Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 04/18/2014
II11M1 IJ`J`III CONSULTING ENGINEERS City of Ft. Collins Plans Approved By Date 1 3-i11- .. FINAL DRAINAGE REPORT FOR KECHTER FARM DEVELOPMENT IN LARIMER COUNTY COLORADO FOR TOLL BROTHERS, INC. JANUARY 21,2014 IIR11fAr1 CONSULTING ENGINEERS January 21, 2014 I Ms. Traci Shambo, P.E. Larimer County Engineering Department 200 West Oak Street, Suite 3000 I P.O. Box 1190 Fort Collins, CO 80522 RE: Kechter Farm Development Final Drainage Report JVA Job No. 1844c IDear Traci: JVA, Incorporated 25 Old Town Square Suite 200 Fort Collins, CO 80524 Ph: 970.225.9099 Fax: 970.225.6923 Web site: www.jvajva.com E-mail: info@jvajva.com I The following Final Drainage Report and attached drainage maps have been prepared for the above referenced project. The drainage report and drainage maps have been produced in accordance with the "Larimer County Stormwater Design Standards," updated June I2005, and comply with provisions thereof. It is our understanding that the information provided herein meets all requirements of the ILarimer County's drainage criteria and includes revisions per City of Fort Collins comments dated December 17th, 2013 and Larimer County comments dated December 19`h, 2013. 1 1 Please contact us if you have any questions regarding this submission. Sincerely, JVA, INCORPORATED Chad Cantrell, P.E., CFM Project Engineer 1 ENGINEER'S STATEMENT: 1 hereby certify that this report (plan) for the Final drainage design of Kechter Farm Development was prepared by me (or under my direct supervision) for the owners thereof and meet or exceed the criteria in the Larimer County Stormwater Design Standards. Kevin Tone, P.E., LEED AP Vice President Registered Professional Engineer State of Colorado No. 28699 FINAL DRAINAGE REPORT KECHTER FARM DEVELOPMENT IN LARIMER COUNTY COLORADO FOR TOLL BROTHERS, INC. 10 INVERNESS DRIVE EAST, SUITE 125 ENGLEWOOD, CO 801 12 JVA, Inc. Consulting Engineers 25 Old Town Square Suite 200 (970) 225-9099 Fax (970) 225-6923 JVA Project No. 1844c January 21, 2014 TABLE OF CONTENTS Table of Contents Introduction 1 Historic Drainage 1 Historic (Undeveloped) Drainage Basin 2 Proposed (Developed) Drainage Basin 3 Detention/Water Quality and Storm water Management Plan 9 Stormwater Pollution Prevention 10 Conclusions 10 References 11 APPENDIX A - SITE MAPS AND REFERENCES APPENDIX B - CALCULATIONS APPENDIX B.1 AREA A CALCULATIONS APPENDIX B.2 AREA B CALCULATIONS APPENDIX B.3 AREA C CALCULATIONS APPENDIX B.4 AREA D CALCULATIONS APPENDIX B.5 AREA E CALCULATIONS APPENDIX B.6 HYDRAFLOW CALCULATIONS APPENDIX B.7 CUHP CALCULATIONS APPENDIX B.8 LEVEL SPREADER CALCULATIONS APPENDIX C - FIGURE MAPS FIGURE 1 - HISTORIC DRAINAGE MAP FIGURE 2.0- FIGURE 2.8 - DEVELOPED DRAINAGE MAPS Kechter Farm Development Final Drainage Report FINAL DRAINAGE REPORT INTRODUCTION GENERAL LOCATION AND DESCRIPTION Kechter Farm Communities proposes to construct a new single-family housing development in Larimer County, Colorado. The project site is located in Section 8, Township 6 North, Range 68 West, of the 6th Principal Meridian, Larimer County, State of Colorado. The site is bound to the north by Homestead Pond and single-family residences, to the east by Ziegler Road and Kinard Middle School, to the south by open space and Fossil Creek Reservoir, and to the west by Mail Creek and Westchase developments. The 170-acre site is undeveloped and partially covered by native vegetation and a portion is active farmland. Slopes on site typically vary between approximately 0.5% and 5.0%, with a minimum elevation of around 4883 feet. Runoff flows are split in the middle of the site, with approximately 65 acres flowing to the north and east and the remaining 105 acres flowing to the south and into Fossil Creek Reservoir. The primary purpose of this drainage report is to address the impacts of the site construction, to provide existing and proposed runoff information and to discuss proposed drainage infrastructure and water quality features. Reference is made to the attached developed and historic drainage maps. PROPOSED PROJECT The proposed project includes the construction of 398 single-family and duplex lots, one commercial lot and one recreation center/neighborhood park. Construction of water and sanitary services, fire protection, parking and access drive, drainage infrastructure, water quality features, and sidewalks will also be included with the proposed development. HISTORIC DRAINAGE SITE DRAINAGE AND EXISTING FACILITIES FEMA's Flood Insurance Rate Map Panel Number 08069C0994F, dated December 19, 2006, shows that the site is located within Zone X, which is defined as areas determined to be outside the 0.2% annual chance floodplain. See Appendix A for the associated Firmette. Kechter Farm Development Final Drainage Report 1 U.S. Department of Agriculture, Soil Conservation Service mapping of the area indicates that the soils are predominantly hydrologic soil group C, which are classified as soils having a slow infiltration rate when thoroughly wet. The existing site consists primarily of native vegetation. See Appendix A for NRCS Web Soil Survey. There is a network of irrigation ditches and their laterals running through the site. An existing concrete structure adjacent to Zephyr Road directs irrigation flows from Mail Creek Ditch into two laterals running North and South as well as straight through Mail Creek Ditch. The north irrigation lateral discharges to Homestead Pond while the south irrigation lateral discharges to Fossil Creek Reservoir. Due to the location of Mail Creek Ditch, it will be rerouted and piped through the site. There are no existing detention or water quality facilities located onsite. Runoff from the agricultural land discharges directly into Fossil Creek Reservoir. In the Geologic and Preliminary Geotechnical Investigation for Kechter Farm, produced by CTL Thompson, groundwater was encountered during drilling in eleven borings at depths ranging from 7 to 18 feet and was measured several days after drilling in all borings at depths ranging from 5.5 to 20 feet below ground surface. An underdrain system will be required for all homes with basements as well as below the proposed sanitary sewer system. HISTORIC (UNDEVELOPED) DRAINAGE BASIN Basins H 1-H6 are located inside the Fossil Creek Drainage Basin, as delineated by the City of Fort Collins Stormwater Master Plan. Fossil Creek Drainage Basin drains into Fossil Creek Reservoir and ultimately into the Cache La Poudre River. The Fossil Creek Drainage Basin Map is included in the appendix. Basin H1 has an area of 104.14 acres. Runoff from basin H1 flows offsite directly into Fossil Creek Reservoir. Stormwater runoff flows calculated for this basin are 8.34 cfs for the 2-year minor storm and 363.46 cfs for the 100-year major storm. Basin H2 has an area of 5.62 acres. Runoff flows east off the site and into a roadside ditch in Ziegler Road, eventually outfalling into Fossil Creek Reservoir. Stormwater runoff flows calculated for this basin are 0.45 cfs for the 2-year minor storm and 19.61 cfs for the 100-year major storm. Basin H3 has an area of 12.81 acres. Runoff flows east off the site through a residential property into a roadside ditch in Ziegler Road. Stormwater runoff flows calculated for this basin are 1.03 cfs for the 2-year minor storm and 44.72 cfs for the 100-year major storm. Basin H4 has an area of 4.44 acres. Runoff flows northeast off the site and into an exiting public storm system in Trilby Road, eventually outfalling to Fossil Creek Reservoir. Stormwater runoff flows calculated for this basin are 0.36 cfs for the 2-year minor storm and 15.48 cfs for the 100-year major storm. Basin H5 has an area of 5.16 acres. Runoff flows east off the site and onto the Kinard Middle School property. The existing detention pond at the southeast corner of the Kinard Middle School Property outfalls to the public storm system in Trilby Road. Kechter Farm Development 2 Final Drainage Report Stormwater runoff flows calculated for this basin are 0.41 cfs for the 2-year minor storm and 18.00 cfs for the 100-year major storm. Basin H6 has an area of 27.31 acres. Runoff flows east off the site and onto the Kinard Middle School property. An existing detention pond at the southeast corner of the Kinard Middle School Property outfalls to the public storm system in Trilby Road. Stormwater runoff flows calculated for this basin are 2.19 cfs for the 2-year minor storm and 95.33 cfs for the 100-year major storm. Basin H7 has an area of 7.02 acres and is located in the McClelland's Drainage Basin, as delineated by the City of Fort Collins. The McClelland's Drainage Basin map is included in the appendix. Runoff flows north off the site and into Homestead Pond. Stormwater runoff flows calculated for this basin are 0.56 cfs for the 2-year minor storm and 24.50 cfs for the 100-year major storm. Basin H8 has an area of 1.46 acres and is comprised of area within the intersection and right-of-ways of Trilby Road and Zeigler Road. Basin H8 is similar in shape and size to "Basin OS-5," from the Kinard Middle School drainage report. Runoff flows into an existing inlet in Trilby Road that is directed to the Kinard Middle School detention pond. Stormwater runoff flows calculated for this basin are 1.59 cfs for the 2-year minor storm and 7.08 for the 100-year major storm. Basin H9 is an offsite basin comprised of land within the Kechter Farm Outparcel and within the Fossil Creek Basin. It has an area of 1.55 acres. Runoff flows east into an existing culvert that is piped under Zeigler Road. Stormwater runoff flows calculated for this basin are 0.46 cfs for the 2-year minor storm and 6.01 cfs for the 100-year major storm. Basin H10 is an offsite basin comprised of land within the Kechter Farm Outparcel. It has an area of 7.16 acres. Runoff flows east into a roadside ditch in Ziegler Road, eventually combining with flows from Basin H2 and outfalling into Fossil Creek Reservoir. Stormwater runoff flows calculated for this basin are 1.07 cfs for the 2-year minor storm and 23.70 cfs for the 100-year major storm. Basin OS 1 has an area of 2.75 acres and is located offsite at the northwest corner of the proposed development. Runoff flows to the northeast onto the proposed site and ultimately outfalls to Homestead Pond. Stormwater runoff flows calculated for this basin are 0.22 cfs for the 2-year minor storm and 9.61 cfs for the 100-year major storm. Basin OS 1 is part of the Mail Creek development to the east of the site. In the developed condition, basin OS 1 drains away from Kechter Farm development and into the Mail Creek development so has not been included in the Developed Drainage areas. PROPOSED (DEVELOPED) DRAINAGE BASIN DRAINAGE DESIGN CRITERIA The proposed private storm drainage facilities for the project are designed to comply with the "Larimer County Stormwater Design Standards" Updated June, 2005, and the Urban Drainage and Flood Control District's (UDFCD) Urban Storm Drainage Criteria Manual (USDCM), June 2001, April 2008 Revised Edition, as the secondary reference. Kechter Farm Development 3 Final Drainage Report HYDROLOGIC METHOD AND DESIGN STORM FREQUENCIES The Rational Method (Q=CIA) was used to determine the storm runoff (Q) from the areas tributary to the proposed storm system, with composite runoff coefficients (C) and contributing areas (A) given for design points in sub -basins. The runoff coefficients for various land usages were obtained from USDCM Table RO-3 and Figure RO-3. Intensity -Duration -Frequency Values were calculated using the corresponding storm rainfall depth and USDCM Equation RA-3. To better match the City of Fort Collins' IDF Curve, Coefficient 3 of the UDFCD's intensity formula was adjusted to 0.7867. The City of Fort Collins area has a 2-year 1-hour rainfall depth of 0.82 inches and a 100-year 1- hour rainfall depth of 2.86 inches. These depths do account for the 1997 adjusted rainfall depths. Due to the large overall basin size, Colorado Urban Hydrograph Procedure (CUHP) was used to determine historic and developed runoff rates for the major drainage basins tributary to Fossil Creek Reservoir. The 2, 5, 10, 25, 50, and 100-year hyetographs were taken from Table 4.1 of the Fort Collins amendments to the Urban Drainage and Flood Control District Criteria Manual. Typical depression storage, infiltration rate, and decay rate were taken from the Urban Drainage Storm Criteria Manual. Street and Inlet capacities were determined using UD-Inlet v.3.12, released November, 2012. Weir and swale sizes were determined using Haestad Flowmaster which uses Manning's Equation for pipe calculations. Final pipe sizes, major and minor HGLs, and final pipe velocities were determined using Hydraflow Storm Sewers which uses Manning's and Bernoulli's Equations. ONSITE AND OFFSITE RUNOFF Once developed, the majority of runoff from the site is conveyed to the south towards two water quality level spreaders which outfall to Fossil Creek Reservoir. In order to treat the majority of developed runoff for the site, flow from historic basin H7 will be routed through the proposed storm drain system. This will represent a basin transfer from the McClelland's Basin to the Fossil Creek Basin. Any runoff intercepted by the west irrigation lateral will discharge directly into Fossil Creek Reservoir as well. There will be some runoff that is not conveyed to the water quality level spreaders. In the historic condition, basins H5 and H6 drain onto the adjacent property to the east, Kinard Junior High School. Per the Kinard Junior High School Drainage Report, the existing public storm drain system in Ziegler Road is undersized and can only safely convey the 2-year historic runoff from the proposed Kechter Farm Development. On grade inlets were strategically placed to maximize the amount of flow in the street. Street capacity calculations were used to find the allowable flow in the street, and the storm drain pipes were sized to convey the highest flow captured by the inlet, with overflows from the inlets collected at the next inlet downstream, and sump inlets sized to capture the 100-year storm event runoff. Street, inlet, and pipe capacities are provided in the appendix. Overland relief is provided at these sump conditions in the event of any clogged inlets. Finished floors of proposed residences will sit a minimum of 1 foot above the 100-year flows in the streets. Kechter Farm Development 4 Final Drainage Report PROPOSED SITE BASINS As shown on the attached Developed Drainage Map figures, the entire site was analyzed to determine the proposed runoff from the total developed site area. The proposed site was divided into five major basins (Areas) A, B, C, D, and E. Kechter Farm has four different lot types throughout the site. Type 'A' lots are graded to drain from the back of the lot to the front of the lot at approximately 2.0%. Type `B' lots have a high point in the middle of the lot, with slopes of approximately 2.0% draining to the front and back of lot. Garden and walkout lots also have a high point in the middle of the lot, with a drop of approximately 4 feet and 8 feet, respectively. In locations where the back of a lot drains into another adjacent lot, swales will be utilized to channel flows along the property lines and away from the houses. AREA A BASINS Major Basin A contains 17 sub -basins composed of type 'A', `B', and Garden lots with associated drives, walks, and streets. Basin A drains from west to east and is conveyed to the eastern outfall at the south end of the site. Basins A 1-A7 and A 10 all contain design points with on -grade inlets. Runoff from these basins is routed to the Area A outfall pipe and conveyed to the eastern outfall. Basins A8, A9, and All contain design points with sump inlets, capturing all of the carryover flow from the upstream on -grade inlets A 1-A7, and A 10. Runoff from these basins is routed to the Area A outfall pipe and conveyed to the eastern outfall. Basin A 12 drains offsite onto Kinard Junior High School. In a 100-year storm event, a flow of 0.55 cfs will flow from the Kechter Farm Development onto Kinard Junior High School property, which is less than the allowable rate of 2.60 cfs that drained offsite in the historic 2-year storm event, from historic basins H5 and H6. Basin A 13 contains an on -grade inlet located on Zephyr Road. Runoff captured by Inlet A 13 is conveyed into the Area B outfall pipe and conveyed to the western outfall. Basin A 14 contains an on -grade inlet that collects tributary surface runoff as well as carryover flows from Basin A13 and connects to the Area A outfall pipe and the eastern outfall. Basin A 15 contains an on -grade inlet at the edge of the site. Inlet A 15 is sized to catch the majority of the 100-year surface flows as well as carryover from basin A16. Runoff captured by inlet A15 is conveyed into the Area A outfall pipe. A flow of 0.02 cfs will bypass Inlet A 15 in the 100-year storm event and continue down Zephyr Road towards Ziegler Road. Basin A l 6 contains an on -grade inlet that collects basin runoff as well as carryover flows from basin A14. Runoff captured by Inlet A 16 are conveyed to the Area A outfall pipe and the eastern outfall. Kechter Farm Development 5 Final Drainage Report Basin All is a long narrow basin along the northern property line that sheet flows offsite, in its historic pattern, towards Homestead Pond. AREA B BASINS Major Basin B contains 16 sub -basins composed of type `A', `B', and Garden lots. The majority of flows from Major Basin B are conveyed to the western outfall at the south end of the site. Basin B 1 contains an on -grade inlet that collects tributary basin flows as well as carryover flows from basin B15. Inlet B 1 is connected to the Area A outfall pipe and conveyed to the eastern outfall. Basins B2 and B3 contain on -grade inlets that convey flows to Inlet B5. Inlet B3 collects carryover runoff from Basin B2. Inlet B5 is an on -grade inlet that collects tributary runoff as well as carryover flow from basin, B3. Inlet B5 is conveyed to the Area B outfall pipe and the western outfall. Basin B4 flows are conveyed by curb and gutter in Fish Hawk Court and Eagle Roost Drive towards Basin B 11, where they are captured by Inlet B l l . Basin B5 is conveyed by sheet flow and curb and gutter in Fall Harvest Way to an on - grade inlet B5. Inlet B6 is in a sump condition, collecting tributary runoff as well as carryover flow from basin B 13. Inlet B6 is routed to the Area B outfall pipe and the western outfall. Inlet B7 is in a sump condition, collecting tributary flows as well as carryover flow from Basin B5. Flows are routed to the Area B outfall pipe and discharge at the western outfall. Basins B8-B 11 all contain inlets in a sump condition and are routed to the Area B outfall pipe - Basins B 12-B 13 contain on -grade inlets. Flows captured by these inlets are routed to the Area B outfall pipe. Basin B14 drains to the west and into the irrigation ditch lateral along the western side of the site, which drains into Fossil Creek Reservoir. Basin B 1 5 contains an on -grade inlet that conveys flows to the Area B outfall pipe. Basin B16 contains a sump inlet that sends captured flows into the Area B outfall pipe. AREA C BASINS Major Basin C is divided into 8 sub -basins composed of type 'A', `B', and Garden lots. The majority of Area C is conveyed to the Area A outfall pipe. Kechter Farm Development 6 Final Drainage Report Surface flows from basins Cl-C4 are collected at inlet C4, which is an inlet in a sump condition, and then routed to the Area A outfall pipe. Basin C5 contains an inlet in a sump condition that routes flows to the Area A outfall pipe. Inlet C5 intercepts runoff from basin C5, as well as carryover flows from basin D6. Basin C6 surface flows to Inlet E 10. Basin C7 contains an inlet in a sump condition which conveys flows into the Area A outfall pipe. Basin C8 contains an inlet in a sump condition that conveys flows through the Area E storm infrastructure to the eastern outfall in the south end of the site. AREA D BASINS Major Basin D is divided into 14 sub -basins composed of mainly type 'A' lots, with a portion of type `B' lots. The majority of flows from Area D are conveyed to the Area A outfall pipe and the remaining flows are conveyed to the eastern outfall at the south end of the site. Runoff from Basins D 1-D4 is captured by sump inlets and conveyed through Inlet D4 and into the Area A outfall pipe. Basin D3 includes area that will be developed into commercial properties and receives some runoff from adjacent agricultural property. Basins D5 and D6 runoff is captured by on -grade inlets and conveyed through Inlet D5 and into the Area A outfall pipe. Runoff from basins D6-D10 is captured by on -grade inlets and conveyed to the eastern outfall at the south end of the site through the Area E storm infrastructure. Basin D 11 surface flows offsite and into the ROW on Ziegler Road. Basin D 11 includes some of the new development, existing single-family homes and agricultural property along Ziegler Road. Basin D12 runoff is captured by an on -grade inlet that conveys flows to the Area A outfall pipe. Because basin D12 drains offsite, Inlet D12 has been designed to capture the 100-year storm event. Basin D13 is equivalent to Basin H8 of the historic analysis. Runoff is directed to an existing inlet in Trilby Road. It includes runoff from Trilby Road and Zeigler Road right- of-ways. The Kinard Middle School drainage design had anticipated routed peak flows of 2.95 cfs and 8.97 cfs respectively for the 2-year and 100-year storm events. Calculated peak flows for Basin D13 are expected to be somewhat less than what had been anticipated in the Kinard Middle School drainage report and are therefore considered compatible with Kinard Middle School's drainage design. Kechter Farm Development 7 Final Drainage Report Basin D14 is equivalent to Basin H10 from the historic analysis. Basin D14 is comprised of existing agricultural and single-family home properties that sheet flow to an existing ditch. The runoff is directed to an existing culvert under Ziegler Road. AREA E BASINS Major Basin E is broken up into 21 sub -basins, composed of type 'A', 'B', Garden, and Walkout lots. Flows from Area E are split between the western and eastern outfalls at the end of the site. Basins E1-E5 all contain design points with on -grade inlets. Runoff intercepted by these inlets is conveyed to the western outfall. Basin E6 contains an inlet that captures carryover runoff from basin E1, and carryover runoff from basins E2-E5 are captured by Inlet E7, both of which are in a sump condition. Flows from basins E6 and E7 are discharged to the western outfall. Basin E8 sheet flows to Basin E7 where runoff is intercepted by Inlet E7. The Type R inlet will be in sump condition and connected to the Area B, or western outfall pipe. Basin E9 drains to an on -grade inlet that conveys captured flows to the eastern outfall. Inlet E10 is on -grade, intercepting runoff from basin E10, C6, and carryover runoff from basin D8. These flows are conveyed to the eastern outfall. Basin Ell contains an inlet in a sump condition that captures tributary runoff and carryover flows from basin E9 and conveys them to the eastern outfall. Runoff from basin E 12 and carryover flows from basin El() are collected by Inlet E12, which is in the sump condition, and conveyed to the eastern outfall. Basin E 13 contains sump inlet that conveys flows to the eastern outfall. Runoff from basins E 14-E 17 are collected by inlets in sump and conveyed to the eastern outfall. Basin E16 will be conveyed by sheet flow and swales to basin El6 where storm flows will be intercepted by inlet EIS in a sump condition. Runoff from basins E18-E21 is collected by swales along the backsides of the lots. Basins E18 and El9 are discharged into the western outfall, while basins E20 and E21 are discharged into the eastern outfall. There are two outfall locations for the developed site flows. The majority of runoff from Areas A, C, D, and approximately half of Area E are conveyed to the eastern outfall. The total runoff from these Areas is approximately 300 cfs and 50 cfs that is discharged from the eastern outfall in a 100-year storm event and a 2-year storm event, respectively. Runoff from Area B, approximately half of Area E, and the remaining basins from Areas A, C, and D, a total runoff of approximately 195 cfs in a 100-year storm event and approximately 28 cfs in a 2-year storm event, is conveyed to the western outfall. Rational calculations have been provided in the appendix. Kechter Farm Development 8 Final Drainage Report 1 DETENTION/WATER QUALITY AND STORMWATER MANAGEMENT PLAN CUHP was used to determine the effect of the proposed Kechter Farm development on the Fossil Creek Reservoir. A summary of the CUHP output is outlined in the table below: Return Period (% chance of occurrence/yr) Historic Developed Excess Runoff Volume (Ac-ft) Fossil Creek Reservoir Surface Elev Increase (in) Excess Runoff Volume (Ac-ft) Fossil Creek Reservoir Surface Elev Increase (in) 2-year storm event 0.07 0.00 3.13 0.05 100-year storm event 15.91 0.25 31.42 0.50 Direct runoff from the developed site increases the water surface elevation by a difference of 0.05 inches in the 2-year storm event and 0.50 inches during a 100-year storm event. There is no affect on the hazard rating of Fossil Creek Reservoir in the developed site conditions. The complete CUHP calculations and summary have been provided in the appendix. As there would be a minimal increase in water surface elevations at Fossil Creek Reservoir due to developed conditions, discussions were had with the reservoir owner, North Poudre Irrigation Company, to determine if there was another option other than the standard water quality and detention design. North Poudre Irrigation Company has made the agreement to accept developed, undetained flows into Fossil Creek Reservoir. A level spreader with infiltration bed will be established to provide water quality, as well as spreading out the 100-year runoff in the best attempt to reduce concentrated runoff characteristics and minimize erosion into the reservoir. Two level spreaders are designed to provide water quality at the eastern and western outfalls for runoff from the 2-year storm event and safe discharge of runoff from the 100- year storm event. A concrete structure will distribute runoff to each level spreader based on the length of wall. The level spreaders have been designed to allow 4 inches of overtopping in the 100-year storm event. Due to space constraints on the site, the recommended length for the level spreaders could not be achieved according to USDCM Volume 3. hi order to achieve the desired water quality treatment, the shorter level spreader has been combined with a typical bioretention section behind the spreader. In smaller storm events, runoff will infiltrate the filter media and be conveyed in a perforated pipe system that will outfall downstream of the level spreader into Fossil Creek Reservoir. Larger storm events will pond behind the level spreader, eventually Kechter Fami Development 9 Final Drainage Report overtopping and continuing downstream to Fossil Creek Reservoir. Concrete forebays with dissipater blocks are also being proposed to reduce sediment loading of the bioretention beds. STORMWATER POLLUTION PREVENTION TEMPORARY EROSION CONTROL A temporary erosion control plan is to be implemented for the site during construction. Temporary erosion control measures include, but not are not limited to, slope and swale protection provided by the use of erosion control wattles/sediment control logs, silt fence placed around areas of disturbance, construction vehicle tracking pads at entrances, designated concrete truck washout basins, designated vehicle fueling areas, inlet protection, etc. All temporary erosion control measures are to be removed after they are deemed unnecessary. PERMANENT EROSION CONTROL Permanent erosion control measures include, but are not limited to, the constructed water quality features, riprap pads placed for outlet protection, seeding and mulch placed to enable and establish vegetative growth, etc. Long-term maintenance of these erosion control measures shall be the responsibility of the owner of the property. A general erosion control plan will be included with the Final Development Plan, Utility Plan set and in the appendix of the Final Development Plan Drainage Report. Ultimately before construction of this project, a more detailed erosion control plan will need to be performed within the Stormwater Management Plan that must be submitted to the State of Colorado and Larimer County. CONCLUSIONS This Final Drainage Report for Kechter Farm Development has been prepared to comply with the "Larimer County Stormwater Design Standards", Updated June, 2005, and USDCM, revised 2008. The proposed Final drainage system presented in this report is designed to safely convey the developed peak stormwater runoff through the site to Fossil Creek Reservoir. Water quality enhancement features will be implemented upstream of the reservoir to promote infiltration of runoff. There will be a minimal increase in water surface elevations at Fossil Creek Reservoir due to developed conditions. The level spreaders will safely convey the major storm event into the reservoir. The development of Kechter Farm will comply with all of the stormwater jurisdictional criteria and will not adversely affect the existing streets, storm drain system, or reservoirs. Calculations, a vicinity map, and other reference materials used are attached in the Appendix. Kechter Fame Development 10 Final Drainage Report REFERENCES 1. "Larimer County Stormwater Design Standards," June 2005. 2. "Urban Storm Drainage Criteria Manual," Urban Drainage and Flood Control District, Revised 2008. 3. "Fort Collins Stormwater Criteria Manual," City of Fort Collins, April 2012. 4. "Geologic and Preliminary Geotechnical Investigation," prepared by CTL Thompson Inc., January 11, 2013. 5. Web Soil Survey, Natural Resources Conservation Service, United States Department of Agriculture. Online at: http://websoilsurvey.nres.usda.gov/ Accessed: 07/26/2013 6. City of Fort Collins Drainage Basins Online at: http://www.fcgov.com/utilities/what-we-do/stormwater/drainage- basins Accessed: 08/29/2013 7. Final Drainage & Erosion Control Report for Kinard Junior High School, prepared by JVA, Inc., Dated April 5, 2005. Kechter Farm Development 11 Final Drainage Report APPENDIX A - SITE MAPS AND REFERENCES Kechter Farm Development Final Drainage Report 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 KECHTER FARMS DEVELOPMENT VICINITY MAP - NOT TO SCALE O WEST VINE O KECHTER FARMS DEVELOPMENT FORT COLLINS DRAINAGE BASINS LAPDM It A'Jr N' EL LZABETM ST CANAL IMPORTATION N ORARE RD 0 OLD TOWN 0 SPRING CREEK w NORBETOD'N RD COUATRT cuJa Ku O DRY CREEK LNG"% -RIVE E PROSPECT RO MOUNTAPS VISTA DR E ',IP4 OR 0 COOPER SLOUGH" SOXELDER r MLLL BERRY 5T O CACHE LA POUDRE I � 0 MA/L CREEK N' IM RMOMY RD S SHIELDS ST CD FOSSIL S LlMA♦ AV! CREEK Wp O i FOOTHILLS \J FOX MEADOWS MCCLELLANDS Q vA CARW MTER RD RECw,rw AD SITE Mlramont Pond • Retrofit Foisting Pond to accommodate Water Quality Volume fl �,t �11ss'f� lib i xf�alia. �� Harmony Cross/n nd • Retrofit Existing Pond fo accommodate Wafer Quality Volume Pah Rldoe Pond • Retrofit Existing Pond to accommodate Wafer Qualify Volume IJ McClellands Creek Basin Proposed BMP Basin Type Flood Control Only Water Quality Only Flood Control and Water Quality Proposed Improvements Proposed Selected Plan [P"*".4 Water Quality Alternatives Natural Area -n.-a Proposed Stream Restoration and Habitat Improvements ILLt. �i W- _J r_. t7 w_ 0. J %aeon JE. Pond ._ • Retrofit Existing g Pond to accommodate Water Qualify Volume Willow So#nos Pond • Retrofit Existing Pond to accommodate Water Qualify Volume McClellands Creek Basin Selected Plan - Water Quality Improvements KECHTER.RD 1 1 1 1 1 1 Larlmar Courtly Landfill Pond • Retrofit Existing Pond for Water Quality reek Basin Lang GI. Ich Basin rt Collins Selected Plan - Water Quality Improvements PV and L Canal Diversion System (To Mail Creek Ditch) E HARMONY RD Brookwood/Applewood Estates Pond • Retrofit Existing Pond to accommodate Water Quality Volume PV and L NMD LCC #2 Canal Diversion System (Via Mall Creek Ditch) Prairie Dog Meadow Pond • New Pond for Water Quality Volume KECHTER RD Proposed Stream Habitat lmprovem CARPENTER RD South Lemav/Carpenter Pond • New Pond for Water Quality Volume Fossil Creek Basin E CO RD 30 Fossil Creek Basin Proposed BMP Basin Type Flood Control Only Water Quality Only Flood Control and Water Quality Proposed Improvements Proposed Selected Plan Water Quality Alternatives Ditch Diversion Natural Area Proposed Stream Restoration and Habitat Improvements Proposed Miles City of Fort Collins 080102 40° 30' 00" 105° 01' 52.5" MR Larimer County I Unincorporated Areas i 080101 WI SITE NO MAP SCALE 1" = 500' 500 1 1 1 150 1000 I FEET i METERS 300 PANEL 0994F FIRM FLOOD INSURANCE RATE MAP LARIMER COUNTY, COLORADO AND INCORPORATED AREAS PANEL 994 OF 1420 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNITY NUMBER PANEL SUFFIX FORT COLLINS, CITY OF 080102 0994 F LARIMER COUNTY 080101 0994 F Notice to User: The Map Number shown below should be used when placing map orders; the Community Number shown above should be used on insurance applications for the subject community. MAP NUMBER 08069C0994F EFFECTIVE DATE DECEMBER 19, 2006 JOINS PANE Federal Emergency Management Agency 498000m E NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 6 NORTH, RAI This is an official copy of a portion of the above referenced flood map I was extracted using F-MIT On-Une. This map does not reflect changes or amendments which may have been made subsequent to the date on the title block. For the latest product information about National Flood Insurance Program flood maps check the FEMA Flood Map Store at wwvv.msc.fema.gov Hydrologic Soil Group—Larimer County Area, Colorado 1 1 r 10` 3a25"N 40° 2942'N § N 497500 497500 497600 497600 497700 497800 497800 Map Scale: 1:6,400 it printed on A porhait (8.5" x 11") sheet. Meters 0 50 100 200 300 497900 498000 498000 Feet 0 300 600 1200 180FeFe Map projcc bon: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 13N WGS84 498100 498200 498300 0 498400 40° 30' 25'N 40` 29'42"N raj USDA Natural Resources Web Soil Survey Conservation Service National Cooperative Soil Survey 7/26/2013 Page 1 of 4 Hydrologic Soil Group—Larimer County Area, Colorado MAP INFORMATION MAP LEGEND The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. a U CJ ❑ Not rated or not available D 0 0 0 Water Features a) o o a 0)o c_ O c m N O ta 0 m 0 co (!? Z ar a) O a7 m at -coOr 'O 3 = a 01 aco at 0 0-so N a) E u) N a) -o N E w at o c 0,2 E O c w 0 m N _ U N O C ai 1� O a) v O_ Pl O c E O L In Q) S) U c,12 co N 0 L O N (o c -c O CO VI � E O. a) a) «) m Z ma co c a 0= 0 y m a)0 oL °D coID b Um o Q co L E tn o. C 7d ya 0) -0 QQ NN 3 'a t O E C.) m m t- o- ❑ �'_ o 3 y m L o N L C a L (/) Q >. m a c y N a) O 0 L O E 0 w D Z^ m 2 O Q-0 ` m m a= co °) at i c m a) n g c' co o) co o ' m c o� a`) m c•fl m 3 pr` 0 o E "co a) 0 0 0� f,.4 E o U a�� E� _ at ocr) c a a) at To roL °, co ono -pa E N a n am co E J o Q E 0 @ m co j o 3o a) yam - 0 f0 to N U V) J 0 a) C d O Q O C — ca co Z?,N OL N O N aa> U' f0 «o a) N O'0)m e c 0 a a) ?. a) 0 at W '� 01 N 2 Q co E p 3 O C m? i • a O .0 Q m O a .00 wE 2�m Ecraso ao m� n m oatD'O d 750 Co c O p U 0 .- o y 2 Q c - c L �. 7 umia E 'v N0c aa� V)m E�' o'Qmm coat c-00 0. COa)u N> -Z -m mT OE �E d E fn5U 2 o.tQ 0 H.L.. to co co O ❑N r U._ O 0 W a c ai co U t "O m 1/1 y c = w a 9 H O O O O E 61 cc cc N m N K O C W o oo R N O cc C ❑ M J a io c r m m A 10 16 O c N O C O pr o Q O > (c..'H 41 a ❑ ❑ ❑ O N Q o) < a m CO U U ❑ Z d c c gilith Q ci) Soil Rating Lines Aerial Photography Not rated or not available Soil Rating Points ❑ ❑ a a m m 1 Hydrologic Soil Group—Larimer County Area, Colorado 1 Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit — Larimer County Area, Colorado (CO644) Map unit symbol Map unit name Rating Acres in AOI Percent of AO1 49 Heldt clay loam, 3 to 6 percent slopes C 4.3 2.4% 63 Longmont clay, 0 to 3 percent slopes C 0.5 0.3% 74 Nunn clay loam, 1 to 3 percent slopes C 75.9 42.5% 76 Nunn clay loam, wet, 1 to 3 percent slopes C 2.0 1.1% 115 Weld silt loam, 0 to 3 percent slopes C 78.0 43.7% 118 Wiley silt loam, 1 to 3 percent slopes B 10.7 6.0% 119 Wiley silt loam, 3 to 5 percent slopes B 7.1 4.0% Totals for Area of Interest 178.5 100.0% USDA Natural Resources Web Soil Survey Conservation Service National Cooperative Soil Survey 7/26/2013 Page 3 of 4 Hydrologic Soil Group—Larimer County Area, Colorado Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (ND, BID, and CID). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (AID, BID, or CID), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie -break Rule: Higher USDA Natural Resources wiro Conservation Service Web Soil Survey National Cooperative Soil Survey 7/26/2013 Page 4of4 APPENDIX B - CALCULATIONS Kechter Farm Development Final Drainage Report Cv C.) T c CA Q c 03 LL O U O O CD LL L_ O? U en CI) c CO 4— CD CC 0 N } O 0 0 O O - LC) CD Q - O O - 0 N O O O O O O O O al C10 C- CO LC) (iq/ui) kisue ui Duration (min) i City of Fort Collins Rainfall Intensity -Duration -Frequency Table for using the Rational Method Figure 3-la Duration (minutes) 2-yr Intensity (in/hr) 10-yr Intensity (in/hr) 100-yr Intensity (in/hr) 5 2.85 4.87 9.95 6 2.67 4.56 9.31 7 2.52 4.31 8.80 8 2.40 4.10 8.38 9 2.30 3.93 8.03 10 2.21 3.78 7.72 11 2.13 3.63 7.42 12 2.05 3.50 7.16 13 1.98 3.39 6.92 14 1.92 3.29 6.71 15 1.87 3.19 6.52 16 1.81 3.08 6.30 17 1.75 2.99 6.10 18 1.70 2.90 5.92 19 1.65 2.82 5.75 20 1.61 2.74 5.60 21 1.56 2.67 5.46 22 1.53 2.61 5.32 23 1.49 2.55 5.20 24 1.46 2.49 5.09 25 1.43 2.44 4.98 26 1.40 2.39 4.87 27 1.37 2.34 4.78 28 1.34 2.29 4.69 29 1.32 2.25 4.60 30 1.30 2.21 4.52 31 1.27 2.16 4.42 32 1.24 2.12 4.33 Duration (minutes) 2-yr Intensity (in/hr) 10-yr Intensity (in/hr) 100-yr Intensity (in/hr) 33 1.22 2.08 4.24 34 1.19 2.04 4.16 35 1.17 2.00 4.08 36 1.15 1.96 4.01 37 1.13 1.93 3.93 38 1.11 1.89 3.87 39 1.09 1.86 3.80 40 1.07 1.83 3.74 41 1.05 1.80 3.68 42 1.04 1.77 3.62 43 1.02 1.74 3.56 44 1.01 1.72 3.51 45 0.99 1.69 3.46 46 0.98 1.67 3.41 47 0.96 1.64 3.36 48 0.95 1.62 3.31 49 0.94 1.60 3.27 50 0.92 1.58 3.23 51 0.91 1.56 3.18 52 0.90 1.54 3.14 53 0.89 1.52 3.10 54 0.88 1.50 3.07 55 0.87 1.48 3.03 56 0.86 1.47 2.99 57 0.85 1.45 2.96 58 0.84 1.43 2.92 59 0.83 1.42 2.89 60 0.82 1.40 2.86 City of Fart Collins Rainfall Intensity -Duration -Frequency Table Use of Urban Drainage Intensity Equation for CoFC IDF Values Duration City of Fort Collins Intensity (in/hr) 2-yr 10-yr 100-yr 2-yr A Urban Drainage Intensity (inlhr) 10-yr A 100-yr A 5 2.85 4.87 9.95 2.78 -0.07 4.74 -0.13 9.68 -0.27 6 2.67 4.56 9.31 2.64 -0.03 4.51 -0.05 9.20 -0.11 7 2.52 4.31 8.80 2.52 0.00 4.30 -0.01 8.78 -0.02 8 2.40 4.10 8.38 2.41 0.01 4.11 0.01 8.39 0.01 9 2.30 3.93 8.03 2.31 0.01 3.94 0.01 8.04 0.01 10 2.21 3.78 7.72 2.21 0.00 3.78 0.00 7.72 0.00 11 2.13 3.63 7.42 2.13 0.00 3.64 0.01 7.43 0.01 12 2.05 3.50 7.16 2.05 0.00 3.51 0.01 7.16 0.00 13 1.98 3.39 6.92 1.98 0.00 3.39 0.00 6.92 0.00 14 1.92 3.29 6.71 1.92 0.00 3.28 -0.01 6.69 -0.02 15 1.87 3.19 6.52 1.86 -0.01 3.17 -0.02 6.48 -0.04 16 1.81 3.08 6.30 1.80 -0.01 3.08 0.00 6.28 -0.02 17 1.75 2.99 6.10 1.75 0.00 2.99 0.00 6.10 0.00 18 1.70 2.90 5.92 1.70 0.00 2.90 0.00 5.93 0.01 19 1.65 2.82 5.75 1.65 0.00 2.82 0.00 5.77 0.02 20 1.61 2.74 5.60 1.61 0.00 2.75 0.01 5.61 0.01 21 1.56 2.67 5.46 1.57 0.01 2.68 0.01 5.47 0.01 22 1.53 2.61 5.32 1.53 0.00 2.61 0.00 5.34 0.02 23 1.49 2.55 5.20 1.49 0.00 2.55 0.00 5.21 0.01 24 1.46 2.49 5.09 1.46 0.00 2.49 0.00 5.09 0.00 25 1.43 2.44 4.98 1.43 0.00 2.43 -0.01 4.97 -0.01 26 1.40 2.39 4.87 1.39 -0.01 2.38 -0.01 4.86 -0.01 27 1.37 2.34 4.78 1.36 -0.01 2.33 -0.01 4.76 -0.02 28 1.34 2.29 4.69 1,34 0.00 2.28 -0,01 4.66 -0.03 29 1.32 2.25 4.60 1.31 -0.01 2.24 -0.01 4.57 -0.03 30 1.30 2.21 4.52 1.28 -0.02 2.19 -0.02 4.48 -0.04 31 1.27 2.16 4.42 1.26 -0.01 2.15 -0.01 4.39 -0.03 32 1.24 2.12 4.33 1.24 0.00 2.11 -0.01 4.31 -0.02 33 1.22 2.08 4.24 1.21 -0.01 2.07 -0.01 4.23 -0.01 34 1.19 2.04 4.16 1.19 0.00 2.03 -0.01 4.15 -0.01 35 1.17 2.00 4.08 1.17 0.00 2.00 0.00 4.08 0.00 36 1.15 1.96 4.01 1.15 0.00 1.96 0.00 4.01 0.00 37 1.13 1.93 3.93 1.13 0.00 1.93 0.00 3.94 0.01 38 1.11 1.89 3.87 1.11 0.00 1.90 0.01 3.88 0.01 39 1.09 1.86 3.80 1.09 0.00 1.87 0.01 3.82 0.02 40 1.07 1.83 3.74 1.08 0.01 1.84 0.01 3.76 0.02 41 1.05 1,80 3.68 1.06 0.01 1.81 0.01 3.70 0.02 42 1.04 1.77 3.62 1.04 0.00 1.78 0.01 3.64 0.02 43 1.02 1.74 3.56 1.03 0.01 1.76 0.02 3.59 0.03 44 1.01 1.72 3.51 1.01 0.00 1.73 0.01 3.54 0.03 45 0.99 1.69 3.46 1.00 0.01 1.71 0.02 3.48 0.02 46 0.98 1.67 3.41 0.99 0.01 1.68 0.01 3.44 0.03 47 0.96 1.64 3.36 0.97 0.01 1.66 0.02 3.39 0.03 48 0.95 1.62 3.31 0.96 0.01 1.64 0.02 3.34 0.03 49 0.94 1.60 3.27 0.95 0.01 1.61 0.01 3.30 0.03 50 0.92 1.58 3.23 0.93 0.01 1.59 0.01 3.25 0.02 51 0.91 1.56 3.18 0.92 0.01 1.57 0.01 3.21 0.03 52 0.90 1.54 3.14 0.91 0.01 1.55 0.01 3.17 0.03 53 0.89 1.52 3.10 0.90 0.01 1.53 0.01 3.13 0.03 54 0.88 1.50 3.07 0.89 0.01 1.51 0.01 3.09 0.02 55 0.87 1.48 3.03 0.88 0.01 1.50 0.02 3.06 0.03 56 0.86 1.47 2.99 0.87 0.01 1.48 0.01 3.02 0.03 57 0.85 1.45 2.96 0.86 0.01 1.46 0.01 2.98 0.02 58 0.84 1.43 2.92 0.85 0.01 1.44 0.01 2.95 0.03 59 0.83 1.42 2.89 0.84 0.01 1.43 0.01 2.92 0.03 60 0.82 1.40 2.86 0.83 0.01 1.41 0.01 2.88 0.02 0.00 -0.02 0.00 Urban Drainage Intensity Equation I = Cl pi (C2+1,.)c' Urban Drainage Inputs 1-hr Rainfall Depths (P,) 2-yr 10-yr 100-yr 0.82 1.40 2.86 Coefficients Cf C2 C3 28.5 10 0.786651 ' This cell was determined using Solver to best match intensities given from the Fort Collins IDF values. City of Fort Collins Design Storms for using SWMM Figure 3-1c Time (min) Intensity (in/hr) 2-year 5-yr 10-yr 25-yr 50-yr 100-yr 5 0.29 0.40 0.49 0.63 0.79 1.00 10 0.33 0.45 0.56 0.72 0.90 1.14 15 0.38 0.53 0.65 0.84 1.05 1.33 20 0.64 0.89 1.09 1.41 1.77 2.23 25 0.81 1.13 1.39 1.80 2.25 2.84 30 1.57 2.19 2.69 3.48 4.36 5.49 35 2.85 3.97 4.87 6.30 7.90 9.95 40 1.18 1.64 2.02 2.61 3.27 4.12 45 0.71 0.99 1.21 1.57 1.97 2.48 50 0.42 0.58 0.71 0.92 1.16 1.46 55 0.35 0.49 0.60 0.77 0.97 1.22 60 0.30 0.42 0.52 0.67 0.84 1.06 65 0.20 0.28 0.39 0.62 0.79 1.00 70 0.19 0.27 0.37 0.59 0.75 0.95 75 0.18 0.25 0.35 0.56 0.72 0.91 80 0.17 0.24 0.34 0.54 0.69 0.87 85 0.17 0.23 0.32 0.52 0.66 0.84 90 0.16 0.22 0.31 0.50 0.64 0.81 95 0.15 0.21 0.30 0.48 0.62 0.78 100 0.15 0.20 0.29 0.47 0.60 0.75 105 0.14 0.19 0.28 0.45 0.58 0.73 110 0.14 0.19 0.27 0.44 0.56 0.71 115 0.13 0.18 0.26 0.42 0.54 0.69 120 0.13 0.18 0.25 0.41 0.53 0.67 Storm Duration Rainfall Depth (in) 2-year 5-yr 10-yr 25-yr 50-yr 100-yr 1-hr 0.82 1.14 1.40 1.81 2.27 2.86 2-hr 0.98 1.36 1.71 2.31 2.91 3.67 Note: The City of Fort Collins SWWM input hyetopgrah is used to calculate the 1-hr and 2-hr storm rainfall depths for the different storm events. 1 These are the 1-hour storm depthsthat are used in the Urban Drainage intensity equation, derived from the CoFC Hyetograph. DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF t 1 90 80 TO 20 10 0 15,000 sq. ft. homes o 14,000 sq. ft. homes I / / • / • oe Parcel A _ / / �3,00a sq. It. hames1 - I / / ! 0 ♦ / I•♦ I • . I / •r ♦ _ 12.000 sq. R homes I, Parcels. B, C, and D • • • Parcel E / / _ •so • / 11,000 sq. R. homes • • '/ • / d 0 1 2 3 4 Single Family Dwelling Units per A. 5 6 Figure RO-3— Watershed Imperviousness, Single -Family Residential Ranch Style Houses 2007-01 RO-15 Urban Drainage and Flood Control District 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CA=KA+ (1.31i3- 44412 * 1,135i* 0.12) CCD = KCU + (0 056q - 0,76612 + 0.774i • 004) S Initial Overland Time It) Travel Time (1,) L=Lenglht(Veloclty Complc Urbanized Check t I (%) Runoff Coeffs 4=0.395(1.1-Cs)L1gS.re x 60) ON Final §� CO 0 CO CO CO CO CO y ; @ § 8{ )y ; V G§ G G G G G G@ G 22£ 2 & K ! § & ; 2 & § ; }k\ ( \ § \ § § § 9 2 § § —{ : S S : : S : ; : 0 e 77 a; 0 0 0 2:%_= e Type of Land Surface Paved areas & shallow paved swales_ Paved areas & shallow I paved swales Paved areas & shallow paved swales Paved areas 8 shallow I paved swales Paved areas & shallow] paved swales Paved areas & shallow] paved swales Paved areas 8 shallow I paved swales Paved areas 8 shallow] paved swales Paved areas 8 shallow I paved swales Paved areas 8 shallow Paved swales J Paved areas 8 shallow _ paved swales !> f 5 f§ G f r 4 f f r �\ \ \ \ \ \ \ \ \ \ ®» tsi A , c R R , m 0; g R \® § 7 \ ! ! § \ = f \ ƒ!{* m ! § E ; § § ; @ § ! m m 9* q*@ P; g a a ! § S q ) § f ] $ q q § | 5$ f| 3 f! f f 6 3 2 A§ - [ 7 [ 2 § [ [ § [ [ - \ < \ § ) 3 § § 7.02 ! § / [ $ ; < rj , } ` k ( , , , / , # } « a ]!t \ \ \ \ } @ f 2 K @ D ( \ \ ; / g }!\ , 0 0 , 0 0 , 0 0 0 .. ( �, « < 0 0 0 0 0 0 0 0 0 0 0 ( iy = _ 0 0 , , , _ , , 0 0 $ƒ\ 0 0 0 0 0 0,_ 0 0_, e. 00 J k = _ 0 _ _ 0 / _ _ 2 j'i _ _ , _ , , / , ( (/ } §CA Ili;= , , _ , , _ ) _ _ = 7 § { Of • .- , r, , o to � co o s , TOTAL SITE $ 2$ = = 2 = £ ! = = 2 f § 1844c - Rational Calculations Area A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 kkd§( 8'au. Kechter Farm CA = KA + (1,31i3- 1,44i2 + 1.135i+ 0.t2) CCD = KCD + (0.8503 - 0.788i2 + 0,774i + 0.04). (28.5 P1)1 K10'de Flow Rates (cfs) 02 05 010 0100 k\%\)�§f&§2§( §9)[3§#§§§§/§ 2Di§!§}§q§§/k\ f\§|3q|g\§§(2 ;_ _ ` 0' ` !!/\[w ; ; $a#•0 « 244,717 ;2! 63,775 Z��,fK ,�_�� Rainfall Intensities (iNhr) 2 5 10 100 TOTAL SITE HS, H6, & H7 fq@ggRqm;;r 8 8 8 8 8 8 8 S S 2 8 Runoff Coeffs C2 C5 C10 C100 !/§!!2 ci ®§6/! A go' §GAgq#@AA 66a66666666 4884844%7188 66666666666 Basin Design Time of Name Point Ccc (tc) 1844c - Rational Calculations Area A WS ELEV CONSULTING UNGIUCEIES Y Vlb 290' 26.40' 54.86' BASIN C7 - NORTH SWALE O NTS NOTE: LONGDUDINAL SLOPE - 2.005 rwsELEv 2OO A t 1576' 608 BASIN C7 - EAST SWALE 0 SCALE: 1 •., NOTE: LONGITU0INAL SLOPE = 050% WS ELEV 3W f_ 290' 18.88' B.44' BASIN C7 - NORTH AND EAST COMBINED SWALE 0 SCALE: 1"=1' NOTE: LONGITUDINAL SLOPE = 050% WS ELEV 2.00' 16.16' 7.08' BASIN E16 - SWALE - VA: F: 1 •=1' NOTE: LONGITUDINAL SLOPE = 1.500 L w5 ELEN VW r 290' 6 E8' 15.76' IVA maw. rat. 16 OW Ten. Spur. ion Can. co•esu Mow .741.23.M1 For 1110.115.0.1 INN.r� DESIGNED BY: ANC DRAWN BY: ANC CHECKED BY: CPo1 J016 NUMBER: 16446 DATE: 001162013 0 NA BJC KECHTER FARM SWALE CROSS SECTIONS BASIN E8 - SWALE 0 SCALE: 1•=1• NOTE: LONGITUOINAL SLOPE = 2.00% SHEET NUMBER FIG 1 IIa1�I V. 'L1' III 1 6690' ROW 4683' 1383' / 13D0' / 14D0' / 690' 690' 1400' 13.00' 1383' 7 MA10R 10050 / / / / 15.00' 100.42 100.12 ROW 100.22 ROW 9997 TBC Q MINOR 9988 r ` 99.54 EOA 99.47 R ! 10090 a MAJOR COLLECTOR STREET TRILBY ROAD HOW SCALE: PERT SCALE. 1..1' MINOR STORM: NO CURB OVERTOPPING. FLOW SPREAD MUST LEAVE AT LEAST ONE LANE FREE OF WATER. 76.00ROW MAJOR STORM: INUNDATION: RESIDENTIAL DWELLINGS, PUBUC, COMMERCIAL AND INDUSTRIAL BUILDINGS SHALL NOT BE INUNDATED AT GROUND UNE, UNLESS BUILDINGS ARE FLOOD -PROOFED. DEPTH OF WATER OVER CROWN OR EDGE OF PAVEMENT, WHICHEVER IS HIGHER, SHALL NOT EXCEED 6'. 99.97 TBC 99.47 FL 100.22 ROW 1390' 5300 1857' 6.33' 7 MAJOR 100.42 0 MINOR 99.87 99.87 TBC J ! 9954 EDA 9937 R 633' 5390' 18.67' 13D0' 10050 / 15.00' 100.00 CL MINOR COLLECTOR STREET ZEPHYR ROAD HORIZ SCALE: I'd' VERT Ff.' F: I "=1' MINOR STORM: NO CURB OVERTOPPING. ROW SPREAD MUST LEAVE AT LEAST ONE LANE FREE OF WATER. 9954 EOA MAJOR STORM: INUNDATION: RESIDENTIAL DWELLINGS, PUBLIC, COMMERCIAL AND INDUSTRIAL BUILDINGS 5HAU. NOT BE INUNDATED AT GROUND LINE, UNLESS BUILDINGS ARE FLOOD -PROOFED. DEPTH OF WATER OVER CROWN OR EDGE OF PAVEMENT, WHICHEVER IS HIGHER, SHALL NOT EXCEED 6', 99137 TBC 9937 FE 100.12 ROW BLDG 100.42 / FON SLOPE MINOR SPLIT MAJOR 05% 5.42 10.02 6926 ID% 7.66 14.17 9794 155 939 17.16 11996 2.0% 1084 20,04 11553 25% 12.12 22.41 10806 39% 1327 2455 102.31 35% 14.34 2651 97.58 405 14134 2834 9385 45% 1433 3006 9059 5D% 1388 31.69 87.78 FLOW • HALF STREET SPLIT = FLOW OVER CROWN SAFETY REDUCTION FACTOR AT S > 15% SLOPE MINOR SPCA' MAJOR 05% 888 15.68 74.61 1D% 12.56 22.18 10551 15% 1538 27.16 12923 20% 17.76 31,36 124.46 255 17.09 35.07 116.41 3.0% 16.113 38.41 11022 355 15.45 41.49 10523 4.0% 1484 44.36 101.10 45% 14.33 47D5 9759 511% 13.88 49.59 9456 ROW = HALF STREET SPUT • ROW OVER CROWN SAFETY REDUCTION FACTOR AT 5 > 15% 5 0 10 SCALE IN FEET rv4 b5aY Timm Swart Soft MO Nrtf wW6i4 PM. 910.215.10 foY 3 NO. f DATE 1 DRAWN 1 DESIGNED DESIGNED BY: JTC ORAIYN BY: AMC CHECKED BY: KAY JOB NUMBER 1844c DATE: 111189013 © NA INC KECHTER FARM STREET CAPACITY CROSS SECTIONS 515EEE NUMBER FIG 3 gills `1 tJtJtlll t 84.00' ROW 5523' 5523' 77'I. 1323' 9969 BLDG FDN 9965 9935 ROW 8,18' 10050 10.08' 99,12 TBC 98.72 FL 1335' 99.65 TBC V MAJOR 99.65 INOR 99.12 98.83 E0A 1 99.15� 1550' 1550' 7- 100.00 CL RESIDENTIAL LOCAL STREET ROAD A-3 HORIZ SCALE: 1 ".5' PERT SCA] F. 1'.1' 99.65 18C 99.15 FL 65' 1335' MAJOR 9965 Q 10.08' 1323' J.77' MINOR STORM: MAJOR STORM: NO CURB OVERTOPPING; WHERE NO CURBING EXISTS, INUNDATION: RESIDENTIAL OWEWNGS, PUBLIC, ENCROACHMENTS SHALL NOT EXTEND BEYOND EDGE COMMERCIAL AND INDUSTRIAL BUILDINGS SHALL NOT OF RIGHT OF WAY. ROW MAY SPREAD TO CROWN BE INUNDATED AT GROUND UNE, UNLESS BUILDINGS OF STREET ARE FLOOD -PROOFED. DEPTH OF WATER OVER CROWN 0R EDGE OF PAVEMENT, WHICHEVER I5 HIGHER, SHALL NOT EXCEED 6'. 53D0' ROW MINOR 99.12 98.83 [OA d 4332' 99.12 TBC 98.72 FL 9935 ROW 16$2' / IODB' 1,42' 1335' ).65) 65', 13.35' 1,42' 10.06' 1662' MAJOR 10050 / 4, / 100.16 ROW RESIDENTIAL LOCAL STREET AREA E HOW SCALE: 1'4' VERT SCALE: 1'=1' MINOR STORM: MAJOR STORM. NO CURB OVERTOPPING; WHERE NO CURBING EXISTS, INUNDATION: RESIDENTIAL OWEWNGS, PUBUC, ENCROACHMENTS SHALL NOT DcTEND BEYOND EDGE COMMERCIAL AND INDUSTRIAL BUILDINGS SHALL NOT OF RIGHT OF WAY. ROW MAY SPREAD TO CROWN BE INUNDATED AT GROUND UNE, UNLESS BUILDINGS OF STREET ARE FLOOD -PROOFED. DEPTH OF WATER OVER CROWN 0R EDCE OF PAVEMENT, WHICHEVER IS HIGHER, SHALL NOT EXCEED 6', 53D0' ROW 4150' 4150' 100.16 ROW 100.46 1 BLDG FpJ 15 00 10.08' 1,.42' 1335' MAJOR 100.46 1 65)65 1335' 2' 10.08' 15.00' 100.16 ROW MINOR 9996 9996 TBC 9957 FL 100D0 CL 9968 E0A 9968 E04 99.96 TBC 9957 R RESIDENTIAL LOCAL STREET AREAS A, B. CA D. HORIZ SCALE: 1 VERT SCALE: 1'=1' MINOR STORK: MAJOR STORM: N0 CURB OVERTOPPING; WHERE N0 CURBING EXISTS, INUNDATION: RESIDENTIAL OWEWNGS, PUBUC, ENCROACHMENTS SHALL NOT EXTEND BEYOND EDGE COMMERCIAL AND INDUSTRIAL BUILDINGS SHALL NOT OF RIGHT OF WAY. FLOW MAY SPREAD TO CROWN BE INUNDATED AT GROUND UNE. UNLESS BUILDINGS OF STREET ARE FLOOD -PROOFED. DEPTH OF WATER OVER CROWN OR EDGE OF PAVEMENT, WHICHEVER IS HIGHER, SHALL NOT EXCEED 6'. 100.16 ROW 9965 8.18' 10050 1r 9969 r BLOC / F0N 10066 7 FDLOG SLOPE MINOR MAJOR 05% 5.11 59 54 1.0E 723 84.21 15% 865 103.13 2D% 1022 99.33 25% 11.43 92.91 3.0E 1252 8796 35% 1352 83.98 4.0E 14.46 80E9 45% 14.71 7788 5DE 1426 7547 FLOW = HALF STREET SAFETY REDUCTION FACTOR AT S > 15% SLOPE MINOR SPLIT MAJOR 05% 5.11 634 5954 19% 723 896 8421 155 865 1098 103.13 2.0E 10.22 1268 99.33 25% 1143 14.17 92.91 3.0E 1252 1553 87.96 35% 1352 16.77 8398 49E 1446 1793 8069 4.5E 14.71 19.02 77.88 5D% 1426 20.05 75.47 FLOW = HALF STREET SPLR = ROW OVER CROWN SAFETY REDUCTION FACTOR AT S > 15% SLOPE MINOR SPLIT MAJOR 05% 5.11 6.34 52.30 1.0E 723 8.96 7439 15% 8,85 10.98 91.11 2.0E 1022 1268 87.75 2518 11.43 14.17 82.08 3D% 1252 1553 77.71 35% 1352 16.77 74.19 413E 14.46 17.93 7128 45% 14.71 19.02 68E1 5018 1426 20.05 66.67 FLOW . HALF STREET SPLIT = ROW OVER CROWN 5 _ 0 5 10 SAFETY REDUCTION FACTOR AT 5 > 15% tt'aI F IN FEET ..w4.17.?mews inm DESIGNED BY: 2TG DRAW BY: AMC CHECKED BY: RAT 40B NIJMRIR: 1844e DATE: 11118t8012 .NA, 04G KECHTER FARM STREET CAPACITY CROSS SECTIONS SHEET NUMBER FIG 4 APPENDIX B.1 AREA A CALCULATIONS Kechter Farm Development Final Drainage Report 1 1 11114411 weivarmiii t01.413L1, MG EWG•NtEY4 JVA incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Kechter Farm Composite Runoff Coefficient Calculations Location: Fort Collins Minor Design Storm: Major Design Storm: Soil Type: 2 100 C/D Job Name: Kechter Farm Job Number: 1844c Date: 1/16/14 By: ANC CA=KA + (1.31i3 - 1.44i2 + 1.135i + 0.12) CCD = KCD + (0.858i3 - 0.786i2 + 0.774i + 0.04) CB = (CA + CCD)12 Basin Design Data (%) = 100% 90% 66% % 25 % 0% 0% - I (%) Runoff Coeffs Basin Name Design 9 Point APavetl streets (sf) Ad iveslc one (sf) A SFHomes (sf) p40% •gravel (sf) p10 • plygnd (sf) A art. turf (sf) ryswpa (0 soil) (sf) A Alscapa (clo soil) (sf) A Total (sf) A ToWI (ac) Imp (%) C2 C5 C10 C100 Al 1 24,694 6,406 105,511 0 0 0 0 7,917 144,528 3.32 69.3% 0.48 0.52 0.57 0.67 A2 2 32,150 7,451 101,270 0 0 0 0 15,661 156,532 3.59 67.5% 0.47 0.51 0.56 0.67 A3 3 15,780 3,839 69.173 0 0 0 0 8,907 97,699 2.24 66.4% 0.46 0.50 0.55 0.66 A4 4 22,575 6,009 84,982 0 0 0 0 23,649 137,215 3.15 61.3% 0.42 0.47 0.52 0.64 A5 5 11,458 2,434 57,313 0 0 0 0 13,812 85,017 1.95 60.5% 0.41 0.46 0.51 0.63 A6 6 16,427 3,894 70,516 0 0 0 0 8,959 99,796 2.29 66.6% 0.46 0.50 0.55 0.66 A7 7 15,120 3,556 76,968 0 0 0 0 9,406 105,050 2.41 65.8% 0.45 0.50 0.54 0.66 A8 8 26,373 6,798 114,804 0 0 0 0 8,234 156,209 3.59 69.3% 0.48 0.53 0.57 0.67 A9 9 29,015 6,716 150,591 0 0 0 0 8,830 195,152 4.48 68.9% 0.48 0.52 0.57 0.67 A10 10 36,054 8,499 130,373 0 0 0 0 14,656 189,582 4.35 68.4% 0.48 0.52 0.56 0.67 Alt 11 43,845 11,402 111,033 0 0 0 0 33,230 199,510 4.58 63.9% 0.44 0.48 0.53 0.65 Al2 12 0 0 4,381 0 0 0 0 1,042 5,423 0.12 53.3% 0.36 0.42 0.47 0.61 A13 13 19,462 5,292 0 0 0 0 0 41,608 66,362 1.52 36.5% 0.26 0.33 0.40 0.58 A14 14 21,258 8,251 32,106 0 0 0 0 13,802 75,417 1.73 66.1% 0.46 0.50 0.55 0.66 A15 15 4,278 1,685 39,426 0 0 0 0 25,698 71,087 1.63 44.8% 0.31 0.37 0.44 0.59 A16 16 4,968 1,963 599 0 0 0 0 14,196 21,726 0.50 32.8% 0.24 0.32 0.39 0.57 A17 17 0 0 19,872 0 0 0 0 4,090 23,962 0.55 54.7% 0.37 0.42 0.48 0.62 TOTAL SITE 266,613 70,338 962,137 0 0 0 0 230,119 1,529,207 35.11 63.1% v 0.43 0.48 0.53 0.64 1844c - Rational Calculations Area A.xlsx Developed C Page 1 of 1 1 �uuI �� �ii �J�FIV1I1I t Ow3uLt n: EnL meE4S JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax. 303.444.1957 Kechter Farm Time of Concentration Calculations Location: Fort Collins Minor Design Storm: Major Design Storm: Soil Type: 2 100 CID Job Name: Kechter Farm Job Number: 1844c Date: 1/16/14 By: ANC Sub -Basin Data Initial Overland Time (t;) Travel Time (tt) tt=Lengthl(Velocity x 60) t° Comp tc Urbanized Check ON t° Final Basin Name Design 9 Point ATde (ac) C5 Upper most Length (ft) Slope Pe (%) t, (min) Length 9 (ft) Sloe(%)Type p y of Land Surface C Velocity h (fps) 4 (min) Time of Conc G ♦ tt = 4 Total Length (ft) 4=(LI180)+ 10 (min) Min It Al 1 3.32 0.52 117 2.2% 8.8 528 1.3% Paved areas &shallow paved swales 20 2.3 3.9 12.6 645 13.6 12.6 A2 2 3.59 0.51 201 3.0% 10.6 409 1.3% Paved areas &shallow paved swales 20 2.3 3.0 13.6 610 13.4 13.4 A3 3 2.24 0.50 266 2.4% 13.3 102 1.1% Paved areas & shallow paved swales 20 2.1 0.8 14.2 368 12.0 12.0 A4 4 3.15 0.47 138 2.9% 9.6 508 1.3% Paved areas & shallow paved swales 20 2.3 3.7 13.3 646 13.6 13.3 A5 5 1.95 0.46 190 2.7% 11.6 381 2.0% Paved areas &shallow paved swales 20 2.8 2.2 13.9 571 13.2 13.2 A6 6 2.29 0.50 158 2.1°/4 10.7 446 0.9% Paved areas &shallow paved swales 20 1.9 3.9 14.6 604 13.4 13.4 A7 7 2.41 0.50 233 2.2% 13.0 379 2.0% Paved areas &shallow paved swales 20 2.8 2.2 15.2 612 13.4 13.4 A8 8 3.59 0.53 175 2.0% 11.1 786 0.8% Paved areas &shallow paved swales 20 1.8 7.3 18.4 961 15.3 15.3 A9 9 4.48 0.52 138 2.9% 8.7 552 0.9% Paved areas &shallow paved swales 20 1.9 4.8 13.6 690 13.8 13.6 Al 10 4.35 0.52 219 2.5% 11.6 582 0.5% Paved areas &shallow paved swales 20 1.4 6.9 18.5 801 14.5 14.5 All 11 4.58 0.48 102 3.0% 7.9 1777 0.5% Paved areas &shallow paved swales 20 1.4 20.9 28.9 1879 20.4 20.4 Al2 12 0.12 0.42 88 2.3% 8.9 295 0.9% Paved areas &shallow paved swales 20 1.8 2.7 11.6 383 12.1 11.6 A13 13 1.52 0.33 122 2.6% 11.3 287 1.0% Paved areas &shallow paved swales 20 2.0 2.4 13.7 409 12.3 12.3 A14 14 1.73 0.50 110 2.8% 8.2 693 2.0 % Paved areas & shallow paved swales 20 2.8 4.1 12.3 803 14.5 12.3 A15 15 1.63 0.37 315 6.3% 12.9 0 0.0% Grassed waterway 15 0.0 0.0 12.9 315 11.8 11.8 A16 16 0.50 0.32 223 3.0%14.9 156 0.8 % Paved areas & shallow paved swales 20 1.8 1.5 16.3 379 12.1 12.1 A17 17 0.55 0.42 122 2.6% 10.0 255 2.0% Paved areas &shallow paved swales 20 2.8 1.5 11.5 377 12.1 11.5 1844c - Rational Calculations Area A.xlsx Developed Tc Page 1 of 1 1 tAW Developed Storm Runoff Calculations Kechter Farm (28.5 P1) I ((10 + TC)^0.78665082676575) CO N L. E 0 ii rn I 0 saloN Route to MH-A2 Route to MH-A2 Route to MH-A4 a o m � Route to MH-A4-1 Route to MH-A5-1 Route to MH-A5-1 Route to MH-A7-1 Route to MH-A7-1 fRoute to MH-A7-1 a . m 5 2 Route to MH-A9-1 Route to MH-A9-1 Route to MH-A9-2 (U1 W) aWlllelol fi3 N < c7 or') a N M cei a ry m P. Q a (n c n cm0 Q Q cr_i ri Q Pipe/Swale Travel Time (UIW) 11 O O O O N O 8 O O O N O O O N O O O O O 11) O O O O (0 O (sdj) Al!oolaf N t0 P N O) O O] N O 00 m to (4) 4lbuoi N N (Q�7 N un .- CO m N Ln N N (" N Pipe (Sp) P(10ede3 adld xe W co 6 o(0 N m 0 N N o) O F m v m N N N m 0 cm1 Q m (Sp) m0H adid m Q (P r V '4(-5 7 N N N m - W Nt, CO N O7 m O cocr;M CO C. N O' r (/) adoIS e O ,_ I a'o N e r o o 0 e o o e' ,n r o o e r e o o 0 o 0 e Fo 0 e ,n o r o- leuolelry oak,' 0 U fr a U CC 0_ 0 K a 0 2 a 0 CC a U CC a 0 K a U CC a U K a 0 CC a U CC a 0 CC a 0 Ir 0 0 CC v lualenlnba ro (UI) aZls adld .c 4)Q .G N S N c 4' c c0 O m c 10 c (0 m c w c0 c N 4 .c N N c N 0 Q 10 N � c (oop) JOAO/WOO p r`O) ; P. C Total Flow-QcoAl-0coA2I m N. c°v co Total Flow-QcoA3-QcoA4 10' Type R Inlet 8.26 I 6.55 Total Flow-QcoA5 v (O v m n a d (c a O v . O LL � O F C. o o o Li o 1- paldaoralu cc? O c (P 0 C N N N CD N- [V m pj CO r- O uJ co N adAl.lap' 5' Type R Inlet d . CC o ,. 1- in d C CC co 1- in d C CC co T 1- in 15' Type R Inlet N E CC d a I- O 20' Type R Inlet L15' Type R Inlet Total Runoff J (Si0) it N h R 3 80, mi co c. oz, cN O r {J4/u!) I m 0 n 0 c`oo 0 c`oo 0 3 w :5 V.07 co m V r om m a in Q F m co(De) F (up) al Ielol v ri O) ci •m- v r Q co co d irect Runoff (Si0) O GI (P M. c0 4 o _ @ 1-r W. O r` c') Total Flow (A1-A4)I m o. m cp Total Flow (Al-A5) m O co O Total Flow (A1-A7)l v) u1 Q N Q o LL m o {- 4/u!) I o t` coLL w (D (0 P. u7 m (D op co co op co co Q (0 co 1n cD (oe) V.3 N N r°i) N co r 0 N N r (n r ua0) r v (V 0 CO (UIW) osC'i a O VICV C6 N a a CO N Ili 0 (0 ri }}aoO mound (,a. 0 ( 0 0 0 co 0 co 0 w 0 w 0 w 0 (oe) earl/ ' rJ 10 C') N N .- (•) 60 r N N a N (a'r) C7 a Q lWod ape° r N ryry 4 1 m Q -a-(� Q 111 1N Q co (- r- C (P rn co Q aWB 4 uiseg a aN ¢ a a a s Q a Developed Storm Runoff Calculations Kechter Farm 1 I = (28.5 P1) ! ((10 + TC)"0.78665082676575) co co N Point Hour Rainfall (Pt) co } Design Storm : saloN Route to MH-A8-3 IRoute to MH-A9-2 I Route to MH-B11.1 Route to DP B1 I 'Route to MH-B11.1 Route to MH-C2-1 I (N 0 ± 0 0 00 !Route to MH-D12-1I N 0 = 0 0 ce 'Route to MH-D12-2 'Route to MH-D12-2I N 0 _ 2 2. ° cc Route to MH-C7-3 See Rational Parcel C Route to DP B15, See Rational Parcel 5 awl lelol N 0) N 04 N -co0) CO N : N. 0 0 0) 0 0) ON. N V nj Pipe/Swale Travel Time (Uiw) A N r 0) O CO N. CO co O 04 o O 0) (7 G 0 m )" O 0 O o 0) N a- C r4 0 0 0) (O 0 V 0) O a 0 (sd;) /;iaoian o •co co o io- 00o v O 00 ram- m r - ram)' (u) 416ua� AO N N N 0 (0 m Om CD N d a D_ (sp) /(lioede3 adid xelry o cd m omi v b M aim N N. " 0 o o o N 1- M N o 0 (sp) Molj edid V m O m - cd 0) _ M ,- _ Ln N.O O m m r N `� N T r` 6). (%) adols •o o (n O 0 & m 0 to O O• 6 . o r (" O a (" O o 6O o O o i" O o N o v) O 0 o 0 to O lei)aleW adid a XCCXXXX'CCCo 0. a a 0. 0. 0. a a CCCCX a CC a 0. a 0 lualeninbeJO (ui) azlS adid .E m o E E m E coc�ii E E E o E E M E E m co ar c (000) J0A0(UJ BD 0 rn of a o Total Flow - LA o o o Total Flow-QcoA14-QcoR 1 CO 0 R a o 0 3 ti p o o 0 o 0 n 0 Total Flow + QcoA16-QcoA15 5' Type R Inlet 2.08 0.51 Total Flow-QcoA15-1 Total Flow-QcoA15-QcoB1 Lo 0 paldaorawl0 v rn m v 0 N 0 co M l c6 c d o o .. co 10 adAllamum 10' Type R Inlet i _ cc a O ) _ K 0 O N _ c 0 O O 5' Type R Inlet o O - N c K a O Total Runoff N r (Jwui) I CO ( In co (0 N u) -- Lo 6(o a N (0 (ae) V.Oi N. N r N (-• m N (up)) of !alai u°'') O N co ri M N N (ro V r O 4f) r 0. N N Direct Runoff OP) 0 0) O 0 t0 Total Flow(A1-Al2)1 CO O [O cO0 00 M R Q O IL m 0 H Total Flow (A1-Al2, A14, B1)I 0) f0 CD❑ 0 Total Flow (A15, D3, D12)1 0.29 I 7.14 I 2.04 1 N (0 Q u) Q 3 0 LL Total Flow (A1-Al2, A14-A16, B1, D12) (0 O N O ()4N!) I co m N 0 O N.: N n - CO (0 N 0- 0 0 N r: O r= N 04 O c- O O o O co O (UP) 0; (On o -... 0 00 om 0 O oo 0 L`0 0°0;jourgd ,0 0 t,0 0 m 0 03 0 0 0 o (m" 0 0 0 an 0 co 0 to 0 (De) eard M a (06, c CO r t a _ m M 0 c�i (MO, � O o MH-D12-1 (Ofi, 0 ,0o — co a N N _ 2 0 K lurod u6isa0 0 .- N O) Q _ M e t- m a ❑ " () o N v _ 2 N CO aweN ugse8 0 a¢ v a m o to a o N a m a Developed Storm Runoff Calculations Kechter Farm = (28.5 P1) / ((10 + TC)"0.78665082676575) co O Point Hour Rainfall co Design Storm : saloN Route to MH-A2 Route to MH-A2 Route to MH-A4 Route to MH-A4-1 Route to MH-A4-1 Route to MH-A5-1 Route to MH-A5-1 Route to MH-A7-1 Route to MH-A7-1 Route to MH-A7-1 Route to MH-A9-1 Route to MH-A9-1 Route to MH-A9-1 Route to MH-A9-2 (Wu) awillelol t0 a N Q g4 N cam'] a s N a 0 ,T, C Pipe/Swale Travel Time (Ulw) 3j G O N O 0n 0 O N O coN o O O O O O O CO' O OO O .6- O N O 8 o . (sdiaoIan �) Al 0 vo to 6 6 c] rt- a 0 Q a 0'i r'i ma 0u7 40y,bue1 N to : N in to m N in N N N N Pipe (s;a) J(;!oedeo .did xeytl orn t0 co. N o 0 0 N n 0 o 10 n t'0I a O0f r- 0 I- 0 n 8 to NA a co c, h (SP) MOIL .did N N t`7 N C] cO N 'i 0 N n ^O u, '' N N N t`7 C'J N a "" N (%).dole e o r co IV e' .0 r 0 O a 0 O e to r o 0 o e n r a O O o 0 O o>.. t0 O ,n o r e „-, ci leIJaieW adld a U o_ U a U a U a U a 0 a U a U a U a U o. U a U O. U a U ` . walenlnba Jc (Ut) ong odid .5 .5 N 5 N 5 r 5 m 5 c9, 5 mr 5 M 5 mr 5 m 5 Q 5 N 5 N 5 3 12 OJ C J.AO/ClJe3 O CO 0 o a0 o a 8 0- O t0 O 0 o 0 0 Total Flow-QcoA3-0coA4 0 0 Ito _C re E Total Flow-QcoDP5I 0 0 0 0 Total Flow-QcoA6-OcoA7 ty o 1 pa]daoJalu! p H N 10 ' 10 N 0 N a N N t7 Qt a ad(1lalul 5' Type R Inlet N C re 15' Type R Inlet 07 C ce N C re a N C cc a N L re a 15' Type R Inlet Total Runoff OM 0 a c6 on O - •10 oi fD 0 at N N (JgNI) I 0 0 ro CO (oe) V.03 Nv ch u) tti t1n c0 n a n (UIW) U) Ieioj N ari 01 NTi n 4 n N n v) Direct Runoff {S;0) p N M N 10 N Q 4 O r - 01 1l 01 Total Flow (A1-A4) CO U ' 0 r Total Flow (A1-A5) CO N a 01 Total Flow (A1-A7)I N M O is,-, < Q 0 1- NM) I o 01 m r o N rn r 0 r 0 r r r m r r r h0(e)V.0''qo c r O o r o r N r N (UW)3J myOMNvIM p yyouni co ?? 0 n o 0 a 0 N a o ? 0 t0 a 0 LC) s 0 00 . co»aoo a 0 (3e) Bele m 0 0 N N 07 0) ccvv N e N N M e a luiod ubisap ,- N ty ? 0 a a' Q 0 to Q ,.0 n is Q co 0> co Q eweN uise8 ¢ < 1 i 1 Developed Storm Runoff Calculations Kechter Farm I = (28.5 P1) ! ((10 + TC)^0.78665082676575) OD O Point Hour Ra N 0 c sa;oN Route to MH-A8-3 I Route to MH-A9-2 IRoute to MH-B11-1 a"? i. I Route to DP B1 I o I Route to MH-B11-1 IRoute to MH-C2-1 I Route to MH-D12-1 fRoute to MH-D12-1 I Route to MH-D12-1 IRoute to MH-D12-2 Route to MH-D12-2 Route to MH-C2-1 Route to MH-C7-3 See Rational Parcel C Route to DP B15, See Rational Parcel B few) awillelol N r N r N .- <n rr N N : O CI d O P N , N N N Pipe/Swale Travel Time {Up) 4 (D (V .- 0 N c. M N 9- 0 N O - CO 0 0 N 0 O N r N 0 (sd�) hlioola� u) yj M LL n D e_ W O 7 CDn. D co N o O N 4 co. - n V co 0 N N (3f) 426ual K AD DI N M co 7 co M a ` N n a (s}3) tloedeo adid xey� o °p (y °.° mX n r, cc v i'• N - n c�i r CD 0 N 0 r N o o6 (mo) MO CD N M N N ::: n CD O 1 !:: N N N o (%)adols o o N co u7o o o o mo u) o hrx uc o 6 u) o o . to o 0 0 • 0 1D o leIJa;ew ad!d a 0 t-z O. 0 CC O. 0 CC a 0 CC a 0 CC s 0 CC :' a. 0 CC a 0 CC a 0 CC Cc 0 CC O. 0 CC a 0 CY ;: a 0 CY welemnbe JC {u!) azlg ad!d .G.,c m o M c u�i c m c m c u� t- c v N .G m c 0 cn c 10 c 0 co c v a `, z: `� n+: G m m c Jan O%Leo 0 0 o 0 P Total Flow' : 0 o 0 0 Total Flow-QcoA14-QcoB1I Total Flow-OcoA14-QcoB1' • 0 0 0 0 0 0 Q 0 0 (0 m 0 U +� o L- 5' Type R Inlet ' 0.24 ' 0.00 ' Total Flow-OcoA15 o U CJ' 0 O o LL 0 o paidaz Jain 0 c] a, c"J uw '? r ro O Fq N o — 0 O i' dt6' O ea.!, owl C ct m O 10' Type R Inlet -CI',f' 10' Type R Inlet 10' Type R Inlet Kam. Site Outfall - m to >'� r ii C m O Total Runoff nn (si7) V co N k• N N N N N I co• M Nai N O• DI µ: ( 4/ ) I N amq con m m a (0e) V90 : (D D W n n . O to o N o (D m I, (ulw)0; 1ei01 Lc-9 N ,,� co a N n N r�� O' O n O CO N N Direct Runoff N 0 Total Flow (A1-Al2) N m Q 3 LT -a -a I- Total Flow(A1-Al2, A14, B1) • 1.0 M Total Flow (A15, D3, D12)I a 0 N .- 0 Total Flow (A15-A16, D12) Total Flow (A1-Al2, A14-A16, B1, D12) CD O (14N!) I 0) m 0 >n o c N co 0 N N 0 N O 0 0) (f0 0 N 0) 0 0) / \De) d90 O N O N o- l,- 0 I07 O co 0 0 O 0 0 0 (UP) Jj o 10 r o '0 N O M 9- 0 CD *" :. O coOD r O 9-9- O :.. O (O 9-r O M 4aoogouna W V 0 V V 0 . - CO V 0 N U) 0 - N '0 0 N 0 et N 0 - CO CD 0 (O 0 (oe) eaJy N (n V co u-) V M r— 9- co N O COo$ 0) al N (+) co.(a - N 5 2— 0 O ( D (D a N N 5 22 DI O N (n 9 ;ulod u6isaa o TCO N a Q 2 N N 0 N 0 ulseg o a s ' a - c! p (0 Q .'. N CDaweN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Kechter Farm INLET SUMMARY TABLE (100-YEAR) 0te— CO EL §\ 0 COQ a / 13.02 9 o 5.85 § o 8.40 9 g/ o a 12.85 8.90 , co C,, (....°�— � 0> Yes SO), Yes Yes Yes Yes ) Yes Yes Yes z )>- oN 02 1/2 Street Capacity (cfs) _ § c CO CD o CO CD cocO CO R o 2 co 8.96 (0 CO co _ OD = 8.96 6.34 # m� (0 CO (0 Cr _ . CO CO _ CD 9 _ -o o mR 2 A4 k 2 2& 2\' A14 \/ A15 E '�J CO CO 2 c ■=K- 0 11.38 cfs 4.75 cfs 7.92 cfs 6.29 cfs 0 a 5.49 cfs 8.44 cfs 0.00 cfs o\ o o\ 0 6 0.55 cfs 0.02 cfs \ 0 £ II u I 4.30 cfs 3 / 14.06 cfs 12.22 cfs 2 o co @ £ 12.76 cfs = 0 / 30.78 cfs 28.86 cfs 9.42 cfs 15.24 cfs 5.64 cfs 8.12 cis 7.45 cfs 2.07 cfs K$ E caE§� &>,e�5 2CI3-E— o - D 15.69 cfs 16.31 cfs 21.98 cfs 18.51 cfs 14.81 cfs 18.25 cfs 17.36 cfs 30.78 cfs 28.86 cfs a \ / 15.24 cis sip EZ"9 8.67 cfs N. 2.58 cfs Bypass Flows from Upstream Inlet 0.00 cfs 0.00 cfs \ - 4.75 cfs 6.29 cfs 7.92 cfs / \ f 8.44 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.59 cfs 0.51 cfs / o 7k o 15.69 cfs / 10.60 cfs 13.75 cfs 8.51 cfs 10.33 cfs 10.81 cfs 15.52 cfs \ 19.19 cfs 15.24 cfs 6.23 cfs 8.08 cfs / 6 2.04 cis ) 0 cr F.)0 \ \ 0 \ 0 \ 0 \ 0 \ o \ f 0 ( 0 / 0 / 0 / w f 6 / 0 0.8% E k CO . . , . . , , R w 10.2 in , w 1 , . o 2 O. • E 2 « a) f e « At -grade At -grade e } e « c \ 75" J o 2 \ f ! e \ Sump Sump At -grade Sump At -grade f 5" $ At -grade \ $ e Inlet type 5' Type R Inlet 15' Type R Inlet 15' Type R Inlet 15' Type R Inlet 10' Type R Inlet 15' Type R Inlets 10' Type R Inlet 20' Type R Inlet 15' Type R Inlet 10' Type R Inlet 10' Type R Inlet 10' Type R Inlet 10' Type R Inlet 5' Type R Inlet 5' Type R Inlet a) / E z k k A3 A4 A5 $ A7 p A9 \ \ A13 A14 A15 \ ƒ \ o� n # o w = = 2 Q / » » Inlet Sum100 1844c - Rational Calculations Area A.xlsx 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Kechter Farm INLET SUMMARY TABLE (2-YEAR) }_ ; a 2 0 « 2Q w d w CO 6 w a 6.5 e r a CO 6 6 CO f 9 m 4 N- o co c m0 \ : : : : : : : : A8 ; : : 1 : Bypass Flows to Downstream Inlet 1.08 cfs 0 0 0 o 0 4 0 0 0 0 0.00 cfs 0.00 cfs sfa 00'0 0.00 cfs , 1 0 0 _ 0 0 1 0 0 o 0 0 0.00 cfs 0.00 cfs 0 0 0 0 0 a k k vs 2.15 cfs 3.29 cfs 3.19 cfs 2.58 cfs 1.58 cfs \ w \ w 3.26 cfs \ a 3.85 cfs 2.68 cfs 0.80 cfs 1.61 cfs 1.04 cfs 0.24 cfs 2 & E 7 2E§2 C>,°-c 'f ƒ-- ❑ 3.23 cfs 3.29 cfs 3.19 cfs 2.58 cfs 1.58 cfs J 2.07 cfs 2.14 cfs 3.26 cfs { 2 I. 3.92 cfs 0 CO \ 0.80 cfs 1.61 cfs 1.04 cfs 0.24 cfs Bypass Flows from Upstream Inlet 0 o 6 0.00 cfs 1.08 cfs 0.00 cfs 0.00 cfs 0 0 6 0.00 cfs 0 CO 6 0 0 6 0 0 6 0.00 cfs 0 0 6 0.00 cfs 0.00 cfs 0 o 6 k 3.23 cfs 3.29 cfs 2.11 cfs 2.58 cfs 1.58 cfs 2.06 cfs \ / 3.20 cfs 4.19 cfs 3.92 cfs 2.68 cfs 0.80 cfs 0 \ 1.03 cfs 0.24 cfs 7 CD c Ce 7) a R 0 a = 6 a _ 0 a _ 0 a _ 6 a = 6 a c 6 a c 0 a 0) 0 a 0 0.5% 0 0 • e r 0 @ o 0.8% CD Cn , , , , , , , 3.1 in 3.7 in , 3.4 in , . , , 0G E % 2 a 2 \ k At -grade At -grade At -grade At -grade At -grade At -grade Sump Sump At -grade Sump] At -grade At -grade 0 % $ % % $ Inlet type 5' Type R Inlet 15' Type R Inlet 15' Type R Inlet 15' Type R Inlet 10' Type R Inlet 15' Type R Inlet 10' Type R Inlet 20' Type R Inlet 15' Type R Inlet 10' Type R Inlet 10' Type R Inlet 10' Type R Inlet 10' Type R Inlet 5' Type R Inlet 5' Type R Inlet m / I z Al CO A4 I.O. CO Lb' A8 $ \ \ A13 A14 \ \ 7\ 0a a n # m ¥ m = / r 2 'Cl- r $ 0 0- ? 3 k 1844c - Rational Calculations Area A.xlsx 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin Al OVERLAND FLOW SIDE STREET CUTTER FLOW-' OVERLAND FLOW uv. GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design FTO + abea�y determ+ned Ihmugh other methods: Minor Storm Major Storm (local peak lbw lei 12 of anent OR press-Med channel): 'Qnnown = If you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. 3.2 I 15.7 cfs Geographic Information: (Enter data In the blue cells): Site Type: I d Slice Is urban 0 Siites Non -Urban Row Developed For: rQ Street Inlets 0 Area Inlets Ina Median Snbcotchment Area = Percent Imperviousness = NRCS Soil Type = Slope (ft/ft) Length (ft) Overland Fbw= Channel Flow = Acres A, B, C, or D amla0lnlormatlnn: Intensity I OncMT) = - Pt / (t.i+ 10 } = Ca Design Storm Return Period, Tr = Return Period One -Hour Precipitation, Pr= Ct= Ct= C3_ User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cn = Bypass (Carry -Over) Flow from upstream Subcatchments, Qa ti Minor Storm Major Storm 0.0 0.0 years inches cfs Total Design Peak Flow, Q = 3.2 15.7 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. 1 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin Al TEMCK T T, TI A war T, V S, Gutter Geometry (Enter data in the _blue cellst Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) TBAcK_ SHACK = nBAC = Height of Curb at Gutter Flow Line Hcua = Distance from Curb Face to Street Crown TCBOWN = Gutter Width W = Street Transverse Slope Sx = Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw = Street Longitudinal Slope - Enter 0 for sump condition So = Manning's Roughness for Street Section (typically between 0.012 and 0.020) nsTre:Er = Max. Allowable Spread for Minor & Major Storm Max Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T,,y,,x = d,xxx = 25.1 0.103 0.020 4.68 16.4 1.17 0.020 0.083 0.009 0.016 ft ft/ft inches ft ft ft/ft ftift ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (do - (W ` S"' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carded in Section Tx Discharge within the Gutter Section W (Qr- Qx) Discharge Behind the Curb (e.g.. sidewalk, driveways. & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section T,, Actual Discharge outside the Gutter Section W, (limited by distance To ,,,,) Discharge within the Gutter Section W (Qd - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V`d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= do = a= d= Tz = Eo = Qx = Ow= QBACK = QT V= V'd= TTM = Tx TM= Eo = OXTH= Ox Ow= QBACK = Q= V= V'd = R= Qd d= dcaowN = Minor Storm Major Storm 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 5.2 7.0 1.6 1.8 0.0 0.0 6.7 8.8 1,4 1.5 0.5 0.6 Minor Storm Major Storm 15.8 40.8 14.7 39.7 0.216 0.080 6.3 89.5 6.3 65.0 1.7 7.8 0.0 4.1 8.0 76.8 1.5 2.7 0.6 2.4 1.00 1.00 8.0 76.8 4.68 10.68 0.00 5.86 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,z,". =1 6.7 j 76.8 cfs Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm maxallowable capacity GOOD - greater than flow given on sheet '0-Peak' 1 Project: Inlet ID: INLET ON A CONTINUOUS GRADE I 1844c - Kechter Farms Area A - Basin Al —Lo (C)� Deakin Information IInoutj Type of Inlet Local Depression (additional to continuous gutter depression 'a' from 'r —A0ow Total Nunber of Urits in the What (Grate or Cub Opening) tergth of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater titan W from O-Albw) Cbggirg Factor fora Single Unit Grate (typical min. value = 0.5) Clogging Factor fora Single Unit Curb Opening (typical min. value = 0,1) MINOR MAJOR Type = CDOT Type R Curb Opening a = 3,0 3 0 inches No= 1 L. 5,00 5.00 ft W,= NIA NIA ft Cr-G = NIA NIA CrC = 0.10 0.10 Street Hvdraufies: OK - Q < maximum allowable from sheet'Q-Allow' MINOR MAJOR Total Inlet Interception Capacity Q • 2.2 4.3 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) Q, = 1.1 11.4 cfs Capture Percentage a Qj0, = C%- 67 27 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1044c - Kechter Farms Area A - Basin A2 } OVERLAND l 1 FLOW GUTTER FLOW—'' GUTTER PLUS CARRYOVER FLOW 1 OVERLAND Il FLOW SIDE STREET ROADWAY CENTERLINE IShow Details Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm .(local peak flow for 1/2 of street OR grass -lined channel): *aenown al • Et you enter values in Row 14. skip the rest of this sheet andproceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: [C) Site is Urban 0 Site is Non -Urban Flows Developed For: [0 Street inlets . Area Inlets in a Median 3.3 16.3 Subcatchment Area = Percent Imperviousness = NRCS Soil Type Overland Flow = Channel Flow = Slope (ft/ft) Length (ft) fs Acres A, B, C, or D Rainfall Information: Intensity I (inch/hr = C, " Pt I ( C2 r T, ) "C3 Design Storm Return Period, T, = Return Period One -Hour Precipitation, P, = C, = C2 = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs= Bypass (Carry -Over) Flow from upstream Subcatehments, Oh = Minor Storm Major Storm 0.0 0.0 years inches efs Total Design Peak Flow, U = 3.3 16.3 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. A2 - UD-Inlet v3.12.xlsm, 0-Peak 111612014, 3:53 PM 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A2 TEMOS T. T.* Wes-T 9 T Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK = SBACK nBACK HcuRS = TCRowN = w= Sx= Sw= So = nsTREET = Tnwx = dnwx = 25.1 0.004 0.020 4.68 16.4 1.17 0.020 0.083 0.009 0.016 ft fUft inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 C3 ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ' S, ' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (OT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V"d Product: Fiow Velocity times Gutter Flowline Depth y= do = a= d= Tx = Eo = Qx Ow = ABACK = QT= V= V'd = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 5.2 7.0 1.6 1.8 0.0 0.0 6.7 8.8 1.4 1.5 0.5 0.6 Maximum Capacity for 112 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TH Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (Q, - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TTH = TXTH = E0 QX T H = Qx = Qw ABACK = Q= V= V'd = R = ^^ dCROW = 15.8 40.8 14.7 39.7 0.216 0.080 6.3 89.5 6.3 65.0 1.7 7.8 0.0 47.0 8.0 119.8 1.5 2.7 0.6 2.4 1.00 1.00 8.0 119.8 4.68 10.68 0.00 5.86 MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q.K,„ _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' 6.7 119.8 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs 1 A2 - UD-lnlet_v3.12.xlsm, Q-Allow 1/16/2014, 3:53 PM INLET ON A CONTINUOUS GRADE Project: Inlet ID: 1844c - Kechter Farms Area A - Basin A2 Design Information (Input' Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-AllovJ) 'Total Number of Units In the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from 0-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = CDOT Type R Curb Opening aux. = 3.0 3 0 inches No= 3 3 Lo= 5,00 5.00 ft W== NIA NIA ft CrG = N/A NIA CrC = 0.10 0.10 Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow' Total Inlet Interception Capacity Q = Total Inlet Carry -Over Flow (flow bypassing inlet) as = Capture Percentage = Q,/Q, = CX = MINOR MAJOR o.o +.e 0. 71 3.3 11.6 100 ds cfs A2 - UD-In1et_v3.12.xlsm, Inlet On Grade 1/16/2014, 3:53 PM Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin A3 OVERLAND FLOW SIDE STREET OVERLAND FLOW GUTTER FLOWJ- +- GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY if already determined through other methods: (local peak flow for 112 of street OR grass -lined channel): `agapwn = - If you enter values in Row 14, skip the rest of this sheet and proceed to shoat 0-Allow or Area Inlet. Minor Stone Major Storm 2.1 10.6 cfs Geographic Information: (Enter data to the blue cells): Site Type: Q Site is Urban 0 Site is Non -Urban Flows Developed Far: [Q Street Inlets 0 Area Inlets in a Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (ftift) Length (ft) Acres A, 13, C, on D Rainfall Information: Intensity I (inchlhr = C, - P, ! ( Cr + TT ) " Cr, Design Storm Return Period, T, _ Return Period One -Hour Precipitation, P, _ C,= Cz = Ca= User -Defined Stone Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C, = Bypass (Carry -Over) Flow from upstream Subcatchments, Qs Minor Storm Major Stone 1.1 11.4 years inches cfs Total Design Peak Flow, Q = 3.2 22.0 cfs Worksheet Protected' FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. A3 - iJD-Inlet v3.12.xlsm, CI -Peak 1/15/2014. 3:53 PM 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A3 Gutter Geometry fEnte data in the blue cellst Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TRACK = SHACK = n BACK HCURB = TCROWN W= Sx = SW = So = ',STREET = Teux = dnnx= 25.1 0.103 0.020 4.68 16.4 1.17 0.020 0.083 0.009 0.016 ft ft/ft inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ' S,' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (oT - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V`d Product: Flow Velocity times Gutter Flowline Depth Y= do a= d= Tx = Eo = Ox = Qw = O BACK = QT = V= V'd = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 5.2 7.0 1.6 _ 1.8 0.0 0.0 6.7 8.8 1.4 1.5 0.5 0.6 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TH Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (Q. - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TTH = TxTH= Eo = O x TH = Ox = Ow = OBACK = Q= V= V*d = R= Od = d= dcROWN 15.8 40.8 14.7 39.7 0.216 0.080 6.3 89.5 6.3 65.0 1.7 7.8 0.0 4.1 8.0 76.8 1.5 2.7 0.6 2.4 1.00 1.00 8.0 76.8 4.68 10.68 0.00 5.86 MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q.Bow _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' 6.7 76.8 inches inches inches inches ft cfs cfs cfs cfs fps cfs cfs cfs cfs cfs fps efs inches inches cfs A3 - UD-Inlet_v3.12.xlsm, Q-Allow 1/16/2014, 3:53 PM INLET ON A CONTINUOUS GRADE Project: Inlet ID: 1844c - Kechter Farms Area A - Basin A3 Design Information (Input) Type of Inlet Local Depression (additional t° continuous gutter depression's' from'O-Allovi) Total Number of Units in the Inlet (Grate or Garb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from 0-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Type = atani = No = Lo= W CrG = GC= MINOR MAJOR CDOT Type R Curb Opening 3.0 30 3 5.00 5 00 N/A NrA N/A WA 0.10 0.10 inches ft n Street Hydraulics: OK - 4 < maximum allowable from sheet'O-Allow Total Inlet Interception Capacity O = Total Inlet Carry -Oyer Flow (flow bypassing intat) as Capture Percentage - OJy = C% MINOR 3.2 0.0 100 MAJOR 14.1 7.9 64 cis cis A3 - UD-Inlet v3.12.xlsm, Inlet On Grade 1/15/2014, 3:53 PM Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin A4 OVERLAND FLOW SIDE STREET OVERLAND L FLOW GUTTER FLOW-7- GUTTER PLUS CARRYOVER ROW J ROADWAY CENTERLINE Show Details Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak Bow for 112 of street OR grass -lined channeiy, 6QKnown If you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Ailow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: Q She is urban 0 Site is Nan -Urban Rows Developed For: Q Street Inlets O Area Inlets in a Median 2.6 Subcatchment Area = Percent imperviousness = NRCS Soil Type = Overtand Flow = Channel Flow = 13.8 I Slope (full Length (ft) fs Acres 16 A, 13, C, or D Rainfall Information: Intensity l (l IE & = C, P, f (Cz + T ) " C3 Design Storm Return Period, T, Return Period One -Hour Precipitation, Pt= Ct= C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined Syr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Qp Minor Storm Major Storer 0.0 4.8 years inches cfs Total Design Peak Flow, Q • 2.6 16,5 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. i Project: Inlet ID: 1 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A4 Gutter Geometry (Ente data In the blue cells) Maximum Allowable Wid h for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TeACK = SeAC = r°BACK = Hcuee = TCRowN = W= Sx = SW = So = nsTREET = T. = dux = 25.1 0.004 0.020 4.68 16.4 1.17 0.020 0.083 0.009 0.016 ft ft/ft inches ft ft Wft ft/ft fUft Minor Storm Major Stornl 14.8 16.4 4.7 10.7 ❑� ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W • S, " 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V"d Product: Flow Velocity times Gutter Flowline Depth y= do = a= d= Tx = Eo = Qx = Qw = OBACK = QT = V= V'd= 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 5.2 7.0 1.6 1.8 0.0 0.0 6.7 8.8 1.4 1.5 0.5 0.6 Maximum Capacity for 112 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W. carried in Section Tx Tt, Actual Discharge outside the Gutter Section W, (limited by distance TcaowN) Discharge within the Gutter Section W (Gd - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TrH = Tx TH E0 = Qx TH = Qx = Qw = ABACK = Q= V= Vd= R= Qd dcRowN = 15.8 40.8 14.7 39.7 0.216 0.080 6.3 89.5 6.3 65.0 1.7 7.8 0.0 47.0 8.0 119.8 1.5 2.7 0.6 2.4 1.00 1.00 8.0 119.8 4.68 10.68 0.00 5.86 MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion %sow = Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' 6.7 119.8 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs 1 Project: Inlet CD: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area A - Basin A4 x-Le (C).- Design Information (Input) ype of Inlet Local Depression (additional to continuous gutter depression 'a' from'Q-Allovi) otal Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) idth of a Unit Grate (cannot be greater than W from 0-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) logging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Straat Hydraulics: OK - Q c maximum allowable from sheet'Q-Allow• otal Inlet Interception Capacity Q = otal Inlet Carry -Over Flow (flow bypassing Inlet) Qe = Capture Percentage = QjQ, = C%= Type = arm _ No = Lo= Wo' CrG = CC MINOR MAJOR COOT Type R Curb Opening 3.0 30 3 5.00 5 00 NIA NIA NIA NIA D.10 0.10 MINOR MAJOR 2.6 12.2 0.0 6.3 100 66 inches ft ft cfs cfs Project Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin A5 OVERLAND FLOW ` Jf SIDE STREET GUTTER FLOW - l� OVERLAND FLOW currEn PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak now for 12 of street OR grass -lined channel): *Qanown =1 - If you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: O Site is Urban 0 Site IS Non -Urban Rows Developed For: rO Street Inlets Q Area Inlets in a Median 1.6 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = 8.5 Slope (f tft) Length (ft) fs Acres 9G A,B,C,orD Rainfall Information: Intensity I (mchlhr)=C, P, I(Ct Tr)"C,r Design Storm Return Period, T, Retum Period One -Hour Precipitation, P, C, GO Cs = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs= Bypass (Carry -Over) Flow from upstream Subcatchments, 0e n Minor Storm Major Storm 0.0 6-3 years inches cfs Total Design Peak Flow, 0 = 1.6 14.8 cis Worksheet Protected FILL IN THIS SECTION OR. FILL IN THE SECTIONS BELOW. i 1 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A5 Gutter Geometry (Ente data in the blue cells) Maximum Allowable Wid h for Spread Behind Curb Side Slope Behind Curb leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TRACK = SBACK = WRACK = HCURB = TCROWN = w= Sx = Sw = So = nsTREET = T _ d _ 25.1 0.220 0.020 4.68 16.4 1.17 0.020 0.083 0.009 0.016 ft ft/ft inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 0 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W • S, • 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V*d Product: Flow Velocity times Gutter Flowline Depth Y= do = a= d= Tx = E. = Qx = Ow = ABACK = Qr = V= V'd = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 5.0 6.8 1.5 1.8 0.0 0.0 6.5 8.6 1.4 1.5 0.5 0.6 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx rH Actual Discharge outside the Gutter Section W, (limited by distance TcaowN) Discharge within the Gutter Section W (Od - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V"d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d = 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TTH = Tx TH = Ea = Qx TH = Qx Ow = °BACK = Q= V= V'd = R= Qd = dcsowa = 15.8 40.8 14.7 39.7 0.216 0.080 6.1 87.0 6.1 63.1 1.7 7.5 0.0 1.8 7.8 72.5 a 1.4 2.6 0.6 2.3 1.00 1.00 7.8 72.5 4.68 10.68 0.00 _ 5.86 MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,ii,,, Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' 6.5 72.5 nches nches aches aches cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area A - Basin A5 Lo (C)-,f Design Information (Inout) Type of Inlet Loral Depression (additional to continuous gutter depression 'a' from 'Q-Allow ) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Intel (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from 0-Allow) Clogging Factor fora Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Type = No = L = coo= CrG = Ct-C = MINOR MAJOR COOT Type R Curb Opening 3.0 30 2 5.00 5 00 NIA NIA NIA NIA 0.10 0.10 inches ft ft Street Hydraulics: OK - 0 o maximum allowable from sheet'O-Allow' Total Inlet Interception Capacity O = Total Inlet Carry -Over Flow (Now bypassing inlet) en = Capture Percentage = 0,1Q. = C%= MINOR MAJOR 1.6 8.3 0.0 6.5 100 56 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1644c - Kechter Farms Area A - Basin A6 °`how D l J t SWEET < OVERLAND <FLOW GUTTER FLOW— aus GUTTER PLUS CARRYOVER FLOW J \ ROADWAY CENTERLINE Show Details Design Flow: ONLY d already determined through other methods: (total peak flow for 12 of street OR grass -lined channel): 'Qxno.m = Minor Storm Major Storm 2.1 10.3 * Ifyou enter values in Row 14. skip the rest of this sheet andyroceed to sheet Q•Allow or Area Wet. Geographic Information: (Enter data in the blue cells): Site Type: I 0 Site is Urban 0 Site is Non -Urban Flows Developed For: CQ Street Inlets Q Area Inlets in a Median Subtatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (f1Rt) Length (ft) cfs Acres A. B, C. or D Rainfall Information: foiensity I (Inchfhr) = Cr Pr ! (Cr + ) " C, Design Storm Retum Period. T, = Return Period One -Hour Precipitation, Pr = Cr= Cz= Cs` User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carty -Over) Flow from upstream Subeatehmente. Qh,. Total Design Peak Flow. Q r, Minor Storm Major Storm 0.0 7.9 2.1 18.3 years nches Cfe cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. A6 - UD-Inlet v3.12.xism, 0-Peak 111612014, 3:55 PM 1 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844e - Keehter Farms Area A - Basin A6 Gutter Geometry (Ente data In the blue cells). Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank far no) TBACK = SBACK = ne.ACK = HCURB TCRowN W= Sx Sw = So = n5TREET = Tex= dmAx = 25.1 0.150 0.020 4.68 16.4 1.17 0.020 0.083 0.009 0.016 ft ftlft inches ft ft ft/ft ftlft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 ❑° ft inches check = yes Maximum Capacity for 1f2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dC - (W • S, * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TH Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (Qd - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) y= do = a= cl= Tx = Eo = Qx= Qw = ABACK = QT = V= V"d = TTR = Tx TH = Eo = Qx TH = Ox = Gw = QBACK = Q= V= V'd = R= Qd = NdcRowN = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 5.2 7.0 1.6 1.8 0.0 0.0 _ 6.7 8.8 1.4 1.5 0.5 0.6 Minor Storm Major Storm 15.8 40.8 14.7 39.7 0.216 0.080 6.3 89.5 6.3 65.0 1.7 7.8 0.0 2.8 8.0 75.5 1.5 2.7 0.6 2.4 1.00 1.00 8.0 75.5 4.68 10.68 0.00 5.86 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qaww = Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' 6.7 75.5 inches inches inches inches ft cfs cfs cfs efs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs A6 - UD-Inlet_v3.12.xlsm, t]-Allow 1/16/2014, 3:55 PM INLET ON A CONTINUOUS GRADE Project: Inlet ID: 1844c - Kechter Farms Area A - Basin A6 4r- Lo Design Information (Inoot) Type of Inlet coral Depression (additional to continuous gutter depression 'a' from'Q-Allow) Total Number of Units in the Inlet (Crate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from Q-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = CDOT Type R Curb Opening atocnt = 3.0 3 0 inches No = 3 3 La = 5.00 5 00 ti W, = N/A N'A ft C,-G = NIA NIA CrC = 0.10 0.10 Street Hydraulics: OK - Q c maximum allowable from sheet'Q-Allow' Total Inlet Interception Capacity Total Inlet Carry -Over Flow (flow bypassing Inlet) Capture Percentage = Q,IQ, MINOR MAJOR 0 = 2.1 12.8 cfs Qb s 0.0 5.5 efs C%= 100 70 % A6 - U0.lnlet_v3.12.xlsm, Inlet On Grade 1/16/2014, 3:55 PM Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A • Basin A7 OVERLAND FLOW SIDE STREET OVERLAND Il 1 FLOW GUTTER FLOW—" ate. GUTTER PLUS CARRYOVER FLOW J - ROADWAY CENTERLII NE nru Show Details Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak now for 1r2 el street OR grass -lined channel)' •DKnown If you enter values in Row 14, skie_the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells), Site Type: Q Sae is Urban 0 Site is Non -urban Flaw Developed For: Q Street Inlets 0 Area Inlets in a Median 2.1 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = 10.0 Slope (ft/ft) Length (ft) cfs Acres A, B, C, or 0 Rainfall Information: Intensity I (lncldhr = C, P, / ( C=+ To ) ^ Ca Design Storm Retum Period, T, = Return Period One -Hour Precipitation, P, = C,= Cr= C,= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Q. = Minor Storm Major Storm 0.0 6.5 years inches cfs Total Design Peak Flow, Q w 2.1 17.4 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW, i Project: Inlet ID: 1 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A7 Gutter Geometry (Ente data In the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 Mt) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK = SBACK _ fBACK = HOURS = TCROWN w= Sx Sw = So = nsTREET = Tmvx = 25.1 0.220 0.020 4.68 16.4 1.17 0.020 0.083 0.009 0.016 ft ft/ft inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 ❑� ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W " S" " 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (OT - °x) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V"d Product: Flow Velocity times Gutter Flowline Depth y= do = a= d= Tx = Eo = °x = Ow = °BACK = QT = V= V"d = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 5.0 6.8 1.5 1.8 0.0 0.0 6.5 8.6 1.4 1.5 0.5 0.6 Maximum Capacity for 112 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TH Actual Discharge outside the Gutter Section W, (limited by distance TCRowN) Discharge within the Gutter Section W (Qd - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V"d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TTH = Tx TH = E. = QxTH= Qx = Qw = ABACK = °= V= V`d = R= Qd = dcRowa = 15.8 40.8 14.7 39.7 0.216 0.080 6.1 87.0 6.1 63.1 1.7 7.5 0.0 1.8 7.8 72.5 1.4 2.6 0.6 2.3 1.00 1.00 7.8 72.5 4.68 10.68 0.00 5.86 MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,B,, _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' 6.5 72.5 nches nches nches nches ft cfs cfs cfs cfs fps ft cfs cfs cfs cfs cfs fps fs nches riches cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area A - Basin A7 4,-Lo (C) -- , Design Information (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from 'CI-A11ow ) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from Q-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor fora Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = CDOT Type R Curb Opening arm = 3.0 3 0 inches No = 2 2 to = 5.00 5 00 ft Wo= NIA N/A N CrG = NIA WA CrC= 0.1D 0.10 Street Hvdraulics:OK- 0 < maximum allowable from sheet'O-Allow MINOR MAJOR Total Inlet Interception Capacity G = 2.1 8.9 cfs Total Inlet Carry -Over Flow (Now bypassing Inlet) Q = 0.0 8.4 cfs Capture Percentage = QIQ = C%= 100 51 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin A8 OVERLAND FLOW SIDE STREET GUTTER FLOW-" OVERLAND ` FLOW GUTTER PLUS CARRYOVER fLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 1(2 of street OR grass -lined chennell: 'QKnown = ' if you enter values in Row 14, skip the rest of this sheet and proceed to sheet CI -Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: 0 Site is Urban 0 Site is Non -Urban Ir Flows Developed For: I Q Street Inlets IIII Q Area Inlets in a Median 3.2 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = 15.5 Slope (ftlft) Length (ft) cfs Acres A, B, C, or D Rainfall Information: Intensity I (rnchlhr = C, Pt I( Cj + T5 ) "ta Design Storm Retum Period, T, = Retum Period One -Hour Precipitation, Pt = Ct= C2= 00= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), CS = Bypass (Carry -Over) Flow from upstream Subcatchments, Minor Storm Major Storm 0.1 15.3 years inches cfs Total Design Peak Flow, 0 3.3 30.8 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A8 Gutter Geometry (Erne data In the blue cells) Maximum Allowable Wid h for Spread Behind Curb Side Slope Behind Curb leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 N/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK SBACK - nBACK = 25.1 0.100 0.020 ft ftlft HCURB = 4.68 inches TcROWN = 16.4 ft W = 1.17 ft Sx = 0.020 ftlft Sw = 0.083 ft/ft So = 0.008 ft/ft nSTREET = T = dux= 0.016 Minor Storm Major Storm 14.8 16.4 4,7 10.7 ❑� MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity Is based on Depth Criterion Qa,,,,,, Minor storm max. allowable capacity GOOD • greater than flow given on sheet 'CI -Peak. Major storm max. allowable capacity GOOD • greater than flow given on sheet'Q-Peak' 6.3 72.5 ft inches check = yes cfs Project = Inlet ID = 1 A 1 1 1 1 INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area A - Basin AB Lo Deslen Information (Input' Type of Inlet Inlet Type = 'Local Depression (additional to continuous gutter depression 'a' from'O-Allow') aw,r = Number of Unit Inlets (Grate or Curb Opening) No = Water Depth at Flowline (outside of local depression) Ponding Depth = Grate Information 'Length of a Unit Grate Lo (G) = 'Width of a Unit Grate Wo = Area Opening Ratio for a Grate (typical values 0.15-0.90) A,00 = Clogging Factor for a Single Grate (typical value 0.50 - 0.70) G (G) = Grate Weir Coefficient (typical value 2.15 - 3.60) CW (G) _ Grate Orifice Coefficient (typical value 0.60 - 0.80) Ca (G) = Curb Opening Information Length of a Unit Curb Opening Lo (C) = Height of Vertical Curb Opening in Inches HV,n = Height of Curb Orifice Throat in Inches Ha.,w = Angle of Throat (see USDCM Figure ST-5) Theta = Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = Clogging Factor for a Single Curb Opening (typical value 0.10) C, (C) _ Curb Opening Weir Coefficient (typical value 2.3-3,6) C. (C) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) C, (C) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>O PEAK) Oa — O OCuc scouisco = MINOR MAJOR COOT Type R Curb Opening 3,00 3.00 _ 4 4 3.1 7.5 MINOR MAJOR N/A NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA MINOR MAJOR 5.00 5 00 4.68 4.68 4.68 468 63.40 63 40 1.17 1 17 __ 0.10 0.10 3.60 3 60 0.67 0.67 MINOR MAJOR 3.3 30.8 3.3 30.8 nches nches ❑� Override Depths eel eei teat inches nches degrees feet cfs cis Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin A9 OVERLAND FLOW SIDE STREET GUTTER FLOW—, OVERLAND Il I FLOW CUTTER PLUS CARRYOVER FLAW ROADWAY CENTERLINE Show Details I Design Flow: ONLY la ay determined through other methods' Minor Storm Major Storm (local peak flow for 12 of abeet OR grans-Pned channel): 'CIneewe • N you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Informabon: (Enter data in the blue cels): Site Type: Flows Developed For: I O Site is Urban llf Q Site Is Non -Urban rQ Street Inlets 0 Area Inlets in a Median 4.2 Subcatchmerrt Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = 20.4 Slope (ftlft) Length (1t) cis Acres A,B,C, or ltamlau Information: Intensity 1(inchrlir -tit -Ft ? C1 4 t e l ^ 1. -, Design Storm Return Period, Tr = Return Period One -Hour Precipitation, Pt= Ct= Ca= Cr= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank 10 accept a calculated value), Cs = Bypass (Carry-Qver) Flow from upstream Subcatchments, Qo Minor Storm Maprstorm 0.0 8.4 years inches cfs Total Design Peak Flow, Q e 4.2 28.9 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A9 Gutter Geometry (Enter data in the blue cells' Max mum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowtine for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T&1CK SBACK = nBACK = Hays = TcRavN = W= Sx = Sw $p = nsMEET = T. = dwix= 25.1 0.107 0.020 4.68 16.4 1.17 0.020 0.083 0.009 0.016 ft ft/ft inches ft ft ft/ft 6/6 fltfl Minor Storm Major Storm 14.8 16.4 4.7 10.7 ft inches check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,r,,,. =I 6.7 f 76.6 Isis Minor storm max. allowable capacity GOOD • greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Project = Inlet ID = 1 1 INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area A - Basin A9 Lo (C)-4t Design Information (Input) ype of filet Local Depression (additional to continuous gutter depression 'a' from'O-Albs) Number of Unit Inlets (Grate or Cub Opening) ater Depth at Fbw8ne (outside of local depression) Grate Information Length of a Unit Grate idth of a Unit Grate rea Opening Ratio for a Grate (typical values 0.15.0.90) Clogging Factor fora Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information ergth of a Urit Curb Opening Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in inches ogle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 21eet) Cbggirg Factor for a Single Curb Opening (typical valor 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.6) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD far Minor and Major Storms (>O PEAK) Inlet Type = aces = No = Parading Depth = Li, IC) = We= Arum = CG (G) = C (G)= Go (G)= Lo(C)= .rt= Ham= Theta = We = C (C)= C.(C),= C,(C)= Q. O PEAK REcunV MINOR MAJOR CDOT Type R Curb Opening 3.00 300 3 3 3.7 10.2 MINOR MAJOR N!A NIA NIA N+A N!A NIA NIA N/A NIA NIA NIA NIA MINOR MAJOR 5.00 500 4.68 4 68 4.68 4 66 63.40 63 40 1.17 ' 17 0,10 0.10 3,60 3.60 0.67 0 67 MINOR MAJOR 4.3 26.9 4.2 28.9 nches nches 112 Override Depths eel eet leet inches nches degrees feel cfs cis Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin A10 OVERLAND FLOW SIDE STREET OVERLAND FLOW I GUTTER FLOW--" .,.,. GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details esngn already determined through other methods: Minor Storm Major Storm (local peak flow for Mel street OR grass4ined channel): .Qnnawn = ' If you enter values in Row 14, skip the rest of this sheet and proceed to sheet CI -Allow or Area Inlet. Geographic 6nf•oi ioti m: (Enter data rn the blue cols): Site Type: O Site is Urban O SIN is Non -Urban Rohs Deoehped For: r0 Street Inlets 0 Area Inlets In a Median 3.9 19.2 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Ovedard Flow = Channel Flow = Slope (ft/ft) Length (1t) cfs Acres A, B, C, or 0 Kalnta0intonnaton: IrterSay I "Nor =tit'1>> rTCT ) ^ Ca Design Storm Return Pedod, Tr = Return Period One -Hour Precipitation, P, = C1= Cz= Ct= User -Defined Storm Rtcriff CoefrieN (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Qb Minor Storm Major Storm 0.0 0.0 years (riches cfs Total Design Peek Flow, Q = 3.9 19.2 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A10 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) TBACK Seacj( = nBACK Hcud3 = IcROWN= W= Sx = Sv= So = nsTREET = Max. Allowable Spread for Minor & Major Storm Tw,x = Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) 25.1 0.190 0.020 4.68 16.4 1.17 0.020 0.083 0.050 0.016 ft ft/ft inches ft ft ft/ft ft/ft 8/8 Minor Storm Major Storm 14.8 16.4 4.7 10.7 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ' S,' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT- Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V"d Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 112 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TN Actual Discharge outside the Gutter Section W, (limited by distance Tc,x,„N) Discharge within the Gutter Section W (Od - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) y= do = a= d= Tx = Eo = Ox= Ow = QBACK QT= V= V'd = TTN= T„, = Eo = Qx TR = Qx = Qw= QBACK Q= V= V'd = R= Cad = d= dcno u = Minor Storm Major Storm 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 12.2 16.5 3.7 4.3 0.0 0.0 15.8 20.8 3.3 3.6 1.2 1.4 Minor Storm Major Storm 15.8 40.8 14.7 39.7 0.216 0.080 14.8 210.9 14.8 153.1 4.1 18.3 0.0 5.2 18.9 176.6 3.5 6.3 1.4 5.6 1.00 0.40 18.9 70.8 4.68 7.35 0.00 2.53 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q.tl,, =I 15.8 I 70.8 Ids Minor storm max. allowable capacity G00D - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than Clow given on sheet'Q-Peak' Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area A - Basin A10 (-La (C)-4 Design Information (Inout) Type of Inlet Lora! Oepression (additional to continuous gutter depression 'a' from'O-Atiov!) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Urit Grate (camot be greater than W from 0-Allow) Cbggirg Factor for a Single Urit Grate (typical min value = 0.5) Cbgging Factor for a Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = COOT Type R Curb Opening aat.A. = 3.0 3 0 inches No= 2 2 L,= 5.00 5.00 ft Wo= N/A NIA ft CrG = NIA N/A CrC = 0.10 0.10 Street Hydraulics: OK - Q < maximum allowable from sheet'Q-/howl MINOR MAJOR Total Inlet Interception Capacity Q • 3.9 9.4 Total Inlet Carry -Over Flow (flow bypassing islet) Q • 0.1 9.9 Capture Percentage • Q!Q = C%• 98 49 cfs cis Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1841c • Kechter Farms Area A - Basin All OVERLAND FLOW SIDE STREET GUTTER FLOW-7 OVERLAND { FLOW GUTTER PLUS CARRYOVER FLOW ` ROADWAY CENTERLINE Straw Detalls design Flow: ONLY it already determined through other methods: (local peak fbwfar 112 or Street OR grass -hoed Channel): •Clitnewn = Minor Storm Major Storm • 0 you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type; rO Slte is Urban 0 Site is Non -Urban flows Developed For, O Street Inlets 0 area Inlet; Ina Median 3.2 1 16.5 Subcatchmert Area = Percent Imperviousness= NRCS Soil Type = Overland Flow= Channel Flow = Slope (ftift) Length (ft) cfs Acres 46 A, B, C, or D Balms Intormation: { C, +15) ^ Lr Design Stonn Return Period, T, = Return Period Ore -Hour Precipitation, Pt= C, = C3 = Ca= User -Defined Stonn Runoff Coefficient (Leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calct4ated value), C5 = Bypass (Carry -Over) Flow from upstream Suhcatchments, Qs e error S4orm Vpr grOrm 0.0 0.0 years inches of* Total Design Peak Flow, Q • 3.2 16.5 cis Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. i Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A- Basin All Gutter Geometry (Enter data in the blue cells' Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T _ Senac = naecK_ Hcus TCROW N = W Sx = Sw= so = nsmEET TRvx = dx = 25.1 0.190 0.020 4.68 16.4 1.17 0.020 0.083 0.005 0.016 ft ft/ft inches ft ft ft/ft ft/8 ft/11 Minor Storm Major Storm 14.8 16.4 4.7 10.7 0 0 ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d.- (W ' S. 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section T.., Actual Discharge outside the Gutter Section W, (limited by distance Discharge within the Gutter Section W (Qa - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= do = a= d= Tx = Eo = Qx = Qw ancu = Or= V= V'd = TTH TXTH= Eo = Qx TH= Qx = Qw= Qencx = = V= V'd = R= Qe = d= dcnowN = MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion G6„, Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'O-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Minor Storm Major Storm 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 3.8 5.2 1.2 1.4 0.0 0.0 5.0 6.6 1.1 1.1 0.4 0.5 Minor Storm Major Storm 15.8 40.8 14.7 39.7 0.216 0.080 4.7 66.7 4.7 48.4 1.3 5.8 0.0 1.6 6.0 55.8 1.1 2.0 0.4 1.8 1.00 1.00 6.0 55.9 4.68 10.68 0.00 5.86 Minor Storm Major Storm 5.0 55.9 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs Project = Inlet ID = 1 L INLET IN A SUMP OR SAG LOCATION 1644c - Kechter Farms Area A - Basin All ,f-Lo (C)-1 Design Information linnet) Type of Inlet Inlet Type = Local Depression (additional to continuous gutter depression 'a' from'aAlow') aw..4 = Number of Urit Irdets (Grate or Curb Opening) No = Water Depth at Fbwiite (outside of bcal depression) Ponding Depth = Grate Information Length of a Unit Grate ib (G) _ Width of a Unit Grate We = Area Opening Ratio for a Grate (typical values 0.15-0.90) A.am = Cbgging Factor for a Single Grate (typical value 0.50 - 0.70) Cr (G) Grate Weir Coefficient (typical value 2.15 - 3.60) Cw (G) = Grate Orifice Coefficient (typical value 0.60 -0,80) Co (G) = Curb Opening information Length of a Unit Curb Opening L, (C) _ Height of Vertical Curb Opening in Inches Hwn Height of Curb Orifice Throat in Inches He = Angle of Throat (see USDCM Figure ST-5) Theta = Side Width for Depression Pan (typicaly the gutter width of 2 feet) WP = Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) Curb Opening Weir Coefficient (Typical value 2.3-3.6) C„ (C) Curb Opening Onfce Coefficient (typical value 0.60 - 0.70) C, (C) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity 15 GOOD for Minor and Major Storms (>0 PEAK) MINOR MAJOR CDOT Type R Curb Opening 3.00 300 2 2 3.6 7.7 MINOR MAJOR N/A N/A NIA NIA NIA N/A N/A NIA NIA NIA N/A N/A MINOR MAJOR 5.00 5.00 4.68 468 4.68 4.68 63.40 5340 1.17 - 17 0,10 0.10 3.60 3.60 0.67 0.67 MINOR Qe r 3.2 a PEN( REQUIRED = 3.2 riches gi Override Depths eet eet feet Inches aches degrees lest MAJOR 16.5 cfs 16.5 cfs Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin A13 OVERLAND FLOW GUTTER fLOWJ MUM SIDE SWEET OVERLAND 1. FLOW 1 GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE —Design Flow: br1L4 if alrea4 determined through other methods: Show Details (local peak flow for it2 of street OR grassained channel): = Minor Storm Major Storrn 0.8 1 6.2 • if you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: Flews Developed For: 0 Sine is Urban 0 Slte Is Non -Urban [O Street Inlets 0 Nee InIels Ina Medan Subcatchment Area = Percent Imperviousness = NRCS Soil Type= Overland Flow = Channel Flow = Slope (fVft) Length (ft) Cts Acres A, B, C, or D Rainfall Intormahon: intensity 1 (inrlVrv) = l.1 I' / ( t.2 * I, ) ^ La Minor Storm Major Stone Design Storm Return Period, T, _ Return Period One -Hour Precipitation, P1 = Cr= C2= Cs= User -Defined Stone Runoff Coefficient (leave this blank to accept a calculated value). C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Cary -Over) Flow from upstream Subcatchments, Oe = 0.0 0.0 years inches efs Total Design Peak Flow, 0 • 0.8 8.3 efs Worksheel. Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A13 Gutter Geometry (Enter data in the blue cells). Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) TBACK = SBACK = nBACK Height of Curb at Gutter Flow Line Hcure = Distance from Curb Face to Street Crown TcaowN = Gutter Width W = Street Transverse Slope Sx = Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 6/ft) Sw = Street Longitudinal Slope - Enter 0 for sump condition So = Manning's Roughness for Street Section (typically between 0.012 and 0.020) nsiREET = Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Tuu = dam= 25.1 0.190 0.020 4.68 16.4 3.00 0.020 0.083 0.010 0.016 ft ft/ft inches 6 ft Nft fllft ft/8 Minor Storm Major Storm 14.8 16.4 4.7 10.7 MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion O.b,,. Minor storm max. allowable capacity GOOD -greater than flow given on sheet'O-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'a -Peak' 4.1 61.2 ft inches check = yes cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area A - Basin A13 Lo (C)-4 Deslan Information (Inout) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Alloy✓) Total Number of Ur0s in the Inlet (Grate or Cub Opening) Length of a Single Unit Met (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from O-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Type = aLrKK No = W.= CrG = CrC Street Hydraulics: OK - Q o maximum anowablehem sheet 'Q-Allow' Total Inlet Interception Capacity Q = Total Inlet Carry -Over Flow (flow bypassing Inlet) Qn Capture Percentage = DAL a C% MINOR MAJOR CDOT Type R Curb Opening 3.0 30 2 2 5.00 5.00 NIA NIA NIA N/A 0.10 0.10 MINOR MAJOR 0.8 5.7 0.0 0.0 100 91 inches ft ft Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1944c - Kechter Farms Area A - Basin A14 OVERLAND FLOW SIDE SIREET OVERLAND FLOW Iy DOTER FLOW-' uur UTGUTTER PLUS CARRYOVER FLOW ` ROADWAY CENTERLINE Iesign Flow: ONLY I( aFeady detemssstlirough other met nf—ds: Show Details (knell peak lbw for 12 of street OR grass -lined channelk TIpaown _ Minor Storm Major Storm 1.6 8.1 ' It you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic In of•nil aHonrItnler a rn b bue ce Set Type: Flows Deyekped For: Q Ste is Urban Q See Is Non -Urban rQ Street Inlets 0 Area Inlets in a Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (Mt) Length (it) cfs Acres 96 A, B. C. or D Kaintau uttontwbon: int8hsny 1(Incffifvj-t,1 ffi ITUT c 1 C3 Design Storm Return Period, T, = Return Period Ore -Hour Precipitation, P1= C,= C2= C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined S-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Sabcatchments, Q, w Minor Storm Major Storm 0.0 0.6 years inches cis Total Design Peak Flow, Q - 1.6 9.7 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A14 Teat 1 T, T. Thy �v Wes— Tx 7 f � Sh+aM rows Gutter Geometry (Enter data in the blue cells). Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Tc BA �^x = "BACK BACK Height of Curb at Gutter Flow Line Hc. = Distance from Curb Face to Street Crown TCRONN Gutter Width W = Street Transverse Slope Sx = Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw = Street Longitudinal Slope - Enter 0 for sump condition So = Manning's Roughness for Street Section (typically between 0.012 and 0.020) nsEr = Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T _ dux= 25.1 0.190 0.020 4.68 16.4 1.17 0.020 0.083 0.010 0.016 ft ft/ft inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 ft inches check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion =I 7.1 I 79.0 Isis Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'CI -Peale Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area A - Basin A14 1-Lo (C)- Design Information (input) Type of Inlet Loral Depression (additional to continuous gager depression 'a' from'Q-Albv/) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (canon be greater than W from 0-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cbggirg Factor fora Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = COOT Type R Curb Opening atom = 3.0 3 0 inches No = 3 3 Lo= 5.00 5.00 ft Wo= NIA NIA ft CrG = NIA N/A CrC= 0.10 0.10 Street Hydraulics:OK- Q < maximum allowable from sheet' Q-Allow' MINOR MAJOR Total Inlet Interception Capacity Q - 1.6 8.1 cfs Total Inlet Carry -Over Flow (Now bypassing Inlet), Qe = 0.0 0.6 cfs Capture Percentage = Q,IQo = C % = 100 94 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin A15 OVERLAND l FLOW SIDE STREET GUTTER FLOW- OVERLAN Il FLOW GUTTER PLUS CARRYOVER FLAW ROADWAY CENTERLINE uw Show Details Design Flow: ONLY if already determined through other methods. Minor Storm Major Storm (local peak Bow for 112 of street OR grass -lined channel): 'CIKnown =I If you enter values in Row 14, skip the rest of this sheet and proceed to sheet D-Allow or Area Inlet. 1.0 I 7.0 fs Geographic Information: (Enter data in the blue cells): Site Type: Q Ste is Urban Q Site is Non -Urban Flows Developed For: Q Street Inlets O Area Inlets in a Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (f7h) Length (ft) Acres A,B,C,or0 Rainfall Information: Intensity I (mchlhr = C, ' P, I ( C2 T,) A C, Design Storm Return Period, T. _ Return Period One -Hour Precipitation, P, = C, = C2= Ca= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined Syr. Runoff Coefficient (leave this blank to accept a calculated value), Cy = Bypass (Carry -Over) Flow from upstream Subcatchments, CI, e Minor Storm Major Storm 0.0 0.5 years inches cfs Total Design Peak Flow, O = 1.0 7.5 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A15 Gutter Geometry (Enter data in the blue cells} Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) THACK = SHACK = ABACK = H. = TCROWN = W= SW = So = nsrREEr = TmAx = = 25.1 0.190 0.020 4.68 16.4 3.00 0.020 0.083 0.008 0.016 ft ft/ft inches ft ft ft/ft fun fun Minor Storm Major Storm 14.8 16.4 4.7 10.7 0 MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion %How _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD • greater than flow given on sheet 'Q-Peak' 3.8 55.7 ft inches check = yes cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area A - Basin A15 .r—Lo (C)—� Design Information (Input' Type of Inlet Local Depression (additional to continuous gutter depression' a' from '0-Allow') Total Number of Units in the Inlet (Grate or Curb Opening) -Length of a Single Unit inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from O-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor fora Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = COOT Type R Curb Opening arocr. = 3.0 3.0 inches No= 3 3 L,= 5.00 500 ft Wo= N/A NIA ft CrG = NIA NIA CrC = 0.10 0.10 Street Hydraulics: OK - Q c maximum allowable from sheet'Q-Allow' MINOR MAJOR Total Inlet interception Capacity 0 = 1.0 7.5 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) Qe = 0.0 0.0 cfs Capture Percentage = Q,IQ, = C%= 100 100 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area A - Basin A16 OVERLAND l FLOW SIDE STREET GUTTER FLtJMfJ OVERLAND FLOW GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details es n : •NLY rf already determined through other methods: (local peak flow for 112 of street OR grass -lined channel): 'C!itncw = Minor Storm Major Storm 0.2 2.0 • If you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. cis Geographic Infonnafion: (Enter data in the biue Gels): Subcatchment Area = Percent Imperviousness = Flows Detetropecl For: NRCS Soil Type = Site Type: 0 5tre a Urban 0 Sites Non -Urban [0 Street Inletn 0 area Inlets Ina Median Overland Flow = Channel Flow = Slope (ftltt) Length (ft) Acres A, B, C, or D ttainfaa information: Intensity I prrrlvhr = C, tr, ! (t.2 4 1 c) ^ C3 Minor Storm Major Storm Design Storm Realm Period, T, = Retum Period One -Hour Precipitation, P, = C1 = C2= Cs= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated valuel, C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Cary -Over) Flow from upstream Sobcatchments, Oa n 0.0 0.6 years inches ofs Total Design Peak Flow, O = 0.2 2.6 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area A - Basin A16 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 Mt) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TeAcK = SBACK nmeK = Hcu� = Tcrovn = W= Sx Sw= So = nsTr€ET = = wwx= MINOR STORM Allowable Capacity Is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Minor storm max. allowable capacity GOOD -greater than flow given on sheet '0-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' 25.1 0.190 0.020 4.68 16.4 3.00 0.020 0.083 0.008 0.016 ft ft/ft inches 11 ft ftlft ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 Minor Storm Major Storm 3.8 8 inches check = yes 55.7 lcfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area A - Basin A16 Lo (C)-4. PDesinn information (input) Type of treat Local Depression (additional to continuous gutter depression 'a' from't?ABoW) Total Number of Urits in the Iriet (Grate or Cub Opening) Length of a Single Urit Met (Grate or Crab Opening) Width of a Unit Grate (canrol be greater than W from O-Abw) Clogging Factor for a Single Urit Grate (typical min value = 0.5) Clogging Factor for a Single Urit Curb Opering (typical min. value = 0.1) Type = oar - No = La= Wo= CrG = CrC = MINOR MAJOR CDOT Type R Curb Opening 30 30 1 5.00 5.00 NIA NIA N/A N/A 0.10 0.10 inches ft n Street Hydraulics: OK - 0 < maximum allowable from sheet'q-Allow' Total Inlet Interception Capacity 0 • Total Inlet Carry -Over Flow (flow bypassing Inlet) 0e Capture Percentage • 0J0, • C% MINOR 0.24 0.00 98 MAJOR 2.08 9.51 80 cfs cfs APPENDIX B.2 AREA B CALCULATIONS Kechter Farm Development Final Drainage Report 01 LONSMLTiML LNC'Htt4S JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Kechter Farms Composite Runoff Coefficient Calculations Location: Minor Design Storm: Major Design Storm: Soil Type: Fort Collins 2 100 CID Job Name: Kechter Farms Job Number: 1844c Date: 1116f 14 By: ANC CA = KA + (1.31i3.1.44i2 +1.135i + 0.12) CCD = KCD + (0.858i3 - 0.786i2 + 0.774i + 0.04) C8 = (CA + CCD)I2 Basin Desigrn Data I (%) = 100% 90% 47% 40% 10% 25% 0% 0% I (%) Runoff Coeffs Basin Name Design Point �� s"He1$ (sf) Adrivesin one (sf) ASFHomes (si) Agravel (sf) Aplygnd (sf) Aart. led (sf) Alscepe (8 sod( (sf) Alscape (Crosoll) (sf) Arolal (sf) ATotal (ac) ImP (%) C2 C5 C10 C100 B1 1 12,856 8,056 8,408 0 0 0 0 3,771 33,091 0.76 72.7% 0.52 0.55 0.60 0.69 B2 2 16,167 3,647 68,941 0 0 0 0 5,870 94,625 2.17 54.8% 0.37 0.42 0.48 0.62 B3 3 18,979 4,448 80,814 0 0 0 0 13,580 117,821 2.70 51.7% 0.35 0.41 0.47 0.61 B4 4 16,190 3,584 62,940 0 0 0 0 5,195 87,909 2.02 55.7% 0.38 0.43 0.49 0.62 B5 5 23,313 5.106 69,835 0 0 0 0 22,131 120,385 2.76 50.4% 0.34 0.40 0.46 0.60 B6 6 24,954 6,529 0 0 0 0 0 8,138 39,621 0.91 77.8% 0.57 0.60 0.64 0.73 B7 7 40,582 10,262 175,748 0 0 0 0 146,927 373,519 8.57 35.5% 0.25 0.33 0.40 0.58 B8 8 20,961 6,526 66,400 0 0 0 0 29,340 123,227 2.83 47.1% 0.32 0.38 0.45 0.60 B9 9 12,129 3,708 38,925 0 0 0 0 4,458 59,220 1.36 57.0% 0.38 0.44 0.49 0.62 1310 10 30,214 7,154 209,463 0 0 0 0 15,358 262,189 6.02 51.5% 0.35 0.41 0.46 0.61 B11 11 29,706 12,466 110,083 0 0 0 0 18,458 170,713 3.92 54.3% 0.37 0.42 0.48 0.61 B12 12 15,974 3,537 0 0 0 0 0 38,660 58,171 1.34 32.9% 0.24 0.32 0.39 0.57 B13 13 12,816 3,414 0 0 0 0 0 4,813 21,043 0.48 75.5% 0.55 0.58 0.62 0.71 B14 14 0 7,630 38,476 0 0 0 0 96,766 142,872 3.28 17.5% 0.16 0.25 0.33 0.55 B15 15 17,282 3.314 0 0 0 0 0 5,558 26,154 0.60 77.5% 0.57 0.60 0.64 0.72 B16 16 0 0 16.613 0 0 0 0 18,493 35,106 0.81 22.2% 0.18 0.27 0.35 0.56 TOTAL SITE 292,123 89,381 946,646 0 0 0 0 437,516 1,765,666 40.53 46.3% 0.32 0.38 0.44 0.59 Kechter Farms rn 0 V ro U C C O= ate+ o C LL d V E E 0 O O CO CO O m m e .00 a c `0 o ~ Er H 3 v) N O 0 U ..Y C lL C y c0 v coN V O Cr) O CO. CO 0) V N V 0) N co m Vcs, N c0 tc Urbanized Check ON + o c co E O L() V N 0N N C) N V Lf) CV O CO. r LO N 0) a N V a) N CD 6 V N O a CO N m of ph.. c = F 0.)T --- r Q 0 N` NNa V N V 0 N 0 1.0 T C) 0 0) a) M rr N c7 V co r• CO O cocO f` O N 0 c0 O 0, C) V � N Nr CO 7� V 0) EO C.)E .S o .s a,, it_ o-6 HU+ co. r• 0 Lb — 6 0) T V o Ln ai 0 cD 7_ M. N 7 co T co co m W N Nn o O. Lo Travel Time (l,) t{=Lenglh/(Velocity x 60) F. E M 0- c 4-1- O N� L- h O CO (0 CO L() N O N Na LO V V C) N O 66 O CO N COl N Ua a Ng O N 0 N m N V N V N N• • (V N- N 0) of eV (V 0) oi 0) N 0 CV r (V O O O (V N r U O N O N O N O N O N O N O N O N O N O N O N ova N O N O N 6 r Type of Land Surface Paved areas & shallow paved swales 3 2 m m 0 0 m `Na m a Paved areas & shallow waved swales Paved areas & shallow paved swales Paved areas & shallow paved swales Paved areas & shallow paved swales Paved areas & shallow paved swales 2 w m In cc m y COP Paved areas & shallow paved swales Paved areas & shallow paved swales Paved areas & shallow paved swales Paved areas & shallow paved swales Grassed waterway Paved areas & shallow paved swales Paved areas & shallow paved swales Grassed waterway 0 c) 0 O 0 O 0 O 0 Ln 0 -- e O e O e C) e CV e N e -- o D) o a) a O a O 0 O 'En - J tf. CO 00 No n Ln 0) O C) CD V 6) c0 N V-N V 0 0 N CO C) (0 0 N (0 0 Initial Overland Time (t) C E Cr) v V (0 V co O ai O v O) ro CO. m ai C7 m N� ri f0 CO ri Lb pi N a) . 0i N 0) i O .,'re o" 0 N 0 M N 0 0 0 N N e V N e O N e O V e LI) N 0 C.,V N e e 0 r- 0 0 N 0 O N 0 O N 0 O N 0 7- N n . L o p) � 0- E G) - a O N QI N O N O CV O CO') O V LA N O CV 0) a) O N O CO N L- 0) N iA V O N N. Sub -Basin Data U LC) LA O N V. V V O M V O 0 V O 0 (0 O C) COcoQ O 00 O V O V O N V O N CVLf) O CO O LO N O 0 0N O h O o V Q co N O 0- N coN N` N O (V O 0- N a) O 0- N 6 CO 00 (V CD M. r N 0 (0 N 0) co V C) CO V O CO N L'i 0 c0 O c0 O c C ,coN 'p m a 0 N C) V L)] LO N, co a) O' C m A lEp CO m m m m m m m (0 m 0 CO m N CO C) m V CO LO CO cO CO 1 1 1 Developed Storm Runoff Calculations Kechter Farms = (28.5 P1) / ((10 + TC)"0.78665082676575) Paint Hour Rainfall (Pi) : 0 0 sa1oN Route to MH-811-1 See Rational Parcel A Route to DP 815 I Route to MH-B2-1 Route to MH-B2-1 Route to MH-B2-2 Route to MH-B2-2 Route to MH-B3-1 Route to MH-B3-1 Route to MH-B5-3 Route to MH-B5-3 Route to MH-B6-2 Route to MH-B6-2 Route to MH-B6-2 Route to MH-B6-4 Route to DP 9 o a 0 0 0 0 Cr r a 0 0 0 o Surf Flow to DP 11 I Route to MH-B6-6 (UIW) awll lelol V V N N N (V M N 4 i!1 N 49 +� R fV M N 6 t0 fV (h 6 O Ln fV M to 47 CO (7 (C 0 ..Cr O ' n 0 OR r M fV 0 N 6 N 0 4 Pipe/Swale Travel Time (Up) fl O 0 elO1 O M r N n O O O 0 n O 0 O CO O O Q el O N N O C0 O O CO O O n n O 01 O O U O co M O N M O (sdJ) /l!aoleA L() M N (n (0 N CO O n n n (o N f0 6. O n O C O 6 CO V (0 n CO 6 N of 10 n (31) (46uai O N O O M O M 2n N V el r� elN 0 N o a (sio) !q!oedep add xeyl 0 d 0 0 oo CO a n v, m y m V r, CO, R I,- rn0 N a m (l N r 'XI O q O n (sp) mold ad!d co n 00 m O 0 ¢o N N N n N CO V 0 M n M M 6r N -a M co (%) adolg e co O e O 0 e M N e O 0 e o O e O N e (o O e (o N e ry 0 O e 0 N e oo O e 0 O coM e °r1 N e 0 O e L O Ieualeyy adid a c) CC a 0 CC a 0 CC a 0 CC a 0 CC a 0 CC a 0 DC a 0 a a 0 CC a 0 a a 0 CC a 0 CC a 0. Cr a 0 CC a 0 CC a 0 CC a 0 CY lualeninbe 10 OD azi$ adid E o0 ... c 00 r c uf1 .- c G0 r c 0 r c V N c CO r c V N c 00 r c M c O M 0 r E N V c 0 c CO r c M c N 7 Inlets 1 (070) 1anolweo 0 O o I(0'!. o E.,O r (n 0 O M 0. 3 0 m Type C Inlet 3.14 0.00 Total Flow-QcoA13-OcoB 151 10' Type R Inlet I 6.60 1 2.84 Total Flow-QcoA13-QcoB2-QcoB151 10' Type R Inlet 2.12 0.67 LTotal Flow-ocoA13-QcoB3-QcoB15l 15' Type R Inlet 12.69 5.34 Flow+QcoB3-QcoA13-QcoB 151 0 O 0 M 0 O O 0 O o 3 0 IL m 0 H 22.57 0.00 l 3 0 LL To a I- O o 3 0 LL 'm o H paldaoialw p ccN (O L v V co N-0r i N _mM.- 0 + D0 O orf adAllalui c a c H O c a °f I- O E ccr a I- O E cc c H N 10' Type R Inlet Ftow+QcoB3 10' Type R Inlet 5' Type R Inlet 15' Type R Inlet 15' Type R Inlet Total Runoff (sip) p n T 0 r 001 N 0 Li" 06 M Cr (O n CO m O < M (MO (J I) I O n ( (0 co 1 (0 on V (0 N 7 10 N (0 N0 n 6 V (0 (ae) V.p3 M r r o N) 0 V v (0 O oi 10 N corn (0 oo O1 (uiw) 31 ie1ol V 0Tr(0r f f N M M (0 W r(0tri .a ON irect Runoff (spo) ID .0 01 N (G Cr (+i Total Flow (A13, B15) 0 0 I� O O (O CO ,i) m 05 Q 3 _o LL N O ~ In T _ 0 O 0. r• Total Flow (Basin A13, B2, B15-B16) N 6co r _ O N:10 0 0 r Total Flow (A13, B2-B3, B15-B16)I n r r 1-N tor- 0 N Total Flow (A13, B2-B3, B5, B15-B16) M n ooi M o N Total Flow (A13, B2-B3, B5, B15-B16) e- 005 Total Flow (Basin 138-B'9) 3.65 I 6.50 I 23.73 Total Pipe Flow (Basin B8-B10) O coo O m Total Flow (Basin B4, B8-B11) (J4fUl) I 0- N N: Q1 O N. m n M 0 CO n N N 1• 0.85 I 7.27 01 0) (O N r 2.41 6.65 l / l=e) V.CI (Mfi O m O c} 7 O V 8(00. 0 r (UIW) 01 0 ( 0 M o n d) ECO' (0 r V N 0 M 6Or 0 C 0 10 r 0 (0 r 0 01 0 0 N 0 44300 ))ou na Ol co 0 a0 u] 0 CV n 0 CO 0 0 N (o 0 CO 0 0 (O 0 CO 0 0 el n 0 0 (O 0 N U1 0 (O 0 N CO 0 r (0 o (oe) eaJV (o O N h r 0 (0 O 0) O ' N 0 n N (o n N n 0 0 0 0 10 CO N (0 M r N O (0 N O N N O M Iulod Asap r o1 u1 0) m a 0 m r N m i N N N m i (o r elV1 CO ± In M CO ±- n (0 N (D CO ± m rn 01 a 0 0 O a ❑ v r r a ❑ aweN wse8 m a m m m co m N. CO n co m m co- Developed Storm Runoff Calculations Kechter Farms I = (28.5 P1) / ((10 +TC)^0.78665082676575) CO Point Hour Rainfall (P,) : 0 Design Storm : saloN Route to MH-B6-5 Route to MH-B6-5 Route to MH-B6-6 Route to MH-B6-4 Route to West Outfatl Route to Ditch (Ulu!) awla Ielol p m m r T F m E (u1w) A m -o6mo o 0 0 0 a m ~ (sdl) 41loolaA m r�i r�i u) M cJ o n (4) Ul6uai a c, ; T. m a (s;o) Alloede0 ad!d xEIN o 'o o v o v v, 're rn L. (SP) Mo14 ad!d CD N _ N CD� a v m o, (%) adols a oo o (0 O 4 C (0 o o .- leualelry adld a ( 0 0 lualenlnba Jo (u1) azis adld c `n c " u' C r (000) J9A0AJJeo 0 FOi cv to-0 o Total Flow-QcoB12-QcoB13 Total Flow-QcoB12-OcoB131 co M Q °8 c 0 o3 LT_ O paldaaalu! 0 N rn N ce VN 0 m C adtSllaiul 5' Type R Inlet ] d CC 0 a 4- (SP) 0 0 m (0 CO (nijui) i 0 ',LT, 6 04 M 6 ti o ID C I-0 (DE) v.33 o c��i N (u!w) of IE101 N 0 ri N 21 vi co (sl0) 0 0) N Total Flow (Basin 612-B13) Total Flow (B4, BB-B13) Total Flow (A13, B2-B13, B15) m `o N„ (i4le!) I co ,'Ts 0 c. 1 OE) H.o OO 0 co o 0 j (UIw) Ol d O N O m 0 04 O Jao3louna 6 0 N- 0 Lo 0 (De) ooiv 7 C co M 1010d 061sea r V w m I o m I q m 5 T aweN u!Se9 N CO CO CO CO 1 Developed Storm Runoff Calculations Kechter Farms I = (28.5 P1) l ((10 + TC)"0.78665082676575) 03 O Point Hour Rainfall (P co N c sa1oN Route to MH-Bi 1-I 1 See Rational Parcel A Route to DP 815 I _ a m C Route to MH-B2-1 Route to MH-B2-2 Route to MH-B2-2 Route to MH-B3-1 Route to MH-83-1 Route to MH-B5-3 Route to MH-B5-3 Route to MH-B6-2I Route to MH-B6-2I _ a m C Route to MH-B6-4I Route to DP 9 Route to DP 10 I Route to DP 11 I Route to MH-B6-6 (Ulw) 0411e101 N 0 N 0 CO (D CO Q (0 47 N el. N t0N. (n N CO(D N (O (D (D 0 N T (0 m CO O O CO (D N. C Of .- .,- r f� R CO Pipe/Swale Travel Time (uiw) 11 ni N 0 O 0 0 (n N.. .- al r N O o 0 r N O o V> 0 0 L." 0 0) Q 0 r r 0 CON,- O o N r (0 o Q) 0 (n 0 (0 N 0 (sd)) /.1iaOlaA N N M CO 0, N CO M (D Cr; Q (D M 0 0 (0 Q (D Q (D Q N- M CD < (o M N 0 Li"f� O Q (r;) 416ual ° O) O M O M N M N h v M M M M O co co M N N m Q a (Sp) 1llloedeo ad d xeW O CO O aO to m Q R A r a0 N r° Q N m c N. m N (O V. M RI r m Q V i° (S1a) mold adId co vi CO c CO 0 t` -- (O = N ri (0 o v 0) CO ui 0) ri 0) .- O ri t0 0 m 0 (%) adols - o tD O ,;P EC/M O o N 0 0 0 0 (D O 0 O N o 20 O a (D N o N 0 0) O 0 0 N 0 O O 0 tU O o 0) M e M ni o O O 0 to O leualelry adld . t a U it LL U CC a 0 CC a U CC a 0 CC a U CC a 0 M a 0 ce a U IY a U M a U M a U M a 0 M 0. 0 M a 0 M a. 0 W a U M lualenInba JO (up azig adid N C m C to r C co C in C .1.00 N C C 7 N C m r C O CO C O CO C N C N '0M C CO C a0 C 0 C N Q l C JanorGJeo 0 o o 0 0 0 0 Total Flow-QcoA13-QcoB15I 0 0 0 O d c m U f" Total Flow-OcoA13-QcoB15I 0 0 (0 C a' b Total Flow-QcoA13-QcoB2-QcoB15 [ 10' Type R Inlet I 0.61 I 0.00 Total Flow-QcoA13-QcoB3-QcoB15 15' Type R Inlet I 1.92 I 0.00 I IFlow+QcoB3-QcoA13-QcoB15 0 0 0 0 M 0 d + 0 0 o 0 3 Ni m 0 0 0 QQ (0 M 3 I° T H o O 3 L Fes- paldowalui p OQp O coO O O 0 M M .- N_ m o U + coO .- N Q adR1181u1 10' Type R Inlet N C -CC a o 7 C a CD b C a k 0 N "al Id a k o Flow+QcoB3 10' Type R Inlet 5' Type R Inlet N C a' in r 15' Type R Inlet I Total Runoff J (s;0) O coO (0• N co N. m 0) (OD co Q (��UI) I O N m r m r co m N coo r GO O• N 000 - (M0 .- (0e) V.03 O -a 0 40 co 0 0) co (0 N ni r, M ti N (e M Q r N to ri n (ri (ulw) �l lelol in n ram) (i) 0D v m 0) v Direct Runoff (SP) O N O 0 0 m O CO N` O (L) m r7 0 EL N Oco: 0 M O 0 N - O Total Flow (A13, B15-B16) N (0 • r M O N m O Total Flow (Basin A13, 82, B15-B16 1 0 0) •r r �� O N 0 0 - o m N (0 m ,IS m M CO NO CON g° LT. m H N 0 Q O o N N Total Flow (A13, B2-B3, B5, B15-1316)I O m CO M r Total Flow (A13, B2-B3, B5, B15-B16) I,- CO r 0) O r Total Flow (Basin B13-B9) 0 0) CO (O co0 - o N Total Pipe Flow (Basin BB-B10)I 0 (fl r M N. N m 6 co CO C O CI ... 0 U 1- (iujui) I GO 0 N r) 0 N Q N N O) N - CO N N. O N CO 0 N CO - 0.•N oe ()d.� �; O Q�S O O �� N O O)U O O O (0LL r (ulw) 32 0 m 0 M N 0 I,. 6 0 m N 0 Q ni w 0 M 0O 0 V 0 m r 0 (0 r 0 W •Q 0 0 N V ao�ouna (N 0 N 0 N. 0 rm 0 M O m O O N O N O M O M 0 M O M O M 0 (ee) BON t0 ti 0 N ul .- 0 CDm 0 0 N. N 0 ti N CO A N N. u) GO rn O CO CO ('4 (D CO r N O (0 N 0 N N 0 r) lu!od u6Isad r M Ln N m a 0 0 r N CO i N N N CO 2 M r C() m n N M 1f) m i r tD N (1) m GO 0) 0 a 00 Or d o Q r '' a aweN uiseg m ¢ m m m CO m m CO CO m m m m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ° Ts o Developed Storm Runoff Calculations Kechter Farms I = (28.5 P 1) / ((10 + TC) W.78665082676575) CO Point Hour Rainfal / 3 m* Route to MH-B6-5 Route to MH-B6-5 Route to MH-B6-6 Route to MH-B6-4 Route to West Outfall Route to Ditch (UP.I) q m 01 m OD m aW±p12 «e e / ` ® CO .- ( CO {t +! & Q - 2 / E Q � > _ ( [ 2 ()edeo2R aaeA • » § \ (s13)/ �� _k � En. \ / ®�� ' k j \ j j A+n kd ) ( ) k ( lualemnba _ _ .G - - (u!) &skd $ e k i i ^° °° § { Total Flow-Qco812-QcoB13 Total Flow-QcoB12-QcoB13 Total Flow-QooA13-QcoB15 and Jakui0 ƒ ( !jam 11 \ 5' Type R Inlet [ ° •f } \ \ WI / CO CO ) ) ««� ; CO 0 CO i� m I \ \ } (SP) 2 f Total Flow (Basin B12-B13) Total Flow (84. B8-813) \ § Fa 0 n § § / § 3 I ®3 § To. o d \ re (up) m / ) _ ni , au 2 § ) j �)®> § § § i e m e _ 2 CO 2 CO CO § § § a en, ©® uiseg § 6 § JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Kechter Farms INLET SUMMARY TABLE (100-YEAR) Job Name: Kechter Farms Job Number: 1844c Date: 1/16/14 By: ANC Design Point Inlet Number Inlet type Sump or At -grade Sump Depth Road Slope Design flow Bypass Flows from Upstream Inlet Design Flow + Bypass from Upstream Inlet Inlet Capacity Bypass Flows to Downstream Inlet Bypass to Design Point 1/2 Street Capacity (cfs) Does 0100 Overtop CL? (Yes/No) 0100 Overtopping (cfs) 1 B1 10' Type R Inlet Sump - 5.0% 3.83 cfs 0.00 cfs 3.83 cis 3.85 cis 0.00 cfs - 20.05 No - 2 B2 10' Type R Inlet At -grade - 1.0% 9.45 cfs 0.00 cfs 9.45 cis 6.60 cis 2.84 cfs B3 8.96 Yes 0.49 3 B3 10' Type R Inlet At -grade - 1.7% 2.79 cfs 0.00 cfs 2.79 cis 2.12 cfs 0.67 cfs B5 12.68 No - 5 B5 15' Type R Inlet Al -grade - 1.5 % 11.87 cis 6.16 cfs 18.03 cis 12.69 cfs 5.34 cfs B7 10.98 Yes 7.05 6 B6 10' Type R Inlet Sump 4.9 in 1.5% 5.03 cfs 0.67 cfs 5.70 cfs 5.70 cis 0.00 cfs - 10.98 No - 7 B7 20' Type R Inlet Sump 9.9 in 1.5% 30.73 cis 7.73 cfs 38.46 cis 38.46 cis 0.00 cfs - 10.98 Yes 27.48 8 B8 10' Type R Inlet Sump 6.4 in 1.3% 12.17 cfs 1.13 cis 13.30 cis 13.30 cfs 0.00 cis - 10.98 Yes 2.32 9 B9 5' Type R Inlet Sump 6.2 in 1.3% 6.15 cfs 0.00 cfs 6.15 cfs 6.16 cis 0.00 cfs -- 10.98 No - 10 B10 15' Type R Inlet Sump 7.4 in 1.3% 22.57 cfs 0.00 cfs 22.57 cis 22.57 cis 0.00 cfs - 10.98 Yes 11.59 11 B11 15' Type R Inlet Sump 7.9 in 1.3% 24.60 cfs 0.00 cfs 24.60 cis 24.60 cis 0.00 cis - 10.98 Yes 13.62 12 B12 5' Type R Inlet At -grade - 1.9% 5.30 cfs 0.00 cfs 5.30 cfs 2.92 cfs 2.39 cfs B7 12.68 No - 13 B13 10' Type R Inlet Al -grade - 1.7% 2.79 cfs 0.00 cfs 2.79 cfs 2.12 cis 0.67 cis B6 12.68 No - 15 B15 10' Type R Inlet At -grade - 0.5% 3.40 cfs 0.00 cfs 3.40 cfs 2.27 cis 1.13 cfs B8 6.34 No - 16 B16 Type C Inlet Sump 2.0 in - 3.14 cis 0.00 cis 3.14 cfs 3.14 cfs 0.00 cfs -- -- -- - 1 1 JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Kechter Farms INLET SUMMARY TABLE (2-YEAR) Job Name: Kechter Farms Job Number: 1844c Date: 1/16/14 By: ANC Design Point Inlet - Number Inlet type Sump or At -grade Sump Depth Road Slope Design flow Bypass Flows from Upstream Inlet Design Flow + Bypass from Upstream Inlet Inlet Capacity Bypass Flows to Downstream Inlet Bypass to Design Point 112 Street Capacity (cfs) 1 B1 10' Type R Inlet Sump -- 5.0% 0.82 cfs 0.00 cfs 0.82 cfs 0.84 cfs 0.00 cfs -- 15.8 2 B2 10' Type R Inlet At -grade -- 1.0% 1.62 cfs 0.00 cfs 1.62 cfs 1.62 cfs 0.00 cfs -- .7.1 3 B3 10' Type R Inlet At -grade -- 1.7% 0.61 cfs 0.00 cfs 0.61 cfs 0.61 cfs 0.00 cfs -- 8.8 5 B5 15' Type R Inlet At -grade -- 1.5% 1.92 cfs 0.00 cfs 1.92 cfs 1.92 cfs 0.00 cfs -- 8.7 6 B6 10' Type R Inlet Sump 3.2 1.5% 1.13 cfs 0.00 cfs 1.13 cfs 1.13 cfs 0.00 cfs -- 8.3 7 B7 20' Type R Inlet Sump 3.7 1.5% 3.89 cfs 0.00 cfs 3.89 cfs 3.89 cfs 0.00 cfs - 8.3 8 B8 10' Type R Inlet Sump 3.0 1.3% 1.87 cfs 0.00 cfs 1.87 cfs 1.87 cfs 0.00 cfs -- 8.1 9 B9 5' Type R Inlet Sump 2.9 1.3% 1.09 cfs 0.00 cfs 1.09 cfs 1.09 cfs 0.00 cfs -- 8.1 10 B10 15' Type R Inlet Sump 3.5 1.3% 3.64 cfs 0.00 cfs 3.64 cfs 3.64 cfs 0.00 cfs -- 8.1 11 B11 15' Type R Inlet Sump 3.7 1.3% 4.23 cfs 0.00 cfs 4.23 cfs 4.23 cfs 0.00 cfs -- 8.1 12 B12 5' Type R Inlet At -grade - 1.9% 0.64 cfs 0.00 cfs 0.64 cfs 0.64 cfs 0.00 cfs -- 9.3 13 B13 10' Type R Inlet At -grade -- 1.7% 0.61 cfs 0.00 cfs 0.61 cfs 0.61 cfs 0.00 cfs -- 8.8 15 B15 10' Type R Inlet At -grade -- 0.5% 0.76 cfs 0.00 cfs 0.76 cfs 0.76 cfs 0.00 cfs -- 8.8 16 B16 Type C Inlet Sump 2.0 0.5% 0.30 cfs 0.00 cfs 0.30 cfs 0.30 cfs 0.00 cfs -- -- 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area B - Basin B1 OVERLAND FLOW SIDE STREET OVERLAND FLOW GUTTER FLOW+ "8 GUTTER PLUS CARRYOVER FLOW -� ROADWAY CENTERLINE Show Details I Design Flow: ONLY if already determined through other methods: (local peak flow for 12 of street OR grade -lined channel); .Qanown If you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Minor Storm Major Storm 0.8 3.8 Geographic Information: (Enter data in the blue cells): Site Type: Rows Developed For: Q Site is Urban 0 Street Inlets 0 Site is Non -Urban 0 Area Inlets in a Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type Overland Flow = Channel Flow = Slope (ft/ft) Length (ft) cfs Acres A. B. C, or D Rainfall Information. Intensity I (rntl,lhr = C, P, / ( C2 + Ts )" C3 Minor Storm Major Storm Design Storm Return Pedal, T, = Return Period One -Hour Precipitation, Pr _ Cr= C2= C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subeatchments, Qe • 0.0 0.0 years inches cis Total Design Peak Flow, Q •1 0.8 L 3.8 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. B1 UD-Inlet_v3.12.xlsm, 0-Peak 1/16/2014, 3:14 PM 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B1 Y I„CVRDe tic T, Tay( Tx TCROMM { ggr ream Gutter Geometry (Ente data in the blue cells} Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ftlft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TancK SBACK = naACK = FIGURE. TCROWN = W= sx = Sw = So = nsTREEr Tex= dux= 25.1 0.190 0.020 4.68 16.4 1.17 0.020 0.083 0.050 0.016 ft ft/ft inches ft ft Wft Rift ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 ❑� ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ' S, " 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Y= do = a= d= Tx = Eo = Qx= Qw = °BACK = CET V= V'd = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 12.2 16.5 3.7 4.3 0.0 0.0 15.8 20.8 3.3 3.6 1.2 1.4 Maximum Capacity for 112 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section TxTH Actual Discharge outside the Gutter Section W, (limited by distance TCROWN) Discharge within the Gutter Section W (Qd - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TTH = Tx TH = Eo = Ox TH = °x = Ow= ()BACK = 0= V= V'd = R= Qd = dcsowtl = 15.8 40.8 14.7 39.7 0.216 0.080 14.8 210.9 14.8 153.1 4.1 18.3 0.0 5.2 18.9 176.6 3.5 6.3 1.4 5.6 1.00 0.40 18.9 70.8 4.68 7.35 0.00 2.53 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity Is based on Depth Criterion Q,,o = Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' 15.8 70.8 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs B1 UD-Inlet v3.12.xlsm, 0-Allow 1116/2014, 3:14 PM 1 INLET IN A SUMP OR SAG LOCATION 1 Project = Inlet ID= 1844c - Kechter Farms Area B - Basin B1 .) Lo (C)-4- Deakin Information Ilnoutl Type of Inlet Local Depression (additional to continuous gutter depression 'a from'O-Allow+) Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowtne (outside of local depression) Grate Irrformation Length of a Urut Grate Width of a Unit Grate (Area Operrirg Ratio for a Grate (typical values 0.15-0.90) Clogging Factor fora Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typicat value 2.15 -3.60) 'Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches Height of Cub Orifice Throat in Inches rArgle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor fora Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.6) iCurb Opening Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) inlet Capacity IS GOOD for Minor and Major Storms (=O PEAK) Inlet Type = arms = No = Pondirg Depth = (G)= Wv= hsn = G(G)= C (G)= Co(G)= La (C) _ H,An = = Theta = Wn= Cr (C)= (C)= Co (C) = D rEA( REOV� D MINOR MAJOR CDOT Type R Curb Opening 3.00 300 2 2 - 2.3 3.8 MINOR MAJOR NIA NIA N/A NIA NIA N.'A N/A NIA N/A NIA NIA NIA MINOR MAJOR 5.00 5 00 4.68 4 68 4.68 4 68 63.40 63 40 1.17 i'7 0.10 0.10 3.60 3 60 0.67 0 67 MINOR MAJOR 0.8 3.8 0.8 3.8 rnhes nches Q Override Depths eel eet feet inches itches degrees teat cfs cfs B1 UD-lnlet_v3.12.bsm, Inlet In Sump 1116/2014, 3:14 PM Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c • Kechter Farms Area B-Basin B2 OVERLAND FLOW SIDE STREET OVERLAND FLOW GUTTER FLOWS GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design How: ONLY if already determined through other methods: (focal peek flow for 1,2 of street OR gress-lined channel): "Q[t„yae Minor Storm Major Storm 1.6 9.4 " If riou enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: Rows Developed for: 0 Site is Urban 0 Site is Nan -Urban Q Street Inlets 0 Area Inlets in a Medan Subcatchment Area = Percent Imperviousness = NRCS Soil Type Overland Flow = Channel Flow = Slope (Mt) Length (ft) cfs Acres A, B,C, orD Rainfall Information: Intensity) (IncIVhr = Ct P, / (C2 + Tr) " C3 Design Storm Return Period, T, = Return Period One -Hour Precipitation, P, = C= Cz= C1= User -Defined Storm Runoff Coeifdent (leave this blank to accept a calculated value), C = User -Defined 5-yr, Runoff Coefficient (leave this blank to accept a calculated value), Cy = Bypass (Cary -Over) Flow from upstream Subeatehments, Qy = Minor Storm Major Storm 0,0 0.0 years inches cfs Total Design Peak Flow, Q = 1.6 9.4 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW, B2 UD-Inlet v3.12.xlsm, CI -Peak 1/16/2014, 3:19 PM 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B2 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 Mt) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK SMACK - naACK = HcURB TCROWN = w= Sx = SW = So = nsTREET = Tx„x = dux= 25.1 0.103 0.020 4.68 16.4 1.17 0.020 0.083 0.010 0.016 ft ft/ft inches ft ft ftift ft/ft ft/8 Minor Storm Major Storm 14.8 16.4 4.7 10.7 D ❑� ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") • Gutter Depression (tic - (W " Sa' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (OT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Y= do = a= d= Tx = Eo = Qx = Ow = QBACK QT = V= V'd = 3.54 3.94 • 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 5.4 _ 7.4 1.6 1.9 0.0 0.0 7.1 9.3 1.5 1.6 0.6 0.6 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx Tri Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (Qd - (x) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V"d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TT. = Tx TN = Eo= QxTN= Ox Ow = QBACK = 0= V= V'd = R= 0d= dcROwtl = 15.8 40.8 14.7 39.7 0.216 0.080 6.6 94.3 6.6 68.5 1.8 8.2 0.0 4.3 8.5 80.9 1.6 2.8 0.6 2.5 1.00 1.00 8.5 80.9 4.68 10.68 0.00 5.86 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity Is based on Depth Criterion Qali,,,, _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak. Major storm max. allowable capacity GOOD - greater than flow given on sheet'O-Peak' 7.1 I 80.9 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs 82 UD-Inlet v3.12.xlsm, Q-Allow 1/16/2014, 3:19 PM INLET ON A CONTINUOUS GRADE Project: Inlet ID: 1844c - Kechter Farms Area B - Basin B2 La (C) Design Information flnputl Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Alltw') Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from Q-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = CDOT Type R Curb Opening aieoa = 3.0 3 0 inches No= 2 2 Le= 5.00 500 ft W.= NIA NIA ft CrG = N/A NIA CrC = 0.10 0.10 freet Hydraulics: OK -Q < maximum allowable from sheet 'CI -Allow' MINOR MAJOR Total Inlet Interception Capacity Q = 1.6 6.6 cfs Total Inlet Carry -Over Flow (flow bypassing Inlet) Ob = 0.0 2.8 cfs Capture Percentage = Q„IQ. = C%= 100 70 % B2 UD-lnlet_v3.12.xlsm, Inlet On Gracie 1/16/2014, 319 PM Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area B - Basin B3 OVERLAND { I II SIDE FLOW I STREET CUTTER FLOW—� uns GUTTER PLUS CARRYOVER FLOW OVERLAND FLOW ROADWAY CENTERLINE Show Details I Design Flow: ONLY d already determined through other methods: Minor Storm Major Storm (local peak flow for 1 r2 of street OR grass -Mod charnel): 'Qcnewn l 1.9 1 11.5 • 11 you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. cfs Geographic Information: (Enter data in the blue cells): Site Type: r0 Site is Urban Q Site is Non -Urban Flows Developed For: I Q Street Inlets Ill 0 Area Inlets In a Medan Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Fbw = Channel Fbw = Slope (ft/ft) Length (ft) Acres A, B, C, orD seaman mtom,ation: intensity 1 (rent).1+, Y,1(t.: + lc ) " 1-o Storm MajoiStonn Design Storrn Return Period, Tr = Retum Period One -Hour Precipitation, Pr = C,= C2 = Cr= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Ruoff Coefficient (leave this blank to accept a calculated value), Cy = Bypass (Carry -Oyer) Flow from upstream Subcatchments, Q, _ 0.0 2.8 years inches cfs Total Design Peak Flow, Q = 1.9 14.4 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: 1 1 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B3 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK SBAcx = nBACK = Hcue= TcNowN = W= Sx = SW= So = 2sTNEET = Txwx = dw= 25.1 0.103 0.020 4.68 16.4 1.17 0.020 0.083 0.028 0.016 ft ft/ft inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 12 ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ' S' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - 0x) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TN Actual Discharge outside the Gutter Section W, (limited by distance Tcaox5) Discharge within the Gutter Section W (Q. - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= do = a= d= Tx = Eo = Qx = Ow= ABACK = Qr= V= V'd = Tw= Tx1H= E. = QxnH= Ox = Ow = ABACK = Q= V= V"d = R= Qa= d= dGRONN = Minor Storm Major Storm 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 9.1 12.3 2.7 3.2 0.0 0.0 11.8 15.6 2.5 2.7 0.9 1.1 Minor Storm Major Storm 15.8 40.8 14.7 39.7 0.216 0.080 11.1 157.8 11.1 114.6 3.1 13.7 0.0 7.2 14.2 135.4 2.6 4.7 1.0 4.2 1.00 0.64 14.2 86.3 4.68 8.87 0.00 4.05 MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cis fps cfs inches inches 11.8 I 86.3 Ids Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. altowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area B - Basin B3 —La (C)� DesIon Information Mout) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from 'Q-Aloes ) Total Number of Units in the Inlet (Grate or Cub Opening) Length of a Single Unit Inlet (Grate or Cub Opening) Width of a Urit Grate (taunt be greater than W from O-Allow) Cbgging Factor for a Single Unit Grate (typical min. value = 0.5) Cbgging Factor fora Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = CDOT Type R Curb Opening aroc,i. = 3.0 30 inches No= 2 2 L. = 5.00 5.G0 It W, = N/A NIA ft C-G = NIA NIA Ct-C = 0.10 0.10 Street Hydraulics: OK -Q a maximum allowable from sheet'Q-Allow' MINOR MAJOR Total Inlet Interception Capacity Q = 1.9 8.2 cis Total Inlet Carry -Over Flow (flow bypassing Inlet) Q, - 0.0 6.2 cis Capture Percentage= QJQe' CSL= 100 57 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area B - Basin B5 I OVERLAND j FLOW SIDE STREET GUTTER FLOW-" uas OVERLAND Il FLOW GUTTER PLUS CARRYOVER FLOW —, ROADWAY CENTERLINE Show Details I Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 12 of street OR grass -lined channel). *Qa„own = • If you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Aron Inlet. Geographic Information: (Enter data in the blue cells): Site Type: Q Site is Urban 0 Site i5 Non -Urban Rows Developed For: rQ Street Inlets O Area inlets Ina Median 1.9 Subcatchment Area = Percent imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = 11.9 Slope (ft/ft) Length (ft) cfs Acres A, 8, C, or D Rainfall Information: Intensity I (rnsh hr = O, ' P, I( C1 + T, TA C3 Design Storm Return Period, T, = Return Period One -Hour Precipitation, P1 = C, _ C2 = Ca= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined Syr. Runoff Coefficient (leave this blank to accept a calculated value), Cy = Bypass (Carry -Over) Flow from upstream Subcatchments, Os Minor Storm Major Storm 0.0 6.2 years inches cfs Total Design Peak Flow, 0 a 1.9 16.0 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. 1 1 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844e - Keehter Farms Area B - Basin B5 Gutter Geometry (Ente data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 Mt) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK SBACK SACK HcuRs = TCROWN = w= Sx = Sw= so = nSTREET = T., = dux= 25.1 0.103 0.020 4.68 16.4 1.17 0.020 0.083 0.015 0.016 ft ft/ft inches ft ft fife ft/ft ftlft Minor Storm Major Storm 14.8 16.4 4.7 10.7 ❑� ft inches check = yes Maximum Capacityfor 112 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W • S, • 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V•d Product: Flow Velocity times Gutter Flowline Depth Y= do = a= d= Tx = Eo = Ox = Qw = Q$ACK = QT = V= V•d = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 6.7 9.0 2.0 2.4 0.0 0.0 8.7 11.4 1.8 2.0 0.7 0.8 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TH Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (Od - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V"d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TTH Tx r= Eo QxTH = Qx ow = %ACK = O= V= V"d = R= Qd = d= dceowe = 15.8 40.8 14.7 39.7 0.216 0.080 8.1 115.5 8.1 83.9 2.2 10.0 0.0 5.2 10.4 99.1 1.9 3.5 0.7 3.1 1.00 1.00 10.4 99.1 4.68 10.68 0.00 5.86 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity Is based on Depth Criterion Q,iio,, = Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' 8.7 99.1 nches nches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs 1 Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area B - Basin B5 rlo (C)-x Deakin Information (Moot), Type of Inlet Local Depression (additional to continuous gutter depression le from 'Q-Allov!) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from 0-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = COOT Type R Curb Opening atpGy = 3.0 3 0 inches No= 3 3 Lo = 5.00 5.00 ff Wa= NIA WA 0 Cr-G = NIA N/A CrC = 0.10 0.10 Street Hydraulics:OK- Q< maximum allowable from sheet'0-Allow' MINOR MAJOR Total Inlet Interception Capacity Q = 1.9 12.7 cfs Total Inlet Carry -Over Flow (flow bypassing Inlet) Qe= 0.0 5.3 cfs Capture Percentage = Q,IQ, = C%= 160 70 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area B • Basin B6 ONERL AND ! FLOW ` J SIOE STREET OVERLAND FLOW GUTTER FLOW 1TTER PLUS CARRYOVER FLOW - ROADWAY CENTERLINE Show Details 1 Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak now for 1r2 of street OR grass -lined channel): `01,nown • If you enter values in Row 14, skip the rest of this sheet and Proceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells). Site Type: Q Site is Urban 0 Site is Non -Urban Flows Developed For: Q Street Inlets 0 Area Inlets in a Median 1.1 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = 5.0 Slope (frlft) Length (h) fs Acres A, B, C, or D Rainfall Information: Intensity f(incMhr = C, `P, ITC, + T,) " C3 Design Storm Return Pence, T, _ Return Period One -Hour Precipitation, P, = C, = C2 = Co = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value). C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Qy = Minor Storm Major Storm 0.0 0.7 years inches cfs Total Design Peak Flow, 0 w 1.1 5.7 cfs VVcrksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 1 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B6 Gutter Geometry (Ente data In the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK = SBACK = 0BACK = HcuRB = TcROWN = W= Se = SW = So = nsTREET = Txax = dwx= 26.8 0.020 0.020 6.00 20.0 2.00 0.020 0.083 0.015 0.016 ft ft/ft inches ft ft ft/ft ft/ft ft/ft ,Minor Storm Major Storm 14.0 20.0 4.9 12.4 0 ft inches check = yes Maximum Capacity for 1!2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Up and Gutter Flowline (usually 2') Gutter Depression (dc - (W. S, * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W. carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Y= do = a= d= Tx = Ea = Qx = Qw = QBACK ^ V= V'd = 3.36 4.80 2.0 2.0 1.51 1.51 4.87 6.31 12.0 18.0 0.425 0.296 4.8 14.1 3.5 5.9 0.0 0.0 8.3 20.0 5.4 6.7 2.2 3.5 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section TxTH Actual Discharge outside the Gutter Section W, (limited by distance TCROWN) Discharge within the Gutter Section W (Qd - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V"d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Tn, = Tx TH = Eo = Qx TH = Qx = Ow = ()BACK = V= V'd = R= Qd d= dcnowN 14.2 45.2 12.2 43.2 0.419 0.126 5.0 145.1 5.0 110.7 3.6 20.9 0.0 31.5 8.6 163.1 5.5 11.0 2.3 11.4 1.00 1.00 8.6 163.1 4.92 12.36 0.00 6.05 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qalb," _ Minor storm max. allowable capacity GOOD -greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' 8.3 163.1 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs INLET IN A SUMP OR SAG LOCATION Project = Inlet ID = Warning 1 Warning 1 Warning 1 1 1844c - Kochter Farms Area B - Basin B6 Lo (C) Design Information (Input). !Type of Inlet Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow') Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowlne (outside of local depression) Grate Information Length of a Unit Grate Width of a Unit Grate Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.33,6) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Total inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (Kt PEAK) Inlet Type = ai«ai = No= Ponding Depth La(G)= Wo= Aram Ct (G) _ C. (G)= Ca (G) Lo(C)= H, Hvaow = Theta = WP= Cr (C). C. (C)= Co (C) Qa = Q PEAK REQUIRED = MINOR MAJOR CDOT Type R Curb Opening 3,00 3 00 2 2 3.2 4,9 __ MINOR MAJOR NIA N/A NIA NtA NIA NIA NIA N!A NIA NiA NIA N!A MINOR MAJOR 5.00 5 00 4.68 4,66 4.68 4 66 63.40 63 40 1.17 ' 17 0.10 0.10 3.60 3 60 0.67 0 67 MINOR 1.3 inches inches ❑� Override Depths eel eet feet nches Inches degrees feet MAJOR 5.8 cfs 1.1 5.7 cfs Warning 1: Dimension entered is not a typical dimension for inlet type specified. Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area B - Basin B7 OVERLAND FLOW SIDE STREET GLITTER FLOW uau 1 OVERLANDFLOYd Il GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY if already determined through other methods: (local peak now for 12 or street OR grass -lined channel): .Qknown = Minor Storm Major Storm 3.9 f 30.7 *If You enter values in Row 14, skip the rest of this sheet anproceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: 1— O Ste a urban 0 Site is Non -Urban Flows Developed For: [0 SrRlt Inlets 0 Area inlets in a Median a n ormat on: n enslty IncT r = , , p+ c Design Storm Retum Period, T, = Return Period One -Hour Precipitation, P, C,= Cz = Ci= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs= Bypass (Carry -Over) Flow from upstream Subcatchmenta, Qn • Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Total Design Peak Flow, Q Slope (ftift) Length (ft) Minor Storm ajor Storm 0.0 7.7 3.9 38.5 Worksheet Protected cfs (FILL IN THIS SECTION FILL IN THE SECTIONS Acres BELOW. A, B, C, or years inches cfs cfs Project: Inlet ID: 1 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B7 Gutter Geometry (Ente data In the blue cells) Maximum Allowable Wid h for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TRACK = SBACK = nBACK = HcuRB TcRowN = W= Sx = Sw = So = NTREET = 26.8 0.020 0.020 6.00 20.0 2.00 0.020 0.083 0.015 0.016 ft ftlft inches ft ft ftlft ft/ft ftlft Minor Storm Major Storm Trvx = 14.0 20.0 ft d.= 4.9 12.4 inches 0 check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ' S, • 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (OT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth y= do = a= d= Tx = Eo = Qx = Qw = (Nock = QT V= V'd = 3.36 4.80 2.0 2.0 1.51 1.51 4.87 6.31 12.0 18.0 0.425 0.296 4.8 14.1 3.5 5.9 0.0 0.0 8.3 20.0 5.4 6.7 2.2 3.5 Maximum Capacity for 112 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TR Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (Qa - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V"d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TTM = Tx TH = E. = Qx TH = Qx = Qw = QBACK = Q= V= V"d = R /rl dGROWN 14.2 45.2 12.2 43.2 0.419 0.126 5.0 145.1 5.0 110.7 3.6 20.9 0.0 31.5 8.6 163.1 5.5 11.0 2.3 11.4 1.00 1.00 8.6 163.1 4.92 12.36 0.00 6.05 MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q.iw. _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' 8.3 163.1 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs Project = Inlet iD Warning 1 Warning 1 Warning 1 INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area 8 - Basin 87 Lo (C) H-Curb DealOn Intermit (Mout) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Allow') Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression) Grate Information Length of a Unit Grate Width o1 a Unit Grate Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50. 0.70) Grate Weir Coefficient (typical value 2.15. 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feat) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.6) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>O PEAK) Inlet Type = No = Ponding Depth = Lp(G)= yyp c Cr (G) = 0 (G)= Cp (G) = 4(C)= H.an = Theta = Wp= Cr(C)= C (C)= cp(C)= Qa Q PEAK REWIRED = MINOR MAJOR COOT Type R Curb Opening 3.00 3 00 4 4 3.7 9.9 MINOR MAJOR NIA NIA NIA NIA NIA N/A NIA NIA NIA NIA NIA NIA MINOR MAJOR 5.00 5 00 4.68 4 68 4,68 4 68 63.40 6340 1.17 ' 17 0.10 0.10 3,60 3.60 0.67 0 67 MINOR MAJOR 3.9 38.5 3.9 38.5 inches inches I] Override Depths feet feet feet nches riches degrees feet cfs cfs Warning 1. Dimension entered Is not a typical dimension for inlet type specified. Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1 1844c - Kechter Farms Area B - Basin BB OVERLAND I SIDE I [ OVERLAND FLOW J + SWEET Il f FLOW IY GUTTER FLOW—' GUTTER PLUS CARRYOVER FLOW J ROADWAY CENTERLINE Show Details I Design Fbw: UNLY if already deternured through other methods: (local peak lbw for tR of street OR grass -lined channel): kaknown= Minor Storm Major Storm 1.9 I 12.2 0 you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter3ata in floe Slue : Site Type: I O Sees Urban Ii 0 Site s Non -Urban Rows Developed For: [0 Street Inlets O Area Inlets Ina Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Fbw= Channel Flow = Slope (tuft) Length (ft) cfs Acres A. B, C. or D rtamtau Intonnatlon: -intensity TnCrdI) =L, - r1, r t t.r 4 1, f Design Storm Return Period, Tr = Return Period One -Hour Precipitation, P, _ C,= C2= C3— User-Defined Storrn Runoff Coefficient (leave this blank to accept a wkulated value), C User -Defined 5-yr. Runoff Coefficient (leave thus blank to accept a calculated value), CS = Bypass (Carry -Over) Flow from upstream Subcatchments. Q. • Minor Storm Major Storm 0.0 1.1 years inches cfs Total Design Peak Flow, Q • 1.9 T 13.3 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B8 Gutter Geometry (Enter data in the blue cells] Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) TaACK = ft Seacx = flift nBACK = 25.1 0.103 0.020 Height of Curb at Gutter Flow Line Hc,j = 4.68 inches Distance from Curb Face to Street Crown TcMN = 16.4 ft Gutter Width W = 1.17 ft Street Transverse Slope Sx = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ftlft) Spy = 0.083 fttft Street Longitudinal Slope - Enter 0 for sump condition So = 0.013 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) nsmesr = Max. Allowable Spread for Minor & Major Storm T. _ Max. Allowable Depth at Gutter Flowline for Minor & Major Storm dux, = Allow Flow Depth at Street Crown (leave blank for no) ❑ 0.016 Minor Storm Major Storm 14.8 16.4 4.7 10.7 MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Qaa,,,, _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet'O-Peak' Major storm max. allowable caucit rtGOOD -greater than flow given on sheet'O-Peak' Minor Storm Major Storm 8.1 92.3 ft inches check = yes cfs Project = Inlet ID = 1 INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area B - Basin B8 ) Lo (C) Design Information (Input) (Type of Inlet 'Local Depression (additional to continuous gutter depression 'a' from'Q-Abut) Number of Unit Inlets (Grate or Curb Opening) 'Water Depth at Flowtine (outside of local depression) Grate Information ,Length of a Unit Grate Width of a Unit Grate Area Opening Ratio for a Grate (typical values 0.15-0,90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches Heigh of Crab Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typicaty the gutter width of 2 feet) Clogging Factor for a Single Curb Operirg (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.6) Curb Opening Onfice Coefficient (typical value 0.60 - 0.70) (Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity 1S GOOD for Minor and Major Storms pQ PEAK) Inlet Type = No = Ponding Depth = 1b (G) = W,= Aug, = Cr(G)= CW (G)= Co(G)= to (C)= Ham= Hwy= Theta = W.= Cr (C) = C (C)= Co (C) Q. = 0.tar.e0u.s0 MINOR MAJOR CDOT Type R Curb Opening 3.00 3 00 2 2 3.0 6.4 MINOR MAJOR N/A N/A NIA N/A NIA N/A NIA NIA NIA Id1A N/A NIA MINOR MAJOR 5,00 5,00 4.68 A 68 4.68 4.66 63.40 63 40 1.17 1 17 0.10 0.10 3,60 360 0,67 0,67 MINOR MAJOR 1.9 13.3 1.9 3.3 aches aches Override Depths feel feet feet inches inches degrees feet cfs cfs Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1944c - Kechter Farms 1 Area B - Basin B9 OVERLAND FLOW SIDE STREET GUTTER FLOW-' l� OVERLAND FLOW uu. GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details I Design Flow: ONLY d akeady determined [trough other methods: Minor Storm Major Storm Ducal peak flow for 12 of street OR 9rassained channe0: Onnow = • 6 you enter values in Row 14. skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic tniomlation: (Enter data in the blue cells): Site Type: 0 Ste is Urban O Site b Non -Urban Flows Developed Far: r0 Soeet lnlete O Area Inlets in a Median 1.1 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = 6.2 Slope (ft/ft) Length (ft) cfs Acres A, B, C, or Waimea IntOrmatlon: "intensity RlnctVtr) = Lu ') , 1 Tt.2 rl J'f V3 Design Storm Return Period, T, _ Return Period One -Hour Precipitation, Pn = C:= Cz= C�= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Oehned 5-yr. Runoff Coefficient (leave this black to accept a calculated crake), Cs = Bypass (Carty -Over) Flow from upstream Subcatchments, Q, • Minor Storm Major Storm 0.0 0.0 years aches cfs Total Design Peak Fiow, Q • 1.1 6.2 cfs Worksheet Protected FILL 1N THIS SECTION FILL IN THE SECTIONS BELOW. Project: inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B9 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor 8 Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T< = Sancti = nBAGN = H. = Tceavu = W= Sx = SW = So = nsTREET = T = dam= 25.1 0.103 0.020 4.68 16.4 1.17 0.020 0.083 0.013 0.016 ft Rift inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 ft inches check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion %lb. =I 8.1 I 92.3 Ids Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. allowable capacit GOOD - greater than flow given on sheet'Q-Peak' Project = Inlet ID = INLET IN A SUMP OR SAG LOCATION 1844c • Kechter Farms Area 8 - Basin 89 ,tr-Lo (C) Design Information (Input( Type of Inlet Local Depression (additional to continuous gutter depression 'a' from 'O-AIIow ) Number of Unit Inlets (Grate or Curb Opening) Water Depth at Fbwine (outside of local depression) Grate Information Length of a Unit Grate Idih of a Unit Grate a Operirg Ratio for a Grate (typical vales 0.15-6.90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Heigh of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typicaly the gutter width of 2 feet) logging Factor for a Single Curb Opening (typical value 0.10) urb Opening Weir Coefficient (typical value 2.3-3.6) Curb Opening Orifice Coeflcient (typical vahe 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>O PEAK) Inlet Type = No = Ponding Depth = La (G) _ We= C, (G) = C. (G) = Co (G) _ Lo (C) _ He = _ Theta = Wo= Ct(C)= C IC)= Co(C)= MINOR MAJOR CDOT Type R Curb Openng 3.00 3 00 1 1 2.9 6.2 MINOR MAJOR NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NiA MINOR MAJOR 5.00 5 00 4.68 4 68 4.68 4 68 63.40 63 40 t17 "7 0.10 0.10 3.60 3 60 0.67 0 67 Q. O PEPIf Rcamco`r MINOR 1.2 1.1 inches inches Oterrde Depths feet feet feet aches inches degrees feet MAJOR 6.3 cfs 6.2 cis 1 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area B - Basin B10 CVERUWD FLOW ` GUTTER FLOWS GUTTER PLUS CARRYOVER FLOW J SIDE STREET OVERLAND Il FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY ITahady determined through other methods: (local peak flow for 12 of street OR grassaired cnemel): *Qttnown = Minor Storm Major Storm 3.6 I 22.6 ' If you enter values in Row 14, skip the rest of this sheet and proceed to sheet O-Allow or Area Inlet. Geographic Information: (Enter trate m—Ole laTue ceps , Ste Type: I 0 Site 'a Urban 0 Site is Non -Urban Flows Developed For: O Street Inlets 0 Area Inlets In a Median Subcatclment Area = Percent Imperviousness = N RCS Soil Type = Overland Fbw = Channel Flow = Slope (fllft) Length (ft) cfs Acres A, B, C, or D rma tersey incarro r,f (1.2, I "V3 Minor Storm Major Storm Design Storm Retun Period, Tr = Return Period One -Hour Precipitation, P7= Ct = G2 C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subeatehments, Qn 0.0 0.0 years inches cfs Total Design Peak Flow, 0 = 3.6 22.6 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B10 Gutter Geometry (Enter data in the blue cells( Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T9 = SBACH_ nBACK = 25.1 0.103 0.020 ft ft/ft Hass = 4.68 inches TcrxxvN = 16.4 ft W = 1.17 ft Sx = 0.020 ftlft Sw = 0.083 ft/ft So = 0.013 ft/ft nsrnEEr = T., = = MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Q,m„ = Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' 0.016 Minor Storm Major Storm 14.6 16.4 4.7 10.7 Minor Storm Major Storm 8.1 92.3 ft inches check = yes cfs Project = Inlet ID = INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area B - Basin 010 UesKrn information annuli Type of Inlet Local Depression (additional to continuous gutter depression 'a'trom'O-A6ov/) Number of Unit Inlets (Grate or Curb Opening) Water Depth at Fbw6ne (outside of bcal depression) Grate Information Length of a Unit Grate Width of a Urit Grata Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor fora Single Grate (typical value 0.50 - 0.70) Grata Weir Coefficient (typical value 2.15. 3.60) Grate Oca Coefficient (typical value 0,60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Heigh of Vertical Curb Opening in Indies Heigh of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 21eet) Clogging Factor for a Single Curb Opening (typical value 0.10) Crab Doering Weir Coefficient (typical value 2.3-3.6) Curb Operng Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms ("0 PEAK) Inlet Type = No = Pordirg Depth = to(G)= W. = Aran = Cn (G) = Cw (G)= C,(G)= H,„w„ = Theta = Wr = Cr (C) _ C. (C) = C. (C) _ MINOR MAJOR CDOT Type R Curb Opening 3.00 3.00 3 3 3.5 74 MINOR MAJOR N/A NIA NIA NIA N/A NIA NIA NIA NIA N/A NIA NIA MINOR MAJOR 5.00 5.0C 4.68 4 66 4.68 4 66 63.40 63 40 1.17 s •7 0.10 0.10 3,60 3.60 0.67 0 67 MINOR Q.=I 3.7 O PEN(nnounEo = 3.6 nches nches 0 Override Depths eet eet feet inches riches degrees feet MAJOR 22.7 cfs 22.6 cfs Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1644c • Kechter Farms Area B • Basin B11 OVERLAND FLOW SIDE STREET OVERLAND f FLOW BUTTER FLOWS GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 12 of street OR grass -lined channel). 'QH„o,,,,, 9 ' If you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: Rows Developed For: 0 Site is Urban 0 Site is Non -Urban [o Street Inlets 0 Area Inlets in a Median 4.2 I 24.6 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (MI) Length (ft) fs Acres A, 9, C, or D -Rainfall information: Intensify I (inehlhr = lr P, r2 *-•f7 j ^ E Design Storm Return Period, T, = Return Period One -Hour Precipitation, P, = C,= Ci= Ca= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C, = Bypass (Carry -Over) Flow from upstream Subcatchments, QD = Minor Storm Major Storm 0.0 0.0 years inches cfs Total Design Peak Flow, Q = 4.2 24.6 cfs Worksheet ProteCted FILL IN THIS SECTION OR. FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread} 1844c - Kechter Farms Area B - Basin B11 Gutter Geometry (Ente data In the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK = SBACK = naACK HCURs = TCROWN = W= Sx = SW = So = STREET = T = dmAx = 25.1 0.103 0.020 4.68 16.4 1.17 0.020 0.083 0.013 0.016 ft ft/ft incites ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.7 10.7 0 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qeunw Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' 8.1 92.3 ft inches check = yes cfs Project = • Inlet ID = i INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area B - Basin 1311 1-Lo (C) Design Information (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from.'Q-Allow) Number of Unit inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression) Grate Information Length of a Unit Grate Width of a Unit Grate Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Grate Web Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.60) Curb Opening information Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches le of Throat (see USOCM Figure ST-5) ide Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) urb Opening Weir Coefficient (typical value 2.3-3.6) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Inlet Type = ate= No= Ponding Depth = L (G)= W,= A„n. _ Cr (G) = C. (G)= C. (G)= L (C)= H,.R = Theta = W. = Cr(C)= (C)= Co(C)= Total Inlet Interception Capacity (assumes clogged condition) _ nlet Capacity l5 GOOD for Minor and Major Storms (nO PEAK) 0 PEAK REOUIREO MINOR MAJOR COOT Type R Curb Opening 3.00 3 00 3 3 3.7 7.9 MINOR MAJOR N/A NIA NIA NIA NIA WA NIA NIA NIA NIA NIA NIA MINOR MAJOR 5.00 5 00 4.68 4.68 4.68 4 68 63.40 63 40 1.17 1 17 0.10 0.10 3.60 3 60 0.67 G 67 MINOR MAJOR 4.2 24.8 4.2 24,6 nches nches Override Depths feel feet teal nches nches degrees feet cfs cfs Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1044c - Kechter Farms Area B - Basin B12 OVERLAND FLOW SIDE STREET OVERLAND FLOW i GUTTER FLOW— GUTTER PLUS S CARRYOVER FLOW �— L `— ROADWAY CENTERLINE Show Details 1 Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for lt2 of sneer OR grass -lined channel): •Qrtnuw, = 0.6 5.3 If you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet Geographic Information: (Enter data in the blue cells): Site Type: Rows Developed For: Q Site is Urban 0 Site is Non -Urban [0 Street inlets Ij Q Area inlets in a Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (Mt) Length (tt) cfs Acres A, B, C, or A Rainfall lnformatfon: Intensity l (inchlhr =C, P7 TCTr)"c Design Storm Return Period, T, = Return Period One -Hour Precipitation, Pf= Cf= C2= Ca= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carty -Over) Flow from upstream Subcatchments, Qs o Minor Storm Major Storm 0.0 0.0 years inches cfs Total Design Peak Flow, 0 = 0.6 5.3 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 11344c - Kechter Farms Area B - Basin B12 Gutter Geometry (Ente data In the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK = SBACK = nBACK = HCURB = TcRowN = W= Sx = Sw = So = nSTREET = TMgx = dnwx = 26.8 0.020 0.020 6.00 20.0 2.00 0.020 0.083 0.019 0.016 ft ft/ft inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.0 20.0 4.9 12.4 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W * S, * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (or - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V d Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx, Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (0, - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= do = a= d= Tx = Eo = Qx = Qw = QBACK = QT = V= V'd = TT, = TXTH E0 = Qx TH = Qx = Qw = ()BACK = 0= V= V'd = R= Qe dcRowa = 3.36 4.B0 2.0 2.0 1.51 1.51 4.87 6.31 12.0 18.0 0.425 0.296 5.4 15.8 4.0 6.7 0.0 _ 0.0 9.3 22.5 6.1 7.5 2.5 4.0 Minor Storm Major Storm 14.2 45.2 12.2 43.2 0.419 0.126 5.6 163.3 5.6 124.5 4.0 23.5 0.0 35.5 9.6 183.6 6.2 12.4 2.5 12.8 1.00 0.87 9.7 159.6 4.92 11.78 0.00 5.47 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q.ii,,. _.- 9.3 Minor storm max. allowable capacity GOOD • greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' 159.6 nches inches inches nches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps fs nches nches cfs 1 Project: 1844c - Kechter Farms Inlet ID: Area B - Basin B12 -Lo (C) Design Information (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'Q-Alloy') Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from O-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = COOT Type R Curb Opening arm = 3.0 3 0 inches No= 1 L. = 5.00 5 00 fl Wo= NIA N'A f CrG = NIA WA CrC = 0.10 0.10 Street Hydraulics: OK - Q c maximum allowable from sheet 'O-Allow' Total Inlet Interception Capacity Q = !Cotal Inlet Carry -Over Flow (flow bypassing Inlet) Oa = apture Percentage= QJQ,= CX= MINOR MAJOR 0.0 2.9 0.0 2.4 100 55 cfs cfs Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area B - Basin B13 ' OVERLAND FLOW J1 GUTTER FLOW-" GUTTER PLUS CARRYOVER FLAW SIDE STREET OVERLAND Il ` FLOW ` ROADWAY CENTERLINE Show Details 1 Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm_ peal peak flow for 1/2 of street OR grass -lined channel) *C3Knu.n = ' I�ou enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic information: (Enter data in the blue cells): Site Type: 0 Ste is Urban 0 Ste is Non -Urban Flows Developed For: rQ Street [nlets Q Area Inlets in a Median 0.6 Subcatchment Area = Percent Imperviousness = NRCS Soil Type Overland Flow = Channel Flow = 2.8 Slope (ft/tt) Length (ft) cfs Acres A, B, C, or Rainfall Information: Intensity l (inchlhr)=t; P, +T 1 Design Storm Return Period, Tr = Retum Period One -Hour Precipitation, P,= C, = C2= Cr= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments. Qb Minor Storm Major Storm 0.0 0.0 years inches cfs Total Design Peak Flow. Q= 0.8 2.8 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B13 Gutter Geometry (Ente data In the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK = SBACK = %ACK = HCURB TCROWN = Sx = Sw = So = nSTREET = Tw,x = dw,x = 26.8 0.020 0.020 6.00 20.0 2.00 0.020 0.083 0.017 0.016 ft ft/ft inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 14.0 20.0 4.9 12.4 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ` Sx' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V`d Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 112 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TN Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (Qd - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) y= do = a= d= Tx = Eo = Qx = Qw = QBACK = QT = V= V`d= TTM = Tx TH = So = Qx TH = Qx = Qw= QBACK Q= V= V`d = R= Qa = N dcRewN - MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion %Bo,,. = Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' 3.36 4.80 2.0 2.0 1.51 1.51 4.87 6.31 12.0 18.0 0.425 0.296 5.1 15.0 3.7 6.3 0.0 0.0 8.8 21.3 5.8 7.1 2.4 3.7 Minor Storm Major Storm 14.2 45.2 12.2 43.2 0.419 0.126 5.3 154.5 5.3 117.8 3.8 22.3 0.0 33.6 9.1 173.6 5.8 11.8 2.4 12.1 1.00 0.95 9.1 165.0 4.92 12.15 0.00 5.83 Minor Storm Major Storm 8.8 165.0 inches nches inches inches ft cfs cfs cfs cis fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs 1 1 Project: Inlet ID: r INLET ON A CONTINUOUS GRADE 1644c - Kechter Farms Area B - Basin B13 Lo (C)-,I [lesion Information Ilnout) ype of Inlet oral Depression (additional to continuous gutter depression'a' from'O-A1lov!) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from 0-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Type = No= La = 5.00 Wo= N/A CrG = NIA MINOR MAJOR COOT Type R Curb Opening 3.0 30 50 N!A NIA 0.10 0.10 inches Street Hydraulics: OK - Q <Jparrimum allowable from sheet'O-A low Total Inlet Interception Capacity Q otal Inlet Carry -Over Flow (flow bypassing inlet) qn = Capture Percentage = OJO. = C%= MINOR MAJOR 0.6 2.1 0.0 0.7 100 76 cfs c Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area B • Basin B15 OVERLAND FLOW 1 SIDE STREET LA OVERND FLOW GUTTER FLOW GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details rDesign Flow: ONLY if already determined through other methods: (oral peak flow for 12 w of street OR grass4ined channel): *QKnon = Minor Storm Major Storm 0.8 3.4 If you enter values in Row 14, skip the rest of this sheet and proceed to sheet CI Allow or Area Inlet cfs Geographic Information: (Enter data in the blue cells): Site Type: Q Site is Urban 0 Site Is Non -Urban Flows Developed For: rQ Street Inlets Q Area Inlets in a Median Subcetchmenl Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (ft/ft) Length (ft) Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS Acres BELOW. A, B, C, or D Ralnfalf lnformation: Intensity Cpnchfi, = C, • F, I (C2 * r) A C3 Design Storm Return Period, T, = Return Period One -Hour Precipitation, P, = C,= Cr= Cr = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Dented 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Q, r: Minor Storm Major Storm 0.0 0.0 years inches cfs Total Design Peak Flow, Q • 0.8 3.4 cfs 1 1 1 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area B - Basin B15 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 Mt) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (reeve blank for no) TeACK = SBACK = °BACK = HCURB TCRCWN W= Sx = Sw = So = nSTREET = Tw,x = dux= 25. i 0.190 0.020 4.68 16.4 1.17 0.020 0.083 0.050 0.016 ft tuft inches ft ft fUft fUft Wft Minor Storm Major Storm 14.8 16.4 4.7 10.7 ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ' S, ' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth do a= tl= Tx = E0 = Qx = Qw= QBACK = QT= V= V'd = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.82 13.6 15.3 0.232 0.207 12.2 16.5 3.7 4.3 0.0 0.0 15.8 20.8 3.3 3.6 1.2 1.4 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx m Actual Discharge outside the Gutter Section W, (limited by distance TCR wN) Discharge within the Gutter Section W (Qy - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Tm = Tx TN = Eo Qxm= Qx = Qw = Q 9ACK = Q= V= V'd = R= Qd= N dcRowN = MINOR STORM Allowable Capacity Is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Q,ib„ = Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' 15.8 40.8 14.7 39.7 0.216 0.080 14.8 210.9 14.8 153.1 4.1 18.3 0.0 5.2 18.9 176.6 3.5 6.3 1.4 5.6 1.00 0.40 18.9 70.8 4.68 7.35 0.00 2.53 Minor Storm Major Storm 15.8 70.8 inches inches nches nches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs Project: Inlet ID: _ INLET ON A CONTINUOUS GRADE 1 1844c • Kechter Farms Area B • Basin 615 �Lo (C)- Design Information (Input) ype of Inlet ocal Depression (additional to continuous gutter depression 'a' from'O-AIIaW) dal Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) idth of a Unit Grate (cannot be greater than W from 0-Allow) Clogging Factor for a Single Unit Grate (typical min, value = 0.5) logging Factor fora Single Unit Curb Opening (typical min. value = 0.1) Street Hydrautles• OK - Q c maximum allowable from sheet'Q-Allow otal Inlet interception Capacity otal Inlet Carry -Over Flow (flow bypassing Inlet) Capture Percentage = 0,10, _ Type = hoc. No = Lo = W, GG= C,C = MINOR MAJOR CDOT Type R Curb Opening 3.0 30 5.00 5.00 NIA NIA NIA NIA 0.10 0.10 inches n It MINOR MAJOR 0.8 2.3 0.0 1.1 100 67 cfs cfs 1 JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Job Name: Kechter Farms Job Number: 1844c Date: 1/16/14 By: ANC FLOW CALCULATIONS - GRATE INLET SUMP CONDITION (Reference: Urban Drainage and Flood Control District Drainage Criteria Manual, 2001, V.1, Section 3.3.6) (Note: Spreadsheet assumes orifice condition for fully developed flow.) INLET TYPE: Type C Inlet - Standard BASIN: B16 Orifice Equation: Q = Cd*Ao*(2gH)^0.5 Adjust Ao (open area) due to clogging as follows: Effective Area Opening Ae = (1-C) Ao, where: C = K * Co / N N = Number of Inlets Co = Single Inlet Clogging Factor: Co(grate) = Number of inlets: 0.5 (50% clogging) N= 1 Inlet Dimensions and Effective Open Area: Grate Opening: Ao(g) = 5.75 ftA2 Total Ao(g) = 5.75 ft^2 K = 1.00 C = K*Co/N = 0.50 Ae(g) = (1-C)Ao = 2.88 ft"2 Allowable depth: Constants: H = 2.0 K = Clogging Coefficent value for multiple inlets N Grate 1 1 2 1.5 3 1.75 4 1.88 5 1.94 6 1.97 7 1.98 8 1.99 in = 0.1666667 ft g = 32.20 ft/s^2 Cd = 0.67 Flow Calculations: Grate Row: Q = Cd * Ae(g) * (2g*H)^0.5 Qg= 6.31 CFS Total Intercepted Flow with an allowable depth of Required Flow (Q 2 ) = Required Flow (Q 100 ) = 1 inlet(s) and 2 inches is 0.30 3.14 6.3 cfs cfs Bypass = 0.0 cfs cfs Bypass = 0.0 cfs APPENDIX B.3 AREA C CALCULATIONS Kechter Farm Development Final Drainage Report JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Kechter Farms Composite Runoff Coefficient Calculations Location: Fort Collins Minor Design Storm: Major Design Storm: Soil Type: 2 100 CID Job Name: Kechter Farms Job Number: 1844c Date: 1 /17/14 By: ANC CA=KA+(1.31i3-1.44i2+1.135i+0.12) CCD = KCD + (0.85813 • 0.786i2 + 0.774i + 0.04) CB = (CA + CCD)12 Basin Design Data I (%) = 11p0s0 % 47% 75% 10% 95% 0% I (%) Runoff Coeffs Basin Name Design Point ved streets (sf) AA90% Addveslc one (sf) ASFKomes (sf) (sf) (sf) ^ (sf) Aixcape (cID soil) (sf) A (sf) A (ac) Imp (%) C2 C5 C10 C100 C1 1 4,556 1,512 1,608 7,677 0.18 77,1% 0.56 0.60 0.63 0.72 C2 2 5,365 1,457 32,371 22,506 61,699 1.42 35.5% 0.25 0.33 0.40 0.58 C3 3 5,365 1,449 15,536 1,875 24,226 0.56 57.7% 0.39 0.44 0.50 0.62 C4 4 9,507 1,924 40,181 23,761 75,373 1.73 40.0% 0.28 0.35 0.42 0.58 C5 5 11,267 2,431 89,134 19,080 121,912 2.80 45.4% 0.31 0.37 0.44 0.59 C6 6 9,178 3,090 40,295 38,825 91,388 2.10 33.8% 0.24 0.32 0.39 0.57 C7 7 7,976 47,748 180,494 236,219 5.42 12.5% 0.13 0.22 0.31 0.54 C8 8 19,285 5,225 140,686 11,235 176,432 4.05 51.1% 0.34 0.40 0.46 0.61 TOTAL SITE 39,730 18,722 317,864 0 0 0 249,634 625,951 14.37 32.9% 0.24 0.32 0.39 0.57 1844c - Rational Calculations Area C Developed C 1 of 1 CONSIULTING ENGINEERS JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Kechter Farms Time of Concentration Calculations Location: Fort Collins Minor Design Storm: Major Design Storm: Soil Type: 2 100 CID Job Name: Kechter Farms Job Number: 1844c Date: 1117/14 By: ANC Sub -Basin Data Initial Overland Time (t) Travel Time (t,) t Lengthl(Velocity x 60) to Com p tc Urbanized Check ON 4 Final Basin Name Design Point ATow (ac)C5 Upper most Length e (ft) Slope (%) 4 (min) Length (ft)(fps) Slope (%) Type of Land Surface C„ Velocity 4 (min) Time of Conc 4 + 4 = Total Length (ft) t.c=(U180)+ 10 (min) Min 4 C1 1 0.18 0.60 38 2.0% 4.5 183 1.0% Paved areas & shallow paved swales 20 2.0 1.5 6.1 221 11.2 6.1 C2 2 1.42 0.33 263 3.5% 15.1 116 1.0% Paved areas & shallow paved swales 20 2.0 1.0 16.1 379 12.1 12.1 C3 3 0.56 0.44 74 2.0% 8.2 277 1.0% Paved areas &shallow paved swales 20 2.0 2.3 10.5 351 12.0 10.5 C4 4 1.73 0.35 294 3.5% 15.6 178 0.5% Paved areas &shallow paved swales 20 1.4 2.1 17.7 472 12.6 12.6 C5 5 2.80 0.37 75 2.5% 8.5 386 2.5% Paved areas &shallow paved swales 20 3.2 2.0 10.5 461 12.6 10.5 C6 6 2.10 0.32 300 2.2% 19.0 312 1.0% Paved areas &shallow paved swales 20 2.0 2.6 21.6 612 13.4 13.4 C7 7 5.42 0.22 300 2.5% 20.5 215 2.5% Paved areas & shallow paved swales 20 3.2 1.1 21.6 515 12.9 12.9 C8 8 4.05 0.40 239 3.0% 13.7 365 1.0% Paved areas & shallow paved swales 20 2.0 3.0 16.7 604 13.4 13.4 1844c - Rational Calculations Area C Developed Tc 1 of 1 1 Developed Storm Runoff Calculations Kechter Farms I c (28.5 PI)/ ((10 + TC r0.78665002676575) Point Hour Rainfall (Pi) } 0 0 O c .0 O saloN U o �, 8 o r Route to MH-C7.2 Route to C5 N U = 2 0 m 5 0 fY Surface flow to E10 See Rational Parcel E Route to MH-C7-2 Route to MH-C7-3 Route to MH-C7-3 Route to East Outfall See Rational Parcel E Route to MH-E17-1 (up)N awii lelol O — (p0p to N 0N N N COO el tr N- N 00 N r O n 0 (u1W)11 P Ti 15 O N m C O 0) (0 O O o N P) - O N. O O R CO O 00 (5 N 1" o O A 1 (sd)) AlpolaA m N m Nri N, n 0 <o cc; . r in 6 of ,- N a(i) iii ual w f4 r- v 9 NJ M cmn - (510) AUoedep adid xew n o u U) Lri I` - r N . r NF.N v N CO CO a (SP) M0lj ad!d 01 o, Nh p ,n 00 r N •. N o r r. 7 CO N . r .- (/) ado'$a co v) o o m o i Y No& 0 uo o leualeyy adid EL X CL 0 a X- 0 0 i ' a 0 d CC 0. 0 a 0 o_ - ¢ lUaIenpba to (u) ang adid S CO c M c 03 c N 0 N c O c 0 0 0 N (ono) Jan0Aue0 p o o No a 0 F ° p 30 u. 0 ~ '' o o Flow - QcoDPD5-OooDPD6 o p- 3 0 LL o o Total Flow-QcoDSI 0 d o 0 o sl ItICI2 0 F- Total Flow-QcoA14-0coB1-QcoD5 0 o paldaodalu! 0 o-, 4 OD ., N N N ,n c adAl lam d 0. 0 1 o e `m c 0. 01 � b N 5 o a - _ ¢ n o S ( i0) p N 6 m C (') tln5 15 NC a - 000 r - v V. q" - '0 O LO Nn r a' .7' 0( ''- N 0 VIM ! O r SiO 0 QQ (0 CO CO N r (0 N ui NJ In cc O rV c9 C r') O n .- 0 N 0. N 0-,r 10 N � uiw 91 lelo ( ) 1 m fV co N r 6 n vo O m ' co N N o 6 N Isle) 0 n. m NA CO N O r Total Flow ( C1-C4, QcoB1) Total Flow (Basins 01-D4) O ❑ Cg U 3 b i2 Qco from Basin D6 0 N to n (Total Flow (C5 and OcoDPD6) Total Flow (Basins DS-06) Total Flow (C5, D5, D6) N' m - N ❑ i ❑ U 0 o T„ i- Total Flow (A1-Al2, A14-A16, 81. D12) Total Flow (A1-Al2, A14-A16, B1, C1-05, C7, 01-06) 4.05 0.61 13.40 2.45 6.63 16.74: UUru!) I m Of T [� r 'n A o r el .0 60 aU (oe) V.3 CI4 O O N O o . (0 0 'CT,LL N - o 1 MO DI U m O ' CO G N N O 80 N 0 C 0 r 0 r yao3 Nouns N r` 0 CO <n 0 N la o CO Nn 0 0) co o r d 0 (3e) easy O ,- . O r ,- m N o N e N lU!od u6!sap L- N M y 7 o 2 n 7 o 2 a ❑- m n N V 1 L- c� 2 CO o i co aweN u!seg o o o U ° E O � LL u °° LLcc2a o Ti, lxa 1a o 1844c - Rational Calculations Area C 1 Z Ta 0 Kechter Farms I = (28.5 P1)1 ((10 ♦ TC)"0.78665082676575) Point Hour Rainfa N 0 0 SNOW • Route to C4 Route to MH-C7-2 Route to C5 Route to MI-C7-2 Surface flow to E10 See Rational Parcel E I Route to MH-C7-2 1 Route to MH-C7-3 Route to MH-C7-3 Route to East 0utfall See Rational Parcel E Route to MH-E17-1 (ww) awfl Selo CO CO m N a N 7 '' r. c c m c, 0 E (up) n TIA O 0 CO )O `� 4' ALd I. m 0. f0 - t. n N to CO o CV CO N S iooe (�) �1. 1 A CO d N Lei�.. K�- Co e CO 4 " 'y ` �- CO ri 0 N N 01m m e 'CB = (ll) 416uai b. CO 0E 5 C 04r 1 f+' N m o CO co 1. o CO (sp) /upede j adfd xery o- N o, N ZL r rn' N a1, Ef N v r - CO m ? S co (sp. MOI adld yr (n 0 O •si+ °t% CO N N 4 . .0 . N N Ca N , N 0- o o ,- o o '" h az — e o o at d leualery adrd O. Cr) a 0 a a a 0 .',! ool- 0- a a ¢ a ce0 '_ a te lualeninbe Jo (ui) azf$ adfd G o-co,n C i:, . G co _ N � �,.q AL ^," C ry C v C CO G CO .__ N lanOlSlJeO p O 0 O Total Flow n''' O O Flow - QcoDPD5-QcoDPD6 • 0 o Total Flow-QcoD5 Total Flow-OcoA15 Total Flow-OcoA14-0coBl-QcoD5 .. o O palda�Jalui p N g . L a k" y -, r m adAllawul 10' Type R Inlet y: me a, b ; k , 0 m rt: 10' Type R Inlet (sp)p N OA O �. CO N y' CO CO N N oi N O C N N — N N 1 M 0) cc sl F- (Oe) 7.p.i O 0 0 N N O O CO CO c.c.)o SO T co (up) 07 lelol w °o 4 m •S` (sP) 0 CO O A O Q O 1 On O Total Flow ( C1-C4, QcoB1) Total Flow (Basins DI-D4) Total Flow (C1-C4, D1-D4) � `. .. Qco from Basin D6 2.17 1.88 II Total Flow (C5 and QcoDPD6) Total Flow (Basins D5-D6) Total Flow(C5, D5, D6) O `<.3- Total Flow (C1-05, C7, D1-06) Total Flow (A15-A16, D12) Total Flow (Al-Al2, A14-A16, 131, C1-05, C7, D1-06) - N (Jwul) l CO fe N O 40 N O. N O N to O) . 01 0) CO O) • OS) V.0 0 0 O CO O O N N O CO R O 0- 01 O N O O1 C0 o 0 a. o 0 (up) O} u m O O O [V aO a cP N o 0 i -, co'. N V0 CO 0 JJao'Z)/Duna N O N O m 6 CO o n O N O - - O c O (oe) eary CO 0 N Q .- 0 N Q CO "- 0 CO N 0 N N Q 1() O O O -- N O Q JUIOd u6fs<O co N CO 0 o 1 cei 0) CO CO 7 N d 01 -;, ,. 0 2 N 0 s CO 0 2 m aweN wseg 0 0 0 0 n _0 EG o °f cc o. o o 0 E c o N LL IC d U : '; i.. 0 o Q Ec o o c°1, LL 0 d ., co 1844c - Rational Calculations Area C 1 Kechter Farms INLET SUMMARY TABLE (100-YEAR) co c c a O m O to o u o O 0 m } o y O 00 1/2 Street Capacity (cfs) I C. O N a. m d O E to N N m Q. O° C � o 0 U 0 O 0 O 0 0.0 cfs 0.0 cfs > m •U c a A V t U coro C[) 13.97 cfs 20.23 cfs 16.75 cfs Oo E " 1 E 0 d )4 m p, 0 t 0 0 0 co 13.97 cfs 14.02 cfs 16.74 cfs Bypass Flows from Upstream Inlet U r- co 0 1.41 cfs 0.00 cfs 0.00 cfs c w a O 0 w 0 16.12 cfs 12.56 cfs 20.23 cfs 16.74 cfs s a 0 0 CC co ay E a m en 0 c ti N c 1.-.r, 0 c ri 7.7 in `O 13 am E 'co cn Q Sump Sump Sump Sump 0 o. c 10' Type R Inlet 10' Type R Inlet Type D Inlet 10' Type R Inlet 0 m E Z U 0 0 0 c m c y '3 ma 0 V 0 I- CO Inlet Sum100 1844c - Rational Calculations Area C 1 Kechter Farms INLET SUMMARY TABLE (2-YEAR) N 0 O w a N L a m m m 0 E IA w d A C C CO i4 C O 0.00 cfs 0.00 cfs 0.00 cfs EnIny U O O Q7 U c a — CO U 2.34 cfs U C a '- 0 tD r> N— 2.73 cfs Design Flow + Bypass from Upstream Inlet m 0 co co N 1.88 cfs 1.36 cfs 2.73 cfs Bypass Flows from Upstream Inlet 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs P1 3 a O 0 w 0 2.33 cfs 0 0 a0 co 1.36 cfs 2.73 cfs d R OO d'y i i C. L co G C N ci 3.0 in C co ci C v ci O y Q 2 E co N Q Sump Sump Sump Sump G Z` d C. 10' Type R Inlet 10' Type R Inlet Type D Inlet 10' Type R Inlet L d c g z U U U U c c m .o 0 a a ti CO 1844c - Rational Calculations Area C Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Koehler Farms Area C - Basin C4 OVERLAND FLOW GUTTER FLOW—/ SIDE STREET L 1 OVERLAND FLOW GUTTER PLUS CARRYOVER FLOW J ROADWAY CENTERLINE Show Details Design Flow: ONLY rfa ra dy determined through other methods: (kcal peak now for trz cement OR grass -tined channel): Mirror Storm Major Storm ( 2.3 I 16.1 L you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic Information: (Enter data in the blue cols). Site Type: I O Site is Urban 0 Site is Nan -Urban Flows Developed For: [0 Street Inlets O Area Inlets Ina Median Suhcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Fbw= Channel Fbw= Slope (ftR5) Length (ft) cfs Acres A, P.C. or D Nassau Intormauon: prrlvhr = t., t' l (cp. r, j- i3 Mirror Storm Major Storm Design Storm Return Period, T, = Retum Period One -Hour Precipitation, P, = C,= C2= C3_ User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), CS = Bypass (Carty -Over) Flow from upstream Subcatchments, Oe = 0.0 0.7 years inches cfs Totai Design Peak Flow, Q = 2.3 16.9 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: 1 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area C - Basin C4 Gutter Geometry (Ente data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Mirror & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TRACK = SBACK = nBACK = HCVRB = TCROWN = W= Se = SIN = So = nSTREET = TMAx = duke = 25.1 0.020 0.020 4.75 16.4 1.17 0.020 0.083 0.010 0.015 inches ft ft ft/ft fttft ft/ft Minor Storm Major Storm 14.8 16.4 4.8 10.8 ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W * S,' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth y= do = a= d= Tx = Eo = Qx = Ow = ()BACK `+T V= V'd = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.83 13.6 15.3 0.233 0.208 5.8 7.9 1.8 2.1 0.0 0.0 7.6 9.9 1.6 1.7 0.6 0.7 Maximum Capacity for 112 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Txni Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (Od - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V"d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) TTM = Tx TN= Eo = Qx TH = Qx = Ow = QBACK = Q= V= V"d = R= dcao d = MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity Is based on Depth Criterion Q,ri,K. _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet'O-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' 16.1 41.2 _ 14.9 40.0 0.212 0.079 7.4 103.1 7.4 74.4 2.0 8.9 0.0 22.2 9.4 105.5 1.7 3.1 0.7 2.7 1.00 1.00 9.5 105.5 4.75 10.77 0.00 5.95 Minor Storm Major Storm 7.6 105.5 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs Protect = Inlet ID = 1 INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area C - Basin C4 (C)-,r Design Information (Input' ype of Iriet Local Depression (additional to continuous gutter depression 'a' from'O-Albvf) umber of Unit Wets (Grate or Curb Operirg) ater Depth at Fbwfine (outside of boat depression) Grata Information Length of a Unit Grate dth of a Ua t Grate Opening Ratio for a Grate (typical vakies 0.15-0.90) Cbggirg Factor for a Single Grata (typical value 0.50 - 0.70) Grata Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Height of Vertfcat Curb Opening in Aches Height of Curb Orifice Throat in Inches rgle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typicalty the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical vale 0.10) urb Operirg Weir Coefficient (typical value 2.3-3.6) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) ARNING: Inlet Capacity less than 0 Peak for MAJOR Storm Inlet Type = ate,= No = Ponding Depth = to(G)= wo= Mm= (G)= C. (G) Ca(G)= Le(C)= H = Theta = Wp= (C)= C.(C)= Ca(C)= Q. = 0 PENL REOUREZ = MINOR MAJOR CDOT Type R Curb Opening 3.00 3 00 2 2 3.2 7.7 MINOR MAJOR NIA NIA NIA NIA NIA N/A NIA NIA NIA NIA NIA NrA MINOR MAJOR 5.00 5.00 4.75 4 75 4.75 4 75 63.40 63 40 1.17 5 17 0.10 0.10 3.60 3.60 0.67 0 67 MINOR MAJOR 2.3 16.8 2.3 16.8 Inches inches 17I Override Depths feet feet feet inches irrrhes degrees feet cfs cfs Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Koehler Farms Area C - Basin C5 OVERLAND FLOW SIDE STREET OVERLAND FLOW GUTTER FLOWS ar.. GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details I Design Flow: ONLY if already determined through other methods: (local peek now for 1l2 of street OR grass -lined channel): •CINnow, Minor Storm Major Storm 1.9 I 12.6 Icfs • If you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: Q Site is Urban 0 Site is Non -Urban Flaws Developed For: rQ Street Inlets 0 Area Inlets in a Median Subratchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (ftlft) Length (ft) Acres A, B, C, or D amfall Information: Intensigl pnchlhr = C, P, F ( C2 )'� Design Storm Return Period, T,= Return Period One -Hour Precipitation, P,= C,= C2= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coeffiaent (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Qe Minor Storm Major Storm 0.0 1.4 years inches cfs Total Design Peak Flow, Q = 1.88 13.97 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1 844c - Kechter Farms Area C - Basin C5 Tenor T, Tj w r T. s, TCROvy Gutter Geometry {Enter data in the blue cells). Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TRACK = SACK = nBACK HCURB - TCROWN W= Sx = SW So = nsTREEr = Trrgx = dAwx = 25.1 0.020 0.020 4.75 16.4 1.17 0.020 0.083 0.010 0.015 ft f/fl inches ft ft ft/ft fe t ft/ft Minor Storm Major Storm 14.8 16.4 4.8 10.8 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W " S, " 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V"d Product: Flow Velocity times Gutter Flowline Depth Y= do = a= d= Tx = Eo = Qx = Qw= QBACK = Dr= V= V*d = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.83 13.6 15.3 0.233 0.208 5.6 7.9 1.8 2.1 0.0 0.0 7.6 9.9 1.6 1.7 0.6 0.7 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx n Actual Discharge outside the Gutter Section W, (limited by distance TcRowN) Discharge within the Gutter Section W (Qd - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Tm = Tx m = Eo = Qxrm= Gx = Qw = QBACK = 0= V= V"d = R= dcao 16.1 41.2 14.9 40.0 0.212 0.079 7.4 103.1 7.4 74.4 2.0 8.9 0.0 22.2 9.4 105.5 1.7 3.1 0.7 2.7 1.00 1.00 9.5 105.5 4.75 10.77 0.00 5.95 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity Is based on Depth Criterion %no„, = Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' 7.6 105.5 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs Project = Inlet ID = INLET IN A SUMP OR SAG LOCATION 1 1844c - Kechter Farms Area C - Basin C5 tLo (C) H-Curb Design Information (Input') Type of Inlet Inlet Type = Local Depression (additional to continuous gutter depression 'a' from 'CI -Allow') awwi = Number of Unit Inlets (Grate or Curb Opening) No= Water Depth at Flowline (outside of local depression) Ponding Depth = Grate Information Length of a Unit Grate Width of a Unit Grate We = Area Opening Ratio fa a Grate (typical values 0.15.0.90) Muo = Clogging Factor fora Single Grate (typical value 0.50 - 0.70) Cr (G) = Grate Weir Coefficient (typical value 2.15 - 3.60) Cw (G) = Grate Orifice Coefficient (typical value 0.60 - 0,80) Co (G) = Curb Opening Information Length of a Unit Curb Opening Lo (C) = Height of Vertical Curb Opening in Inches Hwn = Height of Curb Orifce Throat in Inches Ht„„+= Angle of Throat (see USDCM Figure ST-5) Theta = Side Width for Depression Pan (typically the gutter width of 2 feet) We = Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) Curb Opening Weir Coefficient (typical value 2.3-3.6) C_ (C) _ Curb Opening Office Coefficient (typical value 0.60. 0.70) Co (C) = Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity 15 GOOD for Minor and Major Storms (,0 PEAK) O w:Ac REQUIRED = MINOR MAJOR CDOT Type R Curb Opening 3.00 3 CO 2 2 3.0 6.7 MINOR MAJOR NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA MINOR MAJOR 5.00 5 00 4.75 4 75 4.75 4 75 63.40 63 40 1.17 1 17 0.10 0.10 3.60 3 66 0.67 0.67 MINOR 1.89 1.88 inches inches ❑' Override Depths feet feet feet inches inches degrees feet MAJOR 14.02 cfs 13.97 cfs J 41 CONSULTING ENGINEERS JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Job Name: Kechter Farms Job Number: 1844c Date: 1/17/14 By: ANC FLOW CALCULATIONS - GRATE INLET SUMP CONDITION (Reference: Urban Drainage and Flood Control District Drainage Criteria Manual, 2001, V.1, Section 3.3.6) (Note: Spreadsheet assumes orifice condition for fully developed flow.) INLET TYPE: Type C Inlet Standard BASIN: C7 Orifice Equation: Q = Cd*Ao*(2gH)^0.5 K = Clogging Coefficent value for multiple inlets Adjust Ao (open area) due to clogging as follows: Effective Area Opening Ae = (1-C) Ao, where: C=K*Co/N N = Number of Inlets Co = Single Inlet Clogging Factor: Co(grate) = Number of inlets: 0.5 (50% clogging) N= 2 Inlet Dimensions and Effective Open Area: Grate Opening: Ao(g) = 5.75 ftA2 Total Ao(g) = 11.50 ftA2 K = 1.50 C = K*Co/N = 0.38 Ae(g) = (1-C)Ao = 7.19 ftA2 Allowable depth: Constants: N Grate 1 1 2 1.5 3 1.75 4 1.88 5 1.94 6 1.97 7 1.98 8 1.99 H = 3.30 in = 0.275 ft g = 32.20 fUs^2 Cd = 0.67 Flow Calculations: Grate Flow: Q = Cd * Ae(g) * (2g*H)^0.5 Qg= 20.27 CFS Total Intercepted Flow with 2 iniet(s) and an allowable depth of Required Flow (Q 2 ) = Required Flow (Q 100 ) = 3.30 inches is 20.3 cfs 1.36 20.23 cfs cfs 1844c - Rational Calculations Area C Inlet-C7 1 of 1 Trapezoidal Report 33.5 5 a 0 0 5 0 Ja anma CA UJ 0) co co co D) I- (7 0) O) D) N D) D) O 0 0 0 0 0 T O to W C m N Q (ON D [O N O r 0 0 0 8;W 0 9- 0 0 N M 0 0 0 0 0 0 8" CO COON Q 0 0 N N N M 7 yC. U U�� • N O) D) N 0)) N CO Cr) (O N 0) 0) (D M 0) O 0 9- 9-N r N r N CO DI.N 0 0 O G O C O ar �Vc M N 0 CO CO f- CO CO 0) O) N r� ocr, Di Q oi 0) @ @ 0 N CO N .- 0) O r CO O w Q O N C [L `" N r n p h V Ih N 7 r CO @ O U U 0 CO o O 0) 0) 0. A O (A 7 c0 ads co o o 0 0 0 0 0 0 0 0 0 0 N 04 N N r Q p ' O N= o 0 0 0 0 0 0 0 0 0 0 0 Q NO Q V E- a N 7 0 . . J N N x 000000 0 0 o Q Q N C O V n ^ 0 PI88o C p O O t � V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O N U) 0 0 0 O O N ry r 0 0 0 0 0 0 M M M M CO M 0 0 0 0 0 0 O 0 0 o 0 o J Project: Inlet ID: DESIGN PEAT( FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area C - Basin C8 OVERLAND FLOW ` SIDE STREET OVERLAND FLOW GUTTER FLOW—' c Lai GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE V-. Show Details Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 12 of street OR gross-Ilned channel), *QKne,xn =1 2.7 I 16.7 Ids • If you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells); Site Type: Q Site is Urban 0 Site is Non -Urban Flows Developed For: Q street Inlets 0 area Inlets in a Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overiand Flow = Channel Flow = Slope (ft/ft) Length (ft) Acres A, B, C, or D Rainfall fnformat(on: lntensltT(incFdhr) = C; • P, 1 (C2 + TT) " C, Design Stour, Return Period, T, = Return Period One -Hour Precipitation, P, = C,= C2 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Qs - Minor Storm Major Storm 0.0 0.0 years inches cfs Total Design Peak Flow, Q - 2.7 16.7 cfa Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area C - Basin C8 Gutter Geometry (Enter data in the blue cells' Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Tenck SEACK = rnEACK = HCUCB = TCRowN = w= SC = Sw = So = nSTREET TNux = dMAC = 25.1 0.020 0.020 4.75 16.4 1.17 0.020 0.083 0.010 0.015 ft ft/ft inches ft ft fun ft/ft ft/ft Minor Storm Major Storm 14.8 16.4 4.8 10.8 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W • S, • 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth do a= d= Tx = Eo = Qx = Ow = ABACK = at = V= V'd = 3.54 3.94 1.2 1.2 0.88 0.88 4.43 4.83 13.6 15.3 0.233 0.208 5.8 7.9 1.8 2.1 0.0 0.0 7,6 9.9 I 1.6 1.7 0.6 0.7 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx pi Actual Discharge outside the Gutter Section W, (limited by distance TcRowK) Discharge within the Gutter Section W (Qd - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Ftow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) T,= TxTH Eo = Qx Tx = Qx = OW = ABACK Q= V= V-d = R= Qd dcaowa 16.1 41.2 14.9 40.0 0.212 0.079 7.4 103.1 7.4 74.4 2.0 8.9 0.0 22.2 9.4 105.5 1.7 3.1 0.7 2.7 1.00 1.00 9.5 105.5 4.75 10.77 0.00 5.95 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity Is based on Depth Criterion Q„tow = Minor storm max. atlowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' 7.6 I 105.5 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches cfs 1 i Project = Inlet ID = INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area C - Basin C8 -Lo (C) Design Information (Input), Type of Inlet Inlet Type = Loral Depression (additional to continuous gutter depression 'a' fram'D-Allow') aim = Number of Unit Inlets (Grate or Curb Opening) No = Water Depth at Flowline (outside of local depression) Ponding Depth = Grate Information Length of a Unit Grate !b (G) _ Width of a Unit Grate W o = Area Opening Ratio for a Grate (typical values 0.15.0.90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Cr (G) = Grate Weir Coefficient (typical value 2.15 - 3.60) C. (G) _ Grate Orifice Coefficient (typical value 0.60 - 0.80) Co (G) _ Curb Opening Information Length o1 a Unit Curb Opening Lo (C) = Height of Vertical Curb Opening in Inches H,=,<= Height of Curb Orifice Throat in inches Jingle of Throat (see USDCM Figure ST-5) Theta = Side Width for Depression Pan (typically the gutter width of 2 feet) W„ = Clogging Factor for a Single Curb Opening (typical value 0.10) Ct (C) = Curb Opening Weir Coefficient (typical value 2.3-3.6) C„ (C) = Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Co (C) _ Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS G000 for Minor and Major Storms (>Q PEAK) MINOR MAJOR CDOT Type R Curb Opening 3.00 3 00 2 2 3.4 7.7 MINOR MAJOR N!A N'A NIA NIA N!A N!A N!A N!A NIA NIA N!A NtA MINOR MAJOR 5.00 5 90 4.75 475 4.75 4 75 63.40 5340 1.17 1.17 0.10 0.10 3.60 3 60 0.67 0.67 MINOR Q. = 2.7 CI PEW REQUIRED = 2.7 inches nches Override Depths feet feet feet inches inches degrees feet MAJOR 16.7 cfs 16.7 cfs APPENDIX B.4 AREA D CALCULATIONS Kechter Farm Development Final Drainage Report 1 1 JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303,444.1957 Kechter Farms Composite Runoff Coefficient Calculations Location: Fort Collins Minor Design Storm: Major Design Storm: Soil Type: 2 100 CID Job Name: Kechter Farms Job Number: 1844c Date: 1/17/14 8y: ANC/rIk CA = KA + (1.3113 - 1.44i2 + 1.1351 + 0.12) CCD = KCD + (0.858i3 - 0.78612 + 0.7741 + 0.04) CB = (CA + CCD)I2 Basin Design Data I (%) = 90% 47% 75% 95% 95% 0% I (%) Runoff Coeffs Basin Name Design Point p100% A payee streets (sf) Aanveslc one (sf) ASFHomes (sf) AMFHomes (st) Aroof (sf) ACommarciai (sf) Aiscspe (CID soil) (sf) Arotai (sf) ATotal (ac) Imp (%) C2 C5 Cip C100 D1 1 3.909 1,321 1,444 6,674 0.15 76.4% 0.55 0.59 0.63 0.72 D2 2 26.264 3,862 133,959 18,582 182,666 4.19 71.3% 0.50 0.54 0.58 0.69 D3 3 84,952 45,115 130,067 2.99 62.0% 0.42 0.47 0.52 0.64 04 4 13,847 2.409 68,036 4,886 89,178 2.05 75.2% 0.54 0.58 0.62 0.71 D5 5 8,781 2,182 42,743 2,552 56,258 1.29 76.1% 0.55 0.59 0.62 0.72 D6 6 8.650 2,170 13,593 2,287 26,700 0.61 77.9% 0.57 0.60 0.64 0.73 D7 7 6,933 1,852 43,438 2,317 54,541 1.25 75.5% 0.55 0.58 0.62 0.71 D8 8 7,578 1,865 1,628 2,675 13,746 0.32 76.2% 0.55 0.59 0.63 0.72 D9 9 3,065 806 18.370 3,149 25,389 0.58 69.2% 0.48 0.52 0.57 0.67 D10 10 2,224 530 3,798 6,552 0.15 41.2% 0.29 0.35 0.42 0.58 D11 11 20,018 8.957 14,280 280,547 323,802 7.43 12.9% 0.13 0.23 0.32 0.54 D12 12 9,651 2,740 57,919 70,309 1.61 17.2% 0.15 0.25 0.33 0.55 D13 13 45,528 4,455 13,792 63,775 1.46 77.7% 0.57 0.60 0.64 0.73 D14 14 4,907 6,384 56,206 67,497 1.55 15.5%a 0.14 0.24 0.33 0.54 TOTAL SITE 156,448 38,055 0 321,767 20,664 84,952 495,268 1,117,154 25.65 47.7% 0,32 0.39 0.45 0.60 1844c - Rational Calculations Area D Developed C Page 1 of 1 1 i 1 CONS VL link ENGINEERS JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Kechter Farms Time of Concentration Calculations Location: Minor Design Storm: Major Design Storm: Soil Type: Fort Collins 2 100 CID Job Name: Kechter Farms Job Number: 1844c Date: 1117/14 By: ANClrlk Sub -Basin Data Initial Overland Time (t) Travel Time {t) t,=Lengthl(Velocity x 60) l t, Comp tc Urbanized Check ON 4 Final Basin Name Design Point AMU (ac) C5 Upper most Length (tt) Slope (%) 1; (min) Length Len (11) Slope (%) Type of Land Surface C„Conc Velocity (fps) t (min) Time of t. 4 = 4 Total Length {R ) k (U780)+ 10 (min) Min 4 D1 1 0.15 0.59 33 2.0% 4.3 174 1.0% Paved areas &shallow paved swales 20 2.0 1.5 5.7 207 11.2 5.7 D2 2 4.19 0.54 150 2.1% 9.8 292 1.0% Paved areas & shallow paved swales 20 2.0 2.4 12.2 442 12.5 12.2 D3 3 2.99 0.47 300 0.8 % 21.5 300 0.5% Paved areas & shallow paved swales 20 1.4 3.5 25.1 600 13.3 13.3 D4 4 2.05 0.58 123 2.1 % 8.3 284 1.0% Paved areas & shallow paved swales 20 2.0 2.4 10.7 407 12.3 10.7 D5 5 1.29 0.59 19 2.0% 3.3 508 1.0% Paved areas & shallow paved swales 20 2.0 4.2 7.5 527 12.9 7.5 D6 6 0.61 0.60 19 2.0% 3.1 495 1.0% Paved areas &shallow paved swales 20 2.0 4.1 7.3 514 12.9 7.3 D7 7 1.25 0.58 150 2.1 % 9.1 418 1.0% Paved areas & shallow paved swales 20 2.0 3.5 12.6 568 13.2 12.6 D8 8 0.32 0.59 19 2.0% 3.3 437 1.0% Paved areas & shallow paved swales 20 2.0 3.6 6.9 456 12.5 6.9 D9 9 0.58 0.52 169 2.2% 10.6 292 1.0% Paved areas &shallow paved swales 20 2.0 2.4 13.0 461 12.6 12.6 D10 10 0.15 0.35 78 2.0% 9.6 134 1.0% Paved areas & shallow paved swales 20 2.0 1.1 10.7 212 11.2 10.7 D12 12 1.61 0.25 65 2.0% 10.0 345 1.0% Paved areas & shallow paved swales 20 2.0 2.9 12.9 410 12.3 12.3 D11 11 7.43 0.23 400 0.7% 36.1 650 0.6% Paved areas & shallow paved swales 20 1.5 7.0 43.1 1050 15.8 15.8 - D13 13 1.46 0.60 30 0.7% 5.6 950 0.8 % Paved areas & shallow paved swales 20 1.8 8.9 14.5 980 15.4 14.5 D14 14 1.55 0.24 150 0.7% 21.8 250 0.8 % Paved areas & shallow paved swales 20 1.8 2.3 24.1 400 12.2 12.2 1844c - Rational Calculations Area D Developed Tc Page 1 of 1 1 Kechter Farms 1 I = (28.5 P1) / ((10 + TC)^0.78665052876575) Point Hour Rainfal 10 } 0 0 E 0 c O saloN Route to MH-D12- 1. See Rational Spread Sheet Area A Surface Flow to D2 ERoute to MH-D2-1 f Route to MH-D2-1 I 0 O m Bypass to 137, Route to Inlet D6 Bypass to C5, Route to MH-D8.1 U P. m Wig. 1 Bypass to D9, Route to Inlet D8 Route to MH-C6-1 I O TS o m c Route to MH-C6-1 I Route to MH-E10.1I See Rational Calcs Parcel E Route to MH-D12- 1. See Rational Parcel A v. fi To ROW To Trilby SD I To exist culvert under Ziegler (Ulw) awllleloj trD. v A N 0 N cri r M r N..� 0 �. n oi N 0 N ei Pipe/Swale Travel Time OP) It r cn N 0 O 0 In < N In o o co O o CO O O �e�py Cp(�: ,7. co 0 N..N O 0 0 a O 0 V) o O ' (St) ASPOI8A N V 00 V Co m � 6 cD CD cD O O N 6 ^ cc; COQS N c7 co CO )n • (4) 416ua1 .4,2 CD N ^O N cr 0 N DJON O O^ N { a a (S)o) Apedeo edld xey)) N — N. 0 — r ur) I CO a O a r cei;, o — m o 0 m 0 a ) cc DJ (SP) MOTH adld 7 N N °) D'- [O') q N In N CO Y7 ri r 0N CJ t i r 0QS '� r) tD 1 1 M • (%) adols in 0 in 0 o co 0 o O in o o — O o Q �n 0 i- 0 o O m O 1 li.? O leualeyadd O. 0 a CCCCXCCCCa a O. a 0 a 1 a 0 a CC a CC a CC a CC X a 0 lualenInba Jc (ul) azIs adu c v N •c o HIH) .S In c 0 c 0 c 0 _c_ w '= •c In .-. c 0 ^ c COCOm c — c c o ^ % c c N m Cf 030) Janottoe° 0 o 0 o 0 0 0 IL 1-9d h v < Flow - QcoDPD5-OcoDPD6I ° a v) N 0 Flow-QcoDPC7-QcoDPC8+Qco DPCS o 0 o 0 Ln o. 0 u OO 0 1 v> Oo c o o pald81191ul .j N N 6) O R !� r CO c7 cD N cD O O O 1 •x O 0 O ad611alul Site Outtall Type C Intel ii; . 0 a F- t i "� v.. c IX m a En c m a N -'• r Yi":. a` '. Y Y; m c X °) a b O 5' Type R Inlet 15' Type R Inlet X coo0>.: a In N c a inS N .9�-' 7� . � a ,. N c CCz m o. a7 r1 Exist Curb Inlet a 0 W Total Runoff (sP) O N N N N r lrrl En O U Q r o N °° r CD m tOO J 1 m N o w ' m ca •N (°e) y.a. co N �• co ,, co�,., o fu w) °1 Ieta1 O N ^ In N 0 r, in .4 N N r N O' 1? C. }qA. Direct Runoff (SJ°) O cf co ,_ C H m 0 Total Flow (Basins D1-D4)I ON)• r COO C] O O2 C " m i p LL m p F N o 03 ,— Total Flow (Basins D7-D8)I n N 0 0 Total Flow (Basins D7-D10)1 N an Parcel D Summary . N N O r O cP NM!) I to CO cG y 0 7 N. N N Ih co nCO W ., co 00 O r N f) r .'}F .y;3 O r• N W © 0) O r E3 "u" N c l co CD us 6 .1- I� (°e) d.`J O •^- 0 0 m fV In R ^ 1 N °' O on a G � T CO C M N C O) co 0 O O 0 O O O O O §" V c0 O r pQ OD 0 (up) 31 O Cy) O r o O N ni O r o ql'O 'i r O N r : o fD N O ,o O 0. N O r o co C7 Y O CO 6 O 0 4 O N ni J03 mound S 0 N 0 0 O .N.— 0 rCO ) 0 0 0 0 0 0 0 on 0 "`7 0 n 0 +� 0 (De) easy CO O) ' O N O i k ) i�Altil�. O) N lD PkT h N N P) CO O cn co y ri , C9 7 CD cn N juiod u6lsap H) ,- N 9 i In co 0 2 '�. 1 00 a0 O) O' 9 = - _ n) 9 aweN uiSeg O O O O >"a 0 0 CO a co O N ONE _ ❑ c') ,_ O Q = (28.5 PI)/ ((10 + TC)40.78665082676575) Point Hour Rainfall (Pi) N Kechter Farms sa)oN Route to MH-D12- 1, See Rational Spread Sheet Area A Surface Flow to D2 Route to MH-D2-1 Route to MH-D2-1 Route to C4 Bypass to D7, Route to Inlet D6 Bypass to C5, Route to MH-D8-1 Route to C5 Bypass to D9, Route to Inlet D8 Route to MH-C6-1 Route to Inlet D10 Route to MH-C6-1 Route to MH-E10-1 See Rational Calcs Parcel E Route to MH-D 12- 1, See Rational Parcel A To ROW I 1 To Trilby SD To exist culvert under Ziegler (uiw) awlllefoi w r N m 6 [00 r 01 M rn 0 CO CO ni N O. r- O 1 r A oi Pipe/Swale Travel Time (uIW)u A N• N N O N O cl. OO N N O N O A CD- 0 m O-*-0 0 O O C 0 A 0 10 A O CO O O (sd1) /�Ilaoj2� A M to O m )0 m V m N 0 C) 0. V R V .a. 6 N N N CV A rr) A N (d) VI61181 A 4 N m N N M N N ar n. d (sp) RI!aedeQ odic'. xeyg N - A 1.0 O CV A LO O O O CO A m -- F O a Cp m O CO N Oi V N 0 10 N (s13) MOH adId N CV LID 10 v Na a co O co N kc )n A O O v, N N O N". CI — (%) edO�s' o 0 o 0 N 0 0 o )7 -e N o N€ o 10 0 o V) 0 - N �'' ,w o .- v de o v a N 0 a A 0 a o 0 3` DO 0 ,-. � o N 0 Ieua)eW edld a O a a O a o_ O a a 0 a a 0 a O a U ' a U a o_ O a o_ 0 a a 0 a a U a a U a c a U a Iualenmba Jo (uj az!g adId n�i c m 2 �) o CO 0, c N c CO ❑ CO10 c r w— c co .c co E. N N 2 C 1a0.04.1.1e0 0 o o o o o o g LT, d.O CO 0 0 0 0 Flow - QcoDPD5-OcoDPD6 0 O 0 0 O 0 Flow-QcoDPC7-QcoDPCB+0co DPC5 0 o 0 0 o 0 U LL o U o LL o O o :",i. 0 o o 0 0 0 ID o N co N m O 4i 1 a O n O O O O rpaldaatalu! O ad.( a u sal 00. CC 0 Type C Inlet .. 5' Type R Inlet 5' Type R Inlet _.. N o > o 5' Type R Inlet 15' Type R Inlet 1 5' Type R Inlet k.' 15' Type R Inlet y' q' -'' .. ;6' N ix o o.coI i, Exist Curb Inlet 1 = i 0 w Total Runoff (S1O) ID R 0) N N crei (3Wu!) I 10 N O N in ' N O N O N Qmi, '• (oe) V.03 co N n C o _ m O m - o A (ulw) DI leI01 N N A N - toCO A N A N co M Direct Runoff NN N O en ccc R O P] CV Total Flow (Basins D1-D4)1 1.0 A COO Total Flow (Basins D5-D6)1 M O O Total Flow (Basins D7-D8) O O O Total Flow (Basins D7-D10) ' I 6. Parcel D Summary rJ<(sP) ,- I r O (14lu!) I o$ 0; o.;(V fV v N V. N 0 CV u`�'i N o 01 `' CV o N ao r ro .- o N foe) V..7 N O O 10 A O m C] (Op G O N O O N O 10 0 DO O N 0 (u1W)OI M cri N 0I. csi ' IN In A m A Ico oi N 10 04 ` AO O M W 2 � N mound a ] O O yo O N O O NN L!) O ( O CO G N G C .-A 6 LLDDyaoO G nt O (ae) eaJd 0) W N .N- O 0) V LID O N 0) 04 — D O N V .- N C) O CO N O N O - D CO a A f0 a N N Iu!od u6!saQ COL- N a NCO ° N co ° i . A co 1 co CO C.? N h er aWeNU!See 0 p N° e° 0 0 a CO a O 0 N O .- O C) O 7 0 0 a i ` LL a Y U Y co Z Q u i Qi Z E oz -0 0 1 i 1 1 1 Kechter Farms INLET SUMMARY TABLE (100-YEAR) co a u a. O I o _, J ,s' U -0-.a aZ 0 o� 0 a } O 0 z 0 z 0 z 0 z No 0 z 0 z 0 z 112 Street Capacity (cfs) • ' r` v (-NI 24.17 24.17 r` v N 24.17 24.17 r- v N 0 co r O C "' O to O- N = o._ maa)i 0 D7 Lr) D9 6tocoU 0 E ctiy 9a+ O = = CO LT. O 0 4.53 cfs 1.41 cfs 3.43 cfs U N 0 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs a) .0 C C O U 21.22 cfs 0.00 cfs w U r) M 2.46 cfs 7.34 cfs CO U C` r w U O 6 0.66 cfs 6.26 cfs w U N (O 0 y E , LL m E aa) C a O .i+ N io)m y C aa)) + j 0 21.22 cfs yco U 0 o 7.92 cfs 3.86 cfs 10.77 cfs y U CA 0) r y U 0) r co 0.66 cfs 6.26 cfs (0 o O O Bypass Flows from Upstream Inlet 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 4.53 cfs 0.00 cfs 3.43 cfs 0.00 cfs 0.00 cfs 0.00 cfs a) 3 0 r= 0 21.22 cfs w 0 7.92 cfs t CO Ch N CO 00) - 2.75 cfs COO O 6.26 cfs 7.00 cfs a 0- 0 0 CC ra 1 1 0 N r 0 N r 0 C11 r 0 N r 0 N T. 0 N r 0 N T. 0 CO C7 C Y E o. 0 °o Vi0 C c0 ri C 0 o 1 m E q) N a Sump Sump m rn Q At -grade a) a) Q At -grade At -grade At -grade a) 7 Q m » Q 0 a 4' m Type C Inlet Type C Inlet 5' Type R Inlet 5' Type R Inlet 10' Type R Inlet 5' Type R Inlet 15' Type R Inlet 5' Type R Inlet 15' Type R Inlet Exist Curb Inlet 0 W c E z 0 'Cl' 0 0 0 CO 0) © N o CO n cco y = y 'EOr 0 0. N C N (D r 0) 0) r C) Inlet Sum100 1844c - Rational Calculations Area D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Kechter Farms INLET SUMMARY TABLE (2-YEAR) k' ^ @0.0 7J • ' 24.17 24.17 CV� 24.17 24.17 24.17 24.17 15.68 - \ C m0 .i . . . . . . . , Bypass Flows to Downstream Inlet 0.0 cfs 0.0 cfs 0.2 cfs 0.0 cfs 0 0 0 0.0 cfs 1 0 0 0 2 0 0 2 0 0 2 0 0 �2 �� Q 21.22 cfs 10.91 cfs 1.57 cfs 0.87 cfs 1.55 cfs 0.44 cfs 0.57 cfs 0.09 cfs $ 3 0 0 \ o » § E a) m &>.@ m- 2 - / \ # \ q K 1.75 cfs 0 2 0 0 \ - 0 7 o 0 E 0 0 0 0 0.51 cfs 1.57 cfs Bypass Flows from Upstream Inlet 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.18 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 2 0 0 .0) � ■ 4.48 cfs 2.39 cfs 1.75 cfs 0.87 cfs cn t / 0.44 cfs % d 0.09 cfs 0.51 cfs 4- 1- 0 0 ce , , a / $ / $ q - 3 a _ m q - * q - 1.2% a 6 0 0. E k 2 0 3.6 in ._ % . . . . . , , , 0 as E CO« a EQ Sump $ \ « At -grade l At -grade $ / # At -grade At -grade 2 / 7 At -grade Inlet type Type C Inlet Type C Inlet 5' Type R Inlet 5' Type R Inlet 10' Type R Inlet 5' Type R Inlet 15' Type R Inlet 5' Type R Inlet 15' Type R Inlet Exist Curb Inlet /§ z § D4 0 0 0 D8 3 0 3 ( 3 D13 '\ C� A # = w CO c 2 2 Cr) Inlet Sum2 1844c - Rational Calculations Area D ' Worksheet Worksheet for Rectangular Channel I Project Description Worksheet Curb cut - D2/D4 cul de sac Flow Element Rectangular Channel I Method Solve For Manning's Formula Bottom Width I Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 To ' Depth 0.50 ft Discharge 31.35 cfs Combined 100-year flow for D2/D4 I Results Bottom Width 12.94 ft Use (7) curb cuts at 2 feet wide Flow Area 6.5 ft2 Wetted Perimeter 13.94 ft I Top Width 12.94 ft Critical Depth 0.57 ft Critical Slope 0.3328 % I Velocity 4.85 ft/s Velocity Head 0.36 ft Specific Energy 0.86 ft Froude Number 1.21 I Flow Type Supercritical Project Engineer: Kevin Tone untitled.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 01/20/14 06:28.33 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 1 i JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Job Name: Kechter Farms Job Number: 1844c Date: 1/17/14 By: ANCIdk FLOW CALCULATIONS - GRATE INLET SUMP CONDITION (Reference: Urban Drainage and Flood Control District Drainage Criteria Manual, 2001, V.1, Section 3.3.6) (Note: Spreadsheet assumes orifice condition for fully developed flow.) INLET TYPE: Type C Inlet - Standard BASIN: D2 Orifice Equation: Q = Cd*Ao*(2gH)^0.5 Adjust Ao (open area) due to clogging as follows: Effective Area Opening Ae = (1-C) Ao, where: C=K*Co/N N = Number of Inlets Co = Single Inlet Clogging Factor: Co(grate) _ Number of inlets: 0.5 (50% clogging) N 2 Inlet Dimensions and Effective Open Area: Grate Opening: Ao(g) = 5.75 ft^2 Total Ao(g) = 11.50 ft^2 K = 1.50 C = K*Co/N = 0.38 Ae(g) _ (1-C)Ao = 7.19 ftA2 Allowable depth: Constants: H = 3.62 K = Clogging Coefficent value for multiple inlets N Grate 1 1 2 1.5 3 1.75 4 1.88 5 1.94 6 1.97 7 1.98 8 1.99 in = 0.3015028 ft g = 32.20 ft/s^2 Cd = 0.67 Flow Calculations: Grate Flow: Q = Cd * Ae(g) * (2g*H)^0.5 Qg= 21.22 CFS Total Intercepted Flow with 2 inlet(s) and an allowable depth of Required Flow (Q 2 ) = Required Flow (Q 100 ) = 3.62 inches is 21.2 cfs 4.48 21.22 cfs cfs 1844c - Rational Calculations Area D Inlet-D2 Page 1 of 1 1 1 1 JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Job Name: Kechter Farms Job Number: 1844c Date: 1/17/14 By: ANClrlk FLOW CALCULATIONS - GRATE INLET SUMP CONDITION (Reference: Urban Drainage and Flood Control District Drainage Criteria Manual, 2001, V.1, Section 3.3.6) (Note: Spreadsheet assumes orifice condition for fully developed flow.) INLET TYPE: Type C Inlet - Standard BASIN: D4 Orifice Equation: Q = Cd*Ao*(2gH)^0.5 Adjust Ao (open area) due to clogging as follows: Effective Area Opening Ae = (1-C) Ao, where: C=K*Co/N N = Number of Inlets Co = Single Inlet Clogging Factor: Co(grate) = Number of inlets: 0.5 (50% clogging) N= 1 Inlet Dimensions and Effective Open Area: Grate Opening: Ao(g) = 5.75 ft^2 Total Ao(g) = 5.75 ft^2 K = 1.00 C = K*Co/N = 0.50 Ae(g) _ (1-C)Ao = 2.88 ft^2 Allowable depth: Constants: H = 5.98 K = Clogging Coefficent value for multiple inlets N Grate 1 1 2 1.5 3 1.75 4 1.88 5 1.94 6 1.97 7 1.98 8 1.99 in = 0.4981108 ft g = 32.20 ftls^2 Cd = 0.67 Flow Calculations: Grate Flow: Q = Cd * Ae(g) * (2g*H)^0.5 Qg= 10.91 CFS Total Intercepted Flow with 1 inlet(s) and an allowable depth of Required Flow (Q 2 ) = Required Flow (Q 100 ) _ 5.98 inches is 10.9 cfs 2.39 10.91 cfs cfs 1844c - Rational Calculations Area D Inlet-D4 Page 1 of 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area D - Basin D5 1 OVERLAND I FLOW SIDE STREET OYERLAN D FLOW GUTTER FLOW-/ GUTTER PLUS CARRYOVER FLOW \ ROADWAY CENTERLINE Shane Details— -� Design Flow: ONLY it akeady determined through other methods: Minor Storm Major Storm (local peak lbw for 1f2 of street OR grass -lined channel): 'Qhnown If you enter values in Row 14. skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: 0 Site 6 Urban Q Site is Non -Urban Flows Developed For: [0 Street Inlets 0 Area Inlets Ina Median 1.8 I 7.9 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow= Charnel Flow = Raintau In?onnatw lntern4jrl /errvir) = Cr- Hi r (t ; I7 f^'Ls Design Storm Return Period, T, Return Period One -Hour Precipitation, P1= Cr= = C)= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Oelined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cy = Bypass (Carry -Over) Ftow from upstream Subcatchments, Q, = Slope ((tfft) Length (ti) cfs Acres A, B, C, or D Minor Storm Major Storm 0.0 0.0 years inches efs Total Design Peak Flow, Q = 1.8 7.9 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: i 1 1 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area D - Basin D5 gTeeor -dc+c�� T. T w�� Tx • w\\/Qx/ • MCURD 1"k-� e\ ac y y y Y s• Tawm Gutter Geometry (Enter data in the blue cells} Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 8Ht) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) TB = SencK nmcx= HcurE TCRavN = W= Sx Sw= So = nsIREET = Max. Allowable Spread for Minor & Major Storm TMAx Max. Allowable Depth at Gutter Flowline for Minor & Major Storm dAwx = Allow Flow Depth at Street Crown (leave blank for no) 28.0 0.020 0.020 6.00 25.0 2.00 0.020 0.083 0.012 0.015 ft ft/ft inches ft ft ftfft ft/ft ft/ft Minor Storm Major Storm 18.7 25.0 6.0 12.6 ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ' S,' 12)) Water Depth at Gutter Flowline lowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (GT - Ox) Discharge Behind the Curb (e.g.. sidewalk. driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section TxTH Actual Discharge outside the Gutter Section W, (limited by distance TCRavN) Discharge within the Gutter Section W (Qe - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V"d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= dc = a= d= Tx = Eo= Qx = Qw = ABACK = QT= V= V"d = T,H = TxTH= Ec = QxTH= Qx = Qw = Q%ACK = Q= V= V'd = R= Qd= d= dcscwN = MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Claw.= Minor storm max. allowable capacity GOOD • greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity G00D - greater than flow given on sheet 'Cl-Peak' Minor Storm Major Storm _ 4.48 6.00 2.0 2.0 1.51 1.51 5.99 7.51 16.7 23.0 0.318 0.235 10.9 25.8 5.1 7.9 0.0 0.6 16.0 34.3 6.1 7.3 3.1 4.6 Minor Storm Major Storm 18.7 46.2 16.7 44.2 0.318 0.123 11.0 147.2 11.0 126.4 5.1 20.7 0.0 31.1 16.1 178.2 6.1 10.7 3.1 11.2 1.00 1.00 16.1 178.2 6.00 12.60 0.00 5.09 Minor Storm Major Storm 16.0 178.2 inches nches inches inches ft cfs cfs cfs cfs fps ft 8 cfs cfs cfs cfs cfs fps cfs inches inches cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area D - Basin D5 Lo (C) -4 Deslan Information (Input) ype of inlet Local Depression (addidoral to mntraous gutter depression 'e' from'Q-AIbW) otal Number of Units in the Irret (Grate or Curb Opening) Length of a Single Urit Wet (Grate or Curb Opening) lath of a Unit Grate (cannot be greater than W from O-A5 w) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor fora Single Unit Cub Operirg (typical min. value = 0.1) MINOR MAJOR Type = CDOT Type R Curb Opening a occ = 3.0 3 0 inches No = 1 L, = 5.00 5 00 ft W, = N/A NiA f1 CrG = NIA NIA CrC = 0.10 0.10 Street Hydraulics: OK - Q < maximum allowable from sheet'Q-PJlow' Total Inlet Interception Capacity Q Total Inlet Carry -Over Flow (flow bypassing Inlet) Qa = Capture Percentage = CIA .= C%= MINOR 1.6 0.2 90 MAJOR 3.4 cfs 4.5 cfs 43 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area D - Basin D6 LFLOW D { j 1 S1REFL EET V I ( OVERLAN OWW D ` GUTTEF FLct1i—/ GUTTER PLUS CARRYOVER FLOW \ ROADWAY CENTERLINE uw Show Details Design Flow: ONLY d already determined through other methods: Minor Storm Major Storm (local peek flow for 12 at street OR grass -lined channel): vQnnown if you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Site Type: 0 site is urban 0 Site is Non -Urban Flows Developed For: 0 Street inlets O Area Inlets Ina Median 0.9 I 3.9 Subcatchmerd Area = Percent Imperviousness = NRCS Soil Type = Slope (ft/ft) Length (ft) Overland Flow = Channel Fbw = cfs Acres A, B, C, orD Rainfall information: intensity 1 (IncJwV) = 1.t f i t (L.y i l ) ^ L,3 Design Storm Return Period, T, = Return Period One -Hour Precipitation, Pt = Ct= C2w Cs - User -Defined Storrn Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave the blank to accept a calculated value), Ca = Bypass (Carry -Over) Fbw from upstream Subcatchments, Qe w Minor Storm Major Storm 0.0 0.0 years inches oh Total Design Peak Flow, Q w 0.9 3.9 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: 1 1 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area D - Basin D6 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 f /ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK SBACK = n9ACK = H = TCR7wN = w= Sx = SW = So = nsTREEr = TAwx = dMx= 28.0 0.020 0.020 6.00 25.0 2.00 0.020 0.083 0.012 0.015 ft ftlft inches ft ft ftlft ft/ft ft/6 Minor Storm Major Storm 18.7 25.0 6.0 12.6 121 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (de - (W ' S, • 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx, Actual Discharge outside the Gutter Section W, (limited by distance TceovN) Discharge within the Gutter Section W (Qtl - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major 8 Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= do = a= d= Tx = Eo = Qx = Qw = QBACK = QT V= V'd = TN= TxTK= Eo= OXTH= Qx= Qw QBACK Q= V= V'd = R= Qa= d= dceowN 4.48 6.00 2.0 2.0 1.51 1.51 5.99 7.51 16.7 23.0 0.318 0.235 10.9 25.8 5.1 7.9 0.0 0.6 16.0 34.3 6.1 7.3 3.1 4.6 Minor Storm Major Storm 18.7 46.2 16.7 44.2 0.318 0.123 11.0 147.2 11.0 126.4 5.1 20.7 0.0 31.1 16.1 178.2 6.1 10.7 3.1 11.2 1.00 1.00 16.1 178.2 6.00 12.60 0.00 5.09 MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm 178.2 Ids MAJOR STORM Allowable Capacity is based on Depth Criterion Q,r,„. =I 16.0 Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'CI -Peak' Major storm max. allowable capacity GOOD - greater than flow 8iven on sheet'Q-Peak' inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area D - Basin D6 Lo (C) Design Information Knout) Type o1 Inlet Local Depression (additional to continuous gutter depression 'a' from'O-AOOW) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Iriet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from O-Allow) Cbgging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. vat. = 0.1) Street Hydraulics: OK - 0 < maximum allowable from sheet 'CI -Mow' Total Inlet Interception Capacity Total Inlet Carry -Over Flow (flow bypassing inlet) Capture Percentage = t1,10, MINOR MAJOR CDOT Type R Curb Opening Type = atIXx = No = Lo= Wr = CrG = CrC = MINOR MAJOR 0= 0.9 2.5 cfs 0e = 0.0 1.4 cfs C%= 100 64 % 3.0 5.00 NIA NIA 0.10 30 5.00 NIA NIA 0.19 ft ft Inches Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL 8Y THE RATIONAL METHOD 1844c • Kechter Farms Area D - Basin D7 CVERFLOVILANDSIDE ` I SfREEf L l r' GUTTER FLOW—/ GUTTER PLUS CARRYOVER FLOW OVERLAND FLOW ROADWAY CENTERLINE Shaw Details Dest-Ti Flow:—ONLY(akeady *slummed through other methods: (local peak flow for 1f2 of street OR grassalnee channel): •QKnown Minor Storm Major Storm 1,4 I 6.2 1 ' If you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geograp °matron. Enter data in the blue cells): Site Type: Flora Developed For: 0 Site s Urban 0 Site is Non -Urban [0 Street Inlets 0 Prea Inlets Ina Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow Charnel Fbw= Slope (ft/ft) Length (ft) 1 cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE Acres SECTIONS BELOW. A, 6, C, or D Rainfall Imormation: Intensity I (inctvtvj= it., 3 Ic) " L. Minot —Storm Major Storm Design Storm Return Period. T, = years Return Period One -Hour Precipitation, Pi = is Ct = C2 = C2= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined Syr. Runoff Coefficient (leave tNs blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchmonts, Oa 0.2 4.5 cfs Total Design Peak Flow. O = 1.6 10.8 cis Project: Inlet ID: 1 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area D - Basin D7 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max Allowable Spread for Minor & Major Storrn Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Tsqcx = SBACK - nBACK = HcuRB TCRONN = W= Se = SW = So = = T. = dux= 28.0 0.020 0.020 6.00 25.0 2.00 0.020 0.083 0.012 0.015 ft ft/ft inches ft ft ft/ft ft/ft ft/ft Minor Storm Major Storm 18.7 25.0 6.0 12.6 0 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (de - (W ' S," 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Qr - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowabte Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section TxTM Actual Discharge outside the Gutter Section W, (limited by distance TcRw,,N) Discharge within the Gutter Section W (Qa - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V`d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= do = a= d= Tx = Eo= Ox = Ow = = OanccK OT= V= Vd= TTR = TxTM= Eo = OxTN= Ox = Qw = ABACK = Q= V= V"d = R= Qd= d= dcRowN = 4.48 6.00 2.0 2.0 1.51 1.51 5.99 7.51 16.7 23.0 0.318 0.235 10.9 25.8 5.1 7.9 0.0 0.6 16.0 34.3 6.1 7.3 3.1 4.6 Minor Storm Major Storm 18.7 46.2 16.7 44.2 0.318 0.123 11.0 147.2 11.0 126.4 5.1 20.7 0.0 31.1 16.1 178.2 6.1 10.7 3.1 11.2 1.00 1.00 16.1 178.2 6.00 12.60 0.00 5.09 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches inches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,tla _[ 16.0 I 178.2 Ids Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD -greater than flow given on sheet'Q-Peak' Protect: Inlet ID: 1844c - Kechter Farms Area D - Basin D7 ,r-Lo (C)-4 Design Information (Moot) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from 'O-AIIo ) Total Number o1 Units in the Iriet (Grate or Curb Opening) Length of a Single Urit Inlet (Grate or Curb Opening) Width of a Urtit Grate (cannot be greater than W from 0-Allow) Clogging Factor for a Single Unfit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Crab Opening (typical min. value = 0.1) Type = awcn = No = Lo= we= CrG = CrC = MINOR MAJOR CDOT Type R Curb Opening 3.0 30 2 2 5.00 5.00 N/A NIA NIA N/A 0.10 0.10 Street Hydraulics: OK - Q a maximum allowable from sheet Total Inlet Interception Capacity Q • Total Mkt Carry -Over Flow (flow bypassing inlet) CIO Capture Percentage • QJQe • CX • MINOR MAJOR 1.5 7.3 0.0 3.4 100 68 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844C - Kechter Farms Area D - Basin D8 OVERLAND FLOW SIDE STREET GUTTER FLOW-' 1.' OVERLAND FLOW GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE u Show Details 1 Design Flow: ONLY d already determined though other methods: Minor Storm Major Storm (local peak flow for 1R of street OR grnssJined channel). • B you enter values in Row 14, skip the rest of this sheet and proceed to sheet CI -Allow or Area Inlet. Geographic Information: (Enter data in the blue cets). Site Type: Rows Developed For: 0 Site is Urban 0 Sea is Nonilrban O Street Inlets O Area Infests In a Median 0.4 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Charnel Flow = 2.0 Slope (ft)ft) Length (ft) cfs Acres A, B,C, orD ftatntau Intonnabon: Intensity I (mbar) = r, I (Oz F 1;) ^ G, Design Storm Return Period, Tr = Return Period Ore -Hour Precipitation, Pt = C7= C2 = Cs = User -Defined Storm Runoff Coefficient (leave this blank to accept a calcuaated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), CS = Bypass (Cary -Over) Flow from upstream Subcatchments, Oe Minor Storm Mapr Stone 0.0 0.0 years inches cfs Total Design Peak Flow, Ci 0.4 2,0 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW- Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area D - Basin D8 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T = n = HcuRe = TCFONN W= Sx = Sw = SD = n STREET = T. = dryx= 28.0 0.020 0.020 6.00 25.0 2.00 0.020 0.083 0.012 0.015 ft fttft inches ft ft tuft ft/ft fl/ft Minor Storm Major Storm 18.7 25.0 6.0 12.6 ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (de - (W ' S,' 12)) Water Depth at Gutter Flowline Altowabte Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (DT - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TN Actual Discharge outside the Gutter Section W, (limited by distance TcRoNN) Discharge within the Gutter Section W (0 - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= do = a= d= Tx = Eo = Qx = Qw = Osscx = QT V= V'd = TTN = Tx TN= ED = Oxmi= OR = Qw = QBACK _ Q= V= V'd = R= Qa= d= dcRowN MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion t1,r,, = Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Minor Storm Major Storm 4.48 6.00 2.0 2.0 1.51 1.51 5.99 7.51 16.7 23.0 0.318 0.235 10.9 25.8 5.1 7.9 0.0 0.6 16.0 34.3 6.1 7.3 3.1 4.6 Minor Storm Major Storm 18.7 46.2 16.7 44.2 0.318 0.123 11.0 147.2 11.0 126.4 5.1 20.7 0.0 31.1 16.1 178.2 6.1 10.7 3.1 11.2 1.00 1.00 16.1 178.2 6.00 12.60 0.00 5.09 Minor Storm Major Storm 16.0 178.2 inches inches inches inches ft cfs cfs cfs cis fps 5 11 cfs cfs cfs cis cfs fps cfs inches nches cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area D - Basin D8 Design Information (Input, Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Atiow') Total Number of Units in the Inlet (Grate or Club Opening) Length of a Single Urit Iriet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from 0-Allow) Cbgging Factor for a Single Unit Grate (typical min. value = 0.5) Cbggirg Factor for a Single Unit Curb Opening (typical min. value = 0.1) Type = anon¢' No= t• = w,= CrG Cr-C= MINOR MAJOR CDOT Type R Curb Opening 3.0 30 5.00 500 NIA NA NIA NIA 0.10 0.10 riches ft ft Get Hydraulics' OK- Q < maximum allowable from sheet 'CI -Allow' Total Inlet Interception Capacky 0 • Total Inlet Cany-Over Flow (flow bypassing Inlet) By • Capture Percentage • Q,IQ, = C%• MINOR 0.4 0.0 100 MAJOR 1.7 0.3 00 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area 0 - Basin D9 L GUTTER FLOW` 1.�. GUTTER PLUS CARRYOVER FLOW OVERLAND FLOW SIDE STREET OVERLAND FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY if already dTrmined through of erf—r mafhods: (local peak lbw for 112 o1 street OR grass-Med Channel): 'QI(nown Mirror Storm Maier Storm 0.6 1 2.8 1 • I you enter values in Row 14, skip the rest of this sheet and proceed to sheet D-Allow or Area Inlet. eographlc Infonnat on: Enter data in the blue cells): Site Type: Fbws Developed Far: O Ste is Urban 0 Site is Non -Urban r130 Street tnle 0 Area Inlets In Medan Subcatchmettt Area = Percent Imperviousness = NRCS Soil Type = Slope (ft/ft) Length (ft) Overland Flow = Channel Flow = cfs Actes A, B, C, or ttatntau imonnatton: rnfensiiyT(rncniiw = 1.I -1-7Tit.z t ) ^ t.s Minor Storm Maier Storm Design Storm Return Period, T, = Return Period One -Hour Precipitation, Pt= C1= Cz= C,= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Q, = 0.0 3.4 years inches cfs Total Design Peak Flow, Q = 0.6 6.2 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW, Project: Inlet ID: i i ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area D - Basin D9 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Timex _ SRAM = nexcK = Hcu� = TcRawv = W= Sx = Sw= So = 0STREET = Trwx = drwx = 28.0 0.020 0.020 6.00 25.0 2.00 0.020 0.083 0.012 0.015 ft inches ft ft 5/8 ft/ft ftlfi Minor Storm Major Storm 18.7 25.0 6.0 12.6 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (de - (W * S,' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx, Actual Discharge outside the Gutter Section W, (limited by distance TCROwN) Discharge within the Gutter Section W (Qo - Qx) Discharge Behind the Curb (e.g., sidewalk. driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= do = a= d= Tx = Eo = Qx = Qw = QEACK = Or = V= V'd TTM = Txn= Eo = Qx TF/ = Qx = OBACK Q= V= V`d = R= Qe= d= dCRONN = MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Q,r„,. _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'O-Peak' Maior storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Minor Storm Major Storm 4.48 6.00 2.0 2.0 1.51 1.51 5.99 7.51 16.7 23.0 0.318 0.235 10.9 25.8 5.1 7.9 0.0 0.6 16.0 34.3 6.1 7.3 3.1 4.6 Minor Storm Major Storm 18.7 46.2 16.7 44.2 0.318 0.123 11.0 147.2 11.0 126.4 5.1 20.7 0.0 31.1 16.1 178.2 6.1 10.7 3.1 11.2 1.00 1.00 16.1 178.2 6.00 12.60 0.00 5.09 Minor Storm Major Storm 16.0 I 178.2 nches inches inches inches ft cfs cfs cfs cfs fps 5 cfs cfs cfs cfs cfs fps cfs inches inches cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area D - Basin D9 {--La (c)—,r Design mfonnatlon rmoun Type of Inlet Local Depression (additional to Continuous gutter depression 'a' from'O-Albv') Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Uri! Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from CI -Allow) Cbggirg Factor for a Single Lint Grate (typical min. yak*. 0.5) Clogging Factor for a Single Unt Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = CDOT Type R Curb Opening kocu= 3.0 3.0 inches No= 3 3 Lo= 5.00 5.00 ft Wo= NIA N^A ft CrG = N/A NIA CrC = 0.10 0.10 Street Hydraulics: OK - Q c maximum allowable from sheet 'Cl-Allow' MINOR MAJOR Total Inlet Interception Capacity Q • 0.6 6.2 cfs Total Inlet Carry -Over Flow (Row bypassing inlet) Qe • 0.0 0.0 cfs Capture Percentage • OJQ, • C%= 100 100 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area D - Basin D10 I CUTTER FLOW'- "as GUTTER PLUS CARRYOVER FLOW OVERLAND FLOW SIDE STREET OVERLAND Il FLOW ROADWAY CENTERLINE Show Details 1 es n Flow: ONLY d afeady determined through other methods. (local peak f ow for 12 of street OR grass -lined channel): .Qenown Minor Storm Mapr Storm 0.1 0.7 • If you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. cfs Geographic Information: (Enter data in the blue eels): Site Type. Flows Developed For: I O Ste B Urban 0 Site is Non -Urban [O Street Inlets O Area Inlets Ina Median Subcalchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Charnel Flow = Slope (fttlt) Length (ft) Acres A, B. C, Or D lniae lntonnanon: Imenstt i (Inn1YIN) = t.r Hilt 1.2 i I c) Design Storm Return Period, T, = Return Period One -Hour Precipitation, Pr= Cr= C2 = Ca = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave offs blank to accept a calculated value), Cy = Bypass (Carry -Over) Flow from upstream Subcatchments, Qe e Minor Storm Major Storm 0.0 0.0 years inches cfs Total Design Peak Flow, Q = 0.1 0.7 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. 1 i Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area D - Basin D10 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) TBACK SHACK = "BACK = Hcus = TCRGwN W= Sx Sw = So = "STREET = Max. Allowable Spread for Minor & Major Storm T y x = Max. Allowable Depth at Gutter Flowline for Minor & Major Storm dvex = Allow Flow Depth at Street Crown (leave blank for no) 28.0 0.020 0.020 6.00 25.0 2.00 0.020 0.083 0.012 0.015 ft ft/ft inches ft ft ft/ft Mt ftlft Minor Storm Major Storm 18.7 25.0 6.0 12.6 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2-) Gutter Depression (dc - (W ' Sx' 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 112 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx Th Actual Discharge outside the Gutter Section W, (limited by distance TcaxvN) Discharge within the Gutter Section W (Qd - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) y= do = a= d= Tx = E0 = Qx = Qw = QBACK = QT = V= V'd = TTN = Tx n= Eo= Qx TM= Qx = QBACK = Q= V= V'd = R= Qa= d= d CNGwN = MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' 4.48 6.00 2.0 2.0 1.51 1.51 5.99 7.51 16.7 23.0 0.318 0.235 10.9 25.8 5.1 7.9 0.0 0.6 16.0 34.3 6.1 7.3 3,1 4.6 Minor Storm Major Storm 18.7 46.2 16.7 44.2 0.318 0.123 11.0 147.2 11.0 126.4 5.1 20.7 0.0 31.1 16.1 178.2 6.1 10.7 3.1 11.2 1.00 1.00 16.1 178.2 6.00 12.60 0.00 5.09 Minor Storm Major Storm 16.0 178.2 inches inches inches inches ft cfs cfs cfs cfs fps ft ft cfs cfs cfs cfs cfs fps cfs inches nches cfs Protect Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area D - Basin D10 -Lo (C)-� Desian hdorntation (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Allow) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from O-Abw) Clogging Factor for a Single Unit Grata (typical mia value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = COOT Type R Curb Opening alocAL = 3.0 3.0 inches No = 3 3 h= 5.00 500 ft We = N!A NIA ft CrG = N!A N/A Ci-C = 0.10 0.10 Street Hydraulics:OK -Q< maximum allowable from sheet'Q-Allew' MINOR MAJOR Total inlet Interception Capacity O - 0.09 0.7 cfs Total inlet Carry -Over Flow (flow bypassing inlet) tie = 0.00 0.0 cfs Capture Percentage OJO,n C%• 97.17 100 % 1 1 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c • Kechter Farms Area D • Basin D11 OVERLAND l FLOW GUTTER FLOW-/ SIDE STREET IOVERLAND . FLOW GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Hide Details Design I -tow: ONLY ll already determined through other methods: (local peak flow for 112 of street OR grass -tined channel): 'Qnnuwn =1 ' If you enter values in Row 14, skip the rest of thls sheet and proceed to sheet 0-Allow or Area Inlet. Minor Storm Major Storm Ids 1.7 I 25.3 Geographic Information: (Enter data to the blue cells): Floors Developed For: Subcatchmem Percent Imperviousness NRCS Overland Fbw= Channel Fbw = Area = = Soil Type = Slope (flfft) Acres % A, B, C, or D Sine Type! O Ste 6 Urban O Ste 5 Ndn-U 0an r0 Street Inlets 0 Area Inlets in a Medal Length (ft) kamtau information: Intensity 1 pncrmr = Vt N,1 ( C.a k I, j n [.a Minor Design Storm Return Period, T, = Retum Period One- lour Precipitation, Pt = Ct= Ci= Cs_ User -Defined Storm Runoff Coefficiem (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Cany.Over) Flow from upstream Subcatchments, Qa' Storm Major Storm years inches cfs 0.0 0.0 Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, Cs = Overland Fbw Velocity, Vi = Charnel Fbw Velocity, Vt = Overland Fbw Time, Ti = Channel Travel Time, Tt = Calculated Time of Concentration, Tr = Time of Concentration by Regional Formula, T. = RecommerdedT.= Time of Concentration Selected by User, Tc' Design Raimal Intensity, t = Calculated Local Peak Fbw, Qp = Total Design Peak Fbw, Q = Minor Storm Major Storm fps fps minutes minutes minutes minutes minutes minutes inchIr cfs cfs NIA NIA N/A N/A NIA NIA NIA NIA NIA NIA N/A NIA NIA NIA N/A N/A NIA NIA N/A N/A N/A N/A NIA NIA 1.7 25.3 Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. 1 D11 UD-Inlet_v3.12, 0-Peak 1/16/2014, 2:04 PM Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area D - Basin D11 Gutter Geometry (Elite data In the blue cells' Maximum Allowable Wid h for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) TBACK = 10.0 ft SHACK = 0.019 ' ft/ft nBACK = 0.020 Height of Curb at Gutter Flow Line HCURB = 6.00 inches Distance from Curb Face to Street Crown TCRowN = 18.0 ft Gutter Width W = 2.00 ft Street Transverse Slope Sx = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw = 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So = 0.006 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) nsTREET = Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T. = d = 0.013 Minor Storm Major Storm 12.0 18.0 6.0 7.4 MINOR STORM Allowable Capacity Is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qallow = Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet .0-Peak. 4.5 25.8 ft inches check = yes cis D11 UD-Inlet v3.12, Q-Allow 1/16/2014, 2:04 PM Basin D11 Cross Section Cross Section for Rectangular Channel Project Description Worksheet Rectangular Channel - 1 Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.013 Channel Slope 0.5000 % Depth 0.60 ft Bottom Width 8.00 ft Discharge 25.29 cfs Ziegler Road curb cut calc for major storm event 8.00 ft 0.60 ft V:2.0L H:1 NTS Title: 1844c - Kechter Farm j:\...\calculations\fiowmaster\1844c-curbcut.fm2 JVA, Inc 01/16/14 05:01:30 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Kevin Tone FlowMaster v7.0 [7.0005] Page 1 of 1 1 Basin D11 Cross Section Cross Section for Irregular Channel Project Description Worksheet Irregular Channel - 1 Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient Channel Slope Water Surface Elevation Elevation Range Discharge 0.013 0.5000 % 16.12 ft 15.90 to 16.39 1.73 cfs Ziegler Road pan calc for minor storm event 16.20 16.05 1 15.90 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 V:10.0L, H:1 NTS Title: 1844c - Kechter Farm Project Engineer: Kevin Tone j:1...lcalculations\flowmaster\1844c-curbcut.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 01/16/14 05:00:11 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area D - Basin D12 OVERLAND FLOW GUTTER FLOW) SIDE STREET OVERLAND FLOW GUTTER PLUS CARRYOVER FLDW ROADWAY CENTERLINE Design Flow: ONLY ifalready determitigh oar me hods: (local peak flow lot tr2 al street OR grass -lima crwoet). `Qiccown= Minor Storm Major Storm If you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet eograp onn... n: er . a • m 1 .. , . ce 510e Type: Flows Developed For: 0 Site is Urban 0 Sites Nan -Urban rQ Street Inks 0 Area inlets Ina Median 0.5 I 6.3 I Subcatc0 oera Area = Percent Imperviousness = NRCS Soil Type = Overland Pow = Channel Row = Slope (fVft) Length (ft) Show Details fs Acres A, B, C, arD nn-r•n: ers r 3 Minor Storm Mier Storm Design Storm Return Period, Tr = Return Period One -Hour Precipitation, Pt = Ct= Cz= Ca= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Q,= Total Design Peak Flow, Q = 0.0 0.0 0.5 6.3 years inches cfs efs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. 1 Project: Inlet ID: 1 1 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area D - Basin D12 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Tsncx = Side Slope Behind Curb (leave blank for no conveyance credit behind curb) = Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n = Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) HCuR TCRONN - W= Sx SW So = nsMEET = T. _ dux= 28.0 0.020 0.020 6.00 25.0 2.00 0.020 0.083 0.012 0.015 ft ftlft inches ft ft ft/ft ft/ft ftlft Minor Storm Major Storrn 18.7 25.0 6.0 12.6 0 ft inches check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline {usually 21 Gutter Depression (dc - (W " S, " 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow 10 Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 112 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TN Actual Discharge outside the Gutter Section W, (limited by distance Tc.i.,) Discharge within the Gutter Section W (Qd - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section V'd Product: Flow Velocity Times Gutter Flowline Depth Slope -based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Y= do= a= d= Tx = Eo = Q. = Qw = Qencx = Qr = V= V"d= TTH = Txm= Eo = Qxln= Qx = QQw= Q= V= V'd = R= Qa= d= dCRONN = Minor Storm Major Storm 4.49 6.00 2.0 2.0 1.51 1.51 6.00 7.51 16.7 23.0 0.318 0.235 11.0 25.8 5.1 7.9 0.0 0.6 16.1 34.3 6.1 7.3 3.1 4.6 Minor Storm Major Storm 18.7 46.2 16.7 44.2 0.318 0.123 11.0 147.2 11.0 126.4 5.1 20.7 0.0 31.1 16.1 178.2 6.1 10.7 3.1 11.2 1.00 1.00 16.1 178.2 6.00 12.60 0.00 5.09 inches inches inches inches ft cfs cfs cfs cfs fps ft cfs cfs cfs cfs cfs fps cfs inches inches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,r,,,, =I 16.1 I 178.2 Ids Minor storm max. allowable capacity GOOD • greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Project: Inlet ID: INLET ON A CONTINUOUS GRADE 11144c - Kechter Farms Area D - Basin D12 Design Information (Input) Type of Irtiet Local Depression (additional to continuous gutter depression 'a' from '0-Atlovi?) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Urit Inlet (Grate or Crab Opening) Width of a Unit Grate (carrot be greater than W from 0-Allow) Cbggirg Factor fora Single Urit Grate (typical min value = 0.5) Cbgging Factor for a Single Urit Cub Opening (typical min. value = 0.1) MINOR MAJOR Type = CDOT Type R Curb Opening °rack = 3.0 3 0 inches No= 3 3 1-0= 5.00 500 ft W0= NIA NIA ft CrG = NIA N/A CrC = 0.10 0.10 Street Hydraulics. OK - Q < maximum allowable from sheet'Q-Allow' MINOR MAJOR Total Inlet Interception Capacity O • 0.5 6.3 cts Total Inlet Carry -Over Flow (flow bypassing Inlet) Gb • 0.0 0.0 cfs Capture Percentage o Q..IQO o C%• 101 100 % EXCERPT FROM KINARD MIDDLE SCHOOL CALCULATIONS (Design Point 23 is equivalent to the existing inlet at Kechter Farms, Area D, Design Point 13) CURB OPENING INLET IN A SUMP Project =Kinard Junior High Inlet ID =100-Year Flow - Trilby Inlet - Design Point 23 - Basin 0S5 Wp Lu Wp Design Information (Input) Length of a Unit Inlet Local Depression, if any (not part of upstream Composite Gutter) Height of Curb Opening in Inches Side Width for Depression Pan Clogging Factor for a Single Unit (typical value = 0.1) Angle of Throat (see USDCM Figure ST-5) Orifice Coefficient (see USDCM Table ST-7) Weir Coefficient (see USDCM Table ST-7) Total Number of Units in the Curb Opening Inlet L = 5.00 ft a,, = 3.00 inches H = 6.00 inches Wp = 3.00 ft Co = 0.10 Theta = 63.4 degrees Cd = 0.67 C„, = 3.00 No = 1 Curb Opening Inlet Capacity in a Sump As a Weir Design Discharge on the Street (from Street Hy) Water Depth for the Design Condition Total Length of Curb Opening Inlet Capacity as a Weir without Clogging Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Capacity as a Weir with Clogging As an Orifice Capacity as an Orifice without Clogging Capacity as an Orifice with Clogging Capacity for Design with Clogging Capture Percentage for this Inlet = Qa / Qo = Qo =; Yd L Qom;= Coef = Clog Qwa = Qol Qoa = 6.8 cfs 8.22 inches 5.00 ft 17.7 cfs 1.00 0.10 16.8 cfs 9.1 cfs 8.2 cfs Q. =i 8.2.�cfs C"yo = [ 1 0 Oo v. Note: Unless additional ponding depth or spilling over the curb is acceptable, a ca • re percentage of less than 100% in a sump may indicate the need for additial inlet units. Calculated 100-yr Peak Flow at DP13 is 7.00 cfs APPENDIX B.5 AREA E CALCULATIONS Kechter Fami Development 18 Final Drainage Report 1 CONSULTING ENGINEERS JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Kechter Farms Composite Runoff Coefficient Calculations Location: Minor Design Storm: Major Design Storm: Soil Type: Fort Collins 2 100 CID Job Name: Kechter Farms Job Number: 1844c Date: 1/17/14 By: ANC CA=KA+(1.3113-1.44i2+1.135i+0.12) CCD = KCD + (0.858i3 - 0.786i2 + 0.774i + 0.04) CB = (CA + CCDy2 Basin Design Data I (%) = 100% 90 % 39% 40% 10% 25% 0% 0% I (%) Runoff CoefPs Basin Name Design Point APaved streets Of) Adrivesrc Of) ASFrtomes (sf) Agrave& (St) Aptygnd (sf) Ann.tuff Of) Aiscape (B soil) sou) (sf) A Alscape (CtDso4 (sf) ATotal (S� ATotai (ac) Imp (%) C2 CS C10 C100 El 1 9.525 2,700 82,849 0 0 0 0 7,599 102,673 2.36 43.1% 0.30 0.36 0.43 0.59 E2 2 9,269 2,496 56,786 0 0 0 0 6,649 75,200 1.73 44.8% 0.31 0.37 0.44 0.59 E3 3 7,709 1,425 43,108 0 0 0 0 45,340 97,582 2.24 26.4% 0.21 0.29 0.37 0.56 E4 4 10,902 2,962 83,839 0 0 0 0 10,719 108,422 2.49 42.7% 0.29 0.36 0.43 ' 0.59 E5 5 14,742 3,002 33,156 0 0 0 0 7,292 58,192 1.34 52.2% 0.35 0.41 0.47 0.61 E6 6 13,462 3,805 53,697 0 0 0 0 4,399 75,363 1.73 50.2% 0.34 0.40 0.46 0.60 E7 7 21,945 4,951 106.738 0 0 0 0 14,526 148,160 3.40 45.9% 0.31 0.38 0.44 0.59 E8 8 0 3,875 44,265 0 0 0 0 80,438 128,578 2.95 16.1% 0.15 0,24 0.33 0.55 E9 9 10,765 2,828 27,248 0 0 0 0 6,982 47,823 1.10 50.1% 0.34 0.40 0.46 0.60 E10 10 10,699 3,728 39,964 0 0 0 0 13,806 68,197 1.57 43.5% 0.30 0.36 0.43 0.59 Ell 11 12,089 3,330 42,297 0 0 0 0 3,937 61,653 1.42 r 51,2% 0.35 0.40 0.46 0.61 E12 12 11,072 3,069 81,015 0 0 0 0 3,788 98,944 2.27 45.9% 0.31 0.38 0.44 0.59 E13 13 0 1,951 63,998 0 0 0 0 55,940 121,889 2.80 21.9% 0.18 0.27 0.35 0.56 E14 14 11,493 3,176 35,072 0 0 0 0 5,595 55,336 1.27 50.7% 0.34 0.40 0.46 0.60 E15 15 33,870 8,740 161,338 0 0 0 0 13,856 217,804 5.00 48.1% 0.33 0.39 0.45 0.60 E16 16 0 10,069 135,261 0 0 0 0 126,198 271,528 6.23 22.8% 0.19 0.27 0.35 0.56 E17 17 32.987 7,991 77.953 0 0 0 0 12,597 131,528 3.02 53.711, 0.36 0.42 0.47 0.61 E18 18 0 0 47,052 0 0 0 0 1,834 48,886 1.12 37.5% 0.27 0.34 0.41 0.58 E19 19 0 0 43,243 0 0 0 0 1,805 45,048 1.03 37.4% 0.26 0.34 0.41 0.58 E20 20 0 0 32,070 0 0 0 0 1,423 33,493 0.77 37.3% 0.26 0.34 0.41 0.58 E21 21 775 272 167,149 0 0 0 0 17,831 186,027 4.27 35.6% 0.25 0.33 0,40 0.58 TOTAL SITE 192,510 65,174 1,318,463 0 0 0 0 _428,306 2,004,453 46.02 38.2% 0.27 0.34 0.41 0.58 1844c - Rational Calculations Area E Developed C Page 1 of 1 1111Ma1 tJtJt111 CONSULTING ENGINEERS JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Kechter Farms Time of Concentration Calculations Location: Fort Collins Minor Design Storm: Major Design Storm: Soil Type: 2 100 CID Job Name: Kechter Farms Job Number: 1844c Date: 1/17/14 By: ANC Sub -Basin Data Initial Overland Time (4) Travel Time (4) tr=Lengthl(Velocity x 60) Comp tc tc Urbanized Check ON 4 Final Basin Name Design Paint Am./ (ac)CS Upper most Length (n) Slope (%) t; (min)(it Length ) Slope (%) Type of Land Surface C„ Velocity (fps) 4 (min) Time of Conc 4 + 4 = 4 Total Length (ft) t,=(L1180)+ 10 (min) Min 4 El 1 2.36 0.36 211 2.9% 13.8 436 2.1% Paved areas & shallow paved swales 20 2.9 2.5 16.3 647 13.6 13.6 E2 2 1.73 0.37 234 2.8% 14.5 375 2.1% Paved areas & shallow paved swales 20 2.9 2.2 16.7 609 13.4 13.4 E3 3 2.24 0.29 300 2.5% 19.0 251 3.3 % Paved areas &shallow paved swales 20 3.6 1.2 20.1 551 13.1 13.1 E4 4 2.49 0.36 238 3.4% 13.9 574 2.7% Paved areas & shallow paved swales 20 3.3 2.9 16.8 812 14.5 14.5 E5 5 1.34 0.41 175 2.3% 12.7 637 2.7% Paved areas & shallow paved swales 20 3.3 3.2 15.9 812 14.5 14.5 E6 6 1.73 0.40 246 2.8% 14.3 306 2.1% Paved areas & shallow paved swales 20 2.9 1.8 16.1 552 13.1 13.1 E7 7 3.40 0.38 138 2.0% 12.4 579 2.1% Paved areas & shallow paved swates 20 2.9 3.3 15.7 717 14.0 14.0 E8 8 2.95 0.24 105 2.0% 12.8 640 1.0% Grassed waterway 15 1.5 7.1 19.9 745 14.1 14.1 E9 9 1.10 0.40 84 3.7% 7.6 510 3.4% Paved areas &shallow paved swales 20 3.7 2.3 9.9 594 13.3 9.9 El 10 1.57 0.36 300 2.3% 17.7 62 1,9 % Paved areas &shanow paved swales 20 2.8 0.4 18.1 362 12.0 12.0 Ell 11 1.42 0.40 123 2.4 % 10.6 307 1,5% Paved areas &shallow paved swales 20 2.4 2.1 12.7 430 12.4 12.4 E12 12 2.27 0.38 176 2.5% 13.0 402 1.6% Paved areas & shallow paved swales 20 2.5 2.6 15.6 578 13.2 13.2 E 13 13 2.80 0.27 88 2.5% 10.5 838 1.0% Grassed waterway 15 1.5 9.3 19.8 926 15.1 15.1 E14 14 1.27 0.40 82 2.4% 8.7 317 1,6% Paved areas & shallow paved swales 20 2.5 2.1 10.8 399 12.2 10.8 E15 15 5.00 0.39 135 2.3% 11.5 685 1.3% Paved areas & shallow paved swales 20 2.3 5.0 16.5 820 14.6 14.6 E16 16 6.23 0.27 152 2.9% 13.1 1001 1.0% Grassed waterway 15 1.5 11.1 24.2 1153 16.4 16.4 E17 17 3.02 0.42 110 2.1% 10.2 552 0.8% Paved areas & shallow paved swales 20 1.8 5.1 15.4 662 13.7 13.7 E18 18 1.12 0.34 229 2.0% 16.8 203 0.9% Paved areas &shallow paved swales 20 1.9 1.8 18.6 432 12.4 12.4 E19 19 1.03 0.34 120 2.3% 11.6 364 1.0% Paved areas &shallow paved swales 20 2.0 3.0 14.6 484 12.7 12.7 E20 20 0.77 0.34 137 2.7% 11.8 196 2.7% Paved areas &shallow paved swales 20 3.3 1.0 12.8 333 11.9 11.9 E21 21 4.27 0.33 127 2.7% 11.4 1853 1.5% Paved areas &shallow paved swales 20 2.4 12.6 24.0 1980 21.0 21.0 1844c - Rational Calculations Area E Developed Tc Page 1 of 1 1 1 1 Developed Storm Runoff Calculations Kechter Farms I = (28.5 P1) / ((10 + TCr0.78665082676575) OD C 2 0 E 0 c rn sa)oN Route to DP E2 1 W Ili o CC Route to Inlet E6 Route to DP E5 I Route to West Outfall I To- 2 O y West Outfall West Outfall I Route to MH-B6-4 I Route to West Outfall I Route to West Outfall I I- Route to MH-E17.1 I Route to MH-E10.1 Route to MH-E10.1 Route to MH-E12-1 Surface Flow to E10 I Route to MH-E12-1 Route to MH-E12-1 I 0. u l 2 2 N (Y Route to MH-E11-3 (UIW) ewiI lelol N V - O to W N a,0 R CO ui N M R (c 7 O d R ) Pipe/Swale Travel Time (ulw) µ^ o 0 0 a 0 o 0 co 0 co 0 i+, 0 o 0 w .- 0 0 m 0 0.- 0 0 m 0 (sdl) 4110010p on nmi v °r) CV ni to 6 _ o or ^ 6 of ro v (ll) 4i6ua1 a ry `� M v .- cop N N 6 O N Oh VI N V ET. NO) I4!oede0 adld xeyy o '1':v o - Q) N (e R r° O 0 CO ° 0 N < N N CO .- 0 s- P ED (sla) mold adld c M a m CD T to M M (D a. (r- m v M r- N r Q. m co1� V co (%) adois o In d 0 In o no - 0 )n c 0 m o in o . ni 0 o 0)- n o c v- 0) `o - a n ni o o M a n o Ieua)eyy adid a 0 m a c.) a a 0 a: a 0 m o_ 0 m a 0 a a 0 a a c.) m a 0 a a 0 2 a 0 m a 0 m a 0 m a c0 m Walenlnba is (ui) ans and c c - c w c - c - c v c N CV c m c o c m 0 )c, c CD m C (o30) ianoluea 0 N ui m n Total Flow-QcoE2-QcoE3I mm ui N o M • N c a a 1- ii) UJ 8 Q w V Q 111 a 'L o ~ o (0 N o 0 0 0 0 0 0 0- O m v Q LL To i- o o 0 0 o o IL , H a 1, 0 3 o lL Total Flow-Oco(D7-D10)1 - v to o N pa)daaia)uI0 N R M 0 co fD 0 M N n- N CO ni N M r OD 0 M 4. < M co 6 M r N adRl )alul a a IT in 5' Type R Inlet N c a n H in N - a ¢ I-' in 10' Type R Inlet 15' Type R Inlet 1, - m T CD 3 m C 3 m o m 0 u io m 10' Type R Inlet I-N a a H O N S a n F O N c m a 1- in Total Runoff OW or 6 m t N rn r W (D 0 CD m ' 0 of N m .- C r M - W a .r M 0 (AM) I COM m CO m I! 0 C 0 M 0 6 1 m 60) m M m - 6 (0 6 (ae)y,Ji co 0'. N r (0 M N ni m 00 0 O u') N M c L'� 0co- 0 , N m m (up) a) Ie)ol 4- th 0 6 0 7 t- In N ^ m ^ N- no IN-, n CO 0) ' N) CO fp irect Runoff ($)a) 0 'a m a co Total Flow (E2,E3)I 6.78 I 9.40 Total Flow (E1-E3) a. T M 4] Total Flow (Basin E4-E5)-QcoE4-QcoE5 N r In M r ci Total Flow (Basin E1-E8)I Total Ftow (B4. B8-813) QcoA13+QcoB15 CO V CO Total Flow (A13, B2-1313, B15, E1-E8, 8 M o V w W o r _. m c ,_ W m o„ m -O r Total Flow {Basins D7-D10)I w O o U — 3 2 O 1- N m (D m Total Flow (C6, E10, QcoD8)I co In r ED O Total Flow (C6, C8, D7-D10, E9-E10, E17)I (J4NI) I Cr, (0 M m tocD 00 0 (0 m )n OD C) m 0.r m CD <D a` 0) W co,O M co co)(p CD❑ n.LL m el onr m coo 1` (3e)V.0 N O' 0 , O co 0 S O N m . O Om (D O OCO N N 01 O (up) al 0 M- O V O m - 0 In 0 to 0 0 O 0 0 .0. N 0 r N O O M 0 r 0 V 0 O N o O Di 0 kaop gounH m en 0 rn In 0 D) m 0 w In 0 (o 0 0 CD 0 co 0 u) In 0 co In d m u) o - 0to 0 0 N. v) 0 o) In 0 0 (D 0 Pe) easy V 0). N M 1 ,- (O cm N D) a N A r A ,- . (7 m 0 N N - VD o r West Outfall )n 0 -r N 0 6 O 0) r In 0 N El )UIOd U61saa M N W a W a 0 R 4D W a in co r m W O CO CO O m 0 r W ao . U O W I 0 O 0 a in a) aweN ulse8 w w w w w w ur w m W rn W m U W O U o W CO N `o a)co 0) a 0 a 1844c - Rational Calculations Area E 1 1 1 Kechter Farms = (28.5 P1) I ((10 + TC)"0.78665082676575) Point Hour Rainfall y E o rn c 0 0 sa)oN fRoute to MH-E11.3 I W z i m � = 2 m Route to MH•E14.3 Route to East Outfall IEast Outfall East Outfall 3o 5 0 19 Lit 1;; m CC IRoute to East Outfall Route to East Outfall I awa felol °F m wi m o N m U•W11 1-7-O 0 N O 4 O °o O> P 0 W O 6 M O co N 0 H (Shc) AlloOlaA M N 7E; l0 M a (ij) 415ua1 a 0 N 0 O Lnn co N (sp ypedeo adid xeyy in 0 N v `r.° P `� eco `�° rn (S%o) Mod j adld u, n [D O a, n to ai0) 00 .1 op N & (/) adois a v N r- o 6 0— M Lo 0 in 0 fTotal Flow East Oulfalll ieuateLN adid a 0 s 0 n. 0 a 0 s 0 a 0 lualeonba.o (u!) az!$ adid °0 N e s °0 s e E. 0 (out• )an0ti)03 0 0 0 0 0 0 0 0 00 0 00 0 0 0 paldaolalul p? 2 co N n V o C n h 0-,a 6 _ N m C ad6llam 5' Type R Inlet u C lY a 1-- 0 Dbl Type C Inlet 5' Type R Inlet 10' Type R Inlet 6 C o a 1- .75 0 Swale Swale (sJo) rn N 0 co rn N O ()awe) ( N 6 0 N IN Ili In C m F (30 V.3 a, o V ni 1- v O 0 co Wu]) ul WW1c cl — c 6 c M N m o 6 N (=17) U 0 0) Total Flow (C6, C8, D7-D10, E9-E12, E17) 0 aaO (0 0 • G 0) .- 0 0 Total Flow (C6, C8, D7-D10, E9-E13, E17) N M O1 V N Total Flow (A1-Al2, A14-A16, B 1, C1-05, C7, D1-D6) M U) M Total Flow (A1-Al2, A14-A16, B1, C1-C8, 1` T W N G O O (Niu!) f O 0 ' co r UJ ro N ro CD N a_ ai OE) V.0 0 m 0 '1 — O m N e d) C c N (U1W)=t U.- m C N N M — 0 O .- 0 0 V — 0 p (0 — 0) — O N 0 Iwo Jjouna <a 0 N o coO 0 Op o 0 0 N 0 N 0 Q N. N '7 _w x i ONN(Je)eary N M iu "7 V W x i .- P 6 O N O N 7 East Outfall mod u6Isea M r U = N N aweN wseg w u) w w ua w ni 1844c - Rational Calculations Area E 1 Kechter Farms = (28.5 Pi)1((10 + TC)"0.76665082676575) Point Hour Rainfa N Design Storm : saION Route to DP E2 I w m C o m CCCC I Route to Inlet E6 I W a 0 0 m o Route to West Duffel! I _ m 0 m West Outfall West Duffel! I Route to MH-B6.4 I Route 10 West Outfall Route 10 West Outfall I Route to MH-E17-1 I Route to MH-E10-1 Route to MH-E10-1 Route to MH-E12-1 Surface flow to E l0 I Route to MH-E12-1 I N w _ i 2 9.2 W Route to MH-E 12-1 I Route to MH-E11-3 I (ulw) aWijj(501 a Nwq ri a nm a Qi o 0 0 o n N cDi o rn tD vQ rn v o m fl qr O m O 0 . N O n CO O .- O N O N cn COuW O CO coO O O '- /sd �J �jla0 a I A .. co N co 6 N;;; co 6 co O a o- a I-- N O O 0) a .- V col V 46ua1 4' N a c3 V cN v N O m mN .4.(1d) 1 (s13) rypedeo adid xeyy G: v O V '- r co v N O_ C. 0 v COLI m N Q N n 000 coo ,- ,- n N OP) MOIL adld o O CO N M M N N N N 0 m n N a0 v ' N V 6.- O CO O CO 0) (%) adOIS Ion, O N G co �- 0 6 O o m C a O co. N O rn 6 O C m , 41 N e O m O lepaieN adld a c) a a V a a 0 IX a 0 Z O_ 0 a a 0 Ix 0. 0 r a 0 cr a 0 re a 0 CC 0. 0 a a 0 CC a 0 CC 0- 0 a JualeAlnba JO (u!) 0Z1S ad!d c r- c c m c c s c .c c N c co c_ C c CO c S 0, co. 0.Cu Jane3 0 0 0 0 0 0 0 Total Flow-QcoE2-QcoE3I In 0 0 0 c� .- c a' & IT in Total Flow-QcoE1-QcoE2-QcoE3I - <0 0 0 o 0 6 0 0 0 0 0 6 o 0 0 CO m 0 n Cr N 0] o LL C F o 0 o '- o 0 6 o 0 0 Total Howl LIO U a_ ❑ o 0 3 E Total Flow (C8, D7-D10, E17)I 0 o o 0 0 0 paldawaluI0 Q c') o N c� .- O m O N . : O N Q CO0 O cnm CO 1`...2 N N N N rn - M .0O O ad(11aN1 5' Type R Inlet c a' m I— in - c CC m I- in 5' Type R Inlet I 10' Type R Inlet m CC n >. / E Type C Inlet Swale m 3 CO 36"x96" Box Culvert! O M c IT o m c cc n r H 6 10' Type R Intel c ce m a I -- in Total Runoff O ONi CO N C) N Di c0 co; co N co 00 CO CV a O ... 0< co .6(AIM I Of • m A n coN o ra, COI, / _ 130) y.`J� m Cr)coN O co cocoCn O) V °. Q N OD r I-- c0 CO O) O N O IA (WW}O! Ie101 Aco :.. `nD 0 <0 c00.CO Is-0 rn _ 0 q Direct Runoff (SO)0 rnon O '- Total Flow (E2.E3) c0 , A Total Flow (El-E3)1 co CO O CO O co W $c0 0 <0 w $ In w 7 W C .N m WO _ 1- •o .- a N a CO O Total Flow (Basin E1-E8)1 Total Flow (A13, B2-B13. B15) O m O In O Total Flow (A13, B2-B13, B15, E1-E8,I co mM O Q Mpp U O m W 06 W is- N N N .F LLI m V 3 I, W p I- Total Flow (Basins D7-D10)I o - m O Total Flow (C6, E10, QcoD8)I 0.37 I 2.22 1 0.83 Total Flow (C6, C8, D7-D10, E9-E10, E17) 1 I co co r 000_ ,- 2 .. T. .- a'. r O� O N o N m - aQi CD 0o - N (3e) V.0 CD '1" O c') In O O n O N N- O n a O m cn O m O r < a O O c, O n N C o C •• O O .- v) O n Q O O 10< O 0 t0 c1 O ^ 0 In 0 7 0 O O T O et N O I N - O a N O I- M o < 6 O 0 N 8(UW)O1{ 0) JJoO0 J4OUnb N O M O 0 M O a) N O In M O Q M O CO O IA O n N O CD N O Q CO O m CO O - Q 0? O O 0) O A O (Oe) easy Q N N M f� co cn N O) 7 N V C) M f' 0 4- 6 In O N N ..,10 O .- W = 0 O V N O <.3 O w - C N I.-O N .- N w lul0d u6lsap M N W a ^ W a a ,0 W at-- n I, co O OD m o w N. W O 0 m O a aweN upse9 w w w w w w w w w W � W 0 U W 0 W W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Developed Storm Runoff Calculations Kechter Farms I = (28.5 P1)! (t10 + TC)"0.78865082676575) 04 03 Point Hour Rainfall (Pi) : E 3 k _N Route to MN -El 1-3 Route to MH-E11-3 Route to MH-E14-3 Route to MH-E14-3 Route to East Outfall East Outfall IEast Outfall I East Ouffall Route to East Outfall rRoute to East Outfa)I I Route to East Outfatl a« auk,._.L « , A 0 gi Q ; ; & CO TO (O. ; / • 0 0 / § 0 § (# ; 2 = , , « v #� © `Al Q § § \ / (sio) _oho au - q § k 7 - (:p, mJaa - / 2 § § [ j \ \ ( \ \ ITotal Flow East Outfall' �� ®� ))) a. a ) iueremnbe _ (u!) ¥ski _ _ _ 'Ab - - k - b § ow ' '° § \ \ \ § ) a # 0 2 - / § § § !Jam 5' Type R Inlet 10' Type R Inlet Dbl Type C Inlet 5' Type R Inlet L10' Type R Inlet Dbl Type C Inlet ? co Swale Total Runoff 1 (sip) 0 o Gin - § / § cw� ; § [ \ } (�! ) ) f § k 2 ( ,o § 0 Total Flow (C6, C8, D7-D10, E9-E12, E171 0 I f-;« ; oƒ 0 \ k 0 3 } 0 m ` ; . § / \ { f Tc li ` ^ » - Total Flow (A1-Al2, A14-A16, 81, C1-C8,I DI-D10, D12, E9-E17) m ; 0 f no__/ 2o co Q o f 7 R 7Ro = , Q , »4 ,# Cs/§ - M , o e o/ § / § 0 0)} f o - § \ 0 ^ - Ill \ - 0 § 0 § k ili u 7 m= N -- CO 0 2 a; —m upee§ u LUW u uCs/ W 1844c - Rational Calculations Area E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Kechter Farms INLET SUMMARY TABLE (100-YEAR) CO 2 t 7 k , , , , s 17.12 . , , , 4.74 , 6.95 , cino 2ks % f§ o ON z z z z z Yes ' 0 0 ON Yes z/'ƒ Street Capacity at CL (cfs) ® k 14,17 N- / G b 15.53 » / 2 / p ¥ p@ a ci g ' 12.68 2 § ' $ » -• E CO 2R E6 E E7 E7 E7 , , , W § , , , , , , , k®2 coEE a « 3.86 o §§>k §k.E 0.00 2.40 6.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 /@ Ec 0 Q a 3.42 w p\ (Niw m \§ E RS % 8.46 15.72 G § p w L 19.63 & k e£ |• E °E;, ik2r2 ] f ®/ 9.40 cfs } \ 9.62 cfs 5.35 cfs 13.08 cfs 31.29 cfs 10.73 cfs z 14.78 cfs 8.46 cfs 15.72 cfs § 2 5.75 cfs $ G 0) 21.54 0 k e Bypass Flows from Upstream Inlet 0.00 cfs 0.00 cfs o / 0.00 cfs 0.00 cfs 5.88 cfs \ 0.00 cfs 0.00 cfs 0.28 cfs 2.40 cfs 6.45 cfs 0.00 cfs 0.00 cfs 0.00 cfs o a \ a § k 9.40 cfs § \ f § ) § \ 7.20 cfs 13.51 cfs 10.73 cfs 1 14.50 cfs § \ 9.27 cfs 10.04 cfs 5.75 cfs t 0 G \ 12.49 cfs ix/ c r o r c C' ?,1:\\.' _'_ E. J o 6.4 in 7.6 in 5.8 in 8.9 in - N. / § _ 0) /- \ - / 02 E7 Gk At -grade At -grade ° \ 7 « \ 7 At -grade Sump Sump Sump At -grade At -grade Sump Sump Sump Sump Sump Sump Sump Inlet type 5' Type R Inlet o 5' Type R Inlet } a F- in 5' Type R Inlet 10' Type R Inlet 15' Type R Inlet Type C Inlet 5' Type R Inlet 10' Type R Inlet 5' Type R Inlet 10' Type R Inlet Dbl Type C Inlet 5' Type R Inlet 10' Type R Inlet Dbl Type C Inlet 10' Type R Inlet /\ z w ui G 3 2 CO I@ 3° w w ~ 3 n,_ E» w w w w ]` oa a n o _ _ a - 2 Q / a j \ Inlet Sum100 1844c - Rational Calculations Area E.xlsx N o d L 0) 1`OOa) o a)0 i • 0 M O M > r 03 all 1 Kechter Farms INLET SUMMARY TABLE (2-YEAR) ; w y C. V 1-1-1— Q COcD COCD 10.3 10.3 'r r 13.1 co ' O ai O a ' C'')_ (p a+ O c a+ p y d C o. .an m o 0 E6 i i E7 i i i i i i i i iea i Bypass Flows to Downstream Inlet 0.05 cfs 0.00 cfs 0.00 cfs to U CO O O 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs co U O O O co U O 0 O 0.00 cfs 0.00 cfs 0.00 cfs co U 0 0 O 0,00 cfs 0.00 cfs T d ° CO Q. IV w 0 OM 1.03 cfs w U O) O DI U M I— 0.89 cfs 1.21 cfs N U 0 CA; 0.84 cfs 0.83 cfs N U CV O r 0.99 cfs 1.40 cfs U Tr a) C; 0.93 cfs 3.06 cfs 2.06 cfs U C•I r CV C y E II d CI T w N C N m a O N U co r 1.03 cfs co 0 a) O 1.38 cfs 0.89 cfs co U N r 2.10 cfs 0.84 cfs co U CCOO O m U 0N) r co 0 CD 0)) O 1.40 cfs 0.94 cfs (o 0 M) 0 O 3.06 cfs 2.06 cfs 2.12 cfs Bypass Flows from Upstream Inlet 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.05 cfs 0.06 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs C QI T; .N O N w 0 1.36 cfs 1.03 cfs V) 0 r a) O co 0 CO CO r 0.89 cfs (r) 0 CO r 2.04 cfs 0.84 cfs 0.83 cfs 1.92 cfs co 0 a) a) O 1.40 cfs 0.94 cfs co U CO(O a) O 3.06 cfs co 0 O N (q U C N 0 a 0 0 Q' N 2.5% L N C C)) r\- N ram\- N o N a CA; 1 3.4% 3.4% 1.5% 1.5% 1 m A— c\o A— a\o O fl t E a 3 CO O I I I I I C CO N C I,- N 5.8 in 1 1 2.8 in 2.7 in C it 4 2.7 in G v) cn C V C cd O 9 , 12E O) rn Q At -grade At -grade At -grade "O O) Q CD U Q Sump Sump Sump CD 'O a1 Q At -grad Sump Sump Sump Sump Sump Sump Sump Inlet type 5' Type R Inlet O O 5' Type R Inlet 5' Type R Inlet 5' Type R Inlet 10' Type R Inlet a) G a Q_ >. H Type C Inlet 5' Type R Inlet 10' Type R Inlet 5' Type R Inlet 10' Type R Inlet Dbl Type C Inlet 5' Type R Inlet 10' Type R Inlet 1 Dbl Type C Inlet 10' Type R Inlet 5- d a+ G ECD 42 3 2 W W W W E5 LULULULLIII O E12 E13 E14 E15 E16 E17 C r, O) C 'y 'O ID 0. c r N co V co (0 h CO 0) Or c- rN- ,— ,— ,— ,- N. 0 rn a 1844c - Rational Calculations Area E.xlsx Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area E • Basin El OW OVERD J , STREET { I { FLOVERLAND l GUTTER FLOW VGUTTER PLUS (CARRYOVER FLOW ` ROADWAY CENTERLINE Show Details Design Flow: ONLY if already deTrmined through other methods: Minor Storm Major Storm (local peak lbwfru 1r2 of street OR press -lined charnel): rQrcnc = • H you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic information: (Enter data in the blue ce(j Site Type, [ 0 Site is Urban 0 Site is Non -Urban Flom Devekrped For: O Street Inlets 0 Area Inlets In a Median f 1.4 Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = 9.4 Slope (ft/ft) Length (ft) cts Acres A, B, C, or D Itamlau Information: Intensity I pncghr =L; P, i I Uz * I. 1 " 4,3 Design Storm Return Period, T, = Return Period One -Hour Precipitation, P, = C,= Co= Ca= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined Syr, Runoff Coefficient (leave this blank to accept a calculated value), CS = Bypass (Carry -Over) Flow from upstream Subcatchments, Qe = Total Design Peak Flow, Q - mor Storm Major Storm 0.0 0.0 1.4 9.4 years inches cfs cfs Work sheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. 1 i i 1 Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin El Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow tine Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Tex = SBACK = neACK = Haas = TCRONN - W= Se = Sw= So n5TREET = TNAx = d Ax= 26.9 0.020 0.020 4.68 14.8 1.17 0.020 0.083 0.025 0.016 ft 6/6 inches ft ft ft/ft ft/ft ft/h Minor Storm Major Storm 14.8 14.8 4.7 11.2 0 121 ft inches check = yes Maximum Capacity for 112 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W ' Sx 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - IN) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method {Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (OT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Ftowiine Depth Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx Actual Discharge outside the Gutter Section W, (limited by distance TcaowN) Discharge within the Gutter Section W (Qd - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre -Safety Factor) Average Flow Velocity Within the Gutter Section d Product: Flow Velocity Times Gutter Flowline Depth Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) y= do = a= d= Tx = Eo = Qx = ow = QBACK = Or= V= V'd = TTM = Txn+= Eo = QxTH= Qx = Qe = V= V-d = R= Qd= d= dcnpNN = MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Q,r,,, = Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Minor Storm Major Storm 3.54 3.55 1.2 1.2 0.88 0.88 4.43 4.43 13.6 13.6 0.232 0.231 8.6 8.6 2.6 2.6 0.0 0.0 11.2 11.3 2.4 2.4 0.9 0.9 Minor Storm Major Storm 15.8 42.8 14.7 41.7 0.216 0.076 10.5 170.1 10.5 _ 111.0 2.9 14.0 0.0 42.8 13.4 167.7 2.5 4.6 1.0 4.3 1.00 0.70 13.4 117.1 4.68 9.81 0.25 5.38 Minor Storm Major Storm 11.2 117.1 inches inches inches inches ft cfs cfs cfs cfs fps ft cfs cfs cis cis cfs fps cfs inches inches cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c • Kechter Farms Area E - Basin El Design Information ftnout) Type of Inlet Local Depression (additional to continuous gutter depression'a' from 'Q-A0ow ) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit inlet (Grate or Cub Opening) Width of a Unit Grate (cannot be greater than W from 0-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cbgging Factor for a Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = COOT Type R Curb Opening aroca. = 3.0 3 0 inches No= 1 1 Ln = 5.00 5.00 ft W,= NIA N'A ft CrG = NIA N/A C-C= 0.10 0.10 Street Hydraulics: OK - Q < maximum allowable from ebeet Q-Alow' Total Inlet Interception Capacity Total Inlet Carry -Over Flow (lbw bypassing Inlet) Capture Percentage = 0,10„ MINOR MAJOR Q• 1.3 3.5 cte Qn • 0.1 5.9 cfs C%• 96 37 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area E • Basin E2 OVERLAND FLOW SIDE STREET OVERLAND FLOW GUTTER FLOW~ 'um GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY d akeady determined through other methods: Minor Storm Major Storm (local peak howler 12 of skeet OR grass -Mod channel)): *QKnewn = —(a gIf u enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. raphic Information: (Enter data in the blue ceLs): Site Type: [0 Saes Urban 0 Site b Nm-Urban Rows Developed Far: Q street Inlets 0 Area Inlets in a Median i.0 I 7.0 Subcatch000t Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (tt/ft) Length (ft) cfs Acres A, B, C, or D _ltalntau Inform tton: Intensity l lincrvtrl = Ui - f•, l (U7' I c) " t-a Design Storm Return Period, T, Return Period One -Hour Precipitation, P, Ct= Cr= C, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Q, _ Minor Storm Major Storm 0.0 0.0 years tches cfs Total Design Peak Flow, Q = 1.0 7.0 cfs VVorksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin E2 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Fiow Depth at Street Crown (leave blank for no) TBACK = SBACK = nBAcK= Hcu� _ TcaowN = W= Sx Sw = So = nSTREET= T. = d,,x= 26.9 0.020 0.020 4.68 14.8 1.17 0.020 0.083 0.025 0.016 ft ft!ft inches ft ft tuft ft/ft fUft Minor Storm Major Storm 14.8 14.8 4.7 11.2 ft inches check = yes MINOR STORM Altowabte Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion O,m,, =I 11.2 I 117.1 cfs Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. allowable capacity GOOD - Sreater than flow given on sheet '0-Peak' Project: Inlet LD: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area E - Basin E2 La (C)- Design Information (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from 'O-AItow ) Total Number of Units in the inlet (Grate or Cub Opening) Length of a Single Unfit Inlet (Grate or Curb Opening) Width of a Urit Grate (carrot be greater than W from O-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Urit Curb Opening (typical min. value = 0.1) Type = ar.ocf, = No = La = Wo = C1-G= CrC = MINOR MAJOR COOT Type R Curb Opening 3.0 30 1 1 5.00 NIA N/A 0.10 5 00 N:A NIA 0.10 Street Hvdraulks: OK - Q < maximum aliowable from sheet 'Q-Allow' Total Net Interception Capacity Q Total Inlet Carry -Over Flow (flow bypassing Inlet) Qn = Capture Percentage = MINOR 1.0 0.0 100 MAJOR 3.1 3.9 45 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c • Kechter Farms Area E - Basin E3 OVERLAND FLOW SIDE STREET GUTTER FLOW GUTTER PLUSCARRYBvER FLOW 1 OVERLAND FLOW \ ROADWAY CENTERLINE Show Details Design Flow: ONLY it already determined (trough other methods: Minor Storm Major Storm (brat peak lbw tor 112 of street OR grass -lined channel): �Qttnown - 0.9 1 8.7 • tf you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information: (En(er Gala in the blue cells] Site Type: 0 She is Urban 0 She is Non -Urban cis Flows Developed For [0 Street Inlets 0 Area Inlets Ina Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Slope (ft/ft) Length (ft) Overland Flow= Channel Flow = Acres A, B, C, or D Haman information. intensity I yrtttytr = L, F', F L. + I.1 " -'s Minor Storm Major giorrn Design Storm Return Period, T, = Return Period One -Hour Precipitation, P, _ C,= C2= Cf= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatehments, Qe 0.0 0.0 years inches cfs Total Design Peak Flow, 0 e 0.9 8.7 efs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin E3 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TBACK = 26.9 ft SHACK = 0.020 ft/ft %ACK = HctR+e = 4.68 inches TcNowN= 14.8 ft W = 1.17 ft Sx = 0.020 ftffl Sw = 0.083 ft/ft So = 0.033 ft/ft 0.020 nsmEEr = 0.016 Minor Storm Major Storm T. = 14.8 14.8 ft dr,.ve = 4.7 11.2 inches check = yes MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Qaw.. _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' El p Minor Storm Major Storm 12.9 107.7 cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c • Kechter Farms Area E - Basin E3 r-Lo (C) 'Design Information (flout) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from ICI-Atow') Total Ninnber of Urits in the Inlet (Grate or Curb Opening) Length of a Single Urit Iriet (Grate or Curb Opening) Width of a Urit Grata (cannot be greater than W from O-Allow) Clogging Factor tor a Single Urit Grate (typical min. value = 0.5) Clogging Factor for a Single Urit Curb Opering (typical min. value = 0.1) MINOR MAJOR Type = aLocA = 3.0 3 0 inches No = L.a= 500 5.00 ft Wo= N!A NIA ft CrG = CrC = COOT Type R Curb Opening NIA NIA 0.10 0.10 Street Hydraulics; OK - Q maximum allowable from sheet'Q-Allow' otal Inlet interception Capacity Q otal Inlet Carry -Over Flow (now bypassing inlet) Qn - Capture Percentage • Q�IQ, - CH MINOR 0.9 0.0 100 MAJOR 3.4 5.3 39 cfs cfs Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1644c - Kechter Farms Area E - Basin E4 1 OVERLANDFLOW ` J SIDE STREET OVERLAND FLOW GUTTER FLOW GUTTER PLUS CARRYOVER FLOW J ROADWAY CENTERLINE Show Details Design Flow: ONLY rf already determined through other methods: Racal peak flow for 1/2 of street OR grass-bned channel): 'Chtnowr = Minor Storm Major Storm 1.4 1 9.6 • If you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information. (Enter data in the blue cans). Site Type: Rows Developed For: [ Q Site b Urban 0 Site c Ron -Urban CO Street Inlets 0 Area Inlets Ina Median Subcatctvnent Area = Percent Imperviousness = NRCS Soil Type = Overland Flow= Channel Flow = Slope (ftHt) Length (ft) cfs Acres A, B, C, orD n aormar.n: ens r Inc 1 2 c Design Storm Return Period, T,= Return Period One -Hour Precipitation, Pi = C1= Ca = Ca_ User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C, = Bypass (Carry -Over) Flow from upstream Subcatchments, De= Total Design Peak Flow, 0 = no orm alor norm 0.0 0.0 1.4 9.6 years inches cfs cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844e - Keehter Farms Area E - Basin E4 T, TWx W—--�^ Ti • rGRIMM gg� Crarrrr Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) SsACK = nencx = 26.9 0.020 0.020 ft fttft Height of Curb at Gutter Flow Line HcURB = 4.68 inches Distance from Curb Face to Street Crown TcevvN = 14.8 ft Gutter Width W = 1.17 ft Street Transverse Slope Sx = 0.020 fl/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw = 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So = 0.027 ftlft Manning's Roughness for Street Section (typically between 0.012 and 0.020) nsrnees = Max. Allowable Spread for Minor & Major Storm T _ Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d, = Allow Flow Depth at Street Crown (leave blank for no) ❑ 0.016 Minor Storm Major Storm 14.8 14.8 4.7 11.2 MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Q,Pa,,,= Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Minor Storm Major Storm 11.6 114.4 ft inches check = yes cfs Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1644c - Kechter Farms Area E - Basin E4 Lo (C) Design Information (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Alloy/) Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Urut Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from Q-Allow) Cbggirg Factor for a Single Unit Grate (typical min. value = 0.5) Cbgging Factor for a Single Ural Curb Opening (typical min. value = 0.1) Type = aLoca. = No = Lo= Wo= CrG CrC= MINOR MAJOR CDOT Type R Curb Opening 3.0 30 5.00 5.00 NIA N/A NIA NIA 0.10 0.10 Street Hydraulics: OK - 0 < maximum allowable from sheet'0-Allow' Total Inlet Interception Capacity 0 Total inlet Carry -Over Flow (flow bypassing inlet) Ob Capture Percentage = 0a10o = C%= MINOR 1.3 0,1 96 MAJOR 3.6 6.1 37 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area E - Basin E5 111 OVFLLOW D ` I , STREET I IOVERLAN D }L GUTTER FLOW-1/J �G� PLUS CARRYOVER J \ ROADWAY CENTERLINE resign • : e• -I a,=a•y•eerno =• I •ug o(.rrnei ••s: (Neal peak flow roe 112 01 street OR grmsained channel): lartacwn 0 you enter values in Row 14. skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Minor Storm Major Storm 0.9 1 5.3 1 Site Type: 0 Site is Urban 0 See Is Non -Urban Flows Developed For: rQ Street Inlets. Q Area Inlets. In a Medan Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow= Channel Flow = Slope (fUtt) Length (ft) Show Details cts Acres A, B, C, or D ommi.•n: erOl � < a ror rortn ■ apr torn Design Storm Retum Period, Tr = Return Period One -Hour Precipitation, P1= Cr = C2= C3- User-Defined Storrs Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Ca Bypass (Carry -Over) Flow from upstream Subcatehments, Cab 0.0 0.0 years inches efs Total Design Peak Flow, Q = 0.9 5.3 efs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin E5 Gutter Geometry {Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Mow Flow Depth at Street Crown (leave blank for no) TBACK = SBAGK = nBACK = HcuiB = ToeowN = W= Sx = Sw= So = n STREET T.,= = MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion 0.wew _ Minor storrn max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'CI -Peak' 26.9 0.020 0.020 4,68 14.8 1.17 0.020 0.083 0.027 0.016 ft ft/ft inches ft ft flift ft/ft flirt Minor Storm Major Storm 14.8 14.8 4.7 11.2 Minor Storm Major Storm 11.6 114.4 ft inches check = yes cfs Protect: Inlet ID: 1844c - Kechter Farms Area E - Basin E5 {-lo (C)-4 Deskn Information (Inoutl ype of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-AIbW) otal Number of Units in the Irtlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from Q-Atkw) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) MINOR MAJOR Type = CDOT Type R Curb Oparirg aux.. = 3.6 3 0 inches No= 1 Lo= 5.00 5.00 ft Wc= N/A NrA ft CrG = NIA N/A C -C= 0.10 0.10 Stie ( Hydraulics: OK - Q < maximum allowable from sheet'Q-AI]ow' MINOR MAJOR Total Inlet Interception Capacity Q • 0.9 2.8 efs Total Inlet Carry -Over Flow (flow bypassing inlet) CIO = 0.0 2.8 efs Capture Peroentage • QJQ, • C%• 100 52 % Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c • Kechter Farms Area E - Basin E6 OVERLAND FLOW SIDE STREET GUTTER FLOW 4 OVERLAND FLOW GUTTER PLUS CARRYOVER f 1 W ROADWAY CENTERLINE Show Details -� Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peaktbw for I/2 of street OR grass -lined channel). °QKnown= • If you enter values in Row 14. skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. 1.2 1 7.2 cfs Geographic Information: (Enter data in the blue cells): Site Type: Flours Developed For: Q Site is Urban 0 Site is Non -Urban [Q Street Inlets 0 Area Inlets in a Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Fbw = Channel Flow = Slope (fttft) Length (ft) Acres A, B, C. or D Ramtalt Information: Intensity I (lnctvtT) = L., ' ! (C2 + l ,) ^ L„ Design Storm Retum Period, Tr = Return Period One -Hour Precipitation, Pr = Cr= Cz= Ca= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cy = Bypass (Carry -Over) Flow from upstream Subcatchments, Qn = Total Design Peak Flow, Q Minor Storm Major Storm 0.1 5.9 1.2 13.1 years inches cfs cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin E6 Gutter Geometry (Enter data in the blue cetlsi Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) TsACK = 26.9 ft SeACK = 0.020 Mt neACK = 0.020 Height of Curb at Gutter Flow Line He = 4.68 inches Distance from Curb Face to Street Crown TcaovN = 14.8 ft Gutter Width W = 1.17 ft Street Transverse Slope Sx = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw = 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So = 0.021 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) nsTPEET = Max. Allowable Spread for Minor & Major Storm T„ = Max. Allowable Depth at Gutter Flowline for Minor & Major Storm dukx _ Allow Flow Depth at Street Crown (leave blank for no) ❑ 0.016 Minor Storm Major Storm 14.8 14.8 4.7 11.2 MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion 0„0 = Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Minor Storm Major Storm 10.3 I 123.3 ft inches check = yes cfs Project = Inlet ID = 1 INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area E - Basin E6 �Lo (C)- Desinn Information (Input) ype of Inlet Local Depression (additional to continuous gutter depression 'a' from Number of Urit Inlets (Grate or Curb Opening) Water Depth at Flowtine (outside of local depression) Grate Information Length of a Unit Grate Width of a Unit Grate Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grata (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curti Opening Information Length of a Unit Cub Opening : Heigh6 of Vertical Curb Opening in Inches Height of Cub Orifice Throat in Inches lvgle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Cub Operirg (typical value 0.10) Cub Opening Weir Coefficient (typical value 2.3-3.6) Cut Opening Orifice Coefficient (typical vaUe 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet capacity's GOOD for Minor and Major Storms (.Q PEAK) Inlet Type = No = Ponding Depth = La (G) Wa= Arm G(G)= C,, )G) = Co (G) _ Lo (C) _ H„m Hemr = Theta Wc= C1(C)= (C) Co (C) Q. = 0 PEAK nEounnn = MINOR MAJOR CDOT Type R Curb Opening 3.00 3 00 2 2.6 6.4 MINOR MAJOR NIA NIA NIA NIA NIA NIA NIA N/A NIA N'A NIA NIA MINOR MAJOR 5.00 5 00 4.68 4 68 4.68 4.68 _ 63.40 63 40 1.17 1 17 0.10 0.10 3.60 3 60 0.67 0 67 MINOR MAJOR 1.2 13.2 1.2 13.1 riches riches Override Depths eet eet feet inches inches degrees feet cfs cis Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area E - Basin E7 OVERLAND FLOW SIDE STREET L' OVERLAND FLOW GUTTER FLOW) GUTTER PLUS CARRYOVER FLOW ` ROADWAY CENTERLINE ! Show Details Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 1r2 of street OR grass -lined channel): 'QNnown ' ff you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. fieograph1c Information: (Enter data in the blue cells) Ste Type: I O She is Urban O Ste is Non -Urban Flows Doeloped For: r0 Street Inlets O Area Inlets Ina Median 2.0 Subcetchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = F 13.5 Slope (ft/ft) Length (11) cfs Acres A, B, C, or D Rainfall Information: Intensity I prE7vlr) = l., - Yt 1 (l.z I, ) .' La Design Storrn Return Period, T, = Return Period One -Hour Precipitation, Pt = C1= Ca= Ca= User -Defined Storm Runoff Coefficient (leave Ns blank to accept a calculated value), C = User -Defined 5-yr. Rtroff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Oa = Minor Soorm Motor Storm 0.1 17.8 years inches cfs Total Design Peak Flow, Q v 2.1 31.3 cfs Worksheet Protected FILL IN THIS SECTION OR.. FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin E7 Gutter Geometry (Enter data in the blue cells Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 26.9 ft 0.020 napo( = 0.020 Height of Curb at Gutter Flow Line How = Distance from Curb Face to Street Crown TCROVN Gutter Width W = Street Transverse Slope Sx = Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 8/11) Sw = Street Longitudinal Slope - Enter 0 for sump condition So = Manning's Roughness for Street Section (typically between 0.012 and 0.020) nsTREET= Max. Allowable Spread for Miner & Major Storm T = Max. Allowable Depth at Gutter Flowline for Minor 8 Major Storm d. = Allow Flow Depth at Street Crown (leave blank for no) ❑ 4.68 14.8 1.17 0.020 0.083 0.021 0.016 ft/ft inches ft ft ft/ft ftlft ft/fl Minor Storm Major Storm 14.8 14.8 4.7 11.2 0 ft inches check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,r, = 10.3 L 123.3 Ids Minor storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' Project = Inlet ID = 1 INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area E - Basin E7 t--Le (CIS Destan Information (Inoutl Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Atow') Number of Urit Inlets (Grate or Curb Opening) Water Depth at Fbwine (outside of local depression) Grate Information Length of a Unfit Grate Width of a Unit Grate Area Opening Ratio for a Grate (typical vakes 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0,80) Curb Opening Information Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor fora Single Curb Opening (typical value 0.10) Curb Opening Wen Coefficient (typical vats 2.3-3.6) Cub Opening Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) inlet Capacity IS GOOD for Minor and Major Storms (00 PEAK) Inlet Type = ate= No = Pondirg Depth = Lo(G)= We= C, (G) _ C (G) = C. (G) Lo fC) _ He = Hn.ar = Theta = Wr= (C)= Ce (C) = Co(C)= Q. = Oc eeowe:D = MINOR MAJOR COOT Type R Curb Oeerng 3,00 300 4 4 2.7 7.6 MINOR MAJOR NIA NIA NIA N'A NIA NIA NIA NIA NIA NIA NIA NIA MINOR MAJOR 5.00 5 00 4.68 4 68 4.68 4 68 63.40 63 40 1.17 1 '.7 0.10 0.10 3,60 3,60 0.67 0.67 MINOR MAJOR 2.2 31.4 2.1 31.3 nches nches Oeerrlde Depths feet eel feet inches aches degrees feet cfs ds 1 1 1 1 1 CONSULTING ENGtNEEF s JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Job Name: Kechter Farms Job Number: 1844c Date: 1/16/14 By: ANC FLOW CALCULATIONS - GRATE INLET SUMP CONDITION (Reference: Urban Drainage and Flood Control District Drainage Criteria Manual, 2001, V.1, Section 3.3.6) (Note: Spreadsheet assumes orifice condition for fully developed flow.) INLET TYPE: Type C Inlet - Standard BASIN: E8 Orifice Equation: Q = Cd*Ao*(2gH)^0.5 Adjust Ao (open area) due to clogging as follows: Effective Area Opening Ae = (1-C) Ao, where: C=K*Co/N N = Number of Inlets Co = Single Inlet Clogging Factor: Co(grate) = Number of inlets: 0.5 (50% clogging) N= 1 Inlet Dimensions and Effective Open Area: Grate Opening: Ao(g) = 5.75 ft^2 Total Ao(g) = 5.75 ft^2 K = 1.00 C = K*Co/N = 0.50 Ae(g) = (1-C)Ao = 2.88 ft"2 Allowable depth: Constants: K = Clogging Coefficent value for multiple inlets N Grate 1 1 2 1.5 3 1.75 4 1.88 5 1.94 6 1.97 7 1.98 8 1.99 H = 5.79 in = 0.4825 ft g = 32.20 f/s"2 Cd = 0.67 Flow Calculations: Grate Flow: Q = Cd * Ae(g) * (2g*H)"0.5 Qg= 10.74 CFS Total Intercepted Flow with an allowable depth of Required Flow (Q 2 ) _ Required Flow (Q 100 ) _ 1 inlet(s) and 6 inches is 0.84 10.73 10.74 cfs cfs Bypass = 0.0 cfs cfs Bypass = 0.0 cfs 1 1844c - Rational Calculations Area E.xlsx E8 - Grate-Sump(UDFCD) Page 1 of 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area E - Basin E9 OVERLAND FLOW SIDE S1REET GUTTER FLOW I OVERLAND I { FLOW Y j GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY if already determinedThrougF551 r met♦—wds: Minor Storm Major Storm (local peak flow for lrl of street OR graasained channel): *Qsnnwn= if you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. 0.8 5.1 cfs Worksffeet Protected FILL IN THIS SECTION Geographic Information: (Enter data in the blue cells): Ste Type: Flows Developed For: [0 Site is Urban 0 Site 0 Non -urban Q Street Inlets 0 Area Inlets in a Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Kaintafi Information: Intensity 1 (IncnIrtr) = Of ' Hl 1 ( C2 + I c )" Ca Design Storm Return Period, Tr = Return Period One -Hour Precipitation, P, = Ct= C2 = Ca = User -Defined Stonn Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Qe = Slope (flit) Length (ft) Minor Storm Major Storm 0.0 0.0 Acres A, B, C, or D years inches els Total Design Peak Flow, 0 a 0.8 5.1 cfs FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin E9 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) T� = SB. CK = n BACK = Height of Curb at Gutter Flow Line H=R8 = Distance from Curb Face to Street Crown TckowN = Gutter Width W = Street Transverse Slope Sx = Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 f1/8) Sw = Street Longitudinal Slope - Enter (liar sump condition So = Manning's Roughness for Street Section (typically between 0.012 and 0.020) nsTREET = Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T = d MAX_ 26.9 0.020 0.020 4.68 14.8 1.17 0.020 0.083 0.034 0.016 ft/ft inches ft ft 8/tt fl/fl ft/ft Minor Storm Major Storm 14.8 14.8 4.7 11.2 0 MINOR STORM Allowable Capacity is based on Spread Criterion _Minor Storm Major Storm 106.7 ,cfs MAJOR STORM Allowable Capacity is based on Depth Criterion Oak VI Minor storm max. allowable capacity G00D - greater than flow given on sheet'Q-Peak' Ma or storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' 13.1 ft inches check = yes Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area E - Basin E9 La Design tnfermation (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Allovi) Total Number of Units in the Het (Grate or Crab Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from Cl-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Urit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q a maalmum allowable from sheet 'Willow' Total Inlet Interception Capacity Total Inlet Carry -Over Flow (flow bypassing Inlet) Capture Percentage a QJQ, MINOR MAJOR COOT Type R Curb Opening Type = ate, = 3.0 3 0 inches No = tv = 5.00 5.00 ft W.= NIA NIA ft CrG = cc= MINOR MAJOR Q e 0.8 2.7 cfs Qn a 0.0 2.4 cfs C%a 101 53 % NIA 0.10 NIA 0.10 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c • Kechter Farms Area E - Basin E10 OVERLAND FLOW GUTTER FLOW—/ 1 SIDE SWEET OVERLAND FLOW GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design1Flow: ONLY it already determined through other methods: (local peak flow for 1rz of sneer OR grass -lined channel): `nrcnewn = Minor Storm Major Storm 1.9 I 14.5 • IT you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area Inlet. a(raogralik Information: (Enter data in the bkie ceos): See Type: Flows Developed For: ! Q Site k Urban `fE Q Sde s Non -Urban [0 Street Inlets 0 Area Inlets In a Median Subcatctvnent Area = Percent Imperviousness = NRCS Sail Type = Overlaid Flow Channel Flow = Slope Miff) Length (ft) cfs Acres A, B, C, or D ITS nc' _ - 2 Design Storm Retum Period, T, = Return Period One -Hour Precipitation, Pi = C,= Cr= Cr= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subeatehments, Qe no OM) ap orm 0.0 0.3 years inches cfs Total Design Peak Flow, 0 • 1.9 14.8 IS Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844e - Kechter Farms Area E - Basin E10 Gutter Geometry (Enter data in the blue cells1 Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) T _ SBACK _ nand( Hcum TCROW N = W= Sx SIN = So = nsTREET = T. = dIJAX_ 26.9 0.020 0.020 4.68 14.8 1.17 0.020 0.083 0.034 0.016 ft 8/8 inches ft ft ft/8 ft/ft ft/ft Minor Storm Major Storm 14.8 14.8 4.7 11.2 CI ft inches check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qm =I 13.1 I 106.7 Icfs Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow Riven on sheet'O-Peak' Project: Inlet ID: INLET ON A CONTINUOUS GRADE 1844c - Kechter Farms Area E • Basin E10 '-Lo Design Information (Input' Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Allow) Total Number of Units in the Inlet (Grate or Curb Oparng) Length of a Sirgte Unit Iriet (Grate or Curb Opening) Width of o Unit Grate (cannot be greater than W from 0-Allow) Clogging Factor for a Single Unit Grate (typical min, value = 0.5) Cbgging Factor for a Single Urit Crab Opening (typical min. value = 0.1) MINOR MAJOR Typo = CDOT Type R. Curb Opening aux.= 3.0 30 inches No= 2 2 Le = 5.00 5.00 ft Wo= N/A NIA ft C1G = NIA NIA C-C= 0.10 0.10 Street Kvdraulcs: OK - Q < maximum allowable from sheet'Q-Allow' MINOR MAJOR Total inlet Interception Capacity Q= 1.9 8.3 cfs Total Inlet Carry•Over Flow (flow bypassing inlet) Cie = 0.0 6.4 cfs Capture Percentage = WO. = C%= 100 56 % Project: Inlet ID: C DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area E - Basin Ell OVERLAND FLOW 1 j GUTTER FLOW—' SIDE STREET e—mos—`� -- GUTTER PLUS CARRYOVER FLOW l' OVERLAND FLOW ` ROADWAY CENTERLINE Show Details Design Flow: ONLY d aeeady determmedi} g other melFods: (local peaktbwfor 112 of street OR grass -Merl charnel(: •Chineen = Minor Storm Major Storm 1.0 6.1 If you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic Information: (Enter data India blue cells): Site Type: Fhxs Developed For: 0 Site Is Urban 0 Site s Non -Urban I CIStreet Inlet. Ill O Area Inlets Ina Median Subcatchment Area = Percent Imperviousness NRCS Soil Type = Overland Flow = Channel Flow = Sbpe (itllt) Length (ft) cfs Acres A, B, C, or D Rarntaa tntonnation: I? ertslly (1 -f I, ) Design Storm Retum Period. T, = Return Pedod One -Hour Precipitation. Pt = C1= Cu= C3= User -Defined Storm Rutoff Coefficient (leave this blank to accept a caladated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Cary -Over) Flow from upstream Subcatchments, Qe= Minor Storm (vlapr worm 0.0 2.4 years inches cfs Total Design Peak Flow, Gin 1.0 6.5 cfs Worksheet Protected FILL IN THIS SECTION OR. FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread} 1844c - Kechter Farms Area E - Basin Ell Gutter Geometry (Enter data in the blue calls) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Mow Flow Depth at Street Crown (leave blank for no) TBACK SBACK = n = 26.9 0.020 0.020 ft ft/ft Haim = 4.68 inches ToRom, = 14.8 ft W = 1.17 ft Sx = 0.020 f /ft Sw = 0.083 ft/ft So = 0.015 ft/ft 0STREET = Tvx= de _ 0.016 Minor Storm Major Storm 14.8 14.8 4.7 11.2 0 ra ft inches check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,r,,,.=1 8.7 I • 129.9 Icfs Minor storm max. allowable capacity GOOD - greater than flow given on sheet .0-Peak' Major storm max. allowable capacity. GOOD -greater than flow given on sheet'Q-Peak' 1 1 1 1 Project = Inlet ID= INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area E • Basin E11 .1-Lo (C)-,r Design Information (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a from'O-Allow) Number of Urit Inlets (Grate or Curb Oparirg) Water Depth at Flowfina (outside of local depression) Grate Information Length of a Unt Grate Width of a Unit Grate Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical vats 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3,60) Grate Orifice Coefficient (typical value 0.60 - 0 80) Curb Opening Information Length of a Unit Curb Openrg Height of Vertical Cub Opening in Inches Height of Curb Orifice Throat in Inches Angie of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2,3-3.6) Curb Opening Orifice Coefficient (typical value 0,60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (,0 PEAK) Inlet Type = saw = No = Pondirg Depth = La(G)= Wo= Anuo = G (G) = Cv (G)= Co (G) = La (C) = H = Theta = Wo= Cn (C) _ C. (C) = Co (C) Qa= Q PEN( REQURED = MINOR MAJOR COOT Type R Curb Opening 3.00 3 00 1 2.8 8.9 MINOR MAJOR NIA N!A N!A N!A N!A NIA NIA NIA NIA N.A NIA NIA MINOR MAJOR 5.00 500 4.68 4 66 4.68 4 66 63.40 63 40 1.17 1 17 0.10 0.10 3.60 3.60 0.67 0 67 MINOR 1.0 1.0 inches inches 12 Override Depths feet feet feet inches inches degrees feet MAJOR 6.5 cfs 8.5 cfs 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 11144c - Kechter Farms Area E • Basin E12 OVERLAND FLOW SIOE STREET GUTTER FLOW—" uua OVERLAND FLOW GUTTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Detalis Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 1122 of street OR grass -lined channel). *Qs own = • 6 you enter values in stow 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells)' Site Type: Floss Developed For: O Site is Urban 0 Site is Non -Urban r0 Street Inlets O Area Inlets Ina Median 1.4 1 9.3 Subcatchment Area = Percent Imperviousness = NRCS Soil Type= Overland Flow= Channel Flow= Slope (ft/ft) Length (ft) cfs Acres A. B, C, or D Kamtaa mtonnatton: Intensity 4 pnctVhr) = Cr - Pr 1(Cz * I ) " Cs Design Storm Return Period, Tr = RetUre Period One -Hour Precipitation, Pr= Cr= Ci= Cr= User -Defined Storm Runoff Coefficient (leave tNs blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Qe Minor Storm Major Storm 0.0 6.4 years inches cis Total Design Peak Flow, 0 w 1.4 15.7 cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin E12 Gutter Geometry (Enter data in the blue cells! Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TsAcx = 26.9 ft Sftcx = 0.020 ftlft nBAcK _ 0.020 Hcuie= 4.68 inches TcRown= 14.8 ft W = 1.17 ft Sx = 0.020 fiflt Sw = 0.083 8/8 So= 0.015 fVit nse = Tuwx = dux= 0.016 Minor Storm Major Storm 14.8 14.8 4,7 11.2 0 MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qar,,,. _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet'O•Peak' Major storm max. allowable capacity GOOD - g, eater than flow given on sheet 'CI -Peak' 8.7 129.9 ft inches check = yes cfs Protect = Inlet ID = 1 1 INLET IN A SUMP OR SAG LOCATION I 1844c - Kechter Farms Area E - Basin E12 .-Lo (C) -1 Design Information (Mout) /Type of Irdet Irdet Type = Local Depression (additional to continuous gutter depression 'a' from'O-Alovi) a'°"'= Number of Unit Inlets (Grate or Cub Opening) No = Water Depth at Flowtne (outside of local depression) Pording Depth = Grata Information Length of a Unit Grate La (G) = Width of a Unit Grate Wo = Area Opening Ratio fora Grate (typical values 0.15-0.90) Arno = Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Cr (G) = Grate Weir Coefficient (typical value 2.15. 3.60) C« (G) _ Grate Orifice Coefficient (typical value 0.60 - 0.80) Co (G) = Curb Opening Information Length of a Unit Curb Opening La (C) _ Height o1 Vertical Curb Opening in Inches H,,,,r = Height of Curb Orifice Throat in Inches H _ Jingle of Throat (see USDCM Figure ST-5) Theta = Side Width for Depression Pan (typicaly the gutter width of 2 feet) Wo = Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = Curb Opening Weir Coefficient (typical value 2.3-3,6) C, (C) = Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Co (C) = Total Inlet Interception Capacity (assumes clogged condition) ARNING: Inlet Capacity less than D Peak for MAJOR Storm Qe = Q PEW, aEQUaEQ= MINOR MAJOR CDOT Type R Curb Opening 3.00 3 00 2 2 2.7 7.3 MINOR MAJOR NIA NIA NIA NIA NIA N/A NIA NIA NIA NIA NIA NIA MINOR MAJOR 5.00 5 00 4,68 468 4,66 4 66 63,40 6340 1.17 1 17 0.10 0.10 3.60 3.60 0.67 067 MINOR MAJOR 1,4 15.6 1.4 15.7 inches inches 0 Override Depths feet feet feet inches inches degrees feet cfs cis Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844e - Kechter Farms Area E • Basin E13 OVERLAND FLOW - y SIDE STREET l OVERLAN D FLOW GUTTER FLOW—/ GUTTER PLUS CARRYOVER FiOW ROADWAY CENTERLINE Show Details Design Flow: ONLY if already determined through other methods: (local peak flow for tl2 of street OR grass -lined channel): *Qnnawn Minor Storm Major Storm 0.9 10.0 If you enter values in Row 14, skip the rest of this sheet and proceed to sheet 0-Allow or Area inlet. Geographic Information: (Enter data in the blue cels): Site Type: Flows Developed For: I 0 Sine's Urban 0 Site k Non -Urban rQ Street Infers 0 Area Inlets in a Median Subcatchment Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (ftfft) Length (ft) cfs Worksheet Protected ALL IN THIS SECTION FILL IN THE Acres SECTIONS BELOW. A. B, C, or D arnfall lntormatrun: Interstty 1 yrlcMv)= C: Htf(C:Z+Ia)^t%a Design Storm Return Period, Tr = Return Period One -Hour Precipitation, Pt = C1= Cz= Ca - User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Gle = Minor Storm Major Storm 0.0 0.0 years inches efs Total Design Peak Flow, Q o 0.9 10.0 cfs ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin E13 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ftRt) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) TEACK SeACK = naACK 26.9 0.020 0.020 8 Ham = 4.68 inches TcwovN = 14.8 ft W = 3.00 ft Sx = 0.020 ft/ft SW = 0.083 ftlft So = 0.000 ftlft nsTREur = T. = d= MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion %lbw _ Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet '0-Peak' 0.016 Minor Storm Major Storm 14.8 14.8 4.7 11.2 0 Minor Storm Major Storm SUMP SUMP ft inches check = yes cfs Project = Inlet ID = 1 1 INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area E • Basin E13 ,f----Lo (C)— , Design Information flnoutl Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-AIbvw) Number of Unit Inlets (Grate or Curb Opening) Water Depth at Fbwtine (outside of local depression) Grate Information Length of a Unit Grate Width of a Urut Grate Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor fora Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches (Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.6) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>0 PEAK) Inlet Type = No = Pondirg Depth = L (G)= Wo= Amo = C,(G)= Cw (G)= Co(G)= Lo (C) = H,t= H,= Theta = Wp= (C)= C. (C) = Co (C) = Qa = 0 PEN< REQUIRED MINOR MAJOR CDOT Type C Grate 0.00 0 00 2 2 4.4 10.7 MINOR MAJOR 2.92 2 92 2.92 2.92 0.70 0 70 0.50 0.50 2.41 24, 0,67 067 MINOR MAJOR N!A N/A ,N!A N/A N!A NIA NIA N/A NIA N!A NIA N/A N!A N1A N/A N/A MINO MAJOR 0.9 10.0 0.9 10.0 inches inches Override Depths feet feet feet inches inches degrees feet cfs cfs 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c - Kechter Farms Area E - Basin E14 I "M D l J I r STREETSIDE r I I OVERLANDFLOW ` CUTTER FLOW—/ GUTTER PLUS CARRYOVER FLOW —� J g 1 ROADWAY CENTERLINE Show Details s•n a•'iaea•y•eermr=•i•ugor-rme••s: (brat peak flow for 112 of street OR grass -lined charnel): •.ait=own = • If you enter values in Row 14, skip the rest of this sheet and proceed to sheet O•Allow or Area inlet. Minor Storm Major Storm 0.9 5.7 ' —a-ogre-Ohio Information: (Enter data in the blue cells): Ste Type: I 0 Ste is Urban 0 Ste is Non -Urban Flows Developed For: a Street Inlets O Area Inlets Ina Median Subcatclenent Area = Percent Imperviousness = NRCS Soil Type = Overland Flow = Channel Flow = Slope (ft/it) Length (ft) cfs Acres A, B, C, or D Ratnrall Information: r ensr lrthrll) = C, - Mt 1 (Cz + I ,) n C3 Design Storm Return Period, T, = Return Period One -Hour Precipitation, P, _ C,= C== Ca= User -Defined Storm RtnoH Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Rrrtoff Coefficient (leave this blank to accept a calculated value), Cr = Bypass (Carry -Over) Flow from upstream Subcatchments, Os Total Design Peak Flow, O Minortu'torm Mapr Sierra 0.0 0.0 0,9 5.7 years itches cla cfs Worksheet Protected FILL IN THIS SECTION FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread} 1844c - Kechter Farms Area E - Basin E14 Ta.ar T, rum W..j- T. V B. Tom„ Gutter Geometry (Enter data in the blue cells1 Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) T64CK = SBACK NAVA = Height of Curb at Gutter Flow Line HUM _ Distance from Curb Face to Street Crown Tc,O,,,N _ Gutter Width W = Street Transverse Slope S. = Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw = Street Longitudinal Slope - Enter 0 for sump condition Sc, = Manning's Roughness for Street Section (typically between 0.012 and 0.020) nser = Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) _ = 26.9 0.020 0.020 4.68 14.8 5.17 0.020 0.083 0.016 0.016 ft ft/it inches ft ft ft/8 11/ft 8/ft Minor Storm Major Storm 14.8 14.8 4.7 51.2 0 ft inches check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,w,..=l 9.0 I 133.8 Ids Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Project = Inlet ID= 1 1 1 INLET IN A SUMP OR SAG LOCATION I 1844c - Kechter Farms Area E - Basin E14 .1Lo (C)-4, Deskln Information (Input) 'Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'O-Abut) 1Nurnber of Unit Inlets (Grate or Curb Opening) Water Depth at Fbwtine (outside of bcal depression) Grate Information Length of a Urit Grate Width of a Unit Grate Area Opening Ratio for a Grate (typical values 0.15-0.90) Cbgging Factor for a Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Cbgging Factor fora Single Crab Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.6) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) nlet Capacity IS GOOD for Minor and Major Storms (Kt PEAK) Inlet Type = ate= No = Pondirg Depth = (G)= Wo= Ant, G(G)= Cw (G)= C (G1= Lo(C)= Hr= _ Theta = Wp= (G)= (C)= Co(C)= Qa = Q PEAK RE0UREO = MINOR MAJOR CDOT Type R Curb Openirg 3.00 300 1 1 2.7 5.9 MINOR MAJOR N!A N/A NIA N/A NIA N'A N!A N/A NIA NIA NIA NIA MINOR MAJOR 5.00 5 00 4.68 4 68 4.68 466 63.40 63 40 1.17 r 17 0.10 0.10 3.60 3 60 0,67 667 inches inches 0 Override Depths feet feel feet inches inches degrees feet 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844.c - Kechter Farms Area E • Basin E15 I. I OVERLAND II 1 I SIDE FLOSN 1 STREET GUTTER FLOW— 4- an. GUTTER PLUS CARRYOVER FLOW f Il OVERLAND { FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY rf already determined through other methods: (bard peak flow for 12 of street OR grass -lined channel): `known = Minor Storm Major Storm 3.1 19.6 I ' 0 you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographk: In%mratfon: (t er a m ce Ste Type: Q Site is Urban 0 Site is Non -Urban Flows Developed For: [0 Street Inlets Q Area Inlets in a Median Subcatclrnent Area = Percent Imperviousness = NRCS Soil Type = Overland Flow= Channel Flow= Slope Mt) Length (ft) Is Acres A, B, C, or D amtall lnfomlatlon: Intensity 1 (mctwrr = L., - Pr I (Cp + Design Storm Return Period, Tr = Realm Period One -Hour Precipitation, Pr = Ct= C2= C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined Syr. Runoff Coefficient (leave this blank to accept a calculated value), Ca = Bypass (Carry -Over( Flow from upstream Subcatchments, De e Total Design Peak Ftow, fa = Minor Storm Major Storm 0.0 0.0 3.1 19.0 years inches cfs cfs Worksheet Protected FILL IN THIS SECTION OR... FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms Area E - Basin E15 Gutter Geometry (Enter data in the blue cells). Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) = SBACK = nBACK= Hcum To = w= Sx = Sw = So= nSTREET = Twx= d = MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Minor storm max. allowable capacity GOOD -greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' 26.9 0.020 0.020 4.68 14.8 1.17 0.020 0.083 0.016 0.016 ft ft/ft inches ft ft f fft ft/ft fUfl Minor Stomi Major Storm 14.8 14.8 4.7 11.2 0 Minor Storm Major Storm 9.0 1 133.8 ft inches check = yes cfs Project a Inlet ID = 1 1844c - Kechter Farms Area E • Basin E15 --Lo (C) K Design Information (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from'0•Allov') Number of Unit lrrets (Grate or Curb Opening) 'Hater Depth at Fbwine (outside of local depression) Grate Information length of a Urit Grate IWidth of a Unit Grate (Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50.0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening Height of Vertical Curb Opening in 'Inches Height of Curb Orifice Throat in inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typicaly the gutter width of 2 feet) Icc Clogging Factor for a Single Curb 0pering (typical valve 0.10) orb Opening Weir Coefficient (typical vats 2.3-3.6) nrb Opening Orifice Coefficient (typical value 0.60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms 1,0 PEAK) Inlet Type = kcal= No = Pording Depth = Lo (G) = we= Aram = G(G)= C (G)= Ce(G)= L0(C)= H� = H� = Theta = can= G(C)= (C)= Ce(C)= Q. Oscar REOURED = MINOR MAJOR CDOT Type R Curb Opening 3,00 3 00 2 2 3.5 11.1 MINOR MAJOR NIA NIA NIA NIA NIA NIA NIA NIA NfA NIA NIA NIA MINOR MAJOR 5.00 5.00 4.68 408 4.68 4 68 63,40 6340 1.17 ' 17 0.10 0.10 3.60 3 60 0.67 0 67 MINOR MAJOR 3.1 19.7 3.1 19.6 irl Ms inches ta aerride Depths feet feet feet nches inches degrees feet cfs cfs 1 JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Job Name: Kechter Farms Job Number: 1844c Date: 1/16/14 By: ANC FLOW CALCULATIONS - GRATE INLET SUMP CONDITION (Reference: Urban Drainage and Flood Control District Drainage Criteria Manual, 2001, V.1, Section 3.3.6) (Note: Spreadsheet assumes orifice condition for fully developed flow.) INLET TYPE: Type C Inlet - Standard BASIN: E16 Orifice Equation: Q = Cd*Ao*(2gH)^0.5 Adjust Ao (open area) due to clogging as follows: Effective Area Opening Ae = (1-C) Ao, where: C=K*Co/N N = Number of Inlets Co = Single Inlet Clogging Factor: Co(grate) = Number of inlets: 0.5 (50% clogging) N= 2 K = Clogging Coefficent value for multiple inlets N Grate T 1 2 1.5 3 1.75 4 1.88 5 1.94 6 1.97 7 1.98 8 1.99 Inlet Dimensions and Effective Open Area: Grate Opening: Ao(g) = 5.75 ft^2 Total Ao(g) = 11.50 ft^2 K = 1.50 C = K*CofN = 0.38 Ae(g) = (1-C)Ao = 7.19 ftA2 Allowable depth: H = 3.73 in = 0.3108333 ft Constants: g = 32.20 fUs^2 Cd = 0.67 Flow Calculations: Grate Flow: Q = Cd * Ae(g) * (2g*H)^0.5 Qg= 21.55 CFS Total intercepted Flow with an allowable depth of Required Flow (Q 2 ) = Required Flow (Q 100 ) _ 2 inlet(s) and 4 inches is 2.06 21.54 21.55 cfs cfs Bypass = 0.0 cfs cfs Bypass = 0.0 cfs 1844c - Rational Calculations Area E.xlsx E16 - Grate-Sump(UDFCD) Page 1 of 1 Project: Inlet ID: DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD 1844c • Kechter Farms Area E • Basin E17 OVERLAND FLOW SIDE STREET i OVERLAND FLOW GUTTER FLOWS DOTER PLUS CARRYOVER FLOW ROADWAY CENTERLINE Show Details Design Flow: ONLY if already deter fired through other methods: (local peak tlowfor 12 of street OR grass -Merl channel): "Oane,.n _ Minor Storm Major Sloan 2.1 12.5 8 you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area Inlet. Geographic information: (Enter daf to the blue ce0s)_ Ste Type: Flows Dnsthped For: [0 Site a Urban 0 Site is Non -Urban rQ Street Inlets 0 Are Inlets In a Median Subcatclment Area = Percent Imperviousness = NRCS Soil Type = Overhand Flow = Channel Flow= Slope (Mt) Length (ft) cis Acres A,B,C,orD Rainfall Information: Intensity I (nnchlta)= Design Storm Return Period, T, _ Return Period One -Hour Precipitation, Pr = C,= C2= Cn= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C, = Bypass (Carry-over) Flow from upstream Subcatchments, Qe = Minor Storm Major Storm 0.0 0.0 years inches els Total Design Peak Flow, Q = 2.1 12.5 cis Worksheet Protected FILL IN THIS SECTION OR_.. FILL IN THE SECTIONS BELOW. Project: Inlet ID: ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) 1844c - Kechter Farms. Area E - Basin E17 Gutter Geometry (Enter data in the blue cetls1 Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) TRACK 26.9 ft SBACK — 0.020 MI n BACK = Height of Curb at Gutter Flow Line HC„M = 4.68 inches Distance from Curb Face to Street Crown TcRowk = 14.8 ft Gutter Width W = 1.17 ft Street Transverse Slope Sx = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw = 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So = 0.008 ftlft Manning's Roughness for Street Section (typically between 0.012 and 0.020) nSTREET = 0.020 Max. Allowable Spread for Minor & Major Storm Tnwx = Max. Allowable Depth at Gutter Flowline for Minor & Major Storm dwx = Allow Flow Depth at Street Crown (leave blank for no) 0 0.016 Minor Storm Major Storm 14.8 14.8 4.7 11.2 121 ft inches check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,r, =I 6.3 I 94.9 Ids Minor storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' Project = Inlet ID = i 1 INLET IN A SUMP OR SAG LOCATION 1844c - Kechter Farms Area E - Basin E17 Lo (C) Design Information (Input) Type of inlet Local Depression (additional to continuous gutter depression 'a' from't3-Albv/) Number of Urn Inlets (Grate or Curb Opening) Water Depth at Flowlne (outside of local depression) Grate Information )Length of a Unit Grate Width of a Urit Grate Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical vale 0.50 - 0.70) Grate Weir Coefficient (typical valve 2.15.3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Open&tg Information Length of a Urit Curb Opening Height of Vertical Curb tapering in Inches Height of Cub Odfice Throat in Inches (Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feat) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.6) Curb Opening Orifice Coefficient (typical value 0,60 - 0.70) Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms 0.0 PEAK) Inlet Type = am = No = Pordirg Depth = Lv (G) = Wo = Aram = Cr (G) = C= (G) = Co(G)= Lo (C) = kkvam = Theta = Wo= G (C) = Cw(C)= Co (C) MINOR MAJOR CDOT Type R Curb Opening 3.00 3 0P 2 2 3.1 6.2 MINOR MAJOR NIA MIA NIA NFA N/A NIA NIA NIA NIA NIA NIA NIA MINOR MAJOR 5.00 5.00 4.68 4 68 4.68 4 68 63.40 63 40 1.17 1 17 0.10 0.10 3.60 3.60 0.67 0 67 MINOR Qa 2.2 Ovcrx REQUIRED = 2.1 nines nches ra Override Depths eat eat feet riches inches degrees feet MAJOR 12.5 cfs 12.5 cfs i Trapezoidal Report i 1 1 ga 11 H 1 t 333333 .0 `u F..`u ...V 777777 CO 0 to 0) N Cr) Froude Number el n el rI 0 0 0 0 0 0 0 0 F 0 a C - 0) W N a 0 W. O 0 0 0 .-0 O3F CO O .- CO O N V) 0 0 0 0 0 0 Z. V N 0 0 N M.Oc 0 coo N N N N l7 4 3°a7 O e 0 C7) O 0 fJ O W CO CO CV CO ,- r 0j N r 3 d. U 0 N an N 0 N LCl c0 to N In O. 0 0 0 0 0 .0 a9 h ch n N 0 CO M 1� CO c0 O 01 N Cc:T 0 c 04 c- o z d a 0 Vl cal N .- 0) r 40 O r Q r. a v lri CV c d� .2 ul - n m )n v ci N a 0 Discharge (cfs) co 4 O 4. uu? � ri m to v m 0 E_L 0 D 2 m.- o o 0 0 0 0 N N N N 4 4 �� ZW E> 'CE 6(7)2 o o 0 0 0 0 0 0 0 0 0 0 O a N O V V yy C V ai JN iA ( Y 0 0 0 0 0 0 4 4 N O 4 V L d 0 lc-.- 0 0 0 o O'- 0 0 0 C a.,.-. W Oo U(` 0 0 0 0 0 0 0 0 0 0 0 0 000 0 N 0 0 0 N O O 0 N Mannings Coefficient 0 0 0 0 0 0 0) 0) 0) f') 0) P) 0 0 0 0 0 0 C 0 O o o 0 0 a m J C7 - East Swale C7 - North and East Combined Swale C7 - North Swale C7 - West Swale E18 - Swale E21 - Swale APPENDIX B.6 HYDRAFLOW CALCULATIONS Kechter Farm Development Final Drainage Report Kechter Farms -Minor Storm HGL 36 74 t58 68"t707• 7066 t84 65 63 4 39 38 16 3 37 35 11 2 20 27 6 6 19 9 10 8 6 7 73 72 8 62 61 60 59 80 15 97 56 14 121 53 32 25 v 30 31 50 52 51 Outfall Outfall 46 96 90 121 i32 98 91 13 99 134 10 92 101 94 104 93 115 114 129 113 106 107 10810� 0 ?i6 Project File: 1844c-MinorStormHGL.stm Numberaf Ilnes: 134 Date: 11114;2013 �-:xr� S: ai v10 Or.. 1 1 ro 15, NOTES: Intensity = 31.51 ? (Inlettinic + 10.D0)"0.79 — Rcturn period = 100Yrs. ; "Critical depth Q m �a 4 a 0 a 0 4 0 0 . 4 O 0 0 O 0 0 0 0 C.0 a 0 4 0 0 a o 0 0 0 0 0 0 • E. t5j O 0) r 0 45 r 6 45 r 0 CD 4 CO CAr r4ir r V N 4i CD 7 CO NI- 0 CO A a 3 CO i co 0) m CO a) N cYi N O a cd N N r- r- N (D C'7 tD In N c0 N o O eli N N. - N r- N. r•f- ' a N 01 CO M CO h- V OD M U] to N CO - (D u) r-- Lli r M m O N N on N r m r-- N r 7 eh r4 d r+ N N A - P- DA N a 0 N r 4 N ,- 6 11 0 N g } 4 W r+ Ni r ey) N 0) m N 0) eh N 0) N O N 7 o N ) LP O N U) o N r- r N '-1 N 00 N N 0) 7 M m m 0) O N (- 0 r {D M 0 r m D j r+ 7 Cry r+ et; (': I( 0 0 OD 0 a CO to (� 7 7 a0 r+ r- (O (D Number of liner: 134 t C) m J .., rh ID 4 N CO co N- (D N (7 r 6 NM At 1h Ph 0 CO 00 O O CO 0 Cd m O CO N th N 7 N r--.: 00 AD N ' co 00 0 O 0 to(U 00 O O o N 0 O Q 6 0) C. 0 o (p 0) O 0 a O 0 0) COO r+ DO N O O 0 M O 6 4 0 n A M (0 7 7 CO 0) N 0) 0 O o qD to CO 0 (0 r� r r- t N N r to 0 r+ � 0 a O Id u. C 7g799990900.00.00v).'T'T.N‘.9MML0 4.1, N N 01 N US O) N to 0) N (A 0) 0 A m O ( CO 6 N m 0 U) m O N. m 0 O (D 0 1 (D O 00 O O 7 CD 6 m (+1 O 00 r 0 0') r O d ry r N 0 h- R h O h- r+ h 0 N I i O 7 (0 (+7 4 Ci) 0) m m C a J m (p N Co D7 O 01 Di O U) O CO r r- 0 M r- " N VV 4 r r- 0) 6 7 00 a 0 00 O O rr O O m N I- Al (v 1!) N N 0) CO M O 7 N 0) M 0 (0 o 0 (0 O U) rl r ( 6 yy 4 6) C N J W _ C III, (D CO S. COCD O U) X CD M (D 0) X CO M O 0) X CO 00 00 7 00 7 00 V 00 7 00 7 N V N V N b N V O M 0(1 r Ca r t!) r 1!) r N .o N 7 to r 0 M 01} Keclhier Farms -Major Storm III G L - O £ 0 O O O 0 6 CA O 6 CA O 6 O O 0 O O CA0 O O O Q CA 0 0 0 0 6 0 0 O 0 O O 0 a O O 0 O CA 0 6 CA 0 o 0 0 O 0 0 O 0 O O 0 0 O CA 0 O CA PC! 0 0 0 H .... O O 6 0 a 6 0 a 6 0 O O 0 0 O O 0 O O 0 6 O O O O O O 0 O O 0 0 6 0 0 O 0 0 O 0 0 6 CI0 0 6 0 O 0 0 O O 0 o 0 0 O 0 0 O 0 0 o 0 0 6 0 0 O �( 1 M07 (? O 0 O O CI 6 O 6 O 0 O O CA O 4 O 0 CIO O 0 6 CA O 6 a 6 4 a 6 4 O 6 O 0 6 CA O 6 CA O 6 O O 4 O O 4 a O 0 4 6 C. 6 O CA O O O O O O 6 CTOi 1 U) In of u, 6 si 6 M 6 r of a) o0 1-- 06 y 6 r 6 r.-cr) A A r A CO v Q) r COCD r 6 a oa O ob 1,- 1 ti v a M (0 N a G 0 ' N O U) 0) N O U S 0) N O N 0) N O (0 m O 0D U) m O (0 U) m 0 00 U) m O W U) m O V) R M O 7 (D O O 'Y (0 (D O N W O O 7 O 0 0 0) (') O M 00 r a M M r o (b7 7 (v r ;V 0 h- R r~ 0 h- r+4i 1,- 4 r- CO 4 0o M C. 0) m -1 .- L C C. 0 o O a 6 4 a 6 4 a 6 0 a 6 CA a 6 0 O 6 4 0 6 AD a 6 CI a 6 CI0 a 6 O 0 0 4 6 C] 0 0 0 0 6 0 0 6 0 0 6 0 0 6 CA0 0 0 0 6 0 0 O 0 0 6 0 0 6 C K EL) O 0 6 O 0 O O a 6 O O 6 O a 6 O 0 6 O 0 O O a 6 4 a 6 4 a 6 O a 6 0 a 6 0 0 6 0 a 6 0 O 6 0 O 6 O a 6 0 a 6 0 0 6 O 0 6 O 0 6 0 0 O 0 0 o V W E _ H e •E r 0') r a 6 o 0 r r a r O 6 a 0 0 0 0 0 0 0 a 0 a 0 a 6 ( ct m ' (D r CO m r i 0 ID a a a 0 ) a r M (0 r 4 0 = 0 cot WC 0 O 0 0 O a 0 Q 0 0 4 0 0 O a 6 O a 0 0 0 6 O 0 6 O 0 0 4 a a 4 0 o 0 a 6 0 0 6 CA O a 0 a 6 04 a O a o 0 4 0 0 0 0 CA 6 6 4 0 O O 0 0 0 0 C m L E G 4 [l 46,6666666666666666666666o O O 0 0 0 0 a 0 0 O O O O O 0 0 0 0 O 0 0 0 0 a. O 0 0 a 4 0 4 a O Q 0 a 0 O 0 4 O a O O 0 O 4. z a J r N CO 7 IC: OD N. co 0) La r N (r) CIIn .1 r- CO 0) a N a N M C O J O W --- ;1 N' °r m 1::?- 1 I- 1 A O W O W M O W N 6 W r 00 W O m CO O m ti O m (G rD m r x 0 '- ❑) m CO m N rr1. co y CO 6 m N 6 m CO m rR `S 'A (D W 0 . Jz r N M 7 C. CD rk O 0) U r N M a MW ( W CAN - NN N S101r SOYA)* 1 ieg, 1 NOTES: Intensity = 81.51 ± Onlat time + 10.00i " 0.79 — Return period = 100 Yrs. ; " Critical depth Q m� j� - • C.C.0 a o a 0 a o 0 4 v 0 a o 0 4 0 0 0 0 0 0 0' 0 0 0 4 0 O 4 0 o 4 4 ci O 6 r 0 C g ' j 4 0) 0 o V (D ry V m - 00 O 60 0 u7 4 N CO r- N N a (0 N r C N o .3 0 (D 00 (D O 4 4 CO 0 r7 - �4 {rL V " . in 01. r U 4 r 4 ) 4 r ch rf7 V 00 0) V r, 00 N r 01 00 4) en N in O NI:CP V V 0 CO 47 - C) O V' r- 00 CO N a V M CO C (0 CO V 4 4 07 N r 0 r ry La r- N ',I.o i, 0 N V m r, 4 (D u7 V 0) o N. 0 N? > Q W x - V !• Ch r h V r n N 6 N N ( 6 [- r 6 M r 4) 00 N y) (0 V 0) 6 00-) 0) C. 0) (0 0) 7 (D u6S 0) (D V L 1 r' - r,- .3 nr o COa0 CO00 r 00 V r+ rD 00 Number of linen: 134 m C J - lti lc'. 00 N 0) O (b V 0) 00 O N r`• rs 0 V CO 0 t>0 C~ M O 0) 1� 00 N O Ti-4 Cr) 00 M 4 N 47 u7 00 N N 0 U7 O N 6 0 V U) .3 oP (0 CO C (0 6 m N - M N (7i 00 r V O V 0 N 00 O 00 4i 0 N Cc) r- a) N al N N Iti (h r- r+ 4 0 O a 4 6 0) e71 (A (D 4 M1 c+1 47 O (7) rA (D V CO 0) (0 di N 0 rd. (y C 4 0 0) 4 01 4 C7) 0 CD V CO(D 0 M (D m COM 0 �! 4 O V 4 O e- V (7 (V 0 N O (y ¢i N O N 01 N 0 O 00 r a 0) C7) 4 N (0 r- N N 0) c0 N r N r- N O V (p r CD CO 00 0 4 a CO m m a J ... N (a r r 00 r 0 01 r 01 . 6 4 u) O 0') 0 V '4 00 O 4 00 O 0 V 6 0) 6 r 0? O C') ry N r0 N N CO 00 (Ni a0 r C')0 0 O rl) O 1ri 6 P. ) V r- r/) O 01 Q1 . r 0 N 6e N O G N J Fn C w 00 00 00 Y) (7) u) u) u) u) (D C") X m (D M d N d N V N V N 00 r 0) r 00 r 0) r 00 r Y) u) r r 0 � x 0 V KechtorFanns-MaJor Storm HGL — G W 0 a O 0 0 0 0 4 6 a 0 0 a 0 O 0 0 6 4 0 O a 0 O a 4 0 4 0 0 4 0 O 4 0 0 4 0) C. 4 0 0 0 O 0 4 4 0 44 a 0 4 0 4 4 0 0 4 0 0 0 4 0 0 a 0 0 0 E. 4 u r° 4 0 O 0 4 0 0 0 0 4 0 0 0 a 0 0 a 0 0 0 0 0 a 0 4 a 0 0 0 0 0 0 0 0 4 6 0 4 6 0 4 6 0 4 a 0 4 o 0 0 0 0 4 0 4 4 0 0 a 6 0 0 0!0 a a 0 0 0 4 1- (171. %K 0 0 6 0 0 O 0 0 6 0 0 0 0 a O 0 0 6 0 0 6 0 a 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 6 0 4 O 00 4 0 a 0 0 a O 0 0 6 00 0 6 a 0 0 0 a a 0 0 0 4 0 0 H •E 0 V CO M (0 M .4 M r Ni r 0 a) V f- V Cn 4 *4 r-: M 1- rti 6 ♦r 6 O 6 C) V) (r) 4 0) N r) N 'i N (0 N N. CO N N N C o .11 0 dr 0) 0 0) 0) 0 0) CT) O v. (0 Cy V CO 0 m (D 0 m CD 0 m CD 04 rr) CO 00 r V O 0D r V 0 Cy a, N 0 Cwr .0 N 0 N .00 N CI0 (0 r 0 0) 0 N. CO r- N N (A (o N r or r N V 0 r 0 M ( CD m 0 0 CO .$ ,_ C E 0 0 a O 0 0 O 4 4 O 0 0 O 0 4 O 0 4 O 0 0 O 0 4 O 0 4 O 0 4 O 0 4 O 0 0 6 0 4 6 0 0 O 4 0 O 0 4 6 0 4 O 0 9 6 0 0 O 0 9 O 0 0 9 9 O O 0 4 O IL p K G (.) 0 0 O 0 0 6 0 a O 0 0 6 0 4 6 4 a O 4 0 6 0 o 0 0 a O 4 a O 4 a O 0 0 O 0 0 O 0 9 O 0 4 6 0 4 6 0 a 6 4 4 6 0 4 6 0 a 6 0 4 a 0 6 6 0 a O v ar G Fr C - 4 6 0 6 (0 m r V (ri r m r O 0 4 0 04) 4 r 4 r 4 0 � rh r 0 0 4 O 0,r in r 41 ) V r kr) 4 r r� m (h N r V N r (0 N r .V (0 NN r r r1 N t= C7 C V 0 0 0 0 4 6 0 a 0 0 a 6 0 4 0 4 4 0 4 4 0 4 a 0 0 o 0 4 a o 0 a O 0 a 6 0 a 0 0 4 0 4 4 0 0 4 0 0 0 0 0 0 6 4 4 6 0 a 0 4 0 a 4 6 0 0 4 0 tc�Y n u 16 4 0 a 0 O a al0 O 4 0 O 0 0 6 00 0 0 0 C.0 0 O 0 6 a 4 6 a 4 6 4 4 O C.0 4 O a O 0 a O 0 0 6 0 0 6 0 4 O 4 a O 4 a O 4 4 4 4 O O 4 4 O E O 0. Z pJ 0'7 N - N u) N (D N N N N 0) N O CO CON 0 CO CO V CO 47 M (D CO r. CO CO COCO 0) 0 V v CO r, M CD 0) CO CO 0 0 e p 1 1. CO LiJ 31 CD LLI s 1 N 1 V) 111 r` 6 (1! CO 6 W 4) W V 1 r 6 M (+) 4) In (,r () M r 4) m r M to Cv N x — N 41 m 0 - 0 m CO m IN (_D T " v J. m e D J z '0 N (r) N (0 N r- N 00 N 0) N 0 (n r (n N co M c'7 V co 0 Co (0 co rw co CD co 0) C*) (] v V N V MI' v ICj v v (Q V 51o1r Serve' i 1 a NOTES: Intensity = 81.51 ? (Inlet tirnc + 10.00) " 0.79 — Rcturn period = 100 Yrs. ; " Critical .d pth 0 cr. al_ a 6 a 0 o 0 0 as t 0 Q1 o M co O] 0 M co v- 4)CO IE - MS V t CD I: 4 CO h O N de. I` NI-4- 000 IQ 4 h r N N r- 4 N V 0 N CO CO M N CO O M N M N O N M 4i CS r- Oi CO M co CTi CO N Q) ro 6 co 0 SO N O ai CD N O 6 i- 10 co 0 CU O r- h 10 V oo ID 0 M O I1 N1 10 W N m ICsI CD O LO > a W . 04 0J CD 4 q 4) 4 0 Q) - 6 w N V h N V +r--V i N M r N M r- L4 r N r:, O h so Ln 0 N O N so 6 N co O N so 4 N so O O 0) 0 try CA 7 co 0) 1 V; 4) O 1 co to of 10 45 CS to Number o1 lines: 134 N y C J O 4 10 O O rri N V• ID N N Mh 1li r N 4 •tr 10 V N (0 CD M h O 6 0 I N Ili co CO IN M C0 N ¢i CD CD LM 6 r 6 7 6 O 0 O 4 N 4 6 10 rr M O Ni r N r4i 10 r CO 1N CV h O OS o N"1 h N M Q10) 6 0r Sp ONl sd1 r M 10 O N M NN N N D a W a ID Q1 O 0 0 m 4 0 ID Q) 4 M 0 ID O) N O ID 6) N 0 ID 4) N 0 In 6' N 0 ID a) N O Ib 4) N 0 N ? lf) O h M M O M M O M M O M M O M M O M M 0 M S M O 7 I~ r O •00 2 iD O 10 LtD 0 N 0 V 0 y di 0 M 4 y O t• Q J - — O ID 6 N Lry O 4) 4 o h r- 4 V h O 4 h O V h O V h O 4 h O 7 h O 4 N 6 7 N O 4 h O 4 h O 4 h O 4 N a LA N O Lf) CD hr.. O O O I+ r O 0 r Q) 1 r 4) 4) 0 a c n J W - O N r x co V O N r x 6 V a N r x rt.CD V 4 CD x 0 0 CD 4 C0 O iD O CD O CD V '( V IC 44 10 ICJ V C 4 K) V 1C: V CC 4 N V CD M O M V N m r Keclhter Farms -Major Storm HGL e 0 mg O 4 0 0 O 0 O O 0 4 O 0 4 O 0 0 4 0 0 4 0 0 4 0 0 O 0 0 O 0 4 4 0 4 4 0 0 4 0 4 O 0 0 0 0 0 0 0 O 0 6 0 4 a 4 O 0 4 4 0 0 O 0 O O 0 4 O 0 I- 4 u IS, 0 0 a 0 4 0 O 4 O O 0 O O 0 O O 0 O 4 4 O O O 6 0 O O 4 O O 4 O o 0 4 o 0 4 O 4 O O 0 0 O 0 0 o 0 0 o 0 0 O 4 0 o 4 O a 0 4 0 O 90 a O O . x 0 O 0 0 4 O 0 0 0 0 0 0 a O 4 a 0 4 a O 0 O O 0 O O 0 a O 0 a 0 0 6 0 0 O 0 0 o 0 0 O 0 0 O 0 0 o 0 0 O 0 4 o 0 0 0 4 4 o 4 0 O 0 0 a 0 4 O 12 F.coW 4 NNNNNNNNNNNNNNNNN m h W - CO r- N CV I~ ao CD = CD m ID C) (0 90 01 LV N I N or- r o V) o rti Ili N Lli Q) v 1~ a Q) M ID r...E G I6 Q) 4 M ID Q) O M 6 0) 81i M 0 ID N O 6. ¢_i N O CD 4i N O ID 4i N 0 CO 4i N O ID 0 N 0 N A v) r O r+ 2 r O M M r O r) M r O M M r O M M r O M COCOh r O M r O r O 4 CD 6 M n U7 4 N 0 4 0 y 10 0 M 4 ,� E :-. I'L 4 4 a O 4 O O O O 4 O 6 4 4 6 O 4 0 O O 0 O O 0 0 4 6 0 4 o 0 4 a 0 O 4 4 O 0 4 O 0 4 o 0 O 0 4 4 66 4 4 O 4 a O 4 0 4 4 O O 0 a 0 O O G)C (, 0 4 o O 4 a 4 0 o 4 0 a 0 4 a 4 4 a O 0 0 0 4 o 4 o a 4 4 a O O O 0 O O 0 0 O 0 4 O 0 4 a 0 0 6 0 4 O 0 4 o O 4 a 4 O a 4 4 a 40 4 6 0 6 S' E F E O LD NNNNNNNNNNNNNNNNN 4) U) O) LI) N Il) Y') I)i 00 4 -4 V S") V' .m 0) a0 [Y C [Y o r- m iD C] N N 4 O A a I - Li N. r m M o N t..t. O m 0 4 4 0 4 O 0 4 0 o 4 0 a O 4 a O 4 a O 0 a O 4 O O 4 a 4 4 a 0 O a 4 O o 0 0 0 0 4 O 0 0 O 0 O o 0 0 o 4 O 0 4 4 0 4 0 0 O 4 0 4 O a 4 0 O v 0 4 0 0 0 0 0 0 0 0 0 O 0 4 O 0 0 O 4 4 0 4 O 0 4 0 6 4 0 a 0 4 a O 4 0 4 4 a 4 4 a O 4 a 0 O O 4 O 6 0 4 0 0 4 o 0 O O 0 4 O 4 O 6 4 Ca o 4. 2 CM -S v 4 130 v 1))) o u4') v) II C 10 IID CD ID '0 OD 00 0) u IDD ID CND top ID 0 ID ID CO a) Q J - co - a) a 1 47 W 6 co LIJ U) CD W V CD I1J Cr) co w N (ISCb Ill al00x M N. r N r r — r ll) 4) V id) m CA N a) < 4) < h Q Ln < V N Lt < G 6 J 2 V' .1 0 ID L L1)) 1 CC 407 Kam'. CO L11) 07 4 CCD CD CND 0 IDD IDD CD CCDD CO CD CD .1D1r sage m v i • Date: 111612014 t a "P Tg CJ .c C.7 .. oi 0 o a a a ,_ tic r- o < a C 5 , _r tb 1 i w c� C LI a 2 Gm 4 a 0 • 4 o 0 4 o 0 4 CD 0 0 4 0 C. 0 0 C. 4 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 in 0 o O 0 4 0 Q V _ i r cD enTr. r r' NIDw a .a N r o v r ('4 CO • Cl (0 Tr. N. m CO (0 r+ N r r-- O N 0 r_ 0 CD 0 as N N v N (ri r a CD pi r • • 0 t7 = a 3 V U.N 01 rp CD (D o i~ r r o 0 r- N. V 4 r r0 r'-V. co r 1- N co CD CD C7 CO CO v.! M C) C7 N N -0.N 0 o 0 0 R 4 N N rJ co C(') CD M Cr) r rJ co (''i N. en N N iti co r• CO 0 M CD 0 CO01 di 0 co 06 007 O 4. r 0 �- C. N (r) r- N r u g } Q CO x o 0 (D 4 ID co cQ rn (D '- cp.,cp., co rn Cr) in rn re) in rD r) N 0 Y Q) 0 r- 0 r 4 cn. rh 4 (17 (r) nr O r CO c^1 0 r r O r a co N r r- IC P. V N r~ co m O r 4o N (J] 7 V O 47 Y7 M (( co co CD r!1 Number of linen: 134 t 0 - O a ... M M1 r- N (0 N CO(0 6rti 0 4 N 0 r 0 CO O C? 0 0 O r 0 cND r,-- N [') r N N CO ( r•- 0 r l 0) 0 C) Nt o r 0 N (7) r C. OD C. c0 N 00 0 C) rw CO (7) v N N 4 (b (D 0 C) M in a N N t~ tD 07 r- 0 C. 0 in N r CO M CO C) O .71 10 ()) N CD - C. O 00 r .0- (D en r.')Nr 01 r } nt D r 4, CC (D D) r r N y Gi N 4) N co N � o) N 0) _4 Z1 N r (D a: r (0 N CO 0 O (D N 0 a! 0 N (0 01 (D (r .¢ I - 0) CO 0 r- N r r'- C!1- N CO a M o CO c0 N -4-O CV V1 r r4 r CO 0 O) 01 r 0 O) 0.1 r 4 oa 0 qr a C a N N V (0 N 0) O O Q) r 4 N O 0 (17 O () 0) 0) 41 0) 0) Y o O r ,q M r O (0 0 c0 0) O) O O r 41 0) Q) 4 O 0 r 4 o N r O (!•i O 7 4 O) (0 (0 (D C- O Q1 O) r 7 c0 O A a r G i J VI C r N CO 0 0 W 0) DO CO 0 (D C0 (r) CO DU DUV) r- N r- r- Oa V N'alit co r Kachter Fanns-MaJor Storm HGL G 3 0 a v 0 a o 0 0 0 0 0 0 0 a 0 0 a 0 a a 0 a a 0 C. 4 0 C. a O C. 0 o C. 0 0 4 4 0 0 a o 0 a a 0 4 a 4 4 a 4 a o 4 a 0 4 0 o 0 4 a 4 a a 0 4 o h« 0.0 0 0 0 0 0 4 0 O o 0 0 0 0 ID 0 0 0 0 O 0 0 O 0 0 C. a ID O o 0 0 o 0 0 4 0 0 4 a 0 a O 0 a O 0 0 0 0 0 0 0 a 0 0 0 0 a 0 0 O a 0 C. a 0 4 x t1 a a 0 0 a o 0 a a 0 O a 0 0 o 0 0 o 4 4 a 0 4 0 a 0 0 a 0 0 0 o 0 0 O 0 0 O 0 O o 0 O a 0 O 0 n O a 1 a 4 0 0 0 0 0 4 0 0 a 0 0 a 0 0 a O D C — ...4 M co (¢ co Vi In in 0(n 4 q a M o N cv M co (l] r7 r!) r7 N co r .r n'i .1 c/i r N cn in (o M -.4- N .4O inr 0 O a co C a " (O (n r N V 0) N V 0) N Cr) N 0) N d 0) ^1 . a N r (D O r Co N CO O o (D (y 0 o ( en CO O N (0 rt; 7 r, 0) a 0 r- N r t- CI N 00 h- 0 CO CD oo c0 N . N N r 0 N CO 40 a) (0 r m (0 r a a ID ,_ C :. .0 C V 0 0 a a 0 O a 4 O O 4 O 0 4 a O 0 a O 0 a 0 0 a O 0 a O a O O o 0 a 4 O 0 4 O 0 0 O 0 4 O 0 a in 0 a a 0 a O 0 a a a a 0 O a in 0 a 0 0 a 0 P X u 4 a O 0 a O O a O a 4 O a 4 O 0 4 0 0 4 a a 4 0 a O 0 O 4 a O o O O O O O 4 O O 4 O a 4 a 0 a 0 O a a O a O O a O O a O O a 0 a a 0 O a O r Q) C E _ H C .E V M CO (f1 N (A O in (n a' u) R (0 ID O N N M CD ui Cl (fl r7 N 00 r 4 M V 6(i r' VI(n 0 M q 0 4 r 00 a) 0 r IS) 0 r DC!U r,-. t t 0 cr, 0 O 1 O a 0 O a 0 O a 0 4 a o 0 4 a 0 a o 0 0 O a 4 O O 0 0 O 4 0 O a 0 O a O O 0 0 0 a 0 0 a 0 0 0 o 0 0 O 0 0 0 0 a 0 0 a 0 O a v a a 0 O a 0 cm Q a u a a O O a O C. a O 4 a o C.0 a 0 a O C.4 a a a O 4 4 a 0 a O C.a a a a a 0 0 O C.0 a a O a 0 O a 0 O a 0 9 0 C 4 a 0 4 0 0 4 O a 4 a O 0 4.4 Z GO 0 J Q DD 0 M CD r D. N A Poh f+ r� CD C-.. 0 CD CD CD CD (D 0) rk a CO O O 0 CD N CD 01 N. CD 1. O DI CD 10 (C7 C) O a 0) 0) C 12 J .4 ' M COCOCO < N < r < r a r d r M < (D < N is... h :v .}: to r h C (D <r (O O < 0) r N r La r .A D J 2 0 A N. r, A h N. M CO N. COa CO 00 00 CO OD CO CO O CO O) CD CD 51o1r SeVre' 47 i E 2 V 0 a NOTES: Intensity = 81.511 (InIcttime + 10.0O)"0.79 — Rcturn period = 100Yrs. ; "Critical depth a rz co t o a 0 o C.o 0 0 0 0 0 0 0 . t popp t7 N M M N V7 - N . r 6 1—,elV O r - H - coCsi Lc S. U. 0 - I-- -1-6 h CO -a:cli V r- (0 0) P- SD V 01 r N- -1-V r r t- N tr) V 0) P- (0 V 00 0') h- 1- 0 6 N CO CO N M CO CO r .- r Cr P.. h ID h CO V• r.-.. 47 CD O r-- CD V r-- 7 O P.- CO In. 1::(11 -,:t CD I, -CD CD 00 0". r N V CD u7 so 47 N 7 > 4 41 C 4- N 0 I-- I-- O V 0 (*) r-- el V I-- el V (-- el V a) 6 N O r-. N ro tit N cr-i co r) (a Q 0 w 0) 00 u7 r-- N 0 (D N Ob (D N Od (D N 06 (D N cg O In M (D c m CD in((7 M (D el CD N64 r 6 Number of lines: 134 L 4,t� G J 3 — r (O e7) r 6Cc)O ID O 0 4 O cotD - tp r,- r N 0) N r CV 10 co N co 0) Co .1 N N N r V OD Q r N r M h V 0) 47 6 R r - N N Ed N 6 Ci tr) CI CD N Na) ( CO O I+ W r OD in r--- G to V O 0 r N N rn CO r N 0) QJ N o0 u O DO (0 O 0 0) N 01 a0 CD ") 01 M (D 47 O 41 r OD I,-117 4 r- h N 1- O O) co D 16 u. cc t tc0� Q N 0' C7 M O rJ N 6 O (7? O co O J! O co O 0' O co O (7? O co O (7y O M N (•.( r N r N r 6 r 0) Q r 0 as N h 0 CO 6 an 0 CO 6 (D O (0 6 (D O CO 6 CD O CO 6 (D 4 a) 4 V 0 o 4 V 4 a1 4 V 4 a) 4 V 0 h M d CDC.6 �. On �p — 47 co UR O (D O c7) V O O ((i O C.O. (1i O (0 a V O O (17 O '4 0. 0) Na) a' Q r 0' N C.(r) ul O (�7 O C. LIR O Q) . O C.0' ((7 6 7 O (rJ 6 r' - cr.4 00 6 (r) 6 0 (2!J r an d C•N J_ fA _ C W I1 (D CO (D CO (D C7 (D el (D el (D CO (D M W a.) In N .1`I N N `IV N N V N V (D CO (D M (D Cc) (D Cc) O M Kschtsr Farms -Major Storm NGL G O 0 a O 0 6 O 0 6 O 0 0 O 0 O O 0 O O 0 O O 0 0 O 0 O O O O 4 0 O a O 0 O o 0 O 0 0 0 0 C. O 0 0 4 4 O C. 0 0 C.O 0 O 0 O O 0 6 C. 0 6 O 0 6 Iy �/ 1- a 1. C. a Cs 0 a 0 O O 0 O CI 0 O C. 0 O C. 40 a C. O C. 6 O C.4 6 O 6 O 0 6 O 0 6 co 0 6 O 0 6 O 0 6 O 0 6 O 0 66 O 0 O 0 O O 0 O 6 0 O a 0 4 a 4 >t 1- (46 6 O 0 O a C. O a C.0 0 a 0 0 6 0 0 0 0 a 0 0 0 6 6 0 6 6 0 6 0 0 6 6 0 6 4 0 6 6 0 0 0 0 0 0 0 C.O 0 0 0 0 0 4 0 0 4 0 0 0 0 0 4 0 0 4 a V I-•E an r-- 10 r-- CC (f1 .4 6 . ! a C7 0 0 6 CO C. CV N NJC7 N N r-- Q 1-- 04 In 0p C.,0 04 6r• CO P. i• CO I. 0) r� OD (4 CO CO CO (6 G Cf (1 N rn C7 M O CJ N 117 O t7) 6 M O (7a 64 M O (7S M O tT O M O (I? O CO N LV . N y q N r 6Q a) r 0 0) N h 0 (D (r') (D 0 CO (1) (D O CO 0) CD 0 CO 6 CD 0 P.O 64 (D 0 a) V 0 of V 0 0) V V O 0) V V 0 V r-: CO t+ ._ W G -' L C 0 4 O 0 C. O C. 6 O C. 6 O C. 6 O C. 6 o C. 6 O C.0 O O 6 O 0 6 O 0 6 O 0 6 O 0 6 O 0 6 O 0 C. O 0 0 O 0 O 6 0 0 6 C.0 6 6 6 6 C. 4 6 C.6 4 O 4 O 4)K =c} 0 O 0 6 0 a 6 0 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 0 6 0 0 4 0 0 0 0 0 0 0 0 4 0 0 4 0 0 4 0 C. 6 0 C.O 4 0 6 0 O 6 0 0 6 0 C. 6 0 C.0 6 0 6 0 v+ GF E iz.t - - el r- Lc! r. N— 64 u-' 6 N � O 6 OD N . f w v c'l IN (.. 0 O o 4 0 4 o O a O 0 O 0 O 0 O 0 O o O coo 6 t O d 00 V at O a O 0 6 O 0 6 O 0 6 0 0 6 O 0 6 0 0 6 6 0 66 6 0 6 0 4 6 0 O 4 66 O 0 C. 4 0 C. 6 0 C. 0 0 C.0 0 0 0 0 6 O 0 C.4 6 0 6 0 0 6 66 0 6 C L O O 4 o a. 0 6 0 a 0 0 0 0 0 a 0 0 0 0 0 a 0 0 a 0 0 O 0 0 O 0 O o 0 O 0 0 4 O 0 O o 6 O 0 6. 0 0 O o 6 O a 6 6 a 0 6 a 6 6 o 6 6 0 ce CI ON M Q0) (Of (0D h(A 0O) 0) O r ([r-: N O N O O Q Q m q?ar m G p J (!) G V U r 4 r '.c3 M ❑ N 4 r w Nw < g - M 4 W 4 1 Cfl W 4') W 1- W M W ;tir 1 1 N O W ;V 1 6 W d G 6 J 2 M 0) V f7) (f) 0) (0 0) , h t7) W d) 0) d) O O Q (V Q (') Q 8 o G1 a O 0) O r (v c+) v tC) m v 1 NOTES: Intensity = 81.51 ± (Inlet tirnc + 14A0) " 0.79 — Return period = 100 Yrs. ; " Critical depth r: m 0 0 0 4 9 0 4 4 0 0 O 0 4 4 0 • 0 4 0 4 a 0 4 44 0 4 0 0 0 0 0 0 0 0 4 0 0 O 0 E. 0. r6 CJ' ^ j 4 iD 6 V M A Wm 07 O r (D O N 4 N O Cr;N N 4 r+ r ..1 r� 0 q CO 4 o r 0] 0 N r+ 66 T r r U a— u r..)1 . F O N 4 NO r- O 4 00 4• 4 V NNNN MV 1 7 O h. Or 0 TN N (D 4 rry N MC7 4 ND V (p 4 M M O fi Ti 0 Di 0 -7 0) y 7 > 4 m o r C0 r. cp 0 (6 M T r0 4 V co r~ co rD (o (6 } M (6 IV N R 4 (D 6 W. N7 ti 4 4 (0 4 4 00 4 (fi 6 Number of lines: 134 t C M J O n N Ni N O SO Q) MM (D r!1 V. W 00 N ( r M N 0 M rw 0) O r (D (0 N o r 7[r N N r a M 4 O d 05 0 u0 0 (D 0 47 r N 4 o t 01 N -4. ( N Co M d- 0 6 CD 0 O ON O N 00 (D 0) O W (A (0 M (J M r N r ^` 0 r - CZ ' O 00 r ((0 6 M rk i4D 6 r (6 O O N • ai N O Qi N d ai N 4 (p r N N (0 06 o 6 r o 6 r 4 00 r, to r r T ,- Ni 6 n'i r r T m a C a :IM N u7 0.) (D 0) pi4 Q M O 0 0 O v r- 0 0- O 0 0 O 0 M O Q) O a M m v. N (0 M r (d? r � N 00 O 0 0 0 0.6 O 00 N JfA — C ) 6 u) W W 4 N 4 M 00r (0 (0 N (1) r W r W r W r W rNNNN v .qv Kachter Farms -Major Sto rm H G L aG 3 � 4 4 O 4 4 O 4 4 O 4 4 O 4 4 O 4 a O 4 4 O 0 4 O 0 0 O 0 4 O 0 4 6 0 4 O 4 4 O 4 4 O 4 0 O 4 4 O 4 0 0 0 4 4 O O O rp Gr u 4 4 d 4 a O 0 0 0 0 0 0 4 0 0 4 0 0 0 0 0 0 0 0 0 6 0 4 0 0 4 4 0 4 4 0 0 o 0 0 a 0 0 0 0 0 0 0 4 4 4 0 4 4 0 0 0 4 X �► 4 6 O 4 4 0 0 0 6 0 4 O 0 4 O 0 4 6 4 4 6 4 4 0 4 4 O 4 4 O 4 4 O 4 4 O 4 4 0 4 4 0 4 04 O 0 O 4 44 4 0 4 O 0 O U C - E ()) tT I,.(U N N h.(n N N 01 N o 6 elf 4 r.- Pi y Pi Q) Q] 4 (+1 C ) in r 6 -4 pirri n1 (n o u-i M M r,ft '' 0 r� in r 4 (D co 4 M f, (D 0 O 0) r (D 0 N•r- 4 N 0 Cr/Cr; N 0 N 0 M N 4 (0 r ("1 r- • N 0 M O V o O T V 0 O T o 4 6 N r- 66 T r r r M M T r r ,_ �+ G L L 0 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 a 0 4 4 0 0 0 0 0 44 0 0 0 0 4 0 0 4 0 4 O 0 4 0 0 4 0 0 4 4 0 4 0 4 0 0 0 O 0 0 ... K 0 4 O. O 4 0 O 4 0 O 4 a O 4 0 6 4 4 6 4 9 O 4 4 6 4 4 0 0 4 0 4 4 0 4 4 0 4 4 O 4 4 O 4 4 O 0 0 O 4 0 4 4 4 4 clod r W E 1. F •E y 4 O a) (D a:' N — r"- O T o N T a) N T 0. 0 4 6 r- 00 T V M T 0 0) V Ni r 4 0 T 6 3 N T N M r 4 4 (n O O M .- t t O m 0 06 0 4 0 4 0 0 4 0 4 4 0 4 4 0 4 0 0 4 4 0 4 0 0 4 4 0 4 4 0 4 4 0 0 4 0 4 4 6 4 0. 0 4 O 0 4 4 0 4 0 0 4 4 4 0 0 0 C Q u 2— 0 4 O 0 C. O 0 4 O 4 4 O 4 4 O 4 O O 4 4 O 0 4 O 0 4 O 0 4 0 0 4 O 4 a 0 4 4 G 4 4 6 4 a O 4 4 O 4 4 4 4 4 4 0 O 4 0. 2 0J C T r (0 T O minni0N CO N r 0 ' r 4 T N O O CO 0M M e O D — co r- a Q) N 417 lil 01 W r~ 0Q CO O W C7 N N r M co • G 6 J 2 6 r 00 0) C7 N N N N 0 N V N (A N 0 N ti N c0 N a) ry 0) M M N (0 Q M M (+h SIOIT Sews' 1 ig }F cri DE ar N m c F F c c F c F F c c m c F -. C Ni 00 a `a a CI C e 0 " rr- c0 o 0 CO co o a C CA ru o CM,r. 0 cr N CEO r 0 c = C Notes: " Normal depth assumed.: " Critical depth. ; c = cir e = ellip b = box J O vu -) u - 0 0 a 00 a u) r a 0 u) a ' 00 r 0d aa 0 u) a CO a 4 O Or �co a 0 0 00 o,- CL 4 U) o O O r U) ,- Ou) r N O CP rn .v Wry _ cf FC GC rc fa C5 c c F c Ci C5 c c a c CJ c c c Cr c COO CJ -I- c 0 00 -1- Occ r (r V) r Q rh 0 o 4 co 0 0 o a 4 O 0 O 0 0 4 0 0 0 0 0 4 9 0 O 0 0 4 0 0 0 a o 0 4 0 0 0 0 4 0 0 o 0 a 0 0 0 a 0 a 9 O 0 00 o 4 4 O M Q 0. .-- 00 9 O o o 0 0 u) a E ea 45 11 'r~T w triv a 0 O O a a 0 0 0 O O O 0 0 4 O 0 0 0 0 0 O O O 0 0 O O 0 0 0 0 O 4 O O 0 0 O O 0 0 0 a 0 0 o a 0 0 o O 0 r~ 0 )+) O O O 0 � 0 0D 00 0 0 a 0 4 O CO 0) u) a Number at line3: 134 r C7 -. cif E.,.r ui CD CO O 0 -1- 0 N 0) O O a) 00 CO COco -I-NC-1--0- 00 r 00 cc) CA r- Is.-M r) 0i 0I CI 00 00 -0- CO r) a 0) -0-0 N 0) CO 00 a a 0) 0) -0--0- CD 0CD 0' a 0) M O 0) -0- N 00 r 0) -0- CO N aO 0) -0- M 'V 00 Li) O N en 0) 0) -0- -0- r+ O 00 0) -0- r O 0) v 04 05 0) -1- CD InJ> O 0) v n Rl > .E-.s coCSI - cocv cocv - CI M r N N ,N ;) N N N to N r~ N 000 O 't) O NI o 0 Irli M1 > 4 f co N 0) co 00 N Cl 0) 0) co N 0) f'- f- f" r- 000 M CO. CO M CO. CO 01 0) CO 0) Q. 0D v M CO. O CO M 00 A If) O V) O 4 CO 0a O 00 a F Z a co N co CO N N CO N U) u`) 13) t�f) tND 4? r+ 0") r- Ni SD h M. N ,- 1"- v r ti .- 0) a (0y 0 SD 0) N N N N CO CO CO CO CO N N N N N O O cr M J [7 = 0 0 TO' CA II 1L Si i) 0 Y J ,, 4 _ v M in 0i a0 00 v h a) 4) CD of 0i DO ID 00 v v u') CO a c0 00 v in P') CD CO r~ 00 a) 00 00 v v a) N 0 () v 00 N r N CD 0 a 0) 0) v v v CO f` a 0) v of a 4) v 00 N a 0) v rD 0 ui 4) v (-1 rh (D CO 0i CO N 0) 0) v v O 5- a 07 03 v CD ri 4) v N CO 0- 4) v NI - 4) al a 0) -I- ..' r? _'v --co C C4 U CI) CO CD -- 1< CO M 0) O CD r- co 0000 -- -- N 0- Y 00 )D 5- 00 co r) CO Cr) Y V a) N CO r: 00 O 5- CO r- rti a N 0 0 7 7 N © 0) rM1 0) - 0 CD CO 0 0) O 0) CD 0 0) Y 0 47 N 0) -- O 00 4) r- 0- N 0) 0) � Y O 0 CD 5- 05 N 0) -- V rs- M 0) � 0 CO r a) 7 0 N g a) '0 �t S') _ - u7 v N N (0 00 CO .- (0 CD N '0 IM1 0A CO O C) 00 O 0a 05 MLA CO co ' N ' N N v r: 00 00 06 0 0 qi 00 0 a sp coO N 0 O O a) 0 O ) yi 0 (D O r- o 05 CD I--. N 0 0 0 o CO 0 0 0 a r4 0- CO (0 r v co CD rj 0) E- fA C 0Q -L, '~ rn O a o a O O a o a o o 0 0 0 a 0 O O 0 0 a a 0 0 O 0 a do O O 0 0 o 0 0 O o 4 0 O a 4 0 O o 0 06 0 0 0 a CO 0 M 0 4 v M u) o o0 a 0 0 0 0 o pull o r.. 0) a I-5 a W 94 r-. _ ri 0o v (D 0 CO 0) a O a) a) v v N O rn v CO0) N n rV [•i a) a v v M 4 a O v COCOCOCD '0 CO 00 f0 a a '0 V) ' rti a v) 4) 0) a v) O n 0. -) (r) v ') r-- 0- N O (0 CV N 4) V a) Cr) O co v) u ) CO O V o CO (D v T v aJ a V >.c w M r M M - r M ..L- ;Ni N N 00 N N N C!7 N N. N r� r0 00 0a a O v, O N 0) O 0 r �- a) 00 en N N 0i aai RI N RI(0RI� oRI .4 N .01 N RI N N 0 CD r-: CD ai N ~ a) 00 a) T� w r, N O lv) 0 r~ 00 0 a) p h M GO 0 O co ^ $ E --' N r- O M CO . . N N CO . N 0) 0) coC0 rD O 0i CO O CO 0) Cr a) 0 0 ("1 u) 1.--(D _ ($1 O 0 I.-- a) () ci 0) r+ O ti CO r r- t- r 00 4 0 00 N O N O 0) aCI M - • N N N CO N N M N 00 - C+r fL (0 M co 0) N ciga ['r7 N al N M N Cf) raA - - - O O CllO] co _@ ' Y 03 00 0O � M h In4) C>f Cri co e0 00 00 a '0 0) CD o co 00 '0 0) u) 0 (D o d) d) 00 0O '0 N M CO 1- 0) 00 '0 C7 00 N 0 0 0) 0) Y - N N a 0 0) N '...r CO r--.: 0 0) Y u) 'p 0i O 0) 7 00 N o 4) N (D O �t Sfi o N 0,0) a - M1 66 N 0) 7 CD '0 4) V 00 O 0o0 4) � C) CO 0 0) V a' a d y 0 000 a (0 v 0) CO 0) (D (Pi a0 co v v u) 0 r+ *0 v 00 N CO r+ (0 co co v v CD 0 v N 0 CO m a 00 a CO v) CO N 00 a v 00 0) C0 v (D 0 It a < 0) CO fti 0 v) 0 47 in r1 0D 01 '*0' v 02. 0) N v) V 0) 0i 0 - M n 4) -) CO N ri a � CI O Cr] r O 0 N N 0) 0) r t 0 t ., 0) ., 00 4 0 La M M 00 ul or) 0O u) Cr) M CO 0 v, CD CD 0 1:(4 CO CD 0 00 CD 0 '1:0P CD 0 Ca 0 C") DO CO r O C") 0r..-:Z. 5- o -1-N 0 0 r- rw N N iii CD co0coCD CO O M VIM CD CO 00 00 NI-7 04 Y 00 00 Y Y N v. N ' N si N V 0 W MA- 00 ,r- u) I- ul N y G -, J - N M 'C ICCD r-- 000) V r N COCr 0 .r..) r- DO O) 510ir Sex+e'vW.0h d a 4 0 r V M O N CO O <D r O .n r O 4 r O 00 07 O <p P.11 O N r O C. C .- - O 0) O enV r O V P'i O u7 O N C) 66 Cs C) C r- <D moo 1 ID N 10 V r0 N co 1 p c Notes: " Normal depth assumed.: " Critical depth.: j-Line contains hyd. jump. ; c = cir e = ellip b = box V J a [V Z V ID Co r r 0 r N O r. N O 1n r 6 0 1n r C7 CI r 0 r 11-1 r O o 0 r 0 1fl r 0 0 r 0 O r 0 0 r N 0 C4% 0 O r 0 r 0 r M r Y a = Ga 6 y 'v u► .N.. W _D u CO V al o h •n r a h O ' o c c F c G c 0 V C7 o m 00 0 0 C c r <n ID a-) h DO V; O 00 0 4 o 0 Cp r v CO CD (-4 a r- h v 1n 111 r CO c C e ea117 c 1n <•s o .-. r m S7, dw-ke`" A o'. 1n o m r- r. 0 C. 00 c0 0 6 0 0 0 C. 0 0 o 0 0 0 a 6 0 O 6 CO eP 07 6 00 N 0 0 0 O 0 N •1') 0) 0 N 1n 0) 0 V 0 M 0 N V N 0 CO m co 0 rN ID Q. r r-. <D « r m V) V] r O 4 4 0 O 4 4 0 t- CQ ID o Upstream s N m JY ID 0 LI O m r- h o m r- 0o O 0 0 0 O 0 0 0 O 0 0 0 O 0 0 o O N m a) O m N O 0 0 0 O N .n 07 6 N 1n am 6 V 0 co. 66 N V (-4 CO O (0 O r--N I ID 1D ,- 0) rA ,- v - 0 .- 0 t7 a o 0 4 a o tD 6 c0 O Number at lines: 134 -1 p x .Fyf LLa M h avv s- N CV m CO 0 4 V a) 0 _ r7 01 vv _ 0 cr) r+ D a) co 4 OD - 0 Do 1ry r 6 al v V) r a) 4 r 0 0 4 0 D 0 v CO V- D m 6.71 el N C, V O Ni v I- r t v V ID R v' a) N 6 1)) 47 C1 C.1 1)) 0 1n V- D 4 ST 1� y i 5 'f r O r V CO O 1l] al 6 1n CD 0 1n <D 6 1n ID O 1n ID O N V O C{ r O IO O r V O -V O 1"1 r 0 CO a �Y 117 O y A r y M r 4 V (Dr- 6 0 tD 6 ro M 6 69 N > O co q 0V0 h - I6 ti CO - I6 H ID NN 0 0n N N) to rh to r1) to <O N D V al to N) m N) a) .P9 m S6 - CD N V 4 4'..-10) N ID co N r a) v CO 1n T C] 1i5 r en(0 1A T N r CO N .- Cn rJ .-- <n O r (0 N r Cn N r C) N r 0 4 07 r- 0 r' -4- r (0 V-Ce. r 6 4 co q :v C) In r 1 - tw .= 1�: .v Q to CO V7 N T o• N N r N r N r N r u) N r .)7 N r 4 o • .17 N r <n N r r] N r 4 4 CO 4 4 CO 0 o N 0 0 N (0 • q T rV r 0 N r Kechter Fanns-MaJar Storm HGL -i �-. 4 = Or N rw O C h OD r Y' CO m r Y' Vl h 0 4 'ID V ni Y CD V 4 Y ID O m Y 00 M r": 4 CO O rn 7 -' g CO ID 7 CO '1) m V 4 M gt,m V 0) OD r V 4 'n f V 07 V N CO f+ V 4 M 07 N . OD CO A r. O [I ? .r r) ,Ty 1..'—'.:-. i. --- G ig a) 47 O Os v 0 1') N 6 0 01 v 1r) 6 0 41 v Y PI m c0 7 N CO 00 V) N <r) c) 00 1n OD 400 a) 03 v r. N 01 6 v I+) V CO W a) 47 m (0 03 v N CO N a) CO o CO LI7 <'7 a) CO a CO CO r7 0) W � 0 N 6 O 0) r s- 1ti O 0) 0) V -1 0s v 00 M m 6 0) v Co O tit N 01 v V) V O M 0) v CO I- ID <'i M 01 v V) h N 0 v D :Y J y "J 0 C.O 6 10 r CO CD t- r h V N N V7 O r+ N. 1+ 1- 00 N m O CD V CO 1T O N M1 h u7 In V CO u7 00 NIt r CO 0 O7 06 N 6 C7 OD 0) CO N U7 N 60 N N CO 117 N 00O CO V V7 R ID rD ID CS) CO N CO N 64 c0 r V 0 C. N 6 CO 6 N h a) N CO N N Iti 1h h 1- yN G -5 G — 'r'" m N. as u7 0 4) r- r"- 0 6 90 00 0 O 0 4 0 O 0 4 0 O 4 4 0 0 4 0 0 CO KO m 0 CO N 0 0 0 4 0 N 0) 0 N •+) 0) 0 V 0 10 0 N 'Cr N 0 co 0 0? o N. ID « r r-- CO (0 r N. <D <j1 r O 4 4 o O 0 4 0 h cc? <D 0 '-T J > r9 CU la Or v W O 4) V O N 4) v tID N 4) v tNr1 O a1 00 v E 00 v Q 6 a) 00 v 0 d1 00 v v rt O 00 v 60 6 01 00 V . O O 00 V d) 03 Y - 11) th 00 V CeM7 tO 0) 00 V Q N 01 V 1- N 0) V 007 V 41 V CD 4) V 0 N 0) V 1Nr) 04 Os V OQD fi 0 v m <00)) 0) V y } L$ O M O 1n Cr) O 1n ID O 1n CD 6 1n ID 6 1n CD 6 C4 O T O V l)7 O r v O V 6 T O M O 107, O y M r y A r A ,o 01-- io O M O 60 CC.00 } 4 6 4Y <Q 4 7 00 1,-,6 O 00 h O 00 h O 0D h N CN sr) a (� N ID I' I 0 <n r to <n T 0 O <p� N yy W -4 m— u7 C. m C. a) C. C7 0) 0 .4') 1n ID 0 v $ a �, 4 0 CV cD 6..- C") N Q7 4 4 C,::-, I N 1R N . r7 N <") N 00 O (ID N c7 N M N 0 O a) r- 0 h v r M v r M <+) 0 M q N CV <h r w 1-- r r C '- 4 u7 f'7 N (4 r 0 1A N O T a T O .17 N V] N vj N T V) N In N 0 4 6 0 C7 co O C3 N O 4 N O 4 N V) 6 T O N r O to r fY' 2 ,1 0D IM1 CO O 0) CO A r 4) CO h r 4) r- 10 a0 00 in n d) 00 V) V d) 00 <D V 00 V 0 r` 000 V m K 000 M 1.13 a a00 V O 0a'p 4 r 0 0d'p 0 N 0 0d'0 CO A - 6) CO N RI 4) V 0 r7 01 V) r c6 01 O r'- IN u7 6 0 4) V) r N 4 M 1n 0 ¢) .r y T G) -. aV 0 V ' r C. 6 O ¢s v 0 V ID O ¢1 v M V tC 1¢ 0 v 7 h m a0 00 v 7 V 00 0 v V) V tr) a) 6 v 0 r 117 0) 6 v h N to d) W v CO V 6 00 0p v CO n m rD 6 N r r7 d) v CO h "al d) 00 v 0 ID U7 a ¢) -t a) V t0 a 0) r r 6 a 0) v m ID V_ 0) v h r m Os V- 0 N 47 4 It 10 CO O 4 •r h CO 0) 4 "7 2O i7r7; ^ h Q h 1n V 6 M 4 CIm a) 0 a) 0 m a) 0 a) a) o ID N b: M o M CD 0 1)i CD 0 10 ID 4(Q0 V0 Cry V CaO r V N CI 4 N 0 m N N 4) N CO0 I%) r 0) 66 O r--.0 N 0 N E. H N V VI r O 0) CO 0I1 170 OO 1n VI in V] VI VI ID m CO CO CD CO:V V V N - 01 V 01 DO r W r CY .--. G '' J 4 N .V IV ;V el N V .V V) N ID N N :V 00 N 0 N O CO CO N CO el CO V CO 1n CO ID CO h CO CO CO 0) CO 0 Y 5161Ysevresv1.•Y .15 N v II2 v 0 a CO O Cr, c v 4 r C SY N. 4 r C r C r C ' r m r N r O) r 00 r r Ni r C ch r r C r C v C. N CO r p C C NatFa: " Normal depth " Critical depth.: j-Line contains hyd. p.imp. ; c = c.ir e = ellip b = box _Ia N Y O O O O O Cs O 0o O O II) 0 O O r 4 LPIP) 0 4 0 O O r N CO. uj C. O (Q 0 In h 0 cP co. I") W ID 9) cg 0 In 4 0 CA u) ID Eh VC6 " 6_ M NA 4 O N- c r O r C M h- 4 O C. C N CD O r c Ir c CZ. c r C r C r C r C r C r C r C r C r C r C � -, al.4 Q A 4 c; r 00 q r O O 0 u) 9 r O 4 9 4 COC.C. '0 N 0 4 4 0 0 4 0 0 0 4 D. 0 0 4 D. 0 0 4 P. 0 0 0 4 0 O 4 P. 0 0 O 0 0 4 4 0 0 4 0 C. Cs 4 0 0 CD 4 0 6 0 O o b h Q _ J F e h- 4 O 4 CO r O 0 O u) yy O r 0 0 4 O t0 O M O O 0 4 O IDO O 0 O 0 0 O 0 0 4 O O C7 4 O O 4 4 O IDO 4 4 4 4 C. C. ID 4 4 O IDO 4 4 0 4 4 O 0 4 4 O 0 4 4 C. 4 M ;i = a CD 10 T y , r LL= 4! M CD CO M 41 ID 0) 0) 4) 0) N ID N ill 4 cO O r7 M 1 4 CD cD M 4 M CD CD a6 (J) CD ccc;CD 06 CO 4 N CO a0 CO 4 I0 CO CD coa 4 4 CO 4 ['7 00 4 4 Cr) N O 4 u7 CO M O 4 r 0 4 N 0) CO O 41 co 0) O 41 u) CO r 4 N r. N 41 4 00 01 4 :L 7 L ,.1 1+1 4 O 0 dC) O 0 N O V1 O 0) N O A r N u) r N N r N Vs r co CO r IV CT N M 4 N N c N [V V N N 4 N ll') Q) r r- r y r y r n > a- — O N — c0 r h- N ID 6 CO CO In ID M 4 4 M O) 0 0) 0) O 0) Oi 0 0)CIt O) ct :J r N -J . A ,I C.; A Y r r V• N r- N N 4 N . N. M C] co N O co N O 1� ;41 V `� A r A r O1 O M — N O _ J) co CD o' co 0) M M 0) I+'1 M cc) 1) aY N {D h` N CO h` N CO h` N C8 r. N CD w r- f.- 6 CR 06 N A I' N rM 1' N �= C. In r O In r 4 In O u7 N r N. O a1 4 M ... 4 4 M 4 v 4 M } 4 4 M 4 0) M i 0 N 4 4 0 N 4 0 N 4 b N 4 a N 4 ; cD M 4 a v M M M CO`� M Kechter Fanns-Major Storm H GL J T 4 Ew clo V.r-+ _ �! CD CD r,) ¢) co r) ¢) O cc; N a1 CD N [') 0) z r) W 1P) a0 r U) c0 4 M 4') a0 CO ID a0 COO N 0) c0 0)) Cr) CO 0 4 CO co 01 DO 4 N O 0) 4 COD C. a) 4 ICI 0) 4 O 0) 0 01 4 W O 0) 4 O r a) 4 'OR [ i 01 4 ar r) T Q) ^` C y N N. a1 a 00 N co C7 a) 4 7 4I7 0 N a] 4 4 N c') 0) 4 aP) r 4) M al 4 4 r N CX) 00 4 C+) r N O 4 (0 N hi O 4 0) M RI ID c0 4 I. CO 6 CD v N N Q7 0 4 T CD a) 0) 4 M O Fti c) CO 4 r- C7) 4 1- O ci) 4 O M 6 O a1 v co C7) CO 0 O aY 4 CO 00 A CD C) a) 4 r r. 1R O a1 4 0) O C7 a1 4 C .v y J =-- 004 C7 ( C. 4 CO CO C? CD C 4 14 r-. In Cn [Q � CCO CD M N C. 0 I) 0 O O CPY N .- 4 4Q N (') N. (0 T N V M N M c'i co M 0 4 4 M m N ` 1 47 M 43 tV 47 M m a) CD r) 47 O [O r o 0 0 00 Cl) 0 C. 0' N Downstream I~ W N. a 6 CD R r O 0 a 6 a) O '1 0 O 4 - 6 CO ID ry 0 O 0 4 6 O 0 C. 6 O 0 4 o 0 0 4 o 0 0 0 v ID 0 4 O 0 0 4 4 CIO 0 4 4 0 4 4 O 0 4 0 O 0 4 4 C. 0 4 0 ID4 0 4 0 J T W zio r ,_+ CD CD M 4 Cn 00 r i 4 IP) 4 I-- N 4 4 O r7 d) 4 00 ui c( 4 In O (0 c0 4 0 4 IL- a0 4 a) CD cc;CO c0 4 N 00 O � 0) CO r..47 a0 O CD d) CO 0 M 07 d) CO 4 N E. vY ID CD S 1 O v1 N r 6 4 1)) 4 CD o 4 O r. O 4 N 00 r 4 N N. or 4 Ig w } ..cE M O 0 4 cc! 0 4 N 0 in 0 Co N 0 00 OD 0 N N r N I!) r N as r co Q) r PY Lot ,ry cv '3 N M '3 ry H d N N '3 N D Q) r Iti ( ) r N. W r y W r N - .O_+ } 00 N r M r M A N r c0 M in O v rJ IP) r., CO 0 r. 0 Cr' as G1 Cr"nh m co O O M O c+'i O cr] C. PA O r N Q COD O 0 O OQ v Q ti — N. r 0)tr) O N r M O 0 O ci CO NIM CO O) M 0) M M 0) CD 00 O [cr 00 aD 00 OD CQ C. O Csi 0) CO CO r- 1- M CO co N 0) O N M r (0 G g O N - O u) P NI -r3 41Y N CD n O 0 7 MDP co o Cri o M N • 4 • o 4 • a -4 • a 4 • IS -4 0 M *0ho M i M ; M 0.-..�'r = 0! S co 4) Co c'f a) 4 4 O 6(D 4) 4 0 co N a) 4 u) 47 NI S•) a) 4 c0 00 a) 4 M r 0If6 00 03 7 4,1 0) CO r4 4 h-, r IA a0 c¢ 4 4 co US a0 a4 4 6 4 If CD co 4 c0 r ri d) co 4 co C7) 00D Q) co 4 N 00 cr) 00 4 ? N O a) '4 4 A O 01 4 4 In dr 01 4 co O Cr) O 0) 4 00 r O 0) 4 00 O r ¢) -0- r y T SA G r r-. 4 0 co CO fti O 0 4 47 47 N 01 r N II)) 01 N r 0) 4 C. 47 C3 a0 4 4 r hl 00 4 M r hi O 4 CO N hl aD 0) 4 ND c0 h r f)1 cA N 0) 0) ' r CO am v M N ti d) O 0) CD r+ C6 V- 0 CO O O 4 CO In 47 O 01 CO 0) CO O 4 r 0) 7' ID 7 r� w la C7 N N 0) N r r N cA CD r M 0 O C)') 0 C. M O C. M O q M CO ¢i N CD ¢i N CD ai N CD ¢i N CD ai N CD ¢i N N r~ M M r P7 NI r Nr Q) _ aU iv CO M I)) 00 O ....... r 0 c:, r c0 p r- CO O r m 0 . 4 CD 4 CD 4 CD 4 CD 4 CD 4. IC: 4 la 4 C 4 4: C v J r 4 N 4 M 4 4 4 In 4 Co 4 r� 4 co 4 ¢) 4 o CI) = 4) N 10 co II) * 4': 10 IC CD cD I. IC CO 4) 0) 47 S10111* $SYrB 5 41d.31 1 'ES PI C g 8 -- lr c (r c Ci c Ci c A .4 r co N r F c (L c cn CD G Ca c C3 c CA 0 0 a) 4 O N CD O V V O '7 O .41 03 0 li c V 01 o C5 c O) u7 0 Run Date: 111612014 Notes: " Normal depth assumed.: "^ Critical depth.: j-Line contains hyd. jump. ; c = cir e = ship b = box `' a Y- -) V " 0! o 0! o (• 0! a 0 0 0 0 0 0 0 0 a 0 o 0 0 O 0 (n r 6 In r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Check w(J CCCCCCCCCCCCCCNOZZZZO F (d CO C (r F a C CI CZ (r CZ (Z rti N 4 (r a a a OD0 (fD, ---. ay w v am 0 C. 0 0 0 O 0 0 0 C. 0 0 0 0 4 0 0 O 4 0 0 C. 4 0 0 4 4 0 0 4 4 0 0 0 4 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 4 0 1,7 0 m 0 4) 0 cc 0 0 4 4 0 0 O 4 0 0 0 4 0 0 0 0 0 0 r- M 0 Upstream ; am0 0 40 O o 4 O a 4 0 © 0 0 O O a 0 C7 O a 0 a O a 0 a 4 op 0 a O 0 a O o 0 0 17 0 0 0 O 0 0 0 a 0 0 4 0 0 0 0 O 47 0 ro O 47 0 O O 0 4 4 0 0 0 4 O 0 0 4 O 0 4 4 0 CD • "4: O Number of linen: 134 J a ..N a In CD (71 V (p h 1- ) V N O ai 7 V CD h D 01 ' CO 0 N 7 V V N N 01 V N co N 1 V 47 r, N V 0) c,-)4) 'i.) (S '7 4 V u7 CD v V P-, rw N V V CD N ) V O? CO N 1 V 0 CD N 1 V N V ') C' ) V 07 CO N 01 V 4) CI((7 M ) V V N ) V N O 7la V V 4i V m ?r`" E. D 0 `rkip M N 0 o (7' o 4 O 2 o N o Nb a 4 o 4 0 2 o O 40 o ti 0 1 0 M1 -- N >r N O cID 04 o r CO o r (0V O r V M Q) 0 Cr} M r Q) N 0 Q) 0) V (D a) V .c. N (D c..,= N (D N (D 0 N (D M CO 47 M CO 47 V h 0) N O (A CO 47 (() h N (6 CU O r d r h I+ (v h h i� h I+ h I+ N N 0 - N �- (0 r- (D (D '7 1`- M N CO 0 O CD a8 O th O u7 O (0 I- - r- ti ui [� O ti y' 0 (0 1'- 0 4 v p_ M COIE t_ C'? CO }N ry M Cr) M co cO r 07 O �? N N ? N N) r N ' O fti r Zr, r U) r .6 r IQ r 2 N r 6 r T r r 2 r natter Farms -Major Storm IL J t V (y W ----.' _ OF 0 47 0) V N r CD 0) V 03 CO r- 4) V N r co 0) V 41 ((7 oi 0) V 0 Q) O N 4) V Cl 41 N 0) V (i) sY (D N 0) V 6 ix. V M r v') 01 V CO O 1'5 0) V (0 r (7 N 0) V C+0 O V N 0) V OD N (D N 0) V (0 V T N 01 V CO a) m N 01 V h a) 6 N 0) V M O ai N 0) V 0 O M1 N 0) V M N of O01 V U) 47 V 0) V +n N Q1 ^` 1: y= V CD r 0) 0 (n h CV 01 0) Ca r 0 V 0) "4"Nt N 6 h Ni 0) h M (1i 01 v 00 CO OD 01 "4" 4 r C4 N 01 v M 6 M V N 05 V N CO ai N O1 0) M as N 6 co 41 -4- 0) r+ Oi N 01 -4 h 0) co 01 -4 V CO CV N 01 -4 N. as 0 47 N 01 et N (-4 41 ti N 01 0 O h h A N 0) V 6 CD M1 N 01 V u7 CD ti N ¢1 V Cr) OD 47 N ¢) V CA V r ¢) V 0 CV CD RI C.) V [ N y :� J C. 01;N 00 r .0 h N r a V 07 r COO N N N h (0 01 N CD 6 h V V CD N 0 CD a) 00 r 0) O N (O r 0) inC7 6 ea N 01 N c*.! N N _ Q.'N r" f, h di V COCD OD ri V CO r~ 0 r CD m O 07 0 0 c' O r 0 V 0 h N M r N N CD 0ai h N O 07 V 0 4 En H C d (vi ~ .41. "� 0 O 9 a 0 4 4 O 0 O 4 O 0 a 4 a 0 4 O 0 0 4 4 a 0 4 4 0 0 O 0 0 4 a 0 0 CD 4 a 0 0 9 0 0 0 4 O a 0 O 0 O 0 4 0 1n 0 06 a (n o CD O 0 4 66 0 4 0 O 0 O O O a 0 O O 04 0) O C-? -I t W a) F_ O 147 v1 CCDD (D - I. Iti V- O (D 0) 1)) CI) v 0)) 0) v N N N v 0)h (n N v1 V M N v Q) r ( v CO • (0 -4 CO T V CO O N CD N 01 CO N v) CO c0') v) M N V- 47 N V1 ,- N -1 NI CO 0 v1 41 Sr - v ig v }- F Yy W '4y (L? •- yy (V r '4y W i f+ 4 CD N r O C") r (D (V r (n (D 0 P- M 0 0 (D 0 N (D 0 N (O 0 N (D 0 V Y o V � a v) cc! 0 (D o r V (ri a (A h o 1') V, 0 p} 1 > (0 (a m O m O m O (q r`• rn rr (a C) 0 M 0 a) (D 47 0 47 OC1 CD M) W 0) CD (Q O h M M 1I7 m M 4] 7) N- it -- 0 (0 in V (D r- (0 N 47 $^ g t y0 4 0 CD. r-. m n a'. n m rr m 6 (p (11 4? m O V 1- M N 0- N o o h r to 0) o m q - cr.?, N r A 1- r r+ h- r r� O a1 r (n u7 O O V co CD '- g C.I. CO 07 r- (1) r- CO. ry 0 .- N N a? r v, rr O m r co O r 0 F a Cr c r u7 O h M N y� (y) = ar 6 CD V ('i O) V r 0 6(a 01 V N r 01 v (0 07 rw 01 V NI r cd 01 v r h 6 0) V CO CO o N 0) V N 4) v N 01 v 03 V ad N 0) v N OD 01.('S 0) v M h o 01 V in 47 ad 4) v M CO o N 0) a M 0 ' N 0) -4 0) CO a N 0) � 4 0) ai N 01 v 4 47 K N (3) v co V co N 01 v (D 4i N ¢1 v M 0 ai 0 01 v N 0 � O -4- g s q C y M 0) N d V v CO r V 1.7 OR hi V N v V u) 0) - V h Cr) (D V 00 CO aci V 4 CD (1i N V I(7 03 v N V h 0 o (o V h 41 0, N VI 41 0M1 r~ v1 h r m V) V 0 c'i N V) 0) N 4n N V) fV r+ r` N V h CO (ri N V7 V V (ri N V) 4 r 47 N V) 0) CO N 0 Vr 0) (D r 01 ,�o 3 M M M M r ti• O CCD 0 16r) 0 N -4 0 V r 0 V (D O i. r V CO ( 0) V co V 0) V 0) N •Y r (D O r N OD 0 O N 0 O N v y n V?- Y IC V. 6 V (0 V VI * IC: N d (D CO o M V N 4f r N 150 CO 00 DO IX) ((U DO 11() 0 CO 0 07 C ''y J (7 CD CD N CD M CD V CD 14-0 CD CD (D M CD 0 (D (P CD a r+ r ti N h Cr) M1 V h '0 h CD h h 0- CO h 0) 0-- 0 CO 5101r Searle C w .4'r i 8 V -,a- u') O !r C W (,", O O O C C M 07SE.()i O C M 0 - M M O 0 M O A C F C (O i11 0 r� V 0 V 0 O C 0 O CoI r O C C C ad 0 1t) Notes: " Normal depth assumed.: " Critical depth.: j-Line contains hyd. jump. ; = 4ir e = ellip h = box r 0 N 'IU 0 Q 0 O 0 O 0 4 0 O 0 O 0 4 0 0 0 O u1 177 O 4 0 0 0 0 r 0 0 r 0 a r Q 0 O 0 r O u) r O U V 0 M V 0 0 0 r 0 O Chock �[ y(�1 N W D 'l Cs C eZ C a C F C C C O N a CZ C Cr C O 7 N CZ C F C F C C C O r 0 o r- r N N 0 ID (D 0 CD 7 0 F C C C Ca C Q 0 [V GO 7 r, r+ a .1. w O 0 0 o O O 0 a O 0 0 0 O 4 0 0 o 0 0 0 07 0 0) 0 O 0 0 0 O 0 0 o or 0 (D a 0 V O O 0 0 0 O 0 0 0 O 0 0 0 0 0 V o CO • (6. 0 N N 0 0 N 0 — Cl 0 0 0 0 0 0 0 0 0 0 0 0 o T a p (b II IP ;1 r-ae 51' O 0 O o O 0 4 o O 0 0 a O 0 9 0 O 0 0 0 00 r4 W o O 0 0 O 0 0 0 o - ()') (D 0 V 0 (D 0 O 0 0 0 Q 4 O 0 Q 0 9! 0 Q) 0 V 0 M O O 177 (N 0 (1) N 0 O 0 N O 0 0 0 0 0 00 0 66 0 0 C D Number at Tines: 1 34 J) ,- W@ r moo CO (0 v 07 d v 0 0) ci v V (D 0 v CD Cr) (0 v r- CO v r 0 v N 0 G v CO N G v 0 N co; v1 C) 0 0 r- r- F- 0) r- r~ P- v T (0 sr CD (-J v 0 CO tV 0) V Cs c i 7 M 0 c i v 101 (r) M Q _ 1- 11 (D 0 1- -t 1. :u 1u ›..E. ` v ((7 o (0 V 0 r4 ()7 0 T t7) 0 N (11 0 M Ol o , 0 r M u i a.- 0 (D o 0 (D o 0 V a "1 N o (O N 0 1n (0 O 4 M O 4 M 0 4 M o CD N a CD h 0 (0 0 P } '� ..r 0 0) (0 4 (D (0 r r (D ()') (D r+ r- t� M Y N. M 0 r O N W 1) V 't CO 0 N (D 0 N (D ]n O 47 0 N N. r- O 0 M r, M C M Y M V 0 (6 0 (Dro T (D aG• 4 CO O r e7 M r (0 q r 1--01 (0 r u') Om 00 G) N ('i m N (D N ('J (D 0) 7 :tl N V NV N 1n 7 r 01 (D a M 00 a r- 4 M r- O r+ r- 0 r- r- 0 r+ o V C o V -4 r- V M t ¢: 8 ' 'f • • O • tD O • ifi r •• rC'l } M1 Ul O N N • f8 N N. r ()7 M • 'A r • A r _ M (7 • O oD O 0 CO O. M {? CO 03 CO • • 4 Kochter Fartns-MaJor Storm HGL J Ps4 0 0 ."-,1 _ N CO is: 01 C 01 C a) 01 V N CO N ¢1 "Cr CO 07 N ¢) C V r~ OD O) 'Cr V V N 41 'Cr (D 07 of 01 'Cr r 1W zi. V M r 0 Os C r W ti LS V M V N 41 V r, M r+ 4) 'Cr V 0 1+ 4s 'Cr (n r OD 0) 'Cr M r 41 V 0 O CV Os V V r- N ¢s V C NC, c7 41 V 0) N 41 Kt 0) M 0 ¢) C r 0 r,j Zi V c) Q) ^`7:- G a E CO (D ¢) -4-v co V O ) N r N S) 0) (r) co; O) r- r a 6) o 0 0 0 0) � O r ID Q1 v N co 711 v (O r- $ ¢) v V M r ¢) v 0) 0 c) c') v CIS V V 0 7) v .1) 0) 0 0) v (0 CO r~ 0) v N CO (D ¢ V N r r- 0 v V 0) CD 0) 1- V N O ¢) V 0) 0) O 4) v 0 0 r Q) v 0 0 NT 4) v 0) :v 3 = 0 Ti, r 0 0 N 0 1�. N 0 N 01p) 0 Cr;0 M o N ((0 rM1 O o N CO c9 M M v vi vim N o r COC m r CO (n (0D. 0 O CO O COO (0 r rR-1 m N (0 m CO ((00 O N r` cD o N M 0) kr)00 v ri e D 4- r+ 0 0 0 0 O 0 O 0 O 0 O 0 O 4 0 0 O 0 0 0 0) 00 90 0 0 0 0 0 0 4 0 N (+-) 9 0 CO r- 99 0 0 0 0 O 0 O a 0 0 9 0 O 0 1ri 0 CO (D 0 (1) N 0 1n N 0 1j) N 0 0 0 0 0 O 0 O 0 0 0 9 0 J 1 r9 61 r` W: S V (D (D 01 V 0) 4) (0 0) V W V ( Q) V 0 07 CV 0 V r- CO V 0. V 0 r N 0. C 0 (D 0) 0. V (/) CO W 0) C v r~ q 0. 0 V 40 CD Q) C V (0 (4) 0 0 M 00 1 0 V 0) 47 is.: ¢) V (D N (0 ¢) V r0 O - Q) a V 0 R) 0) st v CO ( 4 ¢) V [O 0 c') a1. V CO r q 01 V CO r- c i .1 C CO 07 c i 01 V ig li L V C O 0) O 00) O O (V11 O M a O 1M a 0 a 4r. O 4 O NN O (CD a ((D a 4 4 aa 0 a (-D O M0 a (0u7 O> CD r 0M1- 0 Vn M 0 ~c-j r,-- co r r-- 1"- 404r-41N 0 -'1" M V (D 0 o0 9 r` 0 r_ OC Vr, 0) 1•- 7 V r- M V I,- 9 V 0 ',I' V r- 4 r-47gT} M✓4 1idFa ,x r' ) ti a 0 co v O Cr, a O 0 1r, O ('o N O e4 r a e4 o M 0) 0 N IN (D N N (D 0) V N NV r� a) - N a r tl'f (D a Mr- W O a r- r- 0 rw r- Q h r- 4 h co V V r- N1 a r- V C9 L y Cg� C `a0 Y a (0 7 O . 1ri O n (D O is ('+r a in N N — an (n r 0 117 CO c O N 0 1y r C ro • r- 0 Q co O 0 4 CO 44 4 4 CO CO 0 O CO 0 0. N •m p r 0 (A .,- 0 W ^ _@$ 0 0 0) V Q to 01 V T CO 0) V CO 0 N ¢) V u) r-- si 0) V N N O 01 V u) 117 0 Os V N r 0 Os V M (D (O 4 V M N O 41 V V r-- N 0) V co V i1 0) V h CO 1.. 0) at 4 0 0 01 0 M N O 0) V V r~ 01 V 0 C. N 01 V CO h N 0) V h CO o 0) 0 r- 0) N 01 0 ()7 CO c') 0) V K. G i = N (D 4} 0) v N (D (1"1 0) v CO CO ¢ V CO M 4 V 0) V Ni 0) 0 h 0) M1 0) V CO CO M1 O) V t• 117 CD 0) V CO 07 N 0) V CO N (D 0) V V 47 - 0) V O) 1.0 c7 0) C 0 (D CD 0) 0 0 N 7- 0) 0 0 N 4) 0) 0 N 4) (D 0) V N M r~ 0) V V r T 0) V V V O 0) V 0) , 0) V 1r) A 0) V w o (0 N 0 9— V r- 0. CO (0 r- r- 4 N CO 1- O co CO 00 M N V (+7 L o rJ 00 0 a) r/) r 0 0) 0 r 0 T 47 ( N 0) C:3 0') o N N 47 O a! 0 CO O OS ID CO a a! Cr) o a! O CO a 0 O Cr) N N N N 0 N v 1r) 0!) 0 0 1r1 r- N N N O CO N V V N V N W r co r (71 r CD CO (D CO (D CO (D M (D CO CO CO (D CO ,.1 J M N (0 CO CO V 00 47 M (D CO 1,--00 00 CO 0) M O 0) 0) N 0) 'CO 07 V O) 47 0) (D 0) 7- 07 00 0) 07 0) CI r Q r S1oir SevresV1• •Ji M Q 'N-' m O O c C (G N r 0 00 a VI O rr O I O 0 O N r•. O 0 O (D N a O Cn CD a 0 r C C C i C a C Ca C V CO a V CD a en N 6 Run Date: 1;16r2014 Notes: " Norrnal depth assumed.: " Critical depth.: j-Linc contains hyd. jump. ; c = cir e = el lip b = box r N N 7 V 4 u) Or O 0 O 0 O 0 r ,- N 0 M N 0 M N 0 r N 0 O 4 r V N 0 N V: 0 CO N 0 0 0 r 0 0 r CO m 0 r0 0 0 0 u i 0 0 0 OM 6 O u m wt WV C NN v LIJ D v it C F C Cr C A 00 m O (o 0 M O A v -- O m r- M 0 ' 0 O o (n r 0 m 0 N O v 0 V: O v 0 CO O 6 V CO a r:. C al C F C F C C.r C coo O O 0 00 o rti ch r 0/;r 4 N - O 4 9 0 O 4 9 0 0 4 0 0 40 N 0 0 0 r,i v 0 4 e.3 v 0 N rJ v 0 U) r.l 7 0 6 r.i v 0 0 Lin v 0 M (ri 4 0 M on v 0 M 6 V 0 4) r4 C) 0 0 O 4 0 0 0 O 0 0 0 4 0 C. O 4 0 A m 7 0 OD 0 N. 0 m 0 v 0 Upstream ;1 — NE N N O 0 99 o 0 0 0 0 0 4 op ID N 117 41 N v 0 V) r'1 v 0 0 r.i 7 0 0 N v 0 0 N v. 0 CO CO an - v.v. 0 moo CO 6an v CO V CO o0 0 0 4 4 0 0 0 4 0 0 4 99 a 0 4 o A 4 v, O CO 000 1"" 6 0) V, 0 Number of lines,: 134 J: ~ " W ie S _ CR a1 V O 0) O 0) V N CD (D 01 V h 0 c 0 V 0 CD CI) 0 V 00 N 6 0 V 0.) 6 O 0 V 4 V 0 V 00 CD 0 V co 0 N 0 V a 6 0 V 4) N * 0 V 00 A g 0 V N 7 A 0) V 6 CV 01 V 0 co Cr7 01 V 0 CD 41 V m 0 r 4) V• M V CV 0) V 6 A r 4) V V V O 0) V M :u 7 r E SD _ 0 eh (n 0 6 N r m Do O N h 0 N N 0 N h 0 N h 0 NCO h 0 CD 0 M (n 0 CO CD 0 CO CD 0 M r- CO N r- CO 00 a CO cD 0 r r 0 -a in 0 v (D 0 0 r� 6 ti W r } '— M N 0) M CO 6 a 0) CO 4) h: N 00 CD N CO CD N 0 6 N CO (D N CO 6 crl M 6 In M CD tf1 M (D M CO CD O OD r- 4 CA N M h 0 CD 0 N 0) CO. V CO Cr (0 CO ti CD r� Gift crrr 4 u'1 ' O 0) M r N r N (0 m N e. m N (D 01 N 9 m N 0 0) N (6 0 r- a r+ r- C) A r- 4 ,r,- r- 4 A V 0 r r' r- M r N 6 M r V r M N1 V : Gg— ih7d O 4 r 4 r CO 17 CO 4) CO u7 el J)h CO Cr) a CO a Cl 4 CO 4 try : NA•NstCDO a 4 • r 4 O '4- 4 N 4u) N KechtAr Farms -Major Storm M G L ,j r 4 = a v UP 0) Ca? 01 v CD -4" O O v (D a) IA1M1 01 v CO CD 0 v CO 0) CO 0 v CD L 1 CO) CO v r O W v 00 CD O CO V M m O CO v 10 01 CO v P) 4) Ctl 000 V (D CD 0 CO v u) A CO V h w O R v M A 6 0) -et h V N 0) V- V 0) C') a) se C6 .O' L v m 0 N a) v N 7 0) v V rw N 0 v +r ? y �2 S 1V ^ - G 0 4) RI a) V CD M CI) () V <D V a) V h 0 c"i ob 00 V J N O 04 V u) A 0 co V V 0) CO 41 oD 00 V h 0 6 oD 00 V N V (D aD 00 V N N rt aD W V V 4) W aD o0 V 00 CO O 0) 00 V CO (D 0) O a) 00 V 0 01 aD m rr0 V ('1 r M m O 0) V 0 M CO r a) V (D CO N a) V 00 CD O a) V CO V O r a) V 0 4) A O 0) V CO N CD 6 O 41 V CO C :v y J = '� N N 00 N O M 1D 00 M CO N N ••, 4) 0 m ti 00 r• CO (0 i-. 0 CO 0 a 0 r- N N a) CO r N 47 m N 0 10 O CO (O 0 4 m 47 C7) 00 v 4) O) (D 11) O 4) r- CO 1+ O CD A 6 1ti O m CO A N 0'i M N m ( m CO 4 in ? N CO CO N a (0 r- 04 `N N Cr) A m O CO N a CO E C 11) C D a — 0 0 99 a 0 0 a 0 4 4 0 4) N 117 a v) N V; 6 111 EA V; a 4) N V; a 4) N V a (0 N V a!O CO u-i V; CO " V; O M a) 'TV 0 CO /) O N M 00 6 0 C7 a a 0 4 a a 0 4 4 a 0 0 a a m 0) V; O O J) ( O 0 O (1) a O J P W V CO O 01 M 11) (D 01 m m V D) 6 e- c0 V 4 07 m v0 vVv V CO 0 00 1r) V O a) O) m O 01 V 11) 4) 0 v M N O -VvVVvvvVv1 P') A N O (1 V 0) O in V 4 00 (6 O u) CO o o 47 r M 1 M CO O r- N N a 00 00 O ) v (D 00 o V 4 4� 1d > i f CD 0 e+) 1n O CO N r O) ao o rJ rt 0 rJ r� o n1 N. O r,1 r� O N r- O en (0 6 M (D 0 M CD o en (D a 4 a) 6,- co N rn CO 0 (D (0 66 s- r 7 CO 0 V cD 66 4 0- W a } 0_ 0 M— N u, 10 h (4 0 r 00 • 1J^j n N 00 6 N 00 6 N 00 6 (V 00 6 N 0?<0 6 6 6 inu7 M 66 t0 6 re' 6 N (O h h Q) ry r- N V 00 _ 0. 1+ V O 0 (D V COco V 66 (n N- u + 4 0 CO Cl a N U1 a (D O r- N (D O N (0 Q) N (D a N (D a N (D a) N (P a) r- 4 h r- a r-- r- a r, r- a 1ti V N r- O r 0) 6 N 0 M r- V r CO CV el V t re -_' 0! V o (1) o 'O 0 0 1J) (4) 0 M1) M 0 0) 0 11) m 0 m M 0 11) 0) 0 o M 0 0 6 0 o M 0 a M o ur N t_ m 6 r- m 0 V m o N v C' O o Q N ' S (y = IY . 00 O a1 V 0 0 0) V M (D ( l 0) V 0) CD iO a0 00 V h 4) 00 00 00 V _ a co 00 V co A 66 00 00 V h N 0) 00 V M CO O co 00 V 00 CD C 00 V O r CV a) 00 V 4 CO 'i m 00 V 4 CO 0) a) 00 V 00 h a 00 V it 0 o 01 V CO h O 01 V h V RI 4) V M h O 01 V M m r 01 V M N O 01 V CD r a 0) 7 " y 7 S tl) L y Zv 00 h 60 O 01 0 (D 41 v CO CD N 4) v 0 N C0 06 v (-1 4) 6 c0 00 v N N 0 00 v e() m 0 00 v 0) 4) V) CO 00 v h N (DQ c0 0p v N 0) a0 00 v N V r- CO 00 v V A W 04 0p v 00 4) O 0) 00 v (6 V a) 00 v 0 _ 6 0 0) v CD A m 0 0 v M 4) r- 01 v r 4) m 0 01 v aD CO O 0) v CD N (o 0 0 v 0 m m 0p v o 4 .- N 6 Q) - 0 0) h 0 12? CD 0 (A u) CD 0 ro u) CD 0 (O 4) CD 0 (D 4) (6 0 m; V 0 V 0 a) V 0 0) V 0 v h co 0 r- V) r o (6 co v f)') N (D tD 0 0) (D 0 <-1 G N 0 4) N N c 4 C N - <0 r 00 r- 4) r N V N d N d N V N b N d CD CO CD CO CD CO CD CO 0 M 0p 4r 4) CO CO V N 0 M G ,rr J O 8 a 2O a o o O r 1v 0) "4 0 <0 ti eA '11 o N N 51o1r SeYeeSViC.), CN N '.g- '�j1 -4 6,- o-CD lLc)00 0 0 4 cri 0 0 era 0 0 If) 0 O CO 0 01 CO 0 0 01 CO 0 COa 03 0 a N 0 T ci C x 0 II D IT) II w ..} II e? ,- E .. t V, C G V 0 L .. D. T r eY J 13 V E 7 co ih R L 11 V r E 0 Z G z � V .Ni -3 U 0 N 0 6 0 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 co 0 •- (o O 0 a T Check yr' :1 ryY r-- eO T o o a T N to c7 O (0 4 a O (D N a O N T N ()l 4 N O N E.')' a O O c.l r eD O O CD 4 0) O 01 CD O Q to- CC') 01 V. O to 4 u7 O N r• 0) r- O 6 cJ CD O 4 • (P O 4 0) O 0) 4 CD O CO M1 CO ems) 4 M 0 O CD SO 4 O 0 CO 7 O Upstream °� N h 0 ul. 0 r - r 0 0 0) 0 O) 0 C4D. 0 V. M 0 0 WI eLq 0 e 0))J, 0 Number of linen: 134 J d a W 61 _- 4 COen O 01 4 4 a 01 4 r 0 a 01 4 0 0) a, CO 4 e)) in OS 00 4 N N 0 00 4 CO 4 ON0 00 4 r- CIO 0) 00 4 0) CO QN1 CO 00 01 4 4 N_ Yti 01 4 0) 0) M1 01 4 n r le) >- 1 r N h 0 I- O en N 0 CO a 0 4 M 0 0 u7 0 0 u i 0 cc, M 0 01 U M M 0 O )r1 u7 O Cn u7 a r- 6F > F — 00 (D Lf10 (D .t 0) (0 N �l N 0 1'- 4 CO CD en CO CD 6 0) I,- 4 0 I+ O IL ID 4 CO 0) 47 CO 4) !) a , •4 N 4 M 4 sl N co ti ti 1A- ti ef ti (9 N N N N N t et: y ,, G ty 4 N e!] O (V tJ') ti ;A, 0 to 0 en O 0? 0 u5 O M 4 SA N T M M T N Ch T KochterFanns-MaJor Storm HGL > r _ a) - N (D 0 01 4 (1 00 0 0) 4 CD N 0 01 4 N CO 0 00 4 0 CO 0) CO 4 N M1 00) CO 4 CO 0) 0) 00 4 M1 0) CO 4 0 M OD CD 0) en 00 01 4 4 y0 0? 6Iti 01 4 CO 4 01 NI- C? Q1 ^'� _ y .0 in N 4 4 N 0n0 a 0 4 00 (OD a 0) 4 0) d) 00 - eOr) 0) 00 4 M co 00 4 a' 0 00 00 4 0 OD 00 4 0) 0 en a 00 0) 4 4 4- 01 4 i° ',- (- 01 4 :v `� 0) 0 ¢r 0 CC) 0 rn N 4 ' N N CO 0 CO rn 4 00 N 0 CO N 0 0 00 CO c- E N1. R4 3 -- OD 1-- 4 O N 0 �1 O N 0) Yr- O 4f) c 1 CD O 'Sr 0 O ,IT 0 0 CO 4 CD O CO (0 0 010 4 CO 0 C.0 CO N .) NI'W O J T s O G1 ^ " W y. r-, cD O 01 4 4 4D O 0) 4 4 w 0 0) 4 (n COO al CO 4 C31 rn 00 4 0 CO 00 4 N r-O 01 CO 4 4 oi 00 4 Y, 0 m e- CO 01 4 4 CO (D 01 4 u') CO 01 4 lgLTY- ,�„ > t CD O M1 0 u, R O cc. n a o 4 M 07 4 0 O a uy O 4/341 el O 1- M 04 6 0 Q 't O 4 7 O 60 d.` e ,_- 4-- Ln CD M1 CD V 6 N 41 N o 1,- 4 op CD 6 op CD 4) (» I,- 4 C? T 4 6 4 Cn a 6 4 CO In i a C.)0 N) 4 a N M N,-. N. N. 1- 1 F.-1- 1- CO M 0) eri N `$ N7-1 u"'� G :V N rr l eon eon 11) eon 0 4 N N 0? T T of L7 a !- 0) 0) N ¢ 4 CO 0 ' 0) 4 O CO (D ¢ 4 00 1,-- g co 4 00 r--47 g co 4 Y-. 00 co 4 N N e- co 4 00 CD r al 4 00 4 CD r r 47 Cr] 0) '0 4 yD r-- 4? 0) 4 (n CD 0) 4 ... i "I- 7 CC .-. G y CO CO a 0) 4 00 r-- O 01 4 (h 4? o 0) 4 1:-. 0) (0 4 CO 4 oi 0) c0 4 N N CO 00 4 OD 4? COO 00 4 N 4 CO0 00 4 N r 0) CO~c•- 130 01 4 4 4 N ,- 01 4 u) 4 en 0) 4 ++ {!U� 0 . am 0 . 6 Q f- 0 T M 17 N CI '' 00 4 O ci 1- 4 O 0 1- SO CO N r- T. en n^i T cri T r 6) NC a CO a CO N u) IX) 0) CO I S 4 N N C N N m r. J r, N .1 N tit N SE) N 1- rw O N 0) N O M N oh CO el1_ CO Slow SOW' V1.;.J1 1 1 1 1 1 1 1 1 General Procedure: . 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. The elevation ot tha downstream invert. . 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream I-IGL + Minor loss of this line's downstream line. ¥ / L k 1: \ f. / c 7 Cross -sectional area of the flow at the downstream cnd. 4 \ \ Cr ƒ g 2 The line length. 3 The elevation of the upstream invert 4 Elevation ot the hydraulic grads lint at the upstream cnd. } k irmj tiul nul girulri \ j in r 111111 of film insirlr:Itir. pier. (H.31 / 6 Cro3s-sectional area at tho tow at the upstream cnd. . 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). r. k 17. • ha Ilrr. tied upstream line(s). :nliird IO uprIrrarn HC,I 0 0 0 0 0; 0 0 0 7 0 0 0 0 0 0 0 0 0 L' 0 0 0 o 0 0 G 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 ( O Storm Ser),rs In Z In ) E6'988tr 67'tr6Rtr 'LS'i '13 law 'API H co uS L] isO Q S O 6988V '13 ^�I 68' 9D'tr6Rtr 'IA wlH lI _1 l -11 * Z LS trtr+z 01S 1 4 1 I o' lV y 1 d� M r 0 re 4 1 UI E8 OS 788tr 088P '1= 13 'PUJJ Au! IIu.31nb ioo'OG+O uIS 1 ei 8 8 8 8 m 8 0 r O n r LL9 in W 1�7 0 J t,7 3no 6 :ul u1 'n0 8 :ul L :ul ul mo 9 :ul ul 1 lno l 9 -17:ul u1 5 'no S 9 E •ul ul ln0 6 0 O a) t�1 0 co 0 O co 7 0 O a1 ti iL'Z06P '13 'nuI .8'91617'13 W! 98'£6817 - E697O+8 ems .6'006V '13 'nuI .L'00617 13 'nut 1'01617 13 w!a \ \ 0 r- O7 a CO ti 1'6 - L91171+9 elS ;0'96917 '13 'nuI b '9'168'13 'nil O'9061713 w!H d ile Q N l - 9Z6'9Z+17 elS 101768ti '13 'nul '13 'AUI 9'£O617'13 w!a I o ra i- CO c6 CS - 961717L+Z ems IE118817'13 'nut I1'8984 '13 'nuI E'168v '13 w!2i J os m e - 9917'9£+1 PIS Z1884 '13 'mil Z19817 '13 'nuI 9176817 '13 w!b — --ur oad V RI 0 A - 999179+O e3S O19917 '13 'nul O'188b '13 'nul 0176817'13 w!b co 6988P '13 'AU!6988Y 13 "nu1'P684'13 w!2l L 00'00+0 e3S a) w 0 aS ¢1 v 0 0 O I V 0 0 0 0 m co 0 0 ai co 0 0 rn 0 O CO 0 0 Iti 0 co 0 0 0 0 0 M 0 N O w Storm Severs in0 E 6 Z l :u 0 0 a! d 0 0 N v a a 0 0 4L 0 0 L) 4 191061'13 'AUI O'91617'13 tuN 90'L064'13 99'90617 0 OLt - 42" 1 - 0071+S e1S 'AUI '13 'Au! S'L1617'13 w!21 1f 0 0 1 1 - 007Z+4 MS 614064 '13 'Aul ,L'4064 '13 'AUI 6'94617'13 Wi I!: j° cc CV) N t i I - 00'98+1 e4S Z'£064 '13 'AUJ L7064 '13 'AUI B'S4617'13 WRi 1 .e. d n 0 00'00+0 e]S ! ar w 0 0 ai v 0 a a 0 1- a L v 0 0 Lri 0 a 0 ai • v a 0 y} 0 0 0 0 0 0 u) 0 a N 0 0 Storm Sewers 1n0 9l;ul ul 1 ;no 1 6 tit :u ul 6 1nO 6 6 0 v 0 0 0 0 0 v - 0 1 l'9Z6tr '13 'Au! 9 Z£617 '13 W! J a d o vo - 69L'49+9 MS 1617Z617 '13 'nut 1L'PZ6ti '13 'nul 9 Z£617 '13 W! i I 1 - 69L'17£+9 MS 9'816b "13 'AUI 9'L164'13 'nul Z'£Z6t7'13 w!21 I oz u7 N Co J O cD COL I - 00'99+£ MS 9'£l617 13 'nut 9'Z I.6b '13 'Au! O ZZ617 '13 W! 1 I d n 0 0 n J O O 0 O O 1- 00'96+1, e1S 8"LO69 "13 "AUI 9'LO6b '13 'AU 0"81.64 "13 w!a t O O O 01 e 00'00+0 MS 0 .71 0 O 0 O 4s v 0 0 0 d v 0 O v a a v 0 0 0 co 0 CD 0 O 47 0 0 1• 0 1'i N N 0 0 0 J w Storm Sew rs 1 lno 6 uI b MO 6 6 0 0 M 0 0 ID 0 0 0 N 4- 0 0 0 0 Ts; £'L1617'13 'AUI O7Z6i7'13 W!N -L£9'1.I.+I. BIS \ N CP ,1.1 h- Y1 L'91617'13 'Aul 'L71.617 '13 'AU1 \ i 9'1.Z6t7'13 w!a I - 00'OL+O elS . f• 1 Iy1I 0 r 6'606b'l3 'Aul 9'L06ti '13 'Aul O181.6ti'I3 w121 00•00+0 elS 1 \ I / 0 0 05 v a 0 ID a 0 a 0 71) tri 0 0 0 ID a 0 41 a co 0 n 0 cQ 0 'n 0 0 F. Storm Sewers ln0 9 4£ :ul uI C 3no C 61, :ul ul f lnof 1 a 0 ai • a 0 0 ' v• a 07 at 0 0 0 0 ai 0 l4'L064'13 'mul 914164'13 Wu!b Z e - E49'§9+4 elS . rn v o a @ a i M x 4'9064 '13 'Aul w 6Z'9064 '13 'Aul £'£l617'13 w!b 68l'LI+f e1S cc cn rp 19'S064 '13 'AU! IVg064'13 'Aul Z-E L617 -13 W! - 496-09+E BIS ~ 0 Q l[7 c4 N O O co ka 4717064 '13 'Mil iZ.4064 l3 -nul Z'4164'13 W!a - 49626+1 BIS e O ill c d d I "J c m 4 (V C) I Z-£064 '13 'Aul EZ064 '13 'nul 9'S164'13 w1 00'00+0 BIS - a) W 0 0 ai 0) 0 0 ri 0) 0 0 4) 0 0 a 4 a 0 ai cn 7 0 v a a V 0 L a u? 0 N a ID a) W 0 0 ai 0) 0 0 ri 0) 0 0 4) 0 0 a 4 a 0 ai cn 7 0 v a a V 0 L a u? 0 N a ID F. 0 4} 7 w r • 00 00 7 sr 0 7r 0 Q sr V Storm Sewars anO I S'90E SL'Zl6 ZZ:u1-LlP UI 04'90E }n0 6VS0E £ZT1.6 00' 0 0 c) 4) 0 0 0 0 0 ,4 '13 'Aua 4'13w!2I \•N et IA rt 0 0 ZZ+OMS 4 '13 'nut 4-13 AU P I . fti J N N \ 1 eiS e3S0 00+0 0 0 co 0) 0 0 cri 0 a 0 v 0 0 0 0 C3) 0 O vy 0 O CO 0 0 0 O C? 3nO E 8Z :ul uI 1�0 9 LZ u! { 1n0 S L 9Z :ul u!S 1n0 0 SZ :ul ul t lnO 0 CZ :ul u1 1110 6 O O co - 0 0 CS ;4'S684'13 'Au] I. 6684'13 W!a `u V k. ' lg. V. a , `1 - L69'80+4 e1S .Z'S684 '13 'nuI Z'S684 'I3 'nuI L'6694'13 W!b fc /— IT 11 " 1 03) o o - 118'9L+£ e1S Il'9684 '13 '^ul ;8'46917'I3 'mil 9'6684'13 w!a /— , L 103-71 r�- - L4Z74+£ e1S ;4'£684 '13 'Au! !Z'£694 '13 'Aul Z.86817'13 ui!2i - LE9'49+Z e1S '4' 1684 '13 'nu! 'Z' 1684 '13 'nu! Z'9684'13 W! 0 J O cD - 8Z6'69+1 e1S 1'6884'13'Aul '9'6884 '13 'Au! 9'4684'13 W!?! co c' cm - I90'LL+O ems 4-8894 '13 'Aul 6'9884 '13 'Aul Z.4684 '13 W!a =' co r r u' 0 N 00'00+0 e1S 0 0 0 0 0 0 4i 0 0 ci 0 (5) 0 0 m m cO 0 0 0 ea 0 0 DO DO 0 0 a c) M 0 0 Cr) 0 0 0 O In 0 w 0 h Storm Sewers 4 d 1nO 88'£68b '13 'nul Sb'8613b113 w!Itl Z.£ .u1 ul E 1n0 E 6Z:u ul E ln0 E 6 0 vy 0 ui 0 0 0 0 1.6 cO 0 2 Rr 0 a 869 96+4 emS 1L'E6817'13'AU1 19'£684 '13 'nul 171168b'13 w121 \ N (r.9 I n _ g ry - E I.b'E9+b BIS :4'E68b '13 'Aul 16'Z68b '13 'Aul 1.186817 '13 w21 1 \ 1- 1.Z•Z1.+4 BIS L'68817 '13 'Au' S'68817 '13 'nul E17684 '13 w21 ! 8 C7 m M - SL'8Z+0 e1S 0'9984 '13 'nul 6'98817 '13 'nul Z17684'13 W2i a ° -v _ \ \ i N 00'00+0 eiS w w 0 0 0 ay 0 0 0 a a 0 0 as 0 0 tri 0 0 0 ro a 0 Lfi c0 0 uz a 0 v 0 If) 0 0 0 N 0 a rti Storm Sew rs 1 }no ZL'4£64 '13 'AUI 49'6E64 '13 11/121 0 0 0 l b :ul - LEL'06+E l eIS uI 4n01 0 6E uI t Ono C E L£ :u ul L }n0 8 9E :ul uI E }n0 8 ul l }n0 L. 9! 00 cci 0 R0Rx b 0 0 0 ci (71 4'4£64 '13 '^ul Z14£64 '13 'AUI O'0464 '13 w!2j E J , . _ w £69'04+E4 e4S .8'E£64 '13 'mil .9'££64 '13 'Mil 4.6£64 '13 w!i / 4ZL Z9+Z4 e}S ;6'0E64 '13 'Aul 4'0£64 '13 'AU 0'9E64 '13 w!M • 94L'69+6 ems lZ'9Z64 '13 'nut 10'SZ64 '13 'Aul 4'0£64 '13 w!2! is ta m ea li-li, o 0 0 ;,- N 46'6L+9 e4S l'6164 .13 'Aul .6'81.64 '13 'nul L'4Z64 13 w!i lilt gi r" N co • 668'9L+4 e}S ,9'4464 '13 'Au] 44'4464 '13 'Aul 6'6464'13 w!2i II I a „cr IN - 899'98+Z ems 4'8064 '13 'Aul 41064'13 _AUI n71.617'13 w!2i -1J N l I \ iCO 00'00+0 MS \ 0 0 0 0 0 0 CC; 0 0 vi 0 ni v 0 0 ai 0 CI 0 0 rei 0 0 0 0 O Q1 O CO 0 0 CD 0 0 u) 0 0 0 O N 0 0 F 0 L �ti 0 0 ? o a) -a- W 8.040Lt - la" Q 400'}6 00 ~ 47 v 0 Lri o Os v 00 0 0 a Oy 7 O7 NI-v Storm Sewars 1NO 4S'SZE of 0Es £ti:u-1-666' uI 0S•9ZE MO 00.9ZE MOM 00' 0 0 O u7 col 4s 0 0 ni 4s 0 0 sri 4s IP'13 •^ul v 13 W!a L7 0, ti O 0 r sa+o gas ti •13 •nul � y •13 •nul ' P •I3 W?a / 00+0 ems , ! - - v w 0 m O CO O CD O Storm Sewers 0 W �� `� 0 0 rw ri 0 0 0 ai ui nr E ul 00' Iienn 0 0 cci 0 41 0 a 0 0 05 0 0 0 0 ' L'Z88ti '13 'nuI 9'£68i'13 w!2a o `r' 1 - £88111.+Z e1S 11:Z88''13 "nuI il•'Z88b 13 'nuI t £6917'13 w!2i / 1 - £88-£1.+Z eiS 19"08817 '13 'nuI 9880 '13 'PwO 1 L) r- 0 sJ rD N r X e a a w co co co ci N 1\ 1- 00'00+0 e1S 0) W 0 0 0 41 v a a 0 01 a 0 1• 0 a 0 op 0 a 0 0 0 X ZOD e▪ rn la- s▪ t cn N 0 0 411 0 0 a Lc r~ 0 R. c- o 1) W Storm Sewars Storm Serfars InO E LS:ul- up 3no C 9 SS:uI- uI f In0 € 9 £S:ul- uI 1 no 1 L ZS :ul up Ino LS :ul uI ;no 09 :ul uI E ifO E 64 :u1 uI ino c 6 84:u 0 0 0 O ui 1L'9064'I3 'AuI O'Z£64'13 W!21 S6£'£9+£Z elS i5'5064 '13 'AU i£'5064 '13 'AU! 9'L£64'I3 W!21 ` 698'ZO+ZZ elS 19'0064 '13 'Aul I£'0064 13 'Aul 4'4Z64'13 W!a I Ud in 0 L£679+S1. EIS i9'L684 '13 'AU ib'L684 '13 'nu! 8'8464.13 W!i i ¢ ic" a n , 1 ql- tri felb N c £96'6Z+Z L elS ;Z'L68b '13 'mil;0'L694'13 'Aul L'O 64 '13 W12:1 \ n L9L176+1.1. elS ,917694 4684 '13 'nu l 9"4684'13 "AuI 0'8064 '13 W!2I , r ;e 0 LJ - 1,41176+8 elS ;6' 4684 '13 'AuI ;L' 4684 '13 'nu1 '13 WRi 1 II to J v IN 0 - L L 1' L £+9 elS . L'6994 '13 'nu! "6'8884 '13 'Aul 9"L684 "13 W!21 l 1 - 9L1."L9+1, elS 14-Z894 '13 'Nil i£'Z884 '13 'nul Z'£684 '13 W!21 \ 1 o ,� v a N n - 444' LS+O elS IZ'Z994 '13 'NA- IZ"Z99l '13 'Aul 4'£684 '13 W!2I \ -J K 4- - X xj rl 0 P N I - 00'SZ+0 elS ::Z994 '13 'Aul ;1.-Z88413.Au1 9'£6817 '13 W! ` — 00'00+0 elS } W 0 0 O u7 0 O cr. 0 0 0 M 0 O co 0 0 cr.; 0 0 ai vp 8 N 0 0 DO 0 0 0 a 0 0 N 0 0 0 CO 0 CD 0 0 0 00 4) 6' a 0 d� v 00 0 Os v a 0 4s v 00 0 7.' 6, as v a 0 o O v� 0 1n0 SL'blfib '13 'nuI 617.PZ64 '13 111!21 n to "! ,o 'v '— CV 4 89 :u1 - ZLb'£4 +6 e3S ra a I rn J N ul 4Z'174617 '13 'nuI 3nO 1.01'464 '13 'nuI la 6 o 6Z.9Z64 '13 w!21 coZ9:ul-991;44+8MS uI g6'Z464 '13 'mil WO SL'Z46b '13 'nuI 017'LZ617 '13 LLt1H �; 0 49 :ul - £OL'L6+9 elS M ul b9'4464'13'AUI '13 'AUI _1 }nO 49.1.1.617 4Z'6Z6b'13 w!2i m 09 =ul - 00'9L+9 e1S 0 _ E) F o 0 ul 6Z'0460'13 'nul MO 60'01.64 '13 'AU' £S'Z£617 '13 w!21 CC a -a- fig :ul - 0076+£ MS 6 C.) .. ti Ih g .J ul 4610617'13 'nuI ln0 1.1'L0617'13 'nuI SE1.£617'13 w!N s. " N c. w o 8S =ul - 00'86+0 MS u186'9064'13'AU In0 8L'90617 '13 'nuI ZO-Z£64 '13 w!21 00'00+0 MS r 0 0 a 11 a W 0 0 0 0 n a 0 0 ¢ a 00 0 a� a a 0 oy a Storm Sewars Y7 Ni. 0 0 0 0 U) v v 0 0 4fl v 0 v 0 O v 0 0 0 m 0 co j .---- lnO 1£'51.64 '13 'Au' 58'EZ64'13 un2I 49 :u1 - 96Z'99+0 els ul S6.4164'13 'Au1 ln0 9L14164 '13 'Au! 64'4Z64'13 W!21 00'00+0 elS o 0 o 00 o 0 N ai o rp v v v v v 0 0 CV. 0 0 a o zr o o rki co 4 0 Q) v 4 L.L1 a ( tv ¢Y ¢1 0 Cr) 0 CO 0 iD 0 0 J N u W a J fV Inc) 89 :ul ul trio 19 :ul ul inb 99 : u ul ;no b S9 :ul O O O O ;£'6Z64 'I3 'ftui '0'S£6•6 '13 w!b l 88'81.64 8£'8164 - 60910+6 ems i8'PZ6b '13 'Ael i£'PZ64 '13 'mil 97£64 '13 LIMA ' o s I {11 1 d pd o r .i ow - 91.01Z+9 ems I9•ZZ6b '13 'Aul I L'ZZ6b '13 'AUI 9'1.£6b'13 w! I I ' h co J - ZL'01.+9 e3S '13 'AU1 '13 'Au! O'0£64 '13 wl 1�+ za 4 1 I - 891'OZ+£ ems £'944 6'13 'AUI £'91.6b '13 'AUI B•EZ6b '13 w!a ` j 0 J 1 " f i� in M • 96Z•9S+0 ems 6'bl6b'13'nul L'4i6b'13'Au1 4'4Z64'13 w!N \_ 1 4 a a m - 1 -- -- 00•00+0 e3S \ { 1 m w 0 0 ai v 0 v 0 0 ci 4) 0 n v 0 0 di O) 0 0 rn a o co O 0 A 0 co o �o f } LL 0 0 v 0 0 P'? 0 J Vol�} w 0 J Storm Sewarr Storm Sewars an0 01 ZZI 99' l£E 99!ul-£96 ui 89'91. ISO 8E'81. b0'0E6 00" O 0 O 0 W '13 'nu! 4b '13 w!a 1 1• BIS Iv 13 'AU b'13'nut b '13 w!J \68+ 1 \ ! ° I ' 00+0 EIS a a 0 0. 0 0 0 O 0 0 0 0 ui v O 0 N a ti 0 1fl 0 1r h ce Storm Sew.rs }n0 S£'4Zi S9'Z£E L9 :u1 - 96Z w 09'ZZe IN) 0 VZZE 99'l£6 00' 0 O a) 0 30 '13 'nul iti'13 W!L1 '91.+1. eiS ,ti 13 -AUI ,b '13 'Au' v '13 W!a 1 0 O u1 a 01 J 0 N 0 r 00+0 eiS \ 1 a) 0 a) 0 0 0 0 a) 0) 0 O 0 0 a) 0 O 0 4• v 0 N 0 0 0 on 0 CO 0 0 u, 0 4 0 M 0 N Storm Sewers 4nO 6Z'0£E 6E17E6 69 :ul - EZZ' uI LO'OEE InO Z£'6ZE VO'S£6 00' iv.13'nut 4'13 w!I l; in 0 0 r ZZ+O eaS ;y 13 'nut ;y 13 'Au' ' '13 W!LI 1 C'} [V Uf N N 00+0 e3S -\ / Fy 1 a 0 r7 0 0 0 A O7 a 4 0 0 6.1 m 0 CO O 0 CD 0 O mnO 6L 6ZE 09'VE6 OL :ul - l6L' uI L9'6ZE In° ZE'6ZE ti0'9E6 00' a N� 0 01 4 0 0 cD 4s 0 0 c`7 a 0 a O a 3Y '13 'nul b'13 w!a co cv o N a L0+0 e1S ,y 13 'Au' 4713'nul b'13 w!2i I --- 1 �ii 00+0 ems \ i } w 0 0 ai co) 0s v 0 0 0 M 4s 0 0 ti 0 0 a CO 0 a a m F ID 0 CSS O u Storm Sewars 1 3n0 LL LZ6b '13 'AEI SL :ul ul 3n0 L £L :ul it 9 3n0 g 6 0 O OD 0 0 O KNJ . 44VY IJ �:U 6Z'SZ60'13 60'SZ617'13 r - 966'99+8 EIS :1'LZ6i '13 'ail '13 'AEI :9'LZ6b 8'ZE64 '13 w!b 17:\ / ` II 44 - 966'9L+8 EIS 'nul 'nil 0'0£6b'13 W! \' 0 f: 1 lg. 0 C m r co - 9£0'89+9 EIS ,O'£36b '13 'nul '8-ZZ617 'I3 'nul 6'LZ617'13 ui121 \ o \ - 1L0'OS+17 EIS I•.616b 13 .nul 6'8160 la 'nu! 5'bZ6b'Id W!b i \ I I� I l co O 1 6 • L£Z'9b+0 EIS 1'Ll6b'13 '^il L'bl617'13 'AUI b.17Z617 .I3 11W121 \, — n CV NI O 00'00+0 EIS 1 Q) W 0 0 a 0 0 v 0 0 a v 0 0 7' 0 0 CO O O 0 co a 0 v 0 O CO 0 N W O 0 a as Storm Sewers 1 MO LL'LZE ES'ZE6 SL:u1-00' ul ZL'LZE in0 ZS'LZE Z8'ZE6 00' 0 0 0 0 0 M1 • 0 0 0 a 0 a 01 90 {ti .13 'nu! b '13 W!L1 0 LL] r-i 171 6 00-0 e1S r4 13 'nul P13'nuI 17'13 w!}l \ \ 00+0 eIS 0 0 0 0 u; 6 s 0 0 UJ 0 0 O 0) 0 0 0 0 (0 0 "7 O M 0 z 2 9/ v :n E O 1�0 S9'LZE 0b'Z£6 9L:u1-b9' uI L8'9ZE 3n0 S£17Z@ S9'Z£6 00• 0 0 ai OI 0 0 t6 0 0 0 Os 0 0 4s 0 0 6 5 Ib '13 'nul b'13 w!L1 th els CD o J d ti L0+0 elS ti'13 •AUI y'13 'AU! h'13w! J `,..Viii ER 00+0 elS 0 0 tri En ED w 0 0 0 o 0 0 0 0 0 Cr) 0 CO r~ 0 co 0 0 N w J y1 E 0 o oo oo o o oc6 ai rr- 0X 6~ 0) ) 03 0 0 ri Ch 0 0 hO 99'LZ6V '13 'AU' Oti.Z£fiti '13 121 LL :ul - Z£ l'ZZ+O eiS ul 1717'SZ617 '13 'Aul 1nO S£'i' 6ti '13 'Au' 992£617'13 WW!1:1 00'00+0 eiS V 0 0 0 0 0 0 ri ai Sri ti cri U, a1 01 a C a CD v v v � - -t W 0 m 0 0 0 0 co 0 v 0 r) w J Z Storm Sewars 1 in0 68'SZE 44' 4£6 81 :ul - 999' uI 04'SZE ln0 04"ZZE 99'4£6 00' 0 0 0 0 M 45 0 O 4y 0 0 1ri 1. '13 'AU]Co. 4'I3 w!b Q O P L0+0 BIS 14 '13 'nul I4"137u I 4 '13 wRi \ \''j 00+0 BIS 0 O v 0 O v - 0 0 4 v 0 O 0 0 SV 0 0 0,1 0 0 0 m 0 03 0 0 0 0 .c 47 0 43 O 0 4r 4' v a I. o 0 4r v O 0 4r v a 0 4r 0 � ,7 -a- o a 0 4r n c. ln0 l l'91.6b '13 'AUI 00' I Z64 '13 W!ld ry a r inb£I. :Ul - ZSE'Zl+OI eIS i a I;;:, r UI 917'9164 '13 'AUl #n0 9Z'916b '13 'AUI a E9-OZ617 '13 W!H a) SE'. :Ul - 466'08+8 eiS . � \C; 0 UI bZ'41617'13'AUI ln0 001464 '13 'AUI N 1A 71 o Z.R. 0 p g ckru 03 o E£'616b 'I3 W!H '4 Z£ I. :Ul - 810'6L+9 a#S I N ao- T 0 --J 6 `13o UI Zl£l6b 13'AUl ln0 Z9'Z464 '13 'AUI 99'LZ6b'13 W! A c a _c ce 08 ill - 9Z'96+4 elS — — — — — ,•uQi J M 0 0 UI 69' l 1.64 '13 'AUI ln0 6b' I l6b '13 'AuI 69'8Z617'13 W!Zi 0 a 6L :ul - 1.Z'60+E MS ! M J 5i O W a O M , 3 N N :: ill 6E'1064 'I3 'AUI 1n0 6E'9064 'I3 'AUI 99'l£64'13 W!21 1 D M 4 _ 00'00+0 e#S \ I Er O 0 ¢r _ID -a- IJ I a 400� -a- a 0 ' 4r v 0 d 4 -a-at a 0 ET]4 0 0 nr 0 Storm Sewars 3nO 48'94E 8Z'LZ6 48 :u- - Z6' uI Z9'S4E 4nO Z9'Z4E s9"LZ6 00' 0 0 Y 0 0 RI 47'13 'null 4 '13 w2i co co .m Ta h I n --,1 4 4+0 eaS y.13'null ti 13 'null h .13 wRi itl‘ 00+0 BIS a O Rl 4Y w 0 A v 0 0 R1 Ci 0 A 0 0 CV a O) O O a L6 0 0 m O Storm Sewars 1 1 1 1 1 1 1 1 1 1 Storm Sew=rs 1�0 LL'81i 817'8ZE 98 :u-1- 699 ul 617141E MO 617' 11E 69'8Z6 00' 0 0 50� 4s 0 0 0 0 0 4s 0 0 hl 0 0 4s 0 0 0 41 'AUI i17'13 17'13 WIZI 0E+0 els 1 1 1 0 0• \ \\\Ini‘ N V r 10'13'AU 17 '13 -Au' 17'13 W!Zi \\; . 00+0 eiS \ I 0 0 c0 0 0 A 0 0 Ch 0 0 n i ¢s 0 0 (D ;711 0 0 O ✓ 0 0 0 0 00 0 0 (D O .0 Ct 0 0 6 n> E 0 0 o 0 0 0 0 0 0 0 N v- . vy 0 0 N vy 0 00 0 0 'q. 4y 0 ln0 2'8164'13'Aul 4E'4Z64'13 w121 89 :ul - OO'SZ+O elS ul LS'91.64 '13 -Au! 1n0 9L171.64 '13 'mil 64'4Z64'13 Mid 00'00+0 elS 0 0 0 E o 0 0 4 4 0 w v v v w 1 I / J hl GO 'R ar 0) ,7; ✓ v v 0 rn 0 CO 0 a co 0 0 CO Storm Sew rs ln0 v6:ul - ul ln0 6 E6:ul - ul lno t Z6 :ul - ul 3n0 17 l6 ul uI t ;n0 t 9 06 :ul 9 68 :ul ul 9 #n0 0 91 0 0 V 0 0 0 0 1E1l617 '13 'nuI 9 lZ617 13 w!el 56'946tr 65£l617'13 60IE m a Nt t+££ 94+I 4 MS I L4617'13'nuI '13 'nuI 8'lZ6ti'13w!?I @ 17€99+OI.1 MS1i-- 19'916ti '13 '^ul v•916v 13 'AU' Z'1Z64'13 w!H 7 1 \ J 6£l'L1+04 MSI 'nul 16P'13 'nul 17'91617 '13 w!2J 1 I ;; -. - SLL'£Z+8 MS �S' l 16t' '13 'nuI .£'li617'13 •nuI 9'L4617'13 w!a 1 J ` 1 - 9ZE8C+9 MS 'Z'9061' '13 'nuI 'L P064'13 'nuI E'91617 '13 W!H , 1 j • 1.8£'£8+E MS 6.Z06b '13 'nu1 £'0064 '13 'nu1 b'VZ6V "13 W! J I N ' w J / I 00'00+0 MS \ 0 0 ri a a 0 a O v 0 O vi 0 O m 0 a a ti a 0 0 0 0 0 0 0 0 0 O) 0 0 CO 0 co 0 0 u) 0 0 w 0 a N Storm Sewrs uI Inc OO4 :u7 ul 1n0 66 ul uI in0 9 96 :ul uI Inc 0 96 :ul ul 1n0 2 0 96 :u uI c trio 8 0 0 0 0 0 0 Co m 0 0 00 0 o� 0 ap of a� m I9-Z1.617'13-nut Z'0Z6v'13 W!a -.I o rti v• A a O 170£7L+4 4 e1S i1- 4 WV' '13 -nuI 19'446ti'13'nul 4'0Z6ti'13 w!2i V 4 '' Xi �. 0 12) - 4L'£Z+04 ems i 4' l 46b 'I3 'nul i6'01617 '13 'AU] 9' 1•Z6P'13 w!t1 I N 't a b in 4 - 989 09+6 ems '1 0464 '13 'nuI 'Z'046ti '13 'nuI W!� 1 co6'£Z6b'13 J 0 7 - hL VZ17+9 e1S/ '1;606b '13 'mil '6'80617 '13 'nuI Z'9Z6ti'13 WR! N - 90L-1Z+9 e1S :E'L06h'13 'nuI :4'L06b '13 'mil l'EZ6ti'13 W!� in 0 0 o ^ N 0 0 1 it 0 i ...,- R_ - £40'86+Z ems :9'9064 '13 'riot :E'90617 '13 'nut 0 lZ6ti '19 W!a \ 1 Ij ^ ry j 6..„5,_ P. E 1 - E1'9L+1 e1S 1Z•9064 '13 'riot 1170617 13 'Nil £.94617'13 w!LI l— r \1\, J 00'00+0 e1S 0) W 0 0 CO 0 0 CFI CO 0 N n 0 0 0 O O co 0 O 0 LID a 0 0 uJ a 0 N J a C; a Storm Sevu.rs 1 ul 3fOs Z 0 4 '13 'Au! 1£'6164 L'0£64 '13 W!?:1 1 - 9L'99+0 ems 0 19'9464'13 'AUI '13 'AU IS'Z l64 0'1.£64'13 W12i - LZZ'9Z+0 e3S L'6064 '13 'AuI L'9064 '13 'Aui ; D'Z£64 '13 W!ZI 00'00+0 ems , \ o o Q Q Q c 0 •i Y c1 0 O ci 01 0 0 0 CO 0 0 0 0 v 0 —J r Storm Sewers v ,o0 4 i O O O O O O O O O O O fD R1 OD '4 a a a• a1 0 O O 0 0 in0 91. 4464 '13 'AU 9Z'OZ6413 W! 40l :el - 9ZZ' 49+0 eaS up £97464'13'nu1 In° 99' 4164 '13 'mil 941OZ64 '13 W!Zi 00'00+0 eaS O 0 O EC O O O O co R1 ra 4) 0� 05 Q1 v .7 -7 Ill 1 O 0 0 O O O 0 V O •1 0) 4• 0 as O W O O O 0 0 O Storm Sewars uI 1n0 901, :ul u! i ln0 2 9 901. :ul ul 1no 6 0 0) 0 O 47 0 O O 0 a3 CO 0 of 0 IM co co 16'0684 '13 '^ul Z.6684'13 w!21 n a - I. l'OZ+04 e1S l9'0684 '13 '^UI 1£'0684 '13 '^ul 0.9694 "13 w!H \ 1 j F?s 12 n 7 i 4 - ZED 4+6 e1S PL'8884'13 '^ul r5•8984.13 -^ul 1.'9684'13 w!21 1 — --- — —� v - 694'E9+L ems :4'L984'13 "^ul :Z'L884 '13 '^ul L'£6917'13 w2i \\\ ` 1 47 e-31 c.s 7iP 1 8L'19+9 ems :6'9894 '13 '^ul '4'9884 '13 '^UI 9'£684'13 w!21 \ f n `1 ` IC,\ C -. it 32> O C.C. - 4LL'86+9 e1S .Z'9884 '13 '^UI O'9884 '13 '^ul S'E684'13 w!2i \ N if .i r iri s -I N 0 a - Z61.'99+9 e1S 19-9994 '13 '^uI iC' 5884 '13 '^U I 9'4684 '13 w!21 d - G N - 1.96'ZL+4 ems ;6'4994'!3 '^UIit'4884 '13 '^ulS'S694 '!3 w21 1 - 69L'£9+£ ems :Z'4894 '!3 '^u1 :0'4894 '!3 '^UI 9'9694 '!3 w!LI 11\ o ? g - 99919L+Z e1S .S'£884 '13 '^u! O'E994 '13 'Au' '13 w!2i ct J 0 0 i,,6'4684 da - 806'L8+1 e1S 1.2884'13 '^UI I- 884 '13 '^UI 9'£684'13 WRi 00'00+0 e1S 0 0 ni 4y 0 d ui 0 v 0 d al ro 0 0 0 0 ti ti 0 C} 0 0 0 rn 0 0 CO a 0 0 to 0 0 0 0 0 0 1 1nO 98'Z L6tr 13 'Aul Etr'LL6tr 13 W!H 8 L L :ul ' 691.'96+9 Q1S in LLL 9 L L leg' LL6tr'3'Au1 3£E'Ll6tr'3 I-PL1.6tr'13W!dd nut _ I kP 1 I..ii ' Jl- iIL•E9+901S 1 I ul 9L'606tr ' O LE'606tr 13 '13 • 'Au 'Au t E5'9L6tr '13 W!I: \ \ G b ;ul £ZO trr+9 ais 1 N WO u 1 0 L 0061 06'868r I3 '13 'Aul 'NA! 41 3 ; ,,t --- .8' p L6V 'I lw-Mod .= co SLL all -ZSLC6+£ R1$ 1 a 'i �. rn 0 , y5 � L 5 1nO UI 9tr' L68f 06'0681, EZ'6681- '13 'AuI 13 'Au' 13 W I'd \ 1 00'00+0 EIS I 8 8 1 Pi 8 Storm Sewers 1 1 1n0 LLL:ul UI C 1n06 944 :u O 0 4'LL64'13 w21 • at M - Z96"ZL+Z EIS iL'6064 '13 '^W E'6064 '13 'nut 9 9464 'I3 w2i ` i 1 - LZ'£E+Z e1S 1--0064 "13 -^uI 6'8684 13 'AUI B- I464.13 w1b \ \ I Cd a N I \ \c** \ \ I 00'00+0 e1S , 0 0 0 v 0 0 CD 0) V 0 0 0 Of v 0 0 rn v N N 0 O N N N O Ln ifl N 0 A J N = Storm Sewam )no 6 OZ 0 0 SD 0 C7 V Y YOY 17 ""i L Q 1.64 '13 w!b m - 69S16+4 e3S 18'0[64'13 'AuI 19'0464 '13 'AUI L'S464'13 w! I n Ce,h - 88Z'S9+4 e3S S'6064 '13 'AUI £' 6064 ' 13 'Au l 9'9464'13 w!2i J co co 117 co 00'00+0 ems 0 0 ry 0 0 cr.; 0 0 r-i 0 4' 0 0 0 0 0 45 • 0 0 0 L Ul 0 0 0 0 w co 0 00 C. col; � 0� v v OS 0) 0 ei E; v 00 v 00 0 ri. 4� v 0 4 v 0 N T Storm Sew rs ul ln0 £ 9 4ZL :ul ul Inc CZl :ul 0 O 0 0 Lf'J 0 N J 0 i9 VUfiV IJ'AU! 9'6064'13 W!a 1" - 846'98+8 e3S ;S'4064 '13 'Aul L'C064 '13 'Au1 9'6064 '13 W!Zj h, i . J O O - 804'45+8 e3S V 'L'Z064'13 'Aul 197064'13 'Aul 9.1.1.64 '13 W!t:1 - 904'SS+9 e3S 8'0064 '13 'Aul 19'0064 '13 'Aul S'4164'13 W!21 0 0 CO i . ` j` - 98Z'9 L+£ ems l'6694 '13 'nul 6'8684 '13 'AUI B'1164'13 W!N 0 0 Ln \ I , 00'00+0 e3S v w 0 O ai 0 O 0 O U7 0 O O 0 O CO 0 0) 0 0 CO 0 0 iD o 0 0 0 O 0 J Li VVO 6b £6 90'668 9Zl :u1 - 996' UI LL'Z6S MO 96'06S £Z-668 00' 0 0 O 43 0 O 0 O 4r 0 0 Qf as ro 0 0 (0 !n ro 0 0 Ch 07 04 It '13 'nu! b'13 W!a S+O els b '!3 'nu! b •13 'nu! b .13 w!a I•' 1 rn Ill 00+0 eis r / 0 0 0 0 4r 0 0 SV 0 4t 0 O I+) O7 DO 0 O 0 0 0l 0 lb 0 0 IG 0 - In 0 0 0 N J W V1O 9S'Z6f 90'668 LZC :ul - 440' ui 94'Z6f MO 96'O6f £Z'668 00' 0 0 U7 O 0 0 0 0 r7 Do a O G) 'pig 'AII 4'13 1111N er N l` 62 40+0 eaS '4 '13 'Aul ,4.13 'Au' 0 '13 Lu!21 -� 00+0 e;S /N) 0 0 vi 4 0 O R1 O 4) a a c7 0 0 O Q1 f� 0 0 0) O co 0 n a m 0 0 0 M a J W t1 a J I Storm Sewsrs 1n0 6Z l :ul u1 L 1nb L Zi 0 C. a 0 iri 0 0 0 ri 0 co 0 0 ti co Do 16'6881 '13 'AUI 81>6817'13 W1?3 - 9S9'91+E e1S 'S'88817 '13 'AU! 'E'88817 '13 'AU L'8684 '13 W!ZI 4 I / of N P.-) ka T/J 1.438Lt / • 6LZ17£+Z e1S Z•9981 '13 AU 0'£8817 '13 'Aul 5'176817 13 W!?i t 0 M (7 1 t m C1 j N 1 1 00'00+0 e1S Ca O -Tr a tri Cst 0 O 0 O cri d) co 0 O pi co 0 O M1 CO CO a O a m cta u7 n 0 0 m L N 0 N 0 a N Lft 0 M1 a J Lu 3�0 4S'886 9£"£68 0£ l :ul - S66' ul Z4'88E aR0 Z4'98E SS'£68 00' 0 O v 0 00 rn 0 0 m cO 0 0 ai co !4.13 "nil 4 "13 W!8 Kf [V 1l iO O 40+0 BIS !4'13 'Au' !4 '13 'AU 4'13 wlJ in a v \ 00+0eS f 1 ✓ w 0 0 ✓ y 0 0 rn cQ 0 0 47 CO 0 0 ai co ro 0 0 co co 0 0 co co 0 0 rn CO 0 M1 0 U} 0 07 u 1n0 60'88 9£'£69 L£L:ul-900• ul Z6'L8£ InO ZI7'98S SS•£68 00' 817 r '13 •Aul b '13 uaRi SZ+O MS ,\ jI Igo I - a t'13 •Aul 1713 •Aul b •13 LuN 25.0081 00+0 MS / 1 0 0 0 Q) w 0 O CO CO v 0 O 0 rn ro 0 0 0 0 0 47 co co 0 0 Lei co co 0 0 0 Cr) CO 0 SD O 7 Storm Sewers APPENDIX B.7 CU H P CALCULATIONS Kechter Farm Development Final Drainage Report Kechter Farms Preliminary Estimated Volume JVA Incorporated 1319 Spruce Street Boulder, CO 80302 Ph: 303.444.1951 Fax: 303.444.1957 Runoff Summary Job Name: Kechter Farms Job Number: 1844c Date: 9/14/2013 By: ANC Design Engineer: Design Firm: ifroject Number: ate: CEC ' JVA, Inc 1844c 8/2/2013 Fossil Creek Reservoir - North West Pond Fossil Creek Reservoir - North West Pond Approximate Northwest Pond Surface (NWP) Area 33 acres Approximate Fossil Creek Reservoir (FCR) Surface Area 754 acres Approximate FCR Storage 11,100 acre-ft Colorado Urban Hydrograph Prodcedure (CUHP) ssumptions: Modeled as one complete basin % Impervious is estimated on current site plan Developed Site Characteristics Total Developed Area 56.24 acres Total Undeveloped Area 115.62 acres Total Site Area 171.86 acres % Impervious Area 32.73% 1 I Retum Period (% chance of occurance/yr) Historic Developed Historic vs Developed Comparison Excess Runoff Volume (ac-ft) NWP Water Surface Elevation Increase (in) FCR Water Surface Elevation Increase (in) Excess Runoff Volume (ac-ft) NWP Water Surface Elevation Increase (in) FCR Water Surface Elevation Increase (in) Developed less Historic Excess Runoff Volume (ac-ft) NWP Water Surface Elevation Increase (in) FCR Water Surface Elevation Increase (in) 2-yr (50%) 0.07 0.03 0.00 3.13 1.14 0.05 3.06 1.11 0.05 5 yr (20%) 0.54 0.20 0.01 5.55 2.02 0.09 5.00 1.82 0.08 10-yr (10%) 2.17 0.79 0.03 8.74 3.18 0.14 6.57 2.39 0.10 25-yr (5%) 6.22 2.26 0.10 15.28 5.56 0.24 9.06 3.30 0.14 50-yr (2%) 10.07 3.66 0.16 21.96 7.98 0.35 11.89 4.32 0.19 100-yr (1%) 15.91 5.79 0.25 31.42 11.42 0.50 15.50 5.64 0.25 Average Annual Precipitation - Western Regional Climate Center (North Poudre Irrigation Reference Only) Assumptions: Soil Group: C Assumed Composite C value for 2-yr storm Area (ac) 171.86 CH,uo,K = 0.06 CINa„a,° = 0.29 Month Avg Monthly Precip (in) Historic Developed Historic vs Developed Comparison Historic Volume (ac-ft) NWP Water Surface Elevation Increase (in) FCR Water Surface Elevation Increase (in) Developed Volume (ac-ft) NWP Water Surface Elevation Increase (in) FCR Water Surface Elevation Increase (in) Developed less Historic Excess Runoff Volume (ac-ft) NWP Water Surface Elevation Increase (in) FCR Water Surface Elevation Increase (in) Jan 0.37 0.32 0.11 0.01 1.52 0.55 0.02 1.21 0.44 0.02 Feb 0.49 0.42 0.15 0.01 2.02 0.73 0.03 1.60 0.58 0.03 Mar 1.2 1.02 0.37 0.02 4.94 1.80 0.08 3.92 1.43 0.06 Apr 2.01 1.71 0.62 0.03 8.28 3.01 0.13 6.57 2.39 0.10 May 2.78 2.37 0.86 0.04 11.45 4.16 0.18 9.08 3.30 0.14 Jun 1.83 1.56 0.57 0.02 7.54 2.74 0.12 5.98 2.17 0.10 Jul 1.56 1.33 0.48 0.02 6.43 2.34 0.10 5.10 1.85 0.08 Aug 1.43 1.22 0.44 0.02 5.89 2.14 0.09 4.67 1.70 0.07 Sep 1.3 1.11 0.40 0.02 5.35 1.95 0.09 4.25 1.54 0.07 Oct 1.11 0.95 0.34 0.02 4.57 1.66 0.07 3.63 1.32 0.06 Nov 0.6 0.51 0.19 0.01 2.47 0.90 0.04 1.96 0.71 0.03 Dec 0.46 0.39 0.14 0.01 1.89 0.69 0.03 1.50 0.55 0.02 Annual 15.14 1 12.90 I 62.36 I 49.46 FORT COLLINS, COLORADO (053005) Period of Record Monthly Climate Summary Period of Record : 1/ 1/1900 to 12/31/2005 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual Average Max. Temperature (F) Average Min. Temperature (F) Average Total ;Precipitation (in) Average Total SnowFall (in.) Average Snow Depth (in.) Percent of possible observations for period of record. Max. Temp.: 99.6% Min. Temp.: 99.6% Precipitation: 99.6% Snowfall: 99.5% Snow Depth: 50.1% Check Station Metadata or Metadata iiraphics for more detail about data completeness. 41.2 44.3 51.0 60.3 68.9 79.1 85.1 83.3 75.2 64.3 50.9 42.7 62.2 13.6 17.2 24.0 33.0 42.1 50.4 55.9 54.2 45.1 34.2 23.0 15.6 34.0 9.37- 0.49 1.20- 2.01 2.78'''1.83 ,1.56 1.43 1.30, 1.1 l ' 0.60 9.46, ;15i3 6.2 6.8 10.4 6.5 1.1 0.0 0.0 0.0 0.5 2.9 6.7 6.1 47.2 1 1 0 0 0 0 0 0 0 1 1 0 Western Regional Climate Center, l rcc a dri.edu Follow Us: Enter ZIP, City or Place (e.g. Disney World) Exact weather for any address or landmark in the U.S. TRY IT Sa ed 84°F Locations Fort Collins, CO (8... SEND TO MY PHONE Sign In Save a Location PUT THIS ON MY DESKTOP STORAGE WARS NEW SEASON TONIGHT 10/9C iRn Real Life. Drama. CLICK TO EXPAND Home Forecasts Monthly Weather for Fort Collins, CO 80523 RSS Share Emaa Bookmark Pert Today f Hourly ) Tomorrow Weekend 5 day 10 day Monthly Map Monthly Averages for Fort Collins, CO (80523) [ English 1 Metric ] Monthly Averages ]J Table Display Graph Display Temperature (OF) Precipitation Avg High ,J Record High ®Avg Precip. JJ Avg Low LI Record Low SSmTORAGE WAWR SNEAK PEEK S100K SWEEPS f NEW SEASON 1! "— �— P:= I Real Life.Drama. TONIGHT 10/9C Today's Top Picks • Mosquito acttvlty forecast • Best Weather by wedding month • Summer grilling: Flank Steak • Photos: Cute Pets • Important asthma triggers • Natural allergy relief • Your local garden forecast • Scenic drive: Georgia Gold Rush Fort Collins - Do Not Buy Car Insurance! New trick allows any Colorado resident to get extremely cheap rates. Fort Collins: Dermatologists Hate Heri Local Mom Exposes an Anti -Aging Miracle. Her $5 Trick ERASES Wrinkles! Need a Summer Getaway? It's closer than you think. Downloac a free brochure today! Sponsored Links 3 52. in '- 10. in I- 8 in 6•in j 4 in 2:60 - ' 2.09 1.99 1..6L 2 In - 1.42- - T - 1:0' 1.20 ' 0.42- 0.3a Feb I Mar Apr ! May Jun I Jul Fort Collins, CO (80523) Weather Facts .98 0. • On average, the warmest month is July. • The highest recorded temperature was 103°F in 2005. • On average, the coolest month is January. • The lowest recorded temperature was -41°F in 1951. • May is the average wettest month. Details Video Text 2 0.49 Averages FREE Trial: Larger Radar Maps & No Ads - Learn More More Resources Find Local Golf Courses Near Fort Collins, CO (80523) OR Enter Course Name 40) • PGA Tour This Week • Top 10 Golf Destinations • Local Pollen Levels • Surf Conditions CULINARY ALLY 22-23;201 Explore Cncycictpedia Glossai� 411(0 0 C¢1L1[3 rt1r:.:x:fS? EnterSearch Term Our Sites International Sites The Weather Channel Store En Espanol (Spanish) .. C Ktdy '; Brain (Fott4gnes) F_ ..l1i-D•tJ_(4 E Partners ThleLiome Depot:Rroject of the P.uCfiJx n Wel) il}s?u j cfs C 1 Y.Xiy..c1200 f tr icpeavg, 6'Rt= %MT !ks L?S.L I filgj 9 3 042;g11.(3Uie.0 �Yt�fi-1,�111e Mobile & Downloads Mobile. aE2e ktoo=' e •a I -Mil rai/K, t 0 (3 Car•YYJ7ia APPENDIX B.8 LEVEL SPREADER CALCULATIONS Kechter Farm Development Final Drainage Report Project Summary Report Project Description Worksheet EastBoxBeforeSplit Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 Bottom Width 10.00 ft Discharge 332.00 cfs Q100 before split ' Results Depth 2.79 ft Use 3'x l 0' box culvert Flow Area 27.9 ft2 ' Wetted Perimeter 15.57 ft Top Width 10.00 ft Critical Depth 3.25 ft Critical Slope 0.3241 % Velocity 11.91 ft/s Velocity Head 2.21 ft Specific Energy 4.99 ft Froude Number 1.26 Flow Type Supercritical 111 1 1 1 1 1 ' Project Engineer: Kevin Tone j:\...\flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10l13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 3 of 21 Project Summary Report Project Description Worksheet EastBox-EastSide Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth ' Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 ' Bottom Width 5.00 ft Discharge 124.00 cfs Q100 after split Results Depth 2.61 ft Use 3'x5' box culvert at split to east Flow Area 13.0 ft2 Wetted Perimeter 10.22 ft Top Width 5.00 ft Critical Depth 2.67 ft Critical Slope 0.4679 % ' Velocity 9.51 f is Velocity Head 1.41 ft Specific Energy 4.01 ft Froude Number 1.04 Flow Type Supercritical 111 1 1 1 1 1 ' Project Engineer: Kevin Tone j:\...\flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09l10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 21 Project Summary Report Project Description Worksheet EastBox-WestSide Flow Element Rectangular Channel ' Method Manning's Formula Solve For Channel Depth 111 Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 % Bottom Width 7.00 ft Discharge 208.00 cfs Q100 after split Results Depth 2.76 ft Use 3'x7' box culvert at split to west Flow Area 19.3 ft2 U Wetted Perimeter 12.51 ft Top Width 7.00 ft Critical Depth 3.02 ft Critical Slope 0.3904 % ' Velocity 10.79 ft/s Velocity Head 1.81 ft Specific Energy 4.56 ft Froude Number 1.15 Flow Type Supercritical 1 1 1 1 1 1 1 1 1 I Project Engineer: Kevin Tone j:1...1flowmaster11844c-Ievelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203 755-1666 Page 2 of 21 I Worksheet Worksheet for Sharp Crested Rectangular Weir I Project Description Worksheet EastOutfall-EastWeir-Q100 Weir spilling out of forebay behind east level spreader at east outfall Type Sharp Crested Rectangular Weir I Solve For Headwater Elevation Input Data I Discharge 124.00 cfs Crest Elevation 4,880.50 ft Tailwater Elevation 4,879.50 ft I Discharge Coefficient 3.33 US Crest Length 20.00 ft Number of Contractions 0 1 Results Headwater Elevation 4,882.01 ft ' Headwater Height Above Crest 1.51 ft Tailwater Height Above Crest -1.00 ft Flow Area 30.3 ft2 Velocity 4.10 ft/s ' Wetted Perimeter 23.03 ft Top Width 20.00 ft 1 1 1 1 1 1 1 1 I j:L..lflowmaster51844c levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09l10113 10:28:49 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666Project Engineer: Kevin Tone Page 1 of 1 Project Summary Report Project Description Worksheet EastOutfall-EastForebayNotch Flow Element Rectangular Channel Method Manning's Formula Solve For Bottom Width ' Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 % ' Depth 1.00 ft Discharge 2.48 cfs 0.02XQ 100 I Results Bottom Width 0.74 ft Use 9" wide notch Flow Area 0.7 ft2 t Wetted Perimeter 2.74 ft Top Width 0.74 ft Critical Depth 0.71 ft Critical Slope 1.1536 % ' Velocity 3.37 ft!s Velocity Head 0.18 ft Specific Energy 1.18 ft Froude Number 0.59 Flow Type Subcritical 1 1 1 1 1 1 1 ' j:1...lflowmaster11844c-levelspreader.fm2 JVA, Inc FiowMaster v7.0 [7.0005] 09/10l13 10:44:27 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-16fi6Project Engineer: Kevin Tone Page 1 of 4 Project Summary Report Project Description Worksheet EastOutfall-EastSpreader-Q2 ' Type Sharp Crested Rectangular Weir Solve For Headwater Elevation Input Data 1 Discharge 25.00 cfs Crest Elevation 4,882.00 ft Tailwater Elevation 4,880.00 ft 1 Discharge Coefficient 3.33 US Crest Length 190.00 ft Number of Contractions 0 IResults Headwater Elevation 4,882.12 ft ' Headwater Height Above Crest 0.12 ft Tailwater Height Above Crest -2.00 ft Flow Area 22.0 ftz Velocity 1.13 ft/s ' Wetted Perimeter 190.23 ft Top Width 190.00 ft 1 1 1 1 1 1 1 1 1 I Project Engineer: Kevin Tone j:1...\flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10l13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755 166fi Page 5 of 21 Project Summary Report Project Description Worksheet EastOutfall-EastSpreader-Q100 ' Type Sharp Crested Rectangular Weir Solve For Headwater Elevation Input Data I Discharge 124.00 cfs Crest Elevation 4,882.00 ft Tailwater Elevation 4,880.00 ft I Discharge Coefficient 3.33 US Crest Length 190.00 ft Number of Contractions 0 IResults Headwater Elevation 4,882.34 ft ' Headwater Height Above Crest 0.34 ft Tailwater Height Above Crest -2.00 ft Flow Area 64.1 ft2 Velocity 1.93 ft/s Wetted Perimeter 190.67 ft Top Width 190.00 ft 1 1 1 1 1 1 1 1 1 1 j:\...\flowmaster\1844c-Ievelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10113 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666Project Engineer: Kevin Tone Page 4 of 21 Project Summary Report Project Description Worksheet EastOutfall-EastSwale-Q100 Swale along back of lots to capture basin E21 runoff Flow Element Trapezoidal Channel I Method Manning's Formula Solve For Channel Depth IInput Data Mannings Coefficient 0.030 Channel Slope 0.5000 % I Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 5.00 ft IDischarge 13.50 cfs Results 1 Depth 0.74 ft Flow Area 5.9 ft2 Wetted Perimeter 11.10 ft Top Width 10.91 ft I Critical Depth 0.53 ft Critical Slope 1.8033 % Velocity 2.29 ftls I Velocity Head 0.08 ft Specific Energy 0.82 ft Froude Number 0.55 Flow Type Subcritical 1 Project Engineer: Kevin Tone j:1...\flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09l10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 6 of 21 1 Project Summary Report Project Description Worksheet EastOutfall-WestWeir-Q100 Weir spilling out of forebay behind west level spreader at east outfall Type Solve For Sharp Crested Rectangular Weir Headwater Elevation Input Data Discharge 208.00 cfs Crest Elevation 4,880.00 ft Tailwater Elevation 4,879.00 ft Discharge Coefficient 3.33 US Crest Length 25.00 ft Number of Contractions 0 Results Headwater Elevation 4,881.84 ft Headwater Height Above Crest 1.84 ft Tailwater Height Above Crest -1.00 ft Flow Area 46.0 ft2 Velocity 4.52 ft!s ' Wetted Perimeter 28.68 ft Top Width 25.00 ft 1 1 1 1 1 1 1 1 1 1 ' Project Engineer: Kevin Tone j:1...\flowrnaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10l13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203 755-166fi Page 10 of 21 Project Summary Report Project Description Worksheet EastOutfall-WestForebayNotch ' Flow Element Rectangular Channel Method Mannings Formula Solve For Bottom Width ' Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 % ' Depth 1.00 ft Discharge 4.16 cfs 0.02xQ 100 Results Bottom Width 1.05 ft Use 13" wide notch Flow Area 1.0 ft' ' Wetted Perimeter 3.05 ft Top Width 1.05 ft Critical Depth 0.79 ft Critical Slope 0.9061 % Velocity 3.97 ft/s Velocity Head 0.24 ft Specific Energy 1.24 ft Froude Number 0.70 Flow Type Subcritical 1 N 1 1 1 ' Project Engineer: Kevin Tone ]:1...\flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:44:27 AM OO Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 2 of 4 Project Summary Report Project Description Worksheet EastOutfall-WestSpreader-Q2 Type Sharp Crested Rectangular Weir Solve For Headwater Elevation Input Data 1 Discharge 43.00 cfs Crest Elevation 4,882.00 ft Tailwater Elevation 4,880.00 ft I Discharge Coefficient 3.33 US Crest Length 310.00 ft Number of Contractions 0 1 Results Headwater Elevation 4,882.12 ft ' Headwater Height Above Crest 0.12 ft Tailwater Height Above Crest -2.00 ft Flow Area 37.3 ft2 Velocity 1.15 ft/s Wetted Perimeter 310.24 ft Top Width 310.00 ft 1 1 1 1 1 1 1 1 1 1 ' j:1...1Slowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 (7.0005] 09/10l13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666Project Engineer: Kevin Tone Page 9 of 21 Project Summary Report Project Description Worksheet EastOutfall-WestSpreader-Q100 ' Type Sharp Crested Rectangular Weir Solve For Headwater Elevation Input Data I Discharge 208.00 cfs Crest Elevation 4,882.00 ft Tailwater Elevation 4,880.00 ft I Discharge Coefficient 3.33 US Crest Length 310.00 ft Number of Contractions 0 IResults Headwater Elevation 4,882.34 ft Headwater Height Above Crest 0.34 ft Tailwater Height Above Crest -2.00 ft Flow Area 106.5 ft2 Velocity 1.95 ft/s Wetted Perimeter 310.69 ft Top Width 310.00 ft 1 1 1 t ' Project Engineer: Kevin Tone j:1...\flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:25:45 AM ©Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203 755 1666 Page 8 of 21 Project Summary Report Project Description Worksheet WestBoxBeforeSplit Flow Element Rectangular Channel U Method Mannings Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 % ' Bottom Width 8.00 ft Discharge 212.00 cfs Q100 before split Results Depth 2.47 ft Use 3'x8' box culvert Flow Area 19.8 ftz Wetted Perimeter 12.94 ft Top Width 8.00 ft Critical Depth 2.79 ft Critical Slope 0.3544 % Velocity 10.72 ft/s Velocity Head 1.79 ft Specific Energy 4.26 ft Froude Number 1.20 Flow Type Supercritical 1 1 1 1 1 1 1 1 Project Engineer: Kevin Tone j:1...\flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 13 of 21 1 Project Summary Report Project Description Worksheet WestBox-EastSide Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth ' Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 % Bottom Width 6.00 ft Discharge 106.00 cis Q100 after split ' Results Depth 1.95 ft Use 3'x6' box culvert Flow Area 11.7 ft2 Wetted Perimeter 9.91 ft Top Width 6.00 ft Critical Depth 2.13 ft Critical Slope 0.3915 % t Velocity 9.04 ft/s Velocity Head 1.27 ft Specific Energy 3.22 ft Froude Number 1.14 Flow Type Supercritical 1 1 ' j:1...lflowmaster11844c levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666Project Engineer: Kevin Tone Page 11 of 21 111 Project Summary Report Project Description Worksheet WestBox-WestSide Flow Element Rectangular Channel I Method Mannings Formula Solve For Channel Depth 1 Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 % I Bottom Width 6.00 ft Discharge 106.00 cfs Q100 after split 1 Results Depth 1.95 ft Use 3'x6' box culvert Flow Area 11.7 ftz I Wetted Perimeter 9.91 ft Top Width 6.00 ft Critical Depth 2.13 ft Critical Slope 0.3915 I Velocity 9.04 ft/s Velocity Head 1.27 ft Specific Energy 3.22 ft 1 Froude Number 1.14 Flow Type Supercritical I 111 I Project Engineer: Kevin Tone j:1...Fowmaster\1844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09l10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203 755-1666 Page 12 of 21 Project Summary Report Project Description Worksheet WestOutfall-EastWeir-Q100 Weir spilling out of forebay behind east level spreader at west outfall t Type Sharp Crested Rectangular Weir Solve For Headwater Elevation Input Data 1 Discharge 106.00 efs Crest Elevation 4,880.50 ft Tailwater Elevation 4,879.50 ft I Discharge Coefficient 3.33 US Crest Length 20.00 ft Number of Contractions 0 1 Results Headwater Elevation 4,881.86 ft ' Headwater Height Above Crest 1.36 ft Tailwater Height Above Crest -1.00 ft Flow Area 27.3 ft2 Velocity 3.89 ft/s ' Wetted Perimeter 22.73 ft Top Width 20.00 ft 1 1 1 1 1 1 1 Project Engineer: Kevin Tone j:1...1flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:25:45 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 17 0121 Project Summary Report Project Description Worksheet WestOutfall-EastForebayNotch Flow Element Rectangular Channel I Method Manning's Formula Solve For Bottom Width 1 Input Data Mannings Coefficient 0.013 Channel Slope 0.5000 % 111 Depth 1.00 ft Discharge 2.12 cfs 0.02xQ100 1 Results Bottom Width 0.66 ft Use 8" wide notch Flow Area 0.7 ft2 I Wetted Perimeter 2.66 ft Top Width 0.66 ft Critical Depth 0.68 ft Critical Slope 1.2422 I Velocity 3.20 ft/s Velocity Head 0.16 ft Specific Energy 1.16 ft 1 Froude Number 0.56 Flow Type Subcritical 1 1 1 1 1 1 1 1 1 Project Engineer: Kevin Tone j:1...lflowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:44:27 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 3 of 4 Project Summary Report Project Description Worksheet WestOutfall-EastSpreader-Q2 ' Type Sharp Crested Rectangular Weir Solve For Headwater Elevation Input Data I Discharge 16.00 cfs Crest Elevation 4,882.00 ft Tailwater Elevation 4,880.00 ft I Discharge Coefficient 3.33 US Crest Length 160.00 ft Number of Contractions 0 1 Results Headwater Elevation 4,882.10 ft Headwater Height Above Crest 0.10 ft Tailwater Height Above Crest -2.00 ft Flow Area 15.5 ft2 Velocity 1.04 ft/s ' Wetted Perimeter 160.19 ft Top Width 160.00 ft 1 1 1 1 1 1 1 1 1 1 Project Engineer: Kevin Tone j:1...1flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 15 of 21 Project Summary Report Project Description Worksheet WestOutfall-EastSpreader-Q100 Type Sharp Crested Rectangular Weir Solve For Headwater Elevation Input Data 1 Discharge 106.00 cfs Crest Elevation 4,882.00 ft Tailwater Elevation 4,880.00 ft I Discharge Coefficient 3.33 US Crest Length 160.00 ft Number of Contractions 0 IResults Headwater Elevation 4,882.34 ft Headwater Height Above Crest 0.34 ft Tailwater Height Above Crest -2.00 ft Flow Area 54.5 ft2 Velocity 1.94 ft!s Wetted Perimeter 160.68 ft Top Width 160.00 ft 1 1 1 1 1 1 1 1 Project Engineer: Kevin Tone j:\...\flowmaster\1844c-Ievelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 14 of 21 Project Summary Report Project Description Worksheet WestOutfall-EastSwale-Q100 Swale along back of lots to capture basin E 19 runoff Flow Element Trapezoidal Channel ' Method Manning's Formula Solve For Channel Depth IInput Data Mannings Coefficient 0.030 Channel Slope 5.0000 % I Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 1.00 ft IDischarge 4.18 cfs Results 1 Depth 0.39 ft Flow Area 1.0 ft' Wetted Perimeter 4.20 ft Top Width 4.10 ft I Critical Depth 0.47 ft Critical Slope 2.0504 % Velocity 4.23 ft/s I Velocity Head 0.28 ft Specific Energy 0.67 ft Froude Number 1.52 Flow Type Supercritical 1 1 1 1 1 1 1 Project Engineer: Kevin Tone j:\...\flowmaster\1844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09110/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203 755 1666 Page 16 of 21 Project Summary Report Project Description Worksheet WestOutfall-WestWeir-Q100 Weir spilling out of forebay behind west level spreader at west outfall Type Sharp Crested Rectangular Weir Solve For Headwater Elevation Input Data 1 Discharge 106.00 cfs Crest Elevation 4,880.50 ft Tailwater Elevation 4,879.50 ft i Discharge Coefficient 3.33 US Crest Length 20.00 ft Number of Contractions 0 IIResults Headwater Elevation 4,881.86 ft ' Headwater Height Above Crest 1.36 ft Tailwater Height Above Crest -1.00 ft Flow Area 27.3 ft' Velocity 3.89 ftis Wetted Perimeter 22.73 ft Top Width 20.00 ft 1 1 1 1 1 1 1 1 ' Project Engineer: Kevin Tone j:1...1flowmaster11844c levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10113 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 21 of 21 Project Summary Report Project Description Worksheet WestOutfall-WestForebayNotch Flow Element Rectangular Channel I Method Mannings Formula Solve For Bottom Width IInput Data Mannings Coefficient 0.013 Channel Slope 0.5000 % 1 Depth 1.00 ft Discharge 2.12 cfs 0.02xQ100 I Results Bottom Width 0.66 ft Use 8" wide notch Flow Area 0.7 ft2 I Wetted Perimeter 2.66 ft Top Width 0.66 ft Critical Depth 0.68 ft Critical Slope 1.2422 % I Velocity 3.20 Ws Head 0.16 ft Specific Energy 1.16 ft 1 Froude Number 0.56 Flow Type Subcritical I 1 1 1 1 1 I 1 1 Project Engineer: Kevin Tone j:\...\flowmaster\1844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09l10/13 10:44:27 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 4 of 4 Project Summary Report Project Description Worksheet WestOutfall-WestSpreader-Q2 Type Sharp Crested Rectangular Weir Solve For Headwater Elevation Input Data Discharge 16.00 cfs Crest Elevation 4,882.00 ft Tailwater Elevation 4,880.00 ft 111 Discharge Coefficient 3.33 US Crest Length 160.00 ft Number of Contractions 0 1 Results Headwater Elevation 4,882.10 ft Headwater Height Above Crest 0.10 ft Tailwater Height Above Crest -2.00 ft Flow Area 15.5 ft' Velocity 1.04 ft/s ' Wetted Perimeter 160.19 ft Top Width 160.00 ft 1 1 1 1 1 1 1 1 1 1 ' Project Engineer: Kevin Tone j:1...\flowmaster\1844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09/10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 19 of 21 111 Project Summary Report Project Description Worksheet WestOutfall-WestSpreader-Q100 I Type Solve For Sharp Crested Rectangular Weir Headwater Elevation Input Data I Discharge 106.00 cfs Crest Elevation 4,882.00 ft Tailwater Elevation 4,880.00 ft I Discharge Coefficient 3.33 US Crest Length 160.00 ft Number of Contractions 0 1 Results Headwater Elevation 4,882.34 ft Headwater Height Above Crest 0.34 ft Tailwater Height Above Crest -2.00 ft Flow Area 54.5 ft2 Velocity 1.94 ft/s ' Wetted Perimeter 160.68 ft Top Width 160.00 ft 1 1 1 1 1 1 1 1 1 1 1 Project Engineer: Kevin Tone j:1...\flowmaster11844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09I10/13 10:25:45 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 18 of 21 IProject Summary Report I Project Description Worksheet WestOutfall-WestSwale-Q100 Swale along back of lots to capture basin E18 runoff Flow Element Trapezoidal Channel I Method Mannings Formula Solve For Channel Depth IInput Data Mannings Coefficient 0.030 Channel Slope 2.0000 % I Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 2.00 ft IDischarge 4.59 cfs Results I Depth 0.42 ft Flow Area 1.5 ft2 Wetted Perimeter 5.44 ft Top Width 5.33 ft I Critical Depth 0.41 ft Critical Slope 2.0438 % Velocity 3.01 ftls I Velocity Head 0.14 ft Specific Energy 0.56 ft Froude Number 0.99 Flow Type Subcritical I 1 Project Engineer: Kevin Tone j:\...lFowmaster\1844c-levelspreader.fm2 JVA, Inc FlowMaster v7.0 [7.0005] 09l10/13 10:25:45 AM ©Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 20 of 21 APPENDIX C FIGURE MAPS (See Kechter Farm Plan Set for to scale drawings) Kechter Farm Development Final Drainage Report DRAINAGE MAP LEGEND S 2 17, „ i' t !iI _- .1':al cl;'CI' `:� ,I•yr,l .F •,-,,Il..,I:1 niiii,t. .J:7. :2,fii:t' 3E. i,t t1,^�1;1❑ ik' rIi a,t;tai•I[1r j1 A:deb Y 1 r....w.,. • 13..19.7_i..J..;;nL,tt..:aia' n1jC" •EI nirN °wta", , , , , s:::r: :.uutlnc:N.lwrl Fp'.E;pkgl.,. ���1 7 C - ,- ' .,..`7tiiiHiiiu,^li;r...w..,.,. ..etetnl , I`1 . etCNe a e1pGCl .,. , �f+ciCJiuf7...,tiJf S.tt� lit ,c1 M 't Id -, 1 10�r, k c "aE Y: 1 r,l ,J Eii 4,,.,..I7...`,Nw..,.....;,..1 i :i,. 1 .....E -. 7.~ .4, ilil �% .1I.It 1:1 GJ HOMESTEAD POND t .: MUSKRAT DITCH iE 0 Ir 3 KINARI MIDDLE I i I t.l .c.,.c.a e.,a,vW iF it,2ii kb,. 1 ai. if ::StcyiF: ,i rs 7BGL1t ROAD h ` 11CNIER FARM WTPARCE ,n{ C3 111 Cle i4.. « ljtl'„nl:lrllI ;1 ,,.•.•,.li,-ynM>, .IghIdt:nd>j7r..,tit.. ,r,w, cl Ea,IEeEo1,w e�mo:.. x.. - '{ t t:t ,34� E:I I. 'iJ�" 's•'q"•iT17" #4�x !..alI,.3 .-.:-ate:.,. �,.p„• -.�:r. •;'7*:i: rcr;:. <_:-1 x_ _ . �.. nsi J 'n in 114. el; der ! 41 11, 1.4 it f1 I� Hdi:pl• w,.tiw.,,.wwwwwwv.wwwwwle 51�w,� t w vnnJl" mw, --.-.� .ww .,w.� .....> ,J . ' .taw,,, „'"nu...-_.•._. _ 1. tiger 1YiH c -I, n ,. R,it' , } HISTORIC DRAINAGE BASIN BOUNDARY (MAJOR BASIN) 1 HISTORIC DRAINAGE BASIN BOUNDARY (SUB BASIN) DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) tiry .w4M4Nu• w.ct vuu M!texfafv.wtuuuu FfE1 t,tnt .,,:-�,�scu:wassi��:.nrirn.�>utr,>.nnnal.l,.ii.%>.-.-.-I:i:.��"_•:_ a, NW „ FOSSIL CREEK RESERVOIR (AND OPEN SPACE) ___.... `.`fi= wwwnn _Im x Nf v! rs In 4?"_ �'Jkllrtrtr111010401"rtt J,+M!•'ir±l!'rMzi ,,r BASIN DESIGN POINT DRAINAGE BASIN IDENTIFICATION BUBBLE All = DEVELOPED BASIN DESIGNATIO .38 = MINOR RUNOFF COEFF1CIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR ..,,,..>~,.•.•> _~•.. n "n.. ,.,1.,.,.,.......,. r 1 a ifr 1.1 ,...,. -'.I-'^ .• »._. =i3f111np�iYgt n:fY:1n •'t..,,,i�' wlyi,_.e±.,x.tl.w ..... wNr.nry ��, �itll}III1. {tJt Y,: t.n 7M..... IlvnllhNw � 1 q .f .p: 1 li :141 •,HIEn i.. . ?r 1 1 ! 11 JVA, Incorporated Suite 200 25 Old Town Square Fort Collins, CO 80524 Info@jvajva.com Phone:970.225.9099 Fax: 970.225.6963 SSUE DESCRIPTION 0 uJ w 0 w DESIGNED BY: JTC DRAWN BY: ANC CHECKED BY: KAT JOB NUMBER: 1844c DATE: 03/2512014 QC JVA, INC 0 ce J.J IL L1.Y J 0 Lil HISTORIC DRAINAGE MAP 200 0 200 400 SCALE IN FEET SHEET NUMBER FIG1 � xr RF[S:HF:F>a^ L3iiilitl[SC31'ru.:1:;:� a�Mriiix £4jV'S' w. - - :::auure23;1"?# Ai i r , yr: } rr k1 �Ila:;�:I:t<.�xl'•.aJ4'If:::.nE:IJI ... ., , MI.i....... main, .. ,.. ' MAIL CREEK (UNPLATTED) ) ISr rq .;ryll .fh'lyur la, 03 :7gtiCKGraww.:o:r.;:. •• ni,`CS ssAa�.. ILIvrA °^L' �A u:a. „tc' GI I:lCI r: 1�1 A N Sto-li}xS Rif op 4Scl' =A":• .."F,K'ii•,i L^z,:iuzx:IS.' I" ... . e.11e. -1 4 t ,rIGY sts ...." uti_iA1:.:.:.. I N' »1'1 "r.. .,.,, • • 1, f, • DRAINAGE MAP LEGEND i r1f� 1 4 1 1 4 4 -.4 4 1 4 1 4 1 4 1 4 I .1' PROPOSED DRAINAGE BASIN BOUNDARY (MAJOR BASIN) PROPOSED DRAINAGE BASIN BOUNDARY (SUB BASIN) DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) BASIN DESIGN POINT DRAINAGE BASIN IDENTIFICATION BUBBLE Al = DEVELOPED BASIN DESIGNATI .38 = MINOR RUNOFF COEFFICIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR III, ;!a sia la .a s f f I ' f f f s ;I ....... .. L, tf VI A ............................. ..m1....1................. KEY MAP NTS or . .... ••••-,»L r.r... ,:rll!fli7liL:.jc:l�;. IIII Iij! ci y4 • ytis SYrk.,rl■IIs11�Ulr�r'0111"" 11�'� 11alinie*pauCio R; La I:. ts: JVA,Incorporated Suite 200 25 Old Town Square Fort Collins, CO S0524 E-mail: info..lvaJva.com Phone: 970.225.9099 Fax: 970.225.6963 REVISION I ISSUE DESCRIPTION a w w o DESIGNED BY: JTC DRAWN BY: ANC CHECKED BY: KAT JOB NUMBER: 1844c DATE: 03/2512014 C� JVA, INC OVERALL DEVELOPED DRAINAGE MAP 200 0 200 400 SCALE IN FEET SHEET NUMBER FIG2.0 Tract S UE,DE 11 r Froc: 771' 1 1 1 1 1 1 1 CATCH INLET Al 5' TYPE R INLET 1-5*-RCP- 21n RCP ....... 4' SD MH INLET A2 15' TYPE R INLET • ...VI ..... . . . 9 . . . , ,,,,,,, ,,,,,,, 1=11-41•111- -1=1"--11111 -411Ell--Mil HAMIlliFIEnMM ^11M-IMI 11.11.-111111- F101,4`.1,1L. INLET A3 15' TYPE R INLET MH-A10-1 4' SD MH MH-A5-1 4' SD Mil INLET A10 10' TYPE R INLET INLET A6 15' TYPE R INLET 18" RCP ract D NM MIN MIN MN NM NM MEE N,, -4 ,33 - traliVa ,11=11111MMININO 111.111 I 7 INLET A5 101 TYPE R INLET -MFPAT-T 5' SD MH 18" RCP INLET A7 10' TYPE R INLET MH-A9-1 SD MH WAIL% I SCALE IN FEET INLET A8 20' TYPE R INLET MH-A9-4 S' SD MH KEY MAP NTS DRAINAGE MAP LEGEND PROPOSED DRAINAGE BASIN BOUNDARY (MAJOR BASIN) PROPOSED DRAINAGE BASIN BOUNDARY (SUB BASIN) DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) BASIN DESIGN POINT DRAINAGE BASIN IDENTIFICATION BUBBLE All = DEVELOPED BASIN DESIGNATIO .38 = MINOR RUNOFF COEFFICIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR WA, Incorporated 25 Old Town Square Suite 200 Fort Collins, CO 1105221 E-mail: info@jvajva.cnrn Phone: 970.225.9099 Fax: 970.225.6963 DESIGNED BY: JTC DRAWN BY: ANC CHECKED BY: KAT JOB NUMBER: 1844c DATE: 03,25/2014 JVA, INC SHEET NUMBER i 2.4:',.) ' .,-. I „e- / e •ssif .;1,- t •14' i .1 1 ,"..•••1 S..t,' , ,...." ...."— ,,.....1.4•...14.0 um1rzatJ-a..•, "4,".I"4I u'nIt4"JI ui"p)I'11:6'".IS;.4•1;14;I. 1•I4 ;1 • , .','t, ....;'..•1•'. •'i'• ..'....,1••t -It rSn""Yr.'I.r ti')1 I iSId• i :‘:. 111 ./••(/ i 1'1 / ./ AI Ii , .. "/ S/1J / 1 j/ ,t ." I " r1..14 ;411.4.1•14•;••••" ••;/'-"4;';•.;";E'n•t••u. ••m''1•'• ,4,,,14j4:4,4;4•4-4/4/". •=444r-.);;;;40,44.141.1.1.1rrumaa.u.J.u.suirr)C:uustafflusilifiamsuassura-Aft=Ere,r,irgalarsEgisigs-3141/';;:a.444.--,.--- ....... .-,. .);;;;;;;;;;;;;;44:4 . ;;.;1;:z:l1.;,:.;-../1,-''4'1J.. J,1 .... illir Mr MOT INLET All 10 TYPE R INLET It • ONS111011 ••• 4 '1; 11 t 1 •""'“,,,"! r If 0 L. ri : •to ..... . 14 s's; -;. „.J.J1,17, ,jAr•vr.-- .ij 44 11 2.4 .. 4;:::•;'41;;;;•:IIII1.=•4.41414„ I•Ir" "•'' (;14'4' ;,••• .1,•,;(1 ... 14,1.4 Itt..41,..01.,,,,,, •';• -1::Eit '''' 1 ::?F'' , ,,,r,L,..:,' -;•:- ,,, lil;"'"'''' , , , . 2 i•lE ., P"I., "!. - . . . , • •;,.- ,!! • ...;.. ... ".".-."..'. «"•••••7• '' ' ' ' 7' ' ' " ; 0 ' 1 . . ,„. . ,. , ,. ,, , ,, ,• ,, ,,' ,1. ,. , . , ,.,,. . . k. . , , , , . 1 .. . . ... . a .,r . . . ro a , a,ti 1t. i. 1 „ 0, •,, 4.1 ) ;I;,. ;' i, / 1. "; 1„ ..• ;,.., ., ... .. .. .. ..J .s ..'.4 1 aI___......«.—,—.« I Ii 1' .14 r..1 ifi1 \:t :1'' I f 1/ I.J .1 1 1 , F1i44 !, 11, i ,'.‘'' I. . I I ' /I ', 4, 4, ' I 1 rr1g r 11l:i:g \ 444 • I . 1 I r •V l • • • •; ' ' 1 14 • GE 0 )2E'1'142 1•i . . . . . r) I 1A.0244 73 . . . . . . . .. JJ r i I ;[r 1,r •kr st J11 ) 1 R A . . . J • 1 ; E : 1 1-L 1I F j „ E it •11 . 4444 11 E 1, j i , t 1I1, I.l•"1 ! : 44. e: 7'1!:! 1; 1' 1 11 . 1, t 1 0 ,144 4 t •14 • 1 1 - , ) P It " ' A D 114 ./ . /, 1 j i i„ . . ., 1 C. . . •.T.E."'.' ' =« ••. •J •7i tE' t2 :•Ei ;1 ' i:, : :'*: '." • :.•'•." 1• : :•":: 4 1 : / 4 )1 2: . '71 ." 41 •" "• • 'i1 t. ;.: .'t r 4 .1 4 ; I .v / ' r • • u ; — _ . . .. - : . .• ;. •7 . 1 ; 14 . ,, 1 1 t} . I, 1 ! , ' iI1'r 'III h '!I l 111 i .i.i 1‘ ; 11 I; I4 1/4 „ ;a 41 t;1 ;1 4 lI 11 il' lI, R1 kI ;4;0I 1I1411 41'0 l.-E;I1 11I1. t I i 1 ..i - ,. I "lLI ATe !flO 14 ' 1 , . . . . . . . . . . E , 1 144 144 a . t i I • e l• It ; . • ,1 \ . . .. . . . . . . . . - Ess/ s 1 11 " 1 ; E r al : 1 ; 1 ) . ; T Z .5 ; ;! ; t « t t ; • i = 9 5 ; 1 1 1 f 0 ; ; ; = ; t ; ' " ; . . . . "• . . ; ; ; . ' . . . . . . . 7 - " " " ; ' ; 4 1 ' 1 " ' " ' " " " " ' " 1 $ m a k w m t a F „/1 91 • ^ . , . :! „•5T1 , I '.' I..'•.t , 4 1 „I : '3 1I17:,L -t 1 If - T F1 i 1W' s 1r •1 : 1 .. '..W4 . . 1It ; 5,. E 1 : 4, ''1,34'.1 1, ,1 1,-„ •:' 1,I : 1 : 1 11 i0 • 11 7r I:I.I. 1; 1i,„-:i1iI 11?- E; .' i , •i 1 . ‘7 1 s' ' Il1 ti//111Ii r1•: I i:, , 1 H1 1 t 1, T , . -i .1 T . , ,,' ;t L I' F ; . I11[111Jii,.,r1 , ,' • •'. •YrI.l 9 I1 •i • , !i. " - • .•. . I. 1, 111Is I, ' k1I ' .I 7 ' r l l ' ; d .J.J:1,IiiI1i:1 I „ r I11II'1 Tr •. J.. i rt': , i i ' i ' : i ,I i" • :fI ,A• , " t . : 7 ; ••E !i • "-. ., .. ..E . • 4 1 1 i D 1 l . ; =. 4 .. 4t l 1 . 4 . i i. t . .. ,.. . • 1 4"i 4,,„d':a • 41 :,4u0- , '•7,; ) • „,, ••. t',;, . •.; 4 •; •;•• "_'.'.,,' ...,L' •.. •.•;" ;. ,• ,•,• • 1.- - 1- „ ,, ; •- • " „;4 7 - ;;..;,,:1,, •1; ; "":•::.„1 .,, i,, .: ;• . . . ' :, . :'•4, - ,,,^ /• 1 ... ; \ '11 44 ,4:'1, 1 Ofr,,i4t j 1441A11'441L1f41% 4:,1 1 ltu, II ,.4714 h I t 1EL: H4i11 1101EI:13i .0]4,.c4Cl'1 7? « ,It, 1EIf,1!1:1 '1 4711713Iif i l' , A rTEUF 1t0 O la 1i . 4 . . .. . . . . . .. . . , ; 1 I ? t j E • a s •4 - 4 , n j ; i i j '' . 1• • • E Y • . • Ii !1•.il: j11, 0 1711 91 4Oig !!1 4. .;;14hE77IitEanarauI'° • - 17 41 au;;;4.;•;1;4.• •41117.4.•17:1. •••• 411 44 444444 i 4 . 4 4 1• ;; ; i E ; ; • : . . . . . 1 ; 0 4 , . 1 , L t t 4 „ , ; , ; , , J • I t • . .. . .S . . .. .. E . . . . 1 . . . ..I .. . .4 ... t . . . .. . .. .. .. .. .• .. .. .. . . ... . .. . . . ... . ... .... . ... ..... .. .. .....r . . . .. . . .. . ... .. . i .. . . . . .. . . . ' 1 1 , a - . . ...... 4 441 44 4 .1 . '`jy34144t , 44 • 1j5trlOI P -A 441 11 I.471yT44444 ,111 11 • i r 01. 441 4444 44 4 "IE It s ,1 t E 4 1:/ 1 - 1 :1 — . ;"ti i k, « . ..: ' • : j' -t lt , i• i• pl 'l ' !J'„ ,'• :.? ,! ,'- i t qi r. 1II:"1''F -: ,.Fl".'. :.. ,",a,I1F . _Ji7 t l Ca 4 I !'a,y , • l4:,; l.JF .1a F j: ,, ,l5 "w'"'1•."a ,0. A ' ' '' 1.,:. ..: . . j. .:!..=.. i . - t I l i 1 . .. ), ' 'i . ri 11 fI, a m l • t Il l l-g l : 1 l . . . . a s . 44 ' ,F •.ir E ?I; 11, 44 s 7".- la /i31F • - I -1' 1 .. . •;1 ,;.'44 ,. .4 :1 1 - . .• , t, . _" - . -. ,. . 4. ,. i" 'Ii .F ).. , 1- ,-•, 41 •1 • 6 ; :- s: 1 s l . C ' 43 l '" ' 4.1' . st W . ' ' n" '' a h . i „ , .. -' ' ' . ./ , . . ." " '.". - ! .. i a w ' s E m a a j VN 44.44 i El li1 lis:: A 14 44 l1i 44 1 'it 11'''/i'""A- "'''.4145u ,Fw 14o•"ttE, . t 144144 911.Nt 3 t(44 '.1111I') °°10"' 'I1111::;;;;, ;.,l;;1,:91.1 kii, 1 9 1'411 /tI :I1t''ejP :qt!i 1 44 I.:1''''1i i l:Ll, k 1:'1 ;. ..;..1: ''.,1\ii/4'•.;;\ 4WI.' 0 I . . . . . ,, :041 " 44 r I .E 7 • 1 : : 0(144 HH. ;1 I CH L,r ' 1 . . . . . . . . . 1 r i • ll i1 . . 11 _s,,,, sF t°F F 1 0 j 4 - ; 1 1 ' j . " 4 . 4 : " " , " ' 4 ..• • •F . . • r : .4 t........ ]IRC. 44 1 • • ; ; 44 '; E 44 t isos1sEz,.3 I/ 1 :7 1441 ,14911 444 . . .,li t tl r . , r .':. „- ' . -.t; _' 1 :. t i 1 1 i. l. ; : T t;: .ln .:1':« . : .: . ..' 4o lj 1 1 . 5 : , ;-• ., 1 . .. . . ;: ' . , . . . , , ; 7 r . r ll ri .- .. i ,r : 1 i 7 1 ' . 1. . . .. ,i . 1 t' . ,.1.i . i. ;r ; ;n ; r 4 ;i• 4 ;4. ;.i 1. .. .." . . . .t; 1 ° :4 . •ff .,0 .. " . .q ...fi „ . .. ... i . ...., ,. 4,. ...... ,..... .,.4 ,.1 , ,i4 .. ;• « .. l. .. .. 4) . . !" . iti .i•1 . , .1 .l• 1, : .t .. i .. . . I ... ..f1 ' .i .1 i . . . i .. .. .. -. ,. . -.(. .--, -—,. . t s: F . - 4 . , . . 1 1 -. E. ,. . 1 . .j % . . ';,, ,,'; , - ;, , i, I r - ,, ; -" . ,.. l i : . , , . . „ s , . !1 . . j j ', 1 • .'.. I ' I I 1 ..; 1 1t11-4 ,.. .. . . , I, f 1,... .• 1. •4 1I 1:1 1-44-;,kH ' J 1; ,. i 1% .1/4 sa.« , 44 ;„f „ -- 14 en11;14 1441lii 14 I 44 I ...I..e 44 il.." / t 4: ..ir f /, .4; ,__J- . i; 10''''II"' ar s,- „ i f <1 ...116 ,1 Ir,I' lri t,°It. ),ret 1 44ell.r IIIIi.1‘1', '1ii l:::54 t ')-443 A' .4 °1.Sr''1''1:I"1 1 1 I t .'hr41;0171:1;I144 4f1 1;444 712g1:1., 45a41i .H 'pir.1 i911 ,,,,,,„,' 1 1,/11 ,1 '".,,,4;.1 . . . . . • • • 1 •1 4; • - . • • " •• •• 4444 I . . 4 ' • •• E 1 71 .1 1 " 17 : „ e14 •71 1; I I44, E I l il 0 . u a E t - 4 , J 4 1 -1 1 . 1 : 4 a 1 : 1 • 5 1 1 T i . 4444441 . 1 1 • 1 , 4 44 E 1) ; 1 444 .:t„ .1 :1 • . ; tt"..:,•:7""•.-.•..".Li.a.. l-'01.1"1=.""'"•• •';.1• «., .........«;! ..•«.1..• .....1....1.1..1...:".. ......'.'.... ..-.44.:t. .....1..•..."........... S•.4,44 .g..e.; .........T4 •11.. :"'"''\:Ar . • ei ..Ef•LCM`, .^-!..• • .• .} I... . „. 17411111 ; 1.•• •• •••,1 1111 ....I...... I.Lf..00•,, 411 RJ9;411;I 1, :1"14X..i ••4 1ii1 i41•Il i• t .........ViEN64114 H gilgTf011µmkmm . .""M2 ^ 4,1•1 • :•j` ... 1• 1, .; „ .s , 1' 1; tj E 50 0 50 100 1!! SCALE IN FEET 1 SHALLOW 4491 11144 lo! 44144 444144 444414444 .11:1 11, 4.4 1EgE aa 11 Ru • - . 9407*0ILt,I.I-.#'PNawfoip#plroI• 4o tqsLo4a41pi1W1h14kdIp.ls10_11'411.40..461141‘1# Nin 4 rm1I MI4( wakw 11airli •. Ilan II14: :::: 111 44 1 OS 111\ WP41. 4 . IF .. iripolli iliiP4, • /1110 # KEY MAP NTS DRAINAGE MAP LEGEND El IN PROPOSED DRAINAGE BASIN BOUNDARY (MAJOR BASIN) Elm PROPOSED DRAINAGE BASIN BOUNDARY (SUB BASIN) --I> DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) BASIN DESIGN POINT DRAINAGE BASIN IDENTIFICATION BUBBLE All = DEVELOPED BASIN DESIGNATION .38 = MINOR RUNOFF COEFFICIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR 1344444444 WA, Incorporated Suite 200 25 Old Town Square Fort Collins, CO 80524 E-mall: Infogapa/va.com Phone: 970.225.9099 Fax: 970.225.6963 REVISION I ISSUE DESCRIPTION UJ CD crj J.21101P ItAir 15" RCP INLET B2 10TYPE R INLET •4". 41111111 INLET A13 10' TYPE R INLET/ TCHLINE SEE FIG 21. PROPOSED DRAINAGE BASIN BOUNDARY (MAJOR BASIN) PROPOSED DRAINAGE BASIN BOUNDARY (SUB BASIN) DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) BASIN DESIGN POINT DRAINAGE BASIN IDENTIFICATION BUBBLE All = DEVELOPED BASIN DESIGNATIO .38 = MINOR RUNOFF COEFFICIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR JVA, Incorporated 25 Old Town Square Suite NO Fort Collins, CO 80524 E-mail: info@jva'pa,com Phone: 970.225.9099 Fax: 970.225.6963 MH-A9-5' \ ` 6' SD MH \ \ \ MI- INLET�1 10' TYPE R INLE FUTURE / • / / // /, / INLET 'Al .4 NIP r / 10' TYPE R INLET - 15 RCP f�f INLET 10'TYPE RIN oft 1�IHk-C 1 8' DIA. / • / \s / / \, `• \ • *•••\ �• \ \ '4%\ .� / / INLET D12 15' TYPE R INLET MH-D12-2 / 4'SDMH f f / / MH-C3-1 5'SDMIj / / : rls4"\w '+ \ / MH-D12-1 4'SDMH / / • • • / • • • MH-D3- 5'SDMI MH-D4-2 5'SDMH • • \ • • \ • • • • 14. • • • LET 02 E C INLET r-r— f i INLET D4 .� 7- A,. ; TYPE C INLET t t t INLET D3 TYPE C INLET i • \ • • \.. • 11140 1 � 1 t1 1 t 11 1t 11 ma am ion islit • / Lot 1 Block 15 D13 1.46 m—— meaI——mr' ,11:iK ....ii • II= MI a M=I ...err •-ter,MIN SOONSW - MATCHLINE SEE .'.FIG 2.6 50 0 mmimmmmmill 50 100 IMM E-1 ROOKERY F KEY MAP NTS DRAINAGE MAP LEGEND El PROPOSED DRAINAGE BASIN BOUNDARY (MAJOR BASIN) PROPOSED DRAINAGE BASIN BOUNDARY (SUB BASIN) DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) BASIN DESIGN POINT DRAINAGE BASIN IDENTIFICATION BUBBLE All = DEVELOPED BASIN DESIGNATION .38 = MINOR RUNOFF COEFFICIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR JVA, Incorporated Suite 200 E-mail: Phone: S70.225.9099 25 Old Town Square Fort Collins, CO 80524 Fax: S70.225.6963 REVISION 1 ISSUE DESCRIPTION 0 LIU ci DESIGNED BY: JTC DRAWN BY: ANC CHECKED BY: KAT JOB NUMBER: 1844c DATE: 03/25/2014 JVA, INC KECHTER FARM - FILING LJJ 0 0 LU CL LLI 11.1 0 SHEET NUMBER SCALE IN FEET FIG 2.4 ►C I i i # CON,SV.LT!! G ENG!NEER5' �.. 12 MH—E8-1 6' SO MH INLET B11 15'TYPE RINL6� 50 • • ATCH LINE SE7 0 50 22 15" RCP 20 INLET B13 5' TYPE R INLET • \ \ 60" RCP 100 SCALE IN FEET 1B 12 41 M1-I—E16-3 8' DIA SD MH ECC .1 4i> KEY MAP S T N DRAJNAGE MAP LEGEN.,D III MI - • - - PROPOSED DRAINAGE BASIN BOUNDARY (MAJOR BASIN) Imo PROPOSED DRAINAGE BASIN BOUNDARY (SUB BASIN) DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) BASIN DESIGN POINT DRAINAGE BASIN IDENTIFlCATJON BUBBLE -a All = DEVELOPED BASIN DESIGNATION .38 = MINOR RUNOFF COEFFICIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR WA, Incorporated Suite 200 E-mail: Phone:970.225.9099 25 Old Town Square Fort Collins, CO 80524 Info@jvajva.cam Fax: 970.225.6963 ISSUE DESCRIPTION z 0 -65 w a ro W 0 c3 z DESIGNED BY: JTC DRAWN BY: ANC CHECKED BY: KAT JOB NUMBER; 1844c DATE: 03/25/2014 Cc JVA, INC CD z LL Ct 12C LLI W DEVELOPED DRAINAGE MAP SHEET NUMBER FIG 2.5 ct I • 44; %•• •••• Nr, -4-111tH—frl 5 6' SiS 441z1 19••••,.••••• INLET C7 TYPE D INLET •,•.•3,Kaa0W4Xicl;40;e2ma;',.Mit7N.M*7.40t--:.,:.K:71Kat,:ntinism*-1:rmttal:t.**YaniZ?.*:•osin!..11,.,,I.W INLET E17 10' TYPE R INLET men , ... ............. . . . nim -mu wig .. , ion IP. '1111 • • INLET D6 5' TYPE R INLET INLET C5 10' TYPE R INLET 30" RCP 1 ...... • • '''‘ \ \,., .... A \\ 1111-111-1111-1HI• %• MH—E17-2 5' SO MH . ................................... ... \N. -17 ,k A \A • 1 It —D8-1 4' \SD MH INLET D5 5' TYPE-PiNV MATCHUNE SEE FIG .4 ?It \ <5) \ • o `8 22 (5) MH—E10-1 •• ..... , ..... I ..... ••.-, . ATCHLINEEE FIG 2.8 50 0 MH INLET D9 15' TYPE R INLET 7111 ............ • 731,F,FHHIF . A 50 SCALE IN FEET 1 1 1 100 act 0 ,LJE,DE fif.,:31 1! I I IPI ..... ... • PARK ROM KEY MAP NTS DRAINAGE MAP LEGEND - • PROPOSED DRAINAGE BASIN BOUNDARY (MAJOR BASIN) PROPOSED DRAINAGE BASIN BOUNDARY (SUB BASIN) DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) BASIN DESIGN POINT DRAINAGE BASIN IDENTIFICATION BUBBLE All = DEVELOPED BASIN DESIGNATION .38 = MINOR RUNOFF COEFFICIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR Maga WWW‘111 CON 5 LH- 7 ENGINEERS WA, Incorporated 25 Old Town Square Suite 200 Fort Collins, CO 80524 E-mail: info@jvaNa.com Phone: 970.225.9099 Fax: 970.225.6963 REVISION 1 ISSUE DESCRIPTION w DESIGNED BY: JTC DRAWN BY: ANC CHECKED BY: KAT JOB NUMBER: 1844c DATE: 03/25/2014 C JVA, INC z LL LL 1.1.1 0 L.1.1 DEVELOPED DRAINAGE MAP SHEET NUMBER FIG 2.6 3 • \ \ \ \ i 44 • NEE 111111.11 • • • • • 1 1 • • • • 1 1 .44 INLET E3 5' TYPE R INLET MH—E6-2 4'SDMH MH—E6-1 4' SD MH MH—E8-4 -5' SD MH MH—E8-2 5'SDMH ract U E,UE,0E 36"x96" BOX CULVERT 1 ��` 86 WESTERN` OUTFALL fa MH—E8-3 5'SDMH 50 15" RCP 1AH—E16-4 8' DIAAD MH ECC ott,ot.,4,.Iklt ,_,..,. MH—E6-4 4'SDMH vim Pim INLET E4 5' TYPE R INLET I= MN Mt WIN 111E1 Elie inn 88 86 82 VV 50 1„I 100 SCALE IN FEET • { rr um maw non -- — -- -- BIZ -- gm R.— -- .... - -- =MI -- -- -- MIN -- != ■ M MI Ma ;• 1 � ,"1111'Ps% a. i mli moi i.Mr 410# pm Milk. ti, � siljo * ow II 1 m B-1 yy Ir IS t� �iq r :fit Isi4 G xr-u�u 4s i�� 1,': -1Ntr14 G141� I�ISRL iPiP d14i 13';; 4i44i16141 I,,I.IHry�Mc14LwaHpWt?N3G;;�„��;, i INGIH41GiLiH4141u�{H.i4l4:uuc[::6"{::m�s�Tti�, qv*. Y �` 4i KEY MAP NTS NTS DRAINAGE MAP LEGEND • • • 1 - - — 1 L PROPOSED DRAINAGE BASIN BOUNDARY (MAJOR BASIN) PROPOSED DRAINAGE BASIN BOUNDARY (SUB BASIN) DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) BASIN DESIGN POINT DRAINAGE BASIN IDENTIFICATION BUBBLE All = DEVELOPED BASIN DESIGNATION .38 = MINOR RUNOFF COEFFICIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR JVA, Incorporated 25 Old Town Square Suite 200 Fort Collins, CO 80524 E-ma41: info[ujvaiva.cam Phone:970,225.9099 Fax:970.225.69E3 ETD ri DESIGNED BY: JTC DRAWN BY: ANC CHECKED BY: KAT JOB NUMBER: 1844c DATE: 03/25/2014 JVA, INC DEVELOPED DRAINAGE MAP SHEET NUMBER FIG 2.7 - AE,11F-DE ...... z 5- 6 EASTERN OU 60" RCP / / / / / 1 INLET E15 10' TYPE R INLET 48X120° BOX CULVERT / / / / / / 06— • MH—E16-5 8' DIA SD MH ECC MH—E15-1 4' SD MH • Qt2- ..... . - ' ;410/1V-411._ isms Iwo °'" gis INLET E13 „...- TYPE D INLET' INLET E12 5' TYPE R INLET • 1 1 1 1 1 1 1 1 1 04 __A 4Th:10: Elk- sEE fa_ 2 1 INLET El0 5' TYPE R INLET / INLET E9 5'TYPERINLET / / 0 1 / / / / so SCALE IN FEET / .. . ... • • •• • 1 00 • -2 KEY MAP NTS e.;.s !„ „,... ... ..... DRAINAGE MAP LEGEND NI NI MI MI PROPOSED DRAINAGE BASIN BOUNDARY (MAJOR BASIN) Non 0= PROPOSED DRAINAGE BASIN BOUNDARY (SUB BASIN) --t> DIRECTION OF FLOW (HISTORIC) DIRECTION OF FLOW (DEVELOPED) BASIN DESIGN POINT DRAINAGE BASIN IDENTIFICATION BUBBLE All = DEVELOPED BASIN DESIGNAT1O .38 = MINOR RUNOFF COEFFICIENT .62 = MAJOR RUNOFF COEFFICIENT 4.42 = AREA ACRES PROPOSED INDEX CONTOUR PROPOSED INTERMEDIATE CONTOUR EXIST INDEX CONTOUR EXIST INTERMEDIATE CONTOUR C SU1JG E E s JVA, Incorporated 25 Old Town Square Suite NO Fort Collins, CO S0574 E-mail: info@jvajva.com Phone: 970.225.9099 Fax: 970.225.6963 i ISSUE DESCRIPTION z 0 (17 w w F.03 LL.1 c 0 DES1GNED BY: JTC DRAWN BY: ANC CHECKED BY: KAT JOB NUMBER; 1844c DATE: 03/25/2014 © JVA, INC KECHTER FARM - FILING 1 DEVELOPED DRAINAGE MAP SHEET FIG NUMBER 2.8