Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Reports - Drainage - 11/06/2024
Project Development • • . P. I Final a•e Report III h • Montava Subdivision - submitted to: 4 City of Fort Collins , R November • TST, INC. CONSULTING ENGiNEEF?s y� 3 i TST Y�. TST, INC. CONSULTING ENGINEERS 'IP'�{1d�`, �� �—? VI�l71C""AAN "`.i e November 6, 2024 Mr. Wes Lamarque City of Fort Collins Development Review Engineer 700 Wood Street Fort Collins, CO 80521 Re: Montava Subdivision Phase D Final Design Drainage Report Project No. 1230.0005.00 Dear Mr. Lamarque: TST, Inc. Consulting Engineers (TST) is pleased to submit this Final Design Drainage Report for the Montava Subdivision Phase D project to the City of Fort Collins (City) for review and approval. The purpose of this drainage report is to evaluate the drainage conditions of the above-referenced proposed Montava Subdivision Phase D project site. The Fort Collins Stormwater Criteria Manual (referred to as FCSCM). Please review the attached report and provide any questions or comments at your earliest convenience. We appreciate the opportunity to be of continued service to the city and look forward to receiving your comments and moving forward on this important project. Sincerely, TST, INC. CONSULTING ENGINEERS Bryston Anthony M. Gartner, E.I. Derek A. Patterson, P.E. BAMG DAP 748 Whalers Way Suite 200 1 hereby attest that this report for the preliminary drainage design for the Montava Fort Collins,CO 80525 Subdivision Phase D was prepared by me or under my direct supervision, in 970.226.0557 main accordance with the provisions of the Fort Collins Stormwater Criteria Manual. 1 970.226.0204 fax understand that the City of Fort Collins does not and will not assume liability for ideas@tstinc.com drainage facilities designed by others. www.tstinc.com Derek A. Patterson Registered Professional Engineer State of Colorado No. 48898 0 Table of Contents Final Drainage Report Montava Subdivision Phase D 1.0 - GENERAL LOCATION AND DESCRIPTION......................................................... 1 1.1 Project Location and Description................................................................... 1 1.2 Description of Property................................................................................... 2 2.0 - DRAINAGE BASINS AND SUB-BASINS ..............................................................4 2.1 Major Basin Description.................................................................................. 4 2.2 Existing Conditions......................................................................................... 4 2.3 Proposed Conditions...................................................................................... 4 3.0 - DRAINAGE DESIGN CRITERIA ............................................................................9 3.1 Hydrological and Hydraulic Criteria............................................................... 9 4.0 - CONCLUSIONS.................................................................................................... 11 5.0 - REFERENCES...................................................................................................... 13 6.0 - APPENDICES....................................................................................................... 14 List of Figures 1.1 Vicinity Map .....................................................................................................................2 Page i TST.INC.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 1 .0 - General Location and Description The purpose of this Final Drainage Report is to present the drainage design for the Montava Subdivision Phase D (Hereinafter referred to as the "Phase D") project site to the City of Fort Collins (hereinafter referred to as the "City")for review and approval. The design objectives for this drainage report are to present: ❖ Hydrologic analysis of the proposed improvements and surrounding off-site areas to determine the location and magnitude of the site's storm runoff. ❖ Hydrologic data used to design storm runoff collection and conveyance facilities. ❖ Hydraulic analysis of proposed on-site and existing downstream storm infrastructure to ensure sufficient conveyance of stormwater runoff to the proposed detention areas. ':• Detention analysis and design of the proposed stormwater detention areas. ❖ Best Management Practices (BMPs) are used to prevent erosion and sedimentation before, during, and after construction of the stormwater infrastructure. ':• Overall storm drainage plan that meets previously approved drainage plans and the FCSCM. The drainage system was designed using the Fort Collins Stormwater Criteria Manual (collectively referred to as FCSCM). 1.1 Project Location and Description The Phase D project site is located in Section 32, Township 8 North, Range 68 West of the 6tn Principal Meridian, within the City of Fort Collins, Larimer County, Colorado. The proposed site is bounded on the north by farmland, future Montava Subdivision phases, and Richards Lake Road. On the east by farmland, N. Giddings Road, and future Montava Subdivision phases. On the south by farmland, future Montava Subdivision phases, and Mountain Vista Drive. On the west by farmland, the Number 8 Outlet Ditch, Future Montava Subdivision phases, Maple Hill subdivision, and Storybook Subdivision. A vicinity map illustrating the project location is provided in Figure 1.1. Page 1 jINC.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report ®®I PROJECT .M®® LOCATION semHva+ ®®® o ❑ U z 0 Ln ��rBoalc C7 N MOUNTAIN VISTA DR 0 w z J W m MIR VINE DR Figure 1.1:Vicinity Map 1.2 Description of Property The Phase D project site contains approximately 58 acres and consists of Single-Family development and Open Space. Phase D is currently zoned as Mixed Density Neighborhood. According to Flood Insurance Rate Map (FIRM) #08069C0982F eff. 12/19/2006 prepared by the Federal Emergency Management Agency (FEMA), Phase D is located in unshaded Zone X. Zone X indicates areas determined to be outside of 500-year or 0.2% annual chance floodplain, meaning it is not designated as a special flood hazard zone. Copies of the FEMA maps that apply to Phase D are included in Appendix C. The types of soils found on the Montava Subdivision Phase D site consist of: •®• Aquepts, loamy (5). ❖ Caruso clay loam (22) — 0 to 1 percent slopes. V Fort Collins loam (35) —0 to 3 percent slopes. V Fort Collins loam (36) —3 to 5 percent slopes. V Satanta loam (95) — 1 to 3 percent slopes. Satanta Variant clay loam (98) — 0 to 3 percent slopes. Stoneham loam (101)— 1 to 3 percent slopes. Page 2 TST, INC.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report The characteristics of the soil found on the project site include: Slow to very slow infiltration rate when thoroughly wet. V Slow to very slow rate of water transmission. V Majority of the site has a wind erodibility rating of 5 and 6 (8 being the least susceptible) These soils consist of the following hydrologic soil groups as defined in the United States Department of Agriculture (USDA), Web Soil Survey: ':' Group B — 1.00%. V Group C—37.00%. ':' Group D —62.00%. The USDA web soil survey report is included in Appendix D. The following reports were utilized in the drainage analysis and design of Phase D. ':' Montava Master Drainage Study Fort Collins, Colorado, prepared by Martin/Martin, Inc., dated January 23, 2019. Hydrologic and hydraulic information was referenced from this report to analyze off-site areas and conveyance links downstream from Phase D and site. Refer to Appendix J for referenced / applicable documentation from this report. Page 3 TST, ING.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 2.0 - Drainage Basins and Sub-Basins 2.1 Major Basin Description According to the FCSCM, Phase D is located within the Upper Cooper Slough Basin. The Upper Cooper Slough Basin stormwater generally flows from north to south which is ultimately being captured by in the Cooper Slough. According to the Montava Master Drainage Study, Phase D is primarily located in Basin C2, Basin D, Basin F, and Basin G1, which drain from the northwest to the southeast and eventually end up in the Cooper Slough. 2.2 Existing Conditions The Phase D site is located in an undeveloped plot of land west of the Anheuser Busch property. The current land is undeveloped and used for agricultural purposes. The land currently consists of native grasses, bare ground, and crops. Phase D sheet flows southeast into an inadvertent detention area which overtops Mountain Vista Drive and eventually into the Larimer and Weld Canal through various existing drainage infrastructure. The existing site does not have any existing ponds or drainage facilities. The site has an inadvertent detention area near Giddings Road and Mountain Vista Drive. The receiving historical major drainage way for Phase D is the Cooper Slough. 2.3 Proposed Conditions The proposed Phase D development has been designed to maintain historic drainage patterns and reduce the runoff rate down to the 2-year historic. In addition, this site has been designed to mee the intent of the 1986 AB Agreement. Phase D is located in four basins, outlined in the Montava Master Drainage Plan, see Appendix J for master drainage map. Phase D is located in Basin C2, Basin D, Basin F, and Basin G1. The portion of Phase D located in Basin C2 will flow south into an Interim Swale Pond. The portion of Phase D located in Basin D will flow west into Pond D. The portion of Phase D located in Basin F will flow south into Interim Pond 427. The portion of Phase D located in Basin G1 will flow south into Interim Pond 427. Interim Swale Pond and Interim Pond 427 are being constructed to help phase Montava drainage and will be removed with later phases. When both ponds are removed the portion of Phase D in Basin F will be detained in Pond F, constructed with Phase E. The remaining flows that were captured by Interim Swale Pond and Interim Pond 427 will be routed east along Mountain Vista Drive and south into Pond 426 and Pond 425 which ultimately outfall into the Cooper Slough. The following basins were delineated for the Montava Subdivision Phase D site plan, using the Montava Master Drainage Basins (MP): Page 4 %iiik NG ENGINEERS Montava Subdivision Phase D Final Drainage Report MP Basin C2 is made up of a street that connects the site to N. Giddings Road, which is approximately 1.15 acres with a composite imperviousness of approximately 81.25%. MP Basin C2 was subdivided into 2 subbasins, C2-1 — C2-2, that have their own drainage patterns. The subbasins sheet flow into curb and gutter and discharges directly into the Interim Swale Pond. Neither of the basins are being treated in an LID but are accounted for in the LID calculations. MP Basin D is made up of mixed density single family lots, streets, and open space, which is approximately 12.80 acres with a composite imperviousness of approximately 76.86%. MP Basin D was subdivided into 18 subbasins, D-1 — D-18, that have their own drainage patterns. The subbasins runoff starts from the single-family development and drains into street or alleys and into storm lines via curb inlets or area inlets and into Pond D. Water quality will be treated in LID #1(underground infiltration) located in the west portion of site and LID#2 (underground infiltration) in the center of the basin. Every storm greater than the minor event will bypass the LIDs and go directly into Pond D. MP Basin F is made of mixed density single family lots, streets, future apartments, and open space, which is approximately 24.86 acres with a composite imperviousness of approximately 77.83%. MP Basin F was subdivided into 33 subbasins, F-1 — F-33, that have their own drainage patterns. The subbasins runoff starts in the single-family lots and sheet flows into the street or alleys and into proposed storm lines via curb inlets or area inlets that discharge into the interim swale that borders the southwest portion of the site. The subbasins drains into Interim Pond 427, in the master drainage plan this portion of Phase D will be detained in Pond F. In the future Pond F will be constructed with Montava Phase E and these subbasins will be directed into Pond F. Basin F will be treated in one rain garden and three underground infiltration chambers. LID#3 (rain garden) is located in the northwest portion of the site, LID#4 (underground infiltration) located in the center portion of the site, LID#5 (underground infiltration) located in the center portion of the site, and LID#6 (underground infiltration) is located in the southern portion of the site. The water quality that is treated in LID#3, LID#4, LID#5, and LID#6 drains to Interim Pond 427 but will end up in Pond F, when constructed. Every storm greater than the minor event will bypass all the LIDs and go directly into the Interim Pond 427 and in the future will drain into Pond F, when constructed. MP Basin G is made of mixed density single family lots, streets, future apartments, and open spaces, which is approximately 13.45 acres with a composite imperviousness of approximately 80.58%. MP Basin G was subdivided into 18 subbasins, G1-1 — G1-18, that have their own drainage patterns. The subdivision runoff starts in the single-family lots and sheet flows into the streets or alleys and into proposed storm line via curb inlet or area inlets that discharges into the interim swale that borders the southwest portion of the site and into Interim Pond 427. In the Master Drainage Plan, Interim Pond 427 will be turned into a conveyance channel to Pond 426. None of the basins are being treated in an LID but are accounted for in the LID calculations. Future Basin are approximately 24.73 acres with a composite imperviousness of approximately 68.40%. Future Basins were subdivided into 5 subbasins, Future-1 — Future-5, that have their Page 5 TST, ING.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report own drainage patterns. Basin Future-1 and Future-3 will have future street, proposed single- family lots, and a proposed drainage channel. Basin Future-2, Future-4, and Future-5 will have future streets, future single-family lots. All Future basins will have to have their own LID treatment and was not included with the LID calculations. In the interim conditions Future-1 — Future-3 will be detained and in the Interim Swale Pond. Future-4 and Future-5 will be detained in Interim Pond 427. Basin School is approximately 18.26 acres with a composite imperviousness is approximately 55.72%. Basin School is for the future school site and future amenities. Basin School drains from the northwest of the basin to the southeast portion of the site where it is collected by a proposed storm sewer of Phase D and routed to Pond D. Basin School will have to provide their own LID treatment and was not included with the LID calculations. Pond D Basin is approximately 7.49 acres with a composite imperviousness of 8.54%. Pond D Basin consists of proposed amenities and the entirety of Pond D. All runoff generated within Pond D Basin will sheet flow into the Pond. Pond D Basin is not treated by a LID but is accounted for in the LID calculations. Pond 427 Basin is approximately 10.23 acres with a composite imperviousness of 3.05%. Pond 427 Basin consists of an interim drainage channel and an interim Pond. All runoff in this basin will flow directly into the drainage channel or the pond. Interim Pond 427 Basin is not treated by a LID but is accounted for in the LID calculations. Off-Site Basins Offsite 1- Offsite 1 Basin is approximately 103.58 acres and will not have any improvements within it. Offsite 1 contains all the undeveloped land that is north of Phase D between Giddings Road, The Number 8 Ditch, and Richards Lake Road. All calculations that involve Offsite 1 will be done with the interim undeveloped condition. In the future when this basin is developed each separate phase will have a drainage report and ponds that will more closely match the master drainage plan. The proposed condition will capture all the runoff from the north into the Interim Swale Pond and Interim Pond 427. Runoff from this basin will be captured and detained in the interim swale pond, where it will be released into a swale running along the west side of Giddings' Road and ultimately into Pond 427. Offsite 2- Offsite 2 Basin is approximately 75.61 acres and will not have any improvements within it. Offsite 2 contains all the undeveloped land that is south of Phase D between Interim Pond 427, Number 8 Ditch and Mountain Vista Drive. No calculations were made using runoff from Offsite 2. Offsite 2 follows existing drainage patterns where runoff from the basin sheet flows south into a spot near Mountain Vista Drive (inadvertent detention) and overtops the road in large storm events. In the future when this basin is developed each phase will have a drainage report and ponds that will attenuate the runoff as described in the master drainage report. MI Page 6 TST, INC.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report In the future Phase D will only be receiving runoff from the school site. All other basins will be following the master drainage plan and will have their own drainage reports that shows conformance with the master drainage plan. 2.4 Low Impact Development (LID) Per City of Fort Collins criteria, Low Impact Development (LID) features are proposed to treat 50% of the newly developed Single-Family, and 75% of the newly developed Multi-family within Phase D. The remaining water quality will be treated utilizing traditional methods (i.e. EDB). Five LID systems are being proposed for Phase D, Rain Garden and Underground detention. Four LIDs are proposed to be Underground detention, and one LID proposed to be rain garden. The percentage of newly developed areas treated by these systems is included in Appendix B. To achieve the 50% treatment for the entire site the LID that we designed are treating 100% of the area that is draining to them. The five LIDs treat 23.51 acres of the proposed Phase D site and the total required area to be treated is 21.99 acres. The LIDs overtreat the area and will be banked for future phases. The LIDs proposed also includes the future apartment sites, using 75% of the newly added imperviousness. See Appendix B for the LID exhibit showing the areas that are draining to the LID, remainder of site that is accounted for within the LID calculations, and future filings that will have to provided LID when developed. The proposed LID systems, water quality, and detention facilities will be located in tracts owned and maintained by the Montava Metropolitan District. 2.5 MDCIA "Four Step Process" Step 1 — Employ Runoff Reduction Practices Montava Phase D provides LID treatment for 50% of the single-family development and 75% of the multifamily development, through various systems (Raingardens, Wet Ponds, and future Underground detention chambers). The LID systems have been placed throughout the site to minimize directly connected impervious areas. Step 2— Implement BMPs That Provide a WQCV with Slow Release The remaining Single-Family and Multi-family development throughout the site not being treated by the LID described is being treated through traditional water quality control volume extended drainage basins designed to release the water quality event within a minimum of 40 hours. Step 3— Stabilize Streams Portions of Phase D will be spilling into a temporary swale that will connect Pond D with Interim Pond 427. Phase D will be spilling into a couple of ponds that will reduce the sediment load to the downstream open irrigation channel. Page 7 TST, ING.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report Step 4— Implement Site Specific and Other Source Control BMPs 1. The following practices suggested by City of Fort Collins Criteria will be implemented throughout the design and construction process: 2. Being a single-family development, trash receptacles will be dispersed throughout the neighborhood and likely be enclosed containers that minimize concentrated and polluted runoff from entering the storm sewer system or receiving drainageways prior to being treated. 3. Phase D of Montava Subdivision does not include a dog park, but any future dog parks shall be located in areas away from detention basins and educational opportunities to reinforce pick-up practices for dog owners shall be employed. 4. Phase D of Montava Subdivision does include any community gardens. Community gardens shall be located in areas that are outside of the detention basins to prevent chemical and sediment loading. 5. Construction Best Management Practices (BMPs) will be employed to located material storage away from drainage facilities. 2.6 Variance Requests No drainage variances are being requested at this time. Page 8 TST, ING.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 3.0 - Drainage Design Criteria The drainage design presented in this report has been developed in accordance with the guidelines established by the FCSCM dated December 2018. A SWMM Model was utilized for detention sizing and basic storm water routing, while the Rational Method was utilized for sizing streets, swales, inlets, storm sewer, and other storm infrastructure. Storm system infrastructure including pipes, culverts, inlets, and drainage swales will be sized to convey at a minimum the 2-year storm event. In areas of concern, storm system infrastructure will be sized to handle the 100-year and any additional bypass flow from upstream infrastructure. 3.1 Hydrological and Hydraulic Criteria Design Rainfall & Runoff Calculation Method The hydrology of the project site for developed conditions will be evaluated based on the 2-, 10- and 100-year storm frequencies as dictated within the FCSCM manual. The Rational Method was used to determine peak runoff rates for each developed basin. Peak storm runoff values will be used to size on-site drainage facilities including storm culverts, sewers, inlets and channels for the initial and major design storms as specified in the FCSCM criteria and standards. Within the criteria and standards, the initial design storm was established as the 2- year minor storm event and the 100-year storm as the major event. Inlet Design All inlets within the project area will be designed to collect and convey the 2-year developed runoff. In areas where flooding is a concern, inlets were upsized to convey as much of the 100- year developed runoff as possible. As stated in FCSCM, Inlet Functions, Types and Appropriate Applications, the standard inlets for use on City of Loveland streets are: Inlet Type Permitted Use Type 13 Combination Inlets All street types with 6 inches of vertical curb Type 13 Inlet with Valley Grate All alleys with reverse crown Refer to Appendix F for all inlets calculations. Storm Sewer and Culvert Design As stated in the FCSCM, the Manning's roughness coefficient (n) for all storm sewer pipe capacity calculations shall be 0.013 regardless of pipe material. The storm sewers and culverts in the project area will be designed in accordance with the criteria and standards of the FCSCM using a minimum pipe diameter of 15 inches. Where applicable, storm sewers will be sized to convey the 100-year developed runoff to the existing Page 9 TST, ING.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report detention ponds. Peak runoff for storm sewer design was calculated using the Rational Method per the FCSCM. All storm sewers will be sized using the Urban Drainage program, UD-Sewer 2009 Version 1.4.0. All culverts will be sized using the Federal Highway Administration (FHA) Program, HY-8 Version 7.30. For storm and culvert capacity calculations refer to Appendix G. Street Capacity The criteria and standards set forth in the FCSCM will be used to check street capacity for both the minor (2-year) and major (100-year) storm events. The FCSCM requires that stormwater overtopping curbs should not occur during the minor storms and the flow spread must meet the following guidelines for each street designation: ❖ Local, Alley—flow may spread to crown of road. Collector (without median) - flow spread must leave a minimum of 6 feet (6') wide clear travel lane on each side of the centerline. V Arterial (with median) — flow spread must leave a minimum of 12 feet (12') wide travel lane in both directions of travel. Additionally, the following allowable street flow depths were used for the drainage design: ®' Local, Alley — Minor Storm 0.50-ft depth at gutter, Major Storm 0.50-ft depth at crown and 1.0-ft at gutter (most restrictive will apply) Collector - Minor Storm 0.50-ft depth at gutter, Major Storm 0.50-ft depth at crown and 1.0-ft at gutter (most restrictive will apply) Arterial (without median) - Minor Storm 0.50-ft depth at gutter, Major Storm 0.50-ft depth at crown and 1.0-ft at gutter (most restrictive will apply) Arterial (with median) - Minor Storm 0.50-ft depth at gutter, Major Storm not to exceed bottom of gutter at median and 1.0-ft at gutter (most restrictive will apply) Refer to Appendix F for street capacity calculations. Swale Design As defined in Chapter 9 of the Fort Collins Stormwater Criteria Manual, open channels are utilized to preserve, enhance, and restore stream corridors, used in the design of constructed channels and swales by use of natural concepts. Per the FCSCM criteria and standards, all open channels must be designed to carry the major (100-year) storm runoff. For swales with greater than 100 cfs, one-foot of freeboard will be provided. For swales with less than or equal to 100 cfs, the depth of the channel must be able to convey an additional 33% of the 100-year storm flow. Drainage swales were designed to be grass-lined, triangular channels with 4:1 side-slopes. Erosion potential in the swales will be analyzed to determine if additional protective measures are needed within the project area based on Froude number calculations. Refer to Appendix H for swale calculations. Page 10 MM T-T, INC.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report Detention Discharge and Storage Calculation Montava Phase D drains to three separate Detention / Water Quality ponds. Pond D, Interim Swale Pond, and Interim Pond 427. All ponds were designed by a SWMM model that is being submitted with this report. Interim Swale Pond and Interim Pond 427 are at least two feet higher than groundwater and Pond D is lower than groundwater with a clay barrier, see "Subsurface Exploration Report Montava Development — Tract E — Detention Pond Evaluation of Groundwater and Subsurface Conditions," submitted concurrently with this report. Pond D is located in Pond D Basin and captures the runoff from Basin D, School Basin, and Pond D Basin. Pond D is an irrigation pond as well as a detention pond and the intent of the pond is to have the irrigation pond full so every drop of stormwater that comes into the pond will go directly into the outlet structure. For Phase D Water Quality will not be handled in Pond D and will be directed into Interim Pond 427. In the future it will be directed into Pond F, constructed with Phase E or Future Pond 426. This pond discharges into a swale that runs on the southwest border of the and into Interim Pond 427. An emergency spillway will be designed with this pond to spill south down the embankment over Timberline Road and into a proposed interim channel/ future storm line. An Interim Swale Pond is being proposed in the large swale that is north of the site. This pond was designed to handle future basins and offsite basins and will help with reducing offsite flows coming through Phase D. For Phase D Water Quality will be handled in the Interim Swale Pond. In the future, Interim Swale Pond will be removed, and the Water Quality will be handled in the Future Pond 426. This interim pond will discharge south into a proposed swale that flows to Interim Pond 427. An emergency spillway will be designed with this pond to spill south into a swale that outfalls into Interim Pond 427. Interim Pond 427 is being proposed in the southeast corner of Phase D. For Phase D a large portion of Water Quality will be handled in Interim Pond 427. In the future when Pond 427 is removed the water quality will be handled in Pond 426. An emergency spillway will be designed with this pond to spill south down the embankment overtopping Mountain Vista Drive and follow existing drainage patterns. Interim Pond 427 will outfall to the southeast of Giddings Road and Mountain Vista Drive into a proposed swale through the existing agricultural field those outfalls into the existing Anheuser- Busch Pond and eventually into the Cooper Slough through a siphon designed by others. See map provided in Appendix E for runoff flow path. Erosion and Sediment Control Montava Phase D has been designed to be in compliance with the City of Fort Collins Erosion Control Criteria and all Erosion Control Materials will be provided with the Final Drainage Report. Erosion and sedimentation occurring on-site during construction will be controlled by the use of temporary Best Management Practices (BMPs — i.e., silt fence, gravel inlet filters, vehicle tracking control pads, and straw wattle barriers). A separate Stormwater Management Plan has been provided with the PDR Submittal. Page 11 TST, ING.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 4.0 - Conclusions This Final Drainage Report has been prepared in accordance with the City of Fort Collins Stormwater Criteria Manual for a Project Development Plan (PDP) submittal. The PDP plans have also been prepared to be in compliance with the city's current drainage criteria. Phase D has been designed to safely and effectively capture, convey, and attenuate stormwater runoff in accordance with the Fort Collins Stormwater Criteria Manual (FCSCM) and Montava Master Drainage Study. The project will treat 50% of newly imperviousness single-family development and 75% of newly imperviousness multi-family development to a LID system. The remaining imperviousness area will be treated by the traditional water quality and detention ponds. The proposed drainage infrastructure will attenuate the flow prior to entering the downstream properties/ infrastructure. All stormwater from Phase D will be discharged to the southeast corner of the Mountain Vista Drive and Giddings Road. This plan respects historic drainage patterns while significantly reducing runoff rates from the 100-year developed to the 2-year historic rate. This substantial reduction will ensure there are no adverse impacts on the downstream infrastructure and will help alleviate and reduce the current impacts on existing systems. Therefore, all downstream infrastructure will function as it has historically, and no analysis is required. Additionally, areas of future development adjacent to the project area will have to been analyzed to ensure that adequate facilities will accommodate future development. MI Page 12 TST, INC.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 5.0 - References 1. Fort Collins Stormwater Criteria Manual, as adopted by the city of Fort Collins, as referenced in Section 26-500 of the Code of the City of Fort Collins, December 2018. 2. City of Fort Collins Cooper Slough Alternatives Analysis Update, prepared by Fort Collins Department of Utilities, prepared by ICON Engineering Inc., October 2017 3. Montava Planned Unit Development Master Drainage Study, by Martin/Martin Inc., dated January 23, 2019 Page 13 TST, ING.CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 6.0 - Appendices The following appendices are attached to and made part of this final drainage design report: APPENDIX A HYDROLOGIC ANALYSIS APPENDIX B LOW IMPACT DEVELOPMENT (LID) CALCULATIONS APPENDIX C FEMA FLOOD INSURANCE RATE MAP APPENDIX D USDA HYDROLOGIC SOIL GROUP MAP APPENDIX E DRAINAGE PLANS APPENDIX F STREET CAPACITY & STORM INLET ANALYSIS APPENDIX G STORM SEWER & CULVERT DESIGN APPENDIX H DRAINAGE SWALE DESIGN APPENDIX I DETENTION & ROUTING ANALYSIS APPENDIX J EXCERPTS FROM PREVIOUS DRAINAGE REPORTS Page 14 %Tj INC.CONSULTING ENGINEERS APPENDIX A HYDOLOGIC ANALYSIS MONTAVA SUBDIVISION PHASE D Final Drainage Report City of Fort Collins OF Curves Duration 2-yr 10-yr 100-yr 5 2.85 4.87 9.95 6 2.67 4.56 9.31 7 2.52 4.31 8.80 8 2.40 4.10 8.38 9 2.30 3.93 8.03 10 2.21 3.78 7.72 11 2.13 3.63 7.42 12 2.05 3.50 7.16 13 1.98 3.39 6.92 14 1.92 3.29 6.71 15 1.87 3.19 6.52 16 1.81 3.08 6.30 17 1.75 2.99 6.10 18 1.70 2.90 5.92 19 1.65 2.82 5.75 20 1.61 2.74 5.60 21 1.56 2.67 5.46 22 1.53 2.61 5.32 23 1.49 2.55 5.20 24 1.46 2.49 5.09 25 1.43 2.44 4.98 26 1.40 2.39 4.87 27 1.37 2.34 4.78 28 1.34 2.29 4.69 29 1.32 2.25 4.60 30 1.30 2.21 4.52 31 1.27 2.16 4.42 32 1.24 2.12 4.33 33 1.22 2.08 4.24 34 1.19 2.04 4.16 35 1.17 2.00 4.08 36 1.15 1.96 4.01 37 1.16 1.93 3.93 38 1.11 1.89 3.87 39 1.09 1.86 3.80 40 1.07 1.83 3.74 41 1.05 1.80 3.68 42 1.04 1.77 3.62 43 1.02 1.74 3.56 44 1.01 1.72 3.51 45 0.99 1.69 3.46 46 0.98 1.67 3.41 47 0.96 1.64 3.36 48 0.95 1.62 3.31 49 0.94 1.60 3.27 50 0.92 1.58 3.23 51 0.91 1.56 3.18 52 0.90 1.54 3.14 53 0.89 1.52 3.10 54 0.88 1.50 3.07 55 0.87 1.48 3.03 56 0.86 1.47 2.99 57 0.85 1.45 2.96 58 0.84 1.43 2.92 59 0.83 1.42 2.89 60 0.82 1.40 2.86 65 0.78 1.32 2.71 70 0.73 1.25 2.59 75 0.70 1.19 2.48 80 0.66 1.14 2.38 85 0.64 1.09 2.29 90 0.61 1.05 2.21 95 0.58 1.01 2.13 100 0.56 0.97 2.06 105 0.54 0.94 2.00 110 0.52 0.91 1.94 115 0.51 0.88 1.88 120 0.49 0.86 1.84 From the City of Fort Collins Storm Drainage Design Criteria and Construction Standards MONTAVA SUBDIVISION PHASE D Final Drainage Report City of Fort Collins OF Curves 12.00 ayr 10.00 10-yr \ --100-yr &P..(2-yr) -Power(100-yr) 8.00 t C A ' 6.00 c d c m c 4.00 Y=26 3MX-0-53 0 R2=0.9831 2.00 - y=2.567 -o.021x 0.00 R2=0. 52 0 10 20 30 40 50 60 70 Storm Duration(min) MONTAVA SUBDIVISON PHASE D Final Drainage Report City of Fort Collins Rational Method Runoff Coefficients Runoff Coefficient Im ervious High Density 0.85 90 Lawn, Clayey, <2% Slope 0.20 2 Lawn, Clayey, >7% Slope 0.35 2 Lawn, Clayey, 2-7% Slope 0.25 2 Lawn, Sandy, <2%Slope 0.10 2 Lawn, Sandy, >7%Slope 0.20 2 Lawn, Sandy, 2-7%Slope 0.15 2 Low Denisty 0.55 50 Medium Density 0.65 70 Open Lands,Transition 0.20 20 Roofs 0.95 90 Streets: Gravel 0.50 40 Streets: Paved 0.95 100 Streets: Permeable Pavers 0.50 40 Urban Estate 0.30 30 From Table 3-3 of the City of Fort Collins, Stormwater Criteria Manual MONTAVA SUBDIVISION PHASE D Final Drainage Report Onsite Basin Composite Runoff Coefficients Basin/Sub-Basin Area Attribute Runoff Composite Composite Runoff Coefficients (ac) Attribute Area(ac) Coefficient,C Impervious Percent Impervious C Ci Coo Cioo Medium Density 0.00 0.65 70 D-1 0.79 Streets:Paved 0.63 0.95 100 80,40% 0.81 0.81 0.81 1 00 Lawn,Clayey,2-7%Sloe 0.16 0.25 2 Medium Density 0.80 0.65 70 D-2 1.63 Streets:Paved 0.70 0.95 100 78,90% 0.74 0.74 0;'. ':'93 Open Lands,TrensiBon 0.13 0.20 20 Medium Density 0.25 0.65 70 D-3 0.40 Streets:Paved 0.15 0.95 100 81.25% 0.76 0.76 Ii; 0.95 Lawn,Clayey,>7%Sloe 0.00 0.35 2 Medium Density 0.00 0.65 70 D-4 0.22 Streets:Paved 0.19 0.95 100 86.64% 0-85 0.85 085 1,00 Lawn,Sandy,>7%Slope 0.03 0.20 2 Medium Density 0.00 0.65 70 D-5 0,18 Streets:Paved 0.15 0.95 100 83.12% 0.82 0.82 0.82 100 Lawn,Sandy,>7%Slope 0.03 0.20 2 Medium Density 0.13 0.65 70 D-6 0.24 Streets:Paved 0.09 0.95 100 75,58% 0,73 0.73 0.73 0.91 Lawn,Sandy,>7%Slope 0.02 0.20 2 Medium Density 1.18 0.65 70 D-7 1.78 Streets:Paved 0.53 0.95 100 76,26% 0.73 0.73 0.73 0.91 Lawn,Clayey,>7%Slope 0.07 0.35 2 Medium Density 0.89 0.65 70 D-8 1.72 Streets:Paved 0.27 0.95 100 52.57% 0.60 0.60 0,60 0.75 Lawn,Clayey,>7% ope 0.56 0.35 2 Medium Density 0.61 0.65 70 D-9 0.82 Streets:Paved 0.21 0.95 100 77.68% 0.73 0.73 0.73 0.91 Lawn,Clayey. la a,>7%Slo a 0.00 0.35 2 Medium Density 0.56 0.65 70 D-10 1.37 Streets:Paved 0.74 0.95 100 82.73% 0.80 0.80 0.80 1.00 Lawn,Cla e,>7%Slope 0.07 0.35 2 Medium Density 0.00 0.65 70 D-11 0.38 Streets:Paved 0.33 0.95 100 87.11% 0.87 0.87 0.87 1.00 Lawn,Clayey,>7%Slope 0.05 0.35 2 Medium Density 0.36 0.65 70 D-12 0.82 Streets:Paved 0.41 0.95 100 80.85% 0.78 0.78 0.78 0:98 Lawn,Clayey,>7%Slope 0.05 0.35 2 Medium Density 0.25 0-65 70 D-13 0.77 Streets:Paved 0.47 0.95 100 83.90% 0.81 0.81 0.81 1.00 Lawn,Clayey,>7%Slope 0.05 0.35 2 Medium Density 0.17 0.65 70 D-14 0.70 Streets:Paved 0.53 0.95 100 92.71% 0,88 0,88 0,88 1.00 Lawn,Clayey,17%Slope 0.00 0.35 2 Medium Density 0.14 0.65 70 D-15 0.22 Streets:Paved 0.08 0.95 100 80.91% 076 0,76 076 0.95 Lawn,Clayey,>7%Slope 0.00 0.35 2 Medium Density 0.00 0.65 70 D-16 0.10 Streets:Paved 0.08 0.95 100 80,40% 0.83 0.83 0.83 1.00 Lawn,Clayey,>7%Slope 0.02 0.35 2 Medium Density 0.17 0.65 70 D-17 0.29 Streets:Paved 1 0.10 0.95 100 75.66% 0.73 0.73 0.73 0.92 Lawn,Cla ey,>7%Slope 0.02 0.35 2 Medium Density 0.20 0.65 70 D-18 0.36 Streets:Paved 0.14 0.95 100 77.89% 0.75 0.75 0.75 0.94 Lawn,Cla a,>7%Sloe 0.02 0.35 2 BASIN D TOTAL 12.79 76.99% 0.75 0.75 1 0.75 1 0.93 irvc e��NeEas MONTAVA SUBDIVISION PHASE D Final Drainage Report Medium Density 0.00 0.65 70 F-1 0.51 Streets:Paved 0.51 0.95 100 100.00% 0.95 0.95 0.95 1.00 Lawn,Claya,>7%Sloe 0.00 0.35 2 Medium Density 0.00 0.65 70 F-2 0.49 Streets:Paved 0.49 0.95 100 100.00% 0.95 0,95 0.95 1,00 Lawn,Cis a,>7%Slope 0.00 0.35 2 Medium Density 0.00 0.65 70 F-3 0.05 Streets:Paved 0.04 0.95 100 80.40% 0.83 0.83 0.83 1.00 Lawn,Clayey,>79/.Slo a 0.01 0.35 2 Medium Density 0.08 0.65 70 F-4 0.14 Streets:Paved 0.06 0.95 100 82.86% 0.78 0.78 0.78 0.97 Lawn,Clayey,>7%Slope 0.00 0.35 2 Medium Density 0.42 0.65 70 F-5 0.64 Streets:Paved 0.22 0.95 100 80.31% 0.75 0.75 0.75 0.94 Lawn,Cl.a,>7%Sloe 0.00 0.35 2 Medium Density 1.10 0B5 70 F-6 1.99 Streets:Paved 0.78 0.95 100 78.00% 0.75 0.75 0.75 0.94 Lawn,Clayey,>7%Slope 0.11 0.35 2 Medium Density 1.27 0.65 70 F-7 2.00 Streets:Paved 0.65 0.95 100 76.83% 0.73 0.73 0.73 0.92 Lawn,Clayey,>7%Slope 0.08 0.35 2 Medium Density 0.93 0.65 70 F-8 2.54 Streets:Paved 1.47 0.95 100 83.61% 0.81 0.81 0.81 1.00 Lawn,Clayey,>7%Slope 0.14 0.35 2 Medium Density 0.61 0.65 70 F-9 0.81 Streets:Paved 0.20 0.95 100 77A1% 0.72 0.72 0.72 0.91 Lawn,Clayey,>7%Slope 0.00 0.35 2 Medium Density 0.09 0B5 70 F-10 0.15 Streets:Paved 0.06 0.95 100 8200% 0.77 0.77 0.77 0.96 Lawn,Clayey,>7%Slope 0.00 0.35 2 Medium Density 0.00 0.65 70 F-11 0.22 Streets:Paved 0.18 0.95 100 82.18% 0.84 0.84 0.84 1.00 Lawn,Clayey,>7%Slope 0.04 0.35 2 Medium Density 0.23 0.65 70 F-12 0.54 Streets:Paved 0.27 0.95 100 79.96% 0 78 0.78 0.78 0.97 Lawn,Clayey,>7%Sloe 0.04 0.35 2 Medium Density 0.50 0.65 70 F-13 1.04 Streets:Paved 0.42 0.95 100 74.27% 0.74 0.74 0 74 0.92 Lawn,Clayey.>7%Slope 0.12 0.35 2 Medium Density 0.66 0.65 70 F-14 0.94 Streets:Paved 0.28 0.95 100 78,94% 0.74 0.74 0.74 0.- Lawn,Clayey,>7%Sloe 0.00 0.35 2 Medium Density 1.02 0.65 70 F-15 1.43 Streets:Paved 0.41 0.95 100 78,60% 0.74 0.74 0.74 0.92 Lawn,Clayey,>7%Slope 0.00 0.35 2 Medium Density 0.00 0.65 70 F-16 0.26 Streets:Paved 0.20 0.95 100 7T38% 0.81 0,81 0.81 1,00 Lawn,Clayey,>7%Slope 0.06 0.35 2 Medium Density 0.06 0.65 70 F-17 0,34 Streets:Paved 0.25 0.95 100 86,06% 0.84 0.84 0 ne 1.00 Lawn,Clayey.>7%Slope 0.03 0.35 2 High Density 1.45 0.85 90 F-18 1.45 Streets:Paved 0.00 0.95 100 90,00% 0.85 0.85 i.:85 1.00 Lawn,Clayey,>7%Sloe 0.00 0.35 2 Medium Density 0.34 0.65 70 F-19 0.79 Streets:Paved 0.41 0.95 100 82,62% 0 79 0.79 i. ., 0.99 Lawn,Clayey,>7%Slope 0.04 0.35 2 Medium Density 0.41 0.65 70 F-20 0.58 Streets:Paved 0.17 0.95 100 78.79% 0.74 0.74 f!74 0.92 Lawn,Clayey,>7%Slope 0.00 0.35 2 Medium Density 0.76 0.65 70 F-21 1.30 Streets:Paved 0.21 0.95 100 57,58% 0.62 0.62 f 0.78 Lawn,Clayey.>7%Slope 0.33 0.35 2 Medium Density 1.13 0.65 70 F-22 1.61 Streets:Paved 0.48 0.95 100 78,94% 0.74 0.74 0.74 0.92 Lawn,Clayey,>7%Slope 0.00 0.35 2 Medium Density 0.00 0.65 70 F-23 0.23 Streets:Paved 021 0.95 100 91.48% 0.90 0.90 0.90 1.00 Lawn,Clayey,>7%Slope 0.02 0.35 2 Medium Density 0.00 0.65 70 F-24 0.12 Streets:Paved 0.10 0.95 loo 83.67% 0.85 0.85 0.85 1.00 Lawn,Clayey,>7%Slo a 0.02 0.35 2 Medium Density 0.00 0.65 70 F-25 0.28 Streets:Paved 0.24 0.95 100 86.00% 0.86 0.86 0.86 1.00 Lawn,Clayey,>7%Slope 0.04 0.35 2 Medium Density 0.00 0.65 70 F-26 0.29 Streets:Paved 0.25 0.95 100 86,48% 0.87 0.87 0.87 1.00 Lawn,Clayey,>7%Slope 0.04 0.35 2 Medium Density 0.45 0.65 70 F-27 0.68 Streets:Paved 0.23 0.95 100 80.15% 0.75 0.75 0.75 0.94 Lawn,Claya,>7%Slope 0.00 0.35 2 Medium Density 0.29 0.65 70 F-28 0.64 Streets:Paved 0.09. 0.95 100 46.59% 0.57 0.57 0.57 0.71 Lawn,Cla a,>7%Slope 0.26 0.35 2 Medium Density 0.33 0.65 70 F-29 0.97 Streets:Paved 0.27 0.95 100 52.41% 0.62 0.62 0.62 0.77 Lawn,Clayey,>7%Slope 0.37 0.35 2 Medium Density 0.70 0.65 70 F-30 1.32 Streets:Paved 0.50 0.95 100 75.18% 0.74 0.74 0.74 0.92 Lawn,Clayey,>7%Slope 0.12 0.35 2 Medium Density 0.00 0.65 70 F-31 0.06 Streets:Paved 0.05 0.95 100 83.67% 0,85 0.85 0,85 1.00 Lawn,Cla a,>7%Sloe 0.01 0.35 2 Medium Density 0.20 0.65 70 F-32 0.27 Streets:Paved 0.06 0.95 100 74.15% 0,71 0.71 0.71 0.88 Lawn,Clayey,>7%Slope 0.01 0.35 2 BASIN FTOTAL 24.68 77.83% 0.81 0,81 0.81 0.93 T.T.I....... ��E��NeEas MONTAVA SUBDIVISION PHASE D Final Drainage Report Medium Density 0.72 0.65 70 G7-1 1.67 Streets:Paved 0.66 0.95 100 70.05% 0.72 0.72 0.72 0.90 Lawn,Clayey,17%Slope 0.29 0.35 2 Medium Density 0.69 0.65 70 G1-2 1.57 Streets:Paved 0.58 0.95 100 68.09% 0.70 0.70 070 0.88 Lawn,Clayey,17%Slope 0.30 0.35 2 Medium Density 0.00 0.65 70 G11-3 0.34 Streets:Paved 0.29 0.95 100 85.59% 0.86 0.86 0.86 1.00 Lawn,Clayey,>7%Sloe 0.05 0.35 2 Medium Density 0.00 0.65 70 G7-4 0.31 Streets:Paved 028 0.95 100 90.52% 0A9 0.89 0.89 1.00 Lawn,Clayey,>7%Slope 0.03 0.35 2 High Density 4.08 0.85 90 G7-5 4.08 Streets:Paved 0.00 0.95 100 90.00% 0.85 0.85 0.85 1.00 Lawn,Claya,>7%Slope 0.00 0.35 2 Medium Density 0.49 0.65 70 G1-6 0.69 Streets:Paved 0.20 0.95 100 78.70% 0.74 0.74 0.74 0.92 Lawn,Cie a,>7%Slope 0.00 0.35 2 Medium Density 0.88 0.65 70 G1-7 1.82 Streets:Paved 0.72 0.95 100 73.65% 0.73 0.73 0.73 0,92 Lawn,Clayey,>7%Slope 0.22 0.35 2 Medium Density 0.00 0.65 70 G11-8 0.09 Streets:Paved 0.09 0.95 100 100.00% 0.95 0.95 0.95 1.00 Lawn,Clayey,>7%Slope 0.00 0.35 2 Medium Density 0.00 0.65 70 G7-9 0.99 Streets:Paved 0.88 0.95 100 89.11% 0.88 0.88 0A8 1.00 Lawn,Clayey,>7%Slope 0.11 0.35 2 Medium Density 0.00 0.65 70 G7-10 0.49 Streets:Paved 0.43 0.95 100 88.00% 0.88 0,88 0.88 1.00 Lawn,Cla a,>7%Slope 0.06 0.35 2 Medium Density 0.02 0.65 70 G1-11 0.34 Streets:Paved 0.20 0.95 100 63.65% 0.72 0.72 0.72 0.90 Lawn,Cla.e,>7%Sloe 0.12 0.35 2 Medium Density 0.00 0.65 70 G7-12 0.31 Streets:Paved 020 0.95 100 65.23% 0.74 0.74 0.74 0.92 Lawn,Cie a,>7%Slope 0.11 0.35 2 Medium Density 0.00 0.65 70 G7-13 0.22 Streets:Paved 0.17 0.95 100 77.73% 0.81 0,81 0.81 1.00 Lawn,Clayey,>7%Slope 0.05 0.35 2 Medium Density 0.00 0.65 70 G7-14 0.21 Streets:Paved 0.19 0.95 100 90.67% 0.89 0A9 0.89 1.00 Lawn,Clayey,>7%Slope 0.02 0.35 2 Medium Density 0.02 0.65 70 G7-15 0.11 Streets:Paved 0.08 0.95 100 85.64% 0.84 0.84 0.84 1.00 Lawn,Clayey,>7%Slope 0.01 0.35 2 Medium Density 0.02 0.65 70 G7-16 0.12 Streets:Paved 0.09 0.95 100 86.83% 0.85 0.85 0,85 1.00 Lawn,Clayey,>7%Slope 0.01 0.35 2 Medium Density 0.00 0.65 70 G7-17 0.05 Streets:Paved 0.05 0.95 100 100.00% 0.95 0.95 0.95 1.00 Lawn,Cie a,>7%Slope 0.00 0.35 2 Medium Density 0.00 0.65 70 G7-18 0.04 Streets:Paved 0.04 0.95 100 100.00% 0.95 0,95 0.95 1.00 Lawn,Claya,>7%Slope 0.00 0.35 2 BASIN GI TOTAL 13.45 1 80.58% 0.79 0.79 0.79 0.95 irvc e��NeEas MONTAVA SUBDIVISION PHASE D Final Drainage Report Medium Density 0.00 0.65 70 C2-1 0.58 Streets:Paved 0.47 0.95 100 81.41% 0A4 0.84 0.84 1.00 Lawn,Clayey,>7%Slope 0.11 0.35 2 Medium Density 0.00 0.65 70 C2-2 0.57 Streets:Paved 0.46 0.95 100 81.09% 0.83 0.83 0.83 1.00 Lawn,Clayey,17%Slope 0.11 0.35 2 BASIN C2 TOTAL 1.15 81.25% 084 0.84 084 1.00 Medium Density 0.00 0.65 70 GIDDING-1 1.98 Streets:Paved 0.87 0.95 100 44.96% 0.61 0.61 0.61 0.77 Lawn,Clayey,>7%Sloe 1.11 0.35 2 Medium Density 0.00 0.65 70 GIDDING-2 1.39 Streets:Paved 0.60 0.95 100 44.37% 0.61 0.61 0.61 0.76 Lawn,Claya,>7%Slope 0.79 0.35 2 GIDDINGS TOTAL 3.37 44.72% 0.61 0.61 0.61 0.76 Medium Density 0.91 0.65 70 FUTURE-1 6.55 Streets:Paved 3.11 0.95 100 57.98, 0.68 0.68 0.68 0.85 Lawn,Claya,>7%Slope 2.53 0.35 2 Medium Density 2.48 0.65 70 FUTURE-2 3.31 Streets:Paved 0.83 0.95 100 77.52% 0.73 0.73 0.73 0A1 Lawn,Clayey,>7%Slo a 0.00 0.35 2 Medium Density 0.45 0.65 70 FUTURE-3 2.96 Streets:Paved 1.01 0.95 100 45.78% 0.60 0.60 0.60 0.75 Lawn,Clayey,>7%Slope 1.50 0.35 2 Medium Density 2.78 0.65 70 FUTURE-4 4.52 Streets:Paved 1.56 0.95 100 77.65% 0.74 0.74 0.74 0.93 Lawn,Clayey,>7%Slope 0.18 0.35 2 Medium Density5.68 0.65 70 FUTURE-5 7.57 Streets:Paved 1.89 0.95 100 77.49% 0.72 0.72 0.72 0.91 Lawn,Clayey,>7%Slope 0.00 0.35 2 FUTURE BASINS TOTAL 24.91 68.62% 0.70 0.70 0.70 0.88 Medium Density 0.00 0.65 70 SCHOOL 18.26 Streets:Paved 10.01 0.95 100 55.72% 0.68 0S8 0.68 0.85 Lawn,Cla e,>7%Slope 8.25 0.35 2 Medium Density 0.00 0.65 70 POND D 7.49 Streets:Paved 0.50 0.95 100 8.54% 0.39 0.39 0.39 0.49 Lawn,Clayey,>7%Slo a 6.99 0.35 2 Medium Density 0.00 0.65 70 POND 427 10.23 Streets:Paved 0.11 0.95 100 3.05% D.36 0.36 0.36 0.45 Lawn,Clayey,>7%Slo a 10.12 0.35 2 POND/SCHOOL TOTAL 35.98 30.93% 0.53 0.53 0.53 0.66 Open Lands,Transition 103.58 0.20 20 OFFSITE 1 103.58 0.00 0.00 0 20.00% 0.20 0.20 0.20 0.25 0.00 0.00 0 Open Lands,Transition 75.61 0.20 20 OFFSITE 2 75.61 0.00 0.00 0 20.00% 0.20 0.20 0.20 0.25 0.00 0.00 0 OFFSITE TOTAL 179.19 20.00ry 0.20 0.20 0.20 0:25 irvc E���eEa. MONTAVA SUBDIVISION PHASE D Final Drainage Report Basin Time of Concentration Frequency Adj. Overland Flow Average Overland Travel Time Channelized Channel Channel Channelized Time Time of Concentration Basin Runoff Coefficents Length,D Overland Slope Tov Flow Length Slope Velocity Tt Tc=Tov+Tt(min) Cs (ft) N (min) (ft) N (ft/s) (min) D-1 0.81 25 2 2 879 0.5 1.4 10 12 D-2 0.74 48 2 4 870 0.5 1.4 10 14 D-3 0.76 68 2 4 130 0.5 1.4 2 6 D-4 0.85 20 2 2 180 0.5 1.4 2 5 D-5 0.82 20 2 2 178 0.5 1.4 2 5 D-6 0.73 71 2 5 341 0.5 1.4 4 9 D-7 0.73 60 2 4 783 0.5 1.4 9 13 D-8 0.60 60 2 6 356 0.5 1.4 4 10 D-9 0.73 61 2 4 178 0.5 1.4 2 6 D-10 0.80 59 2 3 566 0.5 1.4 7 10 D-11 0.87 20 2 2 375 0.5 1.4 4 6 D-12 0.78 68 2 4 458 0.5 1.4 5 9 D-13 0.81 54 2 3 433 0.5 1A 5 8 D-14 0.88 60 2 3 75 0.5 1.4 1 5 D-15 0.76 64 2 4 94 0.5 1.4 1 5 D-16 0.83 14 2 1 150 0.5 1.4 2 5 D-17 0.73 65 2 4 150 0.5 1.4 2 6 D-18 0.75 65 2 4 120 0.5 1.4 1 5 r n,emm. MONTAVA SUBDIVISION PHASE D Final Drainage Report F-1 0.95 30 2 1 360 0.5 1.4 4 5 F-2 0.95 30 2 1 360 0.5 1.4 4 5 F-3 0.83 18 2 2 67 0.5 1.4 1 5 FA 0.78 65 2 4 62 0.5 1.4 1 5 F-5 0.75 70 2 4 300 0.5 1.4 4 8 F-6 0.75 60 2 4 620 0.5 1.4 7 11 F-7 0.73 90 2 5 650 0.5 1.4 8 13 F-8. 0.81 32 2 2 650 0.5 14 8 10 F-9 0.72 60 2 4 300 0.5 1.4 4 8 F-10 0.77 60 2 4 82 0.5 14 1 5 F-11 0.84 15 2 1 315 0.5 1.4 4 5 F-12 0.78 87 2 4 195 0.5 1.4 2 6 F-13 0.74 25 2 3 375 0.5 1.4 4 7 F-14 0.74 50 2 4 450 0.5 1.4 5 9 F-15 0.74 65 2 4 550 0.5 1.4 7 11 F-16 0.81 15 2 2 305 0.5 1.4 4 6 F-17 0.84 20 2 2 305 0.5 1.4 4 6 F-18 0.85 200 2 5 177 0.5 1.4 2 7 F-19 0.79 95 2 4 182 0.5 1.4 2 6 F-20 0.74 65 2 4 215 0.5 1.4 3 7 F-21 0.62 65 2 6 405 0.5 1.4 5 11 F-22 0.74 65 2 4 590 0.5 1.4 7 11 F-23 0.90 15 2 1 131 0.5 1.4 2 5 F-24 0.85 20 2 2 95 0.5 1A 1 5 F-25 0.86 15 2 1 120 0.5 1A 1 5 F-26 0.87 25 2 2 236 0.5 1.4 3 5 F-27 0.75 65 2 4 290 0.5 1.4 3 7 F-28 0.57 60 2 6 200 0.5 1.4 2 8 F-29 0.62 68 2 6 182 0.5 1.4 2 8 F-30 0.74 70 2 5 300 0.5 1A 4 9 F-31 0.85 12 2 1 260 0.5 1.4 3 5 F-32 0.71 90 2 6 80 0.5 1.4 1 7 MONTAVA SUBDIVISION PHASE D Final Drainage Report GI-1 0.72 65 2 5 605 0.5 1.4 7 12 G1-2 0.70 65 2 5 605 0.5 1.4 7 12 G1-3 0.86 15 2 1 320 0.5 1.4 4 5 G14 0.89 20 2 1 308 0.5 1.4 4 5 G15 0.85 280 2 6 0 0.5 1.4 0 6 G1-6 0.74 106 2 6 219 0.5 1A 3 9 G1-7 0.73 51 2 4 540 0.5 1.4 6 10 G1-B 0.95 20 2 1 30 0.5 1A 0 5 G1-9 0.88 15 2 1 500 0.5 1.4 6 7 G7-10 0.88 30 2 2 335 O.5 14 4 6 G1-11 0.72 70 2 5 130 0.5 1.4 2 7 G1-12 0.74 15 2 2 155 0.5 1.4 2 5 G1-13 0.81 32 2 2 180 0.5 1.4 2 5 G7-14 0.89 23 2 1 175 0.5 1.4 2 5 GI-15 0.84 25 2 2 130 0.5 1.4 2 5 G7-16 0.85 25 2 2 130 0.5 1.4 2 5 G1-17 0.95 15 2 1 45 0.5 1.4 1 5 G1-18 0.95 20 2 1 45 0.5 14 1 5 C2-1 0.84 20 2 2 625 0.5 14 7 9 C2-2 0.83 20 2 2 625 0.5 1.4 7 9 GIDDING-1 0.84 20 2 2 1675 0.5 1.4 20 22 GIDDING-2 0.61 20 2 3 1150 0.5 1.4 14 17 FUTURE-1 0.68 155 2 8 765 0.5 1.4 9 17 FUTURE-2 0.73 145 2 7 200 0.5 1.4 2 9 FUTURE-3. 0.60 400 2 15 1395 0.5 1.4 17 32 FUTURE-4 0.74 400 2 11 300 0.5 1.4 4 15 FUTURE-5 0.72 400 2 11 300 0.5 1A 4 15 SCHOOL 0.68 400 2 12 600 0.5 1.4 7 19 POND D 0.39 150 2 13 150 0.5 1.4 2 15 POND 427 0.36 50 2 8 2750 0.5 1.4 33 41 OFFSITE 1 0.20 300 2 23 1500 2.0 0.7 36 59 OFFSITE 2 0.20 300 2 23 2000 2.0 0.7 48 71 MONTAVA SUBDIVISION PHASE D Final Drainage Report Basin Peak Discharge Time of Basin Basin Area Frequency Adj.Runoff Coefficients Concentration Rainfall Intensity(inlhr) Peak Discharge(cfs) (ac) 2-year 10-year 100-year Tc(min) 2-Year 10-Year 100-Year 2-Year 10-Year 100-Year D-1 0.79 0.81 0.81 1.00 12 2.05 3.50 T16 1.31 2.24 5.66 D-2 1.63 0.74 0.74 0.93 14 1.92 3.29 6.71 2.33 3.98 10.16 D-3 0.40 0.76 0.76 0.95 6 2.67 4.56 9.31 0.81 1.39 3.55 D-4 0.22 0.85 0.85 1.00 5 2.85 4.87 9.95 0.53 0.91 2.19 D-5 0.18 0.82 0.82 1.00 5 2.85 4.87 9.95 0.42 0.72 1.79 D-6 0.24 0.73 0.73 0.91 9 2.30 3.93 8.03 0.40 0.68 1.75 D-7 1.78 0.73 0.73 0.91 13 1.98 3.39 6.92 2.56 4.39 11.20 D-8 1.72 0.60 0.60 0.75 10 2.21 3.78 7.72 2.28 3.90 9.95 D-9 0.82 0.73 0.73 0.91 6 2.67 4.56 9.31 1.59 2.72 6.94 D-10 1.37 0.80 0.80 1.00 10 2.21 3.78 7.72 2.41 4.13 10.53 D-11 0.38 0.87 0.87 1.00 6 2.67 4.56 9.31 0.88 1.51 3.54 D-12 0.82 0.78 0.78 0.98 9 2.30 3.93 8.03 1.47 2.52 6.43 D-13 0.77 0.81 0.81 1.00 8 2.40 4.10 8.38 1.50 2.57 6.45 D-14 0.70 0.88 0.88 1.00 5 2.85 4.87 9.95 1.75 2.99 6.97 D-15 0.22 0.76 0.76 0.95 5 2.85 4.87 9.95 0.48 0.81 2.08 D-16 0.10 0.83 0.83 1.00 5 2.85 4.87 9.95 0.24 0.40 1.00 D-17 0.29 0.73 0.73 0.92 6 2.67 4.56 9.31 0.57 0.97 2.47 D-18 0.36 0.75 11.75 0.94 5 2.85 4.87 9.95 0.77 1.31 3.36 xv Exau�ewe MONTAVA SUBDIVISION PHASE D Final Drainage Report F-1 0.51 0.95 0.95 1.00 5 2.85 4.87 9.95 1.38 2.36 5.07 F-2 0.49 0.95 0.95 1.00 5 2.85 4.87 9.95 1.33 2.27 4.88 F-3 0.05 0.83 0.83 1.00 5 2.85 4.87 9.95 0.12 0.20 0.50 F-4 0.14 0.78 0.78 0.97 5 2.85 4.87 9.95 0.31 0.53 1.36 F-5 0.64 0.75 0.75 0.94 8 2.40 4.10 8.38 1.16 1.98 5.05 F-6 1.99 0.75 0.75 0.94 13 1.98 3.39 6.92 2.96 5.07 12.93 F-7 2.00 0.73 0.73 0.92 13 1.98 3.39 6.92 2.91 4.98 12.70 F-8 2.54 0.81 0.81 1.00 10 2.21 3.78 T72 4.53 7.75 19.61 F-9 0.81 0.72 0.72 0.91 8 2.40 4.10 8.38 1.41 2.40 6.14 F-10 0.15 0.77 0.77 0.96 5 2.85 4.87 9.95 0.33 0.56 1.44 F-11 0.22 0.84 0.84 1.00 5 2.85 4.87 9.95 0.53 0.90 2.19 F-12 0.54 0.78 0.78 0.97 6 2.67 4.56 9.31 1.12 1.92 4M F-13 1.04 0.74 0.74 0.92 7 2.52 4.31 8.80 1.93 3.30 8.43 F-14 0.94 0.74 0.74 0.92 9 2.30 3.93 8.03 1.60 2.73 6.98 F-15 1.43 0.74 0.74 0.92 11 2.13 3.63 7.42 2.24 3.82 9.76 F-16 026 0.81 0.81 1.00 6 2.67 4.56 9.31 0.56 0.96 2.42 F-17 0.34 0.84 0.84 1.00 6 2.67 4.56 9.31 0.77 1.31 3.17 F-18 1.45 0.85 0.85 1.00 7 2.52 4.31 8.80 3.11 5.31 12.76 F-19 0.79 0.79 0.79 0.99 6 2.67 4.56 9.31 1.67 2.86 7.30 F-20 0.58 0.74 0.74 0.92 7 2.52 4.31 8.80 1.08 1.84 4.71 F-21 1.30 0.62 0.62 0.78 11 2.13 3.63 7.42 1.72 2.94 7.50 F-22 1.61 0.74 0.74 0.92 11 2.13 3.63 7.42 2.54 4.32 11.04 F-23 0.23 0.90 0.90 1.00 5 2.85 4.87 9.95 0.59 1.01 2.29 F-24 0.12 0.85 0.85 1.00 5 2.85 4.87 9.95 0.29 0.50 1.19 F-25 0.28 0.86 0.86 1.00 5 2.85 4.87 9.95 0.69 1.18 2.79 F-26 0.29 0.87 0.87 1.00 5 2.85 4.87 9.95 0.72 1.22 2.89 F-27 0.68 0.75 0.75 0.94 7 2.52 4.31 8.80 1.29 2.20 5.62 F-28 0.64 0.57 0.57 0.71 8 2.40 4.10 8.38 0.88 1.50 3.82 F-29 0.97 0.62 0.62 0.77 8 2A0 4.10 8.38 1.44 2.46 6.29 F-30 1.32 0.74 0.74 0.92 9 2.30 3.93 8.03 2.24 3.82 9.76 F-31 0.06 0.85 0.85 1.00 5 2.85 4.87 9.95 0.15 0.25 0.60 F-32 027 0.71 0.71 0.88 7 2.52 4.31 8.80 0.48 0.82 2-10 MONTAVA SUBDIVISION PHASE D Final Drainage Report G1-1 1.67 0.72 0.72 0.90 12 2.05 3.50 7.16 2.45 4.19 10.71 G1-2 1.57 0.70 0.70 0.88 12 2.05 3.50 7.16 2.26 3.87 9.89 G1-3 0.34 0.86 0.86 1.00 5 2.85 4.87 9.95 0.84 1.43 3.38 G1-4 0.31 0.89 0.89 1.00 5 2.85 4.87 9.95 0.79 1.35 3.08 GI-5 4.08 0.85 0.85 1.00 6 2.67 4.56 9.31 9.26 15.81 37.98 GI-6 0.69 0.74 0.74 0.92 9 2.30 3.93 8.03 1.17 2.00 5.10 G1-7 1.82 0.73 0.73 0.92 10 2.21 3.78 7.72 2.95 5.04 12.86 G1-8 0.09 0.95 0.95 1.00 5 2.85 4.87 9.95 0.24 0.42 0.90 G1-9 0.99 0.88 0.88 1.00 7 2.52 4.31 8.80 2.20 3.77 8.71 G7-10 0.49 0.88 0.88 1.00 6 2.67 4.56 9.31 1.15 1.96 4.56 G1-11 0.34 0.72 0.72 0.90 7 2.52 4.31 8.80 0.62 1.06 2.70 G7-12 0.31 0.74 0.74 0.92 5 2.85 4.87 9.95 0.65 1.11 2.84 G1-13 0.22 0.81 0.81 1.00 5 2.85 4.87 9.95 0.51 0.87 2.19 G1-14 0.21 0.89 0.89 1.00 5 2.85 4.87 9.95 0.53 0.91 2.09 G1-15 0.11 0.84 0.84 1.00 5 2.85 4.87 9.95 0.26 0.45 1.09 G1-16 0.12 0.85 0.85 1.00 5 2.85 4.87 9.95 0.29 0.50 1.19 G1-17 0.05 0.95 0.95 1.00 5 2.85 4.87 9.95 0.14 0.23 0.50 G1-18 0.04 0.95 0.95 1.00 5 2.85 4.87 9.95 0.11 0.19 0.40 C2-1 0.58 0.84 0.84 1.00 9 2.30 3.93 8.03 1.12 1.91 4.66 C2-2 0.57 0.83 0.83 1.00 9 2.30 3.93 8.03 1.09 1.87 4.58 GIDDING-1 1.98 0.61 0.61 0.77 22 1.53 2.61 5.32 1.86 3.17 8.07 GIDDING-2 1.39 0.61 0.61 0.76 17 1.75 2.99 6.10 1.48 2.53 6.46 FUTURE-1 6.55 0.68 0.68 0.85 17 1.75 2.99 6.10 7.76 13.25 33.79 FUTURE-2 3.31 0.73 0.73 0.91 9 2.30 3.93 8.03 5.52 9.43 24.10 FUTURE-3 2.96 0.60 0.60 0.75 32 1.24 2.12 4.33 2.20 3.77 9.62 FUTURE-4 4.52 0.74 0.74 0.93 15 1.87 3.19 6.52 6.27 10.69 27.32 FUTURE-5 7.57 0.72 0.72 0.91 15 1.87 3.19 6.52 10.26 17.51 44.72 SCHOOL 18.26 0.68 0.68 0.85 19 1.65 2.82 5.75 20.46 34.96 89.10 POND D 7.49 0.39 0.39 0.49 15 1.87 3.19 6.52 5.46 9.32 23.81 POND427 10.23 0.36 0.36 0.45 41 1.05 1.80 3.68 3.83 6.56 16.77 OFFSITE 1 103.58 0.20 0.20 0.25 59 0.83 1.42 2.89 17.19 29.42 74.84 OFFSITE 2 75.61 0.20 0.20 0.25 71 0.82 1.40 2.86 12.40 21.17 54.06 MONTAVA SUBDIVISION PHASE D Final Drainage Report Attenuation of Peak Discharge Time of Concentration Weighted Runoff Coefficient Rainfall Intensity(inlhr) Peak Discharge(cfs) Design Point Contributing Basins&Design Points Area acres Tc(min) 2-year 10-year 100-year 2-year 10-year 100-year 2-year 10-year 100-year 1 SCHOOL,D-1,D-2 20.68 19.00 0.69 0.69 0.86 1.65 2.82 5.75 23.51 40.18 102.35 2 DPA,D-18 21.04 19.00 0.69 0.69 0.86 1.65 2.82 5.75 23.95 40.94 104.29 3 DP-2,D-4 21.26 19.00 0.69 0.69 0.86 1.65 2.82 5.75 24.26 41.47 105.56 4 D-3,D-9 1.22 6.00 0.74 0.74 0.92 2.67 4.56 9.31 2.41 4.11 10.49 5 DP4,D-14 1.92 6.00 0.79 0.79 0.95 2.67 4.56 9.31 4.05 6.91 17.00 6 DP-5,D-8,D-10,D-13 5.78 10.00 0.74 0.74 0.91 2.21 3.78 7.72 9.42 16.12 40.53 7 DP-6,D-7,D-15 7.78 13.00 0.74 0.74 0.91 1.98 3.39 6.92 11.34 19.41 48.97 8 1313-8,D-11,D-12 8.98 13.00 0.75 0.75 0.92 1.98 3.39 6.92 13.26 22.71 57.15 9 D-16,D-17 0.39 6.00 0.76 0.76 0.94 2.67 4.56 9.31 0.79 1.35 3.40 10 DP-8,DP-9 9.37 13.00 0.75 0.75 0.92 1.98 3.39 6.92 13.85 23.71 59.68 11 DP-11,D-6 9.61 13.00 0.75 0.75 0.92 1.98 3.39 6.92 14.19 24.30 61.18 12 DP-12,D-5 9.79 13.00 0.75 0.75 0.92 1.98 3.39 6.92 14.48 24.80 62.43 13 F-3,F-4,F-30 1.51 9.00 0.74 0.74 0.93 2.30 3.93 8.03 2.58 4.41 11.25 14 DP-13,F-11,F-12 2.27 9.00 0.76 0.76 0.95 2.30 3.93 8.03 3.97 6.79 17.23 15 DP-14,F-5 2.91 9.00 0.76 0.76 0.94 2.30 3.93 8.03 5.08 8.68 22.07 16 F-9,F-10 0.96 8.00 0.73 0.73 0.91 2.40 4.10 8.38 1.68 2.88 7.35 17 DP-16,F-27 1.64 8.00 0.74 0.74 0.92 2.40 4.10 8.38 2.91 4.97 12.71 18 DP-17,F-8,F-13,F-29 6.19 10.00 0.75 0.75 0.89 2.21 3.78 7.72 10.23 17.50 42.40 19 DP-18,F-7 8.19 13.00 0.74 0.74 0.89 1.98 3.39 6.92 12.07 20.67 50.71 20 DP-19,F-6,F-28 10.82 13.00 0.74 0.74 0.89 1.98 3.39 6.92 15.76 26.98 66.80 21 DP-15,DP-20 13.73 13.00 0.74 0.74 0.90 1.98 3.39 6.92 20.13 34.47 85.82 22 DP-21,F-31,F-32 14.06 13.00 0.74 0.74 0.90 1.98 3.39 6.92 20.61 35.29 87.88 23 F-14,F-15 2.37 11.00 0.74 0.74 0.92 2.13 3.63 7.42 3.72 6.34 16.21 24 F-20,F-22 2.19 11.00 0.74 0.74 0.92 2.13 3.63 7.42 3.45 5.88 15.01 25 F-21,F-26 1.59 11.00 0.67 0.67 0.82 2A 3 3.63 7.42 2.26 3.85 9.66 26 DP-23,DP-24,DP-25 6.15 11.00 0.72 0.72 0.90 2.13 3.63 7.42 9.43 16.07 40.87 27 DP-26,F-25,F-19 7.22 11.00 0.73 0.73 0.91 2.13 3.63 7.42 11.28 19.22 48.77 28 DP-22,DP-27 21.28 13.00 0.74 0.74 0.91 1.98 3.39 6.92 31.09 53.24 133.36 29 DP-28,F-16,F-17,F-18 23.33 13.00 0.75 0.75 0.91 1.98 3.39 6.92 34.52 59.10 147.55 30 G1-6,G1-7 2.51 10.00 0.73 0.73 0.92 2.21 3.78 7.72 4.07 6.96 17.77 31 DP-30,G1-15,G1-16 2.74 10.00 0.74 0.74 0.92 2.21 3.78 7.72 4.50 7.70 19.55 32 DP-31,GIA,G1-2 5.98 12.00 0.73 0.73 0.90 2.05 3.50 7.16 8.89 15.18 38.72 33 DP-32,G1-11,G1-12 6.63 12.00 0.73 0.73 0.90 2.05 3.50 7.16 9.86 16.84 42.96 34 DP-33,G1-17,G1-18 6.72 12.00 0.73 0.73 0.91 2.05 3.50 7.16 10.04 17.14 43.60 35 DP-34,G1-3,G1-4,0.5'G1-5 9.41 12.00 0.77 0.77 0.93 2.05 3.50 7.16 14.76 25.20 62.86 36 G1-9,G1-10,0.5'G1-5 3.52 7.00 0.86 0.86 1.00 2.52 4.31 8.80 7.66 13.09 30.98 37 DP-35,DP-36 12.93 12.00 0.79 0.79 0.95 2.05 3.56 7.16 20.99 35.83 1 88.07 APPENDIX B LOW IMPACT DEVELOPMENT ( LID) CALCULATIONS Low Impact Development (LID) Basin/Sub-Basin Total Area (acres) TO BE LID TREATED ATREATEDE o D-1 0.79 YES 0.79 O D-2 1.63 YES 1.63 > o D-3 0.40 YES 0.40 w� ��� D-4 0.22 YES 0.22 D-5 0.18 NO 0.00 � D-6 0.24 NO 0.00 D-7 1.78 NO 0.00 D-8 1.72 YES 1.72 � 3.00 D-9 0.82 YES 0.82 D-10 1.37 YES 1.37 LID 1 AREA D-11 0.38 NO 0.00 0 D-12 0.82 NO 0.00 D-13 0.77 YES 0.77 D-14 0.70 YES 0.70 m D-15 0.22 NO 0.00 5.78 D-16 0.10 NO 0.00 DRAWN LJD 2 AREA D-17 0.29 NO 0.00 BAMG D-18 0.36 YES 0.36 * Tota 1= 12.79 1 1 8.78 1 CHECKED DAP DESIGNED 1LID 2 (UNDERGROUND F-1 0.51 No 0.00 BAMG FILENAME LID 1 i INFILTRATION) N ,�� F-3 0.05 NO 0.00 LID AREAS (UNDERGROUND i F-4 0.14 NO 0.00 INFILTRATION) F-5 0.64 NO 0.00 lor �� F-6 1.99 NO 0.00 F-7 2.00 NO 0.00 �. F-9 0.81 YES 0.81 0 �, F-10 0.15 YES 0.15 F-11 0.22 NO 0.00 F-12 0.54 NO 0.00 6.20 �� F-13 1.04 YES 1.04 LJD 4 AREA �� F-14 0.94 YES 0.94 F-15 1.43 YES 1.43 1.32 F-16 0.26 NO 0.00 LID 3 AREA ,LID 3 F-17 0.34 NO Mo (RAINGARDEN) F-18 1.45 NO 0.00 F-19 0.79 YES 0.79 F-20 0.58 YES 0.58 F-21 1.30 YES 1.30 F-22 1.61 YES 1.61 / F-23 0.23 NO 0.00 F-24 0.12 NO 0.00 LID 4 7.22 F-25 0.28 YES 0.28 (UNDERGROUND ,� UD 5 AREA F-26 0.29 YES 0.29 NFI LTRAl10N) �� F-27 0.6$ YES 0.68 F-28 0.64 NO 0.00 F-29 0.97 YES 0.97 F-30 1.32 YES 1.32 LID 5 F-31 0.06 NO 0.00 (UNDERGROUND F-32 0.27 NO 0.00 Z INFILTRATION) Tota l= 24.68 1 14.73EI O G1-1 1.67 NO 0.00 G1-2 1.57 NO 0.00 G1-3 0.34 NO 0.00 Q Q G14 0.31 NO 0.00 M G1-5 4.08 NO 0.00 M G1-6 0.69 NO 0.00 W G1-7 1.82 NO 0.00 D G1-8 0.09 NO 0.00 G1-9 0.99 NO Mo Q W G1-10 0.49 NO 0.00 G1-11 0.34 NO 0.00 > a. G1-12 0.31 NO 0.00 G1-13 0.22 NO 0.00 Q J G1-14 0.21 NO Mo G1-15 0.11 NO 0.00 G1-16 0.12 NO 0.00 G1-17 0.05 NO 0.00 O G1-18 0.04 NO 0.00 Tota l= 13.45 0.00 C2-1 0.58 NO 0.00 C2-2 0.57 NO 0.00 Tota 1= 1.15 0.00 POND D 7.49 NO 0.00 POND 427 10.23 NO 0.00 Tota 1= 17.72 0.00 LID 1 LID 2 LID 3 LID 4 LID 5 LEGEND TST, INC. X X = TOTAL AREA DRAINING TO LID (ACRES) CONSULTING ENGINEERS 748 Whalers Way uD X LID X = LID NAME Suite 200 Fort Collins (AREAS TO BE OVER TREATED TO ACCOUNT FOR 50% NEWLY Colorado Ph one: 970.226.026.0557 . ADDED IMPERVIOUSNESS FOR TOTAL SITE AREA) JOB NO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230.0009.00 REMAINDER OF SITE THAT IS TAKEN CARE OF BY THE AREAS THAT SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \/ XX ARE BEING OVER TREATED 1" = 150' h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j� f, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FUTURE FILINGS (WHEN DEVELOPED WILL HAVE TO PROVIDE LID) 150 0 150 300 DATE MAY 2024 LID FOOTPRINT scale 1"=150' feet SHEET 1of1 MONTAVA SUBDIVISION PHASE D Final Drainage Report Low Impact Development(LID) Basinl Sub-Basin Total Area lacres) M¢bl-Fam6y Area(acres) Single-Famlly Area Area Remaining Impervious Area lacres) %Impervious TO BE LID TREATED PERCENTOF AREA TO BE 75%LID TREATED lacrea)50%LIDTREATED 50%LIDTREATED TOTAL SITE TREATED D-1 0.79 0.00 0.00 0.79 0.64 80.40% YES 1.13% 0.79 D-2 1.53 0.00 0.80 0.83 1.29 78.90% YES 2.34% 1.63 0-3 0.40 0.00 0.25 0.15 0.33 81.25% YES 0.57% 0.40 0-4 0.22 0.00 0,00 0.22 0.19 86.64% YES 0.32% 0.22 D-5 0.18 0.00 0,00 0.18 0.15 83,12% NO 0.26% 0.00 DE 0.24 0.00 0,13 0.11 0.18 75.58% NO 0.34% 0.00 D-7 1.78 0.00 1.18 0.60 1.36 76.26% NO 2.11% 0.00 0-8 1.72 D.00 0.69 0.83 0.90 52.5]% YES 2.46% 1.72 D-9 0.82 0.00 0.61 0.21 0.64 77.68% YES 1.17% 0.82 D-10 1.37 0.00 0.56 0.81 1.13 82,73% YES 1.96% 137 D-11 0.38 0.00 0.00 0.38 0.33 87.11% NO 0.54% D.00 D-12 0.82 0.00 0.36 0.46 0,66 80.85% NO 1.17% 0.00 D-13 0.77 0.00 0.25 0.52 0.65 83.90% YES 1.10% 0.77 DA4 0.70 0.00 0,17 0.53 0.65 92,71% YES 1.00% 0.70 D-15 0.22 0.00 0,14 0,08 0.18 80,91% NO 0.32% 0.00 D-16 OAO 0.00 0.00 0,10 0.08 80.40% NO 0.14% 0.00 D-17 0,29 0.00 0,17 0,12 0.22 75,66% NO 0.42% 0,00 D-18 10.36 0.00 0.20 0.16 0.28 77.89% YES 0.52 Total= 12.]9 0.00 5.71 7.08 9.85 76.99% 18.33% 6.78 BASIN PERCENT TREATMENT REQUIRED 50.00% IMPERVIOUS AREA REQUIRED TO BE TREATED 4.92 F-1 0.51 0.00 0.00 0.51 0.51 100,00% NO 0.73% 0.00 F-2 0.49 0.00 0.00 0.49 0.49 100,00% NO 0.70% 0.00 F-3 0.05 0.00 0.00 0.05 0.04 80,40% NO 0.07% 0,00 F4 0.14 0.00 0.08 0,06 0.12 82.86% NO 0.20% 0.00 F-5 0.64 0.00 0.00 0.64 0.51 80,31% NO 0.92% 0.00 F-6 1.99 0.00 1.10 0.89 1.55 78,00% NO 2.85% 0.00 F-7 2.00 0.00 1,27 0,73 1.54 76.83% NO 2.87% 0,00 F-8 254 0.00 0.93 161 2A2 83S1% YES 3.64% 2.54 F-9 0.81 0.00 0.61 0.20 0.63 77,41% YES 1.16% 0.81 F-10 0.15 0.00 0.09 0.06 0.12 82.00% YES 0.21% 0.15 F-11 D.22 0.00 0.00 022 0.18 82.18% NO 0.32% 0,00 F-12 1 054 000 023 0,31 043 7996% 1 NO 0.77% 0.00 F-13 1,04 0.00 0,11 1,11 0.77 74,21% YES 1.49% 1.04 F-14 0.94 0.00 0.66 0.28 0.74 78.94% YES 1.35% 0.94 F-.15 1.43 0.00 1.02 0.41 1.12 a'60% YES 2.05% 1.43 F-16 0.26 000 000 0.26 0.20 77,38% NO 0.37% 0.00 F-17 0.34 000 0.06 0.28 0.29 86.06°h NO 0.49% 0.00 F-18 1.45 145 0.00 0.00 1.31 90.00% NO 2,08% 0,00 F-19 0.79 0.00 0.31 0.45 0.65 82.62% YES 1.13% 0.79 F-20 0.58 Ono 0.41 T 0,17 OAS 7879% YES 0.83% 0.58 F-21 1.30 0.00 0.76 0.54 0.75 57.58% YES 1.86% 1.30 F-22 1.61 0.09 1.13 OAS 1.27 78.94% YES 2.31% 1.61 F-23 D.23 000 0.00 023 0.21 91.48% NO 0.33% 0.00 F-24 0,12 0.00 0.00 0,12 0,10 83,67% NO 0.17% 0co F-25 0,28 OOD 0.00 0.28 0.24 86.00% 1 YES OAO% 1 0,28 F-26 0.29 0.00 0.00 0.29 0.25 86.48% YES 042% 029 F-27 0,68 0,00 0.45 0.23 0,55 80.15% YES 007% 0.68 F-28 0,64 0-00 0.29 0-35 030 4659% NO G02% 0co F-29 0.97 0.00 0.33 0,64 0,51 5241% YES 1,39% 0,97 F-30 1.32 0.00 0.70 0.62 0.99 75.18% YES 1,89% 1.32 F-31 0.06 0.00 0.00 0,06 0,05 83,67% NO 0.09% 000 F-32 0.27 D.00 0.20 0,07 0.20 74.15% NO 0.39% 0,00 Total= 24.68 1 1.45 1 11.16 12.07 19.21 77.83% 35.36% 14.73 BASIN PERCENT TREATMENT REQUIRED 51.47% IMPERVIOUS AREA REQUIRED TO BE TREATED 9.89 GI-1 1.67 0.00 0.72 0.95 1.17 70.05% NO 2.39% 000 G1-2 1.57 0.00 0.69 0.88 1.07 68,09% NO 2.25% 0.00 G7-3 0.34 0.00 0.00 0.34 0.29 65,59% NO 049% 000 G14 0.31 0.00 0.00 0.31 0.28 90.52% NO 0."% 000 GI-5 4.08 4.08 0.00 0.00 3.67 90.00% NO 5.85% 0.00 G1-6 0,69 0.00 0.49 0.20 0.54 78.70% NO 0.99% 0.00 G1-7 1.82 0.00 0.88 0.94 1.34 73.65% NO 2.61% 0.00 G1-8 0.09 0.00 0.00 0.09 0.09 100.00% NO 0.13% 0.00 GI-9 0.99 0.00 0.00 0.99 0.88 89.11% NO 1.42% 0.00 Gi-10 0.49 0.00 0.00 0.49 0.43 88.00% NO 0,70% 0.00 G1-11 0.34 0.00 0.02 0.32 0.22 63.65% NO 049% 0.00 Gi-12 0.31 0.00 1 0.00 0.31 0.20 65.23% NO 0."% 0.00 Gi-13 0.22 0.00 0.00 0.22 0.17 77.790.67%3% NO 0.32% 0.00 Gi-14 0.21 0.00 0.00 0.21 0.19 NO 0,30% 0.00 G1-15 0.11 0.00 0.02 0.09 0.09 85.64% NO 0,16% 0.00 Gi-16 0.12 0.00 0.02 0.10 0.10 66.83% NO 0.17% 0.00 Gi-17 0.05 0.00 0.00 0.05 0.05 1 100.00% 1 NO 0.07% 0.00 G1-111 0.04 0.00 0.00 0.04 0.04 1 100.00% 1 NO 0.06% 0,00 Total= 13,45 4.08 2.84 6.53 10.84 1 80.58% 1 19.27% 0.00 BASIN PERCENT TREATMENT REQUIRED 57.58% IMPERVIOUS AREA REQUIRED TO BE TREATED 6.24 C2-1 0.58 0.00 0,00 0,58 0.47 81.41% NO 0 83% O.00 C2-2 0.57 0.00 0.00 0.57 0.46 81.09% NO 0.82% 0,00 Total= 1.15 0.00 0.00 1.15 0.93 81,25% 1.65% 0.00 BASIN PERCENT TREATMENT REQUIRED 50.00% IMPERVIOUS AREA REQUIRED TO BE TREATED 0.47 PONOD 7,49 0.00 0,00 7,49 0.64 8.54% NO 10.73% 0,00 POND 427 10.23 0.00 0.00 23 10 0.31 3.O NO 14.66% 0.00 Total= 17.72 0.00 0.00 17.721 0.95 5.37% 25,39% 0.00 BASIN PERCENT TREATMENT REQUIRED 50.00% 1 IMPERVIOUS AREA REQUIRED TO BE TREATED 0.48 LID 1 LID 2 LID 3 LID 4 LID 5 Total Impervious Area Reguired to be Treated Using 21 99 Total Impervious Area to be Treatetl Using LID 23.51 LID T-lini = T¢chn(ues acres= PROJECT INFORMATION ENGINEERED JEROME MAGSINO PRODUCT 303-349-7555 MANAGER: JEROME.MAGSINO@ADSPIPE.COM SiteAssist MARK KAELBERER FOR STORMTECH 1: ADS SALES REP: 720-256-8225 INSTALLATION INSTRUCTIONS MARK.KAELBERER@ADSPIPE.COM VISIT OUR WEBSITE m I .�- PROJECT NO: IS428230 //fil)*TIM Advanced Drainage Systems, Inc. MONTAVA SUBDIVISION PHASE D FORT COLLINS, CO MC-3500 STORMTECH CHAMBER SPECIFICATIONS IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM 1. CHAMBERS SHALL BE STORMTECH MC-3500. 1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS. 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN,IMPACT-MODIFIED POLYPROPYLENE 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE"STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". COPOLYMERS. 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. 3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418,"STANDARD SPECIFICATION FOR POLYPROPYLENE(PP)CORRUGATED STORMTECH RECOMMENDS 3 BACKFILL METHODS: WALL STORMWATER COLLECTION CHAMBERS"CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. STONESHOOTER LOCATED OFF THE CHAMBER BED. • BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS,UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR. IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION. 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 5. THE STRUCTURAL DESIGN OF THE CHAMBERS,THE STRUCTURAL BACKFILL,AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS,SECTION 12.12,ARE MET FOR:1) 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. LONG-DURATION DEAD LOADS AND 2)SHORT-DURATION LIVE LOADS,BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES. 6. MAINTAIN MINIMUM-6"(150 mm) SPACING BETWEEN THE CHAMBER ROWS. 6. CHAMBERS SHALL BE DESIGNED,TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12"(300 mm)INTO CHAMBER END CAPS. "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". g EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN,CRUSHED,ANGULAR STONE OR RECYCLED CONCRETE;AASHTO M43#3,357,4, LOAD CONFIGURATIONS SHALL INCLUDE:1)INSTANTANEOUS(<1 MIN)AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) 467,5,56,OR 57. MAXIMUM PERMANENT(75-YR)COVER LOAD AND 3)ALLOWABLE COVER WITH PARKED(1-WEEK) AASHTO DESIGN TRUCK. 7. REQUIREMENTS FOR HANDLING AND INSTALLATION: 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING,CHAMBERS SHALL HAVE INTEGRAL,INTERLOCKING 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN STACKING LUGS. ENGINEER. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL,THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". 11. ADS RECOMMENDS THE USE OF"FLEXSTORM CATCH IT"INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION,a)THE ARCH STIFFNESS CONSTANT SHALL BE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b)TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES(ABOVE 73°F/23°C),CHAMBERS SHALL BE NOTES FOR CONSTRUCTION EQUIPMENT PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. 1. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE"STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED.UPON REQUEST BY THE SITE DESIGN 2. THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: ENGINEER OR OWNER,THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE • NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS: • NO RUBBER TIRED LOADER,DUMP TRUCK,OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE • THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER. WITH THE"STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". • THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR • WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE"STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". DEAD LOAD AND 1.75 FOR LIVE LOAD,THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE. 3. FULL 36"(900 mm)OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING. • THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN. USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD.ANY CHAMBERS DAMAGED BY USING THE"DUMP AND PUSH"METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. WARRANTY. 10. MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER.SEE TECHNICAL NOTE 6.32 FOR MANIFOLD SIZING GUIDANCE.DUE TO CONTACT STORMTECH AT 1-800-821-6710 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT. THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD. 11. ADS DOES NOT DESIGN OR PROVIDE MEMBRANE LINER SYSTEMS.TO MINIMIZE THE LEAKAGE POTENTIAL OF LINER SYSTEMS,THE MEMBRANE LINER SYSTEM SHOULD BE DESIGNED BY A KNOWLEDGEABLE GEOTEXTILE PROFESSIONAL AND INSTALLED BY A QUALIFIED CONTRACTOR. ©2024 ADS,INC. CONCEPTUAL LAYOUT - LID #1 NOTES 18 STORMTECH MC-3500 CHAMBERS • THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. o W 6 STORMTECH MC-3500 END CAPS • THE SITE DESIGN ENGINEER MUST CONSIDER THE EFFECTS OF POSSIBLE SATURATED SOILS ON NEARBY SYSTEMS, INCLUDING BUT NOT LIMITED TO, Q U 12 STONE ABOVE(in) RETAINING WALLS,SLOPE CONSTRUCTION/STABILITY,OR BUILDINGS/STRUCTURES.NO FOUNDATION LOADS SHALL BE TRANSMITTED TO THE CHAMBERS.. = o o g STONE BELOW(in) THE STORMTECH SYSTEM DEPICTED DOES NOT CONTAIN PROPER WATER QUALITY MEASURES.ABSENCE OF WATER QUALITY MEASURES CAN RESULT IN d 0 m UNTREATED STORMWATER.ADS RECOMMENDS THE USE OF ISOLATOR ROW PLUS AND AN UPSTREAM HIGH FLOW BYPASS ON ALL STORMTECH SYSTEMS TO Z U 40 %STONE VOID 0 Z w o`U" 3,930 INSTALLED SYSTEM VOLUME(CF)(PERIMETER STONE INCLUDED) PROPERLY DIRECT THE FIRST FLUSH. Uj U (n Z_ Q w �o 7,2 INSTALLED WATER QUALITY FLOW RATE(CFS) m z • NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT&THE REQUIRED STORAGE VOLUME CAN J _ zo 1222 SYSTEM AREA(W) JO ° BE ACHIEVED ON SITE. 153 SYSTEM PERIMETER(ft) m U o H CO Q 04 � o CONCEPTUAL ELEVATIONS - LID #1 o �, � zN 12.50 MAXIMUM ALLOWABLE GRADE(TOP OF PAVEMENT/UNPAVED) Q o U) W 6.50 MINIMUM ALLOWABLE GRADE(UNPAVED WITH TRAFFIC) '3 6.00 MINIMUM ALLOWABLE GRADE(UNPAVED NO TRAFFIC) Q H b o m ~ U o� 6.00 MINIMUM ALLOWABLE GRADE(BASE OF FLEXIBLE PAVEMENT) O w O Z 6.00 MINIMUM ALLOWABLE GRADE(TOP OF RIGID PAVEMENT) W a Q zQ 5.50 TOP OF STONE a o W 4.50 TOP OF MC-3500 CHAMBER N 2 m 0.92 24"ISOLATOR ROW PLUS CONNECTION INVERT z a 0.92 24"BOTTOM MANIFOLD/CONNECTION INVERT o 0 0.75 BOTTOM OF MC-3500 CHAMBER STRUCTURE PER PLAN SHOWN AS 30"NYLOPLAST BASIN =a 0.00 UNDERDRAIN INVERT (24"SUMP MIN) Z .0 o >_ 0.00 BOTTOM OF STONE a a z z< 24"PARTIAL CUT END CAP,PART#MC35001EPP24BC OR MC35001EPP24BW o W TYP OF ALL MC-3500 24"BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS m o wa INSTALL FLAMP ON 24"ACCESS PIPE 0 o PART#MCFLAMP a m W� (TYP 3 PLACES) 00 y m a O 24"X 24"ADS N-12 BOTTOM MANIFOLD o INVERT 2.06"ABOVE CHAMBER BASE 3 0 W W �Z ~ W STRUCTURE PER PLAN SHOWN AS 30"NYLOPLAST BASIN c °o (24"SUMP MIN) Z o 0W 24"ADS N-12 BOTTOM CONNECTION I F///ZI W LL INVERT 2.06"ABOVE CHAMBER BASE F STRUCTURE PER PLAN SHOWN AS 30"NYLOPLAST BASIN N i, U a (24"SUMP MIN) I o N =o N N LLN V///Z F////P//// ® 0 z� O W O� (n U� W- F H 11 E vJL O z Z r =O co w O z 0 � 00 U U Qo 0 INSPECTION PORT o a (TYP 3 PLACES) b o > CO N O o J m ch z O 6"ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRAIN — Z °o (SIZE TBD BY ENGINEER/SOLID OUTSIDE PERIMETER STONE) w =O o C) Q o 0 O J w CD J Q F � = m O a� ISOLATOR ROW PLUS(SEE DETAIL) w o mw PLACE MINIMUM 17.5'OF ADSPLUS125 WOVEN GEOTEXTILE 3 OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET a FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS °o 46.77' i BED LIMITS SHEET 53.48' OF CONCEPTUAL LAYOUT - LID #2 NOTES 31 STORMTECH MC-3500 CHAMBERS • THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. o W 6 STORMTECH MC-3500 END CAPS • THE SITE DESIGN ENGINEER MUST CONSIDER THE EFFECTS OF POSSIBLE SATURATED SOILS ON NEARBY SYSTEMS, INCLUDING BUT NOT LIMITED TO, Q U 12 STONE ABOVE(in) RETAINING WALLS,SLOPE CONSTRUCTION/STABILITY,OR BUILDINGS/STRUCTURES.NO FOUNDATION LOADS SHALL BE TRANSMITTED TO THE CHAMBERS.. = o o g STONE BELOW(in) THE STORMTECH SYSTEM DEPICTED DOES NOT CONTAIN PROPER WATER QUALITY MEASURES.ABSENCE OF WATER QUALITY MEASURES CAN RESULT IN d 0 3 UNTREATED STORMWATER.ADS RECOMMENDS THE USE OF ISOLATOR ROW PLUS AND AN UPSTREAM HIGH FLOW BYPASS ON ALL STORMTECH SYSTEMS TO Z U 40 %STONE VOID 0 Z W o w 6,354 INSTALLED SYSTEM VOLUME(CF)(PERIMETER STONE INCLUDED) PROPERLY DIRECT THE FIRST FLUSH. Uj U 12.4 INSTALLED WATER QUALITY FLOW RATE(CFS) to z . NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT&THE REQUIRED STORAGE VOLUME CAN J U o 1934 SYSTEM AREA(W) 224 SYSTEM PERIMETER(ft) BE ACHIEVED ON SITE. 0 O o° co cfl o0 CONCEPTUAL ELEVATIONS - LID #2 coo �, � zN 12.50 MAXIMUM ALLOWABLE GRADE(TOP OF PAVEMENT/UNPAVED) Q o U) w 6.50 MINIMUM ALLOWABLE GRADE(UNPAVED WITH TRAFFIC) '3 6.00 MINIMUM ALLOWABLE GRADE(UNPAVED NO TRAFFIC) Q H b o m ~ U o� 6.00 MINIMUM ALLOWABLE GRADE(BASE OF FLEXIBLE PAVEMENT) O H O Z 6.00 MINIMUM ALLOWABLE GRADE(TOP OF RIGID PAVEMENT) w a Q zQ 5.50 TOP OF STONE a o W 4.50 TOP OF MC-3500 CHAMBER N 0.92 24"ISOLATOR ROW PLUS CONNECTION INVERT z a 0.92 24"BOTTOM MANIFOLD/CONNECTION INVERT o 0 0.75 BOTTOM OF MC-3500 CHAMBER =a 0.00 UNDERDRAIN INVERT o >o 0.00 BOTTOM OF STONE a a z w< N N Q O 82.14' a o �F wa w 00 75.44' a 24"X 24"ADS N-12 BOTTOM MANIFOLD o 0 6"ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRAIN INVERT 2.06"ABOVE CHAMBER BASE = o w (SIZE TBD BY ENGINEER/SOLID OUTSIDE PERIMETER STONE) Z o F wa o 'w wD i --y i 24"PARTIAL CUT END CAP, w — — PART#MC35001EPP24BC OR MC35001EPP24BW TYP OF ALL MC-3500 24"BOTTOM CONNECTIONS z o AND ISOLATOR PLUS ROWS w� � F O = o� STRUCTURE PER PLAN SHOWN AS 30"NYLOPLAST BASIN U a (24"SUMP MIN) w 24"ADS N-12 BOTTOM CONNECTION 0. 7 17' INVERT 2.06"ABOVE CHAMBER BASE _ w STRUCTURE PER PLAN SHOWN AS 30"NYLOPLAST BASIN ° 1 w (24"SUMP MIN) ` cn � w o z L _ 0 w� F_zz -- E O E Oo p N � N oo °o U U) U op 0, 0 INSTALL FLAMP ON 24"ACCESS PIPE z PART#MCFLAMP �j b (TYP 3 PLACES) LJ _j o m ch Z STRUCTURE PER PLAN SHOWN AS 30"NYLOPLAST BASIN Z ° (24"SUMP MIN) Q = i w o° INSPECTION PORT D p (TYP 3 PLACES) ¢ o 0 82.60' J w � = m 89.31' a \\\ a S ISOLATOR ROW PLUS(SEE DETAIL) w o Nw PLACE MINIMUM 17.5'OF ADSPLUS125 WOVEN GEOTEXTILE 3 OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET a FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS °o =a �a BED LIMITS SHEET 3 OF 9 CONCEPTUAL LAYOUT - LID #4 NOTES 37 STORMTECH MC-3500 CHAMBERS • THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. o W 4 STORMTECH MC-3500 END CAPS • THE SITE DESIGN ENGINEER MUST CONSIDER THE EFFECTS OF POSSIBLE SATURATED SOILS ON NEARBY SYSTEMS, INCLUDING BUT NOT LIMITED TO, Q U 12 STONE ABOVE(in) RETAINING WALLS,SLOPE CONSTRUCTION/STABILITY,OR BUILDINGS/STRUCTURES.NO FOUNDATION LOADS SHALL BE TRANSMITTED TO THE CHAMBERS.. = o o g STONE BELOW(in) THE STORMTECH SYSTEM DEPICTED DOES NOT CONTAIN PROPER WATER QUALITY MEASURES.ABSENCE OF WATER QUALITY MEASURES CAN RESULT IN d 0 3 UNTREATED STORMWATER.ADS RECOMMENDS THE USE OF ISOLATOR ROW PLUS AND AN UPSTREAM HIGH FLOW BYPASS ON ALL STORMTECH SYSTEMS TO Z U 40 %STONE VOID 0 Z w o`U" 7,315 INSTALLED SYSTEM VOLUME(CF)(PERIMETER STONE INCLUDED) PROPERLY DIRECT THE FIRST FLUSH. Uj U (n Z_ Q w_ �o 14.8 INSTALLED WATER QUALITY FLOW RATE(CFS) N Z • NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT&THE REQUIRED STORAGE VOLUME CAN �_ J 2199 SYSTEM AREA(W) Z 324 SYSTEM PERIMETER(ft) BE ACHIEVED ON SITE. J U o N � O o o° co Q cfl o0 CONCEPTUAL ELEVATIONS - LID #4 coo �, � zN 12.50 MAXIMUM ALLOWABLE GRADE(TOP OF PAVEMENT/UNPAVED) Q o U) w 6.50 MINIMUM ALLOWABLE GRADE(UNPAVED WITH TRAFFIC) '3 6.00 MINIMUM ALLOWABLE GRADE(UNPAVED NO TRAFFIC) Q H b o m ~ U o� 6.00 MINIMUM ALLOWABLE GRADE(BASE OF FLEXIBLE PAVEMENT) O w O Z 6.00 MINIMUM ALLOWABLE GRADE(TOP OF RIGID PAVEMENT) w a Q zQ 5.50 TOP OF STONE a o W 4.50 TOP OF MC-3500 CHAMBER N 0.92 24"ISOLATOR ROW PLUS CONNECTION INVERT z a 0.92 24"BOTTOM MANIFOLD INVERT o 0 0.75 BOTTOM OF MC-3500 CHAMBER =a 0.00 BOTTOM OF STONE o >o a z za N w Q W W O o a� 146.64' wa 139.94' w W0 00 y 0 a 24"PARTIAL CUT END CAP,PART#MC35001EPP24BC OR MC3500IEPP24BW o TYP OF ALL MC-3500 24"BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS 3 cl w O �~ INSPECTION PORT INSTALL FLAMP ON 24"ACCESS PIPE W w Z (TYP 2 PLACES) PART#MCFLAMP c o 0 (TYP 2 PLACES) w Z° 0w STRUCTURE PER PLAN SHOWN AS w 30"NYLOPLAST BASIN O 0 (24"SUMP MIN) = o w z ao =o M z w ® 2 Z. o� w o� 24"X 24"ADS N-12 BOTTOM MANIFOLD F//// F//// Ex INVERT 2.06"ABOVE CHAMBER BASE >, — o o �o F////Foo F////F////I V///,F///V///, V//// W U OEto � � Oz (a col RU U oz �Q o? STRUCTURE PER PLAN SHOWN AS 30"NYLOPLAST BASIN co oM -'0 0 (24"SUMP MIN) m m Z o Z o Q = ° 2i O w o D 0 Z� F Q o0 o J W co J Q F 7 2 0 132.77' < a� w� a= \\\\ ISOLATOR ROW PLUS(SEE DETAIL) 139.48' w o PLACE MINIMUM 17.5'OF ADSPLUS125 WOVEN GEOTEXTILE 3 OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET a FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS °o =a �a BED LIMITS SHEET 4 OF 9 CONCEPTUAL LAYOUT - LID #5 NOTES 41 STORMTECH MC-3500 CHAMBERS • THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. o W 6 STORMTECH MC-3500 END CAPS • THE SITE DESIGN ENGINEER MUST CONSIDER THE EFFECTS OF POSSIBLE SATURATED SOILS ON NEARBY SYSTEMS, INCLUDING BUT NOT LIMITED TO, Q U 12 STONE ABOVE(in) RETAINING WALLS,SLOPE CONSTRUCTION/STABILITY,OR BUILDINGS/STRUCTURES.NO FOUNDATION LOADS SHALL BE TRANSMITTED TO THE CHAMBERS.. = o o g STONE BELOW(in) THE STORMTECH SYSTEM DEPICTED DOES NOT CONTAIN PROPER WATER QUALITY MEASURES.ABSENCE OF WATER QUALITY MEASURES CAN RESULT IN d 0 3 UNTREATED STORMWATER.ADS RECOMMENDS THE USE OF ISOLATOR ROW PLUS AND AN UPSTREAM HIGH FLOW BYPASS ON ALL STORMTECH SYSTEMS TO Z U 40 %STONE VOID 0 Z w o`U" 8,074 INSTALLED SYSTEM VOLUME(CF)(PERIMETER STONE INCLUDED) PROPERLY DIRECT THE FIRST FLUSH. Uj U (n Z_ Q w �o 16.4 INSTALLED WATER QUALITY FLOW RATE(CFS) z z • NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT&THE REQUIRED STORAGE VOLUME CAN J U z 2416 SYSTEM AREA(W) JO °z BE ACHIEVED ON SITE. 266 SYSTEM PERIMETER(ft) m U o H o0 co Q CONCEPTUAL ELEVATIONS - LID #5 coo �, � zN 12.50 MAXIMUM ALLOWABLE GRADE(TOP OF PAVEMENT/UNPAVED) Q o U) w 6.50 MINIMUM ALLOWABLE GRADE(UNPAVED WITH TRAFFIC) '3 6.00 MINIMUM ALLOWABLE GRADE(UNPAVED NO TRAFFIC) Q H b o m ~ U o� 6.00 MINIMUM ALLOWABLE GRADE(BASE OF FLEXIBLE PAVEMENT) O w O Z 6.00 MINIMUM ALLOWABLE GRADE(TOP OF RIGID PAVEMENT) w a Q zQ 5.50 TOP OF STONE a o W 4.50 TOP OF MC-3500 CHAMBER N 0.92 24"ISOLATOR ROW PLUS CONNECTION INVERT z a 0.92 24"BOTTOM MANIFOLD/CONNECTION INVERT o 0 0.75 BOTTOM OF MC-3500 CHAMBER =a 0.00 BOTTOM OF STONE z >o a z za N w Q O 115.52' o a 7a 104.10' w a 00 a� w? 00 y 0 a _ 0cl w U K 3 w O �~ w INSPECTION PORT Z (TYP 3 PLACES) 24"X 24"ADS N-12 BOTTOM MANIFOLD o 0 0 INVERT 2.06"ABOVE CHAMBER BASE w (TYP 2 PLACES) 0 w - w� _ N 0 STRUCTURE PER PLAN SHOWN AS 30"NYLOPLAST BASIN W (24"SUMP MIN) v a mx w wz mo STRUCTURE PER PLAN SHOWN 24"ADS N-12 BOTTOM CONNECTION o N AS 30"NYLOPLAST BASIN INVERT 2.06"ABOVE CHAMBER BASE ® p o w N I Nx (24"SUMP MIN) E STRUCTURE PER PLAN SHOWN AS 30"NYLOPLAST BASIN . w 1 (24"SUMP MIN) E 3:N � N �� c0 z L =O a) � w U N O E w 00 INSTALL FLAMP ON 24"ACCESS PIPE U col o 0 PART#MCFLAMP o z (TYP 3 PLACES) W O p Z 24"PARTIAL CUT END CAP, J o M a m PART#MC3500IEPP24BC OR MC3500IEPP24BW z z TYP OF ALL MC-3500 24"BOTTOM CONNECTIONS ¢ _ AND ISOLATOR PLUS ROWS w O 0 D z� C) Q o 0 O J w CD J Q F � = m a� \\\ a S ISOLATOR ROW PLUS(SEE DETAIL) w o Nw PLACE MINIMUM 17.5'OF ADSPLUS125 WOVEN GEOTEXTILE 3 OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET a FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS 96.94' ° =o a �a BED LIMITS 103.64' SHEET 5 OF 9 0 ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS Q = oCl mw a �� MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL CLASSIFICATIONS COMPACTION / DENSITY REQUIREMENT z o zo u � 6 o� FINAL FILL:FILL MATERIAL FOR LAYER'D'STARTS FROM THE U) JZ ILL= x o PREPARE PER SITE DESIGN ENGINEER'S PLANS.PAVEDto TOP OF THE'C'LAYER TO THE BOTTOM OF FLEXIBLE ANY SOIL/ROCK MATERIALS,NATIVE SOILS,OR PER ENGINEER'S �_ J U 0 o PAVEMENT OR UNPAVED FINISHED GRADE ABOVE.NOTE PLANS.CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. 0 O THAT PAVEMENT SUBBASE MAY BE PART OF THE'D'LAYER PREPARATION REQUIREMENTS. Doo 11 N CO z g AASHTO M1451 v m X GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES,<35% A-1,A-2-4,A-3 BEGIN COMPACTIONS AFTER 18"(450 mm)OF MATERIAL Q LL o � Z. INITIAL FILL:FILL MATERIAL FOR LAYER'C'STARTS FROM g FINES OR PROCESSED AGGREGATE. OVER THE CHAMBERS IS REACHED.COMPACT ADDITIONAL ,w THE TOP OF THE EMBEDMENT STONE('B'LAYER)TO 18"(450 Q C OR LAYERS IN 12"(300 mm)MAX LIFTS TO A MIN.95%PROCTOR °m mm)ABOVE THE TOP OF THE CHAMBER.NOTE THAT 0 o 0 MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF DENSITY FOR WELL GRADED MATERIAL AND 95%RELATIVE PAVEMENT SUBBASE MAY BE A PART OF THE'C'LAYER. THIS LAYER. AASHTO M431 DENSITY FOR PROCESSED AGGREGATE MATERIALS. O w z 3,357,4,467,5,56,57,6,67,68,7,78,8,89,9, 10 Q o a o< EMBEDMENT STONE:FILL SURROUNDING THE CHAMBERS z w S AASHTO M431 (D c3 z i ABOVE. 3,357,4,467,5,56,57 �o 00 FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE AASHTO M431 = SUBGRADE UP TO THE FOOT(BOTTOM)OF THE CHAMBER. 3,357,4,467,5,56,57 a A CLEAN,CRUSHED,ANGULAR STONE OR RECYCLED CONCRETES PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.23 Z W 0 o .0 z za PLEASE NOTE: y w o 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY.THE STONE MUST ALSO BE CLEAN,CRUSHED,ANGULAR.FOR EXAMPLE,A SPECIFICATION FOR#4 STONE WOULD STATE:"CLEAN,CRUSHED,ANGULAR NO.4(AASHTO M43)STONE". a o 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FORA'LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9"(230 mm)(MAX)LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION,FOR STANDARD DESIGN LOAD CONDITIONS,A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT.FOR SPECIAL LOAD DESIGNS,CONTACT STORMTECH FOR w a COMPACTION REQUIREMENTS. a 4. ONCE LAYER'C'IS PLACED,ANY SOIL/MATERIAL CAN BE PLACED IN LAYER'D'UP TO THE FINISHED GRADE.MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER'C'OR'D'AT THE SITE DESIGN ENGINEER'S DISCRETION. W o 5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS'A'OR'B'THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20"RECYCLED CONCRETE STRUCTURAL BACKFILL". o 0 _ °w ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL Z o AROUND CLEAN,CRUSHED,ANGULAR STONE IN A&B LAYERS o w Ow w I w mz 1 w 0 00 !.,D J 'TO BOTTOM OF FLEXIBLE PAVEMENT.FOR UNPAVED z O INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, 8' PERIMETER STONE — 0 w /'`? INCREASE COVER TO 24"(600 mm). 18"(450 mm) (2 4 rp) wzm m (SEE NOTE 4) lJ MIN* MAX 0F o _ 12"(300 mm)MIN W�: = om B ! W� • - w =o EXCAVATION WALL - LL w (CAN BE SLOPED OR VERTICAL) 45" **THIS CROSS SECTION DETAIL REPRESENTS OO p o (1143 mm) MINIMUM REQUIREMENTS FOR INSTALLATION. _ co 6 PLEASE SEE THE LAYOUT SHEET(S)FOR E ow PROJECT SPECIFIC REQUIREMENTS. a) w w w A cn z Z O L OU 9' 230 mm w MIN E. � 6" SEE NOTE 3 E ro 150 mm MIN z ( ) I � to d O�0 MC-3500 6" m END CAP SUBGRADE SOILS — (150 mm)MIN 77"(1956 mm) L 12"(300 mm)MIN U o 0 (SEE NOTE 3) o Z o 0 J CN a° m co Z O Z O < _ NOTES: Ui ° w z� 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418,"STANDARD SPECIFICATION FOR POLYPROPYLENE(PP)CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" ~o Q o CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. = m 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787"STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". w a� 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE(ALLOWABLE BEARING CAPACITY)OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION w a FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.REFERENCE STORMTECH DESIGN MANUAL FOR BEARING CAPACITY GUIDANCE. w 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS. m o 5. REQUIREMENTS FOR HANDLING AND INSTALLATION: z° • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING,CHAMBERS SHALL HAVE INTEGRAL,INTERLOCKING STACKING LUGS. C, • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL,THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION,a)THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/FT/%. SHEET AND b)TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES(ABOVE 73°F/23°C),CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. 6 of 9 0 LLI o 0 COVER PIPE CONNECTION TO END INSTALL FLAMP ON 24"(600 mm)ACCESS PIPE OPTIONAL INSPECTION PORT Q v F z CAP WITH ADS GEOSYNTHETICS 601T PART#:MCFLAMP = o NON-WOVEN GEOTEXTILE d MC-3500 CHAMBER O p MC-3500 END CAP f O U z w n Y w U ------_--— U o STORMTECH HIGHLY RECOMMENDS U N FLEXSTORM INSERTS IN ANY UPSTREAM / m 0 m CO o 0 CD STRUCTURES WITH OPEN GRATES Q O N mw o U) z'' Lf �z ii ELEVATED BYPASS MANIFOLD Q 2 F om Z Lu O U w H O Za Q Z< a o� z o zQ -0 co 00 �F ~ ZO >6 a z z SUMP DEPTH TBD BY W W SITE DESIGN ENGINEER NYLOPLAST ° w o (24"[600 mm]MIN RECOMMENDED) a 24"(600 mm)HDPE ACCESS PIPE REQUIRED ONE LAYER OF ADSPLUS125 WOVEN GEOTEXTILE BETWEEN o 0 USE FACTORY PARTIAL CUT END CAP PART#: FOUNDATION STONE AND CHAMBERS a MC35001EPP24BC OR MC35001EPP24BW 8.25'(2.51 m)MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS = 00 y o a _ o w MC-3500 ISOLATOR ROW PLUS DETAIL_ cl Z NTS o - w H w 0 00 w o Z 0 w zm INSPECTION & MAINTENANCE 12"(300 mm)MIN WIDTH NYLOPLAST 8"LOCKING SOLID o F o COVER AND FRAME v W�: o= STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT - CONCRETE COLLAR/ASPHALT OVERLAY U PRESENT) a A. INSPECTION PORTS 8"(200 mm)MIN THICKNESS OF ASPHALT Lu w z ( ) NOT REQUIRED FOR GREENSPACE OR I a° A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN OVERLAY AND CONCRETE COLLAR o w NON-TRAFFIC APPLICATIONS � A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED J- �` ® o a A.3. USING A FLASHLIGHT AND STADIA ROD,MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG ` _ �? W A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS(OPTIONAL) A ° v E o w A.5. IF SEDIMENT IS AT,OR ABOVE,3"(80 mm)PROCEED TO STEP 2.IF NOT,PROCEED TO STEP 3. G� B. ALL ISOLATOR PLUS ROWS 8"NYLOPLAST UNIVERSAL DRAIN BODY I- �+ B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS (PART#2708AG41PKIT)OR TRAFFIC RATED (A o z Z ASPHALT OVERLAY FOR BOX W/SOLID LOCKING COVER E L =o B.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE TRAFFIC APPLICATIONS L u o i) MIRRORS ON POLES OR CAMERAS MAYBE USED TO AVOID A CONFINED SPACE ENTRY N ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE 4"(100 mm)SDR 35 PIPE 0 E o o Z CONCRETE COLLAR - B.3. IF SEDIMENT IS AT,OR ABOVE,3"(80 mm)PROCEED TO STEP 2.IF NOT,PROCEED TO STEP 3. ; U op o ao STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS STORMTECH CHAMBER o oz A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" 1.1 m OR MORE IS PREFERRED - ( ) o so B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN 4"(100 mm)INSERTA TEE > o a m C. VACUUM STRUCTURE SUMP AS REQUIRED TO BE CENTERED ON CORRUGATION VALLEY Z o Q a° STEP 3) REPLACE ALL COVERS,GRATES,FILTERS,AND LIDS;RECORD OBSERVATIONS AND ACTIONS. 2i p w wz STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. of Q °o o J cl W Z, NOTES a w 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION.ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS Z OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. NOTE: w o INSPECTION PORTS MAY BE CONNECTED THROUGH ANY CHAMBER CORRUGATION VALLEY. 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. 00 z� 3a a 4" PVC INSPECTION PORT DETAIL \ �a (MC SERIES CHAMBER) SHEET NTS 7 OF 9 � N UNDERDRAIN DETAIL LU o NTs MC-3500 TECHNICAL SPECIFICATION 0 W U �W STORMTECH STORMTECH NTS Q = 5� VALLEY 86.0"(2184 mm) _ 2 0 o CHAMBERS STORMTECH CHAMBER = STIFFENING RIB CREST INSTALLED d .0 END CAP Z Ucli w o w OUTLET MANIFOLD ��. STIFFENING RIB CRESTWEB Z_ Q�Q w x ,, LOWER JOINT J Q U l z CORRUGATION J do - L m O o 0o LL� N M z o FOUNDATION STONE r �. cf) CC) m� BENEATH CHAMBERS � � � Q (D c, U W T > Ng - FOOT Q �# o g Z w - ❑� ADS GEOSYNTHETICS 601T / 2 1 NON-WOVEN GEOTEXTILE - SECTION A-A \ DUAL WALL UPPER JOINT CORRUGATIONzw PERFORATED BUILD ROW IN THIS DIRECTION = N� oB HDPE 3a STORMTECHUNDERDRAIN �o ENDDCAP CAP , J% ► 90.0"(2286 mm) 11 N w 'o ACTUAL LENGTH F_g O Lu 6 Q¢ B B 45.0" 45.0" 22.2" y a (1143 mm) (1143 mm) (564 mm) o �b FOUNDATION STONE INSTALLED w a A BENEATH CHAMBERS j 'o 0 aN I W U ADS GEOSYNTHETICS 601 T (1956 mm) 75.0 ° � r (1905 mm) A Y o a NON-WOVEN GEOTEXTILE /" c�i it F NOMINAL CHAMBER SPECIFICATIONS 3 W - NUMBER AND SIZE OF UNDERDRAINS PER SITE DESIGN ENGINEER - SIZE(W X H X INSTALLED LENGTH) 77.0"X 45.0"X 86.0" (1956 mm X 1143 mm X 2184 mm) ° 4"(100 mm)TYP FOR SC-310&SC-160LP SYSTEMS SECTION B-B CHAMBER STORAGE 109.9 CUBIC FEET (3.11 m') m w 1w 6"(150 mm)TYP FOR SC-740,SC-800,DC-780,MC-3500,MC-4500&MC-7200 SYSTEMS MINIMUM INSTALLED STORAGE' 175.0 CUBIC FEET (4.96 ml) a LL W WEIGHT 134 lbs. (60.8 kg) ° 0-0° w of wo NOMINAL END CAP SPECIFICATIONS (653 mm) z F MC-SERIES END CAP INSERTION DETAIL SIZE(W X H X INSTALLED LENGTH) 75.0"X 45.0"X 22.2" (1905 mm X 1143 mm X 564 mm) W � O NTS END CAP STORAGE 14.9 CUBIC FEET (0.42 m') F W�: MINIMUM INSTALLED STORAGE' 45.1 CUBIC FEET (1.28 ml) v N WEIGHT 49 Ibs. (22.2 kg) w W z STORMTECH END CAP =N / 'ASSUMES 12"(305 mm)STONE ABOVE,9"(229 mm)STONE FOUNDATION,6"(152 mm)STONE ® p t)w 12" 300 mm BETWEEN CHAMBERS,6"(152 mm)STONE PERIMETER IN FRONT OF END CAPS AND 40%STONE S y ( ) POROSITY. 0 Es MIN SEPARATION W W PARTIAL CUT HOLES AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH"B" B N of 0 ~ 12"(300 mm)MIN INSERTION PARTIAL CUT HOLES AT TOP OF END CAP FOR PART NUMBERS ENDING WITH"T" j o Z Z END CAPS WITH A PREFABRICATED WELDED STUB END WITH"W" E L =o END CAPS WITH A WELDED CROWN PLATE END WITH"C" LE w Q. MANIFOLD STUB PART# STUB B C -- *1 m a o o U MC35001EPP06T 6"(150 mm) 33.21"(844 mm) --- 06 MANIFOLD HEADER MC35001EPP066 --- 0.66"(17 mm) o MC35001EPP08T 31.16"(791 mm) — ~ } 8„(200 mm) o s o MC35001EPP08B --- 0.81"(21 mm) > CD N m MC35001EPP10T 29.04"(738 mm) -- C m v qw 10"(250 mm) z tj o MC35001EPP10B --- 0.93"(24 mm) ¢ = a w MC35001EPP12T 26 z .36"(670 mm) --- w O o 0 12"(300 mm) � MANIFOLD HEADER MC35001EPP12B --- 1.35"(34 mm) z o z i < o� I \ MC35001EPP15T 23.39"(594 mm) - CUSTOM PARTIAL CUT INVERTS ARE C) u9~ _j ° - N MANIFOLD STUB 15"(375 mm) -- v MC35001EPPt56 1.50"(38 mm) AVAILABLE UPON REQUEST. MC35001EPP18TC INVENTORIED MANIFOLDS INCLUDE w 20.03"(509 mm) -- 12-24"(300-600 mm)SIZE ON SIZE 9 MC35001EPP18TW 18"(450 mm) AND 15-48"(375-1200 mm) MC35001EPP18BC 1.77"(45 mm) ECCENTRIC MANIFOLDS.CUSTOM w x MC35001EPP18BW - INVERT LOCATIONS ON THE MC-3500 m w 12"(300 mm) 12"(300 mm) MIN SEPARATION MC35001EPP24TC END CAP CUT IN THE FIELD ARE NOT MIN INSERTION 14,48"(368 mm) — RECOMMENDED FOR PIPE SIZES z MC35001EPP24TW 3 a 24"(600 mm) GREATER THAN 10"(250 mm).THE MC35001EPP24BC ° 2.06"(52 mm) INVERT LOCATION IN COLUMN'B' 0 o MC35001EPP24BW ARE THE HIGHEST POSSIBLE FOR NOTE:MANIFOLD STUB MUST BE LAID HORIZONTAL MC35001EPP30BC 30"(750 mm) --- 2.75"(70 mm) THE PIPE SIZE. FOR A PROPER FIT IN END CAP OPENING. SHEET NOTE:ALL DIMENSIONS ARE NOMINAL OF 0 LLI °I (n L w NYLOPLAST DRAIN BASIN a oOD �w NTS O Z o 3 O z w INTEGRATED DUCTILE IRON Z Q w FRAME&GRATE/SOLID TO J = Z MATCH BASIN O.D. y J o U o F) O o0 op DO U v co Qg 0�� / ♦ 18"(457 mm) H � o j MIN WIDTH � O z c6 > LL o v) N 5 �w AASHTO H-20 CONCRETE SLAB la— U o a _ 8"(203 mm)MIN THICKNESS Z w w� O O °za w Q 12"(610 mm)MIN TRAFFIC LOADS:CONCRETE DIMENSIONS Q z Q (FOR AASHTO H-20) ARE FOR GUIDELINE PUPOSES ONLY. o a z W ACTUAL CONCRETE SLAB MUST BE L N DESIGNED GIVING CONSIDERATION FOR z a INVERT ACCORDING TO LOCAL SOIL CONDITIONS,TRAFFIC o PLANS/TAKE OFF \ LOADING&OTHER APPLICABLE DESIGN Q FACTORS o i \ \ ADAPTER ANGLES VARIABLE 0°-360' a a ACCORDING TO PLANS y w o wi VARIABLE SUMP DEPTH w - a ACCORDING TO PLANS w. 6" 152 mm MIN ON 8-24" 200-600 mm), °� [ ( VARIOUS TYPES OF INLET ANDa 10"(254 mm)MIN ON 30"(750 mm)] wo OUTLET ADAPTERS AVAILABLE: 4-30" 100-750 mm FOR c CORRUGATED HDPE �\ _ °w } 4"(102 mm)MIN ON 8-24"(200-600 mm) 6"(152 mm)MIN ON 30"(750 mm) 3 0 o ow w f t z w WATERTIGHT JOINT o° w� (CORRUGATED HDPE SHOWN) — A BACKFILL MATERIAL BELOW AND TO SIDES z w OF STRUCTURE SHALL BE ASTM D2321 w CLASS I OR II CRUSHED STONE OR GRAVEL F o AND BE PLACED UNIFORMLY IN 12"(305 mm) ai w LIFTS AND COMPACTED TO MIN OF 90% R z Q Ia J °w d O 0. J w ® } T Z p NOTES H mm 1. 8-30"(200-750 mm)GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 o GRADE 70-50-05 r> >o 2. 12-30"(300-750 mm)FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 O N w 3. DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS 2 E 4. DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 rn °o FOR CORRUGATED HDPE(ADS&HANCOR DUAL WALL)&SDR 35 PVC z o 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM 0, 6. TO ORDER CALL: 800-821-6710 a Qz oO ->o J am A PART # GRATE/SOLID COVER OPTIONS m co 0° Z � 8" PEDESTRIAN LIGHT STANDARD LIGHT ¢ _ 2 2808AG SOLID LIGHT DUTY 2i 1 a (200 mm) DUTY DUTY w w z p z� 10" PEDESTRIAN LIGHT STANDARD LIGHT 2810AG SOLID LIGHT DUTY F- Q °o (250 mm) DUTY DUTY o °, a1 12" PEDESTRIAN STANDARD AASHTO SOLID = o (300 mm) 2812AG AASHTO H-10 H-20 AASHTO H-20 w a� 15" PEDESTRIAN STANDARD AASHTO SOLID (375 mm) 2815AG AASHTO H-10 H-20 AASHTO H-20 w 18" PEDESTRIAN STANDARD AASHTO SOLID �w 2818AG $ (450 mm) AASHTO H-10 H-20 AASHTO H-20 24" PEDESTRIAN STANDARD AASHTO SOLID 3 (600 mm) 2824AG AASHTO H-10 H-20 AASHTO H-20 a v o 30" PEDESTRIAN STANDARD AASHTO SOLID m i (750 mm) 2830AG AASHTO H-20 H-20 AASHTO H-20 SHEET 9 OF 9 UT9 v2F> 'tiyry ?I y� �r/d�• 'rF�F \' S LID #4 - i LON Ism'. a ? sjig 'o9 / 6 O \ % / LOT 35 NON-POT POND GRADING AND ` / Q� f >/ I TOF.=gas I INFRASTRUCTURE PER SEPARATE olb \ k• 2- -PLANSET 'uf, f- ••2� I > _ a OT 11 y - S 404 / jrlS,+p LOT =s77 `1 r=.805.�7 1 4s7 % I LOT_28 LOT_27 LD eo 4.ao 4.75 4.75 4,61 4.34 4.17 r 4.06 T.O.F.-5.38 T.O F 5.57 T.O. \ f �• !. F.G.= 3.1❑ M' T I, F.G.= 4.71 F•G 4.90 F.G. PILOT 9 i LOT 8 LOT 7� ' LOT 6 ., LOT 5 LOT 4 LOT 3 LOT 2 LOT 1 iage r_- '"' Z4_� t LOT 10 T.o.F=5.42 T0F.-5.42 T0F.=5.49 -T.O.F.=5.67 T,O.R=5.67 T.O.F.-5.53 1O.h=5.26 T.O.F.:5.09 T.O.F.=4.98 ' �+T.O.F.-5.47 F.G.= 4.75 F G.= 4.75 F G.= 4.82 I F.G.= 5.00 F.G.= 5.00 F.G.= 4.86 F.G.- 4.59 F.G.= 4.42 RAISED CROSSWALK PER/. i /. / s2 F.G.= a.ao "' r e TvpF e LID #1 LCUASS DETAIL 1613 iS +.zz ��/�5.20 I - Y' LID#1 ; �, y Z 4.21 _\Y._ .7.55= k-- I > % �' / LOT 37 �4 / d`- y�� -- rp �- �P - y` - kb-- d--- ��- 1'-- ery-- .r' v ►P--- �o-- ow -- / 4,23 r e O. .=9.37 TO..` ai y - - y L y y 5 7 v _ _N - - N - 2s2_ y v- v \ �g1 n r i �g a� }� 2?� ?� .I v �� ;Pry ALLEY D, r a 3.30 � SS •r \ 1 t <. ALLEY E , - 3.g1 LOT 38` ,ai ' I��{,�QI, / . ' - 1' �� _ f. .,, o.F.=9.03 'Da. - �b� �� �'�' 3 - v� "J � '•� _ I ry '� �• - .� ' 4.19. -,F.G.=`&_3B \',�, a � - -�- 'fr '`�-- 'Ft�-( • J _: , ...._- ." '- .: . .': N r 1 I �I �/ � � / /• � ` �` \ �/ '� -`� I ??? LOT 21 LOT 22 LOT 23 LOT 24 LOT 25 LOT 26 \� T.O.F.=5.35 T.O.F.=5.35 T.O.F.=4.93 T.O.F.=4.61 T.O.F.=5.23 T.O.F.=5.08 T.O.F.=4.81 F.G_.= 4.68 F.G.= 4.68 FG.= 4.56 F.G.= 4.41 F.G.- 4.26 F.G.= 4J4 F.G.= 3.94 ��r� \3,22 �. ••1 y \�, '�� LOT 8 T Y�� r r` ° LOT 27 LOT 28 LOT 29 LOT 30fiL0 �0. .?;7.24f.20 >r f s r t T.O.F.-4.30 T.O.F.=4.14 T.O.F.=4.32 T.0 F 4.48 T.O. S, f'/� FG.- -, I— ! S 'g F.G.= 3.63 F.G.= 3.47. F.G.= 3.65 F.G 3.81 F.G. TION PER ao� l �� LOT 39 7.3s` y ' LdT / \ 6.90 F.O.F.=9.09 PLANSET - y / P. r o a-8.33 F.G 8 42 �ry v if - . �` 0y �a eT' \ry1 X G 7.66 - ,m �� � ! - �,� � �. �- LID #5 � ,' � �. v 3.a4 LOT 40 7' �/// ` I RAISED CROSSWALK P r a r=zss ' S �I I- - o LCUASS DETAIL 1613 32 a6.69 8.34 LOT 6. 7.2e T.O.F.=8.2b A W1 J� Il I LOT 41 / / j' F.G• 7.55 Z \ RAISED CROSSWALK o _ PE R LCUASS z T. 6 OF G >11 -y5, �. � / \ •'� i 5.94 >- DETAIL 1613 $ v 8 I LOT 5 T.O.F.=8.07 / \ f F.G. 7.40r 4aaa •f,� - a;j� -Jo, .�� 3J, .��F a�� 2� 2�e JN�+�•' 1.00 ,� •i�� 2,-`-'-'"�_ - - -n T.O.F.-- 6.22 I r -. I'..:• - � ae2 :C t _ V �' .r l `�� �•/ .� �� LOT 30 LOT 29 . m l - I 8.84 =4.49 LOT 42 �/ F G= ae2 F.G= 3.56 I, j. - \$r 1 I �!�� w� w"'� who ko" a� / c LOT 59 LOT 58 io. - K TOF:=7.14 TOF=437 T.OF-4.61 I f I F G.- s._47 i LOT 4 y� F c. F cF T.7 �OT 37 LOT 36 LOT 35 LOT 33 LOT 32 LOT 31 y� F.G. 3.70 F.c.= 3.94 © c. y 0 Rv Y w I' 0 g ` " s JS o.a5 r,o r-11.17 F � - = F.G rasa QI'vgA 5.87rs, o ND �, � Quo T Tt e-; LOT 3 ss - q`' j� _� I ' B LOT 43 I z ky Fc sia3 you L I D #2 LdT 19 V I T FOF-6' I Q �� f.' b - 'v - 12 ALLEY O 11 1.31 LOT 2 f> 5.54�-F , FG.= 6_64 • V LOT 44 f .:� `8s i ,�: �° m• ----- -- I` I T T.0 F=6.4s r fv dd v� F� F,G s.79 LOT 1 f LOT 20 -- ----. =' 4 •...I // Mfi•.{_ - _�� �;�rd"�/;���✓: � \>� LOT 21 o O � T.D,E-71 =9.88 E.G. -,6.4 F.G= 0.05 F.G.= 9.21 --- - ----- -e .` IA - _ - - - - - 3. .g - sous r oeC)�� °j - ti N TIMBERLINE RD e d Project Montava Subdivision Phase D-LID#1 Z/� Olnclutle Perimeter Stone In Glculatlons Chamber Model- MG3500 StormTech Units Imperial ❑.41f4xSagaAree Number of Chambers- 18 Number of End Caps- 6 Voids In the atone(porosity)- q0 ❑Olck to Invert Stage Frey Data Base of Stone Elevafwn- 0.00 it Amount of Stone Above Chambers- 12 in Amount of Stone Below Chambers- 9In Area of system- 1222 sf Min.Area- 990 sf min.area Stormleofi°MC-3500 Cumulative Storage Volumecs eg In9 a ncreman System cr Chamber Single End Cap Chambers nEnd Capa nc5tsnen a EC andnStsne Systems Elevalion (inches) (cable fist) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic leer) (cubic feel) (feet) 66 0.00 0.00 0.00 0.00 40.73 40.73 3929,67 5.50 65 0.00 0.00 0.00 0.00 40.73 40.73 3888.94 5.42 64 &00 0.00 0.00 0.00 40.73 40.73 3848.20 5.33 63 0.00 0.00 0.00 0.00 40.73 40.73 3807.47 5.25 62 0.00 0.00 0.00 0.00 40.73 40.73 3766.74 5.17 61 0.00 a 00 0.00 0.00 40.73 40.73 3726.00 5.08 60 0.00 0.00 0.00 0.00 40.73 40.73 3685.27 5.00 59 0.00 0.00 000 0.00 40.73 40.73 3644.54 4.92 58 0.00 0.00 0.00 0.00 40.73 40.73 3603.80 4.83 57 0.00 0.00 0.00 0.00 40.73 40.73 3563.07 4.75 56 0.00 0.00 0.00 0.00 40.73 40.73 3522.34 4.67 55 0.00 0.00 0.00 100 40.73 40.73 3481.60 4.58 64 0.06 0.00 1.05 0.00 40.32 41.36 3440.87 4.50 53 0.19 0.02 3.49 0.14 39.28 42.92 3399.61 4.42 52 0.29 0.04 5.29 0.23 38.53 44.04 3356.60 4.33 51 0.40 0.05 7.27 0.31 37.70 45.28 3312.55 4.25 50 0.69 0.07 12.37 0.41 35.62 48.40 3267.27 4.17 48 1.03 0.09 18.51 0.53 33.12 52.16 3218.88 4.08 48 1.25 0.11 22.49 0.64 3148 54.61 3166.72 4.00 47 1.42 0.13 25.60 0.76 30.19 56.55 3112.10 3.92 46 1.57 0.14 28.32 0.87 29.06 58.24 3055.56 3.83 45 1.71 0.16 30.73 0.98 28.05 59.76 2997.31 3.75 44 1.83 0.18 32.91 1.09 27.13 61.14 2937.56 3.67 43 1.94 0.20 34.88 1.20 26.30 62.38 2876.42 3.58 42 2.04 0.22 36.73 1.31 25.52 63.56 2814.04 3.50 41 2.13 0.23 38.42 1.41 24.80 64.63 2750.48 3.42 40 2.22 0.25 40.04 1.50. 24.12 65.66 2685.84 3.33 39 2.31 0.27 41.52. 1.59 23.49 66.60 2620.19 3.25 38 2.38 0.28 42.93 1.68 22.89 67.50 2553.58 3.17 37 2.46 0.29 44.26 1.76 22.32 68.35 2486.09 3.08 36 2.46 0.31 45.51 1.85 21.79 69.15 2417.74 3.00 35 2.59 0.32 48.69 1.93 21.29 69.90 2348.59 2.92 34 2.66 0.33 47.81 2.01 20.81 70.62 2278.69 2S3 33 2.72 0.35 48.87 2.08 20.35 71.31 2208.07 2.75 32 2.77 0.36 49.88 2-16 19.92 71.96 2136.76 2.67 31 2.62 0.37 50.84 2.23 19.50 72.58 2064.80 2.5B 30 2.88 0.38 51.76 231 19.11 73.17 1992.22 2.50 29 2.92 0.40 52.63 2.38 18.73 73.74 1919.05 2.42 28 2.97 0.41 53.46 2.45 18.37 74.28 1845.31 2.33 27 3.01 0.42 54,22 2.51 18.04 74.78 1771:04 2.25 26 3.05 0.43 54.96 2.58 17.72 75.26 1fi96.26 2.17 25 3.09 0.44 55.70. 2.64 17.40 75.764 7621.01 2.08 24 3.13 0.45 56.35 2.70 17.11 76A7 1545.27 2.00 23 3.17 0.46 56.98 2.77 16.83 76.58 1469.10 1.92 22 3.20 0.47 57.59 2.82 16.57 76.98 1392.52 1.83 21 3.23 0.48 58.16 2.88 16.32 77.36 1315.54 1.75 20 3.26 0.49 58.71 2.94 16.08 77.72 1238.18 1.67 19 3.29 0.50 59.22 2.99 15.85 78.06 1160.46 1.58 18 3.32 0.51 59.72 3.04 15.63 78.39 1082.40 1.50 17 3.34 0.51 60.19 3.09 15.42 78.70 1004.01 1.42 16 3.37 0.52 60.64 3.13 15.23 78.99 925.31 1.33 15 3.39 0.53 61.07 3.18 15.04 79.28 846.32 1.25 14 3.41 0.54 61.46 3.22 14.86 79.54 767.04 1.17 13 3.44 0.54 61.87 3.26 14.68. 79.81 687.50 1.08. 12 3.46 0.55 62.24 3.30 14.52 80.05 607.69 1.00 11 3.48 0.56 62.62 3.33 14.35 80.30 527.63 0.92 10 3.51 0.59 63.09 3.57 14.07 80.73 447.33 0.83 9 0.00 0.00 0.00 0.00 40.73 40.73 366.60 0.75 8 0.00 0.00 0.00 0.00 40.73 40.73 325.87 0.67 7 0.00 0.00 0.00 100 40.73 40.73 285.13 0.58 6 0.00 0.00 0.00 0.00 40.73 40.73 244.40 0.50 5 0.00 0.00 0.00 0.00 40.73 40.73 203.67 0.42 4 0.00 0.00 0.00 0.00 40.73 40.73 162.93 0.33 3 0.00 0.00 0.00 0.00 40.73 40.73 122.20 0.25 2 0.00 0.00 0.00 0.00 40.73 40.73 61.47 0.17 1 0.00 0.00 0.00 0.00 40.73. 40.73 40.73 0.08 Project Montava Subdivision Phase D-LID#2 0 mdede aeameter scone m ramwavens Chamber Model- MC-3500 units- Imperial StormTeeh%-.,. ❑alrk far stage area Data Number of Chambers- 31 Number of End Caps- fi Voids In the atone(porosity)- q0 ❑dick to[neat Stage Brea Gate Base of Stone Elevarwn- 0.00 it Amount of Stone Above Chambers- 12 in Click Here for Metric Amount of Stone Below Chambers- 9In Area of system- 1934 sf Min.Area- 1634 sf min.area Stormleofi°MC-3500 Cumulative Stora a Volumes r eg n9e i ncremen nc n a System c Chamber Single End Cap Chambers nEntl Cap a Stone EC andnStone System a Elevation (inches) (cable fief) (cubic feet) (cubic fact) (cubic feet) (cubic feet)) (cubic leer) (cubic feel) (feet) 66 0.00 0.00 0.00 0.00 64 47 644 6353.66 5.50 65 0.00 0.00 0.00 0.00 64.47 64.47 6289.19 5.42 64 &00 0.00 0.00 0.00 6447 64.47 6224.73 5.33 63 0.00 0.00 0.00 0.00 64.47 64.47 6160.28 5.25 62 0.00 0,00 0.00 0,00 64.47 64.47 6095.76 5.17 61 0.00 a 00 0.00 0.00 64.47 64.47 6031.33 5.08 60 0.00 0.00 0.00 0,00 64.47 64.47 5966.86 5.00 59 0.00 0.00 0.00 0.00 64.47 64.47 5902.39 4.92 58 0.00 0.00 0.00 0.00 64.47 64.47 5837.93 4.83 57 0.00 0.00 0.00 0.00 64.47 64.47 5773.46 4.75 56 0.00 0.00 0,00 0.00 64.47 64.47 5708.99 4.67 55 0.00 0.00 0.00 0.00 64.47 64.47 5644.53 4.58 64 0.06 0.00 1.80 0.00 63.75 65.55 5580.06 4.50 53 0.19 0.02 6.02 0.14 62.00 68.16 551451 4.42 52 0.29 0.04 9.11 0.23 60.73 70.07 5446.35 4.33 51 0.40 0.05 12.51 0.31 59.34 72.16 5376.28 4.25 50 0.69 0.07 21.30 0.41 55.78 77.49 5304.12 4.17 48 1.03 0.09 31.88 0.53 515 83.91 5226.63 4.08 48 1.25 0,11 38.74 0,64 48.72 88.09 5142.72 4.00 47 1.42 0.13 44.09 0.76 46,53 91.38 5054.62 3.92 46 1.57 0.14 48.77 0,87 44.61 94.25 4963.25 3.83 45 1-71 0.18 52.92 0.98 42.91 96.81 4869.00 3.75 44 1.83 0.18 56.68 1,09 41.36 99,13 4772,20 3.67 43 1.94 0.20 60.07 1.21 39.96 10123 4673.07 3.58 42 2.04 0.22 63.27 1.31 38.64 103,21 4571.83 3.50 47 2.13 0.23 66.18 1.41 37.43 105.02 4468.62 3.42 40 2.22 0.25 68.95 1.50. 36.29 106.74 4363.60 3.33 39 2.31 0.27 71.51 1.59 35.23 108.33 4256.87 3.25 38 2.38 0.28 73.93 1.68 34.22 109.83 4148.54 3.17 37 2.46 0,29 76,23 1.76 33.27 111.26 4038.71 3.08 36 2.53 0.31 78.37 1.85 32.38 112.60 3927.44 3.00 35 2.59 0.32 80.41 1.93 31.53 113.87 3814.84 2.92 34 2.66 0.33 82.34 2.01 30.73 115.07 3700.98 2S3 33 2.72 0.35 84.17 2.08 29.97 116.22 3585.90 2.75 32 2.77 0,36 85.91 2-16 29.24 117.31 3489.69 2,67 31 2.82 0.37 87:56 2.23 28.55 118.35 335238 2.5B 30 2.88 0.38 89.14 2.31 27:89 119.33 3234.03 2.50 29 2.92 0.40 90.65 2.38 27.26 12028 3114.70 2.42 28 2.97 0.41 92.07 2.45 26.66 121.17 2994.42 2.33 27 3.01 0.42 93.39 2.51 26.11 122.01 2873.24 2.25 26 3.05 0.43 94.65 2.58 25,58 122.80 2751.24 2.17 25 3.09 0.44 95.92 2.64 25.04 123.81 2628.43 2.08 24 3.13 0.45 97,05 2.70 24,57 124.32 2504.83 2.00 23 3.17 0,46 98.14 2.77 24.11 125.01 2380.51 1.92 22 3.20 0.47 99.18 2.82 23,66 125.67 2255.50 1.83 21 3.23 0.48 100.16 2.88 23.25 126.29 2129.83 1.75 20 3.26 0.49 101.10 2.94 22.85 126A9 2003.54 1.67 19 3.29 0.50 10200 2.99 22.47 127.46 1876.65 1.58 18 3.32 0.51 lo186 3.04 22,11 128.00 1749.19 1.50 17 3.34 0.51 103.67 3,09 21.76 128.52 1621.19 1.42 16 3.37 0.52 104.43 3,13 21.44 129.00 1492.67 1.33 15 3.39 0.53 105.17 3.18 21.13 129.47 1363.66 1.25 14 3.41 0.54 105.85 3.22 20.84 129.91 1234.19 1.17 13 3.44 0.54 106.55 3.26 20.54 130.35 1104.28 1.08. 12 3.46 0.55 107.19 3.30 20.27 130.76 973.93 1.00 11 3.48 0.56 107.84 3.33 20.00 131.17 843.17 0.92 10 3.51 0.59 108.66 3.57 19.58 131.80 712.00 0.83 9 0.00 0.00 0.00 0.00 64.47 64.47 580.20 0.75 8 0.00 0.00 0.00 0.00 64.47 64A7 515.73 0.67 7 0.00 0.00 0.00 0.00 64.47 64.47 451.27 0.58 6 0.00 0.00 0.00 0.00 64.47 64.47 386.80 0.50 5 0.00 0.00 0.00 0.00 64.47 64.47 322.33 0.42 4 0.00 0.00 0 64..00 0.00 47 64.47 257.87 0.33 3 0.00 0.00 0.00 0.00 64.47 64.47 193.40 0.25 2 0.00 0.00 0.00 0.00 64.47 64.47 128.93 0.17 1 0.00 0.00 0.00 0.00 64.47 64.47 64.47 0.08 Design Procedure Form: Rain Garden(RG) UD-BMP(Version 3.07,March 2018) Sheet 1 of 2 Designer: BAMG Company: TST INC.CONSULTING ENGINEERS Date: July 15,2024 Project: MONTAVA SUBDIVISION Location: RAINGARDEN-LID 3 1.Basin Storage Volume A)Effective Imperviousness of Tributary Area,la la= 75.2 % (100%if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio(i=IJ100) i= 0.752 C) Water Quality Capture Volume(WQCV)for a 12-hour Drain Time WQCV= 0.24 watershed inches (WQCV=0.8*(0.91*i3-1.19*i2+0.78*i) D) Contributing Watershed Area(including rain garden area) Area= 38,975 sq ft E) Water Quality Capture Volume(WQCV)Design Volume VQCCV=0cu ft Vol=(WQCV/12)*Area F) For Watersheds Outside of the Denver Region,Depth of de= 0.60 in Average Runoff Producing Storrs G) For Watersheds Outside of the Denver Region, VWQcvoTHER= 1,089 cu ft Water Quality Capture Volume(WQCV)Design Volume H) User Input of Water Quality Capture Volume(WQCV)Design Volume VWQCV USER= cu ft (Only if a different WQCV Design Volume is desired) 2.Basin Geometry A)WQCV Depth(12-inch maximum) DWQcv= 12 in B)Rain Garden Side Slopes(Z=4 min.,horiz.dist per unit vertical) Z= 4.00 ft/ft (Use"0"if rain garden has vertical walls) C)Mimimum Flat Surface Area AM;,,= 586 sq ft D)Actual Flat Surface Area AActua,= 740 sq ft E)Area at Design Depth(Top Surface Area) AT,= 1440 sq ft F)Rain Garden Total Volume VT= 1,090 cu ft (Vr=((ATap+A,,,.w)/2)*Depth) 3.Growing Media Choose One 18"Rain Garden Growing Media Q Other(Explain): 4.Underdrain System Choose One A)Are underdrains provided? *YES Q NO B)Underdrain system orifice diameter for 12 hour drain time i)Distance From Lowest Elevation of the Storage y= 1:5 ft Volume to the Center of the Orifice ii)Volume to Drain in 12 Hours V0112= 1,089 cu ft iii)Orifice Diameter,3/8"Minimum Do= 13/16 in UD-BMP_3.xlsm,RG 7/15/2024,2:59 PM Project Montava Subdivision Phase D-LID#4 0 mdade renmete<scone in�mwanen: Chamber Model- MC-3500 Units- F-h-p-en-a-1 -1 StormTech ❑o,d<fer S�qe Area Dana Number of Chambers- 37 Number of End Caps- 4 Voids In the atone(porosity)- 40 °o ❑Olck to InvM Stage Area Data Base of Stone Elevation- 0.00 it Amount of Stone Above Chambers- 12 in Click Here for Metric Amount of Stone Below Chambers- 9In Area of system- 2199 sf Min.Area- 1899 sf min.area Stormleofi°MC-3500 Cumulative Stora a Volumes eg mge ncremen System cr Chamber Single End Cap Chambers nEntl Capa nc5tonen a EC antlnStone System a Elevation (inches) (cable fief) (cubic feet) (cubic feet) (cubic feet) (cubic feet) (cubic leer) (cubic feel) (feet) 66 0.00 0.00 0.00 0.00 73.30 73.30 7314.52 5.50 65 0.00 0.00 0.00 0.00 73.30 73.30 7241.22 5.42 64 &00 0.00 0.00 0.00 73.30 73.30 7167.92 5.33 63 0.00 0.00 0.00 0.00 73.30 73.30 7094.62 5.25 62 0.00 0.00 0.00 0.00 73.30 731 7021.32 5.17 61 0.00 a 00 0.00 0.00 73.30 73.30 6948.02 5.08. 60 0.00 0.00 0.00 0.00 73.30 73.30 6874.72 5.00 59 0.00 0.00 0.00 0.00 73.30 73.30 6801.42 4.92 58 0.00 0.00 0.00 0.00 73.30 73.30 6728.12 4.83 57 0.00 0.00 0.00 0.00 73.30 73.30 6654.82 4.75 56 0.00 0.00 0.00 0.00 73.30 73.30 6581.52 4.67 55 0.00 0.00 0.00 800 73.30 73.30 6508.22 4.58 64 0.06 0.00 2.15 0.00 72.44 74.59 6434.92 4.50 53 0.19 0.02 7.18 0.10 70.39 77.67 6360.33 4.42 52 0.29 0.04 10.88 0.15 68.89 79.92 6282.67 4.33 51 0.40 0.05 14.93 0.21 67.24 82.38 6202.75 4.25 50 0.69 0.07 25.43 0.27 63.02 8872 6120.37 4.17 48 1.03 0.09 38.05 0.35 57.94 96.34 6031.66 4.08 48 1.25 0.11 46.23 0.43 54.64 101.30 5935.31 4.00 47 1.42 0.13 52.62 0.51 52.05 105.18 5834.01 3.92 46 1.57 0.14 58.21 0.58 49.79 108.57 6728.83 3.83 45 1-71 0.16 63.16 0.65 47.77 111.59 5620.26 3.75 44 1.83 0.18 67.65 0.73 45.95 114,33 5508.67 3.67 43 1.94 0.20 71.70 0.80 44.30 116.80 5394.35 3.58 42 2.04 0.22 75.51 0,87 42.75 119.13 5277.55 3.50 41 2.13 0.23 78.98 0.94 41.33 12125 5158.42 3.42 40 2.22 0.25 82.30 1.00 39.98 123.28 5037.16 3.33 39 2.31 0.27 85.35 1.06 38.73 125.15 4913.88 3.25 38 2.38 0.28 88.24 1.12 37.56 126.91 4788.73 3.17 37 2.46 0.29 90.99 1.18 36.44 128.60 4661.82 3.08 36 2.53 0.31 93.54 1.23 35.39 130.16 4533.22 3.00 35 2.59 0.32 95.97 1.28 34.40 131 AS 4403.06 2.92 34 2.66 0.33 98.27 1.34 3346 133.07 4271.41 2.83 33 2.72 0.35 100.46 1.39 32.56 134.41 4138.34 2.75 32 2.77 0.36 102.54 1.44 3171 135.69 4003.93 2.67 31 2.82 0.37 104.51 1.49 30.90 136.90 3868.25 2.5B 30 2.88 0.38 106.39 1.54 30.13 138.06 3731.34 2.50 29 2.92 0.40 108.19 1.58 29.39 139.17 3593.29 2.42 28 2.97 0.41 109.89 1.63 28.69 140.21 3454.12 2.33 27 3.01 0.42 111.46 1.67 28.05 141.18 3313.91 2.25 26 3.05 0.43 112.97 1.72 27.42 142.11 3172.73 2.17 25 3.09 0.44 114.49 1.76 26.80 143.05 3030.62 2.08 24 3.13 0.45 115.83 1.80. 26.25 14188 2887.57 2.00 23 3.17 0.46 117.13 1.84 25.71 144.68 2743.69 1.92 22 3.20 0.47 118.38 1.88 25.20 145.46 2599.00 1.83 21 3.23 0.48 119.55 1.92 24.71 146.18 2453.54 1.75 20 3.26 0.49 120.67 1.96 24.25 146S8 2307.36 1.67 19 3.29 0.50 121 1.99 23.81 147.54 2160.48 1.58 18 3.32 0.51 122.74 203 23.38 148.17 2012.95 1.50 17 3.34 0.51 123.73 2.06 22.98 148.77 1864.77 1.42 16 3.37 0.52 124.64 2-09 22.61 149.34 1716.00 1.33 15 3.39 0.53 125.52 2.12 22.24 149.88 1566.66 1.25 14 3.41 0.54 126.34 2.15 21.91 150.39 1416.78 1.17 13 3.44 0.54 127.17 2.17 21.56 150.91 1266.39 1.08. 12 3.46 0.55 127.94 2.20 21.25 151.38 1115.48 1.00 11 3.48 0.56 128.71 2.22 20.93 151.86 964.10 0.92 10 3.51 0.59 129.69 2.38 20.47 152.54 812.24 0.83 9 0.00 0.00 0.00 0.00 73.30 73.30 659.70 0.75 8 0.00 0.00 0.00 0.00 73.30 73.30 586.40 0.67 7 0.00 0.00 0.00 800 73.30 73.30 513.10 0.58 6 0.00 0.00 0.00 0.00 73.30 73.30 439.80 0.50 5 0.00 0.00 0.00 0.00 73.30 73.30 366.50 0.42 4 0.00 0.00 0.00 0.00 73.30 73.30 293.20 0.33 3 0.00 0.00 0.00 0.00 73.30 73.30 219.90 0.25 2 0.00 0.00 0.00 0.00 73.30 73.30 146.60 0.17 1 0.00 0.00 0.00 0.00 73.30 73.30 73.30 0.08 Project Montava Subdivision Phase D-LID#5 Z/ /, AM 0 mcwda 14rimNer slona m eamwavons Chamber Model- MC-3500 Units- Imperial StormTech ❑o,dr rer 5�9eaea Data Number of Chambers- 41 Number of End Caps- fi Voids In the atone(porosity)- q0 ❑dick to[nvm Stage area Data Base of Stone Elevation- 0.00 it Amount of Stone Above Chambers- 12 in Click Here for Metric Amount of Stone Below Chambers- 9In Area of system- 2416 sf Min.Am- 2130 sf min.area Stormleofi°MC-3500 Cumulative Storage Volumes eg in9 a ncreman System cr Chamber Single End Cap Chambers nEnd Capa nc5tonen a EC andnStone System a Elevation (inches) (cable fief) (cubic feet) (cubic fact) (cubic feet) (cubic feet) (cubic leer) (cubic feel) (feet) 66 0.00 "1 0.00 0.00 80.53 80.53 8073,74 5.50 65 0.00 0.00 0.00 0.00 80.53 80.53 7993.21 5.42 64 &00 0.00 0.00 0.00 80.53 80.53 7912.68 5.33 63 0.00 0.00 0.00 0.00 80.53 80.53 7832.14 5.25 62 0.00 0.00 0.00 0.00 80.53 80.53 7751.61 5.17 61 0.00 0.00 0.00 0.00 80.53 80.53 7:71.08 5.08. 60 0.00 0.00 0.00 0.00 80.53 80.53 790.54 5.00 59 0.00 0.00 0.00 0.00 80.53 80.53 7510.01 4.92 58 0.00 0.00 0.00 0.00 80.53 80.53 7429.48 4.83 57 0.00 0.00 0.00 0.00 80.53 80.53 7348.94 4.75 56 0.00 0.00 0.00 0.00 80.53 80.53 7268.41 4.67 55 0.00 0.00 0.00 0.00 80.53 80.53 7187.88 4.58 64 0.06 0.00 2.38 0.00 79.58 81.96 7107.34 4.50 53 0.19 0.02 7.96 0.14 77.29 85.39 7025.38 4.42 52 0.29 0.04 12.05 0.23 75.62 87.90 6939.99 4.33 51 0.40 0.05 16.55 0.31 73.79 90.65 6852.09 4.25 50 0.69 0.07 28.17 0.41 69.10 97.66 6761.44 4.17 48 1.03 0.09 42.16 0.53 63.46 10fi.15 6663.76 4.08 48 1.25 0.11 51.23 0.64 59.78 111.66 6557.61 4.00 47 1.42 0.13 58.31 0.76 56.91 115.98 6445-95 3.92 46 1.57 0.14 64.50 0.87 54.39 119.75 6329.98 3.83 45 1-71 0.16 69.99 0.98 52.15 123.12 6210.22 3.75 44 1.83 0.18 74.97 1.09 50.11 126.17 6087.11 3.67 43 1.94 0.20 79.45 1.20 48.27 128.92 5960.94 3.58 42 2.04 0.22 83.67 1.31 46:54 131.52 5832.02 3.50 41 2.13 0.23 87.52 1.41 44.96 133.89 5700.49 3.42 40 2.22 0.25 91.19 1.50. 43.45 136A5 5566.60 3.33 39 2.31 0.27 94.58 1.59. 42.06 138.24 5430.45 3.25 38 2.38 0.28 97.78 1.68 40.75 140.21 5292.21 3.17 37 2.46 0.29 100.82 1.76 39.50 142.09 5152.0, 3.08 36 2.53 0.31 103.66 1.85 38.33 143A3 5009.92 3.00 35 2.59 0.32 106.34 1.93 37.23 145.50 4866.09 2.92 34 2.66 0.33 108.90 2.01 36.17 147.08 4720.59 2.83 33 2.72 0.35 111.32 2.08 35.17 148.57 4573.51 2.75 32 2.77 0.36 113.62 2-16 34.22 150.00 4424.94 2.67 31 2.82 0.37 115.81 2.23 33.32 151.36 4274.94 2.5B 30 2.88 0.38 117.89 231 32.45 162.65 4123.58 2.50 29 2.92 0.40 119.89 2.38 31.63 153.89 3970.92 2.42 28 2.97 0.41 121.77 2.45 30.85 155.06 3817.03 2.33 27 3.01 0.42 123.51 2.51 30.12 156.15 3661.97 2.25 26 3.05 0.43 125.18 2.58 29.43 157.19 3505.82 2.17 25 3.09 0.44 126.87 2.64 28.73 158.24 3348.63 2.08 24 3.13 0.45 128.35 2.70. 28.11 159.17 3190,40 2.00 23 3.17 0.46 129.79 2.77 27.51 160.07 3031.23 1.92 22 3.20 0.47 131.18 2.82 26.93 160.93 2871.16 1.83 21 3.23 0.48 132.48 2.88 26.39 161.75 2710.23 1.75 20 3.26 0.49 133.72 2.94 25.87 162.53 2548.48 1.67 19 3.29 0.50 134.90 2.99 25.38 16327 2385.95 1.58 18 3.32 0.51 136.04 3.04 24.90 163.98 2222.69 1.50 17 3.34 0.51 137.11 3.09 24.45 16465 205871 1.42 16 3.37 0.52 138.11 3.13 24.03 165.28 1894.06 1.33 15 3.39 0.53 139.09 3.18 23.63 165.90 1728.78 1.25 14 3.41 0.54 140.00 3.22 23.25 166A6 1562.88 1.17 13 3.44 0.54 140.92 326 22.86 167.04 1396.42 1.08. 12 3.46 0.55 141.77 3.30 22.51 167.57 1229.38 1.00 11 3.48 0.56 142.63 3.33 22.15 168.11 1061.81 0.92 10 3.51 0.59 143.71 3.57 21.62 168.90 893.70 0.83 9 0.00 0.00 0.00 0.00 80.53 80.53 724.80 0.75 8 0.00 0.00 0.00 0.00 80.53 81 644.27 0.67 7 0.00 0.00 0.00 100 80.53 80.53 563.73 0.58 6 0.00 0.00 0.00 0.00 80.53 80.53 483.20 0.50 5 0.00 0.00 0.00 0.00 80.53 80.53 402.67 0.42 4 0.00 0.00 0.00 0.00 80.53 80.53 322.13 0.33 3 0.00 0.00 0.00 0.00 80.53 80.53 241.60 0.25 2 0.00 0.00 0.00 0.00 80.53 80.53 161.07 0.17 1 0.00 0.00 0.00 0.00 8053 80.53 80.53 0.08. 18" RCP OUTLET Q2-4.43 CFS RIM ELEV= 5003.05 100-YR WSE = 5001.12 2-YR WSE = 4999.50 DIVERSION STRUCTURE 1 ------------------------- = ------------------------- (STMH- 1 A) PLAN VIEW SECTION A-A 48"X76" HERCP INLET 48"X76" HERCP INLET Z DIVERSION STRUCTURE 1 INV. OUT=4995.11 INV. IN=4995.11 Azit ---------------------------- O co B > o 18" RCP w INV. OUT=4995.11 48"X76" HERCP OUTLET 48"X76" HERCP INLET RIM ELEV= 5003.05 Q100= 105.56 CFS Q100=105.56 CFS Q2 = 19.83 CFS f Q2= 24.26 CFS TOP OF WEIR WALL = 4999.50 w Q 0 - - - - - - - - - - - - - -- SECTION ��/ \�� 18" RCP INLET >_ SECTION B-B m 48"X76" HERCP INLET 1 INV. IN=4995.11 DIVERSION STRUCTURE 1 INV. OUT=4995.11 - - - - - - - - - - B \\ DRAWN BRB 48"X76" RCP CHECKED DAP INV. OUT=4995.11 DESIGNED BRB FILENAME 18" RCP OUTLET Q2=8.87 CFS 0009_Details DIVERSION STRUCTURE 2 RIM ELEV= 5005.43 (STMH- 2F) PLAN VIEW o� 100-YR WSE = 5002.58 P�0 ��C 2-YR WSE = 5000.83 - - - - - - - - - _ - - - - - - - - - 48"0 MANHOLE CDG SECTION A-A 30" RCP INLET 30" RCP INLET DIVERSION STRUCTURE 2 L INV. OUT_4999.39 - INV_ IN=4999.39 o ••...... 0 MANHOLE STEPS (TYP.) ONA�_ 0 18" RCP INV. OUT-4999.391 0 8" WATER QUALITY WEIR (SEE SECTION A-A) A t��= f I B RIM ELEV= 5005.43 =3 B 18" PIPE 18" PIPE TOP OF WEIR WALL = 5000.82 2.00' B 77RESTRICTOR PLATE 30" RCP OUTLET q 30" RCP INLET 18" RCP INLET 167' 167 (SEE SECTION B-B) Q100= 38.10 CFS Q100=38.10 CFS - - - - - - - - - - - - INV. IN=4999.39 Q2= 8.87 CFS SECTION B-B 30" RCP INLET - - - - - - - - - - DIVERSION STRUCTURE 2 INV. OUT=4999.39 �� - - - - - - - - - - - - - - - - - - - - - - - - LID WATER QUALITY OUTLET STRUCTURE 30" RCP INV. OUT=4999.39 B 4.00' Z J B o o O a RIM ELEV= 5002.69 o.5' C) A� _ o o W DIVERSION STRUCTURE 3 100-YR WSE = 5000.25 o C LU (STMH- 3BD) PLAN VIEW z N - 2_ =YR WSE 4996.57All- - - - - - - - - - - - M Z 36" RCP INLET - - - - - - - - - - SECTION A-A SECTION B-B W W 48" RCP OUTLET Q100= 45.54 CFS SECTION A-A 36" RCP INLET 48,� RCP INLET WATER QUALITY ORIFICE PLATE DETAIL 100-YEAR RESTRICTOR PLATE DETAIL D O Q100= 45.54 CFS q Q2= 10.47 CFS DIVERSION STRUCTURE 3 INV. IN=4995.27 INV. OUT=4995.27 - - - - - - - - - - - - B 18" RCP > a. D INV. OUT=4995.27 ,00-YR OVERALL a A WATER QUALITY PLATE RESTRICTOR PLATE STRUCTURE NUMBER B OF ROWS OFN UMBER A COLUMNS C D LI D #1 0.599" 4.12' 5 1 0.39' 9.12' Z RIM ELEV= 5002.69 LID #2 0.683" 4.08' 5 1 0.66' 9.08' O Z TOP OF WEIR WALL = 4996.57 LID #4 0.736" 5.52' 5 1 0.75' 11.02' O LID #5 0.765" 5.61' 5 1 0.80' 11.61' 0 SECTION B-B 18" RCP INLET INV. IN=4995.27 48" RCP INLET DIVERSION STRUCTURE 3 - - - - - - - - - - INV. OUT=4995.27 40ME - - - - - - - - - - - - - - - - - - - - - - - 36" RCP 18" RCP OUTLET INV. OUT=4995.27 Q2= 10.47 CFS RIM ELEV= 5003.05 18" RCP OUTLET 100-YR WSE = 5000.64 DIVERSION STRUCTURE 4 Q2=11.28 CFS 2-YR WSE = 4996.63 (STMH- 3AB) PLAN VIEW - - - - - - - - - - SECTION A-A 54" RCP INLET DIVERSION STRUCTURE 4 INV. OUT=4994.32 = INV RCP INLET INV. IN=4994.34 q 18" RCP INV. OUT=4994.34 B TST, INC. RIM ELEV= 5003.05 CONSULTING ENGINEERS 748 Whalers Way Suite 200 Fort Collins 54" RCP OUTLET q Qlo RCP INLET Phone: 970.226.0557 Q = 48.77 CFS - 48.77 CFS Colorado 525 100- 100 Q2= 11.28 CFS JOB N0. - - - - - - - - - - TOP OF WEIR WALL = 4996.63 1230.0009.00 SCALE 1 It = 5' SECTION B-B " 18" RCP INLET 54 HERCP INLET 34 IN=4994. DIVERSION STRUCTURE 4 INV. OUT=4994.34 INV. DATE �� �� - - - - - - - - - - SEPTEMBER 2024 3 - - - - - - - - - - - - �� �� - - - - - - - � 5 0 5 10 SHEET Bnnniiiiiiiiiiii 48" RCP scale 1"=5' feet 217 of 224 INV. OUT=4994.34 APPENDIX C FEMA FLOOD INSURANCE RATE MAP National Flood Hazard Layer FIRMette FFMA Legend 105°1'44"W 409712"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation(BFE) Zone A.V.A99 SPECIAL FLOOD With BFE or Depth Zone AE.AO.AH.VE,AR HAZARD AREAS Regulatory Floodway 0.2%Annual Chance Flood Hazard,Areas of 1%annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zonex ®�® Future Conditions 1%Annual Chance Flood Hazard Zone Area with Reduced Flood Risk due to OTHER AREAS OF Levee.See Notes.zone x FLOOD HAZARD Area with Flood Risk due to Levee zone o NO SCREEN Area of Minimal Flood Hazard zone x Q Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D GENERAL -—-- Channel,Culvert,or Storm Sewer STRUCTURES IIIIIII Levee,Dike,or Floodwall �2°=2 Cross Sections with 1%Annual Chance 77.5 Water Surface Elevation AREA OF MINIMAL FLOOD HAZARD e- - - Coastal Transect Z )( 1b —513— Base Flood Elevation Line(BFE) Limit of Study T8N R68W S32 City of Fort G011M' S 3N R68W` Jurisdiction Boundary Coastal Transect Baseline OO r OTHER _ Profile Baseline FEATURES Hydrographic Feature i Pot Digital Data Available N " Ali No Digital Data Available MAP PANELS Unmapped r VThe pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA.This map J• was exported on 7/15/2024 at 5:13 PM and does not reflect changes or amendments subsequent to this date and time.The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear:basemap imagery,flood zone labels, legend,scale bar,map creation date,community identifiers, 105°i'7"W 40°36'45"N FIRM panel number,and FIRM effective date.Map images for Feet 1-6 000 unmapped and unmodernized areas cannot be used for 0 250 500 1,000 1,500 2,000 regulatory purposes. Basemap Imagery Source:USGS National Map 2023 APPENDIX D USDA HYDROLOGIC SOIL GROUP MAP USDA United States A product of the National Custom Soil Resource Department of Cooperative Soil_ Survey,Agriculture a joint effort of the United Report for N States Department of RCS Agriculture and other Larimer County Federal agencies, State Natural agencies including the Resources Agricultural Experiment Area, Colorado Conservation Stations, and local Service participants s; • �111� i111 �!I { f 'R ,t r1'l�'Jr�•1 w' 1 p July 9, 2024 Preface Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nres.usda.gov/wps/ portal/nres/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nres)or your NRCS State Soil Scientist (http://www.nres.usda.gov/wps/portal/nres/detail/soils/contactus/? cid=nres142p2_053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require 2 alternative means for communication of program information (Braille, large print, audiotape, etc.)should contact USDA's TARGET Center at(202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice)or(202)720-6382 (TDD). USDA is an equal opportunity provider and employer. 3 Contents Preface....................................................................................................................2 How Soil Surveys Are Made..................................................................................5 SoilMap.................................................................................................................. 8 SoilMap................................................................................................................9 Legend................................................................................................................10 MapUnit Legend................................................................................................ 11 MapUnit Descriptions.........................................................................................11 Larimer County Area, Colorado...................................................................... 13 5—Aquepts, loamy......................................................................................13 22—Caruso clay loam, 0 to 1 percent slope............................................... 14 35—Fort Collins loam, 0 to 3 percent slopes.............................................. 15 36—Fort Collins loam, 3 to 5 percent slopes.............................................. 16 95—Satanta loam, 1 to 3 percent slopes.................................................... 18 98—Satanta Variant clay loam, 0 to 3 percent slopes.................................19 101—Stoneham loam, 1 to 3 percent slopes..............................................20 Soil Information for All Uses...............................................................................23 Soil Properties and Qualities..............................................................................23 Soil Qualities and Features.............................................................................23 HydrologicSoil Group................................................................................. 23 References............................................................................................................28 4 How Soil Surveys Are Made Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil 5 Custom Soil Resource Report scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and 6 Custom Soil Resource Report identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. 7 Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. 8 Custom Soil Resource Report Soil Map F 0 0 497500 4976W 497700 4978W 497900 49M 498100 498200 49M 498400 40°37 15"N 400 37 15"N M �i N 'I I � it • v Sol'IGlap may not be valid at this scale. 400 36 33"N 40°36'33"N 497500 497600 497700 4978M 497900 498000 498100 496200 49M 498400 Map Scale:1:6,260 T printed on A portrait(8.5"x 11")sheet. N Meters o 0 50 100 200 300 Feet 0 300 600 1200 1800 Map projection:Web Mercator Comer coordinates:WGS84 Edge tics:UTM Zone 13N WGS84 9 Custom Soil Resource Report MAP LEGEND MAP INFORMATION Area of Interest(AOI) Spoil Area The soil surveys that comprise your AOI were mapped at Area of Interest(AOI) 1:24,000. Q Stony Spot Soils Very Stony Spot Soil Map Unit Polygons Warning:Soil Map may not be valid at this scale. Wet Spot �i Soil Map Unit Lines Enlargement of maps beyond the scale of mapping can cause Other misunderstanding of the detail of mapping and accuracy of soil 0 Soil Map Unit Points g pp g y .- Special Line Features line placement.The maps do not show the small areas of Special Point Features contrasting soils that could have been shown at a more detailed V Blowout Water Features scale. Streams and Canals Borrow Pit Clay Spot Transportation Please rely on the bar scale on each map sheet for map .+. Rails measurements. J Closed Depression ti Interstate Highways Gravel Pit Source of Map: Natural Resources Conservation Service US Routes Web Soil Survey URL: Gravelly Spot Major Roads Coordinate System: Web Mercator(EPSG:3857) O Landfill Local Roads Maps from the Web Soil Survey are based on the Web Mercator A Lava Flow Background projection,which preserves direction and shape but distorts distance and area.A projection that preserves area,such as the Marsh or swamp Aerial Photography Albers equal-area conic projection,should be used if more Mine or Quarry accurate calculations of distance or area are required. O Miscellaneous Water This product is generated from the USDA-NRCS certified data as O Perennial Water of the version date(s)listed below. V Rock Outcrop Soil Survey Area: Larimer County Area,Colorado + Saline Spot Survey Area Data: Version 18,Aug 24,2023 Sandy Spot Soil map units are labeled(as space allows)for map scales 4W Severely Eroded Spot 1:50,000 or larger. 0 Sinkhole Date(s)aerial images were photographed: Jul 2,2021—Aug 25, 3) Slide or Slip 2021 Sodic Spot The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps.As a result,some minor shifting of map unit boundaries may be evident. 10 Custom Soil Resource Report Map Unit Legend Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI 5 Aquepts,loamy 0.4 0.4% 22 Caruso clay loam,0 to 1 0.1 0.1% percent slope 35 Fort Collins loam,0 to 3 percent 34.3 31.2% slopes 36 Fort Collins loam,3 to 5 percent 4.4 4.0% slopes 95 Satanta loam, 1 to 3 percent 2.1 1.9% slopes 98 Satanta Variant clay loam,0 to 67.7 61.5% 3 percent slopes 101 Stoneham loam, 1 to 3 percent 1.1 1.0% slopes Totals for Area of Interest 110.1 100.0% Map Unit Descriptions The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor 11 Custom Soil Resource Report components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example. An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. 12 Custom Soil Resource Report Larimer County Area, Colorado 5—Aquepts, loamy Map Unit Setting National map unit symbol: jpws Elevation: 4,500 to 6,700 feet Mean annual precipitation: 12 to 18 inches Mean annual air temperature: 39 to 50 degrees F Frost-free period: 80 to 140 days Farmland classification: Not prime farmland Map Unit Composition Aquepts and similar soils:80 percent Minor components:20 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Aquepts Setting Landform: Depressions, draws, stream terraces Landform position (three-dimensional): Base slope, tread, dip Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium Typical profile H1 -0 to 60 inches: variable Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class:Very poorly drained Runoff class: Negligible Capacity of the most limiting layer to transmit water(Ksat): Moderately high to very high (0.60 to 99.90 in/hr) Depth to water table:About 6 to 18 inches Frequency of flooding: Rare Frequency of ponding: None Interpretive groups Land capability classification (irrigated): 5w Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A/D Ecological site: R067BY038CO -Wet Meadow Hydric soil rating: Yes Minor Components Nunn Percent of map unit: 5 percent Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No Kim Percent of map unit: 5 percent 13 Custom Soil Resource Report Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No Stoneham Percent of map unit: 5 percent Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No Fort collins Percent of map unit: 5 percent Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No 22—Caruso clay loam, 0 to 1 percent slope Map Unit Setting National map unit symbol: jpvt Elevation: 4,800 to 5,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Caruso and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Caruso Setting Landform: Flood-plain steps, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed alluvium Typical profile H1 - 0 to 35 inches: clay loam H2-35 to 44 inches: fine sandy loam H3-44 to 60 inches: gravelly sand Properties and qualities Slope: 0 to 1 percent Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained Runoff class: High Capacity of the most limiting layer to transmit water(Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table:About 24 to 48 inches Frequency of flooding: Occasional 14 Custom Soil Resource Report Frequency of ponding: None Calcium carbonate, maximum content: 5 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.4 inches) Interpretive groups Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 5w Hydrologic Soil Group: D Ecological site: R067BY036CO - Overflow Hydric soil rating: No Minor Components Loveland Percent of map unit: 9 percent Landform:Terraces Ecological site: R067BY036CO- Overflow Hydric soil rating: Yes Fluvaquents Percent of map unit: 6 percent Landform:Terraces Hydric soil rating: Yes 35—Fort Collins loam, 0 to 3 percent slopes Map Unit Setting National map unit symbol: 2tlnc Elevation: 4,020 to 6,730 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 135 to 160 days Farmland classification: Prime farmland if irrigated Map Unit Composition Fort collins and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Fort Collins Setting Landform: Interfluves, stream terraces Landform position (three-dimensional): Interfluve, tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Pleistocene or older alluvium and/or eolian deposits Typical profile Ap - 0 to 4 inches: loam 15 Custom Soil Resource Report Bt1 -4 to 9 inches: clay loam Bt2-9 to 16 inches: clay loam Bk1 - 16 to 29 inches: loam Bk2-29 to 80 inches: loam Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class:Well drained Runoff class: Low Capacity of the most limiting layer to transmit water(Ksat): Moderately high to high (0.20 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 12 percent Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: High (about 9.1 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: R067BY002CO - Loamy Plains Hydric soil rating: No Minor Components Nunn Percent of map unit: 10 percent Landform: Stream terraces Landform position (three-dimensional):Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No Vona Percent of map unit: 5 percent Landform: Interfluves Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO- Sandy Plains Hydric soil rating: No 36—Fort Collins loam, 3 to 5 percent slopes Map Unit Setting National map unit symbol: 2ygpg Elevation: 4,800 to 5,900 feet 16 Custom Soil Resource Report Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Fort collins and similar soils: 80 percent Minor components:20 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Fort Collins Setting Landform:Alluvial fans, terraces Landform position (three-dimensional):Tread Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Pleistocene or older alluvium and/or eolian deposits Typical profile Ap - 0 to 5 inches: loam Bt1 -5 to 8 inches: clay loam Bt2- 8 to 18 inches: clay loam Bk1 - 18 to 24 inches: loam Bk2-24 to 80 inches: loam Properties and qualities Slope: 3 to 5 percent Depth to restrictive feature: More than 80 inches Drainage class:Well drained Runoff class: Low Capacity of the most limiting layer to transmit water(Ksat): Moderately high to high (0.20 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 12 percent Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: High (about 9.1 inches) Interpretive groups Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: R067BY002CO - Loamy Plains Hydric soil rating: No Minor Components Table mountain Percent of map unit: 15 percent Landform:Alluvial fans, stream terraces Landform position (three-dimensional):Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY036CO- Overflow Hydric soil rating: No 17 Custom Soil Resource Report Larim Percent of map unit: 5 percent Landform:Alluvial fans Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY063CO- Gravel Breaks Hydric soil rating: No 95—Satanta loam, 1 to 3 percent slopes Map Unit Setting National map unit symbol: 2w5f3 Elevation: 3,650 to 5,350 feet Mean annual precipitation: 12 to 18 inches Mean annual air temperature: 46 to 54 degrees F Frost-free period: 115 to 155 days Farmland classification: Prime farmland if irrigated Map Unit Composition Satanta and similar soils:90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Satanta Setting Landform: Paleoterraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Head slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian sands Typical profile Ap - 0 to 9 inches: loam Bt-9 to 18 inches: clay loam C- 18 to 79 inches: loam Properties and qualities Slope: 1 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class:Well drained Runoff class: Low Capacity of the most limiting layer to transmit water(Ksat): Moderately high (0.20 to 0.60 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 10 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) 18 Custom Soil Resource Report Available water supply, 0 to 60 inches: Very high (about 12.2 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: C Ecological site: R067BY002CO - Loamy Plains Hydric soil rating: No Minor Components Nunn Percent of map unit: 5 percent Landform:Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No Fort collins Percent of map unit: 5 percent Landform:Alluvial fans Landform position (two-dimensional): Backslope Landform position (three-dimensional): Head slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No 98—Satanta Variant clay loam, 0 to 3 percent slopes Map Unit Setting National map unit symbol: jpyh Elevation: 4,800 to 5,600 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period. 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Satanta variant and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Satanta Variant Setting Landform:Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear 19 Custom Soil Resource Report Across-slope shape: Linear Parent material:Alluvium Typical profile H1 - 0 to 9 inches: clay loam H2-9 to 22 inches: clay loam H3-22 to 60 inches: loam Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained Runoff class: High Capacity of the most limiting layer to transmit water(Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table:About 24 to 48 inches Frequency of flooding: Occasional Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Gypsum, maximum content: 10 percent Maximum salinity:Very slightly saline to slightly saline (2.0 to 4.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.7 inches) Interpretive groups Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Ecological site: R067BY036CO - Overflow Hydric soil rating: No Minor Components Nunn Percent of map unit: 5 percent Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No Caruso Percent of map unit: 3 percent Ecological site: R067BY036CO- Overflow Hydric soil rating: No Loveland Percent of map unit:2 percent Ecological site: R067BY036CO- Overflow Hydric soil rating: No 101—Stoneham loam, 1 to 3 percent slopes Map Unit Setting National map unit symbol: jptt Elevation: 4,800 to 5,600 feet 20 Custom Soil Resource Report Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Stoneham and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Stoneham Setting Landform: Benches, terraces Landform position (three-dimensional): Base slope, tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian deposits Typical profile H1 - 0 to 4 inches: loam H2-4 to 10 inches: sandy clay loam H3- 10 to 60 inches: clay loam Properties and qualities Slope: 1 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class:Well drained Runoff class: Low Capacity of the most limiting layer to transmit water(Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: High (about 9.6 inches) Interpretive groups Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R067BY002CO - Loamy Plains Hydric soil rating: No Minor Components Fort collins Percent of map unit: 5 percent Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No Kim Percent of map unit: 5 percent Ecological site: R067BY002CO- Loamy Plains Hydric soil rating: No 21 Custom Soil Resource Report 22 Soil Information for All Uses Soil Properties and Qualities The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality. Soil Qualities and Features Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil. Hydrologic Soil Group Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential)when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. 23 Custom Soil Resource Report Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential)when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. 24 Custom Soil Resource Report Map—Hydrologic Soil Group F 0 0 497500 497600 497700 497800 497900 49M 498100 498200 498300 498400 40°37 15"N 400 37 15"N M " �i N tiC°J w �i Sol'IGlap may not be valid at this scale. 400 36 33"N 40°36'33"N 497500 497600 497700 4978M 497900 498000 498100 498200 49M 498400 Map Scale:1:6,260 T printed on A portrait(8.5"x 11")sheet. N Meters o 0 50 100 200 300 Feet 0 300 600 1200 1800 Map projection:Web Mercator Comer coordinates:WGS84 Edge tics:UTM Zone 13N WGS84 25 Custom Soil Resource Report MAP LEGEND MAP INFORMATION Area of Interest(AOI) 0 C The soil surveys that comprise your AOI were mapped at Area of Interest(AOI) © C/D 1:24,000. Soils D Soil Rating Polygons Warning:Soil Map may not be valid at this scale. A [3 Not rated or not available Enlargement of maps beyond the scale of mapping can cause Water Features 0 AID misunderstanding of the detail of mapping and accuracy of soil B Streams and Canals line placement.The maps do not show the small areas of Q Transportation contrasting soils that could have been shown at a more detailed 0 B/D Rails scale. � 0 C ti Interstate Highways Please rely on the bar scale on each map sheet for map 0 C/D US Routes measurements. 0 D Major Roads Source of Map: Natural Resources Conservation Service 0 Not rated or not available Local Roads Web Soil Survey URL: Soil Rating Lines Background Coordinate System: Web Mercator(EPSG:3857) A Aerial Photography Maps from the Web Soil Survey are based on the Web Mercator .,. A/D projection,which preserves direction and shape but distorts ..i B distance and area.A projection that preserves area,such as the Albers equal-area conic projection,should be used if more .v B/D accurate calculations of distance or area are required. . • C This product is generated from the USDA-NRCS certified data as .,, C/o of the version date(s)listed below. .� D Soil Survey Area: Larimer County Area,Colorado . Not rated or not available Survey Area Data: Version 18,Aug 24,2023 Soil Rating Points A Soil map units are labeled(as space allows)for map scales 1:50,000 or larger. 0 A/D B Date(s)aerial images were photographed: Jul 2,2021—Aug 25, 2021 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps.As a result,some minor shifting of map unit boundaries may be evident. 26 Custom Soil Resource Report Table—Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 5 Aquepts,loamy A/D 0.4 0.4% 22 Caruso clay loam,0 to 1 D 0.1 0.1% percent slope 35 Fort Collins loam,0 to 3 C 34.3 31.2% percent slopes 36 Fort Collins loam,3 to 5 C 4.4 4.0% percent slopes 95 Satanta loam, 1 to 3 C 2.1 1.9% percent slopes 98 Satanta Variant clay D 67.7 61.5%1 loam,0 to 3 percent slopes 101 Stoneham loam, 1 to 3 B 1.1 1.0% percent slopes Totals for Area of Interest 110.1 100.0% Rating Options—Hydrologic Soil Group Aggregation Method: Dominant Condition Component Percent Cutoff.- None Specified Tie-break Rule: Higher 27 References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nres.usda.gov/wps/portal/ nres/detail/national/soils/?cid=nres142p2_054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nres.usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http:// www.nres.usda.gov/wps/portal/nres/detail/national/soils/?cid=nresl42p2_053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nres.usda.gov/wps/portal/nres/detail/soils/ home/?cid=nres142p2_053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nres.usda.gov/wps/portal/nres/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 28 Custom Soil Resource Report United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nres.usda.gov/wps/portal/ nres/detail/soils/scientists/?cid=nres142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nres.usda.gov/wps/portal/nres/detail/national/soils/? cid=n res 142 p 2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/lnternet/FSE—DOCUMENTS/nrcsl42p2_052290.pdf 29 APPENDIX E DRAINAGE PLANS N // \ \\ 1-7 LLJ LLJ // 'K LLI DRAWN BRB CHECKED LLI � DAP DESIGNED BRB \ \ /� N FILENAME 0009_Drainage So lop KEY MAP , • NAL LEGEND X = AREA (ACRES) AB AB—C = BASIN NUMBER Y = IMPERVIOUSNESS EXISTING STORM SEWER PROPOSED STORM SEWER MEMO PROPOSED BASIN BOUNDARY PROPOSED CONTOURS F - . yoo EXISTING CONTOURS Z FLOW DIRECTION O LID#1 (UNDERGROUND •,,_ 1. =,'�:;_ INFILTRATION) SEE '`\ SHEET 213 W W�� m POND D Q / / / i 21.50 Q Z 0.22 > a 86.64 2 \ , / 0 N w 1 / � I 1 ► w UJI UJI POND D SPILLWAY 75.58 2' 1 �• _ .` - / � \ / \ — - - - - - - - - - - - - - - — — - - - - - - - - - - - - - POND D 0 51 b TST, INC. OUTLET F-1 CONSULIING ENGINEERS \ \ I STRUCTURE 100.00 10 8 748 Whalers Way Suite 200 Fort Collins ���its�-�-���-� -�-� Colorado 80525 1 \ Phone: 970.226.0557 \ I 0.49 a JOB NO. / \ F-2 — - 1230.0009.00 / 100.00 — 9 ' - SCALE 1 r, 50r DATE \ I \ J \ 50 ° 50 100 OCTOBER 2024 1 / . \ \ I C J scale 1"=50' feet SHEET n 198 of 224 N 400 Z OZ z Of 1 I I I w o LLI //! //� / //' �► I / / I ILd Q Alw DRAWN CHECKED BRB DAP DESIGNED OFFSITE-1 I I \ BRB FILENAME 0009—Drainage KEY MAP N . T.S. �o�F / \ \ \ l o TONAL E /// / ` I \ \ I 1 I I \ \ LEGEND 0 X _ AREA (ACRES) ABC = BASIN NUMBER - Y IMPERVIOUSNESS EXISTING STORM SEWER 0 \ ® PROPOSED STORM SEWER MEMO PROPOSED BASIN BOUNDARY \ PROPOSED CONTOURS \ \ \ \ \ \ \ \ goo CR EXISTING CONTOURS FLOW DIRECTION O / '► / \ \ \ \ \ �►\ \ \ \ \ sue, \ 1 \ CO z ��► , � I \ 1 I 1 I \ �,\ \ \ \ s0" \ 1 \ > CL �► 1 I �► \ m SCHOOL \ I 1 I \ �,I \ o \ \ \ \ , � J w W I T 55.70 � I 0� \ V '► \ \ \ \ 1 I s00 \ \ \ \ \ \ Q EX. WETLANDS CHANNEL + - \ I r� \ \ \ > a. 00S 10 '-)000LLL \ 1 fir■ \ \ \ \ \ '7) w WLd - INC. \ / o I - \ \ \ \ \ \ 1 CONSULTING ENGINEERS f � .p- L I ) \ \ \ \ I \ 748 Whalers Way I 11 \ 1 \ \ 1 Suite 200 Fort Collins / c9 � I - \ \ Colorado 80525 Phone: 970.226.0557 \ / V- JOB N0. 1230.0009.00 l \ \ SCALE/ 1" = 50'INFRASTRUCTURE SHOWN \ FOR REFERENCE ONLY \ \ \ \ \ DATE n r71 JF,',1' - \ 50 0 50 10o OCTOBER 2024 �'� `��. '`�: �.. _ 3 ' »- SHEET ' I »I ■� — scale 1 50 feet `r A. I .A 199 of 224 SEE SHEET 200 ROM,ON • � � � � tea■ c� , •, � leo to R MINIM ♦ ...I.: .II,. ..,. .,.,,r ..I... `� ,� �� ��`� �������� ``gyp``�� . PF kip I �� 1 I / a _ - ii 1 c ■ ■ ■ _ _ v � ; � .ice - .®: — ® ,— • • - � s / I I SEES. ��■. �_— • f=ice �' ' : : I� `i . r . r � I • MI n�'�;i�l - � III _�'� ■•' I�. ■ a�arr•�!�` — '�„� ■ram -=� � '1 � a` rMEN■■■■ .� :�•a � I . ni I �r � I :�, es I I•I , �L_1_■I� wv ■/ , 0 MI 0 hb, a I I rm = 1 1 1 & I AF ■ - a �®I� ! ! � - r -1 � -■ 7 J r 7 7_- 1- r_7 7 - r � I I . ■ ■ I-��� s � 1_ � ■ ���ie�r ■ i ■ r ■ r r ■ ■ r ■- . r = i��•© ■ Wim ♦-� ■ ■ G . . ■i-- . . . r . . a ■ ■ ■ ■ ■ ■ ■ ■ ■ . n ■ . -: ■ . ■ ■ ■ . ■ i ■ ■ ■ i ■ ■ ■ i ■ ; ■ ■ ■ ■ ■ ■ ■ i i ii i i . i i i i i i FwAsimiu M VE I WA WIMP a FIR IN II �7 �\ �`�_�� • ••it rl� I. mi NI oil IN oil INION ■I r— to _ .+ r '' it •'= � a�'' - � � b II �— � � � � � `fir• 1� I �� /� ♦�.���h+� ��� I �� "AMAI M Aim 78 ON WN MI M—MMw— u `� 1 ■■ i • Do NOW NOW 0 ,■ ® � �.,may • .®• �If '� : �t� ' 1 1 �� ��- ; � ���O ♦♦ ♦� � � if Ifil IN u■ ../_,1��. � _ 2 1 C MAI&Cul [ � li it ► ■�\�� � !� n _ ■ ■ ■ s �� '� A ��� let M RPM, _NNIFFIFFIL - = 'M M M i_■ ■ M ■ ■ I ■ No ■" ■ ■ ■ 1;1 ■ ■ r. \ IN M % - - - - - � �� ■� - - - - � ■ l of of au ■ ■® • •' � ►�� I � � 6� ter' � � \_ 7 �—' �� '� � ` ■J■ � i • 11 `� i ■ � i��� I � � .uia •w a " .u,a a �,u. a. 1 I 1 91 is %III® —�� ►�i, ���•� ® �� �I ;- u ■® �� I_ �� • 1 u FA ■ 1 ■—_''' _=:=-- '� �i_.,+.., -- '� ►I, ::�_ ►� .�--- er lrr11 -MJ _--_ ��'- -- �: _n--�:.�e ■��`-vn -- �!� 1_� --:.�__ In _ �cl� — — to '':� n� LI Lll IjI1I Elm LI■ ■I 1 .� << ��I �I n n� �� -7 Ilil - I ���_ - - '� � --�; - I: -�- -- ■ ■— --- I r t — r, r ILI �� �/ I 11 r �� 1 �: ■ I al■ ■ �1 ��� �� ��� _ • If IOU 11 •® • •• i 0 IN Wdl I 11 ■ _ � � - - � �` i',: • nin r• nu.. �e� 'M , �* ■w. mi�� "� ■dim. nw, , \ � ����� ` AlAl I Irll �■ • � u' • � •� ►���'�'�C�r►��'�1�►�&M M, IFill Ion 0 ��������i���` I Vol 11Md �s. - - _ ���_ �i ►�\_�����►���1��S��S�■������_1����■������ ., ■ • u ■I r ��r■VON ■, u ■ ■ ■1 m ■ ■ ■ ■ ■i_� ir, is ■ ■ ■_■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■_■ ■ ■�■ ■/■ ■ ■_■ ■ ■ ■ ■ ■ \ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ �■: ■ ■ ■ ■ It ■ �■ ■ ��_ J1lll � ` ��� �� I' �,�■ I v u ■lam® �►� � � �rn1i � ` `I .� . �, .� .� .-`��!�����►����S��C���i►1����5�������:►�����W4.��r� �'•a -� err -„- ��r►�. ��..� +������+, II �� ;T` •- all■ ■ 1/ 1, .ay■ u3 .':u.■ • . ■ .�. 1� ` ` � .ui.■ iia• ..''u.■ .wn ", \ N - •- • � • IF ■— ,� q r 1 • lI I v � r � 1 � � - - - . ■1 7■. ® e ® °rl � u �1' Lr9 ->��� � Jr�`� 4p ■ �!� ; �I ri ►� �ql�i ,ui � r, •�� Eli ® r • • J' �♦ NMI pri aw-0 ■■II `-�-- ;- �� -� --+ '+ - i -- ,II I� �� i� L��� -- 1<- ■ Il■ r. -1 , II - -�I` -� ' i`i' it iil III _ • • u ®`II � � � � � � � + �� �r\ �r �I �i ` ��i i� ■sue umi wow Fp Elm .J� o ��/ �I `�` II I II I •� I In 0 III,•. � ■ —;II� - / li 1 � �+j - � • � ■I � ■ 11 �.ulr",r I� � , __ .1 1 li' III �� ° � ,� y � � � 'fF �- �i ►�� wl ��� .� �� � js'sfrs•'• I� .I 11 �■ �'.IM 3�I� �.® ■fir. 1 '�' ■�■ I�...a.....'i'i.' r■�'- II 1 — u - L-L 1 IBMis I��r �'� liff ■IN �� '� '�` I ® ■ u 1 ■ c ■1 ■I � rAI Ell , FOR � ■ ' I 1 I h I I .. � � �I� ►�� 1 � ei■ l■ ►, q ,I� - ii - 16 C ■ ►�c� 1�i� i,�l r •' I u f`. ` ---- - f-�--- -- �— --� -- � .� � � 1..1 ■ =him MliEll --='�- ��.-rL�—. ■--- "' -- IIL 1-,_�__ • -_--_ I�i,l _III:- _— DID Ell 11 1 • OVA ■ ■I ■1 1. • 4W ♦. ■I ■I rJ Min ■I oil ■I ■■I � ■ ■I LOW ■1 LJ '♦ INN or I ■ r - ♦ •• • • ■I N■ ■Iso �■ ' �� ■ • ■ �. :•. • ol ol All ■I I■! ♦i I ®■' ' '■ ■I 1 ■ •' ■I 1 r■ ® • •• ` 1 • • • •• •� • ■I 1 �M■ 1 • •• • mill IN • N 1-101, 1-101, \ \ \ \ \ \ 1-1\0 ° \ / / �� \ / / \ \ IL Of o \ \ \ � / , / / , \ \ I ( o w \ \ o , \ \ / Ld Ld DRAWN BRB O N \ \ \ / / / T_ \ \ \ \ \ \ \ \ CHECKED DAP w \ \ C2-1 / \ \ \ \ \ \ \ -c.. \ DESIGNED BRB W \ 81.40 0.57 _ FILENAME \ C2-2 \ r ' / / / \ \ \ \ \ \ \ \ \ F � � `` \ / /�� \ \ \ \ \ 0009_Drainage w 81.10 \ \ / \ . 00 \ \ \ KEY MAP ' �G N . T.S. o�F •�: LEGEND __ \ ♦ \ / �/ A� X AREA (ACRES) AB—C AB—C = BASIN NUMBER FUTURE-2 \ \ / /f' I� / / / / \ \ 1 / / \ Y Y = IMPERVIOUSNESS r � \ \ \ \ \ / •�� /' I � , � ' \ ` I EXISTING STORM SEWER PROPOSED STORM SEWER 1 =\\ ♦ \ \ \ / �// / / ' / \ \ I /o `'� MEMO PROPOSED BASIN BOUNDARY \\ / _mob, PROPOSED CONTOURS I / \ / I I � ' oo� EXISTING CONTOURS FLOW DIRECTION Q CO FUTURE-3 / SO CL 1UR ROADWAYE IN�FRASiRUC w W REFERENCE ONLY .(�;? 1 � \ CO 0 5010 C0 (. .. i Q a. % \� LO o \ \ Q INTERIM POND N LLI INTERIM POND = OUTLET STRUCTURE '' LLI cLd n fill INTERIM 10 -f POND _ ` �� / % = / X: SPILLWAY ,. .;.. .. fir: Q 1 \ \ 1 I 1 \ TST, INC. ffl , I \ CONSULTING ENGINEERS 3 �._) '.' F '. ; 748 Whalers Way F / l I/ / 1 \ \ \ Suite 200 Fort Collins .f;.. r / / /. . / 1 I \ I I Colorado 80525 1 \ \ \ Phone: 970.226.0557 JOB N0. h 1230.0009.00 POO SCALE 50 � "1 DATE 50 0 50 100 OCTOBER 2024 scale 1"=50' SHEET feet / .. 202 of 224 SEE SHEET 201 N 4.08 90.00 G1-9 \ LD 4.52 5 f I - - - - - - - L - 11 - - - - - - - - -- LLJ G1-8 _ / j / m 100.0 mmmmi 0.49 \ \ ' ^. � / / / •+. J I l/ /\ AWN BRB G1-10 \ 88.00 CHECKED WIMP DAP — — — — — — — — — — —— — — — — DESIGNED — I. — - - O� - -- - - - - - - _ - - - 0000 BRB FILENAME 0009—Drainage 0 On . IRE o�P� 1 5000 0.22 G1-13 ,' I / j KEY MAP 77.73 / / / = / l < / ! N T S / / 1 / S�ONAL E� l l �� LEGEND \\ �• / \� I // X X = AREA (ACRES) AB—C = BASIN NUMBER 4999� ' I / Y Y = IMPERVIOUSNESS EXISTING STORM SEWER PROPOSED STORM SEWER MEMO PROPOSED BASIN BOUNDARY PROPOSED CONTOURS 1 1 i\ FUTURE-5 \ // %„ / / , / \ \ / / — o I 1 1 77.50 / y/ / � , / yo EXISTING CONTOURS z FLOW DIRECTION Q 4998 CO co fr f. 4997 14101w WLLI / W 4995 l O,� / // - - LLI A I Oc 4j 1.39 44.40 TST, INC. I / CONSULIING ENGINEERS 748 Whalers Way Suite 200 Fort Collins I 10.23 Phonoe�r970.226 0557 POND 427 JOB NO. 1230.0009.00 3.10 / SCALE 1 pl = 50 O� DATE 50 0 50 10o OCTOBER 2024 scale 1"=50' feet SHEET 203 of 224 SEE SHEET 203 N \ \ I \ \ l 1 \ \ \ LD LLJ LLJ 10 DRAWN B R B ��� \ 75.61 \ I / i /// OFFSITE— CHECKED 20.00 1 4995 / � DAP DESIGNED BRB FILENAME 1.39 / / / / / 0009_Drainage \ GIDDING-2/ \\ 44.40 / y moo;• �o P�o� WV* 03 KEY MA o��'G o�S N . T. S. �F .. 10.23 POND 427 J \\ \ 3., LEGEN D X = AREA (ACRES) AB—C AB—C = BASIN NUMBER Y Y = IMPERVIOUSNESS 01 EXISTING STORM SEWER /// PROPOSED STORM SEWER MEMO PROPOSED BASIN BOUNDARY INTERIM POND 427 PROPOSED CONTOURS Nt EXISTING CONTOURS Z FLOW DIRECTION 0 \` ✓ \ �\ INTERIM POND 427 SPILLWAY INTERIM POND 427 OUTLET / // / / ; W W STRUCTURE \ / / /// / i CO CO m = a Z a. f fr N1 VO/T TST, INC. CONSULIING ENGINEERS 748 Whalers Way Suite Fort Collins Colorado 80525 �4,j-,1` � Phone: 970.226.0557 j JOB N0.\ 1230.0009.00 SCALE ry r DATE Y - / � T \ \\ \\\ >✓ � \ \ \ \ �� \\\\\ � 50 0 50 100 OCTOBER 2024 scale 1"=50' feet SHEET 204 of 224 N TI T'\ - LD I \ U) \ \ LLJ Z \�� �\ PROP. OFFSITE DRAINAGE SWALE N w LW \ _ — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — J w ) / \ _ W - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - N DRAWN BRB CHECKED DAP DESIGNED BRB -1 T FILENAME 0009_Drainage INV �\ - \ KEY MAP Q��o ��o�So.At- LEGEND O X X = AREA (ACRES) —C W AB—C = BASIN NUMBER m Y Y = IMPERVIOUSNESS w uwj EXISTING STORM SEWER - -_-:] PROPOSED STORM SEWER C — — — — — — MEMO PROPOSED BASIN BOUNDARY - - - - - - — — — — — — — — — — — — — - - - - - - - - - - - - — _ , � PROPOSED CONTOURS EXISTING CONTOURS w - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - =- - - - - - - - - - Z VO) / I FLOW DIRECTION Q - C , _ F (1) Z o- G w Lu � C CO r Q = z a Q o Q II I I \ x I w PROP. OFFSITE DRAINAGE SWALE PROP. PIPE DESIGNED ! I I 1 I I BY OTHERS I I I I I I I I II I I I EXISTING ANHEUSER—BUSCH POND / � �j � I-T IT , -� �, �1 I ► I I x I I I // � TST INC. CONSULTING ENGINEERS lers Way Suite 8200aFo t Collins Colorado 80525 I , Phone: 970.226.0557 JOB NO. 1230.0009.00 SCALE 1„ = 50P 50 0 50 100 DAB OCTOBER 2024 scale 1"=50' feet SHEET 205 of 224 PHASE D — STORMWATER INFRASTRUCTURE RICHARDS LAKE ROAD r 1 � r ' � 1 ' DEVELOPMENT PHASE ] D PZ 1 r = I C2DESIGN 1 ' FARM ` co 1 PHASE A 1100YR INADVERTENT DETENTION z I Q 1 O � MAPLE HILL 1 of SUBDIVISION ' z 1 ^ ' 1 01 � � � ` ♦ 2YR INADVERTENT DETENTION _ ,� PHASE B �16 ,� NO. 8 SIDE SPILL WILL � ` NOT BE CONSTRUCTED WITH THIS PHASE K` NO. 8 SIDE SPILL r � CHANNEL 2 � xIPERMANENT DETENTION Revision & Date: � PHASE M � SCHOOL PDTH/S ♦ , j P HAS E C ' ` — ' INTERIM DETENTION SUPPORTED WI 'DEVELOPMENT INTERIM POND 432 1 ` 1 (WQ & DETENTION ANHEu FOR FIDDLE BuscH ` INTERSECTION) 1EXISTING CONVEYANCE ELEMENT ` PHASE L ` PHASE D UL TIMA TE POND 75LZI ♦ ' PROPOSED CONVEYANCE ELEMENT (IRRIGATION & ♦ ` 1 DETENTION) I , 1 ` THE STORMWATER INFRASTRUCTURE PHASING SHOWN IS OPEN CHANNEL BASED ON THE 1986 AGREEMENT BETWEEN ANHEUSER 1 CONVEYANCE TO BUSCH AND THE LARIMER AND WELD IRRIGATION POND 427 ♦ , Q ♦ � 1 . COMPANY, ALLOWING DISCHARGE OF HISTORIC 100-YEAR Q PHASE E t PHASE F PHASE K i FLOW RATES AT THE POINT SOURCE IDENTIFIED AS THE CIA EXISTING 24 (W)X12 (H) TIMBER BOX CULVERT AT THE ZO _ BNSF RIGHT-OF-WAY FOR DEVELOPMENT WEST OF SAID 1 ♦ �`� 1 RIGHT-OF-WAY. FLOW FROM THIS POINT SOURCE HAVE OPEN CHANNEL` ♦ 1 HISTORICALLY DISCHARGED INTO THE LARIMER AND 1 CONVEYANCE TO > > �- � — � `` o WELD CANAL. UPON DEVELOPMENT OF PHASE G, AND 1 POND 427 CONSTRUCTION OF THE NO. 8 SIDE SPILL, STORMWATER - 1 ' ` ` INFRASTRUCTURE IMPROVEMENTS TO THE BNSF AND STORYBOOK PHASE E G ♦ 1 1 �► � � U- SUBDIVISION 1 1 t ` PHASE J z LWIC CROSSINGS WILL BE REQUIRED TO MITIGATE BOTH ` PHASE H " THE RATE AND VOLUME OF STORMWATER ENTERING THE 1 1 I I PHASE I 1 LARIMER AND WELD CANAL. L _ _ _ _ _ _ _ _ _ _ _ _ J6 _ _ _ L � o MOUNTAIN VISTA DRIVE ' � � � � � � � � _ _ _ _ _ _ _ _ _ _ _ 7 Q O ' � INTERIM POND z J INTERIM POND 427 TO I 427 OUTLET � J w REDUCE DEVELOPED (24" RCP) DISCHARGES TO HISTORIC 0 2-YEAR FLOW RATES (11 CFS) , z WQ & DETENTION ' ' ` C1) PHASE N PHASE 0 Q 1 1 a- z Q J 1 1 I Q W 0- 1 1 I >Q LLU 1 1 I z 0 1 1 I O J Q INADVERTAN LU BNSF DETENTION L J ClQ ZD ti J � Q EXISTING OPEN CHANNEL CONVEYANCE TO THE LARIMER AND EXISTING 24 (W)X12 (H) UJ WELD CANAL TIMBER BOX CULVERTIE U UNDER BNSF RAILROAD z TO L&W CANAL 0 (APPROX. CAPACITY = U 50 CFS) WATERGLEN Project Number: 1734 SUBDIVISION Date: 02/04/20 O Produced by: DPZ CODESIGN O 0 GP�p�, �N Sheet Number: TRAIL HEAD Ir SUBDIVISION y • � ' • ' - uj II -� ' PROPOSES THE ROUTING OF • ' BASINS 27 AND 32 TO INTERIM DETENTION POND 4275 Qj II � / WHICH WILL ATTENUATE • • STORMWATER DISCHARGES TO HISTORIC 2-YEAR 0 RATES (11 CFS MAX). INTERIM POND 427 WILL cu DISCHARGE SOUTHEAST OF THE INTERSECTION OF r- cu MOUNTAIN VISTA DRIVE AND GIDDINGS ROAD AND x FOLLOW EXISTING DRAINAGE PATTERNS TO THE u 0 EXISTING 24"(W)X1211(H) BOX CULVERT UNDER THE 3: r4 fr • • R w • . . ► � . . �. M. . 1rr rNf s • ` � : . 1� 3� - \ \�\\\\�\1 ✓ l \ � ' \� � I / I BNSF RAILROAD WHICH DISCHARGES TO THE • :.I. .- • VP41w - � . : - s • r, t� x : \\ \\ \ � / o \ \ \ / \ IIII CANAL. PROPOSED • AaJ •t.. w - iINFRASTRUCTURE IMPROVEMENTS IMPROVE . . RUNOFF . • • • • • THE L&W CANAL AND ARE CONSISTENT WITH THE REQUIREMENTS OF THE 1986 AB-LWIC AGREEMENT. � � : t • . t St \ \ \ \ \ Il, \ \ \ I LL HISTORIC BASIN 32 AREA=213.3 ACRES 100YR INADVERTENT DETENTION Q100 L I • •. / IIIII �4J1yJf � T �1a< mar a a_c a a• 1 m !w ' \ \\ �\`� \ ' I • {I `_1,.air. ., - L� ." , - - — I �` \ \ �\\ I DETENTION2YR INADVERTENT EXISTING CONVEYANCE ELEMENT c/) BASIN 32 HISTORIC . ( \�\\ `�� �, / / ice_ _ �� \ \ • LL PATH \, Si�llllip, WITH MON TA VA PHASE D jll (WILL NOT BE UTILIZED • N4l \ III ''�- /" -~ •� ,.�.\\\�\�\\\\ � � \� � \ \ � • i. I `-`�I I III _ HISTORIC BASIN 27 • \ �7�r r � .�� !' � � r � t \ � _\ r r / / I 1 , \\\ l� I // \ ! II It)I\ • R • a FA I • 0! • STORYBOOK _!'`b _ ,_ —/ \ \ 1 I c . A \\ �\ \ ��► ,/ / _ i \�\ I��/ IIIIIIIII IIII I�I : t • -01 \ ti INADVERTANT \ \11111111 IIII I II ll �I �IVI - - 1 1 � \\ = • • .r\ /� �I i \ \ \\\IIIII/ CIIdI rll�i I\ • co • I JI I l / I � iL I��� � �\ DISCHARGE FOR INTERIM POND 427 ACCORDINGTO \ . COFC CRITERIA= \_\\\\ \�J i��ll / / • II -� �-'\� \ \ \ I I� \ � III \ \ �I • IIII —\ \ \\� �Il t- - = `IIII 1 \_ _ � � ! — _ , II IIII / 7= • >- -IIII Il y - Y-- -- \\! \ \ \ �'I$ � �• I V'r - - ( �I: , - , ti r\\ \�, \ � � \ t . III 4�rYo `�� � ��� I I � -:� .,• , III +, � S I � � '' 'I ,,�\ �� \ \� �� � �d;I �,o a� 'b� ' °� I °�• ", .•''' . ���" �° '"''""~�H� IIIII r , OPEN wsCONVEYANCE II \\ \ \`\ \ \\ y � ►. � ,* � I III ' �I IIIII) - .. � ¢ ' • • f • ; Ite ' \��`�1 ��� 4�I II .— —_ \�_ I��• . — � I I�II II J �r• - AND g Ln . - ; . - r• \o I l° \4 ' r A 't \ \ 4 _ \ 7E i I t\ � +a;,,¢,e p I•6 I J ��/^ — - TC � .--` �- -.--- nti •n• ° ! IIII 'n ti • • � IvWEL. CANAL ` •. u . • na . 1 \.`L.✓re Z •�} sj''" ' "„w...`'omt ` 1�\ \ ' ��,)l Ll?i. r/ c_ — <\—}\,� _ L 1 `\- " . 'IL ' '� {�QI ' //I/ ry 1 y/( ,1, 1 to o p(..�-`' '(f,�/n/�, (1 IIl lIl Il t I II r II, I1I1 +j.3ti' • • : .. •\ krL . . 1tt ! t EXISTING 24"(W)X1211(H) • 1 . i.� / vim 1° J: Y ~r 1� • \,` _ 1 �1===__�\=_ — a — — -+� '� / a , TIMBER BOX �� \ ,III I • • • jll ( ✓r `` �\ fr ` \~C =- ==-,J = - - - ,=_--_\\\�� /� �f I - RAILROAD ti�// I P Io1 I}� I • LLJ J \\u— �,, ° �\, —�\(� \� / •` IIIII • wd*�A- 30:� Jl • CANAL // j` � Ly] J I�, ( • . . •� . , \ � �, � � i.I � , � \ � � _ • `l/` r� ry ,, ., `�j � �/ � / \ II ° • - / `_ (o ( III I I 1 • 00 \ M. - - \ I? '` \ °. w { 4'.v `� /// ✓ / �\ \ I �Y� , ,1 � IIII II II I� • • � � � 1 I � ,. � f t t / // )1 s� � 1rL r . J� E�\//// \i .1 S�;1 r\``�\\ • I1 Imo! j - jl� II I Ihl l I• • \ - -.a. , „ . \ ' ,,,.. '� S ,/ \ \• a I II III i t Sheet ____ �\ - `-���- " ,� �� \ � � :' •-•- r ��` 1r/,mac ,��,�ter!"" ,l `•'`�1� 11` � �\�\\ \1 r�l �. _=...�1 o �� I III4 III II l`l�l — — --A1� ;\ ° b \ �\ j, 1 /r'o Wit'_ �, 0 .q/✓ / . � �s�11" uj �}�I �I11` ` N�\�\ • \ f � — — , Z ::t .;� !mil' J %r�lr ,\ r � � II \`+ ..II' L, 'o ?,s. . \"`\, '•o �a� J'rµ» � 3 L,ro�:n°,"y� fi fo `y •,rl. •,2t"° � � /,/f• ? �f _ ° .�v.<,/� -�'Y,�cSlf� /����f L-S `\\t°�I I P I I . I��Y (-�f"' =z )�j` a •'�1�1 II IIII I I' • '�VI 'k''S, ' '' v''^...,'N;`.`"e C, .: '. g "' .r'.�y9a of��/\�° -.'r" i/ /% E X /// `�'. l�lf sa � . �' ^. . z � �—=�� �� A•p' �� J s a. ^r c � : t • ^> .��./!� �\ /� �.���1 �j -- 1� -•. _- ��'/�9 f r �` I II I I IMF � 1 N SJ /% / f` /_ f%n` //�✓'} �/'~c� ^ 1 1 } I I I V / {�( n• '' `: \\._.ti .ate; it` `7� M L /.� / /cam L �.� h. i// � 1 //. //� // ./�(: / `. 'L ^I (^` � 514`IC �i I'II I I •• APPENDIX F STREET CAPACITY & STORM INLET ANALYSIS MHFD-Inlet Version 5.03 Au u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: FLINT HILL DR T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 26.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 01.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nRAOK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 10.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition SO= 0.005 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 10.0 10.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qauaw= 2.7 16.1 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 2.33 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 10.16 cfs on sheet'Inlet Management' 1 MHFD-Inlet Version 5.03 Au u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: N TIMBERLINE RD T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T��= 29.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 01.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nRAOK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 11.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition SO= 0.005 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 11.0 11.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qauaw= 3.4 16.9 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 2.41 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 10.53 cfs on sheet'Inlet Management' 1 MHFD-Inlet Version 5.03 Au u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: LONGWOOD DR T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 20.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 01.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) n�OK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 10.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition SO= 0.007 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 10.0 10.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 3.2 19.0 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 3.11 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 13.58 cfs on sheet'Inlet Management' 1 MHFD-Inlet Version 5.03 Au u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: MONTAVA AVE T T T.7— T. STREET c 0 CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 15.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nRACK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 20.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.005 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 20.0 20.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qauaw= 12.0 1 20.1 1 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 2.45 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 10.71 cfs on sheet'Inlet Management' 1 MHFD-Inlet Version 5.03 Au u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:GOODHEART DR T T T.7— T. STREET c 0 CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T��= 29.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 01.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nRAOK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 11.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition SO= 0.005 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 11.0 11.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qauaw= 3.4 16.9 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 2.20 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 8.71 cfs on sheet'Inlet Management' 1 MHFD-Inlet Version 5.03 Au u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:TEALBROOK DR T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 20.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 01.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nRACK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 10.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.005 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 10.0 10.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qauaw= 2.7 16.1 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 2.33 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 9.55 cfs on sheet'Inlet Management' 1 MHFD-Inlet Version 5.03 Au u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: NANNA LN T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 11.5 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nRACK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 10.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.030 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.005 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 10.0 10.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q,��o = 4.8 14.2 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 3.11 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 13.58 cfs on sheet'Inlet Management' 1 MHFD-Inlet Version 5.03 Au u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: HARWOOD LN T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 11.5 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nRAOK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 14.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition SO= 0.007 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x=1 14.0 14.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qauaw= 7.0 22.2 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 2.10 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 9.13 cfs on sheet'Inlet Management' 1 MHFD-Inlet Version 5.03 Au u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: MIDDLE FARM WY T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 11.5 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nRAOK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 14.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition SO= 0.006 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x=1 14.0 14.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qauaw= 6.2 19.6 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 2.10 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 9.13 cfs on sheet'Inlet Management' 1 MHFD-Inlet Version 5.03 AU u5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: MOUNTAIN WILLOW WY T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 24.I It Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nRACK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 10.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.005 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) ns,= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 10.0 10.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNm= 6.0 7.0 inches Allow Flow Depth at Street Crown(check box for yes,leave blank for no) r- W MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Qauaw= 2.7 16.1 cfs Minor storm max.allowable capacity GOOD-greater than the design peak flow of 2.20 cfs on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design peak flow of 8.71 cfs on sheet'Inlet Management' 1 MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME D-3 D-7 D-9 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area AREA AREA AREA Hydraulic Condition Swale Swale Swale Inlet Tye User-Defined User-Defined User-Defined USER-DEFINED INPUT User-Defined Design Flows Minor QKmn(cfs) 0.8 2.6 1.6 Major QKwwn Ws) 3.6 11.2 6.9 Bypass(Carry-Over)Flow from Upstream Inlets must be organized from u stream left to downstream(right)in order for bypass flows to be linked. Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area acres Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Major Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 0.8 2.6 1.6 Major Total Design Peak Flow,Q(cfs) 3.6 11.2 6.9 Minor Flow Bypassed Downstream,Qb(cfs) 0.0 0.0 0.0 Major Flow Bypassed Downstream,Qb(cfs) 1.2 3.1 2.0 MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME D-14 D-15 D-1 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area AREA AREA STREET Hydraulic Condition Swale Swale In Sum Inlet Tye User-Defined User-Defined CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 1.8 0.5 1.3 Major QKwwn Ws) 7.0 2.1 5.7 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 1.8 0.5 1.3 Major Total Design Peak Flow, cfs) 7.0 2.1 5.7 Minor Flow Bypassed Downstream,Qb(cfs) 0.0 0.0 N/A Major Flow Bypassed Downstream,Qb(cfs) 2.1 0.3 N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME D-2 D-4 D-5 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 2.3 0.5 0.4 Major QKw.n Ws) 10.2 2.2 1.8 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 2.3 0.5 0.4 Major Total Design Peak Flow, cfs) 10.2 2.2 1.8 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME D-6 D-10 D-11 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 1 0.4 1 2.4 1 0.9 Major QKw.n Ws) 1.8 10.5 3.5 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received User-Defined User-Defined Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 5.3 3.1 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type BASIN D-3 + BASIN D-9 + BASIN D-14 Watershed Profile Overland Slope(ft/ft) QMINOR- 0.0 CFS BASIN D-7 Overland Length ft QMAJOR= 1.21 + 2.04 QMINOR= 0.0 CFS Channel Slope(ft/ft) + 2.06 = 5.31 CFS QMAJOR= 3.14 CFS Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 0.4 2.4 1 0.9 Major Total Design Peak Flow, cfs) 1.8 15.8 6.7 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME D-12 D-13 D-16 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn(cfs) 1 1.5 1 1.5 1 0.2 Major QKw.n Ws) 6.4 6.5 1.0 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: User-Defined No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.3 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile BASIN D-15 Overland Slope(ft/ft) Overland Length ft QMINOR— 0.0 CFS Channel Slope(ft/ft) Q = 0.31 CFS Channel Length ft MAJOR— Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 1.5 1.5 1 0.2 Major Total Design Peak Flow, cfs) 6.7 6.5 1.0 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME D-17 D-18 Site Type Urban or Rural URBAN URBAN Inlet Application Street or Area STREET STREET Hydraulic Condition In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 0.6 0.8 Major QKw.n Ws) 2.5 3.4 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 0.6 0.8 Major Total Design Peak Flow, cfs) 2.5 3.4 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-3 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 E Non-cohesive Non-Cohesive 5.0 fps 0.60 C cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM"= 28.00 28.00 ft Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAX= 0.28 0.28 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAX= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth QT= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.28 0.28 ft Top Width T= 28.00 28.00 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 1^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based On Allowable Water Depth Qd= 8.6 8.6 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Qo= 0.8 3.6 cfs Water Depth d= 0.12 0.20 I t Top Width T= 11.56 20.12 ft Flow Area A= 0.67 2.03 sq ft Wetted Perimeter P= 11.57 20.13 ft Hydraulic Radius R= 0.06 0.10 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.21 1.75 fps Velocity-Depth Product VR= 0.07 0.18 ft^2/s Hydraulic Depth D= 0.06 0.10 ft �Froude Number Fr= 0.89 0.97 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN D INLETS.xlsm,D-3 9/12/2024,10:15 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-3 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.73 ft Length of Grate L= 6.00 ft Open Area Ratio AarTIO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.12 0.20 Grate Capacity as a Weir Submerged Side Weir Length X= 6.00 6.00 ft Inclined Side Weir Flow Q-= 0.8 1.9 cfs Base Weir Flow Qwb= 0.3 0.8 cfs Interception Without Cloggging Qw;= 2.0 4.7 crs Interception With Clogging Q-= 1.0 2.3 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 12.7 16.7 cfs Interception With Clogging Q.=1 6.3 8.4 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 1.0 2.3 cfs Bypassed Flow Qb=1 0.0 1.2 Crs Capture Percentage=Qa/Qo C%=1 100 66 BASIN D INLETS.xlsm,D-3 9/12/2024,10:15 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-7 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 33.33 ft/ft Right Side Sloe Z2= 33.33 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Maor Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TMAx= 38.00 38.00 I t Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.42 0.42 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAx= 38.00 38.00 ft Water Depth d= 0.57 0.57 ft Flow Area A= 10.83 10.83 sq ft Wetted Perimeter P= 38.02 38.02 ft Hydraulic Radius R= 0.28 0.28 ft Manning's n n= 0.013 0.013 Flow Velocity V= 3.51 3.51 fps Velocity-Depth Product VR= 1.00 1.00 ft^2/s Hydraulic Depth D= 0.29 0.29 ft Froude Number Fr= 1.16 1.16 Maximum Flow Based on Allowable Water Depth QT= 38.0 38.0 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.42 0.42 ft Top Width T= 28.00 28.00 ft Flow Area A= 5.88 5.88 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 1^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based On Allowable Water Depth Qa= 16.8 16.8 cfs Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Depth Criterion Q,xo„= 16.8 1% cfs MANOR STORM Allowable Capacity is based on Depth Criterion d,ii,,,= 0.42 6.42 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Q.= 2.6 11.2 cfs Water Depth d= 0.21 0.36 I t Top Width T= 13.82 24.03 ft Flow Area A= 1.43 4.33 sq ft Wetted Perimeter P= 13.82 24.04 ft Hydraulic Radius R= 0.10 0.18 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.79 2.59 fps Velocity-Depth Product VR= 0.19 0.47 ft^2/s Hydraulic Depth D= 0.10 0.18 ft �Froude Number Fr= 0.98 1.07 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN D INLETS.xlsm,D-7 9112/2024,10:17 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-7 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 9.00 ft Open Area Ratio AarTIO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.21 0.36 Grate Capacity as a Weir Submerged Side Weir Length X= 9.00 9.00 ft Inclined Side Weir Flow Q-= 3.0 7.0 cfs Base Weir Flow Qwb= 0.9 2.1 cfs Interception Without Cloggging Qw;= 7.024 16.108 crs Interception With Clogging Q-= 3.512 8.054 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 28.3 37.3 cfs Interception With Clogging Q.=1 14.1 18.7 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 3.5 Cfs Bypassed Flow Qb=1 0.0 3.1 tfs Capture Percentage=Qa/Qo C%=1 100 72 BASIN D INLETS.xlsm,D-7 9112/2024,10:17 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-9 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 E Non-cohesive Non-Cohesive 5.0 fps 0.60 C cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM"= 28.00 28.00 ft Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAX= 0.28 0.28 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAX= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth QT= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.28 0.28 ft Top Width T= 28.00 28.00 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 1^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based On Allowable Water Depth Qd= 8.6 8.6 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Q.= 1.6 6.9 cfs Water Depth d= 0.15 0.26 I t Top Width T= 14.89 25.88 ft Flow Area A= 1.11 3.35 sq ft Wetted Perimeter P= 14.90 25.88 ft Hydraulic Radius R= 0.07 0.13 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.43 2.07 fps Velocity-Depth Product VR= 0.11 0.27 ft^2/s Hydraulic Depth D= 0.07 0.13 ft �Froude Number Fr= 0.93 1.02 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN D INLETS.xlsm,D-9 9112/2024,10:17 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-9 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 9.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.15 0.26 Grate Capacity as a Weir Submerged Side Weir Length X= 9.00 9.00 ft Inclined Side Weir Flow Q-= 1.9 4.3 cfs Base Weir Flow Qwb= 0.6 1.3 cfs Interception Without Cloggging Qw;= 4.3 9.8 crs Interception With Clogging Q-= 2.1 4.9 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 24.0 31.6 cfs Interception With Clogging Q.=1 12.0 15.8 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 2.1 4.9 cfs Bypassed Flow Qb= 0.0 2.0 Cfs Capture Percentage=Qa/Qo C"/0= 100 71 BASIN D INLETS.xlsm,D-9 9112/2024,10:17 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-14 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 E Non-cohesive Non-Cohesive 5.0 fps 0.60 C cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM"= 28.00 28.00 ft Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAX= 0.28 0.28 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAX= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth QT= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.28 0.28 ft Top Width T= 28.00 28.00 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 1^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based On Allowable Water Depth Qd= 8.6 8.6 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Qo= 1.8 7.0 cfs Water Depth d= 0.15 0.26 I t Top Width T= 15.44 25.92 ft Flow Area A= 1.19 3.36 sq ft Wetted Perimeter P= 15.44 25.92 ft Hydraulic Radius R= 0.08 0.13 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.47 2.08 fps Velocity-Depth Product VR= 0.11 0.27 ft^2/s Hydraulic Depth D= 0.08 0.13 ft �Froude Number Fr= 0.93 1.02 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN D INLETS.xlsm,D-14 9/12/2024,10:39 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-14 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 9.00 ft Open Area Ratio AarTIO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.15 0.26 Grate Capacity as a Weir Submerged Side Weir Length X= 9.00 9.00 ft Inclined Side Weir Flow Q-= 2.0 4.3 cfs Base Weir Flow Qwb= 0.6 1.3 cfs Interception Without Cloggging Qw;= 4.5 9.8 crs Interception With Clogging Q-= 2.3 4.9 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 24.4 31.6 cfs Interception With Clogging Q.=1 12.2 15.8 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 2.3 4.9 cfs Bypassed Flow Qb= 0.0 2.1 Cfs Capture Percentage=Qa/Qo C"/0= 100 70 BASIN D INLETS.xlsm,D-14 9/12/2024,10:39 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-15 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 E Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM Ax= 28.00 28.00 I t Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAX= 0.33 0.33 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAX= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth QT= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.33 0.33 ft Top Width T= 33.00 33.00 ft Flow Area A= 5.45 5.45 sq ft Wetted Perimeter P= 33.01 33.01 ft Hydraulic Radius R= 0.16 0.16 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.44 2.44 fps Velocity-Depth Product VR= 0.40 0.40 1^2/s Hydraulic Depth D= 0.17 0.17 ft Froude Number Fr= 1.06 1.06 Maximum Flow Based On Allowable Water Depth Qa= 13.3 13.3 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Qo= 0.5 2.1 cfs Water Depth d= 0.10 0.16 I t Top Width T= 9.51 16.47 ft Flow Area A= 0.45 1.36 sq ft Wetted Perimeter P= 9.51 16.47 ft Hydraulic Radius R= 0.05 0.08 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.06 1.53 fps Velocity-Depth Product VR= 0.05 0.13 ft^2/s Hydraulic Depth D= 0.05 0.08 ft �Froude Number Fr= 0.86 0.94 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN D INLETS.xlsm,D-15 9/12/2024,10:39 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D D-15 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 6.00 ft Open Area Ratio AarTIO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.10 0.16 Grate Capacity as a Weir Submerged Side Weir Length X= 6.00 6.00 ft Inclined Side Weir Flow Q-= 0.6 1.4 cfs Base Weir Flow Qwb= 0.3 0.7 cfs Interception Without Cloggging Qw;= 1.6 3.5 crs Interception With Clogging Q-= 0.8 1.8 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 12.8 16.8 cfs Interception With Clogging Q.=1 6.4 8.4 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 0.8 1.8 cfs Bypassed Flow Qb= 0.0 0.3 Cfs Capture Percentage=Qa/Qo C%=1 100 85 BASIN D INLETS.xlsm,D-15 9/12/2024,10:39 AM MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-1 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 18.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) Sena= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 29.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qva= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,-1 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs Resulting Curb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cis Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 Ifeet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft Resultant Flow Depth at Street Crown do,OWN= 0.0 0.0 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;aaeoa= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 6.6 Icfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 1.3 5.7 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-2 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 18.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 2 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.50 1.50 Clogging Factor for Multiple Units Clog= 0.38 0.38 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.4 8.5 cis Interception with Clogging Qva= 3.4 5.3 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 15.3 16.7 cfs Interception with Clogging Qea= 9.6 10.5 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 8.5 11.1 cis Interception with Clogging Qma= 5.3 6.9 cis Resulting Grate Capacity assumes clogged condition Qcnm= 3.4 5.3 Cfe CurbOpeningow Analysis(Calculated) MINOR A7 R Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.08 0.08 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 7.9 cfs Interception with Clogging Qv = 4.0 7.2 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 11.2 12.0 cfs Interception with Clogging Q.= 10.3 11.0 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6 Interception with Clogging Qma= 2 cif: ResultingCurb Opening Ca aci assumes clogged condition Qart 4.0 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 6.00 6.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.69 0.82 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO 1,M ewn= 0.69 0.82 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 6.1 1 30.2 efs Inlet Capacity Is GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 2.3 10.2 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-4 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 29.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x=1 29.0 29.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 6.96 6.96 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 8.47 8.47 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 27.0 27.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.201 0.201 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cis Interception with Clogging Qma= 3.6 4.5 cis Resulting Curb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 cis Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 Ifeet Resultant Street Flow Spread(based on street geometry from above) T-1 18.7 22.9 ft Resultant Flow Depth at Street Crown do,OWN= 0.0 0.0 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 16.6 efts Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 0.5 2.2 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-5 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 18.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 efs Inlet Capacity IS GOOD for Minor and Major Storms(>Q Peak Q PEAK REQUIRED= UA 1.8 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-6 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 18.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 efs Inlet Capacity IS GOOD for Minor and Major Storms(>Q Peak Q PEAK REQUIRED= UA 1.8 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-10 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 21.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 19.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 19.0 19.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 8.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.56 4.56 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.07 6.07 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 17.0 17.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.313 0.313 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 27.0 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 25.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.216 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 3 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 8.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.75 1.75 Clogging Factor for Multiple Units Clog= 0.29 0.29 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 6.2 12.4 cis Interception with Clogging Qva= 4.4 8.8 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 23.3 26.8 cfs Interception with Clogging Qea= 16.5 19.0 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 11.1 17.0 cis Interception with Clogging Qma= 7.9 12.0 cfs Resulting Grate Capacity assumes clogged condition Qcnm= 4.4 8.8 cfS Curb Opening ow Analysis(Calculated) MINOR AJ R Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.06 0.06 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 5.1 12.5 cis Interception with Clogging Qv = 4.8 11.8 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 17.0 19.0 cfs Interception with Clogging Q.= 16.1 18.0 1cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 8.0 13.2 cis Interception with Clogging Qma= 7.6 12.5 's ResultingCurb Opening Ca aci assumes clo ed condition Qart= 4.8 11.8 dr Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 9.00 9.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.7 27.0 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.9 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.69 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.50 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.57 0.75 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO 1,Mawa= 0.57 0.75 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 7.5 1 16.8 efs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 2.4 15.8 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-11 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 21.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 19.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 19.0 19.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.56 4.56 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.07 6.07 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 17.0 17.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.313 0.313 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 2 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.50 1.50 Clogging Factor for Multiple Units Clog= 0.38 0.38 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.8 8.5 cis Interception with Clogging Qva= 3.6 5.3 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 15.5 16.7 cfs Interception with Clogging Qea= 9.7 10.5 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 8.9 11.1 cis Interception with Clogging Qma= 5.5 6.9 cis Resulting Grate Capacity assumes clogged condition Qcnm= 3.6 5.3 CfS CurbOpeningow Analysis(Calculated) MINOR A7 R Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.08 0.08 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.8 7.9 cfs Interception with Clogging Qv = 4.4 7.2 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 11.4 12.0 cfs Interception with Clogging Q.= 10.4 11.0 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4 Interception with Clogging Qma= 2 cif: ResultingCurb Opening Ca aci assumes clogged condition Qart 4.4 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 6.00 6.00 Ifeet Resultant Street Flow Spread(based on street geometry from above) T-1 18.7 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 0.9 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.71 0.82 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO-1,Mawn= 0.71 0.82 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 6.6 1 10.2 tfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 0.9 6.7 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-12 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 21.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 19.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 19.0 19.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.56 4.56 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.07 6.07 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 17.0 17.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.313 0.313 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 2 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.50 1.50 Clogging Factor for Multiple Units Clog= 0.38 0.38 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.8 8.5 cis Interception with Clogging Qva= 3.6 5.3 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 15.5 16.7 cfs Interception with Clogging Qea= 9.7 10.5 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 8.9 11.1 cis Interception with Clogging Qma= 5.5 6.9 cis Resulting Grate Capacity assumes clogged condition Qcnm= 3.6 5.3 CfS CurbOpeningow Analysis(Calculated) MINOR A7 R Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.08 0.08 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.8 7.9 cfs Interception with Clogging Qv = 4.4 7.2 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 11.4 12.0 cfs Interception with Clogging Q.= 10.4 11.0 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4 Interception with Clogging Qma= 2 cif: ResultingCurb Opening Ca aci assumes clogged condition Qart 4.4 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 6.00 6.00 Ifeet Resultant Street Flow Spread(based on street geometry from above) T-1 18.7 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 0.9 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.71 0.82 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO-1,Mawn= 0.71 0.82 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 6.6 1 10.2 tfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 1.5 6.7 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-13 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 21.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 19.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 19.0 19.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.56 4.56 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.07 6.07 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 17.0 17.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.313 0.313 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cfs Interception with Clogging Qma= 3.6 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 ef6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T= 18.7 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 0.9 nches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 1 6.6 efs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 1.5 6.5 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-16 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q Peak Q PEAK REQUIRED= U.Z 1.0 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-17 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q Peak Q PEAK REQUIRED= U.6 2.5 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: D-18 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 18.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP Cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.6 3.4 cfs 1 MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME F-5 F-7 F-9 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area AREA AREA AREA Hydraulic Condition Swale Swale Swale Inlet Tye User-Defined User-Defined User-Defined USER-DEFINED INPUT User-Defined Design Flows Minor QKmn(cfs) 1.2 2.9 1.4 Major QKwwn Ws) 5.1 12.7 6.1 Bypass(Carry-Over)Flow from Upstream Inlets must be organized from u stream left to downstream(right)in order for bypass flows to be linked. Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area acres Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Major Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 1.2 2.9 1.4 Major Total Design Peak Flow,Q(cfs) 5.1 12.7 6.1 Minor Flow Bypassed Downstream,Qb(cfs) 0.0 0.0 0.0 Major Flow Bypassed Downstream,Qb(cfs) 2.1 4.1 2.9 MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME F-10 F-14 F-15 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area AREA AREA AREA Hydraulic Condition Swale Swale Swale Inlet Tye User-Defined User-Defined User-Defined USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 0.3 1.6 2.2 Major QKwwn Ws) 1.4 7.0 9.8 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 0.3 1.6 2.2 Major Total Design Peak Flow, cfs) 1.4 7.0 9.8 Minor Flow Bypassed Downstream,Qb(cfs) 0.0 0.0 0.0 Major Flow Bypassed Downstream,Qb(cfs) 0.6 2.2 4.5 MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME F-20 F-22 F-27 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area AREA AREA AREA Hydraulic Condition Swale Swale Swale Inlet Tye User-Defined User-Defined User-Defined USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 1.1 2.5 1.3 Major QKwwn Ws) 4.7 11.0 5.6 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 1.1 2.5 1.3 Major Total Design Peak Flow, cfs) 4.7 11.0 5.6 Minor Flow Bypassed Downstream,Qb(cfs) 0.0 0.0 0.0 Major Flow Bypassed Downstream,Qb(cfs) 1.9 3.1 2.5 MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME F-1 F-2 F-3 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn(cfs) 1.4 1.3 0.1 Major QKw.n Ws) 5.1 4.9 0.5 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 1.4 1.3 0.1 Major Total Design Peak Flow, cfs) 5.1 4.9 0.5 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME F-4 F-6 F-11 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 1 0.3 1 3.0 1 0.5 Major QKw.n Ws) 1.4 12.9 2.2 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received User-Defined No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 4.1 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile BASIN F-7 Overland Slope(ft/ft) Overland Length ft MINOR- 0•0 F Channel Slope(ft/ft) QMAJOR= 4.1 CFS Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 0.3 3.0 1 0.5 Major Total Design Peak Flow, cfs) 1.4 17.0 2.2 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME F-12 F-13 F-16 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Valley Grate CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 1 1.1 1 1.9 1 0.6 Major QKw.n WS) 4.9 8.4 2.4 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: User-Defined User-Defined No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 2.1 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile BASIN F-5 Overland Slope(ft/ft) Overland Length ft QMINOR= 0.0 CFS Channel Slope(ft/ft) QMAJOR= 2.14 CFS Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 1.1 1.9 0.6 Major Total Design Peak Flow, cfs) 7.0 8.4 2.4 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME F-17 F-25 F-26 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 1 0.8 1 0.7 1 0.7 Major QKw.n Ws) 3.2 2.8 2.9 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received User-Defined User-Defined Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 4.1 7.5 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type BASIN F-14 + I BASIN F-15 + BASIN F-20 BASIN F-22 Watershed Profile Q — 0.0 CFS Q 0.0 CFS Overland Slope(ft/ft) MINOR— MINOR- - Overland Length ft Q MAJOR—= 2.20 + QMAJOR— = 4.46 + Channel Slope(ft/ft) 1.91 = 4.11 CFS 3.05 = 7.51 CFS Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 0.8 0.7 0.7 Major Total Design Peak Flow, cfs) 3.2 6.9 10.4 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME F-S F-31 F-32 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn(cfs) 1 4.5 1 0.2 1 0.5 Major QKw.n Ws) 19.6 0.6 2.1 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: User-Defined No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 10.1 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type BASIN F-7 + BASIN Watershed Profile F-9 + BASIN F-10 + Overland Slope(ft/ft) BASIN F-27 Overland Length ft Channel Slope(ft/ft) QMINOR- 0.0 CFS Channel Length ft QMAJOR- = 4.06 + 2.89 Minor Storm Rainfall Input + 0.59 + 2.53 = Design Storm Return Period,Tr(years) 10.07 CFS One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 4.5 0.2 1 0.5 Major Total Design Peak Flow, cfs) 29.7 0.6 2.1 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-5 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Maor Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TMAx= 28.00 28.00 I t Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.42 0.42 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAx= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth QT= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.42 0.42 ft Top Width T= 42.00 42.00 ft Flow Area A= 8.82 8.82 sq ft Wetted Perimeter P= 42.01 42.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 1^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based On Allowable Water Depth Qd= 25.3 25.3 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Qo= 1.2 5.1 cfs Water Depth d= 0.13 0.23 I t Top Width T= 13.23 22.97 ft Flow Area A= 0.88 2.64 sq ft Wetted Perimeter P= 13.23 22.97 ft Hydraulic Radius R= 0.07 0.11 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.33 1.91 fps Velocity-Depth Product VR= 0.09 0.22 ft^2/s Hydraulic Depth D= 0.07 0.11 ft �Froude Number Fr= 0.91 1.00 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN F INLETS.xlsm,F-5 9/12/2024,10:54 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-5 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 6.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MA30R Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.13 0.23 Grate Capacity as a Weir Submerged Side Weir Length X= 6.00 6.00 ft Inclined Side Weir Flow Q-= 1.0 2.4 cfs Base Weir Flow Qwb= 0.5 1.1 cfs Interception Without Cloggging Qw;= 2.5 5.8 crs Interception With Clogging Q-= 1.3 2.9 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 15.1 19.8 cfs Interception With Clogging Q.=1 7.5 9.9 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 1.3 2.9 cfs Bypassed Flow Qb=1 0.0 2.1 Crs Capture Percentage=Qa/Qo C%=1 100 58 BASIN F INLETS.xlsm,F-5 9/12/2024,10:54 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-7 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 33.33 ft/ft Right Side Sloe Z2= 33.33 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Maor Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TMAx= 28.00 28.00 I t Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.42 0.42 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAx= 28.00 28.00 ft Water Depth d= 0.42 0.42 ft Flow Area A= 5.88 5.88 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 ft^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based on Allowable Water Depth QT= 16.8 16.8 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.42 0.42 ft Top Width T= 28.00 28.00 ft Flow Area A= 5.88 5.88 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 1^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based On Allowable Water Depth Qa= 16.8 16.8 cfs Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Depth Criterion Q,xo„= 16.8 1% cfs MANOR STORM Allowable Capacity is based on Depth Criterion d,ii,,,= 0.42 0.42 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Q.= 2.9 12.7 cfs Water Depth d= 0.22 0.38 I t Top Width T= 14.50 25.19 ft Flow Area A= 1.58 4.76 sq ft Wetted Perimeter P= 14.50 25.20 ft Hydraulic Radius R= 0.11 0.19 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.85 2.67 fps Velocity-Depth Product VR= 0.20 0.50 ft^2/s Hydraulic Depth D= 0.11 0.19 ft �Froude Number Fr= 0.99 1.08 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN F INLETS.xlsm,F-7 9/12/2024,10:54 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-7 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 9.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.22 0.38 Grate Capacity as a Weir Submerged Side Weir Length X= 9.00 9.00 ft Inclined Side Weir Flow Q-= 3.3 7.5 cfs Base Weir Flow Qwb= 1.0 2.3 cfs Interception Without Cloggging Qw;= 7.5 17.3 crs Interception With Clogging Q-= 3.8 8.6 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 29.0 38.2 cfs Interception With Clogging Q.=1 14.5 19.1 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 3.8 8.6 cfs Bypassed Flow Qb= 0.0 4.1 Crs Capture Percentage=Qa/Qo C%=1 100 68 BASIN F INLETS.xlsm,F-7 9/12/2024,10:54 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-9 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM"= 28.00 28.00 ft Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.28 0.28 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMnx= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth Q,= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.28 0.28 ft Top Width T= 28.00 28.00 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 1^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based On Allowable Water Depth Qd= 8.6 8.6 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Q.= 1.4 6.1 cfs Water Depth d= 0.14 0.25 I t Top Width T= 14.24 24.71 ft Flow Area A= 1.01 3.05 sq ft Wetted Perimeter P= 14.24 24.72 ft Hydraulic Radius R= 0.07 0.12 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.39 2.01 fps Velocity-Depth Product VR= 0.10 0.25 ft^2/s Hydraulic Depth D= 0.07 0.12 ft �Froude Number Fr= 0.92 1.01 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN F INLETS.xlsm,F-9 9/12/2024,10:54 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-9 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 6.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.14 0.25 Grate Capacity as a Weir Submerged Side Weir Length X= 6.00 6.00 ft Inclined Side Weir Flow Q-= 1.2 2.6 cfs Base Weir Flow Qwb= 0.5 1.2 cfs Interception Without Cloggging Qw;= 2.8 6.5 crs Interception With Clogging Q-= 1.4 3.2 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 15.6 20.6 cfs Interception With Clogging Q.=1 7.8 10.3 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 1.4 3.2 cfs Bypassed Flow Qb=1 0.0 2.9 Cfs Capture Percentage=Qa/Qo C%=1 100 53 BASIN F INLETS.xlsm,F-9 9/12/2024,10:54 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-10 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM"= 28.00 28.00 ft Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.28 0.28 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMnx= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth Q,= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.28 0.28 ft Top Width T= 28.00 28.00 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 1^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based On Allowable Water Depth Qd= 8.6 8.6 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Qo= 0.3 1.4 cfs Water Depth d= 0.08 0.14 I t Top Width T= 8.26 14.35 ft Flow Area A= 0.34 1.03 sq ft Wetted Perimeter P= 8.26 14.35 ft Hydraulic Radius R= 0.04 0.07 ft Manning's n n= 0.013 0.013 Flow Velocity V= 0.97 1.40 fps Velocity-Depth Product VR= 0.04 0.10 ft^2/s Hydraulic Depth D= 0.04 0.07 ft �Froude Number Fr= 0.84 0.92 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN F INLETS.xlsm,F-10 9112/2024,10:55 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-10 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 3.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.08 0.14 Grate Capacity as a Weir Submerged Side Weir Length X= 3.00 3.00 ft Inclined Side Weir Flow Q-= 0.3 0.6 cfs Base Weir Flow Qwb= 0.2 0.5 cfs Interception Without Cloggging Qw;= 0.7 1.7 crs Interception With Clogging Q-= 0.4 0.9 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 6.0 7.8 cfs Interception With Clogging Q.=1 3.0 3.9 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 0.4 0.9 cfs Bypassed Flow Qb= 0.0 0.6 Cfs Capture Percentage=Qa/Qo C%=1 100 59 BASIN F INLETS.xlsm,F-10 9112/2024,10:55 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-14 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0055 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM"= 28.00 28.00 ft Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.28 0.28 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMnx= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.29 2.29 fps Velocity-Depth Product VR= 0.32 0.32 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.08 1.08 Maximum Flow Based on Allowable Water Depth Q,= 9.0 9.0 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.28 0.28 ft Top Width T= 28.00 28.00 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.29 2.29 fps Velocity-Depth Product VR= 0.32 0.32 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.08 1.08 Maximum Flow Based On Allowable Water Depth Qd= 9.0 9.0 Cf8 Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Depth Criterion Qaxuw= 9.0 9.0 Cfs MANOR STORM Allowable Capacity is based on Depth Criterion da„ow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Q.= 1.6 7.0 cfs Water Depth d= 0.15 0.25 I t Top Width T= 14.66 25.47 ft Flow Area A= 1.08 3.24 sq ft Wetted Perimeter P= 14.67 25.48 ft Hydraulic Radius R= 0.07 0.13 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.49 2.15 fps Velocity-Depth Product VR= 0.11 0.27 ft^2/s Hydraulic Depth D= 0.07 0.13 ft �Froude Number Fr= 0.97 1.06 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN F INLETS.xlsm,F-14 9112/2024,10:55 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-14 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 9.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.15 0.25 Grate Capacity as a Weir Submerged Side Weir Length X= 9.00 9.00 ft Inclined Side Weir Flow Q-= 1.8 4.2 cfs Base Weir Flow Qwb= 0.6 1.3 cfs Interception Without Cloggging Qw;= 4.2 9.6 crs Interception With Clogging Q-= 2.1 4.8 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 23.8 31.4 cfs Interception With Clogging Q.=1 11.9 15.7 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 2.1 4.8 Cfs Bypassed Flow Qb= 0.0 2.2 cfis Capture Percentage=Qa/Qo C"/0= 100 69 BASIN F INLETS.xlsm,F-14 9112/2024,10:55 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-15 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 33.33 ft/ft Right Side Sloe Z2= 33.33 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Maor Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TMAx= 28.00 28.00 I t Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.42 0.42 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAx= 28.00 28.00 ft Water Depth d= 0.42 0.42 ft Flow Area A= 5.88 5.88 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 ft^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based on Allowable Water Depth QT= 16.8 16.8 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.42 0.42 ft Top Width T= 28.00 28.00 ft Flow Area A= 5.88 5.88 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 1^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based On Allowable Water Depth Qa= 16.8 16.8 cfs Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Depth Criterion Q,xo„= 16.8 1% cfs MANOR STORM Allowable Capacity is based on Depth Criterion d,ii,,,= 0.42 0.42 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Q.= 2.2 9.8 cfs Water Depth d= 0.20 0.34 I t Top Width T= 13.14 22.82 ft Flow Area A= 1.30 3.91 sq ft Wetted Perimeter P= 13.15 22.83 ft Hydraulic Radius R= 0.10 0.17 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.73 2.50 fps Velocity-Depth Product VR= 0.17 0.43 ft^2/s Hydraulic Depth D= 0.10 0.17 ft �Froude Number Fr= 0.97 1.06 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN F INLETS.xlsm,F-15 9/12/2024,10:56 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-15 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 6.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.20 0.34 Grate Capacity as a Weir Submerged Side Weir Length X= 6.00 6.00 ft Inclined Side Weir Flow Q-= 1.9 4.3 cfs Base Weir Flow Qwb= 0.9 2.0 cfs Interception Without Cloggging Qw;= 4.6 10.6 crs Interception With Clogging Q-= 2.3 5.3 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 18.4 24.2 cfs Interception With Clogging Q.=1 9.2 12.1 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.= 2.3 5.3 Cfs Bypassed Flow Qb= 0.0 4.5 cfis Capture Percentage=Qa/Qo C"/0= 100 54 BASIN F INLETS.xlsm,F-15 9/12/2024,10:56 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-20 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 E Non-cohesive Non-Cohesive 5.0 fps 0.60 C cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM"= 28.00 28.00 ft Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.28 0.28 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMnx= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth Q,= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.28 0.28 ft Top Width T= 28.00 28.00 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 1^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based On Allowable Water Depth Qd= 8.6 8.6 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Qo= 1.1 4.7 cfs Water Depth d= 0.13 0.22 I t Top Width T= 12.88 22.38 ft Flow Area A= 0.83 2.50 sq ft Wetted Perimeter P= 12.88 22.38 ft Hydraulic Radius R= 0.06 0.11 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.30 1.88 fps Velocity-Depth Product VR= 0.08 0.21 ft^2/s Hydraulic Depth D= 0.06 0.11 ft �Froude Number Fr= 0.90 0.99 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN F INLETS.xlsm,F-20 9/12/2024,10:56 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-20 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 6.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.13 0.22 Grate Capacity as a Weir Submerged Side Weir Length X= 6.00 6.00 ft Inclined Side Weir Flow Q-= 1.0 2.3 cfs Base Weir Flow Qwb= 0.5 1.0 cfs Interception Without Cloggging Qw;= 2.4 5.6 crs Interception With Clogging Q-= 1.2 2.8 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 14.9 19.6 cfs Interception With Clogging Q.=1 7.4 9.8 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 1.2 2.8 Cfs Bypassed Flow Qb= 0.0 1.9 Crs Capture Percentage=Qa/Qo C%=1 100 59 BASIN F INLETS.xlsm,F-20 9/12/2024,10:56 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-22 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 33.33 ft/ft Right Side Sloe Z2= 33.33 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Maor Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TMAx= 28.00 28.00 I t Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.42 0.42 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAx= 28.00 28.00 ft Water Depth d= 0.42 0.42 ft Flow Area A= 5.88 5.88 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 ft^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based on Allowable Water Depth QT= 16.8 16.8 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.42 0.42 ft Top Width T= 28.00 28.00 ft Flow Area A= 5.88 5.88 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 1^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based On Allowable Water Depth Qa= 16.8 16.8 cfs Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Depth Criterion Q,xo„= 16.8 1% cfs MANOR STORM Allowable Capacity is based on Depth Criterion d,ii,,,= 0.42 0.42 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Q.= 2.5 11.0 cfs Water Depth d= 0.21 0.36 I t Top Width T= 13.78 23.90 ft Flow Area A= 1.42 4.29 sq ft Wetted Perimeter P= 13.78 23.91 ft Hydraulic Radius R= 0.10 0.18 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.78 2.58 fps Velocity-Depth Product VR= 0.18 0.46 ft^2/s Hydraulic Depth D= 0.10 0.18 ft �Froude Number Fr= 0.98 1.07 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN F INLETS.xlsm,F-22 9/12/2024,10:57 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-22 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 9.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.21 0.36 Grate Capacity as a Weir Submerged Side Weir Length X= 9.00 9.00 ft Inclined Side Weir Flow Q-= 3.0 6.9 cfs Base Weir Flow Qwb= 0.9 2.1 cfs Interception Without Cloggging Qw;= 7.0 16.0 crs Interception With Clogging Q-= 3.5 8.0 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 28.2 37.2 cfs Interception With Clogging Q.=1 14.1 18.6 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 3.5 8.0 Cfs Bypassed Flow Qb= 0.0 3.1 Crs Capture Percentage=Qa/Qo C%=1 100 72 BASIN F INLETS.xlsm,F-22 9/12/2024,10:57 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-27 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 E Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM"= 28.00 28.00 ft Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.28 0.28 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMnx= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth Q,= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.28 0.28 ft Top Width T= 28.00 28.00 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 1^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based On Allowable Water Depth Qd= 8.6 8.6 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Qo= 1.3 5.6 cfs Water Depth d= 0.14 0.24 I t Top Width T= 13.77 23.91 ft Flow Area A= 0.95 2.86 sq ft Wetted Perimeter P= 13.77 23.91 ft Hydraulic Radius R= 0.07 0.12 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.36 1.97 fps Velocity-Depth Product VR= 0.09 0.24 ft^2/s Hydraulic Depth D= 0.07 0.12 ft �Froude Number Fr= 0.91 1.00 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN F INLETS.xlsm,F-27 9/12/2024,10:57 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D F-27 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 6.00 ft Open Area Ratio AarnO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.14 0.24 Grate Capacity as a Weir Submerged Side Weir Length X= 6.00 6.00 ft Inclined Side Weir Flow Q-= 1.1 2.5 cfs Base Weir Flow Qwb= 0.5 1.2 cfs Interception Without Cloggging Qw;= 2.7 6.2 crs Interception With Clogging Q-= 1.4 3.1 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 15.4 20.3 cfs Interception With Clogging Q.=1 7.7 10.1 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 1.4 3.1 cfs Bypassed Flow Qb= 0.0 2.5 Crs Capture Percentage=Qa/Qo C%=1 100 55 BASIN F INLETS.xlsm,F-27 9/12/2024,10:57 AM MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-1 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 29.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 11.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM„x= 11.0 11.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNAx= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions t- r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 2.64 2.64 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 4.15 4.15 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 9.0 9.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.532 0.532 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 4.2 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 2.2 7.0 cis Interception with Clogging Qva= 1.1 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 6.5 8.4 cfs Interception with Clogging Qea= 3.3 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 3.5 7.1 cis Interception with Clogging Qma= 1.7 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 1.1 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 1.2 6.6 cfs Interception with Clogging Qv = 1.0 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.0 6.0 cfs Interception with Clogging Q.= 4.1 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 2.1 5.4 cfs Interception with Clogging Qma= 1.8 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 1.0 4.5 ef6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 11.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 2.8 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.37 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.18 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.65 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;aaeoa= 0.65 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 1.7 6.6 efts Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 1.4 5.1 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-2 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 29.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 11.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM„x= 11.0 11.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dNAx= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions t- r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 2.64 2.64 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 4.15 4.15 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 9.0 9.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.532 0.532 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 4.2 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 2.2 7.0 cis Interception with Clogging Qva= 1.1 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 6.5 8.4 cfs Interception with Clogging Qea= 3.3 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 3.5 7.1 cis Interception with Clogging Qma= 1.7 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 1.1 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 1.2 6.6 cfs Interception with Clogging Qv = 1.0 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.0 6.0 cfs Interception with Clogging Q.= 4.1 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 2.1 5.4 cfs Interception with Clogging Qma= 1.8 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 1.0 4.5 ef6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 11.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 2.8 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.37 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.18 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.65 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;aaeoa= 0.65 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 1.7 6.6 efe Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 1.3 4.9 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-3 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q Peak Q PEAK REQUIRED= U.1 0.5 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-4 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.3 1.4 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-6 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.5 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 25.0 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 23.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.235 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 4 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.5 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 i i feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.88 1.88 Clogging Factor for Multiple Units Clog= 0.24 0.24 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 7.6 13.2 cis Interception with Clogging Qva= 5.8 10.1 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 31.1 34.6 cfs Interception with Clogging Qea= 23.8 26.5 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 14.3 19.9 cis Interception with Clogging Qma= 11.0 15.2 cfs Resulting Grate Capacity assumes clogged condition Qcnm= 5.8 10.1 efs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.25 1.25 Clogging Factor for Multiple Units Clog=1 0.05 0.05 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 6.3 12.7 cfs Interception with Clogging Qv = 6.0 12.0 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 22.7 24.7 cfs Interception with Clogging Q.= 21.5 23.5 1cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 10.3 15.2 cis Interception with Clogging Qma=1 1.8 14.5 cfs ResultingCurb Opening Ca aci assumes clo ed condition Qaro= 6.0 12.0 efs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 12.00 12.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.7 25.0 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.2 1.7 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.65 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.46 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.57 0.71 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO 1,Mawa= 0.57 0.71 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 9.6 1 18.0 efs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 3.0 17.0 1 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-11 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cf9 Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfis Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.5 2.2 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-12 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 8.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 27.0 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 25.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.216 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cf9 Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 8.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 8.5 cis Interception with Clogging Qva= 2.5 4.3 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.9 cfs Interception with Clogging Qea= 3.8 4.5 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm;= 5.7 8.1 cis Interception with Clogging Qma= 2.9 4.1 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 4.1 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qv,;= 4.0 8.7 cfs Interception with Clogging Qv = 3.4 7.2 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.3 cfs Interception with Clogging Q.= 4.7 5.3 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm;= 65 i Interception with Clogging Qma= 4 4 cfs Resulting Curb Opening Ca aci assumes clogged condition Qart=1 3.4 5.3 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 27.0 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 2.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.51 0.69 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.50 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;aaeoa= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 1 7.6 cfs Inlet Capacity Is GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 1.1 7.0 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-13 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 8.5 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 29.1 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 27.1 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.200 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAIOR Type of Inlet CDOT/Denier 13 Valley Grate Type= CDOT/Denver 13 Valley Grate Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 inc Number of Unit Inlets(Grate or Curb Opening) No= 2 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 8.5 inches Grate Information MINOR MAIOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 0.6U Curb Opening Information MINOR MAIOR Length of a Unit Curb Opening Lo(C)= N/A N/A feet Height of Vertical Curb Opening in Inches Hve,f= N/A N/A inches Height of Curb Orifice Throat in Inches Hy_t= N/A inches Angle of Throat Theta= N/A degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= N/A feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= N/A N/A Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= N/A Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= N A Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.50 1.50 Clogging Factor for Multiple Units Clog= 0.38 0.38 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.4 13.7 cis Interception with Clogging Qva= 3.4 8.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 15.3 18.4 cfs Interception with Clogging Qea= 9.6 11.5 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 8.5 14.7 cis Interception with Clogging Qma= 5.3 9.2 cis Resulting Grate Capacity assumes clogged condition Qcnm= 3.4 8.5 cfs CurbOpeningow Analysis(Calculated) MINOR A7 R Clogging Coefficient for Multiple Units Coef= N/A N/A Clogging Factor for Multiple Units Clog=1 N/A N/A Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= N/A N/A cfs Interception with Clogging Qv = N/A N/A cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= N/A N/A cfs Interception with Clogging Q.= N/A N/A 1cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= N/A N/A cis Interception with Clogging Qma=1 N/A N/A cis Resulting Curb Opening Ca aci assumes clogged condition Qart=I N/A N A efs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 6.00 6.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 29.1 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 2.7 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrvre= 0.51 0.73 ft Depth for Curb Opening Weir Equation dQ b= N/A N/A ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,= 0.69 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO-1,Maeoa= N/A N/A MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 3.4 18.5 efts Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 1.9 8.4 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-16 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 29.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x=1 29.0 29.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 6.96 6.96 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 8.47 8.47 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 27.0 27.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.201 0.201 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cis Interception with Clogging Qma= 3.6 4.5 cis Resulting Curb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 cis Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 Ifeet Resultant Street Flow Spread(based on street geometry from above) T-1 18.7 22.9 ft Resultant Flow Depth at Street Crown do,OWN= 0.0 0.0 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 16.6 tfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.6 2.4 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-17 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 18.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cf9 Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.6 3.2 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-25 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 20.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 10.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 10.0 10.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 2.40 2.40 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 3.91 3.91 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 8.0 8.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) E.= 0.577 0.577 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 2 Water Depth at Flowline(outside of local depression) Ponding Depth= 3.9 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.50 1.50 Clogging Factor for Multiple Units Clog= 0.38 0.38 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 2.1 8.5 cis Interception with Clogging Qva= 1.3 5.3 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 12.7 16.7 cfs Interception with Clogging Qea= 7.9 10.5 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.8 11.1 cis Interception with Clogging Qma= 3.0 6.9 cis Resulting Grate Capacity assumes clogged condition Qcnm= 1.3 5.3 Cfe CurbOpeningow Analysis(Calculated) MINOR A7 R Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.08 0.08 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t 7.9 cfs Interception with Clogging Qv = 1.0 7.2 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 9.8 12.0 cfs Interception with Clogging Q.= 8.9 11.0 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm;= 7 782 cif: Interception with Clogging Qma= ResultingCurb Opening Ca aci assumes clogged condition Qart= 1.0 7 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 6.00 6.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 10.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 3.1 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.35 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.16 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.46 0.82 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFQ bMaU.a= 0.46 0.82 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 1.8 1 30.2 efs Inlet Capacity Is GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.7 6.9 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-26 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 20.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 10.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 10.0 10.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 2.40 2.40 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 3.91 3.91 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 8.0 8.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) E.= 0.577 0.577 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 2 Water Depth at Flowline(outside of local depression) Ponding Depth= 3.9 7.5 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 i i feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.50 1.50 Clogging Factor for Multiple Units Clog= 0.38 0.38 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 2.1 10.1 cis Interception with Clogging Qva= 1.3 6.3 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 12.7 173 cfs Interception with Clogging Qea= 7.9 10.8 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.8 12.3 cfs Interception with Clogging Qma= 3.0 7.7 cis Resulting Grate Capacity assumes clogged condition Qcnm= 1.3 6.3 Cfe Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.08 0.08 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t 9.7 cis Interception with Clogging Qv = 1.0 8.9 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 9.8 12.4 cfs Interception with Clogging Q.= 8.9 11.3 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm;=Interception with Clogging Qma= 7 J�;'7 ��J cffs ResultingCurb Opening Ca aci assumes clogged condition Qart= 1.0 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 6.00 6.00 �feet Resultant Street Flow Spread(based on street geometry from above) T= 10.0 25.0 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 3.6 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.35 0.65 ft Depth for Curb Opening Weir Equation dQ b= 0.16 0.46 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.46 0.88 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFQ bMaU.a= 0.46 0.88 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 1.8 1 12.2 efs Inlet Capacity Is GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.7 10.4 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-8 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 8.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 27.0 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 25.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.216 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 5 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 8.5 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 i i feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.94 1.94 Clogging Factor for Multiple Units Clog= 0.19 0.19 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.1= 8.5 21.4 cis Interception with Clogging Qva= 6.9 17.2 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 38.3 45.9 cfs Interception with Clogging Q.= 30.9 37.0 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm;= 16.8 29.1 cis Interception with Clogging Qma= 13.5 23.5 cis Resulting Grate Capacity assumes clogged condition Qcnm= 6.9 17.2 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.31 1.31 Clogging Factor for Multiple Units Clog=1 0.04 0.04 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qv,;= 6.9 22.0 cfs Interception with Clogging Qv = 6.6 21.1 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 28.1 32.5 cfs Interception with Clogging Q.= 26.9 31.1 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm;-1 11.9 23.0 cfs Interception with Clogging Qma= 11.4 22.0 cis Resulting Curb Opening Ca aci assumes clogged condition Qart= 6.6 21.1 efs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 15.00 15.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 29.1 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 2.7 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.51 0.73 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.54 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.55 0.80 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO 1,Mau.a= 0.55 0.80 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) %=I 10.9 31.3 cf Inlet Capacity Is GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 4.5 29.7 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-31 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cf9 Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfis Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.Z 0.6 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-32 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cf9 Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfis Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.5 2.1 cfs 1 MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME G1-6 G1-7 G1-1 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area AREA AREA STREET Hydraulic Condition Swale Swale In Sum Inlet Tye User-Defined User-Defined CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn(cfs) 1.2 3.0 2.5 Major QKwwn Ws) 5.1 12.9 10.7 Bypass(Carry-Over)Flow from Upstream Inlets must be organized from u stream left to downstream(right)in order for bypass flows to be linked. Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area acres Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Major Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 1.2 3.0 2.5 Major Total Design Peak Flow,Q(cfs) 5.1 12.9 10.7 Minor Flow Bypassed Downstream,Qb(cfs) 0.0 0.0 N/A Major Flow Bypassed Downstream,Qb(cfs) 2.2 4.2 N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME G1-2 G1-3 G1-4 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 2.3 0.8 0.8 Major QKw.n WS) 9.9 3.4 3.1 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 2.3 0.8 0.8 Major Total Design Peak Flow, cfs) 9.9 3.4 3.1 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME G1-9 G1-10 G1-11 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 2.2 1.2 0.6 Major QKw.n WS) 8.7 4.6 2.7 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received User-Defined No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 2.2 1.2 0.6 Major Total Design Peak Flow, cfs) 8.7 4.6 2.7 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME G1-12 G1-13 G1-14 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 0.7 0.5 0.5 Major QKw.n WS) 2.8 2.2 2.1 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: User-Defined No Bypass Flow Received No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 0.7 0.5 0.5 Major Total Design Peak Flow, cfs) 2.8 2.2 2.1 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME G1-15 G1-16 G1-17 Site Type Urban or Rural URBAN URBAN URBAN Inlet Application Street or Area STREET STREET STREET Hydraulic Condition In Sump In Sump In Sum Inlet Tye CDOT/Denver 13 Combination CDOT/Denver 13 Combination CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 1 0.3 1 0.3 1 0.1 Major QKw.n Ws) 1.1 1.2 0.5 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: User-Defined User-Defined No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 0.0 0.0 Major Bypass Flow Received,Qb(cfs) 2.2 4.2 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile BASIN G 1-6 BASIN G 1-7 Overland Slope(ft/ft) Overland Length ft QMINOR= 0.0 CFS QMINOR- 0.0 CFS Channel Slope(ft/ft) QMAJOR- 2.17 CFS QMA10R= 4.15 CFS Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 0.3 0.3 0.1 Major Total Design Peak Flow, cfs) 3.3 5.3 0.5 Minor Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A Major Flow Bypassed Downstream,Qb(cfs) N/A N/A N/A MHFD-Inlet, Version 5.03(August 2023) INLET MANAGEMENT INLET NAME G1-18 Site Type Urban or Rural URBAN Inlet Application Street or Area STREET Hydraulic Condition In Sum Inlet Tye CDOT/Denver 13 Combination USER-DEFINED INPUT User-Defined Design Flows Minor QKmn WS) 0.1 Major QKw.n WS) 0.4 Bypass(Carry-Over)Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received Minor Bypass Flow Received,Qb(cfs) 0.0 Major Bypass Flow Received,Qb(cfs) 0.0 Watershed Characteristics Subcatchment Area(acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope(ft/ft) Overland Length ft Channel Slope(ft/ft) Channel Length ft Minor Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) Ma or Storm Rainfall Input Design Storm Return Period,Tr(years) One-Hour Precipitation,P,(inches) CALCULATED OUTPUT Minor Total Design Peak Flow, cfs 0.1 Major Total Design Peak Flow, cfs) 0.4 Minor Flow Bypassed Downstream,Qb(cfs) N/A Major Flow Bypassed Downstream,Qb(cfs) N/A MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D G1-6 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 50.00 ft/ft Right Side Sloe Z2= 50.00 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 E Non-cohesive Non-Cohesive 5.0 fps 0.60 C cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TM"= 28.00 28.00 ft Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.28 0.28 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMnx= 28.00 28.00 ft Water Depth d= 0.28 0.28 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 ft^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based on Allowable Water Depth Q,= 8.6 8.6 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.28 0.28 ft Top Width T= 28.00 28.00 ft Flow Area A= 3.92 3.92 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.14 0.14 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.18 2.18 fps Velocity-Depth Product VR= 0.31 0.31 1^2/s Hydraulic Depth D= 0.14 0.14 ft Froude Number Fr= 1.03 1.03 Maximum Flow Based On Allowable Water Depth Qd= 8.6 8.6 cfe Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Top Width Criterion Qano.= 8.6 8.6 Cfs MANOR STORM Allowable Capacity is based on Top Width Criterion danow= 0.28 0.28 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Qo= 1.2 5.1 cfs Water Depth d= 0.13 0.23 I t Top Width T= 13.27 23.05 ft Flow Area A= 0.88 2.66 sq ft Wetted Perimeter P= 13.28 23.06 ft Hydraulic Radius R= 0.07 0.12 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.33 1.92 fps Velocity-Depth Product VR= 0.09 0.22 ft^2/s Hydraulic Depth D= 0.07 0.12 ft �Froude Number Fr= 0.91 1.00 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN G INLETS.xlsm,G1-6 9/12/2024,11:11 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D GI-6 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 6.00 ft Open Area Ratio AarTIO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MA30R Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.13 0.23 Grate Capacity as a Weir Submerged Side Weir Length X= 6.00 6.00 ft Inclined Side Weir Flow Q-= 1.0 2.4 cfs Base Weir Flow Qwb= 0.5 1.1 cfs Interception Without Cloggging Qw;= 2.6 5.9 crs Interception With Clogging Q-= 1.3 2.9 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 15.1 19.9 cfs Interception With Clogging Q.=1 7.5 9.9 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 1.3 2.9 cfs Bypassed Flow Qb=1 0.0 2.2 Crs Capture Percentage=Qa/Qo C%=1 100 57 BASIN G INLETS.xlsm,G1-6 9/12/2024,11:11 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D G1-7 T.. _ This worksheet uses the NRCS vegetal T retardance method to determine Manning's n for grass-lined channels. d 7- +Mnx An override Manning's n can be entered for other channel materials. Analysis of Trapezoidal Channel(Grass-Lined uses SCS Method) NRCS Vegetal Retardance(A,B,C,D,or E) A,B,C,D,or E= Manning's n(Leave cell D16 blank to manually enter an n value) n= 0.013 Channel Invert Slope So= 0.0050 ft/ft Bottom Width B= 0.00 ft Left Side Slope Z1= 33.33 ft/ft Right Side Sloe Z2= 33.33 ft/ft Check one of the following soil es: Choose One: Soil Type: Max.Velocity W-0 Max Froude No.(F-0 Non-cohesive Non-Cohesive 5.0 fps 0.60 cohesive Cohesive 7.0 fps 0.80 Paved Paved N/A N/A Minor Storm Maor Storm Maximum Allowable Top Width of Channel for Minor&Major Storm TMAx= 28.00 28.00 I t Maximum Allowable Water Depth in Channel for Minor&Major Storm dMAx= 0.42 0.42 ft Maximum Channel Capacity Based On Allowable Top Width Minor Storm Major Storm Maximum Allowable Top Width TMAx= 28.00 28.00 ft Water Depth d= 0.42 0.42 ft Flow Area A= 5.88 5.88 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 ft^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based on Allowable Water Depth QT= 16.8 16.8 cfs Maximum Channel Capacity Based On Allowable Water Dew Minor Storm Major Storm Maximum Allowable Water Depth dMAx= 0.42 0.42 ft Top Width T= 28.00 28.00 ft Flow Area A= 5.88 5.88 sq ft Wetted Perimeter P= 28.01 28.01 ft Hydraulic Radius R= 0.21 0.21 ft Manning's n n= 0.013 0.013 Flow Velocity V= 2.86 2.86 fps Velocity-Depth Product VR= 0.60 0.60 1^2/s Hydraulic Depth D= 0.21 0.21 ft Froude Number Fr= 1.10 1.10 Maximum Flow Based On Allowable Water Depth Qa= 16.8 16.8 cfs Allowable Channel Capacity Based On Channel Geometry Minor Storm Major Storm MINOR STORM Allowable Capacity is based on Depth Criterion Q,xo„= 16.8 1% cfs MANOR STORM Allowable Capacity is based on Depth Criterion d,ii,,,= 0.42 0.42 ft Water Depth in Channel Based On Design Peak Flow Design Peak Flow Q.= 3.0 12.9 cfs Water Depth d= 0.22 0.38 I t Top Width T= 14.57 25.31 ft Flow Area A= 1.59 4.81 sq ft Wetted Perimeter P= 14.58 25.32 ft Hydraulic Radius R= 0.11 0.19 ft Manning's n n= 0.013 0.013 Flow Velocity V= 1.85 2.68 fps Velocity-Depth Product VR= 0.20 0.51 ft^2/s Hydraulic Depth D= 0.11 0.19 ft �Froude Number Fr= 0.99 1.08 Minor storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' Major storm max.allowable capacity GOOD-greater than the design flow given on sheet'Inlet Management' BASIN G INLETS.xlsm,G1-7 9/12/2024,11:11 AM MHFD In/et, Version 5.03(Ay gust 2023 AREA MONTAVA PHASE D GI-7 Inlet Design Information(Input) Type of Inlet User-Defined Inlet Type=I User-Defined Angle of Inclined Grate(must be<=30 degrees) B= 0.00 degrees Width of Grate W= 1.92 ft Length of Grate L= 9.00 ft Open Area Ratio AarTIO= 0.70 Height of Inclined Grate L Hs= 0.00 ft Clogging Factor x Cf= 0.50 Grate Discharge Coefficient c Ca= N/A Orifice Coefficient JI-11 Co= 0.64 Weir Coefficient e f Cw= 2.05 MINOR MAJOR Water Depth at Inlet(for depressed inlets,1 foot is added for depression) d= 0.22 0.38 Grate Capacity as a Weir Submerged Side Weir Length X= 9.00 9.00 ft Inclined Side Weir Flow Q-= 3.3 7.6 cfs Base Weir Flow Qwb= 1.0 2.3 cfs Interception Without Cloggging Qw;= 7.6 17.4 crs Interception With Clogging Q-= 3.8 8.7 cfs Grate Capacity as an Orifice Interception Without Clogging Qo;= 29.0 38.3 cfs Interception With Clogging Q.=1 14.5 19.1 cfs Total Inlet Interception Capacity(assumes clogged condition) Q.=i 3.8 8.7 I Bypassed Flow Qb= 0.0 4.2 Crs Capture Percentage=Qa/Qo C%=1 100 68 BASIN G INLETS.xlsm,G1-7 9/12/2024,11:11 AM MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:GI-1 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 15.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 20.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 20.0 20.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.5 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.80 4.80 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.31 6.31 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 18.0 18.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.296 0.296 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 25.0 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 23.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.235 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 2 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.5 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 i i feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.50 1.50 Clogging Factor for Multiple Units Clog= 0.38 0.38 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.8 10.1 cis Interception with Clogging Qva= 3.6 6.3 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 15.5 173 cfs Interception with Clogging Qea= 9.7 10.8 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 8.9 12.3 cfs Interception with Clogging Qma= 5.5 7.7 cis Resulting Grate Capacity assumes clogged condition Qcnm= 3.6 6.3 CfS Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.08 0.08 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.8 9.7 cis Interception with Clogging Qv = 4.4 8.9 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 11.4 12.4 cfs Interception with Clogging Q.= 10.4 11.3 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4 j;7 Interception with Clogging Qma= ��j cffs ResultingCurb Opening Ca aci assumes clogged condition Qart 4.4 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 6.00 6.00 �feet Resultant Street Flow Spread(based on street geometry from above) T= 18.7 25.0 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.65 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.46 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.71 0.88 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO 1,Mawa= 0.71 0.88 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 6.6 1 12.2 tfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 2.5 10.7 I 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:GI-2 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 15.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 20.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 20.0 20.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.5 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.80 4.80 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.31 6.31 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 18.0 18.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.296 0.296 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 25.0 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 23.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.235 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 2 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.5 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 i i feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.50 1.50 Clogging Factor for Multiple Units Clog= 0.38 0.38 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.8 10.1 cis Interception with Clogging Qva= 3.6 6.3 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 15.5 173 cfs Interception with Clogging Qea= 9.7 10.8 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 8.9 12.3 cfs Interception with Clogging Qma= 5.5 7.7 cis Resulting Grate Capacity assumes clogged condition Qcnm= 3.6 6.3 CfS Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.08 0.08 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.8 9.7 cis Interception with Clogging Qv = 4.4 8.9 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 11.4 12.4 cfs Interception with Clogging Q.= 10.4 11.3 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4 j;7 Interception with Clogging Qma= ��j cffs ResultingCurb Opening Ca aci assumes clogged condition Qart 4.4 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 6.00 6.00 �feet Resultant Street Flow Spread(based on street geometry from above) T= 18.7 25.0 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.65 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.46 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.71 0.88 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO 1,Mawa= 0.71 0.88 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 6.6 1 12.2 tfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 2.3 9.9 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:GI-3 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 29.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 29.0 29.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 6.96 6.96 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 8.47 8.47 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 27.0 27.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.201 0.201 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cis Interception with Clogging Qma= 3.6 4.5 cis Resulting Curb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 cis Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 Ifeet Resultant Street Flow Spread(based on street geometry from above) T-1 18.7 22.9 ft Resultant Flow Depth at Street Crown do,OWN= 0.0 0.0 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 16.6 efs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 0.8 3.4 C 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:G1-4 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 18.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cf9 Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.6 3.1 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:G1-9 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 21.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 19.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 19.0 19.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.56 4.56 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.07 6.07 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 17.0 17.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.313 0.313 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denier 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 2 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.50 1.50 Clogging Factor for Multiple Units Clog= 0.38 0.38 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.8 8.5 cis Interception with Clogging Qva= 3.6 5.3 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 15.5 16.7 cfs Interception with Clogging Qea= 9.7 10.5 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 8.9 11.1 cis Interception with Clogging Qma= 5.5 6.9 cis Resulting Grate Capacity assumes clogged condition Qcnm= 3.6 5.3 CfS CurbOpeningow Analysis(Calculated) MINOR A7 R Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.08 0.08 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.8 7.9 cfs Interception with Clogging Qv = 4.4 7.2 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 11.4 12.0 cfs Interception with Clogging Q.= 10.4 11.0 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4 Interception with Clogging Qma= 2 cif: ResultingCurb Opening Ca aci assumes clogged condition Qart 4.4 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 6.00 6.00 Ifeet Resultant Street Flow Spread(based on street geometry from above) T-1 18.7 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 0.9 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrvte= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.71 0.82 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO-1,Mawn= 0.71 0.82 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 6.6 1 10.2 Cfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 2.2 8.7 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:GS-10 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 19.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 19.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 19.0 19.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.56 4.56 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.07 6.07 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 17.0 17.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.313 0.313 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP CfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP CfS 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cfs Interception with Clogging Qma= 3.6 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 ef6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T= 18.7 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 0.9 nches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 16.6 efts Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 1.2 4.6 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:G1-11 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 51.0 It Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 20.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x=1 20.0 20.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dmm= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.80 4.80 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.31 6.31 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 18.0 18.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.296 0.296 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP cfe Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cfs Interception with Clogging Qma= 3.6 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T= 18.7 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 0.7 nches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 16.6 cfis Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.6 2.7 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:G1-12 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Tom,«= 15.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 20.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x=1 20.0 20.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dmm= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.80 4.80 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.31 6.31 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 18.0 18.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.296 0.296 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP cfe Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cfs Interception with Clogging Qma= 3.6 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 efs Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T= 18.7 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 0.7 nches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 1 6.6 efs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.7 2.8 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:G1-13 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 21.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 19.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 19.0 19.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dmm= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.56 4.56 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.07 6.07 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 17.0 17.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.313 0.313 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP cfe Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cfs Interception with Clogging Qma= 3.6 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 ef6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T= 18.7 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 0.9 nches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 16.6 efts Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 0.5 2.2 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:GS-14 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 21.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 19.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 19.0 19.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dMM= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.56 4.56 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 6.07 6.07 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 17.0 17.0 It Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.313 0.313 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP CfS Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP Cfs Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) dCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cfs Interception with Clogging Qma= 3.6 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 ef6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T= 18.7 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown do,OWN= 0.0 0.9 nches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 16.6 efts Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= 0.5 2.1 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:G1-15 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dmm= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP cfS Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.3 3.3 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:G1-16 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dmm= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QBACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP cfe Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q Peak Q PEAK REQUIRED= U.3 5.3 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:G1-17 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-C,= 12.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRB= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 29.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x=1 29.0 29.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dmm= 6.0 7.0 nches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 6.96 6.96 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 8.47 8.47 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 27.0 27.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.201 0.201 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP cfe Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 6.0 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arato= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 5.3 7.0 cis Interception with Clogging Qva= 2.6 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.8 8.4 cfs Interception with Clogging Qea= 3.9 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 6.0 7.1 cis Interception with Clogging Qma= 3.0 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.6 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.4 6.6 cfs Interception with Clogging Qv = 3.7 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.7 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.3 5.4 cis Interception with Clogging Qma= 3.6 4.5 cis Resulting Curb Opening Ca aci assumes clogged condition Qart= 3.6 4.5 cis Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 Ifeet Resultant Street Flow Spread(based on street geometry from above) T-1 18.7 22.9 ft Resultant Flow Depth at Street Crown do,OWN= 0.0 0.0 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dcrate= 0.52 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.33 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFG,ate= 0.94 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO bmaeoa= 0.94 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 5.1 16.6 efs Inlet Capacity IS GOOD for Minor and Major Storms(>Q Peak Q PEAK REQUIRED= 0.1 0.5 cfs 1 MHFD-Inlet Version 5.03 AU U5t XZ i / • i • • (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: MONTAVA PHASE D Inlet ID:G1-18 T T T.T o W T. STREET c 0. CROWN o / Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T-o,= 18.0 ft Side Slope Behind Curb(leave blank for no conveyance credit behind curb) S.= 0.020 ft/ft Manning's Roughness Behind Curb(typically between 0.012 and 0.020) nencK Height of Curb at Gutter Flow Line HcuRR= 6.00 inches Distance from Curb Face to Street Crown TCROWN= 18.0 ft Gutter Width W= 2.00 ft Street Transverse Slope %= 0.020 ft/ft Gutter Cross Slope(typically 2 inches over 24 inches or 0.083 ft/ft) SW= 0.083 ft/ft Street Longitudinal Slope-Enter 0 for sump condition So= 0.000 ft/ft Manning's Roughness for Street Section(typically between 0.012 and 0.020) nSrREET= 0.013 Minor Storm Major Storm Max.Allowable Spread for Minor&Major Storm TM x= 18.0 18.0 ft Max.Allowable Depth at Gutter Flowline for Minor&Major Storm dmm= 6.0 7.0 inches Check boxes are not applicable in SUMP conditions r r Maximum Capacity or 1 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression(T*Sx*12) y= 4.32 4.32 inches Vertical Depth between Gutter Lip and Gutter Flowline(W*SW*12) do= 2.0 2.0 inches Gutter Depression(dc-(W*Sx*12)) a= 1.51 1.51 inches Water Depth at Gutter Flowline(y+a) d= 5.83 5.83 inches Allowable Spread for Discharge outside the Gutter Section(T-W) Tx= 16.0 16.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.330 0.330 Discharge outside the Gutter Section,carried in Section Tx Qx= 0.0 0.0 cis Discharge within the Gutter Section(QT-Qx-%.) QW= 0.0 0.0 cfs Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) Qagx= 0.0 0.0 cis Maximum Flow Based On Allowable Spread QT= SUMP SUMP cfs Flow Velocity within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity times Gutter Flowline Depth V*d= 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread TTN= 18.7 22.9 ft Theoretical Spread for Discharge outside the Gutter Section(T-W) Tx TH= 16.7 20.9 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method(Eq.7-7) Eo= 0.318 0.258 Theoretical Discharge outside the Gutter Section,carried in Section T, QxT = 0.0 0.0 cis Actual Discharge outside the Gutter Section,(limited by distance Tc.WN) Qx= 0.0 0.0 cis Discharge within the Gutter Section(Qd-%) QW= 0.0 0.0 cis Discharge Behind the Curb(e.g.,sidewalk,driveways,&lawns) QRACK= 0.0 0.0 cis Total Discharge for Major&Minor Storm(Pre-Safety Factor) Q= SUMP SUMP cis Average Flow Velocity Within the Gutter Section V= 0.0 0.0 fps V*d Product:Flow Velocity Times Gutter Flowline Depth V*d= 0.0 0.0 Slope-Based Safety Factor for Minor/Major Storm depth reduction,d>6" R= SUMP SUMP Max Flow based on Allowable Depth(Safety Factor Applied) %= SUMP SUMP cfe Resultant Flow Depth at Gutter Flowline(Safety Factor Applied) d= inches Resultant Flow Depth at Street Crown(Safety Factor Applied) clCRCWN= inches MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition QanoW= SUMP I SUMP cfs 1 INLET IN A . OR SAG LOCATION MHFD In/et, Version 5.03(August 2023) Lo(C) 7 H-Curb H-Vert Wo Wp W Lo(G) Design Information(Input) MINOR MAJOR Type of Inlet CDOT/Denver 13 Combination Type= CDOT/Denver 13 Combination Local Depression(additional to continuous gutter depression'a'from above) aie.i= 2.00 nches Number of Unit Inlets(Grate or Curb Opening) No= 1 Water Depth at Flowline(outside of local depression) Ponding Depth= 5.8 7.0 inches Grate Information MINOR MAJOR Iw•Override Depths Length of a Unit Grate Le(G)= 3.00 feet Width of a Unit Grate W.= 1.73 feet Open Area Ratio for a Grate(typical values 0.15-0.90) Arat;e= 0.43 Clogging Factor for a Single Grate(typical value 0.50-0.70) Cf(G)= 0.50 0.50 Grate Weir Coefficient(typical value 2.15-3.60) C. (G)= 3.30 Grate Orifice Coefficient(typical value 0.60-0.80) Co(G)= 0.60 Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 3.00 feet Height of Vertical Curb Opening in Inches Hve,t= 6.50 inches Height of Curb Orifice Throat in Inches Hth_t= 5.25 inches Angle of Throat Theta= 0.00 0.00 degrees Side Width for Depression Pan(typically the gutter width of 2 feet) WP= 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cf(C)= 0.10 0.10 Curb Opening Weir Coefficient(typical value 2.3-3.7) Cw(C)= 3.70 3. 0 Curb Opening Orifice Coefficient(typical value 0.60-0.70) Ce(C)= 0.66 0.66 Grate Flow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog= 0.50 0.50 Grate Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.,= 4.9 7.0 cis Interception with Clogging Qv,= 2.5 3.5 cfs Grate Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 7.7 8.4 cfs Interception with Clogging Qea= 3.8 4.2 cfs Grate Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 5.7 7.1 cis Interception with Clogging Qma= 2.9 3.6 cis Resulting Grate Capacity assumes clogged condition Qcnm= 2.5 3.5 cfs Curb Opening ow Analysis(Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef= 1.00 1.00 Clogging Factor for Multiple Units Clog=1 0.17 0.17 Curb Capacity as a Weir(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.t= 4.0 6.6 cfs Interception with Clogging Qv = 3.4 5.5 cfs Curb Capacity as an Orifice(based on MHFD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Qa= 5.6 6.0 cfs Interception with Clogging Q.= 4.7 5.0 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging Qm,= 4.1 5.4 cis Interception with Clogging Qma= 3.4 4.5 cfs ResultingCurb Opening Ca aci assumes clogged condition Qart= 3.4 4.5 cf6 Resultant Street Conditions MINOR MAJOR Total Inlet Length L=1 3.00 3.00 feet Resultant Street Flow Spread(based on street geometry from above) T-1 18.0 22.9 ft. >T-Crown Resultant Flow Depth at Street Crown dEROWN= 0.0 1.2 inches Low Head Performance Reduction(Calculated) MINOR MAJOR Depth for Grate Midwidth dGrte= 0.51 0.61 ft Depth for Curb Opening Weir Equation dQ b= 0.32 0.42 ft Grated Inlet Performance Reduction Factor for Long Inlets RFC to= 0.91 1.00 Curb Opening Performance Reduction Factor for Long Inlets RFo,rb= N/A N/A Combination Inlet Performance Reduction Factor for Long Inlets RFO b;raeon= 0.91 1.00 MINOR MAJOR Total Inlet Interception Capacity(assumes clogged condition) Q.=1 4.8 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms > Peak Q PEAK REQUIRED= U.1 0.4 cfs 1 APPENDIX G STORM SEWER & CULVERT DESIGN ST-01 2-YEAR y x y d jNLET I� INLET-1 AB Y ' Y I �. INLET IB fIV �•�'5� �~,� J DIABA FFS-1 A Rainfall Parameters Rainfall Return Period:2 Backwater Calculations: Tailwater Elevation(ft): 4999.50 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainave Overland Overland Gutter Gutter Element Known b Runoff 5,yr Elevation Contribution Area Length Slope Length Velocity Name (ft) (,f) (cfs) (Ac.) Coefficient Coefficient (ft) (.X (ft) (fps) FES-1A 4994.86 F 0.00 F 0.00 F 0.00 0.00 F 0.00 F 0.00 F 0.00 0.00 F 0.00 STMH-lA 5003.05 4.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-lA 5002.32 4.43 F 0.00 FO.00 F 0.00 F 0.00 F 0.00 F 0.00 0.00 6.00 DI-lA 5002.32 0.53 6.00 6.00 0.00 0.00 0.00 0.00 0.00 6.00 STMH-1B 5003.03 4.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BA F03-03FO-77 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-1BA 5003.03 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FsTMH-1C F5004.67 F 3.55 F 0.00 F O.QO F 0.00 F O.OQ F 0.00 F 0.00 0.00 O.OQ --F--F INLET- 0.00 0.00 0.00 DI-1AB 5004.79 2.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00-- -- - -- - -- -- -- --- 0.00 INLET 5004.05 1.31 D.00om 0.00 DI-1AA 5004.05 1.31 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FsTMH-1D F5005.53 F 1.50 F 6.66 F 0.00 F 6.00 F 0.00 F 0.00 F 0.00 0.00 6.00 STMH-lE 5006.67 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FES-113 5000.84 F 1.50 F 0.00 F O.OQ F 0.00 F 0.00 F 0.00 F 0.00 D.00 0.00 Manhole Output Summary: Local Contribution Total Design Flow Overland Gutter BasinFtenFLocal Manhole rFloweak Element Coeff. IntensityTime Time Tctrib Tc Comment Name ( ) ( ) ( ) ) Area (in/hr) ( )min min minfs min fs FFES-lA 0.000.00 O.OQ 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present (Upstream) Fs MH-lA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 4.43 Surface Water Present (Downstream) INLET-l A 0.00 0.00 0.00 0.00 6.66 0.00 6.00 6.00 4.43 DI-lA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 STMH-113 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 4.07 [- 1BA .77 DI-1BA 0.00 0.00 0.00 0.00 0.00 6.00 6.00 6.00 0.77 STMH-1C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.55 INI�T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.33 DI-1AB 0.00 Q.00 0.00 0.00 0.00 0.00 0.00 0.00 2.33 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.31 DI-lAA 0.00 6.00 0.00 6.00 0.00 Q..00 0.00 F 0.00 1.31 STMH-1D 0.00 0.00 0.00 0.o0 0.00 6.00 0.00 0.00 1.50 STMH-lE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.50 FES-113 0.00 0.00 0.00 0.00 D.00 0.00 F 0.00 F 0.00 1.50 Sewer Input Summary: Elevation -Loss Given Dimensions Element Sewer Downstream Flope Upstream Mannings Bend at Cross Rise Span Name Length Invert Invert(ft) (ft) (ft) ° Loss Loss Section (ft or in) (ft or in STMH-lA 83.79 F 4994.93 0.3 4995.18 F 0.013 0.03 0.00 ELLIPSE 48.00 in 76.00 in INLET-lA 24.65 4995.11 0.3 4995.18 0.013 0.05 0.00 ELLIPSE 43.00 in 68.00 in DMA LOO 4995.18 0.3 4995.18 0.013 0.25 FO.00 ELLIPSE 48.00 in 76.00 in STMH-113 29.00 4995.18 03 4995.27 0.013 0.05 0.00 ELLIPSE 43.00 in 68.00 in INLET-1BA F19.90 4997.35 0.5 4997.45 F 0.013 0.15 0.00 CIRCULAR 18.00 in 18.00 in DI-1BA LOO F 4997.45 0.5 4997.45 F 0.013 0.25 0.00 CIRCULAR F18.00inF18.00 in STMH-IC 171.42 4995.28 0.3 4995.79 F 0.013 1.32 0.00 ELLIPSE 43.00 in 68.00 in INLET-lAB F17.75 4997.87 0.5 4997.96 F 0.013 1.32 0.00 CIRCULAR F18.00inF18.00 in DI-lAB 1.00 4997.96 0.5 4997.96 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-lAA 30.95 4997.87 0.5 4998.02 0.013 0.83 0.00 CIRCULAR 18.00 in 18.00 in Dl-lAA 1.00 4998.02 0.5 4998.02 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-1D 163.89 4995.79 0.3 4996.28 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in STMH-lE 143.18 F 4996.28 0.3 4996.71 F 0.013 0.49 0.00 CIRCULAR 48.00 in 48.00 in FES-1B 45.12 4996.70 0.3 4996.84 F 0.013 1.32 0.00 CIRCULAR 48.00 in 48.00 in Sewer Flow Summary: F7Full Flow Capacity [Critical Flow Normal Flow Element Flow Velocity Depth Velocity Depth Velocity FroudeF Flow Flow Surcharged Name (cfs) (fps) (in) (fps) (in) (fps) Numberndition (cfs) Length Comment (ft) Fs -lA 147.51 8.47 6.82 3.53 7.18 3.28 0.90 Pressurized 4.43 83.79 IN1A F'O9'88F7'87 F7'02F3'59 F7'4oF3'32 FO-90 Pressurized 4.43F24-65 Low DI-1A 147.51 8.47 F2.34 2.05 2.64 1.72 0.79 Pressurized 0.53 1.00 Velocity is Too STMH-1B 109.88 7.87 6.72 3.51 7.11 3.24 0.90 Pressurized 4.Q7 29.00 BA 7.45 4.21 3.91 2.72 3.91 2.72 1.00 Pressurized FO 77 19.90 DI-IBA 7.45 4.21 3.91 2.72 3.91 2.72 1.00 Pressurized 0.77 1.00 STMH-1C F109.88F7.87 6.27 F3.39 6.66 F3.11 0.89 Pressurized 3.55 171.42 F [IN-LAE B 7.45 4.21 6.93 3.72 6.91 3.73 1.00 Pressurized 2.33 17.75 DI-1AB 7.45 4.21 6.93 3.72 6.91 3.73 1.00 Pressurized 2.33 1.00 7.45 4.21 5.14 3.15 5.11 3.17 1.01 r�umpficalF1.31F29.87 --F- FDlAA 7.45 4.21 5.14 3.15 5.11 3.17 1.01 SupumpicalF1.31 0.36 STMH-1D 78.89 6.28 4.22-- -- 2.77 4.59 2.45 0.85 Subcritical 1.50 0.00 STMH-lE 78.89 6.28 4.22 2.77 4.59 2.45 0.85 Subcritical 1.50 0.00 FES-1B 78.89 6.28 4.22 2.77 4.59 2.45 0.85 Subcritical 1.50 0.00 • A Froude number of 0 indicates that pressured flow occurs(adverse slope or undersized pipe). • If the sewer is not pressurized,full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized,full flow represents the pressurized flow conditions. Sewer Sizing Summary: r Existing Calculated Used Element Peak Cross Area Name (lo Section Rise Span Rise Span Rise FSpan (ft^2) Comment STMH-lA 4.43 ELLIPSE 48.00 in 76.00 in 18.00 in 18.00 in 48.00 in 76.00 in 17.42 INLET-lA 4.43 ELLIPSE 43.00 in 68.00 in F18.00inF18.00 in 43.00 in 68.00 in 13.97 F DMA 0.53 ELLIPSE 48.00 in 76.00 in 18.00 in 18.00 in 48.00 in 76.00 in 17.42 STMH-113 4.07 ELLIPSE 43.00 in 68.00 in 18.00 in 18.00 in 43.00 in 68.00 in 13.97 F INLET-IBA 0.77 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 DI-1BA 0.77 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-1C 3.55 ELLIPSE 43.00 in 68.00 in 18.00 in 18.00 in 43.00 in 68.00 in 13.97 I INLET-lAB 2.33 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-lAB 2.33 CIRCULAR 18.00 in 18.00 in F18.00in 18.00 in 18.00 in 18.00 in F1.77 INLET-lAA 1.31 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in I 18.00 in F1.77 DI-1AA 1.31 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 I STMH-1D 1.50 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 F STMH-lE 1.50 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 F- FES-113 1.50 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 F • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used'parameters. Grade Line Summary: Tailwater Elevation(ft):4999.50 Downstream Manhole Invert Elev. Losses-- HGL EGL Bend7ateral Friction Element Downstream Upstream Downstream Upstream Downstream Upstream LossLossName (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) STMH-1A F 4994.93 F4995.18 0.00 F 0.00 F 4999.50 4999.50 F 4999.50 FO.00 4999.50 INLET-lA 4995.11 F4995.18 F0.00 0.00 4999.50 4999.50 F4999.50 0.00 4999.50 DI-1A F 4995.18 F4995.18 F 0.00 F 0.00 F 4999.50 4999.50 F 4999.50 FO.00 F4999.50 STMH-1B 4995.18 4995.27 F 0.00 F 0.00 4999.50 4999.50 F4999.50 0.00 4999.50 INLET-IBA 4997.35 F4997.45 F 0.00 F 0.00 4999.50 4999.50 F4999.50 0.00 4999.51 DI-lBA 4997.45 4997.45 0.00 0.00 4999.50 4999.50 4999.51 0.00 4999.51 STMH-1C F4995.28 14995.79 F 0.00 F 0.00 F4999.50 4999.50 F4999.50 FO.00 4999.50 INLET-IAB F 4997.87 F4997.96 0.04 F 0.00 F 4999.54 4999.55 F 4999.57 0.01 4999.57 DI-IAB 4997.96 F4997.96 F0.01 F 0.00 4999.55 4999.55 F4999.58 FO.00 4999.58 INLET-IAA 4997.87 4998.02 0.01 0.00 4999.51 4999.51 4999.52 0.00 4999.52 DI-lAA F 4998.02 14998.02 F 0.00 F 0.00 F 4999.52 F4999.52 F 4999.53 FO.00 F4999.53 STMH-1D F 4995.79 4996.28 F 0.00 F 0.00 F4999.50 4999.50 F4999.50 0.00 4999.50 STMH-1E F4996.28 4996.71 F 0,00 F 0.00 F4999.5o 4999.50 F4999.56 F 0.00 4999.50 FES-113 4996.70 4996.84 0.00 0.00 4999.50 4999.50 4999.50 0.00 4999.50 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall,sewer#0,is not considered a sewer. • Bend loss=Bend K*V_fi^2/(2*g) • Lateral loss=V_fo^2/(2*g)-Junction Loss K*V_fi^2/(2*g). • Friction loss is always Upstream EGL-Downstream EGL. ST-U 1 5005.38 Mks 5002)8 5001A8 t+F. 6998.88 399]58 n 3996:8 $r 4499 `SrMi�,�A ,NLrT�rMl�:)� Sr Jlr -----HGL 993 ............EGL .N 0.00 66.10 13220 19830 .64.30 33050 396.60 40?.70 5`.8.80 59390 661.00 Distance(Ftl ST-01 100-YEAR I 14 k S� � x y x v r� INLET 1AA INLET-1AB � z >Y `z .'`'. -Io ; STI�1F1-1 B INLET-IA STMH-1 C jj�LET�Bq VIA DI-1 BA 'fFES 5-IA Rainfall Parameters Rainfall Return Period: 100 Backwater Calculations: Tailwater Elevation(ft): 5001.00 Manhole Input Summary: Given Flow Sub Basin Information Ground Total Local Drainage Overland Overland Gutter Gutter Element Known Runoff 5yr Elevation Contribution Area Length Slope Length Velocity Name (ft) (cfs) (cfs) (Ac.) Coefficient Coefficient (ft) (%) (ft) 1 (fps) FES-lA 4994.86 �0.00 0.00 0.00 0.00 �0.00 �0.00 0.00 0.00 0.00 FSTMH-1A r5002.87 F105.56 0.00 0.00 0.00 F0.00 0.00 0.00 0.00 0.00 FSTMH-1B �5003.05 �105.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-lA 5002.32 F105.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I DI-lA r5002.32 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-1C F5003.03 104.29 0.00 -FF-0.00 0.00 0.00 0.00 0.00 0.00 0.00 IE 1 BA 5002.49 3.36FF 0.00 0.00 0.00 3.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FDI-1BA 5002.49 [STMH-1D �5004.69 102.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- AB [5004.23 10.16 0.00 0.00 0.00 0.00 0.00 0.00 [0.00 F0.00 15002.43 10.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FDI-IAB �INLAEAT- [5004- 5-[0 5.66 FO.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 r DI-1AA r5004.05 5.66 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 0.00 F 0.00 FSTMH-lE 5005.53 89.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FSTMH-1F 5006.67 89.10 0.00 0.0Q 0.00 0.00 0.00 0.00 0.00 0.00 FES-1B 5000.84 89.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: Local Contribution Total Design Flow Element Overland Gutter Basin Intensity Local Coeff..Intensity Manhole Peak Time Time Tc Contrib Tc Flow Comment Name (min) (min) (min) (m/hr) (cfs) Area (in/hr) (min) (cfs) FES-IA 0.00 10.00 ` 0.00 0.00 10-00 10.00 I 0.00 0.00 0.00 P urfa(e Water Present Purface U streamSTMH-lA[ 0.00 0.00 10.00 F0.00 0.00 0.00 0.00 1 0.00 I105.56 Water Present Downstream STMH-1B 0.00 0.00 0.00 0.00 0.00 0.00 F-o 00 F 0.00 105.56 F- INLET-lA 0.00 0.00 0.00 0.00 0.00 0.00 F-o.00 0.00 105.56 DI-lA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.19 STMH-1C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 104.29 E1LET- 13A 0.00 0.00 0.00 0.00 0.00 FOOO 0.00 0.00 3.36 DI-1BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.36 STMH-1D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 102.35 INLET- I A13 FO 00 FO 00 FO 00FO 00 FO 00 FO 00FOOO FOOO 10.16 DI-lAB 00 0 0.00 Fo--ooFo--ooFo-o-o F000 Fo-oo 0.00 F 0.16 Surface Water Present (Upstream) INLET- Fo-oo Fo-oo Fo-oo Fo-oo Fo-oo 0.00 0.00 F0.00 5.66 E DI-1 AA 0.00 Roo 0.00 0.00 0.00 0.00 0.00 0.00 5.66 STMH-lE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 89.10 STMH-1F 0.00 0.00 0.00 0.00 F 0.00 0.00 0.00 F 0.00 89.10 FFES-I BFo-oo Fo-oo Fo-oo Fo-oo Fo-oo Fo-oo Fo-oo Fo.00 F89-lo Surface Water Present (Upstream) Sewer Input Summary: Elevation F Loss Coefficients Given Dimensions Dow Sewer nstream Upstream r Element Slope Mannings Bend Lateral Cross Rise Span Length Invert u Invert Name (ft) (ft) �O) (ft) n Loss Loss Section (ft or in) (ft or in) STMH-IA 60.95 4994.86 0.3 �995.04 0.013 0.03 0.00 ELLIPSE �48.00 in .00 in .04 99 .11 0.01 0050.00 800in .00 inSTMH-113 22.84 4995 0.3 45 ELLIPSE 4 76 5 .00 4 . 0in68.00 in00INLET-lA 24.65 4995.11 0.3 4995.18 0013 ELLIPSE 3 DMA 1.00 F 4995.18 0.3 4995.18 F 0.013 0.25 70.00 ELLIPSE 48.00 in 76.00 in STMH-1C 29.00 4995.18 0.3 4995.27 0.013 0.05 0.00 ELLIPSE 43.00 in 68.00 in INLET-113A F19.90 F 4997.35 0.5 4997.45 F 0.013 0.15 FO.00 CIRCULAR F18.00in 18.00 in CRCULAR 8.00 in 18.00 inDI-IBA 1.00 49 .25 STMH-ID 171.42 F 4995.28 0.3 4995.79 F 0.013 1.32 FO.00 CIRCULAR 54.00 in 54.00 in INLET-IAB 17.75 4997.87 0.5 4997.96 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-1 AB 1.00 4997.96 0.5 4997.96 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-1AA 30.95 4997.87 0.5 4998.02 0.013 0.83 0.00 CIRCULAR 18.00 in 18.00 in DI-lAA 1.00 4998.02 0.5 4998.02 0.013 0.25 0.00 CIRCULAR Fi800in 18.00 in STMH-lE 163.89 F 4995.79 0.3 4996.28 F 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in STMH-IF 143.18 F 4996.28 0.3 4996.71 F 0.013 0.49 FO.00 CIRCULAR 48.00 in 48.00 in FES-1B 45.12 4996.70 0.3 4996.84 0.013 1.32 F 0.00 CIRCULAR 48.00 in 48.00 in Sewer Flow Summary: Full Flow Capacity Critical Flow Normal Flow Surcharged Element Flow Velocity Depth Velocity Depth FlPocity Froude Flow Flow Length Comment Name (cfs) (fps) i (in) (fps) (in) Number Condition I (cfs) (ft) I STMH-IA 147.51 8.47 34.78 8.72 37.36 8.00 0.87 Pressurized 105.56 F 60.95 F STMH-1B l47.51 8.47 34.78 8.72 37.36 8.00 �87 Pressurized 105.56 22.84 INLET-IA 109.88 7.87 35.97 9.16 41.49 7.84 0.75 Pressurized 105.56 24.65 DMA 147.51 8.47 4.78 2.95 5.13 2.65 0.87 Pressurized 2.19 1.00 STMH-1C 109.88 7.87 35.74 9.12 41.07 7.82 0.76 Pressurized 104.29 29.00 INLET-1BA 7.45 4.21 8.38 4.17 8.48 4.11 0.98 Pressurized 3.36 19.90 DI-1BA 7.45 4.21 8.38 4.17 8.48 4.11 0.98 Pressurized 3.36 1.00 STMH-ID 108.00 6.79 35.68 9.18 41.92 7.73 0.72 Pressurized ,o-2.3 5F 171.42 INLET-lAB 7.45 4.21 18.00 5.75 18.00 5.75 0.00 Pressurized 10.16 17.75 DI-IAB 7.45 4.21 18.00I 5.75 18.00 5.75 0.00 Pressurized 10.16 1.00 INLET-IAA 7.45 4.21 11.01 5.00 11.74 4.64 0.88 Pressurized 5.66 30.95 DI-lAA 7.45 4.21 11.01 5.00 11.74 4.64 0.88 Pressurized 5,66 1.00 STMH-lE 78.89 F 6.28 48.00 7.09 48.00 7.09 0.00 Pressurized F89.16 163.89 7 STMH-IF 78.89 6.28 48.00I 7.09 48.00 7.09 0.00Pressurized 89.10 143.18 F- FES-113 78.89 F 6.28 48.00 7.09 48.00 7.09 0.00 Pressurized 89.10 45.12 • A Froude number of 0 indicates that pressured flow occurs(adverse slope or undersized pipe). • If the sewer is not pressurized,full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized,full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing I Calculated Used Ii Element Pe ak Cross Area Flow Rise Span Rise Span Rise Span Comment Name (cfs) Section (ft 2) STMH-lA 105.56 ELLIPSE 48.00 in F-oo in F5400 in F5400 in F48.00 in F76.00 in [17.42 Existing height is smaller than the suggested height. STMH-1B 105.56 ELLIPSE F 00 in F 00 in F 00 in F 00 in F 00 in F 00 m 17.42 Existing height is smaller than the suggested height. Existing height is smaller INLET-IA F1O5.56 ELLIPSE F43001,F6800 in F54001,F54001,F43001,F6800 inF137 than the suggested height. Exceeds max.Depth/Rise DMA 2.19 ELLIPSE 48.00 in 76.00 in 18.00 in 18.00 in 48.00 in 76.00 m 17.42 Existing height is smaller STMH-IC 104.29 ELLIPSE 43.00 in 68.00 in 54.00 in 54.00 in 43.00 in 68.00 in 13.97 than the suggested height. Exceeds max.Depth/Rise C 180i800in800i 008.00800in .INLET-IBA 3.36 RCUAR0 77 DI-lBA 3.36 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 i 154n .90i4 i4 i4 STMH-1D 102.35 CIRCULAR54.00 in 4.00 Existing height is smaller than the suggested height. INLET-IAB 10.16 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. DI-1AB 10.16 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise INLET-IAA 5.66 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-lAA S.b6 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 Existing height is smaller than the suggested height. STMH-lE 89.10 CIRCULAR 48.00 in 48.00 in 54.00 in 54.00 in 48.00 in 48.00 in 12.57 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. STMH-lF 89.10 CIRCULAR 48.00 in 48.00 in 54.00 in 54.00 in 48.00 in 48.00 in 12.57 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. FES-113 89.10 CIRCULAR 48.00 in 48.00 in 54.00 in 54.00 in 48.00 in 48.00 in 12.57 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used'parameters. Grade Line Summary: Tailwater Elevation(ft): 5001.00 Downstream Manhole Invert Elev. Losses HGL EGL Bend Lateral Friction Element Downstream Upstream Downstream Upstream Downstream Loss Upstream Loss Loss Name (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (B) STMH-lA 4994.86 4995.04 0.00 0.00 5001.00 5001.09 5001.57 0.09 5001.66 STMH-1B 4995.o4 4995.11 0.03 0.00 5001.12 5001.16 5001.69 F 0.04 5001.73 INLET-lA 4995.11 4995.18 0.04 0.00 5001.20 5001.20 5001.81 0.27 5002.09 DI-1A F 4995.18 F4995.18 F 0.00 F 0.00 F 5002.09 5002.09 F 5002.09 FO.00 F5002.09 STMH-1C 4995.18 4995.27 0.04 0.00 5001.27 5001.34 5002.13 0.08 5002.21 INLET-IBA 4997.35 4997.45 0.01 0.00 5002.16 5002.18 5002.22 0.02 5002.24 DI-IBA 4997.45 F4997.45 F 0.01 F 0.00 F 5002.20 F5002.20 F 5002.25 FO.00 F5002.25 STMH-1D 4995.28 F4995.79 0.85 F 0.00 5002.42 F5002.88 F 5003.06 FO.46 F5003.52 INLET-IAB 4997.87 F4997.96 0.68 F 0.00 F 5003.69 5003.85 F 5004.20 FO.17 5004.36 DI-IAB 4997.96 F4997.96 0,13 F 0.00 5003.98 5003.99 F 5004.49 F 0.01 5004.50 INLET-lAA 4997.87 4998.02 0.13 0.00 5003.49 5003.58 F5003.65 0.09 5003.74 DI-IAA 4998.02 F4998.02 0.04 F 0.00 5003.62 5003.63 F 5003.78 FO.00 F5003.79 STMH-lE 4995.79 4996.28 0.04 F 0.00 F 5002.92 5003.54 F 5003.70 0.63 5004.32 STMH-1F 4996.28 4996.71 0.38 0.00 5003.93 5004.47 5004.71 0.55 5005.26 FES-113 4996.70 4996.84 1.03 0.00 5005.51 5005.68 5006.29 0.17 5006.46 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall,sewer#0,is not considered a sewer. • Bend loss=Bend K*V—fi A 2/(2*g) • Lateral loss=V—fo A 2/(2*g)-Junction Loss K*V—f,A 2/(2*g). • Friction loss is always Upstream EGL-Downstream EGL. ST-01 MA ............................................... ................. ....................... --------------- ...................... ------------ .................. ......................... .............................. --------------—---—-----------— ......................... ............. ...........5MI.49 ------------Fti --- ----------- 4998M U L] 4N7.58 496.23 IM 98 sp, iNrLt, 'v"AfIf ?'14 HG ...........EGL 000 66.10 1322� M_0 2-0 33050 896.66 462'0 528.80 596.90 661.00 Distance(Ft) ST-IAI ......................... SOOI.Si ................ .......... .............................................................................I........................................... -------------- ---------------------- ---—-----—-----—-- ............ ........................ ..................... ...................................... ------------------- ------ ----------------------------------------- 5M.47 r J, 49973' 699607 ..........EGL Distance(Ft) ST-lA2 "03, ...................................................... ........................................................................................... ----—-------—-- —-—------------------—---—-------- ............................ ............... .. .................... ..................... --------------- ---------- ------------------------------------------- 500.41 ti 4WU7 4997A7 4"6.07 4M.97 --- HGL 4"347 0.00 3270 65A0 98.10 IN 16330 MID 278.90 261.600 ?9430 Distance!Ft) ST-1B 5003.0 MIN ........................... ........................._ 5W123 _--.---_--------------1 ----------------- -----------_______________-_-__- -------------------------------------- SOW.33 a9g9,: f+. {L 399'b- i59613 3995.8, HGL ...........EGL Sss a 15.70 31.30 37,10 62.80 ;8.50 9!?0 1W.90 1'5.60 13130 151.06 Distance(Ft) MHFD-Culvert, Version 4.00(May 2020) Project: MONTAVA SUBDIVISION PHASE D ID: ST-01 9ov CIRCLE „ � 0 L Lp Rw n Soil Type: Choose One: 0 Sandy 0 Non-Sandy Design Information: Design Discharge Q= 105.56 cfs Circular Culvert: Barrel Diameter in Inches D= 60 inches Inlet Edge Type(Choose from pull-down list) Grooved Edge Projecting OR: Box Culvert: OR Barrel Height(Rise)in Feet H(Rise)= ft Barrel Width(Span)in Feet W(Span)= ft Inlet Edge Type(Choose from pull-down list) Number of Barrels #Barrels= 1 Inlet Elevation Elev IN= 4995.04 ft Outlet Elevation OR Slope Elev OUT= 4994.86 ft Culvert Length L= 60.95 ft Manning's Roughness n= 0.013 Bend Loss Coefficient kb= 0 Exit Loss Coefficient k,= 1 Tailwater Surface Elevation Yt,Elevation= 5001 ft Max Allowable Channel Velocity V=1 5 Ift/S Calculated Results: Culvert Cross Sectional Area Available A= 19.63 ft, Culvert Normal Depth Yn= 3.21 ft Culvert Critical Depth Y�= 2.93 ft Froude Number Fr= 0.84 Entrance Loss Coefficient ke= 0.20 Friction Loss Coefficient kf= 0.22 Sum of All Loss Coefficients ks= 1.42 ft Headwater: Inlet Control Headwater HWI= 4.24 ft Outlet Control Headwater HWo= 6.60 ft Design Headwater Elevation HW= 5001.64 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D= 1.32 Outlet Protection: Flow/(Diameter^2.5) Q/D^2.5= 1.89 ft°'s/s Tailwater Surface Height Yt= 6.14 ft Tailwater/Diameter Yt/D= 1.23 Expansion Factor 1/(2*tan(0))= 6.70 Flow Area at Max Channel Velocity At= 21.11 ft2 Width of Equivalent Conduit for Multiple Barrels WN= - ft Length of Riprap Protection LP=1 15 ft Width of Riprap Protection at Downstream End T=J 8 ft Adjusted Diameter for Supercritical Flow Da= ft Minimum Theoretical Riprap Size dso min= 2 in Nominal Riprap Size dso nominal= 6 in MHFD Riprap Type Type= VL ST-02 2-YEAR 3 � v^ r 'J. TI3 f�. 11r `c~ l t1R7,�� �DQ <�^I ` fyZ. s2 Rainfall Parameters Rainfall Return Period: 2 Backwater Calculations: Tailwater Elevation(ft):4999.50 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainave Overland Overland Gutter Gutter Element Known b Runoff 5,yr Elevation Contribution Area Length Slope Length Velocity Name (ft) (,f) (cfs) (Ac.) Coefficient Coefficient (ft) (.X (ft) (fps) FES-2A 4995.00 0.00 0.00 0.00 0.00 F 0.00 F 0.00 F 0.00 0.00 F 0.00 INLET-2A 5001.33 14.50 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2A 5001.33 0.42 6.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 Fs -2A 5001.73 14.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.89FO-40 F 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2AA 5001.89 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2B 5001.79 13.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-21A 5001.93 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INJA F01.50FO.57 F0.00 0.00 F0.00 0.00 0.00 0.00 0.00 0.00 - -- - -- - -- -- -- ---DI-2JA 5001.50 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I1�JEBT 5001.50 0.24 0.00 0.00 0.00 0.00 0.00 D.00 D.00 0.00 DI-2JB 5001.50 F 0.24 F 6.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 0.m 6.00 STMH-2C 5002.55 13.28 6.00 6.00 6.00 0.00 0.00 6.00 0.m 0.00 II2BB [5002.14 0.88 0.00 0.00 0.00 Fo-oo 0.00 0.00 0.00 0.00 DI-2BB 5002.14 0.88 0.00 6.00 6.00 0.00 0.00 0.00 0.00 6.00 2BAET-FO213. Fl-47 F0.00 0.00 0.00 F--F 0.00 F- F00 0.00 0.00 0.00 D1-2BA 5002.13 1.47 F 0.00 F 0.00 F0.00 F 0.00 F 0.00 F 0.00 0.00 0.00 STMH-2D 5003.88 11.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FsTMH-2E 5004.97 8.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FsTMH-2F 5005.43 6.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fs -2G 5006.01 6.59 6..00 0.00 0.00 0.00 0.00 0,00 0.m 0.00 I2EB 5005.58 F,.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2EB 5005.58 F 1.50 F 6.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 0.00 0.00 STMH-2H 5007.44 3.37F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 0.00 0.00 P�H 5007.44 1.73 0.00 Fo-oo 0.00 Fo-oo 0.00 0.00 0.00 0.00 S ZFB F094. 1 0.81 0.00 0.00 0.00 Fo.00 0.00 D.00 D.00 0.00 F 09.59Fo-81 0.00 I0.00 F-o-oo-F-o-oo-Fo-ooFo--ooFo--oo 0.00 DI-2FA 5009.59 F0.81 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 Fo.00 0.00 --F-- PTGA 5008.12FO-92 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fo-oo DI-2GA 5008.12 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fs-Tm-H-2, Foo8-.46 INLET-2B 5008.83 1.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-SB 5008.83 1.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TEA F5005-58F2-41 0.00 0.00 0.00 0.00To-.00Fo--ooFo--oo 0.00 DI-2EA 5005.58 2.41 0.00 0.00 0.00 0.00 0.00 D.00 D.00 0.00 -- TA 5005.53F2.28 F0.00 Fo-oo-Fo--oo-Fo--oo-Fo-oo-Fo-oo-Fo-o-o 0.00 ET-DI-2DA 5005.53 2.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TA5004.21F3-08 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2CA 5004.21 3.0$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F�2l`CBET- 5004.22FO-48 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2CB 5004.22 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: ` Local Contribution Total Design Flow Overland r Basin F cal Manhole r lementIntensityCoeff tensityNameTime Tc (in/hr) trib Area (in/hr) Tc Comment (min) (min) fs) (min) FFES-2A 0.00 Fo .00 Fo--ooFo--ooFo--ooFo--oo Fo-ooF-o-oo-Fo- .00 Surface Water Present (Upstream) FLET-2A0.00 0.00 0.00 .00 0 0.00 0.00 0.00 0.00 14.50 Surface Water Present (Downstream) DI-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42 STMH-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.21 II2AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 DI-2AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 STMH-2B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.87 S21A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 0.79 INE 0.00 0.00 F.00F.00 0.00 0.00 0.00 0.00 F57 DI-2JA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 -F - -F INI ET- [ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 DI-2JB F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 STMH-2C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.28 BB E - - 0.00 0.00 0.00 0.00 0.00 0.00Fo-oo0.00F .88 DI-21313 F 0.00 0.00 0.00 6.00 Fo.00 0.00 0.00 F 0.00 6.88 TA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F471. DI-2BA 0.00 0.m 0.00 0.00 0.00 0.00 0.00 0.00 1.47 FTMH-2D 0.00 [.00 0.00 0.00 0.00 0.m 0.00 0.00 11.36 rSTMH-2E 0.00 �.00 0.00 0.00 0.00 0.00 0.00 0.00 8.87 FTMH-2F 0.00 F00 0.00 0.00 0.00 0.00 0.00 0.00 6.59 FsTMH-2G 0.00 �00 0.00 0.00 0.00 0.00 0.00 0.00 �.59 12EB 0 0 .50.00 10.00 .00 0.00 0.00 0.00 0.00 0.00 1 FDI-2EB 0.00 I 0 00 0.00 0.00 0.00 0.00 0.00 0.00 �50 [STMH-2H 0.00 �.00 0.00 0.00 0.00 0.00 0.00 0.00 �.37 S2FA 0.00 10.00 0.00 0.00 0.00 0.00 0.00 F0.00 1.73 S ZFB 0.00 0.00 0.00 0.00 FO.00 0.00 0.00 0.00 0.81 I I FA 0.00 Foo 0.00 Fo oo 0.00 0.00 Fo oo 0.00 0.81 I DI-2FA 0.00 �.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 -1 �I2GB 0.00 Fo.00_Fo_.00Fo_.00Fo_.00Fo_.00 Fo_.000.o_o_ Fo92 DI-2GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 [STMH-21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 FINLET-2B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 r DI-SB 0.00 0.00 0.00 0.00 F 0.00 0.00 0.00 0.00 1.75 LET_ _ _ IIN EA 0.00 0.00 0.00FO 00 0.00 0.00FO 00 0.00 F41 r DI-2EA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.41 I INLET_ 0.00 0.00 0.00FO 00 0.00 0.00FO 00 0.00 F28 DI-2DA 0.00 0.00 0.00 0.00 F 0.00 0.00 0.00 0.00 2.28 I2CB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.08 N _ r DI-2CA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.08 �I 2CB 0.00 0 00 0.00 0.00 0.00 0.00 0.00 F0.00 0.48 I DI-2CB 0.00 0.00 �.00 0.00 0.00 0.00 0.00 0.00 0.48 Sewer Input Summary: Elevation Loss Coefficients Given Dimensions Sewer Downstream Upstream Element Length Invert Slope Pe Invert Mannings Bend Lateral Cross Rise Span Name (ft) (ft) (�O) Invert n Loss I Loss Section (ft or in) (ft or in) ft) INLET-2A 62.76 F993.80 0.2 4993.93 I 0.013 0.03 F 0.00 ELLIPSE 53.00 in 83.00 in DI-2A 1.00 4994.00 0.3 4994.00 0.013 0.25 0.00 ELLIPSE �53.00 in 83.00 in STMH-2A 21.54 4993.94 0.2 4993.98 F 0.013 0.18 0.00 ELLIPSE F53.00 in 83.00 in INLET-2AA 18.00 4996.39 0.5 4996.48 I 0.013 0.23 0.00 CIRCULAR 24.00 in 24.00 in DI-2AA 1.00 F 4996.48 0.5 4996.48 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-213 55.41 F 4993.98 FO.2 4994.09 FO.013 0.57 FO.00 ELLIPSE 53.00 in 86.00 in STMH-2IA 56.89 4994.09 1.0 4994.66 0.013 0.05 0.00 CIRCULAR 30.00 in 30.00 in INLET-2JA 19.15 4994.65 0.5 4994.75 0.013 0.83 0.00 CIRCULAR 18.00 in 18.00 in DI-2JA FLOO F4994.72 FO.5 4994.72 F 0.013 0.25 FO.00 CIRCULAR F18.00inF18.00 in INLET-2JB 19.15 F 4994.65 FO.5 4994.75 0.013 0.83 0.00 CIRCULAR F18.00in 18.00 in DI-2JB 1.00 4994.72 0.5 4994.72 I 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-2C 58.41 F 4994.08 F1.5 4994.96 FO.013 1.32 FO.00 FELLIPSE 43.00 in 68.00 in INLET-2BB 15.02 4997.04 0.5 4997.12 0.013 1.32 Fo.00 CIRCULAR 18.00 in 18.00 in DI-2BB 1.00 4997.12 0.5 4997.12 0.013 0. 0.00 CI 25 RCULAR 18.00 in 18.00 in INLET-2BA 23.00 4997.05 0.5 4997.16 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-2BA 1.00 4997.16 0.5 4997.16 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-21) 79.09 F 4994.96 FI.5 4996.15 F 0.013 0.05 FO.00 CIRCULAR 42.00 in 42.00 in STMH-2E 126.06 4996.65 1.5 4998.54 0.013 0.05 0.00 CIRCULAR 36.00 in 36.00 in STMH-2F 82.85 4999.05 0.5 4999.46 0.013 0.05 0.00 CIRCULAR 30.00 in 30.00 in STMH-2G 106.13 F4999.45 FO.5 4999.98 F 0.013 0.05 FO.00 CIRCULAR 30.00 in 30.00 in INLET-2EB 23.00 5000.95 0.5 5001.06 0.013 0.63 0.00 CIRCULAR 18.00 in 18.00 in DI-2EB 1.00 5001.06 0.5 I 5001.06 I 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-2H 248.96 5000.49 0.5 5001.73 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in STMH-2FA F90.00 F 5001.73 FLO 5002.63 FO.013 1.32 F0.00 CIRCULAR 24.00 in 24.00 in STH-2FB 244.00 5003.13 0.5 5004.35 0.013 0.05 0.00 M CIRCULAR 18.00 in 18.00 in 004.57 5 INLET-2FA 44.13 5004.35 0.5 I 0 CIRCULAR 18.00 in 18.00 in DI-2FA FLOO F 5004.57 FO.5 5004.57 F 0.013 0.25 FO.00 CIRCULAR F18.00 in 18.00 in INLET-2GA F29.50 F 5003.13 FO.5 5003.28 F0.013 1.32 FO.00 CIRCULAR 18.00 in 18.00 in DI-2GA 1.00 5003.28 0.5 5003.28 0.013 0.25 0.00 CIRCULAR F,8.00 in 18.00 in STMH-2I 122.50 5002.23 0.5 5002.84 I 0.013 0.05 0.00 CIRCULAR 18.00 in 18.00 in INLET-213 48.08 F 5002.84 1.5 5003.56 F 0.013 0.90 0.00 CIRCULAR 18.00 in 18.00 in DI-SB 1.00 5003.55 1.5 5003.56 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-2EA F15.00 F5001.03 FO.5 5001.10 F 0.013 1.32 FO.00 CIRCULAR F18.00 in 18.00 in DI-2EA FLOO F 5001.06 FO.5 5001.06 F 0.013 0.25 F 0.00 CIRCULAR F18.00 in 18.00 in INLET-2DA 48.48 4998.54 0.5 4998.78 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-2DA 1.00 4998.78 0.5 4998.78 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-2CA 46.13 4998.15 0.5 4998.38 I 0.013 1.14 0.00 CIRCULAR 24.00 in 24.00 in DI-2CA 1.00 4998.38 0.5 4998.38 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-2CB F54.11 F 4998.15 0.5 4998.42 F 0.013 1.32 F 0.00 CIRCULAR 18.00 in 18.00 in DI-2CB L00 F 4998.42 FO.5 4998.42 FO.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in Sewer Flow Summary: Full Flow Critical Flow Normal Flow F Capacity Element Flow Velocity Depth Velocity Depth Velocity�Froude Flow Flow Surcharged Name (cfs) (fps) (in) (fps) I (in) (fps) Number Condition (cfs) Length Comment (ft) 12AT F'55-19F7-36 F12-13F4'76 Fl3'7oF3'99 FO-79 FPsurized Fl4'-5OF62-76 FDI-2A 190.07 9.01 2.03 1.91 2.31 1.58 0.77 Pressurized 0.42 1.00 Velo Los Too STMH-2A 155.19 7.36 12.01 4.73 13.57 3.97 0.79 Pressurized 14.21 21.54 [IN AA 16.04 5.11 2.60 2.18 2.61 2.16 0.99 Pressurized 0.40 18.00 DI-2AA 16.04 5.11 2.60 2.18 2.61 2.16 0,99 Pressurized 0.40 1.00 STMH-2B 160.62 7.45 11.79 4.68 13.31 3.93 0.79 Pressurized 13.87 55.41 P2�MH41.13F8-38 3.45 2.52 2.88 3.28 1.43 Pressurized 0.79 56.89 I2JE 7.45 4.21 3.36F2.5-o 3.37F-2-4-9 0.99 Pressurized 0.57 19.15 F- DI-2JA 7.45 4.21 3.36 2.50 3.37 2.49 0.99 Pressurized 0.57 1.00 INLET- Veloci is Too 27E 7.45F4-21 F-16Fl-99 F .21 1.93 0.95 Pressurized FO.24F19-15 Low FDI-2JB F7-45 F4-21 F-16 1.99 F-21 1.93 0.95 Pressurized FO-24 F 1.00 Velocii� s Too STMH-2C 245.69 17.59 12.27 4.81 8.53 8.11 2.04 Pressurized 13.28 58.41 tBB 7.45F4-21 4.19F2.82 F-18F2.83 F1.01 Pressurized FO.88F15-02 DI-2BB 7.45 4.21 4.19 2.82 4.18 2.83 1.01 Pressurized 0.88 F 1.00 7 Fi��MET 7.45 4.21 5.46 3.25 5.42 3.28 FLOI Pressurized 1,47 23.00 DI-2BA 7.45 4.21 5.46 3.25 5.42 3.28 1.01 Pressurized 1.47 1.00 FSTNH-MF123.55 12.84 12.26 4.86 8.60 8.01 1.99 ffe�.cnlicaul 11.36F71.54 STMH-2E 81.91 11.59 11.28 4.68 8.00 7.58 1.95 Supercritical 8-.87 0.00 STMH-2F 29.08 5.92 10.21 4.47 9.71 4.79 1,10 Supercritical 6.59 0.00 STMH-2G 29.08 5.92 10.21 4.47 9.71 4.79 1.10 Supercritical 6.59 0.00 [i��MB 7.45F4-21 F5-51F3-27 5.48 3.30 1.01 Supercritical 1.50 0.00 DI-DI 7.45 4.21 5.51 3.27 5.48 3.30 1.01 Supercritical 1.50 0.00 STMH-2H 16.04 5.11 7.70 3.87 7.47 4.04 1.06 Supercritical F3.37 F0.00 F P-TMHFA F22-68F7-22 5.47F3-21 4.48F4.26 FI.47 SupercriticalF1.73 0.00 7.45 4.21 4.02 2.75 4.01 2.76 1.00 Supercritical 0.81 0.00F2FB 0 II�FET 7.45F4-21 4.02F2.75 F-01F2-76 1.00 SupercriticalFO-81 0.00 DI-2FA 7.45 4.21 4.02 2.75- - 4.01 2.76 1.00 Supercritical 0.81 7 0.00 F FN LGEA 7.45 4.21 4.29F2-85 4.27 2.87 1.01 Supercritical 0.92 0.00 DI-2GA 7.45 4.21 4.29 2.85 4.27 2.87 1.01 Supercritical 0.92 0.00 STMH-2I 7.45 4.21 5.97 3.42 5.94 3.44 1.01 Supercritical 1.75 0.00 [FLBT- 12.90 7.30 5.97 3.42 4.48 5.10 1.75 Supercritical 1.75 F 0.00 DI-SB 12.90 7.30 5.97 3.42 4.48 5.10 1.75 Supercritical 1.75 0.00 12EA 7.45 4.21 F7.05 3.76 7.04 3.76 FLOO �Supercriticall2.41 �0.00 DI-2EA 7.45 4.21 7.05 3.76 7.04 3.76 r 1.00 Supercritical 2.41 0.00 n2DA LET- 7.45 4.21 6.85 3.69 6.83F3.70 I 1.00 Supercritica112.28 0.00 F DI-2DA 7.45 4.21 6.85 3.69 6.83 3.70 F1.00 (Supercritical�8 F 0.00 F I2CA F16o4F5 11 F735 3.77 F .13F .94 11.06 SupercriticalF .08 0.00 F_ LET DI-2CA 16.04 5.11 77.35 3.77 7.13 3.94 1.06 Supercritical 3.08 0.00 F -F I2CB 7.45 4.21 13.08 2.39 3.10 2.37 0.99 SubcriticalET_ Fo48 0.00 DI-2CB 745 r 4.21 �.08 I 2.39 �2.37 0.99 Subcritical 0.4$ 0 00 • A Fronde number of 0 indicates that pressured flow occurs(adverse slope or undersized pipe). • if the sewer is not pressurized,full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized,fiill flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Peak Cross [Area)Name (�f) Section Rise Span Rise Span Rise Span t�2 Comment INLET-2A 14.50 ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in ' 21.09 DI-2A 0.42 ELLIPSE 53.00 in 83.00 in F18.00 in 18.00 in 53.00 in 83.00 in 21.09 F STMH-2A 14.21 ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in f 21.09 INLET-2AA 0.40 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-2AA 0.40 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 m 3.14 STMH-2B 13.87 ELLIPSE 53.00 in 86.00 in 30.00 in 30.00 in 53.00 in 86.00 in 21.56 F STMH-21A 0.79 CIRCULAR 30.00 in 30.00 in F18.00in 18.00 in 30.00 in 30.00 in F4.91 F INLET-2JA 0.57 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2JA 0.57 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 7 INLET-2JB 0.24 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 F DI-2JB 0.24 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-2C 13.28 ELLIPSE 43.00 in 68.00 in 21.00 in 21.00 in 43.00 in 68.00 in 13.97 F- INLET-21313 0.88 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1. 77 F_ DI-2BB 0.88 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-213A 1.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F DI-2BA 1.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 F STMH-2D 11.36 CIRCULAR 42.00 in 42.00 in 18.00 in 18.00 in 42.00 in 42.00 in 9.62 F STMH-2E 8.87 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07 F STMH-2F 6.59 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 F_ STMH-2G 6.59 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 F_ INLET-2EB 1.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 F_ DI-2EB 1.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-2H 3.37 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-2FA 1.73 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 STMH-2FB 0.81 CIRCULAR 18.00 in F18.00in 18.00 in 18.00 in 18.00 in F18.00in F1.77 INLET-217A 0.81 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F DI-2FA 0.81 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F INLET-2GA 0.92 CIRCULAR F18.00in 18.00 in 18.00 in 18.00 in 18.00 in F18.00in F1.77 F DI-2GA 0.92 CIRCULAR 18.00 iii 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-2I 1.75 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F INLET-2B 1.75 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 F DI-SB 1.75 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2EA 2.41 CIRCULAR 18.00 in 18.00 in F18.00in 18.00 in 18.00 in 18.00 in F1.77 F DI-2EA 2.41 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2DA 2.28 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F DI-2DA 2.28 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F INLET-2CA 3.08 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F DI-2CA 3.08 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 INLET-2CB 0.48 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 F- DI-2CB 0.48 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F- • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used'parameters. Grade Line Summary: Tailwater Elevation (ft): 4999.50 r Downstream Manhole Invert Elev. Losses HGL EGL [Rend Lateral Friction Element Downstream Upstream Downstream Upstream Downstream Upstream Loss Loss Loss Name (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) INLET-2A 4993.80 4993.93 0.00 0.00 4999.50 4999.50 4999.51 0.00 4999.51 DI-2A 4994.00 14994.00 0.00 0.00 4999.51 4999.51 4999.51 0.00 4999.51 STMH-2A 4993.94 4993.98 0.00 0.00 4999.50 4999.50 4999.51 0.00 4999.51 INLET-2AA F 4996.39 F4996.48 F 0.00 F 0.00 F 4999.51 4999.51 F 4999.51 0.00 4999.51 DI-2AA F 4996.48 F4996.48 F 0.00 F 0.00 F 4999.51 F4999.51 F 4999.51 FO.00 F4999.51 STMH-213 F 4993.98 F4994.09 F 0.00 F 0.00 F 4999.51 F4999.51 F 4999.51 0.00 4999.51 STMH-2IA F 4994.09 F4994.66 F 0.00 F 0.00 F 4999.51 4999.51 F 4999.51 0.00 4999.51 INLET-2JA F 4994.65 F4994.75 F 0.00 F 0.00 F 4999.52 4999.52 F 4999.52 0.00 4999.52 DI-2JA 4994.72 14994.72 0.00 0.00 4999.52 4999.52 4999.52 0.00 4999.52 INLET-2JB F 4994.65 r4994.75 0.00 0.00 4999.51 4999.51 4999.52 0.00 4999.52 DI-2JB 4994.72 4994.72 0.00 0.00 4999.51 4999.51 4999.52 0.00 4999.52 STMH-2C 4994.08 4994.96 0.02 0.00 4999.53 4999.53 4999.54 0.00 4999.54 INLET-2BB F 4997.04 F4997.12 F0.01 0.00 F 4999.54 4999.54 F 4999.55 0.00 4999.55 DI-2BB 4997.12 F4997.12 F0.00 0.00 4999.54 4999.54 F4999.55 0.00 4999.55 INLET-2BA F 4997.05 14997.16 F0.01 0.00 F4999.54 4999.55 F4999.55 Fo.00 4999.56 DI-2BA 4997.16 F4997.16 F0.00 0.00 4999.55 4999.55 F4999.56 F 0.00 4999.56 STMH-2D 4994.96 4996.15 0.00 0.00 4999.53 4999.54 4999.55 0.01 4999.56 STMH-2E 4996.65 4998.54 0.00 0.00 4999.54 4999.54 4999.56 0.26 4999.83 STMH-2F 4999.05 4999.46 0.00 0.00 4999.85 5000.31 F5000.21 0.41 5000.62 STMH-2G 4999.45 F4999.98 F0.00 0.00 5000.38 5000.83 F5000.62 FO.52 5001.14 INLET-2EB 5000.95 5001.06 0.01 0.00 5001.40 5001.52 5001.57 0.11 5001.69 DI-2EB F 5001.06 F5001.06 F0.00 0.00 5001.56 5001.56 F5001.69 F 0.00 5001.69 STMH-2H 5000.49 F5001.73 F0.00 0.00 5001.11 5002.37 F5001.36 F 1.24 5002.60 STMH-2FA F 5001.73 F5002.63 F0.01 0.00 F 5002.58 5003.09 F 5002.61 Fo.63 5003.25 STMH-2FB 5003.13 F5004.35 0.00 0.00 5003.46 5004.68 F 5003.58 F 1.22 5004.80 INLET-2FA 5004.35 15004.57 0.00 0.00 5004.71 5004.90 5004.81 0.22 5005.02 DI-2FA 5004.57 5004.57 0.00 0.00 5004.93 5004.93 5005.02 0.00 5005.03 INLET-2GA 5003.13 5003.28 0.01 0.00 5003.49 5003.64 5003.62 0.15 5003.76 DI-2GA F5003.28 F5003.28 F0.00 0.00 F5003.67 5003.67 F5003.76 0.00 5003.77 STMH-2I F 5002.23 15002.84 F0.00 0.00 F 5002.72 F5003.34 F 5002.91 0.61 F5003.52 INLET-2B 5002.84 5003.56 0.01 0.00 5003.35 5004.06 5003.62 0.62 5004.24 DI-SB 5003.55 F5003.56 F0.00 0.00 F5004.06 5004.25 F5004.32 FO.00 F5004.32 INLET-2EA 5001.03 5001.10 0.04 0.00 5001.61 F5001.69 5001.83 0.07 5001.91 DI-2EA 5001.06 15001.06 0.01 0.00 5001.79 5001.79 5001.91 0.00 5001.92 INLET-2DA 4998.54 4998.78 0.03 0.00 4999.83 4999.83 4999.86 0.02 4999.88 DI-2DA 4998.78 4998.78 0.01 0.00 4999.84 4999.84 4999.88 0.00 4999.88 INLET-2CA 4998.15 4998.38 0.02 0.00 4999.55 4999.55 4999.58 0.01 4999.59 DI-2CA 4998.38 F4998.38 F0.00 0.00 F 4999.56 4999.56 F 4999.60 0.00 4999.60 INLET-2CB F 4998.15 F4998.42 F0.00 0.00 F 4999.56 4999.56 F 4999.56 Fo.00 4999.56 DI-2CB 4998.42 F4998.42 F0.00 0.00 4999.56 4999.56 F4999.56 0.00 4999.56 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall,sewer#0,is not considered a sewer. • Bend loss=Bend K *V fi^2/(2*g) • Lateral loss=V_fo^2/(2*g)-Junction Loss K *V_fi^2/(2*g). • Friction loss is always Upstream EGL-Downstream EGL. ST-02 so0z.so r I�`ET 2R r 000.80Y� _.• w ......................... ST 4999.10 4997.40 ST +99s ro i991.00 a99230 S ST STMH.2�, *9 - ...........EGL 0.0 101] :026 303.E 44.8 506.0 6pi2 708.< 809.6 910.8 Distance CFO ST-02 100-YEAR a ti. y s •`�t. r~ 'l x•1, p f fi ti tir: r�xh 1 .F 4 Q. w, YV,7,4 y. y I �'v••,�,,._..c-.� .ti V,:=� t�� cam" `K 9 Rainfall Parameters Rainfall Return Period:100 Backwater Calculations: Tailwater Elevation(ft):5001.00 Manhole Input Summary: Given Flow ISub Basin Information Ground Total Local �Dra.inage F Overland Overland Gutter Gutter Element Runoff Syr Elevation Known Contribution reLength Slope Length Velocity Name (ff) Flow(cfs) (cfs) Ac.) Coefficient Coefficient (ft) (%) (ft) (fps) FES-2A �4995.00 �.00 �0.00 0.00 �0.00 0.00 0.00 0.00 �0.00 10.00 INLET-2A F5001.33 F2.43 0.00 0.00 0.00 0.00 0.00 i0.00 �00 0.00 DI-2A 5001.33 �79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2A 5001.73 61.18 0.00 0.00 0.00 0.00 0.00 O.OQ 0.00 0.00 INLET-2AA 5001.24 1.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2AA 5001.24 1.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2B 5001.60 59.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-21A 5001.93 3.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-2JA 5001.50 2.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DT-2JA 5001.50 2.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-2JB 5001.50 1.00 0.00 0.00 0.00 0:00 0.00 0.00 0.00 0.00 DI-2JB 5001.50 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2C 5002.55 57.15 0.00 0.00 0.00 0:00 0.00 0.00 0.00 0.00 INLET-2BB 5002.14 3.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2BB 5002.14 3.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-2BA 5002.13 6.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5002.13 6.43 0.00 FD1 2BA0.00 0.00 0 0.0.00 0 0.00 0.00 0.00 STMH-2D 5003.88 48.97 0.00 0.00 0.00 0:00 0.00 0.00 0:00 0.00 STMH-2E 5004.94 40.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2F 5005.43 33.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2G 5006.01 33.98 0.00 0.00 0.00 0:00 0.00 0.00 0.00 0.00 INLET-2EB 5005.58 6,45 0.00 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 DI-2EB 5005.58 6.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2H 5007.42 17.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2FA 5007.99 10.49 0.00 0.00 0:00 0.00 0.00 0.00 0.00 0.00 STMH-2FB 5009.41 3.55 0.00 0.00 0.40 0.00 0.00 O.OQ 0.00 0.00 INLET-2FA 5009.59 3.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2FA 5009.59 3.55 0.00 0.00 0.00 0:00 0.00 0.00 0.00 0.00 INLET-2GA 5008.12 6.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2GA 5008.12 6.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2I 5008.46 6.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-213 5008.83 6.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-SB 5008.83 6.97 0.00 0.00 0.00 0:00 0.00 0.00 0:00 0.00 INLET-2EA 5005.58 10.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2EA 5005.58 10.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NLET-2CA 5004:21 11.20 0.00 0.00 0.00F 0:00 0.00 0.00 0.00 0.00 DI-2CA 5004.21 11.20 0.00 0.00 0.00 0:00 0.00 0.00 0.00 0.00 INLET-2CB 5004.22 2.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2CB 5004.22 2.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: ` Local Contribution ITotal Design Flow Overland Fmuimtter Local Peak Element Time me Basin Tc Intensity Contrib Coeff. Intensity Manhole Tc Flow Comment Name ( ) ) (min) (in/hr) (cfs) Area (in/hr) (min) (cfs) FES-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present(Upstream) INLET-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 62.43 Surface Water Present(Downstream) DI-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.79 STMH-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61.18 INLET-2AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 DI-2AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 STMH-213 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 59.68 STMH-2IA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.40 INLET-2JA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.47 DI-2JA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.47 INLET-2JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 DI-2JB OAO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.15 FsT-MH-2c INLET-2BB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.54 DI-2BB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.54 INLET-213A o. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.43 DI-2BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.43 STMH-2D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.97 STMH-2E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.53 STMH-2F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.98 STMH-2G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.98 INLET-2EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.45 DI-2EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.45 STMH-2H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.00 STMH-2FA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.49 STMH-2FB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.55 INLET-2FA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.55 DI-2FA I0.00 0.00 0.00 0.00 I0.00 0.00 0.00 0.00 3.55 INLET-2GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.94 DI-2GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.94 STMH-2I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.97 INLET-213 OAO 0.00 0.00 0.00 0.40 0.00 0.00 0.00 6.97 DI-SB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.97 INLET-2EA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.53 DI-2EA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.53 INLET-2CA I0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.20 DI-2CA 0.00 0.00 6.00 6.00 0.00 0.00 6.00 6.00 11.20 INLET-2CB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.08 DI-2CB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.08 Sewer Input Summary: Elevation iLoss Coefficients lGiven Dimensions Sewer Downstream U stream Element Slope p �Mannings FBendLateral FSech.. �(ft FpaLength Invert o Invert Name (ft) (ft) �O) (ft) n Loss or in) in) INLET-2A 62.76 4993.80 0.2 4993.93 0.013 0.03 0.00 ELLIPSE 53.00 in 83.00 in DI-2A 1.00 4994.00 ..3 4994.00 0.013 0.25 0.00 ELLIPSE 53.00 in 83.00 in STMH-2A 21.54 4993.94 0.2 4993.98 0.013 0.18 0.00 ELLIPSE 53.00 in 83.00 in INLET-2AA 18.00 4996.39 0.5 4996.48 0.013 0.23 0.00 CIRCULAR 24.00 in 24.00 in DI-2AA 1.00 4996.48 ..5 4996.48 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-2B 55.41 4993.98 0.2 4994.09 Fun 0.57 0.00 ELLIPSE 53.00 in 86.00 in STMH-2IA 56.89 4994.09 1.0 4994.66 0.013 0.05 0.00 CII2CULAR 30.00 in 30.00 in INLET-2JA 19.15 4994.65 0.5 4994.75 0.013 0.83 0.00 CIRCULAR 18.00 in 18.00 in DI-2JA 1.00 4994.72 0.5 4994.72 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in 80 n80 n4475 3 3 05 99 . 0 0 0INLET- min 9.15 494.65 DI-2JB 1.00 4994.72 0.5 4994.72 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-2C 58.41 4994.08 1.5 4994.96 0.013 1.32 0.00 ELLIPSE 43.00 in 68.00 in INLET-2BB 15.02 4997.04 0.5 4997.12 0.013 1.24 0.00 CIRCULAR 18.00 in 18.00 in DI-2BB L00 4997.12 0.5 4997.12 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-2BA 23.00 4997.05 0.5 4997.16 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-2BA 1.00 4997.16 0.5 4997.16 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-2D 79.09 4994.96 1.5 4996.15 0.013 0.05 0.00 CIRCULAR 42.00 in 42.00 in STMH-2E 119.25 4996.65 1.5 4998.44 0.013 0.05 0.00 CIRCULAR 36.00 in 36.00 in STMH-2F 89.66 4998.94 0.5 4999.39 0.013 0.05 0.00 CIRCULAR 30.00 in 30.00 in STMH-2G 106.13 4999.39 0.5 4999.92 0.013 0.05 0.00 CIRCULAR 30.00 in 30.00 in INLET-2EB 15.00 5000.92 ..5 5000.99 0.m 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-2EB 1.00 5000.99 0.5 5000.99 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-2H 248.96 5000.42 0.5 5001.66 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in STMH-2FA 90.00 5001.73 1.0 5002.63 6.613 1.32 0.00 CIRCULAR 24.00 in 24.00 in STMH-2FB 244.00 5003.13 0.5 5004.35 0.013 0.05 0.00 CIRCULAR 18.00 i;7 18.00 in INLET-2FA 44.13 5004.35 0.5 5004.57 0.013 0.83 0.00 CIRCULAR 18.00 in 18.00 in DI-2FA 1.00 5004.57 ..5 5004.57 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-2GA 29.50 5003.13 0.5 5003.28 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-2GA 1.00 5003.28 0.5 5003.28 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-2I 122.50 5002.16 0.5 5002.77 0.013 0.05 0.00 CIRCULAR 18.00 in 18.00 in 5 0 8.00in8.00 in2.78 5 INLET-213 48.08 500 1 0 DI-SB 1.00 5003.49 1.5 5003.50 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-2EA 23.00 5000.92 0.5 5001.03 0.013 132 0.00 CIRCULAR 18.00 in 18.00 in DI-2EA 1.00 5001.03 0.5 5001.03 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-2CA 46.13 4998.15 0.5 4998.38 0.013 1.22 0.00 CIRCULAR 24.00 in 24.00 in 3I-2CA 1.00 4998.38 0.5 4998.38 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-2CB 54.11 4998.15 0.5 4998.42 0.m 1.21 0.00 CIRCULAR 18.00 in 18.00 in DI-2CB 1.00 4998.42 0.5 4998.42 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in Sewer Flow Summary: Full Flow Capacity ICritical Flow INormal Flow Element Flow Veloci FD.pthVeloc� FDepthVeloc� rNu de Flow FSurcharged ty ityLength Comment Name (cfs) (fps) (fps) (fps) ber Condition (ft) INLET-2A 155.19 7.36 25.70 7.15 29.19 6.04 0.78 Pressurized 62.43 62.76 DI-2A 190:07 9.01 4.21 2.76 4.56 2.46 0.86 Pressurized 1.79 1.00 STMH-2A 155.19 7.36 25.43 7.11 28.86 6.00 0.78 Pressurized 61.18 21.54 F INLET-2AA 16.04 5.11 5.50 3.22 5.35 3.35 1.05 Pressurized 1.75 18:00 DI-2AA 16.04 5.11 5.50 3.22 5.35 3.35 1.05 Pressurized 1.75 1.00 STMH-2B 160.62 7.45 24.94 7.02 28.17 5.96 0.79 Pressurized 59.68 55.41 STMH-2IA 41.13 8.38 7.26 3.71 5.83 5.07 1.53 Pressurized 3.40 56.89 INLET-2JA 7.45 4.21 7.14 3.78 7.14 3.79' 1.00 Pressurized F. 19.15 DI-2JA 7.45 4.21 7.14 3.78 7.14 3.79 1.00 Pressurized 2.47 1.00 INLET-2JB 7.45 4.21 4.47 2.92 4.45 2.94 1.01 Pressurized 1.00 19.15 DI-2JB 7.45 4.21 4.47 2.92 4.45 2.94 1.01 Pressurized 1.00 1.00 STMH-2C 245.69 17.59 26.10 7.36 17.69 12.40 2.11-F, P--,-ri--ed 57.15 58.41 F INLET-2BB 7.45 4.21 8.62 4.24 8.74 4.16 0.97 Pressurized 3.54 15.02 DI-2BB 7.45 4.21 8.62 4.24 8.74 4.16 0.97 Pressurized 3.54 1.00 INLET-23A 7.45 4.21 11.77 5.25 12.90 4.74 0.83 Pressurized 6.43 23.00 DI-2BA 7.45 4.21 11.77 5.25 12.90 4.74 0.83 Pressurized 6.43 1.00 STMH-2D 123.55 12.84 26.23 7.75 18.38 12.10 1.97 Pressurized 48.97 79.09 STMH-2E 81.91 11.59 24.87 7.78 17.89 11.56 1.88 Pressurized 40.53 119.25 Fs -2F 29.08 5.92 30.00 6.92 30.00 6.92 0.00 Pressurized 33.98 89.66 STMH-2G 29.08 5.92 30.00 6.92 30.00 6.92 0.00 Pressurized 33.98 106.13 INLET-2EB 7.45 4.21 11.78 5.26 12.94 4.74 0.83 Pressurized 6.45 15.00 DI-2EB 7.45 4.21 11.78 5.26 12.94 4.74 0.83 Pressurized 6.45 1.00 STMH-2Il 16.04 5.11 24.00 5.41 24.00 5.41 0.00 Pressurized 17.00 248.96 STMH-2FA 22.68 7.22 13.92 5.55 11.47 7.08 1.45 Pressurized 10.49 90:00 STMH-2FB 7.45 4:21 8.63 4.24 8.75 4.16 0.97 Pressurized 3.55 244.00 INLET-2FA 7.45 4.21 8.63 4.24 8.75 4.16 0.97 Pressurized 3.55 44.13 DI-2FA 7.45 4.21 8.63 4.24 8.75 4.16 0.97 Pressurized 3.55 1.00 INLET-2GA 7.45 4.21 12.24 5.42 13.76 4.79 0.79 Pressurized 6.94 29.50 DI-2GA 7.45 4.21 12.24 5.42 13.76 4.79 0.79 Pressurized 6.94 1.00 STMH-2I 7.45 4.21 12.26 5.44 13.81 4.79 0.79 Pressurized 6.97 122.50 INLET-2B 12.90 7.30 12.26 5.44 9.43 7.44 1.66 Pressurized 6.97 48.08 F DI-SB 12.90 7.30 12.26 5.44 9.43 7.44 1.66 Pressurized F. 1.00 INLET-2EA 7.45 4.21 18.00 5.96 18.00 5.96 0.00 Pressurized 10.53 23.00 DI-2EA 7.45 4.21 18.00 5.96 18.00 5.96 0.00 Pressurized 10.53 1.00 INLET-2CA 16.04 5.11 14.41 5.69 14.77 5.52 0.95 Fr ;-ri-.d 11.20 46.13 DI-2CA 16.04 5.11 14.41 5.69 14.77 5.52 0.95 Pressurized 11.20 1.00 INLET-2CB 7.45 4.21 6.53 3.59 6.51 3:61 1.01 Pressurized 2.08 54.11 DI-2CB 7.45 4.21 6.53 3.59 6.51 3.61 1.01 Pressurized 2.08 1.00 • A Froude number of 0 indicates that pressured flow occurs(adverse slope or undersized pipe). • If the sewer is not pressurized,full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized,full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing ICalculated jUsed Element Peak Cross Fra Name (cfs) Section Rise Span Rise Span Rise Span 2) Comment INLET-2A 62.43 ELLIPSE 53.00 in 83.00 in 48.00 in 48.00 in 53.00 in 83.00 in 21.09 DI-2A t ELLIPSE 53.00 in 83.00 in 18.00 in 18.00 in 53.00 in 83.00 in 21.09 STMH-2A 61.18 ELLIPSE 53.00 in 83.00 in 48.00 in 48.00 in 53.00 in 83.00 in 21.09 INLET-2AA 1.75 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-2AA 1.75 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-213 59.68 ELLIPSE 53.00 in 86.00 in 48.00 in 48.00 in 53.00 in 86.00 in 21.56 STMH-2IA 3.40 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 INLET-2JA 2.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2JA 2.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 1C 1 8in8i 8CL 8.00 in .00 .00 .00 in 18.00 1.77INLET- B 00 18.00 in 18.00 in 800 1.778 8.00 i 800 nDI-2JB 1.00 CIRCULAR1 00 i STMH-2C 57.15 ELLIPSE 43.00 in 68.00 in 33.00 in 33.00 in 43.00 in 68.00 in 13.97 INLET-2BB 3.54 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2BB 3.54 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-213A 6.43 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2BA 6.43 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-2D 48.97 CIRCULAR 42.00 in 42.00 in 30.00 in 30.00 in 42.00 in 42.00 in 9.62 STMH-2E 40.53 CIRCULAR 36.00 in 36.00 in 30.00 in 30.00 in 36.00 in 36.00 in 7.07 Existing height is smaller than the suggested height. STMH-2F 33.98 CIRCULAR 30.00 in 30.00 in 33.00 in 33.00 in 30.00 in 30.00 in 4.91 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. STMH-2G 33.98 CIRCULAR 30.00 in 30.00 in 33.00 in 33.00 in 30.00 in 30.00 in 4.91 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise INLET-2EB 6.45 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2EB 6.45 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 Existing height is smaller than the suggested height. STMH-2H 17.00 CIRCULAR 24.00 in 24.00 in 27.00 in 27.00 in 24.00 in 24.00 in 3.14 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise STMH-2FA 10.49 CIRCULAR 24.00 in 24.00 in 18.00 in 1$.00 in 24.00 in 24.00 in 3.14 STMH-2FB 3.55 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2FA 3.55 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 3C 18.00in1 1 1D-2FA .55 CIRCULAR 1 8.00 in 1.77 1 1 1 1 1 8i 16C 8.00 in 8.00in 8.00in 8.00in .00 77INLET-2GA .94 R DI-2GA 6.94 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-2I 6.97 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2B 6.97 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-SB I6.97 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 Existing height is smaller FRq T-2EA 10.53 CIRCULAR 18.00 in [18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 than the suggested height. Existing width is smaller than the suggested width. I -Exceeds max.Depth/Rise Existing height is smaller than the suggested height. DI-2EA 10.53 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise INLET-2CA 11.20 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 DI-2CA 11.20 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 I LET-2CB 2: CI 8.0 08 [CIRCULAR 10 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 IN DI 2CB 2.08 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used'parameters. Grade Line Summary: Tailwater Elevation(it):5001.00 Invert Elev. Downstream Manhole HGL IEGL Losses - Bend Lateral Friction Element Downstream Upstream Downstream Upstream Downstream Upstream Loss Loss Loss Name (ft) (ft) (ft) �(ft) �(it) (ft) (it) (it) (ft) ET-2A 4993.80 4993.93 0.00 0.00 5001.00 5001.02 5001.14 10.02 5001.16 INL DI-2A 4994.00 4994.00 0.00 0.00 5001.16 5001.16 5001.16 0.00 5001.16 STMH-2A 4993.94 4993.98 0.02 0.00 5001.05 5001.06 5001.18 0.01 5001.19 INLET-2AA 4996.39 4996.48 0.00 0.00 5001.18 5001.18 5001.19 0.00 5001.19 DI-2AA 4996.48 4996.48 0.00 0.00 5001.19 5001.19 5001.19 0:00 5001.19 STMH-2B 9993.98 4994.09 0.07 0.00 5001.14 5001.15 5001.25 0.02 5001.27 Fs -2IA 9994.09 4994.66 0.00 0.00 5001.26 5001.27 5001.27 0.00 5001.27 INLET-2JA 4994.65 4994.75 0.03 0.00 5001.29 5001.30 5001.32 0.01 5001.33 DI-2JA 9994.72 4994.72 0.01 0.00 5001.31 5001.31 5001.34 0.00 5001.34 INLET-2JB 4994.65 4994.75 0.00 0.00 5001.27 5001.27 5001.28 0.00 5001.28 DI-2JB 4994.72 4994.72 0.00 0.00 5001.28 5001.28 5001.28 0.00 5001.28 STMH-2C 4994.08 4994.96 0.34 0.00 5001.49 5001.49 5001.67 0:08 5001.75 INLET-2BB 4997.04 4997.12 0.08 0.00 5001.77 5001.79 5001.83 0.02 5001.85 DI-2BB 4997.12 4997.12 6.02 0.00 5001.80 5001.80 5001.86 0:00 5001.86 INLET-2BA 4997.05 4997.16 227 0.00 5001.82 5001.91 5002.03 0.09 5002.11 DI-2BA 4997.16 4997.16 0.05 0.00 5001.96 5001.96 5002.16 0.00 5002.17 STMH-2D 4994.96 4996.15 0.02 0.00 5001.51 5001.70 5001.92 0.19 5002.10 STMH-2E 4996.65 4998.44 0.03 0.00 5001.73 5002.16 5002.24 0.44 5002.67 Fs -2F 4998.94 4999.39 0.04 0.00 5002.20 5002.81 5002.95 0.61 5003.56 Fs -2G 9999.39 4999.92 0.04 0.00 5002.85 5003.57 5003.59 0.72 5004.32 INLET-2EB 5000.92 5000.99 0.27 0.00 5004.39 5004.44 5004.59 0.06 5004.65 DI-2EB 5000.99 5000.99 0.05 0.00 5004.49 5004.50 5004.70 0.00 5004.70 Fs -2H 0000.42 5001.66 0.02 0.00 5003.89 5005.29 5004.34 1.40 5005.74 STMH-2FA 5001.73 5002.63 0.23 0.00 5005.80 5005.99 5005.97 0.19 5006.16 STMH-2FB 5003.13 5004.35 0.00 0.00 5006.10 5006.38 5006.16 0.28 5006.44 INLET-2FA 5004.35 5004.57 0.05 0.00 5006.43 5006.48 5006.49 0.05 5006.54 DI-2FA 5004.57 5004.57 0.02 0.00 5006.50 5006.50 5006.56 0:00 5006.56 INLET-2GA 5003.13 5003.28 0.32 0.00 5006.30 5006.43 5006.54 O.I3 5006.67 [DI-2GA 5003.28 5003.28 0.06 0.00 5006.49 5006.50 5006.73 0.00 5006.74 STMH-2I 5002.16 5002.77 0.01 0.00 5005.51 5006.05 5005.75 0.54 5006.29 INLET-2B 5002.78 5003.50 0.22 0.00 5006.26 5006.48 5006.51 0.21 5006.72 DI-SB 5003.49 5003.50 0.06 0.00 5006.54 5006.54 5006.78 0.00 5006.78 INLET-2EA 5000.92 5001.03 0.73 0.00 5004.50 5004.73 5005.05 0.23 5005.28 DI-2EA 5001.03 5001.03 0.14 0.00 5004.86 5004.87 5005.41 0.01 5005.42 INLET-2CA 4998.15 4998.38 0.24 0.00 5002.15 5002.26 5002.34 0.11 5002.4b DI-2CA 4998.38 4998.38 0.05 0.00 5002.31 5002.31 5002.51 0.00 5002.51 INLET-2CB 4998.15 4998.42 0.03 0.00 5002.11 5002.13 5002.13 0.02 5002.15 DI-2CB 4998.42 4998.42 0.01 0.00 5002.13 5002.13 5002.16 0.00 5002.16 • Bend and Lateral losses only apply when there is an outgoing sewer.The system outfall,sewer#0,is not considered a sewer. • Bend loss=Bend K*V fi^2/(2*g) • Lateral loss=V_fo^2/(2*g)-Junction Loss K*V_fi^2/(2*g). • Friction loss is always Upstream EGL-Downstream EGL. ST 02 500-60 .....�-.r--- +------- I------------ - 5002,50 -'-••• I ..................... - -- 5000.80 A �J� u L 4999.10 ST SrMyZG 599-=0 S JW'0 sryy2p .9.W S.. STMEI Z 4�2ET�htl5 2N.2p c HGL ............EGL 99z i o 0.0 1013 102A 303.6 -N.5 SOQO WI] 108J 809.E 9108 Distance(Ft) ST 2A sool.tr......................................._.................................................................................................-........................._.................................... ............................................_.__._..._._._........................ ------------------------- ----------------------------- soon.:: a999.3! a998 r: fi w l4Lf"�1 J99s a99a.81 a9939t HGL ...........EGL a993.01 0. 1020 70.a0 30.60 a0.80 31.00 6110 "ll.a0 SI.bO 91.30 10200 Distance IFtl ST 2B 1 5001.93 :...........I................... :.... ............................................................................ __________________________________________ -- -- .................................................................................................................................... ----------- -------_------------------ ---_-____ - ____________- 5000$3 a999.93 a998.93 L�. -9919" / Y 4ti 4996.93 44" t J995 93 a99a.93 4993.93 s Sr ,•(� ��•Q � -----HGL ...........EGL 9929" 0.00 R.19 /a10 6630 88.60 I1Q50 1326D 0J.7n 176.30 199.90 13I.00 Distance(Ftj ST-2B2 501.93 .... ......................................................................I...........I ----------—--————--------------------- ..............-.1...................................................................................---- ................ ................................................................................. ----------------------------------------NOW----------------------------------------------- ---------------- aM.93 49".93 Fi 4.96 9i 4995,93 4994.93 4"193 499213 O.OD 21.30 42.60 63.96 2516 106.50 MID 14910 170.40 191.70 213.00 Distance(Fti ST-2Cl "03.)6 500266 ............................................................................... ----------------- 500156 --------------—-—------------------------ ...................................................... --------------------- ------------------------------ 5000.46 4999.36 26 4W7.16 4MA Iz, 4993.86 SrA'411 ,r.Z4 F-----26 HrLl 4991.)6l [...........FGL I 0.00 3230 a1.60 9690 12910 161.50 193.90 22640 259A 290.70 323.00 Distance fFti ST-2C2 ................................_....._........................................................-_........... 5000 J6 J99936 ti 999,E. J99).1E / 6996.0E 49969E 6993 86 S S 2C '�Vinrza sr,��1a ray�e •�fJ ----xcL ............EGL 699'..)6 OU 33.10 6630 9936 132J0 165.30 198.60 331.'M 26/.80 791.90 331.06 Distance(Ft) ST-2E 1 5005is 500628 - 5001b8 ----• ...................... • ----------- s0003a---------------- 4V`��?EA r+. F ;a-01 s� �'zQ w S�2F sTMK2� J996.68 J99s.,s S r�H 24 l99398 Sr S� S��Zc n2�T 2a ?`{ 2g -----HGL ...........EGL 99255 000 6L30 173.00 18JS0 :J6.00 307.50 36900 630.50 392.00 53350 6,5.00 Distance(Ft) ST-2E2 ..................... ..................... ............ --------- .......................................................... ------ ------- L ...................... 500I.68 .. .......................... --------------------- ----------------------- ........... 4W7,78 Im 4 ...F IN3 3 OM 60.70 M,JO 18x.f0 242M MM 3m10 JU90 48560 5J6.36 WIM Distance(Ftl ST-2F 500953 $00733 M0593 ............. .............. M.13 .............. -'A,4 500243 ........................... - ------ ------- ----——-- ........... ----- �. ............ M73 aMZ 4W,'56q. M3.93 4W2.B 00 121.9 243.8 365. J8).6 W. 731A 253 9753 I097J 1219.0 Distance(Ft) ST-2G 5006.77 ----------- ........... 5005.17 ...... ------- .................................. Mlffl .......................... ........... ............. —------- . ............... ------- ----------- s'411,10 ............. 4M,77 dM91 499237 O.W %.IO 192N nM Mg mm 5]6.60 V,170 768.86 sum Distance(Ft) ST-2Jl :.................................................................. ------------------------------------------ 5WI.M�.............................................................................................--..............................-------------—- ---------—--—-----—---------------- 5000.19 li 4MJ9 4995.69 dW79 jNLErza 4993.99 ""V24 21.66 d320 "M NA IMM 129.66 15116 rmd 191 40 Distance(Ft) ST 2J2 ......................................................._.......................................................... ---------------------------- ------------ ----------------------------------------- M.19 4M9 }9cg:9 fi C {L 4996.59 499569 4994.'9 499a.s9 3T ST STA1jf.1j� JB ...........EGL 499z99 o.00 21.60 4so a4.so 86.40 1o0-a4 Ism uuo mao 194.40 Distance(FO MHFD-Culvert, Version 4.00(May 2020) Project: MONTAVA SUBDIVISION PHASE D ID: ST-02 9ov CIRCLE „ � 0 L Lp Rw n Soil Type: Choose One: 0 Sandy 0 Non-Sandy Design Information: Design Discharge Q= 62.43 cfs Circular Culvert: Barrel Diameter in Inches D= 66 inches Inlet Edge Type(Choose from pull-down list) Grooved Edge Projecting OR: Box Culvert: OR Barrel Height(Rise)in Feet H(Rise)= ft Barrel Width(Span)in Feet W(Span)= ft Inlet Edge Type(Choose from pull-down list) Number of Barrels #Barrels= 1 Inlet Elevation Elev IN= 4993.93 ft Outlet Elevation OR Slope Elev OUT= 4993.81 ft Culvert Length L= 62.76 ft Manning's Roughness n= 0.013 Bend Loss Coefficient kb= 0 Exit Loss Coefficient k,= 1 Tailwater Surface Elevation Yt,Elevation= 5001 ft Max Allowable Channel Velocity V=1 5 Ift/S Calculated Results: Culvert Cross Sectional Area Available A= 23.76 ft, Culvert Normal Depth Yn= 2.22 ft Culvert Critical Depth Y�= 2.16 ft Froude Number Fr= 0.95 Entrance Loss Coefficient ke= 0.20 Friction Loss Coefficient kf= 0.20 Sum of All Loss Coefficients ks= 1.40 ft Headwater: Inlet Control Headwater HWI= 3.00 ft Outlet Control Headwater HWo= 6.11 ft Design Headwater Elevation HW= 5000.04 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D= 1.11 Outlet Protection: Flow/(Diameter^2.5) Q/D^2.5= 0.88 ft°'s/s Tailwater Surface Height Yt= 7.19 ft Tailwater/Diameter Yt/D= 1.31 Expansion Factor 1/(2*tan(0))= 6.70 Flow Area at Max Channel Velocity At= 12.49 ft2 Width of Equivalent Conduit for Multiple Barrels WN= - ft Length of Riprap Protection LP=1 17 ft Width of Riprap Protection at Downstream End T=J 9 ft Adjusted Diameter for Supercritical Flow Da= ft Minimum Theoretical Riprap Size dso min= 1 in Nominal Riprap Size dso nominal= 6 in MHFD Riprap Type Type= VL ST-03 2-YEAR & & �® §7� « �. : f- % . � A ± w » ��\ Rainfall Parameters Rainfall Return Pewo: 2 Backwater Calculations: T a*ke Elevation( t):4996.50 Manhole Input Summary: Given Flow Sub Basin Information Total F d Local Drainage Overland Overland Gutter Gutter ElementKnown b Runoff S,yr on Contribution Area Length Slope Length Velocity Name (cf (cfs) (Ac.) Coefficient Coefficient (ft) (%) (ft) (fps) FES-3A 4992.00 0.00 0.00 0.00 0.00 F 0.00 0.00 0.00 0.00 0.00 STMH-3A 5000.94 35.08 0.00 0.00 om 0.00 0.00 0.00 0.m 0.00 FsTH-3B 5001.06 35.08 0.00 0.00 0.00 om om 0.00 0.m 6.00 STMH-3C 5001.98 31.65 6.00 6.00 0.00 0.00 0.00 om P.m 0.00 STMH-3D 5002.33 21.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 --F--ET- INL A 5001.95FO-15 0.00 0,00 0.00 0.00 0.00 FO-00 0.00 0.00 D1-3YA 5001.95 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - --F-- INL ET F5001-95FO-48 0.00 0,00 0,00 0.00 0,00 0.00 0.00 0.00 D1-Y-3B 5001.95 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FsTMH-3E 5001.92 20.69 0.00 0,00 0.00 0.00 0.00 om 0.00 0.00 FsTMH-3F 5001.89 5.30 0.00 6.00 0.00 0.00 0.00 0.00 0.m 0.00 FsTMH-3G 5001.01 F 5,30 6.00 0.00 0.00 0.00 0.00 0,00 Q.00 0,00 1B F5001-24 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -- -F- DI-3FA 5001.24 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3H F5000.88 4.61 7o.00 F O.OQ 7o.00 F 0,00 F 0,00 F 0.00 Fo.00 0,00 STMH-31 5001.96 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-37 5002.08 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 3GA 5001.68 0.12 0.00 0.00 0.00 0.00 0,00 FO-00 0.00 0.00 DI-3GA 5001,68 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 om INLET- 3GB F5001-68FO-31 0.00 0.00 0.00 0.00 F.00 0.00 0.00 0.00 DI-3GB 5001.68 0,31 0,00 0.00 0.00 6.00 0.00 6.00 0.m 0,00 S 3 NM- [F50;47 2.60 F 0.00 0.00 F 0.00 0.00 0.00 0.00 0.00 0.00 --F-- - INPA F5004-44F2-60 F 0.00 0.00 F0.00 0.00 0.00 0.00 0.00 FO-00 DI-3PA 5004.44 2,60 0.00 0.00 6.00 6.00 6.00 0,00 0,00 0,00 -- INEB 5 000.58Fl-12FO-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -- -- - -- - - -- -- ---F-- DI-3EB 5000.58 F 1.12 F0.00 F0.00 0.00 0.00 Fom 0.00 0.m om I13EA 5000.58 0,53 0.00 0.00 0.00 Fo-oo 0.00 0.00 0.00 0.00 DI-3EA 5000.58 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P�3B5 001.74F16-31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fo-oo - - - - -- - I3HB F5001.45Fo.78 0.00 Fo.00Fo 00 0.00 Fo .00 0.00 0.00 0.00 DI-3HB 5001.45 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 p3B F5001.45F3.11 0.00 DI-3HA 5001.45 F3.11 F0.00 F0.00 0.00 F0.00 F0.00 0.00 0.00 0.00 F- -S�-F01853B . F12.11F--[ 0.00 -F- S3BC 5003.20F12.11 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -F-- P3BD 5002.69F9-90 F0.00 0.00 F0.00 0.00 0.00 0.00 0.00 0.00 T- P�3BEF5002.66 F9.90FO.00 0.00 --1[ tA 5002.38Fl-81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ET-DI-OA 5002.38 1.81 0.00 0.00 0.00 0.00 0.00 D.00 0.00 0.00 P�3BFF5002.94F6.94 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FS3B 5003.35F3.08 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P3BH I 5003.97F3.08 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P 3CNfAfI 5004.66FI-76 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 --F P�3CBF5005-76F1.76 0.00 P 3B 5005.42FI-76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S3 D 5005.99Fl-76 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 JA5006.24FI-41 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-37A 5006.24 1.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ET 5006i9jB .20FO-42 F0.0Q 0.00 0.00 0.00 0.00 0.00 Fo-oo 0.00 DI-3JB 5006.20 0.42 0.00 O.OQ 0.00 0.00 0.00 0.00 0.00 0.00 Fs -3BI 5005.23 1.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fs -2BJ 5005.87 1.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - -- PIBA 5006.03 1.38 0.00 0.00 0.00 0.00 0.00 0.00 F- E .00 0.00 DI-3BA 5006.03 1.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P-TMHA F03F5003. .21 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P-TMH- F5OO2.90 4.21 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P3QC F5003.51 4.21 0.00 - - 53QD F5003.94F2.73 0.00 P- -Fo-oo-Fo.-oo-Fo.-oo-Fo-oo-Fo-oo-Fo-o-oMH 50043QE .11 2.73 0.00 0.00 F-- iN E F5003.70FO.71 0.00 O.OQ 0.00 0.00 0.00 0.00 0.00 0.00 DI-3UA 5003.70 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I3UB 5003.70 2.10 0.00 0.00 0.00 Fo.00 0.00 0.00 0.00 0.00 DI-3UB 5003.70 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - II SEAT 5004.10FI-86 0.00 0.00 F0.00 0.00 0.00 0.00 0.00 Fo-oo DI-3SA 5004.10 1.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P�0E B 5002.38 l--34 0.00 0.00 0.00 F--0.00 0.00 0.00 0.00 0.00 DI-30B 5002.38 1.34 0.00 O.OQ 0.00 0.00 0.00 0.00 0.00 0.00 9�ET F5003-35 2.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F FDI-31A 5003.35 2.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P�3F03-45Fll-28 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FES-3XA 5003.45 1.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00-- -- - -- - -- -- -- --- 0.00 - --F-- P�3 F5002.61F9.94 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P�3 LAEAT F5000.94 9.94 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3AA 5000.94 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 [9AC MF5001.27F9.43 0.00 Fo .0 0 0.00-F 0.00 Fo .00 0.00 0.00 0.00 F��3F5OO2.19 3.72 -F 0.00 -E F5002-23 1.60 0.00 0.00 0.00 Fo-oo 0.00 0.00 0.00 0.00 DI-3KA 5002.23 F 1.60 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 0.00 0.00 [iNLET- 5002.24F2.24 0.00 Fo-oo 0.00 Fo-oo 0.00 Fo-oo 0.00 0.00 DI-3MA 5002.24 2.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S3MAI 5002.11 F3.45 F0.00 0.00 O.OQ 0.00 0.00 0.00 0.00 0.00 II LA F5002.45Fi-o8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7000 DI-MA 5002.45 1.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I NA F5002-45F2-54 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3NA 5002.66 2.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P�EAB 5000.94Fl� 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PET F0182. Fl-72 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 � DI-3AC 5001.82 1.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3AB 5000.94 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -F INLET-_ 3DA F5000.46 F 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ir DI-3DA 5000.46 F0.56 0.00 F0.00 0.00 F0.00 F0.00 F0.00 Fo.00 0.00 DB5000.68FO-77 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 r DI-3DB 5000.68 F 0.77 7 0.00 0.00 6.66 6.00 6.00 6.00 0.00 0.00 Manhole Output Summary: Local Contribution Total Design Flow Overland Gutter Basin Local �F Manhole Peak Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow Comment Name (min) �0.00 (min) (min) (in/hr) (cfs) �ro-00 Area (in/hr) Ir (min) I(cfs) FES-3A 0.00 0.00 0.00 0.00 0.00 0.00 10.00 Surface Water Present IS � (Upstream) TMH-3A 0.00 0.00 0.00 0.00- - 0.00 0.00 0.00 0.00 35.08 Surface Water Present (Downstream) r STH-313 r 0.00 0.00 0.00 0.00 0.00 35.08 r- STMH-3C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31.65 STMH-3D 00.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21.17 r 13YA Fo .00 0.00 0.00 0.00 0.00 0.00Fo oo 0.00 F F I F_D1-3YA 0.00 0.00 0.00 F 0.00 0.00 0.00 0.00 0.00 0.15 13YB0.00 0.00 0.00 F0.00 00 0.00Fo_ooF_000_Fo_ - 48 FDI-Y-3B 0.00 0.00 r 0 00 Fo.00 r 0 00 0.00 0.00 0.00 0.48 STMH-3E 0.00 0.00 r 0.00 0.00 r 0 00_ 0.00 0.00 0.00 20.69 STMH-3F 0.00 0.00 r-0.00 0.00 r Zoo 0.00 0.00 0.00 5.30 rSTMH-3G 0.00 0.00 F_o.00 0.00 I�0 00 0.00 0.00 0.00 5.30 _F_0.00 0.00 Fo.00 000I 0.00000 000000 1.161NLET- 3FA DI-3FA 0.00 0.00 r 0.00 0.00 0.00 0.00 0.00 0.00 1.16 0.00 0.00 r 0.00 0.00 0.00 0.00 0.00 0.00 4.61 STMH-3H f STMH-31 0.00 0.00 r 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 r-0.00 0.00 0.00 0.00 0.00 0.00 0.43 rSTMH-3J [INGA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 r DI-3GA o.00 0.00 r-0.00 0.00 0.00 0.00 0.00 0.00 0.12 1NLET- 3 GB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 DI-3GB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 S M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.60 13PAFo.00 0.00 Fo 000.00 2.60 DI-3PA 0.00 0.00 0.00 0,00 0.00 0.00 0.00 F 0.00 2.60 I3E - EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.12 DI-3EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 1.12 I3EA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00T53 DI-3EA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 0.53 A0.000.00 0.00 0.00 0.00 0.00 0.000.0016P3B .31 F - 1000 0.00 0.00 0.00 0.00 0.00 0.00 0,00 F-78 DI-3HB 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 -- IET Fo.00 PF3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F.11 DI-3HA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.11 -- PTBB 0.00 0.00 0.00 Fo-oo 0.00 0.00 0.00 0.00 12.11 -- TMH- S3BC Fo.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.11 P3BD F0_00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.90 - - P 3BE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F .90 �FET-POA 0.00 Fo-oo 0.00 0.00 0.00 0.00 Fo-oo 0.00 1.81 DI-OA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.81 -- P 3B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F .94 P-TM" 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F.08 P-TMH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F.08 TMH- S3CA 0.00 0.00 0.00Fo-oo 0.00 0.00 0.00 0.00 F.76 9CB0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.76 MH PI CC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.76 H[STM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FI.76 IN -F MA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.41 DI-3JA 0,00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 1.41 0.003JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F42 DI-3JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42 S 3BH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 1.38 S ZBH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.38 [INBA3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.38 DI-3BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0,00 1.38 S3QMAH Fo.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.21 9QB0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.21 QC 0.000.000.00 0.000.000.00 0.000.00 4.MH - PI211 IQDH - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.73 P3Q�E 0.00 0.00 0.00Fo--ooFo--ooFo--oo 0.00 0.00 2.73 II3LJA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F71 DI-3UA 0.00 0.00 0.00 0,00 0.00 0.00 0.00 F 0.00 0.71 TETB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 DI-3UB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 2.10 II31SET-A 0.00 0.00 0.00 Fo-oo 0.00 F000 0.00 0.00 1.86 DI-3 SA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.86 t0BET 0.00 0.00 0.00 0.00 0.00 Fo-oo 0.00 0.00 1.34 DI-3OB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.34 -- T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F .91 DI-31A 0.00 0.00 0.00 D.00 0.00 0.00 0.00 0.00 2.91 -- 3AAH 0.00 S P0.00 0.00 0.00 0.00 0.00 0.00 0.00 F.28 FES-3XA 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 1.67 -- PI MH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F94 I3AAE - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.94 DI-3AA F 0,00 0.00 0.00 F 0,00 0.00 0.00 0.00 F 0.00 0.72 -- S3AC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F43 0.000.000.00 0.000.000.00 0.00 0.003.72P --[3�M�H 2 I3KA lo-oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.60 DI-3KA 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 1.60 tA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.24 D1-3MA 0.00 0.00 F 0.00 0.00 0.00 0.00 0.00 F 0.00 2.24 S MH- - - 3 LA 0.00 0.00 0.00FO 00 0.00 FOOOFO 00 0.00 F45 [IN LA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08 DI-DI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 1.08 I3NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.54 DI-3NA 0.00 0.00 0.00 0,00 0.00 0.00 0.00 F 0.00 2.54 I3AB 0LET- .00 0.00 0.00 FO-00 FO-00 FO-00 FO-00 0.00 2.44 INLET 3AC FO00 FO.00FO.00FO.00 FO.00 0.00FO.00 0,00 1.72 DI-3AC 0.00 0.00 0.00 0.00 0.00 0.m 0.00 0,00 1.72 DI-3AB F00 0.00 0.00 0.00 0.00 0.m 0.00 0.00 0.72 '17 F3DALET FO'00 0.00FO-0-0 1 0.00 00 0 Fo-o-oFo--ooF-o-oo-Fo .56 DI-3DA f 0.00 T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 [INLET- 3DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fo.77 DI-3DB F 0.00 0.00 0.00 r 0.00 I 0.00 0.00 0.00 F 0.00 0.77 Sewer Input Summary: i Elevation Loss Coefficients Given Dimensions Sewer Downstream Upstream F Element Slope Mannings Bend Lateral Cross Rise Span Length Invert o Invert Name � (ft) (ft) � � (ft) I n Loss � Loss Section (ft or in) (ft or in) r STMH-3A F4.43 F 4992.00 0.3 F992.22 0.012 10.03 0.00 ELLIPSE 58.00 in 191.00 in STH-3B 67.41 4992.23 0.3 4992.43 0.012 �.32 0.00 ELLIPSE 58.00 in 91.00 in STMH-3C 167.06 4992.43 0.3 4992.93 0.012 �.OS 0.00 ELLIPSE 58.00 in 91.00 in STMH-3D 212.88 4992.93 0.3 4993.57 0.012 �OS 0.00 ELLIPSE 53.00 in 83.00 in INLET-3YA 13.00 4996.47 0,5 4996.53 0.013 [.32 0.00 CIRCULAR 18.00 in 18.00 in DI-3YA FLOO F 4996.53 FO.5 4996.53 F 0.013 F.25 0.00 CIRCULAR F18.00 in 18.00 in INLET-3YB 23.00 4996.47 0.5 4996.58 0.013 F.32 0.00 CIRCULAR F18.00in 18.00 in DI-Y-313 23.00 F4996.47 FO.5 F4996.58 F0.013 F.25 FO.00 CIRCULAR F18.00 in 18.00 in STMH-3E 48.65 F 4993.56 FO.3 4993.71 F 0.012 F.05 FO.00 FELLIPSE 53.00 in 83.00 in STMH-3F 20.62 4993.71 0.3 4993.77 0.013 �08 0.00 CIRCULAR 48.00 in 48.00 in STMH-3G 99.00 4993.77 0.3 4994.07 0.013 0.07 Q.00 CIRCULAR 48.00 in 48.00 in INLET-3FA F56.00 F 4995.12 FO.5 4995.40 F 0.013 1.32 Fo.00 CIRCULAR 30.00 in 30.00 in DI-3FA 1.00 4995.40 0.5 4995.40 0.013 0,25 0.00 CIRCULAR 30.00 in 30.00 in STMH-3H 43.64 4994.07 0.3 4994.20 0.013 0.05 0.00 CIRCULAR 42.00 in 42.00 in STMH-3I 198.58 4994.20 0.3 4994.80 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in 4 0.050.00CRCULAR 800 in 18.00 inSTMH-3J 19.75 4994.80 0.3 INLET-3GA F13.69 4994.85 0.5 4994.92 0.013 1.32 0.00 CIRCULAR F18.00in 18.00 in CIRCULAR 18.00 in 18.00 in DI-3GA 1.00 4994.92 0.5 4994.92 0.013 0.25 0.00 INLET-3GB 22.31 4994.86 0.5 4994.97 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-3GB 1.00 4994.94 0.5 4994.94 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-3PA 134.06 4996.35 2.0 4999.03 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in INLET-3PA F29.99 F 4999.03 F2.0 4999.63 F 0.013 0,11 0,00 CIRCULAR F18.00in 18.00 in DI-3PA 1.00 4999.61 2.0 4999.63 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-3EB 27.05 F 4994.20 FO.5 4994.34 F 0.013 1.32 FO.00 CIRCULAR 24.00 in 24.00 in DI-3EB 1.00 4994.66 0.5 4994.66 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in INLET-3EA 8.95 4994.21 0.5 4994.25 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3EA 1.00 4994.25 0.5 4994.25 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-3BA 146.46 4993.71 0.3 4994.15 0.013 1.32 0.00 CIRCULAR 54.00 in 54.00 in INLET-3HB 8.00 4996.48 0.5 4996.52 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3HB FLOO F 4996.52 FO.5 4996.52 F 0.013 0.25 FO.00 CIRCULAR 24.00 in 24.00 in INLET-3HA F28.00 F 4996.48 FO.5 4996.62 F 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3HA FLOO F 4996.62 FO.5 4996.62 F 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-3BB 39.75 4994.16 FO.3 4994.28 FO.013 0.05 0.00 CIRCULAR 54.00 in 54.00 in 99 .94 0.050.00CI0.3 44 4 4STMH-3BC 223.78 4994.27 . 0.01 0050.00 I 8.00 in .94 4 4STMH-3BD 65.23 4994 8.00in STMH-3BE Fl8.23 F 4995.27 FO.5 4995.36 F 0.013 0.05 0.00 CIRCULAR F36.00in 36.00 in INLET-3OA 28.00 4995.36 1.0 4995.64 0.013 1.32 0,00 CIRCULAR 24.00 in 24.00 in DI-OA 1.00 4995.63 LO 4995.64 0.013 0.25 0.00 FEIRCULAR 24.00 in 24.00 in STMH-3BF 68.03 4995.36 0.5 4995.70 0.013 0.05 0.00 CIRCULAR 36.00 in 36.00 in STMH-3BG F22.28 F 4995.70 FO.5 4995.81 F 0.013 0.05 Fo.00 FEIRCULAR F36.00 in 36.00 in STMH-3BH 109.30 4995.81 0.5 4996.36 0.013 0.05 0.00 CIRCULAR 36.00 in 36.00 in STMH-3CA 53.92 4997.86 1.0 4998.40 Fun 1.32 0.00 CIRCULAR 18.00 in 18.00 in STMH-3CB 198.34 4998.39 0.8 4999.98 0.013 0,05 0.00 CIRCULAR F18.00in 18.00 in STMH-3CC 30.38 4999.98 0.5 5000.13 0.013 0.59 0.00 CIRCULAR 18.00 in 18,00 in STMH-3CD 119.31 F 5000.13 FO.5 F5000.73 F 0.013 0.22 FO.00 CIRCULAR 18.00 in 18.00 in INLET-3JA 39.10 5000.73 0.5 5000.93 0.013 1.32 0.00 CIRCULAR F18.00in 18.00 in DI-3JA F 1.00 F 5000.93 FO.5 5000.93 F 0.013 0.25 0.00 CIRCULAR F18.00in 18.00 in INLET-3JB 36.31 F 5000.73 FO.5 5000.91 F 0.013 1.32 0.00 FEIRCULAR F18.00in 18.00 in DI-3JB 1,00 5000.91 0.5 5000.91 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-3BI 174.31 4997.36 0,5 4998.23 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in STMH-2BJ 82.81 F 4998.23 FO.5 4998.64 F 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in INLET-313A F44.37 F 4998.64 FO.5 4998.86 F 0.013 1.32 0,00 CIRCULAR 24.00 in 24.00 in DI-3BA 1.00 4998.86 0.5 4998.86 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-3QA 16.08 4995.70 LO 4995.86 0.013 1.32 0.00 CIRCULAR F36.00in 36.00 in STMH-3QB 27.48 F 4996.36 F 1.0 F4996.63 F 0.013 0.05 Fo.00 FEIRCULAR F30.00 in 30.00 in 9 .83 0.013 .050.00 CIRCULAR 24.00 in 24.00 inSTMH-3QC6 STMH-3QD 42.40 4997.83 1.0 4998.25 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in STMH-3QE 30.34 4998.25 1.0 4998.55 0.013 0,05 0.00 CIRCULAR 24.00 in 24.00 in INLET-3UA 14.00 4998.55 0.5 4998.62 0.013 1.32 0.00 CIRCULAR 18.00 in 18,00 in DI-3UA FLOO F 4998.62 FO.5 4998.62 F 0.013 0.25 FO.00 CIRCULAR F18.00in 18.00 in INLET-3UB F14.00 4998.55 FO.5 4998.62 F 0.013 1.32 FO.00 CIRCULAR 24.00 in 24.00 in DI-3UB 1.00 4998.62 0.5 4998.62 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-3SA 22.98 4998.33 0.5 4998.44 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-3SA F 1.00 F 4998.44 FO.5 4998.44 F 0.013 0.25 FO.00 CIRCULAR F18.00in 18.00 in INLET-30B 8.00 4995.36 1.0 4995.44 0.013 1.32 Q.00 CIRCULAR 24.00 in 24.00 in DI-3OB F8.00 F 4995.36 FLO F4995.44 F 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-MA50.00 4996.77 0.5 4997.02 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3IA 1.00 4997.02 0.5 4997.02 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STM1-3AA 361.00 4992.93 0.3 4994.01 0.013 1.32 0.00 CIRCULAR 54.00 in 54.00 in FES-3XA 34.03 4995.80 0.5 4995.97 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in STMH-3AB 110.00 F 4994.01 FO.3 4994.34 F 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in INLET-3AA 70.50 4994.34 0.3 4994.55 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in DI-3AA 1.00 4994.55 0.3 4994.55 0.013 0.25 0.00 CIRCULAR 48.00 in 48.00 in STMH-3AC 10.00 4994.55 0.3 4994.58 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in STMH-3KA 122.53 F 4995.08 FO.5 4995.69 F 0.013 1.32 0.00 CIRCULAR F30.00m 30.00 in INLET-3KA 42.38 4996.20 0.5 4996.41 0.013 0.85 0.00 CIRCULAR 24.00 in 24.00 in DI-3KA 1.00 4996.41 0.5 4996.41 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-3MA 42.38 4996.20 0.5 4996.41 0.013 0.85 0.00 CIRCULAR 24.00 in 24.00 in DI-3MA FLOO F 4996.41 FO.5 4996.41 F 0.013 Q.25 FO.00 CIRCULAR 24.00 in 24.00 in STMH-3LA 84.47 4995.08 0.5 4995.50 0.013 1.32 Q.00 CIRCULAR F30.00 in 30.00 in INLET-3LA F42.38 F 4996.00 FO.5 4996.21 F 0.013 0.85 F 0.00 CIRCULAR 24.00 in 24.00 in DI-3LA FLOO F 4996.21 FO.5 4996.21 F 0.013 0.25 FO.00 CIRCULAR 24.00 in 24.00 in INLET-3NA F42.38 F 4996.00 FO.5 4996.21 F 0.013 0.85 FO.00 CIRCULAR 24.00 in 24.00 in DI-3NA 1.00 4996.21 0.5 4996.21 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-3AB 10.00 4994.58 0.5 4994.63 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in INLET-3AC F26.17 F 4994.63 FO.5 4994.76 F 0.013 6.05 0.00 CIRCULAR 24.00 in 24.00 in 4 50 C .00in .00 in99 . 0.5DI- . F 26.17 4463 RCULAR24 24 DI-3AB FLOO F 4994.63 FO.5 4994.63 F 0.013 0.25 FO.00 CIRCULAR 24.00 in 24.00 in INLET-3DA 24.00 4995.26 0.5 4995.38 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3DA 1.00 4995.38 0.5 4995.38 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-3DB F23.00 F 4995.26 FO.5 4995.37 F 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3DB 1.00 4995.37 0.5 4995.37 0.013 0.25 0.00 CIRCULAR 24.00 in 2 .004 in Sewer Flow Summary: '� Full Flow Critical Flow Normal Flow Capacity Element Flow Velocity Depth Velocity Fepth Velocity�Froude Flow Fl low Surcharged Name (cfs) (fps) (in) (fps) (fps) Number Condition (cfs) L�n Pth Comment ft -TMH-3A 262.35 � 10.38 18.58 5.95 17.94 6.25 1.07 Supercritical 35.08 0.00 STH-313 262.35 10.38 18.58 5.95 17.94 6.25 1.07 Supercritical35.08 F 0.00 F STMH-3C 262.35 10.38 17.63 5.78 17.04 6.07 1.07 Supercritical 31 .657 0.00 F STMH-3D 205.91 9.76 14.72 5.27 14.37 5.45 1.05 Supercritical 21.17 0.00 [i��3 E 7.45 4.21 1.71 1.76 1.77 1.67 0.93 FSubriticacl 0.15 0.00 Veloc ty s Too FDI-3YA 7.45 4.21 1.71 1.76 1.77 1.67 0.93 FSb,,itial FO.15 0.00 Velocs Too 7.45 4.21 3.08 2.39 Fi��3YT10F2.37 FO.99 FSubcritical FO.48 0.00 DI-Y-3B 7.45 4.21 3.08 2.39 3.10 2.37 0.99 Subcritical 0.48 0.00 STMH-3E 205.91 9.76 14.55 5.23 14.21 5.41 1.05 Supercritical 20.69 0.00 F STMH-3F 78.89 6.28 7.99 3.85 8.43 3.57 0.90 Subcritical 5.30 0.00 FST Mi i-3 78.89 6.28 7.99 3.85 8.43 3.57 0.90 Subcritical 5.30 0.00 TEAT- 29.08F5.92 4.19 2.78 4.09 2.89 1.05 Supercritical 1.16 0.00 DI-3FA 29.08 5.92 4.19 2.78 4.09 2.89 1.05 Supercritical 1.16 F0.00 7 STMH-3H 55.25 5.74 7.72 3.80 8.20 3.48 0.89 Subcritical 4.61 0.00 STMH-3I 12.42 3.95 7.25 3.75 8.03 3.26 0.82 Sub critical 3.00 145.25 Surcharged FS��-37 5.77 3.26 2.91 2.32 3.33 1.91 0.77 Pressurized 0.43F19.75 Veloctys Too 13GA 7.45 4.21 1.52F1.67 1.59 1.56 F.92 Pressurized FO.12F13.69 VelocTys Too FDI-3GA 7.45F4.21 1.52FI.67 1.59F1.56 FO.92 Pressurized 0.12 1.00 Veloctys Too iNLE F7.45F4. 1 2 2.46F2.13 2.50F2.08 FO.97 Pressurized3GB Fo 31 22.31 DI-3GB 16.04 5.11 2.28 2.04 2.31 2.00 0.97 Subcritical 0.31 0.00 S3PA 32.08 [10.21 6.74F3.60 4.62 6.14 2.09 SupercriticalF2.60 F o-oo E 14.90 8.43 7.33 3.84 5.09 6.33 F2.02 Supercritical 2.60 0.00 DI-3PA 14.90 8.43 7.33 3.84 5.09 6.33 2.02 Supercritical 2.60 0.00 [i�tEB 16.04F5.11 4.38 2.86 4.29 2.94 1.04 Pressurized 1.12727.05 DI-3EB 16 4 F 5.11 4.38 2.86 4.29 2.94 1.04 Supercritical 1.12 0.00 2 1.00Peurized05 .956.04 99 35 99 .351 2[itEA DI-3EA 16.04 5.11 2.99 2.35 2.99 2.35 1.00 Pressurized 0.53 1.00 S M 108.00 6.79 13.74 5.12 14.18 4.89 0.94 Subcritical 16.31 0.00 PtHB E F6-04 F5.11 3.64 2.60 3.60 2.64 1.02 SupercriticalFF 780.00 DI-3HB 16.04 5.11 3.64 2.60 3.60 2.64 1.02 Supercritical 0.78 0.00 I13IET 16.04 5.11 F7-39 3.79 F7--l6F3-95 Fl-06 Supercritical 3.11 F 0.00 DI-3HA 16.04 5.11 7.39 3.79 7.16 3.95 1.06 Supercritical 3.11 0.00 FIBBFlo8-oo 6.79 11.80 4.72 12.21 4.49 0.93 FSbcritical 12.11 0.00 TMH- S3BC F78 89 6.28 F1219F482 F12 71 4.55 Fo 92 FSb -tical F'211FOOO [9TMH 101.84F8.1o 11.00 F4.56 10.11 5.14 1.18 Supercritical Fg-go 0.00 S 3B 47.29F6.69 1.94 4.83 11.18F5.29 1.14 Supercritical Fg-go 0.00 30 A 22.68 7.22 5.59 3.25 4.58 4.32 1.48 Supercritical 1.81 0.00 DI-DI 22.68 7.22 5.59 3.25 4.58 4.32 1.48 Supercrirical 1.81 0.00 5-F7.29F6.69 9.94 4.37 9.32F4.78 1.13 Supercritical 6.94 0.00 [S�347.29 6.69 6.56 3.50 6.23 3.77 1.II Supercritical 3.08 0.00 ['�TMH F47.29F6.69 F6.56 3.50 6.23F3.77 F1.11 Supercritical 3.08 0.00 PTMAH 10.53 5.96 5.99 3.42 4.98 4.42 [ 1.43 Supercritical 1.76 0.00 P �CBF9 .42 5.33 5.99 3.42 5.27 4.08 F1.28 Supercritical 1.76Fo-oo - --FS3MH- 7.45 4.21 5.99 3.42 5.95 3.45 1.01 Supercritical 1.76 0.00 S3CD 7.45 4.21 5.99 F3.42 5.95 3.45 1.01 Supercritical 1.76 0.00 �3JA [7.45 4.21 5.34 3.21 5.31 3.24 1.01 FSpercritical 1.41 0.00 DI-DI 7.45 4.21 5.34 3.21 5.31 3.24 1.01 Supercritical 1.41 0.00 �T 7.45 4.21 2.87 2.31 2.90F2-28 0.98 Subcritical 0.42 0.00 DI-3JB 7.45 4.21 2.87 2.31 2.90 2.28 0 98 Subcritical 0.42 0.00 P 2BH 16.04 5.11 4.87 3.02 4.76 3.12 1.05 Supercritical 1.38 0.00 --F--- P�2BJF 5.11 4.87 3.02 4.76 3.12 1.05 Supercritical 1.38 0.00 PtBA 16.04 5.1 1 4.87F3-02 4.76F3.12 F1.05 Supercritical 1.38 0.00 DI-3BA 16.04 5.11 4.87 3.02 4.76 3.12 1.05 Supercritical FI.38 F 0.00 7 P�3QAF 6.88F9.46 7.69 3.81 6.12F5-28 F1.56 Supercritical 4.21 0.00 P�3QBF 1.13F8.38 8.10 3.94 6.48F5.39 F1.54 Supercritical 4.21 0.00 P�3QCF 2.68F7-22 8.64 4.13 7.00F5-52 F1.50 Supercritical 4.21 0.00 P-3QD MH 22.68F7.22 6.91 3.65 5.62F4-87 FI.49 Supercritical 2.73 0.00 P3Q! 22.68F7-22 6.91 3.65 5.62F4-87 Fl.49 Supercritical 2.73 0.00 [itA 7.45 4.21 3.76 2.66 3.75 2.66 1.00 Supercritical 0.71 0.00 DI-3UA 7.45 4.21 3.76 2.66 3.75 2.66 1.00 Supercritical 0.71 0.00 I3LET- UB F16 04 F5.11 F604F339 5.86 F3.53 Fl 06 FS'pe"-ti"'F210 F0.00 DI-3UB 16.04 5.11 6.04 3.39 5.86 3.53 1.06 Supercritical 2.10 0.00 F I1 SEAT- AT 7.45 4.21 6.16 3.48 6.13F3.50 1.01 Supercritical 1.86 0.00 DI-3SA 7.45 4.21 6.16 3.48 6.13 3.50 1.01 Supercritical 1.86 0.00 3OB 22.68 7.22 4.80 3.00 3.96 3.95 F1.46 SupercriticalFI.34 0.00 DI3OB 22.68 7.22 4.80 3.00 3.46 3.95 1.46 Supercritical 1.34 0.00 IN3 EET 16.04 5.11 7.14 3.71 6.92 3.88 1.06 Supercritical F2-.91 0.00 DI-3IA 16.04 5.11 7.14 3.71 6.92 3.88 1.06 (Supercritical 2.91 0.00 --F--- FSI_ 108.00 6.79 F 1.37F .63 F 1.79 4.40 FO-93 Subcritical 11.28 0.00 FES-3XA 7.45 4.21 5.83 3.37 5.79 3.40 1.01 Supercritical 1.67 0.00 P�3 78.89 6.28 11.02 4.57 11.51 4.29 0.92 FSubcitiarcl 9.94 0.00 INLET 78.89F6-28 11.02F4-57 11.51F4-29 0.92 FSubcitiarcl 9.94 0.00 FDI3AA- 78.89 6.28 2.91 2.30 3.24 L96 0.81 FSubciticarl 0.72 0.00 Veloci� s Too NACM 78.89 6.28 10.73 4.50 11.21 4.23 0.92 FSubcritical 9.43 0.00 NKA29.08F5.92 7.60F3-80 7.25F4-07 F1.10 Supercritical 3.72 0.00 FINLET 16.04 5.11 5.25 3.15 5.12 3.26 1.05 Supercritical 1.60 0.00 -- --DI-3KA 16.04 5.11 5.25 3.15 5.12 3.26 1.05 Supercritical 1.60 0.00 F116.04 5.11 6.24F3.45 6.06F3.60 F1.06 Supercritical 2.24 0.00 DI-3MA 16.04 5.11 6.24 3.45 6.06 3.60 1.06 Supercritical 2.24 0.00 S3MAH- 29.08 5.92 7.31 3.73 6.98 3.98 1.10 Supercritical 3.45 0.00 r 3 E 16.04 5.11 4.30 2.83 4.22 2.91 1.04 Supercritical 1.08 0.00 DI-DI 16.04 5.11 4.30 2.83 4.22 2.91 1.04 Supercritical 1.08 0.00 3 6.46 16.04 .11 F6.66 .73 1.06 Superctic 2.54 0.00AIN DI-3NA 16.04 5.11 6.66 3.57 6.46 3.73 1.06 Supercritical 2.54 0.00 [��3AB 5.11 6.52 3.53 6.33F- 16.04 .69 1.06 Pressurized 2.44F10.00 [i��3AC 16.04 5.11 5.45 3.21 5.31 3.33 1.05 rWercmrpitical F 72 4.00 DI-3AC 16.04 5.11 5.45 3.21 5.31 3.33 1.05 �Wermc.tical Fl .72 4.28 DI-3AB 16.04 5.11 3.50 2.54 3.46 2.58 1.02 Pressurized 0.72 1.00 [itDA 16.04 5.11 3.08 2.38 3.07 2.39 1.01 Supercritical 0.56 0.00 DI-3DA 16.04 5.11 3.08 2.38 3.07 2.39 1.01 (Supercritical 0.56 0.00 13DB 16.04 5.11 3,62 2.59 3.58 2.63 1.02 Supercritical 0.77 0.00 -F---� DI-3DB 16.04 5.11 3.62 �2.59 3.58 2.63 �2 ,Supercritical 0.77 0.00 • A Froude number of 0 indicates that pressured flow occurs(adverse slope or undersized pipe). • if the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized,full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Peak Cross Area Name ('f) Section Rise Span Rise Span Rise Span (ft-2) Comment 58.00in910in3 .00in300in5 .00in STMH-3A35.08 ELLIPSE 6 6 8 25.29 STH-3B 35.08 ELLIPSE 58.00 in 91.00 in 36.00 in 36.00 in 58.00 in 91.00 in 25.29 F STMH-3C 31.65 F ELLIPSE 58.00 in 91.00 in 36.00 in 36.00 in 58.00 in 91.00 in 25.29 F STMH-3D 21.17 F ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09 F INLET-3YA 0.15 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in F18.00inF8.00 in F1.77 F DI-3YA 0.15 CIRCULAR 18.00 in 18.00 in F18.00in 18.00 in 18.00 in 18.00 in F1.77 F INLET-3YB 0.48 CIRCULAR 18A0 in 18A0 in 18A0 in 18A0 in 18A0 in 18A0 in 1.77 F- DI-Y-313 0.48 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in l-77 F STMH-3E 20.69 F ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09 F STMH-3F 5.30 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 F- STMH-3G 5.30 CIRCULAR 48A0 in 48A0 in 18A0 in 18A0 in 48A0 in 48A0 in 12.57 INLET-3FA 1.16 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in F4.91 F DI-3FA I A6 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in F4.91 F STMH-3H 4.61 CIRCULAR 42.00 in 42.00 in 18.00 in 18.00 in 42.00 in 42.00 in F9.62 F STMH-3I 3.00 CIRCULAR 24.00 in 24.00 in 18A0 in 18.00 in 24.00 in 24.00 in F3.14 Fc IRcuLAR 8 8 8 8STMH-3J 0.43 A A .00 in l-77 INLET-3GA 0.12 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in F18.00in 18.00 in F1.77 F DI-3GA 0.12 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F INLET-3GB 0.31 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F DI-3GB 031 CIRCULAR 24A0 in 24A0 in 18A0 in 18A0 in 24A0 in 24A0 in F3.14 STMH-3PA 2.60 CIRCULAR 24.00 in 24.00 in F18.00in 18.00 in 24.00 in 24.00 in F3.14 F INLET-3PA 2.66 CIRCULAR 18.00 in 18A0 in 18.00 in 18A0 in 18A0 in 18A0 in F1. 77 DI-3PA 2.60 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F INLET-3EB 1.12 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F CI .00in .00i 80in80n .00in .00 in 3.14DI-3EB 1.12 RCULAR24 24 24 24 INLET-3EA 0.53 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F CIRcuLAR .00in2 .00in18.00i 18.00in .00in2 .00in .1DI-3EA 0.53 24 4 24 4 34 STMH-3BA 1631 FORCULAR 54.00 in 54.00 in 27.00 in 27.00 in 54.00 in 54.00 in 15.90 F INLET-3HB 0.78 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F DI-3HB 0.78 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 INLET-3HA 3.11 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3HA 3.11 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-3BB 12.11 FORCULAR 54.00 in 54.00 in 24.00 in 24.00 in 54.00 in 54.00 in 15.90 F STMH-3BC 12.11 FORCULAR 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 12.57 F STMH-3BD 9.90 CIRCULAR 48.00 in 48.00 in 21.00 in 21.00 in 48.00 in 48.00 in 12.57 F STMH-3BE 9.90 CIRCULAR 36.00 in 36.00 in 21.00 in 21.00 in 36.00 in 36.00 in 7.07 F INLET-3OA 1.81 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-OA 1.81 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-3BF 6.94 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07 STMH-3BG 3.08 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07 STMH-313H 3.08 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in F7.07 F STMH-3CA 1.76 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in FI.77 F STMH-3CB 1.76 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in FI.77 F STMH-3CC 1.76 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 STMH-3CD 1.76 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 INLET-3JA 1.41 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 F- DI-3JA 1.41 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-3JB 0.42 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 C 18.00in1 .00 DI-3JB 0.42 8 8.00 in 18.00 in 18.00 in 18.00 in F1.77 F STMH-3BI 1.38 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F STMH-2BJ 1.38 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F INLET-313A 1.38 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F DI-3BA 1.38 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-3QA 4.21 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07 STMH-3QB 4.21 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 STMH-3QC 4.21 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 STMH-3QD 2.73 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F STMH-3QE 2.73 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 INLET-3UA 0.71 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in F18.00in 18.00 in FI.77 F DI-3UA 0.71 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F INLET-3UB 2.10 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3UB 2.10 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 INLET-3SA 1.86 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3SA 1.86 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1,77 INLET-3OB 1.34 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F DI-3OB 1.34 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F INLET-3IA 2.91 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 DI-3IA 2.91 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 STMH-3AA 11.28 CIRCULAR 54.00 in 54.00 in 24.00 in 24.00 in 54.00 in 54.00 in 15.90 FES-3XA 1.67 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-3AB 9.94 CIRCULAR 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 12.57 F- INLET-3AA 9.94 CIRCULAR 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 12.57 F DI-3AA 0.72 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 STMH-3AC 9.43 CIRCULAR 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 12.57 F- STMH-3KA 3.72 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 F INLET-3KA 1.60 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F DI-3KA 1.60 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 INLET-3MA 2.24 CIRCULAR 24.00 in 24.00 in 18.00 in 118.00 in 24.00 in 24.00 in 3.14 DI-3MA 2.24 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F STMH-3LA 3.45 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 INLET-3LA 1.08 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 DI-3LA 1.08 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 INLET-3NA 2.54 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3NA 2.54 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F INLET-3AB 2.44 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 F INLET-3AC 1.72 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F DI-3AC 1.72 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F CIRcuLAR .00in2 .00in80in18.00in .00in40 in 3.14DI-3AB 0.72 24 4 24 2 INLET-3DA 0.56 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3DA 0.56 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3DB 0.77 CIRCULAR 24.00 in 24.00 in 18.00 in F18.00inF24.00 in 24.00 in 3.14 F DI-3DB �0.77 CIRCULAR 24.00 in 24.00 in 18.OQ in 18.00 in 24.00 in 24.00 in 3.14 • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used'parameters. Grade Line Summary: Tailwater Elevation(ft): 4996.50 Downstream Manhole TInvert Elev. Losses HGL EGL Bend Lateral Friction Element Downstream Upstream Downstream Upstream Downstream Upstream Loss Loss Loss Name (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) STMH-3A 4992.00 4992.22 F 0.00 F 0.00 F 4996.50 4996.50 F 4996.53 0.00 4996.54 STH-313 4992.23 F 4992.43 FO.04 F 0.00 4996.54 4996.54 F4996.58 0.00 4996.58 STMH-3C F 4992.43 F 4992.93 FO.00 F 0.00 4996.55 4996.55 F4996.58 0.01 4996.60 STMH-31) F4992.93 4993.57 F 0.00 F 0.00 F 4996.57 4996.57 F 4996.60 0.01 4996.61 INLET-3YA 4996.47 4996.53 F 0.00 F 0.00 F 4996.61 4996.68 F 4996.66 0.07 4996.72 DI-3YA 4996.53 4996.53 F 0.00 F 0.00 4996.69 4996.69 F 4996.72 0.00 4996.73 -F IINLET-3YB 4996.47 4996.58 0.00 0.00 4996.72 4996.84 4996.81 0.12 4996.93 DI-Y-313 4996.47 4996.58 0.00 0.00 4996.91 4996.91 4996.93 0.03 4996.95 STMH-3E 4993.56 F4993.71 F 0.00 F 0.00 F 4996.58 4996.58 F 4996.61 FO.00 4996.62 STMH-3F 4993.71 4993.77 0.00 0.00 4996.61 4996.61 F4996.62 0.00 4996.62 STMH-3G 4993.77 4994.07 0.00 0.00 4996.61 4996.61 4996.62 0.00 4996.62 INLET-3FA F 4995.12 F 4995.40 F0.00 0.00 F4996.62 4996.62 F4996.62 Fo.00 4996.62 DI-3FA 4995.40 F 4995.40 F0.00 0.00 4996.62 4996.62 F4996.62 FO.00 4996.62 STMH-3H 4994.07 F4994.20 F 0.00 F 0.00 F4996.61 4996.61 F4996.62 FO.00 4996.62 STMH-3I F 4994.20 F 4994.80 F 0.00 F 0.00 F 4996.61 4996.65 F 4996.63 FO.03 4996.66 STMH-3J 4994.80 4994.86 0.00 0.00 4996.66 4996.66 4996.66 0.00 4996.66 INLET-3GA 4994.85 4994.92 0.00 0.00 4996.66 4996.66 4996.66 0.00 4996.66 DI-3GA 4994.92 4994.92 0.00 0.00 4996.66 4996.66 4996.66 0.00 4996.66 INLET-3GB 4994.86 4994.97 0.00 0.00 4996.66 4996.66 4996.66 0.00 4996.66 DI-3GB 4994.94 F4994.94 F0.00 0.00 F4996.66 4996.66 F4996.66 FO.00 4996.66 STMH-3PA F 4996.35 F4999.03 F 0.01 F 0.00 F4996.73 4999.59 F4997.32 2.47 4999.79 INLET-3PA 4999.03 4999.63 0.00 0.00 4999.60 5000.24 5000.08 0.39 5000.47 DI-3PA F 4999.61 F 4999.63 F 0.01 F 0.00 F 5000.25 5000.58 F 5000.66 FO.00 5000.66 INLET-3EB 4994.20 F4994.34 F 0.00 0.00 F 4996.62 4996.62 F 4996.62 0.00 4996.62 DI-3EB 4994.66 4994.66 0.00 0.00 4996.62 4996.62 4996.63 0.00 4996.63 INLET-3EA 4994.21 4994.25 0.00 0.00 4996.62 4996.62 4996.62 0.00 4996.62 DI-3EA 4994.25 F4994.25 F 0.00 F 0.00 F 4996.62 4996.62 F 4996.62 F 0.00 4996.62 STMH-3BA 4993.71 4994.15 0.02 0.00 4996.60 4996.61 4996.64 0.02 4996.66 INLET-3HB 4996.48 4996.52 0.00 0.00 4996.78 4996.82 4996.89 0.04 4996.93 DI-3HB 4996.52 F4996.52 F 0.00 F 0.00 F 4996.85 4996.85 F 4996.93 0.00 4996.93 INLET-3HA 4996.48 4996.62 0.02 0.00 4997.08 4997.24 4997.32 0.14 4997.46 DI-3HA 4996.62 4996.62 0.00 0.00 4997.29 4997.29 4997.46 0.00 4997.47 STMH-3BB 4994.16 4994.28 0.00 0.00 4996.63 4996.63 4996.66 0.00 4996.67 STMH-3BC 4994.27 F4994.94 0.00 F 0.00 F 4996.64 4996.66 F 4996.67 0.07 4996.75 STMH-3BD 4994.94 4995.27 0.00 0.00 4996.69 4996.69 4996.75 0.04 4996.79 STMH-3BE F 4995.27 F4995.36 F 0.00 F 0.00 F 4996.69 4996.69 F 4996.83 0.03 4996.86 INLET-30A F 4995.36 F 4995.64 F 0.01 F 0.00 F 4996.86 4996.86 F 4996.86 0.00 4996.87 DI-OA F 4995.63 F 4995.64 F 0.00 F 0.00 F 4996.86 4996.86 F 4996.87 0.00 4996.87 STMH-3BF F 4995.36 F 4995.70 F 0.00 F0.00 F4996.79 4996.79 F4996.86 FO.07 4996.93 STMH-3BG 4995.70 4995.81 0.00 0.00 4996.91 4996.91 4996.93 0.01 4996.94 STMH-3BH 4995.81 4996.36 0.00 0.00 4996.91 4996.91 4996.94 0.16 4997.10 STMH-3CA 4997.86 F4998.40 F 0.02 F 0.00 F4998.28 4998.90 F4998.58 0.50 4999.08 STH-3CB 4998.39 4999.98 0.00 0.00 4998.90 5000.48 4999.09 1.57 5000.66 M STMH-3CC 4999.98 5000.13 0.01 0.00 5000.54 5000.63 5000.67 0.14 5000.81 STMH-3CD F 5000.13 F5000.73 F 0.00 F 0.00 F 5000.63 5001.23 5000.81 0.60 5001.41 INLET-3JA F 5000.73 F5000.93 F 0.01 F 0.00 F 5001.36 5001.37 F 5001.42 Fo.11 5001.54 DI-3JA 5000.93 5000.93 0.00 0.00 5001.41 5001.41 5001.54 0.00 5001.54 INLET-3JB F 5000.73 5000.91 F 0.00 F 0.00 F 5001.41 5001.41 F 5001.41 F 0.01 5001.42 DI-3JB 5000.91 5000.91 0.00 0.00 5001.41 5001.41 5001.42 0.00 5001.42 STMH-3BI 4997.36 4998.23 0.00 0.00 4997.75 4998.64 4997.91 0.87 4998.78 STMH-2BJ 4998.23 4998.64 0.00 0.00 4998.66 4999.05 4998.78 0.41 4999.19 INLET-3BA 4998.64 F4998.86 F 0.00 F 0.00 F 4999.08 4999.27 F 4999.19 0.22 4999.41 DI-3BA F4998.86 4998.86 F 0.00 F 0.00 4999.30 4999.30 F4999.41 F 0.00 4999.41 STMH-3QA F 4995.70 4995.86 F 0.01 F 0.00 F 4996.90 4996.90 F 4996.94 F 0.02 4996.96 STMH-3QB 4996.36 4996.63 0.00 0.00 4996.90 4997.30 4997.35 0.20 4997.55 STMH-3QC 4997.14 4997.83 0.00 0.00 4997.72 4998.55 4998.19 0.62 4998.82 STMH-3QD 4997.83 4998.25 0.00 0.00 4998.76 4998.83 4998.82 F0.22 4999.03 STMH-3QE F 4998.25 F4998.55 F 0.00 F 0.00 F 4998.83 4999.13 F 4999.08 F0.25 4999.33 INLET-3UA 4998.55 4998.62 F 0.00 F 0.00 4999.33 4999.33 4999.34 0.00 4999.34 DI-3UA 4998.62 4998.62 0.00 0.00 4999.33 4999.33 F4999.34 0.00 4999.34 INLET-3UB 4998.55 4998.62 0.01 0.00 4999.28 4999.28 4999.34 0.02 4999.36 DI-3UB 4998.62 F4998.62 F 0.00 0.00 F4999.28 4999.28 F4999.36 0.00 4999.37 INLET-3SA F 4998.33 F4998.44 F0.02 F 0.00 F4998.84 4998.95 F4999.03 F0.11 4999.14 DI-3SA 4998.44 F 4998.44 F 0.00 0.00 F4999.00 4999.00 F4999.15 FO.00 4999.15 INLET-30B F 4995.36 F 4995.44 F 0.00 F 0.00 F 4996.86 4996.86 F 4996.86 F 0.00 4996.86 DI-30B 4995.36 F 4995.44 F 0.00 F 0.00 4996.86 4996.86 F4996.86 FO.00 4996.86 INLET-MA 4996.77 F4997.02 0.02 F 0.00 4997.35 4997.61 F4997.58 0.25 4997.83 DI-31A 4997.02 4997.02 0.00 0.00 4997.66 4997.66 4997.83 0.00 4997.84 STMH-3AA 4992.93 4994.01 0.01 0.00 4996.60 4996.60 4996.61 0.02 4996.63 FES-3XA 4995.80 F4995.97 0.02 F 0.00 F 4996.62 4996.62 F 4996.67 FO.04 4996.70 STMH-3AB 4994.01 4994.34 0.00 0.00 4996.61 4996.61 4996.63 0.01 4996.64 INLET-3AA 4994.34 4994.55 0.00 0.00 4996.61 4996.61 4996.64 0.01 4996.65 DI-3AA 4994.55 F4994.55 F 0.00 F 0.00 F 4996.65 4996.65 F 4996.65 0.00 4996.65 STMH-3AC F 4994.55 F4994.58 F 0.00 F 0.00 F 4996.62 4996.62 F 4996.65 0.00 4996.65 STMH-3KA 4995.08 4995.69 0.01 0.00 4996.64 4996.64 4996.66 0.05 4996.72 INLET-3KA 4996.20 4996.41 0.00 0.00 4996.65 4996.85 F 4996.79 0.21 4997.00 DI-3KA 4996.41 F4996.41 F 0.00 F 0.00 44996.88 4996.88 F4997.00 F0.00 4997.01 3MA 4996.20 4996.41 0.01 F0.00 4996.70 4996.93 F4996.90 0.21 4997.11 DI-3MA 4996.41 4996.41 0.00 0.00 4996.97 4996.97 4997.12 Q.00 4997.12 STMH-3LA F 4995.08 F4995.50 F 0.01 F 0.00 F 4996.64 4996.64 F 4996.66 F0.02 4996.68 INLET-3LA 4996.00 4996.21 0.00 0.00 4996.66 4996.66 4996.68 0.04 4996.73 DI-3LA 4996.21 F4996.21 F 0.00 F0.00 F4996.67 4996.67 F4996.73 0.00 4996.73 INLET-3NA F 4996.00 F4996.21 F 0.01 F 0.00 F 4996.65 4996.76 F 4996.75 FO.21 4996.96 DI-3NA 4996.21 4996.21 0.00 0.00 4996.81 4996.81 4996.97 0.00 4996.97 INLET-3AB 4994.58 4994.63 0.00 0.00 4996.64 4996.64 4996.65 0.00 4996.65 INLET-3AC 4994.63 4994.76 0.00 0.00 4996.65 4996.65 4996.65 0.00 4996.65 DI-3AC 4994.63 F 4994.76 F0.00 0.00 4996.65 4996.65 F4996.65 FO.00 4996.66 DI-3AB 4994.63 F4994.63 F0.00 0.00 F4996.65 4996.65 F4996.65 0.00 4996.65 INLET-3DA 4995.26 4995.38 0.00 0.00 4996.58 4996.58 4996.58 0.00 4996.58 DI-3DA F 4995.38 F4995.38 F 0.00 F 0.00 F 4996.58 4996.58 F 4996.58 FO.00 4996.58 INLET-3DB 4995.26 4995.37 0.00 0.00 4996.58 4996.58 4996.58 0.00 4996.58 DI-3DB 4995.37 4995.37 0.00 0.00 4996.58 4996.58 4996.58 0.00 4996.58 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall,sewer#0,is not considered a sewer. • Bend loss=Bend K*V_fi^2/(2*g) • Lateral loss=V_fo^2/(2*g)-Junction Loss K*V_fi^2/(2*g). • Friction loss is always Upstream EGL-Downstream EGL. ST-03 3a:3 3W,.. w99.93 d998b3 �99i33 ,9➢0.03 ,99,'3 r. STy� �YL@r-49 4993A3 •``� sTMk,3Aa 4992.13 SrM ST 3@ 1, <( 9,3A -----HGL ............EGL a99D.8s 0.00 69.70 119.w 269.10 338.80 ,38.50 $38-v 62790 t1t.80 801.30 Distance(Ft) ST 3Dl w0 M ,999.09 a998.09 a991.09 {+. .............................s..uv.c:a ........................ - ---'-'---"�---a— su -----_____996.09 `a µ: ,9ss-o9 �NLL:T3lJ ,993.09 ,992.09 S STjt.3@ TM��3q ----HGL ............EGL 3991.09 000 16w 3320 39.80 66.w 83.00 99.80 11620 13_.S: 149.w Distance(Ft) ST 3D2 SODD.09 Oww OHM a99109 N" -----_-----___--auv----------------------- _996.09 Os: a995M LET';DE a995.D9 a993F9 499219 S S�'y 3B ---HGL .........._EGL a99109 D.DO I6.50 33.00 a9.56 66.00 8250 99.00 115.50 132.DD 136.50 Distance(FtZ ST-3E I 5ml,% 5M,96 a999.'6 a998.66 3997.56 •— .................................. ...................... ....v--_---------_----------------_---- ---" m996.a�t auv�,uuuv :,......................vvuuuuu�wuuvuvvuvuuvvuuuuuvvuuvuuu�__-:-_ {L' a995.36 a99a 26 srMfiAZETa� J993.16 3T MNID S a99zo6 SPA".", ---HGL ...........EGL 990.96 0.00 7430 14.66 22290 S120 37130 if5.86 520.10 5PB.30 668.70 Distance(Ft) ST-3E2 SOD196 -'— SODD.86 i999]6 1998 66 399].6 [i r ...................................... ....................uvvuuuvvuuuuuuuuvuuuvv.vuuuuvvuuvuuvu.ss_........................................�_� vu uauv. uuussuuussuuuu_uuuussuuuauuvuussuuuuuu...................0 i]- J965.36 4Ma ST in11i. y 3V E J993.16 ST �3� •3F S 399x06 s TMx3c S�,ykJq �38 -- ---HGL ...........EGL vDo 66 000 ]e 3o Irmo 2xs.3o 3a.JD 380.56 Sx.66 53176 6oe.s6 66i.9D Distance(FU ST 3F 5000.66 i .]6 d6➢6.66 a0?56 C -5.36 J99J`6 s sT sTMEr 3 d993.16 �- (y:3j, F3F C Mf,.�D STMk 4992.06 `S'I�t3� .3C �H.3q - ----HGL ...........EGL o.9D0. D.00 76.60 I4920 Z]3.80 298.J0 373.00 SD7.60 5xt2D 596.80 67I.dO 736.00 Distance(Ftl ST-3Gl a SCC43a J999'6 �998 66 499156 fi C uvuvuuuvuvuxvuuvxuvvrsuvuvuuv___........... .... - Ll •••• ••• - N 996. uvuuu vuvuu __�____�vuvvv.v.vuvv.vvvvvuvuuvuuuvuvvuuvuuvuuuvu..______i...............................•••••••••••+v-- u: J995.36 STM�3 y 3� sT i H s sr,L, My3c T'y8;4 S ,99_ob ST�tJ3q 3g -- ---HGL ............EGL 999 96 O..j 96.60 193� :89.80 386.10 43.00 579.60 6]6.30 ]]:.80 869.60 Distance(Ft) ST 3G2 SOOL96 5000.86 d999.16 4998.66 �99].56 fi F •— ........v.....uvuuvuvuauv...... ••...••.••..•.•........._r....uu.....u.........uuuuuuu..vcuvuuvuuuu.wwuuu m 596 uuvvu uuvxt______ _ assuayss �__ ... vu.sv_.•••••••••••••••••••••..•••••• .__________.....__...... 15: 9995.36 •�I 3 6993.16 +ST ••j�. `3F ti!y 3D s J99106 - ---HGL ............EGL d990.96 0.00 91,f0 19f.80 392311 389.60 47.00 5&I.JO 681.80 l]920 876.60 9N.00 Distance(Fti ST-')H 1 5000.86 ,999]6 ,m m ,99].56 f+ a.. arvuvxvaxuvauvvvsrrviuvruviv-��-��-��������� �yam, axxxxxx xrrvaxs+•ua_aaaxxx. _w..--..--..----..-....--....-�___________.uuuuuuuuuuuuuuuuuuu_suuuuu:_uuv..�_.____�uvvuxwavvuv___-�_____ ,� 1NLL�=.3yyq ,993.3E S 9 TM�3'30 ,99:.oa "5' 3TMh3c SrMf f 3'4 3g -----HGL ...........EGL i99D.56 000 74.50 149.06 ::3.30 M8.00 31:.50 i!].00 531.50 596.00 670,50 Distance(Ft) ST 3H2 5001.96 5000.86 ,999]6 49980 ,9G].56 - ...uu.uv.vu.....vuuuvuu• •••••••••••••••••••••• ....•••••.••u..u..vu......vv..u...vuvvuuuuussssssuvessyssssssusssscuvv:uuuussyssvvssuvussssssxvu....ssuuuuuuvvvuvuuuuuu_________-__ 996.,E uuuuuuu uuuuuuuu _-�-�--�- A �LFr.3yt ,993.36 i99 16 ,993.16 ST STy'3F ST ,3gA M�3D 4992.% ST S4,38 T,f•=`3C Mq'3.4 ---HGL ...........EGL 990.96 0.00 7150 143.00 21730 290-00 362130 ,3300 50]50 380.00 63:.30 Distance(Ft) ST-3J1 30W9, / 50033t IAz s spa vf. nE r cc sr x ,'Q4 /993', sT sb.�8 s sr,��MA .3sF 3Bc e /993.77 Sja ';8C SOH STMk 3�S�H.�8A '(++ill'?88 3p •Sy '349 �.3C ............EGL /99ost 0.0 170.5 331.0 5113 682.0 83:.5 10:;.0 II93s f361.0 i3W. Distance(Ft) ST 3J2 SOW 98 5W338 5001.,8 mis �f ST�f13C y'?C',D N„ C � r ST 399s.;s S, S .��rn'Itz.��H3efP S�y���1 38�J+3F 8O 3993.73 Sr Sr4,,H S MH3Hc 6� ST sr`�fi;r ��,AA 3�g /993.18 ............EGL 99ose 0.0 1101 330.0 510.E 680.9 SSLO 102i3 1191./ 1361.6 1531.9 Distance(Ft) S T—-')K lows moix J"9.95 1448.65 1496.05 M.75 ST IM95 0.0 ]015 203 307.3 410.4 51.'s 6130 7175 020.6 9--j 1025.0 Distance(Ft) ST-3L 50C215 -999.95 �"8 65 .......................................................................................................................... 05 'Alt `A, d99015 0.00 98.70 197.46 N6.10 mm 6330 59510 690.0 789.66 88836 96'A Distance(Fil ST-3M ------------------------------------------- ......................................�. C, Sr'"t 1025 205.0 "15 410.0 5125 6150 717,5 8.10.0 922.5 1025.0 Distance(Ft) ST-3N 5002.55 M_5 4M.95 4M.65 Fi -------------------------------- ------------- JM 05 IM 75 c J99 '15 STMII3.1, 34 4990.83 olw 98.70 197.46 396.10 1 39J.80 493 690.90 '89,66 88836 9811.00 Distance(Fti ST-301 MISS S00I.68 "MA asS918 J808.p8 O W 98b.88 a> x xxxx xxxx...................... r.......xxx..x..... ----------",--------"" u: a993.68 Sr�'LST 3G 3g q assaas STD D r A ST ST MN 38D FI.3e� 3IM�3 p 3F Jss2 oe ST STFf�$ SrM�3C ............EGL a8a0.89 0.0 1092 218.0 127,6 J36.8 SJ6.0 6552 'N± 8716 9828 Distance tFti ST 302 5802.88 5NIA MA a888.28 Jws W ti. W 85 .......xssvv.uuuuuuuuuuuuuuuvuvuxuuuuuuuuvu ta: Jse:s ��r Sri? ST�.?gp �i �^ STD ST�j?i3ee h3�C Jss2.ea s� s%x3� �y3c ...........EGL 99p 88 0.0 IOIS 214.4 321.6 4281 536.0 N3? ]SOA 857.6 968.8 Distance(Fti ST-3P 7J5 lilr - ------—-------- ...................... ---------------——------------- - --------- — 4M9, 'YIA"1,31 sp '3� 'f4-3p -3G key 00 109A 1192 31t8 439A 5,8.0 657.6 767,2 8,69 996.4 IWO Distance(Ft) ST-3S 5003.19 500249 501.19 4M.59 O .............. Sr S�+t1Ff 11,3 4"46; sT,y 403 Z, 3ft STM 0S,r 30 34 HGL ok m a 153.E 3fl0A 5011 634.0 -8 8876 10144 Imij Distance(Ft) ST-3U l 5 A3'9 i00:J9 5001.19 399989 3998.59 .� sr,�N3 JPx a - dye `• ra Pc ................................................... d995 s srM sT'�/r J p 399J59 S S `],4D•38r 3aF SrM� STM 38 ?8C 3993.39 Sr Sr JE r$A $ •`+i 39910 Sr srj3 8 r�`e'.;c i ...........EGL 3990.)9 0.0 133.1 1663 i993 5324 665.5 798.6 931.' IOH.9 I19t9 13310 Distance tFti ST 3U2 5003.J9 500:J9 5001-19 J999.89 AM 59 w `�i s�,ftj'T3Ut SrdTF�J 3Qk 3995.49 Sr j•l.JPB s srdrd sr4143A9P A J99J 69 S rMy J8 S .`ry•36C SrM �if�JBe AM 39 Mfg 3D �`�Y S 399:.99 sr rMX Jc 3A -----HGL ........... 6990.t9 EGL OA 133.1 :.662 3993 532.d 6635 79&6 9311 ION.B 1197.9 1331.0 Distance(Fti ST-3Y 1 5001.96 5000.86 IM..76 a89866 J88',.56 .� uuvuuuvuuv ......................................... yysuxxxxxxxxwxuucuvuuxuuucuuvvuuvvvvvvuuuvuuuuuuuuvuuuxuuuu_uuuu�____�_�__�__�______ x....xxxxxxx.xx......xx.......xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxuxxxYx _L FFT3yA 4"5.36 J89a_6 J093.16 sfJ�h3o 4MM sT•• ST�H JC ............EGL 990.96 0.00 53.50 101.00 !t-^"- 214.00 36370 331.00 311.50 J78.00 J81.50 Distance(Ft) ST 3Y2 5001.% SG00.86 1959)6 998 66 3991.36 i C ........... O .� .y.----------- ...................................... . --—_�wrvrv.u.xvvvurvxwvvvxvxvvv� i `a 596 J6 4W536 JMJ aM 16 S7,yF�30 S TIFF, J 4ss:66 ST, S)�•�� C ............EGL 99096 0.00 54.50 109.00 16330 218.00 372.50 327.0 381.50 436.00 390.50 Distance(Ftt ST-03 100-YEAR �Jr a � A •t� �� U/ rx •�. �1i.+�j; [Kt.tl=SPA � Ot�A I,� y\rAt\.y .y yq t ,�}-•C }r/r' j�U�r ,ray �t\'��1� 7 �S J� ti S, y' yr .�;� �t�n .,;yC• t,�tt0 vim.•�. dry � �,t.�. 0 i y vt S�v IF, 4tt�. C oA 1• �Y bi •st'''t�� i 'T �S t.J•ti!t Rainfall Parameters Rainfall Return Period:100 Backwater Calculations: Tailwater Elevation(ft):4998.69 Manhole Input Summary: Given Flow Sub Basin Information Element Ground Total Local Drain a Runoff 5 r�Overland Overland Gutter Gutter Elevation Known Contribution Area �I y Length Slope Length Velocity Name (ft) Flow(cfs) (cfs) (Ac.) Coefficient Coefficient O (�o) (ft) (fps) FES-3A 4992.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 STMH-3A 5000,94 147.55 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 STH-3B 5001.06 147.55 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 STMH-3C 5001.98 133.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3D 5002.33 87.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3UA 5001.95 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3UA 5001.95 0.60 0.00 0.00 0:00 0.00 0.00 0.00 0.00 0.00 INLET-3UB 5001,95 2.10 0.00 0.00 0.00 0.00 0:00 0.00 0.00 0.00 DI-3UB 5001.95 2.10 0.00 0.00 0.00 0.00 0:00 0.00 0.00 0.00 STMH-3E 5001.92 85.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3F 5001.89 22.07 0,00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 STMH-3G 5001.01 22.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3FA 5001.24 5.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3FA 5001.24 5.05 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3H 5000.88 17.23 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0,00 STMH-3I 5001.96 11.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3J 5002.08 1.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3GA SOOL68 0,50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3GA 5001.68 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3GB 5001.611 1.36 0.00 0.00 0:00 0.00 0.00 0.00 0.00 0.00 DI-3GB 5001.68 1.36 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 STMH-3PA 5004.47 9.76 0.00 0.00 0.00 0.00 0:00 0.00 OAO 0.00 INLET-3PA 5004.44 9.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3PA 5004.44 9.76 0,00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 INLET-3EB 5000.58 4.89 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 DI-3EB 5000.58 4.89 0.00 0.00 0:00 0.00 0.00 0.00 0.00 0.00 INLET-3EA 5000.58 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3EA 5000.58 2.19 0.00 0,00 0.00 0.00 0.00 0.00 0,00 0.00 STMH-3BA 5001.74 66.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3HB 5001.45 3.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3HB 5001.45 3.82 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 INLET-3HA 5001.45 12.93 0.00 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 DI-3HA 5001.45 12.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 STMH-3BB 5002.97 50.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3BC 5003.20 50.71 0.00 0,00 0:00 0.00 0.00 OAO 0:00 0.00 STMH-3BD 5002.69 42.40 0.00 0,00 0.00 0.00 0:00 0.00 0.00 0.00 STMH-3BE 5002.62 42.40 0,00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 STMH-3BF 5003.97 12.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3CA 5004.55 7.35 0.00 0.00 0:00 0.00 0.00 0.00 0,00 0.00 STMH-3CB 5005.42 7.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3CC 5005.99 7.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET 3JA 5006.24 6,14 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 DI-3JA 5006.24 6.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3JB 5006.20 1.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3JB 5006.20 1.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3BI 5005,23 5.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 STMH-2BJ 5005.87 5.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-311A 5006.03 5.62 0.00 0.00 0.00 0.00 0:00 0.00 I0.00 0.00 DI-3BA 5006.03 5.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-30A 5002.31 25.90 0.00 0.00 0:00 0.00 0.00 0.00 0.00 0.00 DI-OA 5002.31 25.90 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-30B 5002.31 8.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-30B 5002.31 8.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3IA 5003.35 12.70 0.00 0.00 0.00 0.00 0.00 0.00 O.oO 0.00 DI-31A 5003.35 12.70 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 STMH-3AA 5oom i 48.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3AB 5002.67 48.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3AA 5000.94 48.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3AA 5000.94 ilm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3AC 5001.27 40.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3KA 5002.19 16.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3KA 5002.23 6.98 0.00 0.00 0.00 0.00 O.oO 0.00 0.00 0.00 DI-3KA 5002.23 6.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3MA 5002.24 9.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3MA 5002.24 9.76 0.00 0.00 0:00 0.00 0.00 0.00 0.00 0.00 STMH-3LA 5002.11 15.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3LA 5002.45 F. o.00 0.00 o o_5 o.o0 0.00 0.00 O.oO 0.00 DI-3LA 5002.45 4.71 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3NA 5002.45 11.04 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 DI-3NA 5002.45 11.04 6.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 INLET-3AB 5000.94 9.66 o o 0.00 0.00 o o 0.00 0.00 0.00 0.00 INLET-3AC 5001.82 7.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3AC 5001.82 7.50 0.00 0.00 0.00 0.00 0.00 0.00 o.00 0.o0 DI-3AB 5000.94 2.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3DA 5000.46 2.42 0.00 0.00 0.00 0.00 0:00 0.00 0.00 0.00 DI-3DA 5000.46 2.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3DB 5000.68 3.17 o.00 0.00 0.00 o.00 o o 0.00 0.00 0.00 DI-3DB 5000.68 3.17 0.00 0.00 0:00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: Local Contribution I Total Design Flow Overland Gutter Local F.wComment Element Time Time Basin Tc Intensity Contrib Co if- Intensity Manhole Tc Nam (min) (min) °11° On/hr) (cfs) Area (inlbr) (�) FES-3A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00I Surface Water Present(Upstream) STMH-3A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 147.55 1 Surface Water Present(Downstream) 5TH-31 0.00 0:00 0.00 0.00 0.00 0.00 0.00 0.00 147.55 STMH-3C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 133.36 STMH-3D Full olio 0.00 0.00 0.00 0.00 0.00 0.00 8788 INLET-3UA 0.00 Poll 0.00 0.00 0.00 0.00 0.00 0.00 0.60 DI-3UA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 INLET-3UB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 DI-3UB 0.00 0.00 O.00 6- D.Oo ii- o 0.00 0.00 2.10 STMH-3E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.o0 85.82 STMH-3F o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.07 STMH-3G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.07 INLET-3FA 0.00 0.00 o.o0 0.00 0.00 0.00 0.00 0.00 5.05 DI-3FA 0.00 0.00 0.00 0:00 0.00 0.00 0.00 0.00 5.05 STMH-3H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.23 FsTMH-31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.25 Fs -3J 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.86 INLET-3GA 0.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 DI-3GA 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 INLET-3GB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.36 DI-3GB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.36 STMH-3PA 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76 INLET-3PA lo.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76 DI-3PA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76 INLET-3EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.89 DI-3EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.89 INLET-3EA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.19 DI-3EA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.19 STMH-3BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 66.80 INLET-31M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.82 DI-3HB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.82 INLET-3HA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.93 DI-3HA 0.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 12.93 STMH-3BB lo.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50.71 STMH-3BC 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 0.00 50.71 STMH-3BD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.40 STMH-3BE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.40 STMH-3BF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.71 STMH-3CA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.35 STMH-3CB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.35 STMH-3CC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.35 FINLET-3JA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.14 DI-3JA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F. INLET-3JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.44 DI-3JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.44 Fs -3BI 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.62 STMH-2BJ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.62 INLET-3BA 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.62 DI-3BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.62 INLET-30A 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.90 DI-OA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.90 INLET-30B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.43 DI-30B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.43 INLET-31A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.70 DI-31A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.70 STMH-3AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.77 STMH-3AB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4&.77 INLET-3AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 48.77 DI-3AA 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.09 STMH-3AC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.87 STMH-3KA 0.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 16.21 INLET-3KA lo.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.98 DI-3KA 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.98 INLET-3MA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76 DI-3MA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76 STMH-3LA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.01 INLET-3LA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.71 DI-3LA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.71 INLET-3NA 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.04 DI-3NA 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.04 INLET-3AB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.66 INLET-3AC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Z50 DI-3AC 0.00 I0.00 0.00 0.00 0.00 0.00 0.00 0.00 Z50 DI-3AB lo.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.89 INLET-3DA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.42 DI-3DA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.42 INLET-3DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.17 DI-3DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.17 Sewer Input Summary: Elevation Loss Coefficients lGiven Dimensions Sewer Downstream Upstream Element Length Invert F(=) e Invert ManningsFBe. ndRise Span Name Le In In(ft ° ss Lass Section `(it or in) (it or in) STMH-3A 74.43 4992.00 0.3 4992.22 0.013 03 0.00 ELLIPSE 58.00 in 91.00 in STH-311 67.41 4992.23 0.3 4992.43 0.013 1.32 0.00 ELLIPSE 58.00 in 91.00 in STMH-3C 167.06 4992.43 0.3 4992.93 0.013 0.05 0.00 ELLIPSE 58.00 in 91.00 in STMH-3D 212.88 4992.93 0.3 4993.57 0.013 0.05 0.00 CIRCULAR 66.00 in 66.00 in INLET-3UA 13.00 4997.22 0.5 4997.Z8 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in 0 4 0 0 0 C 181.00 4 0 inDI-3UA 997 8 INLET-3UB 23.00 4997.22 0.5 4997.33 0.013 1.32 I0.00 CIRCULAR 18.00 in 18.00 in DI-3UB 1.00 4997.33 0.5 4997.33 0.013 0.25 0.00 [CIRCULAR 18.00 in 18.00 in STMH-3E 48.65 4993.56 0.3 4993.71 0.013 0.05 0.00 CIRCULAR 66.00 in 66.00 in STMH-3F 20.62 4993.71 0.3 4993.77 0.013 0.08 0.00 CIRCULAR 48.00 in 48.00 in STMH-3G 99.00 4993.77 0.3 4994.07 0.013 0.07 0.00 [CIRCULAR 48.00 in 48.00 in INLET-31TA 56.00 4994.07 0.5 4994.35 0.013 1.32 0.00 CIRCULAR 30.00 in 30.00 in DI-3FA 1.00 4995.40 0.5 4995.40 0.013 0.25 0.00 CIRCULAR 30.00 in 30.00 in STMH-3H 43.64 4994.07 0.3 4994.20 0.013 0.05 0.00 CIRCULAR 42.00 in 42.00 in STMH-3I 198.58 4994.20 0.3 4994.80 0.013 0.05 0.00 CII+CULAR 24.00 in 24.00 in STMH-3J 19.75 4994.80 0.3 4994.86 0.013 0.05 0.00 CIRCULAR 18.00 in 18.00 in INLET-3GA 13.69 4994.85 0.5 4994.92 0.013 1.32 0.00 [CIRCULAR lull in 18.00 in DI-3GA 1.00 4994.92 0.5 4994.92 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-3GB 22.31 4994.86 0.5 4994.97 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-3GB 1.00 4994.97 0.5 4994.97 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-3PA 134.06 4996.35 2.0 4999.03 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in INLET-3PA 29.99 4999.03 2.0 4999.63 0.013 0.11 0.00 CHdCULAR 18.00 in 18.00 in DI-3PA 1.00 4999.61 2.0 4999.63 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-3EB 27.05 4994.20 0.5 4994.34 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3EB 1.00 4994.34 0.5 4994.34 0.013 1.32 0.00 [CIRCULAR 24.00 in 24.00 in INLET-3EA 8.95 4994.21 0.5 4994.25 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3EA 1.00 4994.25 0.5 4994.25 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-3BA 146.46 4993.71 0.3 4994.15 0.013 1.32 0.00 CII+CULAR 54.00 in 54.00 in INLET-3HB 8.00 4996.48 0.5 4996.52 0.013 1.32 0.00 CHZCULAR 24.00 in 24.00 in DI-3HB 1.00 4996.52 0.5 4996.52 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-3HA 28.00 4996.48 0.5 4996.62 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3HA 1.00 4996.62 0.5 4996.62 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-3BB 181.78 4994.15 0.3 4994.70 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in STMH-3BC 81.76 4994.69 0.3 4994.94 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in STMH-3BD 65.23 4994.94 0.5 4995.27 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in STMH-3BE 18.23 4995.27 0.5 4995.36 0.013 0.05 0.00 CIRCULAR 36.00 in 36.00 in STMH-3BF 199.62 4995.36 0.5' 4996.36 0.013 0.05 I0.00 CMCULAR 36.00 in 36.00 in STMH-3CA 53.92 4997.86 1.0 4998.40 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in 0 0 0 C n1500.23 13 59 00 CULARSTMH-3CB 228.73 4998.40 0.8 8 8.00 in STMH-3CC 119.31 5000.13 0.5 5000.73 0.013 0.22 0.00 CIRCULAR 18.m in 18.00 in INLET-MA 39.10 5000.82 0.5 5001.02 0.013 1.32 I0.00 CHtCULAR 18.00 in 18.00 in DI-MA 1.00 5001.02 0.5 5001.02 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-3JB 36.31 5000.82 0.5 5001.00 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-3JB 1.00 5001.00 0.5 5001.00 0.013 0.25 0.00 [CIRCULAR P.m in P.m in STMH-3BI 174.31 4997.36 0.5 4998.23 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in STMH-2BJ 82.81 4998.23 0.5 4998.64 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in INLET-3BA 44.37 4998.64 0.5 4998.86 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3BA 1.00 4998.86 0.5 4998.86 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-30A 28.00 4995.36 0.5 4995.50 0.013 1.32 0.00 CIRCULAR 30.00 in 30.00 in DI-OA 1.00 4995.50 0.5 4995.50 0.013 0.25 0.00 CIRCULAR 30.00 in 30.00 in INLET-30B 8.00 4995.36 0.5 4995.40 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in . I [CIRCULAR in 013 025 0.00DI-30B 1.00 499540 0.5 95.40 .00 in INLET-31A 50.00 4996.77 0.5 4997.02 0.013 1.32 0.00 CHtCULAR 24.00 in 24.00 in DI-3IA 1.00 4997.02 0.5 4997.02 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in 0 1 000 [CIRCULAR 4.00in5STMH-3AA 344.63 4992.93 0.3 4.00 in STMH-3AB 121.06 4993.98 0.3 4994.34 0.013 0.05 0.00 CIRCULAR 54.00 in 54.00 in INLET-3AA 75.80 4994.32 0.3 4994.55 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in 4 0 0 0 [CIRCULAR 48.0 iO3 94.55 13 0 0n4DI-3AA 1.00 4994.55 8.00 in STMH-3AC 10.00 4994.55 0.3 4994.58 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in STMH-3KA 122.53 4994.58 0.5 4995.19 0.013 1.32 0.00 ClltCULAR 30.00 in 30.00 in INLET-3KA 42.38 4995.70 0.5 4995.91 0.013 0.85 0.00 CIRCULAR 24.00 in 24.00 in DI-3KA 1.00 4995.91 0.5 4995.91 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-3MA 42.38 4995.70 0.5 4995.91 0.013 0.85 0.00 CIRCULAR 24.00 in 24.00 in DI-3MA 1.00 4995.91 0.5 4995.91 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-3LA 84.47 4994.58 0.5 4995.00 0.013 1.32 0.00 CHdCULAR 30.00 in 30.00 in INLET-3LA 42.38 4995.51 Fos 0.013 0.$5 0.00 CIRCULAR 24.00 in 24.00 in DI-3LA 1.00 4995.72 0.5 4995.72 0.013 0.25 I0.00 CIRCULAR 24.00 in 24.00 in INLET-3NA 42.38 4995.50 0.5 4995.71 0.013 0.85 0.00 CIRCULAR 24.00 in 24.00 in [CIRCULAR 24.00 i0 4995.71 013 0500 2DI-3NA 1.00 4995.71 4.00 in INLET-3AB 10.00 4994.58 0.5 4994.63 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in INLET-3AC 26.17 4994.63 0.5 4994.76 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in DI-3AC 26.17 4994.63 0.5 4994.76 0.013 0.25 0.00 [CIRCULAR 24.00 in 24.00 in DI-3AB 1.00 4994.63 0.5 4994.63 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-3DA 24.00 4995.26 0.5 4995.38 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3DA 1.00 4995.38 0.5 4995.38 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in INLET-3DB 23.00 4995.26 Fos4995.37 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-3DB 1.00 4995.37 0.5 4995.37 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in Sewer Flow Summary: r Full Flow Capacity I Critical Flow I Normal Flow Element �If.w Velocity Fe,)pth Velocity Depth Velocity Froade Flow Flow Surcharged Name s) (fps) (fps) (in) (fps) Number Condition I(cfs) Length Comment (ft) FsTMH-3A 262.35 10.38 39.16 9.15 38.76 9.27 1.02 Pressurized 147.55 74.43 STH-313 262.35 10.38 39.16 9.15 38.76 9.27 1.02 Pressurized 147.55 67.41 STMH-3C 262.35 10.38 37.14 8.84 36.51 9.04 1.03 Pressurized 133.36 167.06 STMH-3D 199.79 8.41 30.99 8.02 30.64 8.14 1.02 Pressurized 87.88 212.88 F INLET-3UA 7.45 4.21 3.45 2.54 3.45 2.53 0.99 Pressurized 0.60 13.00 DI-3UA 7.45 4.21 3.45 2.54 3.45 2.53 0.99 Pressurized 0.60 1.00 INLET-3UB 7.45 4.21 6.56 3.60 6.54 3.62 1.01 Pressurized 2.10 23.00 DI-3UB 7.45 4.21 6.56 3.60 6.54 3.62 1.01 Pressurized 2.10 1.00 STMH-3E 199.79 8.41 30.61 Z96 30.22 8.09 1.02 Pressurized 85.82 48.65 STMH-3F 78.89 6.28 16.62 5.72 17.36 5.38 0.92 Pressurized 22.07 20.62 STMH-3G 78.89 6.28 16.62 5.72 17.36 5.38 0.92 Pressurized 22.07 99.00 INLET-3FA 29.08 5.92 8.89 4.14 8.46 4.44 1.1U Pressurized 5.05 56.00 DI-3FA 29.08 5.92 8.89 4.14 8.46 4.44 1.10 Pressurized 5.05 1.00 STMH-3H 55.25 5.74 15.20 5.4$ 16.11 5.07 0.90 Pressurized 17.23 43.64 STMH-31 12.42 3.95 14.44 5.70 17.89 4.48 0.66 Pressurized 11.25 198.58 F STMH-3J 5.77 3.26 6.16 3.48 7.03 2.91 0.78 Pressurized 1.86 19.75 INLET-3GA 7.45 4.21 3.14 2.42 3.16 2.40 0.99 Pressurized 0.50 13.69 DI-3GA 7.45 4.21 3.14 2.42 3.16 2.40 099 Pressurized 0.50 1.00 INLET-3GB 7.45 4.21 5.24 3.18 5.21 3.21 1. Pr 01 essurized 1.36 22.31 DI-3GB 16.04 5.11 4.83 3.01 4.72 3.11 1.05 Pressurized 1.36 1.00 STMH-3PA 32.08 10.21 13.41 5.41 9.08 8.96 2.11 Pressurized 9.76 134.06 INLET-3PA 14.90 8.43 14.46 6.41 10.63 8.99 1.85 Pressurized 9.76 29.99 DI-3PA 14.90 8.43 14.46 6.41 10.63 8.99 1.85 Pressurized 9.76 1.00 INLET-3EB 16.04 5.11 9.34 4.32 9.09 4.48 1.05 P essuri rzed 4 2Z.89 05 DI-3EB 16.04 5.11 9.34 4.32 9.09 4.48 1.05 Pressurized 4.89 1.00 INLET-3EA 16.04 5.11 6.17 3.43 5.99 3.57 1.06 Pressurized 2.19 8.95 DI-3EA 16.04 5.11 6.17 3.43 5.99 3.57 1.06 Pressurized 2.19 1.00 STMH-3BA 108.00 6.79 28.57 7.82 30.73 7.15 0.87 Pressurized 66.80 146.46 INLET-3HB 16.04 5.1i F8.22 4.02 7.97 4.19 1.06 Pressurized 3.82 8.00 DI-3HB 16.04 5.11 8.22 4.02 7.97 4.19 1.06 Pressurized 3.82 1.00 INLET-3HA 16.04 5.11 15.52 6.02 16.33 5.68 0.91 Pressurized 12.93 28.00 DI-3HA 16.04 5.11 15.52 6.02 16.33 5.68 0.91 Pressurized 12.93 1.00 STMH-3BB 78.89 6.28 25.64 7.42 27.99 6.67 0.85 Pressurized 50.71 181.78 STMH-3BC 78.89 6.28 25.64 7.42 27.99 6.67 0.85' Pressurized 50.71 81.76 STMH-3BD 101.84 8.10 23.35 6.99 21.59 7.73 1.16 Pressurized 42.40 65.23 STMH-3BE 47.29 6.69 25.45 7.94 26.62 7.57 0.91 Pressurized 42.40 18.23 STMH-3BF 47.29 6.69 13.59 5.20 12.75 5.67 1.13 Pressurized 12.71 199.62 F STMH-3CA 10.53 5.96 12.60 5.56 11.07 6.44 1.28 Pressurized 7.35 53.92 STMH-3CB 9.42 F. 12.60 5.56 11.96 5.90 1.11 Pressurized 7.35 228.73 STMH-3CC 7 45 F. 12.60 5.56 14.54 4.80 0.74 Pressurized 7.35 119.31 INLET-3JA 7.45 4.21 11.49 5.16 12.45 4.71 0.85 Pressurized 6.14 39.10 DI-MA 7.45 4.21 11.49 5.16 12.45 4.71 0.85 Pressurized 6.14 1.00 INLET-3JB 7.45 4.21 5.40 3.23 5.36 3.26 1.01 Pressurized 1.44 36.31 DI-3JB 7.45 4.21 5.40 3.23 5.36 3.26 1.01 Pressurized 1.44 1.00 STMH-3BI 16.04 5.11 10.04 4.51 9.81 4.65 1.05 Pressurized 5.62 174.31 F STMH-2BJ 16.04 5.11 10.04 4.51 9.81 4.65 1.05 Pressurized 5.62 82.81 INLET-3BA 16.04 5.11 10.04 4.51 9.81 4.65 1.05 Pressurized 5.62 44.37 DI-3BA 16.04 5.11 10.04 4.51 9.81 4.65 1.05 Pressurized 5.62 1.00 INLET-30A 29.08 5.92 20.81 7.13 22.06 6.70 0.89 Pressurized 25.90 28.00 DI-OA 29.08 5.92 20.81 7.13 22.06 6.70 0.89 Pressurized 25.90 1.00 INLET-30B 16.04 5.11 12.42 5.14 12.36 5.17 1.01 Pressurized 8.43 8.00 DI-30B 16.04 5.11 12.42 5.14 12.36 5.17 1.01 Pressurized 8.43 1.00 INLET-3LA 16.04 5.11 15.38 5.97 16.12 5.66 Q.91 Pressurized 12.70 50.00 DI-31A 16.04 5.11 15.38 5.97 16.12 5.66 0.91 Pressurized 12.70 1.00 STMH-3AA 108.00 6.79 24.23 7.05 25.45 6.62 OF91 Pressurized 48.77 344.63 F STMH-3AB 108.00 6.79 24.23 7.05 25.45 6.62 0.91 Pressurized 48.77 12106 INLET-3AA 78.89 6.28 25.12 7.33 27.30 6.61 0.85' Pressurized 48.77 75.80 DI-3AA 78.89 6.28 11.10 4.58 11.59 4.31 0.92 Pressurized 10.09 1.00 STMH-3AC 78.89 6.28 22.90 6.91 24.51 6.33 0.88 Pressurized 40.87 10.00 STMH-3KA 29.08 5.92 16.32 5.94 16.01 6.08 1.04 Pressurized 16.21 122.53 INLET-3KA 16.04 5.11 11.25 4.83 11.07 4.93 1.03 Pressurized 6.98 42.38 DI-3KA 16.04 5.11 11.25 4.83 11.07 4.93 1.03 Pressurized 6.98 1.00 INLET-3MA 16.04 5.11 13.41 5.41 13:52 5.35 0.98 Pressurized 9.76 42.38 DI-3MA 16.04 5.11 13.41 5.41 13.52 5.35 0.98 Pressurized 9.76 1.00 STMH-3LA 29.08 5.92 15.68 5.78 15.28 5.97 1.05 Pressurized 15.01 84.47 INLET-3LA 16.04 5.11 9.16 4.27 8.91 4.44 1.05 Pressurized 4.71 42.38 DI-3LA 16.04 5.11 9.16 4.27 8.91 4.44 1.05 Pressurized 4.71 1.00 INLET-3NA 16.04 5.11 14.30 5.66 14.63 5.50 0.96 Pressurized 11.04 42.38 DI-3NA 16.04 5.11 14.30 5.66 14.63 5.50 0.96 Pressurized 11.04 1.00 INLET-3AB 16.04 5.11 13.33 5.39 13.43 5.34 0.99 Pressurized 9.66 Flom INLET-3AC 16.04 5.11 11.6$ 4.94 11.54 5.02 1.02 Pressurized 7.50 26.17 F DI-3AC 16.04 5.11 11.68 4.94 11.54 5.02 1.02 Pressurized 7.50 26.17 DI-3AB 16.04 5.11 7.11 3.71 6.90 3.87 1.06 Pressurized 2.89 1.00 INLET-3DA 16.04 5.11 6.49 3.53 6.30 3.68 1.06 Pressurized 2.42 24.00 DI-3DA 16.04 5.11 6.49 3.53 6.30 3.68 1.06 Pressurized 2.42 1.00 INLET-3DB 16.04 5.11 7.46 3.81 7.23 3.97 1.06 Pressurized 3.17 23.00 DI-3DB 16.04 5.11 7.46 3.81 7.23 3.97 1.06 Pressurized 3.17 1.00 • A Froude number of 0 indicates that pressured flow occurs(adverse slope or undersized pipe). • If the sewer is not pressurized,full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized,full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing lCalculated jUsed Element �Peak Crass Area Name (cfs) Section Rise Span Rise Span Rise Span (fl"2) Comment Fs 147.55 ELLIPSE 58.00 in 91.00 to 60.00 in 60.00 in 58.00 in 91.00 in 25.29 Existing height is smaller than the suggested height. STH-313 147.55 ELLIPSE 58.00 in 91.00 in 60.00 in 60.00 in 58.00 in 91.00 in 25.29 Existing height is smaller than the suggested height. STMH-3C 133.3¢ ELLIPSE 58.00 in 91.00 in 60.00 in 60.00 in SS.00 in 9i.00 in 25.29 Existing height is smaller than the suggested height. STMH-3D 87.88 CIICULAR 66.00 in 66.00 in 54.00 in 54.00 in 66.00 in 66:00 in 23.76 INLET-3UA 0.60 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3UA 0.60 CIRCULAR 18.00 in 18.00 to 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-3UB 2.10 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00in 18.00 in 18.00 in 1.77 DI-3UB 2.10 CIRCULAR 18.00 to 18.00 in 18.00 to 18.00 in 18.00 in 18.00 in 1.77 STMH-3E 85.82 CHtCULAR 66.00 in 66.00 in 54.00 to 54.00 in 66.00 in 66.00 in 23.76 STMH-3F 22.07 CIRCULAR 48.00 in 48.00 in 30.00 in 30.00 in 48.00 in 48.00 in 12.57 STMH-3G 22.07 CIRCULAR 48.00 in 48.00 in 30.00 to 30.00 in 48.00 in 48.00 in 12.57 INLET-3FA 5.05 CIRCULAR 30.00 to 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 DI-3FA 5.05 ORCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 STMH-3H 17.23 CH2CULAR 42.00 in 42.00 in 30.00 in 30.00 in 42.00 in 42.00 in 9.62 STMH-31 11.25 CIRCULAR 24.00 to 24.00 to 24.00 to 24.00 in 24.00 in 24.00 in 3.14 STMH-3J 1.86 CIRCULAR 18.00 to 18.00 in 18.00 to 18.00 in 18.00 in 18.00 in 1.77 INLET-3GA 0.50 CHtCULAR 18.00 in film in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3GA 0.50 CMCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-3GB 1.36 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3GB 1.36 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-3PA 9.76 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 CH 180 8 18n10in800in800in1.INLET-3PA 976 ZCUL 0 in 0 in 8 77 C 18.009 in1 1DI-3PA .76 8 .77 2.00in400i 800in1 .00in2 .00in2 .00in31INLET- EB 4.89C 4 8 4 4 4 DI-3EB 4.89 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3EA 2.19 CHZCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 i 1 24.00 24.00 3.14DI-3EA 2.19 CIRCULAR 4.00 24.00 in 8.00 8 5 .00 in5 .00 in4 .00 in4 .00n500in5 .00in1 .90STMH-3BA 66.80 CIRCULAR 4 4 8 8 4 5 INLET-3HB 3.82 CHZCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3HB 3.82 CHZCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3HA 12.93 CH2CULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.001n 3.14 DI-3HA 12.93 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 STMH-3BB 50.71 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57 STMH-3BC 50.71 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57 STMH-33D 42.40 CIRCULAR 48.00 in 48.00 in 36.00 in 36.00 in 48.00 in 48.00 in 12.57 3 .00in3 .00in600in3 .00in3 .00in3 .00in77STMH-3BE 42.40 CRCULAR 6 6 6 6 6 0 i 2 3in34 6.00 0 .00 in 707C 300in 3STMH-3BF 12.71 ZCULAR STMH-3CA 7.35 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-3CB 7.35 CHZCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-3CC 7.35 [CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 C 18 8 1 .00in18.00 in18.00 in1INLET- JA 6.14 RCULAR 8 77-Fc ICL 800 18.00 i 18.00 in800in18.00in18.00in1.DI-3JA 6.14 R 77 C 18 8 8 77INLET-3JB 144 8 1 C 18.00 1DI-3JB 1.44 .77 STMH-3BI 5.62 C RcuLAR 24.00 in F. in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-2BJ 5.62 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-311A 5.62 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3BA 5.62 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3OA 25.90 CIRCULAR 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 4.91 i430 3 3i 3 .9100DI-OA 25.90 [CIRCULAR 3 .00 30.00in .00in 0.00in . INLET-3OB 8.43 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 DI-3OB 8.43 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 INLET-31A 12.70 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 2 2 2 2 2 4in3 4.00 4.00 .14DI-31A 12.70 C STMH-3AA 48.77 CIRCULAR 54.00 in 54.00 in 42.00 in 42.00 in 54.00 in 54.00 in 15.90 STMH-3AB 48.77 CIRCULAR 54.00 in 54.00 in 42.00 in 42.00 in 54.00 in 54.00 in 15.90 48.00 in 42.00 1INLET-3AA 48.77 [CIRCULAR 48.00 in 2.57 DI-3AA 10.09 [CIRCULAR 48.00 in 48.00 in I24.00 in 24.00 in 48.00 in 48.00 in 12.57 STMH-3AC 40.87 CH2CULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57 STMH-3KA 16.21 CIRCULAR 30.00 in 30.00 in 27.00 in 27.00 in 30.00 in 30.00 in 4.91 C2cuLAR 2 .00in2 .00in80 18.00 n2 .00in2 .00in31INLET-3KA 6.98 4 4 4 4 4 DI-3KA 6.98 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3MA 9.76 CIRCULAR 24.00 in 2 2 4.00 in 21.00 in 1.00 in 24.00 in 24.00 in 3.14 DI-3MA 9.76 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 STMH-3LA 15.01 CIRCULAR 30.00 in 30.00 in 24.00 in 24.00 in 30.00 in 30.00 in 4.91 INLET-3LA 4.71 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3LA 4.71 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3NA 11.04 CHZCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 20in2 3.14C 24.00 in24.00 in21.00 in200 4.00DI-3NA 11.04 Z INLET-3AB 9.66 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 INLET-3AC 7.50 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 i2 2 24i 2 1.00 in 4.00 in 3.144DI-3AC 7.50 CIRCULAR 4.00 .00 0 2 .00i2 .00in18.00in18.00in400i 200i3.1DI-3AB 289 CIRCULAR 4 4 4 INLET-3DA 2.42 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3DA 2.42 CIRCULAR 24.00 in 24.00 in 18.00 in ull in 24.00 in 24.00 in 3.14 INLET-3DB 3.17 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3DB 3.17 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used'parameters. Grade Line Summary: Tailwater Elevation(ft):4998.69 Invert Elev. Downstream Manhole HGL EGL Losses Bend Lateral Friction Element Downstream Upstream FoZtrearn FUptrearn F.Ztream Fream Name (ft) (g) Loss Loss Loss y �(ft) �(ft) �(ft) STMH-3A 4992.00 '4992.22 0.00 0.00 4998.69 4998.76 4999.22 0.07 4999.29 STH-3B 4992.23 4992.43 0.70 0.00 4999.46 4999.52 4999.99 0.06 5000.05 STMH-3C 4992.43 4992.93 0.02 0.00 4999.64 4999.77 5000.07 0.13 5000.20 STMH-3D 4992.93 4993.57 0.01 0.00 5000.00 5000.12 5000.21 0.12 5000.34 INLET-3UA 4997.22 4997.28 0.00 0.00 5000.34 5000.34 5000.34 0.00 5000.34 DI-3UA 4997.28 4997.28 0.00 0.00 5000.34 5000.34 5000.34 0.00 5000.34 INLET-3UB 4997.22 4997.33 0.03 0.00 5000.34 5000.35 5000.37 0.01 5000.37 DI-3UB 4997.33 4997.33 0.01 0.00 5000.36 5000.36 5000.3$ 0.00 5000.3$ STMH-3E 4993.56 4993.71 0.01 0.00 5000.14 5000.17 5000.35 0.03 5000.37 STMH-3F 4993.71 4993.77 0.00 0.00 5000.33 5000.33 5000.3$ 0.00 5000.38 STMH-3G 4993.77 4994.07 0.00 0.00 5000.34 5000.36 5000.39 0.02 5000.41 INLET-3FA 4994.07 4994.35 0.02 0.00 5000.41 5000.42 5000.43 0.01 5000.44 DI-3FA 4995.40 4995.40 0.00 0.00 5000.43 5000.43 5000.44 0.00 5000.44 STMH-3H 4994.07 4994.20 0.00 0.00 5000.36 5000.38 5000.41 0.01 5000.43 STMH-3I 4994.20 4994.80 0:01 0.00 5000.39 5000.87 5000.59 0.49 5001.07 STMH-3J 4994.80 4994.86 0.00 0.00 5001.06 5001.06 5001.07 0.01 5001.08 INLET-3GA 4994.85 4994.92 0.00 0.00 5001.08 5001.08 5001.08 0.00 5001.08 DI-3GA 4994.92 4994.92 0.00 0.00 5001.0$ 5001.08 5001.08 0.00 5001.08 INLET-3GB 4994.86 4994.97 0.01 0.00 5001.08 5001.09 5001.09 0.00 5001.10 DI-3GB 4994.97 4994.97 0.0 0.0 0 0 5001.09 5 500 001.09 1.10 0.00 5001.10 STMH-3PA 4996.35 4999.03 0.20 0.00 5001.12 5001.37 5001.27 0.25 5001.52 INLET-3PA 4999.03 4999.63 0.05 0.00 5001.42 5001.68 5001.90 0.26 5002.15 DI-3PA 4999.61 4999.63 0.12 0.00 0001.80 5001.81 5002.27 0.01 5002.28 INLET-3EB 4994.20 4994.34 0.05 0.00 5000.44 5000.45 5000.48 0.01 5000.49 DI-3EB 4994.34 4994.34 0.05 0.00 5000.50 5000.50 5000.54 0.00 5000.54 INLET-3EA 4994.21 4994.25 0.01 0.00 5000.43 5000.43 5000.44 0.00 5000.44 DI-3EA 4994.25 4994.25 0.00 0.00 5000.43 5000.43 5000.44 0.00 5000.44 STMH-3BA 4993.71 4994.15 0.36 0.00 5000.53 5000.70 5000.81 0.17 5000.97 INLET-3HB 4996.48 4996.52 0.03 0.00 5000.98 5000.98 5001.00 0.00 5001.01 DI-3HB 4996.52 4996.52 0.01 0.00 5000.99 5000.99 5001.01 0.00 5001.01 INLET-311A 4996.48 4996.62 0.35 0.00 5001.06 5001.15 5001.32 0.09 5001.41 DI-3HA 4996.62 4996.62 0.07 0.00 5001.22 5001.22 5001.48 0.00 5001.48 STMH-3BB 4994.15 4994.70 0.01 0.00 5000.73 5000.96 5000.99 0.23 5001.21 STMH-3BC 4994.69 4994.94 0.01 0.00 5000.97 5001.07 5001.23 0.10 5001.33 STMH-3BD 4994.94 4995.27 0.01 0.00 5001.16 5001.22 5001.34 0.06 5001.39 STMH-3BE 4995.27 4995.36 0.03 0.00 5001.24 5001.32 5001.80 0.07 5001.88 STMH-3BF 4995.36 4996.36 0.00 0.00 5001.83 5001.90 5001.88 0.07 5001.95 STMH-3CA 4997.86 4998.40 0.35 0.00 5002.25 5002.52 5002.52 0.26 5002.79 STMH-3CB 4998.40 5000.23 0.16 0.00 5002.68 5003.79 5002.94 1.11 5004.06 STMH-3CC 5000.13 5000.73 0.06 0.00 5003.85 5004.43 5004.12 0.58 5004.70 INLET-3JA 5000.82 5001.02 0.25 0.00 5004.76 5004.89 5004.95 0.13 5005.08 DI-MA 5001.02 5001.02 0.05 0.00 5004.94 5004.94 5005.12 0.00 5005.13 INLET-33B 5000.82 5001.00 0.01 0.00 5004.70 5004.71 5004.71 0.01 5004.72 DI-3JB 5001.00 5001.00 0.00 0.00 5004.71 5004.71 5004.72 0.00 5004.72 STMH-3B[ 4997.36 4998.23 0.00 0.00 5001.90 5002.01 5001.95 0.11 5002.06 STMH-2BJ 4998.23 4998.64 0.00 0.00 5002.01 5002.06 5002.06 0.05 5002.11 INLET-3BA 4998.64 4998.86 0.07 0.00 5002.13 5002.16 5002.18 0.03 5002.21 DI-3BA 4998.86 4998.86 0.01 0.00 5002.17 5002.17 5002.22 0.00 5002.22 INLET-3OA 4995.36 4995.50 For0.00 5002.01 5002.12 5002.45 0.11 5002.56 DI-OA 4995.50 4995.50 0.11 0.00 5002.23 5002.24 5002.66 0.00 5002.67 INLET-3OB 4995.36 4995.40 0.15 0.00 5001.91 5001.92 5002.02 0.01 5002.03 DI-3OB 4995.40 4995.40 0.03 0.00 5001.95 5001.95 5002.06 0.00 5002.06 INLET-3IA 4996.77 4997.02 0.33 0.00 5001.41 5001.57 5001.66 0.16 5001.82 DI-31A 4997.02 4997.02 O 06 0.00 5001.63 5001.63 5001.88 0.00 5001.89 STMH-3AA 4992.93 4993.96 0.19 0.00 5000.25 5000.46 5000.40 0.21 5000.61 STMH-3AB 4993.98 4994.34 0.01 0.00 5000.47 5000.54 5000.61 0.07 5000.69 INLET-3AA 4994.32 4994.55 0.01 0.00 5000.55 5000.64 5000.79 0.09 5000.87 DI-3AA 4994.55 4994.55 0.00 0.00 5000.87 5000.87 5000.88 0.00 5000.88 STMH-3AC 4994.55 4994.58 0.01 0.00 5000.72 5000.73 5000.88 0.01 5000.89 STMH-3KA 4994.58 4995.19 0.22 0.00 5000.95 5001.14 5001.12 0.19 5001.31 INLET-3KA 4995.70 4995.91 0.07 0.00 0001.30 5001.34 5001.37 0.04 5001.41 DI-3KA 4995.91 4995.91 0.02 0.00 5001.36 5001.36 5001.43 0.00 5001.43 INLET-3MA 4995.70 4995.91 0.13 0.00 5001.29 5001.36 5001.44 0.08 5001.51 DI-3MA 4995.91 4995.91 0.04 0.00 5001.40 5001.40 5001.55 0.00 5001.55 STMH-3LA 4994.58 4995.00 0.19 0.00 5000.94 5001.05 5001.08 0.11 5001.19 INLET-3LA 4995.51 4995.72 0.03 0.00 5001.19 5001.21 5001.22 0.02 5001.24 DI-3LA 4995.72 4995.72 0.01 0.00 5001.22 5001.22 5001.25 0.00 5001.25 INLET-3NA 4995.50 4995.71 0.16 0.00 5001.21 5001.31 5001.40 0.10 5001.50 DI-3NA 4995.71 4995.71 0.05 0.00 5001.36 5001.36 5001.55 0.00 5001.55 INLET-3AB 4994.58 4994.63 0.01 0.00 5000.75 5000.77 5000.90 0.02 5000.92 INLET-3AC 4944.63 4994.76 0.00 0.00 5000.83 5000.86 5000.92 0.03 5000.95 DI-3AC 4994.63 4994.76 0.02 0.00 5000.88 5000.91 5000.97 0.03 5001.00 DI-3AB 4994.63 4994.63 0.00 0.00 5000.91 5000.91 5000.92 0.00 5000.92 INLET-3DA 4995.26 4995.38 0.01 0.00 5000.05 5000.06 5000.06 0.00 5000.07 DI-3DA 4995.38 4995.38 0.00 0.00 0000.06 5000.06 5000.07 0.00 5000.07 INLET-3DB 4995.26 4995.37 O.02 0.00 5000.06 5000.06 5000.07 0.00 5000.08 DI-3DB 4995.37 4995.37 0.00 0.00 5000.06 5000.06 5000.08 0.00 5000.08 • Bend and Lateral losses only apply when there is an outgoing sewer.The system outfall,sewer#0,is not considered a sewer. • Bend loss=Bend K*V_ti^2/(2*g) • Lateral loss=V_fo^2/(2*g)-Junction Loss K*V_ti^2/(2*g). • Friction loss is always Upstream EGL-Downstream EGL. ST-3A MIN JM124 ................. .......................................I................ ............................I...... ..... ............................ ------ --—--------------- --——------- -------------—------ ------- .......................................................... JM N ------------------—-- ............. o98,W------------- fi 7 3-' 4996 0-' S 4M8j 000 SM i)9.J0 20.10 358.40 JJ8M 538 62, 71166 som Distance(Ft ST-3B 5005.59 M.09 500239 .................... SOOI.OD .......... ------------- ----- ................... ............. ---------------------------- 499939 ------ k. sr sry�i•3QF M1W F-----HGLI 99039 [..........EGLI DO 156.5 313.0 63.0 M5 939.6 1093.3 I m 6 1J08,5 1565.0 Distance(Ft) ST-3D 1 5000.09 J999.09 ........................................................................................................................................................... i 4998.09 W,W 99609 {L J99zo9 "`Lpr3p R J99i 09 4993.09 499I.09 Sr srff�� ............EGL 4991.09 0.00 16.60 33.N1 410 66.46 5300 99.60 11620 133.H0 149.40 Distance(Ftl ST 3D2 5M.99 -.................... .............................................................................................................. ...._.................... f 4999.09 498.09 499t.09 k. ._996.09 K J995�9 �� r.;D,s J99J 09 1993.09 499109 111�0114 3S ----HGL ...........EGL J991.09 000 I630 33.00 J9.S0 6600 QSO 99.00 115.30 13200 IJB.JO Distance(Ft) ST-3EI SWI SE 5000 86 ................................................................................................................................................. ....... ...I.............. ----------------- ---—————----------------- aM-6 ----------------—------—----- ------------------ ..................... awa 4W7.56 aM.26 S"4f HGL. O'N ]i.30 Ii8. M.. 297-O 311.50 .510 UVIO MAD WA Distance(Ft) ST-3E2 wim 5"'m .......................................................... ......................................................................... ................... .............. ------------- ———------------ 4M.16 -----—------—---------- -------------- ............................ a898. ------------ 40536 1W426 -------------- R- SPA 4MA ,m 76A 15 1:830 3" MOM a16.9 53110 608.86 M.w Distance(Fu ST-3F 5wl.% 1000.86 ......................... ................................—........................... ....... ....................................... .................................... .................. ------------- ----------- ---------- ------------------------- ............................. ------ ---------------- fi 4995 4M.26 -09"f- ............EGL 0.00 14.66 14916 n3.6 291.46 373.. .-,.w 5•]]n 396.9 VIA Distance(Fti ST-3GI lwl% 5000.86 ------------------ ............I........................................... ................................................................... .............. . ..........----------- ...................... -—--—---------- 4MA ------------ ---—--- ....................... 49KI --------- 4997.56 O Liu 4995.36 N— ---------------SPA— spvt,. 3993.16 4MM 0.00 96.66 l93Nr 289 386. 483.00 5]9.60 67616 -.80 869.4 Distance fFt) S T--'3 G 2 5wj.% .......................... ------------- ........ ....... .........................I........................... ............................................... --- --- ------------- ------ 4999.76 ---—--------- ---------------- ------------- ........................ J998. --------- 4M36 4995.36 4992W 369.60 Q'M 58J.. 621AID 770-16 $76.66 974.00 Distance(Fti ST-3HI 5000.26 ................. ---------------------------------- ........................................................................... ............................................................................................... .............................. ———---—--------- J999.16 ----------— ......................... 4998.0 --------- W56 fi O 4"5 36 4M.26 4993 16 sIrAf . ......... 4990%. 0 W 74JO 149.00 313.50 M.06 3M d/1.00 521.30 5%.06 670.50 Distance(Ftj ST-3H2 SWIM 500086 ...........................I........................... --------------- ......--------- ....................................I..............................................................................................................I....................... ..................... ........................ ------------------------------------ 49".76 ---------—------------ -- -------------------------- ................................ 4"8.66 -------—---- JW536 4M26 4W3.16 4MI'm SN �m.961 , ft,3.1 0.00 7256 ms 217.50 290.00 w 5o '35.00 50ll.50 Mw 65250 Distance(FO ST-31 5M.6 ........... ................................... ---------------- : *-"*'-''-"*........................ .............. ---------- ............................................ ......... .................................................. ............. ------ ................ ------ fi -—----------- L---j ----------- . HGL ...........EGL ass 2M 515.o lw.Q m.o 4110 613.6 934.0 927.6 1030.0 Distance(Fti ST-3JI 5OD4.97 5M137 50DL77 I----------------------- .............................. ..... -------------- 5M.17 rnE .......................... _.._..._.........--- — 4W5,37 ST S7'4f 4.W3.77 .o voS 341.6 sid 9826 852.5 I0230 11931 136a.6 Isks Distance(Fti ST-3J2 .......... .............. soroaa ................... ....... ....... P31.............. ...........----------------- 8.5§------ LJ� 8 -Jls�-38 ASIC 36 sf%�* -3 3,,4 HGL ...........EGL MU mA 851.0 W13 1191A 1361.6 1531.8 Distance(Ft) ST-3K 500331 Motu ................. .......................... ................... ------ ---------- ---- --------- 4M.% ..................... ........................... - -------------------------- ---------- .................... 4998.6 ---------- LJ L---- 403:, 40211-1 1 1...........EGL 0.0 lon M.0 307.5 410.0 512.5 615.0 7173 M.0 I -I.. Distance(Ft) ST-3L 50025, 001.5, ........... ------ ------------ ......... .............. -------- .. ------ -------------- 9, ..................... ................................................ --- - -------- -- ---------- 4.8 --------- fi 7,11 u. STMN lt3AC LA t7344 ...........EGL .A 98.70 197.40 MID 39C.80 49330 59? '39-66 888.30 937A Distance(Ft) ST-3M SWIM 5001.24 p .............. ------------------ ........................ ......................................................................................................... ...... ------- ........................ ............................ ------------------------- -- ---------- ........... 4993.�------------- LJ L-----J L .34 0.0 10.5 "lo nzi 410.6 5M 615.0 717.5 8M.0 922.5 I025.0 Distance(Fti ST-3N 300233 ........... 500I2A .................. ------ ........................ ................................................................................................................... -------------- OWN ......................................................................... ---------------------------- ------------ ..................... 4998.W----------- Lti P344 rT "?,'0.3& Af&,3,1 0.00 98.70 197.46 'SO.tO m" M30 "I" 09090 7040 33836 937.00 Distance(Ft) ST-301 MISS 5001.69 ........................... -------- ------------ 5000A ....................................................................... ................................. .............1, -—----------------------- .. 4mia ................. ......... Li GS sr 8 �WA &D 101 218A 327.6 'As U6.6 655i 76d.4 673.4 "m Distancefft) ST-302 500288 5001.68 ...................... ............ .............. —------------ ------------- . -- 5M.49 —--——--------- .... ................................................................................................................ .......... ---------------------- ----------- 4MA Li Imos ti L 3985.68 dM,s Af,43ft 4932s dWlos 3-1 990.86 0.0 1071 214A 3211 Ul 536A &33 750A 9576 WA Di stance(Ftl S'F-3 p 500335 3001.95 ............................ 300033 ...................... ............ ... ....................... ................................................................ ............. .......................... -------- ---- .......... ............... .......................... ----- ---------------------I .................. ---------- ri 3n F--- HGL] 0.6 1009.. 219.2 Mi 438 i 588.0 wi 7672 8769 986.4 10960 Distance(Ft) ST-3UI 5w,% 5000.86 .............................................................................................................................................................................................................................................................. --------------------------------------- 4999.16 -—-------— -—--------------------—------------- ....................................... --------------- Im,----------------- W.56 v. M36 4MIO 4M.16 699106 —HGL 999096 0.00 53.56 107.00 10.50 214.06 267.50 321.W 374.50 mod 431.56 ...........EGL Distance(Ft) ST 3U2 5001.83 sow." 4M.76 -------------------- _. 3986. ___ W.56 € "h'C `N 996 J6 LL a965.36 389J36 4W3.16 A- S�n 4sst.06 STIR. Sr l33C. ST,�K 3Ij ...........EGL ss➢o.s6 600 Sd30 109.00 163.50 218.60 272.50 3.7 60 381.50 036.06 680.50 Distance f.Ftl MHFD-Culvert, Version 4.00(May 2020) Project: MONTAVA SUBDIVISION PHASE D ID: ST-03 9ov CIRCLE „ � 0 L Lp Rw n Soil Type: Choose One: 0 Sandy 0 Non-Sandy Design Information: Design Discharge Q= 147.55 cfs Circular Culvert: Barrel Diameter in Inches D= 72 inches Inlet Edge Type(Choose from pull-down list) Grooved Edge Projecting OR: Box Culvert: OR Barrel Height(Rise)in Feet H(Rise)= ft Barrel Width(Span)in Feet W(Span)= ft Inlet Edge Type(Choose from pull-down list) Number of Barrels #Barrels= 1 Inlet Elevation Elev IN= 4992.22 ft Outlet Elevation OR Slope Elev OUT= 4992 ft Culvert Length L= 74.43 ft Manning's Roughness n= 0.013 Bend Loss Coefficient kb= 0 Exit Loss Coefficient k,= 1 Tailwater Surface Elevation Yt,Elevation= 4998.69 ft Max Allowable Channel Velocity V=1 5 Ift/S Calculated Results: Culvert Cross Sectional Area Available A= 28.27 ft, Culvert Normal Depth Yn= 2.22 ft Culvert Critical Depth Y�= 2.16 ft Froude Number Fr= 0.95 Entrance Loss Coefficient ke= 0.20 Friction Loss Coefficient kf= 0.21 Sum of All Loss Coefficients ks= 1.41 ft Headwater: Inlet Control Headwater HWI=P4998.33 ft Outlet Control Headwater HWo= ft Design Headwater Elevation HW= ft Headwater/Diameter OR Headwater/Rise Ratio HW/D= Outlet Protection: Flow/(Diameter^2.5) Q/D^2.5= 1.67 ft°'sJs Tailwater Surface Height Yt= 6.69 ft Tailwater/Diameter Yt/D= 1.11 Expansion Factor 1/(2*tan(0))= 6.70 Flow Area at Max Channel Velocity At= 29.51 ft2 Width of Equivalent Conduit for Multiple Barrels WN= - ft Length of Riprap Protection LP=1 17 ft Width of Riprap Protection at Downstream End T=J 9 ft Adjusted Diameter for Supercritical Flow Da= ft Minimum Theoretical Riprap Size dso min= 2 in Nominal Riprap Size dso nominal= 6 in MHFD Riprap Type Type= VL ST-04 100—YEAR .eie 17 011, I4 ?I 7 FES 4A Rainfall Parameters Rainfall Return Period: 2 Backwater Calculations: Tailwater Elevation(ft): 4994.91 Manhole Input Summary: Given Flow Sub Basin Information Ground Total Local Drainage Overland Overland Gutter Gutter Element Known Runoff 5yr Elevation Contribution Area Length Slope Length Velocity Name (ft) (CIS) (cfs) (Ac.) Coefficient Coefficient (ft) (%) 00 (fps) FES-4A 4991.06 F 0.00 0.00 0.66 F 0.00 r-0.00 F0.00 0.00 0.00 6.00 rSTMH-4A 5000.25 F20.99 F 0.00 0.00 0.00 F 0.00 F 0.00 F 0.00 0.00 0.00 TMH- S4AA F4999.34 7.66 0.00 0.00 0.00 0.00 0.00 0.00 lo.00Fo-oo STMH- 4AB 4999.23 7.66 0.00 Fo .00Fo-oo 0.00 Fo .00 0.00 0.00 0.00 14FBT F989O 1.15 0.00 0.00 0.00 0.00 F.00 F.00 0.00 0.00 F DI-4FB r4998.90 1.15 F 0.00 F0.00 0.00 F0.00 F0.00 0.00 FO.00 0.00 4FA 49798 0 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F DI-4FA F 4998.90 2.20 F 0.00 F0.00 0.00 F0.00 F0.00 F0.00 FO.00 0.00 FSTMH-4B 4999.86 10.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 rSTMH-4C 5001. 0 F 9.86 F 0.00 F 0.00 F 0.00 F 0.00 F0.00 F0.00 FO.00 0.00 5001.14 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 rSTMH-4D 9.86 7o.00 F 0.00 7o.00 F 0.00 F 0.00 F 0,00 Fo.00 0.00 FSTMH-4E 5001.38 rSTMH-4F 5001.07 F 9.86 F0.00 0.00 F 0.00 0.00 F0.00 I6.00 0.00 0.00 STMH-4G 5000.78 F-9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FO.00 4CB 5000.37 Fo. 65 0.00 0.00 0.00 Fo--oo Fo_.00Fo_.00Fo.o_oFo_.00 INLET- -Fr DI-4CB 5000.37 F 0.65 F 0.00 F 0.00 F 0.00 0.00 F 0.00 F 0.00 FO.00 FO.00 STMH-4H 50011515 8.89 0.00 0.00 rc0.00 0.00 0.00 0.00 0.00 0.00 rSTMH-41 5001.76 4.50 0.00 0.00 r-0.00 0.00 0.00 D.00 0.00 0.00 rSTMH-4J 5001.89 4.50 0.00 0.00 r-0.00 0.00 0.00 0.00 0.00 F 0.00 rSTMH-4K 1 5002.34 4.07 0.00 0.00 r`0.00 0.00 0.00 0.00 0.00 0,00 14EA 5002.83 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D1-4EA r5002.83 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FNLET-4A �5002.64 2.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 rF DI-4A V 5002.64 2.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I GB 15001.60 Fo29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - F0.FDI-4GB I5001.60 0.29 0.00 0.00 0.00 0.00 0.00 0.00 00 0.00 4GA F5001.60FO-26 F0.00 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 r DI-4GA 5001.60 0.26 0.00 0.00 - __F__4DA 5000.74F2'26 F_0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-4DA 5000.74 2.26 0.00 0.00 0.00 0.00 0.00 D.00 0.00 0.00 INLET- F 0.00 0.00Fo-oo 0.00 0.00 0.00 0.00 0.00 4DB F500074F245 DI-4DB 5000.74 2.45 0.00 6.00 0.00 6.00 0.00 0.00 0.00 0.00 4CA 5000.37 F0.62 0.00 Fo. 00 0.00 0.00 Fo .00ET- 0.00 0.00 0.00 DI-4CA 5000.37 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - -- 4BAET- F4999.25Fo.14Fo-oo 0.00 0.00 F-- 0.00 0.00 0.00 0.00 0.00 DI-413A 4999.25 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ET 4999.51FO-�411 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-4BB 4999.28 o-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: Local Contribution Total Design Flow F- Overland Gutter Basin Local Manhole r ementIntensity Coeff. IntensityNameTime Time Tc (in/hr) Contrib Area (in/hr) Tc Comment (min) (min) (min) (cfs) (min) FES-4A 0.00 0.00 Fo--ooFo--ooFo-o-oFo--oo Fo--ooF-o-oo-Fomo (Upstream) Surface Water Present STMH-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.99 Surface Water Present (Downstream) STMH 0.00 0.00 0.00 0.00 7.66 0.00 0.00INLET- F- STMH- .66 41713 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.15 DI-4FB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.15 ltFA -- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F.20 DI-4FA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 2.20 STMH-4B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.04 STNW4C O.UO 0.00 0.00 0.00 0.00 0.00 O.OU 0.00 9.86II STMH-4D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.86 STMH-4E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.86 STMH-4F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.86 STMH-4G 6.00 0.00 0.00 0.00 0.00 0.00 6.00 F 0.00 9.86 I4CET-B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fo .65 DI-4CB 0.00 6.00 0.00 0.00 0.00 0.00 6.00 0.00 0.65 STMH-4H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.89 STMH-41 0.00 6.00 0.00 0.00 6.00 0.00 0.00 6.00 4.50 STNH-4J 0.00 0.00 0.00 0.00 0.00 0.00 O.OU 0.00 4.50 STMH-4K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.07II NLET- I4EA 0.00 0.00 0.00FO 00 0.00 FO00FO 00 0.00 1.17 DI-4EA 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 1.17 LET-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.95 IN DI-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.95 II IB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 DI-4GB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 0.29 F GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 DI-4GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 0.26 4DA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.26 DI-4DA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.26 7 F - FNLET 0.00 0.00 0.00 0.000.000.00 0.00 F0.00 F.454DB DI-4DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 2.45 E -F[ 7 i� - -- 4CA Fo-oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 DI-4CA 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.62 E -F[ 4BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 DI-4BA F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 0.14 L F4BB T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 DI-4BB F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.00 0.11 Sewer Input Summary: Elevation Loss Coefficients Given Dimensions Element Sewer Downstream Slope Upstream Mannings Bend Lateral Cross Fise Span Length Invert ° InvertName (ft) (ft) (�O) (ft) n Loss Loss Section or in) (ft or in) STMH-4A 70.20 F 4991.09 0.5 4991.44 F 0.013 0.03 0.00 CIRCULAR 54.00 in 54.00 in STMH-4AA 277.26 4991.44 6.5 4992.83 0.013 0.05 0.00 CIRCULAR 30.00 in 30.00 in STMH-4AB 50.00 4992.83 0.5 4993.08 0.013 0.07 0.00 CIRCULAR 30.00 in 30.00 in INLET-4FB 9.85 4993.58 0.5 4993.63 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-4FB 1.00 4993.63 0.5 4993.63 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4FA 28.15 4993.58 0.5 4993.72 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in DI-4FA 1.00 F 4993.72 0.5 4993.72 F 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-413 80.41 F 4991.44 0.4 4991.76 F 0.013 1.32 0.00 CIRCULAR 48.00 in 48.00 in STMH-4C 226.79 F 4991.76 0.4 4992.67 F 0.013 0.05 F 0.00 CIRCULAR 42.00 in 42.00 in STMH-4D 226.79 4992.66 0.4 4993.57 0.013 0.05 0.00 CIRCULAR 42.00 in 42.00 in STMH-4E 63.41 4993.57 0.3 4993.76 0.013 1.32 0.00 CIRCULAR 42.00 in 42.00 in STMH-4F 26.11 4993.76 0.3 4993.84 0.013 0.16 0.00 CIRCULAR 42.00 in 42.00 in STMH-4G 64.72 F 4993.84 FO.3 4994.03 FO.013 0.16 FO.00 CIRCULAR 42.00 in 42.00 in INLET-4CB 14.50 4995.58 0.5 4995.65 0.013 1.32 0.00 CIRCULAR Fmooin 18.00 in DI-4CB 1.00 4995.65 0.5 4995.65 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-4H 273.91 F 4994.03 FO.3 4994.85 F 0.013 0.05 FO.00 CIRCULAR 36.00 in 36.00 in STMH-4I 116.02 4995.85 0.3 4996.20 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in STMH-4J 54.91 4996.20 0.5 4996.47 I 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in STMH-4K 57.59 F4996.47 FO.5 4996.76 F 0.013 0.05 FO.00 CIRCULAR 24.00 in 24.00 in INLET-4EA 37.20 4996.76 0.5 4996.95 0.013 0.85 FO.00 CIRCULAR Duoin 18.00 in DI-4EA 1.00 4996.95 0.5 4996.95 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4A 54.63 4996.77 0.5 4997.04 0.013 0.75 0.00 CIRCULAR 24.00 in 24.00 in DI-4A 1.00 4997.04 0.5 4997.04 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4GB F28.00 F 4996.47 FO.5 4996.61 F0.013 1.32 FO.00 CIRCULAR 18.00 in 18.00 in DI-4GB 1.00 4996.61 0.5 4996.61 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4GA 8.00 F 4996.47 FO.5 4996.51 FO.013 1.32 FO.00 CIRCULAR 18.00 in 18.00 in DI-4GA 1.00 F 4996.51 FO.5 4996.51 FO.013 0.25 Fo.00 FEIRCULAR 18.00 in 18.00 in INLET-4DA 14.50 4995.95 0.5 4996.02 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-4DA 1.00 4996.02 0.5 4996.02 I 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4DB 57.50 4995.95 0.5 4996.24 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-4DB 1.00 4996.24 0.5 4996.24 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4CA 57.50 4995.58 0.5 4995.87 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-4CA 1.00 4995.87 0.5 4995.87 I 0.013 0.25 0.00 CIRCULAR 18.00 in 18. 00 in INLET-413A F24.00 F4994.26 FO.5 4994.38 F 0.013 1.32 FO.00 CIRCULAR F18.00 in 18.00 in DI-413A 1.00 F 4994.38 FO.5 4994.38 FO.013 0.25 FO.00 CIRCULAR FmooinF18.00 in INLET-4BB 24.40 4991.77 0.5 4991.89 0.013 0.83 0.00 CIRCULAR 36.00 in 36.00 in DI-4BB 1.00 4991.89 0.5 4991.89 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in Sewer Flow Summary: Full Flow Critical Flow Normal Flow Capacity i�� �� '� Surcharged Element Flow Velocity Depth Velocity Depth Velocity Fronde Flow Flow Length Comment Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) ft STMH-4A 139.43 8.77 15.64 5.49 14.16 6.31 1.21 Supe�20.99 0.00 S4 29.08 5.92 11.03 4.68 10.51 5.00 1,10 SupJumptical 7 66 208.44 STMH- 4AB F29 08 5.92 11.03 4.68 Flo 51 5.00 1.10 Supercritical 7.66 0.00 4FB F7- .45 4.21 4.81 3.03 F.78F3.06 F1.01 Supercritical. 1.15 0.00 DI-4FB 7.45 4.21 4.81 3.03 4.78 3.06 1.01 Supercritical Fl.15 F 0.00 F 1NLET- 417A F16 04 5.11 6.18 3.43 6.00 3.58 1.06 Supercritical 2.20 000 F DI-4FA 16.04 5.11 6.18 3.43 �6.00 3.58 1.06 Supercritical 2.20 0.00 STMH-4B 91.09 7.25 11.08 4.58 10.76 4.77 1.06 Supercritical 10.04 F 0.00 STMH-4C 63.80 6.63 11.40 4.67 11.16 4.81 1.04 Supercritical 9.86 0.00 STMH-4D 63.80 6.63 11.40 4.67 11.16 4.81 1.04 Supercritical F9.86 F0.00 F STMH-4E 55.25 5.74 11.40 4.67 12.01 4.34 0.90 Subcritical 9.86 7 0.00 F 5.74 11.40 4.67 12.01 4.34 0.90 Subcritical 9.86 0.00 FSTi�E4F F55.25 STMH-4G 55.25 5.74 11.40 4.67 12.01 4.34 0.90 Subcritical 9.86 I 0.00 P IC.EBT 7.45 4.21 F3-59F2.59 F3-59F2-59 FI-00 Fbritial FO-65 0.00 N4 DI-4CB 7.45 4.21 3.59 2.59 3.59 2.59 1.00 Subcritical 0.65 0.00 STMH-4H 36.63 5.18 11.29 4.68 12.08 4.27 0.88 Subcritical 8.89 0.00 STMH-4I 12.42 3.95 8.95 4.22 9.99 3.64 0.81 Subcritical 4.50 0.00 STMH-4J 16.04 5.11 8.95 4.22 8.70 4.38 1.06 Supercritical F4.5o F0.00 F STMH-4I 16.04 5.11 8.49 4.09 8.24 4.26 1.06 Supercritical 4.07 0.00 F 5TEA 7.45 4.21 F4-85 3.05 F4-82 3.07 FI-01 Supercritical 1.17 F 0.00 7.45 4.21 4.85 3.05 4.82 3.07 1.01 Supercritical 1.17 0.00 FD1-4EA iN4,AT F16.04 F5.11 F7--19F3-73 F6-97 F3.89 F1.06 Supercritical F2.95 F 0.00 DI4A 7.45 4.21 7.83 4.00 7.87 3.97 0.99 Subcritical 2.95 0.00 I GB 7.45 F4.21 F2-38 2.09 F2-43 F2.04 FO.96 FSubcitical FO.29 F 0.00 DI-4GB 7.45 4.21 2.38 2.09 2.43 2.04 0.96 Subcritical 0.29 0.00 F INLET- Veloci is Too 4GA 7.45 4.21 F2.25F2.04 F2.30 1.97 FO.96 FSubritical FO.26 0.00 L w DI-4GA 7.45 4.21 2.25 2.04 2.30 1.97 0.96 Subcritical 0.26 F0.00 Velocii� s Too -Fii� 4DA 7.45 4.21 F6.82F3.68 F6.80 3.70 FLOO SupercriticalF2.26 0.00 ET-DI-4DA 7.45 4.21 6.82 3.68 6.80 3.70 1,00 Fsupercritical F2.26 0.00 [i�4LDEBT- 7.45 4.21 7.11 3.77 7.11 3.78 1.00 Supercritical 2.45 0.00 DI-4DB 7.45 4.21 7.11 3.77 7.11 3.78 1.00 Supercritical F2.45 0.00 F LET-[FiK4CA 7.45 4.21 3.50 2.56 3.51F-2.5-5 1.Q0 Subcritical 0.62 0.00 DI-4CA 7.45 4.21 3.50 2.56 3.51 2.55 1.00 Subcritical 0,62 0.00 F5IEAT-1J 7.45 F4.21 1.65 1.73 1.71F1.64 Fo.93 Subcritical 0.14 0.00 Low DI 4BA 7.45 4.21 1.65 1.73 1.71 1.64 0.93 Subcritical 0.14 0.00 Velo Los Too INLET- Veloci is Too 4BB F47.29 6.69 1.22 1.48 1.28 1.38 0.91 Pressurized FO.11F24.40 Low DI-4BB 7.45 4.21 1.46 1.63 1.53 1.52 0.91 Pressurized 0.11 1.00 Velocs Too • A Froude number of 0 indicates that pressured flow occurs(adverse slope or undersized pipe). • If the sewer is not pressurized,full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized,full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used [Peak Element Cross- Area Name (ef) Section Rise Span Rise Span Rise Span (ft^2) Comment STMH-4A 20.99 FORCULAR 54.00 in 54.00 in 27.00 in 27.00 in 54.00 in 54.00 in 15.90 r STMH-4AA 7.66 CIRCULAR 30.00-in 30.00 in 21.00 in 21.00 in 30.00 in 30.00 in 4.91 F STMH-4AB 7.66 CIRCULAR 30.00 in 30.00 in 21.00 in 21.00 in 30.00 in 30.00 in 4.91 INLET-4FB 1.15 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4FB 1.15 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-417A 2.20 CIRCULAR 24.00 in 24.00 in 58.00in 18.00 in 24.00 in 24.00 in F3.14 F DI-4FA 2.20 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-413 10.04 FORCULAR 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 12.57 F STMH-4C 9.86 CIRCULAR 42.00 in 42.00 in 21.00 in 21.00 in 42.00 in 42.00 in F9.62 F STMH-4D 9.86 CIRCULAR 42.00 in 42.00 in 21.00 in 21.00 in 42.00 in 42.00 in F9.62 F STMH-4E 9.86 CIRCULAR 42.00 in 42.00 in 24.00 in 24.00 in 42.00 in 42.00 in F9.62 STMH-4F 9.86 CIRCULAR 42.00 in 42.00 in 24.00 in 24.00 in 42.00 in 42.00 in 9.62 STMH-4G 9.86 CIRCULAR 42.00 in 42.00 in 24.00 in 24.00 in 42.00 in 42.00 in F9.62 F INLET-4CB 0.65 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 DI-4CB 0.65 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 STMH-4H 8.89 CIRCULAR 36.00 in 36.00 in 24.00 in 24.00 in 36.00 in 36.00 in F7.07 F STMH-4I 4.50 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 STMH-4J 4.50 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 F STMH-4K 4.07 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in F3.14 F INLET-4EA 1.17 CIRCULAR 18.00 in 18.00 in F18.00in 18.00 in 18.00 in 18.00 in F1.77 F DI-4EA 1.17 CIRCULAR 18.00 in 18.00 in 58.00in 18.00 in 18.00 in 18.00 in F1.77 INLET-4A 2.95 CIRCULAR 24.00 in 24.00 in F,8.00in 18.00 in 24.00 in 24.00 in F3.14 F DI-4A 2.95 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-4GB 0.29 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 DI-4GB 0.29 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 F INLET-4GA 0.26 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4GA 0.26 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 m 1.77 INLET-4DA 2.26 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4DA 2.26 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F18.00in F1.77 INLET-4DB 2.45 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 F DI-4DB 2.45 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-4CA 0.62 CIRCULAR 18.00 in F18.00in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 CI 80 80 0 8 DI-4CA 0.62 RCULAR 0in min INLET-4BA 0.14 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4BA 0.14 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-41313 o.11 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07 DI-4BB 0.11 CIRCULAR 18.00 in 18.00 in 81 00 in 18.00 in 18.00 in 18.00 m 1.77 F • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used'parameters. Grade Line Summary: Tailwater Elevation (ft):4994.91 Downstream Manhole r Invert Elev. HGL I EGL Losses rend- Lateral Friction Element Downstream Upstream Downstream Upstream Downstream Upstream Name (ft) (ft) Loss (ft) (ft) (ft) Loss (ft) (ft) � � � I (ft) STMH-4A 4991.09 4991.44 0.00 �.00 0994.91 �994.91 4994.94 0 01 94.95 STMH-4AA 4991.44 4992.83 0.00 0.00 4994.91 4994.98 4994.95 0.07 4995.02 STMH-4AB 4992.83 4993.08 0.00 0.00 4994.98 4994.98 4995.03 0.01 4995.04 INLET-4FB 4993.58 4993.63 0.01 0.00 4995.04 4995.04 4995.05 0.00 4995.05 DI-4FB 4993.63 F4993.63 F0.00 0.00 4995.04 4995.04 F4995.05 FO.00 4995.05 INLET-4FA F 4993.58 F4993.72 F0.01 0.00 F4995.04 4995.04 F4995.05 Fo.00 4995.05 D14FA 4993.72 F4993.72 F0.00 0.00 F4995.04 4995.04 F4995.05 F 0.00 4995.05 STMH-4B 4991.44 F4991.76 F 0.01 F0.00 F4994.95 4994.95 4994.96 FO.00 4994.96 STMH-4C 4991.76 4992.67 0.00 0.00 4994.95 4994.95 4994.97 0.02 4994.99 STMH-4D 4992.66 4993.57 0.00 0.00 4994.95 4994.95 4994.99 0.09 4995.07 STMH-4E 4993.57 4993.76 0.02 0.00 4994.98 4995.00 4995.10 0.07 4995.16 STMH-4F 4993.76 4993.84 0.00 0.00 4995.00 4995.02 4995.17 0.04 4995.20 STMH-4G 4993.84 F4994.03 F0.00 0.00 4995.02 4995.08 F 4995.21 0.13 4995.34 INLET-4CB 4995.58 4995.65 0.00 0.00 4995.88 4995.95 4995.98 0.07 4996.05 DI-4CB 4995.65 F4995.65 0.00 0.00 F 4995.98 4995.98 F 4996.05 0.00 4996.06 STMH-4H 4994.03 F4994.85 F0.00 0.00 4995.10 4995.82 F4995.34 FO.80 4996.13 STMH-4I 4995.85 4996.20 0.00 0.00 4996.60 4997.10 4996.87 0.39 4997.27 STMH-4J 4996.20 4996.47 0.04 0.00 4997.17 4997.22 F 4997.31 0.18 4997.49 STMH-4K 4996.47 4996.76 0.00 0.00 4997.34 4997.47 4997.49 0.23 4997.73 INLET-4EA 4996.76 4996.95 0.01 0.00 4997.72 4997.72 4997.73 0.01 4997.74 D14EA 4996.95 F4996.95 F0.00 0.00 F 4997.72 4997.72 F 4997.75 F 0.00 4997.75 INLET-4A 4996.77 F4997.04 F0.01 0.00 4997.67 4997.67 F4997.74 0.12 4997.86 D1-4A F 4997.04 F4997.04 F0.01 0.00 F 4997.69 4997.70 F 4997.94 FO.01 4997.94 INLET-4GB T4996.47 F4996.61 F0.00 0.00 4997.49 4997.49 F 4997.49 0.00 4997.49 DI-4GB 4996.61 4996.61 0.00 0.00 4997.49 4997.49 4997.49 0.00 4997.49 INLET-4GA 4996.47 4996.51 0.00 0.00 4997.49 4997.49 4997.49 0.00 4997.49 D1-4GA 4996.51 4996.51 0.00 0.00 4997.49 4997.49 4997.49 0.00 4997.49 INLET-4DA F 4995.95 4996.02 0.03 0.00 4996.51 4996.59 F4996.73 0.07 4996.80 DI4DA 4996.02 4996.02 0.01 0.00 4996.65 4996.65 4996.81 0.00 4996.81 INLET-4DB 4995.95 4996.24 0.04 0.00 4996.54 4996.83 4996.77 0.29 4997.05 DI-4DB 4996.24 F4996.24 F0.01 0.00 4996.89 4996.89 F4997.06 F0.00 4997.06 INLET-4CA F 4995.58 F4995.87 F0.00 0.00 4995.87 4996.16 4995.98 F 0.29 4996.26 DI4CA 4995.87 F4995.87 F0.00 0.00 F 4996.19 F4996.19 F 4996.26 FO.00 4996.27 INLET-4BA F 4994.26 F4994.38 F0.00 0.00 F4994.96 F4994.96 F4994.96 Fo.00 4994.97 DI-4BA 4994.38 4994.38 0.00 0.00 4994.96 4994.96 4994.97 0.00 4994.97 INLET-4BB F 4991.77 4991.89 0.00 0.00 4994.96 4994.96 4994.96 0.00 4994.96 DI-4BB 4991.89 4991.89 0.00 0.00 4994.96 4994.96 F4994.96 0.00 4994.96 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall,sewer#0,is not considered a sewer. • Bend loss=Bend K*V_fi^2/(2*g) • Lateral loss=V_fo^2/(2*g)-Junction Loss K*V_fi^2/(2*g). • Friction loss is always Upstream EGL-Downstream EGL. ST 04 50015+ 3000'.a J998.9� 4997.W .......--- S styttl�L�rgA .... �7yyq✓ k ...._ - -- ,4r �t_gG S7;trtt qD S i c +s9u, Tli?tj Sttirit. le 4q ----HGL ...........EGL 989.5: 00 I3I5 263.0 3935 516.0 657_5 M. 9705 IOSO 11833 1315.0 Distance(Fti ST 4B 1 5000.0a — i999.09 f99S.0a 4"'.08 1M,os (i W 995.08 � u ussssussussssssssssssssussssssssssssu:ssssssssuu ssssssssssssussssssssssussu:ssssssssssussssssssssssssssssssssssssssssssssa------------------------------------------------.................................--..______________________ Fz 4993.08 A d993.08 l993.09 Sri ,991.Oa St�1lt k'q@ lqq ----HGL ...........EGL 990.08 0.00 1)56 35.00 5250 )0.00 8150 105.00 172.30 140.00 13).50 Distance(Fti ST-4B2 Mos 49".08 4"Us 499701 4MOS ........... 4994.08 493 cs S My & 4"108 "0 1].50 35.00 5250 IOM 8].30 105.00 12150 140.06 IS]SO 175.00 Distance(Ft) ST-4CI 5000.96 4996.56 ................................................................................ .................... ................................. .......... --------------------------- sr 499216 499LO6 W-44 ............EGL 989.96 ow 81.66 163...2 2..80 PAA MA 13960 11110 02.30 73J.46 Distance(Ft) ST-4C2 5M." ................ ------— **'-"*-------------------------- -40 1991.86 4"IM 4"I'M ...........EGL 989.96 0.00 51 33I96 30920 38656 J6i.B0 u1.16 618.'o 695.70 Distance(Ft) ST-4DI MM WA6L ------------------------------ ..................................... ................. ----- ...............................................—------------- ........... ..... .................... -----—--............... ....................-------———------ S7,4f 7"G 499216 My 4q 98996 So iw.i 2W.i 31J JMs 51-5 6281, 132.9 831.6 9J23 Distance(Ft) ST-4D2 4998:E i99J.6fi 3996 Sfi 0. .i IN g r qD .... 4994.36 srMti,,,fi s sr 3993�6 SPAN" 3� 'qD ...........EGL 999 6 00 10➢.0 2180 327.0 438.0 $43.0 694.0 703.0 8]20 981.0 Distance(Ft) ST 4E A02.9' 5001.5' 4998.92 499).62 ............__.i 99fi 32 ' W s sr,��A2FrgEA s �x ...._..............,_.--- lygl 4M.0:....,..,..------- .............................---- srMy�h 4993.2 sT srM s� MFrw ��c S aMFF q� srMN�c s 4991.c sr �h'-4�i ------HGL ...........EGL 4999.9 0.0 129.8 ?fl.6 389.0 519.2 649.0 ]]8.8 908.fi 10381 1169-, 1'98.0 Distance,(Ft) ST-4F 1 5000,08 49990E 4"8.08 4"7.0 4990.03 k. 995.06 ............... .. ................................... 4994.0E 4993.0E 4997.0E 4"I.DS HGL EGL ON 42.66 B520 127 1,0A 213.00 255.0 MA MR 383.46 Distance(Ft) ST-4F2 5000.0E 4999.0E 409,08 4W- 4M.08 ............ ........................ ------------------------ ------ IL MOS 4W3.08 4"20 4"1.08 4990 OS ON SLA 17_IO Weim 20330 244 V 284.90 325.66 SMA 407.00 Distance fF0 ST-4G] L 399831 399t.11 ' .`995.91LL-------------------------------------------- ................ lSt.q✓ ly _..-------------- ..__.._..._._._------------ - - ---- d993'1 �iyQN _ sT sir .. SOH 4�F1yF fj'Qc Spy �n STAB sr �c ---HGL ...........EGL 98991 0.0 121.1 24i2 -. --- 6051 ty6 8d'; 968.8 1089.9 1.'II.O Distance fFO ST-4G2 5m.% 399951 d998.31 L--I---u ............'i__- i99t.11 ,y fi c Sr WHET a �✓ ----------------- -------- - - -' 399d..e 3993.51 ssrMy F H 4c 4E 4 S STA- d991.11 S✓.A. `�(.✓�� ----HGL ............EGL 98i 91 0o 113.1 '.d61 3093 492d 6155 7386 BOLL 98d.8 II019 1331.0 Distance fFti ST-04 100-YEAR 4� N 6/ ti rES 4A Rainfall Parameters Rainfall Return Period: 100 Backwater Calculations: Tailwater Elevation(ft): 4994.91 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainave Overland Overland Gutter Gutter Element Known b Runoff 5,yr Elevation Contribution Area Length Slope Length Velocity Name (ft) (,f) (cfs) (Ac.) Coefficient Coefficient (ft) (.X (ft) (fps) FES-4A 4 991.00 0.00 F 0.00 F 0.00 0.00 F 0.00 F 0.00 0.00 0.00 6.00 STMH-4A 5000.25 88.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S4 F4999-34F30-98 0.00F F F F 0.00 S4AB F4999-23F30-98 0.00 INLET- [4998-90F4-56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-4FB 4998.90 4.56 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 II FEAT F98-go F497.70 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-4FA 4998.90 F27.70 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 0.00 0.00 STMH-4B 4999.86 62.86 0.00 O.OQ 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4C 5001.06 43.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S H TM -4D 5001.14 42.96 0.00 F 0.00 7o.00 F 0.00 F 0.00 F 0.00 Fo.00 0.00 FsTMH-4E 5001.38 42.96 0.00 F 0.00 Fo.00 F 0.00 F 0.00 F 0.00 Fo.00 0.00 FsTMH-4F 5001.07 42.96 0.00 F 0.00 F 0.00 F 0.00 Fwo-oi 6.00 0.00 Fo.00 STMH-4G 5000.78 42.96 0.00 0.00 0.00 0.00 0.00 6.00 0.m 0.00 -F- [ii44CB 5000.37 2.84 0.00 0.00 0.00 Fo.00 0.00 0.00 0.00 0.00 DI-4CB 5000.37 F2.84 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F6.66 F6.66 STM -4H H 5001.15 38.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4I 5001.76 F 19.55 F 0.00 F O.OQ F 0.00 F 0.00 F 0.00 F 0.00 Fo.00 0.00 STMH-4J 5001.89 19.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4K 5002.34 F 17-77-F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 0.00 0.00 4EA F5002.64F5.10 F0.00 0.00 0.00 0.00 Fo .00 Fo .00 Fo 00 0.00 D1-4EA 5002.64 5.10 0.00 F 6.00 F 6.00 F 0.00 F 0.00 F 0.00 0.00 6.00 INLET-4A F5002.64 F12.86 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 0.00 0.00 DI-4A 5002.64 12.86 0.00 0.00 6.00 0.00 0.00 0.00 0.00 6.00 III E 5001.60 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-4GB 5001.60 1.19 0.00 0.00 0.00 0.00 6.00 6.00 0.00 0.00 FLA 5001.60 1.09 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D1-4GA 5001.60 1.09 0.00 0.00 O.OQ 0.00 0.00 0.00 0.00 0.00 -P 4DAET- 5000.74F9-89 F0.00 0.00 0.00 F-- 0.00 0.00 0.00 0.00 0.00 DI-4DA 5000.74 F 9.89 F 0.00 F 0.00 F 0.00 F 0.00 F 0.00 F om Fo.00 0.00 NLET- 141313 5000.74 10.71 0.00 0.00 0.00 0.00 0.00 0.00 [0.00 0.00 DI-4DB 5000.74 10.71 F 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 14CA 5000.37 2.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 [ DI-4CA 5000.37 F-2. I4HB 5000.68 F0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-4HB 5000.68 0.40 0.00 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 4HA F5000.46FO-50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 [DI-4HA 5000.46 0.50 0.00 0.00 0.00 0.00 0.00 0.00 F0.00 0.00 4BA F4999-25F3-38 F0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 [DI-4BA 4999. 5 F 3.3$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I4BB 4999.51F2.07 F0.00 0.00 0.00 0.00 0.00 0.00 lo-00 0.00 r DI-433 [4999.51 22.07 0.00 0.00 0.00 0.00 0.00 0.00 F0.00 0.00 Manhole Output Summary: Local Contribution Total Design Flow [Ele ent Overland Gutter Basin Intensity Local Coeff. Intensity Manhole Peak m Name Time Time Tc (in/hr) Contrib Area (in/hr) Tc Flow Comment (min) I (min) (min) (cfs) (mi(min) (cfs) [FES-4A 0.00 0.00 Fo--oolo-oo 0.00 0.00Fo--ooF-o-oo-Fo-o-Pu""ce 0 Water Present IS (Upstream) TMH-4A y 00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F,Q7 Surface Water Present I Downstream S4AA 0.00 0.00 0.00F0 00 30.98 F S4AB F.00 F.00 F.00 0.00 0.00 0.00 0.00 0.00 30.98 F fNLE4FBTFo .00 Fo .00 Fo--ooFo--ooFo--ooFo--oo Fo--ooF-o-oo 4.56 [DI-41713 F 0.00 0.00 0.00 0.00 0,00 0.00 0.00 F 0.00 4.56 4FA 0.00 0.00 Fo--ooFo--ooFo--ooFo--oo 0.000.0027.701 FDI-4FA 0.00 0.00 0.00 0.00 F 0.00 0.00 0.00 0.00 27.70 FsTMH-413 0.00 0.00 Q.00 0.00 0.00 0.00 0.00 0.00 62.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 43.60[STMH-4C [STMH-4D �00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.96 [STMH-4E ^ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.96 [STMH-4F , 0.00 � 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.96 FTMH-4G I 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 42.96 fNLET- I 4CB I O.00 0.00 0.00Fo oo 0.00 0.00Fo oo 0.00 2.84 DI-4CB 0.00 0.m 0.00 0.00 0.00 0.00 0.00 0.00 2.84 STMH-4H 0.00 r 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.72 rSTMH-4I 0.00 r 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.55 0.00 �00 0.00 0.00 0.00 0.00 0.00 0.00 19.55 rSTMH-4J rSTMH-4K 0.00 I o0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.77 1NLET- 4EA 0.00 Foo 0.00 0.00 0.00 0.00 0.00 0.00 5.10 DI-4EA 0.00 I 0 00 0.00 0.00 0.00 0.00 0.00 0.00 5.10 (INLET-4A 0.00 r 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.86 r DI-4A 0.00 r 0.00 0.00 0.00 0.00 12.86 1NLET- 4GB 0.00 10.00 Fo_.00Fo_.00 F000- F000 0.00 0.00 1.19 r DI-4GB 0.00 0.00 0.00 0.00 1.19 1NLET- 4GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.09 r DI-4GA 0.00 0.00 6.00 0.00 1.09 0.00 F.00 0.00 0.00 FO.00 FO.00 0.00 0.00 F.89 (NLET- 4DA DI-4DA 0.00 0.00 F 0.00 0.00 0.00 6.00 0.00 F 0.00 9.89 IINLET- 4DB 0.00 0.00 Fo_-ooFo_.00FOOO 0.00 0.00 0.00 F.71 I DI-4DB 0.00 0.00 0.00 0.00 10.71 r 4CA 0.00 0.00 Fo_-ooFo_-ooFo_-ooFo_-oo Fo_-ooF_o.00_F 70 r DI-4CA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.70 INLET-1 4HB 0.00 0.00 Fo_-ooFo_-ooFo_.00Fo_-oo Fo_-ooF_o.00_F40 r DI-4HB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 NLET- P4HA Fo_.00Fo_.00 Fo_.00Fo_.00Fo_.00Fo_.00 0.00 0.00 0.50 r DI-4HA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 FO.00 FO.00 0.00 0.00 F.38 1NLET- 4BA rr DI-4BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.38 I4BB 0.00 0.00 0.00 0.00 FO.00 0.00 0.00 F 0.00 22.07 FDI-4BB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.07 Sewer Input Summary: Elevation Loss Coefficients r Given Dimensions Element Sewer Downstream Slope Upstream Mannings Bend Lateral Cross e=Span Length Invert InvertName (ft) n LossLoss Setion [(ftl�in) I(ft or in) STMH-4A �70.20 �91.09 0.5 4991.44 0.013 0.03 0.00 rCIRCULAR 54.00 in 54.00 in rSTMH-4AA r277.26 4991.44 0.5 4992.83 0.013 0.05 0.00 CIRCULAR 30.00 in 30.00 in STMH-4AB 50.00 F 4992.83 FO.5 4993.08 FO.013 0.07 FO.00 CIRCULAR 30.00 in 30.00 in INLET-4FB 9.85 4993.58 0.5 4993.63 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-4FB 1.00 4993.63 0.5 4993.63 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-417A F28.15 F 4993.08 FO.5 4993.22 F 0.013 1.32 0.00 CIRCULAR 30.00 in 30.00 in DI-417A F 1.00 4993.72 FO.5 4993.72 F 0.013 0.25 F 0.00 CIRCULAR 24.00 in 24.00 in STMH-4B 80.41 4991.44 0.4 4991.76 I 0.013 1.32 F 0. 00 CIRCULAR 48.00 in 48.00 in STMH-4C 376.64 F4991.76 FOA 4993.27 F 0.013 0.05 F0.00 CIRCULAR 42.00 in 42.00 in STMH-4D 76.95 4993.27 0.4 4993.58 0.013 0.05 0.00 CIRCULAR 42.00 in 42.00 in STMH-4E 63.41 4993.58 0.3 4993.77 0.013 1.32 0.00 CIRCULAR 42.00 in 42.00 in STMH-4F 26.11 4993.76 0.3 4993.84 0.013 0.16 0.00 CIRCULAR 42.00 in 42.00 in STMH-4G 64.72 F 4993.85 0.3 4994.04 F 0.013 0.16 FO.00 CIRCULAR 42.00 in 42.00 in INLET-4CB 14.50 4995.58 0.5 4995.65 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-4CB 1.00 4995.65 0.5 4995.65 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-4H 273.91 F 4994.04 FO.3 4994.86 F 0.013 0.05 F 0.00 CIRCULAR 36.00 in 36.00 in STMH-4I 116.02 4995.86 0.3 4996.21 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in STMH-4J 54.91 4996.21 0.5 4996.48 0.013 1.32 0.00 CIRCULAR 24.00 in 24.00 in STMH-4K 57.59 4996.48 0.5 4996.77 I 0.013 0.05 0.00 CIRCULAR 24.00 in Woo in INLET-4EA 54.63 4996.78 0.5 4997.05 0.013 0.85 0.00 CIRCULAR 18.00 in 18.00 in CCULR 8.00 in 18.00 inDI-4EA 1.00 INLET-4A 54.63 4996.77 0.5 4997.04 0.013 0.75 0.00 CIRCULAR 24.00 in 24.00 in DI-4A 1.00 4997.04 0.5 4997.04 I 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4GB F28.00 F 4996.47 FO.5 4996.61 F 0.013 1.32 0.00 CIRCULAR P8.00 in 18.00 in DI-4GB 1.00 F 4996.61 FO.5 4996.61 F 0.013 0.25 Fo.00 FEIRCULAR 18.00 in 18.00 in 4996.47 0.5 0.013 .32 0.00 CRCULAR 8.00 in 18.00 inINLET-4GA 8.00 DI-4GA 1.00 4996.51 0.5 4996.51 I 0.013 0:25 0.00 CIRCULAR F18.00 in 18.00 in INLET-4DA 14.50 4995.95 0.5 4996.02 0.013 1.32 0.00 CIRCULAR F18.00in 18.00 in DI-4DA 1.00 4996.02 0.5 4996.02 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4DB F57.50 F 4995.95 FO.5 4996.24 F 0.013 1.32 FO.00 CIRCULAR F18.00 in 18.00 in DI-4DB 1.00 4996.24 0.5 4996.24 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4CA F57.50 F 4995.58 FO.5 4995.87 F 0.013 1.32 0.00 FEIRCULAR 18.00 in 18.00 in IRCULAR 8.00 in 8.00 inDI-4CA 1.00 49 .25 INLET-4HB 23.00 4995.27 0.5 4995.38 I 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-4HB 1.00 4995.38 0.5 4995.38 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4HA 24.00 4995.26 0.5 4995.38 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-4HA F 1.00 4995.38 0.5 4995.38 F 0.013 0.25 FO.00 CIRCULAR F,8.00in 18.00 in INLET-4BA 24.00 4994.26 0.5 4994.38 I 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-4BA 1.00 4994.38 0.5 4994.38 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-4BB 24.40 F 4992.77 FO.5 4992.89 F 0.013 0.83 Fo.00 FEIRCULAR 36.00 in 36.00 in DI-4BB 1.00 4992.89 0.5 4992.89 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in Sewer Flow Summary: Full Flow Capacity Critical Flow F Normal Flow Element Flow Velocity Depth Velocity Depth Velocity Fronde Flow Flow Surcharged Name (cfs) (fps) (in) (fps) I (in) (fps) Number Condition (cfs) Length Comment ft STMH-4A 139.43 8.77 133.01 8.65 31.14 9.27 1.12 Supercritical 88.07 00 STMH-4AA 29.08 5.92 30.00 6.31 30.00 6.31 0.00 Pressurized 30.98 277.26 STMH-4AB 29.08 5.92 30.00 6.31 30.00 6.31 0.00 Pressurized 30.98 50.00 F INLET-4FB 7.45 4.21 9.84 4.62 10.18 4.43 0.94 Pressurized 4.56 9.85 DI-4FB 7.45 4.21 9.84 4.62 10.18 4.43 0.94 Pressurized 4.56 1.00 F INLET-4FA 29.08 5.92 21.53 7.35 23.40 6.74 0.84 Pressurized 27.70 28.15 7 DI-4FA 16.04 5.11 24.00 8.82 24.00 8.82 0.00 Pressurized 27.70 1.00 STMH-413 91.09 7.25 28.69 8.02 29.31 7.82 0.96 Pressurized 62.86 80.41 STMH-4C F63.8o F-6.63 24.69F741 . 25.48 7.14 F-o-g4 Subcritical 43.60 330.74 Surcharged STMH-4D 63.80 6.63 24.50 7.37 25.24 7.12 0.94 Subcritical 42.96 0.00 STMH-4E 55.25 5.74 24.50 7.37 27.84 6.35 0.78 Pressurized 42.96 63.41 F STMH-4F 55.25 5.74 24.50 7.37 27.84 6.35 0.78 Pressurized 42.96 26.11 F STMH-4G 55.25 5.74 24.50 7.37 27.84 6.35 0.78 Pressurized 42.96 64.72 INLET-4CB 7.45 4.21 7.68 3.95 7.71 3.93 0.99 Pressurized 2.84 14.50 F DI-4CB 7.45 4.21 7.68 3.95 7.71 3.93 0.99 Pressurized F. 1.00 STMH-4H 36.63 5.18 36.00 5.48 36.00 5.48 0.00 Pressurized 38.72 273.91 STMH-4I 12.42 3.95 24.00 6.22 24.00 6.22 0.00 Pressurized 19.55 116.02 F STMH-4J 16.04 5.11 24.00 6.22 24.00 6.22 0.00 Pressurized 19.55 54.91 F STMH-4K 16.04 5.11 24.00 5.66 24.00 5.66 0.00 Pressurized 17.77 57.59 F INLET-4EA 7.45 4.21 10.43 4.80 10.94 4.54 0.91 Pressurized 5.10 54.63 DI-4EA 7.45 4.21 10.43 4.80 10.94 4.54 0.91 Pressurized 5.10 1.00 F INLET-4A 16.04 5.11 15.48 6.00 16.26 5.67 0.91 Pressurized 12.86 54.63 DI-4A 7.45 4.21 18.00 7.28 18.00 7.28 0.00 Pressurized 12.86 F1.00 F INLET-4GB 7.45 4.21 4.89 3.06 4.87 3.09 1.01 Pressurized 1.19 28.00 DI-4GB 7.45 4.21 4.89 3.06 4.87 3.09 1.01 Pressurized 1.19 F 1.00 F INLET-4GA 7.45 4.21 4.68 2.99 4.65 3.01 1.01 Pressurized 1.09 8.00 DI-4GA 7.45 4.21 4.68 2.99 4.65 3.01 1.01 Pressurized L09 1.00 F INLET-4DA F 7.45 F 4.21 18.00 5.60 18.00 5.60 0.00 Pressurized 9.89 F 14.50 F DI-4DA 7.45 4.21 18.00 5.60 18.00 5.60 0.00 Pressurized 9.89 1.00 F INLET-4DB 7.45 4.21 18.00 6.06 1 6 0.00 8.00 .06 P ressurized . 57 1071 .50 DI-4DB 7.45 4.21 18.00 6.06 18.00 6.06 0.00 Pressurized 10.71 1.00 F INLET-4CA F7.45 F 4.21 7.48 F 3.89 7.50 F 3.88 F 1.00 Pressurized 2.70 F 57.50 F DI-4CA 7.45 4.21 7.48 3.89 7.50 3.88 1.00 Pressurized 2.70 1.00 F INLET-4HB 7.45 F 4.21 2.80 F 2.28 2.83 F 2.24 F 0.98 Pressurized 0.40 F 23.00 F DI-4HB 7.45 F-I4.21 2.80 2.28 2.83 2.24 0.98 Pressurized 0.40 1.00 F INLET-4HA 7.45 4.21 3.14 2.42 3.16 2.40 0.99 Pressurized 0.50 24.00 F DI-4HA 7.45 4.21 3.14 2.42 3.16 2.40 0.99 Pressurized 0.50 1.00 F INLET-43A 7.45 4.21 8.41 4.17 8.51 4.11 0.98 Pressurized 3.38 24.00 F DI-4BA 7.45 4.21 8.41 4.17 8.51 4.11 0.98 Pressurized 3.38 1.00 INLET-41313 4� 6.69 18.13 F6.19 17.29 I 6.57 I 1.09 Pressurized 22.07 24.40 DI-4BB 7.45 4.21 18.00 12.49 118.00 �2.49 0.00 Pressurized 22.07 1.00 • A Froude number of 0 indicates that pressured flow occurs(adverse slope or undersized pipe). • If the sewer is not pressurized,full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized,full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated ` Used Element' Peak � IAre Name (�f) Section Rise FS pan Y Rise Span Rise Span y(ft^2) Comment STMH-4A `88.07 CIRCULAR 54.00 in 54.00 in 48.00 in 48.00 in 54.00 in 54.00 in II 15.96 Existing height is smaller than the suggested height. STMH-4AA 30.98 CIRCULAR 30.00 in 30.00 in 33.00 in 33.00 in 30.00 in 30.00 in 4.91 Existing width is smaller than the suggested width. Exceeds max. Depth/Rise Existing height is smaller than the suggested height. STMH-4AB 30.98 CIRCULAR 30.00 in 30.00 in 33.00 in 33.00 in 30.00 in 30.00 in 4.91 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise INLET-41713 4.56 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 F DI-4FB 4.56 CIRCULAR Fl8.00 in 18.0o in 18.00 in 18.o0 in imoo in 18.0o in 1.77 INLET-4FA 27.70 CIRCULAR 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in F4.91 F Existing height is smaller than the suggested height. DI-4FA 27.70 CIRCULAR 24.00 in 24.00 in 30.00 in 30.00 in 24.00 in 24.00 in 3.14 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise STMH-413 62.86 CIRCULAR 48.00 in 48.0o in 42.00 in 42.o0 in 48-oo in 48.o0 in 12.57 STMH-4C 43.60 CIRCULAR 42.o0 in 42.0o in 42.0o in 42.0o in 42.00 in 42.00 in 9.62 STMH-4D 42.96 CIRCULAR 42.0o in 42.00 in 42.o0 in 42.00 in 42.0o in 42.00 in 9.62 STMH-4E 42.96 CIRCULAR 42.o0 in 42.00 in 42.00 in 42.00 in 42.Oo in 42.00 in F9.62 STMH-4F 42.96 CIRCULAR 42.00 in 42.00 in 42.00 in 42.o0 in 42.00 in 42.o0 in F9.62 STMH-4G 42.96 CIRCULAR 42.00 in 42.00 in 42.00 in 42.o0 in 42.00 in 42.0o in 9.62 INLET-4CB 2.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.OQ in 18.00 in 18.00 in 1.77 DI-4CB 2.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.Qo in 18.0o in 18.00 in 1.77 ��F36 F � Existing height is smaller than the suggested height. STMH-4H 38.72 CIRCULAR 36.00 in .00 in 2 in 42.00 in 36.00 in 36.00 in 7.07 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller STMH-4I 19.55 CIRCULAR 24.00 in 24.00 in 30.00 in 30.00 in 24.00 in 24.00 in 3.14 than the suggested height. Existing width is smaller F-F-F-F-F-F-F-F-F�than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. STMH-4J 19.55 CIRCULAR 24.00 in 24.00 in 27.00 in 27.00 in 24.00 in 24.00 in 3.14 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. STMH-4K 17.77 CIRCULAR 24.00 in 24.00 in 27.00 in 27.00 in 24.00 in 24.00 in 3.14 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise INLET-4EA 5.10 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F,.77 DI-4EA 5.10 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 INLET-4A 12.86 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 Existing height is smaller than the suggested height. DI-4A 12.86 CIRCULAR 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 1.77 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise INLET-4GB 1.19 CIRCULAR 18.00 in 18.00 in 18.00 in 18A0 in 18.00 in 18.00 in F,.77 DI-4GB 1.19 CIRCULAR 18.00 in 18.00 in 18.00 m 18.00 in 18.00 in 18.00 in F1.77 INLET-4GA F1.09 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4GA 1.09 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 m 1.77 Existing height is smaller than the suggested height. INLET-4DA 9.89 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. DI-4DA 9.89 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. INLET-4DB 10.71 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. DI-4DB 10.71 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise INLET-4CA F2.70 CIRCULAR 18.00 in 18.00 in 18.00 in7 18.00 in 18.00 in 18.00 in F,.77 DI-4CA 2.70 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 INLET-4HB FOAO CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4HB 0.40 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 INLET-4HA Fo.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in F1.77 DI-4HA 0.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-4BA 3.38 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4BA 3.38 CIRCULAR 18.OQ in 18.00 in 18.00 in 18.00 in 18.00 m 18.00 in 1.77 INLET-4BB 22.07 CIRCULAR 36.00 in 36.00 in 30.00 in 30.00 in 36.00 in 36.00 in 7.07 Existing height is smaller F than the suggested height. DI-4BB �22.07 CIRCULAR 18.00 in 18.00 in FOO 30.00 in 18.00 in 18.00 in 1.77 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used'parameters. Grade Line Summary: Tailwater Elevation(ft):4994.91 Invert Elev. Downstream Manhole HGL EGL Losses Bend7ateral r Friction Element Downstream Upstream Downstream Upstream Downstream Upstream Loss LossName (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) STMH-4A F 4991.09 F4991.44 F 0.00 F 0.00 F 4994.91 4994.91 F 4995.49 0.11 4995.61 STMH-4AA 4991.44 4992.83 0.03 0.00 4995.02 4996.59 4995.64 1.57 4997.21 STMH-4AB T4992.83 F4993.08 F 0.04 F 0.00 F 4996.63 4996.92 F 4997.25 F 0.28 4997.54 INLET-4FB F 4993.58 4993.63 F 0.14 F 0.00 F 4997.57 4997.59 F 4997.67 0.02 4997.69 DI-4FB 4993.63 4993.63 0.03 0.00 4997.61 4997.62 4997.72 0.00 4997.72 INLET-4FA 4993.08 4993.22 0.65 0.00 4997.69 4997.82 4998.19 6.13 4998.32 DI-4FA 4993.72 4993.72 0.30 0.00 4998.12 4998.14 F 4999.33 0.01 4999.35 STMH-4B F 4991.44 F4991.76 F 0.51 F 0.00 F 4995.73 4995.88 F4996.12 0.15 4996.27 STMH-4C F 4991.76 F4993.27 F 0.02 F 0.00 F 4995.97 4996.66 F4996.29 F 0.70 4996.99 STMH-413 F 4993.27 F4993.58 F 0.02 F 0.00 F 4996.69 4996.79 F4997.00 0.12 4997.12 STMH-4E F 4993.58 F4993.77 F 0.41 F 0.00 F 4997.22 4997.34 F 4997.53 FO.11 4997.65 STMH-4F F 4993.76 4993.84 F 0.05 F 0.00 F 4997.39 4997.43 F 4997.70 0.05 4997.74 STMH-4G 4993.85 4994.04 0.05 0.00 4997.48 4997.60 F4997.79 0.12 4997.91 INLET-4CB 4995.58 4995.65 0.05 0.00 4997.92 4997.93 4997.96 0.01 4997.97 DI-4CB 4995.65 4995.65 0.01 0.00 4997.94 4997.95 4997.98 0.00 4997.99 STMH-4H F 4994.04 F4994.86 F 0.02 F 0.00 F 4997.63 4998.54 F 4998.09 FO.92 4999.01 STMH-4I F 4995.86 F4996.21 F 0.03 F 0.00 F 4998.57 4999.44 F 4999.17 FO.86 5000.04 STMH-4J F 4996.21 F4996.48 F 0.79 F 0.00 F 5000.23 5000.64 F 5000.83 0.41 5001.24 STMH-4K F 4996.48 F4996.77 F 0.02 F 0.00 5000.77 5001.12 F 5001.26 FO.35 5001.62 INLET-4EA F4996.78 4997.05 0.11 F 0.00 F 5001.60 5001.73 F 5001.73 0.13 5001.85 DI-4EA 4997.o5 4997.05 0.03 0.00 5001.76 5001.76 5001.89 0.00 5001.89 INLET-4A 4996.77 4997.04 0.20 0.00 5001.55 5001.73 5001.81 0.18 5001.99 DI-4A F 4997.04 F4997.04 F 0.21 F 0.00 F 5001.93 5001.95 F 5002.75 0.01 5002.77 INLET-4GB 4996.47 4996.61 0.01 0.00 5001.24 5001.24 5001.25 0.00 5001.25 DI-4GB F 4996.61 4996.61 0.00 0.00 5001.25 5001.25 5001.25 0.00 5001.25 INLET-4GA 4996.47 4996.51 0.01 0.00 5001.24 5001.24 F 5001.25 1 0.00 5001.25 DI-4GA 4996.51 4996.51 0.00 0.00 5001.24 5001.24 5001.25 0.00 5001.25 INLET-4DA F 4995.95 F4996.02 0.64 F0.00 F 4999.19 4999.31 F 4999.67 Fo.13 4999.80 DI4DA 4996.02 F4996.02 0.12 F0.00 4999.43 4999.44 4999.92 0.01 4999.93 INLET-4DB F 4995.95 F4996.24 0.75 F0.00 4999.30 4999.89 F 4999.87 Fo.59 5000.46 DI-4DB 4996.24 F4996.24 0.14 F0.00 F5000.03 5000.04 F5000.60 FO.01 5000.61 INLET-4CA 4995.58 4995.87 0.05 F0.00 4997.92 4997.96 F 4997.96 0.04 4998.00 DI-4CA 4995.87 4995.87 0.01 0.00 4997.97 4997.97 4998.01 0.00 4998.01 INLET-411B 4995.27 4995.38 0.00 0.00 4996.99 4996.99 4996.99 0.00 4996.99 DI-4HB 4995.38 4995.38 0.00 F 0.00 4996.99 4996.99 4996.99 0.00 4996.99 INLET-4HA F 4995.26 F4995.38 F0.00 0.00 F 4996.99 4996.99 F 4996.99 0.00 4996.99 DI4HA 4995.38 F4995.38 F0.00 0.00 4996.99 4996.99 4996.99 FO.00 4996.99 INLET-4BA 4994.26 4994.38 0.07 0.00 4996.29 4996.31 4996.35 0.02 4996.37 DI-4BA 4994.38 F4994.38 F0.01 0.00 4996.33 4996.33 F4996.39 FO.00 4996.39 INLET-4BB 4992.77 4992.89 0.13 0.00 4996.25 4996.27 4996.40 0.03 4996.42 DI-4BB 4992.89 4992.89 0.61 0 00 4996.88 4996.92 4999.36 0.04 4999.34 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall,sewer#0,is not considered a sewer. • Bend loss=Bend K* V_fi^2/(2*g) • Lateral loss=V_fo^2/(2*g)-Junction Loss K* V_fi"2/(2*g). • Friction loss is always Upstream EGL-Downstream EGL. S T-04 5001.51 SOWN 998.9 4WIM ; w _ ST Lgr w . r d995.Od __� 4993.14 s� Sr'�H4�H-afi��C 'q d9914d ST� �C .S a991.1a .S?� ��•qg h 44 ------HGL ............EGL 4989.84 0.0 I31.6 263.2 391.8 5_'6.1 658.0 789.6 9712 IOSdB II8/.d Distance(FO ST-4B 1 Sgq.09 4999.08 4998.08 499].N f, _ ________-------- L -------------________________ 995.08 u: 499 U8 �2ETQgA 399a os 399208 s7'kK 4%1.o3 ...........EGL 3990.o3 0.00 1].50 35.00 52.50 70.00 81.50 105.00 13250 Ia0.0o 151.50 Distance(Ft) ST-4B2 MOM -- --- -- 4999.08 i 499868 499i.p8 .................................... . _________---_ ___________ ___________________ ..............................................................................................._.................._.. , , W 99s.os F a99=OS 993 08 ate,t5 'Ali �e8 sT 499t 08 �A HGL ............EGL 99968 009 ...o 33.00 7259 i0.09 8730 I05.00 li'.30 Ia0.f0 I57.30 I15.00 Distance(Ft) ST-4C 1 5wM 4999.86 ------------ a998'6 vuuuv .................... .............................. W993.a6 ...... ....... , u\1 w 499a'6 ST 499314 sryf sTMyq£TM �fi F�4r, 4992.16 C sr t. `"44 ------HGL ............EGL 989.96 U.W 81.69 16830 :44.39 326.40 408.W 489.60 57110 65280 7i4.a0 Distance(Ftl ST-4C2 SOW 96 am$6 :Wg 76 M-m ........... ................... ------------- ------------- .......................................................................... 4mM ............................................................ .................... --------------—l- ............. "54o ...... f - ------------- 499d36 ..................... 4W-16 IMy 4991.% '4b 498996 DA 7730 154.6D 231.90 30910 38a.50 a63l0 milo 61" 8576 Distance(Fti ST-4D 1 5W% a999.86 �M 7 .............................. ..........................—-----—------ 4W'66 - ---- --------------- .......... .... ...... ................ -616 ....... 4AY sr srMi '199216 SPAV —. IP4"".44 4%9,%oo Iw 209.. 1.3 418j 113.5 mi '3-i 83t6 w.j Distance(Ft) ST-4D2 500096 .............................................. ---—----——--------------- .............................................i ........ ......................... ...... .... ------------ ..... — ............ ----------. ......... -------J 491136 1993 SPIN, 49W.%1 0.0 1009 327.0 436.0 W D 654A 763.4 8710 991.0 Distance(Ft) ST-4E ........ .... 500025 ........... ................... ............ ----------------- 4"2 4WI I,' -----HGL .......... EGL 4999.P 00 1314 2633 39i.S 326.4 652,0 7 M 1051 119k4 Distance(Ft) ST-4F 1 3000.08 i999.08 S98 08 . .... .......... ......... i .—_--_ .IS96.08 •.....••. ..................... ..... _^ F -- _ _ ^ 8L: i99J OS 4993.08 STJy 4� 4ET.4p 8 499±os J991 os STD y'4q ------HGL ............EGL 499o.oe 0.00 42.60 85- 1274O 1]OAO 213.00 235.60 298.20 340.60 383 a0 Distance(Ft) ST 4F2 500008 J99908 i998 OB ................I. 399].OB .�� � ............-.._............ •__—J99a.08 ..... - -'_— ............................ ---••--___ 993.06 - - .-- --- `--- "- w 4993.09 4993 O9 �LFT�Fa ST�?liq 4@ 4WIN 4991.oa ST,y�H 4q HGL ...........EGL J99o.oa O.OD Jo.70 81.40 tL'10 16280 S3S0 ±Sty Mn 33.60 366.30 47.00 Distance(Ft) ST-4G 1 5000.'1 i999 51 699831 ... y..+ ..................... -__ - --------- w $ '�H,qp"a-4p C N 4D S� -----HGL ............EGL 4989,91 0.0 121.1 3413 363.3 4&5J FOSS ].6.6 8dl] 968.8 l089.9 1:11.0 Distance(Ftl ST 4G2 5000.'1 i999.51 d998 31 i ------------- .......................... R ......................... .............. . --- ...................-...................... -. ------ '$ 9� s srMh'�/r 4993.": iMy qD wF �r STl�� Mj.�qA -----HGL ............EGL 698991 0.0 I23.1 3M2 369.3 dT_d 613.3 '38.6 8613 98/.8 110].9 1231.0 Distance(Ft'3 ST-4HI 5m W W 69 ............................................... ------ �M,59 .............................. ......................................................... j L ............... .................. .................... fNLE ------- --- r-41,4 M 39 4M39 rMfi 4WI 0ffaq IIGL EGL 989.99 0.00 55A M20 16530 LIO 2-5 50 330.60 395.-I0 wo '95.90 551.00 Distance(Ft) ST-4H2 sm'" 6999.89 1M,N 4WT69 4996.59 ........................................................... .. .............................................. —-------—------—, ........................ - ------- ----------- 4W439 4M� 3993.A9 S"Ifolc ST --- HGL 498 1 ..........EGL 0.0 55.06 I10.00 165.00 020.00 215.w 330.00 335M MOM 45.06 550.N Distance(Ftl MHFD-Culvert, Version 4.00(May 2020) Project: MONTAVA SUBDIVISION PHASE D ID: ST-04 �X CIRCLE M F o Xx L LP Soil Type: Choose One: Sandy 0 Non-Sandy RIPMP Design Information: Design Discharge Q= 88.07 cfs Circular Culvert: Barrel Diameter in Inches D= 54 inches Inlet Edge Type(Choose from pull-down list) Grooved Edge Projecting OR: Box Culvert: OR Barrel Height(Rise)in Feet H(Rise)= ft Barrel Width(Span)in Feet W(Span)= ft Inlet Edge Type(Choose from pull-down list) Number of Barrels #Barrels= 1 Inlet Elevation Elev IN= 4991.44 ft Outlet Elevation OR Slope Elev OUT= 4991.09 ft Culvert Length L= 70.2 ft Manning's Roughness n= 0.013 Bend Loss Coefficient kb= 0 Exit Loss Coefficient k,= 1 Tailwater Surface Elevation Yt,Ele ation= 4994.91 ft Max Allowable Channel Velocity V=1 5 Ift/S Calculated Results: Culvert Cross Sectional Area Available A= 15.90 ft, Culvert Normal Depth Yn= 2.22 ft Culvert Critical Depth Y�= 2.16 ft Froude Number Fr= 0.95 Entrance Loss Coefficient ke= 0.20 Friction Loss Coefficient kf= 0.29 Sum of All Loss Coefficients ks= 1.49 ft Headwater: Inlet Control Headwater HWI=P49 ft Outlet Control Headwater HWo= ft Design Headwater Elevation HW= 5 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D= Outlet Protection: Flow/(Diameter^2.5) Q/D^2.5= 2.05 Tailwater Surface Height Yt= 3.82 ft Tailwater/Diameter Yt/D= 0.85 Expansion Factor 1/(2*tan(0))= 6.70 Flow Area at Max Channel Velocity At= 17.61 ff2 Width of Equivalent Conduit for Multiple Barrels WN= - ft Length of Riprap Protection LP=1 17 ft Width of Riprap Protection at Downstream End T=J 8 ft Adjusted Diameter for Supercritical Flow Da= ft Minimum Theoretical Riprap Size dso min= 3 in Nominal Riprap Size dso nominal= 6 in MHFD Riprap Type Type= VL O I I T I I II I I I II I I I I I T I I I I I 'I I I I I C/1 O y--a N I , O � r I I I I I , I I O I I I I I .-+ O I I O I fl T U r r �n O I 1 � I r C� I co Q � Q � .� O y O +. N ? QD — Q U U) O v� U O � i U � � N � I O I I I I I I I I I I I O N I ' I I O d' In It M N T O O 00 ti (D O O O O O O O) O O) O) Lf) U-) U*) LO LO LO d d d d (};) U0I}en813 HY-8 Culvert Analysis Report Crossing Discharge Data Discharge Selection Method: Specify Minimum, Design,and Maximum Flow Minimum Flow: 0.00 cfs Design Flow: 108.00 cfs Maximum Flow: 500.00 cfs Table 1-Summary of Culvert Flows at Crossing: Crossing 1 Headwater Total Culvert 1 Roadway Iterations Elevation (ft) Discharge Discharge Discharge (cfs) (cfs) (cfs) 4997.00 0.00 0.00 0.00 1 4999.95 50.00 50.00 0.00 1 5001.86 108.00 108.00 0.00 1 5003.52 150.00 150.00 0.00 1 5005.10 200.00 180.96 18.94 15 5005.23 250.00 183.27 66.61 7 5005.33 300.00 185.00 114.94 6 5005.44 350.00 174.51 175.39 5 5005.54 400.00 163.14 236.82 5 5005.62 450.00 151.02 298.97 5 5005.71 500.00 138.09 361.87 4 5005.00 179.15 179.15 0.00 Overtopping Culvert Data: Culvert 1 Table 1-Culvert Summary Table: Culvert 1 Total Culve Head Inle Outl FI Nor Criti Out Tailw Outl Tailw Disch rt water t et ow mal cal let ater et ater arge Disch Elevat Cont Cont Ty Dep Dep De Dept Velo Veloc (cfs) arge ion rol rol pe th th pth h (ft) city ity (cfs) (ft) Dep Dep (ft) (ft) (ft) (ft/s (ft/s) th th ) (ft) (ft) 0.00 0.00 4997.0 0.00 0.00 0- 0.00 0.00 0.0 0.00 0.00 0.00 cfs cfs 0 0 NF 0 50.00 50.00 4999.9 2.95 1.35 1- 1.65 2.05 1.6 1.51 9.26 2.21 cfs cfs 5 8 S2 8 n 108.0 108.0 5001.8 4.86 3.51 5- 2.56 3.06 2.6 2.50 11.2 2.88 0 cfs 0 cfs 6 3 S2 2 2 n 150.0 150.0 5003.5 6.52 5.85 5- 3.21 3.59 3.2 3.11 12.1 3.21 0 cfs 0 cfs 2 5 S2 6 6 n 200.0 180.9 5005.1 8.10 7.28 5- 3.86 3.89 3.8 3.79 12.4 3.52 0 cfs 6 cfs 0 5 S2 6 7 n 250.0 183.2 5005.2 8.23 7.62 6- 3.93 3.91 4.5 4.43 11.5 3.76 0 cfs 7 cfs 3 6 FFt 0 6 300.0 185.0 5005.3 8.33 8.31 4- 4.00 3.93 4.5 5.05 11.6 3.96 0 cfs 0 cfs 3 8 FFf 0 3 350.0 174.5 5005.4 7.74 8.43 4- 3.69 3.84 4.5 5.64 10.9 4.14 0 cfs 1 cfs 4 9 FFf 0 7 400.0 163.1 5005.5 7.15 8.53 4- 3.45 3.73 4.5 6.21 10.2 4.29 0 cfs 4 cfs 4 6 FFf 0 6 450.0 151.0 5005.6 6.57 8.62 4- 3.23 3.60 4.5 6.78 9.50 4.43 0 cfs 2 cfs 2 4 FFf 0 500.0 138.0 5005.7 6.00 8.71 4- 3.02 3.46 4.5 7.33 8.68 4.55 0 cfs 9 cfs 1 0 FFf 0 Culvert Barrel Data Culvert Barrel Type Straight Culvert Inlet Elevation (invert): 4997.00 ft, Outlet Elevation (invert): 4996.00 ft Culvert Length: 127.38 ft, Culvert Slope: 0.0079 Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 4997.00 ft Outlet Station: 127.38 ft Outlet Elevation: 4996.00 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 4.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None Tailwater Data for Crossing: Crossing 1 Table 2- Downstream Channel Rating Curve(Crossing: Crossing 1) Flow(cfs) Water Velocity Depth (ft) Shear(psf) Froude Surface (ft/s) Number Elev(ft) 0.00 4996.00 0.00 0.00 0.00 0.00 50.00 4997.51 1.51 2.21 0.19 0.32 108.00 4998.50 2.50 2.88 0.31 0.32 150.00 4999.11 3.11 3.21 0.39 0.32 200.00 4999.79 3.79 3.52 0.47 0.32 250.00 5000.43 4.43 3.76 0.55 0.31 300.00 5001.05 5.05 3.96 0.63 0.31 350.00 5001.64 5.64 4.14 0.70 0.31 400.00 5002.21 6.21 4.29 0.78 0.30 450.00 5002.78 6.78 4.43 0.85 0.30 500.00 5003.33 7.33 4.55 0.91 0.30 Tailwater Channel Data - Crossing 1 Tailwater Channel Option: Rectangular Channel Bottom Width: 15.00 ft Channel Slope: 0.0020 Channel Manning's n: 0.0350 Channel Invert Elevation: 4996.00 ft Roadway Data for Crossing: Crossing 1 Roadway Profile Shape: Constant Roadway Elevation Crest Length: 200.00 ft Crest Elevation: 5005.00 ft Roadway Surface: Paved Roadway Top Width: 60.00 ft MHFD-Culvert, Version 4.00(May 2020) Project: MONTAVA SUBDIVISION PHASE D ID: ST-04 �X CIRCLE M F o Xx L LP Soil Type: Choose One: Sandy 0 Non-Sandy RIPMP Design Information: Design Discharge Q= 108 cfs Circular Culvert: Barrel Diameter in Inches D= 54 inches Inlet Edge Type(Choose from pull-down list) Grooved Edge Projecting OR: Box Culvert: OR Barrel Height(Rise)in Feet H(Rise)= ft Barrel Width(Span)in Feet W(Span)= ft Inlet Edge Type(Choose from pull-down list) Number of Barrels #Barrels= 1 Inlet Elevation Elev IN= 4997 ft Outlet Elevation OR Slope Elev OUT= 4996 ft Culvert Length L= 127.3 ft Manning's Roughness n= 0.013 Bend Loss Coefficient kb= 0 Exit Loss Coefficient k,= 1 Tailwater Surface Elevation Yt,El ation= ft Max Allowable Channel Velocity V= 5 ft/s Calculated Results: Culvert Cross Sectional Area Available A= 15.90 ft, Culvert Normal Depth Y = 2.22 ft Culvert Critical Depth Y�= 2.16 ft Froude Number Fr= 0.95 Entrance Loss Coefficient ke= 0.20 Friction Loss Coefficient kf= 0.53 Sum of All Loss Coefficients ks= 1.73 ft Headwater: Inlet Control Headwater HWI= 3.00 ft Outlet Control Headwater HWo= 6.11 ft Design Headwater Elevation HW= 5003.11 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D= 1.36 Outlet Protection: Flow/(Diameter^2.5) Q/D^2.5= 2.51 ft°'sJs Tailwater Surface Height Yt= 1.80 ft Tailwater/Diameter Yt/D= 0.40 Expansion Factor 1/(2*tan(0))= 5.04 Flow Area at Max Channel Velocity At= 21.60 ff2 Width of Equivalent Conduit for Multiple Barrels WN= - ft Length of Riprap Protection LP=1 17 ft Width of Riprap Protection at Downstream End T=J 8 ft Adjusted Diameter for Supercritical Flow Da= ft Minimum Theoretical Riprap Size dso min= 9 in Nominal Riprap Size dso nominal= in 12 MHFD Riprap Type Type= M ST-07 100-YEAR n r DI-7B n1-7A FES-7A Rainfall Parameters Rainfall Return Period: 100 Backwater Calculations: Tailwater Elevation(ft):4993.52 Manhole Input Summary: Given Flow ISub Basin Information Total Ground Local Drainage Overland rverland Gutter Gutter Element Known Runoff Syr Elevation Contribution Area Length Length VeloityName (ft) (cfs) (cfs) (Ac) Coefficient Coefficient (ft) (ft) (fps) FES-7A 4994.60 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 INLET- F4998.74 80.41 Foo 0 F000 Foo-o Foo-o F000 F000 Foo-o Foo-o INLET-7B 4998.74 78.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FES-7B 4991.87 78.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-7B 4998.74 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-7A 4998.74 2.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: Local Contribution ITotal Design Flow Overland Gutter Basin rC al Manhole Peak Element Fntnsity Coeff IntensityName Time Time Tc r) trib Area (in/hr) Tc Flow Comment (min) (min) (min) (min) (cfs) FES-7A O.QO 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 80.41 INLET- Foo 0 0.00 Foo 0 Foo 0 0.00 0.00 0.00 0.00 78.32 FFES-713 Foo 0 0.00 Foo 0 Foo 0 0.00 F000 Foo 0 0.00 78.32 Surface Water Present (Upstream) D--I-7B 0.00 0.00 0.00 0.00 0.00 0.00 O.OQ 0.00 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09 FDI-7A Sewer Input Summary: Elevation Loss Coefficients lGiven Dimensions Element Sewer Downstream Slope Upstream Mannngs Bend Lateral Cross Rise Span Name Length Invert %) Invert n Loss Loss Section (ft or in) (ft or in) (ft) (ft) (ft) INLET-7A 57.07 4991.43 0.3 4991.60 6.613 0.03 0.00 CIRCULAR 36.00 in 36.00 in INLET-7B 38.00 4991.60 I0.3 4991.71 0.013 0.05 0.00 CIRCULAR 36.00 in 36.00 in 3 .00in3 .00 in4991.8 01 0.0 000 CRCULAR 6 6FES-713 5 .39 4991.72 03 3 5 DI-7B 1.00 4991.71 0.3 4991.71 0.013 0.25 0.00 CIRCULAR 36.00 in 36.00 in DI-7A 1.00 4991.60 0.3 4991.60 0.013 0.25 0.00 CIRCULAR 36.00 in 36.00 in Sewer Flow Summary: F Full Flow Capacity lCritical Flow INormal now Element Flow Velocity Depth Felocity Depth Velocity Fro Flow Flow Surcharged Name (cfs) (fps) (in) (in) (fps) Number Condition (cfs) Length Comment (ft) INLET-7A 36.63 5.18 36.00 11.38 36.00 11.38 0.00 Pressurized 80.41 57.07 INLET-7B 36.63 5.18 36.00 11.Q8 36.00 I1.08 Q.00 Pressurized 78.32 38.00 FES-713 36.63 5.18 36.00 11.08 36.00 11.08 0.00 Pressurized 78.32 51.39 DI-7B 36.63 5.18 5.51 3.20 5.97 2.85 0.85 Pressurized 2.19 1.00 �- DI-7A 36.63 5.18 5.38 3.16 I5.84 2.81 0.85 Pressurized 2.09 1.00 • A Froude number of 0 indicates that pressured flow occurs(adverse slope or undersized pipe). • If the sewer is not pressurized,full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized,full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing lCalculated jUsed Element Peak Cross Frea) Name (cfs) Section Rise Span Rise Span FP-seSpan ^2 Comment Existing height is smaller than the suggested height. INLET-7A 80.41 CIRCULAR 36.00 in 36.00 in 54.00 in 54.00 in 36.00 in 36.00 in 7.07 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. INLET-713 78.32 CIRCULAR 36.00 in 36.00 in 48.00 in 48.00 in 36.00 in 36.00 in 7.07 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise Existing height is smaller than the suggested height. FES-713 78.32 CIRCULAR 36.00 in 36.00 in 48.00 in 48.00 in 36.00 in 36.00 in 7.07 Existing width is smaller than the suggested width. Exceeds max.Depth/Rise DI-7B 2.19 CIRCULAR I36.00 in 36.00 in 18.00 in I18.00 in 36.00 in 36.00 in 7.07 DI-7A 2.09 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07 • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used'parameters. Grade Line Summary: Tailwater Elevation(ft):4993.52 F--�Invert Elev. Downstream Manhole HGL EGL Losses Bend Lateral Friction Element Downstream Fpstream Downstream Fpstream Downstream Fpstream Name (ft) Loss Loss (ft) (ft) Loss (ft) (ft) (ft) INLET-7A 9991.43 9991.60 0.00 0.00 4994.43 4995.25 4996.44 0.83 4997.26 INLET-7B 9991.60 9991.71 0.10 0.00 4995.45 4995.97 4997.36 0.52 4997.88 FES-7B 9991.72 9991.87 0.10 0.00 4996.07 4996.77 4997.98 0.70 4998.68 DI-7B 4991.71 4991.71 0.00 0.00 4997.88 4997.88 4997.88 0.m 4997.88 DI-7A 4991.60 4991.60 0.00 0.00 4997.26 49 77.26 49 77.26 0.00 4997.26 • Bend and Lateral losses only apply when there is an outgoing sewer.The system outfall,sewer#0,is not considered a sewer. • Bend loss=Bend K*V_fi^2/(2*g) • Lateral loss=V_fo^2/(2*g)-Junction Loss K*V_fi^2/(2*g). • Friction loss is always Upstream EGL-Downstream EGL. ST-07 4M.70 ................. 407A ........... ...................................... ................ 407.10 ........... ........................................................ -----—------- 4M.30 F ---------- --------—------ mlo 4N3M iO3 W 4W'.30 NLT 72? 49W.70i 74 0.00 14.60 29-26 03.B0 59.4 97.60 10226 116.0 131>D 146,00 Distance(Ft) MHFD-Culvert, Version 4.00(May 2020) Project: MONTAVA SUBDIVISION PHASE D ID: ST-07 �X CIRCLE M F o Xx L LP Soil Type: Choose One: 0.Sandy 0 Non-Sandy RIPMP Design Information: Design Discharge Q= 80.41 cfs Circular Culvert: Barrel Diameter in Inches D= 36 inches Inlet Edge Type(Choose from pull-down list) Grooved Edge Projecting OR: Box Culvert: OR Barrel Height(Rise)in Feet H(Rise)= ft Barrel Width(Span)in Feet W(Span)= ft Inlet Edge Type(Choose from pull-down list) Number of Barrels #Barrels= 1 Inlet Elevation Elev IN= 4991.87 ft Outlet Elevation OR Slope Elev OUT= 4991.41 ft Culvert Length L= 146.46 ft Manning's Roughness n= 0.013 Bend Loss Coefficient kb= 0 Exit Loss Coefficient k,= 1 Tailwater Surface Elevation Yt,Ele ation= 4993.52 ft Max Allowable Channel Velocity V=1 5 Ift/s Calculated Results: Culvert Cross Sectional Area Available A= 7.07 ft, Culvert Normal Depth Yn= 3.00 ft Culvert Critical Depth Y�= 2.77 ft Froude Number Fr= - Pressure flow! Entrance Loss Coefficient ke= 0.20 Friction Loss Coefficient kt= 1.05 Sum of All Loss Coefficients ks= 2.25 ft Headwater: Inlet Control Headwater HWI= 6.17 ft Outlet Control Headwater HWo= 6.95 ft Design Headwater Elevation HW= 4998.82 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D= 2.32 HW/D>1.5! Outlet Protection: Flow/(Diameter^2.5) Q/D^2.5= 5.16 Tailwater Surface Height Yt= 2.11 ft Tailwater/Diameter Yt/D= 0.70 Expansion Factor 1/(2*tan(0))= 4.92 Flow Area at Max Channel Velocity At= 16.08 ftz Width of Equivalent Conduit for Multiple Barrels WN= - ft Length of R!prap Protection LP=1 23 ft Width of Riprap Protection at Downstream End T=J 8 ft Adjusted Diameter for Supercritical Flow Da= ft Minimum Theoretical Riprap Size dso min= in Nominal Riprap Size dso nominal= 9 in 7 MHFD Riprap Type Type= L APPENDIX H DRAINAGE SWALE ANALYSIS Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Monday,Jul 15 2024 SWALE A-A User-defined Highlighted Invert Elev (ft) = 1.00 Depth (ft) = 3.16 Slope (%) = 0.20 Q (cfs) = 250.00 N-Value = 0.035 Area (sqft) = 82.03 Velocity (ft/s) = 3.05 Calculations Wetted Perim (ft) = 40.38 Compute by: Known Q Crit Depth, Yc (ft) = 1.89 Known Q (cfs) = 250.00 Top Width (ft) = 39.68 EGL (ft) = 3.30 (Sta, El, n)-(Sta, El, n)... (0.00,7.91)-(27.10, 1.14,0.035)-(34.10, 1.00,0.035)-(41.10, 1.14,0.035)-(76.42,8.99,0.035) Elev (ft) Section Depth (ft) 9.00 8.00 8.00 7.00 7.00 6.00 6.00 5.00 5.00 4.00 v 4.00 3.00 3.00 2.00 2.00 1.00 1.00 0.00 0.00 -1.00 -10 0 10 20 30 40 50 60 70 80 90 Sta (ft) Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Monday,Sep 16 2024 SWALE B-B User-defined Highlighted Invert Elev (ft) = 1.00 Depth (ft) = 3.07 Slope (%) = 0.20 Q (cfs) = 125.00 N-Value = 0.035 Area (sqft) = 47.04 Velocity (ft/s) = 2.66 Calculations Wetted Perim (ft) = 28.39 Compute by: Known Q Crit Depth, Yc (ft) = 1.94 Known Q (cfs) = 125.00 Top Width (ft) = 27.64 EGL (ft) = 3.18 (Sta, El, n)-(Sta, El, n)... (0.00,7.00)-(24.02, 1.00,0.035)-(27.03, 1.00,0.035)-(68.05, 11.20,0.035) Elev (ft) Section Depth (ft) 13.00 12.00 11.00 10.00 9.00 8.00 7.00 6.00 5.00 Or 4.00 3.00 2.00 1.00 0.00 -1.00 -2.00 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Sta (ft) Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Saturday,Sep 14 2024 SWALE C-C Triangular Highlighted Side Slopes (z:1) = 4.00, 4.00 Depth (ft) = 1.57 Total Depth (ft) = 2.60 Q (cfs) = 11.00 Area (sqft) = 9.86 Invert Elev (ft) = 1.00 Velocity (ft/s) = 1.12 Slope (%) = 0.10 Wetted Perim (ft) = 12.95 N-Value = 0.035 Crit Depth, Yc (ft) = 0.86 Top Width (ft) = 12.56 Calculations EGL (ft) = 1.59 Compute by: Known Q Known Q (cfs) = 11.00 Elev (ft) Section Depth (ft) 4.00 3.00 3.50 2.50 3.00 2.00 2.50 1.50 2.00 1.00 1.50 0.50 1.00 0.00 0.50 -0.50 0 5 10 15 20 25 30 35 Reach (ft) APPENDIX I DETENTION & ROUTING ANALYSIS [TITLE] ;;Project Title/Notes [OPTIONS] ;;Option Value FLOW_UNITS CFS INFILTRATION MODIFIED_HORTON FLOW_ROUTING DYNWAVE LINK_OFFSETS DEPTH MIN_SLOPE 0 ALLOW_PONDING YES SKIP_STEADY_STATE NO START—DATE 01/28/2024 START_TIME 00:00:00 REPORT—START—DATE 01/28/2024 REPORT_START_TIME 00:00:00 END—DATE 01/31/2024 END_TIME 00:00:00 SWEEP—START 01/31 SWEEP—END 12/31 DRY—DAYS 0 REPORT—STEP 00:00:30 WET—STEP 00:01:00 DRY—STEP 01:00:00 ROUTING_STEP 0:00:01 RULE STEP 00:00:00 INERTIAL_DAMPING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION D-W VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MIN_SURFAREA 12.566 MAX_TRIALS 8 HEAD—TOLERANCE 0.005 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 MINIMUM_STEP 0.5 THREADS 1 [EVAPORATION] ;;Data Source Parameters -------------- ---------------- JJ CONSTANT 0 DRY—ONLY NO [RAINGAGES] ;;Name Format Interval SCF Source . .-------------- --------- ------ ------ ---------- FOCO-2YEAR INTENSITY 0:05 1.0 TIMESERIES FOCO-INTESITY-2YR FOCO-5YEAR INTENSITY 1:00 1.0 TIMESERIES FOCO-INTENSITY-5YEAR FOCO-10YEAR INTENSITY 1:00 1.0 TIMESERIES FOCO-INTENSTIY-10YEAR FOCO-25YEAR INTENSITY 1:00 1.0 TIMESERIES FOCO-INTENISTY-25YEAR FOCO-50YEAR INTENSITY 1:00 1.0 TIMESERIES FOCO-INTENSITY-50YEAR FOCO-100YEAR INTENSITY 0:05 1.0 TIMESERIES FOCO-INTENSITY-100YEAR [SUBCATCHMENTS] ;;Name Rain Gage Outlet Area %Impery Width %Slope CurbLen SnowPack -------------- ---------------- ---------------- -------- -------- -------- -------- -------- ---------------- STORM-1 FOCO-100YEAR POND-D 21.26 59.11 719.25 0.85 0 STORM-2 FOCO-100YEAR POND-D 10.24 78.24 382.3 1.0 0 STORM-3 FOCO-100YEAR STORM-3-OUTFALL 23.51 77.90 1231.5 0.6 0 STORM-4 FOCO-100YEAR STORM-4-OUTFALL 12.93 80.33 830 0.5 0 OFFSITE-1 FOCO-100YEAR SWALEPOND-2 103.58 20 166.12 1.5 0 FUTURE-2 FOCO-100YEAR SWALEPOND-1 3.31 77.52 285.5 0.5 0 FUTURE-4 FOCO-100YEAR FUTURE-2-OUTFALL 4.52 77.65 219 0.50 0 FUTURE-5 FOCO-100YEAR FUTURE-3-OUTFALL 7.57 77.49 266.23 0.85 0 STORM-5 FOCO-100YEAR SWALEPOND-1 1.15 81.25 76.5 1.5 0 F-1-BASIN FOCO-100YEAR INLET-1 .51 100 210 1 0 F-2-BASIN FOCO-100YEAR INLET-2 .49 100 220 1 0 G-14-BASIN FOCO-100YEAR INLET-4 0.22 90.67 150 1.0 0 G-13-BASIN FOCO-100YEAR INLET-3 .21 90.67 150 1 0 FUTURE-3 FOCO-100YEAR SWALEPOND-1 2.96 45.78 66.5 0.5 0 FUTURE-1 FOCO-100YEAR SWALEPOND-2 6.37 56.79 327 0.5 0 [SUBAREAS] ;;Subcatchment N-Impery N-Pery S-Impery S-Pery PctZero RouteTo PctRouted -------------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- jj STORM-1 0.016 0.25 0.1 0.3 1 OUTLET STORM-2 0.016 0.25 0.1 0.3 1 OUTLET STORM-3 0.016 0.25 0.1 0.3 1 OUTLET STORM-4 0.016 0.25 0.1 0.3 1 OUTLET OFFSITE-1 0.016 0.25 0.1 0.3 1 OUTLET FUTURE-2 0.016 0.25 0.1 0.3 1 OUTLET FUTURE-4 0.016 0.25 0.1 0.3 1 OUTLET FUTURE-5 0.016 0.25 0.1 0.3 1 OUTLET STORM-5 0.016 0.25 0.1 0.3 1 OUTLET F-1-BASIN 0.016 0.25 0.1 0.3 1 OUTLET F-2-BASIN 0.016 0.25 0.1 0.3 1 OUTLET G-14-BASIN 0.016 0.25 0.1 0.3 1 OUTLET G-13-BASIN 0.016 0.25 0.1 0.3 1 OUTLET FUTURE-3 0.016 0.25 0.1 0.3 1 OUTLET FUTURE-1 0.016 0.25 0.1 0.3 1 OUTLET [INFILTRATION] ;;Subcatchment Paraml Param2 Param3 Param4 Param5 -------------- ---------- ---------- ---------- ---------- ---------- STORM-1 0.51 0.5 6.48 7 0 HORTON STORM-2 0.51 0.5 6.48 7 0 HORTON STORM-3 0.51 0.5 6.48 7 0 HORTON STORM-4 0.51 0.5 6.48 7 0 HORTON OFFSITE-1 0.51 0.5 6.48 7 0 HORTON FUTURE-2 0.51 0.5 6.48 7 0 HORTON FUTURE-4 0.51 0.5 6.48 7 0 HORTON FUTURE-5 0.51 0.5 6.48 7 0 HORTON STORM-5 0.51 0.5 6.48 7 0 HORTON F-1-BASIN 0.51 0.5 6.48 7 0 HORTON F-2-BASIN 0.51 0.5 6.48 7 0 HORTON G-14-BASIN 0.51 0.5 6.48 7 0 HORTON G-13-BASIN 0.51 0.5 6.48 7 0 HORTON FUTURE-3 0.51 0.5 6.48 7 0 HORTON FUTURE-1 0.51 0.5 6.48 7 0 HORTON []UNCTIONS] ;;Name Elevation MaxDepth InitDepth SurDepth Aponded -------------- ---------- ---------- ---------- ---------- ---------- POND-D-OUTFALL 4996.19 6.31 0 0 0 STORM-3-OUTFALL 4992 0 0 0 0 STORM-4-OUTFALL 4991 0 0 0 0 FUTURE-2-OUTFALL 4991.87 0 0 0 0 FES-2 4991.41 0 0 0 0 INLET-4 4991.58 7.16 0 0 0 INLET-3 4991.71 7.03 0 0 0 SWALEPOND-2-OUTFALL 4994.49 0 0 0 0 POND-427-OUTFALL 4986.92 11 0 0 0 FES-3 4986.69 6. 0 0 0 FUTURE-3-OUTFALL 4989.44 0 0 0 0 INLET-1 4995.28 5.48 0 0 0 INLET-2 4995.06 7.09 0 0 0 FES-1 4995 0 0 0 0 POND-427-INFALL 4989.44 0 0 0 0 [OUTFALLS] ;;Name Elevation Type Stage Data Gated Route To -------------- ---------- ---------- ---------------- -------- ---------------- SITE-OUTFALL 4985 FREE NO [STORAGE] ;;Name Elev. MaxDepth InitDepth Shape Curve Type/Params SurDepth Fevap Psi Ksat IMD . .-------------- -------- ---------- ----------- ---------- ---------------------------- --------- -------- -------- -------- POND-D 4999.75 2.25 0 TABULAR POND-D-STAGE-STORAGE 0 0 POND-427 4987 9 0 TABULAR POND-427-STAGE-STORAGE 0 0 SWALEPOND-1 4994.85 7.15 0 TABULAR SWALEPOND-I-STAGE-STORAGE 0 0 SWALEPOND-2 4995.85 6 0 TABULAR SWALEPOND-2-STAGE-STORAGE 0 0 [CONDUITS] ;;Name From Node To Node Length Roughness InOffset OutOffset InitFlow MaxFlow -------------- ---------------- ---------------- ---------- ---------- ---------- ---------- ---------- ---------- SWALE-B1 SWALEPOND-2-OUTFALL FUTURE-2-OUTFALL 846 0.25 0 0 0 0 STORM-2A FUTURE-2-OUTFALL INLET-3 51.39 0.016 0 0 0 0 STORM-2B INLET-3 INLET-4 38.00 0.016 0 0 0 0 STORM-2C INLET-4 FES-2 57.07 0.016 0 0 0 0 SWALE-B2 FES-2 FUTURE-3-OUTFALL 620 0.25 0 0 0 0 POND-427-SWALE-B-INFALL FUTURE-3-OUTFALL POND-427 73 0.016 0 0 0 0 SWALE-A2 STORM-3-OUTFALL STORM-4-OUTFALL 562 0.25 0 0 0 0 POND-427-OUTFALLI POND-427-OUTFALL FES-3 30.59 0.016 0 0 0 0 STORM-1A POND-D-OUTFALL INLET-1 41.51 0.016 0 0 0 0 STORM-1B INLET-1 INLET-2 22 0.016 0 0 0 0 STORM-IC INLET-2 FES-1 56.82 0.016 0 0 0 0 SWALE-Al FES-1 STORM-3-OUTFALL 1090 0.25 0 0 0 0 SWALEPOND SWALEPOND-1 SWALEPOND-2 127.38 0.016 0 0 0 0 SWALE-A3 STORM-4-OUTFALL POND-427-INFALL 540 0.25 0 0 0 0 POND-427-SWALE-A-INFALL POND-427-INFALL POND-427 128 0.016 0 0 0 0 59 FES-3 SITE-OUTFALL 150 0.016 0 0 0 0 [ORIFICES] ;;Name From Node To Node Type Offset Qcoeff Gated C1oseTime -------------- ---------------- ---------------- ------------ ---------- ---------- -------- ---------- POND-D-OUTFALL POND-D POND-D-OUTFALL BOTTOM 0 0.65 NO 0 POND-427-OUTFALL POND-427 POND-427-OUTFALL BOTTOM 0 0.65 NO 0 SWALE-POND-OUTFALL SWALEPOND-1 SWALEPOND-2-OUTFALL BOTTOM 0 0.65 NO 0 [XSECTIONS] ;;Link Shape Geom1 Geom2 Geom3 Geom4 Barrels Culvert . .-------------- ------------ ---------------- ---------- ---------- ---------- ---------- ---------- SWALE-B1 TRAPEZOIDAL 5 5 4 4 1 STORM-2A CIRCULAR 3 0 0 0 1 STORM-2B CIRCULAR 3 0 0 0 1 STORM-2C CIRCULAR 3 0 0 0 1 SWALE-B2 TRAPEZOIDAL 7 5 4 4 1 POND-427-SWALE-B-INFALL CIRCULAR 3 0 0 0 1 SWALE-A2 TRAPEZOIDAL 7 14 4 4 1 POND-427-OUTFALLI CIRCULAR 1.5 0 0 0 1 STORM-1A CIRCULAR 1.5 0 0 0 1 STORM-1B CIRCULAR 1.5 0 0 0 1 STORM-IC CIRCULAR 3 0 0 0 1 SWALE-Al TRAPEZOIDAL 5 14 4 4 1 SWALEPOND CIRCULAR 5 0 0 0 2 SWALE-A3 TRAPEZOIDAL 8 14 4 4 1 POND-427-SWALE-A-INFALL CIRCULAR 3 0 0 0 1 59 CIRCULAR 1.5 0 0 0 1 POND-D-OUTFALL CIRCULAR .97 0 0 0 POND-427-OUTFALL CIRCULAR 1.135 0 0 0 SWALE-POND-OUTFALL CIRCULAR 1 0 0 0 [LOSSES] ;;Link Kentry Kexit Kavg Flap Gate Seepage -------------- ---------- ---------- ---------- ---------- ---------- SWALE-B1 0 0 0 YES 0 STORM-2A 0 0 0 YES 0 STORM-2B 0 0 0 YES 0 STORM-2C 0 0 0 YES 0 SWALE-B2 0 0 0 YES 0 POND-427-SWALE-B-INFALL 0 0 0 YES 0 SWALE-A2 0 0 0 YES 0 STORM-1A 0 0 0 YES 0 STORM-1B 0 0 0 YES 0 STORM-IC 0 0 0 YES 0 SWALE-Al 0 0 0 YES 0 SWALE-A3 0 0 0 YES 0 POND-427-SWALE-A-INFALL 0 0 0 YES 0 [CURVES] ;;Name Type X-Value Y-Value -------------- ---------- ---------- ---------- TEST Rating 1 1 TEST 2 1.5 TEST 3 2 Pond-D-outfall Rating 0 5 Pond-D-outfall 1 5 Pond-D-outfall 2 5 Pond-D-outfall 3 5 pond-427-outfall Rating 0 8 pond-427-outfall 1 8 pond-427-outfall 2 8 pond-427-outfall 3 8 pond-427-outfall 4 8 pond-427-outfall 5 8 pond-427-outfall 6 8 pond-427-outfall 7 8 pond-427-outfall 8 8 Swale-pond-outfall Rating 0 24 Swale-pond-outfall 1 24 Swale-pond-outfall 2 24 Swale-pond-outfall 3 24 Swale-pond-outfall 4 24 Swale-pond-outfall 5 24 Swale-pond-outfall 6 24 Swale-pond-outfall 7 24 POND-D-STAGE-STORAGE Storage 0 172456 POND-D-STAGE-STORAGE 0.25 173026 POND-D-STAGE-STORAGE 1.25 180032 POND-D-STAGE-STORAGE 2.25 187141 POND-427-STAGE-STORAGE Storage 0 173 POND-427-STAGE-STORAGE 1 8162 POND-427-STAGE-STORAGE 2 35772 POND-427-STAGE-STORAGE 3 75228 POND-427-STAGE-STORAGE 4 107043 POND-427-STAGE-STORAGE 5 133704 POND-427-STAGE-STORAGE 6 151585 POND-427-STAGE-STORAGE 7 160821 POND-427-STAGE-STORAGE 8 167206 SWALEPOND-I-STAGE-STORAGE Storage 0 0 SWALEPOND-I-STAGE-STORAGE .15 474.6161 SWALEPOND-I-STAGE-STORAGE 1.15 12091.335 SWALEPOND-I-STAGE-STORAGE 2.15 17983.3571 SWALEPOND-I-STAGE-STORAGE 3.15 24078.6199 SWALEPOND-I-STAGE-STORAGE 4.15 30385.5131 SWALEPOND-I-STAGE-STORAGE 5.15 37043.4864 SWALEPOND-I-STAGE-STORAGE 6.15 43933.1097 SWALEPOND-2-STAGE-STORAGE Storage 0 1538.5904 SWALEPOND-2-STAGE-STORAGE 1 9409.0403 SWALEPOND-2-STAGE-STORAGE 2 21486.7414 SWALEPOND-2-STAGE-STORAGE 3 31946.4671 SWALEPOND-2-STAGE-STORAGE 4 42155.5138 SWALEPOND-2-STAGE-STORAGE 5 52675.8441 [TIMESERIES] ;;Name Date Time Value -------------- ---------- ---------- ---------- FOCO-INTESITY-2YR 5 .29 FOCO-INTESITY-2YR 10 0.33 FOCO-INTESITY-2YR 15 0.38 FOCO-INTESITY-2YR 20 0.64 FOCO-INTESITY-2YR 25 0.81 FOCO-INTESITY-2YR 30 1.57 FOCO-INTESITY-2YR 35 2.85 FOCO-INTESITY-2YR 40 1.18 FOCO-INTESITY-2YR 45 0.71 FOCO-INTESITY-2YR 50 0.42 FOCO-INTESITY-2YR 55 0.35 FOCO-INTESITY-2YR 60 0.30 FOCO-INTESITY-2YR 65 0.20 FOCO-INTESITY-2YR 70 0.19 FOCO-INTESITY-2YR 75 .18 FOCO-INTESITY-2YR 80 .17 FOCO-INTESITY-2YR 85 .17 FOCO-INTESITY-2YR 90 .16 FOCO-INTESITY-2YR 95 .15 FOCO-INTESITY-2YR 100 .15 FOCO-INTESITY-2YR 105 .14 FOCO-INTESITY-2YR 110 .14 FOCO-INTESITY-2YR 115 .13 FOCO-INTESITY-2YR 120 .13 FOCO-INTENSITY-5YEAR 5 .4 FOCO-INTENSITY-5YEAR 10 .45 FOCO-INTENSITY-5YEAR 15 .53 FOCO-INTENSITY-5YEAR 20 .89 FOCO-INTENSITY-5YEAR 25 1.13 FOCO-INTENSITY-5YEAR 30 2.19 FOCO-INTENSITY-5YEAR 35 3.97 FOCO-INTENSITY-5YEAR 40 1.64 FOCO-INTENSITY-5YEAR 45 .99 FOCO-INTENSITY-5YEAR 50 .58 FOCO-INTENSITY-5YEAR 55 .49 FOCO-INTENSITY-5YEAR 60 .42 FOCO-INTENSITY-5YEAR 65 .28 FOCO-INTENSITY-5YEAR 70 .27 FOCO-INTENSITY-5YEAR 75 .25 FOCO-INTENSITY-5YEAR 80 .24 FOCO-INTENSITY-5YEAR 85 .23 FOCO-INTENSITY-5YEAR 90 .22 FOCO-INTENSITY-5YEAR 95 .21 FOCO-INTENSITY-5YEAR 100 .20 FOCO-INTENSITY-5YEAR 105 .19 FOCO-INTENSITY-5YEAR 110 .19 FOCO-INTENSITY-5YEAR 115 .18 FOCO-INTENSITY-5YEAR 120 .18 FOCO-INTENSTTY-10YEAR 5 .49 FOCO-INTENSTIY-10YEAR 10 .56 FOCO-INTENSTIY-10YEAR 15 .65 FOCO-INTENSTIY-10YEAR 20 1.09 FOCO-INTENSTIY-10YEAR 25 1.39 FOCO-INTENSTIY-10YEAR 30 2.69 FOCO-INTENSTIY-10YEAR 35 4.87 FOCO-INTENSTIY-10YEAR 40 2.02 FOCO-INTENSTIY-10YEAR 45 1.21 FOCO-INTENSTIY-10YEAR 50 0.71 FOCO-INTENSTIY-10YEAR 55 0.6 FOCO-INTENSTIY-10YEAR 60 0.52 FOCO-INTENSTIY-10YEAR 65 0.39 FOCO-INTENSTIY-10YEAR 70 0.37 FOCO-INTENSTIY-10YEAR 75 0.35 FOCO-INTENSTIY-10YEAR 80 0.34 FOCO-INTENSTIY-10YEAR 85 0.32 FOCO-INTENSTIY-10YEAR 90 0.31 FOCO-INTENSTIY-10YEAR 95 0.30 FOCO-INTENSTIY-10YEAR 100 0.29 FOCO-INTENSTIY-10YEAR 105 0.28 FOCO-INTENSTIY-10YEAR 110 0.27 FOCO-INTENSTIY-10YEAR 115 0.26 FOCO-INTENSTIY-10YEAR 120 0.25 FOCO-INTENISTY-25YEAR 5 0.63 FOCO-INTENISTY-25YEAR 10 0.72 FOCO-INTENISTY-25YEAR 15 0.84 FOCO-INTENISTY-25YEAR 20 1.41 FOCO-INTENISTY-25YEAR 25 1.80 FOCO-INTENISTY-25YEAR 30 3.48 FOCO-INTENISTY-25YEAR 35 6.30 FOCO-INTENISTY-25YEAR 40 2.61 FOCO-INTENISTY-25YEAR 45 1.57 FOCO-INTENISTY-25YEAR 50 .92 FOCO-INTENISTY-25YEAR 55 .77 FOCO-INTENISTY-25YEAR 60 .67 FOCO-INTENISTY-25YEAR 65 .62 FOCO-INTENISTY-25YEAR 70 .59 FOCO-INTENISTY-25YEAR 75 .56 FOCO-INTENISTY-25YEAR 80 .54 FOCO-INTENISTY-25YEAR 85 .52 FOCO-INTENISTY-25YEAR 90 .50 FOCO-INTENISTY-25YEAR 95 .48 FOCO-INTENISTY-25YEAR 100 .47 FOCO-INTENISTY-25YEAR 105 .45 FOCO-INTENISTY-25YEAR 110 .44 FOCO-INTENISTY-25YEAR 115 .42 FOCO-INTENISTY-25YEAR 120 .41 FOCO-INTENSITY-50YEAR 5 .79 FOCO-INTENSITY-50YEAR 10 .90 FOCO-INTENSITY-50YEAR 15 1.05 FOCO-INTENSITY-50YEAR 20 1.77 FOCO-INTENSITY-50YEAR 25 2.25 FOCO-INTENSITY-50YEAR 30 4.36 FOCO-INTENSITY-50YEAR 35 7.90 FOCO-INTENSITY-50YEAR 40 3.27 FOCO-INTENSITY-50YEAR 45 1.97 FOCO-INTENSITY-50YEAR 50 1.16 FOCO-INTENSITY-50YEAR 55 .97 FOCO-INTENSITY-50YEAR 60 .84 FOCO-INTENSITY-50YEAR 65 .79 FOCO-INTENSITY-50YEAR 70 .75 FOCO-INTENSITY-50YEAR 75 .72 FOCO-INTENSITY-50YEAR 80 .69 FOCO-INTENSITY-50YEAR 85 .66 FOCO-INTENSITY-50YEAR 90 .64 FOCO-INTENSITY-50YEAR 95 .62 FOCO-INTENSITY-50YEAR 100 .60 FOCO-INTENSITY-50YEAR 105 .58 FOCO-INTENSITY-50YEAR 110 .56 FOCO-INTENSITY-50YEAR 115 .54 FOCO-INTENSITY-50YEAR 120 .53 FOCO-INTENSITY-100YEAR 0:5 1.00 FOCO-INTENSITY-100YEAR 0:10 1.14 FOCO-INTENSITY-100YEAR 0:15 1.33 FOCO-INTENSITY-100YEAR 0:20 2.23 FOCO-INTENSITY-100YEAR 0:25 2.84 FOCO-INTENSITY-100YEAR 0:30 5.49 FOCO-INTENSITY-100YEAR 0:35 9.95 FOCO-INTENSITY-100YEAR 0:40 4.12 FOCO-INTENSITY-100YEAR 0:45 2.48 FOCO-INTENSITY-100YEAR 0:50 1.46 FOCO-INTENSITY-100YEAR 0:55 1.22 FOCO-INTENSITY-100YEAR 1:00 1.06 FOCO-INTENSITY-100YEAR 1:05 1.00 FOCO-INTENSITY-100YEAR 1:10 0.95 FOCO-INTENSITY-100YEAR 1:15 0.91 FOCO-INTENSITY-100YEAR 1:20 0.87 FOCO-INTENSITY-100YEAR 1:25 0.84 FOCO-INTENSITY-100YEAR 1:30 0.81 FOCO-INTENSITY-100YEAR 1:35 0.78 FOCO-INTENSITY-100YEAR 1:40 0.75 FOCO-INTENSITY-100YEAR 1:45 0.73 FOCO-INTENSITY-100YEAR 1:50 0.71 FOCO-INTENSITY-100YEAR 1:55 0.69 FOCO-INTENSITY-100YEAR 2:00 0.67 EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4) ------------------------------------------------------------ **************** Analysis Options **************** Flow Units .. .. .. .... .. .. . CFS Process Models: Rainfall/Runoff ... .. .. . YES RDII .. .... .. .... .. .. .. . NO Snowmelt .. .. .. .... .. .. . NO Groundwater . .. .. .. .. .. . NO Flow Routing .. .. .. .. .. . YES Ponding Allowed . .. .. .. . YES Water Quality . .... .. .. . NO Infiltration Method . .. .. . MODIFIED_HORTON Flow Routing Method . .. .. . DYNWAVE Surcharge Method .. .. .. .. . EXTRAN Starting Date . .. .... .. .. . 01/28/2024 00:00:00 Ending Date . .. .... .. .. .. . 01/31/2024 00:00:00 Antecedent Dry Days . .. .. . 0.0 Report Time Step .. .. .. .. . 00:00:30 Wet Time Step . .. .... .. .. . 00:01:00 Dry Time Step . .. .. .. .. .. . 01:00:00 Routing Time Step ... .. .. . 1.00 sec Variable Time Step .. .. .. . YES Maximum Trials .. .... .. .. . 8 Number of Threads . .. .. .. . 1 Head Tolerance .. .... .. .. . 0.005000 ft ************************** Volume Depth Runoff Quantity Continuity acre-feet inches ************************** --------- ------- Total Precipitation . .. .. . 60.795 3.669 Evaporation Loss .. .. .. .. . 0.000 0.000 Infiltration Loss ... .. .. . 27.643 1.668 Surface Runoff .. .. .. .. .. . 32.419 1.957 Final Storage . .. .... .... . 0.740 0.045 Continuity Error (%) .. .. . -0.012 ************************** Volume Volume Flow Routing Continuity acre-feet 10^6 gal ************************** --------- --------- Dry Weather Inflow .. .. .. . 0.000 0.000 Wet Weather Inflow .. .. .. . 32.419 10.564 Groundwater Inflow .. .. .. . 0.000 0.000 RDII Inflow . .. .. .. .. .. .. . 0.000 0.000 External Inflow . .. .. .. .. . 0.000 0.000 External Outflow .. .. .. .. . 32.295 10.524 Flooding Loss . .. .. .. .. .. . 0.000 0.000 Evaporation Loss .. .. .. .. . 0.000 0.000 Exfiltration Loss . .. .. .. . 0.000 0.000 Initial Stored Volume . .. . 0.000 0.000 Final Stored Volume . .. .. . 0.126 0.041 Continuity Error (%) .. .. . -0.005 *************************** Time-Step Critical Elements *************************** None ******************************** Highest Flow Instability Indexes ******************************** Link POND-427-OUTFALLI (2) Link POND-427-OUTFALL (1) ********************************* Most Frequent Nonconverging Nodes ********************************* Convergence obtained at all time steps. ************************* Routing Time Step Summary ************************* Minimum Time Step 0.00 sec Average Time Step 1.00 sec Maximum Time Step 1.00 sec of Time in Steady State 0.00 Average Iterations per Step 2.00 of Steps Not Converging 0.00 Time Step Frequencies 1.000 - 0.871 sec 99.90 0.871 - 0.758 sec 0.01 0.758 - 0.660 sec 0.01 0.660 - 0.574 sec 0.01 0.574 - 0.500 sec 0.07 *************************** Subcatchment Runoff Summary *************************** ------------------------------------------------------------------------------------------------------------------------------ Total Total Total Total Impery Pery Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Runoff Runoff Coeff Subcatchment in in in in in in in 10^6 gal CFS ------------------------------------------------------------------------------------------------------------------------------ STORM-1 3.67 0.00 0.00 0.79 2.11 0.71 2.82 1.63 105.56 0.768 STORM-2 3.67 0.00 0.00 0.36 2.79 0.44 3.23 0.90 64.20 0.881 STORM-3 3.67 0.00 0.00 0.36 2.78 0.45 3.23 2.06 151.48 0.880 STORM-4 3.67 0.00 0.00 0.31 2.87 0.41 3.28 1.15 88.07 0.894 OFFSITE-1 3.67 0.00 0.00 2.74 0.71 0.20 0.91 2.57 74.84 0.249 FUTURE-2 3.67 0.00 0.00 0.35 2.77 0.48 3.24 0.29 24.10 0.884 FUTURE-4 3.67 0.00 0.00 0.38 2.77 0.44 3.21 0.39 27.32 0.876 FUTURE-5 3.67 0.00 0.00 0.38 2.77 0.44 3.21 0.66 44.73 0.874 STORM-5 3.67 0.00 0.00 0.28 2.90 0.41 3.31 0.10 9.24 0.903 F-1-BASIN 3.67 0.00 0.00 0.00 3.57 0.00 3.57 0.05 5.07 0.974 F-2-BASIN 3.67 0.00 0.00 0.00 3.57 0.00 3.57 0.05 4.88 0.974 G-14-BASIN 3.67 0.00 0.00 0.12 3.24 0.22 3.46 0.02 2.19 0.943 G-13-BASIN 3.67 0.00 0.00 0.12 3.24 0.22 3.46 0.02 2.09 0.943 FUTURE-3 3.67 0.00 0.00 1.30 1.63 0.69 2.32 0.19 9.62 0.633 FUTURE-1 3.67 0.00 0.00 0.82 2.03 0.76 2.79 0.48 32.49 0.761 ****************** Node Depth Summary ****************** --------------------------------------------------------------------------------- Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr:min Feet --------------------------------------------------------------------------------- POND-D-OUTFALL JUNCTION 0.26 0.68 4996.87 0 02:05 0.68 STORM-3-OUTFALL JUNCTION 0.67 4.26 4996.26 0 00:55 4.26 STORM-4-OUTFALL JUNCTION 1.00 4.61 4995.61 0 00:55 4.61 FUTURE-2-OUTFALL JUNCTION 0.58 2.37 4994.24 0 01:10 2.37 FES-2 JUNCTION 0.76 2.77 4994.18 0 01:08 2.77 INLET-4 JUNCTION 0.69 2.62 4994.20 0 01:08 2.62 INLET-3 JUNCTION 0.64 2.51 4994.22 0 01:09 2.51 SWALEPOND-2-OUTFALL JUNCTION 0.49 2.09 4996.58 0 03:16 2.09 POND-427-OUTFALL JUNCTION 1.06 2.29 4989.21 0 11:52 2.29 FES-3 JUNCTION 0.94 2.01 4988.70 0 11:52 2.01 FUTURE-3-OUTFALL JUNCTION 1.58 4.12 4993.56 0 11:44 4.12 INLET-1 JUNCTION 0.34 1.26 4996.54 0 00:39 1.22 INLET-2 JUNCTION 0.43 1.42 4996.48 0 00:40 1.33 FES-1 JUNCTION 0.38 1.16 4996.16 0 01:07 1.16 POND-427-INFALL JUNCTION 1.65 4.12 4993.56 0 11:51 4.12 SITE-OUTFALL OUTFALL 0.71 1.27 4986.27 0 11:52 1.27 POND-D STORAGE 0.34 1.68 5001.43 0 02:32 1.68 POND-427 STORAGE 2.94 6.55 4993.55 0 11:52 6.55 SWALEPOND-1 STORAGE 1.21 6.83 5001.68 0 03:06 6.83 SWALEPOND-2 STORAGE 0.94 5.83 5001.68 0 03:07 5.83 ******************* Node Inflow Summary ******************* ------------------------------------------------------------------------------------------------- Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr:min 10^6 gal 10^6 gal Percent ------------------------------------------------------------------------------------------------- POND-D-OUTFALL JUNCTION 0.00 5.00 0 02:32 0 2.5 0.001 STORM-3-OUTFALL JUNCTION 151.48 153.22 0 00:40 2.06 4.64 -0.335 STORM-4-OUTFALL JUNCTION 88.07 115.87 0 00:40 1.15 5.81 -0.625 FUTURE-2-OUTFALL JUNCTION 27.32 29.64 0 00:40 0.395 4.03 0.038 FES-2 JUNCTION 0.00 20.42 0 00:42 0 4.07 -0.570 INLET-4 JUNCTION 2.19 20.63 0 00:43 0.0207 4.07 -0.001 INLET-3 JUNCTION 2.09 19.82 0 00:43 0.0197 4.05 -0.000 SWALEPOND-2-OUTFALL JUNCTION 0.00 9.28 0 02:36 0 3.63 -0.031 POND-427-OUTFALL JUNCTION 0.00 11.00 0 11:52 0 10.5 0.001 FES-3 JUNCTION 0.00 11.00 0 11:52 0 10.5 -0.001 FUTURE-3-OUTFALL JUNCTION 44.73 50.09 0 00:40 0.659 4.75 0.499 INLET-1 JUNCTION 5.07 7.51 0 00:40 0.0495 2.55 -0.000 INLET-2 JUNCTION 4.88 12.46 0 00:39 0.0475 2.6 -0.002 FES-1 JUNCTION 0.00 15.51 0 00:39 0 2.6 0.697 POND-427-INFALL JUNCTION 0.00 89.80 0 01:01 0 5.84 0.838 SITE-OUTFALL OUTFALL 0.00 11.00 0 11:52 0 10.5 0.000 POND-D STORAGE 169.76 169.76 0 00:40 2.52 2.52 0.000 POND-427 STORAGE 0.00 109.81 0 01:11 0 10.5 -0.005 SWALEPOND-1 STORAGE 42.97 130.77 0 00:48 0.582 3.71 0.012 SWALEPOND-2 STORAGE 100.98 132.03 0 00:45 3.05 3.13 -0.014 ********************** Node Surcharge Summary ********************** Surcharging occurs when water rises above the top of the highest conduit. --------------------------------------------------------------------- Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- POND-427-OUTFALL JUNCTION 27.40 0.788 8.712 FES-3 JUNCTION 25.64 0.511 3.989 ********************* Node Flooding Summary ********************* No nodes were flooded. ********************** Storage Volume Summary ********************** ------------------------------------------------------------------------------------------------ Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft Full Loss Loss 1000 ft Full days hr:min CFS ------------------------------------------------------------------------------------------------ POND-D 59.865 14.8 0.0 0.0 297.937 73.9 0 02:32 5.00 POND-427 193.814 20.9 0.0 0.0 520.702 56.2 0 11:52 11.00 SWALEPOND-1 24.345 12.7 0.0 0.0 175.440 91.8 0 03:06 48.34 SWALEPOND-2 21.865 11.5 0.0 0.0 179.670 94.5 0 03:07 107.19 *********************** Outfall Loading Summary *********************** ----------------------------------------------------------- Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10^6 gal ----------------------------------------------------------- SITE-OUTFALL 99.62 5.45 11.00 10.523 ----------------------------------------------------------- System 99.62 5.45 11.00 10.523 ******************** Link Flow Summary ******************** ----------------------------------------------------------------------------------------------- Maximum Time of Max Maximum Max/ Max/ IFlowl Occurrence IVelocl Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------------------------------- SWALE-B1 CONDUIT 9.34 0 03:43 0.39 0.12 0.41 STORM-2A CONDUIT 18.90 0 00:43 4.21 0.62 0.81 STORM-2B CONDUIT 19.66 0 00:43 4.36 0.62 0.85 STORM-2C CONDUIT 20.42 0 00:42 4.84 0.69 0.90 SWALE-B2 CONDUIT 16.66 0 01:23 0.51 0.09 0.46 POND-427-SWALE-B-INFALL CONDUIT 46.49 0 00:42 12.18 0.47 1.00 SWALE-A2 CONDUIT 56.54 0 00:55 0.41 0.30 0.63 POND-427-OUTFALLI CONDUIT 11.00 0 11:52 6.22 1.49 1.00 STORM-1A CONDUIT 5.00 0 02:32 5.20 0.40 0.56 STORM-1B CONDUIT 7.59 0 00:39 5.06 0.89 0.88 STORM-IC CONDUIT 15.51 0 00:39 9.17 0.88 0.38 SWALE-Al CONDUIT 6.28 0 01:09 0.20 0.06 0.53 SWALEPOND CONDUIT 107.19 0 00:48 4.02 0.29 1.00 SWALE-A3 CONDUIT 89.80 0 01:01 0.86 0.28 0.50 POND-427-SWALE-A-INFALL CONDUIT 73.77 0 00:57 10.65 0.99 1.00 59 CONDUIT 11.00 0 11:52 6.45 1.21 0.92 POND-D-OUTFALL ORIFICE 5.00 0 02:32 POND-427-OUTFALL ORIFICE 11.00 0 11:52 SWALE-POND-OUTFALL ORIFICE 9.28 0 02:36 *************************** Flow Classification Summary *************************** ---------------------------------------------------------------------------------------------- Adjusted ---------- Fraction of Time in Flow Class ---------- /Actual Up Down Sub Sup Up Down Norm Inlet Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl ---------------------------------------------------------------------------------------------- SWALE-B1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.90 0.00 STORM-2A 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.02 0.00 STORM-2B 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.60 0.00 STORM-2C 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.59 0.00 SWALE-B2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.14 0.00 POND-427-SWALE-B-INFALL 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.49 0.00 SWALE-A2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.47 0.00 POND-427-OUTFALLI 1.00 0.00 0.00 0.00 0.79 0.21 0.00 0.00 0.02 0.00 STORM-IA 1.00 0.00 0.00 0.00 0.01 0.99 0.00 0.00 0.79 0.00 STORM-1B 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.60 0.00 STORM-IC 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.00 SWALE-Al 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 SWALEPOND 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.20 0.00 SWALE-A3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.11 0.00 POND-427-SWALE-A-INFALL 1.00 0.00 0.00 0.00 0.66 0.33 0.00 0.00 0.31 0.00 59 1.00 0.00 0.00 0.00 0.47 0.53 0.00 0.00 0.17 0.00 ************************* Conduit Surcharge Summary ************************* ------------------------------------------------------------------------------------- Hours Hours --------- Hours Full -------- Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ------------------------------------------------------------------------------------- POND-427-SWALE-B-INFALL 23.40 23.40 35.14 0.01 0.01 POND-427-OUTFALLI 25.64 27.40 25.64 35.17 25.64 SWALEPOND 5.37 5.37 8.94 0.01 0.01 POND-427-SWALE-A-INFALL 24.31 24.31 35.14 0.01 0.01 59 0.01 25.64 0.01 30.25 0.01 Analysis begun on: Tue Oct 15 11:26:31 2024 Analysis ended on: Tue Oct 15 11:26:32 2024 Total elapsed time: 00:00:01 Weir Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Monday,Jul 15 2024 POND D SPILLWAY Trapezoidal Weir Highlighted Crest = Sharp Depth (ft) = 0.49 Bottom Length (ft) = 166.00 Q (cfs) = 174.00 Total Depth (ft) = 1.00 Area (sqft) = 82.30 Side Slope (z:1) = 4.00 Velocity (ft/s) = 2.11 Top Width (ft) = 169.92 Calculations Weir Coeff. Cw = 3.10 Compute by: Known Q Known Q (cfs) = 174.00 Depth (ft) POND D SPILLWAY Depth (ft) 2.00 2.00 1.50 1.50 1.00 1.00 0.50 0.50 0.00 0.00 -0.50 -0.50 0 20 40 60 80 100 120 140 160 180 200 220 Weir W.S. Length (ft) POND D HEA(FT) Q (CFs) POND D SPILLWAY RATING CURVE 0 0.00 0.05 5.77 1.1 0.10 16.35 1 _ • 0.15 30.11 • 0.20 46.47 V 0.9 � s 0.25 65.10 W 0.8 s 0.30 85.78 > o • 0.35 108.35 a • 0.40 132.69 0.6 J • 0.45 158.71 0.5 0.50 186.32 W • 0.55 215.46 0 0.4 m • 0.60 246.08 a 0.3 0.65 278.12 w 0.2 • 0.70 311.55 = • 0.75 346.32 0.1 -• • 0.80 382.41 0 0.85 419.79 0.00 100.00 200.00 300.00 400.00 500.00 600.00 0.90 458.43 DISCHARGE(CFS) 0.95 498.31 1.00 539.40 STAGE-STORAGE SIZING FOR DETENTION BASINS Project: MONTAVA PHASE D Basin ID:POND D Dam Side sbpe z Dm Side9gex A Flew flow D"" FLv A v �J sm.s1w z L -- > SA,Sinpe 7. �� >iim 9Ypea Design Information(Input): Check Basin Shape Width of Basin Bottom,W = ft Right Triangle OR... Length of Basin Bottom,L = ft Isosceles Triangle OR... Dam Side-slope(H:V),Z.s = ft/ft Rectangle OR... Circle/Ellipse OR... Irregular X (Use Overide values in cells G32:G52) MINOR MAJOR Storage Requirement from Sheet'Modified FAA': acre-ft. Stage-Storage Relationship: Storage Requirement from Sheet'Hydrograph': acre-ft. Storage Requirement from Sheet'Full-Spectrum': acre-ft. Labels Water Side Basin Basin Surface Surface Volume Surface Volume Target Volumes for W QCV,Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for W QCV,Minor, &Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage &Major Storage Stages ft ft/ft ft ft ft, ft' User fe acres acre-ft Volumes (input) (input) Below El. (output) (output) (output) Overide (output) (output) (output) for goal seek 4998.75 (input) 172,456 0 3.959 0.000 4999.00 4.00 0.00 0.00 173,026 43,185 3.972 0.991 5000.00 4.00 0.00 0.00 180,032 219,714 4.133 5.044 5001.00 4.00 0.00 0.00 187,141 403,301 4.296 9.259 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A Pond D.xlsm,Basin 9/16/2024,9:56 AM STAGE-STORAGE SIZING FOR DETENTION BASINS Project: Basin ID: STAGE-STORAGE CURVE FOR THE POND 5001.25 — 5000.75 5000.25 W 0) Cu 4999.75 4999.25 4998.75 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 Storage (acre-feet) Pond D.xlsm,Basin 9/16/2024,9:56 AM RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: MONTAVA PHASED Basin ID: POND D Dla, To a o / — o 0 X o 0 0 0 Yo #1 Vertical #2 Vertical Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes(Input) Orifice Orifice Water Surface Elevation at Design Depth Elev:WS= 5,001.00 feet Pipe/Vertical Orifice Entrance Invert Elevation Elev:Invert= 4,996.25 feet Required Peak Flow through Orifice at Design Depth Q= 5.00 cfs PipeNertical Orifice Diameter(inches) Dia= 18.0 inches Orifice Coefficient Co=J 0.65 Full-flow Capacity(Calculated) Full-flow area Af= 1.77 sq ft Half Central Angle in Radians Theta= 3.14 rad Full-flow capacity Qf= 18A cfs Percent of Design Flow= 369% Calculation of Orifice Flow Condition Half Central Angle(0<Theta<3.1416) Theta= 1.17 rad Flow area A.= 0.45 sq ft Top width of Orifice(inches) To= 16.54 inches Height from Invert of Orifice to Bottom of Plate(feet) Y.= 0.45 feet Elevation of Bottom of Plate Elev Plate Bottom Edge= 4,996.70 feet Resultant Peak Flow Through Orifice at Design Depth Q.= 5.0 cfs Width of Equivalent Rectangular Vertical Orifice Equivalent Width= 1.00 feet Centroid Elevation of Equivalent Rectangular Vertical Orifice Equiv.Centroid El.= 4,996.48 feet Pond D.xlsm,Restrictor Plate 9/16/2024,10:12 AM O N Q- O LO O LO CDCD 0 N O � O O O M T O O O � M J �O O N N N II II II II II O O M O N (o O s? = � C1Q > i° J d O U o N ti Z O O a LO y C r N C O T W Q Z M Q� 0 D J Co O O CD O C O ® d M ON Y N U) -o VI II II II II II Y II O 8NV' LO }� C L_ L U) L (1) i.i X N D a �,`" " QQ o `. >` w N J N O OO O O O (� O L •J _ C _ Q% c� U o Oo oD Oo 0 Oo O = Z HUco U) U � UY Q N r o 0 0 N INTERIM POND 427 HEAD (FT) Q (CFS) INTERIM POND 427 SPILLWAY RATING CURVE 0.00 0.00 0.05 7.99 1.10 0.10 22.63 1.00 • - 0.15 41.64 LL • 0.20 64.22 0.90 v� • 0.25 89.90 0.80 0.30 118.38 " • 0.35 149.43 a o.�o • • 0.40 182.89 0.60 • J • 0.45 218.60 N 0.50 • • 0.50 256.47 > 0.40 • 0.55 296.39 co a o.30 • 0.60 338.29 0 • 0.65 382.09 w 0.20 0.70 427.74 = 0.10 -f• 0.75 475.19 • 0.00 0 - 0.80 524.38 0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 0.85 575.27 DISCHARGE (CFS) 0.90 627.83 0.95 682.01 1.00 737.80 STAGE-STORAGE SIZING FOR DETENTION BASINS Project: MONTAVA PHASE D Basin ID:INTERIM POND 427 Dam Side sbpe z Dm Side9gex A p- flow D"" FLv A v �J sm.s1w z L (- > SA,Sinpe 7. �� >iim 9Ypea Design Information(Input): Check Basin Shape Width of Basin Bottom,W = ft Right Triangle OR... Length of Basin Bottom,L = ft Isosceles Triangle OR... Dam Side-slope(H:V),Z.s = ft/ft Rectangle OR... Circle/Ellipse OR... Irregular X (Use Overide values in cells G32:G52) MINOR MAJOR Storage Requirement from Sheet'Modified FAA': acre-ft. Stage-Storage Relationship: Storage Requirement from Sheet'Hydrograph': acre-ft. Storage Requirement from Sheet'Full-Spectrum': acre-ft. Labels Water Side Basin Basin Surface Surface Volume Surface Volume Target Volumes for W QCV,Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for W QCV,Minor, &Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage &Major Storage Stages ft ft/ft ft ft ft, ft' User fe acres acre-ft Volumes (input) (input) Below El. (output) (output) (output) Overide (output) (output) (output) for goal seek 4987.00 (input) 173 0 0.004 0.000 4988.00 4.00 0.00 0.00 8,162 4,168 0.187 0.096 4989.00 4.00 0.00 0.00 35,772 26,135 0.821 0.600 4990.00 4.00 0.00 0.00 75,228 81,635 1.727 1.874 4991.00 4.00 1 0.00 0.00 1 107,043 172,770 1 2.457 3.966 4992.00 4.00 0.00 0.00 133,704 293,144 3.069 6.730 4993.00 4.00 0.00 0.00 151,585 435,788 3.480 10.004 4994.00 4.00 0.00 0.00 160,821 591,991 3.692 13.590 4995.00 4.00 0.00 0.00 167,206 756,005 3.839 17.355 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A INTERIM POND 427.xlsm,Basin 9/16/2024,10:08 AM STAGE-STORAGE SIZING FOR DETENTION BASINS Project: Basin ID: STAGE-STORAGE CURVE FOR THE POND 4996.00 4995.00 4994.00 4993.00 CD 4992.00 CD Cu 4991.00 — 41 W 4990.00 4989.00 4988.00 4987.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 Storage (acre-feet) INTERIM POND 427.xlsm,Basin 9/16/2024,10:08 AM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME(WQCV)OUTLET Project: MONTAVA PHASE D Basin ID:INTERIM POND 427 WQCV Design Volume(Input): Catchment Imperviousness,le= 59.5 percent Catchment Area,A= 34.32 acres Diameter of holes,D= 1.950 inches Depth at WQCV outlet above lowest perforation,H= 2.3 feet Number of holes per now,N= 1 Vertical distance between rows,h= 6.00 inches. OR Number of mm,NIL= 5.00 Orifice discharge coefficient,C. 0.65 Height of slot,H= inches Slope of Basin Trickle Channel,S= 0.005 ft/ft Width of slot,W= inches Time to Drain the Pond= 40 hours. 0 Perforated Watershed Design Information(Input): 0 0 0 0 0 0.O o Plate Pement Soll Type A= 0 % O o 0 0 o O a Examples Percent Soll Type B= 1 % O 0 0 0 Pement Sail Type C/D= 99 % Outlet Design Information(Output): e o o o D TR 4Water Quality Capture Volume,WQCV= 0.869 watershed inches Water QualityCaptureVolume(WQCV) 0.869 acre-feet Design Volume(WQCV f 12'Area"13)Vol= 1.043 acre-feet O O O 0 o Outlet area per row,Ao= 2.99 square inches Total opening area at each row based onuser-input above,An= 2.99 square inches Total opening area at each now based on user-input above,An= 0.021 square feet 3 Central Elevations of Rows of Holes in feet Rawl Raw 2 Row 3 Raw 4 Row 5 Row 6. Row 7 Row 8 Row 9 Row 10 Row 11 Row 12 Row 13 Raw 14 Row 15 Row 16 Row 17 Row 18 Row 19 Row 20 Row 21 Row 22 Row 23 Row 23 E 4987.00 1 4987.50 4988.00 4988.50 4989.00 1 1 1 1 1 1 1 1 1 1 Flow Collection Capacity for Each Row of Holes in cis 4987.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 4988.00 0.1082 0.0765 0.0000 0.0000 0.0000 0.18 4989.00 0.1530 0.1325 0.1082 0.0765 0.0000 0.47 4990.00 0.1873 0.1710 0.1530 0.1325 0.1082 0.75 4991.00 0.2163 0,2023 0.1873 0.1710 0.1530 0.93 4992.00 0.2418 0.2294 0.2163 0.2023 0.1873 1.08 4993.00 0.2649 0.2536 0.2418 0.2294 0.2163 ill 4994.00 02861 0.2757 0.2649 0.2536 0.2418 1.32 4995.00 0.3059 0.2962 0.2861 0.2757 0.2649 1.43 #WA #WA #WA #N/A #WA #WA #WA #WA #WA #WA #WA #WA #N/A #N/A #WA #WA #WA #N/A #N/A #N/A #WA #N/A #N/A #N/A #WA #WA #N/A #N/A #N/A #N/A #WA #WA #WA #WA #WA #WA #N/A #N/A #WA #WA #WA #N/A #N/A #WA #WA #N/A #N/A #N/A #WA #WA #N/A #WA #NIA #NIA #WA #WA #N/A #WA #WA #WA #WA #WA #WA #WA #WA #N/A #N/A #N/A #NIA #NIA #N/A #N/A #WA #WA #N/A #N/A #N/A #NIA #WA #WA #WA #WA #WA #WA #WA #N/A #WA #WA #WA #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #NIA #NIA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #N/A #N/A #N/A #WA #N/A #N/A #N/A #WA #WA #N/A #N/A #N/A #NIA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #N/A #WA #WA #N/A #N/A #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #N/A #WA #WA #WA #WA #N/A #N/A #WA #WA #N/A #WA #WA #N/A #N/A #N/A #N/A #WA #WA #WA #WA #N/A #N/A #N/A #NIA #N/A #NIA #WA #WA #N/A #WA #N/A #WA #N/A #N/A #WA #WA #N/A #N/A #N/A #N/A #WA #WA #WA #N/A #N/A #WA #N/A *NIA #N/A #WA #WA #WA #N/A #WA Override Override Override Override Ovenide Override Override Override Override Override Override Override Override Ovenide Override Override Override Override Override Override Override Ovenide Override Override Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 Row 9 Raw 10 Raw 11 Raw 12 Row 13 Row 14 Row 15 Row 16 Row 17 Raw 18 Raw 19 Row 20 Row 21 Row 22 Row 23 Row 24 INTERIM POND 427.xism,WQCV 9/16/2024,10:08 AM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME(WQCV)OUTLET Project: MONTAVA PHASE D Basin ID:INTERIM POND 427 STAGE-DISCHARGE CURVE FOR THE WQCV OUTLET STRUCTURE 6000.00 5000.00 4000.00 d d m w ... 3000.00- m rn :a to 2000.00 1000.00 0.00 0.00 0.20 0.40 0.60 0.80 1.00 1,20 1.40 1.60 Discharge(cfs) INTERIM POND 427.xism,WQCV 9/16/2024,10:08 AM RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: MONTAVA PHASED Basin ID: INTERIM POND 427 DIa, To a o / — o 0 X o 0 0 0 Yo #1 Vertical #2 Vertical Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes(Input) Orifice Orifice Water Surface Elevation at Design Depth Elev:WS= 4,990.25 feet Pipe/Vertical Orifice Entrance Invert Elevation Elev:Invert= 4,987.00 feet Required Peak Flow through Orifice at Design Depth Q= 11.00 cfs Pipe/Vertical Orifice Diameter(inches) Dia= 18.0 inches Orifice Coefficient Co=J 0.65 Full-flow Capacity(Calculated) Full-flow area Af= 1.77 sq ft Half Central Angle in Radians Theta= 3.14 rad Full-flow capacity Qf= 14.6 cfs Percent of Design Flow= 132% Calculation of Orifice Flow Condition Half Central Angle(0<Theta<3.1416) Theta= 1.93 rad Flow area A.= 1.27 sq ft Top width of Orifice(inches) To= 16.83 inches Height from Invert of Orifice to Bottom of Plate(feet) Y.= 1.02 feet Elevation of Bottom of Plate Elev Plate Bottom Edge= 4,988.02 feet Resultant Peak Flow Through Orifice at Design Depth Q.= 11.0 cfs Width of Equivalent Rectangular Vertical Orifice Equivalent Width= 1.25 feet Centroid Elevation of Equivalent Rectangular Vertical Orifice Equiv.Centroid El.= 4,987.51 feet INTERIM POND 427.x1sm,Restrictor Plate 9/16/2024,10:08 AM INTERIM SWALE POND HEAD (FT) Q (CFS) INTERIM SWALE POND SPILLWAY RATING CURVE 0.00 0.00 0.05 3.48 1.10 0.10 9.88 1.00 • 0.15 18.23 • 0.20 28.17 0.90 ® • 0.25 39.53 Lu 0.80 • 0.30 52.16 • } 0.70 s 0.35 65.99 a • 0.60 • 0.40 80.93 J • 0.45 96.95 N oso • • 0.5 13. > 0.40 • 0.55 132.0101 m • 0.60 150.99 a 0.30 0.65 170.90 W 0.20 • 0.70 191.72 = 0.10 0 • 0.75 213.43 • 0.80 236.01 0.00 40 0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 0.85 259.45 0.90 283.74 DISCHARGE(CFS) 0.95 308.86 1.00 334.80 O N Q- O LO O LO O CD Oi O � O O T O O O m O o6 O N 4 O Lq p p J �O O LnN N II II II II II 0 O O O rn .0 Q V O Q J 2 � C) 1-0 d ago N a Z O OCD a p �� W Q Y a) cn O Ln Q J O o 2- o C) o Z do o = 000 � o O CO �j 0 � o o O II II II II II Y II Q d o `o W N 't o J L N Q CD X WCL y� N c . N U N Q Q L W N J N O OO O (� O L •J _ C _ • Q to 0 v U Q o CD o o = Z HUml� cn U � UY 4- Lq N o 0 0 N STAGE-STORAGE SIZING FOR DETENTION BASINS Project: Montava Phase D Basin ID:INTERIM SWALE POND Dam Side Sbpe Z Dm Sidesgex A W; I �- RSA si 1.slope Z L (- > sHe Sinpe 7. �� >iim 9Ypea Design Information(Input): Check Basin Shape Width of Basin Bottom,W = ft Right Triangle OR... Length of Basin Bottom,L = ft Isosceles Triangle OR... Dam Side-slope(H:V), ft/ft Rectangle OR... Circle/Ellipse OR... Irregular X (Use Overide values in cells G32:G52) MINOR MAJOR Storage Requirement from Sheet'Modified FAA': acre-ft. Stage-Storage Relationship: Storage Requirement from Sheet'Hydrograph': acre-ft. Storage Requirement from Sheet'Full-Spectrum': acre-ft. Labels Water Side Basin Basin Surface Surface Volume Surface Volume Target Volumes for W QCV,Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for W QCV,Minor, &Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage &Major Storage Stages ft ft/ft ft ft ft, ft' User fe acres acre-ft Volumes (input) (input) Below El. (output) (output) (output) Overide (output) (output) (output) for goal seek 4994.85 (input) 0 0 0.000 0.000 4995.00 4.00 0.00 0.00 475 36 0.011 0.001 4996.00 4.00 0.00 0.00 13,630 7,088 0.313 0.163 4997.00 4.00 0.00 0.00 27,392 27,599 0.629 0.634 4998.00 4.00 1 0.00 0.00 1 45,565 64,078 1 1.046 1.471 4999.00 4.00 0.00 0.00 62,332 118,027 1.431 2.710 5000.00 4.00 0.00 0.00 79,199 188,792 1.818 4.334 5001.00 4.00 0.00 0.00 96,609 276,696 2.218 6.352 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #N/A #N/A INTERIM SWALE POND.Idsm,Basin 9/16/2024,9:53 AM STAGE-STORAGE SIZING FOR DETENTION BASINS Project: Basin ID: STAGE-STORAGE CURVE FOR THE POND 5001.85 5000.85 4999.85 4998.85 i� N 4997.85 4996.85 4995.85 4994.85 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 Storage (acre-feet) INTERIM SWALE POND.Asm,Basin 9/16/2024,9:53 AM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME(WQCV)OUTLET Project: MONTAVA PHASE D Basin ID:INTERIM SWALE POND WQCV Design Volume(Input): Catchment Imperviousness,le= 24.5 percent Catchment Area,A= 57.30 acres Diameter of holes,D= 1.841 inches Depth at WQCV outlet above lowest perforation,H= 2.5 feet Number of holes per now,N= 1 Vertical distance between rows,h= 6.00 inches. OR Number of mm,NIL= 5.00 Orifice discharge coefficient,C. 0.65 Height of slot H= inches Slope of Basin Trickle Channel,S= 0.005 ft/ft Width of slot,W= inches Time to Drain the Pond= 40 hours. 0 Perforated Watershed Design Information(input): M 0 00 0 0.O o Plate Pement Soll Type A= 0 % o 0 0 o O a Examples Percent Soil Type B= 1 % 0 0 0 Percent Soil Type C/D= 99 % Outlet Design Information(Output): e o 0 0 o D TR 4Water Quality Capture Volume,WQCV= 0.799 watershed inches Water QualityCaptureVolume(WQCV) 0.799 acre-feet Design Volume(WQCV f 12"Area"12)Vol= 0.859 acre-feet O O O 0 o Outlet area per row,Ao= 2.66 square inches Total opening area at each row based onuser-input above,An= 2.66 square inches Total opening area at each now based on user-input above,An= 0.018 square feet 3 Central Elevations of Rows of Holes in feet Rawl Raw 2 Row 3 Row 4 Row 5 Row 6. Row 7 Row 8 Row 9 Row 10 Row 11 Row 12 Row 13 Raw 14 Row 15 Row 16 Row 17 Row 18 Row 19 Row 20 Row 21 Row 22 Row 23 Row 23 E 4994.85 4995.35 4995A5 4996.35 4996,85 1 1 1 1 1 1 1 1 1 1 Flow Collection Capacity for Each Row of Holes in cfs 4994.85 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 4995.00 0.0374 0.0000 0.0000 0.0000 0.0000 0.04 4996.00 0.1035 0.0778 0.0374 0.0000 0.0000 022 4997.00 0.1415 0.1239 0.1035 0.0778 0.0374 0.48 4998.00 0.1712 0.1570 0.1415 0.1239 0.1035 0.70 4999.00 0.1965 0.1843 0.1712 0.1570 0.1415 0.85 5000.00 02189 0.2080 0.1965 0.1843 0.1712 0.98 5001.00 02392 0.2293 0.2189 0.2080 0.1965 1.09 #N/A #WA #WA #N/A #N/A #N/A #WA #WA #N/A #N/A #NIA #N/A #NIA #WA #WA #WA #WA #WA #N/A #WA #WA #WA #WA #N/A #N/A #WA #NIA #N/A #N/A #N/A #WA #WA #N/A #N/A #NIA #N/A #WA #WA #WA #WA #WA #WA #N/A #N/A #WA #WA #WA #N/A #N/A #WA #WA #N/A #N/A #N/A #WA #WA #N/A #WA #N/A #NIA #WA #WA #N/A #WA #WA #WA #WA #WA #WA #WA #WA #N/A #N/A #WA #NIA #NIA #N/A #N/A #WA #WA #N/A #N/A #N/A #NIA #WA #WA #WA #WA #WA #WA #WA #N/A #WA #WA #WA #N/A #N/A #N/A #NIA #N/A #N/A #N/A #N/A #NIA #N/A #N/A WA #NIA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #N/A #WA #WA #N/A #N/A #WA #WA #WA #WA #WA #N/A #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #WA #N/A #WA #WA #N/A #N/A #WA #WA #WA #WA #WA #N/A #WA #WA #WA #WA #WA #WA #WA #N/A #WA #WA #WA #WA #WA #N/A #WA #WA #N/A #WA #WA #N/A #N/A #NIA #N/A #WA #WA #WA #WA #N/A #N/A #N/A #NIA #N/A #NIA #WA #WA #N/A #WA #N/A #WA #N/A #N/A #WA #WA #N/A #N/A #N/A #N/A #WA #WA #WA #N/A #N/A #WA #N/A *NIA #N/A #WA #WA #WA #N/A #WA Overtide Override Override Override Overtide Overide Ovenide Override Overide Override Override Override Overide Overide Overide Override Overide Override Overide Overide Overide Overtlde Overide Override Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Area Row 1 Raw 2 Row 3 Row 4 Raw 5 Row 6 Row 7 Raw 8 Raw 9 Row 10 Row 11 Raw 12 Row 13 Row 14 Row 15 Row 16 Row 17 Raw 18 Raw 19 Row 20 Row 21 Row 22 Row 23 Row 24 INTERIM SWALE POND.xlsm,WQCV 9/16/2024,954 AM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME(WQCV)OUTLET Project: MONTAVA PHASED Basin ID:INTERIM SWALE POND STAGE-DISCHARGE CURVE FOR THE WQCV OUTLET STRUCTURE 5004.00 5002.00 m 01 5000.00 d w d M to 4998.00 4996.00 4994.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 Discharge(cfs) INTERIM SWALE POND.xlsm,WQCV 9/16/2024,9:54 AM RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: MONTAVA PHASED Basin ID: DETENTION POND D DIa, To a o / — o 0 X o 0 0 0 Yo #1 Vertical #2 Vertical Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes(Input) Orifice Orifice Water Surface Elevation at Design Depth Elev:WS= 5,000.00 feet Pipe/Vertical Orifice Entrance Invert Elevation Elev:Invert= 4,995.00 feet Required Peak Flow through Orifice at Design Depth Q= 51.00 cfs Pipe/Vertical Orifice Diameter(inches) Dia= 36.0 inches Orifice Coefficient Co=J 0.65 Full-flow Capacity(Calculated) Full-flow area Af= 7.07 sq ft Half Central Angle in Radians Theta= 3.14 rad Full-flow capacity Qf= 69.0 cfs Percent of Design Flow= 135% Calculation of Orifice Flow Condition Half Central Angle(0<Theta<3.1416) Theta= 1.88 rad Flow area A.= 4.88 sq ft Top width of Orifice(inches) T.= 34.30 inches Height from Invert of Orifice to Bottom of Plate(feet) Y.= 1.96 feet Elevation of Bottom of Plate Elev Plate Bottom Edge= 4,996.96 feet Resultant Peak Flow Through Orifice at Design Depth Q.= 51.0 cfs Width of Equivalent Rectangular Vertical Orifice Equivalent Width= 2.49 feet Centroid Elevation of Equivalent Rectangular Vertical Orifice Equiv.Centroid El.= 4,995.98 feet INTERIM SWALE POND.xlsm,Restrictor Plate 9/16/2024,9:54 AM APPENDIX J EXCERPTS FROM PREVIOUS DRAINAGE REPORT SCHEMATIC LEGEND SOD7 r, �''• �': �`w1:a.r^.'' !�/ �j f J' 'fir f" �°\\ S ' w O � \ � SB38 \ �• a � � I� � \.µ � r ����� f �r A aa. .�tiL � �`�'F +vnsI@ g Z Q SUB CATCHMENT ��0 �~ 291 5 �` 1 f JI ,� `� , �' \r '�f f �I °�' Q (� Q FARM� �y e w 0 ji DETENTION ELEMENT �. �4 �>A � ,� . 1� r �� �p 4 SOD FARM y f r r r �. ..� q INCIDENTAL , �°.. 1 �� �. ,� f �' Z _ \ `RETENTION n�' t � �J f se ��� � � �.� z _ o DESIGN POINT/DESIGN FLOW _ M`` 242 .,, . �,. �I SB37 I " �� � � f �� \ �c 436 �y. .� � �.�L�\ �� I�p� - 435 OC \� 438Y II f , ^` �~ ��,. Il�q. t ti�, . w o 34.6 23 I• ! ` �a /f try J_bi• u ' Z_ `' k Q z Y U `'' !�4 ``�, l` ` ,1 t.•\ �.ar•• 1 1 �t„ l .a=' ,.,,,,��, d •f J Y-y...;;s k- �, L �yS„ �R yx .W� '4.,,,� O < Z CONVEYANCE ELEMENT 4. \i 4 f O J t 11 uµ J S'z _ \ :zL'•"> a4 F S n- N M N4- ~h,`.,al, l .�' �,, ti •Y , . OUTFALL ELEMENT �3-,, w � SIDE SPILL M M z p<c> TO SOD FARM POND > �• � �, I DIVERSION ELEMENT 19 _'` 3e i�' -_ -_ L.; _ -_ RICHARDS LAKE RD. (CR 52) r _ 43 LL -.--... - --- 43 237 _ - o U C ?I_ n -� N O 1� Iq t'. ~ 11� 834 _ . B L 434 BASIN - �=' ter III ; � ` 4 ;� \��\,:� �.. POND B I�I I t B ;�� "� � `�"1•f.I`('t_� � '' '. r �' C 1 o 1 .2 50lw r - ``. .111E .�• ' 27 6 50 IMPERVIOUSNESS (%) _ :, AREA IN �k' I 1 ti O ACRES rH MAPLE HILL 'u-- ' POND 45J610 sm b BASIN BOUNDARY = _ - _ " ' � SUBDIVISION ��_y, .` � ��� 1 l �� �\ v o� C2 � `f 1 l�' I.` "�r �� � _•- � 8 .� - � ` -\ �. � _ 0 IRRIGATION DITCHOf r / ILL CONVEYANCE PATH O _ w J1 Q Mti SB33 ' N0. 8 SIDE 7� \� V- O ''y Z • _ - SPILL TO \ . // 20.5 50 j POND A e ��" • '` I PS MONTAVA _ _ • , NOTES: SCiiVL �,�" ✓,.,� J2 � 'r� \L \ 11 - '' ,► q ® fiz Y >t �\ -ANHEUSER rD R " : Q I 22.2 ��\ II �S BUSCH • z U 1 . STORM ROUTING IS BASED ON MONTAVA FULL BUILD-OUT • y '+ � � R .j �. Lam, \ U _ _- _ ;_ U Ion WITH EXISTING OFF SITE CONDITIONS. - �47.3 \ �� ; �� Q . y 60 R � Y \��\` r 439 _ _1 I I 2. STORM ROUTING WAS DEVELOPED FROM EXISTING - 833 -�-_�_ - _ 3 - �Z W_ - - -- - - CONDITIONS SWMM MODELING PROVIDED BY ICON - j / L 7 � � , \ - _ -� - 29 _ ENGINEERING, INC. NOTE: BASINS SB24, OS-1 , Al , A2, AND E, �� ti N \ CHANNEL N0. 1_ DISCHARGE TO THE NO. 8 DITCH. PONDS Al I POND D U` -CN C� \\ 3. EXISTING TOPOGRAPHY SHOWN IS BASED ON SURVEY TST DS 1 VA2 AND E, AND ATTENUATE ON-SITE ��^ 31 �� � ., . ��\ = _- ,�• Q (D INFRASTRUCTURE, INC. IN MAY 2018 WITH SUPPLEMENTAL 45.0 20 DEVELOPED 100-YEAR RELEASE RATES TO ]lei Q z Z_ USGS 1 -METER RESOLUTION 2014 FLOOD LIDAR ' PRE-DEVELOPED 2-YEAR RELEASE RATES. - _i `�- � ��� - I- =� 100-YEAR FLOWS FROM BASIN OS-1 WERE ` F �� �� w �_ 44.5 50 34.8 2 Q TOPOGRAPHY. ELEVATIONS ARE REFERENCED TO THE NORTH 4 - V - i -c M \� SB30 Z O _',MODELED AS PASS THROUGH. �- ��r � -� \ I �:�. �`'� i I � �,� r AMERICAN VERTICAL DATUM OF 1988 (NAVD88), U.S. I - ___ � \ � �'" y� � � � - SURVEY FEET. CITY ut Z INS �RK ti _ 3� ��. I 33.5 49 o � � � CHANNEL N0. 2 ,•� ��..y.w�,r,, ,�� "•'...�. � �,. ' � � � W 4. SEE SHEET D2 FOR SWMM SUMMARY TABLES. E \ 6' - ` �. _ \\ \ - i v O \\ \\\ \\ \ ✓ 'POND F' `�\\ 22.8 60 - i, rSB29� `�' U) W 427 \ I 430 s - , J \ 111 1 I \ 60.0 60 `J� 429 i \\ o I SB24 �.Cf) � � �� -- o � \ �'� �� , � � r� \ \ \ \ \ z 13.3 80 ' I' N �' 7 /`, 0 M POND A2 s 80.4 80 �' J !' +f� � `� 00 00 00 00 00 CHANNEL NO. 3 STORYBOOK 10.0 80 _ �` ti.e I I v � �i� �� v1•_ IIS-� , SUBDIVISION._- 424 - - - �\ , r VISTA D .POND Al =- 16 822 --- - _�.-R --- 42 - _= _ - -_ _ _. r I � MOUNTAIN V (CR 50) \- 43 , A- 0 `I�`>_. . eta . -_- "°�-• �--,-�.�,, -- ---_ ,- - • '^ � Al \ i t ��. � � ; � w Q 12.1 80 200 ti _ /✓ rota~ \v.� z ,, Of cN n SKI .�, 4 „y A. .'�., c Of � � ICI, O w U - \ j f `��'^ ! *art : \ l' > ozoz � K k.5 60 " � ; O m 0 _ w 0- cn p 86.6 80 �. � -I cn j i ! EXISTING FLOW IN NO. 8 DITCH " AT DP 822 = 512 CFS � d m v z F z PROPOSED FLOW IN N0. 8 DITCH �� \\ N j I �w• `' �,,, w Q c _ n z ° AT DP 822= 249 CFS �, ` �� �,11 (� �' ' L. : Q ` •`` \\ i S� I wy°fig\yq' �r " ;. s 1 4� z 891 w X 425 ow o 30.2 2 I \ I t _ _ _ 426 \ LLJ -- I W � (�Lli z�c�X z cn co g m = 907 __-_--- " _' L&W CAN . I _J z o g o - T z - 42.0 2 ,. . _ `. p D O U ¢w w �j 909 m m cn oo z DISCHARGE TO L&W o f w w (EXISTING 100YR=565 CFS) Jc � N ' -. �o0< � � z � Q � � �- a.• - ati I �I -,I � OVERFLOW DISCHARGE TO � � z� N a o LOUGH E O J � w ��� - f J J 426 \� _�o, o cv o k. 4 1 ``� E T - \\ 1�\ fll 1• COOPER NGS 100YR=734 CFS) z 0 � z w r` :� > t �ti r- I``� 7 j f. a OVERFLOW \\\ } o� � Lc) �� 1� '�- L I 1 1 BOX CULVERT OR SIPHON oz wo z \ .\' ", 1'\. � �Y �i @`L\ CONNECTION TO POND 425 _D � w Li cn m o \�1 Q o o Lj Ug �W CA _ ( WATERGLEN � � <»r r y _ } � �, Ld a� NAL f � .J TO EXISTING UTILITIES) - SUBDIVISION ~ �� ` _7. w = z cn o c� o �� > Sheet Number: _0 co " '$ "t ' POND C OVERFLOW a z `,v y DISCHARGE TO L&W DUE 0 "• . ` Q > V. �� ; TO BOTTOM OF POND U TRAIL HEAD ' ELEVATION BEING BELOW 3 Q /r S o ��`\�_, c� POND C OUTFALL D 1 Q 500 250 0 500 1000 0 �2: SUBDIVISION = ELEVATION TO POND 425. UDE z SCALE: 1 "=500' \ O Q ALL DIMENSIONS SHOWN ARE U.S. SURVEY FEET J ft� � 0 Z N w 0 U, 0 SCHEMATIC LEGEND Q - o BASIN SUMMARY CONVEYANCE ELEMENT SUMMARY DESIGN POINT SUMMARY POND SUMMARY < 0z BASIN ID AREA (AC) % IMP Q2 (CFS) Q100 (CFS) SWMM Q100 (CFS) SWMM ELEMENT Q100 (CFS) SWMM ELEMENT Q100 IN (CFS) Q100 OUT (CFS) VOLUME (AC-FT) SUB-CATCHMENT w p o Al 12.1 80 11 70 ELEMENT 16 15 425 883 819 47 0 Z z o A2 13.3 80 12 78 24 385 21 385 426 1322 760 307 O DETENTION ELEMENT ? 0 B 16.6 50 10 62 25 512 31 355 429 1000 390 13.6 Q N Y C1 27.6 50 17 107 31.1 338 430 231 29 5.5 DESIGN POINT/DESIGN FLOW 5 o a z 26 239 " Ld cc C2 82.0 50 38 246 31.2 277 435 468 415 30 Z 26.1 6 CONVEYANCE ELEMENT > z D 47.3 60 26 172 427 319 436 1562 1548 25 a 26.2 9 x E 83.9 25 25 159 427.1 6 438 732 0 88 OUTFALL ELEMENT a F 46.9 60 25 166 27 1780 427.2 9 426 OVERFLOW 167 138 59 0 0 28 45 o G1 80.4 80 36 249 431 1312 POND A 1807 1042 123 DIVERSION ELEMENT w G2 10.0 80 9 59 29 413 434 7 POND Al 76 12 2.8 1 ro 30 27 rn H 45.6 10 10 53 437 333 POND A2 78 3.5 3.0 31 353 o 11 58.2 10 8 49 439 1043 POND B 62 7.2 2.3 31.1 338 NOTES: 12 34.8 2 2 11 442 53 POND C 107 7.1 4.6 z .11 20.5 50 9 58 31.2 276 725 513 POND D 172 8.6 9.0 1 . STORM ROUTING IS BASED ON MONTAVA FULL 0 31.3 271 BUILD-OUT WITH EXISTING OFF-SITE U J2 22.2 50 18 101 729 415 POND E 174 91 3.2 CONDITIONS. 34 1043 J3 44.5 50 25 158 2. STORM ROUTING WAS DEVELOPED FROM 730 28 POND F 166 6.4 11.4 I- K1 22.8 60 11 73 35 468 822 249 EXISTING CONDITIONS SWMM MODELING z 72 224 PROVIDED BY ICON ENGINEERING, INC. O K2 60.0 60 27 180 829 513 U L 110.5 60 55 361 73 139 831 224 ❑ DIVERSION SUMMARY � M 42.0 2 2 14 74 125 833 138 Q100 O 74.1 396 SWMM Q100 INFLOW Q100 DIVERTED F_ REMAINING N 86.6 80 61 400 834 1781 ELEMENT (CFS) (CFS) O 75 391 (CFS) 0 60.8 10 12 65 77 1000 841 396 833.1 408 279 125 P 30.2 2 2 12 229 513 891 418 842 1000 617 384 OS-1 45.0 20 11 71 24 33.7 45 44 280 231 1310 z U 29 268.8 29 192 1000 237 310 OUTFACE SUMMARY Q Q 30 33.5 49 44 231 242 493 SWMM J 426 760 L ELEMENT Q100 (CFS) � LJ 37 34.6 23 22 148 w = U 426 OVERFLOW 167 38 290.7 5 42 469 - 904 138 Q U) 200 33.6 5 5 46 907 385 909 729 Q z Z Q � Z o O o 0� 0 Ljj w 0- 0 LU Q > LU a� 0 Q I (D U) E o z U c + - O O N O \ \ \ \ \ O � O O I N Z � Q Ld j Rating Curve for Trapezoidal Channel at 0.2%with 4:1 Side Slopes (n=0.035) a- Cf) Of Z 5 of a- m O O0 w > O Z z a a / 4.5 9 M � M Cf) Q 9 O O � E m z Of Ofm D w o0 U) 4 (D - �W �w � 100 m ~ Z E] � cn z (n N W fl O 90 3.5 O m ; z CULVERT SIZE BY DESIGN POINT m C 80 z Q 3 SWMM HEADWATER DEPTH 0 W ELEMENT BARRELS-SIZE Q100 (CFS) (FT) w w o Q W o v x W 70 o Q 21 2-8x4 385 4.4 LLJ Q�J L Cn + 2.5 o' w zW4_ 3 c~i� " 3 60 c 31 2-7x4 355 4.6 J CD =Q w = g z - g m > 31.1 2-8x4 338 4.1 z LJ 0 Q Of w O W W Of a� 2 31.2 4-48 D 277 4.1 Z = J W I Q � � O U J�"W a Q W J � Q 50 m m Y (n z~�1 a- Q Z sC"i6 427 2-6x4 319 4.7 J o 6o Q 1.5 427.1 1-18"D 6 1.6 � ( m m 0-) z�=0 & N < 40 >, > a� wo�� 00 � 427.2 1-18 D 9 2.6 E ° =� z o 30 �' U =0o, o N 00 1 431 1-15x10 & 1-5x12 1312 7.6 z 0 � 0 z o f 434 1-18"D 7 1.9 z Ld W W Of L w LLJ 20 437 3-6x3 333 4.2 °' ° =W m o W 0 Q 0 0W E 10 0 5 822 3-48"D 249 4.6 o Q W Q U o 831 3-48"D 224 4.3 z 0 0 833 2-48"D 138 4.1 Sheet Number: 0 250 500 750 1000 1250 1500 1750 834 4-10X5 1781 7.3 a z Flow(cfs) 841 2-5X5 396 6.2 °' Q -Bottom Width (ft) -Top Width (ft) -Velocity(ft/s) � U 904 1-60"D 138 13.0 .. o w J OPEN CHANNEL RATING D2 Q c� o z o Q J 0:� a_ C�