Loading...
HomeMy WebLinkAboutDrainage Reports - 08/26/2020�uiy 5, 2020 City of Fort Collins Approved Plans Approved by: Dan Mogen Date: 08/26/2020 FINAL DRAINAGE AND EROSION CONTROL REPORT FOR PSD MIDDLE SCHOOL HIGH SCHOOL #2 Fort Collins, Colorado Prepared for: Poudre School District Ft.Collins, CO Prepared by: � NORTHERN ENGINEERING 301 N. Howes, Sufte 100 Fort Collins, Colorado 50521 Phone:970.221.4158 Fax:970.221.4159 www.northernengi neering.com ;j This Dreinage Report is consciously provided as a PDF. Please consider the environment before printing this document in its entirety. When a hard copy is absolutely necessary, we recommend double-sided printing. Project Number: 100-024 NorthernEngineering.com // 970.221.4158 E �uiy s, 2020 NORTHERN ENGINEERING RE: Final Drainage and Erosion Control Report for PSD Middle School High School #2 Dear Staff: Northern Engineering is pleased to submit this Final Drainage and Erosion Control Report for your review. This report accompanies the final plan set submittal for the proposed PSD Middle School Hight School #2 development. This report has been prepared in accordance with the Fort Collins Stormwater Criteria Manual, and the Town of Timnath Master Drainage Plan. The report serves to document the stormwater impacts associated with the proposed project. We understand that review by the Town is to assure general compliance with the Town of Timnath Master Drainage Plan. If you should have any questions as you review this report, please feel free to contact us. Sincerely, NORTHERN ENGINEERING SERVICES, INC. C����1�----� Aaron Cvar, PhD, PE Senior Project Engineer .��i,:`�`=' . . - ", ': `,� c'�,.`��NO.;.�; ��,,_'r:'�: f.(=Je,O �Cj...t1 ,� U S� ! �.. � �� � �382 1 ;�: `?� � ,r'<,'� �•�'�3\!ti.-�'� F� .� FORT COLLINS: 301 North Howes Street, Suite 100, 80521 � 970.221.4158 GREELEY: 820 8"' Street, 80631 � 970.395.9880 � WEB: www.northernengineering.com � NORTHERN E N G I N E E R I N G PSD Middle School High School #2 TABLE OF CONTENTS I. GENERAL LOCATION AND DESCRIPTION ..........................................................................................1 A. Location .............................................................................................................................................1 B. Description of Property .....................................................................................................................2 C. Floodplain ..........................................................................................................................................4 II. DRAINAGE BASINS AND SUB-BASINS ...............................................................................................4 A. Major Basin Description ....................................................................................................................4 B. Sub-Basin Description .......................................................................................................................4 III. DRAINAGE DESIGN CRITERIA ...........................................................................................................5 A. Regulations ........................................................................................................................................5 B. Four Step Process .............................................................................................................................. 5 C. Development Criteria Reference and Constraints ............................................................................6 D. Hydrologic Criteria ............................................................................................................................ 6 E. Hydraulic Criteria ..............................................................................................................................6 F. Modifications of Criteria ................................................................................................................... 6 IV. DRAINAGE FACILITY DESIGN ............................................................................................................7 A. General Concept ...............................................................................................................................7 B. Specific Details ..................................................................................................................................9 V. CONCLUSIONS ................................................................................................................................10 A. Compliance with Standards ............................................................................................................10 B. Drainage Concept ............................................................................................................................10 APPENDICES: APPENDIX A — Hydrologic Computations and Supporting Documentation APPENDIX B.1 — Inlet Design Computations APPENDIX B.2 —Storm Line Computations APPENDIX B.3 — Riprap Computations APPENDIX B.4 —Swale Computations APPENDIX B.5 — Water Quality Computations and Information APPENDIX C — Detention Computations, SWMM Output APPENDIX D — Erosion Control Report APPENDIX E — Excerpts-Town of Timnath Master Drainage Plan Update, Ayres Associates, Revised November 2018. APPENDIX F — USDA Soils Information APPENDIX G - Approved Variance Request APPENDIX H - Correspondence Final Drainage & Erosion Control Report � NORTHERN ENGINEERING PSD Middle School High School #2 LIST OF FIGURES: Figure1— Aerial Photograph ................................................................................................ 2 Figure 2— Proposed Site Plan ................................................................................................ 3 Figure 3— Existing Floodplains ............................................................................................. 4 MAP POCKET: Proposed Drainage Exhibit Final Drainage & Erosion Control Report � NORTHERN ENGINEERING PSD Middle School High School #2 I. GENERAL LOCATION AND DESCRIPTION A. Location 1. Vicinity Map � �� NORTH � �nuy Ln _ Sunny Daze Gardens Q �Od ' Nawksl N C7 O Z7 Q � Knche0l Wuy FGIChall Way S�g10qe FeHs Pk�.�, � 3 h � c� 0 � a u� , E prospect Rd i � Mannon Truck A � & Auto Repair T �. aa � m � � �. p � E Prospect Rd Culf�r,�;" s�k�ry � cn n` ' � � � � d '° a v o � a 2. The project site is located in the south half of Section 15, Township 7 North, Range 68 West of the 6`h Principal Meridian, City of Fort Collins, County of Larimer, State of Colorado. 3. The project site is located just northwest of the intersection of Prospect Rd. and County Road 5. 4. Existing nearby residential developments include Kitchell Subdivision to the north of the site and Homestead Subdivision to the south of the site. Serratoga Falls Second filing is being constructed to the east. 5. Offsite flows enter the site from the north per the Town of Timnath Master Drainage Plan Update (Ref. 5). Historic flows are generally conveyed via sheet flow south towards the existing Timnath Reservoir Inlet Canal (TRIC) embankment and pass under the embankment through several existing pipes, as well as via sheet flow across the top of the ditch at certain locations. Final Drainage & Erosion Control Report 1 � NORTHERN ENGINEERING PSD Middle School High School #2 B. Description of Property l. The proposed development area is roughly 93 acres in size. � `?.�i-,`� ,��`�_�, r .�,�...�`� �%4�F¢.f� �:'�- . -I�..E - • �.4r { � , �« ti->� . ' ♦ � � . . . � .. , `* � , ..� t . � � �`� � � ��"`. - - ,. � T � • . � � � � ' 1 . � :,•� �� ►,�`.�; 1 , ,�,,•i •, h � {� +� `� s ' . ��T j,° i � � ,,,,�,��� • • � �Ir •. r .. . � � �.� �J�'��71 ���: � �� � � � � � �� � �� ���� � 2. The subject property is currently composed of undeveloped farmland. Existing ground slopes are mild to moderate (i.e., 1- 6±%) through the interior of the property. Historic drainage patterns direct flows generally from north to south and drain via sheet flow collecting within several existing pipes and enter the Timnath Reservoir Inlet Canal (TRIC) at several locations. There are also areas of discharge into the TRIC where sheet flow prevails, and historic flows enter the canal across the north bank of the canal. 3. The proposed site design will include Extended Detention water quality treatment prior to stormwater discharging from the site. Water quality treatment methods are described in further detail below. 4. According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Survey website: http://websoilsurvey. nres. usda.gov/app/WebSoilS urvey.aspx, the site primarily consists of Loveland Clay Loam, which falls into Hydrologic Soil Group C. Final Drainage & Erosion Control Report Figure 1- Aerial Photograph NORTH � NORTHERN ENGINEERING PSD Middle School High School #2 5. The proposed project site plan is composed of a combined middle school and high school with associated parking, utilities, and drives. Onsite detention water quality treatment is proposed and will consist features which are discussed in Section IV. ����:���=�---- I �. � � .\. \ I �. � ��-----=----- �: ,_ � - � � , � . � , , � � ?n l i. __J � �J � I I . . . � �.' ... . ..,_, I �C1C1� � ____I__-_i.'�.,�:.,� r-�-_�. � I � ��; � 1 , �. � � �� � J i L----�----J i I --- , � - J I I I _ 1 i� I� _______________�:I . � I � Figure 2— Proposed Site Plan NORTH 6. The proposed land use is a combined middle school and high school. 7. The proposed site is unique in its location, as it currently lies within the City of Fort Collins City limits, however, it is located within the Town of Timnath Master Drainage Plan area. Because the site will have more than 1,000 students, the project is also subject to the Poudre School District MS4 permit, rather than by either of the other City or Town's MS4 permits. After discussion with City of Fort Collins Staff and Town of Timnath staff, it was determined that for the purposes of this report, City of Fort Collins Stormwater Criteria should be utilized for all calculations, while the Town of Timnath Master Drainage Plan should be used to identify offsite basin areas and flows as well as allowable release rates and methods into the TRIC. Final Drainage & Erosion Control Report � NORTHERN ENGINEERING PSD Middle School High School #2 C. Floodplain l. The project site is not encroached by any FEMA jurisdictional flood zones. Additionally, the site is not encroached by any City of Fort Collins designated flood zones, as shown in Figure 3, below. � � ! : - ; : F�.«vE,� 1 . � _ 5G 1 � a � � � _ "^Or ~ .� •;..1 [_„� c > ' ���� , ii � 3 �; = N�. iinlry Ln � C�t;+ �+igh Risk - Floodway �j Cibj High Risk - 100 Vear _.._.._.._._..---._.._. _.. � n City Moderate Risk - 100 Year � j i i .�.,��.�i.�ya F�i � KilLlfli �;�i;�� 1 � PROJECT SITE � � :.._,._.._.._..--�- -._.._.._.._.._.._.._.._.._.._._.._..------ ---.._.., i i i i ..EF.'L':5L''::15':1.._.. _..._.._.. _.._.._.. _.. _.._.. _.._.._... i ! i � i �,_.,, �.r � : �.,�_ 1- F'ii�..l.., 1 F.rl.._..._..�.._.._.._.._.._..I NORTH Figure 3 —Area Floodplain Mapping II. DRAINAGE BASINS AND SUB-BASINS A. Major Basin Description 1. The project site lies within the Town of Timnath Master Drainage Plan Update (Ref. 5) study area. According to the Town Master Drainage Plan, Basins SB5 and SB5A are allowed to release 57 cfs (Link 105C) while Basins SB15 and SB15A are allowed to release 28 cfs (Link 115AB). Thus, a total allowable release of 85 cfs is allowed into the TRIC from these basins. It is noted that the combined 2-year release from these basins is 2 cfs. Please excerpts from the Town Master Drainage Plan provided in the Append ix. 2. Prospect Road Basins R1 through R3 reflect the proposed widened roadway. We are bringing this drainage into our system and providing water quality treatment and detention for the developed storm flow from these basins. B. Sub-Basin Description l. Historic drainage patterns direct flows generally from north to south and drain via sheet flow collecting within several existing pipes and enter the Timnath Reservoir Inlet Canal (TRIC) at several locations. There are also areas of discharge into the TRIC where sheet flow prevails and historic flows enter over the north bank of canal. 2. A more detailed description of the project drainage patterns is provided below. Final Drainage & Erosion Control Report 4 � NORTHERN ENGINEERING PSD Middle School High School #2 III. DRAINAGE DESIGN CRITERIA A. Regulations There are no optional provisions outside of the Fort Collins Stormwater Criteria Manual, and the Town of Timnath Master Drainage Plan proposed with the proposed project. B. Four Step Process The overall stormwater management strategy employed with the proposed project utilizes the "Four Step Process" to minimize adverse impacts of urbanization on receiving waters. The following is a description of how the proposed development has incorporated each step. Step 1— Employ Runoff Reduction Practices Several techniques have been utilized with the proposed development to facilitate the reduction of runoff peaks, volumes, and pollutant loads as the site is developed from the current use by implementing best management practices including: N Conserving existing amenities in the site including the existing vegetated areas when possible. N- Providing vegetated open areas throughout the site to reduce the overall impervious area and to minimize directly connected impervious areas (MDCIA). K= Routing flows, to the extent feasible, through vegetated swales to increase time of concentration, promote infiltration and provide initial water quality. Step 2— Implement BMPs That Provide a Water Quality Capture Volume (WQCV) with Slow Release The efforts taken in Step 1 will facilitate the reduction of runoff; however, urban development of this intensity will still generate stormwater runoff that will require additional BMPs and water quality. The majority of stormwater runoff from the site will ultimately be intercepted and treated using detention and water quality treatment methods prior to exiting the site. Step 3 — Stabilize Drainageways The major drainageway on the site is the TRIC. While this step may not seem applicable to proposed development, the project helps stabilize the drainageway by providing water quality treatment where none previously existed, so sediment with erosion potential is removed from downstream drainageway systems. Step 4— Implement Site Specific and Other Source Control BMPs. The proposed project will improve upon site specific source controls compared to historic conditions: N= The proposed development will provide water quality treatment, thus eliminating sources of potential pollution previously left exposed to weathering and runoff processes. Final Drainage & Erosion Control Report � NORTHERN E N G I N E E R I N G PSD Middle School High School #2 C. Development Criteria Reference and Constraints The subject property is mostly surrounded by developed properties and drains to an existing irrigation ditch. Thus, several constraints have been identified during the course of this analysis that will impact the proposed drainage system including: N=' Existing elevations along the property lines will generally be maintained. N=' As previously mentioned, overall drainage patterns of the existing site will be maintained. N=' Elevations of existing downstream facilities that the subject property will release to will be maintained. N=' Release rates from the site will be reduced to match the Town of Timnath Master Drainage Plan. D. Hydrologic Criteria 1. City of Fort Collins Rainfall Intensity-Duration-Frequency Curves, as depicted in Figure 3.4- 1 of the FCSCM, serve as the source for all hydrologic computations associated with the proposed development. Tabulated data contained in Table 3.4-1 has been utilized for Rational Method runoff calculations. Three separate design storms have been utilized to address distinct drainage scenarios. The first event analyzed is the a 2-year recurrence interval storm for comparison purposes. The second event considered is the 10-year recurrence interval storm. The third event considered is the 100-year recurrence interval storm. E. Hydraulic Criteria 1. As previously noted, the subject property maintains historic drainage patterns. 2. All drainage facilities proposed with the project are designed in accordance with Fort Collins Stormwater Criteria Manual, and the Town of Timnath Master Drainage Plan. As stated above, the subject property is not located in a FEMA designated floodplain, or within a City designated floodplain and floodway. The proposed project does not propose to modify any natural drainageways. 4. In general storm infrastructure has been sized to convey the 10-year storm event, with 100-year flows overtopping and being conveyed via surface flow. The exception to this is storm inlet 9-8.1-1, and storm inlet 16-9, as shown in the Inlet Design Summary Table in Appendix B.1. These two inlets will capture up to the 2-year storm event, with greater storm events overtopping and being conveyed via surface flow. Modifications of Criteria A variance to City of Fort Collins LID requirements has been requested. A copy of the signed variance request, has been provided in Appendix G. This variance has been approved by the Town of Timnath, Timnath Reservoir Inlet Canal, and the City of Fort Collins. Final Drainage & Erosion Control Report � NORTHERN ENGINEERING PSD Middle School High School #2 IV. DRAINAGE FACILITY DESIGN A. General Concept 1. The main objectives of the project drainage design are to maintain existing drainage patterns, and to ensure no adverse impacts to any adjacent properties. 2. Drainage patterns anticipated for drainage basins shown in the Drainage Exhibit are described below. Basins 1 and 2 Basins 1 and 2 consist of a stadium area, drives and parking areas, as well as landscaped areas. Drainage from these basins will be conveyed via drive and parking area curb and gutter as well as across landscaped areas to proposed storm sewer systems, which will direct developed runoff into Pond 4. This pond will provide attenuation prior to conveyance into Pond 3. Pond 3 will provide additional attenuation and water quality treatment before stormwater is released into the TRIC. In large storm events, Pond 3 will fill to a point that allows stormwater flows to pass to Ponds 1 and 2 via equalizer pipes. Ponds l, 2 and 3 will release detained, treated flows into the Timnath Reservoir Inlet Canal (TRIC). Basins 3•5, 10, 11 Basins 3 through 5, and Basins 10 and 11 consist of the main school building, drives and parking areas, and some playfields. Drainage from these basins will be conveyed via drive and parking area curb and gutter as well as across the playfield areas to proposed storm sewer systems, which will direct developed runoff into Ponds 2 and 3. These ponds will provide attenuation and water quality capture volume prior to releasing flows into the TRIC. In large storm events, both Ponds 2 and 3 will fill to a point that allows stormwater flows to pass to Ponds 1 and 2 via equalizer pipes. Ponds l, 2 and 3 will release detained, treated flows into the Timnath Reservoir Inlet Canal (TRIC). Basins 6-9 and 12, 13 Basins 6 through 9 and Bains 12 and 13 have a small parking area but are primarily landscaped areas and playfields. Drainage from these basins will be conveyed via some drive and parking area curb and gutter as well as across landscaped areas and through grass swales to proposed storm sewer systems, which will direct developed runoff into Pond l. In large storm events, stormwater from Ponds 2, 3 and 4 will also be directed to Pond 1 via equalizer pipes. Ponds 1, 2 and 3 will release detained, treated flows into the Timnath Reservoir Inlet Canal (TRIC). Basin OS1 Basin OSl consists of anticipated future development area. This basin is anticipated to provide its own detention and water quality and release into Timnath Reservoir Inlet Canal (TRIC) in the future. Historically, this basin was routed as sheet flow into the TRIC, and was included in the Town of Timnath Master Drainage Plan (Ref.5), Basin SB5. With the current proposed development, this basin will remain undeveloped and historic drainage patterns will not be altered. Basin SB5A Basin SB5A consists of offsite areas just north of Basins 3 and 4 that were modeled in the Town of Timnath Master Drainage Plan Update (Ref. 5). This area is shown to drain to an existing retention pond near the southwest corner of the basin. Per the Master Drainage Plan, the retention pond fully retains the 2-year and 10-year events. In the 100-year event, the existing retention ponds spills south, into the project site with a peak discharge of 52.0 cfs. This flow will be routed via overland flow through the school site as Final Drainage & Erosion Control Report � NORTHERN ENGINEERING PSD Middle School High School #2 discussed further in in Section IV.B. Offsite flow will be directed into the onsite detention system, where it will be detained, treated and released into the TR1C. Basin SB15A Basin SB15A consists of offsite areas just north of Basins 5 through 8 that were modeled in the Town of Timnath Master Drainage Plan Update (Ref. 5). Similar to Basin SB5A, this area is also shown to drain to an existing retention pond near the southwest corner of the basin. Per the Master Drainage Plan, the retention pond fully retains the 2-year and 10-year events. In the 100-year event, the existing retention ponds spills south, into the project site with a peak discharge of 82.0 cfs. This flow will be routed via overland flow through the school site as discussed further in in Section IV.B. Offsite flow will be directed into the onsite detention system, where it will be detained, treated and released into the TRIC. Basin SB5 Basin SB5 consists of offsite areas just north of Basins 1 and 2 that were modeled in the Town of Timnath Master Drainage Plan Update (Ref. 5). However, this master plan basin has been altered by the project site. The original master plan basin had an area of 82 acres. With the development of the proposed project, the basin size will be reduced to 19.47 acres. We have computed 10-, and 100-year peak discharges of 9.3 cfs 24.7 cfs, respectively, from this basin. We have designed a culvert at design point SB5 to convey the full 100-year discharge at this point. We anticipate in the future, development in this parcel may alter drainage patterns, but as a conservative measure, we are designing to the full 100-year discharge at this point. Basins R1 — R3 Basins R1 through R3 contain portions of the adjacent Prospect right-of-way area and landscaped areas on the north side of the road. These areas are directed into Ponds 1 through 3 as shown on the Drainage Exhibit. These ponds will provide attenuation and water quality capture volume prior to conveyance into the Timnath Reservoir Inlet Canal (TRIC). Basin R4 Basin R4 contains a portion of the Prospect right-of-way area and landscaped area on the south side of Prospect Road, near the Prospect/Main intersection. This area is captured by a curb running along the south side of the road that directs flows to the east and west to existing roadside drainage conveyance. Basin R5 Basin R5 contains a portion of the Prospect right-of-way and landscaped area on the north side of Prospect, west of McLaughlin Lane. This area is captured by a curb and gutter and directed to Offsite Pond l. This pond will provide attenuation and water quality capture volume prior to conveyance into the Timnath Reservoir Inlet Canal. It is worth noting that this basin is shown on the Timnath Master Drainage Plan as draining south, away from the TRIC. The project has proposed a deviation from the Master Plan flow direction and would release flows north to the TRIC, following their historic path. Both the allowable release rate from the basin as well as total flows in the TRIC will conform with the Timnath Master Drainage Plan. This deviation will maintain or reduce the total overall developed flow released into the TRIC at the approved rates in the Master Plan by including the basin as part of tne overall allowable release rate from the larger PSD site north of the ditch. A full-size copy of the Drainage Exhibit can be found in the Map Pocket at the end of this report. Final Drainage & Erosion Control Report � NORTHERN ENGINEERING PSD Middle School High School #2 B. Specific Details l. Standard water quality treatment in the form of Extended Detention is being provided for the overall proposed development within the lower stages of Ponds 1, 2, and 3. We have computed required extended detention volumes based on the standard water quality treatment for 100% of the site runoff. Please see Water Quality Capture Volume (Extended Detention) computations provided in the Appendix. 2. The overall on-site design proposes a series of 4 detention ponds. Ponds 2 through 4 will provide minor attenuation and will release minor storms directly into the TRIC. In larger storm events, the ponds will fill and then release towards Pond 1 via equalizer pipes, essentially creating a single large pond with four outlets into the TRIC. The series of ponds, along with proposed "Offsite Pondl", act together as an overall system that ultimately releases a total routed out�low to the TRIC at a peak rate of 81.10 cfs, which is below the allowable release rate of 85.0 cfs, as discussed above. 3. Pond 1 has two outflow structures. Each structure limits release to 22.25 cfs, for a total release rate from Pond 1 of 44.50, which is conveyed via two pipe entries into the Timnath Reservoir Inlet Canal (TRIC). Please note that the total routed flow from all ponds (Ponds 1 through 5) has been modeled in the computer program EPA-SWMM, and a total routed flow rate from all ponds per EPA-SWMM must be shown at or below the allowable release rate of 85.00 cfs. 4. Pond 2 also has two outflow structures. However, one of the outfall structures releases to the TRIC, the other releases into Pond 1. The structure releasing flow to the TRIC limits flow to a release of 22.00 cfs. The second release structure releases 42.50 cfs into Pond l, for a total release rate from Pond 2 of 64.50 cfs. 5. Pond 3 has two outflow structures as well. One of the outfall structures releases to the TRIC, the other releases into Pond 2. The structure releasing flow to the TRIC limits flow to a release of 21.90 cfs. A second release structure releases 43.00 cfs into Pond 2, for a total release rate from Pond 3 of 64.90 6. Pond 4 has one outflow structure, which releases 4.50 cfs into Pond 3. 7. Offsite Pond lwill have a single outflow structure that releases stormwater flows into the TRIC, at a maximum allowable release rate of 1.0 cfs per the Town of Timnath Master Drainage Plan (Ref.S) for Basin SB6. 8. Utilizing the computer program EPA-SWMM, we have modeled a total routed flow from the series of the four proposed onsite ponds and Offsite Pond 1 and have shown a total routed outflow into the TRIC of 81.10 cfs. Offsite Pond 1 is proposed to release at 0.99 cfs. The total routed flow rate is 3.90 cfs below the allowable release rate of 85.00 cfs. Final Drainage & Erosion Control Report � NORTHERN ENGINEERING PSD Middle School High School #2 9. Please see Table l, below, summarizing pond volumes, Water Quality Capture volumes, and peak release rates for both individual ponds, and peak total routed outflow into the TRIC from modeled ponds 1 through 4 and Offsite Pond l. 10. Routing of offsite flows from basins SB5A, SB15A has been conducted in the computer program HEC-RAS. An Offsite Routing Exhibit, Offsite Routing Analysis Results Table, and HEC-RAS Model output has been provided in Appendix C.2. As shown in the HEC-RAS model output, some cross-sections have been extended vertically by the model. This methodology leads to a conservative estimate of 100-year water surface elevation, since vertical extension of cross-section data slightly over-estimates water surface elevation. TABLE 1- DETENTION AND WATER QUALITY SUMMARY POND SUMMARY TABLE 100-Yr. Water Quality Peak Peak Detention Capture Volume Total Req'd 100-Yr. Release to Release Pond ID Vol. (Ac-Ft) (Ac-Ft) Vol. (Ac-Ft) WSEL (Ft) TRIC (cfs) (cfs) Pond 1 15.76 0.56 16.32 4915.99 44.50 44.50 Pond 2 1.05 0.38 1.43 4916.75 22.00 64.50 Pond 3 0.49 0.61 1.11 4916.39 21.90 64.90 Pond 4 1.37 0.00 1.37 4916.93 0.00 4.50 Offsite Pond 1 0.26 0.025 0.285 4914.43 0.99 0.99 Total Routed Outflow to TRIC: 81.1 cfs V. CONCLUSIONS A. Compliance with Standards 1. The overall drainage design proposed with this project complies with Fort Collins Stormwater Criteria Manual, and the Town of Timnath Master Drainage Plan. 2. The drainage plan and stormwater management measures proposed with the proposed development are compliant with all applicable State and Federal regulations governing stormwater discharge. B. Drainage Concept 1. The drainage design proposed with this project will effectively limit any potential damage associated with its stormwater runoff by providing detention and water quality mitigation features. 2. The drainage concept for the proposed development is consistent with requirements for the Fort Collins Stormwater Criteria Manual, and the Town of Timnath Master Drainage Plan. Final Drainage & Erosion Control Report 10 � NORTHERN ENGINEERING PSD Middle School High School #2 References 1. Fort Collins Stormwater Criteria Manual, City of Fort Collins, Colorado, December 2018. 2. Larimer County Urban Area Street Standards, Adopted January 2, 2001, Repealed and Reenacted, Effective October l, 2002, Repealed and Reenacted, Effective April 1, 2007. 3. Soils Resource Report for Larimer County Area, Colorado, Natural Resources Conservation Service, United States Department of Agriculture (https://websoilsurvey.sc.egov.usda.gov/App/ Data upload February 2019) 4. Urban Storm Draina�e Criteria Manual, Volumes 1-3, Urban Drainage and Flood Control District, Wright-McLaughlin Engineers, Denver, Colorado, Revised April 2008. 5. Town of Timnath Master Draina�e Plan Update, Ayres Associates, Revised November, 2018. Final Drainage & Erosion Control Report I1 APPENDIX A Hydrologic Computations and Supporting Documentation v; �oa 0000a00000000000e000a c� m�� n N� N� N� ��� m� m�� o� m � aN�m��NN��� �Nmm� 0 0 U O � N .. � y �N II �0 'N � v d Ol (�"7 � d' ,-a tS) i� N O O �O h l0 � O N tS) � l0 � a U T a� U �o � 00�o dd' �� d�� OM o��to�0 o0r�l chMM O � � E= y O O O O O O O O O O� O O O O O O O O O O � 0 O � O �o 00 "" U U � Q � U �' i. O Q m� � y 0 p� �(�"7 I� ,� ch l0 O� M� O 6l O LCl 6l � lD �� 61 I� Q. O a p, C V ���� m m� a (h l0 00 N I� ��� l0 N N N N � � p E � O� Q O O O O O O O O O O O O O O O O O O O O O � 3 V C� U �� O � U Z ` U - �,J � � i. e+ G � �= f0 0 0 � �nm�..m�oo�nmd orno�nrnm�om�nrn� � ; � p_ 3.,�- �n�r��nmmrr<tMIO�ONI�Ud' t'IDNNNN '� O O O O O O O O O O O O O O O O O O O O O V � N O � O � o U U � � a � o � � o c (� o o � a � II � �p y V U U II � � � a 3�o c V o o a� O T J I� N N� d' N I� l0 � N G' i� 6l O O (h ct I� 00 d' N U' J O N l0 N N� N�7 I� M�� ch Ol I� � N ('�7 �� N N � d- .-� l0 l0 lO [h .-� ch l0 ,-. .-� O N,- �.. O('�7 �.-+ f+� � d � o � � � � � 10 O ° o 0 0 0 � � Q v al O 6�i � O�i � � � E y i IUa � a� a a� v o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _ o00000000000000000000 � O O O O O O O O O O O O O O O O O O O O O � m O G � 2 °1 �n �n O �n O � �t7 � O �n � V 61 O� Ln 01 Ln N 10 O U Q� y O O O O O O O ��`� O a V' � W O O O O O O O O O O O O O O O O O O � V •-+ O N O O O O O O O O O O O O O O O O O (/) in O O O O O O O O O O O O O O O O O O O O O � o a� N ° � � U d C ..�. Q a V �I�NOOOmm�oo�o�OlNN00�00 W Oi�h � N� m �'7 O N� O O� ch N O � O O O O O O O � O O O O O O O O O O O O O O O O O O O O O W �� � m � o � � � �p L U \ � � � w -� a a r+N�'1� V Oi� N� N�'l l��Od n701 O101O � �"- �.-�o.-.�000�n�-.�d-�oo��oc.�oornrn � - � N�NMO�OOO� cnOO�OOOOOOO W � °° o� I� e � � � - (n ' �, � ¢ vc��nm�o�ornrnc�m��o�m�m��o�od^.N O� C m r" 1O0010 t�,-�,-�N r-+ O o�.-+� �fI � �� = �' I� �1 � 61 I� i� � N � � � � � � N N O M � � M Q U � � .... � � � � m O� O m � � � � � � �oo�m��rnm moocv„_,o cvd m^ � � a.-. oorn�n�nomo�oa�o�I��NON.-� Q .� rn c0 <Y �t d' O l0 � lo rn rn �'7 N m rn�� N,� m � C ui O d' l0 N I� W N� c� tfl � N I� �� N V�'� W N Vy o a ' r•�t�momoo�00NNN�f��OIN�Od'� Q O G1 V (� N�� ch (�'l ,-� ,-� l0 N l0 .-� l0 N� LL � C � '-i � : � - N � : N � LL � : -� : � �Oc p] bo � ` .. +-�. : : : � N (n � � � � � �, >` �� � r. N In d' Ln l0 I� � 6� �� N M����� N m O C1 4 n o`° o m A� 1O °' � m O�� � y Q U C7 � 6_ y tn U U � m � Q a�i C o � U � 3 - C=7 �n � � o T � rn � o� o�� rn �� m� rn��� rn m m�� � o � 'E � o � � � o o N � o o � � � m � m � � � 0 ,� � c � rn n o� o�� rn �� m� rn n m� N � � C 6� W lD 4t 0 0�= 'E � o� a�ri o o.-� c�i �ri o 0 0o rn rn rn� m�' �v �o � V .-i N � O � � N � NO Ol F T � Ol i� O.-� O l0 Ln Ol I� ,-i [h W 6� W lD d' 6l i� ch � N p U T N~ E� O d' � u7 O O� N�1 O O���� O m��� � � Q � m "�" d� o c¢ a a¢¢¢ a¢¢ a a a a a a¢ m a a 1O m ° ��E z z z z z z z z z z z z z z z z� z z�"' a o �. N .� U � � 3�o �¢ a a Q¢ Q a¢¢ a a a a Q a a N a¢ o 0 � �� z z z z z z z z z z z z z z z z� z z,� o d LLL � N � o 0 0 0 0 0 0 0 o a o 0 0 0 0 0 0 0 0 0 0 y O N o O O O O O O O O O O O O O O O O� O O�� N V O O O O O O O O O O O O O O O O O O O O O = I� N ti � J $ O O O O O O O O O O O O O O O O N O O i� v m �0 1O J C � Q d' O N Q Q(+� Ln W o0 Q ln Q Q Q Q Q� Q Q ~ E lD Z ln �Cl l0 Z Z N �'/ l0 N Z N Z Z Z Z Z I� Z Z 2 � 0 3'o �'^ o a o 0 o Q a o 0 0 o a o Q¢ a Q a o¢ a � O d � N z N N N z z N N N N Z N Z Z Z Z Z N Z Z � LLL � � � = o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � � O N o O O O O O O O O O O O O O O O O O O O O O � V1 r+ O� � O O� � O� O O O O O� O O OL r, rn m c� � o 00 0 0 �n o � C J� I� O d' O d' O O W N<t O rn O O O O O� O O y � I� l0 l0 I� N� W M N o0 O J � Q ?, � o o� o� o rn �r; r" � rn� o,� rn �,� � m c*� m � F- OO 'E N �'7 � d' d' N O� O N l0 m l0 Ol 00 � l0 M N(�7 M 2 � � (,Wj _� � o o �,-. oo rn oo ,-. rn rn in °'. <r m�o <r �o '� c� rn rn Z I- �'� M<t' ��L1 � N,-• O O N^ d' �O 61 Ol Ol �O c� c'7 if1 � O ,., " m c+� m C� � � o o�,-• o� rn oo ,-. rn rn in °'. �t ca �o �r �o '� cy rn rn � � N'E ni d' ��ri �n cv o o c�i �� �o a; oi oi �o m`� m m W � o 0 0 0 0 o a a a o 0 0 0 0 0 0 0 0 0 0 0 c. ^o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O N o O O d' O O O O O O O O O O O O O O Ol O W 00 N V N N ch N N N N N N N N N N N N N N O N O O 3 0 LL t l0 � N� l0 �C1 I� � LL7 ��� l0 O 00 tfl I� O O O O C � J� O N� d' � O W l0 I� � c� � N l0 Ln � N N �� �o y �t r• V V d J O T � VN .-i .-i '-+ .-� � .--i � .-i .-� .-+ .-� .-� .--� ,-y .-u .-� .-i .-i � .-� � � o,y m m m m m m m m m m m m m m m m m m m m m v c� � �� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � `� U c p � U T O � tf7 ln tf� Ln ln I.C) tt7 Ln tn Ln tn In tf7 Ln �c7 I.C) tf7 ln tf� Ln �� * �' 'y N N N N N N N N N N N N N N N N N N N N N � � f� r+ �� O O O O O O O O O O O O O O O O O O O O O � � v U W o ii p �� U U T O u7 tt1 u7 tf1 u7 �r7 u� tn u7 L() lt7 tn IS) tf� Ln �n u7 tt1 u7 tf1 u7 a .� N N N N N N N N N N N N N N N N N N N N N Q � U N �� O O O O O O O O O O O O O O O O O O O O O c � � U � � L �.. - G � � U "' °�� tO C 0 O O O O O O O O O O O O O O O O O O O O O C � Q �(n � �� Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z O �\ O �� p N n N N II II 3 O� o � � � � ] > o c/7 C � E�--i � o o � a •� ,-� N(rl � t(7 l0 i� OJ 61 ��-+ N(�'7 ����� � m O 3 c° O m � � � LL � `i � E o � d > W '' `O m LL 10 0~ c? <n v? v 3 1O + > � m� �� � � r.� .� � '� o c� m��n � � oo rn o,-� c� m����� o� o `m II II o o � p a' � O �'` c7 �- � > > i o 3 o y in �o m d- .-, �o d� o d- c� � rn^ � cn cn ,n ,n r, �� . . . . . . . . . . . . . . . . . O N N N N O1 l0 l0 N� 01 CO ' I� N O " O� d' N LL G�' � M N N d' �-+ N ti Ol � I� ('7 ('7 I� �--� �--� �--i Ch tf) N N('�7 3��, '� oo rn 1O �n d�r �n a, a �n cy o rn� o d: .-. o�,.� �n �c3 � N ao m� ��� cYi � N��ri�o�td� r.c�i,=,o�� 0 N O N � N in Lf'7 N N I� d' � I� � CO m�--� � W O W d' W N L(� L(� ('�] O � � C1' U I� t.() L(� 61 �I' l0 (+') N N� Ol CO �-+ a' N N O � l0 � I� O U >+ � O ¢ � T � d m 10 � ..-. O �� 'N o N i� �-+ r+ N f� N Ol � N N I� �-+ W W c� I� N N d' �-+ C C o L l0 � I� i� Ln t.() I� N O L(] I� L(] N W W O L(] �t L(") L(7 Ol a,�-„ �'- C l0 I� l0 l0 l0 i� I� i� I� l0 I� I� W I� I� W I� d' l0 O"J N �C C 7 u � U T �C o L d' ,--i Ol 61 Ql ,-� � t� � 61 �� N l0 l0 ('7 � l0 Ol I� � N I� N N� t� I� ti") d' ,-+ I� I� O W� 61 I� O�-+ l0 cn ,`d, �- C c+� ch ch M �'7 c+� M ch ri ri ri ri d- m m m c'� N M � C �'�' O 1� N N I� 1� ,-� Ol N I� ,-� I� ln l0 l0 O I� � I� CO � � N t Ol � Ol Ol W � N O O W N�--� (� N N(+� �-+ N W Ol � ,t; C � N�-+ �--� � N N N N� N N N N N N N��-+ O O C Z o Ol c+� d' d' � �n ,-� i� N O O l0 I� l0 rr O N t.[) � l0 d' � �n m io �r �r �n � �r �om��n�o�o�mmmm O � o 0 0 0 0 0 0 0 oor-+0000000000 � � � o � m �.-� m �o o in m�oo�oino�w� coinoi� �n d- ��n m m d� d m�� c� �� v �r � c� c� c� c� � � o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � C� � �n m �,--� cn �o o�n m�rorno�nrnm�oou�rn� O� �n �r �o � m m �r �r m �o o� cy ���� �o N N N N Z o 0 0 0 0 0 0 0 0000000000000 � � ni � � T C �n � d' d' �n � O N c�7 iS'� O� O O r+ � �n d' O� p� Q~�� ti .-� � ti ti ti� ti ti� rr cv� � d' i17 i� �..� U � 0 U U�' � �n � d' �t �n � O N cr) � O� O O �� u7 l0 � p I-- �� � � � � ,-i ,-i ,-� � � rr ,--i rr � ,--i rr � � c� ,-� d' CO m 'y � U � o i. � i.c� ,-� d' d' �n ,-� O N m i.t� O.-� O O .-� d' �n �O ,-+ � N I--� �� � ,-� r-+ �--i � �--i .-� � r-+ .--� �--� � •--� �--+ � •--� C�"1 �--+ d l0 0 E `o Q d' N L(") c� l0 l0 Ol Ol N� CO N W('7 I� C7 f� �I' O I� I� � c0 i � l0 O Ol O I� � r-+ N m r+ � O O u7 r+ ln L� � d' N �o a v I� Ln �t O� I� f� d' N �Y � L(� ��--� cY N N O('� �� m U r 0 � o � � ,�, m U N p �N L � � � O�--i N cn rr N M�i' Ln '� �(� �� ^ � E �N ,-+ c� m d- in � � a0 6� �-, ,--� ,--� ,--� � � � � � � m O W � � o m � ` � o m o O � .N � U t � N C >, m y `� r� N _ � N � `� O C a� C ,ti i0 U � — � �� ,-+ N tn d' Ln l0 I� 00 01 O�--� N M�"� N M d' L(� � m v7 ° II `� c � °'a ���������oNo e � � Od o '° � � � � � o FORT COLLINS STORMWATER CRITERIA MANUAL Hydrology Standards (Ch. 5) 3.2 Runoff Coefficients 3.0 Rational Method Runoff coefficients used for the Rational Method are determined based on either overall land use or surface type across the drainage area. For Overall Drainage Plan (ODP) submittals, when surface types may not yet be known, land use shall be used to estimate flow rates and volumes. Table 3.2-1 lists the runoff coefficients for common types of land uses in the City. Table 3.2-1. Zoning Classification - Runoff Coefficients Land Use Runoff Coefficient (C) Residential Urban Estate 0.30 Low Density 0.55 Medium Density 0.65 High Density 0.85 Commercial Commercial 0.85 Industrial 0.95 Undeveloped Open Lands, Transition 0.20 Greenbelts, Agriculture 0.20 Reference� For further guidance regarding zoning classifications, refer to the Land Use Code, Article 4. For a Project Development Plan (PDP) or Final Plan (FP) submittals, runoff coefficients must be based on the proposed land surface types. Since the actual runoff coefficients may be different from those specified in Table 3.2-1, Table 3.2-2 lists coefficients for the specific types of land surfaces. F�rt�� ns 3.2 Runoff Coefficients Page 4 FORT COLLINS STORMWATER CRITERIA MANUAL Hydrology Standards (Ch. 5) 3.0 Rational Method Table 3.2-2. Surface Type - Runoff Coefficients Surface Type Runoff Coefficients Hardscape or Hard Surface Asphalt, Concrete 0.95 Rooftop 0.95 Recycled Asphalt 0.80 Gravel 0.50 Pavers 0.50 Landscape or Pervious Surface Lawns, Sandy Soil, Flat Slope < 2% 0.10 Lawns, Sandy Soil, Avg Slope 2-7% 0.15 Lawns, Sandy Soil, Steep Slope >7% 0.20 Lawns, Clayey Soil, Flat Slope < 2% 0.20 Lawns, Clayey Soil, Avg Slope 2-7% 0.25 Lawns, Clayey Soil, Steep Slope >7% 0.35 3.2.1 Composite Runoff Coefficients Drainage sub-basins are frequently composed of land that has multiple surface types or zoning classifications. In such cases a composite runoff coefficient must be calculated for any given drainage sub-basin. The composite runoff coefficient is obtained using the following formula: ,� � (c;xa; ) � _ �-� A, Where: C= Composite Runoff Coefficient C; = Runoff Coefficient for Specific Area (A;), dimensionless A; = Area of Surface with Runoff Coefficient of C;, acres or square feet n= Number of different surfaces to be considered At= Total Area over which C is applicable, acres or square feet 3.2.2 Runoff Coefficient Frequency Adjustment Factor Equation 5-2 The runoff coefficients provided in Table 3.2-1 and Table 3.2-2 are appropriate for use with the 2-year storm event. For any analysis of storms with higher intensities, an adjustment of the runoff coefficient is required due to the lessening amount of infiltration, depression retention, evapotranspiration and other losses that have a proportionally smaller effect on high-intensity storm runoff. This adjustment is �'�, ";` 3.2 Runoff Coefficients ��F�rt� ns Page 5 FORT COLLINS STORMWATER CRITERIA MANUAL Hydrology Standards (Ch. 5) 3.0 Rational Method applied to the composite runoff coefficient. These frequency adjustment factors, Cf, are found in Table 3.2-3. Table 3.2-3. Frequency Adjustment Factors Storm Return Period Frequency Adjustment (years) Factor (Cf) 2, 5, 10 1.00 25 1.10 50 1.20 100 1.25 CxCF PRODUCT OF CxCF CANNOT EXCEED THE VALUE OF 1 3.3 Time of Concentration 3.3.1 Overall Equation The next step to approximate runoff using the Rational Method is to estimate the Time of Concentration, T�, or the time for water to flow from the most remote part of the drainage sub-basin to the design point under consideration. The Time of Concentration is represented by the following equation: T�=T;+Tt Where: T� = Total Time of Concentration, minutes T; = Initial or Overland Flow Time of Concentration, minutes TL = Channelized Flow in Swale, Gutter or Pipe, minutes 3.3.2 Overland Flow Time Overland flow, T;, can be determined by the following equation: 1.87(1.1—CxCf)� T' 3� Where: C= Runoff Coefficient, dimensionless Cf = Frequency Adjustment Factor, dimensionless L= Length of Overland Flow, feet S = Slope, percent City of F�rt� ns Equation 5-3 Equation 3.3-2 OVERLAND FLOW LENGTH L=200' MAX IN DEVELOPED AREAS L=500' MAX IN UNDEVELOPED AREAS 3.3 Time of Concentration Page 6 FORT COLLINS STORMWATER CRITERIA MANUAL Hydrology Standards (Ch. 5) 3.0 Rational Method 3.3.3 Channelized Flow Time Travel time in a swale, gutter or storm pipe is considered "channelized" or "concentrated" flow and can be estimated using the Manning's Equation: V _ 1.49 RZ/3S1/Z n Where: V = Velocity, feet/second n = Roughness Coefficient, dimensionless R= Hydraulic Radius, feet (Hydraulic Radius = area / wetted perimeter, feet) S = Longitudinal Slope, feet/feet /elii"� L Tt — vX6o 3.3.4 Total Time of Concentration A minimum T� of 5 minutes is required. The maximum T� allowed for the most upstream design point shall be calculated using the following equation: T�—iso+10 Equation 3.3-5 The Total Time of Concentration, T�, is the lesser of the values of T� calculated using T� = T; + Tt or the equation listed above. Equation 5-4 Equation 5-5 Tc • A MINIMUM Tc OF 5 MINUTES IS REQUIRED IN ALL CASES. • A MAXIMUM Tc OF 5 MINUTES IS TYPICAL FOR SMALLER, URBAN PROJECTS. 3.4 Intensity-Duration-Frequency Curves for Rational Method The two-hour rainfall Intensity-Duration-Frequency curves for use with the Rational Method is provided in Table 3.4-1 and Figure 3.4-1. ��,, �;` 3.4 Intensity-Duration-Frequency Curves for Rational Method ��F�rt� ns Page 7 FORT COLLINS STORMWATER CRITERIA MANUAL Hydrology Standards (Ch. 5) 3.0 Rational Method Table 3.4-1. IDF Table for Rational Method Duration Intensity Intensity Intensity (min) 2'Year 10-year 100-year (in/hr) (in/hr) (in/hr) 5 2.85 4.87 9.95 6 2.67 4.56 9.31 7 2.52 4.31 8.80 8 2.40 4.10 8.38 9 2.30 3.93 8.03 10 2.21 3.78 7.72 11 2.13 3.63 7.42 12 2.05 3.50 7.16 13 1.98 3.39 6.92 14 1.92 3.29 6.71 15 1.87 3.19 6.52 16 1.81 3.08 6.30 17 1.75 2.99 6.10 18 1.70 2.90 5.92 19 1.65 2.82 5.75 20 1.61 2.74 5.60 21 1.56 2.67 5.46 22 1.53 2.61 5.32 23 1.49 2.55 5.20 24 1.46 2.49 5.09 25 1.43 2.44 4.98 26 1.4 2.39 4.87 27 1.37 2.34 4.78 28 1.34 2.29 4.69 29 1.32 2.25 4.60 30 1.30 2.21 4.52 31 1.27 2.16 4.42 32 1.24 2.12 4.33 33 1.22 2.08 4.24 34 1.19 2.04 4.16 35 1.17 2.00 4.08 36 1.15 1.96 4.01 37 1.16 1.93 3.93 38 1.11 1.89 3.87 F�rt� ns Duration Intensity Intensity Intensity (min) 2'Year 10-year 100-year (in/hr) (in/hr) (in/hr) 39 1.09 1.86 3.8 40 1.07 1.83 3.74 41 1.05 1.80 3.68 42 1.04 1.77 3.62 43 1.02 1.74 3.56 44 1.01 1.72 3.51 45 0.99 1.69 3.46 46 0.98 1.67 3.41 47 0.96 1.64 3.36 48 0.95 1.62 3.31 49 0.94 1.6 3.27 50 0.92 1.58 3.23 51 0.91 1.56 3.18 52 0.9 1.54 3.14 53 0.89 1.52 3.10 54 0.88 1.50 3.07 55 0.87 1.48 3.03 56 0.86 1.47 2.99 57 0.85 1.45 2.96 58 0.84 1.43 2.92 59 0.83 1.42 2.89 60 0.82 1.4 2.86 65 0.78 1.32 2.71 70 0.73 1.25 2.59 75 0.70 1.19 2.48 80 0.66 1.14 2.38 85 0.64 1.09 2.29 90 0.61 1.05 2.21 95 0.58 1.01 2.13 100 0.56 0.97 2.06 105 0.54 0.94 2.00 110 0.52 0.91 1.94 115 0.51 0.88 1.88 120 0.49 0.86 1.84 3.4 Intensity-Duration-Frequency Curves for Rational Method Page 8 FORT COLLINS STORMWATER CRITERIA MANUAL Figure 3.4-1. Rainfall IDF Curve — Fort Collins Hydrology Standards (Ch. 5) 3.0 Rational Method io.00 __ _ _ _ _ _ � � -- -_ _---- ii i L - - - -- - - ' � '- 100-Year Storm 9�� - -� � � � I I I � �� � - ---10-Yea�Sio�m � � I . . - - -; �J - -- - � � , �- . . . .- . � �. � - 2-Year Storm _I_. . -� �---- -- ._�._._'._. . ._:_._._._. . .- -. ---� ---�-- I I � i _ � I _ . . . . _ . . . I 8.00 -- ---- . - _ _ _. - I �- _ I I I I.. �I I I I.... _ ! �! j . . _�, . . . _ . _. . . . __ . _. . ._ . _ . . _ _ . _ . . �.00 _ i 'i i i- - i i i � �. i � , T , � � _ _ _r � _� _ N �.00 —. _ � i � - - � � - �- �' s.00 -.__ _ -�_ � —_.� . � � �_�_�_._ � i_ _I_ ,`, � I I I__ j l i l G � . . . . � , . -. . ._ .. . . �-I-�I_:-. .i � . _�_ ._-� -. i . .. . � 4.00 --�-. _ I I I I I i � I � ♦ _ _ _ _ l-i � i i � i 7: i _-�-:_ _i ._. _ � , - -- 3.00 . -� � � 1 I � I I . `. ��` . . � �-- � i i � i � i i i . \ . .�� . . . . \ � . ♦ ... ��� ... 2.00 ��` -. _ ��y`-_ _ � �� l �� � ���► 1.00 I._�I . . i . I�I�.+�i _! `s` __ ___�'����-.��.�---.:���«���� _ _ - T i �I � i �������������� �����. � - . . II I I � ��.. ���..+������ - _..,�r�i ! ����� 0.00 . 0 10 20 30 40 50 60 70 80 90 100 110 120 Storm Duration (minutes) c�tyof 3.4 Intensity-Duration-Frequency Curves for Rational Method ��F�rt� ns Page 9 ,il� , l_l- 1�j. � � Inlet Design Computations u u v O O O �—I c-I ei � _Q � � -O � ..Q m m o 0 o m m a � � � � � � � � m � � � � m m o 0 o m m � � � � � � � � N V1 � V1 N V/ Vf V1 � � � � � � � � VI V1 N N N N N V1 (6 f6 f6 l6 f6 (6 (6 f6 m m m m m m m m � � � � .Q � � � � 3 7 � 7 3 7 � N N N � N N � � � � Q � 4 � 4 � � .G L t L .0 -C .0 X X X X X X X X W W W W W W W W 110 C1A q0 UD GO bA hll CO C C C C C C C C _ _ _ 'y _ 'Y _ _ N f0 (6 f0 f6 (9 (6 fV � � � � � � � � O O O O O O O O a`. a n`. a n`. a` n`. a c c c c c c c � .N .N .N .� .N .� .N .N ro ro co ro fo m co ra m m m m m m m m � � � � � � � � � � � � 3 3 � � Vl tn N v7 Vl N N t/'� W � Y a�-� Y Y Y � � +�+ � J � '� '� '� '� '� '� '� '� Q � O O O O O O O O 0 a a� a a� ai a� v v � U v°Ji cn cn v�i cn �n v°�i v°1i � � � Q U � � Q N O O O O O O O O �- I� I� 1� r � v U O O��� O O O Z � � N °1 Z � C7 0 o rn rn o o�o �m o�o o�i � N a LL �-i � cv m� O�-+ � Q tl�A � >- >- i.. i � � � N p O O y` }} y O O N W Q N O O N O O N O O J Z c � '� � m � � � u � c� ro c9 � m m ca o 0 o m m � � � V� � � � � a � 0 Y y-� Q Q Q Q Q Q Q Q N C E E�� E� E E � o � � � � � � � � U cn N cn cn cn v� v'i v� C O .� � � � � � � N N � (0 N � N � � Q Q Q � � Q � � _ � � � � a a � � � 0 � o N N � � � � N Y � � � O�\ v n�i w- v� C C C w- v"= v i �--� Q d' � cn lf') lf) in C� Cn ln lf� ln *' � N � N � N+� `- OO � O� � N ' � N �- N a0 N N Cfl o0 00 d m �� 0 I� f� � � � � � � 3 0 � N v � � v � � � O d � C N U N d � O � v 0 co a! L Q � .N � m � .� �� � G � m � � a LL I O I l0 I O I 00 I M I 00 I 00 I Ql U ni O O O �t m m m N I c-I I o I O I c-I I c-I I Ln I Lf1 d' l.f) � I� I� I� I O I N I N I O I O � I � I � I � I l"'� I� I O I O � I � I� I O I O I O I� I � tf'1 Ol 00 I� 0 00 M tf1 O tf1 .--� lD �-I o0 �!1 tf1 N O O O N e-+ O O rn � m � c� � rn � o � m �n o �n �o � `� � o d: �o 0o ui �-, oi Q N�� d�- �� omo c�.i a�i rn �n � rn � � m m 00 N I� N Q1 00 N N � O i- �t N O O � \ N C O a N � � � N � � 0 NI�I�INI�I�IOIO C u � .o m � m � � .� a � N �I�I�I�I�I�Ic-IIM II � � � � � ■ . . . . ■ ■ ■ ■ � I�� � ■ ■ i � � � I� � � � � I , —� 1■■�■■■■■■■■■■■■;■ � — ---------------- —� , I ■ �` ,■� '�■ _ _- �; i ' � � I � ----�,. � � ■ � '� � � ■ , , i � , � � � ' m � � v� � ' � ■ � ; � �, i ■ i i i� II � j li I i � i � ii i � (6 �� i i i i i i ■ d' c� i � � � I i ■ I i ii i ■ �---� �I ■ �i � � ■ i ii � � i ■ �i i � ■ --- � � ', � �� � � � i � , � . : � i� �I--- i �� � � ' : ' I I � �'� �i � � , �� , � � � , � �a���9� ;� � � , � n u� � -� �� � ■ � ,i,� i � �� I I �"' ■ ~-I - � I i' I'__ - I � � � �I ii �i� � � � 1�� � �� _------- � � � p -� ' ' �' _�--- i i. �-'----_� � i r N �, i ii i � - �J ' � � -- �i � i � � � � �i . � i i � '---- _, �i� � � � � � � i ii i � r � j� ii I i � I o i i � �i � � i i i i / �i i i i � r1� �i i� �!�!� ■�■ i... . .. ... TI�,� i i..��:� _� �:;� ■� ���I I �! � ..I ��iI„ I i .y.. � �1.:..,.I....J:,...,a,.i —� � �I�� � � -= yl� _.�-�- _ �'� _ � ����� � � � � W � � X W � W > Z�O � J j � LL � N O � t.t_ Z �OQ ..��� ■ � �I � ■��I � ----�-�----- � ••��� ��: � ��� �x oo � � � ++ ■ �' ■ �� � � � �_ --• � � � � �' � ■ � � � . � •.,,_ :, . . . . o �e� �������1�� i ii Zz i I ' II ww � � 2 �, x-� �����L��L������� i I-z ---------- � - --- --- - - - i- ---- --- -_ _- ---- --- --- -= --_- Z z ---- - - r - - - -- — �' — -- --� 4, �_ -- ---J � - -- -- --- -- � � --- ---1 /RS � i � 'yii-H� � l� �. :� / I � ' I __ : I i I � � ' i �-�- ---- i /,, � ... _ . : � � ; `, � \� � � i � `-___� ' I '� ' �, � � / � . � \ � � � . � I I� � � �' I i' �--�--' �\ � � . � \\ \ \ '._ i/ , � � �.I ; . � �-j % �� �� r � -- �� ; j �' I �� , , �� � � �,�` j � ��� ; �' �� � � I I � �'%� % , .\� � �� ,�\ i � - -� �--- ----- . , � „ . , , � .. , , _ , � � , - � --- . � __-- � __ _- — � _, ,- i' - -- - --=------- - ,,, � � � I _ _� �� _ __ , _ �_ __ , , �� ��_-- -- �- _-- --- -, , -� --- , , � -- � � � ------------------------------------------- �-�---- -------_ - -- I , ___--_---- - --------- , _ � .,_ --- -- _ --------�__=_ � �— � F■ r � i _� -- ,�`�,_ � � . • ' . �y . /• � /• '• �. `•' /� '� . ,,, � /• , �� /• I' �'- � I� �- �- �� �_ �i'��'� � r�, ; �I � � ! � .' � _ ,, - -- -> ----------------- � ,�-� �� a� � ,°' I O� o �. - �. �. �. ••� � — �� -- � ��� �� I �� � � �,I�,1 �. �. ���� �� �� �� �� � � i � . _ . ��. . - - �> : � -----------�----- -- - .� ' c� ,�—r— I� I ----, - � � �i i � ��i � � .� � . ,��, �.. �� ■ �. _ _----- ■ � ■ � I ■ ■ ■ � ■ ■ � � ■, �, , . , � � --------r-�_� � ■, : : � ■ , ■ � / ' _■ �z _ _ -- ■-- w� =w � �z � � z . Z w � � . . � � i:� i I i i i!�,i � o Q i..�����1����� • o i; �r' �� ; � #���,1�1 . , � - - � � � J�� � ' �; ■ ' � ��, � � � � ` I � 0, � • I � �t .� � i'� �� �,� 'oo � . �', � � � ■ � 0 C � ' \ I I � I� �+ ' . ■ � � I �- -�--I� - -I� ' ',, � � * • � � �--- ■ �,�+" : i 9 'i i � � i � � `I ��� n n�' n � , . r— � � ,I � � jdsd���, ■ -�' � „• ; ■ ' I ■ `, ' '� �I i------- i ' ' ■"�,:. � i i� . ■ j �I � � .. i �� � I � i .. � ■ � I n -i i � q\�\ _ � � � � � � � � . �u� " i � �_'- -�.__-'_-_-1 � � � � : �I � � � � I � �- T� I� i , � I � ■ I I IuI I � �. � _ ��.i. : I �__I I ___I I� II I ilI .. • .... .. , I _ - I ,., � :� � � I li. I �� I I\ � � I �i I � �j �I / � �I I i i � 1 I � I `.' �I i j I '' . I �I � ` �I � I I ' I ���..... � I - ,.M_ - ___--___ i_ -__-_ _-- ---_ --_ � -___ _--- -- ___ ___ __ ____ _____ __ - ___ ___ ... _.. , . -_.� __-.. -- --- - ---J — - — - al - �- ---- � ,_, � -- -- -- -- -- � --- -- — - --- -- p '�, ;; �' l ( �• � � ; ....... O �. �� � �1��������� � � o O ' .. � ��. �.. O Q7 I r `- �.._-'___" /� � ' mo � I „e-�. I .,,T. .. � � .I . I .. I o ' ° � � .,., „ r , , „, ,... ..`.I.... .... .... .... .... .... . .. .... �, „ . �. „ .... CAd2 • � Q F i � U�O Xw cn ,,,, ,, , , ,, , ,,,, ,,,, ,,,, ,,,, ,,,, ,... ..., ,,.. ,,.. ,,,, , „ , , „ .... Z � p � — _ ��- � � J I. y.. ._� ° � ° L ,�No � , I r� 1 ��z mm �oQ • � o , 0 - � � -- o I / `� ■,__ -�� J l a, I I I �i ■����■ � z: i I � , "_ _ �o� � � _ . z� - ;- - - �z � _ _ /� w� � ----- � �, zw ,-- - - - i—z , - , I - — II , � ,- � uwiuu , � eas�a - _,� , ; �� 1 0� i . z . / //_ _ _-_-_-_-_-_ _ -_-_-_-_ _ i /,'. Zw � � . ,'" u � i , , ♦ , , . , � , , - I I � O � � � � U i ~ � W I � Z �� � � -- _, � _--- ,' , _, _ ' % � , � � , -- au , �� ,� � �. � � `� z� �z ww _ ,,, �z �� zw - � INLET IN A SUMP OR SAG LOCATION Project = Inlet ID = 100-024 Combination Inlet ,�Lo (C)� H-Curb H-Vert Wo WP W Lo (G) oflnlet I Depression (additional to continuous gutter depression'a' from'Q-Allow') ber of Unit Inlets (Grate or Curb Opening) �r Depth at Flowline (outside of local depression) = Information th of a Unit Grate � of a Unit Grate Opening Ratio for a Grate (lypical values 0.15-0.90) ging Factor for a Single Grate (typical value 0.50 - 070) ; Weir Coefficient (typical value 2.15 - 3.60) : Orifice Coefficient (typical value 0.60 - 0.80) � opening Information th of a Unit Curb Opening ht ot Vertical Curb Opening In Inches ht of Curb Orifice Throat in Inches = of Throat (see USDCM Figure ST-5) Width for Oepression Pan (typically the gutter width of 2 feet) ging Factor for a Sfngle Curb Openfng (lypfcal value O.tOj Opening Weir Coefficient (typical value 2.33.6) Opening Orifice Coefficient (typical value 0.60 - 0.70) Inlet Interception Capacity (assumes clogged condition) ING: Inlet Capacity less than Q Peak for Minor and Major S[orms MINOR MAJOR Inlet Type = CDOTIDenver 13 Combination ai�ai = 2.00 inches No= 1 Flow Depth = 6.0 11.2 inches MINOR MAJOR Lo (G) = 3.00 feet Wo= 1.73 feet %�„r,a = 0.43 G� (G) = 0.50 0.50 C,,, (G) = 3.30 Cp (G) = 0.60 Lo (C) = 3.00 feet H�en = 6.50 inch Hin,��= 5.25 inch Theta = 0.00 deg W�= 2.00 feet C�(C) = 0.10 0.10 C,,, (C) = 370 Co (C)' 0.66 MWOR MAJOR Qa = 3.s a.7 cfs UD Inlet 3.1-SingleCombo.xlsm, Inlet In Sump 3/26/2020, 1:46 PM INLET IN A SUMP OR SAG LOCATION Project = Inlet ID = 100-024 5-FT Type R ,�Lo (C)� H-Curb H-Vert Wo WP W Lo (G) oflnlet I Depression (additional to continuous gutter depression'a' from'Q-Allow') ber of Unit Inlets (Grate or Curb Opening) �r Depth at Flowline (outside of local depression) = Information th of a Unit Grate � of a Unit Grate Opening Ratio for a Grate (lypical values 0.15-0.90) ging Factor for a Single Grate (typical value 0.50 - 070) ; Weir Coefficient (typical value 2.15 - 3.60) : Orifice Coefficient (typical value 0.60 - 0.80) � opening Information th of a Unit Curb Opening ht ot Vertical Curb Opening In Inches ht of Curb Orifice Throat in Inches = of Throat (see USDCM Figure ST-5) Width for Oepression Pan (typically the gutter width of 2 feet) ging Factor for a Sfngle Curb Openfng (lypfcal value O.tOj Opening Weir Coefficient (typical value 2.33.6) Opening Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK) MINOR MAJOR Inlet Type = CDOTType R Curb Opening ai�ai = 3.00 inches No= 1 Flow Depth = 6.0 8.7 inches MINOR MAJOR Lo (G) = N/A feet Wo= NIA feet %�„r,a = NIA G�(G) = N/A N/A C,,, (G) = N/A Cp (G) = NIA Lo (C) = 5.00 H�en = 6.00 Hin,��= 6.00 Theta = 63.40 W�= Z.00 C�(C) = 0.10 C,,, (C) = 3.60 Co (C)' 0.67 MINOR Qa = 5.4 Q PERK RE�II�RED' S.O 0.10 MAJOR cfs UD Inlet 3.1-R-5ft.xlsm, Inlet In Sump 3/26/2020, 1:48 PM Area Inlet Performance Curve: Sing�e Area Inlet Capacity Governing Equations: At low flow depths, the inlet will act like a weir governed by the following equation: n _ �. O n u 1 5 �whereP=2(L+� � 1 1L ' where H corresponds to the depth of water above the flowline At higher flow depths, the inlet will act like an orifice governed by the following equati� = Q. 67 A( 2 gH � 0.5 ' where A equals the open area of the inlet grate ' where H corresponds to the depth of water above the centroid of the cross-sectional area (A) The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown. However, what is known, is that the stage-discharge curves of the weir equation and the orifice equation will cross at a certain flow depth. The two curves can be found below: Stage - Discharge Curves 14.00 12.00 � Weir Flow N 10.00 � � � 8.00 rn L r 6.�� v p 4.00 2.00 0.00 :- 0.00 Orifice Flow 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Stage (ft) If H> 1.792 (A/P), then the grate operates like an orifice; otherwise it operates like a weir. Input Parameters: Type of Grate: Neenah R-3409 Length of Grate (ft): 1.9583 Width of Grate (ft): 1.4376 Open Area of Grate (ftz): 2.25 Flowline Elevation (ft): 100.000 Allowable Capacity: 75°/o Depth vs. Flow: Shallow Orifice Actual Elevation Weir Flow Flow Flow Depth Above Inlet (ft) (ft) (cfs) (cfs) (cfs) 0.00 100.00 0.00 0.00 0.00 0.10 100.10 0.48 2.87 0.48 0.20 100.20 1.37 4.06 1.37 0.30 100.30 2.51 4.97 2.51 0.40 100.40 3.87 5.74 3.87 0.50 100.500 5.40 6.42 5.40 0.60 100.60 7.10 7.03 7.03 0.70 100.70 8.95 7.60 7.60 0.80 100.80 10.93 8.12 8.12 0.90 100.90 13.05 8.61 8.61 1.00 101.000 15.28 9.08 9.08 APPENDIX B.2 Storm Line Computations i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a _ � .� � �� /�� i�% � O U a� � J W � � L V .� � � L ^ i L O N � = N ti3 O N t6 c9 (6 tU (6 N tf3 t6 � 0 � C O C C C C C C C C C J O O � � � c�- C�O N t�f) O � O � � Y r- o 0 0 0 0 0 0 .- o <- 0 >. co 0 0 0 0 0 0 0 0 0 0 � y l6 � O O O O O O O O O N W O.'k.V' C O O O O O O O O O O \ Y i- V � O tn O O O O O O O O O N U j� o O M O O O O O O O O O � Q� v O O O O O O O O O O O 0 C O � O O O O O O O O O � O 1� O O O O O O O O O � O M O O O O O O O O O � o O O O O O O O O O O O N M d' � M N I� (O V ln tC) I� M M O M M t� � O J� ui tCi �ri co � ai oi ai co a tCi ��� rn rn rn rn rn rn rn rn rn rn rn W N� v V v �Y �t �Y �t �Y <t V V 'O I� cl' O O O O O O O O O lC � � O O O O O O O O O � t� O O O O O O O O O O O � N O M CO ct N N � � C�O N N N �p � � C4 u") � � � � O O O � .- C � O _ � a rn o 0 0 0 0 0 0 0 0 � M M O O O O O O O O O Q Q N M N O O O O O O O O O � 7 S � � � � � � � � + � Z Q V M O O O O O O O O O � �-'v' � � O O O O O O O O O � � O I� M M O M M t� � O J� V �[i �ci c0 I� 6i Oi ai c0 V �ci � � � � � � � � � � � � � � S d� V V' V V' V' �l' V' V C V V' � � d' � M M ln � M (O O �> M M � V � CO CO (O tn M V > G7 ^ � � � � � 6� 6� � � � � G�� �t c7' V' �t' st V' V' V' �t' �Y �1' � N O � �! � � N (O N N � � O � � I� ' a0 eO d' a0 6j d �'v'' N tn � � � N � M � O O J O 1� O O O O O O O O O O N O O O O O O O O O .�"' o O M O O O O O O O O O � O O O O O O O O O O O '7 M � O I� V M M I� � � J� V �ri u'i co c4 � oi ai c0 'V �l' W�� � v v v � v v v v � v 'o � rn o 0 0 0 0 0 0 0 0 lC � M O O O O O O O O O ; t� O O O O O O O O O O O N O O O (O N N � � (�O N N � j � co �ri ui v ui ui o 0 0 � � R m N l6 � �D tn O O O O O O O O O C d a M V' O O O O O O O O O OQ N (`') N O O O O O O O O O �� �� o 0 0 0 0 0 0 0 o a Q �� o 0 0 0 0 0 0 0 o s d � � o 0 0 0 0 0 0 0 0 �� o $ .� � � � � � � � � Q OD � r- O I� ct M M I� � � — J (M d' �f7 (O C4 i� � � (O 'tY' V' � > II � d � � � � � � � � � � � 2 G� � � v v v d- v v v v � v � � � O N W 1� M M CO � V M V I� V � M M M � � (O II � N M M � � � (O CO V M M U > a�i rn rn rn rn rn rn rn rn rn rn rn - c�� v v v v v �r �r v v v v � s u� Q � w O r � � N O O N O OO OO � 'O (�I V N � � � � O � � � U � _ U C4 �1' �i' <}' a0 a0 � � N N N � � d M N N N r � r � � � � � * N - � � N d 0 � O C .- N M V � CO I� a0 6� � � Z J i ca G. � � M ._ .� �..� � � N � � O � � a L � � � � .N � � � W � L � 3 a� � � L � r�A v, 3 0 � �a L �` ^ _ � � � U N O a` � d � R a N O ■� �� �� /�� i�% � � V W � •� J W � � L V V ■� � � L T� i L = N � g O � � J O � � � Y •- 0 T N � y � O �j O� C N Y � V � O N L U >,..� � m Q tn �. � 0 c � o � � � 0 � � � � � J > � � � � W d � � � � � � t � o N r N � ; � N .c L1 .� y 0 '� m �a `"'`i � Q w o � � s � Z Q N � M � a''.-.' O M � J � rn C7 d ^ � S u� � � � � c �� � � � c "' d � v J O O .�"' o O � O M J � � W d � � � � tC ; t � O y N � � � N m c a�i a N o a V � � � N s Q M GI O �� � $ .Q N Q- N — J � � � � � � II 2 y � � °� � U � 11 � W U c � � v � s �n Q N � w � � � � V � � U (n _ U � � � N � �- * _ 'm = � a� d �� o _ �- d Z J i ca G. � � M ._ .� �..� � � N � � O � � a L � � � � .N � � � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � /�� V � � .� J W � � L V V .� � � L T� i L = N � g O � � J O � � � Y •- 0 T N � y � O �j O� C N Y � V � O N L U >,..� � m Q tn �. � 0 c � o � � � 0 � � � � J > � � � � W d � � m � o jt� o � m N °' c � � � � _ � o y � � �j m �a � Q w o � � s � Z a � p � o � � J � cv C7 d ^ � S u� � � � M � � G � � �Y N � G � d � N J O O .�"' o O � O N M J � � W d � � l�C O ; t � O � � � R > m N R � o c m a �- o a V � 0 � � s a�'i o �� � $ n � Q N — J °O � � � � � II 2 y � � °� � U O 11 � W U c � � v � s �n Q c�i � � o � � C� � � o � cn _ U � � � N � �- * _ 'm = � a� d �� o _ �- d Z J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � /�♦ V W � •� J � � � L V V .� � � L � i L � y O O f0 C � 0 � O O C J O N � O � � Y o o .- 0 >. v � o 0 � y CO N O � W O ik.V' O � O N Y r V � � M O � L V Q� o O O O p C 7 � M O � V tn O � o O O O � N W J � � r r W N � v �v v lC N N O � t � O O O M N (O (9 CO � � � � �t 7 �l' �C L1 .� y � � d a N N o � Q w � � o � � � z Q N N � Q � � � � (fl � W J � �.ci c0 I� � � � � � � S d� V V V � M � d � � � � G � � �Y �1' V' � � � � � O N � d a.'v' � N J � (O M O o CO tn O � o O O O M O O J ' � (O I� W d � � V d' � R N O ; t � O O O N � � � � � � V � m c a�i a rn N o o Q V o .- o � p. � N O s Gf O � O �� � $ .Q d- N Q � I� O — J �Y' �ri I� � > �� c�d � � � x d � � v v °� N rY CO .0 O V M II � V V � U c�� v v v � s u� Q 0 0 0 `� � N � � � u ui �n ui o � cn _ U u� u� � � � N � � r � a 'm = � a� d �� o C .- N M � Z J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � � U a� � •� J W � � L V V ■� � � L �` ^ i L � y O M C � 0 � O O J O � O � � Y o 0 0 >+ M M N � y O � � W O ik.V' O O � Y N V � O N � L V Q� o O O p C 7 N N � N W � o O O W � J > �"> <`'� � � � W N � v �v � � � jt� o 0 N N O O N � j � r r � L y � � � � �j m �a � Q w ri ri � � s Z p. o 0 Q � N N O � J � o'i c'i � � � rn rn S d � v v rn o �� o c �� � v N O � � r d � r � J � N � W � o O O N a0 J ' M M W d � � V t�6 � � ; t � O O � j � W O � � m c a�i � � � O Q N N M o � Q � o Q $ � N N O J � (V M 2 G� � � v � rn � o 0 x > Q c � � v v � � in u N N � s � � Q (� V N N p �� � �i V V N � N N N .0 c � � - V II � U C .- N o` . _ d J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � � U a� � •� J W � � L V V ■� � � L �` ^ i L � y O M C � 0 � O O J O � O � � Y o 0 0 N �y � O � � O .'k.V' O O W �" Y N V � O N � L V Q� o O O p C 7 N N � N W � o O O W � J > �"> <`'� � � � W N � v �v � � � jt� o 0 N N O O N � j � r r � L y � � � � �j m �a � Q w ri ri � � s Z p. o 0 Q � N N O � J � o'i c'i � � � rn rn S d � v v rn o �� o c �� � v v N � � � � d �.'v' r W J � N � W � o O O N a0 J ' M M W d � � V t�6 � � ; t � O O � j � W O � � m c a�i � � � O Q N N M o � Q � o Q $ � N N O J � (V M 2 G� � � v � rn � o 0 x > Q c � � v v � � in u � � � 4 N N N � Q (� V N N p �� � �i V V N � N N N .0 c � � - V II � U C .- N o` . _ d J T �/� `v Y� O � M ._ .� �..� � � N � � O � � a L � � � � .N � � � W � L � 3 a� � � L � r�A v, 3 0 � �a L �` ^ _ N � � U N O a` � d � R a N O �� �� /�� i�% � � U � � ._ J W � � L V V .� � � L T� i L = y O c6 � 0 � O C J O � � � � Y o <- 0 T N O � y l6 (6 N �j O� C c N Y � V � O O N L V Q� o O O p C 7 O O � O O � o O O M N � M J > r> 7 � � � W N � v �v lC N � � t � O O N N O M N � � � �t M = L y � � d a rn u' � Q w o o � � s � � Z Q � v � � o 0 � � �� � � � � v S u� � � � rn � � ' N M G � � �t �1 � M � N M d � N � J O O O O � o O O M W J ' M M W d � � V x O � l6 N e�- II ; t � O O � Q y V N N � � � � � II R > � m c a�i a rn � ° 3 Q` V o o � o ._ � � Q Q � � � o $ o o ; �, o � � J � (�') M c .� 2 y � � v C 0 U N M � � � N N J c � � v v � s u� Q � � � rn rn E �° `o `6 C'1 u `h � v t� _ U v v °' � N N N � *- 'm = � a d �� o c .- c� d Z J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i.% � � V � i ._ J W � � L V V ■� � � L �` ^ i L � y O C � 0 � � J O � � � Y o 0 T � o � y N � �j O� O N Y r V � Cfl N L U >,..� `- m Q tn �. � 0 c � � � � � 0 � � � � 0 J > � � � � W d � � � � � � � t � o N CO N � ; � N .0 L1 .� N � O � � '� m �a T � Q N � � S Z y,, O Q � Q � V � � J � cO C7 d ^ � S u� � � � rn � a> > c �� � u� N � N d � � J � � .�"' o N Ui Q � N J � � W d � � t�6 r ; t � O N � � � � � d c a�i a M o a V `� o s .� � Q � o $ � M � J � � C� d ^ � 2 y � � �t � M > x c � � v � � in u � � 4 � � Q (� �? dN' p — � � �i � N � N = � � U � - V II � U d �O C .- � . _ J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a � O ■� �� � /�� i�% � /O� V W � •� J W � � L V ■_ � � L �` ^ i L p V 00 O N � V O O O O O O O O O = y O M O O O O O O O O O O O O O O O O O O O O � 0 � O O O O O O O O O O O O O O O O O O O O O O � �n � �n o o � �n � � �n � o 0 0 � o u> �n o o �n � J O O ct O N �1'7 d' O O O O O V � �17 O rl' O O � u') O O � � Y o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >+ V CO V tn M � V � t� (O N CO tn � CO V O� N O � N p � y V' OO 00 d' I� � O � CO O O O O N N N O O N d' O � � O O N O M O O O O O O O O O O O O O W O.'k.V' O N O O O O O O O O O O O O O O O O O O O O N Y � V CO V M M M ct I� 1� I� M M M M � i� I� O O O CO CO � O O d' V � N N N N � N N N N N N V O O N U j µ. o � � `- r �- r M M M O O O O O O O O O O O O O � Q� v O O O O O O O O O O O O O O O O O O O O O O 0 C � � M M M � I� (� t� M M M M 6� t� I� O O O CO CO � V' O rt' ct V' N N N N N N N N N N cl' O O � � � � � � � M M M O O O O O O O O O O O O O � o O O O O O O O O O O O O O O O O O O O O O O � CO V CO � W � N CO d' V V V N N N N � M M M M . . . . . . . . . . . . . . . . . . . . . . J� �n t� I� f� I� f� a0 W ao e0 a0 ao W I� f� I� I� f� I� t� I� 1� � � � � � � � � � � � � � � � � � � � � � � � � � W N� v <Y v �Y �t �Y V �Y <t V V v �Y �t �Y V �t V V <Y v �Y 'O � (O 6� m 6� 00 I� I� 1� M M M N N N M O O lC W 00 O O O O � � � O O O O O O O O O O O O O j t� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M N OD N M M M CO CO CO CO Ln tn ln tn V t� I� O CO o0 fq � N V' �}' ct V' N N N N CO (O (O CO M N N M M M N I0 � � I� I� N N N N M M M O O O O <- �- �- �- �- e- •- O O �_ � O _ � a �h cY I� i� I� 1� M M M M M M M �1' V '�' V C 'd' i� � O) � � � I� f� I� 1� N N N N N N N � � � � � � t� I� t� Q Q N M M r � r � r � � � � � � M M M M M M � O O � � S Z y,, O O O O O O �A tl'y tf') � tti �fY tn O O O O O O O O O Q O O � t(� � tn N N N N N N N O O O O O O � O O . . . . . . . . . . . . . . . . . . Q� N N � � � � � � � � � � � N N N N N N � � � I� O I� N � � CO 'd' CO CO I� I� O M M I� 00 rY � tn (p a0 M � CO f� � O � � � � � N N N N N M M M M . . . . . . . . . . . . . . . . . . . . . . J� V c0 I� t� I� 1� I� ao ao N oo c0 a0 I� 1� I� I� 1� I� t� h t� � � � � � � � � � � � � � � � � � � � � � � � � � S d� V V' V �P �t �l' V' V V V V' V �1' �Y �l' V' V' V V V V �P � 7 � M � � � N (O � N M (O t�9 00 � CO 00 N V � � �> N M M � � � Ln tf7 tn Cp (p (O CO M M M � � Ln tn � ln i G7 ^ � � � � � 6� 6� � � 6� � � � � 6� 6� 6� � � � O� � G�� �t c7' V' r1' st V' V V' �t' �i' �l' C �t' V' V V V V' �i' �1' V' �t' O 00 N � M ci' � � M N � CO tn M � CO CO O � �t O� O � V CO N t� c0 N O� 00 N CO CO CO I� O I� M � CO � � � O W � 00 aO V' O N � M M u") O � .- �„� N I� M V 1� d � M N O O � N �D N N �A cY O �0 V' �f' i� � � i� J �'v'' V N � � N t� (O � � � � V M N «� � � t(� � tn � N 00 tn M M M ct I� 1� I� M M M M � i� I� O O O CO (O (O O � V � N N N N N N N N N N V O O o N � .-- .- �- r M M M O O O O O O O O O O O O O � o O O O O O O O O O O O O O O O O O O O O O O N t� N CO M M � t� M � I� f� a0 � � CO 6� � � � U") N V' CO 1� � N C V �I' V' N N N N N M M M M J' u7 � I� i� I� i� I� a0 00 c0 aO OD a0 I� i� I� I� t� I� I� I� 1� W�� d' V V V d' V V V V d' V d' V � V 7 � V � V d' V 'O CO (O O� 6� 6� a0 I� t� f� M M M N N N M O O lC O 00 O O O O �- .- � O O O O O O O O O O O O O � r� � o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � N M M M (O Cfl (O CO u� tf) � tn 'cY i� I� O e0 a0 � j � N V V V V N N N N (O CO CO (O � � � � � � � M M 00 I� N N N N M M M O O O O O O f0 d N l6 � � � I� (� I� t� M M M M M M M � � � � � � I� 6� � C d a W r I� i� I� i� N N N N N N N �- .--- .- .-- .- .- 1� I� i� 3 ` V c�i c�i .- .- .- .- .- .- .- � .- .- .- c-i ri ri ri ri ri .- o 0 o a 0 s ,�, M O O O O O �A tfi tn N tn � u") O O O O O O O O O p. I� O � tn � tn N N N N N N N O O O O O O tn O O Q$ � N r � r � � � � � � r � N N N N N N � r � (O N t� M tCJ 6� O t� d' CO CO t� 00 M d' t� 6� N � N O 1� M � CO I� O O V V �I' V' N N N N N M M M J� 'ct d' I� I� I� i� I� a0 00 c0 aO c0 a0 Ih i� I� I� t� I� I� I� I� � d � m � � � � � � � � m � � � � � � � � � � � 2 G� � � v v v d- v v v v � v d- v d- v v � v � v d- v M N CO I� W OO O tn M 00 CO r- O� CO CO 6� M O M M M M � d' � M tn � N (O N M � CO a0 O (O 00 N d' � � N N M (+') � � � � tC) � CO (O (O M M M d' � d' � � � > a�i — rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn x c�� v v v v v �r �r v v v v v v v �r �r �r v v v v v � � in u W �M O O O O O O O O O O O O O O O O O O O O � s � �,.� �„� M M M O O O O OO aO CO W N O O � � � M M M � Q (� V N N V V d' V V V V O O O O d' V V M M M N O O p — � � �i V V a0 00 a0 a0 � � � � u") � � �t' d' V' �I' V V a0 N N N N d N N r � r � r � � � � r � N N N N N N � � � � N = � U � - V II � U d O N M � tt� (p � 00 � O N � C .- N M V � CO I� a0 6� � N N N �- ._ J N d � R a N O ■� �� �� /�� i�% � � U W � •� J W � � L V V � � � L �` ^ i L � y O O O O O O O O C � 0 � O O O O O O O O J O V� O O � u�'� � u�i � � � Y o 0 0 0 0 0 0 0 0 >+ M CO CO V O� N N N p � y O O O O O O O O N W O.'k.V' O O O O O O O O N Y � V d U j,.. o 0 0 0 0 0 0 0 0 � Q� v o 0 0 0 0 0 0 o p c O N N N M r O O � O O O O O O O O � o O O O O O O O O M M M � M N N (O J� r r r r r r r r � � � W N� v �V v d�' V�' d�' �V V � O O O O O O O O � t� O O O O O O O O O M � � N M � � � M � N M = I0 � � O O O O <- O O O _ � O � y a � N N N I� � � � Q Q N O � r � r O O O � � S Z Q O N N N � O O O Q� � � � � � � � � M M M M M N N (�O J� I� t� I� t� I� 1� I� t� � � � � � � � � � � � S d� V V' V V �t �l' V' V W M CO � � M � � � > � � � CO � V � V > G7 ^ � � � � � 6) 6> � G�� �Y �t' V' �1' V' �l' V �3' N � N � � � I� M � �1') V' N M V' O �A d �.�+ � � � � N � � � J O N N N M r O O .�"' o O O O O O O O O � O O O O O O O O M M M M M N N CO J ' � � � r � r � n W�� � V V V d�' V V V l�C O O O O O O O O ; t� O O O O O O O O c0 a0 00 a0 M <1' u7 00 � j � M � � � � (O N M 0 0 0 0 0 0 0 R m c a`�i a � N N N � � °r' °r' o Q V o .- .- .- .- o 0 0 o � p. O N N N � O O O Q$^, � � r � r � � � M M M M M N N CO J� n r n � � r ti r � d � m � m � � � � 2 G� � � v v v d- v v v CO N M a0 � O � tC) � � � � � � V M V > x c�� v v °'v v v � � v � � in u O O O O O O O O � s � M N N N O tn N M � Q (� V O � � � N O O O p — N � �i N u") � � a0 N N N � � N = � � r � r � r � � .0 � - V II � U d �O = N N N N N N N �M �- J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � /�♦ V � � •� J W � � L V V ■� � � L �` ^ i L O N � � C � 0 � O O J O � � � � Y o <- 0 N � y o � � � O ik.V' O O N W Y r V � � O � L V Q� o O O p C 7 O O � W W � o O O a0 V J > r> V � � � W N � v V � CrD C�O � t � O O N N O O N � j � r r � L y � � � � �j m �a � Q w ri ri � � s Z p. o 0 Q � N N O � J � o'i c'i � � � rn rn S d � v v � N � ' O G � � �t �1 � M � M �- d � W � J � O I� W � o O O � � J ' M M W d � � V t�6 � � ; t � O O � j � W O � � m c m a m � oQ V c�i c�i 0 s p, c�o 0 Q $ � N O N J � (V M 2 G� � � v � rn � o 0 c � � v v � � — in O �� 4 N O O � Q (� V N N `p .N � �i V V N � N N N .0 c � � - V II � U C .- N O . _ d J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � � V W � •� J W � � L V V .� � � L T� i L = N � g O � � J O � � � Y •- T o N � y � O W O � C M Y � V � O N L U >,..� � m Q tn �. � 0 c � o � � � 0 � � � M O J � N � d �' 11J N � � � ` V � t � O N O N � � � M .0 L1 .� y 0 '� m �a `'M'' � Q w o � � s � Z a a' � M � a''.-.' O � � J � C7 d ^ � S u� � � 0 � � a> > c �� � 0 0 � o 01 �'v' M J O O .�"' o O � O � N J � W d � � � � tC ; t � O M � j � O M m c a�i a M o a V � o � � s Q M GI O �� � $ .Q M Q- V — J � � � � � II 2 y � � °� � U O 11 � � .'kv' V � � u, Q u_ � w � E �° o `0 C� � � � cn _ U � � � N � �- * _ 'm = � a� d �� o _ �- d Z J � d � R a N O ■� �� �� /�� i�% � /�♦ V � � .� J W � � L V V � � � L ^ i L � y N C � 0 � � J O � � � Y •- 0 N � y � O � �j O� � N Y r V � � N L U >,..� N m Q tn �. � 0 c M � .`- � fn � . � W M J > � � � � W d � � lC N � t � O N N N � ; � �t �C L1 .� y 0 '� m �a � � Q N °' � � s Z Y � Q � Q � M � J � cO C7 d ^ � S u� � � � � ' N G � � �t r � � N d � � J 6� � .�"' o M � O � r J � � W d � � t�C W ; t � O V � j � N � m � d a � o Q V u' 0 s « a' a a? Q $ � �n � J � M C� d ^ � 2 y � � � rn E o c � � v N � u o � s rn w o � Q- � u d- o - a� � u N � � N � � U = U �� � � •0 U d C .- � . _ J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a � O ■� �� � � � � O U W � •� J W � � L V .� � L �` ^ i L p � O� a0 V N V O M � � O O O O � � = N RS O O O O N �- � O .- O O O O O �- �- � 0 � C O O O O O O O O O O O O O O O O � � � �n �n �n � �n o � �n � �n �n o 0 0 0 J O � � `- `- `- � � O .- � CO I� .- O o O o � � Y o 0 0 0 0 0 0 .- o 0 0 0 0 .- .- .- � 0 >. � W V CO � (O t� � V O O N V (O O � y CO O u') V' N V t!') � V O O O O O O N l6 00 � N M � M O O � N O O O O d- W O.'k.V' C O O O O O O O O O O O O O O O O N Y � V O M M I� O O CO M I� I� � N 00 � � O tn � M � N f� � � O O O O O I� � � U j µ. o O CO t0 � M M N I� N N N O O O O M N � Q� v O O O O O O O O O O O O O O O O O 0 C O M M h O O (O M t� h � � N a0 � � O tf) � M N 1� � 6l O O O O O I� 6) � O (O CO tn M M N f� N N N O O O O M N � o O O O O O O O O O O O O O O O O O a0 tn � a0 � (D 00 M � V O O O cl' O� M a0 O N V (O aO M t� O N � � t(� � N O O . . . . . . . . . . . . _ . . . . J� � t0 c0 c0 c0 c0 I� t� ao e� a0 ao a0 ao f� rn a0 � � � � � � � � � � � � � � � � � � � � W N� v V v �Y �t �Y �t V <t V V v �Y �t �Y V �t 'O I� N N 6) � O � � M O O O O � N lC (O CO CO � N N N � � � � O O O O � � j t� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � N CO O O V V (O V � � M � O O N � N M M i� M M I� CO t!') �f) � i77 N 10 � � C4 CO C4 � V' V' M � M M N O O O O M c`') �_ � O _ � a c0 d' V d' V' V '�' i� i� I� i� 6� O� 6� O� M M � � � � � � � � 1� 1� I� (� I� f� I� 1� N N Q Q N M M M M M M M � � � � O O O O r � � � yt,, � O O O O O O O O O O O O O O �f7 � Z Q O O O O O O � t(� N � O O O O N N Q� � N N N N N N � � � � � � � � � � M M I� � CO O 00 'ct CO O O O cY O � N V CO 6� M t.f) N aO O V N � � N � 00 J� V �ci �ci tci CO t0 I� t� I� cV a0 c0 a0 ao 1� a0 I� � � � � � � � � � � � � � � � � � � � � S d� V V' V V' �Y �l' V' V V V V V V' �Y �l' V' V' CO O Cfl tn 6) tf') M I� V' N d' V I� Ln (+') I� � ln ln (p N M � O M I� I� �> N M M M M M � V V � tn � CO CO tn Ln � i G7 ^ � � � � � 6� 6� � � 6� � � � � 6� 6� � G�� �t c7' V' �1' V' V' V' V' �t' �i' �1' V �1' V' V V V I� O �('I i� I� I� O O O V' O �f'I i� 6) O N f� I� M M N � � V O � V aD O G N M � � � � � � � � � � � � � � � d �-'v'' (O � � V � V � tn � (O � V � CO � � M J O M M I� O O CO M I� I� � N 00 N O t� � M N f� � � O O O O O I� � o O CO CO tn M M N 1� N N N O O O O M N � o Q O O O O O O O O O O O O O O O O a0 � M d- M O M t� (O O O O O � 6� M CO N M 1� O I� � O M � � N N Cfl � J' V � Cfl CO Cfl (D I� I� 1� c0 aO N a0 a0 i� a0 I� W�� � V V V d' V V V V d' V d' V d' V 7 � X �O I� N N � � � O � � M O O O O � � Q lC CO (D CO tn N N N � �- �- <- O O O O � r� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � a co 0 0 �n u� co v � � � rn o 0 N Ln M M f� M M I� CO tC) Ln � � � E � � CO (O CO tn � � M tC) M M N O O O O M M 11 f0 � d N l6 � oD � V � V � V t� t� I� I� 6� Q� 6� 6� M M �U C d a � r .- .- .- .-- .- i� I� I� 1� I� i� I� i� N N II OQ N (h M M M M M M �- .- � .- O O O O .- �- V o - � � o 0 0 0 0 0 0 0 0 0 0 0 0 0�� . p. CO p O O O O O tn tn � tn O O O O N N L Gf � nj N N N N N � � � � r � r � � � Q � $ N a d' CO N N N � 00 M 00 (O CO O O O M O 00 � � tf) �!7 I� O ct I� N I� 00 e-- � tn � N �Cl I� V J� (M d' �17 t!7 C4 (D (D I� t� I� aO CO a0 a0 i� a0 I� _ (r� d �.'�+ � � � � � � � � � � m � � � � � � U 2 G� � v v v d- v v v v � v d- v d- v v � „ � � CO O (O � � � M 1� �1' N V' �F' M 'p N � M f� � tC) t!7 CO a0 M � O tn M ln � � N N M (+') M M M � � d' � � ln Cp � ln d' � > a�i — rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn � N c�� v v v v v �r �r v v v v v v v v �r �r N m 0 0 0 � u� � �n o f � N �- ao ao rn co co co 0 0 0 0 0 0 o u� o o� � � � u N °' °' � � � � � co co ui o 0 0 o v ri o -o � m E C4 �1' rY <}' V' V' V' a0 a0 a0 a0 N N N N � N � Z d M N N N N N N � � � � � � r � r � � N = * fn ' � � d O N M � tt� (O � � O C .- N M V � CO I� a0 6� � � Z J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � � U a� � •� J W � � L V V � � � L �` ^ i L O N � � C � 0 � O O J O � � � � Y o <- 0 >+ M OO N � y � V � � O ik.V' O O N W Y r V � � � � L V Q� o O O p C 7 � � � � � � o O O W V J > r> V � � � W N � v �V � CrD C�O � t � O O N N � � N � � � � � _ L y � '� � � �j m �a � Q w ri ri � � s Z p. o 0 Q � N N O CO J � o'i c'i � � � rn rn S d � v v � N � ' O G � � �t �1 � O G d � W � J r � r n � o O O � � J ' M M W d � � V t�6 � � ; t � O O � j � W � � � m c a�i � � � O Q N N M o � Q � o Q $ � N O N J � (V M 2 G� � � v � rn � o 0 c � � v v � � — in � �I 4 � � � � Q (� V N N `p .N � �i V V N � N N N .0 c � � - V II � U C .- N O . _ d J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� ♦� �� /�� i�% � /O� V � � .� J W � � L V V � � � L � i L p y O C � 0 � � J O � � � Y •- 0 N � y M � O �j O� � N Y r V � O N L U > ,.. � "� m Q tn �. � 0 c � � � N .`- � fn � . � � r J > �"> � � � W d � � � o jt� o N u�7 N � � � M .c L1 .� y 0 '� m �a `CO`i � Q N � � � S Z Y � Q, r � � o � � J � o'i C7 d ^ � S u� � � 0 � � ' N G � � �t � � G M 01 �'v' M J O � .�"' o M � O N r J ' N W d � � � N ; t � O y O � � � � m N l6 � M � d a 3 ` V � o a 0 s ,,, o a � � $ o r � J � (V � d ^ � 2 y � � r r � o C d .'L'v' V N � � u s � � E n C� � d" � �a� � u 0 ai � N = M U U � � U �O d � C .- . _ J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� � � � /�� V � � .� J W � � L V V � � � L �` ^ i L = N � � � � � J O � � � Y •- 0 N � y M � C � O � O � W N Y r V � O N L :> Q � o � m 0 c � � � M .`- � fn � . � W r J > �"> � � � W d � � � � � � t � o N O N � ; � � .0 L1 .� y 0 '� m �a � � Q N N � � S Z y,, M Q N Q � � � M J � o'i C7 d ^ � S u� � � � � ' N G � � �t r � G r d �,^,i O J r � .�"' o 'C' � O M J � M W d � � t�6 � ; t � O E j � � R � m � d a � o a V � 0 s « � Q $ � � � J � (V � d ^ � 2 y � � N r E O c � � v N � { u o s M w O � Q- � V � � � il � dj N N = N �'�' U � - V II � U d �O C .- � . _ J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a � O ■� �� �� /�� i�% � /O� V W � .� J W � � L V V .� � � L � i L � N O O O O O O O O O � C `- � 0 � O O O O O O O O O O J O � � � � � � � � � O � � Y o 0 0 0 0 0 0 0 0 � 0 >. � V CO t� I� N N t� V O � y �f) V � �Y � I� N 00 N N O M O O O 00 O O M O W O.'k.V' � O O O O O O O O O N Y � V V j� o ti 1� � M M r � N O O � L Q� v O O O O O O O O O O 0 C 7 N N M M M N O N � O � I� f� � � � N N N V M � o O O O O O O O O O O � M O � N O O N t(� � J� ui co co co co r� � ti � � � � � W N� �V �V v � � � V V V v m � v o 0 0 � � � � � j t� o 0 0 0 0 0 0 0 0 0 0 N � � N N N V V a0 � N � � �t <1' O C4 i� tf) CO = I0 � � � u") N N N M N N M N _ � O _ � a f� i� M M M CO QO CO O W � I� I� N N N OO CO CO t(� M Q Q N � � r � r O O O O O � � � Z Q � � N N N 00 CO (�9 � d� Q � � � � � � O O O � O � � � O � � � O M � J� ui �ri ui co co co co r � � ��� rn rn rn rn rn rn rn rn rn rn S d� v v v v �t �t �t v �t v � � W � N � �M M OO � �' M M M � � CO CD (O CO CO > G7 ^ � � � � � 6� 6� � � 6� G�� �Y �1' V' �1' st V' V V' �t' �i' � N V aO � tn O (O O (O � N M M V' O� �j (D N � � d �'v'' � V � � M V � � � d' J Ln N M M M M O O�O O � o I� I� .-- .- �- r .- � N �- � o O O O O O O O O O O 0�0 � O O � N O � .- 'C J' 'ct � Cfl CO C4 (D I� I� t� I� W�� � V V V d' V V V V d' l�C C�O V O O O O O � .�- O ; t� O O O O O O O O O O N M 7 � � � � O � � W � � � CO tn N N N N N N N � d N l6 � N I� M M M M � O O V C d a N 1� N N N N QO i� tf) � 3 L V � .- .- .- .- .- o 0 0 0 o a � Q O O N N N N 00 � CO � s Gf � � r � r � O O O O �� � $ .Q N N M a0 6� tCJ � O N CO Q- N � 01 O) O � O O M — J �Y' tfi �fi tn C4 (D cD I� f� I� � > II � d � m � � � � � � � � 2 G� � d' v v v d- v v v v � � N � 00 N O cY O O tf) V O t� I� 00 N M M 00 II t' M M M (+') � � (O CO CO (O U > a�i rn rn rn rn rn rn rn rn rn rn � - c�� v v v v v �r �r v v v N s � Q � � � � c�o � � c�o � a�o, w o � �o (�I V � � N N N N � � � � � U � _ U � � � � � � � � � � � � N� � r � r � r � � � � a 'm = � a� o 'o C .- N M V � CO I� a0 6� � Z J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � � U a� � ._ J � � � L V .� � � L T� i L = N � g O � � J O � � � Y •- 0 T N � y � O �j O� C N Y r V � O N L U >,..� � m Q tn �. � 0 c � o � � � 0 � � � rn � J � O � d �' W d � � d d � � t � � N V' N � � � W .c L1 .� y 0 '� m �a °�' � Q N N � � S � Z Q � d r � � � � � J � rn C7 d ^ � S u� � � N � d > r G � � � O O G d � � J O O .�"' o O � O N � J � � W d � � � tC � .�C � � � f0 � � � � m � d a � O Q " N o � �, s Q � d � �� o $ .� Q � _ J °O � c� d _ � �� x n, � � °� � U � 11 � (O U c � � v �u�i s f � o � a r � � � V N � U � _ U � � � N N �- * _ 'm = � a� d �� o _ �- d Z J r i� � I.i� O � M ._ .� �..� � � N � � O � � a L � � � � .N � � � W � L � 3 a� � � L � r�A v, 3 0 � �a L �` ^ _ N � � U N O a � d � R a N O ■� �� �� /�� i.% � /�♦ V � � .� J W � � L V V � � � L ^ i L C N � � � 0 � O O J O � � � � Y o <- 0 N � y N O O W O ik.V' O O N Y � V � � m �i s U > ,.. � `r m Q tn �. � � � c � � � � M � o O O � � J > � � � � � W N � v �V lC N � � t � O O N N � tn N � � � M N = L y � � � a � r � Q w o o � � s Z Q, oMi � � � o 0 � v J � c0 c0 S d '� � � V V � r � � � G � � � �V N M � O M d � N � J � W N O � o O O R � J � � � W d � � V lC M O ; t � O O N � � � � � d c m a o0 0 � a V o •- 0 s Q, � rn � $ o 0 o v J � � � 2 G� � � v N V � � � c � � v v � � — in � �I 4 w � � � Q � V M � � � � �i N � � u) — N = � � '� .0 � � U �O C.- N � . _ J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� ♦� �� � � � V � � J W � � L V V .� � � L T� i L � y N C � 0 � � J O � � � Y •- 0 T N � y � O �j O� C N Y r V � O N L U >,..� � m Q tn �. � 0 c � o � � � 0 � � � � � J � N � d �' 11J N � � lC N � t � O N O N � � � �F �C L1 .� y 0 N � �j m �a � Q N � � S � Z Q � d r � a''.-.' O � � J � cV C7 d ^ � S u� � � rn � � a> > c �� � N O G � d � W J O O .�"' o O � O M � J ' N W d � � � N ; t � O N M � � � � d N l6 � � d a o a V � o � � s a � d o �� � $ n � Q N �� J N � � � � II 2 y � � °� � U � 11 ' d •'k�' V i� t �i Q � w � E �° o `0 C� � d" � �n _ U � � � N N �- * _ 'm = � a� d �� o _ �- d Z J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � /�� V � � .� J W � � L V V � � � L � i L = N � � � � � J O � � � Y •- 0 >+ M N � y � O N �j O� O N Y r V � � N L U >,..� � m Q tn �. `- � c � r � � \ o � � � N � J > � � � � W d � � � � � � t � o N O N � ; � � .0 L1 .� y 0 '� m �a � � Q w o � � s Z y,, O Q O Q � � N J � cV C7 d ^ � S u� � � N d > r G � � � 6� G 01 �'v' N J M � o O � � M M J � � W d � � t�6 � ; t � O N f0 � � � � m � d a � o a V � 0 s « � a � � $ o � � J � � C� d ^ � 2 y � � rn rn � � E o > c � � v N � o �� N Q � O � Q � � � � N � �i N N � N = � U U � � U �O d � C .- . _ J i ca 0. 0 � M ._ > �..� � � N � � O � � a L � � � � .N � �1�+ � W � L � 3 a� � � L � r�A v, 3 0 � �a L � � Z � d � R a N O ■� �� �� /�� i�% � � V W � •� J W � � L V V .� � � L T� i L = N � g O � � J O � � � Y •- T o N � y � O W O � C M Y � V � O N L U >,..� � m Q tn �. � 0 c � o � � � 0 � � � M O J � N � d �' 11J N � � � ` V � t � O N O N � � � M .0 L1 .� y 0 '� m �a `'M'' � Q w o � � s � Z a a' � M � a''.-.' O � � J � C7 d ^ � S u� � � 0 � � a> > c �� � 0 0 � o 01 �'v' M J O O .�"' o O � O � N J � W d � � � � tC ; t � O M � j � O M m c a�i a M o a V � o � � s Q M GI O �� � $ .Q M Q- V — J � � � � � II 2 y � � °� � U O 11 � � .'kv' V � � u, Q u_ � w � E �° o `0 C� � � � cn _ U � � � N � �- * _ 'm = � a� d �� o _ �- d Z J APPENDIX B.3 Riprap Computations ot � � � � � ��������,��������,�� � v oax a � � � ������������������ �v o � ,� u s m o 0 0 0 0 0 0 0 0 0 0 0 o a o o� o 0 0 0 a� o a� o 0 0 0�� o 0 0 0 0 0 o a o o� o 0 0 0 � N � � � � � � � ti � � � ti � � � � � � � � � � � � a � � O v m� � o 0 0 0 0 0�� o 0 0 0 0 0 0 0 0 0 0 0 0 n c o Qx o 0 0 0 0 0 0 0 0 0 0 0 0 J ¢� oo �n vi �n ti.�-� �o co .-�'i .�-i .�'y �� iri �o 00 ,�y vi � �o iri raa v E 01 � `� Q oT o� ry o � � ���� ��� ���� � ����� �� w v v v v v v v w v w w v v v v w v w v v c� � -- u- o� a a n a a a n a a n a n n a n a a n a n n � � � � � � � � � � � � � � � � � � � � � � o� � m o N� o m in �n m N o m �� �^� � o i.n � n v r� � i.n .-i � o'-� � m o���� N m n c o � � N a� m ti ti�"� �.^�-i ^�i oo ti� m � ti �i ��+i � _ ,-� � G 0 � � � ' 9 Q v O N d' N cl' N l0 t0 �O O 00 N 00 O t0 N ct O l0 O O > M �-I O'-I l0 00 �ft I� V N t+'1 01 O 01 01 01 01 a0 N � d � O O ti 00 V O 00 cf V 00 vl �I' O N�-i cl' O O O O � 11 F Q W "1�'1 v o '^ o r -O N ri 1p => 00 N N O N Ql 00 l0 O�"I Ql 00 I� I� 1p N 00 I� OO l!1 O I� � � N � m�> R .-I O O N I� d' O O d' tv1 rl � M O� M d' N O d' O o LL � a� a� W a a � s � v�� a � o � E m v o o m o�o 0 o v�o � o0 00 o m � o0 oa O �n o � O � N N M I� I� I� 00 vl I� I� a I� 00 01 I� I� 00 �-I N O I� l0 I� Q Q LL N _ m 0' � �O tD �O V�-1 M iD l0 n'1 M v1 vl n'1 tD vt �Y [+1 Vl �O M�D ti LL � Z � = a a a a a a a a a a a a a a a a a a a a a F `" 3 z z z zzzzzzzzzzzzzzzzzz V � � W mvo a F� w � a � O � ,., a m � � �� � x a a a a¢ a¢¢ a¢ a a¢ a¢¢ a¢ a a¢ a � — � z z z z z z z z z z z z z z z z z z z z z O. � a � a N N O N Ol 00 l0 O ti Ol 00 I� I� lO N 00 h 00 v1 O I� p M al V al �-I O f� O N a0 I� lo 00 V o0 V m ut a0 O ul � � �-I O O N I� V O ti d' M�-I .y ttl O ti M ct N O d' O � O N LL fO v� � �n v o�m m � c� oa ,� o� i.n cu a v v m m ni o o,-� (n J Q� 0 Ql ey i.11 lD �--I �f1 V a I� N O I� �--I l0 N I� N I� O I� Z � n. v a m .-i o m � oo ,-i t oo �� vi �,-i m in oo �vi ,�-i � o O V J m r a o 0 0 00000a000000000000 J � ct � t� a v v a v v a v a v v a v a a v a � i o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U J V "� ;� ._ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y ?i p" =, N Vl Vl Vl 00 a0 a0 00 a0 a0 V N o0 O a0 �O a0 vt a0 d' v1 —� �-1 O O O O O O�-1 O O.-1 rl O.-� O O O O O O O � O H i L 3 ' � � v �3' ) V N = v V m O ' .. CO = N m > . � 2 O � N = U = W r ? � V - p` a Z `—° o v v o i.n �n i.n o 0 0 0 0 0 0 0 0 0 0 0 0�n o o�n — u O. �$ O N N N O O O�n O O�+l O O vt O�n O N O O N 0 d�� M ti N N N V N N M M N N N�-1 N.ti N ey .-1 U � � N m� O O O O O O O O O O O — �� o o n.� � oo ao o m.� m� m� �� a�o o m Q N � o,y o,r o c» � �i cri c�i o�ri ti� o� a d: �� o N � N 1' N N cY N N .-1 N O N O �-I N M V V1 l0 I� a0 Ot O.-I N M d' V1 t0 I� 00 Ql O LL �-1 .-i �-I �-1 ci '-I �-1 �-I �-I �-I N W W W W N W W N N N N N N N N N N N N N� O� E� v J J J J J J J J J J J J J J J J J J J J � � � �� N�@ E E E E E E E E E E E E E E E E E E E E£ v v Q � `o `o `o 0 0`o o`o o`o `o 0 0`o `o `o o`o `o o� �p � � J N in N in VI N N cn VI V1 in �% � N Vl V1 V1 �% in � a` o m ,il� , l_l- 1�j�� �� Swale Computations Channel Report Hydraflow Express Extension for AutodeskOO AutoCAD RO Civil 3DOO by Autodesk, Inc. SW 1 Triangular Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 100.00 Slope (%) = 1.40 N-Value = 0.035 Calculations Compute by: Known Q Known Q (cfs) = 10.40 Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Wednesday, Jan 29 2020 = 0.94 = 10.40 = 3.53 = 2.94 = 7.75 = 0.85 = 7.52 = 1.07 Elev (ft) Section Depth (ft) 103.00 3.00 102.50 2.50 102.00 2.00 101.50 1.50 101.00 1.00 100.50 0.50 100.00 0.00 99.50 -n �n 2 4 6 8 10 12 14 16 18 20 Reach (ft) Channel Report Hydraflow Express Extension for AutodeskOO AutoCAD RO Civil 3DOO by Autodesk, Inc. SYY 2 Triangular Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.035 Calculations Compute by: Known Q Known Q (cfs) = 8.80 Elev (ft) Section 102.00 101.50 101.00 100.50 100.00 99.50 Wednesday, Jan 29 2020 Highlighted Depth (ft) = 1.07 Q (cfs) = 8.800 Area (sqft) = 4.58 Velocity (ft/s) = 1.92 Wetted Perim (ft) = 8.82 Crit Depth, Yc (ft) = 0.79 Top Width (ft) = 8.56 EGL (ft) = 1.13 Depth (ft) 2.00 1.50 1.00 0.50 � �� ■�r.z�r.i 2 4 6 8 Reach (ft) 10 12 14 16 ,il� , l_l- 1�j�� � Water Quality Computations and Information WATER QUALITY POND DESIGN CALCULATIONS Extended Detention (Lower Stage Pond 1) Project: 100-024 By: ATC Date:5/1/20 REQUIRED STORAGE & OUTLET WORKS: BASIN AREA = 41.380 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS PERCENT = 25.00 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS RATIO = 0.2500 <-- CALCULATED WQCV (watershed inches) = 0.135 <-- CALCULATED from Figure EDB-2 WQCV (ac-ft) = 0.558 <-- CALCULATED from UDFCD DCM V.3 Section 6.5 WQ Depth (ft) = 1.400 <-- INPUT from stage-storage table AREA REQUIRED PER ROW, a(in2) = 1.730 <-- CALCULATED from Figure EDB-3 CIRCULAR PERFORATION SIZING: dia (in) = 1 1/2 <-- INPUT from Figure 5 n= 5 <-- INPUT from Figure 5 t(in) = 1/4 <-- INPUT from Figure 5 number of rows = 1 <-- CALCULATED from WQ Depth and row spacing WATER QUALITY POND DESIGN CALCULATIONS Extended Detention (Lower Stage Pond 2) Project: 100-024 By: ATC Date:5/1/20 REQUIRED STORAGE & OUTLET WORKS: BASIN AREA = 19.960 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS PERCENT = 44.70 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS RATIO = 0.4470 <-- CALCULATED WQCV (watershed inches) = 0.192 <-- CALCULATED from Figure EDB-2 WQCV (ac-ft) = 0.384 <-- CALCULATED from UDFCD DCM V.3 Section 6.5 WQ Depth (ft) = 2.200 <-- INPUT from stage-storage table AREA REQUIRED PER ROW, a(in2) = 0.996 <-- CALCULATED from Figure EDB-3 CIRCULAR PERFORATION SIZING: dia (in) = 1 1/8 <-- INPUT from Figure 5 n= 7 <-- INPUT from Figure 5 t(in) = 1/4 <-- INPUT from Figure 5 number of rows = 1 <-- CALCULATED from WQ Depth and row spacing WATER QUALITY POND DESIGN CALCULATIONS Extended Detention (Lower Stage Pond 3) Project: 100-024 By: ATC Date:5/1/20 REQUIRED STORAGE & OUTLET WORKS: BASIN AREA = 33.500 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS PERCENT = 41.20 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS RATIO = 0.4120 <-- CALCULATED WQCV (watershed inches) = 0.183 <-- CALCULATED from Figure EDB-2 WQCV (ac-ft) = 0.613 <-- CALCULATED from UDFCD DCM V.3 Section 6.5 WQ Depth (ft) = 2.200 <-- INPUT from stage-storage table AREA REQUIRED PER ROW, a(in2) = 1.510 <-- CALCULATED from Figure EDB-3 CIRCULAR PERFORATION SIZING: dia (in) = 1 3/8 <-- INPUT from Figure 5 n= 7 <-- INPUT from Figure 5 t(in) = 1/4 <-- INPUT from Figure 5 number of rows = 1 <-- CALCULATED from WQ Depth and row spacing WATER QUALITY POND DESIGN CALCULATIONS Extended Detention (Lower Stage Pond OS1) Project: 100-024 By: ATC Date: 6/29/2020 REQUIRED STORAGE & OUTLET WORKS: BASIN AREA = 3.540 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS PERCENT = 10.70 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS RATIO = 0.1070 <-- CALCULATED WQCV (watershed inches) = 0.071 <-- CALCULATED from Figure EDB-2 WQCV (8C-'ft) = 0.025 <-- CALCULATED from UDFCD DCM V.3 Section 6.5 WQ Depth (ft) = 1.100 <-- INPUT from stage-storage table AREA REQUIRED PER ROW, a(in2) = 0.105 <-- CALCULATED from Figure EDB-3 CIRCULAR PERFORATION SIZING: dia (in) = 3/8 <-- INPUT from Figure 5 n= 3 <-- INPUT from Figure 5 t(in) = 1/4 <-- INPUT from Figure 5 number of rows = 1 <-- CALCULATED from WQ Depth and row spacing FORT COLLINS STORMWATER CRITERIA MANUAL WQCV = a(0.91I�— 1.19I�+ 0.781) Where: WQCV = Water Quality Capture Volume, watershed inches a= Coefficient corresponding to WQCV drain time (Table 5.4-1) I= Imperviousness (%/100) Table 5.4-1. Drain Time Coefficients for WQCV Calculations Equation 7-1 Drain Time (hrs) Coefficient (a) 12 0.8 40 1.0 Peference� The UD-BMP exc�l-based spreadsheet, RG and EDB tabs inay be used to aid in calculating WQCV. Figure 5.4-1 WQCV Based on BMP Drain Time 0.500 40 hour drain time 0.450 I I � 0.400 � v 24 hour drain time � = 0.350 -a WQCV=a(0.91i�-1.19r=+0.78r) i� u� 0.300 N 12-hr drain time a= 0.8 �� � 0.250 24-hr drain time a= 0.9 � � 40-hr drain time a= 1.0 ��� 2�. 0.2Q0 � c +•' 0.150 �' V�i• 12 hour drain time �0.1Q0 „ 0.050 ' 0.000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Total Imperviousness Ratio (i = Ia/100) Once the WQCV in watershed inches is found from Figure 3.2-12 or using Equation 3.2-1, the required BMP volume in acre-feet can be calculated as follows: V=(WQZ �) Ax1. 2 Equation 7-2 Where: V= required volume, acre-ft A= tributary catchment area upstream, acres WQCV = Water Quality Capture Volume, watershed inches 1.2 = to account for the additional 20% of required storage for sedimentation accumulation Water Quality (Ch. 7) 5.0 Hydrologic Basis of the WQCV 5.0 Hydrologic Basis of the WQCV i�F�rtf� Page 12 APPENDIX C.1 Detention Computations, SWMM Output Project: 100-024 By: ATC Date:6/29/2020 POND SUMMARY TABLE 100-Yr. Water Quality Peak Total Peak Detention Vol. Capture Volume (Ac- Total Req'd 100-Yr. Release to Release Pond ID (Ac-Ft) Ft) Vol. (Ac-Ft) WSEL (Ft) TRIC (cfs) (cfs) Pond 1 15.76 0.56 16.32 4915.99 44.50 44.50 Pond 2 1.05 0.38 1.43 4916.75 22.00 64.50 Pond 3 0.49 0.61 1.11 4916.39 21.90 64.90 Pond 4 1.37 0.00 1.37 4916.93 0.00 4.50 Offsite Pond 1 0.26 0.025 0.285 4914.43 0.99 0.99 Total Routed Outflow to TRIC: 81.1 cfs Pond Stage-Storage Curve Pond:1 Project: 100-024 By: ATC Date: 4/15/20 Stage Contour Area Volume Volume (FT) (SF) (CU.FT.) (AGFT) 4911.06 6.68 0.00 0.000 4911.20 316.89 24.23 0.001 4911.40 2283.86 377.10 0.009 4911.60 6142.61 1652.78 0.038 4911.80 11904.18 4461.58 0.102 4912.00 19581.61 9410.61 0.216 4912.20 29205.12 17106.00 0.393 4912.40 64393.95 26236.65 0.602 4912.60 83154.18 40951.55 0.940 4912.80 100790.96 59317.81 1.362 4913.00 117534.29 81128.91 1.862 4913.20 133519.35 106217.29 2.438 4913.40 148774.54 134432.93 3.086 4913.60 163171.28 165616.43 3.802 4913.80 176812.84 199605.72 4.582 4914.00 189749.13 236254.31 5.424 4914.20 201734.69 275396.57 6.322 4914.40 212645.18 316829.77 7.273 4914.60 222863.9 360376.68 8.273 4914.80 232580.06 405917.62 9.319 4915.00 241788.83 453351.53 10.408 4915.20 250478.48 502575.7 11.538 4915.40 258553.26 553476.74 12.706 4915.60 265785.83 605908.99 13.910 4915.80 272602.38 659746.37 15.146 4916.00 279583.91 714963.53 16.413 4916.20 286769.97 771597.4 17.713 4916.40 294195.17 829692.33 19.047 4916.50 298020.53 859302.91 19.727 Pond Stage-Storage Curve Pond:2 Project: 100-024 By: ATC Date: 4/15/20 Stage Contour Area Volume Volume (FT) (SF) (CU.FT.) (AGFT) 4912.00 1.22 0.00 0.000 4913.000 8450.11 2851.02 0.065 4914.000 14166.51 14036.94 0.322 4915.000 16454.48 29333.17 0.673 4916.000 18862.54 46977.98 1.078 4917.000 22000.74 67389.51 1.547 Pond Stage-Storage Curve Pond:3 Project: 100-024 By: ATC Date: 4/15/20 Stage Contour Area Volume Volume (FT) (SF) (CU.FT.) (AGFT) 4913.000 6386.39 0.00 0.000 4914.000 13314.50 9640.72 0.221 4915.000 15574.33 24070.38 0.553 4916.000 17965.65 40826.14 0.937 4917.000 20488.44 60039.38 1.378 Pond Stage-Storage Curve Pond:4 Project: 100-024 By: ATC Date: 4/15/20 Stage Contour Area Volume Volume (FT) (SF) (CU.FT.) (AGFT) 4,914.00 1,209.92 0 0.000 4,915.00 17,185.81 7651.9 0.176 4,916.00 27,279.40 29691.2 0.682 4,917.00 37,739.69 62059.77 1.425 Pond Stage-Storage Curve Pond: OS 1 Project: 100-024 By: ATC Date: 7/1/2020 Stage Contour Area Volume Volume (FT) (SF) (CU.FT.) (AGFT) 4911.50 0.15 0.00 0.000 4911.60 73.05 2.52 0.000 4911.80 271.14 34.85 0.001 4912.00 681.00 126.97 0.003 4912.20 1339.45 325.34 0.007 4912.40 2165.87 672.58 0.015 4912.60 2827.62 1170.46 0.027 4912.80 3553.43 1807.19 0.041 4913.00 4315.12 2592.81 0.060 4913.20 5084.10 3531.68 0.081 4913.40 5828.65 4622.11 0.106 4913.60 6543.31 5858.62 0.134 4913.80 7227.94 7235.17 0.166 4914.00 7882.85 8745.78 0.201 4914.20 8511.54 10384.82 0.238 4914.40 9109.00 12146.53 0.279 4914.60 9195.77 13977.00 0.321 � a� rn c� d � vi g � � � a� rn �o d � I � I O I . � � I . � � I � I � I �� I � I � i � i .i � i � i O i H I � I � I W I � I I I I I � I W i ❑ 1 O I � I I H I � I W I � I U' I � I � I � I � I I � I W I H I � I � i I � I � I O I E-+ I � I � I a i W I +� � 0 I cr a � �" .� h� S1 O � � � � � N ?a Sa O 4-a -�J � N D � � � � � � � m � 3 O � 3 O � N � � .� � O � � � � N � N � � N � U O � c7 � H � � � � N � -k �I � -� rd �, * -k � i� � � � � � � � � + O + * p,� •� � N � �,* � �-� � � � +� +� � � � � � � -� � � ��ro�� -� +� � � -� � o -� � � �-�+�� -k -ri +� -k -k N b� -k i� "� +� � -k -k � � -�-I -k � � � +� � # � � � # � r-I O O � -� C� U Q, � � � � � -� � � � � -� � � i� � � N -�* -k Ul 'J U -k + U � c� + � -ri N � -� +� +� -� -k U� (� �, -k -k � ri O -k � � � � � � � �4�� � +� � � -� u� O u� -� � 4a +� � � �, � � � � � � � -k � � � -k � r—I N � � � � � # � � � � m a� G � x S-i O � � � � -� .� �+�� -� E-� O u7 -� � � � -k • • � 'r� -k + W N + � H � � � -� o ro o -� * � � G * 00 00 00 0 0 o � O O O O O O U O O O O O N W N N O O O U] � � � � .. .. .. O FC r—I l0 �� O O E� � O O r-I O O O C/� C/� C/� (� � \ \ O .. .. .. . C+ W OOO W OOOH,-�� •00�0 U �+ ��� y+ ���'`�-G O O O O O O ('') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � � . . � . . . . . . . . . . Q Q . . �y . . . . y� . . . . � . -� -� . . � . . �, � cn � . y� . . . . � +� I� • • Ca p, • • N -k C -k . .. � . . . 3 � N N . . Q) . . +� � O � • u� � • • bi O 1-� � � • � -4� Cn � -� -� • .� � • • S� � .� -� N • S� cn �, � -k �!-� -K • N Li.' • • N-ri �—I ri � bi -l� Cl N N N � Q, � � � • +� -u FC �s o G ro a� a� +� -u � x o� m o,� •+� �� �-�-�r�+� u�cncn�� � � +��� •� 3 0 �a,�+� ro �-�+ N � U7 �-ri r� • aJ � f� � rii � b� Cl N E � N N -� �� -� � cn 4-� � � -� � � o � '� � � b� � m � � m � H 3 � 3 '� a� +� r� -� b� a� -u �.� -� � + �+ N'rl H O O O�-N .� -N G U}a E� E-a �� +�+ 3 U ro�l � s� � o ro-� 3 s� -� a� o -u � ro� o o a rz cn c7 r� a�w o ro�+� Q+� �,a -� G�,�s� G,�+�G�a�a��,o � r�� �,a H�,cnwFCrx',�carZ .� u7 I � O t� -u N I � O 6� �2, .� I �O o 6l N U I C� � I c'') O rl � i i � -1-� I N O V" � N I '--I O N � 4J I �O� �—I 4-� 1 • • • O I I t� O �9 � N I � c'') � I U i � I k �r k • • • k+� k • • • + � �-i + • • • k � k • • • -k 5�., -k . . . � �� � . . . x -u x . . � � + � . . � O x O • -� U -x -� c� -k -k +� (1� U] -x �, -x r0 c1� O � +� � t� O r a -k �� -k �� r� � � � � � ������o + rr3 + U O �rl � � � � -� � -� a -� s� u ro + + Pa N S1 + 4a + S-� -4-� � 4 i � � O � � O � r0 p, ��-I � ��+�row � � � o � � + r� + E� W r-� N � � � N � � (0 d N� N�—I I O[� O O O N O O O O N lO `-I �� I O O O O O f� O O O O N l0 O � U� I O 61 O O O [� O O O O �--I . . ,—� � . . . . . . . . . . . rl0 O � I OO10006100000 � < I O I � I N N� N 1� I O N O O O O� O O O O � r-i O(�'--I � N I OOOOOOJOOOOI� (� �i' ('"1 N '� N I O �t' O O O Ol O O O O (� rl . . . ri 4-i I . . . . . . . . . . . . O O O O I I O O O O O Ol O O O O O O c'') I � N I c'') N � I U I N I • ��o . . y� • O y� }a 4a N Si O b� W � � � f� O +� U � �-i � u� � � � �� � ro +� � � � � -� o u� G-� U -� -� . . . . . . . . . . . . -� -� . . . . . . . . . . . . -� -� . . . . . . . . . . . . � a�� . . . . . . . . . . . . � +� � . . . . . . . . . . . �-�� . . . . . . . . .� . � � � . . . . . . . . . � -k �' -k . . . . . . � N o�a � -� � 3 3 3 . . . . . ,� � �— -� +� -� O O O • • • m O � + �+ �—I r-I �—I • 3 • cn m� �—I sa � O� 4 i 4-i 4 i • 3 O • u� O O O � U � G � G • O �I O �l '� 5 � -k -k H H H • rl 4--I U] � � $-{ � bi � U--i +� cn � � � W ��� s� s� s� 3�� o G o o N -k -rl -k � N� O H O r-� O'rl +� S-a � � +� � � � +� �—i -ri +� u] O +� -� � -� +� + � c� 4-i �—I �i b� + � rii +� -ri � O� ro ro 3� ro r� � ro�� cn � -k (Z -k 4J � '� H � � '�-I �-I �l-� � � x � 3 3 � s� z� '� o�-� .� -� � 3 � � �+ a� a� o Cz -� +� � +� x ox �-uoH�-Norow���� -� �-� s�a�s�Qxx��xG-�o � Cu� �1�C�fZ W W Cu W W HCuU � � � -� N -� � x� -� � -� + -� + + � � � H� � � -� � -� � �� � -� � � � -� � -� � � � � � � � � +� � -k � -k -k C -k -- � H� [�� -k -k " � � � 3 � v �n c� � O � +� � �— �— � ri � � � * � � O�O� I N� -k -L� -k ('') N N ('") � m� wacnv� + a� + + � + .� � .� � � �� ���� -� -� � -� -� -� �� � �� �r��� U U U N N N � � N O O O O O O O O O O O O 6� O O O r-I O N c') c'') a � � �� � � �� � � ro+ � � � +��� � � ro � � � � � � � -� � � � � � � � � � � �� �Q,��,� N x N x N� N'� O 5 � �� ��� c��� � -� C� -k V� U� Cn �+� O � � � � � * � -� � � � � N -I� -k ��-I � �rl -r-I �rl � -I-� O � E� � E� H E-� -rl H� � � + b� + � � � +� � +� � ��� �ro��ro� -x u � ��-I � ��-I U i-i U � a� �a�xs�a�s� � �� ���a��a� N g � � # �� � � � � � � � � � + + � � � � V] � � � -� 4� � � W x � O -� � � � # � # � � � � � � � � � � � � � + � � � � � � + U + � +� � � � � � c� � � � � � � � � � � i x�cn i o��roc�,-� nr� i ro�+ w i�r,� rn r� o�� I N O U I • • • • • • • I f1a � I N t� u� c'') t� N c� I � I t� rn t� r''7 0 �r+ I C� I � I I I I I I I �'+-a rl I N�� r-i �r' O c'1 I rt 4--i � I c'') o� c'') O L� [� ,-� I � O bi I • • • • • • • I O G' I ri r-I r-I r-i c'') O O I E1 � � I I fZ < I I O I I � I I I I I I I I I I rl 4--I G I t� O c-I t� O r-i o� I c� 4--I -ri I 6l o� v+ �—i iS� O c� I +� O I • • • • • • • I O G I�� N�� N� I E1 � I I � I I I I I I I I I I I � 4-i G I [� � N �n N� O I S� 4-a -.� I � O� o� n'1 � N I N O I • • • • • • • i a G i o�oo,-io,-� i � i i � i I I I I I I I I I I I � 4-1 � I O i.s� 6l O� � c'') � I S� 4-a -�-i I v' [� O� N rl N r-I I N O I • • • • • • • I �� I r-I O r-I O O r-i O I � � I I H 0.', I I I I I I I I I I I�-I �i � I[� �n � �r [� r� rn I r��ri-� I �o�N���N I +� 4-�I I • • • • • • • I O G I r-I r-I r-I N N�-I N I E� i -i I I I I I I I I I I I I I ��� I O O O O O O O I � c�-� I o 0 0 0 0 0 0 I � � I . . . . . . . I O W I O O O O O O O I E1 I I I I I I I I I I i i i���i0000000 i ro o-� i o000000 i +� G i . . . . . . . i o� i o 0 0 0 0 0 0 i N � i I I I I I I I I I I I I � Q, � I � � � � � � � I c� -ri -� I �O �9 �O lfl �9 lfl �9 I -N U I • • • • • • • I O� I c'') c'') c'') c'') c'') c'') c''1 I E1 S-� I I W I I I I I I I I I I I I I I I I I I I I I I I I I I I I � I I � I I � I I � I I � I I U I I � I I � I � I � I � � � � � � �I I U) I U) U) U) U) U) U) U) � �� -� � -� � N + -k � -k � � � -k � -k -k U] -k � � � � � � +� � -� Q, -� � � � k C] k i� i� -x a� � � � � -x O + � 2 � � '��+� � c�o�o�na���rc�� I �-I� � I�r O rn �n O t'll t�'1 �n rl �r I -U Q, N I . . . . . . . . . . I�-I N G� I OOOin�n(')N�o('") V' I O � I I Q, I � a� x � i a ro i I � I I I I I I I I 9C �� I N O N �t' co N�--I C`� � 6� I r� U-� I� O �.c� O rl �.c� �.c� r-I rl O I � � � I .. .. .. .. .. .. .. .. .. .. I �•• I O O O r-I N O O r-I N N I 4- i S� S� I o 0 0 0 0 0 0 0 0 0 I O � ,� I I � I I N U Ul I 0000000000 I � U � I I -�-i O � I I E1 � I I I I I I ��l J� I('"1 O N �t' � CO �--I � N f� I �U � I �rOO�O�Ocr�('")�r I � � � I . . . . . . . . . . I-rl Ga I� N���� 6l rl � 6� I x I rn000000r-+oo I � I � � � � � � � � � I � I I I I I I �,-� -IJ I C'") O N �t' � O� �--I � N f� I �+� N I ct' O O � O l0 ct+ �('') ct+ I � � N I . . . . . . . . . . I -� N �, I oO��n�nc�N�oc�'��r i x o i i ro i i � i i i i i I 4J ,.� +� I N O N� N� O V' cf+ O I CP -I-� � I O O O O (`1 O O O �--I �-I I � � N I . . . . . . . . . . I S� N Ga I O O O O O O N N O O I N C� I I � I I I I I I I I I�l C4 f� W W W W W W W I I �-1 W W C7 C7 C7 C7 C7 C7 C7 I N I G=�-i �H �H � � � � � � � I C2, I E���0000000 I � I� H H H E� E-i E� E-+ E� E-+ I Ei I O(� (-a cJ� u� cJ� v� u� c!� cJ� I I I I I I I I I I I I I I I I I I U I I H I I � I I �� � I I � u� I I r6 W 0.� N������-i N��0� i a� i w I I a-� �a a a-� �a I � I +� � � � � � I I� � I O I � H H O O O U] u� O O I 2 I OCaCawa+wOOaa � � � # � � � � � � � � + + � � � � � M � � f0 d h � � � �+ � � � � � � � � � U] + � 3 -� O � � � 4a -� � + H � � �� � � O � 2 � i 3 N�+� i 000rncvo�n�n,--+�r I O U O G I O O O V� �n 6l Ol � �t+ O I�� f-I N I 000000 r-1000 I G-� cii f-I U I . . . . . . . . . . I �i W S-I I 0000000000 I r� N I I 0� W I I I I I I I I I I I I� 3 N ri I f� N �n N��.r1 �-I �r+ o� �r+ I c0 O� t[$ I [� t-n ol �n l9 6l O t-n ol c'') I +� r-I � b� I • • • • • • • • � � I O 4-I �—I I 6l N N N� N r-I ('`) • • I E� G O� I O O I �i �< I I O I i � i i i i i i i i i i� 3 N� i 000c�i��nr-+�ro��r I r� O� r� I c'') o� c'') O� 6� c� i s� � � � i . . . . . � ,� I 4J 4-i � I �--I r-i �--I rl � • • i +� � o� i o0 I cO H � < I I �l O I I � I I I I I I I I I I �" N G I d� � N('"1 �-I ('"1 O O O O � r�S U-�i � o �r �� �r v� �r v� �r v� �r I � � � I .. .. .. .. .. .. .. .. .. .. i � •• i c�000000000 I � S� S� I o 0 0 0 0 0 0 0 0 0 I O Sa � I I � I I N U!n I O O O O O O O O O O I � U � I I -ri O � I I E1 � I I I I I i�� 3 v� i c�o�o���nc�,-i�nr� I � N O G� I O(� N('') O� l� ('`) O r-I l� I � +� � U I . . . . . . . . . . I�� O 4i I N�r a� rn ri t� c� t� N c'') I x E+ � I o��o�ornoo�r�o� I r0 H I N �- i I � I i i i i i�� 3 cn i 0000��ocv��nc� i� c� o[� i 000��rnmo�� I � S-a rl U I • • • • • • • • • • I�� � 4-I I O O O N[� �n ('') [� N C'") i x -u � i �o��r�o�r I rr3 � H I � I � � I I I I I I I I I I I�7 tZ fZ W W W W W W W I I�l W W C7 C7 C7 C7 C7 C7 C7 I N I f-�=+ �H H� � � � � � � � I p, I E+��0000000 I � I� H H Ei E� Ei E� Ei E� Ei I E-� I O Ll rl U] t/] U] t/] U] t/] U] I I I I I I I I I I I I I I I I I I I I U i i H I I C� I I �� � I I �I U� I I rd 0.� W N�����r-i N��0� I � I � I I���aa�� � � ���� G�� i i� � I O I � H H O O O u� U) O O I z I 0�1�lf�wwOOww � �� � � � � � � � � � -� -� + � + -k (fa -k i� i� � �� � � � � -� � � � � � O � -� O -� � � � � w � x � � � � x � x � O � � 2 � � � '� O O � 4-i � � � 3 � N � O � O z -k � + � � � � � � � � � � � � � � # � � � � � � � � � � � � � � � � � O � � � � � � + N + + �+ � ro � � � � x o x � � � � � � � a� rn �o d � 3tn i o���n � O f-� 1 t� N N t� � �—I U I • • • • 'rl 4-I I�t' c'`1 Ol O x�t-� I� v' lfl N � � I � O I I I I I �" N� I(''l I� N O r6 U-ri I 0��� � C � I .. .. .. .. N•• I r-I N O O 4-� �I S-I I O O O O O S-i � I � I N U u� i o000 � U � I -�+ o ro i N � i i i i I x u�, � ���� ro�� i m r, r-, � U � I a w i � � � -� � x o 0 �6 � O � o � I I I I I I I r-I -I-� (7) I O O O O 1 -� � � 1 I 4--i U O I I ;� a+ �l I I W I I I I p,-u u� I o000 I � � � I I � U O I i w a a i i i i i I b� 1-� rl I O N O� I D C �—I I I � U � I I Pa Ga I I I I I I I I I I N Nrl I �r��� I b��-u I ���0� I r6 � 4-i I t'"1 0� rl I S-� � I • • • • I � O O I O O O C� I P � O 1 �''1 � I � O I I � I I I I I I I I I I I I I I I I I I I I � I i -� i I � I i � I I I I N I I � I'� I'� I'� I a i o i � � � I I -I� I O O O U] I U) I P-i (� P-i O � � � � �r 61 N �--I bl CO N ('`7 CO Lc� ct' 6� �r�oN,� � h g � � u� � rn �o d 000 o�n� N �t' '--I � N �t' OJ f--I r-I O �--I N N O O O O O O oo�c� �' � �r o ,-� ��o �r v� rn N 6� l0 �+ � O O O O O O ('')00 � � � 6l N �-I N CO rI (� r-I O � cr� N �I�I a�-� I� � U) O O O a P+ -k �y k � � � � � � � � � � � � � � -� � -� + + -k CP -k � G � i� -� -k � � � � � � � O � � � � � � � � � � � � � � � � � � � � x -k � -k -� O -� I �-I N �-I I � I � I � � � I � I � I+� � b� I t� I t� i o� i • i • � E� o �o � rn � rn I � < I I I O I I I � I I I I I I I I I I I I I I �C 3 U] I N I N I r� O Ga I O I O I� rl U I • I • I C=+ I N I N I I � I � I I I I I I I I I I I I I I � b� 3 cn � �r � �r I P O C� I� I� I � �-I U I • I • I w I � I � I I � I � I I I I I I I I I I I I I I i 3 b"� i� i� I O N G I� I� I rl � U I • I • I�+ Ga 0.i I 0� I 0� I I � I � I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I N I U I I � I H I I O I f� I i � i EI i i � i � i � I r� I r� I N i � i � i � I � I � I � I � I � I � I O I O I C!) � � � � � � -� � � � S� + -k N -k i� i� i� -k � � � � � � � � � 3 � -� o -� � � � � w � i� i� � � -� � G � � -� i + � a � I \ �I ,� I <r O i xr+� i o � i ro � � i • • i�[_, a� i o 0 i ca i I I I I I I I� rl 3 I o N i x� o i o 0 i ro �� i • • i � [_, [� i o 0 i i i i i i i�— U i r� �n I � U N I O� N I � O u� I • • I-rl r i\ I o� r-I i x a� +� i �+ �+ i ro � � i i�— i I I I I I I I �C N G' I� N� N� CO N O r-I N O I r� U-ri I �r �.n �r �.n �r r-I �.n N�-n �r N I � G � I .. .. .. .. .. .. .. .. .. .. .. I � •• I OOOOON Or-100�--I I 4--I S-I �-I I 00000000000 I O � � I I � I I N U Ul I o O o O o O o O o O o I � U � I I -rl O � I I E� '� I I I I I I �— U) I`-I ('"1 O� ('"1 O lfl lq O� O O I � 3 Ga I t� �-I ��-I ('`) N N� t� O� I � O U I • • • • • • • • • • • I-�-I r-I I(-I N N t� ct+ ('") 6� �r O N t-I I�C Ct+ I NN�r�r��r� No� I � — I I � I I I I I I I I I E-+ E-+ I I H H I I �-+ � �-+ �-�- �-+ �-+ �-+ �-+ �-+ �-+ �-+ I N I � Ll � Ll � � � � � � � I � I � � � � � � � � � � � I �, I �O�O������� I Ei I r� U Ca U Ca Ca Ca Ca Ca Ca r� I I I I I I I I I I I I I I I I I I I I I I I i i � � � i i � � � i i +� +� +� -u �I�I�I I I � � � � �--i N �--i i x i c�c�,�r-+0000aacn i � i i I i I I I I I I lo I -�-i I N c'') N c'') N r-I c'') �r U] V� � I r-a I u]cntncnPaR�f��LOOa h � � � � a� rn �o d �� � � N # � � � � * V� -k � N -� �� � � ro� �� U � � � � � u� � � � + �ri + � � � � �� o� U -� � -k -k � � � � � � -k -k � � � � � � � -� � + + � � � � � � Sa � � U ?a � � � u � � '� � O U 0 � 0 0 N N O O N N d" �' m r� � � � � � � � � � � � � � � U r� r� N � � � N � � � � E-� E� V � � � � O O -�-i -I-� � '� � �� �� � N � cn f4 � � � m u� � �rl -� N � � � �� � � � ��� ��N N g � � APPENDIX C.2 Offsite Basin Routing Exhibit and Calculations z � _� � �, �, , . _� _ �� , � �; ,�� � i�',�.��� � � i � � � � �' �� � , !� �� � ��� � � �iii � �� ��I � ' '�� I � �_ � � j I ���-I /' � — ' � J� � � � _ \ � I I �'o� � : �� � �-- � ' � • ,— —� — —� -- — � � �3 � -- s- ��_L � � � �� �s �� - �� � ,� � ' ' - - - --,-_ _ � -�p , _ - '�' .--,,,,;;� k _ ,,,,,,,,-=�— - _ , , , �� - -lrj� �, . - -- ��v .�� o •nH A i ninn� � � �� I III II I I�� I I I i I i;ll� � JI m cn -; Z I � m . �� �o I � � J i d m lii� � I I I II I � � � � � � �� m i � I _ Z � Q m � � O � � � N � _ _ - J f � _ J ' �---al I �, i I� J - �-------_ \\� \\ \, � , / � �, _ ,�� --�� � _� O—O +':. .... _ o I � � �i � � ~ I --� U � I � i i ���� a � � � � i i i I�i i i � i i i I � -T— � - i I I I I I I I _ —I � — � I I I I — J � � � z� �z w� =w �z �- oz zw L L V lJ � �-i l0 In N � I� 00 l0 00 U1 O�. O O1 � U1 Q1 I� N� Q1 � �-1 � O O O � O O O� O O O Ll tl i i -a �n � � � � -o co � �' � � w ri `D iri in ri �i $��� ri M Q '-' � � �n a m Q '_' � o�o ,� `^ � � c-I N �--I N Q N I-- I- � � v ry m v m Q � o�`-' m tD Q w�"'� o`-' o�o 3 a' ��.i N �o �m 3 a' ri r^ � r" �.i p _. m� N r� �, i a '^ m^� m� r� LL U_ C C s �, �n .-i �n .-i s ^ V � m o`y' m� U �� v i.n ^� � `� M N� N O � `� M v-I � M � � o i� �� v`ii a rn fl- m� CO ii o0°0 ,} I� c-I O Ql N O � 00 W � c-I M N � t.f) M O f+'1 O V) � O N O N ++ N O O N O +' N�� O N (J � O O O O O � `� O O� O O �yj v O O O O O �yj ` O O� O O > �n m � m m > � co m o0 v m o 0 00 o v � co �o � o0 w a-+ lD O� Ql Ol O w Y ti o0 Ol O� O � c-i i--I i--I �-1 N `� � f-1 �-1 .-i N � V Ol Ol Ol Ol Ol � V� Ol Ol Ol Ol w � � � � � w � � � � �/j �^ N �/j I� l0 l0 > ,,� l0 � Ql � �+ � 00 O �..� .._. �--I � c-I a+ .__. c-1 c-I N Q1 � Ol Q1 Q1 Ql V V' d' U �1' �1' d' > > v v C W N N C W � O$ Z�� Z Z � O� Z Z Z Z Z N N 'p LL Q1 Q1 -p � Q � � Q C C ii il > � o� � N m � �,� �o rn� v N Ol O I� O � I� I� l0 f� �D w � lD CO 01 Ol O w �' V W 01 01 O Uj � i--I c-I ci i--1 N Uj .__. �--I i--I i--I i--I N Ol 6l Ql Ql Ol � Q1 Q1 Q1 Ol Ol �j � � � � V �j � � � � � W I� N I� lD N W GY �--1 CY 1� L o0 O M M N t N 01 tl1 '-1 O lJ ++ N o0 i� Ol Ol l.! Y� I� W DO O � `� c-1 .-i c-1 rl e-i � � � �-i �-f e-i N � v C � � � � � � � � � � � � p � V I� O O N p � � N N N N I-� u Ol l0 l0 lD L.fl �- U ti Ol Ol W W � � � J v v � — .--i .--i .--i � .--i — ,--i ,--i .--i .--i � N Q LL LL LL LL LL Q LL LL LL LL LL a a o. n. a a a a a n. W a a � � � � � N N N N O O O O O � O O O O O � \ O rl N M� O �-I N rv1 d' � � N v N N N N N v �--I i--I i--I i--I rl Q r � � � Z a a Q � Z ����� ����� N Vl N N ln � � N N N F -� w w W w w a a a a a +� 3 3� 3 3 t w w w w W � � s i i i i i � s i i i i i x x = x x O�C � � ����� Q� r���� � a a Q a a v a a a a a 0� a a� a a �� a a a a a H ����� � o 0 0 0 0 �- o0000 N � LL LL LL LL LL � � LL LL LI_ LL �L tii N {-+ � N LL fiS O c}0 0 � W � a� � �o � N� � i o i .i � t � i i � i � I �� I � I � I � I . � � I I � I O I H i � I WI � I I I I � I w i O I � I I H I � � W I � I U' I � I � I � I � I I � I W I H I � I � I I � I o� H I � I I �� Pa I W I � � � � � � � ro Q, -� � � � � � � � -k S-I U] -k � O � k � � • k # � � � � -k �I -ri � -k -k +� -I-� -k � � � � � -� � � � � � � � � � � � � � O -�-I � � � - � i +� -x -k -rl +� -k -k N b� -k � '� � � # k N � -rl k -k � Qa � -k � � � � � � �—I O O � + C� U C� , � -k U� � -k � -� ��� � '� � � � � � � � cn � U � � U N rci � -k -� i � -k -k 1� 1� -k -k U7 C� �. -k + -rl O � � +�"� �� � � � � � -k � � -k � cn O cn � � 4a +� � + �, �I � � � � � � -� N � �� � � � � � � � � � � � � � � � cn N � � � S-i O -� � � � -� � � +� -� +Hom� � � � k •• � 'n k -x W � � � E-� m � � � O � O � -� � � � -� O O O O O O O O o ,-i O O O O O O U O O O O O� W N N O O O U] z� � � .. .. .. O FC � � � �-f7 O O N�oo ,�000 cn cn cn cz z� �� o.. .. .. . Ga W OOO W OOOH�,-� •00�-i0 U �+����+����000000('") . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � � . . � . . . . . . . . . . p Q . . J, . . . . y..� . . . . "� • ,-� ,-G . . � . . Q, -� ul -� • y..a • • • • N -I� +� • • Ca C1, • • N � � � . .. p . . . 3 �, N N . . � . . � � o � • m � • • b� o +� � � • � -u cn � -� � • � � • • z� � � -.� � • z� cn � R, -K � -K • N tL' • • N -�-i r i � � bi �!-� (� N N N k p, k �� • +� � r� r�i O� rci N N-u +� � -� O -� cn O �—I • +� � � � -� -�I C� +� -t� � cn cn -�I � -x +� � � • � 3 0 � a +� +� ro G � H -� ul -� -�-I c� • N`� f� � r� � bi Ca aJ E� N N +-�+�u�� �� ����,o� � ��� � m � D cn � H 3 � 3 '� aJ +� !Z -� bi � +� -�I �.� � � �� �-ri H O O O� N rl -i-� � U Sa E-+ E� -rl -� �-x 3 U ro C] � s� � o ro-� 3 s� -� � o u � ro� o orz�cn�r�w�� o ro�-u Qu �� -k � -k �—I S�-� ,G �I -F� � � � N f-I O � �� r�a Hwcnw�Crz�carz � cn i rnoo�n +� N I �O O �t' N Q., ,-� I� O 6l t� N U I • • • • L1 � I c''1 O r-I rl -� 1 I N u � t� o,--i r� �, � I N O c�'1 ct+ � N 1 O O ('' 7 �O � 4-i I . . . . O I I� O cr rl � � I d' N N � I U I � I k � k . . . . -k � -k . . . . -k -ri -k • • • • � � � . . . . � � � . . . . -k -rl -k • • • • -k � -k • • • -k � -k � . . . � O � O • • � U -� -rl u� • -k -k -l-� U] Ul • + � + r0 cn O + � + -N O �l 4-i � -� � -� � � � -U -x Q, � O -� � -� -�-f � O � -x r0 � U O -�-I � � � � N � � P,' * a* s� u ro � � aro�,a� -k 4-I -k }-1 -N U -� 4-� � �-1 O �-1 r6 � o � rtS Q, -r1 w -x C � -� r6 w � � � � O � C � -� r� � E-� w F-+ u� h g � � N N � (0 d �i' N r-I I O('') O O O O� O O O O N �--I � N I O� O O O 6l O O O O �n O � CP I OOOOOOJO000 r-i • ,� � . . . . . . . . . . . O O �O I O I� O O O �O O O O O O � < I O I � I V' <t' N-l-� I o(� o O o O� o O o O OJ V' l� �9 � N I O �t'000�90000 �9 C� f--I N � 4J I O l0 O O O f--I O O O O�i' O . . � 4a I . . . . . . . . . . . . 00 O I I O�--I000 �--I000000 I � N I N N � I U I � I .. � �............ . . -k -k . . . . . . . . . . . . . . � �c . . . . . . . . . . . . . . -k � -k . . . . . . . . . . . . • • -k �l-� -k • • . -k .r{ -k . . . . . . . . . � . . � -k � -k . . . . . . . . . � o\� -k �,' -k • • • • • • � N o\� • � -� x 3 3 3 . . . . . ,� � �-- • � +�-x o00 • • • u�o� • s� � � + � � � • 3 • m m � � s� • o + o-� ��� • 3 0 • m o 0 0 S-� + U� � C C • O� O�-1 '� � i-i 4J ?-I -k -k H H H • ri 4-I !n a � S-I b� W -x b� -� 4-i u cn � Sa � W ro -� �-� s� �+ s� 3�� o� o o a� Sa � � -r1 � � � � O i-i O �l O -ri I� S-i � O� � +�� � �+�rl -rl+�cr1 O+� +� -ri � � � +� +� r� 4a r-I �—I bi +� r� +� -�-i cn a � o+ ro r� 3� ro r� � r� �, � va � � � r� � a� a� � H G �-ri � u rt � �-� -� � �� � z� s�� o�-��-� ro u � 3� � H � N o�-� � r� +� �� -x o+ �+�oHN�oro�-�+�� -� o ��� s� a� s� ca x x r+� x�-�+ o f�U -� C,� Ll�C7tZ W W G, W W HG,U -k U� -k k � k � x � � �� � �� � �� -k H -k -k -k # � # i� -V� + i� -� i� k rl k • -k -�-i -k N -k ,.Q -k �-I � � � � + +� � r� �c U� � +� -� � � m � H � � � � -� 3 -� s� � O � rci � � -� � Ga -x [n � � X + -� + � + m � -� � N � rl � � � � �� � � -� � � � x � � U U U N N N � � � O O O O O O O O O O O O 6� O O O r-I O N c') c'') a � -k �y k }� -� S-a -� i/� -k r0 � N -k -k +� �I b� k k � N C'. -k � -K � Q� -ri -k U? -k V] b� � � � � + �� �,���� N -� N-x N� N"� 0 5 -� +� + +� I-� +� N � � � � V] � V] v� V1 N t� O i� X I� f0 U * � -� � � � � N -u -� �rl � ��-I -�-I �rl � I-� O -k E� -k E� C E� -�-I H� � � + � � � a� � � a� � � �� � � ro � � ro � -k -IJ -k ��-I �; ��-I U i-� U � �� �a�xs�a�s� � �� ���a��a� � �� � � � � � � # � � � � � � � � � � � � -k 4-I -k � w � � O � � � � + � + + W + � � � � � � � � � � � � � � � � � � U � � +� � � � � � U � -� � -� � � � � � � h g � � I 4a 4-I I� 6� � 6� [� �n �9 I 4-i 4-i I O O u� � r� � t� I O N I L��rt�[�t�L��r 1 � O I • • • • • • • I� U I O O O O O O O I GY, I I I I I i .�4--i V] I O��r�Or�� I �0 4-�I f-� I O� O O� (� � O N I 4J O U I • • • • • • • I 0.� � I Nt�c`��,-���N I � I o�o�����r� I W I � I I I I I I I �w� I rd+�orn�n�rn I r64-� r6 I �9����ON�n I � o b� I • • • • • • • I O � I �--I ('')00000 I E-� � �O I I LZ < I I O I I � I 1 I I I I I I I I� 4-1 � I LO O[� 0� r--I �r � I rtl 4-a �rl I o� Ln t� t� t� O t� I +� O I . . . . . . . I O� I�� N N N N� I E� � I I � I I I I I I I I I I I i �—I� � I �t�t��oc'')N� 1 �-��� I ����rn�rn I -F-� 4--I I • • • • • • • I O� I r-1 N O O O�-I r-1 I E-� H I I I I I I I I I I I I I� Q� I o 0 0 o O o O I co ra�� I o000000 � +� D � . . . . . . . I O W I O O O O O O O I E� I 1 I I I i i i i I i i i���i0000000 i ro o� i o 0 0 0 0 0 0 i u � i . . . . . . . i o� i o 0 0 0 0 0 0 i H � i i i i i i i i I I I I I � R, � I � t� � � � t� � I rt-�-I �.� I�9 lfl �9 lfl l0 lfl l0 I +� U I • • • • • • • I O Q7 I c'') c'') c'') c'') c'') c'') c'') I E-� ?a I i a i i i i i I I I I I I I I I I I I I I I I I I I 1 I I +� I I � I I � I I � I I U I I 1-� I I U I�G �n � Q U r�i � i �i�m�m����� i u� I c� u] c� u] c� u] c� � �� + � � � � � -k -k � � � � � -k U� -k � � -k �, -k � }� � -� Q, -� -k � -k k C� k � � � �� � � � � o � � Z � I '� � +� I c'') [� O � O � �r I N u N I �n�nOc�ON�-n I U p, � I . . . . . . . I �I � G-i I O O O O O (''1 �9 I O L� I � �- i I R, I i a� x i i a ro i I � I I I I I I I I �C �� I M lfl ,-� ��--i �n c� I � U-�i I�' v� � v� rl �.c� rl I � � � I .. .. .. .. .. .. .. I �•• I O O O O O O rl I 4--I �-I �I I 0000000 I O S-i ,� I I � I I� U Ul I 0000000 I � U � I i-�oro i I E1 � I I I I I I ��l +� I inNO�Oo�n I � U' � I�-n t� �.n r� � c� � I � � � I . . . . . . . I -�I Ga I �o��ov��-i�c� I >C I �o�orl�rl I � I � � � � � � � I � I I I I I I �.-� -I-� I �I" O� O �I" O O � i �+� a� i ���nor�or��n i � � a� i . . . . . . . I-�i N C� I 00000c��o � x o � ,� ,� i ro i i � i i i i i i a� .G +� i,-� ,� a� ,� o� o�r i �-u a� i oo�r�o�roo i ro C� � i . . . . . . . I �I N Ga I O O r-I O r-I N N i � Q i I D I I � I I I I I I � � � � � I I O O O O O W W I I HHHHHC7C7 I I E-� E-+ E-� E-� H i �,i zzzzzoo I � I � � � � � H H I Ei I h h h h h U� C!� I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I � N i a� i a� a i �i00000 II � o � r�,--i o c� o cn cn I � I NNNr-+�00 � �+ � � + � � � � � � + + � � � # � � k k -� 3 � � O � + � � -� 4a -x � � � k H k � � -x � -x � � � � o + � � � i 3 N s� I O U O I � C � i w ro � I �—I W I � I � I I I I I i � 3 a� I c6 O � I � � � I O 4-a �I I E� � O I H � I I I i I i � 3 � I r� O � I 31 rl � I N 4-� .—I I � � O I r6 H � I � � x a� I � U I � � I � I � � I O S-i I � I � U I -�1 O I E-� I I I � ri 3 I � N O I �+�� i��o� I x H � i ro H i � i i � � 3 i � ro� I��a�w � x -� � I rrS r� H I � r� I I I 1 I I i i I I I I I I I I I I 1 I I I I I I I i i I M N � f0 d h � � � a� � �o � +� I 00000�� � I O o O o O o u� N I O O O O O N O UI . . . . . . . S-I I 0000000 N I a i i i i i I .� 1 6� co �r t� � t� �r+ � I LO c0 �[� c'') l9 �n b� I . . . . . . . I rl r-i N n') �r � r� � I < I O 1 � I I i i i rl i o� m t� r� o� t� �r cd I� 6� �� 0� �9 �-[� b� I,� r-i l0 N� • • � . . . . . rl � �i00000 < i o i � i � .� � � � m � ro � CI� w U C'"1 lfl lfl �-I N O O cr �r cr v� v� v� v� 0000000 0000000 0000000 L� I� O� O� O r—I r»orn�orno �--I l� �9 � N N f� �O lfl 6l 6l N O� O � � (!a I�t' O� O(�l O� O f--I C-� I O� ('' 7� O N� O UI . . . . . . . I(`l t� rl �n N N[� i,-� ,-� � n,-+ c� o� o i � I I I 1 � � � � � I O O O O O W W I H H H H H C7 CJ I H E-+ H E-� E-� N i U U U U U C2, i ��� z�00 � I � � � � � E-� Ei Ei I h h h f] h U� C/� I I I I I I � 1 I I i I I I I I ri N N I W Pa '� I 00000 � � O I c�'1 ,-i o c� O u� [n � i NNNr+�00 � �� � � � k f� k � � � + � + � � � -k U� -k � � � �� � � � � -� � -k � -k � O � -� O -� -k rl -k k (�a k � � � N -x k � k � O � � Z � � � � O O r-i 4-I � � N 3 � � � O � O � � �� -k S I -k -k tL} -k k � k � � -k � -x -k C!� -k -k -k � � � -k � -k � � � � � � � o � � � � � � -k N -k -k � -k � � � � � � + O + � +� � -K U] -K i� 3�n i o 0 i � o G-� i o 0 I � �-I U I • • I� ri 4-I I r-I N i x+� i �n co I � � I I � O I i i i i i i i i i x a� � i�n N I c� U-�-I I �n � I � � � I .. .. I N•• I O rl I 4-a Sa S � I O o I O S-i � I I � I I N U u7 I O O I � U � I I -rl O � I I E-� '� I i i i i i i I I � x+� r-i � c�t o I N � �I I � �t' I � U � I I 0.+ Ga I i i i i i i i � � � i � � i � � � i cv �r I -rl .� I • • I � O O I O N I c� � o I v� �r v i� oi i r-, i i i i i i i i i i i i i� u m i o 0 i -� G m i I 4-i U O I i x w a i I W I I I I p,u ul I OO I � � � I I "J U O I I W 0.i �7 I I I I I I b� +� r-I I Ln t� I � U � I i a t� i i i I I I I I I I b� �-I, I n 6� I r� � 4-i I v� N I S� �-I I • • I N O O I[� c'') I � � o I �-i I � o I I � I I I I I I I I I I I I I I I I I � � I I I � I I �� I i � i I � I I I I N I I � I I r� I ri N I O I a�a� I +� I U� tn I u] I O O � � + � � � � �� � � � + r� + � � # # � � � -k C!� + � � + 3 + -� O -� # � # + w + � � -k X -k � � � � �ri � � � � I � � � I � i x�,� i N i ro � a i • i � [� a� i o i Q i I I I I I I I � � 3 1 0 i x� o i � i ro �� i • i � [� [� i o i i i i i i i � — � i �n I� U N I o i � o m i • i �� � � i N i x a� +� i iro�wi i�— i � xa�� �� i r� � �� i �r i � � � i .. I N •• I O i �u � s� i o I o S-� � I 1 � 1 I N U m I o I � U � I I �rl O � I I E-� � I I I I I I � — v) I � I � 3 Cu I cr I � O U I • I��-i r i I OJ i x [� i �n � ra — � I � I I I I I 1 1 I I E� I I H I I � I N I f� I �, I � I � I O I E1 I U I I I I I I I I I I I I I � � 1 1 I I I i i I I I I I I I I I I � I I � I I �� I � i � I � h � � � u� N � (0 d rn � N r-I O O � � �--I O O O � � �--I ('7 N � OJ C'') �t+ N �t' �t' �t+ �t' O O O O O O O O • • • • N � O O N � O O [� d' r-I N � � � � E� H H H 'J '�7 �+ �+ Ca Ca � � � � � � O O � � UUr�o 00 N �t' v' �t' � � N � �� � � � � � � -k � + U] k � N -k bi -k � -� � � � + U -� � � � � v] � � -N -k -� -k � -� � � G+ o� U -� � � -k � -k -k � � -k -k -� i� + � � � � � -k -k � � � � � � � � � N � U Sa � � � � -� � '� � O U 0 � O O N N O O N N Ol O N ('") V' �t' � � � � � � � � O O � � ?i O � r� .. � � o 0 �ri -,� .. � � o G-� t� o .. .. � G G � O O -ri � � '� � N `� � � � N � u� r4 � C� � m cn �-i �ri -ri N � � � �� ri � ro ��� ��H h g � � � a� � �o � (S��) MoIWI ietol u� g �I^ vJ � a� � �o � (S��) MoIWI ietol u� g �I^ vJ (S.i�) molj � a� � �o � u� g �I^ vJ � a� � �o � (S��) MoIWI ietol v� g �I^ vJ (Si�) MoIWI ietol � a� � �o � u� g �I^ vJ � a� � �o � (Si�) MoIWI ietol u� g �I^ vJ � a� � �o � u� g � � HEC-RAS OUTPUT - WEST FLOWPATH HEC-RAS HEC-RAS 5.0.7 March 2019 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second street Davis, California X X XXXXXX XXXX XXXX XX XXXX X X X X X X X X X X X X X X X X X X X XXXXXXX XXXX X XXX XXXX XXXXXX XXXX X X X X X X X X X X X X X X X X X X X X X XXXXXX XXXX X X X X XXXXX PROJECT DATA Project Title: 100-024-w-Flowpath Project File : 100-024-W-Flowpath.prj Run Date and Time: 5/1/2020 5:15:11 PM Project in English units PLAN DATA Plan Title: P1an Ol Plan File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.p01 Geometry Title: ProposedCond West Flowpath Geometry File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.g03 Flow Title : ProposedCond West Flowpath Flow Fi1e : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.f01 Plan Summary Information: Number of: Cross Sections = 5 Multiple Openings = 0 Culverts = 0 Inline Structures = 0 Bridges = 0 Lateral Structures = 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational F1ow Regime: Subcritical Flow FLOW DATA Flow Title: ProposedCond West Flowpath Flow File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.f01 F1ow Data (cfs) River Reach RS PF 1 FLOWPATH WEST FLOWPATH WEST 290 52 FLOWPATH WEST FLOWPATH WEST 230 60 FLOWPATH WEST FLOWPATH WEST 210 67 FLOWPATA WEST FLOWPATH WEST 200 94 Boundary Conditions River Reach Downstream FLOWPATH_WEST Critical GEOMETRY DATA Profile FLOWPATH WEST PF 1 Upstream Geometry Title: ProposedCond West Flowpath Geometry Fi1e : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.g03 CROSS SECTION RIVER: FLOWPATH WEST REACH: FLOWPATH WEST RS: 240 INPUT Description: Station Elevation Data num= Sta Elev Sta Elev 0 4920 .35 4920 6.23 4919.97 7.75 4919.96 13.63 4919.93 15.05 4919.93 20.93 4919.9 22.45 4919.89 97.57 4919.76 49.13 4919.76 55.1 9919.73 56.53 4919.72 62.5 4919.69 64.05 4919.08 70.02 4919.65 71.45 4919.0'S 77.41 4919.62 78.94 4919.01 84.87 4919.58 86.31 4919.57 92.25 9519.54 93.78 4919.53 99.72 4919.5 101.16 4919.5 107.1 4919.47 108.62 4919.40 114.56 4519.43 116.01 4919.42 121.95 4919.39 123.46 4919.39 129.4 4919.36 130.86 4919.35 135.39 4919.33 145.97 4919.27 158.9 9519.22 167.47 4919.27 174.1 4919.3 175.33 4919.31 180.41 4919.34 181.66 4919.35 186.52 4919.37 187.76 4919.38 192.57 4919.4 193.74 4919.41 198.3 4919.43 199.39 4919.44 204.27 9919.46 205.78 4919.47 211.61 4919.5 213.05 4919.5 218.89 4919.53 220.36 4919.54 226.19 4919.57 227.67 4919.58 233.51 4919.6 234.94 4919.61 240.77 4919.64 242.29 4919.'05 248.14 4919.68 249.52 4919.68 255.35 9919.71 256.91 4919.72 262.76 4519.75 264.1 4919.75 269.93 4919.78 271.53 4919.79 276.54 4919.82 277.88 4919.83 282.93 4919.86 284.11 4919.87 289.18 4919.9 290.49 4919.91 295.53 4919.94 296.8 4919.95 183 Sta Elev 1.88 4919.99 9.17 4919.96 16.57 4919.92 33.69 4919.83 50.56 4919.75 58.08 4919.71 65.48 4919.67 73 4919.64 80.38 4919.6 87.84 4919.56 95.22 4919.53 102.68 4919.49 110.07 4919.45 117.53 4919.42 124.92 4919.38 131.64 4919.34 147.22 4919.27 170.25 4919.28 176.62 4919.32 182.95 4919.35 188.92 4919.38 194.82 4919.42 200.58 4919.44 207.2 4919.48 214.52 4919.51 221.82 4919.55 229.1 4919.58 236.44 4919.62 243.68 4919.65 251.06 4919.69 258.26 4919.73 265.68 4919.76 272.84 4919.8 279.06 4919.84 285.45 4919.88 291.72 4919.92 297.71 4919.96 Sta Elev 3.29 4919.98 10.69 4919.95 17.99 4919.91 34.75 4919.83 52.11 4919.74 59.51 4919.7 67.03 4919.67 74.44 4919.63 81.9 4919.59 89.28 4919.56 96.75 4919.52 104.13 4919.48 111.59 4919.44 118.98 4919.41 126.43 4919.37 132.37 4919.34 152.62 4919.24 171.57 4919.29 177.87 4919.32 184.11 4919.36 190.17 4919.39 196.02 4919.42 201.67 4919.45 208.69 4919.48 215.97 4919.52 223.27 4919.55 230.59 4919.59 237.85 4919.63 245.21 4919.66 252.43 4919.7 259.83 4919.73 267.01 4919.77 274.02 4919.81 280.41 4919.84 286.64 4919.88 293.01 4919.93 Sta Elev 4.82 4919.98 12.11 4919.94 19.51 4919.9 46.15 4919.77 53.54 4919.�3 0'1.06 4919.7 0'8.47 4919.66 75.97 4919.62 83.35 4919.59 90.81 4919.55 98.19 4919.51 105.65 4919.47 113.04 4919.44 120.5 4919.4 127.89 4919.36 133.83 4919.33 157.57 4919.22 172.79 4919.3 179.14 4919.33 185.35 4919.37 191.33 4919.4 197.1 4919.43 202.86 4919.46 210.12 4919.49 217.44 4919.53 224.74 4919.56 232.02 4919.6 239.36 4919.63 246.6 4919.67 253.98 4919.�1 20'1.18 4919.�4 20'8.61 4919.78 275.36 4919.81 281.58 4919.85 2B7.97 4919.89 294.26 4919.94 Manning's n Values num= 3 Sta n Val Sta n val Sta n Val 0 .04 135.34 .035 179.14 .04 Bank Sta: Left Right Lengths: Left Channel Right 135.34 179.14 175.�6 175.76 175.76 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Tota1 (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft) 4920.03 Element 0.00 Wt. n-val. 4920.03 Reach Len. (ft) Flow Area (sq ft) 0.000297 Area (sq ft) 52.00 Flow (cfs) 297.71 Top Width (ft) 0.40 Avg. Vel. (ft/s) 0.81 Hydr. Depth (ft) 3016.0 Conv. (cfs) 175.76 Wetted Per. (ft) 4919.22 Shear (lb/sq ft) 1.29 Stream Power (1b/ft s) 0.19 Cum Volume (acre-ft) 0.01 Cum SA (acres) Left OB 0.040 175.76 49.01 49.01 15.95 135.34 0.33 0.36 924.9 135.37 0.01 0.00 1.10 2.13 Channel 0.035 175.76 33.01 33.01 20.01 43.80 0.61 0.75 1160.5 43.80 0.01 0.01 0.66 0.83 Right OB 0.040 175.76 46.67 46.67 16.05 118.57 0.34 0.39 930.6 118.64 0.01 0.00 0.34 0.95 Warning: The cross-section end points had to be extended vertically for the computed water surface. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. CROSS SECTION RIVER: FLOWPATH WEST REACH: FLOWPATH WEST RS: 230 INPUT Description: Station Elevation Data num= Sta Elev Sta Elev 0 4920.01 .93 4920.01 6.76 9519.98 9.69 4919.96 15.6 4919.93 15.61 4919.93 21.52 4919.9 24.45 4919.89 30.36 4519.86 30.38 4919.86 36.28 4919.83 39.22 4919.B2 45.12 4919.79 45.14 4919.79 51.05 4919.76 53.98 4919.74 59.89 9519.71 62.82 4919.7 68.73 4919.67 68.74 4919.67 `74.65 4919.64 77.59 4919.62 83.49 4919.59 83.51 4919.59 89.41 4919.57 92.35 4919.55 98.25 4919.52 98.27 4919.52 104.96 9919.49 107.85 4919.47 113.75 4919.44 113.85 4919.44 119.82 4919.41 122.6 4919.4 128.5 4919.37 130.97 4919.36 139.17 4919.4 139.41 4919.4 145.37 4919.43 148.26 4919.44 153.59 4919.47 154.32 4919.47 160.28 4919.5 163.21 4919.52 169.18 4519.55 169.22 4919.55 175.18 4919.58 178.12 4919.59 184.09 4919.62 184.12 4919.02 190.46 4919.65 190.48 4919.66 196.49 9519.68 199.39 4919.7 205.35 4919.73 205.37 4919.73 211.33 4919.76 214.28 4919.77 220.29 4919.8 220.27 4919.8 226.22 4919.83 229.17 4919.85 235.12 9919.88 235.16 4919.88 291.12 4919.91 244.05 4919.92 170 Sta Elev 3.83 4919.99 9.71 4919.96 18.55 4919.92 24.47 4919.89 33.31 4919.85 39.23 4919.82 48.08 4919.77 56.92 4919.73 62.84 4919.7 71.68 4919.65 77.6 4919.62 86.44 4919.58 92.37 4919.55 101.21 4919.51 107.92 4919.47 ll6.7 4919.43 122.85 4919.4 133.45 4919.37 142.23 4919.41 148.35 4919.44 157.24 4919.49 163.26 4919.52 172.16 4919.56 178.16 4919.59 184.52 4919.63 193.44 4919.67 199.41 4919.7 208.33 4919.74 214.31 4919.77 223.21 4919.82 229.2 4919.85 238.1 4919.89 244.1 4919.92 Sta Elev 3.84 4919.99 12.64 4919.95 18.57 4919.92 27.41 4919.87 33.33 4919.85 42.17 4919.8 48.09 4919.77 56.93 4919.73 65.78 4919.68 71.7 4919.05 80.54 4919.61 86.46 4919.58 95.3 4919.54 101.22 4919.51 110.8 4919.46 116.83 4919.43 125.55 4919.38 135.95 4919.38 142.39 4919.42 151.25 4919.46 157.3 4919.49 166.19 4919.53 172.2 4919.56 181.11 4919.61 187.48 4919.64 193.46 4919.67 202.37 4919.71 208.35 4919.74 217.26 4919.79 223.24 4919.82 232.14 4919.86 238.14 4919.89 247.02 4919.94 Coeff Contr. EYpan. .1 .3 Sta Elev 6.74 4919.98 12.66 4919.95 21.5 4919.9 27.42 4919.87 36.27 4919.83 42.19 4919.8 51.03 4919.76 59.87 4919.71 65.79 4919.68 74.63 4919.64 80.55 4919.61 89.4 4919.57 95.32 4919.54 104.16 4919.49 110.88 4919.46 119.65 4919.41 126.04 4919.38 136.43 4919.39 145.25 4919.43 151.33 4919.46 160.22 4919.5 10'6.24 4919.53 175.14 4919.58 181.14 4919.61 187.5 4919.64 196.41 4919.68 202.39 4919.71 211.3 4919."16 217.29 4919.79 226.19 4919.83 232.18 4919.86 241.07 4919.91 247.07 4919.94 250 4919.95 250.05 4919.95 252.97 4919.97 253.03 4919.97 255.93 4919.98 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Va1 0 .04 107.85 .035 157.3 .04 Bank Sta: Left Right Lengths: Left Channel Right 107.85 157.3 265.04 265.04 265.04 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Tota1 (ft/s) Ma� Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) C & E Loss (ft) 4919.83 0.11 4919.72 4919.72 0.023949 60.00 145.54 2.27 0.36 387.7 265.04 4919.36 1.33 0.05 0.03 Element Wt. n-Val. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (lb/ft s) Cum Volume (acre-ft) Cum SA (acres) Left OB 0.040 265.04 6.12 6.12 8.73 49.49 1.43 0.12 56.4 4°.49 0.18 0.26 0.99 1.75 Channel 0.035 265.09 14.88 14.88 43.92 99.45 2.95 0.30 283.8 49.45 0.45 1.33 0.56 0.65 Right OB 0.040 265.04 5.39 5.39 7.35 46.61 1.36 0.12 47.5 46.61 0.17 0.24 0.23 0.62 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water suriace was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: FLOWPATH WEST REACH: FLOWPATH WEST RS: 220 INPUT Description: Station Elevation Data num= Sta Elev Sta Elev 0 4919.97 2.03 4919.95 7.87 4919.92 8.21 4919.92 14.05 9919.89 16.64 4919.88 22.48 4919.85 22.82 4919.85 32.49 4919.81 33.39 4919.8 40.21 4919.76 41.24 4919.76 68.57 4919.59 80.16 4919.44 86.54 4919.03 88.6 4919 94.45 4918.92 97.07 4918.88 101.35 9918.81 104.17 4918.77 110.05 4518.68 110.19 4918.08 116.09 4918.59 118.87 4918.55 124.75 4918.46 124.96 4918.40 130.88 4918.37 133.57 4918.33 139.45 9518.24 139.82 4918.24 145.87 4918.15 148.26 4918.11 154.14 4918.02 155.56 4918 160.08 4917.93 161.51 4917.92 165.22 4917.95 167.54 4917.98 173.44 9918.07 173.7 4918.08 179.52 4918.17 182.28 4918.21 202 Sta Elev 2.37 4919.95 10.79 4919.91 16.97 4919.88 25.4 4919.83 35.37 4919.79 43.27 4919.74 80.56 4919.44 90.65 4918.97 97.38 4918.87 104.29 4918.77 112.99 4918.64 119.04 4918.55 127.69 4918.42 133.85 4918.33 142.39 4918.2 148.95 4918.1 157.08 4917.98 161.92 4917.91 167.96 4917.99 176.39 4918.12 182.45 4918.21 Sta Elev 4.95 4919.94 11.13 4919.91 19.56 4919.86 25.74 4919.83 36.64 4919.78 55.84 4919.7 81.77 4919.42 91.53 4918.96 100.07 4918.83 107.11 4918.73 113.14 4918.64 121.81 4918.51 127.92 4918.41 136.51 4918.29 142.83 4918.19 151.2 4918.07 159.96 4917.94 162.89 4917.91 170.49 4918.03 176.6 4918.12 185.23 4918.25 Coeff Contr. Expan. .1 .3 Sta Elev 5.29 4919.94 13.�2 4919.89 19.89 4919.86 30.26 4919.82 38.3 4919.77 0'1.17 4919.68 B4.75 4919.18 94 4918.92 100.3 4918.83 10�.24 4918.72 115.93 4918.59 122 4918.5 130.63 4918.37 136.83 4918.28 145.32 4918.15 152.13 4918.05 160.02 4917.93 l0'4.59 4917.94 170.81 4918.03 179.33 4918.16 185.38 4918.25 188.18 4918.3 196.49 4918.41 202.6 4918.5 208.91 4918.59 216.1 4918.7 223.09 4918.59 229.1 4918.5 237.43 4918.38 245.86 4918.25 253.91 9918.14 259.81 4518.05 266.78 4917.94 275.43 4917.81 281.43 4917.72 290.67 9517.57 297.06 4917.45 302.94 4917.37 323.78 4917.87 326.2 4917.95 333.92 9918.19 190.32 4918.31 196.67 4918.41 205.29 4918.54 211.31 4918.63 217.3 4918.o'B 223.49 4918.59 231.7 4918.46 237.61 4918.38 248.08 4918.22 253.98 4918.14 262.65 4918.01 269.59 491`7.9 275.56 4917.81 284.19 4917.68 291 491'7.56 299.45 4917.41 304.62 4917.37 323.92 4917.87 326.64 4917.96 341.32 4918.08 193.17 4918.36 199.44 4918.45 205.53 4918.54 2ll.89 4918.64 218.15 4918.67 225.95 4918.55 234.3 4918.43 240.3 4918.34 248.15 4918.22 256.82 4918.09 263.75 4917.99 269.71 4917.9 278.35 4917.77 284.36 4917.67 293.6 4917.52 300.12 4917.41 304.77 4917.38 324.07 4917.88 329.23 4918.08 Manning's n values num= 3 Sta n Val Sta n Val Sta n Val 0 .04 284.19 .035 321.72 .04 193.53 4918.36 199.64 4918.45 205.89 4918.55 214 4918.67 220.2 4918.64 226.28 4918.55 234.56 4918.42 242.99 4918.29 251 4918.18 256.89 4918.09 263.85 4917.99 272.51 4917.86 278.5 4917.76 287.11 4917.63 294.01 4917.51 300.51 4917.4 321.29 4917.79 326.12 4917.94 330.82 4918.15 Bank Sta: Left Right Lengths: Left Channel Right 284.19 321.72 237.22 237.22 237.22 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Tota1 (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) C & E Loss (ft) 4919.07 Element 0.00 Wt. n-va1. 4919.07 Reach Len. (ft) Flow Area (sq ft) 0.000051 Area (sq ft) 60.00 Flow (cfs) 255.27 Top Width (ft) 0.27 Avg. Vel. (ft/s) 1.70 Hydr. Depth (ft) 8418.7 Conv. (cfs) 237.22 Wetted Per. (ft) 4917.37 Shear (lb/sq ft) 1.29 Stream Power (1b/ft s) 0.04 Cum Volume (acre-ft) 0.00 Cum SA (acres) Left OB 0.040 237.22 146.99 146.99 31.89 198.14 0.22 0.74 4474.4 198.17 0.00 0.00 0.52 1.00 Channel 0.035 237.22 57.33 57.33 23.00 37.53 0.40 1.53 3227.9 37.54 0.00 0.00 0.34 0.38 Right OB 0.040 237.22 19.80 19.80 5.11 19.60 0.26 1.01 716.5 20.60 0.00 0.00 0.16 0.42 Warning: The cross-section end points had to be extended vertically for the computed water surface. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. CROSS SECTION RIVER: FLOWPATH WEST REACH: FLOWPATH WEST RS: 210 INPUT Description: Station Elevation Data num= Sta Elev Sta Elev 0 4919.96 .39 4919.95 7.77 9519.B8 8.19 4919.87 13.89 4919.81 16.54 4919.79 22.28 4919.73 22.43 4919.73 28.19 4919.67 30.87 4919.05 36.6 4919.59 39.32 4919.56 45.2 4919.5 45.36 4919.5 51.3 4919.44 54.02 4919.41 140 Sta Elev 2.5 4919.93 10.74 4919.85 16.74 4919.79 25.14 4919.7 30.99 4919.64 39.44 4919.56 48.14 4919.47 54.28 4919.41 Sta Elev 4.55 4919.91 11.04 4919.84 19.42 4919.76 25.28 4919.7 33.74 4919.62 42.26 4919.53 48.33 4919.47 56.96 4919.38 196.34 4918.4 202.37 4918.49 208.45 4918.58 219.87 4918.68 220.77 4918.63 228.82 4918.51 234.76 4918.42 243.15 4918.29 251.06 4918.18 259.74 4918.05 20'6.67 4917.95 272.63 4917.85 281.27 4917.72 288.02 4917.61 296.52 4917.47 301.17 491"1.39 321.72 4917.8 326.15 4917.95 332.64 4918.18 Coeff Contr. Expan. .1 .3 Sta Elev 5.35 4919.9 13.66 4919.82 19.58 4919."16 28.01 4919.67 33.85 4919.62 42.4 4919.53 51.08 4919.44 57.29 4919.38 59.91 4919.35 66.67 4919.29 73.57 9919.22 �9.6 4918.96 86.42 4918.7 95.02 4918.38 102.3 4918.11 107.15 4918.06 115.95 4918.2 121.95 9918.29 128.05 4518.38 137.03 4918.51 143.07 4918.6 152.02 4918.73 158.1 9518.B1 167 4918.94 173.15 4919.03 181.99 4919.16 192.35 4919.28 19�.91 9919.28 60.32 4919.35 68.73 4919.27 74.02 4919.17 80.57 4918.92 89.04 4918.6 95.19 4918.37 102.77 4918.09 109.82 4918.1 116 4918.2 121.96 4918.29 131.03 4918.42 137.06 4918.51 146.02 4918.04 152.08 4918.73 161.01 4918.86 167.13 4918.95 175.99 4919.07 182.19 4919.16 193.86 4919.3 200.24 4919.24 62.85 4919.33 70.55 4919.25 74.73 4919.14 82.9 4918.84 89.35 4918.59 97.98 4918.27 104.63 4918.02 110.02 4918.1 119 4918.25 124.75 4918.33 131.05 4918.42 140.02 4918.55 146.07 4918.64 155.01 4918.77 161.11 4918.86 170 4918.99 176.16 4919.08 184.98 4919.2 194.77 4919.31 202.32 4919.19 Manning's n values num= 3 Sta n Val Sta n Val Sta n Val 0 .04 95.02 .035 127.55 .04 63.42 4919.32 71.67 4919.24 75.5 4919.11 83.5 4918.81 92.04 4918.49 99.75 4918.2 106.43 4918.05 112.88 4918.15 119.02 4918.25 124.77 4918.33 134.03 4918.47 140.06 4918.55 149.02 4918.68 155.09 4918.77 164.01 4918.9 170.14 4918.99 178.99 4919.12 185.21 4919.21 195.64 4919.32 203.42 4919.17 Bank Sta: Left Right Lengths: Left Channel Right 95.02 127.55 324.12 324.12 324.12 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Tota1 (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) C & E Loss (ft) 4919.03 0.05 4918.98 4918.70 0.003166 67.00 89.69 1.58 0.95 1190.7 324.12 4918.02 1.32 2.66 0.01 Element Wt. n-va1. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (1b/ft s) Cum Volume (acre-ft) Cum SA (acres) Left OB 0.040 324.12 4."J3 4.73 4.41 15.83 0.93 0.30 78.5 15.84 0.06 0.06 0.11 0.42 Channel 0.035 324.12 25.21 25.21 50.79 32.53 2.01 0.77 902.7 32.54 0.15 0.31 0.12 0.19 Right OB 0.040 324.12 12.51 12.51 11.79 41.33 0.94 0.30 209.6 41.34 0.06 0.06 0.07 0.25 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. CROSS SECTION RIVER: FLOWPATH WEST REACH: FLOWPATH WEST INPUT Description: Station Elevation Data Sta E1ev Sta 0 9516.64 1.21 7.57 4916.56 7.85 10.22 4916.11 10.3 15.69 4916.09 18.38 29.21 4916.04 26.91 35.08 4915.92 35.37 90.86 4915.94 41.32 RS: 200 num= Elev 4916.03 4916.55 4916.11 4916.07 4916.03 4915.91 4915.95 115 Sta Elev 2.05 4916.63 8.32 4916.55 12.9 4916.1 21.07 4916.06 27.02 4916.03 35.58 4915.91 41.86 9916 Sta Elev Sta Elev 4.04 4916.62 6.9 4916.56 8.42 4916.46 8.83 4916.06 12.98 4916.1 15.65 4916.09 21.44 4916.06 24.16 4916.04 29.66 4916.02 32.3 4916 36.99 4915.9 40.08 4915.9 42.07 4916.01 44.74 4915.9 65.79 4919.3 72.�6 4919.23 7�.65 4919.03 86.01 4918.72 92.27 4918.48 100.1 4918.19 106.76 4918.05 113 4918.15 120.83 4918.28 127.55 4918.38 134.05 4918.47 143.02 4918.6 149.08 4918.69 158.01 4918.81 164.12 4918.9 173 4919.03 179.18 4919.12 190.6 4919.25 197.22 4919.29 205.18 4919.14 Coeff Contr. Expan. .1 .3 46.38 4915.88 48.68 4915.95 48.93 4915.91 51.42 4915.93 53.9 4915.94 54.17 4915.92 56.65 4915.94 57.05 4915.94 59.53 4915.95 59.92 4915.95 62.42 4915.97 62.8 4915.97 65.3 4915.98 65.68 4915.98 0'8.18 4915.99 68.55 4916 71.06 4916.01 71.43 4916.01 73.94 4916.02 74.3 4916.03 76.69 4916.04 76.83 4916.04 76.95 4916.03 77.07 4916.04 79.53 4916.02 �9.87 4916.02 82.33 4916.01 82.67 4916.01 85.12 4915.99 85.47 4915.99 8�.92 4915.98 88.27 4915.98 90.71 4915.96 91.08 4915.96 93.51 4915.95 93.88 4915.95 96.3 4915.93 96.68 4915.93 99.1 4915.92 99.48 4915.91 101.89 4915.9 102.28 4915.9 104.69 4915.89 104.97 4915.9 10�.38 4915.89 109.78 9915.87 110.06 4915.91 111.56 4915.87 114.82 4915.89 116.73 4915.95 117.23 4915.98 118.77 4915.89 121.37 4915.89 123.2 4915.88 123.47 4915.89 123.89 4915.9 126.56 4915.98 129.1 4915.99 129.32 4915.99 131.99 4916.01 132.07 4916.01 134.75 4916.02 134.82 4916.02 137.5 4916.03 137.58 4916.03 190.25 4916.05 140.33 4916.05 143.01 4916.06 143.08 4916.06 143.37 4916.07 195.97 9516.08 146.12 4916.08 148.56 4916.09 148.73 4916.08 149.99 4916.04 150.36 4916.41 150.5 4916.54 150.95 4916.54 151.83 4916.55 153.79 4916.58 Manning's n Values num= 3 Sta n Val Sta n val Sta n Val 0 .04 104.97 .035 123.89 .04 Bank Sta: Left Right Coeff Contr. E�.pan. 104.97 123.89 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4916.35 Element Left OB Channel Vel Head (ft) 0.11 Wt. n-Va1. 0.040 0.035 W.S. Elev (ft) 4916.24 Reach Len. (ft) Crit W.S. (ft) 4910'.24 Flow Area (sq ft) 24.88 6.53 E.G. Slope (ft/ft) 0.025766 Area (sq ft) 24.88 6.53 Q Total (cfs) 94.00 Flow (cfs) 60.15 21.90 Top Width (ft) 141.55 Top Width (ft) 96.33 18.92 Vel Tota1 (ft/s) 2.54 Avg. Vel. (ft/s) 2.42 3.35 Max Chl Dpth (ft) 0.37 Hydr. Depth (ft) 0.26 0.35 Conv. Total (cfs) 585.6 Conv. (cfs) 374.7 136.9 Length Wtd. (ft) Wetted Per. (ft) 96.42 18.93 Min Ch E1 (ft) 4915.87 Shear (lb/sq ft) 0.42 0.56 Alpha 1.08 Stream Power (lb/ft s) 1.00 1.86 Frctn Loss (ft) Cum volume (acre-ft) C& E Loss (ft) Cum SA (acres) SUMMARY OF MANNING'S N VALUES River:FLOWPATH WEST Reach River Sta FLOWPATH WEST 240 FLOWPATH WEST 230 FLOWPATH WEST 220 FLOWPATH WEST 210 FLOWPATH WEST 200 SUMMARY OF REACH LENGTHS River: FLOWPATH WEST Reach River Sta FLOWPATH WEST 240 FLOWPATH WEST 230 FLOWPATH WEST 220 FLOWPATH WEST 210 FLOWPATH WEST 200 Right OB 0.040 5.62 5.62 11.95 26.30 2.13 0.21 74.5 26.39 0.34 0.73 nl n2 n3 .04 .035 .04 .04 .035 .04 .04 .035 .04 .04 .035 .04 .04 .035 .04 Left 175.76 265.04 237.22 324.12 Channel 175.76 265.04 237.22 324.12 Right 175.76 265.04 237.22 324.12 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: FLOWPATH WEST Reach River Sta. Contr. Expan. FLOWPATH WEST 240 .1 .3 FLOWPATH WEST 230 .l .3 FLOWPATH WEST 220 .1 .3 FLOWPATH WEST 210 .1 .3 FLOWPATH WEST 200 .1 .3 Profile Output Table - Standard Table 1 Reach River Sta Profile Q Tota1 Min Ch El W.S. Elev Elev E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl (cfs) (ft) (ft) (ft) (ft/ft) (ft/s) (sq ft) (ft) FLOWPATH wEST 200 PF 1 94.00 4915.87 4916.24 4916.35 0.025766 3.35 37.04 141.55 1.01 FLOWPATH WEST 210 PF 1 67.00 4918.02 4918.98 4919.03 0.003166 2.01 42.45 89.69 0.40 FLOWPATH_WEST 220 PF 1 60.00 4917.37 4919.07 4919.07 0.000051 0.40 224.12 255.27 0.06 FLOWPATH WEST 230 PF 1 60.00 4919.36 4919.72 4919.83 0.023949 2.95 26.39 145.54 0.95 FLOWPATH_WEST 240 PF 1 52.00 4919.22 4920.03 4920.03 0.000297 0.61 128.69 297.71 0.12 Profile Output Table - Standard Table 2 Reach River Sta Profile E.G. E1ev Loss Q Left Q Channel Q Right Top Width (ft) (ft) (cfs) (cfs) (cfs) (ft) FLOWPATH WEST 200 PF 1 4916.35 60.15 21.90 11.95 141.55 FLOWPATH WEST 210 PF 1 4919.03 0.01 4 41 50.79 11.79 89.69 FLOWPATH WEST 220 PF 1 4919.07 0.00 31.89 23.00 5.11 255.27 FLOWPATH WEST 230 PF 1 4919.83 0.03 8.73 43.92 7.35 145.54 FLOWPATH WEST 240 PF 1 4920.03 0.01 15.95 20.01 16.05 297.71 W.S. E1ev (ft) 4916.24 4918.98 4919.07 4919.72 4920.03 Vel Head (ft) 0.11 0.05 0.00 0.11 0.00 Crit W.S. E.G. (ft) 4916.24 4918.70 4919.72 Frctn Loss C & E (ft) 2.66 0.04 0.05 0.19 HEC-RAS OUTPUT - EAST FLOWPATH HEC-RAS HEC-RAS 5.0.7 March 2019 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second street Davis, California X X XXXXXX XXXX XXXX XX XXXX X X X X X X X X X X X X X X X X X X X XXXXXXX XXXX X XXX XXXX XXXXXX XXXX X X X X X X X X X X X X X X X X X X X X X XXXXXX XXXX X X X X XXXXX PROJECT DATA Project Title: 100-024-E-Flowpath Project File : 100-024-E-Flowpath.prj Run Date and Time: 5/1/2020 5:18:36 PM Project in English units PLAN DATA Plan Title: P1an Ol Plan File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.p01 Geometry Title: ProposedCond East Flowpath Geometry File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.g02 Flow Title : ProposedCond East Flowpath Flow Fi1e : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.f01 Plan Summary Information: Number of: Cross Sections = 5 Multiple Openings = 0 Culverts = 0 Inline Structures = 0 Bridges = 0 Lateral Structures = 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational F1ow Regime: Subcritical Flow FLOW DATA Flow Title: ProposedCond East Flowpath Flow File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.f01 F1ow Data (cfs) River Reach RS PF 1 FLOWPATH EAST FLOWPATH EAST 190 82 FLOWPATH EAST FLOWPATH EAST 120 92 FLOWPATH EAST FLOWPATH EAST 100 116 Boundary Conditions River Reach Profile Downstream FLOWPATA EAST Critical GEOMETRY DATA FLOWPATH EAST PF 1 Upstream Geometry Title: ProposedCond East Flowpath Geometry Fi1e : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.g02 [�I�ibY.�ya[�IillKil�l RIVER: FLOWPATH EAST REACH: FLOWPATH EAST INPUT Description: Station Elevation Sta Elev 0 4921.42 6.42 4921.39 15.19 4921.34 21.29 4921.31 29.76 4921.27 36.07 4921.24 92.59 9921.22 50.81 4921.18 56.99 4921.15 65.74 4921.11 71.82 4921.08 80.66 9521.03 86.71 4921 95.59 4920.96 101.62 4520.93 107.58 4920.9 116.48 4920.86 122.5 4920.83 131.41 9520.78 137.63 4920.75 146.5 4920.71 152.55 4920.68 163.41 4920.52 170.03 4920.37 175.99 9920.23 184.71 4920.11 191.57 4920.08 199.31 4920.13 208.05 4920.29 213.99 4920.49 222.42 4920.78 22�.68 9920.84 234.86 4920.9 293.31 4920.98 249.29 4921.04 258.09 4921.13 264.09 9521.19 272.87 4921.28 278.81 4921.34 287.65 4921.43 293.58 4921.49 302.43 4921.58 308.48 4921.64 Data Sta .49 9.24 15.31 23.96 30.14 37.54 44.84 51.1 59.77 65.88 74.69 80.76 89.62 95.66 104.54 110.51 116.53 125.44 131.66 140.55 146.58 155.32 163.73 170.04 178.87 185.26 193.5 201.75 208.06 216.85 222.54 229.97 237.39 243.41 252.18 258.13 266.96 272.9 281.74 287.67 296.52 302.57 311.43 RS: 140 num= Elev 4921.42 4921.37 4921.34 4921.3 4921.27 4921.23 4921.21 4921.1B 4921.14 4921.11 4921.06 4921.03 4920.99 4920.9'0 4920.92 4920.89 4920.86 4920.81 4920.78 4920.74 4920.71 4920.66 4920.52 4920.37 4920.15 4920.1 4920.07 4920.16 4920.29 4920.58 4920.79 4920.86 4920.92 4920.98 4921.07 4921.13 4921.22 4921.28 4921.37 4921.43 4921.52 4921.58 4921.67 213 Sta 3.33 9.38 18.09 24.21 32.6 38.96 45.33 53.8 59.95 68.72 74.8 83.65 89.69 98.57 104.6 110.57 119.47 125.48 134.6 140.61 149.46 155.53 164.17 172.97 180.02 187.64 195.42 202.21 210.98 217.06 224.72 230.19 237.6 246.26 252.23 261.04 266.99 275.83 281.76 290.61 296.54 305.52 3ll.89 Elev 492L4 4921.37 4921.33 4921.3 4921.26 4921.26 4921.21 4921.17 4921.14 4921.09 4921.06 4921.02 4920.99 4920.95 4920.92 4920.89 4920.84 4920.81 4920.77 4920.74 4920.69 4920.66 4920.51 4920.3 4920.13 4920.09 4920.09 4920.17 4920.38 4920.59 4920.81 4920.86 4920.93 4921.01 4921.07 4921.16 4921.22 4921.31 4921.37 4921.46 4921.52 4921.61 4921.67 Sta 3.45 12.19 18.28 26.87 33.11 40.34 47.83 54.04 62.75 68.85 77.68 83.73 92.6 98.64 104.84 113.5 119.52 128.42 134.64 143.53 149.56 158.1 167.09 172.98 181.78 188.44 196.4 205.04 211.01 219.78 226.89 232.37 240.35 246.34 255.13 261.08 269.91 275.85 284.7 290.63 299.48 305.53 Elev 4921.4 4921.36 4921.33 4921.29 4921.26 4921.23 4921.2 4921.17 4921.12 4921.09 4921.05 4921.02 4920.98 4920.95 4920.91 4920.87 4920.84 4920.8 4920.77 4920.72 4920.69 4920.65 4920.44 4920.3 4920.12 4920.09 4920.1 4920.2 4920.39 4920.68 4920.83 4920.88 4920.95 4921.01 4921.1 4921.16 4921.25 4921.31 4921.4 4921.46 4921.55 4921.61 6 12 21 27 35 41 48 56 62 71 77 86 92 101 107 113 122 128 137 14 152 160 167 175 182 190 198 205 213 222 22"1 234 240 249 255 269 278 284 293 299 308 Sta .29 .35 .03 .18 .32 .86 .19 .78 .91 .71 .78 .63 .67 .56 .53 .55 .45 .47 .58 3.6 .41 .71 .11 .91 .01 .57 .55 .58 .91 .41 .12 .54 .49 .22 .18 264 .94 .78 .72 .57 .49 .47 Elev 4921.39 4921.36 4921.31 4921.28 4921.24 4921.23 4921.2 4921.15 4921.12 4921.08 4921.05 4921 4920.98 4920.93 4920.9 4920.87 4920.83 4920.8 4920.75 4920.72 4920.68 4920.59 4920.44 4920.23 4920.12 4920.08 4920.13 4920.2 4920.48 4920.77 4920.83 4920.9 4920.95 4921.04 4921.1 4921.19 4921.25 4921.34 4921.4 4921.49 4921.55 4921.64 Manning's n Values num= 3 Sta n Va1 Sta n val Sta n Va1 0 .04 167.09 .035 213.91 .04 Bank Sta: Left Right Lengths: Left Channel Right 167.09 213.91 248.56 248.56 248.56 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) C & E Loss (ft) 4920.88 0.22 4920.66 4920.66 0.022388 82.00 63.37 3.59 0.59 548.0 248.56 4920.07 1.08 0.13 0.06 Element Wt. n-Val. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (1b/ft s) Cum Volume (acre-ft) Cum SA (acres) Left OB 0.040 248.56 1.04 1.04 1.18 11.32 1.13 0.09 7.9 11.32 0.13 0.15 0.86 1.89 Channel 0.035 248.56 21.35 21.35 80.32 46.82 3.76 0.46 536.8 46.83 0.64 2.40 0.63 0.79 Right OB 0.040 248.56 0.46 0.46 0.50 5.24 1.09 0.09 3.3 5.24 0.12 0.13 0.76 1.13 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: FLOWPATH EAST REACH: FLOWPATH EAST RS: 130 INPUT Description: Station Elevation Data num= Sta Elev Sta Elev 0 4919.71 70.6 4919.2 9�.99 4918.78 99.56 4918.%5 105.33 4918.66 107.8 4918.0'3 113.79 4918.54 114 4918.53 119.77 4918.45 122.5 4918.41 127.23 4918.34 127.5 4918.33 133.55 4918.24 135.89 4918.21 140.58 9918.14 142.35 4918.16 198.06 4518.25 149.91 4918.2B 155.62 4918.36 156.18 4918.37 163.06 4918.47 163.42 4918.5 180.13 4918.78 182.48 4918.81 188.59 9518.B7 188.81 4918.87 194.59 4918.93 197.33 4918.95 202.73 4919.01 263.3 4919.98 72 Sta Elev 87.26 4918.95 101.17 4918.73 108.22 4918.62 116.67 4918.49 122.66 4918.4 130.12 4918.29 136.98 4918.19 144.13 4918.19 150.19 4918.28 158.47 4918.4 167.86 4918.58 183.02 4918.81 191.48 4918.9 197.48 4918.96 Sta Elev 90.96 4918.9 102.44 4918.71 110.79 4918.58 116.88 4918.49 125.4 4918.36 130.48 4918.29 138.78 4918.16 145.21 4918.21 152.76 4918.32 159.6 4918.42 175.42 4918.73 185.56 4918.84 191.7 4918.9 200.24 4918.98 Coeff Contr. Expan. .1 .3 Sta Elev 9�.26 4918.8 104.7 4918.67 111.11 4918.58 119.59 4918.45 125.55 4918.36 133 4918.25 139.88 4918.15 14�.52 4918.24 153.14 4918.32 161.33 4918.45 179.06 4918.77 185.91 4918.84 194.41 4918.92 200.37 4918.98 Manning's n Values num= 3 Sta n Va1 Sta n Val Sta n Va1 0 .04 127.5 .035 153.14 .04 Bank Sta: Left Right Lengths: Left Channel Right 127.5 153.14 312.19 312.19 312.19 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) C & E Loss (ft) 4919.79 0.00 4919.79 0.000151 82.00 251.14 0.42 1.65 6680.6 312.1G 4918.14 1.38 0.11 0.00 Element Wt. n-Va1. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (1b/ft s) Cum Volume (acre-ft) Cum SA (acres) Coeff Contr. Expan. .1 .3 Left OB 0.040 312.19 81.30 81.30 27.45 127.50 0.34 0.64 2236.5 127.58 0.01 0.00 0.63 1.50 Channel 0.035 312.19 39.80 39.80 27.80 25.64 0.70 1.55 2265.2 25.54 0.01 0.01 0.46 0.59 Right OB 0.040 312.19 72.03 72.03 26.74 98.00 0.37 0.73 2178.9 98.01 0.01 0.00 0.56 0.84 Warning: The cross-section end points had to be extended vertically for the computed water surface. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. CROSS SECTION RIVER: FLOWPATH EAST REACH: FLOWPATH EAST RS: 120 INPUT Description: Station Elevation Data num= 37 Sta E1ev Sta Elev Sta Elev 67.3 4919.6 138.66 4919.37 139.47 4919.38 196.17 4919.35 147.22 4919.34 148.74 4919.3 155.19 4919.12 156.64 4919.1 157.05 4919.1 161.49 4519.04 162.55 4919.02 164.06 4919 168.05 4918.95 168.45 4918.94 169.32 4918.93 183.93 4918.64 185.99 4918.59 186.71 4918.58 189.9 4918.51 192.58 4918.58 199.44 4918.73 211.43 4519.03 251.3 4918.8 Manning's n values num= 3 Sta n Va1 Sta n Val Sta n Va1 67.3 .04 182.78 .035 199.49 .04 Sta Elev Sta Elev 141.16 4919.37 144.86 4919.35 151.93 4919.21 153.37 4919.17 159 4919.07 159.8 4919.05 165.3 4918.98 10'6.67 4918.96 170.79 4918.91 182.78 4918.65 189.2 4918.53 189.34 4918.52 206.74 4918.91 208.45 4918.96 Bank Sta: Left Right Lengths: Left Channel Right 182.78 199.44 289.64 289.64 289.64 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (it) 4919.68 0.02 4919.66 0.001180 92.00 184.00 0.96 1.15 2677.8 289.64 491B.51 1.36 0.80 Element Wt. n-Val. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) xydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (1b/ft s) Cum Volume (acre-ft) Coeff Contr. Expan. .1 .3 Left OB 0.040 289.64 39.31 3°.31 24.45 115.48 0.62 0.34 711.8 115.55 0.03 0.02 0.19 Channel 0.035 289.64 17.56 17.56 26.53 16.66 1.51 1.05 772.2 16.66 0.08 0.12 0.25 Right OB 0.040 289.64 39.17 39.17 41.01 51.86 1.05 0.76 1193.7 52.73 0.05 0.06 0.16 C& E Loss (ft) 0.01 Cum SA (acres) 0.63 0.39 0.30 Warning: The cross-section end points had to be extended vertically for the computed water surface. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Cil3�b'�s�I�YIIKNdI RIVER: FLOWPATH EAST REACH: FLOWPATH EAST RS: 110 INPUT Description: Station Elevation Data num= Sta Elev Sta Elev 0 4919.63 6.05 4919.56 12.01 4919.49 13.73 4919.47 19.93 4919.4 22.27 4919.37 28.74 4919.3 29.22 4919.29 35.41 4919.22 38.27 4919.19 44.57 4919.12 44.7 4919.12 50.89 4919.05 53.97 4919.01 59.88 4918.93 59.91 4918.93 65.69 9918.85 68.5 4918.81 74.25 4918.73 74.35 4918.%3 80.12 4918.64 82.87 4918.6 88.62 4918.52 88.76 4918.52 100.51 4918.35 101 4918.35 107.89 4918.25 110.52 4918.21 117.18 4918.11 118.54 4918.09 126.9 9917.98 127.17 4917.97 132.32 4918.01 134.79 4918.07 191.63 4918.22 144.31 4918.29 151.56 4918.45 151.91 4918.46 158.75 4918.62 162.16 4918.69 165.47 9518.75 168.58 4918.8 174.93 4918.91 175.37 4918.92 182.15 4919.03 184.44 4919.07 190.79 4519.17 193.23 4919.21 198.6 4919.3 199.85 4919.32 208.34 9919.32 126 Sta Elev 7.54 4919.54 15.57 4919.45 23.02 4919.37 31.94 4919.26 38.51 4919.19 47.71 4919.08 53.99 4919.01 62.75 4918.89 68.57 4918.81 77.12 4918.69 83 4918.6 91.49 4918.48 103.85 4918.3 111.37 4918.2 120.52 4918.07 127.19 4917.97 136.62 4918.11 145.06 4918.3 155.12 4918.53 162.18 4918.69 168.'75 4918.81 178.1 4918.96 185.66 4919.09 193.96 4919.22 200.29 4919.33 Manning's n values num= 3 Sta n Val Sta n Val Sta n Va1 0 .04 111.37 .035 144.31 .04 Sta Elev 8.14 4919.54 16.83 4919.44 25.52 4919.34 32.31 4919.26 41.43 4919.16 47.8 4919.08 55.99 4918.99 62.8 4918.89 71.38 4918.77 77.23 4918.69 85.75 4918.56 97.18 4918.4 104.43 4918.3 ll3.85 4918.16 122.32 4918.04 129.25 4917.94 138.21 4918.15 147.96 4918.37 155.33 4918.54 162.94 4918.71 171.75 4918.86 178.73 4918.97 187.62 4919.12 196.01 4919.26 202.52 4919.33 Bank Sta: Left Right Lengths: Left Channel Right 111.37 144.31 232.17 232.17 232.17 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Tota1 (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) C & E Loss (ft) 491B.86 0.15 4918.71 4918.66 0.012817 92.00 80'.84 2.76 0.77 812.6 232.17 4917.94 1.30 3.85 0.01 Element Wt. n-val. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (1b/ft s) Cum Volume (acre-ft) Cum SA (acres) Sta Elev 10.63 4919.51 18.96 4919.41 26.12 4919.33 35.11 4919.23 41.6 4919.15 50.84 4919.05 57.01 4918.98 65.63 4918.85 71.46 4918.77 80 4918.65 85.88 4918.56 97.5° 4918.39 107.18 4918.26 114.91 4918.15 123.85 4918.02 131.36 4917.99 140.55 4918.2 148.48 4918.38 158.65 4918.61 105.41 4918.75 172.05 4918.86 181.27 4919.01 189.32 4919.15 197.2 4919.28 206.81 4919.32 Coeff Contr. Expan. .1 .3 Left OB 0.040 232.17 °.08 9.08 15.43 35.40 1.70 0.26 136.3 35.40 0.21 0.35 0.03 0.12 Channel 0.035 232.17 20.33 20.33 70.80 32.94 3.48 0.62 625.3 32.95 0.49 1.72 0.12 0.22 Right OB 0.040 232.17 3.89 3.89 5.78 18.50 1.49 0.21 51.0 18.51 0.17 0.25 0.01 0.07 Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. CROSS SECTION RIVER: FLOWPATH EAST REACH: FLOWPATH EAST RS: 100 INPUT Description: Station Elevation Data num= Sta Elev Sta Elev 0 4917.48 1.71 4917.46 7.51 4917.41 7.71 4917.41 14.1 4917.36 14.77 4917.35 16.04 4916.85 16.96 4916.87 21.99 4916.83 23.99 4916.81 29.46 4916.77 30.19 4916.76 35.66 4516.71 37.49 4916.09 39.97 4916.65 40.88 4916.59 42.16 4917.08 42.84 4917.09 99.21 4917.04 49.4 4917.03 55.2 4916.98 57.91 4916.96 63.72 4916.91 63.9 4916.9 69.71 4916.85 72.42 4916.83 76.05 9916.78 76.53 4916.%7 78.09 4916.26 78.92 4916.32 81.69 4916.3 84.34 4916.27 90.05 4916.22 92.19 4916.2 97.89 4916.15 98.6 4916.14 102.7 4916.04 103.79 4915.97 106.28 9915.86 109.24 4915.3 116.89 4914.64 117.95 4914.44 122.89 4914.29 124.02 4914.29 135.77 4914.24 137.39 4914.23 197.46 4914.2 148.01 4914.25 156.05 9514.24 157.21 4914.23 165.18 4914.22 166.74 4914.22 171.68 4914.29 172.8 4914.28 177.27 4914.43 179.35 4914.51 185.82 4915.29 188.84 4915.B9 193.4 4916.12 193.46 4916.12 215.48 4916.26 215.67 4916.26 217.99 9516.67 218.04 4916.74 222.32 4916.74 222.47 4916.74 228.27 4916.77 231.03 4916.78 236.84 4916.81 236.98 9916.81 242.79 4916.84 245.55 4916.85 251.71 4916.88 251.91 4916.88 253.51 9916.35 254.03 4916.37 256.21 4916.45 257.61 4916.45 262.69 4916.49 264.76 4916.5 2�0.22 4916.52 270.89 4916.53 203 Sta Elev 1.91 4917.46 10.41 4917.38 14.97 4917.35 18.14 4916.87 24.72 4916.81 32.19 4916.74 38.�7 4916.68 41.24 4916.57 43.12 4917.09 52.11 4917.01 58.1 4916.96 66.62 4916.88 72.61 4916.83 76.92 4916.76 79.01 4916.32 86.48 4916.25 92.9 4916.2 99.69 4916.13 104.67 4915.99 111.66 4915 119.72 4914.44 125.15 4914.3 138.56 4914.24 148.19 4914.24 161.39 4914.23 168.33 4914.23 1�3.87 4914.46 180.47 4914.7 189.6 4916.05 196.24 4916.13 216.1 4916.27 218.98 4916.74 225.22 4916.75 231.18 4916.78 239.74 4916.82 245.69 4916.85 252.65 4916.86 254.81 4916.42 259.29 4916.47 265.42 4916.5 272.32 4916.53 Sta Elev 4.61 4917.44 11.32 4917.38 15.32 4917.13 19.41 4916.86 26.73 4916.79 32.92 4916.73 39.73 4916.66 41.6 4916.86 45.63 4917.06 52.3 4917.01 60.82 4916.93 66.81 4916.88 73.26 4916.81 77.3 4916.52 79.24 4916.31 87.19 4916.25 95.04 4916.18 100.81 4916.12 105.41 4916.03 113.54 4914.78 120.52 4914.46 126.32 4914.23 145.69 4914.24 153.37 4914.24 162.52 4914.22 169.41 4914.22 175.11 4914.45 181.79 4914.77 190.58 4916.04 197.13 4916.14 216.6 4916.26 219.19 4916.72 225.37 4916.75 233.93 4916.79 239.88 4916.82 248.45 4916.87 252.76 4916.86 254.94 4916.42 259.96 4916.47 267.49 4916.51 Sta Elev 4.81 491�.44 13.81 4917.36 15.69 4916.84 21.26 4916.84 27.46 4916.78 34.93 4916.72 39.91 4916.65 41.97 4917.08 46.5 4917.06 55.01 4916.98 61 4916.93 69.52 4916.85 75.79 4916.�9 77.64 4916.25 80.31 4916.31 89.33 4916.23 95.75 4916.17 101.46 4916.12 105.46 4916.02 115.74 4914.66 121.77 4919.46 134.63 4914.23 146.9 4914.25 154.55 4919.23 164.07 4914.23 170.48 4914.22 176.39 4914.41 183.56 4919.98 191.13 4916 199 4916.15 217.38 4916.25 221.8 4916.73 228.13 4916.77 234.08 4916.79 242.65 4916.84 249.09 4916.87 253.23 4916.56 255.33 4916.43 262.03 4916.98 268.16 4916.51 Manning's n Values num= 3 Sta n Va1 Sta n Val Sta n Val 0 .04 125.15 .035 175.11 .04 Bank Sta: Left Right Coeff Contr. Expan. 125.15 175.11 .l .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4915.00 Element Vel Head (ft) 0.23 Wt. n-Val. W.S. Elev (ft) 4914.77 Reach Len. (ft) Crit W.S. (ft) 4914.77 Flow Area (sq ft) E.G. Slope (ft/ft) 0.020835 Area (sq ft) Left OB Channel Right OB 0.040 0.035 0.040 3.25 26.32 1.60 3.25 26.32 1.60 Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) C & E Loss (ft) 11'0.00 Flow (cfs) 68.08 Top Width (ft) 3.72 Avg. Vel. (ft/s) 0.57 Hydr. Depth (ft) 803.6 Conv. (cfs) Wetted Per. (ft) 4914.20 Shear (lb/sq ft) 1.08 Stream Power (lb/ft s) Cum Volume (acre-ft) Cum SA (acres) SUMMARY OF MANNING'S N VALUES River:FLOWPATH EAST Reach River Sta FLOWPATH EAST 140 FLOWPATH EAST 130 FLOWPATH EAST 120 FLOWPATH EAST 110 FLOWPATH EAST 100 SUMMARY OF REACH LENGTHS River: FLOWPATH EAST Reach River Sta FLOWPATH EAST 140 FLOWPATH EAST 130 FLOWPATH EAST 120 FLOWPATH EAST 110 FLOWPATH EAST 100 nl n2 n3 .04 .035 .04 .04 .035 .04 .04 .035 .04 .04 .035 .04 .04 .035 .04 Left Channel Right 248.56 248.56 248.56 312.19 312.19 312.19 289.64 289.64 289.64 232.17 232.17 232.17 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: FLOWPATH EAST Reach FLOWPATH EAST FLOWPATH EAST FLOWPATH EAST FLOWPATH EAST FLOWPATH EAST River Sta 140 130 120 110 100 Contr .1 .1 .1 .l .l Expan. .3 .3 .3 .3 .3 7.53 11.44 2.31 0.28 52.2 11.47 0.37 0.85 105.17 49.96 4.00 0.53 728.6 49.98 0.68 2.74 3.30 6.68 2.06 0.24 22.9 6.70 0.31 0.64 Profile Output Table - Standard Table 1 Reach River Sta Profile Q Tota1 Min Ch El W.S. Elev Crit W.S. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl (cfs) (ft) (ft) (ft) (ft) (ft/ft) (ft/s) (sq ft) (ft) FLOWPATH EAST 100 PF 1 116.00 4914.20 4914.7'7 4914.77 4915.00 0.020835 4.00 31.17 68.08 0.97 FLOWPATH_EAST 110 PF 1 92.00 4917.94 4918.71 4918.66 4918.86 0.012817 3.48 33.30 86.84 0.78 FLOWPATH EAST 120 PF 1 92.00 4918.51 4919.66 4919.68 0.001180 1.51 96.05 184.00 0.26 FLOWPATA EAST 130 PF 1 82.00 4918.14 4919.79 0.000151 0.�0 193.13 251.14 FLOWPATH EAST 140 PF 1 82.00 4920.07 4920.88 0.022388 3.76 22.85 63.37 Profile Output Table - Standard Table 2 Reach River Sta Profile E.G. Elev Loss Q Left Q Channel Q Right Top Width (ft) (ft) (cfs) (cfs) (cfs) (ft) FLOWPATH EAST 100 PF 1 4915.00 '7.53 105.17 3.30 68.08 FLOWPATH EAST 110 PF 1 4918.86 0.01 15 43 70.80 5.78 86.84 FLOWPATH EAST 120 PF 1 4919.68 0.01 24 45 26.53 41.01 184.00 FLOWPATH EAST 130 PF 1 4919.79 0.00 27.45 27.80 26.74 251.14 FLOWPATH EAST 140 PF 1 4920.88 0.06 1.18 80.32 0.50 63.37 4919.79 0.10 4920.66 4920.66 0.98 W.S. Elev (ft) 4914.77 4918.71 4919.66 4919.79 4920.66 vel Head (ft) 0.23 0.15 0.02 0.00 0.22 Frctn Loss C & E (ft) 3.85 0.80 0.11 0.13 APPENDIX D Erosion Control Report � NORTHERN Er,c�NEeR�Nc PSD Middle School High School #2 A comprehensive Erosion and Sediment Control Plan (along with associated details) has been included with the final construction drawings. It should be noted, however, that any such Erosion and Sediment Control Plan serves only as a general guide to the Contractor. Staging and/or phasing of the BMPs depicted, and additional or different BMPs from those included may be necessary during construction, or as required by the authorities having jurisdiction. It shall be the responsibility of the Contractor to ensure erosion control measures are properly maintained and followed. The Erosion and Sediment Control Plan is intended to be a living document, constantly adapting to site conditions and needs. The Contractor shall update the location of BMPs as they are installed, removed or modified in conjunction with construction activities. It is imperative to appropriately reflect the current site conditions at all times. The Erosion and Sediment Control Plan addresses both temporary measures to be implemented during construction, as well as permanent erosion control protection. Best Management Practices from the Volume 3, Chapter 7— Construction BMPs will be utilized. Measures may include, but are not limited to, silt fencing along the disturbed perimeter, gutter protection in the adjacent roadways and inlet protection at existing and proposed storm inlets. Vehicle tracking control pads, spill containment and clean-up procedures, designated concrete washout areas, dumpsters, and job site restrooms shall also be provided by the Contractor. Grading and Erosion Control Notes can be found on the Utility Plans. The Final Plans contain a full-size Erosion Control sheet as well as a separate sheet dedicated to Erosion Control Details. In addition to this report and the referenced plan sheets, the Contractor shall be aware of, and adhere to, the applicable requirements outlined in the Development Agreement for the development. Also, the Site Contractor for this project will be required to secure a Stormwater Construction General Permit from the Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Division — Stormwater Program, prior to any earth disturbance activities. Prior to securing said permit, the Site Contractor shall develop a comprehensive Stormwater Management Plan (SWMP) pursuant to CDPHE requirements and guidelines. The SWMP will further describe and document the ongoing activities, inspections, and maintenance of construction BMPs. Final Erosion Control Report ,il� , l_l- 1�j�� Excerpts-Town of Timnath Master Drainage Plan Update, Ayres Associates, Revised November, 2018. Town of Timnath Master Drainage Plan Update 2018 Prepared for: Town of Timnath 4800 Goodman Rd, Timnath, CO 80547 August 2018 - FINAL Revised - November 2018 0 H i re w�a.rt Town of Timnath Master Drainage Plan Update 2018 s assoc�aTEs 3665 JFK Parkway, Bldg. 2, Suite 100 Fort Collins, CO 80525-3152 970.223.5556 www.AyresAssociates.com Ayres Associates Project No. 31-1881.00 File: f:\32-1881.00 timnath master plan update\report\timnath master drainage plan - 2018 update.docx ll -o�-�ol� Town of Timnath Master Drainage Plan Update 2018 �_1� - ASSOCIATES 3665 JFK Parkway, Bldg. 2, Suite 100 Fort Collins, CO 80525-3152 970.223.5556 www.AyresAssociates.com Ayres Associates Project No. 31-1881.00 File: f:\32-1881.00 timnath master plan update\report\timnath master drainage plan - 2018 update.docx Contents Pa�e No. 1. Introduction ............................................................................................................................ 1 1.1. Project Goals and Objectives ............................................................................................................ 3 1.2. Scope of Work .................................................................................................................................. 3 1.3. Acknowledgements .......................................................................................................................... 5 1.4. Previous Studies ............................................................................................................................... 5 1.5. Mapping and Surveying .................................................................................................................... 6 2. Hydrology Plan ........................................................................................................................ 7 2.1. Timnath Basin Description ................................................................................................................ 7 2.2. General Modeling Procedures .......................................................................................................... 7 z.2.1. Modeling Approach .................................................................................................................. 7 z.2.2. Rainfall ...................................................................................................................................... 8 2.3. Baseline Condition Hydrology Model ............................................................................................... 9 2.3.1. Delineation and Definition of Subbasins .................................................................................. 9 2.3.2. Subbasin Hydrology Parameters .............................................................................................. 9 2.3.3. Conveyance Element Routing ................................................................................................ 10 2.3.4. Conveyance Element Parameters .......................................................................................... 10 2.3.5. Node Elevations ...................................................................................................................... 11 2.3.6. External Inflows ...................................................................................................................... 11 2.3.7. Timnath Reservoir Inlet Canal ................................................................................................ 11 2.3.8. Timnath Reservoir Outlet Canal ............................................................................................. 12 2.3.9. Timnath Reservoir .................................................................................................................. 12 2.3.10. Downtown Timnath .............................................................................................................. 13 2.3.11. Diversions ............................................................................................................................. 14 2.3.12. Development Since 2005 ..................................................................................................... 14 2.3.13. Outfalls ................................................................................................................................. 14 2.3.14. Results of Baseline Hydrology Model ................................................................................... 15 2.3.15. Comparison of Results to Previous Study ............................................................................ 15 2.4. Developed Condition Hydrology Model ......................................................................................... 17 2.4.1. Future Land Use Conversion .................................................................................................. 17 2.4.2. Conceptual Detention for Future Development .................................................................... 18 2.4.3. Routing Changes for Future Conditions ................................................................................. 18 z.4.4. Downtown Timnath ................................................................................................................ 18 2.4.5. Summary of Developed Condition Hydrology Results ........................................................... 18 2.4.6. Comparison of Developed Results to Alternative 3 from Previous Study .............................. 19 3. Hydraulic Evaluation of Timnath Reservoir Inlet Canal ............................................................Z1 3.1. SRH-2D Hydraulic Model Parameters ............................................................................................. 21 3.2. TRIC Capacity Analysis .................................................................................................................... 22 3.3. Unsteady Hydraulic Analysis of 10-year and 100-year Flows ......................................................... 22 3.3.1. Tailwater Conditions/ Timnath Reservoir WSEL Discussion ................................................... 23 3.4. Discussion of TRIC Results .............................................................................................................. 23 4. Hydraulic Evaluation of Timnath Reservoir Outlet Canal ..........................................................26 4.1. Capacity Analysis ............................................................................................................................ 26 4.2. SRH-2D Hydraulic Model Parameters ............................................................................................. 26 4.3. Unsteady Analysis of 10- and 100-year Flows ................................................................................ 26 4.4. Discussion of TROC Results ............................................................................................................. 27 5. Alternative Evaluations and Conceptual Design .......................................................................29 5.1. Hydrology for Channel Design ........................................................................................................ 29 5.2. Conceptual Hydraulic Design of Clark and TROC Drainage Channels ............................................. 29 5.3. Downtown Area Improvement Alternatives .................................................................................. 33 5.3.1. Land Use and Imperviousness Assumptions .......................................................................... 33 5.3.2. Timnath Elementary School Detention .................................................................................. 33 5.3.3. Storm Drain Sizing Criteria - 100-Year Flows .......................................................................... 33 5.3.4. Recommended Improvements— Existing Condition Flows .................................................... 33 5.3.5. Recommended Improvements— Future Flows ...................................................................... 33 5.3.6. Limitations and Further Study Recommendations ................................................................ 34 6. Hydraulic Evaluation of Greeley No. 2 Canal and Conceptual Spill Weir Design .........................36 6.1. Capacity Analysis ............................................................................................................................ 36 6.2. SRH-2D Hydraulic Model Parameters ............................................................................................. 36 6.3. Unsteady Hydraulics Analysis ......................................................................................................... 36 6.4. Conceptual Design of Spill Weir ..................................................................................................... 36 6.4.1. Limitations and Further Study Recommendations ................................................................ 37 7. Implementation Plan ..............................................................................................................38 7.1. Regional Drainage Facilities ............................................................................................................ 38 7.1.1. Timnath Reservoir Inlet Canal (TRIC) ..................................................................................... 38 � 7.1.2. Timnath Reservoir Outlet Canal (TROC) ................................................................................. 38 7.2. On-Site Detention ........................................................................................................................... 39 7.3. Minor Lateral Drainage Facilities .................................................................................................... 40 7.4. Downtown Drainage Improvements ..............................................................................................40 7.5. Timnath Reservoir .......................................................................................................................... 41 7.6. Further Study Recommendations ................................................................................................... 41 8. References .............................................................................................................................42 List of Appendices Appendix A Baseline Condition Hydrology Appendix B Developed Condition Hydrology Appendix C Conceptual Hydraulic Design of Clark Channel and Timnath Reservoir Outlet Canal Channel Appendix D Downtown Area Improvement Alternatives Appendix E SRH-2D Hydraulics Results of Timnath Reservoir Inlet Canal Appendix F SRH-2D Hydraulics Results of Timnath Reservoir Outlet Canal Appendix G SRH-2D Hydraulics Results of Greeley No. 2 Canal Appendix H Digital Data — Modeling Files and GIS Data List of Figures Pa�e No. Figure 1.1 Timnath Town Limits, GMA, and Study Area ........................................................................2 Figure 3.1 Timnath Reservoir Inlet Culvert Gates (Reservoir Side) .....................................................21 Figure 5.1 Clark Channel and TROC Channel Conceptual Design Cross Sections ................................32 Figure 5.2 North Downtown Storm Drain System Alternatives Map ..................................................35 List of Tables Table 2.1 Rainfall Hyetographs ................................................................................. Table 2.2 Hydrologic Soil Group Recommended Values . ......................................... Table 2.3 Timnath Reservoir Stage-Storage Information ......................................... Table 2.4 Timnath Reservoir Outlet Rating .............................................................. Table 2.5 Summary of Results for Baseline Condition SWMM Hydrology Model... Table 2.6 Comparison of Baseline Hydrology Model Results to Previous Study..... .................... .................... .................... .................... .................... .................... Pa�e No. .8 10 13 13 16 16 � Table 2.7 Land Use to Imperviousness Table .......................................................................................17 Table 2.8 Summary of Results for Developed Condition SWMM Hydrology Model ...........................19 Table 2.9 Comparison of Developed Hydrology Model Results to Previous Study .............................20 Table 5.1 Summary of Discharge for Design of Clark and Timnath Reservoir Outlet Canal Channels 29 Table 5.2 Clark Channel Design Summary ...........................................................................................30 Table 5.3 Timnath Reservoir Outlet Canal - Channel Design Summary ...............................................30 iv 3. Hydraulic Evaluation of Timnath Reservoir Inlet Canal The goals of the hydraulic analysis of the Timnath Reservoir Inlet Canal (TRIC) were to quantify the capacity of the canal, identify the natural spill locations, develop spill rating curves to be used in the hydrology model, evaluate the impact of development, and to analyze the performance of the current canal during the 10- and 100-year storm events. This study identified canal spill locations but did not evaluate alternatives, solutions for the spills, or define a floodplain. 3.1. SRH-2D Hydraulic Model Parameters Model input data for the SRH-2D hydraulic model included lidar topography data and hydraulic roughness (Manning's n) coverages. The manning's n values used forthis model were 0.035 for the channel and 0.04 for the overbank areas. Modeling for the TRIC bridge and culvert structures were performed using the SRH-2D pressure flow routine. Culvert and bridge opening dimensions were verified with survey information. Pressure flow structures were modeled at the County Road 5, Prospect Road, and County Road 42E crossings, as well as at the Timnath Reservoir inlet culvert which consists of twin 5'(W) x 6.5'(H) concrete box culverts. Tailwater conditions in Timnath Reservoir, at the downstream end of the model, were set to match the normal high-water level of the Reservoir (WSEL 4910.77) which is essentially equal to the crown of the inlet culverts (EI. 4910.79). This tailwater assumption is discussed further in Section 3.3.1. On the downstream end of the inlet culverts (reservoir side) there are two flap gates which prevent reservoir water from flowing back into the TRIC canal. These flap gates were not discretely modeled with either the hydrology or hydraulics models; essentially the models function such that the flap gates would be open during storm flows. This decision was made for two reasons: 1) There is no design or rating information available for the hydraulic performance of the flap gates, and 2) the counter-weighted flap gates open rather easily and result in relatively small head loss compared with the hydraulic controls of the culvert restriction and the high reservoir tailwater (at the crown of the inlet culverts). The culvert gates are shown in Figure 3.1 below. The TRIC drain into Lake Canal was ignored because the relatively small flow rate was considered negligible (approx. 5 cfs) and because this gate is manually operated. �� . �a� �: �-�: �-� , ,�- �, f `����� ` t � �: �:� �� z-�� .,�.�� ����� � �� f {{ ���� , µ� �r ��,� s�° r� ��� s� ,*, -�.�, ;>,. z.. ��., ;+��� ti #� . ,',�r�` :� ? ' � �� �� �.r � � �. 6��--`�� ��~` � =�Y� t :.�° . ��� � �,.� ;r • � � � � , � � � � fiw"' � I' � .i- �. . / / �'� l _ � ,� � �� �-f �� f F'- ��� � f . 4'-� { .3 � ..�'�y , ,� r .v� �_ c�r. �',� y.��. .. S�,r`,� r�` avr � ;�� _ _� � .. e i ��k� • _ �' �r �"�r���- y',, i� � " . r,�..� � r �`,-i � t. , Fs Figure 3.1 Timnath Reservoir Inlet Culvert Gates (Reservoir Side) Photo Credit (Fuhrman, 2017) 21 3.2. TRIC Capacity Analysis To determine capacity of the canal, the TRIC was broken into three reaches: I-25 to Prospect, Prospect to CR42E, and CR42E to Timnath Reservoir. These reaches were analyzed in three separate SRH-2D models with increasing discharge until flows began to spill out of the channel's downslope embankment (to the southwest). The maximum flow rate that was completely contained within the canal's banks was considered the channel capacity. A map of the results from this analysis can be found in Appendix E. The maximum capacities for each individual section are as follows: 1. I-25 to Prospect Road (near McLaughlin Lane): 244 cfs. (Note: Ponding in adjacent areas north of the channel begins at approximately 185 cfs.) 2. Prospect Road (near McLaughlin Lane) to TRIC crossing with Prospect Road: 350 cfs 3. Prospect Road to CR42E: a. Upstream Section: 275 cfs b. Downstream Section: 190 cfs 4. CR42E to Timnath Reservoir Inlet: 200 cfs Using the three individual 2D models described above, rating curves were developed for each spill location. These locations are labeled A through E, from upstream to downstream, and are briefly described as follows: • Spill A is an area of ponding on the north side of the channel 1,400 feet east of I-25. At this location, water that spills out of the channel does not leave the model but ponds in the adjacent fields. When the TRIC discharge decreases, most of the ponding in this area will to drain back into the canal leaving a small amount of shallow ponding adjacent to the ditch road. • Spill B is 1500 feet further downstream where the TRIC turns parallel to Prospect Rd. This location begins spilling south when flows in the canal exceed 244 cfs. • Spill C is south of Prospect where flows will spill to the west when flows exceed 275 cfs. • Spill D is just north of CR42E, this is the most limiting area of the channel where water spills to the west when flows exceed 190 cfs. • Spill E is approximately 700 feet downstream of CR42E and spills exit the channel when flows exceed 200 cfs. The spill rating curves were developed by placing model monitoring lines immediately upstream, downstream, and perpendicular to each spill location. Monitor lines are features of SRH-2D which track flow through the line at each timestep. The monitor line data was used to develop channel and spill rating curves at each spill location, the rating curves were then entered to the hydrology model. Appendix E presents these rating curves and spill results for the 10 and 100-year storm events (existing and future conditions). 3.3. Unsteady Hydraulic Analysis of 10-year and 100-year Flows Hydraulic analyses of the 10-year and 100-year TRIC flows were performed in SRH-2D using input hydrographs from the EPA SWMM hydrology model. It was assumed that all upstream drainage would be intercepted by the TRIC. Prior to the storm inflows, irrigation baseflow was run through the model in 22 steady state until equilibrium was reached through the entire channel. The decreed flow for this channel is 200-cfs, but because the TRIC begins to spill flow at 190-cfs, this flow rate was chosen as the baseline condition. The 190-cfs base irrigation flow continued during the storm duration. With these inflows, the 2D model was run in an unsteady condition for an 8-hour period. The canal flow and canal spill results compared reasonably well between the SRH-2D hydraulics model and the EPA SWMM hydrology model, with some variation that would be expected between different models. These comparisons are presented in Appendix E. 3.3.1. Tailwater Conditions/ Timnath Reservoir WSEL Discussion The TRIC canal terminates at the Timnath Reservoir inlet, which is the downstream boundary of the SRH- 2D analysis. The SRH analysis assumed a constant water surface in Timnath Reservoir equal to the normal- high water level (normal-HWL) or service spillway crest at WSEL 4910.77. However, the final SWMM hydrology models showed that the reservoir level may rise above the normal HWL, during a 100-year storm event, by 1.93-feet (existing/ baseline conditions) to 2.34-feet (future conditions). These depths correspond to water surface elevations of 4912.70 (existing) and 4913.11 (future). The hydrology model assumed conservatively that the Timnath Reservoir initial conditions would be at Normal-HWL prior to 100-year rainfall. The existing and future SWMM model results show that, given a drainage basin wide storm event, the TRIC would not only have the inability to convey flows into the Reservoir, but that the Reservoir could backflow through the TRIC if the inlet flap gates were left in the fixed open position. Without the Reservoir inlet flap gates in place, these maximum reservoir WSELs would fill the TRIC to 3-feet deep at Prospect Road and 2-feet deep at I-25. These maximum Reservoir WSELs are higher than the TRIC spill crests at the Spill D and E locations and presents a situation where — without the inlet culvert flap gates — reservoir water could backflow through the TRIC and spill over the canal banks (existing and future scenarios). 3.4. Discussion of TRIC Results As presented in the previous sections, the primary purpose of the TRIC hydraulic analyses focused on conveyance of the 10-year and 100-year stormwater flows in addition to the 190-cfs of irrigation base flow. These analyses showed that the TRIC does not have capacity, above the 190-cfs of irrigation base flow, to convey additional stormwater flows without spills from the canal. In addition, the SWMM hydrology models showed that the existing and future 100-yr WSELs in the Reservoir would be higherthan portions of the TRIC embankment. At the direction of the Town, a less conservative SRH modeling run was performed which removed the 190-cfs irrigation baseflow and allowed storm flows to be run through a dry TRIC channel. The results showed that, without irrigation flows, the TRIC would be able to convey all of the future condition 100- year flows (or about 70% of existing condition flows) to Timnath Reservoir. This model run assumed the Reservoir level would remain at the normal-HWL. The reduction in canal spills from these runs is due to a combination of two main factors: 1) flow attenuation from the empty TRIC provides storage volume similar to a detention pond, and 2) the hydraulic capacity of the TRIC to convey 190-cfs to the reservoir— assuming the reservoir level would not rise above the normal-HWL. However, the SWMM hydrology results, as discussed in Section 3.3.1. showed that a watershed wide rain event would increase the Timnath Reservoir WSELs such that storm flows could not be conveyed into the Reservoir via the TRIC. 23 Summarizing the overall TRIC modeling results, the following conclusions can be made: 1. The overall capacity of the TRIC is 190-cfs before canal spills begin. This is slightly less than the decreed flow of 200-cfs and with the caveat that at 185-cfs ponding begins in adjacent areas north of the TRIC, between I-25 and Prospect Road. Flows spills to the south/ southwest of the TRIC begin at 190-cfs and are located along the canal section between Prospect Road and CR 42E. 2. The capacity of the TRIC to convey 190-cfs is based on the WSEL of Timnath Reservoir staying at, or below, the normal HWL of the reservoir (4910.77 NAVD 88). 3. In the event of a drainage basin wide 100-year storm event, the water surface of Timnath Reservoir will fill to elevations higher than portions of the TRIC embankment (Existing WSEL: 4912.70; Future WSEL: 4913.11). The reservoir inlet flap gates will prevent back flow in this situation. As-such, the TRIC — along its current alignment and profile — would be unable to convey flows into the Reservoir in this situation. 4. Based on points 1- 3, the present configuration of the TRIC cannot be relied upon to convey major storm flows. Significant improvements to the TRIC would be required to provide assurance that storm flows can be conveyed to the Reservoir. 5. Future implementation of 100-year to 10-year over-detention (per current Timnath criteria), in developing areas tributary to the TRIC, will reduce but not eliminate the flow spills. The TRIC analyses and the conclusions stated above lay the framework for several TRIC stormwater management scenarios to be considered by the Town, presented in the following list. These scenarios were not modeled or evaluated, but are conceptual in nature. A. Disconnect stormwater dischar�es from TRIC: This management scenario assumes the most conservative case (being: Timnath Reservoir full, irrigation base flow in the TRIC, and 100-year rainfall event in the drainage basin), for which the TRIC has no capacity to convey storm flows. Under this scenario, all future development, upstream of the TRIC, will need to find a separate outfall for stormwater discharges. This will likely require construction of stormwater channels on the downstream side of the TRIC. B. Conv_ey stormwater throu�h the TRIC to formal spill location(s): This scenario would convey all storm water intercepted by the TRIC to a formalized spill location(s) where excess flows would be routed into the Clark Drainage. This will require constructed drainage channels between the TRIC and the main Clark Drainage channel and improvements to the TRIC to eliminate informal flow spills. The dimensions and sizing of TRIC channel improvements and spill weir configuration would require further hydraulic evaluation with an appropriate backwater model and were beyond the scope of this study. This scenario may need further hydrologic evaluation in EPA SWMM if the formalized spill locations significantly change the existing flow spills. C. Convev stormwater throu�h the TRIC to Timnath Reservoir: This scenario would convey all storm flows through the TRIC into Timnath Reservoir. Significant improvements to the TRIC would be necessary so that the full 100-year flows could be conveyed into the Reservoir, without spills and with assuming the highest tailwater in the Reservoir (as shown in the existing and future 24 hydrology models). The required improvements would include raising the canal embankment height and may include widening the canal or the addition of a second channel along a higher profile grade-line. The dimensions and sizing of these TRIC channel improvements would require further hydraulic evaluation with an appropriate backwater model and were beyond the scope of this study. This scenario would need further evaluation in EPA SWMM hydrology to determine the full TRIC flow rate without spills. Alternative hydrology scenarios for the TRIC were not part of the present study. D. Hydrolo�y Alternatives: In addition to the conveyance alternatives presented in points A-C, hydrology alternatives may also be considered for further evaluation. Scenarios such as more restrictive detention requirements upstream from the TRIC or regional detention facilities would lower peak flow rates and reduce the size of future conveyance improvements. Beyond these options, two other stormwater management scenarios were initially considered but not recommended for further evaluation because of impacts to irrigation flows and storage. These scenarios would increase the effectiveness of the current TRIC and Reservoir facilities for stormwater management but would require significant concessions from the TRIC and Reservoir owners (such as constraints on the timing of TRIC irrigation flows or reduction of the maximum irrigation water storage in the Reservoir), and therefore were not recommended for further consideration. 25 File�.F�\32-1d81 00 TimnatM1 MasterPlan Upda:e\uIS�MXD�ppentlixMapsWppB_Fu�ure\B�t -F�T_B�sinMep_NortM1.mxd � PIa1By'.SImF.sonM - Oa�e'.8121/2018 File�.F�\32-1881 00 TimnatM1 MasterPlan Upda:e\uIS\M%D�Appentl�ixMapslAppA_ExistinglA-1 � EX_BasnMep_No�M1.nntl � PlotBy'.SimwonM - Oa�e'.B12�/2�16 EXHIBIT B-3 - SWMM Routina Map Developed Condition - North Map Timnath Drainage Master Plan 2018 Update Leqend SWMMNodes suboas��euu�nary 1 DIVIDER y SubasinLabel JUNCTION ------ SubbavinCainnection ♦ Ol1TFHLL Ir�iyetionorDminegeCenal ■ POND(EXIST.) FutureGlaMGhannelAllgnmant SWMM Conveyance links - l'ink t Orllice; 0ulle[ Weir !' E PROSPECT RU 0 R E MULBERRY ST d„� 3� I9 ¢ *@ ' II io _" ' `� +u �" ` � d�� � - gy'/ �'_'-,r� / � / � a'. :. ..---,.` - , � ,,; - \ o< �. II 1 ,r,c � x_ _y_.-�__`9F. a �. .a�«: �w���, �� .. / I.. _. .,.. ��. .. d �.�: ___ * ' � � ...,.,,1'_"_ /` . ��, �, N/� ,;*: , _ h �' ; ' . .��.. o ..�:,. '" ,y ❑ � 3 O f` C � � 6 � O U � f.P �i � 7 . ... � * ,,e �. h ` ��_ � aooa . ,� �oo x�o . V ' $ *.'� Z V ... _�.. i s���\ f � �� �`.k. � I � \1 ��� : ' _�-' f� S #:, �; �lu �-a�� �� ;� � �, � � Y q \.% E COUNTV ROAD 40 ��o� r= 1...,., q , oow�aw� Tm�a�n A,ea, See Map B 5 4. � � G '' y ...I P_- � �. a *s � ��54,�':.. �A_ 4 �,; 1 � 1f 4__ .,�� #..;:-�� � ....,\ HIGHWAV14 n, TIMNATH RESERVOIR i1-_. _ �„ � � ��s.._.,. � II h / c�' � ,� T� # -1 h F'ile:F,\32-188t.00T�imna�M1MasterPlanUptlatelGIS�MXD�ApuPn�ixMa{wWnVB fiiLLirql&9-FUl_RoutingMaFl_NonM1.mml - PI�IBy:S�iinps�nM - oaie:9/21/�01H Timnath Stormwater Master Plan Update - 2018 B-4 - SWMM Model Results - Link Flows Existing SWMM Model Results Element ID Discharge (cfs) 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 5 10 16 21 29 39 55 10 10 16 20 28 39 94 14 16 23 30 50 84 140 31 14 20 32 90 213 423 33 8 11 13 23 52 103 35 3 7 21 91 223 466 37 30 41 65 236 586 1,192 39 28 40 59 162 364 701 45 30 42 64 236 591 1,224 46 2 2 4 16 36 69 53 2 2 4 16 36 69 59 372 549 702 1,054 1,732 3,035 60 28 40 56 203 573 1,213 61 6 S 10 30 70 133 62 295 438 553 771 1,149 2,007 63 1 2 3 9 25 55 64 15 21 33 91 205 379 67 29 43 63 231 589 1,269 70 7 10 13 22 46 84 71 14 20 26 48 90 160 75 15 22 28 52 126 249 76 13 19 25 52 125 247 87 10 15 20 51 122 240 88 2 2 3 4 8 16 89 75 114 145 198 269 379 94 2 3 3 11 27 55 95 2 3 4 12 37 83 97 6 7 8 17 42 89 98 62 88 109 149 213 318 99 38 53 fi4 S1 1Z3 199 101 50 76 9� 133 183 260 102 2 3 3 9 25 52 103 3 5 6 8 15 29 104 12 19 25 34 46 61 107 0 1 1 4 9 17 108 13 20 30 71 133 227 109 2 3 3 12 31 62 112 5 6 8 27 61 111 114 0 0 o a 0 a 115 12 17 21 30 49 93 118 2 3 4 10 28 57 119 12 17 23 58 123 230 120 9 12 13 15 19 34 122 23 35 45 63 94 157 123 19 27 34 46 66 97 124 74 113 147 Z00 262 335 127 22 33 41 56 76 104 128 1S 26 34 54 83 132 133 6 9 12 16 22 30 134 1 1 1 3 7 14 135 11 18 27 59 113 199 137 14 20 32 90 211 410 138 5 7 9 72 15 21 142 0 0 1 3 8 17 143 0 1 1 7 18 35 144 1 1 2 2 2 23 145 7 10 13 1S 37 68 146 11 16 21 29 48 81 147 3 4 5 9 13 18 148 29 41 64 Z34 583 1,199 149 6 S 10 14 21 34 151 11 ll 22 29 45 73 152 5 S 10 14 20 29 153 5 7 9 13 19 29 155 11 17 21 28 38 52 156 7 11 13 37 85 162 158 i z z sa Zs a� 159 1 z a 15 31 sa 160 0 0 0 0 0 0 161 0 0 0 0 49 117 162 26 38 45 56 74 148 163 15 23 29 41 57 84 164 7 9 11 16 24 39 Future SWMM Model Results 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 11 17 21 28 34 40 7 12 15 20 26 34 19 30 38 54 76 110 23 38 55 100 153 227 3 5 7 14 21 27 28 45 65 119 181 264 #N/A pN/A NN/A f#N/A #N/A #N/A 0 0 1 1 1 4 qN/A #N/A pN/A ?YN/A SiN/A !iN/A 2 3 4 7 9 11 2 3 4 7 9 11 260 436 614 1,065 1,617 2,313 46 79 101 140 178 222 3 5 7 12 15 19 247 406 543 772 1,009 1,283 2 3 4 5 10 13 17 27 38 74 118 182 4 7 9 13 16 20 7 10 13 22 46 84 14 20 26 48 90 160 15 24 32 44 55 68 15 24 31 44 55 68 15 24 31 44 55 67 1 1 1 2 2 3 74 112 143 196 266 374 2 3 4 6 8 10 3 5 7 11 14 17 6 9 il 16 20 23 62 88 109 149 213 318 38 53 65 82 125 201 50 76 97 133 183 260 2 3 4 5 6 7 2 4 5 7 8 10 11 17 21 28 34 40 0 1 1 2 2 3 25 41 54 77 106 150 1 2 3 5 7 9 5 7 10 20 45 82 0 o a o 0 0 2 3 5 12 17 22 1 2 3 5 6 8 13 21 29 46 69 101 9 12 13 15 19 34 23 35 45 63 94 157 19 27 34 46 66 97 74 113 147 200 262 335 15 23 30 42 57 80 21 34 44 63 93 139 6 9 12 16 22 30 0 1 1 2 2 3 10 17 22 32 40 49 21 34 49 91 140 211 5 7 9 12 15 21 0 1 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 23 7 10 13 18 37 68 11 16 21 29 48 81 3 4 5 9 13 18 ISN/A tSN/A NN/A NN/A riN/A riN/A 5 8 10 72 15 19 il 17 22 29 45 73 5 6 8 SO 11 14 5 7 9 13 19 29 7 10 12 15 18 22 7 11 13 37 85 162 1 1 2 3 4 5 2 3 5 19 39 69 D 0 0 0 0 0 0 0 0 0 0 25 26 38 45 56 74 110 24 37 46 63 86 122 5 9 11 16 21 27 F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018 Timnath Stormwater Master Plan Update - 2018 B-4 - SWMM Model Results - Link Flows Existing SWMM Model Results Future SWMM Model Results Element ID Discharge (cfs) Discharge (cfs) 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 165 6 9 12 17 31 87 7 11 14 20 26 34 166 10 20 30 48 73 106 15 24 32 52 81 122 169 1 2 2 6 15 32 1 2 2 3 3 4 170 3 4 5 10 19 34 2 4 5 7 9 12 171 2 2 3 8 19 35 1 1 2 3 4 6 172 4 7 10 35 75 138 1 2 4 8 11 14 173 29 43 63 231 589 1,269 4 7 9 13 16 20 174 S S 10 17 45 90 3 5 7 il 14 18 175 3 4 5 7 15 28 1 1 1 2 3 5 176 4 7 21 91 224 469 28 45 65 119 183 267 177 17 25 32 49 81 136 17 25 32 49 81 136 178 14 21 27 38 53 81 13 20 26 37 51 72 183 5 S 9 25 58 111 6 9 11 14 17 21 184 24 38 48 65 112 190 24 38 48 65 112 190 185 14 22 28 38 56 108 7 12 16 22 28 35 186 4S 72 91 123 166 234 48 72 91 123 166 234 193 2 4 4 il 2S 56 2 3 4 6 8 10 203 2 3 a 7 15 2s 2 a 5 7 & 10 206 0 0 1 2 16 66 0 1 1 1 1 4 208 10 18 28 67 124 216 25 41 54 77 106 150 209 9 13 16 22 32 52 6 9 13 19 26 33 210 3S 54 68 92 150 271 18 27 33 44 55 67 211 7 10 14 34 74 162 13 21 29 41 54 68 212 3 4 5 7 17 33 2 3 4 6 8 11 214 3 4 5 13 33 69 1 2 3 6 8 11 217 14 21 28 47 80 135 14 21 28 42 62 93 218 15 21 28 56 106 189 13 21 28 43 64 95 219 27 39 57 156 347 665 65 108 147 217 287 377 220 6 8 10 13 19 34 4 7 9 13 17 22 223 14 20 30 84 188 341 17 27 35 69 109 169 224 6 9 11 16 26 46 6 9 11 ifi 26 46 226 9 13 16 22 30 44 6 8 9 12 15 18 234 9 13 16 26 48 84 6 10 13 18 22 27 246 29 41 59 166 377 726 0 0 1 1 1 4 249 4 5 7 10 17 30 5 8 10 12 15 19 251 30 42 64 236 591 1,2Z1 17 28 36 50 62 76 261 2 2 3 4 6 9 1 1 2 3 4 5 264 1 2 2 3 4 7 1 1 2 3 4 4 268 28 42 63 230 580 1,216 #N/A #N/A f7N/A #N/A tYN/A tYN/A 270 3 4 6 19 47 95 5 7 9 13 16 20 283 4 6 8 25 57 109 6 9 11 14 17 21 291 1 2 2 4 9 18 1 2 3 3 4 5 292 0 0 0 0 0 0 0 0 o a z 11 349 3 5 6 12 23 43 7 10 12 16 20 24 361 8 12 1s 21 3a 4z 9 12 15 21 3o a2 600 9 13 16 3S 75 166 13 21 29 42 54 68 601 3 4 5 13 32 63 1 2 3 5 7 9 1121 295 438 553 771 1,149 2,007 247 406 543 772 1,009 1,283 ll22 15 21 26 �7 194 405 19 28 34 46 58 71 1123 28 40 56 203 573 1,213 46 79 101 140 178 222 1124 33 47 57 171 420 876 32 56 72 99 126 156 1125 372 549 702 1,054 1,732 3,035 260 436 614 1,065 1,617 Z,313 1126 363 532 666 901 1,361 2,353 145 237 334 660 1,091 1,630 1611 11 15 26 73 141 218 11 19 29 59 85 110 lOSC 3 4 S 22 58 114 1 2 4 13 29 57 111A 24 36 47 106 223 436 53 87 116 165 210 265 1118 16 28 42 106 236 472 55 91 122 175 224 2S1 115A6 2 3 3 7 47 107 1 2 3 12 20 28 116_pipe 1 1 1 1 1 1 1 1 1 1 1 1 116 SF 0 0 0 0 0 0 0 0 0 0 0 0 120A 7 10 13 18 28 46 2 3 4 7 10 12 121A 16 24 30 41 56 75 11 18 23 32 42 54 1216 28 40 58 161 363 698 #N/A #N/A #N/A NN/A #N/A #N/A 125A 19 29 38 56 91 153 19 29 38 56 91 153 134A 11 17 21 31 49 85 6 SO 13 18 22 27 175A 19 28 34 47 65 94 19 28 34 47 65 94 177A 0 1 1 1 2 2 0 1 1 1 2 2 185C 6 9 11 15 26 49 2 3 5 7 10 12 209A 7 10 14 35 76 168 38 62 84 119 152 195 2096 33 49 61 108 224 438 53 87 116 165 210 265 267A 2 3 7 25 59 104 1 2 4 8 11 14 277A 1 1 1 3 5 13 1 1 1 3 5 13 F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018 Timnath Stormwater Master Plan Update - 2018 B-4 - SWMM Model Results - Link Flows Existing SWMM Model Results Future SWMM Model Results Element ID Discharge (cfs) Discharge (cfs) 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr OP-SOA 0 0 0 0 0 4 0 0 0 0 0 4 OP-S1 0 0 0 12 43 99 14 22 28 37 46 56 OP-SA 0 0 0 8 25 52 0 0 0 8 25 52 OP-75 0 1 1 1 1 2 0 1 1 1 1 2 OP-75A S 12 15 19 24 29 8 12 15 19 24 29 OP-75A WEIR 0 0 0 a 0 0 0 0 0 0 0 0 OP-75D 1 1 2 2 2 3 1 1 2 2 2 3 OP-75D WEIR 0 0 0 a 0 21 0 0 0 0 0 21 OP-77 0 1 1 1 2 2 0 1 1 1 2 2 OP-77B 1 1 1 2 4 11 1 1 1 2 4 11 OP-77C 0 0 0 1 1 1 0 0 0 1 1 1 OP-77C WEIR 0 0 0 0 0 9 0 0 0 0 0 9 OP-77D 1 1 1 3 4 12 1 1 I 3 4 12 OP-80 0 0 0 0 0 0 0 0 0 0 0 0 OP-80D 1 1 1 2 3 3 1 1 1 2 3 3 OP-80D WEIR 0 0 0 0 1 14 0 0 0 0 1 14 OP-81 2 2 2 3 5 10 2 2 2 3 5 10 OP-82D1 10 12 14 21 29 31 10 12 14 21 29 31 OP-82D1 WEIR 0 0 0 0 0 80 0 0 0 0 0 80 OP-82D2 8 11 12 18 26 62 8 11 12 18 26 62 OP-82D2 WEIR 0 0 0 0 0 18 0 0 0 0 0 18 OP-82D3 9 10 12 16 21 32 9 10 12 16 21 32 OP-84 3 4 5 9 13 18 3 4 5 9 13 18 OP-856 3 4 4 5 5 5 3 4 4 5 5 5 OP-858-WEIR 0 0 0 0 0 14 0 0 0 0 0 14 OP-SSC 6 S 11 33 78 151 8 12 76 22 27 33 OP-86 1 2 4 10 19 28 1 2 4 10 19 28 OP-86A 2 2 3 4 5 6 2 2 3 4 5 6 OP-86C o 0 o a o i o 0 0 0 0 1 OP-S8 1 3 4 15 35 41 6 10 15 26 36 41 OP-92 0 0 0 0 0 0 0 0 0 0 2 11 OP-95 4 4 5 5 6 6 4 4 5 5 6 6 OP-97 18 �a z1 24 6fi 115 18 20 27 24 54 97 OP-98 4 4 5 5 6 6 4 4 5 5 6 6 OP-98A 1 1 1 1 1 1 1 1 1 1 1 1 OP-98A WEIR o 0 0 0 0 0 0 0 0 a o 0 TRICLI 191 191 192 198 213 240 191 192 193 194 195 196 TRICL3 193 195 198 225 297 380 194 197 200 211 223 241 TRICL4 212 21S 225 261 343 445 209 216 223 246 268 311 TRICLS 212 218 225 261 293 326 209 216 223 246 267 2S6 TRICL6 21S 227 242 294 369 453 219 232 246 278 307 334 TRICL7 207 211 215 221 227 235 208 213 216 219 222 224 TRICL7A 207 212 217 233 256 292 209 215 220 225 231 236 TRICL8 205 209 213 222 227 229 207 Z12 276 220 222 223 TROC_16 214 219 223 242 273 322 226 238 249 274 306 409 TROCLI 216 223 229 287 387 546 226 238 249 275 326 430 TROCLI_A 216 223 229 287 387 546 226 238 249 275 326 430 TROCLIO 254 276 304 495 888 1,632 3fi3 460 552 749 975 1,280 TROCLII 254 276 304 495 888 1,631 363 460 552 749 975 1,280 TROCLI3 256 27S 307 508 921 1,669 365 464 558 761 995 1,309 TROCLI4 260 283 312 529 946 1,735 371 472 576 784 1,021 1,355 TROCLIS 260 283 312 529 946 1,735 372 474 579 791 1,031 1,369 TROCLI6 260 283 312 529 946 1,735 372 474 579 791 1,030 1,369 TROCLI7 260 283 312 529 946 1,735 373 476 581 796 1,038 1,379 TROCl18 260 283 312 529 946 1,735 373 476 581 796 1,038 1,379 TROCL3 216 223 230 290 395 561 226 238 250 276 335 446 TROCL4 216 224 232 295 404 578 Z26 238 250 276 346 465 TROCLS 217 224 232 296 405 578 227 239 251 278 346 464 TROCL6 224 235 246 314 439 635 227 239 251 292 385 531 TROCL8 252 273 301 491 885 1,629 360 456 549 744 969 1,264 TROCL9 252 273 301 491 884 1,628 360 457 549 745 971 1,267 CLARKI - - - - - - 132 2ll 298 467 653 869 CLARK2 - - - - - - 127 208 287 448 628 838 CLARK3 - - - - - - 125 206 283 442 619 827 CLARK4 - - - - - - 112 185 254 400 559 747 CLARKS - - - - - - 107 177 244 386 54Z 727 CLARK6 - - - - - - 105 174 240 378 533 711 CLARIO - - - - - - 78 129 177 267 355 462 CLARKS - - - - - - 73 122 167 249 330 430 F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018 Timnath Stormwater Master Plan Update - 2018 B-5 - SWMM Model Results - Node Flows Existing SWMM Model Results Element ID Discharge (cfs) 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 115 3 S 6 8 15 29 116 12 19 25 34 46 61 lll 17 24 30 41 55 76 118 16 34 52 86 120 150 127 14 20 24 35 50 76 129 S 7 9 23 61 122 132 17 24 30 42 58 96 133 0 1 1 2 16 66 134 2S 39 49 82 I51 253 135 13 20 30 71 133 227 136 7 10 14 36 76 168 137 9 13 16 38 75 166 138 38 54 67 92 150 271 140 27 41 53 S15 248 487 142 40 SJ 71 109 225 439 143 6 S 10 16 26 44 144 33 49 61 108 224 438 146 6 8 SO 18 38 78 147 0 0 0 0 0 0 149 12 17 22 34 57 96 151 4 5 6 il 51 117 153 22 32 40 62 98 158 154 16 23 30 50 84 140 155 15 22 29 58 107 191 156 4 6 8 13 31 63 157 D 39 57 156 347 665 158 16 23 31 69 140 258 159 12 17 21 29 42 63 160 28 40 59 162 364 701 161 28 40 58 161 363 698 162 18 26 32 43 60 86 163 23 35 45 63 94 157 164 29 42 53 77 115 179 165 5 s 10 13 1s 25 166 9 13 16 24 37 61 169 9 13 16 23 32 49 170 24 35 44 60 81 115 171 22 33 41 56 76 104 173 20 28 37 5� 87 139 176 935 1,325 1,639 2,263 3,148 4,530 177 1 2 2 4 9 18 178 454 666 840 1,187 1,802 3,088 179 28 42 49 87 192 358 180 13 1S 23 37 58 93 181 372 549 702 1,054 1,732 3,035 182 13 20 30 62 116 204 183 11 17 21 31 49 85 184 93 130 160 267 506 1,019 185 40 57 �o Z12 ss4 1,231 186 14 20 32 90 213 424 187 17 24 35 95 215 427 188 28 40 56 203 573 1,213 189 43 59 73 122 231 465 190 702 996 1,231 1,700 2,364 3,402 191 295 438 553 771 1,149 2,007 193 15 21 26 41 69 120 194 15 21 33 91 206 379 196 6 8 23 91 224 469 197 4 7 21 91 224 470 199 30 42 66 Z39 596 1,200 200 29 41 59 166 378 726 201 19 26 32 45 63 92 204 30 41 65 236 586 1,203 206 6 S 10 14 21 34 207 11 15 19 26 37 55 213 4 6 7 14 25 46 214 30 42 64 237 593 1,224 216 S 11 14 19 27 39 217 12 17 21 29 39 53 220 3 4 5 7 9 13 221 3 4 5 7 11 15 223 30 42 64 236 591 1,224 224 2 2 4 16 36 69 Future SWMM Model Results 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 2 4 5 7 8 10 11 17 21 28 34 40 11 17 21 28 34 40 15 25 38 66 104 136 14 20 24 35 50 76 1 2 4 13 30 58 7 12 15 20 26 34 0 1 1 1 1 4 25 41 55 80 114 162 25 41 54 77 106 150 38 62 84 119 152 197 13 21 29 42 54 68 18 27 33 44 55 67 55 91 123 175 224 282 53 87 117 165 210 265 2 3 4 6 8 11 53 87 116 165 210 265 1 2 3 6 8 11 0 0 0 0 0 0 2 3 5 12 17 22 1 2 3 12 21 28 25 37 47 65 90 128 19 30 38 54 76 110 14 23 30 45 67 99 1 2 3 5 6 8 65 108 147 217 287 377 14 22 30 47 70 103 5 8 9 13 17 22 0 0 1 1 1 4 74 122 167 249 33D 430 11 18 23 32 42 54 23 35 45 63 94 157 29 42 53 77 115 ll9 5 8 10 13 18 25 9 13 16 24 37 61 6 8 9 12 15 18 17 25 32 45 62 86 15 23 30 42 57 80 23 36 4fi 66 94 139 203 337 465 753 1,112 1,641 0 1 1 2 2 3 267 455 630 1,078 1,620 2,319 27 40 48 69 109 169 6 10 13 18 22 27 260 436 614 1,065 1,617 2,313 10 17 22 32 40 49 6 10 13 18 22 27 36 61 76 103 130 159 47 79 102 140 179 222 23 38 55 100 153 227 21 34 49 91 140 210 46 79 101 140 178 222 21 30 36 47 59 72 260 433 561 773 1,012 1,288 247 406 543 772 1,009 1,283 3 5 7 14 21 27 17 27 38 74 118 182 28 45 65 119 181 264 28 45 65 119 183 267 107 ll7 244 386 543 7D 0 0 1 1 1 4 6 9 13 19 26 33 112 185 255 400 560 747 5 8 30 12 15 19 5 8 10 12 15 19 7 10 12 16 20 24 ll 28 37 50 62 76 5 6 8 10 11 14 7 10 12 15 18 22 1 2 2 3 4 5 1 2 3 3 4 S tiN/A #N/A pN/A tiN/A SfN/A tiN/A 2 3 4 7 9 11 F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018 Timnath Stormwater Master Plan Update - 2018 B-5 - SWMM Model Results - Node Flows Existing SWMM Model Results Element ID Discharge (cfs) 2-Yr 5-Yr 30-Yr 25-Yr 50-Yr 300-Yr 225 3 4 6 18 42 80 226 4 7 10 35 75 138 229 2 3 4 7 16 33 230 4 6 8 22 53 104 231 3 5 6 11 20 35 234 7 10 14 37 81 151 237 29 43 63 231 589 1,269 238 29 43 64 233 592 1,273 239 30 42 64 237 597 1,246 243 20 28 35 48 68 99 248 7 11 14 22 46 85 250 11 16 19 39 84 161 252 33 46 58 86 129 198 253 0 1 1 1 2 2 254 1 1 1 3 5 13 274 17 26 34 50 94 164 275 5 S 9 25 SS 111 276 10 15 18 30 63 123 277 2 2 3 5 9 16 279 35 49 61 97 162 266 283 20 28 34 50 77 125 2S4 19 29 38 52 127 250 285 15 22 28 52 126 249 287 13 19 25 52 125 247 291 0 0 0 0 0 0 293 7 9 11 is 29 51 295 1 2 4 10 19 2s 296 55 78 97 132 181 256 297 0 0 o a o i 298 6 8 10 16 24 39 303 94 133 165 227 312 440 307 2 3 4 7 11 19 309 26 38 47 64 Sfi 118 310 6 8 10 16 34 71 311 2 4 4 11 28 56 312 4 6 7 12 37 82 314 6 7 8 17 43 89 316 62 88 109 750 214 319 317 60 85 104 148 217 325 321 63 S9 110 153 213 304 323 1 1 1 1 1 1 323-surf o 0 o a o 0 324 1 z z 5 10 zo 326 3 4 5 13 32 63 327 5 7 8 15 34 69 328 6 8 10 17 45 90 329 7 10 12 33 74 146 330 21 26 30 38 48 63 335 1 2 2 3 6 10 338 s 10 11 14 1s 33 339 10 12 13 16 23 41 341 19 26 32 46 67 98 342 102 150 188 256 346 477 346 9 12 15 21 30 43 348 10 15 18 26 38 54 349 7 10 13 18 24 33 350 5 7 9 12 16 22 351 5 8 9 13 19 27 352 5 6 8 11 15 22 353 5 7 9 13 20 31 355 8 11 12 18 26 80 356 2 2 3 4 5 6 360 8 12 16 22 30 43 500 20 29 35 53 83 169 501 7 10 12 19 32 53 53 a 5 7 iz zs ss 54 5 7 9 14 21 34 DTN10 13 19 24 33 44 60 DTN11 12 19 24 33 44 60 DTN12 12 18 21 28 37 53 DTN13 32 44 51 66 91 128 DTN14 33 46 56 69 95 134 DTN15 33 46 55 74 93 132 Future SWMM Model Results 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 2 3 4 7 9 11 1 2 4 8 11 14 1 2 2 3 3 4 5 7 9 13 17 20 3 4 5 7 10 12 1 2 4 8 11 14 4 7 9 13 16 20 5 7 9 13 16 20 #N/A kN/A qN/A NN/A SYN/A FfN/A 20 28 35 48 68 99 7 11 14 22 46 85 3 5 7 12 15 20 33 46 58 86 129 198 0 1 1 1 2 2 1 1 1 3 5 13 17 26 34 50 94 164 6 9 11 14 17 21 6 9 11 14 17 21 1 1 1 2 2 3 35 49 61 97 162 266 7 12 16 22 28 35 15 24 32 44 SS 68 15 24 32 44 55 68 15 24 31 44 SS 68 0 0 0 0 2 11 2 3 5 7 10 12 1 2 4 30 19 28 55 78 97 132 181 256 0 0 0 0 o i 6 8 10 16 24 39 93 132 163 224 307 432 1 2 3 3 4 5 26 38 47 64 86 118 2 3 4 6 8 10 2 3 4 6 8 10 3 5 7 11 14 17 6 9 11 16 20 24 62 89 110 150 215 320 60 85 104 148 217 325 63 89 110 153 213 304 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 2 2 3 1 2 3 5 7 9 1 2 3 5 7 9 3 5 7 11 14 18 5 7 10 26 58 114 21 26 30 38 48 63 0 o i i i 2 8 10 11 14 18 33 10 12 13 16 23 41 19 26 32 46 67 98 102 150 188 256 346 477 3 4 6 9 12 14 8 13 16 22 29 39 7 10 13 18 24 33 5 7 9 72 16 22 5 8 9 13 19 27 5 6 8 11 15 22 5 7 9 13 2D 31 8 11 12 18 26 80 2 2 3 4 5 6 8 12 16 22 30 43 13 22 30 42 54 68 2 3 4 7 10 12 2 3 4 5 6 7 2 4 5 7 8 10 7 il 13 17 21 27 7 11 13 17 21 26 7 11 13 ll 21 26 30 45 55 76 91 115 33 49 61 83 101 133 33 49 60 80 94 125 F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018 Timnath Stormwater Master Plan Update - 2018 B-5 - SWMM Model Results - Node Flows Existing SWMM Model Results Element ID Discharge (cfs) 2-Yr 5-Yr 30-Yr 25-Yr 50-Yr 300-Yr DTN3 5 7 8 11 IS 20 DTN4 9 13 17 23 31 41 DTNS 9 13 17 24 30 38 DTN6 11 17 21 28 35 46 DTN7 6 9 11 15 21 30 DTN8 17 25 32 42 54 70 DTN9 18 25 31 42 53 70 DT52 S S 10 14 20 29 DTS3 7 11 14 19 27 33 DT54 7 11 13 19 26 33 DT55 8 12 15 21 30 40 DT56 S 12 15 21 30 40 DTS7 8 12 15 21 30 40 DT501 S 12 15 21 30 40 G3-1 7 10 13 18 28 46 G3-2 5 7 9 13 20 68 G3-2 A 5 7 9 13 20 68 J-90 3 4 5 11 31 65 LAKECANALI 10 16 20 28 39 94 LAKECANALIO 3 5 6 11 22 42 LAKECANALII 2 3 4 7 15 29 LAKECANALI2 10 15 ls 41 93 177 LAICECANALI6 1S 25 30 45 68 106 LAI<ECANALI7 3 4 5 9 13 18 LAI<ECANALI8 18 25 31 46 72 116 LAKKANALI9 8 11 13 24 43 78 LAKECANAL2 15 21 26 37 53 77 LAKECANAL20 1 1 2 2 2 23 LAKECANAL21 1 1 2 8 20 39 LAICECANAL22 1 1 1 4 9 19 LAKECANAL3 29 41 51 70 57 138 LAKECANAL4 31 44 55 75 106 155 LAKECANAL7 0 a o 0 0 0 LAKECANAL8 3 4 6 21 43 79 LAKECANAL9 3 4 5 16 36 70 R103 30 43 53 72 97 134 P-103A 26 36 45 62 86 121 P-103C 20 28 35 48 67 94 P-103D1 23 32 39 57 85 124 P-103D2 11 13 14 16 30 66 P-104 86 122 151 209 288 398 P-105 31 45 57 77 103 141 P-106A 76 115 149 203 267 338 P-107 63 89 110 153 212 301 P-110 10 15 20 29 42 66 P-120 1,161 1,525 2,381 3,311 4,431 7,073 P-15 12 17 21 30 49 93 P-25 34 51 66 98 154 247 P-28 1S 26 34 54 83 132 P-29 13 18 22 31 44 66 P-31 33 46 57 81 117 173 P-43 15 21 32 92 224 463 P-4A 46 70 90 126 169 225 P-50 8 12 14 20 29 42 P-SOA 10 14 17 24 34 48 P-51 34 47 56 76 98 141 P-SA 14 20 25 35 50 74 P-75 28 39 48 68 95 135 P-75A 19 28 34 47 65 94 P-75D 9 12 15 22 28 36 P-77 17 25 32 49 81 136 P-778 1 2 2 4 8 16 P-77C 7 9 11 21 38 62 P-77D 25 34 42 60 89 134 P-80 5 7 8 14 24 40 P-SOD 7 10 13 21 38 67 P-81 32 44 55 81 120 180 P-82D1 94 131 161 239 364 559 P-82D2 30 12 14 21 29 110 P-82D3 16 23 29 53 96 166 P-84 24 3S 4S 65 112 190 P-856 SS 88 111 152 200 263 P-85C 6 9 11 33 78 151 Future SWMM Model Results 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 5 8 10 13 17 23 11 15 19 26 34 46 10 15 19 26 33 43 14 21 26 34 40 53 7 9 11 16 22 31 21 30 38 49 60 81 21 30 37 52 60 80 5 7 9 13 17 23 6 9 12 17 23 31 6 9 12 17 22 31 7 10 13 19 27 37 7 SO 13 19 26 37 7 10 13 19 26 37 7 10 13 19 26 37 2 3 4 7 10 12 3 4 5 8 10 72 3 4 S 8 10 72 1 2 3 5 6 8 7 12 IS 20 26 34 1 1 2 3 4 6 1 1 1 2 3 5 10 15 18 41 93 ll7 18 25 30 45 68 106 3 4 5 9 13 18 18 25 31 46 72 116 8 11 13 24 43 78 6 10 12 16 21 27 1 1 2 2 2 23 1 1 1 1 2 2 0 1 1 1 2 2 29 41 51 70 97 138 31 44 55 75 106 155 0 D 0 0 0 0 3 4 6 21 43 79 1 1 2 3 4 5 30 43 53 72 97 134 26 36 45 62 86 121 20 28 35 48 67 94 23 32 39 57 85 124 11 13 14 16 30 66 86 121 150 207 285 398 31 45 57 77 103 141 76 S15 149 203 267 338 63 89 110 153 212 301 8 13 17 24 33 47 1,277 2,049 2,691 3,774 5,073 6,848 2 3 5 12 17 22 34 51 66 98 154 247 21 34 44 63 93 139 13 19 23 32 45 66 33 46 57 81 1ll ll3 26 43 61 114 173 255 46 69 87 119 159 213 8 12 14 20 29 42 10 14 17 24 34 48 43 63 78 96 120 157 14 20 25 35 50 74 28 39 48 68 95 135 19 28 34 47 65 94 9 12 15 22 28 36 17 25 32 49 81 136 1 2 2 4 8 16 7 9 11 21 38 62 25 34 42 60 89 134 3 5 6 11 19 32 7 SO 13 21 38 67 32 44 55 81 120 180 94 131 161 239 364 559 10 12 14 21 29 110 16 23 29 53 96 166 24 38 48 65 112 190 58 88 111 152 200 263 8 12 16 22 27 33 F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018 Timnath Stormwater Master Plan Update - 2018 B-5 - SWMM Model Results - Node Flows Existing SWMM Model Results Future SWMM Model Results Element ID Discharge (cfs) Discharge (cfs) 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr P-S6 52 7S 99 134 181 258 52 78 99 134 181 258 P-86A 11 16 19 28 43 65 11 16 19 28 43 65 P-86C 3 4 5 8 14 23 3 4 5 8 14 23 P-88 77 117 149 204 279 403 74 112 143 196 266 374 P-92 25 39 50 73 109 167 22 34 44 61 83 114 P-95 76 108 133 183 254 361 76 108 133 183 254 361 P-97 38 53 64 81 123 199 38 53 65 82 125 201 P-98 50 76 97 133 183 260 50 76 97 133 183 260 P-98A 30 42 52 72 102 148 30 42 52 72 102 148 TRIC1 191 192 192 198 214 241 191 192 193 194 195 196 TRIQ 193 194 197 220 266 337 192 195 197 206 221 247 TRIC3 193 195 198 225 298 382 194 197 200 211 223 242 TRIC4 212 218 225 261 343 445 209 216 223 246 268 311 TRIC4A 212 218 225 261 343 445 209 216 223 246 268 311 TRIC4-SPILL 0 0 0 0 50 119 0 0 0 0 0 26 TRICS 21S 227 242 294 369 454 219 232 246 278 307 334 TRICSA 218 227 242 294 369 453 219 232 246 278 307 334 TRICSA SPILL 11 15 27 73 141 218 11 19 29 59 85 110 TRIC6 207 212 217 233 257 294 209 215 220 225 231 236 TRIC6_Spill 1 2 4 11 29 63 2 3 4 5 10 13 TRIC6A 207 212 217 Z33 256 292 209 215 220 225 231 236 TRIC-0 UTFALL 205 209 213 222 227 229 207 212 216 220 222 223 TROC lA 216 223 229 287 387 546 226 238 249 275 326 430 TROC1 216 223 229 287 387 546 226 238 249 275 326 430 TROC10a 256 278 307 SOS 921 1,669 365 464 558 761 995 1,309 TROC11 260 283 312 529 946 1,736 371 472 576 785 1,021 1,356 TROC12 260 283 312 529 946 1,735 372 474 579 791 1,031 1,369 TROC-12A 260 283 312 529 946 1,735 372 474 579 791 1,031 1,369 TROC13 260 283 312 529 946 1,735 373 476 581 796 1,038 1,379 TROC14 260 283 312 529 946 1,735 373 476 581 796 1,038 1,379 TROC2 216 223 230 290 395 562 226 238 250 276 335 448 TROC3 2ll 224 232 Z95 405 579 226 238 250 276 346 467 TROC4 217 225 232 296 406 580 227 239 251 278 347 468 TROCS 226 237 24S 316 443 645 227 239 251 294 389 540 TROC6 252 273 301 491 885 1,629 360 456 549 745 969 1,264 TROC7 252 273 301 491 885 1,629 360 457 549 745 971 1,267 TROC8 254 276 304 495 889 1,634 363 460 553 750 976 1,281 TROC9 254 276 304 495 888 1,632 363 460 552 749 975 1,250 TROC-0UTFALL 260 2S3 312 529 94fi 1,735 373 476 S81 796 1,038 1,379 CP-10 - - - - - - 163 235 293 396 531 725 CP-100 - - - - - - 33 46 57 80 112 163 CP-100A - - - - - - 33 46 57 79 112 162 CP-101 - - - - - - 99 142 176 239 324 449 CP-102 - - - - - - 51 73 90 122 164 226 CP-106 - - - - - - 30 43 53 74 103 145 CP-108 - - - - - - 16 23 29 40 55 77 CP-lOBA - - - - - - 5 8 SO 13 19 28 CP-109 - - - - - - 56 82 102 139 185 247 CP-11 - - - - - - 38 54 67 92 126 176 CP-110 - - - - - - 47 69 87 117 15fi 209 CP-113A - - - - - - 8 12 15 20 27 36 CP-12 - - - - - - 49 69 86 117 158 219 CP-121 - - - - - - 2,216 3,433 4,425 6,109 8,149 10,971 CP-122 - - - - - - 640 992 1,278 1,765 2,354 3,170 CP-123 - - - - - - 552 845 1,082 1,486 1,980 2,668 CPd24 - - - - - - 1,454 2,265 2,929 4,053 5,411 7,255 CP-125 - - - - - - 880 1,357 1,745 2,406 3,207 4,319 CP-126 - - - - - - 1,336 1,920 2,389 3,261 4,424 6,163 CP-13 - - - - - - 27 38 48 67 93 130 CP-14 - - - - - - 93 132 163 223 309 438 CP-15 - - - - - - 49 69 85 123 179 269 CP-15A - - - - - - 61 88 310 149 201 274 CP-17 - - - - - - 44 63 79 107 145 201 CP-1S - - - - - - 101 145 181 245 330 452 CP-2 - - - - - - 139 206 260 352 463 607 CP-20 - - - - - - 39 56 69 94 128 178 CP-21 - - - - - - 65 93 115 156 211 292 CP-21A - - - - - - 86 122 152 207 281 391 CP-26 - - - - - - 55 Eo ioo 135 1ao 242 CP-3 - - - - - - 70 102 129 176 233 309 CP-30 - - - - - - s 11 14 19 27 40 CP-33 - - - s 1z 1a zo za ao F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018 Timnath Stormwater Master Plan Update - 2018 B-5 - SWMM Model Results - Node Flows Existing SWMM Model Results Element ID Discharge (cfs) 2-Yr 5-Yr 30-Yr 25-Yr 50-Yr 300-Yr �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaaa �aaaaae �aaaaaa �aaaaaa �aaaaaa �aaaava �aaaaaa �aaaaaa �aaaaae �aaaaaa �aeaaaa �aaaaaa �aaaava �aaaaaa �aaaaaa �aaaaae �aaaaaa �aeaaaa �aaaaaa �aaaava �aaaaaa �aaaaaa �aaaaaa �aavaaa Future SWMM Model Results 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 71 102 129 180 244 332 99 141 178 251 346 482 117 167 206 281 384 540 55 78 96 131 182 261 29 40 49 75 117 184 62 91 114 155 204 272 66 93 115 160 230 341 47 68 84 115 156 217 76 107 133 185 256 360 58 82 102 140 193 271 19 26 32 47 70 106 27 38 47 67 95 137 141 206 258 352 469 631 52 75 94 127 169 229 116 167 210 290 391 534 38 57 71 96 127 170 27 39 49 67 89 118 19 28 36 48 64 85 18 26 33 46 60 78 5 � 8 il 15 Z� 5 � 8 11 15 2� 38 55 69 94 127 ll4 50 70 88 123 170 240 72 106 133 180 239 319 34 48 60 84 116 162 72 103 129 175 235 323 50 73 91 124 165 222 14 20 25 35 52 79 78 111 139 198 282 406 4 6 7 10 15 22 207 298 373 515 698 959 77 109 134 188 265 3S3 327 476 597 815 1,089 1,466 128 187 235 321 427 573 15 21 26 36 49 68 195 282 351 475 637 870 59 85 106 144 194 267 20 28 35 49 69 100 12 17 21 29 41 61 186 267 333 454 613 842 47 67 83 113 156 221 32 47 60 81 107 142 58 84 104 141 187 249 131 188 234 317 426 585 86 123 153 207 280 388 14 20 25 35 50 73 16 22 27 38 54 80 132 217 299 467 653 869 127 209 287 449 628 839 125 206 283 442 619 S27 105 174 240 378 533 711 78 129 177 267 355 463 F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018 ,il� , l_l- 1�j�� USDA Soils Information USDA United States = Department of Agriculture I� RCS Natural Resources Conservation Service a A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants t .^ �.:�� . F {Y�� ��. �� .� � ��� Custom Soil Resource Report for Larimer County Area, Colorado �- � �' . � .� , � � cti � '� �� �, r , �u � � 'i .�-'�^.--• — �.. .'JI �ii' ' �• �' - yS!' ' y' �• t a�� �'• F'' '7� � � .� ,� ! T , � � } � w� i . s�'•�-sit � i. !,� ; V� ,� .i. : .,., - :Zi ' .�_._ J.� �_. ' �. � � �.i '�Y.�' r ' „ . .�. 1 � �_� . ��� ..a � , k� � '� �„ f � ���. `Jw i� � ' ` — r � ` ; •�#, ,' � 4+ —,.'+ ' �� i �� F ��� ,. , . • . y` +�-� � � _ ' . .� . - . � � ;� � � " � � i� .. ,: ��' _ 'F , � , �r���� �. 1,:�- "- :ti• �- }I � ' ;�'` - �4q�..,,t '�..�, � � _ � -' :,e„� +y � �■����■��� 1 000 ft •:� ''' �'' , .. � p� ^� `�. ' . �f � f��,,.�'�r'ti �ti � t __ ...�� .�.�, �,�,�--L ``� � � ' � � October 7, 2019 Preface Soil surveys contain information that affects land use planning in survey areas. They highiight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nres.usda.gov/wps/ portal/nres/main/soils/health/) and certain conservation and engineering appiications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nres) or your NRCS State Soil Scientist (http://www.nres.usda.gov/wps/portal/nres/detail/soils/contactus/? cid=nres142p2_053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where app�icable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD), To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. 3 Contents Preface .................................................................................................................... 2 How Soil Surveys Are Made ..................................................................................5 SoilMap .................................................................................................................. 8 SoilMap ................................................................................................................9 Legend................................................................................................................10 MapUnit Legend ................................................................................................ 11 MapUnit Descriptions .........................................................................................11 Larimer County Area, Colorado ...................................................................... 13 7—Ascalon sandy loam, 0 to 3 percent slopes ........................................... 13 40—Garrett loam, 0 to 1 percent slopes ..................................................... 14 64—Loveland clay loam, 0 to 1 percent slopes ...........................................15 76—Nunn clay loam, wet, 1 to 3 percent slopes .........................................17 77—Otero sandy loam, 0 to 3 percent slopes .............................................18 81—Paoli fine sandy loam, 0 to 1 percent slopes ....................................... 19 92—Riverwash ............................................................................................ 20 105—Table Mountain loam, 0 to 1 percent slopes ...................................... 21 References............................................................................................................ 24 How Soil Surveys Are Made Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil 5 Custom Soil Resource Report scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of ineasurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and �� Custom Soil Resource Report identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. 7 Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. E:3 z � � � aoz�ste oo��ste 000�ste oososm o�roste ootasc M„OS �85 obOT ( I I I I I I � � - — e . _ , ��. �— ■i .�, p _ — — -- _ _ _ � �. r � - - �' ; �� +, � �, � � T � - � �� i ` � L, �� � _.ef - T T _ �— ug 0 � a� � N U � Q � � � � O 0 � � � 0 N � U M ,Sb �65 ob0i 1, � : -��::- ��+ -v.M� R� ��"`��'� �.r � PS � � � '�. ��il; �, . �. r� I �' _ l 9 I4 ,d ' �.dC---= ` .. • ug I � . � •ti y . ,\ � i � �'- � ;� 8�� + $ � �'r * ���. +• ' � �� _ � . . '�� .a��, _ - �' � �.. � � � _ �` i �, g= — _.. _ �- — _ T I � I.. /1� - , ..-, � _.� k� r - , ... i.k-' _ `� �� �� ��,= ',+illti , �� `• ���-. u � �� ���� �� ,� _ — Y- - -; ODZl6h6 OOlt6yi6 z m �l V ��_` ,_"�-��►" � � �;._�..� - - -y�� ' z `ui m � 00�06bb 00�6bb �I . I M �AS ,85 ob0i I ::�.�.� ' ` sw>.;: �i�l � , �(= � �..t � x.4�� .� .. = . w� �` �'�i�'�� � ' c '' � �, �n I � � } �! � � � . ,. � i+ i �r � � ,, � I � � _' ` (. —•� OOL0676 � K� � i t .�, � ' I �. s� ,; , , �R ia ��_ ���'�� ::; � g : �� � ,y :,��ti� wr; � -'S4i=a--� ='.-,- ii�� � � ; � �.' �3 . �� p :� �_` • , /�� i � iy � . , s. � �� :-.�:`.�� � y � �� � i � �� - .�!�p,.,..lg " ..�.. i ' t ! �',.,�� '� �pIf, �_ � � �� ��F'Ir�r�d'�-s � Oi � y � • �' i i a� � �� �py��� � � � � « �v � _ v _ 8 ��� �� " —� x � ��L� : � � '^ � : c � `�l � � � �f� i' � L ��f '^ �.. ''_-�7. � � � ' j i� �1� 'rj !� � Q � L _�'� : o ti �r" � � ° �` � i > � v lil���� e ��� n .. fl' � � � � � y . O g �> � O � > � � ~ � �j C O �4����� t �' c f� s ti v � . ��`��, ^ � Q .��,�� � — �o m � � . � .. � o o � � ��� � --�, � z Q c�.t,� �� I �� � ' �A �• . M„Sb,65 ohOT I 0090�67 0090Gbb z N N t�l V OOOL6bb 00606b7 0�(i7b L � � ��/ I..L � U i 7 O � N � O � C O � � U Z � aC G O �.�. Z a C � Z W C� W J a Q � f0 � N a Q 16 E N 3 0 � O T N N Q � U f6 w T N i � N � O y O <1' � N �� � N 'p � � N � � � U � � 'O � U � N U � � � m � C (Uj � � Qm a � f6 �o � � � C rn � o O C � � � 'Q 3 N l6 fl- p C U N � N � � � � � O � � '�6 �6 O L O � � T � �/1 � � � � � U �O°�� Em�� O � C '� N � N y � m � C N U ' � � � Q � N 7 �/ N C f6 ll.J E '� U Vl m U � .L.-� ia "� @ > N � O T m � a f0 � O � � C ` > � � �6 � a N � U � U � z Q ❑ � � "-' O � � 0 v-. -p � � � N � N c � a� O1� � � U .� 7 ` '� N O > Q � y � L F o O � � o � 0 U � N c6 �,.� N Q Q ...�`. U! C O � U � � O � N (6 � J i� � N � T � N � 3 A � Z O 7 �� N N U Q [6 � 0 3 O [6 U f6 Q N � � m N � (6 a> � (6 p� ..N-� (6 .� 7 O Q O � � — O 'o �? �� � I W 0 N O7 Q a N Q f6 O] O O a N � � N rn m � f6 � f6 � N O � N t6 � O N N 3 C O N � C N � -� C � — Y � O � E N � (p 0 � � n . � � ..: c � � � E N � L O � > � � � � N O � Q � T ❑, � (6 � T � � N � � � N �� ��� � O � � Q � C � c o � o � o 'm � � O 'O �' (6 fl- O "O Q f9 -� � u� E Q. t6 � � � O N O = Q � m N � (6 `'C H�.�� Q (6 � O � N u f6 � L U f6 N O N U � Q a� .L.-� � N O C T � N � N 7 m c`�o a� m � E U .� N � C � o � �� � M N U� N (/) C a O W U N O Uf6 7 � O p� a�'i � � � � . > m � Z � � �- > T � � � � (n N � O C L � �6 � 3 N c� � U `o °� .L.. � � N � � L � Q � � � � � N � N t6 �-Q�m'� Y � m � a Q �� C � � � o,= �� � � N �� � � '6 t� � (6 � � N p N m � � � d N f6 � O � Q C � U � O � N .� � U U � � � � � 7 t/) U O y (n N � Q '6 — Z p � c°n N �_ � ,p � Q U G �s a`�i �.o U � � � f6 (6 7 .'�... �i � � N �p U C � O N N � U V � � N � fl..� (6 � � (6 O` y .D U �Q�Q�a � � N N � N T �` � C � d o a� � j r m d LL m m � � a N m o >. c � 2 m 'a 'o N Q. C J @ N � O O r Q � � °- m E �° o � � a � � � �U f6 N � � p (6 � .Q p � y L Q y � C � N � m U cn cn > � O t� = in o� � � � � ,6 Q @ � C N � IS �� . . .' . LL N t \ O � y C i 1 � � � � � � m 0 � � O .- a o � N � � a a c O d Q � � o N a � a m � � o m � o = o a � � a � a � � Z, N � Q a� a c c c ` o. a 3 � o � ° ° Q. > > > .. m ., 3 N � m y o o w - o. o_ o. R a Q � p= T p o � @ m � � � >. � � a � a — _ — �c O a� � � � u�. 3 o T N > > a m N d c°�i a�i Y C � � Y � � � o m o � o �- c > � =o (n (n (n '� CO U.1 U U C7 i:i J J � � � d d' (n fn N (n (/J (n a R !�'� (� N 1 O a ✓ v� ;� . � . _ --�i , ;i�'� � . _j . _ �� ..., .,. o0 O � � N O � Custom Soil Resource Report Map Unit Legend Map Unit Symbol 40 64 76 77 81 92 105 Map Unit Name Acres in AOI 0.1 1.2 68.1 2.6 4.3 8.9 3.8 6.0 94.9 Percent of AOI 0.1 % 1.2% 71.8% 2.8°/a 4.5% 9.4% 4.0% 6.3°/a 100.0% Totals for Area of Interest Ascalon sandy loam, 0 to 3 percent slopes Garrett loam, 0 to 1 percent slopes Loveland clay loam, 0 to 1 percent slopes Nu�n clay loam, wet, 1 to 3 percent slopes Otero sandy loam, 0 to 3 percent slopes Paoli fine sandy loam, 0 to 1 percent slopes Riverwash Table Mountain loam, 0 to 1 percent slopes Map Unit Descriptions The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a 11 Custom Soil Resource Report given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especialiy where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example. An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individuaily but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. 12 Custom Soil Resource Report Larimer County Area, Colorado 7—Ascalon sandy loam, 0 to 3 percent slopes Map Unit Setting National map unit symbol.� 2sw13 Elevation: 3,870 to 5,960 feet Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 46 to 57 degrees F Frost-free period.� 135 to 160 days Farmland classification: Prime farmland if irrigated Map Unit Composition Ascalon and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descripfions, and transects of the mapunit. Description of Ascalon Setting Landform: Interfluves Landform position (two-dimensional): Summit Down-slope shape: Linear Across-slope shape: Linear Parent material: Wind-reworked alluvium and/or calcareous sandy eolian deposits Typical profile Ap - 0 to 6 inches: sandy loam Bt1 - 6 to 12 inches: sandy clay loam Bt2 - 12 to 19 inches: sandy clay loam Bk - 19 to 35 inches: sandy clay loam C- 35 to 80 inches: sandy loam Properties and qualities Slope: 0 to 3 percent Depth to restrictive feafure: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding.� None Frequency of ponding: None Calcium carbonate, maximum in profile: 10 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 1.0 Available water storage in profile: Moderate (about 7.7 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: B Ecological site: Sandy Plains (R0676Y024C0) Hydric soil rating: No 13 Custom Soil Resource Report Minor Components Olnest Percent of map unit: 10 percent Landform: Interfluves Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: Sandy Plains (R0676Y024C0) Hydric soil rating: No Vona Percent of map unit: 5 percent Landform: Interfluves Landform position (two-dimensional): Summit Down-slope shape: Linear Across-slope shape: Linear Ecological site: Sandy Plains (R067BY024C0) Hydric soil rating: No 40—Garrett loam, 0 to 1 percent slopes Map Unit Setting National map unit symbol.� jpwg Elevation: 5,200 to 6,000 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period.� 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Garrett and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Garrett Setting Landform: Fans, terraces Landform position (three-dimensional): Base slope, tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sandstone and shale Typical profile H1 - 0 to 8 inches: loam H2 - 8 to 39 inches: sandy clay loam, sandy loam H2 - 8 to 39 inches: sandy loam H3 - 39 to 60 inches: 14 Custom Soil Resource Report Properties and qualities Slope: 0 to 1 percent Depth to restrictive feafure: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to fransmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding.� None Frequency of ponding: None Calcium carbonate, maximum in profile: 10 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Very high (about 12.9 inches) Interpretive groups Land capability classification (irrigated): 2w Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Overflow (R049XY036C0) Hydric soil rating: No Minor Components Harlan Percent of map unit: 6 percent Hydric soil rating: No Barnum Percent of map unit: 5 percent Hydric soil rating: No Connerton Percent of map unit: 4 percent Hydric soil rating: No 64—Loveland clay loam, 0 to 1 percent slopes Map Unit Setting National map unit symbol: jpx9 Elevation: 4,800 to 5,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Loveland and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit. 15 Custom Soil Resource Report Description of Loveland Setting Landform: Flood plains, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium Typical profile H1 - 0 to 15 inches: clay loam H2 - 15 to 32 inches: clay loam, silty clay loam, loam H2 - 15 to 32 inches: very gravelly sand, gravelly sand, gravelly coarse sand H2 - 15 to 32 inches: H3 - 32 to 60 inches: H3 - 32 to 60 inches: H3 - 32 to 60 inches: Properties and qualities Slope: 0 to 1 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Poorly drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr) Depth to water table: About 18 to 36 inches Frequency of flooding.� Occasional Frequency of ponding: None Calcium carbonate, maximum in profile: 15 percent Salinity, maximum in profile: Very slightly saline to slightly saline (2.0 to 4.0 mmhos/cm) Available water storage in profile: Very high (about 16.7 inches) Interpretive groups Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C Hydric soil rating: No Minor Components Aquolls Percent of map unit: 5 percent Landform: Swales Hydric soil rating: Yes Poudre Percent of map unit: 5 percent Hydric soil rating.� No iL Custom Soil Resource Report 76—Nunn clay loam, wet, 1 to 3 percent slopes Map Unit Setting National map unit symbol.� jpxq Elevation: 4,800 to 5,600 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period.� 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Nunn, wet, and similar soi/s: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Nunn, Wet Setting Landform: Alluvial fans, stream terraces Landform position (three-dimensional): Base slope, tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium Typical profile H1 - 0 to 10 inches: clay loam H2 - 10 to 47 inches: clay loam, clay H2 - 10 to 47 inches: clay loam, loam, gravelly sandy loam H3 - 47 to 60 inches: H3 - 47 to 60 inches: H3 - 47 to 60 inches: Properties and qualities Slope: 1 to 3 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr) Depth to water table: About 24 to 36 inches Frequency of flooding.� Rare Frequency of ponding: None Calcium carbonate, maximum in profile: 10 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Very high (about 19.8 inches) Interpretive groups Land capability classification (irrigated): 2w Land capability classification (nonirrigated): 3s 17 Custom Soil Resource Report Hydrologic Soil Group: C Hydric soil rating: No Minor Components Heldt Percent of map unit: 6 percent Hydric soil rating: No Dacono Percent of map unit: 3 percent Hydric soil rating.� No Mollic halaquepts Percent of map unit: 1 percent Landform: Swales Hydric soil rating: Yes 77—Otero sandy loam, 0 to 3 percent slopes Map Unit Setting National map unit symbol: jpxr Elevation: 4,800 to 5,600 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Otero and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Otero Setting Landform: Fans Landform position (three-dimensional): Side slope, base slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium and/or eolian deposits Typical profile H1 - 0 to 17 inches: sandy loam H2 - 17 to 60 inches: sandy loam, fine sandy loam, loamy very fine sand H2 - 17 to 60 inches: H2 - 17 to 60 inches: Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained 18 Custom Soil Resource Report Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 5 percent Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) Available water storage in profile: Very high (about 14.9 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: Sandy Plains (R0676Y024C0) Hydric soil rating: No Minor Components Kim Percent of map unit: 8 percent Hydric soil rating: No Ascalon Percent of map unit: 6 percent Hydric soil rating: No Nelson Percent of map unit: 1 percent Hydric soil rating: No 81—Paoli fine sandy loam, 0 to 1 percent slopes Map Unit Setting National map unit symbol.� jpxx Elevation: 4,800 to 5,600 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period.� 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Paoli and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Paoli Setting Landform: Stream terraces Landform position (three-dimensional): Tread 19 Custom Soil Resource Report Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium Typical profile H1 - 0 to 30 inches: fine sandy loam H2 - 30 to 60 inches: fine sandy loam, sandy loam, loamy sand H2 - 30 to 60 inches: H2 - 30 to 60 inches: Properties and qualities Slope: 0 to 1 percent Depth to restrictive feafure: More than 80 inches Natural drainage class: Well drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding.� None Calcium carbonate, maximum in profile: 15 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Very high (about 16.5 inches) Interpretive groups Land capability classification (irrigated): 1 Land capability classification (nonirrigated): 3c Hydrologic Soil Group: A Ecological site: Overflow (R067BY036C0) Hydric soil rating: No Minor Components Caruso Percent of map unit: 6 percent Hydric soil rating.� No Table mountain Percent of map unit: 6 percent Hydric soil rating: No Fluvaquentic haplustolls Percent of map unit: 3 percent Landform: Terraces Hydric soil rating.� Yes 92—Riverwash Map Unit Setting National map unit symbol: jpy9 Elevation: 4,000 to 8,500 feet 20 Custom Soil Resource Report Mean annual precipitation: 12 to 20 inches Mean annual air temperature: 45 to 52 degrees F Frost-free period.� 75 to 150 days Farmland classification: Not prime farmland Map Unit Composition Riverwash: 100 percent Estimates are based on observations, descripfions, and transects of the mapunit. Description of Riverwash Setting Landform: Outwash terraces, overflow stream channels, flood plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy and gravelly alluvium Typical profile H1 - 0 to 6 inches: very gravelly sand H2 - 6 to 60 inches: stratified very gravelly sand to clay Properties and qualities Slope: 0 to 3 percent Natural drainage class: Somewhat excessively drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr) Frequency of flooding.� Frequent Calcium carbonate, maximum in profile: 5 percent Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 2.0 Available water storage in profile: Very low (about 2.3 inches) Interpretive groups Land capability classification (irrigated): 6w Land capability classification (nonirrigated): 7w Hydrologic Soil Group: A Hydric soil rating: Yes 105—Table Mountain loam, 0 to 1 percent slopes Map Unit Setting National map unit symbol: jpty Elevation: 4,800 to 5,600 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Table mountain and similar soils: 85 percent Minor components: 15 percent 21 Custom Soil Resource Report Estimates are based on observations, descriptions, and transects of the mapunit. Description of Table Mountain Setting Landform: Flood plains, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium Typical profile H1 - 0 to 36 inches: loam H2 - 36 to 60 inches: loam, clay loam, silt loam H2 - 36 to 60 inches: H2 - 36 to 60 inches: Properties and qualities Slope: 0 to 1 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding.� None Frequency of ponding: None Calcium carbonate, maximum in profile: 15 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 5.0 Available water storage in profile: Very high (about 18.0 inches) Interpretive groups Land capability classification (irrigated): 1 Land capability classification (nonirrigated): 3c Hydrologic Soil Group: B Ecological site: Overflow (R049XY036C0) Hydric soil rating: No Minor Components Caruso Percent of map unit: 7 percent Hydric soil rating: No Fluvaquentic haplustolls Percent of map unit: 4 percent Landform: Terraces Hydric soil rating.� Yes Paoli Percent of map unit: 4 percent Hydric soil rating: No 22 Custom Soil Resource Report 23 Refe re n ces American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nres.usda.gov/wps/portal/ nres/detail/national/soils/?cid=nres142p2_054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www. nres. usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http:// www. nres. usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nres.usda.gov/wps/portal/nres/detail/soils/ home/?cid=nres142p2_053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nres.usda.gov/wps/portal/nres/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 24 Custom Soil Resource Report United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nres.usda.gov/wps/portal/ nres/detail/soils/scientists/?cid=nres142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nres.usda.gov/wps/portal/nres/detail/national/soils/? cid=nres142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www. nres. usda.gov/I nternet/FSE_DOCUMENTS/nres142p2_052290. pdf 25 APPENDIX G Approved Variance Request »APPROVED VARIANCE TO BE INSERTED HERE DocuSign Envelope ID: CD6283EE-592F-485C-8C61-056DA7B5EAD8 Stormwater Alternative ComplianceNariance Application City of Fort Collins Water Utilities Engineering Engineer Name Aaron Cvar Phone g�0-221-4158 Street Address 301 N. Howes, Suite 100 City Fort Collins Owner Name Poudre School District Street Address 2407 Laporte Ave. City Fort Collins State CO Zip 80521 Phone 970-482-7420 State C� Zip $0521 Project Name PSD Middle School High School #2 Project/Application Number from Development Review (i.e. FDP123456) Legal description and/or address of property South Half of Section 15, Township 7 North, Range 68 West of the 6th P.M., County of Larimer, City of Fort Collins Description of Project Middle school and hight school development Existing Use (check one): residential •� non-residential � mixed-use � vacant ground Proposed Use (check one): � residential '• non-residential mixed-use other If non-residential or mixed use, describe in detail Development of middle school/high school and associated utility work, parking, roadway improvements State the requirement from which alternative compliance/variance is sought applicable Drainage Criteria Manual volume, chapter and section.) City Code Sec. 26-500 and all reqs. in Ft. Collins Stormwater Criteria, incl. What hardship prevents this site from meeting the requirement? (Please include LID reqs. (Ch7, Sec 6.0) While the site is located within the Fort Collins City Limits, the site is located in the Town of Timnath Drainage Master Plan Area and drains only to Town of Timnath stormwater facilities. The site is also subject to the Poudre School District MS4 permit and not the Fort Collins permit. Attach separate sheet if necessary What alternative is proposed for the site? The site is draining into Town of Timnath drainage facilities, and is being subject to Town of Timnath Drainage Master Plan requirements. Attach separate sheet if necessary DocuSign Envelope ID: CD6283EE-592F-485C-8C61-056DA7B5EAD8 page 2 The owner agrees to comply with the provisions of the zoning ordinance, building code and all other applicable sections of the City Code, Land Use Code, City Plan and all other laws and ordinances affecting the construction and occupancy of the proposed building that are not directly approved by this variance. The owner understands that if this variance is approved, the structure and its occupants may be more susceptible to flood or runoff damage as well as other adverse drainage issues. DocuSigned by: /� � � � (�--f�,�'�� 7/ 15 / 20 2 0 Signature of owner:. 3�gF�g492���4oF. Date: The engineer hereby certifies t he above information, along with the reference plans and project descriptions is correct. Signature of engineer: �ocu5igned by: `�a� l��omr.+�� $�oE589,�Fe�4A�ivew �ache Reservoir Company �ocu5igned by: �� �� BE5�EA347�1H488... 7/17/20Z0 Date 7/17/20Z0 Town of Timnath Date �/2o/to /�S'� �Y'._ ' ':�\ �_., ; •:;�" ''� °'�; °� ,• �� ' G : �,7 1/ ; �� �' ," �' �.::' ;�� �! � „�. ^�,,, :.,,, :; , .�. _,'� �y , `o,'� .f.;; .' ;w=.r Z,': . . . �,� �y� �., �,��j� ..... .�� .� � �`t'�����t r�s�.. �� �ji''�: PE STAMP Date complete application submitted: 7/20/2020 Date of approval/denial: 7/21/2020 Variance: � approved � denied Staffjustification/notes/conditions: This site is currently located in Fort Collins' City Limits, and there is a plan to de-annex from Fort Collins and to annex into Timnath. The site is located within Timnath Stormwater Master Plan Area. Due to anticipated de-annexation from Fort Collins, as well as review and acceptance by Timnath, meeting Timnath Stormwater Criteria is accepted for this Approved by: Entered in UtilifyFile D�tab�se? �yes �no ,il� , l_l- 1�j�J Correspondence 7/16/2020 Mail - Aaron Cvar - Outlook RE: PSD Onsite signatures Dale Trowbridge <DTrowbridge@newcache.com> Fri 7/10/2020 3:39 PM To: Andy Reese <andy@northernengineering.com> Cc: Craig Ullmann <craigullmann@applegategroup.com>; Eric Fuhrman <efuhrman@tstinc.com> Andy, . The Cache La Poudre Reservoir Company (CLPRC) will accept the non-historical flows subject to the following: 1. The Town of Timnath master plan shows the drainage from this site going south across Prospect Rd. The culvert under Prospect Rd. appears to be lower than the canal bank. Certainly there have been changes to Prospect through the years but from the CLPRC perspective, these flows historically did not enter the Timnath Reservoir Inlet Canal (TRIC). The release is stormwater from the Town of Timnath Master Drainage Plan Basin SB6 into the TRIC. 2. The release rate will be at 10 year rate (or less) for this particular parcel only. No additional ground may be drained. My understanding is this will be 1 cfs or less. 3. The elevation of the pipe inverts must be at an e►evation that water will not enter the ponds when the canal is flowing at normal flows. With the hydrology of TRIC, the water backs into the canal passed this point. So the invert elevation of the ponds should be no lower than 4910.77. Why not make them the same as the PSD ponds (4911)? 4. Flap gates must be install on the pipes to reduce or restrict backflow into the ponds. If additional information is necessary, please contact me. Dale Trowbridge General Manager The Cache La Poudre Reservoir Company From: Andy Reese <andy@northernengineering.com> Sent: Thursday, June 25, 2020 5:50 PM To: Dale Trowbridge <DTrowbridge@newcache.com> Cc: Craig Ullmann <craigullmann@applegategroup.com> Subject: FW: PSD Onsite signatures Hello Dale — As you can see in the highlight portion of the email below, Timnath is looking for a statement from you indicating you are willing to accept the stormwater on the west end of the PSD site. I'm not trying to put words in your mouth, but would you be able to send an email to me and the Town stating something like: "The New Cache Reservoir company is aware of the proposal to release stormwater from the Town of Timnath Master Drainage Plan Basin SB6 into the Timnath Reservoir Inlet Canal. We understand that this release was not shown on the Master Drainage plan, however, we are willing to accept this flow so long as the total stormwater release into the TRIC remains at or below the previously allowed rates and continues to provide water quality treatment as previously required" Feel free to wordsmith as needed, but if we can get something like this as quickly as possible, it might help me get these offsite plans back on track. Certainly let me know if you have issues with the statement or approach, but I think we have talked enough that I understand you'll be ok with this. Thanks Dale! Andy Reese Vice President NORTHERN ENGINEERING D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335 Please note that email is the best way to communicate with me while our office is closed. From: Eric Fuhrman <efuhrman@tstinc.com> Sent: Thursday, June 25, 2020 2:46 PM To: Andy Reese <andy_@northernengineering.com>; Steve Humann <shumann@tstinc.com> Subject: RE: PSD Onsite signatures https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 1/5 7/16/2020 Mail - Aaron Cvar - Outlook Andy, Since Fort Collins isn't sending a referral for comments, here are our comments on the plans & report. Plans are minor, and other that the storm HGL's, are repeats from the last round. htt ps: //tsti n cfc- my.sharepoint.com/:f:/g�personal/efuhrman_tstinc_com/EoDhqPneeGxlmScfU IIt20BJaTm55CePsLbtm- vmzhTYA?e=1zX2pj Comments on the drainage report are also repeats associated with the additional connection to the TRIC & the design of that pond. One of the major outstanding items would be written approval from New Cache for the additional connection & release into the TRIC. Do you have that? For future submittals (this & other projects), please make sure all comments are removed from the PDF files. The files submitted contain significant (over 2700 on the plans) ACAD comments. These are making the PDF files extremely large, and makes adding comments problemafic. Thanks, Eric From: Andy Reese <andy_@northernengineering.com> Sent: Tuesday, June 23, 2020 4:05 PM To: Eric Fuhrman <efuhrman@tstinc.com>; Steve Humann <shumann@tstinc.com> Subject: RE: PSD Onsite signatures Eric — Thanks for the response. Fort Collins probably won't be sending an ofFicial referral, as they were just doing a quick pdf review to confirm their last comments were addressed in advance of approvals. With that in mind, is there anything we can do between us directly to minimize changes you need to see or to help facilitate the approval of the offsite roadways? As you can imagine, getting AP the ability to do the Main Street improvements while the bridge is being demo'd would really reduce the overall impact to residents. I can make myself available almost any time tomorrow except from 1-3 (I'll be onsite at the PSD/TRIC OAC) and would be willing to go point by point if we need to. Just let me know how we can get this across the finish line. Sorry to hear about the pothole! Andy Reese Vice President NORTHERN ENGINEERING D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335 Please note that email is the best way to communicate with me while our office is closed. From: Eric Fuhrman <efuhrman@tstinc.com> Sent: Tuesday, June 23, 2020 3:45 PM To: Andy Reese <andy_@northernengineering.com>; Steve Humann <shumann@tstinc.com> Subject: Re: PSD Onsite signatures Andy, Trying to get those wrapped up. I had been waifing to get the ofFicial referral comment request from the City to keep all of the comments together. I'm having some problems making comments on the PDF as it keeps locking up on me, so will probably print and scan the markups. Was trying to get them done today, but had to come out to Timnath for an emergency with a sink hole appearing in a road. Not sure when I will get back to the ofFice. Eric Sent from Outlook Mobile From: Andy Reese <andy_@northernengineering.com> Sent: Tuesday, June 23, 2020 3:31:43 PM To: Eric Fuhrman <efuhrman@tstinc.com>; Steve Humann <shumann@tstinc.com> Subject: RE: PSD Onsite signatures Hey Eric and Steve — I wanted to see if you had a chance to catch up on the offsite plans for PSD? As you know, Dietzler has started their bridge demolition efforts (or it is imminent) and AP would like to piggy back on that closure and get as much https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 2/5 7/16/2020 Mail - Aaron Cvar - Outlook of the Main Street work done now as possible. Where are things at on your end for the offsite approvals? Andy Reese Vice President NORTHERN ENGINEERING D: 970.568.5403 � O: 970.221.4158 � M 970.690.3335 Please note that email is the best way to communicate with me while our office is closed. From: Andy Reese Sent: Sunday, June 21, 2020 9:37 PM To:'Eric Fuhrman' <efuhrman@tstinc.com>;'Steve Humann' <shumann@tstinc.com> Subject: RE: PSD Onsite signatures Eric and Steve — I'm writing again to request an update on the submittal we provided May 28th to the Town of Timnath for the PSD offsite improvement plans. We have not received any information since May 28th from the Town nor from our June 16th email below — can you please let us know the status of the review? As you know, work is underway on the site and we are eager to resolve any remaining issues, particularly those related to the Timnath Master Drainage Plan amendments that you have indicated may be needed. Can you please provide any comments that you have so we can move as quickly as possible to resolve them? Thank you for your timely response! Andy Reese Vice President NORTHERN ENGINEERING D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335 Please note that email is the best way to communicate with me while our office is closed. From: Andy Reese Sent: Tuesday, June 16, 2020 7:00 AM To:'Eric Fuhrman' <efuhrman@tstinc.com> Cc:'Steve Humann' <shumann@tstinc.com> Subject: RE: PSD Onsite signatures Hello Eric — It has been almost three weeks since we submitted the updated drainage report — any luck reviewing it? As you know, that report is holding up approvals of the offsite package, so understanding if anything else is needed would be very helpful in maintaining the schedule. I am hopeful that the report is in good shape, but there is probably more to be done with the Master Plan and getting that all sorted out, so the sooner we get going on that, the better. Please let me know if there is anything you need from me to help speed things along! Andy Reese Vice President NORTHERN ENGINEERING D: 970.568.5403 � O 970.221.4158 � M: 970.690.3335 Please note that email is the best way to communicate with me while our office is closed. From: Andy Reese Sent: Thursday, May 28, 2020 4:55 PM To:'Eric Fuhrman' <efuhrman@tstinc.com> Cc: Steve Humann <shumann@tstinc.com> Subject: RE: PSD Onsite signatures That is great news Eric! Thank you for that!! I will get our onsite plans printing and start routing for signatures. We understand about the drainage report being in the queue. I think we may need to have a meeting to figure out the master plan changes/variances if that is the route we are going. I did speak with Dale again, and he continues to be ok with the concept of that area draining to the TRIC. Please let me know when that meeting can happen. https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 3/5 7/16/2020 Thanks again for clearing the onsite plans! Andy Reese Vice President NORTHERN ENGINEERING D: 970.568.5403 � O: 970.221.4158 � M 970.690.3335 Please note that email is the best way to communicate with me while our office is closed. From: Eric Fuhrman <efuhrman@tstinc.com> Sent: Thursday, May 28, 2020 3:15 PM To: Andy Reese <andy_@northernengineering.com> Cc: Steve Humann <shumann@tstinc.com> Subject: RE: PSD Onsite signatures Andy, Mail - Aaron Cvar - Outlook The resubmitted drainage report is in the queue to be reviewed, as we work thru submittals in the order received. We did discuss in our team meeting this morning if everyone would be okay with signing the onsite plans. Our position is the same as expressed by Dan. We can sign the onsite plans — but the drainage report will need to be finalized, including any modifications because of the finalization of the offsite design, before the offsite plans will be approved. Thanks, Eric From: Andy Reese <andy_@northernengineering.com> Sent: Wednesday, May 27, 2020 11:14 AM To: Eric Fuhrman <efuhrman@tstinc.com> Cc: Steve Humann <shumann@tstinc.com> Subject: FW: PSD Onsite signatures Importance: High Hey Eric — It looks like Fort Collins is good signing the onsite plans — can you please update where Timnath is on this? i haven't seen any responses from the Town since we resubmitted the drainage study (aside from the communication on the fiber line). What do you need to get this moving? Andy Reese Vice President NORTHERN ENGINEERING D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335 Please note that email is the best way to communicate with me while our office is closed. From: Dan Mogen <dmogen@fcgov.com> Sent: Wednesday, May 27, 2020 10:38 AM To: Andy Reese <andy_@northernengineering.com>; efuhrman@tstinc.com Cc: Shane Boyle <SBOYLE@fcgov.com>; Steve Humann <shumann@tstinc.com>; Earl Smith (earls@psdschools.org) <earls@psdschools.org>; John Little (jlittle@psdschools.org) <jlittle@psdschools.org> Subject: RE: PSD Onsite signatures Andy, I've had a chance to discuss with Shane and City Stormwater is willing to sign the on-site plans at this point. To be clear, the expectation is that the drainage report, including variance approval and acceptance by Timnath and New Cache, will be submitted to the City prior to signing the off-site plans. Also noting here per previous discussions, FC signature block will be included on the cover of the on-site plans and on each sheet of the off-site plans. Best, Dan Dan Mogen, EI, CFM Development Review Engineer https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 4/5 7/16/2020 Mail - Aaron Cvar - Outlook Stormwater Engineering & Development Review Division City of Fort Collins Utilities (970)305-5989 dmogen@fcgov.com From: Andy Reese <andy_@northernengineering.com> Sent: Tuesday, May 26, 2020 9:17 PM To: Dan Mogen <dmogen@fcgov.com>; efuhrman@tstinc.com Cc: Shane Boyle <SBOYLE@fcgov.com>; Steve Humann <shumann@tstinc.com>; Earl Smith (earls@psdschools.org) <earls@psdschools.org>; John Little (jlittle@psdschools.org) <jlittle@psdschools.org> Subject: [EXTERNAL] PSD Onsite signatures Hello Dan and Eric— As you know, we received the most recent redlines and comments for the PSD offsite plans last week. We have since updated both the utility plans and drainage study. We have addressed all of the plan comments/redlines and will be resubmitting those as soon as we receive the updated signal plans from Delich. We have also addressed all of the drainage report comments and provided the updated drainage report to both Fort Collins and Timnath ►ast week. We believe all issues (onsite, offsite, drainage or otherwise) have been addressed except that for the Timnath Drainage Master Plan variance/update needed to drain approximately 0.5 acres of Prospect to the TRIC, and we are hoping to get resolution with Timnath on that issue as soon as possible. With that all in the works, I wanted to talk about what our options are for getting signed plans for the onsite package. As you may recall, these plans were finalized a couple of months ago and construction has even begun on the earthwork. The next phase of construction is the utility installation, and ELCO will not allow work to begin on the waterline until the plans have been signed. The reason these plans have not been signed to this point have been a result of the revisions/updates to the drainage study. So now for the million dollar (or more) question: Now that all onsite related items have been addressed, are you comfortable signing the onsite plans so the utility work can commence? If not, what needs to happen in order to be comfortable? Andy Reese Vice President NORTHERN ENGINEERING D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335 Please note that email is the best way to communicate with me while our office is closed. https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 5/5 MAP POCKET Drainage Exhibit � � Z �, o�'srvmo� lao� �m w �jz ' 1332115 NIVW'S OVO2i 1J3d5021d ^ o Q �� =w 1�I271SI0lOOHJS3234f1Od N O _ � � l� �� �z S1N3Wf1�0U Z# IOOH�S HiJIH W� e� � U o �' ' �Q .,u .- zw; ; NOI1�f1211SNOJ "IOOH�S3lU4IW USd a _ po � i� 1- � � a L� �.�� � I I I I I'I ■ Ra �_ . � � �;',I �II�I� � : �� — :� ��1=>�_l - �� o . -- � '� - - i�� ; ,. _ Z 1 Wo -- ' 3�1 ; � � _""—' — - J � � _ '"_ � o �� as / = e _ ' � ` oll --% � 8 � � . _ 3 � — w w r w = w —s°.$wa°��5�� o . o �, O _ ., .,o „� z _ l _ �L.. l L ) L 1 '- � � � � �._ �_,�' ��� T �,/ i _ - — � � -- �33a�, ar„ � �� _-1J _T � --�--�, _..i.J _� - �-� I---j l--I L. � �-, -.. �- - --� I--rTr� �" ', ii ��� G ��� � kF� ^ i � -� � � � a f j -I�''i'..i , ��__ .._'—_=yl,l � � � � il,� �i� �� �`� � �'y,� i '�.,>� �� � �� .%. , � � '. � �,�� ,Y r, � e'��`_ .�'�:�4,��, � 0 � � 0 � ZZ o� WU � W � � Z W � � U Z �.' �O � O � � Z O I� I / � Il � � �Q- I�- � — °--�-�-- -.,�\ l � �� � - � r� �