Loading...
HomeMy WebLinkAboutDrainage Reports - 12/23/2019City of Fort Collins Approved Plans Approved by: Date: Matt Simpson 12/23/2019 October 30, 2019 Revised: December 5, 2019 Revised: December 19, 2019 Mr. Shane Boyle, Civil Engineer Water Utilities Engineering City of Fort Collins Utilities 700 Wood Street Fort Collins, CO 80521 Re: Final Drainage Report Garcia House: A Circle Program by SummitStone Project No. 0060.0002.00 Dear Mr. Boyle, We are pleased to submit this revised Final Drainage Report for the Garcia House: A Circle Program by SummitStone located at the corner of Patton, East Elizabeth, and McHugh Streets. This report was prepared based on the City of Fort Collins Stormwater Criteria Manual adopted in December 2018. Please let me know if you have any questions or comments. Sincerely, COLORADO CIVIL GROUP, INC. Edward J. Jansury Jr., PE Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 i Table of Contents 1 Project Summary ...................................................................................................................................................... 1 1.1 Site Location ..................................................................................................................................................... 1 1.2 Existing Site Conditions .................................................................................................................................... 2 1.3 Master Drainage Plan Description .................................................................................................................... 2 1.4 Floodplain Information ..................................................................................................................................... 3 1.5 Project Description ........................................................................................................................................... 3 2 Proposed Drainage Facilities .................................................................................................................................... 4 2.1 General Flow Patterns ...................................................................................................................................... 4 2.2 On-Site Basin Description ................................................................................................................................. 4 2.2.1 On-Site Basin Description ......................................................................................................................... 5 2.3 Off-Site Basin Description ................................................................................................................................. 5 2.4 Water Quantity Detention ................................................................................................................................ 6 2.5 Water Quality Capture Volume ...................................................................................................................... 10 2.6 LID Treatment ................................................................................................................................................. 11 2.7 Maintenance Access ....................................................................................................................................... 13 2.8 Easements ...................................................................................................................................................... 13 3 Proposed Drainage Design Criteria ......................................................................................................................... 13 3.1 Drainage Studies ............................................................................................................................................. 13 3.2 Four-Step Process ........................................................................................................................................... 13 3.2.1 Step 1: Runoff Reduction ........................................................................................................................ 14 3.2.2 Step 2: Treat and Slowly Release Runoff ................................................................................................ 14 3.2.3 Step 3: Stabilize Drainageways ............................................................................................................... 14 3.2.4 Step 4: Implementation of Source Controls ........................................................................................... 14 3.3 BMP Selection Considerations ........................................................................................................................ 15 3.3.1 Soils ......................................................................................................................................................... 15 3.3.2 Watershed Size ....................................................................................................................................... 15 3.3.3 Base Flows .............................................................................................................................................. 15 3.4 BMP Design ..................................................................................................................................................... 16 3.5 Hydrologic Criteria .......................................................................................................................................... 16 3.6 Hydraulic Criteria ............................................................................................................................................ 16 4 Variance Requests .................................................................................................................................................. 17 5 Erosion Control ....................................................................................................................................................... 17 6 Conclusions ............................................................................................................................................................. 18 7 References .............................................................................................................................................................. 18 Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 ii 8 Appendices ............................................................................................................................................................. 18 Appendix A: Existing Soil Properties ................................................................................................................................. A Appendix B: Hydrologic Calculations ................................................................................................................................ B Appendix C: Hydraulic Calculations .................................................................................................................................. C Appendix D: StormTech System Plans and Details .......................................................................................................... D Appendix E: Historic and Developed Drainage Basin Plans .............................................................................................. E Index of Figures and Tables Figure 1-1: Vicinity Map ................................................................................................................................................... 1 Figure 1-2: Spring Creek Drainage Basin .......................................................................................................................... 3 Figure 2-1: Off-Site Basins ................................................................................................................................................ 6 Table 2-1: FCSCM Runoff Coefficients .............................................................................................................................. 7 Table 2-2: FCSCM Frequency Adjustment Factors ........................................................................................................... 8 Table 2-3: Impervious Percentages .................................................................................................................................. 8 Table 2-4: Existing Condition Basin Summary .................................................................................................................. 9 Table 2-5: Developed Basin Summary .............................................................................................................................. 9 Table 2-6: Developed Sub-Basin Summary .................................................................................................................... 10 Table 2-7: Detention Pond Summary Table ................................................................................................................... 10 Table 2-8: LID Treatment ................................................................................................................................................ 12 Table 2-9: Water Quality Chambers ............................................................................................................................... 12 Figure 2-2: LID Exhibit ..................................................................................................................................................... 13 Table3-1: Grate Inlet Capacities ..................................................................................................................................... 17 Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 1 1 Project Summary 1.1 Site Location Garcia House: A Circle Program by SummitStone site is Lot 2 of the East Elizabeth Subdivision and is in the Southwest Quarter of Section 18, Township 7 North, Range 68 West of the 6 th Principal Meridian, City of Fort Collins, County of Larimer, Colorado. The site is bounded on the north by East Elizabeth Street, on the west by Patton Street, on the northeast by McHugh Street and on the south by property owned by Hanlon Bush Investments, LLC. A vicinity map is presented in Figure 1-1. The project area is generally located at 40° 34’26” North Latitude and 105° 3’14” West Longitude. Figure 1-1: Vicinity Map E ELIZABETH ST PROJECT AREA E PITKIN ST RIVERSIDE AVE UCHEALTH POUDRE VALLEY HOSPITAL MCHUGH ST Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 2 1.2 Existing Site Conditions The parcel contains 0.635 acres in area as in currently undeveloped with a natural grass groundcover. The parcel in located in the Spring Creek Drainage Basin. The soils on site are listed as Kim Loam with 1-3% slopes on the National Resources Conservation Service Web Soil Survey website. Kim Loam soils are considered well drained and in Hydrologic Soil Group B. This soils on this site are in wind erodibility group 4L on a scale of 1 to 8 with group 1 being the most susceptible to wind erosion. Groundwater depths were found to be 16 feet deep per the geotechnical report prepared by Earth Engineering Company, Inc. 1.3 Master Drainage Plan Description As previously mentioned, this site is located within the Spring Creek Drainage Basin and is part of the Spring Creek Master Drainage Plan. The Spring Creek drainage basins encompasses approximately 9 square miles. Spring Creek flows from the Spring Canyon Dam at Horsetooth Reservoir to the Poudre River. This site is in the northeast corner of the basin in an area where the water quality was not evaluated as the runoff drains into an existing irrigation system. See Figure 1-2 below and Appendix A. The area surrounding this site is fully developed with no known master planning improvements at or near this site. Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 3 Figure 1-2: Spring Creek Drainage Basin 1.4 Floodplain Information The project site is located within Zone‘X’ of Community-Panel Number 08069C0983H, revised May 2, 2012. Zone‘X’is defined as “Areas determined to be outside the 0.2% annual chance floodplain.” A portion of the referenced map can be found in Appendix A of this report. 1.5 Project Description Garcia House: A Circle Program by SummitStone project includes the complete development of one parcel (8718312002). This parcel contains 0.635 acres. A building, parking, and walkways will be built on the currently undeveloped lot. The construction on this site include an entrance from McHugh Street, an exit onto Patton Street for emergency and service vehicles, walkways, and an underground detention pond. PROJECT AREA Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 4 2 Proposed Drainage Facilities 2.1 General Flow Patterns The site and surrounding properties were reviewed to determine existing drainage patterns. Runoff generally flows from a high point near the center of the southern edge of the property westerly and northerly to Patton, E. Elizabeth and McHugh Streets. Runoff travels northerly along the flow line of Patton Street to its’ intersection with E. Elizabeth Street and then easterly and southeasterly along the flow line of E. Elizabeth and McHugh Streets. Off-site flow from a portion of the property south of this site developed as a rehabilitation and nursing center enters in two locations near the southeast corner of the site and flows undetained overland northerly to McHugh Street. No drainage report is available for this adjacent property. Based on the aerial photo, off-site basins have been delineated and assumptions have been made about slope based on the slope on Garcia House property. Developed drainage basins were delineated based on existing and proposed improvements. The Final Drainage Plan is in Appendix D. Three on-site basins and two off-site basins were delineated. Descriptions of the delineated basins are listed below. The physical parameters and hydrologic calculations for the basins can be found in Appendix B. 2.2 On-Site Basin Description Basin A consists of sidewalks and landscape areas between the north and west sides of the building and the rights-of-way of Patton, E. Elizabeth, and McHugh Streets. The basin boundary runs along the street right-of-way, per City of Fort Collins direction. Basin A flows via sheet flow to Patton, East Elizabeth, and McHugh Streets without detention. Basin B consists of the proposed commercial building, courtyard area, the majority of the parking lot pavement, concrete walks, and landscaped area. From the existing condition to the proposed condition, the imperviousness for the basin is increased by replacing the natural grass area with parking lot pavement, buildings, and concrete walks. The basin drains to the StormTech system which then releases flow to a proposed storm drain prior to outflowing on McHugh Street through the sidewalk chase. Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 5 Basin C includes a portion of an existing commercial parking lot which will provide access to the site and a portion of landscaped area. Runoff from Basin C flows via sheet flow to McHugh Street without detention. 2.2.1 On-Site Basin Description Sub basins were created for Basin B to determine flows into specific components of the storm drain system, specifically the roof drains, area inlets and curb inlets in the parking lot. 2.3 Off-Site Basin Description Basin OS-1 includes a portion of the nursing center property drains to on-site Basin B. The flows from this basin are accounted for in the storm drain sizing and are conveyed through the property to McHugh Street undetained. Basin OS-2 includes the remaining portion of the nursing center property that drains to the Garcia House property drains to on-site Basin C. As no drainage facilities are proposed for Basin C, runoff from this basin passes through the site and enters McHugh Street undetained, which is consistent with the existing drainage pattern. Figure 2-1 presents the delineation of the off-site basins and Appendix B presents the hydrologic calculations for the basins. Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 6 Figure 2-1: Off-Site Basins 2.4 Water Quantity Detention In order to determine the quantity of stormwater detention and treatment necessary for the project site, the existing and proposed conditions were calculated and compared. Surface Type Runoff Coefficients (Cx) found in Table 3.2.2 of the Fort Collins Stormwater Criteria Manual (FCSCM) adopted in December 2018 were utilized to determine the composite runoff coefficients of each basin. Values from this table are presented in Table 2-1 below. E ELIZABETH ST MCHUGH STPROJECT AREA BASIN OS-1 BASIN OS-2 Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 7 Table 2-1: FCSCM Runoff Coefficients Source: Table 3.2.2 Fort Collins Stormwater Criteria Manual, December 2018 Composite coefficients were determined utilizing Equation 5-2 found in the Fort Collins Stormwater Criteria Manual (FCSCM) adopted in December 2018. Where: C = Composite Runoff Coefficient Ci = Runoff Coefficient for Specific Area (Ai), dimensionless Ai = Area of Surface with Runoff Coefficient of Ci, acres or square feet n = Number of different surfaces to be considered At = Total Area over which C is applicable, acres or square feet The composite runoff coefficients were adjusted by applying frequency adjustment factors (Cf) for the appropriate design storm event. Composite coefficients Frequency Adjust Factors found in Table 3.2-3 of the Fort Collins Stormwater Criteria Manual (FCSCM) adopted in December 2018 utilized are presented in Table 2-2 below. Hardscape or Hard Surface Asphalt, Concrete 0.95 Rooftop 0.95 Recycled Asphalt 0.80 Gravel 0.50 Pavers 0.50 Landscape or Pervious Surface Lawns, Sandy Soil, Flat Slope <2% 0.10 Lawns, Sandy Soil, Avg Slope 2%-7% 0.15 Lawns, Sandy Soil, Steep Slope >7% 0.20 Lawns, Clayey Soil, Flat Slope <2% 0.20 Lawns, Clayey Soil, Avg Slope 2%-7% 0.25 Lawns, Clayey Soil, Steep Slope >7% 0.35 Surface Type Runoff Coefficient (Cx) Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 8 Table 2-2: FCSCM Frequency Adjustment Factors Source: Table 3.2-3 Fort Collins Stormwater Criteria Manual, December 2018 The adjusted composite runoff coefficient value was determined utilizing the following equation. C=Cx*Cf Maximum adjusted composite runoff coefficient value is limited to 1.00. Imperviousness was calculated for Basin B using the impervious percent Table 4.1.3 in FCSWM criteria. The impervious percentages as shown in Table 2-3 below. Table 2-3: Impervious Percentages The existing condition represents the current project site with no improvements or changes. The proposed condition represents the project site with the proposed improvements. Basin categories and area computations can be found in Appendix B. Tables 2-4 and 2-5 below provide a summary of the existing and developed basin characteristics. 2, 5, 10 1.00 25 1.10 50 1.20 100 1.25 Storm Return Period (years)Frequency Adjustment Factor (Cf) Hardscape or Hard Surface Asphalt, Concrete 100 Rooftop 90 Recycled Asphalt 80 Gravel 40 Pavers 40 Landscape or Pervious Surface Playgrounds 25 Lawns, Sandy Soil 2 Lawns, Clayey Soil 2 Surface Type Percent Impervious (%) Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 9 Table 2-4: Existing Condition Basin Summary Table 2-5: Developed Basin Summary Water quantity detention is required for Garcia House: A Circle Program by SummitStone. During a meeting about the project, the City of Fort Collins staff indicated that due to existing conditions on site flows from Basins A and C could be released from the site without detention. Basin A is primarily a landscaped area. Basin C contains the existing parking lot, which currently drains to the street without detention. Runoff from Basin B enters the StormTech system before being released to the street. The StormTech system detention pond has been sized using the Modified FAA Method equations found in Chapter 6 of the FCSCM. The water quantity detention required was determined to be 4599 cubic feet or 0.106 acre-feet. Adding the water quantity detention required to the Water Quality Volume, as required by the FCSCM, results in a detention pond total volume of 5170 cubic feet or 0.119 acre-feet. The IDF data and detention pond calculations can be found in Appendix B. Basin B was further divided into four (4) sub-basins, as noted above, to evaluate flow to structures connected to the underground detention pond. Table 2-6 below shows the Design Point 100-Year 2-Year 100-Year I100 Q2 Q100 (acres) (minutes) (in./hour) (in./hour)(ft3/s)(ft3/s) A 1 0.54 11.9 0.10 0.13 2.1 7.4 0.12 0.50 B 2 0.05 5.0 0.95 1.00 2.9 10.0 0.12 0.45 2-Year C2 Basin Area Rainfall Intensity Runoff 2-Year I2 Runoff Coefficients 100-Year C100 Basin I.D. Time of Concentration 100-Year 2-Year 100-Year I100 Q2 Q100 (acres) (minutes) (in./hour) (in./hour)(ft3/s)(ft3/s) A 1 0.11 8.6 0.34 0.42 2.4 8.4 0.09 0.38 B 2 0.41 5.0 0.90 1.00 2.9 10.0 1.04 4.03 C 3 0.06 5.0 0.74 0.92 2.9 10.0 0.12 0.51 D 4 0.02 5.0 0.20 0.25 2.9 10.0 0.01 0.05 Runoff Coefficients Rainfall Intensity Runoff 2-Year C2 100-Year C100 2-Year I2 Basin I.D. Basin Area Time of ConcentrationDesign Point Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 10 developed condition sub-basin characteristics. Basin categories and area computations can be found in Appendix B. Table 2-6: Developed Sub-Basin Summary A small area, approximately 900 square feet, located south of the proposed parking lot has been delineated as Basin D. This landscaped area, due to grades, will combine with the off-site flow from OS1 prior to entering the storm drain which will convey it to the outfall on McHugh Street. The StormTech system will utilize SC-310 chambers, has a proposed volume of 5265 cubic feet, and release at the 2-yr Historic rate of 0.12 cfs. This will be accomplished using an orifice plate in the StormTech system outlet structure. Table 2-7: Detention Pond Summary Table 2.5 Water Quality Capture Volume Equations in Chapter 7 of the FCSCM were used for the calculation of Water Quality Capture Volume (WQCV) required for Garcia House: A Circle Program by SummitStone project and are presented below. The Water Quality Capture Volume is calculated based on the imperviousness of the project site and the drain time. Most of the new impervious area on Garcia House: A Circle Program by SummitStone project site will drain to the StormTech system. The most 0.95 0.95 0.80 0.50 0.50 0.10 0.15 0.20 0.20 0.25 0.35 (acres) B1 2,932 0 0 0 0 108 0 0 0 0 0 0.07 B2 4,564 0 0 0 0 310 0 0 0 0 0 0.11 B3 0 8,540 0 0 0 0 0 0 0 0 0 0.20 B4 649 0 0 252 0 301 0 0 0 0 0 0.03 TOTAL (acres) 0.19 0.20 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.41 Lawns, Sandy, Slope <2% Lawns, Sandy, Slope 2-7% Lawns, Sandy, Slope >7% Lawns, Clayey, Slope Lawns, Clayey, Slope Lawns, Clayey, Slope Basin I.D. Basin Categories and Areas (SF) Basin AreaHardscape or Hard Surface Landscape or Pervious Surface Asphalt, Concrete Rooftop Recycled Asphalt Gravel Pavers (acres) (hours) (in) (ac-ft) (cu-ft) B 0.41 90% 12 0.323 0.013 571 WQCV Volume 2 WQCV VolumeBasin I.D. Basin Area Percent Impervious Drain Time WQCV1 Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 11 conservative drain time presented in the FCSCM, 12 hours, has been used in the sizing calculations for Garcia House: A Circle Program by SummitStone. WQCV = (0.91 3-1.19 2+0.78 ) Equation 7-1 FCSCM Where: WQCV = Water Quality Capture Volume (watershed inches) = Drain Time Coefficient (0.8 for a drain time of 12 hours) = Imperviousness, %/100 (0.90 for Basin B) For Garcia House: A Circle Program by SummitStone, the resulting WQCV is 0.323 watershed inches. The FCSCM uses the WQCV above to find the basin storage volume based on the following equation: V = (WQCV/12)*A*1.2 Equation 7-2 FCSCM Where: V = Basin Design Volume (cubic feet) WQCV = Water Quality Capture Volume (watershed inches) A = Area of Watershed Tributary to the Basin (square feet) With a total tributary area of 18,559 square feet, the Basin Design Volume required is 571 cubic feet or 0.013 acre-feet. 2.6 LID Treatment The City of Fort Collins LID ordinance requires that for 75% of all newly added or modified impervious areas be treated by LID techniques. Runoff from a small portion of the new or modified impervious area on the project site flows directly to McHugh Street and is therefore not treated by the StormTech system. Table 2-8 shows how the LID requirements have been met for this project. Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 12 Table 2-8: LID Treatment The isolation chamber rows in the StormTech system have been designed to meet the City of Fort Collins criteria. Table 2-9 indicates the minimum number of isolation chambers required is 20. Isolation chambers proposed for this StormTech system is 30. The isolation chambers will be in 2 rows of 15, such that each row can handle runoff from approximately 75% of the site. StormTech chamber plans and details can be found in Appendix D. Table 2-9: Water Quality Chambers Figure 2-2 shows the location of the StormTech system. PROJECT AREA TOTAL NET NEW IMPERVIOUS AREA 16,221 SF REQUIRED MINIMUM AREA TO BE TREATED BY LID (75% OF NEW IMPERVIOUS AREA)12,166 SF NET NEW IMPERVIOUS AREA TREATED BY LID 15,946 SF PERCENT OF NEW IMPERVIOUS AREA TREATED BY LID 98% 75% ON-SITE TREATMENT BY LID (cf) (cfs) (sf) (cfs) (cf) (cf) (units) (cfs) B 571 0.52 SC-310 20.2 0.016 14.70 29.30 20 0.32 Chamber Volume per unit with Aggregate4 Minimum Number of Chambers5 Minimum Release Rate6 Chamber Volume per Unit3Basin I.D. Required WQCV Volume WQ Flow1 Chamber Type Chamber Release Rate2 Chamber Bottom Area (cf) (units) (cf) (cf) (units) (cfs) (cf) (cf) 62 5 294 586 30 0.32 441 879 Proposed Storage in Chambers12 Proposed Total WQCV Volume13 Minimum WQCV Volume10 Modified FAA Storage Volume Required Minimum FAA Number of Chambers8 Minimum Storage Required in Chambers9 Proposed Release Rate11 Isolation Chamber Units Proposed Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 13 Figure 2-2: LID Exhibit 2.7 Maintenance Access The drainage facilities on this site will be privately maintained. 2.8 Easements A 10-foot-wide drainage easement will be granted to the property owner to the south to allow for off-site conveyance through the property. A drainage easement around the Stormtech System will be granted to the City of Fort Collins. 3 Proposed Drainage Design Criteria 3.1 Drainage Studies There are no available previous drainage studies for this site or the site to the south. Storm runoff from the property to the south has been analyzed and accounted for as part of the design for this site. 3.2 Four-Step Process This section of the report presents the design of drainage facilities related to Garcia House: A Circle Program by SummitStone project. The drainage design has been explained as it pertains to the “Four-Step Process for Stormwater Quality Management” as outlined in the FCSCM. STORMTECH SYSTEM LID TREATMENT Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 14 3.2.1 Step 1: Runoff Reduction The first step in stormwater quality management is to reduce runoff peaks, volumes, and pollutant loads from urbanizing areas by implementing Low Impact Development (LID) strategies. LID practices include reducing unnecessary impervious areas and routing runoff from impervious surfaces over permeable areas to slow runoff and promote infiltration. Garcia House: A Circle Program by SummitStone project includes an increase in impervious area with the construction of the building, concrete walks and asphalt drives. Runoff from most of the new impervious areas will be routed through a StormTech detention system. The Isolator Row in the StormTech system acts as a LID practice by allowing sediment to collect as stormwater infiltrates through the cloth barrier into the StormTech detention system. 3.2.2 Step 2: Treat and Slowly Release Runoff After reducing the runoff from a site, the second step in stormwater quality management is to route the water quality volume through the Stormtech isolator rows which will capture sediment before releasing it. 3.2.3 Step 3: Stabilize Drainageways Although steps 1 and 2 help to minimize the effects of runoff on downstream drainageways, natural drainageways are often subject to bed and bank erosion due to increases in the frequency, rate, duration, and volume of runoff. Step 3 includes measures to prevent drainageway erosion. There are no drainageways on Garcia House: A Circle Program by SummitStone site. By implementing steps 1 and 2, the project site does its part to reduce drainageway erosion downstream. 3.2.4 Step 4: Implementation of Source Controls The final step in stormwater quality management is source control. Site specific needs such as material storage or other site operations require consideration of targeted source control Best Management Practices (BMPs). These BMPs are Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 15 shown on the Erosion Control Plan and explained in the Erosion Control Report which has been submitted to the City of Fort Collins by separate document. 3.3 BMP Selection Considerations The following sections discuss the considerations for determining the best BMP or LID solution to implement for the project. 3.3.1 Soils The existing soil condition on the project site must be considered when designing BMPs. Soils with good permeability provide opportunities for infiltration of runoff and are well-suited for infiltration based BMPs such as dry wells, permeable pavement, and grass swales. The soils on Garcia House: A Circle Program by SummitStone site are in Hydrologic Soil Group B, which is defined as soils having a moderate infiltration when thoroughly wet. For this reason, infiltration based BMPs were considered a good option for the project site. Soil information for the site may be found in Appendix A. 3.3.2 Watershed Size The contributing drainage area is an important consideration for the design of BMPs. For a small site, such as Garcia House: A Circle Program by SummitStone, it is not feasible to design a detention pond that releases the WQCV over a 12-hour drain time due to the small orifices that would be required. Instead, it is recommended that small watersheds use filtering BMPs, such as the StormTech system designed for the project site. 3.3.3 Base Flows BMPs such as constructed wetlands ponds, retention ponds, and wetland channels require a base flow to prevent the BMPs from becoming dry and unable to support wetland vegetation. No base flow exists for Garcia House: A Circle Program by SummitStone site, so no BMPs that require a base flow were considered for the site. Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 16 3.4 BMP Design The StormTech chamber system utilizes infiltration to reduce the transportation of pollutants to downstream receiving waters. The system is equipped with an “isolator row” which consists of wrapping the row of chambers that filters the first flush of storm runoff with fabric. This row captures the sediment which can be removed and disposed of as part of the maintenance process. 3.5 Hydrologic Criteria Per City of Fort Collins criteria, the Rational Formula Method was used for the hydrologic analysis of Garcia House: A Circle Program by SummitStone project site. The rainfall intensities (IDF Data) from the FCSCM were used for the calculation of runoff for the 2-year and 100-year storm events. The IDF Data can be found in Appendix B. Detention Volumes were determined utilizing the Modified FAA procedure as described in Chapter 6 of the FCSCM. 3.6 Hydraulic Criteria The City of Fort Collins criteria and UDFCD were utilized for different components of the storm sewer system. Equations 9-8 (weir flow) and 9-9 (orifice flow) of the FCSCM were used to determine inlet capacities of the combination inlets in the parking lot and the area inlets in the courtyard area. Both grates have excess capacity as depicted in Table 3-1. Qi = CwLwd1.5 Equation 9-8 FCSCM Where: Cw = Weir Discharge Coefficient Lw = Weir Length, ft d = Flow Depth, ft Qi = CoAo(2gd)0.5 Equation 9-9 FCSCM Where: Co = Orifice Discharge Coefficient Ao = Orifice Area, ft2 d = Characteristic Depth as defined in Table 3.4.3-1, ft Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 17 d = Characteristic Depth as defined in Table 3.4.3-1, ft g = 32.2 ft/sec2 Table3-1: Grate Inlet Capacities UD-Sewer software was utilized to analyze the capacities of the storm sewer lines for the 100-year storm event. All lines were analyzed assuming that the Stormtech chambers were at capacity. The analysis indicates that the lines on the west side (B1) will operate with a maximum surcharge of 3 inches above the top of the pipe and the line on the east side (B2) will have a surcharge of 8 inches, both of which are well below the inlet grate elevations. The underground detention pond inlet structures weir elevations were determined by the WQCV volume requirements in conjunction with the stage-storage tables for the Stormtech Isolator Rows. The WQCV Orifice Plate is not required as the Stormtech Isolation chambers are sized for the 12 hour water quality volume. The outlet structure will be equipped with a quantity detention orifice plate (restrictor plate) as requested by the City of Fort Collins. The restrictor plate will be set at 0.06 feet above the outlet pipe invert to restrict the flow to 0.12 cfs. The restrictor plate calculations can be found in Appendix B. 4 Variance Requests No variance requests are anticipated with this project. 5 Erosion Control This project complies with the City of Fort Collins Erosion Control Criteria. The complete Stormwater Management Plan meeting all of the requirements in Chapter 4 has been provided by separate document. Inlet Inlet Type Design Flow Flow Depth (d) Weir Discharge Coefficient (Cw) Grate Length (L) Grate Width (W) Weir Length (Lw) = L+2W Clear Opening of Grate (A0) Weir Equation Valid for d<1.79(A0/Lw) Weir Equation Valid Inlet Capacity1 (Qi) (Qi)=CwLwd^ 1.5 (cfs) (feet) (feet) (feet) (feet) square feet) (cfs) B1 Grate Inlet 0.69 0.27 3 1.91 1.41 4.73 1.02 0.39 YES 1.99 B2 Grate Inlet 1.11 0.32 3 1.91 1.41 4.73 1.02 0.39 YES 2.57 Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 18 6 Conclusions The final drainage design for Garcia House: A Circle Program by SummitStone project, as outlined in this Drainage Report, is in compliance with City of Fort Collins Stormwater Criteria Manual, Master Drainage Plans, Floodplain Regulations, and/or State and Federal Regulations. The design safely and effectively collects and conveys runoff per the applicable criteria and mimics existing drainage patterns where possible. 7 References City of Fort Collins Stormwater Criteria Manual adopted December 2018 City of Fort Collins Isolation Chamber calculation criteria Advanced Drainage Systems Inc. design criteria for StormTech Chamber Systems 8 Appendices Appendix A contains the Soil Survey Information, Floodplain Map, and Spring Creek Basin Management Proposed Condition BMP Map. Appendix B contains the hydrologic calculations, detention basin – volume calculations, water quality capture volume calculations, IDF Data, StormTech isolation chamber calculations, LID Calculations, and LID Exhibit. Appendix C contains the hydraulic calculations for inlet sizing, storm sewer sizing, WQCV orifice sizing, and outlet structure orifice plate sizing. Appendix D contains the StormTech System Plans and Details Appendix E contains the Historic and Developed Drainage Basin Plans. Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 A Appendix A: Existing Soil Properties Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 B Appendix B: Hydrologic Calculations GARCIA HOUSE: A CIRCLE PROGRAM BY SUMMITSTONE TABLE B 7: LID REQUIREMENTS PROJECT AREA TOTAL NET NEW IMPERVIOUS AREA 16,222 SF REQUIRED MINIMUM AREA TO BE TREATED BY LID (75% OF NEW IMPERVIOUS AREA) 12,166 SF NET NEW IMPERVIOUS AREA TREATED BY LID 15,946 SF PERCENT OF NEW IMPERVIOUS AREA TREATED BY LID 98% 75% ON SITE TREATMENT BY LID 10/28/2019 CI R C L E C AD U L T G A R C I A H O U S E : A C I R C L E P R O G R A M B Y S U M M I T S T O N E TA B L E B 8: W Q C V (a c r e s ) ( h o u r s ) ( i n ) ( a c ft ) ( c u ft ) B 0 . 4 1 9 0 % 1 2 0 . 3 2 3 0 . 0 1 3 5 7 1 1 WQ C V = a (0 . 9 1 I 3 1. 1 9 I 2+0 . 7 8 I ) Eq u a t i o n 7 1 2 V= ( W Q C V / 1 2 ) A * 1 . 2 Eq u a t i o n 7 2 WQ C V Vo l u m e 2 WQ C V Vo l u m e Ba s i n I . D . Ba s i n A r e a Pe r c e n t Im p e r v i o u s Dr a i n T i m e WQ C V 1 10 / 2 8 / 2 0 1 9 GA R C I A H O U S E : A C I R C L E P R O G R A M B Y S U M M I T S T O N E TA B L E B 9: I S O L A T I O N C H A M B E R C A L C U L A T I O N S (c f ) ( c f s ) ( s f ) ( c f s ) ( c f ) ( c f ) ( u n i t s ) ( c f s ) ( c f ) ( u n i t s ) ( c f ) ( c f ) ( u n i t s ) ( c f s ) ( c f ) ( c f ) B 5 7 1 0 . 5 2 S C 31 0 2 0 . 2 0 . 0 1 6 1 4 . 7 0 2 9 . 3 0 2 0 0 . 3 2 6 2 5 2 9 4 5 8 6 3 0 0 . 3 2 4 4 1 8 7 9 1 WQ F l o w : Q = C ( i/ 2 )A C: 2 yr s t o r m , i: 2 yr s t o r m 2 Ch a m b e r R e l e a s e R a t e per c h a m b e r , l i m i t e d b y fl o w t h r o u gh geo t e x t i l e f a b r i c . F o r t C o l l i n s a l l o w s 0 . 3 5 G P M / S F o f f a b r i c Co n v e r s i o n F a c t o r f o r g p m / s f t o c f s / s f i s 0 . 0 0 0 7 8 3 Ch a m b e r V o l u m e o n l y per u n i t 4 Ch a m b e r V o l u m e i n c l u d e s c h a m b e r a n d v o i d s pac e ( 4 0 % ) a r o u n d c h a m b e r s per u n i t 5 Nu m b e r o f C h a m b e r s r e qui r e d f o r W Q C V i n c l u d i n g agg re gat e 6 Re l e a s e R a t e = M i n i m u m N u m b e r o f C h a m b e r s * C h a m b e r R e l e a s e R a t e 7 Mo d i f i e d F A A c a l c b a s e d o n F l o w , W Q a n d T o t a l R e l e a s e R a t e 8 Nu m b e r o f C h a m b e r s r e qui r e d b a s e d o n M o d i f i e d F A A V o l u m e 9 Gr e a t e r o f M i n i m u m N u m b e r o f C h a m b e r s o r M i n i m u m F A A N u m b e r o f C h a m b e r s * C h a m b e r V o l u m e 3 10 Gr e a t e r o f M i n i m u m N u m b e r o f C h a m b e r s o r M i n i m u m F A A N u m b e r o f C h a m b e r s * C h a m b e r V o l u m e w i t h A gg re gat e 4 11 Pr o pos e d R e l e a s e R a t e = I s o l a t i o n C h a m b e r U n i t s P r o pos e d * C h a m b e r R e l e a s e R a t e 12 Ch a m b e r U n i t s P r o pos e d * C h a m b e r V o l u m e per U n i t 3 13 Ch a m b e r U n i t s P r o pos e d * C h a m b e r V o l u m e w i t h A gg re gat e 4 Ch a m b e r V o l u m e pe r U n i t 3 Is o l a t i o n C h a m b e r Un i t s P r o p o s e d Ba s i n I . D . Re q u i r e d WQ C V Vo l u m e WQ F l o w 1 Ch a m b e r Ty p e Ch a m b e r Re l e a s e R a t e 2 Ch a m b e r Bo t t o m Ar e a Pr o p o s e d S t o r a g e i n Ch a m b e r s 12 Pr o p o s e d T o t a l WQ C V V o l u m e 13 Mi n i m u m W Q C V Vo l u m e 10 Ch a m b e r V o l u m e pe r u n i t w i t h Ag g r e g a t e 4 Mi n i m u m Nu m b e r o f Ch a m b e r s 5 Mi n i m u m Re l e a s e Ra t e 6 Mo d i f i e d F A A St o r a g e V o l u m e Re q u i r e d Mi n i m u m F A A Nu m b e r o f Ch a m b e r s 8 Mi n i m u m S t o r a g e Re q u i r e d i n C h a m b e r s 9 Pr o p o s e d Re l e a s e Ra t e 11 10 / 2 8 / 2 0 1 9 G A R C I A H O U S E : A C I R C L E P RO G R A M B Y S U M M I T S T O N E TA B L E B - 1 0 : I M P E R V I O U S N E S S ( B A S I N S U B - B A S I N ) Ex i s t i n g C o n d i t i o n Ha r d s c a p e o r H a r d S u r f a c e La n d s c a p e o r P e r v i o u s S u r f a c e 10 0 % 90 % 80 % 40 % 40 % 25 % 2% 2% (% ) A 0 0 0 0 0 0 23 , 6 5 7 0 2. 0 % B 1 , 9 6 1 0 0 0 0 0 0 0 1 0 0 . 0 % TO T A L ( S F ) 19 6 1 0 0 0 0 0 23 6 5 7 0 9. 5 % De v e l o p e d C o n d i t i o n ( B a s i n ) 0% 0% 0% 0% 0% 0% 0% 2% (% ) 0 0 0 0 0 0 0 4, 6 2 9 0 2. 0 % 0 0 0 0 0 0 0 17 , 6 5 6 0 2. 0 % 0 0 0 0 0 0 0 2, 4 3 1 0 2. 0 % D 0 0 0 0 0 0 90 3 0 2. 0 % TO T A L ( S F ) 0 0 0 0 0 0 2 5 6 1 9 0 . 0 0 2. 0 % De v e l o p e d C o n d i t i o n ( S u b - B a s i n ) 10 0 % 90 % 80 % 40 % 40 % 25 % 2% 2% (% ) B1 2, 9 3 2 0 0 0 0 0 10 8 0 96 . 5 % B2 4, 5 6 4 0 0 0 0 0 31 0 0 93 . 8 % B3 0 8, 5 4 0 0 0 0 0 0 0 90 . 0 % B4 64 9 0 0 25 2 0 0 30 1 0 62 . 9 % TO T A L ( S F ) 81 4 5 85 4 0 0 25 2 0 0 71 9 0. 0 0 90 . 3 % Im p e r v i o u s Ba s i n C a t e g o r i e s a n d A r e a s ( S F ) Im p e r v i o u s Ba s i n C a t e g o r i e s a n d A r e a s ( S F ) Re c y c l e d As p h a l t Gr a v e l P a v e r s Pl a y g r o u n ds La w n s , Sa n d y S o i l La w n s , Cl a y e y Pl a y g r o u n ds La w n s , Sa n d y S o i l La w n s , Cl a y e y Pa v e r s Ba s i n I . D . Ba s i n C a t e g o r i e s a n d A r e a s ( S F ) Ba s i n I . D . As p h a l t , Co n c r e t e Ro o f t o p Re c y c l e d As p h a l t Gr a v e l Ba s i n I . D . Ha r d s c a p e o r H a r d S u r f a c e L a n d s c a p e o r P e r v i o u s S u r f a c e As p h a l t , Co n c r e t e Ro o f t o p Im p e r v i o u s Ha r d s c a p e o r H a r d S u r f a c e L a n d s c a p e o r P e r v i o u s S u r f a c e As p h a l t , Co n c r e t e Ro o f t o p Re c y c l e d As p h a l t Gr a v e l P a v e r s Pl a y g r o u n ds La w n s , Sa n d y S o i l La w n s , Cl a y e y 10 / 2 9 / 2 0 1 9 GARCIA HOUSE: A CIRCLE PROGRAM BY SUMMITSTONE TABLE B 11: DETENTION VOLUME DETENTION VOLUME BY THE MODIFIED FAA METHOD (FORT COLLINS) Project: Design Point: 0.41 Acres 1.00 0.12 CFS 5 Minutes 5 9.95 1223.85 34.70 1189 6 9.31 1374.16 41.64 1333 7 8.80 1515.36 48.58 1467 8 8.38 1649.18 55.53 1594 9 8.03 1777.84 62.47 1715 10 7.72 1899.12 69.41 1830 11 7.42 2007.85 76.35 1932 12 7.16 2113.63 83.29 2030 13 6.92 2213.02 90.23 2123 14 6.71 2310.92 97.17 2214 15 6.52 2405.88 104.11 2302 16 6.30 2479.68 111.05 2369 17 6.10 2551.02 117.99 2433 18 5.92 2621.38 124.93 2496 19 5.75 2687.55 131.87 2556 20 5.60 2755.20 138.81 2616 21 5.46 2820.64 145.75 2675 22 5.32 2879.18 152.70 2726 23 5.20 2942.16 159.64 2783 24 5.09 3005.14 166.58 2839 25 4.98 3062.70 173.52 2889 26 4.87 3114.85 180.46 2934 27 4.78 3174.88 187.40 2987 28 4.69 3230.47 194.34 3036 29 4.60 3281.64 201.28 3080 30 4.52 3335.76 208.22 3128 31 4.42 3370.69 215.16 3156 32 4.33 3408.58 222.10 3186 33 4.24 3442.03 229.04 3213 34 4.16 3479.42 235.98 3243 35 4.08 3512.88 242.92 3270 36 4.01 3551.26 249.86 3301 37 3.93 3577.09 256.81 3320 38 3.87 3617.68 263.75 3354 39 3.80 3645.72 270.69 3375 40 3.74 3680.16 277.63 3403 41 3.68 3711.65 284.57 3427 42 3.62 3740.18 291.51 3449 43 3.56 3765.77 298.45 3467 44 3.51 3799.22 305.39 3494 45 3.46 3830.22 312.33 3518 46 3.41 3858.76 319.27 3539 47 3.36 3884.83 326.21 3559 48 3.31 3908.45 333.15 3575 49 3.27 3941.66 340.09 3602 50 3.23 3972.90 347.03 3626 51 3.18 3989.63 353.98 3636 52 3.14 4016.69 360.92 3656 53 3.10 4041.78 367.86 3674 54 3.07 4078.19 374.80 3703 55 3.03 4099.59 381.74 3718 56 2.99 4119.02 388.68 3730 57 2.96 4150.51 395.62 3755 58 2.92 4166.26 402.56 3764 59 2.89 4194.55 409.50 3785 60 2.86 4221.36 416.44 3805 65 2.71 4333.29 451.14 3882 70 2.59 4459.98 485.85 3974 75 2.48 4575.60 520.55 4055 80 2.38 4683.84 555.26 4129 85 2.29 4788.39 589.96 4198 90 2.21 4892.94 624.66 4268 95 2.13 4977.81 659.37 4318 100 2.06 5067.60 694.07 4374 105 2.00 5166.00 728.77 4437 110 1.94 5249.64 763.48 4486 115 1.88 5318.52 798.18 4520 120 1.84 5431.68 832.88 4599 GARCIA HOUSE: A CIRCLE PROGRAM BY SUMMITSTONE BASIN B Design Information (Input) Rainfall Intensity I (inches/hour) Outflow Volume Vo (Cubic Feet) Required Detention Volume Vs (Cubic Feet) Catchment Area: Runoff Coefficent: Allowable Maximum Release Rate: Time of Concentration: Storm Duration T (minutes) Inflow Volume Vi (Cubic Feet) 10/28/2019 GARCIA HOUSE: A CIRCLE PROGRAM BY SUMMITSTONE TABLE B 12: ISOLATION CHAMBER VOLUME Project: Design Point: 0.41 Acres 0.90 0.32 CFS 5 Minutes 5 1.43 156.27 94.54 62 6 1.34 175.68 113.44 62 7 1.26 193.44 132.35 61 8 1.20 210.55 151.26 59 9 1.15 227.00 170.16 57 10 1.11 242.35 189.07 53 11 1.07 256.93 207.98 49 12 1.03 269.76 226.89 43 13 0.99 282.27 245.79 36 14 0.96 294.77 264.70 30 15 0.94 307.60 283.61 24 16 0.91 317.58 302.52 15 17 0.88 326.24 321.42 5 18 0.85 335.56 340.33 5 19 0.83 343.79 359.24 15 20 0.81 353.11 378.14 25 21 0.78 359.25 397.05 38 22 0.77 369.12 415.96 47 23 0.75 375.81 434.87 59 24 0.73 384.25 453.77 70 25 0.72 392.04 472.68 81 26 0.70 399.16 491.59 92 27 0.69 405.63 510.49 105 28 0.67 411.45 529.40 118 29 0.66 419.78 548.31 129 30 0.65 427.68 567.22 140 31 0.64 431.73 586.12 154 32 0.62 435.13 605.03 170 33 0.61 441.49 623.94 182 34 0.60 443.69 642.84 199 35 0.59 449.06 661.75 213 36 0.58 453.99 680.66 227 37 0.58 470.66 699.57 229 38 0.56 462.55 718.47 256 39 0.55 466.17 737.38 271 40 0.54 469.35 756.29 287 41 0.53 472.09 775.20 303 42 0.52 479.00 794.10 315 43 0.51 480.97 813.01 332 44 0.51 487.33 831.92 345 45 0.50 488.54 850.82 362 46 0.49 494.35 869.73 375 47 0.48 494.79 888.64 394 48 0.48 500.05 907.55 407 49 0.47 505.10 926.45 421 50 0.46 504.44 945.36 441 51 0.46 508.93 964.27 455 52 0.45 513.21 983.17 470 53 0.45 517.27 1002.08 485 54 0.44 521.11 1020.99 500 55 0.44 524.72 1039.90 515 56 0.43 528.12 1058.80 531 57 0.43 531.30 1077.71 546 58 0.42 534.27 1096.62 562 59 0.42 537.01 1115.52 579 60 0.41 539.53 1134.43 595 65 0.39 555.98 1228.97 673 70 0.37 560.36 1323.50 763 75 0.35 575.72 1418.04 842 80 0.33 579.01 1512.58 934 85 0.32 596.55 1607.11 1011 90 0.31 602.04 1701.65 1100 95 0.29 604.23 1796.18 1192 100 0.28 614.10 1890.72 1277 105 0.27 621.77 1985.26 1363 110 0.26 627.26 2079.79 1453 115 0.26 643.16 2174.33 1531 120 0.25 644.80 2268.86 1624 ISOLATION CHAMBER VOLUME BY THE MODIFIED FAA METHOD (FORT COLLINS) Time of Concentration: Storm Duration T (minutes) Rainfall Intensity I (inches/hour) Inflow Volume Vi (Cubic Feet) Outflow Volume Vo (Cubic Feet) Required Detention Volume Vs (Cubic Feet) GARCIA HOUSE: A CIRCLE PROGRAM BY SUMMITSTONE BASIN B Design Information (Input) Catchment Area: Runoff Coefficent: Release Rate: 10/28/2019 Area must be at least value listed to right -sf Min. Area - (inches) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (feet) 712 sf min. area GARCIA HOUSE: A CIRCLE PROGRAM BY SUMMITSTONE TABLE B-13 QUANTITY DETENTION ORIFICE PLATE SIZING Outlet Structure Weir Circular Orifice Q = C0A(2gh)1/2 Maximim Orifice Discharge (Q)0.12 cfs C0 0.61 g 32.2 ft/sec^2 Orifice Diameter 1.75 inches Cross Sectional Area (A) 0.016703 ft2 Upstream Water Surface Elevation 4960.41 ft Orifice Invert Elevation 4958.11 ft Orifice Centroid Elevation 4958.183 ft Effective Head (h)2.227083 ft Q 0.12 cfs 12/17/2019 Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 C Appendix C: Hydraulic Calculations MANNING'S EQUATION for OPEN CHANNEL FLOW Project: Garcia House Location: Basin B1 By: EJJ Date: 10/25/2019 Chk By: EJJ Date: 10/25/2019 version 12-2004 INPUT z (sideslope)= 0 Mannings Formula z (sideslope)= 12 b (btm width, ft)= 0 Q = (1.486/n)ARh 2/3S1/2 d (depth, ft)= 0.27 R = A/P S (slope, ft/ft) 0.005 A = cross sectional area n low =0.016 P= wetted perimeter n high =0.016 S = slope of channel V = (1.49/n)Rh 2/3S1/2 n = Manning's roughness coefficient Q = V x A Depth, ft Area, sf Wetted Perimeter, ft Hydraulic Radius, ft Velocity, fps Flow, cfs Velocity, fps Flow, cfs 0.27 0.44 3.52 0.12 1.63484474 0.71508 1.634845 0.71508 T = 3.24 Dm = 0.135 Sc low = 0.0081 Sc high = 0.0081 sc =critical slope ft / ft T = top width of the stream .7 Sc 1.3 Sc .7 Sc 1.3 Sc dm =a/T = mean depth of flow 0.0057 0.0106 0.0057 0.0106 Created by: Mike O'Shea Low N High N d w z 11 z T Clear Data Entry Cells MANNING'S EQUATION for OPEN CHANNEL FLOW Project: Garcia House Location: Basin B2 By: EJJ Date: 10/25/2019 Chk By: EJJ Date: 10/25/2019 version 12-2004 INPUT z (sideslope)= 0 Mannings Formula z (sideslope)= 12 b (btm width, ft)= 0 Q = (1.486/n)ARh 2/3S1/2 d (depth, ft)= 0.32 R = A/P S (slope, ft/ft) 0.005 A = cross sectional area n low =0.016 P= wetted perimeter n high =0.016 S = slope of channel V = (1.49/n)Rh 2/3S1/2 n = Manning's roughness coefficient Q = V x A Depth, ft Area, sf Wetted Perimeter, ft Hydraulic Radius, ft Velocity, fps Flow, cfs Velocity, fps Flow, cfs 0.32 0.61 4.17 0.15 1.83092175 1.12492 1.830922 1.12492 T = 3.84 Dm = 0.160 Sc low = 0.0077 Sc high = 0.0077 sc =critical slope ft / ft T = top width of the stream .7 Sc 1.3 Sc .7 Sc 1.3 Sc dm =a/T = mean depth of flow 0.0054 0.0100 0.0054 0.0100 Created by: Mike O'Shea Low N High N d w z 11 z T Clear Data Entry Cells UD - S e w e r B 1 . d o c x 1 2 / 4 / 2 0 1 9 UD S e w e r R e s u l t s S u m m a r y Pr o j e c t T i t l e : Ga r c i a H o u s e Pr o j e c t D e s c r i p t i o n : B1 S t o r m D r a i n Sy s t e m I n p u t S u m m a r y Ra i n f a l l P a r a m e t e r s R a i n f a l l R e t u r n P e r i o d : 10 0 Ba c k w a t e r C a l c u l a t i o n s : T a i l w a t e r E l e v a t i o n ( f t ) : 49 6 0 . 4 1 Ma n h o l e I n p u t S u m m a r y : Gi v e n F l o w Su b B a s i n I n f o r m a t i o n El e m e n t Na m e Gr o u n d El e v a t i o n (f t ) To t a l Kn o w n Fl o w ( c f s ) Lo c a l Co n t r i b u t i o n (c f s ) Dr a i n a g e Ar e a (A c . ) Ru n o f f Co e f f i c i e n t 5y r Co e f f i c i e n t Ov e r l a n d Le n g t h (f t ) Ov e r l a n d Sl o p e (% ) Gu t t e r Le n g t h (f t ) Gu t t e r Ve l o c i t y (f p s ) St o r m t e c h S y s t e m 49 6 1 . 8 6 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 B1 A 49 6 2 . 6 4 2. 8 6 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 In l e t B 1 49 6 2 . 5 6 0. 6 9 0. 6 9 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 Ro o f - Ar e a D r a i n s 49 6 3 . 7 6 2. 1 7 2. 1 7 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 Ma n h o l e O u t p u t S u m m a r y : UD - S e w e r B 1 . d o c x 1 2 / 4 / 2 0 1 9 Lo c a l C o n t r i b u t i o n To t a l D e s i g n F l o w El e m e n t Na m e Ov e r l a n d Ti m e (m i n ) Gu t t e r Ti m e (m i n ) Ba s i n T c (m i n ) In t e n s i t y (i n / h r ) Lo c a l Co n t r i b (c f s ) Co e f f . Ar e a In t e n s i t y (i n / h r ) Ma n h o l e T c (m i n ) Pe a k Fl o w (c f s ) Co m m e n t St o r m t e c h S y s t e m 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 B1 A 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 2. 8 6 In l e t B 1 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 6 9 0. 0 0 0. 0 0 0. 0 0 0. 6 9 Ro o f - Ar e a D r a i n s 0. 0 0 0. 0 0 0. 0 0 0. 0 0 2. 1 7 0. 0 0 0. 0 0 0. 0 0 2. 1 7 Se w e r I n p u t S u m m a r y : El e v a t i o n Lo s s C o e f f i c i e n t s Gi v e n D i m e n s i o n s El e m e n t Na m e Se w e r Le n g t h (f t ) Do w n s t r e a m In v e r t (f t ) Sl o p e (% ) Up s t r e a m In v e r t (f t ) Ma n n i n g s n Be n d Lo s s La t e r a l Lo s s Cr o s s Se c t i o n Ri s e (f t o r i n ) Sp a n (f t o r i n ) B1 A 12 . 0 0 49 5 8 . 7 3 4. 9 49 5 9 . 3 2 0. 0 1 2 1. 3 2 0. 0 0 CI R C U L A R 12 . 0 0 i n 12 . 0 0 i n In l e t B 1 5. 7 0 49 5 9 . 3 2 4. 9 49 5 9 . 6 0 0. 0 1 2 0. 0 5 0. 0 0 CI R C U L A R 12 . 0 0 i n 12 . 0 0 i n Ro o f - Ar e a D r a i n s 42 . 3 0 49 5 9 . 3 2 1. 1 49 5 9 . 7 8 0. 0 1 2 1. 3 2 0. 0 0 CI R C U L A R 12 . 0 0 i n 12 . 0 0 i n UD - S e w e r B 1 . d o c x 1 2 / 4 / 2 0 1 9 Se w e r F l o w S u m m a r y : Fu l l F l o w C a p a c i t y Cr i t i c a l F l o w No r m a l F l o w El e m e n t Na m e Fl o w (c f s ) Ve l o c i t y (f p s ) De p t h (i n ) Ve l o c i t y (f p s ) De p t h (i n ) Ve l o c i t y (f p s ) Fr o u d e Nu m b e r Fl o w Co n d i t i o n Fl o w (c f s ) Su r c h a r g e d Le n g t h (f t ) Co m m e n t B1 A 8. 5 8 10 . 9 2 8. 7 0 4. 6 9 4. 7 7 9. 8 3 3. 1 8 Pr e s s u r i z e d 2. 8 6 12 . 0 0 In l e t B 1 8. 5 8 10 . 9 3 4. 1 6 2. 8 6 2. 3 0 6. 5 5 3. 1 6 Pr e s s u r i z e d 0. 6 9 5. 7 0 Ro o f - Ar e a D r a i n s 4. 0 4 5. 1 4 7. 5 5 4. 1 7 6. 2 7 5. 2 3 1. 4 3 Pr e s s u r i z e d 2. 1 7 42 . 3 0 A F r o u d e n u m b e r o f 0 i n d i c a t e s t h a t p r e s s u r e d f l o w o c c u r s ( a d v e r s e s l o p e o r u n d e r s i z e d p i p e ) . If t h e s e w e r i s n o t p r e s s u r i z e d , f u l l f l o w r e p r e s e n t s t h e m a x i m u m g r a v i t y f l o w i n t h e s e w e r . If t h e s e w e r i s p r e s s u r i z e d , f u l l f l o w r e p r e s e n t s t h e p r e s s u r i z e d f l o w c o n d i t i o n s . UD - S e w e r B 1 . d o c x 1 2 / 4 / 2 0 1 9 Se w e r S i z i n g S u m m a r y : Ex i s t i n g Ca l c u l a t e d Us e d El e m e n t Na m e Pe a k Fl o w (c f s ) Cr o s s Se c t i o n Ri s e Sp a n Ri s e S p a n R i s e S p a n Ar e a (f t ^ 2 ) Co m m e n t B1 A 2 . 8 6 C I R C U L A R 1 2 . 0 0 i n 1 2 . 0 0 i n 1 8 . 0 0 i n 1 8 . 0 0 i n 1 2 . 0 0 i n 1 2 . 0 0 i n 0 . 7 9 He i g h t i s t o o s m a l l . Wi d t h i s t o o s m a l l . Ex i s t i n g h e i g h t i s s m a l l e r th a n t h e s u g g e s t e d h e i g h t . Ex i s t i n g w i d t h i s s m a l l e r th a n t h e s u g g e s t e d w i d t h . In l e t B 1 0 . 6 9 C I R C U L A R 1 2 . 0 0 i n 1 2 . 0 0 i n 1 8 . 0 0 i n 1 8 . 0 0 i n 1 2 . 0 0 i n 1 2 . 0 0 i n 0 . 7 9 He i g h t i s t o o s m a l l . Wi d t h i s t o o s m a l l . Ex i s t i n g h e i g h t i s s m a l l e r th a n t h e s u g g e s t e d h e i g h t . Ex i s t i n g w i d t h i s s m a l l e r th a n t h e s u g g e s t e d w i d t h . Ro o f - A r e a D r a i n s 2 . 1 7 C I R C U L A R 1 2 . 0 0 i n 1 2 . 0 0 i n 1 8 . 0 0 i n 1 8 . 0 0 i n 1 2 . 0 0 i n 1 2 . 0 0 i n 0 . 7 9 He i g h t i s t o o s m a l l . Wi d t h i s t o o s m a l l . Ex i s t i n g h e i g h t i s s m a l l e r th a n t h e s u g g e s t e d h e i g h t . Ex i s t i n g w i d t h i s s m a l l e r th a n t h e s u g g e s t e d w i d t h . Ca l c u l a t e d d i a m e t e r w a s d e t e r m i n e d b y s e w e r h y d r a u l i c c a p a c i t y r o u n d e d u p t o t h e n e a r e s t c o m m e r c i a l l y a v a i l a b l e s i z e . Se w e r s i z e s s h o u l d n o t d e c r e a s e d o w n s t r e a m . Al l h y d r a u l i c s w h e r e c a l c u l a t e d u s i n g t h e ' U s e d ' p a r a m e t e r s . UD - S e w e r B 1 . d o c x 1 2 / 4 / 2 0 1 9 Gr a d e L i n e S u m m a r y : Ta i l w a t e r E l e v a t i o n ( f t ) : 49 6 0 . 4 1 In v e r t E l e v . Do w n s t r e a m M a n h o l e Lo s s e s HG L EG L El e m e n t Na m e Do w n s t r e a m (f t ) Up s t r e a m (f t ) Be n d Lo s s (f t ) La t e r a l Lo s s (f t ) Do w n s t r e a m (f t ) Up s t r e a m (f t ) Do w n s t r e a m (f t ) Fr i c t i o n Lo s s (f t ) Up s t r e a m (f t ) B1 A 49 5 8 . 7 3 49 5 9 . 3 2 0. 0 0 0. 0 0 49 6 0 . 4 1 49 6 0 . 4 8 49 6 0 . 6 2 0. 0 7 49 6 0 . 6 8 In l e t B 1 49 5 9 . 3 2 49 5 9 . 6 0 0. 0 0 0. 0 0 49 6 0 . 6 7 49 6 0 . 6 7 49 6 0 . 6 8 0. 0 0 49 6 0 . 6 8 Ro o f - Ar e a D r a i n s 49 5 9 . 3 2 49 5 9 . 7 8 0. 1 6 0. 0 0 49 6 0 . 7 2 49 6 0 . 8 5 49 6 0 . 8 4 0. 1 3 49 6 0 . 9 7 Be n d a n d L a t e r a l l o s s e s o n l y a p p l y w h e n t h e r e i s a n o u t g o i n g s e w e r . T h e s y s t e m o u t f a l l , s e w e r # 0 , i s n o t c o n s i d e r e d a s e w e r . Be n d l o s s = B e n d K * V _ f i ^ 2 / ( 2 * g ) La t e r a l l o s s = V _ f o ^ 2 / ( 2 * g ) - J u n c t i o n L o s s K * V _ f i ^ 2 / ( 2 * g ) . Fr i c t i o n l o s s i s a l w a y s U p s t r e a m E G L - D o w n s t r e a m E G L . 0.00 1.80 3.60 5.40 7.20 9.00 10.80 12.60 14.40 16.20 4958.34 4958.74 4959.14 4959.54 4959.94 4960.34 4960.74 4961.14 4961.54 4961.94 4962.34 HGL EGL 0.00 4.20 8.40 12.60 16.80 21.00 25.20 29.40 33.60 37.80 42.00 4958.23 4958.83 4959.43 4960.03 4960.63 4961.23 4961.83 4962.43 4963.03 4963.63 HGL EGL UD - S e w e r B 2 . d o c x 1 2 / 4 / 2 0 1 9 UD S e w e r R e s u l t s S u m m a r y Pr o j e c t T i t l e : Ga r c i a H o u s e Pr o j e c t D e s c r i p t i o n : B2 S t o r m D r a i n Sy s t e m I n p u t S u m m a r y R a i n f a l l R e t u r n P e r i o d : 10 0 Ba c k w a t e r C a l c u l a t i o n s : T a i l w a t e r E l e v a t i o n ( f t ) : 49 6 0 . 4 1 Ma n h o l e I n p u t S u m m a r y : Gi v e n F l o w Su b B a s i n I n f o r m a t i o n El e m e n t Na m e Gr o u n d El e v a t i o n (f t ) To t a l Kn o w n Fl o w ( c f s ) Lo c a l Co n t r i b u t i o n (c f s ) Dr a i n a g e Ar e a (A c . ) Ru n o f f Co e f f i c i e n t 5y r Co e f f i c i e n t Ov e r l a n d Le n g t h (f t ) Ov e r l a n d Sl o p e (% ) Gu t t e r Le n g t h (f t ) Gu t t e r Ve l o c i t y (f p s ) St o r m t e c h S y s t e m 49 6 1 . 8 6 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 In l e t B 2 49 6 1 . 5 7 1. 1 1 1. 1 1 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 UD - S e w e r B 2 . d o c x 1 2 / 4 / 2 0 1 9 Ma n h o l e O u t p u t S u m m a r y : Lo c a l C o n t r i b u t i o n To t a l D e s i g n F l o w El e m e n t Na m e Ov e r l a n d Ti m e (m i n ) Gu t t e r Ti m e (m i n ) Ba s i n T c (m i n ) In t e n s i t y (i n / h r ) Lo c a l Co n t r i b (c f s ) Co e f f . Ar e a In t e n s i t y (i n / h r ) Ma n h o l e T c (m i n ) Pe a k Fl o w (c f s ) Co m m e n t St o r m t e c h S y s t e m 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 0. 0 0 In l e t B 2 0. 0 0 0. 0 0 0. 0 0 0. 0 0 1. 1 1 0. 0 0 0. 0 0 0. 0 0 1. 1 1 Se w e r I n p u t S u m m a r y : El e v a t i o n Lo s s C o e f f i c i e n t s Gi v e n D i m e n s i o n s El e m e n t Na m e Se w e r Le n g t h (f t ) Do w n s t r e a m In v e r t (f t ) Sl o p e (% ) Up s t r e a m In v e r t (f t ) Ma n n i n g s n Be n d Lo s s La t e r a l Lo s s Cr o s s Se c t i o n Ri s e (f t o r i n ) Sp a n (f t o r i n ) In l e t B 2 19 . 9 0 49 5 8 . 7 3 0. 5 49 5 8 . 8 3 0. 0 1 2 1. 3 2 0. 0 0 CI R C U L A R 12 . 0 0 i n 12 . 0 0 i n UD - S e w e r B 2 . d o c x 1 2 / 4 / 2 0 1 9 Se w e r F l o w S u m m a r y : Fu l l F l o w C a p a c i t y Cr i t i c a l F l o w No r m a l F l o w El e m e n t Na m e Fl o w (c f s ) Ve l o c i t y (f p s ) De p t h (i n ) Ve l o c i t y (f p s ) De p t h (i n ) Ve l o c i t y (f p s ) Fr o u d e Nu m b e r Fl o w Co n d i t i o n Fl o w (c f s ) Su r c h a r g e d Le n g t h (f t ) Co m m e n t In l e t B 2 2. 7 4 3. 4 8 5. 3 2 3. 3 0 5. 3 2 3. 3 0 1. 0 0 Pr e s s u r i z e d 1. 1 1 19 . 9 0 A F r o u d e n u m b e r o f 0 i n d i c a t e s t h a t p r e s s u r e d f l o w o c c u r s ( a d v e r s e s l o p e o r u n d e r s i z e d p i p e ) . If t h e s e w e r i s n o t p r e s s u r i z e d , f u l l f l o w r e p r e s e n t s t h e m a x i m u m g r a v i t y f l o w i n t h e s e w e r . If t h e s e w e r i s p r e s s u r i z e d , f u l l f l o w r e p r e s e n t s t h e p r e s s u r i z e d f l o w c o n d i t i o n s . Se w e r S i z i n g S u m m a r y : Ex i s t i n g Ca l c u l a t e d Us e d El e m e n t Na m e Pe a k Fl o w (c f s ) Cr o s s Se c t i o n Ri s e Sp a n Ri s e Sp a n Ri s e Sp a n Ar e a (f t ^ 2 ) Co m m e n t In l e t B 2 1 . 1 1 C I R C U L A R 1 2 . 0 0 i n 1 2 . 0 0 i n 1 8 . 0 0 i n 1 8 . 0 0 i n 1 2 . 0 0 i n 1 2 . 0 0 i n 0 . 7 9 He i g h t i s t o o s m a l l . Wi d t h i s t o o s m a l l . Ex i s t i n g h e i g h t i s s m a l l e r th a n t h e s u g g e s t e d h e i g h t . Ex i s t i n g w i d t h i s s m a l l e r th a n t h e s u g g e s t e d w i d t h . Ca l c u l a t e d d i a m e t e r w a s d e t e r m i n e d b y s e w e r h y d r a u l i c c a p a c i t y r o u n d e d u p t o t h e n e a r e s t c o m m e r c i a l l y a v a i l a b l e s i z e . Se w e r s i z e s s h o u l d n o t d e c r e a s e d o w n s t r e a m . Al l h y d r a u l i c s w h e r e c a l c u l a t e d u s i n g t h e ' U s e d ' p a r a m e t e r s . UD - S e w e r B 2 . d o c x 1 2 / 4 / 2 0 1 9 Gr a d e L i n e S u m m a r y : Ta i l w a t e r E l e v a t i o n ( f t ) : 49 6 0 . 4 1 In v e r t E l e v . Do w n s t r e a m M a n h o l e Lo s s e s HG L E G L El e m e n t Na m e Do w n s t r e a m (f t ) Up s t r e a m (f t ) Be n d Lo s s (f t ) La t e r a l Lo s s (f t ) Do w n s t r e a m (f t ) Up s t r e a m (f t ) Do w n s t r e a m (f t ) Fr i c t i o n Lo s s (f t ) Up s t r e a m (f t ) In l e t B 2 49 5 8 . 7 3 49 5 8 . 8 3 0. 0 0 0. 0 0 49 6 0 . 4 1 49 6 0 . 4 3 49 6 0 . 4 4 0. 0 2 49 6 0 . 4 6 Be n d a n d L a t e r a l l o s s e s o n l y a p p l y w h e n t h e r e i s a n o u t g o i n g s e w e r . T h e s y s t e m o u t f a l l , s e w e r # 0 , i s n o t c o n s i d e r e d a s e w e r . Be n d l o s s = B e n d K * V _ f i ^ 2 / ( 2 * g ) La t e r a l l o s s = V _ f o ^ 2 / ( 2 * g ) - J u n c t i o n L o s s K * V _ f i ^ 2 / ( 2 * g ) . Fr i c t i o n l o s s i s a l w a y s U p s t r e a m E G L - D o w n s t r e a m E G L . 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 4958.42 4958.72 4959.02 4959.32 4959.62 4959.92 4960.22 4960.52 4960.82 4961.12 4961.42 4961.72 HGL EGL Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 D Appendix D: StormTech System Plans and Details OU T L E T S T R U C T U R E 36 " D I A M E T E R N Y L O P L A S T B A S I N 4" U N D E R D R A I N IN V . = 4 9 5 8 . 1 5 12 " F R O M C H A M B E R S IN V . = 4 9 5 8 . 6 0 12 " O U T L E T P I P E ( B E H I N D ) IN V . = 4 9 5 8 . 1 5 ST A I N L E S S S T E E L R E S T R I C T O R PL A T E W I T H 1 . 7 5 " O R I F I C E 12 " F R O M C H A M B E R S IN V . = 4 9 5 8 . 6 0 6" U N D E R D R A I N IN V . = 4 9 5 8 . 1 5 12 " O U T L E T P I P E IN V . = 4 9 5 8 . 1 5 TO P V I E W SI D E V I E W IN L E T S T R U C T U R E 36 " D I A M E T E R N Y L O P L A S T B A S I N 12 " B O T T O M M A N I F O L D IN V . = 4 9 5 8 . 7 3 12 " I S O L A T O R R O W C O N N E C T O R IN V . = 4 9 5 8 . 7 3 WE I R W A L L TO P E L E V . = 4 9 5 9 . 4 9 TO P V I E W SI D E V I E W 12 " H D P E F R O M S I T E IN V . = 4 9 5 8 . 7 3 12 " I S O L A T O R R O W C O N N E C T O R IN V . = 4 9 5 8 . 7 3 12 " H D P E F R O M S I T E IN V . = 4 9 5 8 . 7 3 ST A I N L E S S S T E E L R E S T R I C T O R PL A T E A T T A C H E D T O B A S I N . 1. 7 5 " D I A M E T E R O R I F I C E IN V . = 4 9 5 8 . 1 5 Garcia House: A Circle Program by SummitStone Final Drainage Report December 2019 E Appendix E: Historic and Developed Drainage Basin Plans DATE DESCRIPTION REVISIONS OF DA T E : 2204 HOFFMAN DRIVE LOVELAND, COLORADO 80538 (970) 278-0029 CCGCOLORADO CIVIL GROUP, INC. ENGINEERING CONSULTANTS SH E E T : SC A L E : JO B N O : CH E C K E D : DE S I G N E D : FI L E N A M E : CA L L T H E U T I L I T Y N O T I F I C A T I O N C E N T E R O F C O L O R A D O 3 D A Y S B E F O R E Y O U D I G 81 1 O R 1 - 8 0 0 - 9 2 2 - 1 9 8 7 ww w . U N C C . o r g DE C E M B E R 6 , 2 0 1 9 00 6 0 . 0 0 0 2 . 0 0 CE M 27 HA H / E J J / C E M 0" 1 " B A R I S O N E I N C H O N O R I G I N A L D R A W I N G 1" = 2 0 ' 1" = 2 0 ' 40 20 0 sc a l e f e e t LE G E N D EX I S T I N G C O N D I T I O N PR O P O S E D C O N D I T I O N OF F - S I T E B A S I N I N S E T 1" = 5 0 ' 10 0 50 0 sc a l e f e e t 00 6 0 . 0 0 0 2 . 0 0 _ D R A I N A G E EX I S T I N G B A S I N S DE V E L O P E D B A S I N S OF F - S I T E B A S I N S DE V E L O P E D S U B - B A S I N S COLORADO CIVIL GROUP, INC.