this basin accepts off-site flows from west of Taft Hill Road. Historic runoff from west of Taft Hill Road will flow east undetained through the intersection with the realigned Harmony Road. Ultimately this runoff will flow along the north property line of the Gates Fourth Filing in a regional storm drain system, and northeastward to regional detention ponds 278 (currently in design) and 247 within the MountainRidge development. Interim design passes runoff from west of Taft Hill Road across the road and into the Imperial Estates subdivision in accordance with existing conditions. B. Specifc Details—Ultimate Condition For the ultimate constructed condition, runoff from upstream of Taft Hill Road will be directed under Taft Hill Road immediately north of the intersection with Harmony Road. Final storm drainage design for the west half of Taft Hill Road (including extension of the proposed box culvert storm drain to the future west flowline of Taft Hill Road) will be completed by others in the future. A regional piped storm drain system then transports the upstream, off-site flows and the sub- basin O-2 and O-4 runoff along the north property line of the Gates Fourth Filing and thence to downstream regional detention ponds. Runoff from sub-basins O-2 and O-4 flows along Taft Hill Road to inlets on each side of the realigned Harmony Road intersection. The storm sewer which extends from the drainage swale between Woodridge Third and Fourth Filings will be completed with this Harmony Road Realignment. 3 Although previously documented in the approved Final Drainage and Erosion Control Study for the Overlook at Woodridge Fourth Filing Phase One, that storm sewer design is included in this report for reference. C. Specific Details—Interim Condition For the interim condition, the 10-foot Type R curb inlet on Taft Hill Road south of realigned Harmony Road will be constructed; the interim outlet pipe will daylight at the north toe of slope of the realigned Harmony Road embankment. Piped flows will sheet flow following existing patterns into Imperial Estates. (The north 5-foot Type R curb inlet will be constcucted with the ultimate regional piped storm drain system.) All (historic) flows from west of Taft Hill Road will continue to flow across Taft Hill Road north of realigned Harmony Road and through Imperial Estates as previously modeled by the City of Fort Collins McClellands and Mail Creek Basin Master Plan. Rational method runoff calculations (included in Appendix A) indicate that 100- year runoff which historically drained to the Imperial Estates property immediately adjacent to the realigned Harmony Road (described as sub-basin H-1 in Appendix A; see local basin schematic) was approximately 10.7 cfs. This historic runoff has effectively been diverted by the road realignment and now drains southeasterly toward the Woodridge detention pond. The 10-foot Type R curb inlet on Taft Hill Road south of realigned Harmony Road is calculated to intercept 10.8 cfs which will be directed northeasterly to the realigned road right-of-way. This flow from the inlet will sheet flow across vacant land within the Imperial Estates subdivision in the same manner and rate as the historic flow from sub-basin H-1. For the 100-year storm event, the pre-Woodridge SWMM model (from the 1993 Mountainridge detention facility feasibility analysis) indicated that total off-site flow presented at the west side of Imperial Estates would be 192 cfs. Updated SWMM modeling from the Woodridge project shows that total flow now expected at the west side of Imperial Estates is 197.5 cfs. The difference in flow values is essentially due to updates in overall model parameters directed by the City of Fort Collins Stormwater Utility, rather than any change in tributary basin parameters. Therefore, the expected flow pattern is unchanged from previously-approved City master plans. Excerpts from these two SWMM models are included in Appendix A of this Hydraulic Report. Runoff from west of Taft Hill Road historically ponds on the west side of the roadway, then spills easterly toward the Imperial Estates subdivision. Historic 100-year ponding elevation west of Taft Hill Road is calculated to be 51.49. The historic centerline high point on Taft Hill Road north of County Road 38E is 51.48; this high point separates the Foothills Basin from the McClellands & Mail 4 Creek Basin. Therefore—until the proposed road improvements are in place—a potential minor spill from the McClellands & Mail Creek Basin into the upper portion of the Foothills Basin could occur at this point. The proposed roadway centerline shifts the high point farther south and avoids any potendal flow split into the adjacent master plan basin. Proposed 100-yeaz ponding elevation west of Taft Hill Road is calculated to be 51.95. This is an increase of less than half a foot above historic levels but, while the area of shallow ponding does increase, the ponding does not extend to any existing structures adjacent to the intersection. The change in ponding area is illustrated in Appendix A. Until the widening of Taft Hill Road is completed with the Overlook Fourth Filing, a minor interim high point exists in the roadway profile just north of Brixton Drive. Some existing condition flows may sheet flow east from Taft Hill Road due to this minor high point. However, the ultimate off-site basin O-2 will be delineated and will drain as shown on the master plan exhibit. V. EROSION CONTROL This development lies within the High Rainfall Erodibility Zone and the Moderate Wind Erodibility Zone per the City of Fort Collins zone maps. The potential exists for moderate erosion problems after completion of the Harmony Road realignment improvements, due to some existing and proposed site slopes of greater than 2 percent. It is also anticipated that the project site improvements will be subject to both wind and rainfall erosion before new vegetation can take hold. After grading has been completed, all disturbed areas not in the roadway shall have permanent vegetation seed applied. After seeding, a hay or straw mulch shall be applied over the seed at a rate of 2 tons/acre minimum, and the mulch shall be adequately anchored, tacked, or crimped into the soil. The pavement structure shall be applied as soon as possible after the utilities have been installed. After installation of the interim storm drains, riprap protection shall be installed at the outlets. Where the roadway is in fill, silt fence shall be installed at the limit of grading along both sides of the roadway. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Health NPDES pemut should be obtained for this project. If groundwater is encountered at the time of construction—for some unforeseen reason—a Colorado Department of Health Construction Dewatering Permit would be required. �� VI. CONCLUSIONS A. Compliance with Standards All computations that have been completed within this report are in compliance with the City of Fort Collins Erosion Control Reference Manual for Construction Sites and the Storm Drainage Design Criteria Manual. In addition, all computations are in compliance with the Preliminary/Master Drainage Study for Woodridge prepared by RBD, Inc. in December 1991. B. Drainage Concept The proposed drainage concepts presented in this report and on the construction plans adequately provide for the transmission of existing off-site runoff to the existing drainage path. VII. REFERENCES 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, revised January 1997. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991. 3. Preliminary/Master Drainage Study for Woodridge by RBD, Inc. Engineering Consultants, December 27, 1991. 4. The McClellands and Mail Creek Major Drainageway Plan by Cornell Consulting Company, December 1980. 5. Final Drainage Report for Poudre School District R-1 Elementary School by Engineering Professionals, Inc. April 1987. 6. Feasibility Analysis for Regional Detention Facilities Adjacent to Mountainridge P.U.D. for the McClellands and Mail Creek Basin, Fort Collins, Colorado, by RBD, Inc. Engineering Consultants, November 19, 1993. 7. Final Drainage and Erosion Control Study for the Gates at Woodridge Fourth Filing Phases 2& 3(Volume I), by RBD, Inc. Engineering Consultants, July 31, 1996. 8. Final Drainage and Erosion Control Study for the Overlook at Woodridge Fourth Filing Phase 2, by RBD, Inc. Engineering Consultants, July 31, 1996. 0 APPENDICES �- � VICINlTY MAP SCALE: 1 "=1000'� � � � ��p�ti � � x ,� : HYDROLOGY Rational method excerpts from: Final Drainage and Erosion Control Study for the Overlook at Woodridge Fourth Filing Phase 2, by RBD, Inc. Engineering Consultants, July 31, 1996. Other hydrology excerpts as noted. +�rr -1 �'�= ''�.���� � � •I• � — — - - —�— �� _ _ � � �� � O � 1� 0 � � �� � � � F- Z W U LL LL W 0 LL LL Z � W C� � w Q 0 w F- 2 w � M � O i � M � � � � ;� � C � O Y rn �Do m 0 W � �g O J I— �QQ aUo ,-. oo� >`.0 ��o � N � � � ..� V � � ti � � � ` O O O � � N N � � N O O Q � M Q � ... w � ao ca ao Q N►�� � � c�i o c�i � vN m� � N'�� Nm 00= c� .� � � �. � � .� H � � � bA .� N A � .� w A � � � - � O � �a 0 � � � � � � < � � M � � < � II :r Z O E_ Q �' F— Z W Z O U � w � � M O � � M � J ♦ � I I � � � N � rn � � � 0 �w � Q C/) 0 N � � .` °oY �� m w E— �g W� �Q aU � Y � M � � W � � � � N � � Z � � � LL �-' 0� (� I` � N � � � .� O ..� U .�. � � M � ul� ��cM � W � H � J w � � O QOo � OOCM � � �ti aaa = o00 ~ � � M Z � ~ � w J MMI` � � ti c� ��.•�cfl H 0 Z W ooa�o. g O o � N N � W J ... � � � _ � � O M M M H Z � � M Z w ... J � � � V �,,� O O O � Q ^ N (�O 00 Q W V N N O M �Q`° Z m� N�� �Q � 002 � �� I ..�. 4, � .� � .� .� U F � � .� � � A dn � .� A � � � �- - ,,4- S � � � � � e �3 U � � C.7 J � N � � OQ h0 �� 0 Y m W � � � � U i� d U y Y � N � � � � a� a= t� — W � N 0 N 1p 0) � � � � � � ��2� � N 0 = t0 N aD � � � l9 N N a ov � �,^»am U aw., ay.6� X� J `�' � In m OI f �D ID J V � N � 2 a � � �a ... a _ �m U e O « < aox� ��� J `�' h �O N m � LL �a 1'1 l`I fV � � v � 1�- a. � LL LL H � � � � a• � LL tONm � Z�^ 1')lV aV _ � ...� �K 4 N n m Y v � eV O l+l Q t iA00 CAD y� ►Pl � Z p� H � 2 �O�iO V m C C C �-O! O � O �(i Oi E� a W ^ a •E �p a.. J ... J W W �ZZ.i F- � E �n OV J q LL f 2F �z�� 2� J .-01 O ' � j � N � � E h Z � N oa= 0�� a0= .� � L�S .0 f � � � E � ! - �— KJ a � 0 C7 a 3 0 � a�i �� � E� � < � � M � � < � u � Z O � H Z w U Z O � w � H M O � «� � J + � u � � � O 0� 0 0� � a, � � � 0 � � Q � � � rn ;v_ -o o � 0 �� m w H- U� W � � Q � U � Y � M � � W � ti � N J � ch lA �O Q V,C ly N � z .- E .- � �- ,-. � ��i, c�o, � E� N�� �. ~ � � M O��/1 � a- � M W w � � > —�W ��O �Oo � oori � J � H � � � a a a 2 M o 0 Z�� c�vc�i .., w J � � � = oo� � :. �� co H � zw o�� � O o � N N � > � ..� O= Mf�M H M F—Z�� Z J oo� V M ��o QQ^ Nc�oa� ~ W U N O M �Q�N Z m � i Cn � � W N � � u�� 002 e� .� � .� U � � a H � a oA .N a� A � � .� � A � � � in S, g� � t~d O �� O a � m V 3 � g �p �s � y '� U � �+, o � a c�i � � N W K � O�� w� aZ � -, W � N O � ryn�n �� �o�� JW `+ i �= o�� � � o�do � aW�� t �,�� U W�y a^�.6� y "' W a .�. O aRf° y � N�} O O J V �� fDON W Q 2 q �� �U U � 0 � � Qp < Q � W Y N H a0�� CCvi y m �1� JIL 0/D0 0 � � � 1�- � � LL LL � � � � � H O n 1 � 1U0�' C{GC a' Z _ � `--' O� �Nt^D m Q. �� f`ICl'�l � = n � r _ � Y m N � ` O� S O N � � C U a� I�NN y.GA NN�O E w^ a•E� a ., � J W W � _ � � 3��E O J W LL Q C9 � Z O Z C Q � J I�NN 1+1 �(I �C 'a •E �n i� � Z � � N m ooi N ��� ooi � —� .! C U .� F � c m � .� � � N � I � N LL � � Q' � � � � Q � Z H � U C � m Q' < � � < � � u � Z O H Q � H Z W U Z O U � O W � H 0 � � v U x U � N t 3 0 0 � I I � a 0 > °° � � � �� a� N � � OQ v O Z Y � 0 � � � O� } m Z w 0 � �g � DU �Q cn U Y � a � � w " � � � � � � co o�n v c� �n ao � ao � � co �n rn co J � � 1� � ch 1� O N t0 1� c'� c'� 00 O O O Q V C N � N � � � � N � � � N Z+r �� Li.. `-' U Z � N � � W O ♦ ^ .Z O N � 1n 1� O f Q � {7 �g �� ��� '�� ��- � � Q � O�� •� N N N � N � N N N N � t��l N �J � � N �' � N � n O ��ff { f t+9 GG � U pQ � x x x s! k x k x k k x x � UU $ �� ��a ��� �� � a � ca o c� � co o ��n o v�n c� �n c� �. � 1� � N O � <D � c'� N � � c0 O C � � � N � '� � F— � c'� (D O O O c'� 00 1� 00 � 00 f0 f0 (j� N N� NN� NN� �c'� � � � N � � � W `"� W � � N > � • • • • J W � O O O O (D O � �p � N O O � f0 O O� � O 1� 1� � 1� (D (� �O o � � � O � � N � N O O c'7 � O O � v H = o o�n �no� �oo orn v o � � � O 1n 1� 00 1n � 1l� 1� (D N o0 �� � N � � 1� c'� N N � OO � (7�^ �� � z -- w J c'� M(D � 1� 1� 00 c'� (D �D N � C � �(prn fOc'�� �N00f0 N W �. •� c� � `-' H p o o ao co c� c� o o rn rn c� ao Z w �n ca ti v, o v o co �n �n v, o Q O a� N N C 7� N N N N c' � M O 1� _7 � � .� W Q O N�1� �M� NOO� � �� N � � O c' �� � O N � N .-. � ��N ��nc�� �-W�_v Z J � �� OtOoO c'��N O��nN O N 00 CO c'� �n �� in �D (D � c'� N� (O 1� U � O O O O O O O O O O O O O O O O �N N�N ��1� c�Oc'�� � N � (D 1� 1t� � 1� � c'� 1� 1L� � N� � M �^ � �� ��O ��O �c'��N � � N �Q`' z ¢ ' ' 'o m � � 0 W � Q Q m Q m U Q m U Q m U N c' � fn � N N c'� c'� c'� ��� 1t� 11� 1t� � � c0 .� U U �C L U N H � C N C � .N N 0 a� rn co � .� � O � �— _ - � p j � j a : aeE ����tlj ��� - - �1 4 � � � s � w w � p a � ' 6 � G e w ■ � i S K ' � p � + w s x. �g� � 4 i � ��= e . < ' �is . N � . • N < < � Q � � g ��� - w � � � p ^ _ � s , a * �► � ��$' Z yW • � F O ��� ' Z 8 � s � � _ �Ig � ' a �� � t � � � �� � � u r aa �� . �. � �� o �' " � ' R �� � ,. �a ��' �o � . . � ���' �► � � � : J � . o�t a E ' Y & � m pg� zoW 9 � �g 5� � � m J �' oi U � � � � o�_ _ �� � C Q ; Y. C � � . � i � v � � � �� ` � ." � `� � b � � d7�N � � ���1' T � I � �1 � I � � � F � � � � I■ �� � � N Ll. � � � 0 LL � � Q � Z H � (U C � m � < .-. M � < � � ii w Z � F- � � Z W U Z O U LL � W � � � O M � V U x U � N L 3 � N � �� U Q � 7 � � � p� � p) a � o; 00 � � �� �' Z Y � 0 � i �C � � } m Z � � � �g � � DU � Q cn U Y � � Q � � � � � ~ � � � (O O N � c'7 f� c'7 � c'7 c'7 O N(� N (O � ,-. �ri � v ��ri ao � co co � �� oi c c Q C r N � � r N � � N Z w��� � v UZ N N � w p 3 � � � � � � � Q ,� a � ,� � H m m � f'c > v > > S,+ S�' � > �g �� ���}� �x� � �' N: x a�� `� +� tV 1 i N N N♦ � N � m 17 f�V ` J �� � N 0�,, t•l N 1�0, A t iA ti�l t;�l O � oa m �� ��� ��� �� � � � UU � co o c� � co o ��n o v� ch �n co � f� Q N O � (O et M (V � '�t GO O C 0 � � N � '� r- v �— � C'�i (O O O O :ri CO 1� OC � OD (D (� V N (V � N fV c'� (V N � �� � � � H � � � W W � � (C > � • i • • J W � O O O O (p O � (D � N O O �(O O O� � O f� I� � f� (O �D j0-�� � �C ��N �NO Oc'� � G O � O v � � = O O lfi tA O i� � O O O O� � O � �, � c0 O � I� o� s� � � � h c0 N G� f� O> tr � N � aC t� c'7 N N � CC � (� � ^ � � � Z � w J O Of�(O N�N OtnNc'7 1� O ai � 1� �[i (V c'� Oi rn f� �fi � C e— � � � �. •� cn Q O OCO(D MNO O��M 0� Z W � (O1�sT O�O �p1n�� O QOo � N Nc'7�ci NNN NMMO 1� _1 � J v w � �= N rn�0 �c'��'�V �ON� N � ��N ��nc�� F=-Z�d' Z J v tn t[� 11') O CD GD f'7 � N O � 1n N O N C� CC f0 1[� 11') � �(� (O t[� M N� (O I� U M O O O O O O O O O O O O O O O O N N�N Q�f� C'lOc'�O� � N O� �1� �A�h �--t'7h �A�N� � C7 ^ � ��— �'�?O ��O �c7�(V � � OQ�•�iN Z Q'n m � � p �0 Qm QmU QmU Qm U N c'7 (�i � N N f7 f7 C7 ��� 11� tn 1f) � r � � � .� U U C U N H '� C (� C � .� N � N � N c .� � O � � � r ���I 4. _,.t/f -s Y _Q O � �� I I � � � A : � C � e _ � � � � � ! � ; S � 4 A . . 6 � 4 p E A;` , �gs - - ' R ���_ � � � � L �_ .. A � a C i 4 R � � x e e F�n n �r � . < < a 9 �g: ��g_ � a E "s, B�;' ' a� ��� ^ a =: � � E � _ � � b � Z � � � � � _ � � f � � S, a i • u�i g � � � � � ' N � � ��I' ' g e J ➢ � - � 0 � m � � ^ =O O�Q � y .7 �" 3 � �� " � N U � � o y ' � � � 9 R Q J Q A R � : 's _ � � x� � �w � S � � � � O ` � N � � O � ` � N U '� i ^L� I ,� I � W .g E U � H � 0 .� OE 5 Y* " �� FEASIBILITY ANALYSIS FOR REGIONAL DETENTION FACILITIES ADJACENT TO MOUNTAINRIDGE P.U.D. FOR THE McCLELLANDS AND MAIL CREEK BASIN FORT COLLINS, COLORADO November 19, 1993 , ; Prepared for: Client: Ciry of Fort Collins Stormwater Utiliry . 232 Mathews P.O. Box 580 Fort Collins, Colorado 80522 Prepared by: RBD, Inc. Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 (303) 482-5922 RBD Job No. 020-108 E L __ . ���, . _ . �. , i ,• I ��,� � ;, � � � i . � -�� ._.-_ .� ��: �.�-- _ _. _ , .� r. ' i , \ r � ��� : , � !� � � 1 I- �- - � J.__ ...... I . , J . ` i i •1. w •r ._ , li . . � . , � ._.-- — _ _ _ �,. ..-.+ — _ i' � � � � .Y..�► ..' F) ._!_�._ _ �-.r_�.-.,y I r� � � = _l,,..r.. M a � �.�r ... . . r : "1 i i ..t / • �.� � � � �! � �.. . f ._ _ � . _. _._ .._. _ _ � :i � i ,i� 'i::;: ' I � �� � l`�:' :`': :� � i m ,� .: �::; ` �k I� :{ ''' ;% ; ' -�3 � � � � , k = ` ' �/ � , QD � ,.. � � , �. / ! - ' �. � r f / i �� 1 '� � l i /� � , �v`y� '�' i7 �� � � � 1 ` � -•- - - - . _....._. � _. .._ _ d --- i C i � I N U N � N — � I I � O � II 1 � � i O �� N � � 1' — � _ _ _ i . ' � L � "� �'' j�--+.,N`r.' -� - � � �-- --�-'r!=1j �� - , •' - 0 ,,-'� ��� = .t � t � �+ °° ,,. .i _ _ l ,i � ^ � � r y �`: f;• `=' `'':.� — ;; i , , , c `,, �� � �� l --- �. .,� �' � ��� ��� � k `"� i d' � N ' � I` �� N ` � / / � N , .I r � ' f � , / �1 t � � ,. I � !f N � i , i � � �/ I j� t C, � �;; : i ( I � �� � �� I�I � I 1' i u I� i I � �� � -- ='� ,: � � � ,'• ;+ ., . � �1� . / i� � , .;�.�� �� . •; _ � � i; .�. 1 i i � , � � .� ,i . ! i � . �._. ..__ I _� • /; / ,l %� ' .....•- . • ' � � � 2�. .0( ) 36. 2.1( ) 21. 23.7(S) 0. .0( ) 0. .O( ) 31. .0( ) �. .1( ) `36- 3.2(0) 0. .1( ) 0. .1( ) 1. .3( ) 21. .4(S) ��. Q. 0. 4.3(5) .0( ) .1( ) 1. 376. 363. .3( ) 13.9(S) 3.0(S) 0. 0. 0. .O( ) .1( ) .O( ) 0. 0. 45. .1( ) .1( ) 1.2( ) 156. 64. 64. 6.5( ) 80.0(1) .0( ) 0. 16. 40. .O(S) 8.5(S) 31.7(5) 0. 16. .0( ) .8( ) 33. 16. 15.3(S) 5.2(S) 0. 0. .2( ) .1( ) 2. 1. .2( ) .3( ) 0. 358. .0( ) .0( ) 4. 43. 3.7(5) 3.5(S) �Il CREEK BASIN, DEVELOPED CONDITi0N5 198T'+���100-YEAR STORM"•"� VISION OF PREVIOUS NYDROLOGY TO INCLUDE MOUNTAINRJDGE 10/93 - ALTERNATIVE 2 31. 31. 2.2( ) 18.9(S) 9. 21. 1.2(S) .1(S) 0. 0. .1( ) .O( ) 0. 0. .0( ) .0( ) 40. 362. .0( ) .0( ) 0. .0( ) 21. 1.3( ) 0. .1( ) 0. .0( ) 21. .9( ) "' PEAK FL01�15, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS +*+ CONVEYANCE PEAK STAGE STORAGE TIME EIEMENT (CFS) (FT) (AC-FT) (HR/MIN) �206 60. 1.8 0 36. 203 56. 1.8 0 36. 205 17. .1 1.6 1 10. �207 15. .1 1.4 1 10. 204 82. 2.2 0 38. � 201 107. 3.1 0 40. to� ,s. ,.z , u. ��^�- -�e,/y �ram 1N, rF T'� 200 192. (DIRECT FLON) 0 i0. Y/'*'r'-S I"t'G � 49 3.7 0 �►6. 280 59. 2.1 0 38. -• 25 157. 2.9 0 40. 24 51. 3.2 0 44. � 23 318. 3.9 0 40. 48 342. 3.3 0 48. 44 66. 2.0 0 42. 279 17. .1 1.5 1 8. 222 524. (DIRECT FLOW) 0 40. 185 59. 1.7 0 36. � �asa� Sl ►oo y¢ v1S�- 104.a5 4 70. 2.1 0 36. 22 22. .1 29.5 2 28. � 364 107. 1.0 0 38. '47 87. 1.7 1 2. 45 158. 2.9 0 40. 221 160. 2.5 0 38. 21 22. 1.3 2 36. 399 5. .1 4.9 2 22. 365 97. 1.0 0 38. 247 40. .1 31. 8 6 40. �� ^+ D 7A-� � L1� `�( z. \i.! S�L 8-�. Z9 20 169. (DIRECT FIOW) 0 38. 368 56. .8 0 36. 370 121. 3.1 0 36. � 369 95. 2.1 0 42. 367 57. 1.4 0 44. 366 102. 1.8 0 42. '320 61. .1 3.6 1 10. 372 66. .8 0 38. 244 256. (DIRECT FLOW) 0 40. 373 123. 3.4 0 40. ' 371 166. 1.9 0 40. ` �w�� �.. . I� 1 � -- I S 100-YEAR SWMM MODEL � J , � � p �, ;� '�.i. ��� , � � . , 1 ' 2'�/ �.:: � �.. � �L� ., � ,� ,� ,:- �` � � ; � ..�� f �/ �`Jh� ��.v ' v � f C � � � �1 �� •, ',' � � \ I m -_� y � � i . � � ;_ _ � � � , �' - -- ��- . .. - - 1 � J i �—.,�,.._.__ � i 1�11 � I 1" � � I t. �i -- - I L:__ � �, � . � �: �,.�;� ���:� �.�...� ,��o� . I:1,��L' � � •� � ,,; � I � ± _ j;�� � ; � � ,._ ,; �� . � 1.�..�-•.���.� � �. , .. .�. �_,ti^---- ��t � i � 1� ,I � � i__. .. . _ -_ ---l�- .. �.. " - �...... _ _ '_ _ , _ t �,, � - � I.� i �' � :l� i� _...... j � �...._ ..-. � -_�I: ..-'_......._. ._' r .-I. �� ( �v_ � ,�'`�- _i_.� __ ,- E � .,� �� - � � ----� _ __.-- !, r �� _ `� i __ �.'. _ �..- _ -- -��.-�--= -- :�, :-, �. , . .. _ .. _ _ �� �.� � �. _ _..-- -- �- -- �- - -=�� C;� ��,,,_ -�' ,,:� � ����+� � _ � ,.. ; � - �. ��--.1 � I L.� - .� ,//. � ���:; _ \ �I�-7 I • � :t�.t,� '.iw+.f.�:Ju � I '�� f'��. '.••:IM�: �{.9 �`` .;� I //��\ I•,,.. 1 l .�*^'�� 1'1� ( 7r ' V � �` �` � � 1 1 , �r� '• � � � I � \/ �, .... 1 1.'' �! i� r r 1 .•� I 1 \ ��_�� i C� ' /`=_.1' i � 1 . � � ,' _ I 1 . � ! .'; i! • � 1 I _� '� . _�., .� _._ __ �`• � a QS - 'n � � . ��._--- ! � � _•._ �� i (�" --1- � � -'---- __ N IA�5 � N...r�•,: I _ _ � I N �+ i � � I I / 1 � � ,/ N � I t , � : �i � ( i � � � . � , �::::.. ' �:: : :::: h � ,i, '�::.:;.: N �:•:..; • ': � �:.:::': •� m r:<:••:`{ � :.:� ; I �,� t:: • �:.; ' � �, '� � , 1::�,� i i _. °� ..; _ .: ,� L — . j �= �;�--- � --: ��� / , � '�„_„_ -, ; � �,#,� I a rti _ :' rl. ' '' � • �,�;�,..� � � � J �. �i' y � - , � r �' L. __ _ �� / _--_ __. .. .�� �`;r l _ �� ... �-. I � N � N '✓ � /� � �. , (V . � ;! 1 �' �1 � � �v � � I ' �, �.......r,.•.�-,- - :� 4 ' : ,� j i ; � � � � � '' � ! � - 1 ; I ' f� , �� _ _ ' i ---'_.- - �-. = � �� --- - ----�- _.__._, . - -- o , • N � .::i '-, . .. � % ��. i OI , . . a �o � N I. N � 'N . • i � ; � . i ' I N I N I; O � � •� I � � II _ ! � :,. I I � � ��� `' �I M 1 •' i p � �� N . � �1 i i� i � . i � . (`� � � � . �`. , .,•� . �. , � Z � . 10 !! � N K1 8 I� I � I� � � � �i� —t � CLIENT V' ��� ,o.No. y3y—o/J INC PROJECT �a <LS �� CAICULATIONS FOR `� w/,�/ • 1 Engineering Consultants MADEBY}y_�' DATEZi�CHECKEDBY DATE BHEET OF ; � - . -�- -. . . . - . . . - - , . , , ._ ._ _ .. . . ._. _ ., _ . _ . . . . _ _. � :._.<_�: . . _ _ _ _ _ _ _._ .. � -• , . - . .. : __. _. .... .. ,. .. . .-_.....g. . : ' : ' ._ _ � - - . � G � . � _ . i. ._�_ _ . _ _ �-� .�.-.,.� ���... .._-..� - -` _ ._... . . . I._� : ; . .: ..- i - . _ . . . } . _. . ~ 1 _ _ , � � �._._.� .;. � . _ _ ._ . . _ . . ... r . . � _ �- - -... .. ._. __ _..; . . : . . . _ .. . .. _ -- ... . .. .. .__ �.. . � � ZO �_. -�--+ -• --- ... . - -. _ . . :. .. : ---.. ._ ; _ _ . . ; BZ � _ �� �f � ; _,._.. __�. ....__ . . , ;. . , _ . � . , : , _ � �.. .. __...... _ ___ . . _- - �- --- _ . .. _ . . . . . _ _ . .._. . • ----._ ; :�-: � __ _ . �, �o �Z Z� _: ��- yy _ ; --- .. . , _:---- ,- ... . .._ ... _ . __ _ :.. . . . _ _ : ---- -- ___ _._--- . _ .-- __ ___ _____ _o,c _ __._ . , __. - -- -- ��l+la �.�..�c !.. _ . .... .�. �__ :..,. ' � . � � �0.3 : 1�1 . r _ _. . .. : _ . � ; �: � , : ..�.._ . - � — --- __ _ _ _ :... _ � , . i._ . .., ... ,_._ __ � ,_ _ , . _ �V1/�1'1 M S�rr�u.-1 ► c. = �� � o n. c� � . S-�r,rt : �ri�'in. . _ . _ � . � . _ . . ., . ._. _ .. ,y� . , . _ _ { .. . . C"�'ri �� '�. /'���A/T�'Ou+�../'����. f.'..-Cc(.tG��d1 �,r� ;�-� �"�;/j.� :jr--}r •: ! � . . . . `, . . . . :_.._ . t_ . _ . . . -- . . _ . . . . , . � . � ... �=:��flS�N --'_ ;.-� -- _ .,.,.-� - �- - ---- -.1 ---- � ; . _.. O . . . . , . . .. . . . .. ... ' • � ` r _ ._, � �� � . . .. . .. � y ^� `.� . CoN d�PrNC� �L�'h�'N�' _t_ ,...._. . -- -- . . .. _. _ .. ` _._ _. �. � fi'= .� ._._ .. ; . . _.. _ . _ . - - -- : _ . . _. . � . _ . .... _- - --.:.___ . __� =_1VD_�_�.__ , _ _ _ _ : - _ . _ . . = i_ _.__ .._.. .� =- L �-T:� .�! Ti o�/ P o �v D . . . ' � � �------+- ��8 � . _ __... k. F . � _ �-... - - -. . . _ __. . . _ _ . -r—_ _�.__.,.--_. - - - . ._ _. .. _ - -- -- -t - - -- - — - - __. _ .1. .,__ . . . `�m��ta _. .. _ k._. .. . . . __ . � � �r�-o� s , . :�--- :. : : :�: . . . o-fi�sr-� :..: :� . � �: ,-. ... _ f �8 �t 9 �8 IB_I _�-- -- -- ;_ �' LTa-�. � i :. . .��Y� , .. � : � � - .------- ��BZ i�.� � : E. . . � _ � -� - - � � ; � . .. , � Zoy . - .: .... :.... _ . ; � .: . .. _j � : _ . . ,.. _ . .� . ' : . , . . ! _ � : ---.--.---- --- --__ _ __-------______.___ ____ _.. zos : : : ., . : ...�...:: : _� : � .'.::�_.::'_.. � . . . _ j.:. -- � . . .l._._ _ . �. . . _. �..... �--- ------ �-- -- ------.�_--,------ . __ _._. __ _ _- ; __ .. .�..__ 1- -- . � . � _ . : � . .. . - � - - � -!�. � . ,. , . t . � � � �� � - — -- . � I � /� ,. _ !���; -C/=' � CLIENT / ��r rYCI �!� JOB NO. / ` � � IP:C PHOJECT �? � C Cr l/�'../D✓� CAICULAT10N6fOR���'i' �l. �' �^ Engineering Consultants MADEBY�DATE�CMECKEDBY DATE SMEET OF , �` �� � n �� , � �' .� : � L�-)1 le y :? n � 2 � />"` �, � � �� �7' A-PP r� .�n �,� , b a-�t-am o� r,m-e.n s, �� �. - v , . ' �T � j ✓ /�'�, - � ' �- ,�C-' —_ ' �b I _� � ��. Z _� • ' i � �� /� = I l� �- 3 D --�= z' . I g`� , � .�� = o. z� � � J Ij , � f"� --�t f I 1e �� ',,.CG �(' v� � x r.:....� .� 1 y u � J—„� �' , ` , .� �; � t �`\ f . { , , -' »'Y� 'r"` ,��.. G `r- ' �,.._ �� �J_ �-��Zjg.s � �. L �� f�Z =0.�! GG __� � � � � V � � � 1 � �. . ��� � �� � � � �d d � `� . � �� � � � � � � � � � T � O � OVOsi 111N lddl �{,� O � V ^ � Q � � o� �h�Q � � `�Qs � a o s � �.� C , , . p, O �• r _.,. — 1 --f v ` \ , m . � �o : / � ` _ � v � �� F� � � �� ,��/ � � - �� V 4 ' �� / ,. , � / � `� � / •�, r a , v ,� v � . � /� ,o �1 Q,w � r '� ,��r/ � V' � J /OP� 1 • � a � ,�g ` pr " � A U 1n O � ., \ `�' Q,Pp� n N m \\ 0P / � �\ � � �- � � -� _ � . � �� . �� / ��. ; �, , , . � � ; � / \`� � � �., v�� �N� V•� p `�T o o O ���N � flU ` / �� . �i , :r / !�� _ o� / � / /'r,,\ i - � , � � �` m/ / � i� % __ � / H \��/\ U —__- — Q � / / F- � / N �`� P / . / � � �� �yf , �� � N � �� � �� � � � l� , ,.ay/ �` \\ 7 Y�� / � �� � � � �� ir— �� \ \ �' Q�G � � � � w � � lN � ' „U v V_ v � � �. ' �/ 7 ,1� . . � I O � ' __ ..._.'± "�._..'_.__.__.'. I � t 1 � j I �I � 4 ' ' � � �- �I _ i � Y .,. , ; ; ` � � � � � � Y � � ` ~ � � O ; ; % ,m A`��_y � � � � �� ` l m � 1 . �: i1 / / �-- f" —_��// � / 3niaa 3901a8M0!!1 � o � � � �{-- �?U m � U Q K F • ,,. ' ��i � I � Y . a � � :, .�. I f � � � . � . �I s : . � � : U_ g t. � . . .. : : - � � . _ � �- . . .. . ; . �_ .. . �� . m ___ � _ _ _._. _ _ . _ � �_ � _ � _._ __. _ _ �____. � _. _ _.__ _ _ _ ol . _ _ _._ �.. , _ o . � � � N al � ¢ ' � 3 �I '� , . � i�c i I' \ � M I � � f � � � ' �. � �'= v �V (v�= ( � Q �r � � \`� v � J � � � \ � � V � � O � , ` � `�� / `� �1 � � v 1 ��er C Q m � V Q� � m ,� � a ti � � '�-1� � � ��� I � �� o O � �� ►- � , � c4 0 f i 1 � -T � 1 � I � � i I N� \ i �NN O 1 �1 Y . ' � U � �m, � / ' ` O � _ 4c ci � I I M N � �/ ` / �/ � \ � � / � / I,� ,�,- �- �� / �� �� �� � � s � v- s ��, ', �r � �� ,� 3 �� ' 4� o�. � ~� � �� T s�. � j . �'c,vr4,�f� I ZdS/- 0/-03- 04 I. � / /9 � .��c' �/..e,,-� J/ i'�IN� Q� T�r�.,r,�.St..�.�.� 5� t i....�. rrDu1.B.-�o�� � /DLCDKIL� �X-inrG T.� ' � ���n,r�L-� Q� �„ �,= r r� .. �! �io - Z b� 3 c�s Qioo = 3Ya� s. �;',r � ` '' c. ,. ;,` JAN r � 1980 ; f ; T.- 3� G m � ---- - -� y i,�;;;,�� ��a�i1� t'loi;i��,�� OrrI�E Q in �a � G'en �f�v � �41 � 3!0 �� Nw�p = /� � . /✓o�e. : .4// Cul�or'!J 10 Lie� t� �. ��erGe� Gne� Se�enS . ' f/4'�p `'Sc�i a" _ �1 � Q /n �e � Co�,.lr.�� C�ya,r , D O Q = .3 S � �s @ .yc.�� _ /, D � pa�'�G� �:anfro% �e Q= Z��3 G� . G=$D � Ke - o. S S= 2,�'Te �= a.�►Z. �Io = 3� ,�� = o.�Z � 3 -C�Sxo,az� = z��z :. �..Ic.E c,o...l�o� c�o�c�r+�,. � � _ 5y e�s . Ih�LT CO�ti�rD� �"El.tflL7 ' ���7 H� = �,y I < �� 5 � r, p�,,�l�l- C.e..��e t . � — Z� �5 ' �,,v _ Z,:S � 3 - l,o - �� 5 y ..(,5 . � u L�4 e. 31�" G cu► C^ • �1(ID Z ���� L 4�S � 100 � ���', C.0 S. Tr� 30'� c � � . �t �v�.� G� �O��r�� Q i0 � �}�/D _►. v Q= ZZ C�� 7 IS�� • � Ou•� 1 a�' C.o..� ro� Q i o S= L' t�'7o • 1� :. O•� L � 50 �� _ �,Q} :,..5 — ���D � Z►3 • tkE�E Co...�.ut ��ouc��g. e. � � Q , _ OS � - � (. �' t�c o � u1 � cl ti �.-�'"► ,�� �.�� ����^' s f�� � � o re.d k.e. �. � �p � r�c.c� � vQi r wr,� � • � (a uJ � :..C_ � �Z�3' � �, � 1�� d. �'� - CaZ' � 4 - 13 g : � 3�2.oe� - l � o '� °7v SAc �' l � o°�o . T� I, 8 C, t— D�z.5� � 2ev� = 53 ,�. ��.., �� � sr� �t � O , I=. ! 8S" ,���� . �o � TG►oo =�, 8(,��1- 1�z5(,o�zs�� �t�o /3 = 49 r� sA �t 5 � - 1,0� = 3,0 � ►D =. o.zs � i,�(,t� as> = '?, S t� c. � s �inv � 0�25 �'S�d����\�2,5� = f�,9y e,�S- : • Q �v = �� � c�s . T� , 18" S = 0.4�`7r. � ,.�\ s�� Ce �..� �►-..� . N ►+� �� = � , (� . Q : (o . d � � � �= ,.....- Tr� Z � �� ++��p : 1,o Q - 9.0 > �.� CL �v�� 10.� Ge.� �e..7` L= t D O 1� _. � c.f� N�= i,c� � 1,�i5 - O�a = I�gS `� 1►7� �S� ZI'� -�o ���..��-�� c�l�a�e r��e_. � S��e.. �aa��L. �e�- �u\� �On`�� �c���clr.��t �1�. u fY"'GLI/. i i � , �I/L� �S/D� �', ����� .�'r,'� �S..F.�a � s �sso � ; + � ��; cuu��� t;�;;; ;,.�� �R� � /V P, G�, D. OR�/NA �E A aoEJVO uM �� - • � ,�j-o/-03-oS I (TAFT cA��r-�i�, I I.,E�s . � •, DfTF'�JT/G/'J P�/JU p B�ixroN %` Tif-FT" /.'/L� �D. ���� SOI f ;` �� ��� _ o� - =; � ti� � �a: �U� ► � : sv-� : � Q _. �a� 6��3� �r 3= sroR� G� ��. p � i,'-_._ 1 � � � ,� �� �� .� :; a,�'{-�''€ ; � - i � �� � Nw/o-�.�$ "c.M.P. W/2.�sFT�Ff'FS*c �!3•`f .�{ ., �, , '` , ly • p -i- -- � ---� -- ------•,- • , T� a Te 3 Tc g T� `S T� 6 T� r ,� �M''�'� c�J,—`r � Cff�4NNEL_ FLDUJ Ti/�!E � S.S ur�!'iG a?,SFPS. _�'` .�.5)id�� =/D,SMfdd, O�FR�.ANn - 0= 9S' 5=.��' T= � 9�/� T=-/asf 29=i� � v�F .�o.4iN, T 1u«arrs - lG = o�l/ /�'i //i%r � l y, = 3. 3 �S �N�h°/¢ 1 ��OD =�' ,7� /N�l�� � /' ' � � ± /�'� • ( F '. �f-, G ••� • }� �' �,45 `/c �� 1� ��� '�_ � — O, � ,S � P��ti SPf�C ^ C - 0.15' � ,4�.1 '� 1 � i! _ �g,a i 6� � � ' '` % � �� k i 14•+t'i _(�, �s t�. tis tn. as-) �, 383 3= L C,� -C��.t ;� . 3 Q,o = �C_,383��� 4) �3.35'� �-�,� (/7r�C ) = �l. 8l cFS Q,� = CO� 38'3)�/• as)(�; 3��%�R� (���} _�3, �� cFs a r� � l;�o .� r � �, eo �} i"c � 2,00 S% '� r/ov 6 T� � �',oU = 3. S'S ��`/NR -'. = �. 9 �'%R . ' ,- a l� �'�/NR '. . _ /. 65 ��y,Q • '. _ / �U l"'��,R .' . Q=�S,���FS Q � �l . 9 ?' �Fs Q = /�, �� cFs /3.y3 cFs � � �_�, 34 crs .z./ • � � y 3, � `� a �� �N�� r ca,ur�a�, q= ?4cFs << cur�FT � � Q= i�'t /a0 F� � ONG � . � '_ . ( �� ��=a�a �'iL7 oEr�-N r�ati Po,va ��.�R�,r ro�� � rA r r���� � r� �co,�.r T� vPr Q u�R�,o .s ro ��GE = �a � 6�3 �r 3 0, S,4C, .y"o P s�R FACE �R F�l � w/ 3: l S/oF S.l D�FS 0, 36 �-C �g o 77"D�f Su�Q F,�,c� ��4�".� ro T,�,� yoG U�r �= �.� �b q.Pt 3 ��: � �� �W =__ � �.s • N� � ��j � O �� \ � � Z C I I l � � Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Pond 205 Comment: Detention Pond Outlet Capacity � �6 I Solve For Actual Diacharge Given Input Data: Diameter.......... Slope............. Manning's n....... Depth ............. 1.75 ft 0.0080 ft/ft 0.024 0.75 ft � Computed Reaults: Discharge......... Velocity.......... Flow Area......... Critical Depth.... Critical Slope.... Percent Full...... Full Capacity..... QMAX �.94D........ Froude Number..... 2 . 93 cfs 2.98 fps 0 . 98 sf 0.62 ft 0.0160 ft/ft 42.86 � 7.68 cfs 8.26 cfs 0.70 (flow is Subcritical) � Open Channel Flow Module, Version 3.21 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 ' ��� --- � - - - • •-- --- �-z� I =ca=ae==x=xezx=a=s=o==os_=as==x==ssasea=ca=eo==sx=ss=:as=es=0ss=zssaaeee=ss=e= OPEN CHANNEL FLON ANALYSIS: FLOH IN A PIPE Developed by Dr James Guo, Civil Eng Dept, U of Colorado at Denver Metro Denver Cities/Counties and UDBfCD Pool Fund Study _�� �a�aeaaeax=seee�aseaee3esaa�=aaae=ama=ssaassxsassssx==sa�xa�rax�a==as_ �s= User= KEViN GINGERY RBD INC. FT. COLLINS COLORADO ............................. ON DATE 01-10-1995 AT TIME 12:30:34 ** PROJECT TITLE: Detention Pond 205 Outlet Capecity ** DESJGN lNFORMATION PIPE (EQUIVALENT) DIAMETER(1NCHES) = 21.00 PIPE ROUGHNESS MANNING N = 0.024 PIPELINE SLOPE (FT/FT) = 0.0080 DESIGN FLON RATE (CFS) = 7.fi9 ** NORMAL fLON CONDITIONS: FLON CENTRAL ANGLE (DEGREE) = 359.28 FLOLI DEPTN (FEET) = 1.75 FL041 AREA (SQ FEET) = 2.41 FLObI VELOCITY (FPS) = 3.20 SPECIFIC ENERGY (FT) = 1.91 SPECIFIC FORCE (KLB) = 0.18 FLON FROUDE NUMBER = 0.00 NOTE: FROUDE NUMBER=O MEANS FL041ING FULL. ** CRITICAL FLOW CONDITIONS : FLOW CENTRAL ANGLE (DEGREE) = 200.074 FLOW DEPTH (FEET) = 1.03 FLOLJ AREA (Sa FEET) = 1.47 FL041 VELOCITY (FPS) = 5.24 MINIMUM SPECIF[C ENERGY (FT) = 1.45 MINIMUM SPECIFIC FORCE (KLB) = 0.13 SLOPE (fT/FT) = 0.0189 I� � i �. 0 0 0 � I �� - - �+-G� BOULDER COUNTY STORM DRAINAGE CR(TERIA MANUAL �i N' V � FIGURE 1008 OUTLET GONTROL NOMOGRAPH �IRCUL�AR � CSP � �; �� � , • �1 �/ � 9 N A • 111 r O � ' �1 , y�,/ J � C � . � H 1»j �1 1HI P��H lo Q Q O° S;�` - � i � ^ � yf Q � � (; o � � u � `, \ Vn F°� '�. g � > `�'''' . y � � J J � s � � o $ ��� r =.r „ _� �,� 1 $ : Q � � o �( `� , � �Y " Zd�l � �i' c � `b Q � � a 7� � �.; I t s � �i . ~ I ~ W � J ` O � . �� i or � w t� w t}. •"z !i �F�O ��o. I � Q N U� ` P �F� t o� e .��rt � i � Z ,� � » � Q � o� � o� a�;,°�, '�� � i p 3 ,o 'Z�- � ' � �. � €s °' `\ � � i Q .� I � o : � '_, � W J e ? • . � p i Y. \ i,Ei ■„ li � p I o f =� \` ' W h 1„i � h G I O � � . . � � � � � �� � i ���y� �� � � d '� � �, � � , �ri� enrrni ��'� '• � " a �e o ♦ e N �o w O I\�1\ - e q M , � r b 10 ., . . n M M « �« �. N _ ` I �'1 1 1 d say�ul �I (01 �a+awwp ti 0 0 0 0 0 0 �I 0 0 0 0 0 0 0 0 0 0 0 0�� o 0 O O O 10 fl f A N � O 10 rtl f MI � N • 10 rl f I1 N t . . I 1 . � . 1 . I . ! . t _ . . 1 _ . . . I .. . � . . . . I . 1 . I . t . 1 1 . I . I . ... . I . . . . 1 I I 1 1 . 1 _ I . 1 . 1 SdJ �I f01 a6�oy�sip . � M r1 • O r r �• O O Y � • S ��J �I H PaH Q q� � 7r ; J e� Qi o oc 3 s I �,,,�� (� � $ n � Z .= s � 4� � ��Qy q, � �>� �' o Q j � b � x I oa J W a. V J J a I t r i � � Q� /oo � Q�� ��� � j; �� o°j or ^ j Q(,~j � � I s w W .� " F i � � I / � 1 � _ � N � � s r/ti �y �'� � I � � S .f i , U' �. �+ I �+'� � S�h�RR �a `n o°�c Z o4we. {n O ` 7 g; �'' � E�Yii��i v� _ ° � '' y= O M lii � I /�� � y i t J / IL � �ri . --� � //� � a I a 0 0 �e • a O• b a �p o t o a �e o O 10 MI f M! d Q C O� N O P h 10 1D l� � 1 g 0 0 0 +$ s�y�u� U�-Q-Ji��WD1Q �DUIWON . $ � R g lo � e 8 � 8 � 8 8 $ $ sd� N�« � �� � �i �./ Fr M c � J i a � r _ Y > ► a E� 0 �' u O q •. �y C � Y � L N � � � Q « a c J oo`o"�� .+.+o c 1 q O��O � c O � � e �o�a z v �3 � lu�i�a� a C c WRC ENt3. I REFERENCE: "Handbook of Steel Drainage & Highway Construction Products", AISI 1971 � -1025- �— -- — _ _ — _ - — _ =3` fl- G "I BOULDER COUNTY FIQURE 1003 STORM DRAINAGE CRITERIA MANUAL 0 0 0 0 0 � M �c �ci v ri �i ..� � o� o� � �o � W v o 0 0 0 0 �n a v�c �rs er r�i �i r: � a► ao � �c �n � a o 0 0 0 0 � � o W i o �ci er c�i � i �: .. o► oo r. � o � � I N � (0/MH) Sa313Wtlla NI H1d30 2l31t/MOd3H Z .. � o�°° t -� � �ri a er , ` u p a W ; � p `. o? �°`�'� N V °° � 0 W,.; � ,� \ °=�="�;v aaE�=gc (� -� N 3p ao�n�c �c`;�'��5 �� � v; u' �- i t =� .,..-. � �'.Ag��o„vC Z'- � �� �a � Q V•�. �%\ � .un in '� C i�i �� O � W H C9 C C�9 4 W x`� ` �t- �����g o= W ( 1 W�� � N M � `` j� � ^' C� 'i " p � J r/ 'ry 11 ...�.... Z 0 A`= O �a 3 Q�` ` O�_� `y�` �-o o �. a�� _� � LL o0000 a Z�ooso s� o0 000 0 0 $ _ o 0 0 00 0 0 0 $ o00 0 0 0 0 W .r 00 lD 1n � P�'f N .r 00 �D 1n � f7 N .r �D In � M N .r 00 t0111 � t'7 N .-i � � I I I 1 I. I. I � I �.�� 1.... I.. ,� I I I I I� I� 1. I 1 I I I I I I I I I I 1 I I I I I I I 1 I I I (� s�� t�i (D) 3�adH�sta � � �Wm � �a o�,� No�N 00 �D u1 � e'� N O O�p p 0� N �p p N erf p 1� el' �-+ � IA N .-� .r .r � .r .r .r .r O� 01 � n 1� 10 �O � � �t � M M N N N .r .-+ .r Z� �� I� I� I� I� 1, 1� 1. I . I . 1 1 1 � 1 1 1 1 1 1 1 f S3H�N1 NI (o) � a3Alf1� �0 2i313WV10 J � � J � .; : � ,; i ., o . e � . ., H � v � ZC�a �� : � N � �� . � . ,, O � 'a � i �� — �� J �e ei ri « �~ ° I � w r V W ~ yZ- � 1a/MHI s�a o�Q u� y�d�p �s�o�+pw}{ � �• i\ ` OWN � �`�' W � V e o0 � � Z�� � '����` � � . � f� � � �e � W � � � � Z "Z W a3 P "'��; � s�� 9_: � � — � u' �+ . S � ; : `'p a' . • I r, W u'� �` �€� � � '==i= `, u, .E �I s. Q �Q °L� Y�- $ ;�i�y° J� � •!�I - � v�ni�d � �� = S �--o L � �� � qR� +� � p> W ;}Q ;.� e��� � ��o� � � �� � S.��I � ~��� YI E .� ` li. op �p Q� I�ap v p p � � � � � � �J �,� . t.i O � o o" `: o " o$ O O O O O O O IO O O O O p O . . . \ ' / � O O O fl f MI N �0 Rl f M1 N ' d �0 f1 ♦ M/ N �\ O • fl f N N � V� � j� V IIII t,l�l, L���I��.�1����1111 I�1,1� I��„1„„I����1�11���1� .I�.��I����I�Y.��111 I�1�1� I����L��J�,.�I ��� `� �,,� 1 „ ^ Sd� �I (OI �Dioyx�a > V' I a ��, N��V �I"" ��� ��CId I���ff11S � � \ II ����. O �0 ��f7 ± +�1 N p �0 f N O f i N �C MI O N f\ � � f/ N m e w �e e� r n n w� N N � N 1 � I� I , I� I� I� I�_ 1 I i I I � I i i I i i � I � ' i �� � f�{,�YI VI (OI N�A��� �O I��YWDIQ � ��a15 P��oDni�o) p�opuo�g � • WRC EN(3. REFERENCE• "Concrete Pipe Design f�anual", ACPA 1970 �"Handbook of Steel Drainage & Highway Construction Products" AISI I971 ,n,o — - - � -_ � �— � - — �—�� Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Pond 207 Comment: Detention Pond Outlet Capacity Solve For Actual Discharge Given Input Data: Diameter.......... 1.50 ft Slope ............. 0.0080 ft/ft Manning's n....... 0.024 Depth ............. 1.00 ft Computed Results: Discharge......... 3.99 cfs Velocity.......... 3.19 fps Flow Area......... 1.25 sf Critical Depth.... 0.76 ft Critical Slope.... 0.0184 ft/ft Percent Full......� 66.67 � F'ull Capacity..... 5.09 cfs QMAX @.94D........ 5.47 cfs Froude Number..... 0.60 (flow is Subcritical) Open Channel Flow Module, Version 3.21 (c) 1990 1�� Haestad Methoda, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 � - ��-�31 � a T � C y C :d � � � 0 U rn C .� d c .� c W V c � m � M T � � � � C � L � � � � m v� a i � 0 0 3 W Y 0 O m � O d � II � � II N v II � II �' �. II � � II Q � II � � n V II II � �� Q � �� II II � II rn �- II « � 11 � II II I40) �0!/y0�10 i � � + g T 6 � Ul T ' O O M� O O ; O O CA CO O O i O O N f� O O ' .- o � � T 1 � 1 � � N i � M 4� tD 1� � 'p ; O M c0 o st � Oi O O O T T T a ; c ' o ' C ' r � f,p � N �A � ; ch ch C� ch d' � V; o 0 0 0 0 0 r � � � ' � H � O.- N ch d' u� I401 �On4DY0 Q � � + T 9 � 0 Ul T i O O O O� O ; O O O O CA O � O O O O M 00 � � 1 � 1 N I �� O V �' O 'p ; O N cD rn c� f� O � O O O O r r a ' , , c ' o ' C� � I� O N tA CD r � � N Ch M M C7 � V; o 0 0 0 0 0 � � � m ' � F- � O r N Ch d' tA [u�l Murtlr,7 Uiro�l+tw�Ar,7 � J The Sear-Brown Group McClellands/Mail Creek Basin SWMM Model 434-011 for Woodridge Fourth Fiiina Basin Area Balance Notes ! Sub-basins Flow Path Impervious Number Length Area (ec) (ac) (l� (96) 1993 master plan basins: 75 50.6 50.6 inGudes Regenq Park 77 26.3 76.9 78 74.7 151.6 Imperial Estates 79 17.9 169.5 80 100.3 269.8 82 30.0 299.8 JJ's Comer Store 179 13.9 313.7 e 4.7 -1. ow.�w ro�n Fw.r a..�c ar�n Revised basins: 75 � 78 79 80 82 86 89 175 176 179 186 s.o 5.2 �.5 0.@ 03 01 ze.s 45.1 �.s s.e 3.1 3.! -0.3 � 6.4 67.3 s.e s.o o.� 2.s u s.s 3.3 3.2 2.3 2.1 5.5 1.7 0.1 36.1 1.T S.S �.o o.� 1.9 �.3 -0.1 18.7 sa o.e �0,0 33.0 �o.� 1.2 22 S.S 2.6 2.6 LY 0.9 30.6 1.0 �.6 6.5 13.1 �o.o 1.1 3A 0.1 -0.e 13.8 20.3 �.� 1.� o.e LS 3.4 2.5 0.1 13.8 a«ww e�: aa Ov�rboh i2: 7A (Fntl. Ovwbok �1: � Mp�lw� Famc 3 AqpYw� Fmro: � Mp�hw Frrtr: 3 AnpY�w F�ma: 7 Rwni�iip W�in 45.1 ow. fr� t� Gahs M: 26 G�tu !4: 27 GSMaN:26 RandinpM1�rnumirM eanction 61.5 128.8 R.mrdrq anp.��l Eaw. e.+m cw, a: �e G�Y� p: 1BA Gau. r�: t ee GHpl4: 1Y (YW. GW� p) �k:� OM�� M:21A Gab�f4:27B G�bs M: 71A C�IMss t1: 228 GabaM:22C Cul�� !4: 23 Ciws M: 25 C Roun6nphn�uuw�rnl eandbn 164.9 Owrlook M: 2B OMrbok N: SA a.raok u: ae a«aok w: x O.�rlook M: 12 Ov�rlook !4: 13 Rau�6�pMtwsvMwN ea1Nlion 183.6 o.«aok a: a2 o..Nook s4: w Oripind portian d 6uin 2 � 6.6 ov.rwok n: 9 pw. or.rwok n: a� oo.nook a: e OwAook p: 19A O�rvlook Ri: 108 Ov«bakp: tOC ONrlook p: 11 Ov�rlook p: 1� RpndnpMrwwMnMl mMPJIm 24�.2 ov�Mokl1: 1 Owbok M: ?A 253.7 266.8 R.�,.u,hy n..., c.u.�t:t MpYq� Fmn: 1 Mptlwe Fumc 2 Mprfw� F�ma: 6 RanAY�ymn�w�r�t eanction 280.6 300.9 rt«nrnYq e.�in o��ook s4: a ownook a: �e ONAook M: �C a.r�ook u: sA OvMloakll: SB (nd. Owtbok Ri: S) O�took M: SC (Mid. O�m1oWc p: S) Rouidirphn��w�nwM eorr�man 314.7 �oo t00 f00 1f0 zs rao 72 1S0 1Y0 ff0 f0e IM 140 f20 �as ��� so� 21 1I iiu 2l.S% ze.sx ze.sw e.ox u.ox �e.ox n.ox N.0% S.0% �O.O% S.0% 1i.0% 24.0% Y3.0% 99.0% re.ox x.ow �3.0% 60.0% 45.796 ��o ee.mc 1f0 88.0% f 10 86.0% �_� i� 21-Jan-98 ii � � IDRAINAGE CRITERIA MANUAL (�: .: • ; : : . . . I �. . I � � , 50 I • TEST AREA LOCATIONS O ARA�AHOE COUNTY O _ � ❑ LITTLEION � � . 39?a�Q 3 � -� � �- � - ae .. • � ' ' . W 30 i � � a . � cn �� � � �.) W 20 a . �"_� � � 10 ;a O� � ❑ I RUNOFF � �' 3� ���. � � I� ► ■ � � � LOWI DENSITY MED�UM DENSITY � ot � i i i_i � i •. c � 2 l 3 � 4 �. HOU.SING DENSITY - iUNITS i PER ACRE � � , 1, 6 z � 3.Z � FIGURE. 2-1. RESIDENTIAL HOUSI NG DENSITY YS. � IMPERVIOUS AREA � E . ,�� + _ _ �� . 5-1-84 URBAN DRAINAGE d� FLOOD CONTROL DISTRICT .. .� __.....� , __.' _..___.. ... .. .. . .... . ..._. .._ . .. . . _... _ . _.. . . ._. _ ... .. .. ._. ._ ---- i � The Sear-Brown Group McClellands/Mail Creek Basin SWMM Model for Woodridg� Fourth Filina BAS/N PARAMETERS 434-011 Sub-basin Flow Pafh Tributary Area Impervious Ground Remarks Number Length Width Slope (�J !�� (�) (ac) (%) (�) Tributary to Regency Regional Detention Facility 75 220 8930 45.1 79 140 11232 36.1 80 110 7362 18.7 86 110 12118 30.6 89 110 2574 6.5 175 170 3357 13.1 176 120 5009 13.8 186 110 5457 13.8 Tributary to Mountainridge Regional Detention Facility 77 180 3969 16.4 78 542 5409 67.3 82 649 2218 33.0 177 705 901 14.6 178 300 2463 17.0 179 432 2025 20.1 180 150 7713 26.6 Notes: 50.0% 24.0°k 45.7% 42.0% 86.0% 39.0% 45.0% 28.9% 0.013 0.019 0.032 0.032 0.032 0.015 0.019 0.032 32.0% 0.012 -- _ �21 -- -- (3) � __ �q� 25.0% 0.035 �s� _ __ �6� -- -- ��� ��� All other basins not listed remain unaltered from 1993 master plan revision. Empty table entries remain unaltered from 1993 master plan revision. �z� Imperial Estates basin reduced by area within Gates 4th Filing. Tributary width adjusted to account for revised area. �s� JJ Corner basin increased by tributary area of Taft Hill Road. Tributary width adjusted to account for revised area. �4� Westbrooke basin modified by updated Mountainridge & Westfield plans. Tributary width adjusted to account for revised area. �5� Westfield Park basin updated by current plans. �s� Johnson Elementary basin reduced by area within Gates 4th Filing and increased by area south of Wes�eld Park. Tributary width adjusted to account for revised area. �� West Mountainridge basin updated by current plans. �--�y 21-Jan-98 � 1 ne �ear-tsrown Group, lnc. McClellands/Mail Creek Basin SWMM Model for Woodridge Fourth Filina CONVEYANCE ELEMENT PARAMETERS A-35 434-011 Conveyance Type Wdth or Length Slope Side Slope Roughness Full Depth/ Remarks Element Diameter Left Right "n" Diameter . t�� (�) (�) i�) (zH:1� (ft) T�ibutary to Regency Regional Detention Facility 23 channel 12 1300 0.0056 4 4 0.030 5 24 pipe w/ 4.95 1600 0.004 — — 0.013 4.95 2�2" pipes overflow 20 1600 0.01 5 5 0.060 8 width/dia. only 26 channel 1 1320 0.02 10 5 0.060 5 31 pipe w/ 3.5 750 0.013 — -- 0.013 3.5 overflow 70 750 0.006 20 20 0.016 10 34 pipe w/ 1.75 950 0.0051 -- — 0.013 1.75 overflow 70 950 0.006 20 20 0.016 10 37 channel w/ 0.5 850 0.0149 50 50 0.016 0.5 overflow 50 850 0.0149 20 20 0.016 10 39 node -- 1 — — — — -- 41 pond 0 100 0.005 -- — 0.013 — rating curve 230 pond 0 100 0.005 — -- 0.013 — rating curve Tributary to Mountainridge Regional Detention Facility 44 channel 4 1100 0.01 47 pipe 5 342 0.0102 49 channel — 2600 — 51 channel 45 800 0.008 200 pipe 4.5 2500 0.0099 4 4 10 10 0.016 5 0.013 5 — — length only 0.020 5 �z� 0.013 4.5 Notes: r+� All other conveyance elements not tisted remain unaltered. �2� Embedded conveyance element for West Mountainridge basin according to plans. 29-Sep-97 ,� � �'3� SWMM input file 434011S1.DAT: 2 � � z 3 4 ERSNED AIL CREEK BASIN, 100-TEAR STORM, DEVELOPED CONDITIONS 1996, WOODRIDGE 4TH FIL. �ISED 21 JAN 98; SBG/RBD (dkt) FILE: 434011S1.DAT 1 1T0 000 5. 1 1. 1 25 5. .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 � 24 .24 .12 .12 0.0 �repared for: Itoocicraft Names S1MM developed condition, 100-yr recurrence interval 102800. 97.7 30.0 .040 113100. 35.1 35.0 .064 2111400. 34.4 35.0 .032 142200. 12.5 90.0 .048 261 900. 11.5 90.0 .016 2625000. 99.5 90.0 .016 2902200. 75.8 75.0.0088 162700. 43.0 45.0 .032 161260. 9.6 45.0.0134 331000. 6.1 45.0 .01 352830. 59.0 45.0 .016 421250. 16.3 45.0 .016 383000. 47.9 50.0 .016 3622200. 24.7 45.0 .015 33 950. 16.2 65.0 .01 3654600. 27.0 45.0 .016 2663862. 13.3 45.0 .01 3663891. 13.4 45.0 .01 3674400. 21.5 45.0 .01 3682800. 13.0 45.0 .01 3703000. 30.8 45.0 .01 3711600. 23.2 45.0 .01 3722000. 3.1 45.0 .01 3734600. 39.2 45.0 .010 3642600. 32.9 45.0 .010 2104420. 20.3 50.0 .064 362T00. 34.7 45.0.0088 325200. 50.7 45.0 .016 3183600. 6.6 45.0 .011 2543000. 16.7 45.0 .016 181400. 12.9 65.0.0143 302900. 43.0 50.0 .032 29 700. 19.1 55.0.0136 271100. 21.8 45.0.0104 258930. 45.1 50.0.0134 243357. 13.1 39.0 .015 2211600. 39.7 65.0 .016 375009. 13.8 45.0 .019 443969. 16.4 32.0 .012 4G 901. 14.6 41.0 .020 495409. 67,3 37.0 .016 PARK 482463. 17.0 25.0 .035 3911232 36.1 24.0 .019 2802025. 20.1 67.0 .020 31T362. t8.7 45.7 .032 265457. 13.8 28.9 .032 2041000. 24.4 45.0 .016 203 900. 16,2 45.0 .016 2061200. 17.8 45.0 .016 2012218. 33.0 66.0.0091 3479757. 33.6 35.0 .020 452800. 22.2 75.0.0072 185 900. 16.1 45.0 .016 3412118 30.6 42.0 .032 2872000. 38.3 45.0 .020 28 600. 11.8 45.0.0154 412574. 6.5 86.0 .032 518654. 27.9 41.0 .020 016 .250 .1 .3 .51 .5 .0018 January 21, 1998 � � ��f 0 10 1 0 1 10.0 3400. .011 4.0 11 10 0 1 10.0 1900. .013 2.5 ` 12 210 0 1 10.0 400. .011 2.0 � 13 12 0 1 8.0 150. .011 0.0 14 13 0 1 8.0 800. .0159 0.0 15 14 11 1 .1 60. .014 0.0 I .0 30.0 .0 66.0 .1 .2 248.0 .5 364.0 .8 2.9 584.0 5.4 632.0 9.1 16 15 0 1 10.0 1650. .005 4.0 � 17 16 0 1 2.0 1050. .005 4.0 18 17 0 1 2.0 1000. .005 4.0 19 107 0 1 4.0 700. .011 4.0 20 320 0 3 1. 21 20 0 1 2.0 1500. .005 4.0 �REGENCY REGIONAL DETENTION FACILITY 22 21 10 2 0.1 1. .005 0.0 0.0 0.0 0.28 3.5 1.55 7.65 14.0 13.06 17.5 19.95 35.31 22.8 43.48 66. 23 39 0 1 12.0 1300. .0056 4.0 IqODR1DGE DETENTION POND 230 24 10 2 0.0 10. .005 0.0 0.0 0.0 0.01 3.65 0.18 2.19 132.00 3.27 171.66 4.75 6.97 269.54 7.71 288.00 SENECA STREET/REGENCY DRIVE CULVERTS AMD CHANNEL 24 222 0 5 4.95 1600. .004 0.0 20.0 1600. .010 5.0 25 222 0 1 2.0 2000. .005 4.0 j 26 23 0 1 1.0 1320. .02 10.0 27 18 0 1 2.0 1300. .005 4.0 287 27 0 1 2.0 1700. .005 4.0 I 28 29 0 1 2.0 400. .005 4.0 29 30 0 1 2.0 800. .005 4.0 30 1T 0 1 2.0 2000. .005 4.0 31 23 0 5 3.5 750. .013 0.0 � 70.0 750. .006 20.0 32 105 0 4 .50 2600. .007 12.0 10. 2600. .007 20.0 33 14 7 2 0.1 280. .003 0.0 .13 14. .61 30. 1.72 3.70 127. 5.30 155. 26.7 � 34 23 0 5 1.75 950. .0051 0.0 70.0 950. .006 20.0 35 102 0 4 0.5 13T0. .0164 12.0 I 10.0 1370. .0164 20.0 36 321 0 4 .5 1500. .00T 12.0 10. 1500. .007 20.0 3T 24 0 4 0.5 850. .0149 50.0 50.0 850. .0149 20.0 38 245 0 1 4.0 1200. .01 4.0 D 230 INFLOW 39 230 0 3 1. 40 375 0 4 .5 900. .011 10.0 900. .011 �PUTURE WOOORIDGE COMMERCIAL DETENTION POND 41 31 3 2 0.0 10. .005 0.0 0.0 1.2 2.40 42 102 0 5 2.0 1180. .015 1.0 1180. .015 IiOUTMAN PARK REGIONAL DETENTION POND 43 42 8 2 0.1 1. .005 0.0 0.0 .632 3. �- 6.2 24. 10.6 2T. 45 34T 0 1 2.0 1250. .005 � 4G 347 0 1 2.0 1550. .005 44 47 0 1 4.0 1100. .01 I 47 48 0 2 5.0 342. .0102 48 50 0 1 6.0 740. .0089 49 48 0 1 4.0 2600. .005 50 3T8 0 2 T.1 10T. .005 51 3T8 0 1 45.0 500. .008 � 261 13 0 2 3.5 900. .003 262 2G1 0 2 3.0 3400. .0025 100 11 12 1 19.5 50. .005 0.0 0.0 3.9 51.0 4.0 .044 2.5 .047 2.0 .068 0.0 .013 0.0 .013 0.0 .100 120.0 .2 440.0 1.4 680.0 4.0 .035 4.0 .035 4.0 .035 4.0 .035 4.0 .035 12.0 16.0 12.0 8.0 6.0 0.1 188.0 520.0 5.0 5.0 5.0 6.0 5.0 0.0 .013 0.1 8.9 3.96 12.0 20.0 27.46 21.0 4.0 .030 5.0 0.0 .013 0.0 30.05 1.10 94.52 212.00 6.23 251.08 0.0 5.0 4.0 5.0 4.0 4.0 4.0 4.0 4.0 0.0 20.0 12.0 20.0 0.0 57. 204. 0.0 20.0 12.0 20.0 12.0 20.0 50.0 20.0 4.0 .013 .060 .035 .060 .035 .035 .035 .035 .035 .013 .016 .016 .020 .013 2.58 .013 .016 .016 .020 .016 .020 .016 .016 .035 4.95 8.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 3.5 10.0 0.5 10. .1 1.75 10.0 .5 10. .5 10. 0.5 10.0 5.0 12.0 12.0 .016 .5 20.0 20.0 .020 5.0 0.0 0.0 .013 0.0 2.0 2.40 0.0 0.0 .013 2.0 20.0 20.0 .016 5.0 0.0 1.2 22.6 4.0 4.0 4.0 0 6.0 4.0 0.0 10.0 0.0 0.0 0.0 5.9 0.0 10.0 33. 4.0 4.0 4.0 0 8.0 4.0 0.0 10.0 0.0 0.0 0.0 96. .013 2.9 26.2 .035 .035 .016 .013 .035 .035 .013 .020 .013 .013 .Ot3 T.b 93. 0.1 18.0 36.0 5.0 5.0 5.0 5.0 5.0 5.0 7.1 5.0 3.5 3.0 0.5 140. � 11.0 260.0 12.7 300.0 14.5 340. 1T. 390. 20.0 490.0 22.6 740.0 25.0 1070. 27.5 1626. - 101 211 7 1 35.0 3. .0001 .013 0.5 0.0 0.0 0.7 13.2 1.4 74.9 2.7 141.1 � 2.8 288.9 4.3 831.5 5.9 1742.9 211 100 0 3 1. 102 33 9 2 0.1 1. 0.1 0.0 0.0 .024 0.1 �0.0 0.0 0.4 3.8 1.4 10.5 4.4 16.0 T.T 20.0 17.1 24.0 13.3 25.0 15.9 36.1 19.T 1910.0 103 33 T 2 0.1 1. 0.1 0.0 0.0 .024 0.1 � 0.0 0.0 1.1 4.2 1.8 9.3 3.5 14.0 ' S.2 16.0 6.2 41.0 T.3 590.0 104 38 9 2 .1 10. .1 0.0 0.0 .1 .1 0. 0. .84 6. 2.6 10.5 5.2 13.5 8.7 16. 10.8 16.5 12.8 77. 15.3 18. 19.3 45. 105 319 4 2 0.1 50. 0.01 0.0 0.0 .013 0.0 0.0 1.5 11.5 4.0 16.7 7.1 107 318 6 2 0.1 1. 0.1 0.0 0.0 .020 �0.0 0.0 0.1 20.0 0.3 39. 0.7 1.1 68.0 1.6 80.0 185 22 0 1 2.0 850. .010 4.0 4.0 .035 210 101 0 3 5. 222 22 0 3 5. * 243 43 0 3 5. 244 104 0 3 5. 245 103 0 3 5. 200 4T 0 2 4.5 2500. .0099 0.0 0.0 .013 202 208 0 1 2.0 1170. .01 4.0 4.0 .060 201 200 0 1 2.0 1400. .005 4.0 4.0 .060 ■ 203 207 0 1 2.0 900. .018 4.0 4.0 .060 204 208 0 1 2.0 970. .005 4.0 4.0 .035 205 204 6 2 0 100. .08 0.0 0.0 .024 0.0 0.0 0.33 0.0 0.68 2.93 1.06 1.4T 10.0 1.91 100.0 20.0 20.0 .020 4.0 4.0 .035 2.0 2.0 .035 206 205 0 1 2.0 1200. .020 4.0 4.0 .060 2.0 20T 202 4 2 0 50. .010 0.0 0.0 .024 0 , 0.0 0.0 0.94 0.0 1.31 3.99 1.70 100.0 208 200 0 3 5. 221 20 0 1 2.0 1600. .010 4.0 4.0 .035 MWNTAINRIDGE REGIONAL DETENTION POND 247 (AS-BUIIT -- 21 OCT 97) 347 247 0 3 5. 247 366 13 2 0 193. .0026 0.0 0.0 .013 0.0 0.0 2.03 0.0 3.T8 8.04 6.67 10.12 25.53 14.06 28.30 18.32 29.93 22.84 27.61 33.30 32.63 34.9T 37.92 36.97 43.51 49.5T 43.06 254 107 0 4 0.5 1100. .004 12.0 12.0 .016 u� 10. 1100. .004 266 366 0 1 10.0 800. .005 ` 270 272 0 1 10.0 1000. .0001 qn� 2T1 2T2 8 3 1. 0.0 0.0 .083 155. ` 0.5 155. 1.0 155. 272 12 0 1 10.0 100. .0001 �NTAINRIDGE REGIONAL DETENTION POND 278 378 278 0 3 5. 278 347 9 2 0.0 360. .0083 0.0 0.0 1.99 27.36 10.98 105.24 15.32 121.33 29.83 403.20 279 46 4 2 0.1 50. .005 0. 0. 0.18 4. 280 279 0 1 2.0 1400. .01 290 270 0 2 5.0 100. .0006 t 300 301 8 3 1. � 0.0 0.0 0.083 80.0 1.0 80.0 2.0 80.0 �301 33 0 3 1. 318 319 0 1 4.0 1900. .011 319 16 0 3 1. 320 19 7 2 .1 10. .1 0. 0. .18 16. 2.39 54. 3.75 62. 321 35 11 2 .1 10. .1 0. 0. .06 5. .41 22. .59 33. 0.1 20.5 0.1 58.0 5.0 4.5 2.0 5.0 2.0 3.0 0 7.69 5.0 0 18.09 31.61 40.06 0.5 10. 5.0 5.0 0.2 155. 0.3 155. 2.0 155. 3.0 155. 2.0 2.0 .035 25.0 0.0 0.0 .013 0.0 4.45 59.17 7.41 89.15 20.58 134.81 26.75 146.50 0.0 0.0 .013 0.1 0.84 13. 2.10 20. 4.0 4.0 .060 5.0 0. 0. .013 5.0 0.2 80.0 0.5 80.0 3.0 80.0 4.0 80.0 4.0 4.0 .035 6.0 0.0 0.0 .1 .1 .65 30. 1.4 45. 5.1 208. 0.0 0.0 .1 .1 .12 10. .27 13. .76 45. .97 55. � 5� i■ ■ � -� - - - - � f�-3`� I - ,.,� �o. 362 374 0 4 � 364 399 0 4 365 369 0 4 366 371 0 1 367 244 0 1 r 368 372 0 4 � 369 244 0 1 370 244 0 5 371 243 0 1 372 40 0 4 � 373 243 0 5 374 245 0 4 � 375 245 0 5 399 370 7 2 0. 0. � 3.2 4.1 4 5 �247 200 230 OGRAM 1.41 82.5 1.64 .5 1100. .008 12.0 10.0 1100. .008 20.0 .5 1800. .008 12.0 10.0 1800. .008 20.0 .5 2300. .007 12.0 10.0 2300. .007 20.0 10.0 1350. .005 4.0 5.0 2200. .010 10.0 .5 1400. .071 12.0 10.0 1400. .011 20.0 5.0 570. .005 4.0 2.0 950. .007 0.0 2.0 950. .007 20.0 17.0 800. .005 3.0 .5 1000. .011 12.0 10.0 1000. .011 20.0 2.5 2300. .010 0.0 2.0 2300. .010 20.0 .5 1050. .004 12.0 10.0 1050. .004 20.0 3.0 1800. .002 D.0 2.0 1800. .004 20.0 0.1 S0. .010 0.0 .10 1.7 0.6 4.8 4.6 6.4 97.6 12.0 20.0 12.0 20.0 12.0 20.0 4.0 10.0 12.0 20.0 4.0 0.0 20.0 3.0 12.0 20.0 0.0 20.0 12.0 20.0 0.0 20.0 0.0 2.7 5.0 .016 .020 .016 .020 .016 .020 .035 .060 .016 .020 .035 .013 .020 .035 .016 .020 .013 .020 .016 .020 .015 .020 .015 1.7 .5 5.0 .5 5.0 .5 5.0 5.0 3.0 .5 5.0 5.0 2.0 5.0 5.0 .5 5.0 2.5 5.0 .5 5.0 3.0 5.0 0.1 3.4 � � � SWMM output file 434011S1.OUT: ENVIRONMENTAL PROTECTION AGENCY - STORM YATER MANAGEMENT MOOEL - VERSION PC.1 DEVELOPED BY UPDATED BY �RSNED PROGRAM CALLED " ENTRY MADE TO RUNOFF MODEL *** METCALF + EDDY, INC. UNIVERSITY OF FLORIDA YATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) �-�0 January 21, 1998 UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENG[NEERiNG CENTER, CORPS OF ENG[NEERS MIS50URI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 19T4) BOYIE ENGINEERING CORPORATION (MARCN 7985, JULY 1985) !L CREEK BASIN, 100-YEAR STORM, DEVELOPED CONDITIONS 1996, WOODRIDGE 4TH FIL. NISEO 21 JAN 98; SBG/RBD (dkt) FILE: 434011S1.DAT �ER OF TIME STEPS 1T0 GRATION TIME INTERVAL (MINUTES) 5.00 .0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES RAINGAGE NUMBER 1 RAiNFALL HISTORY 1N INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .12 .12 .00 CREEK BASIN, 100-YEAR STORM, DEVELOPED CONDITIONS 1996, WOODRIDGE 4TH FIL. SED 21 JAN 98; SBG/RBD (dkt) FILE: 43401151.DAT WIDTH (PT) .0 2800.0 3100.0 1400.0 2200.0 900.0 5000.0 2200.0 2700.0 1260.0 1000.0 2830.0 1250.0 3000.0 2200.0 950.0 4600.0 3862.0 3891.0 4400.0 2800.0 3000.0 1600.0 2000.0 AREA (AC) .0 97.7 35.1 34.4 12.5 11.5 99.5 75.8 43.0 9.6 6.1 59.0 16.3 47.9 24.7 16.2 27.0 13.3 13.4 21.5 13.0 30.8 23.2 3.1 PERCENT IMPERV. .0 30.0 35.0 35.0 90.0 90.0 90.0 75.0 45.0 45.0 45.0 45.0 45.0 50.0 45.0 65.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 SLOPE (FT/FT) .0300 .0400 .0640 .0320 .0480 .0160 .0160 .0088 .0320 .0134 .0100 .0160 .0160 .0160 .0150 .0100 ,0160 .0100 .0100 .0100 .0100 .0100 .0100 .0100 RESISTANCE FACTOR IMPERV. PERV. .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 .016 .250 SURFACE STORAGE(IN) 1MPERV. PERV. .100 .300 .100 .300 .100 .300 .700 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 .100 .300 1.56 .24 INFILTRATION RATE(IN/HR) GAGE MAXIMUM M[NiMUM OECAY RATE NO .51 .50 .00180 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00780 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 ,50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 7 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 MI � �-�� 373 4600.0 39.2 45.0 364 2600.0 32.9 45.0 210 4420.0 20.3 50.0 36 2700.0 34.7 45.0 32 5200.0 50.7 45.0 318 3600.0 6.6 45.0 254 3000.0 16.7 45.0 18 1400.0 12.9 65.0 30 2900.0 43.0 50.0 29 700.0 19.1 55.0 27 1100.0 21.8 45.0 25 8930.0 45.1 50.0 24 3357.0 13.1 39.0 221 1600.0 39.7 65.0 37 5009.0 13.8 45.0 44 3969.0 16.4 32.0 46 901.0 74.6 41.0 49 5409.0 67.3 37.0 48 2463.0 17.0 25.0 39 11232.0 36.1 24.0 280 2025.0 20.1 67.0 31 7362.0 18.7 45.7 26 5457.0 13.8 28.9 204 1000.0 24.4 45.0 203 900.0 16.2 45.0 206 1200.0 17.8 45.0 201 2218.0 33.0 66.0 347 9757.0 33.6 35.0 45 2800.0 22.2 75.0 185 900.0 16.1 45.0 34 12118.0 30.6 42.0 287 2000.0 38.3 45.0 28 600.0 11.8 45.0 41 2574.0 6.5 86.0 51 8654.0 27.9 41.0 NUMBER OF SUBCATCHMENTS, 58 TRIBUTARY AREA (ACRES), 1626.60 .0100 .0100 .0640 .0088 .0160 .0110 .0160 .0143 .0320 .0136 .0104 .0134 .0150 .0160 .0190 .0120 .0200 .0160 .0350 .0190 .0200 .0320 .0320 .0160 .0160 .0160 .0091 .0200 .00T2 .0160 .0320 .0200 .0154 .0320 .0200 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .100 .100 ,100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .t00 .100 .100 .100 .100 .100 .100 .100 Wl CREEK BAS1N, 100-YEAR STORM, DEVELOPED COND1T10NS 1996, HOODRIDGE 4TH FIL. VISED 21 JAN 98; SBG/RBD (dkt) FILE: 434011S1.DAT ' CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSwM2-PC MODEL **" �RSHED AREA (ACRES) TAL RAINFALL (INCNES) L INFILTRATION (INCHES) AL YATERSHED OUTFLOY (INCHES) �SURFACE STORAGE AT END OF STROM (INCHES) IN CONTIMUITY, PERCENTA6E OF RAINFALL 1626.600 2.890 .549 2.242 .099 .000 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .300 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .SO .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .00tao .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 .00180 �� CREEK BASIN, 100-YEAR STORM, DEVELOPED CONDITIONS 1996, WOODRIDGE 4TH FIL. 71SED 21 JAN 98; SBG/RBD (dkt) F1LE: 434011S1.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE �TER GUTTER NDP NP OR DIAM LENGTH SLOPE HOR1Z TO VERT NANNING DEPTH JK ER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 1 0 1 CHANNEL 10.0 3400, .0110 4.0 4.0 .044 12.00 0 1 10 0 1 CHANNEL 10.0 1900. .0130 2.5 2.5 .047 16.00 0 12 210 0 1 CMANNEL 10.0 400. .0110 2.0 2.0 .068 12.00 0 y3 12 0 1 CHANNEL 8.0 150. .0110 .0 .0 .013 8.00 0 4 13 0 1 CHANNEL 8.0 800. .0159 .0 .0 .013 6.00 0 i6 14 11 1 CHANNEL .1 60. .0140 .0 .0 .100 .10 0 RESERVOIR STORA�E IN ACRE-FEET VS SPILLVAY OUTFLOLI .0 30.0 .0 66.0 .1 120.0 .8 440.0 1.4 520.0 2.9 584.0 15 0 1 CHANNEL 10.0 1650. 16 0 1 CHANNEL 2.0 1050. 17 0 1 CHANNEL 2.0 1000. 107 0 1 CHANNEL 4.0 T00. 320 0 3 .0 1. 20 0 1 CHANNEL 2.0 1500. 21 10 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLObI .0 .0 .3 3.5 1.6 8.9 19.9 20.0 27.5 21.0 35.3 22.8 39 0 1 CHANNEL 12.0 1300. 24 10 2 P1PE .0 10. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFL01�1 .0 .0 .0 3.6 .2 30.1 4.8 212.0 6.2 251.1 7.0 269.5 222 0 5 PIPE 5.0 1600. 04ERFLOb1 20.0 1600. 222 0 1 CHANNEL 2.0 2000. 23 0 1 CHANNEL 1.0 1320. 18 0 1 CHANNEL 2.0 1300. 27 0 1 CHANNEL 2.0 1700. 29 0 1 CHANNEL 2.0 400. 30 0 1 CHANNEL 2.0 800. 17 0 1 CHANNEL 2.0 2000. 23 0 5 PiPE 3.5 750. OVERFL0IJ 70.0 750. 105 0 4 CHANNEL .5 2600. OVERFL0�1 10.0 2600. 14 T 2 P1PE .1 280. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOIJ .1 14.0 .b 30.0 1.7 57.0 26.7 204.0 23 0 5 P1PE 1.8 950. OVERFLOY 70.0 950. 102 0 4 CNANNEI .5 1370. OVERFLOu 10.0 1370. 321 0 4 CHANNEL .5 1500. OVERFLOY 10.0 1500. 24 0. 4 CHANNEL .5 850. OVERFLON 50.0 850. 245 0 1 CHANNEL 4.0 1200. 230 0 3 .0 1. 375 0 4 CHANNEL .5 900. OVERFL01�1 10.0 900. 31 3 2 PIPE .0 10. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFL01� .0 .0 1.2 2.4 2.0 2.4 102 0 5 PiPE 2.0 1180. OVERFLON 1.0 1180. 42 8 2 PIPE .1 1. RESERVOIR STORAGE 1N ACRE-FEET VS SPILLWAY OUTFLOH .0 .0 .6 3.0 1.2 10.0 22.6 33.0 26.2 36.0 347 0 1 CHANNEL 2.0 1250. 347 0 1 CHANNEL 2.0 1550. 47 0 1 CHANNEL 4.0 1100. 48 0 2 P1PE 5.0 342. 50 0 1 CHANNEL 6.0 740. 48 0 1 CHANNEL 4.0 2600. 378 0 2 PIPE 7.1 107. 378 0 1 CHANNEL 45.0 500. 13 0 2 P1PE 3.5 900. 261 0 2 PiPE 3.0 3400. 11 12 1 CHANNEL 19.5 50. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 3.9 51.0 5.9 96.0 14.5 340.0 17.0 390.0 20.0 490.0 211 7 1 CHANNEL 35.0 3. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFL0IJ .0 .0 .7 13.2 1.4 74.9 5.9 1742.9 100 0 3 .0 1. 33 9 2 P[PE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLUAY OUTFL0IJ .0 .0 .4 3.8 1.4 10.5 13.3 25.0 15.9 36.1 19.7 1910.0 .2 188.0 .2 5.4 632.0 9.1 .0050 4.0 4.0 .0050 4.0 4.0 .0050 4.0 4.0 .0110 4.0 4.0 .0010 .0 .0 .0050 4.0 4.0 .0050 .0 .0 4.0 12.0 7.7 43.5 66.0 .0056 4.0 4.0 .0050 .0 .0 1.1 94.5 2.2 7.7 288.0 .0040 .0 .0 .0040 5.0 S.0 .0050 4.0 4,0 .0200 10.0 5.0 .0050 4.0 4.0 .0050 4.0 4.0 .0050 4.0 4.0 .0050 4.0 G.0 .0050 4.0 4.0 .0130 .0 .0 .0130 20.0 20.0 .0070 12.0 12.0 .0070 20.0 20.0 .0030 .0 .0 2.6 93.0 3.7 .0051 .0 .0 .0051 20.0 20.0 .0764 12.0 12.0 .0164 20.0 20.0 .0070 12.0 12.0 .0070 20.0 20.0 .0149 50.0 50.0 .0149 20.0 20.0 .0100 4.0 4.0 .0010 .0 .0 .0110 12.0 12.0 .0110 20.0 20.0 .0050 .0 .0 .0150 .0150 .0050 2.9 .0050 .0050 .0100 .0102 .0089 .0050 .0050 .0080 .0030 .0025 .0050 7.6 22.6 .0001 2.1 .0010 .1000 4.4 248.0 680.0 .035 .035 .035 .035 .001 .035 .013 14.0 .030 .013 132.0 .013 .060 .035 .060 .035 .035 .035 .035 .035 .013 .016 .016 .020 .013 127.0 .013 .016 .016 .020 .016 .020 .016 .016 .035 .001 .016 .020 .013 .0 .0 .013 20.0 20.0 .016 .0 .0 .073 18.0 6.2 24.0 4.0 4.0 .035 4.0 4.0 .035 4.0 4.0 .016 .0 .0 .013 6.0 8.0 .035 4.0 4.0 .035 .0 .0 .013 10.0 10.0 .020 .0 .0 .013 .0 .0 .013 .0 .0 .013 40.0 11.0 260.0 40.0 25.0 1070.0 .0 .0 .013 41.1 2.8 288.9 .0 .0 .001 .0 .0 .024 16.0 7.T 20.0 �-� z .5 364.0 5.00 0 5.00 0 5.00 0 6.00 0 10.00 0 5.00 0 .10 0 13.1 17.5 5.00 .00 3.3 171.7 4.95 8.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 3.50 10.00 .50 10.00 .10 5.3 155.0 1.75 10.00 .50 10.00 .50 10.00 .50 10.00 5.00 10.00 .50 5.00 .00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.00 5.00 .10 10.6 27.0 5.00 5.00 5.00 5.00 5.00 5.00 7.10 5.00 3.50 3.00 .50 12.T 300.0 27.5 1626.0 .50 4.3 831.5 10.00 .10 11.1 24.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � 103 104 105 107 33 7 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY WTFLOH .0 .0 1.1 4.2 1.8 9.3 7.3 590.0 38 9 2 PIPE .1 10. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFL01�1 .0 .0 .8 6.0 2.6 10.5 12.8 17,0 15.3 18.0 19.3 45.0 319 4 2 PIPE .1 50. RESERVOIR STORAGE IN ACRE-FEET VS SP[LLWAY WTFLOY .0 .0 1.5 11.5 4.0 16.7 318 6 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE•FEET VS SPILLWAY OUTFLOW .0 .0 .1 20.0 .3 39.0 22 0 1 CHANNEL 2.0 850. 101 0 3 .0 5. 22 0 3 .0 5. 43 0 3 .0 5. 104 0 3 .0 5. 103 0 3 .0 5. 47 0 2 PIPE 4.5 2500. 208 0 1 CHANNEL 2.0 1170. 200 0 1 CNANNEL 2.0 1400. 207 0 1 CHANNEL 2.0 90Q. 208 0 1 CNANNEL 2.0 470. 204 6 2 PIPE .0 100. RESERVOIR STORAGE 1N ACRE-FEET VS SPILLYAY WTFLON .0 .0 .3 .0 .7 2.9 205 0 1 CHANNEL 2.0 1200. 202 4 2 PIPE .0 50. RESERVOIR STORAGE 1N ACRE-FEET VS SPILLWAY WTFLOId .0 .0 .9 .0 1.3 4.0 200 0 3 .0 5. 20 0 1 CHANNEL 2.0 1600. 247 0 3 .0 5. 366 13 2 PIPE .0 193. RESERVOIR STORAGE IN ACRE�FEET VS SPILLWAY OUTFLOW .0 .0 2.0 .0 3.8 8.0 18.3 29.9 22.8 31.6 27.6 33.3 49.6 43.1 107 0 4 CHANNEL .5 1100. OVERFLOW 10.0 1100. 366 0 7 CHANNEL 10,0 800. 272 0 1 CFIANNEL 1Q.0 1000, 272 8 3 .0 1. TIME IN HRS VS INFLOW IN CFS .0 .0 .1 155.0 .2 155.0 2.0 155.0 3.0 155.0 12 0 1 CHANNEL 10.0 100. 278 0 3 .0 5. 347 9 2 PIPE .0 360. RESERVOIR STORAGE IN ACRE-FEET VS SPILLMAY OUTFLOY .0 .0 2.0 27.4 4.5 59.2 20.6 134.8 26.8 146.5 29.8 403.2 46 4 2 PIPE .1 50. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY WTFL011 .0 .0 .2 4.0 .8 13.0 279 0 1 CHANNEL 2.0 1400. 270 0 2 PIPE 5.0 100. 301 8 3 .0 1. TIME IN HRS VS INFLON IN CFS .0 .0 .1 80.0 .2 80.0 3.0 80.0 4.0 80.0 33 0 3 .0 1. 319 0 1 CHANNEL 4.0 1900. 16 0 3 .0 1. 19 7 2 PIPE .1 10. RESERVOIR STORAGE 1N ACRE-fEET VS SPILLWAY WTfLOW .0 .0 .2 16.0 .7 30.0 5.1 208.0 35 11 2 PIPE .1 10. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLON .0 .0 .1 5.0 .1 10.0 .8 45.0 1.0 55.0 1.2 70.0 374 0 4 CHANNEL .5 1100. OVERFLObI 10.0 1100. 399 0 4 CHANNEL .5 1800. OVERFLOW 10.0 1800. .1000 .0 .0 .024 3.5 14.0 5.2 16.0 .1000 .0 .0 .100 5.2 13.5 8.7 16.0 .0100 .0 .0 .013 7.1 20.5 .1000 .0 .0 .020 .7 58.0 1.1 68.0 .0100 4.0 4.0 .035 .0010 .0 .0 .001 .0010 .0 .0 .001 .0010 .0 .0 .001 .0010 .0 .0 .001 .0010 .0 .0 .001 .0099 .0 .0 .013 .0100 4.0 4.0 .060 .0050 4.0 4.0 .060 .0180 4.0 4.0 .060 .0050 4.0 4.0 .035 .0800 .0 .0 .024 1.1 7.7 1.5 10.0 .0200 4.0 4.0 .060 .0100 .0 .0 .024 1.7 100.0 .0010 .0 .0 .001 .0100 4.0 4.0 .035 .0010 .0 .0 .001 .0026 .0 .0 .013 6.7 18.1 10.1 25.5 32.6 35.0 37.9 37.0 .0040 12.Q 12.0 .016 .0040 20.0 20.0 .020 .0050 4.0 4.0 .035 .0001 2.0 2.0 .035 .0010 .0 .0 .001 .3 155.0 .S 155.0 .0001 2.0 2.0 .035 .0010 .0 .0 .001 .0083 .0 .0 .013 7.4 89.2 11.0 105.2 .0050 .0 .0 .013 2.1 20.0 .0100 4.0 4.0 .060 .0006 .0 .0 .013 .0010 .0 .0 .001 .5 80.0 1.0 80.0 .0010 .0 .0 .001 .0110 4.Q 4.0 .035 .0010 .0 .0 .001 .1000 .0 .0 .100 1.4 45.0 2.4 54.0 .1000 .0 .0 .100 .3 13.0 .4 22.0 1.4 82.5 1.6 97.6 .0080 12.0 12.0 .016 .0080 20.0 20.0 .020 .0080 12.0 12.0 .016 .0080 20.0 20.0 .020 �t� � � .10 0 6.2 41.0 .10 0 10.8 16.5 .10 0 .10 0 1.6 80.0 5.00 0 10.00 0 10.00 0 10.00 0 10.00 0 10.00 0 4.50 0 2.00 0 5.00 0 2.00 0 3.00 0 .00 0 1.9 100.0 2.00 0 .00 0 10.00 5.00 10.00 .00 14.1 28.3 43.5 40.1 .50 10.00 5.00 S.QO 10.00 1.0 155.0 25.00 10.00 .00 15.3 121.3 .10 0 0 0 0 0 0 0 -1 0 0 0 0 5.00 5.00 10.00 2.0 80.0 10.00 6.00 10.00 .10 3.8 62.0 .10 .6 33.0 .50 5.00 .50 5.00 0 0 -1 0 0 0 0 0 0 0 � A-`I�t "365 369 0 4 CHANNEL .5 2300. OVERFLObI 10.0 2300. 366 371 0 1 cNaNNEI 10.0 7350. 3b7 244 0 1 CHANNEL S.0 2200. 368 372 0 4 CHANNEI .5 1400. OVERFLOu 10.0 1400. 369 244 0 1 cHaNNeI 5.0 570. I370 244 0 5 PIPE 2.0 950. OVERFl061 2.0 950. 371 243 0 1 CHANNEL 17.0 800. 372 40 0 4 CHANNEL .S 1000. OVERFl01J 10.0 1000. I373 243 0 5 PIPE 2.5 2300. OYERFL0IJ 2.0 2300. 374 245 0 4 CHANNEL .5 1050. OVERFl041 10.0 1050. I375 245 0 5 PiPE 3.0 1800. OVERFLOW 2.0 1800. 399 370 7 2 PIPE .1 50. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFL041 .0 .0 .1 1.7 .6 2.7 6.4 5.0 OTAL NUMBER OF GUTTERS/PIPES, 102 .0070 .0070 .0050 .0100 .0110 .0110 .0050 .0070 .0070 .0050 .0110 .0110 .0100 .0100 .0040 .0040 .0020 .0020 .0100 1.7 IL CREEK BASIN, 100-YEAR STORM, DEVELOPED CONDITIONS 1996, NOODRIDGE 4TH FIL. EYISED 21 JAN 98; SBG/RBD (dkt) F1LE: 434011S1.DAT �RRANGEI�MT Of SUBCATCHMENTS AND GUTTERS/PIPES GUTTER 10 11 12 13 14 15 76 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 100 101 TRIBUTARY GUTTER/PIPE 11 0 0 0 0 100 0 0 0 0 13 272 0 0 0 14 261 0 0 0 15 33 0 0 0 16 0 0 0 0 17 319 0 0 0 18 30 0 0 0 27 0 0 0 0 320 0 0 0 0 21 221 0 0 0 22 0 0 0 0 185 222 0 0 0 26 31 34 0 0 230 37 0 0 0 0 0 0 0 0 0 0 0 0 0 287 0 0 0 0 0 0 0 0 0 28 0 0 0 0 29 0 0 0 0 41 0 0 0 0 0 0 0 0 0 102 103 301 0 0 0 0 0 0 0 321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104 0 0 0 0 23 0 0 0 0 372 0 0 0 0 0 0 0 0 0 43 0 0 0 0 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 279 0 0 0 0 44 200 0 0 0 47 49 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 211 0 0 0 0 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12.0 20.0 4.0 10.0 12.0 20.0 4.0 .0 20.0 3.0 12.0 20.0 .0 20.0 12.0 20.0 .0 20.0 .0 3.4 TRIBUTARY SUBAREA 51 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0 58 59 0 0 0 0 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 175 0 0 0 75 0 0 0 186 0 0 0 74 0 0 0 88 0 0 0 73 0 0 0 n o 0 0 80 0 0 0 68 0 0 0 159 63 0 0 86 0 0 0 60 0 0 0 67 0 0 0 176 0 0 0 62 0 0 0 79 0 D 0 0 0 0 0 89 0 0 0 61 0 0 0 0 0 0 0 77 0 0 0 84 0 0 0 �n o 0 0 0 0 0 0 178 0 0 0 78 0 0 0 0 0 0 0 180 0 0 0 0 0 0 0 0 0 0 0 12.0 20.0 4.0 10.0 12.0 20.0 4.0 .o 20.0 3.0 12.0 20.0 .0 20.0 12.0 20.0 .0 20.0 .0 3.2 .016 .020 .035 .060 .016 .020 .035 .013 .020 .035 .016 .020 .013 .020 .016 .020 .015 .020 .015 4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .50 5.00 5.00 3.00 .50 5.00 5.00 2.00 5.00 5.00 .50 5.00 2.50 5.00 .50 5.00 3.00 5.00 .10 4.8 4.6 0 0 0 0 0 0 0 0 0 0 0 0 D.A.(AC) 0 1626.6 0 1528.9 0 1439.1 0 1363.3 0 1252.3 0 507.0 0 507.0 0 146.9 0 73.0 0 233.5 0 233.5 0 193.8 0 193.8 0 69.6 0 132.6 0 45.1 0 13.8 0 60.1 0 11.8 0 30.9 0 73.9 0 25.2 0 50.7 0 732.8 0 30.6 0 93.7 0 34.7 0 13.8 0 160.1 0 105.7 0 76.1 0 6.5 0 415.9 0 399.6 0 16.4 0 22.2 0 34.7 0 107.8 0 192.1 0 67.3 0 192.1 0 27.9 0 1493.8 0 1459.4 35 42 0 0 245 0 0 0 244 0 0 0 32 0 0 0 19 254 0 0 0 0 0 0 201 208 0 0 0 0 0 0 207 0 0 0 0 0 0 0 205 0 0 0 206 0 0 0 0 0 0 0 203 0 0 0 202 204 0 0 �2 0 o a 101 0 0 0 0 0 0 0 24 25 0 0 39 0 0 0 371 373 0 0 367 369 370 0 38 374 375 0 347 0 0 0 0 0 0 0 262 0 0 0 0 0 0 0 0 0 0 0 290 0 0 0 0 0 0 0 270 271 0 0 378 0 0 0 280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 107 0 0 0 105 318 0 0 20 0 0 0 36 0 0 0 45 46 278 0 0 0 0 0 0 0 0 0 0 0 0 0 247 266 0 0 0 0 0 0 0 0 0 0 365 0 0 0 399 0 0 0 366 0 0 0 �s o 0 0 0 0 0 0 362 0 0 0 40 0 0 0 50 51 0 0 364 0 0 0 1N GUTTER DURING T1ME 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 STEP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 AT CONVEYANCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ELEMENT 290 0 0 0 0 0 85 0 82 0 181 81 0 182 0 0 65 53 76 0 0 0 0 0 0 70 55 56 66 0 0 0 0 0 179 87 5T 0 0 69 0 0 0 83 162 164 165 166 167 168 0 170 171 �n 173 0 0 0 0 !L CREEK BASIN, 100-YEAR STORN, DEYELOPED CONDITIONS 1996, LIOODRIDGE 4TH FIL. RIISED 21 JAN 98; SBG/RBD (dkt) FILE: 434011S1.DAT �ROGRAPNS ARE LISTED fOR TNE fOLLOW(NG 4 CONVETANCE ELEMENTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 THE UPPER NUMBER IS DISCHARGE IN CFS THE LONER NUMBER IS ONE OF THE FOLLONING CASES: () DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC-FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAT WTFLON. (1) DENOTES GUTTER 1NfL0til IN CFS FROM SPECfFfED 1NFL061 HYDROGRAPN (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC-FT FOR SURCHARGED GUTTER �-�s 509.6 200.9 112.2 50.7 250.2 16.1 91.4 33.0 16.2 16.2 42.2 17.8 17.8 16.2 58.4 1459.4 1493.8 39.7 �n.� 105.7 399.6 112.2 200.9 310.5 16.7 111.0 99.5 13.3 75.8 .0 75.8 220.0 20.1 20.1 38.3 75.8 .0 .0 256.8 307.5 233.5 34.7 310.5 24.7 32.9 27.0 337.2 21.5 13.0 27.0 63.7 360.4 16.1 39.2 24.7 16.1 220.0 32.9 # F�(NR/M11!) 200 230 247 278 p 5. .00 .oz .00 .00 .00c � .00cs� .00cs� .00c � ) 30. 40.44 67.60 .00 16.81 1.39( ) .72(S) 1.50(S) 1.22(S) 0 55. 149.33 235.71 26.75 118.63 ' 2.94( ) 5.65(S) 11.85(S) 14.59(S) 20. 84.35 137.30 29.91 132.80 � 2.06( ) 2.33(s) 18.27(s) 19.80(s) 1 45. 42.78 41.40 31.T8 132.17 l 1.43( ) .34(S) 23.31(S) 19.55(S) 't 10. 28.51 10.50 33.33 126.86 �1.16( ) .OS(S) 27.T1(S) 17.48(S) 35. 19.48 4.49 34.59 118.83 .96( > .02(S) 31.50(S> 14.64(S) ' 0. 14.11 2.70 35.76 107.73 �.82( ) .01(S) 34.72(S) 11.65(S> 25. 10.16 2.12 36.75 95.30 .70( ) .01(S) 37.33(S) 8.77(S) � 50. 7.41 1.84 37.73 76.87 � .60( > .01(S) 39.30(S) 6.20(S) 15. 5.60 1.70 38.35 56.30 .52t ) .00(S> 40.42(S> 4.23(S) 4 40. 4.31 1.58 38.56 38.47 .46( ) .00(S) 40.79(S) 2.85(S) 5. 3.33 1.47 38.46 26.41 .41( ) .00(S) 40.61(S) 1.92(S) 5 30. 2.56 1.37 38.16 17.90 .36( ) .00(S) 40.07(S) 1.30(S) 55. 1.97 1.28 37.73 12.24 j .32( ) .00(S) 39.29(S> .89(S) 6 20. 1.51 1.20 37.22 8.46 .28( ) .00(S) 38.36(S) .61(S) � 45. 1.15 1.12 36.75 5.89 .25( > .00(S> 37.34(S> .43(S) 10. .88 1.04 36.34 4.14 .22( > .00(S) 36.26(S) .30(S) ; 35. .67 .97 35.92 2.94 .19( ) .00(S) 35.13(S) .21(S) 0. .50 .91 35.49 2.10 .17( > .00(S) 33.99(S) .15(S) B 25. .38 .85 35.05 1.52 .15( > .00(S) 32.84(S) .11<S) 50. .29 .80 34.66 1.10 ' .13( ) .00(S) 31.69(S> .08(S> 9 15. .22 .74 34.2T .81 .11( ) .00(S) 30.53(S) .O6(S> 40. .17 .70 33.89 .60 .10( ) .00(S) 29.38(S) .04(S) D 5. .13 .65 33.51 .45 .09( > .00(S) 28.24(S) .03(S) 30. .10 .61 33.12 .34 .08C ) .00(s) 27.71(s) .02(s) � 55. .OS .57 32.72 .26 .07( ) .00(S) 25.99(S) .02(S) w 20. .07 .53 32.33 .20 .07( ) .00(S) 24.87(S) .Oi(S) � 45. .05 .50 31.94 .16 .06( > .00(S) 23.77(S) .01(S) > 10. .04 .46 31.55 .12 � .05( ) .00(S> 22.69(S) .01(S) � 35. .04 .43 31.15 .10 .OS( ) .00(S) 21.61(S) .01(S> i 0. .03 .41 30.76 .08 � .04( > .00(S) 20.55(S> .01(S> � 25. .02 .38 30.37 .06 I� .04( ) .00(S> 19.50(S) .00(S) i 50. .02 .36 29.98 .OS .04( > .00(S) 18.46(S> .00(S> �FOLLOb11NG CONVEYANCE ELEMENTS WERE SURCHARGED NG THE SIMULATION. THIS CWLD LEAD TO ERRORS HE SIMULATION RESULTS!! i1 262 290 LFOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL ILIT1' PROBLEMS 7HAT LEAD TO HTDRAULIC :IILLATiONS DURING TME SIMULATION. �^ { N � 92 13 14 15 22 28 31 33 41 42 43 44 47 48 50 51 100 101 102 103 Q4 105 107 205 207 230 247 261 272 278 �9 290 320 321 370 399 �L CREEK BASIN, 100-TEAR STORM, DEVELOPED COND1T10N5 1996, w00DRIDGE 4TH FIL. ISED 21 JAN 98; SBG/RBD (dkt) FILE: 434011S1.DAT � PEAK FLO�fS, STAGES AND STORAGES OF GUTTERS CONVEYANCE PEAK STAGE STORAGE ELEMENT (CFS) (FT) (AC-FT) ( 1 1077.7 <DlRECT FL01!) 10 1077.7 5.0 11 1040.0 5.5 I12 998.7 7.1 13 T88.5 4.9 14 727.9 4.0 15 555.1 .1 2.2 16 620.8 4.2 � 17 437.6 4.4 18 205.3 3.2 19 61.1 1.5 20 183.7 (DIRECT FLOY) 21 21.7 1.3 22 21.7 .1 30.6 � 23 333.4 2.7 24 273.6 b.8 25 193.9 3.2 I26 63.1 1.6 27 167.3 3.0 28 43.9 1.7 29 119.0 2.6 � 30 246.3 3.5 31 130.1 3.6 32 182.2 1.3 33 171.0 .1 12.3 34 176.5 2.3 35 268.7 1.3 � 36 125.9 1.1 37 78.7 .5 38 208.8 2.6 '39 444.9 (DIRECT FL041> 40 65.3 .8 41 2.4 .0 1.2 42 81.4 2.7 43 31.5 .1 19.7 1 I44 71.6 1.1 45 120.5 2.6 46 52.3 1.8 47 251.3 3.9 �48 470.1 3.0 49 179.0 2.8 50 471.5 5.9 51 176.0 .7 100 1015.5 .5 24.3 101 1019.9 .5 4.6 102 92.6 .1 16.0 103 247.1 .1 6.6 104 16.9 .1 12.3 105 19.9 .1 6.6 107 78.2 .1 1.5 � 185 60.9 1.7 202 203 204 205 206 20T 208 210 21.1 59.7 86.1 28.9 65.3 29.0 86.1 1034.1 AND DETENSION DAMS *** TIME HR/MIN) 1 15. 1 15. 1 10. 1 0. 1 0. 1 0. D 55. D 50. D 45. D 45. 1 10. D 40. 2 20. Z 10. D 40. D 55. D 40. D 40. D 45. D 40. D 40. D 40. � 35. � 40. 2 20. D 35. D 40. D 40. D 35. D 40. D 35. � 45. 1 15. � 40. 2 20. J 35. � 40. � 40. 9 40. � 45. D 40. � 45. D 35. 1 5. D 55. 1 40. D 50. 2 15. 1 40. 1 5. D 40. �p ' D 45. !/*'�"St"�t 1.4 1.9 2.3 .0 1.6 1.9 .0 1.4 (DIRECT FLOW) (DIRECT FLOW) 1 5. 0 40. 0 40. 1 0. 0 40. 0 55. 0 40. 0 55. . OT 1 a �'� �" ite � ( ICO Q I � � ��� 1067.8 175.6 404.6 240.6 327.7 282.8 326.3 38.6 75.6 59.3 35.9 64.6 68.6 155.6 223.6 133.5 21.3 96.9 125.1 68.6 80.3 80.3 83.0 101.4 61.2 80.4 412.3 100.7 117.5 107.8 122.4 58.6 58.9 98.9 125.7 192.0 72.3 135.7 87.9 43.9 584.2 4.6 (D[RECT 2.6 (DIRECT .0 (DIRECT (DIRECT (DIRECT .0 1.0 3.5 3.0 1.4 4.4 (DIRECT 7.7 .0 .1 2.6 2.6 5.0 (DIRECT (DIRECT 1.7 (DIRECT .1 .1 (DIRECT 1.0 1.1 1.1 1.9 1.4 .8 2.1 3.1 2.0 .9 3.4 1.1 3.7 (DIRECT .1 FLOW) FLOW) 5.8 FLOW) F1011) FLOW) 40.8 .9 16.6 FLOW) 20.1 2.3 7.1 FLOW) FLOW) FLOW) 3.6 1.4 FLOW) FLOW) 4.9 55. 40. 40. 50. 40. 40. 40. 45. 40. 50. 30. 40. 0. 5. 0. 30. 10. 40. 40. 10. 5. 5. 0. 5. 10. 50. 35. 40. 40. 40. 40. 45. 40. 40. 40. 40. 40. 40. 40. 55. 40. 25. �PROGRAM PROGRAM CALLED � ;`.- 1 APPENDIX B: HYDRAULIC DESIGN 1� i� � � �7� _ _-- _ _ __ � � �.. � � / � � C� / ' GEN� j � �� �_ '����. r � _ �' � — � � � ," �� � �, � - � �� � � - �" �'� �•�•� � �,.� - / /� 3 � ,�• ) ONY „ -�- n "' v / � o� � � � 'S� . / �'�� N/►�: • 't � � o aox ` . � � \ � \ ' --A "� / � � � � 1• ' /' •��•'3�" RC� ✓' �. ,,,� � ��� �/ \ •�'' �S � _---- � • � �� � --.� ` � / � / /. � 'y _ (�J o • %. , � �_/ f \ / � i � "'' ^ a �/ r • � � � � �� � � l � ' �•• .� '� ` / ^/ � . � /' .. � Q . � . , �, , _ � — � � /, '��I o Rc / •� , . , ,- �� � � . ., � �p / , •' � ` ,�p � ty ` N � \ 1 M ' ` � / • \ � \� `/`' � ' \� \ l � 1 - O 1 � i/'/� ��•• i�/' (�i I� '• • \ � ^ � O _ _ _ _ ' - � � L � � � ! / ^ \ r Z , � � � o , � `', � - � � ._ .• / / � : � '1�� `� � M ^ � • ^ '��' � � �'e � / <p d' Q � b Q� � O • r� � � �� /. / '`'y� /'� i �• � __-- _ _ � i'- - i � �• ' a --. TRAIL VIEW a. ,. � � ,� � � -� � w •���w+.�...- , . ` � y .� �� •" �- 0.551C—� . � � � � // / . ���� .1�'r •��/ � -. _ � �s� a _. _._ : o , ,/ - ,.\ /e-°Q � ., �_ .:r;.�� ,� ------� � • �. �/ � 't-, �� ��� � IJ1•�••� � •n �� r� � �� ' � : \ i �. �a f � +'i�••' i� �° g�'� • � � � • � � �s, . � // : /� � � � g - �:'' ' , _ . . ``' � � `• • � i � ' . _ �� ' / � /' � W � r / ; �� i ; / �\, W z ( . ' -: � \ i '` ( �J �W /'. �/ l�m 1 • �r � i m � V io ` � ,� :� , �: � I M i � ►. " .. � ,: ' � - � �— � - � I i - •4 0 , � � ;�; s _ . ,� f ' � / i , • � � _ / � � ' ' II j� • .j M i " Z. � ' � I � �� R N � � � ; � � � I � � � n r/, \. �� ' O 1 . ' K � O - 6 - ^ � . � ,/ ,; � - - - -�� �, �- . y ��/ ' �Z \ � _ � I�I. �- ~ \ � — � /� ± � � - , _ " - • ;W' � o ) - - _ r z ' I � • � � I b� � • � J• I . �- - - � Si / • / ( � ~ U \ � -'- ' � � � ' / : � � py 1- ■ � . � _ ' I � O' ' � - f . i � - � - - •� , • � i j� • Q '� - Y� w^ �� ► i /, / ; cv � , (p . ' � / / � t .r ' � p • I � � I : /' ' / . h f,O�j I i ;"If � � -� - f1�-- �- -- � � l�1 i� / '� _ ... - / � _ � � I �. SH�' � � �y � � V � �� ` J� / • ' I CD l :� /. . { ( I �.� Q � , _ o. �. . � ; _ � � � -' /, ---- i �'�� � ; � ' � � - ►,. _ _ .� - :: 1� M: !, � , / • Q _ _, . ► � r �--_.. �� • ,.a ='� �- , _ ( : � � \ — � -, / _ � � , • 1" / �' � � , - � I 7 - s�_. � � h ` ,� v', ` �� ,04' ' i�� ,I " ,� ' . /� ,-' � ' -_ � . U ' � J i _ K � � � �S � � � / / 1 � � � !!J i � g�' ' _ =� � � Q � � � I N � � . W ,' � I �' I '` � � � �t � � � �' �- � • . . � � � s 6 ^ �� , ,-'� . . ' � � � � ., iL � � _ 1 a� r. � � , � ,� �, . , _ �j � � , , . ca i � � ' '�`� � , __ `'ry � � � ' � ' � i � • "+•. � -=--__... '� - - - / ,. t -�.. � �Oi W i `} � i / i ! � `�...1_ �� �i� � � �. ' �"^`...�_ ' '' � vq, ,�'� '► ' ' � � v 49 � —'�-��-NV�1I1Q�Op� �„� • � ,� ' �- � ` r • �` 4g --����...�;� � p l4 _ • �-, _ r.�z �\ h 50 � - / :- - ' / ' \ a / � 51 -,� • � � ' • �% h �'hE+ - z � l � � Q o v �p � � _._ »so --- _ � M uHi ��.� tl��'. o� 'I' � ��e i �i � �.-� , � "__ O• ' V rt - • � ' - �I'� - -- - --- - - --- -_ --- ��' � � � __51 � -� — � ' -�-- �1� _ — - '— � — S3 , � � � _ �����_ � - . � � � •�~..___�__aSi � —T�s�is �� � � � � � � � � � � � � � � � � � � ' � I � i �. � �� ' , - � ��-�� � � Y , DESIGN OF INLETS, STORM DRAIN, AND SWALES n � ._ - : _� � � � �� , �- - - �� ----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD :KEVIN GINGERY-RDB INC FT COLLINS COLORADO . ........... .. ....... .... DATE 05-26-1994 AT TIME 12:18:27 . * PROJECT TITLE: Overlook #4 2-year *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. � GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) _ STREET CROSS SLOPE ($) _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: 15.00 16.78 0.98 0.95 0. 60 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 13.56 � GUTTER FLOW DEPTH (ft) = 0.44 FLOW VELOCITY ON STREET (fps)= 2.53 FLOW CROSS SECTION AREA (sq ft)= 2.01 � GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR($)= 10.00 INLET INTERCEPTION CAPACITY: � IDEAL INTERCEPTION CAPACITY (cfs)= 5.01 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.10 FLOW INTERCEPTED (cfs)= 4.83 � CARRY-OVER FLOW ( cf s)= 0. 2 7 .� BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.10 FLOW INTERCEPTED (cfs)= 4.51 CARRY-OVER FLOW (cfs)= 0.59 �--------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY '� DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER �, SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------------------- �"R:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. DATE 05-26-1994 AT TIME 12:18:59 * PROJECT TITLE: Overlook #4 100-year i 0 ��I� ` � � � � r ' ' � ' � 1 � � � � � *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 REQUIRED CURB OPENING LENGTH (ft)= 36.06 IDEAL CURB OPENNING EFFICIENCY = 0.62 ACTURAL CURB OPENNING EFFICIENCY = 0.57 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 0.60 STREET CROSS SLOPE ($) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 23.50 GUTTER FLOW DEPTH (ft) = 0.64 FLOW VELOCITY ON STREET (fps)= 3.40 FLOW CROSS SECTION AREA (sq ft)= 5.69 GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR($)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 12.09 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 19.50 11. 12 8.38 19.50 10.88 8.62 �s I� `� �---------------------------------------------------- �~-b �r.��� ���������rrr.�����rr..r UDINLET: INLET HYDARULICS AND SIZING � DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD SER:REVIN GINGERY-RDB INC FT. COLLINS COLORADO ...... .. . . .. . . .. ...... N DATE 05-26-1994 AT TIME 13:18:44 �** PROJECT TITLE: Overlook #4 2-year *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 21 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFOi2MATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH SLOPE ($) _ ��) _ ( inch ) _ (ft) _ STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) _ GUTTER FLOW DEPTH (ft) _ FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR ($)_ CURB OPENNING CLOGGING FACTOR(�)= 15.00 25.52 0.80 0.74 0.60 2.00 0.016 2.00 2.00 18.44 0.54 2.96 3.57 50.00 10.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 8.37 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 10.50 FLOW INTERCEPTED (cfs)= 7.79 � CARRY-OVER FLOW (cfs)= 2.71 _ BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 10.50 FLOW INTERCEPTED (cfs)= 7.53 CARRY-OVER FLOW (CfS)= 2.97 ----------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY " DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER � SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ �SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. N DATE 05-26-1994 AT TIME 13:19:09 ±�** PROJECT TITLE: Overlook #4 100-year �� � *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 21 � INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 REQUIRED CURB OPENING LENGTH (ft)= 59.26 IDEAL CURB OPENNING EFFICIENCY = 0.41 ACTURAL CURB OPENNING EFFICIENCY = 0.37 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 0.60 STREET CROSS SLOPE ($) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 33.63 GUTTER FLOW DEPTH (ft) = 0.84 FLOW VELOCITY ON STTiEET ( fps )= 4. 24 FLOW CROSS SECTION AREA (sq ft)= 11.47 GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR($)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITX (cfs)= 19.98 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 48.90 18.20 30.70 48.90 17.99 30.91 �'� �I � - -- — _ � _.� _ �.___..����y ___ ��`______ Y�_�_.._._..'�______________ WiNIET: STREET FlOY ANALYSIS ' OEYELOPED 8Y DR JAMES GUO, CIVIL ENG DEPT, U OF COIORADO AT OENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UDfFCD -------------- ^------------------------------------------------------------ R:KEVJN GINGERY-RDB INC FT. COLl1N5 COLORADO .............................. DATE 05-2b-1994 AT TIME 13:37:39 /� � K� p�!-� r— 't� ( c vv / ��O STREET GUTTER HYDRAULICS ' � l�� G1VEN GUTTER GEOMETRIES: � LONGITUDINAI. SLOPE CROSS SIOPE � DEPRESS[ON AT GUTTER GUTTER YIDTH STREET MANNING RWGHNESS N (X) = 0.60 (X) = 2.00 (inch)= 2.00 (feet)= 2.00 = 0.016 ' STREET UNDER THE GIVEN FL041: PEAK RUNOFF FL041 RATE (Cfs): fLOGI CARRIED Br CUTTER (cfs)= FLOY CARRIED Br STREET (cfs)= YATER SPREAD ON STREET (ft) _ � GUTTER FLOY OEPTH (in) _ AVERAGE FLOY VELOCITY (fps)= 0.60 0.58 0.02 3.71 2.89 1.97 -.r--------------------------------------------------------------------------- 11D1NLET: STREET FLOW ANALYSIS � DEVEIOPED BY DR JAMES GW, CIVIL ENG DEPT, U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UDSFCD •---------------------------------------------------------------------�------- � :R:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ... DATE 05-2G-1994 AT TIME 13:37:52 � STREET GUTTER HYDRAULICS GIVEN GUTTER GEOMETRIES: ' LONGITUDINAL SIOPE CROSS SLOPE DEPRESSION AT GUTTER I GUTTER YIDTN STREET NANNING ROUGHNESS N (X) = 0.60 (X) = 2.00 (inch)= � 2.00 (feet)= 2.00 = 0.016 STREET UNDER THE GIVEN FLON: PEAK RUNOFF FL041 RATE (Cfs)= FLOW CARRIED BY GUTTER (cfs)= FLOH CARRIED BY STREET (cfs)= HATER SPREAD ON STREET (ft) _ GUTTER FLOY DEPTH (in) _ AVERAGE FLObi VELOCITY (fps)= 10.50 3.59 6.92 18.41 6.42 2.96 ' 'ov� c�'D�('Dac �� r� � � , � I� I■ �� � i r ��c�� �� � ( . - ._ _ � ��. _ �c � � � � �7 n CLIENT �U�FC-. ^ Ir'r' •`f ^- JOB N0. �3 �_ o l l ` INC PROJECT V' IP%-I O� �-f CALCULATIONSFOR ��,1✓� a.<S-Z Ay Engineering Consultants MADEBY�DATS�CHECKED9Y DATE SNEET OF ' r------ -- . _ ___ ._ _._ _ _. ., _ . _._ - - - -- ---- _. ��,-_ _ � - i _ ' -___ r-- � : � - - 1 - _ ; , -f . � f -- -_ f_ � _, � � .�. � 'i . - . .. . _ _ �- _ . - � � . . . � . � _ _.._ � - { , . . . ; � . • . -_ _ --. _ _ - -- r � -_ � __ ____ _ __ _ _._ _ ____ � � - ._-:, _ 4----.. ------i-- w_ � . _, .._. .- - --+-. �. _ , . _ - - • �'_..� I ._.., , .� '„ �___ __�_. _ _ _ _ _. __ ,_ � _ _ -_; � . _ .. . ., � � ..� � � �w : . - . __ -' � - - -- - - -- _ - -_ __ .._ . _ � _ -- �.�, �y� , . � �e� � � � ; . � , �, 5'�' .�' � . ' ' � � . � � . _ � ___,.�,i.. � � _._.. - - ---- - 5 e� � � ; � � , . ; , ; ; �-a I' . . ' �� � ' f '! . � � . _ _ ,� / �� ����r_�� � v.�>> :Si , , !� , fl��U I �r � `�'� a�� S�o �.r aL i t Ov�a, � E� _. S�c��c� _ .�z rsa.a� w' . -- - �'-� -L-f `• --- ' ' �n � �����'� ` � l�� In�t� � L� � �r+.� _ ����, = 3S� � _ � � vJ��,i��2. h�:C� "- � S� — % � � -�- � 1(0 2. -�P � /Yto Ue _ .� ►. (� �-�� �ro �e•- -f� ► � � �-%o tiy z� -F� _ � � � � L 'f��A'� �"�5 �Du� `� t i n i rac.:.�. /� :,_d n.C. � � �a,� � �.. ; �. � � v�.�-td. l I � G•/1 Gi l� l C•�/L S �77r �'G l/'�`� O� �Gl r/� SY� 5`i"C" /!'L S t.ti. t,, p'/'a�f� Gi'W /i T'�C_ 1 � ' '� � � �\ � � .� . 'r; , .• J RBD INC. ENGiNEERING CONSULTANTS � CHANNEL RATING 1NFORMATION (using Manniny�s equation) Drainage charnel (D.P. 190) o.��,.Q scata.���� C��'rer'L' STA 0.00 16.00 19.00 24.00 24.00 28.00 28.00 28.50 45.14 ELEVATION (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 �N� VALUE 0.030 AREA (sq ft) 0.8 1.6 2.7 53 8.3 11.7 15.3 19.3 23.6 28.2 33.1 38.4 44.0 49.8 56.1 62.6 69.4 76.6 84.1 91.9 100.1 108.5 117.3 ELEV 4.66 0.66 0.60 0.50 0.00 0.00 0.50 0.50 4.66 SLOPE (ft/ft) 0.0056 VELOCITY (fps) 1.2 1.8 1.5 1.8 2.3 2.7 3.1 3.4 3.T 4.0 4.3 4.5 4.8 5.0 5.2 5.5 5.7 5.9 6.1 6.3 6.5 6.7 6.9 DISCHARGE icfs) 0.96 2.86 4.01 9.81 19.32 31.80 47.29 65.90 8T.74 112.94 141.62 173.92 209.97 249.90 293.85 341.94 394.30 451.07 512.37 578.33 649.07 724.71 805.39 IG•5� �L�.G(31-(- ��t�.ly� Id.s�� (0.�35� h= ys.l�' = D,o30 ��� � % � � 0�7, G.S' I . � y y � � � _ %� 'S� ' ° � f yc ''�c.s � o F �y � ' �� -� i5 '�� FROUDE N0. 0.47 0.50 0.50 0.53 0.56 0.59 o.6t�Q �- �G,.? �fs, d,= 1- ys -�-E, o.bz� � -v- � 3,� y +tls 0.64 2 0.65 0.66 o.� � r��1. 9 c�s �- Y-+'t 0. ioo j , Go - "`' � . 0.69 �o - ff , SI -�'f�5 0.70 o:i° G x r.3� =�3z, 6 c-�s- o.n 1do (`,..� 0.72 ��'�1��1 ��. �I � ` 0.73 0.74 0.74 0.75 _ -> d= �q 3� + �. � i = s�, So �- � i I ' I ��■ � � � � � INC Engineering Consultants CUENT " �� � ��� ,Ip� NO. � � u G ` PROJECT �/�� +'Od � �� CALCULATIONS FOR -� � ��'►" � �� MADEBY rr' DATE��CNECKEDBY DATE SMEETYl� OF ; ��, ��d �����- l�s � 1 ; � � . , ��,:1. _ _ .. . . ;: _ �__._ '"�-��►--- _ L f ..; �� ; �lAanho(e. ,R-�--- 3tP. <<� z ,F �e,, G. CNv✓�3 � �,y� l� �. 6G �i i -�„o,N;, t�' 35. yq � .� ., n-e�eo�-�� ol`�- a. �� rran� �e s. ``,_. _._.1 � - . - - ' u = � ,r� ?�, ►�t �o =.fiK,•n� - ' _ �t— 3yu� �.'b=0•z�' _ . � . �t7�vn Du,,1` �•2'( -+--� - �. ��,`',�r;,,t 3 �9s . _ tb , �` . : j �, � - _ ` �i � � . t � i :�'y � � Z� "� �. b o "�o I � � --�b �d.-0�6 --- �� �h �- � ` �� �, � 3 y.�S f 1 b� ��t`�: --�-�'D.G `�fl � !�- �ul�. ��"�\ � ; f`t = �6, 6z � �� /�i_�'.cw�rs; �.. 33,QJ� �C.-�.fJ�t.l.n ...�i..'� 33.�j� � ��00 %�, ". � ' ,�(�J1�,,�•�-: �'!� ] G l,6~� - ��' 1 ' I � � _ _ . .� I � `! ��-3v�`'-`��, -CD �a _ _ _ _ �� �a, ! 6`/►'�A.v�DIe �-. � � �e, �. 3� �m �,M �. �3. R � - � a+ �.g1 , - - � � � =4,,?� . _ _ —___ � , 1�� /rj�.,ao� R�m S6•� �r�,u,� � � ;�3•-�a Cto.l� �. Q,e'r''3'3 • �(% �Cb =�D.O� ; i � � �S� � Z�`C�' 0. 61`%a �� , � �,_ � �,, \ � � , . ` ( � , � :. ��-�,T�. � ._. � &�qa-�c: Lrt.re i � �� �� �� `.� /$�c'�;�,:?�;!� ' �. ` �Hy '"' �41�� �/Y:'eT ,� � �--�� �L.�� ; � f�Mwn 4��- ' � �l•b � }��NL�,,,,,,�_- S �, Z 1 f =� = Lu�� k=0..zc b 3=�"nl Y' �" O �e � i<iM - �/,�S � Cro�,-�r �n Z6, l6 C��r., C�� (� Z6. l� R Cro,�r, D�cE lv�)=2�. tB Kb L��= o. �}6 " ' f, a2 K�, Gw� = Crov✓h Dkf 3Y,�S �e= O.Ob �1 u�ll,,,,,� = 3�-. � ' 13 .c.' Cu � b �-, ie-E �_ �r_S6 �w � o u- f ?6 * °I6 �WL,,,,ax= 3Z,06 � _' �'/ � t,� �sv � �� �. 6 0 �'p 1 �`�' � ✓ t�° �= /,f'« � h,o� r _.�/�. ,�T: h� r! � Lf�Jv3r. �t-n -- - j? 03 j� 7 I T� �ta�.✓ n d�A-�- Sz. 0 3 ,�—O,os y/6) : ; :..� � K6 =%0 5 l ly) r ,�` � D. Z � ,e z�_ <F 33 iiC �;ob 70 �` `s.� S� , �=/i"..��•.jtc�o F--f� ���`3?•� ICr.,,r., � �-. �9, 3 � i C��.,��� f'�: � 29, �� . � k� =/o,oC I�o� �.� 3� �. � �6 7J � � � � ; - J �{ � Y ,7� �. � L�� ,. �� I w 3� �O 6 r cr- yZ ��.6�6�'o^ f Jx� ✓V����4 �r�.�PP-I`i G�i' ���.�(/ WS�� �Z/_8 {�'b = l, D �;�,.� z.z8 z 9 t� ?"'' _ �'i c�'�r� r.,) la.= �U.iTth� O,)1�� l-� � �. 4 C _ � �_� �=Cutb Tr.� -�=,�jl. S6 ��dvdn � /� �� 1� Cro ��. G;,r-�. 1 ri � = ��= C, cS � � aa��s�sssssssssa�sassssssewsssssa�=as=etaassssa�s��aass��s�esesesssatet��sss REPORT OF STORM SEYER SYSTEM DESIGN USING UDSEb1ER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE OEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT OENVER IN COOPERATION WITH URBAN DRAINAGE AND FL000 CONTROL DISTRICT DENVER, COLORADO �ss��sm=s�sssss�ae�e�:ss�ss::es=ss*a�ssass=ass�sesesassasess�sssesss�aas�s "** EXECUTED BY DENVER C1TT/COUNTY USE ONLY ............................................. ON DATA 10-30-1996 AT T1ME 16:45:31 *"" PROJECT T1TLE : Overlook Fourth Filing / Harnwny Road storm drain •*" RETURN PERIOD OF FLOOD 1S 100 YEARS (Design flow hydrology not calculated using UDSEWER) *** SUNMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND YATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 0.01 113.80 26.00 21.80 OK 2.00 113.80 31.56 24.82 OK 3.00 103.60 31.95 25.75 OK 4.00 53.00 33.80 28.98 OK 5.00 53.00 35.67 31.64 Otc 6.00 28.90 37.16 36.10 OK 8.00 28.90 37.80 36.83 OK 9.00 10.90 38.80 37.65 OK 10.00 10.90 39.45 38.25 OK 11.00 10.90 39.45 38.33 OK 12.00 50.60 31.56 28.37 OK 13.00 50.60 31.56 29.00 OK 14.00 24.10 36.78 34.76 OK 16.00 24.10 37.12 35.22 OK 17.00 3.50 37.12 35.89 OK 18.00 3.50 37.12 35.92 OK OK MEANS WATER ELEVATION IS L01fER THAN GROUND ELEVATION **; SUMMARY OF SEWER HTDRAULICS NOTE: THE GIVEN fL01J DEPTH-TO-SEYER S12E RAT10= 1 ------------------------------------------------------------------------------- SEYER MAMHOLE NUMBER SEYER REOUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE D1A(H1GH) D1A(H1GH) OlA(H1GH) Y1DTH ID N0. ID N0. (1N) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 1.00 2.00 0.01 ROUND 41.88 42.00 42.00 0.00 3.00 3.00 2.00 ROUND 38.62 42.00 42.00 0.00 4.00 4.00 3.00 ROUND 32.67 33.00 33.00 0.00 5.00 5.00 4.00 RWND 32.67 33.00 33.00 0.00 6.00 6.00 5.00 ROUND 28.96 30.00 30.00 0.00 i� ■1; i' i PI � � �.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 17.00 18.00 $.00 9.00 10.00 11.00 12.00 13.00 14.00 16.00 17.00 18.00 6.00 8.00 9.00 10.00 3.00 12.00 5.00 14.00 16.00 17.00 RWND ROUND ROUND ROUND ROUND ROUND ROUND RWND ROUND ROUND 28.96 20.09 20.09 20.09 26.95 26.95 26.97 26.97 13.12 13.12 30.00 21.00 21.00 21.00 27.00 27.00 27.00 27.00 15.00 15.00 30.00 21.00 21.00 21.00 27.00 2T.00 27.00 27.00 15.00 15.00 DIMEN510N UNITS FOR ROUND AND ARCH SEYER ARE IN INCHES DIMEN510N UN1TS FOR BOX SEYER ARE IN FEET REGUIRED DIAMETER 11AS DETERMINED BY SEYER HYDRAULIC CAPACITY. SUGGESTED DIAMETER YAS DETERMINED BY COMMERCIALLY AVAILABLE SI2E. FOR A NEW SEYER, FLOW NAS ANALYZED B1' THE SUGGESTED SEYER SI2E; OTHERWISE, EXISITNG SIZE YAS USED 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ------------------------------------------------------------------------------- SE61ER DESIGN fLON NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOH 0 FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY N0. NUMBER CFS CFS FEET FPS FEET FPS FPS ---------------------------------------------------------^ �------------------- 1.0 113.8 115.0 2.84 13.62 3.15 12.46 11.83 1.38 V-OK 3.0 103.6 130.0 2.36 15.00 3.07 12.71 10.77 1.82 V-OK 4.0 53.0 54.6 2.19 10.47 2.36 19.08 8.92 1.22 V-OK 5.0 53.0 54.6 2.19 10.47 2.36 9.76 8.92 1.22 V-OK 6.0 28.9 31.9 1.87 7.35 1.83 13.73 5.89 0.96 V-OK 7.0 28.9 31.9 1.87 7.35 1.83 7.49 5.89 0.96 V-OK 9.0 10.9 12.3 1.28 5.78 1.24 15.87 4.53 0.92 V-OK 10.0 10.9 12.3 1.28 5.78 1.24 5.99 4.53 0.92 V-OK 11.0 10.9 12.3 1.28 5.78 1.24 5.99 4.53 0.92 V-OK 12.0 50.6 51.0 1.83 14.63 2.15 2.79 12.73 1.84 V-OK 13.0 50.6 51.0 1.83 14.63 2.15 12.94 12.73 1.84 V-OK 14.0 24.1 24.3 1.83 6.95 1.T2 15.53 6.06 0.87 V-OK 15.0 24.1 24.3 1.83 6.95 1.72 7.40 6.06 0.8T V-OK 17.0 3.5 5.0 0.77 4.42 0.75 31.22 2.85 0.97 V-OK 18.0 3.5 5.0 0.77 4.42 0.75 4.53 2.85 0.97 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLON OCCURS --------------------------------------•------------------------------- SEb1ER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM X (FT) (FT) (FT) (FT) --------------------------------------------------------- ^----------- 1.00 1.30 21.67 21.20 6.39 1.30 NO 3.00 1.66 22.68 21.67 5.77 6.39 OK 4.00 1.06 26.62 23.43 4.43 5.77 oK 5.00 1.06 29.28 26.62 3.64 4.43 OK 6.00 0.60 31.41 29.53 3.25 3.64 OK 7.00 0.60 32.25 31.42 3.05 3.24 OK 9.00 0.60 33.74 33.00 3.31 3.05 OK 10.00 0.60 34.49 33.75 3.21 3.30 OK 11.00 0.60 34.49 34.49 3.21 3.21 OK 12.00 2.70 24.T1 23.93 4.60 5.77 OK 13.00 2.70 23.94 23.94 5.37 5.37 OK 14.00 0.61 31.15 29.78 3.38 3.64 OK 15.00 0.61 31.57 31.15 3.30 3.38 OK 17.00 0.60 32.78 32.57 3.09 3.30 OK 18.00 0.60 32.78 32.78 3.09 3.09 OK OK MEANS BURIED DEPTH IS GREATER THAN REGUIRED 501L COVER OF 2 FEET *** SUMMARY OF HTDRAULIC GRADiENT LINE ALONG SEWERS �-� 3 � � +3- � y � ------------------------------------------------------------------------------- SE�IER SEWER SURCHARGED CROYN ELEVATION WATER ELEVATION FL01� ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 1.00 36.00 0.00 25.17 24.70 24.82 21.80 JUMP 3.00 61.00 7.19 26.18 25.17 25.75 24.82 dUMP 4.00 301.00 66.60 29.37 26.18 28.98 25.75 JUMP 5.00 251.00 0.00 32.03 29.37 31.64 28.98 JUMP 6.00 314.00 240.52 33.91 32.03 36.10 31.64 SUBCR 7.00 139.00 139.00 34.75 33.92 36.83 36.10 PRSS'ED 9.00 124.00 124.00 35.49 34.75 37.65 36.83 PRSS�ED 10.00 123.00 123.00 36.24 35.50 38.25 37.65 PRSS�ED 11.OD 0.10 0.10 36.24 36.24 38.33 38.25 PRSS'ED 12.00 29.00 29.00 26.96 26.18 28.37 25.75 PRSS'ED 13.00 0.10 0.10 26.19 26.19 29.00 28.37 PRSS�ED 14.00 225.00 139.53 33.40 32.03 34.76 31.64 SUBCR 15.00 69.00 69.00 33.82 33.40 35.22 34.76 PRSS�ED 17.00 35.00 35.00 34.03 33.82 35.89 35.22 PRSS'ED 18.00 0.10 0.10 34.03 34.03 35.92 35.89 PRSS�EO PRSS�ED=PRESSURED FLOY; JUMP=POSSI6LE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLON *�# SUMMART OF ENERGY GRADIENT LINE ALONG SENERS -•---------------------------�------------------------------------------------- UPST MANHOLE SEwER JUNCTURE LOSSES DOUNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID N0. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT -------------------------------------------------------------�--------�-------- 1.0 2.00 27.00 3.02 1.00 2.17 0.00 0.00 0.01 21.80 3.0 3.00 27.55 0.47 0.05 0.09 0.00 0.00 2.00 27.00 4.0 4.00 30.22 2.10 0.46 0.57 0.00 0.00 3.00 27.55 5.0 5.00 32.88 2.59 0.06 0.07 0.00 0.00 4.00 30.22 6.0 6.00 36.64 2.63 0.05 0.03 0.25 1.10 5.00 32.88 7.0 8.00 37.36 0.69 0.07 0.04 0.00 0.00 6.00 36.64 9.0 9.00 37.97 0.58 0.06 0.02 0.00 0.00 8.00 37.36 10.0 10.00 38.57 0.58 0.06 0.02 0.00 0.00 9.00 37.97 11.0 11.00 38.65 0.00 0.25 0.08 0.00 0.00 10.00 38.57 12.0 12.00 30.89 0.77 1.02 2.57 0.00 0.00 3.00 27.55 13.0 13.00 31.52 0.00 0.25 0.63 0.00 0.00 12.00 30.89 14.0 14.00 35.33 1.88 1.00 0.57 0.00 0.00 5.00 32.88 15.0 16.00 35.79 0.42 0.07 0.04 0.00 0.00 14.00 35.33 17.0 17.00 36.02 0.10 1.00 0.13 0.00 0.00 16.00 35.79 18.0 18.00 36.05 0.00 0.25 0.03 0.00 0.00 1T.00 36.0� BEND LOSS =BEND K* FLONiNG fULL VHEAD 1N SEWER. LATERAL LOSS= OUTFLOH FULL VHEAD-JCT LOSS K�INFLOY FULL VHEAD FRICTION LOSS=O MEANS 1T IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FR[CTION LOSS INCLUDES SEWER 1NVERT DROP AT MANHOLE NOTICE: VHEAD DENO7ES THE VELOCITI' HEAD OF FULL FLOY CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT b10ULD BE 1NTRODUCED UNLESS LATERAL K=O. FRICTION LOSS uAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. � ' �—�S � 10. , STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA I TAB LE $ 0 2 c STORM SEWER ENERGY LOSS COEFFICtENT (BENDS AT MANHOLES) IY 1 r ' a' 0 Q l� !C � � n, . u �, o O V = v� 0 � i Ci C:, C�' 0� � O; 0•� 0. t, OB? 0 J.l ��.►; C� a� o. o• 20• �o° eo• so• eo• too• Dtll�ction Anpl• Y , Dapnes N07E� Heod toss opplied o1 outlel of monhde. 0 DATE: � A N. 1 9 8 8 REFERENCE: REV• Modern Sewer Desiqn, AISI, Washington D.C., 1980. STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA� TABLE 803 MANHOLE AND JUNCTION LOSSES O�_:��t, _ _ ' � -__ _ �: --- °� - � _ •�Iiillllllk "____- ��� p/ �� NOT[ /w ��� T�►� O� p�aN •1 I�bt. � �E i�ra �--- -- - 6a��aa� USE EQUATION 801 � ��_YV CASEI � `� �' INLET ON MAIN LINE Or . k- �,�5 �1'��tn��NG G.ti /Hn�NLfhZ 0 �. 4��� ES CTION �AH I 1 USE EQUATION 805 N�.� a-K �= . �` � K= �►�%�s>>StG '�'4�� � �'=� a.••� � PLaN • USE EQUATION 801 0,1 ,, , p�_ (C �.. t a�. ' k=1. tS ' � 7 �s `� �. SECTIQN , CA INLET OR MANHOLE AT BEGINNING OF I.INE � ECTI N ,�ASE 1II • �AAj�HOLE QN MAIN LINE , CASE N0. wrn� e° BRANCN lJ1Tpi�tl. . I II IV 1 CASE III . K � A° K . 0.05 22 1/2 0.75 0.25 45 0.50 1.25 60 0.35 90 0.25 No LateralSee Case I Date: NOV 1984 REFERENCE Rev• • APWA Speclal Report No. 49� 1981 USE EQUATION E305 x °• N� =— k ; � . �:) � .5 o•.•� U' �� '— K : o .:25 0_.,,L Oy, SECTION CASE II {NLE7 ON MAIN LINE WfTH BRANCH LATERAL I� ---- _ _. Q�—'~r`.. o/ �i� g_�� I _ � I� 0 � $-r=� � REGIONAL STORM DRAINAGE PIPE AND CHANNEL �U�T� M A-T� Con� b � Ti a/l!� � � A � , �___ .� r � � �� .�� ��� ti r, � ' ' a � � •,_ ,� - � � � : . � � ��' � , ti �..� • . � �z � �..�..; : _ . �: ���__ �, � � , � . ♦ � • r ��~ _ � ' • • � �ti . r r' �� `� t : . � . . � � . . L TI �r ��,I t �, � � � � � �rr �� . � - ���. • ��� � r � B- �� �---------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING f DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD �ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO. DATE 01-20-1998 AT TIME 16:51:28 •••�.��..•.�•.••. .•..••••••. �* PROJECT TITLE: Harmony Realignment *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 14 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (�) _ STREET CROSS SLOPE ( °s ) _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH {ft) _ 0.45 2.00 0.016 2.00 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 19.75 GUTTER FLOW DEPTH (ft) = 0.56 FLOW VELOCITY ON STREET (fps)= 2.66 FLOW CROSS SECTION AREA (sq ft)= 4.07 GRATE CLOGGING FACTOR (�)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 W INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= � BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW I FLOW INTERCEPTED CARRY-OVER FLOW 13.17 (cfs) _ (cfs) _ (cfs) _ (cfs) _ (cfs) _ (cfs) _ 10.80 10.80 0.00 10.80 10.80 0.00 � I I ...� _ - �--------------------------------------------------------------------------`��q UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO. DATE 01-20-1998 AT TIME 17:20:02 �..••.•.•�.•�•••�.•.••.••••.. �* PROJECT TITLE: Harmony Realignment *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 16 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 45.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (�) _ STREET CROSS SLOPE (g} _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ 0.65 2.00 0.016 2.00 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.06 GUTTER FLOW DEPTH (ft) = 0.47 FLOW VELOCITY ON STREET (fps)= 2.77 FLOW CROSS SECTION AREA (sq ft)= 2.44 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(�)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.89 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 6.70 6.70 0.00 6.70 6.70 0.00 �� _ _ - _ _ _--- -- - INC Engineering Consultants � - � � 0 �% iiA \ ..� � a � � .i. � Curvc� �-�cc-��S � �orr.ra� � v� v'c/`E.5 a�. o� l; ✓►"�.�' 'rl� ��' S 2 Dc�.ar e���e 's��o�✓1 o,n -� I �d ���• 9 n,u, n t��e -�t b� j u-�� o�i . ! 3. T.ir(�ea-�el- cordif�c.� �a Icu.(a.-�-�cF c�-i -�vll oUi,►,y chu nn�el �{� � - J D—_, V CUENT V�/DrJ� iGl�'`��., ,�pONp, � �D,' PROJECT � -�_� r CALCULATIONS FOR ��� � r� i� MADE BY �_ DATE ��MECKED BY DATE BHEET OF �► , � __ ; �, � ' � �. w c�-.� .�, �� r��� a , � �� /� .� � 13 �03� �\ IS �� �'=�.' 1� � � ,�. ��Q � Q . � ��j�s �D /� O '� 7 ' �_.. � � r/� �) �Z�r Uf-�tiviUE� � ,���t_-. I ��. . � ��- , �� � fi � � �I � � � � The Sear-Brown Group Harmony Road Realig�ment Storm Drainaqe Sy,�tem - Manholes 434-013 Node Node Ground r No. Type Elev. Discharge Notes (n) ��) ' 0 Outlet 7.56 251.3 SWMM CE#47; starting WSEL 8.83 1 Manhole 18.50 251.3 2 Manhole 17.62 251.3 ' 3 Manhole 17.50 251.3 4 Manhole 21.80 197.5 SWMM CE#200 5 Manhole 29.00 197.5 ' 6 Manhole 33.30 197.5 7 Manhole 38.10 197.5 8 Manhole 44.52 197.5 9 Manhole 51.50 197.5 � 10 Manhole 51.16 197.5 11 Dummy 51.10 180.0 Q(#10) - Q(#13 ) 12 U/S inlet 51.10 180.0 13 Dummy 50.62 10.8 � 14 Curb inlet 50.62 10.8 rational Q 15 Cleanout 50.96 6.7 16 Dummy 50.46 6.7 ' 16.5 Curb inlet 50.46 6.7 rational Q 17 Area inlet 19.50 42.0 rational Q 18 Curb inlet 21.15 36.9 rational Q � 19 Dummy 22.20 5.0 20 Curb inlet 22.20 5.0 rational Q 25 Dummy 27.40 5.1 26 Area inlet 27.40 5.1 rational Q Notes: a.) Inflow values from SWMM unless otherwise noted. �. b.) Runoff from smaller tributary areas (not explicity modeled by SWMM) was determined using rational method. Inlet or pipe capacities at inlets 18 and 20 limit ' storm drain inflow. c.) Inflow at upstream entrance (inlet 12) determined by subtracting rational method flows at inlets 14 and 16 from tatal SWMM flow at conveyance element 200. �� � � 21-Jan-98 �� � i � � � The Sear-Brown Group Harmony Road Realignment �torm Drainaae System - Pines �Bend Lateral U/S D/S Reach Diameter MaYI Length Slope U/S Crown Loss Loss Invert Invert # (in) (ft) (%) (ft) Kb KI (ft) (ft) ^ __�____ 1 60 RCP 135.7 1.02% 13.59 1.00 - 8.59 7.21 2 60 RCP 229.8 1.02% 15.92 0.30 - 10.92 8.59 3 60 RCP 14.5 1.02% 16.07 0.30 - 11.07 10.92 � 4 54 RCP 207.8 1.46% 19.09 0.30 0.35 14.59 11.57 5 54 RCP 500 1.46% 26.37 0.05 - 21.87 14.59 ' 6 54 RCP 500 0.96% 31.17 0.05 0.25 26.67 21.87 7 54 RCP 500 0.96% 35.97 0.05 31.47 26.67 8 54 RCP 499.7 0.96% 40.77 0.05 - 36.27 31.47 9 54 RCP 357 1.44% 45.91 0.05 - 41.41 36.27 � 10 2x9 CIP RCB 41 0.50% 47.08 0.06 - 45.08 44.87 11 2x9 CIP RC8 82 0.50% 47.48 0.05 0.30 45.48 45.08 12 2x9 CIP RCB 0.1 0.50% 47.49 0.20 - 45.49 45.48 13 21 RCP 112 2.96% 50.40 1.02 - 48.65 45.33 � 14 21 RCP 0.1 2.96% 50.40 0.25 - 48.65 48.65 15 18 RCP 94 0.78% 47.80 0.72 - 46.30 45.58 16 18 RCP 7 0.78% 47.86 0.30 - 46.3fi 46.30 ' 16.5 18 RCP 0.1 0.78% 47.86 0.25 N 46.36 46.36 17 36 RCP 68 3.03% 18.13 0.07 15.13 13.07 18 30 RCP 129 0.90% 19.29 0.05 - 16.79 15.63 A 19 15 RCP 163 0.60% 20.27 0.05 - 19.02 18.04 20 15 RCP 0.1 0.60% 20.27 0.25 - 19.02 19.02 25 18 RCP 33 0.40% 26.65 1.02 - 25.15 25.02 26 18 RCP 0.1 0.40% 26.65 0.25 - 25.15 25.15 � 1 ' ' � � 0 � I � I g -ZZ �I 434-013 � Qfull (cfs) � 262.5 262.5 262.5 237.2 237.2 192.7 192.7 192.7 236.0 333.5 333.5 333.5 27.3 27.3 9.3 9.3 9.3 116.1 38.9 5.0 5.0 6.6 6.6 21-Jan-98 I� I� �__ -- ' A � 1 � � 1 ' I I I I I I C9ntraction Losses: Junction of U/S box culvert and D!S pipe Head loss due to contraction: K �= 0.5 sudden contraction ft full velocity in pipe (D/S) V 2 : = 16.49• sec D 2:= 54• in D/S pipe diameter D 2 A 2:= R• 4 A 2= 15.9 •ft D/S flow area H:= 2•ft U/S box culvert height W:=9•ft U/S box culvert width A 1:= H• W A 1= 18 •ft U/S flow area 2 22 HL:=K�•2g• 1-(Ai� � HL =0.10•ft ft g :=32.2• 2 sec Solve for equivalent bend loss coefficient: V 1:=10.36• e full velocity in box culvert (U/S) HL Kb := V Z 1 2•g ) K b = 0.06 equivalent bend loss cce�cient � �-Z 5 '. � � � � �Z� Cross Section Cross Section for Trapezoidal Channel Worksheet Westfield Park Channel Flow Element Trapezoidal Channe! Method Manning's Formula Solve For Channel Depth ection ata anrnngs oe icient . 0 Channei Slope 0.0195 ft/ft Depth 1.62 ft �L-- yvS.�L �, 83 Left Side Slope 4.00 H: V Right Side Slope 4.00 H: V Bottom Width 30.00 ft Discharge 251.30 cfs � 1 ' ' ' � � � � ' ■ 01/21/98 01:58:20 PM 1 ' 1.62 ft I^ �,, I � 30.00 ft V � H 1 NTS The Sear-Brown Group, Inc. FlowMaster v5.12 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 ■I .� �i � � � � � � 1 �Z5 saas=staas�sssswas:�sss�sssns=ssa�sssassas��aasaaas:sssasss�sssasa:ssaa�a=s REPORT OF STORM SEIaER SYSTEM DESiGN USIN6 UDSEWER-MODEL VERSION 4 ' DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVII ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATiON W1TH ' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO s::s�ss��m�esssssass�ss�ssassssesss�msss:sesssssssassssesssss�sss=sssxasssss *** EXECUTED BY DENVER CITT/COUNTY USE ONLY ............................................. ON DATA 01-21-1998 AT TIME 15:15:15 *** PROJECT TITLE : Taft/Narnbny (uoodridge) regional storm drain *"* RETURN PERIOD OF FLOOD IS 100 YEARS (Design flow hydrology not calculated using UDSENER) *** SUNMARY OF HYDRAULICS AT MANHOLES ---------------------^ -------------------------------------------------------- MANHOLE CNTRBTIN6 RAINfALL RAINFALL DESIGN GROUND YATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------0.01----------------------------------251.30-----'T.21------8.83-----'NO 1-- ��s ch� ��� � U"'-"`� DP� � 1.00 251.30 18.50 12.97 OK 2.00 251.30 17.62 15.30 OK 3.00 251.30 1T.50 16.19 OK 4.00 197.50 21.80 20.63 OK 5.00 19T.50 29.00 25.84 OK 6.00 197.50 33.30 32.77 OK 7.00 197.50 38.10 37.91 OK 8.00 197.50 44.52 43.04 OK 9.00 197.50 51.50 45.38 OK 10.00 197.50 51.16 47.19 OK 11.00 180.00 51.10 49.39 OK 12.00 780.00 51.10 49.78 OK 13.00 10.80 50.62 49.89 OK 14.00 10.80 50.62 49.97 OIC 15.00 6.70 50.96 49.38 OK 16.00 6.T0 50.46 49.47 OK 16.50 6.70 50.46 49.53 OK 17.00 42.00 19.50 18.49 OK 18.00 36.90 21.15 18.84 OK 19.00 5.00 22.20 20.37 OK 20.00 5.00 22.20 20.44 OK 25.00 5.10 2T.40 28.32 NO\ �,� �r(t�i ,,,�,�� �4��uw�h� 26.00 5.10 27.40 28.35 NO � � OK MEANS YATER ELEVATION IS LONER THAN GROUND ELEVATION �vr�aii/l% "� Zg•� `� £` ✓ *** SUMMART OF SEWER HYORAULICS NOTE: THE GIVEN FLON DEPTH-TO-SENER SI2E RAT10= 1 -•----------------------------------------------------------------------------- .� i � � SEWER MAMNOLE NUMBER SEwER REOUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DiA(HIGH) DIA(HIGH) DIA(HIGH) YIDTH ID N0. ID N0. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------�----�--�--------------------------------------------------------•------- 1.00 1.00 0.01 ROUND 58.99 60.00 60.00 0.00 2.00 2.00 1.00 RouND 58.99 60.00 60.00 0.00 3.00 3.00 2.00 RouND 58.99 60.00 60.00 0.00 4.00 4.00 3.00 ROUND 50.39 54.00 54.00 0.00 5.00 5.00 4.00 ROUND 50.39 54.00 54.00 0.00 6.00 6.00 5.00 ROUND 54.51 60.00 54.00 0.00 T.00 7.00 6.00 ROUND 54.51 60.00 54.00 0.00 8.00 8.00 7.00 RouND 54.51 60.00 54.00 0.00 9.00 9.00 8.00 ROUND 50.52 54.00 54.00 0.00 10.00 10.00 9.00 BO% 2.12 2.50 2.00 9.00 11.00 11.00 10.00 BOX 1.99 2.00 2.00 9.00 12.00 12.00 11.00 BOx 1.99 2.00 2.00 9.00 13.00 13.00 10.00 ROUND 14.84 15.00 21.00 0.00 14.00 14.00 13.00 ROUND 14.84 15.00 21.00 0.00 15.00 15.00 10.00 ROUND 15.93 18.00 18.00 0.00 16.00 16.00 15.00 ROUND 15.93 18.00 18.00 0.00 16.50 16.50 16.00 ROUND 15.55 18.00 18.00 0.00 17.00 17.00 3.00 RouND 24.59 27.00 36.00 0.00 18.00 18.00 1T.00 ROUND 29.41 30.00 30.00 0.00 19.00 19.00 18.00 ROUND 15.00 15.00 15.00 0.00 20.00 20.00 19.00 ROUND 15.00 15.00 15.00 0.00 25.00 25.00 5.00 RouND 16.30 18.00 18.00 0.00 26.00 26.00 25.00 RouND 16.30 18.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSJON UNITS fOR BOX SEWER ARE IN FEET REOUIRED DIAMETER WAS DETERMINED BY SE61ER HYDRAULIC CAPACITY. SUGGESTED DIAMETER YAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEY SENER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEHER DESiGN FLOW NORMAL NORAML CRITIC CRITIC FULL fROUDE COMMENT ID FLON G FULL G DEPTH VLCiTY DEPTH VLCITY VLCI7Y N0. NI�IBER CFS CFS FEET FPS FEET FPS FPS ---------�--------- ^ ----^--------��------------------�-------------------�--- 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 16.5 17.0 18.0 19.0 20.0 25.0 26.0 251.3 251.3 251.3 197.5 197.5 197.5 197.5 797.5 197.5 197.5 180.0 180.0 10.8 10.8 6.7 6.7 6.T 42.0 36.9 5.0 5.0 5.1 5.1 263.7 263.7 263.7 238.3 238.3 193.2 193.2 193.2 236.6 127.6 127.6 127.6 27.3 27.3 9.3 9.3 9.9 116.4 39.0 5.0 5.0 6.7 6.7 3.90 3.90 3.90 3.13 3.13 4.50 4.50 4.50 3.14 2.00 1.99 1.99 0.76 0.76 0.94 0.94 0.90 1.25 1.94 1.02 1.02 0.98 0.98 15.29 15.29 15.29 16.75 16.75 12.42 12.42 12.42 16.65 10.97 10.06 1Q.06 10.69 10.69 5.73 5.73 6.04 15.12 9.04 4.66 4.66 4.15 4.15 4.38 4.38 4.38 3.97 3.97 3.97 3.9T 3.97 3.97 2.00 2.32 2.32 1.24 1.24 1.00 1.00 1.00 2.12 2.05 0.89 0.89 0.8T 0.87 13.78 13.78 13.78 16.92 13.30 13.30 13.30 13.30 13.30 0.00 8.64 8.64 98.85 5.93 8.63 5.36 5.36 1.25 9.75 39.72 5.38 4.72 4.81 FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOH OCCURS 12.80 12.80 12.80 12.42 12.42 12.42 12.42 12.42 12.42 10.97 10.00 10.00 4.49 4.49 3.79 3.79 3.79 5.94 7.52 4.07 4.07 2.89 2.89 1.35 V-OK 1.35 V-OK 1.35 V-OK 1.75 V-OK 1.75 V-OK 0.00 V-OK 0.00 V-OK 0.00 v-OK 1.73 V-OK 0.00 V-OK 1.26 V-OK 1.26 V-OK 2.4T V-OK 2.47 V-OK 1.12 V-OK 1.12 V-OK 1.22 V-OK 2.75 V-OK 1.74 V-OK 0.78 V-OK 0.78 V-OK 0.79 V-OK 0.79 V-OK ---------------------------------------------------------------------- SENER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS �U r J � � f0 NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 1.00 1.02 8.59 7.21 4.91 -5.00 NO 2.00 1.02 10.92 8.58 1.T0 4.92 NO 3.00 1.02 11.07 10.92 1.43 1.70 No 4.00 1.46 14.59 11.56 2.71 1.44 NO 5.00 1.46 21.87 14.57 2.63 2.73 OK 6.00 0.96 26.67 21.87 2.13 2.63 OK 7.00 0.96 31.47 26.67 2.13 2.13 OK 8.00 0.96 36.27 31.47 3.75 2.13 OK 9.00 1.44 41.41 36.27 5.59 3.75 OK 10.00 0.50 45.08 44.88 4.08 4.63 OK 11.00 0.50 45.49 45.08 3.61 4.08 OK 12.00 0.50 45.49 45.49 3.61 3.61 OK 13.00 2.96 48.65 45.33 0.22 4.08 NO 14.00 2.96 48.65 48.65 0.22 0.22 NO 15.00 0.78 46.30 45.5T 3.16 4.09 OK 16.00 0.78 46.36 46.31 2.60 3.15 OK 16.50 0.89 46.36 46.36 2.60 2.60 OK 17.00 3.03 15.13 13.07 1.37 1.43 NO 18.00 0.90 16.79 15.63 1.86 1.37 NO 19.00 0.60 19.02 18.04 1.93 1.86 NO 20.00 0.60 19.02 19.02 1.93 1.93 NO 25.00 0.40 25.15 25.02 0.75 2.48 NO 26.00 0.40 25.15 25.15 0.75 0.75 NO OK MEANS BURIED DEPTH IS GREATER THAN REOUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAUIIC GRADIENT LINE ALONG SEYERS ------------------------------------------------------------------------------- SEYER SENER SURCHARGED CROI�IN ELEVATION YATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ----------------------------------------------------------------------•-------- 1.00 135.T0 0.00 13.59 12.21 12.97 8.83 JUMP 2.00 229.80 15.58 15.92 13.58 15.30 12.9T JUMP 3.00 14.50 14.01 16.07 15.92 16.19 15.30 JUMP 4.00 207.80 185.71 19.09 16.06 20.63 16.19 JUMP 5.00 500.00 115.07 26.37 19.07 25.84 20.63 JUMP 6.00 500.00 500.00 31.17 26.37 32.77 25.84 PRSS'ED 7.00 500.00 500.00 35.97 31.17 37.91 32.77 PRSS�ED 8.00 499.70 499.70 40.77 35.97 43.04 37.91 PRSS�ED 9.00 357.00 165.88 45.91 40.77 45.38 43.04 JUMP 10.00 41.00 0.00 47.08 46.88 47.19 45.38 PRSS�ED 11.00 82.00 82.00 47.49 47.08 49.39 47.19 PRSS�ED 12.00 0.10 0.10 47.49 47.49 49.78 49.39 PRSS�ED 13.00 112.00 66.94 50.40 47.08 49.89 47.19 JUMP 14.00 0.10 0.00 50.40 50.40 49.97 49.89 JUMP 15.00 94.00 94.00 47.80 47.07 49.38 47.19 PRSS'ED 16.00 7.00 7.00 47.86 47.81 49.47 49.38 PRSS'ED 16.50 0.10 0.10 47.86 47.86 49.53 49.47 PRSS�ED 17.00 68.00 68.00 18.13 16.07 18.49 16.19 PRSS'ED 18.00 129.00 9.86 19.29 18.13 18.84 18.49 JUMP 19.00 163.00 30.20 20.27 79.29 20.37 18.84 SUBCR 20.00 0.10 0.10 20.27 20.27 20.44 20.37 PRSS�ED 25.00 33.00 33.00 26.65 26.52 28.32 25.84 PRSS�ED 26.00 0.10 0.10 26.65 26.65 28.35 28.32 PRSS�ED PRSS'EO=PRESSURED FIOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUNMARY OF ENERGY GRADIENT LINE ALONG SEWERS }� - �-� I � -- - _ - - - - - - - ► � ► -----------------------------------•------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANMOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO 1D N0. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 1.0 1.00 15.52 4.14 1.00 2.54 0.00 0.00 0.01 8.83 2.0 2.00 17.85 1.57 0.30 0.76 0.00 0.00 1.00 15.52 3.0 3.00 18.74 0.13 0.30 0.76 0.00 0.00 2.00 17.85 4.0 4.00 23.02 1.86 0.30 0.72 0.35 1.71 3.00 18.74 5.0 5.00 28.24 5.09 0.05 0.12 0.00 0.00 4.00 23.02 6.0 6.00 35.17 5.02 0.05 0.12 0.25 1.80 5.00 28.24 7.0 7.00 40.30 5.02 0.05 0.12 0.00 0.00 6.00 35.17 8.0 8.00 45.43 5.01 0.05 0.12 0.00 0.00 7.00 40.30 9.0 9.00 47.78 2.22 0.05 0.12 0.00 0.00 8.00 45.43 10.0 10.00 49.06 1.1T 0.06 0.11 0.00 0.00 9.00 47.78 11.0 11.00 50.� 0.40 0.05 0.08 0.30 1.40 10.00 49.06 �� ��^a � '_ 12.0 12.00 ��4' 1 0.00 0.25 0.39 0.00 0.00 11.00 50.95 ,s1,t � 13.0 13.00 50.20 0.82 1.02 0.32 0.00 0.00 10.00 49.06 �� �r�n,, �,,,,d, .l`,o,n 14.0 14.00 50.28 0.00 0.25 0.08 0.00 0.00 13.00 50.20 15.0 15.00 49.60 0.38 0.72 0.16 0.00 0.00 10.00 49.06 16.0 16.00 49.70 0.03 0.30 0.07 0.00 0.00 15.00 49.60 16.5 16.50 49.75 0.00 0.25 0.06 0.00 0.00 16.00 49.70 17.0 17.00 19.03 0.27 0.05 0.03 0.00 0.00 3.00 18.74 18.0 18.00 19.72 0.62 0.07 0.06 0.00 0.00 17.00 19.03 19.0 19.00 20.63 0.90 0.05 0.01 0.00 0.00 18.00 19.72 20.0 20.00 20.69 0.00 0.25 0.06 0.00 0.00 19.00 20.63 25.0 25.00 28.44 0.08 1.02 0.13 0.00 0.00 5.00 28.24 26.0 26.00 28.48 0.00 0.25 0.03 0.00 0.00 25.00 28.44 BEND LOSS =BEND K* FL0111NC FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULI VNEAD-JCT LOSS K�INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSI6LE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SE11ER 1NVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOH CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT NWLD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKLIATER WRVE COMPUTATIONS. �----- — ��� i�� ���� 1 Ii�,i � ��v 4E! ,,, � �� � �, � �;,�, � �' — 1 � 1 � ,C�\ , � - - � � . � 1 ` � , �0 3 , --. %�� 1 � \� / � � / ( � ` � �, � � ��� / /� I SEGMENT OF EXIST! G DITCH \� \ � � � � � � • TO BE A6ANDONED.� � J �'� /l J J PROPOSE � \ \ �� � �°13 - _ % , D ETEN Tl �(`� \ � � � � ' � P0� � �:/ �� / / // � Z� �, a 4 • \ � �� \ I � �/ I q=50. r-- �FUTVR � T¢ 2 I /� / I � L - . � � ' �� �_/ � � � � . ` � / � � � � J� _ �� � / i � �. — � �� � ' , �� / G E ANDOyED.NG DITCH Q ,Oy� -�'C —�~ �� �`j-' --� �' �'�� / `' � � J 1. '--, — --- 6 qo.o �V / ; N / / ' / - � ��� I �O/ �%� / S,� ��/ � 0 � y / � � — — — � �� io � ��a 4- h' � / � `I R m* 15 0' �% �� / T � gs. / ��, �� / �� / _ D3 � y � / � — --� � �a . � i . � ; y� s / � / �� �,. � � i � h 5� �ry� � � / , �� y � ` , �• �- � � � „� � ' D '�� / � -� h O �� -'�" \ � P OF B �Q � �/ �� �� \ � � 7l / . , d o�. 1 �� / ��� � / � ` ��,,,_._.--' , \ ' ,� �a . � �r ( � x, _ � . \ � � ` _i �. _ $ \ ' ` � � ` , � � = o� snNK �� �� � 1 ; � , '' .� q � � �� \� � � � �r w � �- � — i �$ � � . ` � R �w v��� - ' -. , , ,. � q 1� ` Si"¢N � �l� ' 54 � /// 6�0 ���s ��eos,�'� � �� / �Rd7'�GTt o� r�'RT� � \ � � v� mo ���t- ,�r �e.�0 �E NLINE OF POSED IRR ATI �P,r� {?v,�. �r,e,�7- � A T � 9 .FrLI �� �c 8 Y oT�+E�s� i u� � ` �� � � , , . � �� �� 5 p� I� w�. S� � �I � � i a� � a � � �' AND LA E CANAL IRRIGATION DITC �_ � - __ � � � _-1� - L-- - , , -� - — - - ' �- �� CUENT V"Ad�IGrA�TL S JOSNO. ����Ol/ ' INC PROJECT ''� CALCULATIONS FOR ��� M V✓C �T � r`N Enginee�ing Consultants MADEBVQ�DAT�,�GHECKEDBV DATE SHEET OF 1 1 �n-1�m D� r-Fio.nr �� �( � fi o�n p�F p 1!� L �-�,re- c. d�n �'t-iu ��o� o-F t]/S d-c-(--�-t� � �or� o� Z�8 � . 1��= ' �' 1 � Se �k�Zdl, % W 1 ��r� C hstn�c� rr�'t`o /�lo►an�"a.�n 1�� ��� �rvvrc� Stc� �2" �2Cr° �.a l � �� ��� � m poh.d �,,q ol�c� .�-� -�� V/s e -t d � � � z ,� �2 � P �ra I K a� r��c dl -�'o r- o,�-rfllow s vv.� 1-c b��-„�cc.., � easrc�r� P�' � t� c.., 6a n kw�t�Z.` a.,a� �� i�i A�-t�-�� �w.� 2 4�- -ta P�su.� -tf,.a.t- lo0—y�r. t+�,�`� st-rr.�, — v�t�ac'�� vv. � ( ��►'vi � n N/� � i � 'i-�•c -1-c .r�on► ^� /Y. 9 � �.�c.� I �rov�in�..'f'S'• u yZ" Q�P � Ja, � a � (t �or��� ,.q •(t�h % To o -F �V 4 L. U�5 ba r � _ 5 � o � . DO � T1 S�'�✓,.-s-F ya+ +ecP SdS�.00 �en� � � q air�-� � ) y, o0 ./ �+w/� - � y o o/3 so = y o0 �I ��ow�. -�,.r,+ �1 �-l-�,t �} 2„ R G� c.c n G�-r�y 18 S �� cFs s-t-o n�.nra��- �c� ne e rert-n� o P �., i r4rt-p �-�,e C a r�a 1 • � �� oo = y!? b �-�s ��c� G'� �oo� �� ,!� s�v�vi/i'I, G�' SD� o ����4 Q = y►�.6 � � -t = ! f S,o G-f's Ove �l �t - � 3?. 6 G�=s I■ �z-� __— - — — -. � _ � « - �_ �: � RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA �- � C Overflow weir for 42" RCP at Pond 278 in MountainRidge Farm C. i�1tv� rr� C vnar � t� e-n, WEIR COEF. 3.000 STA ELEV 0.0 5104.00 8.0 5102.00 88.0 5102.00 96.0 5104.00 ELEVATION DISCHARGE (feet) {cfs) --------- --------- 5102.00 0.00 5102.20 21.65 5102.40 61.67 5102.60 114.08 5102 . 80 176 . 85/� ����� 6 �/'� S'�D�. c� S 5103.00 248.86�X�qp �"' 5103.20 329.37 5103.40 417.87 5103.60 513.98 5103.80 617.41 Program uses weir equation Q= CLH'�Z � ��� � � � � r.. io,000 8,000 EXAMP�E CHART �o (�) (2) (3i 6. r 6. �• 1— 'S, y,dD 3.�7 r ' ' 1 ' L .� L .s t.0 �2 HEADWATER DEPTH FOR MEAOWATER SCALES 263 CONCRETE PIPE CULVERTS REVISED MAY1964 WITH INLET CONTROL BUREAV 0► iU�IIC ROAD3 �A1L 1963 ' �� I81 _.._........., . . . ( }�_ a -� � �� Pr�ceding page blank � �� � , _� � ^ li.l O N � � , � , � `� _ �i � ,� N � g za�j � �' r/� n c�� a`'' a ' ; ; o T � � .... n . d j �� .i i ��: �. . �/ / j V 2 �i 11 a zn: N � ! z I I� o aK � l Nv�: .^; 0. �I � � Q�c 0 �� � I '�+ , K w JI I,/' fV yajO I ' ' 0! o� a �� �a '.�: � cW: � a �� b31 b,Y�/ �, ,� � w � I� a': . � � 8 ao r a ' - � %�_-\�"� �n za ' � f � Y�. .r I � � K; --��Il---- � _i'�' �_ � � � ,�j W'. � �, a ���� '��r-� : . ; : I , ���, * '�: . �, �'. � -�-� " - i � i �� i � � 00',SL ANI �. I�i! _ '-.. i i ' c�'i' � oo'sc ��n � 0 80+ �" � �z+� ��.� � � ,r� � � � , i,, s o��5+ ' ��� ,`,� ;; ' % ;; � `�j. % �i` .,, ' i r �-^ � � , ��--- �, ^ i k � ro � � 'c .�'� � ZU� : C �.s� �� ��� W $�R � � M � $� i� _ Y� +0 L� a � � � � �: i i � � i i o rn ' � 04'SB I�M � '`' � �' ` ,. i � I ! � � OOfO � x aW �- � Q 4 � i' ' 1 n i � ,: ' � � � ..�. ' i ' 0 � �� � •��. •--+- � � ; a 0'L5+ � a '15 HSV� �J ' i ' < F- ` .� a o 1 _— `d ,�� "` r i- � �,r . i ; i , � .-_ Wa / ��- - :� i I, i i i i !. y 1- '�i��!�� _ � ' � � i�-.-'r �Vj � t , : � W !�y � � �� i/i � � � � 41 �� � W � �' � J �/,i%// / 0� , i a -Y � / ' �' � ' ,�i ��'� po ',<�: ' 'o� M� ��/�/����; �4t � j� N 0 // //� �o� , ;`: Z , �� /� � x� � , �, e � / N /��// �? i w j : I � � � ' J� i Q �� � o z � 4 �v'1HS IV130 335 � � � IIVM �i01f1 31321�N0� � / �vtav� ' / l �it /�d , r- — - � f ! /! � � i M . �. � W ►.. � : , ._ ; � : . - (C (� e� le� � � � � ' W O : K . . . O �: . � � � - � � u�'. � � W . � Z �,a' �- f.� J� . . . � I �A d � 'R: �'� � K -. �. 0��88 HN� �� ,�'Oa Q 0�09+ � � o . � o ; .� � � a � � I� � � . � N � �,�g Z o ■ � � �ui �" � � � .� = a ' � �:-- m � � � ; � ~$ ■ 04i or � .a .i. ' � � � >•� � � ' ' : o m m m m m � w w w w w � � W � � ti O Ia w � w w �w � � a � � � � Q C=.1 U U U U � SiilD( 43HJ�ll� tlMO'>0600YOS �3I1VN ''JMO � 0 F a � N W 0 O � S � I"� I"� ��-�� I�� —� - —. ��� � �„, , y ,i n ,c� `, <=z a �' ' ' I � 1.� �r,3 I r;„ � > �� � , � � ' oorc nNi ; I 1 �� ��' �1� W�� �' i � a� ��� i �� � Z � i i _ �I ,•, � �� m , i _ `� r. � � I ` 1 � W O• / JI� � �. . _ ' �I � 1 +m�h i �i (1 i t0 N O�j � � -J � � � ^� ( N f � ', � �� I 9" ' � :; r I ow� � � \ j \1 aic�3U � � � � ���"Cji ; : � I � / � � ��~ �� 60'LL AM � ;� w I -_ J r 1 � �/ j Y w� � 00+0�9B+11 � n p �� I 1 1� I UN�Zi - A' � rn�`c'+ r� 1 � 1 � � I�Z��I o z W 0 II�� `FN I I � W�Q— d� J ���{�� e \VJ� I � I a►- O.� . � � I7 Zm ! (�, I�� � ¢� � , 0 I II '\ ar-o 1 o i I�o�o • a o� � ; � �I \ � M � f � V W� � 4> 4' I �li a�r: 1 . I I��=W o � m Y ,� W � � f � � �� ^ � � W ' � ' I '� = WJ j ��'` i � � � r�, __ � Q' Q�' J � � 7UZ � , / /� �� J�;�� � W I '' // �K rn� 0 i O � � < <�� �'� ��� ^ak�� n- ' c°�i ` � � x o o � ' o N a w , y � • `� i '� Nz e '� d. � e. �°� sy ij o �im i .3 � � ,Z i i��' , / �' •� �� � " z w F \� t d'3 / !l ,Q � t/1 �i : .� � � � , V! � � � � lb,y - � io�'Z o•• W I ��•� .8 � � p r•> > i . �\ �` �'pW�� �LZ'LL ANI . .\ T . / , UfA�= . ��� � �, � . . \, \ � ^ � • a W O N ; � ~`�'� i� i� � g �$�� . ` �� M i i � a�qa ��� � , � � � �i pn a ztnt; i e �` .� 1 z i � ��at inv� : i � � �, �i �i �.� a"' ' ■I ' � I wao o ' i j' � ,� \'�.� / „ � I ✓ ' w / ,c,�` f j, � n, o '' � � i �� i I i a �. � �31 b M -' N4, . �ji', / a � � ��� '•8 ro lo- � e� � �i �� i a a s ,� ` �� � _�-- �T=, ��'-'-``� � N°- ' ' � W; i� �i .o� � ,n � `� �i � - _ --� — a Na , �� C\, a^ � �ti � c� � ��^ ' � � � � �� a,`• , .� � .� > r i - \� g N �,, � � Z � .� � .ss,`,--i � � �I 1 N� (] i� G� /� 00'CL AtN - „ v.., � W �� � ' � trtc r w �'` �`�y z � � / / / � � � � � � � � O � � �// � �, o y`�� �r~ f r �►- � R( / /ii °° : � �t, 1 W N a\ � /I� , 1 � ` � � � ��✓ ; ,�� � ;�� � s a �/ � � ,�, , r` \�� i� t tX c ` - � j � � i�� ` � � , I ■ �1 � � `, � � /// � � ��` 1 % `�, '� � M � � � �. � i � � i� °� �` - � � ra _ , , , / / , �,_ � i � j •` � � � �� � � � � 1 1 �! I �. � ^ � i { ' d � �_': __,� ��' � •� � A � ;'15 HSV 8 �J , ,. �( i'�`� ��' � �t / �d. y�� p 'r . = -- ---_ � '. . \ /," � +� / �/. i � _ . I �I � S6 �I .- � '/' � � V1 �� ��: �I � 2 ��! q{, 1 �//�r%ii o W W�: � // // / � � , �Cj .� � `�i �` /�� � /// �� a . y a�o ep a 11 ` ��� �i �� ' k� p ! a o 3 N � � U \ i � / /� / / � U �S � : � � ����- � ao Z a � i/// i;� Uw � *o � ,\ a a � �) �.. //i i� z � �I F � vi � ' � � � r\ �` \� w F � �/ �/ /// a o W i � / \ \ � �Z � fJ /� �� ( �� i ♦ \ � � 1 � / / // J � ' . I I O �\� � � � O � /-'� �� / I / "' z � ;� `:� ; ,�� �, i ,�' ,�! J - _,vN INTERIM INTERSECTION STORM DRAINAGE IMPROVEMENTS � � �- 3 5 �� � � ? �'he Sear-Brown Group �oodcraft Homes—Taft/Harmony Intersecti 434-013 nterim Storm Drainage System -- Manholes �Node Node Ground No. Type Elev. Discharge Notes i�) (�) 0 Outlet 47.60 10.8 Starting WSEL = 49.18 10 Manhole 51.16 10.8 #12+#'14 11 Dummy 51.10 0.1 12 FES iniet 51.10 0.1 Nuisance drainage only � 13 Dummy 50.62 10.8 14 Curb inlet 50.62 10.8 Ref. ultimate condition inlet calcs ' � � � �` Q--� � � � 1 � � � � � � � � T Q .,► � ��i � s G p� �l�►�Gl ��:� �— �b I r � E 21-Jan-98 �The Sear-Brown Group Woodcraft Homes--TaftlHarmony Intersection It�terim Storm Drainage SXstem — Pines 'Bend Lateral U/S D/S Reach Diameter MaYI Length Slope U/S Crown Loss Loss Invert Invert # (in) (ft) (%) (ft) Kb KI (ft) (ft) � 10 24 RCP 40 0.50% 50.20 1.00 — 48.20 48.00 11 24 RCP 82 0.40% 50.53 0.05 0.30 48.53 48.20 � 12 24 RCP 0.1 0.40% 50.53 0.20 - 48.53 48.53 13 21 RCP 113 0.40% 50.40 1.02 48.65 48.20 14 21 RCP 0.1 0.40% 50.40 0.25 — 48.65 48.65 � � � � � � � � � � ' � I � � �� � 434-013 �fui� i�) 333.5 298.3 298.3 10.0 10.0 21-Jan-98 $-5� i sasassa:aasassssaarsssasses=sasas��aassas:sss:esaass:asamsss�saaax�aasaae=x STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Canties & UDFCD Pool Furid Study =as=zassaaaaassassssenaaasesassaeaaasxaxs:acs=sosexassa:s=:m�rs�seasexsa:aso USER:RDB-Fort Collins-Colorado .......................................•••••... ON DATA 01-21-1998 AT TIME 13:07:16 VERSION=01-17-1997 *** PROJECT TITLE :lnterim Teft/Hanaony (Yoodridge) storm drain *t* RETURN PERIOD OF FLOOD IS 100 YEARS (Design flow hydrology not calculeted using UDSEWER) *** SUNMART OF NYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITT PEAK FLOH ELEVATION ELEVATION MINUTES INCH/HR CFS fEET FEET -------------------------------------------------------------------------------� 0.01 10.80 48.00 49.18 NO 10.00 10.80 51.13 49.39 OK 11.00 .10 51.10 49.34 OK 12.00 .10 51.10 49.38 OK 13.00 10.80 50.62 50.47 OK 14.00 10.80 50.62 50.55 OK OK MEANS HATER ELEVATION IS LOMER THAN GROUNO ELEVATION *** SUMMART OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH-TO-SENER S12E RATIO= 1 ------------------------------------------------------------------------------- SENER MAMHOLE NUMBER SEWER REDUIRED SUGGESTED EXISTING 1D NUMBER UPSTREAM DNSTREAM SHAPE DIA(R1SE) DIA(RISE) DIA(RISE) WIDTH ID N0. ID N0. (IN) (FT) (IN) (FT) (1N) (fT) (fT) -----------------------------�----------------------•-------------------------- 10.00 10.00 0.01 ROUND 20.72 21.00 24.00 0.00 11.00 11.00 10.00 ROUND 3.73 15.00 24.00 0.00 12.00 12.00 11.00 RWND 3.73 15.00 24.00 0.00 13.00 13.00 10.00 RWND 21.60 24.00 21.00 0.00 14.00 14.00 13.00 ROUND 21.60 24.00 21.00 0.00 DIMENSION UN[TS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REDUIRED DIAMETER WAS DETERMINED BY SEWER HTDRAULIC CAPACITY. SUCGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE S12E. FOR A NEW SEWER, FLOW WAS ANALTZED BY THE SUGGESTEO SE41ER SIZE; OTHERWISE, EXISITNG SIZE WAS USED --------------------------------------------------------------------�---------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW a FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITT N0. NUMBER CFS CFS FEET FPS FEET FPS fPS ------------------------------------------------------------------------------- 10.0 10.8 16.0 1.20 5.48 1.18 5.63 3.44 0.96 V-OK 11.0 0.1 14.3 0.12 1.32 0.18 0.73 0.03 0.82 V-LOW 12.0 0.1 14.3 0.12 1.32 0.18 0.73 0.03 0.82 V-LOW 13.0 10.8 10.0 1.75 4.49 1.24 5.93 4.49 0.00 V-OK 14.0 10.8 10.0 1.75 4.49 1.24 5.93 4.49 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED fLOH OCCURS ---------------------------------------------------------------------- SEWER SLOPE iNVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM ONSTREAM UPSTREAM DNSTREAM X (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 10.00 0.50 48.20 48.00 0.93 -2.00 NO 11.00 0.40 48.53 48.20 0.57 0.93 NO 12.00 0.40 48.53 48.53 0.57 0.57 NO 13.00 0.40 48.65 48.20 0.22 1.18 NO C'., ��. L �f �' � �: ' . 14.00 0.40 48.65 48.65 0.22 0.22 NO OK MEANS BURIED DEPTH 1S GREATER THAN REOUIRED 50IL COVER OF 2 FEET � i *"* SUMMARY OF HYDRAULIC GRADIENT L1NE ALONG SEYERS I � -----------------------------•------------------------------------------------- � SEWER SEYER SURCMARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM COND1T10N FEET FEET FEET FEET FEET FEET --•---------------------------------------------------------------------------- 10.00 40.00 0.00 50.20 50.00 49.39 49.18 SUBCR � 11.00 82.00 0.00 50.53 50.20 49.34 49.39 SUBCR 12.00 0.70 0.00 50.53 50.53 49.38 49.34 SUBCR 13.00 113.00 113.00 50.40 49.95 50.47 49.39 PRSS'ED • 14.00 0.10 0.10 50.40 50.40 50.55 50.47 PRSS'ED � PRSS�ED=PRESSURED fLOM; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLObI **'' SUMMARY OF ENERGY GRADIENT LINE ALONG SEUERS --------------------- ^ -------------------------------------------------------- UPST MANNOLE SE41ER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID N0. ELEV FT FT K COEF LOSS FT K COEF LOSS f7 !D FT ------------------------------------------------------------------- ^ ---------- 10.0 10.00 49.87 0.69 1.00 0.00 0.00 0.00 0.01 49.18 11.0 11.00 49.34 0.00 0.30 0.00 0.00 0.00 10.00 49.87 12.0 12.00 49.38 0.04 0.25 0.00 0.00 0.00 11.00 49.34 13.0 13.00 50.78 0.79 0.30 0.09 0.50 0.03 10.00 49.87 14.0 14.00 50.86 0.00 0.25 0.08 0.00 0.00 13.00 50.78 BEND LOSS =BEND K" FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*IHfLOW fULL VNEAD FRICTION LOSS=O MEANS !T 1S NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICT[ON LOSS INCLWES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONOITION. A MINIMUM JUCTION LOSS OF 0.05 FT 11WLD BE INTRODUCED UNLESS LATERAL K=O. fRICT10N LOSS WAS ESTIMATED BY BACICHATER CURVE COMPUTATIONS. t� - �tu '�il RBD, Inc., Engineering Consultants Riprap Design Project.• Taft/Harmony intersection Designer. DKT Project #: 434-013 Date: 01/21 /98 Location: Interim Intersection Outlet Pipe dia.: 24 in Tailwater. 0.8 ft Discharge 10.8 cfs Max. V.• 5 ft/s 1. Required riP�P tYPe: Q/D"2.5 = 1.91 < 6—> use design charts D = 2.00 ft YUD = 0.40 Q/D"1.5 = 3.82 d50 = 6 in —> Use Class 6 riprap 2. Expansion factor. 1 / [2 tan(theta)] = 6.4 3. Riprap length: At = QN = 2.16 ft2 L= 1/[2tan(theta)J'(At/Yt - D) = 4 ft 4. Goveming limits: L> 3D = 6 ft increase length to 6 ft L<10D= 20 ft =>4ft—>OK 5. Maximum depth: Depth = 2d50 = 2(6 in / 12) = 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap width: Width=3D=3(24in/12)= 6 ft Summary.• Class 6 riprap Length = 6 ft Depth = 1 ft Width = 6 ft 21-Jan-98 � ' � � � � � � � � � � � � ' H 1 I � RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Weir Overflow of Taft Hill Road Centerline Ce�,fS-�'i n q S �1 WEIR COEF. 3.000 STA ELEV 2200.0 52.95 2500.0 52.05 2588.9 51.75 2669.2 51.60 2795.0 51.43 , 3094.7 51.10 . • � 1 3450.0 51.48 �____ s�� . y•�� u s �: �`'•n ��' ,� _-� �J,; � 3450.0 52.00 ELEVATION DISCHARGE (feet) (cfs) --------- --------- 51.10 0.0 51.20 6.2 51.30 35.0 51.40 96.4�__-____ _ �?,�� ' I � �� S �5 � W ��L S/. �! �; 51.50 206.0 51.60 367.6 51.70 569.6 51.80 808.3 51.90 1081.3 52.00 1386.1 t5- `t I I �-YZ RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Weir overflow of Taft Hill Road centerline�p /�,�a5�� T I WEIR COEF. 3.000 STA 2200.0 2500.0 2588.9 2669.2 2795.0 3094.7 ELEVATION (feet) 51.43 51.53 51.63 51.73 51.83 51.93 52.03 52.13 52.23 52.33 52.43 52.53 52.63 52.73 52.83 52.93 ELEV 53.27 51.92 51.52 51.73 51.43 53.02 DISCHARGE (cfs) 0.0 2.0 14.1 44.7 102.4 17 9. 7� (�►oD,_ Z��. S�s �' 278.7 S�.9S _� �� 397.1 , 535.3 �it5'Su..,,.� in�e/'�rn Gin�v� 6 9 3. 7 Gt �rp � 5"�/t{�-�' t� i � I e.o� . � 872.9 � � l��'Cfi�� Gl��.a��c�; 1073.4 ��'✓ 1295.7 1540.3 1807.7 2098.5 '` Program uses weir equation Q= CLH3�2 r � � N�G :=i'��1 n1 rl V11 SC{ r1 G£� -�I<,.�J f � 1 v�r� �[,ros5 CIE ���- UJ � i ( � � �C �� � i r �t r. ��E` : r' � � 1 ; , ,= \���.�. I�■ � — - ' � - ----- �_ �... �� `Z.� (/� 6 � ' o � � �� � �J � � •' IJ -�► � -, �- - �.� � �" , ' -. x , X.N �� j .,. „ i T �_ . � CO �l' , 1 �'S� , � z r / ,.f ,� ��o�`j� ,A ,�f Il '` � '�f� � � . ;7 .. , I� � � '�� ,�� 1�'� , '� A� J, � , �,�, _;� �: :�; �.�-� , a, f 120 R 1N ,'I'': �_".-�� �.. � '� `` � r •� � � � , y ',_ T � `'' .5�� �, f�i �� . ` � ` �K.�' � � I I �� � 4� I�+� `l' ,i,'1�'� . � ,� , ��.� ,7 'J — ._l J �.� t 'f -� , �1 ` Y�. � �' �r�� � '~� -� . � 1'w;: . '..v �. v � �1 t -', _ � ` . , . ` - � X � '�` � , � w`,� r: N ti.,ec� i�.�'"'� � �� ' e�! '� I1�'�, - ��. �/�. �� � �ri� V y v . ., rcv �.. , _ � � I t" ♦ � A.•`v`'•r ��.� .; '- >!� '' ,i (� M` .� �,�� � � � � .� � � -:-�- ,� � . . _ ,.`. � � � : �, , _ ,.,,- �� , �. x . " r ,,�.���i, . � Ar V� — - - -. - � ' _ 3 _ �'� �^- . , _ 'ti, :� �' - �"�' iZ nl � :� ,/ . _ �` r U � y �� � ' � r' `�'� l +r- '� ' � 1'' �, E � �) , . ",.,�,,,,� ♦ � lAi � Y• � ��� _ . �'� ` �_ ��� ♦�. . Yr * ' � �� '�,, ` �.� .�. � ; EX '�'�,. �►� f�. . '' ' �.� �y .....t' : �'• - �'.� � �o.� i/I�Q �4� r� , s ' .. f , • '`�. t � `��� �..�.� 1 �; - � . • ; ���,. � � ';'• � `�� , :� . �' � � '� y ,� _ :i _ �,. I � 4~ . .5..� /}� ,i- !' `�1•j� ` �'__ �J r• '� �� .� '•' •'i'l `- `_� �—__'_L'.0 C R� ♦ � � ' � �- � � - � �� 31�E ( `L� '� - . - �-- � � � ` ~.i, - - t �,�► , , . :�; T�:� .. ` \ _ � A +rC_ � . � �� . . "�� _' `^^ . t r _`� �. - � - -:�-T�- - - . - � - -� A .� � y ' �' ''`+. j,�� i ,I -J�� . . '4 �,% i!' � .� r ,,y_ �# - � _. _ - - � � � ^� 4 /' �;• f i �± _ -�' �� 7{�` � ��� ' � `. i I � . � � - r � _ i, , ,� � � �, � ,� - -,` . r . ` _ �-; �' � �'' � - � i � '' ��+' ' � - • : X Y" f ^� �ti" � - 1 . `� "�_ ,, , �' f „� , � w I �� � _ � �Y1��, � �. - ¢ , � -�, '' (�r r � � •' ` � � � �. I �.� I' ' .y.� � , ` yy ' . S 1 : � k - 4 - . - '.:•-�Y • �. 4 � •� � ' //♦♦, ' '� 'i.. � •�� .•' ` �� ,� r— ` .' �� +[ � f � � � . '� � � ' l 1: � / � , � �. I. _ i� l� l. . ��.i ti �, �. 1. i� ` .� ' `� � V r^7 f �Y �n 7� �� , � � � � � � ���' � � �r '� R I 7 '�• 7� �I Sy�{ /�/� �1 � . _ �:' � `\ _ � � , r '' . � ;., f � � �' � 1. � � r; • . '� , ' � . -� .t: , .: � � • �, � .: , �'� v� , - - - � ? ''' `' , - . � � : ,, � �: .�r � +� :;,, �1; r� ' 3 � i�' •� - . .-,� � � -f '.� `. � _ - � � � _-� � s l � � � �� �; 1 � �� e�, •5 �y � - i . ' �3�,'1 �� , ���i' �7R � �� 1 ****** HYCHL ****** (Vez'sion 5.0) ****** Commands Read From File: 434013th.chl JOB TAFT/HARMONY INTERIM LJNI 0 �** UNITS PARAMETER = 0 (ENGLISH) CHL .25 186.5 VSH 50 50 �** V-SHAPE RIGHT Z1 = 50.0 AND LEFT Z2 = 50.0 LRR -1.5 2 0 2.65 0.15 ** STABILITY FACTOR 1.50 '** SPECIFIC GRAVITY 2.65 ** SHIELDS PARAMETER .150 END ***************END OF COMMAND FILE************ � TAFT/HARMONY INTERIM INPUT REVIEW DESIGN PARAMETERS: � DESIGN DISCHARGE (CFS): 186.50 CHANNEL SHAPE: VSHAPED CHANNEL SLOPE (FT/FT). .250 ------------------------------------- HYDRAULIC CALCULATIONS USING BATHURST ------------------------------------- �FLOW (CFS) 186.50 MAX DEPTH (FT) .52 AREA {FT�2) 21.06 WETTED PERIMETER (FT) 64.92 YDRAULIC RADIUS (FT) .32 VG VELOCITY (FT/SEC) 8.86 MANNINGS EQUIVALENT .163 �Davg / D50 .42 FROUDE NUMBER 2.17 REYNOLDS NUMBER (10�5) 1.56 �R IPRAP DESIGN ■------------- LINING � CONDITION TYPE �BOTTOM; STRAIGHT RZPRAP � SIDE; STRAIGHT RIPRAP *** NORMAL END OF HYCHL *** ' ' PERMIS SHR (LB/FT�2) 11.98 11.86 Date 12-16-97 �u �� o � v� oYl � - s� �(e. o� Ta-F-�- �( I�'�. CALC. SHR (LB/FT�2) 8.04 7.96 STAB. FACTOR 1.50 1.50 D50 (FT) .78 .77 � � The Sear-Brown Group EROSION CONTROL CONSTRUCTION SEQUENCE �-y S #434-013 Project: Harmony Road Realignment STANDARD FORM C Calculated B: DDH Date: 01/OSt98 SEQUENCE FOR 1998 ONLY Indicate by use of a bar line or symbols when erosion control measures will be installed. Major mod�catwns to an approved schedule may require submitting a new schedule for approval by the City Engineer. YEAR 98 MONTH J F M A M J J A S O N � OVERLOT GRADING " WIND EROSION CONTROL Soil Roughening Perimeter Barrier Additional Barriers VegetaUve Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment TrapBasin Inlet Filters ` "� "p"�' '�s'�'-° '�'��`� Straw Barriers '' ; �:. Silt Fence Barriers _ ._ �.:.,;� Sand Bags Bare Soil Preparation Contour Furrows Terraang AsphalUConcrete Paving Other VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temporary Seed PlanUng Sod Installa6on Nettings/MatslBlankets Other � STRUCTURES: INSTALLED BY MAINTAINED BY VEGETATION/MULCHING CONTRACTOR DATE SUBMITTED APPROVED BY CITY OF FORT COLLINS i � � � � � � � �" I t'� � � � �J � � � � � � � � ' � � ��_ . �79t � �.; i, � ` � u RIPRAP AND CHANNEL STABILIZATION �.� ��- • -�y •_ �, , , �-� Y f. ,�_r � �■ � � �•� . � ■J ' RBD, inc., Engineering Consultants Riprap Design �—y � 'Project: Taft/Harmony OutFall Designer. DKT ProJect #: 434-013 Date: 10/02/97 �Location: Westfield Park Outlet Pipe dia.: 60 in Tailwafer.• 1.63 ft Discharge 253.3 cfs Max. V.� 5 ft/s � 1. Required riprap type: Q/D^2.5 = 4.53 < 6—> use design charts D = 5.00 ft � YUD = 0.33 Q/D^1.5 = 22.66 d50 = 24 in � ----> Use Class 24 Nprap ' 2. Expansion factor. �1 / [2 tan(theta)] = 1.8 3. Riprap length: At = QN = 50.66 ft2 � L= 1/[2tan(theta)]'(AWt - D) = 47 ft 4. Goveming limits: • � L>3D= 15 ft <=47ft—>OK L<10D= 50 ft =>47ft—>OK 5. Maximum depth: � Depth = 2d50 = 2(24 in / 12) = 4 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) � bedding material. ' 7. Riprap width: Width=3D=3(60in/12)= 15 ft Summary: , Class 24 riprap Length =. 47 ft Depth = 4 ft ' Width = 15 ft 1 . . ' I ' IO2-Oct-97 DRAINAGE CRITERIA MAUUAL RIPRAP g—�� i i � � O ��� � � _ CI —�- �, 2 - 7 FIGURE 5-7. RIPRAP EROSION PROTECTION AT CiRCULAR � CONDUIT OUTLET. t ] -15-82 UR8,4N DRAINAGE 8 F100D CONTROL OISTRICT � i ` . . _ . . . ------- -. _—_ . �...__._..._...__. _.. ... . .__..._......_..... _.__.. _ .__. � � t. �, i . . 6 �� o.S� 0 6� Use Da insfeod of D whenever flow is supercrificol in fhe barrel. �� Use Type L for a distonce of 3D downstream . , DRAINAGE CRITERIA MANUAL RIPRAP '��� � � � r. � f - - � A. = Exponsion Anqle 8 ' r �, � . 7 � �� � , ; � �' Y --- 6 -. --- - - - -- - -- --= � o � � � � � .r- ` --� cv � - -5 - — c�O � � ! ' -- — � O � � O i , �-0 1 � — � v 4 / O ..•. tQi 9'� O / � Z ; 6' . 0 �_ � yQ __ � / a 2 � w /� � �� „) • �a _ _ — ' i I . � � 0 J .2 .3 .4 .5 .6 .7 .8 � TAILw'ATER DEPTH/ ONDUIT HE.IGHT, Yt / D �.« , ' � Q• ? �' �' • � i _ a, 56 ' ' - S ACT F C U A C NDU S ' FIGURE 5 9. EXPAN lON F OR OR IRC L R 0 IT I . � 11-15-82 - URBAN DRAINAGE 8 FLOOD CONTROI. DiSTRICT � • . � � 1 Synthetic Industries 4019 Industry Drive Chattanooga, TN 37416 Construction Products Division "Smart Solutions in Synthetics" Project Name: WESTFLD tDescription: Taft/Harmony Outfall--westfield Park � Trial Name: U/S Description: Upper Portion of Channel with Taft/Harmony flows only g- ya i2:so:ai �PUT PAR.AMETERS � Discharge, cubic feet per second: 253.3 Duration: 2.0 Hrs. Channel Longitudinal Slope: 0.0�950 � Bottom width, feet: 30.0 ' Channel Side Slopes - Left: 4.00H:1V Right: 4.00H:1V Channel Bend? Y Bend Radius: 62.0 Ft. Outside Bend: L � Geosynthetic lining for left side slope? Y Geosynthetic lining for right side slope? Y � Geosynthetic lining for channel bottom?,Y Manning's "n": 0.0200 Manning's "n": 0.0200 Manning's "n": 0.0200 � Vegetative Establishment? N Required Factor of Safety: 1.00 Functional Longevity: 60 Months � ' ' � � �� )/03 /97 Input Parameters Page 1 � �� �� �ote: The products with (TM) are pending trademarks and the products with (R) are registered trademarks. �verage flow depth = ' �aterials Considered RESVLTS OF CHANNEL LINING DESIGN ANALYSES 0.864 Feet Left Side Slope Average velocity = 8.759 ft/s Design Max. Perm. Desi�n Maximum Velocity Shear Shear Shear � Velocity Permiss. Stability Stress Stress Stability � ft/s Vel. ft/s Factor lb/sf lb/sf Factor �YR.AMAT ( TM ) �NDLOK(R) TRM 1060 �ANDLOK(R) TRM 1061 LANDLOK(R} ECRM 450 ��LYJUTE ( R ) P�.I�TDSTRAND ( R ) 0 . 2 0 DSTRAND(R) 0.35 11.9 11.9 11.9 11.9 11.9 11.9 11.9 17.0 12.2 10.5 15.0 4.1 5.4 8.1 1.42 1.02 0.88 1.26 0.34 0.45 0.68 1.9 1.9 1.9 1.9 1.9 1.9 1.9 6.5 4.8 4.1 5.5 1.2 1.7 1.7 3.37 2.49 2.13 2.85 0.62 0.88 0.88 �e following materials meet the required factor of safety and have sufficient longevity. Velocity Shear Required commended Stability Stability Functional Expected Materials Factor Factor Longevity, mo. Lifetime, mo. r'YR.AMAT (TM) 1.42 3.37 60 Indefinite LANDLOK(R) TRM 1060 1.02 2.49 60 Indefinite �LOK(R) ECRM 450 1.26 2.SS 60 Indefinite � 1 1 ' 1 �M � 'rom the listed acceptable products above, select the most appropriate rthetic Industries geosynthetic erosion control product that fits your idget. Access the "Specs" menu to obtain the appropriate product data sheet. 0/03/97 Results Page 1 � ✓ � �� 'ote: The products with (TM) are pending trademarks and the products with (R) are registered trademarks. � �...u,��. �r+�.-r . RESLiLTS OF CFiANNEL LINING DESIGN ANALYSES �rerage flow depth = ' �terials Considered 0.864 Feet Average velocity = 8.759 ft/s Right Side Slope Design Max. Perm. Design Maximum Velocity Shear Shear Shear Velocity Permiss. Stability Stress Stress Stability ft/s Vel. ft/s Factor lb/sf lb/sf Factor T (TM) LOK ( R) TRM 10 6 0 LOK(R) TRM 1061 LANDLOK(R) ECRM 450 �LYJUTE(R) STRAND (R) 0 . 20 STRAND(R) 0.35 8.5 8.5 8.5 8.5 8.5 8.5 8.5 17.0 12.2 10.5 15.0 4.1 5.4 8.1 2.00 1.44 1.24 1.77 0.48 0.64 0.95 1.0 1.0 1.0 1.0 1.0 1.0 1.0 6.5 4.8 4.1 5.5 1.2 1.7 1.7 6.68 4.93 4.21 5.65 1.23 1.75 1.75 e following materials meet the required factor of safety and have sufficient ongevity. Velocity Shear Required commended Stability Stability Functional Expected Materials Factor Factor Longevity, mo. Lifetime, mo. �RAMAT ( TM ) 2 . 0 0 LANDLOK(R) TRM 1060 1.44 �LOK(R) TRM 1061 1.24 NDLOK(R) ECRM 450 1.77 � 1 � � � 6.68 4.93 4.21 5.65 60 60 60 60 Indef inite Indef inite Indefinite Indefinite rom the listed acceptable products above, select the most appro�riate �dthetic Industries geosynthetic erosion control product that fits your get. Access the "Specs" menu to obtain the appropriate product data sheet. J/03/97 Results Page 2 il II � � �-" � �j �te: The products with (TM) are pending trademarks and the products with (R) are registered trademarks. � RLSUL?S OF CfiANNEL LI%i�NG DESIGN ANALYSES �erage flow depth = 0.864 Feet Average velocity = 1 Chanael Bottom 8.759 ft/s Design Max. Perm. Desi�n Maximum Velocity Shear Shear Shear Velocity Permiss. Stability Stress Stress Stability terials Considered it/s Vel. ft/s Factor lb/sf lb/sf Factor �R�MAT(TM) 12.4 17.0 1.37 2.1 6.5 3.12 LOK(R) TRM 1060 12.4 12.2 0.98 2.1 4.8 2.30 LOK(R) TRM 1061 12,4 10.5 0.85 2.1 4.1 1.97 LANDLOK(R) ECRM 450 12.4 15.0 1.21 2.1 5.5 2.64 �JUTE(R) 12.4 4.1 0.33 2.1 1.2 0.58 STR.AND(R) 0.20 12.4 5.4 0.43 2.1 1.7 0.82 STRAND(R) 0.35 12.4 8.1 0.65 2.1 1.7 0.82 �e following materials meet the required factor of safety and have sufficient Longevity. Velocity Shear Required commended Stability Stability Functional Expected Materials Factor Factor Longevity, mo. Lifetime, mo. :rtR.AMAT ( Z'M ) �ANDLOK(R) ECRM 450 r 1 I ' I I 1.37 1.21 3.12 2.64 60 60 Indefinite Indefinite � w �om the listed acceptable products above, select the most appro�riate �dthetic Industries geosynthetic erosion control product that fits your get. Access the '�Specs" menu to obtain the appropriate product data sheet. �/03/97 Results Page I 3 � I '�I � i � , � ' Synthetic Industries 4019 Industry Drive Chattanooga, TN 37416 Construction Products Division "Smart Solutions in Synthetics" Project Name: WESTFLD , Description: Taft/Harmony Outfall--Westfield Park ' Trial Name: D/S Description: Lower Portion of Channel including Imperial Estate flow � s� 12:54:32 �PUT PARAMETERS ■ Discharge, cubic feet per second: 471.7 Duration: 2.0 Hrs. Channel Longitudinal Slope: 0.01950 �i Bottom width, feet: 30.0 ' Channel Side Slopes - Left: 4.00H:1V Right: 4.00H:1V Channel Bend? Y Bend Radius: 81.5 Ft. Outside Bend: R � Geosynthetic lining for left side slope? Y Geosynthetic lining for right side slope? Y y Geosynthetic lining for channel bottom? Y Manning's "n": 0.0200 Manning's "n": 0.0200 Manning's "n": 0.0200 ' Vegetative Establishment? N Required Factor of Safety: 1.00 Functional Longevity: 60 Months I� ' ' � , )/03/97 � Input Parameters Page 1 �i� �� ri � g-S � �ote: Tlze products with (TM) are pending trademarks and the products with (R) are registered trademarks. � ..,,�.... R1�i90LT8 OF CHAI4NEL L'INING DESIGN ANALYSES �verage flow depth = 1.245 Feet Average velocity = 10.827 ft/s , Left Side Slope Design Max. Perm. Desi�n Maximum Velocity Shear Shear Shear Velocity Permiss. Stability Stress Stress Stability terials Considered it/s Vel. ft/s Factor lb/sf lb/sf Factor �Y�MAT(TM) 10.6 17.0 1.61 1.4 6.5 4.63 LOK(R) TRM 1060 10.6 12.2 1.15 1.4 4.8 3.42 LOK(R) TRM 1061 10.6 10.5 0.99 1.4 4.1 2.92 LANDLOK(R) ECRM 450 10.6 15.0 1.42 1.4 5.5 3.92 �JUTE(R) 10.6 4.1 0.39 1.4 1.2 0.86 STRAND(R) 0.20 10.6 5.4 0.51 1.4 1.7 1.21 STRAND(R) 0.35 10.6 8.1 0.77 1.4 1.7 1.21 �e following materials meet the required factor of safety and have sufficient longevity. Velocity Shear Required commended Stability Stability Functional Expected Materials Factor Factar Longevity, mo. Lifetime, mo. r�YRAMAT ( TM ) 1. 61 � LANDLOK(R) TRM 1060 1.15 �LOK(R) ECRM 450 1.42 i 1 1 1 I 4.63 3.42 3.92 60 60 60 Indefinite Indefinite Indefinite rom the listed acceptable products above, select the most appropriate �thetic Industries geosynthetic erosion control product that fits your idget. Access the "Specs" menu to obtain the appropriate product data sheet. �/03/97 Results Page ` 1 � i5-S (v �ote: The products with (TM) are pending trademarks and the products with (R) are registered trademarks. � �.....*�..-� 1�St7LTS OF CHANNEL LS�1"iNG DESIGN ANALYSES 'verage flow depth = 1.245 Feet Average velocity = 14.827 ft/s ' Right Side Slope Design Max. Perm. Design Maximum Velocity Shear Shear Shear Velocity Permiss. Stability Stress Stress Stability terials Considered it/s Vel. ft/s Factor lb/sf lb/sf Factor �jY�?,MAT (1'M ) �NDLOK(R) TRM 1060 ZA.NDLOK ( R) TRM 10 61 LANDLOK(R) ECRM 450 �LYJUTE(R) STRAND (R) 0 . 20 DSTRAND(R) 0.35 14.5 14.5 14.5 14.5 14.5 14.5 14.5 17.0 12.2 10.5 15.0 4.1 5.4 8.1 1.17 0.84 0.73 1.04 0.28 0.37 0.56 2.6 2.6 2.6 2.6 2.6 2.6 2.6 6.5 4.8 4.1 5.5 i.a 1.7 1.7 2.47 1.82 1.56 2.09 0.46 0.65 0.65 �e following materials meet the required factor of safety and have sufficient longevity. Velocity Shear Required commended Stability Stability Functional Expected Materials Factor Factor Longevity, mo. Lifetime, mo. t-'i'R.AMAT ( TM ) LANDLOK(R) ECRM 450 f ' ' ' ' 1 1.17 1.04 2.47 2.09 60 60 Indefinite Indefinite � ?rom the listed acceptable products above, select the most appropriate �nthetic Industries geosynthetic erosion control product that fits your dget. Access the "Specs" menu to obtain the appropriate product data sheet. _0/03/97 Results Page 2 L' � �--5 �- �ote: The products with (TM) are pending trademarks and the products with (R) are registered trademarks. � � �� RE5'b"LTS OF CHANNEL LINING DESIGN ANALYSES �,verage flow depth = 1.245 Feet Average velocity = 10.827 ft/s 1 Channel Bottom Design Max. Perm. Desi�n Maximum Velocity Shear Shear Shear Velocity Permiss. Stability Stress Stress Stability aterials Considered it/s Vel. ft/s Factor lb/sf lb/sf Factor '��YRAMAT(TM) LOK ( R) TRM 10 6 0 LOK(R) TRM 1061 LANDLOK(R) ECRM 450 OLYJUTE(R) STRAND(R) 0.20 STRAND (R) 0 . 35 15.0 15.0 15.0 15.0 15.0 15.0 15.0 17.0 12.2 10.5 15.0 4.1 5.4 8.1 1.13 0.81 0.70 1.00 0.27 0.36 0.54 2.8 2.8 2.8 2.8 2.8 2.8 2.8 6.5 4.8 4.1 5.5 1.2 1.7 1.7 2.29 1.69 1.44 1.93 0.42 0.60 0.60 �'he following materials meet the required factor of safety and have sufficient longevity.. Velocity Shear Required ecommended Stability Stability Functional Expected Materials Factor Factor Longevity, mo. Lifetime, mo. fYRAMAT(TM) r ' , ' , � 1.13 F�►�] C-��: Indefinite From the listed acceptable products above, select the most appropriate �thetic Industries geosynthetic erosion control product that fits your get. Access the "Specs" menu to obtain the appropriate product data sheet. 10/03/97 Results Page 3 ' _• w � ¢ � � z 0 � 5 w � l[r•]L�s7Ci0�� � � � 0 0 Z O a 0 0 0 � a I � d Gi � w � x � 3 � O � w v � � w � Q z � � 0 TAFT CANYC SCALE 1'=200' 200 �00 � 600 800 =GEND 301 SWMM SUBBASIN IDENTiFICATION .5 AC SUBBASIN AREA IN ACRES 301� SWMM CONVEYANCE ELEMENT NUMBER �� 301 SWMM CONVEYANCE NODE NUMBER 301 SWMM DETENTION POND NUMBER � MASTER PLAN BASINS, FEB. 1990 ��� UPDATED SWMM BASINS, 1996 a m� �rno i����� ° � ~� � g=Fs��8 �5���� Ok� F ;'�(� N s���y�� z� g�Rj��iF .Pi�m�� � ��n��o j� W ��j = �N��S� ��g��� t F5 ��F w�n �Ih�bZ �'� K O���jr>a2r�, �.iCi UW O � ���§; �sx��ag� m in w'6 �+�d y t- iii E" ������?i��iio aca a a 0 0 a 0 � i� a � � Q � � \ m7d \ r= w � 3 a 0 a 0 � w �r �� � �; aQ c � � U K a � � w w w c9 z a at- W W � l��.� �i ¢ �i a� a N m VZ' O O � �+- II ¢ < C � Y!I �— � � � � � � O � o � � � � a �, � � � U � m � G.������ pG�����W � � O �a� � o a� I�� ' ��U� �o T � � ���J www� � � � a W � G � Q r O U � � a � � � J Q Z Q W � Q 2 Q � G W 4_ � � LL L1. 0 H m _ X W J W 0 � � o � � � F� N F PROJECT N0. 434-014 DRANANG N0. 1 of 1