Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 11/23/1998
'ROPEATC' OF Final - p ove Report FO tT COLLINS uranium ^...., d: e F FINAL DRAINAGE AND EROSION CONTROL REPORT WATERGLEN, P.U.D. Engineering, Ltd. FINAL DRAINAGE AND EROSION CONTROL REPORT WATERGLEN, P.U.D. Prepared for: P. B. Roche Development 361 715t Avenue Greeley, Colorado 80632 Prepared by: JR ENGINEERING, LTD. 2620 E. Prospect Rd., Suite. 190 Fort Collins, Colorado 80525 (970) 491-9888 August 11, 1997 revised December 5, 1997 revised July 9, 1998 revised September 25, 1998 revised November 6, 1998 Job Number 9I45.00 T� Engineering, Ltd. 2620 East Prospect Rd. Suite 190 Fort Collins, Colorado 80525 (970) 491-9888 • FAX (970) 49I-9984 www.jreng.com 1 November 6, 1998 Mr. Basil Hamdan City of Fort Collins Stormwater Utility 700 Wood Street Fort Collins, CO 80521 RE: Revised Final Drainage and Erosion Control Report for the Waterglen, P.U.D. Dear Basil, We are pleased to submit for your review and approval this revised Final Drainage and Erosion Control Report for the Waterglen, P.U.D. This report addresses City of Fort Collins Stormwater Utility review comments of October 26, 1998 and includes design of drainage facilities and erosion control measures required to meet the City of Fort Collins Storm Drainage Design Criteria. The detention pond design and the hydraulic analysis and design of regional drainage facilities for Cooper Slough and the Boxelder Creek Overflow Channel are included in the accompanying report, "Regional Drainage Evaluation for the Waterglen, P.U.D." by Lidstone & Anderson. We appreciateyour time and consideration in reviewingthis submittal. Please call if you have pp any questions. Sincerely, JR ENGINEERING, LTD. Prepared by, i dferZu1 ject Engineer Attachment d by, atricia Kroetch, Project Manager 4935 North 30th Street 6020 Greenwood Plaza Blvd. 704 Fortino Blvd. West ' Colorado Springs, Colorado 80919 Englewood, Colorado 80111 Pueblo, Colorado 81008 (719) 593-2593 • FAX (719) 528-6613 (303) 740-9393 • FAX (303) 721-9019 (719) 583-2575 • FAX (719) 583-8119 TABLE OF CONTENTS PAGE TABLE OF CONTENTS VICINITY MAP 1. INTRODUCTION 1 1.1 Project Location 1 1.2 Site Characteristics 1 1.3 Soils 1 1.4 Purpose and Scope of Report 2 1.5 Design Criteria 2 1.6 Master Drainage Basin & Other Drainage Reports 2 2. HISTORIC DRAINAGE 3 3. DEVELOPED FLOWS 3.1 Method 3.2 Exterior Flows 3.3 Onsite Flows 3.4 General Flow Routing 3.5 Proposed Drainage Plan 3.6 Hydrologic Analysis of Proposed Conditions 3.7 Allowable Street Flow Capacities 3.8 Curb Inlet Design 3.9 Storm Sewer Pipe Design 3.10 Swales 3.11 Detention Ponds 3 3 3 4 4 5 10 12 12 14 18 18 4. MISCELLANEOUS 19 4.1 Variances 19 5. EROSION CONTROL 20 5.1 Erosion and Sediment Control Measures 20 5.2 Dust Abatement 20 5.3 Tracking Mud on City Streets 20 5.4 Maintenance 21 5.5 Permanent Stabilization 21 5.6 Variances Requested 21 6. REFERENCES 22 iii APPENDIX A - MAPS AND FIGURES APPENDIX B - HYDROLOGIC CALCULATIONS APPENDIX C - STREET CAPACITY CALCULATIONS APPENDIX D - INLET CALCULATIONS APPENDIX E - PIPE CALCULATIONS APPENDIX F - RIPRAP CALCULATIONS APPENDIX G - SWALE CALCULATIONS APPENDIX H - SPILLWAY & WATER QUALITY CALCULATIONS APPENDIX I - EROSION CONTROL CALCULATIONS 1 1 COUNTY ROAD 9E COUNTY ROAD 50 WELD PROJECT SITE CAA/At EAST VINE DRIVE STATE HIGHWAY 14 VICINITY MAP N.T.S. u) N IN TERSTATE 3 1. INTRODUCTION 1.1 Project Location The Waterglen P.U.D. is a proposed 160-acre residential and commercial development that consists of 477 small lot single-family homes, 24 multifamily units, and commercial buildings. The project is located in the Southeast One -Quarter and the Northeast One - Quarter of Section 4, Township 7 North, Range 68 West of the Sixth Principal Meridian, in the City of Ft. Collins, Larimer County, Colorado. The site is bounded by East Vine Drive on the south, the Larimer and Weld Canal on the west and north and by southbound Interstate 25 on the east. (See Appendix A - VICINITY MAP). 1.2 Site Characteristics The project site includes approximately 160 acres of land. The Cooper Slough wetland area runs north to south through the west side of the property. With the Waterglen P.U.D. a small area of the wetland will be disturbed (approximately 0.28 acres). Since wetland areas will be disturbed, Corps of Engineering approval will be requested although a permit will not be required due to the small amount of area that is disturbed. The entire property slopes approximately 0.7 percent to the south. The majority of the property is covered with native and wetland grasses. The east side of the property is currently being farmed. 1.3 Soils The soils on the site include Nunn clay loam (73 & 74), Satanta loam (95), Longmont clay (63) and Caruso clay loam (22) according to the "Soil Survey for Larimer County Area, Colorado", prepared by the United States Department of Agriculture Soil Conservation Service. The majority of the property is Nunn clay loam. The Nunn series consists of deep, well - drained soils that formed in alluvium. Nunn clay loam on 0 to 1 percent slope is characterized by slow runoff and slight erosion. On 1 to 3 percent slope the characteristics of the soil include medium runoff, moderate water erosion, and slight wind erosion. Satana loam is found between the Larimer and Weld Canal and Cooper Slough. The Satanta series consists of deep, well -drained soils that formed in mixed alluvial and wind - deposited material. The characteristics of Satanta loam include slow to slight runoff and slight erosion. Cooper Slough consists of Longmont clay. The Longmont series consists of deep, poorly drained soils that formed in alluvium from clay shale. The characteristics of Longmont clay include slow runoff and slight erosion. The Caruso series consists of deep, somewhat poorly drained soils that formed in mixed alluvium. Caruso clay loam is found in the southwest corner of the site and is characterized by slow runoff and slight erosion. 1.4 Purpose and Scope of Report This report describes the proposed drainage and erosion control plan for the Waterglen P.U.D. The plan includes consideration of all on -site and tributary off -site runoff and the design of storm drainage pipes, curb inlets and swales. The detention pond design and hydraulic analysis and design of regional drainage facilities for Cooper Slough and the Boxelder Creek Overflow Channel are included in the accompanying report, "Regional Drainage Evaluation for the Waterglen, P.U.D." by Lidstone & Anderson. 1.5 Design Criteria This report was prepared to meet or exceed the submittal requirements established in the "City of Fort Collins Storm Drainage Design Criteria and Construction Standards" (SDDCCS), dated May 1984. Runoff computations were prepared for the 2-year minor and 100-yr major storm frequency using the rational method. Where applicable, the criteria established in the "Urban Storm Drainage Criteria Manual" (UDFCD), dated 1969 and 1992, developed by the Denver Regional Council of Governments, has been used. 1.6 Master Drainage Basin & other Drainage Reports This site is included in the Cooper Slough Drainage Basin. Detention will be provided for the site based on the results found in the "Regional Drainage Evaluation for the Waterglen P.U.D." by Lidstone & Anderson (L&A). 2 2. HISTORIC DRAINAGE Historically, the site drains into Cooper SIough via overland flow at an average slope of 0.7 percent. The farmed area in the southeast corner of the property drains by overland flow towards East Vine Drive then via swale flow into Cooper Slough. 3_ DEVELOPED FLOWS 3.1 Method The Rational Method was used to determine both the 2-year and 100-year developed flows for the subbasins indicated in this drainage report. The resulting 100-year runoff values were used to define design discharges at design points identified along streets, low points, and drainage swales. Detention is required and will be provided for this site. A detailed description of the hydrologic analysis is provided in section 3.6 of this report. 3.2 Exterior FIows Exterior flows are from the west, north and east of the Waterglen site. Flows entering the southwest comer of the site will be from the upper portion of the watershed. According to the "Cooper Slough Master Drainageway Implementation Plan" (SLA, October 1987), runoff from the upper portion of the basin will be routed under the Larimer and Weld Canal through a pipe and into a grass swale to the southwest corner of the Waterglen P.U.D. property. The Cooper Slough Implementation PIan documented a 100-year discharge of 490 cfs at Vine Drive with 390 cfs being contributed from the upper portion of the Cooper Slough Basin. It is proposed to route these offsite flows through the Waterglen development via a swale placed between Glenlyon Court and Glenbarr Court. It is recommended to route these flows through this Iocation because there is ample space for the large swale that is required. It is assumed that when the Implementation Plan improvements occur, a larger storm pipe or box will be installed under Elgin Court to convey these flows directly to Cooper Slough. From the north, the Larimer and Weld Canal will overtop during a 100-year storm event over approximately 1000 feet section above Cooper Slough (L&A, July 1998). This flow (approximately 600 cfs) will be passed directly into Cooper Slough via the proposed 3 swale and two box culverts under the emergency access road between Waterglen Place and Elgin Court. A temporary swale is proposed through lots 338-345 to convey a portion of these flows to Cooper Slough. The swale will be constructed with Phase One construction. When upstream improvements are made and the canal no longer overtops in this area, lots 338-345 will be developed with Phase Seven. There is also potential for a spill to occur from the Larimer and Weld Canal in the far northeast corner of the property. The analysis by Lidstone &Anderson (1998) shows that overtopping will not occur, although the amount of freeboard is very small. Thus, a swale is proposed along the east property line to carry any potential overflows. Offsite flow entering the east side of the property consists of Boxelder Creek overflows. During a 100-year storm event, approximately 1450-cfs enters the site at the intersection of I-25 and Fast Vine Drive. It is proposed to route Boxelder Creek overflows through a swale which runs from the east side of the site, around the multifamily housing and then west parallel to East Vine Drive. Water will overtop Waterglen Drive and pass through a box culvert under Waterglen Drive. Overtopping will occur over East Vine Drive as it has historically. The "Regional Drainage Evaluation for the Waterglen P.U.D" by Lidstone & Anderson further describes the origin and routing of these offsite flows. 3.3 Onsite Flows Flows within this site will take the form of overlot, swale, street, or conduit flow. The existing drainage patterns have been kept as close to the historical drainage as possible. All lots will be graded to carry flows away from structures to streets, proposed swales and detention areas. With this development, Waterglen Drive will only be constructed to station 31+00 just past the intersection with Celtic Lane. A swale will carry flows north of Waterglen Drive to the east and then south until Waterglen Drive is extended. 3.4 General Flow Routing The final drainage pattern for Waterglen P.U.D. has been developed to provide a drainage system that is sufficient for the surrounding area. This has been accomplished by utilizing existing drainage patterns as much as possible and routing flows to limit the amount of required drainage structures and facilities. 4 3.5 Proposed Drainage Plan A summary of the drainage patterns within each subbasin and at each design point is provided in the following discussion. Details of the drainage facility design are included in Sections 3.7, 3.8, and 3.9. An exhibit of the offsite basins is included in Appendix A. The exhibit shows the extent of basins OS-1, OS-2 and OS-3 which lie to the west of the property. Runoff from subbasin A-1 and OS-2 is conveyed via overland and swale flow into a pipe at design point la which extends from the on -grade inlet on Elgin Court (design point lc) which discharges into Cooper Slough. Runoff from subbasin A-2 is conveyed via overland flow into the west gutter of Elgin Court or via overland flow into the gutters of Glenbarr Court or Glenlyon Court and then to the west gutter of Elgin Court. Subbasin A-2 contributes to the flow into the proposed sump inlet at design point 1. Runoff from subbasin A-3 and OS-3 is conveyed via overland and swale flow to a storm pipe under Elgin Court (design point lb) which discharges into detention Pond B. Runoff from subbasin A-4 is conveyed via overland flow to the east gutter of Elgin Court. Subbasin A-4 contributes to the flow into a proposed sump inlet at design point 2, which discharges into detention pond B. Runoff from subbasin A-5 is conveyed via overland flow to the west gutter of Elgin Court to a proposed on -grade inlet at design point le which discharges into Cooper Slough. Runoff from subbasin B-1 is conveyed via overland flow into the gutters around Cullen Court or into the east gutter of Elgin Court and then to Cullen Court. Subbasin B-1 contributes to the flow into the proposed sump inlet at design point 3, which discharges into detention pond B. Runoff from subbasin C-1 is conveyed via overland flow into the gutters around Elgin Place and then into the proposed sump inlet at design point 4 which 5 discharges into detention pond A. Runoff from subbasin D-1 is conveyed via overland flow into the west gutter of Elgin Court and into the proposed sump inlet at design point 5 and into detention pond A. Runoff from subbasin D-2 is conveyed via overland flow into the east gutter of Elgin Court into the proposed sump inlet design point 6 and then to detention pond A. Runoff from subbasin E-1 is conveyed via overland flow into detention pond A. Runoff from subbasin E-2 is conveyed via overland flow into detention pond B. Runoff from subbasin E-3 is conveyed via overland flow into Cooper Slough. The basin delineation for subbasin E-3 reflects the final grading. Runoff from subbasin E-4 is conveyed via overland flow and swale flow into detention pond C. Runoff from subbasin E-5 is conveyed via overland flow into detention pond D. Runoff from subbasin E-6 is conveyed via overland flow into detention pond E. Runoff from subbasin E-7 is conveyed via overland flow into detention pond F. Runoff from subbasin E-8 is conveyed via overland and swale flow to the proposed box culverts under the emergency access road at design point 34. Flow then continues to Cooper Slough. Runoff from subbasin F-1 is conveyed via overland flow into the gutters of Glenloch Court and then through a proposed sidewalk chase at design point 7 and then to detention pond F. Runoff from subbasin G-1 is conveyed via overland flow into the gutters of either Glenloch Court or Glenloch Drive and then into a proposed sump inlet at design point 8 and then to detention pond F. Runoff from subbasins H-1 and H-4 is conveyed via overland flow into the gutters on the west side of Glenloch Drive and into a proposed sump inlet at design point 9 and then to detention pond E. Runoff from subbasin H-2, H-3 and H-5 is conveyed via overland flow into the gutters of Bonneymoore Drive and Lochside Lane to the gutter on the east side of Glenloch Drive. The runoff then proceeds into a proposed sump inlet at design point 10 and then is conveyed to detention pond E. Runoff from subbasin H-6 is conveyed via overland flow and gutter flow into the west gutter of Glenwall Drive and to the north gutter of Bonneymoore Drive to a cross -pan at design point 23. Flow then enters swale M-M via design point 24 and then discharged into Pond F. Runoff from subbasin H-7 is conveyed via overland flow and gutter flow into the east gutter of Glenwall Drive and to the south gutter of Bonneymoore Drive to a sidewalk chase at design point 24. Flow then enters swale M-M and is carried to Pond F. Runoff from subbasin I-1 is conveyed via overland flow and swale flow to double pipes under Glenloch Drive (design point 26) which discharge into detention pond D. Runoff from subbasin 1-2 is conveyed via overland flow into either the south gutter of Rannoch Street or the east gutter of Fenwich Drive. Runoff from subbasin 1-3 is conveyed via overland flow to the west gutter of Lochmore Place. Subbasins I-2 and 1-3 contribute flow into the proposed sump inlet at design point 12 which also discharges into detention pond D. Runoff from subbasin 1-4 is conveyed via overland flow to the gutters of Glenarbor Lane and the east gutter of Lochmore Place. Runoff from subbasin I-5 is conveyed via overland flow to the gutters of Glenarbor Lane, Gardenwall Court, the west gutter of Fenwick Drive and the north gutter of Rannoch Street. Subbasins I-4 and I-5 contribute flow into the proposed sump inlet at design point 13 which discharges into detention pond D. Runoff from subbasin J-1 is conveyed via overland flow to the gutter of Gardenwall court into a proposed sump inlet at design point 14 which discharges to detention pond C. Runoff from subbasin J-2 is conveyed via overland flow to swale D-D and then to design point 14a which discharges to detention pond C. Runoff from subbasin J-3 is conveyed via overland flow to swale G-G and then to design point 14b which discharges to swale D-D and then to detention pond C. Runoff from subbasin J-4 is conveyed via overland flow to swale F-F and then to design point 14c through a culvert pipe under the emergency access road to swale D-D which discharges into detention pond C. Note that the basin delineation for subbasin J-4 follows the final grading flow patterns. Runoff from subbasin K-1 is conveyed via overland flow to the gutters of Waterglen Place through a proposed sidewalk chase at design point 15 and then carried by swale flow to detention pond C. Runoff from subbasin L-1 and L-2 is conveyed via overland flow to the gutters of Celtic Lane, Gaelic Place and Waterglen Place through a sidewalk chase located at design point 16 and then carried by swale flow to detention pond C. Runoff from subbasin M-1 is conveyed via overland flow to the gutters of Celtic Lane through a proposed sidewalk chase at design point 17 and then carried by swale flow to detention pond C. Note that the basin delineation for subbasin M-1 follows the final grading flow patterns. Runoff from subbasin N-1 is conveyed via overland flow to the parking lot of the multifamily housing area to a curb opening at design point 29 and then to Pond F. Runoff from subbasin N-2 is conveyed via overland flow to swale M-M which discharges to the east end of Pond F at design point 30b. Runoff from subbasin 0-1 and OS-1 is conveyed via gutter flow along the north side of East Vine Drive into a proposed sump inlet at design point 27 which discharges into detention pond F. Runoff from subbasin 0-2 is conveyed via gutter flow along the north side of East Vine Drive and along each side of Waterglen Drive into a proposed sump inlet at design point 28 which discharges into detention pond F. Runoff from subbasin 0-3 is carried via overland flow to the large swale on the east side of the property designed to carry overflow from Boxelder Creek. Runoff from subbasin P-1 is conveyed via overland flow to the west gutter of Waterglen Drive to the proposed sump inlet at design point 18. The overflow from this design point spills into swale R-R where it is carried into Pond F. Runoff from subbasin P-2 is conveyed via parking Iot, overland, and swale flow to design point 33. The overflow is carried over Waterglen Drive and into swale R-R. Runoff from subbasin Q-1 is conveyed via overland flow to the gutters of Thornhill Place and Torridon Lane then to the east gutter of Waterglen Drive. Subbasin Q-1 contributes flow to the proposed sump inlet at design point 19. Runoff from subbasin R-1 is conveyed via overland flow to the gutters of the far east end of Lochside Lane. Runoff from subbasin R-2 is conveyed via overland flow to the gutters of Bracadale Place then to the east gutter of Waterglen Drive. Subbasins R-1 and R-2 contribute flow to a proposed on grade inlet at design point 25. Carry over flow is routed via gutter flow to design point 19. Runoff from subbasin S-1 is conveyed via overland flow to the gutters of Berwick Court followed by the gutters of Berwick Lane to a proposed on grade inlet at design point 22. Carry over flow is routed via gutter flow to design point 25. Runoff from subbasins T-1, T-2 and T-3 is conveyed via overland flow and gutter flow to the east gutter of Waterglen Drive and then to a proposed on grade inlet at design point 21. Carry over flow is routed via gutter flow to design point 22. Runoff from subbasin U-1 is conveyed via overland flow and gutter flow to the west gutter of Waterglen Drive to a proposed on grade inlet at design point 20. Carryover flow is routed via gutter flow to design point 18. 3.6 Hydrologic Analysis of the Proposed Drainage Conditions The Rational Method was used to determine both 2-year and 100-year peak runoff values for each subbasin. The Rational Method utilizes the SDDCCS equation: Q = CrCIA (1) where Q is the flow in cubic feet per second (cfs), A is the total area of the basin in acres, Cr is the storm frequency adjustment factor, C is the runoff coefficient, and I is the rainfall intensity in inches per hour. The frequency adjustment factor (Cf) is 1.0 for the initial 2-year storm and 1.25 for the major 100-year storm. The appropriate rainfall intensity information was developed based on rainfall intensity duration curves in the SDDCCS Manual. In order to use the rainfall intensity curves, the time of concentration is required. The following equation was used to determine the time of concentration. tc=ti+tt (2) where t, is the time of concentration in minutes, t; is the initial or overland flow time in minutes, and tt is the travel time in the channel, pipe, or gutter in minutes. The initial or overland flow time is calculated with the equation: t = [1.87(1.1 - CCr)L°.s]/(S)°33 (3) where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the average slope of the basin in percent, and C and Cf are as defined previously. All hydrologic calculations associated with the subbasins are attached in Appendix B of this report. Table 3.1 provides a summary of the design flows for all subbasins and 10 t t 1 design points associated with this site. The given design flows include carryover flows from upstream design points. TABLE 3.1 DRAINAGE SUMMARY Design Point Contributing Basin(s) A (ac) C2 C100 t, 2 yr (min) t, 100 yr (min) Carryover flow from DP Q,,,, 2 yr (cfs) au,' 100 yr (cfs) Qtot includes carryover flows where applicable 1 A-2 5.79 0.49 0.61 15.8 15.8 5.7 20.6 la Al + 0S2 16.95 0.26 0.32 17.2 17.2 8.4 30.2 1b A3+0S3 3.14 0.27 0.34 11.9 11.9 1.9 397.0 lc A-5 0.35 0.74 0.92 6.5 10.0 0.8 2.3 2 A-4 0.76 0.72 0.89 9.9 10.0 1 1.3 7.3 3 B-1 1.12 0.61 0.76 10.6 10.0 1.6 6.1 4 C-1 0.77 0.63 0.79 6.0 10.0 1.4 4.3 5 D-1 5.16 0.42 0.53 15.6 15.6 4.4 16.0 6 D-2 1.40 0.66 0.83 14.7 12.0 5 1.9 7.8 7 F-1 0.46 0.80 1.00 5.6 10.0 1.1 3.3 8 G-1 2.74 0.60 0.75 13.4 12.9 3.6 13.1 9 H1 + H4 1.68 0.76 0.95 6.8 10.0 10 3.6 12.3 10 H2 + H3 +H5 4.90 0.53 0.66 12.6 12.1 5.8 21.2 12 12 + 13 4.67 0.63 0.78 17.8 17.8 13 5.6 29.7 13 14 + 15 7.30 0.59 0.74 16.7 16.7 8.5 30.5 14 J-1 3.48 0.49 0.61 13.9 13.9 3.7 13.2 14a J-2 0.52 0.25 0.31 11.3 10.7 14b, 14c 17.8 64.7 14b J-3 2.57 0.25 0.31 14.2 14.2 16 11.3 41.4 14c J-4 1.49 0.29 0.36 11.7 11.1 15, 17 6.2 22.2 15 K-1 0.94 0.62 0.78 9.7 10.0 1.5 5.2 16 L1 + L2 8.58 0.55 0.69 14.4 14.0 10.0 36.5 17 M-1 2.70 0.55 0.69 9.8 10.0 3.7 13.3 18 P-1 2.56 0.62 0.78 14.2 10.9 20, 19 3.5 48.3 19 0-1 5.30 0.61 0.77 17.2 17.2 25, 33 7.1 37.3 20 U-1 6.30 0.51 0.64 19.2 19.2 5.9 21.2 21 T1 + T2 + T3 5.06 0.61 0.76 18.3 18.3 5.8 20.9 22 S-1 7.74 0.55 0.69 17.8 17.8 21 8.2 32.4 23 H-6 2.85 0.46 0.57 13.6 13.6 2.8 10.2 24 H-7 2.00 0.49 0.61 13.3 12.2 23 5.0 18.3 25 R1 + R2 3.29 0.55 0.68 13.1 10.6 22 4.3 22.7 26 1-1 2.25 0.35 0.44 10.8 10.0 20, 21, 22 21.3 68.2 27 01+OS1 2.79 0.95 1.00 14.4 18.2 lc 5.6 15.3 28 0-2 3.18 0.89 1.00 12.9 12.9 6.3 20.4 29 N-1 1.98 0.65 0.82 10.7 10.0 3.1 11.5 30a P1 + P2 + 01 13.45 0.51 0.63 17.2 17.2 13.2 47.5 30b N2 + H6 + H7 6.40 0.42 0.53 27.8 27.8 30a 17.2 62.1 33 P-2 5.59 0.35 0.44 11.4 10.5 4.6 17.2 34 E-8 7.19 0.25 0.31 13.9 13.9 3.9 601.9 3.7 Allowable Street Flow Capacities Allowable gutter flows and maximum street capacities for both the initial and major storms were estimated and evaluated based on the specifications set forth in the SDDCCS Manual. During the initial storm, runoff was not allowed to overtop either the curb or street crown for local streets. For collector streets runoff was not allowed to overtop the curb but leave at least one-half of roadway width free of water in each direction. During the major storm event, the depth of water over the crown was limited to 6 inches or 18 inches at the curb, whichever was less. The allowable street capacity is not exceeded on any street. Street capacity calculations are included in Appendix C of this report. Cross street flow at design point 16 was checked. During the 2-year event, there is approximately 10 cfs that enters the north -south cross pan which is more than the theoretical 2-year street capacity. However, the sidewalk chase is designed so that the flow depth at the gutter does not exceed the design criteria for the 2-year or 100 year event. 3.8 Curb Inlet Design The computer program UDlNLET developed by James C. Y. Guo of the University of Colorado at Denver was used to size sump and on grade inlets. Computer output files of these calculations are provided in Appendix D of this report. All inlet locations and sizes are shown on the Utility Plans for the construction of this project. A summary of the storm inlet sizing at each design point (DP) is shown in Table 3.2 below. TABLE 3.2 SUMMARY OF STORM INLET REQUIREMENTS LOCATION/ INLET NO. INLET SIZE (feet) INLET CONDITION 100 yr DESIGN INTAKE (CARRYOVER FLOW) (cfs) Elgin Court DP lc Double Type 16 On Grade 2.3 (0.14) DP 1 12' Type "R" Sump 20.6 DP 2 5' Type "R" Sump 7.3 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TABLE 3.2 SUMMARY OF STORM INLET REQUIREMENTS LOCATION/ INLET NO. INLET SIZE (feet) INLET CONDITION 100 yr DESIGN INTAKE (CARRYOVER FLOW) (cfs) DP 5 10' Type "R" Sump 16.0 DP 6 5' Type "R" Sump 8.0 Cullen Court DP 3 5' Type "R" Sump 6.3 Elgin Place DP 4 5' Type "R" Sump 4.3 Glenloch Court DP 7 3' Sidewalk Chase Sump 3.3 Glenloch Drive DP 8 8' Type "R" Sump 13.1 DP 9 8' Type "R" Sump 12.7 DP 10 12' Type "R" Sump 21.3 Lochmore PIace & Rannoch Street DP 12 15' Type "R" Sump 29.7 DP 13 15' Type "R" Sump 30.6 Gardenwall Court DP 14 8' Type "R" Sump 13.2 Waterglen Place DP 15 6' Sidewalk Chase Sump 5.2 DP 16 15' Sidewalk Chase Sump 35.3 Celtic Lane 1 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TABLE 3.2 SUMMARY OF STORM INLET REQUIREMENTS LOCATION/ INLET NO. INLET SIZE (feet) INLET CONDITION 100 yr DESIGN INTAKE (CARRYOVER FLOW) (cfs) DP 17 8' Sidewalk Chase Sump 13.3 Waterglen Drive DP 18 5' Type "R" Sump 3.5 (2 yr.) DP 19 6' Type "R" Sump 6.7 (2 yr.) DP 20 Quadruple Type 16 On Grade 18.0 (3.2 to DP 18) DP 21 Quadruple Type 16 On Grade 17.8 (3.2 to DP 22) DP 22 Quadruple Type 16 On Grade 25.4 (7.0 to DP 25) DP 25 Triple Type 16 On Grade 15.8 (6.9 to DP 19) DP 31 4' Type R Sump 1.21 DP 32 4' Type R Sump 1.21 Bonneymoore Drive DP 23 20' Crosspan Sump 10.2 DP 24 10' Sidewalk Chase Sump 18.3 Multifamily Parking DP 29 6' Curb Opening Sump 11.5 DP 33 Quadruple Type 16 On Grade 13.1 (4.11 to DP 19) 3.9 Storm Sewer Pipe Design The design of all storm sewer pipes was accomplished using the computer programs FlowMaster and StormCad by Haestad Methods, Inc. Pipes were designed for the 100 year storm event and details of the calculations are found in Appendix. E. Final hydraulic grade lines for storm sewers have been calculated and are shown on the storm sewer plan 14 1 and profile drawings. All storm pipes that operate under pressure conditions during the 100-year storm event shall be pressure sealed. Elliptical pipe shall be sealed with ConSeal or an equivalent butyl sealant that meets ASTM C-990 (performance requirement to hold 10 psi for 10 min.). Tailwater elevations were set to the maximum water surface elevation for the appropriate detention pond or the maximum water surface elevation in Cooper Slough. Sizing of the detention pond outlets and the box culverts under Waterglen Drive, East Vine Drive and the Emergency Access Road is included in the accompanying report by Lidstone & Anderson. Riprap is required at all storm sewer outfalls and is sized according to the pipe size and the flow conditions at the outlet. Riprap calculations for all storm sewer outfalls can be found in Appendix F. Table 3.3 is a summary of the storm sewer system. TABLE 3.3 SUMMARY OF STORM SEWER PIPE REQUIREMENTS PIPE ID LOCATION PIPE DIAMETER (inches) MINIMUM SLOPE (%a) 100 yr DESIGN Q (cfs) Elgin Court CC A B C D E F DP la to Slough DP 1 to DP 2 DP 2 to Pond A DP 3 to Pond A DP 4 to Pond A DP 5 to DP 6 DP 6 to Pond A 24" RCP 24x38" HERCP 29x45" HERCP 21" ADS 18" ADS 27" RCP 33" ADS 0.5 0.3 0.3 0.3 0.3 0.3 0.3 30.2 27.6 32.4 6.1 4.3 16.0 24.1 Glenloch Drive G H DP 8 to Pond B DP 10toDP9 DP 9 to Pond E 27" ADS 3-15" DIP 2-27" ADS 0.3 0.3 0.3 13.4 21.3 33.6 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TABLE 3.3 SUMMARY OF STORM SEWER PIPE REQUIREMENTS PIPE ID LOCATION PIPE DIAMETER (inches) MINIMUM SLOPE (%) 100 yr DESIGN Q (cfs) Waterglen Drive, Lochside Lane & Glenloch Drive 7 STMH-4 to Pond F 30" RCP 0.2 15.8 K STMH-3 to STMH-4 30" RCP 0.2 15.8 L STMH-2 to STMH-3 19x30" HERCP 0.2 15.8 M STME-1 to STMH-2 19x30" HERCP 0.2 15.8 N DP 25 to STMH-1 19x30" HERCP 0.2 15.8 Lochmore Place and Rannoch Street 0 DP 13 to DP 12 36" RCP 0.4 30.5 P DP 12 to Pond D 36" ADS 1.6 60.3 Gardenwall Court Q DP 14 to Pond C 24" ADS 0.3 13.2 Waterglen Drive R2 DP 33 to DP 19 18" DIP 2.0 4.4 R DP 19 to DP 18 2-18" DIP 0.2 11.1 R' DP 18 to STMH-5 24x38" HERCP 0.3 14.6 R" STMH-5 to STMH-6 24x38" HERCP 0.2 14.6 R"' STMH-6 to Pond F 24x38" HERCP 0.2 14.6 S DP 21 to DP 20 22x34" HERCP 0.3 17.8 T DP 22 to DP 20 2-19x30" HERCP 0.3 25.4 U DP 20 to Swale I-1 2-22x34" HERCP 0.3 35.8 1 16 1 t 1 TABLE 3.3 SUMMARY OF STORM SEWER PIPE REQUIREMENTS PIPE ID LOCATION PIPE DIAMETER (inches) MINIMUM SLOPE (%) 100 yr DESIGN Q (cfs) Glenloch Drive V DP 26 to Pond D 2-36" RCP 0.3 68.3 Detention Pond Outlets W Pond C to Cooper Slough 15" ADS w/ orifice plate 1.0 3.0 X Pond D to Pond E 15" ADS 0.91 11.7 Y Pond A to Cooper Slough 15" ADS w/ orifice plate 0.46 1.8 Z Pond E to Pond F 3-15" ADS 0.58 16.5 AA Pond B to Cooper SIough 15" ADS w/ orifice plate 0.3 1.5 BB Pond F to Cooper Slough 36" RCP 0.3 43.5 Emergency Access Road DD Under Access Road 19x30" RCP 0.67 18.5 HH Under Access Road 2-3'x10'RCB 0.4 600 East Vine Drive EE Cooper Slough 2-42" RCP 0.3 490 Waterglen Drive FF DP 32 to DP 31 18" RCP 0.75 1.2 GG DP 31 to Pond F 18" RCP 1.0 2.4 17 3.10 Swales Swales were designed using FlowMaster by Haestad Methods, Inc. and were sized to carry either 133% x Q100 or Q1o0 with one foot (1') of freeboard. Channel side slopes are no steeper than 4:1 and the flow depth in most of the swales is less than 2 ft. Since the velocity in all of the swales is less than the allowable non -eroding value (7.0 ft/sec for erosion resistant soil) riprap channel lining is not needed. Swales with channel slopes of less than 2.0 percent were designed with concrete trickle channels to convey at Ieast 0.5% - 1.0% of the 100 year storm. Overflow swales for sump inlets were designed to carry 100-yr flows with zero freeboard for all inlets designed to take 100-yr flows. The velocity during the minor 2-year storm event was calculated for all swales. In most cases the velocity was above or near the minimum allowable velocity of 2 ft/s. Where the velocity is less than 2 ft/s, the swale was grass Iined so the low velocity will provide water quality enhancement. The locations and cross sections of the swales are shown on the Drainage and Erosion Control plans. Details of the design calculations are included in Appendix G. Swale B-B is designed to carry the previously mentioned future offsite flows that will enter the southwest corner of the property when improvements from the Cooper SIough Implementation PIan are made. It is recommended to route these flows through this location because there is ample space for the large swale that is required. When improvements are made according to the Cooper Slough Implementation Plan it is assumed that a larger culvert will be placed under Elgin Court to convey these flows directly to Cooper Slough. Swale S-S along the east property line is proposed to carry any potential overflows from the Latimer and Weld Canal. It has a minimum capacity of approximately 150 cfs which should be adequate to convey any unexpected overflows from the Canal. 3.11 Detention Ponds There are six detention ponds proposed for the Waterglen, P.U.D. that will be constructed as part of the first two phases of construction. The detention ponds were sized by Lidstone & Anderson using SWMM and EXTRAN analysis. Ponds A (L&A pond 301), B (302) and C (303) release directly into Cooper Slough. Ponds D (304), E (305), and F (306) are interconnected with the final release into Cooper Slough from Pond F. Each 18 t detention pond has an emergency spillway designed to pass the 100-year flow into Cooper Slough. The spillways were designed with'/z foot of freeboard from the 100-year maximum water surface elevation to the spillway crest and with '/z foot of flow depth in the spillway. Calculations for sizing of the spillways are included in Appendix H. Water quality capture volumes were calculated using methods outlined in the Urban Storm Drainage Criteria Manual. A drain time of the brim -full capture volume of 40 hours was used. The 100-yr flood will be detained above the water quality capture volume (WQCV). Ponds C, D, E and F have relatively flat bottoms which will act as small wetland marshes or ponding areas that will promote biological uptake and enhance soluble pollutant removal. For pond A, the required water quality capture volume is obtained using the minimum water level of 1 ft above the bottom of the pond. Table 3.4 is a summary of the water quality outlet structure required for each pond. Calculations for the water quality capture volumes and outlet sizing are included in Appendix H. TABLE 3.4 - SUMMARY OF WQ OUTLET RISER PIPE REQUIREMENTS Pond WQCV Level Outlet Pipe Dia. Hole Diameter No. of Columns A 1.0' 6" '/a" 12 B 1.5' 8" 'A" 10 C 1.2' 8" 3/8" 15 F 19' 8" 34" 11 4. MISCELLANEOUS 4.1 Variances There are no variances requested for Waterglen P.U.D. 19 EROSION CONTROL 5.1 Erosion and Sediment Control Measures Erosion and sedimentation will be controlled on -site by use of inlet filters, silt fences, straw bale barriers, gravel construction entrances, and seeding and mulch. (See the attached Erosion Control Plan for details). The measures are designed to limit the overall sediment yield increase due to construction as required by the City of Fort Collins. During overlot and final grading the soil will be roughened and furrowed perpendicular to the prevailing winds. Silt fences will be used around the perimeter of Cooper Slough, and straw bale dikes will be placed along proposed swales. The construction schedule and erosion control effectiveness calculations are found in Appendix L. The net effectiveness for the entire site was calculated to be 81.8%, which is greater than the calculated rainfall performance standard (78.3%). Thus the proposed erosion control methods will contain 81.8% of the rainfall sedimentation that would normally flow off a bare ground site during a 10-year, or less, precipitation event, and the proposed erosion control plan meets the City of Fort Collins requirements. 5.2 Dust Abatement During the performance of the work required by these specifications or any operations appurtenant thereto, whether on right-of-way provided by the City or elsewhere, the contractor shall furnish all labor, equipment, materials, and means required. The Contractor shall carry out proper efficient measures wherever and as necessary to reduce dust nuisance, and to prevent dust nuisance that has originated from his operations from damaging crops, orchards, cultivated fields, and dwellings, or causing nuisance to persons. The Contractor will be held liable for any damage resulting from dust originating from his operations under these specifications on right-of-way or elsewhere. 5.3 Tracking Mud on City Streets It is unlawful to track or cause to be tracked mud or other debris onto city streets or rights -of -way unless so ordered by the Director of Engineering in writing. Wherever construction vehicles access routes or intersect paved public roads, provisions must be 20 made to minimize the transport of sediment (mud) by runoff or vehicles tracking onto the paved surface. Stabilized construction entrances are required per the detail shown on the Erosion Control Plan, with base material consisting of 6" coarse aggregate. The contractor will be responsible for clearing mud tracked onto city streets on a daily basis. 5.4 Maintenance All temporary and permanent erosion and sediment control practices must be maintained and repaired as needed to assure continued performance of their intended function. Straw bale dikes or silt fences will require periodic replacement. Sediment traps (behind straw bale barriers) shall be cleaned when accumulated sediments equal about one-half of trap storage capacity. Maintenance is the responsibility of the developer. 5.5 Permanent Stabilization All soils exposed during land disturbing activity (stripping, grading, utility installations, stockpiling, filling, etc.) shall be kept in a roughened condition by ripping or disking along land contours until mulch, vegetation or other permanent erosion control is installed. No soils in areas outside project street rights of way shall remain exposed by land disturbing activity for more than thirty (30) days before required temporary or permanent erosion control (e.g. seed/ mulch, landscaping, etc.) is installed, unless otherwise approved by the Stormwater Utility. Vegetation shall not be considered established until a ground cover is achieved which is demonstrated to be mature and stable enough to control soil erosion as specified in paragraph 11.3.10 of the City of Fort Collins Storm Drainage Construction Standards. 5.6 Variances Requested There are no variances requested for erosion control for Waterglen, P.U.D. 21 6. REFERENCES City of Fort Collins, "Storm Drainage Design Criteria and Construction Standards" (SDDCCS), May 1984. Guo, James C.Y., PhD, P.E. "Street Hydraulics and Inlet Sizing using the Personal Computer Model UDINLET", University of Colorado at Denver, 1995. Lidstone & Anderson, Inc. "Regional Drainage Evaluation for the Waterglen P.U.D." Prepared for JR Engineering, LTD, September 1998. Love & Associates. "Waterglen P.U.D. Final Drainage Report" Prepared for Vine Street Partnership, February 1997. Roberson, John A., John J. Cassidy and M. Hanif Chaudry. Hydraulic Engineering. Houghton Mifflin Company, Boston, MA, 1988. Simons, Li & Associates, Inc. "Cooper SloughBoxelder Creek Master Drainageway Planning Study", Prepared for Colorado Conservation Board, August 1981. Simons, Li & Associates, Inc. "Cooper Slough Implementation Plan (preliminary)" Prepared for City of Fort Collins, October 1987. Urban Drainage and Flood Control District, "Urban Storm Drainage Criteria Manual", Volumes 1 and 2, dated March 1969, and Volume 3 dated September 1992. 22 APPENDIX A MAPS AND FIGURES 1 COUNTY ROAD 50 COUNTY ROAD 9E PROJECT SITE WELD CANAL EAST VINE DRIVE STATE HIGHWAY 14 0 w 1- cn CC w r- VICINITY MAP N. T.S. )0::+gig: '''11!" � a !„ .(11IXtr r�++.N ram. .,• __ ,c, APPENDIX B HYDROLOGIC CALCULATIONS 1 DRAINAGE SUMMARY TABLE * Qtot includes carryover flows when applicable Design Point Contributing Basin(s) A (ac) C2 C100 tc 2 yr (min) tc 100 yr (min) Carryover flow from DP Qtot * 2 yr (cfs) Qtot' 100 yr (cfs) 1 A-2 5.79 0.49 0.61 15.8 15.8 5.7 20.6 la Al + 0S2 16.95 0.26 0.32 17.2 17.2 8.4 30.2 lb A3 + 0S3 3.14 0.27 0.34 11.9 11.9 1.9 397.0 lc A-5 0.35 0.74 0.92 6.5 10.0 0.8 2.3 2 A-4 0.76 0.72 0.89 9.9 10.0 1 1.3 7.3 3 B-1 1.12 0.61 0.76 10.6 10.0 1.6 6.1 4 C-1 0.77 0.63 0.79 6.0 10.0 1.4 4.3 5 D-1 5.16 0.42 0.53 15.6 15.6 4.4 16.0 6 D-2 1.40 0.66 0.83 14.7 12.0 5 1.9 7.8 7 F-1 0.46 0.80 1.00 5.6 10.0 1.1 3.3 8 G-1 2.74 _ 0.60 0.75 13.4 12.9 3.6 13.1 9 H1 + H4 1.68 0.76 0.95 6.8 10.0 10 3.6 12.3 10 H2 + H3 +H5 4.90 0.53 0.66 12.6 _ 12.1 5.8 21.2 12 12 + 13 4.67 0.63 0.78 17.8 17.8 13 5.6 29.7 13 14 + 15 7.30 0.59 0.74 16.7 16.7 8.5 30.5 14 J-1 3.48 0.49 0.61 13.9 13.9 3.7 13.2 14a J-2 0.52 0.25 0.31 11.3 10.7 14b, 14c 17.8 64.7 14b J-3 2.57 0.25 0.31 14.2 14.2 16 11.3 41.4 14c J-4 1.49 0.29 0.36 11.7 11.1 15, 17 6.2 22.2 15 K-1 0.94 0.62 0.78 9.7 10.0 1.5 5.2 16 L1 + L2 8.58 0.55 0.69 14.4 14.0 10.0 36.5 17 M-1 2.70 0.55 0.69 9.8 10.0 3.7 13.3 18 P-1 2.56 0.62 0.78 14.2 10.9 20, 19 3.5 48.3 19 0-1 5.30 0.61 0.77 17.2 17.2 25, 33 7.1 37.3 20 U-1 6.30 0.51 0.64 19.2 19.2 0 5.9 21.2 21 T1 + T2 + T3 5.06 0.61 0.76 18.3 18.3 5.8 20.9 22 S-1 7.74 0.55 0.69 17.8 17.8 21 8.2 32.4 23 H-6 2.85 0.46 0.57 13.6 13.6 2.8 10.2 24 H-7 2.00 0.49 0.61 13.3 12.2 23 5.0 18.3 25 R 1 + R2 3.29 0.55 0.68 13.1 10.6 22 4.3 22.7 26 1-1 2.25 0.35 0.44 10,8 10.0 20, 21. 22 21.3 68.2 27 01 +OS1 2.79 0.95 1.00 14.4 18.2 lc 5.6 15.3 28 0-2 3.18 0.89 1.00 12.9 12.9 6.3 20.4 29 N-1 1.98 0.65 0.82 10.7 10.0 3.1 11.5 30a P1 + P2 + 01 13.45 0.51 0.63 17.2 17.2 13.2 47.5 30b N2 + H6 + H7 6.40 0.42 0.53 27.8 27.8 30a 17.2 62.1 33 P-2 5.59 0.35 0.44 11.4 10.5 4.6 17.2 34 E-8 7.19 0.25 0.31 13.9 13.9 3.9 601.9 Cval 1 1 LOCATION: ITEM: COMPUTATIONS BY: SUBMITTED BY: WATERGLEN P.U.D. COMPOSITE 'C' CALCULATIONS JPZ JR ENGINEERING, LTD. November 9, 1998 AREA DESIGNATION TOTAL AREA AREA OF ROAD/WALK RUNOFF COEFF. AREA OF BLDG/DRIVE RUNOFF COEFF. AREA OF LANDSCAPE RUNOFF COEFF. COMPOSITE C VALUE OS-1 1,79 1.79 0.95 0.00 0.95 0.00 0,25 0.95 OS-2 15.31 0 0.95 0.00 0.95 15.31 0.25 0.25 OS-3 1.64 0 0.95 0.00 0.95 1.64 0.25 0.25 A-1 1.64 0 0.95 0.12 0.95 1.51 0.25 ❑.30 A-2 5.79 1.11 0.95 0.87 0.95 3.81 0.25 0.49 A-3 1.5 0.00 0.95 0.08 0.95 1.42 0.25 0.29 A-4 0.76 0.42 0.95 0.08 0.95 0.25 0.25 0.72 A-5 0.35 0.20 0.95 0.05 0.95 0.11 0.25 0.74 8-1 1.12 0.37 0,95 0.21 0.95 0.54 0.25 0-61 C-1 0.77 0.25 0.95 0.17 0.95 0.35 0,25 0.63 D-1 5.16 0.57 0.95 0.70 0.95 3.89 0.25 0.42 0-2 1.4 0.66 0.95 0.17 0.95 0.57 0.25 0.66 E-1 4.68 0.00 0.95 0.12 0.95 4.56 0.25 0.27 E-2 2.94 0.00 0.95 0.17 0.95 2.77 0.25 0.29 E-3 9.19 0.00 0.95 0.12 0.95 9.07 0.25 0.26 E-4 1.76 0.00 0.95 0.02 0.95 1.74 0.25 0.26 E-5 2.92 0.00 0.95 0.27 0.95 2.65 0.25 0.31 E-6 3.5 0.00 0.95 0.29 0.95 3.21 0.25 0.31 E-7 5.42 0.00 0.95 0.06 0.95 5.36 0.25 0.26 E-8 7.19 0.00 0.95 0.00 0.95 7,19 0.25 0.25 F-1 0.46 0.24 0.95 0.12 0.95 0.10 0.25 0.80 G-1 2.74 0.75 0.95 0.62 0.95 1.37 0.25 0.60 H-1 0.3 0.13 0.95 0.08 0.95 0.09 0.25 0.75 H-2 0.94 0.24 0.95 0.17 0.95 0.54 0.25 0.55 H-3 1 0.26 0.95 0.25 0.95 0.49 0.25 0.61 H-4 1.38 0.67 0.95 0.33 0.95 0.38 0.25 0.76 H-5 2.96 0.53 0.95 0.50 0.95 1.94 0.25 0.49 H-6 2.85 0.48 0.95 0.37 0.95 2.00 0.25 0.46 H-7 2 0.32 0,95 0.37 0.95 1.31 0.25 0.49 1-1 2.25 0.00 0.95 0.33 0.95 1.92 0.25 0.35 1-2 3.38 1.03 0.95 0.74 0.95 1.60 0.25 0.62 1-3 1.29 0.32 0.95 0.41 0.95 0.56 0.25 0.65 1-4 3.62 0.89 0.95 0.99 0.95 1, 74 0.25 0.61 1-5 3.68 0.84 0.95 0.83 0.95 2.01 0.25 0.57 J-1 3.48 0.53 0.95 0.66 0.95 2.29 0.25 0.49 J-2 0.52 0.00 0.95 0.00 0.95 0.52 0.25 0.25 J-3 2.57 0.00 0.95 0.00 0.95 2.57 0.25 0.25 J-4 1.49 0.00 0.95 0.08 0.95 1.41 0.25 0.29 K-1 0.94 0.31 0.95 0.19 0.95 0.44 0.25 0.62 L-1 5.51 0.96 0.95 1.12 0.95 3.44 0.25 0.51 L-2 3.07 0.87 0.95 0.74 0.95 1.46 0.25 0.62 M-1 2.7 0.51 0.95 0.66 0.95 1.53 0.25 0.55 N-1 1.98 0.87 0.95 0.27 0.95 0.84 0.25 0.65 N-2 1.55 0.00 0.95 0.05 0.95 1.50 0.25 0.27 0-1 1 1.00 0.95 0.00 0.95 0.00 0.25 0.95 0-2 3.18 2.67 0.95 0.22 0.95 0.29 0.25 0.89 Flowcal2.xls 1 Cvai 1 1 1 t AREA DESIGNATION TOTAL AREA AREA OF ROADNYALK RUNOFF COEFF. AREA OF BLDG/DRIVE RUNOFF COEFF. AREA OF LANDSCAPE RUNOFF COEFF. COMPOSITE C VALUE 0-3 15.62 1.31 0.95 0.31 0.95 14.00 0.25 0.32 P-1 2.56 1.06 0.95 0.30 0.95 1.20 0.25 P-2 5.59 0.26 0.95 0.55 0.95 4.78 0.25 _0.62 0.35 0-1 5.3 1.43 0.95 1.32 0.95 2.55 0.25 0.61 R-1 1.15 0.11 0.95 0.21 0.95 0.84 0.25 0.44 R-2 2.14 0.63 0.95 0.45 0.95 1.05 0.25 0.61 S-1 7.74 1.54 0.95 1.77 0.95 4.42 0.25 0.55 T-1 1,14 0.11 0.95 0.25 0.95 0.79 0.25 0.47 T-2 0.93 0.20 0.95 0.29 0.95 0.44 0.25 0.62 T-3 2.99 1.30 0.95 0.47 0.95 1.22 0.25 0.66 U-1 6.3 1.56 0.95 0.74 0.95 3.97 0.25 0.51 Flowcal2.xls 1 1 STANDARD FORM SF-8 t November 9, 1998 WATERGLEN, P.U.D. z 0 0 U 0 TIME OF CONCENTRATION DESIGN STORM: COMPUTATIONS BY JR ENGINEERING, LTO SUBMITTED BY C C E 0 i In Y 4 4 u uJ 4 MINMUM tc = 5 J 4--r C Z y _ E .— N m N n l ,- ,; r O N r m 6- r C1 r Q) O) L() W W O .- C 6 (D 6a -.- h.0) h M r r 4 v N N a N 6 r (fl en d r CO r 0 ui a cc) ,- m b 3- W N r- C CD m C] 6 O 6 M .- r r O(O O 1-:a r,-.- N - 03 4 . t- 66 3- fn r tc CHECK (URBANIZED BASIN) Total L tc(1/180)+10 (tt) (min) (12) (13) CO r N o 1.- r 1-r-- O M CO ui ,- Ol ,- (6 Cl v- M v- 6I N 4- r r I- (D (D r I, Q 03 I--, M r a 4 N N CD N 0 .- m 0 r- a r- 03 M r• 1- a,- 6 1- r.- r D) 1- CO N I- CO CY CD cn M M C) I- 1- r I- O co ,- n 1- I.-1- 4 00 4 w I. W 41 6,- ,- 0 a - 0 C7 - 0 N m 0 0 O - 0(Dy 0 O1(y (D pu) 0 O in O N 0 O .- 85a1 700 0 (0,) 0 (0D Cu p 0p 00 a r,- 0 N 00C,0000000000000 h N [D CD 7 [ 7 v 03 uyy N u (D (Of) � u77 0 Q r - co (Y r TRAVEL TIME / GUTTER OR CHANNEL FLOW (n) Length Slope n Vel tt tc = (ft) (°o) Mann=ng (fps) (min) ti+tt (7) (8) rough (9) (101 (11) N 60 C7 O 6 cO t+ ,- a 6 .- coV) O N, (D m Ql IncD (O O O G7 ✓a Q N .- Lt ,- m I.- (O u7 N r- i� W N CO d 6 Q) --- in m N O N N CO 04 6 (D - O (D O N ,- NCO (D .- d( CO �(O r W O h a ,- ,- r CO r O r N 0 6 r O co r r O N M t~ r ,- N m N u77 a ,- 0dr b O 0 N N N co f` u) 6 0) CD.- M opV N n N N - cc)W O) 6 en 6 ((D � 6 N W I` C) r u7 6 N )N t1-- LI 6 r I..- r CO O) Q M QI M , O(0 (O V- CO m GO N 0 (D N No a a M .- CO W N ul 4 4 {N N ul co Cl - �N V u] O 0 n co r .- d O n CO N Co 0 0 N CO N 0 6 C7 r (D N CO. r ul 6 0 N m m .- O) 0) o o M r- d 4 .-.- d m r CO r CO (O .- (O r (O r (0 r m m O CO. r r .- 4 (0 .- .- (D .- (D - (0 a r (O 0 0 (D 0 0 (R O 0 W 0 0 W O 0 ul 0 0 (O 0 0 (O 0 0 (D 0 0 (O 0 0 CO 0 0 (n 0 0 L0 (t) 0 0 0 0 u7 a 0 w (D 0 0 0 0 (O 0 0 co 0 0 co Gr. 0 co 0 o co 0 0 co 0 O (D G.- o (D 0 0 0 (O (D 0 0 0 0 0 0 0 0 0 CO m 0 0 0 0 (n 0 0 CD 0 0 CO 0 0 (D 0 0 0 . N 0 r 0 r 0 N 0 r 0 N (n r co O 6 .-- o r co O m O 0 0 r r 0 N (n (D 0 0 0 06 m m P m P cocoW P P P W 4 O COCO CO _ . 0 0 4 0 ul (O . O d m 0 0 0 (O 0 0 . 0 O . P m0 Q- a O n o N 0 (0D 0 N 0 4 150 750 0 N p Op o 4 N o C') N O 0 (0,l 0 O 0 r O 0 pOp a O o 0 0 N 0 N O O O O N l(Y (0f1 VO) p O O (`] [0,) ,- O [00 On a .- (OD C, CCf Length Slope !i I (tt) (%) (min) (3) (4) (5) (6) (m CO t` r M r LC, 4 r- N 0 (0 ('7 4 03 t- O 4 Cr, Cl - (N OO a O r N N r (N(f~ f< N N 66 07 co C] Ol - N na N N m - N W b O -- 03 M w. ;` W- 4 6 N 6n - M N.- n 0) 0 m 07 m N O '- LID a O N o N (O N P M u7 N d N O N N N 0 M.- 0 0 0 N N 0 r 0 0 r N 0 N o r 0 r 0 P N r 6 O r r o r 0 0 iD u7 r N r r .II O N N u7 r O 6 O 6 a r O O O u7 O O (V 0 N . o 0 C] O (0 o (0 (n (D O N O (fl55 o (0 N O O Q o O 0) M Q 0 CO Q 00 0 u) .1 0 4) 0 0 M 0 N 0 m 0 - (0 N 0 0 0 0 _ 0 0 ,- 0 ,- 0 ,- 0 _ 0 ,- u) co _ o ul N O u) N 0 0 CO 0 0) -4 _ 0 Co N _ 0 N r _ 0 ' r _ 0 r 0 0 CO coV 0 N 0 (9 coN o n CI N Q Q W N Q co N M Q Q Cr1 Q (O N Q 0 N Q 0 90 Q 0 (D Q ul r Q 10 u) Q cor Q W O( (D OI V a a Q Q Q O (D N M (D Q Q u7 (D Q ,- (D 6.O 0- ul CO a . Q 6 Cl Q 6 N Q u7 N Q O Cl P O 4.N Q Q) Q N n Q a i` Q Cp o CO W o N .t O (0 (O O N C) N N O O (D N O W N CO O 66 Cf W N O 0 N O 0 CO O Q (O O u7 N C> 10 0 O (O O (p 0 W Os N V a 4 O O O O 6N Cl 0 O O u7 (D O (O O N vs O O) a O m [-i Q O) 0-. - CO 0 4 (D r 7 CO r CO 1,-. 0 0 01 - 0. n O 0N Cl O - ,- P- n C W 3- 0 0 a *- O 7 (D m a N O) ,- Cr,- (D N, n CP N O'V(�7 0 M 0 Co ,- h !!,,qq (V H 0 i-- N 0(4 () 0 (O dl 0- O O( ('1 W 0 co co N N O N 0I Ow0 N cO N CO N - N )CO u] CO (D CO CO V C) z W et ma M r 7)0 v a p0 - 00044d N r N M ,? ¢¢(n(JO6ww u7 r ,- 3- N N M W q (el W W (D W t;- w m uiu r c7xxxxxx ,- N C) / ul (O r x r N - — C7 — V -- tD r Flowcal2.xls i CV t CO Y r a 2 w cr -Ir Z� LL �� ' CO. w N h r w I--- O "0- tl ,0. d w of 1- O .- )N 4 r N 6 T N r f.- 6 r N 4- -- d w NCO n: .- w 7 6 w CO O f- r � w CO m CO m .- N m tc CHECK (URBANIZED BASIN) O + O C E m 7 F O r r N 6 V N- w '- i. r d 4 I" V 4 .I-. N N r V r1 1- N Y I- r 6 TT r 6 1- 1-0 6 I- 6 '- 'O 6 w (N CO h r .- I- w M w CO SO t` w w w 0 r '- CO CO .- N C) r J Y F N 0 VY .._ oO0O in n u, ,cr cc) O m0V O oO O0 cyt-L(1) O O O 11001 1750 O O 0 o O O r07 N - O (co] O O N w O N 1500 1650 RAVEL TIME / GUTTER OR CHANNEL FLOW r{rtt1 N " c) 7 0 t- ) ^ N CO 7 (O 0 T m 0) 1- O .- N O al N w O.i (T N ,- .- 7 0) CN N N r] V (0 r 01 CO m d y N V n N* C C E O N co Ci CO La NCO O.: a ((] CO N a) "0. 43 7 (0 - w K 0 m 01. O (f) y (O a p O) CV N c0 64 or r N 0 r7 cD 0) CO N,- N 7 6 0 O co 0 N O w -7 f- In N 66 4 j - a w <O r w -4 m w^ 0 7 *" 03 777 CO. CO. d w (0 O S0 N m N V O) -- O N,- (D m N n N v v -- p .0 C C m to 0 Q (O Q 0 0 0 0 cO 0 0 (O 0 0 0 0 0 (O 0 0 (0 0 0 <O 0 0 CO Q 0 Q p 0 9 O 0 6 0 (0 ra 0 (D (0 0 0 0 o CO 0 O (0 (0 E. 0 O 6 0 0 0 10 0 0 10 0 0 C) O o En V m.... (ry 0 (O (O 0 0 0 0 CO 0 CO 0 en d O O (O O o0 O 0 O LO O Cr N O N N O) 6 o o r CO C) Q r Q 7 0 p 0 p L m J 300 O� V 200 700 700 �] 0 �O (0 O u0] OW ON N 2p Q 0 po V 1200� 150 180 C07 Q INITIAL /OVERLAND TIME (ti) c- CO N CO 703 N (- - co 01 0 0) t- 0 03(0) v N CO' 7 O 0 Li) (0 r 0 0N I- N 0- 0 01.- 0�- 0 -- (- 7 01 O -- m _ O 3` (f) O COS'7 O 0 Cj m r to „- 0 7 0 N 0 C] 0 Ci 0 N 0 a 0 N 0 N 0 0 N N 0 r 0 0 N N 0 N 0 N 0 7 L cm^ Q J 0 1!) 0 0 (R (0 0 O w 0 O O 0 0 vi 0 !` O (i 0 41 00000000000 (0 N en N (7 r (C) r 0 CO r- 0 c% 0 (n N O 10 C) N N O O 00 US O 0 O N 0 O 41 tC) O (0 O O t` N O 0 01 6 O) CO O N CO O N (O O 0 0 O (O p 0 7 0 0 LC) N. In 0 0 N cD 0 (0 CO 0 (t) 0 U {? 10 N O ([) O) N N O3 0 N 0 0 w u) 0 N (0 0 V) 0 0 0) 0 O 1- N O 0 W O Co cO O N C) O 0tV1 0 O 4.7 CO O 0 O O (D O (0 h (n 7 O O N 0 p (0 O O 7 to O (p m cutl N Q Nt-01 N O 0 .0. N ,- a 0)41 Q Lri 1- O 6 Q 0,. 6-,-.- m(n CC 03 00 0 7 0 N 0 y0 w CO, 0 N Cc) 0 (0 0 4')' r7 r 0 .- 7 N ,ce a n _ n 7 (0 rn O m0 0) N r) c0 z Fa a m Q 03 (0 d Z m -7- J-2 J•3 J•4 w- N r 2 t-N 1 N'- ZOOOa NM r y a 7 r acLEr N -- w IL cV 1—.1--D r) r Flowcal2.xls t 5 1 t O O U 0 H 1 1 STANDARD FORM SF-8 November 9. 1998 10 WATERGLEN, P.U.D. LOCATION. TIME OF CONCENTRATION DESIGN STORM: COMPUTATIONS JR ENGINEERING, LTD. SUBMITTED BY: 0 5 E 0 REMARKS 1 0 I! U 2 0 2 Z_ 2 T J Z r k F 6 Al. N ry .- r)0(0 7 C) r r (7 If) r C) 0 — o r r 0 0 7 0 0 7,-—— o OO 0 6 0 N C) C) P T d N N N 0 0 r 0 0 r r 0 0 0 O r N r r0 frr O O r r r N .- �O �0 0 O O C) 7 7 7— N N O CO o h r r— CO N CO h C) C7 r 7 CO (4 r N O r 1c CHECK (URBANIZED BASIN) O co C n co r- .- CV r� (- o- r C) 7 7 m In r 0) 7 r CO F- C) r r r 0)-7 N r to 7 6 r- — I 7 r 'c» C) r N")t r r a N N ni 7 mom O r O r 7 r 0).-' M r r r 6 r r `Oi r r r r rt N 7 co 40 (D r C) C) r r r- c) C) r 0) m r i� Y 7 CLF d r 0) F- 4 (D r— co 6 r— rn J O- N H 0 V r 0 4' a N 0 0 O r 0.0000000000(� C) COC pp 0 6 N 0 r u ((] m r+ 6 (D N p p V C.0 0— r .- 0 (V 0 O N N _0 (D 0 0 or 0 0 '7 0 0 0 N 0 <D 0 0n 0In 0 coa r 0 N 0 0 CO N .- 0 N 0(cy c7 TRAVEL TIME/GUTTER OR CHANNEL FLOW (tt) II r '-- a..1) Y N m 0 0 113 N (O 4 r 6 r- �- [) 0) d (D r 0 4 CO (0 n a 0 Y co N? co co 4 U7 .- W r O co h W F- m N (6 N N Ui N r O 4 O r N r r k N 4 6 N r N 0) CO Q) C7 N CO C) .0 N N 4l 0- O r c' O - N 0 N tl) V 0 i!) O V C. N N N CD N C) Yl C) N 0 0 r N .-- r` N D N 0) A-(O 00 0) (D 0 N {` CO 0 CO 10 CI N N ([) CO h Y •. I, — .- C) Q( 0 O � C) 4) .-• O (D V cO) (0 (D N GO (0 N N 0'4 [') . (p N (n cr V ID 7 N N If) Q) CO 0 N 7 CD 0 0 (!) 1"-.0 r.— Al r-- N l (D c] CO (V 0 0 0 0 N N 0 N C] 0 r N CO .- :O N 0 CO. N r CO r 0) 0 • 0 0 (() Y v V V CO 0 m CO 0 (D C] 0 CO CD CO 7 (D (D (D <D A a o r C i, C C D CO 2 (P O C. (17 co O 0 co (O O o 0 0 (0 O 0 sil (O C.0000000000 0 0 (0 0 (O 0 (0 (0 0 0 CP 0 . 0 IL] () 0 m 0 (0 o (O 00 0 (_0 0 f0 0 0 0 (O 0 0 0 0 (0 0 0 0(P 0 0 0 0 (_P 0 0 (O 0(D 0 0 0 0 0 0 (0 0 0 (0 0(0 0 O 0 0 0 0 0(0 0 00 0 o 0 0 0C 0 0 CO a p -- 0) 0 N 0 A- 0 0 Y N o `- O 6 N r CO O (A r 0 CO 7 0 C) 0 0 .- 0 .- 0 ci 40 o N o In O CO o m 0 m 0 (D 0 ID (D 0 0 (D 0 CO CO CO 0 0 0 CO 0 (n CO o o CO 0 (D rD 0 0 0 0 0 0 r x n m 0 0 0 0 0 0 0 0 '- 0 (() r0 0 0 0 0 N tilC2 0 N N 400 0 0 It) (n LP 0 0 (n r` 0 O 0 200 2300 0 O m 00 G O 0 O 000.0000000p V (.- (� 10 .- N N N ([1 (0 (O!) 0 0 C')) C00000 ) r 0 ID 0 0 d 0(0 r 0 CO (Q) VERLAND C — (D (() 7 y (() €` 6- r r (D r— ((f) C) (— N (() 6 N 0 C) - r O 10 n 6 r 0 .-- r r to N If) r Q r- (0 c0 r- r If) 7 If) .- N c)1 cc. V III N r- V 6- 0 m (D 7 .6r- r (0) 7 'co 67 CO 6 m r If1 (D N C N (- Cl _ 8- o (/) ` v) O 0 0 N (V V) N 0 if) 6 N O N o N N 0 N Ci 0 r 0 N 0 rV 0 .- 0 r 00 N N 0 0 0 r 0.- N ((l — 0 .` o -- 0 0 (f) N (+) 7N 47 0 N— (0 0 0' 0) N— Act. 0 C) L C X Al J o 0 (n 0 N N r 0 COC) ((07 N A- O (D N A-1- (0 6 N 0 A- 00 CO O A- 0 CO 0 (!0 10 477 A-r 0 (0 CO m 7 0 .- CAL N pp pp V V 0 r 0)i IP 0 r 0 m,- A---r 0 r- 0 6 0) O O r C) 40 0 A- 0 C) C) 0 0 .- (D 0 C] C) Cl CO 0 O N 4) 0 (D N 0 Q) CO 1.-.. 0 0 CO CO 0 V 0 0 O CO 0 N CO 0 N C) 0 41 C) 0 CO C) 0 N 0 O 0 CI O O r ()i 1.-C) O Act4) (O 0 0 <0 N 0 (4 N I---rZ-- C) CO C) 0 0 0 CO 0 n 0 0 . co 0 r r- n r` 0 O 10 0 r) 0 $ S`) iJ 6 O 0 00 N O C. N CO o 0 Cr. O. 0 C) N N ry 0 0 Act N 0 r( (D 0 CO N C) Act 06 (D (D o I` N o D) N p ID N o (D N 0 C) 0 C) 0 0 N 0 If) O N OO 000.66006 O co 0 0 I- (() 4) (D C) 0 r Act 7 0 4, V 0 LP N 0 CO 0 0 ID (D 0 A (D (n 0 0 C) '7 0 V) N 0 N ro N a — r 0 6 CO 0 r 7 P!-1 (() LP COM1 7 0 NON 0 r Ir- O 0 6 d 7 co cDD 7 4 C. N C) C) 7 m N 10n 6 a ii 1 O V r� O rr- N co CR O 0 0 r co 0 m CO CD r N N 0o N N (0') N C) N r CP (00 C) C) 7 6 (( ) O z 0 d 9P 4 CR J- h C Z m73 E 1 OUrONOMraN Q 4 4V1 O U O g ii.Fr u)N 2 W W W Wt` WD r C7. r NCI T III') X 7 rN -r = J-1 J-2 L' t 0 0 Q t Y CC Q 2 La CC a -J z y LL E V N a 7 -- 0 o 0 V cp N O 4 0 o N 4 0 a Q1 N ti 6O 0) l!) O N <D 0 N 0 CO o 0 O M 0 <n N 0 tc CHECK (URBANIZED BASIN) Q CO G C`) - 8 N 7 12.51 i- -- 4.N V 14.41 N 13.41 N V 7 C] 7 ID tv oi 0 In CO M N r- CD - 7 M 03 r-: CO r CD CO r ai N ai J lg.'" N F- O N Q tf) 0 007 0 00O 0 0 0 0 0 CO 0 n� 0 0 0 7 0 h 7 p 0 0 0 ) 0 0 7 0 N � 0V7 In 0 0 r- 0 CO 0 0 CO s01 r 0 <(D r TRAVEL TIME / GUTTER OR CHANNEL FLOW (tt) I,= ._ -i .- ^ CS 1` O 7 CO CV 7 <ri O os 1n V ti N CD N y V O) o C<) 6 « ❑i ,ID O N O 4] N CD Di 0 0) 0 N '- N c r E d O In 0 N a 0 CO N 0 7 0 O1 0 f .- 7 O CO 0 0 0 h d CD a O 0) N N ID t� 7 7 7 N 0!] M 0, 0) N CO •- N CO C) sn 0 0) O- Ol o UI 7 N -- )n N a 1p m, Q - Co r <D 7 v 7 CO .- Co 7 q r +D •- ID r.- m v .- CO O CO N CO N v CD r- 0 N CD -- CD N - v N.-.- v 0 LC'T C E p D 2 0 O Q co O P f0 O 0 co o 0 0" 0 0 .' 0 0 CO 0 O CD 0 0 CD 0 0 CD 0 O 0) 0 O CO 0 O (D 0 O OD 0 0 O CO Q.- 0 o CO 0 0 CA<D 0 0 0 0 0 ci eA ID 0 0 0 0 (D 0 0 m O a= CO CD O CO O 0 0 OD 0 CO 0 )0 0 CO 0 CO 0 CO 0 LO 0 0 0 N N in 0 CT) 0 r 0 0) — m 0 -- O CO O Length (ft) (7) 0 0 0 0 '7 0 0 N 0 0 C- 0 0 N 0 In CO 0 no IC) 0 t 00 0 co 0 .- OOL 0 0 f` 0 0 CO 0 0 7 0 In 7 0 O V 0 O N 0 0 7 0 0 00 0 7M 0 0 V INITIAL /OVERLAND TIME (ti) _ c N N0dr-: m 0 In r 0.vt-ire M .- 'O O co 00(0r-vi(00 co a o M en r- r- aov co h Inai f- 0 _ D ii 0 ( 0 MC-1 o o r o r- O -- o N 0 M 0 M 0 N 0 7 0 N 0 N 0 N 0 N N 7 o N 0 N 0 0 N N-4 0 - E v ILL- 0 0 0 0 0 0 0 0 0 0 0 0 0 r- 0 0 0 In 00 0 0 N 0 u) 0 on N 0 7-7 0 0 0 0 N 0 M 7 0 0 O O 7 N 0 )r) N (..) 0 CO (5 (Dr)0 0 co i- 0 4 ID 0 ( 1- 0 CO 0 m 0 DI 0—— 0 0 0 0 m 0 4 o r F- O Cn o (0 o <D p 0f) 0 CO N CO 0 0 TO. UD 0 8 - C') 0 IC] N O a) N O N CO O -- U) 0 N ID O U! OF O CD 0 N NCO) 0 U) O 0) COCD O N CO O N O IC) f`) o .- CO O I O -n CO O I CO 0 h cr 0 N C6 fD (p 0 0 t<ry Q <p .-. m b N 4 t- if) N 0) 'it 7 v- 0 O U) u] t- 0 M 0 D. N co Cr r It) Cr) 7 o O 7 CON 7 M CD 0 T 10 CO N m' N UI 0 M If) 4' 77- - v N ' v I- t` K 7 + CO 0) 0) 0) O N 0 CO <= z 4 mq mi- n N 0 Z am -- 0 1.- ->>[ L-1 N -1i r 7 z N zOO6a r N C) .- N*-- aOQQ()))-FN .- N- -- NM— 0 Fiowcal2.xis 0 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE) November 9, 1998 WATERGLEN, P.U.D. LOCATION: II 0 2-YEAR DEVELOPED DESIGN STORM: N COMPUTATIONS BY: JR ENGINEERING, LTD. SUBMITTED BY: ro E 0 0 0 'REMARKS 1 N a 0 0 0 m C_ m C2 CA 0 TOTAL O in O N to 4 r V t, f- 41 O - O ,- .- N r-- ui O) 0) O CI , (0 r, O t~ CO CO CO Cr) 0 CD r- N V .7 V Q a CO r O N. N r- 0? r V CO N CO 0 r N CO. N N N r- N ri CO CO N 7 r r CAD 0 m V CO O Ch r r 0 S 1 .- N O c) COcr .700 ci c) N c0 01 4 u- 0 c] co CV CARRY OVER j , E .a L `O DC') O c) 0 N DIRECT RUNOFF N O' o N 0 V 7 tfi r- N CO c O - ,- N r In O) 0) 6 LO C] r EI) i. O 8.37 1 CO cr .- If) CD r N V r V 7 V rn r 0 t� N r- Cn ,- V c0 Ci C) O ,- CV C') (V 7 N. [V N N c-i 10 c0 c'i r 7 r CO LC) ci V CO O O) 7 ,- CO c7 ,- CV o ci 03 V ci _ 2.83 I I0 r EN L - v CO 0 N7 `cr CO N c 1 N CV N N O N CO N N CO V N r- m N V CO r 0) N N V CV V O N - O N 2.09 in r N VI N 7 0 r t- N N C7 0 N N 0 N 4 CO N q)' 7 N 0 O CO c0 7 N c) CO N O) N N N N 0) CO N O) CO N 2.17 O) CV U C .-. E N mr N -- C7 r CO O) r Go W o N r 01 r CO Or O 6 c0 LD r L 14.7 01 -- t- N N N .7. O O) r Cr t- CA 13.4 1 c0 CD T c0 N V 6 m O 10 c i c) ci C) rn D N o N d c0) o 0.49 N 0 rN- 0 0.74 co 0 N 0 cp 0 co 0 v 0 to 4.0 0 0.27 N 0 N 0 N 0 c.) 0 c) 0 0.26 I N 0 c00 0 coo 0 N- 0 LL0 0 c0 0 N 0 0.49 v 0 co 0 L.1 d m O r— . r c0 . 0 1-r v c0 . 7 v co 7 5.791 O u] r co h O () v.I,- ) O u) Co CD v r Ci N r r I,-0 r 0 5.161 V - c0 0 V t 0) N 0) r O CO r` ,- N Cr) N 0 0 c) N a-- cfl CT) 0.461 N. N 0 c] O ' CO O O o r w cO r CO 0) N 2.85 O 0 N Contributing Basin(s) O NM O O d A-2 c) d a- d 0'1 d++ (Nn(`/) 0 7 a O CO a r- to a - O N O r to N IL c7 u) V w 0c9 LibW r- di cor W Li_O r ,7 I N I C7 I H-4 L0 11 (O H-7 Design Point r N _ .Q cO v 10 CO m'cr I• m N N Fiowcal2.xls t CV 0 REMARKS Go = flow intercepted by inlets flow over crown to DP 12 tc=tc{O1) + tc{0S1), Off -site Inlet Off -site Inlet - E. Vine Drive On Grade inlet, cJo to DP 19 SUMP inlet, c/o to DP 18 'tc=max(N-2 + H-6 or N-2 + H-7) On Grade inlet N d 0 0 O C� ID a) n T 0 0 On Grade Inlet, Go to DP 22 On Grade inlet. c/a to DP 18 J Q I- 0 ❑ N 5 V 4 CO ti M ul m • N m Q1 M n n r co .f r r V N co u] 1. V co Cn COr M co.O ,- I- n tO (0 V CD O) Cf) C. O v CD O f. m 7 Ch 7 CO m O n h N CO to ul .0 N CD 7 n co 7 v' Cp Or Cl V in O co . co N n cO 7 co CO N M f O N CO V N co ul r co I. M CO to m Cn t!] Cf [ q O rC7 O m U p O O co rO,_ co 0.08 I W CC 4 C � .6 dN wO O N ry- 0 r V cDr - ul — O N coQ if) co O 22 N DIRECT RUNOFF Contributing A C tc i Q sasin(s) (ac) (min) (in/hr) , (cis) I n f. CO 7 r V n u) u-i I• V CO CD M ,- CO O I- [•l O CO O V ,- ,- CO Q) u] O O Q CD O) Cl) r f, M r M 0 CO O M f. N 0) N to Cn N CO r ,- CO O Cl CO M 7 T N m m cl 0 O V CO * to CO N CO CO m N cr N W r £C£ ES'l CO Cf) CO CO u7 M r N m O N Ch r CO r h Cn ..- ui r CV ui CO N Cr)O w N CO N N - .- N N ,- r N m ..1- N O M O r N N CA N r r N N NCO N COK 1-M r N N NI-O Cn ..- COci C Y,- N (0M C,i CV 2.21 2.21 d) CO , N lCO CO C? N ,- CO CC? r CO CO 7 N CO 4 r,- r` CD m t, 1- n 6 1- CO of CO T1- N 7 h t• rm '7 7 4-•- a a a m O I` N O Q g- .- N CO V 4 1- co N 1.-1 h N V ai V .-. •- N n r/- N f` CO. N N 0. r r M ,- 1- M r- CO CD r` ,- c,.i CO m p .- CO CO N CP r S9"0 CO O r If) O M CD O Cn 0 O a) 7 O co N O co N O a) N N CO O O Cn O N CO O LO ui O 0 0 O 0 h« CO N O O 5 0 O u) CA O CO CO O N N ui CO CO M O O O r CO O 7 0 O N V O 0.44 7 CO O .0 0 O N n Vi 11' O O N CO CO CD O O CD O 0 O 01 N I- N )O CO CO CO CO F. 0 "7 0 CO r 00 a a)O N u) ti u] N,- CO y •t CO O 7 u) ID I. O ch m u) co 0 f• m ul CT in w.- 0 O) C. N m M N C0 CO co to co 0 N cf) 0 M 0 ui .1.tl CO O CD ui r r ' r N CO N CO v v N. r f. CO m 0) CO O N CO O LC) C. CO CD CO V LO — M ++ NvA 0 - •- N ''nY�� C7 V' "- r N+ J r �ZZO r N 0 +OOaa Q N co r c�i Q-1 P1 + P2 + Q1 N2 + H6 + H7 R-1 R-2 R1 + R2 - d� T-2 T-3 M + N I- + T C 01 .171 =CD 4 n O N N CO V T 7V u (0 7) N C� N co N to CO CI O b M CO m N I 22 N C. N Flowcal2.xls • 1 November 9, 1998 (REMARKS 'flow over crown to DP 2 1 lOn grade inlet, c/o to DP 27 1 Fc/o = future offsite flows 1 'flow over crown to DP 6 1 c/o = Canal overflow to crosspan to DP 24 sidewalk chase to swale 1 TOTAL O N 0 - [ co O co O] • M "3 O N m U O CO 'N RC N O M t�pp Oc t 4D aM co N O ^h m b N c.) — m Oa } O r 6''N O M ED M O O N I`, u7 v aO..n to CO • Q) N N O N cd c) Nhc rch (CARRY OVER N 0) o c E o) c o .o o d — to co N o DIRECT RUNOFF 0 ) N ( 26.73 I 3.50 cD c0 6 M V co VO CO M N f, a) O O c,-)O Rcri O 03 co M NT 3.72 1 TIA a) ( co • r_ cn> N- N M .- 2.00 4.57 .- O n O CO ) 0 10.20 I co O (]r ,.)- .- F (D CD n 0) c) tin N CO tD CO CO 6 N CO 6 N CO to N ,- N N •- N O) ID 07 N (D tD N — T N — N f` m Iry O [O O O) ,- O 0) O M V co V u) LE) cD N ,- N 7.12 1 )I) f• cD C) N — — cD N O V tD N -- i, c0 O t• c0 tD cD 7.12 N ,- N. In N tO N II> cD N N t) N nJ N r,- r O c.) co If) cn O p .- O O .- N f` .- 0 0 0 r,-- 0 0 (D 6 O N r Q) M r h T 7 d N N N O 0 r 0 0 r 11.4 .0) O M O ,- r Ct> N r,- O,-.- O O — N -- 0 O ,- 0 O r.- cD M N N r O O r 0 LC) 0) 0 L) N 0 In N 0 I 0.30 1 O) V O 0) N O N N O 0.74 1 CD N O 0.27 r LP O 0.63 1 N V O ID tO O N N O (7) N O (D N O tD N O ,- C) O r 0) O 0.26 1 La 0 N CO 0 0 0 CO 0 0.75 0.55 r CO 0 cp f` 0 (7) C 0 tD a 0 co 4 0 O ti 0 6-- Q co 0) N. CO cD '- V CO — V CON r J> to O LEI r co I. 0 0.351 II) O) 6 r 3.141 N 7 r 0.77 CO ,- La 0 V ., 0 cO V .Cr 0) N CO .- 0) CO N ,- N O) N 0 LC) M 5.42] 0) cD ,- v f, O V N N 0.30 0.94 1.00] o0 6 0 CO N LI CO N 2.001 M ID Contributing Basin(s) • th— d Cl'i C!] 0 CI CI1 a T a N a tO a¢ V In a+ N O a A3 + OS3 m �- O I 1-0 N.- a w N w coV w w 0 w 0 alw ti m.- ILIL r ch e-- N i i COV i i Lc) i cD i f` i 4 _ = Design Point r N ri R CO v u) CO A N m N N O) U Q 0 I 0 r0 Q.11 0 WATERGLEN, P.U.D. LOCATION: 100-YEAR DEVELOPED DESIGN STORM: a COMPUTATIONS BY: JR ENGINEERING, LTD. SUBMITTED BY: Flowcal2.xls i 0 0 V 1 REMARKS flow over crown to DP 9 'c/o = flow intercepted by inlets 1 [Flow over crown to DP 12 1 Itc=tc(O1) + tc(OS1), Oft -site Inlet IOff-site inlet - E. Vine Drive 1 IOn Grade inlet, c/o to DP 18 T I1c=Max (N-2 + H-6 or N-2 + H-7) 1 TOn Grade inlet, c/o to DP 19 On Grade inlet, c/o to DP 25 1On Grade inlet, c/o to DP 22 On Grade inlet, cfo to DP 18 [TOTAL O N 5 t u) N .- N O N 07 LP O CO V m cD N u') N m a V h O N O C) (0 6 0) to CO (0 co V 0) r N N N �) N 07 N C') ['o 6 LI) V O CO O co () 0) cfl . N c7 r f: O co LO co N u) CO 48.26 1 CO r n co c~7 V N r co V (0 V c� c0 N 32.43 ^ N L 13.45 1 0) N 21.20 CARRY OVER 7) coCO r co (I.;O LC) cP V 6 CO 0 .- 0.14 0 CO O r u) c r0 r to 6 from Design Point N N N N 0) 14b, 14c 6.T h r r 0 O N C') u] N O co N N N DIRECT RUNOFF c'NO V N h 14.36 co ca r V 1 20.09 30.54 cP C7 N Q)cON t? [7 [n W CO co VONN(0MO•- OC) CO 0) ,- O h N N 32.85 C0 O h CO.... c0 N 0 4VN- LO ,- CO r C000 N N V N01 13.45 NN)—Cj Cv N N - C C c0 6 Lb N r r` O/ 6 0 LP .- CO O h 00 6 p to ui h co LO O) r Co N Q) cD V r O V cc! co N r h C- r O co V O i, r cD N _ h N _ h V _ cD N r n co V co V <O r N ui co c0 6 0) 0) 6 4) LO 6 a) u) In N CO V 6 O) cD C- O 1-: co O [L) O LO 6 N r f.-: 7.12 1 V L() 5.41 CO N ul .U. E r N r O O r COCO N. r N .- . 13.3 h cn r co h r,- h 6 O O r- h O -- N v- -- T f 0'ot O V - co N - CS V - O O - O O - N g T O 0 r N m T m CV T ti ai T ch 6 1— c0 0 r N c- r N i- r CO h N 0 0 r N 0 r (O 0 r 17.8 0 0 r 0 0 r O 6 r CO 00 r N O) r 0 0) LO O I 0.35 N O O L17 c0 O — O O ch LO O C) 0 0 O 0 0 O 7 0 c0 N 0 cn N 0 0) N 0 N CO 0 L [To 1 N CO 0 u] 0 0 0.55 1 LO 40 O 0.27 Ln 0) 0 LO Cf) 0 0) coc0 0 0.32 I N O l 0.35 1 c0 O (- LO O N 4 O V V 0 4- LP O LO u) q 0.55 j N V O N c0 O O c0 O CO O 6 O V Q- COO, V 2.25 C CO N .- 3.621 ((00 CO Nr (0 O CO N 4 COO CV LO 2.571 V 0.94 40 40 N O (O0 00 2.70 0V) r 1.55I O - N- N 6 co 6 cf) N in 6 0) 6C) V V LO - r V N N O N h- V O) O 0) N co LO 0) c0 Contributing Basin(s) cc) 2 + + N = .- N COV LC) C) N 10 .- - N »� CO -,�)Y-1;2ZZo V- r N .- r N CO a +o6Enoa.rEm N C) •- N r 0 + N + 0_ n 2 + 0 N Z " N R1 +R2 n)L11.1— T-1 I N CO H + NC/ + V- Design Point O 0 N N ,- CO r K-4 r l 14b V .-- 0 r- (0 h .- O N h N 0) N 0) .- co M 0) -- d CO 0 CO 6 N N N N O N Flowcal2.xls APPENDIX C STREET CAPACITY CALCULATIONS 36'v 2yr 1 t LOCATION: CITY OF FORT COLLINS ITEM: STREET CAPACITY CALCULATIONS COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. Street with 36' Roadway, vertical curb and gutter - local street 2-year design storm no curb topping, flow may spread to crown of street calculate for channel slopes from 0.4% to 6% Theoretical Capacity: use revised Mannings eq. Q=0.56`Z/n`S'/2"y8r' where Q = Z= n= S= y= sec. A theoretical gutter capacity (cfs) reciprocal of cross slope (ft/ft) roughness coeff. channel slope (ft/ft) depth of flow at face of gutter (ft) Z n Y. S Q. 12 0.013 0.49 0.40% 4.88 12 0.013 0.49 0.50% 5.45 12 0.013 0.49 0.60% 5.98 12 0.013 0.49 0.80% 6.90 12 0.013 0.49 1.00% 7.71 12 0.013 0.49 1.50% 9.45 12 0.013 0.49 2.001% 10.91 12 0.013 0.49 3.00% 13.36 12 0.013 0.49 6.00% 18.90 Sec. B Z n Yb S Qb 12 0,013 0.33 0.40% 1.70 12 0.013 0.33 0.50% 1.90 12 0.013 0.33 0.60% 2,08 12 0.013 0.33 0.80% 2.40 12 0.013 0.33 1.00% 2.69 12 0.013 0 33 1.50% 3.29 12 0.013 0.33 2.00% 3.80 12 0.013 0.33 3.00% 4.66 12 0.013 0.33 6.00% 6.59 i.Oo er/c}/eI7 Or/ Allowable Gutter Flow: Qall =F*Q F = reduction factor (Fig. 4-2) Qall = allowable gutter capacity (cfs) Q = Qa - Qb + Qc t0 Ib' ti 0.02 = 0•33 0 331 2„L M)= 0. -C� a.oz 50 ZA Z4" = tiZ Z'• �g = 17. Sec. C Q=Qa -Qb+Qc Both sides of street Z n yc S Q, Q F Qall Qat! 50 0.016 0.33 0.40% 5.76 8.93 0.50 4.47 8.93 50 0.016 0.33 0.50% 6.44 9.99 0.65 6.49 12.99 50 0.016 0.33 0.60% 7.05 10.94 0.80 8.75 17.51 50 0.016 0.33 0.80% 8.14 12.64 0.80 10.11 20.22 50 0.016 0.33 1.00% 9.10 14.13 0.80 11.30 22.60 50 0.016 0.33 1.50% 11.15 17.30 0.80 13.84 27.68 50 0.016 0.33 2.00% 12.87 19.98 0.80 15.98 31.97 50 0.016 0.33 3.00% 15.76 24.47 0.72 17.62 35.24 50 0.016 0.33 6.00% 22.29 34.60 0.40 13.84 27.68 Page 1 G-1 36'v 100yr LOCATION: CITY OF FORT COLLINS ITEM: STREET CAPACITY CALCULATIONS COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. Street with 36' Roadway, vertical curb and gutter - local street 100-year design storm depth of water not to exceed 6" over the crown or 18" over the curb, buildings shall not be inundated at the ground line calculate for channel slopes from 0.4% to 6% Theoretical Capacity: use Mannings eq. Q = 1.486/n • R 213 ` S„2 * A where Q = theoretical gutter capacity (cfs) n = roughness coeff. R= AIP A = cross sectional area (ft2) P = wetted perimeter (ft) S = channel slope sec. A A= P= R= n= 12.50 18.50 0.68 0.016 sec. B A= P= R= n= 6.25 25.50 0.25 0.035 LtJc�er �� �r, •�� Allowable Gutter Flow: Qaff = F ` Q F = reduction factor (Fig. 4-2) Qall = allowable gutter capacity (cfs) Q=Qa+Qb zs' Both sides S Qa S Qb Qtot F Qall Oar 0.40% 56.69 0.40% 6.59 63.28 0-50 31.64 63.28 0.50% 63.38 0.50% 7.37 70.75 0.65 45.99 91.97 0.60% 69.43 0.60% 8.07 77.50 0.80 62.00 124.00 0.80% 80.17 0.80% 9.32 89.49 0.80 71.59 143.19 1.00% 89.63 1.00% 10.42 100.05 0.80 80.04 160.09 1.50% 109.78 1.50% 12.76 122.54 0.80 98.03 196.07 2.00% 126.76 2.00% 14.74 141.50 0.80 113.20 226.40 3.00% 155.25 3.00% 18.05 173.30 0.72 124.78 249.55 6.00% 219.56 6.00% 25.53 245.08 0.40 98.03 196.07 1 _ A= ((")(i-)08') t C J(2')'21 1- )z0,1; SO 14z 1 1 Page 1 le C_ C-2- 1 50' 2yr 1 1 Q = 0.56 *Z/n where sec. A LOCATION: CITY OF FORT COLLINS ITEM: STREET CAPACITY CALCULATIONS COMPUTATIONS BY: JPZ SUBMITTED BY: TR ENGINEERING, LTD. Street with 50' Roadway, vertical curb and gutter 2-year design storm no curb topping, flow may spread to crown of street calculate for channel slopes from 0.4% to 6% Theoretical Capacity: use revised Mannings eq. ws 1/2 wy8/3 Q = theoretical gutter capacity (cfs) Z = reciprocal of cross slope (ft/ft) n = roughness coeff. S = channel slope (ft/ft) y = depth of flow at face of gutter (ft) Z n ya, S Q. 12 0.013 d 0 0 0 p 0 p p Q U1 cn 01 U1 U1 Ul U1 C31 U1 0.40% 5.15 12 0.013 0.50% 5.76 12 0.013 0.60% 6.31 12 0.013 0.80% 7.28 12 0.013 1.00% 8.14 12 0.013 1.50% 9.97 12 0.013 2.00°/0 11.51 12 0.013 3.00% 14.10 12 0.013 6.00% 19.94 Sec. B Z n yb S Qb 12 0.013 0.33 0.40% 1.70 12 0.013 0.33 0.50% 1.90 12 0.013 0.33 0.60% 2.08 12 0.013 0.33 0.80% 2.40 12 0.013 0.33 1.00% 2.69 12 0.013 0.33 1.50% 3.29 12 0.013 0.33 2.00% 3.80 12 0.013 0.33 3.00% 4.66 12 0.013 0.33 6.00% 6.59 Sec. C tddiA 00 � Allowable Gutter Flow: Qall=F"Q F = reduction factor (Fig. 4-2) ()all = allowable gutter capacity (cfs) Q = Qa - Qb + Qc Q=Qa -Qb+Qc rL Z4 _ = �Z IZ Both sides of street Z n yc S Q° 0 F Qall Qaii 50 0.016 0.33 0.40%, 5.76 9.20 0.50 4.60 9.20 50 0.016 0.33 0.50% 6.44 10.29 0.65 6.69 13.38 50 0.016 0.33 0.60% 7.05 11.27 0.80 9.02 18.04 50 0.016 0.33 0.80% 8.14 13.02 0.80 10.41 20.83 50 0.016 0.33 1.00% 9.10 14.55 0.80 11.64 23.29 50 0.016 0.33 1.50% 11.15 17.83 0.80 14.26 28.52 50 0.016 0.33 2.00% 12.87 20.58 0.80 16.47 32.93 50 0.016 0.33 3.00% 15.76 25.21 0.72 18.15 36.30 50 0.016 0.33 6.00% 22.29 35.65 0.40 14.26 28.52 1 Page 1 9/10/98 C.-3 JREngineering, Ltd. CLIENT JOB NO. PROJECT _-a _ BY CZ CHECK BY _ DATE SUBJECT 50 FG-FL Iia�6z, S�rr�rn — SHEET NO. / OF .0? z5' 0.02 tur .. ,n,, .. �._ 4rea A = z"(')(z)z . (D.' )lz) +'D�f(�.23')(/x) t (0.s'yz5') Area ) = 0.17 3 + 0.9z,f z + 5.2_9 fb2 4- j2.5 S2 Area. 7,-.1 f E. t8�z �.. �.. I-7 rQ4 � �_ Z (d.5')�Z5') rea , (v. Z5 -.,.__y• 0. az (z3) = o_ 416' z--5 A 1 i Z5 el' ±i 50' 100yr 1 i 1 LOCATION: ITEM: COMPUTATIONS BY: SUBMI I-1'ED BY: CITY OF FORT COLLINS STREET CAPACITY CALCULATIONS JYL JR ENGINEERING, LTD. Street with 50' Roadway, vertical curb and gutter - collector street 100-year design storm depth of water not to exceed 6" over the crown or 18" over the curb, buildings shall not be inundated at the ground line calculate for channel slopes from 0.4% to 6% Theoretical Capacity: use Mappings eq. Q=1.486/n*R213•S12'A where Q = theoretical gutter capacity (cfs) n =. roughness coeff. R= A/P A = cross sectional area (ft2) P = wetted perimeter (ft) S = channel slope sec. A A= P= R= 18.88 23.88 0.79 0.016 sec. B A= P= R= n= 6.25 25.01 0.25 0.035 Allowable Gutter Flow: Qall=F*Q F = reduction factor (Fig. 4-2) Qall = allowable gutter capacity (cfs) Q=Qa+Qb Both sides of street S °a S at, °tot F ()all °all 0.40% 95.09 0.40% 6.68 101.77 0.50 50.88 101.77 0.50% 106.31 0.50% 7.47 113.78 0.65 73.96 147.91 0.60% 116.46 0.60% 8.18 124.64 0.80 99.71 199.42 0.80% 134.48 0.80% 9.44 143.92 0.80 115.14 230.27 1.00% 150.35 1.00% 10.56 160.91 0.80 128.73 257.45 1.50% 184.14 1.50% 12.93 197.07 0.80 157.66 315.32 2.00% 212.63 2.00% 14.93 227.56 0.80 182.05 364.10 3.00% 260.42 3.00% 18.29 278.70 0.72 200.67 401.33 6.00% 368.28 6.00% 25.86 394.15 0.40 157.66 315.32 Page 1 1 1 /5/98 28' 2yr Gc10:6 t, P%e LOCATION: CITY OF FORT COLLINS ITEM: STREET CAPACITY CALCULATIONS COMPUTATIONS BY: JPZ SUBMITTED BY JR ENGINEERING. LTD. Street wl 28' Roadway (drive -over curb, gutter & walk) 2-year design storrn no curb topping, flow may spread to crown of street calculate for channel slopes from 0.4% to 7% Theoretical Capacity: use revised Mannings eq. Q=0.56"Z/n"S'n"yers where Q = theoretical gutter capacity (cfs) Z = reciprocal of cross slope (ft/ft) n= S= Y= sec. A roughness coeff. channel slope {ft/ft) depth of flow at face of gutter (ft) ZA n 1 Ya S Q. 10.18 0.013 0.4 0.40% 2.41 10.18 0.013 0.4 0.50% 2.69 10.18 0.013 0.4 0.60% 2.95 10.18 0.013 0.4 0.80% 3.41 10.18 0.013 0.4 1.00% 3.81 10.18 0.013 0.4 1.50% 4.67 10.18 0.013 0.4 2.00% 5.39 10.18 0.013 0.4 3.00% 6.60 10.18 0.013 0.4 6.00% 9.33 10.18 0.013 0,4 7.00% 10.08 Sec. B Zs n Yp S Qb 10.18 0.013 0.28 0.40% 0.93 10.18 0,013 0.28 0.50% 1.04 10.18 0.013 0.28 0.60% 1.14 10.18 0.013 0.28 0.80% 1.32 10.18 0.013 0.28 1.00% 1.47 10.18 0.013 0.28 1.50% 1.80 10.18 0.013 0.28 2.00% 2.08 10.18 0.013 0.28 3.00% 2.55 10.18 0.013 0 28 6.00% 3.60 10.18 0.013 0.28 7.00% 3.89 Sec. C Zc n Y6 S QG 50 0.016 0.28 0.40% 3.71 50 0.016 0.28 0.50% 4.15 50 0.016 0.28 0.60% 4.55 50 0.016 0.28 0.80% 5.25 50 0.016 0.28 1.00% 5.87 50 0.016 0.28 1.50% 7.19 50 0.016 0.28 2.00% 8.31 50 0.016 0.28 3.00% 10.17 50 0.016 0.28 6.00% 14.38 50 0.016 0.28 7.00% 15.54 Allowable Gutter Flow: Qall =F"Q F = reduction factor (Fig. 4-2) Qall = allowable gutter capacity (cfs) Q = Qa - Qb + Qc + Qd ts__ Sec. D Z❑ n y, S Q. 3.58 0.013 0.4 0.40% 0.85 3.58 0.013 0.4 0.50% 0.95 3.58 0.013 0.4 0.60% 1.04 3.58 0.013 0.4 0.80% 1.20 3.58 0.013 0.4 1.00% 1.34 3.58 0.013 0.4 1.50% 1.64 3.58 0.013 0.4 2.00% 1.89 3.58 0.013 0.4 3.00% 2.32 3.58 0.013 0.4 6.00°/0 3.28 3.58 0.013 0.4 7.00% 3.54 =Qa-Ub+Qc+Qd Both sides Q F Qali Qall 6.04 0.50 3.02 6.04 6.75 0.65 4.39 8.78 740 080 5.92 11.84 8.54 0.80 6.83 13.67 9.55 0.80 7.64 15.28 11.70 0.80 9.36 18.71 13.51 0.80 10.80 21.61 16.54 0.72 11.91 23.82 23.39 0.40 9.36 18.71 25.27 0.34 8.59 17.18 Page 1 28' 100yr WAJIA 1 LOCATION: ITEM: COMPUTATIONS BY: SUBMI T I bD BY: CITY OF FORT COLLINS STREET CAPACITY CALCULATIONS JPZ JR ENGINEERING, LTD. Street wl 28' Roadway (drive -over curb, gutter & walk) 100-year design storm depth of water not to exceed 6" over the crown or 18" over the curb, buildings shall not be inundated at the ground line calculate for channel slopes from 0.4% to 7% Theoretical Capacity: use Mannings eq. Q=1.486/n*R213*S12*A where Q = n= R- A= P= S= sec. A A= P= R= n= 10.18 15.50 0.66 0.016 theoretical gutter capacity (cfs) roughness coeff. A/P cross sectional area (ft2) wetted perimeter (ft) channel slope sec. B A= P= R= 6.25 25.50 0.25 0.035 Allowable Gutter Flow: Qa11=F 0 F = reduction factor (Fig. 4-2) Qall = allowable gutter capacity (cfs) Q=Qa+Qb D.rl' 6v Both sides of street S Oa S at) 0 F Qall Qall 0.40% 45.30 0.40% 6.59 51.89 0.50 25.95 51.89 0.50% 50.65 0.50% 7.37 58.02 0.65 37.71 75.42 0.60% 55.48 0.60% 8.07 63.56 0.80 50.84 101.69 0.80% 64.07 0.80% 9.32 73.39 0.80 58.71 117.42 1.00% 71.63 1.00% 10.42 82.05 0.80 65.64 131.28 1.50% 87.73 1.50% 12.76 100.49 0.80 80.39 160.79 2.00% 101.30 2.00% 14.74 116.04 0.80 92.83 185.66 3.00% 124.07 3.00% 18.05 142.12 0.72 102.32 204.65 6.00% 175.46 6.00% 25.53 200.98 0.40 80.39 160.79 7.00% 189.51 7.00% 27.57 217.08 0.34 73.81 147.62 I9r 4- = (& si(IS ciL') t (/17)(6.(r)(0 (&,n)(Li7) (0,z6i(iY-(.17)(4) = 70.i5- it-? re& 6 = (zs-- ')( 4, )( L) 6.zS7efz Page 1 9/10/98 C-6 36' 2yr 1 1 1 LOCATION: CITY OF FORT COLLINS ITEM: STREET CAPACITY CALCULATIONS COMPUTATIONS BY:NZ SUBMITTED BY: JR ENGINEERING, LTD. Street w! 36' Roadway (drive -over curb, gutter & walk) - local street 2-year design storm no curb topping, flow may spread to crown of street calculate for channel slopes from 0.4% to 7% Theoretical Capacity: use revised Mannings eq. Q=0.56'Zln'S'n.ys+a where Q = theoretical gutter capacity (cfs) Z = reciprocal of cross slope (ftlft) n = roughness coeff. S = channel slope (ft/ft) y = depth of flow at face of gutter (ft) sec. A ZA n Ya S Q. 10.18 0.013 0 0 o 0 0 0 0 0 0 0 0.40% 2.41 10.18 0.013 0.50% 2.69 10.18 0.013 0.60% 2.95 10.18 0.013 0.80% 3.41 10.18 0.013 1 00% 3.81 10.18 0.013 1.50% 4.67 10.18 0.013 2.00% 5.39 10.18 0 013 3.00% 6.60 10.18 0.013 6.40% 9.33 10.18 0.013 7,00% 10.08 Sec. B Ze n Ye S (lb 10.18 0.013 0.28 0.40% 0.93 10.18 0.013 0.28 0.50% 1.04 10.18 0.013 0.28 0.60% 1.14 10.18 0.013 0.28 0.80% 1.32 10.18 0.013 0.28 1.00% 1.47 10.18 0.013 0.28 1.50% 1.80 10.18 0.013 0.28 2.00% 2.08 10.18 0.013 0.28 3.00% 2.55 10.18 0.013 0.28 6.00% 3.60 10.18 0.013 0.28 7.00% 3.89 Sec. C Zc n Yc Qc 50 50 50 50 50 50 50 50 50 50 0016 0.016 0.016 0.016 0016 0.016 0.016 0.016 0016 0.016 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.40% 0.50% 0.60% 0.80% 1.00% 1.50% 2.00% 3.00% 6.00% 7.00% 3.71 4.15 4.55 5.25 5.87 7.19 8.31 10.17 14,38 15.54 Allowable Gutter Flow: Qall =F*Q F = reduction factor (Fig. 4-2) Qall = allowable gutter capacity (cfs) h = q 3/4`i a.y' j�-'3/811- O.Z8 -028 ` Sec. D Zo n Yd S QC 3.58 0.013 0.4 0.40% 0.85 3.58 0.013 0.4 0.50% 0.95 3.58 0.013 0.4 0.60% 1.04 3.58 0.013 0.4 0.80% 1.20 3.58 0.013 0.4 1.00% 1.34 3.58 0.013 0.4 1.50% 1.64 3.58 0.013 0.4 2.00% 1.89 3.58 0.013 0.4 3.00% 2.32 3.58 0.013 0.4 3.00% 2.32 3.58 0.013 0.4 7.00% 3.54 Q=Qa-Qb+Qc+Qd Both sides Q F Qall Qall 6.04 6.75 7.40 8.54 9.55 11.70 13.51 19.27 2318 25.27 0.50 0.65 0.80 0.80 0.80 0.80 0.80 072 040 0.34 3.02 4.39 5.92 6.83 7.64 9.36 10.80 13.88 9.27 8.59 6.04 8.78 11.84 13.67 15.28 18.71 21.61 27.75 18.54 17.18 Page 1 36' 100yr LOCATION: ITEM: COMPUTATIONS BY: SUBMITTED BY: CITY OF FORT COLLINS STREET CAPACITY CALCULATIONS JPZ JR ENGINEERING, LTD. Street wl 36' Roadway (drive -over curb, gutter & walk) - local street 100-year design storm depth of water not to exceed 6" over the crown or 18" over the curb, buildings shall not be inundated at the ground line calculate for channel slopes from 0.4% to 7% Theoretical Capacity: use Mannings eq. Q=1.4861n*R ar3 *SIr2 A where Q = theoretical gutter capacity (cfs) n= R= A= P= S= sec. A A= P= R= n= 13.63 18.50 0.74 0.016 roughness coeff. AIP cross sectional area (ft2) wetted perimeter (ft) channel slope sec. B A= P= R= n= 8.46 29.50 0.29 0.035 Allowable Gutter Flow: Qall = F ' Q F = reduction factor (Fig. 4-2) Qall = allowable gutter capacity (cfs) Q=Qa+Qb z9' 1.17 Both sides of street S Q, S Qb Q F Qall QaX 0.40% 65.49 0.40% 9.91 75.39 0.50 37.70 75.39 0.50% 73.21 0.50% 11.07 84.29 0.65 54.79 109.58 0.60% 80.20 0.60% 12.13 92.33 0.80 73.87 147.74 0.80% 92.61 • 0.80% 14.01 106.62 0.80 85.30 170.59 1.00% 103.54 1.00% 15.66 119.20 0.80 95.36 190.73 1.50% 126.81 1.50% 19.18 145.99 0.80 116.80 233.59 2.00% 146.43 2.00% 22.15 168.58 0.80 134.86 269.73 3.00% 179.34 3.00% 27.13 206.47 0.72 148.66 297.31 6.00% 253.62 6.00% 38.36 291.99 0.40 116.80 233.59 7.00% 273.94 7.00% 41.44 315.38 0.34 107.23 214.46 0"tA, A < <o.s IX J I.Lj7' (D. y `�C/. �L x �� + (r. l7 `)C0. h1X L) l3. 3 Pz o s8 'x �J . y� 82' Page 1 t {6.08JC �fr)CI. + Co / 7 .) f (a, z8)(f $3 C - "7 1 1 MAY 1984 REDUCTION FACTOR , F 1.0 9 8 7 6 5 4 3 .2 s = 0 F=08 6 °/a IO4% F : 0 5 1 I 1 BELOW Al_LOWABLE STREE' MINIMUM GRADE 1 1 1 L. 0 2 4 6 8 10 SLOPE OF GUTTER (% 12 14 Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 DESIGN CRITERIA 1 1 APPENDIX D INLET CALCULATIONS UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD fSERJR ENGINEERS-DENVER CO N DATE 11-05-1998 AT TIME 08:27:00 PROJECT TITLE: Waterglen PUD *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH INLET GRATE LENGTH INLET GRATE TYPE NUMBER OF GRATES (00AI 000\ Cam- lilt (ft)= 1.87 (ft) = 3.25 =Curved Vane Grate 2 00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.63 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 9.50 0.36 2.26 1.07 50.00 15.00 FOR 2 GRATE INLETS: DESIGN DISCHARGE (Cfs)= 2.40 IDEAL GRATE INLET CAPACITY (cfs)= 2.13 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.80 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.07 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 REQUIRED CURB OPENING LENGTH (ft)= 10.88 IDEAL CURB OPENNING EFFICIENCY = 0.84 ACTURAL CURB OPENNING EFFICIENCY = 0.76 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.50 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 0.60 0.45 1.33 1.33 0.43 0.91 1 2.40 =Qtoo DF 1C 1.80 ' 0.45 2.26 19'(212. CC 0.14 fa Q? c? ' 1.07 .4 1 ' .49 0.91 F UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO IN DATE 11-09-1998 AT TIME 09:19:10 *** PROJECT TITLE: Waterglen PUD *** COMBINATION INLET: GRATE INLET AND CURB OPENING: * * * GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1c. INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: a�. INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.63 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR ( °s) _ CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 4.47 0.26 2.03 0.37 50.00 15.00 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: 0.75 0.74 0.72 0.37 GIVEN CURB OPENING LENGTH (ft)= 7.00 REQUIRED CURB OPENING LENGTH (ft)= 5.59 03 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.03 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 0.03 0.03 0.00 0.38 0.02 0.36 0.75 Q2+A1r 0.72 0.03 0.75 0.00 0.37 0.02 0.39 0.36 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 10-28-1997 AT TIME 10:48:20 1** PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 12.00 HEIGHT OF CURB OPENING (in) = 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (°s) = STREET CROSS SLOPE (o) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (o)= CURB OPENNING CLOGGING FACTOR(o)= 1.00 2.00 0.016 2.00 2.00 Type flow depth. row -flow ototc lN' `;Ot O 21.81 =L 0.60-� fl=c•12 4.20 4.92 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 26.0U BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= w ' fro n 20.60 = 20.60 0.00 — 20.60 20.60 0.00 D-S JR Engineering, Ltd. PROJECT W W `\eXi SUBJECT DP 1 - ovcN CLIENT r F✓ Ro JOB NO. i l S ° CHK. BY P-Z- BY DATE (Z! Z 5 c.r0)\-1 'if) D' 2_ SHEET NO. OF ruoYt.- C J ',Li-1x,, flow a[.o � h 0.613 Pi. k) 0u ! .e✓r - o oU-p h = O ,4 beli v-)5 p 3t rec c_ra n F ow( Strce_# croo3 = O,L - ()AS:: 0,1 a +kt. ? D ; nfi n Couek (rod',Ic I �a hwror, , -IQw Iz' ,2.°10 I- l C- L +i liz. Ali 71'- = %'(0 )t 3v O.lo} Q= c2, -'l c- S PP z- D -A UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD IESER:JR ENGINEERS-DENVER CO N DATE 10-28-1997 AT TIME 10:49:22 r** PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (o)= CURB OPENNING CLOGGING FACTOR(°s)= 1.2__D0 6.00 27.00 2.00 0.16 depth to flow depth. 1.00 2.00 0.016 2.00 2.00 12.72 0.42 3.18 1.78 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 15.89 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 5.70 5.70 0.00 5.70 5.70 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-10-1998 AT TIME 15:38:52 *** PROJECT TITLE: WATERGLEN *** CURB OPENING INLET HYDRAULICS AND SIZING: �� r INLET ID NUMBER: CZ 0 INLET HYDRAULICS: IN A SUMP. 1 GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 5.00 Ih� 2 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 , LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: 1 STREET LONGITUDINAL SLOPE (%) = 1.00 I STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 I STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.22 I GUTTER FLOW DEPTH (ft) = 0.45 FLOW VELOCITY ON STREET (fps)= 3.35 FLOW CROSS SECTION AREA (sq ft)= 2.19 GRATE CLOGGING FACTOR (%)= 50.00 I CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.45 /'� BY FAA HEC-12 METHOD: DESIGN FLOW (cfs) = 7.30 '"'`�tno ioD? FLOW INTERCEPTED (cfs)= 7.30 CARRY-OVER FLOW (cfs)= 0.00 , BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 7.30 FLOW INTERCEPTED (cfs)= 7.30 CARRY-OVER FLOW (cfs)= 0.00 1 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 10-28-1997 AT TIME 10:56:27 1** PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.10._ j i' HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 1.00 2.00 0.016 2.00 2.00 6.13 0.29 2.61 0.54 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 5.95 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs) = BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 1.40 1.40 04 2- 0.00 -- 1.40 1.40 0.00 GIVEN INLET DESIGN INFORMATION: GW 7 GIVEN CURB OPENING LENGTH (ft)= 5_00 S ff R- HEIGHT OF CURB OPENING (in)= 6.00 1 INCLINED THROAT ANGLE (degree)- 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.50 STREET CROSS SLOPE (%-) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 15.44 0.48 2.46 2.55 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 10.02 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 6.30 6.30 0.00 6.30 6.30 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 10-28-1997 AT TIME 10:57:1B *** PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: 1 INLET ID NUMBER: E� , INLET HYDRAULICS: IN A SUMP. 1 1 1 1 1 1 1 1 Q,oe k_coff D -11 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 10-28-1997 AT TIME 10:57:42 PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS HYDRAULICS AND SIZING: INLET ID NUMBERS _ 32 Zr"' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 7 le - HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: (%) = (inch) = (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) _ FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 0.50 2.00 0.016 2.00 2.00 8.38 1.95 0.87 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.87 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs) FLOW INTERCEPTED (cfs) CARRY-OVER FLOW (cfs) BY DENVER UDFCD METHOD: DESIGN FLOW (cfs) FLOW INTERCEPTED (cfs) CARRY-OVER FLOW (cfs) 1 70 (Po- 1 70 0 00 1 70 1 70 0 00 D-it UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-10-1998 AT TIME 15:40:39 *** PROJECT TITLE: WATERGLEN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: U INLET HYDRAULICS: IN A SUMP. DD GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft).= 5.00. Tye l - HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.90 STREET CROSS SLOPE (o) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) _ GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (o)= CURB OPENNING CLOGGING FACTOR(o)= 11.50 0.40 2.89 1.49 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.22 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 4.31 4.31 0.00 4.31 4.31 0.00 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 09-10-1998 AT TIME 14:52:00 *** PROJECT TITLE: WATERGLEN 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.90 STREET CROSS SLOPE (o) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: 1 1 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.05 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 6.36 0.29- 2.49 0.57 50.00 20.00 1.42-- 1.42 0.00 1.42 1.42 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 10-28-1997 AT TIME 10:59:47 *** PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: /� GIVEN CURB OPENING LENGTH (ft)= 10.00 I U �22 HEIGHT OF CURB OPENING (in).-6.00 II fL INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: 1.60 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 17.88 GUTTER FLOW DEPTH (ft) = 0.52 --ID ti FLOW VELOCITY ON STREET (fps)= 4.75 FLOW CROSS SECTION AREA (sq ft)= 3.36 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 1 0.c��` Pau) do.4044,1 al c,+"o 1 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 20.31 /� BY FAA HEC-12 METHOD: DESIGN FLOW (cfs) = 16.00 = ti-roo FLOW INTERCEPTED (cfs)= 16.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 16.00 FLOW INTERCEPTED (cfs)= 16.00 CARRY-OVER FLOW (cfs)= 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD 1 USER:JR ENGINEERS-DENVER CO ON DATE 10-28-1997 AT TIME 11:00:05 PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft) = 10 . 04 7 y - (Z HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (°s)= CURB OPENNING CLOGGING FACTOR(%)= 1.60 2.00 0.016 2.00 2.00 10.28 3.70 1.22 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 12.15 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 4.50 = Qz 4.50 0.00 (- 4.50 4.50 0.00 JREngineering, Ltd. PROJECT IA ) 0J suBJEcr D P 5- .(flow a veer Q' (z, (.) ( r7 . ) ( o , o L-1 {) 3/Z 0.15 LA +o DP {o CLIENT e E Ko c* JOB NO. r (4 5 , oc) By ` a CBY DATE DATE 1 L I z 14 7 c ro Lid +-‘ Dec, SHEET NO. _ OF D -Rol UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD IFSER:JR ENGINEERS-DENVER CO N DATE 07-08-1998 AT TIME 18:04:17 PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. (00 (4 GIVEN INLET DESIGN INFORMATION: �J GIVEN CURB OPENING LENGTH (ft)= 5.00 �j - (-" HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.60 STREET CROSS SLOPE (o) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) _ GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 13.38 0.43 - 4.11 1.96 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.22 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 8.00 1,:=-Qt00 8.00 0.00 8.00 7.38 0.62 O-11 *** PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 6.59 0.30- 3.33 0.60 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.34 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (ofs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 2.00 2.00 0.00 2.00 2.00 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 10-28-1997 AT TIME 11:09:11 II** PROJECT TITLE: WATERGLEN PUD i 1 1 1 1 1 1 1 1 1 11SER:JR ENGINEERS-DENVER CO ON DATE 10-28-1997 AT TIME 11:09:27 1 D-19 * * * CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: /d1`.' GIVEN CURB OPENING LENGTH (ft) = 3 . cS(d oik C v� HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: (%) = (inch) = (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 0.70 2.00 0.016 2.00 2.00 10.75 0.38 2.49 1.32 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.05 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 3.30 3.30 0.00 3.30 3.30 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-10-1998 AT TIME 14:57:33 *** PROJECT TITLE: WATERGLEN * * * STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: O INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 3.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. I STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = (%) (inch)= (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 0.70 2.00 0.016 2.00 2.00 5.84 0.28- 2.17 0.51 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.48 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= 1.11 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.11 FLOW INTERCEPTED (cfs)= 1.11 CARRY-OVER FLOW (cfs)= 0.00 1 1 1 1 1 p -z1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD SER:JR ENGINEERS-DENVER CO N DATE 09-10-1998 AT TIME 15:41:40 *** 1 1 1 1 1 PROJECT TITLE: WATERGLEN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: ® / OCD INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 17,12L 2 HEIGHT OF CURB OPENING (in) = 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: (%) = (inch) = (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 0.70 2.00 0.016 2.00 2.00 19 t 0 . VL'VJ iG(x3 3.30 3.99 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 16.72 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 13.14 13.14 0.00 13.14 13.14 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-10-1998 AT TIME 14:59:56 * * * PROJECT TITLE: WATERGLEN * * * CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: ® c C,� r INLET HYDRAULICS: IN A SUMP. O GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.70 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 11.22 0.39- 2.53 1.43 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 10.91 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs) FLOW INTERCEPTED (cfs) CARRY-OVER FLOW (cfs) BY DENVER UDFCD METHOD: DESIGN FLOW (cfs) FLOW INTERCEPTED (cfs) CARRY-OVER FLOW (cfs) 3.58 3.58 0.00 3.58 3.58 0.00 t 0, DA D_Z 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 10-28-1997 AT TIME 11:19:47 Ir.. PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: IINLET ID NUMBER: 9 6r 0 V cr INLET HYDRAULICS: IN A SUMP. I GIVEN INLET DESIGN INFORMATION: 1 GIVEN CURB OPENING LENGTH (ft)= 8.00 -Th./ ID e...Z-- HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. ISTREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (o) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 1 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: IWATER SPREAD ON STREET (ft) = 20.69 GUTTER FLOW DEPTH (ft) = 0 . 5 8 - OV Xd da �L` 7 I FLOW VELOCITY ON STREET (fps)= 2.88 FLOW CROSS SECTION AREA (sq ft)= 4.45 GRATE CLOGGING FACTOR (a)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 IINLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 17.03 I BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 12.70 ^ FLOW INTERCEPTED (cfs)= 12.70 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 12.70 I FLOW INTERCEPTED (cfs)= 12.70 CARRY-OVER FLOW (cfs)= 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD I[SER:JR ENGINEERS-DENVER CO ON DATE 10-28-1997 AT TIME 11:20:03 1 0 -Z2 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-10-1998 AT TIME 15:08:38 PROJECT TITLE: WATERGLEN * * * CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 HEIGHT OF CURB OPENING (in) = 6.00 INCLINED THROAT ANGLE (degree)= 27.00 I LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. I STREET GEOMETRIES: 1 STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (°s) = 2.00 STREET MANNING N - 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 12.06 0.41 2.20 1.62 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 11.42 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 3.60' Q� 3.60 0.00 3.60 3.60 0.00 I UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 09-10-1998 AT TIME 15:46:11 PROJECT TITLE: WATERGLEN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ( GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: STREET LONGITUDINAL SLOPE STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: 1- 6.00 27.00 2.00 0.16 depth to flow (%) = 1.60 (%) = 2.00 0.016 (inch)= 2.00 (ft) = 2.00 WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= c depth. 20 0 . ie DP `i 5 . 0� 4.22 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 25.31 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 21.25 Q� 21.25 0.00 21.25 21.25 0.00 JR Engineering, Ltd. J PROJECT k J {/1a i� 1'' 0 SUBJECT op in- otlo(iiOILJ pJt4, CriChdr. 4 D P 9 Pe) Kar/C JOB NO. CHK l z/z/ q ) EY DATE CLIENT BY :I SHEET NO. OF 1 1 1 1 1 t o z 1 UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 09-10-1998 AT TIME 15:10:03 *** PROJECT TITLE: WATERGLEN I*** CURB OPENING INLET HYDRAULICS AND SIZING: I INLET ID NUMBER: 0(`/�' J INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 12.00 1 HEIGHT OF CURB OPENING (in)= {deg6.00 INCLINED THROAT ANGLE ree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 INote: The sump depth is additional depth to flow depth. STREET GEOMETRIES: 1 STREET LONGITUDINAL SLOPE (%) = 1.60 STREET CROSS SLOPE {%} = 2.00 STREET MANNING N = 0.016 I GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: 1 WATER SPREAD ON STREET (ft) - 11.50 GUTTER FLOW DEPTH (ft) = 0.40 " FLOW VELOCITY ON STREET (fps)= 3.86 I FLOW CROSS SECTION AREA (sq ft)= 1.49 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 I INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 14.90 _ BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.79 —� I FLOW INTERCEPTED (cfs)= 5.79 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.79 FLOW INTERCEPTED (cfs)= 5.79 I CARRY-OVER FLOW (cfs)= 0.00 USER:JR ENGINEERS-DENVER CO ON DATE 09-10-1998 AT TIME 15:49:23 * * * PROJECT TITLE: WATERGLEN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: lam' /co INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD 1 1 1 1 1 STREET GEOMETRIES: 1 STREET LONGITUDINAL SLOPE (a) = STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: (inch) = (ft) _ 0.60 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 27 GUTTER FLOW DEPTH (ft) = 72_2> FLOW VELOCITY ON STREET (fps)= 6 FLOW CROSS SECTION AREA (sq ft)= 7 90 GRATE CLOGGING FACTOR (%)= 50 00 CURB OPENNING CLOGGING FACTOR(%)= 10 00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 35.60 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY --OVER FLOW (cfs) = } SwcxLCL 29.74 29.74 0.00 - 29.74 29.74 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 03-04-1998 AT TIME 08:46:47 PROJECT TITLE: WATERGLEN PUD CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (,) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 14.22 0.45 2.59 2.19 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 20.94 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 5.70 5.70 0.00 5.70 5.70 0.00 0-7E UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 03-04-1998 AT TIME 08:37:04 PROJECT TITLE: WATERGLEN PUD *** STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 E ix, 12- HEIGHT OF CURB OPENING (in)= 6.00 1 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (a) = (a) (inch) = (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (o)= CURB °PENNING CLOGGING FACTOR(%)= 0.60 2.00 0.016 2.00 2.00 28.19 0.73 —* 0 • Z5 3.79 8.11 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 35.77 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 30.60 = (-1s00 30.60 0.00 30.60 30.60 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 03-04-1998 AT TIME 08:37:24 PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 13 t 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: c2 5z GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (a) = STREET CROSS SLOPE (o) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR {%)= CURB OPENNING CLOGGING FACTOR(°%)= 0.60 2.00 0.016 2.00 2.00 16.84 0.50 2.82 3.00 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 30.18 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 8.50=Qz. 8.50 0.00 8.50 8.50 0.00 JREngineering, Ltd. PROJECT w Out ell SUBJECT op 1 3 - - 10,, 0 vt v cM CLIENT �6 ff-0 Cir. JOB NO f )4 :DC) I BY BY DATE SHEET NO. 1-. OF ' DPIz yc{'1 CGJ2 U'llAd 1`0 W 0 VLY r Pr01:1 k _2 Lai 4 2' 0.2s' _ I Z.G)(8/ `)( /1. l 1l,Q6.S.L o Atvown.- 0•0,2 L ro,oa )z o co z- (2)( 7,o`)( 0,0d,)3'"- -(1vvo k— d,73' Srfrcd Gros (.4 = o.: ,3 ` 0, , etm/lc- i � to°lu 1 cJ atfr / a 475 vc.Y cv04sn� o.so O. 0 5 crs , ( D f'lz UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD tSER:JR ENGINEERS-DENVER CO N DATE 03-04-1998 AT TIME 08:49:45 *** PROJECT TITLE: WATERGLEN PUD ' *** CURB OPENING INLET HYDRAULICS AND SIZING: f O Q ' INLET ID NUMBER: _- INLET HYDRAULICS: IN A SUMP. 1 1 1 1 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 y12 HEIGHT OF CURB OPENING (in)= 6.00 I INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch) = GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(°%)= 0.40 2.00 0.016 2.00 2.00 21.81 (`/ 0.60 -Ove-i ow 2.66 4.92 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 17.47 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 5 W ei-e-- 13.20 Qtoo 13.20 0.00 13.20 13.20 0.00 -30 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-17-1998 AT TIME 09:03:34 * * * PROJECT TITLE: WATERGLEN PUD *** STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 14) INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 HEIGHT OF CURE OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 I LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. I STREET GEOMETRIES: 1 STREET LONGITUDINAL SLOPE (%) = ( % ) = (inch) = (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 0.40 2.00 0.016 2.00 2.00 12.81 D . 4 2 ' 2.02 1.81 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 11.87 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 3.65 3.65 0.00 3.65 3.65 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 10-28-1997 AT TIME 11:33:20 Ir.. PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. f 00 `.1%` GIVEN INLET DESIGN INFORMATION: IGIVEN CURB OPENING LENGTH (ft)= 6.00 c we � Ci..,Jut,,t HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 1 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. 1 STREET GEOMETRIES: I STREET LONGITUDINAL SLOPE (%) = 0.90 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 1 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: 1 WATER SPREAD ON STREET (ft) = 12.53 GUTTER FLOW DEPTH (ft) = 0.42 FLOW VELOCITY ON STREET (fps)= 3.00 I FLOW CROSS SECTION AREA (sq ft)= 1.74 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 1 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.94 1 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5 20 = ���� FLOW INTERCEPTED (cfs)= 5 20 CARRY-OVER FLOW (cfs)= 0 00- BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5 20 I FLOW INTERCEPTED (cfs)= 5 20 CARRY-OVER FLOW (cfs)= 0 00 1 1 1 0-33 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 10-28-1997 AT TIME 11:34:32 *** PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft) = 15.00 S i cE.c.loc...Qk HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (a)= CURB OPENNING CLOGGING FACTOR(%)= 0.90 2.00 0.016 2.00 2.00 27.44 0 . 72 --* o.2.4 = H vT'A o-C ,C(0k) 4.57 oJL 7.69 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 35.43 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs) = 35.30 ,, Q'cO FLOW INTERCEPTED (cfs)= 31.89 I CARRY-OVER FLOW (cfs)= 3.41- 6v BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 35.30 � FLOW INTERCEPTED (cfs)= 31.89 I CARRY-OVER FLOW (cfs)= 3.41 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY I CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO 1 ON DATE 10-28-1997 AT TIME 11:34:46 1 1 1 i LOCATION: WATERGLEN, P.U.D. ITEM: SIDEWALK CHASE w/ OVERFLOW COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. DP 16 - WATERGLEN PLACE Design flow (100yr) = 35.5 cfs Flow through 15' sidewalk chase = 31.89 cfs Flow over sidewalk = 11.8 cfs Determine length of sidewalk where overtopping will occur and the height of water above the sidewalk by approximating the situation with weir flow. 28-Oct-97 Equation for flow over a weir Q = KL sgrt(2g) H3f2 Eq. 4-38, Hydraulic Engineering At DP 16 where K = flow coefficient of the weir = 0.40 + 0.05 H/P, max HIP = 10 H = overflow height P = height of weir L = length of the weir g = acceleration of gravity = max H= 026 P = 0.67 K = 0.39 required Q 11.8 cfs L = 28.44 ft ft = ft = 32.2 fUs2 3.25 in 8 in, total sump depth theroetical length of weir for constant H Take into account the geometry of the road and recalculated Q Vary H until the required Q is reached evr Remarks station AL (ft) S ft/ft FL Elev. (ft) TBC Elev. (ft) Water elev. H (ft) H,,,9 (ft) AQ (cfs) Waterglen Place 6+20.05 -0.82% 69.91 70 41 70.26 -0.15 6+30.05 10.00 -0.82% 69.83 70.33 70.26 -0.07 -0.109 #NUM! 6+40.05 10.00 -0.82% 69.75 70.25 70.26 0.01 -0.027 #NUM! 6+50.05 10.00 -0.82% 69.66 70.16 70.26 0.10 0.055 0.40 6+60.05 10.00 -0.82% 69.58 70.08 70.26 0.18 0.137 1.59 PVI 6+70.05 10.00 -0.82% 69.50 70.00 70.26 0.26 0.219 3.21 6+80.05 10.00 0.63% 69.56 70.06 70.26 0.20 0.2285 3.42 6+90.05 10.00 0.63% 69.63 70.13 70.26 0.13 0.1655 2.11 7+00.05 10.00 0.63% 69.69 70.19 70.26 0.07 0.1025 1.03 7+10.05 10.00 0.63% 69.75 70.25 70.26 0.01 0.0395 0.25 approx. 12.00 cfs carried over the sidewalk Actual LP elev = 69.68 @ sta 6+76.65 Approx. Water elev = 70.44 ft (check to make sure not encroaching on any lots) Approx. length of weir = 60 ft Max H above walk = 3.25 in Surrounding TF elev = 73.5 o.k. Chase *** PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: 11 GIVEN CURB OPENING LENGTH (ft)= 15.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 0.90 2.00 0.016 2.00 2.00 16.56 0.50 3.42 2.91 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 30.03 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 10.00 10.00 0.00 10.00 10.00 0.00 r Q Z. UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 10-31-1997 AT TIME 09:05:43 PROJECT TITLE: WATERGLEN PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 - c5, (Pp1.,4.47.. c. chtz4AIL HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%-) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 21.06 0 . 59 01.1/c9[,.1 2.91 4.60 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 17.13 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs) = CARRY-OVER FLOW (cfs)= 13.30 13.30 0.00 13.30 13.30 0.00 OF { ! UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD 1 1 USER:JR ENGINEERS-DENVER CO 1 1 1 1 1 STREET GEOMETRIES: 1 1 1 1 1 ON DATE 09-17-1998 AT TIME 09:07:47 * * * PROJECT TITLE: WATERGLEN PUD\ *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 17 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 8.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET LONGITUDINAL SLOPE (o) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (°s)= CURB OPENNING CLOGGING FACTOR(%)= 12.25 0.41 2.21 1.67 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 11.53 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs) FLOW INTERCEPTED (cfs) CARRY-OVER FLOW (cfs) BY DENVER UDFCD METHOD: DESIGN FLOW (cfs) FLOW INTERCEPTED (cfs) CARRY-OVER FLOW (cfs) 3.71 3.71 0.00 3.71 3.71 0.00 UDINLET: INLET HYDAAULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD tSER:JR ENGINEERS-DENVER CO N DATE 11-09-1998 AT TIME 15:08:15 PROJECT TITLE: Waterglen PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: f18 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 T'.4 [.e.. t HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (9,)_ CURB OPENNING CLOGGING FACTOR(%)= 35.13 0.87 3.56 12.50 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 12.93 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 44.20 = Qao i�p k 10.99 33.21 - 0kre OL) 44.20 5wcje 10.99 33.21 p--3b UDINLET: INLET HYDARULICS AND SIZING I DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 11-09-1998 AT TIME 15:09:10 * * * PROJECT TITLE: Waterglen PUD * * * CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)- 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 12.63 0.42 2.00 1.76 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.95 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs) FLOW INTERCEPTED (cfs) CARRY-OVER FLOW (cfs) BY DENVER UDFCD METHOD: DESIGN FLOW (cfs) FLOW INTERCEPTED (cfs) CARRY-OVER FLOW (cfs) 3.50 3.50 0.00 3.50 3.50 0.00 1 LOCATION: ITEM: COMPUTATIONS BY: SUBMITTED BY: WATERGLEN, P.U.D. OVERFLOW SPILL @ DP 18, WATERGLEN DRIVE JPZ JR ENGINEERING, LTD. WATERGLEN DRIVE 0100 DP 18 needed to overflow to swale= Equation for flow over broadcrested weir 0=CLH3r2 where C = weir coefficient = 2.6 H = overflow height L = length of the weir v>lp c� 'cvoYij'‘, 'CP? kS Qcitrr do in Iterate on water elevation to find the value of H needed to pass the required flow for H = 0.36 ft Water elevation = LP elevation + H Waterglen station AL (ft) S ft/ft FL Elev. (ft) Water elev. H (ft) Han (ft) AO (cfs) 5+40 VALUE -0.54% #VALUE! 56.92 #VALUE! #VALUE! 0.00 5+50 10.00 -0.54% 57.26 56.92 -0.342 #VALUE! 0.00 5+60 10.00 -0.54% 57.21 56.92 -0.288 -0.315 0.00 5+70 10.00 -0.54% 57.15 56.92 -0.234 -0.261 0.00 5+80 10.00 -0.54% 57.10 56.92 -0.18 -0.207 0.00 5+90 10.00 -0.54% 57.05 56.92 -0.126 -0.153 0.00 6+00 10.00 -0.54% 56.99 56.92 -0.072 -0.099 0.00 6+10 10.00 -0.54% 56.94 56.92 -0.018 -0.045 0.00 6+20 10.00 -0.54% 56.88 56.92 0.036 0.009 0.02 6+30 10.00 -0.54% 56.83 56.92 0.09 0.063 0.41 6+40 10.00 -0.54% 56.78 56.92 0.144 0.117 1.04 6+50 10.00 -0.54% 56.72 56.92 0.198 0.171 1.84 6+60 10.00 -0.54% 56.67 56.92 0.252 0.225 2.77 6+70 10.00 -0.54% 56.61 56.92 0.306 0.279 3.83 6+80 10.00 -0.54% 56.56 56.92 0.36 0.333 5.00 6+90 10.00 0.42% 56.60 56.92 0.318 0.339 5.13 7+00 10.00 0.42% 56.64 56.92 0.276 0.297 4.21 7+10 10.00 0.42% 56.69 56.92 0.234 0.255 3.35 7+20 10.00 0.42% 56.73 56.92 0.192 0.213 2.56 7+30 10.00 0.42% 56.77 56.92 0.15 0.171 1.84 7+40 10.00 0.42% 56.81 56.92 0.108 0.129 1.20 7+50 10.00 0.42% 56.85 56.92 0.066 0.087 0.67 7+60 10.00 0.42% 56.90 56.92 0.024 0.045 0.25 7+70 10.00 0.42% 56.94 56.92 -0.018 0.003 0.00 7+80 10.00 0.42% 56.98 56.92 -0.06 -0.039 0.00 Flow passing over curb to overflow swale at DP 18 = approx. LP 34.12 cfs Requires approx. 0.4' max. wafer height over the curb = 0.9' depth at the gutter This falls within the City 100-year street inudations criteria. w5 Weir.xls LOCATION: WATERGLEN, P.U.D. ITEM: OVERFLOW SPILL @ DP 18, WATERGLEN DRIVE COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. WATERGLEN DRIVE 100 DP 18 needed to overflow to swale= Equation for flow over broadcrested weir Q = C L H312 where C = weir coefficient = 2.6 H = overflow height L = length of the weir Set H=0.5 to find max flow capacity over the curb without exceeding City criteria for H = 0.5 ft Water elevation = LP elevation + H Waterglen station AL (ft) S ft/tt FL Elev. (ft) Water elev. H (ft) Hay9 (ft) AO (cfs) 5+40 #VALUE! -0.54% #VALUE! 57.06 #VALUE! #VALUE! #VALUE! 5+50 10.00 -0.54% 57.26 57.06 -0.202 #VALUE! #VALUE! 5+60 10.00 -0.54% 57.21 57.06 -0.148 -0.175 #NUM! 5+70 10.00 -0.54% 57.15 57.06 -0.094 -0.121 #NUM! 5+80 10.00 -0.54% 57.10 57.06 -0.04 -0.067 #NUM! 5+90 10.00 -0.54% 57.05 57.06 0.014 -0.013 #NUM! 6+00 10.00 -0.54% 56.99 57.06 0.068 0.041 0.22 6+10 10.00 -0.54% 56.94 57.06 0.122 0.095 0.76 6+20 10.00 -0.54% 56.88 57.06 0.176 0.149 1.50 6+30 10.00 -0.54% 56.83 57.06 0.23 0.203 2.38 6+40 10.00 -0.54% 56.78 57.06 0.284 0.257 3.39 6+50 10.00 -0.54% 56.72 57.06 0.338 0.311 4.51 6+60 10.00 -0.54% 56.67 57.06 0.392 0.365 5.73 6+70 10.00 -0.54% 56.61 57.06 0.446 0.419 7.05 6+80 10.00 -0.54% 56.56 57.06 0.5 0.473 8.46 6+90 10.00 0.42% 56.60 57.06 0.458 0.479 8.62 7+00 10.00 0.42% 56.64 57.06 0.416 0.437 7.51 7+10 10.00 0.42% 56.69 57.06 0.374 0.395 6.45 7+20 10.00 0.42% 56.73 57.06 0.332 0.353 5.45 7+30 10.00 0.42% 56.77 57.06 0.29 0.311 4.51 7+40 10.00 0.42% 56.81 57.06 0.248 0.269 3.63 7+50 10.00 0.42% 56.85 57.06 0.206 0.227 2.81 7+60 10.00 0.42% 56.90 57.06 0.164 0.185 2.07 7+70 10.00 0.42% 56.94 57.06 0.122 0.143 1.41 7+80 10.00 0.42% 56.98 57.06 0.08 0.101 0.83 Flow passing over curb to overflow swale at DP 18 = approx. 77.29 Capacity for flow over curb os Waterglen Dr. within 100yr street inudation criteria 1 ' depth at the gutter (0.5' max water depth flowing over curb). LP cfs O.K. • 1 Weir.xls �' 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 11-09-1998 AT TIME 15:02:09 *** PROJECT TITLE: Waterglen PUD *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 6_�1. HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE (°s) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 31.56 0.80 3.32 10.13 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 14.91 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 33.70 =Q10o D?L 1 12.67 21.03—do DPCS 33.70 12.67 21.03 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD 11SER:JR ENGINEERS-DENVER CO N DATE 11-09-1998 AT TIME 15:02:34 * * * PROJECT TITLE: Waterglen PUD * * * CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. ;,,t, necl GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 6.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.40 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 16.56 0.50'- 2.28 2.91 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 12.01 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)- 6.70 -= Qt 6.70 0.00 6.70 6.70 0.00 1 00#11 JREngineering, Ltd. PROJECT Wohll ey SY TPA EICTC. suaracr OF 4 - POW w O veAv Crow OP 18 CLIENT PI3 o JOB NQ 91 4) , Ct) DATE 'J2 4/ SHEET ND OF LOr ti e4) iti7w ee,tieVi m e o ` ,/w be -twee -iv GrDcrliZ 1 _ r- 4— 4- r - FL de PL ¢ 9� i-^ c2,31 ST + �rr� - e ,bZ h—.1 fie w dYirr 27, G Y1(,),L e,1?/ 54(7 _1. _- _ 1 ifippr7Kr.7CL .E xi ..,15u6tA•ci- 1,-= 71 T )(,);Z -rated ®vcv7/aw ID PP/6 c) o3t (,Z� = 077,029 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 07-08-1998 AT TIME 15:43:23 *** PROJECT TITLE: WATERGLEN PUD *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: /DOT yad. T-ilprz_ (0 INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES - 4.00 — IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 25.19 0.67 3.23 6.51 50.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= 21.20 IDEAL GRATE INLET CAPACITY (cfs)= 18.87 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 13.90 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 9.44 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 20 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 14.70 REQUIRED CURB OPENING LENGTH (ft)= 36.19 IDEAL CURB OPENNING EFFICIENCY = 0.61 ACTURAL CURB OPENNING EFFICIENCY = 0.56 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.44 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs) = CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs) = CARRY-OVER FLOW (cfs)= 7.30 4.08 3.22 11.76 4.00 7.77 SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs) 21.20 = QIoQ DP Z O BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 13.90 FLOW INTERCEPTED BY CURB OPENING (cfs) = 4.08 P Z TOTAL FLOW INTERCEPTED (cfs)= 17. 98 -1-o CARRYOVER FLOW (cfs) = 3.22 _. v D? f 0 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 9.44 FLOW INTERCEPTED BY CURB OPENING (cfs)= 4.00 TOTAL FLOW INTERCEPTED (cfs)= 13.43 CARRYOVER FLOW (cfs)= 7.77 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 07-08-1998 AT TIME 15:44:22 PROJECT TITLE: WATERGLEN PUD *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH INLET GRATE LENGTH INLET GRATE TYPE NUMBER OF GRATES (ft) = 1.87 (ft) = 3.25 =Curved Vane Grate 4.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N - 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 15.06 0.47 2.43 2.44 50.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 20 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: 5.90 5.58 4.76 2.79 GIVEN CURB OPENING LENGTH (ft)= 14.70 REQUIRED CURB OPENING LENGTH (ft)= 17.58 IDEAL CURB OPENNING EFFICIENCY = 0.96 ACTURAL CURB OPENNING EFFICIENCY = 0.92 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.10 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 1.14 FLOW INTERCEPTED (cfs)= 1.05 CARRY-OVER FLOW (cfs)= 0.09 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.11 FLOW INTERCEPTED (cfs)= 0.99 CARRY-OVER FLOW (cfs)= 2.12 SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 5.90 Q Z ? 23 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 4.76 FLOW INTERCEPTED BY CURB OPENING(cfs)= 1.05 vQ2,4401. TOTAL FLOW INTERCEPTED (cfs)= 5.81� CARRYOVER FLOW (cfs) = 0 . 0 9— {b ° Q 4 S BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.79 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.99 TOTAL FLOW INTERCEPTED (cfs)= 3.78 CARRYOVER FLOW (cfs)= 2.12 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-17-1998 AT TIME 13:31:40 * * * PROJECT TITLE: WATERGLEN *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: Co VU/.d . T+�. l * * * INLET ID NUMBER: 0) 100 jr INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)- 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES - 4.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (o)= CURB OPENNING CLOGGING FACTOR(o)= INLET INTERCEPTION CAPACITY: FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 25.19 0.67 3.23 6.51 50.00 10.00 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 21 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: 20.94' 18.64 13.73 9.32 GIVEN CURB OPENING LENGTH (ft)= 14.70 REQUIRED CURB OPENING LENGTH (ft)= 36.00 1 1 0 IDEAL CURB OPENNING EFFICIENCY = 0.61 ACTURAL CURB OPENNING EFFICIENCY = 0.56 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.41 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 7.21 FLOW INTERCEPTED (cfs)= 4.05 CARRY-OVER FLOW (cfs)= 3.16 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.62 FLOW INTERCEPTED (cfs)= 3.96 CARRY-OVER FLOW (cfs)= 7.65 SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs) 20.94 - QO �P `l BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 13.73 FLOW INTERCEPTED BY CURB OPENING(cfs)= 4.05 TOTAL FLOW INTERCEPTED (cfs) = 17.78 -4r) pP7_� CARRYOVER FLOW (cfs) = 3.16 --4,5 D P Z Z BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs) 9.32 FLOW INTERCEPTED BY CURB OPENING (cfs) 3.96 TOTAL FLOW INTERCEPTED (cfs)= 13.29 CARRYOVER FLOW (cfs) 7.65 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD11 USER:JR ENGINEERS-DENVER CO ON DATE 09-17-1998 AT TIME 13:39:33 *** PROJECT TITLE: WATERGLEN * * * COMBINATION INLET: GRATE INLET AND CURB OPENING: GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 21 2 L r INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 4.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = (%) = STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: (inch) (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 0.50 2.00 0.016 2.00 2.00 14.97 0.47 2.42 2.41 50.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= 5.81 IDEAL GRATE INLET CAPACITY (cfs)= 5.50 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 4.69 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.75 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 21 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 14.70 REQUIRED CURB OPENING LENGTH (ft)= 17.42 1 1 0-03 1 1 1 1 1 1 1 1 1 1 1 IDEAL CURB OPENNING EFFICIENCY = 0.96 ACTURAL CURB OPENNING EFFICIENCY = 0.92 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.08 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1.12 1.03 0.09 3.06 0.97 2.09 5.81 4.69 1.03 5.72 —4 Q? Zoo 0.09 _ pp ZZ 2.75 0.97 3.72 2.09 USER:JR ENGINEERS-DENVER CO ON DATE 09-17-1998 AT TIME 13:32:58 * * * PROJECT TITLE: WATERGLEN *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 22 /OC (I{ INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: tvad T`P'�0 INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 4.00 IS THE INLET GRATE NEXT TO A CURE ? - - YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 29.88 0.76 3.59 9.09 50.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= 32.43 IDEAL GRATE INLET CAPACITY (cfs)= 28.03 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 19.45 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 14.02 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 22 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= 45.63 14.70 UDINLET: INLET HYDARULICS AND SIZING 1 DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 IDEAL CURB OPENNING EFFICIENCY = 0.50 ACTURAL CURB OPENNING EFFICIENCY = 0.46 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.54 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 12.98 FLOW INTERCEPTED (cfs)= 5.97 CARRY-OVER FLOW (cfs)= 7.01 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 18.41 FLOW INTERCEPTED (cfs)= 5.88 CARRY-OVER FLOW (cfs)= 12.53 SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 32.43 =C,,, QP 22- BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 19.45 FLOW INTERCEPTED BY CURB OPENING(cfs)= 5.97 TOTAL FLOW INTERCEPTED (cfs) = 25.42 -to DPZ CARRYOVER FLOW (cfs) = 7.01- D I %S BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 14.02 FLOW INTERCEPTED BY CURB OPENING (cfs)= 5.88 TOTAL FLOW INTERCEPTED (cfs)= 19.90 CARRYOVER FLOW (cfs)= 12.53 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ' SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-17-1998 AT TIME 13:41:18 PROJECT TITLE: WATERGLEN *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** * * * STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: dED INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 4.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = (%) = (inch) = (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (o)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 0.50 2.00 0.016 2.00 2.00 17.31 0.51 2.61 3.16 50.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= 8.20 IDEAL GRATE INLET CAPACITY (cfs)= 7.66 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs) 6.31 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 3.83 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 22 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 14.70 REQUIRED CURB OPENING LENGTH (ft)= 21.27 IDEAL CURB OPENNING EFFICIENCY = 0.88 ACTURAL CURB OPENNING EFFICIENCY = 0.83 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.66 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTE➢ (cfs)= CARRYOVER FLOW (cfs)= 1.89 1.56 0.33 4.37 1.50 2.87 8.20 Qz DP ZZ 6.31 1.56 7.87 —O Z(0 0.33 _ DPZS 3.83 1.50 5.33 2.87 S3 JREngineering, Ltd. PROJECT (A) CLIENT P.a. O c L." JOB NO. BYE CHECK BY DATE SUBJECT la P 2 3 - /�S 5 D (ap SHEET NO. OF r.49s ay% J 67.7R 140,231 57,79 61.53 r— LP=SL4 r_57,q450 T PLAN VIEW -VERTICAL CURB, GUTTER AND SIDEWALK • SECTION A -A joint joint tog t PLAN VIEW - DRIVE -OVER CURB, GUTTER AND SIDEWALK GENERAL NOTES: 1. S' x S' x 10/10 WWF SHALL BE INSTALLED IN RADIUS AND PAN. 2. MINIMUM S' WIDE PAN FOR RESIDENTIAL STREETS. 3. MINIMUM 10' WIDE PAN FOR ARTERIAL AND COLLECTOR STREETS. STREET INTERSECTION GUTTER DETAIL WITH CROSS PAN CITY OF FORT COLLINS, COLORADO ENGINEERING SERVICES UNIT APPROVED BY: J 14.71 DATE: 3 p REVISIONS: D-14 V-55 DP23 CROSSPAN - 100 YR Worksheet for Irregular Channel Protect Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 DP23 CROSSPAN Irregular Channel Manning's Formula Water Elevation Input Data Channel Slope 0.006000 ft/ft Elevation range: 57.64 ft to 57.95 ft. Station (ft) Elevation (ft) 0.00 40.23 50.23 60.23 100.23 Discharge 57.95 57.79 57.64 57.79 57.95 10.20 ft3/s Start Station 0.00 40.23 60.23 Results Wtd. Mannings Coefficient Water Surface Elevation Flow Area Wetted Perimeter Top Width Depth Critical Water Elev. Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.015 57.90 ft 6.65 ft2 74.62 ft 74.61 ft 0.26 ft 57.89 ft 0.007348 ft/ft 1.53 ft/s 0.04 ft 57.94 ft 0.91 End Station 40.23 60.23 100.23 Roughness 0.016 0.012 0.016 09/28/98 FiowMaster v5.15 09:22:07 AM Haestad Methods, inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DP23 CROSSPAN-1 00 YR Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 DP23 CROSSPAN Irregular Channel Manning's Formula Water Elevation Section Data Wtd. Mannings Coefficient Channel Slope Water Surface Elevation Discharge 0.015 0.006000 ft/ft 57.90 ft 10.20 ft3/s 57.9N 57.9 57.85 57.8 c a — 57.75 57.7 57.65 57.6 0 0 20.0 40.0 60.0 Station (ft) 80.0 100.0 120.0 o 09/28/98 09:22:24 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 DP23 CROSSPAN - 2YR Worksheet for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001d ra i nage\f l owmast.fm2 DP23 CROSSPAN Irregular Channel Manning's Formula Water Elevation Input Data Channel Slope Elevation range: Station (ft) 0.00 40.23 50.23 60.23 100.23 Discharge 0.006000 ft/ft 57.64 ft to 57.95 ft. Elevation (ft) 57.95 57.79 57.64 57.79 57.95 2.80 ft3/s Start Station 0.00 40.23 60.23 Results Wtd. Mannings Coefficient Water Surface Elevation Flow Area Wetted Perimeter Top Width Depth Critical Water Elev. Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.013 57.81 ft 1.98 ft2 29.64 ft 29.63 ft 0.17 ft 57.81 ft 0.006292 ft/ft 1.42 ft/s 0.03 ft 57.84 ft 0.97 End Station 40.23 60.23 100.23 Roughness 0.016 0.012 0.016 D-55 1 09/28/98 FlowMaster v5.15 09:20:53 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DP23 CROSSPAN-2 YR Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 DP23 CROSSPAN Irregular Channel Manning's Formula Water Elevation Section Data Wtd. Mannings Coefficient 0.013 Channel Slope 0.006000 ft/ft Water Surface Elevation 57.81 ft Discharge 2.80 ft3/s 00 20.0 40.0 60.0 Station (ft) 80.0 1 00.0 120.0 5cit 09/28/98 09:21:40 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5,15 Page 1 of 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-10-1998 AT TIME 15:45:07 *** PROJECT TITLE: WATERGLEN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: () INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: I GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURE OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: I STREET LONGITUDINAL SLOPE (%-) = 0.40 IISTREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch). 2.00 GUTTER WIDTH (ft) = 2.00 I STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 24.81 IIGUTTER FLOW DEPTH (ft) = - 66 FLOW VELOCITY ON STREET (fps)= 2.87 FLOW CROSS SECTION AREA (sq ft)= 6.32 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 22.64 D Q z I BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 18.26 : a FLOW INTERCEPTED (cfs)= 18.26 CARRY-OVER FLOW (cfs)= 0.00 I BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 18.26 FLOW INTERCEPTED (cfs)= 18.26 CARRY-OVER FLOW (cfs)= 0.00 II STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD jSER:JR ENGINEERS-DENVER CO N DATE 09-10-1998 AT TIME 15:07:29 PROJECT TITLE: WATERGLEN CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = (%) = (inch)= (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR ( °s) _ CURE OPENNING CLOGGING FACTOR(&)= 0.40 2.00 0.016 2.00 2.00 14.69 0.46 2.15 2.32 50.00 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 15.66 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 4 98 FLOW INTERCEPTED (cfs)= 4 98 CARRY-OVER FLOW (cfs)= 0 00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 4 98 FLOW INTERCEPTED (cfs)= 4 98 CARRY-OVER FLOW (cfs)= 0 00 LOCATION: WATERGLEN, P,U.D. September 17, 1998 COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. DESIGN OF CURB OPENING 1 Design for 100 yr flows DP 24 Using Mannings Equation: Q = 1.486/n A R 213 S 12 design Q = 18.3 cfs ' n = 0.013 H = 0.5 ft, curb height S = 0.005 , slope A = 5.00 ft2 L= 10.00 ft P= 11.00 ft R = 0.45 ft For given L, Mannings 0 = 24.0 cfs Using Q = AV limit V = 4 ft/s, noneroding velocity H = 0.5 ft Q = 17 cfs L = 8.5 ft Use 10 ft curb opening Curbopen.xls 0 �� UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO N DATE 09-17-1998 AT TIME 13:34:21 *** 1 1 1 1 1 1 1 1 1 1 PROJECT TITLE: WATERGLEN *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 25 /00 Tr y\e- I� INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: *** INLET GRATE WIDTH INLET GRATE LENGTH INLET GRATE TYPE NUMBER OF GRATES (ft)= 1.87 (ft) = 3.25 =Curved Vane Grate 3.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) _ STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch) = GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 0.60 2.00 0.016 2.00 2.00 25.00 0.67 3.53 6.42 50.00 15.00 FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 22.67 IDEAL GRATE INLET CAPACITY (cfs)= 17.92 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 11.49 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 8.96 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 25 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.90 REQUIRED CURB OPENING LENGTH (ft)= 39.22 IDEAL CURB OPENNING EFFICIENCY = 0.44 ACTURAL CURB OPENNING EFFICIENCY = 0.38 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.96 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs) = CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs) SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 11.18 4.30 6.88 13.71 4.22 9.49 22.67 11.49 4.30 15.79 6.88 8.96 4.22 13.18 9.49 = 4100 zs to lnk-t 1 i iz —To DP;°f I 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ISER:JR ENGINEERS-DENVER CO N DATE 09-17-1998 AT TIME 13:44:11 PROJECT TITLE: WATERGLEN *** COMBINATION INLET: GRATE INLET AND CURB OPENING: * * * GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 25 t - INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 3.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(°s)= INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 12.63 0.42 2.46 1.76 50.00 15.00 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 25 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: 4.31 3.95 3.24 1.97 GIVEN CURB OPENING LENGTH (ft)= 10.90 REQUIRED CURB OPENING LENGTH (ft)= 15.21 o-�o IDEAL CURS OPENNING EFFICIENCY = 0.90 ACTURAL CURB OPENNING EFFICIENCY = 0.82 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.96 BY FAA HEC-12 METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1.07 0.88 0.20 2.34 0.82 1.52 4.31 3.24 0.88 4.11 0.20 1.97 0.82 2.79 1.52 DP7 oe(9 1 LOCATION: WATERGLEN, P.U.D. COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. DESIGN OF CURB OPENING Design for 100 yr flows DP 29 Using Mannings Equation: design Q = 11.5 cfs n= 0.016 H = 0.5 ft, curb height S = 0.007 , slope Mannings Q = 13.3 cfs iterate on L until Mannings Q = design Q L = 6.00 ft Using Q = AV limit V = 4 ft/s, noneroding velocity H = 0.5 ft Q= 11.5 cfs L = 5.75 ft Use 6 ft curb opening A = 3.00 ft2 P= 7.00 ft R = 0.43 ft September 21, 1998 Currbopen.xls USER:JR ENGINEERS-DENVER CO ON DATE 09-15-1998 AT TIME 16:01:20 PROJECT TITLE: WATERGLEN * * * CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 3`]1 /0Z)ly INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: UDINLET: INLET HYDARULICS AND SIZING 1 DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD 1 1 1 1 STREET GEOMETRIES: 1 1 1 1 1 QtEDC GIVEN CURB OPENING LENGTH (ft)= 0�1--- y HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N - 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) _ GUTTER FLOW DEPTH (ft) _ FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA. (sq ft)= GRATE CLOGGING FACTOR (o)= CURB OPENNING CLOGGING FACTOR(%)= 6.22 0.25 L- 2.39 0.51 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.58 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 1 21 1 21 0 00 1 21 1 21 0 00 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD IrSER:JR ENGINEERS-DENVER CO N DATE 09-15-1998 AT TIME 15:44:35 PROJECT TITLE: WATERGLEN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 4.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.00 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N - 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (o)= CURB OPENNING CLOGGING FACTOR(o)= 3.16 0.19 2.21 0.22 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.59 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0 50 — �Z FLOW INTERCEPTED (cfs)= 0 50 CARRY-OVER FLOW (cfs)= 0 00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0 50 FLOW INTERCEPTED (cfs)= 0 50 CARRY-OVER FLOW (cfs)= 0 00 P-teCO UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 09-15-1998 AT TIME 15:56:06 PROJECT TITLE: WATERGLEN *** STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH STREET FLOW HYDRAULICS: CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 32 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 4.00 _ -7, ` HEIGHT OF CURB OPENING (in)= 6.00 ( INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = (%) (inch) = (ft) = WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 1.00 2.00 0.016 1.50 2.00 6.22 0.25 2.39 0.51 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.58 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs) = CARRY-OVER FLOW (cfs)= 1.21 —Q0,0 1.21 0.00 1.21 1.21 0.00 • UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD jSER:JR ENGINEERS-DENVER CO N DATE 09-15-1998 AT TIME 15:39:42 PROJECT TITLE: WATERGLEN * * * CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 4.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= 1.00 2.00 0.016 1.50 2.00 3.16 0.19 2.21 0.22 50.00 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.59 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= O .50 O .50 O .00 0.50 0.50 0.00 D(pg UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 11-09-1998 AT TIME 14:52:33 * * * PROJECT TITLE: Waterglen PUD * * * * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: GRATE INLET HYDRAULC,S AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH INLET GRATE LENGTH INLET GRATE TYPE NUMBER OF GRATES V)0 tit Qum 1(0 (ft) = 1.87 (ft) = 3.25 =Curved Vane Grate 4.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to £low depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 2.50 2.00 0.016 2.00 2.00 16.75 0.50 5.74 2.97 50.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= 17.20 IDEAL GRATE INLET CAPACITY (cfs)= 13.74 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 9.68 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 6.87 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 33 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 14.70 REQUIRED CURB OPENING LENGTH (ft)= 46.48 cal IDEAL CURB OPENNING EFFICIENCY = 0.50 ACTURAL CURB OPENNING EFFICIENCY = 0.45 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.73 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 7.52 3.40 4.11 10.33 3.35 6.98 17.20 —Qb0 9.68 3.40 13.09 4.11 _at, 6.87 3.35 10.22 6.98 DP OP (9 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER:JR ENGINEERS-DENVER CO ON DATE 11-09-1996 AT TIME 14:54:41 PROJECT TITLE: Waterglen PUD * * * * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH INLET GRATE LENGTH INLET GRATE TYPE NUMBER OF GRATES 42 (Jr (ft) = 1.87 (ft)- 3.25 =Curved Vane Grate 4.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 2.50 2.00 0.016 2.00 2.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 9.31 0.35 4.48 1.03 50.00 10.00 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 33 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: 4.60 4.22 3.63 2.11 GIVEN CURB OPENING LENGTH (ft)= 14.70 REQUIRED CURB OPENING LENGTH (ft)= 21.47 1 IDEAL CURB OPENNING EFFICIENCY = 0.87 ACTURAL CURB OPENNING EFFICIENCY = 0.82 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.85 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.97 FLOW INTERCEPTED (cfs)= 0.60 CARRY-OVER FLOW (cfs)= 0.17 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.49 FLOW INTERCEPTED (cfs)= 0.77 CARRY-OVER FLOW (cfs) = 1.72 SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs) BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs) FLOW INTERCEPTED BY CURB OPENING(cfs) TOTAL FLOW INTERCEPTED (cfs) CARRYOVER FLOW (cfs) BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs) FLOW INTERCEPTED BY CURB OPENING (cfs) TOTAL FLOW INTERCEPTED (cfs) CARRYOVER FLOW (cfs) q P {2 J33 3.63 0.80 4.43 0.17-4 Dell 2.11 0.77 2.88 1.72 p-'72 APPENDIX E PIPE CALCULATIONS Project Title: WATERGLEN PLJD Project Engineer, JR ENGINEERING, LTD. x:19145001drainage1dsnpt1.stm JR ENGINEERING, LTD StormCAD v1.0 10/14/97 03:30'31 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Detailed Report for Pipe A Section Material: Concrete Section Shape: Horizontal Ellipse Section Size: 24x38 inch Number Sections: 1 Qtv0 Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 27.60 cfs Capacity 0.013 Hydraulic Drop 40.56 ft Energy Slope 0.003000 ft/ft Upstream Velocity 0.00 min Average Velocity 0.12 min Downstream Velocity 0.12 min 24.54 cfs 0.30 ft 0.007400 ft/ft 5.41 ftts 5.41 ttts 5.41 ft/s Grade Elevations Location Invert Ground--; Y L Crown Cover Depth HGL EGL (ft) (ft) (ft) (ft) (ft) (ft) (ft) Upstream 53.74 56.74 55.74 1.00 3.36 57.10 57.56 Downstream 53.62 56.74 55.62 1.12 3.18 // 56.130 57.26 Message List Profile: Pressure profile. Information; Surcharged condition Project Title: WATERGLEN PUD x:19145001d rainageldsn pt 1 . stm 09/25/98 01:41:47 PM C Haestad Methods, Inc. ride Gov(64_ �feti✓lZr.foorve .� 1 1 1 Project Engineer: JR ENGINEERING, LTD ,JR Engineering, Ltd StorrnCAO v1.5 11581 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Section Material: Concrete Section Shape: Horizontal Ellipse Section Size: 29x45 inch Number Sections: 1 Detailed Report for Pipe B ►� OP 1 ÷ lb + Z C.c/7-t-4.g4) Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 32.44 cfs Capacity 0.013 Hydraulic Drop 75.45 ft Energy Slope 0.003000 ft/ft Upstream Velocity 0.12 min Average Velocity 0.29 min Downstream Velocity 0.41 min 40.36 cfs 0.15 ft 0.001938 ft/ft 4.38 ft/s 4.38 Ws 4.38 ttts Grade Elevations Location Invert Ground Crcwn Cover Depth HGL EGL (ft) (ft) (ft) (ft) (ft) (ft) (ft) Upstream 53.22 56.74 55.62 1.12 3.72 56.95 57.24 Downstream 53.00 57,00 55.39 1.61 3.80 / 56.80 5710 Message List Profile: Pressure profile. Information: Surcharged condition (hAK Project Title: WATERGLEN PUD Project Engineer: JR ENGINEERING, LTD. x:19145001drainage\dsnptt.stm JR Engineering, Ltd StormCAD v1-5 (158] 09/25/98 01:42:20 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 POND B Project Title: WATERGLEN PUD Project Engineer: JR ENGINEERING. LTD. x:19145001drainage\dsnpt3 stm JR ENGINEERING. LTD StormCAD v1.0 10/15/97 01:33:20 PM Haestad Methods, Inc 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 Detailed Report for Pipe C 1 Section Material: Concrete POS Section Shape: Circular Section Size: 21 inch Number Sections: 1 OP 3 Description Description Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 6.40 cfs Capacity 0.013 Hydraulic Drop 88.12 ft Energy Slope 0.003064 ft/ft Upstream Velocity 0.00 min Average Velocity 0.33 min Downstream Velocity 0.33 min 8.77 cfs 0.43 ft 0.003530 ft/ft 4.02 ft/s 4,45 ft/s 4.88 ft/s Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream Downstream 57.61 57.34 60.36 61.00 59.36 59 09 1.00 1.91 1.09 0.93 58.70 58.27 58.95 58.64 Description: PIPE C, DP 3 TO POND 8 Messages: Profile' Subcritical flow. Profile' Mild channel slope. Parid 6 .rn Cox GO5EL SG.$ - Project Title: WATERGLEN PUD Project Engineer: JR ENGINEERING, LTD. x:1914500\drainage1dsnpt3.stm JR ENGINEERING, LTD StormGAD v1.0 10/29/97 09 as 1 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 t QQd POND A 1 Project Title', WATERGLEN PUD Project Engineer JR ENGINEERING. LTD. x:19145001drainage\dsnpt4,stm JR ENGINEERING. LTD StormCAD v1.0 10/15/97 01 37:54 PM Haestad Methods, Inc- 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Detailed Report for Pipe D 1 Section Material: Concrete Section Shape: Circular Section Size: 18 inch Number Sections: 1 GcipD QQ4 Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time I 4.31 cfs Capacity 0.013 Hydraulic Drop 119.24 ft Energy Slope 0.003019 ft/ft Upstream Velocity 0.00 min Average Velocity 0.49 min Downstream Velocity 0.49 min 5.77 cfs 0.52 ft 0.003426 ft/ft 3.61 8/s 4.06 ft/s 4.52 ft/s Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft} Upstream Downstream 61.98 61.62 64.48 65.00 63.48 63.12 1.00 1.88 0.96 0.80 62.94 62.42 6314 62 73 Description: PIPE D, DP 4 TO POND A Message List Profile: #miidSlope Profile: #ycAssumedDownstream Profile: #subcriticalFlow Project Title: WATERGLEN PUD x:19145001d rainage\dsnpt4. stm 09/10/98 05-05:14 PM @ Haestatl Methods, Inc. Fond A MAX wsaL~ CGS Z Project Engineer: JR ENGINEERING, LTD. JR Engineering, Ltd StormCA❑ v1.5 [158] 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Elgin Court E 6 POND A Project Title: WATERGLEN PUD Project Engineer: JR ENGINEERING, LTD. x:19145001drainageldsnpt5,stm JR ENGINEERING, LTD StormCAD v1.0 10/15/97 01:47.28 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Detailed Report for Pipe E 1 1 t Section Material: Concrete Section Shape: Circular Section Size: 27 inch Number Sections: 1 Qtoo DP S Description Description Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 16.00 cfs Capacity 0.013 Hydraulic Drop 33.75 ft Energy Slope 0.003000 ft/ft Upstream Velocity 0.00 min Average Velocity 0.10 min Downstream Velocity 0.10 min 16.96 cfs 0.29 ft 0.004185 ft/ft 5.35 ft/s 5.76 ft/s 6.18 ft/s Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream Downstream 61.07 60.97 64.32 64.32 63.32 63.22 1.00' 1.10 1.58 1.40 62.65 62.36 63.10 62.96 Description: PIPE E-DP 5 TO DP 6 ELGIN COURT Messages: Profile: Subcritical flow. Profile: Downstream depth below critical depth, critical depth assumed. Profile: Mild channel slope. Project Title: WATERGLEN PUD Project Engineer: JR ENGINEERING, LTD, x:19145001drainageldsnpt5.stm JR ENGINEERING, LTD StormCAD v1.0 10/29/97 09:46:46 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 � - 5 Detailed Report for Pipe F Section Material: Genorcte AO Section Shape: Circular Section Size: 33 inch Number Sections: 1 U P 5 � P� z z3 � Description Description Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 24.10 cfs Capacity 0.013 Hydraulic Drop 90.11 ft Energy Slope 0.003000 ft/ft Upstream Velocity 0.10 min Average Velocity 0.25 min Downstream Velocity 0.34 min 28.97 cfs 0.51 ft 0.003589 ft/ft 5.63 ftls 6.11 Ws 6.59ft/s Grade Elevations Location Invert Ground Crown Cover Depth HGL EGL (ft) (ft) (ft) (ft) (ft) (ft) (ft) Upstream 60.47 64.32 63.22 1.10 1.86 62.33 62.82 Downstream 60.20 64.00 62.95 1.05 1.63 / 61.82 62.50 Messages: Profile: Subcritical flow. Profile: Downstream depth below critical depth, critical depth assumed. Profile: Mild channel slope. Po vi c P m we (AD S E L= (a C). Project Title: WATERGLEN PUD Project Engineer. JR ENGINEERING, LTD. x:19145001drainageldsnpt5-stm JR ENGINEERING, LTD StormCAD v1.0 10/29/97 09:46:54 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 (203) 755-1666 Page 1 of 1 1 1 POND F Project Title. WATERGLEN PUD Project Engineer: JR ENGINEERING, LTD, z:19145001drainageldsnpt8.stm JR Engineering, Ltd StormCAD v1 -5 (1581 07/08/98 07:13:10 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 �'-I I Detailed Report for Pipe G Section Material: Concrete Section Shape:-C+rctTt07 A.Q S Section Size: 27 inch Number Sections: 1 Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 13.14 cts Capacity 0.013 Hydraulic Drop 130.00 ft Energy Slope 0.003000 ft/ft Upstream Velocity 0.00 min Average Velocity 0.66 min Downstream Velocity 0.65 min 16.96 cis 0.23 ft 0.001800 ft/ft 3.30 ftis 3.30 ft/s 3.30 Ws Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream Downstream 51.83 51.44 55.58 55.00 54.08 53.69 1.50 1.31 3.30 3.46 55.13 54.90 55.30 55.07. Description: G Message List Profile: Pressure profile. Information: Surcharged condition Pad too m U 5-EL Project Title: WATERGLEN PUD Project Engineer: JR ENGINEERING, LTDI x:\9145001drainage\dsnpte.stm JR Engineering, Ltd StormCAD v1.5 11 58i 09/25/98 10:29:50 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 POND E Project Title: WATERGLEN, PUD Project Engineer: JR ENGINEERING, LTD. x:19145001drainageldsnpt10b.stm JR ENGINEERING, LTD StormCAD v1.0 10/15/97 02:13:55 PM Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 Detailed Report for Pipe H Section Material: Steel Section Shape: Circular Section Size: 15 inch Number Sections: 3 Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 21.25 cfs Capacity 0.013 Hydraulic Drop 38.85 ft Energy Slope 0.003089 ft/ft Upstream Velocity 0.00 min Average Velocity 0.11 min Downstream Velocity 0.11 min 10.77 cfs 0.47 ft 0.012025 fVft 5.77 ft/s 5.77 fUs 5.77 ftls Grade Etevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream 53.93 56.68 55.18 1.50 2.18 56.11 56.63 Downstream 53.81 56.76 55.06 1.70 1.84 55.65 56.16 Description: PIPE H, DP 10 TO DP 9 Message List Profile: Pressure profile. Information: Surcharged condition E `J Project Title: WATERGLEN, PUD Project Engineer: JR ENGINEERING, LTDI x:19145001drainageldsnptl0b.stm JR Engineering, Ltd StormCAD v1.5 [158] 1 1/09/98 04:04:04 PM C9 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203} 755-1666 Page 1 of 1 1 1 Section Material: Concrete Section Shape: Circular Section Size: 27 inch Number Sections: 2 Detailed Report for Pipe I azo vP to -k- °P 9 Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 33.55 cfs Capacity 0.013 Hydraulic Drop 118.32 ft Energy Slope 0.003000 ft/ft Upstream Velocity 0.11 min Average Velocity 0.47 min Downstream Velocity 0.58 min 33.92 cfs 0.35 ft 0.002934 ft/ft 4.22 ftls 4.22 Ws 4.22 ftls Grade Elevations Location Invert (tt) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream Downstream 52.81 52.46 56.76 59.00 55.06 54.71 1.70 4.29 2.83 2.84 55.65 1 55.30 55.92 55.58 Description: PIPE I, DP 9 TO POND C Message List Profile: Pressure profile. Information: Surcharged condition too �r W EZ. Cold_ e E Project Title: WATERGLEN, PUD Project Engineer: JR ENGINEERING, LTD. x:19145001drainage\dsnptlob.stm JR Engineering, Ltd StormCAD v1.5 (1581 11/09/98 04:04:34 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 STMH-4 J POND E K TMH-3 Gc M 5•'oi t. %& c- M STMHf1 25 Project Engineer: JR ENGINEERING. LTD. x:19145001drainage\dsnpt25k stm JR ENGINEERING, LTD StormCAD v1,0 12/02/97 09:27:07 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 (203) 756-1666 Page 1 of 1 1 PIPE SUMMARY TABLE ? co vvwvv co CO o QD rn v m J CD r� ui ui ui cc 0 r to ua u) u) u) S (h N (O M 01 c N Vi N Vi N CI 0 E 0 r N 0 0) C') O N CO r0 W C N •-• 0 C = CD W C) C) (0 il l Lf) Eil u7 CO CO 0CD CO(0 J OD ad; A u) W ca , NIDu) U) W S Up Cover (ft) COCC') r tOO PI N C7 C)i 0) w r r ao- rn 0 N W CD ri o. j - ip i UW) UN7 10 D C in V 0 in CO Ch N Cl (2(D 0 U 0) D) 0) 0) Co N r r r r O w V ui ui ui ui u7 lA O co O N 0 r _ E NNNNN 0 0 0 0000 0 0 0 0 0 d Section Material al a) C) m al d m W QI QI V V O V O O O O O O 0 0 0 0 0 J_ i 5_ O O O C c c N_ C O O O O 0 - CO CO XXX� - O) O) 0) O O .- *- m Cr) Length (ft) 0) 0 M rW m (0 0 lr) rn rr- d N a) R ri Z 2 Y -3 (203) 755-1666 C Haestad Methods, Inc. 12 POND D Project Title: WATERGLEN, PUD Project Engineer: JR ENGINEERING, LTD. x:ti9145001drainageldsnp113 stm JR ENGINEERING, LTD StormCAD v1.0 10/29/97 09:04:51 AM Haestad Methods, Inc- 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Section Material: Concrete Section Shape: Circular Section Size: 36 inch Number Sections: 1 Detailed Report for Pipe 0 (�09(5 Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Tirne Pipe Flow Time System Flow Time 30.54 cfs Capacity 0.013 Hydraulic Drop 47.36 ft Energy Slope 0.004012 ft/ft Upstream Velocity 0.00 min Average Velocity 0.16 min Downstream Velocity 0.16 min 42.24 cfs 0.06 ft 0.002130 ft/ft 5.07 ft/s 4,96 ft/s 4.84 ft/s Grade Elevations Location Invert (F() Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream 57.83 62.33 60.83 1.50 2.38 60.21 60.61 Downstream 57.64 62.14 60.64 1.50 2.51 60.15 60.51 Description: PIPE 0, DP 13 TO DP12 Message List Profile: Mild subcntical backwater profile (M1). E-Z Project Title: WATERGLEN, PUD Project Engineer: JR ENGINEERING, LTD. x:19145001drainage1dsnpt13.stm JR Engineering, Ltd S1ormCAD v1 .5 [158] 09/21/98 11:32:36 AM riD Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Detailed Report for Pipe P Section Material: imncre-te /1- 0 5 Section Shape: Circular Section Size: 36 inch Number Sections: 1 Pipe p� r 3 + Ora Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 60.28 cfs Capacity 0.013 Hydraulic Drop 52.49 ft Energy Slope 0.016003 ft/ft Upstream Velocity 0.16 min Average Velocity 0.08 min Downstream Velocity 0.24 min 84.37 cfs 1.31 ft 0.010897 tuft 9.55 ft/s 10.66 Ws 11.77 Ws Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (It) EGL (ft) Upstream Downstream 57.64 56.80 62.14 61.30 60.64 59.80 1.50 1.50 2.51 2.04 60.15 f 58.84 61.57 60.99 Description: PIPE P, DP 12 TO POND C Message List Profile: Steep supercritical frontwater profile (S2). Profile: Critical depth assumed upstream. o t.A Cc -a. 7cvd p 1,05:!_^ 5 , 1 Project Title: WATERGLEN, PUD Project Engineer: JR ENGINEERING, LTD1 x:19145001drainage\dsnptl3.stm JR Engineering, Ltd StormCAD v1 .5 (158] 09/21/98 11 :32:57 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Ktua Gou+�� Q POND C Project Title: WATEGLEN, PUD Project Engineer JR ENGINEERING, LTD x:19145001drainageldsnpt14.stm JR ENGINEERING, LTD StormCAD v1.0 10/14/97 04,21 40 PM Haestad Methods, Inc 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Detailed Report for Pipe Q Section Material: GerrerM A0-5 Section Shape: Circular Section Size: 24 inch Number Sections: 1 o P t' Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time —� 13.20 cfs Capacity 0.013 Hydraulic Drop 141,80 ft Energy Slope 0.003000 ft/ft Upstream Velocity 0.00 min Average Velocity 0.56 min Downstream Velocity 0.56 min 12.39 cis 0.48 ft 0.003405 fUft 4.20 ft/s 4.20 ft/s 4.20 ft/s Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth {ft) HGL (ft) EGL (ft) Upstream Downstream 61.25 60.82 65.00 67.00 63.25 62.82 1.75 4.18 3.63 3.58 64.88 ` 64.40 65.16 64.67 Message List Profile: Pressure profile. Information: Surcharged condition 626- ( S1✓Z E 77 1 1 1 Project Title: WATEGLEN, PUD Project Engineer: JR ENGINEERING, LTDI x:19145001drainageldsnpt14.stm JR Engineering, Ltd StormCAD v1.5 (158] 09/25/98 10:45:36 AM C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 j 18 R 9 Project Engineer: JR ENGINEERING. LTD. x:19145001drainageldsnpt19.stm JR Engineering, Ltd StormCAD v1.5 [1581 09/24/98 12:37:31 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 N PIPE SUMMARY TABLE Of N CO > -- m r CO CO m ,- C) N N N -J c 2 CD I.0 CO N O) (0 u) Lf) N 7 (0 in (0 (0 in C > ^ ❑ 0 '- 0 0 O Q) co O — — c7 N N t c N .--. > r C CD m CO Cr)nrn C') C] N C'J N N in (0 L.0 Ct.i7r co 00 V CD N l0 CO C) r- ui ui in in in ID (0 � N 3 O 0 (DD, o 0� ((0 C) N j7 ^ c If) 0) CO CO CO 14') N 4Nfl ] L cU w U m CO 0) 0 0 N N N N Oz 0 0 0 0 0 CD CD CD v ,- v v V 00? o n ea co 0 0 rn 0 0 N O000 O O O O O O o O O O Section Material a) r) Q) E Q) Q) V U U ai m c)0 0 u) (70 t3 V N (n C C C 0 0 CO CO co C C co co co - 00 00 nt V V r r N N N C J m ul r M o (O O C) N Q) N LO I, N 0 N N Q) d Q cc EC Et-Ec- co <111 CS co U v 42 J CU I CCS C3 C W cc cc -1 7 74 0 I'c u y O ra f0 1 1 PIPE SUMMARY TABLE 1 mN a v h co N N N c N r- n h J I O CO W m co m h h h (a 't c y --- CI 0 0 0 °i o co 0 .- ,- C) N N Q C r C) C) N N U) U) rfl rt) N j- m N m m ch aaico�:6 u) u) a U) in Up Cover (ft) co 0 0 0) a, w — — CO N 0 i in 00 CO CO CO N U)) (0 Ell toc 0 01 U0 m (0 m 0 0 aai La O d N N N N 0"y m m m a) o) 0 h h h N M N COCam.) Cam) to 0 CO N N O O N 0 0 0 0 d d d d d Section Material 0 m m m m v U O O N O O O v) th U U U N U7 i i i 0 O O C C C O ra W C) C C X X CO 0 0 N N N Ob - O J CO tf) T Ci 4 co d N of h N rl7 N N C a a N rrocococd 4d `l 3 (203) 755-1666 0) a0 O 0 O 1- U v n r m 6 o 0 c c Q W Q) CC N 0 0 h m 0 Haestad Methods, Inc. E ra m w • 2 d O 0 O N C0) i ti 0 o CO N a rn o X 21 SWALE 1-1 Project Title: WATERGLEN, PUD Project Engineer: JR ENGINEERING, LTD x:19145O01drainage\dsnpt21b.stm JR ENGINEERING, LTD StormCAD vl,0 10/14/97 01.46:1 8 PM Iiaestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 -3f 1 1 1 i Section Material: Concrete Section Shape: Horizontal Ellipse Section Size: 22x34 inch Number Sections: 1 Detailed Report for Pipe S 100 f ri tti t.to� [n (titre 2_I Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time L' 17.78 cfs Capacity 0.013 Hydraulic Drop 42.17 ft Energy Slope 0.003000 Mt Upstream Velocity 0.00 min Average Velocity 0.13 min Downstream Velocity 0.13 min 17.50 cfs 0.17 ft 0.003437 ft/ft 5.18 ft/s 5.26 ft/s 5.34 ft/s Grade Elevations Location Invert (ft) Ground (f1) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream 58.65 61.94 60.44 1.50 1.44 60.09 60.50 Downstream 58.52 61.90 60.31 1.59 1.39 59.91 60.36 Description: PIPE S - DP21 TO DP20 Message List Profile: Mild subcritical drawdown profile (M2). Project Title: WATERGLEN, PUD Project Engineer: JR ENGINEERING, LTD x:19145001drainageldsnpt2lb.stm JR Engineering, Ltd StormCAD v1 .5 11581 09/21/98 11:47:38 AM 0 Haestad Methods, inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of Detailed Report for Pipe U t Section Material: Concrete Section Shape: Horizontal Ellipse Section Size: 22x34 inch Number Sections: 2 Pipe teivoeffv( Lu pr itdd Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time L 35.76 cfs Capacity 0.013 Hydraulic Drop 31.91 ft Energy Slope 0.003000 ft/ft Upstream Velocity 0.13 min Average Velocity 0.09 min Downstream Velocity 0.23 min 35.01 cfs 0.24 ft 0.003913 ft/ft 5.37 ft/s 5.71 ft/s 6.04 ft/s Grade Elevations Location Invert (ft) Ground (1t) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream 58.52, 61.90 60.31 1.59 1.39 59.91 60.36 Downstream 58.43 63.00 60.22 2.78 1.24 59.67 60.24 Description: PIPE U- DP 20 TO SWALE 1-1 Message Ust Profile: Mild eubcritical drawdown profile (M2). Profile: Critical depth assumed downstream. E-3z 1 t 1 Project Title: WATERGLEN, PUD Project Engineer:JR ENGINEERING, LTD x:19145001drainageldsnpt21b.strn JR Engineering, Ltd StormCAD v1.5 [1581 09/21/98 11:47:53 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 SWALE I -I T 22 Project Titte: WATERGLEN, PUD Project Engineer: JR ENGINEERING, LTD. x:19145001drainageldsnpt22.stm JR ENGINEERING, LTD StormCAD v1.0 10/14/97 01:55',45 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Detailed Report for Pipe T Section Material: Concrete Section Shape: Horizontal Ellipse Section Size: 19x30 inch Number Sections: 2 l� ,f `c>{' Y!7 tri Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 25.42 cfs Capacity 0.013 Hydraulic Drop 93.59 ft Energy Slope 0.003000 ft/ft Upstream Velocity 0.00 min Average Velocity 0.30 min Downstream Velocity 0.30 min 27.53 cts 0.44 ft 0.003375 ft/ft 4.79 Ws 5.16 Ws 5.54 Ws Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover {ft) Depth (tt) HGL (ft) EGL (ft) Upstream 58.64 61.44 60.24 1.20 1.19 59.83 60.18 Downstream 58.36 63.00 59.96 3.04 1.04 59.39 59.87 Description: PIPE T, DP 22 TO SWALE I-1 Message List Profile: Mild subcritical drawdown profile (M2). Profile: Critical depth assumed downstream. 1 Project Title: WATERGLEN, PUD Project Engineer. JR ENGINEERING, LTD x:\914500\drainageldsnpt22.stm JR Engineering, Ltd StormCAD v1 .5 [158] 09/21/98 11:30:15 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 0 O to (U O O 1[] N U U) N N F N O O O O C O ': u � m SQ a, N N to a n U 0 PIPES V - UNDER GLENLOCH (203) 755-1666 a 3 O 0 N 0D 0 H U v JD J 45 ro o L IS1 0 m 0, O O In h ® Haestad Methods, Inc. E tri Z w Y a CCCCa< w m o Q cct • • C a .. R o co t m y t ,n O � N a X O POND C OUTLET Cep,. ) Worksheet for Circular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainageloutlets.fm2 POND C Circular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Diameter Discharge 0.010 0.010000 ft/ft 15.00 in tM) cA-X • 3.00 ft'/s "-' �rUWt �r1Y' o' Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Full Flow Capacity Full Flow Slope Flow is supercritical. 0.52 ft 0.48 ft2 1.74 ft 1.23 ft 0.70 ft 41.30 % 0.003565 ft/ft 6.27 fi/s 0.61 ft 1.13 ft 1.77 9.03 ft'/s 8.40 ft'/s 0.001276 ft/ft Oct 29, 1997 09:18:13 JR Engineering, Ltd. FlowMaster v4.1b Haestad Methods, Inc 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 t 1 1 Detailed Report for Pipe X Section Material: Concrete Section Shape: Circular Section Size: 15 inch Number Sections: 1 Pig ° l Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 11.70 cfs Capacity 0.013 Hydraulic Drop 54.88 ft Energy Slope 0.009111 ft/ft Upstream Velocity 0.00 min Average Velocity 0.10 min Downstream Velocity 0.10 min 6.17 cfs 1.80 ft 0.032808 tt/ft 9.53 ft/s 9.53 ft/s 9.53 ft/s Grade Elevations Location Invert Ground Crown Cover Depth HGL EGL (ft) (ft) (ft) (ft) (ft) (ft) (ft) Upstream 54.10 58.90 55.35 3.55 2.90 57.00 58.41 Downstream 53.60 59.00 54.85 4.15 1.60 / 55.20 56.61 Message List Profile: Pressure profile. Information: Surcharged condition VON (..)..)5�� rave T 37 Project Title: Waterglen PUD Project Engineer: JR ENGINEERING, LTD. x:19145001drainage1pipex.stm JR Engineering, Ltd StormCAD v1.5 (158] 09/25/98 12:57:58 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 0 b ory oc.n co 913 cc p cD cU . -1 'T1 5' ¢ _- p o w @ W © O io O CD 0• �' Q Q D C Zm2 �T10a�� c o (D <A cn 9 14114 6St7000'0 5 t GA laaseyyMoUU Ja4.aw 0 c b Ui O) 1 0 0 A 0 CO 0 --+ --+ a 0 ✓ 1 fv O 6 6 Iv 6 co -+ (n d) d co co N c0 A co co O w O 00 D 3 D ' C �'0 CD m ▪ u1 v' w a 0 (13 m n to N 3 O a O p • O fm � 0 0 o a. CD m m 0 m cp co ry 15. n IaUULLO JuinavC JREngineering, Ltd. PROJECT I1)(AlP.rr i 'o^ +'u D suers= Rory4 E v`f i t4 CLIENT JOE NQ [ BY f BY DATE te5; e CP't e SHEET NO OF Gvi(ic -d o J t \CC LC 2" C. G F SpeCi 4 Cd .Dr C1ezt✓G3. xi ZaLL L ‘5. /74: lr A E, r1 .Ah. 1)ip. - z- ���4/ r= -2 1 ',1 L)C. e X / ...?I [a 2-L' .;as wO'L CLU( a. , 1, Z .� .1V1 , 8,s" 7 £ ,ail_ A3t 46Z. /5 _ l50, b r3 - 150 • _ r 9 n�-_, �,- /3- e V11��OrL �, - j,s � n s Ae - 45.2,(-19 = 1/3,1 - r- 13,1 ta- u5� (-1 3 - c s " p `7e 5 \)c 5 0. 08'` CIecore. c e „) Ucx 4 - (5" #0 c coun4 ' dt iri.5 p t u- r lil Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 {203) 755-1666 - Ulla IIIIII MS IIIIII - -n 0 m e e K M c m m 0 m 0 71* m 0 a-- ar o ,.... .�° m o 0 TI "n 3' Q n; 0 D a, a) ¢ni C cD n g v** 3 0 W 0 B CD p m -0o G m -0 -6 m a 0 43 �. (0 0 A 0 0 0 CA) O Q) CO CD O) 1 CJ O O al CO J J Cn O W CO u1us171-coo.o w o 1 1 0 0 N A N O CO CO N CO CT CO 0 DJ (D C O q o K En ID w ) CD 0 ro 00 0 m U) U3 w o aD 0 CD c0 L O O O Iauuey3 aaInaai� N uasaa iaaioad Pressure at 2 C 0 0 Pressure at 1 4 .13 a> w Elevation at 2 N COOt 100(0NN in01 [O N N O} CO O r in V O u i tzi 4 4 1� Q> [O O Pressure at 2 Wetted Perimeter 0.002575 ft/ft (203) 755-1666 Haestad Methods, Inc. 2 a_ co co rn e> C n i v N O 0 0 CC 1a 1c CC' X.17 1 431N\Or31flage\VSrlpt 1 c1.5[nl 1 1/09/98 10:15:46 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Outlet 1 1 Project Engineer: JR ENGINEERING, LTq Ctnrrnf:Af1 v1 S f1F.Rl Page 1 of 1 t Section Material: Concrete Section Shape: Circular Section Size: 24 inch Number Sections: 1 Detailed Report for Pipe CC' ko of Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time 30.20 cfs Capacity 0.013 Hydraulic Drop 8.00 ft Energy Slope 0.005000 ft/ft Upstream Velocity 0.00 min Average Velocity 0.01 min Downstream Velocity 0.01 min 16.00 cfs 0.47 ft 0.059102 ft/ft 9.61 ft/s 9.61 ft/s 9.61 firs Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream 53.07 57.00 55.07 1.93 3.93 57.00 58.44 Downstream 53.03 56.53 55.03 1.50 3.50 56.53 57.97 Message List Profile: Pressure profile. Information: Surcharged condition Project Engineer: JR ENGINEERING, LTD. x:19145001drainageldsnpt1a.stm JR Engineering, Ltd StormCAD v1.5 [158] 11/09/98 10:17:13 AM © Haestad Methods, Inc- 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Section Material: Concrete Section Shape: Circular Section Size: 24 inch Number Sections: 1 Detailed Report for Pipe CC Qtoo t e,Y hit o h 1 I�lct o r 1 t` . Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pepe Flow Time System Flow Time 32.46 cfs Capacity 0.013 Hydraulic Drop 120.00 ft Energy Slope 0.005000 ft/ft Upstream Velocity 0.01 min Average Velocity 0.19 min Downstream Velocity 0.21 min 16.00 cfs 2.53 ft 0.020554 ft/ft 10.33 ft/s 10.44 fVs 10.54 ft/s Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream Downstream 53.03 52.43 56.53 56.00 55.03 54.43 1.50 1.57 3.83 1.90 56.86 54.33 58.52 56.05 Message List Profile: Mild subcritical drawdown profile (M2). Profile: Critical depth assumed downstream. Profile: Pressure profile. Profile: Composite profile. 1 Project Engineer: JR ENGINEERING, LTD x:19145001drainage1dsnptla-stm JR Engineering, Ltd StormCAD v1 .5 [158' 11/09/98 10:16:56 AM cgs Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 01 1 1 Section Material: Concrete Section Shape: Horizontal Ellipse Section Size: 19x30 inch Number Sections: 1 Pipe Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Flow Time Detailed Report for Pipe Pipe D-D 22.19 Capacity 0.013 Hydraulic Drop 73.00 ft Energy Slope 0.006712 ft/ft Upstream Velocity 0.00 min Average Velocity 0.17 min Downstream Velocity 0.17 min 20.59 cfs 0.66 ft 0.007342 ftff1 6.82 ft/s 7.10 ft/s 7.37 ft/s Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream Downstream 66.78 66.29 72.00 72.00 68.38 67.89 —3.62 '4. 1 1 1.54 1.37 68.32 67.66 69.04 68.50 Message List Profile: Mild subcritical drawdown profile (M2). Profile: Critical depth assumed downstream. c — '"l3 Project Title: Waterglen PUD Project Engineer: JR ENGINEERING, LTD, untitled.strn JR Engineering, Lid StormCAD v1.5 [158) 11/05/98 09:28:03 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 31 GG POND F FF 32 Project Title: Watergen, P.U.D. Project Engineer JR ENGINEERING, LTD. x:19145001drainageldsnpt3l-stm JR Engineering, Ltd StorrnCAD v1.5 [158] 09/22/98 05:06:55 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 PIPE FF & GG PIPE SUMMARY c O Ox U a CI • o 0 CCO 0 d1 0 cri N 0 CI CO c CV CV If) 10 .f Da C7 .Lv' CD 0LTA 0 0) d d u7 N c0 CO 10 10 0) N '- cr., c0i 10 In j y$ O1 O ▪ 10 N u) us 0 U CO 0 d 0 h 0 0 0 O O m 0) 6) j 5z (203) 755-1666 © Haestad Methods, inc. L 46 Detailed Report for Pipe WG BOX Section Material: Concrete Section Shape: Box Section Size: 6 x 3 ft Number Sections: 2 Pipe ' C icc �'�oY,, vrU O - 3 1 Discharge Mannings Coefficient Length Constructed Slope Upstream Flow Time Pipe Flow Time System Row Time 32.20 cis Capacity 0.013 Hydraulic Drop 91.54 ft Energy Slope 0.003059 ft/ft Upstream Velocity 0.00 min Average Velocity 1.51 min Downstream Velocity 1.51 min 227.58 cfs 0.12e-2 ft 0.000050 ft/ft 1.06 tt/s 1.01 ft/s 0.96 tt/s Grade Elevations Location Invert (ft) Ground (ft) Crown (ft) Cover (ft) Depth (ft) HGL (ft) EGL (ft) Upstream 52.38 59.00 55.38 3.62 2.52 54.90 54.92 Downstream 52.10 59.00 55.10 3.90 2.80 54.90 54.91 Message List Profile: Mild subcritical backwater profile (M1). E76 a( t- Project Title: WATERGLEN PUD Project Engineer: JR ENGINEERING. LTD x:19145001drainagelwgbox.stm JR Engineering, Ltd SiorrrmCAD v1.5 [158 09/25/98 10:01:20 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 BOX UNDER ACCESS DRIVE (HH) Worksheet for Rectangular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 BOX UNDER ACCESS Rectangular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Bottom Width Discharge 0.013 0.004000 ft/ft 20.00 ft 14.00 cfs = Gov OP 34 Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.25 ft 4.98 ft2 20.50 ft 20.00 ft 0.25 ft 0.004050 ft/ft 2.81 ftls 0.12 ft 0.37 ft 0.99 (30x l-cce-S' _ 100-1Y "(l o14s 09/25/98 02:10:37 PM FiowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 BOX UNDER ACCESS DRIVE (HH) Worksheet for Rectangular Channel z - 3 'x 101 30-c Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.frn2 BOX UNDER ACCESS Rectangular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Bottom Width Discharge 0.013 0.004000 ft/ft 20.00 ft 600.00 cfs Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Row is supercritical. 2.57 ft 51.48 ft2 25.15 ft 20.00 ft 3.04 ft 0.002422 ft/ft 11.65 fits 2.11 ft 4.68 ft 1.28 } SP.,t45 bcy 09/25/98 02:10:49 PM FlowMaster v5.1 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 CONCRETE SEALANTS. SEAL. OF SECURITY BOND OF TRUST " PRECAST STRUCTURES CONSEAL" SOLVING CONCRETE SEALING PROBLEMS. BUTYL SEALANT FOR CONSEAL CSE102CS-202 APPLICATIONS • For self-sealing joints in: • Manholes • Concrete Vaults • Box Culverts • Septic Tanks • Concrete Pipe • Utility Vaults • Vertical Panel Structures • Burial Vaults SEALING PROPERTIES • Provides permanently flexible watertight joints. • Low to high temperature workability: • CS-102 ... 30° F to 120° F (-1 ° C to 48° C) • CS-202... 0°F to 120°F (-12°C to 48°C) • Rugged service temperature: -30° F to +200°F (-34°C to +93°C) • Excellent chemical and mechanical adhesion to clean, dry surfaces. • Sealed joints will not shrink, harden or oxidize upon aging. • No priming normally necessary. When confronted with difficult installation conditions, such as wet concrete or temperatures below 40° F (4°C), priming the concrete will improve the bonding action. Consult Concrete Sealants for the proper primer to meet your application. HYDROSTATIC STRENGTH • Both ConSeal CS-102 and CS-202 meet the hydrostatic performance requirement as set forth in ASTM C-990 section 10.1. (Performance requirement: 10psi for 10 minutes in straight alignment — in plant, quality control test for joint materials.) Any Size, Shape, Length, or Material to meet specified requirements. CONCRETE BEALANTBIMC. 8917 S Palmer Road, P.O. Box 176, New Carlisle, Ohio 45344 (937) 845-8776 • FAX (937) 845-3587 • (800) 332-7325 1Afek Qife, f+w.,• # n........ rnnrnoi nnr+, Technical Data Flexible Butyl Resin Sealant CONCRETE SEALANTS CS-102 & CS-202 SPECIFICATIONS • ConSeal CS-102 and CS-202 meet or exceed the requirements of Federal Specification SS-S-210 (210-A), AASHTO M-198B, and ASTM C-990-91. PHYSICAL PROPERTIES Hydrocarbon blend content % by weight Inert mineral filler % by weight Volatile Matter % by weight Specific Gravity, 77°F Ductility, 77°F Penetration, cone, 77°F, 150 gm. 5 sec. Penetration, cone, 32°F, 150 gm. 5 sec. Flash point, C.O.C., °F Fire point, C.O.C., °F IMMERSION TESTING Spec ASTM D4 (mod.) AASHTO T111 ASTM D6 ASTM D71 ASTM D113 ASTM D217 ASTM D217 ASTM D92 ASTM D92 Required* 50% min. 30% min. 2% max. 1.15-1.50 5.0 min. 50-100 40 mm 350°F min. 375°F min. CS-102 51% 35% 1.2 1.25 10 55-60 40-45 450° 475° • 30-Day Immersion Testing: No visible deterioration when tested in 5% Caustic Potash, 5% Hydrochloric Acid, 5% Sulphuric Acid, and 5% saturated Hydrogen Sulfide.* • One Year Immersion Testing: No visible deterioration when tested in 5% Formaldehyde, 5% Formic Acid, 5% Sulfuric Acid, 5% Hydrochloric Acid, 5% Sodium Hydroxide, 5% Hydrogen Sulfide and 5% Potassium Hydroxide. * Requirements of ASTM C-990 Standard Specification for Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants. CS-202 52% 35 % 1.2 1.20 12 60-65 50-55 425°F 450°F INSTALLATION INSTRUCTIONS OCLEAN SURFACE O APPLY OBUTT AT JOINT LIMITED WARRANTY This information is presented in good faith, but we cannot anticipate all conditions under which this information and our products, or the products of other manufacturers in combination with our products, may be used. We accept no responsibility for results obtained by the application of this information or the safety and suitability of our products, either alone or in combination with other products. Users are advised to make their own tests to determine the safety and suitability of each such product or product combinations for their own purposes. It is the users' responsibility to satisfy himself as to the suitability and completeness of such information for this own particular use. We sell this product without warranty, and buyers and users assume all responsibility and liability for loss or damage arising from the handling and use of this product, whether used alone or in combination with other products q 91M Rev 1 /97 Active members of the Adhesive and Sealant Council 1 1 1 1 1 1 1 1 1 APPENDIX F RIPRAP CALCULATIONS 9/17/98 LOCATION: WATERGLEN, P.U.D. ITEM: RIPRAP CALCULATIONS FOR CONDUIT OUTLETS COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. M;n;,n-, u m V;,'HerrS,'c4r5 From Urban Strom Drainage Criteria! Manual, March 1969 a-'' 5 `' r'`� (Referenced figures are attached at the end of this section) �`11 Q = discharge, cfs D = diameter of circular conduit, ft W = width of rectangular conduit, ft H = height of rectangular conduit, ft Y,=tailwaterdepth, ft 4 -{ro,,\ aormCAD cr EkoWMaStC) U1-?,rl- A, = required area of flow at allowable velocity, ft2 V = allowable non -eroding velocity in the downstream channel, ft/s = 7.0 ft/s for erosion resistant soils = 5.5 ft/s for erosive soils Pipe B outlet to Pond B 29"x45' Horizontal Elliptical RCP Q = 28.1 cfs H = 29 in = 2.416667 ft W = 45 in = 3.75 ft Yt = 2.41 ft V = 5.5 ft/s Q/WHc.5= Y,/H= 4.8 1.0 From Figure 5-8, use Type L for a distance 3H downstream, L = From Table 5-1, dso = 9 in From Fig. 5-6. Riprap depth from outlet to dist. 1/2 = 18.0 in Riprap depth from U2 13.5 in Width of riprap (extend to height of culvert) = 8.583333 ft Pipe C outlet to Pond B 21" ADS Q = 6.1 cfs D = 21 in = 1 75 ft Yt= 0.93 ft V = 5.5 ft/s Q/D1,5 = Y1/D= 2.6 0.5 7.25 ft From Figure 5-7, use Type L for a distance 3D downstream, L = 5.25 ft From Table 5-1, d50= 9 in Riprap.xls Page 1 F 9/17/98 From Fig. 5-6. Riprap depth from outlet to dist. LJ2 = 18.0 in Riprap depth from LJ2 13.5 in Width of riprap (extend to height of culvert) = 5.25 ft Q/D25 = 1.5 From Fig. 5-9, Expansion factor, 11(2 tan 9) = At=QN= 1.11 ft2 L = (1/(2 tan 9))"(At1Yt - W) = -3.73 ft UseL=3H= 5.25 ft Pipe D outlet to Pond A 18" ADS Q = 4.31 cfs D = 18 in = Y, = 0.8 ft V = 5.5 ft/s Q/D'.5 = Yt/ D = 2.3 0.5 6.7 1.5 ft From Figure 5-7, use Type L for a distance 3D downstream, L = 4.5 ft From Table 5-1, d50 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L/2 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 4.5 ft Q/D2.5 = 1.6 From Fig. 5-9, Expansion factor, 1/(2 tan 9) = 6.7 At = QN = 0.78 ft2 L = (11(2 tan 9))"(AtlYt - W) = -3.49 ft UseL=3H= 4.5 ft Pipe F outlet to Pond A 33" ADS Q = 24.1 cfs D = 33 in = 2.75 ft Y, = 1.63 ft V = 5.5 ft/s Q/D1'5 = 5.3 Yt / D = 0.6 From Figure 5-7, use Type L Riprap.xls Page 2 9/17/98 From Table 5-1, d50= 9 in From Fig. 5-6. Riprap depth from outlet to dist. L/2 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 8.25 ft Q/D25 = 1.9 From Fig. 5-9, Expansion factor, 1/(2 tan 0) _ At = QN = 4.38 ft2 L = (1/(2 tan 0))'(At/Yt - W) = -0.41 ft Use L = 3H = 8.25 ft Pipe G outlet to Pond F 27" ADS 6.7 Q = 13.14 cfs D = 27 in = 2.25 ft Yt= 2.25 ft V = 5.5 ft/s Q/D1s= Y,/D= 3.9 1.0 From Figure 5-7, use Type L for a distance 3D downstream, L = 6.75 ft From Table 5-1, dso = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L/2 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 6.75 ft Q/D2 5 = 1.7 From Fig. 5-9, Expansion factor, 1/(2 tan 0) _ At=QN= 2.39 ft2 L = (11(2 tan 0))"(At/Yt - W) = -7.96 ft Use L = 3H = 6.75 ft Pipe I outlet to Pond E double 21" pipes 6.7 = 33.55 cfs D = 21 in = 1.75 ft Y, = 1.75 ft V = 5.5 ft/s Q each = 16.78 cfs F = Qeach/D2 5 = 4.14 Riprap.xls Page 3 9/17/98 Height of equivalent rectangular conduit, He = D = 1.75 ft Calculate width of equivalent rectangular conduit by equating Froude No. We = Qtot/(F *He1.5) = 3.50 ft Determine type of riprap, Qtot / WeHeo.5 = Y,/He= 7.2 1.0 From Figure 5-8, use Type L for a distance 3H downstream, L = From Table 5-1, d5c = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L12 = 18.0 in Riprap depth from L12 13.5 in Width of riprap (extend to height of culvert) = 8 ft Pipe J outlet to Pond E 30" RCP Q = 22.7 cfs D = 30 in = 2.5 ft Yt = 2.07 ft V= 5.5 ft/s Q/D15 = Y,/D= 5.7 0.8 From Figure 5-7, use Type L From Table 5-1, dso = 9 in From Fig. 5-6. Riprap depth from outlet to dist. LJ2 = 18.0 in Riprap depth from LJ2 13.5 in Width of riprap (extend to height of culvert) = 7.5 ft Q/D2 5 = 2.3 From Fig. 5-9, Expansion factor, 1/(2 tan 6) = 6 At=QN= 4.13 L = (1/(2 tan 9))'(At/Yt - W) = ft2 -3.04 ft Use L=3*D= 7.5 ft Pipe P outlet to Pond D 36" ADS Q = 60.24 cfs D = 36 in = Yt = 2.04 ft 3 ft Riprap.xls Page 4 F=Q/WeNei 5 5.25 ft • 9/17/98 V = 5.5 ft/s Q/D1.5 = Y=/D= 11.6 0.7 From Figure 5-7, use Type L From Table 5-1, d50 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. U2 = 18.0 in Riprap depth from U2 13.5 in Width of riprap (extend to height of culvert) = 9 ft Q/D2•5 = 3.9 From Fig. 5-9, Expansion factor, 1/(2 tan 0) = 6.7 At = QN = 10.95 ft2 L=(1/(2tan 0))*(AtfYt-W)= 15.87 ft Pipe Q outlet to Pond C 24" ADS Q = 13.2 cfs D = 24 in = Yt= 3.5 ft V = 5.5 ft/s Q/D15 = 4.7 Y,/ D = 1.8 2 ft From Figure 5-7, use Type L for a distance 3D downstream, L 7- From Table 5-1, d50 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. U2 = 18.0 in Riprap depth from U2 13.5 in Width of riprap (extend to height of culvert) = 6 ft Pipe T outlet to Swale I -I double 19"x30" Horizontal Elliptical RCP pipes Qto1 = 32.43 cfs H = 19 in = W = 30 in = Y1 = 1.2 ft V = 5.5 ft/s Q each = 16.22 cfs F = Qeach/W H 1.5 = 3.26 1.58 ft 2.50 ft Height of equivalent rectangular conduit, He = H = 1.58 ft Riprap.xls Page 5 6 ft 9/17/98 Calculate width of equivalent rectangular conduit by equating Froude No. We = Qtot/(F *Fels) = 5.00 ft Determine type of riprap, Qtot / WeHe 5 = Y,1He= 5.2 0.8 From Figure 5-8, use Type L for a distance 3H downstream, L = From Table 5-1, dsc = 9 in From Fig. 5-6. Riprap depth from outlet to dist. Ll2 = 18.0 in Riprap depth from L12 13.5 in Width of riprap (extend to height of culvert) = 9.17 ft Pipe U outlet to Swale I-t double 22"x34" Horizontal Elliptical RCP pipes Qta, = 42.14 cfs H = 22 in = 1.83 ft W = 34 in = 2.83 ft Yt = 1.35 ft V = 5.5 ft/s Q cacti = 21.07 cfs F = Qeact,/W H 1.5 _ 3.00 Height of equivalent rectangular conduit, He = H = 1.833333 ft Calculate width of equivalent rectangular conduit by equating Froude No. We = Qtot/(F *Nei 5) = 5.67 ft Determine type of riprap, ()tot / WeHe .5 = 5.5 Y,IHe= 0.7 From Figure 5-8, use Type L for a distance 3H downstream, L = From Table 5-1, d50 = 9 in From Fig, 5-6. Riprap depth from outlet to dist. L12 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 10.33 ft Pipe V outlet to Pond D double 36" RCP ()to, = 64 cfs D = 36 in = Yt= 218 ft 3 ft Riprap.xls Page 6 F=Q/WeHe15 4.75 ft F=Q/We 5.5 ft 1.5 F-CCU v= Q each = F = Qeach/D2 5 = 5.5 ft/s 32.00 cfs 2.05 Height of equivalent rectangular conduit, He = D = 3 ft Calculate width of equivalent rectangular conduit by equating Froude No. We = Q,o,/(F *Nets} = 6.00 ft Determine type of riprap, Q,, / WHeo.s 6.2 Y,/He= 0.7 F=0/W9He15 From Figure 5-8, use Type L for a distance 3H downstream, L = 9 ft From Table 5-1, d50 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. LJ2 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 13 ft Qeach/D2 5 = 2.05 From Fig. 5-9, Expansion factor, 1/(2 tan (3) = 6.7 At = ON = 11.64 ft2 L = (1/(2 tan 0))"(At/Yt - W) = 12.99 Pipe CC 24" RCP Q = 32.46 cfs D= 24 in = Y,= 2 ft V = 5.5 ftls Q/D15= 11.5 Y,l D = 1.0 ft 2 ft From Figure 5-7, use Type L From Table 5-1, d50 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. LJ2 = 18.0 in Riprap depth from U2 13.5 in Width of riprap (extend to height of culvert) = 6 ft Q/D2.5 = 5.7 From Fig. 5-9, Expansion factor, 1/(2 tan 0) = 3.5 At = ON = 5.90 ft2 L = (1/(2 tan 0))*(At/Yt - W) = UseL=3H= 6 ft 3.33 ft Riprap.xls Pipe DD 19"x30" Horizontal Elliptical RCP Q = 22.19 cfs H = 19 in = 1.58 ft W = 30 in = 2.5 ft Yt = 1.51 ft V = 5.5 ft/s Q/WH°5= 7.1 Yt/H= 1.0 From Figure 5-8, use Type L for a distance 3H downstream, L = From Table 5-1, d50 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L/2 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 5.666667 ft 4.75 ft Riprap.xls Pipe Y. Pond A outlet 15" ADS Q = 2 cfs D = 15 in = 1.25 ft Yt = 0.58 ft V = 5.5 ft/s Q/D15 = 1.4 Yt/ D = 0.5 From Figure 5-7, Type L is required From Table 5-1, dso = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L/2 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 3.75 ft Q/D2s = 1.1 From Fig. 5-9, Expansion factor, 1/(2 tan 0) = 6.7 At = QN = 0.36 L = (1/(2 tan 0))*(At/Yt - W) _ ft2 -4.17 ft Min. length = 3H = 3.75 ft Pipe AA Pond B outlet 15" ADS Q = 2.5 cfs D = 15 in = Y, = 0.66 ft V = 5.5 ftls Q/D1.5 = Yt/ D = 1.8 0.5 1.25 ft From Figure 5-7, use Type L From Table 5-1, cis() = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L/2 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 3.75 ft Q/D2s= 1.4 From Fig. 5-9, Expansion factor, 1/(2 tan 6) = 6.7 At=QN= 0.45 ft2 L = (1/(2 tan 8))*(At/Yt - W) = -3.76 ft Min. length = 3H = 3.75 ft Riprap.xls Pipe W Pond C outlet 15" ADS Q = 2.5 cfs D = 15 in = Yt = 0.52 ft V = 5.5 ft/s Q/D15= Yt/D= 1.8 0.4 1.25 ft From Figure 5-7, use Type L From Table 5-1, dsa = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L/2 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 3.75 ft Q/D25 = 1.4 From Fig. 5-9, Expansion factor, 1/(2 tan 0) = 6.2 At = QN = 0.45 ft2 L = (1/(2 tan 0))*(At/Yt - W) = -2.33 ft Min. length = 3H = 3.75 ft Pipe BB Pond F outlet 36" ADS Q = 43.5 cfs D = 36 in = Yt= 3 ft V = 5.5 ft/s Q/D1 = 8.4 Yt/ D = 1.0 3 ft From Figure 5-8, use Type L for a distance 3H downstream, L = From Table 5-1, d50 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L12 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 9 ft Q/D2 5 = 2.8 From Fig. 5-9, Expansion factor, 1/(2 tan 0) = 6.7 At=QN= 7.91 ft2 L = (1/(2 tan 0))*(At/Yt - VV) _ -2.44 ft Min. length = 3H = 9 ft Riprap. xls Pipe Z outlet to Pond E 4-15"ADS Qtat = 16.7 cfs D = 15 in = 1.25 ft Yi = 1.25 ft V = 5.5 ftls Q each = 4.18 cfs F = Qeach/D2.5 = 2.39 Height of equivalent rectangular conduit, He = D = 1.25 ft Calculate width of equivalent rectangular conduit by equating Froude No. We = Qt0, (F `He15> = 5.00 ft Determine type of riprap, Qtot / W0He° 5 = 3.0 Yt/He= 1.0 From Figure 5-8, use Type L for a distance 3H downstream, L = From Table 5-1, d50 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. U2 = 18.0 in Riprap depth from U2 13.5 in Width of riprap (extend to height of culvert) = 6 ft Qeach/D2.5 = 2.39 From Fig. 5-9, Expansion factor, 1/(2 tan 0) = 6.7 At = QN = 3.04 ft2 L = (1/(2 tan 0))'(At/Yt - W) = 4.07 ft Pipe X outlet to Pond D 15" ADS Q = 11.7 cfs D= 15 in = 1.25 ft Y, = 1.25 ft V = 5.5 ftls Q/D15 = 8.4 Yt/ D = 1.0 From Figure 5-7, use Type L From Table 5-1, d50 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L/2 = 18.0 in Riprap depth from L/2 13.5 in Width of riprap (extend to height of culvert) = 3.75 ft 0/D2.5 = 6.7 From Fig. 5-9, Expansion factor, 1/(2 tan 0) = 3.5 At=QN= 2.13 L = (1/(2 tan 0))"'(At/Yt - W) = Use L = 3H = 3.75 ft2 1.58 ft ft F=Q/WeHe'5 3.75 ft Riprap.xls 3/3/98 LOCATION: WATERGLEN, P.U.D. ITEM: RIPRAP CALCULATIONS FOR OVERFLOW SPILLWAYS COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. Riprap requirements for a stable channel lining are based on the equation from Storrs Drainage Design Criteria, City of Fort Collins, CO, May 1984 VS017 (d50 )° 5 (S5 - 1 166 = 5.8 where: V = mean channel velocity (ft/s) S = longitudinal channel slope (ft/ft) S5 = specific gravity of rock (minimum SS = 2.50) d50 = rock size in feet for which 50 percent of the riprap by weight is smaller Determine if riprap is required using Table 8-2 Pond A spillway V= 3.4 ft/s S = 0.06 ft/ft S5 = 2.5 V S° 17 = 1.61 (S5 - .0° F = 1.2 F<0.8? FALSE tF S+nee Froude number, F < 0.8 and side slopes no steeper than 2h:1v use Table 8-2, Class 6 Riprap is required riprap thickness = Pond B spillway d5° = 6 in from Table 8-1 10.5 inches minimum V = 2.8 ft/s S = 0.03 ft/ft S5 = 2.5 VS°.17 = 1.18 (Ss - 1 )0.66 F = 0.92 F < 0.8 ? FALSE Sieee Froude number, F < 0.8 and side slopes no steeper than 2h:lv use Table 8-2, Class 0 Riprap is required riprap thickness = Riprap d50 = 0 in from Table 8-1 0 inches minimum 1n aL cc- --- tk st._ ,g90 rCf (J r reD S , r7 c (' iDrc) iS 5 op er ca-Q ) c S S c (L) 9/17/98 Pond C spillway V = 4.1 ftls S= 0.1 ftlft Ss = 2.5 VS°17 = 2.12 (Ss - F = 1.6 F < 0.8 ? FALSE Since Froude number, F < 0.8 and side slopes no steeper than 2h:lv use Table 8-2, Class 6 Riprap is required riprap thickness = Pond D spillway d50 = 6 in from Table 8-1 10.5 inches minimum V = 3.8 ft/s S = 0.08 ft/ft Ss = 2.5 V S° " 1.89 F = 1.44 F < 0.8 ? FALSE (S5 - 1 \U.66 Froude number, F < 0.8 and side slopes no steeper than 2h:1v use Table 8-2, Class 6 Riprap is required riprap thickness = Pond E spillway dso = 6 in from Table 8-1 10.5 inches minimum V = 3.8 ft/s S = 0.08 ft/ft Ss = 2.5 V S°" = 1.89 - )o.cc 5 F = 1.4 F < 0.8 ? FALSE Since Froude number, F < 0.8 and side slopes no steeper than 2h:1 v use Table 8-2, Class 6 Riprap is required riprap thickness = Riprap.xls dso = 6 in from Table 8-1 10.5 inches minimum pond F raij o r1 S ; e LOCATION: WATERGLEN, P.U.D. ITEM: RIPRAP CALCULATIONS COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. Riprap requirements for a stable channel lining are based on the equation from Storm Drainage Design Criteria, City of Fort Collins, CO, May 1984 VSon (d50)a.5 (SS - 1 )0.66 = 5.8 where: V = mean channel velocity (ft/s) S = longitudinal channel slope (ft/ft) SS = specific gravity of rock (minimum S, = 2.50) d50 = rock size in feet for which 50 percent of the riprap by weight is smalle Determine if riprap is required using Table 8-2 Swale P-P, DP 7 Using Table 8-2 Wes`' Ccj-. V = 2.16 ftls of o _ F = 0.87 S= 0.07 ft/ft F<0.8? FALSE S5 = 2.5 V S017 = 1.05 (SS - 1)666 Class 0 -No Riprap is required Use Type L (class 9) along slope since Froude no. is greater than 0.8 Swale M-M, DP 30b000)14L4.64/tf(ApitOL 1<U 'Ail' Cli V = 3.52 ft/s ,A(t F = 1.72 S= 0.1 ft/ft F<0.8? FALSE Ss = 2.5 V S° i7 = 1.82 (SS - 1 )0.66 Using Table 8-2 Class 8 Riprap is required minimum Use Type L (class 9) to toe of slope since Froude no. is greater than 0.8 DP 29, from curb opening in MF lot V = 4.78 ft/s S = 0.25 ft/ft Ss = 2.5 V S° " = 2.89 (S 5 - 1�a66 Using Table 8-2 F = 1.33 F<0.8? FALSE Class 6 Riprap is required minimum Use Type L (class 9) since Froude no. is greater than 0.8 DP 14a, Swale D-D V = 3.63 ft/s S = 0.005 ft/ft Ss = 2.5 V S°" = 1.13 (Ss 1)0.66 F = 0.63 F<0.8? TRUE Since Froude number, F < 0.8 and side slopes no steeper than 2h:1 v use Table 8-2, Class 0 -No Riprap is required Use Type L to toe of slope to prevent erosion. DP 17, from sidewalk chase off Celtic Lane V = 4.32 ft/s S = 0.25 ft/ft Ss = 2.5 VS°" = 2.61 (S5 - 1 fo.ee Using Table 8-2 F = 1.68 Fa0.8? FALSE Class 6 Riprap is required Use Type L (class 9) since Froude no. is greater than 0.8 F-(3 DP 16, from sidewalk chase off Waterglen Place V= 5.11 ft/s S = 0.25 ft/ft Ss = 2.5 V S°1 = 3.09 Using Table 8-2 F = 1.75 F < 0.8 ? FALSE Class 6 Riprap is required Use Type L (class 9) since Froude no. is greater than 0.8 DP 15, from sidewalk chase off Waterglen Place V = 3.15 ft/s S = 0.25 ft/ft S5 = 2.5 V Sfl 1 = 1.90 (Ss - 1 )a 66 Using Table 8-2 F = 1.55 F < 0.8 ? FALSE Class 6 Riprap is required Use Type L (class 9) since Froude no. is greater than 0.8 Outfall of Swale MM to Pond f (aY Worksheet for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE M-M Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth input Data Mannings Coefficient 0.060 Channel Slope 0.100000 ft/ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 10.00 ft Discharge 18.90 fta/s Results Depth 0.39 ft Flow Area 5.36 ft2 Wetted Perimeter 17.77 ft Top Width 17.74 ft Critical Depth 0.42 ft Critical Slope 0.076837 ft/ft Velocity 3.52 ft/s Velocity Head 0.19 ft Specific Energy 0.58 ft Froude Number 1.13 Flow is supercritical. 1 1 /09/98 1 1 :38:38 AM FlowMaslor v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT D6708 (203) 755-1666 Page 1 of 1 DP 16, outfall from back of inlet — rrOY;pr i,, Worksheet for Trapezoidal Channel 1 Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE M-M Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.250000 ft/ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 20.00 ft Discharge 35.30 ft3/s Results Depth 0.30 ft Flow Area 6.91 ft2 Wetted Perimeter 26.03 ft Top Width 26.00 ft Critical Depth 0.43 ft Critical Slope 0.073720 ft/ft Velocity 5.11 ft/s Velocity Head 0.41 ft Specific Energy 0.71 ft Froude Number 1.75 Flow is supercritical. 11/09/98 11:46:18 AM FIowMasier v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DP 17, outfall from back of inlet Worksheet for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE M-M Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.250000 ft/ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 10.00 ft Discharge 13.30 ft3/s Results Depth 0.25 ft Flow Area 3.08 ft2 Wetted Perimeter 14.97 ft Top Width 14.94 ft Critical Depth 0.34 ft Critical Slope 0.081428 ft/ft Velocity 4.32 ftls Velocity Head 0.29 ft Specific Energy 0.54 ft Froude Number 1.68 Flow is supercritical. 1 1 /09196 11:44:42 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DP 15, outfall from back of inlet `FOr n C ' Worksheet for Trapezoidal Channel r Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE M-M Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.250000 ft/ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 10.00 ft Discharge 5.20 ft3/s Results Depth 0.14 ft Flow Area 1.65 ft2 Wetted Perimeter 12.90 ft Top Width 12.89 ft Critical Depth 0.19 ft Critical Slope 0.096023 ft/ft Velocity 3.15 ft/s Velocity Head 0.15 ft Specific Energy 0.30 ft Froude Number 1.55 Flow is supercritical. 1 1 /09/98 1 1:52:31 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DP 29, Curb opening in Multifam. lot Worksheet for Rectangular Channel Project Description Project File x:19145001drainage\flowmast.fm2 Worksheet dp29 Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.007000 ft/ft Bottom Width 6.00 ft Discharge 11.50 cfs Results Depth 0.40 ft Flow Area 2.40 ft2 Wetted Perimeter 6.80 ft Top Width 6.00 ft Critical Depth 0.49 ft Critical Slope 0.003827 ft/ft Velocity 4.78 ft/s Velocity Head 0.36 ft Specific Energy 0.76 ft Froude Number 1.33 Flow is supercritical. 1 1 /09/98 11:23:31 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Ri prap Designation Type VL Type L Type M Type H Type VH % Smaller Than Given Size By Weight Intermediate Rock d50* Dimension (Inches) (Inches) 70-100 12 50-70 9 35-50 6 2-10 2 70-100 15 50-70 12 35-50 9 2-10 3 70-100 21 50-70 18 35-50 12 2-10 4 100 30 50-70 24 35-50 18 2-10 6 100 42 50-70 33 35-50 24 2-10 9 *d50 = Mean particle size 6** 9** 12 18 24 ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit_ One of the major advantages of wire enclosed rock is that it provides an alternative in situations where available rock sizes are too small for ordinary riprap. Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be fashioned into almost any shape that can be 11-15-82 DRAINAGE CRITERIA MANUAL RIPRAP 2.12 O E O N 7 - CO y 4) U L F U O L L a) - n n c • C � p 0.L L U 71 Q E K c Downstream Channel Lt. 1 11-15-82 URBAN DRAINAGE 3 FLOOD CONTROL DISTRICT 0 0 4.1 0 7 U O G! ID L a v U 0 m ro a) u cn c O U O lit J_ IL 0 O PROTECTION 0 (� 0 u 1- 0 F-- 5 a Z 0 U FIGURE 5-6. DRAINAGE CRITERIA MANUAL RIPRAP 0 0 ,§1., .0\c,\ Agi "c ��e& ��G ,� ti TYPE L ** 2 .4 .6 Yt/D .6 Use Da instead of D whenever flow is supercritical in the barrel. ** Use Type L for a distance of 3D downstream 1.0 FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL RIPRAP 1 1 1 N cr 0 U ti EXPANSION 8 7 5 4 2 0 0 = Expansion Angle 1 /777, 0 AY 0 V•• / O 7''' / 4 �'7rya4h , // / , 1 0 .1 .2 .3 .4 .5 .6 .7 .8 TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D 1 ' 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT �~ FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS DRAINAGE CRITERIA MANUAL RIPRAP 1 1 60 40 0 1 0 20 0 cl in � P� L 4110.11.007 .4 Yt/H 8 1.0 Use Ha instead of H whenever culvert has supercritical flow in the barrel. **Use Type L for a distance of 3H downstream FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR CONDUIT OUTLET. 1 1-15 -82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL RIPRAP 8 7 6 m c -- o N5 cr 04 z O 3 U) z a_ 2 x w 1 0 A = Expansion Angle 'n a a O //4)///4� 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 TAILWATER DEPTH/ CONDUIT HEIGHT—Yt/H FIGURE 5-10. EXPANSION FACTOR FOR RECTANGULAR CONDUITS 11-15-82 URBAN DRAINAGE B FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL RIPRAP 100 1- z 70 m 60 Lo 50 ▪ 40 z 30 w V tY LxJ 20 c 90 10 0 001 A05 01 .05 10 SIEVE SIZE IN INCHES .50 10 5 FIGURE 5-2. GRADATION CURVES FOR GRANULAR BEDDING 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-4 THICKNESS REQUIREMENTS FOR GRANULAR BEDDING Minimum Bedding Thickness (Inches) Riprap Fine Grained Soils* Course Grained Soils** Designation Type I Type II Type II --.L, G, SM 4 4 6 M 4 4 6 H 4 6 8 VH 4 6 8 --***May substitute one 12 inch layer of Type II bedding. Substitution of one layer of Type II bedding shall not be permitted at drop structures. Use of a combination of filter fabric and Type II bedding at drop structures is acceptable, see Section 5.3.2 for use of filter fabric at drop structures. **Fifty percent or more by weight retained on the #40 sieve. 5.3.2 Filter Fabric Filter fabric is not a complete substitute for granular bedding. Filter fabric provides filtering action only perpendicular to the fabric and has only a single equivalent pore opening between the channel bed and the riprap. Filter fabric has a relatively smooth surface which provides less resistance to stone movement. As a result, it is recommended the use of filter fabric be restricted to slopes no steeper than 2.5h to lv. Tears in the fabric greatly reduce its effectiveness so that direct dumping of riprap on the filter fabric is not allowed and due care must be exercised during construction. None- theless, filter fabric has proven to be an adequate replacement for granular bedding in many instances. Filter fabric provides an ade- quate bedding for channel linings along uniform mild sloping channels where leaching forces are primarily perpendicular to the fabric. At drop structures and sloped channel drops, where seepage forces may run parallel with the fabric and cause piping along the bottom surface of the fabric, special care is required in the use of filter 11-15-82 Table 8-1 lists several gradations of riprap. The minimum average size designation for loose riprap shall be 12 inches. Smaller sizes of riprap shall be either buried on slopes which can be easily maintained (4 to 1 minimum side slopes) or grouted if slopes are steeper. Grouted riprap should meet all the requirements for regular riprap except that the smallest rock fraction (smaller than the 10 per- cent size) should be eliminated from the gradation. A reduction of riprap size by one size designation (from 18 inches to 12 inches or from 24 inches to 18 inches) is permitted for grouted riprap. Table 8-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP % of Total Weight Smaker than the Stone Size dsot Riprap Designation Given Size (in pounds) (inches) 70-100 85 Class 6 tt 50-70 35 v L) 35-50 10 6 11,1P 2-10 <1 70-100 440 Class 12 50-70 275 35-50 85 12 2-10 3 (,l11} r' Class 18 Class 24 100 1275 50-70 655 35-50 275 2-10 10 100 3500 50-70 1700 35-50 655 2-10 35 18 24 t = Mean Oarticle Size. At least 50 percent of the mass shall be stones equal to or larger than this dimension. tt Bury on 4 to 1 side scopes or grout rock it slopes are steeper. Table 8-2 summarizes riprap requirements for a stable channel lining based on the following relationship: VS°,' (dso)a.s (Ss-1)°.se -- 5.8 in which, V = Mean channel velocity in feet per second S = Longitudinal channel slope in feet per foot Ss = Specific gravity of rock (minimum Ss = 2.50) ds° = Rock size in feet for which 50 percent of the riprap by weight is smaller. The rock sizing requirements in Table 8-2 are based on the rock having a specific gravity of 2.5 or more. Also, the rock size does not need to be increased for steeper channel side slopes, provided the side slopes are no steeper than 2h:1 v. Rock Tined side slopes steeper than 2h:1 v are not recommended. Table 8-2 RIPRAP REQUIREMENTS FOR CHANNEL LININGS tt VS°"I(S,-1)0.aa t Rod[ TYPe tt 0to 1.4 1.5to4.0 4.1 to5.8 5.9to7.1 7.2 to 8.2 No Riprap Required Class 6 Riprap Class 12 Riprap Class 18 Riprap Class 24 Riprap t Use S, = 2.5 unless the source of rock and its densities are known at the time o1 design. tt Table vatid only for Froude number of 0 6 or less and side slopes no steeper than 2h:1 v. MAY 1964 8-18 DESIGN CRITERIA APPENDIX G SWALE CALCULATIONS SWALE A -A Worksheet for Irregular Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE A -A Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.014000 ft/ft Elevation range: 57.00 ft to 57.95 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 57.95 0.00 19.00 0.060 19.00 57.00 19.00 21.00 0.016 20.00 57.00 21.00 40.00 0.060 21.00 57.00 40.00 57.95 Discharge 30.80 cfs - QLon DP i 0.. Results Wtd. Mannings Coefficient 0.039 Water Surface Elevation 57.75 ft Flow Area 12.77 ft2 Wetted Perimeter 32.07 ft Top Width 32.03 ft Height 0.75 ft Critical Depth 57.63 ft Critical Slope 0.029461 ft/ft Velocity 2.41 ft/s Velocity Head 0.09 ft Specific Energy 57.84 ft Froude Number 0.67 Flow is subcritical. l rC 11 /09/98 02:33:01 PM ElowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE A -A Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE A -A Irregular Channel Manning's Formula Water Elevation Section Data Wtd. Mannings Coefficient Channel Slope Water Surface Elevation Discharge 0.039 0.014000 ft/ft 0.75 ft 30.80 cfs 1.0 0.9 0.8 0.7 0.6 0.5 a) W 0.4 0.3 0.2 0.1 0.0 0 0 5 0 10.0 15.0 20.0 25.0 Station (ft) • mitm mr11 LI FA M. NM El • • 711/ KVA 30.0 35.0 40.0 ra 1 1 /09/98 02:30:26 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 SWALE A -A Worksheet for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 SWALE A -A Irregular Channel Manning's Formula Water Elevation Input Data Channel Slope 0.014000 ft/ft Elevation range: 57.00 ft to 57.95 ft. Station (ft) Elevation (ft) Start Station 0.00 57.95 0.00 19.00 57.00 19.00 20.00 57.00 21.00 21.00 57.00 40.00 57.95 Discharge 8.40 cfs = Qz 0 1 Results Wtd. Mannings Coefficient Water Surface Elevation Flow Area Wetted Perimeter Top Width Height Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.033 57.41 ft 4.18 ft2 18.43 ft 18.40 ft 0.41 ft 57.36 ft 0.024165 ft/ft 2.01 ft/s 0.06 ft 57.47 ft 0.74 End Station 19.00 21.00 40.00 Roughness 0.060 0.016 0.060 11/09/98 02:32:37 PM FlawMaster v5. 15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE B-B Worksheet for Trapezoidal Channel Project Description Project File x:19145001drainage\flowmast,fm2 Worksheet SWALE B-B Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 ovru.ss Channel Slope 0.018000 ft/ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 20.00 ft Discharge 397.00 ft3/s — Q,oa De lb G± FL, rt Uf-e- S Fie i Results Depth 1.70 ft Flow Area 63.04 ft2 Wetted Perimeter 54.22 ft Top Width 54.05 ft Critical Depth 1.73 ft Critical Slope 0.016960 ft/ft Velocity 6.30 ft/s Velocity Head 0.62 ft Specific Energy 2.32 ft Froude Number 1.03 Flow is supercritical. wt. < z' 09/23/98 08:56:19 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 SWALE B-B Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:1914500\drai nage\flowmast.frn2 SWALE B-B Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.018000 ft/ft 10.00 H : V 10.00 H : V 20.00 397.00 ft ft3/s Qrpp Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 2.22 ft 93.39 64.53 64.31 1.73 ft2 ft ft ft 0.049843 ft/ft 4.25 ft/s 0.28 ft 2.50 ft 0.62 OP1 b F-tvre Zipop-64. 605 6/-5 09/23/98 08:56:02 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5 15 Page 1 of 1 SWALE B-B Cross Section for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE B-B Trapezoidal Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Bottom Width Discharge 0.035 0.018000 ft/ft 1.70 ft 10.00 H : V 10.00 H : V 20.00 ft 397.00 ft3/s 20.00 ft 1 -Li .70 ft V H 1 NTS 09/23/98 0B:56:32 PM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE B-B Worksheet for Trapezoidal Channel Project Description Project File x:19145001drainage',flowmast.fm2 Worksheet SWALE B-B Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.018000 ft/ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 20.00 ft Discharge 2.00 ft3/s = Q z 0 A D?_Lb Results Depth 0.12 ft Flow Area 2.56 ft2 Wetted Perimeter 22.43 ft Top Width 22.41 ft Critical Depth 0.07 ft Critical Slope 0.130631 ft/ft Velocity 0.78 ft/s Velocity Head 0.01 ft Specific Energy 0.13 ft Froude Number 0.41 Flow is subcriticai. roc, ,c..���' �or c7 a7,e.c Q./x2i,t 09/23/98 08:55:41 PM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE C-C Worksheet for Irregular Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE C-C Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.003000 ft/ft Elevation range: 58.00 ft to 61.00 ft. Station (ft) Elevation (ft) -8.00 61.00 8.00 58.00 10.00 58.00 12.00 58.00 14.00 58.00 30.00 61.00 Discharge 68.30 ft3/s Start Station -8.00 10.00 12.00 Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 59.77 ft Flow Area 27.45 ft2 Wetted Perimeter 25.26 ft Top Width 24.93 ft Depth 1.77 ft Critical Water Elev. 59.14 ft Critical Slope 0.016299 ft/ft Velocity 2.49 ftls Velocity Head 0.10 ft Specific Energy 59.87 ft Froude Number 0.42 Flow is subcritical. End Station Roughness 10.00 0.060 12.00 0.012 30.00 0.060 4 D ' Zb 09/21 /9 8 11:11:30 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE C-C Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:191 45001d rainage\flowmast.tm2 SWALE C-C Irregular Channel Manning's Formula Water Elevation Section Data Wtd. Mannings Coefficient Channel Slope Water Surface Elevation Discharge 0.035 0.003000 ft/ft 59.77 ft 68.30 f13/s 10.0 Station (ft) Min �YG�( f' 09/21 /98 11:17:51 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 SWALE C-C Worksheet for Irregular Channel Project Description Project File x:19145001drainage\flowmast.fm2 Worksheet SWALE C-C Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.003000 ft/ft Elevation range: 58.00 ft to 61.00 ft. Station (ft) Elevation (ft) Start Station End Station Roughness -8.00 61.00 -8.00 10.00 0.060 8.00 58.00 10.00 12.00 0.012 10.00 58.00 12.00 30.00 0.060 12.00 58.00 14.00 58.00 30.00 61.00 Discharge 21.30 ft3/s = Qz +0 p17 a/o Results Wtd. Mannings Coefficient 0.031 Water Surface Elevation 58.96 ft Flow Area 10.72 ft2 Wetted Perimeter 16.45 ft Top Width 16.27 ft Depth 0.96 ft Critical Water Elev. 58.61 ft Critical Slope 0.016054 ft/ft I5 Velocity 1.99 ft/s ti Z Velocity Head 0.06 ft Specific Energy 59.02 ft Froude Number 0.43 Flow is subcritical. 1 U-9 09/21/98 1 1 :1 1 :55 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 i SWALE D-D Worksheet for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 SWALE D-D Irregular Channel Manning's Formula Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 65.00 ft to 67.60 ft. Station (ft) Elevation (ft) -2.50 8.00 9.00 11.00 12.00 22.50 Discharge 67.60 65.00 65.00 65.00 65.00 67.60 Start Station -2.50 9.00 11.00 End Station 9.00 11.00 22.50 63.52 ft3/s = Q , o� +c bP .3_1 a Results Wtd. Mannings Coefficient Water Surface Elevation Flow Area Wetted Perimeter Top Width Depth Critical Water Elev. Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.029 66.65 ft 17.52 ft2 17.69 ft 17.29 ft 1.65 ft 66.31 ft 0.011754 ft/ft 3.63 ft/s 0.20 ft 66.85 ft 0.63 Roughness 0.060 0.012 0.060 6-10 09/15/98 RowMaster v5 15 08:5343 AM Kaestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE D-D Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 SWALE D-D Irregular Channel Manning's Formula Water Elevation Section Data Wtd. Mannings Coefficient Channel Slope Water Surface Elevation Discharge 0.029 0.005000 ft/ft 66.65 ft 63.52 fi31s 68.0 67.5 67.0 0 66.5 to a) W 66.0 65.5 65.0 -5.0 0.0 5.0 10.0 Station (ft) 15.0 20.0 25.0 6-7 09/ 15198 08:53:54 AM Haestad Methods, Inc 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 SWALE D-D Worksheet for Irregular Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE D-D Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 65.00 ft to 67.60 ft. Station (ft) Elevation (ft) Start Station End Station Roughness -2.50 67.60 -2.50 9.00 0.060 8.00 65.00 9.00 11.00 0.012 9.00 65.00 11.00 22.50 0.060 11.00 65.00 12.00 65.00 22.50 67.60 Discharge 17.80 ft/s = (a?. }o D? 1.4 0, Results Wtd. Mannings Coefficient 0.025 Water Surface Elevation 65.83 ft Flow Area 6.12 ft2 Wetted Perimeter 10.92 ft Top Width 10.72 ft Depth 0.83 ft Critical Water Elev. 65.67 ft Critical Slope 0.010659 ft/ft Velocity 2.91 ft/s Velocity Head 0.13 ft Specific Energy 65.96 ft Froude Number 0.68 Flow is subcritical. 09/15/98 09:49.50 AM FlowMaster v5 15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE E-E Worksheet for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE E-E Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.050000 ft/ft Left Side Slope 6.00 H : V Right Side Slope 6.00 H : V Bottom Width 4.00 ft Discharge 5.20 ft'fs = Q ioo ? 1 5 Results Depth 0.37 ft Flow Area 2.26 ft2 Wetted Perimeter 8.44 ft Top Width 8.38 ft Critical Depth 0.32 ft Critical Slope 0.085187 ft/ft Velocity 2.30 ftis Velocity Head 0.08 ft Specific Energy 0.45 ft Froude Number 0.78 Flow is subcritical. 07/09/98 09:1 1:07 AM -3 FlowMaster v5,15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 1 1 1 SWALE E-E Cross Section for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE E-E Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.050000 ft/ft Depth 0.18 ft Left Side Slope 6.00 H : V Right Side Slope 6.00 H : V Bottom Width 4.00 ft Discharge 1.46 ft31s 4.00 ft �0.1$ ft 1 V H 1 NTS 09/15/98 11:43:01 AM FiowMaster v5.15 Haestad Methods, knc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE E-E Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE E-E Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.050000 ft/ft 6.00 H : V 6.00 H : V 4.00 ft 1.50 ft3/s G? z Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.19 ft 0.95 ft2 6.26 ft 6.23 ft 0.15 ft 0.104838 ft/ft 1.58 ftls 0.04 ft 0.22 ft 0.71 07/09/98 09',11:41 AM DP 15 61-1 FlowMaster v5.15 Haestad Methods, Inc- 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 1 1 SWALE F-F Worksheet for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE F-F Irregular Channel Manning's Formula Water Elevation Input Data Channel Slope 0.006000 ft/ft Elevation range: 68.00 ft to 70.00 ft. Station (ft) Elevation (ft) 0.00 70.00 8.00 68.00 9.00 68.00 11.00 68.00 12.00 68.00 20.00 70.00 Discharge 22.19 ft'/s = G,00 +bbP 1gc- Start Station 0.00 9.00 11.00 Results Wtd. Mannings Coefficient Water Surface Elevation Flow Area Wetted Perimeter Top Width Depth Critical Water Elev. Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.025 68.89 ft 6.77 ft2 11.37 ft 11.15 ft 0.89 ft 68.76 ft 0.010723 ft/ft 3.28 ft/s 0.17 ft 69.06 ft 0.74 End Station 9.00 11.00 20.00 Roughness 0.060 0.012 0.060 09/15/98 08:56:33 AM FlowMaster v5.15 Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE F-F Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE F-F Irregular Channel Manning's Formula Water Elevation Section Data Wtd. Mannings Coefficient Channel Slope Water Surface Elevation Discharge 0.025 0.006000 ft/ft 68.89 ft 22.19 ft3/s F Iv w 09/15/98 08:56:42 AM 68.0 0.0 20 4.0 60 80 10.0 12.0 Station (ft) 14.0 16.0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203} 755-1666 18.0 20.0 FlowMaster v5 15 Page 1 of 1 SWALE F-F Worksheet for Irregular Channel Project Description Project File x:19145001drainage\flowmast.fm2 Worksheet SWALE F-F Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.006000 ft/ft Elevation range: 68.00 ft to 70.00 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 70.00 0.00 9 00 0.060 8.00 68.00 9.00 11.00 0.012 9.00 68.00 11.00 20.00 0.060 11.00 68.00 12.00 68.00 20.00 70.00 DischaTe 6.17 ft3/s = Q2 io 1:)? 14G Results Wtd. Mannings Coefficient 0.022 Water Surface Elevation 68.44 ft Flow Area 2.50 ft2 Wetted Perimeter 7.59 ft Top Width 7.48 ft Depth 0.44 ft Critical Water Elev. 68.37 ft Critical Slope 0.010690 ft/ft Velocity 2.47 ft/s Velocity Head 0.09 ft Specific Energy 68.53 ft Froude Number 0.75 Flow is subcritical. 6 `I 09/15/98 09:52:20 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale G-G w/conc. trickle Worksheet for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE G-G Irregular Channel Manning's Formula Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 68.00 ft to 70.00 ft. Station (ft) Elevation (ft) 0.00 70.00 8.00 68.00 9.00 68.00 11.00 68.00 12.00 68.00 20.00 70.00 Discharge 55.17 ft3/s Start Station 0.00 9.00 11.00 End Station 9.00 11.00 20.00 13370 ' ,ao +a VP 14 b Results Wtd. Mannings Coefficient Water Surface Elevation Flow Area Wetted Perimeter Top Width Depth Critical Water Elev. Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.028 69.53 ft 15.50 ft' 16.63 ft 16.25 ft 1.53 ft 69.23 ft 0.011525 ft/ft 3.56 ft/s 0.20 ft 69.73 ft 0.64 09/ 15/98 09:30:42 AM Roughness 0.060 0.012 0.060 FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale G-G Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE G-G Irregular Channel Manning's Formula Water Elevation Section Data Wtd. Mannings Coefficient Channel Slope Water Surface Elevation Discharge 0.028 0.005000 ft/ft 69.53 ft 55.17 ft'/s 70. 69.5 9 69.0 c>3 68.5 68.0 0.0 2 0 0 -0 4 0 6 0 8 0 10.0 12.0 Station (ft) 14.0 16.0 18.0 20.0 09/15/98 09:30:50 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 Swale G-G wlconc. trickle Worksheet for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE G-G Irregular Channel Manning's Formula Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 68.00 ft to 70.00 ft. Station (ft) Elevation (ft) 0.00 8.00 9.00 11.00 12.00 20.00 Discharge 70.00 68.00 68.00 68.00 68.00 70.00 11.33 ft3/s Start Station 0.00 9.00 11.00 Results Wtd. Mannings Coefficient Water Surface Elevation Flow Area Wetted Perimeter Top Width Depth Critical Water Elev. Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.023 68.65 ft 4.27 ft2 9.34 ft 9.18 ft 0.65 ft 68.52 ft 0.010537 ft/ft 2.66 ft/s 0.11 ft 68.76 ft 0.69 09/ 15/98 11.31:36 AM End Station 9.00 11.00 20.00 D-P Roughness 0.060 0.012 0.060 6-1 -1( FlowMaster v5.15 Haestad Methods, Inc 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE H-H Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE H-H Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.020000 ft/ft 6.00 H : V 6.00 H : V 4.00 6.10 ft ft3/s Z 1DO Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.50 ft — 3.52 ft2 10.11 ft 10.02 ft 0.35 ft 0.083091 ft/ft 1.73 ftls — co rLA.55 0.05 ft 0.55 ft 0.52 -13 07/09/98 092113AM FowMaster v5.15 Haestad Methods. Inc 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE H-H Cross Section for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE H-H Trapezoidal Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.020000 ft/ft 0.50 ft 6.00 H: V 6.00 H : V 4.00 ft 6.10 ft3/s 09/ 15/98 11,44.03 AM 4.00 ft 050ft 1 V A H 1 NTS 6 -z3 FlowMaster v5,15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 OVERFLOW SWALE I-1 Worksheet for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE I-1 Flow Element Trapezoidal Channel Method Manning's Formula Sole For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.050000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 2.00 ft Discharge 4.31 ft'/s Results Depth 0.45 ft Flow Area 1.73 ft2 Wetted Perimeter 5.74 ft Top Width 5.63 ft Critical Depth 0.40 ft Critical Slope 0.082487 ft/ft Velocity 2.49 ft/s Velocity Head 0.10 ft Specific Energy 0.55 ft Froude Number 0.79 Flow is subcritical. 09/15/98 09:58'49 AM R wMaster v5 15 Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE I-1 Cross Section for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE 1-1 Trapezoidal Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.050000 ft/ft 0.45 ft 4.00 H : V 4.00 H:V 2.00 ft 4.31 ft3/s 09/15/98 11:27:32 AM 2.00 ft t 0.45 . � ft ' V N H 1 NTS FlowMaster v5.15 Haestad Methods. Inc_ 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE I-1 Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 SWALE 1-1 Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.050000 ft/ft 4.00 H : V 4.00 H : V 2.00 ft 1.42 ft'/s Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. Q2 D t?4 0.26 ft 0.78 ft2 4.12 ft 4.06 ft 0.22 ft 0.097377 ft/ft 1.82 ftis < ' J b 7.4`5. 0.05 ft ' I -p,rovrd¢, c.4.141.4-tr` 0.31 ft �ua(i�y I�ar)e�';>F5 0.73 09/15/98 11,19',31 AM Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 OVERFLOW SWALE J-J Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE J-J Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.033000 ft/ft 10.00 H:V 10.00 H : V 6.00 ft 24.00 ft'/s Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.70 ft 9.06 ft2 20.02 ft 19.96 ft 0.58 ft 0.072276 ft/ft 2.65 ft/s 0.11 ft 0.81 ft 0.69 Oct 16, 1997 09'' 17''42 tb OF D pcc, ccz 7 J\ rn.lits Qz� (v. 5 cc5 JR Engineering, Ltd. FlowMaster v4,1b Haestad Methods, Inc- 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 OVERFLOW SWALE J-J Cross Section for Trapezoidal Channel Project Description Project File x:19146001drainagelflowmast.fm2 Worksheet SWALE J-J Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.033000 ft/ft Depth 0.70 ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 6.00 ft Discharge 24.00 fN/s 77 6.00 ft 0.70 ft V N H 1 NTS 16 09/15/98 11:44:45 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE K-K Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE K-K Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.010000 ft/ft 4.00 H : V 4.00 H:V 2.00 ft 13.20 ft'/s = Q t a o Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 1.11 ft 7.16 ft' 11.17 ft 10.89 ft 0.71 ft 0.070557 ft/ft 1.84 ftls 0.05 ft 1.16 ft 0.40 07/09/98 10.44',38 AM 1/Z = 1, -Ct(5 FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE K-K Cross Section for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For Section Data x:19145001drainagelflowmast.fm2 SWALE K-K Trapezoidal Channel Manning's Formula Channel Depth Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.010000 ft/ft 1.11 ft 4.00 H:V 4.00 H : V 2.00 ft 13.16 ft'Is 2.00 ft V H 1 NTS 09/15/98 11:45:28 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE L-L Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE L-L Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.060000 ft/ft 10.00 H : V 10.00 H:V 6.00 ft 60.28 ft3/s Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.93 ft 14.32 ft2 24.77 ft 24.67 ft 0.92 ft 0.063437 ft/ft 4.21 ft/s 0.28 ft 1.21 ft 0.97 09/1 5198 09:06:04 AM Q,co + "Tc51z.+-Di>13 in QaS2 rtlets are, e-ln/qtri 6 -31 FlowMaster v515 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 OVERFLOW SWALE L-L Cross Section for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE L-L Trapezoidal Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.060000 ft/ft 0.93 ft 10.00 H . V 10.00 H : V 6.00 ft 60.28 ft'/s 0.93 ft 6.00 ft V I\ H 1 NTS 09/15/98 09:06',12 AM FlowMaster v5 15 Haestad Methods, Inc 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE L-L Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE L-L Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.060000 ft/ft 10.00 H : V 10.00 H : V 6.00 ft 14.10 ft'/s Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.46 ft 4.94 ft2 15.34 ft 15.29 ft 0.43 ft 0.078156 ft/ft 2.85 ft/s 0.13 ft 0.59 ft 0.88 Q.2 -0'PP ►ai DP13 r� Lase- ba44/ rife are. el cued.. 09/15/98 10-01 52 AM 6-33 FlowMaster v5 15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE M-M Worksheet for Irregular Channel Project Description Project File x:19145001drainagelflowmastim2 Worksheet SWALE M-M TRICKLE <duplicate> <duplicate> Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 0.00 ft to 3.57 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 3.57 0.00 1.00 0.060 1.00 2.57 1.00 11.30 0.030 11.30 0.00 11.30 14.30 0.013 14.30 0.00 14.30 17.30 0.060 17.30 3.57 Discharge 62.20 ft3/s " Qtoo DP 30\ Results Wtd. Mannings Coefficient 0.034 Water Surface Elevation 2.16 ft Flow Area 17.73 ft2 Wetted Perimeter 14.72 ft Top Width 13.45 ft Depth 2.16 ft Critical Water Elev. 1.59 ft Critical Slope 0.017337 ft/ft Velocity 3.51 ftls Velocity Head 0.19 ft Specific Energy 2.35 ft Froude Number 0.54 Flow is subcritical. 1 1 /09/98 03:21:05 PM FiowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE M-M Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 SWALE M-M TRICKLE <duplicate> <duplicate> Irregular Channel Manning's Formula Water Elevation Section Data Wtd. Mannings Coefficient Channel Slope Water Surface Elevation Discharge 0.034 0.005000 ft/ft 2.16 ft 62.20 ft3/s 4.0 3.5 3.0 2.5 1.0 0.5 0.0 /1 FM 00 1 1 /09/98 03:21:15 PM 2 0 40 60 8.0 1 0.0 Station (ft) 12.0 14.0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 6.0 1 8.0 FlowMaster v5,1 Paget of 1 SWALE M-M Worksheet for Irregular Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE M-M TRICKLE <duplicate> <duplicate> Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 0.00 ft to 3.57 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 3.57 0.00 1.00 0.060 1.00 2.57 1.00 11.30 0.030 11.30 0.00 11.30 14.30 0.013 14.30 0.00 14.30 17.30 0.060 17.30 3.57 Discharge 17.20 ft3/s r2f 6 Results Wtd. Mannings Coefficient 0.031 Water Surface Elevation 1.11 ft Flow Area 6.35 ft2 Wetted Perimeter 9.05 ft Top Width 8.40 ft Depth 1.11 ft Critical Water Elev. 0.81 ft Critical Slope 0.016523 ft/ft Velocity 2.71 ft/s Velocity Head 0.11 ft Specific Energy 1.23 ft Froude Number 0.55 Flow is subcritical. a-50 1 1 /09/98 03:30:22 PM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE N-N Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE N-N Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.020000 ft/ft 4.00 H : V 4.00 H : V 6.00 ft 33.56 ft'Is Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 1.10 ft 11.49 ft2 15.10 ft 14.83 ft 0.82 ft 0.063338 ft/ft 2.92 ftis 0.13 ft 1.24 ft 0.58 09/15/98 09:t9:31 AM �pq+b-P10 FlowMaster v5.15 Raestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 14 OVERFLOW SWALE N-N Cross Section for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE N-N Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.020000 ft/ft Depth 1.10 ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Wdth 6.00 ft Discharge 33.56 ft3/s 6.00 ft V H 1 NTS -33 09/15/98 09:1939 AM FlowMaster v5.15 Haestad Methods, Inc 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE N-N Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE N-N Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.020000 ft/ft 4.00 H:V 4.00 H : V 6.00 ft 9.40 ft3ls = +p r DP 1 C) Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.56 ft 4.66 ft2 10.65 ft 10.51 ft 0.39 ft 0.077661 ft/ft 2.02 ft/s 0.06 ft 0.63 ft 0.53 09/ 15/98 10:06:28 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755.1666 -3` FlowMaster v5.15 Page 1 of 1 OVERFLOW SWALE 0-0 Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE 0-0 Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.020000 ft/ft 4.00 H : V 4.00 H : V 4.00 ft 13.14 ft3/s Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.79 ft 5.67 ft2 10.52 ft 10.33 ft 0.57 ft 0.071678 ft/ft 2.32 ftls 0.08 ft 0.87 ft 0.55 Qroo DP 8 4V 09/15/98 09'20:52 AM FlowMaster v5.15 liaestad Methods, Inc 37 Brookside Road Waterbury. CT 06706 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE 0-0 Cross Section for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage1flowmast.fm2 SWALE 0-0 Trapezoidal Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.020000 ft/ft 0.79 ft 4.00 H:V 4.00 H:V 4.00 ft 13.14 ft'/s 09/15/95 09:20:34 AM 4.00 ft 0.79 ft 1 1 1 V \ H 1 NTS FlowMaster v5.15 Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE 0-0 Worksheet for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE 0-0 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.020000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 4.00 ft Discharge 3.58 fr/s = Q kp D? Results Depth 0.40 ft Flow Area 2.24 ft' Wetted Perimeter 7.30 ft Top Width 7.21 ft Critical Depth 0.27 ft Critical Slope 0.088167 ft/ft Velocity 1.59 ft/s Velocity Head 0.04 ft Specific Energy 0.44 ft Froude Number 0.50 Flow is subcritical. isrub:4, Q fS 09/15/98 11:35:54 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE P-P Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE P-P Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.070000 ft/ft 800 H:V 8.00 H : V 4.00 ft 3.30 ft3/s = (, oc 0 F Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.25 ft 1.53 ft2 8.09 ft 8.06 ft 0.23 ft 0.093742 ft/ft 2.16 ft/s 0.07 ft 0.33 ft 0.87 07/09/98 09:38:42 AM FlowMaster v5,15 Haestad Methods, Inc- 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 OVERFLOW SWALE P-P Cross Section for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet SWALE P-P Flow Element Trapezoidal Channel Method Manning's Formula Sole For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.070000 ft/ft Depth 0.25 ft Left Side Slope 8.00 H : V Right Side Slope 8.00 H : V Bottom Width 4.00 ft Discharge 3.27 ft3/s 4.00 ft V I\ H 1 NTS 09/15(98 11:46:05 AM F3owMaster v5.15 Haestad Methods, Inc, 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE P-P Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE P-P Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.070000 ft/ft 8.00 H:V 8.00 H : V 4.00 ft 1.10 ft3/s = Q.Q -' I)? 3 Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical, 0.14 ft 0.71 ft2 6.25 ft 6.23 ft 0.12 ft 0.112641 ft/ft 1.54 ft/s 0.04 ft 0.18 ft 0.80 < a /s bIAA -6;ncL Ira s I;rted w1 a-provit de. Loaf -el' 09/ 15/98 10:10:33 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 1 OVERFLOW SWALE 0-0 Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 SWALE Q-Q Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.025000 ft/ft 10.00 H : V 10.00 H : V 10.00 ft 27.93 ft3/s = Q w dD i 1 t Of Z Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.69 ft ft2 23.77 ft 23.70 ft 0.52 ft 0.072190 ft/ft 2.42 ftls 0.09 ft 0.78 ft 0.61 11.54 1 1 /09/98 02:22:10 PM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 OVERFLOW SWALE 0-0 Cross Section for Trapezoidal Channel Project Description Project File x:1914500\drainagelflowmast.fm2 Worksheet SWALE Q-Q Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.025000 ftlft Depth 0.69 ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 10.00 ft Discharge 27.93 ft3/s 1 1 /09/98 02:22:26 PM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FlowMaster v5.15' Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 10.00 ft V H NTS OVERFLOW SWALE 0-0 Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 SWALE Q-Q Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.025000 ft/ft 10.00 H : V 10.00 H : V 10.00ft 7.07 ft3/s i(1 1 tOF t- o P z. J �i Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.33 ft 4.39 tt2 16.63 ft 16.60 ft 0.23 ft 0.090823 ft/ft 1.61 ft/s 0.04 ft 0.37 ft 0.55 GI -LI 1 1 /09/98 02:22:54 PM FlowMaster v5.15 Haestad Methods. inc. 37 Brookside Road Waterbury. CT D6708 (203) 755-1666 Page 1 01 1 SWALE R-R Worksheet for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:1914500\drainage1.flowmast.fm2 SWALE R-R Irregular Channel Manning's Formula Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 56.00 ft to 58.00 ft. Station (ft) Elevation (ft) 0.00 8.00 8.50 10.50 11.00 19.00 Discharge 58.00 56.00 56.00 56.00 56.00 58.00 63.20 ft3/s Start Station 0.00 6.50 10.50 Results Wtd. Mannings Coefficient Water Surface Elevation Flow Area Wetted Perimeter Top Width Depth Critical Water Elev. Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.027 57.69 ft 16.53 ft2 16.95 ft 16.54 ft 1.69 ft 57.40 ft 0.010279 ft/ft 3.82 ft/s 0.23 ft 57.92 ft 0.67 1 1 /09/98 03:19:26 PM End Station 8.50 10.50 19.00 Roughness 0.060 0.012 0.060 oe 3Oa x S33d�o FlowMaster v5,1I Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE R-R Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:1914500\drainage\flowmast.fm2 SWALE R-R Irregular Channel Manning's Formula Water Elevation Section Data Wtd. Mannings Coefficient Channel Slope Water Surface Elevation Discharge 0.027 0.005000 ft/ft 57.69 ft 63.20 ft3is 58. 57.5 c 0 57.0 iC N W 56.5 56.0 t) 0 00 20 40 60 80 10.0 12.0 Station (ft) 14.0 16.0 18.0 20.0 it/09/98 03:19:40 PM Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 SWALE R-R Worksheet for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:1914500\drainagelflowmast.fm2 SWALE R-R Irregular Channel Manning`s Formula Water Elevation input Data Channel Slope 0.005000 ft/ft Elevation range: 56.00 ft to 58.00 ft. Station (ft) Elevation (ft) 0.00 8.00 8.50 10.50 11.00 19.00 Discharge 58.00 56.00 56.00 56.00 56.00 58.00 - 13.20 ft3/s Z DP C Start Station 0.00 8.50 10.50 Results Wtd. Mannings Coefficient Water Surface Elevation Flow Area Wetted Perimeter Top Width Depth Critical Water Elev. Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.021 56.73 ft 4.34 ft2 9.04 ft 8.86 ft 0.73 ft 56.64 ft 0.008318 ft/ft 3.04 ft/s 0.14 ft 56.88 ft 0.77 End Station 8.50 10.50 19.00 Roughness 0.060 0.012 0.060 6T-1 1 1 /09/98 03:20:07 PM FhowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of Swale S-S Worksheet for Trapezoidal Channel proloext Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 Swale s-s2 Trapezoidal Channel Manning's Formula Discharge Input Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Bottom Width 0.030 0.005000 ft/ft 2.00 ft 4.000000 H : V 4.000000 H : V 10.00 ft Results Discharge Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 154.69 cfs 36.00 ft2 26.49 ft 26.00 ft 1.57 ft 0.012864 ft/ft 4.30 ftls 0.29 ft 2.29 ft 0.64 09/23/98 10:22:10 PM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale S-S Cross Section for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 Swale s-s2 Trapezoidal Channel Manning's Formula Discharge Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Bottom Width Discharge 0.030 0.005000 ftift 2.00 ft 4.000000 H : V 4.000000 H : V 10.00 ft 154.69 cfs 09/23/98 10:22:27 PM 1 1 1 1 1 1 2.00 ft • 1 1 1 1 1 1 1 1 1 FlowMaster v5.15 Haostad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 {203) 755-1666 Page 1 of 1 1 10.00 ft N V H 1 NTS Swale T-T Worksheet for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 Swale T Triangular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Discharge 0.030 0.005000 ft/ft 85.000000 H : V 50.000000 H : V 600.00 cfs Aol. c� o Ved1ot-) ti Ax ✓UPFJ C e� LC l-v1 �, Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 1.69 ft 191.96 ft2 227.69 ft 227.66 ft 1.37 ft 0.014862 ft/ft 3.13 ft/s 0.15 ft 1.84 ft 0.60 09/26/96 10:48:14 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale T-T Cross Section for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 Swale T Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Discharge 0.030 0.005000 ft/ft 1.69 ft 85.000000 H : V 50.000000 H : V 600.00 cis 1.69 ft 1 V H1 NTS t 1 1 09/28/98 FlowMaster v5.15 10:48:39 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale U-U Worksheet for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainage\flowmast.fm2 Swale U-U Triangular Channel Manning's Formula Channel Depth Ineut Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Discharge 0.030 0.005000 ft/ft 4.000000 H : V 4,000000 H : V 200.00 cfs -- Fa d t : a, Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 3.25 ft 42.18 ft2 26.78 ft 25.98 ft 2.74 ft 0.012290 ft/ft 4,74 ft/s 0.35 ft 3.60 ft 0.66 v BSIl o-0 Cc 09/28/98 10:50:57 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203} 755-1666 Page 1 of 1 Swale U-U Cross Section for Triangular Channel Project Description Project File Worksheet Flow Element Method Sole For x:19145001dra inage\flowmast.fm2 Swale U-U Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Discharge 0.030 0.005000 ft/ft 3.25 ft 4.000000 H : V 4.000000 H : V 200.00 cfs i 3.25 ft 1 V N H1 NTS 1 1 1 1 1 1 1 09/28/98 10:51:15 AM FlowMaster v5.15 Haestad Methods, inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 2' Conc. Trickle Channel Worksheet for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:1914 5 0 01d ra i n a g elf l owma st. frn2 Trickle Irregular Channel Manning's Formula Discharge Input Data Channel Slope Water Surface Elevation Elevation range: 54.80 ft to 55.00 ft. Station (ft) Elevation (ft) 0.00 55.00 0.00 54,90 1.00 54.80 2.00 54.90 2.00 55.00 0.005000 ft/ft 55.00 ft Start Station 0.00 Results Wtd. Mannings Coefficient Discharge Flow Area Wetted Perimeter Top Width Depth Critical Water Elev. Critical Slope Velocity Velocity Head Specific Energy Froude Number Full Flow Capacity Flow is supercritical. 0.012 0.69 ft3/s 0.30 ft' 2.21 ft 2.00 ft 0.20 ft 55.01 ft 0.004488 ft/ft 2.31 ft/s 0.08 ft 55.08 ft 1.05 0.69 fe/s End Station 2.00 Roughness 0.012 Oct 30, 1997 12:07:52 1 JR Engineering, Ltd. Haestad Methods. Inc_ 37 Brookside Road Waterbury, CT 06706 (203) 755-1665 FlowMaster v4.1 b Page 1 of 1 2' Conc. Trickle Channel Cross Section for Irregular Channel Project Description Project File Worksheet Flow Element Method Solve For x:19145001drainagelflowmast.fm2 Trickle Irregular Channel Manning's Formula Discharge Section Data Wtd. Mannings Coefficient Channel Slope Water Surface Elevation Discharge 0.012 0.005000 ft/ft 55.00 ft 0.69 ft3/s 55. 54.9 54. 0 al 54.85 fr, 5 54.8 54.75 0.0 • • • •1•1 Oct 30, 1997 12:08:13 0.5 1.0 Station (ft) 1 5 JR Engineering, Ltd. Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 2.0 FlowMaster v4.1 b Page 1 of 1 APPENDIX H SPILLWAY & WATER QUALITY CALCULATIONS Spillway September 17, 1998 LOCATION: WATERGLEN P.U.D. CALCULATIONS: DETENTION POND SPILLWAY SIZING COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. Equation for flow over weir Q = CLH 312 where C = weir coefficient = H = overflow height L = length of the weir V !op of berm 4 /plIl elevation 2.6 4- L v 100 yr wsEL All ponds have a spill elevation 0.5 ft above the maximum water surface elevation in the pond Spillways will be designed with 0.5 ft flow depth, thus H = 0.5 ft Pond A Q (100) = 38.2 cfs = Q from DP 4, 5, 6 + Basin E-1 Spill elev = 61.5 ft 100 yr WSEL = 61.0 ft Weir length required: L= 42 ft UseL=45ft Pond B Q (100) = 45.7 cfs = Q from DP 1, 2, 3, lb + Basin E-2 Spill elev = 57.1 ft 100 yr WSEL = 56.6 ft Weir length required: L= 50 ft UseL=55ft Pond C Q (100) = 80.4 cfs = Q from DP 14a, 14 + Basin E-4 Spill elev = 64.6 ft 100 yr WSEL = 64.1 ft Weir length required: L= 87 ft Use L=90ft Pond D Q (100) = 132 cfs = Q from DP 12, 13, 26 + Basin E-5 Spill elev = 59.4 ft 100 yr WSEL = 58.9 ft Weir length required: L= 144 ft Use L=150ft Pond E Q (100) = 65.0 cfs = Q from DP 9, 10, 25 + Basin E-6 Spill elev = 55.8 ft 100 yr WSEL = 55.3 ft Weir length required: L= 71 ft Use L=75ft Pond F - sized by L&A to account for regional flow through site Spil€way xls H-1 Pond A Spillway Worksheet for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet Spill- pond A Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.040 Channel Siope 0.060000 ft/ft Left Side Slope 6.00 H : V Right Side Siope 6.00 H : V Bottom Width 45.00 ft Discharge 38.20 ft3/s Results Depth 0.24 ft Flow Area 11.12 ft2 Wetted Perimeter 47.91 ft Top Width 47.87 ft Critical Depth 0.28 ft Critical Slope 0.036176 ft/ft Velocity 3.44 ft/s Velocity Head 0.18 ft Specific Energy 0.42 ft Froude Number 1.26 Flow is supercritical. 09/15/98 02:51:03 PM FlowMaster v5-15 Haestad Methods. Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 1 1 1 1 1 1 1 1 1 Pond B Spillway Worksheet for Trapezoidal Channel Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet Spill- pond B Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.040 Channel Slope 0.030000 ft/ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 55.00 ft Discharge 45.70 ft3/s Results Depth 0.29 ft Flaw Area 16.77 ftz Wetted Perimeter 60.82 ft Top V1(dth 60.79 ft Critical Depth 0.27 ft Critical Slope 0.036508 ft/ft Velocity 2.73 ftls Velocity Head 0.12 ft Specific Energy 0.41 ft Froude Number 0.91 Flow is subcritical. 09/15/98 02:51:19 PM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Pond C Spillway Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For x:\914500\drainage\flowmast.fm2 Spill- pond C Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.040 0.100000 ft/ft 10.00 H : V 10.00 H : V 90.00 ft 80.40 ft'/s Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is supercritical. 0.21 ft 19.54 ft' 94.26 ft 94.24 ft 0.29 ft 0.035661 ft/ft 4.11 ft/s 0.26 ft 0.48 ft 1.59 09/15/98 02:51:36 PM FlowMaster v515 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Pond D Spillway Worksheet for Trapezoidal Channel 1 1 1 1 1 1 1 1 1 1 Project Description Project File x:19145001drainagelflowmast.fm2 Worksheet Spill- pond D Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.040 Channel Slope 0.080000 ft/ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 150.00 ft Discharge 132.00 ft3/s Results Depth 0.23 ft Flow Area 34.28 ft2 Wetted Perimeter 154.53 ft Top Width 154.50 ft Critical Depth 0.29 ft Critical Slope 0.035582 ft/ft Velocity 3.85 ftis Velocity Head 0.23 ft Specific Energy 0.46 ft Froude Number 1.44 Flow is supercritical. 09/15/98 02:51',51 PM fi FlowMaster v5.15 Haestad Methods, Inc. 37 8rookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Pond E Spillway Worksheet for Trapezoidal Channel Project Description Project File x:1914500\drainagelflowmast.fm2 Worksheet Spill- pond E Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.040 Channel Slope 0.080000 ft/ft Left Side Slope 10.00 H : V Right Side Slope 10.00 H : V Bottom Width 75.00 ft Discharge 65.00 fe/s Results Depth 0.22 ft Flow Area 17.18 ft2 Wetted Perimeter 79.47 ft Top Width 79.45 ft Critical Depth 0.28 ft Critical Slope 0.035989 ft/ft Velocity 3.78 ft/s Velocity Head 0.22 ft Specific Energy 0.44 ft Froude Number 1.43 Flow is supercritical. 09/15/98 02:52:15 PM k r(0 rjowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 11/9/98 LOCATION: ITEM: COMPUTATIONS BY: SUBMITTED BY: WATERGLEN, P.U.D. WATER QUALITY CAPTURE VOLUMES & OUTLET SIZING JPZ JR ENGINEERING, LTD. From Urban Strom Drainage Criteria! Manual, March 1969 (Referenced figures are attached at the end of this section) Use 40-hour brim -full volume drain time for extended detention basin Water Quality Capture Volume = WQCV = (required storage/12)'(tributary drainage area) Dwa = depth at outlet (1' minimum) MAJOR BASIN Trib. area (ac) % Imperv. Reburied Storage (in. of runoff) from Fig. 5-1 WQCV (ac-ft) req. vol WQCV *1.2 (ac-ft) Dwo (ft) req. area/row (in2/row) from Fig. 5-3 DET. POND A 12.01 22 0.09 0.09 0.11 1.0 0.60 DET. POND B 13.75 24 0.13 0.15 0.18 1.5 0.50 DET. POND C 22.04 37 0.16 0.29 0.35 1.2 1.70 DET. POND F 110.90 36 0.18 1.66 2.00 1.9 5.00 WQ outlet sizing for pond A From Figure 5-2, for 1/4 in. hole diameter Area of hole = 0.049 in` for 6 in. diameter riser & 1/4 in. hole diameter # of columns = 12 Area provided/row = 0.59 Area Required/row = 0.60 in2 in2 WQ outlet sizing for pond C From Figure 5-2, for 3/8 in. hole diameter Area of hole = 0.11 in2 for 8 in. diameter riser & 3/8 in. hole diameter # of columns = 15 Area provided/row = 1.65 in2 Area Required/row = 1.70 in2 WQ outlet sizing for pond F From Figure 5-2, for 3/4 in. hole diameter Area of hole = 0.442 in2 for 8 in. diameter riser & 3/4 in. hole diameter # of columns = 11 Area provided/row = 4.86 in2 Area Required/row = 5.00 in2 WQ outlet sizing for pond B From Figure 5-2, for 1/4 in. hole diameter Area of hole = 0.049 in2 for 8 in. diameter riser & 1/4 in. hole diameter # of columns = 10 Area provided/row = 0.49 in2 Area Required/row = 0.50 in2 Wgvol.xls 1 11 /9/98 LOCATION: WATERGLEN, P.U.D. CALCULATIONS: % IMPERVIOUS AREA CONTRIBUTING TO DETENTION PONDS COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERINC, LTD. From Urban Storm Drainage Criteria Manual, Table 3-1, Paved Streets: 100 % impervious Drive and Walks: Roofs: Undeveloped areas: Lawn areas: 96 % impervious 90 % impervious 2 % impervious 0 % impervious MAJOR BASIN SUB BASINS TOTAL AREA (ac.) ROAD/WALK AREA (100%) (ac.) BUILDING/DRIVE AREA (96%) (ac.) LAWN AREA (0%) (ac.) UNDEVELOPED AREA (2%) (ac.) DET. POND A E-1 4.68 0.00 0.12 0.00 4.56 0-1 5.16 0.57 0.70 3.89 0.00 D-2 1.40 0.66 0.17 0.00 0.57 C-1 0.77 0.25 0.17 0.35 0.00 TOTAL 12.01 1.48 1 1.16 4.24 5.13 AREA WEIGHTED % IMPERVIOUS FOR MAJOR BASIN: 22 DET. POND B OS-3 1.64 0.00 0.00 0.00 1.64 A-2 5.79 1,11 0.87 3.81 0.00 A-3 1.50 0.00 0.08 1.42 0.00 A-4 0.76 0.42 0.08 0.25 0.00 8-1 1.12 0.37 0.21 0.54 0.00 E-2 2.94 0.00 0.17 0.00 2.77 TOTAL 13.75 1.91 1.40 6.02 4.41 AREA WEIGHTED % IMPERVIOUS FOR MAJOR BASIN: 24 DET. POND C E-4 1.76 1.74 0.02 0.00 0.00 J-1 3.48 0.53 0.66 2.29 0.00 J-2 0.52 0.00 0.00 0.52 0.00 J-3 2.57 0.00 0.00 2.57 0.00 J-4 1.49 0.00 0.08 1.41 0.00 K-1 0.94 0.31 0.19 0.44 0.00 L-1 5 51 0.96 1.12 3.44 0.00 L-2 3.07 0.87 0.74 1.46 0.00 M-1 2.70 0.51 0.66 1.53 0.00 TOTAL 22.04 4.91 3.47 13.66 0.00 AREA WEIGHTED % IMPERVIOUS FOR MAJOR BASIN: 37 Wgvol.xls 11 /9/98 MAJOR BASIN SUB BASINS TOTAL AREA (ac.) ROAD/WALK AREA (100%) (ac.) BUILDING/DRIVE AREA (96%) (ac.) LAWN AREA (0%) (ac.) UNDEVELOPED AREA (2%) (ac.) DET. POND F E-4 1.76 1.74 0.02 0.00 0.00 E-5 2.92 _ 2.65 0.27 0.00 0.00 E-6 3.50 0.00 0.29 0.00 3.21 E-7 5.42 0.00 0.06 5.36 0.00 E-8 7.19 0.00 0.00 7.19 0.00 F-1 0.46 0.24 0.12 0.10 0.00 G-1 2.74 0.75 0.62 1.37 0.00 H-1 0.30 0.13 0.08 0.09 0.00 H-2 0.94 0.24 0.17 0.54 r 0.00 1-1-3 1.00 0.26 0.25 0.49 0.00 H-4 1.38 0.67 0.33 0.38 0.00 H-5 2.96 0.53 0.50 1.94 0.00 H-6 2.85 0.48 0.37 2.00 0.00 H-7 2.00 0.32 0.37 1.31 0.00 1-1 2.25 0.00 0.33 1.92 0.00 1-2 3.38 1.03 0.74 1.60 0.00 1-3 1.29 0.32 0.41 0.56 0.00 1-4 3.62 0.89 0.99 1.74 0.00 L-2 3.07 0.87 0.74 1.46 0.00 M-1 2.70 0.51 0.66 1.53 0.00 N-1 1.98 0.87 0.27 0.84 0.00 N-2 1.55 0.00 0.05 1.50 0.00 0-1 1.00 1.00 0.00 0.00 0.00 0-2 3.18 2.67 0.22 0.29 0.00 0-3 15.62 1.31 0.31 14.00 0.00 P-1 2.56 1.06 0.30 1.20 0.00 P-2 5.59 0.26 0.55 4.78 0.00 0-1 5.30 1.43 1.32 2.55 0.00 R-1 1.15 0.11 0.21 0.84 0.00 R-2 2.14 0.63 0.45 1.05 0.00 S-1 7.74 1.54 1.77 4.42 0.00 T-1 1.14 0.11 0.25 0.79 0.00 T-2 0.93 0.20 0.29 0.44 0.00 T-3 2.99 1, 30 0.47 1.22 0.00 U-1 6.30 1,58 0.74 3.97 0.00 TOTAL 110.90 25.68 14.54 67.46 3.21 AREA WEIGHTED % IMPERVIOUS FOR MAJOR BASIN: 36 Wgvol.xls 9/23/98 1 1 Outlet invert - WQCV level - Outlet invert - WQCV level - Outlet invert - WQCV level - Proposed Detention Ponds - Volume Calculations LOCATION: WATERGLEN, P.U.D.9I4S.00 CALCULATIONS: DETENTION POND VOLUME CALCULATIONS COMPUTATIONS BY: JPZ SUBMITTED BY: JR ENGINEERING, LTD. V=1/3d(A+B+sgrt(A`B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour Pond A Elevation (ft) Surface Area Of) Incremental Volume (ac-ft) Cummulative Volume (ac-ft) 57 50 58 16383 0.13 0.13 58.2 19554 0.08 0.22 59 32236 0.47 0.69 60 50783 0.94 1.63 61 61559 1.29 2.92 Pond B Elevation (ft) Surface Area (ft2) Incremental Volume (ac-ft) Cummulative Volume (ac-ft) 53 434 54 9839 0.09 0.09 54.5 20427 0.17 0.26 55 31014 0.29 0.56 56 45458 0.87 1.43 56.7 51563 0.78 2.21 57 54179 0.36 Pond C Elevation (ft) Surface Area (ft`) Incremental Volume (ac-ft) Cummulative Volume (ac-tt) 59.6 0 60 8239 0.03 0.03 60.8 28396 0.32 0.34 61 33435 0.14 4.48 62 37547 0.81 1.30 63 41758 0.91 _ 2.21 64 46069 1.01 3.22 64.3 47279 0.32 3.54 65 50102 0.78 Outlet invert - Outlet invert - Outlet invert - WQCV level - Pond D Elevation (ft) Surface Area (f12) lncremental Volume (ac-fl) Cummulative Volume (ac-ft) 54.1 50 55 23813 0.17 0.17 56 48523 0.81 0.99 57 62940 1.28 2.26 58 67890 1.50 3.76 58.9 71643 1.44 _ 5.20 Pond E Elevation (ft) 1 Surface Area (ft`) incremental Volume (ac-ft) Cummulative Volume (ac-ft) 51.56 0 52.0 10933 0.04 0.04 53 49736 0.64 0.64 54 60505 _ 1.26 1.91 55 55591 1.45 3.35 55.1 65577 0.15 3.50 56 65448 1.35 4.86 Pond F Elevation (ft) Surface Area (ft2) Incremental Volume (ac-ft) Cummulative Volume (ac-ft) 50.3 1600 51 29229 0.20 0.20 52 97448 1.38 1.58 52.2 99514 0.45 2.03 53 107777 2.35 3.93 54 118217 2.59 6.53 54.9 136723 2.63 9.16 55 138779 0.32 9.47 9-� Detpond.xls DRAINAGE CRITERIA MANUAL RUNOFF TABLE 3-1 (42) RECOMMENDED•RUNOFF COEFFICIENTS AND PERCENT IMPERVIOUS LAND USE OR PERCENT FREQUENCY SURFACE CHARACTERISTICS IMPERVIOUS 2 5 10 100 Business: Commercial Areas 95 .87 .87 .88 .89 Neighborhood Areas 70 .60 .65 .70 .80 Residential: Single -Family * .40 .45 .50 .60 Multi -Unit (detached) 50 .45 .50 .60 .70 Multi -Unit (attached) 70 .60 .65 .70 .80 1/2 Acre Lot or Larger * .30 .35 .40 .60 Apartments 70 .65 .70 .70 .80 Industrial: Light Areas 80 .71 .72 .76 .82 Heavy Acres 90 .80 .80 .85 .90 Parks, Cemetaries: 7 .10 .18 .25 .45 Playgrounds: 13 .15 .20 .30 .50 Schools: 50 .45 .50 .60 .70 Railroad Yard Areas 20 .20 .25 .35 .45 Undeveloped Areas: Historic Flow Analysis- 2 (See "Lawns") Greenbelts, Agricultural Offsite Flow Analysis 45 .43 .47 .55 .65 (when land use not defined) Streets: Paved 100 .87 .88 .90 .93 Gravel (Packed) 40 .40 .45 .50 .60 Drive and Walks: 96 .87 .87 .88 .89 Roofs: 90 .80 .85 .90 .90 Lawns, Sandy Soil 0 .00 .01 .05 .20 Lawns, Clayey Soil 0 .05 .15 .25 .50 NOTE: These Rational Formula coefficients may not be valid for large basins. *See Figure 2-1 for percent impervious. 11-1-90 URBAN DRAINAGE AND FLOOD CONTROL DISTRICT 1 DRAINAGE CRITERIA MANUAL (V. 3) STORMWATER QUALITY MANAGEMENT 1 1 1 9-1-1992 UDFCD 0 c c 2 a 0. 0. 0.1 0 I , 0 Extented De 40-Hoy. r Drain ention Basin time (Dry) ,- ■ i Detention 12-Hour Pon Drain 1s (Wet) Time - __ • .- . 0 10 20 3040 50 60 70 80 Percent Impervious Area in Tributary Watershed Source: Urbanos, Guo, Tucker (1989) Note: Watershed inches of runoff shall apply to the entire watershed tributary to the BMP Facility. 90 100 FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (WQCV) 4 12. DRAINAGE CRITERIA MANUAL (V. 3) STRUCTURAL BMPs 10.0 6.0 4.0 2.0 1.0 0.60 m m 0.40 z 03 to b 0.20 �r'n� A 0.10 0.04 0.021 0.01 0.02 EXAMPLE: Dm) = 4.5 ft WQCV = 2.1 acre-feet SOLUTION: Required Areaper Row = 1.75 in? Q 0.04 0,06 0.10 0.20 0.40t,S0.60 1.0 1,1 2.0 - 4.0 f 6.0 5,D Required Area per Row (in.2 ) Source: Douglas County Storm Drainage and Technical Criteria. 1986. FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME 9-1-1992 UDFCD DRAINAGE CRITERIA MANUAL (V 3) STRUCTURAL BMPs Threaded Cap Water Quality Capture Volume Level (including 20% additional volume for sediment storage) Gravel (1-1/2- 10 3" Rock) Around /Perforated Riser Filter Fabric Water Quality Riser Pipe (See Detail) Notes: 1. The outlet pipe shall be sized to control overflow into the concrete riser. 2. Alternate designs include a Hydrobrake outlet (or orifice designs) as long as the hydraulic performance matches this configuration. Notes: 1. Minimum number of holes = 8 2. Minimum hole diameter = 1/8' dia. OUTLET WORKS NOT TO SCALE 1-12" diameter Air Vent in Threaded Cap Water Quality Outlet Holes Ductile Iron or Steel Pipe WATER QUALITY RISER PIPE NOT TO SCALE Removable 8 Lockable Overflow Grate for Larger Storms Size Base to Prevent Hydrostatic Uplift Maximum Number of Perforated Columns Riser Diameter (in.) 4 6 8 10 12 1/4' Hole Diameter, in. 1/2' 3/4- 8 12 16 20 24 Hole Diameter (in.) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 6 12 16 20 24 9 12 14 18 Area of Hole (in.2 ) 8 10 12 0.013 0.049 0.110 0.196 0.307 0.442 0.601 0.785 FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY 9-1-1992 EXTENDED DETENTION BASIN UDFCD JREngineering, Ltd. PROJECT Wed Qf SUBJECT CleyeathpG 4 �Y&* -cL) K �9 CLIENT JOB NO. e LIS/cr.0 BY S CHECK BY DATE II/5 /S 6 SHEET NO. OF Z. S r c d\11re S Pone ' A- Fond•,•ri d e pfV\ a .�lc�b�c 100-9r (.6 EL. - E 1 Q.J . 1-*. C._ cd -Co d aubl i rc Do„ o lc T�i C rc,� ?ona Fnv,d ; 1 ei Tie �Q a c C, 00- L ef5 pdy,4 ?avid+ deaf h Oft,4 -- 4 o StriGti.ic 3ci>r 8= 70 7 c 5 "Ripe_ D civ -- 43 � - -77,4 cf I fiz_ D — 4E crs x 1,8 = 8(:7t 4- cfs � c/ r too - ��...... QDr`tI cis 0-15- JREngineering, Ltd. PROJECT SUBJECT CLIENT BY JOB NO. 14 CHECK BY DATE 11/6I (S SHEET NO. 2 OF z 7ono Pia 15 L-L — 4 5 Z . Z D Ca.pc b _ +, c t — - 2 , 3,3 1- 13, I + Co2.1 7Z,5 ?.2,5 CDOT Drainage Manual, 1995 Chapter 13 - Storm Drains grate installations MEDIAN INLET a. L p 4 ? (3aa;) 3 LV2i9 J 31k11 AO dOZ 113A0 213Z101 Q3QNOd 3o 111d313 13 - A - 10 G.G.P. ORDER #: PURG-LASE ORDER #: JOB ORDER #: 8O' G8' J G - PLAN VIEW FOUR C4) ]' COIL INSERTS PER PIECE FOR LIFTING AND PLACEMENT. 0 0 i r co GG" X 33" 'KNOCK -OUT' (TYPICAL 2 LONG S1DES) PROJECT' L OCATIONt CONTRACTOR ENGINEER: PROFILE SPECIFICATION M-GO4 -11 *op.A 0E4* CONCRETE 8311 W CARDER COURT LFTTLETON GO 80125 (303) 791-1G00 (303) 791-17]0 FAX COLORADO ONLY C800) 2a5-2902 TYKE D RECAST NLET C.C.P ORDER : PURChlASE ORDER #: 47' 35- G- • PLAN VIEW FOUR C4) 1' COIL INSERTS PER PIECE FOR LIFTING AND PLACEMENT. 0 0 'co ro JO6 ORDER #: - 33' SQUARE 'KNOCK-OUT- CTYPICAL 4 SIDES) PROFILE PROJECT: LOCATION - CONTRACTOR: ENGINEER: SPECIFICATION M-GO4-1D SUBMITTAL DATE BY 5L SttEET# REV. # TOTAL# 8311 W. CARDER COURT LITTLETON. CO 80125 C303) 7911-1600 (303) 7q1-1710 FA% COLORADO ONLY (80O) 285-2902 TYPE G PEGAST I\ LET APPENDIX I EROSION CONTROL CALCULATIONS JR Engineering, LTD. 11/9/98 2620 E. Prospect Rd., Suite 190, Fort Collins, CO 80525 i 1 RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: WATERGLEN, PUD STANDARD FORM A COMPLETED BY: JPZ DATE: 09-Nov-98 DEVELOPED ERODIBILITY Asb Lsb Ssb Lb 7 Sb PS SUBBASIN(s) ZONE (AC) (FT) (%) (FT) (%) (%) A-1 MODERATE 1.64 538 2.0 A-2 " 5.79 1050 1.4 A-3 1.50 350 2.4 A-4 0.76 650 1.7 A-5 0.35 305 1.1 B-1 1.12 520 1.6 C-1 0.77 200 1.3 D-1 5.16 1000 1.4 D-2 1.40 850 0.8 E-1 " 4.68 700 1.4 E-2 2.94 300 1.3 E-3 " 9.19 2600 1.9 E-4 1.76 400 0.6 E-5 2.92 150 1.0 E-6 3.50 150 1.0 E-7 5.42 250 0.9 E-8 7.19 700 0.9 F-1 0.46 200 0.8 G-1 2.74 610 0.8 H-1 0.30 190 0.6 H-2 " 0.94 350 0.7 H-3 1.00 470 0.8 H-4 1.38 290 0.8 H-5 2.96 590 0.9 H-6 " 2.85 650 1.0 H-7 2.00 590 0.9 1-1 2.25 350 0.8 1-2 3.38 1400 0.7 1-3 1.29 750 0.8 1-4 3.62 880 1.1 1-5 3.68 1210 0.7 J-1 3.48 700 0.6 J-2 0.52 350 0.9 J-3 2.57 750 0.8 J-4 " 1.49 450 0.9 K-1 0.94 300 0.9 L-1 " 5.51 800 0.9 L-2 " 3.07 800 0.8 M-1 " 2.70 400 0.7 N-1 " 1.98 620 0.9 N-2 1.55 750 0.8 0-1 1.00 550 0.9 x:19145001drainagelErosion.xls T-1 JR Engineering, LTD. 2620 E. Prospect Rd., Suite 190, Fort Collins, CO 80525 11/9/98 1 DEVELOPED SUBBASIN(s) 7 ERODIBILITY ZONE Astr (AC) Lsb (Fr) r Ssb (%a) Lb (Fr) Sb (%) PS (%) 0-2 0-3 P-1 P-2 0-1 R-1 R-2 S-1 T-1 T-2 T-3 U-1 TOTAL " " " 3.18 15.62 2.56 5.59 5.30 1.15 2.14 7.74 1.14 0.93 2.99 6.30 164.39 1100 1750 900 650 1300 280 550 1400 280 280 1500 1650 0.5 0.6 2.0 2.0 0.7 1.4 1.1 0.8 1.9 1.9 0.7 1.0 979.6 1.05 78.3 Asb = Sub -basin area Lsb = Sub -basin flow path length Ssb = Sub -basin slope Lb = Average flow path length = sum(Ai Li)/sum(Ai) Sb = Average slope = sum(Ai Si)/Sum (Ai) PS is taken from Table 8-a (Table 5.1, Erosion Control Reference Manual) by interpolation. An Erosion Control Plan will be developed to contain 78.3% of the rainfall sedimentation that would normally flow off a bare ground site during a 10-year, or less, precipitation event. x;19145001drainage\Erosion. xls PAGE 23 C O J L. ) FORT COLLINS, 0 LL PERFORMANCE STANDARDS LC) C' Cr, O C C c C Lf) Lj) Lf) CO03 CCCO 0) u) 01 1 C CCD C C C V or C C Lf: Lf) L‘o LC) L() Ln ✓ Cr Cr. CO Cr CXD C7 Cx) CC) CO C 01 0) CT CT. c1 C CT 01 Cr, 61 0,-, O O c 0 Craaaavavvcror LC) Lc) Lr: CX) CC CO CX) C`' Cv0303 cO Cr CC COCv0) CO C n Cc CC CO C'. C c CT Cr. 0) CT CT Cr) a1 Cr. 0) a1 c, CT C) vvMvv�coraa'cc*Qco-M�caorvC N C✓CO W COCCCvwC000C00000c30) W CJC00)030) c GMCLntOLDL,OcOnr.r . N- nCOCO COCOCO O vc-vc-vccvcrva craaaa crvcvvvvvcrc r-+ dC`G] COCX)COCXD C]C'JCOCX.`COCC(.'^. COCJCO Cr. CXD C.:OCXD C:CO0000 CD Cv CV C0 c Ln LL) U LO Lc) LD LO LO Lc) ra n r-- r n t• r-, C0 03 03 en or V V-a a a a acr a as Ctccor or or or or c Cr QCc CO CXD to 00 CL7 CC CO CO CO C ) CC CO G] CO CD CO Cc G'J CXD CJ a) CO CO CXD CO CO O lD C N C'') C or LC) Ll7 in cc) Le) Lc) Lc) LO LC Lc) LO LO LD LO r- r-, r- r- n r- Cti C'9 C` t l- 4 C C Or or Ma a V or C c- a cr C v Sr or or or or or 4 c0 CO CO CO CO CC 00 CO CO 03 C37 Cr 03 03 03 CO CX) (0 CLO CO CO CO 03 CJ CO CO O v 01 rl N M (0 C v a v L ) Li) Lf) L.r) Lf) Lf) L') Lf) Lr LO l0 LO LC) l0 LO n r• MCA.) a avCo- QvaaaaaaaoraaCr 7'aaaaCI- CO CO 00 C) CO CC (0 CO co CO CC CO 0) CO 03 C0 Cr CZ) C,' CO C0 CO C:) CC 00 CO O O LD C) CD N t c,) ) r') t a a Cr dr .4 a a Lr) LC Lf) f) LO 'O LO M rO cn or Cr C C or V Cr a Cr Q' c C or or Q C' a or C C' v cr CO C." CO CXD CXD CO CO 0). CC CO CO CO cO .= CO CO CO CO CO CO CO Cr co CO O0 LC N Ln r- CO Cl O C .-+ r. r< N N CV CV N f*) ST) (T) ( {+) v v v v v 4- LC) N M M C) r,) L"') C V Ci a s c' V V C V Cr v er v cr c. a V- a V- 02 Co CD CDCO d CO 00 CD CD c0 c3 0 0 03 a)cn CXDC) c3 CXD c0 00C : COCO LJ 0_Ln .-.c0.-- () u)Lr)LDLCDr_r,n(0C(000C` Cz3al 01 c Clc oOo CZ) . . . . . . . . . . . . . . . . . . . _J or C•1N C)MCY)On C')MMCOCOC cO CO co COcMOCMMcv aav L/) CC' C37 0) ❑O CXD Cr 03 03 GC CO CO C ) CO CO o CO CC CO CXD CO C:} CO CO Cx) CO a) O LC LC) C0Or- (\.j▪ -�LSOLC) Le) L0l0LC) LDLLD r`•nr-nSx)CwdCr) 01 v N N M M C) C""a Cr) r+) M r) (0 Cr") Cr) CO M (*) C7 M M (0 CO In M M CO CC) CC a) CO C:) CO CO CO CC C ) CiO 00 CO CO CO CO CO CO CO 00 CO C0 CO C0 CO CO L[) r+ .-1 LC) n 00 O G .--+ N CV M M C0 cr Cr a cr Li } LP Lf) Lc) LD LO r-- N N N C) M M (0 (0 C) M M C`') (0 (0 C) CO M C'l (+ ; M co Cn C) C,) 0) CO cr. CO CO CO co 0) C0 CCJ 0) CC CO CO CO CO 0) CO CC 03 CO C O CO C) 00 CO O MNLCD CXD G)C NNc*1 r)aaaaaaLf) LtlLc) Le) LD LDLO M NNNNN NNNNNNNNNNNNNNNN CO CO CXD 0000OC` CO CO CO CC) CO CO CO CO CXD 00 CO00000O CXD C)0000 Le) LS)LC) 01CVM aLnLCDr--r-,r`•COCO00CF10)0)0)0)0)CD40000 N 0 O O r-L r-+ r-i .--..-1 .--• r l .---I .--. ,- r-i 4--0 1--1 .- 1 r+ r-+ CV N (V N N N n CC o0 Cr CO C; Cv 0) CO CO CC CO CO CC) CO CO C4 CN C) CO CO CO (0 CO (30 00 O Or LC) OML!)LD0)03Cr, CZ) 0CD1..4 .- r-4NNNNM(0C) MMM N CO Cr) O O 0 G O O O r--r r-. .--1 n r-- C:] CXD CY] CO CO CO OD CXO CO CO CO CO CO CO CC CO - CO - CXD 00 CO CO C) CO CO Lc) CJNCDr• cLr) r-,C)CTc100.--+.-arrrr,--r(NJ ( \NC7enMMM - LC)Cd000) (T 0)CTCr. O)01(T000OCZ) OOOC3 000000 i• n r-- r-, (- n r-, r-, r• C0 C0 CO CO CX) CO CXD CO c ) 00 CO C ) 47 CO CO O LC) co O Cr r• (T O .--+ N C") C7 d cj Lc) LI) Li.-) Lf) LD LD LD Lp 1-+ a LSO r-- r-- r-- r-, CO CXD Cr. C0CXD 0003C)0000CXD COCXD C0 CO nr--nr-r'. n nnr--- r-- r- r r-nr-n n n LD 40 LO CO CO CO C0 CO n r` r-, r� n Lc) 0)CDa Lc) r-,coCOnr-nLO(CD LC) LnCI- CI-MM(NJN(TtOor,- 01 IS) O ON CV N NN.4Cs4 ▪ CNJ c NNNNNNN(NJ --i.-1r.CDCD( nr-r-r-,nn r-r-.nn r-, r-- nnr--r-n r-N N. r- r-r-,r` O Q O O c O C 4 0 0 0 O 4 0 O 0 0 O 0 0 0 0 O 0 0 0 O O C) O O O O O O O O C O 0 0 O O O O O 0 0 0 0 0 CD r<N(04Lf)LDr-000)0(NJ C)CrLf)LC) r-CXD C O Le) 4Le) CDLSYO .--r .--..-4 r-. r-a r-. r. '--r .-4 ,--r N N CO rM cr v LII TABLE 5. JR Engineering, LTD. 2620 E. Prospect Rd., Suite 190, Fort Collins, CO 80525 11/9/98 EFFECTIVENESS CALCULATIONS PROJECT: WATERGLEN PUD STANDARD FORM B COMPLETED BY: JPZ DATE: 09-Nov-98 EROSION CONTROL METHOD C-FACTOR VALUE P-FACTOR VALUE COMMENT BARE SOIL ROUGHENED GROUND ROADS/WALKS GRAVEL FILTERS SILT FENCE STRAW MULCH ESTABLISHED GRASS STRAW BARRIERS 1.00 1.00 0.01 1.00 1.00 0.06 0.08 1.00 1.00 0.90 1.00 0.80 0.50 1.00 1.00 0.80 SMOOTH CONDITION PLACED AT INLETS FROM FIGURE 8-A EFF = (1-C*P)• 100 MAJOR BASIN SUB BASIN BASIN AREA (Ac) EROSION CONTROL METHODS A D-I, D-2, C-I, E-I 12.0I ROADS/WALKS 1.48 Ac. ROUGHENED GR. 1.16 Ac. STRAW/MULCH 9.37 Ac. SILT FENCE GRAVEL FILTER _ NET C-FACTOR 0.14 NET P-FACTOR 0.36 EFF = (1-C*P)* 100 = 94.8% B A-2, A-3, A-4, B-1, E-2, OS-3 13.75 ROADS/WALKS 1.91 Ac. ROUGHENED GR. 1.40 Ac. STRAW/MULCH 10.44 Ac. SILT FENCE GRAVEL FILTER NET C-FACTOR O. I ; NET P-FACTOR 0. , 6 EFF = (1-C*P)* 100 = 94.6% C E-4, J-1, J-2, J-3. K-1, L-1 L-2, M-1 22.04 ROADS/WALKS 4.91 Ac. ROUGHENED GR. 3.47 Ac. STRAW/MULCH 13.66 Ac. SILT FENCE GRAVEL FILTER STRAW BARRIERS' NET C-FACTOR 0.20 NET P-FACTOR 0.29 EFF =(1-C*P)*100= 94.3% x:19145001drainagelErosion.xls JR Engineering, LTD. 2620 E. Prospect Rd., Suite 190, Fort Collins, CO 80525 11/9/98 1 MAJOR BASIN SUB BASIN BASIN AREA (Ac) CALCULATIONS D E-5, I-1, 1-2, 1-3, 1-4, 1-5, S-1, T-1, T-2, T-3. U-1 36.24 ROADS/WALKS ROUGHENED GR. STRAW/MULCH SILT FENCE GRAVEL FILTER 7.82 Ac. 7.10 Ac. 21.32 Ac. STRAW BARRIERS NET C-FACTOR NET P-FACTOR EFF = (1-C*P)*100 = 0.23 0.29 93.3% E E-6, H-I, H-2, H-3. H-4, H-5, H-6, H-7, R-1. R-2 17.64 ROADS/WALKS ROUGHENED GR. STRAW/MULCH SILT FENCE GRAVEL FILTER 3.36 Ac. 3.02 Ac. 11.26 Ac. NET C-FACTOR NET P-FACTOR EFF = (1 -C*P)*100 = 0.21 0.36 92.4% F E-7, F-1, G-1, N-1, P-1, P-2 0-1, 0-2, 0-3, Q-I 43.85 ROADS/WALKS ROUGHENED GR. STRAW/MULCH SILT FENCE GRAVEL FILTER 9.92 Ac. 3.99 Ac. 29.94 Ac. STRAW BARRIERS NET C-FACTOR NET P-FACTOR EFF = (1-C*P)* 100 = 0.73 0.29 79.1% G E-3 9.19 yEFF= ROADS/WALKS ROUGHENED GR. STRAW/MULCH SILT FENCE 0.00 Ac. 0.12 Ac. 9.07 Ac. NET C-FACTOR NET P-FACTOR (I-C*P)*100 = 1.05 0.50 47.7% TOTAL AREA = 164.39 TOTAL EFF = 81.7% REQUIRED PS - 713.3% ac Since 81.7% > 78.3%, the proposed plan is a.k. EXAMPLE BASIN F C-Factor values for erosion control methods that prevent or minimize movement of soil particles. Depends on method used and the amount of area the method encompasses. NET C-FACTOR=(9.58 x .01 + 4.18 x 1.0 + 30.59 x 0.06) / 44.35 P-Factor values are for erosion control methods which remove soil particles from moving water. NET P-FACTOR = (0.90 x 0.50 x 0.80 x 0.80) x:19145001drainagelErosion.xls T5 JR Engineering, LTD 2620 E. Prospect Rd., Suite 190, Fort Collins, CO 80525 1 1 CONSTRUCTION SEQUENCE PROJECT: WATERGLEN PUD SEQUENCE FOR 1998 ONLY COMPLETED BY: JPZ STANDARD FORM C DATE: 08-Jul-98 Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. MONTH 1998 1 2 3 4 5 6 7 I 8 I 9 10 11 12 Demolition Grading Wind Erosion Control: Soil Roughing Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other Rainfall Erosion Control Structural: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving. Other Vegetative: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation NeitingslMats/Blankets Other BUILDING CONSTRUCTION r 1 {, ' ; 'IrM1 2.',,if14 . , . _.:.' >: -- ,1 .* y✓6Eu—z6,e3w ?, e,,E,. STRUCTURES: INSTALLED BY: CONTRACTOR MAINTAINED BY: DEVELOPER VEGETATION/MULCHING CONTRACTOR: TO BE DETERMINED BY BID APPROVED BY CITY OF FORT COLLINS ON: DATE SUBMITTED: x:19145001DrainagelErosion.xls.xls 1 COST 1 1 WATERGLEN P.U.D. EROSION CONTROL COST ESTIMATE JOB NO. 9145.00 COMPLETED BY: EROSION CONTROL MEASURES IPZ ITEM DESCRIPTION UNITS UNIT COST QUANTITY TOTAL COST 1 SILT FENCE LF $ 3.00 5,220 S 15,660.00 2 GRAVEL CONSTRUCTION ENTRANCE EACH $ 500,00 2 $ 1,000.00 3 INLET PROTECTION EACH $ 250.00 27 $ 6,750.00 4 STRAW BALES LF $ 3.25 36 $ 117.00 PRELIMINARY COST 23,527.00 CITY RESEEDING COST ITEM DESCRIPTION UNITS UNIT COST QUANTITY TOTAL COST 1 RESEED/MULCH ACRE $ 500.00 140.0 $ 70.000.00 PRELIMINARY COST $ 70,000.00 TOTAL PRELIMINARY COST TOTAL COST WITH FACTOR OF 150% $ 70,000.00 $ 105,000.00 ESCROW AMOUNT = $ 106,000.00 Page I D AL UNEs 12 WRAP 10'L)(24W TWO 3'Y111• ROB RIPRAP TYPE L pla9'w (UUI11L1)) 4' srurAL{ CHASE - 'd1IET ND. 17 RPRAP TYPE L .{RURIEI)) 5'1)44 2 onNCrirr RT11KLE PAN M1• tfDEwA( CHASE ,,.:.,INLET ND. -RIPRAP TYPE L (RNICED) In•Lx10'w RIPRAP TYPE L (B11111E1)) BZ*D'w ' WRAP TYPE L (BURIED) IR'1x4'w RIPRAP TYPE L BURIN)} 40•L455'W RIPRAP TYPE L f (RUMEN) B'IXB'W: WATER QUAUTY SIRUCRIRE 17' PIPE R INLET NO. 14 ATER C ' LACE 95' TYPE R CEi NO. 1.. 5 TYPE R INLET ND. 12 ,RIPRAP TYPE L ,.....RIPRAP TYPE & ( 13'Lxl3•W ft Y/ETNIRE1E HEADWALL SEE PETMI. $HEFT 74 and D PRAP TYPE L (WWI)) 207X160'W �e 15. ADS RIPRAP TYPE L. (BURIED) 4'Lu4'W rRIPRAP TYPE #. (RURIED) a•Lx8'W PHASE SIX :«Jw..41'4 . _ RIPRAP TYPE L (BURIED) 13")1S'— - "'_• CONCRETE NEADWWAil DETAIL 91EET 79) QUADRUPLE TYPE 1B , INLET NO. 21 a' YX34- HERCP AORUPCE TI ILEE. NO._22 BERWICK- LANE HA GARDENIA! Q1E1E HEADwALL'M [SETA: LOctrat; - _ ,n ,s4/ T I. A HAS NOT BEEN DEDICATED AS A pUBLI.0 PARK. USE OF TRACT A AS A I' ' i L C PARK IS SUBJECT TO SEPARATE A( RfiEMENT AND TO RESOLVING S'T RMWATER DRAINAGE PROBLEMS ER I TIIE DEVELOPMENT ONTO TRACT A. KEY MAP NO! TO SCALE LEGEND DESIGN POINT BASIN CRi FERIA RUNOFF COEFFICIENT AREA IN ACRES FLOW DIRECTION INM Mil PRIEM BASIN BOUNDARY TOP nu rn!!NfATPON — — — EXISTING PIPES PROPOSED INLET, ptrr, AND ,ram tl� FLARED END SECTION ■ SIDEWALK CULVERT A LOT TYPE PROPOSED Inn. ET LOCATION _-- _- EXISTING 5' CONTOUR _... EXISTING 1• CONTOUR PROPOSED 5' CONTOUR PROPOSED 1' CONTOUR SILT FENCE A ! INLET PROTECTION CONSTRUCTION ENTRANCE TOP OF BERM EROSION BALES SED1MENF TRAP 100 200 SCALE: 1" = 100' r T711 NOT_ 1. ALL DRAINAGE STRUCTURES INCLUDING INLL I ;, PIPES AND DETENTION PONDS SHALL BE CONSTRUCTED DI PING THE Pi-IA7F THEY LIE WITHIN. 2. ALL RIPRAP SHALL BE BURIED AND COVER 1WFR Al L. RIPRAP SHALL BE RESEEDED. PREPARED) UNDER TILE DIRECT `1IPERVISION OF PATRICIA P. 1;ROE ICH DATE COLORADO P.E. NO. ' 7O6 City of Fort. Collins, Colorado UTILITY PLAN APPROVAL..... APPROVED Director of Engineering Dote I CHECKED BY: Wateerr &Wastewater Utility Date, CHECKED FRY:�;.1 lLeg CHECKED F3 �_. Stormw ter Utility � Dote fe6 r� arks �.creati+n Date CI IECKED BY: [ - !=z - g Date CHECKED BY: V) 0 z OE (n w LI ) r._ 1/) (.LJ • rti F^•q b tLe (1) IJJ, 1' r) ( ' SHEET 24 OE 84 , WENT ilr aunt t RAC F 5' TYPE R INLET NO. 3F \\\ k 5 T YR!. R wLEL • RIF'RAP TYPE L (SURFED) !ru e'W fey 5' TYPE INLET NO. 19 ...�_ p� "=P"idLxr3'w (man)) -'•RAP TYPE 11 4'L,,4'w 1 ,rj�I(811R1ED) 'PRAP TYPE L' 5Tx1-5w RIPRAP TYPE 1.- (PORNO) 421.5W FouALjTY swucTlh*l:. (:\ RIPRAP TYPE OIRIED) 40'1655 RIPRAP TYPE L (BURIED) 6121611/ WATER QUALITY STRUCL1 E 6 11R 8' TYPE R INLET NO, S 5' TYPE NO. LANE STREET ...,1tIPRAP TYPE L' (1311RIF.n) 13'Lx13-W Pond D PRAP 1 rrx, L (RPM; 251.fas(I'w h"sY•'•" r f6" A05 FOR FP TmE L N'Men) 5Tx6•w cza.A "e 11051 NHE DR PLANS.x.'.. w= FDI# PROPOSED INCET AND rwE (ETAILS'F" "3 I ,-2, N'f FEE, ` 7f FFR fU EA;T Elm Lk>1vF r-1FNsT171)Cn'1! f'! AN• ;LQ C;RRI.INr- 11If IE1 ir1 FRcf UlIC :lir 1 s. EE21S �q(-s? EaR rA o'24 4 ERCF to 12111 to TYPER110.TB1N1- 1EL tea (z... RIPRAP 10PRAP TYPE 1. (D1IRIED) CONCRETE HEADWALL< (SEE DETAIL SHEET 79} 2-1993' I IERn { may. _-s,s= (HERCP- 1--.LFrR '+) f 1.1111. 11f'If- , r�*F'19�in,,rlf'I AN:; I ry= .f'nflfr.', tii�lliff i,r 1.74 .47 • ATSIUPLE TYPE 16 NLEI ND 22.Lso.0 BERWICK LANE E"TH1 1 ' ringrTOTIT ra I v* " SE THREE .- ,�'-�.•- 405 L-F. TURF* F" YEAR OE4F.LAF'E11--REINFORCFLIENT Ft •'- . '-HONLI0:YQ87 SEE DETAIL •F.; SIOEWA11 CUL SHEET. GRADE CONTROLSEE DETAIL. SHEET 83A 67D L.F. CLASS 12 WRAP TOE PRO i1CT10N SEE. CUM SIIFI I KM -1 K►"Y MAP tit,' ro SCAI r_ UNTIL SUCH ARE APPROVED BY THE APPROPRIATE REVIEWING AGENCIES, JR ENGINEERING, CC 0 LTD. APPROVES THEIR USE THE PURPOSES DESIGNATED AUTHORIZATION. LEGEND DESIGN POINT BASIN CRITERIA RUNOFF COEFFICIENT AREA IN ACRES FLOW DIRECTION WPM 1111111 11110M BASIN BOUNDARY Tr —7a8 TOP Or rouNnAT10N EXISTING PIPES PROPOSED INLET, RIPE, AND FLARED END SECTION • SIDEWALK CUL.vERT- A LOT TYPE • PROPOSED INLET LOCATION EXISTING 5' CONTOUR EXISTING 1' CONTOUR PROPOSED 5' CONTOUR PROPOSED 1' CONTOUR SILT FENCE X 0 X 0_0 INLET PROTECTION CONSTRUCTION ENTRANCE TOP OF BERM 4,00"."N► EROSION BALES SEDIMENT TRAP 100 50 0 100 200 1 SCALE: 1" — 100' NOTE: 1. ALL DRAINAGE STRUCTURES INCLUDING INLETS, PIPES AND DETEN TION PONDS SHALL BE CONSTRUCTED DURING THE PHASE THEY LIE WITHIN. 7. ALL RIF'RAP SHALL BE E3URIFD AND COVER OVER Al. ! RIPRAP SHALL RE RESEEDED. 0 L- Z Z j z PpID MO jUrx U q,�� ¢w� w �O 1 -oc' ZOCMNo¢o� m J I u' ,—,CK < ° COin Ce III a, Ati f , • if) Q � C\2 )-1 CD 0 C\? FL, LLJ 0 PREPARED l)NDER THE DIRECT SUPERVISION OF PATRICIA P. KROE iCH DATE COL_ORADO P.E. NO. 31306 FOR AND ON BEHALF OF JR ENGINEERING, LTD. City of Fort Collins, Colorado UTILITY PLAN APPROVAL Af'PROVIcB: Director" of Engineering CHECKED 13Y: ift4- Water & Wastewater Utility CHECKED AY: CIIECKCD BY: CHECKED BY: CI-iFC:KF) AY: Date Date Stormwater Utility Date Parks & Recreation Date Dote Mile 0 O SHEET 24A OF 84 REV, 0 I ''5. 31 .25 NOTE: SEE DRAINAGE REPORT ,EXHIBIT FOR FULL EXTENT OF OFFSITE BASIN% 1.79 .95 9 TF=62.7 A / 4 (MIN.) 24 GLENBAF 2' CONCRETE PAN -1,0' MIN. TYPICAL SECTIQN N.T.S. 5 TF=61.5 B I�>>+ (..)() TF'-61.1 TF--,61.1 TYPE 16 INLET NO. 1 a rr4957 4950 4954 -CONCRETE TRICKLE CHANNEL SWALE BOTTOM WIDTH, W (FT) FLOW DEPTH, D (FT) Q(cfs) 100 CHANNEL SLOPE (%�) VELOCITY, V(FT/S) . SIDE SLOPE A -A 10.0' 0.7 30.2 1.4 2.4 20: 1 C-C 6.0' 1.8 68.3 0.3 2.5 4:1 D-D 4.0' 1.7 63.5 0.5 3,6 4: 1 F-F 4.0' 0.9 22.2 0.6 3.3 4:1 G-G 4.0' 1.5 55.2 0.5 3.6 'I:1 (133% x 0100) 63.2 R-R 3.0' 1.7 (133% x Q100) 0.5 3.8 4:1 �(NO FREEBOARD) SWALE 1 4 (MIN) 1.7 0.4 k1.0' MIN. w N.T.S. Q(cfs) 100 CFIANNEL SLOPE (%) VELOCITY, v(FT/S) 6.3 2.3 SIDE SLOPE 1:6 10: 1 5' TYPE R\ /x INLET NO. 2 / /17 ENSPERNIII DEVE QPE It N BOU'DAR 2C' v.SAN �V EASE E T ( RIPRAP TYPE M I1 P, 8'Lx6'W (BURIED) RIPRAP TYPE. M-- 8'Lx6'W (BURIED) 24' RCP II PIPE CC RIPRAP TYPE M 10'Lx13'W (BURIED) RIPRAP TYPE M w/ 10'Lx13'W (BURIED)/ / SWALE BOTTOM WIDTH, W (FT) H-H 4.0' I -I 2.0' J-J 6.0' K K 2.0' L- I_ 6.0' N-.N 0-0 P-P, Q--Q S-S T-- T u-L1 6' PRIVACY FENCE PROPERY LINE LANE. - `':)CAPE WALL 6.0' 4.0' 4.0' 10.0' 10.0' 0 0 4 (MIN) FLOW DEPTH, 0 (FT) 0.5' 0.5' 0.7' 0.9' 1.1' 0.8' 0.3' 0.7' 2.0' 1.7' 3.3' D W Q(cfs) 100 RIPRAP TYPE L - (BtIPIED) 42'Lx5'W CH LINE SEE SH 3' SIDEWALK CHASE INLET NO. 7 5.42 .26 -200'x40' CLASS 12 RIPRAP (BURIED) WATER QUALITY STRUCTURE SEE EAST VINE DR. PLANS-=__ .._ OR PROPOSED INLET AND PIPE DETAILS) CHANNEL SLOPE (%) 6.1 4.3 24.0 13:2 60.3 .33.6 13.1 3.3 28.0 155.0 600 200 2.0 5.0 3.3 6.0 6.0 2.0 6.6 7.0 2.5 0.5 0.5 0.5 95_-- 49554959 NOT,,:• REr E R TO EAST VINE DRIVE CONSTRUCTION PLANS FOR GRADING:. SOUTH OF EAST VINE DRIVE. 1 49 1- UU .126 B 94 TF=59.3 13 - 20' "lc rR TEMPO t A 151'I 00 VELOCITY, V(FT/S) 1.7 2.5 2.7 1.9 3.9 2.9 2.3 2.2 2.4 4.3 3.1 4.7 SIDE SLOPE 6: 1 4:1 10: 1 4: 10: 1 4: 4: 8:1 10: 4:1 85:1, 50:1 4:1 r 10.3' Q 00 = 62.2 cfs V1oa = 3.5 ft/s D1(►o - 2.16 ft Q2 17.2 cfs V2 -2.7ft/s 3' CONCRETE CHANNEL Dx- 1.1 ft .rs+" I;TI QN M "- l . N, f_S. ARKIF f STANDARD EROSION CONTROL NOTES 85 A 86 -1-.' 60.9 87 TF=60.5 A RIPRAP TYPE L (BURIED) 5'Lx6'W 49 -- _SEE EAST . VINE DR. PLANS.-_ .FOR PROPOSED INLET AND PIPE DETAILS-- 1. TliF CITY OF FORT COLLINS STORMWATER UTILITY EROSION CONTROL INSPECTOR MUST BE NOTIFIED AT LEAST 24 HOURS PRIOR TO ANY CONSTRUCTION ON THIS SITE. 2. ALL REQUIRED PERIMETER SILT FENCING SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING ACTIVITY (STOCKPILING, STRIPPING, GRADING, ETC.). ALL OTHER REQUIRED EROSION CONTROL MEASURES SHALL BE INSTALLED AT THE APPROPRIATE TIME IN THE CONSTRUCTION SEQUENCE AS INDICATED IN THE APPROVED • PROJECT SCHEDULE, CONSTRUCTION PLANS, AND EROSION CONTROL REPORT. 3. PREDISTURBANCE VEGETATION SHALL BE PROTECTED AND RETAINED WHENEVER POSSIBLE. REMOVAL OR DISTURBANCE OF EXISTING VEGETATION SHALL HE LIMITED TO THE AREA REQUIRED FOR IMMEDIATE CONSTRUCTION OPERATIONS, AND FOR THE SHORTEST PRACTICAL PERIOD OF TIME. 4. ALL SOILS EXPOSED DURING LAND DISTURBING ACTIVITY (STRIPPING, GRADING, UTILITY INSTALLATIONS, STOCKPILING, FILING, ETC.) SHALL BE KEPT IN A ROUGHENED CONDITION BY RIPPING OR DISCING ALONG LAND CONTOURS UNTIL MULCH, VEGETATION, OR OTHER PERMANENT EROSION CONTROL IS INSTALLED. NO SOILS IN AREAS OUTSIDE PROJECT STREET RIGHTS OF WAY SHALL REMAIN EXPOSED BY LAND DISTURBING. ACTIVITY FOR MORE THAN THIRTY (30) DAYS BEFORE REQUIRED TEMPORARY OR PERMANENT EROSION CONTROL (E.G., SEED/MULCH, LANDSCAPING, ETC.) IS INSTALLED, UNLESS OTHERWISE APPROVED BY THE STORMWATER UTILITY. TRACT A HAS NOT BEEN DEDICATED AS A PITELIC PARK. USE OF TRACT A AS A PUBLIC PARK IS SUBJECT TO SEPARATE AGREEMENT AND TO RESOLVING STORMWA'FER .DRAINAGE PROBLEMS FROM THE DEVELOPMENT ON'1.'O TRACT A. 1 5 00 49554 - �l8 r 6C CLAS RII (BU ? 3' HIGH x 2` -S- SHEET 5. THE PROPERTY S1-IALL BE WATEFED AND MAINTAINED AT ALL TIMES DURING CONSTRUCTION ACTIVITIES SO AS TO PREVENT WIND -CAUSED EROSION. ALL LAND DISTURBING ACTIVITIES SHALL BE IMMEDIATELY DISCONTINUED WHEN FUGITIVE DUS 1 IMPACTS ADJACENT PROPERTIES, AS DETERMINED BY THE CITY OF FORT COLLINS ENGINEERING DEPARTMENT. 6. ALL TEMPORARY (STRUCTURAL) EROSION CONTROL MEASURES SHALL BE INSPECTED AND REPA'RCD OR RECONSTRUCTED AS NECESSARY AFTER EACH RUNOFF EVENT IN ORDER TO ASSURE CONTINUED PERFORMANCE OF THEIR INTENDED FUNCTION: ALL RETAINED SEDIMENTS, PARTICUL/RLY THOSE ON -PAVED ROADWAY SURFACES, SHALL BE :REMOVED AND DISPOSED OF IN A MANNER AND .LOCATION SO AS 80T TO CAUSE TI IEIR RELEASE INTO ANY DRAINAGE WAY. 7. NO SOIL STOCKPILE SHALL EXCED TEN (10) FEET IN HEIGHT. AI -.I SOIL. STOCKPILES SHALL BE PROTECTED FROM SEDIMENT TRANSPORT BY SURFACE ROUGHENING, WATERING, AND PERIMETER SILT FENCING. ANY SOIL STOCKPILE .REMAINING AFTER 30 DAYS SI-IALL BE SEEDED AN(i MULCHED. 8. CITY ORDINANCE PROHIBITS THE TRACKING, DROPPING, OR DEPOSITING OF SOILS OR ANY OTHER MATERIAL ONTO CITY STREETS BY OR FROM ANY VEHICI-E. ANY INADVERTENT DEPOSITED MATERIAL SHALL BE C:I FANED IMMEDIATE!-Y BY THE CONTRACTOR. GENERAL NOTES REFER TO SHEETS 74-77 FOR STORM SEWER PROFILES 2. SEE THIS. SHtl FOR EROSION C0IJ1ROL NOTES AND SWALE CROSS SE.CT1 NS 3. SEE SHEETS WQ--83 FOR ALL WATER QUALITY, EROSION CONTROL; AND STORM DRAIN ACE DETAILS. KEY MAP NOT TO SCALE UNTIL SUCH APPROVED BY THE ,APPRCFRIAiE w CC REVIEWING AGENCIES, JR ENGINEERING, 0 z- 0 ›- in' cr U), La: 0' a.; Qs. 0 z N c2 0 1- D. LEGEND DESIGN POINT BASIN CRITERIA -RUNOFF COEFFICIENT AREA IN ACRES FLOW DIRECTION [RIRR1 BASIN BOUNDARY TOP DE E^'JNDATION EXISTING PIPES PROPOSED INLET, PIPE, AND FLARED END SECTION SIDEWALK CULVERT A LOT TYPE MI PROPOSED INLET LOCATION EXISTING 5' CONTOUR EXISTING 1' CONTOUR PROPOSED 5' CONTOUR PROPOSED 1' CONTOUR SILT FENCE INLET PROTECTION --11101000 55.5.,K TOR 00061064.4,44. CONSTRUCTION ENTRANCE TOP OE BERM EROSION BALES SEDIMENT TRAP 50 25 0 50 100 SCAI..-E.: 1" - 50' NOTE:. 1. ALL DRAINAGE STRUCTURES INCLUDING INLETS, PIPES AND DETENTION PONDS SHALL BE CONSTRUCTED DURING THE PHASE THEY LIE WITHIN. 2. ALL RIPRAP SHALL BE BURIED AND COVER OVER ALL RIPRAP SHALL. BE RESEEDED. PREPARED UNDER 1NE DIRECT SUPERVISION OF PATRICIA P. KROETtH ' DATE COLORADO P,E. NO. 31306 FOR AND ON PFI!ALF OF JR ENGINEERING, LTD. ate4caL;7)f � �J fr aO;15o - vcchNinice, ca o `3 0) tV? CO 00 rn 0) r0: o. r� Q o Z O U) LLJ E'_ act 0) CC) N 0, z w o. 0 I LLI City of Fort Collins, Colorado 1 J UTILITY PLAN APPROVAL A F' P R 0 VE�� L/3 Director of� Engineering / Date CI-IECKED RY: /" . ----�" Water & Wastewater Utility Date CHECKED BY: CHECKED BY. CHECKED BY: __ .CFIFCKFD RY: Dote Date //- Zq--7r Date Date LLI 0_ 0 < Q Iy 0 0 -1 o 0 LC I CO 0 0 C w SHEET24C0E 84 JOB NO. 9145.00 R1-V. 0 24"x35` HERCP 6` CURB CUT AND_ SIDEWALKCULVERT IPRAP .TYPE17L71' (BURIED) 5'Lx8'W 75 L.E. TURF •Lu REINFORCEMENT SEE DETAIL, SHEET 83A 49$ CONSTRUCTION SEQUENCE PROJECT:. Sh/ATERGLEN PUD SEQUENCE FOR 1998 ONLY COMPLETED BY: JPZ 3-2 5.59 .35 17..61.0 / UUAU. IYNk.1to.IIVI_LI memnC00. I1 11 le I I , 09 NOTE: REFER TO EAST .V1NE DRIVE CONSTRUCTION PLANS FOR GRADING SOUTH OF EAST VINE DRIVE. �4 STANDARD FORM C DATE: 8/14/97 Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require resubmitting a new schedule for approval by the City. Engineer. MONTH Demolition Grading Wind Erosion Control: Soil Roughing Perimeter Barrier Additional Barriers Vegetative Methods Sail Sealant Other Rainfall Erosion Control bStructural: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bogs Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other Vegetative: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation Nettings/Mats/Blanke is Other • RUCTION BUILDING CONSTF. 1998 1 INSTALLED BY: STRUCTURES: '.CHING CONTRACTOR: VEGETATION/MUL... DATE SUBMITTED 4 5 6 10• 11 12 ,CONTRACTOR MAINTAINED BY: .pEVI,OPER L_BE DETERMINED BY BID, APPROVED BY. CITY OF FORT COI.LINS ON: 7,7 GRADE CONTROL SEE DETAIL, SHEET 83A DRAINAGE SUMMARY TABLE • Q includes carryover flowswhen applicable Design Point 1 1a lb 1c 2 4 5 6 7 8 9 10 12 1•3 14 14a 14b 14c 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30a 30b 33 34 4960 Contributing Besin(sl. . A lac) G2 C100 to 2 yr (nbnl to 100 yr Imin) Carryover ftow from DP Qtot a 2 yr MO ()tot a 100 yr (cfsl A-2 5.79 0.49 0.61 15.8 15.8 5.7 20.6 Al + 0S2 16.95 0.26 0.32 17.2 17.2 8.4 30.2 A3 + 0S3 3.14 0.27 0.34 11.9 11.9 1.9 . 397.0 A-5 0.35 0.74 0.92 6.5 10.0 0.8 2.3 A-4 0.76 0.72 0.89 9.9 10.0 1 1.3 7.3 B-1 1.12 0.61 0.76 10.6 10.0 1.6 6.1 C-1. ' 0.77 -0.63 .. - .0.79...--. ..:_.6.0:. .. -10.0 . . .- :- . 1.4 4.3 _ D-1 5.16 0.42 0.53 15.6 15.6 4.4 16.0 0-2 1.40 0.66 0.83 14.7 12.0 5 1.9 7.8 F-1 0.46 0.80 1,00 5.6 10.0 1.1 3.3 G-1 2.74 0.60 .0.75 13.4 12.9 3.6 13.1 H1 + H4 .1.68 0.76 0.95 6.8 10.0 10 3.6 . 12.3 112 + 1-13 +H5 4.90 0.53 0.66 12.6 12.1 5.8 21.2 12 + 13` 4.67 0.63 0.78 17.8 17.8 13 5.6 - 29.7 14 + 15. 7.30 0.59 0.74 :16.7 16.7 8.5 . 30.5 J-1 3.48 0.49 0.61 13.9 13.9 3.7 13.2 J-2 0.52 0.25 0.31 11.3 -10.7 14b, 14c 17.8 64.7 _ J-3 2.57 0.25 0.31 14.2 14.2 16 .11.3 41.4 J-4 .1.49 0.29 0.36 11.7 11.1 15, 17 6.2 . 22.2__ K-1 0.94 0.62 0.78 9.7 10.0 1.5 5.2 L1 + L2 8.58 0.55 0.69 14.4 14.0 10.0 36:5 M-1 2.70 0.55 .0.69 9.8 10.0 3.7 13.3 P--1 2.56 0.62 0.78 14.2 10.9 20, 19 3.5 44.2 0-1 5.30 0.61 0.77 17.2 17.2 25, 33 6.7 33.7_- U -1 6.30 _ 0.51 0.64 19.2 19.2 5.9 _ 21.2 Ti. + T2 +T3 5.06 -0.61 .0.76 18.3 18.3 5.8 20.9 S-1 7.74 0.55 0.69 17.8 17.8 21 8.2 32.4 1- 6 2.85 0.46 . 0.57 13.6 13.6 2.8 10.2 H--7 2.00 0.49 0.61 13.3 12.2 23 5.0 18.3 R1 + R2. 3.29 0.55 0.68 13.1 10.6 22 4.3 22.7 1-1 2.25 0.35 0.44 10.8 10.0 20,21, 22 21.3 68.2 2.79 0,95 1.00 14.4 18.2 lc 5.6 15.3 01+0S1 3.18 0,89 .1.00 12.9 12.9 . 6.3 .20.4 0-2 1.98 0.65 0.82 10.7 10.0 3.1 11.5 N-1 . 13.2__ 47.5 -P1 + P2 + Q1 13.45 0.51 0.63 17.2 17.2 .N2 + H6 + E17 6.40 0.42 0,53 27.8 27.8 30a 17..2 62.1 5.59 0.35 0.25- 0.44 11.4 _ 10.5 � 4.6 17.2 P 2 E-8 7.19 0.31 13.9 13.9 3,9 13.9 480 L.F. TURF REINFORCEMEN T .SEE DETAIL, 'SHEET 83A 3' CURB CUT AND SIDEWALK CULVERT ONC. ICKL : P • 5.62 .32 100 YEAR DEVELOPED FLOODPLAIN BOUNDARY GRADE CONTROLIr SEE DETAIL, SHEET 83A DETENTION SUMMARY TABLE Pend A (301) Active $tor,age Valum13 (ac-ft) 1f1#a Yr Discharge lt-met►. ard 100-Yr WSEL It WQ Elev Mint* malt Spill Length Un► Outlet Pipe 1.7 , - 1.8 . 4960.2 4958.0 45.0 15" ADS W/ 6.5" DIA. ORIFICE PLATE B (302) . 2.1 1.5 . 4956.8 4954.5 55.0. 15" ADS W/ 8.25" DIA. ORIFICE C (303) 3.3 3.0 . 4964.4 4960.8 90.0 15" ADS W/ 7.4" OIA. ORIFICE D (304) 4.6 11.7 4958.5 - 150,0 15" ADS W/ FES E (305) .3.5 16.5 4955.3 - 75.0 4--15" ADS W/ FES F :(305) .5.6° 43.5 4954.9 4952.2 200,0 36" RCP W/ FES a = ACTIVE STORAGE VOE,.UME - TOTAL STORAr.F VOLUME = WATER OUAI..#TY VOLUME - REVERSE FLOW VOLUME 670 L.F. CLASS 12 RIPRAP TOE PROTECTION (BURIED) SEE, DETAIL, SHEET 83A - \:\\::•0.‘ I Q -�11- 1 18"TYPE L RIPRAP 0.5' L PR- 100- YR WSEL LEGEND 0.451 KEY MAP NO1 TO SCALE DESIGN POINT -BASIN CRITERIA RUNOFF COEFFICIENT AREA IN ACRES FLOW DIRECTION BASIN BOUNDARY 1F=70.8 • TOP OF FOUNDATION EXISTING PIPES ■ A M 55.5_, 25 0 PROPOSED INLET, PIPE, AND FLARED END SECTION SIDEWALK CULVERT LOT TYPE PROPOSED INLET LOCATION EXISTING 5' CONTOUR EXISTING 1' CONTOUR PROPOSED 5' CONTOUR PROPOSED 1' CONTOUR SILT FENCE INLET PROTECTION CONSTRUCTION ENTRANCE TOP OF BERM EROSION BALES SEDIMENT TRAP 50 SCALE: 1" = 50' 100 NOTE: 1. ALL DRAINAGE STRUCTURES INCLUDING INLETS, PIPES AND DETENTION PONDS SHALL BE CONSTRUCTED DURING THE PHASE THEY LIE WITHIN. 2. ALL RIPRAP SIIALL BE BURIED AND COVER OVER ALL RIPRAP SHALL 13E RESEEDED. MIN, TOP OF BERM SPILL ELEVATION TYPICAL SECTION EMERGENCY OVERFLOW SPILLWAY N.T.4:. GENERAL NOTES 1. REFER TO SHEETS 74---77 FOR STORM SEWER PROFILES 2. SEE SHEET 24 FOR EROSION CONTROL NOTES AND SWALE CROSS SECTIONS 3. SEE SHEETS .. 8083 FOR ALL WATL17 QUALITY, EROSION .CONTROL, AND STORM DRAINAGE DETAILS. crr z rC fl UNTIL SUCH TIME AS ARE APPROVED BY THE APPROPRIATE REVIEWING AGENCIES, JR ENGINEERING, z THE.. PURPOSES .DESIGNATED BY, AUTHORIZATION. -0 ..CD c5 0 C2 02 PREPARED UNDER THE DIRECT SUPERVISION OF PATRICIA P. KROETCH DATE COLORADO P.E. NO. 31 306 FOR AND ON BEHALF OF Jib ENGINEERING, LTD, City of Fort Collins, Colorado UTILITY PLAN APPROVAL CIIECKED BY: CHECKED BY: CHECKED BY: CHECKED BY: CHECKED FAY: NeVed',/ Director of .Engineering /, Date 41 - Water & Wastewater Utility Date „9: Stormwater Utility Dote Poi ks & Recreation Date /1-Z Date' Do to 177 N CL YY A I EF GLEN a a_ SHEET 25 OF 84 JOB NO. 91 15.00 REV. (1 ,7177 i l NODE: 1 E SE DRAINAG R ORT' EXHIBIT FOR FULL XTEF! I ,'QF OFFSITE BASINS f J 18 / TF=65.6 Al 49+a37-- / / / i/' i ` f/ f� { /J/' /', f!/ //,/ J fl"/.2 I , J LAMER WELD /77 CANAL i / / 7 �/ ,/' � � f / f j, 11:// //V / r ` 23 TF=,67 4 As 22, TF=66.7 A 20` / TF= 64.6 A 15 TF=62.9 A f -- 4 14 1 "IF=61.8 t A \ 12 24 TF= 8.4 qr 'Y A--- 4 0.76 -28 / TF=71.4 A 61 TF=67.5 B 5'TYPE R INLET NO. 3 :r\ RIPRAP 'TYPE L-- (BURIED) 25'Lx65'W 29"X45" HERCP 'RIPRAP TYPE L (BURIED) 8'Lx9'W WATER QUALITY //STRUCTURE r4 / / ?/ /: F T ,F RIP AP TYPE M ,�4'Lx4'W (BURIED) TF-9.9 A" \ A MATCH LINE 100 'YEAR DEVELO EDJ FLOODPLAIN BOUNiARY (BUR' 6't X6'W ,RIPRAP TYPE L. (BURIED) 4D'1..x85'W� _ _ 1 ,RIPRAP TYPE t_- (BURIED) 5'Lx15'W RIPRAP TYPE L_ — (HURIED) 42'Lx5W 3' SIDEWALK CHASE INLET NO, 7 - Pond A , If F E SHEET 28 1• 4 111 RIPRAP TYPE L. ;(BURIED) 40'LX55'W RIPRAP TYPE L (BURIED) 6'LX6'W WATER QUALITY STRUCTURE / r AN. SE ER SEP1ENT 104 :1E760,2. F-1 (0.46 .80 T --RIPRAP TYPE M 4'Lx4'W ff 'Pond D 1 RIPRAP TYPE L (BURIED) 20'I X160'W RIPRAP TYPE L- (BURIED) 41x4'W RIPRAP TYPE L---f BURIED) 8'Lx8'W 8' TYPE R INLET NO. 9 ( 1091 TF=60. B 118 TF-6 n 83 TF=60.8 A 12' TYPE R INLET NO. r10 r i TF=61.5 A 85 TF' 1.3 A 16 TF..-60.9 GENEP A L NOTES 1. REF r R TO SHEETS 711-- 77 FOR STORM SEWER 2. SEE SHEET 21- FOR EROSION CONTROL NOTES CROTS SECTIONS 3. SEE SI IEETS 80- -83 FOR ALL WATER QUALITY, CONTROL, AND STORM DRAINAGE DETA LS. 173 l TF=6 B 121 TF=60-8 A —49$9 TF=61,5 17 I3 119 TF=61.71 A 50 25 PROFILES (rillII pilll s1i l ss p AND SWAI.E EROSION KEY MAP NOT TO SCALE LEGEND DESIGN PINT —BASIN CRITERIA ---RUNOFF COEFFICIENT AREA IN ACRES FLOW DIRECTION NM ginm4 BASIN BOUNDARY TF= 70.8 0 A 55.5 TRH TOP OF FOUNDATION EXISTING PIPES PROPOSED INLET, PIPE, AND FLARED END SECTION SIDEWALK CULVERT LOT TYPE PROPOSED INLET LOCATION EXISTING 5' CONTOUR EXISTING 1' CONTOUR PROPOSED 5' CONTOUR PROPOSED 1' CONTOUR SILT FENCE INLET PROTECTION CONSTRUCTION ENTRANCE TOP OF BERM EROSION BALES SEDIMENT TRAP 50 SCALE: 1" = 50' 100 NOTE:• 1. ALL DRAINAGE STRUCTURES INCLUDING INLETS, PIPES ANIj DETENTION PONDS SHALL BE CONSTRUCTED DURING THE PHASE 1HE:Y LIE WITHIN. 2- ALL. RIPRAP Si-IALL BE BURIED AND COVER OVER ALL RIPRAP SHALL BE RESEEDED. PREPARED UNDER THE DIRECT SUPERVISION OF PATRICIA P. KROETCH DATE COLORADO P-E. NO. 31306 FOR AND ON BEHALF OF JR ENGINEERING, LTD. City of Fort. Collins, Colorsido. UTILITY PLAN � /APPROVAL APPROVED -Z r• f/ �d[/L h CI-IECKED BY: Director of Engineering 7/ Date A 4 Water & Wastewater Utility Date Storrnwater Utility CI iECKED BY: Ah- Pnrks Fie Recreation CHECKED BY- _._J CHECKFD BY: 1Ls23:Y8 Date Date �1 9c( Date Li ') w ?JD (A. w 0 00. J d CC 0 Cr IQ_ >- m z SHEET 26 OF 84 JOB NO. RFV. Dote C.1145.00 0 GEN AL NOTES IF1 .1. 11.11p f -vI 0 >. in 2-19"X30" HERCP 159 TF-63.9 B .MATCH LINE SEE I119 TF=61.7 A 120 =61.3 169 TF-64.8 B 142 =63.3 A J 168 TF=65.2 B 147 TF=66,1 A 124 fiF=61.5 A 3' CONCRETE CHANNEL 7 TF=65. B / STPH-5 STMH-2 24"x38" HERCP / \• 164 =65.0 fieziate 155 TF=63.7 A P-1 2.05 .62 455 TF=62.4 A .61 428 TF=64.9 A TF= 63.3 426 TF=66.1 A 456 TF-62.8 A 452 429 1F-65. A 4964 I 451 TF=62.5 -PROPERTY LINE 468 .. TF-66.1 A 459 TF=6 4.O A / 425 TF=66. A 430 4 TF=65.9 A 423 TFr 67.1 A 432 TF--66.7 A 433 TF=67.1 A TF-62,8 464 FE'-66.0 A 463 T E 6 5.7 A 460 TF=64.0 A 448 TF= =63.4 TF=64.5 B 439 Tr" =65.9 A 443 1 I TE-64.7 A 444 TF=64.4 A 1. REFER TO SHEETS 7.1 --77 FOR STORM SEWER PROFILES 2. SEE SHEET 21 FOR EROSION CONTROL NOTES AND SWALE CROSS SECTIONS 3. SEE SHEETS 80 -- 83 FOR ALL WATER QUALITY, EROSION CONTROL., AND STORM DRAINAGE DETAILS. 11 14,1 \I ,•1E ;1,1I1 1 111 - ill ill I � i i 4 )- ,32 I i 6 y � I � I , I11\ I; SOUND ALL1 SOTH S Ciio TO BE i CONSTRU TEDi WITH PHIS 'THREE (SEE 44 DET ILS H EET I \, I I , I � 1 21.41 KEY MAP NOT TO SCALE Li 1 0 Cr o.- 11 0 h- �1 LEGEND N _- 0.60 0.45 DESIGN POINT ---BASIN CRITERIA ---RUNOFF COEFFICIENT ---AREA IN ACRE; FLOW DIRECTION Mtn osers1 BASIN BOUNDARY TF=70.8 TOP OF [O 1NDATION EXISTING PIPES PROPOSED INLET, PIPE, AND FLARED END SECTION SIDEWALK CULVERT A LOT TYPE 641 PROPOSED INLET LOCAIION EXISTING 5' CONTOUR EXISTING 1' CONTOUR PROPOSED 5' CONTOUR PROPOSED 1' CONTOUR --� SILT FENCE 1�► 1 INLET PROTECTION CONSTRUCTION ENTRANCE TOP OF BERM EROSION BALES SEDIMENT TRAP SCALE: 1" = NOTE;. 1. ALL DRAINAGE STRUCTURES INCLUDING INLETS, PIPES AND DETENTION PONDS SHAH.- HE CONSTRUCTED DURING Tl-IE PRASE THEY LIE WITHIN. 2. ALI RIPRAP SHALL BF BURIED AND COVER OVER AI.L RIPEAP SHALL BE RESEEDED, PREPARED UNDER THE DIRECT SUPERVISION OF PATRICIA P. KROETCH DATE COLORADO P.E. NO, 31306 FOR AND ON t3EHAt.-F OF JR ENGINEERING, LTD. City of Fort Collins, Colorado UTILITY PLAN APPROVAL /a_ Director of Engineering CHECKED BY: AY. - Water & Wastewater Utility CHECKED I3Y: /,/'- Stormwater Utility CHECKED PY: CHECKED BY: Parks & Recreation At 11-0 CHECKED -_- Date Date /(-7,1,1 Date Pfti DJ Z U< x0 L O W ?o6w w g w0010 Lil 0 >- m ( Y Z z 1J� �-- 0 Z © 0 0 0 W (f) > 0 O It W JOB NO. 91 /15. 00 z uJ 0 "_ L Ljj 2 U cn 1 a d FAErzE 1 42 T 73.4 A PWREION ft TF=74.1 A TF=72.6 A 47 TV=74.0 A 37 `TF7Q_6 A 36 TF=70.1 A CLAS 12 RIPRAP 10'LX24 W (BURIED) .:E SET 0 2P i -- -NORT YA ERIGAN CR EN. , 351 /i . TURF REINFORCEMENT CLASS 12 RIPRAP 10'LX24'W (BURIED) EMERGENCY ACCJS ROA TWO 3'x10' RC8 TF-;9.9 A RIPRAP TYPE 1 (BURIED) 5'L_Y,f'W 1 1 SIDEWALK CULVERT z' CONCRETE TRICKLE PAN y WATER QLIALIiY STE . \ •., , ,..,. . ... \ , \ s RIPRAP TYPE M 'I_x4l'W (BURIED) \� 100 YR �`< DEVELOPED-, \ ELOOP 1-A1IN'. .. .11E612 262 TF-69.8 A 1 l 4970 Illy 264 TF''70.4 A _. ,.._. 2 6 1F6I3,8 R 250 TF=67.4 A• 249 TF=67.2 A 247 TF-66.5 A 115' TYPE R LET NO. 13 1F=70.7 -4989- - 232 "i 'TF -T'ar"}i:5 A . TF64.6 1RIPRAP TYPE L BURIED) 16'LXB'W 2.92 .31 /CONRETE HEADWALL & WII4GWALL (SEE DETAIL SHEET 79) 267 TFr 72:1 A ENARBO LANE 211 -68.2 1 B 209 TF=66, 6 A 208 TF=66.5 A 0.E-NE" AL NOTES 1. REFER TO SHEETS 74 ---77 FOR STORM SEWER PPnH LES 2. FT.E SHEET 24 FOR. EROSION CONTROL NOTES AND SWALE CROSS SS SECTIONS 3. `DE SHEETS 50---83 FOR ALL WATER QUALITY, EROSION rONTROE, AND STORM DRAINAGE DETAILS. 73.1 30 A2 -isfew!a- wen wens 4984 177 F-----65.1 B 1- APPROVEI 50 25 ■ A am TO9 0 LEGEND DESIGN POINT 11117 G4.J1..111'.11.11:1 uiG1�JL KEY MAP NOT TO SCALE BASIN CRITERIA RUNOFF COEFFICIENT AREA IN ACRES FLOW DIRECTION BASIN BOUNDARY TOP OF FOUNDATION EXISTING PIPES PROPOSED INLET, PIPE, AND FLARED END SECTION SIDEWALK CULVERT LOT TYPE PROPOSED INLET LOCATION EXISTING 5' CONTOUR EXISTING 1' CONTOUR PROPOSED 5' CONTOUR PROPOSED 1' CONTOUR SILT FENCE INLET PROTECTION CONSTRUCTION ENTRANCI= TOP OF BERM EROSION BALES SEDIMENT TRAP 50 SCALE: 1" = 50' 100 ,SOT 1. ALL DRAINAGE STRUCTURES INCLUDING INLETS, PIPES AND DETENTION PONDS SHALL BE CONSTRUCTED DURING THE PHASE THEY LIE WITHIN, 2. ALL RIPRAP SMALL E.3E BURIED AND COVER OVER ALL. RIPRAP SHALL BE RESEEDED. PREPARED UNDER THE DIRECT SUPERVISION OF PATRICIA P. KROETCH DATE COLORADO P.E. N0. 31306 FOR AND ON BEHALF OF JR ENGINEERING, LTD. City of Fort Collins, Colorado UTILITY PLAN APPROVAL Date irector of Engineering CI IECKED BY: Water & Wastewater Utility CHECKED BY: Stormwater Utility CHECKED BY: _. Earl<,s Sr. Recreation � f CHECKED BY: ,,,.�`' CIIECK D C� 3YD Date Date Date Dote Dote ARE APPROVED BY THE APPROPRIATE ICJ WATERGLEN AUTHCRIZAT ON. SI IR.0 T 28 OF 84 JOB NO. REV. 9145.n0 _ 0 268 73.1 « 11 tr c- 2121 69.9 BI 1 269. 73.7 177 =65.1 B j_ PIPE 270 TF=74.0 11 A 1 A 271-- TF=74.3 A T1 =74.5 271 TFP74.2 275 A3.7 G fly D,j�jjj C(_U T „ L-, 243 TF =72.2 A ONCRET HHEADWALL (SEE DETAIL SHEET 79)= `A -______ RIPRAP -TYPE L (BURIED),- 12`x12' i ! 168 TF=65.2 �f B 2' CONCRETE TRICKLE PAN 7 TF=65. B IF= 72.4 JAY 188 TF..68.0 Nokia 4997-- • 11 279 TF=73.8 A =69.2 B QUADRUPLE TYPE 16 - k . INLET N0. 20 ; 2-22 7(34 IiERCF`� RIPRAP TYPE L (BURIED) 15'X15`- CONCRETE I-IEADWALv (SEE DETAIL SHEET 79) 2- 19"X30" HERCP 164 -65.0 6474.0 W=64.22 B 381 TF=70.8 B / / TF= 70.FI f 375 TF =70.4 A 4999 - 409 TF.-70.3 A 412 -=67Ji A 4971 ---- TF=69.6 A 410 TF=69.5 A 411 IT,r 66.8 A 417 TF=65.8 A 427 TF=65.8 A 415 TF=67.7 A 418 TF=66,0 A 408 1F=70.6 A 413 TF-ff.5 A 4995 - ' TF-66.1 419 TF-B6.3 A 304 1F=71.4 A 37n A TF«. 405 TF=69.3 A `IF=6P, I 403 TF=68,11 A 402 1F=68.5 401 TF=68,4. A TF=70.9 8 TF=70.6 407 TF=70.7 A TF =66.6 BERWI K LANE 123 rT"=67.1 A ¢ : .TCH LINE g ow' S 7.74 '.55 TF= 71.0 A 388 Tr =70.7 A 390 TF=70.2 A 391 l i-=6g.0 A 393 TF=69.3 A 4 397 1 }� TF=68.1 398 TF 67.9 A 400 TF=67.8 A t .s EDGE PAVE 1 aENEr. .L NOTES 1. REFER TO SI ...:E f-r 711 77 FOR STORM SEWER PROFILES 2. SEE SI ILET 24 E0F CDt.1TROL. NOTES AND SWALE CROSS SECTIONS :. SEE SHEETS 80.. r' FOR Ali.... WATER QUAD-11Y, EROSION CONTROL, AND S If-)RM DRAINAGE DETAILS. cJ1 41 . fy 1'I 1\1 ( 4d�Tl� lwAl ����o 1TO,. C SID D VAk(551EEIIIIET S I' 1 I Ili 1..e1 I;l I,11 T41 I 1 1i 1 III 1 1 1.111 I,11;11 ,1 1 i I. 1 � ? I 1 Il' 1 L1�4 I1 •� t it IIiI t 1 1 11 , 1• 1 III1 I�I 111,}I I 1 I ,1 `III 5U KEY MAP NOT '10 SCALE (5 Z L�J IJ 7 cc LA 0 7 w 0 TC 0 Z APPROVES THEIR USE ONLY FOR d AUTHORIZATION. LEGEND DESIGN POINT BASIN CRITERIA ----RUNOFF COEFFICIENT --AREA IN ACRES FLOW DIRECTION IERSii BASIN BOUNDARY 1T =-70.6 TOP OF EOUVOA TION - EX1STINC PIPES PROPOSED INLET. PIPE, AND FLARED END SECTION SIDEWALK CULVERT LOT TYPE PROPOSED INLET LOCATION EXISTING 5' CONTOUR EXISTING 1' CONTOUR • PROPOSED 5' CONTOUR PROPOSED 1` CONTOUR SILT FENCE INLET PROTECTION A v v_ -7c---n IP 25 55.5 -x TOJ CONSTRUCTION ENTRANCE TOP OF BERM EROSION HALES SEDIMENT TRAP 50 100 SCALE: 1" 50' 1. ALL DRAINAGE STRUCTURES INCLUDING INLETS, PIPES AND DETENTION PONDS SHALL BE CONSTRUCTED DURING THE PHASE THEY HE WITHIN. 2. AU. RIPRAP SHIALL. BE BURIED AND COVER OVER ALL RIPRAP SHALL BE. RESEEDED. t A a) tto (1) 10 :: CO (0 0) 0 o -11 .E-Lr PREPARED UNDER THE DIRECT SUPERVISION OF PATRICIA P. KROETCH DATE COLORADO P.E. NO. 31306 FOR AND ON BEHALF OF JR ENGINEERING, LTD. r City of Fort. Collins, .Colorodo UTILITY PLAN APPROVAL Dl ector of Engineering Date CHECKED BY: NA - Water & Wastewater Lwill:y CHECKED BY.. CHECKED BY: CHECKED Star rnwater Utility Parks & Recreation BY: CI-IECKED HY: Date Date Date Dale O 1.n U rn oa (.0 w CD Lam.! N 0. • >--: 0) (1) i z 54 iEET 29. OF 84 ,!0[3 NCB_ ',7jm'1 5.> 0 • Li IIVOInIN LARIMER VELD CANAL 20' SAN. SEW EASEMENT JE IE D LEC N AL LINES 45 TF= 74.5 A ,r 100 R DEVELOD FLO.DPLAIN 46 TF=74.1 A .40 .2 66 47 1F 74.O A k 2' CONCRETE TRICKLE PAN SIDEWALK CU R INTERIM GRADING, - 7 M-77.5 i I A I 346 76.8 A 368 TF=76.7 A 351 TF= 79.0 A 367 TF= 76.3 A IAA Irn 336 A 3f31 ir- 7.8 A 347 =77.3 A 372 TI"-76.2 A 349 TF= 78. A GENERAL NOTE 1. pr rER: TO SHEETS -74-77 FOR STORM SEWER PROFILES 2. SEE SI1EET 21 FO EROSION CONTROL NOTES AND SWALE CROSS SECTIONS 3. SEE SHEETS 80--83 FOR ALL WATER QUALITY, EROSION CONTROL, AND STORM DRAINAGE DETAILS. TRACT A HAS NOT BEEN DEDICATED AS A PUBLIC PARK. USE OF TRACT A AS A. PUBLIC PARK IS SUBJECT TO SEPARATE AGREEMENT AND TO RESOLVING STORMWATER DRAINAGE PROBLEMS FROM TIIE DEVELOPMENT ONTO TRACT - A.: FINAL }(zI?A PIS"" �:VENU _ 342- TF=78.0 ---A 341 TF=78.2 A CELTIC LANE ,f 38 A 0,9 TF= 743 3 A F.. •' SIDEWALK CHASE _-INLET NO. 15 -RIPRAP TYPE L (BURIED) 10'Lx10'W 260 TF 7i O A fi 261 •=69.8 A 262 TF=69.8 A 350 TF=78.4 A 369 TF=76.8 A 1 TF=670.1 i A 4974 TF=71.3 337 TF=79.O A 365. I TF=76..3 A L-1 5.51 .51 2' CONCRETE TRICKLE PAN TF=72:7 A T354 .1 APPROVED CHECKED BY: CHECKED BY: CtECKED BY 50 25 KEY MAP NOT TO SCALE LEGEND TF=70.8 DESIGN POINT -BASIN CRITERIA --RUNOFF COEFFICIENT AREA IN ACRES FLOW DIRECTION BASIN BOUNDARY TOP OE FOUNDATION EXISTING PIPES PROPOSED INLET, PIPE, AND FLARED END SECTION SIDEWALK CULVERT A LOT TYPE PROPOSED INLET LOCATION 0 55.5 1OE EXISTING 5' CONTOUR EXISTING 1' CONTOUR PROPOSED 5' CONTOUR PROPOSED 1' CONTOUR SILT FENCE INLET PROTECTION CONSTRUCTION ENTRANCE TOP OF BERM EROSION BALES SEDIMENT TRAP 50 100 SCALE: 1" 50' NOTE: 1. ALL DRAINAGE STRUCTURES INCLUDING INLETS, PIPES AND DETENTION PONDS SHALL BE CONSTRUCTED DURING THE PHASE THEY LIE WITHIN. 2. ALL RIPRAP SHALL BE BURIED AND COVER OVER ALL RIPRAP SI-IALL BE RESEEDED: PREPARED UNDER THE DIRECT SUPERVISION OF PATRICIA P. KROETCH DATE COLORADO P.E. NO. 31:'506 FOR AND ON BEHALF OF Jr ENGINEERING, LTD. City of Fort Collins, Colorado UTILITY PLAN APPROVAL Direct of Engineering Dote Water tic Wastewater Utility Date CHECKED CHECKED BY: //23 Dat__e�� Date Date Date C▪ ,1 ▪ a s7 0 v 1 :.. F- D LLI C"l >- m co CD Z LLI • O Li.1 < H LLJ Q Il O lY. z -' ` 0 . 0 � (7) 0 0 Ct 0 fr. W co SHEET 30 OF 84 JOF3 NO. 9.1'15.00 REV. 0 i i 1 1 1 M c 268 73.1 335 TF-77.7 A .51 I. 334 TF=78.3 A 358 TFµ75.8 B 333 TF=75.3 A 362 TF..73,5 A TF=74.2 330 TF=76.0 A 303 TF-75.9 A 299. TF7:5 327 1F=77.O A 326 TF=77.4 A 295 TF=75.4 A 293 =75. TF=78.1 A TF=78.1 321 TF-=77.5 A ;11- -44 I 1 I I I 1 291 TF =75.O A 290 TF=74.3 A 73.7 332 TF=75.3 A 272 TF=74.5 A TF 75,6 271 TF-74.2 A ff 329 TF=76.3 A 304 TF=76.3 A 3.07 62 I..ARIMER WELD CANAL TF=76.7 A 306 TF�77.4 A 307. �F=A7•T FrYffm 1f 74.3 WATERCLE L -PLACE 275 TF= i 3.7 A 325 TF 77.8 A 309 TF= 77.5 294 TF=75.8 A 279 IF=73.8 A TF=76.6 B 5M UCTION 1+00.00 WOOS ENE7 ^, ° , NOTES 1. REFER TO SHEL ! ' 74-77 FOR STORM SEWER PROFILES 2. SEE SHEET 24 FOR EROSION CONTROL NOTES AND SWALE CROSS SECTIONS 3. SEE SHEETS 80-8 FOR ALL WATER QUALITY, EROSION CONIROI.., AND STORM DRAINAGE DETAILS. KEY MAP NOT TO SCALE LEGEND DESIGN POINT BASIN CRITERIA 0.45 - RUNOFF COEFFICIENT AREA IN ACRES FLOW DIRECTION BASIN BOUNDARY TF-70.6 TOP OF EOUNDAZlON EXISTING PIPES PROPOSED INLET, PIPE, AND zAtglISEIMI-EMMI FLARED END SECTION • SIDEWALK CULVERT A LOT TYPE PROPOSED INLET LOCATION �,,,.r-•a - EXISTING 5' CONTOUR EXISTING 1' CONTOUR PROPOSED 5' CONTOUR PROPOSED 1' CONTOUR SILT FENCE INLET PROTECTION 50 25 Tab 0 CONSTRUCTION ENTRANCE TOP OF BERM EROSION BALES SEDIMENT TRAP 50 SCALE: 1" - 50' 100 1- ALL DRAINAGE STRUCTURES INCLUDING INLETS, PIPES AND DETENTION PONDS SHALL BE CONSTRUCTED DURING THE PHASE THEY L.IE WITHIN. 2. ALL RIPRAP SHALL BE BURIED AND COVER OVER ALL RIPRAP SHALL BE RESEEDED. PREPARED UNDER THE DIRECT SUPERVISION OF rATRICIA P. KPOETCH DATE COLORADO P.E. NO. 31306 FOR AND ON BEHALF OF JR ENGINEERING, LTD. City of Fort Collins, Colorado UTILITY PLAN APPROVAL • APPROVE CHECKED BY: CHECKED BY.. � � /L- 23-rX Stormwater Utility Date CHECKED BY: f v Folks & Recreation CHECKED BY: -_CT_... CHECKED BY: Director of Engineering /V fl Water & Wasteveate$- U0I ty Date Date Date ��- Zt Date Dote a) CD GNI S-, Co 0 v -< 0 I- CY , 0 0 0 �0 W FA > 0 O L�i1 0 Ems, 1 0 0 00 SHEET 31 OF 84 JOB N.O. 0145 00