HomeMy WebLinkAboutDrainage Reports - 08/26/2020�uiy 5, 2020
City of Fort Collins Approved Plans
Approved by: Dan Mogen
Date: 08/26/2020
FINAL DRAINAGE AND
EROSION CONTROL REPORT FOR
PSD MIDDLE SCHOOL HIGH SCHOOL #2
Fort Collins, Colorado
Prepared for:
Poudre School District
Ft.Collins, CO
Prepared by:
� NORTHERN
ENGINEERING
301 N. Howes, Sufte 100
Fort Collins, Colorado 50521
Phone:970.221.4158 Fax:970.221.4159
www.northernengi neering.com
;j This Dreinage Report is consciously provided as a PDF.
Please consider the environment before printing this document in its entirety.
When a hard copy is absolutely necessary, we recommend double-sided printing.
Project Number: 100-024
NorthernEngineering.com // 970.221.4158
E
�uiy s, 2020
NORTHERN
ENGINEERING
RE: Final Drainage and Erosion Control Report for
PSD Middle School High School #2
Dear Staff:
Northern Engineering is pleased to submit this Final Drainage and Erosion Control Report for your
review. This report accompanies the final plan set submittal for the proposed PSD Middle School
Hight School #2 development.
This report has been prepared in accordance with the Fort Collins Stormwater Criteria Manual, and
the Town of Timnath Master Drainage Plan. The report serves to document the stormwater impacts
associated with the proposed project. We understand that review by the Town is to assure general
compliance with the Town of Timnath Master Drainage Plan.
If you should have any questions as you review this report, please feel free to contact us.
Sincerely,
NORTHERN ENGINEERING SERVICES, INC.
C����1�----�
Aaron Cvar, PhD, PE
Senior Project Engineer
.��i,:`�`=' . . - ", ':
`,� c'�,.`��NO.;.�; ��,,_'r:'�:
f.(=Je,O �Cj...t1
,� U S� ! �.. � ��
� �382 1 ;�:
`?� � ,r'<,'�
�•�'�3\!ti.-�'� F�
.�
FORT COLLINS: 301 North Howes Street, Suite 100, 80521 � 970.221.4158
GREELEY: 820 8"' Street, 80631 � 970.395.9880 � WEB: www.northernengineering.com
� NORTHERN
E N G I N E E R I N G PSD Middle School High School #2
TABLE OF CONTENTS
I. GENERAL LOCATION AND DESCRIPTION ..........................................................................................1
A. Location .............................................................................................................................................1
B. Description of Property .....................................................................................................................2
C. Floodplain ..........................................................................................................................................4
II. DRAINAGE BASINS AND SUB-BASINS ...............................................................................................4
A. Major Basin Description ....................................................................................................................4
B. Sub-Basin Description .......................................................................................................................4
III. DRAINAGE DESIGN CRITERIA ...........................................................................................................5
A. Regulations ........................................................................................................................................5
B. Four Step Process .............................................................................................................................. 5
C. Development Criteria Reference and Constraints ............................................................................6
D. Hydrologic Criteria ............................................................................................................................ 6
E. Hydraulic Criteria ..............................................................................................................................6
F. Modifications of Criteria ................................................................................................................... 6
IV. DRAINAGE FACILITY DESIGN ............................................................................................................7
A. General Concept ...............................................................................................................................7
B. Specific Details ..................................................................................................................................9
V. CONCLUSIONS ................................................................................................................................10
A. Compliance with Standards ............................................................................................................10
B. Drainage Concept ............................................................................................................................10
APPENDICES:
APPENDIX A — Hydrologic Computations and Supporting Documentation
APPENDIX B.1 — Inlet Design Computations
APPENDIX B.2 —Storm Line Computations
APPENDIX B.3 — Riprap Computations
APPENDIX B.4 —Swale Computations
APPENDIX B.5 — Water Quality Computations and Information
APPENDIX C — Detention Computations, SWMM Output
APPENDIX D — Erosion Control Report
APPENDIX E — Excerpts-Town of Timnath Master Drainage Plan Update, Ayres Associates,
Revised November 2018.
APPENDIX F — USDA Soils Information
APPENDIX G - Approved Variance Request
APPENDIX H - Correspondence
Final Drainage & Erosion Control Report
� NORTHERN
ENGINEERING PSD Middle School High School #2
LIST OF FIGURES:
Figure1— Aerial Photograph ................................................................................................ 2
Figure 2— Proposed Site Plan ................................................................................................ 3
Figure 3— Existing Floodplains ............................................................................................. 4
MAP POCKET:
Proposed Drainage Exhibit
Final Drainage & Erosion Control Report
� NORTHERN
ENGINEERING PSD Middle School High School #2
I. GENERAL LOCATION AND DESCRIPTION
A. Location
1. Vicinity Map
� �� NORTH
�
�nuy Ln
_ Sunny Daze Gardens Q
�Od
' Nawksl
N
C7
O
Z7
Q
�
Knche0l Wuy
FGIChall Way S�g10qe FeHs Pk�.�, �
3
h
�
c�
0
�
a
u�
, E prospect Rd
i
�
Mannon Truck A �
& Auto Repair T �.
aa
�
m
�
�
�.
p
� E Prospect Rd
Culf�r,�;" s�k�ry � cn
n`
' � �
� � d
'° a v
o �
a
2. The project site is located in the south half of Section 15, Township 7 North, Range
68 West of the 6`h Principal Meridian, City of Fort Collins, County of Larimer, State of
Colorado.
3. The project site is located just northwest of the intersection of Prospect Rd. and
County Road 5.
4. Existing nearby residential developments include Kitchell Subdivision to the north of
the site and Homestead Subdivision to the south of the site. Serratoga Falls Second
filing is being constructed to the east.
5. Offsite flows enter the site from the north per the Town of Timnath Master Drainage
Plan Update (Ref. 5). Historic flows are generally conveyed via sheet flow south
towards the existing Timnath Reservoir Inlet Canal (TRIC) embankment and pass
under the embankment through several existing pipes, as well as via sheet flow across
the top of the ditch at certain locations.
Final Drainage & Erosion Control Report 1
� NORTHERN
ENGINEERING PSD Middle School High School #2
B. Description of Property
l. The proposed development area is roughly 93 acres in size.
� `?.�i-,`� ,��`�_�, r .�,�...�`�
�%4�F¢.f� �:'�- . -I�..E - •
�.4r { � , �« ti->� . ' ♦ �
� . . . � .. , `* � ,
..� t . � �
�`� � � ��"`. - - ,. �
T � • .
� � � � ' 1
. �
:,•� �� ►,�`.�; 1 , ,�,,•i •, h
� {� +� `� s ' . ��T j,° i �
� ,,,,�,��� • • � �Ir
•. r .. . �
� �.� �J�'��71 ���: � �� � � � � � ��
� �� ���� �
2. The subject property is currently composed of undeveloped farmland. Existing ground
slopes are mild to moderate (i.e., 1- 6±%) through the interior of the property.
Historic drainage patterns direct flows generally from north to south and drain via
sheet flow collecting within several existing pipes and enter the Timnath Reservoir
Inlet Canal (TRIC) at several locations. There are also areas of discharge into the
TRIC where sheet flow prevails, and historic flows enter the canal across the north
bank of the canal.
3. The proposed site design will include Extended Detention water quality treatment prior
to stormwater discharging from the site. Water quality treatment methods are
described in further detail below.
4. According to the United States Department of Agriculture (USDA) Natural Resources
Conservation Service (NRCS) Soil Survey website:
http://websoilsurvey. nres. usda.gov/app/WebSoilS urvey.aspx,
the site primarily consists of Loveland Clay Loam, which falls into Hydrologic Soil
Group C.
Final Drainage & Erosion Control Report
Figure 1- Aerial Photograph NORTH
� NORTHERN
ENGINEERING PSD Middle School High School #2
5. The proposed project site plan is composed of a combined middle school and high
school with associated parking, utilities, and drives. Onsite detention water quality
treatment is proposed and will consist features which are discussed in Section IV.
����:���=�----
I �. � �
.\. \
I �. �
��-----=----- �:
,_ � - � �
, � . �
, , �
� ?n l i.
__J � �J � I
I
. . . � �.' ... . ..,_, I
�C1C1� � ____I__-_i.'�.,�:.,� r-�-_�. �
I
� ��; � 1 , �.
� � �� �
J i
L----�----J i I
--- , �
- J I
I
I
_ 1
i�
I�
_______________�:I
. � I
�
Figure 2— Proposed Site Plan NORTH
6. The proposed land use is a combined middle school and high school.
7. The proposed site is unique in its location, as it currently lies within the City of Fort
Collins City limits, however, it is located within the Town of Timnath Master Drainage
Plan area. Because the site will have more than 1,000 students, the project is also
subject to the Poudre School District MS4 permit, rather than by either of the other
City or Town's MS4 permits. After discussion with City of Fort Collins Staff and Town
of Timnath staff, it was determined that for the purposes of this report, City of Fort
Collins Stormwater Criteria should be utilized for all calculations, while the Town of
Timnath Master Drainage Plan should be used to identify offsite basin areas and flows
as well as allowable release rates and methods into the TRIC.
Final Drainage & Erosion Control Report
� NORTHERN
ENGINEERING PSD Middle School High School #2
C. Floodplain
l. The project site is not encroached by any FEMA jurisdictional flood zones.
Additionally, the site is not encroached by any City of Fort Collins designated flood
zones, as shown in Figure 3, below.
� � ! :
- ; : F�.«vE,�
1 . � _ 5G
1 � a
� � � _ "^Or ~
.� •;..1 [_„� c >
' ����
,
ii
�
3
�; =
N�. iinlry Ln
� C�t;+ �+igh Risk - Floodway
�j Cibj High Risk - 100 Vear
_.._.._.._._..---._.._. _..
� n City Moderate Risk - 100 Year
�
j
i
i .�.,��.�i.�ya F�i
� KilLlfli �;�i;��
1
� PROJECT SITE
�
�
:.._,._.._.._..--�- -._.._.._.._.._.._.._.._.._.._._.._..------ ---.._..,
i
i
i
i
..EF.'L':5L''::15':1.._.. _..._.._.. _.._.._.. _.. _.._.. _.._.._...
i
!
i
�
i
�,_.,, �.r � : �.,�_
1- F'ii�..l.., 1 F.rl.._..._..�.._.._.._.._.._..I
NORTH
Figure 3 —Area Floodplain Mapping
II. DRAINAGE BASINS AND SUB-BASINS
A. Major Basin Description
1. The project site lies within the Town of Timnath Master Drainage Plan Update (Ref. 5)
study area. According to the Town Master Drainage Plan, Basins SB5 and SB5A are
allowed to release 57 cfs (Link 105C) while Basins SB15 and SB15A are allowed to
release 28 cfs (Link 115AB). Thus, a total allowable release of 85 cfs is allowed into
the TRIC from these basins. It is noted that the combined 2-year release from these
basins is 2 cfs. Please excerpts from the Town Master Drainage Plan provided in the
Append ix.
2. Prospect Road Basins R1 through R3 reflect the proposed widened roadway. We are
bringing this drainage into our system and providing water quality treatment and
detention for the developed storm flow from these basins.
B. Sub-Basin Description
l. Historic drainage patterns direct flows generally from north to south and drain via sheet
flow collecting within several existing pipes and enter the Timnath Reservoir Inlet Canal
(TRIC) at several locations. There are also areas of discharge into the TRIC where
sheet flow prevails and historic flows enter over the north bank of canal.
2. A more detailed description of the project drainage patterns is provided below.
Final Drainage & Erosion Control Report 4
� NORTHERN
ENGINEERING PSD Middle School High School #2
III. DRAINAGE DESIGN CRITERIA
A. Regulations
There are no optional provisions outside of the Fort Collins Stormwater Criteria Manual,
and the Town of Timnath Master Drainage Plan proposed with the proposed project.
B. Four Step Process
The overall stormwater management strategy employed with the proposed project utilizes
the "Four Step Process" to minimize adverse impacts of urbanization on receiving waters.
The following is a description of how the proposed development has incorporated each
step.
Step 1— Employ Runoff Reduction Practices
Several techniques have been utilized with the proposed development to facilitate the
reduction of runoff peaks, volumes, and pollutant loads as the site is developed from the
current use by implementing best management practices including:
N Conserving existing amenities in the site including the existing vegetated areas when
possible.
N- Providing vegetated open areas throughout the site to reduce the overall impervious
area and to minimize directly connected impervious areas (MDCIA).
K= Routing flows, to the extent feasible, through vegetated swales to increase time of
concentration, promote infiltration and provide initial water quality.
Step 2— Implement BMPs That Provide a Water Quality Capture Volume (WQCV) with
Slow Release
The efforts taken in Step 1 will facilitate the reduction of runoff; however, urban
development of this intensity will still generate stormwater runoff that will require
additional BMPs and water quality. The majority of stormwater runoff from the site will
ultimately be intercepted and treated using detention and water quality treatment methods
prior to exiting the site.
Step 3 — Stabilize Drainageways
The major drainageway on the site is the TRIC. While this step may not seem applicable
to proposed development, the project helps stabilize the drainageway by providing water
quality treatment where none previously existed, so sediment with erosion potential is
removed from downstream drainageway systems.
Step 4— Implement Site Specific and Other Source Control BMPs.
The proposed project will improve upon site specific source controls compared to historic
conditions:
N= The proposed development will provide water quality treatment, thus eliminating
sources of potential pollution previously left exposed to weathering and runoff
processes.
Final Drainage & Erosion Control Report
� NORTHERN
E N G I N E E R I N G PSD Middle School High School #2
C. Development Criteria Reference and Constraints
The subject property is mostly surrounded by developed properties and drains to an
existing irrigation ditch. Thus, several constraints have been identified during the course
of this analysis that will impact the proposed drainage system including:
N=' Existing elevations along the property lines will generally be maintained.
N=' As previously mentioned, overall drainage patterns of the existing site will be
maintained.
N=' Elevations of existing downstream facilities that the subject property will release to
will be maintained.
N=' Release rates from the site will be reduced to match the Town of Timnath Master
Drainage Plan.
D. Hydrologic Criteria
1. City of Fort Collins Rainfall Intensity-Duration-Frequency Curves, as depicted in Figure 3.4-
1 of the FCSCM, serve as the source for all hydrologic computations associated with the
proposed development. Tabulated data contained in Table 3.4-1 has been utilized for
Rational Method runoff calculations.
Three separate design storms have been utilized to address distinct drainage scenarios.
The first event analyzed is the a 2-year recurrence interval storm for comparison
purposes. The second event considered is the 10-year recurrence interval storm. The
third event considered is the 100-year recurrence interval storm.
E. Hydraulic Criteria
1. As previously noted, the subject property maintains historic drainage patterns.
2. All drainage facilities proposed with the project are designed in accordance with Fort
Collins Stormwater Criteria Manual, and the Town of Timnath Master Drainage Plan.
As stated above, the subject property is not located in a FEMA designated floodplain, or
within a City designated floodplain and floodway. The proposed project does not propose
to modify any natural drainageways.
4. In general storm infrastructure has been sized to convey the 10-year storm event, with
100-year flows overtopping and being conveyed via surface flow. The exception to this is
storm inlet 9-8.1-1, and storm inlet 16-9, as shown in the Inlet Design Summary Table in
Appendix B.1. These two inlets will capture up to the 2-year storm event, with greater
storm events overtopping and being conveyed via surface flow.
Modifications of Criteria
A variance to City of Fort Collins LID requirements has been requested. A copy of the
signed variance request, has been provided in Appendix G. This variance has been
approved by the Town of Timnath, Timnath Reservoir Inlet Canal, and the City of Fort
Collins.
Final Drainage & Erosion Control Report
� NORTHERN
ENGINEERING PSD Middle School High School #2
IV. DRAINAGE FACILITY DESIGN
A. General Concept
1. The main objectives of the project drainage design are to maintain existing drainage
patterns, and to ensure no adverse impacts to any adjacent properties.
2. Drainage patterns anticipated for drainage basins shown in the Drainage Exhibit are
described below.
Basins 1 and 2
Basins 1 and 2 consist of a stadium area, drives and parking areas, as well as landscaped
areas. Drainage from these basins will be conveyed via drive and parking area curb and
gutter as well as across landscaped areas to proposed storm sewer systems, which will
direct developed runoff into Pond 4. This pond will provide attenuation prior to
conveyance into Pond 3. Pond 3 will provide additional attenuation and water quality
treatment before stormwater is released into the TRIC. In large storm events, Pond 3 will
fill to a point that allows stormwater flows to pass to Ponds 1 and 2 via equalizer pipes.
Ponds l, 2 and 3 will release detained, treated flows into the Timnath Reservoir Inlet
Canal (TRIC).
Basins 3•5, 10, 11
Basins 3 through 5, and Basins 10 and 11 consist of the main school building, drives and
parking areas, and some playfields. Drainage from these basins will be conveyed via drive
and parking area curb and gutter as well as across the playfield areas to proposed storm
sewer systems, which will direct developed runoff into Ponds 2 and 3. These ponds will
provide attenuation and water quality capture volume prior to releasing flows into the
TRIC. In large storm events, both Ponds 2 and 3 will fill to a point that allows stormwater
flows to pass to Ponds 1 and 2 via equalizer pipes. Ponds l, 2 and 3 will release
detained, treated flows into the Timnath Reservoir Inlet Canal (TRIC).
Basins 6-9 and 12, 13
Basins 6 through 9 and Bains 12 and 13 have a small parking area but are primarily
landscaped areas and playfields. Drainage from these basins will be conveyed via some
drive and parking area curb and gutter as well as across landscaped areas and through
grass swales to proposed storm sewer systems, which will direct developed runoff into
Pond l. In large storm events, stormwater from Ponds 2, 3 and 4 will also be directed to
Pond 1 via equalizer pipes. Ponds 1, 2 and 3 will release detained, treated flows into the
Timnath Reservoir Inlet Canal (TRIC).
Basin OS1
Basin OSl consists of anticipated future development area. This basin is anticipated to
provide its own detention and water quality and release into Timnath Reservoir Inlet Canal
(TRIC) in the future. Historically, this basin was routed as sheet flow into the TRIC, and
was included in the Town of Timnath Master Drainage Plan (Ref.5), Basin SB5. With the
current proposed development, this basin will remain undeveloped and historic drainage
patterns will not be altered.
Basin SB5A
Basin SB5A consists of offsite areas just north of Basins 3 and 4 that were modeled in the
Town of Timnath Master Drainage Plan Update (Ref. 5). This area is shown to drain to an
existing retention pond near the southwest corner of the basin. Per the Master Drainage
Plan, the retention pond fully retains the 2-year and 10-year events. In the 100-year
event, the existing retention ponds spills south, into the project site with a peak discharge
of 52.0 cfs. This flow will be routed via overland flow through the school site as
Final Drainage & Erosion Control Report
� NORTHERN
ENGINEERING PSD Middle School High School #2
discussed further in in Section IV.B. Offsite flow will be directed into the onsite detention
system, where it will be detained, treated and released into the TR1C.
Basin SB15A
Basin SB15A consists of offsite areas just north of Basins 5 through 8 that were modeled
in the Town of Timnath Master Drainage Plan Update (Ref. 5). Similar to Basin SB5A,
this area is also shown to drain to an existing retention pond near the southwest corner of
the basin. Per the Master Drainage Plan, the retention pond fully retains the 2-year and
10-year events. In the 100-year event, the existing retention ponds spills south, into the
project site with a peak discharge of 82.0 cfs. This flow will be routed via overland flow
through the school site as discussed further in in Section IV.B. Offsite flow will be directed
into the onsite detention system, where it will be detained, treated and released into the
TRIC.
Basin SB5
Basin SB5 consists of offsite areas just north of Basins 1 and 2 that were modeled in the
Town of Timnath Master Drainage Plan Update (Ref. 5). However, this master plan basin
has been altered by the project site. The original master plan basin had an area of 82
acres. With the development of the proposed project, the basin size will be reduced to
19.47 acres. We have computed 10-, and 100-year peak discharges of 9.3 cfs 24.7 cfs,
respectively, from this basin. We have designed a culvert at design point SB5 to convey
the full 100-year discharge at this point. We anticipate in the future, development in this
parcel may alter drainage patterns, but as a conservative measure, we are designing to the
full 100-year discharge at this point.
Basins R1 — R3
Basins R1 through R3 contain portions of the adjacent Prospect right-of-way area and
landscaped areas on the north side of the road. These areas are directed into Ponds 1
through 3 as shown on the Drainage Exhibit. These ponds will provide attenuation and
water quality capture volume prior to conveyance into the Timnath Reservoir Inlet Canal
(TRIC).
Basin R4
Basin R4 contains a portion of the Prospect right-of-way area and landscaped area on the
south side of Prospect Road, near the Prospect/Main intersection. This area is captured
by a curb running along the south side of the road that directs flows to the east and west
to existing roadside drainage conveyance.
Basin R5
Basin R5 contains a portion of the Prospect right-of-way and landscaped area on the north
side of Prospect, west of McLaughlin Lane. This area is captured by a curb and gutter and
directed to Offsite Pond l. This pond will provide attenuation and water quality capture
volume prior to conveyance into the Timnath Reservoir Inlet Canal. It is worth noting that
this basin is shown on the Timnath Master Drainage Plan as draining south, away from
the TRIC. The project has proposed a deviation from the Master Plan flow direction and
would release flows north to the TRIC, following their historic path. Both the allowable
release rate from the basin as well as total flows in the TRIC will conform with the
Timnath Master Drainage Plan. This deviation will maintain or reduce the total overall
developed flow released into the TRIC at the approved rates in the Master Plan by
including the basin as part of tne overall allowable release rate from the larger PSD site
north of the ditch.
A full-size copy of the Drainage Exhibit can be found in the Map Pocket at the end of this
report.
Final Drainage & Erosion Control Report
� NORTHERN
ENGINEERING PSD Middle School High School #2
B. Specific Details
l. Standard water quality treatment in the form of Extended Detention is being
provided for the overall proposed development within the lower stages of
Ponds 1, 2, and 3. We have computed required extended detention volumes
based on the standard water quality treatment for 100% of the site runoff.
Please see Water Quality Capture Volume (Extended Detention) computations
provided in the Appendix.
2. The overall on-site design proposes a series of 4 detention ponds. Ponds 2
through 4 will provide minor attenuation and will release minor storms directly
into the TRIC. In larger storm events, the ponds will fill and then release
towards Pond 1 via equalizer pipes, essentially creating a single large pond
with four outlets into the TRIC. The series of ponds, along with proposed
"Offsite Pondl", act together as an overall system that ultimately releases a
total routed out�low to the TRIC at a peak rate of 81.10 cfs, which is below
the allowable release rate of 85.0 cfs, as discussed above.
3. Pond 1 has two outflow structures. Each structure limits release to 22.25 cfs,
for a total release rate from Pond 1 of 44.50, which is conveyed via two pipe
entries into the Timnath Reservoir Inlet Canal (TRIC). Please note that the
total routed flow from all ponds (Ponds 1 through 5) has been modeled in the
computer program EPA-SWMM, and a total routed flow rate from all ponds per
EPA-SWMM must be shown at or below the allowable release rate of 85.00
cfs.
4. Pond 2 also has two outflow structures. However, one of the outfall structures
releases to the TRIC, the other releases into Pond 1. The structure releasing
flow to the TRIC limits flow to a release of 22.00 cfs. The second release
structure releases 42.50 cfs into Pond l, for a total release rate from Pond 2
of 64.50 cfs.
5. Pond 3 has two outflow structures as well. One of the outfall structures
releases to the TRIC, the other releases into Pond 2. The structure releasing
flow to the TRIC limits flow to a release of 21.90 cfs. A second release
structure releases 43.00 cfs into Pond 2, for a total release rate from Pond 3
of 64.90
6. Pond 4 has one outflow structure, which releases 4.50 cfs into Pond 3.
7. Offsite Pond lwill have a single outflow structure that releases stormwater
flows into the TRIC, at a maximum allowable release rate of 1.0 cfs per the
Town of Timnath Master Drainage Plan (Ref.S) for Basin SB6.
8. Utilizing the computer program EPA-SWMM, we have modeled a total routed
flow from the series of the four proposed onsite ponds and Offsite Pond 1 and
have shown a total routed outflow into the TRIC of 81.10 cfs. Offsite Pond 1
is proposed to release at 0.99 cfs. The total routed flow rate is 3.90 cfs below
the allowable release rate of 85.00 cfs.
Final Drainage & Erosion Control Report
� NORTHERN
ENGINEERING PSD Middle School High School #2
9. Please see Table l, below, summarizing pond volumes, Water Quality Capture
volumes, and peak release rates for both individual ponds, and peak total
routed outflow into the TRIC from modeled ponds 1 through 4 and Offsite
Pond l.
10. Routing of offsite flows from basins SB5A, SB15A has been conducted in the
computer program HEC-RAS. An Offsite Routing Exhibit, Offsite Routing
Analysis Results Table, and HEC-RAS Model output has been provided in
Appendix C.2. As shown in the HEC-RAS model output, some cross-sections
have been extended vertically by the model. This methodology leads to a
conservative estimate of 100-year water surface elevation, since vertical
extension of cross-section data slightly over-estimates water surface elevation.
TABLE 1- DETENTION AND WATER QUALITY SUMMARY
POND SUMMARY TABLE
100-Yr. Water Quality Peak Peak
Detention Capture Volume Total Req'd 100-Yr. Release to Release
Pond ID Vol. (Ac-Ft) (Ac-Ft) Vol. (Ac-Ft) WSEL (Ft) TRIC (cfs) (cfs)
Pond 1 15.76 0.56 16.32 4915.99 44.50 44.50
Pond 2 1.05 0.38 1.43 4916.75 22.00 64.50
Pond 3 0.49 0.61 1.11 4916.39 21.90 64.90
Pond 4 1.37 0.00 1.37 4916.93 0.00 4.50
Offsite Pond 1 0.26 0.025 0.285 4914.43 0.99 0.99
Total Routed Outflow to TRIC: 81.1 cfs
V. CONCLUSIONS
A. Compliance with Standards
1. The overall drainage design proposed with this project complies with Fort Collins
Stormwater Criteria Manual, and the Town of Timnath Master Drainage Plan.
2. The drainage plan and stormwater management measures proposed with the
proposed development are compliant with all applicable State and Federal regulations
governing stormwater discharge.
B. Drainage Concept
1. The drainage design proposed with this project will effectively limit any potential
damage associated with its stormwater runoff by providing detention and water
quality mitigation features.
2. The drainage concept for the proposed development is consistent with requirements
for the Fort Collins Stormwater Criteria Manual, and the Town of Timnath Master
Drainage Plan.
Final Drainage & Erosion Control Report 10
� NORTHERN
ENGINEERING PSD Middle School High School #2
References
1. Fort Collins Stormwater Criteria Manual, City of Fort Collins, Colorado, December 2018.
2. Larimer County Urban Area Street Standards, Adopted January 2, 2001, Repealed and
Reenacted, Effective October l, 2002, Repealed and Reenacted, Effective April 1, 2007.
3. Soils Resource Report for Larimer County Area, Colorado, Natural Resources Conservation
Service, United States Department of Agriculture
(https://websoilsurvey.sc.egov.usda.gov/App/ Data upload February 2019)
4. Urban Storm Draina�e Criteria Manual, Volumes 1-3, Urban Drainage and Flood Control
District, Wright-McLaughlin Engineers, Denver, Colorado, Revised April 2008.
5. Town of Timnath Master Draina�e Plan Update, Ayres Associates, Revised November,
2018.
Final Drainage & Erosion Control Report I1
APPENDIX A
Hydrologic Computations and Supporting Documentation
v;
�oa 0000a00000000000e000a
c� m�� n N� N� N� ��� m� m�� o� m
� aN�m��NN��� �Nmm�
0 0
U
O �
N .. � y
�N II �0 'N � v
d Ol (�"7 � d' ,-a tS) i� N O O �O h l0 � O N tS) � l0 �
a U T a� U �o � 00�o dd' �� d�� OM o��to�0 o0r�l chMM
O � � E= y O O O O O O O O O O� O O O O O O O O O O
� 0 O � O
�o 00 "" U U
� Q �
U �' i.
O Q m� � y 0 p� �(�"7 I� ,� ch l0 O� M� O 6l O LCl 6l � lD �� 61 I�
Q. O a p, C V ���� m m� a (h l0 00 N I� ��� l0 N N N N
� � p E � O� Q O O O O O O O O O O O O O O O O O O O O O
� 3 V C�
U �� O
� U Z
` U -
�,J �
� i. e+ G
� �= f0 0 0 � �nm�..m�oo�nmd orno�nrnm�om�nrn�
� ; � p_ 3.,�- �n�r��nmmrr<tMIO�ONI�Ud' t'IDNNNN
'� O O O O O O O O O O O O O O O O O O O O O
V � N O � O
� o U U
� �
a
� o � � o c
(� o o � a
� II � �p y V U
U II �
� � a 3�o c V o o a�
O T J I� N N� d' N I� l0 � N G' i� 6l O O (h ct I� 00 d' N
U' J O N l0 N N� N�7 I� M�� ch Ol I� � N ('�7 �� N
N � d- .-� l0 l0 lO [h .-� ch l0 ,-. .-� O N,- �.. O('�7 �.-+ f+�
� d � o
� � � �
� 10 O
° o 0 0 0 � �
Q v al O 6�i � O�i � � � E y i IUa
� a� a a� v o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
_ o00000000000000000000
� O O O O O O O O O O O O O O O O O O O O O
� m
O G �
2 °1 �n �n O �n O � �t7 � O �n
� V 61 O� Ln 01 Ln N 10 O U
Q� y O O O O O O O ��`�
O a V' � W O O O O O O O O O O O O O O O O O O
� V •-+ O N O O O O O O O O O O O O O O O O O
(/) in O O O O O O O O O O O O O O O O O O O O O
� o
a�
N ° �
� U d C ..�.
Q a V �I�NOOOmm�oo�o�OlNN00�00 W Oi�h
� N� m �'7 O N� O O� ch N O � O O O O O O O
� O O O O O O O O O O O O O O O O O O O O O
W ��
� m � o �
� �
�p L U
\ � � � w -�
a a r+N�'1� V Oi� N� N�'l l��Od n701 O101O
� �"- �.-�o.-.�000�n�-.�d-�oo��oc.�oornrn
� - � N�NMO�OOO� cnOO�OOOOOOO
W � °°
o�
I� e � �
� -
(n ' �, � ¢ vc��nm�o�ornrnc�m��o�m�m��o�od^.N
O� C m r" 1O0010 t�,-�,-�N r-+ O o�.-+� �fI
� �� = �' I� �1 � 61 I� i� � N � � � � � � N N O M � � M
Q U � � ....
� � � � m
O� O m
� � � � �
� �oo�m��rnm moocv„_,o cvd m^
� � a.-. oorn�n�nomo�oa�o�I��NON.-�
Q .� rn c0 <Y �t d' O l0 � lo rn rn �'7 N m rn�� N,� m
� C ui O d' l0 N I� W N� c� tfl � N I� �� N V�'� W N
Vy o a ' r•�t�momoo�00NNN�f��OIN�Od'�
Q O G1 V (� N�� ch (�'l ,-� ,-� l0 N l0 .-� l0 N�
LL � C
�
'-i � : � -
N � : N �
LL � : -� : � �Oc p]
bo
� ` .. +-�. : : : � N (n � � � � �
�, >` �� � r. N In d' Ln l0 I� � 6� �� N M����� N m O
C1 4 n o`° o m A� 1O °' � m O��
� y Q U C7 � 6_ y tn U U � m �
Q a�i C o � U
� 3 -
C=7 �n � � o
T � rn � o� o�� rn �� m� rn��� rn m m��
� o � 'E � o � � � o o N � o o � � � m � m � � �
0
,� �
c
� rn n o� o�� rn �� m� rn n m� N
� � C 6� W lD 4t
0 0�= 'E � o� a�ri o o.-� c�i �ri o 0 0o rn rn rn� m�' �v �o
� V .-i
N �
O �
� N �
NO Ol F T � Ol i� O.-� O l0 Ln Ol I� ,-i [h W 6� W lD d' 6l i� ch � N
p U T N~ E� O d' � u7 O O� N�1 O O���� O m���
�
� Q �
m "�"
d� o c¢ a a¢¢¢ a¢¢ a a a a a a¢ m a a 1O m
° ��E z z z z z z z z z z z z z z z z� z z�"'
a o �. N
.�
U �
� 3�o �¢ a a Q¢ Q a¢¢ a a a a Q a a N a¢ o 0
� �� z z z z z z z z z z z z z z z z� z z,�
o d
LLL �
N
� o 0 0 0 0 0 0 0 o a o 0 0 0 0 0 0 0 0 0 0
y O N o O O O O O O O O O O O O O O O O� O O��
N V O O O O O O O O O O O O O O O O O O O O O
= I� N ti
� J $ O O O O O O O O O O O O O O O O N O O i�
v m �0 1O
J
C � Q d' O N Q Q(+� Ln W o0 Q ln Q Q Q Q Q� Q Q
~ E lD Z ln �Cl l0 Z Z N �'/ l0 N Z N Z Z Z Z Z I� Z Z
2 �
0 3'o �'^ o a o 0 o Q a o 0 0 o a o Q¢ a Q a o¢ a
� O d � N z N N N z z N N N N Z N Z Z Z Z Z N Z Z
� LLL �
� �
= o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
� � O N o O O O O O O O O O O O O O O O O O O O O O
� V1 r+ O� � O O� � O� O O O O O� O O
OL r, rn m c� � o 00 0 0 �n o
� C J� I� O d' O d' O O W N<t O rn O O O O O� O O
y � I� l0 l0 I� N� W M N o0
O J
�
Q ?, � o o� o� o rn �r; r" � rn� o,� rn �,� � m c*� m
� F- OO 'E N �'7 � d' d' N O� O N l0 m l0 Ol 00 � l0 M N(�7 M
2 � �
(,Wj _� � o o �,-. oo rn oo ,-. rn rn in °'. <r m�o <r �o '� c� rn rn
Z I- �'� M<t' ��L1 � N,-• O O N^ d' �O 61 Ol Ol �O c� c'7 if1 �
O ,., " m c+� m
C�
� � o o�,-• o� rn oo ,-. rn rn in °'. �t ca �o �r �o '� cy rn rn
� � N'E ni d' ��ri �n cv o o c�i �� �o a; oi oi �o m`� m m
W
� o 0 0 0 0 o a a a o 0 0 0 0 0 0 0 0 0 0 0
c. ^o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O N o O O d' O O O O O O O O O O O O O O Ol O W 00
N V N N ch N N N N N N N N N N N N N N O N O O
3
0
LL t
l0 � N� l0 �C1 I� � LL7 ��� l0 O 00 tfl I� O O O O
C � J� O N� d' � O W l0 I� � c� � N l0 Ln � N N ��
�o y �t r• V V
d J
O
T �
VN .-i .-i '-+ .-� � .--i � .-i .-� .-+ .-� .-� .--� ,-y .-u .-� .-i .-i � .-� �
� o,y m m m m m m m m m m m m m m m m m m m m m
v c� � �� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
� `� U
c p
� U T O � tf7 ln tf� Ln ln I.C) tt7 Ln tn Ln tn In tf7 Ln �c7 I.C) tf7 ln tf� Ln
�� * �' 'y N N N N N N N N N N N N N N N N N N N N N
� � f� r+ �� O O O O O O O O O O O O O O O O O O O O O
� � v U
W o
ii p
�� U U T O u7 tt1 u7 tf1 u7 �r7 u� tn u7 L() lt7 tn IS) tf� Ln �n u7 tt1 u7 tf1 u7
a .� N N N N N N N N N N N N N N N N N N N N N
Q � U N �� O O O O O O O O O O O O O O O O O O O O O
c �
� U
� � L �..
- G
� � U "' °�� tO C 0 O O O O O O O O O O O O O O O O O O O O O
C � Q �(n � �� Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
O �\ O �� p N n
N N
II II 3 O�
o � � � � ] > o c/7
C �
E�--i � o o � a •� ,-� N(rl � t(7 l0 i� OJ 61 ��-+ N(�'7 ����� � m O
3 c° O m �
� � LL � `i � E
o � d > W '' `O m
LL 10 0~ c? <n v?
v 3 1O + > �
m� �� � � r.� .� � '� o c� m��n � � oo rn o,-� c� m����� o� o
`m II II o o � p a' �
O �'` c7 �- � > > i o
3 o y in �o m d- .-, �o d� o d- c� � rn^ � cn cn ,n ,n r, ��
. . . . . . . . . . . . . . . . .
O N N N N O1 l0 l0 N� 01 CO ' I� N O " O� d' N
LL G�' � M N N d' �-+ N ti Ol � I� ('7 ('7 I� �--� �--� �--i Ch tf) N N('�7
3��, '� oo rn 1O �n d�r �n a, a �n cy o rn� o d: .-. o�,.� �n
�c3 � N ao m� ��� cYi � N��ri�o�td� r.c�i,=,o��
0
N
O
N
� N in Lf'7 N N I� d' � I� � CO m�--� � W O W d' W N L(� L(� ('�]
O � � C1' U I� t.() L(� 61 �I' l0 (+') N N� Ol CO �-+ a' N N O � l0 � I�
O U >+
�
O ¢ �
T �
d m 10 � ..-.
O �� 'N o N i� �-+ r+ N f� N Ol � N N I� �-+ W W c� I� N N d' �-+
C C o L l0 � I� i� Ln t.() I� N O L(] I� L(] N W W O L(] �t L(") L(7 Ol
a,�-„ �'- C l0 I� l0 l0 l0 i� I� i� I� l0 I� I� W I� I� W I� d' l0 O"J N
�C C
7
u
�
U T
�C o L d' ,--i Ol 61 Ql ,-� � t� � 61 �� N l0 l0 ('7 � l0 Ol I� �
N I� N N� t� I� ti") d' ,-+ I� I� O W� 61 I� O�-+ l0 cn
,`d, �- C c+� ch ch M �'7 c+� M ch ri ri ri ri d- m m m c'� N M �
C
�'�' O 1� N N I� 1� ,-� Ol N I� ,-� I� ln l0 l0 O I� � I� CO �
� N t Ol � Ol Ol W � N O O W N�--� (� N N(+� �-+ N W Ol �
,t; C � N�-+ �--� � N N N N� N N N N N N N��-+ O O
C
Z o Ol c+� d' d' � �n ,-� i� N O O l0 I� l0 rr O N t.[) � l0 d'
� �n m io �r �r �n � �r �om��n�o�o�mmmm
O � o 0 0 0 0 0 0 0 oor-+0000000000
�
�
� o � m �.-� m �o o in m�oo�oino�w� coinoi�
�n d- ��n m m d� d m�� c� �� v �r � c� c� c� c�
� � o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�
C�
� �n m �,--� cn �o o�n m�rorno�nrnm�oou�rn�
O� �n �r �o � m m �r �r m �o o� cy ���� �o N N N N
Z o 0 0 0 0 0 0 0 0000000000000
�
�
ni �
� T C
�n � d' d' �n � O N c�7 iS'� O� O O r+ � �n d' O�
p� Q~�� ti .-� � ti ti ti� ti ti� rr cv� � d' i17
i� �..�
U
�
0
U
U�' � �n � d' �t �n � O N cr) � O� O O �� u7 l0 �
p I-- �� � � � � ,-i ,-i ,-� � � rr ,--i rr � ,--i rr � � c� ,-� d' CO
m 'y
�
U
�
o i. � i.c� ,-� d' d' �n ,-� O N m i.t� O.-� O O .-� d' �n �O ,-+
� N I--� �� � ,-� r-+ �--i � �--i .-� � r-+ .--� �--� � •--� �--+ � •--� C�"1 �--+ d l0
0
E
`o Q
d' N L(") c� l0 l0 Ol Ol N� CO N W('7 I� C7 f� �I' O I� I�
� c0 i � l0 O Ol O I� � r-+ N m r+ � O O u7 r+ ln L� � d' N
�o a v I� Ln �t O� I� f� d' N �Y � L(� ��--� cY N N O('� �� m
U
r
0
�
o �
� ,�, m
U N
p �N L � �
� O�--i N cn rr N M�i' Ln '� �(�
�� ^ � E �N ,-+ c� m d- in � � a0 6� �-, ,--� ,--� ,--� � � � � � � m O
W � � o m �
` � o m o
O � .N � U
t � N C >, m
y `� r� N _
� N
� `� O C a� C ,ti
i0 U � — � �� ,-+ N tn d' Ln l0 I� 00 01 O�--� N M�"� N M d' L(� � m v7
° II `� c � °'a ���������oNo
e �
� Od o '° � �
� � � o
FORT COLLINS STORMWATER CRITERIA MANUAL Hydrology Standards (Ch. 5)
3.2 Runoff Coefficients
3.0 Rational Method
Runoff coefficients used for the Rational Method are determined based on either overall land use or
surface type across the drainage area. For Overall Drainage Plan (ODP) submittals, when surface types
may not yet be known, land use shall be used to estimate flow rates and volumes. Table 3.2-1 lists the
runoff coefficients for common types of land uses in the City.
Table 3.2-1. Zoning Classification - Runoff Coefficients
Land Use Runoff Coefficient (C)
Residential
Urban Estate 0.30
Low Density 0.55
Medium Density 0.65
High Density 0.85
Commercial
Commercial 0.85
Industrial 0.95
Undeveloped
Open Lands, Transition 0.20
Greenbelts, Agriculture 0.20
Reference� For further guidance regarding zoning classifications, refer to the Land Use
Code, Article 4.
For a Project Development Plan (PDP) or Final Plan (FP) submittals, runoff coefficients must be based on
the proposed land surface types. Since the actual runoff coefficients may be different from those
specified in Table 3.2-1, Table 3.2-2 lists coefficients for the specific types of land surfaces.
F�rt�� ns
3.2 Runoff Coefficients
Page 4
FORT COLLINS STORMWATER CRITERIA MANUAL Hydrology Standards (Ch. 5)
3.0 Rational Method
Table 3.2-2. Surface Type - Runoff Coefficients
Surface Type Runoff Coefficients
Hardscape or Hard Surface
Asphalt, Concrete 0.95
Rooftop 0.95
Recycled Asphalt 0.80
Gravel 0.50
Pavers 0.50
Landscape or Pervious Surface
Lawns, Sandy Soil, Flat Slope < 2% 0.10
Lawns, Sandy Soil, Avg Slope 2-7% 0.15
Lawns, Sandy Soil, Steep Slope >7% 0.20
Lawns, Clayey Soil, Flat Slope < 2% 0.20
Lawns, Clayey Soil, Avg Slope 2-7% 0.25
Lawns, Clayey Soil, Steep Slope >7% 0.35
3.2.1 Composite Runoff Coefficients
Drainage sub-basins are frequently composed of land that has multiple surface types or zoning
classifications. In such cases a composite runoff coefficient must be calculated for any given drainage
sub-basin.
The composite runoff coefficient is obtained using the following formula:
,�
� (c;xa; )
� _ �-�
A,
Where: C= Composite Runoff Coefficient
C; = Runoff Coefficient for Specific Area (A;), dimensionless
A; = Area of Surface with Runoff Coefficient of C;, acres or square feet
n= Number of different surfaces to be considered
At= Total Area over which C is applicable, acres or square feet
3.2.2 Runoff Coefficient Frequency Adjustment Factor
Equation 5-2
The runoff coefficients provided in Table 3.2-1 and Table 3.2-2 are appropriate for use with the 2-year
storm event. For any analysis of storms with higher intensities, an adjustment of the runoff coefficient is
required due to the lessening amount of infiltration, depression retention, evapotranspiration and other
losses that have a proportionally smaller effect on high-intensity storm runoff. This adjustment is
�'�, ";` 3.2 Runoff Coefficients
��F�rt� ns Page 5
FORT COLLINS STORMWATER CRITERIA MANUAL
Hydrology Standards (Ch. 5)
3.0 Rational Method
applied to the composite runoff coefficient. These frequency adjustment factors, Cf, are found in Table
3.2-3.
Table 3.2-3. Frequency Adjustment Factors
Storm Return Period Frequency Adjustment
(years) Factor (Cf)
2, 5, 10 1.00
25 1.10
50 1.20
100 1.25
CxCF
PRODUCT OF CxCF
CANNOT EXCEED THE
VALUE OF 1
3.3 Time of Concentration
3.3.1 Overall Equation
The next step to approximate runoff using the Rational Method is to estimate the Time of
Concentration, T�, or the time for water to flow from the most remote part of the drainage sub-basin to
the design point under consideration.
The Time of Concentration is represented by the following equation:
T�=T;+Tt
Where: T� = Total Time of Concentration, minutes
T; = Initial or Overland Flow Time of Concentration, minutes
TL = Channelized Flow in Swale, Gutter or Pipe, minutes
3.3.2 Overland Flow Time
Overland flow, T;, can be determined by the following equation:
1.87(1.1—CxCf)�
T' 3�
Where: C= Runoff Coefficient, dimensionless
Cf = Frequency Adjustment Factor, dimensionless
L= Length of Overland Flow, feet
S = Slope, percent
City of
F�rt� ns
Equation 5-3
Equation 3.3-2
OVERLAND FLOW LENGTH
L=200' MAX IN DEVELOPED AREAS
L=500' MAX IN UNDEVELOPED
AREAS
3.3 Time of Concentration
Page 6
FORT COLLINS STORMWATER CRITERIA MANUAL
Hydrology Standards (Ch. 5)
3.0 Rational Method
3.3.3 Channelized Flow Time
Travel time in a swale, gutter or storm pipe is considered "channelized" or "concentrated" flow and can
be estimated using the Manning's Equation:
V _ 1.49 RZ/3S1/Z
n
Where: V = Velocity, feet/second
n = Roughness Coefficient, dimensionless
R= Hydraulic Radius, feet (Hydraulic Radius = area / wetted perimeter, feet)
S = Longitudinal Slope, feet/feet
/elii"�
L
Tt — vX6o
3.3.4 Total Time of Concentration
A minimum T� of 5 minutes is required. The maximum T�
allowed for the most upstream design point shall be
calculated using the following equation:
T�—iso+10
Equation 3.3-5
The Total Time of Concentration, T�, is the lesser of the
values of T� calculated using T� = T; + Tt or the equation
listed above.
Equation 5-4
Equation 5-5
Tc
• A MINIMUM Tc OF 5
MINUTES IS REQUIRED IN
ALL CASES.
• A MAXIMUM Tc OF 5
MINUTES IS TYPICAL FOR
SMALLER, URBAN PROJECTS.
3.4 Intensity-Duration-Frequency Curves for Rational Method
The two-hour rainfall Intensity-Duration-Frequency curves for use with the Rational Method is provided
in Table 3.4-1 and Figure 3.4-1.
��,, �;` 3.4 Intensity-Duration-Frequency Curves for Rational Method
��F�rt� ns Page 7
FORT COLLINS STORMWATER CRITERIA MANUAL
Hydrology Standards (Ch. 5)
3.0 Rational Method
Table 3.4-1. IDF Table for Rational Method
Duration
Intensity Intensity Intensity
(min) 2'Year 10-year 100-year
(in/hr) (in/hr) (in/hr)
5 2.85 4.87 9.95
6 2.67 4.56 9.31
7 2.52 4.31 8.80
8 2.40 4.10 8.38
9 2.30 3.93 8.03
10 2.21 3.78 7.72
11 2.13 3.63 7.42
12 2.05 3.50 7.16
13 1.98 3.39 6.92
14 1.92 3.29 6.71
15 1.87 3.19 6.52
16 1.81 3.08 6.30
17 1.75 2.99 6.10
18 1.70 2.90 5.92
19 1.65 2.82 5.75
20 1.61 2.74 5.60
21 1.56 2.67 5.46
22 1.53 2.61 5.32
23 1.49 2.55 5.20
24 1.46 2.49 5.09
25 1.43 2.44 4.98
26 1.4 2.39 4.87
27 1.37 2.34 4.78
28 1.34 2.29 4.69
29 1.32 2.25 4.60
30 1.30 2.21 4.52
31 1.27 2.16 4.42
32 1.24 2.12 4.33
33 1.22 2.08 4.24
34 1.19 2.04 4.16
35 1.17 2.00 4.08
36 1.15 1.96 4.01
37 1.16 1.93 3.93
38 1.11 1.89 3.87
F�rt� ns
Duration
Intensity Intensity Intensity
(min) 2'Year 10-year 100-year
(in/hr) (in/hr) (in/hr)
39 1.09 1.86 3.8
40 1.07 1.83 3.74
41 1.05 1.80 3.68
42 1.04 1.77 3.62
43 1.02 1.74 3.56
44 1.01 1.72 3.51
45 0.99 1.69 3.46
46 0.98 1.67 3.41
47 0.96 1.64 3.36
48 0.95 1.62 3.31
49 0.94 1.6 3.27
50 0.92 1.58 3.23
51 0.91 1.56 3.18
52 0.9 1.54 3.14
53 0.89 1.52 3.10
54 0.88 1.50 3.07
55 0.87 1.48 3.03
56 0.86 1.47 2.99
57 0.85 1.45 2.96
58 0.84 1.43 2.92
59 0.83 1.42 2.89
60 0.82 1.4 2.86
65 0.78 1.32 2.71
70 0.73 1.25 2.59
75 0.70 1.19 2.48
80 0.66 1.14 2.38
85 0.64 1.09 2.29
90 0.61 1.05 2.21
95 0.58 1.01 2.13
100 0.56 0.97 2.06
105 0.54 0.94 2.00
110 0.52 0.91 1.94
115 0.51 0.88 1.88
120 0.49 0.86 1.84
3.4 Intensity-Duration-Frequency Curves for Rational Method
Page 8
FORT COLLINS STORMWATER CRITERIA MANUAL
Figure 3.4-1. Rainfall IDF Curve — Fort Collins
Hydrology Standards (Ch. 5)
3.0 Rational Method
io.00 __ _ _ _ _ _
� � -- -_ _----
ii i
L - - - -- - - ' � '-
100-Year Storm
9�� - -� � � � I I I � �� � - ---10-Yea�Sio�m � � I
. . - - -; �J - -- - � � , �- . . . .- . � �. �
- 2-Year Storm
_I_. . -� �---- -- ._�._._'._. . ._:_._._._. . .- -. ---� ---�--
I I
� i _ � I _ . . . . _ . . . I
8.00 -- ---- . - _ _ _. -
I �- _ I I
I I.. �I I I I.... _
! �! j . .
_�, . . . _ . _. . . . __ . _. . ._ . _ . . _ _ . _ . .
�.00 _ i 'i i i-
- i i i
� �. i
�
, T , � � _ _ _r � _� _
N �.00 —. _ � i
� - -
� � - �-
�' s.00 -.__ _ -�_
� —_.� . � � �_�_�_._ � i_ _I_
,`, � I I I__ j l i l
G � . . . . � , . -. . ._ .. . . �-I-�I_:-. .i
� . _�_ ._-� -. i . .. .
� 4.00 --�-. _ I I I I I i
� I
� ♦ _ _ _ _ l-i � i i
� i 7: i _-�-:_ _i ._. _
� , - --
3.00 . -� � � 1 I
� I I
. `. ��` . . � �-- � i i � i � i i i
. \ . .�� . . . .
\ �
. ♦ ... ��� ...
2.00 ��` -. _ ��y`-_ _
� ��
l �� � ���►
1.00 I._�I . . i . I�I�.+�i _! `s` __ ___�'����-.��.�---.:���«���� _
_ - T i �I � i �������������� �����.
� - . . II I I � ��.. ���..+������ -
_..,�r�i ! �����
0.00 .
0 10 20 30 40 50 60 70 80 90 100 110 120
Storm Duration (minutes)
c�tyof 3.4 Intensity-Duration-Frequency Curves for Rational Method
��F�rt� ns Page 9
,il� , l_l- 1�j. � �
Inlet Design Computations
u u v
O O O
�—I c-I ei
� _Q � � -O � ..Q
m m o 0 o m m
a � � � � � �
� � m � � � �
m m o 0 o m m
� � � � � � � �
N V1 � V1 N V/ Vf V1
� � � � � � � �
VI V1 N N N N N V1
(6 f6 f6 l6 f6 (6 (6 f6
m m m m m m m m
� � � � .Q � � �
� 3 7 � 7 3 7 �
N N N � N N � �
� � Q � 4 � 4 �
� .G L t L .0 -C .0
X X X X X X X X
W W W W W W W W
110 C1A q0 UD GO bA hll CO
C C C C C C C C
_ _ _ 'y _ 'Y _ _
N f0 (6 f0 f6 (9 (6 fV
� � � � � � � �
O O O O O O O O
a`. a n`. a n`. a` n`. a
c c c c c c c �
.N .N .N .� .N .� .N .N
ro ro co ro fo m co ra
m m m m m m m m
� � � � � � � �
� � � � 3 3 � �
Vl tn N v7 Vl N N t/'�
W � Y a�-� Y Y Y � � +�+
�
J � '� '� '� '� '� '� '� '�
Q � O O O O O O O O
0 a a� a a� ai a� v v
� U v°Ji cn cn v�i cn �n v°�i v°1i
�
� �
Q U
� � Q N O O O O O O O O
�- I� I� 1�
r � v U O O��� O O O
Z
� �
N °1
Z �
C7 0 o rn rn o o�o �m o�o o�i �
N a LL �-i � cv m� O�-+ �
Q tl�A � >- >- i.. i � �
� N p O O y` }} y O O
N
W Q N O O N O O N O O
J
Z c
� '�
�
m
� � � u � c� ro c9
� m m ca o 0 o m m
� � � V� � � � � a
�
0
Y
y-� Q Q Q Q Q Q Q Q
N C E E�� E� E E
� o � � � � � � � �
U cn N cn cn cn v� v'i v�
C
O
.�
� � � � � �
N N � (0 N � N �
� Q Q Q � � Q � �
_ � � � � a a � � �
0
� o
N N � � �
� N Y � � �
O�\ v n�i w- v� C C C w- v"= v i
�--� Q d' � cn lf') lf) in C� Cn ln lf� ln
*' � N
� N
� N+� `- OO � O� � N
' � N �- N a0 N N Cfl o0 00
d m �� 0 I� f� � � � � � �
3
0
�
N
v
�
�
v
�
�
�
O
d
�
C
N
U
N
d
�
O
�
v
0
co
a!
L
Q
�
.N
�
m
� .�
�� �
G �
m
�
�
a
LL I O I l0 I O I 00 I M I 00 I 00 I Ql
U ni O O O �t m m m
N I c-I I o I O I c-I I c-I I Ln I Lf1
d' l.f)
� I� I� I� I O I N I N I O I O
� I � I � I � I l"'� I� I O I O
� I � I� I O I O I O I� I �
tf'1 Ol 00 I� 0 00 M tf1
O tf1 .--� lD �-I o0 �!1 tf1
N O O O N e-+ O O
rn � m � c� � rn �
o � m �n o �n �o �
`� � o d: �o 0o ui �-, oi
Q N�� d�- �� omo c�.i a�i
rn �n � rn � � m m
00 N I� N Q1 00 N N
�
O i-
�t N O
O � \ N
C
O a N �
� � N
� �
0
NI�I�INI�I�IOIO
C
u �
.o m � m
� � .�
a �
N
�I�I�I�I�I�Ic-IIM
II
�
�
�
�
�
■
.
.
.
.
■
■
■
■
�
I�� � ■ ■ i
�
�
� I� �
�
� �
I , —�
1■■�■■■■■■■■■■■■;■ �
— ---------------- —� ,
I ■ �`
,■�
'�■
_ _- �; i '
�
�
I � ----�,. �
� ■
� '� �
� ■ , ,
i � , �
�
� ' m
� � v�
� '
� ■ � ; � �,
i ■ i i i�
II � j li
I
i � i � ii
i � (6 �� i i i
i i
i ■ d' c� i �
� � I
i ■ I i ii
i ■ �---� �I
■ �i �
� ■ i ii
� �
i ■ �i i
� ■ --- �
�
', � ��
�
� �
i � , � . : �
i� �I--- i ��
� �
' : ' I I � �'� �i
� �
, ��
, �
� � , � �a���9� ;�
� �
, � n u� �
-� �� � ■ � ,i,� i �
�� I I
�"' ■ ~-I - � I i'
I'__ - I � � � �I ii �i�
� � � 1�� � ��
_------- � � � p -� ' ' �'
_�--- i i.
�-'----_� � i r N �, i
ii
i � - �J
' � � -- �i � i � � � � �i . � i i
� '---- _, �i� � � � � � � i ii
i � r � j�
ii I i
� I o
i
i
� �i
� � i i i
i / �i
i i i
� r1� �i i�
�!�!�
■�■
i... . .. ...
TI�,� i i..��:�
_� �:;�
■� ���I
I �! � ..I
��iI„ I
i
.y.. � �1.:..,.I....J:,...,a,.i
—�
�
�I�� � � -= yl�
_.�-�-
_ �'� _ �
����� � � � �
W � �
X W �
W >
Z�O
� J
j � LL
� N O
� t.t_ Z
�OQ
..���
■ � �I
�
■��I
� ----�-�----- �
••���
��: � ��� �x oo �
� � ++
■ �'
■
�� � � �
�_ --• �
� �
� �' �
■ � � � .
� •.,,_ :, . . . . o �e�
�������1��
i ii Zz
i I ' II ww
� � 2 �,
x-�
�����L��L������� i I-z
---------- � -
--- --- - - -
i- ---- --- -_ _- ---- --- --- -= --_- Z z
---- - - r - - - -- — �' — -- --� 4,
�_ -- ---J
� - -- -- --- -- � � --- ---1
/RS � i � 'yii-H�
� l�
�. :� / I � ' I __ : I i I
� � ' i
�-�- ---- i
/,, � ... _ . : � � ; `, � \� � � i � `-___� ' I '� ' �, �
� / � . � \ � � � . � I I� � � �' I
i' �--�--' �\ � � . � \\ \ \ '._ i/ , � � �.I
; . � �-j % �� �� r � -- �� ; j �' I
�� , , �� � � �,�` j � ��� ; �' �� � � I
I
� �'%� % ,
.\� � �� ,�\ i �
- -� �--- ----- . , �
„ .
, ,
� .. , ,
_ , � �
,
- � --- . �
__-- � __ _- — � _, ,- i'
- -- - --=------- - ,,, � � � I
_ _� �� _ __ ,
_ �_ __ ,
, �� ��_-- --
�- _-- --- -, ,
-� --- , ,
� -- � �
�
------------------------------------------- �-�----
-------_ - -- I
,
___--_----
- ---------
, _ � .,_ --- -- _ --------�__=_
� �— �
F■
r
� i
_�
-- ,�`�,_
� �
.
• '
. �y
. /•
� /•
'• �.
`•' /�
'� .
,,, �
/•
, ��
/•
I'
�'-
� I�
�-
�-
�� �_
�i'��'�
�
r�, ;
�I
�
�
! � .' �
_ ,, -
-- -> -----------------
� ,�-� �� a�
� ,°' I O� o
�. -
�.
�.
�.
••�
� —
�� --
� ���
�� I ��
�
� �,I�,1 �.
�.
����
��
��
��
��
�
� i �
. _ .
��. .
- - �> : �
-----------�-----
-- - .�
' c�
,�—r—
I� I
----,
- �
� �i i
� ��i �
�
.� �
.
,��, �.. ��
■
�. _ _-----
■
� ■
� I ■
■
■
� ■
■
� �
■,
�, , .
, �
� --------r-�_�
� ■,
:
:
� ■
, ■
�
/ ' _■ �z
_ _ -- ■-- w�
=w
� �z
� � z
. Z w
�
�
. .
�
�
i:� i I i i i!�,i � o Q i..�����1����� • o i; �r' ��
; � #���,1�1 . ,
� - - � � � J�� � '
�; ■ ' � ��, � � � � ` I
� 0, � •
I � �t .� � i'� �� �,� 'oo � .
�', � � � ■ � 0 C
� ' \ I I � I� �+ ' .
■
� � I �- -�--I� - -I� ' ',, � � * •
� � �--- ■ �,�+" :
i 9 'i i �
� i � � `I ��� n n�' n � , . r— � �
,I � � jdsd���, ■ -�' � „•
; ■ ' I ■ `, '
'� �I
i------- i ' ' ■"�,:. � i i� .
■ j �I � � ..
i �� �
I � i
.. � ■ � I n -i i � q\�\
_ � � � � � � � � . �u� " i �
�_'- -�.__-'_-_-1 � � � � : �I � � �
� I � �- T� I� i ,
� I
� ■ I I IuI I � �. �
_ ��.i. : I �__I I ___I I� II I ilI .. • .... .. ,
I _ - I ,., � :� �
� I li.
I ��
I I\ � �
I �i
I � �j
�I / � �I I i i � 1
I �
I `.' �I i j
I '' . I �I
� ` �I
� I
I ' I
���..... � I -
,.M_ - ___--___
i_ -__-_ _-- ---_ --_ � -___ _--- -- ___ ___ __ ____ _____
__ - ___ ___ ... _.. , . -_.� __-..
-- ---
- ---J — - — - al - �- ----
� ,_, � -- -- -- -- -- � --- -- — - --- --
p '�, ;; �' l ( �•
� � ; .......
O
�. �� � �1��������� � � o
O ' .. � ��. �.. O Q7 I
r `-
�.._-'___" /� � ' mo
� I „e-�. I .,,T. .. � � .I . I .. I o ' ° �
� .,., „ r , , „, ,... ..`.I.... .... .... .... .... .... . .. .... �, „ . �. „ ....
CAd2 •
� Q F i
� U�O
Xw cn ,,,, ,, , , ,, , ,,,, ,,,, ,,,, ,,,, ,,,, ,... ..., ,,.. ,,.. ,,,, , „ , , „ ....
Z � p � — _ ��-
� � J I. y.. ._� ° � ° L
,�No � , I r� 1
��z mm
�oQ •
� o ,
0
- � �
-- o
I
/ `� ■,__ -�� J l a, I I I �i
■����■ � z: i I �
, "_ _ �o� � �
_ . z�
- ;- - - �z
� _ _ /� w�
� ----- � �, zw
,-- - - - i—z
,
- ,
I - —
II , �
,- � uwiuu , � eas�a - _,� , ; �� 1 0�
i . z
. / //_ _ _-_-_-_-_-_ _ -_-_-_-_ _ i /,'. Zw
� � .
,'" u � i , , ♦
, ,
. , � , , -
I I
� O �
� � � U
i ~ � W
I � Z
��
�
�
-- _,
�
_--- ,' ,
_,
_ ' %
� , �
�
, --
au
,
��
,�
�
�.
�
�
`�
z�
�z
ww
_ ,,,
�z
��
zw
- �
INLET IN A SUMP OR SAG LOCATION
Project =
Inlet ID =
100-024
Combination Inlet
,�Lo (C)�
H-Curb H-Vert
Wo
WP
W
Lo (G)
oflnlet
I Depression (additional to continuous gutter depression'a' from'Q-Allow')
ber of Unit Inlets (Grate or Curb Opening)
�r Depth at Flowline (outside of local depression)
= Information
th of a Unit Grate
� of a Unit Grate
Opening Ratio for a Grate (lypical values 0.15-0.90)
ging Factor for a Single Grate (typical value 0.50 - 070)
; Weir Coefficient (typical value 2.15 - 3.60)
: Orifice Coefficient (typical value 0.60 - 0.80)
� opening Information
th of a Unit Curb Opening
ht ot Vertical Curb Opening In Inches
ht of Curb Orifice Throat in Inches
= of Throat (see USDCM Figure ST-5)
Width for Oepression Pan (typically the gutter width of 2 feet)
ging Factor for a Sfngle Curb Openfng (lypfcal value O.tOj
Opening Weir Coefficient (typical value 2.33.6)
Opening Orifice Coefficient (typical value 0.60 - 0.70)
Inlet Interception Capacity (assumes clogged condition)
ING: Inlet Capacity less than Q Peak for Minor and Major S[orms
MINOR MAJOR
Inlet Type = CDOTIDenver 13 Combination
ai�ai = 2.00 inches
No= 1
Flow Depth = 6.0 11.2 inches
MINOR MAJOR
Lo (G) = 3.00 feet
Wo= 1.73 feet
%�„r,a = 0.43
G� (G) = 0.50 0.50
C,,, (G) = 3.30
Cp (G) = 0.60
Lo (C) = 3.00 feet
H�en = 6.50 inch
Hin,��= 5.25 inch
Theta = 0.00 deg
W�= 2.00 feet
C�(C) = 0.10 0.10
C,,, (C) = 370
Co (C)' 0.66
MWOR MAJOR
Qa = 3.s a.7 cfs
UD Inlet 3.1-SingleCombo.xlsm, Inlet In Sump 3/26/2020, 1:46 PM
INLET IN A SUMP OR SAG LOCATION
Project =
Inlet ID =
100-024
5-FT Type R
,�Lo (C)�
H-Curb H-Vert
Wo
WP
W
Lo (G)
oflnlet
I Depression (additional to continuous gutter depression'a' from'Q-Allow')
ber of Unit Inlets (Grate or Curb Opening)
�r Depth at Flowline (outside of local depression)
= Information
th of a Unit Grate
� of a Unit Grate
Opening Ratio for a Grate (lypical values 0.15-0.90)
ging Factor for a Single Grate (typical value 0.50 - 070)
; Weir Coefficient (typical value 2.15 - 3.60)
: Orifice Coefficient (typical value 0.60 - 0.80)
� opening Information
th of a Unit Curb Opening
ht ot Vertical Curb Opening In Inches
ht of Curb Orifice Throat in Inches
= of Throat (see USDCM Figure ST-5)
Width for Oepression Pan (typically the gutter width of 2 feet)
ging Factor for a Sfngle Curb Openfng (lypfcal value O.tOj
Opening Weir Coefficient (typical value 2.33.6)
Opening Orifice Coefficient (typical value 0.60 - 0.70)
Total Inlet Interception Capacity (assumes clogged condition)
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)
MINOR MAJOR
Inlet Type = CDOTType R Curb Opening
ai�ai = 3.00 inches
No= 1
Flow Depth = 6.0 8.7 inches
MINOR MAJOR
Lo (G) = N/A feet
Wo= NIA feet
%�„r,a = NIA
G�(G) = N/A N/A
C,,, (G) = N/A
Cp (G) = NIA
Lo (C) = 5.00
H�en = 6.00
Hin,��= 6.00
Theta = 63.40
W�= Z.00
C�(C) = 0.10
C,,, (C) = 3.60
Co (C)' 0.67
MINOR
Qa = 5.4
Q PERK RE�II�RED' S.O
0.10
MAJOR
cfs
UD Inlet 3.1-R-5ft.xlsm, Inlet In Sump 3/26/2020, 1:48 PM
Area Inlet Performance Curve:
Sing�e Area Inlet Capacity
Governing Equations:
At low flow depths, the inlet will act like a weir governed by the following equation: n _ �. O n u 1 5
�whereP=2(L+� � 1 1L
' where H corresponds to the depth of water above the flowline
At higher flow depths, the inlet will act like an orifice governed by the following equati� = Q. 67 A( 2 gH � 0.5
' where A equals the open area of the inlet grate
' where H corresponds to the depth of water above the centroid of the cross-sectional area (A)
The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown.
However, what is known, is that the stage-discharge curves of the weir equation and the orifice equation
will cross at a certain flow depth. The two curves can be found below:
Stage - Discharge Curves
14.00
12.00 � Weir Flow
N 10.00
�
�
� 8.00
rn
L
r 6.��
v
p 4.00
2.00
0.00 :-
0.00
Orifice Flow
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Stage (ft)
If H> 1.792 (A/P), then the grate operates like an orifice; otherwise it operates like a weir.
Input Parameters:
Type of Grate: Neenah R-3409
Length of Grate (ft): 1.9583
Width of Grate (ft): 1.4376
Open Area of Grate (ftz): 2.25
Flowline Elevation (ft): 100.000
Allowable Capacity: 75°/o
Depth vs. Flow:
Shallow Orifice Actual
Elevation Weir Flow Flow Flow
Depth Above Inlet (ft) (ft) (cfs) (cfs) (cfs)
0.00 100.00 0.00 0.00 0.00
0.10 100.10 0.48 2.87 0.48
0.20 100.20 1.37 4.06 1.37
0.30 100.30 2.51 4.97 2.51
0.40 100.40 3.87 5.74 3.87
0.50 100.500 5.40 6.42 5.40
0.60 100.60 7.10 7.03 7.03
0.70 100.70 8.95 7.60 7.60
0.80 100.80 10.93 8.12 8.12
0.90 100.90 13.05 8.61 8.61
1.00 101.000 15.28 9.08 9.08
APPENDIX B.2
Storm Line Computations
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
_
�
.�
�
��
/��
i�%
�
O
U
a�
�
J
W
�
�
L
V
.�
�
�
L
^
i
L
O N �
= N ti3 O N t6 c9 (6 tU (6 N tf3 t6
� 0 � C O C C C C C C C C C
J O O � � � c�- C�O N t�f) O � O
� � Y r- o 0 0 0 0 0 0 .- o <-
0
>. co 0 0 0 0 0 0 0 0 0 0
� y l6 � O O O O O O O O O N
W O.'k.V' C O O O O O O O O O O \
Y i-
V
� O tn O O O O O O O O O N
U j� o O M O O O O O O O O O �
Q� v O O O O O O O O O O O 0
C
O � O O O O O O O O O �
O 1� O O O O O O O O O �
O M O O O O O O O O O
� o O O O O O O O O O O O
N M d' � M N I� (O V
ln tC) I� M M O M M t� � O
J� ui tCi �ri co � ai oi ai co a tCi
��� rn rn rn rn rn rn rn rn rn rn rn
W N� v V v �Y �t �Y �t �Y <t V V
'O I� cl' O O O O O O O O O
lC � � O O O O O O O O O
� t� O O O O O O O O O O O
� N O M CO ct N N � � C�O N N N
�p � � C4 u") � � � � O O O � .- C
� O
_ � a rn o 0 0 0 0 0 0 0 0 �
M M O O O O O O O O O Q
Q N M N O O O O O O O O O �
7
S � � � � � � � � + � Z
Q V M O O O O O O O O O
� �-'v' � � O O O O O O O O O
�
� O I� M M O M M t� � O
J� V �[i �ci c0 I� 6i Oi ai c0 V �ci
� � � � � � � � � � � � � �
S d� V V' V V' V' �l' V' V C V V'
� � d' � M M ln � M (O O
�> M M � V � CO CO (O tn M V
> G7 ^ � � � � � 6� 6� � � � �
G�� �t c7' V' �t' st V' V' V' �t' �Y �1'
� N O � �! � � N (O N N
� � O � � I� ' a0 eO d' a0 6j
d �'v'' N tn � � � N � M � O O
J
O 1� O O O O O O O O O
O N O O O O O O O O O
.�"' o
O M O O O O O O O O O
� O O O O O O O O O O O
'7 M � O I� V M M I� � �
J� V �ri u'i co c4 � oi ai c0 'V �l'
W�� � v v v � v v v v � v
'o � rn o 0 0 0 0 0 0 0 0
lC � M O O O O O O O O O
; t� O O O O O O O O O O O
N O O O (O N N � � (�O N N
� j � co �ri ui v ui ui o 0 0 � �
R
m
N l6 � �D tn O O O O O O O O O
C d a M V' O O O O O O O O O
OQ N (`') N O O O O O O O O O
�� �� o 0 0 0 0 0 0 0 o a
Q �� o 0 0 0 0 0 0 0 o s
d � � o 0 0 0 0 0 0 0 0 ��
o $ .�
� � � � � � � � Q
OD � r- O I� ct M M I� � � —
J (M d' �f7 (O C4 i� � � (O 'tY' V' �
> II
� d � � � � � � � � � � �
2 G� � � v v v d- v v v v � v �
� � O N W 1� M M CO � V
M V I� V � M M M � � (O II
� N M M � � � (O CO V M M U
> a�i rn rn rn rn rn rn rn rn rn rn rn -
c�� v v v v v �r �r v v v v � s
u� Q
�
w O r � � N O O N O OO OO � 'O
(�I V N � � � � O � � � U
� _
U
C4 �1' �i' <}' a0 a0 � � N N N � �
d M N N N r � r � � � � � *
N -
� � N
d 0 � O
C .- N M V � CO I� a0 6� � � Z
J
i
ca
G.
�
�
M
._
.�
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�`
^
_
�
�
�
U
N
O
a`
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
�
V
W
�
•�
J
W
�
�
L
V
V
■�
�
�
L
T�
i
L
= N �
g O � �
J O �
� � Y •-
0
T N
� y � O
�j O� C N
Y �
V
� O N
L
U >,..� � m
Q tn �. � 0
c
�
o �
� �
0
� � �
�
�
J > �
� � �
W d � �
� � �
� t � o
N r N
� ; � N .c
L1 .�
y 0
'� m �a `"'`i �
Q w o �
�
s � Z
Q N
� M
� a''.-.' O
M
�
J � rn
C7 d ^ �
S u� � �
� �
c �� �
�
�
c "'
d � v
J
O
O
.�"' o
O
� O
M
J � �
W d � �
� �
tC
; t � O
y N
� � � N
m
c a�i a N
o a V �
� � N s
Q M
GI O ��
� $ .Q
N Q-
N —
J � �
� � � � II
2 y � � °�
� U
� 11
� W U
c � � v � s
�n Q
N �
w � � �
� V � � U
(n _
U
� � �
N � �- * _
'm = � a�
d �� o
_ �- d Z
J
i
ca
G.
�
�
M
._
.�
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
/��
V
�
�
.�
J
W
�
�
L
V
V
.�
�
�
L
T�
i
L
= N �
g O � �
J O �
� � Y •-
0
T N
� y � O
�j O� C N
Y �
V
� O N
L
U >,..� � m
Q tn �. � 0
c
�
o �
� �
0
� � �
�
J > �
� � �
W d � �
m � o
jt� o
� m N °' c
� � � � _
� o
y � �
�j m �a �
Q w o �
�
s � Z
a �
p � o
�
�
J � cv
C7 d ^ �
S u� � �
�
M
� �
G � � �Y
N
�
G �
d � N
J
O
O
.�"' o
O
� O
N
M
J � �
W d � �
l�C O
; t � O
� � �
R
>
m
N R � o
c m a �-
o a V �
0 � � s
a�'i o ��
� $ n
� Q
N —
J °O �
� � � � II
2 y � � °�
� U
O 11
� W U
c � � v � s
�n Q
c�i �
� o � �
C� � � o �
cn _
U
� � �
N � �- * _
'm = � a�
d �� o
_ �- d Z
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
/�♦
V
W
�
•�
J
�
�
�
L
V
V
.�
�
�
L
�
i
L
� y O O f0
C
� 0 � O O C
J O N � O
� � Y o o .-
0
>. v � o 0
� y CO N O �
W O ik.V' O � O N
Y r
V
� � M O �
L
V Q� o O O O p
C
7
� M O �
V tn O
� o O O O
� N W
J � � r r
W N � v �v v
lC N N O
� t � O O O
M
N (O (9 CO �
� � � �t 7 �l' �C
L1 .�
y �
� d a N N o �
Q w � � o �
�
� z
Q N N �
Q � � � �
(fl � W
J � �.ci c0 I�
� � � � � �
S d� V V V
� M �
d � � � �
G � � �Y �1' V'
� �
� �
� O N �
d a.'v' � N
J �
(O M O
o CO tn O
� o O O O
M O O
J ' � (O I�
W d � � V d'
� R N O
; t � O O O
N � �
� � � � V �
m
c a�i a rn N o
o Q V o .- o
� p. � N O s
Gf O � O ��
� $ .Q
d- N Q
� I� O —
J �Y' �ri I� �
> ��
c�d � � �
x d � � v v °�
N rY CO .0
O V M II
� V V � U
c�� v v v � s
u� Q
0 0 0 `� �
N � �
� u ui �n ui o �
cn _
U
u� u� � � �
N � � r � a
'm = � a�
d �� o
C .- N M � Z
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
�
U
a�
�
•�
J
W
�
�
L
V
V
■�
�
�
L
�`
^
i
L
� y O M
C
� 0 � O O
J O � O
� � Y o 0
0
>+ M M N
� y O �
�
W O ik.V' O O �
Y N
V
� O N �
L
V Q� o O O p
C
7
N N �
N W
� o O O
W �
J > �"> <`'�
� � �
W N � v �v
� � �
jt� o 0
N
N O O N
� j � r r �
L
y �
� � �
�j m �a �
Q w ri ri �
�
s Z
p. o 0
Q � N N
O �
J � o'i c'i
� � � rn rn
S d � v v
rn o
�� o
c �� � v
N O
� � r
d � r �
J
� N
� W
� o O O
N a0
J ' M M
W d � � V
t�6 � �
; t � O O
� j � W O
� �
m
c a�i � � �
O Q N N M
o �
Q � o
Q $ � N
N O
J � (V M
2 G� � � v
� rn
� o 0
x
> Q
c � � v v � �
in u
N N � s
� � Q
(� V N N p ��
� �i
V V
N �
N N N .0
c �
� - V II
� U
C .- N o` . _
d
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
�
U
a�
�
•�
J
W
�
�
L
V
V
■�
�
�
L
�`
^
i
L
� y O M
C
� 0 � O O
J O � O
� � Y o 0
0
N
�y � O �
� O .'k.V' O O
W �"
Y N
V
� O N �
L
V Q� o O O p
C
7
N N �
N W
� o O O
W �
J > �"> <`'�
� � �
W N � v �v
� � �
jt� o 0
N
N O O N
� j � r r �
L
y �
� � �
�j m �a �
Q w ri ri �
�
s Z
p. o 0
Q � N N
O �
J � o'i c'i
� � � rn rn
S d � v v
rn o
�� o
c �� � v
v
N �
� � �
d �.'v' r W
J
� N
� W
� o O O
N a0
J ' M M
W d � � V
t�6 � �
; t � O O
� j � W O
� �
m
c a�i � � �
O Q N N M
o �
Q � o
Q $ � N
N O
J � (V M
2 G� � � v
� rn
� o 0
x
> Q
c � � v v � �
in u
� � � 4
N N N � Q
(� V N N p ��
� �i
V V
N �
N N N .0
c �
� - V II
� U
C .- N o` . _
d
J
T
�/�
`v
Y�
O
�
M
._
.�
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�`
^
_
N
�
�
U
N
O
a`
�
d
�
R
a
N
O
��
��
/��
i�%
�
�
U
�
�
._
J
W
�
�
L
V
V
.�
�
�
L
T�
i
L
= y O c6
� 0 � O C
J O � �
� � Y o <-
0
T N
O
� y l6 (6 N
�j O� C c N
Y �
V
� O O N
L
V Q� o O O p
C
7
O O �
O O
� o O O
M N
� M
J > r> 7
� � �
W N � v �v
lC N �
� t � O O
N
N O M N
� � � �t M =
L
y �
� d a rn u' �
Q w o o �
�
s � � Z
Q � v
� � o 0
�
� ��
� � � � v
S u� � � �
rn �
� ' N M
G � � �t �1
� M
� N M
d � N �
J
O O
O O
� o O O
M W
J ' M M
W d � � V x
O
�
l6 N e�- II
; t � O O �
Q
y V N
N
� � � � � II
R
> �
m
c a�i a rn � °
3 Q` V o o �
o ._
� � Q
Q � � �
o $ o o ;
�,
o � �
J � (�') M c
.�
2 y � � v C
0
U
N
M � �
� N N J
c � � v v � s
u� Q
� �
� rn rn
E �°
`o `6
C'1 u `h � v
t� _
U
v v °' �
N N N � *-
'm = � a
d �� o
c .- c� d Z
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i.%
�
�
V
�
i
._
J
W
�
�
L
V
V
■�
�
�
L
�`
^
i
L
� y O
C
� 0 � �
J O �
� � Y o
0
T � o
� y N
�
�j O� O N
Y r
V
� Cfl N
L
U >,..� `- m
Q tn �. � 0
c
�
� �
� �
0
� � �
�
0
J > �
� � �
W d � �
� �
� �
� t � o
N CO N
� ; � N .0
L1 .�
N � O
� �
'� m �a T �
Q N �
�
S Z
y,, O
Q �
Q � V
�
�
J � cO
C7 d ^ �
S u� � �
�
rn
�
a> >
c �� �
u�
N
� N
d � �
J
�
�
.�"' o
N
Ui Q
�
N
J � �
W d � �
t�6 r
; t � O
N �
� � � �
d
c a�i a M
o a V `�
o s
.� �
Q �
o $ �
M
�
J � �
C� d ^ �
2 y � �
�t
� M
>
x
c � � v � �
in u
� � 4
� � Q
(� �? dN' p —
� �
�i
�
N �
N = � � U
� - V II
� U
d �O
C .- � . _
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
�
O
■�
��
�
/��
i�%
�
/O�
V
W
�
•�
J
W
�
�
L
V
■_
�
�
L
�`
^
i
L
p V 00 O N � V O O O O O O O O O
= y O M O O O O O O O O O O O O O O O O O O O O
� 0 � O O O O O O O O O O O O O O O O O O O O O O
� �n � �n o o � �n � � �n � o 0 0 � o u> �n o o �n �
J O O ct O N �1'7 d' O O O O O V � �17 O rl' O O � u') O O
� � Y o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
>+ V CO V tn M � V � t� (O N CO tn � CO V O� N O � N p
� y V' OO 00 d' I� � O � CO O O O O N N N O O N
d' O � � O O N O M O O O O O O O O O O O O O
W O.'k.V' O N O O O O O O O O O O O O O O O O O O O O N
Y �
V CO V M M M ct I� 1� I� M M M M � i� I� O O O CO CO
� O O d' V � N N N N � N N N N N N V O O N
U j µ. o � � `- r �- r M M M O O O O O O O O O O O O O �
Q� v O O O O O O O O O O O O O O O O O O O O O O 0
C
� � M M M � I� (� t� M M M M 6� t� I� O O O CO CO �
V' O rt' ct V' N N N N N N N N N N cl' O O �
� � � � � � M M M O O O O O O O O O O O O O
� o O O O O O O O O O O O O O O O O O O O O O O
� CO V CO � W � N CO d' V V V N N N N � M M M M
. . . . . . . . . . . . . . . . . . . . . .
J� �n t� I� f� I� f� a0 W ao e0 a0 ao W I� f� I� I� f� I� t� I� 1�
� � � � � � � � � � � � � � � � � � � � � � � � �
W N� v <Y v �Y �t �Y V �Y <t V V v �Y �t �Y V �t V V <Y v �Y
'O � (O 6� m 6� 00 I� I� 1� M M M N N N M O O
lC W 00 O O O O � � � O O O O O O O O O O O O O
j t� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
M
N OD N M M M CO CO CO CO Ln tn ln tn V t� I� O CO o0 fq
� N V' �}' ct V' N N N N CO (O (O CO M N N M M M N
I0 � � I� I� N N N N M M M O O O O <- �- �- �- �- e- •- O O �_
� O
_ � a �h cY I� i� I� 1� M M M M M M M �1' V '�' V C 'd' i� � O) �
� � I� f� I� 1� N N N N N N N � � � � � � t� I� t� Q
Q N M M r � r � r � � � � � � M M M M M M � O O �
�
S Z
y,, O O O O O O �A tl'y tf') � tti �fY tn O O O O O O O O O
Q O O � t(� � tn N N N N N N N O O O O O O � O O
. . . . . . . . . . . . . . . . . .
Q� N N � � � � � � � � � � � N N N N N N � � �
I� O I� N � � CO 'd' CO CO I� I� O M M I� 00 rY � tn
(p a0 M � CO f� � O � � � � � N N N N N M M M M
. . . . . . . . . . . . . . . . . . . . . .
J� V c0 I� t� I� 1� I� ao ao N oo c0 a0 I� 1� I� I� 1� I� t� h t�
� � � � � � � � � � � � � � � � � � � � � � � � �
S d� V V' V �P �t �l' V' V V V V' V �1' �Y �l' V' V' V V V V �P
� 7 � M � � � N (O � N M (O t�9 00 � CO 00 N V � �
�> N M M � � � Ln tf7 tn Cp (p (O CO M M M � � Ln tn � ln
i G7 ^ � � � � � 6� 6� � � 6� � � � � 6� 6� 6� � � � O� �
G�� �t c7' V' r1' st V' V V' �t' �i' �l' C �t' V' V V V V' �i' �1' V' �t'
O 00 N � M ci' � � M N � CO tn M � CO CO O � �t O�
O � V CO N t� c0 N O� 00 N CO CO CO I� O I� M � CO �
� � O W � 00 aO V' O N � M M u") O � .- �„� N I� M V 1�
d � M N O O � N �D N N �A cY O �0 V' �f' i� � � i�
J �'v'' V N � � N t� (O � � � � V M N «� � � t(� � tn � N
00 tn M M M ct I� 1� I� M M M M � i� I� O O O CO (O
(O O � V � N N N N N N N N N N V O O
o N � .-- .- �- r M M M O O O O O O O O O O O O O
� o O O O O O O O O O O O O O O O O O O O O O O
N t� N CO M M � t� M � I� f� a0 � � CO 6� � � �
U") N V' CO 1� � N C V �I' V' N N N N N M M M M
J' u7 � I� i� I� i� I� a0 00 c0 aO OD a0 I� i� I� I� t� I� I� I� 1�
W�� d' V V V d' V V V V d' V d' V � V 7 � V � V d' V
'O CO (O O� 6� 6� a0 I� t� f� M M M N N N M O O
lC O 00 O O O O �- .- � O O O O O O O O O O O O O
� r� � o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
� N M M M (O Cfl (O CO u� tf) � tn 'cY i� I� O e0 a0
� j � N V V V V N N N N (O CO CO (O � � � � � � � M M
00 I� N N N N M M M O O O O O O
f0
d
N l6 � � � I� (� I� t� M M M M M M M � � � � � � I� 6� �
C d a W r I� i� I� i� N N N N N N N �- .--- .- .-- .- .- 1� I� i�
3 ` V c�i c�i .- .- .- .- .- .- .- � .- .- .- c-i ri ri ri ri ri .- o 0
o a
0 s
,�, M O O O O O �A tfi tn N tn � u") O O O O O O O O O
p. I� O � tn � tn N N N N N N N O O O O O O tn O O
Q$ � N r � r � � � � � � r � N N N N N N � r �
(O N t� M tCJ 6� O t� d' CO CO t� 00 M d' t� 6� N � N
O 1� M � CO I� O O V V �I' V' N N N N N M M M
J� 'ct d' I� I� I� i� I� a0 00 c0 aO c0 a0 Ih i� I� I� t� I� I� I� I�
� d � m � � � � � � � � m � � � � � � � � � � �
2 G� � � v v v d- v v v v � v d- v d- v v � v � v d- v
M N CO I� W OO O tn M 00 CO r- O� CO CO 6� M O M M M
M � d' � M tn � N (O N M � CO a0 O (O 00 N d' �
� N N M (+') � � � � tC) � CO (O (O M M M d' � d' � � �
> a�i — rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn x
c�� v v v v v �r �r v v v v v v v �r �r �r v v v v v � �
in u
W �M O O O O O O O O O O O O O O O O O O O O � s
� �,.� �„� M M M O O O O OO aO CO W N O O � � � M M M � Q
(� V N N V V d' V V V V O O O O d' V V M M M N O O p —
� �
�i
V V a0 00 a0 a0 � � � � u") � � �t' d' V' �I' V V a0 N N N N
d N N r � r � r � � � � r � N N N N N N � � � �
N = � U
� - V II
� U
d O N M � tt� (p � 00 � O N �
C .- N M V � CO I� a0 6� � N N N �- ._
J
N
d
�
R
a
N
O
■�
��
��
/��
i�%
�
�
U
W
�
•�
J
W
�
�
L
V
V
�
�
�
L
�`
^
i
L
� y O O O O O O O O
C
� 0 � O O O O O O O O
J O V� O O � u�'� � u�i �
� � Y o 0 0 0 0 0 0 0
0
>+ M CO CO V O� N N N p
� y O O O O O O O O N
W O.'k.V' O O O O O O O O N
Y �
V
d
U j,.. o 0 0 0 0 0 0 0 0 �
Q� v o 0 0 0 0 0 0 o p
c
O N N N M r O O �
O O O O O O O O
� o O O O O O O O O
M M M � M N N (O
J� r r r r r r r r
� � �
W N� v �V v d�' V�' d�' �V V
� O O O O O O O O
� t� O O O O O O O O
O
M
� � N M � � � M � N M =
I0 � � O O O O <- O O O _
� O
� y a � N N N I� � � � Q
Q N O � r � r O O O �
�
S Z
Q O N N N � O O O
Q� � � � � � � � �
M M M M M N N (�O
J� I� t� I� t� I� 1� I� t�
� � � � � � � � � � �
S d� V V' V V �t �l' V' V
W M CO � � M � �
� > � � � CO � V � V
> G7 ^ � � � � � 6) 6> �
G�� �Y �t' V' �1' V' �l' V �3'
N � N � � � I� M
� �1') V' N M V' O �A
d �.�+ � � � � N � � �
J
O N N N M r O O
.�"' o
O O O O O O O O
� O O O O O O O O
M M M M M N N CO
J ' � � � r � r � n
W�� � V V V d�' V V V
l�C O O O O O O O O
; t� O O O O O O O O
c0 a0 00 a0 M <1' u7 00
� j � M � � � � (O N M
0 0 0 0 0 0 0
R
m
c a`�i a � N N N � � °r' °r'
o Q V o .- .- .- .- o 0 0
o �
p. O N N N � O O O
Q$^, � � r � r � � �
M M M M M N N CO
J� n r n � � r ti r
� d � m � m � � � �
2 G� � � v v v d- v v v
CO N M a0 � O � tC)
� � � � � � V M V
>
x
c�� v v °'v v v � � v � �
in u
O O O O O O O O � s
� M N N N O tn N M � Q
(� V O � � � N O O O p —
N
� �i
N u") � � a0 N N N � �
N = � � r � r � r � � .0
� - V II
� U
d �O
= N N N N N N N �M �-
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
/�♦
V
�
�
•�
J
W
�
�
L
V
V
■�
�
�
L
�`
^
i
L
O N � �
C
� 0 � O O
J O � �
� � Y o <-
0
N
� y o � �
� O ik.V' O O N
W
Y r
V
� � O �
L
V Q� o O O p
C
7
O O �
W W
� o O O
a0 V
J > r> V
� � �
W N � v V
� CrD C�O
� t � O O
N
N O O N
� j � r r �
L
y �
� � �
�j m �a �
Q w ri ri �
�
s Z
p. o 0
Q � N N
O �
J � o'i c'i
� � � rn rn
S d � v v
� N
� ' O
G � � �t �1
� M
� M �-
d � W �
J
� O
I� W
� o O O
� �
J ' M M
W d � � V
t�6 � �
; t � O O
� j � W O
� �
m
c m a m �
oQ V c�i c�i
0 s
p, c�o 0
Q $ � N
O N
J � (V M
2 G� � � v
� rn
� o 0
c � � v v � �
— in
O ��
4
N O O � Q
(� V N N `p .N
� �i
V V
N �
N N N .0
c �
� - V II
� U
C .- N O . _
d
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
�
V
W
�
•�
J
W
�
�
L
V
V
.�
�
�
L
T�
i
L
= N �
g O � �
J O �
� � Y •-
T o
N
� y � O
W O � C M
Y �
V
� O N
L
U >,..� � m
Q tn �. � 0
c
�
o �
� �
0
� � �
M
O
J � N
� d �'
11J N � �
� ` V
� t � O
N O N
� � � M .0
L1 .�
y 0
'� m �a `'M'' �
Q w o �
�
s � Z
a a'
� M
� a''.-.' O
�
�
J �
C7 d ^ �
S u� � �
0
�
�
a> >
c �� �
0
0
� o
01 �'v' M
J
O
O
.�"' o
O
� O
�
N
J �
W d � �
� �
tC
; t � O
M
� j � O
M
m
c a�i a M
o a V �
o � � s
Q M
GI O ��
� $ .Q
M Q-
V —
J �
� � � � II
2 y � � °�
� U
O 11
� � .'kv' V � �
u, Q
u_ �
w �
E �°
o `0
C� � � �
cn _
U
� � �
N � �- * _
'm = � a�
d �� o
_ �- d Z
J
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
/�♦
V
�
�
.�
J
W
�
�
L
V
V
�
�
�
L
^
i
L
� y N
C
� 0 � �
J O �
� � Y •-
0
N
� y � O
�
�j O� � N
Y r
V
� � N
L
U >,..� N m
Q tn �. � 0
c
M �
.`- �
fn � . �
W
M
J > �
� � �
W d � �
lC N
� t � O
N N N
� ; � �t �C
L1 .�
y 0
'� m �a � �
Q N °' �
�
s Z
Y �
Q �
Q � M
�
J � cO
C7 d ^ �
S u� � �
�
� ' N
G � � �t
r
�
� N
d � �
J
6�
�
.�"' o
M
� O
�
r
J � �
W d � �
t�C W
; t � O
V
� j � N
�
m
� d a �
o Q V u'
0 s
« a'
a a?
Q $ �
�n
�
J � M
C� d ^ �
2 y � �
�
rn
E o
c � � v N �
u
o � s
rn
w o � Q-
� u d- o -
a�
� u
N � �
N � � U
= U ��
� �
•0 U
d
C .- � . _
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
�
O
■�
��
�
�
�
�
O
U
W
�
•�
J
W
�
�
L
V
.�
�
L
�`
^
i
L
p � O� a0 V N V O M � � O O O O � �
= N RS O O O O N �- � O .- O O O O O �- �-
� 0 � C O O O O O O O O O O O O O O O O
� � � �n �n �n � �n o � �n � �n �n o 0 0 0
J O � � `- `- `- � � O .- � CO I� .- O o O o
� � Y o 0 0 0 0 0 0 .- o 0 0 0 0 .- .- .- �
0
>. � W V CO � (O t� � V O O N V (O O
� y CO O u') V' N V t!') � V O O O O O O N
l6 00 � N M � M O O � N O O O O d-
W O.'k.V' C O O O O O O O O O O O O O O O O N
Y �
V O M M I� O O CO M I� I� � N 00 �
� O tn � M � N f� � � O O O O O I� � �
U j µ. o O CO t0 � M M N I� N N N O O O O M N �
Q� v O O O O O O O O O O O O O O O O O 0
C
O M M h O O (O M t� h � � N a0 � �
O tf) � M N 1� � 6l O O O O O I� 6) �
O (O CO tn M M N f� N N N O O O O M N
� o O O O O O O O O O O O O O O O O O
a0 tn � a0 � (D 00 M � V O O O cl' O� M
a0 O N V (O aO M t� O N � � t(� � N O O
. . . . . . . . . . . . _ . . . .
J� � t0 c0 c0 c0 c0 I� t� ao e� a0 ao a0 ao f� rn a0
� � � � � � � � � � � � � � � � � � � �
W N� v V v �Y �t �Y �t V <t V V v �Y �t �Y V �t
'O I� N N 6) � O � � M O O O O � N
lC (O CO CO � N N N � � � � O O O O � �
j t� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�
N CO O O V V (O V � � M � O O N
� N M M i� M M I� CO t!') �f) � i77 N
10 � � C4 CO C4 � V' V' M � M M N O O O O M c`') �_
� O
_ � a c0 d' V d' V' V '�' i� i� I� i� 6� O� 6� O� M M �
� � � � � � � 1� 1� I� (� I� f� I� 1� N N Q
Q N M M M M M M M � � � � O O O O r � �
�
yt,, � O O O O O O O O O O O O O O �f7 � Z
Q O O O O O O � t(� N � O O O O N N
Q� � N N N N N N � � � � � � � � � �
M M I� � CO O 00 'ct CO O O O cY O �
N V CO 6� M t.f) N aO O V N � � N � 00
J� V �ci �ci tci CO t0 I� t� I� cV a0 c0 a0 ao 1� a0 I�
� � � � � � � � � � � � � � � � � � � �
S d� V V' V V' �Y �l' V' V V V V V V' �Y �l' V' V'
CO O Cfl tn 6) tf') M I� V' N d' V I�
Ln (+') I� � ln ln (p N M � O M I� I�
�> N M M M M M � V V � tn � CO CO tn Ln �
i G7 ^ � � � � � 6� 6� � � 6� � � � � 6� 6� �
G�� �t c7' V' �1' V' V' V' V' �t' �i' �1' V �1' V' V V V
I� O �('I i� I� I� O O O V' O �f'I i� 6) O
N f� I� M M N � � V O � V aD O
G N M � � � � � � � � � � � � � � �
d �-'v'' (O � � V � V � tn � (O � V � CO � � M
J
O M M I� O O CO M I� I� � N 00 N
O t� � M N f� � � O O O O O I� �
o O CO CO tn M M N 1� N N N O O O O M N
� o Q O O O O O O O O O O O O O O O O
a0 � M d- M O M t� (O O O O O � 6� M
CO N M 1� O I� � O M � � N N Cfl �
J' V � Cfl CO Cfl (D I� I� 1� c0 aO N a0 a0 i� a0 I�
W�� � V V V d' V V V V d' V d' V d' V 7 �
X
�O I� N N � � � O � � M O O O O � � Q
lC CO (D CO tn N N N � �- �- <- O O O O
� r� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �
a
co 0 0 �n u� co v � � � rn o 0
N Ln M M f� M M I� CO tC) Ln � � �
E � � CO (O CO tn � � M tC) M M N O O O O M M 11
f0 �
d
N l6 � oD � V � V � V t� t� I� I� 6� Q� 6� 6� M M �U
C d a � r .- .- .- .-- .- i� I� I� 1� I� i� I� i� N N II
OQ N (h M M M M M M �- .- � .- O O O O .- �- V
o -
� � o 0 0 0 0 0 0 0 0 0 0 0 0 0�� .
p. CO p O O O O O tn tn � tn O O O O N N L
Gf � nj N N N N N � � � � r � r � � � Q
� $ N
a
d' CO N N N � 00 M 00 (O CO O O O M O 00 �
� tf) �!7 I� O ct I� N I� 00 e-- � tn � N �Cl I� V
J� (M d' �17 t!7 C4 (D (D I� t� I� aO CO a0 a0 i� a0 I� _
(r� d �.'�+ � � � � � � � � � � m � � � � � � U
2 G� � v v v d- v v v v � v d- v d- v v � „
�
� CO O (O � � � M 1� �1' N V' �F' M 'p
N � M f� � tC) t!7 CO a0 M � O tn M ln �
� N N M (+') M M M � � d' � � ln Cp � ln d' �
> a�i — rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn � N
c�� v v v v v �r �r v v v v v v v v �r �r N m
0 0 0 � u� � �n o f �
N �- ao ao rn co co co 0 0 0 0 0 0 o u� o o� � �
� u N °' °' � � � � � co co ui o 0 0 o v ri o -o
� m
E
C4 �1' rY <}' V' V' V' a0 a0 a0 a0 N N N N � N � Z
d M N N N N N N � � � � � � r � r � �
N = *
fn ' � �
d O N M � tt� (O � � O
C .- N M V � CO I� a0 6� � � Z
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
�
U
a�
�
•�
J
W
�
�
L
V
V
�
�
�
L
�`
^
i
L
O N � �
C
� 0 � O O
J O � �
� � Y o <-
0
>+ M OO N
� y � V �
� O ik.V' O O N
W
Y r
V
� � � �
L
V Q� o O O p
C
7
� � �
� �
� o O O
W V
J > r> V
� � �
W N � v �V
� CrD C�O
� t � O O
N
N � � N
� � � � � _
L
y �
'� � �
�j m �a �
Q w ri ri �
�
s Z
p. o 0
Q � N N
O CO
J � o'i c'i
� � � rn rn
S d � v v
� N
� ' O
G � � �t �1
� O
G
d � W �
J
r �
r n
� o O O
� �
J ' M M
W d � � V
t�6 � �
; t � O O
� j � W �
� �
m
c a�i � � �
O Q N N M
o �
Q � o
Q $ � N
O N
J � (V M
2 G� � � v
� rn
� o 0
c � � v v � �
— in
� �I
4
� � � � Q
(� V N N `p .N
� �i
V V
N �
N N N .0
c �
� - V II
� U
C .- N O . _
d
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
♦�
��
/��
i�%
�
/O�
V
�
�
.�
J
W
�
�
L
V
V
�
�
�
L
�
i
L
p y O
C
� 0 � �
J O �
� � Y •-
0
N
� y M �
O
�j O� � N
Y r
V
� O N
L
U > ,.. � "� m
Q tn �. � 0
c
�
� �
N
.`- �
fn � . �
�
r
J > �">
� � �
W d � �
� o
jt� o
N u�7 N
� � � M .c
L1 .�
y 0
'� m �a `CO`i �
Q N � �
�
S Z
Y �
Q, r
� � o
�
�
J � o'i
C7 d ^ �
S u� � �
0
�
� ' N
G � � �t
�
�
G M
01 �'v' M
J
O
�
.�"' o
M
� O
N
r
J ' N
W d � �
� N
; t � O
y O
� � � �
m
N l6 � M
� d a
3 ` V �
o a
0 s
,,, o
a �
� $ o
r
�
J � (V
� d ^ �
2 y � �
r
r
� o
C d .'L'v' V N �
� u
s
� � E n
C� � d" � �a�
� u
0
ai �
N = M U U
� � U
�O
d �
C .- . _
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
�
�
�
/��
V
�
�
.�
J
W
�
�
L
V
V
�
�
�
L
�`
^
i
L
= N �
� � � �
J O �
� � Y •-
0
N
� y M �
C �
O � O �
W N
Y r
V
� O N
L
:> Q � o � m
0
c
�
� �
M
.`- �
fn � . �
W
r
J > �">
� � �
W d � �
� � �
� t � o
N O N
� ; � � .0
L1 .�
y 0
'� m �a � �
Q N N �
�
S Z
y,, M
Q N
Q � �
�
M
J � o'i
C7 d ^ �
S u� � �
�
� ' N
G � � �t
r
�
G r
d �,^,i O
J
r
�
.�"' o
'C'
� O
M
J � M
W d � �
t�6 �
; t � O
E j � �
R
�
m
� d a �
o a V �
0 s
« �
Q $ �
�
�
J � (V
� d ^ �
2 y � �
N
r
E O
c � � v N �
{ u
o s
M
w O � Q-
� V � �
� il
� dj N
N = N �'�' U
� - V II
� U
d �O
C .- � . _
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
�
O
■�
��
��
/��
i�%
�
/O�
V
W
�
.�
J
W
�
�
L
V
V
.�
�
�
L
�
i
L
� N O O O O O O O O O �
C `-
� 0 � O O O O O O O O O O
J O � � � � � � � � � O
� � Y o 0 0 0 0 0 0 0 0 �
0
>. � V CO t� I� N N t� V O
� y �f) V � �Y � I� N 00 N N
O M O O O 00 O O M O
W O.'k.V' � O O O O O O O O O N
Y �
V
V j� o ti 1� � M M r � N O O �
L
Q� v O O O O O O O O O O 0
C
7
N N M M M N O N � O �
I� f� � � � N N N V M
� o O O O O O O O O O O
� M O � N O O N t(� �
J� ui co co co co r� � ti � �
� � �
W N� �V �V v � � � V V V v
m � v o 0 0 � � � � �
j t� o 0 0 0 0 0 0 0 0 0
0
N � � N N N V V a0 � N
� � �t <1' O C4 i� tf) CO =
I0 � � � u") N N N M N N M N _
� O
_ � a f� i� M M M CO QO CO O W �
I� I� N N N OO CO CO t(� M Q
Q N � � r � r O O O O O �
�
� Z
Q � � N N N 00 CO (�9 � d�
Q � � � � � � O O O � O
� � � O � � � O M �
J� ui �ri ui co co co co r � �
��� rn rn rn rn rn rn rn rn rn rn
S d� v v v v �t �t �t v �t v
� � W � N � �M M OO �
�' M M M � � CO CD (O CO CO
> G7 ^ � � � � � 6� 6� � � 6�
G�� �Y �1' V' �1' st V' V V' �t' �i'
� N V aO � tn O (O O (O
� N M M V' O� �j (D N � �
d �'v'' � V � � M V � � � d'
J
Ln N M M M M O O�O O �
o I� I� .-- .- �- r .- � N �-
� o O O O O O O O O O O
0�0 � O O � N O � .- 'C
J' 'ct � Cfl CO C4 (D I� I� t� I�
W�� � V V V d' V V V V d'
l�C C�O V O O O O O � .�- O
; t� O O O O O O O O O O
N M 7 � � � � O � � W
� � � CO tn N N N N N N N �
d
N l6 � N I� M M M M � O O V
C d a N 1� N N N N QO i� tf) �
3 L V � .- .- .- .- .- o 0 0 0
o a
� Q O O N N N N 00 � CO � s
Gf � � r � r � O O O O ��
� $ .Q
N N M a0 6� tCJ � O N CO Q-
N � 01 O) O � O O M —
J �Y' tfi �fi tn C4 (D cD I� f� I� �
> II
� d � m � � � � � � � �
2 G� � d' v v v d- v v v v � �
N � 00 N O cY O O tf) V
O t� I� 00 N M M 00 II
t' M M M (+') � � (O CO CO (O U
> a�i rn rn rn rn rn rn rn rn rn rn � -
c�� v v v v v �r �r v v v N s
� Q
�
� � � c�o � � c�o � a�o, w o � �o
(�I V � � N N N N � � � � � U
� _
U
� � � � � � � � � � � �
N� � r � r � r � � � � a
'm = � a�
o 'o
C .- N M V � CO I� a0 6� � Z
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
�
U
a�
�
._
J
�
�
�
L
V
.�
�
�
L
T�
i
L
= N �
g O � �
J O �
� � Y •-
0
T N
� y � O
�j O� C N
Y r
V
� O N
L
U >,..� � m
Q tn �. � 0
c
�
o �
� �
0
� � �
rn
�
J � O
� d �'
W d � �
d d �
� t � �
N V' N
� � � W .c
L1 .�
y 0
'� m �a °�' �
Q N N �
�
S � Z
Q �
d r
� � �
�
�
J � rn
C7 d ^ �
S u� � �
N
�
d > r
G � � �
O
O
G
d � �
J
O
O
.�"' o
O
� O
N
�
J � �
W d � �
�
tC
� .�C � �
�
f0 � � �
�
m
� d a �
O Q " N
o � �, s
Q �
d � ��
o $ .�
Q
� _
J °O �
c� d _ � ��
x n, � � °�
� U
� 11
� (O U
c � � v �u�i s
f �
o �
a
r � �
� V N � U
� _
U
� � �
N N �- * _
'm = � a�
d �� o
_ �- d Z
J
r
i�
�
I.i�
O
�
M
._
.�
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�`
^
_
N
�
�
U
N
O
a
�
d
�
R
a
N
O
■�
��
��
/��
i.%
�
/�♦
V
�
�
.�
J
W
�
�
L
V
V
�
�
�
L
^
i
L
C N � �
� 0 � O O
J O � �
� � Y o <-
0
N
� y N O O
W O ik.V' O O N
Y �
V
� � m �i
s
U > ,.. � `r m
Q tn �. � � �
c
�
� � �
M
� o O O
� �
J > � �
� � �
W N � v �V
lC N �
� t � O O
N
N � tn N
� � � M N =
L
y �
� � a � r �
Q w o o �
�
s Z
Q, oMi �
� � o 0
� v
J � c0 c0
S d '� � �
V V
� r
� � �
G � � � �V
N M
� O M
d � N �
J
� W
N O
� o O O
R �
J � � �
W d � � V
lC M O
; t � O O
N
� � � � �
d
c m a o0 0
� a V o •-
0 s
Q, � rn
� $ o 0
o v
J � � �
2 G� � � v
N V
� � �
c � � v v � �
— in
� �I
4
w � � � Q
� V M � � �
� �i
N �
� u) —
N = � � '� .0
� � U
�O
C.- N � . _
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
♦�
��
�
�
�
V
�
�
J
W
�
�
L
V
V
.�
�
�
L
T�
i
L
� y N
C
� 0 � �
J O �
� � Y •-
0
T N
� y � O
�j O� C N
Y r
V
� O N
L
U >,..� � m
Q tn �. � 0
c
�
o �
� �
0
� � �
�
�
J � N
� d �'
11J N � �
lC N
� t � O
N O N
� � � �F �C
L1 .�
y 0
N �
�j m �a �
Q N � �
S � Z
Q �
d r
� a''.-.' O
�
�
J � cV
C7 d ^ �
S u� � �
rn
�
�
a> >
c �� �
N
O
G �
d � W
J
O
O
.�"' o
O
� O
M
�
J ' N
W d � �
� N
; t � O
N M
� � � �
d
N l6 �
� d a
o a V �
o � � s
a �
d o ��
� $ n
� Q
N ��
J N
� � � � II
2 y � � °�
� U
� 11
' d •'k�' V i� t
�i Q
�
w �
E �°
o `0
C� � d" �
�n _
U
� � �
N N �- * _
'm = � a�
d �� o
_ �- d Z
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
/��
V
�
�
.�
J
W
�
�
L
V
V
�
�
�
L
�
i
L
= N �
� � � �
J O �
� � Y •-
0
>+ M N
� y � O
N
�j O� O N
Y r
V
� � N
L
U >,..� � m
Q tn �. `- �
c
�
r �
� \ o
� � �
N
�
J > �
� � �
W d � �
� � �
� t � o
N O N
� ; � � .0
L1 .�
y 0
'� m �a � �
Q w o �
�
s Z
y,, O
Q O
Q � �
N
J � cV
C7 d ^ �
S u� � �
N
d > r
G � � �
6�
G
01 �'v' N
J
M
� o O
� �
M
M
J � �
W d � �
t�6 �
; t � O
N
f0 � � �
�
m
� d a �
o a V �
0 s
« �
a �
� $ o
�
�
J � �
C� d ^ �
2 y � �
rn
rn
� �
E o
>
c � � v N �
o ��
N Q
� O � Q
� � � � N
� �i
N
N �
N = � U U
� � U
�O
d �
C .- . _
J
i
ca
0.
0
�
M
._
>
�..�
�
�
N
�
�
O
�
�
a
L
�
�
�
�
.N
�
�1�+
�
W
�
L
�
3
a�
�
�
L
�
r�A
v,
3
0
�
�a
L
�
�
Z
�
d
�
R
a
N
O
■�
��
��
/��
i�%
�
�
V
W
�
•�
J
W
�
�
L
V
V
.�
�
�
L
T�
i
L
= N �
g O � �
J O �
� � Y •-
T o
N
� y � O
W O � C M
Y �
V
� O N
L
U >,..� � m
Q tn �. � 0
c
�
o �
� �
0
� � �
M
O
J � N
� d �'
11J N � �
� ` V
� t � O
N O N
� � � M .0
L1 .�
y 0
'� m �a `'M'' �
Q w o �
�
s � Z
a a'
� M
� a''.-.' O
�
�
J �
C7 d ^ �
S u� � �
0
�
�
a> >
c �� �
0
0
� o
01 �'v' M
J
O
O
.�"' o
O
� O
�
N
J �
W d � �
� �
tC
; t � O
M
� j � O
M
m
c a�i a M
o a V �
o � � s
Q M
GI O ��
� $ .Q
M Q-
V —
J �
� � � � II
2 y � � °�
� U
O 11
� � .'kv' V � �
u, Q
u_ �
w �
E �°
o `0
C� � � �
cn _
U
� � �
N � �- * _
'm = � a�
d �� o
_ �- d Z
J
APPENDIX B.3
Riprap Computations
ot � �
� � � ��������,��������,��
� v oax a � � � ������������������
�v o � ,�
u s m o 0 0 0 0 0 0 0 0 0 0 0 o a o o� o 0 0 0
a� o a� o 0 0 0�� o 0 0 0 0 0 o a o o� o 0 0 0
� N � � � � � � � ti � � � ti � � � � � � � � � � �
�
a
�
�
O v m� � o 0 0 0 0 0�� o 0 0 0 0 0 0 0 0 0 0 0 0
n c o Qx o 0 0 0 0 0 0 0 0 0 0 0 0
J ¢� oo �n vi �n ti.�-� �o co .-�'i .�-i .�'y �� iri �o 00 ,�y vi � �o iri
raa v E 01 � `�
Q oT o� ry o � � ���� ��� ���� � ����� ��
w v v v v v v v w v w w v v v v w v w v v
c� � -- u- o� a a n a a a n a a n a n n a n a a n a n n
� � � � � � � � � � � � � � � � � � � � � �
o� � m o N� o m in �n m N o
m �� �^� � o i.n � n v r� � i.n .-i � o'-� � m o���� N
m n
c o � � N a� m ti ti�"� �.^�-i ^�i oo ti� m � ti �i ��+i �
_ ,-� � G
0 �
� � '
9 Q v O N d' N cl' N l0 t0 �O O 00 N 00 O t0 N ct O l0 O O
> M �-I O'-I l0 00 �ft I� V N t+'1 01 O 01 01 01 01 a0 N
� d � O O ti 00 V O 00 cf V 00 vl �I' O N�-i cl' O O O O
� 11
F Q
W
"1�'1 v o '^ o
r -O N ri 1p => 00 N N O N Ql 00 l0 O�"I Ql 00 I� I� 1p N 00 I� OO l!1 O I�
� � N � m�> R .-I O O N I� d' O O d' tv1 rl � M O� M d' N O d' O
o LL � a� a�
W a
a �
s � v��
a � o � E m v o o m o�o 0 o v�o � o0 00 o m � o0 oa O �n o
� O � N N M I� I� I� 00 vl I� I� a I� 00 01 I� I� 00 �-I N O I� l0 I�
Q Q LL N _ m 0' � �O tD �O V�-1 M iD l0 n'1 M v1 vl n'1 tD vt �Y [+1 Vl �O M�D
ti LL �
Z
� = a a a a a a a a a a a a a a a a a a a a a
F `" 3 z z z zzzzzzzzzzzzzzzzzz
V � �
W mvo a
F� w � a �
O � ,., a m
�
� �� � x a a a a¢ a¢¢ a¢ a a¢ a¢¢ a¢ a a¢
a � — � z z z z z z z z z z z z z z z z z z z z z
O. �
a
�
a N N O N Ol 00 l0 O ti Ol 00 I� I� lO N 00 h 00 v1 O I�
p M al V al �-I O f� O N a0 I� lo 00 V o0 V m ut a0 O ul
� � �-I O O N I� V O ti d' M�-I .y ttl O ti M ct N O d' O
�
O N
LL
fO v� � �n v o�m m � c� oa ,� o� i.n cu a v v m m ni o o,-�
(n J Q� 0 Ql ey i.11 lD �--I �f1 V a I� N O I� �--I l0 N I� N I� O I�
Z � n. v a m .-i o m � oo ,-i t oo �� vi �,-i m in oo �vi ,�-i � o
O V J
m
r
a o 0 0 00000a000000000000
J � ct � t� a v v a v v a v a v v a v a a v a
� i o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U
J
V "�
;� ._ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Y ?i p" =, N Vl Vl Vl 00 a0 a0 00 a0 a0 V N o0 O a0 �O a0 vt a0 d' v1
—� �-1 O O O O O O�-1 O O.-1 rl O.-� O O O O O O O
� O
H
i L
3 ' � �
v �3'
) V
N =
v V
m O '
.. CO = N m
> . �
2 O � N
= U =
W
r ?
� V - p`
a
Z `—° o v v o i.n �n i.n o 0 0 0 0 0 0 0 0 0 0 0 0�n o o�n
— u O. �$ O N N N O O O�n O O�+l O O vt O�n O N O O N
0 d�� M ti N N N V N N M M N N N�-1 N.ti N ey .-1
U � �
N
m� O O O O O O O O O O O
— �� o o n.� � oo ao o m.� m� m� �� a�o o m
Q N � o,y o,r o c» � �i cri c�i o�ri ti� o� a d: �� o
N � N 1' N N cY N N .-1 N
O
N O �-I N M V V1 l0 I� a0 Ot O.-I N M d' V1 t0 I� 00 Ql O LL
�-1 .-i �-I �-1 ci '-I �-1 �-I �-I �-I N
W W W W N W W N N N N N N N N N N N N N�
O� E� v J J J J J J J J J J J J J J J J J J J J �
�
� �� N�@ E E E E E E E E E E E E E E E E E E E E£
v v Q � `o `o `o 0 0`o o`o o`o `o 0 0`o `o `o o`o `o o�
�p � � J N in N in VI N N cn VI V1 in �% � N Vl V1 V1 �% in �
a` o m
,il� , l_l- 1�j�� ��
Swale Computations
Channel Report
Hydraflow Express Extension for AutodeskOO AutoCAD RO Civil 3DOO by Autodesk, Inc.
SW 1
Triangular
Side Slopes (z:1) = 4.00, 4.00
Total Depth (ft) = 2.00
Invert Elev (ft) = 100.00
Slope (%) = 1.40
N-Value = 0.035
Calculations
Compute by: Known Q
Known Q (cfs) = 10.40
Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
Wednesday, Jan 29 2020
= 0.94
= 10.40
= 3.53
= 2.94
= 7.75
= 0.85
= 7.52
= 1.07
Elev (ft) Section Depth (ft)
103.00 3.00
102.50 2.50
102.00 2.00
101.50 1.50
101.00 1.00
100.50 0.50
100.00 0.00
99.50 -n �n
2 4 6 8 10 12 14 16 18 20
Reach (ft)
Channel Report
Hydraflow Express Extension for AutodeskOO AutoCAD RO Civil 3DOO by Autodesk, Inc.
SYY 2
Triangular
Side Slopes (z:1) = 4.00, 4.00
Total Depth (ft) = 1.50
Invert Elev (ft) = 100.00
Slope (%) = 0.50
N-Value = 0.035
Calculations
Compute by: Known Q
Known Q (cfs) = 8.80
Elev (ft) Section
102.00
101.50
101.00
100.50
100.00
99.50
Wednesday, Jan 29 2020
Highlighted
Depth (ft) = 1.07
Q (cfs) = 8.800
Area (sqft) = 4.58
Velocity (ft/s) = 1.92
Wetted Perim (ft) = 8.82
Crit Depth, Yc (ft) = 0.79
Top Width (ft) = 8.56
EGL (ft) = 1.13
Depth (ft)
2.00
1.50
1.00
0.50
� ��
■�r.z�r.i
2 4 6
8
Reach (ft)
10 12 14 16
,il� , l_l- 1�j�� �
Water Quality Computations and Information
WATER QUALITY POND DESIGN CALCULATIONS
Extended Detention (Lower Stage Pond 1)
Project: 100-024
By: ATC
Date:5/1/20
REQUIRED STORAGE & OUTLET WORKS:
BASIN AREA = 41.380 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS PERCENT = 25.00 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS RATIO = 0.2500 <-- CALCULATED
WQCV (watershed inches) = 0.135 <-- CALCULATED from Figure EDB-2
WQCV (ac-ft) = 0.558 <-- CALCULATED from UDFCD DCM V.3 Section 6.5
WQ Depth (ft) = 1.400 <-- INPUT from stage-storage table
AREA REQUIRED PER ROW, a(in2) = 1.730 <-- CALCULATED from Figure EDB-3
CIRCULAR PERFORATION SIZING:
dia (in) = 1 1/2 <-- INPUT from Figure 5
n= 5 <-- INPUT from Figure 5
t(in) = 1/4 <-- INPUT from Figure 5
number of rows = 1 <-- CALCULATED from WQ Depth and row spacing
WATER QUALITY POND DESIGN CALCULATIONS
Extended Detention (Lower Stage Pond 2)
Project: 100-024
By: ATC
Date:5/1/20
REQUIRED STORAGE & OUTLET WORKS:
BASIN AREA = 19.960 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS PERCENT = 44.70 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS RATIO = 0.4470 <-- CALCULATED
WQCV (watershed inches) = 0.192 <-- CALCULATED from Figure EDB-2
WQCV (ac-ft) = 0.384 <-- CALCULATED from UDFCD DCM V.3 Section 6.5
WQ Depth (ft) = 2.200 <-- INPUT from stage-storage table
AREA REQUIRED PER ROW, a(in2) = 0.996 <-- CALCULATED from Figure EDB-3
CIRCULAR PERFORATION SIZING:
dia (in) = 1 1/8 <-- INPUT from Figure 5
n= 7 <-- INPUT from Figure 5
t(in) = 1/4 <-- INPUT from Figure 5
number of rows = 1 <-- CALCULATED from WQ Depth and row spacing
WATER QUALITY POND DESIGN CALCULATIONS
Extended Detention (Lower Stage Pond 3)
Project: 100-024
By: ATC
Date:5/1/20
REQUIRED STORAGE & OUTLET WORKS:
BASIN AREA = 33.500 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS PERCENT = 41.20 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS RATIO = 0.4120 <-- CALCULATED
WQCV (watershed inches) = 0.183 <-- CALCULATED from Figure EDB-2
WQCV (ac-ft) = 0.613 <-- CALCULATED from UDFCD DCM V.3 Section 6.5
WQ Depth (ft) = 2.200 <-- INPUT from stage-storage table
AREA REQUIRED PER ROW, a(in2) = 1.510 <-- CALCULATED from Figure EDB-3
CIRCULAR PERFORATION SIZING:
dia (in) = 1 3/8 <-- INPUT from Figure 5
n= 7 <-- INPUT from Figure 5
t(in) = 1/4 <-- INPUT from Figure 5
number of rows = 1 <-- CALCULATED from WQ Depth and row spacing
WATER QUALITY POND DESIGN CALCULATIONS
Extended Detention (Lower Stage Pond OS1)
Project: 100-024
By: ATC
Date: 6/29/2020
REQUIRED STORAGE & OUTLET WORKS:
BASIN AREA = 3.540 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS PERCENT = 10.70 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS RATIO = 0.1070 <-- CALCULATED
WQCV (watershed inches) = 0.071 <-- CALCULATED from Figure EDB-2
WQCV (8C-'ft) = 0.025 <-- CALCULATED from UDFCD DCM V.3 Section 6.5
WQ Depth (ft) = 1.100 <-- INPUT from stage-storage table
AREA REQUIRED PER ROW, a(in2) = 0.105 <-- CALCULATED from Figure EDB-3
CIRCULAR PERFORATION SIZING:
dia (in) = 3/8 <-- INPUT from Figure 5
n= 3 <-- INPUT from Figure 5
t(in) = 1/4 <-- INPUT from Figure 5
number of rows = 1 <-- CALCULATED from WQ Depth and row spacing
FORT COLLINS STORMWATER CRITERIA MANUAL
WQCV = a(0.91I�— 1.19I�+ 0.781)
Where: WQCV = Water Quality Capture Volume, watershed inches
a= Coefficient corresponding to WQCV drain time (Table 5.4-1)
I= Imperviousness (%/100)
Table 5.4-1. Drain Time Coefficients for WQCV Calculations
Equation 7-1
Drain Time (hrs) Coefficient (a)
12 0.8
40 1.0
Peference� The UD-BMP exc�l-based spreadsheet, RG and EDB tabs inay be used to aid in
calculating WQCV.
Figure 5.4-1 WQCV Based on BMP Drain Time
0.500
40 hour drain time
0.450
I
I
� 0.400 �
v 24 hour drain time �
= 0.350
-a WQCV=a(0.91i�-1.19r=+0.78r) i�
u� 0.300
N 12-hr drain time a= 0.8 ��
� 0.250 24-hr drain time a= 0.9 �
� 40-hr drain time a= 1.0 ���
2�. 0.2Q0 �
c +•'
0.150 �'
V�i• 12 hour drain time
�0.1Q0 „
0.050 '
0.000
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total Imperviousness Ratio (i = Ia/100)
Once the WQCV in watershed inches is found from Figure 3.2-12 or using Equation 3.2-1, the
required BMP volume in acre-feet can be calculated as follows:
V=(WQZ �) Ax1. 2 Equation 7-2
Where: V= required volume, acre-ft
A= tributary catchment area upstream, acres
WQCV = Water Quality Capture Volume, watershed inches
1.2 = to account for the additional 20% of required storage for sedimentation accumulation
Water Quality (Ch. 7)
5.0 Hydrologic Basis of the WQCV
5.0 Hydrologic Basis of the WQCV
i�F�rtf� Page 12
APPENDIX C.1
Detention Computations, SWMM Output
Project: 100-024
By: ATC
Date:6/29/2020
POND SUMMARY TABLE
100-Yr. Water Quality Peak Total Peak
Detention Vol. Capture Volume (Ac- Total Req'd 100-Yr. Release to Release
Pond ID (Ac-Ft) Ft) Vol. (Ac-Ft) WSEL (Ft) TRIC (cfs) (cfs)
Pond 1 15.76 0.56 16.32 4915.99 44.50 44.50
Pond 2 1.05 0.38 1.43 4916.75 22.00 64.50
Pond 3 0.49 0.61 1.11 4916.39 21.90 64.90
Pond 4 1.37 0.00 1.37 4916.93 0.00 4.50
Offsite Pond 1 0.26 0.025 0.285 4914.43 0.99 0.99
Total Routed Outflow to TRIC: 81.1 cfs
Pond Stage-Storage Curve
Pond:1
Project: 100-024
By: ATC
Date: 4/15/20
Stage Contour Area Volume Volume
(FT) (SF) (CU.FT.) (AGFT)
4911.06 6.68 0.00 0.000
4911.20 316.89 24.23 0.001
4911.40 2283.86 377.10 0.009
4911.60 6142.61 1652.78 0.038
4911.80 11904.18 4461.58 0.102
4912.00 19581.61 9410.61 0.216
4912.20 29205.12 17106.00 0.393
4912.40 64393.95 26236.65 0.602
4912.60 83154.18 40951.55 0.940
4912.80 100790.96 59317.81 1.362
4913.00 117534.29 81128.91 1.862
4913.20 133519.35 106217.29 2.438
4913.40 148774.54 134432.93 3.086
4913.60 163171.28 165616.43 3.802
4913.80 176812.84 199605.72 4.582
4914.00 189749.13 236254.31 5.424
4914.20 201734.69 275396.57 6.322
4914.40 212645.18 316829.77 7.273
4914.60 222863.9 360376.68 8.273
4914.80 232580.06 405917.62 9.319
4915.00 241788.83 453351.53 10.408
4915.20 250478.48 502575.7 11.538
4915.40 258553.26 553476.74 12.706
4915.60 265785.83 605908.99 13.910
4915.80 272602.38 659746.37 15.146
4916.00 279583.91 714963.53 16.413
4916.20 286769.97 771597.4 17.713
4916.40 294195.17 829692.33 19.047
4916.50 298020.53 859302.91 19.727
Pond Stage-Storage Curve
Pond:2
Project: 100-024
By: ATC
Date: 4/15/20
Stage Contour Area Volume Volume
(FT) (SF) (CU.FT.) (AGFT)
4912.00 1.22 0.00 0.000
4913.000 8450.11 2851.02 0.065
4914.000 14166.51 14036.94 0.322
4915.000 16454.48 29333.17 0.673
4916.000 18862.54 46977.98 1.078
4917.000 22000.74 67389.51 1.547
Pond Stage-Storage Curve
Pond:3
Project: 100-024
By: ATC
Date: 4/15/20
Stage Contour Area Volume Volume
(FT) (SF) (CU.FT.) (AGFT)
4913.000 6386.39 0.00 0.000
4914.000 13314.50 9640.72 0.221
4915.000 15574.33 24070.38 0.553
4916.000 17965.65 40826.14 0.937
4917.000 20488.44 60039.38 1.378
Pond Stage-Storage Curve
Pond:4
Project: 100-024
By: ATC
Date: 4/15/20
Stage Contour Area Volume Volume
(FT) (SF) (CU.FT.) (AGFT)
4,914.00 1,209.92 0 0.000
4,915.00 17,185.81 7651.9 0.176
4,916.00 27,279.40 29691.2 0.682
4,917.00 37,739.69 62059.77 1.425
Pond Stage-Storage Curve
Pond: OS 1
Project: 100-024
By: ATC
Date: 7/1/2020
Stage Contour Area Volume Volume
(FT) (SF) (CU.FT.) (AGFT)
4911.50 0.15 0.00 0.000
4911.60 73.05 2.52 0.000
4911.80 271.14 34.85 0.001
4912.00 681.00 126.97 0.003
4912.20 1339.45 325.34 0.007
4912.40 2165.87 672.58 0.015
4912.60 2827.62 1170.46 0.027
4912.80 3553.43 1807.19 0.041
4913.00 4315.12 2592.81 0.060
4913.20 5084.10 3531.68 0.081
4913.40 5828.65 4622.11 0.106
4913.60 6543.31 5858.62 0.134
4913.80 7227.94 7235.17 0.166
4914.00 7882.85 8745.78 0.201
4914.20 8511.54 10384.82 0.238
4914.40 9109.00 12146.53 0.279
4914.60 9195.77 13977.00 0.321
�
a�
rn
c�
d
�
vi
g
�
�
�
a�
rn
�o
d
� I
� I
O I
. �
� I
. �
� I
� I
� I
�� I
� I
� i
� i
.i
� i
� i
O i
H I
� I
� I
W I
� I
I
I I
I
� I
W i
❑ 1
O I
� I
I
H I
� I
W I
� I
U' I
� I
� I
� I
� I
I
� I
W I
H I
� I
� i
I
� I
� I
O I
E-+ I
� I
� I
a i
W I
+�
�
0
I
cr
a
�
�"
.�
h�
S1
O
�
�
�
�
�
N
?a
Sa
O
4-a
-�J
�
N
D
�
�
�
�
�
�
�
m
�
3
O
�
3
O
�
N
�
�
.�
�
O
�
�
�
�
N
�
N
�
�
N
�
U
O
�
c7
�
H
�
�
�
� N �
-k �I �
-� rd �, *
-k � i�
� � � �
� � � �
+ O +
* p,� •�
� N � �,*
� �-� � �
� +� +� �
� � � �
� -� � �
��ro��
-� +� � � -�
� o -� �
� �-�+��
-k -ri +� -k
-k N b� -k
i� "� +� � -k
-k � � -�-I -k
� � � +� �
# � � � #
� r-I O O �
-� C� U Q, �
� � � �
-� � � � � -�
� � i� �
� N -�*
-k Ul 'J U -k
+ U � c� +
� -ri N �
-� +� +� -�
-k U� (� �, -k
-k � ri O -k
� � � � �
� � �4��
� +� � �
-� u� O u� -�
� 4a +� �
� �, � �
� � � � �
-k � � � -k
� r—I N �
� � � �
# � � �
� m a� G �
x S-i O �
� � �
-� .� �+��
-� E-� O u7 -�
� � �
-k • • � 'r� -k
+ W N +
� H � � �
-� o ro o -�
* � � G *
00
00
00
0 0
o �
O O
O O
O O U
O O O O O N
W N N O O O U]
� � � � .. .. ..
O FC r—I l0 �� O O
E� � O O r-I O O O
C/� C/� C/� (� � \ \ O .. .. .. .
C+ W OOO W OOOH,-�� •00�0
U �+ ��� y+ ���'`�-G O O O O O O ('')
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . � � . . � . . . .
. . . . . . Q Q . . �y . . .
. y� . . . . � . -� -� . . � . . �,
� cn � . y� . . . . � +� I� • • Ca p, • • N
-k C -k . .. � . . . 3 � N N . . Q) . . +�
� O � • u� � • • bi O 1-� � � • � -4� Cn
� -� -� • .� � • • S� � .� -� N • S� cn �, �
-k �!-� -K • N Li.' • • N-ri �—I ri � bi -l� Cl N N N
� Q, � � � • +� -u FC �s o G ro a� a� +� -u �
x o� m o,� •+� �� �-�-�r�+� u�cncn��
� � +��� •� 3 0 �a,�+� ro �-�+ N
� U7 �-ri r� • aJ � f� � rii � b� Cl N E � N N
-� �� -� � cn 4-� � � -� � � o � '� � � b�
� m � � m � H 3 � 3 '� a� +� r� -� b� a� -u �.� -� �
+ �+ N'rl H O O O�-N .� -N G U}a E� E-a ��
+�+ 3 U ro�l � s� � o ro-� 3 s� -� a� o -u
� ro� o o a rz cn c7 r� a�w o ro�+� Q+� �,a
-� G�,�s� G,�+�G�a�a��,o
� r�� �,a H�,cnwFCrx',�carZ
.� u7 I � O t�
-u N I � O 6�
�2, .� I �O o 6l
N U I
C� � I c'') O rl
� i
i
� -1-� I N O V"
� N I '--I O N
� 4J I �O�
�—I 4-� 1 • • •
O I I t� O �9
� N I � c'')
� I
U i
� I
k �r k • • •
k+� k • • •
+ � �-i + • • •
k � k • • •
-k 5�., -k . . .
� �� � . . .
x -u x . .
� � + � . .
� O x O •
-� U -x -� c�
-k -k +� (1� U]
-x �, -x r0 c1� O
� +� � t� O r a
-k �� -k �� r�
� � � � �
������o
+ rr3 + U O �rl
� � � � -� �
-� a -� s� u ro
+ + Pa N S1
+ 4a + S-� -4-�
� 4 i � � O �
� O � r0 p, ��-I
� ��+�row
� � � o � �
+ r� + E� W r-�
N
�
�
�
N
�
�
(0
d
N� N�—I I O[� O O O N O O O O N
lO `-I �� I O O O O O f� O O O O N
l0 O � U� I O 61 O O O [� O O O O �--I
. . ,—� � . . . . . . . . . . .
rl0 O � I OO10006100000
� < I
O I
� I
N N� N 1� I O N O O O O� O O O O � r-i
O(�'--I � N I OOOOOOJOOOOI� (�
�i' ('"1 N '� N I O �t' O O O Ol O O O O (� rl
. . . ri 4-i I . . . . . . . . . . . .
O O O O I I O O O O O Ol O O O O O O
c'') I � N I c'') N
� I
U I
N I
• ��o
. . y�
• O
y� }a
4a N Si
O b� W
� � �
f� O +�
U � �-i
� u� �
� � ��
� ro +�
� � �
� -� o
u� G-� U
-� -� . . . . . . . . . . . .
-� -� . . . . . . . . . . . .
-� -� . . . . . . . . . . . .
� a�� . . . . . . . . . . . .
� +� � . . . . . . . . . . .
�-�� . . . . . . . . .� .
� � � . . . . . . . . . �
-k �' -k . . . . . . � N o�a
� -� � 3 3 3 . . . . . ,� � �—
-� +� -� O O O • • • m O �
+ �+ �—I r-I �—I • 3 • cn m� �—I sa
� O� 4 i 4-i 4 i • 3 O • u� O O O
� U � G � G • O �I O �l '� 5 �
-k -k H H H • rl 4--I U] � � $-{
� bi � U--i +� cn � � � W
��� s� s� s� 3�� o G o o N
-k -rl -k � N� O H O r-� O'rl +� S-a �
� +� � � � +� �—i -ri +� u] O +�
-� � -� +� + � c� 4-i �—I �i b� + � rii +� -ri
� O� ro ro 3� ro r� � ro�� cn �
-k (Z -k 4J � '� H � � '�-I �-I �l-� � �
x � 3 3 � s� z� '� o�-� .� -�
� 3 � � �+ a� a� o Cz -� +� � +�
x ox �-uoH�-Norow����
-� �-� s�a�s�Qxx��xG-�o
� Cu� �1�C�fZ W W Cu W W HCuU
� � �
-� N -�
� x�
-� � -�
+ -� +
+ � �
� H�
� �
-� � -�
� ��
� -� �
� � -�
� -� �
� � �
� � �
� +� �
-k � -k
-k C -k --
� H� [��
-k -k " � �
� 3 � v �n c�
� O � +� � �— �—
� ri � � �
* � � O�O� I N�
-k -L� -k ('') N N ('")
� m� wacnv�
+ a� +
+ � + .� � .� �
� �� ����
-� -� � -� -� -� ��
� �� �r���
U U U
N N N
� � N
O O O O O O
O O O O O O
6� O O O r-I O
N c') c'')
a
�
� �� �
� �� �
� ro+ �
� � +���
� � ro � �
� � � � � -�
� � � � �
� � � �
� �� �Q,��,� N
x N x N� N'� O 5
� �� ��� c��� �
-� C� -k V� U� Cn �+� O
� � � � �
* � -� � � � � N -I�
-k ��-I � �rl -r-I �rl � -I-� O
� E� � E� H E-� -rl H�
� �
+ b� + � � � +� � +�
� ��� �ro��ro�
-x u � ��-I � ��-I U i-i U
� a� �a�xs�a�s�
� �� ���a��a�
N
g
�
�
# ��
� � �
� � �
� � �
+ +
� � �
� V] �
� �
-� 4� �
� W x
� O -�
� � �
# � #
� � �
� �
� � �
� � �
� � +
� � �
� � �
+ U +
� +� �
� � �
� c� �
� � �
� � �
� � �
i x�cn i o��roc�,-� nr�
i ro�+ w i�r,� rn r� o��
I N O U I • • • • • • •
I f1a � I N t� u� c'') t� N c�
I � I t� rn t� r''7 0 �r+
I C� I �
I I
I I
I I
I �'+-a rl I N�� r-i �r' O c'1
I rt 4--i � I c'') o� c'') O L� [� ,-�
I � O bi I • • • • • • •
I O G' I ri r-I r-I r-i c'') O O
I E1 � � I
I fZ < I
I O I
I � I
I I
I I
I I
I I
I rl 4--I G I t� O c-I t� O r-i o�
I c� 4--I -ri I 6l o� v+ �—i iS� O c�
I +� O I • • • • • • •
I O G I�� N�� N�
I E1 � I
I � I
I
I I
I I
I I
I I
I � 4-i G I [� � N �n N� O
I S� 4-a -.� I � O� o� n'1 � N
I N O I • • • • • • •
i a G i o�oo,-io,-�
i � i
i � i
I I
I I
I I
I I
I I
I � 4-1 � I O i.s� 6l O� � c'') �
I S� 4-a -�-i I v' [� O� N rl N r-I
I N O I • • • • • • •
I �� I r-I O r-I O O r-i O
I � � I
I H 0.', I
I
I I
I I
I I
I I
I�-I �i � I[� �n � �r [� r� rn
I r��ri-� I �o�N���N
I +� 4-�I I • • • • • • •
I O G I r-I r-I r-I N N�-I N
I E� i -i I
I
I I
I I
I I
I I
I I
I ��� I O O O O O O O
I � c�-� I o 0 0 0 0 0 0
I � � I . . . . . . .
I O W I O O O O O O O
I E1 I
I I
I
I I
I I
I I
i i
i���i0000000
i ro o-� i o000000
i +� G i . . . . . . .
i o� i o 0 0 0 0 0 0
i N � i
I I
I
I I
I I
I I
I I
I � Q, � I � � � � � � �
I c� -ri -� I �O �9 �O lfl �9 lfl �9
I -N U I • • • • • • •
I O� I c'') c'') c'') c'') c'') c'') c''1
I E1 S-� I
I W I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I � I
I � I
I � I
I � I
I � I
I U I
I � I
I � I �
I � I � � � � � � �I
I U) I U) U) U) U) U) U) U)
� ��
-� � -�
� N +
-k � -k
� � �
-k � -k
-k U] -k
� �
� � �
� +� �
-� Q, -�
� � �
k C] k
i� i�
-x a� �
� � �
-x O +
� 2 �
� '��+� � c�o�o�na���rc��
I �-I� � I�r O rn �n O t'll t�'1 �n rl �r
I -U Q, N I . . . . . . . . . .
I�-I N G� I OOOin�n(')N�o('") V'
I O � I
I Q, I
� a� x �
i a ro i
I � I
I I
I I
I I
I 9C �� I N O N �t' co N�--I C`� � 6�
I r� U-� I� O �.c� O rl �.c� �.c� r-I rl O
I � � � I .. .. .. .. .. .. .. .. .. ..
I �•• I O O O r-I N O O r-I N N
I 4- i S� S� I o 0 0 0 0 0 0 0 0 0
I O � ,� I
I � I
I N U Ul I 0000000000
I � U � I
I -�-i O � I
I E1 � I
I I
I I
I ��l J� I('"1 O N �t' � CO �--I � N f�
I �U � I �rOO�O�Ocr�('")�r
I � � � I . . . . . . . . . .
I-rl Ga I� N���� 6l rl � 6�
I x I rn000000r-+oo
I � I � � � � � � � � �
I � I
I I
I I
I �,-� -IJ I C'") O N �t' � O� �--I � N f�
I �+� N I ct' O O � O l0 ct+ �('') ct+
I � � N I . . . . . . . . . .
I -� N �, I oO��n�nc�N�oc�'��r
i x o i
i ro i
i � i
i i
i i
I 4J ,.� +� I N O N� N� O V' cf+ O
I CP -I-� � I O O O O (`1 O O O �--I �-I
I � � N I . . . . . . . . . .
I S� N Ga I O O O O O O N N O O
I N C� I
I � I
I I
I I
I I
I I�l C4 f� W W W W W W W
I I �-1 W W C7 C7 C7 C7 C7 C7 C7
I N I G=�-i �H �H � � � � � � �
I C2, I E���0000000
I � I� H H H E� E-i E� E-+ E� E-+
I Ei I O(� (-a cJ� u� cJ� v� u� c!� cJ�
I
I I
I I
I I
I
I I
I I
I I
I I
I I U
I I H
I I �
I I �� �
I I � u�
I I r6 W 0.� N������-i N��0�
i a� i w I I a-� �a a a-� �a
I � I +� � � � � � I I� �
I O I � H H O O O U] u� O O
I 2 I OCaCawa+wOOaa
�
�
�
#
�
�
�
�
�
�
�
�
+
+
�
�
�
�
�
M
�
�
f0
d
h
�
�
�
�+
� �
� �
� �
�
� �
U] +
�
3 -�
O �
� �
4a -�
� +
H �
�
��
� �
O �
2 �
i 3 N�+� i 000rncvo�n�n,--+�r
I O U O G I O O O V� �n 6l Ol � �t+ O
I�� f-I N I 000000 r-1000
I G-� cii f-I U I . . . . . . . . . .
I �i W S-I I 0000000000
I r� N I
I 0� W I
I I
I I
I I
I I
I I
I� 3 N ri I f� N �n N��.r1 �-I �r+ o� �r+
I c0 O� t[$ I [� t-n ol �n l9 6l O t-n ol c'')
I +� r-I � b� I • • • • • • • • � �
I O 4-I �—I I 6l N N N� N r-I ('`) • •
I E� G O� I O O
I �i �< I
I O I
i � i
i i
i i
i i
i i
i� 3 N� i 000c�i��nr-+�ro��r
I r� O� r� I c'') o� c'') O� 6� c�
i s� � � � i . . . . . � ,�
I 4J 4-i � I �--I r-i �--I rl � • •
i +� � o� i o0
I cO H � < I
I �l O I
I � I
I I
I I
I I
I I
I �" N G I d� � N('"1 �-I ('"1 O O O O
� r�S U-�i � o �r �� �r v� �r v� �r v� �r
I � � � I .. .. .. .. .. .. .. .. .. ..
i � •• i c�000000000
I � S� S� I o 0 0 0 0 0 0 0 0 0
I O Sa � I
I � I
I N U!n I O O O O O O O O O O
I � U � I
I -ri O � I
I E1 � I
I I
I I
i�� 3 v� i c�o�o���nc�,-i�nr�
I � N O G� I O(� N('') O� l� ('`) O r-I l�
I � +� � U I . . . . . . . . . .
I�� O 4i I N�r a� rn ri t� c� t� N c'')
I x E+ � I o��o�ornoo�r�o�
I r0 H I N �- i
I � I
i i
i i
i�� 3 cn i 0000��ocv��nc�
i� c� o[� i 000��rnmo��
I � S-a rl U I • • • • • • • • • •
I�� � 4-I I O O O N[� �n ('') [� N C'")
i x -u � i �o��r�o�r
I rr3 � H I �
I � � I
I I
I I
I I
I I
I I�7 tZ fZ W W W W W W W
I I�l W W C7 C7 C7 C7 C7 C7 C7
I N I f-�=+ �H H� � � � � � � �
I p, I E+��0000000
I � I� H H Ei E� Ei E� Ei E� Ei
I E-� I O Ll rl U] t/] U] t/] U] t/] U]
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I U
i i H
I I C�
I I �� �
I I �I U�
I I rd 0.� W N�����r-i N��0�
I � I � I I���aa��
� � ���� G�� i i� �
I O I � H H O O O u� U) O O
I z I 0�1�lf�wwOOww
� ��
� � �
� � �
� � �
-� -�
+ � +
-k (fa -k
i� i�
� ��
� � �
� -� �
� � �
� O �
-� O -�
� � �
� w �
x �
� � �
x � x
� O �
� 2 �
�
�
'�
O
O
�
4-i
�
�
�
3
�
N
�
O
�
O
z
-k � +
� � �
� � �
� � �
� �
� � �
# � �
� �
� � �
� � �
� � �
� � �
� O �
� � �
� �
+ N +
+ �+
� ro �
� � �
x o x
� � �
� � �
�
a�
rn
�o
d
� 3tn i o���n
� O f-� 1 t� N N t�
� �—I U I • • • •
'rl 4-I I�t' c'`1 Ol O
x�t-� I� v' lfl N
� � I
� O I
I
I
I
I
�" N� I(''l I� N O
r6 U-ri I 0���
� C � I .. .. .. ..
N•• I r-I N O O
4-� �I S-I I O O O O
O S-i � I
� I
N U u� i o000
� U � I
-�+ o ro i
N � i
i
i
i
I
x u�, � ����
ro�� i m r, r-,
� U � I
a w i
� � �
-� �
x o 0
�6 � O
� o
�
I I
I I
I I
I r-I -I-� (7) I O O O O
1 -� � � 1
I 4--i U O I
I ;� a+ �l I
I W I
I I
I p,-u u� I o000
I � � � I
I � U O I
i w a a i
i i
i i
I b� 1-� rl I O N O�
I D C �—I I
I � U � I
I Pa Ga I
I I
I I
I I
I I
I N Nrl I �r���
I b��-u I ���0�
I r6 � 4-i I t'"1 0� rl
I S-� � I • • • •
I � O O I O O O C�
I P � O 1 �''1 �
I � O I
I � I
I I
I
I I
I I
I I
I I
I I
I
I I
I I
I � I
i -� i
I � I
i � I
I I
I N I
I � I'� I'� I'� I a
i o i � � � I
I -I� I O O O U]
I U) I P-i (� P-i O
� � � �
�r 61 N �--I
bl CO N ('`7
CO Lc� ct' 6�
�r�oN,�
�
h
g
�
�
u�
�
rn
�o
d
000
o�n�
N �t' '--I
�
N �t' OJ
f--I r-I O
�--I N N
O O O
O O O
oo�c�
�' �
�r o ,-�
��o
�r v� rn
N 6� l0
�+ �
O O O
O O O
('')00
� � �
6l N �-I
N CO rI
(� r-I O
�
cr�
N �I�I
a�-�
I� �
U) O O
O a P+
-k �y k
� � �
� � �
� � �
� �
� � �
-� � -�
+ +
-k CP -k
� G �
i� -� -k
� � �
� � �
� O �
� � �
� �
� � �
� � �
� � �
� � �
� � x
-k � -k
-� O -�
I �-I N �-I I � I �
I � � � I � I �
I+� � b� I t� I t�
i o� i • i •
� E� o �o � rn � rn
I � < I I
I O I I
I � I I
I I I
I I
I I I
I I I
I �C 3 U] I N I N
I r� O Ga I O I O
I� rl U I • I •
I C=+ I N I N
I I � I �
I I
I I I
I I I
I I I
I I I
� b� 3 cn � �r � �r
I P O C� I� I�
I � �-I U I • I •
I w I � I �
I I � I �
I I
I I I
I I I
I I I
I I I
i 3 b"� i� i�
I O N G I� I�
I rl � U I • I •
I�+ Ga 0.i I 0� I 0�
I I � I �
I I I
I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I N I U I
I � I H I
I O I f� I
i � i EI i
i � i � i �
I r� I r� I N
i � i � i �
I � I � I �
I � I � I �
I O I O I C!)
� �
� �
� �
-� � �
� S� +
-k N -k
i� i�
i� -k
� � �
� � �
� �
� 3 �
-� o -�
� � �
� w �
i� i�
� � -�
� G �
� -� i +
� a �
I \ �I ,� I <r O
i xr+� i o �
i ro � � i • •
i�[_, a� i o 0
i ca i
I I
I I
I I
I� rl 3 I o N
i x� o i o 0
i ro �� i • •
i � [_, [� i o 0
i i
i i
i i
i�— U i r� �n
I � U N I O� N
I � O u� I • •
I-rl r i\ I o� r-I
i x a� +� i �+ �+
i ro � � i
i�— i
I I
I I
I I
I �C N G' I� N� N� CO N O r-I N O
I r� U-ri I �r �.n �r �.n �r r-I �.n N�-n �r N
I � G � I .. .. .. .. .. .. .. .. .. .. ..
I � •• I OOOOON Or-100�--I
I 4--I S-I �-I I 00000000000
I O � � I
I � I
I N U Ul I o O o O o O o O o O o
I � U � I
I -rl O � I
I E� '� I
I I
I I
I �— U) I`-I ('"1 O� ('"1 O lfl lq O� O O
I � 3 Ga I t� �-I ��-I ('`) N N� t� O�
I � O U I • • • • • • • • • • •
I-�-I r-I I(-I N N t� ct+ ('") 6� �r O N t-I
I�C Ct+ I NN�r�r��r� No�
I � — I
I � I
I I
I I
I I
I I E-+ E-+
I I H H
I I �-+ � �-+ �-�- �-+ �-+ �-+ �-+ �-+ �-+ �-+
I N I � Ll � Ll � � � � � � �
I � I � � � � � � � � � � �
I �, I �O�O�������
I Ei I r� U Ca U Ca Ca Ca Ca Ca Ca r�
I I
I I
I I
I I
I I
I
I I
I I
I I
I I
I I
I I
i i � � �
i i � � �
i i +� +� +� -u �I�I�I
I I � � � � �--i N �--i
i x i c�c�,�r-+0000aacn
i � i i I i I I I I I I lo
I -�-i I N c'') N c'') N r-I c'') �r U] V� �
I r-a I u]cntncnPaR�f��LOOa
h
�
�
�
�
a�
rn
�o
d
��
� �
N #
� �
�
� *
V� -k
�
N -�
��
� �
ro�
��
U �
� �
� �
u� �
�
� +
�ri +
� �
� �
��
o�
U -�
�
-k
-k
�
�
�
�
�
�
-k
-k
�
�
�
�
�
�
�
-�
�
+
+
�
�
�
�
�
�
Sa
�
�
U
?a
�
�
�
u
�
�
'�
�
O
U
0
�
0 0
N N
O O
N N
d" �'
m r�
� �
� �
� �
� �
� �
� �
� � U
r� r� N
� � �
N � �
� �
E-� E� V
�
� � �
O O -�-i
-I-�
� '�
� ��
�� �
N � cn
f4 � �
�
m u� �
�rl -� N
� �
� ��
� � �
���
��N
N
g
�
�
APPENDIX C.2
Offsite Basin Routing Exhibit and Calculations
z
�
_� � �, �, , . _� _ �� , � �; ,�� �
i�',�.��� � � i � � � � �' �� �
, !� �� � ��� � � �iii � �� ��I
� ' '�� I � �_ � � j I ���-I
/' �
— ' � J� � � � _ \ � I I
�'o� � :
��
�
�-- � ' � • ,— —�
— —� -- —
� � �3 � -- s- ��_L
� � � �� �s �� - �� �
,� � ' ' - - - --,-_ _ � -�p
, _ - '�' .--,,,,;;� k _ ,,,,,,,,-=�— -
_ ,
, , ��
- -lrj� �, . - -- ��v .�� o •nH A i ninn� �
� ��
I III II I
I��
I I I i
I i;ll�
� JI
m
cn -;
Z I
�
m .
��
�o I
� �
J i
d
m lii�
� I
I
I II
I
�
�
�
�
�
�
��
m i
� I _
Z
�
Q
m
� �
O
� �
� N
� _ _ - J f
� _ J '
�---al I
�,
i
I�
J
- �-------_
\\�
\\
\,
�
, /
� �, _
,�� --�� �
_�
O—O +':. .... _
o I � �
�i � �
~ I --�
U
� I
� i i
����
a
� � � �
i i i
I�i i i
� i i i
I � -T— � - i
I I I
I I I
I _ —I �
— �
I I
I I — J
�
�
�
z�
�z
w�
=w
�z
�-
oz
zw
L L
V lJ
� �-i l0 In N � I� 00 l0 00
U1 O�. O O1 � U1 Q1 I� N� Q1
� �-1 � O O O � O O O� O
O O
Ll tl
i i
-a �n � � � � -o co � �' �
� w ri `D iri in ri �i $��� ri M
Q '-' � � �n a m Q '_' � o�o ,� `^ �
� c-I N �--I N Q N
I-- I-
� �
v ry m v m
Q � o�`-' m tD Q w�"'� o`-' o�o
3 a' ��.i N �o �m 3 a' ri r^ � r" �.i
p _. m� N r� �, i a '^ m^� m� r�
LL U_
C C
s �, �n .-i �n .-i s ^
V � m o`y' m� U �� v i.n ^�
� `� M N� N O � `� M v-I � M
� �
o i� �� v`ii a rn fl- m� CO ii o0°0
,} I� c-I O Ql N O � 00 W � c-I M
N � t.f) M O f+'1 O V) � O N O N
++ N O O N O +' N�� O N
(J � O O O O O � `� O O� O O
�yj v O O O O O �yj ` O O� O O
> �n m � m m > � co m o0
v m o 0 00 o v � co �o � o0
w a-+ lD O� Ql Ol O w Y ti o0 Ol O� O
� c-i i--I i--I �-1 N `� � f-1 �-1 .-i N
� V Ol Ol Ol Ol Ol � V� Ol Ol Ol Ol
w � � � � � w � � � �
�/j �^ N �/j I� l0 l0
> ,,� l0 � Ql � �+ � 00 O
�..� .._. �--I � c-I a+ .__. c-1 c-I N
Q1 � Ol Q1 Q1 Ql
V V' d' U �1' �1' d'
> >
v v
C W N N C W
� O$ Z�� Z Z � O� Z Z Z Z Z
N N
'p LL Q1 Q1 -p �
Q � � Q
C C
ii il
> � o� � N m � �,� �o rn�
v N Ol O I� O � I� I� l0 f� �D
w � lD CO 01 Ol O w �' V W 01 01 O
Uj � i--I c-I ci i--1 N Uj .__. �--I i--I i--I i--I N
Ol 6l Ql Ql Ol � Q1 Q1 Q1 Ol Ol
�j � � � � V �j � � � � �
W I� N I� lD N W GY �--1 CY 1�
L o0 O M M N t N 01 tl1 '-1 O
lJ ++ N o0 i� Ol Ol l.! Y� I� W DO O
� `� c-1 .-i c-1 rl e-i � � � �-i �-f e-i N
� v C � � � � � � � � � �
� �
p � V I� O O N p � � N N N N
I-� u Ol l0 l0 lD L.fl �- U ti Ol Ol W W
� �
�
J v v
� — .--i .--i .--i � .--i — ,--i ,--i .--i .--i �
N Q LL LL LL LL LL Q LL LL LL LL LL
a a o. n. a a a a a n.
W a a
�
� � � �
N
N N N O O O O O � O O O O O
� \ O rl N M� O �-I N rv1 d'
� � N v N N N N N v �--I i--I i--I i--I rl
Q r � � �
Z a a
Q
�
Z ����� �����
N Vl N N ln � � N N N
F -� w w W w w a a a a a
+� 3 3� 3 3 t w w w w W
� � s i i i i i � s i i i i i
x x = x x
O�C � � ����� Q� r����
� a a Q a a v a a a a a
0� a a� a a �� a a a a a
H ����� � o 0 0 0 0
�- o0000
N � LL LL LL LL LL � � LL LL LI_ LL
�L tii N {-+
� N
LL
fiS
O c}0 0 � W
�
a�
�
�o
�
N�
� i
o i
.i
� t
� i
i
� i
� I
�� I
� I
� I
� I
. �
� I
I
� I
O I
H i
� I
WI
� I
I
I I
� I
w i
O I
� I
I
H I
� �
W I
� I
U' I
� I
� I
� I
� I
I
� I
W I
H I
� I
� I
I
� I
o�
H I
� I
I
��
Pa I
W I
� � �
� � �
� ro Q, -�
� � �
� � � �
-k S-I U] -k
� O �
k � � • k
# � � � �
-k �I -ri � -k
-k +� -I-� -k
� � � �
� -� � �
� � � � �
� � � � �
� O -�-I �
� � - � i +� -x
-k -rl +� -k
-k N b� -k
� '� � � #
k N � -rl k
-k � Qa � -k
� � � � �
� �—I O O �
+ C� U C� , �
-k U� � -k
� -� ���
� '� � �
� � � �
� cn � U �
� U N rci �
-k -� i � -k
-k 1� 1� -k
-k U7 C� �. -k
+ -rl O �
� +�"� ��
� � � � �
-k � � -k
� cn O cn �
� 4a +� �
+ �, �I �
� � � � �
-� N � ��
� � � � �
� � � � �
� � � �
� cn N � �
� S-i O -�
� � �
-� � � +� -�
+Hom�
� � �
k •• � 'n k
-x W � �
� E-� m � �
� O � O �
-� � � � -�
O O
O O
O O
O O
o ,-i
O O
O O
O O U
O O O O O�
W N N O O O U]
z� � � .. .. ..
O FC � � � �-f7 O O
N�oo ,�000
cn cn cn cz z� �� o.. .. .. .
Ga W OOO W OOOH�,-� •00�-i0
U �+����+����000000('")
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . � � . . � . . . .
. . . . . . p Q . . J, . . .
. y..� . . . . "� • ,-� ,-G . . � . . Q,
-� ul -� • y..a • • • • N -I� +� • • Ca C1, • • N
� � � . .. p . . . 3 �, N N . . � . . �
� o � • m � • • b� o +� � � • � -u cn
� -� � • � � • • z� � � -.� � • z� cn � R,
-K � -K • N tL' • • N -�-i r i � � bi �!-� (� N N N
k p, k �� • +� � r� r�i O� rci N N-u +� �
-� O -� cn O �—I • +� � � � -� -�I C� +� -t� � cn cn -�I
� -x +� � � • � 3 0 � a +� +� ro G � H
-� ul -� -�-I c� • N`� f� � r� � bi Ca aJ E� N N
+-�+�u�� �� ����,o� � ���
� m � D cn � H 3 � 3 '� aJ +� !Z -� bi � +� -�I �.� �
� �� �-ri H O O O� N rl -i-� � U Sa E-+ E� -rl
-� �-x 3 U ro C] � s� � o ro-� 3 s� -� � o u
� ro� o orz�cn�r�w�� o ro�-u Qu ��
-k � -k �—I S�-� ,G �I -F� � � � N f-I O
� �� r�a Hwcnw�Crz�carz
� cn i rnoo�n
+� N I �O O �t' N
Q., ,-� I� O 6l t�
N U I • • • •
L1 � I c''1 O r-I rl
-� 1
I
N u � t� o,--i r�
�, � I N O c�'1 ct+
� N 1 O O ('' 7 �O
� 4-i I . . . .
O I I� O cr rl
� � I d' N N
� I
U I
� I
k � k . . . .
-k � -k . . . .
-k -ri -k • • • •
� � � . . . .
� � � . . . .
-k -rl -k • • • •
-k � -k • • •
-k � -k � . . .
� O � O • •
� U -� -rl u� •
-k -k -l-� U] Ul •
+ � + r0 cn O
+ � + -N O �l 4-i
� -� � -� � �
� -U -x Q, � O
-� � -� -�-f � O �
-x r0 � U O -�-I �
� � � N � � P,'
* a* s� u ro
� � aro�,a�
-k 4-I -k }-1 -N U
-� 4-� � �-1 O �-1 r6
� o � rtS Q, -r1 w
-x C � -� r6 w �
� � � O � C �
-� r� � E-� w F-+ u�
h
g
�
�
N
N
�
(0
d
�i' N r-I I O('') O O O O� O O O O N
�--I � N I O� O O O 6l O O O O �n
O � CP I OOOOOOJO000 r-i
• ,� � . . . . . . . . . . .
O O �O I O I� O O O �O O O O O O
� < I
O I
� I
V' <t' N-l-� I o(� o O o O� o O o O OJ V'
l� �9 � N I O �t'000�90000 �9 C�
f--I N � 4J I O l0 O O O f--I O O O O�i' O
. . � 4a I . . . . . . . . . . . .
00 O I I O�--I000 �--I000000
I � N I N N
� I
U I
� I
.. � �............
. . -k -k . . . . . . . . . . . .
. . � �c . . . . . . . . . . . .
. . -k � -k . . . . . . . . . . . .
• • -k �l-� -k • •
. -k .r{ -k . . . . . . . . . � .
. � -k � -k . . . . . . . . . �
o\� -k �,' -k • • • • • • � N o\�
• � -� x 3 3 3 . . . . . ,� � �--
• � +�-x o00 • • • u�o�
• s� � � + � � � • 3 • m m � � s�
• o + o-� ��� • 3 0 • m o 0 0
S-� + U� � C C • O� O�-1 '� � i-i
4J ?-I -k -k H H H • ri 4-I !n a � S-I
b� W -x b� -� 4-i u cn � Sa � W
ro -� �-� s� �+ s� 3�� o� o o a�
Sa � � -r1 � � � � O i-i O �l O -ri I� S-i �
O� � +�� � �+�rl -rl+�cr1 O+�
+� -ri � � � +� +� r� 4a r-I �—I bi +� r� +� -�-i
cn a � o+ ro r� 3� ro r� � r� �, � va �
� � r� � a� a� � H G �-ri � u rt �
�-� -� � �� � z� s�� o�-��-�
ro u � 3� � H � N o�-� � r� +�
�� -x o+ �+�oHN�oro�-�+��
-� o ��� s� a� s� ca x x r+� x�-�+ o
f�U -� C,� Ll�C7tZ W W G, W W HG,U
-k U� -k
k � k
� x �
� ��
� ��
� ��
-k H -k
-k -k
# � #
i� -V� +
i� -� i�
k rl k •
-k -�-i -k N
-k ,.Q -k �-I
� � � �
+ +� � r�
�c U� � +�
-� � � m
� H �
� � �
-� 3 -� s�
� O � rci
� � -�
� Ga -x [n
� � X
+ -� + �
+ m � -�
� N � rl
� � �
� �� �
� -� � �
� x � �
U U U
N N N
� � �
O O O O O O
O O O O O O
6� O O O r-I O
N c') c'')
a
�
-k �y k }�
-� S-a -� i/�
-k r0 � N
-k -k +� �I b�
k k � N C'.
-k � -K � Q� -ri
-k U? -k V] b�
� � � �
+ �� �,���� N
-� N-x N� N"� 0 5
-� +� + +� I-� +� N � � �
� V] � V] v� V1 N t� O
i� X I� f0 U
* � -� � � � � N -u
-� �rl � ��-I -�-I �rl � I-� O
-k E� -k E� C E� -�-I H�
� �
+ � � � a� � � a� �
� �� � � ro � � ro �
-k -IJ -k ��-I �; ��-I U i-� U
� �� �a�xs�a�s�
� �� ���a��a�
� ��
� � �
� � �
# � �
� �
� � �
� � �
� �
-k 4-I -k
� w �
� O �
� � �
+ � +
+ W +
� �
� � �
� � �
� � �
� � �
� � �
� U �
� +� �
� � �
� U �
-� � -�
� � �
� � �
h
g
�
�
I 4a 4-I I� 6� � 6� [� �n �9
I 4-i 4-i I O O u� � r� � t�
I O N I L��rt�[�t�L��r
1 � O I • • • • • • •
I� U I O O O O O O O
I GY, I
I I
I I
i .�4--i V] I O��r�Or��
I �0 4-�I f-� I O� O O� (� � O N
I 4J O U I • • • • • • •
I 0.� � I Nt�c`��,-���N
I � I o�o�����r�
I W I �
I I
I I
I I
I �w� I rd+�orn�n�rn
I r64-� r6 I �9����ON�n
I � o b� I • • • • • • •
I O � I �--I ('')00000
I E-� � �O I
I LZ < I
I O I
I � I
1 I
I I
I I
I I
I� 4-1 � I LO O[� 0� r--I �r �
I rtl 4-a �rl I o� Ln t� t� t� O t�
I +� O I . . . . . . .
I O� I�� N N N N�
I E� � I
I � I
I I
I I
I I
I I
I I
i �—I� � I �t�t��oc'')N�
1 �-��� I ����rn�rn
I -F-� 4--I I • • • • • • •
I O� I r-1 N O O O�-I r-1
I E-� H I
I
I I
I I
I I
I I
I I
I� Q� I o 0 0 o O o O
I co ra�� I o000000
� +� D � . . . . . . .
I O W I O O O O O O O
I E� I
1 I
I I
i i
i i
I
i i
i���i0000000
i ro o� i o 0 0 0 0 0 0
i u � i . . . . . . .
i o� i o 0 0 0 0 0 0
i H � i
i i
i
i i
i i
I I
I I
I � R, � I � t� � � � t� �
I rt-�-I �.� I�9 lfl �9 lfl l0 lfl l0
I +� U I • • • • • • •
I O Q7 I c'') c'') c'') c'') c'') c'') c'')
I E-� ?a I
i a i
i i
i i
I I
I I
I
I I
I I
I I
I I
I I
I I
I I
1 I
I +� I
I � I
I � I
I � I
I U I
I 1-� I
I U I�G �n � Q U r�i �
i �i�m�m�����
i u� I c� u] c� u] c� u] c�
� ��
+ � �
� � �
-k -k
� �
� � �
-k U� -k
� �
-k �, -k
� }� �
-� Q, -�
-k � -k
k C� k
� �
� ��
� � �
� o �
� Z �
I '� � +� I c'') [� O � O � �r
I N u N I �n�nOc�ON�-n
I U p, � I . . . . . . .
I �I � G-i I O O O O O (''1 �9
I O L� I � �- i
I R, I
i a� x i
i a ro i
I � I
I I
I I
I I
I �C �� I M lfl ,-� ��--i �n c�
I � U-�i I�' v� � v� rl �.c� rl
I � � � I .. .. .. .. .. .. ..
I �•• I O O O O O O rl
I 4--I �-I �I I 0000000
I O S-i ,� I
I � I
I� U Ul I 0000000
I � U � I
i-�oro i
I E1 � I
I I
I I
I ��l +� I inNO�Oo�n
I � U' � I�-n t� �.n r� � c� �
I � � � I . . . . . . .
I -�I Ga I �o��ov��-i�c�
I >C I �o�orl�rl
I � I � � � � � � �
I � I
I I
I I
I �.-� -I-� I �I" O� O �I" O O �
i �+� a� i ���nor�or��n
i � � a� i . . . . . . .
I-�i N C� I 00000c��o
� x o � ,� ,�
i ro i
i � i
i i
i i
i a� .G +� i,-� ,� a� ,� o� o�r
i �-u a� i oo�r�o�roo
i ro C� � i . . . . . . .
I �I N Ga I O O r-I O r-I N N
i � Q i
I D I
I � I
I I
I
I I � � � � �
I I O O O O O W W
I I HHHHHC7C7
I I E-� E-+ E-� E-� H
i �,i zzzzzoo
I � I � � � � � H H
I Ei I h h h h h U� C!�
I I
I I
I I
I I
I I
I I
I I
I
I I
I I
I I
I I
I I
I I
I I
I I
I I � N
i a� i a� a
i �i00000 II
� o � r�,--i o c� o cn cn
I � I NNNr-+�00
� �+
� � +
� � �
� � �
+ +
� � �
# � �
k k
-� 3 �
� O �
+ � �
-� 4a -x
� � �
k H k
� �
-x � -x
� � �
� o +
� � �
i 3 N s�
I O U O
I � C �
i w ro �
I �—I W
I �
I �
I
I
I
I
I
i � 3 a�
I c6 O �
I � � �
I O 4-a �I
I E� � O
I H �
I
I
I
i
I
i � 3 �
I r� O �
I 31 rl �
I N 4-� .—I
I � � O
I r6 H �
I �
� x a�
I � U
I � �
I �
I � �
I O S-i
I �
I � U
I -�1 O
I E-�
I
I
I � ri 3
I � N O
I �+��
i��o�
I x H �
i ro H
i �
i
i � � 3
i � ro�
I��a�w
� x -� �
I rrS r� H
I � r�
I
I
I
1
I
I
i
i
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
i
i
I
M
N
�
f0
d
h
�
�
�
a�
�
�o
�
+� I 00000��
� I O o O o O o u�
N I O O O O O N O
UI . . . . . . .
S-I I 0000000
N I
a i
i
i
i
i
I
.� 1 6� co �r t� � t� �r+
� I LO c0 �[� c'') l9 �n
b� I . . . . . . .
I rl r-i N n') �r � r�
� I
< I
O 1
� I
I
i
i
i
rl i o� m t� r� o� t� �r
cd I� 6� �� 0� �9 �-[�
b� I,� r-i l0 N� • •
� . . . . . rl �
�i00000
< i
o i
� i
�
.�
�
�
�
m
�
ro
�
CI�
w
U
C'"1 lfl lfl �-I N O O
cr �r cr v� v� v� v�
0000000
0000000
0000000
L� I� O� O� O r—I
r»orn�orno
�--I l� �9 � N N f�
�O lfl 6l 6l N O� O
� �
(!a I�t' O� O(�l O� O f--I
C-� I O� ('' 7� O N� O
UI . . . . . . .
I(`l t� rl �n N N[�
i,-� ,-� � n,-+ c� o� o
i �
I
I
I
1 � � � � �
I O O O O O W W
I H H H H H C7 CJ
I H E-+ H E-� E-�
N i U U U U U
C2, i ��� z�00
� I � � � � � E-� Ei
Ei I h h h f] h U� C/�
I
I
I
I
I
I
�
1
I
I
i
I
I
I
I
I ri N
N I W Pa
'� I 00000 � �
O I c�'1 ,-i o c� O u� [n
� i NNNr+�00
� ��
� � �
k f� k
� � �
+ � +
� � �
-k U� -k
� �
� ��
� � �
� -� �
-k � -k
� O �
-� O -�
-k rl -k
k (�a k
� �
� N -x
k � k
� O �
� Z �
�
�
�
O
O
r-i
4-I
�
�
N
3
�
�
�
O
�
O
�
� ��
-k S I -k
-k tL} -k
k � k
� �
-k � -x
-k C!� -k
-k -k
� � �
-k � -k
� � �
� � �
� o �
� � �
� �
-k N -k
-k � -k
� � �
� � �
+ O +
� +� �
-K U] -K
i� 3�n i o 0
i � o G-� i o 0
I � �-I U I • •
I� ri 4-I I r-I N
i x+� i �n co
I � � I
I � O I
i i
i i
i i
i i
i x a� � i�n N
I c� U-�-I I �n �
I � � � I .. ..
I N•• I O rl
I 4-a Sa S � I O o
I O S-i � I
I � I
I N U u7 I O O
I � U � I
I -rl O � I
I E-� '� I
i i
i i
i i
I I
� x+� r-i � c�t o
I N � �I I � �t'
I � U � I
I 0.+ Ga I
i i
i i
i i
i � � � i � �
i � � � i cv �r
I -rl .� I • •
I � O O I O N
I c� � o I v� �r
v
i� oi
i r-, i
i i
i
i i
i i
i i
i i
i� u m i o 0
i -� G m i
I 4-i U O I
i x w a i
I W I
I I
I p,u ul I OO
I � � � I
I "J U O I
I W 0.i �7 I
I I
I I
I b� +� r-I I Ln t�
I � U � I
i a t� i
i i
I I
I I
I I
I b� �-I, I n 6�
I r� � 4-i I v� N
I S� �-I I • •
I N O O I[� c'')
I � � o I �-i
I � o I
I � I
I I
I I
I I
I I
I I
I I
I I
I I
� �
I I
I � I
I �� I
i � i
I � I
I I
I N I
I � I
I r� I ri N
I O I a�a�
I +� I U� tn
I u] I O O
� �
+ �
� �
� ��
� � �
+ r� +
� �
# #
� � �
-k C!� +
� �
+ 3 +
-� O -�
# � #
+ w +
� �
-k X -k
� � �
� �ri �
� � �
I � � � I �
i x�,� i N
i ro � a i •
i � [� a� i o
i Q i
I I
I I
I I
I � � 3 1 0
i x� o i �
i ro �� i •
i � [� [� i o
i i
i i
i i
i � — � i �n
I� U N I o
i � o m i •
i �� � � i N
i x a� +� i
iro�wi
i�— i
� xa�� ��
i r� � �� i �r
i � � � i ..
I N •• I O
i �u � s� i o
I o S-� � I
1 � 1
I N U m I o
I � U � I
I �rl O � I
I E-� � I
I I
I I
I � — v) I �
I � 3 Cu I cr
I � O U I •
I��-i r i I OJ
i x [� i �n
� ra — �
I � I
I I
I I
1 1
I I E�
I I H
I I �
I N I f�
I �, I �
I � I O
I E1 I U
I I
I I
I I
I I
I
I I
I I
� �
1 1
I
I I
i i
I I
I I
I
I I
I I
I � I
I � I
I �� I �
i � I �
h
�
�
�
u�
N
�
(0
d
rn �
N r-I
O O
� �
�--I O
O O
� �
�--I ('7
N �
OJ C'') �t+ N
�t' �t' �t+ �t'
O O O O
O O O O
• • • •
N � O O
N � O O
[� d' r-I N
� � � �
E� H
H H
'J '�7 �+ �+
Ca Ca � �
� � � �
O O � �
UUr�o
00
N �t' v' �t'
� � N �
��
� �
� �
� �
-k
� +
U] k
�
N -k
bi -k
� -�
� �
� +
U -�
� �
� �
v] �
�
-N -k
-� -k
� -�
� �
G+
o�
U -�
�
�
-k
�
-k
-k
�
�
-k
-k
-�
i�
+
�
�
�
�
�
-k
-k
�
�
�
�
�
�
�
�
�
N
�
U
Sa
�
�
�
�
-�
�
'�
�
O
U
0
�
O O
N N
O O
N N
Ol O
N ('")
V' �t'
� �
� �
� �
� �
O O
�
� ?i O
� r� ..
� � o
0
�ri -,� ..
� � o
G-� t� o
.. .. �
G G �
O O -ri
�
� '�
� N `�
� � �
N � u�
r4 � C�
�
m cn �-i
�ri -ri N
� �
� ��
ri � ro
���
��H
h
g
�
�
�
a�
�
�o
�
(S��) MoIWI ietol
u�
g
�I^
vJ
�
a�
�
�o
�
(S��) MoIWI ietol
u�
g
�I^
vJ
(S.i�) molj
�
a�
�
�o
�
u�
g
�I^
vJ
�
a�
�
�o
�
(S��) MoIWI ietol
v�
g
�I^
vJ
(Si�) MoIWI ietol
�
a�
�
�o
�
u�
g
�I^
vJ
�
a�
�
�o
�
(Si�) MoIWI ietol
u�
g
�I^
vJ
�
a�
�
�o
�
u�
g
�
�
HEC-RAS OUTPUT - WEST FLOWPATH
HEC-RAS HEC-RAS 5.0.7 March 2019
U.S. Army Corps of Engineers
Hydrologic Engineering Center
609 Second street
Davis, California
X X XXXXXX XXXX XXXX XX XXXX
X X X X X X X X X X
X X X X X X X X X
XXXXXXX XXXX X XXX XXXX XXXXXX XXXX
X X X X X X X X X
X X X X X X X X X X
X X XXXXXX XXXX X X X X XXXXX
PROJECT DATA
Project Title: 100-024-w-Flowpath
Project File : 100-024-W-Flowpath.prj
Run Date and Time: 5/1/2020 5:15:11 PM
Project in English units
PLAN DATA
Plan Title: P1an Ol
Plan File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.p01
Geometry Title: ProposedCond West Flowpath
Geometry File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.g03
Flow Title : ProposedCond West Flowpath
Flow Fi1e : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.f01
Plan Summary Information:
Number of: Cross Sections = 5 Multiple Openings = 0
Culverts = 0 Inline Structures = 0
Bridges = 0 Lateral Structures = 0
Computational Information
Water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor = 0.001
Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational F1ow Regime: Subcritical Flow
FLOW DATA
Flow Title: ProposedCond West Flowpath
Flow File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.f01
F1ow Data (cfs)
River Reach RS PF 1
FLOWPATH WEST FLOWPATH WEST 290 52
FLOWPATH WEST FLOWPATH WEST 230 60
FLOWPATH WEST FLOWPATH WEST 210 67
FLOWPATA WEST FLOWPATH WEST 200 94
Boundary Conditions
River Reach
Downstream
FLOWPATH_WEST
Critical
GEOMETRY DATA
Profile
FLOWPATH WEST PF 1
Upstream
Geometry Title: ProposedCond West Flowpath
Geometry Fi1e : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-W-Flowpath.g03
CROSS SECTION
RIVER: FLOWPATH WEST
REACH: FLOWPATH WEST RS: 240
INPUT
Description:
Station Elevation Data num=
Sta Elev Sta Elev
0 4920 .35 4920
6.23 4919.97 7.75 4919.96
13.63 4919.93 15.05 4919.93
20.93 4919.9 22.45 4919.89
97.57 4919.76 49.13 4919.76
55.1 9919.73 56.53 4919.72
62.5 4919.69 64.05 4919.08
70.02 4919.65 71.45 4919.0'S
77.41 4919.62 78.94 4919.01
84.87 4919.58 86.31 4919.57
92.25 9519.54 93.78 4919.53
99.72 4919.5 101.16 4919.5
107.1 4919.47 108.62 4919.40
114.56 4519.43 116.01 4919.42
121.95 4919.39 123.46 4919.39
129.4 4919.36 130.86 4919.35
135.39 4919.33 145.97 4919.27
158.9 9519.22 167.47 4919.27
174.1 4919.3 175.33 4919.31
180.41 4919.34 181.66 4919.35
186.52 4919.37 187.76 4919.38
192.57 4919.4 193.74 4919.41
198.3 4919.43 199.39 4919.44
204.27 9919.46 205.78 4919.47
211.61 4919.5 213.05 4919.5
218.89 4919.53 220.36 4919.54
226.19 4919.57 227.67 4919.58
233.51 4919.6 234.94 4919.61
240.77 4919.64 242.29 4919.'05
248.14 4919.68 249.52 4919.68
255.35 9919.71 256.91 4919.72
262.76 4519.75 264.1 4919.75
269.93 4919.78 271.53 4919.79
276.54 4919.82 277.88 4919.83
282.93 4919.86 284.11 4919.87
289.18 4919.9 290.49 4919.91
295.53 4919.94 296.8 4919.95
183
Sta Elev
1.88 4919.99
9.17 4919.96
16.57 4919.92
33.69 4919.83
50.56 4919.75
58.08 4919.71
65.48 4919.67
73 4919.64
80.38 4919.6
87.84 4919.56
95.22 4919.53
102.68 4919.49
110.07 4919.45
117.53 4919.42
124.92 4919.38
131.64 4919.34
147.22 4919.27
170.25 4919.28
176.62 4919.32
182.95 4919.35
188.92 4919.38
194.82 4919.42
200.58 4919.44
207.2 4919.48
214.52 4919.51
221.82 4919.55
229.1 4919.58
236.44 4919.62
243.68 4919.65
251.06 4919.69
258.26 4919.73
265.68 4919.76
272.84 4919.8
279.06 4919.84
285.45 4919.88
291.72 4919.92
297.71 4919.96
Sta Elev
3.29 4919.98
10.69 4919.95
17.99 4919.91
34.75 4919.83
52.11 4919.74
59.51 4919.7
67.03 4919.67
74.44 4919.63
81.9 4919.59
89.28 4919.56
96.75 4919.52
104.13 4919.48
111.59 4919.44
118.98 4919.41
126.43 4919.37
132.37 4919.34
152.62 4919.24
171.57 4919.29
177.87 4919.32
184.11 4919.36
190.17 4919.39
196.02 4919.42
201.67 4919.45
208.69 4919.48
215.97 4919.52
223.27 4919.55
230.59 4919.59
237.85 4919.63
245.21 4919.66
252.43 4919.7
259.83 4919.73
267.01 4919.77
274.02 4919.81
280.41 4919.84
286.64 4919.88
293.01 4919.93
Sta Elev
4.82 4919.98
12.11 4919.94
19.51 4919.9
46.15 4919.77
53.54 4919.�3
0'1.06 4919.7
0'8.47 4919.66
75.97 4919.62
83.35 4919.59
90.81 4919.55
98.19 4919.51
105.65 4919.47
113.04 4919.44
120.5 4919.4
127.89 4919.36
133.83 4919.33
157.57 4919.22
172.79 4919.3
179.14 4919.33
185.35 4919.37
191.33 4919.4
197.1 4919.43
202.86 4919.46
210.12 4919.49
217.44 4919.53
224.74 4919.56
232.02 4919.6
239.36 4919.63
246.6 4919.67
253.98 4919.�1
20'1.18 4919.�4
20'8.61 4919.78
275.36 4919.81
281.58 4919.85
2B7.97 4919.89
294.26 4919.94
Manning's n Values num= 3
Sta n Val Sta n val Sta n Val
0 .04 135.34 .035 179.14 .04
Bank Sta: Left Right Lengths: Left Channel Right
135.34 179.14 175.�6 175.76 175.76
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
Vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft)
Q Total (cfs)
Top Width (ft)
Vel Tota1 (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch El (ft)
Alpha
Frctn Loss (ft)
C & E Loss (ft)
4920.03 Element
0.00 Wt. n-val.
4920.03 Reach Len. (ft)
Flow Area (sq ft)
0.000297 Area (sq ft)
52.00 Flow (cfs)
297.71 Top Width (ft)
0.40 Avg. Vel. (ft/s)
0.81 Hydr. Depth (ft)
3016.0 Conv. (cfs)
175.76 Wetted Per. (ft)
4919.22 Shear (lb/sq ft)
1.29 Stream Power (1b/ft s)
0.19 Cum Volume (acre-ft)
0.01 Cum SA (acres)
Left OB
0.040
175.76
49.01
49.01
15.95
135.34
0.33
0.36
924.9
135.37
0.01
0.00
1.10
2.13
Channel
0.035
175.76
33.01
33.01
20.01
43.80
0.61
0.75
1160.5
43.80
0.01
0.01
0.66
0.83
Right OB
0.040
175.76
46.67
46.67
16.05
118.57
0.34
0.39
930.6
118.64
0.01
0.00
0.34
0.95
Warning: The cross-section end points had to be extended vertically for the computed water
surface.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
CROSS SECTION
RIVER: FLOWPATH WEST
REACH: FLOWPATH WEST RS: 230
INPUT
Description:
Station Elevation Data num=
Sta Elev Sta Elev
0 4920.01 .93 4920.01
6.76 9519.98 9.69 4919.96
15.6 4919.93 15.61 4919.93
21.52 4919.9 24.45 4919.89
30.36 4519.86 30.38 4919.86
36.28 4919.83 39.22 4919.B2
45.12 4919.79 45.14 4919.79
51.05 4919.76 53.98 4919.74
59.89 9519.71 62.82 4919.7
68.73 4919.67 68.74 4919.67
`74.65 4919.64 77.59 4919.62
83.49 4919.59 83.51 4919.59
89.41 4919.57 92.35 4919.55
98.25 4919.52 98.27 4919.52
104.96 9919.49 107.85 4919.47
113.75 4919.44 113.85 4919.44
119.82 4919.41 122.6 4919.4
128.5 4919.37 130.97 4919.36
139.17 4919.4 139.41 4919.4
145.37 4919.43 148.26 4919.44
153.59 4919.47 154.32 4919.47
160.28 4919.5 163.21 4919.52
169.18 4519.55 169.22 4919.55
175.18 4919.58 178.12 4919.59
184.09 4919.62 184.12 4919.02
190.46 4919.65 190.48 4919.66
196.49 9519.68 199.39 4919.7
205.35 4919.73 205.37 4919.73
211.33 4919.76 214.28 4919.77
220.29 4919.8 220.27 4919.8
226.22 4919.83 229.17 4919.85
235.12 9919.88 235.16 4919.88
291.12 4919.91 244.05 4919.92
170
Sta Elev
3.83 4919.99
9.71 4919.96
18.55 4919.92
24.47 4919.89
33.31 4919.85
39.23 4919.82
48.08 4919.77
56.92 4919.73
62.84 4919.7
71.68 4919.65
77.6 4919.62
86.44 4919.58
92.37 4919.55
101.21 4919.51
107.92 4919.47
ll6.7 4919.43
122.85 4919.4
133.45 4919.37
142.23 4919.41
148.35 4919.44
157.24 4919.49
163.26 4919.52
172.16 4919.56
178.16 4919.59
184.52 4919.63
193.44 4919.67
199.41 4919.7
208.33 4919.74
214.31 4919.77
223.21 4919.82
229.2 4919.85
238.1 4919.89
244.1 4919.92
Sta Elev
3.84 4919.99
12.64 4919.95
18.57 4919.92
27.41 4919.87
33.33 4919.85
42.17 4919.8
48.09 4919.77
56.93 4919.73
65.78 4919.68
71.7 4919.05
80.54 4919.61
86.46 4919.58
95.3 4919.54
101.22 4919.51
110.8 4919.46
116.83 4919.43
125.55 4919.38
135.95 4919.38
142.39 4919.42
151.25 4919.46
157.3 4919.49
166.19 4919.53
172.2 4919.56
181.11 4919.61
187.48 4919.64
193.46 4919.67
202.37 4919.71
208.35 4919.74
217.26 4919.79
223.24 4919.82
232.14 4919.86
238.14 4919.89
247.02 4919.94
Coeff Contr. EYpan.
.1 .3
Sta Elev
6.74 4919.98
12.66 4919.95
21.5 4919.9
27.42 4919.87
36.27 4919.83
42.19 4919.8
51.03 4919.76
59.87 4919.71
65.79 4919.68
74.63 4919.64
80.55 4919.61
89.4 4919.57
95.32 4919.54
104.16 4919.49
110.88 4919.46
119.65 4919.41
126.04 4919.38
136.43 4919.39
145.25 4919.43
151.33 4919.46
160.22 4919.5
10'6.24 4919.53
175.14 4919.58
181.14 4919.61
187.5 4919.64
196.41 4919.68
202.39 4919.71
211.3 4919."16
217.29 4919.79
226.19 4919.83
232.18 4919.86
241.07 4919.91
247.07 4919.94
250 4919.95 250.05 4919.95 252.97 4919.97 253.03 4919.97 255.93 4919.98
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Va1
0 .04 107.85 .035 157.3 .04
Bank Sta: Left Right Lengths: Left Channel Right
107.85 157.3 265.04 265.04 265.04
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft)
Q Total (cfs)
Top Width (ft)
Vel Tota1 (ft/s)
Ma� Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch E1 (ft)
Alpha
Frctn Loss (ft)
C & E Loss (ft)
4919.83
0.11
4919.72
4919.72
0.023949
60.00
145.54
2.27
0.36
387.7
265.04
4919.36
1.33
0.05
0.03
Element
Wt. n-Val.
Reach Len. (ft)
Flow Area (sq ft)
Area (sq ft)
Flow (cfs)
Top Width (ft)
Avg. Vel. (ft/s)
Hydr. Depth (ft)
Conv. (cfs)
Wetted Per. (ft)
Shear (lb/sq ft)
Stream Power (lb/ft s)
Cum Volume (acre-ft)
Cum SA (acres)
Left OB
0.040
265.04
6.12
6.12
8.73
49.49
1.43
0.12
56.4
4°.49
0.18
0.26
0.99
1.75
Channel
0.035
265.09
14.88
14.88
43.92
99.45
2.95
0.30
283.8
49.45
0.45
1.33
0.56
0.65
Right OB
0.040
265.04
5.39
5.39
7.35
46.61
1.36
0.12
47.5
46.61
0.17
0.24
0.23
0.62
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical
depth for the water surface and continued on with the calculations.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water suriace was set equal to
critical depth, the calculated
water surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The
program defaulted to critical depth.
CROSS SECTION
RIVER: FLOWPATH WEST
REACH: FLOWPATH WEST RS: 220
INPUT
Description:
Station Elevation Data num=
Sta Elev Sta Elev
0 4919.97 2.03 4919.95
7.87 4919.92 8.21 4919.92
14.05 9919.89 16.64 4919.88
22.48 4919.85 22.82 4919.85
32.49 4919.81 33.39 4919.8
40.21 4919.76 41.24 4919.76
68.57 4919.59 80.16 4919.44
86.54 4919.03 88.6 4919
94.45 4918.92 97.07 4918.88
101.35 9918.81 104.17 4918.77
110.05 4518.68 110.19 4918.08
116.09 4918.59 118.87 4918.55
124.75 4918.46 124.96 4918.40
130.88 4918.37 133.57 4918.33
139.45 9518.24 139.82 4918.24
145.87 4918.15 148.26 4918.11
154.14 4918.02 155.56 4918
160.08 4917.93 161.51 4917.92
165.22 4917.95 167.54 4917.98
173.44 9918.07 173.7 4918.08
179.52 4918.17 182.28 4918.21
202
Sta Elev
2.37 4919.95
10.79 4919.91
16.97 4919.88
25.4 4919.83
35.37 4919.79
43.27 4919.74
80.56 4919.44
90.65 4918.97
97.38 4918.87
104.29 4918.77
112.99 4918.64
119.04 4918.55
127.69 4918.42
133.85 4918.33
142.39 4918.2
148.95 4918.1
157.08 4917.98
161.92 4917.91
167.96 4917.99
176.39 4918.12
182.45 4918.21
Sta Elev
4.95 4919.94
11.13 4919.91
19.56 4919.86
25.74 4919.83
36.64 4919.78
55.84 4919.7
81.77 4919.42
91.53 4918.96
100.07 4918.83
107.11 4918.73
113.14 4918.64
121.81 4918.51
127.92 4918.41
136.51 4918.29
142.83 4918.19
151.2 4918.07
159.96 4917.94
162.89 4917.91
170.49 4918.03
176.6 4918.12
185.23 4918.25
Coeff Contr. Expan.
.1 .3
Sta Elev
5.29 4919.94
13.�2 4919.89
19.89 4919.86
30.26 4919.82
38.3 4919.77
0'1.17 4919.68
B4.75 4919.18
94 4918.92
100.3 4918.83
10�.24 4918.72
115.93 4918.59
122 4918.5
130.63 4918.37
136.83 4918.28
145.32 4918.15
152.13 4918.05
160.02 4917.93
l0'4.59 4917.94
170.81 4918.03
179.33 4918.16
185.38 4918.25
188.18 4918.3
196.49 4918.41
202.6 4918.5
208.91 4918.59
216.1 4918.7
223.09 4918.59
229.1 4918.5
237.43 4918.38
245.86 4918.25
253.91 9918.14
259.81 4518.05
266.78 4917.94
275.43 4917.81
281.43 4917.72
290.67 9517.57
297.06 4917.45
302.94 4917.37
323.78 4917.87
326.2 4917.95
333.92 9918.19
190.32 4918.31
196.67 4918.41
205.29 4918.54
211.31 4918.63
217.3 4918.o'B
223.49 4918.59
231.7 4918.46
237.61 4918.38
248.08 4918.22
253.98 4918.14
262.65 4918.01
269.59 491`7.9
275.56 4917.81
284.19 4917.68
291 491'7.56
299.45 4917.41
304.62 4917.37
323.92 4917.87
326.64 4917.96
341.32 4918.08
193.17 4918.36
199.44 4918.45
205.53 4918.54
2ll.89 4918.64
218.15 4918.67
225.95 4918.55
234.3 4918.43
240.3 4918.34
248.15 4918.22
256.82 4918.09
263.75 4917.99
269.71 4917.9
278.35 4917.77
284.36 4917.67
293.6 4917.52
300.12 4917.41
304.77 4917.38
324.07 4917.88
329.23 4918.08
Manning's n values num= 3
Sta n Val Sta n Val Sta n Val
0 .04 284.19 .035 321.72 .04
193.53 4918.36
199.64 4918.45
205.89 4918.55
214 4918.67
220.2 4918.64
226.28 4918.55
234.56 4918.42
242.99 4918.29
251 4918.18
256.89 4918.09
263.85 4917.99
272.51 4917.86
278.5 4917.76
287.11 4917.63
294.01 4917.51
300.51 4917.4
321.29 4917.79
326.12 4917.94
330.82 4918.15
Bank Sta: Left Right Lengths: Left Channel Right
284.19 321.72 237.22 237.22 237.22
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
Vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft)
Q Total (cfs)
Top Width (ft)
Vel Tota1 (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch E1 (ft)
Alpha
Frctn Loss (ft)
C & E Loss (ft)
4919.07 Element
0.00 Wt. n-va1.
4919.07 Reach Len. (ft)
Flow Area (sq ft)
0.000051 Area (sq ft)
60.00 Flow (cfs)
255.27 Top Width (ft)
0.27 Avg. Vel. (ft/s)
1.70 Hydr. Depth (ft)
8418.7 Conv. (cfs)
237.22 Wetted Per. (ft)
4917.37 Shear (lb/sq ft)
1.29 Stream Power (1b/ft s)
0.04 Cum Volume (acre-ft)
0.00 Cum SA (acres)
Left OB
0.040
237.22
146.99
146.99
31.89
198.14
0.22
0.74
4474.4
198.17
0.00
0.00
0.52
1.00
Channel
0.035
237.22
57.33
57.33
23.00
37.53
0.40
1.53
3227.9
37.54
0.00
0.00
0.34
0.38
Right OB
0.040
237.22
19.80
19.80
5.11
19.60
0.26
1.01
716.5
20.60
0.00
0.00
0.16
0.42
Warning: The cross-section end points had to be extended vertically for the computed water
surface.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
CROSS SECTION
RIVER: FLOWPATH WEST
REACH: FLOWPATH WEST RS: 210
INPUT
Description:
Station Elevation Data num=
Sta Elev Sta Elev
0 4919.96 .39 4919.95
7.77 9519.B8 8.19 4919.87
13.89 4919.81 16.54 4919.79
22.28 4919.73 22.43 4919.73
28.19 4919.67 30.87 4919.05
36.6 4919.59 39.32 4919.56
45.2 4919.5 45.36 4919.5
51.3 4919.44 54.02 4919.41
140
Sta Elev
2.5 4919.93
10.74 4919.85
16.74 4919.79
25.14 4919.7
30.99 4919.64
39.44 4919.56
48.14 4919.47
54.28 4919.41
Sta Elev
4.55 4919.91
11.04 4919.84
19.42 4919.76
25.28 4919.7
33.74 4919.62
42.26 4919.53
48.33 4919.47
56.96 4919.38
196.34 4918.4
202.37 4918.49
208.45 4918.58
219.87 4918.68
220.77 4918.63
228.82 4918.51
234.76 4918.42
243.15 4918.29
251.06 4918.18
259.74 4918.05
20'6.67 4917.95
272.63 4917.85
281.27 4917.72
288.02 4917.61
296.52 4917.47
301.17 491"1.39
321.72 4917.8
326.15 4917.95
332.64 4918.18
Coeff Contr. Expan.
.1 .3
Sta Elev
5.35 4919.9
13.66 4919.82
19.58 4919."16
28.01 4919.67
33.85 4919.62
42.4 4919.53
51.08 4919.44
57.29 4919.38
59.91 4919.35
66.67 4919.29
73.57 9919.22
�9.6 4918.96
86.42 4918.7
95.02 4918.38
102.3 4918.11
107.15 4918.06
115.95 4918.2
121.95 9918.29
128.05 4518.38
137.03 4918.51
143.07 4918.6
152.02 4918.73
158.1 9518.B1
167 4918.94
173.15 4919.03
181.99 4919.16
192.35 4919.28
19�.91 9919.28
60.32 4919.35
68.73 4919.27
74.02 4919.17
80.57 4918.92
89.04 4918.6
95.19 4918.37
102.77 4918.09
109.82 4918.1
116 4918.2
121.96 4918.29
131.03 4918.42
137.06 4918.51
146.02 4918.04
152.08 4918.73
161.01 4918.86
167.13 4918.95
175.99 4919.07
182.19 4919.16
193.86 4919.3
200.24 4919.24
62.85 4919.33
70.55 4919.25
74.73 4919.14
82.9 4918.84
89.35 4918.59
97.98 4918.27
104.63 4918.02
110.02 4918.1
119 4918.25
124.75 4918.33
131.05 4918.42
140.02 4918.55
146.07 4918.64
155.01 4918.77
161.11 4918.86
170 4918.99
176.16 4919.08
184.98 4919.2
194.77 4919.31
202.32 4919.19
Manning's n values num= 3
Sta n Val Sta n Val Sta n Val
0 .04 95.02 .035 127.55 .04
63.42 4919.32
71.67 4919.24
75.5 4919.11
83.5 4918.81
92.04 4918.49
99.75 4918.2
106.43 4918.05
112.88 4918.15
119.02 4918.25
124.77 4918.33
134.03 4918.47
140.06 4918.55
149.02 4918.68
155.09 4918.77
164.01 4918.9
170.14 4918.99
178.99 4919.12
185.21 4919.21
195.64 4919.32
203.42 4919.17
Bank Sta: Left Right Lengths: Left Channel Right
95.02 127.55 324.12 324.12 324.12
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
Vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft)
Q Total (cfs)
Top Width (ft)
Vel Tota1 (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch E1 (ft)
Alpha
Frctn Loss (ft)
C & E Loss (ft)
4919.03
0.05
4918.98
4918.70
0.003166
67.00
89.69
1.58
0.95
1190.7
324.12
4918.02
1.32
2.66
0.01
Element
Wt. n-va1.
Reach Len. (ft)
Flow Area (sq ft)
Area (sq ft)
Flow (cfs)
Top Width (ft)
Avg. Vel. (ft/s)
Hydr. Depth (ft)
Conv. (cfs)
Wetted Per. (ft)
Shear (lb/sq ft)
Stream Power (1b/ft s)
Cum Volume (acre-ft)
Cum SA (acres)
Left OB
0.040
324.12
4."J3
4.73
4.41
15.83
0.93
0.30
78.5
15.84
0.06
0.06
0.11
0.42
Channel
0.035
324.12
25.21
25.21
50.79
32.53
2.01
0.77
902.7
32.54
0.15
0.31
0.12
0.19
Right OB
0.040
324.12
12.51
12.51
11.79
41.33
0.94
0.30
209.6
41.34
0.06
0.06
0.07
0.25
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross
section. This may indicate
the need for additional cross sections.
CROSS SECTION
RIVER: FLOWPATH WEST
REACH: FLOWPATH WEST
INPUT
Description:
Station Elevation Data
Sta E1ev Sta
0 9516.64 1.21
7.57 4916.56 7.85
10.22 4916.11 10.3
15.69 4916.09 18.38
29.21 4916.04 26.91
35.08 4915.92 35.37
90.86 4915.94 41.32
RS: 200
num=
Elev
4916.03
4916.55
4916.11
4916.07
4916.03
4915.91
4915.95
115
Sta Elev
2.05 4916.63
8.32 4916.55
12.9 4916.1
21.07 4916.06
27.02 4916.03
35.58 4915.91
41.86 9916
Sta Elev Sta Elev
4.04 4916.62 6.9 4916.56
8.42 4916.46 8.83 4916.06
12.98 4916.1 15.65 4916.09
21.44 4916.06 24.16 4916.04
29.66 4916.02 32.3 4916
36.99 4915.9 40.08 4915.9
42.07 4916.01 44.74 4915.9
65.79 4919.3
72.�6 4919.23
7�.65 4919.03
86.01 4918.72
92.27 4918.48
100.1 4918.19
106.76 4918.05
113 4918.15
120.83 4918.28
127.55 4918.38
134.05 4918.47
143.02 4918.6
149.08 4918.69
158.01 4918.81
164.12 4918.9
173 4919.03
179.18 4919.12
190.6 4919.25
197.22 4919.29
205.18 4919.14
Coeff Contr. Expan.
.1 .3
46.38 4915.88 48.68 4915.95 48.93 4915.91 51.42 4915.93 53.9 4915.94
54.17 4915.92 56.65 4915.94 57.05 4915.94 59.53 4915.95 59.92 4915.95
62.42 4915.97 62.8 4915.97 65.3 4915.98 65.68 4915.98 0'8.18 4915.99
68.55 4916 71.06 4916.01 71.43 4916.01 73.94 4916.02 74.3 4916.03
76.69 4916.04 76.83 4916.04 76.95 4916.03 77.07 4916.04 79.53 4916.02
�9.87 4916.02 82.33 4916.01 82.67 4916.01 85.12 4915.99 85.47 4915.99
8�.92 4915.98 88.27 4915.98 90.71 4915.96 91.08 4915.96 93.51 4915.95
93.88 4915.95 96.3 4915.93 96.68 4915.93 99.1 4915.92 99.48 4915.91
101.89 4915.9 102.28 4915.9 104.69 4915.89 104.97 4915.9 10�.38 4915.89
109.78 9915.87 110.06 4915.91 111.56 4915.87 114.82 4915.89 116.73 4915.95
117.23 4915.98 118.77 4915.89 121.37 4915.89 123.2 4915.88 123.47 4915.89
123.89 4915.9 126.56 4915.98 129.1 4915.99 129.32 4915.99 131.99 4916.01
132.07 4916.01 134.75 4916.02 134.82 4916.02 137.5 4916.03 137.58 4916.03
190.25 4916.05 140.33 4916.05 143.01 4916.06 143.08 4916.06 143.37 4916.07
195.97 9516.08 146.12 4916.08 148.56 4916.09 148.73 4916.08 149.99 4916.04
150.36 4916.41 150.5 4916.54 150.95 4916.54 151.83 4916.55 153.79 4916.58
Manning's n Values num= 3
Sta n Val Sta n val Sta n Val
0 .04 104.97 .035 123.89 .04
Bank Sta: Left Right Coeff Contr. E�.pan.
104.97 123.89 .1 .3
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft) 4916.35 Element Left OB Channel
Vel Head (ft) 0.11 Wt. n-Va1. 0.040 0.035
W.S. Elev (ft) 4916.24 Reach Len. (ft)
Crit W.S. (ft) 4910'.24 Flow Area (sq ft) 24.88 6.53
E.G. Slope (ft/ft) 0.025766 Area (sq ft) 24.88 6.53
Q Total (cfs) 94.00 Flow (cfs) 60.15 21.90
Top Width (ft) 141.55 Top Width (ft) 96.33 18.92
Vel Tota1 (ft/s) 2.54 Avg. Vel. (ft/s) 2.42 3.35
Max Chl Dpth (ft) 0.37 Hydr. Depth (ft) 0.26 0.35
Conv. Total (cfs) 585.6 Conv. (cfs) 374.7 136.9
Length Wtd. (ft) Wetted Per. (ft) 96.42 18.93
Min Ch E1 (ft) 4915.87 Shear (lb/sq ft) 0.42 0.56
Alpha 1.08 Stream Power (lb/ft s) 1.00 1.86
Frctn Loss (ft) Cum volume (acre-ft)
C& E Loss (ft) Cum SA (acres)
SUMMARY OF MANNING'S N VALUES
River:FLOWPATH WEST
Reach River Sta
FLOWPATH WEST 240
FLOWPATH WEST 230
FLOWPATH WEST 220
FLOWPATH WEST 210
FLOWPATH WEST 200
SUMMARY OF REACH LENGTHS
River: FLOWPATH WEST
Reach River Sta
FLOWPATH WEST 240
FLOWPATH WEST 230
FLOWPATH WEST 220
FLOWPATH WEST 210
FLOWPATH WEST 200
Right OB
0.040
5.62
5.62
11.95
26.30
2.13
0.21
74.5
26.39
0.34
0.73
nl n2 n3
.04 .035 .04
.04 .035 .04
.04 .035 .04
.04 .035 .04
.04 .035 .04
Left
175.76
265.04
237.22
324.12
Channel
175.76
265.04
237.22
324.12
Right
175.76
265.04
237.22
324.12
SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: FLOWPATH WEST
Reach River Sta. Contr. Expan.
FLOWPATH WEST 240 .1 .3
FLOWPATH WEST 230 .l .3
FLOWPATH WEST 220 .1 .3
FLOWPATH WEST 210 .1 .3
FLOWPATH WEST 200 .1 .3
Profile Output Table - Standard Table 1
Reach River Sta Profile Q Tota1 Min Ch El W.S. Elev
Elev E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl
(cfs) (ft) (ft)
(ft) (ft/ft) (ft/s) (sq ft) (ft)
FLOWPATH wEST 200 PF 1 94.00 4915.87 4916.24
4916.35 0.025766 3.35 37.04 141.55 1.01
FLOWPATH WEST 210 PF 1 67.00 4918.02 4918.98
4919.03 0.003166 2.01 42.45 89.69 0.40
FLOWPATH_WEST 220 PF 1 60.00 4917.37 4919.07
4919.07 0.000051 0.40 224.12 255.27 0.06
FLOWPATH WEST 230 PF 1 60.00 4919.36 4919.72
4919.83 0.023949 2.95 26.39 145.54 0.95
FLOWPATH_WEST 240 PF 1 52.00 4919.22 4920.03
4920.03 0.000297 0.61 128.69 297.71 0.12
Profile Output Table - Standard Table 2
Reach River Sta Profile E.G. E1ev
Loss Q Left Q Channel Q Right Top Width
(ft)
(ft) (cfs) (cfs) (cfs) (ft)
FLOWPATH WEST 200 PF 1 4916.35
60.15 21.90 11.95 141.55
FLOWPATH WEST 210 PF 1 4919.03
0.01 4 41 50.79 11.79 89.69
FLOWPATH WEST 220 PF 1 4919.07
0.00 31.89 23.00 5.11 255.27
FLOWPATH WEST 230 PF 1 4919.83
0.03 8.73 43.92 7.35 145.54
FLOWPATH WEST 240 PF 1 4920.03
0.01 15.95 20.01 16.05 297.71
W.S. E1ev
(ft)
4916.24
4918.98
4919.07
4919.72
4920.03
Vel Head
(ft)
0.11
0.05
0.00
0.11
0.00
Crit W.S. E.G.
(ft)
4916.24
4918.70
4919.72
Frctn Loss C & E
(ft)
2.66
0.04
0.05
0.19
HEC-RAS OUTPUT - EAST FLOWPATH
HEC-RAS HEC-RAS 5.0.7 March 2019
U.S. Army Corps of Engineers
Hydrologic Engineering Center
609 Second street
Davis, California
X X XXXXXX XXXX XXXX XX XXXX
X X X X X X X X X X
X X X X X X X X X
XXXXXXX XXXX X XXX XXXX XXXXXX XXXX
X X X X X X X X X
X X X X X X X X X X
X X XXXXXX XXXX X X X X XXXXX
PROJECT DATA
Project Title: 100-024-E-Flowpath
Project File : 100-024-E-Flowpath.prj
Run Date and Time: 5/1/2020 5:18:36 PM
Project in English units
PLAN DATA
Plan Title: P1an Ol
Plan File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.p01
Geometry Title: ProposedCond East Flowpath
Geometry File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.g02
Flow Title : ProposedCond East Flowpath
Flow Fi1e : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.f01
Plan Summary Information:
Number of: Cross Sections = 5 Multiple Openings = 0
Culverts = 0 Inline Structures = 0
Bridges = 0 Lateral Structures = 0
Computational Information
Water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor = 0.001
Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational F1ow Regime: Subcritical Flow
FLOW DATA
Flow Title: ProposedCond East Flowpath
Flow File : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.f01
F1ow Data (cfs)
River Reach RS PF 1
FLOWPATH EAST FLOWPATH EAST 190 82
FLOWPATH EAST FLOWPATH EAST 120 92
FLOWPATH EAST FLOWPATH EAST 100 116
Boundary Conditions
River Reach Profile
Downstream
FLOWPATA EAST
Critical
GEOMETRY DATA
FLOWPATH EAST PF 1
Upstream
Geometry Title: ProposedCond East Flowpath
Geometry Fi1e : C:\A-NE\100-024\Drainage\Modeling\HEC-RAS\100-024-E-Flowpath.g02
[�I�ibY.�ya[�IillKil�l
RIVER: FLOWPATH EAST
REACH: FLOWPATH EAST
INPUT
Description:
Station Elevation
Sta Elev
0 4921.42
6.42 4921.39
15.19 4921.34
21.29 4921.31
29.76 4921.27
36.07 4921.24
92.59 9921.22
50.81 4921.18
56.99 4921.15
65.74 4921.11
71.82 4921.08
80.66 9521.03
86.71 4921
95.59 4920.96
101.62 4520.93
107.58 4920.9
116.48 4920.86
122.5 4920.83
131.41 9520.78
137.63 4920.75
146.5 4920.71
152.55 4920.68
163.41 4920.52
170.03 4920.37
175.99 9920.23
184.71 4920.11
191.57 4920.08
199.31 4920.13
208.05 4920.29
213.99 4920.49
222.42 4920.78
22�.68 9920.84
234.86 4920.9
293.31 4920.98
249.29 4921.04
258.09 4921.13
264.09 9521.19
272.87 4921.28
278.81 4921.34
287.65 4921.43
293.58 4921.49
302.43 4921.58
308.48 4921.64
Data
Sta
.49
9.24
15.31
23.96
30.14
37.54
44.84
51.1
59.77
65.88
74.69
80.76
89.62
95.66
104.54
110.51
116.53
125.44
131.66
140.55
146.58
155.32
163.73
170.04
178.87
185.26
193.5
201.75
208.06
216.85
222.54
229.97
237.39
243.41
252.18
258.13
266.96
272.9
281.74
287.67
296.52
302.57
311.43
RS: 140
num=
Elev
4921.42
4921.37
4921.34
4921.3
4921.27
4921.23
4921.21
4921.1B
4921.14
4921.11
4921.06
4921.03
4920.99
4920.9'0
4920.92
4920.89
4920.86
4920.81
4920.78
4920.74
4920.71
4920.66
4920.52
4920.37
4920.15
4920.1
4920.07
4920.16
4920.29
4920.58
4920.79
4920.86
4920.92
4920.98
4921.07
4921.13
4921.22
4921.28
4921.37
4921.43
4921.52
4921.58
4921.67
213
Sta
3.33
9.38
18.09
24.21
32.6
38.96
45.33
53.8
59.95
68.72
74.8
83.65
89.69
98.57
104.6
110.57
119.47
125.48
134.6
140.61
149.46
155.53
164.17
172.97
180.02
187.64
195.42
202.21
210.98
217.06
224.72
230.19
237.6
246.26
252.23
261.04
266.99
275.83
281.76
290.61
296.54
305.52
3ll.89
Elev
492L4
4921.37
4921.33
4921.3
4921.26
4921.26
4921.21
4921.17
4921.14
4921.09
4921.06
4921.02
4920.99
4920.95
4920.92
4920.89
4920.84
4920.81
4920.77
4920.74
4920.69
4920.66
4920.51
4920.3
4920.13
4920.09
4920.09
4920.17
4920.38
4920.59
4920.81
4920.86
4920.93
4921.01
4921.07
4921.16
4921.22
4921.31
4921.37
4921.46
4921.52
4921.61
4921.67
Sta
3.45
12.19
18.28
26.87
33.11
40.34
47.83
54.04
62.75
68.85
77.68
83.73
92.6
98.64
104.84
113.5
119.52
128.42
134.64
143.53
149.56
158.1
167.09
172.98
181.78
188.44
196.4
205.04
211.01
219.78
226.89
232.37
240.35
246.34
255.13
261.08
269.91
275.85
284.7
290.63
299.48
305.53
Elev
4921.4
4921.36
4921.33
4921.29
4921.26
4921.23
4921.2
4921.17
4921.12
4921.09
4921.05
4921.02
4920.98
4920.95
4920.91
4920.87
4920.84
4920.8
4920.77
4920.72
4920.69
4920.65
4920.44
4920.3
4920.12
4920.09
4920.1
4920.2
4920.39
4920.68
4920.83
4920.88
4920.95
4921.01
4921.1
4921.16
4921.25
4921.31
4921.4
4921.46
4921.55
4921.61
6
12
21
27
35
41
48
56
62
71
77
86
92
101
107
113
122
128
137
14
152
160
167
175
182
190
198
205
213
222
22"1
234
240
249
255
269
278
284
293
299
308
Sta
.29
.35
.03
.18
.32
.86
.19
.78
.91
.71
.78
.63
.67
.56
.53
.55
.45
.47
.58
3.6
.41
.71
.11
.91
.01
.57
.55
.58
.91
.41
.12
.54
.49
.22
.18
264
.94
.78
.72
.57
.49
.47
Elev
4921.39
4921.36
4921.31
4921.28
4921.24
4921.23
4921.2
4921.15
4921.12
4921.08
4921.05
4921
4920.98
4920.93
4920.9
4920.87
4920.83
4920.8
4920.75
4920.72
4920.68
4920.59
4920.44
4920.23
4920.12
4920.08
4920.13
4920.2
4920.48
4920.77
4920.83
4920.9
4920.95
4921.04
4921.1
4921.19
4921.25
4921.34
4921.4
4921.49
4921.55
4921.64
Manning's n Values num= 3
Sta n Va1 Sta n val Sta n Va1
0 .04 167.09 .035 213.91 .04
Bank Sta: Left Right Lengths: Left Channel Right
167.09 213.91 248.56 248.56 248.56
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
Vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft)
Q Total (cfs)
Top width (ft)
Vel Total (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch E1 (ft)
Alpha
Frctn Loss (ft)
C & E Loss (ft)
4920.88
0.22
4920.66
4920.66
0.022388
82.00
63.37
3.59
0.59
548.0
248.56
4920.07
1.08
0.13
0.06
Element
Wt. n-Val.
Reach Len. (ft)
Flow Area (sq ft)
Area (sq ft)
Flow (cfs)
Top Width (ft)
Avg. vel. (ft/s)
Hydr. Depth (ft)
Conv. (cfs)
Wetted Per. (ft)
Shear (lb/sq ft)
Stream Power (1b/ft s)
Cum Volume (acre-ft)
Cum SA (acres)
Left OB
0.040
248.56
1.04
1.04
1.18
11.32
1.13
0.09
7.9
11.32
0.13
0.15
0.86
1.89
Channel
0.035
248.56
21.35
21.35
80.32
46.82
3.76
0.46
536.8
46.83
0.64
2.40
0.63
0.79
Right OB
0.040
248.56
0.46
0.46
0.50
5.24
1.09
0.09
3.3
5.24
0.12
0.13
0.76
1.13
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical
depth for the water surface and continued on with the calculations.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross
section. This may indicate
the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated
water surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The
program defaulted to critical depth.
CROSS SECTION
RIVER: FLOWPATH EAST
REACH: FLOWPATH EAST RS: 130
INPUT
Description:
Station Elevation Data num=
Sta Elev Sta Elev
0 4919.71 70.6 4919.2
9�.99 4918.78 99.56 4918.%5
105.33 4918.66 107.8 4918.0'3
113.79 4918.54 114 4918.53
119.77 4918.45 122.5 4918.41
127.23 4918.34 127.5 4918.33
133.55 4918.24 135.89 4918.21
140.58 9918.14 142.35 4918.16
198.06 4518.25 149.91 4918.2B
155.62 4918.36 156.18 4918.37
163.06 4918.47 163.42 4918.5
180.13 4918.78 182.48 4918.81
188.59 9518.B7 188.81 4918.87
194.59 4918.93 197.33 4918.95
202.73 4919.01 263.3 4919.98
72
Sta Elev
87.26 4918.95
101.17 4918.73
108.22 4918.62
116.67 4918.49
122.66 4918.4
130.12 4918.29
136.98 4918.19
144.13 4918.19
150.19 4918.28
158.47 4918.4
167.86 4918.58
183.02 4918.81
191.48 4918.9
197.48 4918.96
Sta Elev
90.96 4918.9
102.44 4918.71
110.79 4918.58
116.88 4918.49
125.4 4918.36
130.48 4918.29
138.78 4918.16
145.21 4918.21
152.76 4918.32
159.6 4918.42
175.42 4918.73
185.56 4918.84
191.7 4918.9
200.24 4918.98
Coeff Contr. Expan.
.1 .3
Sta Elev
9�.26 4918.8
104.7 4918.67
111.11 4918.58
119.59 4918.45
125.55 4918.36
133 4918.25
139.88 4918.15
14�.52 4918.24
153.14 4918.32
161.33 4918.45
179.06 4918.77
185.91 4918.84
194.41 4918.92
200.37 4918.98
Manning's n Values num= 3
Sta n Va1 Sta n Val Sta n Va1
0 .04 127.5 .035 153.14 .04
Bank Sta: Left Right Lengths: Left Channel Right
127.5 153.14 312.19 312.19 312.19
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
Vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft)
Q Total (cfs)
Top width (ft)
Vel Total (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch E1 (ft)
Alpha
Frctn Loss (ft)
C & E Loss (ft)
4919.79
0.00
4919.79
0.000151
82.00
251.14
0.42
1.65
6680.6
312.1G
4918.14
1.38
0.11
0.00
Element
Wt. n-Va1.
Reach Len. (ft)
Flow Area (sq ft)
Area (sq ft)
Flow (cfs)
Top Width (ft)
Avg. vel. (ft/s)
Hydr. Depth (ft)
Conv. (cfs)
Wetted Per. (ft)
Shear (lb/sq ft)
Stream Power (1b/ft s)
Cum Volume (acre-ft)
Cum SA (acres)
Coeff Contr. Expan.
.1 .3
Left OB
0.040
312.19
81.30
81.30
27.45
127.50
0.34
0.64
2236.5
127.58
0.01
0.00
0.63
1.50
Channel
0.035
312.19
39.80
39.80
27.80
25.64
0.70
1.55
2265.2
25.54
0.01
0.01
0.46
0.59
Right OB
0.040
312.19
72.03
72.03
26.74
98.00
0.37
0.73
2178.9
98.01
0.01
0.00
0.56
0.84
Warning: The cross-section end points had to be extended vertically for the computed water
surface.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
CROSS SECTION
RIVER: FLOWPATH EAST
REACH: FLOWPATH EAST RS: 120
INPUT
Description:
Station Elevation Data num= 37
Sta E1ev Sta Elev Sta Elev
67.3 4919.6 138.66 4919.37 139.47 4919.38
196.17 4919.35 147.22 4919.34 148.74 4919.3
155.19 4919.12 156.64 4919.1 157.05 4919.1
161.49 4519.04 162.55 4919.02 164.06 4919
168.05 4918.95 168.45 4918.94 169.32 4918.93
183.93 4918.64 185.99 4918.59 186.71 4918.58
189.9 4918.51 192.58 4918.58 199.44 4918.73
211.43 4519.03 251.3 4918.8
Manning's n values num= 3
Sta n Va1 Sta n Val Sta n Va1
67.3 .04 182.78 .035 199.49 .04
Sta Elev Sta Elev
141.16 4919.37 144.86 4919.35
151.93 4919.21 153.37 4919.17
159 4919.07 159.8 4919.05
165.3 4918.98 10'6.67 4918.96
170.79 4918.91 182.78 4918.65
189.2 4918.53 189.34 4918.52
206.74 4918.91 208.45 4918.96
Bank Sta: Left Right Lengths: Left Channel Right
182.78 199.44 289.64 289.64 289.64
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft)
Q Total (cfs)
Top Width (ft)
Vel Total (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch E1 (ft)
Alpha
Frctn Loss (it)
4919.68
0.02
4919.66
0.001180
92.00
184.00
0.96
1.15
2677.8
289.64
491B.51
1.36
0.80
Element
Wt. n-Val.
Reach Len. (ft)
Flow Area (sq ft)
Area (sq ft)
Flow (cfs)
Top Width (ft)
Avg. Vel. (ft/s)
xydr. Depth (ft)
Conv. (cfs)
Wetted Per. (ft)
Shear (lb/sq ft)
Stream Power (1b/ft s)
Cum Volume (acre-ft)
Coeff Contr. Expan.
.1 .3
Left OB
0.040
289.64
39.31
3°.31
24.45
115.48
0.62
0.34
711.8
115.55
0.03
0.02
0.19
Channel
0.035
289.64
17.56
17.56
26.53
16.66
1.51
1.05
772.2
16.66
0.08
0.12
0.25
Right OB
0.040
289.64
39.17
39.17
41.01
51.86
1.05
0.76
1193.7
52.73
0.05
0.06
0.16
C& E Loss (ft) 0.01 Cum SA (acres) 0.63 0.39 0.30
Warning: The cross-section end points had to be extended vertically for the computed water
surface.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
Cil3�b'�s�I�YIIKNdI
RIVER: FLOWPATH EAST
REACH: FLOWPATH EAST RS: 110
INPUT
Description:
Station Elevation Data num=
Sta Elev Sta Elev
0 4919.63 6.05 4919.56
12.01 4919.49 13.73 4919.47
19.93 4919.4 22.27 4919.37
28.74 4919.3 29.22 4919.29
35.41 4919.22 38.27 4919.19
44.57 4919.12 44.7 4919.12
50.89 4919.05 53.97 4919.01
59.88 4918.93 59.91 4918.93
65.69 9918.85 68.5 4918.81
74.25 4918.73 74.35 4918.%3
80.12 4918.64 82.87 4918.6
88.62 4918.52 88.76 4918.52
100.51 4918.35 101 4918.35
107.89 4918.25 110.52 4918.21
117.18 4918.11 118.54 4918.09
126.9 9917.98 127.17 4917.97
132.32 4918.01 134.79 4918.07
191.63 4918.22 144.31 4918.29
151.56 4918.45 151.91 4918.46
158.75 4918.62 162.16 4918.69
165.47 9518.75 168.58 4918.8
174.93 4918.91 175.37 4918.92
182.15 4919.03 184.44 4919.07
190.79 4519.17 193.23 4919.21
198.6 4919.3 199.85 4919.32
208.34 9919.32
126
Sta Elev
7.54 4919.54
15.57 4919.45
23.02 4919.37
31.94 4919.26
38.51 4919.19
47.71 4919.08
53.99 4919.01
62.75 4918.89
68.57 4918.81
77.12 4918.69
83 4918.6
91.49 4918.48
103.85 4918.3
111.37 4918.2
120.52 4918.07
127.19 4917.97
136.62 4918.11
145.06 4918.3
155.12 4918.53
162.18 4918.69
168.'75 4918.81
178.1 4918.96
185.66 4919.09
193.96 4919.22
200.29 4919.33
Manning's n values num= 3
Sta n Val Sta n Val Sta n Va1
0 .04 111.37 .035 144.31 .04
Sta Elev
8.14 4919.54
16.83 4919.44
25.52 4919.34
32.31 4919.26
41.43 4919.16
47.8 4919.08
55.99 4918.99
62.8 4918.89
71.38 4918.77
77.23 4918.69
85.75 4918.56
97.18 4918.4
104.43 4918.3
ll3.85 4918.16
122.32 4918.04
129.25 4917.94
138.21 4918.15
147.96 4918.37
155.33 4918.54
162.94 4918.71
171.75 4918.86
178.73 4918.97
187.62 4919.12
196.01 4919.26
202.52 4919.33
Bank Sta: Left Right Lengths: Left Channel Right
111.37 144.31 232.17 232.17 232.17
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
Vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft)
Q Total (cfs)
Top Width (ft)
Vel Tota1 (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch E1 (ft)
Alpha
Frctn Loss (ft)
C & E Loss (ft)
491B.86
0.15
4918.71
4918.66
0.012817
92.00
80'.84
2.76
0.77
812.6
232.17
4917.94
1.30
3.85
0.01
Element
Wt. n-val.
Reach Len. (ft)
Flow Area (sq ft)
Area (sq ft)
Flow (cfs)
Top Width (ft)
Avg. Vel. (ft/s)
Hydr. Depth (ft)
Conv. (cfs)
Wetted Per. (ft)
Shear (lb/sq ft)
Stream Power (1b/ft s)
Cum Volume (acre-ft)
Cum SA (acres)
Sta Elev
10.63 4919.51
18.96 4919.41
26.12 4919.33
35.11 4919.23
41.6 4919.15
50.84 4919.05
57.01 4918.98
65.63 4918.85
71.46 4918.77
80 4918.65
85.88 4918.56
97.5° 4918.39
107.18 4918.26
114.91 4918.15
123.85 4918.02
131.36 4917.99
140.55 4918.2
148.48 4918.38
158.65 4918.61
105.41 4918.75
172.05 4918.86
181.27 4919.01
189.32 4919.15
197.2 4919.28
206.81 4919.32
Coeff Contr. Expan.
.1 .3
Left OB
0.040
232.17
°.08
9.08
15.43
35.40
1.70
0.26
136.3
35.40
0.21
0.35
0.03
0.12
Channel
0.035
232.17
20.33
20.33
70.80
32.94
3.48
0.62
625.3
32.95
0.49
1.72
0.12
0.22
Right OB
0.040
232.17
3.89
3.89
5.78
18.50
1.49
0.21
51.0
18.51
0.17
0.25
0.01
0.07
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross
section. This may indicate
the need for additional cross sections.
CROSS SECTION
RIVER: FLOWPATH EAST
REACH: FLOWPATH EAST RS: 100
INPUT
Description:
Station Elevation Data num=
Sta Elev Sta Elev
0 4917.48 1.71 4917.46
7.51 4917.41 7.71 4917.41
14.1 4917.36 14.77 4917.35
16.04 4916.85 16.96 4916.87
21.99 4916.83 23.99 4916.81
29.46 4916.77 30.19 4916.76
35.66 4516.71 37.49 4916.09
39.97 4916.65 40.88 4916.59
42.16 4917.08 42.84 4917.09
99.21 4917.04 49.4 4917.03
55.2 4916.98 57.91 4916.96
63.72 4916.91 63.9 4916.9
69.71 4916.85 72.42 4916.83
76.05 9916.78 76.53 4916.%7
78.09 4916.26 78.92 4916.32
81.69 4916.3 84.34 4916.27
90.05 4916.22 92.19 4916.2
97.89 4916.15 98.6 4916.14
102.7 4916.04 103.79 4915.97
106.28 9915.86 109.24 4915.3
116.89 4914.64 117.95 4914.44
122.89 4914.29 124.02 4914.29
135.77 4914.24 137.39 4914.23
197.46 4914.2 148.01 4914.25
156.05 9514.24 157.21 4914.23
165.18 4914.22 166.74 4914.22
171.68 4914.29 172.8 4914.28
177.27 4914.43 179.35 4914.51
185.82 4915.29 188.84 4915.B9
193.4 4916.12 193.46 4916.12
215.48 4916.26 215.67 4916.26
217.99 9516.67 218.04 4916.74
222.32 4916.74 222.47 4916.74
228.27 4916.77 231.03 4916.78
236.84 4916.81 236.98 9916.81
242.79 4916.84 245.55 4916.85
251.71 4916.88 251.91 4916.88
253.51 9916.35 254.03 4916.37
256.21 4916.45 257.61 4916.45
262.69 4916.49 264.76 4916.5
2�0.22 4916.52 270.89 4916.53
203
Sta Elev
1.91 4917.46
10.41 4917.38
14.97 4917.35
18.14 4916.87
24.72 4916.81
32.19 4916.74
38.�7 4916.68
41.24 4916.57
43.12 4917.09
52.11 4917.01
58.1 4916.96
66.62 4916.88
72.61 4916.83
76.92 4916.76
79.01 4916.32
86.48 4916.25
92.9 4916.2
99.69 4916.13
104.67 4915.99
111.66 4915
119.72 4914.44
125.15 4914.3
138.56 4914.24
148.19 4914.24
161.39 4914.23
168.33 4914.23
1�3.87 4914.46
180.47 4914.7
189.6 4916.05
196.24 4916.13
216.1 4916.27
218.98 4916.74
225.22 4916.75
231.18 4916.78
239.74 4916.82
245.69 4916.85
252.65 4916.86
254.81 4916.42
259.29 4916.47
265.42 4916.5
272.32 4916.53
Sta Elev
4.61 4917.44
11.32 4917.38
15.32 4917.13
19.41 4916.86
26.73 4916.79
32.92 4916.73
39.73 4916.66
41.6 4916.86
45.63 4917.06
52.3 4917.01
60.82 4916.93
66.81 4916.88
73.26 4916.81
77.3 4916.52
79.24 4916.31
87.19 4916.25
95.04 4916.18
100.81 4916.12
105.41 4916.03
113.54 4914.78
120.52 4914.46
126.32 4914.23
145.69 4914.24
153.37 4914.24
162.52 4914.22
169.41 4914.22
175.11 4914.45
181.79 4914.77
190.58 4916.04
197.13 4916.14
216.6 4916.26
219.19 4916.72
225.37 4916.75
233.93 4916.79
239.88 4916.82
248.45 4916.87
252.76 4916.86
254.94 4916.42
259.96 4916.47
267.49 4916.51
Sta Elev
4.81 491�.44
13.81 4917.36
15.69 4916.84
21.26 4916.84
27.46 4916.78
34.93 4916.72
39.91 4916.65
41.97 4917.08
46.5 4917.06
55.01 4916.98
61 4916.93
69.52 4916.85
75.79 4916.�9
77.64 4916.25
80.31 4916.31
89.33 4916.23
95.75 4916.17
101.46 4916.12
105.46 4916.02
115.74 4914.66
121.77 4919.46
134.63 4914.23
146.9 4914.25
154.55 4919.23
164.07 4914.23
170.48 4914.22
176.39 4914.41
183.56 4919.98
191.13 4916
199 4916.15
217.38 4916.25
221.8 4916.73
228.13 4916.77
234.08 4916.79
242.65 4916.84
249.09 4916.87
253.23 4916.56
255.33 4916.43
262.03 4916.98
268.16 4916.51
Manning's n Values num= 3
Sta n Va1 Sta n Val Sta n Val
0 .04 125.15 .035 175.11 .04
Bank Sta: Left Right Coeff Contr. Expan.
125.15 175.11 .l .3
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft) 4915.00 Element
Vel Head (ft) 0.23 Wt. n-Val.
W.S. Elev (ft) 4914.77 Reach Len. (ft)
Crit W.S. (ft) 4914.77 Flow Area (sq ft)
E.G. Slope (ft/ft) 0.020835 Area (sq ft)
Left OB Channel Right OB
0.040 0.035 0.040
3.25 26.32 1.60
3.25 26.32 1.60
Q Total (cfs)
Top Width (ft)
Vel Total (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch E1 (ft)
Alpha
Frctn Loss (ft)
C & E Loss (ft)
11'0.00 Flow (cfs)
68.08 Top Width (ft)
3.72 Avg. Vel. (ft/s)
0.57 Hydr. Depth (ft)
803.6 Conv. (cfs)
Wetted Per. (ft)
4914.20 Shear (lb/sq ft)
1.08 Stream Power (lb/ft s)
Cum Volume (acre-ft)
Cum SA (acres)
SUMMARY OF MANNING'S N VALUES
River:FLOWPATH EAST
Reach River Sta
FLOWPATH EAST 140
FLOWPATH EAST 130
FLOWPATH EAST 120
FLOWPATH EAST 110
FLOWPATH EAST 100
SUMMARY OF REACH LENGTHS
River: FLOWPATH EAST
Reach River Sta
FLOWPATH EAST 140
FLOWPATH EAST 130
FLOWPATH EAST 120
FLOWPATH EAST 110
FLOWPATH EAST 100
nl n2 n3
.04 .035 .04
.04 .035 .04
.04 .035 .04
.04 .035 .04
.04 .035 .04
Left Channel Right
248.56 248.56 248.56
312.19 312.19 312.19
289.64 289.64 289.64
232.17 232.17 232.17
SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: FLOWPATH EAST
Reach
FLOWPATH EAST
FLOWPATH EAST
FLOWPATH EAST
FLOWPATH EAST
FLOWPATH EAST
River Sta
140
130
120
110
100
Contr
.1
.1
.1
.l
.l
Expan.
.3
.3
.3
.3
.3
7.53
11.44
2.31
0.28
52.2
11.47
0.37
0.85
105.17
49.96
4.00
0.53
728.6
49.98
0.68
2.74
3.30
6.68
2.06
0.24
22.9
6.70
0.31
0.64
Profile Output Table - Standard Table 1
Reach River Sta Profile Q Tota1 Min Ch El W.S. Elev Crit W.S. E.G.
Elev E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl
(cfs) (ft) (ft) (ft)
(ft) (ft/ft) (ft/s) (sq ft) (ft)
FLOWPATH EAST 100 PF 1 116.00 4914.20 4914.7'7 4914.77
4915.00 0.020835 4.00 31.17 68.08 0.97
FLOWPATH_EAST 110 PF 1 92.00 4917.94 4918.71 4918.66
4918.86 0.012817 3.48 33.30 86.84 0.78
FLOWPATH EAST 120 PF 1 92.00 4918.51 4919.66
4919.68 0.001180 1.51 96.05 184.00 0.26
FLOWPATA EAST 130 PF 1 82.00 4918.14
4919.79 0.000151 0.�0 193.13 251.14
FLOWPATH EAST 140 PF 1 82.00 4920.07
4920.88 0.022388 3.76 22.85 63.37
Profile Output Table - Standard Table 2
Reach River Sta Profile E.G. Elev
Loss Q Left Q Channel Q Right Top Width
(ft)
(ft) (cfs) (cfs) (cfs) (ft)
FLOWPATH EAST 100 PF 1 4915.00
'7.53 105.17 3.30 68.08
FLOWPATH EAST 110 PF 1 4918.86
0.01 15 43 70.80 5.78 86.84
FLOWPATH EAST 120 PF 1 4919.68
0.01 24 45 26.53 41.01 184.00
FLOWPATH EAST 130 PF 1 4919.79
0.00 27.45 27.80 26.74 251.14
FLOWPATH EAST 140 PF 1 4920.88
0.06 1.18 80.32 0.50 63.37
4919.79
0.10
4920.66 4920.66
0.98
W.S. Elev
(ft)
4914.77
4918.71
4919.66
4919.79
4920.66
vel Head
(ft)
0.23
0.15
0.02
0.00
0.22
Frctn Loss C & E
(ft)
3.85
0.80
0.11
0.13
APPENDIX D
Erosion Control Report
� NORTHERN
Er,c�NEeR�Nc PSD Middle School High School #2
A comprehensive Erosion and Sediment Control Plan (along with associated details) has been
included with the final construction drawings. It should be noted, however, that any such Erosion
and Sediment Control Plan serves only as a general guide to the Contractor. Staging and/or phasing
of the BMPs depicted, and additional or different BMPs from those included may be necessary
during construction, or as required by the authorities having jurisdiction.
It shall be the responsibility of the Contractor to ensure erosion control measures are properly
maintained and followed. The Erosion and Sediment Control Plan is intended to be a living
document, constantly adapting to site conditions and needs. The Contractor shall update the
location of BMPs as they are installed, removed or modified in conjunction with construction
activities. It is imperative to appropriately reflect the current site conditions at all times.
The Erosion and Sediment Control Plan addresses both temporary measures to be implemented
during construction, as well as permanent erosion control protection. Best Management Practices
from the Volume 3, Chapter 7— Construction BMPs will be utilized. Measures may include, but are
not limited to, silt fencing along the disturbed perimeter, gutter protection in the adjacent roadways
and inlet protection at existing and proposed storm inlets. Vehicle tracking control pads, spill
containment and clean-up procedures, designated concrete washout areas, dumpsters, and job site
restrooms shall also be provided by the Contractor.
Grading and Erosion Control Notes can be found on the Utility Plans. The Final Plans contain a
full-size Erosion Control sheet as well as a separate sheet dedicated to Erosion Control Details. In
addition to this report and the referenced plan sheets, the Contractor shall be aware of, and adhere
to, the applicable requirements outlined in the Development Agreement for the development. Also,
the Site Contractor for this project will be required to secure a Stormwater Construction General
Permit from the Colorado Department of Public Health and Environment (CDPHE), Water Quality
Control Division — Stormwater Program, prior to any earth disturbance activities. Prior to securing
said permit, the Site Contractor shall develop a comprehensive Stormwater Management Plan
(SWMP) pursuant to CDPHE requirements and guidelines. The SWMP will further describe and
document the ongoing activities, inspections, and maintenance of construction BMPs.
Final Erosion Control Report
,il� , l_l- 1�j��
Excerpts-Town of Timnath Master Drainage Plan Update,
Ayres Associates, Revised November, 2018.
Town of Timnath
Master Drainage Plan Update
2018
Prepared for:
Town of Timnath
4800 Goodman Rd, Timnath, CO 80547
August 2018 - FINAL
Revised - November 2018
0
H i re w�a.rt
Town of Timnath
Master Drainage Plan Update
2018
s
assoc�aTEs
3665 JFK Parkway, Bldg. 2, Suite 100
Fort Collins, CO 80525-3152
970.223.5556
www.AyresAssociates.com
Ayres Associates Project No. 31-1881.00
File: f:\32-1881.00 timnath master plan update\report\timnath master drainage plan - 2018 update.docx
ll -o�-�ol�
Town of Timnath
Master Drainage Plan Update
2018
�_1� -
ASSOCIATES
3665 JFK Parkway, Bldg. 2, Suite 100
Fort Collins, CO 80525-3152
970.223.5556
www.AyresAssociates.com
Ayres Associates Project No. 31-1881.00
File: f:\32-1881.00 timnath master plan update\report\timnath master drainage plan - 2018 update.docx
Contents
Pa�e No.
1. Introduction ............................................................................................................................ 1
1.1. Project Goals and Objectives ............................................................................................................ 3
1.2. Scope of Work .................................................................................................................................. 3
1.3. Acknowledgements .......................................................................................................................... 5
1.4. Previous Studies ............................................................................................................................... 5
1.5. Mapping and Surveying .................................................................................................................... 6
2. Hydrology Plan ........................................................................................................................ 7
2.1. Timnath Basin Description ................................................................................................................ 7
2.2. General Modeling Procedures .......................................................................................................... 7
z.2.1. Modeling Approach .................................................................................................................. 7
z.2.2. Rainfall ...................................................................................................................................... 8
2.3. Baseline Condition Hydrology Model ............................................................................................... 9
2.3.1. Delineation and Definition of Subbasins .................................................................................. 9
2.3.2. Subbasin Hydrology Parameters .............................................................................................. 9
2.3.3. Conveyance Element Routing ................................................................................................ 10
2.3.4. Conveyance Element Parameters .......................................................................................... 10
2.3.5. Node Elevations ...................................................................................................................... 11
2.3.6. External Inflows ...................................................................................................................... 11
2.3.7. Timnath Reservoir Inlet Canal ................................................................................................ 11
2.3.8. Timnath Reservoir Outlet Canal ............................................................................................. 12
2.3.9. Timnath Reservoir .................................................................................................................. 12
2.3.10. Downtown Timnath .............................................................................................................. 13
2.3.11. Diversions ............................................................................................................................. 14
2.3.12. Development Since 2005 ..................................................................................................... 14
2.3.13. Outfalls ................................................................................................................................. 14
2.3.14. Results of Baseline Hydrology Model ................................................................................... 15
2.3.15. Comparison of Results to Previous Study ............................................................................ 15
2.4. Developed Condition Hydrology Model ......................................................................................... 17
2.4.1. Future Land Use Conversion .................................................................................................. 17
2.4.2. Conceptual Detention for Future Development .................................................................... 18
2.4.3. Routing Changes for Future Conditions ................................................................................. 18
z.4.4. Downtown Timnath ................................................................................................................ 18
2.4.5. Summary of Developed Condition Hydrology Results ........................................................... 18
2.4.6. Comparison of Developed Results to Alternative 3 from Previous Study .............................. 19
3. Hydraulic Evaluation of Timnath Reservoir Inlet Canal ............................................................Z1
3.1. SRH-2D Hydraulic Model Parameters ............................................................................................. 21
3.2. TRIC Capacity Analysis .................................................................................................................... 22
3.3. Unsteady Hydraulic Analysis of 10-year and 100-year Flows ......................................................... 22
3.3.1. Tailwater Conditions/ Timnath Reservoir WSEL Discussion ................................................... 23
3.4. Discussion of TRIC Results .............................................................................................................. 23
4. Hydraulic Evaluation of Timnath Reservoir Outlet Canal ..........................................................26
4.1. Capacity Analysis ............................................................................................................................ 26
4.2. SRH-2D Hydraulic Model Parameters ............................................................................................. 26
4.3. Unsteady Analysis of 10- and 100-year Flows ................................................................................ 26
4.4. Discussion of TROC Results ............................................................................................................. 27
5. Alternative Evaluations and Conceptual Design .......................................................................29
5.1. Hydrology for Channel Design ........................................................................................................ 29
5.2. Conceptual Hydraulic Design of Clark and TROC Drainage Channels ............................................. 29
5.3. Downtown Area Improvement Alternatives .................................................................................. 33
5.3.1. Land Use and Imperviousness Assumptions .......................................................................... 33
5.3.2. Timnath Elementary School Detention .................................................................................. 33
5.3.3. Storm Drain Sizing Criteria - 100-Year Flows .......................................................................... 33
5.3.4. Recommended Improvements— Existing Condition Flows .................................................... 33
5.3.5. Recommended Improvements— Future Flows ...................................................................... 33
5.3.6. Limitations and Further Study Recommendations ................................................................ 34
6. Hydraulic Evaluation of Greeley No. 2 Canal and Conceptual Spill Weir Design .........................36
6.1. Capacity Analysis ............................................................................................................................ 36
6.2. SRH-2D Hydraulic Model Parameters ............................................................................................. 36
6.3. Unsteady Hydraulics Analysis ......................................................................................................... 36
6.4. Conceptual Design of Spill Weir ..................................................................................................... 36
6.4.1. Limitations and Further Study Recommendations ................................................................ 37
7. Implementation Plan ..............................................................................................................38
7.1. Regional Drainage Facilities ............................................................................................................ 38
7.1.1. Timnath Reservoir Inlet Canal (TRIC) ..................................................................................... 38
�
7.1.2. Timnath Reservoir Outlet Canal (TROC) ................................................................................. 38
7.2. On-Site Detention ........................................................................................................................... 39
7.3. Minor Lateral Drainage Facilities .................................................................................................... 40
7.4. Downtown Drainage Improvements ..............................................................................................40
7.5. Timnath Reservoir .......................................................................................................................... 41
7.6. Further Study Recommendations ................................................................................................... 41
8. References .............................................................................................................................42
List of Appendices
Appendix A Baseline Condition Hydrology
Appendix B Developed Condition Hydrology
Appendix C Conceptual Hydraulic Design of Clark Channel and Timnath Reservoir Outlet Canal Channel
Appendix D Downtown Area Improvement Alternatives
Appendix E SRH-2D Hydraulics Results of Timnath Reservoir Inlet Canal
Appendix F SRH-2D Hydraulics Results of Timnath Reservoir Outlet Canal
Appendix G SRH-2D Hydraulics Results of Greeley No. 2 Canal
Appendix H Digital Data — Modeling Files and GIS Data
List of Figures
Pa�e No.
Figure 1.1 Timnath Town Limits, GMA, and Study Area ........................................................................2
Figure 3.1 Timnath Reservoir Inlet Culvert Gates (Reservoir Side) .....................................................21
Figure 5.1 Clark Channel and TROC Channel Conceptual Design Cross Sections ................................32
Figure 5.2 North Downtown Storm Drain System Alternatives Map ..................................................35
List of Tables
Table 2.1 Rainfall Hyetographs .................................................................................
Table 2.2 Hydrologic Soil Group Recommended Values . .........................................
Table 2.3 Timnath Reservoir Stage-Storage Information .........................................
Table 2.4 Timnath Reservoir Outlet Rating ..............................................................
Table 2.5 Summary of Results for Baseline Condition SWMM Hydrology Model...
Table 2.6 Comparison of Baseline Hydrology Model Results to Previous Study.....
....................
....................
....................
....................
....................
....................
Pa�e No.
.8
10
13
13
16
16
�
Table 2.7 Land Use to Imperviousness Table .......................................................................................17
Table 2.8 Summary of Results for Developed Condition SWMM Hydrology Model ...........................19
Table 2.9 Comparison of Developed Hydrology Model Results to Previous Study .............................20
Table 5.1 Summary of Discharge for Design of Clark and Timnath Reservoir Outlet Canal Channels 29
Table 5.2 Clark Channel Design Summary ...........................................................................................30
Table 5.3 Timnath Reservoir Outlet Canal - Channel Design Summary ...............................................30
iv
3. Hydraulic Evaluation of Timnath Reservoir Inlet Canal
The goals of the hydraulic analysis of the Timnath Reservoir Inlet Canal (TRIC) were to quantify the capacity
of the canal, identify the natural spill locations, develop spill rating curves to be used in the hydrology
model, evaluate the impact of development, and to analyze the performance of the current canal during
the 10- and 100-year storm events. This study identified canal spill locations but did not evaluate
alternatives, solutions for the spills, or define a floodplain.
3.1. SRH-2D Hydraulic Model Parameters
Model input data for the SRH-2D hydraulic model included lidar topography data and hydraulic roughness
(Manning's n) coverages. The manning's n values used forthis model were 0.035 for the channel and 0.04
for the overbank areas.
Modeling for the TRIC bridge and culvert structures were performed using the SRH-2D pressure flow
routine. Culvert and bridge opening dimensions were verified with survey information. Pressure flow
structures were modeled at the County Road 5, Prospect Road, and County Road 42E crossings, as well as
at the Timnath Reservoir inlet culvert which consists of twin 5'(W) x 6.5'(H) concrete box culverts.
Tailwater conditions in Timnath Reservoir, at the downstream end of the model, were set to match the
normal high-water level of the Reservoir (WSEL 4910.77) which is essentially equal to the crown of the
inlet culverts (EI. 4910.79). This tailwater assumption is discussed further in Section 3.3.1.
On the downstream end of the inlet culverts (reservoir side) there are two flap gates which prevent
reservoir water from flowing back into the TRIC canal. These flap gates were not discretely modeled with
either the hydrology or hydraulics models; essentially the models function such that the flap gates would
be open during storm flows. This decision was made for two reasons: 1) There is no design or rating
information available for the hydraulic performance of the flap gates, and 2) the counter-weighted flap
gates open rather easily and result in relatively small head loss compared with the hydraulic controls of
the culvert restriction and the high reservoir tailwater (at the crown of the inlet culverts). The culvert
gates are shown in Figure 3.1 below.
The TRIC drain into Lake Canal was ignored because the relatively small flow rate was considered
negligible (approx. 5 cfs) and because this gate is manually operated.
��
. �a�
�: �-�:
�-� , ,�- �,
f `����� ` t � �:
�:� �� z-�� .,�.��
����� � ��
f
{{ ���� , µ�
�r ��,� s�° r� ��� s� ,*, -�.�, ;>,.
z..
��., ;+��� ti #� . ,',�r�` :� ? '
� �� �� �.r � � �. 6��--`�� ��~` �
=�Y� t :.�° . ��� � �,.� ;r • � � � � ,
� � � � fiw"' � I' � .i- �. .
/ / �'� l
_ � ,� � �� �-f
�� f F'- ��� � f .
4'-� { .3 � ..�'�y , ,� r .v�
�_ c�r.
�',� y.��. ..
S�,r`,� r�` avr
� ;�� _ _�
� ..
e i ��k� • _
�' �r �"�r���- y',, i�
� " . r,�..� � r �`,-i � t. , Fs
Figure 3.1 Timnath Reservoir Inlet Culvert Gates (Reservoir Side)
Photo Credit (Fuhrman, 2017)
21
3.2. TRIC Capacity Analysis
To determine capacity of the canal, the TRIC was broken into three reaches: I-25 to Prospect, Prospect to
CR42E, and CR42E to Timnath Reservoir. These reaches were analyzed in three separate SRH-2D models
with increasing discharge until flows began to spill out of the channel's downslope embankment (to the
southwest). The maximum flow rate that was completely contained within the canal's banks was
considered the channel capacity. A map of the results from this analysis can be found in Appendix E. The
maximum capacities for each individual section are as follows:
1. I-25 to Prospect Road (near McLaughlin Lane): 244 cfs.
(Note: Ponding in adjacent areas north of the channel begins at approximately 185 cfs.)
2. Prospect Road (near McLaughlin Lane) to TRIC crossing with Prospect Road: 350 cfs
3. Prospect Road to CR42E:
a. Upstream Section: 275 cfs
b. Downstream Section: 190 cfs
4. CR42E to Timnath Reservoir Inlet: 200 cfs
Using the three individual 2D models described above, rating curves were developed for each spill
location. These locations are labeled A through E, from upstream to downstream, and are briefly
described as follows:
• Spill A is an area of ponding on the north side of the channel 1,400 feet east of I-25. At this
location, water that spills out of the channel does not leave the model but ponds in the adjacent
fields. When the TRIC discharge decreases, most of the ponding in this area will to drain back into
the canal leaving a small amount of shallow ponding adjacent to the ditch road.
• Spill B is 1500 feet further downstream where the TRIC turns parallel to Prospect Rd. This location
begins spilling south when flows in the canal exceed 244 cfs.
• Spill C is south of Prospect where flows will spill to the west when flows exceed 275 cfs.
• Spill D is just north of CR42E, this is the most limiting area of the channel where water spills to the
west when flows exceed 190 cfs.
• Spill E is approximately 700 feet downstream of CR42E and spills exit the channel when flows
exceed 200 cfs.
The spill rating curves were developed by placing model monitoring lines immediately upstream,
downstream, and perpendicular to each spill location. Monitor lines are features of SRH-2D which track
flow through the line at each timestep. The monitor line data was used to develop channel and spill rating
curves at each spill location, the rating curves were then entered to the hydrology model. Appendix E
presents these rating curves and spill results for the 10 and 100-year storm events (existing and future
conditions).
3.3. Unsteady Hydraulic Analysis of 10-year and 100-year Flows
Hydraulic analyses of the 10-year and 100-year TRIC flows were performed in SRH-2D using input
hydrographs from the EPA SWMM hydrology model. It was assumed that all upstream drainage would
be intercepted by the TRIC. Prior to the storm inflows, irrigation baseflow was run through the model in
22
steady state until equilibrium was reached through the entire channel. The decreed flow for this channel
is 200-cfs, but because the TRIC begins to spill flow at 190-cfs, this flow rate was chosen as the baseline
condition. The 190-cfs base irrigation flow continued during the storm duration. With these inflows, the
2D model was run in an unsteady condition for an 8-hour period.
The canal flow and canal spill results compared reasonably well between the SRH-2D hydraulics model
and the EPA SWMM hydrology model, with some variation that would be expected between different
models. These comparisons are presented in Appendix E.
3.3.1. Tailwater Conditions/ Timnath Reservoir WSEL Discussion
The TRIC canal terminates at the Timnath Reservoir inlet, which is the downstream boundary of the SRH-
2D analysis. The SRH analysis assumed a constant water surface in Timnath Reservoir equal to the normal-
high water level (normal-HWL) or service spillway crest at WSEL 4910.77. However, the final SWMM
hydrology models showed that the reservoir level may rise above the normal HWL, during a 100-year
storm event, by 1.93-feet (existing/ baseline conditions) to 2.34-feet (future conditions). These depths
correspond to water surface elevations of 4912.70 (existing) and 4913.11 (future). The hydrology model
assumed conservatively that the Timnath Reservoir initial conditions would be at Normal-HWL prior to
100-year rainfall.
The existing and future SWMM model results show that, given a drainage basin wide storm event, the
TRIC would not only have the inability to convey flows into the Reservoir, but that the Reservoir could
backflow through the TRIC if the inlet flap gates were left in the fixed open position. Without the Reservoir
inlet flap gates in place, these maximum reservoir WSELs would fill the TRIC to 3-feet deep at Prospect
Road and 2-feet deep at I-25. These maximum Reservoir WSELs are higher than the TRIC spill crests at
the Spill D and E locations and presents a situation where — without the inlet culvert flap gates —
reservoir water could backflow through the TRIC and spill over the canal banks (existing and future
scenarios).
3.4. Discussion of TRIC Results
As presented in the previous sections, the primary purpose of the TRIC hydraulic analyses focused on
conveyance of the 10-year and 100-year stormwater flows in addition to the 190-cfs of irrigation base
flow. These analyses showed that the TRIC does not have capacity, above the 190-cfs of irrigation base
flow, to convey additional stormwater flows without spills from the canal. In addition, the SWMM
hydrology models showed that the existing and future 100-yr WSELs in the Reservoir would be higherthan
portions of the TRIC embankment.
At the direction of the Town, a less conservative SRH modeling run was performed which removed the
190-cfs irrigation baseflow and allowed storm flows to be run through a dry TRIC channel. The results
showed that, without irrigation flows, the TRIC would be able to convey all of the future condition 100-
year flows (or about 70% of existing condition flows) to Timnath Reservoir. This model run assumed the
Reservoir level would remain at the normal-HWL. The reduction in canal spills from these runs is due to
a combination of two main factors: 1) flow attenuation from the empty TRIC provides storage volume
similar to a detention pond, and 2) the hydraulic capacity of the TRIC to convey 190-cfs to the reservoir—
assuming the reservoir level would not rise above the normal-HWL. However, the SWMM hydrology
results, as discussed in Section 3.3.1. showed that a watershed wide rain event would increase the
Timnath Reservoir WSELs such that storm flows could not be conveyed into the Reservoir via the TRIC.
23
Summarizing the overall TRIC modeling results, the following conclusions can be made:
1. The overall capacity of the TRIC is 190-cfs before canal spills begin. This is slightly less than the
decreed flow of 200-cfs and with the caveat that at 185-cfs ponding begins in adjacent areas north
of the TRIC, between I-25 and Prospect Road. Flows spills to the south/ southwest of the TRIC
begin at 190-cfs and are located along the canal section between Prospect Road and CR 42E.
2. The capacity of the TRIC to convey 190-cfs is based on the WSEL of Timnath Reservoir staying at,
or below, the normal HWL of the reservoir (4910.77 NAVD 88).
3. In the event of a drainage basin wide 100-year storm event, the water surface of Timnath
Reservoir will fill to elevations higher than portions of the TRIC embankment (Existing WSEL:
4912.70; Future WSEL: 4913.11). The reservoir inlet flap gates will prevent back flow in this
situation. As-such, the TRIC — along its current alignment and profile — would be unable to
convey flows into the Reservoir in this situation.
4. Based on points 1- 3, the present configuration of the TRIC cannot be relied upon to convey major
storm flows. Significant improvements to the TRIC would be required to provide assurance that
storm flows can be conveyed to the Reservoir.
5. Future implementation of 100-year to 10-year over-detention (per current Timnath criteria), in
developing areas tributary to the TRIC, will reduce but not eliminate the flow spills.
The TRIC analyses and the conclusions stated above lay the framework for several TRIC stormwater
management scenarios to be considered by the Town, presented in the following list. These scenarios
were not modeled or evaluated, but are conceptual in nature.
A. Disconnect stormwater dischar�es from TRIC: This management scenario assumes the most
conservative case (being: Timnath Reservoir full, irrigation base flow in the TRIC, and 100-year
rainfall event in the drainage basin), for which the TRIC has no capacity to convey storm flows.
Under this scenario, all future development, upstream of the TRIC, will need to find a separate
outfall for stormwater discharges. This will likely require construction of stormwater channels on
the downstream side of the TRIC.
B. Conv_ey stormwater throu�h the TRIC to formal spill location(s): This scenario would convey all
storm water intercepted by the TRIC to a formalized spill location(s) where excess flows would be
routed into the Clark Drainage. This will require constructed drainage channels between the TRIC
and the main Clark Drainage channel and improvements to the TRIC to eliminate informal flow
spills.
The dimensions and sizing of TRIC channel improvements and spill weir configuration would
require further hydraulic evaluation with an appropriate backwater model and were beyond the
scope of this study. This scenario may need further hydrologic evaluation in EPA SWMM if the
formalized spill locations significantly change the existing flow spills.
C. Convev stormwater throu�h the TRIC to Timnath Reservoir: This scenario would convey all storm
flows through the TRIC into Timnath Reservoir. Significant improvements to the TRIC would be
necessary so that the full 100-year flows could be conveyed into the Reservoir, without spills and
with assuming the highest tailwater in the Reservoir (as shown in the existing and future
24
hydrology models). The required improvements would include raising the canal embankment
height and may include widening the canal or the addition of a second channel along a higher
profile grade-line.
The dimensions and sizing of these TRIC channel improvements would require further hydraulic
evaluation with an appropriate backwater model and were beyond the scope of this study. This
scenario would need further evaluation in EPA SWMM hydrology to determine the full TRIC flow
rate without spills. Alternative hydrology scenarios for the TRIC were not part of the present study.
D. Hydrolo�y Alternatives: In addition to the conveyance alternatives presented in points A-C,
hydrology alternatives may also be considered for further evaluation. Scenarios such as more
restrictive detention requirements upstream from the TRIC or regional detention facilities would
lower peak flow rates and reduce the size of future conveyance improvements.
Beyond these options, two other stormwater management scenarios were initially considered but not
recommended for further evaluation because of impacts to irrigation flows and storage. These scenarios
would increase the effectiveness of the current TRIC and Reservoir facilities for stormwater management
but would require significant concessions from the TRIC and Reservoir owners (such as constraints on the
timing of TRIC irrigation flows or reduction of the maximum irrigation water storage in the Reservoir), and
therefore were not recommended for further consideration.
25
File�.F�\32-1d81 00 TimnatM1 MasterPlan Upda:e\uIS�MXD�ppentlixMapsWppB_Fu�ure\B�t -F�T_B�sinMep_NortM1.mxd � PIa1By'.SImF.sonM - Oa�e'.8121/2018
File�.F�\32-1881 00 TimnatM1 MasterPlan Upda:e\uIS\M%D�Appentl�ixMapslAppA_ExistinglA-1 � EX_BasnMep_No�M1.nntl � PlotBy'.SimwonM - Oa�e'.B12�/2�16
EXHIBIT B-3 - SWMM Routina Map
Developed Condition - North Map
Timnath Drainage Master Plan 2018 Update
Leqend
SWMMNodes suboas��euu�nary
1 DIVIDER y SubasinLabel
JUNCTION ------ SubbavinCainnection
♦ Ol1TFHLL Ir�iyetionorDminegeCenal
■ POND(EXIST.) FutureGlaMGhannelAllgnmant
SWMM Conveyance links
- l'ink
t Orllice; 0ulle[ Weir !'
E PROSPECT RU
0
R
E MULBERRY ST d„�
3�
I9
¢ *@ '
II
io
_" ' `� +u
�" ` �
d�� � - gy'/ �'_'-,r�
/ � /
�
a'. :. ..---,.`
- , � ,,; - \ o<
�.
II 1 ,r,c � x_ _y_.-�__`9F. a
�. .a�«: �w���, �� ..
/ I.. _. .,.. ��. .. d
�.�: ___ * ' �
� ...,.,,1'_"_ /` .
��, �, N/� ,;*:
, _ h
�'
; ' . .��.. o ..�:,.
'" ,y
❑ � 3
O
f` C
�
� 6 �
O
U �
f.P �i � 7 . ...
�
* ,,e �.
h
` ��_ � aooa . ,� �oo
x�o
. V ' $
*.'� Z V ... _�..
i
s���\ f � �� �`.k.
� I � \1 ��� : ' _�-'
f� S
#:, �; �lu �-a��
�� ;� � �,
� �
Y
q \.% E COUNTV ROAD 40
��o�
r= 1...,., q
, oow�aw� Tm�a�n A,ea,
See Map B 5
4.
� �
G '' y
...I P_- � �. a
*s
� ��54,�':.. �A_
4 �,;
1 �
1f 4__ .,�� #..;:-�� � ....,\
HIGHWAV14
n,
TIMNATH
RESERVOIR
i1-_. _
�„
�
�
��s.._.,. �
II h /
c�'
� ,�
T�
#
-1
h
F'ile:F,\32-188t.00T�imna�M1MasterPlanUptlatelGIS�MXD�ApuPn�ixMa{wWnVB fiiLLirql&9-FUl_RoutingMaFl_NonM1.mml - PI�IBy:S�iinps�nM - oaie:9/21/�01H
Timnath Stormwater Master Plan Update - 2018
B-4 - SWMM Model Results - Link Flows
Existing SWMM Model Results
Element ID Discharge (cfs)
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
5 10 16 21 29 39 55
10 10 16 20 28 39 94
14 16 23 30 50 84 140
31 14 20 32 90 213 423
33 8 11 13 23 52 103
35 3 7 21 91 223 466
37 30 41 65 236 586 1,192
39 28 40 59 162 364 701
45 30 42 64 236 591 1,224
46 2 2 4 16 36 69
53 2 2 4 16 36 69
59 372 549 702 1,054 1,732 3,035
60 28 40 56 203 573 1,213
61 6 S 10 30 70 133
62 295 438 553 771 1,149 2,007
63 1 2 3 9 25 55
64 15 21 33 91 205 379
67 29 43 63 231 589 1,269
70 7 10 13 22 46 84
71 14 20 26 48 90 160
75 15 22 28 52 126 249
76 13 19 25 52 125 247
87 10 15 20 51 122 240
88 2 2 3 4 8 16
89 75 114 145 198 269 379
94 2 3 3 11 27 55
95 2 3 4 12 37 83
97 6 7 8 17 42 89
98 62 88 109 149 213 318
99 38 53 fi4 S1 1Z3 199
101 50 76 9� 133 183 260
102 2 3 3 9 25 52
103 3 5 6 8 15 29
104 12 19 25 34 46 61
107 0 1 1 4 9 17
108 13 20 30 71 133 227
109 2 3 3 12 31 62
112 5 6 8 27 61 111
114 0 0 o a 0 a
115 12 17 21 30 49 93
118 2 3 4 10 28 57
119 12 17 23 58 123 230
120 9 12 13 15 19 34
122 23 35 45 63 94 157
123 19 27 34 46 66 97
124 74 113 147 Z00 262 335
127 22 33 41 56 76 104
128 1S 26 34 54 83 132
133 6 9 12 16 22 30
134 1 1 1 3 7 14
135 11 18 27 59 113 199
137 14 20 32 90 211 410
138 5 7 9 72 15 21
142 0 0 1 3 8 17
143 0 1 1 7 18 35
144 1 1 2 2 2 23
145 7 10 13 1S 37 68
146 11 16 21 29 48 81
147 3 4 5 9 13 18
148 29 41 64 Z34 583 1,199
149 6 S 10 14 21 34
151 11 ll 22 29 45 73
152 5 S 10 14 20 29
153 5 7 9 13 19 29
155 11 17 21 28 38 52
156 7 11 13 37 85 162
158 i z z sa Zs a�
159 1 z a 15 31 sa
160 0 0 0 0 0 0
161 0 0 0 0 49 117
162 26 38 45 56 74 148
163 15 23 29 41 57 84
164 7 9 11 16 24 39
Future SWMM Model Results
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
11 17 21 28 34 40
7 12 15 20 26 34
19 30 38 54 76 110
23 38 55 100 153 227
3 5 7 14 21 27
28 45 65 119 181 264
#N/A pN/A NN/A f#N/A #N/A #N/A
0 0 1 1 1 4
qN/A #N/A pN/A ?YN/A SiN/A !iN/A
2 3 4 7 9 11
2 3 4 7 9 11
260 436 614 1,065 1,617 2,313
46 79 101 140 178 222
3 5 7 12 15 19
247 406 543 772 1,009 1,283
2 3 4 5 10 13
17 27 38 74 118 182
4 7 9 13 16 20
7 10 13 22 46 84
14 20 26 48 90 160
15 24 32 44 55 68
15 24 31 44 55 68
15 24 31 44 55 67
1 1 1 2 2 3
74 112 143 196 266 374
2 3 4 6 8 10
3 5 7 11 14 17
6 9 il 16 20 23
62 88 109 149 213 318
38 53 65 82 125 201
50 76 97 133 183 260
2 3 4 5 6 7
2 4 5 7 8 10
11 17 21 28 34 40
0 1 1 2 2 3
25 41 54 77 106 150
1 2 3 5 7 9
5 7 10 20 45 82
0 o a o 0 0
2 3 5 12 17 22
1 2 3 5 6 8
13 21 29 46 69 101
9 12 13 15 19 34
23 35 45 63 94 157
19 27 34 46 66 97
74 113 147 200 262 335
15 23 30 42 57 80
21 34 44 63 93 139
6 9 12 16 22 30
0 1 1 2 2 3
10 17 22 32 40 49
21 34 49 91 140 211
5 7 9 12 15 21
0 1 1 1 2 2
1 1 1 1 2 2
1 1 2 2 2 23
7 10 13 18 37 68
11 16 21 29 48 81
3 4 5 9 13 18
ISN/A tSN/A NN/A NN/A riN/A riN/A
5 8 10 72 15 19
il 17 22 29 45 73
5 6 8 SO 11 14
5 7 9 13 19 29
7 10 12 15 18 22
7 11 13 37 85 162
1 1 2 3 4 5
2 3 5 19 39 69
D 0 0 0 0 0
0 0 0 0 0 25
26 38 45 56 74 110
24 37 46 63 86 122
5 9 11 16 21 27
F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018
Timnath Stormwater Master Plan Update - 2018
B-4 - SWMM Model Results - Link Flows
Existing SWMM Model Results Future SWMM Model Results
Element ID Discharge (cfs) Discharge (cfs)
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
165 6 9 12 17 31 87 7 11 14 20 26 34
166 10 20 30 48 73 106 15 24 32 52 81 122
169 1 2 2 6 15 32 1 2 2 3 3 4
170 3 4 5 10 19 34 2 4 5 7 9 12
171 2 2 3 8 19 35 1 1 2 3 4 6
172 4 7 10 35 75 138 1 2 4 8 11 14
173 29 43 63 231 589 1,269 4 7 9 13 16 20
174 S S 10 17 45 90 3 5 7 il 14 18
175 3 4 5 7 15 28 1 1 1 2 3 5
176 4 7 21 91 224 469 28 45 65 119 183 267
177 17 25 32 49 81 136 17 25 32 49 81 136
178 14 21 27 38 53 81 13 20 26 37 51 72
183 5 S 9 25 58 111 6 9 11 14 17 21
184 24 38 48 65 112 190 24 38 48 65 112 190
185 14 22 28 38 56 108 7 12 16 22 28 35
186 4S 72 91 123 166 234 48 72 91 123 166 234
193 2 4 4 il 2S 56 2 3 4 6 8 10
203 2 3 a 7 15 2s 2 a 5 7 & 10
206 0 0 1 2 16 66 0 1 1 1 1 4
208 10 18 28 67 124 216 25 41 54 77 106 150
209 9 13 16 22 32 52 6 9 13 19 26 33
210 3S 54 68 92 150 271 18 27 33 44 55 67
211 7 10 14 34 74 162 13 21 29 41 54 68
212 3 4 5 7 17 33 2 3 4 6 8 11
214 3 4 5 13 33 69 1 2 3 6 8 11
217 14 21 28 47 80 135 14 21 28 42 62 93
218 15 21 28 56 106 189 13 21 28 43 64 95
219 27 39 57 156 347 665 65 108 147 217 287 377
220 6 8 10 13 19 34 4 7 9 13 17 22
223 14 20 30 84 188 341 17 27 35 69 109 169
224 6 9 11 16 26 46 6 9 11 ifi 26 46
226 9 13 16 22 30 44 6 8 9 12 15 18
234 9 13 16 26 48 84 6 10 13 18 22 27
246 29 41 59 166 377 726 0 0 1 1 1 4
249 4 5 7 10 17 30 5 8 10 12 15 19
251 30 42 64 236 591 1,2Z1 17 28 36 50 62 76
261 2 2 3 4 6 9 1 1 2 3 4 5
264 1 2 2 3 4 7 1 1 2 3 4 4
268 28 42 63 230 580 1,216 #N/A #N/A f7N/A #N/A tYN/A tYN/A
270 3 4 6 19 47 95 5 7 9 13 16 20
283 4 6 8 25 57 109 6 9 11 14 17 21
291 1 2 2 4 9 18 1 2 3 3 4 5
292 0 0 0 0 0 0 0 0 o a z 11
349 3 5 6 12 23 43 7 10 12 16 20 24
361 8 12 1s 21 3a 4z 9 12 15 21 3o a2
600 9 13 16 3S 75 166 13 21 29 42 54 68
601 3 4 5 13 32 63 1 2 3 5 7 9
1121 295 438 553 771 1,149 2,007 247 406 543 772 1,009 1,283
ll22 15 21 26 �7 194 405 19 28 34 46 58 71
1123 28 40 56 203 573 1,213 46 79 101 140 178 222
1124 33 47 57 171 420 876 32 56 72 99 126 156
1125 372 549 702 1,054 1,732 3,035 260 436 614 1,065 1,617 Z,313
1126 363 532 666 901 1,361 2,353 145 237 334 660 1,091 1,630
1611 11 15 26 73 141 218 11 19 29 59 85 110
lOSC 3 4 S 22 58 114 1 2 4 13 29 57
111A 24 36 47 106 223 436 53 87 116 165 210 265
1118 16 28 42 106 236 472 55 91 122 175 224 2S1
115A6 2 3 3 7 47 107 1 2 3 12 20 28
116_pipe 1 1 1 1 1 1 1 1 1 1 1 1
116 SF 0 0 0 0 0 0 0 0 0 0 0 0
120A 7 10 13 18 28 46 2 3 4 7 10 12
121A 16 24 30 41 56 75 11 18 23 32 42 54
1216 28 40 58 161 363 698 #N/A #N/A #N/A NN/A #N/A #N/A
125A 19 29 38 56 91 153 19 29 38 56 91 153
134A 11 17 21 31 49 85 6 SO 13 18 22 27
175A 19 28 34 47 65 94 19 28 34 47 65 94
177A 0 1 1 1 2 2 0 1 1 1 2 2
185C 6 9 11 15 26 49 2 3 5 7 10 12
209A 7 10 14 35 76 168 38 62 84 119 152 195
2096 33 49 61 108 224 438 53 87 116 165 210 265
267A 2 3 7 25 59 104 1 2 4 8 11 14
277A 1 1 1 3 5 13 1 1 1 3 5 13
F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018
Timnath Stormwater Master Plan Update - 2018
B-4 - SWMM Model Results - Link Flows
Existing SWMM Model Results Future SWMM Model Results
Element ID Discharge (cfs) Discharge (cfs)
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
OP-SOA 0 0 0 0 0 4 0 0 0 0 0 4
OP-S1 0 0 0 12 43 99 14 22 28 37 46 56
OP-SA 0 0 0 8 25 52 0 0 0 8 25 52
OP-75 0 1 1 1 1 2 0 1 1 1 1 2
OP-75A S 12 15 19 24 29 8 12 15 19 24 29
OP-75A WEIR 0 0 0 a 0 0 0 0 0 0 0 0
OP-75D 1 1 2 2 2 3 1 1 2 2 2 3
OP-75D WEIR 0 0 0 a 0 21 0 0 0 0 0 21
OP-77 0 1 1 1 2 2 0 1 1 1 2 2
OP-77B 1 1 1 2 4 11 1 1 1 2 4 11
OP-77C 0 0 0 1 1 1 0 0 0 1 1 1
OP-77C WEIR 0 0 0 0 0 9 0 0 0 0 0 9
OP-77D 1 1 1 3 4 12 1 1 I 3 4 12
OP-80 0 0 0 0 0 0 0 0 0 0 0 0
OP-80D 1 1 1 2 3 3 1 1 1 2 3 3
OP-80D WEIR 0 0 0 0 1 14 0 0 0 0 1 14
OP-81 2 2 2 3 5 10 2 2 2 3 5 10
OP-82D1 10 12 14 21 29 31 10 12 14 21 29 31
OP-82D1 WEIR 0 0 0 0 0 80 0 0 0 0 0 80
OP-82D2 8 11 12 18 26 62 8 11 12 18 26 62
OP-82D2 WEIR 0 0 0 0 0 18 0 0 0 0 0 18
OP-82D3 9 10 12 16 21 32 9 10 12 16 21 32
OP-84 3 4 5 9 13 18 3 4 5 9 13 18
OP-856 3 4 4 5 5 5 3 4 4 5 5 5
OP-858-WEIR 0 0 0 0 0 14 0 0 0 0 0 14
OP-SSC 6 S 11 33 78 151 8 12 76 22 27 33
OP-86 1 2 4 10 19 28 1 2 4 10 19 28
OP-86A 2 2 3 4 5 6 2 2 3 4 5 6
OP-86C o 0 o a o i o 0 0 0 0 1
OP-S8 1 3 4 15 35 41 6 10 15 26 36 41
OP-92 0 0 0 0 0 0 0 0 0 0 2 11
OP-95 4 4 5 5 6 6 4 4 5 5 6 6
OP-97 18 �a z1 24 6fi 115 18 20 27 24 54 97
OP-98 4 4 5 5 6 6 4 4 5 5 6 6
OP-98A 1 1 1 1 1 1 1 1 1 1 1 1
OP-98A WEIR o 0 0 0 0 0 0 0 0 a o 0
TRICLI 191 191 192 198 213 240 191 192 193 194 195 196
TRICL3 193 195 198 225 297 380 194 197 200 211 223 241
TRICL4 212 21S 225 261 343 445 209 216 223 246 268 311
TRICLS 212 218 225 261 293 326 209 216 223 246 267 2S6
TRICL6 21S 227 242 294 369 453 219 232 246 278 307 334
TRICL7 207 211 215 221 227 235 208 213 216 219 222 224
TRICL7A 207 212 217 233 256 292 209 215 220 225 231 236
TRICL8 205 209 213 222 227 229 207 Z12 276 220 222 223
TROC_16 214 219 223 242 273 322 226 238 249 274 306 409
TROCLI 216 223 229 287 387 546 226 238 249 275 326 430
TROCLI_A 216 223 229 287 387 546 226 238 249 275 326 430
TROCLIO 254 276 304 495 888 1,632 3fi3 460 552 749 975 1,280
TROCLII 254 276 304 495 888 1,631 363 460 552 749 975 1,280
TROCLI3 256 27S 307 508 921 1,669 365 464 558 761 995 1,309
TROCLI4 260 283 312 529 946 1,735 371 472 576 784 1,021 1,355
TROCLIS 260 283 312 529 946 1,735 372 474 579 791 1,031 1,369
TROCLI6 260 283 312 529 946 1,735 372 474 579 791 1,030 1,369
TROCLI7 260 283 312 529 946 1,735 373 476 581 796 1,038 1,379
TROCl18 260 283 312 529 946 1,735 373 476 581 796 1,038 1,379
TROCL3 216 223 230 290 395 561 226 238 250 276 335 446
TROCL4 216 224 232 295 404 578 Z26 238 250 276 346 465
TROCLS 217 224 232 296 405 578 227 239 251 278 346 464
TROCL6 224 235 246 314 439 635 227 239 251 292 385 531
TROCL8 252 273 301 491 885 1,629 360 456 549 744 969 1,264
TROCL9 252 273 301 491 884 1,628 360 457 549 745 971 1,267
CLARKI - - - - - - 132 2ll 298 467 653 869
CLARK2 - - - - - - 127 208 287 448 628 838
CLARK3 - - - - - - 125 206 283 442 619 827
CLARK4 - - - - - - 112 185 254 400 559 747
CLARKS - - - - - - 107 177 244 386 54Z 727
CLARK6 - - - - - - 105 174 240 378 533 711
CLARIO - - - - - - 78 129 177 267 355 462
CLARKS - - - - - - 73 122 167 249 330 430
F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018
Timnath Stormwater Master Plan Update - 2018
B-5 - SWMM Model Results - Node Flows
Existing SWMM Model Results
Element ID Discharge (cfs)
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
115 3 S 6 8 15 29
116 12 19 25 34 46 61
lll 17 24 30 41 55 76
118 16 34 52 86 120 150
127 14 20 24 35 50 76
129 S 7 9 23 61 122
132 17 24 30 42 58 96
133 0 1 1 2 16 66
134 2S 39 49 82 I51 253
135 13 20 30 71 133 227
136 7 10 14 36 76 168
137 9 13 16 38 75 166
138 38 54 67 92 150 271
140 27 41 53 S15 248 487
142 40 SJ 71 109 225 439
143 6 S 10 16 26 44
144 33 49 61 108 224 438
146 6 8 SO 18 38 78
147 0 0 0 0 0 0
149 12 17 22 34 57 96
151 4 5 6 il 51 117
153 22 32 40 62 98 158
154 16 23 30 50 84 140
155 15 22 29 58 107 191
156 4 6 8 13 31 63
157 D 39 57 156 347 665
158 16 23 31 69 140 258
159 12 17 21 29 42 63
160 28 40 59 162 364 701
161 28 40 58 161 363 698
162 18 26 32 43 60 86
163 23 35 45 63 94 157
164 29 42 53 77 115 179
165 5 s 10 13 1s 25
166 9 13 16 24 37 61
169 9 13 16 23 32 49
170 24 35 44 60 81 115
171 22 33 41 56 76 104
173 20 28 37 5� 87 139
176 935 1,325 1,639 2,263 3,148 4,530
177 1 2 2 4 9 18
178 454 666 840 1,187 1,802 3,088
179 28 42 49 87 192 358
180 13 1S 23 37 58 93
181 372 549 702 1,054 1,732 3,035
182 13 20 30 62 116 204
183 11 17 21 31 49 85
184 93 130 160 267 506 1,019
185 40 57 �o Z12 ss4 1,231
186 14 20 32 90 213 424
187 17 24 35 95 215 427
188 28 40 56 203 573 1,213
189 43 59 73 122 231 465
190 702 996 1,231 1,700 2,364 3,402
191 295 438 553 771 1,149 2,007
193 15 21 26 41 69 120
194 15 21 33 91 206 379
196 6 8 23 91 224 469
197 4 7 21 91 224 470
199 30 42 66 Z39 596 1,200
200 29 41 59 166 378 726
201 19 26 32 45 63 92
204 30 41 65 236 586 1,203
206 6 S 10 14 21 34
207 11 15 19 26 37 55
213 4 6 7 14 25 46
214 30 42 64 237 593 1,224
216 S 11 14 19 27 39
217 12 17 21 29 39 53
220 3 4 5 7 9 13
221 3 4 5 7 11 15
223 30 42 64 236 591 1,224
224 2 2 4 16 36 69
Future SWMM Model Results
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
2 4 5 7 8 10
11 17 21 28 34 40
11 17 21 28 34 40
15 25 38 66 104 136
14 20 24 35 50 76
1 2 4 13 30 58
7 12 15 20 26 34
0 1 1 1 1 4
25 41 55 80 114 162
25 41 54 77 106 150
38 62 84 119 152 197
13 21 29 42 54 68
18 27 33 44 55 67
55 91 123 175 224 282
53 87 117 165 210 265
2 3 4 6 8 11
53 87 116 165 210 265
1 2 3 6 8 11
0 0 0 0 0 0
2 3 5 12 17 22
1 2 3 12 21 28
25 37 47 65 90 128
19 30 38 54 76 110
14 23 30 45 67 99
1 2 3 5 6 8
65 108 147 217 287 377
14 22 30 47 70 103
5 8 9 13 17 22
0 0 1 1 1 4
74 122 167 249 33D 430
11 18 23 32 42 54
23 35 45 63 94 157
29 42 53 77 115 ll9
5 8 10 13 18 25
9 13 16 24 37 61
6 8 9 12 15 18
17 25 32 45 62 86
15 23 30 42 57 80
23 36 4fi 66 94 139
203 337 465 753 1,112 1,641
0 1 1 2 2 3
267 455 630 1,078 1,620 2,319
27 40 48 69 109 169
6 10 13 18 22 27
260 436 614 1,065 1,617 2,313
10 17 22 32 40 49
6 10 13 18 22 27
36 61 76 103 130 159
47 79 102 140 179 222
23 38 55 100 153 227
21 34 49 91 140 210
46 79 101 140 178 222
21 30 36 47 59 72
260 433 561 773 1,012 1,288
247 406 543 772 1,009 1,283
3 5 7 14 21 27
17 27 38 74 118 182
28 45 65 119 181 264
28 45 65 119 183 267
107 ll7 244 386 543 7D
0 0 1 1 1 4
6 9 13 19 26 33
112 185 255 400 560 747
5 8 30 12 15 19
5 8 10 12 15 19
7 10 12 16 20 24
ll 28 37 50 62 76
5 6 8 10 11 14
7 10 12 15 18 22
1 2 2 3 4 5
1 2 3 3 4 S
tiN/A #N/A pN/A tiN/A SfN/A tiN/A
2 3 4 7 9 11
F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018
Timnath Stormwater Master Plan Update - 2018
B-5 - SWMM Model Results - Node Flows
Existing SWMM Model Results
Element ID Discharge (cfs)
2-Yr 5-Yr 30-Yr 25-Yr 50-Yr 300-Yr
225 3 4 6 18 42 80
226 4 7 10 35 75 138
229 2 3 4 7 16 33
230 4 6 8 22 53 104
231 3 5 6 11 20 35
234 7 10 14 37 81 151
237 29 43 63 231 589 1,269
238 29 43 64 233 592 1,273
239 30 42 64 237 597 1,246
243 20 28 35 48 68 99
248 7 11 14 22 46 85
250 11 16 19 39 84 161
252 33 46 58 86 129 198
253 0 1 1 1 2 2
254 1 1 1 3 5 13
274 17 26 34 50 94 164
275 5 S 9 25 SS 111
276 10 15 18 30 63 123
277 2 2 3 5 9 16
279 35 49 61 97 162 266
283 20 28 34 50 77 125
2S4 19 29 38 52 127 250
285 15 22 28 52 126 249
287 13 19 25 52 125 247
291 0 0 0 0 0 0
293 7 9 11 is 29 51
295 1 2 4 10 19 2s
296 55 78 97 132 181 256
297 0 0 o a o i
298 6 8 10 16 24 39
303 94 133 165 227 312 440
307 2 3 4 7 11 19
309 26 38 47 64 Sfi 118
310 6 8 10 16 34 71
311 2 4 4 11 28 56
312 4 6 7 12 37 82
314 6 7 8 17 43 89
316 62 88 109 750 214 319
317 60 85 104 148 217 325
321 63 S9 110 153 213 304
323 1 1 1 1 1 1
323-surf o 0 o a o 0
324 1 z z 5 10 zo
326 3 4 5 13 32 63
327 5 7 8 15 34 69
328 6 8 10 17 45 90
329 7 10 12 33 74 146
330 21 26 30 38 48 63
335 1 2 2 3 6 10
338 s 10 11 14 1s 33
339 10 12 13 16 23 41
341 19 26 32 46 67 98
342 102 150 188 256 346 477
346 9 12 15 21 30 43
348 10 15 18 26 38 54
349 7 10 13 18 24 33
350 5 7 9 12 16 22
351 5 8 9 13 19 27
352 5 6 8 11 15 22
353 5 7 9 13 20 31
355 8 11 12 18 26 80
356 2 2 3 4 5 6
360 8 12 16 22 30 43
500 20 29 35 53 83 169
501 7 10 12 19 32 53
53 a 5 7 iz zs ss
54 5 7 9 14 21 34
DTN10 13 19 24 33 44 60
DTN11 12 19 24 33 44 60
DTN12 12 18 21 28 37 53
DTN13 32 44 51 66 91 128
DTN14 33 46 56 69 95 134
DTN15 33 46 55 74 93 132
Future SWMM Model Results
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
2 3 4 7 9 11
1 2 4 8 11 14
1 2 2 3 3 4
5 7 9 13 17 20
3 4 5 7 10 12
1 2 4 8 11 14
4 7 9 13 16 20
5 7 9 13 16 20
#N/A kN/A qN/A NN/A SYN/A FfN/A
20 28 35 48 68 99
7 11 14 22 46 85
3 5 7 12 15 20
33 46 58 86 129 198
0 1 1 1 2 2
1 1 1 3 5 13
17 26 34 50 94 164
6 9 11 14 17 21
6 9 11 14 17 21
1 1 1 2 2 3
35 49 61 97 162 266
7 12 16 22 28 35
15 24 32 44 SS 68
15 24 32 44 55 68
15 24 31 44 SS 68
0 0 0 0 2 11
2 3 5 7 10 12
1 2 4 30 19 28
55 78 97 132 181 256
0 0 0 0 o i
6 8 10 16 24 39
93 132 163 224 307 432
1 2 3 3 4 5
26 38 47 64 86 118
2 3 4 6 8 10
2 3 4 6 8 10
3 5 7 11 14 17
6 9 11 16 20 24
62 89 110 150 215 320
60 85 104 148 217 325
63 89 110 153 213 304
1 1 1 1 1 1
0 0 0 0 0 0
0 1 1 2 2 3
1 2 3 5 7 9
1 2 3 5 7 9
3 5 7 11 14 18
5 7 10 26 58 114
21 26 30 38 48 63
0 o i i i 2
8 10 11 14 18 33
10 12 13 16 23 41
19 26 32 46 67 98
102 150 188 256 346 477
3 4 6 9 12 14
8 13 16 22 29 39
7 10 13 18 24 33
5 7 9 72 16 22
5 8 9 13 19 27
5 6 8 11 15 22
5 7 9 13 2D 31
8 11 12 18 26 80
2 2 3 4 5 6
8 12 16 22 30 43
13 22 30 42 54 68
2 3 4 7 10 12
2 3 4 5 6 7
2 4 5 7 8 10
7 il 13 17 21 27
7 11 13 17 21 26
7 11 13 ll 21 26
30 45 55 76 91 115
33 49 61 83 101 133
33 49 60 80 94 125
F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018
Timnath Stormwater Master Plan Update - 2018
B-5 - SWMM Model Results - Node Flows
Existing SWMM Model Results
Element ID Discharge (cfs)
2-Yr 5-Yr 30-Yr 25-Yr 50-Yr 300-Yr
DTN3 5 7 8 11 IS 20
DTN4 9 13 17 23 31 41
DTNS 9 13 17 24 30 38
DTN6 11 17 21 28 35 46
DTN7 6 9 11 15 21 30
DTN8 17 25 32 42 54 70
DTN9 18 25 31 42 53 70
DT52 S S 10 14 20 29
DTS3 7 11 14 19 27 33
DT54 7 11 13 19 26 33
DT55 8 12 15 21 30 40
DT56 S 12 15 21 30 40
DTS7 8 12 15 21 30 40
DT501 S 12 15 21 30 40
G3-1 7 10 13 18 28 46
G3-2 5 7 9 13 20 68
G3-2 A 5 7 9 13 20 68
J-90 3 4 5 11 31 65
LAKECANALI 10 16 20 28 39 94
LAKECANALIO 3 5 6 11 22 42
LAKECANALII 2 3 4 7 15 29
LAKECANALI2 10 15 ls 41 93 177
LAICECANALI6 1S 25 30 45 68 106
LAI<ECANALI7 3 4 5 9 13 18
LAI<ECANALI8 18 25 31 46 72 116
LAKKANALI9 8 11 13 24 43 78
LAKECANAL2 15 21 26 37 53 77
LAKECANAL20 1 1 2 2 2 23
LAKECANAL21 1 1 2 8 20 39
LAICECANAL22 1 1 1 4 9 19
LAKECANAL3 29 41 51 70 57 138
LAKECANAL4 31 44 55 75 106 155
LAKECANAL7 0 a o 0 0 0
LAKECANAL8 3 4 6 21 43 79
LAKECANAL9 3 4 5 16 36 70
R103 30 43 53 72 97 134
P-103A 26 36 45 62 86 121
P-103C 20 28 35 48 67 94
P-103D1 23 32 39 57 85 124
P-103D2 11 13 14 16 30 66
P-104 86 122 151 209 288 398
P-105 31 45 57 77 103 141
P-106A 76 115 149 203 267 338
P-107 63 89 110 153 212 301
P-110 10 15 20 29 42 66
P-120 1,161 1,525 2,381 3,311 4,431 7,073
P-15 12 17 21 30 49 93
P-25 34 51 66 98 154 247
P-28 1S 26 34 54 83 132
P-29 13 18 22 31 44 66
P-31 33 46 57 81 117 173
P-43 15 21 32 92 224 463
P-4A 46 70 90 126 169 225
P-50 8 12 14 20 29 42
P-SOA 10 14 17 24 34 48
P-51 34 47 56 76 98 141
P-SA 14 20 25 35 50 74
P-75 28 39 48 68 95 135
P-75A 19 28 34 47 65 94
P-75D 9 12 15 22 28 36
P-77 17 25 32 49 81 136
P-778 1 2 2 4 8 16
P-77C 7 9 11 21 38 62
P-77D 25 34 42 60 89 134
P-80 5 7 8 14 24 40
P-SOD 7 10 13 21 38 67
P-81 32 44 55 81 120 180
P-82D1 94 131 161 239 364 559
P-82D2 30 12 14 21 29 110
P-82D3 16 23 29 53 96 166
P-84 24 3S 4S 65 112 190
P-856 SS 88 111 152 200 263
P-85C 6 9 11 33 78 151
Future SWMM Model Results
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
5 8 10 13 17 23
11 15 19 26 34 46
10 15 19 26 33 43
14 21 26 34 40 53
7 9 11 16 22 31
21 30 38 49 60 81
21 30 37 52 60 80
5 7 9 13 17 23
6 9 12 17 23 31
6 9 12 17 22 31
7 10 13 19 27 37
7 SO 13 19 26 37
7 10 13 19 26 37
7 10 13 19 26 37
2 3 4 7 10 12
3 4 5 8 10 72
3 4 S 8 10 72
1 2 3 5 6 8
7 12 IS 20 26 34
1 1 2 3 4 6
1 1 1 2 3 5
10 15 18 41 93 ll7
18 25 30 45 68 106
3 4 5 9 13 18
18 25 31 46 72 116
8 11 13 24 43 78
6 10 12 16 21 27
1 1 2 2 2 23
1 1 1 1 2 2
0 1 1 1 2 2
29 41 51 70 97 138
31 44 55 75 106 155
0 D 0 0 0 0
3 4 6 21 43 79
1 1 2 3 4 5
30 43 53 72 97 134
26 36 45 62 86 121
20 28 35 48 67 94
23 32 39 57 85 124
11 13 14 16 30 66
86 121 150 207 285 398
31 45 57 77 103 141
76 S15 149 203 267 338
63 89 110 153 212 301
8 13 17 24 33 47
1,277 2,049 2,691 3,774 5,073 6,848
2 3 5 12 17 22
34 51 66 98 154 247
21 34 44 63 93 139
13 19 23 32 45 66
33 46 57 81 1ll ll3
26 43 61 114 173 255
46 69 87 119 159 213
8 12 14 20 29 42
10 14 17 24 34 48
43 63 78 96 120 157
14 20 25 35 50 74
28 39 48 68 95 135
19 28 34 47 65 94
9 12 15 22 28 36
17 25 32 49 81 136
1 2 2 4 8 16
7 9 11 21 38 62
25 34 42 60 89 134
3 5 6 11 19 32
7 SO 13 21 38 67
32 44 55 81 120 180
94 131 161 239 364 559
10 12 14 21 29 110
16 23 29 53 96 166
24 38 48 65 112 190
58 88 111 152 200 263
8 12 16 22 27 33
F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018
Timnath Stormwater Master Plan Update - 2018
B-5 - SWMM Model Results - Node Flows
Existing SWMM Model Results Future SWMM Model Results
Element ID Discharge (cfs) Discharge (cfs)
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
P-S6 52 7S 99 134 181 258 52 78 99 134 181 258
P-86A 11 16 19 28 43 65 11 16 19 28 43 65
P-86C 3 4 5 8 14 23 3 4 5 8 14 23
P-88 77 117 149 204 279 403 74 112 143 196 266 374
P-92 25 39 50 73 109 167 22 34 44 61 83 114
P-95 76 108 133 183 254 361 76 108 133 183 254 361
P-97 38 53 64 81 123 199 38 53 65 82 125 201
P-98 50 76 97 133 183 260 50 76 97 133 183 260
P-98A 30 42 52 72 102 148 30 42 52 72 102 148
TRIC1 191 192 192 198 214 241 191 192 193 194 195 196
TRIQ 193 194 197 220 266 337 192 195 197 206 221 247
TRIC3 193 195 198 225 298 382 194 197 200 211 223 242
TRIC4 212 218 225 261 343 445 209 216 223 246 268 311
TRIC4A 212 218 225 261 343 445 209 216 223 246 268 311
TRIC4-SPILL 0 0 0 0 50 119 0 0 0 0 0 26
TRICS 21S 227 242 294 369 454 219 232 246 278 307 334
TRICSA 218 227 242 294 369 453 219 232 246 278 307 334
TRICSA SPILL 11 15 27 73 141 218 11 19 29 59 85 110
TRIC6 207 212 217 233 257 294 209 215 220 225 231 236
TRIC6_Spill 1 2 4 11 29 63 2 3 4 5 10 13
TRIC6A 207 212 217 Z33 256 292 209 215 220 225 231 236
TRIC-0 UTFALL 205 209 213 222 227 229 207 212 216 220 222 223
TROC lA 216 223 229 287 387 546 226 238 249 275 326 430
TROC1 216 223 229 287 387 546 226 238 249 275 326 430
TROC10a 256 278 307 SOS 921 1,669 365 464 558 761 995 1,309
TROC11 260 283 312 529 946 1,736 371 472 576 785 1,021 1,356
TROC12 260 283 312 529 946 1,735 372 474 579 791 1,031 1,369
TROC-12A 260 283 312 529 946 1,735 372 474 579 791 1,031 1,369
TROC13 260 283 312 529 946 1,735 373 476 581 796 1,038 1,379
TROC14 260 283 312 529 946 1,735 373 476 581 796 1,038 1,379
TROC2 216 223 230 290 395 562 226 238 250 276 335 448
TROC3 2ll 224 232 Z95 405 579 226 238 250 276 346 467
TROC4 217 225 232 296 406 580 227 239 251 278 347 468
TROCS 226 237 24S 316 443 645 227 239 251 294 389 540
TROC6 252 273 301 491 885 1,629 360 456 549 745 969 1,264
TROC7 252 273 301 491 885 1,629 360 457 549 745 971 1,267
TROC8 254 276 304 495 889 1,634 363 460 553 750 976 1,281
TROC9 254 276 304 495 888 1,632 363 460 552 749 975 1,250
TROC-0UTFALL 260 2S3 312 529 94fi 1,735 373 476 S81 796 1,038 1,379
CP-10 - - - - - - 163 235 293 396 531 725
CP-100 - - - - - - 33 46 57 80 112 163
CP-100A - - - - - - 33 46 57 79 112 162
CP-101 - - - - - - 99 142 176 239 324 449
CP-102 - - - - - - 51 73 90 122 164 226
CP-106 - - - - - - 30 43 53 74 103 145
CP-108 - - - - - - 16 23 29 40 55 77
CP-lOBA - - - - - - 5 8 SO 13 19 28
CP-109 - - - - - - 56 82 102 139 185 247
CP-11 - - - - - - 38 54 67 92 126 176
CP-110 - - - - - - 47 69 87 117 15fi 209
CP-113A - - - - - - 8 12 15 20 27 36
CP-12 - - - - - - 49 69 86 117 158 219
CP-121 - - - - - - 2,216 3,433 4,425 6,109 8,149 10,971
CP-122 - - - - - - 640 992 1,278 1,765 2,354 3,170
CP-123 - - - - - - 552 845 1,082 1,486 1,980 2,668
CPd24 - - - - - - 1,454 2,265 2,929 4,053 5,411 7,255
CP-125 - - - - - - 880 1,357 1,745 2,406 3,207 4,319
CP-126 - - - - - - 1,336 1,920 2,389 3,261 4,424 6,163
CP-13 - - - - - - 27 38 48 67 93 130
CP-14 - - - - - - 93 132 163 223 309 438
CP-15 - - - - - - 49 69 85 123 179 269
CP-15A - - - - - - 61 88 310 149 201 274
CP-17 - - - - - - 44 63 79 107 145 201
CP-1S - - - - - - 101 145 181 245 330 452
CP-2 - - - - - - 139 206 260 352 463 607
CP-20 - - - - - - 39 56 69 94 128 178
CP-21 - - - - - - 65 93 115 156 211 292
CP-21A - - - - - - 86 122 152 207 281 391
CP-26 - - - - - - 55 Eo ioo 135 1ao 242
CP-3 - - - - - - 70 102 129 176 233 309
CP-30 - - - - - - s 11 14 19 27 40
CP-33 - - - s 1z 1a zo za ao
F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018
Timnath Stormwater Master Plan Update - 2018
B-5 - SWMM Model Results - Node Flows
Existing SWMM Model Results
Element ID Discharge (cfs)
2-Yr 5-Yr 30-Yr 25-Yr 50-Yr 300-Yr
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaaa
�aaaaae
�aaaaaa
�aaaaaa
�aaaaaa
�aaaava
�aaaaaa
�aaaaaa
�aaaaae
�aaaaaa
�aeaaaa
�aaaaaa
�aaaava
�aaaaaa
�aaaaaa
�aaaaae
�aaaaaa
�aeaaaa
�aaaaaa
�aaaava
�aaaaaa
�aaaaaa
�aaaaaa
�aavaaa
Future SWMM Model Results
2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr
71 102 129 180 244 332
99 141 178 251 346 482
117 167 206 281 384 540
55 78 96 131 182 261
29 40 49 75 117 184
62 91 114 155 204 272
66 93 115 160 230 341
47 68 84 115 156 217
76 107 133 185 256 360
58 82 102 140 193 271
19 26 32 47 70 106
27 38 47 67 95 137
141 206 258 352 469 631
52 75 94 127 169 229
116 167 210 290 391 534
38 57 71 96 127 170
27 39 49 67 89 118
19 28 36 48 64 85
18 26 33 46 60 78
5 � 8 il 15 Z�
5 � 8 11 15 2�
38 55 69 94 127 ll4
50 70 88 123 170 240
72 106 133 180 239 319
34 48 60 84 116 162
72 103 129 175 235 323
50 73 91 124 165 222
14 20 25 35 52 79
78 111 139 198 282 406
4 6 7 10 15 22
207 298 373 515 698 959
77 109 134 188 265 3S3
327 476 597 815 1,089 1,466
128 187 235 321 427 573
15 21 26 36 49 68
195 282 351 475 637 870
59 85 106 144 194 267
20 28 35 49 69 100
12 17 21 29 41 61
186 267 333 454 613 842
47 67 83 113 156 221
32 47 60 81 107 142
58 84 104 141 187 249
131 188 234 317 426 585
86 123 153 207 280 388
14 20 25 35 50 73
16 22 27 38 54 80
132 217 299 467 653 869
127 209 287 449 628 839
125 206 283 442 619 S27
105 174 240 378 533 711
78 129 177 267 355 463
F:\32-1881.00 Timnath Master Plan Update\Hydrology\EPA SW MM\Resul[s\Results Comparison.xisx 8/21/2018
,il� , l_l- 1�j��
USDA Soils Information
USDA United States
= Department of
Agriculture
I� RCS
Natural
Resources
Conservation
Service
a
A product of the National
Cooperative Soil Survey,
a joint effort of the United
States Department of
Agriculture and other
Federal agencies, State
agencies including the
Agricultural Experiment
Stations, and local
participants
t .^ �.:��
. F {Y�� ��.
��
.� � ���
Custom Soil Resource
Report for
Larimer County
Area, Colorado
�- �
�' . �
.�
, �
� cti � '�
�� �, r , �u
�
� 'i
.�-'�^.--• —
�.. .'JI
�ii' '
�• �' -
yS!' ' y' �• t a��
�'• F'' '7� �
� .�
,� ! T ,
� � }
� w� i
. s�'•�-sit � i. !,�
; V� ,� .i. : .,., - :Zi ' .�_._ J.� �_. ' �.
� � �.i '�Y.�' r ' „ . .�. 1 � �_� . ��� ..a � , k� � '� �„
f
� ���. `Jw i� � ' ` — r � ` ;
•�#, ,' � 4+ —,.'+ ' �� i �� F ���
,. , . •
. y` +�-� � � _ ' .
.� . - . � � ;� � � " � � i� .. ,: ��' _ 'F , � , �r����
�. 1,:�- "- :ti• �- }I � ' ;�'` -
�4q�..,,t '�..�, � � _ � -' :,e„� +y
� �■����■��� 1 000 ft •:� ''' �'' , .. � p� ^� `�.
' . �f � f��,,.�'�r'ti �ti � t __
...�� .�.�, �,�,�--L
``� �
�
' � �
October 7, 2019
Preface
Soil surveys contain information that affects land use planning in survey areas.
They highiight soil limitations that affect various land uses and provide information
about the properties of the soils in the survey areas. Soil surveys are designed for
many different users, including farmers, ranchers, foresters, agronomists, urban
planners, community officials, engineers, developers, builders, and home buyers.
Also, conservationists, teachers, students, and specialists in recreation, waste
disposal, and pollution control can use the surveys to help them understand,
protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose
special restrictions on land use or land treatment. Soil surveys identify soil
properties that are used in making various land use or land treatment decisions.
The information is intended to help the land users identify and reduce the effects of
soil limitations on various land uses. The landowner or user is responsible for
identifying and complying with existing laws and regulations.
Although soil survey information can be used for general farm, local, and wider area
planning, onsite investigation is needed to supplement this information in some
cases. Examples include soil quality assessments (http://www.nres.usda.gov/wps/
portal/nres/main/soils/health/) and certain conservation and engineering
appiications. For more detailed information, contact your local USDA Service Center
(https://offices.sc.egov.usda.gov/locator/app?agency=nres) or your NRCS State Soil
Scientist (http://www.nres.usda.gov/wps/portal/nres/detail/soils/contactus/?
cid=nres142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are
seasonally wet or subject to flooding. Some are too unstable to be used as a
foundation for buildings or roads. Clayey or wet soils are poorly suited to use as
septic tank absorption fields. A high water table makes a soil poorly suited to
basements or underground installations.
The National Cooperative Soil Survey is a joint effort of the United States
Department of Agriculture and other Federal agencies, State agencies including the
Agricultural Experiment Stations, and local agencies. The Natural Resources
Conservation Service (NRCS) has leadership for the Federal part of the National
Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available
through the NRCS Web Soil Survey, the site for official soil survey information.
The U.S. Department of Agriculture (USDA) prohibits discrimination in all its
programs and activities on the basis of race, color, national origin, age, disability,
and where app�icable, sex, marital status, familial status, parental status, religion,
sexual orientation, genetic information, political beliefs, reprisal, or because all or a
part of an individual's income is derived from any public assistance program. (Not
all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print,
audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice
and TDD), To file a complaint of discrimination, write to USDA, Director, Office of
Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or
call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity
provider and employer.
3
Contents
Preface .................................................................................................................... 2
How Soil Surveys Are Made ..................................................................................5
SoilMap .................................................................................................................. 8
SoilMap ................................................................................................................9
Legend................................................................................................................10
MapUnit Legend ................................................................................................ 11
MapUnit Descriptions .........................................................................................11
Larimer County Area, Colorado ...................................................................... 13
7—Ascalon sandy loam, 0 to 3 percent slopes ........................................... 13
40—Garrett loam, 0 to 1 percent slopes ..................................................... 14
64—Loveland clay loam, 0 to 1 percent slopes ...........................................15
76—Nunn clay loam, wet, 1 to 3 percent slopes .........................................17
77—Otero sandy loam, 0 to 3 percent slopes .............................................18
81—Paoli fine sandy loam, 0 to 1 percent slopes ....................................... 19
92—Riverwash ............................................................................................ 20
105—Table Mountain loam, 0 to 1 percent slopes ...................................... 21
References............................................................................................................ 24
How Soil Surveys Are Made
Soil surveys are made to provide information about the soils and miscellaneous
areas in a specific area. They include a description of the soils and miscellaneous
areas and their location on the landscape and tables that show soil properties and
limitations affecting various uses. Soil scientists observed the steepness, length,
and shape of the slopes; the general pattern of drainage; the kinds of crops and
native plants; and the kinds of bedrock. They observed and described many soil
profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The
profile extends from the surface down into the unconsolidated material in which the
soil formed or from the surface down to bedrock. The unconsolidated material is
devoid of roots and other living organisms and has not been changed by other
biological activity.
Currently, soils are mapped according to the boundaries of major land resource
areas (MLRAs). MLRAs are geographically associated land resource units that
share common characteristics related to physiography, geology, climate, water
resources, soils, biological resources, and land uses (USDA, 2006). Soil survey
areas typically consist of parts of one or more MLRA.
The soils and miscellaneous areas in a survey area occur in an orderly pattern that
is related to the geology, landforms, relief, climate, and natural vegetation of the
area. Each kind of soil and miscellaneous area is associated with a particular kind
of landform or with a segment of the landform. By observing the soils and
miscellaneous areas in the survey area and relating their position to specific
segments of the landform, a soil scientist develops a concept, or model, of how they
were formed. Thus, during mapping, this model enables the soil scientist to predict
with a considerable degree of accuracy the kind of soil or miscellaneous area at a
specific location on the landscape.
Commonly, individual soils on the landscape merge into one another as their
characteristics gradually change. To construct an accurate soil map, however, soil
scientists must determine the boundaries between the soils. They can observe only
a limited number of soil profiles. Nevertheless, these observations, supplemented
by an understanding of the soil-vegetation-landscape relationship, are sufficient to
verify predictions of the kinds of soil in an area and to determine the boundaries.
Soil scientists recorded the characteristics of the soil profiles that they studied. They
noted soil color, texture, size and shape of soil aggregates, kind and amount of rock
fragments, distribution of plant roots, reaction, and other features that enable them
to identify soils. After describing the soils in the survey area and determining their
properties, the soil scientists assigned the soils to taxonomic classes (units).
Taxonomic classes are concepts. Each taxonomic class has a set of soil
characteristics with precisely defined limits. The classes are used as a basis for
comparison to classify soils systematically. Soil taxonomy, the system of taxonomic
classification used in the United States, is based mainly on the kind and character
of soil properties and the arrangement of horizons within the profile. After the soil
5
Custom Soil Resource Report
scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that
they could confirm data and assemble additional data based on experience and
research.
The objective of soil mapping is not to delineate pure map unit components; the
objective is to separate the landscape into landforms or landform segments that
have similar use and management requirements. Each map unit is defined by a
unique combination of soil components and/or miscellaneous areas in predictable
proportions. Some components may be highly contrasting to the other components
of the map unit. The presence of minor components in a map unit in no way
diminishes the usefulness or accuracy of the data. The delineation of such
landforms and landform segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, onsite
investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map.
The frequency of observation is dependent upon several factors, including scale of
mapping, intensity of mapping, design of map units, complexity of the landscape,
and experience of the soil scientist. Observations are made to test and refine the
soil-landscape model and predictions and to verify the classification of the soils at
specific locations. Once the soil-landscape model is refined, a significantly smaller
number of ineasurements of individual soil properties are made and recorded.
These measurements may include field measurements, such as those for color,
depth to bedrock, and texture, and laboratory measurements, such as those for
content of sand, silt, clay, salt, and other components. Properties of each soil
typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of
characteristics for the components. The aggregated values are presented. Direct
measurements do not exist for every property presented for every map unit
component. Values for some properties are estimated from combinations of other
properties.
While a soil survey is in progress, samples of some of the soils in the area generally
are collected for laboratory analyses and for engineering tests. Soil scientists
interpret the data from these analyses and tests as well as the field-observed
characteristics and the soil properties to determine the expected behavior of the
soils under different uses. Interpretations for all of the soils are field tested through
observation of the soils in different uses and under different levels of management.
Some interpretations are modified to fit local conditions, and some new
interpretations are developed to meet local needs. Data are assembled from other
sources, such as research information, production records, and field experience of
specialists. For example, data on crop yields under defined levels of management
are assembled from farm records and from field or plot experiments on the same
kinds of soil.
Predictions about soil behavior are based not only on soil properties but also on
such variables as climate and biological activity. Soil conditions are predictable over
long periods of time, but they are not predictable from year to year. For example,
soil scientists can predict with a fairly high degree of accuracy that a given soil will
have a high water table within certain depths in most years, but they cannot predict
that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the
survey area, they drew the boundaries of these bodies on aerial photographs and
��
Custom Soil Resource Report
identified each as a specific map unit. Aerial photographs show trees, buildings,
fields, roads, and rivers, all of which help in locating boundaries accurately.
7
Soil Map
The soil map section includes the soil map for the defined area of interest, a list of
soil map units on the map and extent of each map unit, and cartographic symbols
displayed on the map. Also presented are various metadata about data used to
produce the map, and a description of each soil map unit.
E:3
z
�
�
�
aoz�ste oo��ste 000�ste oososm o�roste ootasc
M„OS �85 obOT ( I I I I I I
�
� - —
e . _
, ��.
�— ■i .�, p _ — — -- _ _ _
� �. r � - -
�' ; �� +, � �, � � T � - � ��
i ` � L, �� � _.ef - T T _
�—
ug
0
�
a�
�
N
U
� Q
� �
�
� O
0 �
�
�
0
N
�
U
M ,Sb �65 ob0i
1,
� : -��::- ��+ -v.M�
R� ��"`��'� �.r �
PS �
� � '�. ��il; �, . �.
r�
I �'
_ l 9
I4 ,d ' �.dC---= ` ..
•
ug I � . � •ti y . ,\ �
i �
�'-
� ;�
8��
+
$ � �'r
* ���.
+• ' �
��
_ � . . '��
.a��, _ - �' �
�..
� �
� _ �`
i
�,
g= — _.. _
�-
— _ T I
� I.. /1� - , ..-,
� _.� k�
r - , ... i.k-' _ `� ��
�� ��,= ',+illti , �� `•
���-. u �
�� ���� ��
,�
_ — Y- - -;
ODZl6h6 OOlt6yi6
z
m
�l
V
��_` ,_"�-��►"
� �
�;._�..�
- - -y�� '
z
`ui
m
�
00�06bb 00�6bb
�I . I M �AS ,85 ob0i
I ::�.�.� ' ` sw>.;: �i�l �
, �(= � �..t �
x.4�� .� .. = .
w�
�` �'�i�'�� �
' c '' �
�,
�n
I
�
�
} �!
�
� �
. ,.
�
i+
i �r
�
�
,, �
I
�
�
_' `
(. —•�
OOL0676
�
K� �
i t .�, � ' I �. s�
,; , , �R ia
��_ ���'��
::; � g
: �� �
,y :,��ti� wr; �
-'S4i=a--� ='.-,-
ii�� � �
; � �.' �3
. �� p :� �_` • , /�� i �
iy � .
, s. �
�� :-.�:`.�� �
y
� �� �
i �
��
- .�!�p,.,..lg "
..�..
i ' t ! �',.,�� '� �pIf, �_ �
� �� ��F'Ir�r�d'�-s � Oi
� y
� • �' i i a� � �� �py��� � � �
� « �v �
_ v _ 8 ��� ��
" —� x �
��L� : �
� '^ � : c
� `�l � � �
�f� i' � L
��f '^ �.. ''_-�7. � � �
' j i� �1� 'rj !� � Q �
L _�'� : o
ti �r" � � °
�` �
i > � v
lil���� e ��� n .. fl' �
� � � �
y . O g �>
� O � >
� � ~ � �j C
O
�4����� t �' c f�
s ti v �
. ��`��, ^ � Q
.��,�� � — �o m
� � . � .. � o o �
� ��� � --�, � z Q
c�.t,� ��
I �� � ' �A �• . M„Sb,65 ohOT
I
0090�67 0090Gbb
z
N
N
t�l
V
OOOL6bb 00606b7 0�(i7b
L
�
�
��/
I..L
�
U
i
7
O
�
N
�
O
�
C
O
�
�
U
Z
�
aC
G
O
�.�.
Z
a
C
�
Z
W
C�
W
J
a
Q
�
f0
�
N
a
Q
16
E
N
3
0
�
O
T
N
N
Q
�
U
f6
w
T
N
i
�
N �
O
y O
<1'
� N
��
�
N 'p �
� N �
� �
U � � 'O
� U � N
U � � �
m �
C (Uj � �
Qm
a � f6 �o
� � � C
rn � o
O C � �
� 'Q 3 N
l6 fl- p C
U N � N
� � � �
� O � �
'�6 �6 O L
O � �
T � �/1 �
�
� � � U
�O°��
Em��
O � C '�
N �
N y � m
� C
N U '
�
� � Q � N
7
�/ N C f6
ll.J E '� U Vl
m
U
�
.L.-�
ia
"�
@
>
N
�
O
T
m
�
a
f0
�
O
�
�
C
`
>
�
�
�6
�
a
N
�
U
�
U
�
z
Q
❑
�
�
"-' O
� �
0
v-. -p
� �
� N
� N
c �
a�
O1�
�
�
U .�
7 `
'� N
O >
Q �
y �
L
F o
O
�
�
o �
0
U �
N
c6 �,.�
N
Q Q
...�`. U!
C
O �
U �
� O
� N
(6 �
J
i� �
N �
T �
N �
3 A
� Z
O 7
��
N
N
U
Q
[6
�
0
3
O
[6
U
f6
Q
N
�
�
m
N
�
(6
a> �
(6 p�
..N-� (6
.�
7 O
Q O
� �
— O
'o �?
��
�
I
W
0
N
O7
Q
a
N
Q
f6
O]
O
O
a
N
�
�
N
rn
m
�
f6
�
f6 �
N O
� N
t6 �
O
N
N
3 C O
N � C
N � -�
C �
— Y �
O � E
N � (p
0
� � n .
� � ..: c
� �
� E N �
L O � >
� � � �
N
O � Q �
T
❑, � (6
� T � �
N
� � � N
�� ���
� O � �
Q � C
�
c
o � o �
o 'm � �
O 'O �'
(6 fl-
O "O Q f9
-� � u� E
Q. t6
� � � O
N
O = Q � m
N � (6 `'C
H�.��
Q
(6
�
O
�
N
u
f6
�
L
U
f6
N
O
N
U
�
Q
a�
.L.-�
� N
O C
T �
N �
N 7
m c`�o
a� m
� E
U
.�
N
�
C �
o �
�� �
M
N U�
N (/)
C a
O W
U
N O
Uf6
7 �
O p�
a�'i �
� �
� . >
m �
Z � �
�- > T
� � �
� (n N
� O C
L � �6
�
3
N
c� � U
`o °�
.L..
� � N
� � L �
Q � � �
� � N � N
t6
�-Q�m'�
Y � m � a
Q ��
C � � �
o,= �� �
� N �� �
� '6 t� � (6
� � N p N
m �
� � d N f6
� O � Q
C
� U � O �
N .� � U U
� � � � �
7 t/) U O y
(n N � Q '6
— Z p �
c°n N �_ �
,p � Q U G
�s a`�i �.o
U �
� � f6 (6 7
.'�... �i � � N
�p U
C
� O N N �
U V � �
N �
fl..� (6 � �
(6 O` y .D U
�Q�Q�a
�
� N N
� N T �`
� C � d
o a� � j r m
d LL
m m
� � a N m o
>. c � 2 m 'a 'o
N Q. C J @ N � O O r
Q � � °- m E �° o � � a
� � � �U f6 N � � p (6 �
.Q p � y L Q y � C � N � m U
cn cn > � O t� = in o� � � � � ,6 Q
@ � C
N �
IS �� . . .' . LL N t \ O
� y C i 1 � �
� �
� � m
0
�
�
O .-
a o
�
N �
� a
a
c
O
d
Q
�
�
o N a
� a
m � � o m �
o = o a � �
a � a � � Z, N � Q a�
a
c c c ` o. a 3 � o � ° ° Q.
> > > .. m ., 3 N � m y o o w -
o. o_ o. R a Q � p= T p o � @ m � � � >. � � a
� a — _ — �c O a�
� � � u�. 3 o T N > > a m N d c°�i a�i Y C � � Y � �
� o m o � o �- c > � =o
(n (n (n '� CO U.1 U U C7 i:i J J � � � d d' (n fn N (n (/J (n
a
R !�'� (�
N 1 O a ✓ v� ;� . � . _ --�i , ;i�'� � . _j . _ �� ..., .,. o0
O � �
N
O
�
Custom Soil Resource Report
Map Unit Legend
Map Unit Symbol
40
64
76
77
81
92
105
Map Unit Name
Acres in AOI
0.1
1.2
68.1
2.6
4.3
8.9
3.8
6.0
94.9
Percent of AOI
0.1 %
1.2%
71.8%
2.8°/a
4.5%
9.4%
4.0%
6.3°/a
100.0%
Totals for Area of Interest
Ascalon sandy loam, 0 to 3
percent slopes
Garrett loam, 0 to 1 percent
slopes
Loveland clay loam, 0 to 1
percent slopes
Nu�n clay loam, wet, 1 to 3
percent slopes
Otero sandy loam, 0 to 3
percent slopes
Paoli fine sandy loam, 0 to 1
percent slopes
Riverwash
Table Mountain loam, 0 to 1
percent slopes
Map Unit Descriptions
The map units delineated on the detailed soil maps in a soil survey represent the
soils or miscellaneous areas in the survey area. The map unit descriptions, along
with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more
major kinds of soil or miscellaneous areas. A map unit is identified and named
according to the taxonomic classification of the dominant soils. Within a taxonomic
class there are precisely defined limits for the properties of the soils. On the
landscape, however, the soils are natural phenomena, and they have the
characteristic variability of all natural phenomena. Thus, the range of some
observed properties may extend beyond the limits defined for a taxonomic class.
Areas of soils of a single taxonomic class rarely, if ever, can be mapped without
including areas of other taxonomic classes. Consequently, every map unit is made
up of the soils or miscellaneous areas for which it is named and some minor
components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the
map unit, and thus they do not affect use and management. These are called
noncontrasting, or similar, components. They may or may not be mentioned in a
particular map unit description. Other minor components, however, have properties
and behavioral characteristics divergent enough to affect use or to require different
management. These are called contrasting, or dissimilar, components. They
generally are in small areas and could not be mapped separately because of the
scale used. Some small areas of strongly contrasting soils or miscellaneous areas
are identified by a special symbol on the maps. If included in the database for a
11
Custom Soil Resource Report
given area, the contrasting minor components are identified in the map unit
descriptions along with some characteristics of each. A few areas of minor
components may not have been observed, and consequently they are not
mentioned in the descriptions, especialiy where the pattern was so complex that it
was impractical to make enough observations to identify all the soils and
miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the
usefulness or accuracy of the data. The objective of mapping is not to delineate
pure taxonomic classes but rather to separate the landscape into landforms or
landform segments that have similar use and management requirements. The
delineation of such segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous
areas.
An identifying symbol precedes the map unit name in the map unit descriptions.
Each description includes general facts about the unit and gives important soil
properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for
differences in texture of the surface layer, all the soils of a series have major
horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness,
salinity, degree of erosion, and other characteristics that affect their use. On the
basis of such differences, a soil series is divided into soil phases. Most of the areas
shown on the detailed soil maps are phases of soil series. The name of a soil phase
commonly indicates a feature that affects use or management. For example, Alpha
silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas.
These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate
pattern or in such small areas that they cannot be shown separately on the maps.
The pattern and proportion of the soils or miscellaneous areas are somewhat similar
in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.
An association is made up of two or more geographically associated soils or
miscellaneous areas that are shown as one unit on the maps. Because of present
or anticipated uses of the map units in the survey area, it was not considered
practical or necessary to map the soils or miscellaneous areas separately. The
pattern and relative proportion of the soils or miscellaneous areas are somewhat
similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas
that could be mapped individuaily but are mapped as one unit because similar
interpretations can be made for use and management. The pattern and proportion
of the soils or miscellaneous areas in a mapped area are not uniform. An area can
be made up of only one of the major soils or miscellaneous areas, or it can be made
up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil
material and support little or no vegetation. Rock outcrop is an example.
12
Custom Soil Resource Report
Larimer County Area, Colorado
7—Ascalon sandy loam, 0 to 3 percent slopes
Map Unit Setting
National map unit symbol.� 2sw13
Elevation: 3,870 to 5,960 feet
Mean annual precipitation: 12 to 16 inches
Mean annual air temperature: 46 to 57 degrees F
Frost-free period.� 135 to 160 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Ascalon and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descripfions, and transects of the mapunit.
Description of Ascalon
Setting
Landform: Interfluves
Landform position (two-dimensional): Summit
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Wind-reworked alluvium and/or calcareous sandy eolian deposits
Typical profile
Ap - 0 to 6 inches: sandy loam
Bt1 - 6 to 12 inches: sandy clay loam
Bt2 - 12 to 19 inches: sandy clay loam
Bk - 19 to 35 inches: sandy clay loam
C- 35 to 80 inches: sandy loam
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feafure: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to
high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding.� None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.1 to 2.0
mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Moderate (about 7.7 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: B
Ecological site: Sandy Plains (R0676Y024C0)
Hydric soil rating: No
13
Custom Soil Resource Report
Minor Components
Olnest
Percent of map unit: 10 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Sandy Plains (R0676Y024C0)
Hydric soil rating: No
Vona
Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Sandy Plains (R067BY024C0)
Hydric soil rating: No
40—Garrett loam, 0 to 1 percent slopes
Map Unit Setting
National map unit symbol.� jpwg
Elevation: 5,200 to 6,000 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period.� 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Garrett and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Garrett
Setting
Landform: Fans, terraces
Landform position (three-dimensional): Base slope, tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone and shale
Typical profile
H1 - 0 to 8 inches: loam
H2 - 8 to 39 inches: sandy clay loam, sandy loam
H2 - 8 to 39 inches: sandy loam
H3 - 39 to 60 inches:
14
Custom Soil Resource Report
Properties and qualities
Slope: 0 to 1 percent
Depth to restrictive feafure: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to fransmit water (Ksat): Moderately high to
high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding.� None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0
mmhos/cm)
Available water storage in profile: Very high (about 12.9 inches)
Interpretive groups
Land capability classification (irrigated): 2w
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: Overflow (R049XY036C0)
Hydric soil rating: No
Minor Components
Harlan
Percent of map unit: 6 percent
Hydric soil rating: No
Barnum
Percent of map unit: 5 percent
Hydric soil rating: No
Connerton
Percent of map unit: 4 percent
Hydric soil rating: No
64—Loveland clay loam, 0 to 1 percent slopes
Map Unit Setting
National map unit symbol: jpx9
Elevation: 4,800 to 5,500 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Loveland and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
15
Custom Soil Resource Report
Description of Loveland
Setting
Landform: Flood plains, stream terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium
Typical profile
H1 - 0 to 15 inches: clay loam
H2 - 15 to 32 inches: clay loam, silty clay loam, loam
H2 - 15 to 32 inches: very gravelly sand, gravelly sand, gravelly coarse sand
H2 - 15 to 32 inches:
H3 - 32 to 60 inches:
H3 - 32 to 60 inches:
H3 - 32 to 60 inches:
Properties and qualities
Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20
to 0.60 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding.� Occasional
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Very slightly saline to slightly saline (2.0 to 4.0
mmhos/cm)
Available water storage in profile: Very high (about 16.7 inches)
Interpretive groups
Land capability classification (irrigated): 3w
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: C
Hydric soil rating: No
Minor Components
Aquolls
Percent of map unit: 5 percent
Landform: Swales
Hydric soil rating: Yes
Poudre
Percent of map unit: 5 percent
Hydric soil rating.� No
iL
Custom Soil Resource Report
76—Nunn clay loam, wet, 1 to 3 percent slopes
Map Unit Setting
National map unit symbol.� jpxq
Elevation: 4,800 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period.� 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Nunn, wet, and similar soi/s: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Nunn, Wet
Setting
Landform: Alluvial fans, stream terraces
Landform position (three-dimensional): Base slope, tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium
Typical profile
H1 - 0 to 10 inches: clay loam
H2 - 10 to 47 inches: clay loam, clay
H2 - 10 to 47 inches: clay loam, loam, gravelly sandy loam
H3 - 47 to 60 inches:
H3 - 47 to 60 inches:
H3 - 47 to 60 inches:
Properties and qualities
Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to
moderately high (0.06 to 0.60 in/hr)
Depth to water table: About 24 to 36 inches
Frequency of flooding.� Rare
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0
mmhos/cm)
Available water storage in profile: Very high (about 19.8 inches)
Interpretive groups
Land capability classification (irrigated): 2w
Land capability classification (nonirrigated): 3s
17
Custom Soil Resource Report
Hydrologic Soil Group: C
Hydric soil rating: No
Minor Components
Heldt
Percent of map unit: 6 percent
Hydric soil rating: No
Dacono
Percent of map unit: 3 percent
Hydric soil rating.� No
Mollic halaquepts
Percent of map unit: 1 percent
Landform: Swales
Hydric soil rating: Yes
77—Otero sandy loam, 0 to 3 percent slopes
Map Unit Setting
National map unit symbol: jpxr
Elevation: 4,800 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Otero and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Otero
Setting
Landform: Fans
Landform position (three-dimensional): Side slope, base slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium and/or eolian deposits
Typical profile
H1 - 0 to 17 inches: sandy loam
H2 - 17 to 60 inches: sandy loam, fine sandy loam, loamy very fine sand
H2 - 17 to 60 inches:
H2 - 17 to 60 inches:
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
18
Custom Soil Resource Report
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00
in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Available water storage in profile: Very high (about 14.9 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: A
Ecological site: Sandy Plains (R0676Y024C0)
Hydric soil rating: No
Minor Components
Kim
Percent of map unit: 8 percent
Hydric soil rating: No
Ascalon
Percent of map unit: 6 percent
Hydric soil rating: No
Nelson
Percent of map unit: 1 percent
Hydric soil rating: No
81—Paoli fine sandy loam, 0 to 1 percent slopes
Map Unit Setting
National map unit symbol.� jpxx
Elevation: 4,800 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period.� 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Paoli and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Paoli
Setting
Landform: Stream terraces
Landform position (three-dimensional): Tread
19
Custom Soil Resource Report
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium
Typical profile
H1 - 0 to 30 inches: fine sandy loam
H2 - 30 to 60 inches: fine sandy loam, sandy loam, loamy sand
H2 - 30 to 60 inches:
H2 - 30 to 60 inches:
Properties and qualities
Slope: 0 to 1 percent
Depth to restrictive feafure: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00
in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding.� None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0
mmhos/cm)
Available water storage in profile: Very high (about 16.5 inches)
Interpretive groups
Land capability classification (irrigated): 1
Land capability classification (nonirrigated): 3c
Hydrologic Soil Group: A
Ecological site: Overflow (R067BY036C0)
Hydric soil rating: No
Minor Components
Caruso
Percent of map unit: 6 percent
Hydric soil rating.� No
Table mountain
Percent of map unit: 6 percent
Hydric soil rating: No
Fluvaquentic haplustolls
Percent of map unit: 3 percent
Landform: Terraces
Hydric soil rating.� Yes
92—Riverwash
Map Unit Setting
National map unit symbol: jpy9
Elevation: 4,000 to 8,500 feet
20
Custom Soil Resource Report
Mean annual precipitation: 12 to 20 inches
Mean annual air temperature: 45 to 52 degrees F
Frost-free period.� 75 to 150 days
Farmland classification: Not prime farmland
Map Unit Composition
Riverwash: 100 percent
Estimates are based on observations, descripfions, and transects of the mapunit.
Description of Riverwash
Setting
Landform: Outwash terraces, overflow stream channels, flood plains
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Sandy and gravelly alluvium
Typical profile
H1 - 0 to 6 inches: very gravelly sand
H2 - 6 to 60 inches: stratified very gravelly sand to clay
Properties and qualities
Slope: 0 to 3 percent
Natural drainage class: Somewhat excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00
to 20.00 in/hr)
Frequency of flooding.� Frequent
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Very low (about 2.3 inches)
Interpretive groups
Land capability classification (irrigated): 6w
Land capability classification (nonirrigated): 7w
Hydrologic Soil Group: A
Hydric soil rating: Yes
105—Table Mountain loam, 0 to 1 percent slopes
Map Unit Setting
National map unit symbol: jpty
Elevation: 4,800 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Table mountain and similar soils: 85 percent
Minor components: 15 percent
21
Custom Soil Resource Report
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Table Mountain
Setting
Landform: Flood plains, stream terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium
Typical profile
H1 - 0 to 36 inches: loam
H2 - 36 to 60 inches: loam, clay loam, silt loam
H2 - 36 to 60 inches:
H2 - 36 to 60 inches:
Properties and qualities
Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to
high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding.� None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0
mmhos/cm)
Sodium adsorption ratio, maximum in profile: 5.0
Available water storage in profile: Very high (about 18.0 inches)
Interpretive groups
Land capability classification (irrigated): 1
Land capability classification (nonirrigated): 3c
Hydrologic Soil Group: B
Ecological site: Overflow (R049XY036C0)
Hydric soil rating: No
Minor Components
Caruso
Percent of map unit: 7 percent
Hydric soil rating: No
Fluvaquentic haplustolls
Percent of map unit: 4 percent
Landform: Terraces
Hydric soil rating.� Yes
Paoli
Percent of map unit: 4 percent
Hydric soil rating: No
22
Custom Soil Resource Report
23
Refe re n ces
American Association of State Highway and Transportation Officials (AASHTO).
2004. Standard specifications for transportation materials and methods of sampling
and testing. 24th edition.
American Society for Testing and Materials (ASTM). 2005. Standard classification of
soils for engineering purposes. ASTM Standard D2487-00.
Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of
wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife
Service FWS/OBS-79/31.
Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric
soils in the United States.
National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service.
U.S. Department of Agriculture Handbook 18. http://www.nres.usda.gov/wps/portal/
nres/detail/national/soils/?cid=nres142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for
making and interpreting soil surveys. 2nd edition. Natural Resources Conservation
Service, U.S. Department of Agriculture Handbook 436. http://
www. nres. usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of
Agriculture, Natural Resources Conservation Service. http://
www. nres. usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and
Delaware Department of Natural Resources and Environmental Control, Wetlands
Section.
United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of
Engineers wetlands delineation manual. Waterways Experiment Station Technical
Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service.
National forestry manual. http://www.nres.usda.gov/wps/portal/nres/detail/soils/
home/?cid=nres142p2_053374
United States Department of Agriculture, Natural Resources Conservation Service.
National range and pasture handbook. http://www.nres.usda.gov/wps/portal/nres/
detail/national/landuse/rangepasture/?cid=stelprdb1043084
24
Custom Soil Resource Report
United States Department of Agriculture, Natural Resources Conservation Service.
National soil survey handbook, title 430-VI. http://www.nres.usda.gov/wps/portal/
nres/detail/soils/scientists/?cid=nres142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service.
2006. Land resource regions and major land resource areas of the United States,
the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook
296. http://www.nres.usda.gov/wps/portal/nres/detail/national/soils/?
cid=nres142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land
capability classification. U.S. Department of Agriculture Handbook 210. http://
www. nres. usda.gov/I nternet/FSE_DOCUMENTS/nres142p2_052290. pdf
25
APPENDIX G
Approved Variance Request
»APPROVED VARIANCE TO BE INSERTED HERE
DocuSign Envelope ID: CD6283EE-592F-485C-8C61-056DA7B5EAD8
Stormwater
Alternative ComplianceNariance Application
City of Fort Collins Water Utilities Engineering
Engineer Name Aaron Cvar Phone g�0-221-4158
Street Address 301 N. Howes, Suite 100
City Fort Collins
Owner Name Poudre School District
Street Address 2407 Laporte Ave.
City Fort Collins
State CO Zip 80521
Phone 970-482-7420
State C� Zip $0521
Project Name PSD Middle School High School #2
Project/Application Number from Development Review (i.e. FDP123456)
Legal description and/or address of property South Half of Section 15, Township 7 North,
Range 68 West of the 6th P.M., County of Larimer, City of Fort Collins
Description of Project Middle school and hight school development
Existing Use (check one): residential •� non-residential � mixed-use � vacant ground
Proposed Use (check one): � residential '• non-residential mixed-use other
If non-residential or mixed use, describe in detail Development of middle school/high school and
associated utility work, parking, roadway improvements
State the requirement from which alternative compliance/variance is sought
applicable Drainage Criteria Manual volume, chapter and section.)
City Code Sec. 26-500 and all reqs. in Ft. Collins Stormwater Criteria, incl.
What hardship prevents this site from meeting the requirement?
(Please include
LID reqs. (Ch7, Sec 6.0)
While the site is located within the Fort Collins City Limits, the site is located in the Town of Timnath
Drainage Master Plan Area and drains only to Town of Timnath stormwater facilities. The site is also
subject to the Poudre School District MS4 permit and not the Fort Collins permit.
Attach separate sheet if necessary
What alternative is proposed for the site?
The site is draining into Town of Timnath drainage facilities, and is being subject to Town of Timnath
Drainage Master Plan requirements.
Attach separate sheet if necessary
DocuSign Envelope ID: CD6283EE-592F-485C-8C61-056DA7B5EAD8
page 2
The owner agrees to comply with the provisions of the zoning ordinance, building code and all other
applicable sections of the City Code, Land Use Code, City Plan and all other laws and ordinances
affecting the construction and occupancy of the proposed building that are not directly approved by
this variance. The owner understands that if this variance is approved, the structure and its occupants
may be more susceptible to flood or runoff damage as well as other adverse drainage issues.
DocuSigned by:
/�
� � �
(�--f�,�'�� 7/ 15 / 20 2 0
Signature of owner:. 3�gF�g492���4oF. Date:
The engineer hereby certifies t he above information, along with the reference plans and project
descriptions is correct.
Signature of engineer:
�ocu5igned by:
`�a� l��omr.+��
$�oE589,�Fe�4A�ivew �ache Reservoir Company
�ocu5igned by:
�� ��
BE5�EA347�1H488...
7/17/20Z0
Date
7/17/20Z0
Town of Timnath Date
�/2o/to
/�S'� �Y'._ ' ':�\
�_., ; •:;�" ''� °'�; °� ,• ��
' G : �,7 1/ ; ��
�' ," �' �.::' ;��
�! � „�. ^�,,, :.,,,
:; , .�.
_,'� �y , `o,'�
.f.;;
.' ;w=.r
Z,': . . . �,� �y�
�., �,��j� ..... .�� .�
� �`t'�����t r�s�.. �� �ji''�:
PE STAMP
Date complete application submitted: 7/20/2020
Date of approval/denial: 7/21/2020
Variance: � approved � denied
Staffjustification/notes/conditions: This site is currently located in Fort Collins' City Limits, and there is a plan to
de-annex from Fort Collins and to annex into Timnath. The site is located within Timnath Stormwater Master Plan
Area. Due to anticipated de-annexation from Fort Collins, as well as review and acceptance by Timnath, meeting
Timnath Stormwater Criteria is accepted for this
Approved by:
Entered in UtilifyFile D�tab�se? �yes �no
,il� , l_l- 1�j�J
Correspondence
7/16/2020 Mail - Aaron Cvar - Outlook
RE: PSD Onsite signatures
Dale Trowbridge <DTrowbridge@newcache.com>
Fri 7/10/2020 3:39 PM
To: Andy Reese <andy@northernengineering.com>
Cc: Craig Ullmann <craigullmann@applegategroup.com>; Eric Fuhrman <efuhrman@tstinc.com>
Andy,
. The Cache La Poudre Reservoir Company (CLPRC) will accept the non-historical flows subject to the following:
1. The Town of Timnath master plan shows the drainage from this site going south across Prospect
Rd. The culvert under Prospect Rd. appears to be lower than the canal bank. Certainly there have
been changes to Prospect through the years but from the CLPRC perspective, these flows
historically did not enter the Timnath Reservoir Inlet Canal (TRIC). The release is stormwater from
the Town of Timnath Master Drainage Plan Basin SB6 into the TRIC.
2. The release rate will be at 10 year rate (or less) for this particular parcel only. No additional ground
may be drained. My understanding is this will be 1 cfs or less.
3. The elevation of the pipe inverts must be at an e►evation that water will not enter the ponds when
the canal is flowing at normal flows. With the hydrology of TRIC, the water backs into the canal
passed this point. So the invert elevation of the ponds should be no lower than 4910.77. Why not
make them the same as the PSD ponds (4911)?
4. Flap gates must be install on the pipes to reduce or restrict backflow into the ponds.
If additional information is necessary, please contact me.
Dale Trowbridge
General Manager
The Cache La Poudre Reservoir Company
From: Andy Reese <andy@northernengineering.com>
Sent: Thursday, June 25, 2020 5:50 PM
To: Dale Trowbridge <DTrowbridge@newcache.com>
Cc: Craig Ullmann <craigullmann@applegategroup.com>
Subject: FW: PSD Onsite signatures
Hello Dale —
As you can see in the highlight portion of the email below, Timnath is looking for a statement from you indicating
you are willing to accept the stormwater on the west end of the PSD site. I'm not trying to put words in your
mouth, but would you be able to send an email to me and the Town stating something like:
"The New Cache Reservoir company is aware of the proposal to release stormwater from the Town of Timnath
Master Drainage Plan Basin SB6 into the Timnath Reservoir Inlet Canal. We understand that this release was not
shown on the Master Drainage plan, however, we are willing to accept this flow so long as the total stormwater
release into the TRIC remains at or below the previously allowed rates and continues to provide water quality
treatment as previously required"
Feel free to wordsmith as needed, but if we can get something like this as quickly as possible, it might help me get
these offsite plans back on track. Certainly let me know if you have issues with the statement or approach, but I
think we have talked enough that I understand you'll be ok with this.
Thanks Dale!
Andy Reese
Vice President
NORTHERN ENGINEERING
D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335
Please note that email is the best way to communicate
with me while our office is closed.
From: Eric Fuhrman <efuhrman@tstinc.com>
Sent: Thursday, June 25, 2020 2:46 PM
To: Andy Reese <andy_@northernengineering.com>; Steve Humann <shumann@tstinc.com>
Subject: RE: PSD Onsite signatures
https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 1/5
7/16/2020
Mail - Aaron Cvar - Outlook
Andy,
Since Fort Collins isn't sending a referral for comments, here are our comments on the plans & report. Plans are
minor, and other that the storm HGL's, are repeats from the last round.
htt ps: //tsti n cfc-
my.sharepoint.com/:f:/g�personal/efuhrman_tstinc_com/EoDhqPneeGxlmScfU IIt20BJaTm55CePsLbtm-
vmzhTYA?e=1zX2pj
Comments on the drainage report are also repeats associated with the additional connection to the TRIC & the
design of that pond. One of the major outstanding items would be written approval from New Cache for the
additional connection & release into the TRIC. Do you have that?
For future submittals (this & other projects), please make sure all comments are removed from the PDF files. The
files submitted contain significant (over 2700 on the plans) ACAD comments. These are making the PDF files
extremely large, and makes adding comments problemafic.
Thanks,
Eric
From: Andy Reese <andy_@northernengineering.com>
Sent: Tuesday, June 23, 2020 4:05 PM
To: Eric Fuhrman <efuhrman@tstinc.com>; Steve Humann <shumann@tstinc.com>
Subject: RE: PSD Onsite signatures
Eric —
Thanks for the response. Fort Collins probably won't be sending an ofFicial referral, as they were just doing a quick
pdf review to confirm their last comments were addressed in advance of approvals.
With that in mind, is there anything we can do between us directly to minimize changes you need to see or to
help facilitate the approval of the offsite roadways? As you can imagine, getting AP the ability to do the Main
Street improvements while the bridge is being demo'd would really reduce the overall impact to residents. I can
make myself available almost any time tomorrow except from 1-3 (I'll be onsite at the PSD/TRIC OAC) and would
be willing to go point by point if we need to. Just let me know how we can get this across the finish line.
Sorry to hear about the pothole!
Andy Reese
Vice President
NORTHERN ENGINEERING
D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335
Please note that email is the best way to communicate
with me while our office is closed.
From: Eric Fuhrman <efuhrman@tstinc.com>
Sent: Tuesday, June 23, 2020 3:45 PM
To: Andy Reese <andy_@northernengineering.com>; Steve Humann <shumann@tstinc.com>
Subject: Re: PSD Onsite signatures
Andy,
Trying to get those wrapped up. I had been waifing to get the ofFicial referral comment request from the City to
keep all of the comments together. I'm having some problems making comments on the PDF as it keeps locking up
on me, so will probably print and scan the markups.
Was trying to get them done today, but had to come out to Timnath for an emergency with a sink hole appearing
in a road. Not sure when I will get back to the ofFice.
Eric
Sent from Outlook Mobile
From: Andy Reese <andy_@northernengineering.com>
Sent: Tuesday, June 23, 2020 3:31:43 PM
To: Eric Fuhrman <efuhrman@tstinc.com>; Steve Humann <shumann@tstinc.com>
Subject: RE: PSD Onsite signatures
Hey Eric and Steve —
I wanted to see if you had a chance to catch up on the offsite plans for PSD? As you know, Dietzler has started
their bridge demolition efforts (or it is imminent) and AP would like to piggy back on that closure and get as much
https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 2/5
7/16/2020
Mail - Aaron Cvar - Outlook
of the Main Street work done now as possible. Where are things at on your end for the offsite approvals?
Andy Reese
Vice President
NORTHERN ENGINEERING
D: 970.568.5403 � O: 970.221.4158 � M 970.690.3335
Please note that email is the best way to communicate
with me while our office is closed.
From: Andy Reese
Sent: Sunday, June 21, 2020 9:37 PM
To:'Eric Fuhrman' <efuhrman@tstinc.com>;'Steve Humann' <shumann@tstinc.com>
Subject: RE: PSD Onsite signatures
Eric and Steve —
I'm writing again to request an update on the submittal we provided May 28th to the Town of Timnath for the PSD
offsite improvement plans. We have not received any information since May 28th from the Town nor from our
June 16th email below — can you please let us know the status of the review? As you know, work is underway on
the site and we are eager to resolve any remaining issues, particularly those related to the Timnath Master
Drainage Plan amendments that you have indicated may be needed. Can you please provide any comments that
you have so we can move as quickly as possible to resolve them?
Thank you for your timely response!
Andy Reese
Vice President
NORTHERN ENGINEERING
D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335
Please note that email is the best way to communicate
with me while our office is closed.
From: Andy Reese
Sent: Tuesday, June 16, 2020 7:00 AM
To:'Eric Fuhrman' <efuhrman@tstinc.com>
Cc:'Steve Humann' <shumann@tstinc.com>
Subject: RE: PSD Onsite signatures
Hello Eric —
It has been almost three weeks since we submitted the updated drainage report — any luck reviewing it? As you
know, that report is holding up approvals of the offsite package, so understanding if anything else is needed
would be very helpful in maintaining the schedule. I am hopeful that the report is in good shape, but there is
probably more to be done with the Master Plan and getting that all sorted out, so the sooner we get going on
that, the better.
Please let me know if there is anything you need from me to help speed things along!
Andy Reese
Vice President
NORTHERN ENGINEERING
D: 970.568.5403 � O 970.221.4158 � M: 970.690.3335
Please note that email is the best way to communicate
with me while our office is closed.
From: Andy Reese
Sent: Thursday, May 28, 2020 4:55 PM
To:'Eric Fuhrman' <efuhrman@tstinc.com>
Cc: Steve Humann <shumann@tstinc.com>
Subject: RE: PSD Onsite signatures
That is great news Eric! Thank you for that!! I will get our onsite plans printing and start routing for signatures.
We understand about the drainage report being in the queue. I think we may need to have a meeting to figure out
the master plan changes/variances if that is the route we are going. I did speak with Dale again, and he continues
to be ok with the concept of that area draining to the TRIC. Please let me know when that meeting can happen.
https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 3/5
7/16/2020
Thanks again for clearing the onsite plans!
Andy Reese
Vice President
NORTHERN ENGINEERING
D: 970.568.5403 � O: 970.221.4158 � M 970.690.3335
Please note that email is the best way to communicate
with me while our office is closed.
From: Eric Fuhrman <efuhrman@tstinc.com>
Sent: Thursday, May 28, 2020 3:15 PM
To: Andy Reese <andy_@northernengineering.com>
Cc: Steve Humann <shumann@tstinc.com>
Subject: RE: PSD Onsite signatures
Andy,
Mail - Aaron Cvar - Outlook
The resubmitted drainage report is in the queue to be reviewed, as we work thru submittals in the order received.
We did discuss in our team meeting this morning if everyone would be okay with signing the onsite plans. Our
position is the same as expressed by Dan. We can sign the onsite plans — but the drainage report will need to be
finalized, including any modifications because of the finalization of the offsite design, before the offsite plans will
be approved.
Thanks,
Eric
From: Andy Reese <andy_@northernengineering.com>
Sent: Wednesday, May 27, 2020 11:14 AM
To: Eric Fuhrman <efuhrman@tstinc.com>
Cc: Steve Humann <shumann@tstinc.com>
Subject: FW: PSD Onsite signatures
Importance: High
Hey Eric —
It looks like Fort Collins is good signing the onsite plans — can you please update where Timnath is on this? i
haven't seen any responses from the Town since we resubmitted the drainage study (aside from the
communication on the fiber line).
What do you need to get this moving?
Andy Reese
Vice President
NORTHERN ENGINEERING
D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335
Please note that email is the best way to communicate
with me while our office is closed.
From: Dan Mogen <dmogen@fcgov.com>
Sent: Wednesday, May 27, 2020 10:38 AM
To: Andy Reese <andy_@northernengineering.com>; efuhrman@tstinc.com
Cc: Shane Boyle <SBOYLE@fcgov.com>; Steve Humann <shumann@tstinc.com>; Earl Smith
(earls@psdschools.org) <earls@psdschools.org>; John Little (jlittle@psdschools.org) <jlittle@psdschools.org>
Subject: RE: PSD Onsite signatures
Andy,
I've had a chance to discuss with Shane and City Stormwater is willing to sign the on-site plans at this point.
To be clear, the expectation is that the drainage report, including variance approval and acceptance by Timnath
and New Cache, will be submitted to the City prior to signing the off-site plans.
Also noting here per previous discussions, FC signature block will be included on the cover of the on-site plans
and on each sheet of the off-site plans.
Best,
Dan
Dan Mogen, EI, CFM
Development Review Engineer
https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 4/5
7/16/2020
Mail - Aaron Cvar - Outlook
Stormwater Engineering & Development Review Division
City of Fort Collins Utilities
(970)305-5989
dmogen@fcgov.com
From: Andy Reese <andy_@northernengineering.com>
Sent: Tuesday, May 26, 2020 9:17 PM
To: Dan Mogen <dmogen@fcgov.com>; efuhrman@tstinc.com
Cc: Shane Boyle <SBOYLE@fcgov.com>; Steve Humann <shumann@tstinc.com>; Earl Smith
(earls@psdschools.org) <earls@psdschools.org>; John Little (jlittle@psdschools.org) <jlittle@psdschools.org>
Subject: [EXTERNAL] PSD Onsite signatures
Hello Dan and Eric—
As you know, we received the most recent redlines and comments for the PSD offsite plans last week. We have
since updated both the utility plans and drainage study. We have addressed all of the plan comments/redlines
and will be resubmitting those as soon as we receive the updated signal plans from Delich. We have also
addressed all of the drainage report comments and provided the updated drainage report to both Fort Collins and
Timnath ►ast week. We believe all issues (onsite, offsite, drainage or otherwise) have been addressed except that
for the Timnath Drainage Master Plan variance/update needed to drain approximately 0.5 acres of Prospect to the
TRIC, and we are hoping to get resolution with Timnath on that issue as soon as possible.
With that all in the works, I wanted to talk about what our options are for getting signed plans for the onsite
package. As you may recall, these plans were finalized a couple of months ago and construction has even begun
on the earthwork. The next phase of construction is the utility installation, and ELCO will not allow work to begin
on the waterline until the plans have been signed. The reason these plans have not been signed to this point have
been a result of the revisions/updates to the drainage study.
So now for the million dollar (or more) question: Now that all onsite related items have been addressed, are you
comfortable signing the onsite plans so the utility work can commence? If not, what needs to happen in order to
be comfortable?
Andy Reese
Vice President
NORTHERN ENGINEERING
D: 970.568.5403 � O: 970.221.4158 � M: 970.690.3335
Please note that email is the best way to communicate
with me while our office is closed.
https://outlook.office.com/maillinbox/id/AAQkADMxZGFmZDJjLTJjOTktNDE2Yi1 iOTZLWJmM2M3YmE20DYxOAAQAAJ009JhAEx9otZbImJK%2Fgw... 5/5
MAP POCKET
Drainage Exhibit
�
� Z �, o�'srvmo� lao�
�m w �jz ' 1332115 NIVW'S OVO2i 1J3d5021d ^ o Q
�� =w 1�I271SI0lOOHJS3234f1Od N O
_ � � l�
�� �z S1N3Wf1�0U Z# IOOH�S HiJIH W� e� � U
o �' '
�Q .,u .- zw; ; NOI1�f1211SNOJ "IOOH�S3lU4IW USd a _ po �
i�
1- � � a
L� �.�� � I I I I I'I ■ Ra �_
.
� � �;',I �II�I� � : �� —
:� ��1=>�_l - ��
o .
-- � '� - -
i��
; ,. _
Z 1
Wo -- ' 3�1 ; �
� _""—' — - J � �
_ '"_ � o �� as
/ = e _ '
� `
oll --% � 8 � � . _ 3
� — w w r w =
w —s°.$wa°��5�� o . o �, O _ ., .,o „�
z
_ l _ �L.. l L ) L 1 '- � � � � �._ �_,�' ��� T �,/ i
_ - — � � -- �33a�, ar„
�
��
_-1J
_T �
--�--�,
_..i.J
_�
- �-�
I---j
l--I
L.
�
�-, -.. �- -
--�
I--rTr� �" ', ii
��� G ��� � kF� ^ i
� -� � �
�
a f j -I�''i'..i
, ��__ .._'—_=yl,l �
� � � il,�
�i�
��
�`� � �'y,� i
'�.,>� �� � �� .%. ,
� �
'. � �,�� ,Y r,
�
e'��`_ .�'�:�4,��, �
0
�
�
0
�
ZZ
o�
WU
�
W �
� Z
W �
� U
Z �.'
�O
�
O �
� Z
O
I� I / �
Il �
�
�Q- I�- � —
°--�-�--
-.,�\ l
� �� � - �
r�
�