Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 06/29/2000
roved Report RIDGEWOOD HILLS P.U.D., FILING No. 3 FINAL DRAINAGE & EROSION CONTROL STUDY for 11111111111111111111111111 11031 Sheridan Boulevard Westminster, Colorado 80020 by Nolte Associates, Inc. 1901 Sharp Point Drive, Suite A Fort Collins, Colorado 80525 (970) 221-2400 Revised: February 1999 Revised: April 1999 Revised: July 1999 Revised: September 1999 Revised: April 2000 Revised: May 2000 Revised: June 2000 BEYOND ENGINEERING June 20, 2000 Mr. Basil Hamdan City of Fort Collins Utility Services, Stormwater 700 Wood St. Fort Collins, CO 80521 RE: Ridgewood Hills P.U.D., Third Filing Final Drainage and Erosion Control Study Dear Mr. Hamdan: We are pleased to submit the "Ridgewood Hills P.U.D., Third Filing Final Drainage and Erosion Control Study" for your approval. It has been revised per comments received on June 2, 2000. It represents a study of the existing and proposed storm water characteristics of the project site. This report was prepared in compliance with technical criteria set forth in the Storm Drainage Design Criteria and Construction Standards (revised January 1997) for the City of Fort Collins. Dou Project NOLTE ASSOCIATES, INC. 1901 SHARP POINT DRIVE, SUITE A FORT COLLINS, CO 80525 970.221,2400 TEL 970.221,2415 FAX WWW.NOLTE.COM N:1FC0045.NEWIDrainge\Wordlletter_final.doc RIDGEWOOD HILLS P.U.D., FILING No. 3 FINAL DRAINAGE & EROSION CONTROL STUDY for 11031 Sheridan Boulevard Westminster, Colorado 80020 by Nolte Associates, Inc. 1901 Sharp Point Drive, Suite A Fort Collins, Colorado 80525 (970) 221-2400 Revised: February 1999 Revised: April 1999 Revised: July 1999 Revised: September 1999 Revised: April2000 Revised: May 2000 Revised: June 2000 BEYOND E N G I N E E R 4 N G Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 TABLE OF CONTENTS PAGE 1.0. INTRODUCTION 1 1.1 Site Location 1 Figure 1. — Vicinity Map 1 1.2 Existing Site Description 1 1.3 Proposed Project Description 1 1.4 Previous Reports and Studies 1 2.0 METHODOLOGY 2 2.1 Compliance with Standards 2 2.2 Analytical Methods 2 3.0 HISTORIC DRAINAGE CONDITIONS 4 3.1 Major Basin Description 4 3.2 Sub -Basin Description 4 4.0 DEVELOPED DRAINAGE CONDITIONS 5 4.1 General Concept 5 4.2 Basin Descriptions 6 4.3 Detention Pond Design 12 4.4 Water Quality 15 5.0 EROSION CONTROL 16 5:1 General Concept 16 5.2 Specific Detail 16 6.0 VARIANCES 17 6.1 Request for Variance 17 7.0 CONCLUSIONS 18 7.1 Drainage Concept 18 REFERENCES 19 APPENDIX A - Historic Site Hydrology APPENDIX B - Developed Site Hydrology Developed Flow Calculations APPENDIX C - Storm Drain System Design N:1F00045.NE W\Drainage\Word\DmgRpt041100.doc BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 APPENDIX D - APPENDIX E - APPENDIX F - APPENDIX G - BACK POCKET 76) BACK POCKET Storm Drain Systems "A" and "B" Storm Drain Systems "C" and "D" Storm Drain System "E" Storm Drain System "F" Storm Drain System "G" Storm Drain System "H" Off -Site Storm Drain Design Storm Drain Inlet Design Street Capacity Calculations Swale Design Detention Pond Design SWMM Model Portions of Final Drainage Report for Shenandoah P.U.D., First Filing, by Northern Engineering Services, Inc. Plat of Colland Center Third Filing (Sht. 2 of 2) Charts, Tables & Graphs - Drainage and Erosion Control Plan (Shts. 20a, b & c and 21a, b & c of - Drainage and Erosion Control Details (Shts. 22a and 22b of 76) N:\FC0045.NE W\Drainage\ W ord\DmgRpt04 1100. doc BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P.U.D., Filing No. 3 1.0 INTRODUCTION 1.1 Site Location The proposed development, Ridgewood Hills P.U.D., Filing No. 3 (site), is located in the southern part of Fort Collins; South of Trilby Road; North of County Road 32 (extended); West of College Avenue and East of Shields Street. More particularly, the Site is located in Section 14, Township 6 North, Range 68 West of the 6'h Principal Meridian, Larimer County, State of Colorado (See Vicinity Map). 1.2 Existing Site Description The site contains 137.53 acres (more or less) and is currently open pastureland covered with native vegetation. The existing topography generally slopes from the west to the east along grades ranging from 1 % to 10%. The native soils consist of lean clay and lean clay underlain by sandstone-siltstone bedrock. These soils have moderate to high expansive potential and moderate to high bearing characteristics. .1 Proposed Project Description The initial phase of development calls for 414 single-family residential lots. Future phases of development will include a commercial and multi -family residential development along the east property line; as well as, a future school site along the north property line. These areas will remain undeveloped in the interim. 1.4 Previous Report and Studies Ridgewood Hills P.U.D., Second Filing lies directly north of the Site. The final drainage report has been submitted to the City of Fort Collins for this site. The final drainage report has also been submitted to the City of Fort Collins for the Shenandoah P.U.D., First Filing, which lies directly east of the Site. 1 N:1F00045.NEW\Drainage\Word\DrngRpt041 I00.doc RRYOND INOINI[RINO 432 S. LINK LANE PLAZA FORT COLLINS, CO. 80524 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM TRILBY RD. COLLEGE AVE. SEC.'. 23 RIDGEWOOD HILLS P.U.D. FILING #3 VICINITY MAP PREPARED FOR: MELODY HOMES, INC. DATE SUBMITTED: SHEETS JOB NUMBER FC0045 BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 2.0 METHODOLOGY 2.1 Compliance with Standards The following Final Drainage & Erosion Control Study was prepared in accordance with the design requirements and procedures set forth in the City of Fort Collins (City) Stormwater Drainage Design Criteria and Construction Standards (Criteria) (Revised January 1997) and Urban Storm Drainage Criteria Manual (Manual) by the Urban Drainage and Flood Control District. 2.2 Analytical Methods The Rational Method is widely accepted for design problems involving small drainage areas (<160 acres) and short times of concentration. Mathematically, it relates peak discharge to the runoff coefficient, rainfall intensity, and drainage area. Runoff coefficients and rainfall intensity data were obtained from the Criteria (See Appendix B). The Rational Method was used to calculate 2- and 100-year developed flows. At the request of the City, the proposed detention ponds were sized using a modified version of the EPA Storm Water Management Model software (SWMM) known as MODSWMM. The software routes hydrographs through user defined "conveyance elements" while accounting for infiltration losses in pervious areas, surface retention, overland flow and gutter flow. Other design calculations, such as: inlet capacity, street capacity, conduit sizing, and riprap requirements were completed in conformance with design procedures set forth in the Criteria and/or the Manual. The street capacities were calculated using a Manning's 'n' value of 0.016 for the minor storm and 0.025 for the major N:\FC0045.NE W\Drainage\Word\DmgRpt041100.doc BEYONO E N G I N E E R I N G Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 storm. The 0.025 takes into account the grass parkway area that becomes a part of the channel surface when the flow depths exceed the back of curb (maximum allowable flows were calculated using 6" over crown for the 100 yr. storm). The 100 year inlet capacities for the on -grade inlets (Type 16 Comb. Inlets) were also calculated using the 0.025 roughness value. This was based on the fact that the 100 year flow depths at these inlets exceed the back of curb. 3 N:1FC0045.NEWIDrainage \Word\DmgRpt041 I00.doc BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 3.0 HISTORIC DRAINAGE BASINS 3.1 Major Basin Description The site is located within the Fossil Creek Drainage Basin. No major drainageways exist within the site. 3.2 Sub -Basin Description Existing flows drain from a ridge along the west property line to the east. An east to west high point, due south of the north property line, directs historic flows toward Ridgewood Hills P.U.D., Second Filing. The proposed Site improvements will do little to disturb the historic flow patterns in this area. The Site was subdivided into three historic drainage basins: H-1, H-2 and H-3. (See Appendix A) H-1 contains 44.8 acres and drains east toward College Avenue (south of Robert Benson Reservoir) discharging from the site at Q2HIs =9.9 cfs. H-2 contains 46.6 acres and drains to a wetlands area east of the property discharging at Q2HIs=10.6 cfs. H-3 contains 35.8 acres and drains to the same wetlands area east of the property, discharging at Q2HIs.=10.1 cfs. The wetlands area in the Shenandoah, P.U.D. has been mapped per the Wetlands Delineation Study (See reference 6). 4 N:FC0045.NEW\Drainage\Word\DmgRpt041I00.doc BEYOND ENQJNEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 4.0 DEVELOPED DRAINAGE CONDITIONS 4.1 General Concept In general, developed flows within the upper one-third (41.4 ac) of the site flow east and discharge to Detention Pond #1. Pond #1 will release at the 2-year historic discharge rate of 9.9cfs to an existing 21" RCP in Triangle Drive. Developed flows from the lower two-thirds (82.8 ac) of the Site flow south- easterly and discharge to Detention Pond #2. Pond #2 will release at the 2-year historic discharge of 10.1 cfs to the proposed off -site storm drain system. A water quality outlet structure and orifice plate will control the discharge from each detention pond. Individual lots will be graded as either an A Lot or dB Lot. A Lots are graded to drain developed flows from the back of the lot to the front (street). B Lots are graded to drain the front half of the lot to the street and the back half of the lot to the lot behind which is typically an A lot or another street. In the street, rollover curb and gutter , vertical curb and gutter, and concrete cross -pans will convey developed flows from the adjoining lot swales and streets to the design point of each basin. The following is a detailed synopsis of the developed basins, including: the magnitude and direction of developed flows, design points and a brief description of drainage improvements (i.e., curb inlets and subsurface conduits). See plan sheets 20a-c, 21a-e, and 22a & b in the back pocket for basin information, hydraulic design points, and drainage/erosion control details. Generally, characteristics were the same for each basin. The following is a summary of the physical improvements (i.e., streets, lots and etc.) common to each basin. Except 5 N:\FC0045.NEW\Drainage\Word\DmgRpt04I i00.doc YONO E N G I N E E R I N G Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 for basins 821, 925, OS-1 through OS-5 and basins 1000 - 1004, entire lots or portions thereof, street flows and open space tracts account for much of the area in the remaining basins. Developed flows for each basin are conveyed to the design point (for that basin) or to a common design point (for a combination of basins) via overland flow, grass lined side -lot swales, rear lot swales, and curb and gutter. 4.2 Basin Descriptions Basins OS-1 (3.35 ac) and OS-2 (0.79 ac) are located along the West property line and drain areas comprised mostly of lawns or landscaping and undeveloped areas. The Historic Basins Exhibit (See Appendix A) shows an area along the west property boundary of approximately the same area as OS-1 and OS-2. This basin should release at less than historic rates without adversely affecting the historic drainage pattern. Care was taken during the 'grading design of lots bordering these basins to ensure that all impervious areas from rooftops and concrete surfaces would drain toward the east into the streets. Basins OS-3 through OS-5 are located along the East property line. Basins OS-3 (0.92 ac) and OS-5 (0.05) are of negligible size and drain mostly landscaping and undeveloped area. Basin OS-4 (5.16 ac) will remain undeveloped for now and drain to the east per historic drainage patterns. In the future, this parcel will be developed as a multi -family site. Developed flows from the future development will be routed through one of the two on -site detention ponds that are being proposed as part of the Ridgewood Hills P.U.D., Filing No. 3 improvements. Both Pond #1 and Pond #2 have sufficient capacity to handle future developed flows from this area. 6 N:\FC0045.NEW\Drainage\Word\DmgRpt04I 100.doc • TIME: 08:13 SERVER: FCS1 DA c:J8/13/99 PATH: N: \FC0045.NEW\CADD \FINAL \ SERVICE:NONE DRAWING NAME: DR1 _NORTH.DWG NOPEgEove, XREFS: EXUT.dwg...BASE.dwg... BEYOND UNSIN■■RINO 432 S. LINK LANE PLAZA FORT COLLINS, CO. 90524 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM Ea 0 S t 1 8 Ridgewood Hills P.U.D., Filing No.3 Developed Basin Comparison Exhibit PREPARED FOR: _ Melody Homes DATE SUBMITTEDAugust 1999 BEYOND E N G I N E E R I N G Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 Basins 1000 - 1004 drain north to Ridgewood Hills P.U.D., Second Filing. These basins incorporate areas that were previously included in Basins 309, 311, 500. 501, 502 and 503 and shown in the Final Drainage and Erosion Control Study for Ridgewood Hills P.U.D., Second Filing, prepared by the Sear -Brown Group. As a result of our proposed developed basin layout, a 1.86 ac. net reduction in total developed basin area flowing to Filing No. 2 was achieved (See Developed Basin Comparison Exhibit). The 100-year runoff coefficients for Filing No. 2 and Filing No.3 were roughly equivalent. Because of this, we were able to compare the relative effects of our proposed basins on Filing No. 2 and corresponding developed flows strictly on the quantitative analysis of relative areas. Overall, developed flows leaving our site along the north boundary are less than those reported in the Final Drainage and Erosion Control Study for Ridgewood Hills P.U.D., Filing No. 2. In general, developed flows (See Appendix B) in the southern two-thirds of the site flow overland and through grass lined swales into the curb and gutter, and eventually enter the storm drain systems through Type 'R' and combination curb inlets. Ultimately, these developed flows outfall to Pond #2 from Storm Drain Systems A, B, E, F, and G (See Appendix C). Basins 800 - 802 concentrate at D.P. 800, D.P. 801 and D.P. 802, respectively where 28.22 cfs of the 2 year developed flows are captured by No. 16 combination inlets. The remaining 2.88 cfs carry over to D.P. 812 in the Triangle Dr. cul-de-sac. The 100 year flow at D.P. 800 is limited by the HGL in the inlet box which rises to the flow line of the gutter at 7.2 cfs. A total flow of 24.67 cfs bypasses the combination inlets and flows to D.P. 812. Basin 811 concentrates to 7 N:\FC0045.NEW`Drainage\Word\DmgRpt041 I00.doc BEYOND E NINERNG Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 D.P. 811 where all but 0.67 cfs of the 100-year developed flows are captured in a 13' combination inlet. (The actual grate length of the No. 16 inlet is 3.27 ft., however, for informational purposes the length will be rounded to the nearest foot. For construction purposes, the inlets are listed on the plans by the number of grate and frame sections.) Carryover flows to D.P. 812 during the 100-year storm event (Qcan-o%er 24.67 cfs to D.P. 812) combine with developed flows from basins 812 (D.P. 812) and 813 (D.P. 813) at the low point of the cul-du-sac in Triangle Drive. The proposed 15' type R inlet has capacity for the entire 2-year and 17.6 cfs of the 100-year developed flows at D.P.'s 812 and 813. The 32.63 cfs carryover flow will spill over the back of the sidewalk to Pond #2. Slope protection will consist of American Green P300 Erosion Control/Turf Reinforcement Matting. D.P. 809a was strategically located to prevent exceedence of allowable curb capacity in both the 2 and 100 year events. A 6' No. 16 combination inlet was placed here to intercept 8.31 cfs of the 2 year flow and 24.24 cfs of the 100 year flow. The 100 year carryover flow of 19.33 cfs .combines with 100-year developed flow of 10.65 from basin 809 for a total flow of 29.98 cfs at D.P. 809. A 23' .No. 16 combination inlet captures 29.39 cfs bypassing 0.59 cfs to D.P. 817. A flow of 10.81 cfs from Basin 817 combine with the 0.67 cfs carryover from D.P. 811 and 0.59 cfs from D.P. 809 where a 15' Type R removes all flow from the street. D.P. 808 removes 13.68 cfs of the 22.79 cfs at this point, and the remaining flow go around the curb return and combine with the 12.91 cfs from Basin 807a at D.P. 807a where they are removed from the street through a 15' Type R inlet. Developed flows in basins 815, 816 and 820 concentrate to D.P.'s 815 and 820. A sump 15' Type 'R' curb inlet is located at the low point in Fountain Drive. 8 N:1FC0045.NEW\Drainage\Word\DrngRpt041100.doc BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 This inlet and the 5' Type `R' on the west side are designed to fully capture 100- year developed flows. In cases where the upstream inlets are blocked, carryover flow from D.P.'s 807, 808; 809 and 817 will spill to the low point in Fountain Drive. If the inlets in Fountain are blocked, the combined flows overtop the curb and spill directly to Pond #2 (Refer to the Swale Design section of Appendix C for cross -sections). The embankment in Pond #2 will be protected with American Green P300 Erosion Control/Turf Reinforcement Matting. Developed flows of 47.92 cfs from basins 915 and 917 concentrate to a 43' No. 16 combination inlet at D.P. 917. The inlets are designed to capture 100-year developed flows in this area and release a 0.16 cfs carryover flow to future off -site development along Avondale Road. Likewise, a 100-year developed flow of 5.14 cfs at D.P. 918 is captured by a No. 16 combination inlet. The carryover flow to the future off -site development is 0.05 cfs. The developed flows from the aforementioned basins (915, 917 and 918) combine with overland flows from basin 821 (future commercial development, Tract F) and developed flow from basins 818 and 819 (D.P.'s 818 and 819) in Storm Drain System "E". This system outfalls to Pond #2. Calculations in Appendix B show that Storm Drain System "E" has capacity for the 100-year developed flows (Q100= 53.01 cfs) that accumulate at D.P. 821. Water will pond around the flared end section (F.E.S.) up to 5073.01 (the berm around the F.E.S. is graded to 5075.0). Refer to Storm Drain System "E" in Appendix C for calculations. The discharge capacity of the pipe was calculated with the tailwater elevation in Pond #2 set to the 100-year W.S.E.L. This condition is temporary until the proposed commercial property is fully developed. 9 N:\FC004S.NEW\Drainage\Word\DrngRpt04I I00.doc B E Y O N D ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 In general, developed flows (See Appendix B) realized in the northern one-third of the Site flow overland and through grass -lined swales into curb and gutter, and eventually enter the storm drain systems through Type 'R' and No. 16 combination curb inlets. Ultimately, the developed flows outfall to Pond # 1. from Storm Drain Systems C, D, E, and H. 100-year developed flows in basins 909, 910 and 912 concentrate to a low point in Jansen Drive at D.P.'s 910 & 912. These flows combine in Storm Drain System "C" and "D" with 100-year developed flows from basins 911 and 913 (D.P.'s 911 & 913). 100-year developed flows in basins 900 and 908 (Combined Quo= 12.10 cfs) concentrate to a sump 10' Type 'R' inlet at D.P. 900. 100-year developed flows in basins 901 and 902 (Combined Q100= 14.60 cfs) concentrate to sump 10' Type 'R' inlet at D.P. 901. These flows are conveyed east via Storm Drain System "D". This system outfalls to Storm Drain System "C", which ultimately outfalls to Pond #1. Basins 903, 906 and 907 combine at D.P.'s 906 & 907 (Prichett Court cul-du-sac). 100-year developed flows (Q100 20.67 cfs) are fully captured in a sump 15' Type 'R' inlet. Likewise, Basinsr904 and 905 combine at D.P.'s 904 & 905 (Agate Court cul-du-sac). 100-year developed flows (QIN= 10.96 cfs) are fully captured in a sump 10' Type 'R' inlet. Developed flows from these basins and the aforementioned upstream basins combine in Storm Drain System "C". Basins 925 (future school site), 914 and 922 combine at D.P. 925. Runoff from the future school site was evaluated using runoff coefficients (i.e., C,=0.45, 10 N:1FC0045.NE W\Drainage\Word\DmgRpt04I 100.doc BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 C100 0.70 & 50% impervious) from Table 3-1 of the Manual. C,po=0.70 was used in place of 1.25*C to more conservatively estimate the 100-year developed flows. 100-year developed flows from basin 922 and 33% of the 100-year developed school site flows are captured in the low point of Avondale Road at D.P. 922 by a sump 20' Modified Type `R' inlet. (Note: 100% of the developed school site flows were included in the outfall system design.) The high point in Avondale road was taken into consideration at D.P. 922. The inlet's 25.2 cfs 100-year capacity is based upon a maximum ponding depth of 0.57' which is maintained from the difference in elevation from the low point at the inlet to the high point in the vertical curve to the north. 100-year developed flows of 7.59 cfs at D.P. 923 (east FL of Avondale Road) are captured by a sump 10' Type 'R' inlet. The 100-year capacity of this inlet was limited to 0.46' depth for the same reasons as the inlet at D.P. 922. Basins 1005.and 1006 concentrate 100-year developed flows to D.P.'s 1005 and 1006, respectively. 10' and 6' No. 16 combination inlets at D.P.'s 1005 and 1006 respectively, capture most of the developed flows from these basins. Carryover flow at D.P. 1005 is 0.37 cfs, and at D.P. 1006 is 0.26 cfs. The Developed Basin Comparison Exhibit (See Appendix B) compares relative areas that contribute developed flows to Filing No. 2. ,In general, a net reduction in the total developed area flowing to Filing No. 2 results from the conditions we are proposing. Specifically, the total developed area in Basins 500. and 501 (per The Sear Brown Group) has been reduced. Total developed flows have therefore been reduced in these areas and the downstream capacity of facilities designed in Filing No. 2 have not been adversely impacted. 1 1 N:1FC0045.NEW\Drainage\ Word\DmgRpt041 I00.doc BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 Basins 920, 921 and 924 combine at D.P. 924. A 26' on -grade combination inlet captures 20.16 cfs of 100-year developed flow with 0.29 cfs bypassing to Shenandoah P.U.D. At D.P. 919 a 46' on -grade combination inlet captures 35.71 cfs of the 100-year developed flow for the Phase 3 temporary. drainage (discussed later in Detention Pond Design) with 0.22 cfs bypassing to Shenandoah. At the build out of Avondale Rd., the flow at D.P. 919 will reduce to 4.36 cfs which will be caught in its entirety by the combination inlet. 4.3 Detention Pond Design A total of six SWMM Models (See Appendix D) were developed to size the detention ponds. The first two are for the orifice controlled outfall and the plugged outlet condition for Pond #1. The second two are for the orifice controlled outfall and the plugged outlet condition for Pond #2. The final two models are for the temporary drainage for the construction of Phase 3 (see plan sheets 21 d and 21 e). Pond volume calculations (See Appendix D) show that Pond #1 and Pond #2 have `brim full' capacities of 10.67 ac-ft and 18.89 ac-ft, respectively. The results of the SWMM runs indicate required storage capacities in Pond #1 of 7.05 ac-ft (W.S.E.L.=5076.25) which includes the 0.75 ac-ft water quality storage, and 14.4 ac-ft (W.S.E.L.=5066.54) in Pond #2 which includes the 1.40 ac-ft water quality storage. During the construction of Phase 3, the proposed Traffic Circle on Avondale Rd. will be temporarily re -graded with concrete curb and gutter on the east side so that flows from the north flowline of Kim Dr. will travel to D.P. 919 and enter Pond #1. This will allow the construction of Phase 3 without the construction of Pond #2 and the related offsite outfall system. The required storage capacity for this is 8.55 ac-ft (W.S.E.L. = 5077.09). The south flowline of Kim (Basin 807) will temporarily be retained in Pond #3 (temporary 12 N:1FC0045.NEW1Drainage \WordlDrngRpt041 100.doc BEYOND ENGINEEBIND Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 pond) which has a storage of 0.31 ac-ft which is twice the 100 year requirement. This temporary pond will have no outfall and will empty through evaporation. The results from the plugged outlet run for the temporary condition show that the required storage will be 9.0 ac.-ft. with a 100 yr. W.E.S. = 5077.90. The crest of the spillway for Pond #1 is at 5078.00. At the buildout condition of Avondale Rd., flows from Kim Drive will route to Pond #2 through Storm Drain Systems G and E respectively. Refer to Appendix D for a schematic diagram of the SWMM model conveyance elements and ponds, SWMM Basins exhibit, input data summaries and input/output files. In each pond, there is sufficient storage volume to captureand detain the entire 100-year storm event, Water Quality Capture Volume (WQCV) and maintain at least one foot of freeboard. As a precaution though, an emergency spillway was sized to discharge 53% (106.3 cfs) from Pond #1 to Triangle Dr. from where the discharge will flow onto Shenandoah P.U.D. The spillway in Pond #2 was sized to carry the 373.0 maximum inflow to the pond. The discharge from the spillway will flow east in the historic drainage path toward the intersection of U.S. Hwy. 287 and C.R. 32. Erosion protection on the back side of the Pond #2 embankment will be maintained with American Green P300 Erosion Control/Turf Reinforcement Matting. The outlet system for Pond #1 will regulate the release rate at 9.9 cfs (Q2ms=9.9 cfs) through a 11.5" diameter orifice plate. Pond #1 will discharge into an existing 21" RCP that exists as part of the Shenandoah P.U.D., First Filing storm drainage improvements. 13 N:1FC0045.NE W\DrainagelWord\DrngRpt041100.doc EIETOND ENGINEERINQ Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 The tailwater downstream of our outlet structure was accounted for in•the design of Pond #1. The downstream system was originally designed to accept 25 cfs from our Site. We re-evaluated the downstream tailwater condition using the proposed Pond #1 release rate of 9.9 cfs. The outlet structure will operate under inlet control. Refer to Appendix E for portions of the approved Final Drainage Report for Shenandoah P.U.D., First Filing. The outlet system for Pond #2 regulates the release rate at 10.1 cfs (Q2HIS-10.1 cfs) through a 11-1/2" diameter orifice plate. Pond #2 discharges to the proposed off -site storm drainage system (See Appendix D). The design of the system is included as part of the Ridgewood Hills P.U.D., Filing No. 3 drainage improvements. The Pond #2 outfall connects to the proposed off -site system at a manhole in the. southeast comer of the Site. From here, the system heads directly east and across the property owned by Colorado Land Source. A letter of intent from Colorado Land Source (dated December 14, 1998) has been submitted to the City of Fort Collins. The developed runoff will be piped under College Avenue and across the Colland Center Third Filing property in existing road right-of-way and an existing drainage easement. The pipe will daylight east of the Colland Center Third Filing property into an existing swale. Nolte Associates, Inc. is working with the engineer for Colland Center Third Filing, Northern Engineering Services, Inc., to design a common outfall for this line and the outfall from their proposed detention pond. The existing swale has a capacity of approximately 124 cfs (Note: representative cross -sections downstream of the proposed outfall, which were selected following a site visit, are included in Appendix C). Please refer to Appendix F for an 11 "x 17" copy of the Colland Center Third Filing Plat. 14 N:1F00045.NE W1Drainage \Word \DrngRpt04I 100.doc BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 4.4 Water Quality Criteria outlined in Volume 3 of the Manual were used to determine the required WQCV. Pond #1 and Pond #2 are both "extended detention basins". The water quality storage volume is equal to 120 percent of the WQCV based on a 40-hour drain time. The WQCV is based on the total basin area draining to the detention pond and percentage of that total area which is impervious. The calculated water quality storage volumes for Pond # 1 and Pond #2 are 0.75 ac-ft and 1.40 ac-ft, respectively (See Appendix D for calculations). Water quality perforated outlet plate details are included on sheet 22b and sheet 75 of the construction plans. 15 N:1FC0045.NE W\Drainage \Word\DrngRpt04I 100.doc BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 5.0 EROSION CONTROL 5.1 General Concept The Ridgewood Hills P.U.D., Filing No. 3 is in the Low, Moderate and High Rainfall and Moderate Wind Erodibility zones per City of Fort Collins zone maps. Until the disturbed ground is vegetated, the potential exists for erosion problems during and after construction. In accordance with the City of Fort Collins Erosion Control Reference Manual for construction sites, the erosion control performance standard to be 83.0% during construction and 97.6% after construction. 5.2 Specific Detail Upon commencement of overlot grading, silt fence must be installed as shown on Sht. 22 of 76 (See Back Pocket). Following completion of the overlot grading all areas that will not be paved shall be mulched and seeded. Upon completion of the roads, straw bale check dams and inlet protection shall be installed as shown (See Shts. 20a, b, & c and 21 a, b & c of 76). The estimate of probable costs for erosion control is ($169,800) x (1.5) = $254,700 for an escrow amount. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Health NPDES Permit will be required before any construction grading can begin. 16 N:1F00045.NE W\Drainage\ Word\DmgRpt04I I00.doc BEYOND ENGINERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 6.0 VARIANCES 6.1 Request for Variance A variance is requested for several areas within the site that have been graded at a slope of between 4:1 and 3:1. A variance is requested to allow 0.22 cfs carryover flow off -site at D.P. 919 and 0.29 cfs carryover flow off -site at D.P. 924 due to steep road grades. A variance is requested to allow 0.16 cfs carryover flow off -site at D.P. 917 and 0.05 cfs carryover flow off -site at D.P. 918 due to steep road grades. A variance is requested to allow 0.37 cfs carryover flow off -site at D.P. 1005 and 0.26 cfs carryover flow off -site at D.P. 1006 due to steep road grades. A variance is requested to allow the minor storm flow depth to exceed the back of curb in Fountain Street at Design Point 820. 17 N:1FC0045.NEW\Drainage\Word\DrngRpt04I I00.doc e E Y O N D ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 7.0 CONCLUSIONS 7.1 Drainage Concept The proposed drainage concepts presented in this study and shown on the final drainage plans adequately provide for the conveyance and detention of developed runoff from the proposed development. 18 N:\FC0045.NEW\Drainage\ Word \ DmgRpt04 1 I00.doc BEYOND ENGINEERING Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 REFERENCES 1. Storm Drainage Design Criteria and Construction Standards (Criteria), City of Fort Collins, Colorado (Revised January 1997). 2. Drainage Criteria Manual (Manual), Urban Drainage and Flood Control District, Wright - McLaughlin Engineers, Denver, Colorado, March 1969. 3. Final Drainage and Erosion Control Study For Ridgewood Hills P.U.D. Second Filing, Fort Collins, Colorado, prepared by Sear -Brown Group, January 9, 1997. 4. Final Drainage Report for Shenandoah P.U.D. First Filing, Fort Collins, Colorado, prepared by Northern Engineering Services, Inc., July 24, 1997. 5. Geotechnical Engineering Report, Ridgewood Hills P.U.D. Third Filing, Fort Collins, Colorado, prepared by Terracon Consultants Western, Inc., December 3, 1997. 6. Jurisdictional Wetlands Delineation Survey for the Shenandoah P.U.D. Site, Larimer County, Colorado; by Riverside Technology, Inc., September I995. 19 N:1FC0045.NE W\Drainage \ Word \DmgRpt041 I00.doc STATE OF COLORADO DEPARTMENT OF TRANSPORTATION 1420 21° St. Greeley, Colorado 80631 (970) 353-1232 1--.1,—,.,,—, —71-7 7777\ q,,,.... _. , a .,ii. 2.. 1 ,!, Ili AUG 3 1995 August 25. 1999 Doug Paull Nolte Associates 432 So. Link Lane Fort Collins. CO. 80524 Dear Mr. Paull The Colorado Department of Transportation has reviewed the plans as submitted from Nolte and Associates concerning the Ridgewood Hills Filing # 3, the Department will approve a Utility Permit for the purpose of completing this work. If the City of Fort Collins has any questions concerning the application for permit and/or the granting of a permit, please call me at [970] 350-2164 in Greeley and we would be glad to discuss this process with you. Very truly yours. c7y:30.04.g_. Dennis Loose Region IV Utility Engineer (.'c: File PUBLIC SERVICE COMPANY OF COLORADO " A New CENtU4r ENERGIES CO.wr4Nr September 1, 1999 Nolte Associates, Inc. Doug Paul 432 South Link Lane Fort Collins, CO 80524 Dear Doug: .r...- MM~•�— Siting and Land Rights 550 15th Street, Suite 700 Deriver, Colorado 80202-425o Telephone 303.571.7799 Facsimile 303.571 .7877 Enclosed please find two copies of the License Agreement for encroachments into the Public Service Company of Colorado (PSCo) high-pressure natural gas easement at Ridgewood Hills Filing No. 3. Please have both copies signed by an officer or authorized representative and returned to me at the above address. PSCo will then execute both copies and return one original to you for your files and to have on site during construction. Also please attach an Exhibit A to the License Agreement. The size of the page should be 8.5x14, thank you. If you have any questions or need additional information please contact me at (303) 571-7639. Regards, Timothy M. Knowlton Land Rights Agent Enclosure 2/99 Investigation Attach To Document LICENSE AGREEMENT This LICENSE AGREEMENT ("License") is made this 1st day of September • 1999 by and between PUBLIC SERVICE CO. OF COLORADO, a Colorado Corporation hereinafter called "Licensor," and Melody Homes, Inc. 11031 Sheridan Blvd., Westminster, CO 80020 hereinafter called "Licensee." RECITALS A. Licensor is the owner of an easement or right-of-way for utility facilities (the "Premises"), and • desires to protect the facilities located thereon and preserve the future use of said easement or right-of-way, which is more particularly described as follows: Section 14, Township 6 North, Range 69 West of the 6" P.M. Larimer County, CO B. Licensee desires to install approximately 1525 I.f. of 8" PVC sanitary sewer pipe, with appurtenances, and install approximately 1350 I.f. of 24' RCP stormdrain pipe, with appurtenances. The proposed construction activity also includes minor grading within the 50' PSCo easement. The cut should not exceed 1', and the fill should not exceed 2' the majority of the_grading in the easement should not extend more than 10' within the easement. ("licensed facility") in, under, or along portions of the Premises as more particularly shown on Exhibit A, attached hereto and made a part hereof, and desires to obtain Licensor's permission therefor. AGREEMENT NOW, THEREFORE, in consideration of the foregoing, and for other_ good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, Licensor hereby grants to Licensee, with respect to such interest as Licensor.may have in the Premises, the authorization to construct, operate, maintain, repair, inspect, remove, and replace the licensed facility in, on, under, or along the Premises, subject to the following: (1) Licensor is the owner of a limited interest in the Premises. Licensee shall bear the sole obligation of obtaining from the fee title owner of the Premises or others. owning proprietary interest in the Premises, such authority or rights as Licensee may need in addition to this license for Licensee's use of the Premises. Licensee agrees that any authorization granted herein is subject to Licensee obtaining such additional authorization. (2) Licensor intends to use the Premises for the construction, operation, maintenance, repair, replacement, and relocation of its utility facilities, and the rights herein granted to Licensee for the use' of the Premises are subject to the rights of 'Licensor to use the Premises for such purposes, which rights Licensor hereby expressly reserves. (3) Licensee shall contact the Utility Notification Center of Colorado (1-800-922-1987) for location of any underground utilities, at (east two working days prior to the commencement of construction on the Premises. Further, if Licensor has constructed electric transmission facilities on the Premises, Licensee shall contact Licensor's Electric Transmission Lines department at (303) 273-4655 at least four working days prior to the commencement of construction on the Premises. At the discretion of Licensor's Electric Transmission Lines department, construction activities on the Premises shall be performed only when Licensor's representative is present. The instructions of 1 of 4 such representative relating to the protection of Licensor's facilities wiil be followed by Licensee. and will be considered conditions of this authorization. (4) Licensee shall not do or permit to be done any blasting above, underneath, or near facilities on the Premises without first having received prior written permission from Licensor. Any blasting shall be done in the presence of a representative of Licensor and in accordance with directions such representative may give for the protection or safety of facilities in the area. (5) Any damage to the Premises, or to Licensor's facilities located on the Premises, as a result of the construction, operation, maintenance, repair, inspection, removal, replacement, or relocation of the licensed facility shall be paid for or repaired at the expense of Licensee. (6) Licensee agrees and understands that if Licensor has constructed natural gas gathering, storage, transmission, distribution, or related facilities on the Premises, Licensee has been fully advised by Licensor that such natural gas facilities may now transport and may continue to transport natural gas at significant pressures. Licensee shall advise all of its employees, agents, contractors, and other persons who enter upon the Premises, pursuant to the provisions of this license, of the existence and nature of such natural-gas facilities and the danger and risk involved. (7) Licensee agrees and understands that the natural gas facilities of Licensor, if located on the Premises, may be subject to cathodic protection by rectifier and related anode beds, and that Licensor shall not be liable for stray current or interfering signals induced in the licensed facility as a result of the operating of Licensor's cathodic protection system. (8) Licensee agrees and understands that if Licensor has constructed electric transmission, distribution, or related facilities on the Premises, Licensee has been fully advised by Licensor that such electric facilities may, now transmit and may continue to transmit electric current at significant voltages, and that the conductors on electric lines may not be insulated. Licensee shall advise all of its employees, agents, contractors, and other persons who enter upon the Premises, pursuant to the provisions of this license, of the existence and nature of such electric facilities and the potential danger and risk involved. (9) (a) (i) As used in this license, the term "Claims" means (1) losses, liabilities, and expenses of any sort, including attorneys' fees; (2) fines and penalties; (3) environmental costs, including, but not limited to, investigation, removal, remedial, and restoration costs, and consultant and other fees and expenses; and (4) any and all other costs or expenses. (ii) As used in this license, the term "Injury" means (1) death, personal injury, or property damage; (2) loss of profits or other economic injury; (3) disease or actual or threatened health effect; and (4) any consequential or other damages. (b) To the extent permitted by law, Licensee covenants and agrees to at all times protect, indemnify, hold harmless, and defend Licensor, its directors, officers, agents, employees, successors, assigns, parents, subsidiaries, and affiliates from and against any and all Claims arising from, alleged to arise -from, or related to any Injury allegedly or actually occurring, imposed as a result of, arising from, or related- to (1) this license; (2) the construction, existence, maintenance, operation, repair, inspection, removal, replacement, or relocation of the electric transmission or distribution; natural gas gathering, storage, transmission, or distribution; or any other utility facilities located on the Premises; or (3) Licensee's or any other person's presence at the Premises as a result of or related to this license. 2 of 4 (c) Licensee's duty to protect, indemnify, hold harmless, and defend hereunder shall apply to any and all Claims and Injury, including, but not limited to: (i) Claims asserted by any person or entity, including, but not limited to, employees of Licensee or its contractors, subcontractors, or their employees; (ii) Claims arising from, or alleged to be arising in any way from, the existence at or near the Premises of (1) electric power generation, transmission, distribution, or related facilities; (2) electricity or electromagnetic fields; (3) natural gas gathering, storage, transmission, distribution, or related facilities; or (iii) Claims arising from, or alleged to be arising in any way from, the acts or omissions of Licensee, its sublessees, invitees, agents, or employees. (d) By agreeing to indemnification hereunder, Licensee does not waive any provisions of the Colorado Governmental Immunity Act. (10) A copy of this license shall be on the Premises and available during construction of the licensed facility. (11) This license is not transferable or assignable without the express written permission of Licensor. (12) Upon abandonment of the use of the Premises by Licensee or removai of the licensed facilities, this license shall terminate. (13) This license shall inure to the benefit of and be binding upon the successors and permitted assigns of the parties hereto. (14) This license may be executed in two original counterparts, each of which shall be deemed an -original of this instrument. (15) Additional Provisions: Cali PSCo Campion Office at 970-225-7851, 24 hours before any construction crossings. Maintain 18" of separation on ail crossings 3 of 4 IN WITNESS WHEREOF, this instrument has been executed the day and year first above written. PUBLIC SERVICE COMPANY OF COLORADO By: Nicholas B. Fees, Manager Siting & Land Rights, New Century Services Agent for Pubiic Service Company of Colorado Agreed to and accepted by Licensee this day of 1999. Melody Homes Inc. Print or Type Name of Authorized Official Signature 11031 Sheridan Blvd. Westminster, CO 80020 4 of 4 EROSION CONTROL COST ESTIMATE RIDGEWOOD HILLS FILING III APRIL 28, 1999 Unit Total Method Qty. Unit Cost Cost Reseed/Mulch 141.5 acre $800 $113,200 Subtotal $113,200 Contingency 50% $ 56,600 TOTAL $169,800 EROSION CONTROL MEASURES Unit Total Number Method Qty. Unit Cost Cost 6. Gravel Filter 35 each $300 $ 10,500 8 Silt Fence Barrier 6580 LF $ 3 $ 19,740 39 Hay or Straw Dry Mulch* 121 acre $500 $ 60,500 59 Seeding (Native) 25 acre $305 $ 7,625 5 Straw Bale Barrier 7 each $150 $ 1 ,050 Subtotal $ 99,415 Contingency 50% $ 49,708 TOTAL - $149,123 *1-5% SLOPE )NSTRUCTION SEQUENCE EROSION CONTR( PHASE 1 Construction 0 \ OVERLOT GRADING iti 0, E • k • 0- 0�2�= 0�� V. Ti- - =2§t4 k�� '§ �§ 13 0�0 co ��\k -Imo'=:0Q 00ow 00w-�£•§�c� - E CO ■ 2=E=■2$�G�k■ �_-ems== ��e�ec■c��= E2�2$23 20�232u20I-23 iu < u. z_ % 0 = MAINTAINED BY APPROVED BY CITY OF FORT COLLINS ON DATE SUBMITTED RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: 601_- ^c5 . : STANDARD FORM A COMPLETED BY: C__er DATE: a 4-/28/ 4� DEVELOPED SUBBASIN 11v 2�0 ERODIBILITY ZONE M�A_efake \VC(2s 1:\ Asb (ac) 13.14- Lsb (ft) 3�0 30 ' 4-d 118o Ssb Lb I Sb PS (%) I (feet) I (%) E CO 33S 3.80 IONS 2,21 81.E HDI/SF-A:1989 EFFECTIVENESS CALCULATIONS PROJECT: R, Va.\\S COMPLETED BY: "( pl„x STANDARD FORM B DATE: o4lz ic)i Erosion Control Method MAJOR PS BASIN (%) n/ 0c1"tici SUB AREA BASIN! (Ac) 100 S. 4" Ili 14z4F C-Factor P-Factor Value Value } , 00 o . Cc I .o° 0.80 1.cD°- -a 80 0.01 k , 00 a.to k . OD CALCULATIONS Comment to--7s = O,is X ,e)4 ' Q.88A¢. 1—A,V_0. a5 - <. a 4- = 4- . c 1. A-k L - f.GC -,De .- R Ci .6 1) (CI '8 S) - 0.10)(4' -36)1 1 C 4 L S° (6,c)(c.) DI/SF-B:1989 EFFECTIVENESS CALCULATIONS PROJECT: R-.qe \�-, ��` T -��cijo COMPLETED BY: (a '�^ .p STANDARD FORM B DATE: Erosion Control Method C-Factor P-Factor Value Value Comment MAJOR . PS BASIN (%) SUB AREA BASIN (Ac) tSa CALCULATIONS (0.11\.)-4-n /R') � -70 .S)(o.a) -.favor '" e)(..GN 4-.2)0 4„1, S o� HDI/SF-3:1989 EFFECTIVENESS CALCULATIONS PROJECT: t-e\N0c, r,"). n COMPLETED BY:T ( `I\ STANDARD FORM B DATE: CS4-/-z.8/ Erosion Control C-Factor P-Factor Method Value Value Comment • A5s' mF i .00 0.50 i.00 0,80 1,00 0.8U O.o+ Loa OHO 1.00 15 °!a or basin a'rc.,. GIVE roods ; 35°% of 0,ecl rn�lC� _c1 MAJOR PS BASIN! (.) 2 a%.LI Z 2 2.9 62.'3 SUB AREA BASIN! (Ac) 210 17.5 220 23o .29.63 5.zo CALCULATIONS j,,as5 „. ` n t f . 89 c,c. rood diva 0. Zc ac. wfci C fac ov- _ [(o.o x t 85) t (0.01 X0.2(n).7 kl,s2 - 0.09 p-crac+or = 0.50 x 0.30 _FF C1-(0.09x0.No31x 100 9G.ti roo8 quo 'i.Z9 ac. Wid c-Facior = L(O.:cx 2,4-34)_4-(o.orx 28.03 0.09 w+d ar'ar : 0.50 K 0,80 • 0 . dv P • EFF = [1- (0.09x0.4o)]•E00 9(a-4% grass area = 'J .'(2 r-octel area = 0. 78 +d C-fr"cfov = D..o.I0x 4-L}2)+(0.dix Q.-78)J 5.20 - 0.09 fd p-cacfor = 0,80 E PP = 1' -(o.ac n 0.80)3 = 92.8 cvo HDI/SF-B:I989 EFFECTIVENESS CALCULATIONS PROJECT: Rijce'�looc =s�l!S F i.;i 7.4o.3 1 STANDARD FORM B COMPLETED BY: T CGmLeI� DATE: 04/28/99 Erosion Control C-Factor P-Factor Method Value . Value Comment MAJOR. P5 BASIN (%). 82. 2. 5 2. �} SUB AREA BASINI (Ac) 250 I L b5 .2(.0 Ic°.15 CALCULATIONS Jgrass area= tZ, r°41c1 "eq = 2.20 ac. w}d 0`fa( E(,0,10 xli.LIJ` )+(O.Ot x2.20)j w d F -Tor *0 r 1�1•GS 0. 09 O. 8r x 0. 50 r ° .80 _ O. 3 Z EFF L I - (o.09 r o.3Z)] X 100 = 97 . I 4/0 3rass ai,eu = E3. 73 ac road avea = 2, �I2 ar N1d [ rac=°Ir L(0.10. 13.73)4 (0.01x 2. 92)] Ito- 15 0.09 w4a 0.50 EFF = CI_ f 0.09x0.54)i''1"; 95,5°/° W T Q CAV51 , = g � ° ( > 8 4.Li O.K. HDI/SF-B:1989 APPENDIX A Historic Site Hydrology • XREFS: EXTOREV.dwg... BASE. dwg...TB4.dwg... 200 400 1 inch = 400 ft. ..,e • ■ F O N D E N O I M E E E I N O 432 S. LINK LANE PLAZA FORT COLLINS, CO. 80524 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM RIDGEWOOD HILLS P.U.D. FILING #3 HISTORIC BASINS PREPARED FOR: MELODY HOMES, INC. DATE SUBMITTED: 7/21/99 SHEET NUMBER 1 OF 1 SHEETS . 8 NUIISER FC0045 i • v J z — t!1 C R r 7 oo N M TOTAL LENGTH 10 0O cn N O in N O 0 N — LC..' O n o0• TRAVEL TIME T(t) T • 0 Q 'V — r 1 N v o' O O N O M M ul -= co cooO — N ON — INITIAL / OVERLAND TIME uiut (!).L 0, c N n N T N N G O CA CDIn N (Ni 00 t7 Length ft. O O V'r O O V1 O 0 'r 'SUB -BASIN DATA 0 CA O 0 N O 0 N O w R ce oo vo . 00 r DRAIN BASIN s 1 1 zi- °z up — uaa Q — N M • a O og tut 4. tel eta 0 REMARKS T TOTAL RUNOFF a� U , in/hr rL X U .CC G DIRECT RUNOFF p, U a `o O — O in/hr O en N Q NO N X U CA o0 M C — n ^ U __ h r 00 drsi M V INFORMATON RUNOFF COEFF co O 0 N N N O O O 00 vO 00 en• DRAIN BASIN z a DESIGN POINT — N r, APPENDIX B Developed Site Hydrology Developed Flow Calculations Project*: FC0045 Project Name: Ridgewood Hills P.U.D. Filing 93 • Calculated By: HHF Cimperriwa C jou, Basin 0.95 0.25 Area Area FiC Cul-du-sacs Area, le Type 1 6004 Type 2 7005 Total Asphalt/ Sidewalk Area Asphalt/ Sidewalk I f Hidden - Column Half Width Area f Total Lot # Lots Area 2 Lot Area, ft2 2400 Total Total Cul-du-sac Impervious i$ Cul-du-sacs Type Area Area 2 2 Total Pervious 2 yr. Area Composite "C" Cr 100 yr. • CC; .11 Cf •-100 • Average Slope @FL of swale 2% Overland •Average Channelized Average Length Slope Length Slope Basin ft ft 800 315,669.77 7.25 1180 24780 21 16 38400 1 1 6004 69184 246,485.77 0.40 1.00 -,, ' ' 0.40. ' 1.25 Zs; 0,50'..-!„-: 800 . 95 2.00 1130 3.30 801 110,999.30 2.55 1130 23730 21 8 19200 0 0 0 42930 68,06930 0.52 1.00 ,..-0.521,-4 1.25 t-- 0.65.-,.'-' 801 ' 60 2.00 1130 • 3.30 802 203,793.99 4.68 760 17480 23 19 45600 1 1 6004 69084 134,709.99 0.49 1.00 '...:.0.49_.t.. 1.25 110.61-te.t.: 802 150 2.00 685 . 3.50 803 86,226.14 1.98 775 16275 21 6 • 14400 0 0 0 30675 55,551.14 0.50 1.00 ,• 0.50 ';:.".1 1.25 '' 0.62: ; 803 30 2.00 740 • 3.10 804 121,525.61 2.79 815 17115 21 . 11 .26400 1 2 7005 50520 71,005.61 0.54 1.00 , ' 0.54,.."- 1.25 : . " 0.68 ' . 804 90 2.00 805 3.10 805 144,701.33 3.32 790 ' 18170 23 8 . 19200 -- 0 0 0 37370 . 107,331.33 0.43 1.00 72i0.43-- .; 1.25 ' ' : 0.54, . 805 110 2.00 270 1.50 806 51,678.43 1.19 610 ' 14030 23 4• 9600 0 0 0 23630 ' 28,048.43 0.57 1.00 ,' 0.51., : 1.25 °•,0.71 :: 806 110 2.00 220 2.10 807 101,059.00 2.32 1384 29064 21 12 28600 0 0 0 57864 43,195.03 0.65 1.00 ' : ; 0,65 ' 1.25 ' .. 0.81 807 : 65 2.00 1325 2.30 808 178,337.40 4.09 1195 25095 21 25 60000 ! . '0 0 0 85095 93,242.40 0.58 1.00 0.58 . 1.25 " 0.73 - 808 50 - 2.00 1235 2.35 809 122,820,72 2.82 350 7350 21 11 26400 1 2 7005 40755 82,065.72 0.48 1.00 0.48 1.25 • 0.60 ,-.., 809 230 2.00 535 3.95 809a 71,895.39 1.65 695 14595 21 9 21600 0 0 0 36195 35,700.39 0.60 1.00 .0.60 .,_ 1.25 .-- 0.75-.t:' 809a • 210 2.00 285 3.00 810 86,540.98 1.99 630 14490 23 8 19200 1 2 7005 40695 45,845,98 0.58 1.00 ' 0.58 , 1.25 : t1-0:72,:-1 810 130 2.00 550 ' 1.45 811 132,872.60 3.05 890 20470 23 ' ;•-' 14 33600 1 2 7005 61075 71,797.60 0.57 1.00 0.57 t 1.25 1 . t 0.71, 2. 811 110 2.00 825 2.90 812 208,374.99 4.78 1090 25070 23 ' 17 40800 1.5 1 9006 74876 133,498.99 0.50 1.00 _' 0.50, .., 1.25 . , 0.63,.." 812 275 6.40 900 4,00 813 26,632.69 0.61 385 8855 23 4 9600 0.5 1 3002 21457 5,175.69 0.81 1.00 • 081 . 1.25 -41.00* ....,` 813 40 2.00 350 4.85 814 28,677.97 0.66 605 12705 21 2, 4800 _ 0 0 0 17505 11,172.97 0.68 1.00 0.68 - .1.25 --",.. 0.85 ' 814 30 2.00 300 1.00 815 43,030.22 0.99 ' 655 15065 23 4 9600 . 0 0 0 24665 18,365.22 0.65 1.00 • 0.65..; 1.25 - tt°13.111, ,-- 815 45 2.00 575 3.20 816 28,095.48 0.64 465 10695 23 3. 7200 0 0 0 17895 - 10,200.48 0.70 1.00 : 0_70 ° 1,25 " .^0.87 - 816 45 2.00 410 1.75 817 122,774.80 2.82 480 11040 23 10 24000 0 0 0 35040 87,734.80 0.45 1.00 .0.45 ..". 1.25 -40,56t,- 817 330 8.30 300 110 818 109,282.15 2.51 860 18060 21 14 33600 0.5 1 3002 54662 54,620.15 0.60 1.00 0.60-";* 1.25 4t' 0.75 ":-. 818 45 2.00 1210 3.40 819 65,874.11 1.51 580 12180 21 8 19200 0.5 1 3002 34382 31,492,11 0.62 1.00 t..t' 0.62,' 1.25 ,/,,V.0.77,°,.. 819 60 2.00 625 3.80 820 126,825.28 2.91 685 14385 21 ,. '-,• 14 33600 0 0 0 47985 78,840.28 0.51 1.00 - ;0.51_ ,''' 1.25 - -'-, -064,- " 820 160 2,00 550 1.85 821 234,023.56 5.37 0 0 0 t 7 16800 0 0 0 16800 217,223.56 0.30 1.00 tt-t 0.30 -"tt.: 1.25 -v0.38 '- 821 105 11.40 710 3.50 822 403,303,23 9.26 0 0 0 15 36000 0 0 0 36000 367,303.23 0.31 1.00 7 0.31-tt,- 1.25 - tA 039 °/--, 822 .160 17.50 530 1,15 900 121,155.56 2.78 995 '20895 21 9 21600 0 0 0 42495 78,660.56 0.50 1.00 ,,....- .0:50 --, 1.25 '0.621,, 900 ;t 130 2.00 840 1.70 901 102,912.20 2.36 995 :20895 21 11 26400 0 0 0 47295 55,617.20 0.57 1.00 - 0.57,1. 1.25 i',..!0.71T-7 901 ..! 90 2.00 910 1.70 902 29,661.70 0.68 365 :8395 23 2 4800 0 0 0 13195 16,466.70 0.56 1.00 ' '"°-0.56-T 1.25 ..-• 0.70 :,'; 902 60 2_00 310 2.20 903 23,768.40 0.55 365 8395 23 2 4800 0 0 0 13195 10,573.40 0.64 1.00 : - 0.64, i 1.25 • " -' 0.80 4r. 903 55 2.00 260 2.20 . 904 36,337_36 0.83 440 9240 ' 21 3 - 7200 ' 05 1 3002 19442 16,895.36 0.62 1.00 -t.- 0.62 --.. 1.25 t.; ,,t, 0.78 .-.'t 904 60 2.00 500 2.00 905 38,138.37 0.88 440 .., 9240 21 3 7200 0.5 1 3002 19442 18,696.37 • 0.61 1.00 ."..t.-0.61,-.., 1,25 .° :0.76 '--x 905 60 2.00 475 2.00 906 120,828.18 2 77 410 8610 21 11 26400 0.5 2 3502.5 38512.5 82,315.68 0.47 1.00 4:,...;t0.47.4,, / .25 ,.," 0.5T-,:. ° 906 370 .,, 2.00 390 1.55 907 118,067.94 2.71 600 12600 21 10'1.00 24000 0.5 2 3502.5 40102,5 77,965.44 0.49 - -,.0.49 ; 1.25 Tt- ,.0.61 ';',3° 907 130 .' 2.00 680 2.15 908 17,346.41 0.40 210 4830 23 • 0 - 0 0 0 0 4830 12,516.41 0.44 1.00 "0.44"..t; 1.25 , tW0.56 , t 908 115 2.00 180 5.20 909 89,864.25 2.06 575 13225 23 6 14400 0 0 0 27625 62,239.25 0.47 1.00 ,...;0.47 1.25 " • 0.58 : t 909 110 2.00 375 2.00 910 62,473.12 1.43 560 12880 23 5 12000 , 0 0 0 24880 37,593.12 0.53 1.00 ' 0_53 --. 1.25 ° 0.66' _: 910 - 80 2.00 420 2.45 911 27,423.65 0 63 375 8625 23 2 4800 0 0 0 13425 13,998.65 0.59 1.00 ' ..0.59,..Y. 1.25 '• 0.74 ' / 911 •` 65 2.00 350 2.70 912 53,868.80 1.24 275 6325 23 5 12000 0 0 0 18325 35,543.80 0.49 1.00 '. ,t 0.49...7: 1.25 ' . 0.61 .-,.‘,-- 912 120 2.00 280 2.40 913 20,724.10 0 48 275 6325 23 2 4800 0 0 0 11125 9,599,10 0.63 1.00 ,-,0,63.';, 1.25 ,,,:' t13.38',', 913 65 2.00 235 2.40 914 35,980.52 0.83 450 10350 23 5 12000 0 0 0 22350 13,630,52 0.68 1.00 .1't it 0681`.-r 1.25 :, t"! 0.86 ,`...72. 914 65 2.00 385 - 4.50 915 184,329.34 4.23 1215 27945 23 10 34187 1 2 7005 69137 115,192.34 0.51 1-00 2-,;..0.51,-7, 1.25 1.; '40.643.` 915 120 . 2.00 790 2.55 916 160,013.07 3.67 1130 23730 21 19 49481 0 0 0 73211 86,802.07 0.57 1.00 - '10.57 'It,' 1.25 . 0.71 , 916 - 115 2.00 940 1.65 917 84,914,88 1.95 905 27602.5 30.5 4 9600 0 0 0 37202.5 47,712.38 0.56 1.00 , 0.56' , 1.25 ; - 0.70% ' 917 110 2.00 650 2.50 918 24,898.24 0.57 680 20740 30.5 0 0 0 0 0 20740 4,158.24 0.83 - 1.00 ';_ ...0.83- 1.25 *- 1.00' ''' 918 15 2.00 430 2.10 919 21,091.29 0.48 760 17480 23 0 0 0 0 0 17480 3,611.29 0.83 1.00 ° ' 0.83:-. 1 25 . .1.00." 919 20 2.00 660 4.20 920 87,720.74 2.01 865 19895 23 6 14400 0 0 0 34295 53,425.74 0.52 1.00 •,t, • 0.52 , : 1.25 '0,65 ...- ' 920 85 2.00 790 2.00 921 85,368.97 1.96 330 6930 21 8 19200 0 0 0 26130 59,238.97 0.46 1.00 7:-'0.46 .: 1.25 -` . 0.58'" 921 235 2.00 260 3.00 922 14,237.26 0.33 ' 558 14237.26 25.5 0 0 0 0 0 14237.26 0.00 0.95 1.00 •", '0.95 C 1.25 • •-, 1100 ." 922 15 2.00 450 0.95 923 61,343.19 1.41 ' 565 17232.5 30.5 5 12000 0 0 0 29232.5 32,110,69 0.58 1.00 4 A.511',.11 1,25 .:;0.731.:- 923 . ' 80 2.00 485 0.95 924 27,830.64 0.64 635 13335 21 2 4800 0 0 0 18135 9,695,64 0.71 1.00 :,-' 0.71" 7,4 1.25 , , 0.88 - :: 924 45 2.00 620 3.00 925 402,322.32 9.24 0 0 0 3 7200 0 0 0 7200 395,122.32 • ' .0.45',..' . ''.0.70"..... 925 500 3.50 0 0.00 926 141.867.97 3.26 0 . 0 0 5 12000 0 0 0 12000 129,867.97 0 31 1.00 0.31'_ -'.' 1.25 - .'.' 0.39 • - 926 120 15.00 280 1.25 1000 27,300.69 0.63 0 0 0 0 0 0 0 0 0 27,300.69 0,25 1.00 ' • 0.25- . ' 1.25 1*. 0.31'• • ' 1000 : 125 2.00 0 0.00 1001 18,285.74 0,42 200 4600 23 3 7200 0 0 0 11800 6,485.74 0.70 1.00 - 10.70 .....::"' 1.25 't.t 70.88 -...., 1001 70 . 2.00 120 3.85 1002 71,709.49 1.65 0 0 0 4 9600 0 0 0 9600 62,109.49 0.34 1.00 .- 0.34 , ' 1.25 , t,. '0143 .,e- 1002 120 8.33 0 0.00 1003 4,068.45 0.09 45 1372.5 30.5 0 0 0 0 0 1372.5 2,695.95 0.49 1.00 0.49 -,, 1.25 J-0.61 - ' 1003 110 5.40 30 . 0.40 1004 8,765,29 0.20 45 1372.5 30.5 0 0 0 0 0 1372.5 7,392.79 0.36 1.00 ',.: 0.36 •:- 1.25 - ,0.45 ,,, 1004 130 6.00 35 0.40 1005 70,925,50 1.63 280 5880 21 6 14400 0 0 0 20280 50,645.50 0.45 1.00 ....,T 0.45. ' 1.25 ,-, 0.56 -..°1 1005 190 2.00 240 3.00 1006 22,789.88 0.52 280 5880 21 2 4800 0 0 0 10680 12,109.88 0.58 1.00 '.' 0.58...'. 1.25 '' 0.72' ' 1006 45 2.00 ' 230 3.00 OS -I 145,901.66 3,35 0 0 0 3 7200 0 0 0 7200 138,701.66 0.28 1.00 . • 0.28' '` 1.25 - 0.36 - OS-1 80 5,00 0 0.00 OS-2 34,580,38 0.79 0 0 0 1 2400 0 0 0 2400 32,180.38 0.30 1.00 -. 0.30 . .' 1.25 `,-13.37.- , OS-2 40 10.00 0 0.00 OS-3 40,105.64 0.92 0 0 0 0 0 0 0 0 0 40,105.64 0.25 1.00 • 0.25 , 1.25 ' . 0.31 OS-3 55 25.00 0 0.00 0S-4 224,877.77 5.16 0 0 0 0 0 0 0 0 0 224,877.77 0.25 1.00 : 0.25, - , 1.25 .. 0.31: , OS-4 500 5.40 0 0.00 OS-5 2228,24 0.05 0 0 0 0 0 0 0 0 0 2,228.24 0.25 1.00 . • 0.25t': 1.25 ; 0.31' ' 0S-5 15 2.00 0 0.00 lob Number. FCOO4S Date 5717,00 Project: Ridgewood Hills P.U.D. Filing o3 Calculated 85:•HHF Design Storm' 2 5 car (des eloped/ DATA INITIAUOVERLAND TIME(q) TRAVEL TIME (0) FINAL 8, Drainage Basin (I) Design Point I(a) Area acres) (21 Runoff Coefficient C 131 Frequency Factor C, 13a) CC, 13b) Length f1 (4) Slope (3) t, (61 Length ft (71 Slope .. (81 Velocity Msec (9) 1, min (101 Computed 0 min (11) 800 800 7.25 0.40 1.00 0.40 95 2.00 10,08 1130 330 3.63 5.18 15,26 80! 301 255 11.52 1.00 0.52 60 2011 6.66 1130 3.30 3.63 5.18 11.84 802 802 468 0.49 1.00 049 (50 2.00 [1.14 635 3.511 3.74 3.05 14.19 803 803 1.98 0.50 1.0(1 030 30 2,110 4.89 7411 3.10 3.52 3.50 8.39 804 804 2.79 0.54 1 1.00 0.54 90 2,10) 7.87 803 3.10 3.52 3.81 11.68 605 805 3.32 043 1.00 0,43 110 2.00 10.42 270 1.50 2.45 1.84 12,26 606 806 1.19 0.57 100 0.57 110 2.1)0 8.25 220 2,10 2.90 1.27 9.52 807 807 2.32 065 1.00 0.65 65 2.00 5.38 1325 2.36 3.03 7.23 12,66 808 308 4.09 0.58 1.00 0.58 50 2.110 542 1150 2.35 3.07 625 11,67 806.808 808 5.28 0.58 1.00 (1,58 230 2.00 11.77 1170 2.35 3,07 6.36 18,13 809 809 282 0.48 1.00 048 2311 2.01) 13.91 535 395 397 2.24 16,13 809a 809a 1.65 0.60 1.00 0.60 210 2,00 10.70 285 3.00 3.46 1.37 12,08 803.305. 8096810 8004 11.73 0,53 1.00 0.53 130 2.00 9.64 2115 2.53 3.18 11.07 20,71 810 810 199 0,58 1,00 0.58 130 200 8.82 550 1.45 2.41 3.81 12.62 811 811 3.05 0.37 1.00 0.57 1111 2.00 8.22 825 2.90 3.41 4.04 12.26 812 812 4.78 0.50 1.00 0.50 275 640 10.110 900 4.00 4.00 3.75 13.75 313 813 0.61 0.81 1.00 0.81 40 2.00 2.69 350 4.85 4.40 1.32 5.00 814 814 0.66 0.68 1,00 0,68 30 2.00 3.44 3011 1.00 2,00 - 2.50 5.94 315 315 099 0.65 1.00 0.65 45 2.011 147 575 3.20 3.58 2,68 7.15 816 816 0.64 0.70 1.00 11.70 45 2,110 4,02 410 1.75 2.65 2.58 661 817 817 2.32 0,45 1,00 0.15 330 . 8.30 10.92 300 1.80 2.68 1.86 12.78 318 818 . 2.51 0.60 1.00 0.60 • 45 2.00 4.98 1210 3,40 3,69 5.47 10.45 819 - 819 1.51 0.62 1.00 0.62 60 2.00 5.57 625 3.80 3.90 2.67 8.24 820 820 2.91 0.51 1.00 0.51 160 2.00 10.99 530 1.85 2.72 3.37 14.36 816820 820 3.56 0.55 1.00 0,55 45 2.00 5.50 1110 1.80 2.66 6.89 12.40 815.816.820 820 4.54 0.57 1.00 0.57 45 2.00 5.28 1 E 10 1.80 2,68 6.89 12.17 821 821 5.37 0,30 1.00 0,30 105 11,40 6.82 710 3,50 3.74 3.16 9.98 822 822 9.26 0.31 100 0,31 160 17.50 7,18 530 1.15 1.61 5.49 12.67 900 900 2.78 0,50 1.00 0,50 130 2.00 111.23 840 1.70 2.61 .. 5.37 15.60 901 901 2.36 0.57 1.00 0,57 90 2.00 7.44 910 1.70 2.61 5.82 13.26 902 902 0.68 0.56 1.00 0,56 60 2.00 6,19 310 2,20 2.97 1.74 7.94 901-902 901 3.04 0.57 1.00 0.57 90 2.00 7.46 910 1.70 2,61 5,82 13.28 903 903 0.55 064 1.00 061 55 2,00 5.06 260 2.2D 2.97 1.46 6.54 904 904 083 062 100 0,62 60 2.00 5.47 500 2.00 2.83 2.95 8,41 905 905 088 061 1.00 061 60 2.00 ' 5.67 475 2.00 2.83 2.80 3.47 906 906 2.77 0.47 1.00 0.17 370 2.00 1790 390 1.55 2.49 2.61 20.51 903906 906 3.32 0.49 1.00 0.49 20,87 907 907 2.71 0.49 100 0.49 1.30 2.00 10.36 6811 2.15 2,93 3.86 14,23 903.906.907 907 6.03 0.49 1 00 0.49 20.87 903 908 0.40 0.44 1.00 0.44 115 2,00 10.43 160 5.20 4.56 0.66 1809 900-903 900 3.13 0.49 1.00 0,49 130 2.00 10.33 840 1.70 2.61 5.37 15.69 909 909 2.06 0.47 1.00 0.47 110 2.00 9.83 375 2.00 2.83 2.21 • 12.09 910 910 1.43 0.53 1.00 0.53 30 2,00 7.53 42D 2.45 3.13 2.24 9.82 909,910 910 3.50 0,50 100 0.50 110 2.00 9.39 600 1.90 2.76 3.63 13.02 911 911 ,• 0.63 0.59 1.00 0.59 65 2.00 6.07 350 2.70 3,29 1,78 7.65 912 912 1.24 049 1.00 0.49 120 2.00 9.95 2811 2.40 3.10 1.51 11.46 913 913 0,43 0,63 1.00 0.63 65 2.00 5,68 235 2.40 3.10 1.26 6.94 914 914 0.83 0.68 1.00 0.68 65 2,00 4,97 385 4,50 4,24 1.51 6.48 915 915 4.23 0.51 1.00 0.5! 120 2.00 9.55 790 2.55 3.19 4,12 13.63 916 916 3,67 0.57 1.00 0.57 115 • 2.00 8.43 94D 1.65 237 6.10 14.53 917 9l7 1.95 0.56 1.00 0.56 110 2.00 8.46 650 2.50 3.16 3.43 11.89 915.916 915 7.9i 0.54 1.00 0,54 115 2.00 893 1I70 2.55 3.19 6.11 15.03 915,916.917 917 9.AS 0,54 1.00 0.54 115 2,00 • 8.87 1670 2.50 3.16 8.80 17.67 918 918 0.57 0.83 1.00 0.83 15 2.00 1.53 430 2,10 2.90 2.47 5,00 919 919 0.48 0,83 1.00 0,83 20 2.00 1.79 660 4.20 4.10 2.68 5.00 920 920 2,01 0,52 1,00 0,52 85 2,110 7.89 790 2.00 2.83 4,66 12,54 921 921 1.96 0.46 100 0.46 235 2.00 14.47 260 3.00 3.46 1.25 15.72 922 922 0,33 0.95 1.00 0.95 15 2,00 0.86 450 095 1.93 - 3.85 5.00 914.922 922 1.15 0.82' 1.00 0.82 65 200 3.38 930 2.70 3.29 4.73 8,10 923 923. 1.41 0,58 1.00 0,58 80 2.00 6.86 485 095 195 4.15 11.00 924 924 0.64 0.71 1.00 0.71 45 2.00 3.92 620 3.00 3.46 2 98 6.91 9211921.924 924 • 4,61 0,56 1.00 0,56 85 2.00 1.33 1130 2.70 3.29 5.73 13,06 925 925 9.24 0.45 100 0.45 300 3.50 1791 0 0.00 0,00 0.00 17.91 926 926 3.26 0.31 1.00 0.31 120 1500 6.57 280 1.25 1.68 2.78 9.36 1000 10011 0.63 0.25 100 0,25 125 2,00 14.11 0 0.00 0,00 0.00 14.11 1001 1001 0.42 0.70 1.00 0,70 70 2,00 4.95 120 3.35 3.92 0.5t 5.46 1002 1002 1.65 0.34 1.00 0.34 [20 3.33 7.65 0 0.00 0,00 0.00 7.65 1003 1003 0.09 0.49 1.00 0.49 110 5.40 6.37 30 0.40 1.26 0,40 7.26 1004 1001 0.20 0.36 100 0.36 130 6.00 869 35 0.40 1.26 0.46 9.15 1005 (005 1,63 0.43 1.00 0.45 190 2.00 13.311 240 3.00 3.46 1.15 14.45 1006 1006 0.52 0.58 " 1.00 0.58 45 2,00 5.20 230 3.00 3.46 1.11 6.30 00-1 09-1 3.35 0.20 1.00 0.28 80 500 7.98 0 0.00 000 0.00 7.98 06-2 0S-2 0.79 0.30 1.00 40 (0181 140 0 0,00 O00 0,00 5.00 OS-3 OS 3 092 025 1.000.25 55 25011 1.04 0 0.00 000 0,00 5,00 OS-1OS-4 Ili 5.16 0.25 1.000.25 500 5.10 2027 0 0.00 000 000 20.27 05-5 OS•5 1195 0.25 1.00 0.25 13 2.00 4.89 0 0.00 0.000.00 5.00 1 ' lob Number: FC0043 Date: 5I17700 Project: Ridgewood Hills P.U.D. Filing d3 Calcnlated 9y: HHF Design Storm: 2 year (do eloped) Design Point DIRECT RUNOFF TOTAL RUNOFF Area of Design Area acrels) CC, t, min CC,' A acre{s) Rainfall intensity inter Flow(Q) cfs I. min E1C • A) acrelsl Intensity in/hr Flow (Q) c13 12) 13) 14) 15) (6) 17) (8) 19) 110) 111) (121 1131 800 800 7.23 040 13.26 2,92 2,10 6.15 801 801 2.55 052 11,84 1.33 2.37 3.15 802 802 4.68 049 14.19 2.28 2.18 4.98 803 803 1.98 • 0,50 8,39 0.99 2.75 2,72 804 804 2.79 0.54 11,68 1,51 2.39 3.60 805 805 3.32 0.43 12.26 1.43 2.34 3.35 806 806 1.19 0.57 9.52 0.68 2.59 1.73 807 807 2.32 0.65 12.66 1.31 231 3,40 808 808 4,09 0.38 11.67 2.39 2.39 5.71 808 806.808 5.28 0.58 18.13 18.13 3.07 1.94 5.95 809 809 2.82 0.48 16.15 1,36 2.05 2.79 809a 809a 1.65 0.60 ' 12.08 0.99 2.35 2.34 809a 803-805.809.810 11.73 0.53 20.71 20,71 6.44 1.80 11.60 810 810 1.99 0.58 12.62 1.15 2.31 2.66 811 811 3,05 0.57 12.26 1.74 2.34 4.08 812 812 4.78 0.50 13.75 2.40 2.22 5.33 813 813 0,61 0.81 5,00 0_50 3.24 1.61 814 814 0.66 0,68 5.94 0.45 3.11 138 815 815 0,99 0.65 7.15 0,64 2.93 1.89 816 816 0,64 0.70 661 0.45 3.01 1,35 817 817 2.82 0.45 12.78 1.27 2.30 2,91 818 818 2.51 0.60 10.45 1,51 2,48 3.74 819 819 1.51 0.62 8.24 0.93 2.77 2.58 820 820 2.91 0,31 14.36 1.50 2.17 3.25 820 816,820 3.56 0.55 12,40 12.40 1.95 2.33 4.54 820 813,816,820 434 0.37 12.17 12.17 2.59 2.35 6.08 821 821 5.37 0.30 9.98 1.61 2,52 4,07 822 822 9.26 0.31 12.67 2.89 2.31 6,67 900 900 2.78 050 )5.60 1.38 2.09 2.87 901 901 236 057 13,26 1,35 2.26 305 902 902 0.68 0.36 7.94 0.38 2.82 1,08 901 901,902 3.04 0.57 13.28 13.28 1.73 2.26 3.91 903 903 0.55 0.64 6.34 035 3.02 1.05 904 904 . 0.83 0,62 8.41 0.52 2.75 1.43 905 905 0,88 0,61 8.47 0,53 2.74 1.46 906 906 2.77 0.47 20.51 1.31 1,81 2.37 906 903.906 3.32 0.49 20.87 20.87 1.66 1.80 2.98 907 907 2.71 0.49 14.23 1.32 2.18 2.88 907 903.906.907 6,03 0.49 20.87 20.87 ' 2.98 1.80 5,35 908 908 0,40 0.44 11.09 0,18 2A3 0.43 900 900.908 3.18 0.49 15.69 13,69 1.56 2.08 3.23 909 909 2.06 0.47 12.09 0.96 2.35 2.26 910 910 1.43 0.53 9.82 0.76 2.55 1.93 910 909.9(0 3.50 0.50 13.02 13.02 1.72 2.28 ' 3.91 911 911 0.63 0.59 7,85 0.37 2,83 1.06 912 912 1.24 0.49 11.46 0.60 2,40 1.45 913 913 0.48 0.63 6.94 0.30 2.96 - 0,88 914 914 0.83 0.68 6.48 0.57 3.03 1.71 915 915 4.23 0.5i 13.68 2.17 2.23 4.83 916 916 3.67 0.57 14.53 2.09 2.16 4.52 917 917 1.95 0.56 11.89 1.09 2.37 2.57 915 915.416 7.91 0.54 15.03 15.03 4.26 2.12 9.03 917 915.916.917 9.85 0.54 17.67 17.67 5.35 1.96 10.51 918 918 0.37 D 83 3.00 0.48 3.24 1.54 919 919 0.48 0.83 5.00 0.40 3.24 1.30 920 920 2.01 0.52 (2.54 1.05 2,32 2,44 92 I 921 1.96 0.46 15.72 0.91 2.08 1.89 922 922 0.33 0.95 5.00 0.31 3.24 1.01 922 914.922 1.15 0.82 8.10 8.10 0.88 2.79 2.43 923 923 1.41 058 11,00 0.82 2.44 2.00 924 924 0.64 0.71 6,91 0.45 2.97 1.34 924 920.921924 4.61 0 56 13.06 13.06 2,42 2.28 3.50 925 925 9.24 045 17.91 4.16 1.95 8.11 926 926 3,26 031 9.36 101 2.61 2.63 1000 1000 0.63 0.25 14.11 0.16 2.19 0.34 1001 1001 0.42 0.70 5.46 0.29 3.17 0.94 1002 1002 1.65 0.34 7.65 0.57 2.86 162 1003 1003 0.09 049 7.26 0.05 2.91 0.13 1004 1004 0.20 036 9.15 0.07 2.64 0.19 1005 1005 1.63 0,43 14.45 0.73 2.16 1,59 1006 1006 0,52 0,38 6.30 0.30 303 0,92 05.1 OS -I 3.35 0.28 7.98 0.95 2.81 2.68 05-2 0S-2 0.79 0.30 5.00 0.24 3.24 0.77 OS-3 05-3 0.92 0.25 5.00 0.23 3.24 0.75 0S-4 0S-1 5.16 0.25 20.27 1.29 1.82 2.35 05-5 05-5 0.05 0.23 5.00 0,01 3.24 0,04 -4 Job Number: FC0043 Date: Ma, 17. 2000 Project:: Ridgcuood HiEls P.U.D. Filing 83 Calculated By: HHF Design Storm: 100 5 car (dm eloped) DATA INITIAL/OVERLAND T1M1 E(%) TRAVEL TIN E (4) FINAL 4 Drainage Basin 11) Design Point I(al Area acrcls) 12) Runoff Coefficient C 131 Frequency Factor C, 13a1 CC, 1361 Length 0 141 Slope % (31 5 min (6) Length ft 171 Slope ,r 181 Velocity Nscc (9) 1, min 1101 Computed 4 min 1 1 I ) 800 800 7,25 040 1.25 0.30 95 2.110 3.62 1130 3.30 3,63 5,18 13.80 801 801 2,55 0,52 1.25 0.65 60 2,00 5.16 1130 3.30 3.63 5,18 10,35 602 802 4.68 049 1.25 0.61 150 2,00 8.93 685 3.511 3.74 305 11.98 303 803 1.98 0.50 1.25 0.62 30 2.00 3.87 710 3.10 3.52 3.5R 7.37 804 804 2.79 0,54 123 0.68 90 2,00 5.97 805 3.10 3.52 3.31 9,78 805 805 3.32 043 1.25 0.54 110 2.00 8,74 270 1.50 2.45 1.84 11138 806 806 1.19 057 1.25 0.71 110 2.00 6.03 220 2.10 290 1.27 7,311 807 807 2,32 0.65 1.23 0.31 65 2011 3.13 1325 2.30 3.03 7.23 111.71 808 808 4.09 0.58 1.25 0.73 50 2.00 3.88 1235 2.35 3.07 6.71 10.60 806,108 808 3.23 0.58 1.25 11.72 230 2.00 1,53 1170 2.35 3.07 6.36 14.89 809 809 2.82 0.43 1.25 11,60 230 2.00 11.19 535 3.95 3.97 2,24 13.44 809a 809a I.65 0611 1,23 0,73 210 2.011 7,46 285 3.00 3.46 1.37 8.84 803.805. 8098.310 8098 11,73 0.53 1.23 11.66 130 2.011 7.10 2115 2.53 3,18 11.07 (8.47 810 110 1.99 0.38 1.25 0,72 130 200 6.37 550 1,15 2.41 3,81 10.17 811 311 3.03 0.57 1.25 0.71 k 10 2.00 6,00 825 2.94) 3.41 4.04 10.01 312 812 4.78 0.50 1.25 0.63 275 6.40 7.91 900 100 4.00 3.75 I1,66 813 813 0.61 0,81 1.25 1.02 40 2.00 0.78 350 4,85 1.40 1.32 500 814 814 066 0.68 1,25 0,85 30 2,00 2.06 300 100 2.00 2.50 5.00 815 813 0.99 0.65 1.25 0.81 45 2.00 2.35 575 3.20 3.58 2,68 5.53 816 116 0.64 0,70 1.25 0,87 45 2,00 2.29 11.0 1.75 2.65 2,58 500 817 817 2.82 0.45 1,25 0.56 330 8,30 9.03 300 1.80 2.63 1.86 10.39 BIB 818 2.51 0.60 1.25 0.75 45 2.00 3.48 1210 3.40 3.69 5,47 8.95 819 819 1.51 0,62 1.25 0,77 60 2.011 3.80 625 1.30 3.90 267 6.43 820 820 2.91 0.51 L23 0.61 160 2,00 8.57 551) 1.85 2.72 3.37 11.94 816,820 820 3.36 0.55 1.25 0.68 45 . 2.00 4.14 1110 '1.80 2.68 6.89 11.03 815.816,320 820 4,54 0.57 1.25 0.71 45 2,00 3.36 1110 1.80 2.68 689 10,73 821 821 5.37 0.30 1.25 038 105 11.10 6.18 710 3.50 3.71 3.16 - 9.34 821.915.916 821 15.80 0.47 1.25 0.59 n7e n!a 910 195 11.40 6.73 de 22.53 822 822 9.26 0.31 1.25 0.39 160 17.50 6.17 530 1.15 1.61 549 11,96 900 900 2.73 030 1.25 . 062 130 2.00 8.13 840 1.70 2.61 5.37 13,50 901 901 2.36 0.37 1.23 0.71 90 2.00 3.43 910 1.70 2.61 5.82 11.24 902 902 0.68 056 1,23 0,70 60 2.00 4,38 310 2.20 2.97 1,74 6.32 901.902 901 3.04 0.57 1.23 0.71 90 2.00 5.46 910 1,70 2.61 5.32 11.27 903 903 0.35 0.61 1,23 0,80 55 2.00 3.32 260 2.20 2.97 1.16 5.00 904 904 0.83 0.62 1,25 0.78 60 2,00 3,67 500 2,00 2.83 2.95 6.62 905 905 0,88 061 1.25 9.76 60 2.00 393 475 200 2.83 2.80 6.73 906 906 2.77 0.47 1.25 0,59 370 2.00 14.32 390 1.55 2.49 2.61 17.13 903.906 906 3.32 049 1.25 0.61 . 17.38 907 907 2,71 0.49 1.25 0.61 130 2.00 8.30 680 2.15 2.93 3.86 12.16 403.906.907 907 603 0.49 1,25 0.61 17.58 901 908 0.40 0.44 1.25 0.56 115 2.00 8.66 180 5.20 4.56 0 66 9.32 900908 900 3.18 0.49 1,25 0.61 130 2,00 8.23 840 1.70 2.61 537 13.62 909 909 2.06 0.47 1.25 0,58 110 2,00 8.07 375 2.00 2.83 2.21 10.28 910 910 1.43 0.53 1,25 0.66 80 2.00 5.83 420 2,45 3.13 2.24 8,07 909910 910 3.50 0.50 1.25 0.62 110 2.00 7.45 600 1.90 2,76 3.63 11,03 911 911 0.63 0.59 1,25 0.71 65 2,00 1,30 350 270 3,29 1.78 6.07 912 .912 ' 1.24 0.49 1.25 0.61 120 2,00 7.97 280 2,40 . 3.10 1,51 9.47 913 913 0.48 0.63 1.25 0,78 65 2,00 3,80 235 2.10 3,10 1.26 5.07 914 914 0.83 0.68 1.25 . 0.86 65 2.00 2.92 385 4,50 4,24 1.51 5,4)0 915 915 1,23 0.51 1.25 0.64 120 200 7.47 790 2.55 3.19 4.12 11,59 916 916 3.67 0.57 1.23 0.71 115 2.00 6.16 - 940 1.65 2.37 6.10 12.26 917 917 1.95 0,36 1.25 070 110 2.00 6.29 650 2.50 3.16 3.43 9.72 915,916 915 7.91 034 1.23 0.67 115 200 6.73 1170 2.55 3.19 6.11 12.68 915,916.917 917 9.E5 0.54 1.23 0.68 115 2.00 6.71 1670 2.30 3.16 8.60 13.51 913 91.8 0.57 0.13 1.23 1.04 15 2,00 0,34 430 2.10 2.90 2.47 5.00 919 919 0.48 0.83 1.25 1.04 20 2.00 0.41 660 4.20 4.10 2.68 5.00 920 920 2.01 0.52 1.25 0,65 85 2.00 6.10 790 2,00 2.33 4.66 10.75 921 921 1.96 0.46 1.25 0.53 235 2.00 11.83 260 3.00 3,46 1.25 13.08 922 922 0.33 0.95 1,25 1.19 15 2,00 -0.50 450 0.95 1,95 3.85 3.00 914.922 922 1.13 0.82 1.25 1.02 63 200 0.94 930 2.70 3.29 4.72 3.65 923 923 1,41 0.53 1,23 073 80 2.00 4,92 483 0.95 1.95 4.15 9,07 924 924 0.64 0.71 1.25 0,88 43 2.00 2.16 620 3.00 3.46 2.98 5.15 920.921.924 924 4,61 - 0.56 1.25 0.71 85 2.00 5.39 1130 2.70 3,29 3.73 11.13 • 925 925 9.24 0.70 0.70 500 3,50 11.02 0 0.00 0.00 000 1102 926 926 3.26 0.31 1.25 0.39 120 15.00 '393 280 1.25 1.68 2.71 8.71 1000 1000 0,65 0.25 1.25 0.31 123 2.00 13.07 0 0.00 0.00 0.00 13.07 1001 1001 0.42 0.70 1.25 0.88 70 2.00 2.77 120 3.85 2.92 0,31 3.00 1002 1002 1.63 0,34 1.25 0.43 120 8.33 6.73 0 0.00 0.00 000 6.78 1003 1003 0.09 0.49 1.25 0.61 110 5.40 3.31 30 0.40 1.26 040 5.90 1004 1004 0.20 0.36 1.25 045 130 6,00 7,64 35 0,40 1,26 0.46 8.10 1005 1005 163 0.45 1.25 0.56 190 2.01) ' 11110 210 3,00 3.46 1.1.5 12.15 1006 1006 0,52 0,58 1.25 - 0.72 45 2.00 3.76 230 3.00 3,46 1.11 5.00 00-1 OS-) 3.33 0.28 1.25 036 BD 5.00 7,28 0 0,00 0.00 000 7.28 OS-2 0S-2 0.79 0.30 1.23 0.37 40 10.00 3.99 0 0110 0.00 0.00 5.00 05-3 OS-3 0.92 0,25 1.23 0.31 35 25.00 3.74 0 0.00 000 000 500 05-4 0S-4 5.16 0.25 1.23 0.31 300 5.40 18.78 0 000 0.011 0.00 18.7E OS-5 0S-5 0.05 0.25 1.25 031 15 200 4,53 0 0,00 0.00 0.00 500 ' 4 = 15.13 min (4 for 807,913-917 - 0.65 min (*stem 'O• flow time) 6.75 min (flow time to inlet) nave Schaaf Site W CO a LL 0 0 Z 0 a re H LLI 1- 0 LL CO Z 0 /Q V_ :1. Ea 0 Z u) Q Law * Average Slope @ FL of Swale = 2% • U N N 01/4 0 N 10 a eT r Gi- r N 0 0 h • 0 Cn 0 0 cdV i N RRR O O y c U U cn .7 0 0E• 2 a. N eT1 v.0 C Ts 0 o O 3 O N = E b A o- Q 0 O O z z o ?o. Q U O z Job Number: FC18145 Date: 5717,,00 Project-. Ridgessood Hills P.U.D. Filing 43 Calculated By: HHF Design Storm: 100 Sear (de,clopcd) Design Poim DIRECT RUNOFF T0TAL RUNOFF ' .Area of Design Ara acres) CCr 4 min CC,- ' A acrels) Rainfall Intensity imhr Floe (Q) cfs 4 min E(C' Al acrefs) Intensity iohr Floss- (Q) cfs 421 4-3) 44) (5) (61 (7) (0 (9) (111) (11) (12) 4131 8110 000 7.25 050 13.80 3.65 6.18 22.60 801 091 2.55 0 65 10.35 1.66 6.94 11.52 802 002 1,68 0.61 11.98 2.85 6.59 18.77 803 003 1.98 0,62 7,37 1.23 8.06 9.95 504 SO4 2.79 0.68 9.78 139 7.11 13.41 805 005 3.32 0.34 1058 1.79 6.89 12.73 8116 006 1,19 071 7.30 0.85 8.09 6.84 807 8117 2,32 0.81 10.71 1.89 6,86 12,95 808 808 4,09 0.73 10.60 2.99 6,89 20,59 803 81)6,8118 5.28 0.72 14.89 14.89 3.83 5.94 22.79 809 809 2.12 0.60 13.44 1.70 6.26 10.65 809a 809a 1.65 0.75 8.84 1.24 7.48 9,30 809a 803.305.8094.810 11.73 0.66 18.47 18.47 8.05 5.41 43.57 A10 810 1.99 0.72 10.17 1.44 6_98 10.04 811 811 3.05 0.71 10.04 2.13 7.01 15.29 812 812 4.73 0.63 11.66 3,00 6.66 1996 813 813 0.61 1.00 5.00 0.61 9.110 5.50 814 814 0.66 0.85 5.00 0.56 9.011 5112 815 815 0.99 0.81 5.53 0.80 8.79 7.07 816 816 0,64 0.87 5110 0.56 900 505 817 817 2.32 0.56 10.89 1.58 6.82 10.81 818 818 2.51 0.75 8,95 1.83 7.43 • 13,99 819 819 1.51 0.77 6.48 1.16 842 9.79 82D 820 2.91 0.64 11.94 1.87 6.59 12.35 320 816,820 1.56 U.63 11.03 11.03 2,43 6.79 16.54 820 315.816.320 4.54 0.71 10,75 10.75 3.24 6.85 . 22.20 821 321 337 0.38 9.34 2.02 7.28 14.68 821 821915-918 15.80 0.59 22.33 22.53 9.27 4.88 13.27 822 822 9.26 0.39 11.96 3.62 6.59 23.33 900 900 2.73 0,62 13.50 1.72 6.25 10.77 901 901 2.36 0.71 11.24 1.69 6.75 11.39 902 902 0.63 0.70 632 0.48 8,43 4_05 901 901,902 3.04 071 11.27 11.27 2.17 6.74 14,60 903 903 0,55 0,80 5.00 1144 9.00 3.92 904 904 0.83 0.73 6.62 0.65 8.36 ' 5.44 905 905 0.38 0.76' 6.73 0,66 8.32 5.52 906 906 2.77 0,59 17.13 1,64 5.61 9.20 906 903 906 3.32 0.61 17.58 17.58 2.08 5.54 11.51 907 907 2.71 0.61 12.16 1.65 6.54 10.31 907 903.906.907 6.03 0,61 17.58 17.38 ' 3,73 5.54 20.67 903 908 0.40 0.56 932 0.22 7.29 1.61 900 900.908 3.13 0.61 13.62 13.62 1.94 6,22 12.10 909 909 2.06 0.58 10.28 1.20 6.96 8.35 910 910 143 11,66 8.07 0.93 r 7.79 7.33 910 909.910 3.50 0.62 11.03 11.08 2.15 6.78 14,56 911 911 063 0.74 6.07 0.47 8,57 4.00 912 912 1.24 0.61 9.47 0.75 7.23 5.43 913 913 0.48 0.78 5.07 0.37 8.97 3.34 914 914 0.83 0.86 5,00 0.71 9.00 6,36 915 915 4.23 0.64 11.59 2,71 6,67 18,03 916 916 3.67 0.71 12.26 2.62 6.52 17.08 917 917 1.95 0.70 9.72 1.36 7.13 9.67 915 913.916 7.91 0.67 12.83 12.18 5.33 6.39 14.03 917 913.916.917 9.85 0.63 15.51 15.51 6.69 5.05 39.03 918 918 0,37 1.00 5.00 0.57 9.00 5.14 919 919 0.48 1.00 5.00 0.48 9.00 4.36 920 920 2.01 0.65 10.75 1.32 6.85 9.04 921 921 1.96 0,58 13.08 1.14 6.34 7.21 922 922 0.33 1,00 5.00 0.33 900 2.94 922 914.922 1.15 1.02 5.65 3.65 1.03 8.74 9.04 923 923 1.41 0.73 9,07 1.03 7.39 7.59 924 924 0.64 0,88 5,15 0.56 8.94 5.04 924 920.92) 924 • 4.61 0.71 11.13 _ 11.13 3 02 6.77 20.45 925 925 9.24 0.70 11.02 6.47 6.80 43.93 926 926 3.26 0.39 8,71 1.26 7.53 9.48 10011 1000 063 0.31 13,07 0.20 6.34 1.24 1001 1001 042 0.38 5,00 0.37 900 3.31 100E 1002 1.65 0,43 6,78 0.71 8.30 5.87 1003 1003 0,09 0,61 590 0.06 8.64 1)49 1004 113114 0.20 0.45 1,10 0.09 7.77 0.70 10115 11815 1.63 0.56 12.15 0.92 6,55 600 10116 1006 0.32 0.72 5.00 033 9.00 3.40 0S-1 OS-1 3.35 0.36 7.28 1.19 8.10 9.64 OS-2 05.2 0.79 0.37 5.00 0.30 9.00 2.67 OS-3 0S-3 092 0.31 5.00 0.29 9.00 2.59 0S-4 0S-4 5.16 0.31 18.78 1.61 5.37 8.66 0S-3 00-5 _ - 0,05 0.31 5110 0.02 9.00 0.14 TIME OF CONCENTRATION MODIFICATIONS FOR THE TEMPORARY DRAINAGE OF PHASE 3 Job Number: FC0045 Date: 5I17/00 Project: Ridgewood Hills P.U.D. Fiiing *3 Calculated By: J.S. Binfield Design Storm: 2 year (developed) DATA INITIALIOVERLAND TI N E(t;) TRAVEL TIME (t,) FINAL t, Drainage Basin (1) Design Point 1(a) Area acre(s) (2) Runoff Coefficient C (3) Frequency Factor Cr (3a) CC, (36) Length ft (4) Slope .a (5) t, min (6) Length ft (7) Slope % (8) Velocity ft/sec (9) t, min (10) Computed t, min (11) 915 915 4.23 0.51 1.00 051 120 2.00 9.55 790 •2.55 3.19 4.12 13.68 916 916 3.67 0.57 1.00 0.57 115 2.00 8.43 940 1.65 2.57 6.10 14.53 919 919 1.14 0.59 1.00 0.59 76 2.00 6.59 995 4.20 4.10 4.05 10.64 915,916,919 919 9.04 0.55 1.00 0.55 65 2.00 6.63 2070 2.50 3.16 10.91 17.54 OS-4 OS-4 7.17 0.25 1.00 0.25 500 5.40 20.27 0 0 0 0 20.27 RUNOFF MODIFICATIONS FOR THE TEMPORARY DRAINAGE OF PHASE 3 fob Number: FC0045 Date: 5/17/00 Project: Ridgewood Hills P U.D Filing 43 Calculated By: J.S. Binfeld Design Storm: 2 year (developed) Sreet Design Point DIRECT RUNOFF TOTAL RUNOFF Area of Design Area acre(s) CCr 4 min CC, • A acres) Rainfall Intensity [Or Flow (Q) cfs 4 min -(C • A) acre(s) intensity in/hr Flow (Q) cfs (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 91.5 915 4.23 0.51 13,68 2,17 2.23 4.83 916 916 3.67 0.57 14.53 2,09 216 4.52 919 919 1.14 0.59 10.64 0,67 2.47 1.66 919 915,916,919 9.04 . 0.55 17,54 17.54 4.94 1.97 9.74 08-4 0S-4 7.17 0.25 20.27 1.79 1.82 3.26 TIME OF CONCENTRATION MODIFICATIONS FOR THE TEMPORARY DRAINAGE OF PHASE 3 lob Number: FC0045 Date: May 17, 2000 Project Rideescood Hills P.U.D. Filing 43 Calculated By: 1.S, Bfnfield Design Storm: 100 year (developed) DATA INITIAL/OVERLAND TIME(q) TRAVEL TIME (t) FINAL tr Runoff Frequency Computed Drainage Basin Design Point Area acre(s) Coefficient C Factor Ct CCr Length ft Slope .a 1-, min Length R Slope °'. Velocity ftlsec t, min t, min (1) I(a) (2) (3) (3a) (3b) (4) (5) (6) (7) (8) (9) (10) (11) 915 935 4.23 0.51 1.25 0.64 120 2.00 7.47 790 2.55 3.19 4.12 11.59 916 916 3.67 0.57 1.25 0.71 115 2.00 6.16 - 940 1.65 2.57 6.10 12.26 919 919 1.14 0.59 1.25 0.74 76 2.00 4.68 995 4.20 4.10 4.05 8,73 915,916,919 919 9.04 0.55 1.25 0.68 65 2.00 5.00 2070 2.50 3.16 10.91 15.91 OS-4 OS-4 7.17 0 25 1.25 0.31 500 5.40 18.78 0 0 0 0 18.78 RUNOFF MODIFICATIONS FOR THE TEMPORARY DRAINAGE OF PHASE 3 Job Number: FC0045 Date: 5/17i00 Project: Ridgewood Hills P.U.D. Filing ii3 Calculated By: J.S. SinteId Design Storm: 100 year (developed) Design Paint DIRECT RUNOFF . TOTAL RUNOFF Area of Design Area acre(s) CC, tc min CCr' A acre(s) Rainfall Intensity inihr Flow (Q) cfs t< min ' !IC " A) acre(s) Intensity ituhr Flow (Q) cfs (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 915 915 4.23 0.64 11.59 2.71 6.67 1808 916 916 3.67 - 0 71 12.26 2.62 6.52 17.08 919 919 1.14 0.74 8.73 0.84_ 7.52 6.33 919 915,916,919 9.04 0.68 15.91 15.91 6,17 5,79 35.71 OS-4 OS-4 7.17 0.31 18.78 2.24 1,90 4,26 APPENDIX C Storm Drain System Design Storm Drain Systems "A" and "B" XREFS: PRUT.dwq..-EXUT.dwg._BASE.dwq... &O 95 106 107 108 SDI—B5 J _`� NO. 16 COMB. INLET/W.. 2 GRATE & FRAME ' SECTIONS K=1.25 131 142 0,u m� 432 S. LINK LANE PLAZA FORT COLLINS, CO. 80524 ?ES 970.221.2400TEL 970.221.2415FAX WWW.NOLTE.COM 130 \\ r , ` % \` r % i �,1`;1, 125 1 ,__ 143 --___��` i �� fig y \ 124 ---------___,/,_ t` l 1\�1, ,lrl 1 i, ----____J \,_ 129 94 109 93 110 92 91 111 112 • ��` a` 7 ------ ---., --/- ----- -----'---::,,--- /.---------- i ---- 128 ,' /-,Q..,,i si C 24_ ' 127 / , f ;, 9 114 • • E Y O N D ENGINEERING / Ridgewood Hills P.U.D., FIling No. 3 Storm Drain System "B" Schematic / // 1 x/// / / / SHEET NUMBER 1 OF 1 SHEETS PREPARED FOR: Melody Homes DATE SUBMITTED: 8/9/99 JOB NUMBER FC0045 • r=v 35.0 24 I RCP . CL II 158 SOMH—A6 K=0.60 118 ` SDMH—B5 4'0 _ 169 \ \ 4 / NOGRA1 6 COMB.FRAME INLET VP 7 / SECTIONS / K=1.25 BB88 35.001LF. 16 In. CL III 1601—B1 15' TYPE 'R/ K=1.25 160 181 162 SDI —A NO. 16 COMBINATION INLET ` 4 GRA AND FRAME a5C1103J5 -' K=1.25 269 SDI — NO. 16 COMBINATIO INLET 1 GRATE AND FRAM SECTION K=1.25 / \ INLET 182 SDMH—A4, 6'0 K=0.80 181 183 —B2, 6'0 M ''k. SOM— 3, 6'0 K=0.90 238 SDMH—A3, K=0.60 SDMH—A1, 6'0 K=0.60 SDA F.E.S. SHEET NUMBER 1 SHEETS. JOB NUMBER FC0045 Pit.., Report N ?. COD _U 0 TD Z1' N N tO r- V O CO c to CA CO a CO c0 I0 100 r- r- a N N.N (O N r N C0 0 c0 LC)0 V 0) 01 0 10 0) 0 0 0 11) I,- (O V V 01 6 N CD r` r1 N:6 O M Ni r r ri 6 CO Cb N: N:Q r Downstream HGL (ft) r) co to co to co O N N r, 0c0 O CO r V V O) 0 0 00 N CO 0 -O0 V r 0) O A t` CD In 0 r CO r I� r� V N 0) CC N O O V (D r- 0 0) 0 co) r) (D r 0) O r) to 6 CD CO O) r C0 O) O r — 0) D) O O O O co CO 0) a) 0) co 0) D) 0) 0 O 0 r r 0 0 r •" 0 0 0 0 0 0 0 0 0 .- (0 6 (0 (0 tO 10 If) 6 tO IC) 6 (O 10 to II) Lf) (0 IC1 Il) to N tO Upstream HGL (ft) C') co co 0) a 0) (D r r- (D tO N C0 N N. CO M N C) 0) r N N O 0 N co r) to 1` r� N CO (D m O CO 0 O O 6 O (D a (0 t` 0 0 0 0 (O ri 10 0 r v v tO 1• cc) 0 c) co W oo O O O CD O 0) 0) 0 0 01 CO O O 0 0 r,- __9. 0 0 0 0 r 0 0 0 r ..- 'Xi (A (o (0 (O N IO tO IO IO tO tO tO tO N 6 tO (0 1O (0 to 16 Downstream invert Elevation (ft) O) V (D h N 0 (D r to LO V to V 0) V r In 0 In I, (D (A N r) M 0 tO r1 N 0 a r` IO CO c0 N. co r) r co 0 co N. N 0) V Ni r N r) t, r- r- (D O) N ( r Ni IC) ri N. 0) N (D. 1� N. N O r r C) 0) 0) (7) 0) 0 CD O C0 c0 0) CO CO 0) 0) O) 0 0 r r 0 0 0 0 0 r 0 0 0 0 0 0 0 0 O 0 IO to 10 (O to (A tr.; 11) 1O t1) to to to N In to (0 (0 (C) O to U) Upstream Invert Elevation (ft) 0 0 0 N to O 0 O r) in r• a a r 0 0 to A 0 0 v V 0 a N O 0 Co CO O C) V C7 CO to .- V r r) O t` V r) r 10 Ni Ni 0) 0) m 0) n (D V r V N 10 N. N 0) N V (D 0) co co O 0) 0) 0) 0) (O co co co '0 O O) 0) 0) 0) O O r r O O O 0 r r O O O O r O O O O 0 (0 6 tO 10 tO to (1) 6 In 6(n 1O 10 4) 10 t() Io 1.6 to IC) LL) to Capacity (cfs) CO 0) r` N 0 0) V 0) 0 V r (0 0) co ul cV N. 1O O) 0) N. N r` CO W r) O O co co co V 0 O CO (o (O V n IC) N N. r- to N O. 00 IN: V a (O 10 V V r- O O r- (O. r N C0 CON N r N N 0 r V V tO N r r V N. r` 10 N. (,) N r r N N N r r r r Roughness N N CO r) r) r) r) O c r) CO r) N r) N N CO N N r) r) r) O O O O O O O O O O O O 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Section Size • L U C_ U U U U U U U 0 U U U U U 0 U 0 0 U U 0 0 U C C C C C C C C C C C C C C0 C C C C C C C C O O a V Cr a CO r 0 CD V V O CD O CO V CO CO CO N a V r) N N N N r N CO r) N N V M V V N V V V a N Constructed Slope (ft/ft) V co 'V r O V to r N r) r 0 M 0) CO CO 0 0 0 t0 V CD 0 O to V IO N 0 CO CO 0 O O C7 N N N O CO N co N 0 0 0 N r) r) CO N a r) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 O 0 0 0 0 0 0 0 L C9 ^ C= CI) r) 0) CO V r) r` 0 O r) N 0 r.- N N N C0 CD 0) (a) V N. 0 M r 0 r) 0 r O) V N. O O r C) a (0 A CO CO CD C0 N O) 0 M 0 O 6 tO O o h (D O 6 Oi O ix) O ai r` N r` O r V r) 0) C) 0 N C0 r) 0 el0 el 0(C) N 0 r 0) N r r .- N r 01 r r Discharge (cfs) CO 0 0 N CND N O N 0 CO CO O N N U.) r..) CO CO O CO n a V V. to N N N V O (D t• N (O 10 r) V 0) Ni r tD 6 r) .- r N a t• N r N r r r to N N N. 0 V V V 0 0 0 N- N Downstream Node N V) r) r) V V ID to co N 0) V a N r) Q¢ (D a? a? a? a? a?Q w ¢¢¢¢ m m a?_= x¢ a a i x i i i i u i x' i i i i i l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u) CO CO v) (n u) CO u) v) N rn v) v) (n v) v) u) v) v) v) v) c ) Upstream Node r N r) a tO r N r) V () O QQQQQmmm cO CQ N' V IO O Ii x x a a¢ Q¢ a m m m m a?2 2 2 2 2 2 2 2 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u)u)u)u)wv)U)V) wGOCOU)U)u}NCOcoNco ol U) a a a 0) co to a O 0 N co t0 V Co N r) 0 r I' U.) M N r' C0 I V't I N 1" I r r Y 9 a a a a a a a a a a a a a a a a a a a ri. a D. ® Haestad Methods, Inc. Not.._ Report HGL Out (ft) N r O 01 N C`7 CO A N c0 N u) CD 1,- r co O C co co co En r O O) U) C ) r O c0 u) CO N r ti t• in c) r co1` u) coN U) . . CO 0) O R R r O CO C- CD 0 0 0 0 1, CD ,- CD 0) u) CD o_ o_ O O O O O O CO (O r- .- 0 0 0 0 r r 0 0) CO CD O O O r 0 0 0 0 0 0 0 u) u) u) 6 6 U LC U LLi u) u) 10 6 to u7 10 U) U) 10 6 U7 u) 10 — c -1 r t` N O O co 10 a r C) v a0 c0 co c0 n O Cn O O I- O V' CD 1` O Cl V' u) h r CO CO O u] CO O. N N r NI. O N r it) th O O CO CO CD u) M O O 7 '- — CD O CD O_ O 0 0 0 d co 0 0 0 g- o_ _o 0 0—_ .- _o 0 CO 0 ui u1 ui 10 610 6 10 6 6 Lei U) 10 6 10 6 U) 6c() u'i (0 10 • Rim Elevation • (ft) R CD 0 N 1,- CO 0 0 0 0 N co u) co O CO 0) r 0 0) CD r V CO N N CO O O 1` CO CD CO 14-. CO 'V U) CO 01 CD CO r N u) u) CO u) N N O Cr; 0 c0 h N 4 h 6 N r N N 1` CO O O N N C7 o o 0 0) 0) T O 0) O CO CD 0r 0 C7) c0 r O O r O O O O r _ ___ r O O O O U) 6 u) ui t(i tri Ui Ui to to U) t() U) U) Lei U) Ui ui ((i u) ui CCi Ui Flowline/Ground Elevation (ft) V CD O N Is- CO O O O O N C7 u) O CO N N CO 0) 0 h 0) co m n v o 7 u) N N O D) O co r- N 1` CO N r o o_ 0 0) 0.- 0) 0 0 O' _O _O r O O r O O O O r _ ui tti LLi Lei U) Ui U) U) U) U) U) U) U) U) O ID O r O O O r V' m CO N cD r CO r 1• m O O) N N CO 0_ 0 r r 0 0) CD CO r O O O U) U) U) 6 ui U') c(i U) 11) ICI y = U y CD R N V Nr 4Ir IIIT CO CO CO CO N ir 0) O) N u) 7 Icr h r r M h r N CO c0 N n 0 0 0 V V co ti N N ID O r r r r r r r u) N. O CO N N- O CO Q c0 O N r r 0 N O co N 1� O N N Z r r r r r SD Z Ca a? a1 a1 a1 a ¢ ¢ ¢ ¢ (D CL_=I==I=i==am mm m m¢ a ` a Z a 22222222222 , , cc 0 0 0 0 0 fl 0 0 COO 0 0 0 0 0 0 0 0 0 0 0 0 co to N cA (4 (4 U) GO U) to Cn (n CO CD to 01 C.0 Cn CO CO CO CO CO Nolte .-Associates, Inc. Riprap Design (for circular ouffall conduits) Project 4: FC0045 Project Name: Ridgewood Hills P.U.D.. Filing No. 3 Calculated By: HHF Date: 4/6/00 Calcutations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain Systems A & B (Pond fi2) Outfall Pipe Diameter. in: 48 Qiro_cfs, 172.63 Tailwater depth. ft: 2.7 Required Rock Si_e: Velocity. ft/s: 13.93 Depth of flow, ft: 2.7 Froude Number: 1.49 supercritical Where, F = V/(gY)o's F>I, supercritical flow F<I. subcritical flow n/a b. Y,/D= n/a c. (d50'D)(Y/D)12/(Q/D2 5) = 0.023 From Figure 5-7. Q/Dis= n/a Use Type n/a Riprap d50= n/a inches If the flow in the culvert i•s supercritical. substitute D. for D. Where: D,=th(D}Y.) Therefore: D.= 3.35 a'. Q/D. '= 8.40 b'. Y,/D,= 0.81 c'. (d5o/D.XY/Dr)1.2/(Q/D.: s) = 0.023 &tent of Protection: Check Results: llurintum Depth: Riprap Width: • Front Figure 5-7, L = (1/(2tan0)XA,IY, - W) ft 28.15 Use Type M Riprap d50= 12 inches Where: /(2tan0) = 4.20 , per Figure 5-9 A,. QN Where. V = acceptable velocity, 5.5 fps A. 31.39 fY Therefore: Calculated L= 32 ft L > 3D Minimum L = 12 ft *L<I0D MaximumL= 40 ft • When Q/DZ' <6 D=2d5o W=3D Use L = 32 feet Use D = 24 inches Use AY = 12 feet .t3 Jam' rn rn CO CT A 7 rr. 1 TRACT 8 FUTURE CITY OF FORT COLLINS NEIGHBORHOOD PARK SDM—C2 72' K=0.50 g...B 4 SDM—C1 72' 0 v' K=0.90 Q MODIFIED 20' TYPE R INLET K=1.25 5 4 k' 0 F. n:r CUH CP / 6I—C1 407 /NO. 16 COMB. INLET W/ 2 GRATE & FRAME S SDI—C3' / / K=1.25 j 0'T9PERINLET 383 I / /38'x60' CL HE 111 HER //'/I 384 //II / / 403 / / / 408 141 TIONS ----{ 144 / / 143 / 135 138 / / / TRACT L 137 136 TYPE M RIPRAP d50 =12 in. L =20 ft. D =24 in. W =10.5 ft. rn 0 rn CO CO D w 0 U) a 0 0 ai x 0 W re a w SHEET NUMBER 2 2 SHEETS J08 NUMBER FC0045 Pipes Report Average Velocity (Ws) o n O v N. to CO N. r- I� r v v .. .. CD N.O a C) I,- CO N. CO N 0) t() 0 N. t` to to 7 C N. tO - N 7 to O CD CD O O O O co n t- to to 4) to to r r 1 Downstream HGL (ft) CO N CO r CO 01 0 r r r to tD CD r` 0 n co ? c) CO N CD i` n r r t` O O CO 0) to I` O r` to co R tri cotri co C Ni C CD r tO cc; O) _O O O coopO r N N M 4 0 tf) to to to to to to to to to to to to u) 'C) 4) to to V) C!') E CD N J y1,--, Q. D N r CO h C7 N CO r r to 7 0 r• O O N r O co N r-- r� Cr) r, V' CO r to CO ti r` to CA N W N O) to CO co 0) 0) O? CO r CO tO G 0) O O O N N t'7 C) Lei O O O O O r r r r r• r r r r to to to O to to tt) 4) 4) to to to to to to to to to to to Downstream Invert Elevation (ft) d• CA N O) 0 O 0 t` r- r-- co CO c) O) o V CD CO to r mr Cr) CO to CO O C) a) r• r O N V. V b h N N C) 0) O r- O csi h 4 4 O 4 r) 7 to t- O r-: 0) O O O O O r O 00 0 O_ O _O • O O O O to 4) 14) K) to 4) 4) to to U) to to to 4) O O to to 4) to Upstream Invert Elevation 1 (ft) 0) N 0) co N- CO CD CO 0 0 CD CO Cr) N- O) N r N CD CO U) N R to 0) CO O N u) N O O O CO CD O r CO N CN M. r- 4 V c-) N V to O O O 0) 0 r) O O O_ _ _O r r 0 0 0 0 0 O_ _ O r o o Oco O r p 4) tI) to to tr) 4) to to to to O to to to 4) to to 4) O to Capacity (cfs) 4 co to CO r CO N 0 CO CO N to O 0 r• CO 0) t+) r 0 to T ti h.CI' C) N 0) ' C r r 0 CD CO V V N N CO O V' CO N 0 CD - r. N n CD 4? a N 0 co co V N r CO CO Q) in to N co co t') to 4 t•') co N N N' r r r Roughness N CO N C) Cr) N N Cr) C') t') CO N N NNNN CO Cr) CO O O O O O O O O O O O O O O O O O O O O 00,000000000000000000 Section Size 0 0 C .0 .0 .0 .CC ..0 .0 .0 .0 .0 .0 .CL L _C -C -C .0 .0 r-)0 O U U C.) U U U U U C.)C) U C)U C.)U U C.)C fD C C C C C C C C o C C C C C C C C C C CO CO CO N CO a V CD CO CO N N N N N 0 0 0 0 0 ' Cr) ‘r?' .0. r N N CO r r V' V' a' C tr) Cr) CO CO Cr) Constructed Slope (fVft) P-28 SDI-C1 _ SDC-FES 155.01 167.67 0.0325' P-27 SDI-C2 SDI-C1 151.87 30.34 0.0339 P-26 SDI-C3 SDI-C2 146.24 275.90 0.0245 P-23 SDI-C4 SDI-C3 138:65 55.10 0.0149 P-22 SDI-05 SDMH-C3 10.96 25.02 0.0344 P-13 SDI-C6 SDMH-C7 27.35 125.04 0.0164 P-12 SDI-C7 SDI-C6 20.01 43.13 0.0162 P-11 SDI-D1 SDMH-05 47.37 11.37 0.0211 P-32 SDI-D2 SDMH-D3 12.10 7.99 0.0050 P-30 SDI-D3 SDMH-D3 14.60 27.99 0.0050 P-21 SDMH-C1 SDI-C4 85.68 142.58 0.0229 P-20 SDMH-C2 SDMH-C1 85.68 370.32 0.0235 P-19 SDMH-C3 SDMH-C2 85.68 196.44 0.0050 P-18 SDMH-C4 SDMH-C3 74.72 160.98 0.0060 P-17 SDMH-05 • SDMH-C4 74.72 177.29 0.0060 P-15 SDMH-C6 SDMH-05 27.35 141.88 0.0050 P-14 SDMH-C7 SDMH-C6 27.35 90.44 0.0150 P-10 SDMH-D1 SDI-D1 26.70 124.53 0.0106 P-9 SDMH-D2 SDMH-D1 26.70 110.66 0.0070 P-8 SDMH-D3 SDMH-D2 26.70 350.91 0.0089 N J 0 t9 y r 0 U Downstream Node Upstream Node CO 0. 0- (203) 755-1666 No Report HGL Out (ft) O N 0) 0 I` (0 a (t) r CO N M r• CO N 1r) 41 01 N O N 0) (r) h h O (A r CO ti 0) N. I` O (D r O M M N N 0 0) t` (0 O 0 m r (0 V M 7 0 I0 N h _ _ a- a- a...._O _O O 0) _ or O CO CO I,.1-0 4-r 0 0 0 0 0 (0 4) 4) O (n (r) (C) 4) 1r) (r) 10 4') 1() (A 1r) µ7 4) 10 O 14) 10 — c Z M V (D I` 1r) I' 4) (D in N. N CO (D 0) O M N- N CO O `Cr to N. o r• O Q) co O (D N CO CO n (D N (O v (() ai Ni r 0 w (O O r: ri ('i f~ (D a ai () ti a Ih _ _ _ o_ O_ o _ _ _ _ _ or co cc) co N. r r r 0 0 0 0 0 tr.; Lc; 1ri 1ri (ri a 1riu7 tri Lei(ri 1ri 4ii ' ) Irin" 10 (ri a a 'a • Flowline/Ground Elevation (ft) r` n,- 0 0 0 0 0 0 Q CO O o (n a) 0) sr N r MA CO 0) M C7 CO cr. 0 0 0 it) CD, N N 1-0) CO0 0) 4) 4 r (o N) r` (D M Nit O 0) 0) M r• N-.O O O co co Ni r r O O O (I) (n tri 4i 14) a 10 1t) 10 (A (D a (ri (ri (l) 1n t (ri () (!) (1) Rim Elevation (ft) r— r` 0 0 0 0 0 0 0 co co O _ co 0) (D a N M N CO 0) M el CD• at N f` (D M N O 0) a s 0 M n (D M N O Q1 M O O fD r 0 0 I. N. _ _ _ _ _ _ _ __ _ o _ O O a) 0) r 0 0 0 (r) (r) (L) (n (r) (ri (:7 O 4) 10 (A (() (L) 1r) 1r) 47 10 O 1r) (() (r) Discharge (cfs) 0 O O in (r) N N CO CO CO O 0 N. T 1A (0 1r) a Q h I., M M I, I, (D (D (D (D r M 0 M 0) (D N CO Q Z a a ar 4 a s a a R N N O r` O O a NNNNN h r- CO O CO r r V' N N r CO nr O 4) a) • _ 4-z O a❑ U U U ID U U U U 1-W __________❑ 0 0 0 U U U U U U k 0 0 0 ❑ 0 ❑ ❑ ❑ ❑ ❑ 0 ❑ ❑ ❑ ❑ ❑ ❑ ❑ A o ❑ co co co co co co en u) co co co co u) co co N co co u) U) 41 (203) 755-1666 Haestad Methods, Inc. Nolte Associates, Inc. Riprap Design for circular out Fall conduits) Project 6: FC0045 Project Name: Ridgewood Hills P.U.D., Filing No. 3 Calculated By: HHF Date: 4/6/00 Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain Systems C & D (Pond =l) Outfall Pipe Diameter. in: 42 Qrco, cfs, 125.38 Tailwater depth. ft: 2.71 Required Rock Size: Velocity. ft/s: 13.22 Depth of flow. ft: 2.71 Fronde Number: 1.42 supercritical Where, F = V/(gY)°' F>1. supercritical flow F<1. subcritical flow a. Q/D=s= n/a b. Y,/D= n/a c. (d50ID)(Y,/D)1.2/(Q/D11:5) = 0.023 From Figure 5-7, Q/Dr'S= n/a Use Type n/a Riprap d;° = n/a inches If the flow in the culvert is supercritical, substitute D, jor D. Where: D, = r/_(D ` Y,) Therefore: D,= 3.11 ft a'. Q/D,''= 7.39 Q/D,t 5= 22.95 b'. Y,/D,= 0.87 c'. (dm/D.)(Yr/DJr`/(Q/13„ ') = 0.023 Extent of protection: Check Results: Afaeinrum Depth: Riprap Width: From Figure 5-7. Use Type M Riprap d50 = 12 inches L = (I/(2tan0))(A,/Y, - W) Where: 1 /(2tan0) = 4.00 . per Figure 5-9 A, QN Where, V = acceptable velocity, 5.5 fps A. 22.83 ft2 Therefore: Calculated L= 20 ft L>3D •L<10D • When Q/D2 S < 6 D = 2d50 W=3D Minimum L = 10.5 ft Maximum L = 35 ft Use L = 20 feet Use D = 24 inches Use W = 10.5 feet i XREF S: PRUT.dwg...EXUi.dwg...BASE.dwg... 196 203 197 SDE— F.E.S.1. K=1.25 198 SDEOI--E1 EMERGENCY OVERFLOW NO: 16 VALLEY INLET-1199 K=1.25 SDI —El 15' TYPE R INLET 38.34 L.F. „_ 30 in. ADS—N12f:" 202 \ 201 SDM—E4 72" 0 MH K=0.50 99.68 L.F. 60 in. ADS—N-12 TYPE L RIPRAP d50 =9 in. L =20 ft. D =18 in. W =13.5 ft. %AiATrR (lI IAI ITV 1 E 200 SDE— F.Er.S: 1{ 1 f i { { 51.70 L.F. 36 in. ADS—N12 SDM — E3 72"0MH K=0.60 126.91 L.F. 36 in. ADS—N12 33.12 L.F. 42 in. ADS—N12 SDM—E2 j 72" 0 MH 1 K=0.80 183.67 L.F. 60 in. ADS N-12HC SDM — El 72" 0 MH K=0.60 NOOE �N � BEYOND •NaIINEERINo o > 432 S. LINK LANE PLAZA FORT COLLINS, CO. 80524 w 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM Ridgewood Hills P.U.D., Filing No. 3 Storm Drain System "E" Schematic SHEET NUMBER 1 OF 1 SHEETS PREPARED FOR: Melody Homes DATE SUBMITTED: 8/9/99 JOB NUMBER FC0045 O).� m O Q > v O CD N N f� O C) (O (0 (i) Ul 7 O r) 6 r•) r) O N Downstream HGL (ft) 7 a +n N CO CO O 0 r) 10 1- O CA ti n .- (0 (D ca co co r c0 CO (0 CO 0000000 (ri Sri Ili vi (0 Lri (ri Upstream HGL (ft) Nr CO CO 0 C) (D 0) O O N CO CO cl (A 1- N- N CD (0 O (0 (0 CD 0 CD co0 0 0 0 0 0 0 0 0 (e cri cri if; cri (L> (0 Downstream Invert Elevation (ft) 0 co Cr) CO LO Co CO v o CO m M ri C) Co 0) O) N N (0 (0 CO 40 10 CO CD 0000000 co- (()((i cri (A (L) Ir) Upstream Invert Elevation (ft) 0 (r) CO CI CO r) (r) O CD CO N CD C) (h O 0) O CO N CO CO 1• (i) CO (0 CD 0000000 (r) (r) (0 cri cn (!) to ?. 1` O -a in co N ctl N O N. N. m O O G U CO r N N 1- U Roughness CVNNNNNN 0000000 O O O O O O O Section Size L. .c L L t. CJ U 0 V 0 O O CCC c C C C COS) CO') e ) (0 (0 r) v Constructed Slope (ft/ft) CO a V (0 N 0) C) 0 V) (C) N 0) 0 (h 0 0 - 0 0000000 0 0 0 0 0 0 0 L P-9 SDEO-E1 SDMH-E4 0.00 6.63 P-7 SDI -El SDMH-E4 23.78 38.34 P-6 SDI-FES1 SDMH-E3 45.27 51.70 P-4 SDMH-E1 SDE-FES 69.05 99.68 P-3 SDMH-E2 SDMH-E1 69.05 . 183.67 P-2 SDMH-E3 SDMH-E2 45.27 126.91 P-8 SDMH-E4 SDMH-E2 23.78 33.12 O - Discharge (cfs) Downstream Node Upstream Node d G s..a`4- _ 60- (404.069) (64. 44r' H'ra (203) 755-1666 © Haestad Methods, Inc. Noa. Report HGL Out (ft) 0) (0 cMO 0 CCV 0 0 •to (O O (D (O N r0 1-: O co h CD O I,- CO O CO 0 0 0 0 0 0 0 0 tti to tri Iri kci Lri (0 (ri c - -I z a to co N c0 O V' V' O M Cr) h 0 c O O 0 r w CO (O N I- I` co co n (D CO n CO CO (D 0 0 0 0 0 0 0 0 Li L i cc; (o tri (ri tr.;tr. Rim Elevation . (ft) N 0 0 0 0 a N CO N r O M O O N 0 c0 c7 4 cri 6 c0 O ci 00000 O O O tr) t0 to (O tr) to u] tr) Flowline/Ground Elevation (ft) N O O O O er N CO N ti O co. O co N tr) co M 4 (A O r- c0 M (D ♦` I,- O N. (D (O CO O O 0 0 0 0 0 0 t0 to (n U) to (O (r) O Discharge (cfs) co N. to to N co o Q f` N O O N I` O Z c7 6 O to tr) M O N V CO CO of N W z w`w�L.J ) ww _ _ _ = LL W O LL 00000000 (203) 755-1666 M O (O O H 0 m a m o g N co Q cC @ O d � O c) Z 0 0 © Haestad Methods, Inc. E Of y Ql LL N o O O o 3 E o o (0a 01 CI LO: 32 32 - .. c o m o'w Q. c o t 0 0. d V 0. CI.'_�' -., (` U 0 O Q > c01 O to tNO 0 to a (h O Q) M C7 O N Downstream HGL (ft) a Q LC) N CO c0 O O c7 to t` Q) W t` 1` fD co (D O (D (D 1� CO (O (D CO OOOQQQ to ti] (O to to ui to Upstream HGL (ft) U( 7 c7 O N) (D O) O O N (D CO Tt 0 - ts N (D (D O (D O o o O O O O 10 to to" tti to to (n Downstream Invert Elevation (ft) co co co co in co co .tt O co c0 Co c7 C) W O) O) N N (O (D (D to to (D (D O O O O O O O u7 to t() tC) to tD to Upstream Invert Elevation (ft) r O to co co CO ci 0 O CO 0 N CD (M (h O tT O CO N CD CO t� to CO CD CD O O O O O O O ([) (o to t() to 'Li to- Capacity (cfs) n r () u') co N) (+) O Tt el N N n O h 1` O) O +- N N w Roughness NNNNNNN O O O O O O O O O O O O O O c O y .) N L .0 .0 L L .0 L U V) in U U U U L.) 0Q) C c C C C C C (O (0 O O O O N Constructed Slope (ftift) P-9 SDEO-E1 SDMH-E4 23.78 6.63 0.0196 P-7 SDI -El SDMH-E4 0.00 38.34 0.0094 P-6 SDI-FES1 SDMH-E3 45.27 51.70 0.0304 P-4 SDMH-E1 SDE-FES 69.05 99.68 0.0057 P-3 SDMH-E2 SDMH-E1 69.05 183.67 0.0056 P-2 SDMH-E3 SDMH-E2 45.27 126.91 0.0422 P-8 SDMH-E4 SDMH-E2 23.78 33.12 0.0091 L_ d -J Discharge (cfs) Downstream Node Upstream Node N a a (203) 755-1666 37 Brookside Road Not.., Report O J i' 0.. 2 CO CD CO 0 C) c u) v 0 a 03 (D N O O c0 (D O (Li (O N ti (D (D r- CO CD n CO (D (D O O O O O O O O tin ( () (n Cn N] 1n O C — -I r 2 Tr td O an Ql h O O N u• I` . (D (O N n t• (D co 1` CO (D t` (D (D (D O O O O O O O O Y7 (O ((] (r) (n at ad Rim Elevation (ft) N 0 0 0 0 V' N CO N I, O r) O O N (n co r) 7 O) to O (O ri CO f. rs (D I,- (D (O (D O O O O O O O O (n an- (n (O 1(] (D N (D Flowline/Ground Elevation (ft) N O O O O R N CD N 1� O r) O CO N (r) (0 ri a rnLai (. ( co ri (O I, N. CD (D CO 0 O O O 00 0 0 (ri (ti it; ui ui (ri (ri (ri Discharge (cfs) co I, an (n N. 0 m Q P N O O N O I• Z r) tin Q) di1n O (D N V O (D Tr (NI d) Vo Z R r) N CO W W W W CO _ W W IZIIQL 2 2 i 2. W w aaaaaQrla (203) 755-1666 0 Haestad Methods, Inc. Nolte Associates, inc. Riprap Design (for circular cutfall conduits) Project =: FC0045 Project Name: Ridgewood Hills P.U.D., Filing No. 3 Calculated By: HHF Date: 4/6/00 Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System E (Pond 42) Outfall Pipe Diameter. in: 54 Qtfa cfs. 76.79 Tailwater depth. ft: 7.46 Required Ruck Sire: Velocity, ft/s: 4.83 . Depth of flow, ft: 7.46 Froude Number: 0.31 subcritical Where. F = V/(gY)°'3 F>I. supercritical flow F<I. subcritical flow - a. Q/D''= 1.79 b. Y,/D= 1.66 c. (ds /D)(Y,/D)''/(Qf_s) = 0.023 From Figure 5-7. Use Type dso = QIDts= 8.04 L Riprap 9 inches If the flow in the culvert is supercritical, substitute D,jor D. Where: D, = t/.(D + Y„) Therefore: D,= n/a ft a'. Q/D,"'= n/a Q/Dotj= n/a b'. Y,/D,= n/a c'. • (d30/D.)(Y,/D.)12/(Q/Da's) = 0.023 Extent of Protection: Check Resulis: Alarhrmtn Depth: Riprap Width: From Figure 5-7. Use Type n/a Riprap dso = n/a inches L = (1/(2tan0))(A,/Y, - W) Where: 1/(2tan0) = n/a . per Figure 5-9 A„ Q/V Where, V = acceptable velocity, 5.5 fps A . n/a ft' Therefore: Calculated L= n/a ft L>3D 'L<IOD • When Q/D" < 6 .D=2d5o W=3D Minimum L = 13.5 ft Maximum L = 45 ft Use L = 20 feet Use D = 18 inches Use W = 13,5 feet ..r Storm Drain System "F" )(REFS: PRUT.dwq...EXUT.dwg...BASE.dwg. 245 it 251 248 ;! 250 247 f 248 / 249 ., 8" BEYOND ENGINEERING 432 S. LINK LANE PLAZA FORT COLLINS, CO. 80524 970.221.2400 TEL 970,221.2415 FAX WWW.NOLTE.COM WATER QUALITY OUTLET STRUCTURE SDI—F1 15' TYPE 'R. INLET K=1.25 61.92 L.F. 18 in. ADS N-12 SDF F.E.S. TYPE L RIPRAP d5,3=9 in. L =6 ft. D —18En. W =8 ft. I; 1 / / /! TRACT F PP 328.86 L.F. 24 in. ADS—I112 Ridgewood Hills P.U.D., Filing No. 3 Storm Drain System "F" Schematic PREPARED FOR: Melody Homes DATE SUBMITTED: 8/9/99 NUMBER 1 OF 1 SHEETS J08 NUMBER FC0045 Pipe Report O D7 O) co O to - co O O O E co C ❑ CO O 0 O to O N to N OS 0 0 C7 O 0 c O O 0 O N co (D 0 O ti a) 0 co tU a 0 37 Brookside Road 0 Q I.L j 0 Z 0 J � 2 N N O <D N- <O 0 0 u) u) S 0 E •; w - O N N h CO 0 0 ui ui 0 c C 31°E o O CO N N Ni 0 <O O O O u) 0 0) c9 - L U U 47 v 0 CO Q Z 0 0 0 z 4- co 0 (203) 755-1666 co 0 0 0 0 Z r 37 Brookside Road Nolte Associates, inc. Project »: FC0045 Project Name: Ridgewood Hills P.U.D.. Filing No. 3 Calculated By: HHF Date: 4/6/00 Riprap Design (for circular Duffed conduits) Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System F (Pond »2), Outfall from Triangle Drive Outfall Pipe Diameter. in: 18 Velocity, Ws: 9.96 Oleo, cis, 17.6 Depth of flow, ft: 5.56 Tailwater depth_ ft: 5.56 Froude Number 0.74 suhcritical Where. F = V/(gY)°'' F>1. supercritical flow F<1. subcritical flow Required Rock Ske: a. Q/D: s= 6.39 b. Y,/D= 3.71 c. (ds0fD)(Y/D)1-l(Q/D 5) = 0.023 From Figure 5-7. Q.1.5= 9.58 Use Type L Riprap d$0 = 9 inches /f the flow al the culvert is supercritical, .substitute D, jot D. Where: D, = I/.(D + Ya) Therefore: D,= n/a a'. Q/D,''= nla b'. Y,/D,= n/a c'. (dS /Dj)(Y1D,)'.:/(Q/D.) = 0.023 From Figure 5-7. Extent of Protection: L = (1/(2tan0))(A,/Yt - W) 'Where: Check Results: Ataximnnt Depth: Riprap Width: ft Q/D.r5_ n/a Use Type n/a Riprap d50 = n/a inches I/(2tan0) = n/a , per Figure 5-9 A,_ ()Ai Where, V = acceptable velocity, 5.5 fps A,_ rla ft2 Therefore: Calculated L= nla ft L > 3D Minimum L = 4.5 ft •L < I0D Maximum L = 15 ft • When Q!D2-' <6 D=2d;0 W = 3D Use L = 6 feet Use D = 18 inches Use W = 4.5 feet XREFS: PRULdwg...EXUT.deig BASE.dwg„. SDI - G2 NO. 16 COMB. INLET 13 GRATE & tRAMt SECTIONS K=1.25 TRACT F z >0 n 6 Z 4-5 0 0 2 < u- z Z Z 1—• < 0- 01 0 o css 0 JJJ 0 Q a, BEYOND ENGINEERING 432 S. LINK LANE PLAZA FORT COLLINS, CO. 80524 f.5.1 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM SDI -GI NO. 16 COMB. INLET 4 GRATE & FRAME SECTIONS K=1.25 • SDG- F.E.S. L.F. 36 in. ADS -----_---____"- ------------. i ---- 59.37 L.F. ------- ------____jn. CL III RCP--' TYPE L dal =9 L =12 ft. D =16 in. W =10 ft. NOLTE • Ridgewood Hills P.U.D., Filing No. 3 Storm Drain System "G" Schematic SHEET NUMBER 1 OF 1 SHEETS PREPARED FOR: Melody Homes DATE SUBMITTED: 8/9/99 JOB NUMBER FC0045 0 Q. w a Ch COv C) rO 0 O 0 1.6 rn n ✓ u) 03 CO CD N co Cf) U) O N O N N O CO O O Lt) LL7 N. CD O N � O O O CO CO N C L 0 0 CC 0 0 a)io l) o o C C CD CO M r 0 N 0) ✓ M 0 0 0 r n M 0) Q) co LL) _d a N d d (203) 755-1666 © Haestad Methods, Inc. t O a 0 Z O Z-' A O) CO • r CO 0 CO CO CO 0 0 J - O E'� w N W O N CO 0 O O) CO 0) CO CO 0 O 0 • sri C c O 0 d c O LL O w o A < a) taN U U 0 Z 0 0 LL 3 0 co Nolte & Associates E c N = 01 LL O � O ci8 a• 3 • E r▪ 0 lo o ;° roa a). Ol C` 0 CC 3.. c o H O D on o w a c 0 Nolte Associates, Inc. Riprap Design (for circular outfall conduits) Project #: FC0045 Project Name: Ridgewood Hills P.U.D.. Filing No. 3 Calculated By: HHF Date: 4/6/00 Calculations per Urban Drainage and Flood Control District Design of Low Tailwater Riprap Basins for Storm Sewer Pipe Outlets (For Circular Pipe) Location: Storm Drain System G. Outfall to Basin 821 (Future Commercial Property) Outfall Pipe Diameter. in: 36 Velocity, ft/s: 10.02 Q,00. cfs: 53.01 Depth of flow, ft: 1.89 Tailwater depth. ft: 0 Froude Number: 1.28 supercritical Slope. ft/ft: 0.012 Where, F = V/(gY)o.s Manning's n: 0.013 F>1, supercritical flow F<1, subcritical flow Step I: Determine if method is applicable (i.e., low tailwater) y, < D/3 Yes Where. y, = 0 D/3 = 1.00 Step 2: Calculate the capacity of the pipe flowing full using Manning's Equation Qfuu = 1.486/n Afrai Rmo213 Sol/2 Qt„ii, cfs = 73.26 Step 3: Use Figure 2 to calculate d/D for a circular pipe Q/Qfuu = 0.72 Therefore, d/D = n/a Step 4: Calculate Q/D2'5, use in Figure 3 to calculate d/D for a circular pipe QID2.5 3.40 , Use in Figure 3 to find d/D Therefore, d/D = n/a Step 5: Use smaller d/D to calculate depth, d, at the outlet and then in Figure 2 to find the ratio for A/Ar„1i d, ft = 1.89 Therefore, A/Afuu 0.68 Step 6: Using the A/Af„ ii ratio, calculate flow area and velocity at the end of the pipe A, ft2 = V. ft/s = 4.81 11.02 Step 7: Calculate the riprap sizing design parameter, Pd, and use it in Figure 4 to find the appropriate riprap size Pd = (V2 + gd) 2 Therefore, Pd = 13.50 Use Type L Riprap D50 = 9 inches Step 8: Calculate the minimum thickness of the riprap layer for D50 = 9 inches T = 1.75 D50 Therefore, T, in = 15.75 Use T = 16 inches Step 9: Find the length of the basin (Use the greater of the following two values) L = (Dbl2)V/2 Therefore, L = 4D Therefore, L, ft = 9.54 L, ft = 12 Use L = 12 ft Step 10: Find the width of the riprap basin W = 4D Therefore, W, ft = 12 Use W = 12 ft XREFS: PRLI T. EXU T. dwq... BASE. dwg.., _4 zz o n r= I Z Lri 0 Lj V `K 44_ < n o 1-4 CV 0 Lr5 C,i o 5 (x L.L.1 01 (.0 1/1 cc 432 S. UNK LANE PLAZA FORT COLLINS, CO. 80524 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM TRACT M WATER QUALITY CONTROL OUTLET STRUCTURE TYPE L RIPRAP 50 =9 SDH—FES L, =20 ft. D =18 in. 51.07 LF 48" ADS-- ,,=12 ft. N-12HC --- SDM—H1-,----- , __„--- , - ..,--- - ---; --- X45:--et • ,---,HE: ftf- ER CR, • I—H2 NO. 16 COMBINATION INLET 14 GRATE AND FRAME SECTIONS K=1.25 114 LF i21" CL III IRtP1 SDI+H1 NO. \16 COMBINATION INLET 8 E----A-ND FRAME E NS Th SDM—OH1, 4'cti K=0.60 NOLTE BEYOND ENGINEERING Ridgewood Hills P.U.D., Filing No. 3 Storm Drain System "H" Schematic SHEET NUMBER 1 OF 1 SHEETS PREPARED FOR: Melody Homes DATE SUBMITTED: 8/9/99 .106 NUMBER FC0045 Pips. report Clla cO U 04 O a> r NI 141 4 C Downstream HGL (ft) 5,076.52 5,076.52 5,076.20 E l0 _1 N = - a D 5,076.56 5,076.65 5,076.28 Downstream Invert Elevation (ft) 5,071.50 5,070.00 5,069.80 Upstream Invert Elevation (ft) 5,073.55 5,070.22 5,070.00 Capacity (cfs) 146.40 47.25 89.89 Roughness co C) n O O O O O O Section Size 30 inch 29x45 inch 48 inch Constructed Slope (ft/ft) N. c v N 0 0 O O O O O r Cr)" C N co — ti O 0 O 0 07 If) CO Discharge (cfs) r- CO 0 tri ui N o7 u0 Downstream Node SDMH-H1 SDMH-H1 SDH-FES Upstream Node N 2 2 I 0 O O N cf) a O — T • 0)a a Q'a (203) 755-1666 37 Brookside Road Haestad Methods, Inc. Nov Report 3 0.,..., J - 0 2 5,076.28 5,076.65 5,076.56 5,076.20 c J " 2 5,076.52 5,077.10 5,076.89 5,076.20 Flowline/Ground Elevation (ft) 5,078.50 5,077.72 5,077.60 5,073.80 Rim Elevation (ft) 5,078.50 • 5,078,22 5,078.10 5,073.80 Discharge (cfs) COn r )ri Lc)0 0r) CO N < Z v 10 0 Z SDMH-H1 SDI-H2 SDI-H1 SDI-FES (203) 755-1666 Waterbury, CT 06708 USA a 0 (V of 0 0 0 0 O 10 0 co v J o0(D 0 10 LO U) O iz O t O O _ Lo c 0 0 O a) O. 03.1 W moo re 11 6 CO o o .02 u, LO O 0 Z 13 c 3 0 L Off -Site Storm Drain Design Nolte Associates, Inc. Riprap Design (for circular ouifall conduits) Project m: FC0045 Project Name: Ridgewood Hills P.U.D., Filing No. 3 Calculated By: HHF Date: 4/7/00 Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System H (Pond 41), Outfali from Triangle Drive OutfaII Pipe Diameter. in: 48 Qtm, cfs, 64.45 Tailwater depth. ft: 6.4 Reyrured Rock Sire: Velocity, ft/s: 5.13 Depth of flow, ft: 6.4 Froude Number: 0.36 subcriiical Where. F = V/(gY)os F>l, supercritical flow F<1. subcritical flow a. Q/D"s= 2.01 b. Y,/D= 1.60 c. (d50/DXY,/D)t'/(Q/D") = 0.023 From Figure 5-7. QIDis= 8.06 Use Type L Riprap d50 = 9 inches If the flow iu the culvert is supercrilical, substitute D, for D. Where: D, = t/z(D + Y,) Therefore: D8= n/a a' 0113.2 s = nla b'. Y,/D.= n/a c'. (d5dD.XY1/D)1'2((Qf._s) = 0.023 Even! ent ofProrecdon: Check Results: ,l9arinrunt Depth: Riprap Width: From Figure 5-7, L = (1 /(2tan0)XA,/Y, - W) ft Q/D.ts= n/a Use Type n/a Riprap dsa = n/a inches Where: I I(2tan0) = n/a . per Figure 5-9 A,. Q/V Where. V = acceptable velocity. 5.5 fps n/a ft' Therefore: Calculated L= n/a ft L > 3D Minimum L = 12 ft •L < IOD Maximum L = 40 ft • When Q/D's <6 D=?d,o W=3D Use L = 20 feet Use D = 18 inches Use W = 12 feet Watercourse Coefficient - 00 Grassed Waterway ire 00 O Short Grass Pasture & Lawns Forest & Meadow •a v en csi M O O Ner TRAVEL TIME TO) Length Slope I Velocity ft. % fps N O 0 ON INITIAL / OVERLAND TIME Et. e N O \° o co) 0• ten Length ft. 0 0 ten SUB -BASIN DATA V1 U ri O cUd n Q a DRAIN BASIN I 2 z�, 9z moo^ 0 TOTAL RUNOFF v C) L — u `. DIRECT RUNOFF a (.1 ere 00 .0 N e1 N 0 N Watercourse Coefficient Southern Portion of Shenandoah PUD 00 Grassed Waterway Short Grass Pasture & Lawns O z trl 'Cr ‘0 c c Forest & Meadow Historic Runoff Calculations ¢ c Lc. a en 1 i i i 1 TOTAL LENGTH O vO TRAVEL TIME T(t) 4" d o o E. o y O . N INITIAL / OVERLAND TIME ^ C 0 N a> o. o o Ln 0 46 c a o SUB -BASIN DATA U 0 r`! O Q ¢ 0 • 14 Q m cG o¢0a� z� C7 z m 0 0 .r TOTAL RUNOFF on LL] a1 U L 2 ¢ x Cfl U U .G E"' E DIRECT RUNOFF U ti 2 ... • ¢ 0 x k,.o . U Ti U .= Qs E"' g M BASIN INFORMATON UNOFI� COEFF 0 N O M ¢ N g Q 0 m DESIGN POINT ?it )2 ■ rM • • i • I• 1- •i 5 NDrtve-in ,Theater \'. 46.41<aras;isi etrwore- /-5,-.176.. ,dW6 49 .4"Ae410.11r#4"6.."-17..f. 32642e • ~ft,...12,00.... 91019:ar .oeS 2v:E. _r.r.a.atr• A• dry 'Ay .Tog, C0111115e' 12111111.1E PLefT OP COZZ4V.0 CENTER TH/RD BE/Na RE-171,47 Oi r,eicrs 4; .3; 6, /WENDED ic/.47ac-co2--C;ito CENTER ,5777/.47E /N THE NORTH rz ofr-,54-cr/oni 4045 7owni3N/R7-_, NORTH, RANGE a9 Wh-c-57* 0/4- THE-43/A7N P. Z/Ze/416Z• C 4/7"; COLO,e700 dee ceet.C.Cor. Arstrie do: so • •"...7#7.2. ..rerAt.ro COZIAITY ROALAr 37' • - imve4.6(.4440"...f. ocao:= .irebefwZit:ar. xr. A6 e 46.44.• W.CiXf • I I I 0 I i I , 0 _ez _stir t : ^tr. as- .41 • 4-1- Ac Ate MZ251 _.,ovratr.o:or ..0/./PerS 1.1 A k • I • C°.4Z-4/4/0-- czinze ▪ Ze:a. goAel.mr•pa 44e aOr.ridar7 ,orrrarrea "h.". •106.-ar "1: • re !le ati 46•4247 Grhefs 410... ,..Ar.40m~9.0 =owls nrig....K. r'44`e. awe. Zrevvon..... ." Peiworme./.4w4 ,Gerjrfor alma •r•If..W ehaeirrirre .••••7 • /JAM. 77Ate osiovalefornfroorcaiirVifrear OPtiae bd. erroutlgreaulavi/ #4.• — 44 W. AMER, Ffm. Crharr.O. oftware..44•JIr /0 JO rho JICCOO'S Le A" 4.,‘. arpve eo..4-1 SURVEYORS .57777. A%-olaproe ..erwitfas,Ceeer; , etkr aVeeir atel .21.rar offratrg sorder.` Awe' ..sarannaswirm, r Arp,s er/Ce 44W AO, 4:1101, AroftgakierrcliPar. ...11.404.•rare Cor.00rsos-a.r...- pureizE Downstream HGL (ft) r- r- to O .- to a O CO N 0 u) CO (D r` N CO O O CO CO O CO CO O r- N a N T O cc; N_ _O 0 to a) o a)0) 00 tri tri uo O O O O O O 0 0 0 C) 0 0 O) 00) ui (r) tri tri tri tri (ri tri tri sr v v 1. v Upstream HGL (ft) a co a a N r- CO (O e- (O CO N N. CO a CO tr) O CO CD r` a O r- to c7 co a a) a N .-: W O O 0 a O CO r to to to a 0 0 0 0) a) o) a) 0 0 0 0 o a o 0 0 0 o rn a)w a) ui tri (0 tri 'Li tri tri ui ui (ri v v v v Downstream Invert Elevation (ft) a o o co co o o (0 O (0 � 0) - (n 0 a O,- co r- CO M CO CO r cO N O h Ci - 0 N. tri O O (D C7 m (O (O ri C) (o a CO 0 0 0 0 0 0 0 0) 0) 0 0) O O O O O O O O O O O O O O tri tri (rf (r)• u) (r) (A (O (o a a a a a Upstream Invert Elevation (ft) O a 0 0 CO in 0 0 (i) 0 (r) N. 0) (n CO N a O a tO CO CO a O CD O n . . t)o to a ai N,- (n 0 0 0 0 0) 0) CO ) 0 0 0 0 0 0 0 0 0 0 0) 0) 0 0) O O O O O O O O O O O O O O to tr)• vi• tri (n tri (n (n un to a a a a A U y ca O. U @ -' 0 O N 0 u1 ,- in a c i r- O f- 0 CD IO O O CO I- N O C) CO a 0 to r` N C) N f` 01 O O N cO r N N N a a a- C) C) C) a tO CO N CO N Roughness C) C) C) CO CO 0) N N C) C) C) CO C) M O 0 O O 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Section Size o 0U CU 0 C.) 0 t) C) U U 0 O C C_ C CC C_ CC C C_ C C C C _ _ __ a a a a a a a 0 0 O 0 0 0 0 N N N N N N N M 07 M r) C) el M Constructed Slope (ft/ft) CO r) I- C) — a 47 r- 0 a r- O (0 0) r` O (D CO O a 1- L- CO N O I- O cD CO O N f- 0 CO a CO CO o O 0 a M C~') CCO N N 0 0 00 0 0 0 O O O O 0 O O 0 O O O O O O O o O O O O O O O O O O O O .0 0) ^ C J co o o (r) ro w a n d CO CO 0) 0� CO a O LC)o a 0) In ao a O CO 06 ri 0 O tr) r 00 tri r (-) (\i a 0- N N 0 a (D (n I` r- 00 to m 00 co C) 01 en N .- N N N r 0) Discharge (cfs) O O 0 0 0 0 0 0 0 0 0 0 0 0 C) C) 07 C) 10 to tO IO o O Q 0 0 0 (O O co c0 0 N N N N 1 I Downstream Node 0 r N C) N r) a 9 O r- O O ❑ ❑ ❑ ❑ ❑ o ❑ ❑ ❑ ❑ ❑ ❑ ❑ ca N v) CO 0 CO V) u) 0 0 CO 0 CO COr C) 0 CO 0 0 0 0 CO (1) v) rn rn rn z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E N a in O a _ e- N CO V • to co n co O O .- r .M- . .❑ ❑ ❑ ❑ ❑ 0 O ❑ ❑ O ❑ ❑ ❑ 0 u) co co co co co co co u) to co co co a 0 0 0 0 0 0 0 0 0 0 0 0 0 N a a N C? a tO (O is -CO a) O N C) a adaliaddaadlidda co u) (n (n u) (n v) rp w N 0 CO V) w 00000000000.000 © Haestad Methods, Inc. 09/14/99 10:11:25 AM Noae Report HGL Out (ft) Q CO V' N N. (D CO CC) () N CO CO V' M 0 O (D CO I's C O N. O M OD V N +a 1 N r O (O rO coO) O I) tri to to V a) r _ r O o 0) 0) 0) O) O) 0 0 0 0 0 0 0 0 0 0 0 0) m m 0) 0) tri tri in tri M in tri In t0 tri o v R Nr 4 = _ 0 '� " 4 r N- h (A 0 r to O (D N 0 0 CO V CD t.. N CO 0) O CO M O CO (O O f's N 0) 4 N r O (0 N O coto 6 O co tri tri O O O O O O O O O O 0) 0) 0) W 0) tri (0 tri tri Lri tri tri tri 'cc tri 4- 4' Rim Elevation (ft) R CO I,- CO V' CO CO (0 0 (n 0 0) N 0 O O r C) M CO O n r Cr) N O 0 V O N (O (0 to CD 0i N to th (- C''i (O Oi N.: OO 0) CI.0) (D CD N N 0 0) 0 0) O O O O O O O O O O O 0) O 0) 0) tri to to to to to to to O (i) Lc)" R to R Ground Elevation (ft) 0W 0) M a)to 0)(0 O) N O (O 'Cr O N (D (0 10 (0 cri N to M N.: M (O 0) N (D CO CD R M N M N N O 0) O 0) 0) O O O O O O O co O O O O O O tri tri u7 tri tri tri tri (0 tri (ri to v tri NIv E") to y cn U 0 O O O O O O O O O O O co 0 0 < co co co co in to 0 T Z O O O 6 0 0 cc;c0 6(O -^ N N N N Total Upstream Added (cfs) O O O O O O O O O O O O O O O O O O O O to N N N N or? V o 6 0 0 0 O O (O co c0 (fl r r r r r C 0 _o = O o Q Q Q Q O o O Q o Q Q Q Q o c Z Z Z Z Q o o z cj Z Z Z Z Carryover (cfs) O O Q Q Q Q O O O Q O Q Q_ _Q Q O O Z Z Z Z O O O Z O Z Z Z Z c O 0 - 13 V IL a Q 0 o a Q Q Q 0 0 0 Q O Q _Q Q Q O C Z Z Z Z (D O O Z tq Z Z .... Z N O z O N C")a _/ r N M V 0 COO 0,) D 6 6 6 cia c cS6 6 6 6 Q 0 O (n co co in Go N m GO (n GO CO Cn `: a00000000000000" w o ueo o E41 11.1 > CT)Q 2U C E C ~O W 0 O Q. (203) 755-1666 © Haestad Methods, Inc. Nolte Associates, Inc. Project #: FC0045 Project Name: Ridgewood Hills P.U.D.. Filing No. 3 Calculated By: HHF Date: 9/14/99 Riprap Design (for circular outfall conduits) Calculations per Urban Drainage and Flood Control District Design of Low Tailwater Riprap Basins for Storm Sewer Pipe Outlets (For Circular Pipe) Location: Off -Site Storm Drain System Outfall Pipe Diameter. in: Q1®. cfs: Tailwater depth. ft: Slope; ft/ft: Manning's n: 30 , Velocity. ft/s: 6.59 21.5 Depth of flow. ft: 1.58 0 Froude Number: 0.92 subcritical 0.003 Where. F = V/(gY)° $ 0.013 F>1, supercritical flow F<1, subcritical flow Step 1: Determine if method is applicable (i.e., low tailwater) y, < D/3 Where. yi _ D/3 = Yes 0 0.83 Step 1: Calculate the capacity of the pipe flowing full using Manning's Equation Offu = 1.486/n Afull Rfun."113 So��_ Q. cfs = 22.53 Step 3: Use Figure 2 to calculate d/D for a circular pipe Q/Qfull = 0.95 Therefore. d/D = n/a Step ./: Calculate Q/D2'5, use in Figure 3 to calculate d/D for a circular pipe Q/D2•' = 2.18 . Use in Figure 3 to find d/D .Therefore. d/D = n/a Step 5: Use smaller d/D to calculate depth. d, at the outlet and then in Figure 2 to find the ratio for A/Afu11 d. ft = 1.58 Therefore. A/Afu11= n/a . Step 6: Using the A/Afuli ratio, calculate flow area and velocity at the end of the pipe A. ft2 = n/a V. ft/s = 6.59 Step 7: Calculate the riprap sizing design parameter, Pd, and use it in Figure 4 to find the appropriate riprap size Pd = (V2 + 9,d)1" Therefore, Pd = 9.71 Use Type L Riprap D50 = 9 inches Step 8: Calculate the minimum thickness of the riprap layer for D50 = 9 inches T = 1.75 D50 Therefore, T, in = 15.75 Use T = 16 inches Step 9: Find the length of the basin (Use the ereater of the following two values) L = (D" 2)V/2 Therefore, L = 4D Therefore, L, ft = 5.21 L,ft= 10 Use L = 10 feet Step /0: Find the width of the riprap basin W = 4D Therefore, L, ft = 10 Use W = 10 feet SUBJECT JOB NO. DATE r (e ( z9 r Cf DESIGNED BY CHECKED BY NOLTE H '{ c // �0 N C' •' . �.�vf of J/f a o1/a4c ct 2, oo 1/ /Ud' c// ' U?.4qt, cG. %a tt Storm Drain Inlet Design RI SUBJECT v Fcon JOB NO, 3-Q -CO DATE . CHECKED BY NQLTE 0 Z.? LE. T CRLC`S - -rye R StAIA - Res. CQ 1J . S t M i n4c' v s'r : be. ce. 2 Top C & - Di- Cs -a > � = o • (r' 1 �' C o . o C-fit' = 0.4S1 C o . S' -t o 1 C . a.y-q/o.5 o.qS FT-ovt, Kbyv,c1 QIL M f.1-C 5r Ihlet si.e 5' Do' P 41cln T - r (5-4) . Q. g5_.._ o.cl0 • 1, M a.y:7 r Ska r-V\A:' 6 . aver- .. Cc-ow►� w.aX.. too = Q. II- + I‘,.f Co. oa c.kl-t> +0. 5-- o.9l t „=--cy = 0.991/0„ .co? NIDLA,NolC �. 5J Q!L lot 5 4_. 14- c.t,s S RJiE��3 ewooc �► `Is-Frii ^3 SCoal-5 3. 5. B ,n-c; e1 cQ JOB NO. DESIGNED BY 75-a000 DATE CHECKED BY NQLTE 0 INLET CHLC'S - I YPE'R'rN A SUMP - RES. Co).) z ET`(361F�..) r e tke+ co rrne5- ►mac t *Le W Q R. STC R to CAPACITY wilt be L\e. x -- `hoc-wt, ue oT 4 e. crown a., �-� ay, a t 5uJose c,�n-� �� _ove�ty ►e cud- d-e - sac.. tk} e e� o i' r7e<j t01., r . For 4 e No l tk e_z+ Co rv,er o Pe e c -, _ i r � a�`�ie br. t-e MW s`roM wJ 1 b (,w,.,.{edgy. -i-o ct, o _. P. 53' Tyr' �e. Same reasohs as s{c ed cove C' 53 � � (7 _ " �s _1, 06 Frow`. N owtoq raph_ dr\ ct t e, ON) ak en-k_ o �-. e _4r`.i,ncn' roc- 4 e LeCi— 0LA -e en +lie. M AZ"01Z sTo 3Z N.Dil1. v er±-Iro e E6,ek 0F. Sa alk . o Q. sp lowv, +Le ewe c swae �The,-e:dot-e, *L,e ( (AAA �U be-l►\„„►4e�c to }k-,e- back c s,a_w43,\k; `1 O=- Q% 5 )(d.eptin- a C..sGi'+ Lor(o-oa =,r,l 10/ et g•.4 cS- 16..0__ _s.. ealACk,oh c r C5-4l o. S5 0.90 Quo... 13.6 s. �1[. cfs - iZiGG=v'_»zQL; r2BLS- fiI1-2 rJc, 3 10 It e`- 1r. CCL C ���o 10 8 6 4 cc 8 7 e - , art a ti - ▪ -.8- - -- 5.5 c y 6 - w `- 5 Z - La_ .4 --t Z 4 �a ,. • "4.5 2 3 Z t 2i- r r 4 _ .2 -- C7 d AIM HEIGHT OF OPENING 3.5 Lii r 0 - .1 u. c .08 .25 - 3 0 1 .06- cm, " W .04 - 2.5 = ti .15 -- 2 - 1.5 -�- 1.2 CAPACITY .03 - .02 - .01- 5 4 - 3 2 1.5 far s Lc-. L Ft 1r4 1.0 A\ POOH STOZ,M z a .9 0 .8 O - .7 _ .6 O - .5 0 .4 - I- =a - .3 - .25 ta a _ 0 _I- Q - .15 u_ 0 0 - .10 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA R%Tewga�. JOB NO SUBJECT FCoO4 J. DO- 9Q DATE 3 e Jdzi9_ CHECKED BY NQLTE (30' FL) LET CALC ' S - TYPE' ' R' 1 N 6 So MQ - ICES. Lock__ sT T(D. o. c e G) Depik iiiiti.kst in a*. exceee Top cFCLAor- Cro , (l .31-5171J /3.83/ (0.0a fP) = O -fo -rC. � ' �of- Q. 3q10 5 , - p, r;.S Fro 0014tiog1-41-?L Q � 5-D) al 0,5.c s f .. =hf�. She 5- 1 o' 15 Rer()►AC7V-1 _o. So Q.85 o.qo N\ o:p;- 6)N. over- C T`00.4-\ 1M. �a(G, -.= o:_.g�.(_o.._s_' ! •'fig- --- - .: _ ).c.)._6FT\ ,c-c:.; (-R. Zn(e Aim) allay 3.a.s fog�c: c 25' Io' 15' 33 c .,94 p) sie woo Ilk 3 D rQuv, e SUBJECT V Fc oo 45 ` Ts, p ,, 1Q JOB NO. •DESIGNED BY Q40- oo O DATE CHECKED BY (301 FL -FL TNL Ef CALCIS--TyPE'RI TN A SE,cmP - PES. LOCAL Sr, (L,.Q. CFC) ot- rouvi 0.1`-\ - ZYL�. c ��2 � bE-Sa.c ayT- r cuA to 6- . -fl,-.e vvAx, <. por 1 h cQeb4%,' w i I i be. 11',.,,t ,rtCok b -tt e bas_c..k o k .s ►ci?(1,ti ., i k cd uUcl ��ath4( - T wtill 5P .)1N *a ppoi,, a � Loa, "UY I*ts . T�,'i s will_ o c c c- i eN �In e Mil3o S1-ORN1 b1J &; 10.=(i+•rgs'J11;)+_iG,Q$3CQ.Oa4t(q) 0.S ' k- "-�`60/1, _ O.5g% 5/ _r_ 1.I4- T-i-ov,, N owt.o , (F1'1 •"- a), 62/L 1. cCsl .. as ReA 0_1A c ��.5- Q Q-g0. - o 90 o . go aq .6 r 7 - 5.5 ti C W tit .._5 = t4 .4 z z L 4.5 z 1 .-. r 4 J r z t9 z z 0 HEIGHT OF 3 3.5 L a O 4. .25 - 3 O - r - W 2.5 .2 - .15 2 - 1.5 .1 - 1.2 FCOoL 10 8 6 �-<3,rE'i4 a: 3 a. pc'c--,i Part a CAPACITY PER FOOT OF LENGTH OF OPENING .2 .1 - .08 .06 - .04 - .03 - .02 .01-- rQoL.. I -ILL= - FILT1.1 - 5 3 4 - 3 2 z -- 1.5 s Tr'i ae. CLA &e-zC RP - i.0 z - 9 z MS 1�O1Z p . B 0 - _ - .6 W 0 - .5 0 '� -- .4 cc- W r .3 z a: .25 f- a tL - .2 O - - .15 RATIO OF DEPTH - .10 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads N r p MAY 1984 ' 5-10 DESIGN CRITERIA %lac: V)oac ;till 3 br0.iv-,0 SUBJECT ll `J ` t � r_ •s. sit?, e JOB NO. DATE-a0-00 CHECKED BY NQL]E zN CrLc's - TYP IR' Tn suMP - f\uoI)DALE P-b•Csact cscc- A vor�c �f e as ?low(ane : Al( egio4cA-Lie poh4Qi c6j4tL is ilfryLnie6Q fa 0.'-/4 u.e. eleva4 qh, cal -+ere ice je Gv deh #Ze ���� p,v,-� o' +he ver*icc. curve �c) - e �,a�-�1� an 41,,e iow c r& it tje- , P MY\or/ ai`Stoc- :. (a _ Q, 4 (7 I iow,.o qj-a,O\ (T31, 5"a) 0' 5oc4s. 10.0 cfs c-C's h-6'# a,/L Lro c_fs_.Lff.. Rec04c4 i ov, o'- Cs-4 - G �lQ Q.BQ__, 0 e Q.gS=_ S._ or90 13.5 • Avonc12 (eI Wes+ : /11owa6(e . dL.e h = Q 501..0 oyp+CU�b) FrownL, i\)ovvko Moo 0' • (N.5-a). 1. o►r,ac-or 0.90 0.94 r Sinc-1),&:! e FL. =Q.5i' 10' 15 1 a. 0; 0.75 0. 40 /. r.o Qm.lkow 1o•a I,:')e s ZtI 5. ( 5_ Q.ri.3 s = 0,4Z I.0 -- 12 _ ' R.,' Zr,'kEf �u� 10 .9 - I I -I.,.,{ E.. i E £ - P1\1 Q,nC 0..1e T - 8 10 I je--* 1=1_` (S67 { j 6 . -= 9 N`'� ' r LA.4 - cc 3 -8 w � � vi .6 7 pot�= - �/ �ey� • 5.5 I* i cri w 5 = 0 _ .4 -,_ z z L 4.5 Z % -c OF OPENING r 4 C7 f z. 3 3.5 w .15 - 2 LENGTH OF OPENING PER FOOT OF et .6 - .4 - .3 .2 .08 -; .06 .04-- .03 - 0 5 1.0 - .9 o - .8 0 - 7 _ .6 w _ 0 .5 O .4 Q w r F- - .3 .25 F - .10 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA Nolte Associates, Inc. Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HHF Inlet(s) Location: Street Grade: Continuous or Sump: Storm Drain Inlet(s): Storm Event: Minor - Q,, cfs Major - Q100.cfs Inlet Size, ft: Inlet Capacity (2-yr.), cfs: Inlet Capacity (100-yr.), cfs: Storm Drain Inlet Design Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Stonington Lane 2.01 % Continuous SDI - A6 D.P. 800 6.15 22.60 3 4.21 7.20 * Carryover Flow (2-yr.), cfs: 1.94 Carryover Flow (100 yr.), cfs: 15.40 (To Downstream Basin) (To D.P. 812) 1.78% Continuous SDI.- A5 D.P. 801 3.15 11.52 6 2.92 8.96 0.23 2.56 Matheson Drive 3.70% Continuous SDI-A4 D.P. 802 4.98 18.77 6 All 3 are combination 4.27 inlets. 12.06 Total Carryover, cfs: 0.71 2.88 6.71 24.67 'dote: The actual 100 yr capacity of SDI -Al is limited by the HGL of the inlet being coincdental with the flowline of Stonington Dr. Therefore, the actual inlet capacity is reduced to 7.20 cfs which is shown in the STORMCADD results for Storm Drain System A The actual resulting carryover is 15.40 cfs. UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 18:41:22 6 *** PROJECT TITLE: FC0045 SDI -A& 2YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 1.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 2.01 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 11.22 0.39 4.28 1.43 10.00 10.00 FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 6.15 IDEAL GRATE INLET CAPACITY (CfS)= 3.77 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 3.70 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 3.39 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 3.30 24.28 0.23 0.21 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (Cfs)= 0.57 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (Cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (Cfs) _ CARRY-OVER FLOW (CfS)= *** SUMMARY FOR THE COMBINATION INLET: 2.45 0.51 1.94 2.76 0.51 2.25 THE TOTAL DESIGN PEAK FLOW RATE (CfS)= 6.15 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= 3.70 FLOW INTERCEPTED BY CURB OPENING(Cfs)= 0.51 TOTAL FLOW INTERCEPTED (cfs)= 4.21 CARRYOVER FLOW (cfs)= 1.94 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= 3.39 FLOW INTERCEPTED BY CURB OPENING (CfS)= 0.51 TOTAL FLOW INTERCEPTED (CfS)= 3.90 CARRYOVER FLOW (cfs)= 2.25 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 18:40:15 PROJECT TITLE: FC0045 SDI -A* 100YR *** *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft) = 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 1.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 2.01 STREET CROSS SLOPE (*) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION `(inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%) = CURB OPENNING.CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (Cfs)= IDEAL GRATE INLET CAPACITY (cf s) = BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 23.50 0.64 3.98 5.69 10.00 10.00 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 22.60 8.37 7.91 7.53 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 3.30 42.19 0.14 0.12 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.00 BY FAA HEC-12 METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: 14.69 1.81 12.88• 15.07 1.80 13.27 THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 22.60 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs) 7.91 FLOW INTERCEPTED BY CURB OPENING(Cfs)= 1.81 TOTAL FLOW INTERCEPTED (cfs)= 9.72 CARRYOVER FLOW (cfs)= 12.88 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 7.53 FLOW INTERCEPTED BY CURB OPENING (cfs)= 1.80 TOTAL FLOW INTERCEPTED (cfs)= 9.33 CARRYOVER FLOW (cfs)= 13.27 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-46-2000 AT TIME 18:17:40 5 *** PROJECT TITLE: FC0045 SDI -As 2YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ** INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 . IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.78 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 8.28 0.33 3.67 0.85 10.00 10.00 FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 3.15 IDEAL GRATE INLET CAPACITY (cfs)= 2.68 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (CfS)= 2.62 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.41 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS.: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 6.50 15.92 0.61 0.56 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (CfS)= 0.32 BY FAA HEC-12 METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (CfS)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (Cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (CfS)= 0.53 0.30 0.23 0.74 0.29 0.45 3.15 2.62 0.30 2.92 0.23 2.41 0.29 2.70 0.45 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 18:15:53 5 PROJECT TITLE: FC0045 SDI -AN 100YR * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.78 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 18.34 0.53 3.25 3.53 10.00 10.00 FOR 2 GRATE INLETS: DESIGN DISCHARGE k (cfs)= 11.52 IDEAL GRATE INLET CAPACITY (cfs)= 8.08 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfS)= 7.62 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 7.27 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 6.50 28.08 0.38 0.34 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.47 BY FAA HEC-12 METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= BY DENVER UDFCD METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (CfS)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(CfS)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (CfS)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 3.90 1.34 2.56 4.25 1.32 2.93 11.52 7.62 1.34 8.96 2.56 7.27 1.32 8.59 2.93 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 18:49:39 4 *** PROJECT TITLE: FC0045 SDI -AB 2YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ** INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.70 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 8.75 0.34 5.36 0.93 10.00 10.00 FOR 2 GRATE INLETS: DESIGN DISCHARGE (Cfs)= 4.98 IDEAL GRATE INLET CAPACITY (Cfs)= 3.91 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 3.82 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 3.52 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. * * * GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 6.50 24.46 0.43 0.39 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (CfS)= 0.49 BY FAA HEC-12 METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= BY DENVER UDFCD METHOD: DESIGN FLOW (CfS)= FLOW -INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (Cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING(CfS)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (Cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING (CfS)= TOTAL FLOW INTERCEPTED (Cfs)= CARRYOVER FLOW (CfS)= 1.16 0.45 0.71 1.46 0.44 1.02 4.98 3.82 0.45 4.27 0.71 3.52 0.44 3.96 1.02 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD OIL DATE 03-26-2000 AT TIME 18:48:46 4 PROJECT TITLE: FC0045 SDI-Al.100YR * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: *** INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.70 STREET CROSS SLOPE (*) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 19.38 0.55 4.83 3.92 10.00 10.00 FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 18.77 IDEAL GRATE INLET CAPACITY (CfS)= 10.78 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 10.09 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 9.70 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY ACTURAL CURB OPENNING EFFICIENCY = 6.50 43.80 0.25 0.23 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (CfS)= 2.18 BY FAA HEC-12 METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (Cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (Cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (Cfs)= BY FAA HEC-12 METHOD: - FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING(Cfs)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (CPS)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING (Cfs)= TOTAL FLOW INTERCEPTED (Cfs)= CARRYOVER FLOW (Cfs)= 8.68 1.98 6.71 9.07 1.96 7.11 18.77 10.09 1.98 12.06 6.71 9.70 1.96 11.66 7.11 Nolte Associates, Inc. Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HHF Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Inlet(s) Location: Peyton Drive Triangle Drive Street Grade: 1.75% 0.00% Continuous or Sump: Continuous Sump Storm Drain Inlet(s): SDI - B3 SDI - B2 Storm Event: D.P. 808 Minor - Q,, cfs 5.71 Combined Flow, cfs 5.95 (With Upstream Basins) • Major - Qtoo, cfs Combined Flow, cfs (With Upstream Basins) D.P. 807 3.48 Carryover Flow, cfs: 0.43 (From Basins 808) Total Flow, cfs: 3.91 20.59 • 12.95 22.79 Carryover Flow, cfs: 3.90 (From Basins 808) Total Flow, cfs: 16.85 Inlet Size, ft: 9 Combination Inlet ' 20 Type 'R' Inlet Capacity (2-yr.), cfs: 5.52 19.8 Inlet Capacity (100-yr.), cfs: 18.89 19.8 Carryover Flow (2-yr.), cfs: 0.43 0.00 Carryover Flow (100 yr.), cfs: 3.90 0.00 (To Downstream Basins) (To D.P. 807) UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER: ON DATA 05-17-2000 AT TIME 14:53:08 * * * PROJECT TITLE: FC0045 *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER : m S DZ -- B 3 R • INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: *** INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.75 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (t)_ CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 11.41 0.39 4.02 1.47 10.00 10.00 FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 5.95 IDEAL GRATE INLET CAPACITY (cfs)= 5.07 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 4.93 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 4.57 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 9.80 23.11 0.63 0.58 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.65 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: 1.02 0.59 0.43 1.38 0.58 0.80 THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 5.95 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 4.93 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.59 TOTAL FLOW INTERCEPTED (cfs)= 5.52 CARRYOVER FLOW (cfs)= 0.43 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 4.57 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.58 TOTAL FLOW INTERCEPTED (cfs)= 5.15 CARRYOVER FLOW (cfs)= 0.80 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD USER: ON i.)ATE 05-1: 2uu0 AT TIME 14:49:37 PROJECT TITLE: FC0045 *** * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: ,GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 5 D1.- g3 10O Y R INLET. HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH INLET GRATE LENGTH INLET GRATE TYPE NUMBER OF GRATES (ft) = 1.90 (ft) = 3.27 =Type 16 Grate Inlet 3.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.75 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 24.25 0.65 3.79 6.05 10.00 10.00 FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 22.79 IDEAL GRATE INLET CAPACITY (cfs)= 17.67 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 16.77 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 15.91 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 9.80 41.05 0.39 0.35 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.34 BY FAA HEC-12 METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: 6.02 2.13 3.90 6.88 2.10 4.78 THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 22.79 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 16.77 FLOW INTERCEPTED BY CURB OPENING(cfs)= 2.13 TOTAL FLOW INTERCEPTED (cfs)= 18.89 CARRYOVER FLOW (cfs)= 3.90 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 15.91 FLOW INTERCEPTED BY CURB OPENING (cfs)= 2.10 TOTAL FLOW INTERCEPTED (cfs)= 18.01 CARRYOVER FLOW (cfs)= 4.78 Nolte Associates, Inc. Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: J.S. Binfield Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Inlet(s) Location: Peyton Drive Triangle Drive Street Grade: 1.51% 0.00% Continuous or Sump: Continuous Sump Storm Drain Inlet(s): SDI - B4 SDI - B I Storm Event: Minor - Q,. cfs Carryover Flow, cfs: (From Basins 809a) Total Flow, cfs: Major - Q100 cfs Carryover Flow, cfs: (From Basins 809a) Total Flow, cfs: D.P. 809 2.79 3.29 6.08 Carryover Flow, cfs: (From Basins 809 & 817) Total Flow, cfs: D.P. 817 2.91 0.03 2.94. 10.65 10.81 Carryover Flow, cfs: 1.26 19.33 (From Basins 809 & 811) 29.98 Total Flow, cfs: 12.07 Inlet Size, ft: 23 Combination Inlet 15 Type 'R' Inlet Capacity (2-yr.), cfs: 6.08 14.9 Inlet Capacity (100-yr.), cfs: 29.39 14.9 Carryover Flow (2-yr.), cfs: 0.00 Carryover Flow (100 yr.), cfs: 0.59 (To Downstream Basins) (To D.P. 817) 0.00 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 17:10:14 * * * PROJECT TITLE: FC0045 SDI-BI 2YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES . = 7.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.51 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR($)= INLET INTERCEPTION CAPACITY: FOR 7 GRATE INLETS: DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (Cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 11.97 0.41 3.81 1.60 10.00 10.00 CURB OPENING INLET HYDRAULICS AND SIZING: 6.08 5.91 5.87 5.32 INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 22.90 22.72 1.00 0.99 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (CfS)= 0.21 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= BY DENVER UDFCD METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (CfS)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(Cfs)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (CfS)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (CfS)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (Cfs)= 0.21 0.21 0.00 0.76 0.19 0.57 6.08 5.87 0.21 6.08 0.00 5.32 0.19 5.51 0.57 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD AT TIME 17:07:53 PROJECT TITLE: FC0045 SDI-B' 100YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 7.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.51 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 27.81 0.72 3.82 7.90 10.00 10.00 FOR 7 GRATE INLETS: DESIGN DISCHARGE (Cfs)= 29.98 IDEAL GRATE INLET CAPACITY (Cfs)= 28.60 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 28.26 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 25.74 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 22.90 46.05 0.71 0.66 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.22 BY FAA HEC-12 METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(Cfs)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING (CfS)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (CfS)= 1.72 1.13 0.59 4.24 1.10 3.13 29.98 28.26 1.13 29.39 0.59 25.74 1.10 26.85 3.13 Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: J.S. Binfield Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Inlet(s) Location: Peyton Drive Street Grade: 2.00% Continuous or Sump: Continuous Storm Drain Inlet(s): SDI - B5 Storm Event: Minor - Q,, cfs Major - Q100.cfs D.P. 809a 11.60 43.57 Inlet Size, ft: 6 Combination Inlet Inlet Capacity (2-yr.), cfs: 8.31 Inlet Capacity (100-yr.), cfs: 24.24 Carryover Flow (2-yr.), cfs: Carryover Flow (100 yr.), cfs: (To Downstream Basins) 3.29 19.33 (To D.P. 809) UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 15:47:39 *** PROJECT TITLE: FC0045 SDI-Bt 2YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: o INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 2.00 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (s)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 14.88 0.46 4.83 2.38 10.00 10.00 FOR 2 GRATE INLETS: DESIGN DISCHARGE (Cfs)= 11.60 IDEAL GRATE INLET CAPACITY (CfS)= 7.40 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (CfS)= 7.04 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 6.66 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (f t) _ REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 6.50 35.22 0.31 0.28 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (CfS)= 1.40 BY FAA HEC-12 METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= BY DENVER UDFCD METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (Cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING(CfS)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (CfS)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING (cfs)= -TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (Cfs)= 4.56 1.27 3.29 4.94 1.26 3.68 11.60 7.04 1.27 8.31 3.29 6.66 1.26 . 7.92 3.68 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 15:46:38 5 PROJECT TITLE: FC0045 SDI-B$ 100YR * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET' LONGITUDINAL SLOPE (%) = 2.00 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR ($)_ CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 30.25 0.77 4.63 9.32 10.00 10.00 FOR 2 GRATE INLETS: DESIGN DISCHARGE (Cfs)= 43.57 IDEAL GRATE INLET CAPACITY (Cfs)= 22.27 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (Cfs)= 20.32 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 20.04 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 6.50 60.13 0.19 ` 0.17 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY. (cfs)= 4.33 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (Cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfS) FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (Cfs)= SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (Cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING (cfS)= TOTAL FLOW INTERCEPTED (Cfs)= CARRYOVER FLOW (cfs)= 23.25 3.91 19.33 23.53 3.89 19.64 43.57 20.32 3.91 24.24 19.33 20.04 3.89 23.93 19.64 Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HI -IF Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Inlet(s) Location: Matheson Drive Street Grade: 1.13% Continuous or Sump: Continuous Storm Drain Inlet(s): SDI - A3 Storm Event: Minor - Q,, cfs Major - Q1oo cfs D.P. 811 4.08 15.29 Inlet Size, ft: 13 Combination Inlet Inlet Capacity (2-yr.), cfs: 4.05 Inlet Capacity (100-yr.), cfs: 14.62 Carryover Flow (2-yr.), cfs: 0.03 Carryover Flow (100 yr.), cfs: 0.67 (To Downstream Basins) (To D.P. 817) UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-200u AT TIME 16:05:05 3 *** PROJECT TITLE: FC0045 SDI -AS 2YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 4.0.0 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.13 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 10.66 0.38 3.15 1.30 10.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (CfS)= 4.08 IDEAL GRATE INLET CAPACITY (CfS)= 3.84 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (CfS)= 3.79 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (CfS)= 3.46 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 13.10 16.87 0.93 0.88 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.27 BY FAA HEC-12 METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (Cfs) FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (Cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (Cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (Cfs)= CARRYOVER FLOW (cfs)= 0.29 0.26 0.03 0.62 0.24 0.38 4.08 3.79 0.26 4.05 0.03. 3.46 0.24 3.70 0.38 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 16:02:37 3 *** PROJECT TITLE: FC0045 SDI -A* 100YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: *** INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES 4.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.13 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 22.56 0.62 2.92 5.26 10.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (Cfs)= 15.29 IDEAL GRATE INLET CAPACITY (Cfs)= 13.94 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (Cfs)= 13.62 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 12.54 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 13.10 29.71 0.65 0.60 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (CfS)= 1.08 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (CfS)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING(Cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (CfS)= 1.67 1.00 0.67 2.75 0.97 1.77 15.29 13.62 1.00 14.62 0.67 12.54 0.97 13.52 1.77 Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HHF Inlet(s) Location: Street Grade: Continuous or Sump: Storm Drain Inlet(s): Storm Event: Minor - Q,, cfs Carryover Flow, cfs (From Upstream Basins) Total, cfs Combined Flows, cfs: Major - Q100, cfs Carryover Flow, cfs (From D.P. 800,801 & 802) Total, cfs Combined Flows, cfs: Inlet Size, ft: Inlet Capacity (2-yr.), cfs: Inlet Capacity(100-yr.), cfs: Carryover Flow, cfs: Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Triangle Drive (cul-de-sac) 0.00% 0.00% Sump Sump SDI-F 1 D.P. 812 5.33 2.88 D.P. 813 1.61 0.00 8.21 1.61 D.P. 812 + D.P. 813 = 9.82 19.96 5.60 24.67 0.00 44.63 5.60 D.P. 812 + D.P. 813 = 50.23 15 Type 'R' 10.8 17.6 32.63 * Carryover flows will spill directly (To Downstream Basins) to Detention Pond #2. Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HHF Inlet(s) Location: Street Grade: Continuous or Sump: Storm Drain Inlet(s): Storm Event: Minor - Q2. cfs Combined Flow, cfs (With Upstream Basins) Total cfs Major - Qtoo. cfs Combined Flow, cfs (With Upstream Basins) Total_ cfs Inlet Size, ft: Inlet Capacity (2-yr.), cfs: Inlet Capacity (100-yr.), cfs: Carryover Flow, cfs: (To Downstream Basins) Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Fountain Drive 0.00% 0.00% Sump Sump SDI - AI SDI-A2 D.P. 814 D.P. 820 D.P. 815 1.38 3.25 1.89 4.54 1.38 4.54 1.89 5.02 12.35 7.07 16.54 5.02 16.54 7.07 22.20 (From Hydro. Table) 5 Type 'R' Type 'R' 3.2 5.2 0.00 6.08 (From Hydro. Table) 15 • 10.8 29.7 0.00 Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HHF Inlet(s) Location: Street Grade: Continuous or Sump: Storm Drain Inlet(s): Storm Event: Minor - Q,, cfs Carryover Flow, cfs (From Upstream Basins) Total, cfs: Major - Q100.cfs Carryover Flow, cfs (From Upstream Basins) Total, cfs: Inlet Size, ft: Inlet Capacity (2-yr.), cfs: Inlet Capacity (100-yr.), cfs: Carryover Flow, cfs: (To Downstream Basins) Refer to Table 5-4, inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shalt not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Peyton Drive (cul-de-sac) 0.00% 0.00% Sump Sump SDI - El D.P. 818 D.P. 819 3.74 2.58 0.00 0.00 3.74 2.58 6.32 13.99 • 9.79 0.00 0.00 13.99 9.79 23.78 15 Type 'R' 10.8 29.7 0.00 Nolte Associates, Inc. 'Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HHF Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Inlet(s) Location: Fort Morgan Drive Street Grade: 0.00% 0.00% Continuous or Sump: Sump Sump Storm Drain Inlet(s): SDI-D2 SDI-D3 Storm Event: D.P. 900 D.P. 901 Minor - Q, cfs 3.23 3.91 Carryover Flow, cfs 0.00 0.00 (From Upstream Basins) Total cfs 3.23 3.91 Combined Flows, cfs: Major - Q1oo, cfs 10.77 11.39 Carryover Flow, cfs 0.00 0.00 (From Upstream Basins) Total, cfs 12.10 14.60 Combined Flows, cfs: Inlet Size, ft: 10 10 Both Type 'R' Inlet Capacity (2-yr.), cfs: 6.8 6.8 Inlet Capacity (100-yr.), cfs: 18.7 18.7 Carryover Flow, cfs: 0.00 0.00 (To Downstream Basins) Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HHF Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Inlet(s) Location: Agate Court (cul-de-sac) Street Grade: 0.00% 0.00% Continuous or Sump: Sump Sump Storm Drain Inlet(s): SDI-05 Storm Event: Minor - Q,, cfs Carryover Flow, cfs (From Upstream Basins) Total, cfs Combined Flows, cfs: Major - Q,00, cfs Carryover Flow, cfs (From Upstream Basins) Total, cfs Combined Flows, cfs: Inlet Size, ft: Inlet Capacity (2-yr.), cfs: Inlet Capacity (100-yr.), cfs: D.P. 904 1.43 0.00 D.P. 905 1.46 0.00 1.43 1.46 5.44 0.00 5.52 0.00 5.44 5.52 Type 'R' 2.89 10.96 10 6.8 18.7 Carryover Flow, cfs: 0.00 (To Downstream Basins) Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D.. Filing 3 Calculated By: HI -IF Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Inlet(s) Location: Jansen Drive Street Grade: 0.00% Continuous or Sump: Sump Storm Drain Inlet(s): Storm Event: Minor - Q2. cfs Combined Flow, cfs (With Upstream Basins) Total. cfs Combined Flows, cfs: 0.00% Sump 0.00% 0.00% Sump Sump SDI-C7 SDI-C6 D.P. 910 1.93 3.91 D.P. 912 1.45 0.00 D.P. 911 1.06 0.00 D.P. 913 0.88 0.00 3.91 1.45 1.06 0.88 . 5.36 1.94 Major - Q100, cfs 7.38 5.45 4.00 3.34 Combined Flow, cfs 14.56 0.00 0.00 0.00 (With Upstream Basins) Total cfs 14.56 5.45 4.00 3.34 Combined Flows, cfs: 20.01 7.34 Inlet Size, ft: 10 10 Both are Type 'R' Inlet Capacity (2-yr.), cfs: 9.4 9.4 Inlet Capacity (100-yr.), cfs: 20.4 13.6 Carryover Flow, cfs: 0.00 0.00 (To Downstream Basins) Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HHF Inlet(s) Location: Street Grade: Continuous or Sump: Storm Drain Inlet(s): Storm Event: Minor - Q, cfs Carryover Flow, cfs (From Upstream Basins) Total, cfs Combined Flows, cfs: Major - Q100,cfs Carryover Flow, cfs (From Upstream Basins) Total, cfs Combined Flows, cfs: Inlet Size, ft: Inlet Capacity (2-yr.), cfs: Inlet Capacity (100-yr.), cfs: Carryover Flow, cfs: (To Downstream Basins) Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Prichett Court (cul-de-sac) 0.00% 0.00% Sump Sump SDI-D I D.P. 906 D.P. 907 2.37 2.88 0.00 0.00 2.37 2.88 9.20 10.81 0.00 0.00 9.20 10.81 5.35 * Combined flow from Basins 903. 906 & 907 20.67 " Combined flow from Basins 903. 906 & 907 .15' Type 'R' 10.8 29.7 0.00 Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: HHF Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during -the Major Storm Event (Section 4.2.3, Table 2) Inlet(s) Location: Avondale Road Street Grade: 1.76% 1.65% Continuous or Sump: Continuous Continuous Storm Drain Inlet(s): SDI-G2 SDI-Gl Storm Event: D.P. 918 D.P. 917 Minor - Q, cfs 1.54 2.57 Combined Flow, cfs n/a 10.51 (With Upstream Basins) Major - Q100, cfs 5.14 9.67 Combined Flow, cfs n/a 39.08 (With Upstream Basins) Inlet Size, ft: 13 43 Both Are Combination Inlets Inlet Capacity (2-yr.), cfs: n/a n/a Inlet Capacity (100-yr.), cfs: 5.09 47.92 Carryover Flow, cfs: 0.05 0.00 (To Downstream Basins) UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 21:11:41 *** PROJECT TITLE: FC0045 SDI-Gi 100YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= •3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 4.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.76 STREET CROSS SLOPE (.%) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(*)= INLET INTERCEPTION CAPACITY: 13.09 0.43 2.73 1.88 10.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (Cfs)= 5.14 IDEAL GRATE INLET CAPACITY (Cfs)= 4.85 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (CfS)= 4.78 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs) 4.36 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)=. IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 13.10 17.55 0.92 0.87 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.33 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (Cf S) CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: 0.36 0.31 0.05 0.78 0.30 0.48 THE TOTAL DESIGN PEAK FLOW RATE (Cfs)= 5.14 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= 4.78 FLOW INTERCEPTED BY CURB OPENING(Cfs)= 0.31 TOTAL FLOW INTERCEPTED (cfs)= 5.09 CARRYOVER FLOW (cfs)= 0.05 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= 4.36 FLOW INTERCEPTED BY CURB OPENING (Cfs)= 0.30 TOTAL FLOW INTERCEPTED (cfs)= 4.66 CARRYOVER FLOW (cfs)= 0.48 UDINLET:_INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 21:13:30 PROJECT TITLE: FC0045 SDI -GI 1 QO YR. * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 13.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.65 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.025 GUTTER, DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps) FLOW CROSS SECTION AREA (sq ft).= GRATE CLOGGING FACTOR ($)_ CURB OPENNING CLOGGING. FACTOR(%)= INLET INTERCEPTION CAPACITY: 32.69 0.82 4.42 10.85 10.00 10.00 FOR. 13 GRATE INLETS: DESIGN DISCHARGE (CfS)= 48.08 IDEAL GRATE INLET CAPACITY (Cfs)= 47.33 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 47.13 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 42.60 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft) = REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 42.50 60.50 0.89 0.83 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.84 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING(Cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (Cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (CfS)= 0.95 0.79 0.16 5.48 0.76 4.72 48.08 47.13 0.79 47.92 0.16 42.60 0.76 43.36 4.72 • Carryover Flow, cfs: (To Downstream Basins) Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: J.S. Binfield Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Temporary Phase 3 Drainage Inlet(s) Location: Triangle Drive Triangle Drive Street Grade: 3.39% 3.35% 3.39% Continuous or Sump: Continuous Continuous Continuous Storm Drain Inlet(s): SDI-H2 Storm Event: Minor - Q, cfs Combined Flow, cfs (With Upstream Basins) Major - Q,00, cfs Combined Flow, cfs (With Upstream Basins) D.P. 919 1.30 4.36 SDI-H 1 SDI-H2 D.P. 924 1.34 5.50 5.04 20.45 D.P. 919 9.74 35.71 Inlet Size, ft: 13 26 Both Are 46 Inlet Capacity, cfs: 4.31 20.16 Combination 44.29 Inlets 0.05 0.29 0.00 UDINLET: INLET HYDRRULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 21:20:48 a *** PROJECT TITLE: FC0045 SDI -Hi 100YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: *** INLET GRATE WIDTH INLET, GRATE LENGTH INLET GRATE TYPE NUMBER OF GRATES (ft) = - 1.90 (ft). 3.27 =Type 16 Grate = 4.00 Inlet IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET GUTTER FLOW DEPTH FLOW VELOCITY ON STREET FLOW CROSS SECTION AREA GRATE CLOGGING FACTOR (ft) = (ft) = (fps). (sq ft) = (%) = CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 3.39 2.00 0.025 2.00 2.00 10.47 0.38 3.47 1.26 10.00 10.00 FOR 4 GRATE INLETS: DESIGN DISCHARGE (CfS)= 4.36 IDEAL GRATE INLET CAPACITY (CfS)= 4.07 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (CfS)= 4.01 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (CfS)= 3.67 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 13.10 18.34 0.90 0.84 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfS)= 0.31 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfS)= CARRY-OVER FLOW (Cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfS)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= SUMMARY FOR THE COMBINATION INLET: 0.35 0.29 0.05 0.69 0.28 0.41 THE TOTAL DESIGN PEAK .FLOW RATE (Cfs)= 4.36 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfS)= 4.01 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.29 TOTAL FLOW INTERCEPTED (cfs)= 4.31 CARRYOVER FLOW (Cfs)= 0.05 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= 3.67 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.28 TOTAL FLOW INTERCEPTED (Cfs)= 3.95 CARRYOVER FLOW (cfs)= 0.41 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 21:23:35 PROJECT TITLE: FC0045 SDI -HI 100YR -TEM. PVIASE * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90_ INLET GRATE. LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 14.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.39 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 27.63 0.72 5.70 7.80 10.00 10.00 FOR 14 GRATE INLETS: DESIGN DISCHARGE (Cfs)= 44.51 IDEAL GRATE INLET CAPACITY (cfs)= 43.63 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (Cfs)= 43.40 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 39.27 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 45.80 69.14 0.86 0.80 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (CfS)= 0.96 BY FAA HEC-12 METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (Cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (CfS)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING(Cfs)= TOTAL FLOW INTERCEPTED (Cfs)= CARRYOVER FLOW (CfS)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING (Cfs)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW • (cfs)= 1.11 0.90 0.22 5.24 0.86 4.38 44.51 43.40 0.90 44.29 0.22 39.27 0.86 40..13 4.38 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 21:25:25 PROJECT TITLE: FC0045 SDI-H1 1Qq YZ. * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 ' INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 8.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (1) = 3.35 STREET CROSS SLOPE (if) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%) CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 20.31 0.57 4.72 4.29 10.00 10.00 FOR 8 GRATE INLETS: DESIGN DISCHARGE (CfS)= 20.45 IDEAL GRATE INLET CAPACITY (Cfs)= 19.56 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (CfS)= 19.33 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 17.60 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 26.20 44.82 0.79 0.74 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (Cfs)= 0.89 BY FAA HEC-12 METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (Cfs)= CARRY-OVER FLOW (CfS)= BY DENVER UDFCD METHOD: DESIGN FLOW (Cfs)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(Cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (Cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 1.12 0.83 0.29 2.85 0.80 2.05 20.45 19.33 0.83 20.16 0.29 17.60 0.80 18.40 2.05 Nolte Associates, Inc. Storm Drain Inlet Design Project Name: Ridgewood Hills P.U.D. Filing 3 Calculated By: J.S. Binfield Inlet(s) Location: Street Grade: Continuous or Sump: Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Avondale Road 0.00% 0.00% Sump Sump Storm Drain Inlet(s): SDI-C4 Storm Event: Minor - Q2. cfs Combined Flow, cfs (With Upstream Basins) **Additional Flow, cfs D.P. 922 1.01 2.45 2.68 (Future School Site) 33% of Qtoo Total cfs 5.13 Major - Q100, cfs Combined Flow, cfs 9.04 (With Upstream Basins) **Additional Flow, cfs 14.50 0.00 (Future School Site) 33% of Q100 Total, cfs 23.54 7.59 'SDI-C3 D.P. 923 2.00 0.00 2.00 Inlet Size, ft: Inlet Capacity (2-yr.), cfs: Inlet Capacity (100-yr.), cfs: 2.94 7.59 20 10 Both are Type 'R' 21.6 8.5 25.2 8.5 Carryover Flow, cfs: 0.00 0.00 (To Downstream Basins) Note: The allowable ponding depth on the East Flowline for the minor storm is limited to 0.46' due to the elevation difference between the high point of the vertical curve to the north and the low point at the inlet. This will limit the spread to 16.5'. The allowable ponding depth on the West Flowline for the minor storm is 0.50' (Top of Curb) and will limit the spread to 14.5'. This leaves a 15.0' ft driving lane down the center of the street. The allowable ponding depth on the East Flowline for the major storm is still limited to 0.46' as in the minor storm. The allowable ponding depth on the West Flowline for the major storm is limited to 0.57' due to the elevation difference between the high point on the verticle curve to the north and the low point at the inlet. Note: The additional flow from the future School Site was reduced to 33% of that shown in the developed flow tables. This was based on an estimation that approximately 67% of the developed flow will be removed with inlets located within the future School Site boundaries at such time that the School Site drainage design is completed. . Nolte Associates, Inc. Storm Drain Inlet Design Project t?: FC0045 Project Name: 'Ridgewood Hills A.U.D. Filing 3 Calculated By: UHF Inlet(s) Location: Street Grade: Continuous or Sump: Storm Drain Inlet(s): Storm Event: Minor - Q, cfs Major - Q100. cfs Inlet Size, ft: Inlet Capacity, cfs: Refer to Table 5-4, Inlet Capacity Reduction Factors (See Attached) No curb overtopping during the Minor Storm Event Depth of water over the crown shall not exceed 6 inches during the Major Storm Event (Section 4.2.3, Table 2) Woodrow Drive 3.00% 3.00% Continuous Continuous SDI - C2 SDI - C I D.P. 1005 D.P. 1006 1.59 0.92 6.00 3.40 10 6 Both Are Combination Inlets 5.63 3.14 Carryover Flow, cfs: 0.37 0.26 (To Downstream Basins) (To Filing 2) (To Filing 2) UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-26-2000 AT TIME 21:39:53 a PROJECT TITLE: FC0045 SDI-C# 100YR * * * *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ** INLET GRATE WIDTH (ft)= 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.00 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 12.44 0.42 3.49 1.71 10.00 10.00 FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 6.00 IDEAL GRATE INLET CAPACITY (cfs)= 5.19 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 5.04 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 4.67 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY ACTURAL CURB OPENNING EFFICIENCY = 9.80 21.55 0.66 0.61 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (Cfs)= 0.64 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (Cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (Cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (Cfs)= 0.96 0.59 0.37 1.33 0.57 0.75 6.00 5.04 0.59 5.63 0.37 4.67 0:57 5.25 0.75. UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ON DATE 03-2b-2000 AT TIME 21:40:39 *** PROJECT TITLE: FC0045 SDI -CO 100YR *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: * * * INLET GRATE WIDTH (ft) = 1.90 INLET GRATE LENGTH (ft)= 3.27 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.00 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.025 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)_ CURB OPENNING CLOGGING FACTOR(%)= INLET INTERCEPTION CAPACITY: 9.50 0.36 3.16 1.07 10.00 10.00 FOR 2 GRATE INLETS: DESIGN DISCHARGE (Cfs)= 3.40 IDEAL GRATE INLET CAPACITY (Cfs)= 2.86 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (Cfs)= 2.78 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (Cfs)= 2.57 CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 0 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (f t) _ REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 6.50 15.39 0.63 0.58 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (CfS)= 0.39 BY FAA HEC-12 METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (CfS ),= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (CfS)= FLOW INTERCEPTED (CfS)= CARRY-OVER FLOW (CfS)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (CfS)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING(Cfs)= TOTAL FLOW INTERCEPTED (CfS)= CARRYOVER FLOW (CfS)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (CfS)= FLOW INTERCEPTED BY CURB OPENING (CfS)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (CfS)= 0.62 0.36 0.26 0.83 0.35 0.48 3.40 2.78 0.36 3.14 0.26 2.57 0.35 2.92 0.48 Deeter Foundry Inc. P.O. Box 29708, Lincoln, Nebraska 68529 2510 — 195# — 189 Sq. In. 2511 — 210# — 189 Sq. In. 1. Grate openings are measured from flat side of Grat 2. Grates are reversible. 2501-L Catch Basin Inlet Grate & Frame :avy Duty Total Wt. — 630# Open Area — 310 Sq. In. 1. Abutting side flanges may be omitted to create multiple units. 391/4"3" r 393/e" i 48" 2502 Curb Inlet - Frame. Grate. Curb &Partial f rame TYPE 14 Heavy Duty Total Wt. — 875# Open Area — 336 Sq. In. 1. Abutting side flanges may be omitted to create multiple units. Heavy Total Wt. — 850# Open Area — 310 Sq. In. . Same as 2502 except with L-style grate. 2510-2511 Catch Basin Heavy Duty Total Open Inlet Grates & Frames Wt. Area 23/4 e. 181�" "r 1 • 23/+" 1 � } ---- F1.---12=41 171h" 15" r-513/1a" 15" j I 1..51a/t0� _re" + i �1 23/i" r 27" r-2'7/64" 24" 32' Illustrating 2511 Inlet Grate and Frame ye" 27' k r—�h" r217/e4" ;s0111.i.l.1.111111 \r Illustrating 2510 Inlet Grate and Frame 24' 32' 100 Street Capacity Calculations Nolte Associates, Inc, Street Capacity Calculations (Minor Storm Event) For FL to.CL >_ 15'• Refer to Figure 1. (below) Given: Manning's Formula for flow in shallow triangular channels: Q = 0.56(Z/n)S112y 8/3 Where: Q= Theoretical Gutter Capacity, cfs y= Depth of Flow at Face of Gutter, feet n= Roughness Coefficient, 0.016 (per Section 4.2.2.2) S= Channel Slope, feet/feet S,= Cross Slope of Parr; feet/feet Sb= Cross Slope of Asphalt, feet/feet Z= Reciprocal of Cross Slope, feet/feet Solve for "Q", Sa= 0.0833 Therefore, Y= S= Z,= 1/Sa= Zb= I/Sb 12.00 50.00 • Sb = .. 0,02 Zs/n = 750.30 Zb/n = 3125.00 0.50 (water depth at curb face, feet) varies (longitudinal slope of street, feet/feet) x = 2.00 ft y' = 0.33 ft Solve for: 0.56(Z/n)y" 135.33 Therefore, Q = 135.33'S0'n 0.016 or'FL.to CL x= y' = y = 0.43 (water depth at curb face, feet) S = varies (longitudinal slope of street, feet/feet) 2.00 ft 0.26 ft Solve for: 0.56(Z/n)y" 102.79 Therefore, Q = 102.79'So'rz Design Point Number Street Name -' Width` FL to CL, ft ' Classification Developed Q2, cfs Approach Grade Sa, ft/ft Calculated Q, cfs Reduction Factor per Fig. 4-2 Allowable Q, cfs 800 Stonington 115 Residential Local 6.15 1.74% 13.56 0.80 10.85 801 Stonington IIIIRMII Residential Local 3.15 1.79% 13.75 -• 0.80 11.00 802 Matheson • '.18 •Connector Local .. 4.98 4.75% 29.49 • -- 0.50 14.75 807 Kim MESE Residential Local 2.85 1.63% 17.28 0.80 13.82 807a Triangle 18 • Connector Local 0.99""1.-4,-, 0.40% 8.56 0.80 6.85 808 . Peyton -1/F5iiiiii Rcskicritial Local 5.95 1.75% 13.60 ' 0.71 9.65 809 Peyton NU Residential Local 2.79 I.51 % 12.63 0.57 7.20 809a Peyton 1A Residential Local 11.60 2.98% 17.74 0.80 14.20 811 Matheson 18 Connector Local 4.08 1.53% 16.74 0.80 13.39 812 Triangle 18 Connector Local 5.33 5.85% 32.73 0.42 13.75 813 Triangle 18 Connector Local 1.61 - • • 5.85% 32.73 0.42 13.75 814 Fountain NM Residential Local 1.38 0.55% 7.62 0.50 3.81 815 Fountain MOAN Residential Local 1.89 0.55% 7.62 0.80 6.10 818 Peyton 1T5 Residential Local 3.74 0.48% 7.12 0.61 4:34 819 •- Peyton MINE11111 Residential Local 2.58 0.48% 7.12 0.61 4.34 820 Fountain 4lrll AME Residential Local 4.54 0.55% 7.62 0.50 3.81 900 Fort Morgan 1k5 Residential Local 2.87 0.41% 6.58 0.50 3.29 901 Fort Morgan 111.13111111 Residential Local 3.05 0.41% 6.58 0.50 3.29 904 Agate ffing' Residential Local 1.43 1.35% 11.94 0.80 9.55 905 Agate MIME Residential Local 1.46 1.82% 13.87 0.80 11.09 906 Prichett - MAME Residential Local 2.98 0.60% 7.96 0.80 6.37 907 Prichett ILS Residential Local 5.35 0.60% 7.96 0.80 6.37 908 Jansen 18 Connector Local 0.43 2.00% 19.14 0.80 15.31 910 Jansen 18 Connector Local 3.91 1.41% 16.07 0.80 12.86 911 Jansen 18 Connector Local 1.06 1.81% 18.21 0.80 14.57 912 Jansen 18 Connector Local 1.45 • 1.97% 18.99 0.80 15.20 913 Jansen 18 Connector Local 0.88 2.23% 20.21 ' 0.79 15.97 917 Avondale 25 Collector Street 12.92 1.65% 17.38 0.80 13.91 918 Avondale 25. . Collector Street 1.54 1.76%- 17.95 , •- 0.80 14.36 919 Triangle 18 Connector Local 1.30 2.73% 22.36 0.74 16.55 922 Avondale 25 Col lector street 2.45 0.73% 11.56 0.80 9.25 923 Avondale 25 Collector Street 2.00 0.63% 10.74 0.80 8.59 924 Triangle 18 Connector Local ' 5.50 2.60% 21.82, - 0.76 16.58 1015 Woodrow - 18 Connector Local 1.59 " 3.00% --23:44 - 0.72 - - 16:88 - 1006 Woodrow 18 Connector Local 0.92 3.00% 23.44 0.72 16.88 " See variance O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K..., O.K. O.K: O.K. O.K. O.K. O.K. O.K. O.K. O.K. • O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. 5' SIDEWALK 8' ARKWAY 76' R.Q.W. 50'[-E 8' PARKWAI 5' SIDEWALK z cu it 1-2 zz..- • c o▪ � C - ` z z 0,. cZ z O •W c SIDEWALK 4.5' SIDEWALK 8 6' 1 1' 6' 8' DETACHED SIDEWALK PARKING LANE BIKE LANE TRAVEL LANE 4.0% MAX. 2.0% MIN. VERTICAL CURB AND GUTTER TRAVEL LANE 4.0X MAX, 2.0% MIN. BIKE LANE PARKING LANE PAVEMENT SECTION COLLECTOR STREET WITH PARKING AVONDALE TYPICAL SECTION N.T.S. 6' 57' R.O.W. 36'[-� 6' PARKWA DETACHED SIDEWALK 8' 10' 0' 8' PARKWAY PARKING LANE TRAVEL LANE 1.0% MAX. 2.0% MIN. TRAVEL LANE 4.0X MAX. 2.0X MIN, PARKING LANE VERTICAL CURB AND GUTTER PAVEMENT SECTION CONNECTOR LOCAL STREET TRIANGLE DRIVE, WOODROW DRIVE JANSEN DRIVE, SEDGWICK DRIVE AND MATHESON DRIVE TYPICAL SECTION N.T.S. 6' PARKWAY L DETACHED SIDEWALK 7' PARKING LANE 51' R.O.W. 30'E-fL 16' TRAVEL LANE 4.0R MAX. 4.0R MAX, 2.0% MIN. 1 2.0% MIN. 6' 7' PARKWAY ARKING— LANE DRIVE -OVER CURB AND CUTTER PAVEMENT SECTION RESIDENTIAL LOCAL STREET ALL OTHERS - TYPICAL SECTION N.T.S. 4.5' SIDEWALK 4.5' SIDEWALK BEYOND ENGINEERING 432 S. LINK LANE PLAZA FORT COLLINS, CO. 80524 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM Ridgewood Hills P.U.D., Filing No.3 Typical Street Cross Sections (for calculating street capacitites) SHEET NUMBER 1 OF 1 SHEETS PREPARED FOR: Melody Homes DATE SUBMITTED: 8/9/99 JOB NUMBER FC0045 Nolte Associates, Inc. Street Capacity Calculations (Major Storm Event) Given: Manning's Equation: Q = 1.49/nR2S1/2A Where: Q= Theoretical Gutter Capacity, cfs n= Roughness Coefficient, 0.0161 (per Section 4.2.3.2, Table 4-3) R= Hydraulic Radius, A/P S= Channel Slope, feet/feet A= Area, feet 0.025 I. 0.025 was used in place of 0.016 since it takes into account the composite cross-section, which includes asphalt, concrete and grass area. Solution: Hydraulic Cross -Section Area (A), ft2 Perimeter (P), ft Radius (R), A/P 1.49/nR A 25' CL to FL 29.01 57.85 18' CL to FL 18.53 43.85 15' CL to FL 14.64 37.85 0.50 1091.33 0.42 621.91 0.39 463.20 •Collector• Street- •25' CL to;F L (Avondale) Design Point Number Street Name Developed Q100, cfs Approach Grade S, ft/ft - .. - Sin Calculated .Q, cfs Reduction Factor per Fig. 4-2 Allowable Q, cfs 917 Avondale 48.08 1.65% 0.13 ,. 140.18 0.80 112.15_. 918 Avondale 5.14 1.76% 0.13 144.78 0.80 115.83 922 Avondale 23.54 0.73% 0.09 93.24 0.80 74.59 923 Avondale 7.59 0.63% 0.08 86.62 0.80 69.30 - 18'.CL toFL:fJansen/Sedt?wick. Matheson; Irian le&;Woodrow Design Point Number Street Name ... Developed Q100, cfs Approach Grade S, ft/ft S1 Calculated Q, cfs Reduction Factor per Fig. 4-2 Allowable Q, cfs 802 807a 811 Matheson 18.77 4.75% 0.22 135.54 0.50 67.77 Triangle 3.80 0.40% 0.06 39.33 0.80 31.47 Matheson 15.29 1.53% 0.12 76.93 0.80 61.54 812 Triangle 44.63 5.85%. 0.24 150.42 0.42 63.18 813 Triangle 5.60 5.85% 0.24 150.42 0.42 63.18 902 Sedgwick 4.05 1.84% 0.14 84.36 0.80 67.49 908 Jansen . 1.61 2.00% 0.14 87.95 0.80 70.36 910 Jansen 14.56 1.41% 0.12 73.85 0.80 59.08 911 Jansen 4.00 1.81% 0.13 83.67 0.80 66.94 912 Jansen 5.45 1.97% 0.14 87.29 0.80 69.83 913 Jansen 3.34 2.23% 0.15 92.87 0.79 73.37 919 Triangle 4.36 2.73% 0.17 102.76 0.74 76.04 924 Triangle 20.45 2.60% 0.16 100.28 0.76 76.21 'Residential Local - 15i CL- to FL (All Others) Design Point Number Street Name Developed Q100, cfs Approach Grade S, ft/ft S1f2 Calculated Q, cfs Reduction Factor per Fig. 4-2 Allowable Q, cfs 800 Stonington 22.60 1.74% 0.13 61.10 0.80 48.88 801 Stonington 11.52 1.79% 0.13 61.97 0.80 49.58 807 Kim 10.81 1.63% • 0.13 59.14 0.71 •. ,;: 41.99 808 809 809a Peyton Peyton 22.79 1.75% 0.13 61.28'= ' 0.71 43.51 29.98 1.51% 0.12 56.92 --0.57 32.44 Peyton - _ __Fountain__ Fountain 43.57 2.98% 0.17 79.96 0.57 45.58 814 815 5.02 7.07 0.55% 0.07 34.35 0.50 17.18 0.55% 0.07 34.35 0.80 27.48 818 819 - Peyton 13.99 0.48% 0.07 .,. 32.09 061 19.58 -- -u Peyton --9.79` - " ` 0.48% 0.07 ' -. -32.09 ' " 0.61 . " -19.58 820 900 Fountain 16.54 0.55% 0.07 34.35 0.50 17.18 Fort Morgan 10.77 0.41% 0.06 29.66 0.50 14.83 901 904 905 906 907 916 1005 Fort Morgan Agate Agate 11.39 0.41% 0.06 29.66 0.50 14.83 5.44 1.35% 0.12 53.82 0.80 43.06 5.52 1.82% 0.13 62.49 0.80 49.99 Prichett 11.51 0.60% 0.08 35.88 0.80 28.70 Prichett 10.81 0.60% 0.08 35.88 0.80 28.70 Kim Woodrow 17.08 1.81% 0.13 62.32 0.80 49.85 6.00 3.00% 0.17 - 80.23 • 0.72 57.76 - 1006 Woodrow 3.40 3.00% 0.17 80.23 0.72 57.76 O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O:K.- O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K. Swale Calculations And Emergency Overflow Systems • TIME: 09: 33 SERVER: FCS1 E: 05/18/00 SERVICE: PROJECT PATH: N: \FC0045.NEW\CADD\FINAL\ DRAWING NAME: DRLOT79.DWG XREFS: PRUT.dwq...EXUT.dwg...BASE.dwg... TB. dwg...EXTOREV.dwg...PRTOFG.dwg...WO_DETAIL.dwg...T81117.dwg... - p n1 oz �E I �\ _w cn r iI 'II / UN- -..' / 7 I/ -- c,__ v i 4.1 )1 cFN 93 it it O o n l W c_. ::0 1.3 IN L I 7 / / .7 i 7 / / / / / 7 RIDGEWOOD HILLS PUD RIDGEWOOD HILLS FILING 3 LOT 279 SIDELOT SWALE CAPACITY •IYOND ■NOIN■IIRINe 32 5. LINK LANE PLAZA FORT COLLINS, CO. 80524 70.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM PREPARED FOR: MELODY HOMES, INC. DATE SUBMITTED: 03/25/99 LOT 279 Sidelot Swale Capacity - Se ck, A Worksheet for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:1fc0045.newldrainagelflowmasterllot279.fm2 LOT 279 Sidelot Swale Capacity • Triangular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Discharge 0.035 0.020000 ft/ft 3.000000 H : V 5.000000 H : V 1.96 cfs Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 0.47 ft 0.88 ft2 3.87 ft 3.75 ft 0.43 ft 0.031068 ft/ft 2.23 ft/s 0.08 ft 0.55 ft 0.81 05118/00 10:16 04 AM Nolte and Associates, Inc. FlowMaster v5.07 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 LOT 279 Sidelot Swale Capacity — Sec+, A Cross Section for Triangular Channel Project Description Project File n:Ifc0045.newldrainagelflowmasterllot279.fm2 Worksheet Flow Element Method Solve For LOT 279 Sidelot Swale Capacity Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Discharge 0.035 0.020000 ft/ft 0.47 ft 3.000000 H : V 5.000000 H : V 1.96 cfs TOP of 1=9uM0Arzot\J LOT a'-49 0.47 ft H 1 NTS 05/18/00 10:16:26 AM Nolte and Associates, Inc. FlowMaster v5.07 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Basin 1002 Swale Capacity Worksheet for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:lfc0045.newldrainagelflowmasterlbasin 10.fm2 Basin 1002 Swale Capacity Triangular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Discharge 0.035 0.010000 ft/ft 6.000000 H : V 3.000000 H : V 14.36 cfs Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 1.08 ft 5.21 ft2 9.94 ft 9.68 ft 0.91 ft 0.024031 ft/ft 2.76 ft/s 0.12 ft 1.19 ft 0.66 3301 o o - J 4.3 c rS -ro 4; / Bczs� ,311 Cat,i� 'S Arc: a, = I. 05 Ac: e j„ave recetAc eca #11,s area fo 3, as 4C. w% Le Adp-i � a F 9 04 (Nor}11 SVdQe o )4 4-fe cf. 11 TI i s wa+er~ d e p, i5 co+iserta41Ve , 05/18/00 10:56:16 AM Nolte and Associates, Inc. FlowMaster v5.07 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Basin 1002 Swale Capacity Cross Section for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:Ifc0045.newldrainagelflowmasterlbasin 10.fm2 Basin 1002 Swale Capacity Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Discharge 0.035 0.010000 ft/ft 1.08 ft 6.000000 H : V 3.000000 H : V 14.36 cfs 0 See sec+. S-I , pia,., shoe* gOex) -4- a V L H 1 NTS 05/18/00 Nolte and Associates, Inc. FlowMaster v5.07 10:56:29 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Vn.er ehc Qve►-�ow GrQ+e e o b- �, �1Ve CGt,I - be - Sac G I-o e u !l toll e cf fi tl r• e ro c a ve'cOow 1r -e cE i� b a cif / b +0 r lv% C�r-Q r ► E ' `A4 W -- E i1 0.8 0.7 0-- "- 0.6 13] z 0.5 cc > 0.4 0 a 0.3 w O 0.2 O 2 0 a 0.1 0.0 0 2 3 4 5 FLOW INTO INLET PER SO. FT. OF OPEN AREA (CFS/FT2) J1171i11I LiI1t11I1 ii11111 EXAMPLE 1111 1111 L., aml No • Imo S.S. 8►4ie(c2 NMI )11111111 IIII1Il1I 1111 I11 it 111111111._ 1 1 1 1 1 1 1 r Figure 5-3 Q p..G-kLA. 4,1 = a3 . I CIS CAPACITY OF GRATED INLET IN SUMP (From: Wright -McLaughlin Engineers. 1969) Toc @ 68. CIT. 6.4 kow - 0. 58• (O ' aa' ► -�. � S� �-e et s e ct i of , a.l (o w s — 0.9' @ `' over Crown C oel kAvNp+1n> = 0.9-0. 5gQ. 3 a' / C:C. -rt. Jcv,exx... 3 . '1-864 = SI ' e{o CIQ3V 14\ `d53 8 111)a NOT REOLAIREb �sinq 6, MCI" lCa Vkir INLef (ea ft DEIfTEf Hr-eo, = 310 in / rah' e+ -> Ab . Jeer. 's = I 6 9/310 =. 4,09 ra}es MAY 1984 5-11 DESIGN CRITER1,A Deeter Foundry, Inc. P.O. Box 29708, Lincoln, Nebraska 68529 250171Catch Basin In t & Frame ieavy Duty (, i� FOZ- ;�1Q ( ' '7 % —i t./,_ Total Wt. — 630# �!' Open Area — 310 Sq. In. 1. Abutting side flanges may be omitted to create multiple units. 391/4"3„ 393/e" 48" 2502 Curb Inlet - Frame, Grate, Curb & Partial Frame Heavy Duty Total Wt. — 875# Open Area — 336 Sq. In. 1. Abutting side flanges may be omitted to create multiple units. 2502-L Heavy Duty Total Wt. — 850# Open Area — 310 Sq. In. 1. Same as 2502 except with L-style grate. 9" TO 121" 38V2" 2510-2511 Catch Basin Inlet Grates & Frames Heavy Duty Total Open Wt. Area 23/4„ 2.. 2510 — 195# — 189 Sq. In. 2511 — 210# — 189 Sq. In. 1. Grate openings are measured from flat side of Grate. 2. Grates are reversible. 15" fie" 7 T12"� 18V2" 15" i 1 r 2/" 2" ri 27" nn p puI mi u 24' 32" Illustrating 2511 Inlet Grate and Frame 513/16" F-12�17'/2" 24"T t h i ' ' Illustrating 2510 Inlet Grate and Frame 27" 24" 32" —71 I 2,y64" i i i i i r i 1 100 g.' (7_0►EW O oL t 1►�1S — �+l + f�. SUBJECT Ecoo4s- zcS-e_\ JOB NO. DESIGNED BY DATE CHECKED BY QV;::-15LOW CJgPAGIT\-( of TRIP -)GL_E Ctu DF- SAC 0 3 v, c4 cb- 11 11 ►1 D Q - co 4 cry tO • cr. Se'5Cfrt .... \ • it's Q' • V1 d' , 1 (ncrl 1 , d V 11 � Its - t,�,, 3 SUFC--00 NOLTE BJECT JOB NO. - DESIGNED BY DATE CHECKED BY EME E JCY LL k0 v3 FoR ETE NTION Po }.).DS Now.`: Ca cuda ons tkse a c,t_a-h oh based. ovl 1—ec*c Lktmac- sec#\ ovi . he 6-�4 seki ok s { r— eo1 ft-,e �aic& capacl'al is cotnsectNe. .PoNit ; L_ 1-o' N - f a' P 5-) T SOIR.o0 as (0, 3gWo.- g0(:o(c I.4)ii° L Lo Ccom, ec"..I E (5 .r ...swnn o/ a ijecQ griv o(,J 4ttt ow 1.05 1.00 C 0.95 0.90 0.85 0 02 04 06 08 H H+P 10 Figure 4-36 Form and resistance coefficient for a broad -crested weir for 0.1 < H/L < 0.8 (16) B,�EC ewooL Wks-. �co05 3 s. 16\el4, SOB NO. M DESIGNED BY DATE CHECKED BY NQLTE SPTI_L AJ 1 PQa rbF:r5+v T Io n poC D s poN L L. = iSo` N =1' P = q , a, Soso, 30 P / 1_a5?ON CQ,v 1 kOL pj(okii E1 Qj tow W.'STk AM ACC. j -5 cE CC C�LC`S 1 h• I kg- C=o.Sb Q SR.. = Q • 385 CL (DIP 3/a • I1a 3fa =CO.. 355)Co.g�� (I Q)C.(,4 (I). 398.6cs 3 3.0 c s._:. Cc-0\m eke ,• `d5►.ac zo> Jansen Emer. O.F. Swale - Sect. A -A Worksheet for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:1fc0045.newlcalcslschool2.fm2 Jansen Emer. O.F. Swale - Sect. A -A Triangular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Discharge 0.060 0.018000 ft/ft 4.000000 H : V 4.000000 H : V 58.98 cfs Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 2.10 17.56 17.28 ft 16.76 ft 1.68 ft 0.057851 ft/ft 3.36 ft/s 0.18 ft 2.27 ft 0.58 ft2 Notes: Analysis rerun April 6, 2000 04/06/00 11:35:48 AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Jansen Emer. O.F. Swale - Sect. A -A Cross Section for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:1fc0045. new\calcs\school2.fm2 Jansen Emer. O.F. Swale - Sect. A -A Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Discharge 0.060 0.018000 ftift 2.10 ft 4.000000 H : V 4.000000 H : V 58.98 cfs 2.10 ft 1, H 1 NTS 04/06/00 FlowMaster v5.13 11:32:41 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Jansen Emer. O.F. Swale - Sect. B-B Worksheet for Trapezoidal Channel Project Description Project File n:Ifc0045.newlcalcslschool2.fm2 Worksheet Jansen Emer. O.F. Swale - Sect. B-B Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.010000 ft/ft Left Side Slope 0.0425 ft/ft (V:H) Right Side Slope 0.0425 ft/ft (V:H) Bottom Width 0.00 ft Discharge 58.98 cfs Results Depth 1.19 ft Flow Area 33.59 ft2 Wetted Perimeter 56.28 ft Top Width 56.23 ft Critical Depth 0.83 ft Critical Slope 0.070453 ft/ft Velocity 1.76 ft/s Velocity Head 0.05 ft Specific Energy 1.24 ft Froude Number 0.40 Flow is subcritical. Notes: Analysis rerun April 6, 2000 04/06/00 11:35:28 AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Jansen Emer. O.F. Swale - Sect. B-B Cross Section for Trapezoidal Channel Project Description Project File n:1fc0045.new\calcs\school2.fm2 Worksheet Jansen Emer. O.F. Swale - Sect. B-B Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.010000 ft/ft Depth 1.19 ft Left Side Slope 0.0425 ft/ft (V:H) Right Side Slope 0.0425 ft/ft (V:H) Bottom Width 0.00 ft Discharge 58.98 cfs 1 0.00 ft 1.19 ft 1 VD H 1 NTS 04/06/00 11:33:02 AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Agate/Prichett Court Swale - Sect. C-C Worksheet for Triangular Channel - Project Description Project File Worksheet Flow Element Method Solve For n:1fc0045. newlcalcslschool2.fm2 Agate/Prichett Court Swale - Sect. C-C Triangular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Discharge 0.060 0.005000 ft/ft 4.000000 H : V 4.000000 H : V 10.96 cfs Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 1.42 ft 8.03 ft2 11.69 ft 11.34 ft 0.86 ft 0.072404 ft/ft 1.36 ft/s 0.03 ft 1.45 ft 0.29 Notes: Analysis rerun April 6, 2000 04/06/00 11:36:08 AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Agate/Prichett Court Swale - Sect. C-C Cross Section for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:1fc0045. new1calcslschoo12.fm2 Agate/Prichett Court Swale - Sect. C-C Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Discharge 0.060 0.005000 ft/ft 1.42 ft 4.000000 H : V 4.000000 H : V 10.96 cfs 1, H 1 NTS 04/06/00 FlowMaster v5.13 11:29:19 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Agate/Prichett Ct. Swale - Sect. D-D Worksheet for Irregular Channel Project Description Project File n:Ifc0045.newlcalcslschool2.fm2 Worksheet AgatelPrichett Court - Sect. D-D Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 5,112.05 ft to 5,114.05 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 5,114.05. 0.00 113.74 0.060 104.00 5,112.49 105.74 5,112.05 113.74 5,114.05 Discharge 31.63 cfs Resu Its Wtd. Mannings Coefficient 0.060 Water Surface Elevation 5,113.35 ft Flow Area 30.09 ft2 Wetted Perimeter 64.69 ft Top Width 64.47 ft Height 1.30 ft Critical Depth 5,112.97 ft Critical Slope 0.080491 ft/ft Velocity 1.05 ft/s Velocity Head 0.02 ft Specific Energy 5,113.37 ft Froude Number 0.27 Flow is subcritical. Notes: Change in O.F. Swale channel shape. 4:1 changing to 1.5% on West Side Analysis rerun April 6, 2000 04/06/00 11:36:29 AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Agate/Prichett Ct Swale - Sect. D-D Cross Section for Irregular Channel' Project Description Project File n:1fc0045.newlcalcslschool2.fm2 Worksheet Agate/Prichett Court - Sect. D-D Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Section Data Wtd. Mannings Coefficient 0.060 Channel Slope 0.005000 ft/ft Water Surface Elevation 5,113.35 ft Discharge 31.63 cfs 5114.5 5114.0 5113.5 5112.5 5112.0 0.0 20.0 40.0 60.0 Station (ft) 80.0 100.0 120.0 04/06/00 11:30:59 AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Agate/Prichett Court Swale - Sect. E-E Worksheet for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:1fc0045.newlcalcslschool2.fm2 Agate Prichett Court Swale - Sect. E-E Triangular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Discharge 0.060 0.005000 ft/ft 4.000000 H : V 4.000000 H : V 31.36 cfs Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 2.10 ft 17.68 ft2 17.33 ft 16.82 ft 1.31 ft 0.062936 ft/ft 1.77 ft/s 0.05 ft 2.15 ft 0.31 Notes: Analysis rerun April 6, 2000 04/06/00 12:08:42 PM Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 Agate/Prichett Ct. Swale - Sect. E-E Cross Section for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:Ifc0045. new\calcslschool2.fm2 Agate Prichett Court Swale - Sect. E-E Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Discharge 0.060 0.005000 ft/ft 2.10 ft 4.000000 H : V 4.000000 H : V 31.36 cfs 1 V� H 1 NTS 04/06/00 FlowMaster v5.13 12:08:47 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE SECTION F-F Worksheet for Triangular Channel Project Description Project File n:1fc0045.newlcalcslfc0045.fm2 Worksheet Fountain Swale Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.250000 ft/ft Left Side Slope 5.00 H : V Right Side Slope 5.00 H : V Discharge 29.27 cfs Results Depth 0.90 ft Flow Area 4.07 ft2 Wetted Perimeter 9.20 ft Top Width 9.02 ft Critical Depth 1.16 ft Critical Slope 0.064508 ft/ft Velocity 7.19 ft/s Velocity Head 0.80 ft Specific Energy 1.71 ft Froude Number 1.89 Flow is supercritical. 04/10/00 03:44:04 PM Nolte and Associates, Inc. FlowMaster v5.07 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 SWALE SECTION F-F Cross Section for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:Ifc0045. newlcalcslfc0045.frn2 Fountain Swale Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Discharge 0.060 0.250000 ft/ft 0.90 ft 5.00 H : V 5.00 H : V 29.27 cfs 0.90 ft 1, H 1 NTS 04/10/00 03:44:21 PM Nolte and Associates, Inc. FlowMaster v5.07 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 D.P. 812 & D.P. 813 Overflow Swale Worksheet for Trapezoidal Channel Project Description Project File Worksheet Flow Element Method Solve For n:Ifc0045. newlcalcs\fc0045.fm2 Ridgewood Hills P.U.D. - Filing 3 Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge 0.060 0.250000 ft/ft 5.000000 ft/ft (H:V) 5.000000 ft/ft (H:V) 2.00 ft 29.27 cfs Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is supercritical. 0.73 ft 4.11 ft2 9.43 ft 9.29 ft 0.98 ft 0.064474 ft/ft 7.12 ft/s 0.79 ft 1.52 ft 1.89 • 04/06/00 FlowMaster v5.13 11:58:43 AM Haestad Methods, inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Cross Section Swale G Cross Section for Triangular Channel Project Description Project File n:1fc0045.new\calcs\fc0045.fm2 Worksheet Fountain Swale Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.060 Channel Slope 0.210000 ft/ft Depth 0.41 ft Left Side Slope 12.50 H : V Right Side Slope 75.75 H : V Discharge 29.27 cfs 0.41 ft 1 H 1 NTS 04/10/00 09:53:59 AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DP 913 Overflow Swale - Sect. H-H Worksheet for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:1fc0045. new\calcs\school2.fm2 DP 913 Overflow Swale - Sect. H-H Triangular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient Channel Slope Left Side Slope Right Side Slope Discharge 0.060 0.020000 ft/ft 4.000000 H : V 4.000000 H : V 27.35 cfs Results Depth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow is subcritical. 1.54 ft 9.49 ft2 12.70 ft 12.32 ft 1.24 ft 0.064093 ft/ft 2.88 ft/s 0.13 ft 1.67 ft 0.58 Notes: Analysis rerun April 6, 2000 04/06/00 12:36:54 PM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DP 913 Overflow Swale - Sect. H-H Cross Section for Triangular Channel Project Description Project File Worksheet Flow Element Method Solve For n:\fc0045.new\calcs\schoo12.fm2 DP 913 Overflow Swale - Sect. H-H Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coefficient Channel Slope Depth Left Side Slope Right Side Slope Discharge 0.060 0.020000 ft/ft 1.54 ft 4.000000 H : V 4.000000 H : V 27.35 cfs 1� V H 1 NTS 04/06/00 FlowMaster v5.13 12:37:11 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 ************************************************************************ NORTH AMERICAN GREEN MATERIAL SPECIFICATIONS ************************************************************************ P300 Specification The North American Green P300 permanent erosion control/turf reinforcement mat is constructed of 100o UV stabilized high denier polypropylene fiber sewn between a black UV stabilized 1/2" mesh polypropylene netting on the top 5 lbs/1000 ft"2 (24.4 kg/100 m"2) and a black UV stabilized 5/8" mesh polypropylene netting on the bottom 3 lbs/1000 ft"2 (14.6 kg/100 m-2) with polypropylene thread. The mat is resistant to photo and chemical degradation. The following list contains further physical properties of the P300P erosion control/turf, reinforcement mat. Property Test Method Thickness Resiliency Mass Per Unit Area Tensile Strength Elongation Tensile Strength Elongation Tensile Strength Elongation Tensile Strength Elongation UV Stability* Value Units ASTM D1777 .56 (1.4) 100 PSI-3 cycles 94 ASTM D3776 11.2 (380) ASTM D4632 35.2 (16) ASTM D4632 25.5 ASTM D4595 259.2 ASTM D4595 20.9 ASTM D5035 300 (446) ASTM D5035 51 ASTM D1682 89 (40) ASTM D1682 21 ASTM D4355 81* (37) 90* in (cm) oz/sq yd (g/m-2) lbs (kg) (385.7)lbs/ft (kg/m) lbs/ft (kg/m) lbs (kg) lbs (kg) *ASTM D1682 Tensile Strength and o Strength Retention of material after 1000 hours of exposure in Xenon -Arc Weatherometer. Physical Specifications (Roll) Width Length Weight Area Stitch Spacing 6.5 feet (2 m) 83.5 feet (25.4 m) 42 lbs + / - 10% (19.1 kg) 60 ye2 (50 m"2) 1.5 inches (3.8 cm), 50 per 6.5 feet (2 m) roll width 1***************************************************************************** NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.1 NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ***************************************************************************** PROJECT NAME: RIDGEWOOD HILLS FILING 3 PROJECT NO.: FC0045 COMPUTED BY: J.S. BINFIELD DATE: 4/10/00 FROM STATION/REACH: TO STATION/REACH: DRAINAGE AREA: TRIANGLE DRIVE OVERFLOW DESIGN FREQUENCY: 100 YEAR ***************************************************************************** INPUT PARAMETERS **************************************************************************** Channel Discharge : 50.2 cfs -(1.42 m'3/s) Peak Flow Period : 2 hours Channel Slope : 0.25 ft/ft (0.25 m/m) Channel Bottom Width : 90.0 ft (27.43 m) Le` Side Slope 10000:1 R. _ Side Slope 10000:1 Channel Lining : P300 Staple E Permi. Shear(Tp):8.00 psf (383.0 Pa) Phase = 3 ***************************************************************************** CALCULATIONS ***************************************************************************** Intial Depth Estimate = 0.16*(50.2 /(0.250"'0.5))"0.375 = 0.90 ft (.27 m) Final Channel Depth (after 19 iterations) = .05 ft (0.02 m) Flow Area = (90.0 * 0.1)+(0.5 *0.05"2 * (10000.0+10000.0)) = 34.8 sf (3. Wet Per. =90.0 +(0.1*(((10000.0"2)+1)"'.5 +((10000.0^'2)+1)"'.5)) = 1182.6 ft Hydraulic Radius = (34.8 / 1182.6) = 0.0 ft (0.0 m) Channel Velocity=(1.486/0.049)*(0.0-0.667)*(0.250".5) = 1.4 fps (0.4 m/s) Channel Effective Manning's Roughness Calculated Shear (Td) = 62.4 * 0.05 * 0.250 Safety Factor = (Tp/Td) = (8.00 /0.85) = 0.049 = 0.85 psf (40.8 Pa) = 9.39 WathAmencanGreen . Erosion Caruc1Messiah Devon Software Ve./.1.Channel /10/00 1:00PMIC0MPUTEDBY. J,S.BINFIELD IPAOJECT NAME, RIDGEWOOD RILLS RUNG 3 PROJECT NUMBER: FC0015 IFROM STATION/REACH: ITO STATION/REACH- rIDRAJNAGE AREA: TRLANGLE DRIVE [DESIGN FREQUENCY: 100 YEAR HYDRAULIC RESULTEi Ducharge (ds1 2 Peak Flaw Paved II><sl 20 Velocay Ilpsl 1.14 Area Is011.1 34 78 Hydressic Reta slel 003 Norm& Depth lel OD5 DINER 14FSULTS P300 Not to Scab Reach 1 Material Type Phase Veg Type Sol Type Mennng's'n" Parrissbte Shea Stress fps/ Calculated Shear Stress (Dill Safety Facto Remarks Staple Pastern Class Vest Denary S8ag 4 P300 3 0.044 8.20 D B5 9.39 STABLE Staple E Default II * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.1 NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ***************************************************************************** PROJECT NAME: RIDGEWOOD HILLS FILING 3 COMPUTED BY: J.S. BINFIELD FROM STATION/REACH: DRAINAGE AREA: FOUNTAIN DR. OVERFLOW PROJECT NO.: FC0045 DATE: 4/10/00 TO STATION/REACH: DESIGN FREQUENCY: 100 YEAR ***************************************************************************** INPUT PARAMETERS ***************************************************************************** Channel Discharge Peak Flow Period Channel Slope Channel Bottom Width : LE Side Slope Ri .. Side Slope 34.3 cfs (.97 m-3/s) 2 hours 0.25 ft/ft (0.25 m/m) 80.0 ft (24.38 m) 10000:1 10000:1 Channel Lining : P300 Staple E Permi. Shear(Tp):8.00 psf (383.0 Pa) Phase = 3 ***************************************************************************** CALCULATIONS *****************************************************************.************ Intial Depth Estimate = 0.16*(34.3 /(0.250-0.5))-0.375 = 0.78 ft (.24 m) Final Channel Depth (after 17 iterations) = .05 ft (0.01 m) Flow Area = (80.0 * 0.0)+(0.5 *0.05-2 * (10000.0+10000.0)) = 26.1 sf (2. Wet Per. =80.0 + (0. 0* (((10000. 0"'2) +1) "' .5 + ((10000. 0-2) +1) "' . 5)) = 1025.4 ft Hydraulic Radius = (26.1 / 1025.4) = 0.0 ft (0.0 m) Channel Velocity=(1.486/0.049)*(0.0"0.667)*(0.250".5) = 1.3 fps (0.4 m/s) Channel Effective Manning's Roughness Calculated Shear (Td) = 62.4 * 0.05 * 0.250 Safety Factor = (Tp/Td) _ (8.00 /0.74) = 0:049 = 0.74 psf (35.3 Pa) = 10.85 'North American Green- Egoism Cared Mdesids Deem Sdn+ae Ver,Ll- Charnel /10/00 1:71 PM'COMPUTED BY J S. BINFIELD 'PROJECT NAME. RIDGEWOOD HILLS FILING 3 PROJECT NUMBER: E03045 (FROM STATION/REACH: fOSTATION/REACH [DRAINAGE AREA, FOUNTAINDRFVE 'DESIGNFREOUENCY 100 YEAR I-YDRAULIC RESULTS MOO Discharge Ids1 Peak Flow Period [Ns) Velocey. [fps] Area (s4h.l Hyorauit Radttlnl Normal Depth Ihl 34 3 20 1.31 26.12 0 03 005 LINER RESULTS 5=025W Bdtam 10000.0 Width - 80.0011 Nat to Scale Reach Marshal Type Phase Veg Type Soil Type Man ig's'n Permissible Sheer Stress (psi] Calculated Sheas Stress (psi.) Safety Factor Remarks Stapp Pattern Class Veg. Density Suarght P300 3 0.049 8.00 0 74 . 10.85 STABLE Staple Detail II * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.1 NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ***************************************************************************** PROJECT NAME: RIDGEWOOD HILLS FILING 3 PROJECT NO'.: FC0045 COMPUTED BY: J.S. BINFIELD DATE: 4/10/00 FROM STATION/REACH: TO STATION/REACH: DRAINAGE AREA: POND #2 EMERGENCY SPILLWAYDESIGN FREQUENCY: 100 YEAR ***************************************************************************** INPUT PARAMETERS ***************************************************************************** Channel Discharge : 373.0 cfs (10.56 m"'3/s) Peak Flow Period : 2 hours Channel Slope : 0.25 ft/ft (0.25 m/m) Channel Bottom Width : 162.0 ft (49.38 m) Le' Side Slope 10000:1 Ri, Side Slope 10000:1 Channel Lining : P300 Staple E Permi. Shear(Tp):8.00 psf (383.0 Pa) Phase = 3 ***************************************************************************** CALCULATIONS ***************************************************************************** Intial Depth Estimate = 0.16*(373.0 /(0.250"0.5))"0.375 = 1.91 ft (.58 m) Final Channel Depth (after 16 iterations) = .12 ft (0.04 m) Flow Area = (162.0 * 0.1)+(0.5 *0.12-2 * (10000.0+10000.0)) = 156.4 sf Wet Per. =162.0 +(0.1*(((10000.0"2)+1)-.5 +((10000.0-2)+1)^.5)) = 2506.2 ft Hydraulic Radius = (156.4 / 2506.2) = 0.1'ft (0.0 m) Channel Velocity=(1:486/0.049)*(0.1"0.667)*(0.250^.5) = 2.4 fps (0.7 m/s) Channel Effective Manning's Roughness Calculated Shear (Td) = 62.4 * 0.12 * 0.250 Safety Factor = (Tp/Td) = (8.00 /1.83) = 0.049 = 1.83 psf (87.5 Pa) = 4.38 1Na[h American Green- Emma Loma/ Materials Desim SoftwareVer.4.1- ChamelitE FIO 1. U PM KAM PUT ED BY: J. S. BIN FIELD (PROJECT NAME: RIDGEW00D HILLS FILING 3 [PROJECT NUMBER: FC0045 1FROM STATION/REACH: ITDSTAT ION/AEACH: bRAJNAGE AREA: POND 02 HYDRAULIC RESULTS Dasdtarge Ids] D73.0 Peak Flow Period Iles] 2.0 Valocty ltpsl 239 Arca (sq h.) 156.37 Mydredic Radius(RI 0.06 Round Depth 1111 012 LINER RESULTa bESIGN FREQUENCY. 100 YEAR P300 0000 f 0000 1 0 Width • 111 62.00 t 1 .0 Not to Scale Reach Material Type Phase Veg Type Soi Type Ma ioo'n Permissible Shear Stress (psi] Calculated Shear Sows (psl) Salaly Fedor Remarks Slap a Pawn Class Vag_ Density Straight P300 3 0,049 800 1.83 438 STABLE Staple Dela1 Appendix D Detention Pond Design 2 H + +/- 50% of total 100-yr. inflow to Pond N 1 • 7 — C o N w 0.,v0 a 0 0' 0 N 0 o n Ol 0 III II I1,, I! II II 1I II U ° d < a U 6 0 U 8 0 O O O Y ^ O O S op L 0 0 0 v n or; L O 6. P ' p R 0' 0 O C O N n 7 n 8R O O N. O O .. O N — hl M T N .O , n P o rr^I omp T 0' O O 6 r po O n C z a r^• • O - f-i ti .D F. L 0. O O Z 2 CUMM. VOLUME ac-0 N O C O 2.05 I R nC P P ep 1 6 CUMM. VOLUME 0) Y wt J N S C 6 CI P 149846 C n _ N 288977 N '0 rl C R INCREM. VOLUME ft' i Q - T- 6 N p.0 n R N O r1 6-.'0 6rs n N n co a p DETENTION POND a 20867 o N o 78587 83228 I ELEV. 00.0L05 00. — N01 5072.00 o h 5074.00 I 8 ri Val 8 •0 Val 8 r N 5078.00 STAGE -DISCHARGE • vu g 0 8 8 0 0 , O o N 00 6O oop 10 a, r co p0 'a Z -a ORIFICE 100 Year cfs : a 4 v i L. j `^A i ii, N 6wia N 6.28 6.88 - In m ea c I CRATE (i.e., CDOT Inlet, Type C) 00 c 4u O U N p O r77 p ma ldG.oa aNr 100 year (Orifice How) cfs N-10 R n — n•- N p O i r O ea mZj Z s rs T.i 8 3 _ 01 O N O N — R p COi Np N nen N N n N "'a 'a 1 2 O o `u i 1 2 1 2 2 i 2 1 U ° (✓ In o g o - 1= - 8 pi n N r N 8 r1 8 a 8 N N lc 8 1c 8 r W U y O O 0 0 N i Ny n 0 00ZL05 N 0 N 5072.50 5073.00 15074.00 O 0 N N 0 N O 0 N O 0 N N 0 Z Z I0-year Volume= I0-year Surface= 0 0 10-year Tatal Volume•= ?5.i995 =r00 45 DRAINAGE CRITERIA MANUAL (V. 3) EXTENDED DETENTION BASINS 17I 6.5 Design Procedure and Criteria The following steps outline the design procedure and criteria for an extended detention basin, 1. Basin Storage Volume Provide a storage volume equal to 120 percent of the WQCV based on a 40-hour drain time. above the lowest outlet (i.e., perforation) in the basin. The additional 20 percent of storage volume provides for sediment accumulation and the resultant loss in storage volume. u. ? e.z }. 5� ac . A. Determine the WQCV percent imperviousness. Account for the effects of DCA on Effective Imperviousness used to find WQVC. Basil I v,pef-vi4°15ness: �9 `r' Using Figure ND-XX. determine the reduction in impervious area to use with WQCV calculations. B. Find the required storage volume (watershed inches of runoff): Determine the Required WQCV (watershed inches of runoff) using Figure EDB-2, based on the extended detention basin 40-hour drain time. Des3•3. `Jo;•:vr,e = (0.15yqt.57)1.2 i2 = 0.75 Calculate the Design Volume in acre-feet as follows: 1/CV Design Volume * Area1.2 12 In which: Area 1.2 factor = The watershed area tributary to the extended detention pond = Multiplier of 1.2 to account for the additional 20% of required storage for sediment accumulation 2. Outlet Works The Outlet Works for an extended detention basin are to be designed to release the WQCV over a 40-hour period, with no more than 50 percent of the WQCV being released in 12 hours. Refer to the typical details section for schematics pertaining to structure geometry; grates, trash racks, and screens: outlet type: orifice plate or perforated riser pipe: perforation data (perforated riser pipe); cutoff collar size and location; and all other necessary components. If a perforated riser pipe is desired, use Figure EDB-3 to calculate the required area per row based on WQCV. See the corresponding table in the typical details section to determine the appropriate perforation geometry. 3. Trash Rack Provide a trash rack of sufficient size to prevent clogging of the primary water quality outlet that also does not interfere with the hydraulic capacity of the outlet. See Figure EDB-.t for details. 4• Basin Shape Shape the pond with a gradual expansion from the inlet and a gradual contraction toward the outlet, thereby limiting short circuiting. The basin length to width ratio between the inlet and the outlet should be no less than 2:1, with a ratio of 3:1 being preferred. It may be necessary to modify the inlet and outlet points through the use of pipes. swales or channels to accomplish this. X-X-98 Urban Grainage anc Flooa c.ontrci [Distract JENIH /D;/vcp ' -r 1s94 DC 0.50 0.45 0.40 H 0.35 m � � s � ' n • 0.30 — WQCV=a70.9113-1.1512+0.781) -13 6-hr drain time a = 0.7 0.25 err 0.20 V 0.18 k 0.15 !Extended Detention Basin i 140-hour Drain Time 0.10 0.05 0.00 2-hr drain time a = 0.8 24-hr drain time a = 0.9 40-hr drain time a = 1.0 Constructed Wetland Basin 24-hour Drain Time / Retention Pond 12-hour Drain Time Porous Pavement or Landscape Detention 6-hour Drain Time 0.39 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Total Imperviousness Ratio (i = I,rg1100) Figure EDB-2. Water Quality Capture Volume (WQCV), 80th Percentile Runoff Event DRAINAGE CRITERIA MANUAL (V. 3) STRUCTURAL BMPs 10 6. 4. 2. o I 0.6 m 0.40 - 0.2 J a C 0.10 0.06 0.04 0.02 0.01 0 0 0 EXAMPLE: Dm) = 4.5 ft WQCV = 2.1 acre-feet SOLUTION: Required Area per Row = 1.75 in.2 A AOPr ,, A/°. . s O2Q o i Qr CZ n7 nnw nnc. m ... .Go 0,40 0.60 Required Area per Row (in. Source: Douglas County Storm Drainage and Technical Crirena. 1926. t;R-, FIGURE.5-a- WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME 1.0 2.0 4 0 6 0 -3. 20 41.1/ro v1 Orifice Perforation Details WCancrete - W Plate _g, Circular: W Ptote. - n x 4" • 8" W tair n - • of columns of circular perforations P Rectangular: WPlate width of rectangular perforation • 12" O 0 O 0 O 0 O o O 0 O 0 0 O 0 O 0 O 0 O 0 0 0 O 0 0 0 O 00 O 00 00 0 00 O 00 O 00 °000° O 00 O 00 0 • 0 o = o C= O © 0 O 0 0 o = o Permanent Water Surface ` xy" +8•. 12" Allowable Perforation Patterns Note: The goal in designing the outlet is to minimize the number of columns of perforations that will drain the WoCV in the desired time. Do not, however, increase the diameter of circular perforations or the height of the rectangular perforations beyond 2 inches. Use the allowed perforation shapes and configurations shown above along with Figure 5 to determine the pattern that provides an area per row closest to that required without exceeding it. Urban Drainage and Flood Control District Drainage Criteria Manual (V.3) Figure 4 Orifice Details for Draining WoCV Orifice Plate Perforation Sizing Por c 1 "ircular Perforation Sizing Chart may be applied to orifice plate or vertical pipe outlet. Hole Dia (in) Hole Area (sq in) Area per Row n-1 n-2 n-3 1/4 0.250 0:05 0.10 0.15 5/s 0.313 0.08 0.15 0.23 3%8 0.375 0.11 0.22 0.33 %s 0.438 0.15 0.30 0.45 1/2 0.500 0.20 0.39 0.59 9/6 0.563 0.25 0.50 0.75 s/e 0.625 0.31 0.61 0.92 'Yi& 0.688 0.37 0.74 1.11 74 0.750 0.44 0.88 1.33 7/s 0.875 0.60 1.20 1.80 1 1.000 0.79 1.57 2.36 11/8 1.125 0.99 1.99 2.98 11/4 1.250 1.23 2.45 3.68 1% 1.375 1.48 2.97 4.45 11/2 1.500 1.77 3.53 5.30 1% 1.625 2.07 4.15 6.22 174 1.750 2.41 4.81 7.22 7. 1.875 2.76 5.52 8.28 Ile 14 - = -.4 n-Number of columns of perforations Minimum steel plate thickness 1 I/4" gg,� 716 " I % AYrrea pe'� ravv : �.2Q ;., \C r -;vrc J se colvaln jf 2" If the required area can not be obtained using three columns of circular perforations, use rectangular perforations. Rectangular Perforation Sizing Only one column of rectangular perforations allowed. Rectangular Height - 2 inches Required Area per Row (sq in) Rectangular Width (inches) 2" Rect. Width Min. Steel Thickness ` 5" '/4" 6" '/4„ 7" 5/S „ 8" 5A6„ 9" '%z„ 10" %.. >10" i/2„ Urban Drainage and Flood Control District Drainage Criterio Manual (V.3) Figure 5 Orifice Plate Perforation Sizing v CALes Ir') aPPEkJ o 2 - o .v M1 - _ 6 r. M1 a o d 1 h 4. ..�./ II it II I1 II rt II tl d Y = u U n1U1.7(7C Ii(R /A7'I[1N !oven Oul (I l - ti C- jv 11 II I� 11 11 II Il II _ O s 3 8 8= M o - O v J v v n _ - -00 0 0 0 _ , 0 0 — SWMM Model Input Y, n ri rt - t`: - t _ T S s it > ' - x r; _ L 7 p Z c O. CUMM. VOLUME ac-It 0 o Cs ri - o0 ri - co -r m ri is P 6; r ri vi as - - x 'Q 7 N K 2 c 2 M T t` m INCREM. VOLUME ft' co e 0' 0 n 00 , — - 130933 x _ Zu O Z O AREA ft2 5203 -r 2.-n r.i 02 y1 77408 o O — n - _ i8 N 1272(10 10L4f1 n T 0._ T i - ELEV. c C N 0 O o VI 0 - o 0 ri a .1 0 0 v1 0 0 �. e 0 'n o .� n 0 r o 33 ad 'n STAGE-DISCIIARCE • j ' E- a o L 0.00 0.00 .o r s c' c- - CA7 LT. Y O 1- } 0 5. L . u r.-. .c r, r;o a Q c r c O _ -. - - CRATE (i.e., CDOT Inlet, Type C) c ' .LT- 7 O h v01 ml0 J n N A R w to 7 Y J 'n n1 a — n Ni co m m 100 year (Mir Flu..) cfs o O m c M1 r 779.86 1540.76 m• O N a _ a La U z O o - - - I.'.1 O r ;n ? 0 ... - 0 ri o ri c r� 0 V 5.00 S a 2 r" r n 8 m c r = � 8 o 'n h 8 '8 r 0 '8 .n 8 0 h 8 8' v1 o 0 v1 8 8 .n. 8 8 .n 0 8 .n 8 v1 8 v1 < C z z zz T — Water Quality Volume= 0 ., weir or orifice) z — rcoo,15 DRAINAGE CRITERIA MANUAL (V. 3) EXTENDED DETENTION BASINS Po z 6.5 Design Procedure and Criteria The following steps outline the design procedure and criteria for an extended detention basin. 1. Basin Storage Volume Provide a storage volume equal to 120 percent of the WQCV based on a 40-hour drain time. above the lowest outlet (i.e., perforation) in the basin. The additional 20 percent of storage volume provides for sediment accumulation and the resultant loss in storage volume. 3,1°/a \A1QCV = o.1 Vo1,ti 0.0 � `0 2 . 15 )1. 2 }esiar f '. E - I �j0 ac -=f A. Determine the WQCV percent imperviousness. Account for the effects of DCIA on Effective Imperviousness used to find WQVC. Using Figure ND-XX, determine the reduction in impervious area to use with WQCV calculations. B. Find the required storage volume (watershed inches of runoff): Determine the Required WQCV (watershed inches of runoff) using Figure EDB-2, based on the extended detention basin 40-hour drain time. Calculate the Design Volume in acre-feet as follows: Design Volume = (W QCV * Area * 1.2 12 In which: Area = The watershed area tributary to the extended detention pond 1.2 factor = Multiplier 'of 1.2 to account for the additional 20% of required storage for sediment accumulation 2. Outlet Works The Outlet Works for an extended detention basin are to be designed to release the WQCV over a 40-hour period, with no more than 50 percent of the WQCV being released in 12 hours. Refer to the typical details section for schematics pertaining to structure geometry; grates, trash racks, and screens; outlet type: orifice plate or perforated riser pipe; perforation data (perforated riser pipe); cutoff collar size and location; and all other necessary components. If a perforated riser pipe is desired, use Figure EDB-3 to calculate the required area per row based on WOCV. See the corresponding table in the typical details section to determine the appropriate perforation geometry. 3. Trash Rack Provide a trash rack of sufficient size to prevent clogging of the primary water quality outlet that also does not interfere with the hydraulic capacity of the outlet. See Figure EDB-4 for details. 4. Basin Shape Shape the pond with a gradual expansion from the inlet and a gradual contraction toward the outlet, thereby limiting short circuiting. The basin length to width ratio between the inlet and the outlet should be no less than 2:1, with a ratio of 3:1 being preferred. It may be necessary to modify the inlet and outlet points through the use of pipes, swales or channels to accomplish this. X-X-98 Urban Drainage and Flooa k_:dntrol District OEiWN:/D'LWGRD L sea-ooc 0.50 0.45 0.40 0.35 a) .c c.) •E• 0.30 a) 02 0.25 0 20 c.) o.r-1 0.15 0.10 0.05 0.00 • . , : • . 1Extended Detention Basin :. 140-hour Drain Time i • 1 I , Constructed Wetland Basin 24-hour Drain Time WQCV=a*(0.91i3•-1.19i2 6-hr 12-hr — 24-hr ! ;/: . +0.781) drain time a = 0.7 drain time a = 0.8 drain time a = 0.9 drain time a = 1.0 1 / / . / , . ! . ! / 40-hr : • • Retention Pond 12-hour Drain Time —ailiabk._ • Porous Pavement or Landscape Detention 6-hour Drain Time . , ,•• I I ! . . . : I • . . . o3Li 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Total Imperviousness Ratio (i = /,,,q//00) Figure EDB-2. Water Quality Capture Volume (WQCV), 80th Percentile Runoff Event DRAINAGE CRITERIA MANUAL (V. 3) STRUCTURAL BMPs 10. 6. 4. 2. m 0.60 m 0.40 E 0.20 U >. 0 m 0.10 3 0.06 0.04 0.02 0.01 0 WQCV = 2.1 acre-feet EXAMPLE: 04y0 = 4.5 ft/0 SOLUTION: Required Area per Row = 1.75 in.2 ;7r—"r-- o� 1 OJT a o `off co f 1/ Ad '`ham 0/' r 0.20 0.40 0.60 1 0 Required Area per Row (in.2) Source: Douglas County Storm Drainage and Technical Criteria. 1986. R- FIGURES-2r- WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME 9-i-1992 0.04 0.06 0.10 2.0 40 60 • - 2.90 in. draw UDFC;, Orifice Perforation Details r W Plate (see below) WCancrete. W Plate _8 H wQCv = 2 .08' t O l o� O 10 Permanent Water Surface Circular w Plate ' n x 4" • 8" WPiafe ' I" -I" x a " .12" n - • of columns- of circular perforations Rectangular: W Rate - width of rectangular perforation • 12" O 0 O 0 0 0 O 0 0 0 0 0 O 0 O 0 O 0 O ,0 O 0 0 0 O 0 O 0 O 0 0 0 O 0 O 0 O 0 O 0 O 00 O 00 00000 000 O 00 °ooa° O 00 000 O 0 O 0 O 0 0 0 = o 0 Q 0 = 0 Allowable Perforation Patterns Note: The goal in designing the outlet is to minimize the number of columns of perforations that will drab: the WOCV in the desired time. Do not. however, increase the diameter of circular perforations or the height of the rectangular perforations beyond 2 inches. Use the allowed perforation shapes and configurations shown above along with Figure 5 to determine the pattern that provides an area per row closest to that required without exceeding it. Urban Drainage and Flood Control District Drainage Criteria Manual (V.3) Figure 4 Orifice Details for Draining WOCV Orifice Plate Perforation Sizing r' n # 2 ,ircular Perforation Sizing Chart may be applied to orifice plate or vertical pipe outlet. Hole Dia (in) Hole Area (sq in) Area per Row n-1 n-2 n-3 1/4 0.250 0.05 0.10 0.15 V/6 0.313 0.08 0.15 0.23 3/g 0.375 0.11 0.22 0.33 %6 0.438 0.15 0.30 0.45 %2 0.500 0.20 0.39 0.59 9/6 0.563 0.25 0.50 0.75 Ye 0.625 0.31 0.61 0.92 11/16 0.688 0.37 0.74 1.11 74 0.750 0.44 0.88 1.33 Ye _ 0.875 0.60 1.20 1.80 1 1.000 0.79 1.57 2.36 1�/8 1.125 0.99 1.99 2.98 11/4 1.250 1.23 2.45 3.68 13/g 1.375 1.48 2.97 4.45 11/2 1.500 1.77 3.53 5.30 1% 1.625 2.07 4.15 6.22 1)4 1.750 2.41 ' 4.81 7.22 1 % 1.875 2.76 5.52 _ 8. 8. 2 , 2.000 3.14 6.28 9.42 n-Number• of columns of perforations Minimum steel plate thickness 1/4"6 Vi " 3/$" Area Der row : 2.90 r Use 1 colv4v/ 17/a 0 1r.i1 If the required area can not be obtained using three columns of circular perforations, use rectangular perforations. Rectangular Perforation Sizing Only one column of rectangular perforations allowed. Rectangular Height - 2 inches Required Areo per Row (sq in) Rectangular Width (inches) - 2" Rect. Width Min. Steel Thickness 5" 1/4„ 6" 1/4„ 7" 5/32 " 8„ 5/6 " 9" ,y32 ,t • 10" 3/8„ >10" i/2„ Urban Drainage and Flood Control District Drainage Criterio Manual (V.3) Figure 5 Orifice Plate Perforation Sizing De --Fe +10 �, Patna #'3 (Tewtp, SUBJJEECT b coo4 fOB NO. DESIGNED BY 6-6.-Oo DATE CHECKED BY TEMP A9 A init 3 T &v G D e p t k ;or 01, - - 1 O O r. S-fo r-wA _ BQsi+n For ; c= 9.65 ccc100- A = 0.3o c>_c . (0.41)(0, gr) 0.,_45 Q.c-. O. 9 o a-c - s9 Da Pt- V '45 �v (3 )(q5)_ �+ ov4) (s4) 3q, ash -q3 p,g0:a-41 I Detention Pond Depth Gauge The gauge shall be constructed of pressure treated square pasts measuring 6" x 8" with both 8" sides routed with 6" numbers and gauging marks. (see detail below.) The routed markings and numbers shall be painted with white waterproof paint The post shall be one foot taller than the maximum depth of the pond. The post shall be embedded in concrete with a dimension of 16" x 14" by 3' in depth. The gauge shall be placed near the deepest area of the pond, and shall be positioned so that it can be read from the nearest point of public acre« The ponding depth shall be referenced to the ri'rwct mint r,f tha wit fe��gs'st t A.C'ekit. D-31 DETENTION POND #1 DETENTION POND #2 ■ E Y O N D ENGINEERING 432 5. LINK LANE PLAZA FORT COLLINS, CO. 80524 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM LEGEND X.` MAJOR WATERSHED PIPE ROUTING ELEMENT DETENTION FACILITY Ridgewood Hills P.U. D. - Filing 3 SWMM SCHEMATIC DIAGRAM SHEET NUMBER 1 PREPARED FOR: Melody Homes DATE SUBMITTED: 4/20/99 JOB NUMBER FC0045 XREFS: BASE 11 afkoIoNeord *Or rI 1 '• 1 it \; s �- �P..��-: /r r e • I • MN.�Nw.wwNwwiH"M.�_N NO�E S■ Y O N D ■ N O I N■■ R I N O 432 S. UNK LANE PLAZA FORT COLLINS, CO. 80524 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM Ridgewood Hills P.U.D. - Filing 3 SWMM BASINS TEMPORARY DRAINAGE OF PHASE 3 SHEET NUMBER 1 1 SHEETS PREPARED FOR: Melody Homes DATE SUBMITTED: JOB NUMBER FC0045 SWMM Input Data - Pond #1 Project#: FC0045 Project Name: Rideewood Hills P.U.D. Filing #3 Calculated By: HHF Total Impervious Basin Area Area Impervious Composite "C" 100 Length Slope 909 150 2.00% 910 911 Width 912 1696 913 Length Slope 110 150 2.00% 900 901 Width 902 4135 903 904 905 906 907 908 Length Slope 130 200 2.00% 914 922 " Width 923 2863 925 1005 1006 Length Slope 150 150 2.00% 919 920 Width 921 2426 924 926 ac. ac 2.06 0.63 0.31 0.47 1.43 0.57 0.40 0.53 0.63 0.31 0.49 0.59 1.24 0.42 0.34 0.49 0.48 0.26 0.54 0.63 5.84 2.19 37% 2.78 0.98 0.35 0.50 2.36 1.09 0.46 0.57 0.68 0.30 0.44 0.56 0.55 0.30 0.56 0.64 0.87 0.45 0.51 0.61 0.88 0.45 0.51 0.60 2.94 0.88 0.30 0.46 2.78 0.92 0.33 0.48 0.40 0.11 0.28 0.44 14.24 5.48 38% 1.11 0.51 0.46 0.57 0.61 0.40 0.65 0.70 1.41 0.67 0.48 0.58 7.86 3.93 0.50 0.70 1.63 0.47 0.29 0.45 0.52 0.25 0.47 0.58 13.14 6.22 47% 0.48 0.40 0.83 0.83 2.01 0.79 0.39 0.52 1.96 0.60 0.31 0.46 0.64 0.42 0.65 0.71 3.26 0.28 0.08 0.31 -8.35 Conveyance Elements 2.48 30% Size Length Slope in ft % 10 30 365 1.50 11 Direct Connection Element 12 42 1055 1.20 13 Direct Connection Element 14 42 500 6.50 15 Direct Connection Element 16* 21 100 1.00 *Pond Outfall to existing 21" RCP in Shenandoah P.U.D. Filing No. 1 Pon8 . 2 2 1 1 2 0 LAXFALL Tk R.o u- 3 4 Q?FI PtATIE WATERSHED 0 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event 50 0 0 5. 1 1 1 24 5. 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 00 * • Basin 100 (909,910,911,912 & 913) 1 100 10 1696 5.8 37. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 110 (900, 901, 902, 903, 904, 905, 906, 907 & 908) 1 110 11 4135 14.2 38. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 130 (914,922,923,925,1005 & 1006) 1 130 13 2863 13.1 47. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 150 (919,920,921,924 & 926) 1 150 15 2426 8.3 30. .02 .016 .25 .1 .30 .51 0.5 0.0018 * ############################ END OF WATERSHED DATA ####################### 0 0 Conveyance element 10 draining Basin 100 10 12 0 2 2.50 365. 0.015 0. 0. 0.013 2.50 Conveyance element 11 draining Basin 110 11 12 0 3 Conveyance element 12 combines flows from 10 & 11 12 14 0 2 3.5 1055 0.012 0. 0. 0.013 3.50 Conveyance element 13 draining Basin 130 13 14 0 3 Conveyance element 14 combines flows from 12 & 13 14 1 0 2 3.5 500 0.065 0. 0. 0.013 3.50 Conveyance element 15 draining Basin 150 15 1 0 3 0 1 16 6 2 .1 1. 0.0001 0. 0. 0.016 .1 0.0 0.0 0.20 0.32 1.30 6.BB 2.69 7.95 4.24 8.89 6.30 ' 9.94 Conveyance element 16 draining Pond #1 16 0 0 2 1.75 100. 0.01 0. 0. 0.013 1.75 * ############################ END OF CONVEYANCE DATA ###################### * 0 -1 1 ENDPROGRAM �w tij tt D ENVIRONMENTAL PROTECTION AGENCY U Z METCALF + EDDY, DEVELOPED BY UNIVERSITY OF FLORIDA (SEPTEMBER 1970) UPDATED BY OF ENGINEERS HYDROLOGIC ENGINEERING JULY 1985) ✓ 0 m BOYLE ENGINEERING CORPORATION (MARCH ASSIGNMENTS 0 0 .! E. - O O g '3 0 v) Z Z O E O H 0 0 yr m m_ E. ZO E.o QO ', 0 aU h 0 . z r- zo Fo H a 7 O 0 0 rn E. H O E. O Q O h 0 U h o Z Z O E- O h 0 h N c - c E. w 0 0 O P "D 0 U h O Z 1-4 N N E. h 0 U h CO Z M Z - N F M 0 h 0 h WATERSHED *** ENTRY MADE TO RUNOFF MODEL *** u1 (MINUTES) INTERVAL 1'.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH WO H E. 0000 Ci a W W CO CO x CC - r, r. rI ▪ 0000 Z>• 0 0 0 0 U WE.] F0 d g 5 Z£ 0 0 0 0 O u) Hi•u)u) Z E H £ HE a O H £ r•I .-I .-I .-I v, N z x ▪ a > Z0 0 0 0 OL O 0 CD CD lD v W m M M M H N W a 0 0 H • W > W0000 W W 0 0 0 0 N G' U a H rV rl H CL H cC a>0000 0 1L ,n ul In In c E W N N N N O N U a CC � CL W U • Z > W O HWHHHH F O - V) a 0 0 0 0 0 0 o M Dx O- H£• 2 O H H CC to W £ W CC a 0 o CO • W W E. - 0 0 0 0 Ia= OCu0000 U OW O� N N N N Z OM a E 0 0 0 0 H U) M H Z H a )•• a E. • a 'W • O 1) wa0000 in WE co W N C U W r- W r 0 0 C %U) .ovH 0 0.'aMM4TM a• O Z H a W£ a H x -4 a H HI C• W a M v, 'M £ a H a CP <HW N •HM M E W. C WU C W z --I o: r.0 In v pi W -,1 W H vON H a •aH N. .1 ., W (..1 I £ cC I U) x—Oo o 02U a• •. E. E. • U a W 0 ❑E,kr)u)M.)E— ❑ E. H vD) M.D N a • CO 02.1 3 .DHIWaUKC oL W wc,cr. • C r,v'NN o7 W C .] W 6.WN a a) W aC WI) am > a ma > Ho Z -- 4 F gt0•-I MIn 0 1 •H.I 34 W x 0 0 E x O a alum) �W awom •0C/) d' C7 COC 0 0 £H 0 NZ . D N N O • 0 W O• - 3 4 a Z E 3 u •-, 0 1 W Cx al 1 tfo 4M0000<.< bo W W -.Io m i0HM,i'1 E F -.1 CD 00 o:•i 00HH.i.400 - o:••i W W M Z HE *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** 0 0 0 r M o 0 0. .-, .o .i 0 c co vl -1 N o r1 N m U z RAINFALL INFILTRATION (INCHES) WATERSHED OUTFLOW (INCHES) SURFACE STORAGE AT END OF STROM (INCHES) IN CONTINUITY, PERCENTAGE OF RAINFALL a a a .� a F F E- E. 0 0 0 0 W h W CC x U F U) LL W Z W 0 0 Z z Z H 0 W W> 00 a E. W H ❑a HO 0x W E a WO wa >cn z 7-I x E. X Z w £ xH F ❑ 0 H CC Z 0 z ❑ Z ❑ • • C a a) > W N W E-r H E. ,4� Cal x 0 Tsco O• 3 a >+ c4 Q, 1 Do E .• 0 0 Filing 3 (Pond #1) 0000000 0 - 0000000 E. 41 0 In o In O r-1 w • N O M O M O r -+ • -iM--I M-i VD M -•1 O ri O --I O -4 CT H Z 0 0 0 O 0 0 O • O O O O O O O o CO 0 0 0 O O 0 O a a 0 CO E. 000000^1 0 1.. 41--N.-141-•-o ro --+o-iCwoo •-- F 0000000 NO 0. . . . . . . --•a•00-i d. U 4 -i 1n o M rl N M C' i 00000 00000 00000 00000 0 0 0 0 0 • 0 Cs 0 0 0 0 0 0 0 -i .-I iD 0000 W 0 0 0 0 0 a KC a CO a 0 H W00000 C4 '+ CO T co 0 O KC W 1n 0000 F 0 0 0 0 0 O x H .... a 0a m 0 H x z E.00000 F.0 0 CO -i W 0 x .•-I c m 0000 - InD U)000--I 010 0 CO -i U O W C. O N 0 •O Cn -.1 M o Ir) ,,C,,,C,H H L. E.,-I+ 0 ozoa HC7 W E. o v1 E. 0 £ W H O 1n o 1n o I11 o .- O . co0 0 0 0 O 0 ▪ F u M 0000 0 CEu IN M M 2 -i [.z.7 Z U£ COi] — O W Oct - 00000 W HCL CC CL' EZn`"x H •• W W£ O U a. to W E.O W x M 00000 U W E. W I% E. 0 CO • z CO ❑ C. T CO . i M F C gC Z W N 0000 O E [il HOC� 11-100 HI W Gil Ex] W41 CZ W 00000 2 CD Z a E. U O [ CL CL CL CL Cs CL O H W E z co E H H H .104. (n n4 a o. w Ell•a. W U OOZU ci HCI U - -i 00000 --I m Cs.7 E. 3 U U rZ zQ Q a P. 4k 0 (.11i 0 0 2 L. > z (L z -i 0000 z "O Cn -O Z7 H OHz W H -i H C 01 00000 C Z W W H C7 NMNMNMN Cv O W W 0 1-1 W T W 0 W c07o — a. a.E 4 a,O 2E2U[4SU O• m M (07 aoa0o0 ^•1 O U 001Cil 064H00 • E. l 0 CO CT [o CO W ❑ CO 0 ❑ Cn -• ••• co C- Z E. C H Z -1 M -.i 4 E. •� W 000CncocnCn o oo0O 01 Cn' .-I 0000 00 -i x W W W W W -i HO Cal--i U] CD •.i E MCn FE E. EiE 000000a0 •oa• Cs F 4, Hi••i00000 ZZZ a \ I C+z7 0 1 O a s GZ) D1 Cu W 441 4o10.-+Ma Cs W W 00❑❑❑ 01 co • x E -i -1,-. .--1 W a 0 U 0 0 ❑ ££ co CO CO W F CO W 00 CnH ❑O E. 0 s.+ uC I-i 0 a- F Z Z O O E • C U 0cr. OON. • C U) -i 0000 7 n. 0 01 F -- -i i CL v H CO a •..• N N C Kr HI H 0 O N W V) co W .7 W 3 ra --i r-1 --I '""I CU HI Hi C4 0 .--1 E 0. --1 E 0.. 0 Oa -.1 L1 O --1 C, a x 0 a x 0 W W W +J F w -/ cn z x CO E O W W E 0 N C D 0 E. 0 T E. E. • 0 u 0) CCD ,-, -i -i -i 3 LI 0 04 L1 0 Cx w A C7 0 T W - ri 0 1 Z CT I O O .-1 N M 'o ul .--I lD rj -O O rt 'd O X -i 1-1 r1 1-1 .-1 .1 -•I 0 CO 0 0. -1 0 0 0 0 0 Z E. CONNECTION A H HARG T N F O Ul cr CO r( (D N 1D r- CN o 0 ri O r4 O rr 0 O O O O o o O 0 r+cNrir1Mw a nr r OlD0lrmrnOlr 01 r- 0100O00000OOCOoo0Orno0O00'o CD OD 00'OOCDr-rn en r CO 01 01 01 01 O1 ri Ol rH O rl 01 r-I O r-I 01 ri O rH 0• ri 01 rl 61 r-ICh. r-1 01 ri 01 r-( dl r-i Ol r( T ri rH r( O O O O O O O O O O O O O O O O O O O O O O O O O O O CO CD CI 01000) O CD CD r O 100 .1 Or O N O N OM CD 01 O rl O ef) O O O O to O C O N O O 0 OJ O ID O cr0 e) O C1 O N O N c lO to 0) 0 c 0l C) 0 r Lc) rn N rl rl rV rl rl (') ul N CO N N r- CO 10 Ch C• rl rl p' O el O CO r- 0' r') 01 VD ri CO VD Cr r( C' ra O r O f') rV VD CO r- O010 r- (') O'-4 en 01 N CO CI r- (') O N 0NCN C' '-4 C' 0r'1 O Cl to C) r- f`') r N ON 01 N 01 r-( O ra r rl CO Cr. O N r- r- '1 N N CO r( (') r( r( ri c N (') r r') O CO r- lO 1D (f) Cr r') N rd rM ,4 ry M 1D r') 1D ri CO 10 C' .H rl r( O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C' O Cr 0 01 O CO O O O 0' O 01 0 0' O N O N O N 0 01 O O 0 N O O O VD O tl' O M O 01 O (n O ri O r 0 N O C O M O en O Ul N 01 Ul r O O en - CO VD Cr Cr C) N N N N ri rl r( )D 0 r- 0 0 N rl 01 N N [r O 01 O C' 01 1D M r1 O r N 0 M O CO l0 N 0' Or 10 01M v O d' (') 1D N 010' 0' en ('110 rl u1 D1r 0 C• 1D O l0 r ul O tl' O C' VD C'M C' eti 'ul(' Or"1 CO N O N r N lD r-r u1'--I 1D N O r-i ra O N O N (') rl 10 .--i 01 r4 Cr ri r- N 01 r- ul C' C' (') M M N N r-I rA ri rl v Cr. 0 1D c (") N r-( rl r- O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 O N O O O O O CO O O O.- 4 O VD O v' O VD O 7 O ul O M O O O O O N O CO O (' O M O N O CO O c O O O 1 O O ul O cr C) (") O u1 01 v N N O r, ri N W r( CO V). u') C' M N N N N r( rl r1 rl 01 r- r- c C) N r( ri lO 10 1O l0 r- r') 0 r- N N N (n dl C' r-1 co t0 C' d' (') 0 CO ul N rl 0 01 N Cl r- e' 1O (n 01 CO C) (') O ('1 01 O 0. O N r CP VD O en ul cr )D r'1 O M 0) r') (1 N '1 N O N 01 N 01 N r N ul r, C' ra (\I '1 N r-1 r1 r( r-1 O N Cl 01 N Cl rl r rl O rl N 01 0O c (') N N rl r-1 r( rr ri N N r( rl Cr) U) U) Ul U] U) U] U) N V] 0 y VJ rR U] u) Cr) u) u) u) En U) (/) 4)) ul U) (1) Ul r CO Cl O N C) 0 C) O C' O O W 01 O 01 O r Ul N 0) Ul O Cr • CO N ri OMrl V. r1 CO r Nr r101OON 0 Cr C) 0 r CO 010+-1CON 0'N 01N01e101 N O1N01 N01 N 01 N 01 r-( 01 rl CO r COOO O)r 01 r r-1 CO N CO ,7 • 01 en 61 ei) 01 TY 01 10 01 10 0 'D 01 1D 01 1D 01 1D 01 10 0, l0 O1 l0 01 1D 01 t0 O1 1D 01 10 01 1D OI if) O1 ul en O u7 O ef) O to O ul O ei) O en O efl O e11 0 0' O ei ) O u1 0 )Il 0 u) rl N N r') el Cl" v 1 0' rl ri N N M M C' cr. 0' en ri - N N O 0 0 0 0 0 0 0 0 r-( rl r( rl N N 04 N N N rn 01 0) m co co co c0 r r r- r- r- 0 W O VD al al ul r Ol r 01 r m O Cr. lO 0) 0 m 1fl m tl) m to Ol v' 01 C m G• m 01 Ch(n m O m N m N C) N 01 H m .1 01 ri Ol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m al 01 01 m m m m m m m m rn 01 m rn 01 rn 0' Cr, m O 0 O 0 0 0 0 O O o 0 0 o O o o O O O o 0 N O "A 0 "A O "A 0 ,A O r+ O "A O O O O O O O 0 0 O O O O O O O O O 0 O O O O O O O O 0 0 m N "A O 01 co r r 0 to ul C a• M (`l N N N N N N O. A i( „A C• Tr "A 01 O N O N O N CD ,A CD "A I O ,A O r O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 O O O O O O O 01 O NON O ri CD ,4 O ri 0'101-4 000000000000000000000000000 Lr a' N ri 0 01 m co r 0 1f1 ul ( -) m f"1 N N N N N N.--1 ti O.--I 0.••i0 r-1 O r100000000000000000000000 a KL CC 0 0 0 0 C) C) CD CD0 C) C) CD C) C) CD0 CD C) CD 0 0 E #k N O N 0 N 0 ,. 0 r i 0 r+ O r 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U a (.40 0 Q g • a >+ 0 PI U) x .i m r r (D t0 (1) to C• Q' el CI N N .-4 ri -1 r-1 N H r1 ri Z 0 Q C r i O. H O r H O r, O O O 0 o O O 0 O O O o O O O O O O o O O O O O O O O O O O 0 0 O O 0 W E. r a '.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . £ 0 ri (11 0 E -'i a Q H r. - 1 Cal m cn Cn Ul U) V) U) U) U) U) U) u) CO Ul CO 0) U) U) Cr) U) U) [O UZ 4 E, 0 O O V co r+ al 01 N O 01 M r O Cr r ri al m N O O >-▪ , E. V O J-1 r co N CO r- r 000001I11I) C' to V• ill M d' N d' N Tr ,A m ri m O 0101 N 01 N(O N r r-1 r- r-1 O ri O W z • C Cu CU minrnLc) rnlnmulC1 alsulminmLnminrnl„sulCh ulCRu1chrlmcrnvrncm-Kr CPI crncmrnzc4 > 0ca0 (n W U ..3 CI r•1 co -+ E CO O co .-4 4 Fin• a,0 z O Z H • l Cr) C)>+E 0 o U1 O al O cf) O ul O u'1 O a) 0 U1 0 ul O ) O al CD.7 E. 40 • M Tr Tr ul l ul ri ,A N N el v1 Tr C U1 N ri .-3 H ..1 $ 4 oaa m>, Cs+ H ..] 0 I Cr) FH N Cl " (1 (�'1 In (•1 1n In ▪ (`l In (4) Tr Tr Tr KC () T4 � 0 N N N N N E. UFPG ) 0 .i DETENTION DAMS *** GUTTERS AND A SURCHARGED DETENTION FACILITY U W H Z a W H Lri vl o rn o,00 O., Z Z r1 r'l rn c rncr. m r'e £ H� H F. [L 0 s - O o 0 o O o 0 z W --- o < (7 F Z Z O U tO F3 3 3 0 Z - rn 0 0 0 W a a a Cl)a L 4, W W 0 F F 0 g❑ U O W i] W W W 0t7 - CL a tt cc 0 NFL 2G. •0t.QOQO • E• r-1 `- N Q 0 Ul Z Ft 0 .. .. .. .. .. .. .. .. PROGRAM CALLED POND#1 - CLOGGED OUTLET 2 1 1 2 3 4 WATERSHED 0 Ridgewood Hills P.U.D. Filing 3 (Pond #1) 100-yr. Storm Event 50 .0 0 5. 1 1 1 24 5. 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 00 * * Basin 100 (909,910,911,912 & 913) 1 100 10 1696 5.8 37. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 110(900,901,902,903,904,905,906,907 & 908) 1 110 11 4135 14.2 38. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 130 (914,922,923,925,1005 & 1006) 1 130 13 2863 13.1 47. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 150 (919, 920, 921, 924& 926) 1 150 15 2426 8.3 30. .02 .016 .25 .1 .30 .51 0.5 0.0018 * * ############################ END OF WATERSHED DATA ####################### 0 0 * * Conveyance element 10 draining Basin 100 10 12 0 2 2.50 365. 0.015 0. 0. 0.013 2.50 * Conveyance element 11 draining Basin 110 11 12 0 3 * Conveyance element 12 combines flows from 10 & 11 12 14 0 2 3.5 1055 0.012 0. 0. 0.013) 3.50 * Conveyance element 13 draining Basin 130 13 14 0 3 * Conveyance element 14 combines flows from 12 & 13 14 1 0 2 3.5 500 0.065 0. 0. 0.013 3.50 * Conveyance element 15 draining Basin 150 15 1 0 3 0 1 16 8 2 .1 1. 0.0001 0. 0. 0.016 .1 0.0 0.0 0.20 0.00 1.30 0.00 2.69 0.00 4.24 0.00 5.88 0.00 7.64 0.00 9.49 0.00 * Conveyance element 16 draining Pond #1 16 0 0 2 1.75 100. 0.01 0. 0. 0.013 1.75 * * ############################ END OF CONVEYANCE DATA ###################### * 0 -1 POND#1 - CLOGGED OUTLET ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 (SEPTEMBER 1970) DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) ENGINEERS ENGINEERS (SEPTEMBER 1974) JULY 1985) TAPE OR DISK ASSIGNMENTS JIN (8) 0 HYDROLOGIC ENGINEERING CENTER, CORPS OF MISSOURI RIVER DIVISION, CORPS OF BOYLE ENGINEERING CORPORATION (MARCH 1985, JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT (4 ) 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(5) 3 4 0 0 WATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event NUMBER OF TIME STEPS 50 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 3.72 2.16 1.20 .24 .24 .24 .96 1.44 1.68 1.56 .84 .60 .48 .24 .24 .12 .12 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event 3.00 .36 5.04 9.00 .36 .24 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 100 10 1696.0 5.8 37.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 110 11 4135.0 14.2 38.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 130 13 2863.0 13.1 47.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 150 15 2426.0 8.3 30.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 4 TOTAL TRIBUTARY AREA (ACRES), 41.40 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 41.400 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .510 TOTAL WATERSHED OUTFLOW (INCHES) 2.167 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .213 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT/FT) L R N (FT) WIDTH OR DIAM LENGTH (FT) (FT) 10 12 0 2 PIPE 2.5 365. .0150 .0 .0 .013 2.50 0 11 12 0 3 .0 0. .0010 .0 .0 .001 10.00 0 12 14 0 2 PIPE 3.5 1055. .0120 .0 .0 .013 3.50 0 13 14 0 3 .0 0. .0010 .0 .0 .001 10.00 0 14 1 0 2 PIPE 3.5 500. .0650 .0 .0 .013 3.50 0 15 1 0 3 .0 0. .0010 .0 .0 .001 10.00 0 1 16 8 2 PIPE .1 1. .0001 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 .0 1.3 .0 2.7 .0 4.2 .0 5.9 .0 7.6 .0 9.5 .0 16 0 0 2 PIPE 1.8 100. .0100 .0 .0 .013 1.75 0 TOTAL NUMBER OF GUTTERS/PIPES, 8 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 1 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41.4 10 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 5.8 12 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20.0 14 12 13 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.1 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41.4 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event 0 0 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 8 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 1 10 11 12 13 14 15 16 0 5. .0 .0 .0 ' .0 .0 .0 .0 .0 .00(S) .01( ) .00( ) .01( ) .00( ) .01( ) .00( ) .01( ) 0 10. .0 .0 .0 .0 .0 .0 .0 .0 .00(S) .03( ) .00( ) .03( ) .00( ) .04( ) .00( ) .01( ) 0 15. .0 2.2 5.5 6.2 5.0 8.1 2.8 .0 .05(S) .36( ) .00( ) .56( ) .00( ) .43( .00( ) .01( ) 0 20. ..0 3.7 9.2 12.0 10.0 19.1 4.3 .0 .17(S) .46( ) .00( ) .78( ) .00( ) .65( .00( ) .01( ) 0 25. .0 5.6 14.0 18.6 15.4 30.7 6.6 .0 .39(S) .56( ) . 00 ( ) . 97 ( ) .00( ), . 82 ( ) .00( ) .01( ) 0 30. .0 12.9 32.0 41.3 32.4 62.3 15.9 .0 .82(S) • .86( ) .00( ) 1.48( ) .00( ) 1.18( .00( ) .01( ) 0 35. .0 29.3 72.8 93.8 69.9 137.6 38.0 .0 1.77(S) 1.37( ) .00( ) 2.48( ) .00( ) 1.82( .00( ) .01( ) 0 40. .0 27.8 70.0 100.3 65.8 162.7 38.7 .0 3.07(S) 1.33( ) .00( ) 2.62( ) .00( ) 2.02( .00( ) .01( ) 0 45. .0 16.9 41.1 63.5 37.0 118.8 24.6 .0 4.21(S) 1.00( ) .00( ) 1.91( ) .00( ) 1.67( ) .00( ) .01( ) 0 50. .0 12.9 31.6 46.5 28.5 83.7 19.1 .0 5.04(S) .87( ) .00( ) 1.59( ) .00( ) 1.38( .00( ) .01( ) 0 55. .0 9.2 22.4 33.5 20.9 61.0 13.7 .0 5.63(S) .72( ) .00( ) 1.32( ) .00( ) 1.16( .00( ) .01( ) 1 0. .0 6.8 16.6 24.6 15.5 44.5 10.2 .0 6.06(S) .62( ) .00( ) 1.12( ) .00( ) .99( ) .00( ) .01( ) 1 5. .0 4.8 11.7 17.5 11.2 32.2 7.2 .0 6.38(S) .52( ) .00( ) .94( ) • .00( ) .84( ) .00( ) .01( ) 1 10. .0 3.5 8.5 12.7 8.2 23.3 5.3 .0 6.60(S) .45( ) .00( ) .80( ) .00( ) .71( .00( ) .01( ) 1 15. .0 2.6 6.3 9.4 6.2 17.3 3.9 .0 6.77(S) • .39( ) .00( ) .69( ) .00( ) .61( .00( ) .01( ) 1 20. .0 2.0 5.0 7.0 4.9 13.2 3.1 .0 6.90(S) . 34 ( ) . 00 ( ) .60( ) .00( ) . 54 ( ) .00( ) .01( ) 1 25. .0 1.6 4.0 5.7 4.0 10.3 2 5 .0 6.99(S) .31( ) .00( ) .54( ) .00( ) .48( ) .00( ) .01( ) 1 30. .0 1.3 3.2 4.6 3.2 8.3 2 0 .0 7.07(S) .28( ) .00( ) .49( ) .00( ) .43( .00( ) .01( ) 1 35. .0 1.1 2.8 4.0 2.8 7.1 1.7 .0 7.14(S) .26( ) .00( ) .46( ) .00( ) .40( ) .00( ) .01( ) 1 40. .0 1.0 2.5 3.6 2.6 6.5 1.5 .0 7.19(S) .24( ) .00( ) .43( ) .00( ) .38( ) .00( ) .01( ) 1 45. .0 .9 2.3 3.3 2.4 6.0 1.4 .0 7.25(S) .24( ) .00( ) . 41 ( ) .00( ) •. 37 ( .00( ) .01( ) 1 50. .0 .9 2.2 3.1 2.3 5.5 1.2 .0 7.29(S) .23( ) .00( ) .40( ) .00( ) .36( ) .00( ) .01( ) 1 55. .0 .7 1.8 2.5 1.9 4.7 1.0 .0 7.34(S) .20( ) .00( ) .37( ) .00( ) .33( .00( ) .01( ) 2 0. .0 .5 1.4 2.0 1.5 3.7 .8 .0 7.37(S) . 18 ( ) .00( ) . 32 ( ) .00( ) . 29 ( ) .00( ) .01( ) 2 5. .0 .4 1.0 1.4 1.1 2.8 .6 .0 7.40(S) .15( ) .00( ) .28( ) .00( ) .26( .00( ) .01( ) 2 10. .0 .2 .6 1.0 .7 1.9 .4 .0 7.42(S) .12( ) .00( ) .23( ) .00( ) .21( .00( ) .01( ) 2 15. .0 .2 .5 .7 .5 1.3 .3 .0 7.43(S) .11( ) .00( ) .20( ) .00( ) .18( .00( ) .01( ) 2 20. .0 .1 .4 .6 .4 1.0 .3 .0 7.44(S) .10( ) .00( ) .18( ) .00( ) .16( ) .00( ) .01( ) 2 25. .0 .1 .3 .5 .3 .7 .2 .0 7.45(S) .09( ) .00( ) .16( ) .00( ) .14( .00( ) .01( ) 2 30. .0 .1 .2 .4 .3 .6 .2 .0 7.45(S) .08( ) .00( ) .15( ) .00( ) .13( ) .00( ) .01( ) 2 35. .0 .1 .2 .3 .2 .5 .1 .0 7.46(S) .07( ) .00( ) .14( ) .00( ) .12( .00( ) .01( ) 2 40. .0 .1 .2 .3 .2 .4 .1 .0 7.46(S) .07( ) .00( ) .12( ) .00( ) .11( ) .00( ) .01( ) 2 45. .0 .1 .1 .2 .1 .4 .1 .0 7.46(S) .06( ) .00( ) .11( ) .00( ) .10( ) .00( ) .01( ) 2 50. .0 .0 .1 .2 .1 .3 .1 .0 7.47(S) .06( ) .00( ) .10( ) .00( ) .09( .00( ) .01( ) 2 55. .0 .0 .1 .1 .1 .2 .1 .0 7.47(S) .05( ) .00( ) .09( ) .00( ) .08( .00( ) .01( ) 3 0. .0 .0 .1 .1 .1 .2 .1 .0 7.47(S) .05( ) .00( ) .09( ) .00( ) .07( .00( ) .01( ) 3 5. .0 .0 .0 .1 .1 .2 .0 .0 7.47(S) .04( ) .00( ) .08( ) .00( ) .07( .00( ) .01( ) 3 10. .0 .0 .0 .1 .0 .1 .0 .0 7.47(S) .04( .00( ) .07( .00( ) .06( ) .00( ) .01( ) 3 15. .0 .0 .0 .1 .0 .1 .0 .0 7.47(S) .03( ) .00( ) .06( .00( ) .05( ) .00( ) .01( ) 3 20. .0 .0 .0 .0 .0 .1 .0 .0 7.48(S) .03( ) .00( ) .05( ) .00( ) .05( .00( ) .01( ) 3 25. .0 .0 .0 .0 .0 .1 .0 .0 7.48(S) .02( ) .00( ) .05( ) .00( ) .04( .00( ) .01( ) 3 30. .0 .0 .0 .0 .0 .0 .0 .0 7.48(S) .02( ) .00( ) .04( ) .00( ) .04( ) .00( ) .01( ) 3 35. .0 .0 .0 .0 .0 .0 .0 .0 7.48(S) .01( ) .00( ) .03( ) .00( ) .03( .00( ) .01( ) 3 40. .0 .0 .0 .0 .0 .0 .0 .0 7.48(S) .01( ) .00( ) .03( ) .00( ) .03( .00( ) .01( ) 3 45. .0 .0 .0 .0 .0 .0 .0 .0 7.48(S) .01( ) .00( ) .03( ) .00( ) .02( .00( ) .01( ) 3 50. .0 .0 .0 .0 .0 .0 .0 .0 7.48(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) .01( ) 3 55. .0 .0 .0 .0 .0 .0 .0 .0 7.48(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) .01( ) 4 0. .0 .0 .0 .0 .0 .0 .0 .0 7.48(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) .01( ) 4 5. .0 .0 .0 .0 .0 .0 .0 .0 7.48(S) .01( ) .00( ) .02( ) .00( ) .02( ) .00( ) .01( ) 4 10. .0 .0 .0 .0 .0 .0 .0 .0 7.48(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) .01( ) Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 1:2 .0 .1 7.5:D 4 10. 10:2 29.3 1.4 0 35. 11:3 72.8 (DIRECT FLOW) 0 35. 12:2 100.3 2.6 0 40. 13:3 69.9 (DIRECT FLOW) 0 35. 14:2 162.7 2.0 0 40. 15:3 38.7 (DIRECT FLOW) 0 40. 16:2 .0 .0 1 0. ENDPROGRAM PROGRAM CALLED 2 017 ae Itz Pond N1"- Runoff Modifications for the Temporary Drainage of Phase 3 k \ +1- 50% of total 100-yi. inflow to fond # 1 } ) f f f / f / § ) SWMM Model Input \} N PI Z0000s POND VOLUME 2$fPt / ) ; > , _ , , , , _ CUMM. VOLUME co a — ENCREM. VOLUME ft' ! = ¥ , 47868 E S / G E — \ E E a DETENTION POND 83228 ELEV. I 5073.00 I 5074.00 I STAGE -DISCHARGE ORIFICE 100 Year cfs f 5.26 GRATE (i.e., CDOT Inlet, Type C) l00 year (Orifice Flow) cfs 80.83 100 year (Weir Flow.) cfs I 0.32 10 Year cfs 2.25 OSZLOS 15°73 15077.09 I it > 100-year W.S.E.L.= co ) > } < < < > > el Water Quality Volume= 100.year Surface—, > Tis { *includes WQCV (Water Quality Capture Volume) / . 0 Z vi ) kik u z- z SWMM Input Data - Pond #1` - Runoff Modifications for the Temporary Drainage of Phase 3 Project#: FC0045 Project Name: Ridgewood Hills P.U.D. Filing 43 Calculated By: HHF Total Impervious Basin Area Area Impervious Composite "C" 100 Length Slope 909 150 2.00% 910 911 Width 912 1696 913 Length Slope 110 150 2.00% 900 901 Width 902 4135 903 904 905 906 907 908 Length Slope 130 200 2.00% 914 922 Width 923 2863 925 1005 1006 Length Slope 150 150 2.00% 919 920 Width 921 4911 924 926 915 916 ac. ac 2.06 0.63 0.31 0.47 1.43 0.57 0.40 0.53 0.63 0.31 0.49 0.59 1.24 0.42 0.34 0.49 0.48 0.26 ' 0.54 0.63 5.84 2.19 37% 2.78 0.98 0.35 0.50 2.36 1.09 0.46 0.57 0.68 0.30 0.44 0.56 0.55 0.30 0.56 0.64 0.87 0.45 - 0.51 0.61 0.88 0.45 0.51 0.60 2.94 0.88 0.30 0.46 2.78 0.92 0.33 0.48 0.40 0.11 0.28 0.44 14.24 5.48 •38% 1.11 0.51 0.46 0.57 0.61 0.40 0.65 0.70 1.41 0.67 0.48 0.58 7.86 3.93 0.50 0.70 1.63 0.47 0.29 0.45 0.52 0.25 0.47 0.58 13.14 6.22 47% 1.14 0.55 0.49 0.59 2.01 0.79 0.39 0.52 1.96 0.60 0.31 0.46 0.64 0.42 0.65 0.71 3.26 0.28 0.08 0.31 4.23 1.59 0.38 0.51 3.67 1.68 0.46 0.57 16.91 Conveyance Elements 5.90 35% Size Length Slope in fi 10 30 365 1.50 11 Direct Connection Element 12 42 1055 1.20 13 Direct Connection Element 14 42 500 6.50 15 Direct Connection Element 16* 21 100 ' 1.00 'Pond Outfall to existing 21" RCP in Shenandoah P.U.D. Filing No. 1 XREFS: BASE.dwg... Ly N wa -- W V I P I • •. ; e. • _____,±4,±e: . , , '''-'7±-11-;=.1 ,! 1 , •'_�-, is- _ ^`��_ --- ��� `- `1 1 iL,n —:® }• / I R lr wren/ OC) NO�E R R Y O N D ONGINIIIIRINO 432 S. LINK LANE PLAZA FORT COLLINS, CO. 80524 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM Ridgewood Hills P.U.D. - Filing 3 SWMM BASINS TEMPORARY DRAINAGE OF PHASE 3 SHEET NUMBER 1 1 SHEETS PREPARED FOR: Melody Homes DATE SUBMITTED: JOB NUMBER FC0045 POND#1 TEMPORARY PHASE 3 DRAINAGE 2 1 1 2 3 4 WATERSHED 0 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) 50 0 0 5. 1 1 1 24 5. 0.60 0.96 1.44 1.68 3.00 5.04--9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 * * Basin 100 (909,910,911,912 & 913) 1 100 10 1696 5.8 37. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 110(900,901,902,903,904,905,906,907 & 908) 1 110 11 4135 14.2 38. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 130 (914,922,923,925,1005 & 1006) 1 130 13 2863 13.1 47. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 150 (919, 920, 921, 924, 926, 915, 916) 1 150 15 4911 16.9 35. .02 .016 .25 .1 .30 .51 0.5 0.0018 * ############################ END OF WATERSHED DATA ####################### * 0 0 * Conveyance element 10 draining Basin 100 10 12 0 2 2.50 365. 0.015 0. 0. 0.013 2.50 * Conveyance element 11 draining Basin 110 11 12 0 3 * Conveyance element 12 combines flows from 10 & 11 12 14 0 2 3.5 1055 0.012 0. 0 0.013 3.50 * Conveyance element 13 draining Basin 130 13 14 0 3 * Conveyance element 14 combines flows from 12 & 13 - 14 1 0 2 3.5 500 0.065 0. 0. 0.013 3.50 * Conveyance element 15 draining Basin 150 15 1 0 3 0 1 16 6 2 .1 1. 0.0001 0. 0. 0.016 .1 0.0 0.0 0.20 0.32 1.30 6.44 2.69 7.44 4.24 8.32 7.90 9.95 * Conveyance element 16 draining Pond #1 16 0 0 2 1.75 100. 0.01 0. 0. 0.013 1.75 * * ############################ END OF CONVEYANCE DATA ###################### * 0 -1 1 ENDPROGRAM P0ND##1 TEMPORARY PHASE 3 DRAINAGE ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 (SEPTEMBER 1970) DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) ENGINEERS ENGINEERS (SEPTEMBER 1974) JULY 1985) TAPE OR DISK ASSIGNMENTS HYDROLOGIC ENGINEERING CENTER, CORPS OF MISSOURI RIVER DIVISION, CORPS OF BOYLE ENGINEERING CORPORATION (MARCH 1985, JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 I 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(4) 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(5) 3 4 0 0 WATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) NUMBER OF TIME STEPS 50 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 100 10 1696.0 5.8 37.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 110 11 4135.0 14.2 38.0 .0200 .016 .250 .100 .300 :51 .50 .00180 1 130 13 2863.0 13.1 47.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 150 15 4911.0 16.9 35.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 4 TOTAL TRIBUTARY AREA (ACRES), 50.00 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 50.000 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .509 TOTAL WATERSHED OUTFLOW (INCHES) 2.168 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .213 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT/FT) L R N (FT) WIDTH OR DIAM LENGTH (FT) (FT) 10 12 0 2 PIPE 2.5 365. .0150 .0 .0 .013 2.50 0 11 12 0 3 .0 0. .0010 .0 .0 .001 10.00 0 12 14 0 2 PIPE 3.5 1055. .0120 .0 .0 .013 3.50 0 13 14 0 3 .0 0. .0010 .0 .0 .001 10.00 0 14 1 0 2 PIPE 3.5 500. .0650 .0 .0 .013 3.50 0 15 1 0 3 .0 0. .0010 .0 .0 .001 10.00 0 1 16 6 2 PIPE .1 1. .0001 .0 .0 .016 .100 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 .3 1.3 6.4 2.7 7.4 4.2 8.3 7.9 9.9 16 0 0 2 PIPE 1.8 100. .0100 .0 .0 .013 1.75 0 TOTAL NUMBER OF GUTTERS/PIPES, 8 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 1 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50.0 10 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0. 0 0 0 5.8 12 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20.0 14 12 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.1 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0- 0 0 0 0 50.0 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 8 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 1 10 11 12 13 14 15 16 0 5. .0 .0 .0 .0 .0 .0 .0 .0 .00(S) .01( ) .00( ) .01( ) .00( ) .01( ) .00( ) .01( ) 0 10. .0 .0 .0 .0 .0 .0 .0 .0 .00(S) . 03 ( ) .00( ) .03( ) .00( ) . 04 ( ) .00( ) 01( ) 0 15. .1 2.2 5.5 6.2 5.0 8.1 6.2 .1 .07(S) .36( ) .00( ) .56( ) .00( ) .43( .00( ) .09( ) 0 20. .5 3.7 9.2 12.0 10.0 19.1 10.1 .5 .23(S) .46( ) .00( ) .78( ) .00( ) .65( ) .00( ) .20( ) 0 25. 2.0 5.6 14.0 18.6 15.4 30.7 15.4 1.2 .50(S) . 56 ( ) .00( ) . 97 ( ) . 00 ( ) . 82 ( .00( ) .33( ) 0 30.. 5.0 12.9 32.0 41.3 32.4 62.3 36.0 3.5 1.04(S) .86( ) .00( ) 1.48( ) .00( ) 1.18( .00( ) .56( ) 0 35. 7.1 29.3 72.8 93.8 69.9 137.6 83.1 6.1 2.26(S) 1.37( ) .00( ) 2.48( ) .00( ) 1.82( .00( ) .75( ) 0 40. 8.1 27.8 70.0 100.3 65.8 162.7 81.6 7.6 3.81(S) 1.33( ) .00( ) 2.62( ) .00( ) 2.02( .00( ) .85( ) 0 45. 8.7 16.9 41.1 63.5 37.0 118.8 49.3 8.6 5.06(S) 1.00( ) .00( ) 1.91( ) .00( ) 1.67( .00( ) .92( ) 0 50. 9.1 12.9 31.6 46.5 28.5 83.7 38.1 9.2 5.96(S) .87( ) .00( ) 1.59( ) .00( ) 1.38( .00( ) . 96 ( ) 0 55. 9.4 9.2 22.4 33.5 20.9 61.0 27.1 9.3 6.58(S) .72( ) .00( ) 1.32( ) .00( ) 1.16( .00( ) .96( ) 1 0. 9.6 6.8 16.6 24.6 15.5 44.5 20.1 9.6 7.02(S) .62( ) .00( ) 1.12( ) .00( ) .99( ) .00( ) ' .98( ) 1 5. 9.7 4.8 11.7 17.5 11.2 32.2 14.2 9.6 7.31(S) .52( ) .00( ) . 94 ( ) .00( ) .84( ) .00( ) .98( ) 1 10. 9.8 3.5 8.5 12.7 8.2 23.3 10.3 9.8 7.51(S) .45( ) .00( ) .80( ) .00( ) .71( .00( ) 1.00( ) 1 15. 9.8 2.6 6.3 9.4 6.2 17.3 7.7 9.8 7.63(S) .39( ) .00( ) .69( ) .00( ) .61( ) .00( ) .99( ) 1 20. 9.9 2.0 5.0 7.0 4.9 13.2 6.1 9.9 7.71(S) .34( ) .00( ) .60( ) .00( ) .54( .00( ) 1.00( ) 1 25. 9.9 1.6 4.0 5.7 4.0 10.3 4 8 9 9 7.76(S) .31( ) .00( ) .54( ) .00( ) .48( .00( ) 1.00( ) 1 30. 9.9 1.3 3.2 4.6 3.2 8.3 3.9 9.9 7.78(S) .28( ) .00( ) .49( ) .00( ) .43( .00( ) 1.00( ) 1 35. 9.9 1.1 2.8 4.0 2.8 7.1 3.4 9.9 7.79(S) .26( ) .00( ) .46( ) .00( ) .40( .00( ) 1.00( ) 1 40. 9.9 1.0 2.5 3.6 2.6 6.5 3.0 9.9 7.79(S) .24( ) .00( ) .43( ) .00( ) .38( ) .00( ) 1.00( ) 1 45. 9.9 .9 2.3 3.3 2.4 6.0 2.8 9.9 7.78(S) .24( ) .00( ) .41( ) .00( ) .37( ) .00( ) 1.00( ) 1 50. 9.9 .9 2.2 3.1 2.3 5.5 2.6 9.9 7.77(S) .23( ) .00( ) .40( ) .00( ) .36( ) .00( ) 1.00( ) 1 55. 9.9 .7 1.8 2.5 1.9 4.7 2.1 9.9 7.75(S) .20( ) .00( ) .37( ) .00( ) .33( . 00 ( ) 1.00( ) 2 0. 9.9 .5 1.4 2.0 1.5 3.7 1.6 9.9 7.72(S) .18( ) .00( ) .32( ) .00( ) .29( ) .00( ) 1.00( ) 2 5. 9.9 .4 1.0 1.4 1.1 2.8 1.2 9.8 7.69(S) .15( ) .00( ) .28( ) .00( ) .26( ) .00( ) 1.00( ) 2 10. 9.8 .2 .6 1.0 .7 1.9 .8 9.8 7.64 (S) .12( ) .00( ) .23( ) .00( ) .21( .00( ) 1.00( ) 2 15. 9.8 .2 .5 .7 .5 1.3 .6 9.8 7.59(S) .11( ) .00( ) .20( ) .00( ) .18( ) .00( ) 1.00( ) 2 20. 9.8 .1 .4 .6 .4 1.0 .5 9.8 7.53(S) .10( ) .00( ) .18( ) .00( ) .16( .00( ) 1.00( ) 2 25. 9.8 .1 .3 .5 .3 .7 .4 9.8 7.47(S) .09( ) .00( ) .16( ) .00( ) .14( .00( ) .99( ) 2 30. 9.7 .1 .2 .4 .3 .6 .3 9.7 7.41(S) .08( ) .00( ) .15( ) .00( ) .13( .00( ) .99( ) 2 35. 9.7 .1 .2 .3 .2 .5 .3 9.7 7.35(S) .07( ) .00( ) .14( ) .00( ) .12( .00( ) .99( ) 2 40. 9.7 .1 .2 .3 .2 .4 .2 9.7 7.29(S) .07( ) .00( ) .12( ) .00( ) .11( ) .00( ) .99( ) 2 45. 9.7 .1 .1 .2 .1 .4 .2 9.6 7.23(S) .06( ) .00( ) .11( ) .00( ) .10( .00( ) .99( ) 2 50. 9.6 .0 .1 .2 .1 .3 .1 9.6 7.16(S) .06( ) .00( ) .10( ) .00( ) .09( .00( ) .98( ) 2 55. 9.6 .0 .1 .1 .1 .2 .1 9.6 7.10(S) .05( ) .00( ) .09( ) .00( ) .08( ) .00( ) .98( ) 3 0. 9.6 .0 .1 .1 .1 .2 .1 9.6 7.04(S) .05( ) .00( ) .09( ) .00( ) .07( .00( ) .98( ) 3 5. 9.5 .0 .0 .1 .1 .2 .1 9.5 6.97(S) .04( ) . 00 ( ) . 08 ( ) .00( ) . 07 ( 00( ) .98( ) 3 10. 9.5 .0 .0 .1 .0 .1 1 9.5 6. 91 (S) . 04 ( ) .00( ) .07( ) .00( ) .06( .00( ) . 98 ( ) 3 15. 9.5 .0 .0 .1 .0 .1 0 9.5 6.84(S) .03( ) .00( ) .06( ) .00( ) .05( 00( ) .98( ) 3 20. 9.5 .0 .0 .0 .0 .1 0 9.5 6.78(S) .03( ) .00( ) .05( ) .00( ) .05( 00( ) . 97 ( ) 3 25. 9.4 .0 .0 .0 .0 .1 0 9.4 6.71(S) .02( ) .00( ) .05( ) .00( ) .04( 00( ) .97( ) 3 30. 9.4 .0 .0 .0 .0 .0 0 9.4 6.65(S) .02( ) .00( ) .04( ) .00( ) .04( 00( ) . 97 ( ) 3 35. 9.4 .0 .0 .0 .0 .0 0 9.4 6.59(S) .01( ) .00( ) .03( ) .00( ) .03( .00( ) .97( ) 3 40. 9.3 .0 .0 .0 .0 .0 0 9.3 6.52(S) .01( ) .00( ) .03( ) .00( ) .03( .00( ) .97( ) 3 45. 9.3 .0 .0 .0 .0 .0 0 9.3 6.46(S) .01( ) .00( ) .03( ) .00( ) .02( .00( ) .96( ) 3 50. 9.3 .0 .0 .0 .0 .0 0 9.3 6.39(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) .96( ) 3 55. 9.3 - .0 .0 .0 .0 .0 0 9.3 6.33(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) .96( ) 4 0. 9.2 .0 .0 .0 .0 .0 0 9.2 6.27(S) .O1( ) .00( ) .02( ) .00( ) .02( .00( ) .96( ) 4 5. 9.2 .0 .0 .0 .0 .0 0 9.2 6.20(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) .96( ) 4 10. 9.2 .0 .0 .0 .0 .0 0 9.2 6.14(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) .96( ) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 16 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME_ ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 1:2 9.9 .1 7.8:D 1 35. 10:2 29.3 1.4 0 35. 11:3 72.8 (DIRECT FLOW) 0 35. 12:2 100.3 2.6 0 40. 13:3 69.9 (DIRECT FLOW) 0 35. 14:2 162.7 2.0 0 40. 15:3 83.1 (DIRECT FLOW) 0 35. 16:2 9.9 1.0 1 30. ENDPROGRAM PROGRAM CALLED POND#1 TEMPORARY PHASE 3 DRAINAGE - CLOGGED OUTLET 2 1 1 2 3 4 WATERSHED 0 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) 50 0 0 5. 1 1 1 24 5. 0.60 0:96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 * * Basin 100 (909,910,911,912 & 913) 1 100 10 1696 5.8 37. .02, .016 .25 .1 .30 * Basin 110 (900, 901, 902, 903, 904, 905, 906, 907 & 908) 1 110 11 4135 14.2 38. .02 .016 .25 .1 .30 * Basin 130 (914,922,923,925,1005 & 1006) 1 13013 2863 13.1 47. .02 .016 .25 .1 .30 * Basin 150 (919, 920, 921, 924, 926, 915, 916) 1 150 15 4911 16.9 35. .02 .016 .25 .1 .30 .51 0.5 0.0018 .51 0.5 0.0018 .51 0.5 0.0018 .51 0.5 0.0018 * * ############################ END OF WATERSHED DATA ####################### * * * 0 0 Conveyance element 10 10 12 0 2 * Conveyance element 11 11 12 0 3 * Conveyance element 12 12 14 0 2 * Conveyance element 13 13 14 0 3 * Conveyance element 14 14 1 0 2 * Conveyance element 15 15 1 0 3 0 1 16 8 2 0.0 0.0 0.00 4.24 0.00 0.00 * Conveyance element 16 0 0 2 combines flows 3.5 500 draining Basin draining Basin 2.50 365. 0. 0. 0.013 2.50 draining Basin combines flows from 10 & 11 3.5 1055 0.012 0. 0. 0.013 3.50 draining Basin 130 3 0. 0. 0.013 3.50 .1 1. 0.0001 0. 0. 0.016 .1 0.20 0.00 1.30 0.00 2.69 5.88 0.00 9.49 100 0.015 110 from 12 & 1 0.065 150 0.00 7.64 16 draining Pond #1 1.75 100. 0.01 0. 0. 0.013 1.75 * * ############################ END OF CONVEYANCE DATA ###################### * 0 -1 1 ENDPROGRAM POND #1 TEMPORARY PHASE 3 DRAINAGE - CLOGGED OUTLET ENVIRONMENTALPROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 (SEPTEMBER 1970) DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) ENGINEERS ENGINEERS (SEPTEMBER 1974) JULY 1985) TAPE OR DISK ASSIGNMENTS HYDROLOGIC ENGINEERING CENTER, CORPS OF MISSOURI RIVER DIVISION, CORPS OF BOYLE ENGINEERING CORPORATION (MARCH 1985, JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 . 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(4) • NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(5) 3 4 0 0 WATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) NUMBER OF TIME STEPS 50 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) _ (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 100 10 1696.0 5.8 37.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 110 11 4135.0 14.2 38.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 130 13 2863.0 13.1 47.0 .0200 .016 .250 .100 .300 :51 .50 .00180 1 150 15 4911.0 16.9 35.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 4 TOTAL TRIBUTARY AREA (ACRES), 50.00 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 50.000 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .509 TOTAL WATERSHED OUTFLOW (INCHES) 2.168 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .213 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT/FT) L R N (FT) 10 12 0 2 PIPE .0150 .0 .0 .013 2.50 11 12 0 3 .0010 .0 .0 .001 10.00 12 14 0 2 PIPE .0120 .0 .0 .013 3.50 13 14 0 3 .001.0 .0 .0 .001 10.00 14 1 0 2 PIPE .0650 .0 .0 .013 3.50 15 1 0 3 .0010 0 .0 .001 10.00 1 16 8 2 PIPE .0001 0 .0 .016 .10 0 0 0 0 0 0 0 WIDTH OR DIAM LENGTH (FT) (FT) 2.5 365. .0 0. 3.5 1055. .0 0. 3.5 500. .0 0. .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 0 2 .0 1 3 .0 2.7 0 4.2 .0 5.9 0 7.6 .0 9.5 .0 16 0 0 2 PIPE 1.8 100. .0100 .0 .0 .013 1.75 0 TOTAL NUMBER OF GUTTERS/PIPES, 8 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 1 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0• 0 0 50.0 10 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 5.8 12 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20.0 14 12 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.1 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50.0 Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 8 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 1. 10 11 12 13 14 15 16 0 5. .0 .0 .0 .0 .0 .0 .0 .0 .00(S) .01( ) .00( ) .01( ) .00( ) .01( .00( ) .01( ) 0 10. .0 .0 :0 .0 .0 .0 .0 .0 .00(S) .03( ) .00( ) .03( ) .00( ) .04( .00( ) .01( ) 0 15. .0 2.2 5.5 6.2 5.0 8.1 6.2 .0 1 .07(S) .36( ) .00( ) -.56( ) .00( ) .43( .00( ) .01( ) 0 20. .0 3.7 9.2 12.0 10.0 19.1• 10.1 .0 .23(S) .46( )' .00( ) .78( ) .00( ) .65( ) .00( ) .01( ) 0 25. .0 5.6 14.0 18.6 15.4 30.7 15.4 .0 .51(S) .56( ) .00( ) .97( ) .00( ) .82( .00( ) .01( ) 0 30. .0 12.9 32.0 41.3 32.4 62.3 36.0 .0 1.08(S) .86( ) .00( ) 1.48( ) .00( ) 1.18( .00( ) .01( ) 0 35. .0 29.3 72.8 93.8 69.9 137.6 83.1 .0 2.34(S) 1.37( ) .00( ) 2.48( ) .00( ) 1.82( ) .00( ) .01( ) 0 40. .0 27.8 70.0 100.3 65.8 162.7 81.6 .0 3.94(S) 1.33( ) .00( ) 2.62( ) .00( ) 2.02( .00( ) .01( ) - 0 45. .0 16.9 41.1 63.5 37.0 118.8 49.3 .0 5.25(S) 1.00( ) .00( ) 1.91( ) .00( ) 1.67( .00( ) .01( ) 0 50. .0 12.9 31.6 46.5 28.5 83.7 38.1 .0 6.21(S) .87( ) .00( ) 1.59( ) .00( ) 1.38( ) .00( ) .01( ) 0 55. .0 9.2 22.4 33.5 . 20.9 61.0 27.1 .0 6.89(S) .72( ) .00( ) 1.32( ) .00( ) 1.16( .00( ) .01( ) 1 0. .0 6.8 16.6 24.6 15.5 44.5 20.1 .0 7.39(S) .62( ) .00( ) 1.12( ) .00( ) .99( .00( ) .O1( ) 1 5. .0 4.8 11.7 17.5 11.2 32.2 14.2 .0 7.76(S) .52( ) .00( ) .94( ) .00( ) .84( ) .00( ) .01( ) 1 10. .0 3.5 8.5 12.7 8.2 23.3 10.3 .0 8.02(S) .45( ) .00( ) .80( .00( ) .71( ) .00( ) .01( ) 1 15. .0 2.6 6.3 9.4 6.2 17.3 7.7 .0 8.21(S) .39( ) .00( ) .69( ) .00( ) .61( ) .00( ) .01( ) 1 20. .0 2.0 5.0 7.0 4.9 13.2 6.1 .0 8.36(S) .34( ) .00( ) .60( ) .00( ) .54( .00( ) .01( ) 1 25. .0 1.6 4.0 5.7 4.0 10.3 4.8 .0 8.47(S) .31( ) .00( ) .54( ) .00( ) .48( .00( ) .01( ) 1 30. .0 1.3 3.2 4.6 3.2 8.3 3.9 .0 8.56(S) .28( ) .00( ) .49( ) .00( ) .43( .00( ) .01( ) 1 35. .0 1.1 2.8 4.0 2.8 7.1 3.4 .0 8.64(S) .26( ) .00( ) .46( ) .00( ) .40( .00( ) .01( ) 1 40. .0 1.0 2.5 3.6 2.6 6.5 3.0 .0 8.71(S) .24( ) .00( ) .43( ) .00( ) .38( .00( ) .01( ) 1 45. .0 .9 2.3 3.3 2.4 6.0 2.8 .0 8.77(S) .24( ) .00( ) .41( ) .00( ) .37( ) .00( ) .01( ) 1 50. .0 .9 2.2 3.1 2.3 5.5 2.6 .0 8.83(S) .23( ) .00( ) .40( ) .00( ) .36( .00( ) .01( ) 1 55. .0 .7 1.8 2.5 1.9 4.7 2.1 .0 8.87(S) .20E ) .00( ) .37( ) .00( ) .33( ) .00( ) .01( ) 2 0. .0 .5 1.4 2.0 1.5 3.7 1.6 .0 8.91(S) .18( ) .00( ) .32( ) .00( ) .29( .00( ) .O1( ) 2 5. .0 .4 1.0 1.4 1.1 2.8 1.2 :0 8.95(S) .15( ) .00( ) .28( ) .00( ) .26( .00( ) .01( ) 2 10. .0 .2 .6 1.0 .7 1.9 .8 .0 8.97(S) .12( ) .00( ) .23( ) .00( ) .21( .00( ) .01( ) 2 15. .0 .2 .5 .7 .5 1.3 .6 .0 8.98(S) .11( ) .00( ) .20( ) .00( ) .18( ) .00( ) .01( ) 2 20. .0 .1 .4 .6 .4 1.0 .5 .0 8.99(S) .10( ) .00( ) .18( ) .00( ) .16( .00( ) .01( ) 2 25. .0 .1 .3 .5 .3 .7 .4 .0 9.00(S) .09( ) .00( ) .16( ) .00( ) .14( ) 00( ) .01( ) 2 30. .0 .1 .2 .4 .3 .6 .3 .0 9.01(S) .08( ) .00( ) .15( ) .00( ) .13( .00( ) .01( ) 2 35. .0 .1 .2 .3 .2 .5 .3 .0 9.01(S) .07( ) .00( ) .14( ) .00( ) .12( 00( ) .01( ) 2 40. .0 .1 .2 .3 .2 .4 .2 .0 9.02(S) .07( ) .00( ) .12( ) .00( ) .11( .00( ) .01( ) 2 45. .0 .1 .1 .2 .1 .4 .2 .0 9.02(S) .06( ) .00( ) .11( ) .00( ) .10( ) .00( ) .01( )_ 2 50. .0 .0 .1 .2 .1 .3 .1 .0 9.03(S) .06( ) .00( ) .10( ) .00( ) .09( .00( ) - .01( ) 2 55. .0 .0 .1 .1 .1 .2 .1 .0 9.03(S) .05( ) .00( ) .09( ) .00( ) .08( .00( ) .01( ) 3 0. .0 .0 .1 .1 .1 .2 .1 .0 9.03(S) .05( ) .00( ) .09( ) .00( ) .07( .00( ) .01( ) 3 5. .0 .0 .0 .1 .1 .2 1 .0 9.03(S) .04( ) .00( ) .08( ) .00( ) .07( .00( ) .01( ) 3 10. . .0 .0 .0 .1 .0 .1 .1 .0 9.03(S) .04( ) .00( ) .07( ) .00( ) .06( ) .00( ) .01( ) 3 15. .0 .0 - .0 .1 .0 .1 .0 .0 9.03(S) .03( ) .00( ) .06( ) .00( ) .05( ) .00( ) .01( ) 3 20. .0 .0 .0 .0 .0 .1 .0 .0 9.03(S) .03( ) .00( ) .05( ) .00( ) .05( .00( ) .01( ) 3 25. .0 .0 .0 .0 .0 .1 .0 :0 9.04(S) .02( ) .00( ) .05( ) .00( ) .04( .00( ) .01( ) 3 30. .0 .0 .0 .0. .0 .0 .0 .0 9.04(S) .02( ) .00( ) . 04 ( ) .00( ) . 04 ( .00( ) .01( ) 3 35. .0 .0 .0 .0 .0 .0 .0 .0 9.04(S) .01( ) .00( ) .03( ) .00( ) .03( .00( ) .01( ) 3 40. .0 .0 .0 .0 .0 .0 .0 .0 9.04(S) .01( ) .00( ) .03( ) .00( ) .03( ) .00( ) .01( ) 3 45. .0 .0 .0 .0 .0 .0 .0 .0 9.04(S) .01( ) .00( ) .03( ) .00( ) .02( .00( ) .01( ) 3 50. .0 .0 .0 .0 .0 .0 .0 .0 9.04(S) .01( ) .00( ) .02( ) .00( ) .02( ) .00( ) .01( ) 3 55. .0 .0 .0 .0 .0 .0 .0 .0 9.04(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) ..01( ) 4 0. .0 .0 .0 .0 .0 .0 .0 .0 9.04(S) .01( ) .00( ) .02( ) .00( ) .02( ) .00( ) .01( ) 4 5. .0 .0 .0 .0 .0 .0 .0 .0 9.04(S) .01( ) .00( ) .02( ) .00( ) .02( ) .00( ) .01( ) 4 10. .0 '.0 .0 .0 .0 .0 .0 .0 9.04(S) .01( ) .00( ) .02( ) .00( ) .02( .00( ) .01( ) Ridgewood Hills P.U.D. - Filing 3 (Pond #1) 100-yr. Storm Event (April 5, 2000, asg) *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS **" *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/;MIN) 1:2 .0 .1 9.O:D 4 10. 10:2 29.3 1.4 0 35. 11:3 72.8 (DIRECT FLOW) 0 35. 12:2 100.3 2.6 0 40. 13:3 69.9 (DIRECT FLOW) 0 35. 14:2 162.7 2.0 0 40. 15:3 83.1 (DIRECT FLOW) 0 35. 16:2 .0 .0 1 0. ENDPROGRAM PROGRAM CALLED SWMM Input Data - Pond #2 Project*: FC0045 Project Name: Ridgewood Hills P.U.D. Filing 03 Calculated By: HHF Total Impervious % Basin Area Area Impervious Composite "C" 220 Length Slope 803 125 2.00% 804 805 Width 806 7511 807 808 809 809a 810 817 Length Slope 210 125 2.00% 800 801 Wdth 802 6107 811 Length Slope 230 150 2.00% 814 815 Width 816 1511 820 Length Slope 250 125 2.00% 812 813 Width 822 5106 Length Slope 260 125 2.00% 818 819 Width 821 5627 915 916 917 918 ac. ac 1.98 0,70 . 0.36 0.50 2.79 1.16 0.42 0.54 3.32 0.86 0.26 0.43 1.19 0.54 0.46 0.57 2.31 1.34 0.58 0.66 4.09 1.95 0.48 0.58 2.82 0.93 0.33 0.48 1.65 0.83 0.50 0.60 1.99 0.93 0.47 0.58 3.41 0.97 0.28 0.45 28.63 11.65 41% 7.25 1.59 0.22 0.40 2.55 0.99 0.39 0.52 4.68 1.59 0.34 0.49 3.05 1.40 0.46 0.57 17.52 5.56 32% 0.66 0.40 0.61 0,68 0.99 0.57 0.57 0.65 0.64 0.41 0.64 0.70 2.91 1.10 0.38 0.51 5.20 2.48 48% 4.78 1.72 0.36 0.50 0.61 0.49 0.81 0.81 9.26 0.83 0.09 0.31 14.65 3.04 21% 2.51 1.25 0.50 0.60 1.51 0.79 0.52 0.62 5.37 0.39 0.07 0.30 4.23 1.35 0.32 0.47 3.67 1.59 0.43 0.55 1.95 0.85 0.44 0.56 0.57 0.48 0.83 0.83 19.82 Conveyance Elements 6.70 34% Size Length Slope in ft % 20 48 225 5.67 21 24 565 4.30 22 48 575 1.20 23 Direct Connection Element 25 24 65 1.00 26 48 460 27* 24 100 1.00 30 48 205 5.00 f r • Pond Outfall Ridgewood Hills P.U.D. Filing No.3 Pond #2 SWMM Run Free Outfall 2 1 1 2 3 4 WATERSHED 0 Ridgewood Hills P.U.D. - Filing 3 (Pond #2) 100-yr. Storm Event 50 0 0 . 5. 1 1 1 24 5. 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3.72 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.12 0.12 0.00 * Basin 220 (803,804,805,806,807,808,809 & 810) 1 220 22 7511 28.6. 41. .02 .016 .25 .1 * Basin 210 (800,801,802 & 811) 1 210 21 6107 17.5 32. .02 .016 .25 * Basin 230 (814,815,816 & 820) 1 230 23 1511 5.2 48. .02 .016 .25 • Basin 250 (812,813 & 822) 1 250 25 5106 14.7 21. .02 .016 .25 * Basin 260 (818,819,821,915,917 & 918) 1 260 26 5627 16.2 34. .02 .016 .25 2.16 1.56 0.24 0.24 .30 .51 0.5 0.0018 .1 .30 .51 0.5 0.0018 .1 .30 .51 0.5 0.0018 .1 .30 .51 0.5 0.0018 .1 .30 .51 0.5 0.0018 ############################ END OF WATERSHED DATA ####################### Conveyance element 21 21 20 0 2 Conveyance element 22 22 20 0 2 Conveyance element 20 20 30 0 2 Conveyance element 23 23 30 0 3 Conveyance element 30 30 2 0 2 Conveyance element 25 25 2 0 5 * Conveyance element 26 26 0 2 0.0 2 0 2 27 7 2 0.0 draining Basin 210 3.00 565. '0.043 draining Basin 220 5.00 575. 0.012 combines flow from 21 & 4.00 225. 0.057 draining Basin 230 combines flows from 20 5.50 205 0.050 draining Basin 250 3.50 65. 0.010 6.00 65. 0.250 draining Basin 260 3.50 460. 0.02 .1 1. 0.0001 1.40 6.37 8.22 8.55 9.01 11.39 9.73 * Conveyance.element 27 draining Pond #2 0. 0. 0•. 0. 22 0. 0. & 23 0. 0. 0. 0. 5. 5. 0. 0. 0. 0. 3.44 7.36 13.30 10.10 0.013 0.013 0.013 3.00 5.00 4.00 0.013 5.50 0.013 2.50 0.040 .5 0.013 3.50 0.016 .1 5.88 27 0 0 2 2.00 100. 0.01 0. 0. 0.013 2.00 * ############################ END OF CONVEYANCE DATA ###################### * 0 -1 1 ENDPROGRAM. METCALF + EDDY, DEVELOPED BY UNIVERSITY OF FLORIDA UNIVERSITY OF FLORIDA (JUNE 1973) UPDATED BY 1- r rn cn 2 a a w w cn Z U co z 'a G] Is7 w Cv Z O Z V7 Z w w o U 0 cE W a F 0 Z U U z O 0 Z H H V7 a H > W 1-1 z o H z w W > H U IZ H U H o a a o 0 0 ▪ Vl 0 H Z BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) ASSIGNMENTS 6 0 W L, 0 0 ,, F - O a O Z E. H O U h 0 cn h Z Z O E. O H J h 0 co - oo E. Z O F O g O H 0 h 0 U h co Z r r_ Z O E. O H O h 0 M E ' Z O E. O 1 O H 0 h 0 0 h VI z u1 U) Z O E o ri 0 F -CI L.r) Z O E. 0 0 0 h 0 U W h cn Z M VI W O+ F. M r') C 0 3 .rl Z Z O E O W .i I --I H 0 ❑ .- Z h 0 0 r h I O .7 ,.nrt H 0 O O a N CAU Z 4F E+ O O 4-, VI F. ZH E N ri Z�d„• a • G Z Z H 0 a 0 o. ' F - H h 0 U h z ' O E W VI Z -4 W H -.i u E E. S O H N r1 Z +' E. Z D cn 0 Z N F. .-+ ❑ y, 0 [,. H H 0 W cL O • O E4 I-) 0 uxi Z w >, a C' I ' Ls] 0 'D O m W •.-1 0 Z E. a - D Z Z H E. WAT DETENTION DEPTH 0 a C.] N MINUTES 0 0 u-) 0 INTERVAL x 2 CA r, E RAINFALL N CC 0 FOR RAINGAGE NUMBER • P N o lD orn I-, CO 0 0 -E- 0 0 0 0 0 2 A,• CO CO CO CO CO 0 H H Z >- 0 0 0 0 0 — 0 . 4] • 0 a • 0 0 Z E 0 0 0 0 0 O lnln E E a E r-1 H Ail An An H z x H RESISTANCE FACTOR • > 0 0 0 0 0 a 0 0 0 0 0 4] Cn L. . . • > 200000 47 4]-0000HI CL ri H r-• •--I ,--• • H • > 0 0 0 0 0 Cz N U a 0 0 47 N N N N N • > Cn H AD HI HI HI 4] H 0 0 HHI CL 0 0 0 0 0 0 CO F 0 0 0 0 0 Cu 4400000 p F o DI 0 0 0 0 N N a F - _ z> 0 0 0 0 0 -a 41 v 0 0 CO CO C 4]•--1 Nm 1-1N 0 C ‘.D c •--i 0 a 0. a• In c N fn N 0 • • • n, [.] F. a •--• — Cu H N m En 0 M CT FZ — AD 0 N r- N 0' C 0 U C -r1 0' < co r In cr 40 •1-1 C O N r-I Q N ri ri r-1 CO - r-I 4, 2 En 4, .-•1 CO CO I E CC I 2— 0 0 0 0 0 2 U E (. U IC O 2 54 f-- .-1 1 r E -- d H H O O N O L 3 N 0 0 HI •n H AD I< O 4, tD m e • C CP I-1 t.CO N CO 41 • C 61 CO N n, a) 47 0 0' IL a) > a En < > (1) 41 a O In 47 E E--Z 0CC •H-1 E -rl LI E . N •--I Cn •fi '.D rZ .H L 2 0 O E N N N N N C4 E 2 0 t4 C7 CO 0 N o O c 0 0 £ m 0 N 'AO N N 0 • a s 0 . 3 1.1 < ZE, 3 u •--1 a) >, W a Q) >, CT 1 CL` 4] a •-7 CT I -00 cO oo0oo r1 S -0o -r1 O CO 0 N r-I 4-) 0 '.D E-. E. •r1 0 CC e-1 0 o N N N N N O O 0' •••I U) Z E E *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** O O •-1 (0 .-I O O a, tf) H N O N CO An H N 0 WATERSHED AREA (ACRES) TOTAL RAINFALL (INCHES) TOTAL INFILTRATION (INCHES) TOTAL WATERSHED OUTFLOW (INCHES) 4] z a N CA) a z a ▪ C. a - z H 0 E < CL O a .a E In 0 0' Cu 0 C O C7 --I • E 2 Z Cu CO CO U I E CO c4] 4 a n E Cs.1 r N rl x 000000 20 d N•.C•c-ma•,o.I r] CO v' rl N N r•. in Q CD 4 ❑ rn 0 0 0 0 0 0 0 U 000000000 000 O(n an • 0000000 G3 -- (•l (A c 0 (n O :'n c z a 0 0 0 0 0 0 0 x 0 O 0 Z on r1 rn .--1 M M O ('l VD O O O O O O O O r, .--I a• .--I 1. O Z Z 0 0 0 0 0 0 0 0 0 Z 0 E. VD x 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CO 2 > w tn O 0 a a F 41 0 0 0 0 0 0 0 (n 4: N 000000000 KC [,7 H a CA ❑ x .n N O H O U1 0 0 0 0 0 0 0 V7 2 m Gl F 0 0 0 0 0 0 0 0. -1 E 4. G. CO N r r-. 0 0 0 0 0 01 x 0 '• a' r-. .n 0 to .-1 .-f N 0 G) .7 E 0 0 0 0 0 0 0 0 0 vl > CO 2 • Z — S O • E-F (n vl ul O (n (n In 0 .-1 c Z O lD r- N O to lD lD Gl —' ul (i l N N v' 1-- 0 Q ' • -- 0000(n (no (n* zHF > (� .-. ❑ 0 (-1 (9 Tr vl m O rn H Z O w En 0 a > G. x [3 G7 41 W C.3 • 0 W W 0 4, a, a. a O a. 4, H M H H H H 1-4 1 G' Q.a+a. wa a aG7 a� U N z - ri C a+ N N N !'1 N .fl N N 0 Z G7 4, 0 CO rl 0 .-1 E Cn v) C IX v ri Q. H O rl G] -.-1 • 000000 0<-0 • ' a. 4+ Z > rl H a .-5 a. [ ()I cn CO a ❑ . a al Z F 0 j= O F C x H 0 a. U) Czl E. 0 > E-U 0000NN Nr En FL.] N N M M N G. . 2 2 0 .-I O Z .,1 Sa O a x 0 U C7 +a (9 17 U1 E 0 2 0 • as z mil 47 W .7 CP I F 4) r-• N O m O (n lD N 4 Y7 O E E N N N N rl N (V F -.-1 O O 0 0 C4 •0z F ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES >+ a F • 0 0 0 0 0 0 0 2 CO x F 0 0 0 0 0 0 0 N (n VD N N N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O o 0 0 0 0 0 0 0 0 O O O O 0 0 0 0 0 0 0 N 9 CONVEYANCE ELEMENTS •7 U 0000000 C Z W 0 t--. a a 3 4+ — O 4. a 0 0 0 0 0 0 0 r1. a 124 0 w a G. F C F G7 2,4)000000 '•( 2 O N E ta. >a PC x 1 0 Q (n N O O O O (l 0 E. N N N 0 ❑ CO 14 (-1 0 a- E C40.00000 • C (n F r) N N n. 7) H > a Vi 2 E x ..1 u Q a C; 0 2 a-1 V) E. •D C!1 S F N O --1 N LC/ W O 0 4. 2 N N N N N M 0 • 0 , 3 la (1) T C •n 0 •-•1 0 ❑ a .-, >. S cn U DISCHARGE IN THE UPPER FOLLOWING THE LOWER ri c' f-- N M Nl co (0 O N co N V co ND to CO N CO ul CA O O O O r-I O CO M c' (0 CO VD ri 0- t0 M O O ON N 0- C1 m M CV ul O N O N r 6l uaO 7 N ul r- ' r-I c' O c' M \0 0 tO O1 .-'. .-i -' VD N O ri O1 -i O r-1 ri CO ri N O N 0- c' --f O 01 O t` •N M lfl ul N ri ul ri CO ul c' M N ri ri 3 .-+ N N r, -' O a Cu O O O O O O O O O o O O O O O O O O O O O O O r O O O O M O '+ O ul O M O O1 O CO O t0 O 'i O c' O t0 O O O 01 O Ol 0 0 0 0 CD C) CD 0 0 CD C) CD 0 0 0 0 .�. N . O 01 01 01 01 01 dt O O O O O O O O ri .-+ r7 H 0. CO O N c' 01 61 c' t0 01 t0 0 ri O l0 N ri (V r- N 0- (0 M r-1 O CA VD O O O O ri c' 01 ul O I0 co 1-4 10 CO O CO ri v ul N c' O 1• CO O (- Q 40 Cl ul c' c' CO c' C M O fn r- M M M N Cl 00 ❑ S N . . ••••••. . . O CL t0 00 M M r-1 O r-1 O .-f CO r-I VD r-1 ul .-1 co co 01 t0 ul c' M fn N N N .-i r] 0 .-♦ M CO C- C Cl N -4 .-1 U K Z is CC CA o U >^ CC 5 M ul CO C 01 ul CO (0 ul N OD ri a• N N u) 01 m O CO l0 c' (1 to O O O 0 ri c' N u7 ul tO ul .-I O 01 ri 0 \0 tD \0 c' ul .-i N O CO OD M 0- O lD M '.0 N C M c' O1 c' ul M (V M O 01 lD 5 3 CC N . . . . . . . U 0 Cil c' ul co M ri ,-I ri l0 N ul .-I c' '-1 c' '-a co r-1 N 01 O ul c' CO N N N N • 1 Ul a E N l0 1.0 C M N 1--1 r-I HI Cu E. ❑ Z O I0 ri (.7 Cr7 E ❑ u) E Z id F-1 O I4 ri T [ 7 O O O O O O O O O O 0 0 O O O O O O O O O O ❑ Is E M 0 0 0 O M O N O c' O 0) O ri O Co O u1 0 0 0 CO O r O O O 01 O N O N O c' O ri O O O 01 O 01 O CO O N 1-1 ❑ N U Z 1..7 N c' l0 M O r- c' ri r ul c' N N r-1 .--1 r-1 r1 C[J 0 C7 .- M N .-I ri d CC CC x ❑ U m CC E ] c4 U) N VD 0- 01 CD C t0 C M O ul VD O c' M ul CA M CD r- ul c' W N O O .-+ O ri VD CO O ri .-4 tO t0 tO ul el c' O O M VD ul M tO ri 01 01 m CO O I- c' t0 M ul 1` ul T ul ri c' CO c' ul c' N O C.+ 1-1 0 .--I 61 0 r1 VD ri CO N VD N N r-1 M r-1 to 11 M ri M r- M 0 CO VD ul 10 c' c' M 1.. U ❑ w .-i .--1 fn tO c' M O tO m M N ri ri ri r•1 r-1 DETENTION E Z U) E. G. H G. F=. 1 U 1 U 3 U < O Z FL .] H N c' c' c' Is ul M O 1` O ri I� ul ul C- N 0- P N O 61 f Z L.. Z r•1 O O O O ul P VD to 61 tO VD O N r M r O N cT ri c' ON N 1• O l0 ri ul c' c CO c' lO (n lO M N M 0l M l0 N M N 01 1-1 • 0 l0 01 C to ri N r-I ul ri N ri 61 r-I I-- O Cr O r 1n c' (0 CO N N N .-1 F] _a al .-1 M O O C01 M N N ri ri CDCxKCC7 CC E U a O E cn O E. O 1-1 E U) 0 in (o r, ul c' ri 01 l0 Ol 01 c' N CO W C1 M N M VD O tO c' r-1 ri Vl O U7 Ul O O O ri O Cn c' ul r N O ri N c• C1 CO M Ol O c' O CO (n (0 ri 01 01 r CO O r M VD VD ul tO ul r a O c' tO c. c' v M E E E E. co (n (-- c' ..-1 O1 ri CO N I- N CO .-i 0 .- I CO ri ul N Cr CO c' ri 61 CO n N 1/40 O O O O . N (n 0- 10 N I-- r1 CO ID c' M N ri • i ri Z Z Z Z ri N ri ri ❑ 0 ❑ ❑ (11 G O O O VD M C VD l0 O I0 ul M CO tO 01 01 CO N N co N ul t` N O O O O M O 1 -1 N 11l 10) M ri Ol ( CO CO lD O ri CO c' r-1 l0 O O 1.0 01061 M O u) O N O O O O O 01 O 01 O 01 ri N in .-i 1.0 N r m 0 I- Q1 co 61 O S 4--4 Q1 ri Ol N 61 N O N O N O N O N O N O N O N O r-I ri ri ri r-1 r-I ri r I '.4 ri ri ri ri ri ri ri ri ri r 1 .-1 TIME(HR/MIN) ul O u) O ul O ul O ul O ul O ul 0 ul O ul O u) O ul O ul ri ri N N ("3 M c' c' 41 to ri ri N N M M c' 'c' ul ul O 0 O 0 0 0 0 O O O O 0-1 r-1 ri r-I r 1 .-i r-1 r I ri .-i ri ri o) ul --I r- N T r M M C1 01 co r lD ul ul Q' M M N N N N M N M r M M N N N 1D --1 N r-1 r r1 m ti U) r-I ul --I yr O M O N O N O r1 0 -i O -i O -i O O O O O O O 0 O O O O O O O O \0 C M N -i O O ono O O O O O 0 0 0 0 0 0 O 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 01 0 of 0 01 0 01 O 01 0 01 0 01 o m o m o m o oo o m o w O CO Or- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O 0 0 0 0 0 0 0 0 . O 01 0 0 0 O1 01 O 01 0 Cr) O1 O Ol 01 O1 01 -. -i -i H ri 4. ri --r -i OD C• T. e1 C M N ti O 01 CO r 1D O O m M M N M -i .--i 1--1 ri .--I ri N Q• N O N Ul -i ul ri Tr --I M r+ N ti N ri N O --I 0 -i O ti O 41 O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O -•1 -i --1 CO r+ O r r Tr Tr N N O O Co . CO r \D Ul C M N r-I O r-ir, M M N r- N r N till -i m 1--1 M -i M --1 N -4 N -i N --i -4 -i r-1 0 -4 O -i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 --1 O O O O O O O O O O O O O O 0 O O O O O O O 0 O O O O Ul O M O N O 44 O H O 4-1 O -i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 10 O ul --1 0 r- t0 Tr M N -i O Ol CO r O Ul U) v' M M N N N N C 01 M r-I M (" t N O N r -i 10 -i Ul 41 C .--1 01 -i M --I N -i N rt -i 0 -i O 44 O ri O r1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CV CV 44 Ill N O v co .-+ O O 01 op r- l0 1D ul V M 01 N N -i -i --I 4-1 --1 H -i 04 IC) N -+ --1 ul -i ul ti v -+ M• --I N O N 0 N O --I O .-i O .-i O --1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r-1 CO C 01 T• O m VD- M 01 -i rY O 01 O] r- lO ul Q' Q' M M N N N N --1 M O M CO N ul N 7- N M ri O ri r 4-1 r ,--1 ef) -4 v --1 M O M O N O N O .-1 0 --I O -i 0 0 0 0 0 0 0 0 0 0 O O O O 0 0 0 0 to O OC17 Crl Cr) CO rh N CA CA V cf) V) G O CO CI) 41 Cfl CO CO 1D M 01 C' Cl M r -i cr m --I ul CO N u1 CO N u1 CO r-I Ul CO 44 Tr no 01 O O) O O O m O o7 O r O r O 10 O 10 O ul dl Q 01 C 01 M 01 N MN 01 -i 01 O Cl O CO 01 CO CO CO CO m r co lO CO 10 of Ul r N O N O N O N O N O N O N O N O N O N O N Cl N Cl N 01 N 0) N 01 N C1 N 01 N Cl N C1 -1 D1 -i C1 4-1 O .-1 01 --r O .-i O r-I 01 rl -4 .-I -i --i --1 -i M -i --1 r/ -i r-I -i ri --i -4 r1 ri -i --1 --I -Y --1 r-1 r1 -i r1 -i O cn O In O u1 O Ul 0 U) O U1 O Ul O U) O ul 0 U) O ul O Ul --I --I N N M M Tr Tr O U1 -i --I N N M M Tr Tr u1 U1 ul N N N N N N N N N N N N M M M M M M M M M M M M C c 0 0 0 0 0 0 r 0 m • 0 0 0 - -1 000 DETENTION FACILITY 0 0 E Q o a o a 0 0 Z O co F1 z w E G1 N N [a] 1--I Z Cl 0 0 0 0 r4 H dl O u-) ul al O uo if, O Ca H Z u'I c M o M C' M an C Z H E. 2 Ft 2 r-10 00000 .-.O cC al Q N E. 2 Lil — O .. r1 a E. i=t 0 E 0 0 0 O [u O L F I G Z O 0 co o [a. CA F S - S 3 a 0 E cn -- 0 0 -- C.] a a M a c,. r.. E-. E. c W 0 000 -.I OO cil.-. 2 2 . ..I Fa 0E .-1crLID H-Cr, H --I ma aL.. 0 •0 Cu 2 E. N .-1 N —N ., N co I VI O m r1 0 L Cr r Q' . C Q 03 X U3 O CO N l0 .—I .--1 l0 O M a U) F al KC fu c-I m r1 7 (0 H L17 U O m r CO O l0 0 0 l0 '-I r1 N Cil 0 0. -- r-i N CO a• Cl l0 0 .-I N r-I . a N r. N 2 O 0 W a u - r.7 (0 U N o v3 ( •• Z F o < •• 0 0 • X Cal D. E• N N N N 0 ul N 0 N -I 3 ,-1 < F C4 Z .. .. .. .. .. .. .. .. .• a) a G] O > al N O r. N re) an l0 r 0 Qa i 0 Z Z Z N N N N N N N f" 1 7 O O Cal c ..1 0 4 0 a .- 4.1 :D G A Ridgewood Hills P.U.D. Filing No.3 Pond #2 SWMM Run Clogged Outlet 2 1 1 2 3 4 WATERSHED 0 Ridgewood Hills P.U.D. - Filing 3 (Pond #2) 100-yr. Storm Event 50 0 0 5. 1- 1 1 24 5. 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 * * Basin 220 (803,804,805,806,807,808,809 & 810) 1 220 22 7511 28.6 41. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 210 (800,801,802 & 811) 1 210 21 6107 17.5 32. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 230 (814,815,816 & 820) 1 230 23 1511 5.2 48. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 250 (812,813 & 822) 1 250 25 5106 14.7 21. .02 .016 .25 .1 .30 .51 0.5 0.0018 * Basin 260 (818,819,821,915,917 & 918) 1 260 26 5627 16.2 34. .02 .016 .25 .1 .30 .51 0.5 0.0018 * ############################ END OF WATERSHED DATA ####################### * 0 0. * * Conveyance element 21 draining Basin 210 21 20 0 2 3.00 565. 0.043 0. 0. 0.013 3.00 * Conveyance element 22 draining Basin 220 22 20 0 2 5.00 575. 0.012 0. 0. 0.013 5.00 * COnveyance element 20 combines flow from 21 & 22 20 30 0 2 4.00 225. 0.057 0. 0. 0.013 4.00 * Conveyance element 23 draining Basin 230 23 30 0 3 * Conveyance element 30 combines flows from 20 & 23 30 2 0 2 5.50 205 0.050 0. 0. 0.013 5.50 * Conveyance element 25 draining Basin 250 25 2 0 5 3.50 65. 0.010 0. 0. 0.013 2.50 6.00 65. 0.250 5. 5. 0.040 .5 * Conveyance element 26 draining Basin 260 26 2 0 2 3.50 460. 0.02 0. 0. 0.013 3.50 0 2 27 10 2 .1 1. 0.0001 0. 0. 0.016 .1 0.0 0.0 1.40 0.00 3.44 0.00 5.88 0.00 8.55 0.00 11.39 0.00 13.30 0.00 15.79 0.00 18.79 0.00 * Conveyance element 27 draining Pond #2 27 0 0 2 2.00 100. 0.01 0. 0. 0.013 2.00 * ############################ END OF CONVEYANCE DATA ###################### * 0 -1 1 ENDPROGRAN VERSION PC.1 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL METCALF + EDDY, INC. DEVELOPED BY UNIVERSITY OF FLORIDA UNIVERSITY OF FLORIDA (JUNE 1973) UPDATED BY HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) ASSIGNMENTS 0 0 H E. •- o _ ▪ O g D z E. H Z U h 0 u, z Cs m Z o E. o H J 0 V co co E. zo E.Hi ago '_) 0 U h En Z h 0 - m E. Z o E. o C o H Z CL h 0 U h Z Lin - • Z O E. O H h 0 N 0 N ak 0 E. D u'1 Z O1-1 a 0 d v O h 0 U a 7 cn 2 ri cn _ w * O) E ▪ M Z 7 .� Z Z o E. o - W ,-1 H H ] 0 0 I w £ hO I-J N N E. Z .-4 E. N d m H Z h 0 U h 0 Z cn Z N E. • H O h 0 h Ea a PROGRAM CALLED WATERSHED *** ENTRY MADE TO RUNOFF o rt o a W • C o 0 Z N 0. (.} H > E� N Eil ✓ E £ E- T O H 14, E. 04 En O • 0 t-+ O ' w o o £ a Z z INTEGRATION CA ▪ 0 c.z1-1 I-I,- W' — E.00000 a CO CO CO CO CO 0 0 0 0 0 Z r 0 0 0 0 0 0 U CO CA E z E o 0 0 0 0 O H n• r n H z• • H E E D ua H tf) tf1 tf) tf) tf1 z x • • ▪ a E z> 0 0 0 0 0 ▪ 0 0 0 0 0 l0 a W f`1 I') f•) M C') r. N W a. • O N 4 0 ff} • > 5 0 0 0 O 0 W W 0 0 0 0 0 N V U a1 rl r-I t-I 1 i I-1 t, N < £ • [a. m a 5> 0 0 0 0 0 O 5 tf) tf) tf) if) tf) O a E W N N N N N N U 5 • FC O) Ev Cal 0 • Z > Cn a Ft a ‘,0 kO to l0 .0 W O E Cal I I I I E O 0 l0 co CL H0 0 H0 H0 H0 D 2 O rn H E Z O H 2 , 5 to W E E f.4 5 a a, W 0 0 O DETENTION IMPERVIOUS AREA HAS 1.0 PERCENT OF LC) S 5 • Ca.00000 O lO O N N N N CV O t`l ,.a E. 0 0 0 0 0 IN N (N >. a E. • at C Z> O O 0 0 0 0 s0 -o ma .o 5 {al E CO CO N C O W HI N W 4-1 N• 0 C W F V) .O m 0 5 (.4 Cr f1 v N r+) N 0 CV z H a W E n. z r. — a. H N --- CO £ • ri fn tll M *-, FL CP Ft -- I.0 tf) N t` N O E. E. , C Tat U C Z •.1 5 Ft co r- tf) tl' to •.i 41 .-. a 0 N Hi 4: N •--I •-I H V) - HI 2 4 a sc. r-I •.i E H ••1 E. 5 • • Ca. Z Cn [a, -1 W W 1 E 5 I CO 2 H 0 0 0 0 0 2 U .•. E. E.• O FL (0 ❑ O Ca. v. I` .•. W r F v ❑ E H v H O HI O N ✓ } 0I 3 If) HI to.-+.O0 FL 0+-t a ,s, v a • c r lD HI cf) 01 CO W C .7 W OmN CL a) W 05 C. N aCI > a u}Ft > C. • 0 HI W W O C., T, .N-I 1a1 Z Z .-I G E Z 0 a r1 E ri ••1 4 E Ft N .•1 (+') tf) ,O 4: -•i 3.4 S W 2 0 O£ N N N N N 5 F 2 0 5 U u 0 W 0 u co cn ,(0 0 o a 0 co 0 Z- 0 N Z CO N N 0 a 5 0 • 34 Fs zF as H a} >, W5 a) >, O, I 5 W 4: ▪ 4: O) I ao <500000 FL FC 'DO 5 5 -ri 0 5£ N .-1 M tf) l0 E• F -.i O O 0 5 H n Z N N N N N 0 0 5 HI I RA *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL 0 0 H CO H 0 0 fT • - N O CV CO • .-I N 0 WATERSHED AREA (ACRES) ' TOTAL RAINFALL (INCHES) TOTAL INFILTRATION (INCHES) • TOTAL WATERSHED OUTFLOW (INCHES) TOTAL SURFACE STORAGE AT END OF STROM (INCHES) ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL N a a O ✓L M CT C - -I ❑ D • c a. v 4 W E 2 O a(0 0 O • a�+ a) >, on 00 ! O aH OVERBANK/SURCHARGE :4 o 0 0 0 0 0 0 O - O O C-J r4 an lO r- N N M U . /-: N l0 r- 00 a' lil N H 0 V' — N r-I H t 0 0 0 0 0 0 0 0 0 0 2— 000000000 0 E. E. 0 0 0 0 ul L) ul ul , -1 0 w 4. 00000000 41 — Cl _l c O ul M M c N O HI 0 0 0 0 0 0 0 0 z Z • in !-1 0 M M Q M t0 CI 4 0 0 0 0 0 0 CD H --� r. - H 0 H H. O H Z Z 0 0 0 0 0 0 0 0 0 O £ 00000000 C a 00000000 0 0 000000000 0 O W > a - . . . . vl 0 09.0000000 D a ul 0 0 H n 0 H( OE- 00000000-4 0 -. w L M N t^ ri 0 0 0 0 0 0 0 0 a O \ c ul O ul H r-1 N O 0 i-] E 000000000 0 0 > 0 4. . . . . Z' CO o 0 0 0 0 0 0 0 a 0 0 u] 4 0 0 0 4 0 0 O TRIBUTARY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H N 0 CO N N N N 2 F CD E. ul ul ul O ul 00 O000 Hi z L. VD r N O UV CD CD • 0 4.1 -- ul ul N N c• 3 1-4 .a 0 a Lu F z Z 0 Q m o 0 00000„0 Ocl Q OOOO uI Lin O ul r-1 • •O E 2 H F >(Mm • Z E. ❑ Lu M ul c' u1 rn lD M < r•1 N L.] O 3 H a a O o 0 0 0 0 0 0 Lil • O a a H 4] w 0 0 3 0 0 0 0 0 0 0 0 0 0 O 0 rn • Z a > rt Lu >+ a E [..2 La] Lil 00000000 > Lil 4] W L.] 43 > 43 0. 47 Id Z waa 11.,w00.,11.4., Cu O- H H H H H H H I v CO H Cn 0 w w n, w w w a. W • • Cu ar-1ul w CD000000o s o H N H N KC a w = Z O U3 O H a CD 0 0 0 0 PI 0 o 0 Z N N N N ul N N N , 0 41 4.1 a, , f.J Z 0 F O O — E H • A, 01 M O \ 10 0 0 0 0 0 0 0 C l 0 a UE ] C Z E C r1 E .-1 a W ri 0 \0 00 00 000 .-1 w H 0 ('l Gil -1 U3 C7 N •-1 0 o 0 0 0 0 0 0 0 0 • • o w 4. E 4. Z .--I > ('1 H Z >' Lil r-1 \ i ‘C un N O O O O O rn fn U1 Z F N N N 43 a C) CJ 0 O a 4] E m Z E-. 2 0 Q H 0 u 0 E. • C 0 a 0 r-I 0 0 0 0 N 0 • C a H 0 w m m E. L' N N Cu Q) W F C7 > 0 > E 0 O000NN N( O U1 W Ln U] 41 F 0 N N 1'l N) N 4. r-1 r-1 z Z 0 .-1 E L+ .-1 E v Z •-1 1•I O --1 L+ 0 a 2 0 a x 0 U W +J F 4] +, co 7:1 Ln Z E 'D O Z 0 [il E N O r-, N ul VD r 0 0 0 0 • Z 0 N N N N N N M 0 • Z 3 La W C7 3 4 Lai Lil a Cr i Z Cr, 1 F- 0 r- N O M 0 sn O N r Q 'O O b O � Z N N N N CI N N N O •a CDa .a CD C7 z F A HYDROGRAPHS ARE LISTED FOR THE FOLLOWING THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER SPILLWAY OUTFLOW. DISCHARGE INCLUDES r-i c r N C'1 01 CO r Cr. N 01 N c CO 10 l0 O CV CO ifl N O O O -. O O CA c 1O r co 10 ra r 10 VI O O O1 N r Ol C rl N en O N CO en r 01 O CO en N V/ r cr r-I c' O C' N 10 0 lD 61 r-i r-1 ,. 10 N O r-I Q1 .--1 O 1, ri ra 00 rr N O N r v' -, 0 01 0] N rl 10 en N '0 ,--. m en V' 01 N . . -i r-I ti ,-i ri N N r-1 .--1 r 4 ry r-I r-I rN '-1 '-1 r-i r-1 r .-- .-- ri ri H ri rl ri 0.1 r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N . . - N c' 01 01 c' '0 01 0 0 r-i 0 lO N rr N r N f en ['1 ry 10 0 0 0 0 r-1 c' 01 en CO r co r-I e0 CO 0 CO r-I c U1 (V v' 0 r CO 0 r c '.0 01 en c c r) c c rl 0 01 r r1 01 th N 2 N . 04 l) O C'1 01 ri CDrr 01 rr COri 10 r4 0ri CO 01 01 0 en Cr 01 C1 N N N rZ r-I f`1 CO r G' r1 N r-I .-1 0 0 9• 2 C1 al CO v Cl en co r en N co ri c N N en 01 c 0 CO l0 en O O C. O ce N in in lO en r-• CO CA r+ O 0 0 LC) c en ri N O CO CO C1 r CO 10 01 In N c 01 c' Cr) c en MI N f') O C4 N 0 CO c In co r1 ri .-1 .-. l0 N en .-1 Cr r-! c r-I CO ri N 01 10 U1 Cr C1 N N N N ,- E-. , E. ....L.....L.0 Crrl N ra z 0 a I -I 0 ❑ E. O U) E E LEI H O 4 H 2 0 O O O 0 0 0 0 O 0 O 0 0 0 0 0 0 0 O 0 0 0 ❑ Cu F PI 0 0 0 o rl 0 N 0 c 0 01 O '--F O rl O en 0 0 0 CO 0 r 0 0 0 01 O N O r 0 C' O r-1 O O O 01 O Ol O O H 0 N U 0' 0 r N C 10 rl 0 r C' r-1 r N c N N .--I ri r l r1 Ct] 0 . m N ri ry a aez Q E z s N tat O Ct] 0: 47 CL m 0 F 0 V) O Cu 4' U) N VD r 01 0 c' l0 c' 01 O en 10 CO c' 01 0 01 CM O r al 0 Z tit] N 0 O r 1 O 7-1 l0 O CO .-1 r-I 0 10 0 ell en c 0 co C1 l0 en C1 a .••I Cr, 01 c CO O r c UO 01 en r Ln Cr) 0 .-'. c' O Cr '0 0 Ca. 1-+ 0 .-1 m 0 r-I 10 r-i CO N 10 N N r-1 rl r-1 In .--I r1 .-I C1 r 't O CO 0 a) in .a., c E.I.... U 0 Cs. .--1 .--i in l0 c rl CO '0 C 01 N -4 r-1 .-i 0: .-1 .- W F Z U) F > Cr... H EL CL Z. 1 0 1 H U 3 U a o z a '0 - H N c c C r en C'1 O r 0 1--1 Cr- en en r N r c N 0 0\ > Z Cs+ Z .-f 0 0 0 O en Cr U) U1 01 10 VD O N r r'1 r O N v r+ c' 01 N r O 10 .--I N c' c' O c VO M l0 01 N 01 01 00 l0 N (" 1 CO ▪ H 0 l0 01 Cr l0 ri r .-1 41 r-1 N '-1 01 ,-1 r 0 c 0 r U1 Cr Ch C.1 N N N FC; tat 0 Cal ry rl O CO eft r1 N N '- ..I. _ 0 4 (, E. F 2 Ft C.) a+0 Fu70 St] E. I-1 F Lt] ❑ V) i7 ❑ V) Z r-I en C' r-1 01 l0 Cr, 01 C' N O 10 01 ▪ N rl 10 0 l0 "Crri O 0 V) (0 N V) 0 0 0 .--1 O O c' en r N CC) r1 N C' 01 CO rl 01 0 Cr l0 co 01 rl r-1 cr.01 r 01 CO O r rl 10 0ill 10 to r c' 10 c' l0 eel. C :IQ GU al Cs] Cal N•Cn E F E. E F O 01 r Cr rY 01 . CO (-4 r N O, r. -1 01 r-1 en N c' • O • C • ri • 01 • CO. • r r 1-1 0 0 0 0 0 N r1 r tD N r .-•'. CO 0 eV CAN .-1 ry r� Z Z Z Z Z ....I N r4 .-I G) Cal La) G] Ca] OF THE FOLLOWING v!1-I CI V) V) CA V) V) V) V) V) V) Ul Cn U) U! U) 0 U) V) V] V) V) LA 0 O 10 C' 1D 0 - en c r o en r-I .-1 ri r c' t0 ri c Vl tP N o 0 0 0 O O 0 N O en O N 0 l0 0 01 O N O ri 0 c' 0 c 0 r-I 0 10 0 01 O N 0 c 0 10 O r 0 0 0 01 0 rl N c r- 010 ri N N N M C`1 C) C1 rl r1 rf .--I ri .-•1 - r-I ri c-1 rl r-i r1 TIME(HR/MIN) en O 111 0 el) 0 al 0 10) 0 en 0 en O en O en 0 al 0 in 0 Cr Cr en efl .-1 r-1 N N M , rl v' v ef1 d O d O O O 0 0 O 0 O r-i rr i-1 ra rr ra r-I ri r 4 ri r-1 {- N 61 r M M .-I ri 01 Q1 co r- LD N to v M M N N N N N M 1` 01 ('1 N N N O --: N -1 11 .-1 CO r-. 1f1 ra 1!1 rl C O M O N O N O rt O r-f O r1 O rl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . C- 1D c M N fr r1 ri ri ri rl --i ri -1 �I -1 rl rl ri — ri rl -i r-1 r♦ r--1 .--I e-1 -i rl rl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O' 0 0 00000000000000000000000000 00000 O co cr rF vl c' M N r-a O 01 co r- 1D N 1 c' M M N .ti r1 -1 .-1 r1 M CO N c N O N ul rr rn 1'1 - N 1-1 N r-I N O r+ O r-i O .-1 O r4 O O O 0 O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c '1 0' -1 O r- r [T r N N O O - CO CO 1- 1D v Cr) N rr O .-+ ri -1• M 1D M 0-1 N C- N {- N >P r4 C .-4 N r-1 N ri N H -4 r4 r-I O 1--1 O 1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 rl O 0 O 0 0 0 0 O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O o O N O u1 O M O N O --I O r-1 O r-I O r-1 O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O 0 0 0 0 0 O c O 1D O 0' N 0' r- VD a' M N r-i O 01 m f� LID V1 ul v M 01 N N N c r v 01 M -i C1 rl N O N N r-i l0 ri to ri c r] 01 rl r, O r1 O rl 0 r1 O rt 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 r- ul N Cr, c M rl 0 01 01 CO 1� 0' lD 0 Cr M M N N rl r1 -i r1 .-1 rl N M N Lr. N r-I ri ul r1 ul ri m r-I M r-I N O N O N O -1 O r1 O r1 O ra 0 0 0 0 0 0 0 0 0 0 0 O O O O O O 0 0 0 0 0 O O r r r .-1 m c 01 c O 00 ma f'-1 M .--I -1 O 01 co r '0 M1 v c' 01 M N N N N ' c' M M O M CO N ul N I` N M r-1 O r-1 r r-I r 1-1 U1 ri c' ri M O M O N O N O rti O r7 O rl O O O O O O O O O O O O O 0 0 0 1D ul M N rl rl rl UI U) U] U] U) (1) U) U) VI VI VI CD VI N U] VI CO U) VI N C/) U) U) N VI C N 0) ',I' CD O N C' 1f1 lD l0 r- r CD CO OD CO 01 0) 01 01 01 tll 01 0) 0) O O ri O rf O N O N O M O M O M O M O M O M O M O M O M O M O M O M O M O M O M O M O M O rl O M O M O M O cr Q' Cr d' Q' Q' Q' Cr V 'F F C ' C' C' a' Q' Q' c' - P Q' v' Q' C' Q' ul O U1 0 u1 O 0' O u7 O ul O ff.) O U1 0 O 0 u1 0 u) O N 0 0 to rl -i N ' N M M C' C' 0 0(1 4 4 N N M 1`1 V' tl' ul 1f1 r-1 N N N N N N N N N N N N M f" 1 M f"1 C`1 M M M M 01 M M c 1 00000 0 0 0 0 0 00000 0 0 0 00000 N N N 0 0 0 0 O DETENTION DAMS SURCHARGED DETENTION. FACILITY IMPLIES Z W H O O fl cI A O u1 .f1 O Z E .-•1 v M f`1 M v M . H \ F a Q' 000000 4-1 0 W O -- -- -- N E Z G] in ▪ H ti a E Q C7 E •• 00000 5 Q Ce+ Tr "C C7 H f� I C Z ' OU o [ W E cC N 3 a. O E cn — 0 _. W a mti3 sz E - H ri C W W 00000 -.i 0 W C • • -+ F C C7 E ti • 0 kD I-1 rl 01 0 , •'f O a 4 W W S F -- N ,--1 N" N '-1 N co Cil CO C C3 M M 0 O .0 M O M O M • C F[ U] W U) O 0 N 1O ri -H \O O rn C. C. C. > u) H W U m f- m O i0 O ..O , , - r. W a a.-N W P M \O W N -I - a. N r. N -{ C f) .+ u 3 r W a o 0 o o>, in CA Ga. • • 2 F O < O 0 O• :4 W >> F N N N N 0 ul N N N H 3 $1 r1 E W Z .. .. .. .. .. .. .. .. .. 41 >+ WO > W N O --. N o o'o r O 0! a+ Z Z E N N N N N N N 0 'D O Ow v a• •.i O 04 C .� W A SURC Appendix E Portions of Final Drainage Report for Shenandoah P.U.D., First Filing, By Northern Engineering Services, Inc. i i i i i 1 i 1 1 i :.nai Drainage Report Shenandoah r-tide June 24. i 9a 7 \orttle:n `.I�'.:t::_ ^�* ..^.Ices. model which includes Subcatchment 55 will not be revised until a specific site plan has been developed for the south :calf of the Shenandoah site. On -site detention is not a requirement in the Fossil Creek Drainage Basin although detention will be provided in both the Northeast corner (Pond 1) and southeast comer (Pond • 18) of the First Filing site to satisfy the 0.19 cfs, acre release rate established by RBD. Inc. (see Section B). Developed stormwater from 6.765 acres (Basins 1.2 & 11) of the First Filing site will be collected. conveyed and detained on -site in Pond 1. In addition. developed stormwater from 6.574 acres (Basins' 13,14,18 & 19) will be detained in Pond 18. The remainder of the First Filing site will drain either to historic basins (Basins 10 & 20= 0.968 ac), the North Louden Ditch (Basin 12= 2.666 ac) or to Benson Lake (Basins' 3-9, 15,16,17 8= = 15.255 acl uncle rained. Stormwater from Basins' 3-9. 15, 16, 17 and 23 •,siIl be undetained and routed to the existing 48" RCP under College Avenue. Developed stormwater will be released to Benson Lake as per agreements coordinated between the City of Fort Collins Stoll/mate:- Utility Department and the developer. An extension of Storm Sewer Line 3 has been provided to the west (along Triangle Drive) to provide service to the future Ridgewood Hills development. Coordination was established between The Sear -Brown Group and Northern Engineering. Services in the design or the proposed extension... Th '�`w- s �T`fie<�a�;mCttin Year=futhrerdesign`' ow�*zozii i a=mood Hills.P.li.D. is limited to 25 cfs; This now has been incorporated into the design of Storm Sewer Line 3 (See Section G). A rating curve for the e:dsring 48" RCP has been generated through the use of the "°HY8" computer program (See Appendix. Section IC). ,Based on the rating curve, with a maximum water surface elevation of 5026.85 (the top of curb elevation in College Ave.), the capacity is estimated to be approximately 228.5 cfs. This will be the. maximum allowable peak :low at this culvert and will in ail likelihood not be reached as a resuit of development. Flows diverted from the North Louden Ditch to the existing forty-eight (48) inch RCP need to be considered also and will be incorporated into the analysis, although they are minor. The estimated maximum irrigation flow diverted down the Benson Lake Inlet Swaie :s approximately 2.8 cfs (see Appendix. Section 0). SWMM gutter number 17 will ser.'e to confirm the peak discharge from :he existing 48" RCP which has been determined to be 129.2 cfs with a corresponding CWSEL = 5021.07. Detention Pond 1 will release stormwater runoff generated from Basins' 1. 2 and 11 to the existing twenty-one (211) inch -RCP storm sewer coming from Pond #39 of Ridgewood Hills P.[..D. First Filing at a :maximum allowable rate of 0.19 cfsiacre or 0.19cfs;acre x 6.765 acres = 1.30 cfs. This release rate s based on a portion of the 2-yr historic flow at the existing 24" RCP as calculated by RED. Inc.(See Appendix. Section B) . The actual release rate determined from SWMM is 1.2 cis with 0.8 ac-ft of storage. Final analysis of the existiri_ 21" storm sewer using the computer model -Storm Sewer Module" by Eaaie Point indicates :t has the capacity to accept this additional release and the J 1 i i t i i i 1 1 FI I.E.: flNth ft O • V - • 1 0 G. _ C. Z. Q. Z. en C. M� N Q_ 0 , rNm t7 -. .J - N N r1 r rn N O V - - C. r " - J - 1 - N r} N C ...3 v r' c.. C. 0 _ O N r•'1 r'1 1 ul LC)in10 .. Cs; -'1 _. r. r. -7 1d 7 _. r. _. u. ., _ .. 1 _. _. L O O C O O N C .O C.- O .1 O 0 C^ -. er C 0 0 C �' N V W O 0 9 -. G Ct - ,f; N 1C r1 C C Cr, O- O r C -- d CT C a 1 0 01 Cr.eT W. - v 1 J V V L -1 Li Li -'1 1 1 L7 1 V 00 r O' O J O O-- O_ ^ C C :. 1 u: -1 -7 -. n L: rLi n 1 -1 1 •1 al al -'7 -1 1 -Z O ^ N CO 4 T N L V ^ C O 1 d 0 0 0 C el- O C 0 0 O O N.• O r N r 1 N 10 rt L7 r1 0 Cr, O - O er T - 01 T p L7 V •J C1 - er 10 .. ,'�1 •• L`S r!S W 0. l0 1 1 1 1 1 1 1 Li ' 1 10 l0 0, 7- 0 0 O O C 0 0 0 O O 0 0 0^ O O O O O C C C Ill r� al al 1 1 1 LV7 ... al al ul 1 Si 1 •_'•1 L: V) 1 CO Q .-. q 01 O V V M O O O - V 01 C 01 - e•. a r1 er - 1 N rn -'1 r O O O O •^ •c- c1 r1 1 O S .M 03 6 N. N .1 M1 r C .. •� 01 - N N r; a T- '� 41 O O 1.1 Lei .1 1 N1 ` 1 L) 'V :J L'1 4 ail 4 N 1 _ 37 41 _I 1 1 ... _ l -4 O T rt O CC X q u7 M v7 N CO N sn N 1 -0N u7 10 r'1 C �1 O� c+ :'l r1 m r1 co -.- N rf R 1 ^ .r N 7 O - N rJ `- V Q1 r1 N C • T 1 1 ul 1 1 1 al -I i 1 t0 0 01 u: 0 0 C C^. O v 0 0 - O 0 7 0 0 O u7 1 1 •_7 17 n _. -Z .1. 1 -^1 -. r. A _. al 1 -.1 U U U UUUUO U - y L N CV N N N N 1/40 T 1 ,.. C C er -r -• , m N- `J N N N N N N N C1 C1 � r 1 r^. O CO r1 r! �. r- Ov O u] G C N- C1 O 1 O C 1 O V r r _1 CJ N ▪ 01 N N J 01 al -r 10 M Ct N J S CO rh r1 7 c0 1 .._ N CO V c1 1 r C. O <' M r1 r- r•1 W CO CO - - -, O C1 - -- 0 V V 10 0. t0 -r , N J 21 r_ O .+'. to 1 1 0 Cr, -7 r` J 4 ^ t0 M V' 'J 0 -r - CJ - u7 N .n © In n al 1 1 0 0 0? 0 0 •-• N N N ^1 c. 1 1 to 1 1_ N N C 1 N r` n V r C T . .� • n1 :h T 1 J r .: C1 N rJ N i • N t\ 1 !• — 1. 11 IV 1 II' 1, 1 1, I ' � 11`! ! 1 Irj 1 1 1 ; ,,1 I I 11 1P II s 1i I !I l1� I i. L 1 II -r,II I 1 1: I I I O 1\ L I I II 10 I i I I ! ! 7 II I1 I . 1, II_ 1 I _t 1 ! ,.6 1 11 , , ' 1 -, 1 I I 1 —! 1! 1 I 1 1 1$ I I 1 1 1 1 1 1 1 1 j 1 I I 1 1 1I I 1 I 1 1 • I \ I \I I 11 1: 1 I = 3 I. k 1 V 1`' I I ,• ! II ,..1 \. ! 1� ! I I l f !1 { I I 1 I} G I I 1 1 1 ` , I1 11s 1 1 ! ' I I 1 1 l I 1 1 1 iU I 1 F T. 1 1 1 1 1 ! 1 l 1. 1 i I I 1 1 V ',' 1 I 1 ! 1, I ! \I ;' 1f I I I 17,1 1 1 1 1 —1 ! 11 1' 1 11 ;I i 11 1- I 1 1 I `-2 111 11 1 k 1; 1 I 1 I I I I I 161 I I i 11 1" i ! 1 I I 1 I r`-)I ‘ i\ I 1\ I\ re I I I I 1 1— 1 \. I 1, 1 1 I\ I I I I I M I 1 1 1 1 O Y, CO CA IA W Y N C ID ,O tL t0 ,O 1!1 0 G G O ,f1 )U0fl12A3j 11 LD Appendix F Plat of Colland Center Third Filing (Sht. 2 of 2)